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Summary 

The southern Altai Mountain range and the Dzungarian semi-desert basin, located in a 

transition zone from the East to the Central Asian region, are characterized by semi-arid 

continental climate conditions with high intra-annual and diurnal temperature variation and 

unevenly distributed precipitation due to the orographic effect. Rivers of the Altai Mountains 

are recharged primarily by meltwater from glaciers and snow (51-63%), followed by rainfall 

(3-17%) and groundwater (31-40%).  

The Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2022) 

highlights that temperature has increased rapidly in recent decades, and seasonal weather 

patterns have changed in the mountain regions. Moreover, the warming rate is higher in 

drylands than in humid areas. Thus, the semi-arid Altai-Dzungarian region is highly sensitive 

to climate change. 

Warming summer temperatures since the 1980s have resulted in an accelerated glacier 

recession in the Altai Mountains. The highest acceleration of glacier recession occurred from 

1990 to 2000, followed by a period from 2010 to 2016; thus, the glacier contribution to total 

runoff decreased. Moreover, accumulated snow depth during the previous winter influences 

the high flows of the rivers in the southern Altai Mountains. From 1975 to 2007, warm winters 

reduced the duration of the snow cover in the Bulgan catchment, and the snow-to-rain ratio 

rapidly decreased in the southern Altai Mountains from 2000 to 2016. 

As a result of the shortening of the freezing period, the ground temperature has increased at 

a rate of 0.15-0.18°C per decade in the Mongolian Altai Mountains since the 1980s. This has 

led to permafrost degradation and thickening of the active layer, increasing the water storage 

capacity. Increased groundwater storage has triggered an increase in winter baseflow in 

high-latitude permafrost regions, such as in the river basin in northwestern China in the 

1990s. The end result of the consecutive warm years has been an acceleration in the 

regional hydrological cycle since the 1980s. 

The World Meteorological Organization emphasizes that human-induced warming is more 

extensive than the annual variation of the global average triggered by naturally occurring 

climate drivers. As the effect of global warming differs region by region, understanding long-

term regional climate variation and climate drivers is vital in interpreting the worldwide 

warming and future water availability in Asia. The Bulgan River in the semi-arid Altai-

Dzungarian region is a transboundary water resource for irrigated agricultural production and 

mountain pastoralism in western Mongolia and northwestern China. The observed 

hydrological impacts of climate change in the Altai Mountains might lead to water shortage 

for livelihood security and agriculture in the Altai-Dzungarian region in the future.
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This thesis aims to better understand long-term climate variability and change over the Altai-

Dzungarian region and the hydrological impact of observed and future climate change on 

water availability and timing for this semi-arid region. This study answered the following three 

research questions. 

Question 1: How has regional climate varied over the Altai-Dzungarian region during and 

after the Little Ice Age? 

Question 2: How did the observed climate change impact the Bulgan River in the southern 

Altai Mountains between 1985 and 2015?  

Question 3: How will future climate change influence the hydrological regime of the Bulgan 

River for the period of 2030-2050? 

 

Climate variation over the Altai-Dzungarian region during and after the Little Ice Age 

Long-term instrumental observations do not exist in desert and mountain areas; therefore, a 

climate proxy based on undisturbed tree rings in the Altai Mountains was used in the 

estimation of long-term climate variability and change of the Altai-Dzungarian region back to 

the Little Ice Age.  

This study determined long-term (>400 years) climate variation over the Altai-Dzungarian 

region by reconstructing the longest time series of (611 years) temperature and (444 years) 

precipitation from tree-ring proxies. At upper and lower tree lines in the southwestern 

Mongolian Altai, 77 Larix sibirica Ledeb. trees were sampled, and temperature and 

precipitation were reconstructed. Based on tree ring-width chronologies, mean June-July air 

temperatures and June-December precipitation were reconstructed for the periods 1402-

2012 and 1569-2012, respectively. These time frames extended the periods presented in 

previous studies from this area by 168 years for temperature and 191 years for precipitation. 

The temperature and precipitation reconstructions explained 39.7% and 41.3% of the station 

observation variance during the periods 1977-2012 and 1963-2012, respectively. The 

precipitation reconstruction shows alternating extreme wet and dry conditions during the 

Little Ice Age (1580-1874), followed by more stable conditions until a late 20th century 

wetting. The temperature reconstruction shows cooler periods related to volcanic and low 

solar activities during the Little Ice Age, followed by a warm period in the 20th century, which 

was interrupted by two short cold periods.  

Long-term climate variation and change over the Altai-Dzungarian region were inferred from 

the analysis of the combined temperature and precipitation reconstructions for the common 

period 1580-2012. Although this region has warmed since 1875, a positive phase of the 

Arctic Oscillation might have caused a late 20th-century cool and wet period by strengthening 

westerly winds in addition to volcanic-induced cooling over the Altai-Dzungarian region. 



 

vi 
 

 

Moreover, cooling in the 1950s to the 1990s also found in previous temperature 

reconstructions from the Altai Mountains contrasts with a continuous 20th-century warming 

of the mean Northern Hemisphere. 

The Altai-Dzungarian region is located at the junction between the North Atlantic climate 

system to the west and the Pacific climate system to the east. Various atmospheric 

circulation systems influence the regional climate. We analyzed relation of the reconstructed 

summer temperature and precipitation with the North Atlantic Oscillation (NAO), the Arctic 

Oscillation (AO), and the El Niño-Southern Oscillation on interannual and interdecadal time 

scales considering wind-induced interannual variation of the ocean surface condition and 

interdecadal changes in the oceans’ heat storage and transport. 

On the interannual time scale, prominent positive winter NAO (r=-0.31, p<0.05) and AO (r=-

0.32, p<0.05) indices brought cool-wet summers in the Altai-Dzungarian region for the period 

1960-2012 due to the northward shift of the polar jet and the intensified westerlies; in 

contrast, on the interdecadal time scale, the identified cool and wet summers more strongly 

correlated with negative April NAO (0.69 for cold temperature) and negative July NAO (r=-

0.65 for more precipitation) than winter NAO (r=-0.53 for temperature and r=0.44 for 

precipitation) for 1900-2012. Moreover, summer July AO correlated only with precipitation 

(r=-0.38); however, positive winter AO strongly correlated with cool (r=-0.72) and wet (r=0.41) 

summer conditions over the Altai-Dzungarian region on the interdecadal time scale. 

Furthermore, positive preceding autumn - early winter NINO3.4 induced cool summer 

temperatures, and a positive summer NINO3.4 led to high precipitation over the Altai-

Dzungarian region on the interdecadal time scale. This can be related to wet air transport 

from the tropical Indian Ocean with the southwesterly winds to Central Asia and southward 

shifts of the subtropical westerly jet. 

Many studies have investigated the most prominent NAO and AO patterns in winter. They 

proposed a delayed influence of the winter NAO and AO on climate over East Asia. A few 

studies on summer NAO also found that a negative summer NAO brings cooler and wetter 

conditions over northwest China but warm and dry conditions over northwest and central 

Mongolia, and northeast China. Also, the summer AO was found to be negatively correlated 

with the West Asian subtropical westerly winds that enhance westerly flow over northwestern 

China.  

Besides, we found sign and strength changes in interannual teleconnections of the prevailing 

natural climate drivers to the regional climate from 1900 to 2012. The significant inflection 

points of the teleconnections in the 1970s and late 1990s coincided with the beginning and 

end of the recent cool-wet period. In the late 1970, previous studies have also found the 
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same sign and strength changes in teleconnections between summer NAO and air 

temperatures of Middle East Asia related to the shift of the summer NAO mode from more 

westward to more eastward. Also, the NINO3.4-drought connection in Xinjiang significantly 

strengthened in 1997. 

Our study added value to previous studies on teleconnections by suggesting changes in the 

strength of teleconnections of climate drivers characterizing the Altai-Dzungarian region on 

the longer time scales using the reconstructed temperature and precipitation from the tree-

ring proxies.   

Hydrological response of the Bulgan River to climate change in the southern Altai 

Mountains in the period 1985-2015 

Climate and hydrological observations in the Bulgan catchment started in 1977 and 1984, 

respectively. During 1984-2015, a warming of 2.1°C and a decrease of 20% in annual 

precipitation was observed at stations. Autumn precipitation significantly decreased by 46% 

in the mountains and by 89% in the desert area; however, winter precipitation insignificantly 

increased by 21% in the mountains and by 25% in the desert area. Also, summer 

precipitation insignificantly declined by 10% over the same period. The reference ET0 

increased by 20% in winter but only by 6% in summer due to a decrease in summer ET0 after 

a moderate upward trend that occurred until the mid-2000s. 

The Altai Mountains’ climate stations are sparse and all located in the valley; thus, we 

evaluated the interpolated APHRODITE dataset (0.25ºx0.25º) in our climate impact study. 

Compared to two available climate stations in the Bulgan catchment, the interpolated 

APHRODITE dataset slightly underestimates temperature and precipitation amounts over 

the southern Altai Mountains but overestimates precipitation for the desert area; so these 

biases are corrected for the hydrological simulations.  

According to our developed regression models, the driving climate factors in the hydrological 

regime of the Bulgan River in the southern Altai Mountains are identified as accumulated 

snow amount from late autumn through winter and summer rainfall and temperature. As a 

result of a decrease in precipitation in summer and autumn, and an increase in summer 

temperature, annual discharges decreased by 34% at the upstream gauge and 20% at the 

downstream gauge for the period 1984-2015. In contrast, the winter discharge of the Bulgan 

River increased by 87% at the upstream area related to the increasing in July temperature. 

The same increase in the winter discharge has been observed in other high mountain 

permafrost regions and northwestern China, related to an increase in groundwater recharge 

to baseflow due to permafrost degradation and an increased soil storage capacity rather than 

glacier melt.  
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It is likely that the increase in baseflow has influenced river ice formation and break-up. The 

cold period from river ice formation to break-up was shortened by 33 days between 1984 

and 2007, and the maximum water temperature of the Bulgan River increased by 1.4°C at 

the upstream and 6.9°C at the downstream gauges. 

Changes in seasonal runoff and water balance of the Bulgan catchment in response to 

observed climate change were estimated by the rainfall-runoff HBV-Light model. Compared 

to the calibration period of 1985-2005, the simulated water balance of the Bulgan catchment 

in the validation period of 2006-2015 showed that river runoff declined by 17% and water 

storage decreased by 38% as a result of a decrease in total precipitation by 11% and an 

increase in potential evapotranspiration by 4%. Between 1985 and 2015, contributions of 

rain and snow to the annual runoff decreased by 36% and 51%, respectively. In contrast, 

glacier input to the annual runoff increased by 78% at p<0.5.  

To include the seasonal thaw of the permafrost and glaciers in the hydrological simulation of 

the Bulgan catchment, we added a delayed response function and glacier variant to the 

standard model structure of the HBV model. Our attempt to conceptualize the permafrost 

condition of the Bulgan catchment with a delay response function in the model much 

improved the baseflow simulation of the Bulgan River, which was unsatisfactorily simulated 

by the SWAT model developed for water use in the irrigated downstream area of the Bulgan 

catchment. 

Although our model efficiency was good (0.69) with a low absolute error of 7.6%, the high 

flows of the Bulgan River in wet years were underestimated and low flows in dry years were 

overestimated. Moreover, increasing winter flow since 2006 was not simulated well due to a 

lack of data on glacier area change and the simple conceptualization of the permafrost 

degradation. The uncertainty of the hydrological simulation for the Bulgan catchment might 

have originated from limited precipitation measurements for the complex terrain, errors in 

discharge measurement for the extreme years, lack of glacier and permafrost observation 

data, and model structure and parameters. 

Using the optimized hydrological model of the Bulgan catchment, we run runoff sensitivity of 

the Bulgan River by changing precipitation and temperature input data. The runoff was more 

sensitive to changes in precipitation than to changes in temperature. An increase in the daily 

precipitation sums of 10% amplified the annual runoff by 22%, whereas a warming of +1°C 

in daily temperature reduced the annual runoff by 6%. When temperature increases, the 

runoff decreases during the snowmelt period from May to June and the cold period from 

October to March, but the runoff slightly increases in August due to an increase in 

groundwater from ice melt of glacier and frozen ground. 
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Projected climate and runoff changes for the Bulgan catchment for the period 2030-

2050 under RCP4.5 and RCP8.5 climate scenarios 

General Circulation Models (GCM) help to understand the uncertainty range of climate 

projections. Regional Climate Models (RCM) accurately show regional climate at fine-

resolution geographic and temporal scales.  

Future climate and runoff changes for the Bulgan catchment were projected based on 

dynamically and statistically downscaled RCMs (RegCM4 and SD-CanESM2) and their 

driving GCMs (HadGEM2-AO and CanESM2). First, we statistically downscaled CanESM2 

at two stations in the Bulgan catchment using the SDSM tool. The statistical downscaling 

model skills for precipitation from CanESM2 were satisfactory (R2=0.56) for the mountainous 

area but poor (R2=0.24) for the desert area due to low rainfall frequency and extreme climate. 

However, the maximum and minimum temperatures of CanESM2 were downscaled well 

(R2=0.95-0.96) at the two stations. 

The original GCMs and dynamical RCM simulated too many drizzle days with low 

precipitation and warmer temperatures for the Altai Mountains. After post-processed using 

distribution mapping, local climate conditions were better represented with lower RMSE (0.2-

0.5) and higher correlation coefficients with observation (r=0.98-1.00) for the baseline period 

of 1985-2005. 

Compared to the baseline period from 1985 to 2005, the mean of the post-processed GCMs 

projected an increase of 14% (RCP4.5) and 28% (RCP8.5) in total precipitation and a 

warming in annual temperature of +1.8°C (RCP4.5) and +2.3°C (RCP8.5) from 2030 to 2050. 

Similarly, the means of RCMs projected an increase of 13% and 18% in annual precipitation 

and intensive warming in annual temperature of +2.4°C and +2.9°C under RCP4.5 and 8.5, 

respectively. 

Seasonally, GCMs projected intensive warming by +2.0°C in summer and autumn and the 

highest increase in precipitation during spring of +29% (RCP4.5) and 50% (RCP8.5). In 

contrast, winter precipitation was likely to decrease by -11% under RCP4.5 but to increase 

slightly by +13% under RCP8.5. Contrary to the projection of GCMs, RCMs projected a high 

increase of +23% and +47% in winter precipitation and a more significant warming in spring 

by +2.7°C and +3.3°C in the 2040s under RCP4.5 and RCP8.5, respectively. However, 

precipitation was projected to decrease slightly in spring and summer.  

The projected change in the summer temperature (+2.96±0.79°C) in the 2040s under 

RCP4.5 is similar to the reconstructed temperature (+2.94±0.96°C) in the 1900s; however, 

the impact of the continued warming on water resources can be more severe than the short-
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term warming in the 1900s. The variation of the June-December precipitation sum will be 

high and extreme in the 2040s compared to the dry period after Little Ice Age.  

With regards to the hydrological regime, all models projected the highest increase in the 

snowmelt runoff in April and May but the lowest increase in June. RCMs projected more 

intensive warming than GCMs’ projections; thus, the impact of temperature on runoff 

simulation was more pronounced in the runoff prediction. Previous studies on future runoff 

change in the Altai Mountains also projected the largest increase in spring runoff but a 

decrease, or the smallest increase, in summer runoff in the region. This altered seasonal 

water allocation through the year might threaten the intensified agriculture along the Bulgan 

River with water shortages during the growing season. 

Overall, the Altai-Dzungarian region has been intensively warming since 1985. This warming 

is projected to continue with a projected increase in precipitation in the 2040s, and the 

hydrological regime of the Bulgan River will be changed.
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CHAPTER 1. INTRODUCTION 

 

“…There are fruit groves in the river valley. 

In the oasis on the front side of the Altai Mountains,  

All people are happy in their hometown…” 

from “Bulgan River with Beavers” folk song 

 

  

Photo: A midstream area of the Bulgan River, Oyunmunkh 2017 
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Chapter 1. Introduction 

1.1 Motivation 

The World Meteorological Organization (WMO, 2022) emphasizes that since the 1980s each 

decade has been warmer than the previous one. Despite being temporarily cooled by the 

2020-2022 La Niña events, 2021 was recorded as the seventh consecutive warm year since 

2015. Also, WMO is concerned that now human-induced long-term warming is more 

extensive than annual variations of global average temperatures triggered by naturally 

occurring climate drivers. Consequently, climate change has already accelerated the global 

hydrological cycle causing negative societal impacts, including water scarcity and water-

related extreme events like floods and droughts (Pörtner et al., 2022). 

In recent decades temperature has increased rapidly and seasonal weather patterns have 

changed in the mountain region; snow cover extent and duration has reduced in low 

elevation zones, and an increased permafrost thaw and loss of glacier mass are observed 

with high confidence. Also, the number and size of glacier lakes has increased in the 

mountainous area (Adler et al., 2022).  

The southern Altai Mountain range and the Dzungarian semi-desert basin are characterized 

by semi-arid continental climate conditions with high intra-annual and diurnal temperature 

variation and unevenly distributed precipitation due to orographic effects (Kurzrock et al., 

2017). The observed warming rate in drylands is higher than in humid areas due to the 

sparse vegetation cover and low soil moisture (Mirzabaev et al., 2022). Thus, the semi-arid 

Altai-Dzungarian region is very sensitive to climate change.  

In the semi-arid Altai-Dzungarian region, the Bulgan River is an important transboundary 

water resource for intensified and irrigated agricultural production and mountain pastoralism 

in western Mongolia and northwestern China (Jordan, 2016). Rivers of the Altai Mountains 

are mainly fed by the meltwater of snow from April to June and the meltwater of glaciers from 

July to August (Davaa, 2015; Zhang et al., 2017). They are influenced by seasonal thaws of 

permafrost from May to September (Sharkhuu, 2003).  

Glaciers in the Altai Mountains have retreated rapidly since the 1990s (Dmitry et al., 2017; 

Kadota and Gombo, 2007; Maria et al., 2010; Wei et al., 2015) and permafrost thaw has 

increased since the 1980s (Jambaljav, 2017). Warmer winters and springs result in earlier 

snowmelt and an advance in the timing of spring high floods by 20 days in the Altai 

Mountains. On the other hand, changes in the summer rainfall pattern cause a delay in the 

timing of summer floods. Thus, break-up dates of rivers start 10-30 days earlier, whereas 

freeze-up dates of rivers are delayed by 10-30 days. (Batima, 2006). 

These observed hydrological impacts of climate change in the Altai Mountains might lead to 

water shortage for livelihood security and agriculture in the Altai-Dzungarian region in the 
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future. Hence, this study aims to help policymakers and researchers to better understand 

long-term climate variation and its drivers over the Altai-Dzungarian region in the past and 

present, also runoff changes as a result of human-induced climate change in the present 

and the near future. The following research needs are identified by reviewing the literature 

on regional climate change and impact studies. 

Research need 1: Long-term climate reconstruction using temperature and 

precipitation sensitive tree-ring data from the Altai-Dzungarian region (AD) 

According to the longest instrumental observations in Mongolia, the annual mean air 

temperature of rose by 2.24°C from 1940 to 2015, and the warming rate is higher in its 

mountainous regions than elsewhere (Batjargal, 2018). Under the influence of the continuous 

increase of air temperature since the 1970s, evapotranspiration has also intensified in 

Mongolia and semi-arid northwestern China (Yu et al., 2016; Wei and Wang, 2013). The 

warmest ten years have occurred since 2000. The number of consecutive hot days and the 

frequency of high-intensity rainfall events have also increased (Batjargal, 2018). In the 

southern Altai Mountains, warm-season precipitation slightly increased between 1961 and 

2015, while it decreased in the northern Altai (Batjargal, 2018; Zhang et al., 2018). 

These short-term human-induced climate changes might be accelerated or slowed down by 

effect of naturally occurring climate drivers. Thus, understanding long-term regional climate 

variation and climate drivers is vital in interpreting the regional difference in warming and 

water availability. The lack of long-term instrumental observations from such outback desert 

and mountain areas hinders the estimation of climate variability and change in these regions. 

Schwikowski et al. (2009) suggested that climate proxies based on tree rings, relict wood, 

lake sediments, and glaciers, which often can be found in such remote regions in still rather 

undisturbed states, should be used for exploring regional climate change and variability. 

Accordingly, tree rings from the Altai Mountain range are widely used as climate proxies to 

reconstruct the past variability of temperature, precipitation, and drought in Mongolia, China, 

and Russia (Chen et al., 2012; 2014; Davi et al., 2009; Loader et al., 2010; Panyushkina et 

al., 2005; Zhang et al., 2015; Buentgen et al., 2016).  

Buentgen et al. (2016) reconstructed the so far longest summer temperature time series 

starting in the 6th century AD, using tree-ring chronologies from the Russian Altai. However, 

climate reconstructions for the southern Altai have so far only covered temperatures over the 

past 450 years and precipitation over the past 250 years. Moreover, up to now past studies 

for this area have usually reconstructed a single climate parameter, while reconstructions of 

different parameters have not yet been compared and combined. 

This study determined long-term (>400 years) climate variation over the Altai-Dzungarian 

region by reconstructing the longest time series of (611 years) temperature and (444 years) 

precipitation from tree-ring proxies. 
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Research need 2: Teleconnections between large-scale atmospheric circulation 

patterns and regional climate variability over the Altai-Dzungarian basin 

Climatologically, the Altai Mountains are influenced by both the North Atlantic climate system 

to the west and the Pacific climate system to the east (Zhang et al., 2018). The Altai-

Dzungarian region is influenced by both the southwesterly monsoonal airflow from the 

Mediterranean Sea, Black Sea, Caspian Sea, and Aral Sea (Iwao and Takahashi, 2006; 

Zhao et al., 2014; Zhang et al., 2018), and the midlatitude westerly and northwesterly airflow 

from the Atlantic Ocean during summer (Iwao and Takahashi, 2006; Bohner, 2006; Chen et 

al., 2015; Zhang et al., 2018). The latter brings warm air and relatively high amounts of 

precipitation to the region during summer, but northerly and westerly winds of the Siberian 

thermal high-pressure system bring cold and dry airflow from Siberia and the Arctic during 

winter (Chen et al., 2015; Zhang et al., 2018). 

Warming of sea surface temperatures over the North Atlantic and the Indo-West Pacific 

Oceans changed the position of westerly winds, which increased their strength over the Altai-

Dzungarian basin and brought more rainfall over central Asia during the 1980s (Chen et al., 

2014; Zhao et al., 2014; Wei et al., 2017). Simultaneously, the North Atlantic Oscillation 

(NAO) changed toward a positive phase resulting in increased storm tracks in the Northern 

Hemisphere from the 1960s till the 1990s and returning to its mean state between the mid-

1990s and early 2000s (Hartmann et al.,2013). Furthermore, a positive phase of the Arctic 

Oscillation (AO) brought warmer and wetter winter conditions to Mongolia in the 1980s (He 

et al., 2017), followed by a strengthening of the dry and cold Siberian High and its expansion 

northwestward between 1998 and 2012 (Hartmann et al., 2013).  

In general, various large-scale atmospheric circulations influence the regional climate 

variation. The focus of early research on these influences has been based on the prominent 

NAO and AO patterns in winter (Portis et al., 2001; Hurrel, 1995; Gong and Ho, 2003; 

Osborn, 2006). Recently, some researchers have examined the effects of the summer NAO 

on summer temperature and rainfall using instrumental data and tree-ring proxy data 

(Folland et al., 2009; Sun et al., 2008; Linderholm et al., 2011; Sun and Wang, 2012; 

Linderholm et al., 2013). 

This study revealed variations in teleconnections between large-scale atmospheric 

circulation patterns and regional climate variability on annual and interdecadal time scales 

using reconstructed temperature and precipitation time series from the southern Altai 

Mountains. 
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Research need 3: Hydrological impacts of observed climate change in the southern 

Altai Mountains, in the Bulgan catchment in Mongolia from 1984 to 2005. 

The rivers of the Mongolian Altai Mountains are mostly fed by meltwater from glaciers and 

snow (51-63%), followed by rainfall (3-17%) and groundwater (31-40%) (Davaa, 2015). 

Recent studies found critical impacts of climate change on these water sources. 

On the global scale, after the Little Ice Age, glaciers globally retreated strongly in particular 

periods, such as the 1920s, 1940s, and the 1980s, with advancing conditions in the 1970s 

(Dmitry et al., 2017). Likewise, glaciers in the Altai Mountains have retreated rapidly since 

the mid-20th century (Dmitry et al., 2017; Kadota and Gombo, 2007; Maria et al., 2010; Wei 

et al., 2015). Warming summer temperatures since the 1980s have resulted in an 

accelerated glacier recession in the Russian Altai, northern Mongolian Altai, and Chinese 

southern Altai Mountains from 1995 to 2008 (Dmitry et al., 2017; Wei et al., 2015; Maria et 

al., 2010). In the Mongolian Altai Mountains, the highest acceleration of glacier recession 

occurred from 1990 to 2000, followed by another recession period from 2010 to 2016 (Pan 

et al., 2018); thus, glacier contribution to total runoff decreased from 18.7% in 2000 to 15.4% 

in 2016 (Pan et al., 2019).  

The Bulgan River gets water from glaciers of the Munkhkhairkhan massif in the southern 

Altai Mountains. The dynamics of these small glaciers are significantly affected by regional 

temperature and precipitation variation (Krumweide, 2010). The total glaciated area of the 

Munkhkhairkhan peak decreased by 30% and 12% for the periods of 1991-2001 and 2001-

2011, respectively (Kamp et al., 2013).  

Moreover, accumulated snow depth during the previous winter influences the high flows of 

the rivers in the southern Altai Mountains (Davaa, 2015; Wu et al., 2021). 18.5% of total 

snowfall in this region is sublimated back into the air during winter (Wu et al., 2021). From 

1975 to 2007, warm winters reduced the duration of the snow cover in the Bulgan catchment 

by 20-25 days (Odgarav and Munkhbat, 2013). Also, the snow-to-rain ratio rapidly decreased 

in the southern Altai Mountains from 2000 to 2016, despite an increase in total precipitation 

(Wu et al., 2021). 

Furthermore, Mongolia is located on the southern boundary of the Siberian permafrost, 

having a ground temperature close to 0°C. Thus, the permafrost extent of Mongolia, 

especially the permafrost in the Altai Mountains, is very sensitive to climate change 

(Sharkhuu, 2003). Permafrost thaw has increased in the Mongolian Altai Mountains since 

the 1980s as the annual mean ground temperature has risen at a rate of 0.15-0.18°C per 

decade (Jambaljav, 2017).  

This permafrost degradation reduces the thickness of the seasonally frozen ground 

(Dashtseren et al., 2014) and creates a thicker active layer with a larger water storage 
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capacity. Increased water storage has triggered an increase in winter baseflow in high-

latitude permafrost regions, such as river basins of the Russian Arctic (Liljedahl et al., 2017; 

Wang et al., 2021), high mountain permafrost regions (Wang et al., 2019, Wang et al., 2017), 

and northwestern China since 1990 (Kong and Pang, 2012).  

Overall, the observed climate change has negatively impacted the water resources of 

regional hydrological regimes since the 1980s. Many impact studies of climate change 

correlated seasonal air temperature and precipitation sum with seasonal river discharges, 

such as in the high mountains of the Qinghai-Tibet Plateau (Fan and He, 2015), and in the 

southwest and northwest China (Ma et al., 2008; Wang et al., 2019), whereas other studies 

applied different hydrological models in the Altai Mountains based on the concept of river 

discharge resulting from different catchment processes (Ma et al., 2008), for instance, glacier 

mass balance models (Khalzan et al., 2022; Zhang et al., 2016), a physically based snow 

model (Wu et al., 2021), a semi-distributed SWAT model (Lui et al., 2019), and an HBV 

model with permafrost parameterization (Heerema, 2013). 

This study determined key climate factors in the seasonal variation of the Bulgan River by 

developing Stepwise Linear Regression models for each season. Also, the rainfall-runoff 

HBV-Light model is applied to simulate changes in the water balance of the Bulgan 

catchment regarding regional climate change. In this data-scarce region, the accuracy of the 

gridded APHRODITE dataset is also evaluated and used as an alternative to station data in 

a climate change analysis and hydrological simulation. 

Research need 4: Future hydrological impact of climate change over the southern 

Altai Mountains, Mongolia 

Natural and human-induced substances and processes in the atmosphere are drivers of 

climate change altering the energy budget of the Earth. The changes in energy fluxes, 

calculated at the top of the atmosphere, are quantified as Radiative Forcing (Wm-2). An 

increase in greenhouse gases since 1750 has made the total radiative forcing of the Earth 

positive, triggering surface warming (IPCC, 2013). The warming is likely to continue in the 

future with the projected increase in greenhouse gas emissions by humans. Climate models 

simulate changes in the climate system based on representative concentration pathway 

(RCP) scenarios of anthropogenic forcing (IPCC, 2013). 

Recent climate studies in the region of the study area have evaluated the performance of 

Global (GCM) and Regional Climate Models (RCM) in simulating the regional hydrological 

impacts of the projected climate change in different periods under different representative 

concentration pathways (RCPs) (usually RCP2.6, RCP4.5, and RCP8.5). For instance, Pan 

et al. (2020) and Lui et al. (2019) estimated future changes in climate and the water cycle for 
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Northwest China using the regional climate models HadGEM3-RA, SUN-MM5, and 

RegCM4, derived from the Coordinated Regional Climate Downscaling Experiment 

(CORDEX) for the east Asian domain. Zhang et al. (2016) calculated future glacier changes 

in the Altai Mountains over the period 2006-2100 using 12 GCMs outputs. And Heerema 

(2013) simulated the future discharge of the Buyant River in the Mongolian Altai Mountains 

for the period 2080-2100 using four GCMs.  

According to the ensemble mean of climate projections from 12 GCMs for the Altai 

Mountains, from 2081 to 2100, air temperature is expected to increase by 2.5  ̊C for RCP4.5 

and 5.3 ̊C for RCM8.5, and precipitation is likely to increase by 10.5% for RCP4.5 and 15.6% 

for RCP8.5 (Zhang et al., 2016). The RCM RegCM4 generally simulates observed 

precipitation and temperature better than other RCMs for this complex terrain region by 

correcting the cold bias of the driving GCM HadGEM2-ES (Pan et al., 2020). During the 

historical period of 1985-2004, RegCM4 underestimates annual mean temperature but 

overestimates daily mean precipitation for the Altai and other mountains, and vice versa for 

the Dzungarian basin. 

According to the climate projection of RegCM4 over the Altai Mountains, the annual mean 

temperature will warm by 6 ̊C and total precipitation will increase by 50mm for the period 

2081-2100 under the RCP8.5 scenario (Pan et. al., 2020). Increased precipitation might not 

compensate for the enhanced loss of glacier mass, so glacier loss will occur by 2050s and 

the total area of Altai glaciers will decrease by 26±10% for RCP4.5 and by 60±15% for 

RCP8.5 by 2100 (Zhang et al., 2016). Summer precipitation will decrease (Lui et al., 2019), 

and the number of summer days (>25 ̊C) will increase in this region (Pan et. al., 2020). Spring 

runoff is likely to increase in the Altai Mountains with more snow accumulation during winter, 

and the warm and rainy spring; however, summer runoff is likely to decrease in the future 

(Heerema, 2013; Lui et al., 2019). 

This study estimated future climate and runoff changes in the southern Altai Mountains under 

RCP4.5 and RCP8.5 scenarios from 2030 to 2050. As an alternative to the dynamically 

downscaled RegCM4, the general climate model CanESM2 is statistically downscaled at 

climate stations in the Bulgan catchment using the computationally cheap and flexible 

Statistically Downscaling Model (SDSM). Moreover, both statistically and dynamically 

downscaled RCMs and their driving GCMs are evaluated for this complex terrain and used 

in the hydrological impact assessment of future climate projections. 

 

  



 

8 
 

Chapter 1. Introduction 

1.2 Conceptual research framework  

This thesis aims to better understand long-term climate variability and change over the Altai-

Dzungarian region, teleconnections with large-scale atmospheric patterns, and the 

hydrological impact of observed and future climate change on water availability and timing 

for this semi-arid region. Figure 1.1 shows a conceptual research framework of this study 

developed based on the following main research questions. 

• Question 1 (Q1): How has regional climate varied over the Altai-Dzungarian region 

during and after the Little Ice Age (LIA)?  

o Question 1.1 (Q1.1): What do the tree-ring based temperature and 

precipitation reconstructions tell us about climate variation and change during 

and after LIA? 

o Question 1.2 (Q1.2): How are the large-scale atmospheric circulation patterns 

connected to the regional long-term climate variation? 

• Question 2 (Q2): How did the observed climate change impact the Bulgan River in 

the southern Altai Mountains between 1985 and 2015?  

o Question 2.1 (Q2.1): How has temperature, precipitation, and 

evapotranspiration changed in the region? 

o Question 2.2 (Q2.2): How has runoff of the Bulgan catchment changed? What 

are the most influencing climate factors? 

o Question 2.3 (Q2.3): How does the HBV-Light model perform for the Bulgan 

catchment? What are potential uncertainties in this hydrological simulation? 

o Question 2.4 (Q2.4): How sensitive is runoff of the Bulgan catchment to 

changes in temperature and precipitation?   

• Question 3 (Q3): How will future climate change influence the hydrological regime of 

the Bulgan River for the period of 2030-2050 under RCP4.5 and 8.5 climate 

scenarios? 

o Question 3.1 (Q3.1): What do GCMs and RCMs projections imply about 

temperature and precipitation change in the southern Altai Mountains in near 

(2030-2050) and far future (2080-2100) periods?   

o Question 3.2 (Q3.2): How does the statistical downscaling approach perform 

for the Bulgan catchment in the semi-arid Altai Mountains? 

o Question 3.3 (Q3.3): How does the bias correction method improve GCMs 

and RCMs outputs in representing local climate conditions? 

o Question 3.4 (Q3.4): How will the projected climate change impact on the 

hydrological regime of the Bulgan catchment from 2030 to 2050 under 

RCP4.5 and 8.5 climate scenarios? 



 

 

 

Figure 1.1: Conceptual research framework determining the long-term climate variability (Q1) and hydrological impact of climate change (Q2) as well as future 

climate and runoff change (Q3). For Q1.1, regional precipitation (P) and summer temperature (T) variations are reconstructed based on the response of tree 

growth to climate (Q1.1.1A). The long-term regional climate (Q1.1.1B) is determined by combining estimated P and T. Furthermore, relations of prominent 

large-scale circulations including North Atlantic Oscillation (NAO), Arctic Oscillation (AO), and Niño3.4 to the regional climate (Q1.2) are examined by 
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correlating them with the estimated long-term P and T time series on the interdecadal scale after relating them spatially to observations on the annual scale. 

For Q2.1, interpolated temperature and precipitation datasets of Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation 

(APHRODITE) are evaluated in this region (Q2.1.1A). Trends in precipitation, temperature, and evapotranspiration (ET0) at the climate stations and the 

corresponding grids of the APHRODITE dataset are analyzed between 1984 and 2015 (Q2.1.1B). For Q2.2, the trends in seasonal runoff are analyzed 

(Q2.2A), and driving climate factors of runoff change are evaluated based on the Stepwise Multilinear Regression Model (Q2.2.2B). For Q2.3, the daily runoff 

and water balance of the Bulgan catchment are simulated by the conceptual rainfall-runoff model HBV-Light4.0 based on the station and the interpolated 

APHRODITE data. For Q2.4, the runoff sensitivity of the Bulgan catchment to climate change is determined using the established hydrological model. For Q3, 

future climate and runoff changes in the Bulgan catchment are projected for 2030-2050 under RCP4.5 and RCP8.5 and compared to the reference period 

1985-2005. For Q3.1-3.2, CanESM2 is statistically downscaled at the climate station level using the Statistical Downscaling Model (SDSM). Both statistically 

and dynamically downscaled RCMs, and driving GCMs are evaluated for the Bulgan catchment. After correcting the biases in the climate model outputs 

(Q3.3), future runoff is simulated with the projected climate change for 2030-2050 under RCP4.5 and RCP8.5 scenarios (Q3.4). 
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1.3 Thesis outline 

Chapter 1 introduces the research needs and motivation by reviewing previous studies, then 

presents the conceptual research framework. Chapter 2 describes the characteristics of the 

study area, the data collection, and its detailed analysis (subchapters 2.3.1-2.3.5).  

In Subchapter 2.3.1 relationships between tree growth and climate are tested by examining 

the correlations between instrumental precipitation and temperature data and tree-growth 

chronologies from upper and lower tree lines. Based on a simple linear regression between 

temperature and precipitation-sensitive chronologies and climate data, transfer functions for 

reconstructing summer June-July temperature and June-December precipitation sum are 

developed. Afterwards, the effect of large-scale atmospheric circulation patterns on the 

regional climate is explored through annual and decadal correlation analyses of the North 

Atlantic Oscillation, the Arctic Oscillation, and NINO3.4 indices with observed and estimated 

long-term precipitation and temperature records in Subchapter 2.3.2. 

In Subchapter 2.3.3, climate and hydrological changes over the period 1984-2015 are 

explored by testing the presence of monotonic increasing or decreasing trends in climate 

variables and upstream and downstream discharges of the Bulgan River with the Mann-

Kendall test and Sen’s slope.  

To identify the hydrological impact of the observed regional climate change, key climate 

variables explaining the variation of upstream and downstream discharges are determined 

on the seasonal timescales using stepwise regression; moreover, rainfall-runoff conceptual 

HBV-Light model is simulated for evaluating changes in the water balance of the Bulgan 

catchment in Subchapter 2.3.4. Furthermore, the runoff sensitivity of the Bulgan River to 

climate change is tested based on the optimized hydrological model under different climate 

scenarios by increasing temperature and decreasing precipitation.  

In Subchapter 2.3.5, projected changes in the seasonal temperature and precipitation for the 

Bulgan catchment are estimated from dynamical and statistical downscaled RCMs and their 

driving GCMs. A low-cost Statistically Downscaling Model (SDSM) is used to downscale 

outputs of CanESM2 at climate stations in the Bulgan catchment. Future runoff changes in 

the Bulgan catchment are simulated for the period 2030-2050 using the optimized HBV-Light 

model and bias-corrected GCMs and RCMs. 

Chapter 3 presents and discusses the results. Chapter 4 concludes with a summary of the 

main findings and recommends some ideas for future study. 

 



 

 

 

CHAPTER 2. STUDY AREA, DATA AND METHODS 

 

“Mountain Ranges and the Gobi Desert are combined 

A plenty of hays and crops are swinging…” 

from “Bulgan River with Beavers” folk song 

 

 

 

 

  
Photo: An upper treeline on a north slope of the Altai Mountains, Oyunmunkh 2014 
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2.1 Study area 

2.1.1 Altai-Dzungarian region  

The Altai Mountain range lies in the cross-border region of Kazakhstan, China, Mongolia, 

and Russia. The vegetation zones of this region follow moisture and temperature gradients 

with a decrease in moisture and an increase in temperature from North to South and from 

West to East (Zhang et al., 2015). The Dzungarian semi-desert basin is bounded by the Altai 

mountains in the north and the Tian Shan mountains in the south (Figure 2.1). In the 

vulnerable steppe and semi-desert ecosystems of the Altai Mountains and Dzungarian 

Desert Basin area, the WATERCOPE research project1  was executed by a Sino-Mongolian-

German consortium over the period 2012-2016 to develop, compare, and test-implement 

technologies to cope with climate change effects on the regional natural resources. In the 

scope of the WATERCOPE project, we conducted this hydrological impact study of climate 

change in the Altai-Dzungarian region for the Bulgan catchment.  

