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Abstract

This thesis focuses on the investigation of two distinct variations of the Anderson model,
where we relax the standard assumptions. In the first half of our study, we investigate
a version of the Anderson model on the one-dimensional lattice strip or ladder of width
2, denoted as Γ = D2 := Z × {0, 1} with d = 1, wherein the free operator is the
graph Laplacian and the random variables ω = (ωx)x∈D2 are identically distributed
but not always independent. We adapt the supersymmetric approach presented by
Klein, Martinelli and Perez in 1986 from the uni-dimensional lattice Z to D2, which is
not one-dimensional. This adaptation allows us to obtain a representation of the square
modulus of the 4-points average of the Green’s functions corresponding to two layers
of D2. Although we succeeded in expressing this squared average in terms of transfer
operators, the analytic estimate poses technical challenges which we have not been able
to overcome. Hence, we are still unable to show localization in our specific context.
Nonetheless, our extension of Klein, Martinelli and Perez’s approach is interesting on
its own and could serve as a starting point for future investigations.

In the second half of our study, we examine a specific instance of the Anderson
model on Γ = Zd with d ∈ N known as the fractional Anderson model. In this model
the random variables (ωx)x∈Zd are iid and the free operator is the fractional Laplacian,
which is not a local operator and exhibits a slow rate in the decay of its matrix elements.
Adapting Schenker’s arguments in 2015, we relate the fractional moments of the Green’s
function to the two-point correlation function of a self-avoiding walk with polynomial
long-range jumps. This together with the use of known probabilistic techniques yield
sharper bounds for the fractional moments of the Green’s function at strong disorder,
surpassing the previous bounds in the literature. Notably, we expand the range of the
disorder parameter λ where spectral localization happens. Furthermore, for d = 1, we
prove polynomial decay of the eigenfunctions almost-surely, assuming some regularity
of the probability distribution of ωx with x ∈ Z.

v





Table of Contents

Examining Committee ii

Abstract v

1 Introduction 1

1.1 Physical Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Anderson Model and types of localization . . . . . . . . . . . . . . . . . 2

1.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Random Schrödinger Operator with dependent random variables 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Supersymmetric formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Grassmann algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Supervectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Supermatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Superrotation & SUSY Invariant Functions . . . . . . . . . . . . 23

2.4 Transfer Operator representation . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Klein, Martinelli and Perez’s strategy . . . . . . . . . . . . . . . 36

2.5.2 Challenges arising in the Anderson model on D2 . . . . . . . . . 40

3 Decay of the Green’s function of the fractional Anderson model and
connection to long-range SAW 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Fractional Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Relationship between the coefficients of the fractional Laplacian 45

vii



3.2.2 Estimation of the sum of the fractional powers of the off-diagonal
terms of the Fractional Laplacian . . . . . . . . . . . . . . . . . . 47

3.2.3 Inverse of Fractional Laplacian . . . . . . . . . . . . . . . . . . . 50

3.2.4 Riesz Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Fractional Anderson model . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Definition of the model . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Known results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Self-avoiding walks with long jumps . . . . . . . . . . . . . . . . . . . . 66

3.5 Decay of Green’s function . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.1 Decay of Green’s function in terms of SAW . . . . . . . . . . . . 71

3.5.2 Comparison of decaying rates . . . . . . . . . . . . . . . . . . . . 77

References 83

A Submitted paper 89

viii



Chapter 1

Introduction

1.1 Physical Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Anderson Model and types of localization . . . . . . . . . . . . . . . . . 2

1.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Physical Motivation

The state of an electron confined to a space Γ at a given time is described by a nor-
malized wave function ψ0 in a convenient Hilbert space H. The time-evolution of ψ0

is determined by the Schrödinger equation®
i ∂∂tψ(x, t) = Hψ(x, t), (x, t) ∈ Γ × R,
ψ(x, 0) = ψ0(x), x ∈ Γ ,

(1.1.1)

where H is a linear self-adjoint operator on H, which represents the energy of the
particle. Due to the spectral theorem for self-adjoint operators, the solution to Eq.
1.1.1 can be expressed as

ψ(x, t) = e−itHψ0(x), (x, t) ∈ Γ × R. (1.1.2)

The propagation of the electron corresponds to an extended wave function such as
ψ0(x) ∼ eix. This behavior indicates that the material is a conductor. By contrast,
the absence of propagation of the electron corresponds to a localized wave function, for
example, ψ0(x) ∼ e−x

2
. In this situation, this behavior indicates that the material is

an insulator.

In 1958, Anderson proposed a model to provide an explanation of the absence of
quantum wave propagation in disordered lattices [And58]. This physical phenomenon
is known nowadays as Anderson localization. He realized that, if some conditions are
met, then impurities in the material can refrain the electron from propagating and
thus the material behaves as an insulator. To investigate this phenomenon, Anderson
focused on a specific type of Random Schrödinger Operator, wherein impurities are
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modelled through realizations of a random potential in a suitable probability space Ω
as follows: let Γ = Zd with d ∈ N and

Hω,λ = −∆+ λVω, ω ∈ Ω, (1.1.3)

acting on H = ℓ2(Zd), where:

(A) −∆ is the (negative) discrete Laplacian representing the kinetic energy of the
electron,

(B) Vω is a random multiplication operator acting diagonally on the canonical basis
by a sequence ω = (ωx)x∈Zd of iid random variables with common uniform dis-
tribution, each ωx represents the interaction between the electron and the atomic
constitution of the material at x ∈ Zd,

(C) λ > 0 is a parameter representing the intensity of the disorder.

1.2 Anderson Model and types of localization

Let us start by introducing the general mathematical framework of the discrete Ander-
son model. Let Γ be a discrete set and H be the Hilbert space defined as

H = ℓ2(Γ) :=

ψ : Γ −→ C

∣∣∣∣∣∣∑x∈Γ |ψ(x)|2 <∞
 (1.2.1)

with inner product ⟨ϕ,ψ⟩ =
∑

x∈Γ ϕ(x)ψ(x), for all ϕ,ψ ∈ ℓ2(Γ), and induced norm

∥ψ∥ =
√
⟨ψ,ψ⟩, for all ψ ∈ ℓ2(Γ). The Anderson model acting on ℓ2(Γ) is defined as

Hω,λ = H0 + λVω, ω ∈ Ω, (1.2.2)

where H0 is a bounded self-adjoint operator on ℓ2(Γ), known as free operator, and Vω
is a multiplication operator given by

Vωψ(x) = ωxψ(x), ∀ψ ∈ ℓ2(Γ), ∀x ∈ Γ ,

and ω := (ωx)x∈Γ is a family of bounded random variables with joint distribution P
on the measurable space RΓ with the σ−algebra generated by the open cylinder. Here,
E[·] denotes the corresponding expectation.

Consequently, Hω,λ is self-adjoint and its spectrum σ(Hω,λ) is contained in the real
line, for all ω ∈ Ω. The standard Anderson model corresponds to the case where
Γ = Zd, H0 = −∆ and ω = (ωx)x∈Γ are iid with joint distribution P =

⊗
Zd P0. The

specific model studied in [And58] corresponds to P0(y) = 1
21[−1,1](y), y ∈ R, see Eq.

1.1.3

We can now define the notions of localization and delocalization within this mathe-
matical framework. From now on, let Γ ⊂ Zd with d ∈ N and I be an interval. We say
that {Hω,λ}ω∈Ω exhibits spectral localization in I, if σ(Hω,λ)∩I is pure-point, forω ∈ Ω

2



P−almost-surely (a.s.). We say that {Hω,λ}ω∈Ω exhibits Anderson localization in I, if
σ(Hω,λ) ∩ I is pure-point and the eigenfunctions have exponential decay, for ω ∈ Ω
P−a.s. Specifically, there exist constants 0 < Ck(ω),γk(ω) < ∞ and xk(ω) ∈ Γ such
that the eigenfunctions {ψk(·,ω)}k∈N ⊂ ℓ2(Zd) of Hω,λ satisfy

|ψ(x,ω)| ≤ Ck(ω)e−γk(ω)|x−xk(ω)|, ∀k ∈ N, (1.2.3)

where |·| denotes the Euclidean metric on Γ .

There is a stronger notion of localization. It is said that {Hω,λ}ω∈Ω exhibits dy-
namical localization in I, if there are constants 0 < C,γ < ∞ and 0 < ζ ≤ 1 such
that

E
Å
sup
t∈R

∣∣⟨δx, e−itHω,λχI(Hω,λ)δy⟩
∣∣ã ≤ Ce−γ|x−xk(ω)|ζ , ∀x, y ∈ Γ , (1.2.4)

where {δx}x∈Γ corresponds to the canonical basis of ℓ2(Γ) and χI(Hω,λ) is the spectral
projection of Hω,λ associated to the interval I. Observe that dynamical localization
implies Anderson localization, a proof of this can be found in [CFKS09, Thm. 9.22].
However, the converse does not hold in general, as shown in [dRJLS95, Appendix 2].
In addition, dynamical localization implies that, for an initial localized ψ0, its time-
evolution e−itHω,λψ0 remains uniformly localized, for all time t, for ω ∈ Ω P−a.s. To
be more precise, for all p ≥ 0, for all ψ ∈ H, it holds

sup
t∈R

∥∥|X|pe−itHω,λχI(Hω,λ)ψ
∥∥ <∞, ω ∈ Ω P− a.s., (1.2.5)

where |X| is the multiplication operator on H given by |X|ψ(x) = ∥x∥ψ(x), for all
ψ ∈ H, for all x ∈ Γ . In fact, Condition 1.2.5 is equivalent to dynamical localization, a
proof of this can be found in [GK04, Thm. 4.2].

By contrast, we say that the Anderson model {Hω,λ}ω∈Ω exhibits delocalization in
I, if dynamical localization does not hold. Note that if σ(Hω,λ) is absolutely continuous
P−a.s., then there is delocalization. However, the converse is not true in general. In
fact, the Anderson model mentioned in [dRJLS95, Appendix 2] exhibits delocalization,
yet it possesses pure-point spectrum P−a.s.

1.3 State of the art

Anderson’s seminal work [And58] served as a catalyst for the mathematical investiga-
tions of the Anderson model and its localization properties since the late 70s. Indeed,
the earliest result can be found in [GMP77].

For d = 1, it is expected that Hω,λ exhibits dynamical localization in the whole real
line, for all λ > 0 (e.g., [KS80], for the standard Anderson model). In the unidimen-
sional case, there are several available methods to prove dynamical localization such
as Transfer Operators, Supersymmetry (SUSY) and Kunz-Souillard (see [KMP86] and
[Dam11]).
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For d > 1, it is expected that Hω,λ exhibits dynamical localization either in the
whole real line, for sufficiently large λ, or at the spectral band edges, for specific values
of λ. The first proof of dynamical localization under high disorder λ can be found in
[FMSS85], which proof is based on the Multiscale Analysis (MSA). However, they did
not show the existence of λ0 > 0 such that Hω,λ exhibits dynamical localization, for
all λ > λ0. Afterwards, a new approach called Fractional Moment Method (FMM)
in [AM93] was developed to prove dynamical localization, providing an explicit local-
ization threshold. However, that critical value was larger than the one computed by
Anderson in [And58], see [Sch15, Table I] for a numerical comparison between both
thresholds. In addition, for fixed values of λ, there is still dynamical localization at
energies |E| ≫ 1. Note that this is meaningful only in the case of unbounded poten-
tial; otherwise, the spectrum is bounded and E /∈ σ(Hω,λ), for |E| ≫ 1, for ω ∈ Ω
P−a.s. In general, for arbitrary d, MSA and FMM are the only known methods to
prove dynamical localization. A comprehensive exposition of MSA and FMM can be
found in [PF92], [Sto01], [CL12] and [AW15]. Recently, self-avoiding walks (SAW) have
been employed as a complementary tool to prove localization under strong disorder,
see [Tau11], [Suz13] and [Sch15].

In contrast to dynamical localization, only a limited number of models have been
rigorously established to exhibit delocalization, particularly in cases involving decaying
randomness (see [KKO00], [Sim82], [DSS85] and [Kis96]). Delocalization in the case
where ω = (ωx)x∈Γ iid has only been proved on the Bethe lattice Γ = B (see [Kle94],
[Kle98], [ASW06], [FHS07] and [AW13]). However, it remains unknown whether or not
delocalization occurs on Zd with d > 1.

These investigations have given rise to two open problems regarding the standard
Anderson model:

1. For d = 2, it is conjectured that the standard Anderson model shows localization,
similar to the uni-dimensional case, in the complete spectrum, for all λ > 0.

2. For d > 2, it is conjectured that the standard Anderson model experiences a
transition from exhibiting extended states within the bulk of the spectrum to
localized states at the spectral band edges, which is known as “Anderson metal-
insulator transition”.

This transition can be regarded as a competition between the two components of the
standard Anderson model to dominate the situation. If the free operator −∆ establishes
dominance, then its absolutely continuous spectrum σ(−∆) = [0, 4d] with associated
extended states prevail. Conversely, if the random potential Vω takes control, then its
pure point spectrum and associated localized eigenfunctions prevail almost-surely.

The study of the long-range Anderson model, wherein H0 is a long-range operator,
has recently gained growing attention, see [Han19], [PKL+20], [GRM20], [JL21], [Liu23]
and [Shi23]. This model, particularly when H0 exhibits power-law jumps, is relevant in
physical phenomena such as the quantum Kepler model (see [AL97]) or nuclear spins
in solid-state systems (see [ÁSK15]). In this scenario, instead of exponential decay of
the eigenfunctions and dynamical bounds, a polynomial decay is obtained, see [Shi23,
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Corollary 2.3].

For the interested reader who might be interested in learning more about the An-
derson model on the discrete setting and its localization properties, [Kir07] and [RM17]
offer a clear and self-contained explanation of the subject and its state of the art.

1.4 Our results

The rest of this thesis focuses on the investigation of two different instances of the
Anderson model, as given by Eq. 1.2.2.

In Chapter 2, we examine a version of the Anderson model over the one-dimensional
lattice strip or ladder of width 2, denoted as Γ = D2 := Z× {0, 1}. In this case, H0 is
a local operator but ω = (ωx)x∈D2 are not necessarily independent, which introduces
greater complexity to the analysis from a probabilistic point of view. Specifically, we
consider

Hω,λ = −∆+ λVω, ω ∈ Ω, (1.4.1)

acting on D2, where H0 = −∆ is the lattice Laplacian and ω = (ωx)x∈D2 is a sequence
of identically distributed random variables, which are not necessarily independent.

In [KMP86], Klein, Martinelli and Perez investigated the case when the underlying
lattice Γ = Z and ω = (ωx)x∈Z are iid, which is a realization of the model considered
in [And58] for d = 1. They established dynamical localization (see Ineq. 1.2.4) in
the whole real line, for all λ > 0. To accomplish this, they employed a combination
of SUSY and Transfer Operators. More precisely, they used a SUSY representation
of E[|Gz(x0, x1)|2], with x0, x1 ∈ Z. Then, they explicitly carried out the derivation
over the fermionic variables to extract a suitable transfer operator from the resulting
expression. This approach heavily relied on the fact that the underlying lattice Z is
one-dimensional. For the reader’s convenience, a comprehensive exposition of SUSY
formalism is provided in Section 2.3 below.

Our aim is to adapt this strategy to our model on the lattice D2, which is not
one-dimensional. However, instead of studying E[|Gz(x0, x1)|2], with x0, x1 ∈ D2, it
is more natural in our setting to consider the square of the 4-points average of the
Green’s functions associated to two layers of D2. Although we manage to use the
SUSY approach to find a representation via transfer operator of the mentioned squared
average, the examination of its corresponding properties presents challenges, which we
are not able to solve. A more detailed description of this issue can be found in Section
2.5.

In Chapter 3, we explore an instance of the Anderson model on Zd with d ∈ N,
where {ωx}x∈Zd are iid but H0 is a non-local operator. To be explicit, the fractional
Anderson model is defined as

Hω,λ,α = (−∆)α + λVω, ω ∈ Ω, (1.4.2)

5



acting on Γ = Zd, where H0 = (−∆)α, for 0 < α < 1, and {ωx}x∈Zd are iid. The
operator (−∆)α is the discrete fractional (negative) Laplacian, which is defined via
functional calculus. Unlike the standard Laplacian, the operator (−∆)α is not local
with strictly negative off-diagonal matrix elements (see Remark 3.2.2). However, this
alone does not pose a problem, when it comes to prove dynamical localization. In
this case, dynamical localization is established using [AM93, Lemma 3.2]. However,
in the fractional Anderson model, the decay of (−∆)α is not fast enough because its
off-diagonal matrix elements decay as |(−∆)α(x, y)| ∼ 1

|x−y|d+2α , see [GRM20, Thm.

2.2 (iii)]. In fact, when polynomial decay is involved, additional complexities arise,
making the computations more challenging. This is further supported by the recent
work of [Shi23] on the MSA for long-range models.

In [Sch15], Schenker studied the Anderson model corresponding to Γ = Zd, H0 =
−∆ and {ωx}x∈Zd iid with common uniform distribution supported on [−1, 1]. This is
the model originally considered by Anderson in [And58]. He proved that dynamical lo-
calization in the whole real line above a localization threshold λAnd > 0. In particular,
the constant λAnd matches exactly the critical value proposed in [And58]. To establish
that result, the author employed the FMM, that is, he estimated the fractional mo-
ments of the Green’s function. Initially, the depleted resolvent identity was employed
to find an upper bound on E[|Gz(x, x0)|s]. This bound was subsequently reformulated
in terms of the two-point correlation function of the nearest-neighbours SAW induced
by the standard Laplacian up to a constant.

However, when we replicated Schenker’s approach in our setting, we instead ob-
tained that our SAW has long jumps with polynomial decay, which reflects the fact
that the fractional Laplacian is a non-local operator with a polynomial slow decay.
Our main result is that we relate E[|Gz(x, x0)|s], with x0, x1 ∈ Zd, 0 < s < 1, to the
two-point correlation function of the long-range self-avoiding walk (SAW) induced by
(−∆)α (see Thm. 3.5.1). This generalizes [Sch15, Thm. 1] to the Anderson model with
a fractional Laplacian perturbed by a random potential. The challenging part revolves
around determining the convergence conditions of the two-point correlation function of
the SAW induced by (−∆)α. In particular, its two-point correlation function decays
polynomially, as shown in Lemma [CS15, Lemma 2.4]. Unfortunately, this polynomial
decay was insufficient to establish dynamical localization since exponential decay of the
two-point correlation function was required. Nevertheless, we managed to prove that
there is a constant λ0 > 0 such that, for all λ > λ0, spectral localization occurs. In
addition, in the case of d = 1 and assuming some conditions on the one-site probabil-
ity distribution, the eigenfunctions decay polynomially, for ω ∈ Ω P−almost-surely as
detailed in Thm. 3.5.5 below. Furthermore, our critical value λ0 > 0 is smaller than
previously found values in the literature (see Thm. 3.3.2 and 3.3.11) and our estimation
of the decay of eigenfunctions is sharper than a prior result found in [AM93, Lemma
3.2] (compare Estimate 3.3.7 with 3.5.24).
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Chapter 2

Random Schrödinger Operator
with dependent random variables

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Supersymmetric formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Grassmann algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Supervectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Supermatrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Superrotation & SUSY Invariant Functions . . . . . . . . . . . . 23

2.4 Transfer Operator representation . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.1 Klein, Martinelli and Perez’s strategy . . . . . . . . . . . . . . . 36

2.5.2 Challenges arising in the Anderson model on D2 . . . . . . . . . 40

2.1 Introduction

In this chapter we consider the Anderson model of the form

Hω,λ = −∆+ λVω, ω ∈ Ω, (2.1.1)

acting on Γ = D2 = Z × {0, 1}, where −∆ is the graph Laplacian and Vω is a ran-
dom multiplication operator acting diagonally on the canonical basis by a sequence
ω = (ωx)x∈Z of real, bounded and identically distributed random variables defined
in a suitable probability space Ω. These random variables are not necessarily inde-
pendent. When the underlying graph is Γ = Z with d = 1 and ω = (ωx)x∈Z are
iid, [KMP86] established Anderson localization, see Corollary 3 therein, under some
additional conditions on the one-site probability measure, see Assumption 2.5.3 below.
Their proof used a representation of the second moment of the Green function through
suitable transfer operators.
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The main objective of this chapter is to extend the strategy presented in [KMP86]
to the case when the graph is the one-dimensional lattice strip or ladder of width 2,
D2 := Z×{0, 1}, andω = (ωx)x∈Z are not necessarily independent. Instead of studying
E[|Gz(x0, x1)|2], with x0, x1 ∈ D2, it is more natural in our setting to consider the
second moment of the 4-point average of the Green’s functions corresponding the j0-th
and j1-th layers of the ladder D2 with j0, j1 ∈ Z. Although we arrive to a representation
of the square of the mentioned 4-point average via transfer operators, the analysis of the
properties of the corresponding second moment of the 4-point average poses problems,
which we cannot still solve.

Now, we provide an overview of the remaining sections. In Section 2.1, we rigorously
define the Anderson model on D2 and state Thm. 2.2.1, which is the result of adapting
the strategy shown in [KMP86] to the lattice D2, which does not have dimension 1.
Then, Section 2.3, we give a concise and self-contained exposition of Supersymmetry,
which might be of interest to the reader. Next, in Section 2.4, we present the proof
of Thm. 2.2.1 by introducing a representation of the square of the average version of
the Green’s functions corresponding two layers of D2 in terms of transfer operators.
Finally, in Section 2.5, we explain why we are not able to continue with the Klein,
Martinelli and Perez’s approach in our case. To be more precise, in Subsection 2.5.1,
we outline the strategy given in [KMP86]. Then, in Subsection 2.5, we compare their
approach to the proof of Thm. 2.2.1 and why we cannot continue with their method to
prove localization in our setting. In addition, we provide some paths of research which
might be helpful in the future to surmount the obstacle, which we came across.

We set the notation of the rest of the chapter. Let (δx)x∈D2 be the canonical
orthonormal basis of ℓ2(D2). For an operator A acting on ℓ2(D2), we denote the
matrix elements of A by A(x0, x) := ⟨δx0 , A δx⟩ with x, x0 ∈ D2. We write ⟨δx, ·⟩δx for
the projection onto the subspace generated by δx. Any element of D2 can be written

as x =
(
j σ

)T
, where j ∈ Z and σ ∈ {0, 1}. Setting e =

(
0 1

)T
, we formally

write x = j + σe, to make our computations more concise. In addition, we denote

the ℓp-distance in D2 by |x0 − x1|p = (|j0 − j1|p + |σ0 − σ1|p)
1
p , for 1 ≤ p < ∞, and

|x0 − x1|∞ = max {|j0 − j1|, |σ0 − σ1|}, for p =∞, for all xk = jk+σk ∈ D2, k ∈ {0, 1}.
In the case p = 2, we use the short hand notation |·|. Observe that we wrote “ℓp-distance
in D2” and not “ℓp-norm in D2” because D2 equipped with the standard addition and
scalar multiplication is not a vector space. Finally, let f ∈ L1(Rd) with d ∈ N, the
Fourier transform of f is given by [Ff ](k) = f̂(k) =

∫
Rd dye

−ik·yf(y), for all k ∈ Rd.

2.2 Model

We consider the discrete Anderson model on the strip D2 given by

Hω,λ := −P + λVω, (2.2.1)

where P = 1|x−y|1=1 is the adjacency matrix and Vω is a multiplication operator defined
as

Vωu
(
x
)
= ωxu(x), ∀u ∈ ℓ2(D2), ∀x ∈ D2,
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where we assume that ωj = ωj+e, for all j ∈ Z, and ω := (ωj)j∈Z ∈ RZ being a family
of bounded iid random variables defined in the probability space Ω := RZ equipped
with the Borel probability measure P :=

⊗
Z P0 with expectation E[·]. The Fourier

transform of P0, denoted by P̂0, is defined as P̂0(x) := E
[
e−iωjx

]
, for all x ∈ R.

To relate this model to the the usual representation of the Anderson Model, we
express Eq. 2.2.1 as

Hω,λ := −∆+ (λVω − 3), (2.2.2)

where −∆ represents the (negative) standard discrete Laplacian on ℓ2(D2) defined by
(−∆)ij = δijdj − Pij , dj :=

∑
k∈D2
|k−j|1=1

1 = 3. Consequently, {Hω,λ}ω∈Ω is a family of

bounded ergodic self-adjoint operators. Let z ∈ C \R and Gz,ω,λ := (Hω,λ − z)−1. Let
L ∈ N and ΛL := {−L, . . . , L}× {0, 1}. Let HΛL

ω,λ = 1ΛL
Hω,λ1ΛL

denote the restriction

of Hω,λ to ℓ
2(ΛL) with Dirichlet boundary conditions. Finally, let GΛL

z,ω,λ = (HΛL
ω,λ−z)

−1

restricted to ℓ2(ΛL).

By employing supersymmetric formalism, we obtain a transfer operator represen-
tation of the square of the 4-points average of the Green’s function between two layers
of D2, which is the content of Thm. 2.2.1 below.

Theorem 2.2.1. Let ε ∈ {+,−}, j ∈ Z, αε,ωj = εi(−ωj + E+ iη− 1),

Γε,ωj =

Ü
g0,ε,ωj 0 0 0
g1,ε,ωj g0,ε,ωj 0 0
g2,ε,ωj 0 g0,ε,ωj 0
g3,ε,ωj 2g1,ε,ωj 2g2,ε,ωj g0,ε,ωj

ê
, Γ̃ε,ωj = g0,ε,ωj

Å
1 0

αε,ωj 1

ã
Tε,ωj =

1

π2
F2

Ü
g3,ε,ωj 2g1,ε,ωj 2g2,ε,ωj g0,ε,ωj

g1,ε,ωj g0,ε,ωj 0 0
−g2,ε,ωj 0 −g0,ε,ωj 0
g0,ε,ωj 0 0 0

ê
, T̃ε,ωj =

εig0,ε,ωj

π2
F2ε

Å
αε,ωj 1
1 0

ã
,

(2.2.3)

where F2ε denotes the Fourier transform after scaling by 2ε and

g0,ε,ωj (x1 + x2, y) = e−εiωj(x1+x2)eεi(E+iη)(x1+x2)e−ε2iy,

g1,ε,ωj (x1 + x2, y) =
∂g0,ε,ωj (x1 + x2, y)

∂x1
=
∂g0,ε,ωj (x1 + x2, y)

∂x2
= εi[−ωj + E+ iη]g0,ε,ωj (x1 + x2, y),

g2,ε,ωj (x1 + x2, y) =
∂g0,ε,ωj (x1 + x2, y)

∂y
= −2εig0,ε,ωj (x1 + x2, y),

g3,ε,ωj (x1 + x2, y) =

ï
∂

∂x1

∂

∂x2
− 1

4

∂2

∂y2

ò
g0,ε,ωj (x1 + x2, y)

= (1− [−ωj + E+ iη]2)g0,ε,ωj (x1 + x2, y), ∀x1, x2 ≥ 0,∀y,ωj ∈ R.
(2.2.4)
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Then,

1

4

1∑
σ0,σ1=0

GΛL
z,ω,λ(j0 + σ0e, j1 + σ1e) =

−i
2π2

∫
R2×R2

d2X+

j0
d2X+

j0+eî
R1,+R̃

j0,j1
0,+ +R0,+R̃

j0,j1
1,+

óÄ
X+

j0
,X+

j0+e

ä
,

1

4

1∑
σ0,σ1=0

GΛL
z,ω,λ(j0 + σ0e, j1 + σ1e) =

i

2π2

∫
R2×R2

d2X−
j0
d2X−

j0+eî
R1,−R̃

j0,j1
0,− +R0,−R̃

j0,j1
1,+

óÄ
X−

j0
,X−

j0+e

ä
,

(2.2.5)

where Rk,ε = Rk,ε,ωj0
,...,ω−L

, R̃j0,j1
k,ε = R̃j0,j1

k,ε,ωj0+1,...,ωL
, for k ∈ {0, 1}, and

R0,ε(Xj0 ,Xj0+e) =

Ü
1
0
0
0

êTΓε,ωj0

−L∏
j=j0−1

Tε,ωj


Ü

1
0
0
0

ê
,

R1,ε(Xj0 ,Xj0+e) =

Ü
0
1
−1
0

êTΓε,ωj0

−L∏
j=j0−1

Tε,ωj


Ü

1
0
0
0

ê
,

R̃j0,j1
0,ε (Xj0 ,Xj0+e) =

εi

π2

Å
1
0

ãT j1−1∏
j=j0+1

Tε,ωj

F2

Å
0 1
1 0

ãÇ
R0,ε,ωj1

,...,ωL

R1,ε,ωj1
,...,ωL

å
,

R̃j0,j1
1,ε (Xj0 ,Xj0+e) =

εi

π2

Å
0
1

ãT j1−1∏
j=j0+1

Tε,ωj

F2

Å
0 1
1 0

ãÇ
R0,ε,ωj1

,...,ωL

R1,ε,ωj1
,...,ωL

å
. (2.2.6)

Furthermore, if we assume that P0 has moments up to at least order 4, then

E

∣∣∣∣∣∣14
1∑

σ0,σ1=0

GΛL
z,ω,λ(j0 + σ0e, j1 + σ1e)

∣∣∣∣∣∣
2 =

1

4π4

∫
R2×R2

∫
R2×R2

d2X+

j0
d2X+

j0+ed
2X−

j0
d2X−

j0+e

E
î¶

R1,+R̃
j0,j1
0,+ +R0,+R̃

j0,j1
1,+

©Ä
X+

j0
,X+

j0+e

ä¶
R1,−R̃

j0,j1
0,− +R0,−R̃

j0,j1
1,−

©Ä
X−

j0
,X−

j0+e

äó
.

(2.2.7)

2.3 Supersymmetric formalism

2.3.1 Grassmann algebra

Let N ∈ N. Let V be a real N−dimensional vector space with basis B = {ρj}Nj=1. The
antisymmetric tensor product is defined as

∧ : V ×V −→ V ⊗as V

(v, w) 7−→ v ∧ w, (2.3.1)
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where V⊗asV denotes the antisymmetric tensor product of V with itself (see [Abd04]).
To lighten the notation, v∧w will be written vw. This binary operator has the property
that

vw = −wv, ∀v, w ∈ V. (2.3.2)

It follows that

v2 = 0, ∀v ∈ V. (2.3.3)

The Grassmann algebra (also known as exterior or graded algebra) on R generated by
B is the associative algebra with unity given by

A[B] :=
⊕
k≥0

Vk, (2.3.4)

where Vk := V ⊗as . . .⊗as V︸ ︷︷ ︸
(k−1) times

, for all k ≥ 1, and V0 := R. Observe that Vk ∩Vj = {0},

for all k ̸= j. In addition, Vp = {0}, for all p > N , because some of the generators
would appear more than once. The antisymmetric tensor product given in Eq. 2.3.1
defines a product operation on A[B]. By abuse of notation, we will also denote it as
⊗as. This binary operation has the following property: Let p, q ∈ N. If v ∈ Vp and
w ∈ Vq, then vw ∈ V4 and

vw = (−1)pqwv. (2.3.5)

An immediate consequence of Eq. 2.3.5 is that if v ∈ Vp and p is odd, then v2 = 0.
Indeed, v2 = (−1)p2v2 = −v2.

For any v ∈ A[B], there are scalars {vi1,...,ik}
N
i1,...,ik=1 such that

v = v0 +
∑
k≥1

N∑
i1,...,ik=1

vi1...ik ρi1 · · · ρik . (2.3.6)

The above decomposition becomes unique, if the coefficients vi1,...,ik are antisymmetric
under any interchange of pair of indices.

Bosonic and Fermionic variables

By Eq. 2.3.5, for all v ∈ Vp and w ∈ Vq, vw = (−1)pqwv. Hence, vw = −wv, if p
and q are odd. By contrast, if p is even, then vw = wv, for all q. This motivates the
following decomposition A[B] = A0[B]⊕A1[B], where

A0[B] =
⊕
k≥0

V2k, A1[B] =
⊕
k≥0

V2k+1. (2.3.7)

Since Vp = {0}, for all p > N , the above direct sums are finite. It holds that

v ∈ A0[B], w ∈ A0[B] ∪ A1[B]⇒ vw = wv, (2.3.8)

v, w ∈ A1[B]⇒ vw = −wv. (2.3.9)
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Then the elements of A1[B] anticommute with each other. On the other hand, the
elements of A0[B] commute with all the other elements of A[B] and hence it is a
subset of the center of A[B]. Moreover A0[B] is a subalgebra since it is closed under
multiplication, addition and scalar multiplication.

Note that A0[B] is a strict subset of the center unless the number of generators is
even. This is the content of the next lemma.

Lemma 2.3.1. Let N ∈ N and B = {ρi}Ni=1 be the basis of a real vector space V. Let
A[B] be the Grassmann algebra generated by B and Z[A[B]] be the center of it. If N
is even, then Z[A[B]] = A0[B]. By contrast, if N is odd, then Z[A[B]] = A0[B]⊕VN .
In particular, for N = 1, A[B] is a commutative algebra.

Proof. Let v ∈ Z[A[B]]. Since v ∈ A[B], v can be uniquely written as v = v0 + v1,
where v0 ∈ A0[B] and v1 ∈ A1[B]. This yields, for all i ∈ {1, . . . , N},

v0ρi + v1ρi = vρi = ρiv = ρiv0 + ρiv1 = v0ρi − v1ρi, (2.3.10)

where we used that v belongs to the center, ρi, v1 ∈ A1[B] and v0 ∈ A0[B]. It follows

v1ρi = 0, ∀i ∈ {1, . . . , N}. (2.3.11)

As a result of this, v1 = λρ1 · . . . · ρN , for some λ ∈ R. Indeed, v1 can be written as
v1 = w0 + w1ρ1, where w0, w1 ∈ A[B] are independent of ρ1. Hence,

0 = v1ρ1 = w0ρ1 + w1ρ
2
1 = w0ρ1. (2.3.12)

This implies that w0 = 0 since w0 is independent of ρ1, and therefore v1 = w1ρ1. Now
we can repeat the same argument on w1 with the generator ρ2. By a recursive argument,
we can conclude that v1 ∈ VN . If N is odd, then VN ⊂ A1[B] and Z[A[B]] = A0[B]⊕
VN . By contrast, if N is even, then VN ⊂ A0[B] and v1 ∈ A0[B] ∩ A1[B] = {0}.
Hence, Z[A[B]] = A0[B].

From now on, we call the elements of A0[B] and A1[B] as bosonic (or even)
and fermionic (or odd) variables, respectively. In addition, we usually denote the
bosonic variables by Latin letters and the fermionic variables by Greek letters.

Remark 2.3.2. For all fermionic variable ψ, it holds that ψ2 = 0, due to Eq. 2.3.5.

Any bosonic variable X can be uniquely written as

X = x(X) + n(X), where x(X) ∈ R and n(X) ∈
⊕
k≥1

V2k. (2.3.13)

We say that x(X) and n(X) are, respectively, the body and soul of X. Note that n(X)

is nilpotent since n(X)⌈
N
2 ⌉ = 0, where ⌈·⌉ is the ceiling function.
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Inverse of a Grassmann variable

Let v ∈ A[B]. We say that v has an inverse, if there is a v−1 ∈ A[B] such that
vv−1 = v−1v = 1. If v−1 exists, then it is unique. Indeed, for the sake of contradiction,
assume that w1, w2 ∈ A[B] are inverses of v but w1 ̸= w2. Then, w1 = w1(vw2) =
(w1v)w2 = w2.

For any bosonic variable X = x+n with nonzero body (i.e., x ̸= 0), X has an inverse
and this is given by

X−1 =
1

x
+

1

x

∑
j≥1

(−n
x

)j
, (2.3.14)

which can be checked by direct computation. Due to the fact that n is nilpotent, the
above sum is finite.

Remark 2.3.3. By contrast, if ψ is a fermionic variable, then it has no inverse. For
the sake of contradiction, assume that ψ−1 exists. As result of this, 1 = ψ(ψ−1ψ)ψ−1 =
ψ(ψψ−1)ψ−1 = 0, where we used that ψψ−1 = ψ−1ψ = 1 and ψ2 = 0.

Function of Grassmann variables

Any function f ∈ C∞(R;R) can be extended to a mapping f : A0[B] −→ A0[B] 1 in
the following way:

f : A0[B] −→ A0[B],

X = x(X) + n(X) 7−→ f(X) := f(x(X)) +
∑
k≥1

f (k)(x(X))

k!
n(X)k. (2.3.15)

Note that the above sum is always finite since n(X) is nilpotent. The same construction
can be used to extend f ∈ C∞(U ;R) with U ⊂ R open to f : U⊕

⊕
k≥1V

2k −→ A0[B],
by requiring that x(X) ∈ U . Similarly, any function f ∈ C∞(Rp×q;R) with p, q ∈ N can
be extended to a mapping f : Ap×q

0 [B] −→ A0[B] as follows

f : Ap×q
0 [B] −→ A0[B],

X = (xij(X) + nij(X))1≤i≤p,
1≤j≤q

7−→ f(X) :=
∑

k∈Np×q
0

1

k!
∂kxf(x(X))n

k(X), (2.3.16)

where we used the multi-index notation, for all k ∈ Np×q
0 ,

∂kx :=
∏

1≤i≤p
1≤j≤q

∂kij

∂x
kij
ij

, k! :=
∏

1≤i≤p
1≤j≤q

kij !, nk(X) :=
∏

1≤i≤p
1≤j≤q

n
kij
ij (X). (2.3.17)

Once again, since all terms nij(X) are nilpotent, the above sum is finite. Any f ∈
C∞(U ;C) can be decomposed as f = Re f + i Im f , where Re f, Im f ∈ C∞(U ;R).

