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Abstract

This thesis focuses on the investigation of two distinct variations of the Anderson model,
where we relax the standard assumptions. In the first half of our study, we investigate
a version of the Anderson model on the one-dimensional lattice strip or ladder of width
2, denoted as ' = D9 := Z x {0,1} with d = 1, wherein the free operator is the
graph Laplacian and the random variables w = (wg)zeg, are identically distributed
but not always independent. We adapt the supersymmetric approach presented by
Klein, Martinelli and Perez in 1986 from the uni-dimensional lattice Z to 92, which is
not one-dimensional. This adaptation allows us to obtain a representation of the square
modulus of the 4-points average of the Green’s functions corresponding to two layers
of D5. Although we succeeded in expressing this squared average in terms of transfer
operators, the analytic estimate poses technical challenges which we have not been able
to overcome. Hence, we are still unable to show localization in our specific context.
Nonetheless, our extension of Klein, Martinelli and Perez’s approach is interesting on
its own and could serve as a starting point for future investigations.

In the second half of our study, we examine a specific instance of the Anderson
model on I' = Z9 with d € N known as the fractional Anderson model. In this model
the random variables (w;),cza are iid and the free operator is the fractional Laplacian,
which is not a local operator and exhibits a slow rate in the decay of its matrix elements.
Adapting Schenker’s arguments in 2015, we relate the fractional moments of the Green’s
function to the two-point correlation function of a self-avoiding walk with polynomial
long-range jumps. This together with the use of known probabilistic techniques yield
sharper bounds for the fractional moments of the Green’s function at strong disorder,
surpassing the previous bounds in the literature. Notably, we expand the range of the
disorder parameter A where spectral localization happens. Furthermore, for d = 1, we
prove polynomial decay of the eigenfunctions almost-surely, assuming some regularity
of the probability distribution of w, with = € Z.
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Chapter 1

Introduction

[1.1 Physical Motivation| . . . . . . ... ... ... ... ... ...... 1
1.2 Anderson Model and types of localization| . . . . . ... ... ... ... 2
L3 Stateoftheart] . . . . . . .. ... oo 3
L4 Ourvresults . . .. ... 5

1.1 Physical Motivation

The state of an electron confined to a space I' at a given time is described by a nor-
malized wave function g in a convenient Hilbert space H. The time-evolution of 1\
is determined by the Schrodinger equation

{ig?tw(x,t) = Hip(, ), (z,t) €T xR, (1.1.1)

11)(113,0) = 11)0(:1?), rel,

where H is a linear self-adjoint operator on H, which represents the energy of the
particle. Due to the spectral theorem for self-adjoint operators, the solution to Eq.

can be expressed as
U(xz,t) = e Mg (), (x,t) €T x R. (1.1.2)

The propagation of the electron corresponds to an extended wave function such as
Po(x) ~ €. This behavior indicates that the material is a conductor. By contrast,
the absence of propagation of the electron corresponds to a localized wave function, for
example, Po(z) ~ e~ In this situation, this behavior indicates that the material is
an insulator.

In 1958, Anderson proposed a model to provide an explanation of the absence of
quantum wave propagation in disordered lattices [And58|]. This physical phenomenon
is known nowadays as Anderson localization. He realized that, if some conditions are
met, then impurities in the material can refrain the electron from propagating and
thus the material behaves as an insulator. To investigate this phenomenon, Anderson
focused on a specific type of Random Schrodinger Operator, wherein impurities are
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modelled through realizations of a random potential in a suitable probability space Q
as follows: let I' = Z4 with d € N and

Hypr=—-A+AVy, weQ, (1.1.3)

acting on H = (2(Z4), where:

(A) —A is the (negative) discrete Laplacian representing the kinetic energy of the
electron,

(B) Vy is a random multiplication operator acting diagonally on the canonical basis
by a sequence w = (Wy),eza of iid random variables with common uniform dis-
tribution, each w, represents the interaction between the electron and the atomic
constitution of the material at = € Z4,

(C) A > 0is a parameter representing the intensity of the disorder.

1.2 Anderson Model and types of localization

Let us start by introducing the general mathematical framework of the discrete Ander-
son model. Let I' be a discrete set and H be the Hilbert space defined as

H=">0CT) = :T—C|D h(z)f < oo (1.2.1)
zel

with inner product (¢, V) = > r d(x)P(z), for all ¢, P € ¢2(T), and induced norm
W] = /b, W), for all P € £2(T"). The Anderson model acting on ¢2(T') is defined as

Hya=Ho+AVe, weQ, (1.2.2)

where Hy is a bounded self-adjoint operator on £?(T"), known as free operator, and V,
is a multiplication operator given by

Vo (z) = waP(z), v € 2T, Yz €T,

and w = (Wy)zer is a family of bounded random variables with joint distribution P
on the measurable space R with the oc—algebra generated by the open cylinder. Here,
E[-] denotes the corresponding expectation.

Consequently, Hy, ) is self-adjoint and its spectrum o(H ») is contained in the real
line, for all w € Q. The standard Anderson model corresponds to the case where
=24 Hy = —A and w = (w,)zer are iid with joint distribution P = ®za Po. The
specific model studied in [And58] corresponds to Py(y) = %Il[_u} (y), v € R, see Eq.
L 1ol

We can now define the notions of localization and delocalization within this mathe-
matical framework. From now on, let I' C Z9 with d € N and I be an interval. We say
that {Hw,;\}wGQ exhibits spectral localization in I, if 0(Hy 2)NI is pure-point, for w € Q

2



P—almost-surely (a.s.). We say that {Hwa} . exhibits Anderson localization in I, if
o(Hwa) N1 is pure-point and the eigenfunctions have exponential decay, for w € Q
P—a.s. Specifically, there exist constants 0 < Ci(w),yi(w) < oo and xp(w) € T such
that the eigenfunctions {$ (-, w)},cn € (2(Z4) of Hy p satisfy

W (z, w)| < Cp(w)e Yr@lz=ze(@] v e N, (1.2.3)

where |-| denotes the Euclidean metric on T'.

There is a stronger notion of localization. It is said that {Hwa} . exhibits dy-
namical localization in I, if there are constants 0 < C,y < oo and 0 < ¢ < 1 such
that

E(Sup }<5x,eitHwX,(Hw,A)zsyM) < CeVl—a(@) Va,y e, (1.2.4)
teR

where {8;}, . corresponds to the canonical basis of ¢2(T') and x;(Hw,p) is the spectral
projection of Hy, ) associated to the interval I. Observe that dynamical localization
implies Anderson localization, a proof of this can be found in [CEKS09, Thm. 9.22].
However, the converse does not hold in general, as shown in [dRJLS95, Appendix 2].
In addition, dynamical localization implies that, for an initial localized g, its time-
evolution e #Hw A remains uniformly localized, for all time ¢, for w € Q P—a.s. To
be more precise, for all p > 0, for all P € H, it holds

suﬂ;g H‘X‘pe_itH“”AX](Hw,)\)ll)H < 00, weQP-—as, (1.2.5)
te

where |X| is the multiplication operator on H given by | X[ (z) = ||z|P(z), for all
VP € H, for all z € T'. In fact, Condition is equivalent to dynamical localization, a
proof of this can be found in [GK04, Thm. 4.2].

By contrast, we say that the Anderson model {Hy )} weo €xhibits delocalization in
I, if dynamical localization does not hold. Note that if o(Hy, ») is absolutely continuous
P—a.s., then there is delocalization. However, the converse is not true in general. In
fact, the Anderson model mentioned in [dRJLS95, Appendix 2] exhibits delocalization,
yet it possesses pure-point spectrum P—a.s.

1.3 State of the art

Anderson’s seminal work [And58| served as a catalyst for the mathematical investiga-
tions of the Anderson model and its localization properties since the late 70s. Indeed,
the earliest result can be found in [GMPT77].

For d = 1, it is expected that Hy, ) exhibits dynamical localization in the whole real
line, for all A > 0 (e.g., [KS80], for the standard Anderson model). In the unidimen-
sional case, there are several available methods to prove dynamical localization such
as Transfer Operators, Supersymmetry (SUSY) and Kunz-Souillard (see [KMPS86] and
[Dam11]).



For d > 1, it is expected that H ) exhibits dynamical localization either in the
whole real line, for sufficiently large A, or at the spectral band edges, for specific values
of A. The first proof of dynamical localization under high disorder A can be found in
[EMSSS85], which proof is based on the Multiscale Analysis (MSA). However, they did
not show the existence of Ag > 0 such that Hg ) exhibits dynamical localization, for
all A > Ag. Afterwards, a new approach called Fractional Moment Method (FMM)
in [AM93] was developed to prove dynamical localization, providing an explicit local-
ization threshold. However, that critical value was larger than the one computed by
Anderson in [And58], see [Schlh, Table I] for a numerical comparison between both
thresholds. In addition, for fixed values of A, there is still dynamical localization at
energies |E| > 1. Note that this is meaningful only in the case of unbounded poten-
tial; otherwise, the spectrum is bounded and E ¢ o(Hg ), for |E| > 1, for w € Q
P—a.s. In general, for arbitrary d, MSA and FMM are the only known methods to
prove dynamical localization. A comprehensive exposition of MSA and FMM can be
found in [PF92], [Sto01], [CL12] and [AW15]. Recently, self-avoiding walks (SAW) have
been employed as a complementary tool to prove localization under strong disorder,
see [Taulll, [SuzI3] and [Schijl.

In contrast to dynamical localization, only a limited number of models have been
rigorously established to exhibit delocalization, particularly in cases involving decaying
randomness (see [KKOOQ0], [Sim&82], [DSS85] and [Kis96]). Delocalization in the case
where w = (wy)zer iid has only been proved on the Bethe lattice ' = B (see [Kle94],
[K1e98], [ASW06], [FHS07] and [AW13]). However, it remains unknown whether or not
delocalization occurs on Z4 with d > 1.

These investigations have given rise to two open problems regarding the standard
Anderson model:

1. For d = 2, it is conjectured that the standard Anderson model shows localization,
similar to the uni-dimensional case, in the complete spectrum, for all A > 0.

2. For d > 2, it is conjectured that the standard Anderson model experiences a
transition from exhibiting extended states within the bulk of the spectrum to
localized states at the spectral band edges, which is known as “Anderson metal-
insulator transition”.

This transition can be regarded as a competition between the two components of the
standard Anderson model to dominate the situation. If the free operator —A establishes
dominance, then its absolutely continuous spectrum o(—A) = [0,4d] with associated
extended states prevail. Conversely, if the random potential V, takes control, then its
pure point spectrum and associated localized eigenfunctions prevail almost-surely.

The study of the long-range Anderson model, wherein Hg is a long-range operator,
has recently gained growing attention, see [Han19], [PKL™20], [GRM20], [JL21], [Liu23]
and [Shi23]. This model, particularly when Hy exhibits power-law jumps, is relevant in
physical phenomena such as the quantum Kepler model (see [AL97]) or nuclear spins
in solid-state systems (see [ASK15]). In this scenario, instead of exponential decay of
the eigenfunctions and dynamical bounds, a polynomial decay is obtained, see [Shi23,

4



Corollary 2.3].

For the interested reader who might be interested in learning more about the An-
derson model on the discrete setting and its localization properties, [Kir07] and [RMI17]
offer a clear and self-contained explanation of the subject and its state of the art.

1.4 Our results

The rest of this thesis focuses on the investigation of two different instances of the
Anderson model, as given by Eq.

In Chapter 2] we examine a version of the Anderson model over the one-dimensional
lattice strip or ladder of width 2, denoted as I' = @9 := Z x {0, 1}. In this case, Hy is
a local operator but w = (wz)zey, are not necessarily independent, which introduces
greater complexity to the analysis from a probabilistic point of view. Specifically, we
consider

Hor=—-A+AVy, weQ, (1.4.1)

acting on 9o, where Hy = —A is the lattice Laplacian and w = (wz)zeg, is a sequence
of identically distributed random variables, which are not necessarily independent.

In [KMP86], Klein, Martinelli and Perez investigated the case when the underlying
lattice ' = Z and w = (w,),ez are iid, which is a realization of the model considered
in [And5§] for d = 1. They established dynamical localization (see Ineq. in
the whole real line, for all A > 0. To accomplish this, they employed a combination
of SUSY and Transfer Operators. More precisely, they used a SUSY representation
of E[|G.(zo,z1)[%], with zo, 21 € Z. Then, they explicitly carried out the derivation
over the fermionic variables to extract a suitable transfer operator from the resulting
expression. This approach heavily relied on the fact that the underlying lattice Z is
one-dimensional. For the reader’s convenience, a comprehensive exposition of SUSY
formalism is provided in Section [2.3] below.

Our aim is to adapt this strategy to our model on the lattice 22, which is not
one-dimensional. However, instead of studying E[|G.(xo,z1)[%], with 29,21 € Dy, it
is more natural in our setting to consider the square of the 4-points average of the
Green’s functions associated to two layers of 9. Although we manage to use the
SUSY approach to find a representation via transfer operator of the mentioned squared
average, the examination of its corresponding properties presents challenges, which we
are not able to solve. A more detailed description of this issue can be found in Section
2.0l

In Chapter |3} we explore an instance of the Anderson model on Z4 with d € N,
where {w;},czq are iid but Hg is a non-local operator. To be explicit, the fractional
Anderson model is defined as

Hopo = (-A)"+AVe,  weQ, (1.4.2)



acting on I' = Z4, where Hy = (—A)%, for 0 < a < 1, and {w,},cza are iid. The
operator (—A)% is the discrete fractional (negative) Laplacian, which is defined via
functional calculus. Unlike the standard Laplacian, the operator (—A)* is not local
with strictly negative off-diagonal matrix elements (see Remark [3.2.2). However, this
alone does not pose a problem, when it comes to prove dynamical localization. In
this case, dynamical localization is established using [AM93| Lemma 3.2]. However,
in the fractional Anderson model, the decay of (—A)* is not fast enough because its
off-diagonal matrix elements decay as |(—=A)*(z,y)| ~ ﬁ, see [GRM20, Thm.

lz—y
2.2 (iii)]. In fact, when polynomial decay is involved, additional complexities arise,
making the computations more challenging. This is further supported by the recent
work of [Shi23] on the MSA for long-range models.

In [Schif], Schenker studied the Anderson model corresponding to I' = Z4, Hy =
—A and {wg},7a iid with common uniform distribution supported on [—1,1]. This is
the model originally considered by Anderson in [And58|. He proved that dynamical lo-
calization in the whole real line above a localization threshold Ax,q > 0. In particular,
the constant Axpq matches exactly the critical value proposed in [And58]. To establish
that result, the author employed the FMM, that is, he estimated the fractional mo-
ments of the Green’s function. Initially, the depleted resolvent identity was employed
to find an upper bound on E[|G,(z,z¢)|’]. This bound was subsequently reformulated
in terms of the two-point correlation function of the nearest-neighbours SAW induced
by the standard Laplacian up to a constant.

However, when we replicated Schenker’s approach in our setting, we instead ob-
tained that our SAW has long jumps with polynomial decay, which reflects the fact
that the fractional Laplacian is a non-local operator with a polynomial slow decay.
Our main result is that we relate E[|G,(z,z0)|°], with 29,21 € Z4, 0 < s < 1, to the
two-point correlation function of the long-range self-avoiding walk (SAW) induced by
(—A)* (see Thm. [3.5.1)). This generalizes [Sch15, Thm. 1] to the Anderson model with
a fractional Laplacian perturbed by a random potential. The challenging part revolves
around determining the convergence conditions of the two-point correlation function of
the SAW induced by (—A)*. In particular, its two-point correlation function decays
polynomially, as shown in Lemma [CS15, Lemma 2.4]. Unfortunately, this polynomial
decay was insufficient to establish dynamical localization since exponential decay of the
two-point correlation function was required. Nevertheless, we managed to prove that
there is a constant Ag > 0 such that, for all A > Ay, spectral localization occurs. In
addition, in the case of d = 1 and assuming some conditions on the one-site probabil-
ity distribution, the eigenfunctions decay polynomially, for w € QO P—almost-surely as
detailed in Thm. below. Furthermore, our critical value Ag > 0 is smaller than
previously found values in the literature (see Thm. [3.3.2/and|3.3.11]) and our estimation
of the decay of eigenfunctions is sharper than a prior result found in [AM93, Lemma
3.2] (compare Estimate [3.3.7| with [3.5.24)).
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Random Schrodinger Operator
with dependent random variables
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[2.3.4  Superrotation & SUSY Invariant Functions| . . . . . . . . .. .. 23
2.4 Transter Operator representation| . . . . . . . . . .. ... ... ..... 26
5 Discussion] . . . . . ... 36
2.5.1 Klein, Martinelli and Perez’s strategy] . . . . . ... .. ... .. 36
[2.5.2  Challenges arising in the Anderson model on &5 . . . . . . . .. 40

2.1 Introduction

In this chapter we consider the Anderson model of the form
Hpp = —A+ AV, w e Q, (2.1.1)

acting on I' = @y = Z x {0,1}, where —A is the graph Laplacian and V, is a ran-
dom multiplication operator acting diagonally on the canonical basis by a sequence
w = (wg)zez of real, bounded and identically distributed random variables defined
in a suitable probability space Q. These random variables are not necessarily inde-
pendent. When the underlying graph is ' = Z with d = 1 and w = (wy).ez are
iid, [KMPB86|] established Anderson localization, see Corollary 3 therein, under some
additional conditions on the one-site probability measure, see Assumption [2.5.3] below.
Their proof used a representation of the second moment of the Green function through
suitable transfer operators.



The main objective of this chapter is to extend the strategy presented in [KMP86]
to the case when the graph is the one-dimensional lattice strip or ladder of width 2,
Do :=7Zx{0,1}, and w = (w,).ez are not necessarily independent. Instead of studying
E[|G.(x0, z1)|?], with 2zg,21 € Dy, it is more natural in our setting to consider the
second moment of the 4-point average of the Green’s functions corresponding the jo-th
and ji-th layers of the ladder D5 with jg, j1 € Z. Although we arrive to a representation
of the square of the mentioned 4-point average via transfer operators, the analysis of the
properties of the corresponding second moment of the 4-point average poses problems,
which we cannot still solve.

Now, we provide an overview of the remaining sections. In Section [2.1] we rigorously
define the Anderson model on 95 and state Thm. which is the result of adapting
the strategy shown in [KMPS86] to the lattice 9y, which does not have dimension 1.
Then, Section we give a concise and self-contained exposition of Supersymmetry,
which might be of interest to the reader. Next, in Section [2.4], we present the proof
of Thm. by introducing a representation of the square of the average version of
the Green’s functions corresponding two layers of @9 in terms of transfer operators.
Finally, in Section [2.5] we explain why we are not able to continue with the Klein,
Martinelli and Perez’s approach in our case. To be more precise, in Subsection [2.5.1
we outline the strategy given in [KMP86]. Then, in Subsection we compare their
approach to the proof of Thm. and why we cannot continue with their method to
prove localization in our setting. In addition, we provide some paths of research which
might be helpful in the future to surmount the obstacle, which we came across.

We set the notation of the rest of the chapter. Let (8;)seg, be the canonical
orthonormal basis of ¢2(2,). For an operator A acting on £?(2,), we denote the
matrix elements of A by A(zg, ) := (84, 4 0z) with x,x9 € Dy. We write (8, )0, for
the projection onto the subspace generated by 0,. Any element of &9 can be written
as r = (j G)T, where j € Z and o € {0,1}. Setting e = (0 1)T, we formally
write x = j + oe, to make our computations more concise. In addition, we denote
the (P-distance in Dy by |zo — z1], = (|jo — j1[” + |00 — 01|p)%, for 1 < p < oo, and
|zg — 21| = max {|jo — j1], |00 — o1}, for p = oo, for all z}, = jp+ 01, € Do, k € {0,1}.
In the case p = 2, we use the short hand notation |-|. Observe that we wrote “/P-distance
in @5” and not “fP-norm in Dy” because Do equipped with the standard addition and
scalar multiplication is not a vector space. Finally, let f € L*(RY) with d € N, the
Fourier transform of f is given by [# f](k) = f(k:) = Ja dye Y f(y), for all k € R,

2.2 Model

We consider the discrete Anderson model on the strip 9 given by
Hyr == =P+ AV, (2.2.1)

where P = 1}, = is the adjacency matrix and V, is a multiplication operator defined
as

Vou(z) = wau(x), Vu € (%(Ds), YV € Do,



where we assume that w; = wjye, for all j € Z, and w = (w;);ez € R? being a family
of bounded iid random variables defined in the probability space Q := R% equipped
with the Borel probability measure P := ), Po with expectation E[-]. The Fourier
transform of Py, denoted by Py, is defined as f’o(x) = E[e_iwix], for all x € R.

To relate this model to the the usual representation of the Anderson Model, we

express Eq. as
Hpp = —A+ (AVy —3), (2.2.2)

where —A represents the (negative) standard discrete Laplacian on £2(@3) defined by

(—A)ij = 5Z'jdj - Pij, dj = Z keDo 1=3. Consequently, {va)‘}weﬂ is a family of
|k*j‘1:1

bounded ergodic self-adjoint operators. Let 2 € C\ R and G, o = (Hyr —2) 7. Let

LeNand Ay :={-L,...,L} x{0,1}. Let HﬁLA = 1A, Hy a1, denote the restriction

of Hy a to £2(A) with Dirichlet boundary conditions. Finally, let Gi\fu A= (H?Uf}\—z)_l

restricted to ¢?(Ap).

By employing supersymmetric formalism, we obtain a transfer operator represen-
tation of the square of the 4-points average of the Green’s function between two layers
of D9, which is the content of Thm. below.

Theorem 2.2.1. Lete € {+,~}, j € Z, e w; = €i(—w; + E+im —1),

gO,a,w]— 0 0 0
Jle,w; 90w, 0 0 =~ < 1 0>
P = e Wy 1&g s P .= 0 .
& g2,e,wj 0 g(),a,wj 0 &%s 9 e (xa,wj 1
g3,€,w]‘ 291,6,(1)]' 292,6,(1)]' gO,E,wj
g3,e,wj 291,5,(0]- 292,6,(1)]' gO,E,w]'
1 Jlew;  90ew; 0 0 - €190,¢,w; Xew, 1
T = 792 ,E€,W 5 &, T = ) ]92 Wi
R 7'[2 _92,E,wj 0 _gO,s,wj 0 ’ &wj 2 c 1 0/’
gO,e,wj 0 0 0
(2.2.3)

where Fos denotes the Fourier transform after scaling by 2¢ and

90,e,w; (z1 +m2,y) = eiawj(xl+12)eez(Eﬂn)(xﬁm)@isma

(21 + 72,9) = 990,2,0; (21 + 2,y) 0900, (21 + T2, Y)
gl,a,wj 1 2Y) = 85131 - 8332

= 8i[—wj +E+ in]go757wj (Il + x9, y),

090,2,w; (1 + 2, Y) .

92757(1)]‘ (CL‘l + xTo, y) = ke ay — *26190757(,0]' ('1"1 + X2, y)a
LRI
Ox1 Oxo 4 0y? 0,6,0;
= (1 - [_wj + E + in]2)90,a,wj (.Tl + «T27y)7 vmla x2 Z O)Vy7 w] e R.
(2.2.4)

G3ew; (21 + 12, y) = r1 + 32,Y)



A . . —q ) )
Z GZ,%U,)\(]O + Opé, J1 + 616) = ﬁ /RQXRQ d X‘;rod X;O_"_e

[Ru R Ro REYJ (XX 1),

1 )

1 A . ¢ 2 2 —

- G - Y = — d X ,d°X

4 Z zwy\(]o—l- 0e, j1 + o1e) o2 /R2X]R2 jo+e

0‘0,0‘1:0
[Rl,,f{gf’,jl + RO,fﬁji?fl} (XJO’X;0+5)
(2.2.5)
wher@ Rk‘,é = Rk7a7wj07.__7w7[" R-]j{:(?;jl = R‘]z:(j«;{&j0+1y~-~wa’ fOT k € {07 1}} and
N 1
0 T 0
RO,s(onano+e) = 0 £,Wjq H E,w] 0]’
it
O J=Jo O
1
0
R E(XJO ) X]0+e = L. Wi 7;’(»] o]’
Jj=jo—1 0
RO (X, X = T ROE“’M?
0,e ( Jos 30+e)_7t2 0 H %’wj 2 Ricw; owr )’
Jj=jo+1 e

)

. T j71—1
R]Ovjl (X X ) _ &l 0 T 7' O 1 R‘Oveijlr---va (2 92 6)
Jjor “jote) — 2 \1 ' || £,Ww; 1 0 . 2.