 
Figure 2.1: Geography of the Altai-Dzungarian region in Central Asia. The green flags indicate the 
location of the climate stations Duchinjil (46.93˚N, 91.08˚E, 1951 m a.s.l) and Baitag (46.09˚N, 
91.55˚E, 1186 m a.s.l) in the Bulgan catchment, which is indicated by the blue line. The light blue 
polygons indicate large lakes. The color scale indicates elevations from low areas to high mountain 
ranges. 

 

2.1.1.1 Climate  

The Altai Mountain range and the Dzungarian semi-desert basin have semi-arid continental 

climate conditions with high intra-annual and diurnal temperature variation and unevenly 

distributed precipitation due to orographic effects (Kurzrock et al., 2017). Along the Bulgan 

River valley, two climate stations, Duchinjil (1951m a.s.l) and Baitag (1186m a.s.l) are 

located in the high mountains and the Gobi Desert, respectively, see Figure 2.1.  

 
1 http://www.watercope.org 

http://www.watercope.org/index.php/en/englisch-project-description.html
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The annual mean temperature is between -3.9°С and 0.3°С at the Duchinjil station in the 

valley of the mountainous area and between -0.2°С and 4.8°С at the Baitag station in the 

semi-desert area. Total annual precipitation varies from 68mm to 193mm at the Duchinjil, 

and from 24mm to 140mm at Baitag (own study, Figure 2.2). 

At Duchinjil, monthly mean and maximum air temperatures in July reach 15.9°С and 22°С. 

Also, the monthly mean and minimum temperatures drop to -22°С and -27°С in January 

(Figure 2.2a). On average, 55% of total precipitation falls in the summer months June through 

August, but only 6% falls in the winter months December through February. At Baitag, the 

monthly mean temperature varies from –21°С in January to 20°С in July.  The maximum 

temperature reaches 28°С in July, and the minimum temperature drops to -28°С in January 

(Figure 2.2b). On average, 45% of total precipitation falls as rainfall in summer and 13% as 

snow in winter. 

  

Figure 2.2: Climate diagrams for Duchinjil station (46.93˚N, 91.08˚E, 1951m a.s.l) for 1977-2017 (a) 
and Baitag station (46.09˚N, 91.55˚E, 1186m a.s.l.) for 1963-2017 (b). Monthly precipitation sums are 
shown by grey column bars. Monthly maximum, mean and minimum temperatures are illustrated by 
dotted, solid and dashed black lines, respectively. 

One of the seven temporary climate stations of the WATERCOPE project located at different 

altitudes along the valley, Tsunkhul station at 2425m a.s.l, recorded an annual precipitation 

sum of 404 mm in 2013, but Duchinjil station at 1951m, a.s.l, only recorded 85mm. This large 

difference in precipitation sums at different elevations is explained by convective rainfall in 

the high mountains during summer (Kurzrock et al., 2017). 

 

2.1.2 Bulgan catchment 

The Bulgan River originates from the southern Altai Mountains, in the western region of 

Mongolia and flows southward for 203 km to the Bulgan-Baitag gauge station then veers 

westward 65km to the border with China (Figure 2.3). After passing the border with China, 

the Bulgan River merges with the Qinghe River and becomes the Urungu River, which flows 

northwestward and ends in the Ulungur Lake, China. 268 km of total river length (700km) 

passes through Mongolia. The Bulgan catchment is surrounded by the steep Altai Mountains, 

which are characterized by small glaciers and areas of permafrost. The upstream area 

a. 
b. 
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contains glacial and tectonic lakes with fresh and saline water; downstream saline lakes are 

also found.  

 

Figure 2.3: An overview of the Bulgan catchment in the Altai-Dzungarian region. Two hydrological 
gauging stations, Bulgan-Bulgan and Bulgan-Baitag, are located along the river.  

Upstream, the north-facing slopes of the Altai Mountains are sparsely populated by Larix 

sibirica while downstream wide alluvial plains are found which emerge into the semi-arid 

Dzungarian Gobi Desert. Thus, the Bulgan catchment lies in the transition area between the 

high mountain zone and the desert zone. 

Land cover characteristics of the Bulgan catchment are shown in Figure 2.4a and Table 2.1. 

Forest and glaciers occupy about 6.7% and 0.13% of the whole catchment area, 

respectively. Permafrost extends over 87% of the total area (Obu et al., 2018).  The elevation 

of the catchment ranges from 1185m to 4160m above sea level and is divided into 15 

elevation zones in this study (Figure 2.4b).  

Rivers of the Altai Mountains are temperature-dependent and snow-fed; thus, they have low 

flows in the cold season and high flows in the warm season (Davaa, 2015). 
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Figure 2.4: Land cover (a), and elevation zones (b) of the Bulgan catchment  

Table 2.1: Land cover characteristics of the Bulgan catchment area. 

 Catchment Area 
(km2) 

Forest2 
(%) 

Glacier area3 Permafrost Lake4 
(%) 

Elevation4 (m a.s.l) 

 (km2) (%) (%) Min Max Mean 

Upper 
subcatchment  2945.3 6.8 1.2 0.04 100 0.25 1925 3803 2787 
Lower 
subcatchment  4643 6.7 8.3 0.19 77 0.12 1185 4160 2399 
Whole 
catchment  7588.3 6.7 9.5 0.13 87 0.17 1185 4160 2552 

  

Figure 2.5: Monthly mean discharges of Bulgan River at the upstream (a) and the downstream 
hydrological stations (b) over the period 1984-2015. Outliers and extremes are marked by black 
rhombus and asterisks, respectively. Mean and median values are shown by minus symbol and dotted 
line, respectively. 

 
After the peak snowmelt runoff by the end of May, a high flow of rainfall-runoff occurs in the 

Bulgan catchment between late June and late August (Figure 2.5a-b; Davaa 2015). Low flow 

sustained by groundwater increases at the lower elevation during the cold season. 

 
2 Geospatial Information Authority of Japan, Chiba University, accessed on 12 May 2019, 

https://globalmaps.github.io/ptc.html 
3 The database of Global Land Ice Measurements from Space, accessed 31 March 2019, http://www.glims.org/. 
4 WWF Mongolia database, accessed in January 2012, http://mongolia.panda.org/web_gis/ 

a. b. 

a. b. 

https://globalmaps.github.io/ptc.html
http://www.glims.org/
http://mongolia.panda.org/web_gis/
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2.1.2.1 Glacier area changes 

The Bulgan River is fed by snow, ice, and glaciers, extending on the south- and north-facing 

slopes of the Munkhkhairkhan Peak (4208m a.s.l) of the southern Altai Mountain. The 

glacierized area accounted for only 0.13% of the Bulgan catchment in 2001 according to 

Mongolian glacier outlines derived from a NIR(4)/SWIR(7) band ratio (Kamp et al., 2013). 

Krumweide (2010) found that the dynamics of the small glaciers in the Mongolian Altai 

Mountains are sensitive to the variation of the regional climate. Over the period 1991-2011, 

as shown in Figure 2.6a, the glacier area decreased by 38% and reduced from 39.66 to 

27.55km2 (Kamp et al., 2013). 30% and 12% of the total glacierized area was lost in the 

1990s and the 2000s, respectively. Moreover, the Information and Research Institute of the 

Meteorology, Hydrology, and Environment of Mongolia (IRIMHE) found that the glacier area 

of the Munkhkhairkhan Mountain decreased by 22.4% over the period 2001-2019 (Figure 

2.6b).  

  

Figure 2.6: Recession of glacierized area of the Munkhkhairkhan Mountains from 1989 to 2011 (Kamp 
et al., 2013) (a) and from 2001 to 2019 (b) (IRIMHE, 2021). Glacier areas for 2001 and 2019 are 
marked by red and blue polygons, respectively.   

In general, the loss of the glaciers in the Bulgan catchment was characterized by a large 

recession from 1990 to 2000 followed by a more gradual decline between 2001 and 2019. 

 

2.1.2.2 Snow cover variation 

Snow is one of the important water resources in the southern Altai Mountain. According to 

the snow camera shots of the WATERCOPE project stations throughout 2013-2014, snow 

falls in the high mountains starting mid-September and melts till late June. 

In the flat semi-desert area, snow cover remains for 131 days from December through March 

and remains for 184 days in the valleys of the high mountains from November through April 

(Munkhbat, 2010). Maximum and mean snow depths are 20cm and 5cm at Baitag station, 

but 11cm and 8cm at Duchinjil station. In heavy snowy winters, the maximum snow depth 

reaches approximately 100cm (Odgarav and Munkhbat, 2013). More snow accumulates on 

the leeward north-, east-, and southeast-facing slopes in the Altai Mountains while less snow 

a. b. 
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accumulates on the windward west-, southwest- and south-facing slopes (Zhong et al., 

2021).  

Snow accumulated during winter generates runoff during spring depending on snow water 

equivalent and air temperature (Khadka et al., 2004). From 1975 to 2007, snow water 

equivalent was 24mm and the snow density was 0.18gr/cm3 on average at Duchinjil station 

(Munkhbat, 2010). Moreover, the snow water equivalent of the Bulgan catchment reaches a 

maximum value of 100-200mm in late February. In early March 2014, snow depth along the 

river valley of Bulgan catchment was 9cm on average with a range of 1.7cm to 25cm; 

moreover, snow density varied from 0.15gr/cm3 to 0.37gr/cm3, and snow water equivalent 

was in the range of 17-22mm (Purevdagva, 2014). 

The spatial variation of snow properties is determined by topography and vegetation. 

Elevation and latitude predominantly define snow depth and snow water equivalent, but 

longitude across Altai Mountain describes variation in snow density (Zhong et al., 2021). The 

lapse rate of snow depth is 6cm per 100m altitude change in the Bulgan catchment 

(Purevdagva, 2014) up to a certain altitude, then decreases towards the highest altitude 

(Grünewald et al., 2014).  

In the Chinese Altai Mountains, snow thickness and duration slightly increased at the climate 

station from 1961 to 2015, with an abrupt rise since the late 1980s (Zhang et al., 2022). In 

contrast, snow cover of the Bulgan catchment declined in February but increased in March 

from 2001 to 2010, as shown in Figure 2.7 (Odgarav and Munkhbat, 2013). Odgarav and 

Munkhbat (2013) concluded that warming winters shortened the duration of the snow cover 

in the Bulgan catchment by 20-25 days over the period 1975-2007.   

 

Figure 2.7: Snow cover variation (%) of Bulgan catchment in February and March based on estimation 

of MODIS satellite images (Odgarav and Munkhbat, 2013).  
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2.1.2.3 Permafrost extent 

Permafrost, frozen soil, has a temperature close to 0°C and is very sensitive to climate 

change. Permafrost plays an essential role in the water balance of the catchments in the 

semi-arid mountainous area due to the freeze-thaw cycle (Zorigt et al., 2016; Yang et al., 

2021). Seasonal thawing of permafrost occurs between May to September (Sharkhuu, 2003) 

and sustains soil moisture and river flow locally during the dry period (Dashtseren et al., 

2014). Soil (active layer) above permafrost table thaws in the summer and starts refreezing 

in October and freezes in December. Abundant water in the deep soil layer delays soil 

refreezing by 30 days on average due to latent heat effect. 

In winter, snow cover and duration control the seasonal freezing thickness of the ground; 

therefore, thin snow cover stays for a short period and leads to the deeper frozen ground 

due to a lack of thermal insulation (Dashtseren et al., 2014). In summer, downward 

shortwave radiation and air temperature control the thawing rate of seasonally frozen ground 

and the active layer depth of the permafrost; the surface temperature is higher on dry south-

facing slopes than on north-facing slopes (Dashtseren et al., 2014).  

Permafrost acts as a barrier to water flow in the soil system. Unfortunately, global warming 

increases the ground temperature resulting in permafrost thawing, thickening of the active 

layer, and shortening of the freezing period (Yang et al., 2021). Permafrost degradation 

reduces the thickness of seasonally frozen ground (Dashtseren et al., 2014) and results in 

more frequent transport of groundwater into different layers of aquifers than before (Figure 

2.8). Moreover, a thicker active layer creates a larger water storage capacity and increases 

groundwater contribution to winter baseflow (Wang et al., 2021). 

 

Figure 2.8: Groundwater (GW) and surface water interaction in cold region before (a) and after (b) 
global warming (Source: Yang et al., 2021).  
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According to Northern Hemisphere permafrost mapping based on the Temperature at the 

Top Of the Permafrost (TTOP) modeling for 2000-2016 at a 1km2 scale (Obu et al., 2019), 

frozen soil accounts for 87% of the Bulgan catchment (Figure 2.9; Table 2.2). Ground 

temperature in Mongolia has increased since 1980 at a rate of 0.15°C-0.18°C per decade 

(Jambaljav, 2017). In the northern Altai Mountains, Zorigt et al. (2020) also revealed that 

ground temperature at 10m depth below the surface increased by 0.4°C on average over the 

whole period of 1980-2017; for instance, the Tsagaannuur borehole temperature increased 

from -1.2°C in 1983 to -0.5°C in 2017. 

 

Figure 2.9: Permafrost extent of the Bulgan catchment in the Altai-Dzungarian region. Data source: 
Classes of permafrost are based on mean annual ground temperature (MAGT) and permafrost 
probability (MAGT<0°C), validated with observations and maps (Obu et al 2018)  

 

Table 2.2: Permafrost extent of the Bulgan catchment based on the Permafrost map (Obu et al., 

2018).  

 

No Permafrost 
Extent  

Upper 
Subcatchment, % 

Lower 
Subcatchment, % 

Whole 
catchment, % 

1 Continuous (-1.71 ± 0.48°C) 49 34 43 

2 Discontinuous (-0.01 ± 0.37°C) 30 24 26 

3 Sporadic (+1.46 ± 0.44°C) 15 12 5 

4 Isolated patches (+2.62± 0.53°C) 6 7 13 

5 Non frozen ground - 23 13 
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2.2 Data collection 

2.2.1 Tree-ring data and sampling site description 

In the southern part of the Mongolian Altai Mountains (Figure 2.10c), patches of Siberian 

larch forest are often found on north-, west- and northwest-facing slopes (Figure 2.10a-b). 

Site selection is fundamentally important in dendroclimatology. Sites where growing season 

temperature limits tree growth are selected to reconstruct temperature, while to reconstruct 

precipitation, sites where moisture availability limits tree growth are chosen (Sheppard, 

2010). Trees for sampling are chosen based on apparent age and the absence of evidence 

of any disturbance by non-climatic factors for instance fire, disease, wind, volcanic, 

earthquakes, insects, or humans to extract reliable climatic information from tree rings (Cook 

and Kairiukstis, 1990; Sheppard, 2010). Non-climatic disturbances change year-to-year ring 

width variability and create difficulties in cross-dating tree cores (Cook and Kairiukstis, 1990). 

Thus, to avoid potential disturbances local people were questioned about fire, disease, and 

human disturbances before selecting sites.  

Not much is known about the impact of wildfires on these patchy forests. In the national fire 

statistics for the period 1963-1997, the majority of wildfires were reported from forested areas 

of central and eastern Mongolia after the snowmelt in March to mid-June and in autumn 

(Bayartaa, 2007). Regional grassland fire reconstructions based on charcoal analyses of 

sediments from 48 lakes in northwestern Mongolia with sediment influx from the Altai 

revealed no recent wildfire evidence (Umbanhowar et al., 2009).  

During fieldwork in the area, local people asserted that the main disturbance has been 

intensive logging from the 1960s to 1990s and that in recent decades no widespread fires 

have occurred. The Mongolian Altai Mountain forest is also too cold for insect outbreaks 

(Dulamsuren and Khishigjargal, 2012). In the Russian northern Altai, a Siberian silk moth 

outbreak was confined to southern slopes with 11°-13° steepness located at approximately 

400 m a.s.l (Khurah et al., 2016). Our sampling sites have steeper (25-33°) and colder 

northwestern slopes at higher altitudes than the silk moth favorable dry and hot conditions 

on the gentle southern slopes at the middle elevation (Kharuk et al., 2020).  

Core samples from in total of 53 trees were taken at the sites Kargait (KAR), Khets (KET), 

and Gurt (GUR) located at upper treelines in July 2014. In addition, 20 trees at the sites Yolt 

(YLT), Shiregt (SHR), and Khudagt (KUD) located at the lower treeline of forest patches were 

sampled in July 2013. The positions of all sites are shown in Figure 2.10c; see also Table 

2.3 for more detailed information. 

Tree ring data can be obtained from a single tree-ring site or a network of several tree-ring 

sites in a region. The network of tree-ring chronologies is also used to verify the relationship 
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between tree growth and climate that is defined from the single tree-ring data (George, 2014); 

furthermore, networks can be used to map spatial patterns of effective climate events such 

as drought (Speer, 2010). In this study, both a single tree-ring site and a network of several 

tree-ring sites are applied for regional climate reconstruction. The longer and more climate-

sensitive tree-ring data at KAR and KET sites are used to reconstruct air temperature and 

precipitation, respectively. Then, to verify their growth response to regional climate variability, 

tree-ring data of six sites are applied in a Principle Component Analysis to derive a network 

of tree-ring site chronologies.  

Table 2.3: Sampling sites information.  

Tree ring sites Coordinates Elevation (m) Tree-line Aspect No of 

trees/cores 

KAR* 46°39' / 91°26' 2748 Upper North 21/32 

KET* 46° 43' / 91° 31' 2603 Upper West 23/46 

GUR* 46° 48 / '91° 29' 2450 Upper Northwest 13/26 

YLT** 47° 05' / 91° 10' 2334 Lower North 7/28 

SHR** 46° 44' / 91° 28' 2478 Lower West 9/36 

KUD** 46° 36' / 91° 30' 2482 Lower Northwest 4/16 

KAR - Khargait, KET – Khets, GUR – Gurt, YLT – Yolt, SHR –Shiregt, KUD – Khudagt  
*Samples taken with two replications in 2014 **Samples taken with four replications in 2013  

 

Figure 2.10: Photos from the sites Khargait (KAR) (a) and Khets (KET) (b). Map of the Altai-
Dzungarian region in Central Asia (c). The black flags indicate the locations of the climate stations 
nearest to the six larch (Larix sibirica) sampling sites, which are shown as white triangles. The dark 
grey areas indicate lakes and the grey scale indicates elevation from low ranges (dark color) to high 
mountain ranges (white, see scale at the lower right). 

Three sites, KAR, KET, and GUR, have rather steep slopes (25-33°) and revealed no 

indications of impacts by fire (scar) or insects (loss of needles) and only minimum human 

disturbances according to interviews with local officers and our site inspections. KAR is 

located on a north-facing slope and KET on a west-facing slope, which makes it more prone 

to westerly winds, more rainfall, and more radiation. The GUR site is on a northwest-facing 
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slope. The KAR site is characterized by large boulders covered with a thin soil layer and 

alpine shrubs (Figure 2.10a) while the KET and GUR sites have a well-developed soil layer 

with grasses and young trees (Figure 2.10b). During the field study, 32 cores were taken 

from 17 trees at KAR, 46 cores were taken from 23 trees at KET, and 13 cores were taken 

from 13 trees at GUR. Except for two trees, two cores were taken from each tree from 

opposite sides perpendicular to the slope direction.  

The remaining three sites, YLT, SHR, and KUD, are on north-, west- and northwest-facing 

slopes, respectively. The SHR and KUD sites have steeper slopes (24°) than the YLT site 

(12°). All sites had a well-developed soil layer with young trees and some stumps caused by 

logging. Thus, tree-ring data of these sites need to be carefully examined to remove human 

disturbance and are only used in a network of tree-ring chronologies. Four cores were taken 

from each tree from all sites. The numbers of sampled trees and cores are listed in Table 

2.3.  

2.2.2 Climate dataset for past climate reconstruction  

Very few climate stations with sufficiently long and complete records exist in the region. The 

climate station nearest to the tree-ring sampling sites, Duchinjil (1951 m a.s.l.), is located in 

a valley approx. 36 - 40 km away from the tree sampling sites and has an instrumental record 

starting in 1977. In addition to this short time series, observations from more distant climate 

stations in the southern Altai Mountains established between 1954 and 1963 (Figure 2.10c, 

Table 2.4) are also considered for climate reconstruction.  

Regional monthly mean temperatures were derived by averaging the data from five stations, 

Baitag, Khovd, and Ulgii in Mongolia and Fuyun and Altay stations in China over their 

common period of 1963-2012. Based on both elevation and terrain characteristics, 

precipitation data were only used from the higher elevated and windward stations Duchinjil 

(1977-2012) in Mongolia and Qinghe (1958-2007) in China.  

Table 2.4: Climate station locations, elevations, and timespans.  

Climate stations Latitude Longitude Elevation, m a.s.l Timespan 

Duchinjil* 46.92 91.08 1951 1977-2012 

Baitag* 46.11 91.46 1186 1963-2012 

Khovd** 48.01 91.56 1405 1937-2012 

Ulgii** 48.93 89.93 1715 1959-2012 
Qinghe*** 46.71 90.40 1463 1958-2007 

Altay**** 47.73 88.03 737 1954-2012 

Fuyun**** 46.98 89.51 827 1961-2011 

Obtained from the data sets *NAMHEM5, **CRU6, ***CNCDC7, and ****GHCN8 

 
5 National Agency of Meteorology, Hydrology and Environmental Monitoring 
6 Climatic Research Unit 
7 China National Climate Data Center 
8 Global Historical Climatology Network 
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To verify the response of the tree-ring growth to regional climate variation on broad spatial 

scale, monthly mean gridded Climatic Research Unit data (CRU TS4.01; Harris and Jones, 

2017) and monthly mean Self-Calibrating Palmer Drought Severity Index (scPDSI) data 

averaged over the area between 46°N to 47°N and 91°E to 92°E for the period 1963-2012, 

downloaded via the Climate Explorer website of the Royal Netherlands Meteorological 

Institute, were also used in the analysis. 

 
 

2.2.3 Atmospheric circulation indices 

Various large-scale atmospheric circulations influence the regional climate. The Altai-

Dzungarian region is located at the junction between the North Atlantic climate system to the 

west and the Pacific climate system to the east (Zhang et al., 2018). In order to examine their 

mutual influences on the regional climate, we obtained the monthly and seasonal values of 

the North Atlantic Oscillation index (NAO, Jones et al., 1997) over the period 1825-2012, the 

Arctic Oscillation index (AO, Thompson and Wallace, 2000) for the period 1899-2012, and 

the NINO3.4 index (Huang et al., 2017) for the period 1854-2012 from 

https://climexp.knmi.nl/ in February 2019. 

  

2.2.3.1 North Atlantic Oscillation index  

The NAO is a large-scale mode of natural climate variability, that plays an important role in 

the weather and climate of the North Atlantic basin, Europe, parts of northern America, the 

Mediterranean basin, and Eurasia (Pinto and Raible, 2012; Osborn, 2006). NAO phases 

cause distinctive changes in surface temperature, precipitation, and storm tracks over these 

regions (Figure 2.11; Pinto and Raible, 2012). 

Measurements of the NAO index started in the early 1820s are generated from the monthly 

mean pressure data at stations on Gibraltar in southernmost Iberia and Reykjavik in south-

western Iceland (Jones et al., 1997). The NAO index reflects the variation in the normalized 

atmospheric sea-level pressure difference between these two North Atlantic stations 

(Gibraltar minus Iceland) located near the center of the Azores High and the Icelandic Low 

(Jones et al., 1997; Ba´ez et al., 2013). The index is normalized monthly with the mean and 

standard deviation calculated from the reference period 1951-1980. This NOA index shows 

large interannual and interdecadal variability for the winter months from November to March 

(Jones et al., 1997; Osborn, 2006).  

https://climexp.knmi.nl/
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Figure 2.11: North Atlantic Oscillation phases. Positive and negative phases impact on the intensity 
and location of jet stream and zonal and meridional heat and moisture transport. SST: Sea surface 
temperature (source: http://www-personal.umich.edu/~auraell/precipitation/pages/NAO.html) 

Generally, the NAO pattern is active all year and shifts in size and geographical location 

(Barnston and Livezey, 1987; Linderholm et al., 2013). The summer NAO moves westward 

and northward with respect to the winter position and has a smaller spatial extent (Barnston 

and Livezey, 1987; Portis et al., 2001). During the cold season, the magnitude and spatial 

coherence of atmospheric circulation variability are larger and the influence of circulation 

change on temperature and large-scale precipitation is greater than during the warm season 

(Osborn, 2006). Also, when horizontal temperature gradients are strong in the cold season, 

the effect of cloud cover variation is weak and the contribution of small-scale convective 

rainfall events are small (Osborn, 2006). 

During a positive phase of NAO, the Azores High is stronger and the Iceland low is deeper. 

This atmospheric circulation leads to a stronger meridional pressure gradient over the North 

Atlantic, a more zonal flow regime, and stronger westerlies, which bring mild air from the 

Atlantic across the northern midlatitudes (Pinto and Raible, 2012). Thus, there are warmer 

and wetter conditions than average in northern Europe, the eastern United States, and parts 

of Scandinavia, whereas cooler and drier conditions are found over southern Europe, the 

Mediterranean, and North Africa (Ba´ez et al., 2013; Visbeck et al., 2001; Hurrell, 1995). The 

Northern Atlantic Ocean varies with the overlaying atmosphere (Visbeck et al., 2001). Thus, 

the strength of the NAO is related to the sea surface temperature (SST) and induces a tripole 

pattern in sea surface temperatures with a cold anomaly in Greenland and the Irminger Sea 

to Newfoundland (subpolar region) and a warm anomaly in the central North Atlantic 

(midlatitudes) and again a cold subtropical anomaly off the west African coast (Figure 2.11; 

http://www-personal.umich.edu/~auraell/precipitation/pages/NAO.html
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Pinto and Raible, 2012). The signs of this SST tripole pattern reverses during a negative 

NAO phase. 

A negative NAO phase is characterized by a weakened Azores High and a shallow Iceland 

low leading to a reduced meridional pressure gradient and weaker westerlies over the North 

Atlantic and western Europe (Pinto and Raible, 2012). The negative NAO phase results in 

warmer and wetter than normal weather conditions in southern Europe but colder and drier 

conditions in northern Europe, associated with a blocking situation extending from 

Ural/eastern Europe to western/central Europe. This blocking might stay in place for several 

weeks, leading to stable weather conditions over central Europe (Pinto and Raible, 2012). 

    

2.2.3.2 Arctic Oscillation index 

The Arctic Oscillation Index (AO) is the difference in sea level pressure of the Arctic from 

northern mid-latitudes, Europe, and Asia (Rohman, 2014). We used the normalized monthly 

mean 1000hPA height anomalies (AO indices) poleward of 20° latitude for the Northern 

Hemisphere with the monthly AO index’s standard deviation during the 1975-2000 period 

(Thompson and Wallace, 2000). 

The regional manifestation of the AO in the North Atlantic is the NAO (Figure 2.12; Campos 

and Horn, 2018). Thus, AO and NAO are usually in sync, positive or negative (Greene, 2012). 

In 2012, unusual atmospheric conditions led to negative AO and positive NAO states, thus 

an odd combination of extreme cold and snowy weather across central and eastern Europe 

and Alaska but warm weather in the United States (Figure 2.12c, Greene, 2012).   

The AO is related to the state of the northern hemisphere’s climate, especially in winter, since 

its amplitude and meridional scale are more extensive during the cold season (He et al., 

2017) compared to the warm season (Thompson and Wallace, 2000). In a positive AO 

phase, sea level pressure is low in the Arctic and high in the northern mid-latitudes, Europe, 

and Asia. Thus, strong winds circulate in the Arctic, which keeps colder air across the polar 

region. Westerlies bring warmer and wetter winter conditions to Asia but generate drought 

conditions in the Mediterranean (Thompson and Wallace, 2000; Rohman, 2014; He et al., 

2017). In its negative phase, the pressure pattern is in reverse. Thus, the wind belt becomes 

weaker, and Arctic airmasses penetrate mid-latitudes; cold Arctic air comes to Asia, and 

strong westerlies push warm air and more precipitation into the Mediterranean (Rohman, 

2014). 
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Figure 2.12: Different states of the Arctic Oscillation (AO) and the North Atlantic Oscillation (NAO). 
Positive AO and NAO states (a), negative AO and NAO states (b), positive AO and negative NAO 
states (c). The centers of high (circled H) and low (circled L) pressure systems over the Northern 
Atlantic indicate NAO phases. 1-subtropics, 2-subarctic, 3 -polar vortex, 4-cold Arctic air (Source: 
Greene, 2012). 

 

2.2.3.3 NINO3.4 index or ENSO pattern 

Several sea surface temperature indices are applied to monitor different regions of the 

tropical Pacific Ocean (Figure 2.13). All indices are sea surface temperature anomalies 

(SSTA) averaged across their corresponding Niño 1, 2, 3.4, and 4 regions. Ship tracks cross 

these regions and measure sea surface temperature (SST). The NINO3.4 index is commonly 

applied to define El Niño and La Niña events, but others help to characterize the features of 

each event (Trenberth, 2020). Measurement of the NINO3.4 anomaly has estimated by 

Huang et al. (2017), from January 1854, using the 2° x 2° gridded Extended Reconstructed 

Sea Surface Temperature data (Version 5) from the National Oceanic and Atmospheric 

Administration. The NINO3.4 anomaly is the area-averaged equatorial SSTs over a region 

bounded by 5N-5S and 170W-120W of the Pacific and normalized to the base period 1981-

2010 (Huang et al., 2017). For details, see the metadata of monthly relative NINO3.4 at 

https://climexp.knmi.nl/. 

 
Figure 2.13: Niño 1, 2, 3.4 and 4 regions of the tropical Pacific Ocean and spatial structure of the El 
Niño at its peak in November 2015 (Source: Stockdale et al, 2017).  

a. b. c. 
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El Niño-Southern Oscillation (ENSO) is the most influential natural climate pattern operating 

in the world’s largest ocean- the Pacific Ocean. There are opposite El Niño and La Niña 

phases. A warming of the surface waters in the central and eastern Pacific Ocean at the 

Peruvian coast is called El Niño (Rojas et al., 2014). In addition to the tropics, ENSO can 

affect temperature and precipitation across mid-latitudes by modifying the jet streams in 

winter (Lindsey, 2016). El Niño events affect wind and rainfall patterns globally (Rojas et al., 

2014), as well as snow cover and surface temperatures over the Northern Hemisphere 

(Dagvadorj et al., 2014). 

Trenberth (2020) explains that easterly trade winds weaken across the Pacific during El Niño. 

Thus, warm water in the eastern Pacific surges eastward along the equator and moistens 

the overlaying air. The warm and moist air rises into the atmosphere through convection. 

Thus, lower than normal surface air pressures develop over the central and eastern Pacific, 

along the west coast of South America, parts of South America near Uruguay, and southern 

parts of the United States in winter, producing heavy rains and flooding, whereas higher 

pressures develop over Australia, Indonesia, Southeast Asia, and the Philippines, bringing 

drier conditions (Trenberth, 2020).  

 

Figure 2.14: El Niño climate impacts:  winter (a) summer (b) (Source: Lindsey, 2016). 

a. 

b. 
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The regional sea surface temperature becomes higher than normal during El Niño events 

(Figure 2.14), and lower than normal during La Niña events (Figure 2.15). Regions under dry 

conditions during El Niño events tend to become wet during La Nina events (Trenberth, 

2020).  

Rojas et al. (2014) found that the El Niño events of 2002/2003, 2004/2005, and 2006/07 

produced droughts in Mongolia, and Dagvadorj et al. (2014) noted that the prolonged La 

Niña event of 1998/2001 brought 3 consecutive years with heavy-snow winters to Mongolia 

after the strong El Niño event of 1997/1998.   

 

 
Figure 2.15: La Niña climate impacts: winter (a) summer (b) (Source: Lindsey, 2016). 

In summary, El Niño leads to dry conditions in Mongolia but La Niña brings snowy winters.  

 

  

a. 

b. 
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2.2.4 Instrumental and gridded climate datasets  

The Altai Mountains’ climate stations are all located in the valley; thus, rain gauge 

observations might suffer from undercatch depending on slope direction, wind, and 

evaporation (Duethmann et al., 2013). Therefore, we used the Asian Precipitation-Highly-

Resolved Observational Data Integration Towards Evaluation (APHRODITE) dataset 

(0.25ºx0.25º) in our climate impact study in addition to the station data since the 

APHRODITE has been shown to provide good estimates of temperature and precipitation 

amounts over high mountains and other data-scarce regions (Ji et al., 2020; Shen et al., 

2018). The APHRODITE dataset consists of daily mean temperature and rain gauge–based 

daily precipitation accounting for the topographic effects (Yatagai et al., 2012).  

APHRODITE precipitation data is an interpolated time series using datasets of the Global 

Historical Climatology Network (GHCN), National Climate Data Center (NCDC), Food and 

Agriculture Organization of the United Nations (FAO), Global Telecommunication System 

(GTS), and national institutes of hydrometeorology. Their spatial interpolation scheme 

considers the effect of mountain ranges by giving higher weights to gauges on windward 

sides and lower weights to rain gauges on leeward sides (Yatagai et al., 2012). 

The APHRODITE dataset was evaluated by estimating the difference and Pearson’s 

correlation coefficient between climate station data in the Bulgan catchment and their 

corresponding grid cell data. Moreover, areal climate input data was estimated at the mean 

elevation of the catchment from meteorological stations and the corresponding 25 grid cells 

of the APHRODITE dataset on daily time scales for hydrological simulations using the 

Thiessen polygon and annual lapse rates of temperature and precipitation.  The observation 

period for the APHRODITE is longer than the whole observation period of stations in the 

southern Altai Mountains (Table 2.5). Precipitation and temperature of the APHRODITE 

cover the periods 1951-2015 and 1961-2015, respectively.  

 

Table 2.5: Dataset information in hydrological study of the Bulgan catchment 

No Climate station Lat Lon 
Elevation, 
m a.s.l Period 

Missing periods 
(%) 

1 Baitag 46.09 91.55 1186 1963-2017 NA 

2 Duchinjil 46.93 91.08 1951 1977-2017 NA 

 Gauge stations     

1 Bulgan-Bulgan 46.93 91.08 1937 1984-2016 0.77 

2 Bulgan-Baitag 46.12 91.56 1178 1984-2016 0.25 

 APHRODITE (0.25ºx0.25º grids)  

1 Precipitation    1951-2015  NA 

2 Temperature    1961-2015 NA 

NA- Not available 
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2.2.5 Global and regional climate models  

Dynamically and statistically downscaled outputs of two regional climate models (RCM) and 

their driving global climate models, HadGEM2-AO and CanESM2, are evaluated and 

corrected with observations in the Bulgan catchment to estimate the hydrological impact of 

future climate change under two Representative Concentration Pathway (RCP) scenarios, 

RCP4.5 and RCP8.5 (Figure 2.16 and Table 2.6). To avoid errors from model 

parameterization at a single grid cell (Demirel et al., 2013), averages of the corresponding 4 

grids of GCMs and 12 grid cells of RCM covering the Bulgan catchment were transferred 

into a catchment average. 

 

Figure 2.16: Spatial resolutions of the selected GCMs and RCMs in the Altai-Dzungarian region. The 
grids of the CanESM2 and HadGEM2-AO are marked by black and green dots, respectively. The grid 
cells of the RegCM4 are illustrated by black rectangles to display climate stations and Bulgan 
catchment transparently. 

Table 2.6: Overview of GCMs and the corresponding RCM with different downscaling approaches 

GCM RCM Downscaled approach of RCM 

CanESM2  

(311km x 311km) 

365 days 

SD_CanESM2  

Statistically downscaled at two stations in 

Bulgan catchment using SDSM software - 

weather generator and linear regression 

HadGEM2-AO 

(135kmx135km) 

360 days 

 

RegCM4 (50kmx50km) Dynamical downscaled dataset of 

CORDEX- East Asia 
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The CanESM29  (second generation of the Earth System Model, 2.8°x 2.8°) is the fourth 

generation of the coupled global climate model (CGCM4) developed by the Canadian Centre 

for the Climate Modeling and Analysis of Environment Canada (Radojevic, 2014).  

HadGEM2-AO (135km resolution), developed by Korean Meteorological Institute, shows 

good performance on global and East Asian climate variability. Although GCMs do not 

accurately show regional climate on a fine geographic or temporal scale, outputs from GCMs 

can be used to understand the range of uncertainty. 

To fill the gap of GCMs accuracy, the dynamical downscaled regional climate model version 

4 (RegCM4) with 18 vertical sigma levels over CORDEX East Asia was used in this study to 

represent regional characteristics and topography in future climate and runoff change 

assessment. The RegCM4 uses HadGEM2-AO as a boundary condition and is available 

from 1979 to 2050 with 50 km resolution (0.44˚ x 0.44˚) in RCP 8.5/4.5 (Oh et al., 2014). 

CORDEX is an international collaborative project known as the Coordinated Regional 

Climate Downscaling Experiment established by the World Climate Research Program 

(WCRP), it provides a quality-controlled dataset of downscaled information for historical and 

future climate and changes (Park et al., 2016). 

Using the SDSM software, grid cell data of the CanESM2 over the study area are evaluated 

using observations at Duchinjil and Baitag stations and statistically downscaled at the station 

level on the daily time scale.  

 

  

 
9 http://ccds-dscc.ec.gc.ca/ pred-canesm2 



 

 33 

Chapter 2. Study area, data and methods 

2.3 Methodology 

2.3.1 Past climate reconstruction using tree ring proxy data 

2.3.1.1 Cross-dating and Standardization 

The tree cores sampled at each site were marked with calendar dates and visually cross-

dated using so-called pointer years (isolated years with exceptionally narrow or wide rings). 

During cross-dating, the tree-ring width series were scanned for potential missing and false 

rings. By matching the tree-ring width patterns among the cores and by examining the ring 

structure (Fritts, 1976), mean chronologies based on common growth sequences of the trees 

were derived and compared to all cores from a site to detect missing, partial, and false rings 

formed e.g. under severe growth conditions. 

The tree ring-widths were measured to the nearest 0.001mm with a Velmex measuring 

system and the MeasureJ2X software (Velmex, Inc., Bloomfield, NY, U.S.A). The 

measurement accuracy and the visual cross-dating among the individual tree chronologies 

at each site were checked by statistical cross-dating using COFECHAv6.06 (Grissino-Mayer, 

2001), which calculates Pearson’s correlation coefficients between segments of individual 

ring-width series and a master chronology consisting of all other series at the dated position 

and ten positions forward and backward. Flagged, i.e. potentially incorrectly dated segments, 

were re-examined and corrected when missing or false rings in that ring-width segment were 

found.  