1we will call the new function again f , by abuse of notation.
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Thus, f can be extended to a mapping f : U ⊕
⊕

k≥1V
2k → A0[B] ⊕ iA0[B] defined

by

f(X) = Re f(X) + i Im f(X). (2.3.18)

Finally, we can also replace the range of f in the above construction by a real finite-
dimensional vector space W . In this case, the corresponding extension of f is defined
componentwise.

In the following we will need the extension of the inverse, exponential and logarithm.

(i) Inverse. Let U = R\{0} and consider f(x) = 1
x . This function is smooth in U . For

any bosonic variable X = x + n with nonzero body (i.e., x ̸= 0), the function f(X) =
(x+n)−1 coincides with Eq. 2.3.14. We can extend this construction to suitable square
matrices with bosonic entries as follows: let p ∈ N and a = (aij)1≤i,j≤p ∈ A

p×p
0 [B]. If

x(a) is invertible, then a is invertible and its inverse is given by

a−1 = x(a)−1 + x(a)−1
∑
j≥1

(−1)j
[
x(a)−1n(a)

]j
, (2.3.19)

by the same argument as Eq. 2.3.14.

(ii) Exponential and Logarithm. We can define exp : A0[B]→ A0[B] as

eX = ex(X) +
∑
k≥1

ex(X)

k!
n(X)k. (2.3.20)

Just like the standard exponential, this function satisfies

eX1+X2 = eX1eX2 , ∀X1,X2 ∈ A0. (2.3.21)

Let U = R+ and consider f(x) = lnx. This function satisfies f ∈ C∞(U ;R). For all
X ∈ A0[B] with x(X) > 0, we have

lnX = ln(x(X) + n(X)) := ln(x(X))−
∑
j≥1

(−1)j

j

Å
n(X)

x(X)

ãj
. (2.3.22)

We can again extend the above constructions to suitable square matrices with bosonic
entries as follows: let p ∈ N and a = (aij)1≤i,j≤p ∈ A

p×p
0 [B]. Then ea can be defined as

ea = ex(a)+n(a) := ex(a)
∑
j≥0

1

j!
n(a)j . (2.3.23)

Moreover, if lnx(a) exists, then ln a can be defined as

ln a = ln(x(a) + n(a)) := lnx(a)−
∑
j≥1

(−1)j

j

[
x−1(a)n(a)

]j
. (2.3.24)

Remark 2.3.4. Let p ∈ N and a = (aij)1≤i,j≤p ∈ A
p×p
0 [B]. If x(a) is invertible and

lnx(a) exists, then

tr ln a = ln det a. (2.3.25)

Indeed, let f(x) = tr lnx and g(x) = ln detx. Then, f(x) = g(x), for all x ∈ Rp×p

invertible such that lnx exists. Since f and g are smooth functions, their corresponding
extensions to Ap×p

0 [B] also coincide when we extend them.
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Derivation of Grassmann variables

To define a derivative operator, note that every v ∈ A[B] can be seen as a polynomial
whose degree is at most 1 in each ρi. Hence, it can be uniquely decomposed as

v(B) = v1 + ρiv
L
2 = v1 + vR2 ρi, (2.3.26)

where v1, v
L
2 and vR2 do not depend on ρi. We define the left and right derivative

with respect to ρi as

−→
∂

∂ρi
v := vL2 , v

←−
∂

∂ρi
:= vR2 . (2.3.27)

Note that when v does not depend on ρi,
−→
∂
∂ρi
v =

←−
∂
∂ρi
v = 0. However, in general,

−→
∂
∂ρi
v ̸= v

←−
∂
∂ρi

. Indeed, let v = ρiρj , for j ̸= i. Then,
−→
∂
∂ρi
v = ρj and

←−
∂
∂ρi
v = −ρj .

From now on, we will make use only of the left derivative in our computations. To

lighten the notation, we will call it simply derivative and ∂
∂ρi

:=
−→
∂
∂ρi

. Note that the
derivative behaves as a Grassmann variable in the following sense:

∂

∂ρi

∂

∂ρj
v = − ∂

∂ρj

∂

∂ρi
v, ∀i ̸= j, (2.3.28)

∂

∂ρi

∂

∂ρi
v = 0. (2.3.29)

The following special case will be useful later.

Lemma 2.3.5 (Derivation of the exponential function.). Let V be the

2N -dimensional vector space with base B :=
{
ψj ,ψj

}N
j=1

. We consider A[B]. Then,

N∏
j=1

∂

∂ψj

∂

∂ψj
e−

∑N
i,j=1 ψiAijψj = detA, ∀A ∈ CN×N , (2.3.30)

N∏
j=1

∂

∂ψj

∂

∂ψj
ψkψle

−
∑N

i,j=1 ψiAijψj = detAlk, ∀A ∈ CN×N , ∀k, l ∈ {1, . . . , N},

(2.3.31)

where detAlk corresponds to the minor of A after deleting the l-th row and k−th column.
In particular, if A is invertible, then

N∏
j=1

∂

∂ψj

∂

∂ψj
ψkψle

−
∑N

i,j=1 ψiAijψj = (detA)A−1kl , ∀k, l ∈ {1, . . . , N}. (2.3.32)

Proof. Let n =
∑N

i,j=1ψiAijψj . Clearly, n ∈
⊕

k≥1V
2k ⊂ A0[B]. Then, n is nilpotent

and e−n is well-defined. Hence,

N∏
j=1

∂

∂ψj

∂

∂ψj
e−

∑N
i,j=1 ψiAijψj =

N∑
k=0

(−1)k

k!

N∏
j=1

∂

∂ψj

∂

∂ψj
nk (2.3.33)
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By explicit computation,

nk =
∑

i1,...,ik
j1,...,jk

(
ψi1Ai1j1ψj1

)
· . . . ·

(
ψikAikjkψjk

)
(2.3.34)

Observe that the only term which possesses all the generators of A[B] is nN and they
appear exactly once in the product. Hence, in Eq. 2.3.33, nk vanishes after deriving,
for k < N and we only need to focus on the case k = N . Let SN be the group of
permutations of {1, . . . , N}. Recall that |SN | = N !. Given τ ∈ SN , let ε(τ) be the sign
of τ.

nN =
∑

σ,τ∈SN

(
ψσ1ψτ1

)
· . . . ·

(
ψσNψτN

)
Aiσ1jτ1

· . . . ·AiσN jτN

= N !
∑
τ∈SN

(
ψ1ψτ1

)
· . . . ·

(
ψNψτN

)
A1jτ1

· . . . ·ANjτN

= N !
(
ψ1ψ1

)
· . . . ·

(
ψNψN

) ∑
τ∈SN

ε(τ)A1jτ1
· . . . ·ANjτN

(2.3.35)

= N !
(
ψ1ψ1

)
· . . . ·

(
ψqψq

)
detA. (2.3.36)

As a result of this,

N∏
j=1

∂

∂ψj

∂

∂ψj
e−

∑N
i,j=1 ψiAijψj = (−1)N detA

N∏
j=1

∂

∂ψj

∂

∂ψj
ψjψj = detA, (2.3.37)

where we used ∂
∂ψj

∂
∂ψj
ψjψj = −1. This proves Eq. 2.3.30. Moreover, Eq. 2.3.31 is

proved in the same way. Finally, Eq. 2.3.32 is a direct consequence of Eq. 2.3.31 and
Cramer’s rule.

2.3.2 Supervectors

Let p ∈ N and q ∈ N. Let X1, . . . ,Xp ∈ A0[B] and Ψ1, . . . ,Ψq ∈ A1[B]. A supervector
Φ is given by

Φ =

Å
X
Ψ

ã
, where X =

Ö
X1
...
Xp

è
and Ψ =

Ö
Ψ1
...
Ψq

è
. (2.3.38)

We only need to consider the case p = q = 2. In the following, we set

X =

Å
X1

X2

ã
, Ψ =

Å
ψ

ψ

ã
. (2.3.39)

We can also define functions on supervectors. Given ψ,ψ ∈ A1[B]. We define

F : A0[B] −→ A[B],

F (Φ) = F0(X) + F1(X)ψ+ F2(X)ψ+ F3(X)ψψ, (2.3.40)
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where Fj : A0[B] −→ A[B] such that Fj is independent of ψ and ψ, for all j ∈
{0, 1, 2, 3}. A simple example is F (Φ) = ψ, where F0 = F2 = F3 = 0 and F1 = 1. We
will always consider functions Φ 7→ F (Φ) ∈ A0[Φ]. In this case, F0, F3 : A0[B] −→
A0[B] and F1, F2 : A0[B] −→ A1[B].

If F3 is integrable, then the integral of F is defined as∫
dΦF (Φ) :=

∫
R2

d2X

π

∂

∂ψ

∂

∂ψ
F (Φ). (2.3.41)

Similarly, we can consider F (Φ1, . . . ,Φn), for n ∈ N. The integral of F is defined via
Fubini ∫ n∏

j=1

dΦj F (Φ1, . . . ,Φn) :=

∫
R2n

n∏
j=1

d2Xj

π

∂

∂ψj

∂

∂ψj
F (Φ1, . . . ,Φn) (2.3.42)

We define a scalar product of two supervectors as

Φ · Φ′ := X ·X′ + 1

2

(
ψψ′ +ψ′ψ

)
∈ A0[B], ∀Φ,Φ′ ∈ A2

0[B]×A2
1[B], (2.3.43)

where X ·X′ := X1X
′
1 +X2X

′
2. In particular,

Φ2 := Φ · Φ = X ·X+ψψ. (2.3.44)

We can rewrite the scalar product in terms of matrices,

Φ · Φ′ = ΦTΣΦ′, where ΦT :=
(
XT ΨT

)
, Σ :=

Å
I2 0
0 l

ã
, and l :=

1

2

Å
0 −1
1 0

ã
.

(2.3.45)

Theorem 2.3.6. Let N ∈ N. Let M ∈ CN×N . If M = MT and ReM := A+A∗

2 > 0,
where A∗ is the adjoint of M . Then,

M−1x,y =

∫
dΦψxψye

−Φ·MΦ,

where Φj =

Å
Xj

Ψj

ã
, Xj ∈ R2, Ψj =

Å
ψj

ψj

ã
, for all j ∈ {1, . . . , N}, and Φ · MΦ =∑N

j,k=1Φj ·MjkΦk.

Proof. We compute

Φ ·MΦ =

N∑
j,k=1

MjkΦj · Φk =

N∑
j,k=1

MjkXj ·Xk +

N∑
j,k=1

Mjk

ψjψk +ψkψj

2

=
N∑

j,k=1

MjkXj ·Xk +
N∑

x,y=1

ψjMjkψk, (2.3.46)
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where in the second line we used that Mxy =Myx, for all x, y ∈ {1, . . . , N}. Hence,∫
dΦψxψye

−Φ·MΦ =

∫
R2N

n∏
j=1

d2Xj

π
e−

∑N
j,k=1 MjkXj ·Xk

N∏
j=1

∂

∂ψj

∂

∂ψj
ψxψye

−
∑N

x,y=1 ψjMjkψk

= (detM)M−1xy

∫
R2N

n∏
j=1

d2Xj

π
e−

∑N
j,k=1 MjkXj ·Xk

= (detM)M−1xy

Ñ∫
RN

n∏
j=1

dZj√
π
e−

∑N
j,k=1 ZjMjkZk

é2

= (detM)M−1xy

Å
1√

detM

ã2
=M−1xy ,

(2.3.47)

where in the second line we used invertibility of M together with Lemma 2.3.5 and in
the last line we used ReM > 0 to compute the Gaussian integral.

The above construction can be extended to p and q arbitrary but for the purpose
of our computations the case p = q = 2 is sufficient.

2.3.3 Supermatrices

A linear transformation M : A2
0[B] × A2

1[B] −→ A2
0[B] × A2

1[B] must have a specific
block-matrix representation

M =

Å
a σ

χ b

ã
, (2.3.48)

where a ∈ A2×2
0 [B], b ∈ A2×2

0 [B], σ ∈ A2×2
1 [B] and χ ∈ A2×2

1 [B]. M is called a
supermatrix.

LetM,N : A2
0[B]×A2

1[B] −→ A2
0[B]×A2

1[B] be supermatrices. The sum, product
and scalar multiplication of supermatrices are defined as usual:

(M +N)ij =Mij +Nij , ∀i, j ∈ {1, 2, 3, 4}, (2.3.49)

(MN)ij =

4∑
k=1

MikNkj , ∀i, j ∈ {1, 2, 3, 4}, (2.3.50)

(λM)ij = λMij , ∀i, j ∈ {1, 2, 3, 4}, ∀λ ∈ R. (2.3.51)

By a direct computation, M +N , MN and λM are also supermatrices.

In general, we can take a ∈ Ap×p
0 [B], b ∈ Aq×q

0 [B], σ ∈ Ap×q
1 [B] and ρ ∈ Aq×p

1 [B]
with p, q arbitrary. Just like before, we only need the case p = q = 2.

Supertrace

In the case of supermatrices, the standard definition of a trace is not invariant under
cyclic permutations. Indeed, let p, q ∈ N and Mi : A2

0[B]×A2
1[B] −→ A2

0[B]×A2
1[B]
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be a supermatrix with Mi =

Å
ai σi
χi bi

ã
, for i ∈ {1, 2}. After an explicit computation,

tr(M1M2) = tr(a1a2) + tr(σ1χ2) + tr(χ1σ2) + tr(b1b2), (2.3.52)

tr(M2M1) = tr(a2a1) + tr(σ2χ1) + tr(χ2σ1) + tr(b2b1)

= tr(a1a2)− tr(σ1χ2)− tr(χ1σ2) + tr(b1b2) ̸= tr(M1M2), (2.3.53)

where in the last step we used the fact that σi and χi are matrices whose coefficients
are fermionic variables, for i ∈ {1, 2}, and

tr(σχ) = − tr(χσ), ∀σ ∈ A2×2
1 [B],∀χ ∈ A2×2

1 [B]. (2.3.54)

To circumvent this problem, we modify the definition of the standard trace as follows:

Str

Å
a σ

χ b

ã
= tr a− tr b, (2.3.55)

which is called the supertrace of a supermatrix. By definition, StrM ∈ A0[B], for all
supermatrix M . In addition, the supertrace has the desired property:

Str(M1M2) = Str(M2M1), for arbitrary supermatrices M1 and M2

as long as they have the same size. (2.3.56)

Indeed,

Str(M1M2) = tr(a1a2) + tr(σ1χ2)− tr(χ1σ2)− tr(b1b2),

= tr(a2a1) + tr(σ2χ1)− tr(χ2σ1)− tr(b2b1) = Str(M2M1).

Remark 2.3.7.

• If a = b in Eq. 2.3.48, then Str(M) = 0. In particular, Str

Å
I2 0
0 I2

ã
= 0.

• The supertrace is a linear operator

Str(λ1M1 + λ2M2) = λ1Str(M1) + λ2Str(M2), ∀λ1, λ2 ∈ R, (2.3.57)

Supertranspose of a Supermatrix

Let M =

Å
a σ

χ b

ã
be a supermatrix. We define the supertranspose of M as

MT :=

Å
aT χT

−σT bT

ã
. (2.3.58)

Thus, the following equations hold

MΦ · Φ′ = (MΦ)TΣΦ′ = ΦTMTΣΦ′, ∀Φ,Φ′ ∈ A2
0[B]×A2

1[B]. (2.3.59)

Remark 2.3.8.
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• The supertranspose is linear,

(λ1M1 + λ2M2)
T = λ1M

T
1 + λ2M

T
2 , ∀λ1, λ2 ∈ R, (2.3.60)

• The supertrace is invariant under the supertranspose,

Str(M) = Str(MT). (2.3.61)

• Unlike the usual transpose, the supertranspose is not an involution. To be more
explicit, Ä

MT
äT
̸=M, (2.3.62)

unless σ = χ = 0.

•

(M1M2)
T =MT

2 M
T
1 , for all supermatrices M1 and M2 of the same size.

(2.3.63)

Indeed, let Mi =

Å
ai σi
χi bi

ã
be a supermatrix, for i ∈ {1, 2}. Then,

MT
2 M

T
1 =

Å
aT2 χT2
−σT2 bT2

ãÅ
aT1 χT1
−σT1 bT1

ã
=

Å
aT2 a

T
1 − χT2 σT1 aT2 χ

T
1 + χT2 b

T
1

−(σT2 aT1 + bT2 σ
T
1 ) −σT2 χT1 + bT2 b

T
1

ã
=

Å
a1a2 + σ1χ2 a1σ2 + σ1b2
χ1a2 + b1χ2 χ1σ2 + b1b2

ãT
=

ÅÅ
a1 σ1
χ1 b1

ãÅ
a2 σ2
χ2 b2

ããT
= (M1M2)

T.

(2.3.64)

Superdeterminant and Logarithm

In the theory of conventional square matrices, the determinant has the following prop-
erties:

(a) det(AB) = detAdetB, ∀A,B ∈ Cn×n, ∀n ∈ N,

(b) tr lnA = ln detA, whenever lnA is well-defined.

These equations remain true when A and B have entries in A0[B]. Indeed, let f(x, y) =
det(xy) and g(x, y) = detx det y, for all x, y ∈ Rn×n. This functions are polynomials
and hence thet are smooth. Therefore, their extensions on An×n

0 [B] defined via Taylor
expansion coincide. This proves Property (a). On the other hand, Property (b) was
already proved in Eq. 2.3.25 via an analogue argument.

We want to define the analog of the determinant for a supermatrix such that its
relationship with the supertrace mimics Properties (a) and (b). More precisely, we look
for a definition of superdeterminant such that:

(A) Sdet(M1M2) = Sdet(M1)Sdet(M2), for arbitrary supermatrices M1 and M2 as
long as they have the same size.
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(B) Str lnM = ln SdetM .

For (B) to be well-defined, we first need to define lnM , for M supermatrix. We
distinguish three cases:

Case 1: Assume that M is a block-diagonal matrix, M =

Å
a 0
0 b

ã
, such that a, b are

invertible and lnx(a), lnx(b) are well-defined (cf. Eq. 2.3.24). In this case, we define

ln

Å
a 0
0 b

ã
:=

Å
ln a 0
0 ln b

ã
. (2.3.65)

Case 2: Assume a = I2 and b = I2, then M =

Å
I2 σ

χ I2

ã
. In this case, we define

ln

Å
I +

Å
0 σ

χ 0

ãã
:= −

∑
j≥1

(−1)j

j

Å
0 σ

χ 0

ãj
, (2.3.66)

where the sum is finite since

Å
0 σ

χ 0

ã
is nilpotent. ObserveÅ

0 σ

χ 0

ã2k
=

Å
(σχ)k 0
0 (χσ)k

ã
,

Å
0 σ

χ 0

ã2k−1
=

Å
0 (σχ)k−1σ

(χσ)k−1χ 0

ã
, ∀k ∈ N.

(2.3.67)

If we plug both equations into Eq. 2.3.66, we obtain

ln

Å
I +

Å
0 σ

χ 0

ãã
= −

∑
k≥1

(−1)2k

2k

Å
0 σ

χ 0

ã2k
−
∑
k≥1

(−1)2k−1

2k − 1

Å
0 σ

χ 0

ã2k−1
= −

∑
k≥1

1

2k

Å
(σχ)k 0
0 (χσ)k

ã
+
∑
k≥1

1

2k − 1

Å
0 (σχ)k−1σ

(χσ)k−1χ 0

ã
, (2.3.68)

where in the first step we used the fact that the sum in Eq. 2.3.66 is finite, hence it
can be reordered into a sum over even and odd powers.

Case 3: In the general case, let M =

Å
a σ

χ b

ã
be a supermatrix such that a, b are

invertible and lnx(a), lnx(b) are well-defined. We define

lnM = ln

ÅÅ
a 0
0 b

ãÅ
I2 a−1σ
b−1χ I2

ãã
:= ln

Å
a 0
0 b

ã
+ ln

Å
I +

Å
0 a−1σ

b−1χ 0

ãã
,

=

Ç
ln a−

∑
k≥1

1
2k (a

−1σb−1χ)k
∑

k≥1
1

2k−1(a
−1σb−1χ)k−1a−1σ∑

k≥1
1

2k−1(b
−1χa−1σ)k−1b−1χ ln b−

∑
k≥1

1
2k (b

−1χa−1σ)k

å
. (2.3.69)

Now we are able to define the superdeterminant. As a first step, let M be a block-

diagonal supermatrix, M =

Å
a 0
0 b

ã
, such that a, b are invertible and lnx(a), lnx(b) are

well-defined. We compute

Str lnM = Str

Å
ln a 0
0 ln b

ã
= tr ln a− tr ln b = ln det a− ln det b = ln

Å
det a

det b

ã
,

(2.3.70)
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where we used the definition of Supertrace and Property (b). In order to satisfy Prop-
erty (B), we need

ln SdetM = Str lnM = ln

Å
det a

det b

ã
. (2.3.71)

Hence, we define

Sdet

Å
a 0
0 b

ã
:=

det a

det b
. (2.3.72)

This definition ensures that the superdeterminant of block-diagonal supermatrices sat-
isfies Property (A) too. Indeed,

Sdet

ÅÅ
a1 0
0 b1

ãÅ
a2 0
0 b2

ãã
= Sdet

Å
a1a2 0
0 b1b2

ã
=

det(a1a2)

det(b1b2)

=
det a1
det b1

det a2
det b2

= Sdet

Å
a1 0
0 b1

ã
Sdet

Å
a2 0
0 b2

ã
, (2.3.73)

where in the second line we used the multiplicativity of the usual determinant.

For the general case we have the following proposition

Proposition 2.3.9. Suppose that a, b are invertible and ln a, ln b are well-defined. As-
sume that Properties (A) and (B) hold. Then,

Sdet

Å
a σ

χ b

ã
=

det a

det b
det
(
I2 − a−1σb−1χ

)
. (2.3.74)

In particular, Sdet

Å
a σ

χ b

ã
∈ A0[B].

Proof. To begin with, assume that a = I2 and b = I2. In this case, we need to prove

Sdet

Å
I +

Å
0 σ

χ 0

ãã
= det(I2 − σχ). (2.3.75)

Using Property (B) and Eq. 2.3.68, we obtain

lnSdet

Å
I +

Å
0 σ

χ 0

ãã
= Str ln

Å
I +

Å
0 σ

χ 0

ãã
= Str

Ñ
−
∑
k≥1

1

2k

Å
(σχ)k 0
0 (χσ)k

ã
+
∑
k≥1

1

2k − 1

Å
0 (σχ)k−1σ

(χσ)k−1χ 0

ãé
= −

∑
k≥1

1

2k
Str

Å
(σχ)k 0
0 (χσ)k

ã
+
∑
k≥1

1

2k − 1
Str

Å
0 (σχ)k−1σ

(χσ)k−1χ 0

ã
, (2.3.76)

where in the last step we used the linearity of the supertrace for finite sums. We
compute each term of the above sum

Str

Å
(σχ)k 0
0 (χσ)k

ã
= tr

Ä
(σχ)k

ä
− tr
Ä
(χσ)k

ä
= 2 tr

Ä
(σχ)k

ä
,

Str

Å
0 (σχ)k−1σ

(χσ)k−1χ 0

ã
= 0, ∀k ∈ N, (2.3.77)
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where in the first line we used Eq. 2.3.54 since σ,χ are matrices with fermionic entries.
By plugging the above results into Eq. 2.3.76, we obtain

Str ln

Å
I +

Å
0 σ

χ 0

ãã
= −

∑
k≥1

1

k
tr
Ä
(σχ)k

ä
= − tr

Ñ∑
k≥1

1

k
(σχ)k

é
= tr ln(I2 − σχ) = ln det(I2 − σχ), (2.3.78)

where in the second line we used the definition of logarithm of a matrix with bosonic
entries (cf. 2.3.24) and Property (b). Hence, Eq. 2.3.74 holds.

For the general case, assume that a, b are invertible and ln a, ln b are well-defined.
Using Property A and Eq. 2.3.72, 2.3.75, we get

Sdet

Å
a σ

χ b

ã
= Sdet

ÅÅ
a 0
0 b

ãß
I +

Å
0 a−1σ

b−1χ 0

ã™ã
= Sdet

Å
a 0
0 b

ã
Sdet

Å
I +

Å
0 a−1σ

b−1χ 0

ãã
=

det a

det b
det
(
I2 − a−1σb−1χ

)
. (2.3.79)

This concludes the proof of the proposition.

2.3.4 Superrotation & SUSY Invariant Functions

A superrotation is a linear transformation Φ 7→ RΦ such that

RΦ · RΦ′ = Φ · Φ′, ∀Φ,Φ′ ∈ A2
0[B]×A2

1[B]. (2.3.80)

By Eq. 2.3.59, the LHS of the above equation is equivalent to

RΦ · RΦ′ = (RΦ)TΣRΦ′ = ΦTRTΣRΦ′, ∀Φ,Φ′ ∈ A2
0[B]×A2

1[B], (2.3.81)

where RT is defined in Eq. 2.3.58 and Σ is given in Eq. 2.3.45. Therefore, R is a
superrotation iff

RTΣR = Σ. (2.3.82)

A simple example is the case when R =

Å
a 0
0 b

ã
with a ∈ R2×2 a standard rotation (i.e.,

aT = a−1) and b ∈ R2×2 be such that bTlb = l. Then, R is a superrotation. Indeed,

RΦ · RΦ′ = (RΦ)TΣ(RΦ′) = XTaTaX′ +ΨTbTlbΨ′ = XTaTaX′ +ΨTlΨ′ = Φ · Φ′.

The next result provides conditions to guarantee that R is a superrotation.

Proposition 2.3.10. Let M =

Å
a σ

χ b

ã
be a supermatrix, t ∈ R and Rt = etM . Then,

Rt = etM is a superrotation for all t ∈ R iff MTΣ = −ΣM . Equivalently, Rt is a
superrotation for all t ∈ R iff

aT = −a, bTl = −lb, σ = −χTl, σT = lχ. (2.3.83)

In particular, StrM = 0, and therefore SdetRt = 1, for all t ∈ R.
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Proof. Assume that MTΣ = −ΣM . Hence, MT = −ΣMΣ−1. Using also Eq. 2.3.58
and 2.3.63, we compute

RT
t =

Ñ∑
k≥0

tk

k!
Mk

éT

=
∑
k≥0

tk

k!
(Mk)T =

∑
k≥0

tk

k!
(MT)k =

∑
k≥0

tk

k!
(−ΣMΣ−1)k

= Σ

Ñ∑
k≥0

(−t)k

k!
Mk

é
Σ−1 = Σe−tMΣ−1 = ΣR−1t Σ−1. (2.3.84)

Therefore,

RT
t ΣRt = ΣR

−1
t Σ−1ΣRt = Σ, (2.3.85)

which is the desired result.

Suppose now that Rt = etM is a superrotation for all t ∈ R. Expanding in powers
of t, we obtain

RtΦ · RtΦ
′ = Φ · Φ′ + t(MΦ · Φ′ +Φ ·MΦ′) + o(t), ∀Φ,Φ′ ∈ A2

0[B]×A2
1[B].
(2.3.86)

Since we suppose that Rt is a superrotation, the linear term in t on the RHS of the
above equation must be zero, that is,

0 =MΦ · Φ′ +Φ ·MΦ′ = (MΦ)TΣΦ′ +ΦTΣMΦ′ = ΦTMTΣΦ′ +ΦTΣMΦ′. (2.3.87)

Hence, we must have MTΣ = −ΣM .

By a direct computation, MTΣ = −ΣM is equivalent to aT = −a, bTl = −lb,
σ = −χTl and σT = lχ. It follows that a is antisymmetric and in particular, tr a = 0.
On the other hand, b = −lbTl−1. Hence,

tr b = − tr
Ä
lbTl−1

ä
= tr
Ä
bTl−1l

ä
= − tr bT = − tr b, (2.3.88)

where we used the invariance under cyclic permutations of the usual trace and its
invariance under the transpose. Consequently, we obtain tr b = 0.

Finally, using StrM = tr a− tr b = 0, we have

SdetRt = eln SdetRt = etStrM = e0 = 1. (2.3.89)

This concludes the proof.

Our next goal is to define functions invariant under superrotations. Recall that we
have defined functions on supervectors (cf. Eq. 2.3.40). Let Φ 7→ FΦ ∈ A0[B] be a
function. F is called SUSY invariant (or supersymmetric invariant), if

F (RΦ) = F (Φ), ∀R = etM superrotation. (2.3.90)

A SUSY invariant function has a simplified form. This is the content of the next lemma.
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Lemma 2.3.11. Let Φ 7→ FΦ be SUSY invariant. Then, there is a function f ∈
C∞(R+) ∩ C1([0,∞)) such that

F (Φ) = f(Φ2). (2.3.91)

Proof. Let M be a supermatrix of the form

M =

Å
0 σ

l−1σ 0

ã
, where σ =

Å
α1 0
0 α2

ã
, l−1σ =

Å
0 2α2

−2α1 0

ã
. (2.3.92)

Then, R = etM is a superrotation, for all t ∈ R, due to Proposition 2.3.10. Remember

Φ =

Å
X
Ψ

ã
, where X =

Å
X1

X2

ã
∈ A2

0[B] and Ψ =

Å
ψ

ψ

ã
∈ A2

1[B]. It suffices to prove Eq.

2.3.91 for X ∈ R2. Indeed, the general case is obtained by Taylor expansion on both
sides. For t small, we expand

Φ 7→ RΦ = Φ+ tMΦ+ o(t), where MΦ =

Å
n
ρ

ã
, n =

Å
α1ψ

α2ψ

ã
, and ρ = 2

Å
α2X2

−α1X1

ã
.

(2.3.93)

Since F (RtΦ) = F (Φ) and F is smooth, we obtain

F (Φ + tMΦ)− F (Φ) = o(t). (2.3.94)

We compute

F (Φ + tMΦ) = F0(X + tn) + F1(X + tn)
(
ψ+ tρ1

)
+ F2(X + tn)(ψ+ tρ2)

+ F3(X + tn)
(
ψ+ tρ1

)
(ψ+ tρ2) (2.3.95)

Expanding Fj in tn, we get

Fj(X + tn) = Fj(X) +
∂Fj(X)

∂X1
tn1 +

∂Fj(X)

∂X2
tn2 + o(t). (2.3.96)

Hence,

F (Φ + tMΦ)− F (Φ) = t
2∑

j=1

ï
∂F0(X)

∂Xj
+
∂F1(X)

∂Xj
ψ+

∂F2(X)

∂Xj
ψ

ò
nj

+ t
[
F1(X)ρ1 + F2(X)ρ2 + F3(X)(ψρ2 + ρ1ψ)

]
+ o(t). (2.3.97)

Observe

ψn1 = 0, ψn2 = −α2ψψ, ψρ2 = −2α1X1ψ, (2.3.98)

ψn1 = α1ψψ, ψ1n2 = 0, ρ1ψ = 2α2X2ψ. (2.3.99)

It follows

F (Φ + tMΦ)− F (Φ) = tα1

ï
∂F0(X)

∂X1
ψ− 2F2(X)X1 +

∂F2(X)

∂X1
ψψ− 2F3(X)X1ψ

ò
+ tα2

ï
∂F0(X)

∂X2
ψ+ 2F1(X)X2 −

∂F1(X)

∂X2
ψψ− 2F3(X)X2ψ

ò
+ o(t).

(2.3.100)
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Setting ψ = ψ = 0, we get F1 = F2 = 0. Hence,

F (Φ + tMΦ)− F (Φ) = tα1

ï
∂F0(X)

∂X1
− 2F3(X)X1

ò
ψ+ tα2

ï
∂F0(X)

∂X2
− 2F3(X)X2

ò
ψ+ o(t),

which implies

∇F0(X) = 2F3(X)

Å
X1

X2

ã
. (2.3.101)

Changing to polar coordinates,

ê1 = cos θêr − sin θêθ, ê2 = sin θêr + cos θêθ, (2.3.102)

we obtain

∇F (X1,X2) =
∂F0(r, θ)

∂r
êr +

1

r

∂F0(r, θ)

∂θ
êθ,Å

X1

X2

ã
= [r cos θ(cos θêr − sin θêθ) + r sin θ(sin θêr + cos θêθ)]

= r(cos2 θ + sin2 θ)êr = rêr. (2.3.103)

In this way, Eq. 2.3.101 becomes

∂F0(r, θ)

∂r
êr +

1

r

∂F0(r, θ)

∂θ
êθ = 2F3(r, θ)rêr. (2.3.104)

It follows ∂F0(r,θ)
∂θ = 0, hence F0 is radial and there is a function f ∈ C∞(R) such that

F0(r) = f(r2). (2.3.105)

Hence, the RHS of the above equation does not depend on θ. In particular, F3 is also
radial and

F3(r) =
df(u)

du

∣∣∣∣
u=r2

. (2.3.106)

2.4 Transfer Operator representation

We give a proof of Thm. 2.2.1 below.

Proof. Let z ∈ C with Im z > 0. Observe∣∣∣∣∣
∑1
σ0,σ1=0G

ΛL
z (j0 + σ0e, j1 + σ1e)

4

∣∣∣∣∣
2

=

(∑1
σ0,σ1=0G

ΛL
z (j0 + σ0e, j1 + σ1e)

4

)(∑1
σ′0,σ

′
1=0G

ΛL
z (j0 + σ′0e, j1 + σ

′
1e)

4

)

=
1∑

σ0,σ1,σ′0,σ
′
1=0

GΛL
z (j0 + σ0e, j1 + σ1e)G

ΛL
z (j0 + σ′0e, j1 + σ

′
1e)

16
. (2.4.1)
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We represent each GΛL
z (j0 + σ0e, j + σe)G

ΛL
z (j0 + σ′0e, j + σ

′e) in terms of a Gaussian
integral involving real and Grassmann variables as in Section 2.3. Let G := A[B] be
the real Grassmann algebra generated by

B :=
¶
ψ+

x ,ψ
+

x ,ψ
−
x ,ψ

−
x

©
x∈ΛL

(2.4.2)

Remember that G = G0⊕G1, see Eq. 2.3.7. Recall that for a given function F (Φ+) or
F (Φ−) the corresponding integral is defined by∫

dΦ±F(Φ±) :=

∫
R2

d2X±

π

∂

∂ψ
±

∂

∂ψ±
F(Φ±),

where Φ± =

Å
X±

Ψ±

ã
, X± ∈ R2, Ψ± =

Ç
ψ
±

ψ±

å
∈ G1,

see Eq. 2.3.41. Using Thm. 2.3.6, we can write

GΛL
z (j0 + σ0e, j1 + σ1e) = i

∫
dΦ+ ψ+

j0+σ0e
ψ

+

j1+σ1ee
iΦ+·[z−HΛL ]Φ+

, (2.4.3)

GΛL
z (j0 + σ′0e, j1 + σ

′
1e) = (HΛL − z)−1

j1+σ′1e,j0+σ
′
0e

= −i
∫

dΦ− ψ−
j1+σ′1e

ψ
−
j0+σ′0e

e−iΦ
−·[z−HΛL ]Φ−

, (2.4.4)

where we used that HΛL is self-adjoint and Re iz < 0.

For simplicity, we drop the superindex of Φ+ in the representation 2.4.3. Expanding
the argument of the exponential, we obtain

iΦ ·
î
z −HΛL

ó
Φ =− η

L∑
j=−L

1∑
σ=0

Φ2
j+σe +

L∑
j=−L

i(E−ωj)

1∑
σ=0

Φ2
j+σe

− 2i
L−1∑
j=−L

1∑
σ=0

Φj+σe · Φj+1+σe − 2i
L∑

j=−L
Φj · Φj+e. (2.4.5)

Hence,∑1
σ0,σ1=0G

ΛL
z (j0 + σ0e, j1 + σ1e)

4

= i

1∑
σ0,σ1,σ′0,σ

′
1=0

∫ L∏
j=−L

dΦj dΦj+e

ψj0+σ0eψj1+σ1e

4

L−1∏
j=−L

e−2iΦj ·Φj+1e−2iΦj+e·Φj+1+e

×
L∏

j=−L
e−η(Φ

2
j+Φ2

j+e)eiE(Φ
2
j+Φ2

j+e)e−iωj(Φ
2
j+Φ2

j+e)e−2iΦj ·Φj+e

= i

∫ L∏
j=−L

dΦj dΦj+e

Å
ψj0 +ψj0+e

2

ãÇ
ψj1 +ψj1+e

2

å L−1∏
j=−L

e−2iΦj ·Φj+1e−2iΦj+e·Φj+1+e

×
L∏

j=−L
e−η(Φ

2
j+Φ2

j+e)eiE(Φ
2
j+Φ2

j+e)e−iωj(Φ
2
j+Φ2

j+e)e−2iΦj ·Φj+e , (2.4.6)
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where in the second line we used the linearity of the integral and the following equation

1∑
σ0,σ1=0

ψj0+σ0eψj1+σ1e

4
=

Å
ψj0 +ψj0+e

2

ãÇ
ψj1 +ψj1+e

2

å
. (2.4.7)

To introduce a transfer operator representation, we define

[T+F](Φ,Φ
′) :=

∫
dΘdΘ′ e−2iΦ·Θe−2iΦ

′·Θ′
F(Θ,Θ′),

Γ+,ωj
(Φ,Φ′) := e−η(Φ

2+Φ′2)eiEΦ·ΦeiEΦ
′·Φ′

e−iωj(Φ
2+Φ′2)e−2iΦ·Φ

′
, (2.4.8)

where Θ and Θ′ are two supervectors. The relevant observables above are

O(Φ,Φ′) :=
ψ+ψ′

2
,

∗
O(Φ,Φ′) :=

ψ+ψ′

2
= −O(Φ,Φ′).

