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A PEL-TYPE IGUSA STACK AND THE p-ADIC GEOMETRY OF
SHIMURA VARIETIES

MINGJIA ZHANG

ABSTRACT. Let (G, X) be a PEL-Shimura datum of type AC in Kottwitz’s
classification. Assume Gg, is unramified. We show in this thesis that the
good reduction locus of the infinite p-level Shimura variety attached to this
datum, considered as a diamond, can be described as the fiber product of
a certain v-stack (which we call “Igusa stack”) with a Schubert cell of the
corresponding B;R—afﬁne Grassmannian, over the stack of G@p—torsors on the
Fargues-Fontaine curve. We also construct a minimal compactification of the
Igusa stack and show that this fiber product structure extends to the minimal
compactification of the Shimura variety. When the Schubert cell of the affine
Grassmannian is replaced by a bounded substack of G-shtukas, where G is
a reductive model of Gq, over Zp, we show that this fiber product recovers
the integral model of the Shimura variety. This result on integral models, if
specialized to a Newton polygon stratum, recovers the fiber product formula
of Mantovan. Similar fiber product structures are conjectured by Scholze to
exist on general Shimura varieties.
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NOTATIONS AND CONVENTIONS
Z, Q, C, R: the integers, the rational, complex and real numbers
Ay: the ring of finite adeles of Q
p: a fixed rational prime
Fg: the finite field of cardinality ¢, which is a power of p
Qp, Zy: the p-adic numbers and the p-adic integers
Qp, Zp: the maximal unramified extension of Q, and the its ring of integers
A non-archimedean field is a nondiscrete topological field K whose topology is
induced by a nonarchimedean norm |- | : K — R>(. We denote by O its ring
of integers, i.e. where the norm is no more than one.
For a complete non-archimedean field K, we write SpaK for the adic space
Spa(K, Ok) and SpaOk for Spa(Ok, Ok).
We use covariant Dieudonné theory and follow the convention of [CS17] to
divide the Frobenius in the usual convention by p. So the covariant Dieudonné
module of Q,/Z, is (Z,, F = 1).
Our definition of Breuil-Kisin-Fargues module follows [PR21], 2.2.4], which dif-
fers from [SW20l 11.4.3].
For a geometric object X (e.g. scheme, formal scheme, diamond etc.), we use
| X| to mean its underlying topological space.
Underlined objects denote sheaves, e.g. Hom, Aut. For a topological space
X, X means we view it as a sheaf on some site that sends a test object S to
continuous maps from |S| to X.
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1. INTRODUCTION: SCHOLZE’S FIBER PRODUCT CONJECTURE

The motivating question of this thesis is to understand the geometry of Shimura
varieties as p-adic analytic objects and the relation to that of their local counter-
parts. Instances of such relations can be dated back to the p-adic uniformization of
Rapoport and Zink [RZ96]: it relates an open part (the basic Newton stratum) of
PEL type Shimura varieties as p-adic rigid analytic spaces to simpler rigid spaces
(Rapoport-Zink spaces). The formula for this uniformization formally resembles the
complex uniformization expressing the Shimura varieties as adelic double quotients.

As for a general Newton stratum labelled by an element b in the corresponding
Kottwitz set, Mantovan [Man05] (c.f. [CS17] for this reformulation and notation)
discovered that up to quotienting by the action of a certain group Gy, it is a
product of a corresponding Rapoport-Zink space M?_ and a so-called Igusa variety
(Ig%K)Zd. On the basic stratum, this takes the form of a p-adic “uniformization”,
since in that case the Igusa variety is merely a profinite set.

We show in this thesis that for some PEL type Shimura varieties, via construct-
ing a p-adic analytic stack, which we call “Igusa stack”, it is possible to interpolate
between the strata and obtain a similar “product structure” on the whole Shimura
variety. In order to do this, we need to work relatively over a stack that interpolates
the classifying stacks for the groups Gy. This base turns out to be provided by the
classifying stack of G-bundles on the Fargues-Fontaine curve, which appeared in
the work of Fargues-Scholze [FS21]. Correspondingly the role of a p-adic symmet-
ric space is played by a minuscule Schubert cell of the B(TR—aﬁine Grassmannian
of Scholze-Weinstein [SW20], which interpolates the quotients [MY_ /Gy). Since a
general formalism of stacks fibered over adic spaces is not available and might not
behave well at all, we work in the category of small v-stacks on perfectoid spaces
in characteristic p in the framework of Scholze [Schi§].

In very rough terms, the fiber product structure we seek for is a separation of
the geometric information of a p-adic Shimura variety into a p-part and a prime-to-p
part, where the minuscule Schubert cell models the local geometry of the Shimura
variety at p, while the Igusa stack records the global prime-to-p information. Al-
though in this work we only deal with certain PEL-type Shimura varieties, a similar
fiber product structure is conjectured by Scholze to exist on general Shimura vari-
eties. Let us give a precise formulation of this conjecture, before stating our results
towards it.

1.1. The fiber product conjecture. Let (G/Q, X) be a Shimura datum, which
determines a G(C)-conjugacy class of minuscule cocharacters [1~!] with field of
definition Ey. Fix a rational prime p and let E be the completion of Fy at a prime
above p with residue field F;. Take a compact open subgroup K = K,K? C G(Ay).
Consider the category Perf of perfectoid spaces in characteristic p and equip it
with the v-topology. Let Sk, k» denote the diamond over SpdE attached to the
corresponding Shimura variety at level K, K? and Sk» := ipr Sk, kv Let Grg

be the Bj-affine Grassmannian attached to Gg,, considered as a diamond over
SpdE. Fix an isomorphism C = Q, over Ej, where Q, is an algebraic closure
of Q) containing F. Fixing a maximal torus inside a Borel subgroup of Gg,,
we choose a dominant cocharacter p representing the G(Q,)-conjugacy class [p].
Denote by Grg,, the Schubert cell labelled by p. Let Bung := BunGQp be the



8 MINGJIA ZHANG

small v-stack on Perf of Gg,-bundles on the Fargues-Fontaine curve. The affine
Grassmannian maps to Bung via the Beauville-Laszlo map BL : Grg — Bung.
The Shimura variety Sk» maps to the affine Grassmannian via the Hodge-Tate
period map g1 : Skr — Grg, with image lying in Grg,,.

Conjecture 1.1. (Scholzeﬂ There exists a construction of a system of small v-
stacks {Igsgv } v on Perf, together with maps Si» /SPAE — Igs;e, and Igse, —
Bung such that

(1) (Cartesian diagram) For each KP, the diagram

s
SKP SECEUEN GI‘G#

| |E2

Igsir —5 Bung

s cartesian.

(2) (Hecke action) There exists a G(Ar)-action on {Igsg» trxr (where G(Q)) acts
trivially) descending that on {Skr}xe. In particular for any compact open
subgroup K, of G(Qp), we have a similar Cartesian diagram at level K,,, with
the top row replaced by

THT,K
Sk, kr — [Gra,u /Ky

(8) (Minimal compactification) There exist compactifications 1gsy, < lgsy, over
Bung, extending the above cartesian diagram to the minimal compactification
Sir s of the Shimura varieties.

(4) (Integral model) For G being a smooth parahoric model of G over Z,, the carte-
sian diagram at level K, = G(Z,) has a canonical integral model

S T Shtg,

| |

Igsr — Bung

where S?{ 15 the v-sheaﬂ associated with the (conjectural) schematic canonical
integral model of the Shimura variety at level K over O, uniquely charac-
terized by Conjecture 4.2.2 of [PR21], Shtg ,/SpdOg is the moduli stack of
(p-adic) G-shtukas with one leg bounded by p, and the map merys is given by
the universal G-shtuka on SIO(,

(5) (Functoriality) The construction is functorial in Shimura data.

Here Bung, the affine Grassmannian Grg and the Beauville-Laszlo map are
explained in detail in [FS21l III], [SW20), Lecture 19]. The construction of the
Hodge-Tate period map is originally due to Scholze [Sch15] and rewritten in [CS17]
for Hodge type Shimura varieties. In this generality, it is recorded in a preliminary
draft of Hansen [Hanl6], c.f.[PR21l 2], whose existence relies on the fact that the

IThe conjecture is made during the current project and this is the first written formulation of it.
2There are two ways of attaching a v-sheaf to an Og-scheme, see Definition and here we are
using the one that views a test perfectoid space as a locally ringed space with its structure sheaf
(instead of the integral structure sheaf) as sheaf of rings.
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tautological G(Q,)-local system on the Shimura variety is de Rham, established by
the work of Liu and Zhu [LZ17].

To comment on the motivation and some features of conjecture we mention
that it arises in the context of the geometrization of the local Langlands conjec-
tures due to Fargues [Farl6] and Fargues-Scholze [FS21]. Conjecturally, to any local
Langlands parameter, there is a certain corresponding perverse sheaf on Bung, thus
realizing the local Langlands correspondence as a geometric Langlands correspon-
dence on the Fargues-Fontaine curve. It is expected that the complex R?THTJ@[,
obtained by pushing forward a constant local system from the Shimura variety
along the Hodge-Tate map, descends to Bung and relates to the conjectural per-
verse sheaves in some form of compatibility to the global Langlands correspondence
[CS17, 1.18], [Farl@, 7]. The current conjecture [1.1]is a geometric and hence more
robust version of the weaker conjecture that R7THT7!@Z descends.

Part (4) of the conjecture can also be formulated by saying that the Igusa stack
constructed from part (1) using the generic fiber, when pulled back to the moduli
stack of p-adic G-shtukas bounded by p is representable by a flat normal O g-scheme
with certain properties and similarly for its minimal compactification. This seems
to provide a new way of constructing canonical integral models of Shimura varieties,
even though our current approach to this part of the conjecture in the PEL case
uses the existence of integral models as an input. It also supports the idea that
shtukas in the sense of Scholze-Weinstein are the correct incarnation of motives in
p-adic situations.

Also, having the construction of Igusa stacks at hand, we can take their fiber
products with various objects over Bung, not necessarily the affine Grassmannian.
This provides new semi-global companions of Shimura varieties. As pointed out
to me by Tamiozzo, the conjecture could be potentially applied to a local version
of the plectic conjectures by taking fiber product of the Igusa stack with a moduli
stack of shtukas with several legs. This idea will be pursued in a later work.

Remark 1.2. Our formulation of the conjecture does not uniquely characterize
the system of v-stacks {Igsg» } k». For example it does not predict their images in
Bung under Tyr. A more idealized version of the conjecture would require each
Igsg» to surject onto Bung. Yet given that currently we can only approach the
construction of Igsy, via Shimura varieties, in this thesis we will be content with
having a v-stack that is covered by the Shimura variety, whose image in Bung is
therefore bounded by p. At first sight this would lead to the Igusa stacks being
dependent on [u] and hence being defined over the residue field of E. However it
is expected that they only depend on the Kottwitz set B(G, i), not the conjugacy
class [p] itself, and hence Igsy, should already be defined over SpdF,,.

1.2. Main results and organization of the thesis. The aim of this thesis is
to prove conjecture [I.1] for PEL Shimura varieties of type AC in the classification
of Kottwitz, and the main result is the following. (We leave functoriality and
the compactification part of point (4) in the conjecture to an upcoming project
which extends these results to Hodge type Shimura varieties, where the argument
is cleaner.)

Theorem 1.3 (Theorem Theorem Proposition Theorem [11.23)).
If (G, X) is a PEL Shimura datum of type AC, assuming Gq, is unramified and G
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is reductive (see assumption [5.5), then part (1)(2)(4) of conjecture is true on
the good reduction locus Sy.» of the Shimura variety. If we further assume that the
minimal compactification of the Shimura variety has boundary codimension at least
two, then part (3) of the conjecture is trueﬂ

Our proof relies heavily on the fact that the Shimura variety in concern is a mod-
uli space of abelian varieties with additional structures. In short, in this case the
Igusa stack can be constructed as a moduli stack of abelian varieties up to isogenies
in characteristic p. Upon relating points of the Schubert cell Grg , (respectively
Bung) to p-divisible groups with additional structure via Dieudonné theory, the
desired cartesian property of the diagrams in part (1), (4) of the conjecture follows
from Serre-Tate theory of lifting abelian varieties.

In section 2 to section 7 we review small v-stacks, p-divisible groups, the Hodge-
Tate period map, the stack Bung and the Beauville-Laszlo map. This collects
results for later use and in parallel presents our specific global PEL setup.

In section 8 we give a construction of the Igusa stack and show part (1) of the
conjecture on the good reduction locus. More precisely, we define:

Definition 1.4 (Definition [8.1)). Let Igsj, be the v-stackification of Igs*™, which
takes an affinoid perfectoid space T = Spa(R,R%) € Perfr, to the groupoid
IgsP™®(T) whose objects are Spec(R™ /w)-points of Sk, where @ is a pseudo-uniformizer
of RT and Sk is the schematic Shimura variety at level K over Og. Isomorphisms
between two objects are quasi-isogenies between abelian schemes compatible with
extra structures.

The map S%,/SpdE — Igs}, is constructed by taking the reduction of abelian
schemes over RT to R™ /w, and we denote it by red. The map 73, : Igsj», — Bung
is constructed by taking the G-bundle on the Fargues-Fontaine curve attached to
the rational Dieudonné module of the objects in Igsy,. With these we show:

Proposition 1.5 (Theorem [8.13)). For PEL Shimura varieties of type AC, with
the above definitions, part (1) of the conjecture is true on the good reduction locus
Si» C Skw.

The proof uses the moduli interpretation as alluded to earlier, except that the
relation of Grg, , and Bung to p-divisible groups is only clean on rank one geometric
points. Hence some effort is paid to extend the result from rank one points to a
basis of the v-topology called “product of points” by I. Gleason in his thesis.

This geometric relation leads to the following sheaf theoretic corollary.

Corollary 1.6 (Proposition [8.20)). For any ring of coefficients A such that nA =0
for some n prime to p, we have natural base change equivalence

BL*RTT?_IT,* = RW%TV*I‘ed*
of functors De(Igsgcn, A) — Det(Gra u, A). In particular, the compler Ry, A

on Grg,, descends to the complex Rryr A on Bung. The same statement for
pushforward with compact support is true.

3We do not obtain the optimal base field. In our construction the Igusa stacks live over the
residue field of E. See Proposition for a classification of the (simple) Shimura varieties that
are excluded by the codimension condition.
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Section 9 deals with the minimal compactification and along the way investigates
the geometry of Igusa varieties. This section is more technical, but arguably novel.

The idea (due to Scholze) of constructing a minimal compactification Igsy, is
based on the fact that the fibers of the Hodge-Tate period map are affinoid. So
upon imposing the condition that the boundary of the minimal compactification of
the Shimura variety has codimension at least two, we can mimic a construction of
a relative spectrum “@Bunc (Thr .« (O,07))” over Bung. That this relative spec-
trum, when taken fiber product with Grg ,,, recovers the minimal compactification
of the Shimura variety would be a consequence of the algebraic Hartogs’ extension
lemma. To carry this out, we define the affinization of a small v-stack X to be the
v-sheaf

Xo : § ~ Hom((Ox, 04)(X), (05, O)(S)).