Rl,e,wjl,.‘.,wL

Furthermore, if we assume that Py has moments up to at least order 4, then

1

1 A . 2 2 2 2~ —
E||l= GAL d2XF d?X1 L dPX; 42X

4 00201:0 oo }\(]0 oot 016 47[4 /]RQX]RQ /]R2><]R2 Jote Jote

[{R1 SREI 4 R RY ﬂ} (X;O, ;W) {RL_R{)?;JI + ROV_R{?’_M} (XJO,X]—W)]

(2.2.7)

2.3 Supersymmetric formalism

2.3.1 Grassmann algebra

Let N € N. Let V be a real N—dimensional vector space with basis # = {p; }jvzl The
antisymmetric tensor product is defined as

AN VXV —=VQR,V
(v,w) — v A w, (2.3.1)
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where V®g, V denotes the antisymmetric tensor product of V with itself (see [Abd04]).
To lighten the notation, v Aw will be written vw. This binary operator has the property
that

W = —wv, Yo, w e V. (2.3.2)
It follows that
v =0, YoecV. (2.3.3)

The Grassmann algebra (also known as exterior or graded algebra) on R generated by
3B is the associative algebra with unity given by

AlB) =PV, (2.3.4)
k>0
where V¥ := V ®4, ... ®4s V, for all k > 1, and V? := R. Observe that V¥ N'VJ = {0},
—_—

(k—1) times
for all £ # j. In addition, VP = {0}, for all p > N, because some of the generators
would appear more than once. The antisymmetric tensor product given in Eq.
defines a product operation on 4[%]. By abuse of notation, we will also denote it as
®gqs- This binary operation has the following property: Let p,q € N. If v € VP and
w € V9, then vw € V4 and

vw = (—1)Pwo. (2.3.5)
An immediate consequence of Eq. is that if v € VP and p is odd, then v?> = 0.

Indeed, v2 = (—1)P"v2 = —p2.

For any v € A[%], there are scalars {v;, i, }Y

U1yl =

1 such that

N
v =0t Z Z Viy.ig, Piy o Pi - (2.3.6)

E>141,... 0p=1

The above decomposition becomes unique, if the coefficients v;, .. ;, are antisymmetric
under any interchange of pair of indices.

Bosonic and Fermionic variables

By Eq. for all v € VP and w € V7, vw = (—1)Pwv. Hence, vw = —wv, if p
and g are odd. By contrast, if p is even, then vw = wwv, for all ¢. This motivates the
following decomposition A[B]| = Ag[RB] & A1[SB], where

Ao[B] = P V*, Ai[B] = P VL (2.3.7)

k>0 k>0
Since VP = {0}, for all p > N, the above direct sums are finite. It holds that
v € Ag[B], w e Ag[B) U A [B] = vw = wu, (2.3.8)

v,w € A1 [B] = vw = —wv.

11



Then the elements of A;[%] anticommute with each other. On the other hand, the
elements of A4p[AB] commute with all the other elements of A[%] and hence it is a
subset of the center of A[%]. Moreover Ay[AB] is a subalgebra since it is closed under
multiplication, addition and scalar multiplication.

Note that Ag[AB] is a strict subset of the center unless the number of generators is
even. This is the content of the next lemma.

Lemma 2.3.1. Let N € N and $ = {pi}ij\il be the basis of a real vector space V. Let
A[SB] be the Grassmann algebra generated by B and Z[A[B]| be the center of it. If N
is even, then Z[A[B]| = Ao[B|. By contrast, if N is odd, then Z[A[B]] = Ao|B] B VY.
In particular, for N =1, A[9B] is a commutative algebra.

Proof. Let v € Z]A[9]]. Since v € A[Z%], v can be uniquely written as v = vy + vy,
where vy € Ag[AB] and vy € A;[AB]. This yields, for all i € {1,..., N},

VoP; + V1P = VP; = Piv = Pivg + Piv1 = VoP; — V1P4, (2.3.10)
where we used that v belongs to the center, p;,v; € A;1[B| and vy € Ag[H]. It follows
vp; =0, Vie{l,... N} (2.3.11)

As a result of this, v1 = Ap1 - ... pn, for some A € R. Indeed, v; can be written as
v1 = wo + wip1, where wo, w; € A[SB] are independent of p;. Hence,

0 = v1p1 = woep1 + w1p? = wop1. (2.3.12)

This implies that wy = 0 since wy is independent of p1, and therefore vi = wip;. Now
we can repeat the same argument on w; with the generator p2. By a recursive argument,
we can conclude that vy € VV. If N is odd, then VY C A;[9B] and Z[A[B]] = Ao[B] D
V¥ By contrast, if N is even, then VN C Ay[%B] and v; € Ag[B] N A1[B] = {0}.
Hence, Z[A[SB]] = Ao[B]. O

From now on, we call the elements of Ap[%] and A;[9AB] as bosonic (or even)
and fermionic (or odd) variables, respectively. In addition, we usually denote the
bosonic variables by Latin letters and the fermionic variables by Greek letters.

Remark 2.3.2. For all fermionic variable \, it holds that \p? = 0, due to Eq. .

Any bosonic variable X can be uniquely written as

X = 2(X) + n(X), where 2(X) € R and n(X) € (HV>*. (2.3.13)
k>1

We say that z(X) and n(X) are, respectively, the body and soul of X. Note that n(X)

N

2

is nilpotent since n(X)( 1= 0, where [-] is the ceiling function.
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Inverse of a Grassmann variable

Let v € A[%]. We say that v has an inverse, if there is a v=! € A[%] such that
vol = v v = 1. If v~ ! exists, then it is unique. Indeed, for the sake of contradiction,
assume that wi,wy € A[%B] are inverses of v but wy; # wy. Then, w; = w(vwy) =
(w1v)we = wo.

For any bosonic variable X = x+n with nonzero body (i.e., x # 0), X has an inverse
and this is given by

X! = % + i; (%")J (2.3.14)
J=Z

which can be checked by direct computation. Due to the fact that n is nilpotent, the
above sum is finite.

Remark 2.3.3. By contrast, if b is a fermionic variable, then it has no inverse. For
the sake of contradiction, assume that b~ exists. As result of this, 1 = PP~ P)p~! =
PP ~HY~! =0, where we used that Yp~—! =P~ = 1 and P = 0.

Function of Grassmann variables

Any function f € C*(R;R) can be extended to a mapping f : Ag[B] — Ao[%B][[|in
the following way:

f : .AOI::%] — Ao[:%’],

(k) (1
X = z(X) + n(X) — f(X) = f@(X) + Y f(kl(x))n(X)k. (2.3.15)
k>1

Note that the above sum is always finite since n(X) is nilpotent. The same construction
can be used to extend f € C*°(U;R) with U C Ropen to f: U® &P, V2 s Ao B,

by requiring that x(X) € U. Similarly, any function f € C*°(RP*%;R) with p,q € N can
be extended to a mapping f : ALY B] — Ay[B] as follows

[ AP Bl — Ao[9B),

X = (@ (X) + 13 (X)h<igp, — f(X) 1= > %aﬁf(w(x))nk(x), (2.3.16)
<i<q keNqu ’

where we used the multi-index notation, for all k € Nj™9,

i g
k=1 — k= 1I[ k! o= 1] nd(X). (23.07)
1<i<p O 1<i<p 1<i<p
15524 15524 15524

Once again, since all terms n;;(X) are nilpotent, the above sum is finite. Any f
C>®(U;C) can be decomposed as f = Ref + iIm f, where Re f,Im f € C*(U;R).

Lwe will call the new function again f, by abuse of notation.
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Thus, f can be extended to a mapping f : U & @,~, V¥ — Ag[B] ® iAg[%B] defined
by ;

F(X) = Re f(X) +iIm f(X). (2.3.18)

Finally, we can also replace the range of f in the above construction by a real finite-
dimensional vector space W. In this case, the corresponding extension of f is defined
componentwise.

In the following we will need the extension of the inverse, exponential and logarithm.

(i) Inverse. Let U = R\ {0} and consider f(z) = 1. This function is smooth in U. For
any bosonic variable X = x 4+ n with nonzero body (i.e., = # 0), the function f(X) =
(x+n)~! coincides with Eq. We can extend this construction to suitable square
matrices with bosonic entries as follows: let p € N and a = (ajj) € AP If
x(a) is invertible, then a is invertible and its inverse is given by

at=z(a) H+2(a)! Z(—l)j [a:(a)*ln(a)]j, (2.3.19)

j>1

1<i,j<p

by the same argument as Eq. 2:3.14]

(ii) Exponential and Logarithm. We can define exp : Ag[%B] — Ao[SB] as

X a(X) ") k
X =™ 4 (X", (2.3.20)

k>1

Just like the standard exponential, this function satisfies
eXitXe — XiXe VX1, Xy € Ayp. (2.3.21)

Let U = R" and consider f(z) = Inz. This function satisfies f € C*°(U;R). For all
X € Ap[AB] with z(X) > 0, we have

I X = In(e(X) + n(X) = n(e(X) — Y- (_jl)J (Zgg )J. (2.3.22)

We can again extend the above constructions to suitable square matrices with bosonic
entries as follows: let p € N and a = (aij),; ;<, € AL*P[9]. Then e® can be defined as

1 .
¢ = "(@+a) .= 2(9) Z —n(a)’. (2.3.23)
=07
Moreover, if Inz(a) exists, then Ina can be defined as
—1) ;
Ina =1In(z(a) + n(a)) :=Inz(a) — Z u [x_l(a)n(a)}j. (2.3.24)
>
Remark 2.3.4. Let p € N and a = (aij),; ;<, € ALXP(B]. If x(a) is invertible and
Inx(a) exists, then -
trlna = Indet a. (2.3.25)

Indeed, let f(z) = trlnx and g(x) = Indetx. Then, f(x) = g(zx), for all x € RP*P
invertible such that Inx exists. Since f and g are smooth functions, their corresponding
extensions to AD*P[B] also coincide when we extend them.
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Derivation of Grassmann variables

To define a derivative operator, note that every v € A[9%] can be seen as a polynomial
whose degree is at most 1 in each p;. Hence, it can be uniquely decomposed as

v(B) = v1 + Pivy = v1 + V3 P;, (2.3.26)

where v, v% and vg‘ do not depend on p;. We define the left and right derivative
with respect to p; as

E] D
L R
vV i= Uy, v =y 2.3.27
801 2 891 2 ( )
El ) -
Note that when v does not depend on p;, 0.V = oV = 0. However, in general,
%
£ v F# v$ Indeed, let v = p;p;, for j # i. Then, P0;V = Pj and 8%1-1) = —pj.

From now on, we will make use only of the left derivative in our computations. To

lighten the notation, we will call it simply derivative and arp 3 . Note that the
derivative behaves as a Grassmann variable in the following sense:

o 0 8 0

—v = v, Vi # 4, 2.3.28
0 0
Bo; 8piv =0. (2.3.29)

The following special case will be useful later.

Lemma 2.3.5 (Derivation of the exponential function.). Let V be the

2N -dimensional vector space with base B = {ll)j,$j };Vzl We consider A[%B]. Then,

Noooa
H 3 Sl ®idibi — et A, VA € CVXN (2.3.30)
=1 J 3

.

Q’)

N
) T Arbs

[ — . 0, Pbe” Zhi= Vb — det Ay, VA e CVN Wk e {1,..., N},
J

Q

]:1
(2.3.31)

where det Ay corresponds to the minor of A after deleting the [-th row and k—th column.
In particular, if A is invertible, then

N

9 9 V. A D
Hc’hl) 8lp]1bk1pl€ Slmbidiubs — (det A)AY, Yk e {l,....N}.  (2.3.32)

Proof. Let n = Zgjzl P, A ;. Clearly, n € Di>1 V2 € Ao[9B]. Then, n is nilpotent
and e~ " is well-defined. Hence,

N N g N

0 0 <N Toau (—1) o 0
H i1 PiAijby Z ] [ k (2.3.33)
— e — n .O.
i1 O O o R0 vy
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By explicit computation,

n* = Z (Wi, Aij W) - - (0, A b)) (2.3.34)

Observe that the only term which possesses all the generators of A[%] is n’Y and they
appear exactly once in the product. Hence, in Eq. n* vanishes after deriving,
for k < N and we only need to focus on the case k = N. Let Sy be the group of
permutations of {1,..., N}. Recall that |Sy| = N!. Given T € Sy, let (1) be the sign
of T.

' = Z (Edlll)ﬁ) R ($0N¢TN)Ai01jT1 Tt AiUNjTN

0,TeESN
= N! Z (D1ry) - (Dpbay) Ay, + - A,
TESN
= N!(Pd1) .o (Oabn) D (M Ay, oo Ao, (2.3.35)
TESN
= NI(Wyh1) - ... (Wybg) det A. (2.3.36)
As a result of this,
ﬁ 0 9w N A N de tAH =det A,  (2.3.37)
KA Lo, 311)

where we used -2--2pap; = —1. This proves Eq. [2.3.30] Moreover, Eq. [2.3.31] is
. O TI¥I

proved in the samé way. Finally, Eq. [2.3.32]is a direct consequence of Eq. [2.3.31] and
Cramer’s rule.

O]

2.3.2 Supervectors

Let p e Nand g € N. Let Xy,...,X, € A[%] and Uy,..., ¥, € A[%B]. A supervector
® is given by

< X1 Uy
o = (\IJ)’ where X = : and ¥ = . (2.3.38)
Xp vy

We only need to consider the case p = ¢ = 2. In the following, we set

X = (2) U= (i’) (2.3.39)

We can also define functions on supervectors. Given P, € A1[%B]. We define

F: AQ[@] — A[QQL
F(®) = Fy(X) + F1 (X)P + Fo(X)0b + F(X) P, (2.3.40)
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where Fj : Ag[%B] — A[%] such that F; is independent of P and P, for all j €
{0,1,2,3}. A simple example is F(®) = 1, where Fy = I, = F3 =0 and F; = 1. We
will always consider functions ® — F(®) € Ap[®]. In this case, Fo, F3 : Ag[B] —
Ao[@] and Fl,FQ : Ao[@] — .A1L%’]

If F3 is integrable, then the integral of F' is defined as

2
/dcp F(®) = /R d;(a‘?w?bp(@). (2.3.41)

Similarly, we can consider F(®1,...,®,), for n € N. The integral of F' is defined via
Fubini

- d?X; 0 0
A®; F(®q,..., F(®,..., 0, 2.3.42
[ 1w, Fo, /R%Hﬂaw%u ) (234)

j=1
We define a scalar product of two supervectors as
1 _
P =X X+ i(xpxp’ + ) € Ag[B], VP, € AJ[B] x AT[B], (2.3.43)
where X - X/ := X;X) + XX} In particular,
=3 & =X -X+UP. (2.3.44)

We can rewrite the scalar product in terms of matrices,

I, 0 1/0 —1
e, T T T (L — =
®. P =& 2P, where ® (X v ),Z-— (0 l>’ andl.—2(1 ())'

(2.3.45)

Theorem 2.3.6. Let N € N. Let M € CV*N. [f M = MT and Re M := 454° > 0,
where A* is the adjoint of M. Then,

Mph = [av e,

where ®; = (éj) X; € R, ¥, = @;;) for all j € {1,...,N}, and ® - M® =
Z;‘Yk:l ®j - My P

Proof. We compute

N N
¢'M¢:ZMjkq’j'¢k=Z kX Xk,+z M

7,k=1 7,k=1 7,k=1
N N o
= Z M X - X + Z Y Mjby, (2.3.46)
jk=1 zy=1
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where in the second line we used that My, = M,,, for all z,y € {1,..., N}. Hence,

/d<I>1]) P, e TMe —/ ﬁ X, o~ et MirX; X ﬁ 9 9 2 Y, b,e SN 1 U Mgy,
Yy R2N jaie Tt 'LI) all)j x y
2
(det M)M_, / Hd X] =3 et M XXy
R2V
2
= (det M) M. / HdZ] = e Zi My Zy, = (det M)M,, (1>2:M1
; Vdet M o
(2.3.47)

where in the second line we used invertibility of M together with Lemma and in
the last line we used Re M > 0 to compute the Gaussian integral. O

The above construction can be extended to p and ¢ arbitrary but for the purpose
of our computations the case p = ¢ = 2 is sufficient.

2.3.3 Supermatrices

A linear transformation M : A2[B] x A2[B] — AZ[B] x A?[%B] must have a specific
block-matrix representation

M = <§ Z) (2.3.48)

where a € A3%[B], b € AZ?[B], 0 € AT**[B] and x € AT**[B]. M is called a

supermatrix.

Let M, N : A3[B] x A?[B] — AZ[B] x A2|B] be supermatrices. The sum, product
and scalar multiplication of supermatrices are defined as usual:

(M + N)ij = Mij + Nij, Vi, j € {1, 2, 3,4}, (2.3.49)
4
(MN)ij =Y MixNyj, Vi, j € {1,2,3,4}, (2.3.50)
k=1
(AM);; = AM;;, Vi,j € {1,2,3,4}, VA € R. (2.3.51)

By a direct computation, M 4+ N, M N and AM are also supermatrices.

In general, we can take a € A5P[%B), b € ALY B], 0 € AV [B] and p € ATP B
with p, ¢ arbitrary. Just like before, we only need the case p = ¢ = 2.

Supertrace

In the case of supermatrices, the standard definition of a trace is not invariant under
cyclic permutations. Indeed, let p,q € N and M; : A3[B] x A?[B] — A3[B) x A3 B
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be a supermatrix with M; = <)sz Zi), for i € {1,2}. After an explicit computation,
tl"(MlMg) = tr(alag) + tl"(O'l)(Q) + tr(xlcg) + tr(blbg), (2.3.52)
tr(MQMl) = tr(agal) + tl‘(O‘zXl) + tI‘(XQO'l) + tr(bgbl)
= tr(alag) — tr(O‘l)(Q) — tI‘(Xlo'Q) + tr(blbg) #* tr(MlMg), (2353)

where in the last step we used the fact that o; and x; are matrices whose coefficients
are fermionic variables, for ¢ € {1,2}, and

tr(ox) = —tr(xo), Vo€ A2¥2[%B],vx € A2X2[%). (2.3.54)

To circumvent this problem, we modify the definition of the standard trace as follows:

Stlr(?< G) =tra—trb, (2.3.55)

b

which is called the supertrace of a supermatrix. By definition, StrM € Ay[4], for all
supermatrix M. In addition, the supertrace has the desired property:

Str(M; Msy) = Str(MoMy), for arbitrary supermatrices M7 and M,
as long as they have the same size. (2.3.56)

Indeed,

Str(M1Ms) = tr(aiaz) + tr(o1xe) — tr(x102) — tr(b1bs),
= tr(agal) + tr(ngl) — tI‘(XgO‘l) — tr(bgbl) = Str(MQMl).

Remark 2.3.7.

o Ifa=bin Eq. |2.3.48 then Str(M) = 0. In particular, Str<15 IO> =0.
2

e The supertrace is a linear operator

StI'O\lMl + }\2M2) = Alstr(Ml) + }\QStr(MQ), VAL, A2 € R, (2357)
Supertranspose of a Supermatrix

Let M = (; 2) be a supermatrix. We define the supertranspose of M as

T T
MT = (_“UT §T> (2.3.58)
Thus, the following equations hold
M®- & =(MD)TLd' = dTMTLd, Vb, e A2[B] x A2[B). (2.3.59)

Remark 2.3.8.
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e The supertranspose s linear,

(MM 4+ Ao Mo)T = A MT + A MY, VAL A €R, (2.3.60)

o The supertrace is invariant under the supertranspose,

Str(M) = Str(M™). (2.3.61)

o Unlike the usual transpose, the supertranspose is not an involution. To be more
explicit,

(MT)T 4 M, (2.3.62)

unless 0 =x = 0.

(M Mo)Y = MFIM, for all supermatrices My and Ms of the same size.
(2.3.63)

a; Oj
Xi b

MEIMT — ( ) xéf)( at x?) _ (_aéfalT ~ X201 a3Xi +Xabi )

T T T 3T T T | 3T~T ToT | 7TpT
—0y by /\—0y b (0ga; +byoy) —05Xi +byb;

T T
_ <a1a2+01X2 a102+0152> _ ((al 01) (az G2>> — (M My)T
X1a2 +bix2 X102 + b1b2 X1 bi/\x2 b2 '
(2.3.64)

Indeed, let M; = ( ) be a supermatriz, fori € {1,2}. Then,

Superdeterminant and Logarithm

In the theory of conventional square matrices, the determinant has the following prop-
erties:

(a) det(AB) = det Adet B, VA,B € C"", V¥n €N,
(b) trln A = Indet A, whenever In A is well-defined.

These equations remain true when A and B have entries in Ay[9B]. Indeed, let f(x,y) =
det(zy) and g(x,y) = detx dety, for all x,y € R™*™. This functions are polynomials
and hence thet are smooth. Therefore, their extensions on Aj*"[%] defined via Taylor
expansion coincide. This proves Property @ On the other hand, Property (]ED was
already proved in Eq. via an analogue argument.

We want to define the analog of the determinant for a supermatrix such that its
relationship with the supertrace mimics Properties @ and (]ED More precisely, we look
for a definition of superdeterminant such that:

(A) Sdet(M;Ms) = Sdet(M;)Sdet(Ms), for arbitrary supermatrices M; and My as
long as they have the same size.
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(B) Strln M = InSdetM.

For to be well-defined, we first need to define In M, for M supermatrix. We
distinguish three cases:

Case 1: Assume that M is a block-diagonal matrix, M = (g 2

invertible and Inz(a),Inz(b) are well-defined (cf. Eq. [2.3.24)). In this case, we define

>, such that a,b are

a 0 Ina 0
n (o b) = ( 0 1nb>' (2:3.65)
Case 2: Assume a = Iy and b =I5, then M = (I; IG> In this case, we define
2
0 o (-1 (0 o’
In (I + < )) = — - ( ) , 2.3.66
x o)) T2 (2:3.60)

. o 0 .
where the sum is finite since <X g) is nilpotent. Observe

0O ) (0 (g 7). ke

(2.3.67)
If we plug both equations into Eq. [2.3.66] we obtain

RS S e T

_ 1 ((ox)* 0 1 0 (ox)* 1o
= % 2]{;( 0 (Xo)k> + Z % —1 ((XG)’“_IX 0 ), (2.3.68)

k>1

where in the first step we used the fact that the sum in Eq. [2.3.66|is finite, hence it
can be reordered into a sum over even and odd powers.

a

Case 3: In the general case, let M = <X U) be a supermatrix such that a,b are

b
invertible and Inz(a),Inz(b) are well-defined. We define

B a 0 I a_lcr)) o (a 0> ( ( 0 a_lcf))
InM = ln(<0 b) (b_lx L :=1In 0 b +In{I+ bl 0 ;
Ina— 3 op(a” ob™x)* Yis1 pr(a by e o
= 1 -1y, 15\k—1p—1 _ 1-1y,—15\k - (2.3.69)
2@1 ﬁ(b xa o) T Inb— 21421 ﬁ(b Xa~"0)
Now we are able to define the superdeterminant. As a first step, let M be a block-
diagonal supermatrix, M = (3 2), such that a, b are invertible and In z(a), In z(b) are
well-defined. We compute

Ina 0
0 Inbd

Strln M = Str( ) =trlna—trlnb =1Indeta —Indetb =In (deta)j

det b
(2.3.70)
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where we used the definition of Supertrace and Property (]ED In order to satisfy Prop-
erty , we need

InSdetM = Strln M = In (det “). (2.3.71)
det b
Hence, we define
0 det a
d <“ ) = 2.3.72
Sdet\y 3) = Geto (2:3.72)

This definition ensures that the superdeterminant of block-diagonal supermatrices sat-
isfies Property too. Indeed,

0 as 0 ai1a2 0 det(alaQ)
© 0 b 0 b © 0 b1bsy det(blbg)

det a; det a9 <a1 0 ) (ag 0 )
= = Sdet Sdet 2.3.73
det by det by o )5t g 4, ) )

where in the second line we used the multiplicativity of the usual determinant.

For the general case we have the following proposition

Proposition 2.3.9. Suppose that a,b are invertible and Ina,Inb are well-defined. As-
sume that Properties and (@ hold. Then,

a O deta
Sdet<x b) = detbh

det(Iy —a~'ob™'x). (2.3.74)

In particular, Sdet (i g) € Ay[AB].

Proof. To begin with, assume that a = Iy and b = Is. In this case, we need to prove
0 o
Sdet | I+ « 0)) = det(Iz — ox). (2.3.75)

Using Property and Eq. [2.3.68, we obtain

InSdet (I + (g g)) = Strln (I + (2 g>)

_ 1 ((ox)" 0 1 0 (ox)* o
= Str{ - ; ﬂ( 0 (xo)k> + % 2k —1 ((xc)k_lx 0 >
)k—l

= 1 (UX)k 0 1 0 (ox -
o % ﬂsu( 0 (Xﬁ)k> * % 2k — 1Str<<xg)klx 0 ) (2.3.76)

where in the last step we used the linearity of the supertrace for finite sums. We
compute each term of the above sum

k
Str((o—g) (Xg)k> = tr (((TX)k) —tr ((XU)k) = 2tr ((o‘x)k)7

0 (Gx)’”c) _
Str( Gy o) =0 VEeN, (2.3.77)
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where in the first line we used Eq. since 0,X are matrices with fermionic entries.
By plugging the above results into Eq. [2.3.76] we obtain

Strln (I+ <§ g)) = —Z%tr((gx)k) = —tr Z%(O’X)k
E>1

k>1
= trin(Iz — ox) = Indet(Is — ox), (2.3.78)

where in the second line we used the definition of logarithm of a matrix with bosonic

entries (cf. [2.3.24) and Property (]ED Hence, Eq. [2.3.74] holds.