By hypothesis, the observables are located on the j0-th and j1-th layer of the ladder
D2 with j0 < j1. To make the notation more succinct, let

oF(Φ,Φ′) := O(Φ,Φ′)F(Φ,Φ′),
∗
oF(Φ,Φ′) :=

∗
O(Φ,Φ′)F(Φ,Φ′). (2.4.9)

Finally, we introduce the functions Fr(Φ,Φ
′) = Fl(Φ,Φ

′) = 1. With these definitions,
we can rewrite Eq. 2.4.1 as∑1

σ0,σ1=0G
ω,ΛL
z (j0 + σ0e, j1 + σ1e)

4

= i

∫ L∏
j=−L

dΦj dΦj+e

Å
ψj0 +ψj0+e

2

ã j0−1∏
j=−L

e−2iΦj ·Φj+1e−2iΦj+e·Φj+1+eΓ+,ωj
(Φj ,Φj+e)

× Γ+,ωj0
(Φj0 ,Φj0+e)

j1−1∏
j=j0

e−2iΦj ·Φj+1e−2iΦj+e·Φj+1+eΓ+,ωj
(Φj+1,Φj+1+e)

×
Ç
ψj1 +ψj1+e

2

å L−1∏
j=j1

e−2iΦj ·Φj+1e−2iΦj+e·Φj+1+eΓ+,ωj
(Φj+1,Φj+1+e)

= i

∫
dΦj0 dΦj0+e

î
oΓ+,ωj0

T+Γ+,ωj0−1
· · ·T+Γ+,ω−L

Fl

ó
(Φj0 ,Φj0+e)

×
î
T+Γ+,ωj0+1

· · ·T+o
∗Γ+,ωj1

T+Γ+,ωj1+1
· · ·T+Γ+,ωL

Fr

ó
(Φj0 ,Φj0+e).

Note that Γ+,ωj
can be written as

Γ+,ωj
(Φ,Φ′) = g0,+,ωj

(|X|2 +
∣∣X′∣∣2,X ·X′) + g1,+,ωj

(|X|2 +
∣∣X′∣∣2,X ·X′){ψψ+ψ′ψ′

}
+ g2,+,ωj

(|X|2 +
∣∣X′∣∣2,X ·X′){ψ′ψ+ψψ′

}
+ g3,+,ωj

(|X|2 +
∣∣X′∣∣2,X ·X′)ψψψ′ψ′

(2.4.10)

for the complex-valued smooth functions g0,+,ωj
, g1,+,ωj

, g2,+,ωj
and g3,+,ωj

on [0,∞)×R
given in Eq. 2.2.4.

Let F be a function of the form

F(Φ,Φ′) = f0(X,X
′) + f1(X,X

′)
{
ψψ+ψ′ψ′

}
+ f2(X,X

′)
{
ψ′ψ+ψψ′

}
+ f3(X,X

′)ψψψ′ψ′.
(2.4.11)
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By Lemma 2.4.1 below, [T+F] (Φ,Φ
′) and

î
Γ+,ωj

F
ó
(Φ,Φ′) have the same representation

as Eq. 2.4.11. Moreover, in terms of matrices, T+Γ+,ωj
= T+,ωj

, see Eq. 2.2.3. Indeed,Ü
f0
f1
f3
f3

ê
7−→
î
T+Γ+,ωj

óÜf0
f1
f2
f3

ê
=

1

π2
F2

Ü
0 0 0 1
0 1 0 0
0 0 −1 0
1 0 0 0

êÜ
g0,+,ωj

0 0 0

g1,+,ωj
g0,+,ωj

0 0

g2,+,ωj
0 g0,+,ωj

0

g3,+,ωj
2g1,+,ωj

2g2,+,ωj
g0,+,ωj

êÜ
f0
f1
f2
f3

ê
=

1

π2
F2

Ü
g3,+,ωj

2g1,+,ωj
2g2,+,ωj

g0,+,ωj

g1,+,ωj
g0,+,ωj

0 0

−g2,+,ωj
0 −g0,+,ωj

0

g0,+,ωj
0 0 0

êÜ
f0
f1
f2
f3

ê
= T+,ωj

Ü
f0
f1
f2
f3

ê
.

(2.4.12)

Recall that Fl(Φ,Φ
′) = 1. If we repeatedly use the above argument, then the termî

Γ+,ωj0
T+Γ+,ωj0−1

· · ·T+Γ+,ω−L
Fl

ó
(Φj0 ,Φj0+e) has also the same representation as 2.4.11.

Furthermore, it can be written as a product of matrices. Indeed,

Γ+,ωj0

−L∏
j=j0−1

T+Γ+,ωj


Ü

1
0
0
0

ê
=

Γ+,ωj0

−L∏
j=j0−1

T+,ωj


Ü

1
0
0
0

ê
. (2.4.13)

Now we apply the observable at j0 to the above expression. By Lemma 2.4.2 below,
we obtainî
oΓ+,ωj0

T+Γ+,ωj0−1
· · ·T+Γ+,ω−L

Fl

ó
(Φj0 ,Φj0+e) = R0,+,ωj0

,...,ω−L
(Xj0 ,Xj0+e)

ψj0 +ψj0+e

2

+ R1,+,ωj0
,...,ω−L

(Xj0 ,Xj0+e)
ψj0+eψj0ψj0 +ψj0ψj0+eψj0+e

2
, (2.4.14)

where R0,+,ωj0
,...,ω−L

and R1,+,ωj0
,...,ω−L

are complex-valued functions on R2×R2 given
by Eq. 2.2.6. Likewise, we can use the previous line of reasoning to compute the term
[o∗Γ+,ωj1

T+Γ+,ωj1+1
· · ·T+Γ+,ωL

Fr](Φj1 ,Φj1+e). Thus, we getî
o∗Γ+,ωj1

T+Γ+,ωj1+1
· · ·T+Γ+,ωL

Fr

ó
(Φj1 ,Φj1+e) = R0,+,ωj1

,...,ωL
(Xj1 ,Xj1+e)

ψj1 +ψj1+e

2

+ R1,+,ωj1
,...,ωL

(Xj1 ,Xj1+e)
ψj1+eψj1ψj1 +ψj1ψj1+eψj1+e

2
, (2.4.15)

where R0,+,ωj1
,...,ωL

(Xj1 ,Xj1+e) and R1,+,ωj1
,...,ωL

(Xj1 ,Xj1+e) are given in Eq. 2.2.6.

Let R(Φ,Φ′) be a function of the form

R(Φ,Φ′) = r0(X,X
′)
ψ+ψ′

2
+ r1(X,X

′)
ψ′ ψψ+ψψ′ψ′

2
. (2.4.16)
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Due to Lemma 2.4.2, [T+R] (Φ,Φ
′) and

î
Γ+,ωj

R
ó
(Φ,Φ′) have also the same structure

as Eq. 2.4.11. Hence, the action of its composition T+Γ+,ωj
also preserve the represen-

tation. Furthermore, in terms of matrices, T+Γ+,ωj
= T̃+,ωj

. Indeed,Å
r0
r1

ã
7→ T+Γ+,ωj

Å
r0
r1

ã
=
ig0,+,ωj

π2
F2

Å
0 1
1 0

ãÅ
1 0

α+,ωj
1

ãÅ
r0
r1

ã
=
ig0,+,ωj

π2
F2

Å
α+,ωj

1

1 0

ãÅ
r0
r1

ã
= T̃+,ωj

Å
r0
r1

ã
. (2.4.17)

Hence, î
T+Γ+,ωj0+1

· · ·T+o
∗Γ+,ωj1

T+Γ+,ωj1+1
· · ·T+Γ+,ωL

Fr

ó
(Φj0 ,Φj0+e)

= R̃j0,j1
0,+,ωj0+1,...,ωL

(Xj0 ,Xj0+e)
ψj0 +ψj0+e

2

+ R̃j0,j1
1,+,ωj0+1,...,ωL

(Xj0 ,Xj0+e)
ψj0+eψj0ψj0 +ψj0ψj0+eψj0+e

2
, (2.4.18)

where R̃j0,j1
0,+,ωj0+1,...,ωL

and R̃j0,j1
1,+,ωj0+1,...,ωL

are given by Eq. 2.2.6. Therefore,∑1
σ0,σ1=0G

ΛL
z (j0 + σ0e, j1 + σ1e)

4
= i

∫
R2×R2

d2Xj0d
2Xj0+e

π2
∂

∂ψj0

∂

∂ψj0

∂

∂ψj0+e

∂

∂ψj0+e

×
®
R0,+(Xj0 ,Xj0+e)

ψj0 +ψj0+e

2
+ R1,+(Xj0 ,Xj0+e)

ψj0+eψj0ψj0 +ψj0ψj0+eψj0+e

2

´
×
®
R̃j0,j1

0,+ (Xj0 ,Xj0+e)
ψj0 +ψj0+e

2
+ R̃j0,j1

1,+ (Xj0 ,Xj0+e)
ψj0+eψj0ψj0 +ψj0ψj0+eψj0+e

2

´
=
−i
2π2

∫
R2×R2

d2Xj0d
2Xj0+e

î
R1,+R̃

j0,j1
0,+ +R0,+R̃

j0,j1
1,+

ó
(Xj0 ,Xj0+e), (2.4.19)

where in the second equality we used the anticommutativity of the fermionic variables
and the fact that the only products which have all the generators at j0 and j0 + e are
ψj0

+ψj0+e

2 · ψj0+eψj0
ψj0

+ψj0
ψj0+eψj0+e

2 and
ψj0+eψj0

ψj0
+ψj0

ψj0+eψj0+e

2 · ψj0
+ψj0+e

2 . Indeed,

ψj0 +ψj0+e

2
·
ψj0+eψj0ψj0 +ψj0ψj0+eψj0+e

2
=
ψj0+eψj0+eψj0ψj0 +ψj0ψj0ψj0+eψj0+e

4

=
(−2)ψj0ψj0ψj0+eψj0+e

4
=
−ψj0ψj0ψj0+eψj0+e

2
. (2.4.20)

By the same token,

ψj0+eψj0ψj0 +ψj0ψj0+eψj0+e

2
·
ψj0 +ψj0+e

2
=
−ψj0ψj0ψj0+eψj0+e

2
.

We take the expectation on the average of the second moment of the Green’s function,

E

∣∣∣∣∣∣14
1∑

σ0,σ1=0

GΛL
z,ω,λ(j0 + σ0e, j1 + σ1e)

∣∣∣∣∣∣
2

=
1

4π4

∫
Ω

dP (ω)

∫
R2×R2

∫
R2×R2

d2X+

j0
d2X+

j0+ed
2X−

j0
d2X−

j0+e

×
¶
R1,+R̃

j0,j1
0,+ +R0,+R̃

j0,j1
1,+

©Ä
X+

j0
,X+

j0+e

ä¶
R1,−R̃

j0,j1
0,− +R0,−R̃

j0,j1
1,−

©Ä
X−

j0
,X−

j0+e

ä
.

(2.4.21)
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Remember that the terms Rk,− and R̃j0,j1
k,− , for k ∈ {0, 1}, are written in terms of a

product of the matrices Γε,ωj , Γ̃ε,ωj , Tε,ωj and T̃ε,ωj . The matrix elements of these
matrices are of the form

gk,ε,ωj
(X,X′) = e−η(|X|

2+|X′|2)eεiE(|X|
2+|X′|2)e−εiX·X

′
(ak,εω

2
j + bk,εωj + ck,ε)e

−iεωj(|X|2+|X′|2),

(2.4.22)

where the coefficients ak,ε, bk,ε and ck,ε are complex constants determined by Eq. 2.2.4.

Hence, there are complex polynomials pε

(
{Xj}Lj=−L,

¶
X′j

©L
j=−L

)
of order 2 in (Xj)l,

(X′j)l, for l ∈ {1, 2}, and qε
Ä
{ωj}Lj=−L

ä
of order 2 in each ωj such that

E

∣∣∣∣∣∣14
1∑

σ0,σ1=0

GΛL
z,ω,λ(j0 + σ0e, j1 + σ1e)

∣∣∣∣∣∣
2

=
1

4π4

∫
Ω

L∏
j=−L

dP0(ωj)

∫
(R2×R2)2L+1

L∏
j=−L

dX+

j dX−
j dX+

j+e dX
−
j+e

× e−η
∑L

j=−L |X+
j |

2
+|X+

j+e|
2
+|X−

j |
2
+|X−

j+e|
2

× eip+
(
{X+

j }
L

j=−L
,{X+

j+e}
L

j=−L

)
e
−ip−

(
{X−

j }
L

j=−L
,{X−

j+e}
L

j=−L

)

× q+
Ä
{ωj}Lj=−L

ä
q−
Ä
{ωj}Lj=−L

ä
e
−i

∑L
j=−Lωj

(
|X+

j |
2
+|X+

j+e|
2−|X−

j |
2−|X−

j+e|
2
)

(2.4.23)

To interchange the order of the integrals in the RHS of above equation, it is sufficient
to prove that the absolute value of the integrand is integrable. By Fubini-Tonelli, we
obtain∫

Ω

L∏
j=−L

dP0(ωj)

∫
(R2×R2)2L+1

L∏
j=−L

dX+

j dX−
j dX+

j+e dX
−
j+e

× e−η
∑L

j=−L |X+
j |

2
+|X+

j+e|
2
+|X−

j |
2
+|X−

j+e|
2

×
∣∣∣∣q+Ä{ωj}Lj=−L

ä
q−
Ä
{ωj}Lj=−L

ä
e
−i

∑L
j=−Lωj

(
|X+

j |
2
+|X+

j+e|
2−|X−

j |
2−|X−

j+e|
2
)∣∣∣∣

≤
∫
(R2×R2)2L+1

L∏
j=−L

dX+

j dX−
j dX+

j+e dX
−
j+e e

−η
∑L

j=−L |X+
j |

2
+|X+

j+e|
2
+|X−

j |
2
+|X−

j+e|
2

× E
ï∣∣∣∣q+Ä{ωj}Lj=−L

ä
q−
Ä
{ωj}Lj=−L

ä
e
−i

∑L
j=−Lωj

(
|X+

j |
2
+|X+

j+e|
2−|X−

j |
2−|X−

j+e|
2
)∣∣∣∣ò.

(2.4.24)

Note that a sufficient condition to assure that the above integral is convergent is that
there is a constant K > 0 such that

E
[∣∣∣q+Ä{ωj}Lj=−L

ä
q−
Ä
{ωj}Lj=−L

ä
e−i

∑L
j=−Lωjxj

∣∣∣] ≤ K, ∀xj ∈ R. (2.4.25)

Observe that there are complex constants {cα}α∈{0,1,2,3,4}2L+1 such that

q+
Ä
{ωj}Lj=−L

ä
q−
Ä
{ωj}Lj=−L

ä
e−i

∑L
j=−Lωjxj =

∑
α∈{0,1,2,3,4}2L+1

cα

L∏
j=−L

ω
αj

j e
−iωj ,

(2.4.26)
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where the constants cα can be written in terms of η,E and i as they depend on the
constants ak,ε, bk,ε and ck,ε, see Eq. 2.4.27. Due to the linearity of the expectation and

the independence of {ωj}Lj=−L, we obtain

E
[
q+
Ä
{ωj}Lj=−L

ä
q−
Ä
{ωj}Lj=−L

ä
e−i

∑L
j=−Lωjxj

]
=

∑
α∈{0,1,2,3,4}2L+1

cαE

 L∏
j=−L

ω
αj

j e
−iωjxj


=

∑
α∈{0,1,2,3,4}2L+1

cα

L∏
j=−L

∫
R
dP0(ωj)

î
ω
αj

j e
−iωjxj

ó
. (2.4.27)

Since we assume that P0 has moments up to order 4, we get

E
[
q+
Ä
{ωj}Lj=−L

ä
q−
Ä
{ωj}Lj=−L

ä
e−i

∑L
j=−Lωjxj

]
=

∑
α∈{0,1,2,3,4}2L+1

cα

L∏
j=−L

∫
R
dP0(ωj)ω

αj

j e
−iωjxj =

∑
α∈{0,1,2,3,4}2L+1

cα

L∏
j=−L

iαj
dαj

dx
αj

j

P̂0(xj).

(2.4.28)

Note that∣∣∣∣∣ dαj

dx
αj

j

P̂0(xj)

∣∣∣∣∣ =
∣∣∣∣∫

R
dP0(ωj)ω

αj

j e
−iωjxj

∣∣∣∣ ≤ max
ωj∈suppP0

|ωj |αj , ∀xj ∈ R. (2.4.29)

Therefore, Ineq. 2.4.25 is valid, forK =
∑
α∈{0,1,2,3,4}2L+1 |cα|

∏L
j=−Lmaxωj∈suppP0 |ωj |αj ,

by Eq. 2.4.28 and 2.4.29.

Below we state and provide a proof of some lemmas which were used in the proof
of Thm. 2.2.1.

Lemma 2.4.1. Let F be a function of the form

F(Φ,Φ′) = f0(X,X
′) + f1(X,X

′)
{
ψψ+ψ′ψ′

}
+ f2(X,X

′)
{
ψ′ψ+ψψ′

}
+ f3(X,X

′)ψψψ′ψ′,
(2.4.30)

where f0, f1, f2, f3 ∈ L1(R2 × R2). Then, Γε,ωjF and TεF preserve the representation
of F. More precisely,[
Γε,ωjF

]
(Φ,Φ′) =g0,ε,ωjf0 +

[
g0,ε,ωjf1 + g,ε,ωjf0

]{
ψψ+ψ′ψ′

}
+
[
g0,ε,ωjf2 + g2,ε,ωjf0

]{
ψ′ψ+ψψ′

}
+
[
g3,ε,ωjf0 + 2g1,ε,ωjf1 + 2g2,ε,ωjf2 + g0,ε,ωjf3

]
ψψψ′ψ′, (2.4.31)

[TεF] (Φ,Φ
′) =

1

π2

î
f̂3(2εX, 2εX

′) + f̂2(2εX, 2εX
′)
{
ψψ+ψ′ψ′

}ó
+

1

π2

î
−f̂1(2εX, 2εX′)

{
ψ′ψ+ψψ′

}
+ f̂0(2εX, 2εX

′)ψψψ′ψ′
ó
,

(2.4.32)

where f̂j denotes the Fourier transform given by

f̂j(X,X
′) =

∫
R2×R2

dY dY′ e−iX·Ye−iX
′·Y′

fj(Y,Y
′), ∀X,X′ ∈ R2. (2.4.33)
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Equivalently, we can also represent the action of Γ+,ωj
and T on F via matrices as

follows:Ü
f0
f1
f2
f3

ê
7−→Γε,ωj

Ü
f0
f1
f2
f3

ê
=

Ü
g0,ε,ωjf0

g0,ε,ωjf1 + g1,ε,ωjf0
g0,ε,ωjf2 + g2,ε,ωjf0

g3,ε,ωjf0 + 2g1,ε,ωjf1 + 2g2,ε,ωjf2 + g0,ε,ωjf3

ê
=

Ü
g0,ε,ωj 0 0 0
g1,ε,ωj g0,ε,ωj 0 0
g2,ε,ωj 0 g0,ε,ωj 0
g3,ε,ωj 2g1,ε,ωj 2g2,ε,ωj g0,ε,ωj

êÜ
f0
f1
f2
f3

ê
, (2.4.34)Ü

f0
f1
f2
f3

ê
7−→Tε

Ü
f0
f1
f2
f3

ê
=

1

π2
F2ε

Ü
f3
f1
−f2
f0

ê
=

1

π2
F2ε

Ü
0 0 0 1
0 1 0 0
0 0 −1 0
1 0 0 0

êÜ
f0
f1
f2
f3

ê
,

(2.4.35)

where F2ε denotes the Fourier transform after scaling by 2ε.

Proof. Let F be of the form 2.4.30. By a direct computation, Γ+,ωj
F has the desired

representation. Hence, we only focus on the expression [TεF] (Φ,Φ
′), for ε ∈ {−1, 1}.

Let Θ =

Ñ
Y
χ
χ

é
and Θ′ =

Ñ
Y′

χ′

χ′

é
be supervectors. Using the representation of F, we

get

[TεF] (Φ,Φ
′) =

∫
dΘdΘ′e−2εiΦ·Θe−2εiΦ

′·Θ′
F(Θ,Θ′)

=

∫
dΘdΘ′e−2εiΦ·Θe−2εiΦ

′·Θ′(
f0 + f1

{
χχ+ χ′χ′

}
+ f2

{
χ′χ+ χχ′

}
+ f3χχχ′χ

′).
By linearity of the integral, we can separately compute each addend. To make the
computations below more succinct, note that the following equations are valid

∂

∂χ

∂

∂χ
e−εi(ψχ+χψ) =

∂

∂χ

∂

∂χ

{
1− εi

(
ψχ+ χψ

)
−ψχχψ

}
= −ψψ, (2.4.36)

∂

∂χ

∂

∂χ
e−εi(ψχ+χψ)χ =

∂

∂χ

∂

∂χ

{
1− εi

(
ψχ+ χψ

)
−ψχχψ

}
χ = −εiψ, (2.4.37)

∂

∂χ

∂

∂χ
e−εi(ψχ+χψ)χχ =

∂

∂χ

∂

∂χ

{
1− εi

(
ψχ+ χψ

)
−ψχχψ

}
χχ = −1, (2.4.38)

By linearity of the integral, we can separately compute each addend. To begin with,∫
dΘdΘ′e−2εiΦ·Θe−2εiΦ

′·Θ′
f0(Y,Y

′)

=

∫
R2×R2

d2Yd2Y′

π2
e−2εiX·Ye−2εiX

′·Y′
f0(Y,Y

′)
∂

∂χ

∂

∂χ
e−εi(ψχ+χψ) ∂

∂χ′
∂

∂χ′
e−εi(ψ

′χ′+χ′ψ′)

=

∫
R2×R2

d2Yd2Y′

π2
e−2εiX·Ye−2εiX

′·Y′
f0(Y,Y

′)
{
−ψψ

}{
−ψ′ψ′

}
=

1

π2
f̂0(2εX, 2εX

′)ψψψ′ψ′, (2.4.39)
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where we used Eq. 2.4.36 twice in the second line. Next,∫
dΘdΘ′e−2εiΦ·Θe−2εiΦ

′·Θ′
f1(Y,Y

′)χχ

=

∫
R2×R2

d2Yd2Y′

π2
e−2εiX·Ye−2εiX

′·Y′
f1(Y,Y

′)
∂

∂χ

∂

∂χ
e−εi(ψχ+χψ)χχ

∂

∂χ′
∂

∂χ′
e−εi(ψ

′χ′+χ′ψ′)

=

∫
R2×R2

d2Yd2Y′

π2
e−2εiX·Ye−2εiX

′·Y′
f1(Y,Y

′)(−1)2ψ′ψ′ = 1

π2
f̂1(2εX, 2εX

′)ψ′ψ′.

(2.4.40)

where we used Eq. 2.4.36 and 2.4.38 in the second line. By the same token,∫
dΘdΘ′e−2εiΦ·Θe−2εiΦ

′·Θ′
f1(Y,Y

′)χ′χ′ =
1

π2
f̂1(2εX, 2εX

′)ψψ. (2.4.41)

Therefore,∫
dΘdΘ′e−2εiΦ·Θe−2εiΦ

′·Θ′
f1(Y,Y

′)
{
χχ+ χ′χ′

}
=

1

π2
f̂1(2εX, 2εX

′)
{
ψψ+ψ′ψ′

}
.

(2.4.42)

Next,∫
dΘdΘ′e−2εiΦ·Θe−2εiΦ

′·Θ′
f2(Y,Y

′)χχ′

=

∫
R2×R2

d2Yd2Y′

π2
e−2εiX·Ye−2εiX

′·Y′
f2(Y,Y

′)
∂

∂χ

∂

∂χ
e−εi(ψχ+χψ)χ

∂

∂χ′
∂

∂χ′
e−εi(ψ

′χ′+χ′ψ′)χ′

=

∫
R2×R2

d2Yd2Y′

π2
e−2εiX·Ye−2εiX

′·Y′
f2(Y,Y

′)(−εiψ)(−εiψ′) = −1
π2
f̂2(2εX, 2εX

′)ψψ′,

(2.4.43)

where we used Eq. 2.4.37 twice in the second line. Likewise,∫
dΘdΘ′e−2εiΦ·Θe−2εiΦ

′·Θ′
f2(Y,Y

′)χ′χ =
−1
π2
f̂2(2εX, 2εX

′)ψ′ψ. (2.4.44)

Hence,∫
dΘdΘ′e−2εiΦ·Θe−2εiΦ

′·Θ′
f2(Y,Y

′)
{
χχ′ + χ′χ

}
=
−1
π2
f̂2(2εX, 2εX

′)
{
ψψ′ +ψ′ψ

}
.

(2.4.45)

Finally, the last addend can be computed as follows∫
dΘdΘ′e−2εiΦ·Θe−2εiΦ

′·Θ′
f3(Y,Y

′)χχχ′χ′

=

∫
R2×R2

d2Yd2Y′

π2
e−2εiX·Ye−2εiX

′·Y′
f3(Y,Y

′)
∂

∂χ

∂

∂χ
e−εi(ψχ+χψ)χχ

∂

∂χ′
∂

∂χ′
e−εi(ψ

′χ′+χ′ψ′)χ′χ′

=

∫
R2×R2

d2Yd2Y′

π2
e−2εiX·Ye−2εiX

′·Y′
f3(Y,Y

′)(−1)2 = 1

π2
f̂3(2εX, 2εX

′), (2.4.46)

where we used Eq. 2.4.38 twice in the second line.

34



Lemma 2.4.2. Let F of the form (2.4.30), then

ψ+ψ′

2
F(Φ,Φ′) = f0(X,X

′)
ψ+ψ′

2
+ (f1(X,X

′)− f2(X,X′))
ψ′ ψψ+ψψ′ψ′

2
.

(2.4.47)

Let R be a function of the form

R(Φ,Φ′) = r0(X,X
′)
ψ+ψ′

2
+ r1(X,X

′)
ψ′ ψψ+ψψ′ψ′

2
, (2.4.48)

where r0, r1 ∈ L1(R2 × R2). Let αωj = i(−ωj + E+ iη− 1). Then,

Γ+,ωj
R(Φ,Φ′) = g0,ε,ωj (X,X

′)

ñ
r0(X,X

′)
ψ+ψ′

2
+ (αωjr0(X,X

′) + r1(X,X
′))
ψ′ ψψ+ψψ′ψ′

2

ô
,

(2.4.49)

TεR(Φ,Φ
′) =

εi

π2

ñ
r̂1(2εX, 2εX

′)
ψ+ψ′

2
+ r̂0(2εX, 2εX

′)
ψ′ ψψ+ψψ′ψ′

2

ô
. (2.4.50)

Equivalently, we can also represent the action of Γ+,ωj
and Tε on R via matrices as

follows:Å
r0
r1

ã
7−→ Γ+,ωj

Å
r0
r1

ã
=

Å
g0,ε,ωjr0

g0,ε,ωj (αr0 + r1)

ã
= g0,ε,ωj

Å
1 0
α 1

ãÅ
r0
r1

ã
, (2.4.51)Å

r0
r1

ã
7−→ Tε

Å
r0
r1

ã
=
εi

π2
F2ε

Å
r1
r0

ã
=
εi

π2
F2ε

Å
0 1
1 0

ãÅ
r0
r1

ã
, (2.4.52)

where F2ε denotes the Fourier transform after scaling by 2ε.

Proof. Let F and R be functions of the form 2.4.30 and 2.4.48, respectively. By direct

computations, ψ+ψ
′

2 F(Φ,Φ′) and Γ+,ωj
R(Φ,Φ′) have the desired representations. Hence,

we only focus on the expression TεR(Φ,Φ
′). Note

TεR(Φ,Φ
′) =

∫
dΘdΘ′e−2εiΦ·Θe−2εiΦ

′·Θ′
R(Θ,Θ′)

=

∫
dΘdΘ′e−2εiΦ·Θe−2εiΦ

′·Θ′
®
r0(Y,Y

′)
χ+ χ′

2
+ r1(Y,Y

′)
χ′ χχ+ χ χ′χ′

2

´
.

(2.4.53)

Due to the linearity of the integral, we can separately compute each addend. On the
one hand,∫

dΘdΘ′e−2iΦ·Θe−2iΦ
′·Θ′

r0(Y,Y
′)
χ

2

=

∫
R2×R2

d2Yd2Y′

π2
e−2εiX·Ye−2εiX

′·Y′
r0(Y,Y

′)
∂

∂χ

∂

∂χ
e−εi(ψχ+χψ)χ

2

∂

∂χ′
∂

∂χ′
e−εi(ψ

′χ′+χ′ψ′)

=

∫
R2×R2

d2Yd2Y′

π2
e−2εiX·Ye−2εiX

′·Y′
r0(Y,Y

′)
(−εiψ)

2
(−ψ′ψ′) = εi

π2
r̂0(2εX, 2εX

′)
ψψ′ψ′

2
,
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where we used Eq. 2.4.36 and 2.4.37 in the second step. By the same token,∫
dΘdΘ′e−2iΦ·Θe−2iΦ

′·Θ′
r0(Y,Y

′)
χ′

2
=
εi

π2
r̂0(2εX, 2εX

′)
ψ′ ψψ

2
.

Hence,∫
dΘdΘ′e−2εiΦ·Θe−2εiΦ

′·Θ′
r0(Y,Y

′)
χ+ χ′

2
=
εi

π2
r̂0(2εX, 2εX

′)

Ç
ψ′ ψψ

2
+
ψψ′ψ′

2

å
.

(2.4.54)

On the other hand,∫
dΘdΘ′e−2εiΦ·Θe−2εiΦ

′·Θ′
r1(Y,Y

′)
χ′χχ

2

=

∫
R2×R2

d2Yd2Y′

π2
e−2εiX·Ye−2εiX

′·Y′
r1(Y,Y

′)
∂

∂χ

∂

∂χ
e−εi(ψχ+χψ)χχ

2

∂

∂χ′
∂

∂χ′
e−εi(ψ

′χ′+χ′ψ′)χ′

=

∫
R2×R2

d2Yd2Y′

π2
e−2εiX·Ye−2εiX

′·Y′
r1(Y,Y

′)
(−1)
2

(−εiψ′) = εi

π2
r̂1(2εX, 2εX

′)
ψ′

2
,

(2.4.55)

where we used Eq. 2.4.37 and 2.4.38 in the third line. Analogously,∫
dΘdΘ′e−2εiΦ·Θe−2εiΦ

′·Θ′
r1(Y,Y

′)
χχ′χ′

2
=
εi

π2
r̂1(2εX, 2εX

′)
ψ

2
. (2.4.56)

It follows∫
dΘdΘ′e−2εiΦ·Θe−2εiΦ

′·Θ′
r1(Y,Y

′)
χ′χχ+ χχ′χ′

2
=
εi

π2
r̂1(2εX, 2εX

′)
ψ+ψ′

2
. (2.4.57)

2.5 Discussion

As we pointed out in Section 2.1, we did not manage to fully replicate the strategy laid
out in [KMP86] to prove localization in our model because challenges arose when we
tried to implement it.

2.5.1 Klein, Martinelli and Perez’s strategy

Klein, Martinelli and Perez worked on an instance of the Anderson model with d = 1.
Let λ > 0,

Hω,λ = −∆+ λVω, ω ∈ Ω (2.5.1)

acting on ℓ2(Z), where −∆ is the usual (negative) discrete Laplacian and Vω is a
multiplication operator given by

Vωu
(
x
)
= ωxu(x), ∀u ∈ ℓ2(Z), ∀x ∈ Z,
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where ω := (ωj)j∈Z ∈ RZ being a family of bounded iid random variables defined in the
probability space Ω := RZ equipped with the Borel probability measure P1 :=

⊗
Z P1

with expectation E1[·]. Recall that the Fourier transform of P1 is defined as P̂1(x) :=
E1

[
e−iωjx

]
, for all x ∈ R. We assume that P1 has at least moments up to order 2 at

least.

Let Λ̃L := {−L, . . . , L}, for L ∈ N. Under some assumptions of the integrability of
P̂1, they proved that there are some constants K > 0, r > 0 such that ∀L ∈ N there is
η0 > 0

E1

ï∣∣∣GΛ̃L
E+iη,λ(x0, x)

∣∣∣2ò ≤ K

η2

Ç
1− ln 2

|lnη|r
+O
Ç

1

|lnη|2r

åå|x−x0|

,

∀L ∈ N, ∀x, x0 ∈ Λ̃L, ∀η ∈ (0,η0], (2.5.2)

which is the content of [KMP86, Main Thm.]. This result together with the assumption
that for every η > 0, β > 0 and E0 > 0, there is δ > 0 and L0 > 0 such that

P1

(
dist

(
E,σ

(
HΛ̃L
λ

))
< e−αL

β
)
≤ e−δLβ

, ∀E ∈ [−E0,E0], ∀L ≥ L0 (2.5.3)

yield Anderson localization, see [KMP86, Corollary 3].

The proof of Main Thm. in [KMP86] can be decomposed into two parts: in the

first half, the author used the SUSY representation of E1

ï∣∣∣GΛ̃L
E+iη,λ(x0, x)

∣∣∣2ò to obtain

E1

ï∣∣∣GΛ̃L
E+iη,λ(x0, x)

∣∣∣2ò = ∫ dΦ+
x0
dΦ−

x0
[õ(T̃ Γ̃)L−x0Fl](Φ

+
x0
,Φ−

x0
)e−

η
2
(Φ+

x0

2
+Φ−

x0

2
)

×
î
Γ̃(T̃ Γ̃)x−x0õ∗(T̃ Γ̃)L−xFr

ó
(Φ+

x0
,Φ−

x0
), (2.5.4)

where

[T̃F](Φ,Φ′) =

∫
dΘdΘ′e−iΦ·ΘeiΦ

′·Θ′
F(Θ,Θ′),

[Γ̃F](Φ,Φ′) = e−
η
2
(Φ2+Φ′2)P̂1(Φ

2 − Φ′
2
)eiE(Φ

2−Φ′2)F (Φ,Φ′),

[õF ](Φ+,Φ−) = ψ+ψ
−
F (Φ+,Φ−), [õ∗F ](Φ+,Φ−) = ψ+ψ

−
F (Φ+,Φ−),

Fl(Φ
2
+,Φ

2
−) = Fr(Φ

2
+,Φ

2
−) = e−

η
2
(Φ2

++Φ2
−). (2.5.5)

To obtain Eq. 2.5.4, Klein, Martinelli and Perez had to interchange the integral with
respect to the supervectors with the expectation. As we did in the proof of Thm. 2.2.1,

we need to proof that the term P̂1(Φ
2−Φ′2) is well-defined. Moreover, E1

î
e−iωj(Φ

2−Φ′2)
ó

is also well-defined and

P̂1(Φ
2 − Φ′

2
) = E

[
e−iωj(Φ

2−Φ′2)
]
. (2.5.6)

Indeed, let Φ2−Φ′2 = |X|2−|X′|2+ψψ−ψ′ψ′ := x+n, where x ∈ R and n ∈ G0 with
n3 = 0. Then
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E1

î
e−iωj(x+n)

ó
=

∫
R
dP1(ωj) e

−iωj(x+n) =

∫
R
dP1(ωj) e

−iωjx

1 +∑
l≥1

(−iωj)
l

l!
nl


= P̂1(x) + n

∫
R
dP1(ωj) (−iωj)e

−iωjx +
n2

2

∫
R
dP1(ωj) (−iωj)

2e−iωjx

= P̂1(x) +

Ç
dl

dxl
P̂1(x)

å
n+

1

2

Ç
dl

dxl
P̂1(x)

å
n2 = P̂1(x+ n), (2.5.7)

where in the third step, we used that n3 = 0, and in the fourth step, the fact that P1

has finite moments up to order 2.

To simplify the derivation over the fermionic variable on the RHS of Eq. 2.5.4, the
authors used the fact that Fr is separately SUSY invariant, which means that

Fr(Φ
+,Φ−) = Fr(R

+Φ+,R−Φ−), ∀R+,R− superrotations. (2.5.8)

The use of Lemma 2.3.11 twice yields that there is a function f ∈ C∞((0,∞)2) ∩
C2([0,∞)2) such that

F (Φ,Φ′) = f(Φ2,Φ′
2
) (2.5.9)

In addition, if F is separately SUSY invariant, then F̃ and Γ̃ are also separately SUSY
invariant. After they performed the explicit derivation over the fermionic variables,
they rewrote the second moment of the Green’s function as the inner product of some
functions given in terms of the above transfer operators on a certain complex Hilbert
space. Indeed,

E1

ï∣∣∣GΛ̃L
z,λ(x0, x)

∣∣∣2ò = ⟨(T̃ Γ̃)L−x0Fl, e
−η

2
(r2++r2−)Γ̃(T̃ Γ̃)x−x0(T̃ Γ̃)L−xFr⟩, (2.5.10)

where ⟨, ⟩ is the inner product in the Hilbert space

H :=

®
f : [0,∞)2 −→ C

∣∣∣∣∣∥f∥2 = 4

∫
[0,∞)2

dr+ dr− r+r−
∣∣f(r2+, r2−)∣∣2 <∞´, (2.5.11)

and the operator T̃ on H takes the form

[T̃ f ](r2+, r
2
−) =

∫
[0,∞)2

ds+ ds− s+s−J0(r+s+)J0(r−s−)f(s
2
+, s

2
−), (2.5.12)

with J0(s) =
1
2π

∫ 2π
0 dθe−is cos θ the Bessel function of order 0.