Proposition 1.7 (Definition/Proposition[9.36|). The functor on strictly totally dis-
connected perfectoid spaces over BunﬁG

* (e} /T
Igs™ : T — Homp (T, (T XBune 185%» )0

),

where /T denotes the canonical compactification towards T, is a sheaf for the v-
topology, and hence extends to a v-stack Igsy, with a 0-truncated map to Bung.

It contains Igsy» as an open substack and the fiber product 1gsics X Bung Grg,, is
isomorphic to the minimal compactification Sy, of Skv. Its structure morphism to
Bung is pulled back to the Hodge-Tate period map on Si, under this identification.

The main effort here is to show the pullback of Igs]. along a map of strictly
totally disconnected spaces T — T is indeed isomorphic to Igs},. Write Igs, for
T XBune 1gskp. Using perfectoid machinery and almost mathematics, this eventu-
ally boils down to a comparison between the global sections of the sheaf O /w for
some pseudo-uniformizer @ on Igs; with OF (Igsy)/w. We first made a reduction
to the case T' = Spa(C,C™T) is a geometric point. Then using the comparison be-
tween the fibers of the Hodge-Tate period map with Igusa varieties due to [CS19]
and [San23], we are reduced to show the natural map

Ot (Igh)/w — (0" /w)(Igt)

is an almost isomorphism. Here Ig% is a perfectoid Igusa variety corresponding to
some element b in the Kottwitz set. This is constructed as the adic generic fiber of
a formal deformation to SpfO¢ of a perfect scheme Ig® over the residue field of C.
Using the short exact sequence for multiplication by w on the integral structure
sheaf, what we need to show becomes the almost vanishing of the w-torsion in
H 1(Igbc,(9+). This is almost isomorphic to the Witt vector cohomology of the
perfect scheme Igb. We found surprisingly (although easy to prove) that in the
generality of any perfect scheme, we have torsion-vanishing phenomenon in its first
Witt vector cohomology:

Proposition 1.8 (Proposition [9.28)). Let X be a perfect scheme in characteristic
p. Denote by W(-) the p-typical Witt vectors. Then the Witt vector cohomology
HY(X,WOx) on the Zariski site of X is p-torsionfree.

This fulfills our purpose. The rest, namely to check that the fiber product
recovers the minimal compactification of the Shimura variety, is easy and is again
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reduced to test objects being geometric points. Here we need to compare the global
sections of the structure sheaves on Igbc and its partial minimal compactification
Iglg*, which reduces to comparing those of their special fibers Ig®, Ig®*. We thus
make the assumption that the codimension of the boundary of Igb’* is at least two,
so that using affiness and normality of Ig®*, we can apply algebraic Hartogs lemma
to show that they agree. As a side result, we classify the situations that we exclude.
The assumption on codimension turns out to be rather mild.

Proposition 1.9 (Proposition . If the boundary of the partial minimal com-
pactification of an Igusa variety on a (simple) Shimura variety of PEL-type AC' has
codimension one, then the Igusa variety must lie over the ordinary locus and the
Shimura variety is either the modular curve, or a unitary Shimura curve attached
to an imaginary quadratic extension of Q as in example[5.13

The short section 10 deals with the Hecke action. This is direct, given the Hecke
action on Shimura varieties.

In the final section 11, we introduce an integral model of the cartesian diagram
for G being a reductive model of Gg, (though only for Igsg, and not its compact-
ification). Here we first define the moduli stack Shtg of G-shtukas and study its
geometry. The main result is

Theorem 1.10 (Proposition [11.13)|11.16] Corollary [11.14] Theorem [11.19). The

structure map Shtg — SpdZ,, is quasi-separated, with proper diagonal, and for any
perfectoid Tate algebra R with an open bounded integrally closed subring R™ and
any commutative diagram with solid arrows

Spa(R, R°) —L— Shtg

|

Spa(R, RT) —— SpdZ,,

there is a unique (up to isomorphism) dotted arrow making the whole diagram com-
mute up to a natural transform given by an automorphism of f. For any dominant
cocharacter \ of G@ , the bounded substack Shtg y is quasi-compact.

P

Moreover, the fiber Shtg o, over SpdQ, identifies with the quotient [Grg/K,)]
of the affine Grassmannian.

The proof relies on a recent result of Gleason-Ivanov [GI23] on extending shtukas
to Breuil-Kisin-Fargues modules over products of rank one geometric points, as
well as a result of Anschiitz about triviality of torsors on the spectrum of the ring
W (R")[1/p], where RT is the integral subring of such a test object.

Later we introduce the crystalline period map on the formal integral model of
the Shimura variety. The existence of the map is a consequence of the existence
of a universal G-shtuka on it. Pappas-Rapoport [PR21] showed this for Hodge-
type Shimura varieties and we rephrased their construction in our situation. The
cartesian property of the desired diagram is easy to prove in this case, since using
gcgsness of the map 7y established as a corollary of proposition and the quasi-
separatedness of Shtg, the map from the Shimura variety to the fiber product is
qcgs. Therefore it suffices to check on geometric points, which was done in section
8.
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Finally we discussed the Newton stratification on our cartesian diagram. This
recovers the fiber product formula of Mantovan, and in the specific case of a basic
stratum, the p-adic uniformization of Rapoport and Zink.

1.3. Example of the modular curve. Let us discuss the example of the modular
curve in detail to illustrate the content of the conjecture. This also clarifies our
conventions on Dieudonné theory. The general case shares great similarity.

Consider the Shimura datum G = GLa, X = hT [[h~ the union of the complex
upper and lower half plane, identified with the GLo(R)-conjugacy class of the map

hiC— GLy(R): a+ birs (“b 2)
We also fix the diagonal torus 7" and standard (upper triangular) Borel B of GL, g.
The root datum is

(2%, {+a}, 2% {£a"}),

where the character lattice is trivialized by a basis e, es with dual basis e}, ey
and @ = e; —ea, a¥ = e} —ey. Then the minuscule cocharacter z~! can be chosen
to be (1,0) and a dominant cocharacter representing its inverse is y = (0, —1).

Fix the level subgroup K, = GL2(Z,) at p and a prime-to-p principal level
KP = K(N),pt N > 3. We let K := K,K? C GL2(Af). The Shimura variety
we obtain is the modular curve at level K. It is defined over Q and parametrizes
isomorphism classes of pairs consisting of an elliptic curve and a trivialization of
its N-torsion points. We consider its base change to Q, and take the diamond
Sk attached to its p-adic analytification. By trivializing the Tate module of the
universal elliptic curve, we obtain Sk», the modular curve with infinite level at p.
Fix an isomorphism C & @p. In this case the Schubert cell Grgr,,, for GLy/Q), is
the diamond over Q,, attached to the flag variety for the opposite of the standard
Borel, which is a projective line P*.

Here the Hodge-Tate period map measures the relative position of the Hodge-

Tate filtration on the Tate-module of the universal elliptic curve £, which is of the
form

Lie€£ — Tpg ®Zp OSK:D = 0@2

Skp*
Here we use that Tate module is tautologically trivialized on Sk». Hence this
defines a map

SKP — ]le’o.

The stack Bung = Buny classifies rank two vector bundles on the Fargues-
Fontaine curve. To define the Beauville-Laszlo map

BL : P** — Bun,,

consider a test object S € Perf with an untilt S* over SpaQp, amap z : S —
P1°/SpdQ, gives a injection £ — O?f for some line bundle £. The untilt S*
defines a closed Cartier divisor on the relative Fargues-Fontaine curve over S and
we denote the closed immersion by i : % < Xg. Then we define the image BL(x)
to be the limit K of the diagram

L — i, 05 « 0x,(1)%2.
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We construct the stack Igs}, on Perf by sheafifying the presheaf of groupoids
of isogeny classes of elliptic curves with N-level structures:

Spa(R, RY) = {E/(R" /@), E[N] = (Z/N)*}/ ~ .

This maps to Buny by taking the (rational) crystalline Dieudonné module of E,
which is a rank two projective B, (R*/w)-module with Frobenius and hence a
rank two vector bundle on the Fargues-Fontaine curve Xg. We have a cartesian
diagram

o
s
S5p AT ple

| lBL

—0
™
Igstr —— Buns.

Let us explain the Newton stratification on the diagram. Let k& = F,. The Kot-
twitz set B(GL2) for GL2/Q, is in bijection to the dominant cocharacters and can
described by a pair of half integers (slopes) with nonincreasing order. The subset
B(G, i) of p-admissible elements consists of two points [bg], [b1] with [by] < [b1]
under the partial order, whose images under the Newton map are respectively
(_%’ _%) and (07 _1)'

Let X/k be a formal p-divisible group of height two and dimension one. Such a
p-divisible group is unique up to isomorphisms. Let D, be the nonsplit quaternion
algebra over Q, and D be the endomorphism ring of a supersingular elliptic curve
over k, tensored with Q. This is a division algebra of dimension four over Q whose
p-adic completion is D,,. We consider the special fiber Sk j, of the integral model of
the modular curve over Z,,. For any b € B(GLq, 1), Ig® is the corresponding Igusa

variety, which is a perfect k-scheme. We denote by Igb’<> the canonical compactifi-
cation of the v-sheaf attached to Ig” towards Spdk. Also let BC(O(1)) denote the
Banach-Colmez space as in [FS21], II] that sends a perfectoid space S to the global
sections of O(1) on the relative Fargues-Fontaine curve Xg.

We list on the next page descriptions of the Newton strata on each object
appearing in the cartesian diagram, as well as their corresponding invariants. In
the table, we use Sé’ﬂ i to denote the usual Newton strata on the special fiber of the

schematic Shimura variety over k; and S}}ﬁ denotes the Newton strata on the good
reduction locus of the diamond Shimura variety with infinite level at p, which is
defined by pulling back the Newton stratification on Bung. We caution the reader
that latter is not the same as the stratification on S%,, defined by pulling back
that on S}’{,k using the specialization map. They agree on rank one points but not
in general. Thus our notation here deviates from [CS17, 3]. In the last row of

the table, we use Igsi(’l; to denote the canonical compactification of the stratum on
Igsy» labelled by b towards Bung, c.f. the notation in
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[bo] [b1]
slopes —2.—3 0,-1
i tal 2 r=(9 1 02, F = diag{1,p~"
isocrysta (Qf, F = 0 ) (Qg, F = diag{1,p™'})
isogeny class of X Qp/Zy @ pipeo
p-divisible groups
vector bundle 0(3) 0®0(1)
&
. X BC(O(1
Gy = At (&) D} g, BOw)
p 0 @p
Pt Q:=PN\PH(Qy) P1(Qp)
S% & supersingular locus ordinary locus
8;}’2 the residue discs of the complement of S;(’ZO
supersingular points (open) (closed)
Ig® the profinite set a Z, X Z,-torsor over the

D*\Dj x GLa(A%)/KP  perfection of the ordinary locus

considered as a k-scheme

o,b
Igs o

[D7\GL(A})/K”] [1g™° /G
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2. DIAMONDS AND V-STACKS

The objects in consideration will be stacks on the v-site of perfectoid spaces in
characteristic p. To be able to work in such a set-up, we recall the definitions and a
few properties of perfectoid spaces, pro-étale and v-topology, diamonds and small
v-stacks, following closely [SW20, 6-9,17] and [Schi18| 3,5-9,18].

2.1. Perfectoid spaces.

Definition 2.1. A topological ring R is called Tate, if it contains an open and
bounded subring Ry C R and a topologically nilpotent unit (a pseudo-uniformizer)
w € R. A Tate ring R is perfectoid if it is complete, uniform (i.e. the set of power-
bounded elements R° C R is bounded), and there exists a pseudo-uniformizer
w € R such that @? | p in R° and the Frobenius map

®:R°/w— R°/w? : x> 2P

is an isomorphism.

Definition 2.2. ([Schi8| 3.9-3.11]) Let R be a perfectoid Tate ring. The tilt of R
is the topological ring
R’ = lim R,
a}gp
with the inverse limit topology, the pointwise multiplication and the addition given
by
(@ 2 )+ O, yW ) =@ D,
where
20 = lim (20" 4 yF)P" € R,
n—oo

This is in fact a perfectoid F,-algebra, whose subset of power-bounded elements

is given by
R = lim R° = lim R°/w,
zﬁp %

where @? | p € R° is a pseudo-uniformizer of R. Any preimage w” of w under
R = hm, R° /wP — R°/wP is an element of R*° which is a pseudo-uniformizer of
R’, and R’ = R°[1/="].

The projection to the zeroth coordinate defines a multiplicative map

R = lim R— R: [~ f*
w]{;P

This induces a ring isomorphism R’ /w’ = R°/w and an inclusion preserving
bijection between the set of open and integrally closed subrings of R’° and R° (for
both, the set of such subrings is bijective to that of their quotients by the pseudo-
uniformizer). Explicitly, R C R° corresponds to R*T := fm R*. We also
have R°t /o = Rt Jw”.

By an affinoid (perfectoid) Tate ring, we mean a pair of the form (R, RT), where
R is a (perfectoid) Tate ring, and RT C R° is an open bounded and integrally closed
subring. A morphism (R, RT) — (R/, R'T) between affinoid Tate rings is a map of
topological rings R — R’, carrying R' into R'T. The tilt of an affinoid perfectoid
Tate ring (R, R1) is the affinoid perfectoid Tate ring (R”, R’).
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By considering Huber’s adic spaces attached to affinoid perfectoid Tate rings,
we have the notion of affinoid perfectoid spaces and their tilts. This construction
is compatible with taking rational open subsets and hence globalizes.

Definition/Proposition 2.3. A perfectoid space X is an adic space covered by
open subspaces which are isomorphic to affinoid perfectoid spaces, i.e. of the form
Spa(R, RT), where (R, RT) is an affinoid perfectoid Tate ring. By tilting its rational
open subsets and gluing, one can functorially construct a perfectoid space X’ in
characteristic p. Moreover, there is a homeomorphism | X | = | X”| that is compatible
with passing to rational open subsets. We call X" the tilt of X.

Example 2.4. (geometric points) Let C' be a complete algebraically closed non-
archimedean field of characteristic zero or p and Ct C C an open and bounded
valuation subring. Then Spa(C,C7T) is a perfectoid space. We call a perfectoid
space of such form a geometric point. If CT = O¢ is the ring of integers of C, we
say that it is a rank one geometric point.

Definition 2.5. Let X be a perfectoid space in characteristic p. An untilt of X is
a pair (X*, 1), consisting of a perfectoid space X* and an isomorphism ¢ : X# =~ X
To simplify notation, we sometimes drop ¢ and simply write X* for an untilt.

Definition 2.6. (morphisms of perfectoid spaces) Let f : Y — X be a morphism
of perfectoid spaces.
(i) f is quasi-compact (resp. quasi-separated) if the map on the underlying toplog-
ical spaces |f] : |Y| — | X] is quasi-compact (resp. quasi-separated).
(ii) f is an injection if for all perfectoid spaces Z, the map f. : Hom(Z,Y) —
Hom(Z, X) is injective.
(iii) f is an (resp. closed or open) immersion if it is an injection and |f| is a locally
closed (resp. closed or open) immersion.

(iv) f is separated if the diagonal Ay :Y — Y xx Y is a closed immersion.
2.2. Pro-étale and v-topology.