For the general case, assume that a,b are invertible and Ina,lnb are well-defined.

Using Property [A] and Eq. we get

(2 %) =sin(3 1,2, 2)

B a 0 0 a10>) _deta 1 41
= Sdet <0 b) Sdet (I + <b_1X 0 = Toth det(I —a"'ob™'x). (2.3.79)

This concludes the proof of the proposition. O

2.3.4 Superrotation & SUSY Invariant Functions

A superrotation is a linear transformation ® — R® such that

R® RO =d-@', VO, & c A3[SB] x A} (2.3.80)

By Eq. [2.3.59, the LHS of the above equation is equivalent to
R® -R®’ = (R®)TIR® = ®TRTIR®, VO, € A2[B] x A%, (2.3.81)

where RT is defined in Eq. [2.3.58 and L is given in Eq. [2.3.45. Therefore, R is a
superrotation iff

RTIR=1. (2.3.82)

3 (b)) with a € R?*? a standard rotation (i.e.,
a® =a~') and b € R?*2 be such that bTlb = I. Then, R is a superrotation. Indeed,

A simple example is the case when R = <

R®-R® = (R®)TZ(RY) = XTaTaX' + 0T 100 = XTaTaX' + 0TW = @ - @',
The next result provides conditions to guarantee that R is a superrotation.

Proposition 2.3.10. Let M = (i (by) be a supermatriz, t € R and Ry = e"™. Then,

R; = ™ is a superrotation for all t € R iff MTYL = —XM. Equivalently, R; is a
superrotation for all t € R iff

al' = —a, b'l=-lb, o=—xTl, ol =Ix. (2.3.83)

In particular, StrM = 0, and therefore SdetRy = 1, for all t € R.
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Proof. Assume that MTL = —XM. Hence, MT = —£MX~!. Using also Eq. [2.3.58
and [2.3.63] we compute

T
T _ tkMk ot AT — tr TV — tr s sk
Ry = Zg _ZH( ) _ZH( ) _ZH(_ )
k>0 k>0 k>0 k>0
_ (_t)k k -1 __ —tMs—1 __ —1¢—1
=7 ZT! MF )zt =g Myt — sR-IE L (2.3.84)

E>0
Therefore,
R/IR; = IR, 'I7'IR, = £, (2.3.85)

which is the desired result.

Suppose now that R; = et™

of ¢, we obtain

is a superrotation for all ¢ € R. Expanding in powers
R® R =@ & +t(MD- ' +d- M) +o(t), V& & e A2[B] x A2 A).
(2.3.86)

Since we suppose that R; is a superrotation, the linear term in ¢ on the RHS of the
above equation must be zero, that is,

0=M®- &'+ M = (M®)TLd + dTIMP = dTMTLd + dTE M. (2.3.87)

Hence, we must have M 'L = —XM.

By a direct computation, MTL = —ZM is equivalent to aT = —a, b'l = —Ib,
o= —xTl and o7 = Ix. It follows that a is antisymmetric and in particular, tra = 0.
On the other hand, b = —Ib"1~!. Hence,

trb=—tr(i717") = tr(67171) = — trb” = —trb, (2.3.88)

where we used the invariance under cyclic permutations of the usual trace and its
invariance under the transpose. Consequently, we obtain trb = 0.

Finally, using StrM = tra — trb = 0, we have
SdetR; = emSdetRe — otSrM — o0 _ 7. (2.3.89)

This concludes the proof. O

Our next goal is to define functions invariant under superrotations. Recall that we
have defined functions on supervectors (cf. Eq. [2.3.40). Let ® — F® € Ay[AB] be a
function. F is called SUSY invariant (or supersymmetric invariant), if

F(R®) = F(2), VR = '™ superrotation. (2.3.90)

A SUSY invariant function has a simplified form. This is the content of the next lemma.
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Lemma 2.3.11. Let ® — F® be SUSY invariant. Then, there is a function f €
C®(RT)NCL([0,00)) such that

F(®) = f(9?). (2.3.91)

Proof. Let M be a supermatrix of the form

(0 o (o 0) 1 _( 0 20(2)
M‘(zfla 0>’Whereg_(0 )l O oy 0 ) (2:3.92)

Then, R = '™ is a superrotation, for all ¢ € R, due to Proposition [2.3.10f Remember

o= (313), where X = (§1> € A%[RB] and ¥ = <$) € A3[9AB]. Tt suffices to prove Eq.
2

2.3.91| for X € R?. Indeed, the general case is obtained by Taylor expansion on both

sides. For t small, we expand

®— R® =@+ M+ oft), where MP = <n>, n = <“1¢>, andpzz( %o X2 )

p o) -1 Xy
(2.3.93)
Since F(R;®) = F(®) and F is smooth, we obtain
F(®+tM®) — F(®) = o(t). (2.3.94)

We compute

F(® +tM®) = Fy(X +tn) + FL(X + tn) (O + tp1) + Fo(X +tn) (P + tp2)

+ F3(X +tn) (W + tp1) (b + tp2) (2.3.95)
Expanding F} in tn, we get
Fj(X+tn) = F;(X) + 8?)8()75711 + 8?>£2X)tn2 + o(t). (2.3.96)
Hence,
F(® + tM®) tjfj [aFO 81;15() P+ M;g)lb n;
+HF(X)p1 + F(X)p2 + F3(X)($p2 + p1)] +o(t).  (2.3.97)
Observe
Pn; =0, Png = —oa P, Pp2 = —200; X1, (2.3.98)
Pni = o, Ping =0, b = 200X (2.3.99)
It follows

P(® + tM®) — F(®) = to [aggg)

IOFy(X)
0Xo

8F2( )~

Y —2F(X)X; +
aFl( )—

P — 2F5(X) X

b — 2E5(X) X + o).
(2.3.100)

+tao { v+ 2F1(X)X2 —
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Setting P =1 = 0, we get F; = Fy = 0. Hence,

0Fy(X — OFy(X
F(®+tM®) - F(®) =ty b(X) — 2F3(X)X1}1l) + taa { b(X) —2F3(X)Xg | + o(t),
X4 0Xo
which implies
X1
VFy(X) = 2F3(X) X, )" (2.3.101)
2
Changing to polar coordinates,
é1 = cosfé, — sin féy, €9 = sin fé, + cos B¢y, (2.3.102)
we obtain
OFy(r,0 10Fy(r,0
VF(X1,X2) = Oko(r,0), + - GLP

o T r T e

X = [r cosB(cos Bé, — sin Béy) + r sin O(sin 0é, 4 cos Béy
X
2

= r(cos® 0 +sin? 0)é, = ré,. (2.3.103)
In this way, Eq. becomes

0Fy(r,0) .  10Fy(r,0)
“or i T oe
0Fy

It follows % = 0, hence Fj is radial and there is a function f € C°°(R) such that

Fy(r) = f(r?). (2.3.105)

ég = 2F3(r,0)ré,. (2.3.104)

Hence, the RHS of the above equation does not depend on #. In particular, F3 is also
radial and

(2.3.106)

O]

2.4 Transfer Operator representation

We give a proof of Thm. below.

Proof. Let z € C with Im z > 0. Observe

. . 2
‘2(170701=0 GQL (jo + ooe, j1 + o1e€)
4

. . 1 A . .
B (Z}mmo G2L (jo + ove, ji + 016)) (Zag,a;:o Gz" (jo + oge, j1 + ‘7/16)>
B 4 4

— Zl: GAL (Go + ope, j1 + 01€)GEE (o + 00¢: J1 + 7€) (2.4.1)

16

00,01,0(,07 =0
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We represent each G2 (jo + oge, j + 0€)G2" (jo + Ohe, j + 0’e) in terms of a Gaussian
integral involving real and Grassmann variables as in Section Let & := A[%B] be
the real Grassmann algebra generated by

B = {050y 0, (24.2)

Remember that & = &y P &1, see Eq. Recall that for a given function F(®*) or
F(®7) the corresponding integral is defined by

22X 9 9
dPTF(PF) := F(®*
Jarwe) = [T e R

+ —+
where ®F = <X ), X* e R?, Ut = ($i> € 6y,

mi
see Eq. [2.3.41] Using Thm. [2.3.6] we can write

. . . —_ ot [~_mgA +
G2 (jo + ooe, j1 + o1€) = Z/dq)+ J0+Goelb;1+glee’q’ [t ]e , (2.4.3)

AL . / . / — AL =\—1
Gz* (jo + oge, j1 + oje) = (H __z)jr+dgedo+oée

/d(I) 1b91+(7'elp]0+06 eilé_.[ziHAL](b_’ (2.4.4)

where we used that HAZ is self-adjoint and Reiz < 0.

For simplicity, we drop the superindex of ®* in the representation |2 Expanding
the argument of the exponential, we obtain

i®- [z —HM |0 = nZZ<I>]+Ue+Z (E - w; Z%m

j=—Lo=0 j=—L
L-1 1
— 2 Z Z Pjtoe Pjt1toe — 2 Z Q- Djye. (2.4.5)
j=—Lo=0 j=—L

Hence,

chro,cl =0 GAL (JO + ope, j1 + 0'16)

= § / H d@ d(b]Jre 11)]0+0'061b]1+0-16 H _2i(bj'(1>j+16_27:‘1>j+e'q>j+1+e

0_070_170_070_1—0 ]__L ]_—L

% H e n(®3+e7, ) zE(cI>2+<I>§+e) fzw](<I>2+<I>J2+e) —2i®;-Pjyc

j=—L
Z P +11’ o) (Wi s
—Z/ H dq) dq)]+e< J0 Jo 6)( Ji J1 6) H e —2i®; ¢’J+1 —2iPj e Pjr11e
j=—L 2 j=—L
L
% H o n(®3+e7, ) zE(<1>2+<I>§+e) —iw; (3 +97, ) —2z'¢>j~<1>j+e7 (2.4.6)
j=—L
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where in the second line we used the linearity of the integral and the following equation

1 ] 0 . ) O iy
Z 1l)jg+coe4ﬂr’j1+c1@ _ (11)]0 +21|)30+€> (wll +21b31+6>. (2.4.7)

0'0,0'120

To introduce a transfer operator representation, we define
[T+F](¢7 @/) . /d@ d@/ 6727;@-@6721;@/-@,F(87®/)7
Moo (®,8) = e—n(@2+'1>’2)eiE@-(DeiEq)’-(I)/e—iwj(<I>2+<I>’2)6—2i<1>~<1>/, (2.4.8)

where © and @' are two supervectors. The relevant observables above are
Y+ tb’ Y+
2 2

By hypothesis, the observables are located on the jo-th and ji-th layer of the ladder
D with jg < j1. To make the notation more succinct, let

6(®,d) := O(,) = —6(9,d).

oF(9,d') = 0(D, ' )F(D, D), SF(D,®) = O(D, ' )F(D, D). (2.4.9)

Finally, we introduce the functions F,.(®, ®') = F;(®,®’) = 1. With these definitions,
we can rewrite Eq. 2.4 as

Ay ,
Zéom:o G2 (jo + ooe, j1 + 01€)

4
Jo—1

—Z/ H d(b d®j+€ <M> H e 27’@ CD]+1 21(1)]4»6 q)j+1+er ,wj(q)j7¢j+e)

% r (q)joaq)joJre H e—QZ‘bj'@j-‘rle—2z¢j+e'q>j+l+er+7wj(q)j+1’(I)j+1+e)

J=jo
E' +$'+e = 21D ;-® 2iP P
< 2 " [T e % ®ome2@ome®ivieer, (D541, @j114e)
Jj=n
= Z/d®]0 d(I)j0+e [0]]_,0,],0 T+F+7wj071 . T+r+,w7LF i| (q’jo, @]04_3)
X Ty T Ty, Talyw o Tl B (@, B pe)-

Note that T’y ,; can be written as

Moy (2, 8) = oo, (X7 4 [X |2 X X) 4 g1, (XP + XX XO) {00 + 97}

+ 92,0, (X2 (X2 X XD + W'} + g3, (X + (X% X Xp )y
(2.4.10)

for the complex-valued smooth functions 90,4050 Ilt,0; > 92,40, and 93,+,0; O [0,00) xR

given in Eq. 2:24]
Let F be a function of the form

F(®, ) = fo(X, X)) + f1(X, X){B + D'} + fo(X, X) B + '} + fo(X, X )Py
(2.4.11)
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By Lemma|2.4.1| below, [T F] (®, ®’) and [D,wj F} (®, ') have the same representation
as Eq. |2.4._,1} Moreover, in terms of matrices, T, T\ . =T o, see Eq. Indeed,

Jo Jo
fi bil
f3 ’—>[T+r+’wj] f2
f3 f3

00 0 1 90,40, 0 0 0 fo

— ng 0 1 0 0 gl,+,w]- gO,+,wj 0 0 fl

200 <10 ) g, 0 g, O f>

1 0 0 0 93,+,wj 2gl,+,wj 292,+,wj gO,+,wj f3

93,4+, 291,+,w]- 292,-&-,(11]' 90,+,w; Jo Jo

1 Iltw;, 904w, 0 0 fi f1

= 5 o P =Tiw.

27\ —ga, 0 —904w; O f2 T f

90,+.w; 0 0 0 f3 J3

(2.4.12)

Recall that Fl(<I> o’ ) = 1. If we repeatedly use the above argument, then the term

[ﬂ,wm T, Tilh LF;] (®jy, Pjo+e) has also the same representation as|2.4.11
Furthermore, it can be written as a product of matrices. Indeed,

-
= | Ty H T,

Jj=jo—1

-L
rﬂ“jo H T. rﬂ“a‘

Jj=jo—1

(2.4.13)

o O o
o o o

Now we apply the observable at jo to the above expression. By Lemma below,
we obtain

Yjo + o+
[Or""wjo T+r+’“’10—1 o T+r+’“’*LFl} ((I)JO’ (I)JO"'e) Ro4, Wi e W= (X]07X]0+8)%
+Ripwg (XJO,XJ0+6)%°+E¢”0% 2%0%0*6%0“, (2.4.14)

where Ro . W0 s, and Ry 4, wjow_y ATE complex-valued functions on R? x R? given

by Eq. @ Likewise, we can use the previous line of reasoning to compute the term

[0 T ), Tilhw; oy TiT o, Frl(®5,, @5, 4). Thus, we get
Y, +b;
[0 Ty TaTey 1y T, Fr | (@5, @) = R oo (Ko, Xy pe) TR 2EE
WV o Ps D, )
+ R, wL(Xj17Xj1+e)1b]l+elbhlbjl 2%%*6%“, (2.4.15)

where Roi ;o (Xjis Xjite) and Riy oy (X1, Xji4e) are given in Eq. 2.2.6
Let R(®,®’) be a functlon of the form

VY + PPy

R(®,®") = (X, X') 5

+ 71 (Xv X,)

v zd’/ (2.4.16)
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Due to Lemma [2.4.2) [T,R](®,®’) and [F+7ij} (®,®’) have also the same structure
as Kq. Hence, the action of its composition T, T, . also preserve the represen-

tation. Furthermore, in terms of matrices, T, Ty o, = ’71%.. Indeed,

To 70 0 1)< 1 0) (T’g)
(7“1) HTJFFerj <T1> 92<1 0 X w; 1/ \r;

1907-9- W

7;90,+,w]- (0(+ w; 1) <’I“0) ~ (7‘0)
= ’ = . . 2.4.1
= 1 0/\n Tr; 1 ( 7
Hence
|:T+r+ @jp+1 +0 r+ W T r+ Wi 1 T r+ wry, :| ((b]07 (bJO'f‘e)
. \b _|_1p. i
g)(,)-’s-g,{ujoﬂ ,,,,, w (XJO’XJ(H-B)%
o V. b .. )
+ le?f,ltujo+1 ,,,,, wy, (Xj07Xj0+e)1|)]0+611)]011)j0 21|)901|)]0+€1p30+67 (2'4'18>
where R{]Ofle R and Rjofle Loy, BT€ given by Eq. [2.2.6] Therefore,
,,,,, R
> o0.01=0 G2 (jo + e, ji + o1€) 2X;,d*Xjpe 0 O D 9

4

Pj, +Pjo+
X {RO,+(X307X30+6)]()2W

1I)jo + 1I)jo—&-te

{Rjom (XJ()’ X]o—i—e) 2

+ R+ (Xjo, Xjote)

_ Z/
R2xR2

e 8$jo Njo 8$jo—&-e Mjo+e
ll)jo-i-ell)joll)jo + wjoll)jo—i—ell)jo-&-e }
2

lbmlb]o + wjoll)jo—i-elbjo-i-e}

by

Rmm (XJm XJo—f—e) 2

— o o
P A*X iy d*X o [Re, RE + Ro R (X5, X pe), (2.4.19)

- 27'[2 R2xR2
where in the second equality we used the anticommutativity of the fermionic variables
and the fact that the only products which have all the generators at jo and jo + e are

lbjo+;l)]0+e X Ib]0+elb]01‘l)jo+1b‘701b]0+(31b]0+6 an d ll’j0+elbjolbgo+1~1’j0'¢']o+g¢]0+e 11)]0+1b]0+e Indeed,

Wio + Wjore VjoreWioWio + Wi WjoreWiore  WioreWipre®joWio + WioWso W +eWiote

2 B 2 : B 4
_ (=2)¥,o¥joWjoteWiote _ _lbjolbjoll)jo+elbjo+e'

4 2

(2.4.20)

By the same token,
Vjo+eWjoWio + WjoWjoreWiote Wjo + Wipre _ Wi WioWjoreWio+e
2 2 2 '
We take the expectation on the average of the second moment of the Green’s function,

2
1
1 .
E 4 Z G?ﬁ, )\(Jo + ooe, j1 + o1€)
00,01=0
1
= — dP d2x+ d2X+ d2X dQX_

47:4/ (w) /R2xR2 /RQX]R2 * e .

x Ry, BRI+ Ro, R (X2, X0, ) {Ru R+ Ro RPI) (X5,X5, 1 )-

(2.4.21)
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Remember that the terms Ry _ and R]O’J1 for k € {0,1}, are written in terms of a

product of the matrices I'c y;, I‘E,w i 'T c,w,; and TZ c,w;- The matrix elements of these

matrices are of the form

hoe0; (X, X') = G_H(IXFHX/'Q)65iE(|X|2+IX,|2)€_8iX'X,(ak,awgz‘ + bpewj + Ck,a)e_iequxeﬂxl‘z),
(2.4.22)

where the coefficients ay, ., by - and ¢, . are complex constants determined by Eq.
. L L .

Hence, there are complex polynomials p. ({Xj}j:_L, {Xg}j:_L) of order 2 in (Xj);,

(X)), for 1 € {1,2}, and qe({wj}f:_L) of order 2 in each w; such that

2
1

1 A .
E 1 Z G. 5, aUo + ooe, j1 + o1€)

00,01=0

dPo( dX+ dX dXt, dX:
47-[4/J1__[L 0 w] /szRz L1 1_[ Jj+e J+e

X e 7“2]——L |X+| Jr|XJ+E| +|X | +|XJ+€‘

e (O ) e (05 ) 05 )

X q4 ({wj}]l.lziL)q_ ({wj}§':7L)e_lZJ_*L w7(|X+‘ +|XJ+6| _‘X;’ |XJ+e| ) (2423)

To interchange the order of the integrals in the RHS of above equation, it is sufficient
to prove that the absolute value of the integrand is integrable. By Fubini-Tonelli, we
obtain

+ + -
/ H dPo(w; /R2xR2 " 1‘[ dX ! dX; dX!,, dX;,,

j=—L

w e N Ein PP S G PG

X q+({wj}f:_L)q7({wj}jL:_L) er,LwJ(]xﬂ +\XJ+E] —|XJ._| —|X7 )

L
S/ H dX+ dX dX++ dX7 _nZJ*—L |X+| +|XJ+E| +|X | +|XJ+6|
(R2xR2)2L+1 — T Jte =t
—i X x| - X
ar ({wid_p)a-(fos}j_p)e s (TP TP }

(2.4.24)

8]

Note that a sufficient condition to assure that the above integral is convergent is that
there is a constant K > 0 such that

L L —is L s
E(|q (fw; b p)a (fwihi,)e =
Observe that there are complex constants {C“}“E{O,172,374}2L+1 such that

L
q+({wj}f:_L)q7({wj}fz_L)e*iZf:_Lwjafj = Z Ca H w;‘je—iwj’

«e{0,1,2,3,4}2L+t  j=-L

] <K, Vi eR. (24.25)

(2.4.26)
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where the constants ¢, can be written in terms of n, E and ¢ as they depend on the
constants ay ¢, by - and ¢y ¢, see Eq. Due to the linearity of the expectation and
the independence of {w; }JL:_ 1» We obtain

L
E[Q+({wj}]l-1:7L)q_({wj}jl,’:7L)e—isz:7ijxj} _ $ el | [ wieiorm

«e{0,1,2,3,4}2L+1 j=—L
L
= Z Cx H /dPo(wj)[w;cje_iwﬂ'“”j]. (2.4.27)
«e{0,1,2,3,4}2L+1  j=-L R

Since we assume that Py has moments up to order 4, we get

o, ({whh ) (fao}_ )eSsen]

L L _
. . d0€] "
SR OIS | KO D DR | Rr o )
ae{0,1234y2 0 J=—L7E we{o1,234p204  G=—L i
(2.4.28)
Note that
d% . XKj _ —iw,x, o
—Po(x;)| = | [ dPo(wj)w e ™™ | < max |w;|%,  Vz; €R. (24.29)
da:j R w;esuppPo

Therefore, Ineq. |2.4.25is valid, for K = Zoce{() 1,2,3,4)2041 |Cql Hfsz MaxXy; esuppPy |W;5]™,
by Eq. 2.4.28 and [2.2:29] O

Below we state and provide a proof of some lemmas which were used in the proof

of Thm. .2.11
Lemma 2.4.1. Let F be a function of the form

F(®,0) = fo(X,X) + f1(X, X ) {Pp + PO’} + fo(X, X) {0 + P’} + f3(X, X )by,
(2.4.30)

where fy, f1, f2, f3 € LY(R? x R?). Then, Iew;F and T F preserve the representation
of F. More precisely,

Mo, F] (@,9") =go.c.o, fo + [g0.c.00; 1 + G, fo] {0 + D'}
+ [gU,E,wj fo + 92.e,w; fO] {Wll’ + Elpl}
+ [QS,a,wj fO + 291,6,wj fl + 292,6,wj f2 + QO,a,wj f3]$¢@1|)/, (2-4'31)

(TF] (2, 8) =5 [ f5(22X, 22X') + fo(25X, 2X) (W + 9}

1 R _ _ R o
+ 5 [~A122X 25X {70 + B} + fo 26X, 26X )]

(2.4.32)
where fj denotes the Fourier transform given by
fi(X,X) = / dY dY’ e XY XY py ¥, X, X e R% (2.4.33)
R2 xR2
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FEquivalently, we can also represent the action of F+7wj and T on F via matrices as
follows:

fo fo 90,2,0; f0
fi 1 90,e,0; f1 + 916,00, fo
’—>r = Iahav} Wy
f2 S fe 9oew;f2+ 92.60;f0
f3 I3 93.e.w;Jo + 291w, 1+ 292w f2 + Goew; [3
90.c.w; 0 0 0 fo
_ Jlew;  9o,e,w; 0 0 fi 2.4.34
92,6,(1)]' 0 gO,E,w]‘ 0 f2 ’ ( )
93.e,w; 291,5,wj 292,5,wj 90,e,w; f3
Jo fo f3 00 0 1 fo
fi fi 1 i 1 01 0 0 1
T = =
f2 — £ f2 7_[2 2¢e _f2 7_[2 2¢e O 0 _1 O f2 )
f3 f3 fo 10 0 0 f3
(2.4.35)

where Fo. denotes the Fourier transform after scaling by 2¢c.

Proof. Let F be of the form By a direct computation, Fﬂqu has the desired
representation. Hence, we only focus on the expression [T.F] (®,d’), for ¢ € {—1,1}.