In the second half of the proof of [KMP86, Main Thm.], the authors exploit the
properties of the transfer operators T̃ and Γ̃ to obtain the estimate given in Ineq. 2.5.2.
To be precise, Cauchy-Schwarz inequality together with the fact that T̃ and Γ̃ are
bounded operators on H yield

E1

ï∣∣∣GΛ̃L
z,λ(x0, x)

∣∣∣2ò ≤ ∥∥∥(T̃ Γ̃)L−x0Fl

∥∥∥
H
·
∥∥∥Γ̃(T̃ Γ̃)x−x0

∥∥∥
op
·
∥∥∥(T̃ Γ̃)L−xFr

∥∥∥
H
. (2.5.13)
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On the one hand, we have the following estimate∥∥∥(T̃ Γ̃)nFr

∥∥∥
H
=
∥∥∥(T̃ Γ̃)nFl

∥∥∥
H
≤ 1

η
, ∀η > 0, ∀E ∈ R, ∀n ∈ N, (2.5.14)

which is the content of Lemma 3.1 in [KMP86]. On the other hand, there is a constant
η0 > 0 such that∥∥∥Γ̃(T̃ Γ̃)∥∥∥

op
≤
Ç
1− ln 2

|ln(η)|r
+O
Ç

1

|ln(η)|2r

åå
, ∀E ∈ R, ∀η ∈ (0,η0], (2.5.15)

which is the content of Lemma 3.2 in [KMP86]. To determine the above estimate, the
authors use the double Hankel transform of order 0 given by

[H0g](r+, r−) =

∫
[0,∞)2

ds+ ds−
√
r+s+J0(r+s+)

√
r−s−J0(r−s−)g(s+, s−). (2.5.16)

H0 is unitary operator on L2(R2,dr+dr−) and H0 : L
1(R2,dr+dr−) −→ L∞(R2, dr+dr−)

with ∥H0g∥L∞(R2,dr+dr−) ≤ ∥g∥L1(R2,dr+dr−), for all g ∈ L1(R2, dr+dr−). Due to Riesz-
Thorin Interpolation Theorem (see [Gra14, Thm. 1.3.4]), we obtain

∥H0g∥Lq(R2,dr+dr−) ≤ ∥g∥Lq′ (R2,dr+dr−), ∀g ∈ Lq′(R2, dr+dr−), ∀q′ ∈ [1, 2] with
1

q
+

1

q′
= 1.

(2.5.17)

Note that we can write T̃ in terms of H0 as

√
r+r−[T̃ f ](r

2
+, r

2
−) = −H0(

√
s+s−f(s

2
+, s

2
−))(r+, r−). (2.5.18)

Hence, T̃ inherit all the above properties of H0. Indeed, T̃ is a unitary operator on H
and ∥∥∥√r+r−[T̃ f ](r2+, r2−)∥∥∥

Lq(R2,dr+dr−)
≤
∥∥√r+r−f(r2+, r2−)∥∥Lq′ (R2,dr+dr−)

,

∀f : [0,∞)2 → C with

∫
[0,∞)2

dr+dr−
∣∣√r+r−f(r2+, r2−)∣∣q′ <∞, ∀q′ ∈ [1, 2] with

1

q
+

1

q′
= 1.

(2.5.19)

For the sake of simplicity, assume that P1 is absolutely continuous with respect to the
Lebesgue measure. We have that∥∥∥Γ̃T̃ Γ̃∥∥∥

op
≤
∥∥Γ(r2+, r2−)∥∥2Lp(R2,dr+dr−)

≤
∥∥∥P̂1(r

2
+ − r2−)eη(r

2
++r2−)

∥∥∥2
Lp(R2,dr+dr−)

, ∀p ≥ 2.

(2.5.20)

Indeed, let f ∈ H, p ≥ 2 and q ∈ [1, 2] with 2
p + 2

q = 1. By Cauchy-Schwarz inequality
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and Ineq. 2.5.19, we obtain

∥∥∥Γ̃T̃ Γ̃f∥∥∥
H
=

Ç∫
[0,∞)2

dr+ dr−

∣∣∣√r+r−Γ̃T̃ Γ̃f(r2+, r2−)∣∣∣2å 1
2

≤
Ç∫

[0,∞)2
dr+ dr−

∣∣∣Γ̃(r2+, r2−)∣∣∣på 1
p
Ç∫

[0,∞)2
dr+ dr−

∣∣∣√r+r−T̃ Γ̃f(r2+, r2−)∣∣∣qå 1
q

=
∥∥Γ(r2+, r2−)∥∥Lp(R2,dr+dr−)

∥∥∥√r+r−[T̃ Γ̃f ](r2+, r2−)∥∥∥
Lq(R2,dr+dr−)

≤
∥∥Γ(r2+, r2−)∥∥Lp(R2,dr+dr−)

∥∥∥√r+r−[Γ̃f ](r2+, r2−)∥∥∥
Lq′ (R2,dr+dr−)

≤
∥∥Γ(r2+, r2−)∥∥2Lp(R2,dr+dr−)

∥∥√r+r−f(r2+, r2−)∥∥L2(R2,dr+dr−)
=
∥∥Γ(r2+, r2−)∥∥2Lp(R2,dr+dr−)

∥f∥H,
(2.5.21)

where in the third line we used Cauchy-Schwarz inequality again because 1 = q′

p + q′

2 .
By direct computations and assumptions on the integrability of powers of the Fourier
transform of P1, there are constants p0 > 2 and C1 > 0 such that

∥∥∥P̂1(r
2
+ − r2−)eη(r

2
++r2−)

∥∥∥2
Lp(R2,dr+dr−)

≤
Ç
C1

4

|lnη|
p

1
r

+R(p)

å2

, ∀p > p0, (2.5.22)

where limp→∞R(p) = 0. Let p(η) = Cr
1 |lnη|

r. Then, there is η0 > 0 such that

∥∥∥Γ̃T̃ Γ̃∥∥∥
op
≤
Å
1

2

ã 1
p(η)

, ∀E ∈ R, ∀η ∈ (0,η0], (2.5.23)

By Taylor’s expansion,
(
1
2

) 1
p(η) = 1− ln 2

p(η) +O
(Ä

1
p(η)

ä2)
and Ineq. 2.5.15 follows.

2.5.2 Challenges arising in the Anderson model on D2

We could partially implement the first half of the strategy in [KMP86] for the Anderson
model on D2 after some minor changes. More explicitly, for fixed ω ∈ Ω and z ∈ C\R,
we could write 1

4

∑1
σ0,σ1=0G

ΛL
z,ω,λ(j0+σ0e, j1+σ1e) and

1
4

∑1
σ0,σ1=0G

ΛL
z,ω,λ(j0 + σ0e, j1 + σ1e)

in terms of bosonic and fermionic variables, see Eq. 2.4.6. Then, we carried out the
derivation over the fermionic variables to obtain transfer operator representation, see
Eq. 2.2.5. As a result of this,∣∣∣∣∣∣14

1∑
σ0,σ1=0

GΛL
z,ω,λ(j0 + σ0e, j1 + σ1e)

∣∣∣∣∣∣
2

=
1

4π4

∫
R2×R2

∫
R2×R2

d2X+

j0
d2X+

j0+ed
2X−

j0
d2X−

j0+eî¶
R1,+R̃

j0,j1
0,+ +R0,+R̃

j0,j1
1,+

©Ä
X+

j0
,X+

j0+e

ä¶
R1,−R̃

j0,j1
0,− +R0,−R̃

j0,j1
1,−

©Ä
X−

j0
,X−

j0+e

äó
, ∀ω ∈ Ω,
(2.5.24)

where Rk,ε = Rk,ε,ωj0
,...,ω−L

and R̃j0,j1
k,ε = R̃j0,j1

k,ε,ωj0+1,...,ωL
, for k ∈ {0, 1}, are given

by Eq. 2.4.8. However, when we tried to compute the second moment of the Green
function by taking the expectation in the above expression, we could not manage to
maintain the transfer operator representation as we could not find an explicit formula of
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the constants cα involved and there are interactions between points on the same layer.
More precisely, at the end of the proof of Thm. 2.2.1 in Section 2.4, we proved that we
can interchange the expectation with the integral on ((R2 × R2)× (R2 × R2))(2L+1) in
order to prove Eq. 2.2.7. This result together Eq. 2.4.23 and 2.4.28 yield

E

∣∣∣∣∣∣14
1∑

σ0,σ1=0

GΛL
z,ω,λ(j0 + σ0e, j1 + σ1e)

∣∣∣∣∣∣
2

=
1

4π4

∫
(R2×R2)2(2L+1)

L∏
j=−L

dX+

j dX−
j dX+

j+e dX
−
j+e

× e−η
∑L

j=−L |X+
j |

2
+|X+

j+e|
2
+|X−

j |
2
+|X−

j+e|
2

× eip+
(
{X+

j }
L

j=−L
,{X+

j+e}
L

j=−L

)
e
−ip−

(
{X−

j }
L

j=−L
,{X−

j+e}
L

j=−L

)

× E
ï
q+
Ä
{ωj}Lj=−L

ä
q−
Ä
{ωj}Lj=−L

ä
e
−i

∑L
j=−Lωj

(
|X+

j |
2
+|X+

j+e|
2−|X−

j |
2−|X−

j+e|
2
)ò

=
1

4π4

∫
(R2×R2)2L+1

L∏
j=−L

dX+

j dX−
j dX+

j+e dX
−
j+e (2.5.25)

× e−η
∑L

j=−L |X+
j |

2
+|X+

j+e|
2
+|X−

j |
2
+|X−

j+e|
2

× eip+
(
{X+

j }
L

j=−L
,{X+

j+e}
L

j=−L

)
e
−ip−

(
{X−

j }
L

j=−L
,{X−

j+e}
L

j=−L

)

×
∑

α∈{0,1,2,3,4}2L+1

cα

L∏
j=−L

iαj P̂
(αj)
0

Å∣∣∣X+

j

∣∣∣2 + ∣∣∣X+

j+e

∣∣∣2 − ∣∣∣X−
j

∣∣∣2 − ∣∣∣X−
j+e

∣∣∣2ã.
Recall that the constants cα can be written in terms of η and E as they depend on
the constants ak,ε, bk,ε and ck,ε, see Eq. 2.4.27. Although we do not have an explicit
formula for the cα, we might try to estimate it. Suppose, for the sake of simplicity, we
were able to find an upper bound for |cα|, for all α ∈ {0, 1, 2, 3}. Following the spirit
of Subsection 2.5.1, we want to find an estimate similar to Ineq. 2.5.15. However, in
our case, after taking expectation, there is an interaction between the two points in the
layer, which is coded in the term

Kl(X,X
′,Y,Y′) := e−2i(X·Y−X

′·Y′)P̂
(l)
0

Ä
|X|2 +

∣∣X′∣∣2 − |Y|2 − ∣∣Y′∣∣2ä, l ∈ {0, 1, 2, 3, 4}.
(2.5.26)

Let

[Slf ](X,X
′,Y,Y′) := F[Klf ](2X, 2X

′,−2Y,−2Y′),
[Gf ](X,X′,Y,Y′) := [G+](X,X

′)[G−](Y,Y
′)f(X,X′,Y,Y′), where

[Gε](X,X
′) := e−η(|X|

2+|X′|2)eεiE(|X|
2+|X′|2), for l ∈ {0, 1, 2, 3, 4}, ε ∈ {+,−}.

(2.5.27)

Hence, we need to find a convenient upper bound of ∥SlG∥op but we could not replicate
the argument using Hausdorff-Young inequality of the Fourier transform.

Thm. 2.2.1 provides a representation of the second moments of the Green’s function
using product random matrices. This suggests a potential path of investigation for
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understanding the localization of the Anderson model on D2 through the study of
Lyapunov exponents, as explored in [Dam11].
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Chapter 3

Decay of the Green’s function of
the fractional Anderson model
and connection to long-range
SAW
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3.1 Introduction

This chapter is based upon [DMERM23] and shows the contribution of the PhD can-
didate to it in the form of Thm. 3.5.1 and 3.5.5 below. For the reader’s convenience, a
copy of [DMERM23] is provided in Appendix A located at the end of this thesis.
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Let us recall the definition of the fractional Anderson model. Let d ∈ N, 0 < α < 1,
and λ > 0. The fractional Anderson model Hω,λ,α is given by

Hω,λ,α = (−∆)α + λVω, ω ∈ Ω, (3.1.1)

acting on ℓ2(Zd), where (−∆)α is the fractional Laplacian (which is defined in Section
3.2 below) and Vω is a random multiplication operator acting diagonally on the canon-
ical basis by a sequence ω = (ωx)x∈Zd of real, iid and bounded random variables with
common distribution P0 and defined in a suitable probability space Ω.

When α = 1 and P0 is uniform, [Sch15] proved dynamical localization for disorder
parameter λ > λAnd, where λAnd is exactly the disorder threshold proposed in [And58].
His proof makes an exhaustive use of the depleted resolvent identity and self-avoiding
walks (abbreviated SAW).

This chapter has two main objectives:

(i) Relate the fractional moments of the Green’s function to the SAW induced by
(−∆)α, thus extending [Sch15, Thm. 1] to the fractional Laplacian case, see
Thm. 3.5.1 below. This enables us to show, under some conditions, pure-point
spectrum and polynomial decay of eigenfunctions at large disorder λ a.s. in the
fractional Anderson model, as outlined in Thm. 3.5.5.

(ii) Compare different estimates of the fractional moments of the Green’s function
available in the literature, leading us to conclude that our estimate provides the
sharpest result. Furthermore, the localization threshold λ0(s) in Thm 3.5.5 is
shown to be smaller than the thresholds found in previously known results. No-
tably, we expand the range of values of λ where spectral localization happens
a.s.

The remaining sections of this chapter are outlined below:

In Section 3.2, we define the fractional Laplacian and we show some properties
which will be useful in subsequent analysis. More precisely, Subsection 3.2.1 establishes
that, similar to the usual Laplacian case, the fractional Laplacian exhibits translation
invariance, and the matrix elements of the diagonal can be computed as the sum of the
off-diagonal terms in a row (cf. Eq. 3.2.1). In addition, Eq. 3.2.2 expresses the off-
diagonal matrix elements as an integral in terms of Bessel functions, following [Kwa17,
Thm. 1.1]. Then, in Subsection 3.2.2, we provide upper and lower bounds for the sum of
the fractional powers of the off-diagonal terms of the matrix elements of (−∆)α. Next,
in Subsection 3.2.3, for 0 < α < d

2 , we define the inverse of the fractional Laplacian as
(−∆)−α(x0, x) := limm↓0[(−∆)−α+m2]−1(x0, x), for x, x0 ∈ Zd. We establish in Thm.
3.2.7 that the limit is well-defined by using the Fourier transform and the Riesz potential
(see Def. 3.2.8 below). Moreover, (−∆)−α also possesses translation-invariance and
its off-diagonal matrix elements decay polynomially as |(−∆)−α(x0, x)| ≲ 1

|x−x0|d−2α ,

for x, x0 ∈ Zd, x0 ̸= x. Moving forward, in Subsection 3.2.4, we prove some known
properties of the Riesz potential used in the proof of Thm. 3.2.7, following [LL01].
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In Section 3.3, we focus on the fractional Anderson model and present our find-
ings. Specifically, in Subsection 3.3.1, we rigorously define the fractional Anderson
model. Then, in Subsection 3.3.2, we present some known results regarding the decay
of fractional moments of the Green’s functions, as shown in Ineq. 3.3.35 and 3.3.50.
Additionally, Thm. 3.3.2 establishes conditions to guarantee pure-point spectrum and
polynomial decay of the eigenfunctions a.s. Next, in Subsection 3.4, we introduce the
self-avoiding walk X induced by (−∆)α and its associated two-point correlation func-
tion. Moving forward, in Section 3.5, we address the achievement of Objectives (i) and
(ii). More precisely, in Subsection 3.5.1, we show the relationship between the fractional
moments of the Green’s function and the two-point correlation function, which is the
content of Thm. 3.5.1 below. This result together with [CS15, Lemma 2.4] yield our
estimate of the fractional moments of the Green’s function, see Ineq. 3.5.23. A direct
consequence of Thm. 3.5.1 is Corollary 3.5.2, where we express the correlation function
as an averaged weighted sum of the arrivals at x by the self-avoiding walk X starting
at x0 and staying within the volume Λ ⊂ Zd until it lands outside of it. This extends
[FV17, Lemma 8.13] to the fractional Laplacian case (see Remark 3.5.3). Moreover, we
determine spectral localization at strong disorder. Additionally, for d = 1 and assuming
some regularity on the common distribution P0, we find that the eigenfunctions decay
polynomially. After comparing our decay of the eigenfunctions with the one found in
Thm. 3.3.2, we conclude that our estimate is sharper. Finally, in Subsection 3.5.2,
we contrast the different regimes of decay of the fractional moments of the Green’s
function explored in this chapter. Based on this analysis, we reach the conclusion that
our estimate is the sharpest and that the localization region, in terms of the disorder
parameter λ, is larger.

We set the notation of the rest of the chapter. Let d ∈ N and (δx)x∈Zd be the
canonical orthonormal base of ℓ2(Zd). For an operator A acting on ℓ2(Zd), we denote
the matrix elements of A by A(x0, x) := ⟨δx0 , A δx⟩ with x, x0 ∈ Zd. We write ⟨δx, ·⟩δx
for the projection onto the subspace generated by δx. In addition, we denote the ℓp-

norm in Zd by |x|p =
Ä∑d

i=1 |xi|
p
ä 1

p , for 1 ≤ p < ∞, and |x|∞ = max1≤i≤d |xi|, for
p =∞. In the case p = 2, we use the short hand notation |·|.

3.2 Fractional Laplacian

Let 0 < α < 1. By functional calculus, the discrete fractional Laplacian is defined as
the linear bounded operator (−∆)α acting on ℓ2(Zd), where −∆ denotes the discrete
(negative) Laplacian on ℓ2(Zd) given by (−∆φ)(x0) :=

∑
|x−x0|1=1

(
φ(x0)−φ(x)

)
, for

all φ ∈ ℓ2(Zd), for all x ∈ Zd.

3.2.1 Relationship between the coefficients of the fractional Laplacian

The discrete fractional Laplacian shares some properties with the discrete Laplacian
such as the invariance under translations and the fact that the matrix elements of the
diagonal can be written as the sum of the off-diagonal elements in a row, which are the
content of Proposition 3.2.1 below, where, in addition, we write the matrix elements of
the fractional Laplacian as a certain integral. This proposition and its corresponding
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proof are extensions from [CRS+18, Thm. 1.2] to the case d ≥ 1. Recall that the
gamma function Γ has simple poles in the set of the non-positive integers so 1

Γ(x) := 0

for all x ∈ {0,−1,−2, . . .}.

Proposition 3.2.1. Let 0 < α < 1 and d ∈ N. The following equation for the fractional
Laplacian holds:

(−∆)α(x, x) = −
∑

y∈Zd\{x}

(−∆)α(x, y), x ∈ Zd. (3.2.1)

In addition, the terms (−∆)α(x, y) can be computed as

(−∆)α(x, y) =
−1

|Γ(−α)|

∫ ∞
0

dt

t1+α
e−2dt

d∏
j=1

I(xj−yj) (2t) ∀x, y ∈ Zd with x ̸= y,

(3.2.2)

where Ip is the modified Bessel function of order p ∈ Z which is defined as

Ip(t) :=
∑
q≥0

1

q!Γ(p + q + 1)

Å
t

2

ã2q+p

. (3.2.3)

Remark 3.2.2. In particular, Eq. 3.2.2 says that (−∆)α(x, y) < 0 for all x, y ∈ Zd

with x ̸= y. This, together with Eq. 3.2.1, implies that (−∆)α(x, x) > 0 for all x ∈ Zd.
Moreover, it follows that (−∆)α is invariant under translations.

Proof. In order to compute the scalar (−∆)α(x, y), we will use of the following repre-
sentation of the fractional Laplacian:

(−∆)α =
−1

|Γ(−α)|

∫ ∞
0

dt

t1+α
(et∆ − I), (3.2.4)

where I is the identity operator and the integral converges under the operator norm,
see [Kwa17, Theorem 1.1 (c)]. Hence,

(−∆)α(x, y) =
−1

|Γ(−α)|

∫ ∞
0

dt

t1+α
(et∆(x, y)− ⟨δx, δy⟩). (3.2.5)

In the proof of [GRM20, Thm. 2.2], it was shown that

et∆(x, y) = e−2dt
d∏

j=1

I(xj−yj) (2t). (3.2.6)

We proceed to prove that

(−∆)α(x, x) = −
∑

y∈Zd\{x}

(−∆)α(x, y) (3.2.7)

We already know that

(−∆)α(x, x) =
−1

|Γ(−α)|

∫ ∞
0

dt

t1+α
(et∆(x, x)− 1) (3.2.8)
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Claim 3.2.3.

−
∑

y∈Zd\{x}

et∆(x, y) = et∆(x, x)− 1. (3.2.9)

Therefore, due to Claim 3.2.3 and Fubini-Tonelli, we obtain that

(−∆)α(x, x) = − −1
|Γ(−α)|

∫ ∞
0

dt

t1+α

∑
y∈Zd\{x}

et∆(x, y) = − −1
|Γ(−α)|

∑
y∈Zd\{x}

∫ ∞
0

dt

t1+α
et∆(x, y)

= −
∑

y∈Zd\{x}

(−∆)α(x, y). (3.2.10)

It only remains to prove Claim 3.2.3.

∑
y∈Zd

et∆(y, 0) = e−2dt
∑

y=(y1,...,yd)∈Zd

Iy1(2t) · . . . · Iyd(2t)

= e−2dt
d∏

j=1

∑
yj∈Z

Iyj (2t) =

Ñ
e−2t

∑
p∈Z

Ip(2t)

éd

.

Thus, it is sufficient to prove that e−2t
∑

p∈Z Ip(2t) = 1.

e−2t
∑
p∈Z

Ip(2t) = e−2t
∑
p∈Z

∑
q≥0

1

q!Γ(p+ q + 1)
t2q+p = e−2t

∑
q≥0

∑
p∈Z

1

q!Γ(p+ q + 1)
t2q+p,

(3.2.11)

where in the last equality we could interchange the order of series because we are only
adding up non-negative terms. In addition, Γ has poles at each of the non-positive
integers, whereas Γ(n) = (n− 1)! for n ∈ N. Hence,

e−2t
∑
p∈Z

Ip(2t) = e−2t
∑
q≥0

∑
p≥−q

1

q!Γ(p+ q + 1)
t2q+p

= e−2t
∑
q≥0

tq

q!

∑
p≥−q

tp+q

(p+ q)!
= e−t

∑
q≥0

tq

q!
= 1.

3.2.2 Estimation of the sum of the fractional powers of the off-diagonal
terms of the Fractional Laplacian

The off-diagonal matrix elements of the fractional Laplacian decay polynomially, as
shown in [GRM20, Thm. 2.2(iii)]. Indeed, there are constants 0 < cα,d < Cα,d such
that

cα,d

|x− x0|d+2α
≤ −(−∆)α(x0, x) ≤

Cα,d
|x− x0|d+2α

, ∀x, x0 ∈ Zd, x ̸= x0. (3.2.12)

A consequence of the above inequality is that it provides a sufficient and necessary
condition for convergence of the series

∑
x∈Zd\{0} |△α(0, x)|

s, for all d
d+2α < s ≤ 1, see

Corollary 3.2.4 below. Moreover, when it converges, we find an upper and lower bound
of its value.
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Corollary 3.2.4. Let 0 < α < 1 and d ∈ N. Let Cα,d and cα,d be as in Ineq. 3.2.12.
Then, there is Nd ∈ N ∪ {0} such that

cα,d√
dd+2α

1

α
≤

∑
x∈Zd\{0}

△α(0, x) ≤ 2NdCα,d
Å
2 +

1

α

ã
. (3.2.13)

Furthermore, let d
d+2α < s ≤ 1 and let αs be the constant satisfying

d + 2αs = s(d + 2α). (3.2.14)

Then,

csα,d
Cαs,d

∆αs(0, x) ≤ |∆α(0, x)|s ≤
Csα,d
cαs,d

∆αs(0, x) ∀y ∈ Zd \ {0}. (3.2.15)

In particular, for all s ∈
Ä

d
d+2α , 1

ä
, we obtain∑

x∈Zd\{0}

|△α(0, x)|s <∞⇐⇒
∑

x∈Zd\{0}

△αs(0, x) <∞. (3.2.16)

Remark 3.2.5. Note that αs = s
(
α+ d

2

)
− d

2 . Hence, αs is a strictly-increasing

function in s and 0 < αs < α, for all s ∈
Ä

d
d+2α , 1

ä
Proof of Corollary 3.2.4. By Ineq. 3.2.12, there are constants 0 < cα,d < Cα,d such that∑

x∈Zd\{0}

cα,d

|x|d+2α
≤

∑
x∈Zd\{0}

△α(0, x) ≤
∑

x∈Zd\{0}

Cα,d
|x|d+2α

(3.2.17)

Thus,
∑

x∈Zd\{0}△α(0, x) is convergent iff
∑

x∈Zd\{0}
1

|x|d+2α is convergent. So our prob-

lem boils down to computing the latter series.

For the case d = 1, we can make use of the Integral test. Indeed, let f(y) = 1
|y|1+2α

for y ∈ R \ {0}. Clearly, f is positive, monotone decreasing and∑
x∈Z\{0}

1

|x|1+2α = 2
∑
n≥1

f(n). (3.2.18)

The Integral test asserts that
∑

n≥1 f(n) converges if and only if
∫∞
1 dyf(y) converges.

To be more precise, the test gives us the following bounds:∫ ∞
1

dy

y1+2α
≤
∑
n≥1

1

n1+2α
≤ f(1) +

∫ ∞
1

dy

y1+2α
, (3.2.19)

A direct computation shows that the above series converges iff α > 0. Furthermore, if
α > 0, then

1

2α
≤
∑
n≥1

1

n1+2α
≤ 1 +

1

2α
. (3.2.20)
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Therefore, for d = 1, we have proven

cα,1
1

α
≤

∑
x∈Z\{0}

△α(0, x) ≤ Cα,1
Å
2 +

1

α

ã
. (3.2.21)

From now on, let d ≥ 2. Note that |x|∞ ≤ |x| ≤
√
d|x|∞, for all x ∈ Zd. Hence

1

d
d+2α

2

∑
x∈Zd\{0}

1

|x|d+2α
∞

≤
∑

x∈Zd\{0}

1

|x|d+2α
≤

∑
x∈Zd\{0}

1

|x|d+2α
∞

. (3.2.22)

Given n ∈ N, let B∞,d(0, n) :=
{
x ∈ Zd | |x|∞ < n

}
be the open ball in the metric

space (Zd, |·|∞) centered at 0 and with radius n. Similarly, its corresponding sphere is
defined as ∂B∞,d(0, n) :=

{
x ∈ Zd | |x|∞ = n

}
. In addition,

{
∂B∞,d(0, n)

}
n∈N forms a

partition of Zd \ {0}. Hence,

∑
x∈Zd\{0}

1

|x|d+2α
∞

=
∑
n≥1

∑
x∈∂B∞,d(0,n)

1

|x|d+2α
∞

=
∑
n≥1

#∂B∞,d(0, n)

nd+2α
, (3.2.23)

where #∂B∞,d(0, n) is the cardinality of ∂B∞,d(0, n), which can be computed as fol-
lows:

#∂B∞,d(0, n) = #B∞,d(0, n+ 1)−#B∞,d(0, n). (3.2.24)

Since the open balls with the metric |·|∞ are hypercubes, it follows that #B∞,d(0, n) =
(2n − 1)d. Additionally, ad − bd = (a − b)

(
ad−1 + ad−2b+ . . .+ bd−1

)
for a, b ∈ R.

Therefore

#∂B∞,d(0, n) = (2n+ 1)d − (2n− 1)d = 2

d−1∑
j=0

(2n+ 1)d−1−j(2n− 1)j . (3.2.25)

As a result of this, there is a constant Nd ∈ N ∪ {0} such that

2nd−1 ≤ #∂B∞,d(0, n) ≤ 2Nd+1nd−1 ∀n ∈ N. (3.2.26)

Consequently,

2
∑
n≥1

1

n1+2α
≤
∑
n≥1

#∂B∞,d(0, n)

nd+2α
≤ 2Nd+1

∑
n≥1

1

n1+2α
. (3.2.27)

By Ineq. 3.2.20, 3.2.23 and 3.2.27, we establish

1

α
≤

∑
x∈Zd\{0}

1

|x|d+2α
∞

≤ 2Nd

Å
2 +

1

α

ã
. (3.2.28)

This together with Ineq. 3.2.22 yield

1

d
d+2α

2

1

α
≤

∑
x∈Zd\{0}

1

|x|d+2α
≤ 2Nd

Å
2 +

1

α

ã
. (3.2.29)

By Ineq. 3.2.17 and 3.2.29, Ineq. 3.2.13 follows.
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Let d
d+2α < s < 1 and αs be as in Eq. 3.2.14. Then 0 < αs < α < 1. Furthermore,

due to Ineq. 3.2.12, we establish

|△α(x, y)|s ≤
Csα,d

|x− y|s(d+2α)
=

Csα,d
|x− y|d+2αs

≤
Csα,d
cαs,d

△αs (x, y). (3.2.30)

By the same token, the remaining part of Ineq. 3.2.15 follows.

Incidentally, the above proof yields a sufficient and necessary condition for conver-
gence of the series

∑
x∈Zd\{0}

1
|x|d+r , for r ∈ R, see Corollary 3.2.6 below. Furthermore,

when it converges, we find an upper and lower bound of its value.

Corollary 3.2.6. Let r ∈ R, then the series
∑

x∈Zd\{0}
1

|x|d+r converges iff r > 0.

Moreover, let r > 0 and Nd ∈ N ∪ {0} be as in Corollary 3.2.4, then

4

d
d+2α

2 r
≤

∑
x∈Zd\{0}

1

|x|d+r
≤ 2Nd+1

Å
1 +

1

r

ã
. (3.2.31)

3.2.3 Inverse of Fractional Laplacian

Let 0 < α < d
2 . It can be determined that the inverse (−∆)α is well-defined and

Ineq. 3.2.33 is valid, see [Sla18, Sect. 2] and references therein. Here, we provide proof
that, we believe, is new in this context. It follows the arguments in [GRM20, Lemma
A.1]. In Thm. 3.2.7 below, we show that this object is well-defined and we provide a
pointwise estimate.

Theorem 3.2.7. Let 0 < α < d
2 and m > 0 (so that −m2 /∈ σ((−∆)α) = [0, (4d)α]).

Then,

(−∆)−α(x0, x) := lim
m↓0

[
(−∆)α +m2

]−1
(x0, x), ∀x, x0 ∈ Zd, (3.2.32)

is well-defined. Moreover, (−∆)−α is invariant under translations and

∣∣(−∆)−α(x0, x)
∣∣ ≤ C̃α,d
|x− x0|d−2α

, ∀x, x0 ∈ Zd, x ̸= x0, (3.2.33)

where C̃α,d > 0 is a constant.

Proof. We divide our proof into two parts. In the first half, we prove the existence of
the inverse of the fractional Laplacian, see Eq. 3.2.46 below. In the second half, we
estimate the decaying of the operator, see Eq. 3.2.56 below.

Let x0, x ∈ Zd and m > 0. As a first step to prove the existence of (−∆)−α(x0, x),

we will rewrite
[
(−∆)α +m2

]−1
(x0, x) in terms of the the Fourier transform (see Eq.

3.2.37 below). Then, we will let m ↓ 0 and prove that the limit is well-defined. Let
F : ℓ2(Zd) −→ L2([−π,π ]d) be the discrete Fourier transform

[Fu] (k) = 1

(2π)
d
2

∑
x∈Zd

e−iy·ku(x), ∀u ∈ ℓ2(Zd), ∀k ∈ [−π,π ]d (3.2.34)
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and let F−1 : L2([−π,π ]d) −→ ℓ2(Zd) be the inverse of F[
F−1g

]
(x) =

1

(2π)
d
2

∫
[−π,π ]d

dk eix·kg(k), ∀g ∈ L2([−π,π ]d), ∀x ∈ Zd. (3.2.35)

The discrete Laplacian is diagonalized by the discrete Fourier transform, i.e.,

[
F(−∆)F−1g

]
(k) =

Ñ
d∑

j=1

(2− 2 cos kj)

é
g(k) := f(k)g(k),

∀g ∈ L2([−π,π ]d), ∀k ∈ [−π,π ]d.
(3.2.36)

Then,[
(−∆)α +m2

]−1
(x0, x) =

1

(2π)d

∫
[−π,π]d

dk
ei(x−x0)·k

fα +m2
=

1

(2π)
d
2

F−1
ï

1

fα +m2

ò
(x− x0).

(3.2.37)

Hence, the operator
[
(−∆)α +m2

]−1
(x0, x) only depends on the difference x− x0. In

particular, the operator is invariant under translations. Without loss of generality, we
can assume x0 = 0 from now on. Observe that f(0) = 0 (see Eq. 3.2.36). To circumvent
this problem in the denominator on the RHS of Eq. 3.2.37 as m ↓ 0, we will introduce
a suitable smooth function with compact support on Rd. Let ψ ∈ C∞(Rd) such that:

suppψ ⊆ ∂B(0, 1), 0 ≤ ψ ≤ 1, ψ(k) = 1, ∀k ∈ B
Å
0,

1

2

ã
. (3.2.38)

Hence,[
(−∆)α +m2

]−1
(0, x) =

1

(2π)
d
2

F−1
ï

ψ

fα +m2

ò
(x) +

1

(2π)
d
2

F−1
ï

1−ψ
fα +m2

ò
(x).

(3.2.39)

On the one hand, note (1 − ψ(k)) = 0, for all k ∈ [−1
2 ,

1
2 ], then the pointwise-limit of

the second term on the RHS as m ↓ 0 is well-defined. Let 1−ψ
fα := limm↓0

1−ψ
fα+m2 . Hence,∣∣∣∣ 1

fα(k) + m2
(1−ψ(k))

∣∣∣∣ ≤ 1−ψ(k)
|fα(k)|

∈ L1([−π,π ]d). (3.2.40)

By Dominated Convergence Theorem, we obtain

lim
m↓0
F−1
ï
1−ψ
fα +m

ò
(x) =

1

(2π)
d
2

∫
[−π,π]d

dk eix·k
1−ψ(k)
fα(k)

. (3.2.41)

On the other hand, ∣∣∣∣ 1

fα(k) + m2
ψ(k)

∣∣∣∣ ≤ 1

|k|2α
|Φα,ψ(k)|, (3.2.42)

where Φα,ψ be a real-valued function given by

Φα,ψ(k) =


(
|k|2
f(k)

)α
ψ(k), k ̸= 0,

1, k = 0.
(3.2.43)
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Observe that Φα,ψ is a smooth function with compact support. In fact, let us assume
for the moment that d = 1,

f(k)

|k|2
=

2− 2 cos k

|k|2
= 2

∑
l≥0

(−1)l

(2l + 2)!
k2l > 0 ∀k ∈

ï
−1

2
,
1

2

ò
, (3.2.44)

where we made use of the Taylor’s expansion of the cosine function. Note that the
function R \ {0} ∋ x ∈ R 7→ x−α is C∞(R). So after composing and multiplying
smooth functions, Φα,ψ(k) ∈ C∞(R) and in particular lim|k|→0Φα,ψ(k) = 1. Since ψ
has compact support, Φα,ψ(k) ∈ C∞c (R). The general case goes along the same lines.
Moreover, 1

|k|2αΦα,ψ(k) ∈ L
1(Rd). Indeed,∫

B(0,1)
dk

1

|k|2α
|Φα,ψ(k)| ≤ ∥Φα,ψ∥∞

∫ 1

0
dr
rd−1

r2α

∫
B(0,1)

ds (θ) =
|∂B(0, 1)|
d− 2α

∥Φα,ψ∥∞.

(3.2.45)

After applying Dominated Convergence Theorem as m ↓ 0, we obtain

lim
m↓0
F−1
ï

ψ

fα +m2

ò
(x) =

1

(2π)
d
2

∫
[−π,π]d

dk eix·k
1

|k|2α
Φα,ψ(k).

Therefore,

(−∆)−α(0, x) =
1

(2π)d

∫
[−π,π]d

dk eix·k
Φα,ψ(k)

|k|2α
+

1

(2π)d

∫
[−π,π]d

dk eix·k
1−ψ(k)
fα(k)

.

(3.2.46)

This proves the fact that the inverse of the fractional Laplacian is well-defined.