Definition 2.7. Let f: Y — X be a morphism of perfectoid spaces.

(i) f is called étale if for any y € Y, there is an open neighbourhood V C Y of y,
an affinoid perfectoid open U = Spa(R, RT) C X, such that f(V) C U and f|y
factors as f : V. — W = Spa(S,ST) — U, with the first arrow being an open
immersion and second arrow being a finite étale morphism, i.e. induced by a
finite étale ring map R — S.

(ii) f is called pro-étale if for any y € Y, there is an affinoid perfectoid open neigh-
bourhood V C Y of y, an affinoid perfectoid open U = Spa(R, RT) C X, such
that f(V) C U and f|y can be written as a limit of étale maps V; — U along a
small cofiltered index category I, from affinoid perfectoid spaces V;,i € I.

Definition 2.8. Let Perf be the category of perfectoid spaces in characteristic p.

(i) The pro-étale topology on Perf is the Grothendieck topology for which a col-
lection of jointly surjective morphisms {f; : Y; — X }ier is a covering, if all f;
are pro-étale, and for each quasicompact open subset U C X, there exists a
finite subset J C I and quasicompact open subsets V; C Y;,i € J, such that
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U = U;ey fi(Vi). The category Perf, endowed with this topology, is called the
big pro-étale site.

(ii) The v-topology on Perf is the Grothendieck topology where a collection of jointly
surjective morphisms {f; : ¥; — X };er is a covering, if for each quasicompact
open subset U C X, there exists a finite subset J C I and quasicompact open
subsets V; C Y;,i € J, such that U = | J,; fi(Vi). The category Perf, endowed

with this topology, is called the U—siteﬁ

These definitions work the same way for Perfd, the category of all perfectoid
spaces. It is proven in [Schl8| 8.6,8.7] that the big pro-étale site, as well as the
v-site, is subcanonical, i.e. the functor Hom(—, X) for X being a perfectoid space
is a sheaf on the big pro-étale and the v-site of Perfd. Similarly for X € Perf. We
will sometimes not distinguish a perfectoid space and the v-sheaf represented by it,
and this is justified here.

One has also the small pro-étale site Xp.0-¢; of a perfectoid space X, whose
underlying category has objects pro-étale morphisms ¥ — X for Y € Perfd, and
the coverings are jointly surjective morphisms with the same condition on quasi-
compactness as in the big pro-étale site.

Example 2.9. (product of points, c.f. [Gle22 1.2]) Let S = Spa(A, AT) be an
affinoid perfectoid space in Perf with a pseudo-uniformizer w € AT. For any
point z : (A, AT) — (K, K™T), let @, be the image of w in k(z), k(x)* the w,-
adic completion of KT and k(z) := k(:z:)*[w%c] the completed residue field. Define
R* = [L.cjs k() with a pseudo—unif?rmizer @' = (w,), and R := RT[L].
Then S := Spa(R, R™) is perfectoid and S — S is a v-cover.

More generally we call an affinoid perfectoid space a product of (geometric)
points if it is of the shape Spa(R, RT), where R™ =[], K; and R = R*[1], with
each (K;, K;") being an (algebraically closed) affinoid perfectoid field, w; € K; a
pseudo-uniformizer. Each s; := Spa(K;, K;") is called a principal component of S.

A product of points is an example of a totally disconnected perfectoid space. By
using geometric points in the above construction, one gets a v-cover by a strictly
totally disconnected perfectoid space. These spaces are important as they provide
a basis of v-topology and are structurally simple. More precisely,

Definition 2.10. A perfectoid space X is called (strictly) totally disconnected if
it is quasi-compact quasi-separated and every (étale) open cover of it splits.

Proposition 2.11. ([Schl8 1.15]) A perfectoid space X is (strictly) totally dis-
connected if and only if it is affinoid, and every connected component of X is of
the form Spa(K, K1) for K being a perfectoid field (resp. an algebraically closed
perfectoid field) with an open and bounded valuation subring K.

One can define and study stacks in this context.

4To avoid using universe, one first takes cutoff cardinals and then takes a limit over all possible
cutoffs to define the category of small sheaves on this site, as discussed in [Schi8| 4,8]. We ignore
this issue here.
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Definition 2.12. A v-stack F' is a contravariant 2-functor from the v-site Perf
to the 2-category of groupoids (whose objects are groupoids and morphisms are
functors), satisfying descent for v-covers, i.e. for a v-cover Y — X, the natural
functor
F(X) = F(Y/X),

is an equivalence of categories. Here F(Y/X) is the category of descent data, i.e.
the objects are couples (s,«), with s € F(Y) and « : pis & pis, satisfying the
cocycle condition pisa o piaa = pisa, where p1,ps 1 Y xx Y XY, p1o,pas, p13 -
Y xxY xxY 3 Y xx Y are the projections.

We will work exclusively with the following class of v-stacks that are more
geometric in nature, in the sense that, using charts of perfectoid spaces, one can
define underlying topological spaces for them.

Definition 2.13. A small v-stack is a v-stack X on Perf admitting a presentation
R=YxxY =Y = X,

with Y being the v-sheaf represented by some perfectoid space (not necessarily in
characteristic p), and R is a small v-sheaf, i.e. a v-sheaf admitting a surjection (of
v-sheaves) from a perfectoid space.

For a small v-stack X with presentation R =2 Y, where Y is a perfectoid space
and R is a small v-sheaf admitting a surjection from a perfectoid space R — R, its
underlying topological space is the quotient space

X[ = Y|/IR).
As a set, this is in bijection to
{Spa(K,K*) 5 Y}/ ~,

where Spa(K, K) runs through all affinoid perfectoid fields, and the equivalence
relation is defined by sy ~ so if there is a commutative diagram

Spa K3, 3 — Spa‘ K17

+\i

for some third affinoid perfectoid field (K3, K3).

The topological space | X| is independent of the choice of presentation [Schl8|
12.7,12.8].

Spa KQ, K

Example 2.14. For T a topological space, we denote by T' the v-sheaf on Perf of
continuous homomorphisms into 7T, i.e.

S — Homs(]S],T).

Let X € Perf be a perfectoid space in characteristic p, with an action by a
topological group G, one can consider the v-sheaf theoretic coequalizer [X/G] of
the projection and action maps

XxG=X.
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This is v-stack. In particular if G is a locally profinite group, then X x G is
representable by a perfectoid spaceﬁ The projection and action maps

XxG=2X

are pro-étale. If G acts freely on X, the v-stack [X/G] is in fact a diamond (see
below) and in particular a small v-stack.

We take fiber product of v-stacks as the 2-fiber product of categories fibered in
groupoids over Perf.

Definition/Proposition 2.15. (fiber product of v-stacks) Given a diagram X ER
Z &Y of small v-stacks. The fiber product X x Y is the presheaf of groupoids
that sends S € Perf to the groupoid whose objects are triples

(T, 9,0 f(x) =g(y))

and morphisms between (z,,¢) and (2/,y',¢’) are pairs of maps (z = 2,y LN y')
such that ¢’ o f(a) = g(8) o ¢. This is again a small v-stack by [Sch18, 12.10].

For universal properties satisfied by a fiber product, see [Ols16] 3.4.13].

Definition 2.16. A v-stack X is quasi-compact if there is a surjection of v-stacks
from an affinoid perfectoid space to X. In particular, if X is quasi-compact, then
it is small and its underlying topological space | X| is quasi-compact.

Definition 2.17. (morphism of v-stacks, c.f.[Sch18, 10.7]) Let f : Y — X be a

morphism of v-stacks.

(i) f is O-truncated if for all S € Perf, the map of groupoids f(S) : Y(S) — X(95)
is faithful, or equivalently the diagonal map Ay :Y — Y xx Y is an injection.

(ii) f is quasi-compact if for any affinoid perfectoid space S mapping to X, the fiber
product Y x x S is quasi-compact.

(iii) f is quasi-separated if the diagonal, which is O-truncated, is quasi-compact quasi-
separated (qcgs).

(iv) f is an open (resp. closed) immersion if for every (totally disconnected) per-
fectoid space T" mapping to X, the pullback Y xx T'— T is represented by an
open (closed) immersion.

(v) f is separated if the diagonal Ay, x : Y — Y xx Y is a closed immersion (hence
f is automatically O-truncated).

(vi) f is partially proper if it is separated and for every diagram
Spa(R, R°) — Y
|
Spa(R,RT) —— X

where R is any perfectoid Tate ring with an open and integrally closed subring
R* C R, there exists a unique dotted arrow making it commute.

5More generally, if X is a perfectoid space and G is a locally profinite group, then for any G-torsor
f: X — X, the v-sheaf X is representable by a perfectoid space, and f by a pro-étale morphism,
c.f. [Schi8l 10.13].
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We give a criterion for small v-stacks to be qcgs. The proof is adapted from the
proof of [SW20l 21.2.1]

Proposition 2.18. Let X be a small v-sheaf. LetY be a small v-stack on the slice
category Perf,x, such that the structure map to X has quasi-separated diagonal. If
for any product of geometric points S € Perf ,x with principal components s;, i € I,
the restriction
res:Y(S) — HY(si)
iel

is an equivalence of groupoids, then [ is qcqs. The converse implication holds if f
is representable in diamonds.

Proof. We first prove quasi-compactness assuming f is quasi-separated. Take any
affinoid perfectoid space S with a map to X and denote by T the fiber product
Y x x S. Tt suffices to show T is quasi-compact. We fix a representative Spa(C;, C;")
for each t € |T| (recall that ¢ is an equivalence class of maps) and choose a pseudo-
uniformizer w on S. The map ¢t - T — S pulls w back to a pseudo-uniformizer
w; € Cff. Define Rt = [Lier Cf, w = (=) and R = R*[1/w]. Then T :=
Spa(R, RT) is a product of geometric points and the collection of maps t — S
determines a unique map g : T — S. Hence we obtain commutative diagrams

t—— T ——Y

g .

7))

T L S — X
By assumption, the outer commutative squares give a unique (up to automor-
phisms) map T — Y, and hence a unique (up to automorphisms) dotted arrow g
by universal property of T. By construction, it is surjective on topological spaces.
As g is qeqs and f is quasi-separated, § is qegs by cancellation. This shows that it
is in fact a surjection of v-stacks and 7T is quasi-compact as wished.

Now for a general f, we take an affinoid perfectoid space S with amap to Y x x Y
and consider the pullback T of the diagonal. Note that the map A g T = Sis
a quasi-separated map satisfying the condition in the proposition. Indeed, for any
product of points S with a map to S, assume we have commutative diagrams for
all principal components s € S

|

Y s ¥VxyY —— X.

Then by assumption the outer commutative diagrams determine a unique (up to
automorphisms) map S5Y. By uniqueness, its composition with Ay agrees with
S5 8 —>Y Xx Y up to a natural transform. This induces a unique (up to
automorphisms) map g by the universal property. It makes the diagram commute,
up to an automorphism in 7" in the upper left triangle. Hence we can apply the
argument in the first paragraph to A ¢ and deduce that it is quasi-compact. Since
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this works for any S mapping to Y xx Y, it shows Ay is quasi-compact and hence
f is quasi-separated. Now apply the first paragraph again we see that f is qcgs.
Conversely, if f is qcgs and representable in diamonds, assume for some product
of geometric points S € Perf,y with principal components s;, i € I, we are given
lifts of s; — X to Y. Consider the fiber product T =Y xx S. This is a spatial
diamond. Each s; maps to T by the universal property. Take a pro-étale surjection
T — T from an affinoid perfectoid space. The maps s; — T lift to 7', which
determines a section S — T'. Composing with the projection to T, we get a unique

(up to automorphisms) section § : S — T. This constructs an inverse to res :
Y(S) — Hz‘el Y(Si)' 0

Remark 2.19. For a map f between small v-stacks with quasi-separated diagonal,
one can show f is qcgs by testing the above criterion on any pullback of f to an
affinoid perfectoid space.

2.3. Diamonds.

Definition 2.20. A diamond is a pro-étale sheaf D on Perf that can be written
as X/R with X, R being representable by perfectoid spaces and R C X x X an
equivalence relation, such that the two projections s,t : R — X are pro-étale.

It was proven in [Schi18| 11.9] that diamonds are (small) v-sheaves. In particular,
we can talk about the property of a diamond (resp. a map between diamonds) being
quasi-compact or quasi-separated in a topos theoretic sense, see [Sch18| section §].

Here is an example of a diamond that we will encounter later.

Example 2.21. (SpdE) Let E/Q, be a finite extension. Joining all p-power roots
of unity and then taking completion, one gets the perfectoid field E¢!. Define

SpdE := coeq(Spa(E%Y)’ x Gal(E%®/E) = Spa(E<)").
This is a diamond: in fact, as Gal(E¥°!/E) is a profinite group which acts freely

on
Hom((E¥")", K),
for any perfectoid affinoid field (K, K*), the map
Spa(E<YY x Gal(EY/E) — Spa(EY)’ x Spa(E<)’

induced by the first projection and the action map is injective, making the former
an equivalence relation on Spa(ECyCl)". Its post-compositions with the two projec-
tions are pro-étale. Since the product Spa(E%)’ x Gal(E®°'/E), being copies of
Spa(EY) is perfectoid, SpdE is a diamond.

In this example, the underlying topological space of the diamond SpdF is just
a point.

The following theorem describes the category of perfectoid spaces over @, in
terms of those in characteristic p in aid of diamonds. This explains why for most
purposes, it suffices to work with Perf instead of Perfd.

Theorem 2.22. [SW20| 8.4.2] The category of perfectoid spaces over Q, is equiv-
alent to the category of perfectoid spaces X of characteristic p with a structure
morphism X — SpdQ,, as sheaves on Perf.
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2.3.1. Diamonds attached to adic spaces.

Definition 2.23. (The functor “¢”) Let X be an analytic adic space over SpaZ,.
Define a presheaf X© on Perf by:

T X°(T) = {(T",T* = X)}/ ~,

where T% is an untilt of T, T% — X is a map of adic spaces and the equivalence
relation is given by isomorphisms of such pairs.

According to [SW20, 10.1.5], the presheaf X© is a diamond. And in particular,
if X is perfectoid, then X¢ is represented by X°.

We denote X° by Spd(R, RT) if X = Spa(R, RT) and suppress the integral sub-
ring if it is the ring of power bounded elements, i.e. we write SpdR for Spa(R, R°)°.

In general for any pre-adic space (in the sense of [SW20, Appendix to lecture
3]) over SpaZ,, the same functor as in the exhibited formula above (where “a
map of adic spaces” is replaced by “a map of pre-adic spaces”) is not necessarily
representable by a diamond, but it always defines a v-sheaf [SW20] 18.1.1]. This
encompasses the important case of formal schemes over SpfZ,,. For schemes over Z,,
there are two different ways of attaching v-sheaves to it constructed in [AGLR22,
2.2], according to whether we want to view the test object as a ringed space with
sheaf of rings given by the structure or the integral structure sheaf. We record these
constructions below.

Example 2.24. For an affine p-adic formal scheme X = SpfA over SpfZ,, the v-
sheaf X° is the v-sheaf attached to the pre-adic space Spa(A, A). This construction
is compatible with localization and hence globalizes and defines a functor from
p-adic formal schemes to v-sheaves.