Y Y’

Let ©= [ ¥ | and © = | ¥’ | be supervectors. Using the representation of F, we
/
X X

get
[TEF] ((1)7 (I)/) _ / d@d®/€—2€i<1>~®e—2ai<l>’-@’F(Q’ @/)
= / dOdE'e 2O~ O (£, 4 1 iy + XX} + 20X + XX} + faxdx)-

By linearity of the integral, we can separately compute each addend. To make the
computations below more succinct, note that the following equations are valid

0 0 _ci(xtxw) _ 9 _ Pyt = -

TN () — B 5y O 11— cix +x) — Bxxb} = T, (2.4.36)
;X aax —=i(ox+x) 3 — 9 aa {1—ci(bx + xb) — bxxw }x = —eib, (2.4.37)
00 . e o

T 9x (Px+x0) yy = %@{1 —ei(bx +xb) —bxxbixx = -1,  (24.38)

By linearity of the integral, we can separately compute each addend. To begin with,

/ded@/e—Qsi@-Ge—Qeié/-@/ fO (Y, Y/)

2 2 _ _
_ / dyd Y/e—Qaz’X~Ye—2£iX’~Y’f (Y Y) 9 a 751(¢X+X¢) 9 i€*€i(¢/xl+xlll’/)
R2xR2

dazyazy’ . o - B
= fo e fow,Y'){—ww}{—w/w’}
X
XY, (2.4.30)
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where we used Eq. twice in the second line. Next,

/ d®d®/€72€i¢-®€725i¢/-®/ fl (Y7 Y/)YX

:/ szsz/e—QEiX-Ye—Qez‘X’~Y’f1 (Y Y/)iiefsi($x+ilb)yxiiefsi(wx'+?1b')
R2xR2 T2 T Ox Ox X' X/
d?yd?y’ ., Sy — 1 —

- /R e e ALY (C R = 5 122X, 2eX09Y

X

(2.4.40)
where we used Eq. 2.4.36] and [2.4.38] in the second line. By the same token,
. o0 — 1 4 —
/ dOdE e 2O~ 0 ¢ (v Y)\ Iy = —h(2eX, 26X Y np. (2.4.41)

Therefore,

; B! . —_ 1 ~ J— JR—
/ d0dO'e ™ OO (Y, Y) {xx + XX} = /126X, 2eX) {1 + P}

(2.4.42)
Next,
/d®d®/62€i¢'-®€25i¢/-®/ f2 (Y, Y/)YX/
/ dQYdQY/6—25iX-Y6—25iX’-Y/f2(Y Y/)iﬂe—ai(%@rw)—iie—m‘(Wx’Jr?w’)X/
R2xR2  TE2 T O Ox ox’ ox’
d2vyary’ _,.; oy _ 1. _
/RQ y T67251X-Y67251X Y f2 (Y, Y/)(—Eill))(—ﬁ’hl)/) — ng(%X, QEX/)ll)ll)/,
X
(2.4.43)
where we used Eq. twice in the second line. Likewise,
. -H/ Q) —_ —1 - _
/ dOdE e 20210 1, (v V') Iy = —5 f2(2eX, 26X ) Pp. (2.4.44)

Hence,

; 5. — —1 ~ —_ —_
/ d0dE'e > O™ H (Y, Y) {Xx + X'x} = —5 22X, 2eX) {0’ + P}

(2.4.45)
Finally, the last addend can be computed as follows
/d®d®/e—2&‘i¢'~®e—28i¢,~®, f3 (Y, Y/)YX?XI
2v/ 12 _ _
:/ d“Yd Y/ef2eiX-Y672eiX’-Y’f3(Y?Y/)iie—ai(lbx-ﬁ-iﬂ))xxiie—ai(ﬂ”x'-f-x’ll)/)
R2xR2 T2 ax Ox ox’' ox’
d?yad?y’ ., Ny 1 .
/ —— e XY XY (YY) (—1)? = = f3(26X,2¢X), (2.4.46)
R2 xR2 Tt s
where we used Eq. [2.4.38| twice in the second line. O
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Lemma 2.4.2. Let F of the form , then

P2 V@, a) = ok x) P EY 4 (i x x) — px, x) TR
(2.4.47)
Let R be a function of the form
R(®,d') = ro(X, X') ¥ z Vo (x, x) Y ;”’ LA (2.4.48)

where rg,71 € LY(R? x R?). Let &y, = i(—w; + E+in —1). Then,

P, R(®, &) = go.e.0, (X, XI) [TO(X, X)W o (X, X1 4 1 (X, X)) LR TR

2 2
(2.4.49)
T.R(®,9) = % [fl(st, 25X’)ll’ J; L + 7o(2eX, 25X’)¢/ L J; W IW’/] . (2.4.50)

Equivalently, we can also represent the action of I w, and Te on R via matrices as
follows:

To o 90,6,0;70 1 0)\(ro
()= meere Y (L) e
<r1> Hei\r 9o,e,w; (o +71) 9oewi\ o 1)\ ( )
To To\ ﬂ (S ﬂ 0 1) (7’0)
(7“1) — r]:‘E (7"1) = 7_[2 9:25 (7"0) = 7_[2 g2€(1 0 r y (2452)
where Fo. denotes the Fourier transform after scaling by 2¢.

Proof. Let F and R be functions of the form [2.4.30] and [2.4.48] respectively. By direct
computations, ll’J;I’/F(@, ®’) and I'y ,,, R(®, ®') have the desired representations. Hence,
we only focus on the expression T R(®, ®'). Note

T.R(®,¥) = / dOdE'e > O 2" O'R (@, @)

; -5/ Q) bva NG NEY — I
= / OO e~ 0210 {ro<Y,Y’>X+2X +7~1(Y,Y'>><xx+2xxx}.

(2.4.53)

Due to the linearity of the integral, we can separately compute each addend. On the
one hand,

/d@d@’e‘gm‘@e_%@"@/ro (Y, Y,)g

0

— me*QEiX-Y672Eixl-Y/T Y YI 8 8 _EZ($X+Y¢) X a _EZ‘(WX/_’_YII)/)
o 2 0( ) ) — € 777,6
R2xR2 T ox 0x 2 9y Ox
d2ya?y’ _,, ot - . —
= [ ey oy v ES ) = Spgaex 2x) R
R2 xR2 s 2 T 9
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where we used Eq. [2.4.36] and [2.4.37] in the second step. By the same token,

. -5/ Q) v ) P P
/d@d@'e_gzq)'@e_m) ® ro(Y,Y')XE = %fo(%X, 25X’)w.

Hence,

l\')_e‘

2 w2 2

(2.4.54)

. L2 A b v ) N PP’
/ 40d@/e 2102ty Yy X TN Eli 0w o x) (”’ b b )

On the other hand,

/ d®d®/e—25i¢~®e—25ifb’~®’Tl (Y, Y’) X';CX

23/ 2 _ - _
:/ d“Yd Y/ef2eiX-Y672€iX’-Y’T1(Y7Y/)iée—ei(lb)ﬁ-ill))ﬁiie_fi@")('-i-x’ﬂ’/)*/
R2xR2 702 ax 0x 2 9y O’
YY" oeixy —aeixty n(=1) €i N
_/R?xR2 e S Y g r(Y,Y") 5 (—5z¢’)—ﬂ2r1(25X,25X)?,
(2.4.55)
where we used Eq. 2.4.37] and [2.4.3§8] in the third line. Analogously,
_ 2P0 —2id" -0 XX el $
/ d0dE/ ¢~ %1%, ~26i%"0 rl(Y,Y’)XX2 X —571(2eX, 2X) 7. (2.4.56)
It follows
, . I » Ty
/ A0/ ¢~ 2%i®0—2:i?"0 rl(Y,Y’)M = %m(zgx, 2&)@. (2.4.57)

2.5 Discussion

As we pointed out in Section [2.1] we did not manage to fully replicate the strategy laid
out in [KMPS86] to prove localization in our model because challenges arose when we
tried to implement it.

2.5.1 Klein, Martinelli and Perez’s strategy

Klein, Martinelli and Perez worked on an instance of the Anderson model with d = 1.
Let A > 0,

Hop=-A+AV,, wen (2.5.1)

acting on ¢%(Z), where —A is the usual (negative) discrete Laplacian and V,, is a
multiplication operator given by

Vou(z) = wpu(x), Vu € (*(Z), Y € Z,
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where w 1= (wj) ez € RZ being a family of bounded iid random variables defined in the
probability space  := R% equipped with the Borel probability measure Py := X, P1
with expectation E;[]. Recall that the Fourier transform of P is defined as Py (z) :=
E; [e‘i‘”ﬂ], for all x € R. We assume that P; has at least moments up to order 2 at
least.

Let Ap = {=L,...,L}, for L € N. Under some assumptions of the integrability of
P1, they proved that there are some constants K > 0, r > 0 such that VL € N there is

Mo >0
|z—x0|
A 2 K In2 1
a[6btmteo o] < S (1= 2 o L))
1 E+m,7\( 0, %) n2 Inn| \lnn|2r
VL € N, Va,z9 € Az, ¥ € (0,m0], (2.5.2)

which is the content of [KMP86, Main Thm.]. This result together with the assumption
that for everyn >0, f > 0 and Eg > 0, there is 6 > 0 and Ly > 0 such that

P, <dist (E c(Hfﬂ)) < e*“LB) < e WE € [~Eo, Eo),¥L > Lo (2.5.3)

yield Anderson localization, see [KMPS86l, Corollary 3.

The proof of Main Thm. in [KMP86] can be decomposed into two parts: in the
2
first half, the author used the SUSY representation of E; “GE+zn (o, x)‘ } to obtain

xo?

2 -~ 2 _2
Ex |63t a0, 2)] ] = / A, [6(TT) " F)(®5,, @7, )e 3P0 +#700)

x [D(TT)™ =0 6" (IT)- " F,] (8}, ®;,), (2.5.4)
where
(TF](®, 3') = / d0de/ e 07 O'p (g, @),
[F)(®,9) = ¢ 3Py (@ - )P p(e, 9),
[GF](@",27) =" F(@F, @),  [6"F|(@F,07) =¢™p F(OF, &),
(@2 ®?) = F(92,82) = ¢ 2(P1+92), (2.5.5)

To obtain Eq. Klein, Martinelli and Perez had to interchange the integral with
respect to the supervectors with the expectation. As we did in the proof of Thm. @L
we need to proof that the term Py ($2—&'?) is well-defined. Moreover, E, [e‘iwi(q’?—q"
is also well-defined and

P02 — %) = E[e—iwj@?—q”Q)]. (2.5.6)

Indeed, let ®2 — &% = [X|*> — |X'|? + P — P’ := z+n, where z € R and n € & with
n? = 0. Then
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E; [e_iwj($+n)} = / dPl(wj) e w;(@4n) :/dP1( —iw;e 1+Z Zw]
R

>1

. 2 .
P1($) + n/ dPl(w]) (*Z'(L)j)e_lez + % / dPl(w]) (*Z'wj)ze_zwjr
R

Pi(z) + <;ZP1( ))n + ;(;;l?l(x))ﬁ —Py(z+n), (2.5.7)

where in the third step, we used that n® = 0, and in the fourth step, the fact that P;
has finite moments up to order 2.

To simplify the derivation over the fermionic variable on the RHS of Eq. the
authors used the fact that F,. is separately SUSY invariant, which means that
F.(®",®7)=F,(R"®", R ®"), VR*, R~ superrotations. (2.5.8)

The use of Lemma [2.3.11] twice yields that there is a function f € C*((0,00)%) N
C?([0,00)?) such that

F(9,d') = f(92, 87 (2.5.9)

In addition, if F is separately SUSY invariant, then F and I are also separately SUSY
invariant. After they performed the explicit derivation over the fermionic variables,
they rewrote the second moment of the Green’s function as the inner product of some
functions given in terms of the above transfer operators on a certain complex Hilbert
space. Indeed,

X 2 —_~ - ~ ~ o~ ~ o~
ElUG?,Wo,I)! } = ((TT)L==0 F, e 2R ID(TT)* = (IT) X" F,),  (25.10)

where (,) is the inner product in the Hilbert space

H = {f . [0,00)2 — C |||f||2 = 4/ Jdrydr. mr,\f(ri,r%)f < oo}, (2.5.11)

0,00)

and the operator T on H takes the form
[Tf1(r%,r?) = / dsyds_sis_Jo(rysy)Jo(ros ) f(s7,57), (2.5.12)
[0,00)2
with Jo(s) = 5= fOQﬂ d@e% 50 the Bessel function of order 0.

In the second half of the proof of [KMP86, Main Thm.|, the authors exploit the
properties of the transfer operators T and I to obtain the estimate given in Ineq. [2
To be precise, Cauchy-Schwarz inequality together with the fact that T and F are
bounded operators on H yield

ot | < [T e

'H(Tf)L_mF’”HH' (2.5.13)

op
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On the one hand, we have the following estimate

ey

- H nF,H <. >0VECR VneN, (2.5.14)

which is the content of Lemma 3.1 in [KMP86]. On the other hand, there is a constant
Mo > 0 such that

In2 1
<(1-—=5+0[—%)) VEeR We(mny, (2515
. < ()| (rln<n>|2 >) (ol @519

which is the content of Lemma 3.2 in [KMP86]. To determine the above estimate, the
authors use the double Hankel transform of order 0 given by

[Hog)(ry,r_) = /[ ; ds,ds_ /s, Jo(ryis)r—s_Jo(r_s_)g(sy,s_).  (2.5.16)
0,00

Hy is unitary operator on L?(R?,dr dr_) and Hy : L*(R?,dr,dr_) — L>®(R?, dr dr_)

with [[Hoglly e m2,ar,ar_) < l19llL1®2,dr ar_ ), for all g € LY(R% dr dr_). Due to Riesz-

Thorin Interpolation Theorem (see |Graldl Thm. 1.3.4]), we obtain

/ o101
1 Hogllro (g2 aryar ) < HgHLq’(R%dudr,)v Vg € LY (R?,dr,dr_), V¢ € [1,2] with p + i 1.
(2.5.17)
Note that we can write T in terms of Hj as
N/ [Tf](ri,r%) = —Ho(\/575_f(s2,8%))(ry, 7). (2.5.18)

Hence, T inherit all the above properties of Hy. Indeed, T is a unitary operator on H
and

H\/ LR [Tf] (7’«2“ T%)‘ < H\/ 7‘+7”7f(7“3u T%)HLq’(Rz’,dmdr_)v

’ 1 1
Vf :[0,00)2 = C with / dmdr_‘dmr_f(ri,r%ﬂq < o0, Vq' € [1,2] with p + 7 1.
[0,00)?

L4(R2,dr4dr_)

(2.5.19)

For the sake of simplicity, assume that P; is absolutely continuous with respect to the
Lebesgue measure. We have that

|71,

Indeed, let f € H, p > 2 and ¢ € [1,2] with % + % = 1. By Cauchy-Schwarz inequality

2
, Vp=>2.

P 2 2 n(riJrr%)
i(ry —r)e LP(R2,drydr_)
(2.5.20)

= HF<T<2HTg)Hiﬂ(RZ,dmrdr,) <
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and Ineq. [2.5.19, we obtain
1
o~ R 2\ 2
HPTFfHH - (/ dr, dr_ ‘1/—“70_ Trf(ri,r%)) )
[0,00)?

1 1

< (/ dr.dr_|T( i,rz)\py(/ dr, dr. ‘mfff(ﬁ,r?)‘q)q
[0,00)? [0,00)2

= 002, )| g g ||V T A7)

= HF(T-QH Tz)HLP(R?,dudr,)H\/ﬁT[f‘f](riv7"2)‘ Lo (B2 drp dr)

= HF(T?Hr%)HiP(RQ,dmrdr,)HVT+T*f(T-2-’r%)HLQ(RQ,dr+dr,) = HF(T-QHr%)HEP(RQ,dmrdr,)HfHH’
(2.5.21)

Le(R2,drydr_)

where in the third line we used Cauchy-Schwarz inequality again because 1 = % + %/.
By direct computations and assumptions on the integrability of powers of the Fourier
transform of Py, there are constants pg > 2 and C; > 0 such that

2
R 2 1
HPl(ri _p2)enti2) < (Cl| nnf R(p)) . Wp>po, (25.22)

LP(R2,drodr_) — \ 4 pr

where lim;, o, R(p) = 0. Let p() = C][lnn|". Then, there is g > 0 such that

1
L 1\ 7w
HFTF < (5)” . VEeR,Vne (0,0, (2.5.23)
op

By Taylor’s expansion (l)ﬁ =1- 2, (’)((L)Q) and Ineq. [2.5.15| follows
y lay p » (3 = () q. |£-0. .

2.5.2 Challenges arising in the Anderson model on 9,

We could partially implement the first half of the strategy in [KMP86] for the Anderson
model on P, after some minor changes. More explicitly, for fixed w € Q and z € C\R,

. 1 1 Ap . . 1 1 Ap . .
we could write 7 200701:0 szJ\(jo—l-O‘oe,jl-i—Ule) and 7 ZUO,UFO szwﬂ\(]o + 0pe, j1 + o1€)
in terms of bosonic and fermionic variables, see Eq. Then, we carried out the
derivation over the fermionic variables to obtain transfer operator representation, see

Eq. As a result of this,

2
1

1 Ap . . _ 1 2+ 12+ 2v— 12—
4(;; OGzyw,A(jo + 0pe, j1 + o1€)| = 47[4/%&2 /IR?x]RQ Xt APXE AKX
0,01=

(R R+ R R (X5, ) R P+ R ) (3, X)), v
(2.5.24)

where Rye = Riew;y,...0_,, and f{ﬁ;ﬁ = Rio,gzumﬂ,...,wy for k € {0,1}, are given
by Eq. 2:4:8] However, when we tried to compute the second moment of the Green
function by taking the expectation in the above expression, we could not manage to

maintain the transfer operator representation as we could not find an explicit formula of
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the constants cy involved and there are interactions between points on the same layer.
More precisely, at the end of the proof of Thm. in Section we proved that we
can interchange the expectation with the integral on ((R? x R?) x (R? x R2))2L+1) in
order to prove Eq. This result together Eq. 2.4.23] and [2.4.28] yield

2

Z sz}\ jo + ooe, j1 + o1€)

0‘0,0‘1 =0
1

= — dX1dX; dX7,  dX;
47t (R2xR2)2(2L+1) l_[ Jte Jte

S PTG X[
Grr (DG ) e (05 G )

X E[qu({wj}JL:L)q—({wj}f:L)e_ZEJ_LwJ<|X+\ +]XJ+S| -|X5 2 ~ X7t )}

X e

1 + + _
N 47{4/(R2><R2 2L+1 l_[ dX dX dX]+e dXJ+€ (2'5‘25)

X e _anLffL |X+’ +|Xj+e‘ +’X] ’ +|Xj+e‘

X eim({xj}j:—v XLe}JL_—L) i ({51 X))
X Z Co H z"‘JP((XJ (‘XJ’

xe{0,1,2,3,4}2L+1

)
Recall that the constants ¢y can be written in terms of n and E as they depend on
the constants ay ¢, by and cy e, see Eq. Although we do not have an explicit
formula for the ¢y, we might try to estimate it. Suppose, for the sake of simplicity, we
were able to find an upper bound for ¢y, for all « € {0, 1,2,3}. Following the spirit
of Subsection [2.5.1] we want to find an estimate similar to Ineq. However, in
our case, after taking expectation, there is an interaction between the two points in the
layer, which is coded in the term

’X

-l - e

Ki(X,X,Y,Y') = e YYD (IXP X — [Y]* = [Y')), 1€{0,1,2,3,4}.
(2.5.26)
Let
[Slf] (Xa Xla Y7 Y,) = 'g:[Klf](2X? 2X,a _2Y7 _ZY/)’
[GfI(X, X, Y,Y) = [G,](X, X G_(Y,Y)f(X,X,Y,Y’), where

[G.](X,X) := e N(IXPHX'P) el BOXPHXT) g ¢ {0,1,2,3,4}, e € {+-}.
(2.5.27)

Hence, we need to find a convenient upper bound of ||S;G]|,, but we could not replicate
the argument using Hausdorff-Young inequality of the Fourier transform.

Thm. provides a representation of the second moments of the Green’s function
using product random matrices. This suggests a potential path of investigation for

41



understanding the localization of the Anderson model on 9 through the study of
Lyapunov exponents, as explored in [Daml1].
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Chapter 3

Decay of the Green’s function of
the fractional Anderson model

and connection to long-range
SAW

[3.2  Fractional Laplacian| . . . . . . .. ..o o000

[3.2.1  Relationship between the coeflicients of the fractional Laplacian|

[3.2.2  Estimation of the sum of the fractional powers of the off-diagonal

terms of the Fractional Laplacian| . . . . . . . ... ... ... ..

3.2.3  Inverse of Fractional Laplacian| . . . . . ... ... ... ... ..

[3.4 Selt-avoiding walks with long jumps| . . . ... ... ... ... ... ..

3.5 Decay of Green’s tunction| . . . . . . . . . ... ... L.

[3.5.1  Decay of Green’s function in terms of SAW| . . . ... ... ...

[3.5.2  Comparison of decaying rates| . . . . . . . .. . .. ... .....

3.1 Introduction

This chapter is based upon [DMERMZ23] and shows the contribution of the PhD can-
didate to it in the form of Thm. and below. For the reader’s convenience, a
copy of [DMERMZ23]| is provided in Appendix located at the end of this thesis.
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Let us recall the definition of the fractional Anderson model. Let d e N, 0 < o« < 1,
and A > 0. The fractional Anderson model Hy, » « is given by

Hopo = (-A)"+AVe,  weQ, (3.1.1)

acting on £2(Z4), where (—A)% is the fractional Laplacian (which is defined in Section
below) and V, is a random multiplication operator acting diagonally on the canon-
ical basis by a sequence w = (w;),eza of real, iid and bounded random variables with
common distribution Py and defined in a suitable probability space Q.

When o« = 1 and Py is uniform, [Sch15] proved dynamical localization for disorder
parameter A > Aapq, where Appq is exactly the disorder threshold proposed in [And5S].
His proof makes an exhaustive use of the depleted resolvent identity and self-avoiding
walks (abbreviated SAW).

This chapter has two main objectives:

(i) Relate the fractional moments of the Green’s function to the SAW induced by
(—=A)%, thus extending [Schif, Thm. 1] to the fractional Laplacian case, see
Thm. below. This enables us to show, under some conditions, pure-point
spectrum and polynomial decay of eigenfunctions at large disorder A a.s. in the
fractional Anderson model, as outlined in Thm. [3.5.5

(ii) Compare different estimates of the fractional moments of the Green’s function
available in the literature, leading us to conclude that our estimate provides the
sharpest result. Furthermore, the localization threshold Ag(s) in Thm is
shown to be smaller than the thresholds found in previously known results. No-
tably, we expand the range of values of A where spectral localization happens
a.s.

The remaining sections of this chapter are outlined below:

In Section we define the fractional Laplacian and we show some properties
which will be useful in subsequent analysis. More precisely, Subsection establishes
that, similar to the usual Laplacian case, the fractional Laplacian exhibits translation
invariance, and the matrix elements of the diagonal can be computed as the sum of the
off-diagonal terms in a row (cf. Eq. . In addition, Eq. expresses the off-
diagonal matrix elements as an integral in terms of Bessel functions, following [Kwal7,
Thm. 1.1]. Then, in Subsection we provide upper and lower bounds for the sum of
the fractional powers of the off-diagonal terms of the matrix elements of (—A)*. Next,
in Subsection for 0 < o < %, we define the inverse of the fractional Laplacian as
(—A)"*(xg, x) = limy, o[(=A)~* +m?2] (20, 2), for z,z9 € Z. We establish in Thm.
[B:27that the limit is well-defined by using the Fourier transform and the Riesz potential
(see Def. below). Moreover, (—A)~% also possesses translation-invariance and

its off-diagonal matrix elements decay polynomially as |(—A)™*(xg,x)| < m,
—&o

for x,x9 € Z9, xg # x. Moving forward, in Subsection we prove some known
properties of the Riesz potential used in the proof of Thm. following [LLO1].
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In Section we focus on the fractional Anderson model and present our find-
ings. Specifically, in Subsection [3.3.1] we rigorously define the fractional Anderson
model. Then, in Subsection [3.3.2] we present some known results regarding the decay
of fractional moments of the Green’s functions, as shown in Ineq. [3.3.35] and [3.3.50]
Additionally, Thm. establishes conditions to guarantee pure-point spectrum and
polynomial decay of the eigenfunctions a.s. Next, in Subsection |3.4] we introduce the
self-avoiding walk X induced by (—A)% and its associated two-point correlation func-
tion. Moving forward, in Section we address the achievement of Objectives (i) and
. More precisely, in Subsection we show the relationship between the fractional
moments of the Green’s function and the two-point correlation function, which is the
content of Thm. below. This result together with [CS15, Lemma 2.4] yield our
estimate of the fractional moments of the Green’s function, see Ineq. A direct
consequence of Thm. is Corollary [3.5.2], where we express the correlation function
as an averaged weighted sum of the arrivals at = by the self-avoiding walk X starting
at zo and staying within the volume A C Z¢ until it lands outside of it. This extends
[EV17 Lemma 8.13] to the fractional Laplacian case (see Remark. Moreover, we
determine spectral localization at strong disorder. Additionally, for d = 1 and assuming
some regularity on the common distribution Py, we find that the eigenfunctions decay
polynomially. After comparing our decay of the eigenfunctions with the one found in
Thm. [B3:3:2] we conclude that our estimate is sharper. Finally, in Subsection [3.5.2]
we contrast the different regimes of decay of the fractional moments of the Green’s
function explored in this chapter. Based on this analysis, we reach the conclusion that
our estimate is the sharpest and that the localization region, in terms of the disorder
parameter A, is larger.

