Postmortaler Nachweis von Zytokinen und des Transkriptionsfaktors myc bei Myokardinfarkt und Koronarinsuffizienz

Inaugural-Dissertation

zur Erlangung des Doktorgrades

der Hohen Medizinischen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität

Bonn

Pirmin Irenäus Zöhrer

aus Freiburg im Breisgau 2023

Angefertigt mit der Genehmigung der Medizinischen Fakultät der Universität Bonn				
1. Gutachter:	Prof. Dr. med. Burkhard Madea			
2. Gutachter:	PD Dr. Dimo Dietrich			
Tag der Mündlicher	n Prüfung: 29.09.2023			

Aus dem Institut für Rechtsmedizin

Direktor: Prof. Dr. med. Daniel Wittschieber

Inhaltsverzeichnis

	Abkürzungsverzeichnis				 5
1.	Einleitung				 8
1.1	Epidemiologie und Pathogenese de Koronarinsuffizienz	es	Myokardinfarktes	und	relativen 8
1.2	Tumornekrosefaktor				 11
1.3	Interleukin-6				 12
1.4	Interleukin-8				 12
1.5	myc				 13
1.6	Zielsetzung der Arbeit				 13
2.	Material und Methoden				 15
2.1	Patientenkollektiv				 15
2.2	Immunhistochemie				 18
2.3	Lichtmikroskopische Auswertung:				 19
2.4	Statistische Auswertung				 21
3.	Ergebnisse				 22
3.1	Allgemein				 22
3.2	Semiquantitative Ergebnisse				 29
3.2	Tumornekrosefaktor				 36
3.3	Interleukin-6				 38
3.4	Interleukin-8				 40
3.5	myc				 43
4.	Diskussion				 44
5.	Zusammenfassung				 51
	Anhang				 52

6.	Abbildungsverzeichnis	77
7.	Tabellenverzeichnis	78
8.	Literaturverzeichnis	79
9.	Danksagung	84

Abkürzungsverzeichnis

ACVB aortocoronarer Venenbypass

ANOVA Varianzanalyse (analysis of variance)

BMI Body-mass-index

BWK Brustwirbelkörper

CD15 Cluster of differentiation 15

CO Kohlenstoffmonoxid

COPD chronisch obstruktive Lungenerkrankung

CPR Herz-Lungen-Wiederbelebung

(cardiopulmonary resuscitation)

CRP C-reaktives Protein

CX 43 Connexin 43

DM II Diabetes mellitus Typ II

EKG Elektrokardiogramm

GI gastrointestinal

H-FABP Heart-type fatty acid-binding protein

HIF-1 Hypoxia-inducible factor 1

HRP Horseradishperoxidase

ICAM Intercellular adhesion molecule

IL-1 Interleukin-1

IL-6 Interleukin-6

IL-8 Interleukin-8

IL-15 Interleukin-15

IQA Interquartilsabstand

i.v. intravenös

KG Körpergewicht

KHK Koronare Herzerkrankung

LWK Lendenwirbelkörper

MPC1 Mitochondrial pyruvate carrier 1

MW Mittelwert

NBT Nitroblau Tetrazoliumchlorid

NSTEMI Nicht-ST-Hebungsinfarkt

OAK orale Antikoagulation

pAVK periphere arterielle Verschlusskrankheit

PTCA perkutane transluminale Koronarangioplastie

RCX Ramus circumflexus

SM Schrittmacher

STEMI ST-Hebungsinfarkt

TAVI transkatheter Aortenklappenimplantation

TEP Totalendoprothese

THC Tetrahydrocannabinol

TNF Tumornekrosefaktor alpha

TU Todesursache

TVT tiefe Venenthrombose

ZO-1 Zonula occludens 1

1. Einleitung

1.1 Epidemiologie und Pathogenese des Myokardinfarktes und der relativen Koronarinsuffizienz

Der ischämische Myokardinfarkt entsteht durch eine Minderperfusion des Myokards mit konsekutivem Sauerstoffmangel, welche zumeist durch eine Verlegung oder hochgradige Stenosierung von Koronararterien oder deren Ästen bedingt wird. Die Prävalenz beträgt Deutschland 4,7 % bei 40- bis 79-Jährigen, wobei Männer mit einer Lebenszeitprävalenz von 7 % häufiger betroffen sind als Frauen (2,5 %) (Gößwald et al., 2013). Zudem steigt das Infarktrisiko mit zunehmendem Alter. Häufig liegt dem akuten Myokardinfarkt eine Koronare Herzerkrankung (KHK) mit einer Prävalenz von 9,3 % für 40- bis 79-Jährige in Deutschland zugrunde, wobei auch hierfür das Risiko bei Männern erhöht ist (12,3 % bei Männern, 6,4 % bei Frauen) (Gößwald et al., 2013). Im Gegensatz zu Alter, genetischer Disposition und Geschlecht sind einige Risikofaktoren für die Entwicklung einer KHK und damit auch für einen Myokardinfarkt beeinflussbar. So erhöhen Nikotinkonsum, Übergewicht, Hypercholesterinämie, arterielle Hypertonie sowie Diabetes mellitus das Risiko an einer KHK zu erkranken. Regelmäßiger Genuss von Obst und Gemüse, körperliche Aktivität sowie ein moderater Alkoholkonsum haben eine protektive Wirkung (Yusuf et al., 2004). Die geografischen Unterschiede des Vorkommens oben genannter Risikofaktoren spiegeln sich auch in den unterschiedlichen Prävalenzen der KHK und des Myokardinfarktes im internationalen Vergleich wider.

Pathogenetisch induzieren bei der KHK Endothelschäden Reparaturmechanismen. Diese führen zu einer Plaquebildung an der Gefäßwand, die das Lumen der Koronararterien zunehmend einengen können. Man unterscheidet stabile von instabilen Plaques. Letztere können rupturieren und das Gefäßlumen ganz oder teilweise verlegen, was in einem akuten Myokardinfarkt resultiert. Durch thrombogenetischen Inhalt der Plaques kann sich an diesen ein Thrombus bilden, wodurch eine partielle Einengung zu einer absoluten Okklusion des Gefäßvolumens aggravieren kann (Anderson und Morrow, 2017). Durch die Verlegung des Lumens kommt es in dem vom nachgeschalteten Gefäß versorgten Myokardareal zur Hypoxie bis hin zur Ischämie.

Klinisch manifestiert sich der Myokardinfarkt häufig durch einen akuten Brustschmerz mit

gegebenenfalls vegetativer Begleitsymptomatik und Panik. Die Diagnostik umfasst in erster Linie die klinische sowie laborchemische Untersuchung inklusive der Erhebung des Troponins, eines Elektrokardiogramms (EKG) sowie die Echokardiografie. Anhand des EKGs wird durch die Beurteilung der ST-Strecke zwischen dem ST-Hebungsinfarkt (STEMI) und dem Nicht-ST-Hebungsinfarkt (NSTEMI) unterschieden. Bei erhärtetem Verdacht auf einen Myokardinfarkt kann eine mögliche Stenosierung oder Okklusion einer Koronararterie in der Koronarangiographie dargestellt und mit einer perkutanen transluminalen Koronarangioplastie (PTCA) therapiert werden (Herold, 2018). Trotz verbesserter Akutversorgung in den letzten Jahren beträgt die Mortalität während des Krankenhausaufenthaltes beim Myokardinfarkt 11,6 % bis 40 % (Schuler et al., 2006; Herold, 2018). Derzeit sind kardiovaskulär bedingte Todesfälle führend in der Todesursachenstatistik des statistischen Bundesamtes der Bundesrepublik Deutschland (Statistisches Bundesamt, 21.08.2019).

Post mortem kann die Diagnose des Myokardinfarktes durch die Obduktion makroskopisch und mikroskopisch gestellt werden. Bei Verdachtsdiagnose des plötzlichen Herztodes wurde in 50-70 % der Obduktionen eine Okklusion von Koronararterien durch Thromben nachgewiesen (Michaud et al., 2020). Je nach Alter des Infarktes können mikroskopisch vier Phasen unterschieden werden. In den ersten Stunden nach Infarkt treten eine Schwellung der Mitochondrien sowie ein interstitielles Ödem auf, letzteres ist lichtmikroskopisch jedoch post mortem erschwert darstellbar. Als weiteres Diagnostikum kann Nitroblau Tetrazoliumchlorid (NBT) einen frischen Myokardinfarkt makroskopisch demaskieren, allerdings kann dieser Nachweis zum Beispiel durch eine Herz-Lungen-Wiederbelebung (CPR) falsch positiv sein. Somit ist der Test mit NBT wenig spezifisch (Michaud et al., 2020). In der ersten Woche zeichnet sich eine Koagulationsnekrose ab und eine Infiltration durch neutrophile Granulozyten tritt ein. Im Verlauf wird das infarzierte Gewebe durch Granulationsgewebe ersetzt und es bildet sich in der letzten Phase Monate nach dem Ereignis eine fibrotische Herzmuskelschwiele (Michaud et al., 2020). In Abb.1 sind beispielhaft Präparate mit einer hämorrhagischen Nekrose (a + b) und einer Muskelschwiele (c + d) gezeigt.

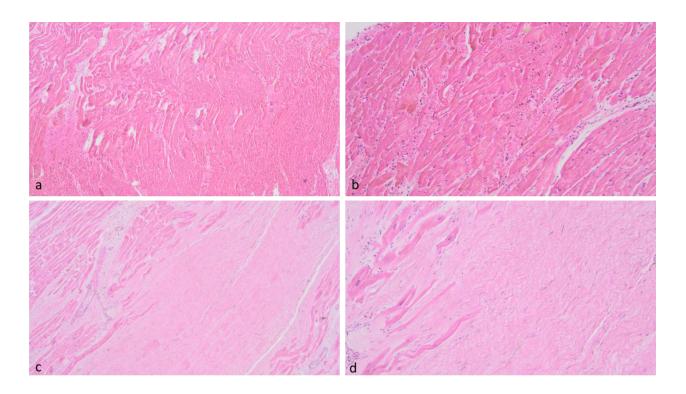


Abb. 1: Verschiedene Infarktstadien aus den Präparaten dieser Arbeit.

a). Hämorrhagische Nekrose b). Hämorrhagische Nekrose in hundertfacher Vergrößerung c). Herzmuskelschwiele d). Herzmuskelschwiele in hundertfacher Vergrößerung mit deutlich sichtbarem Bindegewebe

Alle dem Infarkt folgenden Phasen beinhalten entzündliche Umbauprozesse. Bereits in den ersten Stunden konnte in infarziertem Myokard eine vermehrte Expression von proinflammatorischen Zytokinen wie die in dieser Arbeit untersuchten Proteine Tumornekrosefaktor alpha (TNF), Interleukin-6 (IL-6) und Interleukin-8 (IL-8) immunhistochemisch nachgewiesen werden (Turillazzi et al., 2015).

Jedoch kann nicht nur die Verlegung von Gefäßen zu einer nicht ausreichenden Sauerstoffversorgung von Myokard führen. Bei ausgeprägter myokardialer Hypertrophie kann bei Belastung eine transiente Minderperfusion insbesondere des subendokardialen Myokards auftreten, da die Gefäßversorgung transmural verläuft (Hoffman und Buckberg, 2014). Bei tachykarden Episoden besonders bei vorbestehender KHK kann es somit zu einer relativen Koronarinsuffizienz kommen. Diese kann beispielsweise über eine Arrhythmie zu einem plötzlichen Herztod führen (Michaud et al., 2020).

1.2 Tumornekrosefaktor

Die in der Arbeit untersuchten Proteine TNF, IL-6 sowie IL-8 sind proinflammatorische Zytokine, welche von Makrophagen und dendritischen Zellen freigesetzt werden. Je nach Rezeptor wirken sie als Chemoattraktoren für Leukozyten, als Induktoren weiterer Zytokinfreisetzung oder auf Gefäßendothelien wie z.B. über diverse Selektine und begünstigen so auf verschiedene Weise Entzündungsreaktionen (Murphy et al., 2009). TNF wird hauptsächlich von Makrophagen gebildet und freigesetzt. Durch das ubiquitäre Vorkommen von Makrophagen kann TNF in fast jedem Organ produziert werden (Murphy et al., 2009). Zudem können auch diverse andere Zellen wie Endothelzellen oder Kardiomyozyten TNF ausschütten (Meldrum, 1998). Die TNF-Synthese wird unter anderem durch Hypoxie induziert (Ghezzi et al., 1991) und verschlechtert hierbei im Herzmuskel die Kontraktilität der Kardiomyozyten (Meldrum, 1998). An Endothelzellen wirkt TNF über P- und E-Selektine auf die an der Endothelwand rollenden Leukozyten, was wiederum den Kontakt zu anderen Chemokinen wie z.B. IL-8 mit den Leukozyten ermöglicht. Dieser Vorgang ist die Voraussetzung für die Diapedese – dem Auswandern von Leukozyten aus den Blutgefäßen in das Zielgewebe. TNF aktiviert in der Interaktion mit IL-8 neutrophile Granulozyten und kann somit eine Degranulation derselben induzieren. Durch Begünstigung von Thrombozytenaggregation in Kapillaren an Entzündungsherden sowie den Einfluss auf weitere Zytokin-Freisetzungen kann TNF zur lokalen Begrenzung von Entzündungsreaktionen beitragen. Systemisch kann TNF jedoch durch Vasodilatation, die Erhöhung der Endothelpermeabilität sowie die Induktion von Thrombozytenaggregation in der Sepsis über eine Hypotonie und Koagulopathie zu einer klinischen Verschlechterung bis zum septischen Schock führen (Cairns et al., 2000). Des Weiteren wirkt TNF wie IL-6 pyrogen und stimuliert die hepatische Synthese von Akute-Phase-Proteinen (Baumann und Gauldie, 1990). Im Rahmen von Myokardinfarkten werden TNF sowohl potentiell protektive Eigenschaften zugeschrieben, unter anderem zeigte sich im Tierversuch bei Knockoutmäusen, bei welchen die TNF-Rezeptoren 1 und 2 nicht exprimiert waren, größere Infarktareale nach artifiziell ausgelösten Infarkten (Kurrelmeyer et al., 2000). Jedoch ist ein erhöhter Plasma-TNF-Spiegel auch ein Risikoprädiktor für Patienten mit bekannter Herzinsuffizienz (Dunlay et al., 2008).

1.3 Interleukin-6

IL-6 ist ein von Hepatozyten sezerniertes, aus 212 Aminosäuren bestehendes Zytokin, welches bei Infektionen, Gewebsuntergang, in der Hämatopoese sowie in der Immunabwehr des Körpers von Bedeutung ist. Die Freisetzung von IL-6 wird unter anderem von TNF gemeinsam mit Interleukin-1 gesteuert. Das Protein wirkt über zwei verschiedene Rezeptor-Signalwege: IL-6 kann sowohl an einen Transmembran-Rezeptor als auch an einem löslichen Rezeptor gebunden Signaltransduktionsketten auslösen. Je nach Zielorgan induziert IL-6 beispielsweise in den Hepatozyten die Freisetzung von Akute-Phase-Proteinen wie das C-reaktive Protein (CRP), Amyloid-alpha oder Fibrinogen, im Knochenmark die Thrombozytenfreisetzung sowie in B-Zellen die Antikörperproduktion. Bei Dysregulation der Synthese können chronische Autoimmunkrankheiten entstehen. Hier steht mit Tocilizumab ein Rezeptor-Antikörper als Therapeutikum zur Verfügung (Tanaka et al., 2014).

Über die Induktion der Akute-Phase-Protein-Synthese in der Leber spielt IL-6 eine zentrale Rolle in der Pathogenese von Plaquebildung an Gefäßwänden und damit der KHK. Über die Wirkung auf Proteine wie Fibrinogen und Plasminogen-Aktivator-Inhibitor beeinflusst IL-6 darüber hinaus die Stabilität von Thromben (Libby und Rocha, 2018). So wurde bereits ein Zusammenhang zwischen einem erhöhten IL-6-Plasmaspiegel und dem gehäuften Auftreten von KHK und Myokardinfarkten beschrieben (Kaptoge et al., 2014; Ridker et al., 2000; Nadeem Sarwar, 2012). Des Weiteren treten erhöhte IL-6-Spiegel gehäuft bei Patienten mit instabiler Angina pectoris auf und gehen mit dem Auftreten kardiovaskulärer Komplikationen einher (Biasucci et al., 1996). Beim STEMI korreliert ein erhöhter IL-6-Spiegel mit der Infarktgröße. Nach Infarkt sind erhöhte Spiegel ein Indikator für eine reduzierte linksventrikulären Pumpfunktion (Groot et al., 2019).

1.4 Interleukin-8

IL-8 ist ein aus 72 Aminosäuren bestehendes Chemokin, welches von Makrophagen, Endothel- und glatten Muskelzellen produziert wird. Es reguliert bei Infektionen oder Zellschaden verschiedene Prozesse der Immunabwehr sowie die Thrombogenese (Bester und Pretorius, 2016). Die Wirkung erfolgt chemotaktisch über zwei G-Proteingekoppelte Rezeptoren (CXCR1 und CXCR2) auf neutrophile Granulozyten und

begünstigt deren Degranulation. Durch eine angiogenetische Wirkung ist IL-8 auch in der Pathogenese und Metastasierung von Tumoren von Bedeutung (Waugh und Wilson, 2008). Bei der KHK konnte ein erhöhter IL-8-Plasmaspiegel bei instabiler KHK nachgewiesen werden (Romuk et al., 2020). Wie auch bei IL-6 korrelieren erhöhte IL-8-Spiegel bei Patienten mit STEMI mit der Infarktgröße, einer reduzierten linksventrikulären Pumpfunktion sowie einem schlechteren Outcome nach Intervention (Shetelig et al., 2018).

1.5 myc

Myc ist ein Immediate Early Gen, welches das gleichnamige Protein codiert. Über dieses Protein werden der Zellzyklus und die Proliferation anderer Zellen gesteuert. In diversen Tumorentitäten wie dem Colon-Carcinom oder dem Burkitt-Lymphom konnte amplifiziertes myc nachgewiesen werden. Somit ist myc ein Protoonkogen (Wasylishen und Penn, 2010).

Auch im Myokard übernimmt myc regulatorische Aufgaben wie zum Beispiel im Glucose-Stoffwechsel sowie in der mitochondrialen Biogenese bei kardialem Stress (Ahuja et al., 2010).

Eine kardiale Hypertrophie geht mit einer erhöhten myc-Expression einher (Starksen et al., 1986) und es konnte in verschiedenen Studien gezeigt werden, dass sowohl eine erhöhte myc-Expression eine hypertrophe Kardiomyophatie induzieren kann (Lee et al., 2009) als auch dass eine myokardiale Inaktivierung von myc mit einer Dämpfung der Hypertrophie korreliert (Ahuja et al., 2010).

1.6 Zielsetzung der Arbeit

Die Sauerstoffminderversorgung der Herzmuskelzellen ist der entscheidende Faktor in der Pathogenese des Myokardinfarkts als auch der relativen Myokardinsuffizenz durch myokardiale Hypertrophie. Ist im Rahmen der Obduktion bei ungeklärter Todesursache die Diagnosestellung eines Myokardinfarktes makroskopisch nicht eindeutig, können immunhistochemische Untersuchungen hilfreich sein. So akkumulieren Fibronektin und C5b-9, während Myoglobin und Troponin reduziert sind (Sabatasso et al., 2016; Barranco und Ventura, 2020). Einige Arbeiten, welche unter anderem zum Thema der

Immunhistochemie im Rahmen von Myokardinfarkten verfasst wurden, sind in Tabelle 1 aufgeführt.

Die in der hier vorliegenden Arbeit untersuchten Zytokine wurden bereits in der Frühphase nach Myokardinfarkt immunhistochemisch nachgewiesen (Turillazzi et al., 2015). Bisher bestehen keine belastbaren Daten zur Expression der genannten Zytokine in der relativen Koronarinsuffizienz. Somit ist diese oft eine Differenzialdiagnose der potentiellen Todesursachen (TU). Ziel der Untersuchungen ist es, durch Vergleich einer Kontrollkohorte mit jeweils einer Kohorte von Todesfällen an Myokardinfarkt sowie relativer Koronarinsuffizienz eine mögliche Korrelation einer vermehrten Expression von TNF, IL-6, IL-8 und myc mit einer Sauerstoff-Minderversorgung des Myokards nachzuweisen. Hierdurch könnte die Diagnose einer relativen Koronarinsuffizienz zukünftig histologisch untermauert werden.

Zudem sollen durch Subgruppenbildung die Einflüsse einer Reanimation sowie eines früheren, überlebten Myokardinfarktes auf die Proteinexpression untersucht werden.