Now, we prove Ineq. 3.2.33. By Eq. 3.2.46, we get

lim
|x|→∞

|x|d−2α(−∆)−α(0, x)

= lim
|x|→∞

|x|d−2α

(2π)d

∫
[−π,π]d

dk eix·k
1

|k|2α
Φα,ψ(k) +

|x|d−2α

(2π)d

∫
[−π,π]d

dk eix·k
1−ψ(k)
fα(k)

(3.2.47)

On the one hand, the function 1−ψ
fα is C∞([−π,π ]d), hence its Fourier coefficients

decay faster than any polynomial p(x) as |x| → ∞ (see [Gra14, Theorem 3.2.9]). In
particular,

lim
|x|→∞

|x|d−2α

(2π)d

∫
[−π,π]d

dk eix·k
1−ψ(k)
fα(k)

= lim
|x|→∞

|x|d−2α

(2π)
d
2

F−1
ï
1−ψ
fα

ò
(x) = 0. (3.2.48)

Therefore, it remains to compute the limit of the first term on the RHS of Eq. 3.2.47.
To do that, we have to extend our analysis to Rd, where the limit is well-studied. This
computation follows the same strategy as the proof provided in [GRM20, Lemma A.1].
Let Fc : L

2(Rd) −→ L2(Rd) be the continuous Fourier transform

[Fcg] (k) =
1

(2π)
d
2

∫
Rd

dy e−iy·kg(y), ∀g ∈ L2(Rd) ∀k ∈ Rd. (3.2.49)
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and F−1c : L2(Rd) −→ L2(Rd) be its inverse[
F−1c g

]
(y) =

1

(2π)
d
2

∫
Rd

dk eiy·kg(k), ∀g ∈ L2(Rd) ∀y ∈ Rd. (3.2.50)

By abuse of notation, we also denote by Φα,ψ the natural extension of Φα,ψ into Rd.
Then, Φα,ψ ∈ Cc(Rd) ⊆ S(Rd). Since the Fourier transform is an invertible mapping
which maps S(Rd) onto itself (see [Gra14, Corollary 2.2.15]), F−1c Φα,ψ ∈ S(Rd) and
Eq. 3.2.47 can be rewritten as

lim
|x|→∞

|x|d−2α(−∆)−α(0, x) = lim
|y|→∞

|y|d−2α

(2π)d

∫
Rd

dk eiy·k
1

|k|2α
Fc[F−1c Φα,ψ](k) (3.2.51)

In order to compute the above limit, we make use of two propositions, which will be
proven later. The first one can be found in [LL01, Section 5.9] (the constants are
slightly different because of our choice of definition of Fourier transform). The second
one goes along the same lines of the proof of [GRM20, Lemma A.1]. But before stating
such propositions, we will define the Riesz potential, which will help us to make the
computations clearer.

Definition 3.2.8 (The Riesz potential). Let 0 < α < d
2 and cα =

Γ(d
2
−α)

Γ(α) 2
d
2
−2α. The

Riesz potential of order α is defined as

[Iαφ] (y) = cα

∫
Rd

dw

|y − w|d−2α
φ(w), ∀φ ∈ S(Rd), ∀y ∈ Rd. (3.2.52)

Proposition 3.2.9 below allows us to rewrite the RHS of Eq. 3.2.51 in terms of the
Riesz potential.

Proposition 3.2.9. [LL01, Thm. 5.9] Let α ∈ (0, d2 ) and let φ ∈ S(Rd), then

[Iαφ] (y) =
1

(2π)
d
2

∫
Rd

dkeik·y
1

|k|2α
[Fcφ] (k). (3.2.53)

Remark 3.2.10. Let φ ∈ S(Rd). Then, [Fcφ] ∈ S(Rd) (see [Gra14, Corollary
2.2.15]). Hence 1

|k|2α [Fcφ] (k) is L1(Rd)−integrable and its Fourier transform is well-

defined. Prop. 3.2.9 is equivalent to saying that Fc[Iαφ](k) = |k|−(2α)[Fcφ](k) holds in
the sense that

⟨Iαϕ, ψ⟩L2(Rd) = ⟨Fc[Iαϕ],Fcψ⟩L2(Rd) ∀ϕ, ψ ∈ S(Rd). (3.2.54)

Proposition 3.2.11. Let α ∈ (0, d2 ) and φ ∈ S(R
d), then

lim
|y|→∞

|y|d−2α[Iαφ](y) = (2π)
d
2 cα[Fφ](0). (3.2.55)

Applying Prop. 3.2.9 and Prop. 3.2.11 to Eq. 3.2.51 to get that

lim
|x|→∞

|x|d−2α(−∆)−α(0, x) = lim
|y|→∞

|y|d−2α

(2π)d

∫
Rd

dk eiy·k
1

|k|2α
Fc[F−1c Φα,ψ](k)

=
1

(2π)
d
2

lim
|y|→∞

|y|d−2α[Iα(F−1c Φα,ψ)](y) = cαFc[F−1c Φα,ψ](0) = cα, (3.2.56)

where, in the last step, we used Φα,ψ(0) = 1 (see definition of Φα,ψ Eq. 3.2.43).
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3.2.4 Riesz Potential

As we previously pointed it out, Prop. 3.2.9 can be found in [LL01, Thm. 5.9] and
Prop. 3.2.11 is based on an argument in [GRM20, Lemma A.1] but for the sake of
self-containment, we provide a proof for each one of them.

Proof of Prop. 3.2.9. To begin with, we use the following identity,

1

ρα
=

1

2αΓ(α)

∫ ∞
0

dt tα−1e−
t
2
ρ. (3.2.57)

Indeed, by the definition of the gamma function and a change of variables, we obtain

Γ(α) :=

∫ ∞
0

dy xα−1e−x =
ρα

2α

∫ ∞
0

dt tα−1e−
t
2
ρ.

Therefore,

1

|k|2α
=

1

2αΓ(α)

∫ ∞
0

dt tα−1e−
t
2
|k|2 , ∀k ∈ Rd \ {0}. (3.2.58)

and the RSH of Eq. 3.2.53 can be written as

1

(2π)
d
2

∫
Rd

dkeik·x
1

|k|2α
[Fcφ] (k) =

1

(2π)
d
2

∫
Rd

dk eik·x[Fcφ] (k)

ß
1

2αΓ(α)

∫ ∞
0

dt tα−1e−
t
2
|k|2
™
.

Let g(y) = e−
1
2
|y|2 , y ∈ Rd be the Gaussian function. Given a > 0, let ga(y) := g(ay).

By our choice of Fourier transform, [Fcga](k) = a−de−
|k|2

2a2 .

We apply Fubini-Tonelli and the Fourier transform of a Gaussian function to the
RHS of the above equation, which yields

1

(2π)
d
2

∫
Rd

dkeik·y
1

|k|2α
[Fcφ] (k) =

1

2αΓ(α)

∫ ∞
0

dt tα−1
®

1

(2π)
d
2

∫
Rd

dk eik·yg√t(k)[Fcφ] (k)

´
=

1

2αΓ(α)

∫ ∞
0

dt tα−1
®

1

(2π)
d
2

∫
Rd

dk eik·yt−
d
2

[
Fcg 1√

t

]
(k)[Fcφ] (k)

´
=

1

2αΓ(α)

∫ ∞
0

dt t(α−
d
2
)−1
{
F−1c

([
Fcg 1√

t

]
[Fcφ]

)}
(y)

We know F−1c [f1 ∗ f2](k) = F−1c [f1](k)F−1c [f2](k), for all f1, f2 ∈ L2(Rd). Hence, after
using this identity and Fubini-Tonelli again, we obtain that

1

(2π)
d
2

∫
Rd

dkeik·y
1

|k|2α
[Fcφ] (k) =

1

2αΓ(α)

∫ ∞
0

dt t(α−
d
2
)−1
{
F−1c

[
Fc

(
g 1√

t
∗φ
)]}

(y)

=
1

2αΓ(α)

∫ ∞
0

dt t(α−
d
2
)−1
∫
Rd

dw e−
1
2t
|y−w|2φ(w)

We use Fubini-Tonelli and Eq. 3.2.58 to get

1

(2π)
d
2

∫
Rd

dkeik·y
1

|k|2α
[Fcφ] (k) =

1

2αΓ(α)

∫
Rd

dw φ(w)

∫ ∞
0

dt t(α−
d
2
)−1e−

1
2t
|y−w|2

=
1

2αΓ(α)

∫
Rd

dy φ(w)

∫ ∞
0

dt̃ t̃(
d
2
−α)−1e−

t̃
2
|y−w|2 =

Γ(d2 − α)
Γ(α)

2
d
2
−2α

∫
Rd

dw

|y − w|d−2α
φ(w)

= [Iαφ] (y).
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Proof of Prop. 3.2.11.∫
Rd

dw

|y − w|d−2α
φ(w) =

∫
B
Ä
y,

|y|
2

ä dw

|y − w|d−2α
φ(w) +

∫
B
Ä
y,

|y|
2

äC dw

|y − w|d−2α
φ(w)

Note

lim
|y|→∞

|y|d−2α
∫
B
Ä
y,

|y|
2

ä dw

|y − w|d−2α
φ(w) =

∫
Rd

dwφ(w) = (2π)
d
2 [Fcφ](0). (3.2.59)

Indeed, given y ∈ Rd∣∣∣∣∣ |y|d−2α|y − w|d−2α
φ(w)1

B
Ä
y,

|y|
2

äC (w)∣∣∣∣∣ ≤ 2d−2α|φ(w)| ∈ L1(Rd). (3.2.60)

In addition,

lim
|y|→∞

|y|d−2α

|y − w|d−2α
φ(w)1

B
Ä
y,

|y|
2

äC (w) = φ(w) ∀w ∈ Rd. (3.2.61)

Consequently, by Dominated Convergence Theorem, the desired result follows. There-
fore, it remains to show that

lim
|y|→∞

|y|d−2α
∫
B
Ä
y,

|y|
2

äC dw

|y − w|d−2α
φ(w) = 0. (3.2.62)

To this end, we will decompose the term into two addends and prove that each one of
them tends to zero as |y| → ∞. To be more explicit,

|y|d−2α
∫
B
Ä
y,

|y|
2

äC dw

|y − w|d−2α
φ(w)

= |y|d−2α
∫
B
Ä
y,

|y|
2

ä dwφ(w)−φ(y)|y − w|d−2α
+ |y|d−2αφ(y)

∫
B
Ä
y,

|y|
2

ä dw

|y − w|d−2α
=: I1(y) + I2(y)

(3.2.63)

On the one hand,

I2(y) = |y|d−2αφ(x)
∫
B
Ä
y,

|y|
2

ä dw

|y − w|d−2α
= |y|d−2αφ(x)

∫ |y|
2

0
dr

rd−1

rd−2α

∫
∂B(0,1)

ds (θ)

= |∂B(0, 1)||y|d−2αφ(y)
∫ |y|

2

0
dr r2α−1 =

|∂B(0, 1)|
2α

|y|dφ(y).

As a result of the above computation and the fact that φ ∈ S(R), we get that
lim|y|→∞ |I2(y)| = 0.

On the other hand,

I1(y) = |y|d−2α
∫ |y|

2

0
dr

rd−1

rd−2α

∫
∂B(0,1)

ds (θ)[φ(y + rθ)−φ(y)]. (3.2.64)
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Let h(r) =
∫
∂B(0,1) ds (θ)φ(y + rθ), r > 0. Then,

I1(y) = |y|d−2α
∫ |y|

2

0
dr r2α−1[h(r)− h(0)] = |y|d−2α

∫ |y|
2

0
dr r2α−1

∫ r

0
ds h′(s).

(3.2.65)

Let us compute h′(s),

h′(s) =

∫
∂B(0,1)

ds (θ)∇φ(y + sθ) · w =
1

sd−1

∫
∂B(y,s)

ds (v)∇φ(v) · v − y
s

=
1

sd−1

∫
B(y,s)

dy ∆φ(y), (3.2.66)

the last equality is justified by the Divergence Theorem. It follows that

I1(y) = |y|d−2α
∫ |y|

2

0
dr r2α−1

∫ r

0
ds

1

sd−1

∫
B(y,s)

dy ∆φ(y). (3.2.67)

LetM := sup
w∈B

Ä
y,

|y|
2

ä |∆φ(w)|, then
|I1(y)| ≤ M|y|d−2α

∫ |y|
2

0
dr r2α−1

∫ r

0
ds

1

sd−1
|B(0, 1)|sd

=
|B(0, 1)|

2
M|y|d−2α

∫ |y|
2

0
dr r2α+1 =

|B(0, 1)|
4(α+ 1)

M|y|d+2

As a result of this, we obtain that lim|x|→∞ |I1(y)| = 0.

3.3 Fractional Anderson model

3.3.1 Definition of the model

Let 0 < α ≤ 1 and λ > 0. We consider the discrete fractional Anderson model of the
form

Hω,λ,α := (−∆)α + λVω, ω ∈ Ω, (3.3.1)

acting on the Hilbert space ℓ2(Zd), where (−∆)α is defined in Section 3.2 and Vω is the

random potential given by Vω :=
∑

x∈Zd ωx⟨δx, ·⟩δx with ω := (ωx)x∈Zd ∈ RZd
being

a family of bounded iid random variables with common distribution P0 defined in the
probability space Ω := RZd

endowed with the Borel probability measure P :=
⊗

Zd P0

with expectation E[·]. By the boundedness of the random variables ωx, the support of
P0 (denoted by suppP0) is compact. We assume that P0 is non-trivial and absolutely
continuous with respect to the Lebesgue measure. Furthermore, given τ ∈ (0, 1], we
suppose that P0 is τ-regular in the sense of Definition 3.3.1 below.

Definition 3.3.1 (τ−regularity). Let τ ∈ (0, 1]. We say that a probability measure µ
is τ−regular if there is a C > 0 such that µ([v − δ, v + δ]) ≤ Cδτ, ∀v ∈ R, ∀δ > 0. If µ
is τ−regular, we define

Mτ(µ) := inf {C > 0 | µ([v − δ, v + δ]) ≤ Cδτ, ∀v ∈ R, ∀δ > 0}. (3.3.2)
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Let σ(Hω,λ,α) be the spectrum of Hω,λ,α. As a result of the translation invariance

of the free operator (−∆)α and the fact ω := (ωx)x∈Zd ∈ RZd
being a family of

bounded iid random variables, {Hω,λ,α}ω∈Ω is a family of ergodic operators in the
sense of [PF92]. Therefore, σ(Hω,λ,α) is deterministic, for P−a.s ω ∈ Ω . Moreover,
it holds that σ(Hω,λ,α) = [0, (4d)α] + λsuppP0, for P−a.s ω ∈ Ω, see [PF92]. For
z /∈ [0, (4d)α] + λsuppP0, the operator Gz,ω,λ,α = (Hω,λ,α − z)−1 is well-defined, for
P−a.s ω ∈ Ω. From now on, we will regularly omit the dependence on ω from Hω,λ,α

and Gz,ω,λ,α to lighten the notation.

3.3.2 Known results

In the subsequent discussion, we present three established results that offer precise
rates of decay for the fractional moments of the Green’s function. More precisely, they
allow us to quantify the magnitude of λ required to achieve spectral localization and
polynomial decay of the eigenfunctions, based on one of these estimates.

Thm. 3.3.2 below is a consequence of both Ineq. 3.2.15 and an adaptation of
[AM93, Thm. 3.1] to the fractional Anderson model. From now on, we set △α(x0, x) =
−(−∆)α(x0, x), for all x, x0 ∈ Zd.

Theorem 3.3.2. Let d
d+2α < s < τ ≤ 1. Let αs = s

(
α+ d

2

)
− d

2 , the constant in Eq.
3.2.14. Then,

Bs(t) =
∑

y∈Zd\{0}

△αs(y, 0)(1 + |y|)t <∞, ∀t ∈ (0, 2αs), (3.3.3)

and there is a unique constant βλ,s ∈ (0, 2αs) satisfying the following equation

Bs(βλ,s) = λ
s

Ç
τ− s

2τMτ(P0)
1
τ

ås

. (3.3.4)

Moreover, the constant βλ,s can be computed as

βλ,s = 2αs −O
Å
1

λs

ã
. (3.3.5)

Let As = AP0,α,d,τ,s := 21−
1
s Cα,d

Ä
1

cαs,d

ä 1
s τMτ(P0)

1
τ

τ−s . If λ > As[2 (−∆)α(0, 0)]
1
s := λAG(s),

then

E

∑
x∈Zd

|Gz,λ,α(x0, x)|s|x− x0|t
 ≤ 1

2[Bs(βλ,s)− Bs(t)]
, ∀t ∈ (0,βλ,s), ∀x0 ∈ Zd

and σ(Hλ,α) is pure-point a.s. Furthermore, let g be the density of P0 (i.e., dP0 (v) =
dv g(v)) and let I ⊂ R be an open and bounded Borel set. If there are constants M > 0
and 0 < κ < 1 such that

sup
v∈R

(1 + |v|)κg(v) ≤ M , (3.3.6)
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then, for P−a.s. ω ∈ Ω, for all E ∈ σ(Hλ,α)∩ I, there is a localization center xE(ω) ∈
Zd such that the corresponding normalized eigenfunction φE(·,ω) satisfies

|φE(y,ω)|2 ≤ 4AI,t(ω)

ï
(−∆)α(0, 0)

△α(0, xE(ω))

ò2 1

(1 + |y − xE(ω)|)t
, ∀t ∈ (0,βλ,s),∀y ∈ Zd,

(3.3.7)

where AI,t is an integrable random variable given in Eq. 3.3.14 below.

Remark 3.3.3.

• In [AM93], P0(v) =
1
21[−1, 1](v), which satisfies Ineq. 3.3.6.

• Ineq. 3.3.6 implies that the density function g of P0 is bounded and τ = 1.

• We obtain a meaningful upper bound for the eigenfunction only for the case d = 1.
Indeed, by Corollary 3.2.6,

∑
y∈Zd

1
(1+|y−xE(ω)|)t <∞ iff d = 1, α, t, s and λ are

such that λ > λAG and 1 < t < βλ,s < 2αs < 2α < 2.

• Let d
d+2α < s < τ ≤ 1. By Ineq. 3.3.30, if λ > λAG, then

E[|Gz,λ,α(x0, x)|s] ≤
1

2[Bs(βλ,s)− Bs(t)]

1

(1 + |x− x0|)t
,

∀t ∈ (0,βλ,s), ∀x, x0 ∈ Zd, x ̸= x0, unif. in z ∈ C \ R.
(3.3.8)

Prior to presenting the proof of Thm. 3.3.2, we introduce several technical lem-
mas. These lemmas will be instrumental in deriving the upper bounds mentioned in
Ineq. 3.3.7. In particular, we will use the Decoupling Lemma (Lemma 3.3.4), which is
presented below.

Lemma 3.3.4 (Decoupling lemma, [AG98]). Let 0 < s < τ ≤ 1 and µ be a τ−regular
probability measure. Let θµ,s :=

Ä
2τ
τ−s

ä
Mτ(µ)

1
τ . ThenÅ

1

θµ,s

ãs ∫
R
dµ(v)

1

|v − β|s
≤
∫
R
dµ(v)

|v − α|s

|v − β|s
, ∀β,α ∈ C, (3.3.9)∫

dµ(v)
1

|v − α|s
≤ 1

2
θsµ,s, ∀α ∈ C (3.3.10)

On the other hand, to establish spectral localization and the polynomial decay of
the eigenfunctions, we rely on Lemma 3.3.5 provided below.

Lemma 3.3.5. Let I ⊂ R be an open Borel set. The eigenfunction correlator Q is
defined as

Q(x, y,ω; I) := sup
F∈C(R)
∥F∥∞≤1

|⟨δx, PI(Hω,λ,α)F (Hω,λ,α)δy⟩|, ∀x, y ∈ Zd, ∀ω ∈ Ω,

(3.3.11)
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where PI(Hω,λ,α) is the spectral projection operator. Let C+ := {z ∈ C | Im{z} > 0}.
Assume that there are constants K > 0, s ∈ (0, 1) and t > 0 such that

E

∑
y∈Zd

|Gz,λ,α(x, y)|s(1 + |x− y|)t
 ≤ K , ∀x ∈ Zd,∀z ∈ C+. (3.3.12)

Then, σ(Hλ,α) is pure-point a.s. Furthermore, let I be bounded. If there are constants
0 < κ < 1 and C such that Ineq. 3.3.6 holds, then, for a.s. ω ∈ Ω and for each of
the eigenvalues E ∈ I of Hω,λ,α, there is a localization center xE(ω) ∈ Zd such that the
corresponding normalized eigenfuction φE(·,ω) satisfies

|φE(y,ω)|2 ≤ 4AI,t(ω)

ï
(−∆)α(0, 0)

|△α(0, xE(ω))|

ò2 1

(1 + |y − xE(ω)|)t
, ∀y ∈ Zd, (3.3.13)

where AI,t is an integrable random variable given by

AI,t(ω) :=
∑
x∈Zd

|△α(0, x)|
2(−∆)α(0, 0)

∑
y∈Zd

(1 + |x− y|)tQ(x, y,ω; I)2, ω ∈ Ω. (3.3.14)

Proof. To prove that σ(Hλ,α) is pure-point a.s., we can use the Simon-Wolff Criterion
[AW15, Thm. 5.7], which we state below as Thm. 3.3.6 in our setting.

Theorem 3.3.6 (Simon-Wolff Criterion, [AW15]). If for all x ∈ Zd, for Lebesgue-a.e.
E ∈ R and for a.s. ω ∈ Ω,

lim
η↓0

∑
y∈Zd

|GE+iη,ω,λ,α(x, y)|2 <∞, (3.3.15)

then σ(Hω,λ,α) is pure-point for ω ∈ Ω P−a.s.

Let K > 0, s ∈ (0, 1) and t > 0 be such that Ineq. 3.3.12 holds. By Fatou’s lemma
and the fact that w 7→ w

s
2 is continuous and concave, we get

E


Ñ

lim
η↓0

∑
y∈Zd

|GE+iη,ω,λ,α(x, y)|2
é s

2

 ≤ lim
η↓0

E


Ñ∑

y∈Zd

|GE+iη,ω,λ,α(x, y)|2
é s

2


≤ lim

η↓0
E

∑
y∈Zd

|GE+iη,ω,λ,α(x, y)|s
 ≤ lim

η↓0
E

∑
y∈Zd

|GE+iη,ω,λ,α(x, y)|s(1 + |x− y|)t


≤ K , ∀x ∈ Zd, (3.3.16)

which implies that σ(Hω,λ,α) is pure-point for ω ∈ Ω P-a.s., by the Simon-Wolff crite-
rion (Thm. 3.3.6).

To show that the eigenvectors have the decay as Ineq. 3.5.24, we will use [AW15,
Thm. 7.4], which we also state below in our setting. To do so, we take the function

g(x) = 2(−∆)α(0,0)
△α(0,x) , for all x ∈ Zd, therein.
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Theorem 3.3.7 (Eigenfunction localization, [AW15]). Let I ⊂ R be a Borel set. Let
t > 0 and AI,t be as in Lemma 3.3.5. If AI,t ∈ L1(Ω), then, for a.s. ω and for each of
the simple eigenvalues E ∈ σ(Hλ,α) ∩ I, there is a localization center xE(ω) ∈ Zd such
that the corresponding normalized eigenfuction φE(·,ω) satisfies Ineq. 3.5.24.

By [AW15, Thm. 5.8], the pure-point part of the spectrum of Hλ,α is simple a.s.
because {ω(x)}x∈Zd are iid and ω(x) has a τ-regular distribution P0. Hence, we can
use Thm. 3.3.7 to show that all the eigenvectors have the desired decay.

After using Fubini-Tonelli, we need to guarantee

E[AI,t] =
∑
x∈Zd

|△α(0, x)|
2(−∆)α(0, 0)

∑
y∈Zd

(1 + |x− y|)tE
[
Q(x, y; I)2

]
<∞, (3.3.17)

where I is an open Borel set.

Note that Q(x, y,ω; I)2 ≤ Q(x, y,ω; I) ≤ 1, for all x, y ∈ Zd, for all ω ∈ Ω. Hence,
it is sufficient to obtain an estimate for E[Q(x, y; I)]. Let I be bounded. Due to our
assumption that Ineq. 3.3.6 holds together with the fact that {ω(x)}x∈Zd are iid with
a common τ-regular compactly support distribution P0, we can use [AW15, Thm. 7.7]

E[Q(x, y; I)] ≤ ks lim
η↓0

∫
I
dE E[|GE+iη,ω,λ,α(x, y)|s], ∀x, y ∈ Zd, (3.3.18)

where ks is a finite constant.

By the above argument, Fubini-Tonelli, Fatou’s lemma, Assumption 3.3.12 and Eq.
3.2.1, it holds

E[AI,t] ≤
∑
x∈Zd

|△α(0, x)|
2(−∆)α(0, 0)

∑
y∈Zd

(1 + |x− y|)tE[Q(x, y; I)]

≤ ks
∑
x∈Zd

|△α(0, x)|
2(−∆)α(0, 0)

∑
y∈Zd

(1 + |x− y|)t lim
η↓0

∫
I
dE E[|GE+iη,ω,λ,α(x, y)|s]

≤ ks lim
η↓0

∑
x∈Zd

|△α(0, x)|
2(−∆)α(0, 0)

∑
y∈Zd

(1 + |x− y|)t
∫
I
dE E[|GE+iη,ω,λ,α(x, y)|s]

≤ ks lim
η↓0

∑
x∈Zd

|△α(0, x)|
2(−∆)α(0, 0)

∫
I
dE E

∑
y∈Zd

(1 + |x− y|)t|GE+iη,ω,λ,α(x, y)|s


≤ ksK |I|
∑
x∈Zd

|△α(0, x)|
2(−∆)α(0, 0)

= ksK |I| <∞, (3.3.19)

where |I| is the Lebesgue measure of I, which is finite since we assume that I is
bounded.

Remark 3.3.8. In the previous proof, we used [AW15, Thm. 7.4] (Thm. 3.3.7) with

the choice g(x) = 2(−∆)α(0,0)
△α(0,x) , for all x ∈ Zd. However, any strictly-positive-valued

function g̃ on Zd such that
∑

x∈Zd g̃(x)−1 = 1 could have been used instead of g. We
specifically chose g because it is intrinsic to the fractional Anderson model and depends
on α.
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Proof of Thm 3.3.2. Let d
d+2α < s < τ ≤ 1. Due to Corollary 3.2.4, Bs(t) < ∞ iff∑

y∈Zd\{x0} |y|
t−(d+2αs) <∞. By Corollary 3.2.6, the latter series converges, if 0 < t <

2αs. Thus, it remains to find the suitable t ∈ (0, 2α) such that Bs(t) =
(

λ
θs,P0

)s
. Note

that Bs is a strictly-increasing and continuous in t. In addition, we have

lim
t↓0

Bs(t) =

Å
λAG(s)

θP0,s

ãs
, lim

t↑2α
Bs(t) =∞. (3.3.20)

Hence, we can establish the existence of βλ,s ∈ (0, 2αs) such that
(

λ
θP0,s

)s
= Bs(βλ,s).

Moreover, we can estimate βλ,s by using Ineq. 3.2.12 and Corollary 3.2.6. In fact,Å
λ

θP0,s

ãs
= Bs(βλ,s) =

∑
x∈Zd\{0}

△αs(x0, x)(1 + |x− x0|)βλ,s

∝
∑

x∈Zd\{0}

1

(1 + |x− x0|)d+2αs−βλ,s
∝ 1

2αs − βλ,s

⇒ βλ,s = 2αs −O
Å
1

λs

ã
. (3.3.21)

To prove Ineq. 3.3.12, we employ the following strategy: in the first place, we derive a
condition similar to Ineq. 3.3.12 for finite boxes (see Ineq. 3.3.27). Subsequently, we
extend our analysis to Zd, by choosing a specific value for t.

Let L ∈ N, ΛL := {−L, . . . , L}d, we define HΛL
ω,λ,α := 1ΛL

Hω,λ,α1ΛL
. Let z ∈ C \ R

and GΛL
z,ω,λ,α be the operator on ℓ2(Zd) given by

GΛL
z,ω,λ,α(x, y) =

{Ä
HΛL
ω,λ,α − z

ä−1
(x, y), ∀x, y ∈ ΛL,

0, otherwise.
(3.3.22)

Once again, to lighten the notation, we will frequently omit the dependence on ω in
the above functions. Let

Fs,L(t) :=
∑
x∈ΛL

E
[∣∣∣GΛL

z,λ,α(x0, x)
∣∣∣s](1 + |x− x0|)t, (3.3.23)

which is finite since ΛL is a finite set.

For now, let us assume that for d
d+2α < s < τ, the following inequality holdsÅ

λ

θP0,s

ãs
E
[∣∣∣GΛL

z,λ,α(x0, x)
∣∣∣s] ≤ Csα,d

cαs,d

∑
y∈Zd\{x}

△αs(y, x)E
[∣∣∣GΛL

z,λ,α(x0, y)
∣∣∣s],

∀x ∈ ΛL \ {x0}, ∀λ > λAG(s). (3.3.24)

We will provide a proof of this inequality later.
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Due to the Decoupling Lemma (Lemma 3.3.4), Ineq. 3.3.24, Ineq. 3.3.44 and
definition of the function Bs(t) (see Ineq. 3.3.45), we obtain that

Fs,L(t) ≤
1

2

Å
θP0,s

λ

ãs
+

Å
θP0,s

λ

ãsCsα,d
cα,d

∑
x∈ΛL\{x0}

(1 + |x− x0|)t

×
∑

y∈ΛL\{x}

△αs(y, x)E
[∣∣∣GΛL

z,λ,α(x0, y)
∣∣∣s]

≤ 1

2

Å
θP0,s

λ

ãs
+

Å
θP0,s

λ

ãs ∑
y∈ΛL

E
[∣∣∣GΛL

z,λ,α(x0, y)
∣∣∣s](1 + |y − x0|)t

×
Csα,d
cα,d

∑
x∈ΛL\{x0,y}

△αs(y, x)(1 + |y − x|)t

≤ 1

2

Å
θP0,s

λ

ãs
+

Å
θP0,s

λ

ãs
Fs,L(t)Bs(t). (3.3.25)

If 0 < t < βλ,s, then

Fs,L(t) ≤
1

2
[(

λ
θP0,s

)s
− Bs(t)

] =
1

2[Bs(βλ,s)− Bs(t)]
, ∀L ∈ N. (3.3.26)

Due to Fatou’s Lemma, Ineq. 3.3.26 and Fubini-Tonelli, we get

E

 lim
L→∞

∑
x∈Zd

∣∣∣GΛL
z,λ,α(x0, x)

∣∣∣s(1 + |x− x0|)t


≤ lim
L→∞

E

∑
x∈Zd

∣∣∣GΛL
z,λ,α(x0, x)

∣∣∣s(1 + |x− x0|)t
 = lim

L→∞
Fs,L(t) ≤

1

2[Bs(βλ,s)− Bs(t)]
.

(3.3.27)

The above result together with the definition of lim inf imply that there is a sequence
{Lk}k∈N ⊂ N such that, for a.s. ω ∈ Ω,

lim
L→∞

∑
x∈Zd

∣∣Gω,ΛL
z (x0, x)

∣∣s(1 + |x− x0|)t = lim
k→∞

∑
x∈Zd

∣∣∣Gω,ΛLk
z (x0, x)

∣∣∣s(1 + |x− x0|)t <∞,
(3.3.28)

This result combined with an argument similar to Ineq. 3.3.16 yield that the sequence

of functions
{
G
ω,(ΛLk

(x0))

E+iη,ω,λ,α (x0, ·)
}

are uniformly bounded in ℓ2(Zd), for a.s. ω ∈ Ω.

Hence, due to Banach-Alaouglu Theorem, there is a subsequence
{
Lkj

}
j∈N such that,

for all x ∈ Zd, for a.s. ω ∈ Ω,

lim
j→∞

G
ω,ΛLkj
z (x0, x) = Gωz (x0, x). (3.3.29)

By the application of Fatou’s lemma twice, we get

E

∑
x∈Zd

|Gz,λ,α(x0, x)|s|x− x0|t
 ≤ lim

j→∞
E

∑
x∈Zd

∣∣∣∣GΛLkj
z (x0, x)

∣∣∣∣s(1 + |x− x0|)t


≤ 1

2[Bs(βλ,s)− Bs(t)]
, 0 < t < βα,s. (3.3.30)
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Hence, by Lemma 3.3.5, σ(Hλ,α) is pure-point a.s. Moreover, if Ineq. 3.3.18 holds, then
the eigenfunctions have the stated decay in Thm. 3.3.2.

We now proceed to prove Inequality 3.3.24. As a first step, note

0 =
¨
δx0 ,G

ΛL
z,λ,α

î
HΛL
λ,α − z

ó
δx
∂
=
∑
y∈Zd

¨
δx0 ,G

ΛL
z,λ,αδy

∂ ¨
δy,
î
HΛL
λ,α − z

ó
δx
∂

=

Ñ
−

∑
y∈Zd\{x}

△α(y, x)GΛL
z,λ,α(x0, y)

é
+ [λω(x)−△α(x, x)− z]GΛL

z,λ,α(x0, x).

Given s ∈ (0, 1), we use the concavity of the function w 7→ ws, for w ∈ R, and then we
take expectations on both sides to get

E
[
|λω(x)−△α(x, x)− z|s

∣∣∣GΛL
z,λ,α(x0, x)

∣∣∣s] ≤ ∑
y∈Zd\{x}

|△α(y, x)|sE
[∣∣∣GΛL

z,λ,α(x0, y)
∣∣∣s].

(3.3.31)

On the one hand, by Corollary 3.2.4, we get

E
[
|λω(x)−△α(x, x)− z|s

∣∣∣GΛL
z,λ,α(x0, x)

∣∣∣s] ≤ Csα,d
cαs,d

∑
y∈Zd\{x}

△αs(y, x)E
[∣∣∣GΛL

z,λ,α(x0, y)
∣∣∣s].

(3.3.32)

On the other hand, due to Krein formula, there exists a pair of complex-valued functions
ξ and Φ which depend on three elements λ, z and V{x}c := {ω(y)}y∈Zd\{x} such that

GΛL
z,λ,α(x0, x) =

ξ

λω(x)−Φ
. (3.3.33)

Then, the LHS of Ineq. 3.3.32 can be rewritten as

E
[
|λω(x)−△α(x, x)− z|s

∣∣∣GΛL
z,λ,α(x0, x)

∣∣∣s]
=

∫
dV{x}c

∫
R
dω(x)|λω(x)−△α(x, x)− z|s |ξ|s

|λω(x)−Φ|s

≥
Å

λ

θP0,s

ãs ∫
dV{x}c

∫
R
dω(x)

|ξ|s

|λω(x)−Φ|s
=

Å
λ

θP0,s

ãs
E
[∣∣∣GΛL

z,λ,α(x0, x)
∣∣∣s],

where we have used Decoupling Lemma (Lemma 3.3.4). This proves Ineq. 3.3.40.

Remark 3.3.9. In the proof, we could have avoided the step from Eq. 3.3.31 to Eq.
3.3.32, and then, following the same line of reasoning, we would have ended up with
the condition that

λ > θP0,s

Ñ ∑
y∈Zd\{x0}

|△α(x0, y)|s
é 1

s

:= λ̃AG(s). (3.3.34)

We do not know if λ̃AG(s) yields a sharper condition than λ0(s) under some conditions
on α, d and/or s because we do not know the explicit value of Cα,d and cαs,d given by
Eq. 3.2.12.
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By adapting the arguments presented in [AG98, Thm.1’] to our specific context,
we can make a slight improvement to Ineq. 3.3.8

E[|Gz,λ,α(x0, x)|s] ≤ 21−
1
s

Å
KP0,τ,s

λ

ãs 1

(1 + |x− x0|)βλ,s
, ,

∀x, x0 ∈ Zd, x ̸= x0, unif. in z ∈ C \ R, (3.3.35)

where KP0,τ,s =
2τMτ(P0)

1
τ

2
1
s (τ−s)

.

Proof of Ineq. 3.3.35. Let x0 ∈ Zd and

ϕ(x) = E[|Gz,λ,α(x0, x)|s]−
E[|Gz,λ,α(x0, x0)|s]
(1 + |x− x0|)t

, ∀x ∈ Zd, (3.3.36)

where t is a positive constant to be defined later.

By Functional Calculus, E[|Gz,λ,α(x, y)|s] ≤ 1
|Im z|s , for all x, y ∈ Zd, and thus

ϕ ∈ ℓ∞(Zd). Additionally, ϕ(x0) = 0. If we are able to prove that ϕ(x) ≤ 0, for all
x ∈ Zd \ {x0}, for a suitable choice of t and λ, then

E[|Gz,λ,α(x0, x)|s] ≤
E[|Gz,λ,α(x0, x0)|s]
(1 + |x− x0|)t

≤ 1

2

Å
θP0,s

λ

ãs 1

(1 + |x− x0|)t
, ∀x ∈ Zd \ {x0},

(3.3.37)

where, in the last step, we apply the Decoupling lemma (Lemma 3.3.4). This inequality
resembles Ineq. 3.3.35.

Now we provide a criterion for ϕ(x) ≤ 0, for all x ∈ Zd \ {x0}.

Claim 3.3.10. If λ > λAG(s) andÅ
λ

θP0,s

ãs
ϕ(x) ≤

Csα,d
cαs,d

∑
y∈Zd\{x}

△αs(y, x)ϕ(y), ∀x ∈ Zd \ {x0}, (3.3.38)

then ϕ(x) ≤ 0, for all x ∈ Zd \ {x0}.