We set the notation of the rest of the chapter. Let d € N and (8;),ez¢ be the
canonical orthonormal base of ¢2(Z%). For an operator A acting on ¢?(Z%), we denote
the matrix elements of A by A(zg, ) := (84, A8,) with z, 19 € Z9. We write (5, )0,
for the projection onto the subspac? generated by 0,. In addition, we denote the ¢P-
norm in Z<4 by ||, = (Z?:l |xi]p)5, for 1 < p < oo, and |z|,, = maxi<i<q |z;|, for
p = oo. In the case p = 2, we use the short hand notation |-|.

3.2 Fractional Laplacian

Let 0 < « < 1. By functional calculus, the discrete fractional Laplacian is defined as
the linear bounded operator (—A)* acting on ¢?(Z%), where —A denotes the discrete
(negative) Laplacian on ¢2(Z%) given by (—A@)(zo) := 2 la—zol1=1 (@(z0) — @(x)), for
all @ € (2(ZY), for all x € Z4.

3.2.1 Relationship between the coefficients of the fractional Laplacian

The discrete fractional Laplacian shares some properties with the discrete Laplacian
such as the invariance under translations and the fact that the matrix elements of the
diagonal can be written as the sum of the off-diagonal elements in a row, which are the
content of Proposition [3.2.1] below, where, in addition, we write the matrix elements of
the fractional Laplacian as a certain integral. This proposition and its corresponding

45



proof are extensions from [CRST18, Thm. 1.2] to the case d > 1. Recall that the
gamma function I' has simple poles in the set of the non-positive integers so ﬁ =0

for all z € {0,—1,-2,...}.

Proposition 3.2.1. Let0 < a < 1 andd € N. The following equation for the fractional
Laplacian holds:

(A, z)=— Y (-A)%=zy), awezl (3.2.1)
yezd\{z}

In addition, the terms (—A)*(x,y) can be computed as

o dt )
(=A)%(x,y) = | / et 2dt H Lz, —y;) (2t) Vz,y € 74 with x # y,
(3.2.2)

where I, is the modified Bessel function of order p € Z which is defined as

1 £\ 2a+p
I,(t) ::§W<2) . (3.2.3)

Remark 3.2.2. In particular, Eq. says that (—A)%(z,y) < 0 for all x,y € 724
with © # y. This, together with Eq. implies that (—A)*(z,x) > 0 for all z € Z9.
Moreover, it follows that (—A)% is invariant under translations.

Proof. In order to compute the scalar (—A)*(x,y), we will use of the following repre-
sentation of the fractional Laplacian:

o dt
(—A)X ol / e (e!® — 1), (3.2.4)

where I is the identity operator and the integral converges under the operator norm,
see [Kwal7, Theorem 1.1 (c)]. Hence,

(8@ = e |, ) = 65)) (325)

In the proof of [GRM20, Thm. 2.2], it was shown that

d
B (z,y) = e~ 2 H Lz, —y,) (20). (3.2.6)
j=1
We proceed to prove that
()Y@, z) == > (=A)%x,y) (3.2.7)
yeZI\{z}

We already know that

(-8 () = o / h tldfa A, x) — 1) (3.2.8)



Claim 3.2.3.
- Y Pay) =P (a,n) - L (3.2.9)

yeZN\{z}
Therefore, due to Claim [3.2.3] and Fubini-Tonelli, we obtain that
> dt o dt
(~8)" (1) = y/ i 2 )= >,
eZd\{ } yeZd\{w}
=— Z (=A)*(z,y). (3.2.10)

yeZN\{z}

It only remains to prove Claim [3.2.3

D e (y,0) = e > L2 T2

yezd y=(Y1,..,ya) €L
4 d
=e 2] Y 1,2t = | e L(2t)
7j=1 ijZ pEZ

Thus, it is sufficient to prove that e=2 > pez Ip(2t) = 1.

e_QtZIp(%) 2t22q‘l“p—|—q+1 $20+P — o~ QtEZq‘rp+Q+ {24+,

pEZL PEZ q>0 ¢>0 peZ
(3.2.11)

where in the last equality we could interchange the order of series because we are only
adding up non-negative terms. In addition, I' has poles at each of the non-positive
integers, whereas I'(n) = (n — 1)! for n € N. Hence,

e 2t Z Ip(Zt) e Z Z qT(p+q+ 1) e

PEZ q>0p>—gq
tp—i—q
—Qt
Siy eyt
q>0 p>— q q>0
]

3.2.2 Estimation of the sum of the fractional powers of the off-diagonal
terms of the Fractional Laplacian

The off-diagonal matrix elements of the fractional Laplacian decay polynomially, as
shown in |[GRM20, Thm. 2.2(iii)]. Indeed, there are constants 0 < cqq < Cqq such
that
% < —(—A)*(zg,x) < %, Vo, xg € 24, x #xo.  (3.2.12)
|z — 2o |z — 2o
A consequence of the above inequality is that it provides a sufﬁcient and necessary
condition for convergence of the series 3, 7\ 103 [A%(0, z)|?, for all 357 +2 < s<1,see

Corollary [3.2.4 below. Moreover, when it converges, we find an upper and lower bound
of its value.
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Corollary 3.2.4. Let 0 < « < 1 and d € N. Let Cxq and cyq be as in Ineq. |3.2.12,
Then, there is Ng € NU {0} such that

C(Xd 1 N 1
S — < Y AY0,z) <2 dcad(2 + f>. (3.2.13)
/Jd+2 - - '
e z€79\{0} x
Furthermore, let ﬁ < s <1 and let ag be the constant satisfying
d+ 205 = s(d + 2x). (3.2.14)
Then,
c? (654
o,d A o o s o,d A o d
—=A%(0,z) < |A%0,2)|° < —=A%(0,x) Yy € Z%\ {0}. (3.2.15)
Cocs,d Cos,d

In particular, for all s € (ﬁdzoa 1), we obtain

Y AN0, 7)) <ooe= > A%(0,z) < 0. (3.2.16)
2€Z4\{0} 2€24\{0}
Remark 3.2.5. Note that os = s(oc—i— %) — %. Hence, os is a strictly-increasing
function in s and 0 < o < «, for all s € (ﬁ, 1)

Proof of Corollary[3.2.4. By Ineq. [3.2.12] there are constants 0 < ¢y q < Cq,q such that

Ca,d C d
Y. Tam < Y. A< Y —E (3.2.17)

2€Z4\{0} ] z€Z4\{0} zez4\{0} ]

Thus, ZmEZd\{O} A*(0, z) is convergent iff erzd\{o} W is convergent. So our prob-

lem boils down to computing the latter series.

For the case d = 1, we can make use of the Integral test. Indeed, let f(y) = W

for y € R\ {0}. Clearly, f is positive, monotone decreasing and
1
Yo e =2 f(n). (3.2.18)
z€Z\{0} \x! n>1

The Integral test asserts that >, -, f(n) converges if and only if floo dyf(y) converges.
To be more precise, the test gives us the following bounds:

 dy 1 /OO dy
—r < —= < f(1) + — 57 3.2.19
[ s s [ (3:219)

A direct computation shows that the above series converges iff o« > 0. Furthermore, if
« > 0, then

1 1 1
— < — <14+ —. 3.2.20
200 — 7;1 nl+2e = + 2 ( )
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Therefore, for d = 1, we have proven

1 1
Co1 ) = > AX0,2) < Con (2 + &). (3.2.21)
z€Z\{0}

From now on, let d > 2. Note that |z| < |z| < V/d|z|, for all z € Z. Hence

d+2a Z W < Z W < Z W (3.2.22)

d =2 czavioy zezZ4\{0} zez4\{0}

Given n € N, let B*4(0,n) := {2 € Z9||z|,, <n} be the open ball in the metric
space (Z4, |'|,) centered at 0 and with radius n. Similarly, its corresponding sphere is
defined as 9B>4(0,n) := {z € Z | |z|,, = n}. In addition, {9B>>4(0,n forms a

partition of Z4 \ {0}. Hence,

1 0B>4(0,
Z ’ |d+2(x Z Z | ‘d+2(x = Z # nd—‘rQEx n)’ (3223)

x€Z\{0} n>12€dB>4(0,n) n>1

}eN

where #0B°4(0,n) is the cardinality of 9B°>4(0,n), which can be computed as fol-
lows:

#0B4(0,n) = #B40,n + 1) = #8790, n). (3:2.24)

Since the open balls with the metric |-|__ are hypercubes, it follows that #B°4(0,n) =
(2n — 1)9. Additionally, a® — b9 = (a — b)(a® ! + a2+ ...+ 0471) for a,b € R.
Therefore
di . .
#0B40,n) = (2n+ 1) - 2n—1)T=2>"@2n+ 1) (2n - 1)), (3.2.25)
=0

—

.

As a result of this, there is a constant Nq € N U {0} such that

2nd—1 S #8Boo,d(0’n) S 2Nd+1nd_1 Vn c N (3226)
Consequently,
#0B>4(0,n) _ ny41 1
2) i n1+20c = EW < gNarty T (3.2.27)
n>1 n>1 n>1

By Ineq. [3:2.20] [3.2.23] and [3.2.27] we establish

1 N 1
< e <2 d(2 - ) (3.2.28)

1
* ero) %[5

This together with Ineq. [3.2.22] yield

1 1 1 Ny 1
dd+22‘x & S W >~ 2 2 + (3229)
z€24\{0}

By Ineq. [3.2.17 and [3.2.29] Ineq. [3.2.13] follows.
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Let dfﬁ < s<1and xs be as in Eq. [3.2.14] Then 0 < «; < « < 1. Furthermore,
due to Ineq. |3.2.12, we establish

S S S
Coc,d C(x,d c

A% 5 < = < 2 A% . 3.2.30
A% (z,y)]* < o T S (2,y) ( )
By the same token, the remaining part of Ineq. |3.2.15| follows. O

Incidentally, the above proof yields a sufficient and necessary condition for conver-
gence of the series erzd\ {0} m%, for r € R, see Corollary |3.2.6| below. Furthermore,

when it converges, we find an upper and lower bound of its value.

Corollary 3.2.6. Let r € R, then the series Z$€Zd\{0} # converges iff r > 0.

Moreover, let v > 0 and Nq € NU {0} be as in Corollary then

4 1 Nat1(+ 1
<2l <1 + ;). (3.2.31)

d =z r z€Zd\{0} |:L“

3.2.3 Inverse of Fractional Laplacian

Let 0 < o < %. It can be determined that the inverse (—A)% is well-defined and
Ineq. is valid, see [Slal8l Sect. 2] and references therein. Here, we provide proof
that, we believe, is new in this context. It follows the arguments in [GRM20, Lemma
A.1]. In Thm. below, we show that this object is well-defined and we provide a

pointwise estimate.

Theorem 3.2.7. Let 0 < « < 3 and m > 0 (so that —m? ¢ o((—A)%) = [0, (4d)*]).
Then,

(—A) "z, x) := hi% [(—A)* + mQ]fl(:L‘o, x), Ve, zo € 29, (3.2.32)

is well-defined. Moreover, (—A)™% is invariant under translations and

Coc,d

‘(_A)—LX(.,L,O,Z.)‘ < d—2u’

< Vo, zo € 29, x # x, (3.2.33)
|z — @0

where Cix,d > 0 is a constant.

Proof. We divide our proof into two parts. In the first half, we prove the existence of
the inverse of the fractional Laplacian, see Eq. |3.2.46| below. In the second half, we
estimate the decaying of the operator, see Eq. below.

Let 29,z € Z4 and m > 0. As a first step to prove the existence of (—A)~*(xzg, x),

we will rewrite [(—A)* +m?] ™ (o, ) in terms of the the Fourier transform (see Eq.
below). Then, we will let m | 0 and prove that the limit is well-defined. Let
F : 2(2%) — L2([-m, m]?) be the discrete Fourier transform

1
(27r)%

[Fu] (k) = > e Whu(x), Vue (29, Vk € [-mm ]! (3.2.34)

zczd
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and let 71 : L2([-m, ]d) — ¢2(Z?) be the inverse of F
1

[F~] () = Py /[ . dk ek g(k), Vg e L¥([-mm)Y), ve ezl (3.2.35)

The discrete Laplacian is diagonalized by the discrete Fourier transform, i.e.,

d
[]:(_A) Z (2 —2cosk;) |g(k) :=f(k)g(k),
7=1

Vg € L3 ([-m, m]Y), Vk € [-m,m]d
(3.2.36)

Then,

_ o 211 _ 1 e(x mo)k_ 1 —1[ 1 } _
(AT ) = /[—n,n]d P rrm? = ot gm0
(3.2.37)

Hence, the operator [(—A)% 4+ m?] 71(550, x) only depends on the difference z — xp. In
particular, the operator is invariant under translations. Without loss of generality, we
can assume zo = 0 from now on. Observe that f(0) = 0 (see Eq. [3.2.36). To circumvent
this problem in the denominator on the RHS of Eq. as m | 0, we will introduce
a suitable smooth function with compact support on R, Let 1 € C*°(R?) such that:

1
suppyp C 9B(0,1), 0<wvh <1, Y(k)=1, Vke B(O, §> (3.2.38)
Hence,
_ 1 _ i) 1 4 1=
) ] o) = —F s )+ o ph @)
(A" 4] (0.2) (2m)% fo 4+ m? () (2m)% fo + m? (@)
(3.2.39)
On the one hand, note (1 —(k)) = 0, for all k € [—3, 2] then the p01ntw1se limit of
the second term on the RHS as m | 0 is well-defined. Let 1 a = limy, o W' Hence,
1 1—P(k) 4 d
——— (1 —VY(k))| < ————= € L (|- . 3.2.40
o 1~ v < b e L (3.2.40)
By Dominated Convergence Theorem, we obtain
1-— 1 1
lim}‘_l{ ks } (z) = - / i ek L= W) (3.2.41)
ml]0 f+m (27-[)§ [—m,m]d f‘x(k‘)
On the other hand,
b ()] < ey () (3:2.42)
£ (k) + m? VT -
where @y, be a real-valued function given by
W W(k), k+#0
Doy (k) = <f(’“)) k), k#£0, (3.2.43)

1, k=0.
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Observe that @4, is a smooth function with compact support. In fact, let us assume
for the moment that d = 1,

f(k:) 2 —2cosk (G L { 1 1}
=2y — 2 k>0  Vkel|-—=, -], 3.2.44
k| |k|? IZO:(2Z+2)! 22 ( )

where we made use of the Taylor’s expansion of the cosine function. Note that the
function R\ {0} > z € R — 2% is C*°(R). So after composing and multiplying
smooth functions, @4y, (k) € C*(R) and in particular lim; o @y (k) = 1. Since P
has compact support, @ (k) € Ce°(R). The general case goes along the same lines.
L ®ayp(k) € LY(RY). Indeed,

W
1 boopd=t yaB(o 1)]
dk——= [Py (k)] < [|P / dr/ ds (6
Lo Sl @es B < el [ oo [ as0) = @

Moreover,

(3.2.45)
After applying Dominated Convergence Theorem as m | 0, we obtain
W } 1 / e 1
lim F 1[ T) = dk ™ Doy (k).
ml0 f* 4+ m?2 (z) (27-[>% [—m,]d |k|2°‘ s (F)
Therefore,

_ 1 1 Py (k) 1 o1 — (k)
—A)"%0,x :/ dk giok 2wy / dk ek
CATOD =503 e PRI S ()

(3.2.46)

This proves the fact that the inverse of the fractional Laplacian is well-defined.

Now, we prove Ineq. [3.2.33] By Eq. we get
lim [a['2%(—A) (0, 2)
|x|—o00

|d—20( 1 |.7,'| —

| / . “"‘/ w1 —0(k)
= lim dk e [} k) 4+ —— dk ek 1\
R CTT S e e B o | (k)

(3.2.47)

On the one hand, the function } is C([—m, 7 ]4), hence its Fourier coefficients
decay faster than any polynomial p( ) as |z| — oo (see [Grald, Theorem 3.2.9]). In
particular,

d—2«x
ol —W(k
T / ST ek, AG) I
ol =00 (270)4 J|_r ma fo(k)  Jalooe (2m)2

|d720<

F {1;"} () = 0. (3.2.48)

Therefore, it remains to compute the limit of the first term on the RHS of Eq.
To do that, we have to extend our analysis to RY, where the limit is well-studied. This
computation follows the same strategy as the proof provided in [GRM20, Lemma A.1].
Let F,. : L2(RY) — L2(RY) be the continuous Fourier transform

[Feg (k) = ! S / dye ¥*g(y),  VgeL*(RY) VE e RY. (3.2.49)
(2m)z JRrd



and F, ! : L2(RY) — L2(RY) be its inverse

1
Folol (v) =
[Feta] (y =

3 /Rd dk e®*g(k), Vge L*(RY) vy e RY. (3.2.50)
2

By abuse of notation, we also denote by ®4y, the natural extension of ® ., into Rd,
Then, ®4y € C.(RY) C S(RY). Since the Fourier transform is an invertible mapping
which maps S(R?) onto itself (see [Grald, Corollary 2.2.15]), F, '@y € S(RY) and
Eq. B:2.47 can be rewritten as

d—2x ) 1
Jim ') = i B [ ket R ) (250
In order to compute the above limit, we make use of two propositions, which will be
proven later. The first one can be found in [LLOI, Section 5.9] (the constants are
slightly different because of our choice of definition of Fourier transform). The second
one goes along the same lines of the proof of [GRM20, Lemma A.1]. But before stating
such propositions, we will define the Riesz potential, which will help us to make the
computations clearer.

d_
a8 The

Definition 3.2.8 (The Riesz potential). Let 0 < o < % and ¢y =
Riesz potential of order « is defined as

d
Lae] (y) = ca/ — e _e(w), VeeSRY, vyeRL (3.2.52)
R [y — w)

Proposition below allows us to rewrite the RHS of Eq. [3.2.51]in terms of the
Riesz potential.

Proposition 3.2.9. [LL01, Thm. 5.9] Let « € (0, %) and let @ € S(RY), then
1 "
Lo} () = g [ ke
(2m)2 JRd

Remark 3.2.10. Let @ € S(RY). Then, [F.@] € S(RY) (see [Gralj, Corollary
2.2.15]). Hence ﬁ[]’c(p] (k) is L' (RY)—integrable and its Fourier transform is well-

defined. Prop. is equivalent to saying that Fo[Io@](k) = |k|” % [F.](k) holds in

the sense that

(Tath, ) p2 gty = (Fellad), Fatb) pogay  Vo,90 € S(RY). (3.2.54)

Proposition 3.2.11. Let « € (0, %) and @ € S(RY), then

|k|12a[]:c (k). (3.2.53)

lim |y 2 1] (y) = (2m)%

ly|—o0

Applying Prop. and Prop. [3.2.11]to Eq. [3.2.51] to get that

ca[F](0). (3.2.55)

d—2«
lim |z|*?*(=A)"*(0,z) = lim £ /Rd dk e®v* FoF @] (k)

|| —00 lyl—o0 (27T)d |]€|20c

1 . _ _ _
=L i (T Bag))(9) = o FelF Bag)(0) = oy (3:2.56)
where, in the last step, we used ®4,(0) =1 (see definition of @4y Eq. [3.2.43)). O
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3.2.4 Riesz Potential

As we previously pointed it out, Prop. can be found in [LLOI, Thm. 5.9] and
Prop. 13.2.11] is based on an argument in |GRM20, Lemma A.1] but for the sake of
self-containment, we provide a proof for each one of them.

Proof of Prop. [3.2.9. To begin with, we use the following identity,
1 1 &°
— = / dt t* e~ 3. (3.2.57)
p* 29T (er) Jo
Indeed, by the definition of the gamma function and a change of variables, we obtain
(o.9] pOC [e.e] +
M) ::/ dy 2* e ™ = / dtt*te 2P,
0 2% Jo
Therefore,
L1 /Oo dttelems*’ vk e RI\ {0} (3.2.58)
K[> 20T(er) Jo ’ ' -

and the RSH of Eq. [3.2.53| can be written as

b pika 1 _ 1 ik 1 o0 a1 b kP
ot /Rddk: |k|2a[fc<p](k) ot /Rddk []:C(P](k){Q“F(oc)/o dt ¢ }

Let g(y) = e_%|y|2, y € RY be the Gaussian function. Given a > 0, let g,(y) := g(ay).

_ k2
de™ 2.7,

By our choice of Fourier transform, [F.g.](k) = a~

We apply Fubini-Tonelli and the Fourier transform of a Gaussian function to the
RHS of the above equation, which yields

; etk 1 — ; - a—1 L kY

(2m)2 /]Rd A Lis Feol () 29T (o) /0 at {(271)3 /]Rd dk e™g 4 (k)[Feo] (k)}
— ; = a—1 L eik' ,% )

~ 207 () /O det {(271); /Rd dk ™t [chw} (k)[Feol (k)}

- [ (i ) o

We know F U [f1 * f2](k) = F L f1](R)F [ f2](k), for all f1, fo € L2(RY). Hence, after
using this identity and Fubini-Tonelli again, we obtain that

(2;; /Rd dkeky k:|l2a[Fc(p] (k) = 2“#@() /Ooo dt t(“*%)*l{fgl {]—}(g% % (p)} } (v)

]. o0 d 1 2
_ b dtt(“)lf du e vl
2T (o) /0 o dwer T ew)

We use Fubini-Tonelli and Eq. [3.2.58| to get

1 / | 1 / /°° (a—D)=1_— L |y—uw|?
— [ dke™? Feo] (k) = dw @(w dt t(0—2) "1yl
(2m)% Jra |/<;y2°<[ (&) 20T (ot) Jpa (w) |

1 / o0 ~d N1 2 F(Q—oc) d_o dw
L d(pw/ dF fd-o-1-Hu—ul _ TG = %) o / W
20T () Jpa vew) 0 I(ex) R |y — w|d2* (w)

= [1x@] (v).
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Proof of Prop. |3.2.11].
dw dw dw
——p(w) :/ ——p(w) +/ —p(w)
/Rd ly — wl|? > By, ) |y — w7 By Jy — w|T7>

Note

fim_ i [ ( o) = [ dwew) = (0 EeN0). (:259)

ly|—o0 )y — w)

Indeed, given y € R4

d—2«x
Y _
1y o)L e(w)] <297 @(w)| € LY(RY). (3.2.60)
ly — wl B(y.'3)
In addition,
lim M (w)1 (w) = @(w) Vw € RY (3.2.61)
lyl—oo |y — w[d_Q“(p B )T v . o

Consequently, by Dominated Convergence Theorem, the desired result follows. There-
fore, it remains to show that

. _ dw
B(y

Jyl o0 0y — w

To this end, we will decompose the term into two addends and prove that each one of
them tends to zero as |y| — co. To be more explicit,

it [ ( awP= ) gy [ i)+ 2)

)y —wl B(y.13) |y — w]
(3.2.63)
On the one hand,
lyl
dw 2 pd-l
I2y=yd2a(9$/ :yd2(x(px/ dT/ ds (0
(y) = Iyl () () Ty — w2 |yl (@) | s s (®)
1ol
_ 2 _ 0B(0,1
— 1050, )l o) [ arst = IRy

As a result of the above computation and the fact that ¢ € S(R), we get that
limyy| 00 [Z2(y)| = 0.

On the other hand,
Ti(y) = |yl / arl / as (0)[o(y +10) — ()], (3.2.64)
0 r 8B(0,1)
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Let h(r) = faB(o,l) ds (0)@(y +r6), r > 0. Then,

lyl
2

1yl

Tuw) = Iyl [ a2 a) - b)) = 2 [

dr r2°‘_1/ ds h/(s).
0 0 0

(3.2.65)

Let us compute h/(s),

1 _
B (s) :/ ds (6) Ve(y + 50) - w = d_l/ ds (v) Ve (v) - LY
0B(0,1) S 9B(y.s) 5
1

= — dy Ao(y), 3.2.66
o [, waew) (3.2.66)

the last equality is justified by the Divergence Theorem. It follows that

[yl

F2 T 1
Ti(y) = Iyl““/ dr rz‘“/ dsdl/ dy Ag(y). (3.2.67)
0 0 S B(y,s)

Let M := SUP,,c g, l21) |A@(w)|, then

2 T 1

T < Mt [T arret [ s s,y
0 0

|yl

[B(0,1)| d2¢x/2 2at1 _ |B(0,1)] d

= dr 2ot — ’ +2

5 Myl ; rr 4(“+1)M|y!

As a result of this, we obtain that lim,_, |Z1(y)| = 0. O

3.3 Fractional Anderson model

3.3.1 Definition of the model

Let 0 < « <1 and A > 0. We consider the discrete fractional Anderson model of the
form

Hopo = (—A)* + AV, w e Q, (3.3.1)

acting on the Hilbert space ¢2(Z%), where (—A)% is defined in Section [3.2/and V, is the
random potential given by Vi := > c7a W (dz, )0, with w 1= (Wy),eza € RZ’ being
a family of bounded iid random variables with common distribution Py defined in the
probability space QQ := RZ? endowed with the Borel probability measure P := @), Po
with expectation E[-]. By the boundedness of the random variables w,, the support of
Py (denoted by suppPy) is compact. We assume that P is non-trivial and absolutely
continuous with respect to the Lebesgue measure. Furthermore, given t € (0, 1], we
suppose that Pg is T-regular in the sense of Definition below.