Tab. 1: Übersichtsarbeiten zum immunhistochemischen Nachweis von Myokardinfarkten

Autor	Jahr	Inhalt			
Barranco et al.	2018	Nachweis von frühen Myokardinfarkten mittels IHC durch: Fibronectin, Fibrinogen, C5B9, Myoglobin, Troponin, S100, H-FABP, Dystrophin, HIF-1, Galactin, Caspase-3, Dityrosin, IL-15, Jun-B, Cx 43, SORBS2, ZO-1, Zytoskelettproteine			
Michaud et al.	2019	Diagnostik des Myokardinfarktes, Akkumulation von Fibronectin und C5b-9, Auslaufen der Myozyten von Troponin und Myoglobin, Veränderung der Phosphorilierung von S100A1			
Sabatasso et al.	2016	Nachweis folgender Proteine im Mausmodell nach Zeit: Jun-B, Cx 43, C5b-9, Fibronectin, Myoglobin, Tenascin C			
Turillazzi et al.	2015	Expression in 0-6 und 6-12 h nach Infarkt von: Tryptase, TNF, CD15, IL-1, IL-6, IL-8, IL-15, MPC-1 und ICAM			

Abkürzungen: H-FABP, heart-type fatty acid-binding protein; HIF-1, hypoxia-inducible factor 1; IL-15, Cx 43, Connexin 43; Interleukin-15; ZO-1, zonula occludens 1; IL-1, Interleukin-1; CD15, cluster of differentiation 15; MPC-1 mitochondrial pyruvate carrier 1; ICAM, intercellular adhesion molecule

2. Material und Methoden

2.1 Patientenkollektiv

Für die Untersuchungen wurden Gewebeproben von 106 Patienten untersucht. Diese stammen aus den Asservaten der im Rahmen von Obduktionen gesicherten Organteilen des Instituts für Rechtsmedizin der Universität Bonn aus den Jahren 2015 bis 2017. Hieraus wurden drei Gruppen gebildet:

- 1. 42 Patienten mit der Todesursache Myokardinfarkt
- 2. 26 Patienten mit der Todesursache relative Koronarinsuffizienz
- 3. 38 Patienten im Kontrollkollektiv

Die Infarktgruppe setzt sich aus Patienten, welche an einem Myokardinfarkt verstorben sind, zusammen. Hierunter fallen sowohl Patienten mit Erstmanifestation eines kardiovaskulären Ereignisses sowie Patienten, welche bereits einen Myokardinfarkt in der Vorgeschichte überlebt haben. Zudem wurden Patienten, welche bei bekannter KHK bereits mittels Koronarangiographie mit Angioplastie und Stenting oder operativ mit aortocoronaren Venenbypass (ACVB) versorgt wurden, eingeschlossen. Einzelne Patienten hierbei sind im Rahmen von notfallmäßigen Interventionen verstorben. Bei einigen Patienten traten die letalen Infarkte im Rahmen anderer Erkrankungen auf, welche zum Teil als konkurrierende Todesursachen in Frage kommen oder das Infarktgeschehen aggravieren können – beispielshaft hierfür ist eine akute oder chronische Anämie, welche die myokardiale Minderperfusion im Rahmen des Infarktes verstärken kann. Die Koronarinsuffizienzgruppe schließt Patienten ein, bei denen im Rahmen der Obduktion makroskopisch keine frischen Infarktzeichen gefunden wurden, jedoch eine myokardiale Hypertrophie mit einem kritischen Herzgewicht über 500 g als Ursache für eine relative Minderperfusion des Myokards festgestellt wurde. Da außer der Herzgröße makroskopisch kein sicherer Nachweis für diese Todesursache möglich ist, stehen bei einzelnen Patienten konkurrierende Todesursachen im Raum. Für das Kontrollkollektiv wurden Patienten mit gesicherten Todesursachen zusammengestellt, welche nicht im Zusammenhang mit Herzinfarkt, koronarer Herzkrankheit oder Kardiomegalie stehen wie beispielsweise Opfer von Gewalttaten, Verkehrsunfällen oder Suizidanten. Patienten mit tumorösen oder septischen Todesursachen wurden

ausgeschlossen, da hier eine Beeinflussung der Zytokine und des Protoonkogens erwartet wurden. In einzelnen Fällen sind jedoch infektiöse, onkologische oder kardiale Komorbiditäten bekannt oder es wurden durch die Anamnese oder im Rahmen der Obduktion tumoröse Entitäten als Begleiterkrankung festgestellt. Die individuellen Patientencharakteristika sind in den Tabellen 2-4 des Anhangs dezidiert aufgeführt.

Um eine Verfälschung der Ergebnisse durch die fortgeschrittene Zersetzung des Gewebes auszuschließen, wurden Fälle in allen drei Gruppen ausgeschlossen, bei denen bereits zum Zeitpunkt der Obduktion Fäulniszeichen aufgetreten waren. Zwei Patienten wurden aufgrund von Verbrennungen obduziert, welche jedoch nachweislich post mortem erfolgten. Beide Patienten wurden aufgrund eines gesicherten Myokardinfarktes in die Infarktgruppe eingeschlossen.

Die Gewebeproben aus den Jahren 2015 bis 2016 wurden in achtprozentigem Formaldehyd fixiert aufbewahrt. Die Gewebeproben aus dem Jahr 2017 wurden aufgrund von Änderungen der institutsinternen Standards in vierprozentigem Neutralformaldehyd fixiert. Bei Patienten mit makroskopisch gesichertem Herzinfarkt (Gruppe 1) wurden jeweils zwei Proben aus ischämen Herzmuskelarealen und eine weitere Probe aus makroskopisch unauffälligem Herzmuskel untersucht. Bei Patienten mit Verdacht auf eine relative Koronarinsuffizienz und dem Kontrollkollektiv (Gruppe 2+3) wurde jeweils aus drei verschiedenen Herzmuskelproben Gewebe entnommen. Aus der institutseigenen Datenbank wurden zu den Fällen das Alter und Geschlecht festgehalten. Zudem wurde aus den Untersuchungsberichten und den Obduktionsberichten evaluiert, ob es Hinweise auf Myokardnarben gab und ob vor Feststellung des Todes eine CPR durchgeführt wurde. Die Verteilung der Subgruppen über alle Gruppen hinweg wurde in Abb. 2 visualisiert.

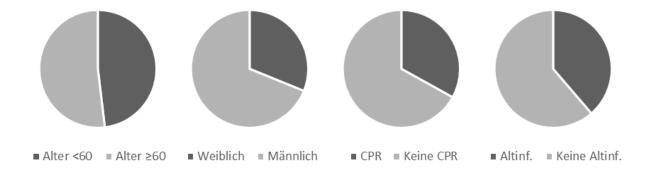


Abb. 2: Verteilung der Subgruppen

Das durchschnittliche Alter der Patienten beträgt 62 Jahre. In den verschiedenen Gruppen variiert das durchschnittliche Alter – am jüngsten sind die Patienten der Kontrollgruppe, am ältesten die der Koronarinsuffizienzgruppe. Insgesamt sind unter den 106 Patienten 73 Männer und 33 Frauen (s. Tab. 5), was einem Geschlechterverhältnis von 68,9 % / 31,1 % entspricht. In den Untersuchungsgruppen ist das Verhältnis vergleichbar (71,4 % Männer in der Infarkt- und 73,1 % in der Koronarinsuffizienzgruppe). In der Kontrollgruppe ist der Frauenanteil mit 36,8 % vergleichsweise etwas höher. Reanimationen wurden bei insgesamt 35 Patienten durchgeführt, wovon 23 auf die der Infarkt-, acht auf die der Koronarinsuffizienzgruppe und vier auf die der Kontrollen entfallen. Bezüglich der Altinfarkte liegt durch die Auswahlkriterien für die Kontrollgruppe nahe, dass mit zwei von 36 Patienten in dieser Gruppe das Verhältnis der Patienten mit einem kardiovaskulären Ereignis in der Vorgeschichte geringer ist als in den anderen Gruppen. Bei den Patienten, die an einem Herzinfarkt verstorben sind, lagen bei 29 von 42 Hinweise auf Altinfarkte vor, in der Koronarinsuffizienzgruppe traf dies auf zehn von 16 Patienten zu.

Tab. 2: Patientencharakteristika

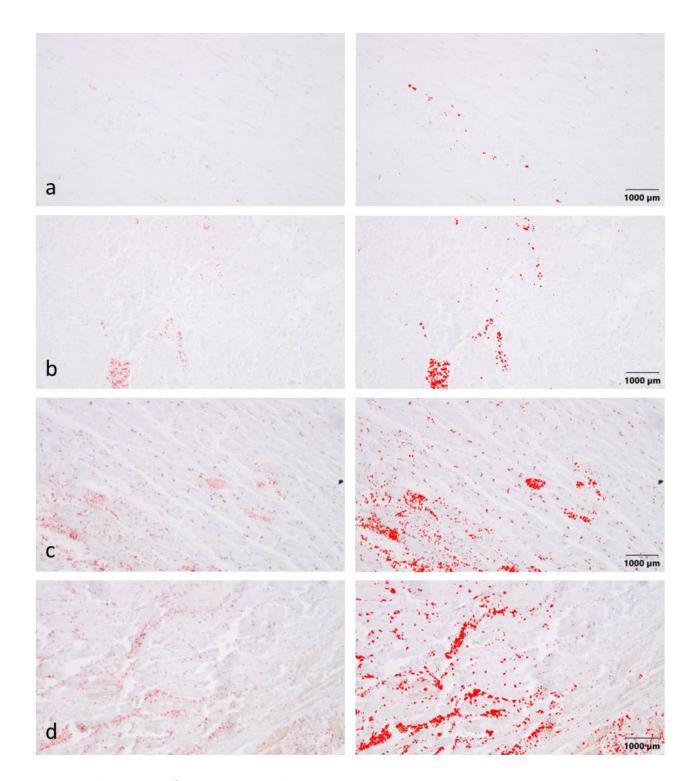
Variablen	Gesamt	Infarkt	Koronarins.	Kontrolle	
Anzahl Patienten 106 (100%)		42 (100%)	26 (100%)	38 (100%)	
Alter Median					
(Min-Max) in	60,5 (22-90)	60,5 (33-90)	67 (35-88)	56,5 (22-89)	
Lebensjahren					
Alter <60/≥60	51/55	19/23	10/16	22/16	
Lebensjahre	(48,1%/51,9%)	(45,2%/54,8%)	(38,5%/61,5%)	(57,9%/42,1%)	
Geschlecht m/w	73/33	30/12	19:7	24/14	
Geschiedh m/w	(68,9%/31,1%)	(71,4%/28,6%)	(73,1%:26,9%)	(63,2%/36,8%)	
CPR j/n	35/71	23/19	8/18	4/34	
CPK J/II	(33,0%/67,0%)	(54,8%/45,2%)	(30,8%/69,2%)	(10,5%/89,5%)	
Altinfarkto i/n	41/65	29/13	10/16	2/36	
Altinfarkte j/n	(38,7%/61,3%)	(69,0%/31,0%)	(38,5%/61,5%)	(5,3/94,7%)	

Abkürzungen: Koronarins., Koronarinsuffizienz; CPR, Herzlungenwiederbelebung In den Spalten sind die verschiedenen Gruppen abgebildet, in den Zeilen die untersuchten Variablen. Die Subgruppen werden jeweils als Anzahl sowie prozentual dargestellt

2.2 Immunhistochemie

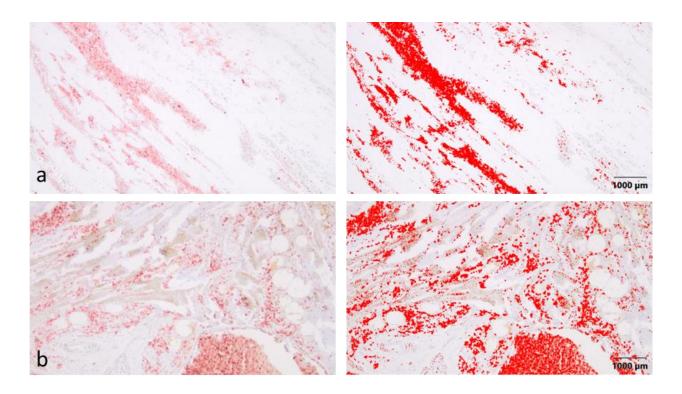
Die Herzmuskelproben wurden zum immunhistochemischen Nachweis von TNF, IL-6, IL-8 und myc aufgearbeitet. Hierfür wurden die bereits in Formaldehyd fixierten Herzmuskel-Gewebeproben zugeschnitten, im Autotechnikon (Shandon, Citadel 1000) dehydratisiert und paraffiniert. Die paraffinierten Proben wurden im Anschluss in Paraffinblöcke ausgegossen. Diese wurden am Mikrotom (HN40, Leica) in ca. 4 µm dicke Scheiben geschnitten und über ein warmes Wasserbad auf polare Objektträger überführt. Nach dem Trocknen im Brutschrank (37 °C) wurden die Präparate mit Xylol entparaffiniert und in Ethanolbädern absteigender Konzentration rehydratisiert.

Anschließend wurden die Präparate in Citratpuffer (Fa. Dako, Target Retrieval Solution, pH 9) für zehn Minuten erhitzt. Nach 30 Minuten Abkühlungszeit erfolgte die Blockierung der endogenen Peroxidase mit Wasserstoffperoxid (Fa. Dako, REAL Peroxidase-Blocking Solution). Da das Färbesubstrat (Fa. Dako, AEC Substrate Chromogen Ready-to-Use) über eine Peroxidase ausfällt ist, dieser Schritt notwendig, um falsch positive Signale im weiteren Verlauf zu verhindern. Hiernach wurden die Präparate erneut mit Tris-Puffer (Fa. Dako, TBST Tris Buffered Saline with Tween 20) gewaschen und im Anschluss der Primärantikörper in Lösung mit einem Diluent (Fa. Dako, Antibody Diluent with Background Reducing Components) zur Inkubation aufgetragen. Nach Tests mit verschiedenen vom Hersteller empfohlenen Verdünnungsstufen mit antibody-diluent (Fa. Dako) wurde für TNF eine Verdünnung von 1:50, für IL-6 1:250, für IL-8 1:2000 und für myc 1:250 verwendet. Als Positivkontrollen wurden für myc Ösophagus und Colon, für IL-8 Tonsille und Lunge, für IL-6 Lunge und Milz und für TNF Lunge und Tonsille verwendet. Sämtliche verwendeten monoklonalen Mausantikörper wurden von Fa. Abcam bezogen (Anti-TNF apha antibody ab1793, Anti-IL-6 antibody ab9324, Anti IL-8 antibody ab18672, Anti c-myc antibody ab32).


Die Inkubationszeit betrug zwölf Stunden bei vier °C.

Hiernach wurden die Präparate erneut mit Tris-Puffer gewaschen und anschließend der Sekundärantikörper gekoppelt mit einer Meerrettich-Peroxidase (HRP, Fa. Dako, EnVision+ Dual Link System-HRP) aufgetragen und für zwei Stunden inkubiert. Im Anschluss wurde das Färbesubstrat hinzugefügt. Der Erfolg der Färbung wurde anhand eines lichtmikroskopischen Vergleichs mit den o.g. Positiv-Kontrollen kontrolliert. Als letzter Färbeschritt erfolgte die Kernfärbung mit Hämatoxylin (Fa. Dako, Mayer's

Hämatoxylin, Lillie's Modification). Danach wurden die Objektträger mit einem wasserlöslichen Kleber (Aquatex, Fa. Merck) eingedeckt.


2.3 Lichtmikroskopische Auswertung:

Sämtliche Präparate wurden mikroskopiert (Mikroskop Olympus BX50) und auf Anfärbungen untersucht. Präparate, welche Signale aufwiesen, wurden in vier gleichgroße Quadranten aufgeteilt und aus jedem positiven Quadranten wurden jeweils fünf Gesichtsfelder in 100facher Vergrößerung fotografiert (Olympus E520). Mit der Bildanalysesoftware cellSens von Olympus wurden für die vier verschiedenen Färbungen Grenzwerte zur Auswertung dergestalt festgelegt, dass falsch positive Signale (z.B. durch Artefakte) minimiert und immunhistochemische Signale auch als positiv gewertet wurden, wie auf den Abbildungen 3 und 4 exemplarisch dargestellt wird. Anhand dieser Voreinstellung wurde softwaregesteuert und automatisiert der positive Anteil pro Foto prozentual berechnet. Da nur positive Präparate bzw. Quadranten fotografiert und durch cellSens ausgewertet wurden, erfolgte für jede Färbung ebenfalls eine Auswertung negativer Präparate, um den Effekt eines möglichen Selection Bias möglichst zu minimieren. Ein Ergebnis von null Prozent wirkte hier als Kontrolle der korrekten Grenzwerte bei der Auswertung.

Abb. 3: Beispielhafte paarweise Darstellung der semiquantitativen Auswertung von verschiedenen Bildabschnitten mit jeweils Rohdarstellung und markierten Pixeln durch das Programm:

a). IL-8, Abschnitt 0,05 % positiv gewertet b). IL-6, Abschnitt 0,48 % positiv gewertet c). IL-6, Abschnitt 1,25 % positiv gewertet d). IL-6, Abschnitt 2,54 % positiv gewertet

Abb. 4: Beispielhafte Darstellung der semiquantitativen Auswertung von verschiedenen Bildabschnitten mit jeweils Rohdarstellung und markierten Pixeln durch das Programm: a) IL-8, Abschnitt 5,75 % positiv gewertet b). IL-6, Abschnitt 7,75 % positiv gewertet

2.4 Statistische Auswertung

Die Durchführung der statistischen Tests erfolgte mit der statistischen Analysesoftware SPSS Statistics 27 von IBM. Die Daten wurden zunächst auf eine Normalverteilung geprüft. Diese lag für keines der untersuchten Proteine vor. Danach erfolgten Anova-Analysen nach Kruskal-Wallis, um Einflüsse von Alter und Geschlecht auf die Expression der einzelnen Gruppen zu untersuchen. Im Anschluss wurden die Gesamt-Expressionen der einzelnen Gruppen bezogen auf die Todesursache (Kontrolle, Koronarinsuffizenz, Infarkt) einem Kruskal-Wallis-Test unterzogen. Da sich das Färbeverhalten zwischen den untersuchten Proteinen deutlich unterscheidet und insgesamt sehr wenige Präparate positive Signale für myc und IL-8 aufweisen, wurde ergänzend eine binäre Auswertung mit positiven und negativen Präparaten durchgeführt. Hierfür Signifikanztestung Chi²-Tests durchgeführt. Die Ergebnisse zu den ergänzenden Tests werden aus Gründen der Übersicht im Text der Abschnitte 3.4 und 3.5 aufgeführt, die Ergebnisse der erstgenannten Tests werden in den Tabellen 6-18 und den Abbildungen 10-24 dargestellt.

Um die beiden kardialen Todesursachen separat zu vergleichen oder die Vergleiche zwischen den einzelnen Subgruppen durchzuführen, erfolgte hier jeweils ein Mann-Whitney-U-Test. Für den Vergleich zwischen infarzierten Myokardarealen mit nicht infarzierten Arealen in der Infarkt-Gruppe erfolgten t-Tests für verbundene Stichproben. Die graphische Darstellung der Auswertungen erfolgte mit der Software Graphpad prism 5 und Microsoft Excel.

3. Ergebnisse

3.1 Allgemein

Sämtliche untersuchten Proteine wurden in diversen Fällen im Myokard nachgewiesen. Am häufigsten wurden positive Präparate mit IL-6 detektiert, gefolgt von TNF und IL-8. Myc konnte nur in wenigen der Präparate nachgewiesen werden. Neben der Quantität unterscheiden sich die Signale je nach untersuchtem Protein auch in der Lokalisation. Es konnte sowohl in der Kontrollgruppe als auch in Infarktund Koronarinsuffizienzgruppen eine TNF-Expression bei einigen Patienten nachgewiesen werden. Im Großteil der positiven Präparate färbten sich hauptsächlich Blutgefäße und deren Inhalte an, wobei bei den positiven Präparaten nie alle Gefäße eine Anfärbung aufwiesen. Diese Areale mit positiv gefärbten Blutgefäßen traten in Myokardbereichen unterschiedlicher Qualität auf. Sowohl in gesundem Myokard der Kontrollgruppen als auch vereinzelt in nekrotischem Infarktgewebe als auch im Bereich von fibrotischen Myokardnarben konnten sowohl positive als auch negative Blutgefäße detektiert werden. In der mikroskopischen Betrachtung konnte hierfür kein Zusammenhang zwischen einer Pathologie des Myokards und einer möglicherweise erhöhten Färbung verzeichnet



Abb. 5: Beispiele TNF-positiver Myokardareale:

a). Blutgefäß mit TNF-positivem Inhalt b). Bereich mit Leukozytenevasion mit TNF-Expression c). Areal mit Leukozytenevasion und Einblutung in HE-Färbung d). Bereich mit deutlicher Leukozytenevasion ohne TNF-Expression e). hämorrhagisches Areal mit TNF-Expression f.) gleiches Areal in 400facher Vergrößerung g.) Myokardschwiele in HE-Färbung h.) gleiches Areal mit TNF-positiven Blutgefäßen

werden. Zudem zeigte sich vereinzelt eine Anfärbung von Kardiomyozyten. Diese fand

sich oft in Nähe von fibrotischem Myokard. Ebenfalls in Infarktarealen mit nachweislicher Evasion von Leukozyten in das Interstitium des Gewebes wurde in einigen Präparaten eine vermehrte TNF-Expression dargestellt, in anderen mit einem vergleichbaren mikroskopischen Bild jedoch keinerlei TNF nachgewiesen werden (s. Abb. 5).