Standardized indices were calculated from the individual tree ring-width series by fitting a 

Friedman super smoother growth curve with alpha 5, and dividing each ring-width for a 

certain year by the value of the growth curve (Figure 2.17a, c). This data-adaptive smoothing 

technique (implemented in ARSTAN for Windows, version ARS41c_xp, Cook et al., 2006) 

preserves the low frequency variance (Friedman, 1984) and removes effects of aging and 

other non-climatic trends from the series (Cook, 1985). The standardized indices from the 

individual cores were then averaged to obtain the site chronology (Fritts, 1976).  

The same detrending procedure was applied to all series. Some cores of the six sites came 

from lower-treeline trees, which contained logging effects from the past 50 years. These 

effects were most effectively removed by a Friedman super smoother curve with alpha 5. 

Although the latter is rather flexible and potentially removes longer-term (>100 yrs) trends, 

low-frequency variance was preserved as shown through the application of more 

conservative detrending procedures, which had very similar outcomes. 
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Figure 2.17: Mean Larix sibirica ring-width chronologies (dark grey) for the KAR (a) and KET (c) sites 
with a fitted Friedman super smoothing curve with an alpha of five (black line) and individual ring-width 
series (light grey lines). The mean standardized KAR and KET chronologies (Ring-Width Index; RWI) 
are shown in b and d, respectively, together with the sample depth.  
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The climate signal strength within a site chronology and its reliability are commonly described 

by its mean sensitivity, Expressed Population Signal (EPS), and the mean correlation 

between the individual tree-ring series (𝒓). The mean sensitivity is the relative difference 

between adjacent ring widths and indicates the range of the year-to-year variations in radial 

growth in response to climate (Fritts, 1976).  

EPS quantifies the strength of the common signal in a given set of tree-ring series used for 

a chronology (Cook and Kairiukstis, 1990; Wigley et al., 1984) and is based on 𝒓 and the 

sample size. Wigley et al. (1984) suggested 0.85 as a lower acceptable threshold for the 

EPS. 𝒓 is a measure for the common growth signal or the common variance between all tree-

ring width series. 𝒓 and EPS were calculated with ARSTAN for all tree-ring series contributing 

to one chronology in 50-year intervals with 25 years overlap. The actual computation of the 

standardized chronologies, which are later used for the climate reconstruction are shown in 

Figure 2.17b, and 2.17d. 

 

2.3.1.2 Climate-growth response analysis 

Precipitation and temperature are growth controlling climate factors, since they affect soil 

moisture availability, tree transpiration and respiration, and photosynthesis (Fritts, 1966). 

Growth of Siberian larch in the Altai Mountains mainly occurs between April and September. 

Although cell division and lengthening ceases at the end of the growing season, thickening 

of the tracheid cell walls might continue depending on the weather conditions (Chen et al., 

2012). Hence, correlations were tested between the site chronologies and both monthly and 

seasonal mean air temperature and precipitation sums. DendroClim2002 was used (Biondi 

and Waikul, 2004) to estimate the relations between monthly climate variables and tree ring 

widths for the time period of available instrumental and gridded climate data. 

DendroClim2002 uses 1000 bootstrapped samples to compute Pearson’s correlation 

coefficients and their significance. Significances were tested at the p<0.05 level.  

The standardized chronologies for all sites were correlated with the monthly mean 

temperatures and precipitation sums from the Duchinjil station, the monthly mean regional 

air temperature as estimated by the averaged longer time series of five climate stations 

including the Baitag, Khovd, and Ulgii in Mongolia, and the Fuyun and Altay in China, the 

monthly precipitation sums from the Qinghe station, monthly temperature means and 

precipitation sums from the CRU TS4.01 dataset, and the monthly mean scPDSI, the latter 

two averaged over the area from 46°N to 47°N and 91°E to 92°E. Correlations were 

determined for all months of a 18 months window starting May of the year prior to growth 

and October of the current year of growth. The monthly and seasonal climate data most 

significantly correlated with the site chronologies were selected for setting up transfer models 

for climate reconstructions.  
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2.3.1.3 Regression model development for summer air temperature and precipitation 

reconstruction 

Transfer functions between the chronologies (predictor) and the climate parameters 

(predictand) were developed for the individual site chronologies using simple linear 

regression. If tree growth correlated with the climate conditions of both the previous and the 

current year, the site chronology and its lag by one year relative to the climate observations 

were considered as predictors. In addition, the first principal component of these predictors 

resulting from a Principal Component Analysis (PCA) of the complete time series was also 

used as predictor.  

The reliability of the resulting transfer functions was assessed via calibration and verification 

statistics commonly used in dendrochronology, i.e. Pearson's correlation coefficient (r), 

Coefficient of Determination (R2), Reduction of Error (RE), Coefficient of Efficiency (CE), 

Product Mean (PM) test, and first difference sign test (Cook et al., 1999; Weijers et al., 2010). 

r quantifies the association between tree rings and climate while the percentage of explained 

variance by the ring widths is given by R2. RE and CE range between minus infinity and one 

with positive values close to one indicating good skill and negative values lower skill (Cook 

et al., 1999; Fritts, 1976; Weijers et al., 2010). The PM test (Fritts, 1976) takes into account 

both sign and magnitude of the actual and estimated departure from the mean value, while 

the non-parametric first difference sign test uses only the sign of change to quantify 

similarities between two series.  

These calibration and verification statistics were calculated over separate periods while the 

full calibration periods, i.e. the complete overlapping periods between climate and tree-ring 

data, were used for the construction of the transfer functions. Besides the individual site 

chronologies, separate networks of regional tree-ring chronologies for temperature and 

precipitation were constructed from the first principal components of two or more individual 

site chronologies sensitive to the same climate condition over the overlapping periods and 

applied in the development of regional climate transfer functions to verify our climate 

reconstructions based on single-site chronologies. 

 

2.3.2 Teleconnections between atmospheric indices and regional climate 

variability 

To reveal the effect of large-scale atmospheric circulations on regional climate variability, the 

monthly and seasonal NAO, AO, and NINO3.4 indices were first spatially correlated with 

gridded data of CRU TS4.03 precipitation and temperature of the region using 

https://climexp.knmi.nl/, then correlated with estimated temperature and precipitation over 

the same period of 1960-2012. To specify the influence of the indices on the local climate of 

https://climexp.knmi.nl/
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the tree sampling sites in the southern Altai Mountains from regional teleconnections, all 

monthly indices were also correlated with the estimated and observed June-July temperature 

and June through December precipitation at the nearest Duchinjil station to the tree sampling 

sites for the whole observation period of 1977-2012.  

Interannual variations of the ocean surface conditions are driven by wind-induced changes 

in the air-ocean energy fluxes, but interdecadal variations (~ 20 years) involve changes in 

the ocean circulation (Hurrel, 1995). Thus, all monthly and seasonal time series of the indices 

and the estimated temperature and precipitation are smoothed with a running 21-year 

averaging window in this study and correlated to find out their relationships at a low-

frequency level, which suggest potential teleconnections of the atmospheric indices and 

possible mechanism.  

Finally, we conducted a 25-year running correlation to reveal non-stationarities in the 

relationship between the significantly influencing monthly indices and the estimated 

temperature and precipitation over the Altai-Dzungarian region on the interannual time scale. 

Significance levels of the correlations were calculated based on the Fisher transform of r-

values to normal Z values (Lenhard and Lenhard, 2014). 

 

2.3.3 Trend analysis of observed climate and runoff change 

2.3.3.1 Mann Kendall test and nonparametric Sen’s slope  

To quantify climate and hydrological change over the period of 1984-2015, the presence of 

monotonic increasing or decreasing trends in annual and seasonal temperature, 

precipitation, evapotranspiration, and river discharge time series are tested with the Mann-

Kendall test. The slopes of the linear trends were estimated with the non-parametric Sen’s 

slope, which is not affected by outliers or single data errors and a skewed distribution (Salmi 

et al., 2002).  

The presence of statistically significant trends in time series was evaluated by the normal 

distributed and the two-tailed Z test at the 0.001, 0.01, 0.05, and 0.1 levels. Its 

positive/negative sign defines an upward (downward) trend (Salmi et al., 2002). Sen’s non-

parametric method is used to calculate a change per year or the true slope of the existing 

trends in the all-time series. Also, the 95% confidence intervals of the slopes are estimated.  

Since there is no measured evaporation data from the climate stations, we calculated 

reference evapotranspiration based on daily mean temperature time series as outlined in the 

next chapter 2.3.3.2.  
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2.3.3.2 Reference evapotranspiration estimation for semi-arid area  

Reference evapotranspiration (ET0), is the evapotranspiration rate from a well-watered 

grass-covered soil with a vegetation height of 0.12m and completely shaded ground by 

actively growing grass, a fixed surface resistance of 70sec/m, and an albedo of 0.23 (Allen 

et al 1998).  

The Penman-Monteith approach (ET0-PM) is recommended as the standard method for 

calculating the reference evapotranspiration by the FAO-56 guideline, but requires full 

climate data, including relative humidity and wind speed. For this data-limited region, we 

examined the performance of alternative ET0 methods. Previous studies have suggested 

that the temperature-based modified Hargreaves-Samani as the best alternative to ET0-PM 

for China that showed spatiotemporally the best accuracy and correlations to ET0-PM among 

other methods in different subregions of mainland China (Berti et al., 2014; Peng et al., 

2017).  

In this study, we estimated evapotranspiration (ET0) for the Duchinjil and Baitag stations 

using Penman-Monteith (ET0-PM) (Juetten, 2015; Eq.1) as the reference value to evaluate 

the performance of the alternative temperature-based ET0 methods for the southern Altai 

Mountains, the 1975 Hargreaves equation, Hargreaves-Samani and modified Hargreaves-

Samani (Table 2.7). Mean absolute errors (MAE) and Nash-Sutcliffe efficiency coefficients 

(Reff) are calculated for each alternative temperature-based ET0 by comparing to ET0- PM at 

daily time scale.  

Table 2.7: FAO Penman-Monteith and temperature based empirical ET0 methods  

No Abbreviation Equation Reference 

1 FAO-56 Penman-
Monteith (ET0-PM)  

    

ET0=
𝟎.𝟒𝟎𝟖 ∆ (𝑹𝒏−𝑮)+𝜸

𝟗𝟎𝟎

𝑻+𝟐𝟕𝟑
 𝒖𝟐 (𝒆𝒔−𝒆𝒂)

∆+𝜸(𝟏+𝟎.𝟑𝟒 𝒖𝟐) 
      Eq.(1)      

Allen et 
al.,1998 

 

2 1975 Hargreaves  
(ET0-H) 
 

           
ET0=0.0135 Rs (Tmean+17.8)                   Eq.(2) 

Hargreaves 
and Allen, 

2003 

3 Hargreave-Samani  
(ET0-HS)  

ET0=0.0023 (Tmean+17.8) (Tmax-Tmin)0.5Ra   Eq.(3) Hargreaves 
and Allen, 

2003 

4 Modified Hargreave-
Samani (ET0-MHS)  
 

ET0=[0.00193 Ra (Tmean+17.8) (Tmax-Tmin)0.517]λ        
                                                                   Eq.(4) 

Berti et. al. 
2014 

 

Eq. (1) of ET0-PM reference evapotranspiration (mm/day) demands Rn the net radiation at 

the crop surface (MJ/m2 day), G the soil heat flux density (MJ/m2 day), T the mean daily air 

temperature at 2m height (˚C), u2 the wind speed at 2m height (m/s), es the saturation vapor 
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pressure (kPa), ea the actual vapor pressure (kPa), Δ the slope of the saturation vapor 

pressure curve with temperature (kPa/˚C), and γ the psychrometric constant (kPa/˚C).  

In Eq. (2), Rs is the total solar radiation at the surface (mm/day) calculated from 

extraterrestrial radiation (Ra, MJ/m2 day) by multiplying the conversion factor 0.408 from 

MJ/m2 day into mm/day. In the FAO-50 guideline, this conversion factor is defined as the 

inverse of the latent heat of vaporization 1/λ=0.408 (Allen et al., 1998). 

Eqs. (3) and (4) require only maximum (Tmax,˚C) and minimum (Tmin,˚C) temperatures and 

extraterrestrial radiation (Ra, MJ/m2 day) for calculating reference evapotranspiration.  λ is 

the latent heat of vaporization and varies slightly in the normal temperature range, so a single 

value of 2.45 MJ/kg is taken (Allen et al., 1998). 

Daily extraterrestrial radiation (Ra, MJ/m2 day) is extracted from the dataset with 0.5˚x0.5˚ 

grids of NASA Prediction of Worldwide Energy Resource (POWER) for the period of 1984-

2018 (https://power.larc.nasa.gov/data-access-viewer/, 18 June 2019). 

   

2.3.4 Hydrological impact assessment of climate variability and change 

The hydrological impact of climate variability can be quantified as the percentage change in 

annual discharge in response to a change in annual precipitation and potential 

evapotranspiration (Ma et al., 2008). The equation of the water balance for a catchment:        

                                                             P=ET+R +∆S 

where P is precipitation, ET is evapotranspiration, R is surface runoff measured as river 

discharge, and ∆S is the change in catchment water storage. ∆S can be assumed to vanish 

for a sufficiently long period (Ma et al., 2008; Zhang et al., 2001). 

Based on a water balance concept, some researchers have examined correlations between 

the seasonal variation of discharges and seasonal air temperature and precipitation sum to 

reveal the impact of climate change on river discharge in the high mountains of the Qinghai-

Tibet Plateau (Fan and He, 2015), the Hengduan Mountains in southwest China (Ma et al., 

2008), and the Qilian Mountains in northwest China (Wang et al.,2019).  

River discharge is an output of the different catchment processes (Ma et al., 2008). 

Therefore, this study developed Stepwise Regression Models to assess the impact of climate 

change on the seasonal distribution of the Bulgan River runoff and run a semi-distributed 

HBV-light model to estimate changes in the water balance of the Bulgan catchment and to 

determine runoff sensitivity to climate change.  
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2.3.4.1 Stepwise linear regression  

We developed Stepwise Linear Regression Models to determine the most influencing climate 

factors on the Bulgan River runoff. The areal mean precipitation and temperature of the 

Bulgan catchment are estimated using the Thiessen polygon. Also, measured discharge 

(m3/s) at the hydrological stations is converted into surface runoff (mm). Then, we used the 

areal mean precipitation and temperature as predictors and the surface runoff of the 

catchment as predictand in the stepwise linear regression model.  

The stepwise regression is performed using a combination of forward (step-up) selection and 

backward (step-down) elimination. The forward selection starts with the predictor best 

correlated with the predictand, then adds a potential second predictor based on the increase 

of explained variance and the significance of the F parameter (must be less or equal to 0.05 

at each step, Urhausen, 2012). If the selected predictor becomes insignificant, the backward 

method removes those predictors from the regression with a probability of F of greater or 

equal to 0.10. For detail, please Wilks (2006) and Urhausen (2012).  

Standardized Betas in the stepwise regression models are percentages of explained 

variations impact factors of those climate variables (or predictors) on the seasonal and 

annual runoff. 

In addition, we used Stepwise Linear Regression to reveal important climate factors affecting 

regional evapotranspiration. In this case of the regression model development, reference 

evapotranspiration estimated by Penman-Monteith at the station is applied as a predictand, 

whereas maximum and minimum temperatures, precipitation, wind speed, relative humidity, 

and radiation are predictors. 

 

2.3.4.2 HBV-light model 

The HBV-light model is a conceptual rainfall-runoff model that simulates daily discharge 

based on daily rainfall and temperature, and monthly estimates of potential 

evapotranspiration. HBV-light is a semi-distributed model that uses subcatchments as 

hydrological units; moreover, elevation zones and land cover classification (forest, open, and 

lake) are described for each subcatchment (Bergstrӧm, 1992; Seibert, 2000; Seibert and Vis, 

2012).  

Based on the two hydrological stations along the Bulgan River, the catchment is divided into 

an upper and a lower subcatchment. The elevation of the Bulgan catchment ranges from 

1185m to 4160m above sea level. The catchment area is divided into 15 elevation zones 

with 200m intervals. Areal mean temperature and precipitation are calculated for the mean 
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elevation of each subcatchment using the Thiessen polygon, then they are corrected from 

the mean elevation for each elevation zone assuming constant lapse rates. 

The forested area is calculated using the Percent Tree Coverage Global map Version 1 from 

the Geospatial Information Authority of Japan, Chiba University (accessed on 12 May 

2019, https://globalmaps.github.io/ptc.html). Glaciated areas are estimated using the glacier 

area of 2000 and 2001 created by Kamp (2012) in the database of Global Land Ice 

Measurements from Space (accessed 31 March 2019, http://www.glims.org/). Lake and 

Digital Elevation Model data are obtained from the WWF Mongolia database (accessed in 

January 2012, http://mongolia.panda.org/web_gis/).   

HBV-light consists of four routines: snow, soil moisture, response, and routing (Figure 2.18). 

The snow and soil routines are performed separately for each elevation zone, whereas the 

response and routing routines are lumped for the catchment.  

 

Figure 2.18: Schematic of the HBV-Light 4.0 model (Seibert, 2000). See description of the parameters 
in Table 2.8. 

The 16 parameters of the four routines have a physical basis, but their values are derived by 

model calibration (Seibert, 2000). The snow routine controls snow accumulation and melt 

using temperature threshold values and the degree-day method (Bergstrӧm, 1992).  

Groundwater recharge and actual evapotranspiration are computed in the soil moisture 

routine, and excess water from the soil moisture routine is transformed into a runoff by three 

linear reservoir equations in the response routine. Then the routing routine smooths the 

https://globalmaps.github.io/ptc.html
http://www.glims.org/
http://mongolia.panda.org/web_gis/
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runoff of the response routine by a triangular weighting function and generates total runoff 

(Bergstrӧm, 1992; Seibert, 2000; Seibert and Vis, 2012).  

Rivers of the Altai Mountains are mainly fed by the meltwater of snow from April to June and 

glaciers from July to August (Davaa, 2015); furthermore, the rivers are sustained by seasonal 

thaws of permafrost from May to September (Sharkhuu, 2003). Thus, glacier routine and 

delay response function are added to the model structure. The glacier routine works between 

the snow routine and the soil routine and calculates the melting glacier and the modification 

of snow into ice using the degree-day method.  

Seasonal thaw of the permafrost increases the deeper groundwater flow and alters the runoff 

temporarily through increasing hydrologic permeability with ice loss in soil pores and the 

release of water stored in frozen ground (Gruber et al., 2017). Thus, the “Delayed response” 

of deep groundwater with parameters DELAY and PART allows the representation of a 

temporal effect of the permafrost in the water distribution (Figure 2.19). The PART [0-1] 

parameter gives the fraction of the recharge to the Soil upper zone SUZ, but the remaining 

recharge is evenly distributed to the subsequent period of DELAY [days] and the Soil lower 

zone SLZ (Seibert, 2005). 

 

Figure 2.19: Schematic view of the Response routine with delay model (Seibert, 2005): recharge - 
Input from soil routine [mm/ Δt], DELAY - Period of delay for water added to the soil lower zone [Δt]; 
PART-Portion of the recharge added to the soil upper zone  SUZ - Storage in soil upper zone [mm], 
SLZ - Storage in soil lower zone [mm], Ki - Recession coefficient [1/Δt]; Qi - Runoff component 
[mm/Δt], E - Evaporation from the lake P - Precipitation into the lake; and runoff = Total amount of 
generated runoff [mm/Δt] 

 

2.3.4.2.1 Model calibration  

As recommended in the manual of the HBV-light model (Siebert, 2005), the calibration period 

should cover a variety of hydrological events and 5 to 10 years; we chose a calibration period 

from 1985 to 2005 and a validation period from 2006 to 2015. One year of warm-up is 

required to evolve the appropriate values from the initial values based on meteorological 

conditions and parameters (Seibert and Vis, 2012). Thus, the first year (1984) of the time 
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series is applied as the warm-up period. Most parameters of the conceptual rainfall-runoff 

models are not measurable but estimated by calibration with observed runoff (Siebert, 2000).  

The automatic model calibration GAP tool, Genetic Algorithm and Powell optimization, is 

used for simulation rather than time-consuming and subjective manual calibration. This tool 

first generates optimized parameter sets within a user-defined parameter range then the 

parameter sets are fine-tuned by Powell’s quadratically convergent method (Siebert, 2000; 

Seibert and Vis, 2012).  According to the default setting of the GAP optimization, we 

simulated 5000 model runs for the genetic algorithm and 1000 runs for local optimization by 

Powell’s method. This calibration aims to simulate hydrographs well-fitting to observed 

hydrographs. In a range of default values of the GAP tool, parameters are optimized for the 

Bulgan catchment (Table 2.8). 

Table 2.8: Range of calibrated parameters for the Bulgan catchment in GAP optimization 

Parameters Unit Min Max Description Source 

Snow routine  

TT ºC -2 2 Threshold temperature Zhang et al. 
(2004) 

CFMAX mm/ ºC 
*day 

1 14 Snowmelt degree day function Davaa 
(2015) 

SP - 0.1 1 Seasonal variability in degree day factor - 

SFCF - 0.5 0.9 Snowfall correction factor to compensate 
snow measurement and evaporation 

- 

CFR - 0.05 0.05 Freezing coefficient of refreezing water 
in snow 

Default 
values 

CWH - 0.1 0.1 Water equivalent of snow Default 
values 

CFGlacier - 1 5 Glacier correction factor - 

CFSlope - 1 5 Slope correction factor - 

Soil moisture routine 
  

   

FC mm 100 550 Maximum soil moisture storage (SM) Default 
values 

LP - 0.3 1 Threshold of reduction of evaporation 
(SM/FC) 

Default 
values 

Beta - 0.1 4 Relative contribution to runoff from rain 
or snow 

Heerema 
(2013) 

Glacier routine     

KSI 1/day 0.001 0.1 Snow to Ice conversion factor - 

KGmin 1/day 0.01 0.2 Minimum outflow coefficient Default 
values 

dKG 1/day 0.01 0.5 Maximum minus minimum outflow 
coefficient 

Default 
values 

AG 1/mm 0 1 Calibration parameter Default 
values 

Response routine 
  

   

Alpha mm/day 0 1 Non-linearity coefficient Default 
values 

K1 1/day 0.01 0.1 Recession coefficient (upper box, lower 
outflow) 

- 

K2 1/day 0.00001 0.1 Recession coefficient (lower box) Default 
values 

PART - 0 1 Portion of the recharge added to the soil 
upper zone  

Default 
values 

DELAY day 0 50 Period of delay for water added to the 
soil lower zone  

Default 
values 

Routing routine 
  

   

MAXBAS day 1 2.5 Length of triangular weighting function Default 
values 
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The following absolute error (%) of the model output is used to compare model variants and 

select the appropriate one. n is number of time steps. 𝑸𝒔 and 𝑸𝒐 are simulated and observed 

discharges, respectively (Aghakouchak and Habib, 2010).  

|
∑ 𝑸𝒔

𝒊𝒏
𝒊=𝟏 − ∑ 𝑸𝒐

𝒊𝒏
𝒊=𝟏

∑ 𝑸𝒐
𝒊𝒏

𝒊=𝟏

| × 𝟏𝟎𝟎 

2.3.4.2.2 Weighted fuzzy objective function  

In this study, the most common objective functions of hydrological models are used for model 

performance evaluation. The Nash-Suffcliffe efficiency (Reff; Eq1) indicates the goodness-of-

fit of the simulated runoff, especially during high flow periods; while the logarithmic efficiency 

(LogReff; Eq2) emphasizes low flows (Siebert, 2005). The influence of low flow values is 

increased in the sensitivity of 𝑳𝒐𝒈𝑹𝒆𝒇𝒇 because the peaks are flattened through a logarithmic 

transformation of the runoff values (Krause et al., 2005).  The Volume Error (VE; Eq3) defines 

the total volume difference and long-term water balance by calculating the closeness 

between the averages of the observed and simulated runoff (Reynolds et al., 2017). 

Seibert (2000) suggested to evaluate the overall model performance by a fuzzy measure (𝑿; 

Eq4), a weighted combination of different objective functions. Parameter uncertainty can be 

reduced by the fuzzy measure (𝑿) because different parameter sets might perform well for 

only one objective function but not for other functions (Seibert, 1997). The values of the 

objective functions are transformed into fuzzy measures, then the highest values are 

obtained and joined to compute the best possible parameter sets (Seibert, 1999). 

Goodness of fit was evaluated with weights of Reff, LogReff and VE, 0.7, 0.2, and 0.1, 

respectively.    

𝑹𝒆𝒇𝒇 = 𝟏 −
∑(𝑸𝒐𝒃𝒔−𝑸𝒔𝒊𝒎)𝟐

∑(𝑸𝒐𝒃𝒔−𝑸𝒐𝒃𝒔
̅̅ ̅̅ ̅̅ ̅)𝟐                    (Eq 1) 

𝑳𝒐𝒈𝑹𝒆𝒇𝒇 = 𝟏 −
∑(𝐥𝐧 𝑸𝒐𝒃𝒔−𝐥𝐧 𝑸𝒔𝒊𝒎)𝟐

∑(𝐥𝐧 𝑸𝒐𝒃𝒔−𝐥𝐧 𝑸𝒐𝒃𝒔
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝟐        (Eq 2) 

𝑽𝑬 = 𝟏 −
|∑(𝑸𝒐𝒃𝒔−𝑸𝒔𝒊𝒎)|

∑(𝑸𝒐𝒃𝒔)
                      (Eq 3) 

𝑿 = 𝟎. 𝟕 𝑹𝒆𝒇𝒇 + 𝟎. 𝟐𝑳𝒐𝒈𝑹𝒆𝒇𝒇 + 𝟎. 𝟏𝑽𝑬       (Eq 4) 

Here Qobs and Qsim are observed and simulated runoff, and  𝐐𝐨𝐛𝐬̅̅ ̅̅ ̅̅ ̅
  is the mean value of the 

observed runoff. The 𝑹𝒆𝒇𝒇,  𝑳𝒐𝒈𝑹𝒆𝒇𝒇, 𝑽𝑬 and 𝑿 values range between −∞ and 1. These 

statistic measures have 1 if the simulation and observation agree (Siebert, 2005) and 0 if the 

model does not perform better than the mean value of the observed runoff (Bergstrӧm, 1992). 
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2.3.4.2.3 Bias correction of measured precipitation at Tretyakov gauge  

To improve hydrological simulations, we corrected precipitation measurements at two 

Tretyakov gauge stations along Bulgan River using an approach of the World Meteorological 

Organization solid precipitation measurement intercomparison project.  

Both solid and liquid precipitation is measured by the Tretyakov gauge with a windshield, a 

manually operated instrument with a special measure-cup with 0.1mm resolution (Zhang et 

al., 2004). Zhang et al. (2004) applied the bias correction approach developed by the World 

Meteorological Organization solid precipitation measurement intercomparison project to 31 

stations in Mongolia to improve the accuracy of precipitation measurements. The following 

equations are used in this bias correction method (Zhang et al., 2004; Khan and Koch, 2018): 

𝑷𝒄 = 𝑲 × (𝑷𝒎 + ∆𝑷𝒘 + ∆𝑷𝒆 + ∆𝑷𝒕)           (Eq 1) 

𝑲 = 𝟏/𝑪𝑹                                                (Eq 2) 

 where 𝑷𝒄 is the corrected precipitation; 𝑲, the adjustment coefficient of the wind-induced 

error;  𝑷𝒎, the measured precipitation at gauge; ∆𝑷𝒘, the wetting loss; ∆𝑷𝒆, the evaporation 

loss; ∆𝑷𝒕, the trace amount, and CR is the catch ratio (%). 

The trace precipitation, ∆𝑷𝒕 is less than the resolution of the Tretyakov gauge (<0.1mm) and 

corrected by the Institute of Meteorology and Hydrology before archiving gauge 

measurements (personal communication). The wetting loss ∆𝑷𝒘 is evaporated precipitation 

from the surface of the inner wall of the gauge after precipitation events and from the 

container after emptying. The evaporation loss ∆𝑷𝒆 is water loss by evaporation before 

measurement (Zhang et al., 2004).  

As Zhang et al. (2004) suggested, we determined precipitation types based on daily mean 

temperature. If the daily temperature was below -2°C, snow was assumed but if above +2 

°C it was rain. Mixed precipitation was assumed for air temperatures between -2°C and +2°C. 

The reference values of ∆𝑷𝒘 and ∆𝑷𝒆 for various precipitation types, suggested by Zhang et 

al. (2004) and Khan and Koch (2018), are shown in Table 2.9. 

Table 2.9: Values for wetting and evaporation losses 

 Variable Snow Mixed Rain 

∆𝑷𝒘 0.15 0.15 0.20 

∆𝑷𝒆 0.10 0.30 0.10 

The catch ratio of the gauge is estimated for various precipitation types on daily time steps 

using the following equations (Zhang et al., 2004). 𝑾𝒔 is wind speed (ms-1) at gauge height 

𝑻𝒎𝒊𝒏 and 𝑻𝒎𝒂𝒙 are daily maximum and minimum temperatures for various precipitation types. 

𝑪𝑹 is daily catch ratio (%). 
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𝑪𝑹(𝒔𝒏𝒐𝒘) = 𝟏𝟎𝟑. 𝟏𝟎 − 𝟖. 𝟔𝟕𝑾𝒔 + 𝟎. 𝟑𝟎𝑻𝒎𝒂𝒙                   (Eq 3) 

𝑪𝑹𝒎𝒊𝒙𝒆𝒅 = 𝟗𝟔. 𝟗𝟗 − 𝟒. 𝟒𝟔𝑾𝒔 + 𝟎. 𝟖𝟖𝑻𝒎𝒂𝒙 + 𝟎. 𝟐𝟐𝑻𝒎𝒊𝒏    (Eq 4) 

𝑪𝑹(𝒓𝒂𝒊𝒏) = 𝟏𝟎𝟎 − 𝟒. 𝟕𝟕𝑾𝒔
𝟎.𝟓𝟔                                       (Eq 5) 

 

2.3.4.2.4 Bias correction for gridded APHRODITE dataset 

Using the Thiessen polygon approach, areal mean gridded precipitation and temperature for 

the Bulgan catchment are calculated from the corresponding 25 grids of the APHRODITE 

dataset on daily time scales. The bias of the areal mean gridded precipitation and 

temperature is adjusted by Linear Scaling and Cumulative Distribution Function Matching 

approaches. 

a. Linear Scaling: 

A scale factor for each month is estimated based on the ratio of the monthly areal mean 

observed data to monthly areal mean gridded data. Then, daily observations are multiplied 

by the scale factor of the corresponding month. 

𝒔 =
𝝁(𝑿𝒐𝒃𝒔

𝒎𝒕𝒉)

𝝁(𝑿𝑨𝑷𝑯𝑹𝑶
𝒎𝒕𝒉 )

                 (Eq 1)                       𝑿𝒄
𝒅𝒂𝒚

= 𝑿𝑨𝑷𝑯𝑹𝑶
𝒅𝒂𝒚

× 𝒔      (Eq 2) 

where 𝒔 is the scale factor; 𝑿𝒐𝒃𝒔
𝒎𝒕𝒉 and 𝑿𝑨𝑷𝑯𝑹𝑶

𝒎𝒕𝒉  are monthly observed and APHRODITE 

dataset, respectively; 𝑿𝒄
𝒅𝒂𝒚

 and 𝑿𝑨𝑷𝑯𝑹𝑶
𝒅𝒂𝒚

 are the daily corrected and original APHRODITE 

data. 

b. Cumulative Distribution Function Matching: 

Based on the assumption that the observed and APHRODITE datasets have the same 

cumulative frequencies over a specific period, the APHRODITE data is matched to the 

equivalent observation data, and a transformation function is derived. The APHRODITE 

dataset is corrected based on the derived transformation function. For precipitation, the 

cumulative frequencies for wet day frequency are matched. 

𝑪𝟏(𝑿𝑨𝑷𝑯𝑹𝑶
𝒅𝒂𝒚 ) = ∫ 𝒇𝟏(𝑿𝑨𝑷𝑯𝑹𝑶

𝒅𝒂𝒚 )          (Eq 3) 

𝑪𝟐(𝑿𝒐𝒃𝒔
𝒅𝒂𝒚

) = ∫ 𝒇𝟐(𝑿𝒐𝒃𝒔
𝒅𝒂𝒚

)                 (Eq 4) 

𝒇𝟑(𝑿𝑨𝑷𝑯𝑹𝑶
𝒅𝒂𝒚

) = 𝑪𝟐
−𝟏 (𝑪𝟏(𝑿𝑨𝑷𝑯𝑹𝑶

𝒅𝒂𝒚
))   (Eq 5) 

𝑿𝒄
𝒅𝒂𝒚

= 𝒇𝟑(𝑿𝑨𝑷𝑯𝑹𝑶
𝒅𝒂𝒚 )                         (Eq 6) 
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where 𝒇𝟏 and 𝒇𝟐 are the probability of 𝑿𝑨𝑷𝑯𝑹𝑶
𝒅𝒂𝒚

 and 𝑿𝒐𝒃𝒔
𝒅𝒂𝒚

;  𝑪𝟏 and 𝑪𝟐 are the cumulative 

frequency functions; 𝒇𝟑  is the transformation function of 𝑿𝑨𝑷𝑯𝑹𝑶
𝒅𝒂𝒚

 to 𝑿𝒐𝒃𝒔
𝒅𝒂𝒚

 at the same 

cumulative probability. 

 

2.3.4.3 Runoff sensitivity to climate change 

To test the runoff sensitivity of the optimized hydrological model to climate change, we 

developed different climate scenarios with temperature increases (+1ºC, +2ºC, +3ºC, +5ºC) 

and various scenarios of precipitation (±10%, ±20%).  

The daily mean temperature increases by one degree, but daily precipitation increases or 

decreases by multiplying by the correction factors. Those constant changes keep the inter-

annual variations from the original temperature and precipitation.  

Altered climate input data of each climate scenario is applied to the HBV-Light model to 

simulate future runoff of that scenario. Changes in annual and seasonal runoff (%) under 

different scenarios are estimated for the validation period from 2006 to 2015. 

 

2.3.5 Future climate and runoff change  

In addition to dynamically downscaled data from the selected GCM and RCM, CanESM2 is 

statistically downscaled at climate stations in the Bulgan catchment using the Statistical 

DownScaling Model (SDSM) tool to assess near-future climate and runoff change in the 

Altai-Dzungarian region.  

Performances of these climate models are evaluated and compared using the Taylor 

diagram. Systematic biases of the climate models are corrected by Distribution mapping. 

The corrected GCM and RCM data are applied to the optimized hydrological model for the 

Bulgan catchment to simulate runoff for the baseline (1985-2005) and the future period 

(2030-2050). 

 

2.3.5.1 Statistical DownScaling Model - SDSM tool  

CanESM2 is statistically downscaled to station level using the Statistical DownScaling Model 

(SDSM). The SDSM, a hybrid of a stochastic weather generator and multi-regression-based 

model, was used to downscale daily maximum and minimum temperature, and precipitation 

at the station level. This model generates daily weather at the site from large-scale 

atmospheric circulation indices and regional moisture variables by describing time-varying 
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parameters under unconditional (air temperature and wet day occurrence) or conditional 

(precipitation amount) downscaling processes (Wilby et al, 2014).  

It has seven main steps: 1) quality control and data transformation, 2) screening of 

downscaling predictor variables, 3) model calibration, 4) weather generation from observed 

predictors of NCEP Reanalysis, 5) synthesis of observed and downscaled data, 6) 

generation of scenarios from climate model predictors and 7) statistical analysis. Regression-

based downscaling is very sensitive to the predictor selection and statistical transfer function 

because it supposes that the model parameters are valid in the future (Wilby et al, 2002). 

An ensemble of 26 daily predictors: NCEP/NCAR Reanalysis (1961-2005) and CanESM2 

outputs for the historical period (1962-2005), and projections for both RCP4.5 and RCP8.5 

(2006-2100) were downloaded from CCCMA's website10 (Table 2.10). These predictors for 

both historical and future periods, except for wind direction, are normalized with the mean 

and standard deviations of the baseline period 1971-2000. The data is presented as a 128 x 

64 grid cell covering the global domain as a T42 Gaussian grid and each cell is of a nearly 

uniform size of 2.8˚ x 2.8˚ (Radojevic, 2014).  

Normalized variables of the nine grids over the catchment and observations at two 

meteorological stations are employed as predictors and predictands in the statistical 

downscaling, respectively (Figure 2.20). The airflow variables are derived from 3 x 3 arrays 

of pressure fields overlaying the target grid cell of the stations. Thus, the zonal wind 

component includes broader domain information than single-grid precipitation data 

(Crawford et al., 2007). 

Table 2.10: List of NCEP predictors  

Variables Descriptions Variables Descriptions 

temp Mean temperature at 2m prcp Total precipitation 

mslp Mean sea level pressure **_f Wind speed 

p500 500 hpa geopotential height **_u Zonal wind component 

p850 850 hpa geopotential height **_v Meridional wind component 

shum 1000 hPa specific humidity **_z Relative vorticity of true 

wind 

s500 500 hPa specific humidity **_th Wind direction 

s850 850 hPa specific humidity **_zh Divergence of True wind 

** refers to different atmospheric levels: 1000 hPa height (p1), 850 hPa height (p8) and 500 hPa height 

(p5) 

  

At the screening step, the strength of the relationship between NCEP predictors of each grid 

cell and the associated predictand is defined using an analysis of the monthly percentage of 

explained variance and the partial correlation. After filtering potential predictors with their 

capabilities to explain local climate variability, partial correlation coefficients are computed to 

 
10 http://ccds-dscc.ec.gc.ca/ pred-canesm2 
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explore the weights of the selected predictors in the regression equation. However, 

predictors, especially the same variable from different grids, are mutually correlated. 

Therefore, stepwise multiple forward and backward regressions are applied to add and 

eliminate variables by checking the significance of individual variables and selecting those 

with a high coefficient of determination (R2), low mean square error (MSE), and low variance 

inflation factor (VIF) based on the F test (Wilks, 2005).  

 

Figure 2.20: Nine grids of CanESM2 (2.81˚ x 2.81˚) over the Altai-Dzungarian region. Grids are 
named after directions from central grid. Duchinjil and Baitag meteorological stations used for 
statistical downscaling are marked by black dots. 

 

Monthly regression models are established based on the selected predictors. The 

parameters of the regression models are optimized by the ordinary least square method. The 

regression model for precipitation downscaling is complicated since the occurrence and 

amount of precipitation must be specified as a condition. Thus, the "Event Threshold" of wet 

day occurrence was set as 0.3mm/day and the model was transformed with a natural log. 

For temperature downscaling, no transformation was applied since the temperature is an 

unconditional process. Using the stochastic component of the SDSM, 20 simulations are 

performed to produce an ensemble. Then the ensemble mean is compared to observation. 