For the sake of contradiction, assume that ϕ(x∗) > 0 for some x∗ ∈ Zd \ {x0}.
Hence, M := ϕ(x) > 0. If λ > λAG(s), thenÅ

λ

θP0,s

ãs
M ≤M

Csα,d
cαs,d

∑
y∈Zd\{x}

△αs(y, x) = M
Csα,d
cαs,d

(−∆)αs(x, x)

= M
Csα,d
cαs,d

(−∆)αs(0, 0),

where we used Eq. 3.2.1 and the invariance under translation of the fractional Lapla-
cian. The above inequality implies that λ ≤ λAG(s).
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Using the definition of ϕ(x), we rewrite Ineq. 3.3.38 asÅ
λ

θP0,s

ãsÅ
E[|Gz,λ,α(x0, x)|s]−

E[|Gz,λ,α(x0, x0)|s]
(1 + |x− x0|)t

ã
≤
Csα,d
cαs,d

∑
y∈Zd\{x}

△αs(y, x)

Å
E[|Gz,λ,α(x0, y)|s]−

E[|Gz,λ,α(x0, x0)|s]
(1 + |y − x0|)t

ã
, ∀x ∈ Zd \ {x0}.

(3.3.39)

To prove that Ineq. 3.3.39 holds, it is enough to verify the validity of Ineq. 3.3.40 and
Ineq. 3.3.42 below, for all λ > λAG(s),Å

λ

θP0,s

ãs
E[|Gz,λ,α(x0, x)|s] ≤

Csα,d
cαs,d

∑
y∈Zd\{x}

△αs(y, x)E[|Gz,λ,α(x0, y)|s],

(3.3.40)

Csα,d
cαs,d

∑
y∈Zd\{x}

△αs(y, x)E[|Gz,λ,α(x0, x0)|s]
(1 + |y − x0|)t

≤
Å

λ

θP0,s

ãsE[|Gz,λ,α(x0, x0)|s]
(1 + |x− x0|)t

, (3.3.41)

The proof of Ineq. 3.3.40 follows the same line of reasoning of the proof of Ineq.
3.3.24 above. On the other hand, with respect to Ineq. 3.3.41, WLOG we can assume
E[|Gz,λ,α(x0, x0)|s] ̸= 0. Hence, after dividing such a term on both sides of Ineq. 3.3.41,
it is enough to prove

Csα,d
cαs,d

∑
y∈Zd\{x}

△αs(y, x)

(1 + |y − x0|)t
≤
Å

λ

θP0,s

ãs 1

(1 + |x− x0|)t
. (3.3.42)

Note

∑
y∈Zd\{x}

△αs(y, x)

(1 + |y − x0|)t
≤

Ñ ∑
y∈Zd\{x}

△αs(y, x)(1 + |y − x|)t
é

1

(1 + |x− x0|)t
,

(3.3.43)

where we use the fact that the function w 7→ wt is strictly-increasing for t > 0 and

1

1 + |y − x0|
≤ 1 + |x− y|

1 + |x− x0|
∀x, y ∈ Zd, x ̸= x0 x ̸= y. (3.3.44)

Indeed, due to the triangular inequality,

1 + |x− x0| ≤ 1 + |x− y|+ |y − x0|+ |y − x0| ≤ (1 + |x− y|)(1 + |y − x0|).

By the translation under invariance of the fractional Laplacian, Ineq. 3.3.43 can be
rewritten as

∑
y∈Zd\{x}

△αs(y, x)

(1 + |y − x0|)t
≤

Ñ ∑
y∈Zd\{0}

△αs(y, 0)(1 + |y|)t
é

︸ ︷︷ ︸
=Bs(t)

1

(1 + |x− x0|)t
. (3.3.45)

If we choose t = βλ,s, then Bs(βλ,s) =
(

λ
θP0,s

)s
, by construction. This proves Ineq.

3.3.42 and ends the proof.
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Another known result is the Combes-Thomas estimate, [AW15, Thm. 10.5]. For
the reader’s convenience, we state it for our model. To do so, it is enough to take the
metric d̃(x0, x) = ln(1 + |x− x0|), for all x, x0 ∈ Zd therein. Here, we stress out the
dependence on ω since the bounds Ineq. 3.3.47 and 3.3.48 hold, for a.s. ω ∈ Ω.

Theorem 3.3.11. [Combes-Thomas estimate] Let 0 < N < 2α. Then

SN (α,d) :=
∑

x∈Zd\{0}

△α(x0, x)
Å
1− 1

(1 + |x− x0|)N

ã
<∞. (3.3.46)

Let z /∈ [0, (4d)α] + suppP0 and Dz := dist(z, [0, (4d)α] + suppP0). Then

|Gωz (x0, x)| ≤
1

Dz − Sν(α,d)

1

(1 + |x− x0|)ν
a.s. ∀ν ≤ N with Sν(α, d) < Dz.

(3.3.47)

In particular:

1. Let η̃z,α,d := NDz
4αSN (α,d) . If Dz ≤ 2SN (α,d), then 0 < η̃z,α,d < 1 and

|Gωz (x0, x)| ≤
2

Dz

1

(1 + |x− x0|)2αη̃z,α,d
a.s. (3.3.48)

2. Let ηm,α,d := Nm

2α
√

2SN (α,d)
. If m2 ≤ SN (α,d), then 0 < ηm,α,d < 1 and

∣∣∣[(−∆)α +m2
]−1

(x0, x)
∣∣∣ ≤ 2

m2

1

(1 + |x− x0|)2αηm,α,d
(3.3.49)

As a result of Thm. 3.3.11, we get

E[|Gz,λ,α(x0, x)|s] ≤
2

Dz

1

(1 + |x− x0|)2sαη̃z,α,d
. (3.3.50)

Remark 3.3.12. Observe that Ineq. 3.5.23, 3.3.35 and 3.5.21 are uniform in z. By
contrast, the term on the RHS of Ineq. 3.3.50 is not and diverges as z approaches to
σ(Hλ,α).

3.4 Self-avoiding walks with long jumps

In this Section, we explicitly construct the long-range self-avoiding random walk gen-
erated by the fractional Laplacian (−∆)α and its corresponding two-points correlation
function.

Definition 3.4.1 (Random walk generated by the Fractional Laplacian). Let

Tα,d(x0, x) =


△α(x0,x)∑

y∈Zd\{x0}
△α(x0,y)

, if x0 ̸= x,

0, otherwise.
(3.4.1)
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Let X = {Xn}n≥0 be defined as the long-range random walk in Zd whose jumps
or transition probabilities are given by the numbers {Tα,d(x0, x)}x0,x∈Zd. We say that

X is the random walk generated by the Fractional Laplacian (−∆)α. We denote by
Qαx0

= Qx0,α,d the distribution of such a walk starting at x0 ∈ Zd. In other words,

Qαx0
({Xn = xn |Xn−1 = xn−1}) = Tα,d(xn, xn−1), ∀n ∈ N,

Qαx0
({X0 = x0}) = 1. (3.4.2)

Finally, Eαx0
[·] denotes the corresponding expectation.

Remark 3.4.2. By Eq. 3.2.1 and invariance under translation of (−∆)α, we get that∑
y∈Zd\{x0}

△α(x0, y) = (−∆)α(x0, x0) = (−∆)α(0, 0). (3.4.3)

Hence,

Tα,d(x0, x) =
△α(x0, x)
(−∆)α(0, 0)

1{x0 ̸=x}. (3.4.4)

Definition 3.4.3 (Two-points correlation function). Let n ∈ N. Let x, x0 ∈ Zd and

Wn(x0, x) :=
¶
w = (wj)

n
j=0 ⊂ Znd | w0 = x0, wn = x

©
. We say that w ∈ Wn(x0, x) is

a self-avoiding walk of length n (SAW) if wk ̸= wl for all k ̸= l with k, l ≤ n. We set
△α(x0, x) = −(−∆)α(x0, x), for all x, x0 ∈ Zd. Following [Sch15], we define

cα,RWn (x) :=
∑

w∈Wn(0,x)

n−1∏
j=0

△α(wj , wj+1)1{wj ̸=wj+1}, (3.4.5)

cα,SAWn (x) :=
∑

w∈Wn(0,x)

n−1∏
j=0

△α(wj , wj+1)1{w SAW}, ∀n ∈ N. (3.4.6)

Let ⋆ ∈ {RW, SAW} and γ ≥ 0, the ⋆-two-point correlation function Cα,⋆γ of the
random walk X generated by (−∆)α between 0 and x is defined as

Cα,⋆γ (x) :=
∑
n≥1

cα,RWn (x)γn, Cα,⋆γ (0) := 1, ∀x ∈ Zd \ {0}. (3.4.7)

with RCα,⋆(x) as the radius of convergence.

Our definition of SAW-two-point correlation function matches the definition in
[Sch15]. Indeed, let γ > 0,

C1,SAW
γ (x) :=

∑
n≥1

c1,SAWn (x)γn =
∑
n≥1

γn
∑

w∈Wn(x0,x)

n∏
j=1

△(wj−1, wj)1{w SAW}

=
∑
n≥1

γn#Sn(x, 0), (3.4.8)

where Sn(x, 0) =
{
w ∈ Wn(0, x) | w SAW, |wj−1 − wj |1 = 1 ∀j ∈ {1, . . . , n}

}
.
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Remark 3.4.4. In [CS15], the correlation function is defined in a slightly different
way. To recover their definition, we make the following change of variable

γ 7→ γ̃ :=
γ

(−∆)α(0, 0)
. (3.4.9)

We will rewrite the ⋆-two-points correlation function in terms of X and its distribu-
tion, for ⋆ ∈ {RW,SAW}, see Eq. 3.4.16 and Eq. 3.4.19. To make the computations
easier, we will define a new operator. Let Tα,d be the linear operator on ℓ2(Zd) given
by

[Tα,du] (x0) =
∑

x1∈Zd

Tα,d(x0, x1)u(x1), ∀u ∈ ℓ2(Zd), ∀x0 ∈ Zd. (3.4.10)

Note that Tα,d is bounded. In fact,

sup
x∈Zd

∑
y∈Zd\{x}

|Tα,d(x, y)| = sup
y∈Zd

∑
x∈Zd\{y}

|Tα,d(x, y)| = 1. (3.4.11)

Hence, due to Schur’s bound test, Tα,d is bounded and

∥Tα,d∥ ≤ 1. (3.4.12)

Let x ∈ Zd, we can rewrite cα,RWn (x) and Cα,RWn (x), for n ∈ N, in terms of the random
walk X and its distribution Qα0 . Indeed, by the invariance under translations of (−∆)α,
we have

cα,RWn (x) = [(−∆)α(0, 0)]n
∑

w∈Wn(0,x)

n∏
j=1

△α(wj−1, wj)

(−∆)α(0, 0)
1{wj ̸=wj+1}

= [(−∆)α(0, 0)]n
∑

w1,...,wj−1∈Zd

Tα,d(0, w1) · . . . · Tα,d(wj−1, x)

= [(−∆)α(0, 0)]nTn
α,d(0, x), (3.4.13)

where Tn
α,d denotes the n−th power of Tα,d. Observe

Tn
α,d(0, x) = Qα0 ({Xn = x}), ∀n ∈ N. (3.4.14)

In fact, for n = 1, Tα,d(0, x) = Qα0 ({X1 = x}), by definition. For n = 2, we have

T 2
α,d(0, x) =

∑
w1∈Zd

Tα,d(0, w1)Tα,d(w1, x) =
∑

w1∈Zd

Qα0 ({X1 = w1})Qα0 ({X2 = x|X1 = w1})

= Qα0 ({X2 = x}).

The general case holds, due to an inductive argument. Hence, Eq. 3.4.13 and Eq.
3.4.14 yield

cα,RWn (x) = [(−∆)α(0, 0)]nQα0 ({Xn = x}), ∀n ∈ Zd. (3.4.15)

Let γ ≥ 0. Then Eq. 3.4.15 yields in turn

Cα,RWγ (x) =
∑
n≥1

γncα,RWn (x) =
∑
n≥1

γn[(−∆)α(0, 0)]nQα0 ({Xn = x}), ∀x ∈ Zd.

(3.4.16)
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By a similar argument, cα,SAWn (x) can be rewritten as

cα,SAWn (x) = [(−∆)α(0, 0)]nQα0 ({Xn = x,X SAW up to n}), (3.4.17)

where the event {X SAW up to n} is defined as

{X SAW up to n} :=
⋃

w∈Wn(0,x)
w SAW

{X0 = 0,X1 = w1, . . . ,Xn = x}, ∀n ∈ N. (3.4.18)

Additionally, for γ ≥ 0, it also holds that

Cα,SAWγ (x) =
∑
n≥1

γn[(−∆)α(0, 0)]nQα0 ({Xn = x,X SAW up to n}). (3.4.19)

Definition 3.4.5 (Susceptibility). Let ⋆ ∈ {RW, SAW} and γ ≥ 0. We define the
susceptibility χα,⋆(γ) of the random walk X generated by (−∆)α as

χα,⋆(γ) :=
∑
x∈Zd

Cα,⋆γ (x) = 1 +
∑

x∈Zd\{0}

∑
n≥1

cα,⋆n (x)γn, (3.4.20)

with Rχα,⋆ as the radius of convergence.

The fact that Rχα,SAW > 0 is known, see [CS15]. However, we prove it for the
sake of self-containment, see Proposition 3.4.6 below. In fact, we show that Rχα,SAW ≥

1
(−∆)α(0,0) .

Proposition 3.4.6. Let x ∈ Zd \ {0}. Then,

1

(−∆)α(0, 0)
≤ Rχα,SAW ≤ RCα,SAW(x). (3.4.21)

Proof. Observe

RCα,SAW(x) =
1

lim supn→∞
Ä
cα,SAWn (x)

ä 1
n

≥ 1

lim supn→∞
Ä∑

x∈Zd\{x0} c
α,SAW
n (x)

ä 1
n

= Rχα,SAW . (3.4.22)

Hence, it remains to prove Rχα,SAW ≥ 1
(−∆)α(0,0) . Let 0 ≤ γ ≤

ε
(−∆)α(0,0) with 0 < ε < 1.

Using Eq. 3.4.19 and Fubini-Tonelli, we obtain

χα,SAW(γ) = 1 +
∑

x∈Zd\{0}

Cα,SAWn (x)

= 1 +
∑

x∈Zd\{0}

∑
n≥1

γn[(−∆)α(0, 0)]nQα0 (Xn = x,X SAW up to n)

= 1 +
∑
n≥1

γn[(−∆)α(0, 0)]n
∑

x∈Zd\{x0}

Qα0 (Xn = x,X SAW up to n)

= 1 +
∑
n≥1

γn[(−∆)α(0, 0)]nQα0 (X SAW up to n) ≤ 1 +
∑
n≥1

εn =
1

1− ε
<∞, (3.4.23)
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where, in the fourth equality, we used the σ−subadditivity and the fact that

{Xn = x,X SAW up to n} ∩ {Xn = x̃,X SAW up to n} = ∅
∀x, x̃ ∈ Zd, x ̸= x̃, ∀n ∈ N. (3.4.24)

This shows that Rχα,SAW ≥ 1
(−∆)α(0,0) .

Note that if 0 < γ < RCα,RW(x), then

Cα,SAWγ (x) < Cα,RWγ (x), (3.4.25)

because, by construction, we have that cα,SAWn (x) = cα,RWn (x), ∀n ≤ 2 and cα,SAWn (x) <
cα,RWn (x), ∀n ≥ 3.

In Thm. 3.4.7 below, we obtain an estimate on the correlation functions in terms of
the inverse of the fractional Laplacian defined as in Subsection 3.2.3, which produces,
in turn, an upper bound on the decay of the Green’s functions, see Ineq. 3.5.20.

Theorem 3.4.7. Let 0 < α < d
2 and x ∈ Zd \ {0}. Let 0 < γ ≤ 1

(−∆)α(0,0) . Then,

Cα,SAWγ (x) < Cα,RWγ (x) ≤ Cα,RW1
(−∆)α(0,0)

(x) = (−∆)α(0, 0) · (−∆)−α(0, x). (3.4.26)

In particular, Cα,RWγ (x) <∞ and (−∆)−α(0, x) > 0, for all x ∈ Zd \ {0}.

Proof. Let x ∈ Zd \ {0}. In Prop. 3.4.6, it was proven that RCα,RW(x) ≥ 1
(−∆)α(0,0) .

In addition, it was also shown that Cα,SAWγ (x) < Cα,RWγ (x), for all 0 < γ < 1
(−∆)α(0,0) ,

see Ineq. 3.4.25. Since Cα,RWγ (x) is increasing in γ, it only remains to prove that

Cα,RW1
(−∆)α(0,0)

(x) <∞ and Cα,RW1
(−∆)α(0,0)

(x) = (−∆)α(0, 0) · (−∆)−α(0, x).

Let 0 < α < d
2 . By Thm. 3.2.7 , (−∆)−α(0, x) is well-defined in the sense that

(−∆)−α(0, x) := lim
m↓0

[
(−∆)α +m2

]−1
(0, x).

Let us write (−∆)α + m2 = D − B, where D is a diagonal operator and the diag-
onal entries of B are zero. Due to the invariance under translations, it holds that
(−∆)α(y, y) = (−∆)α(0, 0), for all y ∈ Zd, and

D =
[
(−∆)α(0, 0) + m2

]
I, (3.4.27)

where I is the identity. On the other hand, from Eq. 3.4.10, it holds that

B = (−∆)α(0, 0)Tα,d. (3.4.28)

Hence,

(−∆)α +m2 =
[
(−∆)α(0, 0) + m2

]ï
I− (−∆)α(0, 0)

(−∆)α(0, 0) + m2
Tα,d

ò
. (3.4.29)
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Since ∥T∥α,d ≤ 1 (see Ineq. 3.4.12), it holds that
∥∥∥ (−∆)α(0,0)
(−∆)α(0,0)+m2Tα,d

∥∥∥ < 1, ∀m > 0.

Thus, we can use Neumann series, to get that

[
(−∆)α +m2

]−1
=

1

(−∆)α(0, 0) + m2

∑
n≥0

ï
(−∆)α(0, 0)

(−∆)α(0, 0) + m2

òn
Tn
α,d, (3.4.30)

where the above limit converges in operator-norm. Hence, the following series converges

[
(−∆)α +m2

]−1
(0, x) =

1

(−∆)α(0, 0) + m2

∑
n≥1

ï
(−∆)α(0, 0)

(−∆)α(0, 0) + m2

òn
Qα0 (Xn = x),

(3.4.31)

where we used the fact that Tn(0, x) = Qα0 (Xn = x), see Eq. 3.4.14. Note that the
series starts at n = 1 and not at n = 0 because T 0(0, x) = I(0, x) = 0, for x ̸= 0. In
addition, all the terms of the series on the RHS are nonnegative and they increase as
m ↓ 0. By the Monotone Convergence Theorem, it follows that

(−∆)−α(0, x) = lim
m↓0

[
(−∆)α +m2

]−1
(0, x)

= lim
m↓0

1

(−∆)α(0, 0) + m2

∑
n≥1

Å
(−∆)α(0, 0)

(−∆)α(0, 0) + m2

ãn
Qα0 (Xn = x)

=
1

(−∆)α(0, 0)

∑
n≥1

Qα0 (Xn = x) =
1

(−∆)α(0, 0)
Cα,RW1

(−∆)α(0,0)

(x), (3.4.32)

where, in the last step, we used Eq. 3.4.19. Since (−∆)α(0, x) is well-defined, for
0 < α < d

2 , the series Cα,RW1
(−∆)α(0,0)

(x) is convergent and the result follows at once.

3.5 Decay of Green’s function

This sections is structured in the following way: In the first part, we establish the
aforementioned connection between the fractional moments of the Green’s function and
the two-point correlation function introduced earlier. This result is stated in Theorem
3.5.1 and serves as a generalization of [Sch15, Thm. 1]. By combining this result
with Lemma 3.3.5, we can conclude spectral localization and exponential decay of the
eigenfunctions, subject to certain conditions. Additionally, we also extend [FV17,
Lemma 8.13] to the fractional Anderson model, see Corollary 3.5.2. In the second
part, we make a comparison between different estimates of the Green’s function of the
fractional Laplacian, exploring their strengths and limitations.

3.5.1 Decay of Green’s function in terms of SAW

We now state our key estimate which relates the fractional moments of the Green’s
function to the SAW-two-points-correlation function introduced in the previous section.
Let Λ ⊂ Zd, recall that GΛ

z,ω,λ,α = 1ΛH
α,Λ

1Λ.
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Theorem 3.5.1. Let d
d+2α < s < τ ≤ 1. Let αs = s

(
α+ d

2

)
− d

2 , the constant in Eq.

3.2.14, and As be as in Thm. 3.3.2. If λ > AsÄ
R

χαs,SAW

ä 1
s
:= λ0(s), then

sup
Λ⊂Zd

E
î∣∣GΛ

z (x0, x)
∣∣só ≤ ÅKP0,τ,s

λ

ãs
Cαs,SAW

(As
λ )

s (x− x0),

∀x, x0 ∈ Zd, x ̸= x0, unif. in z ∈ C \ R, (3.5.1)

where KP0,τ,s =
2τMτ(P0)

1
τ

2
1
s (τ−s)

as in Ineq. 3.3.35.

Proof. Let Λ ⊂ Zd, z /∈ σ(Hλ,α). Without loss of generality, let x0, x ∈ Λ, x ̸= x0, and
s ∈ (0, 1). As a first step towards Ineq. 3.5.1, we will prove that

E
î∣∣GΛ

z (x0, x)
∣∣só ≤ 1

2

Å
θP0,s

λ

ãs ∑
w1∈Λ\{x0}

|△α(x0, w1)|sE
[∣∣∣GΛ\{x0}

z (w1, x)
∣∣∣s], (3.5.2)

where we recall from Decoupling Lemma (Lemma 3.3.4) that θP0,s =
Ä

2τ
τ−s

ä
Mτ(µ)

1
τ .

Indeed, the resolvent identity and then the concavity of the function y 7→ ys yield that∣∣GΛ
z (x0, x)

∣∣s ≤ ∣∣GΛ
z (x0, x0)

∣∣s ∑
w1∈Λ\{x0}

|△α(x0, w1)|s
∣∣∣GΛ\{x0}

z (w1, x)
∣∣∣s.

On the one hand, note that
∑

w1∈ΛL\{x0} |△
α(x0, w1)|s

∣∣∣GΛL\{x0}
z (w1, x)

∣∣∣s depends only

on V{x0}c := {ω(y)}y∈Zd\{x0}. On the other hand, Krein formula yields that

GΛ
z (x0, x0) =

1

λω(x0)− Φ
, (3.5.3)

where Φ is a complex-valued functions which depend on λ, z and V{x0}c . After taking
expectation on both sides, we get that

E
î∣∣GΛ

z (x0, x)
∣∣só

≤
∫

dV{x0}c
∑

w1∈Λ\{x0}

|△α(x0, w1)|s
∣∣∣GΛ\{x0}

z (w1, x)
∣∣∣s ∫ dω(x0)

|λω(x0)− Φ|s

≤ 1

2

Å
θP0,s

λ

ãs ∑
w1∈Λ\{x0}

|△α(x0, w1)|sE
[∣∣∣GΛ\{x0}

z (w1, x)
∣∣∣s],

where in the last step we use the Decoupling Lemma (Lemma 3.3.4). This proves 3.5.2.

Recall that Wn(x0, x) :=
¶
w := (wj)

n
j=0 ⊂ Z(n+1)d|w0 = x0, wn = x

©
. We intro-

duce the subset WΛ
n (x0, x) :=

¶
w := (wj)

n
j=0 ⊂ Λn+1|w0 = x0, wn = x

©
. As a second

step, for all N ∈ N, we will prove that

E
î∣∣GΛ

z (x0, x)
∣∣só ≤ 1

2

Å
θP0,s

λ

ãs n∑
n=1

ï
1

2

Å
θP0,s

λ

ãsòn ∑
w∈WΛ

n (x0,x)
w SAW

n∏
j=1

|△α(wj−1, wj)|s

+
1

|Im z|

ï
1

2

Å
θP0,s

λ

ãsòN ∑
w∈WΛ

N (x0,wN )
w SAW
wN ̸=x

n∏
j=1

|△α(wj−1, wj)|s. (3.5.4)
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In fact, Ineq. 3.5.2 and the Decoupling Lemma applied to E
[∣∣∣GΛ\{x0}

z (x, x)
∣∣∣s] yield

that

E
î∣∣GΛ

z (x0, x)
∣∣só ≤1

2

Å
θP0,s

λ

ã2s
|△α(x0, x)|s

+
1

2

Å
θP0,s

λ

ãs ∑
w1∈Λ\{x0,x}

|△α(x0, w1)|sE
[∣∣∣GΛ\{x0}

z (w1, x)
∣∣∣s]. (3.5.5)

By the same token, for all w1 ∈ ΛL \ {0, x}, we obtain that

E
[∣∣∣GΛ\{x0}

z (w1, x)
∣∣∣s] ≤ 1

22

Å
θP0,s

λ

ã2s
|△α(w1, x)|s

+
1

2

Å
θP0,s

λ

ãs ∑
w2∈Λ\{0,w1,x}

|△α(w1, w2)|sE
[∣∣∣GΛ\{x0,w1}

z (w2, x)
∣∣∣s]. (3.5.6)

If we insert Ineq. 3.5.6 into Ineq. 3.5.5, then we obtain

E
î∣∣GΛ

z (x0, x)
∣∣só

≤
2∑

n=1

ï
1

2

Å
θP0,s

λ

ãsòn+1 ∑
w∈WΛ

n (x0,x)
w SAW

n∏
j=1

|△α(wj−1, wj)|s

+

ï
1

2

Å
θP0,s

λ

ãsò2 ∑
w∈WΛ

2 (x0,w2)
w SAW
w2 ̸=x

E
[∣∣∣GΛ\{x0,w1}

z (w2, x)
∣∣∣s] 2∏

j=1

|△α(wj−1, wj)|s. (3.5.7)

By an inductive argument and the fact that E
ï∣∣∣∣GΛ\{wk}N−1

k=0
z (wN , x)

∣∣∣∣sò ≤ 1
|Im z|s , we get

that Ineq. 3.5.4 holds for N ∈ N.

Let αs be as in Eq. 3.2.14. Next, we bound the RHS of Ineq. 3.5.4, up to a constant,
by the correlation function Cαs,SAW

γ (x − x0), for γ > 0 to be defined later. Let Cα,d
and cαs,d be as in Ineq. 3.2.12. As a result of Ineq. 3.2.15 and the invariance under
translations of the fractional Laplacian, we get that

E
î∣∣GΛ

z (x0, x)
∣∣só

≤ 1

2

Å
θP0,s

λ

ãs n∑
n=1

ï
1

2cαs,d

Å
θP0,sCα,d

λ

ãsòn ∑
w′∈WΛ

n (0,x−x0)
w′ SAW

n∏
j=1

△αs(w′j−1, w
′
j)

+
1

|Im z|

ï
1

2cαs,d

Å
θP0,sCα,d

λ

ãsòN ∑
w′∈WΛ

N (0,y−x0)
w′ SAW
y ̸=x

n∏
j=1

△αs(w′j−1, w
′
j). (3.5.8)

73



By the definition of cα,SAWn and the fact that As :=
Ä

1
2cαs,d

ä 1
sθP0,sCα,d, we get that

E
î∣∣GΛ

z (x0, x)
∣∣só

<
1

2

Å
θP0,s

λ

ãs n∑
n=1

Å
As

λ

ãsn
cαs,SAW
n (x− x0) +

1

|Im z|

Å
As

λ

ãsN ∑
y∈Zd\{x0}

cαs,SAW
N (y − x0).

(3.5.9)

Now, we compute the limit as N →∞ on the RHS of the above inequality. On the one
hand,

lim
N→∞

Å
As

λ

ãsN ∑
y∈Zd\{x0}

cαs,SAW
N (y − x0) = 0, ∀λ > λ0(s) =

As(
Rχα,SAW

) 1
s

. (3.5.10)

Indeed,
(
As
λ

)sN ∑
y∈Zd\{x0} c

αs,SAW
N (y − x0) corresponds to the N -th term of the series

χαs,SAW
Ä(

As
λ

)sä
, which is convergent for λ > λ0(s). On the other hand,

∞∑
n=1

Å
As

λ

ãsn
cαs,SAW
n (x− x0) = Cαs,SAW

(As
λ )

s (x− x0) <∞, ∀λ > λ0(s),

since
(
As
λ

)s
< Rχα,SAW ≤ RCα,SAW(x−x0) (see Prop. 3.4.6 below). Therefore,

E
î∣∣GΛ

z (x0, x)
∣∣só ≤ 1

2

Å
θP0,s

λ

ãs
Cαs,SAW

(As
λ )

s (x− x0), ∀λ > λ0(s), ∀x ∈ Zd \ {x0}.

(3.5.11)

This proves Ineq. 3.5.1.

Corollary 3.5.2 below restates Thm. 3.5.1 using the expectation Eαs
0 [·] and the

associated random walk X. This corollary serves as an extension of [FV17, Lemma
8.13] within the framework of the fractional Anderson model.

Corollary 3.5.2. Let d
d+2α < s < τ ≤ 1. Let αs be as in Eq. 3.2.14. Let x0 ∈ Zd and

Eαs
x0
[·] be as in Def. 3.4.1. Let As be as in Thm. 3.5.1. Let L ∈ N, ΛL := {−L, . . . , L}d

and GΛL
z be as in Eq. 3.3.22, and TΛc := infn∈N {Xn /∈ ΛL}; that is, TΛc

L
is a random

variable which indicates the first time that the random walk lands outside of Λ. If λ > 0,
then

E
î∣∣GΛL

z (x0, x)
∣∣só

≤ 1

2

Å
θP0,s

λ

ãs
Eαs
x0

TΛc
L
−1∑

n=1

Å
As

λ

ãsn
[(−∆)αs(0, 0)]n1{Xn=x,X SAW up to n}

,
∀x ∈ Λ \ {x0}. (3.5.12)

Furthermore, if
(
As
λ

)s
< Rχα,SAW , then

E[|Gz(x0, x)|s]

≤ 1

2

Å
θP0,s

λ

ãs
Eαs
x0

[ ∞∑
n=1

Å
As

λ

ãsn
[(−∆)αs(0, 0)]n1{Xn=x,X SAW up to n}

]
<∞,

∀x ∈ Zd \ {x0}.
(3.5.13)
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Proof. Let L ∈ N and λ > 0. Using Ineq. 3.5.4 from the proof of Thm. 3.5.1 for
N = L, and then applying Eq. 3.4.17 and Fubini-Tonelli, we get that

E
î∣∣GΛ

z (x0, x)
∣∣só

≤ 1

2

Å
θP0,s

λ

ãs L∑
n=1

Å
As

λ

ãsn ∑
w∈WΛ

n (x0,x)
w SAW

n∏
j=1

△αs(wj−1, wj)

=
1

2

Å
θP0,s

λ

ãs L∑
n=1

Å
As

λ

ãsn
[(−∆)αs(0, 0)]nQαs

x0
(Xn = x,X SAW up to n,TΛc > n)

=
1

2

Å
θP0,s

λ

ãs
Eαs
x0

[
TΛc−1∑
n=1

Å
As

λ

ãsn
[(−∆)αs(0, 0)]n1{Xn=x,X SAW up to n}

]
, (3.5.14)

which is the desired inequality.

Now, if
(
As
λ

)s
< Rχα,SAW , then Cα,SAW

(As
λ )

s (x − x0) < ∞. In addition, by Thm. 3.5.1,

Eq. 3.4.19 and Fubini-Tonelli, we get that

E[|Gz(x0, x)|s]

≤ 1

2

Å
θP0,s

λ

ãs
Cαs,SAW

(As
λ )

s (x− x0)

=
1

2

Å
θP0,s

λ

ãs∑
n≥1

Å
As

λ

ãsn
[(−∆)αs(0, 0)]nQαs

x0
(Xn = x,X SAW up to n)

=
1

2

Å
θP0,s

λ

ãs
Eαs
x0

[ ∞∑
n=1

Å
As

λ

ãsn
[(−∆)αs(0, 0)]n1{Xn=x,X SAW up to n}

]
. (3.5.15)

Remark 3.5.3. The case of the usual discrete Laplacian is well-studied (see [FV17]).
In such scenario, we instead obtain a simple symmetric random walk on Zd. To be
more precise,

− 1

2d
∆ = I− T , (3.5.16)

where I is the identity operator on ℓ2(Zd) and T is the operator given by

T (x0, x) =
®

1
2d , |x0 − x|1 = 1,

0, otherwise.
(3.5.17)

We can define the simple symmetric random walk X = {X}k≥0 on Zd as the ran-
dom walk which has transition probabilities given by the entries of T . Let Qx0 be the
distribution of the simple symmetric random walk which begins at 0; i.e.,

Qx0(Xn = wn | Xn−1 = wn−1) = T (wn, wn−1),

Qx0(X0 = x0) = 1. (3.5.18)
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Let Ẽx0 be the expectation given by Qx0. Let ΛL be as in Corollary 3.5.2 and T̃Λc :=
infn∈N {Xn /∈ ΛL}. ThenÅ

− 1

2d
∆Λ

ã−1
(x0, x) = Ẽx0

T̃Λc−1∑
n=0

1{Xn=x}

, (3.5.19)

see [FV17, Lemma 8.13]. That is, the Green’s function of the usual discrete Lapla-
cian restricted to ΛL at (x0, x) corresponds to the average of arrivals at x by a simple
symmetric random walk starting at x0, before it lands outside of ΛL.

Let As be as in Thm. 3.3.2 and let λ1(s) := As|(−∆)α(0, 0)|
1
s . By Prop. 3.4.6, it

holds that λ1(s) ≥ λ0(s), for s > 0. Therefore, applying Thm. 3.5.1 and 3.4.7, we
obtain that

E[|Gz(x0, x)|s] ≤
Å
(−∆)α(0, 0) KP0,τ,s

λ

ãs
∆−αs(x0, x),

∀λ ≥ λ1(s), ∀s ∈
Å

d

d + 2α
,min

ß
τ,

2d

d + 2α

™ã
.

(3.5.20)

Together with Thm. 3.2.7, we obtain the estimate

E[|Gz(x0, x)|s] ≤
Å
(−∆)α(0, 0) KP0,τ,s

λ

ãs 1

|x− x0|d−2αs
,

∀λ ≥ λ1(s), ∀s ∈
Å

d

d + 2α
,min

ß
τ,

2d

d + 2α

™ã
,

(3.5.21)

which gives a slower decay than Ineq. 3.5.23.

Remark 3.5.4. We require that s ∈
Ä

d
d+2α ,

2d
d+2α

ä
to ensure that 0 < αs <

d
2 . For

d = 1 and 1
2 < α < 1, it holds that 1

2 ≤ αs < α for s ∈
î

2
1+2α , 1

ä
.

We recall [CS15, Lemma 2.4]: Given 0 < γ < Rχα,SAW , then

Cα,SAWγ (x− x0) ≤
K̃P0,τ,s,γ

|x− x0|d+2α
, (3.5.22)

where K̃P0,τ,s,γ = χα,SAWγ

Ä
6d+2α2γχα,SAWγ Cα,d + ℓ̃d+2α

α,d,γ

ä
, the constant ℓ̃α,d,γ > 0 is given

in the proof of [CS15, Lemma 2.4]. This combined with Thm. 3.5.1 yield our main
result.

Theorem 3.5.5. Let d
d+2α < s < τ ≤ 1. Let αs = s

(
α+ d

2

)
− d

2 , the constant in Eq.

3.2.14. Let As be as in Thm. 3.3.2. Let λ0(s) =
AsÄ

R
χαs,SAW

ä 1
s
be as in Thm. 3.5.1. If

λ > λ0(s), then

E[|Gz(x0, x)|s] ≤
ÅKP0,τ,s,λ

λ

ãs 1

|x− x0|d+2αs
, ∀x, x0 ∈ Zd, x ̸= x0, unif. in z ∈ C \ R,

(3.5.23)
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where KP0,τ,s,λ = KP0,τ,s

(
K̃P0,τ,s,(As

λ )
s

) 1
s
, whose factors are given, respectively, in Thm.

3.5.1 and Ineq. 3.5.22. Moreover, σ(Hα) is pure-point, for P−a.s ω ∈ Ω . Further-
more, let g be the density of P0, (i.e., dP0 (v) = dv g(v)) and let I ⊂ R be an open and
bounded Borel set. If there are constants M > 0 and 0 < κ < 1 such that Ineq. 3.3.6
holds, then, for P−a.s. ω ∈ Ω, for all E ∈ σ(Hα) ∩ I, there is a localization center
xE(ω) ∈ Zd such that the corresponding normalized eigenfunction φE(·,ω) satisfies

|φE(y,ω)|2 ≤ 4AI,t(ω)

ï
(−∆)α(0, 0)

△α(0, xE(ω))

ò2 1

(1 + |y − xE(ω)|)t
, ∀ t ∈ (0, 2αs), ∀y ∈ Zd,

(3.5.24)

where AI,t is an integrable random variable given in Eq. 3.3.14 above.

Remark 3.5.6. Let d = τ = 1, 1
2 < α < 1, 1

1+2α < s < 1 and λ > λ0(s). If we
assume that supv∈R(1 + |v|)κg(v) ≤ M , for some constants M > 0 and 0 < κ < 1,
then we establish pure-point spectrum and polynomial decaying of the eigenfunctions.
Explicitely, let φ ∈ ℓ2(Z) be an eigenfunction, then, for |x| large, |φ(x)|2 ≲ 1

|x|t , where

1 < t < s(1 + 2α)− 1 < 2.