Die durchschnittliche Expression von IL-6 ist in der Infarktgruppe am stärksten ausgeprägt. Wie auch bei TNF färbten sich in den positiven Präparaten gehäuft Blutgefäße sowie der Gefäßinhalt an, wobei hierbei bei positiven Präparaten nicht alle angeschnittenen Gefäße des jeweiligen Präparats positiv waren. Dies trat sowohl in Präparaten der Kontrollgruppe als auch bei Infarktpatienten oder bei Koronarinsuffizienz auf.

Zum Teil färbten sich in Fällen mit hämorrhagischen Komponenten im Infarktgebiet oder bei Leukozytenevasion im Rahmen einer Myokardnekrose interstitiell gelegene Leukozyten sowie extrazelluläre Matrix IL-6-positiv. Gelegentlich ließ sich auch eine diffuse Anfärbung des gesamten Zytoplasmas von Kardiomyozyten darstellen. Dies wurde zum Teil im Randgebiet von Myokardnarben in Folge von Infarkten nachgewiesen – allerdings weder ausschließlich noch bei allen Myokardnarben. Hierbei stellte sich die Färbung des Zystoplasmas weitestgehend homogen dar (s. Abb. 6).

IL-8 wird insgesamt nur in wenigen Präparaten der Untersuchungsgruppen und noch geringer in der Kontrollgruppe exprimiert. Eine besonders intensive Anfärbung zeigten Präparate mit punktuellen Einblutungen oder Arealen mit deutlicher Leukozytenevasion. Hier färbten sich hauptsächlich die leukozytenreichen interzellulären Bereiche der Gewebeproben an. Blutgefäße zeigten keinerlei Reaktion. So stellen sich frisch infarzierte oder bereits nekrotische Myokardareale intensiv mit IL-8 angefärbt dar – jedoch zeigten sich auch punktuell körnchenartig konzentrierte Signale im Zytoplasma einzelner Kardiomyozyten. In Bereichen von Infarktnarben tritt eine Anfärbung im Gegensatz zu IL-6 und TNF in dem ausgewählten Patientenkollektiv weniger auf (s. Abb. 7).

Insgesamt fanden sich in allen Untersuchungsgruppen sowohl myc-positive als auch -negative Präparate. Jedoch ist die Anzahl der Fälle, welche überhaupt myc-positive Signale aufweisen wie bereits erwähnt gering (insgesamt 27 Fälle). In den meisten Fällen zeigten sich nur punktuelle Signale im Zytoplasma vereinzelter Kardiomyozyten. Selten ist eine homogene Färbung von Kardiomyozyten, welche benachbart zu einem Blutgefäß verlaufen, festzustellen (s. Abb. 8).

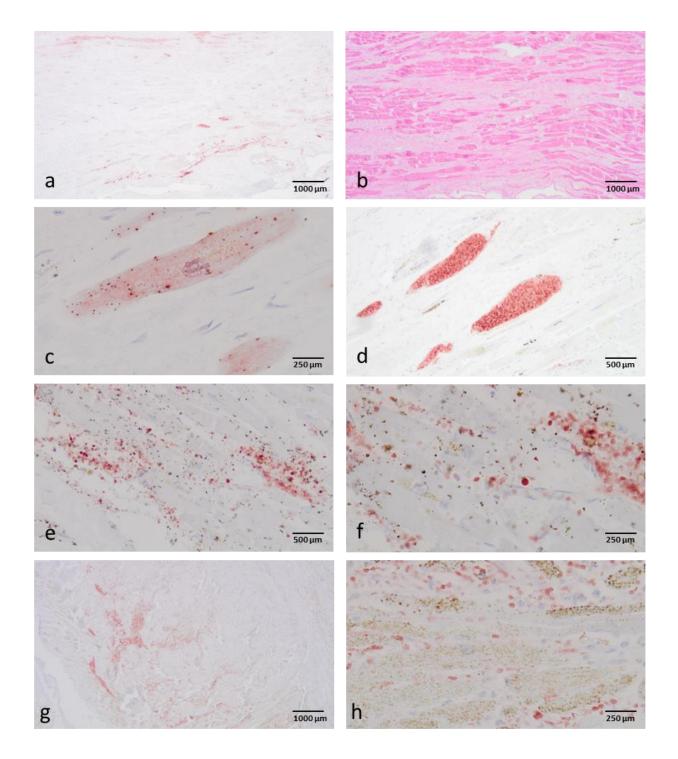


Abb. 6: Beispiele IL-6-positiver Myokardareale

a). Herzmuskelschwiele mit IL-6-positiven Kardiomyozyten und Blutgefäßen b). Äquivalentes Präparat in HE-Färbung c). IL-6-positive, nekrotische Kardiomyozyten in 400facher Vergrößerung d). IL-6-positive Blutgefäße e).IL-6-positiv gefärbte Leuko- und Erythrozyten intravasal sowie im Interzellularraum f). gleiches Präparat in 400facher Vergrößerung g). hämorrhagisches Areal mit reichlich IL-6 positiven Signalen insbesondere interzellulär h). Leukozyten und Erythrozyten interzellulär in infarziertem Myokard

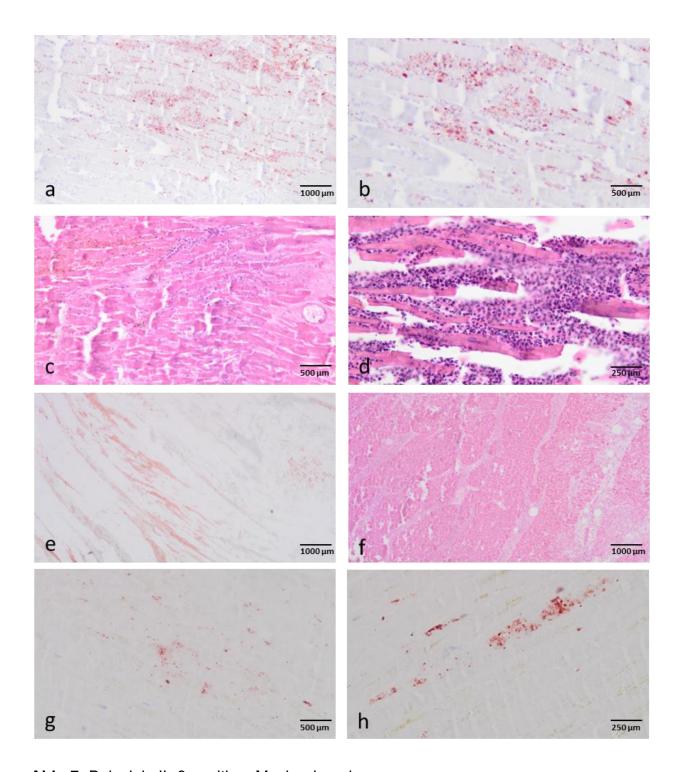
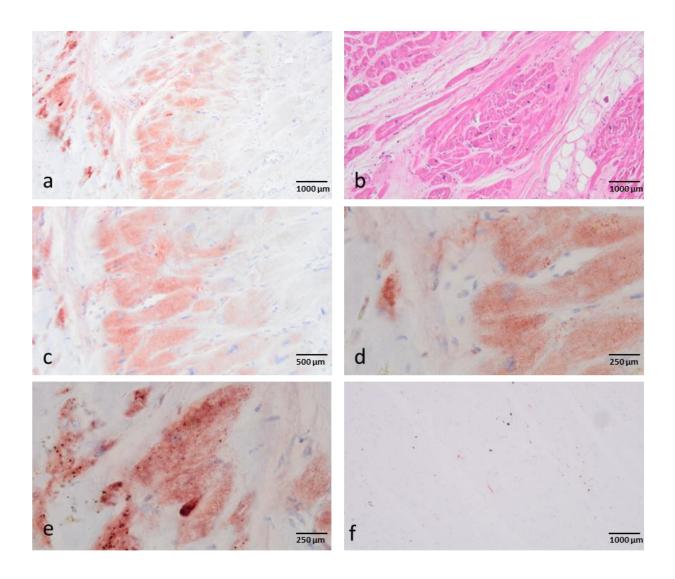



Abb. 7: Beispiele IL-8-positiver Myokardareale

a). Infarziertes Myokard mit IL-8-positiven Leukozyten im Interstitium b). Nahaufnahme IL-8-positiven Zellen c). Gleiches Präparat in HE-Färbung mit sichtbarer Hämorrhagie und Leukozytenevasion d). Gleiches Präparat mit 400facher Vergrößerung e). Straßenartige Anordnung von IL-positiven Zellen in infarziertem Myokard f). Äquivalent in HE-Färbung g). IL-8-positive Kardiomyozyten h). 400fache Vergrößerung von IL-8-positiven Kardiomyozyten

Abb. 8: Beispiele myc-positiver Myokardareale

a). Infarziertes, myc-positives Herzmuskelgewebe diffuse zytoplasmatische Färbung b). Äquivalenter Bereich in HE-Färbung c). Bereich von a) in 200facher Vergrößerung und in d) und e). mit 400facher Vergrößerung f). Wenige myc-positive Kardiomyozyten Im Fall 49 zeigte sich im Rahmen der histologischen Untersuchung für diese Arbeit vermehrte punktuelle Leukozytenansammlungen, welche zum Bild einer Myokarditis passen. Sämtliche dieser nestartigen Ansammlungen zeigen deutliche IL-8-positive Signale (s. Abb. 9). Interessanterweise konnten keine positiven Signale im Rahmen der IL-6- oder TNF-Färbungen nachgewiesen werden, obwohl eine mutmaßlich entzündliche Veränderung des Myokards bestand.

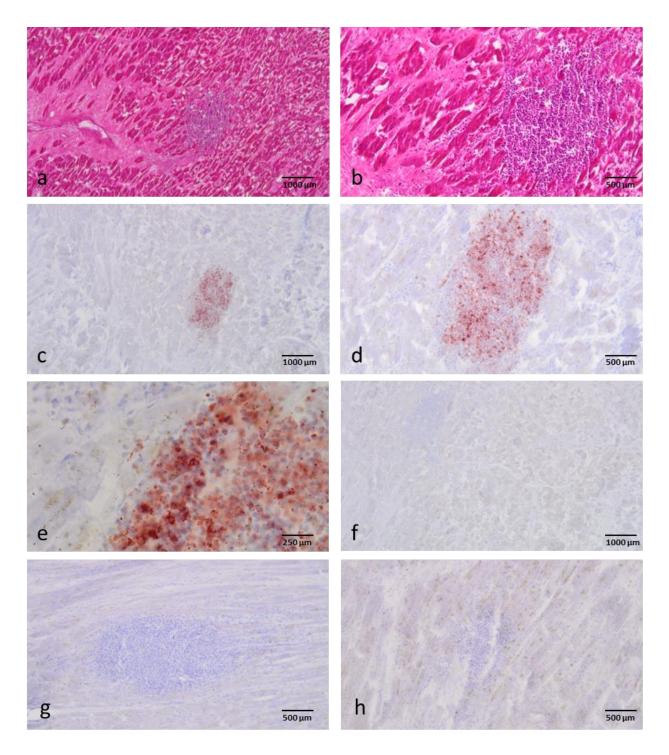
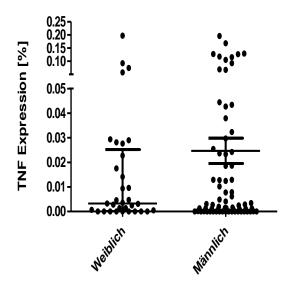


Abb. 9: Fall mit histologischem Zufallsbefund einer Myokarditis:

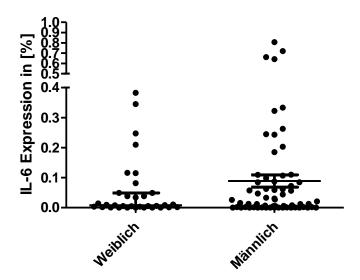
a). Herdförmige Leukozytennester in Myokardareal mit narbigen Veränderungen b). Gleiches Bild in 200facher Vergrößerung c). IL-8-positive Färbung des gleichen Präparats d). IL-8-positives Areals 200fach vergrößert e). Gleiches Präparat in 400facher Vergrößerung f.) Gleiches Präparat mit TNF gefärbt g). Gleiches Präparat in 200facher Vergrößerung h). Gleiches Präparat mit IL-6 gefärbt

3.2 Semiquantitative Ergebnisse

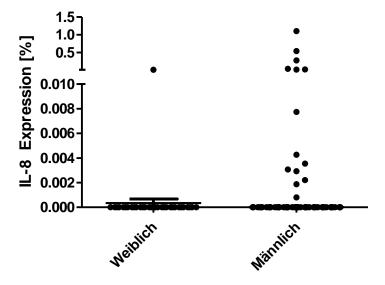
Zur Betrachtung eines möglichen Einflusses des Patientenalters auf die Expression der jeweiligen Proteine wurde das Gesamtkollektiv in eine Gruppe an Patienten, welche zum Todeszeitpunkt jünger als 60 Jahre alt waren, und in Patienten, welche 60 Jahre oder älter waren, eingeteilt. Es erfolgte eine Anova-Analyse nach Kruskal-Wallis beider Gruppen. Hier zeigte sich im Gesamtkollektiv kein signifikanter Unterschied der gemittelten Expressionen in allen vier untersuchten Färbungen (s. Tabelle 6). Bezüglich der Expression in Abhängigkeit vom Geschlecht zeigte die Anova-Analyse bei TNF, IL-6 und myc keine signifikanten Unterschiede (TNF p=0,883, IL-6 p=0,710, myc p=0,954, s. Abb. 10-12), bei IL-8 zeigte sich eine wenn auch nur schwach signifikante Mehrfärbung bei männlichen Patienten (p=0,029, s. Abb. 13). Als weitere Subgruppe wurden Patienten mit und ohne Altinfarkte untersucht. Hier konnte bei allen Färbungen eine stärkere Expression bei Patienten mit Altinfarkten nachgewiesen werden. Bei IL-6 und TNF war diese Mehrfärbung signifikant (IL-6 p<0,0001, TNF p=0,024, s. Abb. 14 und 15), in den anderen beiden Gruppen jedoch nicht (IL-8 p=0,186, myc p=0,949, s. Abb. 16 und 17). Es folgten spezifizierte Analysen des Einflusses von Altinfarkten nach Todesursachen. In der Infarktgruppe waren die Unterschiede lediglich bei IL-6 weiterhin signifikant höher (p=0,037). Bei IL-8, TNF und myc waren die Unterschiede auch in dieser Gruppe nicht signifikant (IL-8 p= 0.893; TNF p=0.435; myc p=0.830). Weder in Koronarinsuffizienzgruppe (TNF p=1,0; IL-6 p=0,698; IL-8 p=0,938; myc p=0,484) noch in der Kontrollgruppe (TNF p= 0,205; IL-6 p=1,0; IL-8 p= 0,922; myc p=0,640) unterschieden sich die untersuchten Proteine signifikant.

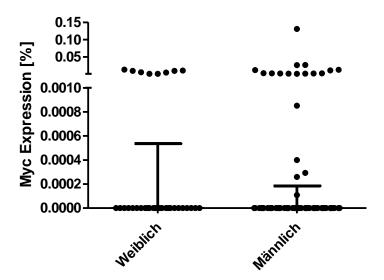

Die Subgruppenanalyse bezüglich reanimierter Patienten zeigte in allen untersuchten Proteinen keinen signifikanten Einfluss einer CPR (TNF p=0,200, IL-6 p=0,462, IL-8 p=0,969, myc p=0,525, s. Abb. 18-21).

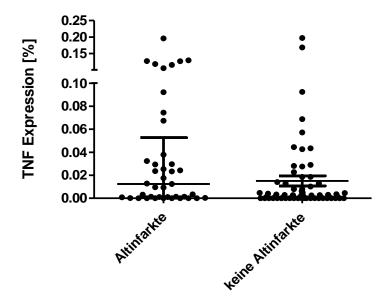
Tab. 3: Immunhistochemische Anfärbbarkeit nach Subgruppe

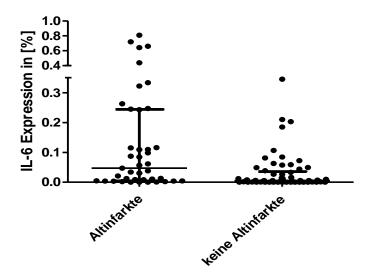

	TNF	IL-6	IL-8	myc
Alter <60/≥60	0,025%/0,021%	0,056%/0,099%	0,028%/0,011%	0,001%/0,004%
p-Wert	0,733	0,223	0,657	0,853
Geschl. m/w	0,025%/0,019%	0,089%/0,054%	0,028%/0,000%	0,003%/0,002%
p-Wert	0,883	0,710	0,029	0,954
CPR ja/nein	0,026%/0,022%	0,099%/0,068%	0,002%/0,028%	0,006%/0,001%
p-Wert	0,200	0,462	0,969	0,525
Altinf. ja/nein	0,035%/0,015%	0,147%/0,035%	0,035%/0,009%	0,005%/0,002%
p-Wert	*0,024	*<0,001	0,186	0,949

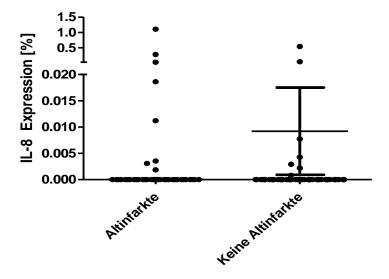
Abkürzungen: TNF, Tumornekrosefaktor, IL-6, Interleukin-6; IL-8, Interleukin-8; Altinf., Altinfarkte, CPR, Herzlungenwiederbelebung, Geschl., Geschlecht

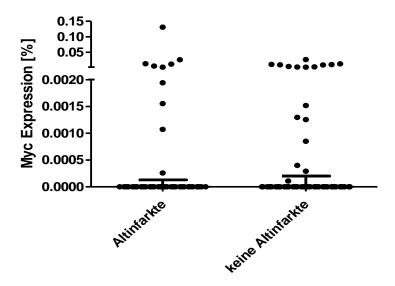

Die prozentualen Färbeergebnisse sind in Prozent positiver Bildpixel quantifiziert


Abb. 10: TNF-Expression in Prozent nach Geschlecht (p = 0,883) weiblich (n = 33; 25 %-Quartil 0,0000; Median 0,0033; 75 %-Quartil 0,0252) männlich (n = 73; 25 %-Quartil 0,0005; Median 0,0027; 75 %-Quartil 0,0249) Die Querbalken stellen den Median (lang) bzw. den Interquartilsabstand (IQA) (kurz) dar. Abkürzungen: TNF, Tumornekrosefaktor


Abb. 11: IL-6-Expression in Prozent nach Geschlecht (p = 0,710) weiblich (n = 33; 25 %-Quartil 0,0016; Median 0,0080; 75 %-Quartil 0,0490) männlich (n = 73; 25 %-Quartil 0,0018; Median 0,0121; 75 %-Quartil 0,0846) Die Querbalken stellen den Median (lang) bzw. den IQA (kurz) dar. Abkürzungen: IL-6, Interleukin-6


Abb. 12: IL-8 Expression in Prozent nach Geschlecht (p = 0,029) weiblich (n = 33; 25 %-Quartil 0,0000; Median 0,0000; 75 %-Quartil 0,0000) männlich (n = 73; 25 %-Quartil 0,0000; Median 0,0000; 75 %-Quartil 0,0000) Die Querbalken stellen den Median (lang) bzw. den IQA (kurz) dar. Abkürzungen: IL-8, Interleukin-8


Abb. 13: myc Expression in Prozent nach Geschlecht (p = 0,954) weiblich (n = 33; 25 %-Quartil 0,0000; Median 0,0000; 75 %-Quartil 0,0005) männlich (n = 73; 25 %-Quartil 0,0000; Median 0,0000; 75 %-Quartil 0,0002) Die Querbalken stellen den Median (lang) bzw. den IQA (kurz) dar.