The observation length of each station is divided into two independent sets for calibration 

(1977-1995) and validation (1996-2005).  

Based on the monthly regression models, climate scenario outputs are generated based on 

climate model predictors for the historical period (1961-2005) and future scenarios (2006-

2099) under RCP 4.5 and 8.5. 
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2.3.5.1.1 Delta statistics 

As stated in the SDSM Manual (Wilby and Dawson, 2007), the following equations are used 

to calculate delta statistics of the statistically downscaled precipitation and maximum and 

minimum temperatures of CanESM2 at Duchinjil and Baitag stations over two periods: 2030-

2050 (2040s) and 2080-2100 (2090s) under RCP4.5 and 8.5 scenarios comparing to a 

baseline period of 1985-2005 (1990s): 

Percentage change for precipitation (%):  

∆2040s=
(𝑃2040𝑠−𝑃1990𝑠)∗100

𝑃1990𝑠
 ;          ∆2090s=

(𝑃2090𝑠−𝑃1990𝑠)∗100

𝑃1990𝑠
 

Absolute difference for temperature (°C):  

∆2040s=𝑇2040𝑠 − 𝑇1990𝑠 ;          ∆2090s=𝑇2090𝑠 − 𝑇1990𝑠 
 

2.3.5.2 Evaluation of global and regional climate models with Taylor Diagram  

GCMs do not accurately show regional climate at fine-resolution geographic and temporal 

scales but can be used to help understand the uncertainty range of the climate projections. 

Most impact studies transfer gridded outputs of RCM into catchment average (Demirel et al., 

2013) or use an average of four surrounding grid points to represent the climate over the 

station to avoid artificial errors from model parameterization at a single grid cell.  

Regarding the complex terrain of the Altai Mountains, it is critical to check the topography 

accounting ability of climate models because there can be a systematic shift. Thus, simulated 

and observed climate time series are correlated for the whole study domain using the spatial 

Pearson correlation coefficient (r) as a simple measure of the similarity between simulated 

and observed climates over a baseline period of 1985-2005. It is found that the observed 

temperature and precipitation at stations better correlate with the outputs from the 

corresponding grid cell rather than neighboring grid cells for both the GCM and the RCM.  

The Taylor diagram is a practical model evaluation tool used in climate studies. The following 

statistical relationships, including correlation (r), centered root mean square error (RMSE), 

and standard deviation (σ) between simulated and observed climate time series, are shown 

in the Taylor diagram (Taylor, 2001). 

𝒓 =
𝟏

𝑵
∑ (𝒔𝒏−�̅�)(𝒐𝒏−�̅�)𝑵

𝒏=𝟏

𝝈𝒔𝝈𝒐
                         Eq 1 

   𝑹𝑴𝑺𝑬 = [
𝟏

𝑵
∑ ((𝒔𝒏 − �̅�) − (𝒐𝒏 − �̅�))

𝟐𝑵
𝒏=𝟏 ]

𝟏/𝟐

      Eq 2 

   𝝈𝒔 = [
∑(𝒔𝒏−�̅�)𝟐

𝒏
]

𝟏/𝟐

                          Eq 3 
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where �̅� and 𝒐 are the mean values and 𝝈𝒔 and 𝝈𝒐 are the standard deviations of 𝒔 and 𝒐 

simulated and observed fields, respectively. The 𝑵 is the number of discrete points in time 

or space. 

Model accuracy is evaluated by its distance from the point denoted by the observation. r is 

shown by the angle (azimuth). At the observed value, the centered RMSE is equal to 0, and 

both ratios of standard deviations and the correlation coefficient are equal to 1 (Taylor, 2001). 

 

2.3.5.3 Bias correction of GCM and RCM outputs 

Due to limited process understanding and coarse spatial resolution, GCMs, and RCMs often 

present biased results; thus, it is essential to correct bias in RCMs and GCMs outputs before 

applying them in impact studies (Maraun et al., 2010). 

Models have systematic and random errors, including too many drizzle days and untrue 

climate variability. Therefore, these model biases are quantified using statistical relationships 

between the modeled and observed climate series over the same baseline period. Then the 

bias correction is applied for future scenarios based on the assumption that the statistical 

relationship is applicable in the future.  

Before bias correction, the modeled outputs are interpolated to the same Gregorian calendar. 

HadGEM2 and RegCM4 have a 360-day calendar, while CanESM2 has 365 days for a year. 

These different lengths of calendar days are converted into the same 365-day calendar with 

a leap year by adding days in January, March, May, July, August, October, and December, 

as stated in the post-processing approach by Dobor et al. (2015). Dry days are added to the 

precipitation time series, whereas averages of the previous and following days' temperatures 

are calculated for these days. For February, one or two days are removed from the 30 days 

of the month regarding the leap year. Raw GCM and RCM outputs are corrected by 

Distribution mapping.  

2.3.5.3.1 Distribution mapping 

This method matches the distribution function of the simulated climate variables to the 

distribution function of observations. This method corrects the mean and standard deviation 

of the climate model outputs, wet-day frequencies, and precipitation intensities (Teutschbein 

and Siebert, 2012). 

Dynamic RCMs tend to simulate too many drizzle days with low precipitation due to the 

convection of moist air in a large area of the RCM grid size. It is recommended that this 

drizzle effect is eliminated from the model data before bias correction to avoid its influence 

on the modification factor (Willkofer et al., 2018). Furthermore, Kjellström et al. (2010) 

suggested 1.0mm day-1 as the best threshold to remove excess drizzle precipitation from 
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RCM data. Thus, we redefined days with less than 1.0 mm of precipitation to dry days before 

distribution mapping. 

Cumulative distribution functions (CDF) are created as transfer functions for both observed 

and simulated daily climate variables within a month for the baseline period of 1985-2005. 

The value of the simulated precipitation/temperature is searched on the empirical CDF of the 

climate model data with its corresponding cumulative probability, then shifted to the value of 

precipitation/temperature of the same cumulative probability on the empirical CDF of 

observation (Teutschbein and Siebert, 2012).  

For precipitation correction, the gamma CDF (𝑭𝜸) and its inverse (𝑭𝜸
−𝟏) are applied as below:  

𝑷𝒄𝒐𝒓𝒓_𝒔𝒊𝒎(𝒅) = 𝑭𝜸
−𝟏(𝑭𝜸(𝑷𝒔𝒊𝒎(𝒅)|𝜶𝒔𝒊𝒎,𝒎𝒐𝒏𝒕𝒉, 𝜷𝒔𝒊𝒎,𝒎𝒐𝒏𝒕𝒉)|𝜶𝒐𝒃𝒔,𝒎𝒐𝒏𝒕𝒉, 𝜷𝒐𝒃𝒔,𝒎𝒐𝒏𝒕𝒉) 

𝑷𝒄𝒐𝒓𝒓_𝒔𝒄𝒆𝒏(𝒅) = 𝑭𝜸
−𝟏(𝑭𝜸(𝑷𝒔𝒄𝒆𝒏(𝒅)|𝜶𝒔𝒊𝒎,𝒎𝒐𝒏𝒕𝒉, 𝜷𝒔𝒊𝒎,𝒎𝒐𝒏𝒕𝒉)|𝜶𝒐𝒃𝒔,𝒎𝒐𝒏𝒕𝒉, 𝜷𝒐𝒃𝒔,𝒎𝒐𝒏𝒕𝒉) 

where, 𝑷𝒄𝒐𝒓𝒓_𝒔𝒊𝒎(𝒅) and 𝑷𝒄𝒐𝒓𝒓_𝒔𝒄𝒆𝒏(𝒅) are the corrected daily values of the simulated 

precipitation for the baseline period of 1985-2005 (𝑷𝒔𝒊𝒎) and for the future scenario (𝑷𝒔𝒄𝒆𝒏) 

respectively. The 𝜶𝒔𝒊𝒎,𝒎𝒐𝒏𝒕𝒉 and  𝜷𝒔𝒊𝒎,𝒎𝒐𝒏𝒕𝒉 are shape and scale parameters of the 

simulated precipitation CDF for the particular month, also 𝜶𝒐𝒃𝒔,𝒎𝒐𝒏𝒕𝒉 and 𝜷𝒐𝒃𝒔,𝒎𝒐𝒏𝒕𝒉 are the 

parameters of the observed precipitation CDF for the same month. 

For temperature, the following gaussian (normal) CDF (𝑭𝑵) and its inverse (𝑭𝑵
−𝟏) are applied:  

𝑻𝒄𝒐𝒓𝒓_𝒔𝒊𝒎(𝒅) = 𝑭𝑵
−𝟏(𝑭𝑵(𝑻𝒔𝒊𝒎(𝒅)|µ𝒔𝒊𝒎,𝒎𝒐𝒏𝒕𝒉, 𝝈𝒔𝒊𝒎,𝒎𝒐𝒏𝒕𝒉

𝟐  )|µ𝒐𝒃𝒔,𝒎𝒐𝒏𝒕𝒉, 𝝈𝒐𝒃𝒔,𝒎𝒐𝒏𝒕𝒉
𝟐 ) 

𝑻𝒄𝒐𝒓𝒓_𝒔𝒄𝒆𝒏(𝒅) = 𝑭𝑵
−𝟏(𝑭𝑵(𝑻𝒔𝒄𝒆𝒏(𝒅)|µ𝒔𝒊𝒎,𝒎𝒐𝒏𝒕𝒉, 𝝈𝒔𝒊𝒎,𝒎𝒐𝒏𝒕𝒉

𝟐  )|µ𝒐𝒃𝒔,𝒎𝒐𝒏𝒕𝒉, 𝝈𝒐𝒃𝒔,𝒎𝒐𝒏𝒕𝒉
𝟐 ) 

where, 𝑻𝒄𝒐𝒓𝒓_𝒔𝒊𝒎(𝒅) and 𝑻𝒄𝒐𝒓𝒓_𝒔𝒄𝒆𝒏(𝒅) are the corrected daily values of the simulated 

temperature for the baseline period of 1985-2005 (𝑇𝑠𝑖𝑚) and for the future scenario (𝑇𝑠𝑐𝑒𝑛), 

respectively. The µ𝑠𝑖𝑚,𝑚𝑜𝑛𝑡ℎ and  𝜎𝑠𝑖𝑚,𝑚𝑜𝑛𝑡ℎ
2  are location and scale parameters of the 

simulated temperature CDF for the particular month; whereas µ𝑜𝑏𝑠,𝑚𝑜𝑛𝑡ℎ and  𝜎𝑜𝑏𝑠,𝑚𝑜𝑛𝑡ℎ
2  are 

the parameters of the observed temperature CDF for the same month. 

2.3.5.4 Future runoff simulation 

The temperature and precipitation series of the GCMs and RCMs are applied to the 

optimized hydrological model as input to simulate runoff for the baseline period (1985-2005) 

and the future period (2030-2050) under RCP4.5 and 8.5 (Seibert 2003). The projected 

changes in seasonal runoff and high and low flows were analyzed by changes in monthly 

hydrographs and the exceedance probability curves of daily runoff (Teutschbein and Seibert, 

2012).
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“Meandering Bulgan River is the life-spring of my homeland…”  

from “Bulgan River with Beavers” folk song 

 

 

 

 

   

Photo: An upstream area of the Bulgan River, Oyunmunkh 2014 
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3.1 Past climate reconstruction 

3.1.1 Site chronologies and climate-growth responses 

A summary of the statistics of the site chronologies is shown in Table 3.1. After 

standardization, the first-order autocorrelations of the site chronologies decreased as 

expected. The EPS for six site chronologies remains above the threshold of 0.85 (Wigley et 

al., 1984) over their different chronology lengths. The running-mean correlation coefficients 

between the individual tree-ring series in a chronology (𝑟) for 50-year intervals with 25-year 

overlap ranges between 0.35 and 0.75. 

Table 3.1: Summary of the statistics of the raw and standardized ring-width chronologies from all six 
sampling sites (*/** sampled in 2014/2013) 

Tree ring sites KAR* KET* GUR* YLT** SHR** KUD** 

Period,  

years 

1402-2013,  

612 

1569-2013, 

445 

1648-2013, 

366 

1835-2012, 

178 

1815-2012, 

198 

1624-2012, 

389 

First-order 

autocorrelation 

         Raw 

         Standardized  

 

 

0.89 

0.47 

 

 

0.77 

0.67 

 

 

0.81 

0.64 

 

 

0.92 

0.30 

 

 

0.88 

0.46 

 

 

0.70 

0.61 

Average mean 

sensitivitya 

          Raw  

         Standardized  

 

 

0.212 

0.206 

 

 

0.233 

0.228 

 

 

0.282 

0.253 

 

 

0.214 

0.201 

 

 

0.279 

0.269 

 

 

0.390 

0.287 

EPSb 0.92-0.98 0.91-0.98 0.83-0.98 0.87-0.95 0.98-0.99 0.85-0.97 

Rbarc (𝑟) 0.44-0.65 0.48-0.63 0.50-0.75 0.35-0.64 0.59-0.69 0.45-0.85 

Period 1450-2013 1645-2013 1825-2013 1915-2012 1815-2012 1830-2012 

Years with EPS>0.85 

(number,percentage) 
564/92%  369/83% 189/52% 98/55% 198/100% 183/47% 

aAverage mean sensitivity (Cook and Krusic, 2006);  bExpressed population signal (Wigley et al., 1984) 
cMean correlation coefficient among all tree-ring series used in a chronology 

 

Over the period 1835-2012, which is covered by all six site chronologies, upper and lower 

tree line chronologies obtained from northwest- and west-facing slope orientations each 

correlate significantly with each other (Table 3.2).  

 

Table 3.2: Pearson’s correlation coefficients between all six site chronologies over the common period 
1835-2012 

Site 

chronology 
Aspect Upper treeline Lower treeline 

    KAR KET GUR YLT SHR KUD 

KAR /2748 m N 1 0.263** 0.332** 0.170* 0.003 -0.003 

KET/2603 m W   1 0.804** 0.203** 0.559** 0.289** 

GUR/2450 m WN    1 0.275** 0.428** 0.257** 

YLT/ 2334 m N      1 0.128 0.044 

SHR/ 2478 m W        1 0.482** 

KUD/ 2482 m NW           1 

           **p<0.01  *p<0.05                                                      Moderate correlation coefficients are marked in Bold 
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For instance, the KET upper-tree line chronology from a west-facing slope is relatively weakly 

correlated with the KAR chronology (also upper tree line but north-facing slope) (r=0.26 at 

p<0.01), whereas the KET chronology is strongly positively correlated with the GUR upper 

tree line chronology from a northwest-facing slope (r=0.80 at p<0.01). The KET chronology 

is also relatively strongly correlated with the SHR lower treeline chronology also obtained 

from a west-facing slope (r=0.56 at p<0.01). 

This finding is in line with Fritts (1976), who sees slope orientation as an even more important 

site factor for growth response than elevation and latitude, because it more strongly affects 

the water and energy balance by controlling the amount of radiation received by the site, 

which in turn influences the allocation of moisture. Regardless of position (upper or lower 

tree line) and slope orientation, significant correlations among the site chronologies suggest 

one or more shared external growth-driving factors, like e.g. cooling, aerosols from volcano 

eruptions, and water stress. 

The monthly climate data most significantly correlated with the site chronologies were 

selected for setting up transfer models for the reconstruction of climate based on the tree-

ring widths. In the correlation analyses with the climate data, current year air temperatures 

(at KAR, YLT and KUD) and prior year precipitation sums (at KET, SHR, GUR, and YLT) 

were identified as the main drivers of radial growth.  

As shown in Figure 3.1, the KAR chronology positively correlates with the regional station 

temperatures of the current year June (r=0.61, p<0.01), July (r=0.29, p<0.05), and the mean 

June-July (r=0.55, p<0.01) and the previous year June (r=0.32, p<0.05) over their common 

period (1963-2012) while the PC1 of YLT and KAR positively correlate with mean June 

temperatures (r=0.57, p<0.01). The KET chronology significantly correlates with the mean 

monthly precipitation sums at the Qinghe station for July (r=0.38, p<0.05), August (r=0.40, 

p<0.05), and November (r=0.27, p<0.05) of the previous year, whereas the PC1 of the KET, 

SHR, and GUR chronologies correlate with the precipitation sums for July (r=0.32, p<0.05), 

August (r=0.37, p<0.05), and November (r=0.26, p<0.05) of the previous year.  
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Figure 3.1: Pearson’s correlation coefficients (p<0.05) between the tree-ring width chronologies of  
KAR (a), KET (b), YLT (c), SHR (d), KUD (e), GUR (f), the first principal component (PC1) of YLT and 
KAR (g), the PC1 of GUR, SHR and KET (h) and the monthly regional air temperature averaged from 
five climate stations (black columns) for the period 1963-2012, precipitation sums as measured at the 
Qinghe station (white columns) for the period 1958-2007, and the monthly scPDSI (grey columns) for 
the period 1963-2012 over an 18-month window from May of the year prior to growth to October of 
the year of growth. 

 

Besides the significantly stronger correlations of the individual KAR and KET site 

chronologies with temperature and precipitation, respectively, both chronologies reach 

further back in time than those of the other sites and the regional chronologies of this study 

as well as previous reconstructions from the southern Altai Mountains. Hence, the KAR and 

KET chronologies are chosen for temperature and precipitation reconstructions  
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The KAR and KET chronologies are correlated with various climate datasets, as shown in 

Figure 3.2. The KAR chronology correlates positively with the mean monthly temperatures 

of June (r=0.66, p<0.01), July (r=0.40, p<0.01), and mean June-July (r=0.63, p<0.01) of the 

current year, and of June (r=0.38, p<0.01) and July (r=0.27, p<0.01) of the previous year of 

the gridded CRU TS4.01 time series over the period 1963-2012 (Figure 3.2a).  

 

Figure 3.2: Significant (p<0.05) Pearson’s correlation coefficients between the KAR chronology and 
the monthly and seasonal mean air temperatures of the regional temperature averaged over five 
stations, and the CRU TS4.01 (averaged over the grids of 91° E - 92°E and 41°N - 42°N) for the period 
1963-2012, and the nearest station (Duchinjil)  for the period 1977-2012 (a) and between KET and 
the monthly and seasonal precipitation sums as measured at the Qinghe station, the CRU TS4.01 
(averaged over the grids of 91° E - 92°E and 41°N - 42°N), and the Duchinjil station over the period 
1958-2007, 1958-2012 and 1977-2012, respectively (b). c: current year and p: year prior to growth 

  

These results corroborate findings from previous studies in the Chinese southern Altai 

Mountains by Chen et al. (2012), Zhang et al. (2015), and Wang et al. (2013), who showed 

positive correlations of tree-ring widths with June-July air temperatures. They believe that 

the increased radial growth is caused both by higher photosynthetic rates and higher soil 

moisture levels due to increased snowmelt. The CRU TS4.01 temperatures for the period 

1963-2012 were preferred over the Duchinjil station data because of the longer length of this 

time series. The CRU TS4.01 temperature data from before 1963 were not used due to too 

few stations in the region and the resultant low reliability of interpolations for that period. 

The strongest correlations exist between the KET chronology and the precipitation sums 

(r=0.64, p<0.01) from June through December of the year prior to growth measured at the 

Duchinjil station for the period 1977-2012 (Figure 3.2b). Previous year monthly precipitation 

sums of July (r=0.37), August (r=0.36), and November (r=0.30) were also significantly 

correlated (p<0.05) with the KET chronology, as were those of July through November 

(r=0.58, p<0.01) and July through December (r=0.60, p<0.01). 

These findings are largely in line with Chen et al. (2014), who found positive correlations 

between the radial growth of Siberian spruce in the Chinese southern Altai Mountains with 

July-August and December precipitation sums of the previous year in addition to May-July 

precipitation of the current year. According to Fritts (1974), the growth of arid-site conifers 
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during the current year might be enhanced by above-average precipitation in late summer 

and early autumn of the previous year due to its promotion of carbohydrate storage and bud 

formation. Winter precipitation, which mostly falls as snow from November to March in this 

area, increases soil moisture during the early growing season due to snowmelt and may thus 

also promote growth.  

 

3.1.2 Temperature and precipitation sensitive tree-ring width networks 

The KAR chronology is significantly correlated with mean June-July temperatures, while the 

KUD and YLT chronologies are correlated only with June temperatures (Figure 3.1). Four 

transfer function models of summer temperature were developed based on KAR, KUD and 

YLT chronologies, and a network (PC1) of these temperature-sensitive tree-ring widths for 

the June temperature of the gridded CRU TS4.01 dataset throughout 1963-2012 (Figure 

3.3a). 

 

 

Figure 3.3: Reconstructed June temperature time series from the KAR, KUD, and YLT chronologies, 
and a network of these chronologies over their common period (a); reconstructed June-December 
precipitation sum time series from the KET, GUR, and SHR chronologies and a network of these 
chronologies (b) over their common period.  

Model skill statistics were calculated for the calibration period from 1963 to 1986 and the 

verification period from 1987 to 2012. This was repeated with both periods interchanged. 

Validation statistics of the transfer function models are shown in Table 3.3.  

a. 

b. 
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The skills of the transfer functions derived from the KUD and YLT chronologies were poor, 

and their estimated June temperatures explained only 10.1% - 11.5% of the variance in 

observed temperature. That might be explained by their site characteristics, including their 

location at the lower tree line, which makes those sites more prone to human disturbances 

and less sensitive to temperature.  

Table 3.3: Calibration and verification statistics of the June temperature reconstructions from the KAR, 
KUD, YLT and a network of these chronologies as calibrated with monthly mean temperatures from 
the CRU TS4.01 dataset (91°-92°E and 41°-42°N).  

 Full 

calibration, 

1963-2012 

Calibration, 

1963-1987 

Verification, 

1988-2012 

Calibration, 

1988-2012 

Verification, 

1963-1987 

KAR 

r 0.650*** 0.739*** 0.603** 0.602** 0.737** 

AdjR2 0.397*** 0.506*** - 0.335** - 

Explained 

variance 

42.2% 54.6% - 36.2% - 

RE 0.374 0.547 0.250 0.362 0.406 

CE - 0.547 -0.041 0.362 0.206 

KUD 

r 0.318* 0.404* 0.066* - - 

AdjR2 0.082 0.127 - - - 

Explained 

variance 

10.1% 16.3% - - - 

RE 0.063 0.163 0.085 - - 

CE - 0.163 -0.220 - - 

YLT 

r 0.340* - - 0.345* 0.317 

AdjR2 0.097 - - 0.079 - 

Explained 

variance 

11.5% - - 11.9% - 

RE 0.079 - - 0.119 0.123 

CE - - - 0.119 -0.105 

A network of the chronologies  

r 0.633** 0.694*** 0.589*** 0.602** 0.614*** 

AdjR2 0.376** 0.459*** - 0.334 - 

Explained 

variance 

40.16% 48.17% - 36.29% - 

RE 0.351 0.482 0.345 0.363 0.367 

CE - 0.482 0.126 0.363 0.204 

r  - Pearson’s correlation coefficient, R2– Coefficient of Determination, AdjR2 – Adjusted for degrees of freedom, 

RE- Reduction of Error statistic, CE- Coefficient of Efficiency *** p<0.001  **p<0.01  * p<0.05 

Four transfer function models of precipitation were developed based on the KET, GUR, and 

SHR chronologies, a network of these chronologies, and the June-December precipitation 

sums observed at the Duchinjil station (Figure 3.3b). Transfer model skills are quite good 

except for the SHR chronology, which had negative values and thus little predictive skill 

(Table 3.4). The estimated precipitation via the transfer functions of the GUR and the network 
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chronology explained 26.9% and 34.7% of the variance in observed precipitation, 

respectively.   

Table 3.4: Calibration and verification statistics of the June-December precipitation sum 
reconstructions from the KET, GUR, and SHR chronologies and a network of these chronologies as 
calibrated with the June-December precipitation sums observed at the Duchinjil station. 

 Full 

calibration, 

1977-2012 

Calibration, 

1977-1995 

Verification, 

1996-2012 

Calibration, 

1996-2012 

Verification, 

1977-1995 

KET 

r 0.642*** 0.711** 0.520** 0.520** 0.711** 

AdjR2 0.395*** 0.477* - 0.222** - 

Explained 

variance 

41.3% 50.6% - 27.1% - 

RE 0.379 0.506 0.231 0.271 0.458 

CE - 0.506 0.193 0.271 0.442 

GUR 

r 0.519*** 0.566** 0.448* 0.448* 0.566** 

AdjR2 0.248*** 0.280 - 0.147 - 

Explained 

variance 

26.9% 32.01% - 20.07% - 

RE 0.227 0.320 0.161 0.201 0.286 

CE - 0.320 0.119 0.201 0.265 

SHR 

r 0.498** 0.615** 0.291 - - 

AdjR2 0.226** 0.342** - - - 

Explained 

variance 

24.8% 37.82% - - - 

RE 0.204 0.378 -0.038 - - 

CE - 0.378 -0.078 - - 

A network of the chronologies 

r 0.589** 0.653** 0.468* 0.511* 0.666*** 

AdjR2 0.327** 0.393** - 0.209 - 

Explained 

variance 

34.69% 42.66% - 26.16% - 

RE 0.308 0.427 0.187 0.262 0.404 

CE - 0.427 0.156 0.262 0.390 

r  - Pearson’s correlation coefficient, R2– Coefficient of Determination, AdjR2 – Adjusted for degrees of freedom, 

RE- Reduction of Error statistic, CE- Coefficient of Efficiency *** p<0.001  **p<0.01  * p<0.05 

 

The temperature and precipitation-sensitive networks prove that the single site chronologies, 

KAR and KET, can reconstruct regional temperature and precipitation variations over a long-

time period. Therefore, we used KAR and KET chronologies in long-term climate 

reconstruction and analysis for this region. 
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3.1.3 Summer June-July temperature reconstruction 

Based on the KAR chronology, a temperature transfer function was developed for June-July 

temperatures of the gridded CRU TS4.01 dataset over the period of 1963-2012. The first 

principal component from the PCA of the predictors - the KAR (t) and its lag (t+1) series - 

contained 79% of the total variance and was used in a linear regression model for the mean 

June-July temperature reconstruction. The skill statistics were calculated for the calibration 

period 1963-1986 and for the verification period 1987-2012, which was repeated with both 

periods interchanged.  

The transfer function model verification statistics for the mean June-July temperature 

reconstruction (Table 3.5) indicated - with positive values of RE, significant PM values, and 

significant first-difference sign tests (p<0.05) - that the temperature reconstruction of this 

study adequately captures the high-frequency variation of the instrumental data. Therefore, 

the transfer function model from the KAR chronology calibrated over the whole period 

between 1963 and 2012 was used for reconstructing mean June-July temperatures over the 

period 1402-2012. 

Table 3.5: Calibration and verification statistics for the transfer function model of the mean June-July 
temperature reconstruction from the KAR chronology and the monthly mean temperature averaged 
over CRU TS4.01 grids (91°E - 92°E; 41°N - 42°N)  

r  - Pearson’s correlation coefficient, R2– Coefficient of Determination, AdjR2 – Adjusted for degrees of freedom, 

RE- Reduction of Error statistic, CE- Coefficient of Efficiency *** p<0.001  **p<0.01  * p<0.05 

The reconstructed June-July temperature time series explained 39.7% of the year-to-year 

variance of the gridded CRU TS4.01 data over the period 1963-2012 and contained the same 

general positive trend as the instrument observations (Figure 3.4a).  

This common trend between tree ring and instrumental temperature series might lead to 

partly spurious correlations. After removal of these linear trends from the KAR chronology 

and the mean June-July temperatures by taking the difference between the value in one year 

and the previous year, a moderate correlation (r=0.49, p<0.01) was still found between both 

detrended time series. However, it should be noted that such common trends may be 

causally linked and the removal of such trends from both the tree-ring and temperature series 

 Full calibration 

(1963-2012) 

Calibration 

(1963-1987) 

Verification 

(1988-2012) 

Calibration 

(1988-2012) 

Verification 

(1963-1987) 

r 0.631*** 0.734*** 0.603*** 0.605*** 0.733*** 

R2 0.397** 0.539***  0.366**  

AdjR2 0.371** 0.497  0.338**  

RE 0.347 0.539 0.238 0.366 0.356 

CE  0.539 -0.183 0.366 -0.198 

Sign test - 18+/7-* 14+/11- 22+/3-*** 16+/9- 

Products 

means test 

 
0.399** 0.597* 0.095 0.326** 
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might prevent the reconstruction of similar past trends based on the tree rings and lead to a 

false detection of divergence (Weijers et al., 2012). 

 
Figure 3.4: Mean June-July temperatures estimated from KAR ring-widths (grey line) and observed 
monthly mean air temperature (black line) averaged over the CRU TS4.01 grids over the sampling 
sites for the period 1963-2012 (r=0.63, p<0.01) (a); June-December precipitation sums as estimated 
from the KET ring-width chronology (grey line) and observed at the Duchinjil station (black line) over 
the period 1977-2012 (r=0.72, p<0.01) (b). 

The spatial distribution of the correlation between reconstructed and gridded instrument-

based CRU TS4.01 mean June-July temperatures for the period 1963-2012 (Figure 3.5a) 

demonstrates that our temperature reconstruction contains a clear regional signal, which 

covers the Altai Mountains and the western Sayan Mountains in northern Mongolia (r=0.5-

0.6, p<0.1), the Mongolian Plateau (r=0.3-0.5, p<0.1), and the Dzungarian Basin (r=0.2-0.5 

depending on the distance from the Altai Mountains, p<0.1). The strength of spatial 

correlation between the gridded and reconstructed temperatures decreases for the longer 

period (1950-2015) in Figure 3.5b due to the lack of long time series data from sparse climate 

stations in the southern Altai Mountains. Those stations were established between 1954 and 

1963. 

  

Figure 3.5: Maps showing the correlations between the gridded CRU TS4.01 (0.5°×0.5°) climate 
dataset and the reconstructed temperature as calculated with the KNMI climate explorer 
(http://climexp.knmi.nl). Gridded and reconstructed June-July temperatures (1963-2012) (a), gridded 
and reconstructed June-July temperatures (1950-2012) (b). The sampling site is marked with a black 
asterisk. 

 

 

a. b

. 
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Long-term variation in summer temperature 

According to the resulting 611-year June-July temperature reconstruction, over the period 

1402-2012, mean summer temperatures in the region ranged from 9.3 to 16.0°C. The 

observed summer temperature variability is within the uncertainty range (+/-1 standard error 

of the prediction) of the reconstructed temperature over the common period (Figure 3.6).  

 

Figure 3.6: Mean June-July air temperature reconstruction based on the KAR tree ring-width 
chronology (thick grey line), its uncertainty (± 1 standard deviation of the prediction, grey area), and 
the temperature observations (CRU TS4.01) (black line). 

 

In a graphical comparison with other tree ring-based reconstructed temperatures from the 

southern Altai from previous studies many similarities can be found (Figure 3.7).  

All reconstructions lack the 20th century warming trend observed elsewhere over the northern 

hemisphere. Warm decades are suggested for the periods 1880-1910 and 1940-1975 and 

cold periods for 1490s, 1540s, 1680-1710, 1780s, 1810-1860, 1911-1939 and 1980s. These 

cold periods and the cooling in the 1930s are also revealed by a 750-year high resolution 

temperature reconstruction (1250-2000) from an ice-core oxygen isotope record from the 

Belukha glacier in the Siberian Altai and explained as periods of low solar activity (Eichler et 

al., 2009; Schwikowski et al., 2009). Moreover, periods of volcanic-induced cooling (Briffa et 

al., 1998; Eichler et al., 2009; Buentgen et al., 2016) and periods of low solar activity 

(Schwikowski et al., 2009) coincide with the observed periods with low temperatures in our 

reconstruction.  

Most of the coldest summers took place during such periods of low solar activity and volcanic 

eruptions (Figure 3.7). Chen et al. (2012) explained the late 20th century cooling as a 

consequence of enhanced cloudiness and rainfall over the Altai Mountains and reduced 

growth of Larix sibirica at the tree line. The warm period in the 1950s and the cold period 

between 1983-1998 were also observed in tree-ring chronologies from mountainous areas 

in Nepal and China (Wang et al., 2013).  
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None of the temperature reconstructions from the Altai Mountains (this study and 

Panyushkina et al., 2005; Loader et al., 2010; Chen et al., 2012; Zhang et al., 2015, Buentgen 

et al., 2016) indicate a continuous 20th century warming trend as observed in the northern 

Mongolia reconstructions (Davi et al., 2015; D' Arrigo et al., 2000, 2001). Instead, a decrease 

in summer temperatures starting in the 1950s followed by a steep rise in the 1990s was 

observed. This warming till the 1950s and cooling afterwards till the 1990s was also revealed 

in mean June-July temperature-related tree growth series from upper tree-line sites in the 

Russian southeast Altai (Panyushkina et al., 2005) and in mean July-August temperature 

reconstructions from tree-ring oxygen and carbon isotopes of Siberian pine (Pinus sibirica 

Du Tour) from the central Russian Altai (Loader et al., 2010).  

 
Figure 3.7: A graphical comparison of tree-ring based temperature reconstructions from the southern 
Altai. June temperatures for the eastern Kazakhstan Altai since 1698 (a), mean May-September 
temperatures for the western Chinese Altai since 1639 (b), June temperatures for the middle Chinese 
Altai since 1570 (c), mean June-July temperatures for the eastern Chinese Altai since 1613 (d), mean 
June-July temperatures for the southern Mongolian Altai since 1402 (e, this study). Thin grey lines 
and thick black lines show the reconstructed temperature and 13 year low pass filtered curve, 
respectively. (a)-(d) from Zhang et al. (2015). Dark and light grey bars show cold and warm periods. 
The cold periods of low solar activities are named by S = Spörer, M = Maunder, D = Dalton and G = 
Gleissberg minima (Schwikowski et al., 2009) and triangles indicate volcanic eruptions (Briffa et al., 
1998; Eichler et al., 2009).  
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The temperature reconstruction from Siberian larch trees over the Chinese Altai Mountains 

from Chen et al. (2012) and in east Kazakhstan from Zhang et al. (2015) show similar 

patterns of change in mean June-July temperatures. This regional cooling from the 1950s to 

the 1990s contrasts with the area-weighted average of the past estimated temperature of all 

continents from the PAGES 2k Consortium (2013), which locates the warmest period in the 

late 20th century between 1971 and 2000. The past climate variability thus not only differs 

between continents but also between eastern and western Asia due to local factors like the 

Tibetan Plateau and the complex monsoon systems, which affect the stability of climatic 

teleconnections (Shi et al., 2015). This suggests, that the past temperature variability and 

change over the southern Altai and Dzungarian Basin region could differ from the mean 

Northern Hemisphere temperature pattern. 

 

3.1.4 Precipitation reconstruction 

A transfer function was developed based on the lagged (t+1) KET chronology and the June 

through December precipitation sum as observed at the Duchinjil station over the period 

1977-2012 using simple linear regression. This model was first calibrated over the period 

1977-1995 and verified over the period 1996-2012, which was repeated with interchanged 

periods. The reconstruction of June-December precipitation sums explains 41.3% of the 

variance in the instrumental data over the complete period (1977-2012).  

The positive RE and CE values, and significant PM values suggest a high reliability of the 

transfer function model (Table 3.6). Consequently, June-December precipitation sums were 

reconstructed based on the KET chronology (t+1) for the period 1569-2012. The correlation 

between reconstructed and instrumental data over the whole common period is 0.64 (p<0.01) 

(Figure 3.4b). 

Table 3.6: Calibration and verification statistics of the transfer function model for the June-December 
precipitation sum reconstruction from the KET tree-ring width chronology with observations from the 
Duchinjil station 

 Full calibration 

(1977-2012) 

 Calibration 

(1977-1995) 

Verification 

(1996-2012) 

Calibration 

(1996-2012) 

Verification 

(1977-1995) 

r 0.642***  0.711** 0.520*** 0.520** 0.711** 

R2 0.413***  0.506*  0.271**  

AdjR2 0.395***  0.477*  0.222**  

RE 0.379  0.506 0.231 0.271 0.458 

CE   0.506 0.193 0.271 0.442 

Sign test    13+/6- 10+/7- 10+/7- 15+/4- 

Products 

means test 

  
680** 354 250*** 392** 

r  - Pearson’s correlation coefficient, R2– Coefficient of Determination, AdjR2 – Adjusted for degrees of freedom, 

RE- Reduction of Error statistic, CE- Coefficient of Efficiency *** p<0.001  **p<0.01  * p<0.05 
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The spatial distribution of the correlation between the reconstructed and the gridded 

instrument-based June-December precipitation sums from 1977 to 2012 (Figure 3.8a) shows 

a more local signal - compared to the mean June-July temperature reconstruction - with 

significant positive correlations over the southwestern and southern Altai Mountains (r=0.4-

0.5, p<0.1) and the Dzungarian Basin (r=0.3-0.4, p<0.1). The strength of the spatial 

correlations between the chronologies and gridded precipitation data decreases for the 

longer period from 1950 to 2012 since the gridded dataset from a few stations in the 1950s 

might not represent the local climate enough (Figure 3.8b).  

  

Figure 3.8: Maps showing the correlations between the gridded CRU TS4.01 (0.5°×0.5°) precipitation 
and the reconstructed precipitation as calculated with the KNMI climate explorer 
(http://climexp.knmi.nl). Gridded and reconstructed June to December precipitation sums (1977-2012) 
(a), gridded and reconstructed June to December precipitation sums (1950-2012) (b). The sampling 
site is marked with a black asterisk. 

 

Long-term variation in regional precipitation 

The reconstructed precipitation variability for the time period 1569 - 2012 shows recent wet 

maxima in the 1950s (1956 to 1962) and 1990s (1989-2005) after stable conditions between 

the 1830s and 1930s, which follow extreme wet and dry periods between the late 1600s to 

the early 1800s. The observed precipitation variability is within the uncertainty range (+/-1 

standard error of the prediction) of the reconstructed precipitation over the common period 

(Figure 3.9). 

In a graphical comparison with other precipitation reconstructions (Figure 3.10) from the 

northern and southern Altai Mountains, all reconstructions show similar wet (1915, 1956-

1961, 1974-1976 and 1989-2006) and dry periods (1880-1885 and 1977-1985), although our 

sampling sites in the southern part of the Mongolian Altai Mountains are relatively dry due to 

the rain shadow probably caused by the central Mongolian Altai Mountains (Klinge et al., 

2003) and the southern Chinese Altai Mountains. The differences in the high-frequency 

variation of the precipitation reconstructions might be explained by regional orographic 

a. b. 
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effects of the Altai Mountains on the storm tracks bringing moisture to this region (Davi et al., 

2009).  

 

Figure 3.9: June-December precipitation sum reconstruction based on the KET tree ring-width 
chronology (thick grey line) and its uncertainty (± 1 standard deviation of the prediction, grey area), 
and the observations from the Duchinjil station (black line).  