Example 2.25. The v-sheaf SpdlF,, is not representable by diamonds. This is in
fact the trivial functor, sending any test object to a point.

Definition 2.26. [AGLR22, 2.10] Let A be a Z,-algebra and X = Spec(A).
(1) The small diamond functor X° of X is the v-sheaf on Perf
S {(8%, ] A= 0L ($9))},

where S* is an untilt of S and f is a ring homomorphism.
(2) The big diamond functor X© of X is the v-sheaf on Perf

S {(S% f: A — O0s:(S)},

where S* is an untilt of S and f is a ring homomorphism.

Remark 2.27. On proper schemes, the big and small diamond functors agree.

3. p-DIVISIBLE GROUPS

We review some results about p-divisible groups, following [Mes72| 1.2], [CS17,
4.1], [SW13], [ABZ3).
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3.1. Basic definitions. Let S be a scheme.

Definition 3.1. A sheaf of abelian groups G on the fpqc site of S is said to be
p>-torsion if it is the colimit of its p™-torsion points (denoted by G[p™]). It is
p-divisible if multiplication by p on G is an epimorphism.

Definition 3.2. Let h be an integer > 0. A p-divisible group G over S of height
h is a fpqc sheaf of abelian groups on S, which is p®-torsion, p-divisible and each
G[p"] is representable by a finite locally free group scheme of order p™". Morphisms
between p-divisible groups are morphisms of sheaves of groups on Sgpqc.

The dual p-divisible group GV of G is the fpqc sheaf T' + lim Gp"V(T) over
S, where G[p"]V is the Cartier dual of G[p"] and the transition maps are the duals
of multiplication by p. This is clearly a p-divisible group.

Definition 3.3. An isogeny between two p-divisible groups is a surjection of fpqc
sheaves whose kernel is representable by a finite locally free group scheme.

For two p-divisible groups G,G’ on a scheme S, we write Hom(G,G’) for the
sheaf of isogenies between them.

Definition 3.4. Let G,G’ be two p-divisible groups over a scheme S. A quasi-
isogeny is a global section p of the sheaf Hom(G,G’) ® Q such that Zariski locally
on S, p"p is an isogeny for some integer n.

Definition 3.5. A polarization on a p-divisible group G is a quasi-isogeny
A:G—=GY,

such that the Cartier dual of A equals —\. It is called a principal polarization if it

is an isomorphism.

Example 3.6. (1) Q,/Z, is a p-divisible group of height one.
(2) ppe = lim G [p™], where the transition maps are inclusions, is a p-
divisible group of height one.

(3) Let A/S be a d-dimensional abelian scheme. Then the colimit of its p-power
torsion points A[p*>] := hgn A[p"] is a p-divisible group of height 2d.

In the above examples, Q,/Z, and pp are dual to each other and A[p™] is
dual to the p-divisible group of the dual abelian variety AY. The pairing between
them (or rather the duality pairings on AV [p"] x A[p"] for each n) is called the Weil
pairing. In particular when A is principally polarized, A[p>] is self-dual via the
principal polarization.

Remark 3.7. Note that a polarization A on an abelian variety induces a polariza-
tion on its p-divisible group. Although slightly confusingly, on the abelian variety
A agrees with its dual isogeny, yet on the p-divisible group it is the inverse of its
dual. This is a consequence of the expression of the Weil pairing as a commutator
of two translation operators on the sheaf ([p"] x id)* £ 4 on Ax AV, for each integer
n, where [p"] denotes the multiplication by p™ map and &4 denotes the Poincaré
bundle on A x AY. More precisely, one can show using the see-saw principle that

([p"] x id)* Pa = (id x [p"])* Pav.
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Upon identifying A with its double dual, this means that on . := ([p"] X id)* P4
there are actions of both A[p"] x {0} and {0} x AY[p"], covering their translation
actions on A x AV. The two actions don’t commute. Given (z,v) € Ax AV, denote
by T(,,) the translation by (z,v) on A x AY. Then the isomorphism obtained by
composing the descent data along [p"] x id, respectively id x [p"]

T(’;,V).,Sf — T(’B}V),,Sf — ¥ — T(’;,O),,Sf — T(*;J,),,%

gives an element in H°(A x AY, 0%, 4v). One can identify this element with the
value of the Weil pairing between x and v by restricting to A x {0}. We denote the
pairing by e4. Identify A with its double dual and perform the same construction
on AY x AVVY. The above expression of the Weil pairing as a commutator shows
that

ea(z,v) = eav (V,;v)_l.

Now a polarization A — AV pulls e4 back to an anti-symmetric pairing on its
p-divisible group, which explains the minus sign on the Cartier dual. For details,
see [Oda69l 1.3].

In terms of Galois representations, one consider

Definition 3.8. The fpqc sheaf T,G = @n Glp™] (where the transition maps are

multiplication by p) on S is called the (integral) Tate module of G. It is a sheaf
of Z,-modules and can be identified with the sheaf Hom(Q,/Z,,G), taken in the
category of sheaves of abelian groups over Sfpqc.

Being an inverse limit of schemes affine over S along affine transition maps, 7,,G
is representable by a scheme, affine over S. It is flat over S as being defined by a
filtered colimit of flat Og-algebras.

When the base S is the spectrum of a p-adically complete Z,-algebra R, which
is the main case of interest for us, we will more often consider a p-divisible group
as an fpqc sheaf on Nilpy’, which is the opposite category of R-algebras on which
p is nilpotent, sending A € Nilpy® to Jim lim Glp™(A/pY).

Denote by eg the zero section of G. We discuss the formal Lie group attached
to a p-divisible group, using which we can define the Lie algebra of the latter.

Definition 3.9. The formal completion G of G is the fpqc sheaf on Nilpy’:
A h_ng{x € G(A) | x =eg in A/I, for an ideal I C A, such that I*T! = 0}.
k

Proposition 3.10. G is a formal Lie (group) variety in the sense of [MesT2,
I1.1.1.4]. It is hence represented by an affine formal scheme over S, which is Zariski
locally on S isomorphic to

Spf(Os[[ X1, .--Xdl])s

for some integer d > 0.
Proof. This is [Mes72] 11.3.3.18] or [SW13] 3.1.2]. O

We call d the dimension of the p-divisible group G relative to S.
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Definition 3.11. The fpqc sheaf of Og-modules
LieG := LieG
is defined to be the dual of the (Zariski) locally free Og-module of rank d
wg 1= eéQé /5"
It is called the Lie algebra of G. We use straight letters LieG to denote its global
sections. This is a finite projective R-module.

Let R be as above. When G is connected, G = G and is hence (pro-)representable
by a formal scheme. In general it is not representable, but one can nevertheless
define its adic generic fiber ggd as the sheafification of the presheaf on the category of
complete affinoid rings over Spa(R[1/p], R), in the analytic topology where coverings
are generated by rational opens:

(A,4%) > Ty G(Ao).
AoCA+

where the colimit runs over open and bounded subalgebras of AT, c.f. [SWI13|
2.2.2].

3.2. Classification over O¢. Let C/Q, be a complete algebraically closed non-
archimedean field with ring of integers Oc. We recall Scholze-Weinstein’s classifi-
cation of p-divisible groups over O¢ in terms of the Hodge-Tate filtration on their
Tate modules [SW13| Theorem B].

Let G be a p-divisible group over O¢. Recall the Hodge-Tate exact sequence
(due to Fargues) as in [SW20, 12.1.1].

Theorem 3.12. There is a natural short exact sequence:
0 — LieG ®o, C(1) 2 7.6(00) @2, € 2% (LieG¥)* 0, C — 0.

Here to define o, we view a section f of T,,G as a homomorphism Q,/Z, — G.
Then the Lie algebra functor applied to its dual f¥ : G¥ — p,~ gives Lie(fV) :
LieGY — Lieupy~. By picking a coordinate of G,,, say t, the O¢-linear dual
(Lieppoe )* is naturally trivialized and is isomorphic to Oc%. Hence o is defined
as f — (Lief")*(4).

Let {(T, W)} be the category of pairs consisting of a finite free Z,-module T and
W C T'®z,C(—1) is a sub-C-vector space. A morphism between two such pairs is a
pair of morphisms between the Z,-modules and the sub-vector spaces, compatible
with each other. The dual of (T, W) is the pair (T*(1), W), with * being the
usual vector space dual, (1) the Tate twist and L the orthogonal complement (with
respect to the natural pairing between T'®z, C and T* ®z, C'). Then we have

Theorem 3.13. [SW13, Theorem B, 5.2.1] The category of p-divisible groups over
Oc is equivalent to the above category {(T, W)} via:
U:G— (TPQ(OC),LieQ ®o. O),

where LieG®o,. C is viewed as a subspace of T,G(O¢ )@z, C(—1) via the Hodge-Tate
filtration af.. This equivalence is compatible with duality.
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For convenience of the reader, we record the proof outline below, under the
assumption that C' is spherically complete and the norm map C' — R is surjective.
The general case follows from a less direct descent argument involving Rapoport-
Zink spaces, see [SW13| 6.2].

Proof. Given (T, W) in the target category, we define the p-divisible group
g/ = T(—l) ®Zp Hpoe .
Now we have the following diagram

W ®c Gg

l

g/ —— T(=1) @, Ga,

where G, is the sheafification of the functor (4, A") — A on complete affinoid
(C,O¢)-algebras; the vertical arrow is induced by the given inclusion W — T ®
C(—1), while the horizontal arrow is the logarithm on Q'Zd. Note that since
Lieptp = Oc¢, LieG’ is naturally (in T') identified with T'(-1) ®z, Oc. Hence
the logarithm takes the form

G — LieG’ ®o. Ga = T(—1) @z, Ga.

We denote the sheaf theoretic fiber product by gf;d.

Using results from [Farl8], one shows under the assumption of C' being spheri-
cally complete with surjective norm map C' — Rx, that the formal scheme

G = [[sptH (Y, 0%),
Y

defines a p-divisible group over O¢, where Y runs over connected components of
gad
Bt
It remains to check that ® : (T, W) — G gives an inverse to U.

The composition @ o ¥ is easily seen to be naturally isomorphic to the identity
functor, since the diagram

log

Gad LieG ®0, Ga

| ja;u—l)

(T,G(0c)(~1) ® iy )2 —25 T,G(O0)(~1) ®7, Ca,

is cartesian, where the left vertical map is obtained by viewing T,,G* as Hom(Q,/Z,,G*),
and hence there is a canonical evaluation

Tpg*(OC’) ® QP/ZP -G,

dualizing and taking adic generic fiber of which gives the desired map.
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For W o @, given (T, W) as in the target category, assume we have constructed
G such that

G — 5 W & G,

J

logg/
gd 29 T(-1) ®7, Ga,
is cartesian. We have to show that (77, W’) := (T,G(O¢), LieG ® C) is naturally
isomorphic to (T, W).
As this is a pullback diagram, we have identification of the kernels of the two
horizontal maps. The kernel of logg, is Q,’fd [p™°], so the kernel of the top horizontal
map is p°°-torsion and is therefore contained in Q;";d [p™°]. While W ®¢ G, is torsion-

free, Qg‘d [p>] is also contained in the kernel. Hence the left vertical map in the
diagram is an isomorphism on p®-torsion points. This means in particular we have
compatibly

Gl = Gp").
Passing to the tilde limit, we get c.f. [SW13] 3.3.2]
(T,9)5" ~ Lim Gy [p"] = Lim G, [p"] ~ (T,G')5"
This induces an isomorphism on their (C, O¢)-points and hence
T' = T,6(0c) = (1,9)3'(C, Oc) = (T,¢');*(C,Oc) = T,G'(Oc) = T.
We identify 7" and T using the above isomorphism. Now to see that LieG
in T(—1) ® C agrees with W, assume this the opposite. Then their intersection

in T(—1) ® C would be a vector subspace of strictly smaller dimension. But the
pullback of g;]ad along LieG N W would still be ggd. This is absurd.

Hence one has a natural isomorphism ¥ o ® with the identity functor, induced
by the left vertical arrow in the cartesian diagram used to define ®. 0

3.3. Complements. We record below some descent properties of p-divisible groups.

Lemma 3.14. Given a cartesian diagram of rings

R%RQ
Ry —— R3

such that Ry — Rg is surjective (a Milnor square), the corresponding diagram
of categories of finite projective modules over these rings is 2-cartesian, i.e. the
category of finite projective modules over R is equivalent to that of “gluing triples”

(M17M2,a : M1 ®Rl Rg l) M2 ®R1 Rg),
where M; is a finite projective module over R; fori = 1,2, and « is an isomorphism

between their base changes.

Proof. Given a finite projective module over R, one can construct a gluing triple by
base changing to R;, i = 1,2,3 and the isomorphism « is the identity. Conversely,
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given a gluing triple, one can get an R-module by taking the kernel of the difference
map

My & My 2= £, ®r, Rs.
That this gives the desired equivalence follows from [Mil72, 2.1-2.3]. O

Example 3.15. Assume C is a complete algebraically closed non-archimedean field
with ring of integers Oc and C7 is a bounded valuation subring of O¢. Denote
by k the residue field of O¢ and by C+ the image of Ct in k. Let w € CT be a
pseudo-uniformizer of C. Then taking R = Ct, Ry = O¢, Ry = C+ and R3 = k
gives a Milnor square. Similarly, taking R = C*/w - O¢, Ry = O¢/w, Ry = C+
and R3 = k gives a Milnor square. These two examples will be used later in the
proof of proposition |8.13

Proposition 3.16. Let A be a ring. Denote the category of p-divisible groups on
Spec(A) by BT(A) (“BT” stands for Barsotti-Tate). Given a Milnor square as in
lemma we have BT(R) is the 2-cartesian product of BT(R1) and BT(Rz)
over BT (R3).

Proof. We have a functor
BT(R) — BT(R1) Xpr(ry) BT(R2)
by base changes. Given two p-divisible groups G,G’. We have
Homn(G,G') = lim Homn(G[p"], &'").

For each n, Hompg (G[p"], G'[p"]) are given by maps between the R-modules O(G'[p"])
and O(G[p"™]), respecting the Hopf algebra structures on both sides. Since the Hopf
algebra structures are given by morphisms of R modules, we conclude by lemma
[3:14) that giving such a map is equivalent to giving a pair of maps on the restrictions
of G[p"] and G'[p"] to Ry and R, identical on R3. Passing to the inverse limit,
this shows full-faithfulness. Essential surjectivity follows from a similar reasoning.
Namely given a gluing triple of p-divisible groups, restricting to p™-torsion points for
each n, we can first recover the ring of functions O(G[p"]) as an R-module by lemma
and then endow it with a Hopf algebra structure. And full-faithfulness ensures
that this will define a p-divisible group which restricts to the correct thing. ([l

Lemma 3.17. For R =[], Vi being a product of valuation rings (or fields) and n
be an integer, the category of rank n projective modules over R is equivalent to the
collection of those over each V;.

Proof. We have a functor from rank n projective modules on R to those on each
V; by base changes. Conversely, given a collection of rank n projective modules M;
over each V;, we can take the product M := [], M;. Since each M; is necessarily free
and we can pick a basis e;1, ..., e;, of it, the product M is also free and trivialized
by (ei1)i,-- -, (€in);- This gives a functor in the opposite direction. To check that
these two functors are inverse to each other, we only need to check the composition
M — (M;) — [, M; gives a module that is naturally isomorphic to M, which is
clear. O

Corollary 3.18. The category of p-divisible groups of a fized height over R is
equivalent to the collection of those over each V;.