Abb. 14: TNF-Expression in Prozent in Abhängigkeit von Altinfarkten (p = 0,024) Altinfarkte (n = 41; 25 %-Quartil 0,0006; Median 0,0125; 75 %-Quartil 0,0527) keine Altinfarkte (n = 65; 25 %-Quartil 0,0000; Median 0,0024; 75 %-Quartil 0,0129) Die Querbalken stellen den Median (lang) bzw. den IQA (kurz) dar. Abkürzungen: TNF, Tumornekrosefaktor

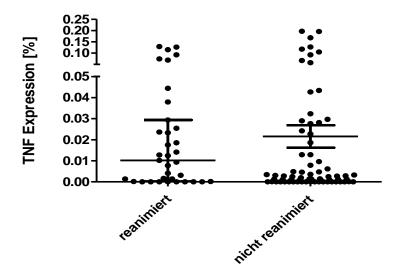
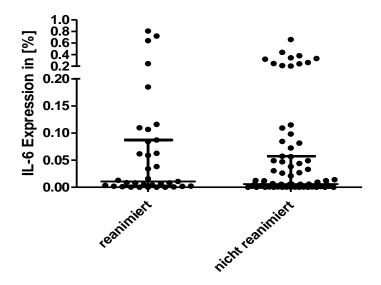
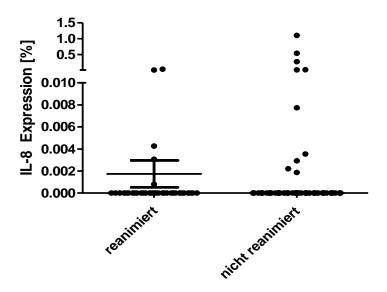

Abb. 15: IL-6 Expression in Prozent in Abhängigkeit von Altinfarkten (p < 0,001) Altinfarkte (n = 41; 25 %-Quartil 0,0046; Median 0,0470; 75 %-Quartil 0,2440) keine Altinfarkte (n = 65; 25 %-Quartil 0,0005; Median 0,0053; 75 %-Quartil 0,0356) Die Querbalken stellen den Median (lang) bzw. den IQA (kurz) dar. Abkürzungen: IL-6, Interleukin-6

Abb. 16: IL-8 Expression in Prozent in Abhängigkeit von Altinfarkten (p = 0,186) Altinfarkte (n = 41; 25 %-Quartil 0,0000; Median 0,0000; 75 %-Quartil 0,0000) keine Altinfarkte (n = 65; 25 %-Quartil 0,0000; Median 0,0000; 75 %-Quartil 0,0000) Die Querbalken stellen den Median (lang) bzw. den IQA (kurz) dar. Abkürzungen: IL-8, Interleukin-8


Abb. 17: myc Expression in Prozent in Abhängigkeit von Altinfarkten (p = 0,949) Altinfarkte (n = 41; 25 %-Quartil 0,0000; Median 0,0000; 75 %-Quartil 0,0001) keine Altinfarkte (n = 65; 25 %-Quartil 0,0000; Median 0,0000; 75 %-Quartil 0,0002) Die Querbalken stellen den Median (lang) bzw. den IQA (kurz) dar.


Abb. 18: TNF-Expression in Prozent in Abhängigkeit einer durchgeführten CPR (p = 0,200)

reanimiert (n = 35; 25 %-Quartil 0,0001; Median 0,0102; 75 %-Quartil 0,0294) nicht reanimiert (n = 71; 25 %-Quartil 0,0000; Median 0,0024; 75 %-Quartil 0,0227) Die Querbalken stellen den Median (lang) bzw. den IQA (kurz) dar.

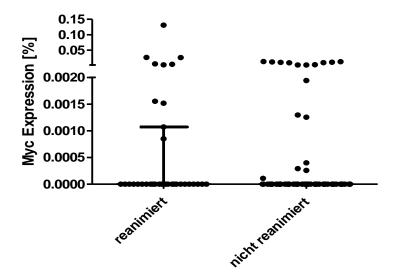

Abkürzungen: TNF, Tumornekrosefaktor

Abb. 19: IL-6 Expression in Prozent in Abhängigkeit einer durchgeführten CPR (p = 0,462) reanimiert (n = 35; 25 %-Quartil 0,0019; Median 0,0108; 75 %-Quartil 0,0871) nicht reanimiert (n = 71; 25 %-Quartil 0,0014; Median 0,0057; 75 %-Quartil 0,0574) Die Querbalken stellen den Median (lang) bzw. den IQA (kurz) dar. Abkürzungen: IL-6, Interleukin-6

Abb. 20: IL-8 Expression in Prozent in Abhängigkeit einer durchgeführten CPR (p = 0,969) reanimiert (n = 35; 25 %-Quartil 0,0000; Median 0,0000; 75 %-Quartil 0,0000) nicht reanimiert (n = 71; 25 %-Quartil 0,0000; Median 0,0000; 75 %-Quartil 0,0000) Die Querbalken stellen den Median (lang) bzw. den IQA (kurz) dar. Abkürzungen: IL-8, Interleukin-8

Abb. 21: myc Expression in Prozent in Abhängigkeit einer durchgeführten CPR (p = 0,525) reanimiert (n = 35; 25 %-Quartil 0,0000; Median 0,0000; 75 %-Quartil 0,0011) nicht reanimiert (n = 71; 25 %-Quartil 0,0000; Median 0,0000; 75 %-Quartil 0,0000) Die Querbalken stellen den Median (lang) bzw. den IQA (kurz) dar.

3.2 Tumornekrosefaktor

TNF wird am stärksten in der Koronarinsuffizenzgruppe exprimiert. Hier ist die Expression jedoch nur unwesentlich stärker ausgeprägt ist als in der Infarktgruppe. Insgesamt zeigte sich im Vergleich zwischen der Kontrollgruppe gegenüber der Koronarinsuffizienz- bzw. Infarkt-Gruppe ein hochsignifikanter Unterschied in der Gesamtexpression (p<0,0001, s. Abb. 22), wobei zwischen Infarkt- und Koronarinsuffizienzgruppe kein signifikanter Unterschied nachweisbar ist (p=0,825, s. Tab. 7). In den unterschiedlichen Herzmuskelarealen aus der Infarktgruppe zeigten sich keine wesentlichen Unterschiede (p=0,802). In der Infarktgruppe zeigt sich eine nicht signifikant verstärkte Expression bei reanimierten Patienten, in den anderen beiden Gruppen ist die Expression bei nicht reanimierten Patienten im Durchschnitt stärker (s. Tab. 8). Altinfarkte verstärken sowohl im Infarkt- als auch im Koronarinsuffizienzarm die Expression von TNF – jedoch nicht signifikant (s. Tab. 9)

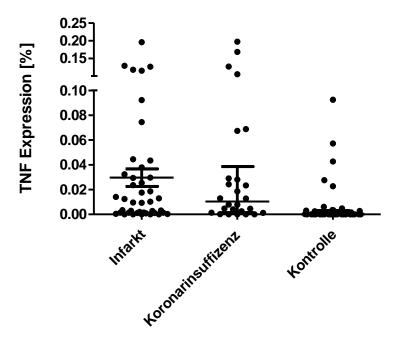


Abb. 22: TNF-Expression in Prozent nach Todesursache

(Infarkt- gegen Koronarinsuffizienz- gegen Kontrollgruppe p < 0,0001)

(Infarkt- gegen Koronarinsuffizienzgruppe p = 0,825)

Infarkt (n = 42; 25 %-Quartil 0,0013; Median 0,0099; 75 %-Quartil 0,0337)

Koronarinsuffizienz (n = 26; 25 %-Quartil 0,0013; Median 0,0104; 75 %-Quartil 0,0386)

Kontrolle (n = 38; 25 %-Quartil 0,0000; Median 0,0009; 75 %-Quartil 0,0031)

Die Querbalken stellen den Median (lang) bzw. den IQA (kurz) dar.

Abkürzungen: TNF, Tumornekrosefaktor

Tab. 4: Immunhistochemische Anfärbbarkeit mit TNF nach Todesursache

Infarkt (MW)	Koronarinsuffizienz (MW)	Kontrolle (MW)	p-Wert 1	p-Wert 2
0,030%	0,035 %	0,007 %	<0,001	0,825

p-Wert 1: Analyse zwischen den einzelnen Gruppen

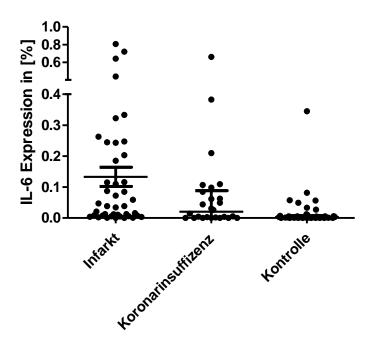
p-Wert 2: Analyse zwischen Infarkt und Koronarinsuffizienzgruppe

Tab. 5: Anfärbbarkeit mit TNF in Abhängigkeit von einer durchgeführten CPR nach Todesursache

CPR	Infarkt (MW)	Koronarinsuffizienz (MW)	Kontrolle (MW)
Ja	0,034 %	0,015 %	<0,001 %
Nein	0,024 %	0,044 %	0,008 %
p-Wert	0,220	0,177	0,566

Abkürzungen: CPR, Herzlungenwiederbelebung, TNF Tumornekrosefaktor Die Prozentwerte stellen die durchschnittlichen positiven Bildpixel in Prozent dar

Tab. 6: Anfärbbarkeit mit TNF in Abhängigkeit von Altinfarkten nach Todesursache


Altinfarkte	Infarkt (MW)	Koronarinsuffizienz (MW)	Kontrolle (MW)
Ja	0,038 %	0,036 %	0,000 %
Nein	0,012 %	0,035 %	0,008 %
p-Wert	0,435	1,000	0,205

Die Prozentwerte stellen die durchschnittlichen positiven Bildpixel in Prozent dar

3.3 Interleukin-6

Die Expression von IL-6 in den drei Gruppen unterscheidet sich signifikant (p<0,0001, s. Abb. 23), wobei der Unterschied zwischen den Gruppen mit kardialer Todesursache nicht signifikant ist (p=0,077, s. Tab. 10). Zudem stellt sich eine – wenn auch nicht signifikante – verstärkte Expression in den infarzierten Arealen in der Infarktgruppe dar (p=0,19). Des Weiteren zeigt sich in allen drei Gruppen eine stärkere Expression in Präparaten weiblicher Patienten, der Unterschied ist jedoch ebenfalls nicht signifikant (p=0,317).

In der Infarktgruppe ist die Expression von IL-6 nach Reanimation im Durchschnitt weitestgehend gleich (s. Tab. 11). In den anderen beiden Gruppen zeigt sich eine leicht, jedoch nicht signifikant erhöhte Expression bei den nicht reanimierten Patienten. Bereits überlebte Infarkte korrelieren in allen drei Gruppen mit einer erhöhten Expression. Diese Korrelation ist in keiner Gruppe signifikant, in der Infarktgruppe jedoch am stärksten ausgeprägt (s. Tab. 12).

Abb. 23: IL-6 Expression in Prozent nach Todesursache (Infarkt- gegen Koronarinsuffizienz- gegen Kontrollgruppe p < 0,0001) (Infarkt- gegen Koronarinsuffizienzgruppe p < 0,077)

Infarkt (n = 42; 25 %-Quartil 0,0075; Median 0,0383; 75 %-Quartil 0,2131)

Koronafinsuffizienz (n = 26; 25 %-Quartil 0,0004; Median 0,0202; 75 %-Quartil 0,0880)

Kontrolle (n = 38; 25 %-Quartil 0,0004; Median 0,0026; 75 %-Quartil 0,0075)

Die Querbalken stellen den Median (lang) bzw. den IQA (kurz) dar.

Tab. 7: Immunhistochemische Anfärbbarkeit mit IL-6 nach Todesursache

Infarkt (MW)	Koronarinsuffizienz (MW)	Kontrolle (MW)	p-Wert 1	p-Wert 2
0,133	0,075 %	0,019 %	<0,001	0,077

p-Wert 1: Analyse zwischen den einzelnen Gruppen

p-Wert 2: Analyse zwischen Infarkt und Koronarinsuffizienzgruppe

Tab. 8: Anfärbbarkeit mit IL-6 in Abhängigkeit von einer durchgeführten CPR nach Todesursache

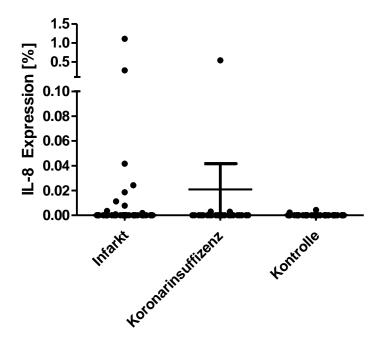
CPR	Infarkt (MW)	Koronarinsuffizienz (MW)	Kontrolle (MW)
Ja	0,136 %	0,040 %	0,001 %
Nein	0,130 %	0,091 %	0,022 %
p-Wert	0,350	0,765	0,092

Abkürzungen: CPR, Herzlungenwiederbelebung; IL-6, Interleukin-6

Die Prozentwerte stellen die durchschnittlichen positiven Bildpixel in Prozent dar

Tab. 9: Anfärbbarkeit mit IL-6 in Abhängigkeit von Altinfarkten nach Todesursache

Altinfarkte	Infarkt (MW)	Koronarinsuffizienz (MW)	Kontrolle (MW)
Ja	0,172 %	0,097 %	0,028 %
Nein	0,047 %	0,062 %	0,019 %
p-Wert	0,037	0,698	1,000


Abkürzungen: IL-6, Interleukin-6

Die Prozentwerte stellen die durchschnittlichen positiven Bildpixel in Prozent dar

3.4 Interleukin-8

Insgesamt konnten nur in wenigen Fällen (15 von 106) positive Signale nachgewiesen werden. Zusammenfassend zeigt sich die stärkste Expression von IL-8 in der Infarktgruppe gegenüber der Koronarinuffizienz- und Kontrollgruppe. In der Infarktgruppe waren zehn von 42, in der Koronarinsuffizienzgruppe drei von 26 und in der Kontrollgruppe zwei von 38 Fällen positiv gefärbt. Zwischen den Infarktarealen und dem unauffälligen Myokard war kein wesentlicher Unterschied der Expressionen detektierbar. Eine geringere Expression ist in der Koronarinsuffizienzgruppe im Vergleich zur Infarktgruppe zu beobachten (p=0,258, s. Tab. 13), die Expression in der Kontrollgruppe ist schwach signifikant deutlich am schwächsten ausgeprägt (p=0,0467, s. Abb. 24). Im Rahmen der binären Auswertung in positive und negative Präparate durch einen Chi²-Test ist der Unterschied zwischen den drei Gruppen jedoch nicht signifikant (p=0,054) – ebenso der Unterschied zwischen den Gruppen mit kardialen Todesursachen (p=0,211). Bezüglich der Reanimation zeigt sich in den Gruppen kardialer Todesursachen eine stärkere Expression ohne durchgeführte CPR, bei den Kontrollen ist das Verhältnis bei insgesamt nur schwacher prozentualer Anfärbbarkeit umgekehrt (s. Tab. 14). In der Infarktgruppe

sind drei der 23 reanimierten Fälle IL-8-positiv sowie sieben der 19 nicht reanimierten Fälle (p=0,071). Bei den Patienten der Koronarinsuffizienzgruppe ist einer der acht reanimierten Fälle positiv gefärbt, bei den nicht reanimierten Patienten sind es zwei von 18 (p=0,919). In der Kontrollgruppe ist jeweils ein Fall der vier Fälle mit CPR und der 34 Fälle ohne CPR positiv (p=0,062). Deutlich stärkere Signale wurden bei Patienten mit Altinfarkten in der Infarktgruppe beobachtet, wobei der Unterschied nicht signifikant ist (s. Tab. 15). Von 29 Fällen mit Altinfarkten sind 7 IL-8-positiv, von den 13 Fällen ohne Altinfarkte drei (p=0,941). Hingegen ist ein Fall der zehn Koronarinsuffizienzfälle mit Altinfarkte und zwei der 16 Fälle ohne Altinfarkte positiv (p=0,846). In der Kontrollgruppe zeigten sich keine positiven Signale bei beiden Patienten mit Altinfarkten, bei den 36 Patienten ohne Altinfarkte konnte bei zwei Patienten IL-8 nachgewiesen werden (p=0,732).

Abb. 24: IL-8 Expression in Prozent nach Todesursache (Infarkt- gegen Koronarinsuffizienz- gegen Kontrollgruppe p < 0,047) (Infarkt- gegen Koronarinsuffizienzgruppe p < 0,258) Infarkt (n = 42; 25 %-Quartil 0,0000; Median 0,0000; 75 %-Quartil 0,0002) Koronarinsuffizienz (n = 26; 25 %-Quartil 0,0000; Median 0,0000; 75 %-Quartil 0,0000) Kontrolle (n = 38; 25 %-Quartil 0,0000; Median 0,0000; 75 %-Quartil 0,0000) Die Querbalken stellen den Median (lang) bzw. den IQA (kurz) dar.

Tab. 10: Immunhistochemische Anfärbbarkeit mit IL-8 nach Todesursache

Infarkt	Koronarinsuffizienz	Kontrolle	p-Wert 1	p-Wert 2
(MW)	(MW)	(MW)		
0,036 %	0,021 %	<0,001 %	0,047	0,258

p-Wert 1: Analyse zwischen den einzelnen Gruppen

p-Wert 2: Analyse zwischen Infarkt und Koronarinsuffizienzgruppe

Tab. 11: Anfärbbarkeit mit IL-8 in Abhängigkeit von einer durchgeführten CPR nach Todesursache

CPR	Infarkt (MW)	Koronarinsuffizienz (MW)	Kontrolle (MW)
Ja	0,002 %	<0,001 %	0,001 %
Nein	0,076 %	0,030 %	<0,001 %
p-Wert	0,065	0,978	0,476

Abkürzungen: CPR, Herzlungenwiederbelebung; IL-8, Interleukin-8

Die Prozentwerte stellen die durchschnittlichen positiven Bildpixel in Prozent dar

Tab. 12: Anfärbbarkeit mit IL-8 in Abhängigkeit von Altinfarkten nach Todesursache

Altinfarkte	Infarkt (MW)	Koronarinsuffizienz (MW)	Kontrolle (MW)
Ja	0,050 %	<0,001 %	0,0 %
Nein	0,004 %	0,034 %	<0,001 %
p-Wert	0,893	0,938	0,922

Abkürzungen: IL-8, Interleukin-8

Die Prozentwerte stellen die durchschnittlichen positiven Bildpixel in Prozent dar

3.5 myc

Auch für myc ließen sich nur wenige Fälle positiv färben (27 von 106). In der Infarktgruppe waren elf der 42 Fälle positiv gefärbt, in der Koronarinsuffizienzgruppe acht der 26 Fälle und in der Kontrollgruppe acht der 38 Fälle. Nach eingangs beschriebener semiquantitativer Auswertung zeigten die Präparate aus der Infarktgruppe die stärkste Anfärbung für myc, der Unterschied zwischen den einzelnen Todesursachen blieb nicht signifikant (p=0,629, s. Tab. 16). In der ergänzenden binären Auswertung zwischen positiven und negativen Präparaten in Abhängigkeit der Todesursachen war der Unterschied ebenfalls nicht signifikant (p=0,675). In der Infarktgruppe färbten sich die Proben aus dem makroskopisch infarzierten Herzmuskelgewebe nochmal stärker als die Proben aus makroskopisch unauffälligem Myokard, auch hier ist der Unterschied nicht signifikant (p=0,141). Die Präparate der Kontrollgruppe färbten sich insgesamt weniger intensiv als die der Koronarinsuffizienzgruppe. Zwischen beiden kardialen Todesursachen zeigte sich ebenfalls kein signifikanter Unterschied in der Expression (p=0,861, bzw. p=0,683 in der binären Auswertung).

Proben von reanimierten Patienten wiesen in der Infarktgruppe eine intensivere Anfärbung auf, in der Koronarinsuffizienzgruppe ließ sich kein Unterschied feststellen (s. Tab. 17). In der Infarktgruppe waren sechs der 23 reanimierten sowie fünf der nicht reanimierten Fälle positiv (p=0,987). Die Hälfte der acht reanimierten Patienten der Koronarinsuffizienzgruppe wiesen myc-positive Signale auf, bei den nicht reanimierten Fällen waren es vier von 18 (p=0,157). In der Kontrollgruppe waren sämtliche der vier CPR-Präparate negativ – von den 34 CPR-negativen Präparaten waren acht positiv gefärbt (p=0,275). Altinfarkte in der Infarktgruppe führten zu vermehrten myc-positiven Signalen (acht der 29 Fälle mit Altinfarkten sowie drei der 13 Fälle ohne Altinfarkte sind myc-positiv (p=0,759)), in der Koronarinsuffizienzgruppe wurde kein Unterschied der Expression bei Altinfarkten festgestellt (s. Tab. 18). Binär ausgewertet zeigten zwei von zehn Fällen mit und sechs von 16 Fällen ohne Altinfarkten positive Signale (p=0,347). In der Kontrollgruppe zeigte keiner der beiden Fälle mit Altinfarkten positive Signale, von den 38 Patienten mit Altinfarkten konnte bei acht Fällen myc nachgewiesen werden (p=0,453).