 

Figure 3.10: A graphical comparison of precipitation reconstructions from the southern Altai. Previous 
July to current June precipitation sums spanning 1760-2013 from the northwestern Chinese Altai (a) 
(Chen et al., 2015), July-June precipitation sums from Siberian spruce (Picea obavata) at a lower 
treeline spanning 1825 - 2009 for the southern Chinese Altai (b) (Chen et al 2014), June-December 
precipitation sums from Siberian larch (Larix sibirica) at the upper treeline spanning 1569 - 2012 for 
the southern Mongolian Altai (c) (this study). Thin grey lines and thick black lines show reconstructed 
precipitation sums and 10 year low pass filtered curves, respectively. Dark and light grey bars show 
wet and dry periods.   
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3.1.5 Long-term climatic variation and change 

Climate variations were inferred for a 433-year period over the Altai-Dzungarian region from 

20-year smoothed reconstructed temperature and precipitation series shown as 

standardized anomalies in Figure 3.11. 

 

Figure 3.11: Inferred climate variation from the 20-year smoothed lines of the estimated temperature 
(solid line) and precipitation (dashed line) time series, expressed in standardized and normalized 
values. The horizontal dotted and thin grey lines indicate the range of one standard deviation for the 
20-year smoothed precipitation (σ=±0.29) and temperature (σ=±0.37), respectively.  

The inferred climate conditions were classified into cool-dry, cool-moist, warm-dry and warm-

moist periods (Table 3.7). This classification suggests that cool-moist and cool-dry years 

have both decreased by about 8% since 1875, while warm-dry and warm-moist years have 

increased by about 14% and 2%, respectively. Thus, the more frequent warm-dry summers 

have replaced the cool/warm-moist and cool-dry episodes more common during the Little 

Ice Age (1580-1874). The extreme cool (1689-1691, 1705-1715, 1838-1859, 1983-1992), 

cool-dry (1692-1704, 1716), dry (1632-1647, 1717-1721, 1760-1768, 1820-1835), warm 

(1655-1664, 1889-1909, 1948-1962, 2008-2011) warm-dry (1648-1654, 2012), moist (1602-

1616, 1677-1678, 1734-1749, 1789-1810) and warm-moist (1665-1676) periods are defined 

by the anomalies of the estimated temperature and precipitation above or below the +/- one 

standard deviation range of the whole record.  

The cool-moist, cool-dry, warm-moist and warm-dry periods can be linked with different 

states of the general atmospheric circulation. The Little Ice Age period was cooler and wetter 

than the present climate condition in the Altai-Dzungarian region, which is supported by 

Putnam et al. (2016), who inferred wetter climate conditions during the LIA (which they 

defined as the period between 1150 and 1845) from geomorphological, biological, and 

historical evidence in the Tarim Basin, which neighbors the Dzungarian Basin. During that 

period, the northern hemisphere mountain glaciers expanded as a reaction to the lower 
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temperatures and descending snowlines. In parallel, the Tarim Basin became wetter with 

deeper snow packs over the high mountains due to increasing orographic precipitation as a 

result of a southward shift or a strengthening of the boreal Westerlies impinging the interior 

Asian desert belt. Moreover, the recent cool-moist period from 1985 to 2000 (Table 3.7) has 

been related to the Arctic Oscillation (this study, Robock, 1984, He et al., 2017). 

Table 3.7: Inferred cool-dry, cool-moist, warm-dry and warm-moist periods over the Altai-Dzungarian 
region from the Little Ice Age (LIA) until present, based on estimated temperatures and precipitation 
sums.  

Periods 
1580-1874 (LIA) 1875-2012 (present) 

DRY MOIST DRY MOIST 

COOL 

1583-1593; 1625-

1636; 1686-1723; 

1815-1844; 1871-

1872 

1594-1624; 1684-

1685; 1811-1814; 

1845-1870 

1919-1938; 1973-

1984 

1917-1918; 1985-

2000 

WARM 

1581-1582; 1637-

1659; 1724-1728; 

1754-1780; 1873-

1875 

1580; 1660-1683; 

1729-1753; 1781-

1810 

1875-1893; 1939-

1953; 1967-1972; 

2006-2012 

1894-1916; 1954-

1966; 2001-2005 

 

The recent cooling could have been caused by volcanic aerosols of the El Chichón eruption 

(Volcanic Explosivity Index 5, 1982) in Southern Mexico, which impacted atmospheric wind 

patterns, including a positive phase of the Arctic Oscillation (Robock, 1984). However, no 

widespread volcanic-induced cooling was observed at this time due to the simultaneous 

warming ocean temperature caused by El Niño (Robock, 2002). During this recent cool-moist 

period, ice mass accumulation of the glaciers in the Russian Altai Mountains was observed, 

and Narozhniy and Zemtsov (2011) connected this phenomenon to increased annual 

precipitation by 8% - 10% especially in winter and spring (April-May) as a result of a 

strengthening of the zonal circulation over the Altai Mountains. This indicates that the positive 

AO interacting with El Niño could have reinforced the anomalous Westerlies in the 

midlatitudes (He et al., 2017).
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3.2 Teleconnections of atmospheric indices to regional climate 

variation 

3.2.1 Spatial correlations of the atmospheric indices with temperature and 

precipitation of CRU TS4.03 dataset (0.5°×0.5°) 

The prominent NAO, AO, and NINO3.4 significantly correlated with monthly and seasonal 

temperature and precipitation over the Altai-Dzungarian region from 1960 to 2012 (Figure 

3.12).  

  

  

  

Figure 3.12: Maps showing the strongest interannual correlations of the NAO, AO, and NINO3.4 
indices with the gridded temperature (left panel) and precipitation (right panel) of CRU TS4.03 
(0.5°×0.5°) for the period of 1960-2012 at 0.1 significant level, as calculated with the KNMI climate 
explorer (http://climexp.knmi.nl). The mean February-March NAO index and mean February-March 
temperatures (a), the December NAO index of the previous year and current June precipitation (b), 
the mean January-May AO index and mean January-May temperature (c), the July AO index and 
August precipitation (d) the mean NINO3.4 index from May of the previous year through current March 
with current May temperatures (e) and current May precipitation (f). 

 

A positive winter NAO and a positive winter through spring AO induced warm winter and 

spring temperatures (Figure 3.12a and c). The February-March NAO index positively 

a. b. 

c. d. 

e. f. 
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correlated with the February-March temperature (r=0.4, p<0.1, Figure 3.12a). Also, the mean 

January through May AO index positively correlated with the mean temperature of the same 

months (r=0.4, p<0.1, Figure 3.12c). 

Furthermore, a positive early winter NAO (December) index and a positive summer AO index 

(July) yielded relatively higher early and late summer precipitation over the Altai-Dzungarian 

region, respectively. The preceding December NAO index correlated positively with the June 

precipitation (r=0.3, p<0.1, Figure 3.12b) but negatively with the June temperature (r=-0.3, 

p<0.1). Also, a positive summer NAO (July) induced a cool (r=-0.4, p<0.1) and wet (r=0.2, 

p<0.1) summer. Moreover, the July AO index positively correlated with August precipitation 

(r=0.3, p<0.1, Figure 3.12d).  

Finally, a positive NINO3.4 brought cold and wet spring (May) to this region (Figure 3.12e 

and f). The mean NINO3.4 index of preceding May through current March negatively 

correlated with the current May temperature (r=-0.4 and -0.5, p<0.1) but positively correlated 

with the May precipitation (r=0.4 and 0.5, p<0.1). Also, the March-April NINO3.4 index 

negatively correlated with the mean July-August temperature (r=-0.3, p<0.1). These 

teleconnections confirm that a positive phase of the NAO index led to increased storm tracks 

in the Northern hemisphere from the 1960s to1990s (Hartmann et al., 2013) and a positive 

phase of the Arctic Oscillation brought warm and wet winter conditions over Mongolia in the 

1980s due to a northward shift of the polar jet and an intensified westerly jet over the northern 

Tibetan Plateau (He et al., 2017).  

 

3.2.2 Interannual and interdecadal correlations of the atmospheric indices with 

the estimated temperature and precipitation 

The interannual correlations between the atmospheric indices and the estimated June-July 

temperature and June through December precipitation were tested for the same period of 

1960-2012 as the interannual correlation with gridded observations in the previous 

subchapter. As expected, the positive winter NAO and AO indices induced cool and wet 

summers in the Altai-Dzungarian region (Table 3.8). The estimated June-July temperature 

correlated negatively with the preceding positive December NAO (r=-0.31), December AO 

(r=-0.32), and preceding April NINO3.4 (r=-0.29) at a 0.05 level. Moreover, the estimated 

June through December precipitation sum correlated positively with December AO (r=0.25) 

at a 0.1 level.  

The interannual variation of the ocean surface conditions over the North Atlantic is controlled 

by wind-induced changes in the air-sea heat energy fluxes, while interdecadal variations 

reflect changes in the ocean circulation itself (Hurrel, 1995). Therefore, all monthly and 

seasonal time series of the indices and the estimated temperature and precipitation were 
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smoothed with a running 21-year averaging window over their common period of 1900-2012 

and correlated on the interdecadal time scale (Figure 3.13). 

Table 3.8: Correlation coefficients between the NAO, AO, and NINO3.4 indices and the estimated 
summer temperature and precipitation for the periods of 1960-2012 

No Atmospheric 

indices 

Interannual correlation 

June-July temperature June-December precipitation 

1 

 

NAO pOct  - -0.33* 

pDec -0.32* - 

2 AO pOct  -0.29*  - 

pDec -0.34*  0.25+ 

cJan  -0.29*  - 

3 NINO3.4 pApr -0.29* - 

  pMay -0.26+ - 

           p: previous year; *p<0.05; + p<0.1  

On the interdecadal time scale, winter AO and spring NAO strongly correlated to summer 

temperature (Figure 3.13). The filtered estimated June-July temperature negatively 

correlated with NAO (-0.30 < r <-0.53) and AO (-0.57 < r <-0.72) from prior November 

throughout March, whereas positively correlated with April NAO (r=0.69) and April AO 

(r=0.49) (Figure 3.13ab). Moreover, the estimated temperature negatively correlated with 

autumn through winter NINO3.4 from prior August to January (-0.24 < r <-0.51) at a 0.001 

level (Figure 3.13c). 

Furthermore, the filtered estimated June through December precipitation negatively 

correlated with July NAO (r=-0.65) was strong. It was also positively correlated with the 

February-April NAO (0.28 < r <0.44) and prior December through March AO (0.23 < r <0.41) 

at 0.001 in Figure 3.13ab. Also, the estimated precipitation positively correlated with summer 

NINO3.4 (0.23 < r <0.32) at 0.001 (Figure 3.13c).  

According to our findings, cool and wet summers over the Altai-Dzungarian region 

significantly correlated with positive winter NAO and AO indices for the period 1960-2012 on 

the interannual time scale; however, on longer and interdecadal time scales, those summers 

were more strongly correlated with spring and summer NAO indices than winter NAO indices. 

This difference might be related to the impact of changes in the oceans’ heat storage and 

transport on climate (Hurrel, 1995; Visbeck et al., 2002) since large-scale horizontal and 

overturning ocean circulation takes several years to respond to large-scale changes in 

atmospheric forcing (Visbeck et al., 2002).  
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Figure 3.13: Monthly correlation coefficients of the 21-year smoothed estimated June-July 
temperature and June through December precipitation sum with atmospheric indices: NAO (a); AO 
(b) and NINO3.4 (c) from 1900 to 2012. The estimated temperature and precipitation are illustrated 
by a black line with markers, and grey columns respectively. Dashed lines show 95% confidence 
levels. 

Early researchers investigated the most prominent NAO and AO patterns in winter rather 

than in other seasons (Portis et al., 2001; Hurrel, 1995; Gong and Ho, 2003; Osborn, 2006). 

Numerous studies proposed a remote and delayed influence of the winter NAO on climate 

over East Asia through its effect on the Asian jet or wave train patterns originating from the 

North Atlantic; however, any straightforward mechanism that allows a lag of several months 

for the North Atlantic or the Arctic signal to reach East Asia has not been suggested yet 

(Linderholm et al., 2011). A signal of the maximum positive or negative summer NAO event 

reaches east China in one week (Linderholm et al., 2011).  

a. 

b. 

c. 
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We found a direct connection between negative summer July NAO and warm and wet 

summers in the Altai-Dzungarian region. Some studies found the same strong negative 

correlations between a negative summer (July-September) NAO and warmer summer air 

temperatures over China and East Asia between 1979 and 2003 (Sun et al, 2008; Yuan and 

Sun, 2009).  

Several studies demonstrated strong links between summer NAO (July-August) and summer 

climate (July-August) over northern Europe, and East Asia (Folland et al., 2009; Linderholm 

et al., 2011; Linderholm et al., 2013). They showed that variation of the summer NAO (SNAO) 

is associated with changes in the North Atlantic storm track. Negative (positive) SNAO is 

related to its southward (northward) movement over northwest Europe and East Asia. Thus, 

negative summer NAO brings warm and dry conditions over northwest Europe, northwest 

and central Mongolia, and northeast China but cooler and wetter conditions over southern 

Europe, the Mediterranean, and northwest China (Folland et al., 2009; Linderholm et al., 

2011). More than half area of the Altai-Dzungarian region is in northwest China. Thus, their 

findings support our result that negative July SNAO induces wetter conditions over the Altai-

Dzungarian region on the interdecadal scale.  

In this study, winter AO shows high variations and significant correlations with the estimated 

summer temperature and precipitation on interannual and interdecadal time scales. Positive 

winter AO brings cool and wet summer conditions over the Altai-Dzungarian region. In a 

review of impacts of AO on the East Asian climate, He et al. (2017) accepts this inter-

seasonal connection between preceding winter AO and summer precipitation over East Asia 

in addition to the impacts of AO on simultaneous winter East Asian climate through influences 

on the Siberian high, westerly winds, blocking frequency and Rossby waves. Winter AO 

impacts the East Asian summer climate via changes in soil moisture and sea surface 

temperature changes in the North Atlantic, the Indian, and North Pacific Oceans. The 

impacts then persists into the following summer (He et al., 2017).  

Summer AO generally plays a vital role in anomalous summer weather in mid-latitudes of 

the Northern Hemisphere (Ogi et al., 2004). Summer AO has been found to be negatively 

correlated with the West Asian subtropical westerly jet position (WASWJ) and enhances 

westerlies over northwestern China (Linderholm at al., 2011; Zhao et al., 2014; Zhang and 

Zhou, 2015). However, in our study, the impact of summer July AO on regional precipitation 

over the Altai-Dzungarian region, while significant, is lower than the impact of winter AO. 

This could be explained by the smaller meridional scale of summer AO than winter AO due 

to the poleward shift of AO in summer.  
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The Altai-Dzungarian region in northern Xinjiang is located in a mid-latitude inland arid 

region, thus its rainfall variation depends on water vapor supply, modulated by the West 

Asian subtropical westerly jet, whereas in East Asia, the summer monsoon supplies sufficient 

water vapor and cold air from high latitudes participates in rainfall generation (Zhao et al., 

2014). When WASWJ is located further south, anomalous southerlies prevail over Xinjiang, 

and southwest warm and moist air penetrates from low latitudes into the Xinjiang region 

(Zhao et al., 2014).  

Numerous studies have also demonstrated that the Altai-Dzungarian region is influenced by 

southwesterly monsoonal airflow from the Mediterranean Sea, Black Sea, Caspian Sea, and 

Aral Sea (Iwao and Takahashi, 2006; Zhao et al., 2014; Zhang et al., 2018) in addition to 

midlatitude westerly and northwesterly airflow from the Atlantic Ocean during summer (Iwao 

and Takahashi, 2006; Bohner, 2006; Chen et al., 2015; Zhang et al., 2018).  

In this study, we found that positive preceding autumn - early winter NINO3.4 induced cool 

summer temperatures and positive summer NINO3.4 led to high precipitation over the Altai-

Dzungarian region on the interdecadal time scale. Similar cold and wet conditions in Xinjiang 

and the Dzungarian region were revealed during the El Nino years in research by Zhang and 

Zhou (2015). Also, Mariotti (2007) found that during warm ENSO events, strong 

southwesterly moisture flux reaches southwest central Asia, including Pamir and Tian Shan 

Mountain ranges next to the Altai-Dzungarian region, and across the Arabian Peninsula and 

tropical Africa over the period 1979-2000. 

Winter ENSO can affect temperature and precipitation across middle latitudes by modifying 

the jet streams (Lindsey, 2016). The significant delayed impact of winter (December-

February) NINO3.4 on summer (June-August) rainfall over north Xinjiang was found by Lu 

et al. (2019), who proposed that the ENSO-induced tropical Indian Ocean Sea surface 

temperature anomaly persists into the following spring and summer since the warm and wet 

air from the tropical Indian Ocean is transported into central Asia and converges with the 

cold air over north Xinjiang associated with the southward shift of subtropical westerly jet. 

However, this delayed impact of winter NINO3.4 on temperature and precipitation in our 

study area was observed in teleconnections on the interannual scale but not on the 

interdecadal scale. Thus, we checked teleconnections of the NAO, AO, and NINO3 indices 

with the estimated temperature and precipitation for the Altai-Dzungarian region with 25-year 

centered moving correlations. 
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3.2.3 Changes in teleconnection of NAO, AO, and NINO3.4 indices to the 

estimated temperature and precipitation 

The 25-year centered moving correlations showed that our determined teleconnections were 

unstable on a long-time scale (Figure 3.14). These unstable connections were also found in 

teleconnections between summer NAO and middle East Asian air temperature (Sun et al., 

2008; Yuan and Sun, 2009), spring NAO and East Asian Summer Monsoon (EASM) (Zuo et 

al., 2012), Spring AO and EASM (Gao et al., 2014; Chen et al., 2015), and NINO3.4 and 

drought in northwestern China (Yao et al., 2019). 

 

 

Figure 3.14. 25-year centered moving correlation coefficients between the estimated temperature and 
mean April-May NAO index (light grey), mean November through March AO (black) and mean April 
through June NINO3.4 index (grey) (a); and between the estimated precipitation and July NAO index 
(light grey), mean February-March AO (black) and July NINO3.4 index (grey) (b). Dashed lines show 
95% confidence levels, computed by Fisher’s z transform. 

 

In Figure 3.14a, the running correlations between the April-May NAO and the estimated 

temperature showed a gradual change from significant negative correlations in the 1840s to 

low correlations close to zero, followed by positive and high correlations between 1880 and 

1900 and afterward persistent negative low and high correlations till 1963. Later on, weak 

positive and very low negative correlation periods altered till the 1990s, and significant 

positive correlations occurred in the mid of 1990s. Mean November-March AO and the 

estimated temperature was correlated negatively between 1910 and 1950 but positively over 

b. 
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the period 1950-1970. The negative correlation strengthened from 1975 to 2000. The 

correlations between the mean April through June NINO 3.4 index and the estimated 

temperature were generally positive with different strengths till 1950, followed by significant 

negative correlations in the 1950s and weak positive correlations in the 1960s. After that, the 

correlation changed to negative and strengthened towards 2000. 

In Figure 3.14b, the correlation of the estimated precipitation with July NAO was negative 

from the 1830s to 1860 and shifted to positive over the period the 1860s-1980s, followed by 

gradually strengthening negative correlations for the period 1900-1930. After low correlations 

close to zero in the 1930s-1940s and 1988-1995, persistent positive correlations were 

observed during 1948-1987 and 1996-2000, respectively. The negative correlations between 

the February-March AO and the estimated precipitation were observed in the 1910s-1920s 

and the 1940s-1960, altered by positive correlations in the 1930s, 1960s, and 1977-2000. 

The positive correlation between the July NINO3.4 and the estimated precipitation persisted 

relatively stable over the period 1875-1925 and gradually strengthened from the early 1900s 

to the 1920s. Despite low correlation in the early 1950s, moderate negative correlations 

occurred over the period 1925-1980, followed by very low positive correlation since the mid 

of 1990s. 

 

During the recent cold period between 1976 and 1998, the estimated summer temperature 

correlated positively with negative April-May NAO, whereas it correlated negatively with 

positive November-March AO and April-June NINO3.4 (Figure 3.14a). During the wet period 

of 1987-2005, the June-December precipitation correlated positively with positive mean 

February-March AO and July NINO3.4 index. Interestingly, the negative correlation of the 

estimated precipitation with positive July NAO shifted to a positive correlation with negative 

July NAO in 1996 (Figure 3.14b). In the late 1970s, teleconnections of summer (July-

September) NAO with middle East Asian air temperature and Northern Hemisphere land 

surface air temperature changed in sign from positive to negative and got stronger related to 

the shift of summer NAO mode from more westward in the period of 1951-1975 to more 

eastward from 1979 to 2003 (Sun et al., 2008; Yuan and Sun, 2009).  

Also, the NINO3.4-drought connection in Xinjiang (northwestern China) significantly 

strengthened in 1997. Thus, the frequency of the drought increased in southern Xinjiang, 

whereas a wetting trend was detected in northwestern Xinjiang from 1997 to 2012, which 

could be associated with negative NINO3.4 with a delayed effect by 12 months and the 

transition of Atlantic Multidecadal Oscillation from negative into positive phase. These 

significant inflection points of the teleconnections in the 1970s and late 1990s coincided with 

the beginning and end of the recent cool-wet period in our study (Figure 3.11). Also, some 

studies suggested that a warming of sea surface temperatures over the North Atlantic and 
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the Indo-West Pacific Ocean led to changes in the position of westerly winds and increased 

their strength over the Altai-Dzungarian basin, bringing more rainfall over central Asia during 

the 1980s (Chen et al., 2014). 

Overall, positive winter NAO and AO indices significantly correlated with both observed and 

estimated cool and wet summers over the Altai-Dzungarian region for the period 1960-2012 

on the interannual time scale; however, those estimated summer temperature and 

precipitation correlated with spring and summer NAO indices stronger than winter NAO on 

the interdecadal time scale. Also, sign and strength of our determined interannual 

teleconnections were unstable on a long-time scale. 
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3.3 Hydrological impact of climate change in the southern Altai 

Mountains for 1984-2015  

The Altai Mountains’ climate stations are sparse and all located in the valley as illustrated in 

Figure 3.15; thus, rain gauge observations might suffer from undercatch depending on slope 

direction, wind, and evaporation (Duethmann et al., 2013). Therefore, we used the 

interpolated APHRODITE dataset (0.25ºx0.25º) in our climate impact study as an alternative 

dataset in addition to the station data since the APHRODITE has been shown to provide 

good estimates of temperature and precipitation amounts over high mountains, including the 

Himalayas (Ji et al., 2020) and Tianshan Mountains (Shen et al., 2018).  

Although the APHRODITE dataset involved daily station data, the biases might come from 

the quality control and interpolation approach in mountain ranges (Yatagai et al., 2012; 

Yasutomi et al., 2011). We thus evaluated the climate data of the corresponding grid cells to 

Duchinjil and Baitag stations without height adjustment to keep the initial condition of the grid 

cell data in the analysis of linear trends in climate change. Later, the elevation difference of 

grid cells and stations is adjusted to the mean elevation of the Bulgan catchment; moreover, 

climate data is corrected with the lapse rate and evaluated before the hydrological simulation 

in Chapter 3.4.  

 
Figure 3.15: Locations of climate stations and the interpolated APHRODITE dataset grid cells 
(0.25ºx0.25º) overlayed the Bulgan catchment. The red stars indicate the location of the official climate 
stations close to and in the catchment. Black plus signs show the grid cell centers of APHRODITE. 

The grid cell and station dataset and measured river discharges in the southern Altai 

Mountains have different timespans; thus, observed climate change and its hydrological 

impact were assessed for their overlapping period of 1984-2015 (Figure 3.16). 
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3.3.1 Evaluation of the APHRODITE dataset for the southern Altai Mountains 

The APHRODITE dataset has the similar annual and seasonal variations to the observation 

at two stations (Figure 3.16-3.17); however, the APHRODITE underestimates observed 

precipitation at Duchinjil station in a mountain valley with high Pearson’s correlations (r=0.96, 

p<0.01) but overestimates precipitation at Baitag station in a desert area (r=0.86, p<0.01) 

(Figure 3.18; Table 3.9-3.10). Besides, the numbers of rainy days at Duchinjil (66 days) and 

Baitag stations (38 days) are overestimated by the grid cells of APHRODITE as 169 and 173 

days on average, respectively.   

 

 
Figure 3.16: Long-term variability of annual mean temperature (ºC, solid lines), annual precipitation 
sum (mm, bars), and annual mean discharge (m3/s, dotted lines) at Duchinjil, 1951m (a); and Baitag 
stations, 1186m (b). The station-based annual precipitation sums and the corresponding grid 
estimates of APHRODITE are shown by white and grey column bars, respectively. The temperatures 
of stations and the corresponding grid estimates of APHRODITE are illustrated by solid black and 
grey lines, respectively. The height of the grid cells corresponding to Duchjinjil and Baitag stations are 
2390m and 1404m, respectively.   

 

 

  
Figure 3.17: Monthly precipitation sum and mean temperature of the corresponding grid cells and 
Duchinjil (a) and Baitag (b) stations. The monthly precipitation sums of the stations and the grid cells 
are shown by white and grey column bars, respectively. The monthly temperatures of the stations and 
the grid cells are illustrated by solid black and grey lines with circles, respectively. 

  

b. 

a. 

a. b. 
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Extreme precipitation was underestimated at Baitag station; thus, summer precipitation had 

the largest difference in root mean square error (RMSE) and the lowest Pearson’s correlation 

(r=0.77, p<0.01). Monthly temperatures at the grid cells significantly correlated with the 

monthly temperatures at both stations (r=0.99) at 0.01 (Table 3.11-3.12; Figure 3.18). 

However, the grid temperatures showed minus biases and were colder than monthly 

temperatures at the stations, except for positive bias in winter at Baitag. 

  

  
Figure 3.18: Relationships between monthly precipitation sum (P) and mean temperatures (T) of 
APHRO1 (2390m) and APHRO2 (1404m) grid cells and monthly observations at Duchinjil (a, c) and 
Baitag (b, d) stations from 1984 to 2015. 

 

Table 3.9: Evaluation statistics of the annual and seasonal precipitation sums of grid cell APHRO1 

corresponding to Duchinjil station from 1984 to 2015 on the monthly time scale 

 Precipitation sum  Monthly  

Periods Observation 
1951m 

APHRO1 
2390m 

Mean bias RMSE Corr (r) 

Annual 136.0mm 132.0mm -0.4mm 3.8mm 0.96 

Winter 9.6mm 11.4mm  0.6mm 1.6mm 0.91 

Spring 23.2mm 21.9mm -0.4mm 2.7mm 0.94 

Summer 75.1mm 72.6mm -0.8mm 5.1mm 0.95 

Autumn 28.1mm 25.7mm -0.3mm 2.8mm 0.95 

Table 3.10: Evaluation statistics of the annual and seasonal precipitation sums of grid cell APHRO2 

corresponding to Baitag station from 1984 to 2015 on the monthly time scale  

 Precipitation sum  Monthly  

Periods Observation 
1186m  

APHRO2 
1404m 

Mean bias RMSE Corr (r) 

Annual 84.0mm 95.0mm 0.9mm 5.1mm 0.86 

Winter 12.0mm 12.4mm 0.1mm 1.4mm 0.96 

Spring 14.2mm 16.5mm 0.8mm 2.8mm 0.93 

Summer 40.0mm 45.5mm 1.8mm 9.5mm 0.77 

Autumn 17.7mm 20.1mm 0.8mm 2.3mm 0.96 

a. b. 

c. d. 

r=0.86 

r=0.99 r=0.99 

r=0.96 
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Table 3.11: Evaluation statistics of the annual and seasonal temperatures of grid cell APHRO1 

corresponding to Duchinjil station from 1984 to 2015 on the monthly time scale  

 Temperature  Monthly  

Periods Observation 
1951m 

APHRO1 
2390m 

Mean bias RMSE Corr (r) 

Annual -1.5°C -1.9°C -0.5°C  +1.0°C 0.99 

Winter -19.6°C -19.6°C -0.1°C +1.1°C 0.95 

Spring +0.3°C -0.2°C -0.5°C +0.9°C 0.99 

Summer +14.6°C +13.7°C -0.9°C +0.9°C 0.99 

Autumn -1.1°C -1.7°C -0.6°C +0.9°C 0.99 

 

Table 3.12: Evaluation statistics of the annual and seasonal temperatures of grid cell APHRO2 

corresponding to Baitag station from 1984 to 2015 on the monthly time scale  

 Temperature  Monthly  

Periods Observation 
1186m 

APHRO2 
1404m 

Mean bias RMSE Corr (r) 

Annual +2.9°C +2.7°C -0.2°C +0.7°C 0.99 

Winter -17.8°C -17.5°C +0.3°C +1.0°C 0.98 

Spring +5.8°C +5.5°C -0.3°C +0.7°C 0.99 

Summer +20.2°C +19.7°C -0.5°C +0.5°C 0.99 

Autumn +3.4°C +3.2°C -0.4°C +0.5°C 0.99 

 

Among the precipitation products, the APHRODITE captures the spatial distribution and 

seasonal patterns of precipitation in the semi-arid Tianshan Mountains well although it 

underestimates precipitation (Shen et al., 2018). Moreover, the APRHODITE precipitation 

underestimates the amount of rainfall but overestimates the number of rainy days for the 

Tibetan Plateau (Ji et al., 2020).  

Overall, the APHRODITE underestimates temperature and precipitation amount but 

overestimates the number of rainy days for the southern Altai Mountains as reported in the 

other mountainous regions.   

 

3.3.2 Linear trends in temperature and precipitation changes for 1984-2015 

The direction of the trendline and the degree of its slope in annual and seasonal temperature 

and precipitation of Duchinjil and Baitag stations and the corresponding grid cells varied in 

the long and short-time periods since a trend in the record is sensitive to the beginning and 

end dates. Generally, all seasonal temperatures of the stations and the grid cells slightly 

increased over their observation periods, 1977-2017 and 1961-2015, but moderately 

increased from 1984 to 2015 (Tables 3.13-3.14). Annual precipitation increased at both 

stations by 18%~31% (24mm) on average since the 1960s but decreased by 15%~24% 

(20mm) from 1984 to 2015.  

During 1984-2015, spring (MAM), summer (JJA), autumn (SON), and annual mean 

temperatures at Duchinjil station in the mountainous area significantly increased by 2.7°C, 

2.1°C, 1.8°C, and 2.1°C at 0.01 level, respectively (Table 3.13; Figure 3.19). Moreover, 
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spring, summer, and annual temperatures of Baitag station in the desert area significantly 

increased by 2.4°C (p<0.05), 1.8°C (p<0.001), and 1.4°C (p<0.1), respectively; but autumn 

temperature warmed by 1.2°C insignificantly (Table 3.14; Figure 3.20). Winter temperature 

insignificantly increased by 1.8°C at Duchinjil, but decreased by 0.3°C at Baitag from 1984 

to 2015.  

Between 1984 and 2015, no significant changes were detected in the seasonal and annual 

precipitation sums at both locations except for autumn precipitation (Figures 3.21-3.22). The 

autumn precipitation significantly decreased by 46% (-13mm) at Duchinjil in the mountain 

valley and 89% (-16mm) at Baitag in the desert area. Winter precipitation insignificantly 

increased by 21% (+2mm) at Duchinjil and 25% (+3mm) Baitag. Summer precipitation 

declined by 10% (-8mm) at Duchinjil but slightly increased by 4% (+2mm) at Baitag station. 

In contrast, spring precipitation increased by 12% (+3mm) at Duchinjil but decreased by 46% 

(-7mm) at Baitag. 

Table 3.13: Observed trends (Sen’s slope) in seasonal and annual temperatures and precipitation 

sums at Duchinjil station and its corresponding grid cell in the different periods.  

 Period 

Duchinjil station APHRO1 grid 

1977-2017 1984-2015 1961-2015 1951-2015 1984-2015 

T P T P T P T P 

°C/ 

decade 

mm/ 

decade 

°C/ 

decade 

mm/ 

decade 

°C/ 

decade 

mm/ 

decade 

°C/ 

decade 

mm/ 

decade 

Annual  +0.3+ +6.3 +0.7** -6.5 +0.4*** +0.8 +0.6** -8.5 

DJF +0.0 +1.8* +0.6 +0.7 +0.5** -1.4* +0.0 +1.3 

MAM +0.4* +1.4 +0.9** +0.9 +0.3* -0.7 +0.8** +0.5 

JJA +0.5*** +2.7 +0.7*** -2.6 +0.4*** +3.2* +0.7*** -2.4 

SON +0.3 -0.5 +0.6* -4.5+ +0.5 *** -1.0+ +0.7* -4.3** 

+  p=0.1    * p=0.05    ** p=0.01   *** p=0.001 

                              

Table 3.14: Observed trends (Sen’s slope) in seasonal and annual precipitation sums, and 
temperature at Baitag station and its corresponding grid cell of APHRODITE in the different periods. 

 Period 

Baitag station APHRO2 grid 

1963-2017 1984-2015 1961-2015 1951-2015 1984-2015 

T P T P T P T P 

°C/ 

decade 

mm/ 

decade 

°C/ 

decade 

mm/ 

decade 

°C/  

decade 

mm/ 

decade 

°C/ 

decade 

mm/ 

decade 

Annual  +0.4*** +4.4+ +0.4+ -6.8 +0.4*** -2.5 +0.4* -1.1 

DJF +0.2 +0.8 -0.1 +1.0 +0.4+ -1.2* +0.2 +0.1 

MAM +0.4** +0.7 +0.8* -2.2 +0.3** -1.3+ +0.8** -0.9 

JJA +0.3*** +2.6+ +0.6*** +0.6 +0.4*** +0.7 +0.6*** +1.5 

SON +0.5** -0.2 +0.4 -5.3* +0.6*** -1.4* +0.4 -4.0+ 

+  p=0.1    * p=0.05    ** p=0.01   *** p=0.001                                                 
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Figure 3.19: Linear trends (non-parametric Sen’s slope) in annual and seasonal temperatures of 
Duchinjil station (1951m a.s.l) and the corresponding APHRO1 grid cell (2390m a.s.l) from 1984 to 
2015. Dashed lines show 95% confidence levels.   

 

   

  

Figure 3.20: Linear trends (non-parametric Sen’s slope) in annual and seasonal temperatures of 
Baitag station (1186m a.s.l) and the corresponding APHRO2 grid cell (1404m a.s.l) for 1984-2015.  
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Figure 3.21: Linear trends (non-parametric Sen’s slope) in annual and seasonal precipitation of 
Duchinjil station (1951m a.s.l) and the corresponding APHRO1 grid cell (2390m a.s.l) from 1984 to 
2015. Dashed lines show 95% confidence levels. 

   

   

  
Figure 3.22. Linear trends (non-parametric Sen’s slope) in annual and seasonal precipitation sums of 
Baitag station (1186m a.s.l) and the corresponding APHRO2 grid cell (1404 m a.s.l) from 1984 to 
2015. Dashed lines show 95% confidence levels 

 

Taken together, in the southern Altai Mountains air temperature significantly increased by 

+2°C on average but annual precipitation insignificantly decreased by 15%~24% over the 

period 1984-2015. Seasonally, precipitation significantly decreased in autumn but increased 

in winter. The APHRODITE grids showed the same direction of trends but slightly different 

degree of slopes from station data. 
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3.3.3 Seasonal and annual evapotranspiration changes 

3.3.3.1 Evaluation of temperature-based evapotranspiration methods for semi-arid 

area  

Since the gridded APHRODITE dataset has only daily mean air temperature, affordable and 

appropriate temperature-based reference evapotranspiration methods are explored for the 

southern Altai Mountains. Based on the reference evapotranspiration estimation over China 

by Peng et al. (2017), the empirical temperature-based 1975 Hargreaves equation (H), 

Hargreaves-Samani (HS), and modified Hargreaves-Samani (MHS) methods were 

evaluated by comparing with a reference evapotranspiration calculated at Duchinjil and 

Baitag stations using the Penman-Monteith (PM) method (Table 3.15-3.16; Figure 3.23).  

Among those empirical methods, the 1975 Hargreave equation results in the lowest Mean 

Absolute Error (MAE) and the best performance of the Nash-Sutcliffe efficiency coefficient 

(Reff) on the daily time scale (Table 3.16).  

Table 3.15: Annual and seasonal ET0 estimates of Penman-Monteith and temperature-based ET 
methods 

Seasons 
Duchinjil ET0 (mean±stdev), mm Baitag ET0 (mean±stdev), mm 

PM H HS MHS PM H HS MHS 

Annual 757±42 691±41 432±32 379±28 825±73 845±43 568±34 499±42 

Winter 20±3.7 6.2±3.1 3.6±1.9 3.2±1.7 25.4±8.7 11±5.6 7±3.8 6.1±3.4 

Spring 227±20 194±24 121±17.3 106±15 269±34 251±27 168±21 148±18 

Summer 390±21 372±19 232±15.5 203±14 419±31 436±20 291±15.4 256±14 

Autumn 120±11 119±10.6 77.2±8.7 67±7.7 112±15.3 147±21 101±11 89 ±9.5 

 

 

Table 3.16: The evaluation statistics of the daily ET estimates by temperature-based ET methods with 
the reference ET0 using Penman-Monteith 

No ET methods  Duchinjil      Baitag     

Mean Std Reff MAE Mean Std Reff MAE 

1 FAO Penman-Monteith (PM)  2.07 1.76     2.24 1.94     
2 1985 Hargreave-Samani (HS) 1.18 1.17 0.78 0.90 1.55 1.45 0.87 0.74 
3 Modified Hargreave-Samani (MHS) 1.04 1.03 0.71 1.04 1.37 1.28 0.81 0.90 
4 1975 Hargreave (H) 1.89 1.78 0.97 0.33 2.31 2.07 0.95 0.48 

Related to the seasonal distribution of solar radiation and air temperature, a high ET0 occurs 

from May to August, while a low ET0 occurs in December and January. The 1975 Hargreaves 

equation underestimated ET0 sums for a year and winter through summer months at Duchinjil 

station but overestimated ET0 sums for a year and summer through autumn months at Baitag 

station (Figure 3.23).  
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Figure 3.23. Annual and monthly ET0 sums estimated by Penman Monteith (PM as a reference 
evapotranspiration), 1975 Hargreave (H), 1985 Hargreave-Samani (HS), and Modified Hargreave-
Samani (MHS) at Duchinjil (a, c) and at Baitag (b, d) stations over the period of 1984-2015 are shown 
in black line (PM), black dotted line (H), grey line (HS) and grey dotted line (MHS), respectively. 

1975 Hargreave equation is applied to estimate daily ET0 for the stations and the 

corresponding APHRODITE grid cells to reveal observed changes in evapotranspiration over 

the southern Altai Mountains from 1984 to 2015.  

 

3.3.3.2 Linear trends in seasonal and annual evapotranspiration sums  

The annual and seasonal ET0 of stations and the corresponding grid cells illustrated 

increasing trends over time (Figure 3.24-3.25).  