Definition 3.3.1 (t—regularity). Let T € (0,1]. We say that a probability measure p
is T—regular if there is a C > 0 such that p([v —8,v+9]) < C8%, Vv e R, V6 > 0. If u
1§ T—reqular, we define

Mc(p) :=inf {C > 0| p([v—8,v+9]) < C&*, Vv e R, V5 > 0}. (3.3.2)
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Let o(Hw,«) be the spectrum of Hy ) . As a result of the translation invariance

of the free operator (—A)% and the fact w = (Wy),eza € RZ’ being a family of
bounded iid random variables, {Hy «}cq 18 @ family of ergodic operators in the
sense of [PF92]. Therefore, 0(Hu A «) is deterministic, for P—a.s w € Q . Moreover,
it holds that o(Hya«) = [0,(4d)%] + AsuppPy, for P—a.s w € Q, see [PE92]. For
z ¢ [0,(4d)%] + AsuppPy, the operator G, wra = (Hora — 2)7 1 is well-defined, for
P—a.s w € Q. From now on, we will regularly omit the dependence on w from Hg, ) «
and G, oA« to lighten the notation.

3.3.2 Known results

In the subsequent discussion, we present three established results that offer precise
rates of decay for the fractional moments of the Green’s function. More precisely, they
allow us to quantify the magnitude of A required to achieve spectral localization and
polynomial decay of the eigenfunctions, based on one of these estimates.

Thm. below is a consequence of both Ineq. [3.2.15] and an adaptation of
[AM93, Thm. 3.1] to the fractional Anderson model. From now on, we set A*(zg, z) =
—(=A)*(xg, z), for all x,z¢ € Z9.

Theorem 3.3.2. Let —4— < s<t<1. Let ag = s(och %) - %, the constant in Eq.

d+2ax
5.2.14, Then,

Bs(t)= Y A™(y,0)1+][y) <oo,  VEte (0,2x), (3.3.3)
yeZ\{0}

and there is a unique constant By s € (0,2x) satisfying the following equation

s T—5 °
Bs(Bas) =A <QTMT(PD)i) . (3.3.4)

Moreover, the constant (35 s can be computed as

1
B?\,s = 20‘5 - O<?\8> (335)
1 1 1
Let Ay = Apy adns i= 21*%%@(%;) sIMP)T A > A2 (—A)%(0,0)]5 = Aac(s),
then
s 1
E| > |Goaal(@o, )|z — x| < Vvt € (0, Bas), Voo € 29

= 2[Bs(Bas) — Bs(®)]

xczd

and o(Hx «) is pure-point a.s. Furthermore, let g be the density of Py (i.e., dPg (v) =
dv g(v)) and let I C R be an open and bounded Borel set. If there are constants M > 0
and 0 < k < 1 such that

sup(1 + [v])"g(v) < M, (3.3.6)
veER
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then, for P—a.s. w € Q, for all E € o(H) «) N1, there is a localization center xg(w) €
74 such that the corresponding normalized eigenfunction @g(-, W) satisfies

(—AWWﬁ)r 1
A%(0,xg(w))) (1 + |y — xg(w)))

fu(y, @) < 441, (@)| € (0, By Wy € 2,

(3.3.7)
where A1y is an integrable random variable given in Eq. [3.5.14] below.

Remark 3.3.3.

o In [AMYI3], Po(v) = %]1[—1, 1](v), which satisfies Ineq. .
o Ineq. implies that the density function g of Pqy is bounded and T = 1.

o We obtain a meaningful upper bound for the eigenfunction only for the cased = 1.

1 ey
Indeed, by Corollary|3.2.6 EyeZd @ <o iffd=1, a, t, s and A are

such that A > Aag and 1 <t < By < 2005 < 200 < 2.

o Let d+2a<s<ft<1 By Ineq. 0, if A > Aag, then

1 1
2[Bs(Bas) — Bs(£)] (1 + |z — mo])"
)

vt e (0,Brs), Va, xo € 23, x # xo, unif. in z € C\R.
(3.3.8)

E[|Gzpalz0, )°] <

Prior to presenting the proof of Thm. we introduce several technical lem-
mas. These lemmas will be instrumental in deriving the upper bounds mentioned in
Ineq. In particular, we will use the Decoupling Lemma (Lemma , which is
presented below.

Lemma 3.3.4 (Decoupling lemma, [AGI8]). Let 0 < s <t <1 and p be a T—regular
probability measure. Let 0, ; := (A)MT( )% Then

T—S8
1 >s/ 1 / v — o’
du(v = < [ du(v =5 VR, x € C, 3.3.9
(62) [ = [ang=g (3:3.9)
1 1

On the other hand, to establish spectral localization and the polynomial decay of
the eigenfunctions, we rely on Lemma |3.3.5| provided below.

Lemma 3.3.5. Let I C R be an open Borel set. The eigenfunction correlator Q is

defined as
Q(z,y,w; 1) := sup [(dz, PI(Hw,A,OC)F(Hw,Noc)‘Sy>|a Vz,y € Zda Vw € Q,
FeC(R)
[1F]l o<1

(3.3.11)
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where Pr(Hg ) ) is the spectral projection operator. Let CT := {z € C| Im{z} > 0}.
Assume that there are constants K >0, s € (0,1) and t > 0 such that

E[> |Goaalz, ) L+ |z —y))| <K, VzezdvzeCh (3.3.12)
y€Zd

Then, o(Hy «) is pure-point a.s. Furthermore, let I be bounded. If there are constants
0 <k <1 and C such that Ineq. holds, then, for a.s. w € Q and for each of
the eigenvalues E € I of Hy ) «, there is a localization center xg(w) € Z4 such that the
corresponding normalized eigenfuction ©g(-, w) satisfies

(—A)%(0,0) r 1
I

, vy e 79, (3.3.13
|A%(0,xg(w) 1+ |y — xp(w)])’ Y ( )

96y, @) < 4A14(w) |

where A1y is an integrable random variable given by

Apg(w) = > m U+l —y)'Q,y, w; 1)’ weQ. (3.3.14)

reZd yezd

Proof. To prove that o(H, «) is pure-point a.s., we can use the Simon-Wolff Criterion
[AWT5, Thm. 5.7], which we state below as Thm. in our setting.

Theorem 3.3.6 (Simon-Wolff Criterion, [AWT5]). If for all x € Z4, for Lebesgue-a.e.
E €R and for a.s. w e Q,

lim > |Grinonal@,y)f* < oo, (3.3.15)
y€Zd

then o(Hy «) is pure-point for w € Q P—a.s.

Let K >0, s € (0,1) and ¢t > 0 be such that Ineq. [3.3.12| holds. By Fatou’s lemma
and the fact that w — w? is continuous and concave, we get

2 2

g h&l Z ‘GE+m,w,A,oc($7y)\2 <limE Z \GEHn,w,?\,oc(x?Z/)’Q
n yEZd T]\LO yEZd

<ImE| Y [Gerinwaa(@ y)l| SILE| Y [Gerinoral@ y)[ (1 + e —y))’
MO | ez O ez

<K, VzeZd, (3.3.16)

which implies that o(Hg ) «) is pure-point for w € Q P-a.s., by the Simon-Wolff crite-

rion (Thm. [3.3.6).

To show that the eigenvectors have the decay as Ineq. [3.5.24] we will use [AWI5,
Thm. 7.4], which we also state below in our setting. To do so, we take the function

g(x) = W, for all z € Z9, therein.
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Theorem 3.3.7 (Eigenfunction localization, [AW15]). Let I C R be a Borel set. Let

t >0 and Ar; be as in Lemma L If Ary € LY(Q), then, for a.s. w and for each of
the simple eigenvalues E € (Y(H)\yoc) NI, there is a localization center xg(w) € Z3 such
that the corresponding normalized eigenfuction @g(-, w) satisfies Ineq. [3.5.24)

By [AWIS, Thm. 5.8], the pure-point part of the spectrum of Hy 4 is simple a.s.
because {w(z)},cza are iid and w(x) has a T-regular distribution Pg. Hence, we can
use Thm. to show that all the eigenvectors have the desired decay.

After using Fubini-Tonelli, we need to guarantee

E[Ar,] = Z m Z (14 |z —y|)'E [Q(x,y; 1)2] < 00, (3.3.17)

z€Z4 yezd

where I is an open Borel set.

Note that Q(z,y, w; I)? < Q(z,y, w; 1) < 1, for all 2,y € Z4, for all w € Q. Hence,
it is sufficient to obtain an estimate for E[Q(z,y;I)]. Let I be bounded. Due to our
assumption that Ineq. holds together with the fact that {w(z)},cza are iid with
a common T-regular compactly support distribution Py, we can use [AWI5, Thm. 7.7]

BIQw,y: 1)) < i / dE E[|Gryinwnal(@ y)'], Va,y € Z4, (3.3.18)
n I

where k; is a finite constant.

By the above argument, Fubini-Tonelli, Fatou’s lemma, Assumption [3.3.12) and Eq.
3.2.1] it holds

ElAn]< S m > 1+ ) ElQes )

zezd
!A £ s
<k Y oA eg 2 (e~ i [ 4B EGesmana(e )l
mEZd y€Zd
AO‘ O x) s
<kiin 3 ' S (e = o)) [ dE BlGesinana(e )l
no ) yezd I
: |A%(0, )| / ¢ s
< ks lim x| dEE (1 + |z = y))'|GErmwra(z,y)]
110 ;d 2(=A)*(0,0) J; y%zzd e
< koK |I| Z = kK |I| < oo, (3.3.19)
erd )

where |I| is the Lebesgue measure of I, which is finite since we assume that I is
bounded. O

Remark 3.3.8. In the previous proof, we used [AW1H, Thm. 7.4] (Thm. with
the choice g(x) = % for all x € Z4. However, any strictly-positive-valued

function § on Z3 such that Y ez J( )=t =1 could have been used instead of g. We
specifically chose g because it is intrinsic to the fractional Anderson model and depends
on «.
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Proof of Thm[3.33 Let 175= < s < T < 1. Due to Corollary Bs(t) < oo iff
ZyGZd\{IO} ly|*~ (d+2°‘5) < 00. By Corollary [3.2.6, the latter series converges, if 0 < t <

S
2xs. Thus, it remains to find the suitable ¢ € (0,2«) such that Bs(t) = <ﬁ) . Note
S50
that B is a strictly-increasing and continuous in . In addition, we have

Aac(s ))3 .
lim B lim B = 0. 3.2
im0 = ( Orys ) g Ba(f) = oo (3.3.20)
Hence, we can establish the existence of ) s € (0,2x) such that ( S) Bs(Ba,s)-

Moreover, we can estimate By s by using Ineq. [3.2.12)and Corollary [3.2.6 - In fact,

A S
( ) SBrs) = > A%(xo,x)(1+ |z — ao|)Pr

Opo.s z€z4\ {0}

* Z (1+ |z —

z€ZM\{0}

= E’?\,s = 2xs — O(%) (3321)

1 1
0.8
zo|) 420 =P T 2000 — By

To prove Ineq. |3.3.12] we employ the following strategy: in the first place, we derive a
condition similar to Ineq. |3.3.12f for finite boxes (see Ineq. [3.3.27)). Subsequently, we
extend our analysis to Z9, by choosing a specific value for ¢.

Let L €N, Ay = {—L,...,L}*, we define HJ" | := 15, Hypala,. Let z € C\R
and G,  be the operator on ¢2(Z9) given by

Z,W,A,

ahe

Z,W,A,

-1

HAL - A

(l‘, y) — ( w, A\, 00 Z) ([B, y)v VHJ, Yy € Ar, (3322)
0, otherwise.

Once again, to lighten the notation, we will frequently omit the dependence on w in
the above functions. Let

=D EHGM(X (o, ‘ ](1+ |z — o))", (3.3.23)

TEAL

which is finite since Ay, is a finite set.

For now, let us assume that for ﬁdz(x < s < 7, the following inequality holds
> A%y HG (70, 9)

A .
<6P0,5> HGM“ 70, = ]

Vo € A\ {zo}, YA > Aag(s). (3.3.24)

} chs:

We will provide a proof of this inequality later.
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Due to the Decoupling Lemma (Lemma [3.3.4), Ineq. [3.3.24] Ineq. [3.3.44] and
definition of the function Bs(t) (see Ineq. [3.3.45)), we obtain that

1(0pys\°  (Opys ) Ca
Pas(t) < (2o ) 4 (P ) 2o S™ (1 o)

Cod LA\ w0}
x Y A%y HG a:o,y)‘ }
yeAL\{z}
< () (%) S [0 o) ] 0+ Iy o
=2\ A A 2D
yeEAL
CS
x =S AT ()L |y~ al)f
%4 penr\(zo)
1 epos)s <epos>s
< - : . . 0.
< (%) o () E, L) (3:3.25)
If 0 <t < Bas, then
1 1
F,p(t) < = VL € N. (3.3.26)

2[(52-) = Ba()]  2Bs(Bro) = Bo(O)

Due to Fatou’s Lemma, Ineq. [3.3.26] and Fubini-Tonelli, we get

E| lim Z ‘G o(Zo, ‘( + |z — zo])!

L—o0 zezd

° 1
< lim E ‘Gz .CE(),$‘ 1+ |z—29 t = hﬂFs,Lt < )
| 2 e )| 1+ ) Jim (t) B (Brs) B0

(3.3.27)

The above result together with the definition of lim inf imply that there is a sequence
{Li}en € Nsuch that, for as. w € Q,

A S
lim > |G (20, )| (1+ & — zo]) = lim Y ‘G? Lk(ﬂfo,x)‘ (14 |z — zo])' < o0
L—oo k—o0
xczZd xczd

(3.3.28)

This result combined with an argument similar to Ineq. [3.3.16| yield that the sequence
A

of functions {G;_’fmi’;fiooz)(xo, )} are uniformly bounded in ¢?(Z%), for a.s. w € Q.
Hence, due to Banach-Alaouglu Theorem, there is a subsequence {ij }jeN such that,

for all z € Z4, for a.s. w € Q,
wALk

lim G, 7 (zg,2) = GY (g, z). (3.3.29)

]*)OO

By the application of Fatou’s lemma twice, we get

A, s
> Gana(zo, 2)*|z — zof' | < lim E| > (G2 (w0, 2)| (14 |2 — mo)f
xeZd oo reZd
1
0<t<Pas- (3.3.30)

- Z[BS(B?\,S) - BS(t)} ’
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Hence, by Lemmam7 o(H, «) is pure-point a.s. Moreover, if Ineq. [3.3.18 holds, then
the eigenfunctions have the stated decay in Thm. [3.3.2

We now proceed to prove Inequality [3.3.24] As a first step, note

0= (8ap, G2k o[BG = 2]80) = D (8u0n G25.08y) (8 [HRE — 2] 82)

yezd
=| - Y A%wa)Ga(r0y) | + o) - A%, x) £G4 (w0, 2).
yez\{z}

Given s € (0,1), we use the concavity of the function w — w®, for w € R, and then we
take expectations on both sides to get

Moo < Y 18I ]G3 (o) |.
yeZN\{z}

]E[P\w(a:) — Az, z) — 2|°

(3.3.31)
On the one hand, by Corollary [3.2.4] we get

CS

AL s (X,d
GZ7;\7OC($0,$)‘ ] < P
os,d

E[yxw(x) ~ Az, x) — 2ff

> A%y aE[|GH L (w0,)
yeZN\{x}

(3.3.32)

On the other hand, due to Krein formula, there exists a pair of complex-valued functions
& and @ which depend on three elements A, z and Ve := {w(y)},eza\ ¢, such that

-~ &
C Aw(z) - @

Then, the LHS of Ineq. [3.3.32| can be rewritten as

= [ Vi [ dwnot) - 8% — = g

= (ep}\o,j/dv{’}c/ﬂgdw(x)\xw(gi oF (eQ,S)SEUG?ﬁ,M@ ik

where we have used Decoupling Lemma (Lemma [3.3.4]). This proves Ineq. [3.3.40L [

G2 (o0, @) (3.3.33)

E[p\w(x) — 8%z, @) — 2I°|G2% (20, )

Remark 3.3.9. In the proof, we could have avoided the step from Eq. [5.53.31 to Eq.
and then, following the same line of reasoning, we would have ended up with
the condition that

s

A>0p [ D [A%ao,y)* | = Aac(s): (3.3.34)
y€ZN\{zo}

We do not know if Ag(s) yields a sharper condition than Ao(s) under some conditions
on o, d and/or s because we do not know the explicit value of Cqq and cq, q given by

Eq. [3:2.13
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By adapting the arguments presented in [AG98, Thm.1’] to our specific context,
we can make a slight improvement to Ineq.

1 KP T,8 1
E[|G . «(®0, < 2! ( o ) s
H ,7\,0(( 0 )| ] A (1 T |$ B .’E0|)B>"S
Vx,xzg € Z9, x # x0, unif. in z € C\ R, (3.3.35)

1

where Kp, s = — A
25 (1)

Proof of Ineq. [3.3.35, Let zq € Z9 and

E[| G2 «(z0,20)|"]
(14 |z — z0)*

$(z) = E[|G. (20, 7)|°] — . Vxezd (3.3.36)

where t is a positive constant to be defined later.
By Functional Calculus, E[|G; «(z,y)|"] < i ‘s, for all z,y € Z9, and thus

¢ € £°(z4). Additionally, ¢(z¢) = 0. If we are able to prove that ¢(x) < 0, for all
x € Z4\ {20}, for a suitable choice of ¢ and A, then

E[|G. a0, 70)|] < 1(9Po,s>s 1
(1+ |z — zo|)* 2\ A (T4 |z — o)

EHGZ,)\,(X(an $)|S] < , Vo € 74 \ {:Eo},

(3.3.37)

where, in the last step, we apply the Decoupling lemma (Lemma|3.3.4)). This inequality
resembles Ineq. [3.3.35

Now we provide a criterion for ¢(z) < 0, for all z € Z4\ {zo}.
Claim 3.3.10. If A > Aag(s) and

S Cs
( A )d)(m)g od Z A% (y, 2)d(y), Vo € 29\ {zo}, (3.3.38)

OPo.s Cond eai\ (2}
then ¢(x) <0, for all x € Z9\ {xo}.

For the sake of contradiction, assume that ¢(z*) > 0 for some z* € Z9 \ {xo}.
Hence, M := p(z) > 0. If A > Apg(s), then

cs
(2 ) memed S A - m o Ca)(a,0)
ePo,s Cos,d yeZA\ {z} Cos,d

S

Cocd
= ;= (- 0)%(0,0),

Cos,d

where we used Eq. and the invariance under translation of the fractional Lapla-
cian. The above inequality implies that A < Axg(s).
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Using the definition of ¢(z), we rewrite Ineq. [3.3.38| as

AN s E[!Gz,x,a(ivo,iﬁo)\s]>
(6P0’8> <E[’Gz,?\,oc(x0’x) ] (1 + |$ _ 330|)t
Caad

Si’
C

os,d

E[|G2 A «(zo, 20)|’]
(14 [y — zol)!

> o () (BIGnaleon)l] - ). Ve ez fao).

yez\{z}
(3.3.39)

To prove that Ineq. [3.3.39 holds, it is enough to verify the validity of Ineq. and
Ineq. [3.3.42 below, for all A > Axq(s),

)\ ? S CS S
(2 ) EllGaraloo, 2] < 25 57 A% (y, B[ Gapalro, )]
ePo,S Cocs,d d
yeZ\{z}
(3.3.40)
de Z AOCS (y’x)EHGZ,}\,(X(:E??'CL‘O)|S] S ( A )S]EHGZ7}\,OC(xO’x01|S], (3.3.41)
Card | At (1+ |y — o)) Opo,s (1+ |z — z0])

The proof of Ineq. follows the same line of reasoning of the proof of Ineq.
above. On the other hand, with respect to Ineq. WLOG we can assume
E[|G:«(%0, z0)|?] # 0. Hence, after dividing such a term on both sides of Ineq.
it is enough to prove

Cs A%s A\ 1
Cad -y 2) (e ) T (3.3.42)
Cossd yez\{z} (14 ]y = zol) Poss o
Note
A% (y, x 1
yez\{z} yoro yez\{a}

(3.3.43)

where we use the fact that the function w s w? is strictly-increasing for t > 0 and

1 <1+|:z:—y|
l—Hy—xo] B 1+|x—m0|

Ve,ye ZY x £ xox # . (3.3.44)

Indeed, due to the triangular inequality,
L+ |z —zol <1+ |z —yl+ |y — x| + [y — 20| < (1 + |z —y[)(1 + [y — o).

By the translation under invariance of the fractional Laplacian, Ineq. [3.3.43] can be
rewritten as

A% (y, x

1
(14 |z — o|)*”

IN

> A% (y,0)(1+ Jy])!

yeZ\{0}

(3.3.45)

=Bs(?)

S
If we choose t = B s, then Bs(Pas) = (ep)‘ ) , by construction. This proves Ineq.
0,8
3.3.42| and ends the proof. ]
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Another known result is the Combes-Thomas estimate, [AW15, Thm. 10.5]. For
the reader’s convenience, we state it for our model. To do so, it is enough to take the
metric d(zg,z) = In(1+ |z — z¢|), for all z,z9 € ZI therein. Here, we stress out the
dependence on w since the bounds Ineq. [3.3.47] and [3.3.48| hold, for a.s. w € Q.

Theorem 3.3.11. [Combes-Thomas estimate] Let 0 < N' < 2. Then

« 1
Sn(a,d) := Z A (xo,a:)<1 T OTeo 1‘0|)N> < 0. (3.3.46)
2€Z9\ {0}

Let z ¢ [0, (4d)*] + suppPg and D, := dist(z, [0, (4d)*] + suppPy). Then

1 1
GY(xo,2)| < 8. Vv < N with Sy(«,d) < D,.
Gl nl < 5 s T —woyy  *F VSN withSv(d) <D
(3.3.47)
In particular:
1. Let Aapq = #D(M) If D, < 2Spn (e, d), then 0 < T, qq < 1 and
2 1
GY(xo,2)| < — - a.s. 3.3.48
’ z ( )‘ DZ (1 + |$ o $0|)2aﬂz’“’d ( )
2. Let Mmod := #T/(ocd) If m? < Sy (o, d), then 0 < Mmoa < 1 and
’ [(—A)* +m?] ™ (o, x)‘ < 3 5 17— g P (3.3.49)
As a result of Thm. we get
s 2 1
EHGz,?\,(x(«TO;w” ] S —_ (3.3.50)

D. (1 + | — mo|) 28N

Remark 3.3.12. Observe that Ineq. [3.5.23, [3.5.35 and [3.5.21] are uniform in z. By
contrast, the term on the RHS of Ineq. is not and diverges as z approaches to

G(H?\,oc)~

3.4 Self-avoiding walks with long jumps

In this Section, we explicitly construct the long-range self-avoiding random walk gen-
erated by the fractional Laplacian (—A)* and its corresponding two-points correlation
function.

Definition 3.4.1 (Random walk generated by the Fractional Laplacian). Let

AN*(zg,z) .
29 ) Zf xo # x?
Twa(wo,x) = § Zvetitzn) 27000 | (3.4.1)
0, otherwise.
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Let X = {X,},>o be defined as the long-range random walk in 78 whose jumps
or transition probabilities are given by the numbers {Ta’d(zoﬂx)}xmxezd' We say that
X is the random walk generated by the Fractional Laplacian (—A)*. We denote by

20 = Quo,a,d the distribution of such a walk starting at xg € Z4. In other words,

Q;‘O({Xn = Tn ’ Xp-1= xn—l}) = Toc,d(fznaxn—l)7 vn €N,
Qe ({Xo = z0}) = 1. (3.4.2)

Finally, E [-] denotes the corresponding expectation.