Tab. 13: Immunhistochemische Anfärbbarkeit mit myc nach Todesursache

Infarkt	Koronarinsuffizienz	Kontrolle	p-Wert 1	p-Wert 2
(MW)	(MW)	(MW)		
0,005	0,001	0,001 %	0,629	0,861

p-Wert 1: Analyse zwischen den einzelnen Gruppen

p-Wert 2: Analyse zwischen Infarkt und Koronarinsuffizienzgruppe

Tab. 14: Anfärbbarkeit mit myc in Abhängigkeit von einer durchgeführten CPR nach Todesursache

CPR	Infarkt (MW)	Koronarinsuffizienz (MW)	Kontrolle (MW)
Ja	0,008 %	0,001 %	0,000 %
Nein	0,002 %	0,001	0,001 %
p-Wert	0,883	0,367	0,476

Abkürzungen: CPR, Herzlungenwiederbelebung

Die Prozentwerte stellen die durchschnittlichen positiven Bildpixel in Prozent dar

Tab. 15: Anfärbbarkeit mit myc in Abhängigkeit von Altinfarkten nach Todesursache

Altinfarkte	Infarkt (MW)	Koronarinsuffizienz (MW)	Kontrolle (MW)
Ja	0,006 %	0,001 %	0,000 %
Nein	0,003 %	0,001 %	0,001 %
p-Wert	0,830	0,484	0,640

Die Prozentwerte stellen die durchschnittlichen positiven Bildpixel in Prozent dar

4. Diskussion

Diese Arbeit beweist eine zum Teil signifikant erhöhte Expression der hier untersuchten Zytokine TNF, IL-6 und IL-8 nach Myokardinfarkt und Koronarinsuffizienz. Im Fall des Zytokins IL-8 ist der Unterschied abhängig von der Auswertungsmethode jedoch nur schwach signifikant bzw. nicht signifikant. Eine immunhistochemische Unterscheidung zwischen den speziellen kardialen Todesursachen ist anhand der erhobenen Ergebnisse nicht möglich. Die vermehrte Expression von Zytokinen wie TNF, IL-6 und IL-8 bei Patienten mit Myokardinfarkt lässt entzündliche Prozesse reaktiv auf die Ischämie vermuten. Als Pathophysiologie des Exitus im Rahmen der relativen koronaren

Insuffizienz wurde eine relative Ischämie infolge der Kardiomegalie, welche beispielsweise in Kammerflimmern oder anderen Herzrhythmusstörungen resultiert, vermutet. Makroskopisch lässt sich diese Kausalkette jedoch weitestgehend nur als Ausschlussdiagnose bei Vorliegen einer kritischen Erhöhung des Herzgewichts als Ursache festlegen. Hierfür könnten biochemische Marker die vermutete Todesursache untermauern. Wie eingangs erwähnt, ist die Induktion der TNF-Freisetzung durch Hypoxie bereits bekannt (Ghezzi et al., 1991). Die erhöhte Expression der Zytokine könnte demnach die Vermutung bekräftigen, dass das Myokard in diesem Prozess ebenfalls unter Ischämie gelitten hat. Zudem sind bei TNF thrombogene Eigenschaften bekannt (Cairns et al., 2000). Auch bei IL-6 wurde ein Einfluss auf die Stabilität von Thromben erwähnt (Libby und Rocha, 2018). Folglich könnte durch das Auftreten von Herzrhythmusstörungen mit Veränderung der Blutzirkulation das Auftreten von Mikroinfarkten begünstigen und somit im Sinne eines circulus vitiosus zum Tod führen. Der vermehrte Nachweis von den Zytokinen in Infarkt- und Insuffizienzgruppe lässt zumindest pathophysiologische Gemeinsamkeiten in Signalkaskaden, welche um den Tod stattfinden, vermuten.

Die semiquantitativen Ergebnisse bezüglich der Zytokinexpressionen untermauern die Feststellungen bereits veröffentlichter Arbeiten, welche die Expression der untersuchten Proteine insbesondere von TNF nach Herzinfarkten belegen (Dunlay et al., 2008; Turillazzi et al., 2015). In der Literatur werden TNF, IL-6 und IL-8 auch im Rahmen des kardialen Remodelings nach Infarkt eine zentrale Steuerung der ablaufenden Prozesse im Rahmen von Inflammation und Nekrose zugeschrieben. Alle drei Proteine wurden sowohl im Tierversuch als auch postmortal bei an Herzinfarkten verstorbenen Patienten im Zusammenhang mit einer Myokardischämie nachgewiesen. Bereits in den ersten sechs Stunden nach Infarkt lassen sich die Proteine schwach immunhistochemisch nachweisen, erreichen ihr Maximum jedoch erst nach über sechs Stunden nach Ereignis (Turillazzi et al., 2015). Da im Rahmen der Pathophysiologie nach Infarkt verschiedene Kausalketten zum Tod führen können, ist der Zeitpunkt des Sterbens nach Infarkt auch exakte Korrelation variabel. Eine der immunhistochemisch nachgewiesenen Zytokinexpression im Myokard in Abhängigkeit der Zeitpunkte von Infarkt und Tod ist methodisch in der Literatur aktuell nur im Tierversuch nachzuvollziehen. Demnach ist auch bei den Patienten der Infarktgruppe die Zeitspanne zwischen Auftreten des

Myokardinfarktes und dem Todeszeitpunkt variabel und die unterschiedlich stark ausgeprägten Expressionen von IL-6, IL-8 und TNF erklärbar. An dieser Stelle sei zu betonen, dass sich die vorliegenden Arbeiten lediglich auf die Zytokinexpression nach Myokardinfarkt beziehen. Diese Arbeit unterstreicht die pathogenetischen Gemeinsamkeiten des Myokardinfarktes und der relativen Koronarinsuffizienz. Insbesondere bei TNF und IL-8 fiel eine deutliche Korrelation zwischen den beiden Gruppen auf, während die Expressionen in der Kontrollgruppe signifikant niedriger waren. Für IL-6 konnte gezeigt werden, dass es in der Kontrollgruppe gegenüber den kardialen Gruppen signifikant geringer exprimiert wird, jedoch imponiert hier eine deutlich stärkere Expression in der Myokardinfarktgruppe gegenüber dem Koronarinsuffizienzkollektiv. Letztlich fanden sich die untersuchten Zytokine nicht nur in den Proben mit einer kardialen Todesursache, sondern auch bei einzelnen Patienten der Kontrollgruppe. Somit erweist sich das Auftreten nicht als spezifisch für einen ischämischen Vorgang, kann jedoch aufgrund des signifikant höheren Auftretens hierauf hindeuten. Alter und Geschlecht zeigten – bis auf die erhöhte IL-8 Expression bei Männern – in den Untersuchungen keinen signifikanten Unterschied in Bezug auf die Expression. Dies ermöglicht eine

weitestgehend

Zytokinexpressionen.

alters-

und

Die erhöhte Expression von TNF und IL-6 bei Patienten mit bereits durchgemachten Myokardinfarkten könnte möglicherweise auf eine beschleunigte Immunantwort hinweisen. Antithetisch wäre eine Korrelation von gehäuften Infarkten bei Patienten mit chronischer Inflammation, welche eine stärkere Expression von inflammatorischen Zytokinen mit sich führen könnte, denkbar. Da sich jedoch nur im Gesamtkollektiv eine signifikante Erhöhung der IL-6- und TNF-Expressionen und nicht auch gesondert in Infarkt- oder Koronarinsuffizienzgruppen zeigte, lassen sich keine kausalen Rückschlüsse auf das Auftreten von Myokardinfarkten herleiten. Die hauptsächliche Anfärbung von Blutgefäßen bei beiden Zytokinen zeigt immunhistochemisch eine recht unspezifische Immunantwort. In nur wenigen Arealen demaskierte sich eine vermehrte Expression von IL-6 und TNF durch Kardiomyozyten. Zumeist finden sich diese markierten Kardiomyozyten in fibrotisch verändertem Gewebe. Angenommen, dass durch eine myokardiale Ischämie inflammatorische Prozesse initiiert werden, könnte man erwarten, dass bei Patienten, die einer CPR unterzogen werden, eine prolongierte myokardiale

geschlechtsunabhängige

Aussagekraft

der

Ischämie bei erhaltener Perfusion des restlichen Organismus möglicherweise zu einer verstärkten Expression von Zytokinen führt. Dies konnte in den aufgeführten Untersuchungen allerdings nicht nachvollzogen werden. Die nicht signifikant erhöhte IL-6-Expression bei nicht reanimierten Patienten der Myokardinsuffizienz- und Kontrollgruppe könnte im Gegensatz hierzu auf eine protektive Wirkung der CPR durch die länger aufrechterhaltene Perfusion hindeuten, ist jedoch sicherlich nicht beweisend.

Der regulatorische Zusammenhang des Immediate Early Gens myc mit kardialem Stress sowie kardialer Hypertrophie wurde bereits in der Einleitung erwähnt. Durch diesen Zusammenhang liegt die Vermutung nahe, dass im Rahmen myokardialer Ischämie myc gehäuft in den Zellstoffwechsel eingreift und deshalb möglicherweise vermehrt exprimiert werden könnte. In den für diese Arbeit durchgeführten Versuchen konnte jedoch keine signifikant höhere Expression von myc sowohl bei Patienten mit den Todesursachen Myokardinfarkt sowie relativer koronarer Insuffizienz dargestellt werden. Auch eine signifikante Verstärkung der Expression bei Vorhandensein von Myokardnarben konnte nicht dokumentiert werden. Interessanter Weise konnte in nur sehr wenigen Präparaten eine myc-Expression nachgewiesen werden. Hieraus könnte die Schlussfolgerung gezogen werden, dass myc im Rahmen kardialer Insuffizienz keine regulatorischen Aufgaben erfüllt, auch wenn eine myc-Gen-Induktion im Mausmodell Kardiomyopathien induzieren konnte (Lee et al, 2009). Alternativ ist zu bedenken, dass der Expressionspeak von myc ca. 3 bis 4 Stunden nach einer Stimulation vorliegt (Owen et al., 1987; Shichiri et al., 1993). Demnach ist es möglich, dass in einer Vielzahl der untersuchten Patienten der Todeszeitpunkt vor einem möglichen Anstieg der myc-Expression liegt und der Nachweis in den untersuchten Proben somit vom Todeszeitpunkt nach dem ischämischen Ereignis abhängig ist. Um die Beteiligung des myc-Signalweges weiter zu erforschen, könnten Studien in vivo angeschlossen werden.

Um Grenzen der Aussagekraft der Untersuchungen und gegebenenfalls sogar potentielle Fehler besser zu erkennen, empfiehlt sich ein genauerer Blick auf die zur Verfügung stehende Methodik. Die Asservate der Rechtsmedizin bieten mit über Jahrzehnte gesammelten Daten und Gewebeproben einzigartige Möglichkeiten, um spezielle Todesursachen oder Komorbiditäten in verschiedenen Organen histologisch zu untersuchen. In der Natur des Archivs liegt, dass diese Auswertung nur retrospektiv

erfolgen kann. Ein genaueres matching der Kontrollgruppe mit den vorliegenden Fällen aus den Untersuchungsgruppen ist folglich nur eingeschränkt möglich. Dies resultiert in einer unterschiedlichen Größe der Untersuchungsgruppen und auch bezüglich der Subgruppenbildung in eingangs erwähnter unterschiedlicher Verteilung von durchgeführten CPR oder Altinfarkten.

Durch die retrospektive Auswertung besteht zudem die Möglichkeit, dass sich durch die Selektion der Patienten Gewichtungen beispielsweise an Komorbiditäten ergeben, welche die Ergebnisse auf molekularer Ebene beeinflussen. Am anfälligsten für diesen Selection Bias ist die Kontrollgruppe, da hier Patienten mit unnatürlichen Todesursachen überwiegen. So ist denkbar, dass Opfer von Gewalttaten statistisch ungleich in sozialen Milieus verteilt sind, was wiederum Auswirkung beispielsweise auf die Ernährung und somit auf Begleiterkrankungen haben kann. Dies wurde versucht durch eine Diversifizierung der Todesursachen zu minimieren.

Ein möglicher Unterschied könnte durch unterschiedlich detaillierte Vorgeschichten zu den Patienten des Kollektivs maskiert sein. Ebenso wurden Vorerkrankungen, die beispielsweise zu einem Ausschluss führen, zum einen durch den makroskopischen Obduktionsbefund und zum anderen durch die Patientenakte oder Ermittlungsergebnisse bekannt. Dies könnte möglicherweise zu einer falschen Einordnung von Einzelfällen in die verschiedenen Subgruppen zum Beispiel bezüglich Altinfarkten und Reanimationen führen und somit die Subgruppenanalyse verfälschen. Jedoch liegen nicht bei jedem Patienten beispielsweise verlässliche Informationen zu Vorerkrankungen vor, was in der Natur der Asservate von gerichtlichen Obduktionen liegt, da diese meist aufgrund einer unklaren Todesursache indiziert wurden. Ein Beispiel hierfür ist der Fall 49, bei welchem makroskopisch als Todesursache eine Koronarinsuffizienz vermutet wurde. Histologisch zeigen sich jedoch oben genannte Hinweise auf eine Myokarditis, welche bei einem prolongierten Intensivaufenthalt und einer möglicherweise infizierten Fraktur plausibel erscheint und die vermehrte IL-8-Expression ebenfalls erklärt. Durch die Auswertung der Obduktionsberichte sowie der sonstigen Befunde kann in der Regel jedoch zu den meisten Patienten eine suffiziente Aussage zu Vorerkrankungen getroffen und mögliche Konsequenzen wie der Ausschluss aus dem Kollektiv gezogen werden. So finden sich bei reanimierten Patienten meistens Rippenfrakturen und Altinfarkte können häufig als Narbe makroskopisch identifiziert werden.

Die semiquantitative Auswertung der gefärbten Präparate erfolgte zunächst binär durch einen Untersucher in positive Präparate und negative Präparate. Die positiven Präparate wurden in vier Quadranten unterteilt und jeder positive Quadrant fünfmal fotografiert. Dieses Fotomaterial wurde standardisiert ausgewertet. Diese Vorselektion birgt Risiko eines weiteren Selection Bias, da möglicherweise auch beispielsweise Artefakte durch das Programm als falsch positive Signale erfasst werden könnten. Um dies genauer einzugrenzen, erfolgte die Auswertung von unauffälligen Arealen zum Vergleich. Hier zeigte sich nach Auswertung mit cellsens in allen Fällen eine Anfärbung von 0 %. Dadurch ist anzunehmen, dass der befürchtete Bias nicht messbar und deshalb zu vernachlässigen ist.

Aufgrund der unterschiedlichen Befunde, ob sich Präparate färben oder nicht färben lassen, erfolgten für myc und IL-8 zusätzliche Auswertungen, welche lediglich binär untersuchten, ob Präparate überhaupt positive Signale aufwiesen oder nicht. Die Chi²-Tests bestätigten die zuvor durchgeführten semiquantitativen Ergebnisse weitestgehend. Lediglich in der Auswertung der IL-8-Expression nach Todesursachen zeigte sich in der metrischen Auswertung ein schwach signifikanter Unterschied (p=0,047), wohingegen in der binären Auswertung keine Signifikanz nachgewiesen werden konnte (p=0,054). Dies legt nahe, dass die Aussagekraft der Ergebnisse von IL-8 im Vergleich zu denen von IL-6 und TNF in den Hintergrund rücken.

Zudem grenzen die eingangs erwähnten Ausschlusskriterien dieser Arbeit (onkologische sowie infektiologische Todesursachen) die Allgemeingültigkeit der hier beobachteten Korrelationen und somit den möglichen Stellenwert der untersuchten Marker in der Todesursachendiagnostik ein.

Die Auswertung der unterschiedlichen Herzmuskelproben in der Infarktgruppe unterscheidet zwischen makroskopisch unauffälligen Arealen und makroskopisch demaskierten Infarktarealen. Da diese Beurteilung aus bereits in Formalin fixiertem Material getroffen wird, sind auch hierbei Fehler möglich.

In Zusammenschau der diskutierten Ergebnisse mit den Limitationen dieser Arbeit lässt sich festhalten, dass die signifikante Korrelation einer erhöhten myokardialen Zytokinexpression bei Patienten, welche an einem Herzinfarkt oder an einer koronaren Insuffizienz verstorben sind, pathophysiologisch kausal erklärbar, aber letztendlich noch nicht eindeutig geklärt sind. Zur genaueren Betrachtung wäre eine quantitative

Darstellung von TNF, IL-6 und IL-8 mittels Enzyme Linked Immuno Sorbent Assay (ELISA) aus Leichenblut denkbar. Alternativ könnten immunhistochemische Untersuchungen anderer Organe, welche einen Schaden durch Ischämie erlitten haben, einen Kausalzusammenhang der erhöhten Expression mit einer existenten Ischämie verhärten. Die vorliegende Arbeit zeigt bereits Parallelen zwischen den Expressionen insbesondere von TNF und IL-8 nach Myokardinfarkt und bei relativer Koronarinsuffizienz auf. Die Feststellung könnte als weiterer Baustein zum Nachweis einer relativen Koronarinsuffizienz als Todesursache dienen.

5. Zusammenfassung

Fragestellung:

Bei ungeklärter Todesursache kann im Rahmen einer Obduktion ein Myokardinfarkt meist makroskopisch erkannt werden. lm Gegensatz dazu kann eine relative Koronarinsuffizienz auf Basis einer myokardialen Hypertrophie sowohl makroskopisch als auch mikroskopisch oft nicht sicher bewiesen werden. Die Bedeutung der Zytokine TNF, IL-6 und IL-8 sowie des Immediate Early Gens myc nach Hypoxie im Herzmuskel ist unvollständig verstanden. In der aufgeführten Studie wurde immunhistochemisch der Zusammenhang zwischen Expression von TNF, IL-6, IL-8 und myc und Myokardinfarkt und relativer Koronarinsuffizienz untersucht.

Material und Methoden:

Es wurden Myokardproben von Patienten, welche an einem Myokardinfarkt oder an einer relativen Myokardinsuffizienz verstorben sind, sowie eine Kontrollgruppe mit nicht-kardialen Todesursachen immunhistochemisch gefärbt und die Präparate semiquantitativ ausgewertet. Hierbei wurden die kardialen Todesursachen mit der Kontrollgruppe verglichen sowie Subgruppen zu Alter, Geschlecht, erfolgter Reanimation und dem Vorhandensein von Altinfarkten untersucht.

Ergebnisse

Hierbei konnte kein signifikanter Unterschied der Anfärbbarkeit mit IL-8 und myc nachgewiesen werden. Mit IL-6 und TNF konnten zwei der drei untersuchten Zytokine hochsignifikant vermehrt in den Proben der Patienten mit kardialen Todesursachen nachgewiesen werden.

Fazit:

Als Schlussfolgerung liegt eine gesteigerte Aktivierung entzündlicher Prozesse in Reaktion auf eine myokardiale Hypoxie nahe.

Die Expression von TNF, IL-6 und IL-8 sind zwar für eine kardiale Todesursache nicht spezifisch, können jedoch auf einen Myokardinfarkt oder eine relative Koronarinsuffizienz hindeuten.