30 MINGJIA ZHANG

Proof. Using [3.18] one can again reason by first truncating the p-divisible groups
and then saying that the Hopf algebra structure on the rings of functions of each p™-
torsion subgroup is defined using maps between the underlying (finite projective)
modules. (]

3.4. Dieudonné modules. Here we recall some Dieudonné theory following the
work of Anschiitz and Le Bras[AB23]|, in particular the classification of p-divisible
groups by their (prismatic) Dieudonné modules. Later in this article we will only
need the results over certain semiperfect and perfectoid rings, which are also covered
by [Laul8|] and [SW20, Appendix to Lecture 17].

Definition 3.19. (c.f. [BMSI19] 4.10, 4.20][AB23, 3.3.1, 3.3.5].) A ring R is called
quasi-regular semiperfectoid, if it is p-complete with bounded p°°-torsion, the cotan-
gent complex Lg/z, has p-complete Tor-amplitude in [—1,0] and that there exists
a surjection S — R from a perfectoid ring S.

Example 3.20. ([AB23] 3.3.6]) Any integral perfectoid ring (c.f. Deﬁnition, or
any p-complete bounded p*°-torsion quotient of a perfectoid ring by a finite regular
sequence, is quasi-regular semiperfectoid. In particular, if (R, R") is a perfectoid
Tate ring with @ € R* a pseudo-uniformizer of R, then both RT and R*/w are
quasi-regular semiperfectoid.

For a p-divisible group G over a quasi-syntomic ring R, Anschiitz and Le Bras
have defined its prismatic Dieudonné crystal as a sheaf on the small quasi-syntomic
site of R. For R being quasi-regular semiperfectoid, giving this crystal is equivalent
to giving the evaluation of its associated sheaf on the prismatic site of R at the initial
prism (g, I), which is called the prismatic Dieudonné module of G. It is a finite
locally free g module and is equipped with an endomorphism ;@ *M — M,
admissible in the sense of [AB23| 4.1.9] (where ¢ is the Frobenius on g). We refer
the readers to [AB23, 4] for the precise constructions. The so-defined prismatic
Dieudonné module is contravariant in G. To keep consistent with [SW20], we
use the covariant prismatic Dieudonné module, which is obtained by applying
Hom (-, Rr) to the contravariant one. We will denote this covariant prismatic
Dieudonné module of G by M (G).

For our purposes, it is crucial to have the following theorem, especially in the
special cases discussed below.

Theorem 3.21. (c.f. [AB23l 4.6.10, 4.1.12]) Let R be a quasi-reqular semiper-
fectoid ring. The prismatic Dieudonné module functor sending a p-divisible group
G over R to its (covariant) prismatic Dieudonné module M (G) is an equivalence
between the category of p-divisible groups over R and that of admissible Dieudonné
modules over R.

Example 3.22. Let R be an integral perfectoid ring, then
( rI)=(W(R),ker(6opp")),

where 0 is Fontaine’s theta map. In this case an admissible prismatic Dieudonné
module is the same as a minuscule Breuil-Kisin-Fargues module with a leg at
V (ker(fopj')) (see deﬁnition, and the construction of the covariant Dieudonné
module agrees with the construction in [SW20, 17.5.2], c.f. [AB23| 4.3.6].
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Example 3.23. Let R be quasi-regular semiperfectoid and pR = 0 (e.g. the
integral subring in a Tate perfectoid ring modulo a pseudo-uniformizer), then

( R7I) = (Acris(R)v (p))
In this case the covariant Dieudonné module agrees with the (naive dual of the con-
travariant) crystalline Dieudonné module of Berthelot, Breen and Messing. ([AB23,
4.3.3]. See also [Laul§] for the equivalence between p-divisible groups and their
Dieudonné modules in this case.)

4. SERRE-TATE THEORY

Following [CS19| 2.4] and [Kat81l, 1.2.1], we recall below two lifting theorems
regarding the deformation of p-divisible groups and abelian schemes, due to Serre-
Tate, Messing and Drinfeld. This is the main input of the fiber product description
of the Shimura variety. In fact the cartesian diagram to establish is a simple trans-
lation of this Serre-Tate theory into a geometric relation between the moduli spaces
of the relevant objects.

Theorem 4.1 (c.f.[CSI19, 2.4.1]). Let S’ — S be a surjection of rings in which p
is nilpotent, with nilpotent kernel I C S’.

(1) The functor Gs — Ggr X g S from p-divisible groups up to isogeny over S’
to p-divisible groups up to isogeny over S is an equivalence of categories.

(2) The functor Ag: — Ag: Xg: S from abelian schemes up to p-power isogeny
over S’ to abelian schemes up to p-power isogeny over S is an equivalence
of categories.

Theorem 4.2 (c.f.[CS19, 2.4.2]). (Serre-Tate) Let S — S be a surjection of rings
i which p is nilpotent, with nilpotent kernel I C S’. The functor
AS/ — (As, AS/ [poo], id)

is an equivalence of categories between the category of abelian schemes over S’ and
the category of triples consisting of an abelian scheme Ag over S, a p-divisible group
Gsr over S’ and an isomorphism p : Ag[p™] — Gs x g S.

Proof. Let i denote the inclusion Spec(S) < Spec(S’) and fix N such that IV = 0.

For full-faithfulness of the displayed functor, assume we are given two abelian
schemes Ay, By over S, with lifitngs A, B over S’, we view them as fpqc abelian
sheaves over Spec(S), respectively Spec(S’). Denote by Kp the kernel of the re-
duction map B — i, By. By applying Hom(A, —) to K < B — i, By, we get

TeSs

Homg: (A, Kp) — Homg (A, B) 2% Homg(Ag, Bo) — Exts (A, Kp).

To compute Homg: (4, K), Exts, (4, Kp), we investigate the sequence of multipli-
cation by p~ on A:

N
(%) :0—= AlpN] = A L5 A =0,
applying Hom(—, K ) to which induces

N
0 — Homg: (A, Kp) = Homg (A, Kg) — Homg (A[p"], K5)

N
— Exts (A, Kp) = Extk (A, Kp) —
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But Kp is killed by p", so the two arrows labelled by pV are zeros. Consequently
Homg (A, Kp) = 0 and Homg (A[p"], Kp) = Ext§ (A, Kp). The first equation
implies that res is injective, which proves the faithfulness. The second equation
implies that for any map fo € Homg (Ao, By), fo o p¥ is always liftable to some
'+ A — B. Applying Hom(—, B) to the sequence (x), we see that fj is liftable if f’
annihilates A[p™]. But in the proof of fullness, we are given f[p>°] : A[p>] — B[p*]
lifting fo[p™], so by part (1) of|[4.1it is necessary that f’ induces p" f[p>] on A[p>].
In particular it annihilates A[p’¥] as wished.

For essential surjectivity, assume we are given an abelian scheme Ay/S, a p-
divisible group G/S’ and an isomorphism Ag[p™@] = G xg S. We construct a
lift A/S" of Ap, with A[p*>] = G lifting the above isomorphism. For this, we
first pick an arbitrary lift A’ of Ag over S’, which exists up to p-power isogeny
according to theorem Without loss of generality, we may assume having an
actual isogeny (instead of a quasi-isogeny) A := A’ xg S — Ap. The induced
isogeny A'y[p>] — Ao[p™] lifts to an isogeny A’'[p>°] — G over S’, again by
Taking quotient of A’ by the kernel of this isogeny, one gets the abelian scheme A
as desired.

[

5. SHIMURA VARIETIES

5.1. Generalities. We recall the definition of general Shimura data and Shimura
varieties, although we will soon specialize to certain PEL-type Shimura varieties.
Let S = Resc/rGy, be the algebraic group over R whose functor of points on
R-algebras is
R— (Rer C)*.

Definition 5.1. ([Del79, 2.1.1]) A Shimura datum is a pair (G, X) consisting of
a reductive group G over Q and a G(R)-conjugacy class X of homomorphisms
h : S — GRr satisfying the following axioms:
e For all h € X, only weights (—1,1),(0,0), (1, —1) can appear in the adjoint
action of h¢ on the Lie algebra gc.
e The adjoint action of h(¢) induces a Cartan involution on the adjoint group
of GR.
e The adjoint group of G does not admit a factor H defined over QQ such that
the projection of h on H is trivial.

As explained by Deligne, the second axiom ensures that X has a complex struc-
ture and that the stabilizer of each h is compact modulo center. The third condition
ensures that G(Q) is dense in G(A ), where G is the universal cover of the derived
group Gder.

Definition 5.2. A morphism between Shimura data (G, X) and (G’, X’) is a ho-
momorphism G — G’ of algebraic groups over Q sending X to X'.

Let (G, X) be a Shimura datum and K C G(Ay) be a compact open subgroup.
Consider the double coset space

Xk = GQ\X x G(Af)/K,
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where G(Q) acts diagonally on X x G(Ay) from the left via embeddings G(Q) —
G(R), G(Q) — G(Qp) and K acts on G(Ay) from the right by multiplication.
Then Xk is a complex manifold (if K is small enough) and by the work of Borel
and Baily-Borel, it is the complex analytification of some complex algebraic variety
Shi (G, X)c.

The adelic group G(Ay) acts on the inverse system {Shx (G, X)c}x via isomor-

phisms:

Vg * ShK(Ga X)(C - ShgflKg(Ga X)(Ca
which send a double coset G(Q) - (h,g1)K to G(Q) - (h,g919)(97Kg). We refer to
this action as the Hecke action.

For any h € X, giving h is equivalent to giving a bigrading on the complexi-
fication W¢ := W ®g C of any R-representation Gg — GL(W), where the degree
(p, q)-piece is the subspace of W on which h(z) acts by 2Pz%. Projecting to the
first entry of the grading gives a Hodge cocharacter vy, : G, ¢ — Ge. Let [1]
denote its G(C)-conjugacy class. Then the reflex field E(G,X) of the Shimura
datum (G, X) is the subfield of C fixed by the stabilizer of [v},] in Aut(C/Q). It
is proven by Deligne in [Del79] that the system {Shg (G, X)c}x with Hecke action
has a unique form {Shg (G, X )}k with Hecke action defined over E(G, X) subject-
ing to the conditions that all special points (i.e. points on X represented by some
(h, g) such that h factors through a Q-torus of G) are algebraic, and that the Galois
action on the special points is normalized as in [Del79) 2.2.4]. We call the inverse
limit lim Shk (G, X), which is represented by a scheme Sh(G, X)/E(G, X), the
(canonical model of) Shimura variety attached to the Shimura datum (G, X), and
Shk (G, X) the Shimura variety at level K.

The assignment (G, X) — Sh(G, X) is functorial in the following sense
Proposition 5.3 (c.f. [Mill7 5.16], [Del71l 1.15, 5.4]). A morphism of Shimura
data (G, X) — (G', X') induces a map

Sh(G, X)(C — Sh(G/7 .X/)C7

which s compatible with the Hecke action. If G — G’ is a closed immersion,
then for any compact open subgroup K of G(Ay), there exists some compact open

subgroup K' of G'(Ay), such that
ShK(G7 X)(C — ShK'(G/a X/)(C
is a closed immersion.

Moreover, this map is defined over the composite E(G,X) - E(G', X') of the
reflex fields.

5.2. PEL-type Shimura varieties. Now we introduce the PEL-type Shimura
data and their associated Shimura varieties this thesis mainly concerns, following
Kottwitz [Kot92] 5], c.f. [Lanl3].

5.2.1. Global PEL setup.
Definition 5.4. A global PEL-datum is a tuple
(Ba *, Vv7 ('a ')7 h)a

where
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B is a finite-dimensional semisimple Q-algebra.

e x is a positive involution on B, i.e. over R, * satisfies that trp, /r(z2*) > 0
for all 0 # x € Bg.

e V is a finite left B-module.

e (-,-) is a nondegenerate Q-valued alternating form on V' such that (bv, w) =
(v,b*w) for all v,w € V and b € B. In particular, the induced involution
on End(V) that sends an endomorphism to its adjoint with respect to (-, )
extends * on B C End(V).

Let G/Q be the algebraic group determined by the functor:
R~ {z € Endpgr(V ® R) | za* € R*}.

e h: S — Gg is a homomorphism, such that h(z) = h(z)* for any z € C,
the symmetric real-valued bilinear form (v, h(¢)w) on Vg is positive-definite,
and the induced Hodge structure on Vg is of type (1,0), (0, l)ﬁ

Let X be the G(R)-conjugacy class of h. Then the pair (G, X) is a Shimura
datum. Let Ve =2 Vi @V be the Be-module decomposition induced by h such that
h(z) acts on Vi (resp. V) by z (resp. Z). Let Ey be the field of definition of the
complex representation V; of B, i.e.

Eo = Q[{tr(b [ V1)}venl-
Then the reflex field E(G, X) = Ep.

If the Q-algebra B is simple, then its center F is a field and FT := F*= ig a
totally real subfield. Let G1/Q be the closed subgroup of G defined by

R+ {x € Endpgr(V ® R) | zz* = id}.

Then it is the restriction of scalar of some group Go/F ™ from F* to Q. According
to the type of the extension F/F* and Gy, the PEL-datum falls into three families,
cases A, C and D, where respectively F//FT is a complex quadratic extension, Gy
is an inner form of the quasi-split unitary group over F'* (of type 4, _1); F = F*
is totally real, Gy is a symplectic group in 2n variables; and F = FT, Gy is
an orthogonal group of 2n variables. Here n is half of the positive integer [F' :
F*](dimpEndp(V))2, which is forced to be even by the existence of h.

In general the semisimple Q-algebra B decomposes into a product of simple
algebras. According to [Lanl3l 1.2.1.11], the involution x leaves stable each simple
factor. Hence the symplectic B-module (V,(-,-)) decomposes accordingly. Up to
similitude factors, G is the product of groups as G; above.

From now on, we will make the following additional assumptions on the PEL-
datum and on the prime p:

Assumption 5.5.

(1) (Type AC) In the decomposition of B into simple factors, no factor of type D
appears.

6This means Ve decomposes into a direct sum of two subspaces where the h(z) action is by z and
Z respectively, for all z € C.
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(2) Bg, is a product of matrix algebras over unramified extensions of Q,. There
exists a x-invariant Z,)-order Op C B, whose p-adic completion is a maximal
Zy-order of Bg,. There exists a Z-lattice A9 C V, stable under the Op-
action and self-dual with respect to (-, -).

Remark 5.6. Assumption (1) can be rephrased as follows: by Wedderburn’s theo-
rem, each simple factor of B is a matrix algebra for some division algebra. Therefore
over R, B is a product of matrix algebras of the form M, (R) (type C), M, (C) (type
A) or M, (H) (type D), where H is the Hamilton quaternionsﬂ As algebra with
positive involution, (Bg, *r) is isomorphic to products of these matrix algebras with
standard involutions, i.e. on M, (R), * sends an element = to its transpose x7; on
M, (C) and M, (H), * sends z to its conjugate transpose Z7. Then we assume that
no factors of M, (H) will appear in the decomposition of Bg.