Remark 3.4.2. By Eq. and invariance under translation of (—A)%, we get that

> A%(=o,y) = (—A)%(w0,30) = (—A)%(0,0). (3.4.3)
yezd\{zo}
Hence,
Toc,d(l'Oyl') = (_Zgio(b"r()))]l{m#m}. (3.4.4)

Definition 3.4.3 (Two-points correlation function). Let n € N. Let 2,z € Z¢ and
Wh(xo, z) == {w = (wj)?zo C Z™ | wy = 0, Wy, = a:} We say that w € Wy (xo, ) is
a self-avoiding walk of length n (SAW) if wy, # wy for all k # 1 with k,l < n. We set
A*(zg,x) = —(=A)*(x0,2), for all z,zo € Z. Following [Schil], we define

n—1

™ (@)= > ] A%whwie1) Ljw,tw, ) (3.4.5)
n—1

COSAW () . Z H AX(wj, wj1) Ly sawys Vn € N. (3.4.6)

wEW (0,z) j=0

Let % € {RW,SAW} and vy > 0, the -two-point correlation function C$’* of the
random walk X generated by (—A)* between 0 and x is defined as

Cx*(z) =) eV (z)y", CE*(0) :=1, vzez\ {0} (3.4.7)

n>1

with Rooax(y) as the radius of convergence.

Our definition of SAW-two-point correlation function matches the definition in
[Sch15]. Indeed, let y > 0,

O (@) =3 e®™Wapm =3 vt 3 [T A w)Twsaw

n>1 n>l  weWn(zo,x) j=1

=) Y #Sn(,0), (3.4.8)

n>1

where Sy,(z,0) = {w € W, (0,2) | w SAW, |w;_1 —w;|, =1 Vje{l,...,n}}.
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Remark 3.4.4. In [CS15], the correlation function is defined in a slightly different
way. To recover their definition, we make the following change of variable

- Y
VoY=

A0 (3.4.9)

We will rewrite the ¥-two-points correlation function in terms of X and its distribu-
tion, for % € {RW,SAW}, see Eq. [3.4.16{and Eq. [3.4.19, To make the computations
easier, we will define a new operator. Let Ty 4 be the linear operator on 62(Zd) given
by

[Tyau] Z Tod(xo, z1)u(x1), Vu € (2(Z29), Yo € 79, (3.4.10)
A
Note that Ty q is bounded. In fact,
sup Z Tod(z,y)| = sup Z Tod(z,y)| =1. (3.4.11)
€2 yeza\(x) VEE reza\(y)
Hence, due to Schur’s bound test, Ty 4 is bounded and

| Teall < 1. (3.4.12)

Let = € Z9, we can rewrite cf™" (z) and CX™W (), for n € N, in terms of the random
walk X and its distribution Qf. Indeed, by the invariance under translations of (—A)%,
we have

n o A (w; ,w
e = (-areor S TR . R iy
wEW,(0,2) j=1

= [(7A)oc(0’ 0)] Z Toc,d(oa wl) et Toc,d(wjfl, I‘)
wi,...,wj_1€Z4
= [(=A)%(0,0)]" T3 4(0, z), (3.4.13)

where T(Z q denotes the n—th power of T 4. Observe
Ty a(0,7) = Qy({Xn = 2}), Vn € N. (3.4.14)
In fact, for n =1, Ty 4(0,z) = QF({X1 = x}), by definition. For n = 2, we have

T34(0,2) = Y Tua(0,w)Taa(wr,z) = Y QF({X1 =wi})QF({Xe = x| X1 = w1 })

w1EZd w1€Zd
= Qo ({X2 = z}).
The general case holds, due to an inductive argument. Hence, Eq. and Eq.

yield
etV (2) = [(-A)¥(0,0)]"QF({Xp = 2}),  VneZd (3.4.15)
Let vy > 0. Then Eq. 3.4.17 yields in turn

Y () = 3y ™ () = Syt (-A) 0,0 QR (Xn = 7)), V€ 2,

n>1 n>1

(3.4.16)
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o, SAW

By a similar argument, ¢,””"" () can be rewritten as

cOSAW (1) = [(=A)*0,0)]"QY({X,, = x, X SAW up to n}), (3.4.17)
where the event {X SAW up to n} is defined as

{X SAW up to n} := U {Xo=0,Xy =wy,...,Xp =z}, VneN. (3.4.18)

wEW, (0,z)
w SAW

Additionally, for v > 0, it also holds that

CeSW(a) =) " y"[(- L0)]"QE({X,, = x, X SAW up to n}). (3.4.19)

n>1

Definition 3.4.5 (Susceptibility). Let % € {RW,SAW} and vy > 0. We define the
susceptibility x**(y) of the random walk X generated by (—A)* as

XX =D Cp*@) =1+ > ) ¥ () (3.4.20)
zezd z€Zd\{0} n=>1
with R «% as the radius of convergence.

The fact that R,«saw > 0 is known, see [CSI5]. However, we prove it for the
sake of self-containment, see Proposition below. In fact, we show that R,«saw >
1
(=A)*(0,0)"
Proposition 3.4.6. Let x € Z4\ {0}. Then,

1

— <R« < R . 4.21
(CA)%(0,0) = Ryasaw < Roesaw (g (3 )

Proof. Observe
1

Rowsaw ) = T
li ( «,SAW n
1M SUPy, 00 Cn/ ( ))

1
>

= Rxcx,SAW. (3.4.22)
. A n
lim SUPy 00 (ZazEZd\{xo} Cn/ poAW ))

Hence, it remains to prove Ry asaw > —xycgor- Let 0 <v < —xyxm07 = with 0 <e < 1.
(- ) (0,0)° (—=A)%(0,0)
Using Eq. [3:4.19] and Fub1n1 Tonelli, we obtain

V) =1 3 V)

mGZd\{O}
=1+ > > - ,0)]"Q§ (X = x, X SAW up to n)
z€Zd\{0} n>1
=1+ Zyn[(*A)a(Oa 0)]" Z Qy (X, =z, X SAW up to n)
n2l x€ZM\{zo}
_1+Z>:1y *(0,0)]"QF(X SAW up to n) <1+Z>:1£ . <00 (34.23)
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where, in the fourth equality, we used the o—subadditivity and the fact that
{X;, =2, X SAW up to n} N{X,, =z, X SAW up ton} = &
Vo, € 2%, x £ &, Vn e N. (3.4.24)

This shows that Rxcx,SAW > m. O

Note that if 0 <y < Rgenrw(y), then
CLSAW () < 2RV (), (3.4.25)

because, by construction, we have that c%’SAW(:E) = ™ (2), ¥n < 2 and c%’SAW(J:) <
o, RW
ey (x), Yn > 3.

In Thm. below, we obtain an estimate on the correlation functions in terms of
the inverse of the fractional Laplacian defined as in Subsection which produces,
in turn, an upper bound on the decay of the Green’s functions, see Ineq. [3.5.20

Theorem 3.4.7. Let 0 < o < % and x € Z4\ {0}. Let 0 <y < T}X(oo)' Then,

COSAW(z) < CORW () < C*™ (@) = (=A)*(0,0) - (—A)"%(0,z).  (3.4.26)

(=A)%(0,0)

In particular, C%"Rw(m) < oo and (—A)~%(0,x) > 0, for all v € Z9\ {0}.

Proof. Let x € Z4\ {0}. In Prop. |3.4.6 it was proven that Roarw gy > m.
In addition, it was also shown that Cy’ Viz) < CS/C’RW(CL‘), forall0 <y < W,
see Ineq. 3.4.25] Since Cff’RW(x) is increasing in 7y, it only remains to prove that

C“’RV\i (z) < oo and C“’RV\i (x) = (=A)*(0,0) - (=A)~%(0, z).

(=A)%(0,0) (=A)%(0,0)

Let 0 < x < %. By Thm. , (—A)7%(0, z) is well-defined in the sense that

(=8)7%(0,2) = lim [(—A)* +m?] (0, 2).

Let us write (—A)* +m? = D — B, where D is a diagonal operator and the diag-
onal entries of B are zero. Due to the invariance under translations, it holds that
(_A)oc(y7y) = (_A)(X(Oa 0)7 for all yE Zd7 and

D = [(=A)%(0,0) + m?]I, (3.4.27)
where I is the identity. On the other hand, from Eq. [3.4.10} it holds that

B = (—A)%(0,0) Ty (3.4.28)

Taal. (3.4.29)



Since [|T']|,q < 1 (see Ineq. [3.4.12), it holds that H% wd ‘ < 1, Vm > 0.
Thus, we can use Neumann series, to get that
-1 —A)« O 0) "
[(—A)% + m?] = CA)90.0) T2 Z[ AV (0.0) 5 2 v (3.4.30)

where the above limit converges in operator-norm. Hence, the following series converges

! (“A)(0,0) 1" o
(—A)%(0,0) + m? 7; [(—A)o«(o, 0) + mQ} Qf (Xn = 2),
_ (3.4.31)

[(—A)* +m?] 7 (0,2) =

where we used the fact that 77(0,z) = Qi(X,, = ), see Eq. [3.4.14] Note that the
series starts at n = 1 and not at n = 0 because 7°(0,2) = I(0,2) = 0, for z # 0. In
addition, all the terms of the series on the RHS are nonnegative and they increase as
m | 0. By the Monotone Convergence Theorem, it follows that

(=8)7%(0,) = lim [(~4)* + w?] (0, 2)

IRT ( A)tx( ) n N B
_Ili]i% (*A) (0,0) +m22< —A)%(0,0) +m2> 0(Xn =)
1

ZQO WC“’RV‘? (z), (3.4.32)

0,0) =& 0.0

where, in the last step, we used Eq. [3.4.19] Since (—A)%(0, ) is well-defined, for

0<a< d , the series C*™Y (x) is convergent and the result follows at once. O
(*A) (0,0

3.5 Decay of Green’s function

This sections is structured in the following way: In the first part, we establish the
aforementioned connection between the fractional moments of the Green’s function and
the two-point correlation function introduced earlier. This result is stated in Theorem
3.5.1] and serves as a generalization of [Schl5l Thm. 1]. By combining this result
with Lemma we can conclude spectral localization and exponential decay of the
eigenfunctions, subject to certain conditions. Additionally, we also extend [FV17,
Lemma 8.13] to the fractional Anderson model, see Corollary In the second
part, we make a comparison between different estimates of the Green’s function of the
fractional Laplacian, exploring their strengths and limitations.

3.5.1 Decay of Green’s function in terms of SAW

We now state our key estimate which relates the fractional moments of the Green’s
function to the SAW-two-points-correlation function introduced in the previous section.
Let A C Z4, recall that GA = T H%A1,.

Z,W,A\,
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Theorem 3.5.1. Let dfﬁ <s<tT<L1l Let oy = s(cx—i— %) — %, the constant in FEq.
3.2.14, and A be as in Thm. [3.3.4 If A\ > —As— .= A\g(s), then
(RXDCS,SAW) ®

K S
E||GMxo, )| < (PO’“) CH W (2 — o),
Aczd G20 2)[ ] < (=53 (4> (&~ 70)

Vo, g € 29, & # 2o, unif. in z € C\R, (3.5.1)

1
_ 21M<(Pg)™

where Kpy «s = = as in Ineq. |3.3.35]
Y 25 (t—s)

Proof. Let A C Z9, 2 ¢ o(Hy «). Without loss of generality, let zg,x € A, x # zo, and
€ (0,1). As a first step towards Ineq. [3.5.1] we will prove that

E[}G£<mo7w)\s}éi(e§°’s)s > 1%, w)PE[ |62 w,2)| ], (3.52)
w1 EA\{zo}

where we recall from Decoupling Lemma (Lemma |3.3.4)) that Op, = (TZ_—TS)MT(u)%
Indeed, the resolvent identity and then the concavity of the function y +— y* yield that
S
|G£(a:0,x)‘s < ‘Gg(xo,xoﬂs Z |A* (20, w1)|? Gi\\{xo}(wl,:z)‘ .
quA\{ro}

On the one hand, note that 37, x,\ (4o [2%(@0, w1)/” GQ\L\{%}(

on Ve := {w(y)} ez (z}- On the other hand, Krein formula yields that

1
A _
Gz (.730,330) = }\w(ﬂfo) — (I), (353)

where @ is a complex-valued functions which depend on A, z and V,ye. After taking
expectation on both sides, we get that

]EUG;\($0, :U)ﬂ

< [V X 8% f|e ) w, o)
wleA\{xo}

s / dw (o)
Aw(zo) — @I
>~ 2 }\ ) z ) ’

w1 EA\{zo}
where in the last step we use the Decoupling Lemma (Lemma |3.3.4)). This proves

S
w1, T) ‘ depends only

Recall that W, (zg, ) := {w 1= (w;)i_g C 700 | = zg, Wy, = :U} We intro-

duce the subset Wi (29, 2) := {w 1= (w;)j—y C A" M wy = 29, wy, = x} As a second
step, for all N € N, we will prove that

et o] <5(%2) L [5(%) ] ¥ Tatwmr

n= WEWS (zo,2) J=1
w SAW

+ |In112| B(GTS)S}N Z ﬁ A (wj—1,wj)]°. (3.5.4)

wEWA (z0,wn) I=1
w SAW
WNFT
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In fact, Ineq. [3.5.2[ and the Decoupling Lemma applied to EHGA\{QUO}(I,IE)‘S} yield
that

A S 1 ePo,s 2 [0 8 S
E[‘Gz(l‘o,l‘)‘ } §2 B | A (0, 2)]

+;<9P}f> Yy |M(;p0,w1)|SEHGQ\{$o}(w1,x)ﬂ.(3.5.5)
w1 EA\{zo,z}

By the same token, for all wy € Ar \ {0, x}, we obtain that

E[|e e (w0 ] < o (202 ) 8% w1

1/0p ,5 B s A\{zg,w
py(B) Y e E]fet e 0
w2 EA\{0,w1,x}

} (3.5.6)

If we insert Ineq. into Ineq. then we obtain

2 T1/0p,\*]" n
<30 5 (%) S iAo
n=1 wEWT[L\A(xo,x)jzl
w SAW

X B(ep)fﬂz > HGA\{xo o} (g, ’ ] H|A wi_1,w;)]*. (3.5.7)

wWEWS (zo,w2)
w SAW
wWo AT

By an inductive argument and the fact that E
that Ineq. holds for N € N.

N-1 &
‘Gi\\{wk}k_o ( } < |S, we get

WN, T)

Let o, be as in Eq. [3.2.14] Next, we bound the RHS of Ineq. [3.5.4] up to a constant,
by the correlation functlon C“S’SAW(JJ — x0), for y > 0 to be deﬁned later. Let Cygq
and cq, q be as in Ineq. [3.2.12} As a result of Ineq. and the invariance under
translations of the fractional Laplacian, we get that

EUGA xo,x)ﬂ
(GPO’) 2[2001(5 (ePO’ C“’dﬂn 3 ﬁm(wg_l,w

n=1 w WA (0,z—1x0) J=1
w’ SAW
1 1 ePO,sca,dﬂN et
) [20“ d( x > HA (w)_y,w)). (3.5.8)
& w' €WR (0,y—z0) =1
w’ SAW
y#T
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1

By the definition of cpy SAW and the fact that Ag = (ﬁ)gepo,sca,d, we get that

E[|G (w0, )|"]
( )Szn:< ) as,SAW(QE_xO)Jrl(fiS)SN Z C%S,SAW(y_xO).
(3.5.9)

|Im z|
n=1 yeZN\{zo}
Now, we compute the limit as N — oo on the RHS of the above inequality. On the one
hand,

As sN xs,SAW As
Jim <—> > Py —w) =0,  VA>N(s) = ———. (3.5.10)
yeZd\ {0} (Rxcx,SAW) s
Indeed, (%)SN Eyezd\{xo} C}'&’SAW(y — x9) corresponds to the N-th term of the series
X“S’SAW((%) , which is convergent for A > A¢(s). On the other hand,

2 (ﬁ) e S (@ = wo) = CEIR (@ = o) < 00, VA > Mo(s),
A

since (%)s < Ryasaw < Rowsaw (g_g) (see Prop. below). Therefore,

s Opy.s )
E[|G2 (20, 2)|] < 2( f;f ) c‘(*;jﬁtw(x —x0), VA > A(s), Vo € Z9\ {x0}.
A
(3.5.11)
This proves Ineq. O

Corollary below restates Thm. using the expectation Ej*[-] and the
associated random walk X. This corollary serves as an extension of [FV17, Lemma
8.13] within the framework of the fractional Anderson model.

Corollary 3.5.2. Let ; an <s<T1<1. Let ag be as in Eq. |3.2.14 Let zo € Z9 and

Egs[-] be as in Def. |3.4.1 Let Ag be as in Thm. . Let LeN, Ap :={-L,...,L}*
and G2t be as in Eq.[3.3.29, and Tpc := inf,en {Xn ¢ Ap}; that is, Tac is a random
variable which indicates the first time that the random walk lands outside of A. IfA > 0,
then

E[|GA (20, 2)|]

1 GPO,S s N CL sn o
Sp\a ) B Z —A)%(0,0)" Lixu=a. X s4W up to n} |

Ve e A\ {zo}. (3.5.12)
Furthermore, if (%)S < Ryasaw, then
E[|G: (20, 2)[]

GP o sn
< 2< . ) EZ [Z< ) A)*(0,0)]" LiX,=2,X SAW up to n} | < 00

n=

—_

Vo e Z9\ {zo}.
(3.5.13)
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Proof. Let L € N and A > 0. Using Ineq. from the proof of Thm. for
N = L, and then applying Eq. and Fubini-Tonelli, we get that

“GA (zo,x )ﬂ

;( i( >S" > HA“SWJ 1, Wj)

S

) n=1 wEWA (z0,3) I=
w SAW
1 s L
( ) Z( > [(—=A)%(0,0)]"Qg: (X, = z, X SAW up to n, Tpe > n)
2 n=1
Tprc—1 on
1/06p Ag .
5( }fs) Eg; [ Z <7> [(_A)“S (O?O)] ]l{anx,X SAW up to n} | (3514)

which is the desired inequality.

Now, if (%)S < Ryasaw, then C“ESAV;/(JU — xp) < oo. In addition, by Thm. [3.5.1
x>
Eq. [3.4.19 and Fubini-Tonelli, we get that

E[|G: (2o, 2)|’]
1 ePO 5)8 xs,SAW
< - 2o S SAW (o
_2<A Cliys (@ = o)
s sn
= ;(91;),5) (‘;1\5> [(—A)%(0,0)]"Q%: (X xz, X SAW up to n)
n>1
1/06p,s\° AN\ .
:2< 1;37 ) Egg Z(}\) [(_A)(XS(O’O)] ﬂ{Xn=x,X SAW up to n} |- (3515)
n=1

O]

Remark 3.5.3. The case of the usual discrete Laplacian is well-studied (see [FV17]).
In such scenario, we instead obtain a simple symmetric random walk on Z3. To be
more precise,

—%A_I T, (3.5.16)

where I is the identity operator on (*(Z4) and T is the operator given by

1
1 _ =1
T (z0,7) = {Qd’ o=l =1 (3.5.17)

0, otherwise.

We can define the simple symmetric random walk X = {X},~, on 74 as the ran-
dom walk which has transition probabilities given by the entries of T. Let Q, be the
distribution of the simple symmetric random walk which begins at 0; i.e.,

on( n — Wn ’ Xn 1= Wnp— 1) T(wnawn—l)a
Qo (X0 = 20) = 1. (3.5.18)
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Let E'wo be the expectation given by Q,. Let Ar be as in C’orollary and Tpe :=
inf,eny{X, & AL}. Then

1 -1 ~ TAc—l
(_mAA> (20,%) = Eny | Y L{—a} | (3.5.19)

n=0

see [FV17, Lemma 8.13]. That is, the Green’s function of the usual discrete Lapla-
cian restricted to A at (xg,x) corresponds to the average of arrivals at x by a simple
symmetric random walk starting at xq, before it lands outside of Ap.

Let As be as in Thm. and let Aq(s) = AS\(—A)“(O,O)|%. By Prop. [3.4.6] it
holds that Ai(s) > Ag(s), for s > 0. Therefore, applying Thm. [.5.1] and [3.4.7] we
obtain that

(_A)“(O) 0) KPQ,T,S
A

) A% (zg, ),

d 2d
> R i .
VA= Ai(s), Vs € <d+ 20 {T’ d+ 2oc})

El|G-(r0,2)/%) <(

(3.5.20)
Together with Thm. we obtain the estimate
E[|G, (z0, )] S((—A)‘X(O;\O) Kpox,s) — x2|d20cs ’
(3.5.21)

which gives a slower decay than Ineq. [3.5.23

Remark 3.5.4. We require that s € (ﬁ,%) to ensure that 0 < &5 < 5. For
d=1 and%<o¢<1, it holds that%gocs <« fors € [H%(x,l).
We recall [CS15, Lemma 2.4]: Given 0 <y < R,«saw, then
o, SAW KPO,T,s,y
Cy (r — ) < —r (3.5.22)
|z — 20|

where KPQ,T,S,‘Y = X{’,"SAW (6d+2°‘2'yx§"SAWCO(7d + Ziﬁ%), the constant lz(,(’chy > 0 is given
in the proof of [CS15, Lemma 2.4]. This combined with Thm. yield our main

result.

d+2ax

Theorem 3.5.5. Let —3— < s< T <1. Let oeg = s(oc—i— %) — %, the constant in FEq.
e

3.2.14. Let A be as in Thm. |3.3.4 Let Ao(s) = —2A=— be as in Thm. [3.5.1} If
R a,8aw ) °
A > Ao(s), then
s ICP()TS)\ s ]- d . .
E[|G.(zo, 2)|"] < 7\ | |d+2“,Vx,x0€Z,3:7éxo, unif. in z € C\ R,
T — I s

(3.5.23)
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S . . .
where Kpy x 52 = Kpy 1.5 (KPO,T,S,(%)S> , whose factors are given, respectively, in Thm.

and Ineq. |3.5.29. Moreover, 0(Hy) is pure-point, for P—a.s w € Q . Further-
more, let g be the density of Py, (i.e., dPg (v) = dvg(v)) and let I C R be an open and

bounded Borel set. If there are constants M > 0 and 0 < k < 1 such that Ineq. [3.5.0
holds, then, for P—a.s. w € Q, for all E € o(Hy) NI, there is a localization center
xp(w) € Z4 such that the corresponding normalized eigenfunction @g(-,w) satisfies

(=4)%(0,0)
A“(O,XE((U)

2
1
)} ( - Ve (0,2a4), Yy € Z9,

|or(y, w)|* < 4A74(w) [ 1+ |y —xg(w)|)

(3.5.24)
where A1y is an integrable random variable given in Eq. |53.5.14| above.

Remark 3.5.6. Letd =1=1, § < a <1, H%oc < s <1andXN> N(s). If we
assume that sup,cr(1l + |v])"g(v) < M, for some constants M > 0 and 0 < k < 1,
then we establish pure-point spectrum and polynomial decaying of the eigenfunctions.
Explicitely, let @ € (*(Z) be an eigenfunction, then, for || large, |(p(x)]2 where

l<t<s(l4+20)—1<2.

1
~ fal”

Proof. Let d—‘%(x <s<71<1and A > Ag(s). As mentioned in Section we note
that Ineq. can be derived from both Ineq. [3.5.1] and [3.5.22] To complete the
proof, we need to establish spectral localization. Furthermore, if we can find a constant
M > 0 satisfying Ineq. then the eigenfunctions decay polynomially, as stated in
Ineq. To accomplish this, we use Lemma [3.3.5] Thus, it is enough to find a
pair of constants ¢ > 0 and K > 0 such that Ineq. holds. In fact, the Decoupling

Lemma (Lemma [3.3.4]), Thm. and Corollary yield that

1(0pys)’ Kporsp\* (1 + [z — 20|)*
B Y [Grwnalm o) (14 o - zol)| < 5(2o2) 4 30 (Frumea) L2 a0)
| — x|
zezd z€ZI\{zo}
1 ePo,s ® ICPO,T,SJ\ ? 2
§2< A - Z A ’x_m’dﬁas—t
zeZ4\{zo} 0
< 1 ePo,S B 2Nd+1+t ICP07T757}\ ° 1 1 v Zd v (C-‘r v
=5\ + — +20(s—t < oo, Vg € Z9,¥z € Vit € (0,2a).
(3.5.25)
This ends the proof of Thm. O]

3.5.2 Comparison of decaying rates

We examine and compare the various decay regimes of the fractional moments of the

Green’s function, as indicated by Ineq. [3.3.35] [3.3.50} [3.5.21] and [3.5.23] Then, we
establish a hierarchy based on the corresponding exponents: (3 s, 2somz, &, d, d — 2as,

and d + 2;. The summarized discussion can be found in Table and below.
After this comparison, we conclude that our main result yields the sharpest decay.

By Prop. [3.4.6] it holds that (—A)%(0,0) > m. Then, Aag(s) > Aog(s) and
XX
Ineq. [3.5.23|yields a faster decay than|3.3.35, VA > Axg(s), Vs € (ﬁ, T). In addition,

7



since s < 20, the eigenfunctions have a better decay in Thm. than in
a.s.