Anhang

Anhang 1: Fälle der Infarktgruppe

Nr.	Todesursache;	Obduktionsbefund	KG (kg)	Gr. (m)	BMI	Herzge wicht	Alter	Geschl	CPR	Altinf
	Vorerkrankungen		(kg).	(m)	kg/m²	(g)	(a)	echt		arkte
1	Re-Infarkt, DM II, art. Hypertonie	7x2 cm großes grau-weißliches Areal an der Hinterwand, am Oberpol zeigt sich ein Bereich (2x1 cm) mit feinstreifigen Rötungen, Koronarsklerose, Muskatnussleber	72	1,64	26,8	380	41	w	ja	ja
2	Herzinfarkt, Z.n. Bypass-OP, art. Hypertonie, DM II	Leichnam verbrannt, narbige Durchsetzung der Hinterwand, Keine Russaspiration, Zuckergussmilz, CO 3,1 %	86,8	1,64	32,3	460	77	m	nein	ja
3	Infarkt, kardiogener Schock nach Bypass- OP, Leriche-Syndrom	4 cm große scheckige Rötung der Herzspitze, 0,3 cm großer Riss der Bypasswand, mäßiggradige Koronarsklerose, Fettleber, Zuckergussmilz, Stenose der Aorta thorakal (80 %), abdominal 100 %, 1,3 l Blut im Thorax	103,4	.1,77	33,0	570	55	m	nein	nein
4	Herzinfarkt im Rahmen von Narkoseeinleitung, chron. Niereninsuffizienz, Peritonealdialyse, DM II, Anämie, KHK	Rötlich scheckiges Areal der Vorder- und Hinterwand mit Narben, Z.n. Stenteinlage, Lungenödem, Muskatnussleber, Zuckergussmilz	55,8	1,56	22,9	500	55	w	ja	ja
5	Kombination Infarkte, Koronarsklerose, Stumpfe Gewalt durch Treppensturz, Makuladegeneration, Z.n. Infarkten, Herzinsuffizienz	Koronarsklerose, zahlreiche fleckige alte Infarkte der Hinterwand und linken Herzkammer, ausgeprägte Arterio- und Aortensklerose Multiple Riss- und Quetschwunden im Gesicht, Nasenbeinbruch, Oberkieferabbruch, Unterblutung rechter Stirnlappen, multiple Muskeleinblutungen, Ellenköpfchenbruch links,	51	1,57	20,7	450	90	w	ja	ja

		Brustbeinbruch, Rippenserienbrüche								
6	Re-Infarkt, Herzinsuffizenz, Z.n. Defibrillator- Implantation	Herzübergewicht 540 g, Mäßiggradige Koronarsklerose, frei durchgängiger Stent, 3 cm große Narbe der Hinterwand, 3 cm weißliches Areal mit feinstreifiger Rötung an der Herzspitze, regelrechte Defibrillatorelektroden, Arterio- und Arteriolosklerose der Nieren, Verschluss der linken äußeren Herzschlagader, Schilddrüsenvergrößerung	61,4	1,6	24,0	540	82	w	nein	ja
7	Re-Infarkt	Starke Koronarsklerose, Infarktnarben der Herzvorderwand, in einer zentralen Narbe und Umgebung bestehen feinstreifige Rötungen, Lungenödem, Fettleber, Zuckergussmilz, Nebennieren-knoten, multiple Zysten und Knoten der Schilddrüse	101,1	1,61	39,0	420	54	w	ja	ja
8	Re-Infarkt, pAVK, Z.n. Unterschenkelamputa tion links, chronische Herzinsuffizienz, Z.n. NSTEMI mit multiplen Interventionen, DM II	Massivste Koronarsklerose, ovales Fenster geöffnet (0,3 cm), Vorderwandnarbe 1,5 cm mit feinstreifiger Rötung, Muskatnussleber, Rippenserienbrüche nach Reanimation, regelrechte Wundverhältnisse nach Unterschenkel-Amputation	59,9	1,67	21,5	380	82	w	ja	ja
9	Re-Infarkt, 3-Gefäß- KHK, Bypass, cor pulmonale, Z.n. Stent-Implantation, Vorhofflimmern, OAK mit Marcumar pAVK, Z.n. Billroth-II, Z.n. Ileus-OP	Fortgeschrittene allgemeine Arteriosklerose, Nierenarterienstenose, Einengung des Bypassabgangs, Infarktnarbe der Hinterwand/Herzspitze, sowie im Bereich der Hinterwand klappenwärts mit frisch rötlich demarkierter Zone (3x2 cm), Narbe der Vorderwand, cor pulmonale, Herzgewicht 575 g, Lungenemphysem, Muskatnussleber, Hirnatrophie, reizlose Wundverhältnisse	68,9	1,73	23,0	575	79	m	nein	ja
10	Re-Infarkt, Z.n. i.v	Geringe Koronarsklerose, 1 cm Narbe der Herzvorderwand, 2 cm Narbe mit feinstreifiger	108,9	1,76	35,2	470	43	W	nein	ja

	Drogenabusus	Rötung der Hinterwand, starkes Lungenödem, verfettete Bauchspeicheldrüse								
11	Re-Infarkt	3x1,5 cm frisch eingeblutetes Areal der Herztrennwand/Übergang Hinterwand, narbiger Aspekt, rechte Herzkranzarterie mit Thrombus, geringgradige Aortensklerose, Lungenödem, Blausüchtigkeit und Blutfülle der Organe, verfettete Bauchspeicheldrüse	100	1,75	32,7	440	42	m	ja	ja
12	Re-Infarkt, i.vDrogenabusus	Massive Koronarsklerose, Einengung linke Herzkrankschlagader um 90 %, multiple sanduhrförmige Einengungen der linken Herzkranzschlagader, 5x3 cm große Narbe der Herzhinterwand mit feinstreifiger Rötung, multiple Narben der Vorderwand, Herzgewicht 540 g, Starkes Lungenödem, Akute Leberstauung, Rippenserienbrüche bei Z.n. Reanimation	67	1,73	22,4	530	51	m	ja	ja
13	Herzinfarkt, Z.n. PTCA mit Stentimplantation nach STEMI, im Verlauf klinische Verschlechterung	Herzübergewicht 700 g, subtotale Stenose des vorderen absteigenden Asts der rechten Herzkranzarterie, zwei durchgängige Stents, alte Narben der Vorderwand der linken Herzkammer, gut demarkierter Infarkt der Hinter/Seitenwand. Lungenödem, Muskatnussleber, Milzvergrößerung.	140	1,36	75,7	700	52	m	nein	ja
14	Re-Infarkt bei Stentverschluss, eitrige Peritonitis, pAVK	Herzvergrößerung 780 g, Verwachsung Perikard mit Herzaußenhaut, Verkalkung aller Herzklappen, massiv stenosierende Koronarsklerose mit verschlossenem Stent der rechten Herzkranzschlagader, multiple Narben, Lungen mit Pleura verwachsen, Lungenödem, massive Arteriosklerose, auch der Nierenarterien, ältere Hirninfarkte, Eitrige Peritonitis, blaurote Dünndarmschlingen,	58,1	1,1	48,0	780	56	m	ja	ja

		Dickdarmschleimhautentzündung, Leber mit Zirrhose und Muskatnusstruktur, Sklerose der Bauchspeicheldrüse, Z.n. Amputation beider Beine und mehrerer Finger								
15	Herzbeuteltamponad e infolge eines akuten Herzinfarktes, Z.n. Nephrektomie links	mäßige bis höhergradige allgemeine Arteriosklerose und Koronarsklerose, Verkalkung aller Herzklappen, akuter Herzinfarkt in der Spitzenregion mit Ruptur zwischen linker Herzkammer und Herzbeutel, Perikardtamponade von 160 ml, Abdruckmarke Mundboden und Hals rechts korrespondierend zur Aufliegestelle, Bluterguss linke Schläfenregion, asymmetrisch vergrößerte Schilddrüse, Muskatnussleber,	62,1	1,52	26,9	430	82	w	ja	nein
16	Pan-Infarkt, Z.n. Parotis-OP rechts mit Nachblutung	Gering bis mäßiggradige allgemeine Arteriosklerose, Lungenarteriosklerose, Enges Lumen des Abgangs der rechten Herzkranzschlagader, kleinere Narben der Vorder-, Hinter- und Trennwand der linken Herzkammer, frische Myokardnekrosen der Vorder und Hinterwand, ausgeprägtes Lungenödem, Schocknieren, Muskatnussleber, Fettdurchsetzung der Bauchspeichel-drüse, Rippenserienbrüche nach Reanimation	79,9	1,68	28,3	410	58	m	ja	ja
17	Re-Infarkt, KHK	Rippenserienbrüche und Brustbeinbruch bei Z.n. Reanimation, Blausüchtigkeit der Organe, Herzgewicht 650 g, ausgeprägte Koronarsklerose, narbige Durchsetzung der Hinterwand links, eingeblutetes, narbiges Areal der Vorderwand 5x2 cm, Aortenaneurysma, Fettleberzirrhose, multiple Nebennierenrindenknötchen	98,2	1,81	30,0	650	61	m	ja	ja

18	Akute Koronarinsuffizienz mit frühen Infarktzeichen	Mäßiggradige Koronarsklerose mit Einengungen beider Kranzschlagadern um 50 %, ausgeprägtes Lungenödem, Geringgradige allgemeine Arteriosklerose, Rippenserienbrüche bei Z.n. Reanimation, beginnende Muskatnussleber, Zerreißung der Zwischenwirbelscheibe HWK 7 und BKW 1, Balkenblase (760 ml)	98,1	1,82	29,6	480	59	m	ja	nein
19	Re-Infarkt, Z.n. Sturz mit Hirnblutung	Ältere Erweichung der rechten Hemisphäre, 4x3 cm narbiges Areal der Herzvorderwand mit Zeichen eines frischen Re-Infarktgeschehens, 4x7 cm Narbe in der Herzscheidewand ebenfalls mit Zeichen eines frischen Infarktgeschehens, subtotal verschlossene Herzkranzgefäße, Herzgewicht 680 g, ausgeprägte Arteriosklerose aller Gefäße, Lungenödem, akute Leberstauung, Schilddrüsen-Knoten	62	1,67	22,2	685	66	m	nein	ja
20	Akuter Herzinfarkt, KHK, DM II, Niereninsuffizienz, Vorhofflimmern, OAK Marcumar	Herzgewicht 660 g, geringe Koronarsklerose, 3x1 cm großes Areal der Herzhinterwand mit feinstreifigen Rötungen, Einblutung der Kopfschwarte rechts, Fettleber, Rippenserienbrüche und Brustbeinfraktur nach Reanimation	86,8	1,74	28,7	660	65	m	ja	nein
21	Re-Infarkt, Blutung bei Diskonnektion des Demerskatheters, 3- Gefäß-KHK, Z.n. ACVB 1997, PCA mit Stentimplantation, Z.n. SM-Implantation, Z.n. GI-Blutung,	rechte und linke Koronararterien abgangsnah verschlossen, Bypassgefäße nicht passierbar, Herzgewicht 570 g, frisch demarkiertes Areal 4x1 cm der Hinterwand, Narben der Vorderund Hinterwand, keine Verblutungszeichen. schwerste allgemeine Arteriosklerose	75	1,58	30,0	570	82	w	ja	ja

	DM II, Nieren- insuffizienz, Anämie, Hyperparathyreoidis mus, Z.n. Cervix-Ca									
22	Re-Infarkt, Dekubitus IV° am Sitzbein, Spina bifida, DM II, Adipositas permagna, Schlafapnoe, Z.n. AP- Anlage, Z.n. Neoblasenanlage	VP-Shunt, alte Hautplastiken am Gesäß, Z.n. AP, Z.n. Ersatzblase, Herzgewicht 650 g, narbige Durchsetzung der Hinterwand, 2 cm großes eingeblutetes und eingesunkenes Areal	98,3	1,49	44,3	650	47	m	nein	ja
23	Re-Infarkt, Z.n. Thorakotomie bei Trikuspidalklappenrek onstruktion, Sepsis, Z.n. Splenektomie	Z.n. Thorakotomie, reizlose Naht bzw. Klappen-verhältnisse, ausgeprägte Rechtsherzhypertrophie, Z.n. Bypassanlage, Herzgewicht 830 g, fleckig streifige Einblutung der Hinterwand 2 cm im Anschluss an Infarktnarbe	107,9	1,8	33,3	830	49	m	nein	ja
24	Re-Infarkt	Ausgedehnte narbige Veränderungen der Herzmuskulatur, herzspitzennah, über beide Ventrikel sowie die Scheidewand reichend, in diesem Bereich zahlreiche feinstreifige Rötungen und Abblassungen, Stenteinlage im absteigenden Anteil der linken Herzkranzschlagader, Blausüchtigkeit der inneren Organe, ausgeprägte Arteriosklerose, ausgeprägtes Lungenödem	80,3	1,71	27,5	610	41	m	ja	ja
25	Massive GI-Blutung mit konsekutivem Re- Infarkt	Rippenserienbrüche und Brustbeinbruch bei Z.n. Reanimation, 1,1 l Blut im Magen, mäßiggradige Koronarsklerose, 1 cm Stent in rechter Herzkranzschlagader, Herzgewicht 560 g, 4x3 cm Narbe der Hinterwand mit streifiger Rötung, Mäßiggradiges Lungenödem, Akut auf chronisch gestaute Leber,	82,5	1,71	28,2	560	65	m	ja	ja

		Schocknieren								
	Herzinfarkt mit Ruptur der Vorderwand und	Hämatoperikard (150 ml), flächtige Unterblutung der Herzaußenhaut über der								
26	Hämatoperikard, Komplikation bei Katheterintervention	Vorderwand der linken Herzkammer, frischer Infarkt im Bereich der gesamten Vorderwand	78	1,8	24,1	400	76	m	ja	nein
27	Re-Infarkt	links, mäßiggradige Koronarsklerose, Mäßiggradige Koronarsklerose, einzelne Einengungen der Lumina aller Herzkranzgefäße um ca. 50 %, in Vorder- und Hinterwand der linken Herzkammer mutiple Infarktnarben, im mittleren Drittel feinstreifige Rötung, Herzgewicht 560 g, Massives Lungenödem, Muskatnussleber	92,9	1,79	29,0	560	35	m	ja	ja
28	Re-Infarkt, Z.n. dreifacher Bypass- OP	Ausgeprägte Koronarsklerose mit annähernd totalen Verschlüssen aller Gefäße und multiplen Herzmuskelschwielen, Herzgewciht 780 g, 2 cm Infarkt der Hinterwand, Fettleber, Schocknieren, ausgeprägte Arteriosklerose,	112	1,8	34,6	780	61	m	nein	ja
29	Re-Infarkt, 3-Gefäß- KHK, Z.n. PTCA mit Stentimplantation, Vorhofflimmern, Z.n. Defibrillatorimplantati on, DM II, art. Hypertonie	Herzgewicht 750 g, Massive Koronarsklerose, multiple Stents im Sinne einer Stentstraße der linken Schlagader, multiple sanduhrförmige Einengungen um bis zu 60 %, Instent-Stenose der rechten Herzkranzschlagader, Herzinterwand mit einer 2x4 cm große Narbe mit streifiger Einblutung, herzscheidewandnah 1x2 cm großes Areal mit feinstreifiger Rötung, mehrere Narben der Vorderwand, Papillarmuskeln der linken Herzkammer massiv bindegewebig durchsetzt, Defibrillator einwandfrei, ausgeprägte allgemeine Arteriosklerose, Rippenserienbrüche bei Z.n. Reanimation	67	1,7	23,2	750	72	m	ja	ja

30	Herzinfarkt, ggf. Intoxikation als konkurrierende TU, Herzrhythmusstörung en, Depression	Bruch der 710. Rippe rechts, Koronarsklerose, subtotale Stenose rechts, Infarktareal der Hinterwand 1x4 cm, Fettleber					52	m	nein	nein
31	Herzinfarkt	Mäßiggradiges Lungenödem, scheckige und lineare gelblich-rötliche Verfärbungen in der Herzhinterwand und herzspitzenwärts, Fettleber, Schrumpfniere links, Schocknieren, Uterusgeschwulst, Rippenserienbrüche	99,8	1,7	34,5	390	33	w	ja	nein
32	Herzinfarkt, Z.n. Alkohol-Abusus	Lehmgelbe Verfärbung der Herzhinterwand der linken Herzkammer 2,5 cm, Herzgewicht 510 g, Mäßiggradige Koronarsklerose, Aufweitung der Lungenschlagadern, Ausgeprägtes Lungenödem, akute Stauungsleber, mäßiggradige allgemeine Arteriosklerose	78	1,73	26,1	510	60	m	nein	nein
33	NSTEMI, Multiorganversagen bei Aneurysma- spurium-Blutung im Rahmen der Koronarangiographie, Z.n. SM-Implantation	Pleuraergüsse, Herzgewicht 720 g, Hypertrophie beiderseits, Ausweitung des rechten Herzvorhofes, Stenosierende Koronarsklerose, Lungenödem, Leberzirrhose, Arteriosklerose, 80 %iger Verschluss der Kopfschlagader links, SM regelrecht, Zeichen des hohen Blutverlustes	138	1,8	42,6	720	77	m	nein	nein
34	Re-Infarkt, Z.n. Alkohol-Abusus	Ausgeprägte Koronarsklerose bis zu 70 %, Hinterwand der linken Herzkammer mit multiplen Narben z.T. mit feinstreifiger Rötung, ca. 1 cm, Fettleber, verfettete Bauchspeicheldrüse	80	1,82	24,2	450	61	m	nein	ja
35	Re-Infarkt	Herzgewicht 680 g, Ausgeprägte Koronarsklerose, links 50%ige Stenose, rechts 70 %, Vorderwand 2x0,5 cm große Narbe mit umgebender feinstreifiger Rötung, Hinterwand	95,8	1,75	31,3	680	60	m	ja	ja

		links mit multiplen Narben, Ausgeprägtes Lungenödem, multiple vergrößerte Lymphknoten in den Lungen, Muskatnussleber, Tumor zwischen Leberlappen, multiple große Tumoren im Lebergewebe								
36	Re-Infarkt, Z.n. Bypassversorgung verbrannt, CO-Hb 13%	Großflächige Rußantragungen der Haut, Massive Koronarsklerose bis zu 90 % bds., Vorderwand mit 2,5x1 cm messender Narbe mit umgebender scheckiger Rötung, Hinterwand mit 4x3 cm Narbe mit streifiger Rötung, Herzgewicht 540 g, Geringes Lungenödem, wenig Ruß in den zentralen Bronchien, Muskatnussleber, Zuckergussmilz	86,5	1,64	32,2	540	88	m	nein	ja
37	Herzinfarkt nach Gallenblasenoperatio n, Z.n. Koronarangiographie und SM-Anlage, operative Revision bei Herzbeuteltamponad e mit exitus letalis	Mäßiggradige allgemeine Arteriosklerose, massive Koronarsklerose, Stents in rechter Koronararterie, ausgeprägter Herzinfarkt im Bereich der Hinterwand der linken Herzkammer mit Übergang rechte Herzkammer, genähte Perforation der linken Herzkammer, genähte Perforation der carotis communis rechts, beanstandungsloser Situs nach Cholezystektomie, Schocknieren	69,4	1,63	26,1	440	62	m	ja	nein
38	Re-Infarkt, Alkohol- Abusus, Adipositas, Z.n. Hirntumorentfernung in der Kindheit	Mäßiggradige allgemeine Arteriosklerose, Herzgewicht 700 g, 7x4 cm rötlich-scheckiges Areal in der linken Hinterkammerwand, mäßiggradiges Lungenödem, Stauungsleber, V.a. Nierenadenom rechts	110	1,7	38,1	700	53	m	nein	ja
39	Re-Infarkt, Z.n. TAVI- Anlage 7 Tage vor Exitus	Mäßiggradige Koronarsklerose mit Einengungen bis zu 60 % bds. Regelhaft einliegende TAVI, Vorderwand basisnah 3 mm Narbe mit umgebender feinstreifiger Rötung 1 cm, spitzenwärts 3 mm durchmessende rot- livide Verfärbung, ausgeprägtes Lungenödem,	58,3	1,66	21,2	405	82	w	ja	ja

		Massive allgemeine Arteriosklerose, Rippenserienbrüche und Brustbeinquerbruch bei Z.n. Reanimation								
40	Herzinfarkt, Herzinsuffizienz, COPD, art. Hypertonie	Ausgeprägt allgemeine Arteriosklerose und Koronarsklerose, frisch fleckförmige Einblutung Spitzenregion der Vorder- und Hinterwand der linken Herzkammer, erweiterte rechte Herzkammer, mäßiggradiges Lungenödem, chronische Luftwegsentzündung, beg. Muskatnussleber, Zuckergussmilz	90,6	1,55	37,7	490	80	w	nein	nein
41	Akuter Herzinfarkt, Z.n. Beinbruch vor ca. drei Wochen, Epilepsie, COPD	2 cm abgeblasstes Areal der Herzhinterwand, 1 cm abgeblasstes, eingesunkenes Areal in der Herzkammerscheidewand, Herzgewicht 700 g, chronische Überblähung der Lungen, reichlich Schleim, brüchige Konsistenz des Lungengewebes, Nebennierenrindenknoten, reizlose Wundverhältnisse am linken Unterschenkel	132	1,72	44,6	700	47	m	nein	nein
42	Unterkühlung, Altinfarkt, Alkohol- Abusus	Ausgeprägte Wischnewskiflecken über die gesamte Magenschleimhaut, Einblutungen in der Bauchspeicheldrüse, 1,4 cm durchmessende Narbe Herzhinterwand, mäßiggradige Arteriosklerose	43,2	1,67	15,5	310	62	m	nein	nein

Abkürzungen: BMI, Body-Mass-Index; BWK, Brustwirbelkörper; CO, Kohlenstoffmonoxid; COPD, chronisch obstruktive Lungenerkrankung; DM II, Diabetes mellitus Typ II; GI, gastrointestinal; i.v., intravenös; KG, Körpergewicht; LWK, Lendenwirkbelkörper; OAK, orale Antikoagulation; PAVK, periphere arterielle Verschlusskrankheit; RCX, ramus circumflexus; SM, Schrittmacher, TAVI, transkatheter Aortenklappenimplantation; TEP, Totalendoprothese; THC, Tetrahydrocannabinol; TVT, tiefe Venenthrombose