Proof. Let d
d+2α < s < τ ≤ 1 and λ > λ0(s). As mentioned in Section 3.3.1, we note

that Ineq. 3.5.23 can be derived from both Ineq. 3.5.1 and 3.5.22. To complete the
proof, we need to establish spectral localization. Furthermore, if we can find a constant
M > 0 satisfying Ineq. 3.3.6, then the eigenfunctions decay polynomially, as stated in
Ineq. 3.5.24. To accomplish this, we use Lemma 3.3.5. Thus, it is enough to find a
pair of constants t > 0 and K > 0 such that Ineq. 3.3.12 holds. In fact, the Decoupling
Lemma (Lemma 3.3.4), Thm. 3.5.1 and Corollary 3.2.6 yield that

E

∑
x∈Zd

|Gz,ω,λ,α(x0, x)|s(1 + |x− x0|)t
 ≤ 1

2

Å
θP0,s

λ

ãs
+

∑
x∈Zd\{x0}

ÅKP0,τ,s,λ

λ

ãs (1 + |x− x0|)t
|x− x0|d+2αs

≤ 1

2

Å
θP0,s

λ

ãs
+

∑
x∈Zd\{x0}

ÅKP0,τ,s,λ

λ

ãs 2t

|x− x0|d+2αs−t

≤ 1

2

Å
θP0,s

λ

ãs
+ 2Nd+1+t

ÅKP0,τ,s,λ

λ

ãsÅ
1 +

1

2αs − t

ã
<∞, ∀x0 ∈ Zd,∀z ∈ C+,∀t ∈ (0, 2αs).

(3.5.25)

This ends the proof of Thm. 3.5.5.

3.5.2 Comparison of decaying rates

We examine and compare the various decay regimes of the fractional moments of the
Green’s function, as indicated by Ineq. 3.3.35, 3.3.50, 3.5.21, and 3.5.23. Then, we
establish a hierarchy based on the corresponding exponents: βλ,s, 2sαη̃z,α,d, d−2αs,
and d + 2αs. The summarized discussion can be found in Table 3.1 and 3.2 below.
After this comparison, we conclude that our main result yields the sharpest decay.

By Prop. 3.4.6, it holds that (−∆)αs(0, 0) ≥ 1
R

χαs,SAW
. Then, λAG(s) > λ0(s) and

Ineq. 3.5.23 yields a faster decay than 3.3.35, ∀λ > λAG(s), ∀s ∈
Ä

d
d+2α , τ

ä
. In addition,
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since βλ,s < 2αs, the eigenfunctions have a better decay in Thm. 3.5.1 than in 3.3.2
a.s.

However, if we compare Ineq. 3.3.35 with Ineq. 3.5.21, we obtain that

βλ,s < d− 2αs, ∀λ > λAG(s), ∀s ∈
Å

d

d + 2α
, τ

ã
∩
Å

d

d + 2α
,

3d

2(d + 2α)

ò
, (3.5.26)

where we note that the interval for s is always non-empty and λAG(s) > λ1(s), for all
s > 0. If τ ≤ 3d

2(d+2α) (e.g., for d ≥ 4 or 0 < α ≤ d
4 ), then Ineq. 3.5.21 provides a

better decay than 3.3.35, ∀λ > λAG(s), ∀s ∈
Ä

d
d+2α , τ

ä
. Otherwise, if 3d

2(d+2α) < τ,

then Ineq. 3.5.21 yields a better decay than 3.3.35, ∀λ > λAG(s), ∀s ∈
Ä

d
d+2α ,

3d
2(d+2α)

ó
.

Alternatively, for all s ∈
Ä

3d
2(d+2α) ,min

¶
τ, 2d

d+2α

©ä
, there is λ∗(s) > λAG(s) such that

d− 2αs < βλ,s ∀λ ≥ λ∗(s), (3.5.27)

and Ineq. 3.3.35 has a better decay than 3.5.21, ∀s ∈
Ä

3d
2(d+2α) ,min

¶
τ, 2d

d+2α ,
©ä

, λ ≥
λ∗(s).

Remark 3.5.7. Note that d − 2αs = 2d − s(2α + d) is strictly-decreasing in s and

max {d− 2α, 0} < d− 2αs < d, for all s ∈
Ä

d
d+2α ,min

¶
1, 2d

d+2α

©ä
. In addition,

d− 2αs∗ = 2αs∗ = sup
λ>λ0(s∗)

βλ,s∗ , for s∗ =
3d

2(d + 2α)
. (3.5.28)

The above discussion is summed up by Table 3.1 below.

τ s λ Decay
d

d+2α < τ ≤
3d

2(d+2α)
d

d+2α < s < τ λ > λAG(s) βλ,s <
d− 2αs

3d
2(d+2α) < τ ≤ 1 d

d+2α < s ≤ 3d
2(d+2α) λ > λAG(s)

3d
2(d+2α) < τ ≤ 1 3d

2(d+2α) < s < min
¶
τ, 2d

d+2α

©
λ > λ∗(s) d − 2αs <

βλ,s

Table 3.1: Thm. 3.3.35 vs. Thm. 3.2.7

From Ineq. 3.3.49 and Ineq. 3.5.21, we get that

2sαη < d− 2αs, ∀s ∈
Å

d

d + 2α
,min

ß
τ,

2d

d + 2α(1 + η)

™ã
, ∀η(0, 1). (3.5.29)

If τ ≤ 2d
d+2α(1+η) (e.g., for d = 4 or 0 < α ≤ d

4 ), then Ineq. 3.5.21 provides a better

decay than 3.3.49, ∀s ∈
Ä

d
d+2α , τ

ä
. Otherwise, if τ > 2d

d+2α(1+η) , then Ineq. 3.5.21

yields a faster decay than 3.3.49, ∀s ∈
Ä

d
d+2α ,

2d
d+2α(1+η)

ä
. Alternatively, for all s ∈î

2d
d+2α(1+η) ,min

¶
τ, 2d

d+2α

©ä
, it holds that

d− 2αs ≤ 2sαη (3.5.30)

and Ineq. 3.3.49 yields a sharper decay than 3.5.21 ∀s ∈
î

2d
d+2α(1+η) ,min

¶
τ, 2d

d+2α

©ä
.
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Remark 3.5.8. Like in Remark 3.5.7, we have that (−∆)−αs is well-defined since
d

d+2α < s < 2d
d+2α(1+η) <

2d
d+2α ∀η ∈ (0, 1). In addition, given η ∈ (0, 1), 2sαη is

strictly-increasing in s, d−2αs is strictly-decreasing and they are equal at s = 2d
d+2α(1+η) .

The gist of the above discussion is shown in Table 3.2 below.

τ s λ Decay
d

d+2α < τ ≤
2d

d+2α(1+η)
d

d+2α < s < τ λ > λ1(s) 2sαη <
d− 2αs

2d
d+2α(1+η) < τ ≤ 1 d

d+2α < s < 2d
d+2α(1+η) λ > λ1(s)

2d
d+2α(1+η) < τ ≤ 1 2d

d+2α(1+η) ≤ s < min
¶
τ, 2d

d+2α

©
λ > λ∗(s) d − 2αs <

2sαη

Table 3.2: Thm. 3.2.7 vs. Thm. 3.3.11 [Massive vs. Massless case]

Since 0 < η̃z,α,d < 1, Ineq. 3.3.48 yields a slower decay than Ineq. 3.5.23. Instead,
if we make the comparison between Ineq. 3.3.48 and Ineq. 3.3.35, it is unclear which
one is better than the other since 2sαη̃ and d− αs decay slower than 2sα. Finally, we
provide an estimation of βλ,s and η̃z,α,d as α tends to 0 or 1.

Theorem 3.5.9. (a) Let d
d+2α < τ ≤ 1 and βλ,s be as in Thm. 3.3.2. Then,

lim
α↑1

sup
d

d+2α
<s<τ

∣∣∣∣βλ,s +OÅ 1

λs

ã∣∣∣∣ = 0 (3.5.31)

Furthermore, if τ = 1, then

lim
α↓0

sup
d

d+2α
<s<1

βλ,s = 0. (3.5.32)

(b) Let d = 1, 0 < N < 2α, Rα := {z ∈ C | 0 < Dz ≤ 2SN (α, 1)} and η̃z,α,d be as in
Thm. 3.3.11. Then,

lim
α↓0

sup
0<s<1

0<N<2α
z∈Rα

2sαη̃z = 0. (3.5.33)

Moreover, let 0 < N < 2 and 0 < ε < 1 , then infε≤α<1 SN (α, 1) > 0 and

lim
α↑1

sup
0<s<1

SN (α,1)<∞

∣∣∣∣∣2sαη̃z,α,1 − NDz

2
(
1− 1

2N

)∣∣∣∣∣ = 0, ∀ z ∈
⋂

ε<α<1

Rα. (3.5.34)

Let z /∈ σ(Hλ,α). Although η̃z,α,d has a limit in the sense of Eq. 3.5.33 as α ↓ 0, the
RHS of Eq. 3.3.48 diverges because Dz ≤ 2SN (α, 1) ↓ 0.

The proof of Thm. 3.5.9 below is presented in two parts. In the first half, we
evaluate the limits of βλ,s as α approaches 1 and as α approaches 0. In the second
half, we aim to apply the same limits to η̃z,α,1. However, in this case, the computations
involve the Γ function. It is important to recall that Γ is a meromorphic function
defined on C \ {0,−1,−2, . . .}, and it possesses two useful properties: Γ(n) = (n− 1)!
for all n ∈ N, and Γ has simple poles at non-positive integers.
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Proof.

(a) Let d
d+2α < s < τ and αs be as in Eq. 3.2.14. Due to Thm 3.3.2, we have

βλ,s = 2αs −O
(

1
λs

)
= s(2α+ d)− d−O

(
1
λs

)
> 0. Hence,

lim
α↑1

sup
d

d+2α
<s<τ

∣∣∣∣βλ,s +OÅ 1

λs

ã∣∣∣∣ = τ(2 + d)− d. (3.5.35)

On the other hand, we know 0 < βλ,s < 2αs < 2α. If τ = 1, then

lim
α↓0

sup
d

d+2α
<s<1

βλ,s = 0. (3.5.36)

(b) Let d = 1, 0 < s < 1, 0 < N < 2α and 0 < Dz ≤ 2SN (α, 1). To compute the limits
of η̃z,α,1 =

NDz
4αSN (α,1) , we need to estimate SN (α, 1). Recall that

SN (α, 1) :=
∑

x∈Z\{0}

△α(0, x)
Å
1− 1

(1 + |x|)N

ã
. (3.5.37)

[CRS+18, Thm. 1.2 (b)] provides an explicit value of △α(0, x), which is given by

△α(0, x) = 4α√
π

Γ
(
1
2 + α

)
|Γ(−α)|

Γ(|x| − α)
Γ(|x|+ α+ 1)

, x ∈ Z \ {0}. (3.5.38)

Replacing Eq. 3.5.38 into Eq. 3.5.37, we obtain that

SN (α, 1) =2
4α√
π

Γ
(
1
2 + α

)
|Γ(−α)|

Γ(1− α)
Γ(2 + α)

Å
1− 1

2N

ã
+ 2

4α√
π

Γ
(
1
2 + α

)
|Γ(−α)|

∑
n≥2

Γ(n− α)
Γ(n+ α+ 1)

Å
1− 1

(1 + n)N

ã
. (3.5.39)

On the one hand, the Gamma function has the property that α|Γ(−α)| = Γ(1−α).
Hence, the first term on the RHS of the above equation can be rewritten as

2
4α√
π

Γ
(
1
2 + α

)
|Γ(−α)|

Γ(1− α)
Γ(2 + α)

Å
1− 1

2N

ã
= 2α

4α√
π

Γ
(
1
2 + α

)
Γ(2 + α)

Å
1− 1

2N

ã
. (3.5.40)

On the other hand, to estimate the second term, we need to know how it decays
the general term of the series. The Stirling’s formula for the Gamma function is

Γ(y) ∼
 

2π

y

(y
e

)y
, y > 0. (3.5.41)

Note that for y = n ∈ N, the above formula gives Γ(n) = (n− 1)! ∼
»

2π
n

(
x
e

)n
. By

multiplying by n on both sides, we recover the usual Stirling’s formula. Hence,

Γ(n− α)
Γ(n+ α+ 1)

∼
…
n+ α+ 1

n− α

(n− α
e

)n−αÅ e

n+ α+ 1

ãn+α+1

∼
( e
n

)1+2α(
1− α

n

)n−αÇ 1

1 + α+1
n

ån+α+1

∼
( e
n

)1+2α
e−αe−1−α =

1

n1+2α
.
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Consequently,

SN (α, 1)

∼ 2
4α√
π
Γ

Å
1

2
+ α

ã α

Γ(2 + α)

Å
1− 1

2N

ã
+

1

|Γ(−α)|
∑
n≥2

1

n1+2α

Å
1− 1

(1 + n)N

ã.
(3.5.42)

By the continuity of Γ(y), for y > 0, and the facts that Γ(12) =
√
π
2 , Γ(n) = (n− 1)!,

for n ∈ N, and limy→0
1
Γ(y) = limy→−1

1
Γ(y) = 0, it holds that

lim
α↑1

SN (α, 1) = 2

Å
1− 1

2N

ã
, lim

α↓0
SN (α, 1) = 0. (3.5.43)

Let Rα := {z ∈ C | 0 < Dz ≤ 2SN (α, 1)}. Recall that η̃z,α,1 = NDz
4αSN (α,1) . Hence,

0 ≤ 2sαη̃z ≤
sNDz

2SN (α, 1)
≤ sN , ∀z ∈ Rα. (3.5.44)

Therefore,

lim
α↓0

sup
0<s<1

0<N<2α
z∈Rα

2sαη̃z = 0. (3.5.45)

Moreover, let 0 < ε < 1 , then infε≤α<1 SN (α, 1) > 0 due to Eq. 3.5.43. By Ineq.
3.5.43, it follows that

lim
α↑1

sup
0<s<1

SN (α,1)<∞

∣∣∣∣∣2sαη̃z,α,1 − NDz

2
(
1− 1

2N

)∣∣∣∣∣ = 0, ∀ z ∈
⋂

ε<α<1

Rα. (3.5.46)

Remark 3.5.10.

• Note that in Eq. 3.5.32, we need to take τ = 1 because limα↓0
d

d+2α = 1.

• Observe that the value of λ was improved in [DMERM23], giving a larger inter-
val for λ such that pp spectrum with polynomially decaying eigenfunctions holds,
compared to [AM93] and [AG98].

81





References

[Abd04] Abdelmalek Abdesselam. The Grassmann-Berezin calculus and theorems
of the matrix-tree type. Advances in Applied Mathematics, 33(1):51–70,
2004.

[AG98] Michael Aizenman and Gian M Graf. Localization bounds for an electron
gas. Journal of Physics A: Mathematical and General, 31(32):6783, 1998.

[AL97] B. L. Altshuler and L. S. Levitov. Weak chaos in a quantum Kepler
problem. Physics reports, 288(1-6):487–512, 1997.

[AM93] Michael Aizenman and Stanislav Molchanov. Localization at large disor-
der and at extreme energies: An elementary derivations. Comm. Math.
Phys., 157:245–278, 1993.

[And58] Philip W Anderson. Absence of diffusion in certain random lattices.
Physical review, 109(5):1492, 1958.
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Decay of the Green’s function of the fractional Anderson

model and connection to long-range SAW
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Abstract

We prove a connection between the Green’s function of the fractional Anderson
model and the two point function of a self-avoiding random walk with long range
jumps, adapting a strategy proposed by Schenker in 2015. This connection allows
us to exploit results from the theory of self-avoiding random walks to improve
previous bounds known for the fractional Anderson model at strong disorder. In
particular, we enlarge the range of the disorder parameter where spectral local-
ization occurs. Moreover we prove that the decay of Green’s function at strong
disorder for any 0 < α < 1 is arbitrarily close to the decay of the massive resol-
vent of the corresponding fractional Laplacian, in agreement with the case of the
standard Anderson model α = 1. We also derive upper and lower bounds for the
resolvent of the discrete fractional Laplacian with arbitrary mass m ≥ 0, that are
of independent interest.

Keywords : fractional Laplacian, random Schödinger operator, self-avoiding random
walk, Anderson localization

MSC : 82B44, 82B41, 35R11 (primary), 47B80, 81Q10 (secondary)

1 Introduction

Transport phenomena in disordered environment are often described via random Schrö-
dinger operators. On the lattice Z

d, d ≥ 1, they take the form of an infinite random
matrix Hω = T+λVω ∈ R

Zd×Zd

sym where T is a deterministic matrix (the kinetic part) and
Vω is a diagonal matrix with random entries. In its most standard formulation T is the
negative discrete Laplacian −∆ defined via−∆(x, y) := −δ|x−y|=1+2d δ|x−y|=0, where |·|
denotes the ℓ2 norm. This defines a self-adjoint bounded operator −∆: ℓ2(Zd) → ℓ2(Zd)
with absolutely continuum spectrum and delocalized generalized eigenfunctions. More
generally, T can be a symmetric matrix with decaying off-diagonal terms.
Operators of the form H = T + V where V is a, possibly random, multiplication
operator and T is long-range have attracted increasing interest in recent years [Han19,
PKL+20, GRM20, SS21, JL21, Liu23, Shi23]. In particular, the usual exponential decay
of eigenfunctions and dynamical bounds is replaced in this case by a polynomial decay.
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In this paper we consider the case when T is the discrete fractional Laplacian (−∆)α

with 0 < α < 1, which is obtained from −∆ via functional calculus. This operator
has been subject to increasing interest in recent years. Just as the standard discrete
Laplacian, it is bounded and translation invariant (−∆)α(x, y) = (−∆)α(0, y − x),
non-negative as a quadratic form and satisfies (see [GRM20, Thm. 2.2])

(−∆)α(x, x) > 0, (−∆)α(x, y) ≤ 0 ∀x 6= y.

Its off-diagonal matrix elements decay polynomially. See [GRM20, Thm. 2.2(iii)],
[Sla18, Lemma 2.1] or, for the one dimensional case, [CRS+18, Thm. 1.1]. More pre-
cisely there are constants 0 < cα,d < Cα,d such that

cα,d

|x− y|d+2α
≤ −(−∆)α(x, y) ≤ Cα,d

|x− y|d+2α
, ∀x, y ∈ Z

d, x 6= y. (1.1)

In particular (−∆)α has a summable kernel
∑

x∈Zd |(−∆)α(0, x)| < ∞ ∀0 < α ≤ 1 and

(−∆)α(0, 0) = −
∑

x 6=0

(−∆)α(0, x). (1.2)

The long range nature of (−∆)α for α < 1 changes drastically the behavior of the
resolvent ((−∆)α + m2)−1 with m > 0. While for α = 1 the corresponding kernel
decays exponentially, we only have polynomial decay for α < 1. Precisely, for α = 1

c e−m|x−y| ≤ (−∆+m2)−1(x, y) ≤ C e−m|x−y| ∀x 6= y, (1.3)

for some constants c, C > 0, depending on d,m, while for α < 1

c1
|x− y|d+2α

≤ ((−∆)α +m2)−1(x, y) ≤ C1

|x− y|d+2α
∀ x 6= y, (1.4)

for some constants c1, C1 > 0, depending on d,m,α. See [Sla18, Lemma 3.2] or Thm. 7
in Section 5 below. The limit m ↓ 0 is well defined for d > 2α, 0 < α ≤ 1 and behaves
polynomially both for α = 1 and for α < 1. See [Sla18, Sect. 2] and references therein,
Thm. 8 in Section 5 below, or, for the one-dimensional case, [CRS+18, Thm. 1.3].
Precisely

c2
|x− y|d−2α

≤ ((−∆)α)−1(x, y) ≤ C2

|x− y|d−2α
∀x 6= y. (1.5)

for some constants c2, C2 > 0, depending on d,α.

In this paper we consider the so-called fractional Anderson model, which is obtained
by perturbing the fractional Laplacian with a random diagonal matrix as follows

Hα,ω = (−∆)α + λVω ∈ R
Zd×Zd

(1.6)

where λ > 0 is the disorder parameter, Vω(x, y) := δ|x−y|=0 ωx and ω := (ωx)x∈Zd ∈ R
Zd

is a family of i.i.d. real random variables endowed with the Borel probability measure
P :=

⊗

Zd P0, with compactly supported one site probability measure P0. With these
assumptions the operator Hα,ω is bounded and self-adjoint. By translation invariance it
is also ergodic and hence the spectrum σ(Hα,ω) is a.s. a deterministic bounded interval
of R.
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The fractional Anderson model in the discrete setting is known to exhibit pure point
spectrum with eigenfunctions decaying at least polynomially at strong disorder, see
[AM93, Thm. 3.2], and to exhibit fractional Lifshitz tails [GRM20]. Localization for
this operator is not yet available in the continuous setting, therefore it is important to
understand better the mechanism causing pure point spectrum.
In this paper we contribute to these efforts by giving an alternative proof of spectral
localization that exploits a connection to self-avoiding random walks (SAW), following
[Sch15]. This allows us to improve known results, such as the polynomial decay rate
of the Green’s function and eigenfunctions at strong disorder. In particular we enlarge
the range of the disorder parameter where spectral localization occurs. Moreover we
prove that the decay of Green’s function at strong disorder for any 0 < α < 1 is arbi-
trarily close to the decay of the massive resolvent (1.4) of the corresponding fractional
Laplacian. We conjecture that this is the optimal decay rate one can obtain by the
Fractional Moment Method. Note that the same kind of result holds in the case of the
standard Anderson model α = 1.

Organization of the paper. In Section 2 we state our main results and discuss
connections with the existing literature. In Section 3 we introduce the regularity
assumption we need on the random potential and the basic definitions to introduce
self-avoiding random walks, including a known result on the decay of the two-point
correlation function of a SAW with long jumps. In Section 4 we establish a comparison
between the decay of the averaged fractional resolvent of our model and the two-point
correlation function of a particular SAW with long jumps, proving our main result.
Finally, in Section 5 we complement our results by studying properties of the discrete
fractional Laplacian. This section might be of independent interest.

2 Main results and discussion

In the following we assume P0 is absolutely continuous with respect to Lebesgue and
τ−regular for some τ ∈ ( d

d+2α , 1) with τ−constant Mτ (P0) (cf. Def. 3 below). Note
that the decay of (−∆)α, Eq. (1.1), ensures that

∑

x∈Zd

|(−∆)α(0, x)|s < ∞ holds ∀s ∈
(

d

d+ 2α
, 1

]

(2.1)

since in that interval we have s(d + 2α) > d. In particular this holds for all s in the
non empty interval ( d

d+2α , τ) and hence, by the Fractional Moment Method [AM93,
Thm 3.2], the spectrum of Hα,ω for large disorder λ > λAM (s), with

λAM (s) := Mτ (P0)
1
τ





2τ

τ − s

∑

x∈Zd

|(−∆)α(0, x)|s




1
s

(2.2)

consists only of pure point spectrum, with random square summable eigenvectors. In
this sense the fractional Anderson model undergoes the same localization phenomenon
at large disorder as the standard non fractional one, but contrary to the case α = 1,
the operator Hα,ω is expected to undergo a phase transition in d = 1 for α < 1/2 and
in d = 2 for all 0 < α < 1 between complete pure point spectrum at large disorder and
coexistence of absolutely continuous and pure point spectrum at weak disorder [JM99].
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Indeed, in dimension d = 1, the random walk with long jumps generated by −(−∆)α

is transient in the case 0 < α < 1/2, and recurrent in the case 1/2 ≤ α ≤ 1, while in
dimension d = 2 and above, it is transient for all 0 < α < 1, see e.g. [CFG09, Appendix
B.1].
The situation changes drastically when considering the spatial decay of the correspond-
ing eigenvectors. While these are exponentially localized around some random point for
α = 1, polynomial decay is expected for α < 1 in any dimension due to the long range
nature of (−∆)α. Upper and lower polynomial bounds have been proved, for example,
in the case of the fractional Laplacian perturbed by a negative potential vanishing at
infinity, see [CMS90, Prop. IV.1 and IV.3]

The key observable giving information on the spectral properties of Hα,ω is the fractional
average Green’s function E[|Gz(x0, x)|s] with 0 < s < 1, where

Gz = (Hα,ω − z)−1

is a well defined bounded operator for all z ∈ C \R. In this article we adapt a strategy
developed in [Sch15] to bound E[|Gz(x, y)|s] by the two point function of a self-avoiding
walk (SAW) generated by D(x, y) := |(−∆)α(x, y)|s. We use this bound to enlarge the
set of values for λ where pure spectrum occurs, and to derive improved decay estimates
on the corresponding eigenvectors.

To formulate our main result we need some notions to describe a SAW with long jumps
generated by D. These are collected in Section 3. In particular we denote by χα,SAW

the susceptibility, with radius of convergence Rχα,SAW , and by CD,SAW
γ (x) the two-

point correlation function with parameter γ > 0, see (3.5) and (3.6) below. With this
notation, our main result is summarized in the following theorem.

Theorem 1. Assume the one site probability measure P0 is τ−regular, for some τ ∈
(

d
d+2α , 1

)

with τ−constant Mτ (P0). For s ∈
(

d
d+2α , τ

)

we consider the self-avoiding

walk generated by D(x, y) := |(−∆)α(x, y)|s, with x 6= y. Set

θs :=
τ

τ − s
Mτ (P0)

s
τ (2.3)

and

λ0(s) :=

(

θs
Rχα,SAW

)
1
s

. (2.4)

Then for all λ > λ0(s) and ∀x 6= x0 ∈ Z
d it holds

E[|Gz(x0, x)|s] ≤ γ0(λ, s) CD,SAW
γ0(λ,s)

(x− x0), (2.5)

uniformly in z ∈ C \ R, where γ0(λ, s) :=
θs
λs .

The proof is in Section 4. Note that the kernel D is summable by (2.1). Moreover,
translation invariance of (−∆)α implies that D is translation invariant too. The con-
dition λ > λ0(s) ensures that the two point function is finite CD,SAW

γ0(λ,s)
(x) < ∞ ∀x ∈ Z

d

(cf. Section 3 below). The next result uses the bound (2.5) to prove existence of pure
point spectrum and decay estimates on the eigenvectors.
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Theorem 2. For s ∈
(

d
d+2α , τ

)

we define

2αs := s(d+ 2α)− d, (2.6)

which satisfies, by the constraints on s, the inequality

0 < αs < α < 1.

Remember the definitions of λ0(s) (2.4) and θs (2.3) above.

(i) For all λ > λ0(s) it holds

E[|Gz(x, y)|s] ≤
K0θs
λs

1

|x− y|d+2αs
∀x, y ∈ Z

d, x 6= y, (2.7)

uniformly in z ∈ C\R. The constant K0 = K0(λ, s) > 0 is defined in (3.9) below.

(ii) For all λ > λ0(s) the spectrum of Hα,ω consists only of pure point spectrum.

(iii) Assume the density of P0 is bounded (in particular τ = 1). Then, for a.s. ω ∈ Ω
and for all E ∈ σ(Hα), there is a localization center xE(ω) ∈ Z

d such that the
corresponding normalized eigenfunction ϕE(·, ω) satisfies ∀y ∈ Z

d

|ϕE(y, ω)|2 ≤ 4At(ω)
[

(−∆)α(0,0)
−(−∆)α(0,xE(ω))

]2 1

(1 + |y − xE(ω)|)t
, ∀0 < t < 2αs,

(2.8)

where At is an integrable random variable.

Proof. The first statement follows directly from the bound (2.5) together with the decay
(3.8). To prove the last two statements note that the bound (2.7) ensures that for all
λ > λ0(s),

∑

x∈Zd

E
[

|Gz(0, x)|s|x|t
]

< ∞ ∀0 ≤ t < 2αs (2.9)

holds uniformly in z ∈ C \ R. Note that limη↓0
∑

y∈Zd |GE+iη(x, y)|2 always exists (but

may be infinite) since
∑

y∈Zd |GE+iη(x, y)|2 = [(E − Hα,ω)
2 + η2]−1(x, x) which is a

monotone function in η. We argue

E









lim
η↓0

∑

y∈Zd

|GE+iη(x, y)|2




s
2






= E






lim
η↓0





∑

y∈Zd

|GE+iη(x, y)|2




s
2







≤ E



lim
η↓0





∑

y∈Zd

|GE+iη(x, y)|s






 ≤ lim inf
η↓0

∑

y∈Zd

E[|GE+iη(x, y)|s] < ∞,

where in the first two steps we used that the function x 7→ x
s
2 is monotone and

(
∑

n an)
s ≤ ∑

n a
s
n for all an ≥ 0 and 0 < s < 1. The last two inequalites follow

by Fatou and (2.9) with t = 0. Since we assumed the one site probability measure
P0 has a density, this bound implies by Simon-Wolff criterion [AW15, Thm. 5.7] that
the spectrum is pure point only. Finally, since P0 has compact support and bounded
density we have

sup
v∈R

(1 + |v|)sP0(v) < ∞.

The eigenfunction decay follows from this bound and (2.9) by standard arguments (cf.
[AW15, Thm. 7.4]).
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Discussion of the results. Note that, assuming again d
d+2α < s < τ, a direct

application of [AG98, Thm.1’] with |x − y| replaced by ln(1 + |x− y|) and K(x, y)
replaced by (−∆)α(x, y) gives the following estimate ∀x, x0 ∈ Z

d

E[|Gz(x0, x)|s] ≤ Mτ (P0)
s
τ

τ
τ−s

1

(1 + |x− x0|)β
, ∀0 < β < 2αs (2.10)

which holds uniformly in z ∈ C \R, as long as λ satisfies

λ > λAG(β, s) := Mτ (P0)
1
τ





2τ

τ − s

∑

x∈Zd

|(−∆)α(0, x)|s(1 + |x|)β




1
s

.

While the bound (2.7) in Theorem 2 is summable for all α > 0, the bound (2.10) is
never summable when α < d

2 , hence Simon-Wolff criterion cannot be applied directly.
Instead one proves the inequality [AM93]

sup
η>0

E





∑

y∈Zd

|GE+iη(x, y)|s(1 + |x− y|)β


 < ∞,

for λ > λAG(β, s). This ensures the existence of pure point spectrum and the decay
(2.8) for the eigenfunctions. Note that, using (2.4), (3.7) and (2.2) we obtain

λ0(s) = Mτ (P0)
1
τ

(

τ

τ − s

1

Rχα,SAW

)
1
s

≤ Mτ (P0)
1
τ





τ

τ − s

∑

x 6=0

D(0, x)





1
s

= Mτ (P0)
1
τ





τ

τ − s

∑

x 6=0

|(−∆)α(0, x)|s




1
s

< Mτ (P0)
1
τ





2τ

τ − s

∑

x 6=0

|(−∆)α(0, x)|s




1
s

= λAM (s)

< Mτ (P0)
1
τ





2τ

τ − s

∑

x∈Zd

|(−∆)α(0, x)|s(1 + |x|)β




1
s

= λAG(s, β).

Hence λ0(s) < λAM (s) < λAG(s, β) for all 0 < β < 2αs and s ∈ (0, 1).
Our bound (2.7) ensures one can get arbitrarily close to the decay t = τ(d + 2α).
Remember that we need 1 ≥ τ > d

d+2α so τ must be near one for d large or α small. In
the case τ = 1 our results imply we can get arbitrarily close to (d + 2α) which is the
decay of the massive resolvent ((−∆)α+m2)−1, but also of (−∆)α. On the other hand,
the best decay we can obtain via (2.10) is 2αs = s(d+2α)−d, and this at the cost of an
infinitely large disorder since limβ↑2αs

λAG(β, s) = ∞. For s near 1 this approximates
d+ 2α− d = 2α so the bound misses the optimal decay by a factor d.
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3 Preliminary definitions and results

τ−regularity and apriori bound.

Definition 3 (τ−regularity). Let τ ∈ (0, 1]. We say that a probability measure µ is
τ−regular if there is a C > 0 such that µ([v− δ, v + δ]) ≤ Cδτ, ∀v ∈ R, ∀δ > 0. If µ is
τ−regular, the corresponding τ−constant is defined by

Mτ(µ) := inf {C > 0 | µ([v − δ, v + δ]) ≤ Cδτ, ∀v ∈ R, ∀δ > 0}. (3.1)

The τ−regularity of P0 enters in the bounds for Gz via the so-called a priori bound

E

[

|Gz(x, x)|s|ωZd\{x}

]

≤ θs

λs
, ∀x ∈ Z

d, 0 < s < τ, (3.2)

uniformly in ωZd\{x}, where θs = τ
τ−s

Mτ (P0)
s
τ (cf. equation (2.3)). This bound is

obtained remarking that |Gz(x, x)| = (λ|ωx+η(ωZd\{x})|)−1 where the random complex
number η(ωZd\{x}) is independent of ωx. Since ωx and ωZd\{x} are independent, the
problem reduces to the following estimate

∫

R

1

|v − η|s dP0(v) ≤ θs, ∀η ∈ C (3.3)

which holds ∀0 < s < τ (cf.[AG98, App. B]).

Self-avoiding walks with long-range jumps. Let D ∈ [0,∞)Z
d×Zd

be an infinite
matrix. Assume D is translation invariant and

0 <
∑

x 6=0

D(0, x) < ∞.

We consider the random walk on Z
d with transition probability from x to y 6= x

p(x, y) =
D(x, y)

∑

z 6=xD(x, z)
.

For x, x0 ∈ Z
d we consider for n ≥ 1

Wn(x0, x) :=
{

w = (wj)
n
j=0 ⊂ Z

nd | w0 = x0, wn = x
}

the set of paths in Z
d going from x0 to x in n ≥ 1 steps. For x = x0 we may also have

paths of length zero W0(x0, x0) := {x0}. We say that w ∈ Wn(x0, x) is a self-avoiding
walk (SAW ) of length n if wk 6= wl for all k 6= l with k, l ≤ n. The set of self-avoiding
paths in Z

d going from x0 to x in n ≥ 0 steps is denoted by WSAW
n (x0, x). Note that

WSAW
0 (x0, x0) = W0(x0, x0) and

WSAW
n (x0, x0) = ∅ = WSAW

0 (x0, x) ∀x0 6= x, n ≥ 1.

Following [Sch15], we define, for n ≥ 0, and x ∈ Z
d

cDn (x) = cD,SAW
n (x) :=

∑

w∈WSAW
n (0,x)

n−1
∏

j=0

D(wj , wj+1), (3.4)
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where we took the convention that the sum over an empty set equals 0 and the product
over an empty set equals 1. In particular cD0 (x) = δx,0 and cDn (0) = 0 ∀n ≥ 1. The
function cDn (x) for n ≥ 1, is proportional to the probability that a self-avoiding random
walk goes from 0 to x in n steps. The corresponding two-point correlation function is
defined as

CD
γ (x) = CD,SAW

γ (x) :=
∑

n≥0

cDn (x)γ
n, ∀x ∈ Z

d. (3.5)

The sum starts at n = 1 when x 6= 0, while for x = 0 we have Cαγ(0) = γ0 = 1. The
corresponding radius of convergence is denoted by RCD,SAW (x). Note that in [CS15],
the correlation function is defined in a slightly different way, which can be recovered
from our definition performing the change of variable

γ 7→ γ̃ :=
γ

∑

z 6=xD(x, z)
.

Summing over x we obtain the susceptibility

χD
γ = χD,SAW

γ :=
∑

x∈Zd

CD
γ (x) =

∑

n≥0

γn
∑

x∈Zd

∑

w∈WSAW
n (0,x)

n−1
∏

j=0

D(wj, wj+1), (3.6)

The corresponding radius of convergence is denoted by RχD,SAW . For n = 2 we have

∑

x∈Zd

∑

w∈WSAW
2 (0,x)

n−1
∏

j=0

D(wj, wj+1) =
∑

x 6=0

∑

x1 6=0,x

D(0, x1)D(x1, x)

=
∑

x1 6=0

D(0, x1)
∑

x 6=x1,0

D(x1, x) ≤
∑

x1 6=0

D(0, x1)
∑

x 6=x1

D(x1, x) =





∑

z 6=0

D(0, z)





2

.

Repeating this argument for general n ≥ 1 we obtain

∑

x∈Zd

∑

w∈WSAW
n (0,x)

n−1
∏

j=0

D(wj , wj+1) ≤





∑

z 6=0

D(0, z)





n

,

and hence

RχD,SAW ≥ 1
∑

z 6=0D(0, z)
> 0. (3.7)

The decay of the two point function of the SAW introduced above has been estimated
in [CS15, Lemma 2.4]. We recall the result here, together with a sketch of the proof,
translated into our language.

Lemma 4 (Decay of the SAW two point function). Assume that D(0, x) ≤ C 1
|x|d+a

holds for some C, a > 0 and for all x 6= 0. Then the two point function of the SAW
generated by D is bounded by

CD,SAW
γ (x) ≤ K0

1

|x|d+a
, (3.8)

for all γ < RχD,SAW . The constant K0 = K0(d, a) > 0 can be explicitely written in

terms of the susceptibility χD
γ as follows:

K0 = ℓ̃d+aχD
γ + 2(χD

γ )
2γC (3.9)

8



where ℓ̃ = ℓ̃(d, a) > 0 is the minimal distance such that

c(x) :=
∑

|u|≤ |x|
3
≤|v|

CD
γ (u) γD(u, v) ≤ 1

2
2−(d+a) ∀|x| ≥ ℓ̃.

Note that ℓ̃ is well defined since lim|x|→∞ c(x) = 0 (see below).