Alternatively, we can assume the algebraic group G to be connected. This
automatically excludes type D.

Remark 5.7. The Hasse principle holds for groups of type C. For type A, Gg
above is the inner form of a quasi-split unitary group over F'™, determined by the
quadratic extension F//F*. The Hasse principle holds if the Hermitian space giving
rise to the quasi-split unitary group has even dimension over F'; otherwise it can
fail but this failure comes from the failure of the Hasse principle for the center of
G, c.f. [Kot92, 7]. But for type D, the Hasse principle fails in a more essential
way. The reason we put assumption (1) is to ensure that the moduli problem we
will consider below will be a union of copies of Shimura varieties given by the PEL-
datum. Involving type D factors destroys this feature due to failure of the Hasse
principle, c.f. [Lanl5l A.7.2]. Our assumption (2) on the prime p ensures a smooth
integral structure at p. In particular, hyperspecial subgroups exist, or equivalently
the group Gg, is quasi-split and splits over an unramified extension of Q,, c.f.
below.

Fix Op and a self-dual Op-lattice Ag C V as in part (2) of assumption
These determine a connected reductive group GZ(p) over Z,y with generic fiber G
as

Gz, (R) = {z € Endoge,  r(Ao ©z, R)|zz™ € R*}.

5.2.2. Moduli interpretation. Let (B,*,V,(-,-), h) be a global PEL-datum satisfying
assumption (OB, *, Ao, (), h) its integral model at p, and Gz, as above. Let
A be the p-adic completion of Ag. We fix the hyperspecial maximal compact open
subgroup K, = Gz, (Zy) C G(Qp). Let K C G(A%) be a compact open subgroup
and K = K,KP?.

We can define a moduli stack of polarized abelian varieties with endomorphism
by Op at level K, over the localization of Of, at some prime above p. By what we
explained in remark|[5.7] its generic fiber will be a finite disjoint union of copies of the
Shimura variety determined by the given PEL-datum. The number of copies agrees
with the cardinality of the set of locally trivial elements in H*(G, Q) c.f.[Kot92, 8].
We ignore this difference below.

"In terms of the classification of the group G itself, it will have absolute root system of type C,
A, D accordingly.
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Definition 5.8. Let S be a scheme over O, ®7 Lpy, where Lp) is the localization
of Z at p. An abelian scheme with G-structure at level K over S is a quadruple
A = (A, 1, A\, 77) where:
e A is an abelian scheme of dimension g = %dimQV over S;
e 1 : Op — End(A4) ® Z, is an Op-action, satisfying the Kottwitz condition
that
detog (¢(b) | Lie(A)) = det(b | V1),
for all b € Op, where Ve =2 V4 @ Vj is the decomposition such that h(z) acts
on Vp (resp. Vp) by z (resp. Z);ﬁ
e )\ : A — AV is a prime-to-p quasi-isogeny, symmetric with respect to the
double duality A =2 AV, such that for some natural number n, n\ is induced
by an ample line bundle on A (hence pointwise a polarization) and whose
Rosati involution on End(A) ® Z,) is compatible with * on Op via ¢;

e 7 is a KP-orbit of a chosen trivialization 7 of the locally constant pro—étaleﬂ
sheaf H; (A, A%) on S, under the action of G(A%}). Namely, the sheaf

MG(&(AH&?%E%

whose sections are B ®q Afﬁ—module isomorphisms that preserve (-,-) up to a

scalar in A?’X, is a G(Afc)—torsor on Spro-ét. Choose one section 7 of it on a

trivializing cover S — S and look at the G(A?)(S’)—action on it. Then 7 is its

orbit under the subgroup K?(S). We further require that 7 is invariant under
the action of the covering group of S — S.

Now we can define the moduli problem.

Definition 5.9. Let S7/° be the presheaf of groupoids on the big étale site of
schemes over Og, ®z Z,), whose value on S is the groupoid of abelian schemes
over S with G-structure at level K, and an isomorphism between (A4,¢, \,7) and
(A’ N, n') is a prime-to-p quasi-isogeny f : A — A’, such that f¥ o XN o f = c),
for some ¢ € Z(XP)(S), where fV : A"V — AV is the dual quasi-isogeny, f commutes

with the action of Op on A and A’ via ¢,//, and ) = 0 o f..

This moduli problem is a Deligne-Mumford stack. For small enough K?, it is
representable by a smooth quasi-projective scheme. We will always be working in
such situations. Let E be the completion of Ej at some prime p above p and Op
its ring of integers. We base change the moduli functor to O and denote the
representing scheme by Sk. Its p-adic completion is denoted by #x. This is a
formal scheme over SpfOpg.

8In other words, the determinant of any element b € Op acting on the Lie algebra Lie(A) (as a
free Og-module) of A agrees with the determinant of it acting on Vi. This makes sense as the
decomposition V¢ = Vi @ Vp is defined over Ep and the determinant of b lies in Og, ® Lp)- As
remarked by [Kot92) 5], for a point s € S with residue field K/Ey, this condition ensures that
Lie(As) = Vi g as Bg-modules, where Vi = Vi g @ Vo k is a K-vector space decomposition
whose base change to C is the above. In this way, V¢ can be identified with the Betti homology
H;i(Ac, C) preserving the Hodge structures.

9in the sense of [BSTH|
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Remark 5.10. Let S be an Og-scheme. We call a tuple (G, ¢, A) a p-divisible group
with G-structure over S, where

e (G is a p-divisible group over .S,
o .:Op ®Z, — End(G) is a Z,-linear map satisfying the Kottwitz condition
detog (¢(b) | Lie(G)) = det(b | V1 ®g, E),

e )\:G — GV isapolarization, satisfying for any b € Op®Z,, A~1e(b)V X = 1(b%).
An isomorphism (resp. quasi-isogeny) between (G, ¢, A) and (G', ¢/, \') is an OpQZ,-
linear isomorphism (resp. quasi-isogeny) f : G — G’ such that f¥ o X o f = ¢ for
some ¢ € Z, (S) (resp. @; (S)).

Taking the p-divisible group of an abelian scheme defines a functor from abelian
schemes with G-structure up to (prime-to-p) quasi-isogenies to p-divisible groups
with G-structure up to (isomorphisms) quasi-isogenies.

Here are some examples.

Example 5.11. (Siegel Shimura varieties.) B = Q,* = id, F = F+* =Q, V = Q*",
(+,+) given by the matrix
0o I,
r= (),

Then * extends to End(V), sending a matrix A to J~*A"J. The corresponding
Shimura data is given by

e G =GSp,y,/Q,

o X ={A¢€Sym,(C)|Im(A) > 0orIm(A) <0},

e h:S— Ggr,a+bi— al +bJ,
where Sym,, (C) denotes the set of n-by-n symmetric complex matrices, on which
G(R) acts via M&bius transform. The reflex field is Q.

This is a moduli problem of type C,,. The corresponding Shimura variety is not
compact and is called a Siegel modular variety. In the specific case n = 1, G = GLg,
the Shimura variety is the modular curve.

Example 5.12. (Non-compact unitary Shimura varieties appeared in [CS19] 2.1].)
Let F be a CM field with totally real subfield F* C F and n > 1 be an integer.
Then we can take B = F, * =CM conjugation, V = F?", with alternating form
():VxV-=Q
((@0), (:)) = treo(Xis (Til2n+1—i — T2n+1-i0i))-
The reductive group G is a unitary similitude group and Gg = GU(n, n)[F ",
Xx= ][] Xsu [ X--.
7:Ft—>R 7:Ft—R
where X, | (resp. X, _) is the space of positive (negative) definite n-dimensional
subspaces of V ®@p+ R = C?", each being isomorphic to the Hermitian upper (lower)
half-space
Hpn ={A € Herm,,(C) @g C : Im(A4) > 0}
(H,,,, = {A € Herm,,(C) ®g C : Im(A) < 0}),
where Herm,, (C) is the set of n-by-n Hermitian matrices (c.f. [Lanl6l 3.2.5]), and
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h= J] hr:S—Gr 2w (diag{z 1,7 In}r)ripeop.

T Ft >R

This is a moduli problem of type A, and the corresponding (unitary) Shimura
variety is not compact, since the group G is quasi-split and has rationally defined
parabolic subgroups. In the specific case n = 1, Gg = GU(1,1), the Shimura
variety is one dimensional and we call it a unitary Shimura curve attached to the
imaginary quadratic field F'.

5.2.3. Minimal compactifications. Let K = K,K? with K, being hyperspecial as
before, the smooth quasi-projective scheme Sk over O has a good minimal com-
pactification, whose properties we summarize below. For more details, we refer to
[Lan13l 7.2.4] and [LS18] 2.1.2], c.f. [CS19) 2.5.8].

Theorem 5.13. There exists a flat, projective, normal scheme S} /Spec(Og), to-
gether with a set-theoretic partition into locally closed subschemes

Sk = H Sk, z,
Z

where the index set is endowed with a partial order such that the incidence relations
among strata are determined by this partial order. There is a unique dense open
stratum that is isomorphic to Sk .

If the level K is principal, i.e. it is the kernel of the reduction by N map on
Gz,(Zy), for some integer N coprime to p, then each Sk z is a PEL-type Shimura
variety.

Remark 5.14. Over F we can add level at p and the same statements hold. In
this case, the scheme Sk g is understood as solution to the moduli problem of
abelian schemes with G-structures at level K, where the level 7 is a K-orbit of
trivializations of H; (A, Ay) under the action of G(Ay).

Remark 5.15. Asin the literature, we will refer to elements in the index set as cusp
labels at level K. In general, a cusp label is a tuple of the shape (Z, (X,Y, ¢, 02, %0))
consisting of the following data. c.f. [Lanl3, 5.2.7.1, 5.4.1.3]

(1) Z is a Op ®y Z-stable split two step filtration
0=7Z3CZ oCZ 1CZ :A0®ZZ,

such that each graded piece is isomorphic to M ®z, 7 for some finitely
generated O p-torsionfree Og-module (an Op-lattice) M, and that Z_5 and
Z_; are annihilators of each other under the pairing (-, -) induced from Ag;

(2) X and Y are Op-lattices of the same Op-multi-rank™and ¢ : ¥ — X is
an Opg-linear injection;

10Assume B = I1; Bi is a decomposition of B into simple Q-algebras, then each finite B-module
M decomposes as [, Mlm’ , with M; being the unique simple left B;-module. Then the vector (m;)
is called the B-multi-rank of M. And for an Opg-lattice M, its O g-multi-rank is the B-multi-rank
of M ® Q, c.f.[Lan13] 1.2.1.21].
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(3) Denote Z,) ®z Z by R, then ¢_y : GrZ, = Homp(X ®z Z, R(1)) and
Yo Grg ~Y ®y7 are isomorphisms such that the induced pairing
(-, )20 : Gr?, x Grf — R(1)

is the pullback under (p_s, o) of the pairing:

Homp(X ®7 2, R(1)) x (Y ®2 2) 2% Homp (X ®7 2, R(1)) x (X ®72) <% R(1),

where the last map is the evaluation pairing.

There is an action of the group KI,G(A?) on Ay ®zZ, inducing an action on the set
of cusp labels. A cusp label at level K is a K-orbit of cusp labels under this action.

Remark 5.16. Given Z, a cusp label at level K, assume Grfl & M®gz, 7 for some
Op-lattice M. Then the stratum Sk 7 is attached to the integral PEL Shimura
datum (Op, *, M, (+,-)11, h—1) (see [Lanl3, 5.1.2.2] for the definition of h_;). For an
abelian variety corresponding to a C-point of Sk g for some complete algebraically
closed non-archimedean field C', it has semistable reduction over the ring of integers
O¢ C C and hence an attached Raynaud extension. This is an extension

0—-T—F—B—0

of a smaller dimensional polarized abelian scheme B by a torus T', both equipped
with Op-endomorphism. Then Sk 7 is a parameter space for such B’s. In fact X
is obtained from the character grouﬂ of T' (tensored up to Z,), Y from that of
the dual Raynaud extension, and the filtered pieces of Z are obtained by taking the
Tate module of T and that of E. For more details, see [LanI3] 3.3, 4.2], c.f. [CS19,
2.5.1] in the principally polarized case.

5.2.4. Shimura variety as v-sheaves. Let K, the scheme Sk /Op and its formal
completion .k over Spf(Op) be as before. Write Spa(FE) for Spa(F,Og). We
define below variants of the Shimura variety as v-sheaves that will be used later.

Definition 5.17. The adic Shimura variety at level K is the diamond Sk over
SpdFE attached to Sk g using the big diamond functor c.f. namely S = S%E.

By analytifying the universal abelian scheme over Sk g and passing to dia-
monds, we obtain a proper map of diamonds

m: A® — Sk.

Consider Z,, with the p-adic topology as a profinite topological space. Let Z,
be the v-sheaf on A° attached to the topological space Z,. We call the sheaf of
Z,-modules on Sk

TPA = HOmZ (Rl’]T*ZP,Zp)
the Tate module of the universal object.
Definition 5.18. The Shimura variety with infinite level at p is the diamond Sk»

over Sk of Op-linear trivializations of 7},.A, which preserve the alternating paring
(-,-) up to a constant in Z, namely

Skr = Isomg(Tp A, A) — Sk.

Uy [CS19] page 22, X is said to be the cocharacter group instead of the character group and this
is a slight inconsistency with the explanations there.
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Remark 5.19. Alternatively this is the limit in the category of diamond of Sk ’s for
K, running through compact open subgroups of G(Q,). It is in fact representable
by a perfectoid space, by the work of [Sch15].

Definition 5.20. The good reduction locus of the adic Shimura variety at level K
is the diamond Sj- attached to the adic generic fiber of the formal scheme %, i.e.

<

(SR Xspa(0,0r) SPA(E))°.
This is a spatial diamond over SpdFE.

For convenience of later arguments, we note that the diamond Sj still has a
moduli interpretation in the following sense:

Lemma 5.21. The diamond good reduction locus Sy, is the sheafification with
respect to the analytic topology of the presheaf

Perf — Sets

S = Spa(R, R™) = {(S%, SpfR*™ — .7k )},
where S* = Spa(Rf, R¥) is an untilt of S over E.

Proof. Combine [SW20, 10.1.5] and [SW13] 2.2.2]. O

Definition 5.22. The good reduction locus with infinite level at p is the diamond
Sk» over SpdE, obtained by pulling back Sy to Sk».

Definition 5.23. The (v-sheaf) integral model of the Shimura variety at level K is
the v-sheaf . attached to the formal scheme .k, c.f. example Alternatively
this is the small diamond functor applied to the Og-scheme Sk, c.f. for the
construction and [AGLR22, 2.11] for this identification.

As explained in remark over I, we have minimal compactifications S » g
for Shimura varieties with deepening levels at p.

Definition 5.24. The minimal compactification with infinite level at p is the dia-
mond Sk, over SpdE:
. 0
Skr = y_ S;(pKP,Ev
KP

where the limit is taken over compact open subgroups K, C G(Q,).