   

  
Figure 3.24: Linear trends in annual and seasonal evapotranspiration sums observed at Duchinjil 
station (1950m a.s.l) and the corresponding grid cell from 1984 to 2015. Dashed lines show 95% 
confidence levels.   

a. b. 

c. d. 
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Figure 3.25. Linear trends in annual and seasonal evapotranspiration sum (ET0) observed at Baitag 
station (1186m a.s.l) and the corresponding grid cell from 1984 to 2015. Dashed lines show 95% 
confidence levels.    

Summer ET0 in the Altai Mountains moderately increased and reached peak values in mid 

of the 2000s, which coincided with drought years from 2000 to 2002 and 2007 in Mongolia 

(Nandintsetseg and Shinoda, 2013), then declined. At Baitag station, the minimum spring 

and annual ET0 sums were recorded in the abnormally heavy snowy and extremely cold 

winter of 2009-2010 (Figure 3.25). That might be related to unusual frost days in the southern 

Altai Mountains from December 2009 to March 2010 (Middleton et al., 2014). Moreover, the 

snow was deeper (>33cm) with a greater extent in the desert area than that in the high 

mountains from January to March of 2010; furthermore, snow cover stayed until the end of 

April 2010 since many days of April had lower temperatures than zero (Middleton et al., 

2014). 

Between 1984 and 2015, annual ET0 increased significantly by 9% (60 mm) in the southern 

Altai Mountains at 0.05 (Table 3.17). Seasonally, ET0 rose significantly by 10% in spring and 

by 6% in summer on average. In particular, ET0 of March, April, and July increased at 

Duchinjil by 34%, 17%, and 9%, respectively. Winter ET0 rose by 20% at Duchinjil and 8% at 

Baitag. Although autumn ET0 increased insignificantly, November ET0 significantly increased 

by 12% at Duchinjil station and APHRO1 grid cell.   

Table 3.17: Observed trends (Sen’s slope) in monthly, seasonal, and annual evapotranspiration at 

Duchinjil and Baitag stations and their corresponding grid cells of APHRODITE from 1984 to 2015.  

Period  
Duchinjil APHRO1  Baitag APHRO2 

ET0, mm/ decade ET0, mm/ decade ET0, mm/ decade ET0, mm/ decade 

Annual  +20.4* +21.3* +20.6* +20.8+ 

Winter (DJF) +1.2+ +1.2* +0.9 +1.5 

Spring (MAM) +8.9* +8.4* +8.7* +8.3* 

Summer (JJA) +8.5* +7.6* +7.8* +6.5+ 

Autumn (SON) +2.0 +2.2 +1.5 +1.2 

+  p=0.1    * p=0.05    ** p=0.01                
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Briefly, among three temperature-based equations, the 1975 Hargreaves equation was 

found as a viable alternative to the Penman-Monteith method to estimate ET0 over the semi-

arid Altai-Dzungarian region. Seasonal and annual ET0 sums increased over the southern 

Altai Mountains of Mongolia from 1984 to 2015. This result supports previous findings that 

the reference ET0 significantly increased over the whole territory of Mongolia (Yu et al., 2016) 

and in the semi-arid northwestern China or the Dzungarian region (Wei and Wang, 2013). 

These studies concluded that the upward trend of the reference ET0 is related to the 

continuous increase in air temperature since the 1970s.  

 

3.3.3.3 Important climate factors in intensification of evapotranspiration over the 

southern Altai Mountains 

To identify driving factors, we calculated reference evapotranspiration (ET0) at Duchijil and 

Baitag stations by the Penman-Monteith approach as a predictand and developed stepwise 

linear regression models on seasonal and annual scales. The maximum and minimum 

temperatures, precipitation, wind speed, relative humidity, and radiation are used as 

predictors in the models. Although maximum temperature, wind speed, relative humidity, and 

radiation explained 88% to 98% of the variations in the evapotranspiration over the southern 

Altai Mountains, wind speed and the maximum temperature more positively correlated with 

ET0 at both stations (Table 3.18).  

Table 3.18: Statistics of the stepwise linear regressions for seasonal and annual Penman-Monteith 
ET0 estimates at different altitudes (p<0.001) 

Duchinjil station in high mountains, 1951m   Baitag station in desert area, 1186m 

Periods R 
Exp. 
var 
(%) 

SE  Predictors 
Std 
Beta 

R 
Exp. 
var 
(%) 

SE  Predictors 
Std 
Beta 

Winter 0.94 88 1.3  Wind, m/s 0.70 0.94 88 3.0  Wind, m/s 0.80 

     Tmax, C̊ 0.65     Tmax, C̊ 0.28 

           Radiation 0.19 

Spring 0.98 95 4.3  Tmax, C̊ 0.62 0.99 97 5.6  Tmax, C̊ 0.36 

     RH, % -0.22     RH, % -0.32 

     Wind, m/s 0.29     Wind, m/s 0.33 

     Radiation 0.30     Radiation 0.26 

Summer 0.99 98 3.4  Wind, m/s 0.68 0.98 96 6.1  Wind, m/s 0.76 

 
    Tmax, C̊ 0.53     Tmax, C̊ 0.38 

     RH, % -0.18     RH, % -0.29 

 
    Radiation 0.33     Radiation 0.25 

Autumn 0.96 91  3.3  Wind, m/s 0.83 0.94 88 5.4  Wind, m/s 0.98 

     Tmax, C̊ 0.51     Tmax, C̊ 0.20 

     RH, % -0.25     Radiation 0.17 

Annual 0.95 90 13.7  Wind, m/s 0.61 0.95 91 23.4  Wind, m/s 0.67 

 
    Tmax, C̊ 0.54     Radiation 0.29 

     Radiation 0.30     RH, % -0.28 

 
    RH, % -0.19       

Unit of radiation - MJ/m2; R- Pearson’s correlation; Exp.var - Explained variance (R2, %); SE - Std. Error of the 
Estimate; p value – significance level; Std Beta - Standardized Beta shows impact of predictor; p<0.05 
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The impact of the temperature on ET0 seemed higher in the mountains than in the desert, 

whereas the effect of the wind speed on ET0 appeared high in the desert. Besides moderate 

warming between 1984 and 2015, the wind speed increased at Baitag station by 1.2m/s 

(p<0.001) in winter, 0.3m/s (p<0.1) in spring, and 0.3m/s (p<0.01) on an annual scale, but 

insignificantly rose by 0.1m/s in summer and autumn. In contrast, wind speed insignificantly 

decreased at Duchinjil station by 0.5m/s on average.  

Overall, an increase in wind speed and temperature might intensify the evapotranspiration 

over the semi-arid southern Altai mountains since increasing wind speed effects largely on 

the evapotranspiration by replacing water vapor over the evaporating surface with dry air 

(Allen et al., 1998). The dryness of the air and the amount of solar radiation leads to high 

ET0 demand (Allen et al., 1998). Our findings are consistent with previous studies (Huang et 

al., 2015; Yu et al., 2016). Huang et al. (2015) found that ET0 over China correlated positively 

with sunshine hours, maximum temperature, and wind speed but negatively with relative 

humidity during 1960-2013. Also, Yu et al. (2016) revealed positive correlations of air 

temperature, wind speed, and sunshine hours but negative correlations of relative humidity 

and precipitation with ET0 estimated using Penman-Monteith over Mongolia for the period 

1980-2006. The Yu et al. (2016) study also found that ET0 was also affected by land surface 

characteristics including vegetation and elevation. 

 

3.3.4 Annual and seasonal runoff changes in the Bulgan catchment  

Rivers of the Altai Mountains are temperature-dependent and fed by rain and snowmelt, ice 

and glacier melt; thus, they have low flows in the cold season and high flows in the warm 

season (Davaa, 2015).  

Based on runoff components, previous 

studies suggested four periods in 

hydrological regime of the rivers in the 

southern Altai Mountains (Davaa, 2015; 

Zhang et al., 2017). Therefore, we evaluated 

changes in hydrological regime of Bulgan 

River by estimating linear trends in runoff 

changes at the upstream and downstream 

gauge stations in the different runoff 

component-based periods since the runoff 

contributors were varied under climate 

change (Figure 3.26). 

Figure 3.26: Location of gauge stations along the Bulgan River. 
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3.3.4.1 Hydrological regime of Bulgan River  

The peak flow of the snowmelt period from April through June dominates in the natural 

regime of the Bulgan River; moreover, groundwater contribution in the downstream runoff is 

higher than the upstream runoff (Table 3.19).  

Table 3.19: The upstream and downstream runoff distributions (%) of the Bulgan River in different 

runoff component-based periods.  

Runoff component-based periods Upstream 
runoff, % 

Downstream 
runoff, % 

A. Snowmelt period of April-May-June (snowmelt 
60%, rainfall 40%) 

48 34 

B. Glacier melt and rainfall period of July-August 
(glacier 13%, rainfall 87%) 

31 27 

C. Mixed contribution period of September-October 
(groundwater 50%, rainfall 30%, snowmelt 20%) 

14 15 

D. Groundwater recharge period of November 
through next March (groundwater 100%) 

12 24 

Total 100 100 

 

High flow rates up to 10% but low flow rates above 70% of the exceedance probability 

(percent of time). Medium flow ranges between 10% and 70% (Eslamian, 2014; Figure 

3.27a). The slope of the FDC is steep for the highly varied upstream runoff due to more 

rainfall and snowmelt runoff contribution in the high mountains; however, the slope of the 

flow duration curve (FDC) is flat for the downstream discharge of Bulgan River as more 

groundwater sustains a low flow in cold season (Figure 3.27a). 

  

Figure 3.27: Flow duration curves of the upstream (grey line) and downstream (black line) discharges 

on a daily time scale (a). Year-to-year variation of the upstream and downstream discharges and their 

long-term means (grey and black dashed lines) throughout 1984-2015 (b) The vertical axis of the left 

figure is on a logarithmic scale to show all data on a single chart.  

 

As shown in Figure 3.27b, The Bulgan River has shown strong decadal fluctuations with a 

high flow from 1988 to 1995, followed by a persistent low flow from 1996 to 2009, then a high 

flow from 2010 to 2015 again. The coefficients of variation of the upstream and the 

downstream discharges are 34% and 29% over the period 1984-2015, respectively.  
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According to the year-to-year variations of the upstream and downstream discharges for 

1984-2015, the highest and the lowest values were observed as 12.4m3/s in 1988 and 

3.5m3/s in 2006 at the upstream Bulgan-Bulgan station (1937m a.s.l). Also, the highest value 

of 16m3/s and the lowest value of 4.8m3/s were recorded in 2010 and 2006 at the 

downstream Bulgan-Baitag station (1178m a.s.l). The long-term means of the upstream and 

the downstream discharges are 6.0±2.1m3/s and 9.5 ± 2.7m3/s, respectively.  

On daily time scales, at the upstream hydrological station, the maximum discharge of 

170m3/s was observed on 26-27 July 1994, whereas the minimum value of 0.14m3/s 

occurred in February-March 1992. At the downstream station, the peak discharge of 120m3/s 

was recorded on 3 June 1987, whereas the lowest value of 2.1m3/s occurred on 31 

December 2006. 

 
 

3.3.4.2 Changes in timing and amounts of the seasonal and annual runoffs 

We analyzed linear trends in runoff variations of the Bulgan catchment in different runoff 

component-based periods, identified by previous studies (Zhang et al., 2017; Davaa, 2015). 

From 1984 to 2015, runoff at the upstream Bulgan-Bulgan gauge significantly increased by 

87% (6mm) in the cold season from November to March but decreased by 57% (28.2mm) in 

the warm season from April to August, especially summer discharge declined by 60% 

(21.6mm). The runoff at the downstream Bulgan-Baitag gauge insignificantly decreased in 

all seasons, in particular the summer discharge declined by 32% (6mm) (Table 3.20; Figure 

3.28). 

Table 3.20: Linear trends in river runoff changes at the upstream Bulgan-Bulgan and the downstream 
Bulgan-Baitag gauges during seasonal and specified periods over the period 1984-2015.  

Seasons 

Bulgan-

Bulgan  

Bulgan-

Baitag  
Runoff component-based periods  

Bulgan-

Bulgan  

Bulgan-

Baitag  

mm 

decade 

mm 

decade 

mm 

decade 

mm 

decade 

Winter (DJF) +1.3*** -0.2 Snowmelt (AMJ) -4.8* -1.0 

Spring (MAM) -1.3 -0.2 Rainfall & glacier (JA) -4.4** -1.3 

Summer (JJA) -7.2* -2.0 Rain, snowmelt & groundwater (SO) -0.2 +0.1 

Autumn (SON) +0.3 +0.0 Groundwater/ Cold season (NDJFM) +2.0*** -0.1 

Annual  -7.3* -2.7 High flow/Warm season (AMJJA)  -9.4** -2.2 

+  p=0.1    * p=0.05    ** p=0.01   *** p=0.001   Significant trends are marked in Bold. 
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Figure 3.28: Linear trends (non-parametric Sen’s slope) in discharge changes annually and in runoff 
component-based periods from 1984 to 2015. The upstream discharge at Bulgan gauge and the 
downstream discharge at Baitag gauge are illustrated by grey squares and black circles, respectively. 
Dashed lines show 95% confidence levels of the trendlines. 

 

The flow duration curve (FDC) is sensitive to the vertical distribution of the soil moisture 

within the catchment but not to the timing of hydrologic events (Yilmaz et al., 2008). 

Therefore, we compared flow duration curves (FDC) of the upstream and downstream 

discharges in two different periods: glacier recession period from 1984 to 2000 and glacier 

stagnation period from 2001 to 2015 (see Chapter 2.1.4). During the stagnation period, the 

slope of the FDC of the upstream discharge altered from steep to flat as a result of a decrease 

in short period high flows and an increase in low flow. However, at the downstream discharge 

station, both high and low flows slightly reduced over the recent period of 2001 to 2015 

(Figure 3.29).  

 

  

Figure 3.29: Flow duration curves of daily discharges at the upstream (a) and the downstream gauges 
(b) in the periods 1984-2000 and 2001-2015. The vertical axis is on a logarithmic scale to show all 
data on a single chart. Separation of High, Medium and Low flows are highlighted by the vertical thick 
lines.  

a. b. 
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The steep slope of the FDC indicates a fast response of the catchment as a result of small 

soil storage capacity and a large amount of overland flow, whereas a flat slope is related to 

the slow and sustained response of groundwater flow (Yilmaz et al., 2008).  

The same significant increases in river discharge during the cold season were also reported 

in high-latitude permafrost regions (Liljedahl et al., 2017) and high mountain permafrost 

regions in the past decades (Wang et al., 2019, Wang et al., 2017). These studies suggested 

different reasons for this upward trend in winter discharge, including an increase in glacier-

derived aquifer recharge (Liljedahl et al., 2017), an increase in groundwater recharge to 

baseflow (Wang et al., 2019), and a delay in water recharge from summer rainfall due to 

expansion of the soil storage capacity as a result of permafrost degradation (Wang et al., 

2017). Also, Kong and Pang (2012) found that discharges in autumn and winter in 

northwestern China have increased since 1990 due to increased precipitation and 

groundwater contribution into the Urumqi River rather than glacier melt. Thus, like in other 

high mountain permafrost regions, the groundwater capacity of the Bulgan catchment might 

have enlarged and brought an increase in the low flow of the upstream discharge in recent 

decades. 

 
Furthermore, Wang (2019) determined an important role of the freezing temperature in 

controlling winter discharge by reducing the hydraulic conductivity and active water content 

of the aquifer in the cold region. In Canada, the Albany catchment conductivity decreased 

by half when air temperature accumulated to -172°C from winter start. Thus, climate warming 

in cold region significantly increases baseflow in winter through increasing hydraulic 

conductivity (Wang, 2019).  Wang (2019) also suggested that the change in baseflow might 

have influenced river ice formation and breakup. We found that from 1984 to 2010 ice break-

up of the Bulgan River started 17 days earlier (p<0.05) and freeze-up was delayed by 16 

days at the upstream gauge (Figure 3.30a). However, at the downstream gauge, the ice 

break-up was insignificantly delayed by 8 days and the freeze-up date was significantly 

delayed by 20 days at 0.01 (Figure 3.30b). 

  

  

Figure 3.30: Linear trends (non-parametric Sen’s slope) in river ice formation and breakup changes 
at the upstream Bulgan-Bulgan gauge (a) and the downstream Bulgan-Baitag gauge (b) 1984 to 2010 
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In addition, between 1984 and 2007, the maximum water temperature also increased by 

0.45°C per decade (p<0.01) at the upstream gauge and by 2.3°C (p<0.01) per decade at the 

downstream gauge. Similarly, monthly mean water temperatures increased at both gauges. 

Overall, the shortened cold season and increased groundwater recharge due to permafrost 

degradation might have led to increasing baseflow of the Bulgan River in winter like in other 

high mountain permafrost regions. 

 
 

3.3.5 Relationship between climate and seasonal runoff change 

Regarding observed changes in the seasonal runoff of the Bulgan River, the most influencing 

climate factors on Bulgan River were determined using Stepwise Linear Regression Models 

using seasonal temperatures and precipitation from January of the previous year to 

December of the current year as predictors.  

Interestingly, the upward trend in the upstream discharge during winter (DJF) was driven by 

July temperature (β=0.52), whereas the downward trend during the warm season (AMJJA) 

was triggered by November precipitation (β=0.59) and summer temperature (JJA, β=-0.35) 

of the previous year and August precipitation (β=-0.35) (Table 3.21). Furthermore, 40% of 

the variation in snowmelt runoff from April through June at the upstream area was explained 

by June temperature (β=-0.39) and November precipitation (β=0.38) of the previous year, 

whereas 58% of the variation in glacier melt fed runoff of July to August was explained by 

November precipitation (β=0.47) of the previous year and June through August temperature 

(β= -0.55) of the current year. 

At the downstream discharge, 54% of the variation in snowmelt runoff from April through 

June was explained by only precipitation sum from September of the previous year through 

February of the current year (β=0.74). 44% of the variation in glacier melt runoff of July to 

August was explained by a positive correlation with June through August precipitation sum 

(β=0.48) of the current year but a negative correlation with both precipitation (β=-0.46) and 

temperature (β=-0.32) for April of the current year. Furthermore, 41% of the variation in river 

flow from April through August was explained by accumulated snow from September of the 

previous year through February of the current year (β=0.64).  
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Table 3.21: Statistics of stepwise linear regression for seasonal and annual river discharges 

  Upstream discharge   Downstream discharge 

Periods R Exp. 
var 
(%) 

SE p 
value 

Predictors Std 
Beta 

R Exp. 
var 
(%) 

SE p value Predictors Std 
Beta 

Winter, DJF   0.52 27 1.6   0.003  pJuly_T    0.52    -      

Spring, MAM 0.56 31 4.8 0.006 pSept_P 0.36 0.83 69 2.4 <0.001 pSep_P 0.77    

     pNov_T -0.37     pDec_P 0.41 

           cMay_P -046 

Summer, JJA 0.74 55 13.1 <0.001 pNov_P 0.53 0.65 43 6.4 <0.001 pSONDJF_P 0.52      
cMay_T -0.45 

    
cJun_P 0.40 

Autumn, 
SON 

0.45 20  2.2 0.011 cJJA_P 0.45 0.57 33 2.1 0.004 pNov_P 0.55 

           pOct_T 0.38 

Snowmelt 
period, 
AMJ 

0.64 40 10.6 0.001 pNov_P 0.38 0.74 54 4.6 <0.001 pSONDJF_P 0.74 

    pJun_T   -0.39       

Rainfall and 
glacier melt 
period, 
JA 

0.76 58 5.6 <0.001 cJJA_T  -0.55 0.66 44 3.4 0.001 cJJA_P 0.48     
pNov_P 0.47 

   
 cApr_P -0.46 

  
 

      
   

 cApr_T -0.32 

SO 0.65 42 1.7 0.002 JJA_P 0.40 0.45 20 1.8 0.012 cMAM_T -0.45 

     Apr_P -0.32       

     Sept_P 0.31       

Groundwater/ 
Cold season, 
NDJFM 

0.49 24 2.7 0.005 pJuly_T    0.49 -      

            

High 
flow/Warm 
season, 
AMJJA 

0.78 61 13.1 <0.001 pNov_P 0.59 0.64 41 8 <0.001 pSONDJF_P 0.64 

    pJJA_T -0.35       

     cAug_P -0.35       

Water year  0.75 55 13.6 <0.001 pNov_P 0.76 0.58 33 10.1 0.001 pSONDJF_P 0.58 
    

cAug_P -0.46 
    

  

R- Pearson’s correlation; Explained variance (R2, %); SE - Std. Error of the Estimate; p value – significance level; 

Std Beta - Standardized Beta shows impact of predictor; p<0.05; c: current year; p: previous year; NA – Not 

available 

Taken together, snow accumulated from late autumn through winter and summer 

temperature are important factors in runoff variation. In other words, more accumulated snow 

and June rainfall generate more river flow, while little snowfall and high summer temperature 

cause prolonged low flow. These results also suggest that the warming of summer 

temperature by +2.1°C in the southern Altai Mountains increased winter discharge by 87% 

in the upstream area but the significant decrease in autumn precipitation of 46% reduced 

both annual upstream and downstream discharges by 34% and 20% from 1984 to 2015.   
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3.4 Hydrological modeling of Bulgan catchment 

Simulating the water balance of the Bulgan catchment by rainfall-runoff HBV-Light model, 

the hydrological impact of climate variability was quantified as the percentage change in 

annual discharge in response to a change in annual precipitation and potential 

evapotranspiration.   

The equation of the water balance for a catchment (Ma et al., 2008):    

                                                             P=ET+R +∆S 

where P is precipitation, ET is evapotranspiration, R is surface runoff measured as river 

discharge, and ∆S is the change in catchment water storage. 

 

3.4.1 Climate input data preparation  

Based on two hydrological stations along the Bulgan River, the catchment is divided into 

upper and lower subcatchments as a hydrological unit (Figure 3.31). The elevation of the 

Bulgan catchment ranges from 1185m to 4160m above sea level (a.s.l). The catchment area 

is divided into 15 elevation zones with 200m intervals. The elevation zone from 2300 to 2900 

dominates in the Bulgan catchment.  

 

Figure 3.31: Climate stations and grid points of the APHRODITE dataset (0.25ºx0.25º, 

http://www.chikyu.ac.jp/precip/) overlaying the Bulgan catchment (a). Elevation zones of the whole 

catchment (b). The red stars and black asterisks indicate the locations of the official climate stations 

in and closest to the catchment and the Bulgan-Bulgan and Bulgan-Baitag hydrological stations, 

respectively. The climate stations of the WATERCOPE project are set up at different heights and 

illustrated by green flags. 

a. b. 
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Regarding high elevations, the upper subcatchment in the mountains is colder and has 

higher precipitation than the lower subcatchment, which is in a transition area between the 

mountain and the desert. The lower subcatchment has higher evapotranspiration but lower 

runoff due to a larger catchment area than the upper catchment (Table 3.22). 

Table 3.22: Climate characteristics of the Bulgan catchment. 

 Catchment Elevation 

(m a.s.l) 

Annual 

Temperature, °C 

Annual precipitation, 

mm 

Annual potential 

evapotranspiration, mm 

Annual 

runoff, 

mm 

Mean Max Min Mean Max Min Mean Max Min Mean 

Upper 

subcatchment  

2787 -7.1 -5.4 -9.6 215 305 137 518 565 442 65 

Lower 

subcatchment 

2399 -4.7 -3.0 -7.1 167 282 97 570 617 496 40 

Whole 

catchment  

2552 -5.6 -3.9 -8.1 184 290 113 546 591 473 40 

For hydrological simulation, areal climate input data was estimated at the mean elevation of 

the catchment from meteorological stations and the corresponding 25 grid cells of the 

APHRODITE dataset on daily time scales using Thiessen polygon and annual lapse rates of 

temperature and precipitation. 

Based on four WATERCOPE project stations and two official climate stations in the Bulgan 

catchment, we found that the annual lapse rates of the air temperature, precipitation, and 

evapotranspiration in the southern Altai Mountains to be -0.67ºC, 7%, and -3% per 100m, 

respectively (Annex A). Annual lapse rates of the interpolated temperature, precipitation, and 

evapotranspiration of APHRODITE grid cells overlaying the Bulgan catchment are -0.42ºC, 

2.3%, and -2% per 100 m, respectively (Annex B). Despite of different lapse rates between 

the station and gridded climate input data, we applied the same height increments of 

temperature and precipitation in the catchment settings of HBV-Light 4.0 model, as -0.67ºC 

and 7% based on the climate station lapse rates.  

 

3.4.1.1 Bias correction of the measured precipitation at Tretyakov rain gauges  

Precipitation undercatch at gauge stations over Mongolia, especially in forest and steppe 

zones, was between 17 and 42% due to biases from wind-induced undercatch, wetting, and 

evaporation losses (Zhang et al., 2004). Therefore, we corrected the systematic biases of 

the measured precipitation at Duchinjil and Baitag gauges using the bias correction 

technique for the Tretyakov rain gauges. The total catch ratio for different precipitation types 

at both gauges was 92% on average (Table 3.23). 

Table 3.23: Estimated catch ratios (CR) for various precipitation types at gauges on the daily scale. 

 

 

Stations CRsnow 

(%) 

CRmixed 

(%) 

CRrain 

(%) 

CRtotal K=100/CR 

(%)  

Duchinjil 88 90 94 92 1.10 

Baitag 86 93 97 92 1.10 



 

 99 

Chapter 3. Results and Discussion 

At Duchinjil station, precipitation loss from wind, wetting, and evaporation was 32%, 30%, 

and 39% on average, respectively. Moreover, wind-induced bias ranged between 31% and 

59% during mixed and solid precipitation from November to April but between 25% and 28% 

from May to October. Also, wetting loss varied from 23% to 41% throughout the year. 

Evaporation loss is between 43% and 45% from May to October and 18% and 37% from 

November to April (Figure 3.32a). 

  

 

Figure 3.32: Monthly mean correction amounts for precipitation loss from wind, wetting, and 
evaporation, and monthly mean wind speed at Duchinjil (a) and Baitag stations (b) from 1984 to 2015. 

 

At Baitag station, precipitation loss from wind, wetting, and evaporation was 34%, 32%, and 

40% on average, respectively. Wind-induced bias varied between 36% and 61% during 

mixed and solid precipitation fall from October to February but between 7% and 28% during 

the warm period from March to September. Moreover, wetting bias was high between 31% 

and 37% during the warm period from March to July and low in the range of 20 and 29% 

during the cold period. Furthermore, evaporation bias was high at more than 50%, especially 

in the late spring and early summer months but low between 19% and 22% during cold 

months from November to February (Figure 3.32b). 

Overall, the wind-induced bias was higher than the wetting and evaporation bias in the 

measured precipitation at both gauges in the Bulgan catchment; moreover, the evaporation 

loss in the spring was very high to 58% at the Baitag gauge in the desert. After adjusting 

gauge precipitation measurements from 1984 to 2016, annual precipitation sums rose by 

23% and 21% at Duchinjil and Baitag, respectively. 

 

3.4.1.2 Bias correction of the gridded precipitation and temperature  

Recent studies preferred spatial representatives of bias correction to the limited information 

of gauge point data (Koutsouris et al., 2017; Ji et al., 2020). They applied bias correction to 

the catchment or different climate zone averages of the gridded precipitation and 

temperature, where each grid was weighted based on an areal coverage of the catchment 

or climate zone (Teutschbein and Seibert, 2012; Koutsouris et al., 2017; Ji et al., 2020).  

a. b. 
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Thus, we used Thiessen polygons to regionalize climate stations and grid cells data on the 

Bulgan catchment scale and calculated the areal mean precipitation and temperature at the 

mean elevations of the Bulgan catchment and subcatchments from stations and grids at 

different elevations by correcting with the corresponding lapse rates. 

The gridded APHRODITE dataset underestimated the precipitation amount and 

overestimated the number of rainy days for the Bulgan catchment on the daily and monthly 

time scales; however, it overestimated the areal mean temperature and evapotranspiration 

(Table 3.24 and Figure 3.33). These biases were corrected by Linear Scaling (LS) and 

Cumulative Distribution Function Matching (CDF) approaches. The upper subcatchment had 

larger mean biases and root mean square errors (RMSE) in the areal means of the gridded 

precipitation and temperature than the lower subcatchment. 

Table 3.24: Statistics of the areal original and adjusted APHRODITE datasets for the upper and lower 
subcatchments on the daily time scale  

Daily data 

Upper subcatchment 

Precipitation,  
mm 

Temperature, 
ºC 

Evapotranspiration, 
mm 

Mean 
bias 

RMSE Corr 
(r) 

Mean 
bias 

RMSE Corr 
(r) 

Mean 
bias 

RMSE Corr 
(r) 

APHRO -0.21 1.58 0.86 3.32 3.85 0.99 0.25 0.39 0.99 

APHRO_LS 0.0 1.30 0.87 0.0 1.68 0.99 0.0 0.10 0.99 

APHRO_CDF 0.0 1.17 0.89 0.0 1.68 0.99 0.0 0.09 0.99 

 Lower subcatchment  

APHRO -0.13 1.08 0.90 3.30 3.58 0.99 0.25 0.41 0.99 

APHRO_LS 0.0 0.87 0.90 0.0 1.05 0.99 0.0 0.18 0.99 

APHRO_CDF 0.0 0.80 0.91 0.0 1.05 0.99 0.0 0.17 0.99 

The correlation coefficients (Corr) of the areal mean precipitation for the upper and lower 

subcatchments were 0.86 and 0.90, respectively; whereas, the correlation coefficients of 

temperature and evapotranspiration were 0.99 for both subcatchments. Compared to the 

observed (obs) and the corrected gauge precipitation (Pcor), the mean of the original gridded 

precipitation (APHRO) was lower, and its dispersion was more compacted to low values on 

the monthly time scale (Figure 3.33a, b).  

Both LS and CDF methods corrected the mean of the APHRO precipitation; moreover, CDF 

adjusted the standard deviation, wet-day frequency, and intensity of the APHRO 

precipitation. Thus, the adjusted APHRO precipitation based on CDF (APHRO_CDF) had 

higher extremes and outliers and a more spread interquartile range than the adjusted 

APHRO precipitation by LS (APHRO_LS); therefore, the difference in maximum and extreme 

values of the adjusted precipitation APHRO_LS and APHRO_CDF might result in various 

runoffs for the Bulgan catchment. The monthly original APHRO temperature and 

evapotranspiration had higher means and more spread interquartile ranges than 

observation, and these biases were corrected well by LS and CDF (Figure 3.33c-f).  
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Figure 3.33: The characteristics of the areal mean observed and gridded APHRODITE data for the 
upper (left panel) and lower subcatchments (right panel) from 1984 to 2015. The observed and bias-
corrected gauge precipitation, and the original APHRODITE (APHRO) and bias corrected gridded 
precipitation (a, b), temperature (c, d), and evapotranspiration (e, f) by linear scaling (APHRO_LS) 
and Cumulative Distribution Function (APHRO_CDF) are compared, also extreme and outlier values 
are illustrated by asterisks and rhombus, respectively. Mean values are marked by minus in the boxes.   

 

The boxplots of the adjusted temperature and evapotranspiration by LS and CDF appeared 

the same. Also, gridded dataset was evaluated based on their hydrological simulation 

performance for the Bulgan catchment in next Chapter.   

a. 

 

b. 

 c. d. 

 e.  f. 
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3.4.2 Semi-distributed and lumped HBV-light model performance 

The HBV-light model was warmed up for the first year of 1984 until the model reached its 

natural state and the effect of the initial condition was not visible. After calibration from 1985 

to 2005 (21 years), covering wet and dry years, we validated the simulated runoff for the 

recent period 2006-2015 (10 years). The goodness of model best fit was evaluated by fuzzy 

measure (X) of weighted model efficiency (Reff), efficiency for low flow (LogReff), and volume 

error (VE) (See Chapter 2.3.4.2 for details). Also, we rated our model performance according 

to the following evaluation categories (Table 3.25). 

Table 3.25: Rating of the model performance (Moriasi et al., 2007).  

Values Performance rating Values Performance rating 

0.75 < Reff ≤ 1.00 Very good 0.50 < Reff ≤ 0.65 Satisfactory 

0.65 < Reff ≤ 0.75 Good Reff ≤ 0.50 Unsatisfactory 

 

3.4.2.1 Model calibration (1985-2005) 

The calibration aims to simulate a good shape of hydrograph fitting to the observed 

hydrograph. We simulated 5000 model runs for the genetic algorithm and 1000 runs for local 

optimization by Powell’s method; then calibrated them ten times. The parameter set with the 

highest fuzzy measure (X) from the ten calibration results was determined as the optimal 

parameter set for the model validation. We analyzed the performance of all models with their 

optimized parameter sets. 

In addition to the hydrological simulation with observed station data (OBS), we evaluated the 

adjusted gauge precipitation (OBS_Pc), original APHRO precipitation (PAPHRO) and two 

corrected APHRO precipitation (PAPHRO_LS, PAPHRO_CDF) based on LS and CDF matching, also 

raw APHRO precipitation and temperature together, and their bias-corrected data based on 

linear scaling (APHRO_LS) and CDF matching (APHRO_CDF) methods.  

Over the calibration period 1985-2005, the fuzzy measure (X) of the model performance 

varied in a range from 0.65 to 0.70 (close to 1.0 is a perfect fit) for a lumped model and in 

the range from 0.56 to 0.66 for a semi-distributed model for the Bulgan catchment (Table 

3.25). Furthermore, the model efficiency (Reff) was more satisfactory for the lumped model 

than the semi-distributed model since Reff varied from 0.59 to 0.66 for the Bulgan catchment 

and from 0.55 to 0.64 for the subcatchments, except 0.47 when the original precipitation and 

temperature of APHRODITE dataset (APHRO) was used for the upper subcatchment.  

Moreover, the efficiency for low flow (LogReff) was good (0.68 to 0.72) for the Bulgan 

catchment and satisfactory for the upper (0.47 to 0.61) and lower (0.58 to 0.64) 

subcatchments (Table 3.26). The total volume difference (VE) of the models (close to 1.0 is 
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a perfect fit) explains the closeness between the long-term averages of the observed and 

simulated runoff. The VE was 1.0 for the Bulgan catchment but ranged between 0.91 and 

1.0 for the subcatchments.  

Table 3.26: Performance of the semi-distributed and lumped models for the Bulgan catchment with 
different datasets during the calibration period 1985-2005.  

COEFs 

A. Semi-distributed model performance 

OBS OBS_Pc PAPHRO PAPHRO_LS PAPHRO_CDF APHRO 
APHRO

_LS 

APHRO 

_CDF 

Fuzzy 
measure (X) 0.63 0.66 0.62 0.65 0.63     0.56 0.62 0.60 

Upper subcatchment (2787m asl) 

Reff 0.57 0.64 0.56 0.62 0.60 0.47 0.58 0.55 

LogReff 0.58 0.61 0.59 0.58 0.58 0.54 0.53 0.47 

VE 1.00 0.99 1.00 0.98 1.00 1.00 0.99 1.00 

Mean 

difference -0.19 -0.84 -0.02 -0.06 -0.03 0.03 -0.32 0.00 

Lower subcatchment (2399m asl) 

Reff 0.60 0.61 0.59 0.63 0.59 0.54 0.59 0.56 

LogReff 0.62 0.64 0.63 0.64 0.63 0.58 0.61 0.64 

VE 0.91 0.93 0.93 0.93 0.93 0.94 0.96 0.95 

Mean 

difference 3.51 3.08 2.95 2.29 2.87 2.42 1.72 2.01 

B. Lumped model performance 
 

Bulgan catchment (2552m asl) 

Fuzzy (X) 0.68 0.69 0.69 0.70 0.67 0.65 0.69 0.65 

Reff 0.62 0.63 0.64 0.66 0.61 0.59 0.64 0.60 

LogReff 0.72 0.72 0.72 0.72 0.69 0.70 0.71 0.68 

VE 1.00 1.00 1.00 1.00 1.00 1.00 1.00 099 

Mean 

difference 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 0.40 

Runoff simulation of the HBV-Light model is sensitive to various precipitation inputs. Of all 

input datasets, the model efficiency of the adjusted gauge precipitation (OBS_Pc) and the 

adjusted APHRO precipitation by linear scaling (PAPHRO_LS) was higher for the Bulgan 

catchment and its subcatchments than other input datasets.  

According to the comparison of the observed and simulated weekly total discharges, all 

models underestimated high flows for the Bulgan catchment and its subcatchments but 

overestimated low flows for the upper subcatchment (Figure 3.34). Moreover, for the Bulgan 

catchment and the lower subcatchment, the models underestimated the recession curves 

and low flows during the wet years of 1985-1995 but overestimated the recession curves 

during the dry years 2000 and 2002.  



 

104 
 

Chapter 3. Results and Discussion 

 

 

 

Figure 3.34: Weekly precipitation sums and the observed and simulated weekly total discharges for 
the upper (a) and lower (b) subcatchments and Bulgan catchment (c) over the calibration period 1985-
2005.  

 

 

    b. 

   a. 

    c. 
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According to the exceedance probability curves of the observed and simulated daily runoff 

from 1985 to 2005, the high flow was underestimated by all models for the Bulgan catchment 

and the upper and lower subcatchments (Figure 3.35a, c, and d). Peak flow (<10%) was 

produced better by the adjusted gauge precipitation (Pcorr) and the adjusted APHRODITE 

dataset by CDF matching (P_APHRO_CDF and APHRO_CDF) than others (Figure 3.35b, 

d, and f). All models considerably overestimated the medium and low flow sections of the 

exceedance probability curve (>50%) for the upper subcatchment and slightly 

underestimated for the lower subcatchment, whereas they were well simulated for the Bulgan 

catchment. 

  

 
 

  

 
Figure 3.35: The exceedance probabilities of the observed and simulated daily runoff at the upper (a, 
b) and the lower subcatchments (c, d), and Bulgan catchment (e, f) from 1985 to 2005. 

 

a. b. 

c. d. 

e. f. 
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3.4.2.2 Model validation (2006-2015) 

For the validation period, the model efficiency (Reff) ranged from 0.51 to 0.62 for the Bulgan 

catchment; moreover, it varied from 0.44 to 0.61 and from 0.56 to 0.62 for the upper and 

lower subcatchments, respectively. According to the rating of the model performance 

(Moriasi et al., 2007), it was satisfactory even if Reff got worse in the validation period than in 

the calibration period (Table 3.27).  

The efficiency of the low flow (LogReff) varied in the range of 0.61-0.68 for the upper 

subcatchment, whereas it ranged from 0.51 to 0.56 and from 0.55 to 0.59 for the lower 

subcatchment and the Bulgan catchment, respectively. Likewise, the VE also declined to 

0.78 for the Bulgan catchment and 0.80 for the subcatchments. 

The optimized parameter set of the adjusted gauge precipitation (OBS_Pc) during the 

calibration resulted in the best model performance for the Bulgan catchment and its 

subcatchments as well. Although the adjusted APHRODITE precipitation by linear scaling 

(PAPHRO_LS) produced the poor model performance for high flow of the upper subcatchment 

during the validation period due to underestimation of mountain precipitation, PAPHRO_LS 

simulated low flow better than other datasets. Also, the parameter sets of PAPHRO_LS and 

APHRO_LS still simulated runoff well for the Bulgan catchment and the lower subcatchment 

with smaller mean difference and closer VE to 1.0 than PAPHRO_CDF and APHRO_CDF. 