Anhang 2: Fälle der Koronarinsuffizienzgruppe

								1		
Nr.	Todesursache, Vorerkrankungen	Obduktionsbefund	KG (kg).	Gr. (m)	BMI kg/m²	Herzge wicht (g)	Alter (a)	Geschl echt	CPR	Altinf arkte
43	V.a. Relative Koronarinsuffizienz, Z.n. Herzinfarkt, Z.n. Ileus-Operation, DM II, Schizophrenie	Herzgewicht 550 g, alte Infarktnarbe der Hinterwand, Lungenödem, Aortensklerose, reizloser Bauch-OP-Situs	97,1	1,7	33,6	550	53	m	nein	ja
44	V.a. Koronarinsuffizenz, konkurrierende TU: Intoxikation, Nikotinabusus, Alkohol-Abusus, THC-Abusus	Ausgeprägtes Lungenödem, Herzgewicht 545 g, deutliche Koronarsklerose, Muskatnussleber, Schocknieren, Schilddrüsen-Knoten bds.	107, 1	1,77	34,2	545	35	m	ja	nein
45	Relative Koronarinsuffizienz	Herzgewicht 580 g, Koronarsklerose, Lungenödem, verdickte, knotige Nebennierenrinde, Arterio- und Aortosklerose	72	1,69	25,2	580	80	m	ja	nein
46	V.a. relative Koronar- insuffizienz, Nikotin- abusus, art. Hypertonie	Kardiale Hypertrophie, Abgangsstenose des vorderen absteigenden Astes der linken Koronararterie, Schleim in tiefen Luftwegen, ausgeprägte Arteriosklerose	79	1,66	28,7	470	67	w	nein	nein
47	V.a. relative Koronarinsuffizienz, Nikotinabusus, Z.n. Perikarditis	Herzgewicht 560 g, Fettstoffeinlagerungen unter der Herzinnenhaut, mäßiggradige Koronarsklerose, kräftiges Lungenödem, knotige Gewebsneubildung im rechten Leberlappen	81,6	1,77	26,0	560	51	m	nein	nein
48	Relative Koronarinsuffizienz	Herzgewicht 650 g, subtotale Stenose der rechten Herzkranzarterie, 90% ige Stenose der linken Herzkranzarterie, Infarktnarbe der Herzvorderwand, Lungenödem	91	1,64	33,8	650	58	m	nein	ja

49	V.a. relative Koronarinsuffizienz, Z.n. Aortenklappenersatz, COPD, Leberzirrhose	Z.n. intensivmedizinischer Behandlung, Herzübergewicht mit Kammerwandstärkenzunahme links, Z.n. Thorakotomie mit Perikardverwachsungen, künstliche Aortenklappe, Leberzirrhose, 600 ml Bauchwasser	114	1,7	39,4	680	65	m	nein	nein
50	Akute Koronarinsuffizienz, KHK, art. Hypertonie, Carotisstenose, DM II	Vorderer absteigende und umschlingende Ast der linken Koronarie nicht aufzuschneiden, ausgeprägte Aortensklerose	64,5	1,58	25,8	395	81	w	nein	nein
51	V.a. relative Koronarinsuffizienz, KHK, Vorhofflimmern, OAK Xarelto, Schlafapnoe- Syndrom, Z.n. TVT, Z.n. Sturz	Herzgewicht 540 g, stenosierende Koronarsklerose	69	1,51	30,3	540	82	w	ja	nein
52	Akute Koronarinsuffizienz, KHK, Z.n. Bypass- OP, Z.n. SM- Implantation, Sturz	Riss-Quetsch-Wunde oberhalb der linken Augenbraue, Perikardverwachsungen, hochgradige Koronarsklerose, Bypassverkalkungen	101, 2	1,62	38,6	980	80	m	ja	nein
53	V.a. akute Koronarinsuffizienz, DM II	Herzgewicht 550 g, Kammerwandstärke links verstärkt, Fetteinlagerungen der Herzinnenhaut, Nebennierenrindenknoten	104	1,76	33,6	550	67	m	nein	nein
54	Akute Koronarinsuffizienz, Hypertonie, Nikotinabusus	Blutfülle der inneren Organe, alter Infarkt der Hinterwand links, subtotale Stenose der Hauptstämme, Aortensklerose	79,7	1,69	27,9	470	57	m	nein	ja
55	Koronarinsuffizienz	Deutliche Koronarsklerose, Lumeneinengung bds. bis zu 70 %, Herzgewicht 560 g, Hinterwand mit 1 cm großer Abblassungen, an der Herzspitze 1,5 cm, Deutliches	93,3	1,75	30,5	560	39	m	ja	ja

		Lungenödem, geringe allgemeine Arteriosklerose								
56	V.a. relative Koronarinsuffizienz, Herzinsuffizienz, terminale Niereninsuffizienz	Adipositas, Herzgewicht 560 g, stenosierende Koronarsklerose, Muskatnussleber, Schrumpfnieren, Arteriosklerose	105	1,58	42,1	560	81	w	nein	nein
57	Koronarinsuffizienz, Alkohol-Abusus, DM II, Hypertonie, Rheuma	Sturztypische Hämatome, Subduralhämatom 10 ml, mäßiggradige Koronarsklerose, Stenosen bis zu 90 % bds., Hypertrophie des Myokards, Fettleber, Knoten der Schilddrüse	72,1	1,56	29,6	470	67	w	nein	nein
58	V.a. Koronarinsuffizienz, makroskopisch unklar, Summation der Grunderkrankungen,	Carotisstenose 90 % rechts, mäßiggradige Koronarsklerose, multiple Infarktnarben der linken Hinterwand, Verschluss der oberen Mesenterialarterie	54	1,6	21,1	410	88	w	nein	ja
59	V.a. relative Koronarinsuffizienz, DM II, Niereninsuffizienz, Delir	Rippenserienbrüche bds. Brustbeinquerbruch, Z.n. Reanimation, Herzgewicht 580 g, Lungenödem, Koronarsklerose, Muskatnussleber, Arteriosklerose	109	1,72	36,8	580	80	m	ja	ja
60	Koronarinsuffizienz	subtotale Okklusion aller Herzkranzgefäße, mäßiggradiges Lungenödem, akut gestaute Leber	71,6	1,62	27,3	400	53	m	nein	nein
61	Makroskopisch unklar, V.a. Koronarinsuffizienz, Z.n. Myokardinfarkten, Al- kohol-Abusus, DM II, De-pression, art. Hypertonie	Koronarsklerose mit Stents rechts, Fettleber, allgemeine Arteriosklerose	63	1,85	18,4	450	57	m	nein	ja

62	V.a. Relative Koronarinsuffizienz, Intoxikation mit Heroin als konkurrierende TU	520 g Herzgewicht	83	1,73	27,7	520	36	m	nein	nein
63	V.a. relative Koronarinsuffizienz	Alte Narbe der Herzhinterwand 2,5 cm, Herzgewicht 500 g, Koronarsklerose, Muskatnussleber	69,2	1,7	23,9	500	87	m	nein	ja
64	V.a. relative Koronar- insuffizienz, Herzinsuffi-zienz, Z.n. PTCA mit Stentimplantation bei KHK	Herzgewicht 650 g, mäßiggradige Koronarsklerose, Stent links, Lungenödem, Pleuraergüsse 850 ml, Muskatnussleber, Zuckergussmilz	84,7	1,78	26,7	650	71	m	nein	nein
65	Akute Koronarinsuffizienz bei Koronarsklerose, Z.n. Myokardinfarkt	Sturztypische Hämatome, mäßiggradige Koronarsklerose, links subtotale Verschlüsse, rechte Herzkranzarterie frei, Hinterwand mit 2,5 cm großer Narbe, geringgradiges Lungenödem, Verkalkung der Herzklappen	76,3	1,74	25,2	420	69	m	nein	ja
66	Koronarinsuffizienz, Reanimationspflichtig keit nach Poplitealintervention bei pAVK	Herzgewicht 570 g, bindegewebige Durchsetzung des Myokards, massive Arteriosklerose und Koronarsklerose, retroperitoneale Einblutung, mäßiggradiges Lungenödem, Muskatnussleber, Rippenserienfraktur nach Reanimation, Riss der Femoralarterie genäht	70,6	1,64	26,2	570	83	m	ja	nein
67	Akute Koronarinsuffizienz	Adipositas permagna, Herzgewicht 900 g, Infarktnarbe 5 mm der Herzhinterwand, offenes foramen ovale, mäßiggradiges Lungenödem, Nebennierenknötchen bds.	200	1,88	56,6	900	36	m	ja	ja
68	Ochsenherz, DM II, arterielle Hypertonie, Herzrhythmusstörung	Hohes Herzgewicht 820 g, massive Ausweitung der Kammerwandstärken und Abrundung der Herzspitze, 250 g Flüssigkeit	99	1,65	36,4	820	61	w	nein	nein

en, Nikotinabusus,	im Herzbeutel, Arteriosklerose				
paranoide					
Schizophrenie,					
Epilepsie					

Abkürzungen: BMI, Body-Mass-Index; BWK, Brustwirbelkörper; CO, Kohlenstoffmonoxid; COPD, chronisch obstruktive Lungenerkrankung; DM II, Diabetes mellitus Typ II; GI, gastrointestinal; i.v., intravenös; KG, Körpergewicht; LWK, Lendenwirkbelkörper; OAK, orale Antikoagulation; PAVK, periphere arterielle Verschlusskrankheit; RCX, ramus circumflexus; SM, Schrittmacher, TAVI, transkatheter Aortenklappenimplantation; TEP, Totalendoprothese; THC, Tetrahydrocannabinol; TVT, tiefe Venenthrombose

Anhang 3: Fälle der Kontrollgruppe

Nr.	Todesursache, Vorerkrankungen	Obduktionsbefund	KG (kg).	Gr. (m)	BMI kg/m²	Herzge wicht (g)	Alter (a)	Geschl echt	CPR	Altinf arkte
69	Verbluten nach Innen bei traumatischem Milzrisse, Splenomegalie, Leberzirrhose	Blasse Gewebe und Organe, feinknotige Leberzirrhose, Milzvergrößerung 700 g, mit Einblutung in das Fettgewebe am Hilus, 3 l Blut im Bauchraum, Schocknieren	72,3	1,78	22,8		50	m	ja	nein
70	Verbluten nach Außen durch zwei Kopfplatzwunden	Quetsch-Risswunden am oberen Hinterkopf, beide nicht durchgreifend, Schädel und Hirn unverletzt, Brillenhämatom, Multiple Hämatome am Körper, flächenhafte Einblutungen der Rückenmuskulatur, zwei einspießende Rippenbrüche mit Anspießungen des rechten Lungenunterlappens, 150 ml Blut im rechten Hemithorax,	76	1,78	24,0	380	34	m	nein	nein
71	Herzstichverletzung, Suizid, Schizophrenie	Glattrandige Hautdurchtrennung als Messerstichverletzung in der linken Brustregion, Einstich an der Herzbeutelvorderseite, Stichverletzung des Herzens mittig in der Trennwand zwischen linker und rechter Herzkammer unter Eröffnung beider Kammern, Einblutungen 250 ml im Herzbeutel, reichlich gelber Schleim in den Bronchien, bullöses Lungenemphysem, Nebenierenrindenknötchen bds.	75,8	1,78	23,9	420	52	m	nein	nein
72	Polytrauma mit instabilem Thorax, Zwerchfellruptur, Bandscheibenruptur und Lungen- und	Offene Sprunggelenksluxation bds., Schienbeinkopffraktur links, Aufreißung der Haut an der Rückseite des rechten Oberschenkels, Darmbeinbruch rechts, Einblutung der Rückenmuskulatur rechts,	74	1,7	25,6	630	84	m	nein	nein

	Leberaufreißung im Rahmen eines Verkehrsunfalles, Z.n. Augenoperation	Aufreißung des Lungenoberlappens am Hilus, 300 ml Blut in der rechten, 100 ml in der linken Brusthöhle, Aufreißung des Zwerchfells rechts, Rippenserienfrakturen und Brustbeinbruch, Nierenkontusion, Herzgewicht 630 g, verwachsenes Perikard mutmaßlich nach Operationen								
73	Polytrauma mit Schädelbasisfraktur, retroperitonealer Blutung, Verletzungen von Aorta, Milz, Leber und Niere	Bruch des rechten Femurs, 450 ml Blut in der Bauchhöhle, dünnschichtige Unterblutung der dura mater links, 3 cm große Subarachnoidalblutung links, Schädelbasisbruch durch sella turci, Unterblutungen der Herzaußenhaut und Innenhaut mit Einblutungen (a.e. i.R. der Reanimation), Aortenriss 1,5 cm, Symphysenlockerung, Abriss der rechten Nierenarterie mit Einblutung in Nierenlager, kein Hinweis auf chronische Erkrankungen	53,8	1,65	19,8	200	22	w	ja	nein
74	Verbluten durch Herzstichverletzung	Hautdurchtrennungen der linken Brust, 950 ml Blut im linken Hemithorax, rechte Herzkammer mit 2 cm Durchtrennung der Muskulatur, Einblutung in Perikard, Durchtrennung des RCX, mäßige Koronarsklerose, 1 cm große Durchtrennung des linken Lungenunterlappens	77,6	1,67	27,8	470	54	m	nein	nein
75	Hirnmassenblutung nach Sturzgeschehen, Vorhofflimmern, Herzinsuffizienz	Multiple Hämatome an Stirn, Brillenhämatom, Zerreißung der Zwischenwirbelscheibe C5/C6, Subduralhämatom 30 ml über rechtem Hinterhauptslappen, blutiger Liquor, Blutkoagel im linken Seitenventrikel, Einblutung des vierten Ventrikels, Dünnschichtige Unterblutungen der Basis der weichen Hirnhäute des Kleinhirns, geringe Koronarsklerose, geringes Lungenödem,	69,1	1,52	29,9	380	89	m	ja	nein

		beginnende Muskatnussleber								
76	Verbluten nach Innen bei doppeltem Herzstich	Zwei Stichverletzungen in der linken Brust mit Durchtrennung der Rippe, Eröffnung der linken Brusthöhle, 1900 ml Blut im Brustkorb, 120 ml Blut im Herzbeutel, Zeichen der passiven Abwehr: Hautanspießungen im Bereich der linken Achselfalte, Zeichen der aktiven Abwehr: Durchstich der Hautfalte zwischen Daumen und Zeigefinger rechts, Schnittverletzungen der Beugeseiten der rechten Hand.	73	1,66	26,5	340	32	m	nein	nein
77	Verbluten nach Außen	In beiden Ellenbeugen querverlaufende Hautdurchtrennungen, Einblutung in Subcutis, Links feiner Hautritzer parallel, rechts Defekt einer Vene, links von zwei Venen, Blutarmut in Lungen, Leber und Nieren, Schocknieren, Unterblutungen der Herzinnenhaut, geringgradige Arteriosklerose und Koronarsklerose.	95,3	1,75	31,1	420	44	m	nein	nein
78	Subarachnoidalblutu ng, Hypothyreose	Subarachnoidalblutung mit punctum maximum im Bereich der Schädelbasis, Aneurysma des Arterienrings, Schilddrüsenknoten bds.	94,8	1,67	34,0	470	56	w	nein	nein
79	Verbluten nach Außen	1,5 cm große doppelte Durchtrennung der Oberhaut der linken Wange, Quetsch- Risswunde in der linken Augenbraue, Fettleber mit feinknotiger Leberzirrhose, Schocknieren	64,6	1,8	19,9	400	45	m	nein	nein
80	Erdrosseln, Z.n. Schulter-OP, Schuppenflechte	Eintouriger breiterer Kabelbinder straff um den Hals zugezogen und den Hals einschnürend, Strangmarke hierzu korrespondierend Blutstauung des Kopfes, Stauungsblutungen der Augenlider und Bindehäute sowie Mundschleimhaut. Stauungsblutungen des Zungenengrundes, Hirnödem, Blutfülle der Lungen. Aortensklerose	98	1,75	32,0	460	56	m	nein	nein

81	Polytrauma nach Sturz, COPD, Glaukom, M. Crohn	Multiple Zeichen stumpfer Gewalteinwirkungen. Kopfschwarten Riss- /Quetschwunde am Hinterhaupt, Scherbenbruch der hinteren Schädelhälfte, mit Einstrahlen von Bruchlinien in beide mittleren Schädelgruben, blutiger Liquor, multiple Blutergüsse, Rippenbrüche, Brustbeinbruch, multiple Lungenanspießungen bds. Zerreißung des Perikards, doppelter Aorta- Riss, Lungenödem, Unterschenkelbruch offen rechts, erhebliche Arteriosklerose + Koronarsklerose	46,6	1,52	20,2	300	81	w	nein	nein
82	Erhängen, Depressionen	Strangulationsmarken am Hals, wenige Punktblutungen in den Lidbindehäuten bds. Unterblutungen des Längsbandes der Wirbelsäule, Zungenbein und Kehlkopf intakt, Lungenödem, akute Stauungsleber	56,9	1,7	19,7	350	24	m	nein	nein
83	Verbluten nach Außen aus Kopfplatzwunde nach Sturz, Alkohol- Abusus, Panikstörungen	Zeichen des Blutverlustes, Schocknieren, Kopfplatzwunde am Hinterkopf, keine Verletzung des Schädelknochens, schmale subdurale Blutung, flächenhafte livide Hautverfärbung an der Außenseite des linken Unterarms, Einblutung in der Bauchmuskulatur, Stich- und Schnittwunde der rechten Wange, vereinzelte Oberhautanritzungen an der Außenseite des rechten Unterarms	50	1,65	18,4	270	56	w	nein	nein
84	Polytrauma mit Blutverlust nach außen	Zeichen umfangreicher Einwirkungen stumpfer Gewalt, Unterblutungen der Herzaußenhaut, multiple Unterblutungen der Herzinnenhaut, Leberkapseleinrisse mit einer Länge von max. 8 cm, Einriss der Milzkapsel, Einblutung der rechten Nierenkapsel, Rippenserienfrakturen	79	1,58	31,6	320	59	w	nein	nein

		bds., ausgedehnte Hautablederungen, Beckenringsprengung, Eröffnung der linken Brusthöhle, Zwerchfellriss, offene Unterschenkelfraktur links, Sprengung der Zwischenwirbelscheibe BKW4/5 mit Eröffnung der dura mater.								
85	Blutverlust nach Sturz	Unterkieferbruch, Abbruch der Vorderkante des Altas, Sprengung Zwischenwirbelscheibe BWK 8/9, Abbruch der linken Hüftpfanne, Oberschenkelluxation links, Femurfraktur links, Trümmerbruch skapula links, Rippenserienfrakturen bds., multiple Schürfungen und Hautdurchtrennungen an den linken Gliedmaßen sowie am Kopf, Zeichen des Blutverlustes: Blutung unter harte und weiche Hirnhäute, jeweils 50 ml Blut in den Brusthöhlen, 100 ml Blut in der Bauchhöhle, Verblutungsblutungen unter der Herzinnenhaut, Einblutungen in Darmgekröse, Einblutung in Unterhautfettgewebe	87	1,66	31,6	410	89	m	ja	nein
86	Schädelhirntrauma nach Sturz, Herzinsuffizienz, Herzrhythmusstörun gen, DM II, Osteoporose, Hüft- TEP	6 cm Kopfhautdurchtrennung von livider Verfärbung umgeben, linke Pupille weiter als rechts, 24 cm Bruchlinie der linken Hälfte des Schädeldachs, 30-50 ml Blut unter der harten Hirnhaut, multiple großflächige Unterblutungen der weichen Hirnhäute, mäßiggradige Koronarsklerose, Muskatnussleber	73	1,6	28,5	410	86	w	nein	nein
87	Hirnmassenblutung, Leberzirrhose	Z.n. Kraniotomie, 100 ml Blut unter dura mater, Einblutung in Hirngewebe mit Einbruch in das Ventrikelsystem, beginnende Erweichung des Hirnes, Orbitadachfraktur rechts, offene Unterschenkelfraktur, Frakturen der 58. Rippe, Leberzirrhose, abdominelle	89,7	1,75	29,3	475	75	m	nein	nein

		Adhäsionen, subtotale Koronarsklerose								
	atypisches	Semizirkuläre Strangfurche um den Hals, rechtsseitige Unterbrechung auf Höhe des								
88	Erhängen, Depressionen	Knotens, Abbruch des Zungenbeinhornes linksseitig, sowie des Kehlkopfoberhornes ohne Blutung, Simmonsche Einblutungen des vorderen Längsbandes L3-L5					62	W	nein	nein
89	Körperzerstörung durch Zugkollision, i.vDrogenabusus	Arme und Torso in Zusammenhang, mehrfache Brüche der oberen Extremitäten, Hüftgelenke bds. abgetrennt, mehrfache Knochenbrüche der Beine, Schädelkalotte fehlend, Enthirnung, Einatmungsherde der Lunge, geringe Koronarsklerose, Rippenserienbrüche bds. Leber größtenteils fehlend, eine Niere fehlend,					41	m	nein	nein
		Magen, Milz und Bauchspeicheldrüse fehlend. Stichverletzung in der linken Brusthälfte,								
90	Verbluten nach Innen bei Herzstich	Durchstich der 6. Rippe links, Stichkanal durch Perikard, linke Herzkammer bis in die linke Brusthöhle, hier Verletzung des linken Lungenunterlappens, 2200 ml Blut in linker Brusthöhle, 50 ml Blut im Perikard, Fettleber, mäßiggradige Arteriosklerose.	73,5	1,73	24,6	470	55	m	nein	nein
91	Schädelhirntrauma mit Hirnkontusion a.e. durch Sturz	Kleine Quetsch-/Risswunde am Hinterkopf, keine knöchernen Verletzungen, dünnschichtige subdurale Blutung mit Kontusionsblutung über dem Schläfenlappen, Stauungsblutungen in Bindehäuten der Augen und Mundvorhofschleimhaut, Aortensklerose	60	1,62	22,9	290	54	w	nein	nein
92	Offenes Schädelhirntrauma mit Zerstörung der linken Großhirnhälfte bei	Offenes Schädelhirntrauma mit Zerstörung der linken Großhirnhälfte und Austritt von Hirnmasse aus dem Schädel, multiple Bruchlinien der Schädelkalotte und Schädelbasis, 50 ml Blut unter der dura mater,	75,7	1,76	24,4	370	23	m	nein	nein