6. Bj-AFFINE GRASSMANNIAN AND HODGE-TATE PERIOD MAP

In this and next section we introduce the BJg-affine Grassmannian and the
stack Bung of G-torsors on the Fargues-Fontaine curve. Since these local theories
work uniformly for general reductive groups over any local field, we present the
relevant material also in this generality (though we focus on the mix-characteristic
case). However, for our purpose of proving conjecture in the global PEL-setup
in section 5, we only need the results for Gg,. Hence in subsection 6.2 below about
the Hodge-Tate period map and from section 8 on, we switch back to this situation.
This shall, hopefully, not cause too much confusion.
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6.1. Bg‘R-afﬁne Grassmannian. Fix a finite extension F'/Q,, with ring of integers
Op, uniformizer 7w and finite residue field F of cardinality q.

6.1.1. The ring Bjy.

Definition 6.1. We consider the functoﬂlzl

m-torsionfree m-adically complete}

Wo, : {perfect F-algebras} — { Op-algebras

R W(R)®w r)OF,
where W(+) is the functor of p-typical Witt vectors. For any perfect F-algebra R
the unique lift of the g-Frobenius on We,, (R) is called the Frobenius endomorphism
and will be denoted by @g.

The functor Wo,.(+) is left adjoint to the tilting functor

b:A— Jim A,

x4

and we call the adjunction counit 6 : Wo, (A°) — A Fontaine’s theta map.

Definition 6.2. (c.f.[SW20, 17.5.1],[BMS1S, 3.5], [BS19l 3.10]) An Op-algebra A
is called integral perfectoid if it is of the form Wy, (R)/I for some perfect F-algebra
R and a principal ideal I, such that We,. is I-adically complete and I is generated

by some d satisfying M € Wo,(R)* (i.e. dis “distinguished”).

Remark 6.3. In this case one has necessarily R = A° and I identifies with the
kernel of # under this isomorphism. What’s more, it follows from a direct computa-
tion that any generator of I is distinguished. In what follows, we will often denote
such a (chosen) generator by &.

This is related to the perfectoid Tate rings defined in section 2 by the following
lemma.

Lemma 6.4. [BMSI8| 3.20,3.21] If R is a perfectoid Tate ring as in with a ring
of integral elements RT, then R is an integral perfectoid Z,-algebra. Conversely if
A is an integral perfectoid Zy-algebra, which is w-adically complete for some non-
zero-divisor w such that w? | p, then A[l/w| endowed with the w-adic topology is
a perfectoid Tate ring in the sense of [2.1].

Definition 6.5. Let R be a perfect F-algebra. An untilt of R over Op is a pair
(A, 1) of an integral perfectoid Op-algebra A and an isomorphism ¢ : A’ = R.

As in we will often denote an untilt of R by R and omit ¢ from the notations.

Definition 6.6. Given an integral perfectoid Op-algebra Rft with tilt R, let
¢ be a generator of ker(d). Assume R* := R*f[1/7] # 0. The ring Bz (R"),
resp. Bgr(R?), is defined to be the &-adic completion of We,. (RT)[1/7], resp.
B(;FR(Rﬁ)[l /€]. As the notation suggests, they only depend on the perfectoid Tate
ring R*, not on the integral subring R*t.

12For the sake of simplified formulas, we restrict the source of the usual functor of ramified Witt
vectors to perfect F-algebras.
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Remark 6.7. For R = C being a complete algebraically closed nonarchimedean
field, the ring B(TR(Cﬁ) is by Cohen structure theorem isomorphic to the formal
power series ring C*[[¢]], as a noetherian complete regular local ring.

6.1.2. The mized-characteristic affine Grassmannian. Let F, Op, m, F be as before
and G be a reductive group over F.

Definition 6.8. (c.f. [SW20, 19.1]) The Bi,-affine Grassmannian Grg associated
with G is the v-sheaf on Perf/SpdF sending S = Spa(R, R") to the set of iso-
morphism classes of pairs (F, ), where F is a G-torsor over B (R¥) and a is a
trivialization of F over Bgr(R*), where S* = Spa(RF, RF*) is the untilt of S over
Spal’ determined by the structure map S — SpdF'.

Equivalently, this is the étale sheaﬁﬁcatioﬁ of the presheaf sending S — SpdF
to the set G(Bar(R*))/G(Bir(R")).

Remark 6.9. The v-sheaf Grg identifies with the functor on Perf g 4 sending
S to the set of isomorphism classes of meromorphic modifications of the trivial
G-bundle & over Xg, the relative Fargues-Fontaine curve attached to S and F:

1:8 - &

which restricts to an isomorphism outside S¥, the untilt of S determined by the
structure map to SpdF. Here two modifications ¢ : & --» & and 7' : & --» &' are
called isomorphic if there exists an isomorphism g : & — &’ such that i’ = g o .
This point of view will be explained in more detail in the next section.

Proposition 6.10. ([SW20, 19.1.4, 19.2.4]) The Bl -affine Grassmannian Grg is
partially proper and is a union of spatial diamonds.

The construction of Grg is functorial with respect to closed embeddings of
reductive groups.

Proposition 6.11. Let H — G be a closed embedding of reductive groups over F.
Then the induced map

Gryg — Grg

is a closed embedding.

Proof. Being a closed immersion can be checked v-locally. Hence one can base
change to SpdC for some complete algebraically closed extension of F' and use
[SW20, 19.1.5]. O

Over an algebraically closed non-archimedean extension C'/F, fixing a split torus
and a Borel T'C B C G¢, we have the Cartan decomposition

GBar(C) = [ G(BIR(C)) & - G(BR(O)).
HEXT(T)

where X (T) is the set of dominant cocharacters of 7. This defines a Bruhat
stratification on Grg,c, the base change of Grg to SpdC, by the following.

13 According to [KY23], analytic sheafification suffices.
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Definition 6.12. Let y € X (T). Then Grg,c,, (respectively Grg o <,) is the
subfunctor of Grg,c sending S — SpdC' to the set of maps from S to Grg ¢ such
that for any geometric point z = Spa(C,C™) of S, the corresponding Spa(C,C™)-
point of Grg ¢ lies in the coset

G(Br(C)) - € G(B{r(C))

(respectively in the union of cosets labelled by some A < y in the Bruhat order on
X (T)). If the G(C)-conjugacy class of y is defined over some field E with C/E/F,
then so is Grg, -

6.2. Hodge-Tate period map in the PEL setup. Let (B,*,V,(-,-),h) be a
global PEL-datum satisfying assumption and G/Q, v, Ey, E determined by
it as in section 5. Fix an isomorphism C & @p over Fy, where @p is an algebraic
closure of @@, containing E. Choose a maximal torus and a Borel T C B C G@p.

Let 1 be a dominant cocharacter representing the G (@p)—conjugacy class of v, 1

We consider the B;“R—afﬁne Grassmannian Grg attached to the group Gg,, con-
sidered as a locally spatial diamond over SpdE. The conjugacy class [u] determines
a Schubert cell Grg,, C Grg,g. Since p is minuscule it equals Grg, <, and is proper
due to [SW20, 19.2.3]. Here and later on, we will drop the subscript Q, from Gg,
when it is clear from the context that the situation is local at p.

Remark 6.13. Let C/E be a complete algebraically closed nonarchimedean field.
Using theorem and a Bialynicki-Birula isomorphism [SW20, 19.4.2], we can
interpret SpdC-valued points of Grg,,, as parametrizing p-divisible groups over O¢
with additional structures as follows:

Let Flg,, be the analytification of the partial flag variety G/P,, over E, with
P, being the maximal parabolic subgroup of G such that for any g € P,, the limit

-1

limy 1a(£) ™" gpa(t)

t—0
exists. The Bialynicki-Birula isomorphism identifies Grg,, with FIg . Giving a
SpaC-point of Flg , is equivalent to giving a B-equivariant filtration on V ®q C
by a maximal isotropic subspace with respect to the pairing (-, -):

W CV®gC.

Now according to theorem[3.12] this filtration, together with the self-dual lattice
A C Vg, defines a p-divisible group G with trivialized Tate module T,G = A.
The p-divisible group G is equipped with a polarization G — G* coming from
() s (A W) = (A*(1), W), (t,w) = ((-,1), (-,w)), an Op-endomorphism coming
from the Op-module structures on (A, W), and an infinite level structure coming
from the trivialization 7,,G = A.

Let KP? be a compact open subgroup of G(A?) and S5, /SpdE the good reduc-
tion locus of the diamond Shimura variety with infinite level at p. The Hodge-Tate
period map of [Sch15] and [CS17, 2.1.3] restricted to S5, can be rewritten as below.

Theorem 6.14. There exists a G(Q))-equivariant Hodge-Tate period map of dia-
monds over SpdFE
Tt Sgr — Gra,
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with image lying in the Schubert cell Grg . It is also equivariant with respect to
the natural G(A’})—action on the inverse system {Sy., } k» and the trivial action on
the target.

o,pre,

Proof. View S, as the analytic sheafification of the presheaf Sy,
S = Spa(R, B") = {($*, 2, B)},

where S* = Spa(R*, R") is an untilt of S over SpaF, 2 is a formal abelian scheme
with G-structures over SpfR**, and 8 € Isomg (T,A, A)(S) is a trivialization of the
Tate module of the generic fiber A of 2°.

Given an S-point (S* 2, 3) of Spb™, write T for T,A(S). This is a finite
projective module over the ring C°(Spec(R™),Z,) of continuous Z,-valued maps
on Spec(RT). Consider the prismatic Dieudonné module

(M := M(A[p™]), par)-

By compatibility of M with the crystalline Dieudonné module of A[p>] X g+
R¥ /p [SW20, 17.5.2] and étale-crystalline comparison (base changed to Bar (R¥)),
we have a natural comparison isomorphism

c: T ®co(Spec(R+),Zy) BdR(Rﬁ) =M QW (R+) BdR(Rﬂ),
compatible with the G-structures.

Let F be the étale sheaf of symplectic similitude Op-linear trivializations on
X := Spec(Bji(RY))

IsomG(M ®W(R+) Ox,A ®Zp Ox)

This is a Gg,-torsor by [SW20, 21.6.4, 21.6.5], c.f.[RZ96), 3.16]. And it is trivialized
over Spec(Bggr(R*)) by the section a := (8 ®id) o ¢~ *. The pair (F,a) defines an
S-valued point of Grg. This induces a map of sheaves

ot Sgr — Gre.

To see that the image lies in Grg,,, we can post-compose with the closed immer-
sion Grg < Grgr,(a) and assume S = s := Spa(C, C") is a point. The image is de-
termined by the relative position of the B (C*)-lattices My := M @y (c+) Bir (C*)
and M := T ®z, Bi;(C*), where the latter is trivialized by 3. Since (M, )
comes from a p-divisible group, we have M C My C £~'M and the image of M
in &'M/M = T ®;, C*(—1) agrees with the Lie algebra Lie(A[p>]) ®0,, C*,
c.f. [SW20, 14.8]. Hence the position of My relative to M is measured by some
minuscule cocharacter A whose weight on the standard representation GL(A) is
0,—1.

Assume that the fiber A, algebraizesiﬂ to some abelian variety Ay over C*.
Then using the isomorphism C = @p, we can go through a chain of comparison
theorems: between p-adic étale and de Rham homologies [Sch13l 1.6], analytic and
algebraic de Rham homologies [ABC20, 32.2.2] (first p-adic analytic with algebraic,

M0One can use the techniques developed in [Con06] to prove algebraization, but we don’t pursue
it here. For us, since A is constant on a connected component of Sg.,, it suffices to know that
there always exists one such point.
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then algebraic with complex analytic), and de Rham and Betti homologies E[, to
get an isomorphism

T ®C* = Hy(Asc,C)
that preserves the Hodge filtrations. On the right hand side, v}, has weight 1 and 0
for some representative vy, corresponding to A, ¢ in the G(C)-conjugacy class [vy].

The weight spaces correspond respectively to weight —1 and 0 subspaces of A\. This
shows that [A] = [v,-1] = [u].

To check Hecke equivariance, by qcgsness of both Sg, and Grg,,, and properness
of the latter, we may assume S = s := SpaC' is a rank one geometric point. For
g € G(Q,), there exists some N > 0, such that pV A C gA C p~NA. Denote by K
the image of gA in the quotient

Bep™NA/PNA = AN
Then g-action sends (A, 8 : TpAs = A) to
(AL == A, /K, T, A, = gA\).

This agrees with the g-action on Gr¢,;, which sends a point (A, W) as in remark
to (gA, W). Away from p, the Hecke action conjugates S5, to S;,leg for some

g € G(Aj). Let K’ be KP N g~ KPg, then the composition 8§, — S%, —L3 Grg
is the Hodge-Tate period map on S%,, similarly for S;_leg. O

7. STACK OF G-BUNDLES ON THE FARGUES-FONTAINE CURVE

Here we recall the relative Fargues-Fontaine curve and the classifying stack of
G-torsors Bung following [CS17, 3.2] and [FS21], I1.1].

The setup is as in section 6.1: we fix a finite extension F/Qp, m € Op a uni-
formizer and assume its residue field F has cardinality q. We write Perfy for the
slice category of perfectoid spaces in characteristic p over SpdF. We,. () denotes
the ramified Witt vectors. For R an F-algebra, [-] : R — We, (R) is the Teichmiiller
lift, i.e. the unique multiplicative lift of the identity on R and ¢ := g is the Frobe-
nius on Wo,. (R) lifting the g-th power Frobenius on R. We use V(+) to denote the
vanishing locus of a function on a topological space.

7.1. Fargues-Fontaine curve and vector bundles.

Definition 7.1 (The Fargues-Fontaine curve). For S = Spa(R, RT) € Perfp an
affinoid perfectoid with a pseudo-uniformizer @ € R™, the relative Fargues-Fontaine
curve over S has the following incarnations:
e (adic space) Denote by Yg the adic space Spa(Wo, (R1))\V (7 - [w]), then the
adic Fargues-Fontaine curve is the quotient Xg := Yg/%;

e (diamond) The diamond Fargues-Fontaine curve attached to Xg has the formula
X¢ = (S° x SpdF)/¢? x id;

15Also, use invariance of étale cohomology under algebraically closed field extensions, and a rigid
GAGA theorem [Con06, 3.2.6] to identify the Hodge cohomologies.
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e (scheme) The line bundle Oy, with the linearization 771 : Oy, = Oy, descends
to an ample line bundle Ox,(1) on Xg. Define Ox (n) := Ox4(1)®" and
P:=@, > H°(Xg,0x4(n)), then

1 .
X§® :=Proj(P),
defines the algebraic Fargues-Fontaine curve, with a natural morphism of locally
ringed spaces:
alg
Xg — XS .

This globalizes to a construction of a relative Fargues-Fontaine curve Xg (and hence
Xg, Xglg) for a general S € Perfp, not necessarily affinoid.

+

cris, S

Remark 7.2. Alternatively, if we write B

Acis(RT)[1/7], therﬂ

for the crystalline period ring

:nd
pP= @(B:;is,syp :
d>0
Later we will use this relation to attach vector bundles on the Fargues-Fontaine
curve to p-divisible groups via their crystalline Dieudonné modules.