Table 3.27: Performance of the semi-distributed and lumped models for the Bulgan catchment with 
different datasets during the validation period 2006-2015.  

COEFs 

 A. Semi-distributed model performance 

OBS OBS_Pc PAPHRO PAPHRO_LS PAPHRO_CDF APHRO 
APHRO

_LS 
APHRO 
_CDF 

  Upper subcatchment 

Reff 0.61 0.60 0.56 0.44 0.50 0.59 0.60 0.54 

LogReff 0.62 0.61 0.67 0.68 0.64 0.65 0.67 0.63 

VE 0.85 0.84 0.95 0.97 0.83 0.92 0.99 0.81 

Mean 
difference 

8.72 9.51 -2.72 -2.04 10.1 -4.48 -0.86 11.0 

  Lower subcatchment 

Reff 0.62 0.62 0.56 0.57 0.57 0.58 0.59 0.58 

LogReff 0.51 0.55 0.56 0.56 0.55 0.56 0.56 0.56 

VE 0.80 0.80 0.95 0.92 0.82 0.98 0.96 0.83 

Mean 
difference 

7.68 7.6 2.01 2.96 7.01 0.76 1.71 6.73 

B. Lumped model performance 

Whole catchment (2552m asl) 

Reff 0.61 0.62 0.57 0.57 0.51 0.57 0.57 0.51 

LogReff 0.58 0.60 0.57 0.57 0.55 0.57 0.57 0.56 

VE 0.88 0.87 1.00 0.97 0.78 0.99 0.97 0.78 

Mean 
difference 4.46 5.0 0.02 1.25 8.68 0.20 1.06 8.41 
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All models overestimated high flow during the dry years of 2006-2007 and underestimated 

peak flow during the wet years 2013-2014 for the upper subcatchment (Figure 3.36a). Also, 

the high and low flows of the Bulgan catchment and the lower subcatchment were 

overestimated for the dry period of 2006-2009 but underestimated during the wet period of 

2010-2015 (Figure 3.36b and c). All models could not simulate the observed increase in 

winter flow since 2006. 

 

 

 

 

Figure 3.36: Weekly precipitation sums and the observed and simulated weekly total discharges for 
the upper subcatchment (a), the lower subcatchment (b) and whole catchment (c) for the validation 
period 2006-2015. 

a. 

    b. 

    c. 
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Over the validation period 2006-2015, Qsim, Pcorr, PAPHRO_CDF, and APHRO _CDF 

underestimated high and mid flow sections (<66%) of the exceedance probability curves for 

the Bulgan catchment and the subcatchments, whereas the PAPHRO, PAPHRO_LS, and 

APHRO_LS simulated well the mid flow section from 10 to 40%, then underestimated the 

mid flow section from 40 to 70% for the Bulgan catchment and its subcatchments (Figure 

3.37a-f). In other words, the exceedance probability curves of the runoff simulation for the 

validation period were split up to two groups according to the applied mean-based and 

distribution-based bias correction methods to precipitation. 

  

  

  

 
Figure 3.37. The exceedance probabilities of the observed and simulated daily runoff for the upper 
(a, b) and the lower (c, d) subcatchments and Bulgan catchment (e, f) for the validation period 2006-
2015.  

 

a. 
b. 

c. 
d. 

e. 
f. 
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The CDF corrected most of the statistical characteristics of the gridded data to observed 

precipitation; thus, the adjusted gridded data by CDF has similar variations to the 

observation. In contrast, LS changed the monthly mean values of the gridded data with the 

same correction factors and left the variability of the gridded data. According to the 

exceedance probability curves of high flow (<10%), peak flows (1-4%) were underestimated 

by all simulations for the Bulgan and its subcatchments (Figure 3.37b, d, f). 

In summary, hydrological performance was good for the Bulgan catchment and slightly 

improved by the adjusted gauge precipitation with an increase in the total precipitation 

amount. Observed precipitation could not represent the complex terrain precipitation and 

underestimated runoff. The alternative gridded APHRODITE dataset satisfactory simulated 

Bulgan catchment runoff in the semi-arid southern Altai Mountains even if it underestimated 

the amount of precipitation and overestimated temperature for the high mountains. 

Moreover, Linear scaling performed better model efficiency for the Bulgan catchment and its 

subcatchments than CDF approach. All models underestimated high flow during wet years 

but overestimated low flow during dry years; moreover, they could not simulate the observed 

increase in winter flow that has occurred since 2006. 
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3.4.3 The simulated water balance of the Bulgan catchment   

The simulated water balances of the Bulgan catchment for the calibration and the validation 

periods are shown in Figure 3.38a-b. An increase in total precipitation inputs resulted in 

different water storages due to distinct optimized model parameters. 

  
Figure 3.38: Simulated water balances for the calibration (a) and the validation (b) periods. 

Moreover, all models simulated the same decreasing trends in the discharges In response 

to a decrease in precipitation and a slight increase in potential evapotranspiration for the 

Bulgan catchment (Figure 3.39). 

 
Figure 3.39: Change in water balance components of all models for the calibration and the validation 
periods. 

In the case of the simulated water balance with station data (Obs_P), the annual precipitation 

sum decreased by 11%, but potential evapotranspiration increased by 4%; thus, the 

efficiency of the precipitation over the Bulgan catchment decreased, and river runoff declined 

by 17%. Moreover, water storage in the catchment decreased by 38% (Table 3.28).  

Table 3.28: The simulated water balances (mm/year±stdev) of the Bulgan catchment for the 

calibration and the validation periods and change. 

Water balance components  

(P=ET+R +∆S) 

Calibration period 

1985-2005 

Validation period 

2006-2015 

Change

% 

Precipitation (obsP), mm/y 190 169 -11% 

Potential evapotranspiration, mm/y 541 560 4% 

Actual evapotranspiration (ETact), mm/y 143±0.8 131±0.7 -8% 

Simulated discharge (Qsim), mm/y 41 34±0.4 -17% 

Storage, mm/y (∆S=P- ETact - Qsim) 8±0.8 4±0.6 -38% 

Efficiency of the precipitation (Q/P) 22% 20% -2% 

 

b. a. 
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Over the whole period of 1985-2015, the simulated annual subsurface flow declined at a rate 

of 2.1mm or 15% (p<0.5) per decade, and base flows decreased at the rate of 3.5mm or 

15% (p<0.001) per decade (Figure 3.40a). Moreover, contributions of rain and snow to the 

annual runoff decreased by 2.5mm (12%) and 2.8mm (17%) per decade at 0.01 level, 

respectively. In contrast, glacier input in the runoff recharge significantly increased by 0.4mm 

(26%) per decade at 0.5 (Figure 3.40b). However, the model did not simulate the increasing 

baseflow of the Bulgan River in winter like in other high mountain permafrost regions. 

 

 
Figure 3.40: Year to year variation of simulated groundwater (a) and runoff components (b) for the 
Bulgan catchment over the period 1985-2015 

 

  

a. 

b. 
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3.4.4 Yearly model performance 

The model efficiency of all model performances for the Bulgan catchment and 

subcatchments was checked for each year of the calibration and validation periods. Model 

efficiency was generally good for the wet years of 1985-1994 and 2010-2015 but poor for 

the dry years of 2000 and 2006-2007 (Figure 3.41, Table 3.29). The Reff reached -30.0 in 

2006; thus, 2006 is removed from the figure to show the other Reff distribution clearly. 

Different climate inputs with the same model structure generated various runoff for each 

year. The maximum Reff ranged between 0.83 and 0.94 the years 1992, 1993, 1996 and 

2002 of the calibration period but ranged between 0.52 and 0.88 the years 2010-2015 of the 

validation period. The minimum Reff was estimated for the years 1999, 2000, 2003 and 2005 

(-1.87<Reff<-0.21) of the calibration period and the years 2006 and 2007 (-30.0<Reff<0.22) 

for the validation period.  

 

All models performed poorly for the same years 2000, 2006, and 2007. These years 

coincided with the consecutive dry years in the mid of 2000s; especially in the southern Altai 

Mountains, local herders and farmers faced challenges with droughts in 1997, 2000, 2003, 

2005, and 2007 (own study). Thus, the poor model performance for the drought years might 

be assigned to the quality of discharge data. Moreover, the quality of precipitation data at 

two gauges in the Bulgan catchment might be not enough to identify precipitation 

characteristics of the complex terrain with a 7588 km2 area.  

 

  

                                             
Figure 3.41: Year to year model performance for the upper (a) and the lower (b) subcatchments and 
Bulgan catchment (c) over the period of 1985-2015.  

 

a. 

b. 

c. 
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Table 3.29: Maximum and minimum model efficiency (Reff) of the hydrological model with different 
climate datasets. 

Model types 

Calibration period Validation period 

MAX Reff Year MIN Reff Year MAX Reff Year MIN Reff Year 

Upper subcatchment 

Observed 0.86 1993 -0.66 1999 0.81 2010 0.22 2007 

ObsPcorrected 0.87 1993 -0.28 2003 0.81 2010 0.24 2007 

APHRO_P 0.84 2002 -0.60 2005 0.85 2014 -3.14 2007 

APHRO_LS_P 0.88 1993 -0.44 2005 0.88 2014 -1.00 2007 

APHRO_CDF_P 0.84 1996 -0.53 1999 0.83 2014 -0.27 2007 

APHRO 0.88 2002 -0.66 2005 0.76 2013 -2.28 2007 

APHRO_LS 0.85 2002 -0.39 2005 0.76 2013 -1.33 2007 

APHRO_CDF 0.81 1996 -0.51 1999 0.69 2014 -0.18 2007 

Lower subcatchment 

Observed 0.81 1992 -0.82 2000 0.73 2010 -8.29 2006 

ObsPcorrected 0.87 1992 -0.84 2000 0.76 2012 -7.38 2006 

APHRO_P 0.87 1992 -0.66 2000 0.68 2015 -25.46 2006 

APHRO_LS_P 0.91 1992 -1.53 2000 0.70 2013 -26.65 2006 

APHRO_CDF_P 0.85 1992 -1.26 2000 0.63 2012 -1.58 2006 

APHRO 0.79 1992 -0.79 2000 0.79 2015 -27.9 2006 

APHRO_LS 0.93 1992 -1.43 2000 0.75 2015 -30.0 2006 

APHRO_CDF 0.90 1992 -1.49 2000 0.69 2015 -11.73 2006 

Bulgan catchment 

Observed 0.89 1992 -0.38 2000 0.75 2010 -10.7 2006 

ObsPcorrected 0.90 1992 -0.21 2000 0.75 2010 -9.39 2006 

APHRO_P 0.89 1992 -0.51 2000 0.68 2010 -27.57 2006 

APHRO_LS_P 0.93 1992 -0.78 2000 0.69 2010 -4.01 2006 

APHRO_CDF_P 0.86 1992 -1.87 2000 0.52 2013 -7.31 2006 

APHRO 0.86 1992 -0.47 2000 0.73 2015 -25.5 2006 

APHRO_LS 0.94 1992 -0.61 2000 0.71 2012 -4.08 2006 

APHRO_CDF 0.86 1992 -1.55 2000 0.54 2012 -7.79 2006 
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3.4.5 Uncertainties in hydrological simulation 

Hydrological model performance depends on conceptualizing parameters, model structure 

and initial condition, input and calibration data (Moges et al., 2021). Thus, many sets of 

parameters that produced good results in runoff simulation during calibration might give 

different results during validation because of the errors in climate variables and model 

structure, and the interaction of the model parameters (Seibert, 1997).  

The range of the 100 hydrological predictions with automatically calibrated and optimized 

100 parameter sets for the Bulgan catchment was narrow. All simulations underestimated 

high and low flows for the wet periods 1989-1993 and 2010-2015 and overestimated for the 

dry period 2006-2008 (Figure 3.42). The uncertainty range of the simulated runoff is broad 

for the high flow in the warm period and narrow for the low flow (Figure 3.43).  

 

 
Figure 3.42: Range of 100 hydrological predictions for the monthly mean runoff of the Bulgan 
catchment for the calibration (a) and validation periods (b). Grey shadow illustrates the range between 
maximum and minimum values of the 100 simulations. Black line shows an average of the simulated 
monthly mean runoffs in absolute values (mm/day). The blue line is observed monthly mean runoff. 
The grey column is total monthly precipitation. 

 

  

Figure 3.43: Boxplots of the 100 simulated monthly mean runoffs for the calibration period 1985-2005 
(a) and validation period 2006-2015 (b). The boxplots show median, 25 and 75 quartiles, and extreme 
values of the 100 simulated runoffs. Blue dots are the monthly mean measured runoffs (mm.day-1). 

b. 

a. b. 

a. 
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Snowmelt runoff from April through June was underestimated throughout the whole period. 

Recession curve of the simulated hydrograph was close to the observed hydrograph during 

calibration but decreased largely during the validation due to (Figure 3.43b). Thus, 

uncertainties in input and discharge data must be examined first. 

 

3.4.5.1 Uncertainty in discharge measurement 

In Mongolia, the water level is measured by a gauge man twice a day and the relationship 

with discharge is regularly checked since the condition of the natural river is not stable. Thus, 

a stage-discharge relationship varies each year (Heerema, 2013). According to the stage-

discharge relationships at the outlet of Bulgan catchment, baseflows and peaks were 

skeptical for the wet years 1986-1988 and for the dry years 2000 and 2006 (Figure 3.44).  

 
 

  
Figure 3.44: Rating curves at the outlet of the Bulgan catchment showing the stage-discharge 
relationships for the wet years (a) and dry years (b) and their skeptical years (c, d). 

These biases might have caused our poor model performance in 2000, 2006, and 2007 

(Table 3.29). On the other hand, our runoff prediction for the dry years might have showed 

potential biases in the discharge measurements that might be caused by human observation 

and data processing error, measurement error, non-stationary river cross-section, the 

influence of backwater, and assumptions of the form of the rating curve.  

 

b. 

d. 

a. 

c. 
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3.4.5.2 Uncertainty in precipitation data 

Precipitation is vital in hydrological simulation. The gauge and gridded precipitation data for 

the same area have different characteristics. The APHRODITE has many small rainfall 

events but underestimates the total amount of rainfall. Thus, the negative bias of the 

APHRODITE precipitation was adjusted by LS and CDF (Figure 3.45). These precipitation 

data resulted in different hydrographs for the Bulgan catchment (Figure 3.46).  

   
Figure 3.45: CDF curves of the daily observed and adjusted areal precipitation (mm) at the upper (a) 
and the lower subcatchments (b) and whole catchment (c) for 1984-2015. 

 

  

  

  

 

Figure 3.46: Simulated and observed hydrographs for the upper (a-b) and lower (c-d) subcatchments 
and Bulgan catchment (e-f) during the calibration period 1985–2005 (left panel) and validation period 
2006–2015 (right panel). 

 

a. b. c. 

b. 

c. d. 

e. f. 

a. 
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During the calibration period, runoff simulations for the upper and lower subcatchments 

driven by these precipitation data underestimated the high flow from snowmelt and rainfall 

but overestimated base flow for the cold period for the upper catchment (Figures 3.46a and 

c). Except for simulations by APHRO and APHRO_LS precipitation, the simulated runoffs 

underestimated the high flow for the lower subcatchment, whereas all simulated runoff fitted 

the measured runoff for the whole catchment (Figure 3.46e).  

During the validation period, all simulated runoff matched the observed runoff for the upper 

subcatchment (Figure 3.46b). For the lower subcatchment and Bulgan catchment, APHRO 

and APHRO_LS precipitation simulated monthly high flows from May to July better than other 

precipitation on average despite their low precipitation amount but a large number of wet 

days. Because the overestimated high flow by APHRO and APHRO_LS precipitation during 

the dry years 2006-2009 compensated for the underestimated increasing winter flow during 

the wet years 2010-2015 (Figure 3.36b-c). 

  

3.4.5.3 Uncertainty in model structure 

To represent Bulgan catchment characteristics, we added glacier and a delayed response 

function to the standard model structure. The delayed response function was applied to 

conceptualize the seasonal thaw of the permafrost, which increased deeper groundwater 

flow and altered temporal runoff (Gruber et al., 2017).  

Three model structures with either glacier or delayed response or their combination were 

tested for the Bulgan catchment. The efficiency of the model structure with glaciers was good 

for low flow (LogReff=0.62) but was satisfactory for high flow (Reff=0.51). The delayed 

response function improved model efficiency for low (LogReff=0.71) and high flow (Reff=0.61), 

especially the high flow for May and June was well fitted. Furthermore, the model structure 

with a combination of delay response and glacier simulated high and low flow better than 

other models and performed the highest fuzzy measure of 0.69 and the lowest absolute error 

of 7.6% (Table 3.30 and Figure 3.47). 

Furthermore, the conceptualizing permafrost conditions of the Bulgan catchment help us 

predict low flow in winter and improve the unsatisfactory performance of the SWAT model 

simulated for the water use efficiency of the irrigated area at the downstream area of the 

Bulgan catchment (Jordan, 2016). 

The delayed response routine does not support dynamic changes in glacier areas in HBV 

Light4.0 (Seibert, 2005). That might increase uncertainty related to model structure.  

Table 3.30: Performance of three model structures for the Bulgan catchment 
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Glacier 

Delayed response 

function 

Glacier+ Delayed response 

function  

1985-2005 2006-2015 1985-2005 2006-2015 1985-2005 2006-2015 

Fuzzy measure (X) 0.58  0.67  0.69  

R2 0.52 0.60 0.62 0.66 0.63 0.66 

Reff 0.51 0.58 0.62 0.61 0.62 0.62 

LogReff 0.62 0.45 0.71 0.56 0.72 0.60 

VE 0.98 0.90 1.00 0.87 1.00 0.87 

Mean difference 0.68 4.03 0.00 5.18 0.00 5.00 

Absolute error, % 16.3  9.1  7.6  

 

 

Figure 3.47: Comparison of the observed hydrograph to the simulated hydrographs by three model 
structures (a) and Absolute Errors of monthly simulated discharges (b) for the calibration period of 
1985-2005.  

Previous studies have successfully conceptualized permafrost conditions in hydrological 

simulation in different ways. To predict high flow in summer and low flow in winter, Heerema 

(2013) added soil threshold temperature-based freezing and melting functions and ice 

storage into the soil and response routines of the HBV model and improved overall model 

performance up to 0.65 for the neighboring Buyant catchment in the Altai Mountains. Council 

et al. (1999) adjusted the field capacity to vary with permafrost conditions to represent the 

seasonal thawing of the active layer in the soil and the evapotranspiration routine of the HBV 

model. Also, several studies on the Qinghai-Tibet Plateau ran hydrological models coupled 

with different freeze-thaw modules and simulated complex permafrost groundwater models. 

Please see more details in a review of permafrost modeling by Gao et al. (2021). 

  

3.4.5.4 Parameter uncertainty  

The 100 optimized parameter sets were obtained by calibrating the model 100 times with 

GAP after 500,000 simulations to evaluate parameter uncertainty as suggested by 

Teutschbein and Seibert (2012). Some parameters influence the model efficiency of low flow 

(LogReff), and others impact the model efficiency of high flow (Reff). Thus, the fuzzy 

measure (X), the combination of Reff, LogReff, and VE, was used for the model evaluation 

to reduce parametric uncertainty in the hydrological simulation (Seibert, 1997).  

  

a. b. 
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These 100 calibrated models had fuzzy measures (X) between 0.66 and 0.69, which were 

plotted against one parameter (Figure 3.48).  

   

   

   

   
Figure 3.48: The scatter plots of model goodness and some parameters of the best 100 calibrations.  

To avoid over-parameterization during model calibration, the insensitive parameters CFR 

and CWH are fixed to 0.05 and 0.1 (Seibert, 2000). For a well-defined parameter, the fuzzy 

measure decreased when the parameter value deviated from its optimal value, for instance 

PART, SFCF, LP and ALPHA showed peaks in our calibrations; whereas for a not well-

defined parameter, the fuzzy measure was good in broad range of parameter value 

simulations. On the other hand, parameters can compensate each other in the simulation, 

thus different values for one parameter could perform well (Seibert, 1997). 

We estimated ranges and standard deviations of the parameter values to show uncertainty 

range of the parameters (Figure 3.49). The confined PART, SFCF, K2 and K1 parameters 

resulted in smaller uncertainty than the dispersed TT, CFSlope, FC and CFMAX parameters. 

Also, parameter uncertainty might be different for each vegetation zone. For the Bulgan 

catchment, hydrological simulation is more sensitive to parameters for non-forested area 

than forested area.  
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Figure 3.49: Comparison of parameters variation of the 100 best-calibrated models. Ranges and 
standard deviations of these parameters are normalized by the corresponding mean values. 
Parameters for forested area (1) and non-forested area (2). 

In summary, limited precipitation data of two rain gauges and error in discharge 

measurement for the wet years 1986-1988 and for the dry years 2000 and 2006 impacted 

our model performance. Although the performance of the model structure with a combination 

of delay response and the glacier was good for the Bulgan catchment, our optimized model 

might lack the physical process representation of the regional hydrological regime under 

changing climate over time due to a lack of temperature adjustment in the soil box of the 

HBV-Light model and constant fractions of glacier area at the specified elevation zones over 

the whole simulation period.  

All models could not simulate high and low flows during the wet period 1990-1993, which 

might be related to the highest acceleration of glacier recession from 1990 to 2000. Also, 

underestimation of monthly runoff throughout the year over the validation period 2006-2015 

might be assigned to the model structure since the model could not represent deeper 

infiltration of surface water and deepening groundwater flow circulation with complete 

thawing of the permafrost over time. Based on the 100 optimized parameter sets, some 

parameters for non-forested areas were well-defined, but most parameters for the forested 

areas had a broad range of uncertainty. Furthermore, the uncertainty range of the 100 runoff 

simulations for the Bulgan catchment was narrow due to the combination of three objective 

functions. 
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3.5 Runoff sensitivity to climate change  

For each climate scenario, climate input data was altered and applied to the optimized model 

for the Bulgan catchment to predict runoff. Compared to the reference runoff from 1985 to 

2005, the predicted runoff was more sensitive to changes in precipitation than the air 

temperature. An increase in daily precipitation by 10% amplified the annual runoff by 22%, 

whereas daily temperature warming by +1°C reduced the annual runoff by 6% (Table 3.31). 

Moreover, the potential evapotranspiration increased along with warming temperature and 

brought drier conditions. When air temperature increased by +5°C but precipitation dropped 

by 20%, evapotranspiration intensified by 20.3%, and the runoff of the Bulgan river declined 

by 41%. 

 

Table 3.31: Annual runoff sensitivity (%) to changes in temperature and precipitation. 

∆T, °C ∆ET, % ∆P, % 

-20% -10% 0 +10% +20% 

0 0 -37 -20  +22 +46 

+1°C +3.9 -41 -25 -6 +14 +36 

+2°C +8.0 -42 -28 -11 +8 +29 

+3°C +12.0 -43 -29 -14 +4 +24 

+5°C +20.3 -41 -30 -16 0 +17 

  
Figure 3.50: Runoff sensitivity of Bulgan River to changes in precipitation (a) and temperature (b).  

When precipitation decreased by 10% and 20%, runoff declined for all months, mainly in 

June; thus, peak flow transferred to July (Figure 3.50a). Also, an increase in precipitation by 

10% and 20% led to a rise in runoff in all months, predominantly in the warm period from 

May through August. When the temperature increased by +1°C, +2°C, +3°C, and +5°C, the 

runoff decreased significantly during the snowmelt period from May to June and the cold 

period from October to March; in contrast, the glacier melt runoff slightly increased in August 

(Figure 3.50b). The same high variation of runoff with changes in precipitation was found in 

the most river basins of Mongolia (Batima, 2006). The glacierized area of the Bulgan 

catchment is 0.13%, thus our finding contradicts the sensitivity of the glacier dominated 

(78%) Koxkar river runoff in the western Tianshan Mountain, which was more sensitive to 

changes in temperature than precipitation (Xu et al., 2017).  

a. b. 
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3.6 Future climate and runoff change in the Bulgan catchment 

General Circulation Models (GCM) are used to help understand the uncertainty range of the 

climate projections, whereas Regional Climate Models (RCM) accurately show regional 

climate at fine-resolution geographic and temporal scales. Statistical downscaling (SD) of 

GCM is computationally cheaper than dynamical downscaling (DD) if there is no RCM data 

for the interested region.  

The performance of the SD and DD depends on region, season, climate variable, spatial and 

temporal scales, thus sometimes SD performs better than DD (Teutschbein et al., 2011). 

In addition to dynamically downscaled RegCM4 for East Asia from HadGEM2-AO, we used 

SDSM tool to downscale CanESM2 statistically at two stations in the Bulgan catchment. 

Then future climate and runoff changes for the Bulgan catchment were predicted based on 

both dynamically and statistically downscaled RCMs (RegCM4 and SD-CanESM2) and their 

driving GCMs (HadGEM2-AO and CanESM2) in this chapter. 

 

3.6.1 Statistical downscaling of CanESM2 projections  

3.6.1.1 Evaluation of the statistical downscaling SDSM model for the Bulgan 

catchment  

In statistically downscaling daily precipitation of the General Circulation Model at the station 

level, grid cell choice and predictor variable selection significantly influence the downscaled 

output (Crawford et al., 2007). This is critically important for the impact study because the 

land-sea mask of GCM grids mismatch the real land surface spatially. Also, Crawford et al 

(2007) emphasized the importance of space and time substitution to reflect real atmospheric 

processes in the downscaling. 

To find the optimal one grid cell for reflecting the local precipitation regime, the corresponding 

nine grid cell predictors of the NCEP Re-analysis dataset over the Altai-Dzungarian region 

were correlated with the observed precipitation at the stations on monthly time scales. Based 

on the highest explained variances and explanatory powers of predictors in monthly 

precipitation sums, we found the overlaying center and east grid cells of the NCEP Re-

analysis were the optimum grids cells for Duchinjil and Baitag stations to statistically 

downscale daily precipitation of CanESM2 (2.81˚ x 2.81˚), respectively (Figure 3.51, Table 

3.32).  
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Figure 3.51: Nine grids of NCEP Re-analysis and CanESM2 (2.81˚ x 2.81˚) over the Altai-Dzungarian 
region. Duchinjil and Baitag stations are marked by black dots. Grid names: NW – northwest, W – 
west, SW – southwest, N- north, S – south, NE – northeast, E- east, and SE – southeast.  

At each grid cell of NCEP reanalysis, the candidate predictor variables of large-scale 

atmospheric circulation patterns and moisture contents at the surface, 850hPa and 500hPa 

levels were used in the investigation of their statistical relationships with the measured 

precipitation using the SDSM downscaling tool. Furthermore, we correlated predictors from 

the same, previous, and subsequent day of the grid cell with the predictand precipitation to 

consider time substitution since NCEP reanalysis data (1200h GMT) and precipitation 

measurement (0100h and 1300h GMT) at the Southern Altai Mountains did not coincide. 

Predictors from the previous and the same day showed higher R2 and r than predictors from 

the subsequent day.  

Some studies have noted that three to six predictors were appropriate in statistical 

downscaling (Crawford et al., 2007). Thus, the top five and six predictors for downscaling 

precipitation at Duchinjil and Baitag stations were determined by screening potential 

predictors as shortlisted in Table 3.32. The combination of the airflow strength, zonal velocity 

and vorticity of the same day, and specific humidity of the previous day at 500hPa level and 

precipitation of the corresponding grid cells significantly explained observed precipitation 

regimes at Duchinjil and Baitag stations. The secondary airflow variables were derived from 

3x3 arrays of the pressure fields, for instance, zonal velocity included information from a 

larger domain than the specific humidity of the overlaying single target grid cell (Crawford et 

al., 2007). 

Specific humidity at 500hPa and precipitation were prominent predictors of precipitation at 

Duchinjil during winter, spring, and summer and were the leading variables at Baitag during 
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winter and autumn. Also, at both stations, airflow strength, zonal velocity, and the specific 

humidity at 500hPa were prominent during autumn. Vorticity at 500hPa was one of the 

leading factors for precipitation at Duchinjil in the summer months but at Baitag in the spring 

months. Also, the meridional velocity at 500hPa influences spring and summer precipitation 

regimes at Baitag.  

Furthermore, the vorticity and geopotential height at 500hPa, and 2m temperature of the 

corresponding central grid cells of NCEP Reanalysis were the prominent variables in 

predicting maximum and minimum temperatures. Mean sea level pressure was a leading 

predictor in all seasonal temperatures of Duchinjil station in the valley of the southern Altai 

Mountain (Table 3.32). 

Table 3.32: List of selected predictors and their annual partial correlation coefficients with predictands  

 Duchinjil  Baitag  

Predictands NCEP 

predictors 

Partial r 

p<0.01 

NCEP 

predictors 

Partial r 

p<0.01 

Precipitation     

 p5_fC 0.108 p5_fE 0.126 

 p5_uC -0.118 p5_uE -0.134 

 p5_zC 0.125 p5_zE 0.101 

 prcpC 0.147 prcpE 0.125 

 s500_prevC 0.270 s500_prevE 0.090 

   p5_vE 0.170 

Maximum temperature    

 mslpC -0.294 p5_z_prevE 0.237 

 p500C 0.571 p500_prevE 0.413 

 temp_prevC 0.552 tempE 0.811 

     

Minimum temperature    

 mslp_prevC -0.200 p5_z_prevE 0.136 

 p5_zC 0.190 p500_prevE 0.264 

 p500C 0.364 temp_prevE 0.854 

 temp_prevC 0.463   

Variable and grid box names are denoted by characters 1-4 and 5-10, respectively. prev – previous day 

p5 – pressure fields at 500hPa, f- airflow strength, u-zonal velocity, v-meridional velocity z-vorticity, prcp-

precipitation, p500-geopotential height at 500hPa, mslp- mean sea level pressure, temp – temperature. Grid 

names: C – Center, E- East 

Our developed SDSM models for the Bulgan catchment in the southern Altai Mountains had 

good prediction skills for daily maximum and minimum temperatures at both stations 

(R2=0.95-0.96 p<0.01) but relatively low skill for predicting precipitation at Duchinjil station in 

the valley of the mountains (R2=0.56, p<0.001) during the validation period of 1996-2005 

(Table 3.33; Figure 3.52). Moreover, precipitation for the Baitag station at the edge of the 

Dzungarian desert area was not simulated well (R2=0.24, p<0.001). 
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Table 3.33: Statistics of simulated precipitation and temperature by the statistical downscaling model 

(SDSM) for the calibration (1977-1995) and validation (1996-2005) periods. 

Periods Monthly Ptotal Daily Tmax Daily Tmin 

R2 r RMSE R2 r RMSE R2 r RMSE 

Duchinjil station 

Calibration 0.67 0.82 7.4 0.96 0.98 2.7 0.95 0.97 3.0 

Validation 0.56 0.75 8.7 0.96 0.98 3.0 0.95 0.98 3.0 

Baitag station 

Calibration 0.27 0.52 9.2 0.96 0.98 3.1 0.96 0.98 3.0 

Validation 0.24 0.49 9.0 0.96 0.98 2.9 0.96 0.98 3.1 

R2- Coefficient of determination, r – correlation coefficient, RMSE – Root Mean Square Error. 

The same poor model skill was found in previous studies in other desert areas (Xu et al., 

2016; Wang et al., 2019). Xu et al. (2016) found the same low skill of the NCEP predictors-

based SDSM model (R2=0.15) in the simulation of the precipitation for the Kaidu River basin 

on the northeastern edge of the Taklimakan Desert, northwest China.  

Also, Wang et al. (2019) developed a precipitation model based on ERA-40 Reanalysis data 

(2°x2°) for northwest China and found low model simulation efficiency (R2<0.5) at the climate 

stations in the Gobi Desert region but good (R2>0.6) at the stations in the mountainous region 

of the Heihe River basin in the Qilian Mountains. These low model skills in generating 

precipitation for the arid area might be related to the spatial and temporal extreme natural 

variability of the desert climate; moreover, precipitation frequency might be too low in the 

desert area to develop statistical relationships between the predictors and predictand (Wang 

et al., 2019).   

The established monthly regression models from the prominent predictors of the selected 

NCEP grid cell were used to downscale daily precipitation and temperature from the same 

predictors of the corresponding CanESM2 grid cell at the station level for the historical period 

(1961-2005) and future scenarios (2006-2100) under RCP 4.5 and 8.5 (Figure 3.52-3.53).  

Although our NCEP-based SDSM model well-estimated spring precipitation for May, 

downscaled CanESM2 (SD_CanESM2) overestimated precipitation for May but 

underestimated summer precipitation from June through August at Duchinjil (Figure 3.52a). 

At Baitag station, SD_CanESM2 generally overestimated precipitation during the warm 

season (Figure 3.52b). Moreover, our developed SDSM model from NCEP predictors 

simulated monthly maximum and minimum temperatures well, but statistically downscaled 

temperatures from CanESM2 predictors slightly underestimated spring temperatures at both 

stations during the validation period (Figure 3.53). 
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Figure 3.52: Comparison of observed monthly precipitation sums and the statistically downscaled 
precipitation sums from NCEP and CanESM2 predictors (SD_CanESM2) at Duchinjil (a) and Baitag 
stations (b) over the validation period from 1996 to 2005. 

  

  

Figure 3.53: Maximum (a-b) and minimum (c-d) observed temperatures and the statistically 
downscaled temperatures from NCEP and CanESM2 predictors (SD_CanESM2) at Duchinjil (left 
panel) and Baitag stations (right panel) over the validation period from 1996 to 2005.  

In summary, the prediction skill of our SDSM model for precipitation was satisfactory for the 

mountainous area but poor for the desert area due to low rainfall frequency and extreme 

climate conditions in the Dzungarian Desert. However, statistically downscaled maximum 

and minimum temperatures of CanESM2 at the two stations give a better representation of 

the local temperature regime except for underestimated temperatures for spring months. 

 

a. b. 

c. d. 

a. b. 
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3.6.1.2 Climate change projections of statistically downscaled CanESM2 in near and 

far future under RCP 4.5 and 8.5 scenarios 

Under RCP4.5 and 8.5 scenarios, we calculated delta changes in statistically downscaled 

precipitation and maximum and minimum temperatures from the CanESM2 at Duchinjil and 

Baitag stations for near and far future periods: 2030-2050 and 2080-2100 (Table 3.34).  

The statistically downscaled CanESM2 (SD_CanESM2) projected to increase annual total 

precipitation at Duchinjil station in the southern Altai Mountains by 27% in the 2040s and 

41% in the 2090s under RCP4.5; whereas, SD_CanESM2 predicted to increase annual total 

precipitation at Baitag station in the semi-desert area by 33% in the 2040s and 35% in the 

2090s under RCP4.5 (Table 3.34). Moreover, annual total precipitation was projected to 

increase by 110% at Duchinjil and by 145% at Baitag in the 2090s under RCP8.5.  

Table 3.34: Projected changes in precipitation of SD_CanESM2 at Duchinjil and Baitag stations in 

the 2040s and the 2090s compared to the baseline period of 1985-2005 under RCP4.5 and 8.5 
scenarios. 

Seasons 

Percentage change in precipitation  

2040s (2030-2050) 2090s (2080-2100) 

Duchinjil Baitag Duchinjil Baitag 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Winter 5% 89% 42% 22% 17% 125% 21% 310% 

Spring -10% 16% -10% 12% 25% 79% 31% 113% 

Summer 26% 31% 37% 34% 36% 94% 23% 87% 

Autumn 80% 99% 84% 70% 79% 187% 77% 249% 

Annual 27% 44% 33% 33% 41% 110% 35% 145% 

Precipitation was predicted to increase more in autumn than in other seasons (Figure 3.54). 

In contrast, spring precipitation was projected to decrease by 10% at both stations in the 

2040s then increase by 25-31% in the 2090s under RCP4.5. The extreme increase in winter 

precipitation at Baitag in the 2090s under RCP8.5 might be related to the relatively poor 

prediction skills of our developed regression model for the desert area.  

  
Figure 3.54: Projected percentage change (%) in precipitation of SD_CanESM2 at Duchinjil (a) and 
Baitag (b) in the 2040s and the 2090s compared to the baseline period under RCP4.5 and 8.5. 

 

a. b. 
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Annual maximum temperature will increase by +3.2°C in the 2040s and +4.1°C in 2090s at 

Duchinjil under RCP4.5; moreover, maximum temperature will warm more intensively in 

spring than summer at both stations by the 2040s and the 2090s under RCP4.5 and 8.5 

scenarios (Table 3.35; Figure 3.55).  

Table 3.35: Projected changes in maximum temperatures (°C) of SD_CanESM2 at Duchinjil and 

Baitag stations in the 2040s and the 2090s compared to the baseline period of 1985-2005 under 
RCP4.5 and 8.5 scenarios. 

Seasons 

Absolute difference of maximum temperatures (°C) 

2040s (2030-2050) 2090s (2080-2100) 

Duchinjil Baitag Duchinjil Baitag 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Winter +2.7 +3.4 +2.7 +3.6 +3.8 +6.5 +4.1 +7.3 

Spring +4.0 +4.5 +4.6 +5.1 +4.6 +8.4 +5.3 +9.5 

Summer +3.5 +4.2 +2.9 +3.4 +4.6 +8.5 +3.8 +6.9 

Autumn +2.5 +3.4 +3.4 +4.6 +3.5 +6.9 +4.7 +9.0 

Annual +3.2 +3.9 +3.4 +4.2 +4.1 +7.6 +4.5 +8.2 

Under RCP8.5 scenario, the maximum temperature was predicted to increase extremely at 

both stations by +8.0°C on average in the 2090s.  

  
Figure 3.55: Projected changes in maximum temperatures (̊C) of SD_CanESM2 at Duchinjil (a) and 
Baitag (b) in the 2040s and the 2090s compared to the baseline period under RCP4.5 and 8.5. 

Furthermore, annual minimum temperature will increase less by +0.5°C than maximum 

temperatures at both stations in the 2040s and 2090s under RCP4.5 and 8.5 (Table 3.36). 

Table 3.36: Projected changes in minimum temperatures (°C) of SD_CanESM2 at Duchinjil and 
Baitag stations in the 2040s and the 2090s compared to the baseline period of 1985-2005 under 
RCP4.5 and 8.5 scenarios. 

Seasons 

Absolute difference in minimum temperature (°C) 

2040s (2030-2050) 2090s (2080-2100) 

Duchinjil Baitag Duchinjil Baitag 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Winter +2.7 +3.3 +3.3 +4.4 +3.7 +6.3 +5.0 +8.5 

Spring +3.9 +4.4 +4.3 +4.8 +4.5 +8.0 +5.1 +9.0 

Summer +2.2 +2.6 +2.2 +2.6 +2.9 +5.2 +2.8 +5.1 

Autumn +1.8 +2.3 +2.3 +3.0 +2.6 +5.1 +3.3 +6.4 

Annual +2.6 +3.2 +3.0 +3.7 +3.4 +6.1 +4.0 +7.2 

a. b. 
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The annual minimum temperature was projected to increase by +2.6°C in the 2040s and 

+3.4°C in 2090s at Duchinjil under RCP4.5;  

More intensive warming of the minimum temperature was predicted in spring for both stations 

as well as the maximum temperature in spring. Also, extensive warming of the minimum 

temperature was projected for all seasons at both stations under RCP8.5 (Figure 3.56).  