Proof. The assumption γ < Rχα,SAW ensures CD
γ (x) < ∞ ∀x ∈ Z

d. The key ingredient
of the proof is the following inequality, which holds for any 0 < ℓ < |x|

CD
γ (x) ≤

∑

u,v∈Zd

|u|≤ℓ<|v|

CD
γ (u) γD(u, v) CD

γ (x− v) (3.10)

To prove it, remember that

CD
γ (x) =

∑

n≥0

∑

w∈WSAW
n (0,x)

γn
n−1
∏

j=0

D(wj, wj+1).

For a given path w ∈ WSAW
n (0, x) we define u := wjm and v := wjm+1 where

jm := max{j ∈ {0, . . . , n}| |wj | < ℓ}.

Since 0 < ℓ < |x| this set is non-empty and 0 ≤ jm < n. With this definitions the sum
above can be reorganized as

CD
γ (x) =

∑

u,v∈Zd

|u|≤ℓ<|v|

∑

n,m≥0

∑

w∈WSAW
n (0,u)

∑

w′∈WSAW
m (v,x)

[γn
n−1
∏

j=0

D(wj, wj+1)]γD(u, v) ·

[γm
m−1
∏

j=0

D(w′
j , w

′
j+1)] 1{w∪w′ is SAW} ≤

∑

u,v∈Zd

|u|≤ℓ<|v|

CD
γ (u) γD(u, v) CD

γ (x− v),

where in the last step we applied 1{w∪w′ is SAW} ≤ 1 and the translation invariance of

D. Set now ℓ = |x|
3 . The sum on the RHS of (3.10) can be reorganized as follows

∑

|u|≤
|x|
3
<|v|

=
∑

|u|≤
|x|
3
,

|x|
2
<|v|

+
∑

|u|≤
|x|
3
<|v|≤

|x|
2

.

We estimate the first sum as follows:

∑

|u|≤ |x|
3
,
|x|
2
<|v|

CD
γ (u) γD(u, v) CD

γ (x− v) ≤ (χD
γ )

2γC 1

|x|d+a
(3.11)

where we used (3.6), |u−v| ≥ |x|/6 and D(u, v) ≤ C
|u−v|d+a . The second sum is bounded

by

∑

|u|≤
|x|
3
<|v|≤

|x|
2

CD
γ (u) γD(u, v) CD

γ (x− v) ≤ c(x) sup
|v|≤ |x|

2

CD
γ (x− v) = c(x) sup

|v|≥ |x|
2

CD
γ (v),
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where we defined c(x) :=
∑

|u|≤
|x|
3
<|v|

CD
γ (u) γD(u, v). Putting all this together we

obtain

CD
γ (x) ≤ c(x) sup

|v|≥ |x|
2

CD
γ (v) + (χD

γ )
2γC 1

|x|d+a
. (3.12)

Using the spatial decay of D we argue

c(x) ≤
∑

|u|<
|x|
5
,

|x|
3
<|v|

CD
γ (u) γD(u, v) +

∑

|x|
5
≤|u|≤

|x|
3
<|v|

CD
γ (u) γD(u, v)

≤ χD
γ

∑

|v|>
|x|
5

γC 1

|v|d+a
+

∑

|u|≥
|x|
5

CD
γ (u)

∑

|v|≥1

γC 1

|v|d+a
≤ C′







1

|x|a +
∑

|u|≥
|x|
5

CD
γ (u)






,

for some constant C′. Since lim|x|→∞

∑

|u|≥|x|C
D
γ (u) = 0 we obtain lim|x|→∞ c(x) = 0.

Hence there is a ℓ̃ = ℓ̃(d, a) such that

c(x) ≤ 1

2
2−(d+a) ∀|x| ≥ ℓ̃.

For 2n−1ℓ̃ ≤ |x| < 2nℓ̃ with n ≥ 1 we apply n times the inequality (3.12) and obtain

CD
γ (x) ≤

1

2n(d+a+1)
sup

|v|≥
|x|
2

CD
γ (v) +

(

n
∑

j=0

1

2j

)(χD
γ )

2γC
|x|d+a

≤ ℓ̃d+aχD
γ + 2(χD

γ )
2γC

|x|d+a
.

When |x| < ℓ̃ we apply the simple bound CD
γ (x) ≤ χD

γ ≤ ℓ̃d+aχD
γ /|x|d+a.

4 Comparison with a long range SAW.

The proof of Theorem 1 adapts the strategy of [Sch15, Thm. 1] to the fractional
Anderson model. In particular, this requires to work with Green’s functions defined
on different volumes. Therefore, for any Λ ⊂ Z

d subset of Zd (finite or infinite) we
introduce the restricted Green’s function GΛ

GΛ
z (x, y) :=

{

(HΛ
α,ω − z)−1(x, y), ∀x, y ∈ Λ,

0, otherwise.
(4.1)

where HΛ
α,ω−z ∈ C

Λ×Λ is the matrix (finite or infinite) obtained by restricting Hα,ω−z

to Λ. This matrix is invertible for all z ∈ C\R. In particular GZd

z = Gz. In the following
Λ = Z

d, but we leave the notation Λ through the proof below to stress the fact that
the same result holds for any volume.
To simplify the notation we also set1

△α(x0, x) := −(−∆)α(x0, x), ∀x, x0 ∈ Z
d.

Note that with this convention △α(x, y) > 0 ∀x 6= y.

1Note that this definition differs from the corresponding operator defined via functional calculus by
a phase.
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Proof of Theorem 1. By the resolvent identity we have, for all x 6= x0 ∈ Λ

GΛ
z (x0, x) = GΛ

z (x0, x0)△α (x0, x)G
Λ\{x0}
z (x, x)

+ GΛ
z (x0, x0)

∑

w1∈Λ\{x0,x}

△α(x0, w1)G
Λ\{x0}
z (w1, x).

Repeating the procedure N times we obtain

GΛ
z (x0, x) = GΛ

z (x0, x0)
[

N
∑

n=1

∑

w∈WSAW
n (x0,x)

n−1
∏

j=0

△α(wj , wj+1)

n
∏

j=1

G
Λ\{w0,...,wj−1}
z (wj , wj)

+
∑

w∈WSAW
N+1 (x0,x)

N−1
∏

j=0

△α(wj , wj+1)

N−1
∏

j=1

G
Λ\{w0,...,wj−1}
z (wj , wj)G

Λ\{w0,...,wN}
z (wN , x))

]

Taking the average and using the concavity of the function y 7→ ys we have

E
[

|GΛ
z (x0, x)|s

]

≤
N
∑

n=1

∑

w∈WSAW
n (x0,x)

n−1
∏

j=0

△α(wj , wj+1)
s·

· E



|GΛ
z (x0, x0)|s

n
∏

j=1

|GΛ\{w0,...,wj−1}
z (wj , wj)|s



+
∑

w∈WSAW
N+1 (x0,x)

N−1
∏

j=0

△α(wj , wj+1)
s·

· E



|GΛ
z (x0, x0)|s

N−1
∏

j=1

|GΛ\{w0,...,wj−1}
z (wj, wj)|s |GΛ\{w0,...,wN}

z (wN , x))|s


 .

The resolvent G
Λ\{w0,...,wj−1}
z (y, y′) does not depend on the random variables ωwi

, i =
0, . . . j − 1, hence recursive applications of the apriori bound (3.2), which holds since
we assume s < τ, yield

E



|GΛ
z (x0, x0)|s

n
∏

j=1

|GΛ\{w0,...,wj−1}
z (wj , wj)|s



 ≤
(

θs
λs

)n+1

E



|GΛ
z (x0, x0)|s

N−1
∏

j=1

|GΛ\{w0,...,wj−1}
z (wj , wj)|s |GΛ\{w0,...,wN}

z (wN , x))|s


 ≤
(

θs
λs

)N 1

|Re z|s

where we also applied the inequality |GΛ\{w0,...,wN}
z (wN , x)| ≤ 1

|Re z| . Inserting these
estimates in the sums above and using the translation invariance of △α we get

E
[

|GΛ
z (x0, x)|s

]

≤ θs
λs

N
∑

n=1

(

θs
λs

)n
∑

w∈WSAW
n (0,x−x0)

n−1
∏

j=0

△α(wj , wj+1)
s

+

(

θs
λs

)N 1

|Re z|s
∑

w∈WSAW
N+1 (0,x−x0)

N−1
∏

j=0

△α(wj , wj+1)
s

≤ θs
λs

CD
γ (x− x0) +

1

|Re z|sErr(N)
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where CD
γ (x − x0) is the two point function of the SAW generated by D(x, y) :=

△α(x, y)s = |(−∆)α(x, y)|s with γ = θs
λs . The error term Err(N) satisfies

Err(N) :=

(

θs
λs

)N
∑

w∈WSAW
N+1 (0,x−x0)

N−1
∏

j=0

△α(wj , wj+1)
s

≤
(

θs
λs

)N
∑

y∈Zd

∑

w∈WSAW
N

(0,y)

N−1
∏

j=0

△α(wj, wj+1)
s.

Up to now, the above sums may be infinite. The generating kernel for the SAW satisfies

∑

y 6=0

D(y) =
∑

y 6=0

△α(0, y)s =
∑

y 6=0

|(−∆)α(0, y)|s ≤ C
∑

y 6=0

1

|x− y|(d+2α)s
.

The sum above is finite for all s > d
d+2α . Finally, the assumption λ > λ0 ensures that

γ < Rχα,SAW holds and hence limN→∞Err(N) = 0 since the susceptibility is finite.
This completes the proof of the theorem.

5 Properties of the fractional Laplacian.

5.1 Matrix elements

In this section we collect some properties of the fractional Laplacian. The matrix
elements of (−∆)α admit the following explicit representation for all x, y ∈ Z

d

(−∆)α(x, y) =
−1

|Γ(−α)|

∫ ∞

0

dt

t1+α



e−2dt
d
∏

j=1

I(xj−yj) (2t)− δxy



 (5.1)

where Ip is the modified Bessel function of order p ∈ Z, which is defined as

Ip(t) :=
∑

q≥0

1

q!Γ(p + q + 1)

(

t

2

)2q+p

. (5.2)

This follows from the representation

(−∆)α =
−1

|Γ(−α)|

∫ ∞

0

dt

t1+α
(et∆ − Id), (5.3)

where the integral converges under the operator norm, see [Kwa17, Theorem 1.1 (c)],
together with the relation (cf. equations (5.3)-(5.4) in [GRM20])

et∆(x, y) = e−2dt
d
∏

j=1

I(xj−yj) (2t) ∀x, y ∈ Z
d.

Note that, since Γ has simple poles in the set of the non-positive integers, the equality

Ip(2t) =
∑

q≥0,p+q≥0

1

q!(p + q)!
t2q+p

12



holds for all p ∈ Z. In particular this implies Ip(2t) > 0 ∀t > 0 and p ∈ Z and

∑

p∈Z

Ip(2t) = e2t. (5.4)

Note that Ip = I−p ∀p > 0, hence, using also Γ(n+ 1) = n! for all n ≥ 0 we obtain

Ip(t) =
∑

q≥0

1

q!(|p|+ q)!

(

t

2

)2q+|p|

∀p ∈ Z. (5.5)

Proposition 5. The matrix elements of (−∆)α satisfy (−∆)α(x, y) < 0 for all x 6= y
and

(−∆)α(x, x) = −
∑

y∈Zd\{x}

(−∆)α(x, y), ∀x ∈ Z
d. (5.6)

In particular (−∆)α(x, x) = (−∆)α(0, 0) > 0.

Proof. The first statement follows from the fact that Ip(t) > 0 holds ∀t > 0, p ∈ Z. To
prove (5.6) we argue

−
∑

y∈Zd\{x}

(−∆)α(x, y) =
1

|Γ(−α)|
∑

y∈Zd\{x}

∫ ∞

0

dt

t1+α
e−2dt

d
∏

j=1

I(xj−yj) (2t)

=
1

|Γ(−α)|

∫ ∞

0

dt

t1+α
e−2dt

∑

y∈Zd\{x}

d
∏

j=1

I(xj−yj) (2t).

Using Ip = I−p and (5.4) we compute

∑

y∈Zd\{x}

d
∏

j=1

I(xj−yj)(2t) =
∑

y 6=0

d
∏

j=1

Iyj (2t)

=
∑

y∈Zd

d
∏

j=1

Iyj(2t)− I0(2t)
d = e2dt − I0(2t)

d,

and hence

−
∑

y∈Zd\{x}

(−∆)α(x, y) =
1

|Γ(−α)|

∫ ∞

0

dt

t1+α

[

1− e−2dtI0(2t)
d
]

= (−∆)α(x, x).

This concludes the proof.

The limits α → 0 and α → 1 can be controlled. This is the content of the next
proposition. The proof extends the strategy of [CRS+18, Thm. 1.2] to the case d ∈ N.

Theorem 6. The matrix elements of (−∆)α satify,

lim
α→1

sup
|x|>1

|(−∆)α(x, 0)| = 0, lim
α→0

sup
|x|>1

|(−∆)α(x, 0)| = 0 if |x| > 1 (5.7)

lim
α→1

|(−∆)α(x, 0)| = 1, lim
α→0

|(−∆)α(x, 0)| = 0 if |x| = 1 (5.8)

lim
α→1

|(−∆)α(0, 0)| = 2d, lim
α→0

|(−∆)α(0, 0)| = 1 if |x| = 0. (5.9)
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Note that this result implies, in particular, using (5.6),

lim
α→1

∑

x 6=0

|(−∆)α(x, 0)| = 2d, lim
α→0

∑

x 6=0

|(−∆)α(x, 0)| = 1.

Proof. Remember that for x = (x1, . . . , xd) we defined |x| = |x|2 = (
∑d

j=1 x
2
j)

1
2 . Set

also |x|1 :=
∑d

j=1 |xj |.
Using (5.1) and (5.5), we have

|Γ(−α)| |(−∆)α(x, 0)| =
∫ ∞

0

dt

t1+α



e−2dt
d
∏

j=1

Ixj
(2t)− δ0x





=

∫ ∞

0

dt

t1+α

[

e−2dt
d
∏

i=1

1

|xi|!
t|x|1 − δ0x

]

+
∑

|q|1≥1

d
∏

i=1

1

qi!(qi + |xi|)!

∫ ∞

0
dt t2|q|1+|x|1−1−αe−2dt

= S1(α, |x|1) + S2(α, |x|1),

where

S1(α, 0) =

∫ ∞

0
dt t−1−α

(

1− e−2dt
)

, (5.10)

S1(α, |x|1) =
d
∏

i=1

1

|xi|!
1

(2d)|x|1−α
Γ(|x|1 − α) for |x|1 > 0, (5.11)

and for all |x|1 ≥ 0

S2(α, |x|1) =
∑

|q|1≥1

d
∏

i=1

1

qi!(qi + |xi|)!
1

(2d)2|q|1+|x|1−α
Γ(2|q|1 + |x|1 − α). (5.12)

We claim that, ∀|x|1 ≥ 0,

0 ≤ S2(α, |x|1)
|Γ(−α)| ≤ (2d)α(1− α)Γ(1− α)

|Γ(−α)| C ′
d = (2d)αα(1− α)C ′

d, (5.13)

for some constant C ′
d > 0 independent of α and x. This implies

lim
α→0

S2(α, |x|1)
|Γ(−α)| = 0 = lim

α→1

S2(α, |x|1)
|Γ(−α)| ∀|x|1 ≥ 0. (5.14)

To prove the claim, note that, since |q|1 ≥ 1 we have 2|q|1 + |x|1 ≥ 2 and hence, using

Γ(z + n) = z(z + 1) · · · (z + n− 1)Γ(z) = zΓ(z)
n−1
∏

l=1

(z + l),

and 0 < α < 1, we get

Γ(2|q|1 + |x|1 − α) = (1− α)Γ(1− α)
2|q|1+|x|1−1

∏

l=2

(l − α)

≤ (1− α)Γ(1− α)(2|q|1 + |x|1 − 1)! =
(1− α)Γ(1− α)

2|q|1 + |x|1
(2|q|1 + |x|1)! .
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Inserting this bound in S2(α, |x|1) we obtain

S2(α, |x|1) ≤ (2d)α(1− α)Γ(1− α)
∑

|q|1≥1

1

2|q|1 + |x|1
(2|q|1 + |x|1)!

∏d
i=1 qi!(qi + |xi|)!

1

(2d)2|q|1+|x|1
.

(5.15)
In the case d = 1 we have

S2(α, |x|1) ≤ (2d)α(1− α)Γ(1− α)
∑

q≥1

1

2q + |x|
1

22q+|x|

(2q + |x|)!
q!(q + |x|)! .

Note that the binomial coefficient n!
n1!n2!

is maximal at n1 = n2, hence, together with
Stirling’s formula, we get

n!

n1!n2!
≤ n!

(

⌊n2 ⌋
)

!2
≤ C1

2n

n
1
2

,

for some constant C1 > 0. Inserting this bound above we obtain

∑

q≥1

1

2q + |x|
1

22q+|x|

(2q + |x|)!
q!(q + |x|)! ≤ C1

∑

q≥1

1

2q + |x|
1

22q+|x|

22q+|x|

√
q

≤ C1

2

∑

q≥1

1

q
3
2

=: C ′
1 < ∞,

which proves (5.13) for d = 1.

In the case d ≥ 2 we write

S2(α, |x|1) = (2d)α(1− α)Γ(1− α)
∑

n≥1

1

2n+ |x|1
1

(2d)2n+|x|1

∑

|q|1=n

(2n + |x|1)!
∏d

i=1 qi!(qi + |xi|)!

We develop the binomial coefficient as follows

(2n + |x|1)!
∏d

i=1 qi!(qi + |xi|)!
=

(2n+ |x|1)!
n! (n+ |x|1)!

(n+ |x|1)!
∏d

i=1(qi + |xi|)!
n!

∏d
i=1 qi!

. (5.16)

Using n!
q!(n−q)! ≤ 2n for all 0 ≤ q ≤ n, and the fact that the multinomial coefficient

n!∏d
i=1 qj !

is maximal when all qj are equal, together with Stirling’s formula, we get

(2n + |x|1)!
n! (n+ |x|1)!

≤ 22n+|x|1 and
n!

∏d
i=1 qj!

≤ n!
(

⌊n
d
⌋
)

!d
≤ Cd

dn

n
d−1
2

,

for some constant Cd > 0. Inserting these bounds in (5.16) we obtain

(2n + |x|1)!
∏d

i=1 qi!(qi + |xi|)!
≤ 22n+|x|1 (n + |x|1)!

∏d
i=1(qi + |xi|)!

Cd
dn

n
d−1
2

.

Using
∑

|q|1=n

(n+ |x|1)!
∏d

i=1(qi + |xi|)!
≤ dn+|x|1

and inserting all these bounds in S2(α, |x|1) we obtain

S2(α, |x|1) ≤ (2d)α(1− α)Γ(1 − α)Cd

∑

n≥1

1

2n + |x|1
1

(2d)2n+|x|1
22n+|x|1dn+|x|1 dn

n
d−1
2

≤ (2d)α(1− α)Γ(1 − α)Cd

∑

n≥1

1

2n1+ d−1
2

= (2d)α(1− α)Γ(1− α)C ′
d
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where 0 < C ′
d < ∞. This proves (5.13) for d > 1.

We study now the term S1(α, |x|1). We distinguish three cases.

Case 1: |x| > 1. In this case |x|1 ≥ 2 and therefore, using 0 < α < 1,

Γ(|x|1 − α) ≤ (1− α)Γ(1− α)(|x|1 − 1)! .

It follows, using (5.11),

S1(α, |x|1)
|Γ(−α)| ≤ (1− α)Γ(1− α)

|Γ(−α)|
(|x|1 − 1)!
∏d

i=1 |xi|!
1

(2d)|x|1−α
≤ α(1− α)(2d)α.

Together with (5.14) this yields (5.7).

Case 2: |x|2 = 1 = |x|1. In this case

S1(α, 1)

|Γ(−α)| =
1

(2d)1−α
Γ(1− α)
|Γ(−α)| =

α

(2d)1−α
.

Together with (5.14) this yields (5.8).

Case 3: |x|2 = 0 = |x|1. Inserting 1− e−2dt =
∫ 1
0 2dte−2dtsds in (5.10) we obtain

S1(α, 0)

|Γ(−α)| = (2d)α
Γ(1− α)
|Γ(−α)|

∫ 1

0
ds s−1+α = (2d)α

Γ(1− α)
α|Γ(−α)| = (2d)α.

Hence limα→1
S1(α,0)
|Γ(−α)| = 2d and limα→1

S1(α,0)
|Γ(−α)| = 1. Together with (5.14) this yields (5.9)

and concludes the proof of the theorem.

5.2 Resolvent decay

In this section we consider the operator [(−∆)α +m2]−1 with m > 0. This operator is
well defined and bounded since −m2 /∈ σ((−∆)α) = [0, (4d)α], for all m > 0.
Recall that (see [GRM20, Thm. 2.2] or [Sla18, Lemma 2.1])

cα,d = lim
|x−y|→∞

|x− y|d+2α(−(−∆)α(x, y)) > 0. (5.17)

Theorem 7. Set m > 0 and 0 < α < 1. The matrix elements of the resolvent satisfy

inf
m>0

((−∆)α +m2)−1(x, y) > 0 ∀x, y ∈ Z
d, (5.18)

and
lim

|x−y|→∞
|x− y|d+2α((−∆)α +m2)−1(x, y) =

cα,d
m4

(5.19)

where cα,d is the constant introduced in (5.17). Moreover there are constants C1 =
C1(m,α, d) > 0 and c1 = c1(α, d) > 0 such that

c1
|x− y|d+2α

≤ ((−∆)α +m2)−1(x, y) ≤ C1

|x− y|d+2α
∀x 6= y. (5.20)

where the constant c1 is independent of the mass m.

Note that the asymptotic behavior (5.19) is compatible with the upper bound obtained
in [Sla18, Lemma 3.2]) with other techniques.
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Proof. To prove the lower bound note that

(−∆)α +m2 = m2
αId− P,

where P (x, y) := −(−∆)α(x, y) = |(−∆)α(x, y)| > 0 for x 6= y, P (x, x) := 0 and
m2
α = m2 + (−∆)α(0, 0). For m > 0 the Neumann series

((−∆)α +m2)−1(x, y) =
1

m2
α

Id +
∑

n≥1

1

m2
α

(

P
1

m2
α

)n

(x, y)

is a sum of positive terms and converges for all x, y ∈ Z
d. Bounding the sum below by

the first non-zero term we obtain for x = y

((−∆)α +m2)−1(x, x) ≥ 1

m2
α

≥ 1

(−∆)α(0, 0)
> 0 (5.21)

uniformly in m > 0. In the case x 6= y, using also (1.1), we obtain

((−∆)α +m2)−1(x, y) ≥ 1

m4
α

P (x, y) =
1

m4
α

|(−∆)α(x, y)| ≥ cα,d
m4
α

1

|x− y|d+2α

≥ cα,d
(−∆)α(0, 0)2

1

|x− y|d+2α
. (5.22)

This concludes the proof of (5.18) and the lower bound in (5.20).

To prove (5.19) and the upper bound in (5.20), note that
[

(−∆)α +m2
]−1

is defined
via discrete Fourier transform as follows:

[

(−∆)α +m2
]−1

(x, y) =

∫

[−π,π]d

dk

(2π)d
ei(x−y)·k

f(k)α +m2
, (5.23)

where

f(k) :=

d
∑

j=1

2(1− cos kj). (5.24)

This operator is invariant under translations, hence it suffices to consider the case y = 0.
Applying N ≥ 2 times the identity

1

f(k)α +m2
=

1

m2
− f(k)α

m2(f(k)α +m2)

we obtain

1

f(k)α +m2
=

N−1
∑

j=0

(−1)j

m2(j+1)
f(k)αj +

(−1)j

m2N

f(k)Nα

f(k)α +m2
.

Inserting this decomposition in the integral and using
∫

[−π,π]d e
ix·kdk = 0 for all x 6= 0,

we obtain

[

(−∆)α +m2
]−1

(x, 0) =
1

m4
(−(−∆)α(x, y)) +

N−1
∑

j=2

(−1)j

m2(j+1) (−∆)jα(x, 0)

+ (−1)N

m2N (2π)d

∫

[−π,π]d
dk F (f(k)α) eix·k,
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where the function F : [0,∞) → [0,∞) is defined by

F (x) :=
xN

x+m2
.

Since 0 < α < 1 there is a Nα ≥ 2 such that α(Nα − 1) ≤ 1 and αNα > 1. Setting
N = Nα and using (1.1) (for α(Nα − 1) = 1 we obtain (−∆)(x, y) which is a finite
range kernel)

∣

∣

∣

∣

∣

∣

Nα−1
∑

j=2

(−1)j

m2(j+1)
[(−∆)jα(x, y)]

∣

∣

∣

∣

∣

∣

≤
Nα−1
∑

j=2

Cjα,d

m2(j+1)|x− y|d+2jα
<

C
(1)
1

|x− y|d+4α
,

where

C
(1)
1 := Nα max

j=2...Nα

Cjα,d

m2(j+1)
.

The limit (5.19) and the upper bound in (5.20) now follow from the following estimate
∣

∣

∣

∣

∣

∫

[−π,π]d
dk F (f(k)α) eix·k

∣

∣

∣

∣

∣

≤ C
(2)
1

|x|d+2
∀x 6= 0, (5.25)

for some constant C
(2)
1 > 0. To prove it, note that F ∈ C∞([0,∞)) with F (x) = O(xN )

as x → 0. On the contrary, the function k 7→ f(k)α is in C∞([−π, π]d \ {0}). The first
derivative equals

∂kj f(k)
α = αf(k)α

2 sin kj
f(k)

,

and hence |∂kj f(k)α| ≤ O(|k|2α−1). Any additional derivative brings an additional |k|−1

divergence factor. Therefore near k = 0 we have

|∂β
kF (f(k)α)| ≤ C|β|,α,NO(|k|2αNα−|β|). (5.26)

This implies that ∂β
kF (f(k)α) ∈ L1([−π, π]d) for all |β| ≤ d + 2. In addition f(k) is

periodic with period 2π in all variables. Since f(k) is even, we can assume without loss
of generality xj ≥ 0 ∀j = 1, . . . , d, so that |x|1 =

∑

j xj . We argue

−ixj

∫

[−π,π]d
dk ∂β

kF (f(k)α)) eix·k = −
∫

[−π,π]d
dk ∂β

kF (f(k)α)) ∂kje
ix·k

= − lim
ε→0

∫

[−π,π]d\Bε(0)
dk ∂β

kF (f(k)α)) ∂kje
ix·k

Performing partial integration we obtain
∫

[−π,π]d\Bε(0)
dk ∂β

kF (f(k)α)) ∂kje
ix·k =

∫

∂Bε(0)
dHd−1∂β

kF (f(k)α)) νj(k)e
ix·k

−
∫

[−π,π]d\Bε(0)
dk ∂kj∂

β
kF (f(k)α)) eix·k

where ν(k) := 1
|k|k and the periodicity of f(k) garantees there is no contribution from

the boundary of [−π, π]d. For |β| ≤ d+ 1 and αNα > 1, using (5.26)

lim sup
ε→0

|
∫

∂Bε(0)
dHd−1∂β

kF (f(k)α)) νj(k)e
ix·k| ≤ C lim sup

ε→0
ε2αNα−|β|εd−1 = 0,

18



and hence

−ixj

∫

[−π,π]d
dk ∂β

kF (f(k)α)) eix·k =

∫

[−π,π]d
dk ∂kj∂

β
kF (f(k)α)) eix·k,

where the last integral is well defined since |β| + 1 ≤ d + 2. The integrability of the
derivative ensures we can repeat the procedure above inductively until |β|+ 1 = d+2.
This concludes the proof of (5.25) and of the theorem.

5.3 Inverse

Theorem 8. Let 0 < α < d
2 . The inverse (−∆)−α(x, y) := limm↓0

[

(−∆)α +m2
]−1

(x, y)
is well-defined and admits the represention via discrete Fourier transform

(−∆)−α(x, y) =

∫

[−π,π]d

dk

(2π)d
ei(x−y)·k

f(k)α
, (5.27)

This operator is invariant under translations, its matrix elements satisfy (−∆)−α(x, y) >
0 ∀x, y ∈ Z

d, and
lim

|x−y|→∞
|x− y|d−2α(−∆)−α(x, y) = cα (5.28)

where cα is the constant introduced in (5.33). Moreover there are constants C2 =
C2(α, d) > 0 and c2 = c2(α, d) > 0 such that

c2
1

|x− y|d−2α
≤ (−∆)−α(x, y) ≤ C2

1

|x− y|d−2α
∀x 6= y. (5.29)

The fact that (−∆)−α is well-defined and Ineq. 5.29 holds are known (see e.g. [Sla18,
Sect. 2] and references therein). Here, we provide an alternative, more analytical proof,
which we believe is new in this context. It uses the discrete Fourier transform and is
based on arguments in [GRM20, Lemma A.1].

Proof.
By (5.18) we have (−∆)−α(x, y) := limm↓0

[

(−∆)α +m2
]−1

(x, y) > 0 ∀x, y ∈ Z
d.

Moreover, remember that, for all m > 0, (cf. (5.23))

[

(−∆)α +m2
]−1

(x, y) =

∫

[−π,π]d

dk

(2π)d
ei(x−y)·k

f(k)α +m2
,

where f(k) is defined in (5.24). Note that [f(k)α+m2]−1 ≤ f(k)−α which is an unbounded
integrable function. Indeed this function behaves near k = 0 as 1

|k|2α
which integrably

divergent as long as α < d
2 . Therefore, by dominated convergence, the limit ε → 0 is

well defined and formula (5.27) holds.

To prove (5.29) we approximate the discrete Laplacian −∆ on Z
d, with eigenvalues

f(k), by the continuous Laplacian −∆c on R
d, with eigenvalues |k|2, and use the known

decay |(−∆c)
−1(x, y)| ≤ C

|x−y|d−2α , which holds in distributional sense for some C > 0

(cf. Proposition 9 below for a precise statement). By translation invariance it suffices
to consider the case y = 0, x 6= 0.
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The two functions f(k) and |k|2 coincide only near k = 0, therefore we introduce a
smooth cut-off function ψ ∈ C∞

c (Rd, [0, 1]) such that suppψ ⊂ B1(0) and ψ(k) = 1
∀k ∈ B 1

2
(0). Hence (−∆)−α(0, x) = I1(x) + I2(x) where

I1(x) :=

∫

[−π,π]d

dk

(2π)d
ψ(k)

f(k)α
eix·k, I2(x) :=

∫

[−π,π]d

dk

(2π)d
1−ψ(k)
f(k)α

eix·k. (5.30)

Note that k 7→ 1−ψ(k)
f(k)α ∈ C∞([−π, π]d). Moreover, along the boundary of [−π,π]d

we have 1−ψ(k)
f(k)α = 1

f(k)α , which is a periodic function with period 2π in all variables.
Therefore, by partial integration, we obtain

|xNj I2(x)| ≤
∫

[−π,π]d

dk

(2π)d

∣

∣

∣

∣

∂N
kj

1−ψ(k)
f(k)α

∣

∣

∣

∣

≤ CN ,

where no boundary contribution appears by periodicity. It follows, for all N ≥ 1

|I2(x)| ≤
CN

|x|N ∀x 6= 0,

for some constant CN > 0. Therefore we only need to study the first integral I1(x). We
write

I1(x) =

∫

[−π,π]d

dk

(2π)d
1

|k|2α
Φ(k) eix·k =

∫

Rd

dk

(2π)d
1

|k|2α
Φ(k) eix·k

where we defined

Φ(k) :=







(

|k|2

f(k)

)α

ψ(k), k 6= 0,

1, k = 0.
(5.31)

and in the last step we used the fact the ψ has support inside B1(0) to extend the
integral from [−π,π]d to R

d. The function Φ is smooth Φ(k) ∈ C∞
c (Rd) ⊂ S(Rd), and

hence it is the continuous Fourier transform of a function ϕ ∈ S(Rd) (see [Gra14,
Corollary 2.2.15])

Φ(k) = ϕ̂(k) :=
1

(2π)
d
2

∫

Rd

dy e−iy·kϕ(y).

It follows, by Proposition 9 below,

I1(x) =

∫

Rd

dk

(2π)d
1

|k|2α
Φ(k) eix·k = cα

∫

Rd

dy
1

|x− y|d−2α
ϕ(y)

where the constant cα is given in (5.33). The integral above is well-defined since ϕ ∈
S(Rd)2. Using this result and Proposition 10 below, we argue

lim
|x|→∞

|x|d−2α(−∆)−α(0, x) = cα lim
|x|→∞

∫

Rd

dy
|x|d−2α

|x− y|d−2α
ϕ(y)

= cα

∫

Rd

dy ϕ(y) = cαϕ̂(0) = cαΦ(0) = cα > 0,

where in the last step we used Φ(0) = 1. The limit (5.28), as well as the upper and
lower bounds in (5.29) now follow.

2The function Iα[ϕ](y) := cα

∫
Rd dy 1

|x−y|d−2α
ϕ(y) is called Riesz potential.
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We collect finally two techical results that are necessary for the proof above. The first
proposition can be found in [LL01, Section 5.9] (the constants are slightly different
because of our choice of definition of Fourier transform), see also [Ste70, Chapter 5].
For completeness we give here a sketch of the proof. The second proposition is based
on the same arguments as the proof of [GRM20, Lemma A.1].

Proposition 9. [LL01, Thm. 5.9] Let α ∈ (0, d2) and let ϕ ∈ S(Rd), then

∫

Rd

dk

(2π)
d
2

1

|k|2α
ϕ̂(k)e+ik·x = cα

∫

Rd

dy
1

|x− y|d−2α
ϕ(y) (5.32)

where

cα :=
Γ(d2 − α)
Γ(α)

2
d
2
−2α. (5.33)

Proof. Using the identity, which holds for all ρ > 0 and 0 < α < 1,

1

ρα
=

1

2αΓ(α)

∫ ∞

0
dt tα−1e−

t
2
ρ,

we can write

1

|k|2α
=

1

2αΓ(α)

∫ ∞

0
dt tα−1e−

t
2
|k|2 , ∀k ∈ R

d \ {0}. (5.34)

It follows, using Fubini and the Fourier transform of a product,

∫

Rd

dk

(2π)
d
2

1

|k|2α
ϕ̂(k)e+ik·x =

1

2αΓ(α)

∫ ∞

0
dt tα−1

∫

Rd

dk

(2π)
d
2

e−
t
2
|k|2ϕ̂(k)e+ik·x

=
1

2αΓ(α)

∫ ∞

0
dt tα−1 1

t
d
2

∫

Rd

dye−
1
2t
|x−y|2ϕ(y)

=
1

2αΓ(α)

∫

Rd

dyϕ(y)

∫ ∞

0
dt tα−1 1

t
d
2

e−
1
2t
|x−y|2 = cα

∫

Rd

dy
1

|x− y|d−2α
ϕ(y).

This concludes the proof.

Proposition 10. Let α ∈ (0, d2 ) and let ϕ ∈ S(Rd), then

lim
|x|→∞

∫

Rd

dy
|x|d−2α

|x− y|d−2α
ϕ(y) =

∫

Rd

dy ϕ(y). (5.35)

Proof. We decompose the integral as follows:

∫

Rd

dy
|x|d−2α

|x− y|d−2α
ϕ(y) =

∫

B |x|
2

(x)
dy

|x|d−2α

|x− y|d−2α
ϕ(y) +

∫

Bc
|x|
2

(x)
dy

|x|d−2α

|x− y|d−2α
ϕ(y).

The first integral can be reorganized as

∫

B |x|
2

(x)
dy

|x|d−2α

|x− y|d−2α
ϕ(y) =

∫

B |x|
2

(0)
dy

|x|d−2α

|y|d−2α
ϕ(x+ y).
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Since ϕ ∈ S(Rd) we have |ϕ(y)| ≤ CN

|y|N
for y 6= 0 for all N ≥ 1. Therefore, since

|x+ y| ≥ |x|
2 inside the ball B |x|

2

(0) we have

|ϕ(x+ y)| ≤ CN

|x+ y|N ≤ 2NCN

|x|N .

Inserting this bound in the integral and fixing N > d we obtain

lim sup
|x|→∞

∫

B |x|
2

(0)
dy

|x|d−2α

|y|d−2α
|ϕ(y + x)| ≤ lim sup

|x|→∞
2NCN

|x|d−2α

|x|N
∫

B |x|
2

(0)
dy

1

|y|d−2α

=
2NCN |Sd−1|

2α 22α
lim sup
|x|→∞

|x|d
|x|N = 0,

where |Sd−1| is the surface volume of the unit sphere in R
d. Hence

lim
|x|→∞

∫

B |x|
2

(x)
dy

|x|d−2α

|x− y|d−2α
ϕ(y) = 0.

We consider now the first integral. Note that, since, the center of the ball B |x|
2

(x)

escapes at infinity as |x| → ∞ it holds

lim
|x|→∞

|x|d−2α

|x− y|d−2α
1Bc

|x|
2

(x)(y) = 1 ∀y ∈ Z
d.

Since in addition

|x|d−2α

|x− y|d−2α
1Bc

|x|
2

(x)(y)|ϕ(y)| ≤ 2d−2α|ϕ(y)| ∈ L1(Rd)

holds, we obtain, by dominated convergence,

lim
|x|→∞

∫

Bc
|x|
2

(x)
dy

|x|d−2α

|x− y|d−2α
ϕ(y) =

∫

Rd

dy ϕ(y),

which concludes the proof of the proposition.
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