Remark 7.3. To introduce a few notation for later use, we denote by Y(S) the
punctured spectrum Spa(W (R™), W (R™))\{[w] = © = 0}. For I = [a,b] an interval
in [0, oo] with a,b € QU {o0}, denote by Y;(S) the open subspace of Y(S) where

I7l® < ]| < [
In this notation, the Ys above is ¥ (g,o0)(S) and the space
Spa(Wo,.(R"), Wo,.(RT)\V([=])
is 3}[0700)(5)8 It is proven in [SW20, 11.2.1] that Vg )(S) is an adic space. It
is covered by rational subsets of the form {|7| < \[wr%"]\},n =1,2,.... Each is
represented by an affinoid sousperfectoid spacﬂ Spa(R,, R), where R} is the

[w]-adic completion of Wo,. (RH)[r/[@?"]] and R, is R} inverting [@]. As R, has
a presentation

{Siso[ri] ([wﬁp]) Iri € R,r; — 0},

which depends only on R and not on R™, the category of vector bundles over
Spa(Rn, R}) and hence that over Vg «)(S) (by [KL15, 2.7.7]) is independent of
the choice of RT in R. This is also stated in [PR21], 2.1.1]. In particular, the
category of vector bundles over Yg, or Xg, is independent of the choice of R in R.

A GAGA type of result holds in relating the adic and algebraic curve:

16T his reduces to the case where S is a geometric point, where one can argue as in [Ans19) 10.15],
c.f. [FF18] 5.2.9].

171y [SW20} 11], Yg is alternatively denoted SxSpaF. Similarly Spa(Wo, (RT)\V([=]) is de-
noted SxSpa@p. This is to indicate the analogy between taking the Witt vectors and the fiber
product construction S Xgpar SpaF((t)), respectively S Xgpar SpaF|[[t] in equal characteristics.
18j 6. locally the adic spectrum of a complete Tate F-algebra R that admits a split injection of
topological R-modules into a perfectoid Tate ring
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Theorem 7.4. (GAGA,[KL15, 8.7.7], [FS21l 11.2.7]) Pulling back along the mor-
phism Xg — X;lg induces an equivalence of categories between vector bundles on
Xs and Xglg.

Cartier divisors on Xg classify Frobenius orbits of untilts of .S. More precisely,
fix any untilt S* over I of S. It is locally of the form Spa(R, R**). Each kernel
of the surjections Wo,.(R") = Wo,.(R®*+) — R is a principal ideal generated by
an element of the form 7 — a[w] for some a € Wo,.(R"). The induced maps

Spa(R*, R*") = Yspa(r.r+)
glue and define a closed Cartier divisor S* < Y, which maps to a closed Cartier
divisor S* <+ Xg. It is cut out by a global section of Ox(1). Hence by GAGA

there is a corresponding global section of O(1) on Xglg, which cuts out a closed
Cartier divisor S#18 <y X328,

For S being affinoid, the algebraic curve X glg is covered by two principal affine
charts Xglg\V(fi), i = 1, 2 for any two linearly independent f1, fo € HO(Xglg, o(1)).
In particular if % is cut out by & € HO(X3'®, O(1)), choose t € HO(X2%, O(1)) lin-
early independent to &, then S%218 —; Xglg is defined by

(P[1/1])o — R¥,
where (+)p means taking degree zero part of the graded ring. While the completion
of (P[}])o along £ is B (R*). This relation to the de Rham period ring, combined
with the Beauville-Laszlo lemma below, leads to an interpretation of the B:{R—afﬁne

Grassmaniann Grgr,, as parametrizing modifications of the trivial rank n bundle
on Xs.

Lemma 7.5. (Beawville-Laszlo) Let R be a commutative ring, f € R a non-zero
divisor and R = @n R/f™ is the f-adic completion of R. The category of R-
modules in which f is a non-zero-divisor is equivalent to the category of triples
(Mq, My, o Ml[%] — My ®p R), where M is an R-module in which f is a non-

zero-divisor, My is an R[%]—module and o is an isomorphism.

Remark 7.6. It seems that following the argument in [BBTI13] and using adic
spaces in place of Berkovich spaces, this equivalence globalizes and generalizes to
higher codimensional situations: for a scheme X and a closed subscheme Y, denote
the completion of X along Y by X and name the maps j : U = X\Y < X,
i: X — X. Then there is an equivalence between the category of coherent sheaves
on X, and the category of triples (Fy, Fy,a : Fy — i*j.Fu), where Fy is a
coherent sheaf on Y, Fi; a coherent sheaf on U, and « an isomorphism. This has
been worked out by Robin Louis’ Bonn master thesis, under the assumption that
X is locally noetherian.

Now for any S = Spa(R, R*) € Perfp, an S-point of the BCTR—afﬁne Grassman-
nian for GL,,/F amounts to a triple of an untilt S* = Spa(R*, R**) over F', arank n
vector bundle F over Spec(Big (R*)), and a trivialization of F over Spec(Bqr (R¥)).
Via Beauville-Laszlo, this triple defines a new bundle on X glg by glueing the trivial

rank n bundle on X3%\Spec(R!) and F, along the trivialization. This corresponds
to a rank n vector bundle on the adic curve Xg by GAGA.
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7.2. The stack of G-bundles. Let G be a reductive group over F' and X be
a F-scheme or a sousperfectoid space over SpaF. Denote by Repp(G) the exact
symmetric monoidal category of finite dimensional algebraic F-representations of
G and by Bun(X) that of vector bundles on X.

Definition/Proposition 7.7. ([SW20, 19.5.1, 19.5.2]) A G-bundle (or a Tan-
nakian G-torsor) on X is an exact tensor functor

Repr(G) — Bun(X).

Equivalently this is an étale sheaf on X with an action of G that is étale locally
isomorphic to G.

The relative Fargues-Fontaine curve Xg for a perfectoid space S € Perfy is
sousperfectoid by [SW20, Proof of 11.2.1]. Hence one can apply the above and talk
about G-torsors on Xg in the sense of exact tensor functors. On the other hand,
post-composing with the exact tensor equivalence Bun(X glg) >~ Bun(Xg), one sees
that GAGA extends to an equivalence between categories of G-torsors on Xg and

alg
pend

Definition/Proposition 7.8. ([FS21], 11.2.1,111.1.2,I1T1.1.3]) The pre-stack on Perfy
sending a perfectoid space S € Perfy to the groupoid of G-torsors on Xg is a small
v-stack, denoted by Bung.

Using Tannakian G-torsors, the interpretation of the BIR—afﬁne Grassmannian
Grgr, as parametrizing modifications of the trivial rank n vector bundle generalizes
to any other reductive group G/F:

For S = Spa(R, R") € Perfr with an untilt S¥ over F, viewed as a closed Cartier
divisor on Xg, the equivalence between Bun(X glg) and the 2-fiber product

Bun(X 3\ S5%*2) X Bun(Spec(Ban (R#))) BUn(Spf (B (RY)))

is exact and symmetric monoidal. Hence there is an equivalence between categories
of exact tensor functors from Repy(G) to one and to the other.

Therefore given an S-valued point of Grg over SpdF, i.e. a pair (F, «), where F
is a G-torsor over Spec(Bj; (R*)) and « is a trivialization of it over Spec(Bar (R¥)),
one can glue the trivial G-torsor on Xglg\S fale with F via o to get new G-torsor on
X glg. This defines the “Beauville-Laszlo uniformization” morphism between small
v-stacks:

BL : Grg — Bung.
Remark 7.9. In the above interpretation of Grg as a moduli space of modifications
of G-torsors, the initial G-torsor to modify can be any G-torsor, not necessarily the
trivial one.

We have the following result.

Proposition 7.10. ([FS21] I11.3.1]) The “Beauville-Laszlo” morphism is surjective
as a map of pro-étale-stacks.
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7.3. Stratification. Let F,Op and G over F be as before. Following [FS21],
[Ans22al, we review the Newton (or Harder-Narasimhan) stratification of Bung
which is labelled by the Kottwitz set B(G). The original study of the Kottwitz set
in the setup of isocrystals is due to Kottwitz [Kot85], c.f. [RR9G].

Fix an algebraically closed field £ containing the residue field F of Op. Let L be
the fraction field of Wo,, (k) and o be the Frobenius on L. Fix an algebraic closure
F of F containing L.

Definition 7.11. [Ans22al 5.2] The Kottwitz category B(G) is the groupoid whose
objects are elements in G(L) and the set of isomorphisms between b, b’ € G(L) is

{c€ G(L) | cho(c)™t =}

Composition of morphisms is defined by multiplication in G(L). The Kottwitz set
B(Q@) is the set of isomorphism classes of objects in this category. This is in bijection
to the set of o-conjugacy classes in G(L).

Remark 7.12. According to Kottwitz [Kot85], B(G) is invariant under passing to
algebraically closed extensions of k.

For each perfectoid space S over k, the pullback & of the trivial G-bundle &
on Xg to Yg is equipped with a natural descent datum

o gag@% > 8.
Twist o with the automorphism b € G(L) C Aut(&;). The descent datum (&, b~ ap*b)
gives rise to a new G-bundle &, on Xg. This assignment

b— & € Bung(95)

is functorial with respect to pullback along maps S’ — S over Spdk. In this way
we obtain a functor

B(G) — Bung(Spdk),
where the target category is understood by v-descent of G-torsors on the Fargues-
Fontaine curve, namely, by taking any v-cover of Spdk by a perfectoid space S
and considering the category of G-torsors on Xg with descent data. We have the
following theorem of Anschiitz:

Theorem 7.13. ([Ans22al, 5.3]) The functor B(G) — Bung(Spdk) is an equiva-
lence of categories.

The Kottwitz set B(G) can be endowed with a partial order recording the de-
generation relations of G-isocrystals in families. Equip it with the topology defined
by the opposite of this partial order. Then a result of Viehmann shows that the
above equivalence is compatible with the topologies on the set of objects on both
sides.

More precisely, fix T' C B C G, where T is a maximal torus and B is a Borel.
Let X.(T) be the cocharacter lattice of T'. It has an action by the Weyl group W
and the absolute Galois group I' of F. We write X, (T)" for the Galois invariants.
Denote by 71 (G) the algebraic fundamental group of G, i.e. the quotient of X, (T)
by the lattice generated by the coroots. It is also equipped with a I'-action and we
write 71 (G)r for the I'-coinvariants. Then Kottwitz defined the Newton map

Vg . B(G) — (X*(T)Q/W)F
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and the Kottwitz map
kg : B(G) = m(G)r
which satisfy certain characterizing properties, c¢.f. [RR96] 1.8, 1.15]. In particular
Vg X kg : B(G) — (X*(T)Q/W)F X 7T1(G)F

is injective. Using this, for [b] and ['] € B(G), we say [b] < [b'] if kg ([b]) = ka([V])
and vg([b]) < ve([t']) in the Bruhat order, i.e. choosing a dominant cocharacter
to represent the W-orbit of each, then the difference v ([b]) — ve([b]) is a sum of
positive coroots with non-negative coefficients. Equip B(G) with the topology such
that {[b]} € {[¢’]} if and only if [b] > [b']. We have

Theorem 7.14. ([Vie21) 1.1]) The equivalence in[7.15 induces a homeomorphism
B(G) 2 |Bung].

Now we can define locally closed substacks of Bung spds-

Definition/Proposition 7.15. [FS21], I11.0.2(v), II1.5.3] For any [b] € B(G), de-
fine the substack Bunlé of Bung spar to be

BunG X|Bung| {[b]}
It can be identified with the classifying stack of Gy-torsors, for the v-sheaf of groups

G}, S AutXS (gb)

Remark 7.16. If the element [b] € B(G) is basic, i.e. maximal under generaliza-
tion, then the group G} agrees with the v-sheaf attached to the locally profinite
group Gy(F), where G} is an inner form of G defined by

Go(R) ={g € G(L®F R) | g =bo(g)b™ "'},
for any F-algebra R.

Let us describe the image of the Beauville-Laszlo map on a Schubert cell Grg,,
for some dominant cocharacter u, under the homeomorphism |Bung| 2 B(G).

Note that p defines an element i € (X.(T)g/W)! by averaging its Galois
conjugates, i.e.

H= ﬁ Z v(w)

~EGal(E' /F)

for a large enough Galois extension E’/F over which u is defined. Also, let p’ be
the image of p in m (G)r.

Definition 7.17. The subset B(G, u) C B(G) of p-admissible elements is
{1b] € B(G) | va([b]) < i, w([B]) = 1’}
Proposition 7.18. The map of topological spaces

Gra..| 25 Bung| — B(G)

has image B(G, ).
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Proof. The image lies in B(G, p) is [CS17, 3.5.3], except that our reductive group
is defined over a finite extension of F//Q, and that our convention on the Cartan
decomposition on Grg differs from theirs by a minus sign. Note that the proof
of their lemma 3.5.4, 3.5.5 applies to our situation upon replacing the Fargues-
Fontaine curve considered there by the one attached to the ramified Witt vectors
for F, and the different sign convention eliminates the minus sign on =1 from their
statement. The surjectivity is due to Rapoport [Rapl8, A.9], c.f. [CS17, remark
3.5.8]. O

8. A PEL-TYPE IGUSA STACK AND THE RATIONAL CONJECTURE

Let us go back to the global PEL setup as in section 5. Fix the level subgroup
KP? C G(A}). Let K, = Gz, (Z,) and K = K,K?. Let E/Q, with residue field
F, be as before, which is the p-adic field over which our adic Shimura variety is
defined. Sk over Op is the schematic Shimura variety at level K. Let Bung and
Grg be those for the group Gg,. We construct the PEL type Igusa stack at level
KP over SpdFF, and discuss part (1) of conjecture on the good reduction locus.
The word “rational” in the title is in contrast to the integral model in section 11.

8.1. Construction of the Igusa stack.

Definition 8.1. Equip the slice category Perf/SpdF, with the v-topology. Let
Igs := Igsy» be the stackification of IgsP™, the category fibered in groupoids over
Perf/SpdF, determined by:

T = Spa(R, R") > Igs?*(T),

where objects in Igs?™(T) are quadruples (Ag, ¢, A,7) of abelian schemes with G-
structure at level K over RY /w, or R* /w-points of Sk (where w is any pseudo-
uniformizer of RT). Isomorphisms between two objects Ay = (Ao, t, A, 1), Af =
(Af,/, N, n') are quasi-isogenies preserving the G-structures, i.e.

Homlgspre (T) (.Ao, A()) =

poud)=1(b)op, for any b€ Op
pY oXNop=c, for

some ¢ € Q* (Spec(R™" /w))
n=mn"0°ps

pe (HomR+/w(A0aA6) ® Q)X

Remark 8.2. For a different choice of pseudo-uniformizer @’ € Rt (without
loss of generality w € @w'R"), the base change along R*/w — R*/w’ induces
an equivalence between Igs?®(T) and Igs?7(T') by Serre-Tate lifting, see So
the functoriality of IgsP™ is ensured by composing with this equivalence, even if
a map Spa(Ry, R") — Spa(Rz, RJ) doesn’t necessarily map the chosen pseudo-

uniformizer of R3 to the one of R .

Using the moduli interpretation of the good reduction locus Sy, we get imme-
diately the following;:
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Proposition 8.3. Sending an isomorphism class of abelian schemes with G-structure
to its reduction (modulo a pseudo-uniformizer on the base) defines a map of v-stacks

red : S — Igs.

Construction. View Sg as the sheafification of the presheaf on Perfy,
S S = Spa(