	Zugkollision	flächige Unterblutung der weichen Hirnhaut fast über das gesamte Hirnrelief, Oberschenkelfraktur links, Einblutung in den linken m. psoas								
93	Atypisches Erhängen	Zirkuläre Strangfurche um den Hals, Abbruch rechtes Kehlkopfoberhorn, Einblutungen in Augenlider und Mundschleimhaut, Unterblutung des vorderen Längsbandes der Wirbelsäule, Unterblutung des Endokards, akute Stauungsleber, mäßiggradige Arteriosklerose	58,8	1,56	24,2	300	55	w	nein	nein
94	Verbluten nach Innen bei Beckenringsprengu ng nach Sturz	Beckenringsprenung mit Abbruch der rechten Beckenschaufel sowie Symphysensprengung, massive retroperitoneale Einblutung, Oberschenkelhalsfraktur, Trochanterfraktur, Oberschenkelfraktur, Verblutungsblutungen unter der Herzinnenhaut, Unterblutung der Leberkapsel, Einblutungen in perirenales Fett, m. psoas und Darmgekröse, Rippenserienfrakturen, Arteriosklerose	57,6	1,62	21,9	370	78	w	nein	nein
95	Verbluten durch Stichverletzung des Lungenschlagaderh auptstamms	Glattrandige Stichverletzung der linken Brustpartie, Verlauf durch die 3. Rippe links, durch den Herzbeutel in den Lungenschlagaderhauptstamm, Einblutung in dieser Region, Blutherzbeutel 200 ml, 2,8 l im linken Hemithorax, Schocknieren, Unterblutungen des Endokards, Abwehrverletzungen des rechten Armes und der rechten Hand, geringradige Arteriosklerose und Koronarsklerose					49	m	nein	nein
96	Verbluten durch Stichverletzung der rechten	4 cm Hautdurchtrennungen der linken Brustpartie, Herzbeutel mit zwei Durchtrennungen, im Herzbeutel 400 ml Blut,	76,1	1,55	31,7	450	88	m	nein	nein

	Herzkammer,	auf Herzrückseite drei Durchtrennungen der rechten Herzkammerwand, mäßiggradige Koronarsklerose, verkalkter Klappenapparat, geringgradige Verblutungsblutungen unterhalb des Endokards, Muskatnussleber, große Lymphknoten der Bauchregion								
97	Schädelhirntrauma bei Verkehrsunfall	Quetsch-Riss-Wunden der Stirn, multiple Schürfungen der Füße, Bruch des Schädelknochens über 14 cm, 25 ml Blut unter der dura mater über beiden Hemisphären, multiple Unterblutungen der weichen Hirnhaut, blutiges Hirnwasser, BWK-5-Fraktur, offene Unterschenkelfraktur links, geringes Lungenödem, Rippenserienbrüche bds., mäßiggradige Koronarsklerose	70	1,69	24,5	400	82	m	nein	nein
98	Kopfschuss, Pankreaskarzinom	Kopfsteckschuss durch den weichen Gaumen und die Schädelbasis, mit Schusskanal zwischen Stammhirn und Kleinhirn, 100 ml Blut unter und über der harten Hirnhaut, massive Blutaspiration in beiden Lungen, ausgedehntes Tumorwachstum in der Bauchspeicheldrüse mit pulmonaler und lymphogener Metastasierung, einliegender Gallengangstent		1,92	20,1	420	69	m	nein	nein
99	Enthirnung nach Sturz aus der Höhe	Trümmerfraktur des Schädels mit vollständiger Enthirnung, Einriss der unteren Hohlvene und multiple Einrisse der Herzwand, multiple Zerreißungen der Lungen, Leberkapsel, Milzkapsel, Einblutung in die Nierenkapseln, Darmgekröse, multiple Frakturen der Extremitäten, Rippenserienfrakturen, Fraktur BWK2	97,8	1,69	34,2	420	27	m	nein	nein
100	Verbluten nach Innen bei	Einriss der Herzwand sowie Eröffnung des Herzbeutels, Verblutungsblutungen der linken	50,4	1,57	20,4	300	57	w	nein	nein

	Herzwandriss nach Überrolltrauma	Herzkammer, 200 ml Blut in rechter Brusthöhle offener Bruch Unterschenkel links, Rippenserienfrakturen bds., Claviculafrakturen bds, Fraktur Skapula links, Unterblutung Leberkapsel, Schocknieren								
101	Schweres Schädelhirntrauma mit subduralem Hämatom, Z.n. Apoplex, Prostatakarzinom	Prellung des Hinterkopfes mit Einblutung, ausgeprägter Gegenprellungsherd im rechten Stirnhirnpol, Doppelter Schädelbruch, ausgedehntes subdurales Hämatom, mäßiggradiges Lungenödem, Muskatnussleber	67	1,71	22,9	400	82	m	nein	nein
102	Höhergradiger Blutverlust mit Wirbelsäulentrauma bei vorgeschädigtem Herzen	Einblutung in linke Brusthöhle 400 ml, Einblutung in perirenales Fett rechts, Fraktur LWK1, Umblutung BWK4, Rippenbrüche bds, Schambeinfugensprengung, Abbruch der rechten Darmbeinschaufel, Herz mit alten Narben in der Kammerscheidewand und der Hinterwand der linken Herzkammer, Herzgewicht 680 g, ausgeprägte Koronarsklerose und Arteriosklerose, beginnende Leberzirrhose	105	1,77	33,5	680	70	m	nein	ja
103	Unklar, Trümmerfraktur des rechten Oberschenkelknoch ens, Bronchitis	Femurschaftfraktur, ausgeprägte Entzündung der Bronchien, chronische Stauungsleber, Zuckergussmilz, mäßiggradige Arteriosklerose	50	1,6	19,5	450	72	w	nein	nein
104	Subduralhämatom	Ausgedehntes Subduralhämatom mit Einbruch in das Ventrikelsystem, ausgedehnte Erweichung des rechten Großhirns, Einblutung der Kopfschwarte, Z.n. Kraniotomie, Fettleber	53	1,6	20,7	320	79	w	nein	nein
105	unklar, Hirnödem, Lungenödem	Ausgeprägtes Hirn und Lungenödem, 2 kg schwerer Tumor der Gebärmutter, Fettleber mit beginnender Muskatnusszeichnung,	75	1,54	31,6	450	57	w	nein	nein

		geringradige allgemeine Arteriosklerose								
		Rippenserienbrüche rechts, Hirnödem,								
		massive Koronarsklerose, V.a. Narben der								
106	Ertrinken	Hinterwand, massives Lungenödem,	74,9	1,63	28,2	420	69	m	nein	ja
		feinblasiger Schaum in den zentralen								
		Bronchien, beginnende Zuckergussmilz,								

Abkürzungen: BMI, Body-Mass-Index; BWK, Brustwirbelkörper; CO, Kohlenstoffmonoxid; COPD, chronisch obstruktive Lungenerkrankung; DM II, Diabetes mellitus Typ II; GI, gastrointestinal; i.v., intravenös; KG, Körpergewicht; LWK, Lendenwirkbelkörper; OAK, orale Antikoagulation; PAVK, periphere arterielle Verschlusskrankheit; RCX, ramus circumflexus; SM, Schrittmacher, TAVI, transkatheter Aortenklappenimplantation; TEP, Totalendoprothese; THC, Tetrahydrocannabinol; TVT, tiefe Venenthrombose

6. Abbildungsverzeichnis

Abb.	1: Verschiedene Infarktstadien aus den Präparaten dieser Arbeit	. 10
Abb.	2: Verteilung der Subgruppen	. 16
Abb.	3: Beispielhafte Darstellung der semiquantitativen Auswertung	. 20
Abb.	4: Beispielhafte Darstellung der semiquantitativen Auswertung	. 21
Abb.	5: Beispiele TNF-positiver Myokardareale:	. 23
Abb.	6: Beispiele IL-6-positiver Myokardareale	. 25
Abb.	7: Beispiele IL-8-positiver Myokardareale	. 26
Abb.	8: Beispiele myc-positiver Myokardareale	. 27
	9: Fall mit histologischem Zufallsbefund einer Myokarditis:	
	10: TNF-Expression in Prozent nach Geschlecht	
	11: IL-6-Expression in Prozent nach Geschlecht	
Abb.	12: IL-8 Expression in Prozent nach Geschlecht	. 31
Abb.	13: myc Expression in Prozent nach Geschlecht	. 32
	14: TNF-Expression in Prozent in Abhängigkeit von Altinfarkten	
Abb.	15: IL-6 Expression in Prozent in Abhängigkeit von Altinfarkten	. 33
Abb.	16: IL-8 Expression in Prozent in Abhängigkeit von Altinfarkten	. 33
Abb.	17: myc Expression in Prozent in Abhängigkeit von Altinfarkten	. 34
Abb.	18: TNF-Expression in Prozent in Abhängigkeit einer durchgeführten CPR	. 34
Abb.	19: IL-6 Expression in Prozent in Abhängigkeit einer durchgeführten CPR	. 35
Abb.	20: IL-8 Expression in Prozent in Abhängigkeit einer durchgeführten CPR	. 35
Abb.	21: myc Expression in Prozent in Abhängigkeit einer durchgeführten CPR	. 36
Abb.	22: TNF-Expression in Prozent nach Todesursache	. 37
Abb.	23: IL-6 Expression in Prozent nach Todesursache	. 39
Abb.	24: IL-8 Expression in Prozent nach Todesursache	.41

7. Tabellenverzeichnis

Tab. 1: Übersichtsarbeiten zum IHC Nachweis von Myokardinfarkten	14
Tab. 2: Patientencharakteristika	17
Tab. 3: Immunhistochemische Anfärbbarkeit nach Subgruppen	30
Tab. 4: Immunhistochemische Anfärbbarkeit mit TNF nach Todesursache	37
Tab. 5: Anfärbbarkeit mit TNF in Abhängigkeit von einer durchgeführten CPF	≀ nach
Todesursache	38
Tab. 6: Anfärbbarkeit mit TNF in Abhängigkeit von Altinfarkten nach Todesursache	38
Tab. 7: Immunhistochemische Anfärbbarkeit mit IL-6 nach Todesursache	39
Tab. 8: Anfärbbarkeit mit IL-6 in Abhängigkeit von einer durchgeführten CPF	≀ nach
Todesursache	40
Tab. 9: Anfärbbarkeit mit IL-6 in Abhängigkeit von Altinfarkten nach Todesursache.	40
Tab. 10: Immunhistochemische Anfärbbarkeit mit IL-8 nach Todesursache	42
Tab. 11: Anfärbbarkeit mit IL-8 in Abhängigkeit von einer durchgeführten CPF	≀ nach
Todesursache	42
Tab. 12: Anfärbbarkeit mit IL-8 in Abhängigkeit von Altinfarkten nach Todesursache	42
Tab. 13: Immunhistochemische Anfärbbarkeit mit myc nach Todesursache	44
Tab. 14: Anfärbbarkeit mit myc in Abhängigkeit von einer durchgeführten CPF	≀ nach
Todesursache	44
Tab. 15: Anfärbbarkeit mit myc in Abhängigkeit von Altinfarkten nach Todesursache	e 44
Anhänge:	
Anhang 1: Fälle der Infarktgruppe	52
Anhang 2: Fälle der Koronarinsuffizienzgruppe	62
Anhang 3: Fälle der Kontrollgruppe	67

8. Literaturverzeichnis

Ahuja P, Zhao P, Angelis E, Ruan H, Korge P, Olson A, Wang Y, Jin ES, Jeffrey FM, Portman M, MacLellan WR. Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. J Clin Invest 2010; 120: 1494–1505

Anderson JL, Morrow DA. Acute Myocardial Infarction. N Engl J Med 2017; 376: 2053–2064

Barranco R, Ventura F. Immunohistochemistry in the Detection of Early Myocardial Infarction: Systematic Review and Analysis of Limitations Because of Autolysis and Putrefaction. Appl Immunohistochem Mol Meorphol 2020; 28: 95–102

Baumann H, Gauldie J. Regulation of hepatic acute phase plasma protein genes by hepatocyte stimulating factors and other mediators of inflammation. Mol Biol Med. 1990; 7: 147–159

Bester J, Pretorius E. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Scientific Reports 2016; 6: 32188

Biasucci LM, Vitelli A, Liuzzo G, Altamura S, Caligiuri G, Monaco C, Rebuzzi AG, Ciliberto G, Maseri A. Elevated levels of interleukin-6 in unstable angina. Sci Rep 1996; 94: 874–877

Cairns CB, Panacek EA, Harken AH, Banerjee A. Bench to bedside: tumor necrosis factoralpha: from inflammation to resuscitation. Acad Emerg Med 2000; 7: 930–941

Dunlay SM, Weston SA, Redfield MM, Killian JM, Roger VL. Tumor necrosis factor-alpha and mortality in heart failure: a community study. Circulation 2008; 118: 625–631

Ghezzi P, Dinarello CA, Bianchi M, Rosandich ME, Repine JE, White CW. Hypoxia increases production of interleukin-1 and tumor necrosis factor by human mononuclear

cells. Cytokine 1991; 3: 189-194

Gößwald A, Schienkiewitz A, Nowossadeck E, Busch MA. Prävalenz von Herzinfarkt und koronarer Herzkrankheit bei Erwachsenen im Alter von 40 bis 79 Jahren in Deutschland. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 2013; 56: 650–655

Groot HE, Al Ali L, van der Horst ICC, Schurer RAJ, van der Werf HW, Lipsic E, van Veldhuisen DJ, Karper JC, van der Harst P. Plasma interleukin 6 levels are associated with cardiac function after ST-elevation myocardial infarction. Clin Res Cardiol 2019; 108: 612–621

Herold G, Innere Medizin 2018. Köln: Gerd Herold, 2018

Hoffman JIE, Buckberg GD. The myocardial oxygen supply:demand index revisited. J Am Heart Assoc 2014; 3: e000285

Kaptoge S, Seshasai SRK, Gao P, Freitag DF, Butterworth AS, Borglykke A, Di Angelantonio E, Gudnason V, Rumley A, Lowe GDO, Jørgensen T, Danesh J. Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. Eur Heart J 2014; 35: 578–589

Kurrelmeyer KM, Michael LH, Baumgarten G, Taffet GE, Peschon JJ, Sivasubramanian N, Entman ML, Mann DL. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Natl Acad Sci U S A 2000; 97: 5456–5461

Lee H, Chen Q, Wolfram JA, Richardson SL, Liner A, Siedlak SL, Zhu X, Ziats NP, Fujioka H, Felsher DW, Castellani RJ, Valencik ML, McDonald JA, Hoit BD, Lesnefsky EJ, Smith MA. Cell cycle re-entry and mitochondrial defects in myc-mediated hypertrophic cardiomyopathy and heart failure. PLoS One 2009; 4: e7172

Libby P, Rocha VZ. All roads lead to IL-6: A central hub of cardiometabolic signaling. Int J

Cardiol 2018; 259: 213-215

Meldrum DR. Tumor necrosis factor in the heart. Am J Physiol 1998; 274: R577-595

Michaud K, Basso C, d'Amati G, Giordano C, Kholová I, Preston SD, Rizzo S, Sabatasso S, Sheppard MN, Vink A, van der Wal, Allard C... Diagnosis of myocardial infarction at autopsy: AECVP reappraisal in the light of the current clinical classification. Virchows Arch 2020; 476: 179–194

Murphy KP, Travers P, Walport M. Janeway Immunologie. Heidelberg: Spektrum Akademischer Verlag, 2009

Nadeem Sarwar. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 2012; 379: 1205–1213

Owen TA, Cosenza SC, Soprano DR, Soprano KJ. Time of c-fos and c-myc expression in human diploid fibroblasts stimulated to proliferate after prolonged periods in quiescence. J Biol Chem 1987; 262: 15111–15117

Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 2000; 101: 1767–1772

Sabatasso S, Mangin P, Fracasso T, Moretti M, Docquier M, Djonov V. Early markers for myocardial ischemia and sudden cardiac death. Int J Legal Med 2016; 130: 1265–1280

Schuler J, Maier B, Behrens S, Thimme W. Present treatment of acute myocardial infarction in patients over 75 years--data from the Berlin Myocardial Infarction Registry (BHIR). Clin Res Cardiol 2006; 95: 360–367

Romuk E, Skrzep-Poloczek B, Wojciechowska C, Tomasik A.,Birkner E., Wodniecki J, Gabrylewicz B., Ochala A. and Tendera M. Selectin - P and interleukin - 8 plasma levels

in coronary heart disease patients. Eur J Clin Invest 2002, 32: 657-661

Shetelig C, Limalanathan S, Hoffmann P, Seljeflot I, Gran JM, Eritsland J, Andersen GØ. Association of IL-8 With Infarct Size and Clinical Outcomes in Patients With STEMI. JACC 2018; 72: 187–198

Shichiri M, Hanson KD, Sedivy JM. Effects of c-myc expression on proliferation, quiescence, and the G0 to G1 transition in nontransformed cells. Cell Growth Differ 1993; 4: 93–104

Starksen NF, Simpson PC, Bishopric N, Coughlin SR, Lee WM, Escobedo JA, Williams LT. Cardiac myocyte hypertrophy is associated with c-myc protooncogene expression. Proc Natl Acad Sci U S A 1986; 83: 8348–8350

Statistisches Bundesamt. Todesursachen in Deutschland. Verfügbar unter https://www.destatis.de/DE/Themen/Gesellschaft-

Umwelt/Gesundheit/Todesursachen/_inhalt.html (Zugriffsdatum: 06.06.2022)

Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014; 6: a016295

Turillazzi E, Pomara C, Bello S, Neri M, Riezzo I, Fineschi V. The meaning of different forms of structural myocardial injury, immune response and timing of infarct necrosis and cardiac repair. Curr Vasc Pharmacol 2015; 13: 6–19

Wasylishen AR, Penn LZ. Myc: the beauty and the beast. Genes Cancer 2010; 1: 532–541

Waugh DJJ, Wilson C. The interleukin-8 pathway in cancer. Clin Cancer Res 2008; 14: 6735–6741

Yusuf S, Hawken S, Ôunpuu S, Dans T, Avezum A, Lanas F, McQueen M, Budaj A, Pais

P, Varigos J, Lisheng L. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet 2004; 364: 937–952

9. Danksagung

Ich möchte meinem Doktorvater Prof. Dr. Burkhard Madea für die Betreuung und Unterstützung beim Finden und Bearbeiten des Dissertationsthemas bedanken. Vielen Dank für die unkomplizierten und raschen Ratschläge und Verbesserungsvorschläge während der ganzen Zeit!

Zudem möchte ich allen Mitarbeitern der Rechtsmedizin, welche mich herzlich aufgenommen und bei Fragen aller Art stets unterstützt haben, bedanken. Großer Dank gilt ebenfalls meinen wissenschaftlichen Betreuern Dr. Philipp Markwerth, Julian Geile und Dr. Julia Ulbricht. Meinem Laborbetreuer Dirk Böker werde ich immer dankbar sein für die gute Einarbeitung, seine Hilfe rund um die Uhr, seine Neugierde und Kreativität beim Lösen von Problemen und die durchweg gute Stimmung im Labor.

Mein herzlicher Dank gilt Dr. Kathleen Glückert für ihre Geduld und persönliche sowie fachliche Hilfe und Wertschätzung – generell und eben auch bei dieser Arbeit.

Für die ansteckende Begeisterungsfähigkeit, wissenschaftliche Neugierde und den SPSS-Crashkurs danke ich meinem Kollegen Dr. Niklas Klümper. Allen meinen Kollegen insbesondere Dr. Aybike Hofmann, Dr. Johannes Stein, Dr. Alexander Cox und PD Dr. Dr. Stephanie Knüpfer danke ich für die Ratschläge den gelegentlichen liebevollen Druck, welcher beim Abschließen dieser Arbeit nicht unwesentlich geholfen hat.

Zu guter Letzt danke ich meiner Familie und insbesondere meinen Eltern für die immerwährende Begleitung und Wertschätzung.