  
Figure 3.56: Projected changes in minimum temperatures (̊C) of SD_CanESM2 at Duchinjil (a) and 
Baitag (b) in the 2040s and the 2090s compared to the baseline period under RCP4.5 and 8.5. 

 

Overall, spring will be warmer and autumn will be wetter than other seasons at both stations 

in the 2040s and the 2090s under RCP4.5 and 8.5. Satisfactory downscaled precipitation 

and temperature of CanESM2 at Duchinjil station were used in a hydrological impact study 

of climate change on the Bulgan catchment in the next Chapter 3.6.2. 

 

 

  

a. b. 
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3.6.2 Projected climate change for the Bulgan catchment in the 2040s and the 

2090s 

A single GCM/RCM is not reliable for the prediction of future climate; thus, the ensemble 

mean of several GCM/RCMs is suggested due to model bias and inter-model variability 

(Teutschbein and Seibert, 2010). Thus, we estimated projected changes in seasonal 

temperatures and precipitation sums for the Bulgan catchment in the 2040s and the 2090s 

using the mean of two GCMs (HadGEM2-AO and CanESM2) and the mean of the dynamical 

and statistical downscaled RCMs (RegCM4 and SD_CanESM2) under RCP4.5 and RCP8.5 

(Figure 3.57).  

  

  

  
Figure 3.57: Projected changes in the annual (a, b), winter (c, d), and summer (e, f) temperature (left 
panel, °C) and precipitation (right panel, %) relative to the baseline period of 1985-2005. The red line 
marks the observed change in areal mean temperature and precipitation for the Bulgan catchment. 
Dark green and orange lines mark the mean changes of the dynamical and statistical downscaled 
temperature and precipitation of RCMs (RegCM4 and SD_CanESM2) by 2050 under RCP4.5 and 
8.5, respectively. Light green and orange lines show mean changes in temperature and precipitation 
of two GCMs (HadGEM2-AO and CanESM2) by 2100 under RCP 4.5 and RCP8.5, respectively.  

 

a. b. 

c. d. 

e. f. 
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The mean of GCMs projects that annual temperature will increase by +1.8°C from 2030 to 

2050 and +3.3°C from 2080 to 2100 under RCP4.5 compared to the baseline period from 

1985 to 2005; moreover, the temperature will increase by +2.3°C from 2030 to 2050 and 

+6.6°C from 2080 to 2100 under RCP8.5 (Table 3.37). Also, the mean of RCMs projects that 

annual temperature will warm by +2.3°C under RCP4.5 and +2.9°C under RCP8.5 from 2030 

to 2050. 

Table 3.37: Seasonal temperature and precipitation changes in the near future (2030-2050) and far 
future (2080-2100) periods under RCP 4.5 and 8.5 compared to the baseline period 1985-2005. 

Seasons 

2040s (2030-2050)  2090s (2080-2100) 

GCMs mean RCMs mean GCMs mean 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

T, ˚C P, % T, ˚C P, % T, ˚C P, % T, ˚C P, % T, ˚C P, % T, ˚C P, % 

Winter +1.4 +21 +1.8 +32 +1.9 +11 +2.4 +27 +3.2 +30 +6.0 +51 

Spring +1.9 +15 +2.3 +21 +2.8 +3 +3.3 +20 +2.9 +22 +6.9 +32 

Summer +2.2 +6 +2.6 +8 +2.4 +9 +3.2 +5 +3.7 +13 +7.2 +9 

Autumn +1.9 +21 +2.5 +22 +2.4 +26 +2.6 +20 +3.1 +3 +6.3 +52 

Annual +1.8 +13 +2.3 +16 +2.3 +12 +2.9 +14 +3.3 +21 +6.6 +26 

The GCMs projected an increase of 13% and 16% in annual precipitation by the 2040s, then 

21% and 26% by the 2090s under RCP4.5 and 8.5, respectively. Similarly, RCMs project an 

increase of 12% and 14% in annual precipitation in the 2040s under RCP4.5 and 8.5. In the 

projections of GCMs, the winter precipitation will vastly rise by 21% and 32% in the 2040s 

and by 30% and 51% in the 2090s under RCP4.5 and RCP8.5, respectively; whereas, 

summer precipitation will slightly increase by 6% and 8% in the 2040s and by 13% and 9% 

in the 2090s under RCP4.5 and RCP8.5, respectively (Table 3.37, Figure 3.58). 

 
Figure 3.58: Projected changes in annual and seasonal temperatures (̊C) and precipitation sums (%) 
in the 2040s and the 2090s under RCP4.5 and RCP8.5 compared to the baseline period of 1985-
2005.  

By the 2040s, GCMs projected intensive warming by +2.2°C and +2.6°C in summer 

temperature and by +1.3°C and +1.8°C in winter temperature under RCP4.5 and RCP8.5, 

respectively. However, RCMs anticipated a more significant warming of temperature in 

spring by +2.8°C and +3.3°C in the 2040s under RCP4.5 and RCP8.5, respectively. In 
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general, the temperature change was projected to be higher under RCP 8.5 than these under 

RCP 4.5 for both regional and global climate models (Table 3.37, Figure 3.58).  

In the far future from 2080 to 2100, precipitation is projected to increase by +51% in autumn 

and by a similar amount in winter; whereas, summer precipitation is projected to increase by 

+9% accompanied by intensive warming (+7.2°C) (Figure 3.58). 

Overall, projections for annual and seasonal temperature and precipitation tend to increase 

in the Bulgan catchment in the 2040s and the 2090s but at different rates. Generally, 

precipitation is projected to increase by a higher percentage in winter and autumn than in 

summer. On the contrary, accompanied by the high rate of warming, summer precipitation 

is only projected to increase by a low percentage in the future.  
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3.6.3 Hydrological impact of the projected climate change on the Bulgan 

catchment in the 2040s 

Raw climate model outputs simulate surface runoff in unrealistic scales (Wörner et al., 2019). 

Thus, for a hydrological impact study, systematic errors and uncertainties in GCMs and 

RCMs should be post-processed with a convenient approach to changing climate conditions 

(Teutschbein and Seibert, 2010).  

3.6.3.1 Post processing of General and Regional Climate Models  

Over the Bulgan catchment, raw CanESM2 and HadGEM2-AO overestimated precipitation 

for spring but underestimated precipitation for autumn (Figure 3.59a, c). Dynamically 

downscaled RegCM4 overestimated precipitation through the year, whereas statistically 

downscaled SD-CanESM2 underestimated precipitation through the year, except for the 

spring months of April and May. GCMs reproduced warmer temperatures for the Bulgan 

catchment throughout the year, except in March (Figure 3.59b, d). Monthly temperatures 

were estimated quite well by RegCM4 except for the overestimation of temperatures for 

winter and summer months. We corrected these biases in the GCMs and RCMs by 

distribution mapping approach. The SD_CanESM2 is already post-processed data at the 

station level from GCM, thus it was not corrected.  

  

  

Figure 3.59: Monthly precipitation sums (left panel: a, c) and monthly mean temperatures (right panel: 
b, d) of the raw and bias-corrected (bc) GCMs and RCMs in the baseline period of 1985-2005. 
Observations are marked by black dots. SD is an abbreviation of the statistical downscaling.  

Compared to the station data, the GCMs and RCMs had too many drizzle days with low 

precipitation. Thus, we eliminated excess drizzle precipitation from these climate model data 

with threshold 1.0mm day-1, then corrected daily precipitation sums of all models by 

distribution mapping approach based on their ability to reproduce the Cumulative Distribution 

Function (CDF) of the observed precipitation over the baseline period of 1985-2005 (Figure 

a. b. 

d. c. 
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3.60a, c). The distribution mapping increased the amount of precipitation on wet days. 

Furthermore, the CDFs of the bias corrected temperatures shifted to the left and fitted the 

CDF of the colder observed temperature (Figure 3.60b, d). 

  

  

Figure 3.60: Raw and bias-corrected cumulative distributions of the simulated precipitation on wet 
days (left panel: a, c) and daily temperatures of GCMs and RCMs (right panel: b, d) from 1985 to 
2005. 

The Taylor diagram summarizes the standard deviation, the centered Root Mean Square 

Error (RMSE), and the correlations of raw and bias-corrected model outputs with observation 

in Figure 3.61.  

  
Figure 3.61: Taylor diagrams of the raw and bias-corrected daily precipitation (a) and temperature (b) 
of GCMs and RCMs over the baseline period of 1985-2005. The light blue contour is the centered 
RMSE. The red point on the x-axis is the observed value as a reference. Raw GCMs and RCMs are 
shown by black colored marks and the corresponding bias-corrected models are illustrated by blue 
colored marks. 

In the Taylor diagram, raw CanESM2 precipitation resulted in the lowest correlation 

coefficient (r=0.88, p<0.001, stdev=1.06) and the largest RMSE (1.60), whereas raw 

HadGEM2-AO showed the highest correlation coefficient (r=0.95, stdev=1.29, RMSE=1.29). 

Raw RegCM4 had the lowest RMSE (1.06) and good correlation (r=0.92) with observation. 

After post-processing, correlations of modeled precipitation with observation were 

significantly improved (r=0.98-1.00) at 0.01 level and their RMSE ranged from 0.22 to 0.50. 

c. d. 

a. b. 

a. b. 
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For temperature, the correlation coefficients of the original model outputs were 0.99 at 0.001 

and approached 1 after bias correction. Furthermore, the RMSEs of raw CanESM2 and 

HadGEM2-AO were considerably reduced from 2.1 and 1.5 to 0.26 and 0.16, respectively. 

Also, the RMSEs of raw RegCM4 decreased from 2.4 to 0.4. 

Raw CanESM2 and HadGEM2 overestimated the high flows of summer months and 

underestimated baseflow during the cold season for the reference period of 1985-2005. Also, 

raw RegCM4 greatly overestimated runoff through the year; whereas, SD_CanESM2 

underestimated runoff through the year (Figure 3.62a, c). After post-processing GCMs and 

RCMs, these biases in the simulated runoff were also corrected and fitted to the observed 

runoff better (See Annex C).  

 
 

  
Figure 3.62. Observed and simulated hydrological regimes of Bulgan catchment using raw (left panel) 
and bias-corrected (right panel) GCM and RCM outputs over the period of 1985-2005: seasonal 
distribution of Q50 median (a-b) and the exceedance probability curves of daily runoffs (c-d). bc: bias-
corrected. 

On the monthly time scale, mean absolute error (MAE) in the simulated runoffs by raw 

CanESM2 (0.33), HadGEM2-AO (0.14), and RegCM4 (6.47) reduced in the simulated 

runoffs by bias-corrected CanESM2 (0.30) HadGEM2-AO (0.05) and RegCM4 (0.13). Also, 

MAE in the simulated runoff by SD_CanESM was 0.28. Furthermore, the exceedance 

probability curves of the simulated runoffs with the bias-corrected GCMs and RCM showed 

a slight underestimation of high flow (<30%) except peak flow (<3%). Also, they slightly 

overestimated mid-flow (40-70%) for the observed runoff (Figure 3.58c).  

As a consequence of correcting biases in the climate model outputs by considering local 

climate variability in the Bulgan catchment from 1985 to 2005, previous projected changes 

in precipitation and temperature by raw climate model outputs as presented in Chapter 3.6.2 

a. b. 

c. d. 
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generally altered into a higher increase in seasonal precipitation, except for a decrease in 

winter precipitation from the GCM and in the spring precipitation from the RCM under 

RCP4.5. However, no difference was observed in warming rates in the projected seasonal 

temperatures between raw and bias-corrected outputs (Figure 3.63).  

  

  
Figure 3.63: The difference in the projected changes in annual and seasonal temperatures (̊C) and 
precipitation sums (%) by the means of raw and bias-corrected GCMs (a-b) and RCMs (c-d) from 
2030 to 2050 under RCP4.5 (left panel) and RCP8.5 (right panel).  

Overall, raw GCMs and RCMs simulated warmer temperatures and higher precipitation for 

the Bulgan catchment with more drizzle days than observed climate conditions. These biases 

were significantly corrected using the distribution mapping approach. After post-processing, 

the temperature was projected to increase in all seasons; whereas, a higher increase in 

precipitation was generally projected for the Bulgan catchment, except for a decrease in the 

winter by the GCM and spring by the RCM.  

  

3.6.3.2 Projected climate and runoff change on Bulgan catchment in near future 

Compared to the baseline period from 1985 to 2005, GCMs project an increase of 14% and 

28% in annual precipitation from 2030 to 2050 under RCP4.5 and 8.5, respectively. Similarly, 

RCMs project an increase of 13% and 18% in annual precipitation in the 2040s under 

RCP4.5 and 8.5.  

By the 2040s, GCMs projected the highest increase of +29% and 50% in precipitation during 

spring under RCP4.5 and RCP8.5, respectively. In contrast, winter precipitation was likely to 

decrease by -11% in under RCP4.5 but slightly increase by +13% under RCP8.5. Contrary 

to the projections of the GCM, RCMs projected a high increase of +23% and +47% in winter 

a. b. 

c. d. 
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precipitation under RCP4.5 and RCP8.5, respectively. Also, in spring, precipitation was 

projected to slightly decrease by -2% under RCP4.5 but increase by +25% under RCP8.5. 

Moreover, precipitation is projected to increase by a low amount of +11% in summer but to 

increase by +29% in autumn and by the same amount in winter under RCP4.5 (Figure 3.64).  

  
Figure 3.64: Projected precipitation and temperature changes in the near future period of 2030-2050 
by raw and bias-corrected GCMs (a) and RCMs(b) under RCP4.5 (blue color) and RCP8.5 (orange 
color) scenarios.  

GCMs project that annual temperature will increase by +1.8°C under RCP4.5 and +2.3°C 

under RCP8.5 from 2030 to 2050. RCMs also projects that annual temperature will warm by 

+2.4°C under RCP4.5 and +2.9°C under RCP8.5. By the 2040s, GCMs projected warming 

by +2.0°C in summer under RCP4.5 but more intensive warming by +2.6°C in autumn under 

RCP8.5. Also, RCMs project a more significant warming of temperature in spring by +2.7°C 

and +3.3°C in the 2040s under RCP4.5 and RCP8.5, respectively. 

GCMs projected increasing trends in runoffs for all seasons from 2030 to 2050, characterized 

by a low increase in summer runoff; whereas, RCMs projected the lowest increase in autumn 

runoff (Figure 3.65, Table 3.38).  

  
Figure 3.65: Projected seasonal runoff changes (%) in near future period of 2030-2050 by bias-
corrected GCMs (a) and RCMs(b) under RCP4.5 (blue color) and RCP8.5 (orange color) scenarios. 

Increasing trends in the simulated runoffs for the Bulgan catchment might be related to 

increasing trends in the projected precipitation since the hydrological regime of Bulgan River 

was more sensitive to precipitation changes (See Chapter 3.5). The lowest increasing trend 

in summer runoff by GCMs, particularly in June (Figure 3.66) can be explained by intensive 

warming trends in spring and summer as the sensitivity analysis of the Bulgan River to 

climate change showed that an increase in temperature resulted in a large decrease in June 

flow but an increase in high flow for August (See Chapter 3.5). 

a. b. 

a. b. 
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Table 3.38: Seasonal runoff changes in the near future (2030-2050) under RCP 4.5 and 8.5 compared 
to the baseline period 1985-2005. 

Seasons 

GCM mean RCM mean 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Winter 42% 88% 14% 11% 

Spring 46% 80% 28% 34% 

Summer 29% 56% 14% 16% 

Autumn 48% 86% 8% 7% 

Annual 38% 72% 16% 17% 

RCMs project a larger increase in spring runoff related to earlier snowmelt with the strongest 

warming in spring and a high percent increase of precipitation in autumn and winter. In 

addition, RCMs projected more intensive warming than GCMs, thus the effect of temperature 

on runoff simulation might be more pronounced. Also, more precipitation projected in 

summer by RCM resulted in more runoff projection for summer than autumn since the 

summer runoff of Bulgan River is largely influenced by summer precipitation (See Chapter 

3.3). According to the shaded areas between the 25th and 75th percentiles of the simulated 

monthly discharges, Bulgan River has a larger variation in spring and summer than in autumn 

and winter (Figure 3.66). By the 2040s, GCMs and RCMs project an increase in runoff 

through the year, characterized by the highest increase in the spring months of April and 

May, but the lowest increase in June. SD_CanESM also projected the highest decrease in 

June but the largest increase in September under RCM4.5 (Figure 3.66).  

  

  

Figure 3.66. Comparison of the projected monthly median runoffs (Qsim, mm) and their changes (%) 
by raw (left panel) and bias-corrected (right panel) GCMs and RCMs for the period of 2030-2050 under 
RCP4.5 and RCP8.5 scenarios compared to the reference period of 1985-2005. Shaded bands show 
a range between the 25th and 75th percentiles of the corresponding simulated runoffs for the reference 
period and RCPs. The blue and orange columns show projected changes in the monthly mean runoffs 
under RCP4.5 and RCP8.5, respectively. 

a. b. 

c. d. 
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CanESM2 and HadGEM2-AO projected a high increase of 70% and 20%, respectively, in 

low flow during the cold season under the RCP4.5 scenario. Bias-corrected RegCM4 

projected a low increase of 13% in the low flow of the Bulgan River; whereas, SD-CanESM2 

projected a minor decrease of 12% in the low flow (Figure 3.67). 

  

 
 

Figure 3.67. Exceedance probability curves of the simulated runoffs in the reference period of 1985-
2005 (black line) and the near future period of 2030-2050 under RCP4.5 (blue line) and RCP8.5 
(orange line) scenarios: GCMs (upper panel): CanESM2 (a) and HadGEM2-AO (b), and the 
corresponding RCMs (lower panel): SD_CanESM2 (c) and RegCM4 (d).  

Despite the different runoff projections, the ensemble mean of the projected monthly runoffs 

by GCMs and RCMs shows that runoff will increase in the period 2030-2050 under RCP4.5 

and RCP8.5 scenarios as a result of an increase in precipitation. However, the seasonal 

distribution of the runoff through a year will be altered due to warming. Peak flow in June 

might shift to May due to earlier snow melt in April and May (Figure 3.68a-b). Also, the 

shortened cold season might increase baseflow due to permafrost degradation.  

  
Figure 3.68. The ensemble mean of the projected monthly runoffs by GCMs and RCMs (a) and its 
change (b) in the period 2030-2050 under RCP4 and RCP8.5 scenarios compared to the baseline 
period of 1985-2005. The black line marks the ensemble mean runoff for the baseline period. Thick 
blue and orange lines are the projected monthly mean runoffs under RCP4.5 and RCP8.5, 
respectively. The corresponding shaded bands show the confidence intervals (95%) of the runoff 
projections (a). The blue and orange columns show projected changes in the monthly mean runoff 
under RCP4.5 and RCP8.5, respectively (b). 

a. b. 

c. d. 

b. a. 



 

140 
 

Chapter 3. Results and Discussion 

Like our GCMs projections, another 12 GCMs projected an increase in precipitation and 

accelerated warming in the Altai Mountains for RCP4.5 and 8.5 during 2006-2100, resulting 

in the starting projected loss of entire glaciers by 2050s and disappearing of most glaciers 

by 2100 (Zhang et al., 2016). Also, previous studies on the hydrological impact of climate 

change in the Altai Mountains using RCMs (HadGEM3, SUN-MM5 and RegCM4) (Luo et al., 

2019), and in the Kaidu watershed of northwest China using the statistically downscaled 

HadCM3 (Ma et al., 2013) supported our findings of the largest increase in spring runoff but 

a decrease or the smallest increase in summer runoff in the region.  

Based on ensemble mean projection of three RCMs, Lou et al. (2019) found a decreasing 

trend in summer precipitation with the highest warming for the catchments in the 

northwestern Altai Mountains, but the mean of our dynamical and statistical downscaling 

RCMs projected a slight increasing trend in summer precipitation and the highest warming 

in spring temperature in the southern Altai Mountains. Different future climate projections for 

catchments in the northern and southern Altai Mountains might be acceptable since a drying 

trend in the northern Altai but a wetting trend in the southern Altai were observed during the 

period 1966-2015. This period was characterized by an increasing contribution of west zonal 

and southern meridional circulation over this complex terrain (Zhang et al., 2018).    

 

In summary, CanESM2 was statistically downscaled at Duchinjil and Baitag stations using 

the SDSM tool. The prediction skill of the statistical model for precipitation was satisfactory 

for Duchinjil station in the mountainous area but poor for Baitag in the desert area due to low 

rainfall frequency and extreme climate conditions in the Dzungarian Desert. Thus, 

statistically downscaled CanESM2 at Duchinjil station (SD-CanESM2), CanESM2 and 

HadGEM2-AO, and RegCM4 outputs were further used in the estimation of future climate 

and runoff change in the Bulgan catchment in the southern Altai Mountains. After post-

processing, climate model outputs better represented local climate variability and were 

applied to the optimized HBV model. 

  

By the 2040s, spring runoff will increase in April and May due to earlier snow melt as a result 

of warmer spring and more precipitation in cold season but summer runoff will decrease in 

June because of less rainfall in summer.  
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3.6.4 Comparison of future climate change to past climate variation  

Combining reconstructed and projected climate time-series data for the Altai-Dzungarian 

Region allows us to analyze the regional climate variations and change from the Little Ice 

Age to the mid of the 21st century. It must be kept in mind, however, that these reconstructed 

and projected climate changes have uncertainties e.g. related to assumptions on tree growth 

response, observation errors, climate model uncertainties and RCP scenarios.  

Although the ensemble mean of the projected June-July temperatures derived from bias-

corrected GCMs and RCMs increases continuously from 1985 to 2050 (Figure 3.69a), the 

projected change in the summer temperature (+2.96±0.79°C) in the 2040s under RCP4.5 is 

likely to be the same as the reconstructed temperature (+2.94±0.96°C) in the beginning of 

the 1900s while the impact of the former on the water resources can be larger. Moreover, 

the projected summer temperature increase from the RCP8.5 (+3.62±0.8°C) is significantly 

higher, and the June-December precipitation sum is projected to increase in the 2040s 

compared to the dry period after Little Ice Age (Figure 3.69b).  

 

Figure 3.69. Long-term variation and changes in the estimated mean June-July temperature (a) and 
June-December precipitation sum (b) for the Altai-Dzungarian region from the Little Ice Age (blue-
shaded area,1400-1875) until 2050 relative to 1985-2005 period (pink-shaded bar). The thick black 
lines marks mean June-July air temperature reconstruction (a) and the June-December precipitation 
sum reconstruction (b). The grey-shaded band shows the uncertainty range of the reconstructions (± 
1 stdev). The red line marks observed temperature of CRU TS4.01 (a) and precipitation at Duchinjil 
station (b). The thick green line marks the ensemble mean of the projected June-July temperature (a) 
and June-December precipitation sum (b) obtained from bias-corrected GCM and RCM runs under 
the RCP4.5 scenario. The thick orange line shows the ensemble mean of the projected June-July 
temperature (a) and June-December precipitation sum (b) under the RCP8.5 scenario. The 
corresponding shaded bands show the confidence intervals (95%) of the ensemble mean temperature 
and precipitation sum under the RCP4.5 and RCP8.5 scenarios.

a. 

b. 
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“The Bulgan with Beavers is my homeland, a beautiful place like a beaver’s fur  

Meandering Bulgan River is the life-spring of my homeland…”  

 from “Bulgan River with Beavers” folk song

Photo: A downstream area of the Bulgan River valley, Oyunmunkh 2014 
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4.1 Conclusion  

During the 20th-century warming of the Northern-Hemisphere, volcano eruption and AO 

caused a late 20th-century cool and wet period in the Altai-Dzungarian region and also other 

mountainous areas of Central Asia. The subsequent warm years since the 1980s have 

accelerated the regional hydrological cycle and enhanced glacier recession in the Altai 

Mountains. The shortening of the freezing period resulted in permafrost degradation and a 

thickening of the active layer, which increased the water storage capacity. Accordingly, the 

winter baseflow has increased in this high-latitude permafrost region since the 1990s, and 

warm winters shortened the duration of the snow cover in the southern Altai Mountains since 

1977. These impacts of climate change on the water resources might threaten agriculture 

and livelihood security in the Altai-Dzungarian region in the future.  

Thus, this thesis evaluated long-term climate variability and change over the semi-arid Altai-

Dzungarian region from the past to the future and including its hydrological impacts on the 

Bulgan catchment. The main conclusions are summarized according to the research 

questions as follows. 

A. Climate variations over the Altai-Dzungarian region during and after the Little Ice 

Age  

The long-term climate change and variation over the Altai-Dzungarian region was 

reconstructed for 611 years for temperature and for 444 years for precipitation from tree-ring 

proxies collected in the southern Altai Mountains. The temperature reconstruction shows 

cooler periods related to volcanic and low solar activities during the Little Ice Age, followed 

by a warming period interrupted by two short cold periods to the 20 th century. The 

precipitation reconstruction shows alternating extreme wet and dry conditions during the 

Little Ice Age (1580-1874), followed by more stable conditions until a late 20th-century 

wetting. The precipitation variability is related to the pattern and strength of westerly winds 

governed by the Arctic (AO) and North Atlantic Oscillation (NAO). Although this region has 

warmed since 1875, a positive AO phase might have caused a late 20th-century cool and wet 

period by strengthening westerly winds in addition to volcanic-induced cooling over the Altai-

Dzungarian region. The reconstructed summer temperature and precipitation variations for 

the Altai-Dzungarian region are significantly correlated with NAO, AO, and the El Niño-

Southern Oscillation (here quantified by the NINO3.4 index). On the interannual time scale, 

prominent positive winter NAO and AO indices resulted in cool-wet summers in the Altai-

Dzungarian region for the period 1960-2012 due to the northward shift of the polar jet and 

intensified westerlies. However, the signs and strengths in the interannual teleconnections 

between these global climate drivers and the regional climate have changed over the longer 

time scales from 1900 to 2012. On the interdecadal time scale, the identified cool and wet 

summers are more strongly and negatively correlated with the spring and summer NAO than 



 

144 
 

Chapter 4. Conclusion and Recommendation 

the winter NAO for the 1900-2012 period due to interdecadal changes in the oceans’ heat 

storage and transport. But winter AO was still a prominent climate driver in summer 

temperature and precipitation on the interdecadal time scale.  

B. Hydrological impact of observed climate change in the Bulgan catchment in the 

Altai-Dzungarian region between 1984 and 2015 

The accumulated snow amount, summer rainfall, and summer temperature significantly 

influence the hydrological regime of the Bulgan River. Thus, a decrease in precipitation 

during summer and autumn and an intensive warming in summer resulted in a significant 

decline in annual discharge but an increase in winter flow for the period 1984-2015 due to 

permafrost degradation and an expansion of the soil storage capacity. The increase in 

baseflow might have shortened the period between river ice formation and break-up.  

Compared to the period 1985-2005, a decrease in total precipitation and an increase in 

potential evapotranspiration reduced the water storage of the Bulgan catchment in the period 

2006-2015. Also, the groundwater contribution to the annual runoff increased. 

C. Projected climate and runoff changes for the Bulgan catchment for the period 

2030-2050 

The runoff of the Bulgan catchment is more sensitive to changes in precipitation than 

changes in temperature. An increase in the daily precipitation sums amplifies the annual 

runoff; whereas a warming temperature changes the seasonal distribution of runoff 

throughout the year. 

Under the RCP4.5 and RCP8.5 scenarios, total precipitation and annual temperature are 

projected to increase in the period 2030-2050 compared to the baseline period 1985-2005. 

The GCMs projected an intensive warming in summer and autumn and the highest increase 

in precipitation during spring. However, RCMs projected a high increase in winter 

precipitation and more significant warming in spring in the 2040s. Despite these different 

climate projections, spring runoff is projected to increase due to an earlier snow melt in April 

and May but to decrease in June in the period 2030-2050. On the long timescale, the 

projected change in summer temperature in the 2040s is the same as the reconstructed 

temperature change in the early 1900s. However, the impact of the consecutive warming on 

the water resources since 1985 might be more severe than the short warming period in the 

1900s. 

Overall, NAO, AO, volcano eruption, and solar activity impact climate variation in the Altai-

Dzungarian region. After a late 20th-century cool and wet period caused by AO and volcanic 

eruption, the subsequent warming years have changed the regional hydrological regime of 

the Bulgan catchment. In response to the projected increase in precipitation in the 2040s, 
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runoff of the Bulgan River is projected to increase; however, the seasonal water allocation 

will be altered into a high runoff in spring but a low runoff in summer. Therefore, the 

intensified agriculture along the Bulgan River might face challenges related to water shortage 

and heat stress during the growing season in the future.  

  

4.2 Recommendation  

The interpolated APHRODITE dataset was found as a valuable data source for this data-

limited mountainous region despite its underestimation of air temperature and precipitation 

amounts in the southern Altai Mountains. After correcting these biases, this dataset 

simulated satisfactorily the runoff of the Bulgan catchment. In a further study, a good 

regionalization approach of precipitation data at the station to the catchment scale should be 

selected to improve its model efficiency of the hydrological simulation. 

Moreover, the seasonal thawing of permafrost and glaciers are vital for the hydrological 

simulation of the Bulgan River in the southern Altai Mountains. Thus, our attempt to 

conceptualize the permafrost condition with a delayed response function and glacier variant 

to the standard model structure of the HBV model improved the baseflow simulation. 

Although model efficiency was good (0.69) with a low absolute error of 7.6%, the high flows 

of the Bulgan River in wet years were underestimated and low flows in dry years were 

overestimated. Besides, the observed upward trend in winter flow since 2006 was not 

simulated most probably due to a lack of data on glacier area change and the rather simple 

conceptualization of the permafrost degradation. In a future study, the conceptualization of 

permafrost in the hydrological model should be improved to better simulate the seasonal 

runoff change as groundwater recharge has increased in the winter baseflow of the Bulgan 

River.  

The uncertainty of the hydrological simulation for the Bulgan catchment might have also 

originated from limited precipitation measurements in this complex terrain, errors in 

discharge measurement for the extreme years, the lack of glacier and permafrost data, and 

model structure and parameter deficiencies. Therefore, data availability and accuracy should 

be considered in the simulation period to reduce uncertainty in future runoff simulations.  

The statistical downscaling of precipitation from CanESM2 for the southern Altai Mountains 

was satisfactory but poor for the desert area due to low rainfall frequency and extreme 

climate. The maximum and minimum temperatures were downscaled well. In future 

research, HadGEM2 can be statistically downscaled at the station level by the SDSM tool 

and compared with its dynamically downscaled RCM (RegCM4) simulations in order to select 

a more appropriate downscaling for the hydrological impact study of climate change in this 

semi-arid region.
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ANNEX 

A. Lapse rates of temperature, precipitation and evapotranspiration observed at 

climate stations 

In Bulgan river catchment, WATERCOPE project set up seven climate stations at heights 

ranging from 1133 m at state border to 2960 m on top of mountain in different periods from 

2009 to 2013. Over the common period of 2013, precipitation and temperature records of 

four WATERCOPE stations and two official Duchinjil and Baitag climate stations are used 

for calculating lapse rates of seasonal and annual temperature and precipitation with change 

in elevation by 100 m in the southern Altai Mountain by the linear regression. 

 

 

 

 

Figure A.1: Lapse rate of seasonal and annual air temperatures in the southern Altai Mountains  

It is found that lapse rates of temperatures with elevation for winter, spring, summer and 

autumn in 2013 are -0.45ºC, -0.77ºC, -0.8ºC and -0.65ºC in 100 m, respectively. For summer 

and autumn, lapse rates of precipitation with elevation are identified as 3% and 4% in 100m, 

respectively whereas no lapse rates are found for precipitation measurement in spring and 
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winter, might be caused by falling small amount of precipitation in solid form. Along main 

valley, change of annual precipitation is 69mm/km. However, it is revealed during the snow 

field survey of WATERCOPE project in February 2014 that lapse rate of snow depth with 

elevation is 6 mm per 100 m in the southern Altai mountains (Purevdagva, 2014).  

For lapse rate of precipitation, we focused on only stations along main valley of Bulgan 

catchment from south to north, but excluded Turgen station in tributary valley from west to 

east and Tsunkhel station on top of the mountain of the tributary valley.  

 

 

 

Figure A.2: Lapse rate of seasonal and annual precipitation in the southern Altai Mountains  

Annual lapse rates of temperature and precipitation with elevation are defined as -0.67ºC 

and 7% in 100 m, respectively. We used annual lapse rates of precipitation and air 

temperature for areal mean climate of the catchment area for hydrological simulations. 

Using ET0 estimates of five official climate stations at different latitude and elevations in and 

nearby the Bulgan catchment, we found that annual lapse rates of ET0 with elevation and 
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latitude are -9.9 mm (2.5%) per 100m and -112 mm (13%) per degree in the southern Altai 

Mountains, respectively. Also, the lapse rate of daily ET0 with elevation is -0.003 mm (3%) 

per 100m. 

  

  
 

Figure A.3: Lapse rate of annual and daily evapotranspiration changes with elevation (a, c) and 
latitude (b, d) in the southern Altai Mountains  
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B. Lapse rates of temperature, precipitation and evapotranspiration of APHRODITE 

dataset 

Over the recent period of 1993-2002, lapse rates of gridded temperature, precipitation and 

evapotranspiration of APHRODITE dataset over the Bulgan catchment are estimated on 

seasonal and annual scales (Figures B.1-3). 

On annual and seasonal scales, precipitation (r=0.96-98, p<0.01) and temperature (r=0.98-

99, p<0.0001) of grids (46.1º-47.3ºN) along the latitude of the catchment are more 

statistically significantly changed with elevations than precipitation (r= -0.12 and -0.45) and 

temperature (r=0.87-0.98, p=0.05-0.001) of grids (90.8ºE -91.8ºE) along the longitude of the 

catchment. 

  

 

 

Figure B.1: Lapse rates of seasonal and annual air temperatures of APHRODITE dataset in the 
southern Altai Mountains 
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Along latitude of the catchment, changes of winter, spring, summer and autumn 

temperatures with elevation are -0.19ºC, -0.5ºC, -0.56ºC and -0.44ºC per 100 m, respectively 

(Figure B.1). 

As shown in Figure B.2, lapse rates of precipitation sum during winter and summer are 

identified as -1.7 % (p<0.01) and 5% (p<0.001) and per 100m, respectively. But no significant 

lapse rates are found for spring and autumn precipitation sums. 

Annual lapse rates of temperature and precipitation are defined as -0.42ºC and 2.3% per 

100 m on average, respectively.  

  

  

 

 

Figure B.2: Lapse rates of seasonal and annual precipitation of APHRODITE dataset in the 
southern Altai Mountains 

 

 

 



 

164 
 

 

Changes of the evapotranspiration for winter, spring, summer and autumn with elevation 

along latitude of the catchment are -4%, -2.3%, -1.6% and -2.3%, per 100 m, respectively 

(Figure B.3). Daily and annual lapse rates of the evapotranspiration per 100 m are found as 

-0.04mm (-2%) and -14.6mm (-2%), respectively.  

  

  

  

Figure B.3: Lapse rate of annual, seasonal and daily evapotranspiration changes with elevation along 
the latitude (46.1º-47.3ºN, 91.3ºE) of the Bulgan catchment in the southern Altai Mountains  
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C. Difference in the projected climate and runoff changes by raw and bias-corrected 

GCMs and RCMs for the period of 2030-2050  

Generally, the mean of raw GCMs projected more precipitation in winter with increases of 

21% and 32%, and in autumn with increases of 21% and 22% under RCP4.5 and 8.5, 

respectively. Moreover, intensive warming of +2.2 and +2.6°C was projected in summer. 

After post-processing, the mean of GCMs projected more precipitation in spring and autumn, 

and strong warming in summer and autumn (Figure C.1).  

Raw and bias-corrected RCMs projected a larger increase in precipitation for winter by 11% 

and 47%, and for autumn by 20% and 29% under RCP4.5 and 8.5, respectively. Raw RCM 

projected spring precipitation to slightly increase (3%); in contrast, bias-corrected RCM 

projected it to slightly decrease (-1.5%) under RCP4.5. Furthermore, intensive warming of 

+2.7°C and +3.3°C in spring was projected by both raw and bias-corrected RCMs under 

RCP4.5 and 8.5, respectively.  

 
 

Figure C.1: Projected precipitation and temperature changes in the near future period of 2030-2050 

by raw and bias-corrected GCMs (a) and RCMs(b) under RCP4.5 (blue color) and RCP8.5 (orange 

color) scenarios.  

Raw and bias-corrected GCMs projected the same increasing trends in runoffs for all 

seasons from 2030 to 2050, characterized by a low increase in summer runoff. In addition, 

raw RCM projected a decrease and the lowest increase in summer runoff; whereas, bias-

corrected RCM projected the lowest increase in autumn runoff (Figure C.2, Table 3.37).  

  

Figure C.2: Projected seasonal runoff changes (%) in near future period of 2030-2050 by raw and 

bias-corrected GCMs (a) and RCMs(b) under RCP4.5 (blue color) and RCP8.5 (orange color) 

scenarios. 

a. b. 

a. b. 
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After the post-processing of RCM data, a lower increase in summer runoff projected by raw 

RCMs is altered into a higher increase of summer runoff rather than autumn runoff. The 

signal change in summer runoff can be explained by more precipitation projected in summer 

by bias-corrected RCM (Figure C.1) since the summer runoff of Bulgan River is largely 

influenced by summer precipitation (See Chapter 3.3). 

  

 
  

  

 

 

Figure C.3: Comparison of the projected monthly median runoffs (Qsim, mm) and their changes (%) 
by raw (left panel) and bias-corrected (right panel) GCMs and RCMs for the period of 2030-2050 under 
RCP4.5 and RCP8.5 scenarios comparing to the reference period of 1985-2005. Shaded bands show 
a range between the 25th and 75th percentile of the corresponding simulated runoffs for the reference 
period and RCPs. 

a. 

b. 

c. d. 
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Table C.1: Seasonal runoff changes in the near future (2030-2050) under RCP 4.5 and 8.5 compared 
to the baseline period 1985-2005. 

Seasons 

GCM RCM 

Raw Bias corrected Raw Bias corrected 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Winter 36% 50% 42% 88% 7% 7% 14% 11% 

Spring 38% 50% 46% 80% 17% 26% 28% 34% 

Summer 24% 29% 29% 56% -2% 3% 14% 16% 

Autumn 40% 52% 48% 86% 9% 11% 8% 7% 

Annual 31% 39% 38% 72% 6% 11% 16% 17% 

 

 