However, if we compare Ineq. [3.3.35| with Ineq. |3.5.21} we obtain that

d T>ﬂ( 3d
d+2a’ d+ 2’ 2(d + 2«

Brs <d—2ag, VA>Ara(s), Vse ( )} , (3.5.26)

where we note that the interval for s is always non-empty and Aag(s) > Ai(s), for all
SR

s>0 Ift< 2(%‘12“) (e.g, ford >4 or0 < a< %), then Ineq. provides a

better decay than [3.3.35) VA > Aaq(s), Vs € (ﬁ,ﬂf). Otherwise, if W < T,

then Ineq. [3.5.21| yields a better decay than|3.3.35, VA > Axg(s), Vs € (d+2a, 2(%%“)}

Alternatively, for all s € ( (dfw) min {T, d+2a}), there is A*(s) > Aag(s) such that

d—20 < Brs YA >A%(s), (3.5.27)

and Ineq. [3.3.35 has a better decay than [3.5.21] Vs € (2(d?f2 L min {T, Troas }), A>
A*(s).

Remark 3.5.7. Note that d — 20 = 2d — s(20 + d) is strictly-decreasing in s and
max {d — 20,0} <d — 25 < d, forall s € (df2oc’m1n {1, d+2cx})' In addition,

3d
d—2a¢ =205+ = sup Prg+, fors'=_——7—. (3.5.28)
’ NG 2(d + 20

The above discussion is summed up by Table [3.1] below.

T S A Decay
<1< 50 A <s<n A > Aac(s)

d+2o¢ = 2(d+2u) a2 § u AG\S By <

(d+2o<) <t=l Trox <5 = sdtaw A>AaG(s) || g~ 9q,

3d *
(d+20€)<T<1 m<s<m1n{’t,d+2(x )\>}\(S) ?5—20(3 <
A,S

Table 3.1: Thm. B.3.35 vs. Thm. B.2.7

From Ineq. [3.3.49| and Ineq. [3.5.21] we get that

S ] 9 ) i
2s0¢ ] < d 2x VS € <7 min

T, d+2oc(1+n)}> m(0,1).  (3.5.29)

Ift< ﬁdpm) (g, ford=40or 0 < a < %), then Ineq. [3.5.21] provides a better
decay than [3.3.49, Vs € (L T). Otherwise, if T > d+2¢’ then Ineq. [3.5.21

-t 2o’ a(14m)
yields a faster decay than |3.3.49, Vs € (701 —SZoc’ #?H‘Tl)) Alternatively, for all s €
2d . 2d .
[m, min {T, m}), it holds that
d —2as < 2sam (3.5.30)

and Ineq. |3.3.49| yields a sharper decay than|3.5.21|Vs € [#?Hn) min {T, nga})
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Remark 3.5.8. Like in Remark we have that (—A)~™% s well-defined since
ﬁ < s < d+20<?1+n) < did% vn € (0,1). In addition, given n € (0,1), 2san is

strictly-increasing in s, d—20 s strictly-decreasing and they are equal at s = #&ﬁ).
The gist of the above discussion is shown in Table [3.2] below.
T S A Decay
2d
d+202<d< TS Tz d+2(x <s<7T o A > M(s) 2s0m <
Tz <71 Tiw <3 < armiT A>N(s) || g = 2a,
2d 2d
oy <T=1 Troa(imy < 8 <min {T, d+2(x} A> A (s) || d — 205 <
2sam

Table 3.2: Thm. [3.2.7 vs. Thm. 3.3.11] [Massive vs. Massless case]

Since 0 < M, o.a < 1, Ineq. yields a slower decay than Ineq. Instead,
if we make the comparison between Ineq. and Ineq. it is unclear which
one is better than the other since 2san and d — s decay slower than 2sx. Finally, we
provide an estimation of ) s and 1, «q as o tends to 0 or 1.

Theorem 3.5.9. (a) Let d+2 <1< 1 and By s be as in Thm. . Then,

lim sup |PBas+ (9( ) =0 (3.5.31)
ot df2a<s<T A®
Furthermore, if T =1, then
lim sup Py, =0. (3.5.32)
o0 dJr2D(<s<1

(b)) Let d =1, 0 < N <2, Ry :={2€C|0<D, <25v(,1)} and M. «q be as in
Thm. [3.3.11] Then,

lim sup 2sof, =0. (3.5.33)
o0 0<s<1

0<N <2a

2ER«

Moreover, let 0 < N <2 and 0 <e <1, then inf.<qeq Sa(,1) > 0 and

lim  sup  |2s0f.q— =~ | =0, Vz€ [] Ra (3.5.34)

ofl  p<s<1 2(1 — SN
SN(oc,l)<oo ( 2 ) e<a<l

Let z ¢ o(Hj «). Although 1, & q has a limit in the sense of Eq. [3.5.33|as « | 0, the
RHS of Eq. |3.3.48| diverges because D, < 2Sy/(e, 1) | 0.

The proof of Thm. below is presented in two parts. In the first half, we
evaluate the limits of ) as « approaches 1 and as « approaches 0. In the second
half, we aim to apply the same limits to 1, 1. However, in this case, the computations
involve the I' function. It is important to recall that I' is a meromorphic function
defined on C\ {0,—1,—2,...}, and it possesses two useful properties: I'(n) = (n — 1)!
for all n € N, and I' has simple poles at non-positive integers.
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Proof.

(a) Let df—m < s < 7T and o be as in Eq. ‘3.2.14l Due to Thm we have
Brs =20, — O(55) = s(2c+d) —d — O(55) > 0. Hence,
1
lim sup |Pas+ O() ‘ =1(2+d)—d (3.5.35)
ofl _d__gcr A®
d+2ax

On the other hand, we know 0 < ;s < 205 < 2. If T =1, then

lim sup Pas=0. (3.5.36)

a0 _4a

d+2fx<s<1

(b) Letd=1,0< s < 1,0 < N < 2xxand 0 < D, < 25x\(ex, 1). To compute the limits

ND,

of N1 = Ty (a1 We need to estimate Sp(e, 1). Recall that

1
Sy, 1) := A0, 2)(1— — ). (3.5.37)
N aceZz\%O} ( (1+|x|)N>

ICRS™18, Thm. 1.2 (b)] provides an explicit value of A%(0, ), which is given by

50,0y~ LG+ (el -a)
A0 = R T+t 1)

Replacing Eq. 3.5.38] into Eq. we obtain that

AT+ )T - ) 1
Sv(en 1) =2 S TR T o) (1 - 2N)
4% T(1 4+ «) Mn —«) 1
T2 T Cw) ; CETESY (1 T n)N>' (3:5.:39)

z €7\ {0}. (3.5.38)

On the one hand, the Gamma function has the property that o|I'(—«)| = T'(1 — «).

Hence, the first term on the RHS of the above equation can be rewritten as

LA TG+ )T — o) <1 1 ) 4 T+ o) (1 ! ) (3.5.40)

AT Tera\l "oV =2 mrora \ oW

On the other hand, to estimate the second term, we need to know how it decays

the general term of the series. The Stirling’s formula for the Gamma function is

M(y) ~ ﬁ(i)y y > 0. (3.5.41)

Note that for y = n € N, the above formula gives I'(n) = (n — 1)! ~ w%‘(%)n By
multiplying by n on both sides, we recover the usual Stirling’s formula. Hence,

Mn — «) /n+oc+1(n—oc>”—‘"< e )”+°‘+1
Fn+oa+1) n— o e n+o+1
N (3)14-20((1 _ g)ﬂ—(x 1 ntotl N (E)Hme*ae*l*fx _ 1
n n 14 %t n T opl2e
n
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Consequently,

Sn(e, 1)

NQj;r(;+a) F(Qi“)@;) Z; 1+2a< 1+1n) )

By the continuity of I'(y ) for y > 0, and the facts that I'(3) = L ,T(n)=(n-1)4
for n € N, and limy%() T = = limy 1 r(y) = 0, it holds that

. 1 .
lim Sy (o, 1) = 2(1 - 2N> lim S (e 1) = 0. (3.5.43)
Let Ry :={2€ C|0 <D, <2Syx(x,1)}. Recall that 1, o1 = #D(;l). Hence,
. sND,
0<2 < —7> < v Ra- 3.5.44
< somZ_ZSN(oc,l)_SN’ 2 € Ry ( )
Therefore,
lim sup 2sof, =0. (3.5.45)
o0 0<s<1
0<N <2«
2ER«

Moreover, let 0 < e < 1, then inf.<qc1 Spr(e,1) > 0 due to Eq. [3.5.43] By Ineq.
it follows that

- ND
lim  sup 250, 1 — 721 =0, Vze ﬂ Ra- (3.5.46)
atl 0<s<1 2(1 - 2W') e<a<l

Sar(e,1)<oo

Remark 3.5.10.

e Note that in Fq. we need to take T =1 because limyo d-ﬁ% =1

e Observe that the value of N was improved in [DMERM23], giving a larger inter-
val for \ such that pp spectrum with polynomially decaying eigenfunctions holds,
compared to [AM93] and [AGIS].
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Decay of the Green’s function of the fractional Anderson
model and connection to long-range SAW
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Abstract

We prove a connection between the Green’s function of the fractional Anderson
model and the two point function of a self-avoiding random walk with long range
jumps, adapting a strategy proposed by Schenker in 2015. This connection allows
us to exploit results from the theory of self-avoiding random walks to improve
previous bounds known for the fractional Anderson model at strong disorder. In
particular, we enlarge the range of the disorder parameter where spectral local-
ization occurs. Moreover we prove that the decay of Green’s function at strong
disorder for any 0 < « < 1 is arbitrarily close to the decay of the massive resol-
vent of the corresponding fractional Laplacian, in agreement with the case of the
standard Anderson model o = 1. We also derive upper and lower bounds for the
resolvent of the discrete fractional Laplacian with arbitrary mass m > 0, that are
of independent interest.

Keywords: fractional Laplacian, random Schédinger operator, self-avoiding random
walk, Anderson localization

MSC': 82B44, 82B41, 35R11 (primary), 47B80, 81Q10 (secondary)

1 Introduction

Transport phenomena in disordered environment are often described via random Schro-
dinger operators. On the lattice Z¢, d > 1, they take the form of an infinite random
matrix H, =T+M\V, € RSZ;,?X%ZUI where T is a deterministic matrix (the kinetic part) and
V., is a diagonal matrix with random entries. In its most standard formulation 7" is the
negative discrete Laplacian —A defined via —A(z,y) 1= —d|,_y|=1+2d §|;_y|—0, Where ||
denotes the £2 norm. This defines a self-adjoint bounded operator —A: ¢2(Z%) — ¢2(Z4)
with absolutely continuum spectrum and delocalized generalized eigenfunctions. More
generally, T' can be a symmetric matrix with decaying off-diagonal terms.

Operators of the form H = T 4+ V where V is a, possibly random, multiplication
operator and T is long-range have attracted increasing interest in recent years [Han19,

[GRM20), [SS211, [JT.27], [Liu23, [Shi23]. In particular, the usual exponential decay

of eigenfunctions and dynamical bounds is replaced in this case by a polynomial decay.
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In this paper we consider the case when T is the discrete fractional Laplacian (—A)%
with 0 < a < 1, which is obtained from —A via functional calculus. This operator
has been subject to increasing interest in recent years. Just as the standard discrete
Laplacian, it is bounded and translation invariant (—A)*(z,y) = (-=A)*(0,y — ),
non-negative as a quadratic form and satisfies (see [GRM20, Thm. 2.2])

(A)%(x,2) >0, (~A)%(a,y) <O Va £y

Its off-diagonal matrix elements decay polynomially. See [GRM20, Thm. 2.2(iii)],
[STal8, Lemma 2.1] or, for the one dimensional case, [CRST18, Thm. 1.1]. More pre-
cisely there are constants 0 < ¢y q < Cyq such that

ch,d

C .d
— < (~A)¥(z,y) < p—ed

|z — gl T Yo,y €24 x #y. (1.1)

In particular (—A)* has a summable kernel Y~ . [(=A)*(0, )] < 0o V0 < « < 1 and

(=2)%(0,0) = = > (=A)¥(0, ). (1.2)
x#0

The long range nature of (—A)* for « < 1 changes drastically the behavior of the
resolvent ((—A)* +m?)~! with m > 0. While for « = 1 the corresponding kernel
decays exponentially, we only have polynomial decay for o < 1. Precisely, for o« = 1

ce M < (CA+m?) Mo, y) < Ce Y e £y, (1.3)

for some constants ¢, C' > 0, depending on d, m, while for o« < 1

C1 _ &
=g S (=2)* +m?*) " Ha,y) < oy Yot ()

for some constants ¢1,Cy > 0, depending on d, m, «. See [Slal8| Lemma 3.2] or Thm. []
in Section [ below. The limit m | 0 is well defined for d > 2«, 0 < & < 1 and behaves
polynomially both for & = 1 and for & < 1. See [SIal8| Sect. 2] and references therein,
Thm. [ in Section Bl below, or, for the one-dimensional case, m Thm. 1.3].

Precisely

c . C
W < ((_A) ) 1(x,y) < m Y # . (1.5)

for some constants ¢y, Cs > 0, depending on d, «.

In this paper we consider the so-called fractional Anderson model, which is obtained
by perturbing the fractional Laplacian with a random diagonal matrix as follows

Hyo = (—A)* + AV, € RZXZ (1.6)
where A > 0 is the disorder parameter, V,,(z,y) := d),_y|—0 W and w 1= (Wz) zeza € RZ*
is a family of i.i.d. real random variables endowed with the Borel probability measure
P := ;4 Po, with compactly supported one site probability measure Py. With these
assumptions the operator Hy , is bounded and self-adjoint. By translation invariance it
is also ergodic and hence the spectrum o(Hy ) is a.s. a deterministic bounded interval

of R.



The fractional Anderson model in the discrete setting is known to exhibit pure point
spectrum with eigenfunctions decaying at least polynomially at strong disorder, see
[AM93, Thm. 3.2], and to exhibit fractional Lifshitz tails [GRM20]. Localization for
this operator is not yet available in the continuous setting, therefore it is important to
understand better the mechanism causing pure point spectrum.

In this paper we contribute to these efforts by giving an alternative proof of spectral
localization that exploits a connection to self-avoiding random walks (SAW), following
[Sch15]. This allows us to improve known results, such as the polynomial decay rate
of the Green’s function and eigenfunctions at strong disorder. In particular we enlarge
the range of the disorder parameter where spectral localization occurs. Moreover we
prove that the decay of Green’s function at strong disorder for any 0 < o < 1 is arbi-
trarily close to the decay of the massive resolvent (L)) of the corresponding fractional
Laplacian. We conjecture that this is the optimal decay rate one can obtain by the
Fractional Moment Method. Note that the same kind of result holds in the case of the
standard Anderson model o = 1.

Organization of the paper. In Section [2] we state our main results and discuss
connections with the existing literature. In Section B we introduce the regularity
assumption we need on the random potential and the basic definitions to introduce
self-avoiding random walks, including a known result on the decay of the two-point
correlation function of a SAW with long jumps. In Section ] we establish a comparison
between the decay of the averaged fractional resolvent of our model and the two-point
correlation function of a particular SAW with long jumps, proving our main result.
Finally, in Section Bl we complement our results by studying properties of the discrete
fractional Laplacian. This section might be of independent interest.

2 Main results and discussion

In the following we assume Py is absolutely continuous with respect to Lebesgue and

T—regular for some T € (ﬁ, 1) with 7—constant M (Pg) (cf. Def. Bl below). Note

that the decay of (—A)%, Eq. (), ensures that

Z [(=A)*(0,z)]° < o0 holds Vs € <

xC€Z4

since in that interval we have s(d 4+ 2«) > d. In particular this holds for all s in the
non empty interval (CHELZOC,T) and hence, by the Fractional Moment Method [AM93],
Thm 3.2], the spectrum of Hy, for large disorder A > Aan(s), with

Do 1=2)%0,2)P (2.2)

xE€7Z4

2T

T—S

Aan(s) == M, (Po)~

consists only of pure point spectrum, with random square summable eigenvectors. In
this sense the fractional Anderson model undergoes the same localization phenomenon
at large disorder as the standard non fractional one, but contrary to the case x = 1,
the operator Hy,, is expected to undergo a phase transition in d = 1 for « < 1/2 and
ind =2 for all 0 < « < 1 between complete pure point spectrum at large disorder and
coexistence of absolutely continuous and pure point spectrum at weak disorder [JTM99].



Indeed, in dimension d = 1, the random walk with long jumps generated by —(—A)%*
is transient in the case 0 < o < 1/2, and recurrent in the case 1/2 < o < 1, while in
dimension d = 2 and above, it is transient for all 0 < o < 1, see e.g. [CFG09, Appendix
B.1].

The situation changes drastically when considering the spatial decay of the correspond-
ing eigenvectors. While these are exponentially localized around some random point for
o« = 1, polynomial decay is expected for o < 1 in any dimension due to the long range
nature of (—A)*. Upper and lower polynomial bounds have been proved, for example,
in the case of the fractional Laplacian perturbed by a negative potential vanishing at

infinity, see [CMS90, Prop. IV.1 and IV.3]

The key observable giving information on the spectral properties of Hy , is the fractional
average Green’s function E[|G,(z,z)|?] with 0 < s < 1, where

G, = Hxw — z)_1

is a well defined bounded operator for all z € C\ R. In this article we adapt a strategy
developed in [Schi5] to bound E[|G.(x,y)|’] by the two point function of a self-avoiding
walk (SAW) generated by D(x,y) := |(—A)%(x,y)|*. We use this bound to enlarge the
set of values for A where pure spectrum occurs, and to derive improved decay estimates
on the corresponding eigenvectors.

To formulate our main result we need some notions to describe a SAW with long jumps
generated by D. These are collected in Section Bl In particular we denote by y*54W
the susceptibility, with radius of convergence R,asaw, and by Cf? ’SAW(JU) the two-
point correlation function with parameter v > 0, see (B3] and B8] below. With this
notation, our main result is summarized in the following theorem.

Theorem 1. Assume the one site probability measure Py is T—reqular, for some T €

T 1) with 7— constant M.(Pg). For s € (5=

walk generated by D(z,y) := [(—A)*(z,y)|®, with v #y. Set

T | we consider the self-avoiding

0, = —— M, (Po)* (2.3)

T—S

and

= () 24

X
Then for all A > X\o(s) and Yx # zo € Z% it holds

E[|G. (0, 7)) < q0(A,8) C3N) (@ = o), (2.5)

uniformly in z € C\ R, where (A, s) 1= %.

The proof is in Section @l Note that the kernel D is summable by (2.1)). Moreover,
translation invariance of (—A)% implies that D is translation invariant too. The con-
dition A > Xo(s) ensures that the two point function is finite sz)’(s )\A:)V(w) < oo VreZl
(cf. Section Bl below). The next result uses the bound (Z35]) to prove existence of pure
point spectrum and decay estimates on the eigenvectors.



Theorem 2. For s € (d+2¢x’7—) we define

2065 1= s(d + 2x) — d, (2.6)
which satisfies, by the constraints on s, the inequality
0< g <ax<l.
Remember the definitions of Ao(s) Z4) and 05 [Z3]) above.
(i) For all A > \o(s) it holds

E|G:(z,y)I°] <

uniformly in z € C\R. The constant Ko = Ko(A,s) > 0 is defined in (39) below.

Ko, 1

d
2\S ‘.%' — y‘d+20(s Vﬂﬁay €L y L 7& Y, (27)

(i7) For all X > Xo(s) the spectrum of Hy,, consists only of pure point spectrum.

(7i1) Assume the density of Py is bounded (in particular 7 =1). Then, for a.s. w € Q
and for all E € o(Hy), there is a localization center xg(w) € Z% such that the
corresponding normalized eigenfunction @x(-,w) satisfies Vy € Z¢

) (—=A)%(0,0) 12 1
loE(y, w)|” <4A;(w) |:7(—A)‘X(O,XE(W)) (1+y— XE((JJ)Dt7

V0 <t < 2a4,

(2.8)
where Ay is an integrable random variable.

Proof. The first statement follows directly from the bound (Z.5]) together with the decay
B3). To prove the last two statements note that the bound ([Z7]) ensures that for all
A > )\0(8),
> E[IG.(0,2)|z"] <o VO << 20, (2.9)
zeZ?
holds uniformly in z € C\ R. Note that limo >, cza |Getin(z, y)|?* always exists (but
may be infinite) since >, zq G rin(z,y)]* = [(E — Haw)? + 7% 1z, ) which is a
monotone function in 7. We argue

S

2

E hm Z |GE4in(z, )| =E [lim E |G i (2, )]
d o d
YyEL yEZ

wle

<E hﬂ’)l Z |GEtin(z, )" | | < hmmf Z [|GEtin(z,y)|°] < o0,
! yEZd y€eZd

where in the first two steps we used that the function z +— 23 is monotone and
>, an)® < >, ay for all a, > 0 and 0 < s < 1. The last two inequalites follow
by Fatou and (29) with ¢ = 0. Since we assumed the one site probability measure
Py has a density, this bound implies by Simon-Wolff criterion [AWTI5, Thm. 5.7] that
the spectrum is pure point only. Finally, since Py has compact support and bounded
density we have

sup(1 + |v])*Po(v) < 0.
veER

The eigenfunction decay follows from this bound and (Z9]) by standard arguments (cf.

[AWT5], Thm. 7.4]).
O



Discussion of the results. Note that, assuming again (#LQ“ < s < T, a direct

application of [AG98, Thm.1’] with |z — y| replaced by In(1 + |z — y|) and K(z,y)
replaced by (—A)%(z,y) gives the following estimate Va,zq € Z¢
1

— 40

which holds uniformly in z € C\ R, as long as A satisfies

Aj>,XAg(ﬂ,S):::A4 ( %

Z (= )I*(1+ Jz])”

meZd

While the bound (Z7)) in Theorem [2 is summable for all « > 0, the bound ZI0) is
never summable when & < %l, hence Simon-Wolff criterion cannot be applied directly.
Instead one proves the inequality [AM93]

supE | Y [Crig(z,9) (L + [z — y))? | < oo,
n>0 yezd

for A > Aaq(B,s). This ensures the existence of pure point spectrum and the decay
([28)) for the eigenfunctions. Note that, using ([24)), (B7) and ([22]) we obtain

1 s
1
< M, (Pg)r D(0,
) w5 Zp0

T 1

T<—-SI{Xm5Aw7

Xo(s) = M, (Pg)~ <

»

1 T
M E _
o) [ 23
x#£0
1
)" T—5 = Aan(s)
m#O
1
< M, (Pg)~™ 1 =A .
(Po) T*%' DA+ | = Aacs, 9

Hence Ao(s) < Aaa(s) < Aag(s, ) for all 0 < f < 2a5 and s € (0,1).

Our bound (1) ensures one can get arbitrarily close to the decay t = 7(d + 2x).
Remember that we need 1 > 7 > ﬁ so 7 must be near one for d large or o small. In
the case 7 = 1 our results imply we can get arbitrarily close to (d 4+ 2«) which is the
decay of the massive resolvent ((—A)*+m?)~!, but also of (—A)*. On the other hand,
the best decay we can obtain via [2.10) is 2ats = s(d+2«) —d, and this at the cost of an
infinitely large disorder since limgyox, Aag(8,s) = oo. For s near 1 this approximates
d+ 2 — d = 2a so the bound misses the optimal decay by a factor d.



3 Preliminary definitions and results

T—regularity and apriori bound.

Definition 3 (t—regularity). Let T € (0,1]. We say that a probability measure @ is
T—regular if there is a C > 0 such that w([v — &,v + 08]) < C8T, Vv € R, V6 > 0. If u is
T—reqular, the corresponding T— constant is defined by

M(p) :=inf {C > 0| u([v—8,v+5]) < C8", Vv € R, V6 > 0}. (3.1)

The T—regularity of Py enters in the bounds for G, via the so-called a priori bound

05
E (|G- (2,2) "lwzi 2| < = veezl 0<s<r, (3.2)

uniformly in wza (1, where 65 = ﬁMT(PO)é (cf. equation (Z3])). This bound is
obtained remarking that |G (z, z)| = (Alws +7(wza\ ,3)]) 7" where the random complex
number n(wzd\{x}) is independent of w;. Since wy and wyay ¢,y are independent, the
problem reduces to the following estimate

1
. _dPy(v) <0,  VneC 3.3
| =) ) (33)
which holds V0 < s < 7 (cf.JAG98, App. B]).

Self-avoiding walks with long-range jumps. Let D € [0, oo)ZdXZd be an infinite
matrix. Assume D is translation invariant and

0< ZD(O,m) < 0.
x#0

We consider the random walk on Z¢ with transition probability from z to y #

o) = P@y)
p( ,y) ZZ;EmD(xvz)‘

For x,zg € Z% we consider for n > 1
d
Wh(zo, ) := {w = (wj)?:o CZ™ | wy = xg, wy, = ﬂ:}

the set of paths in Z? going from zy to = in n > 1 steps. For z = xy we may also have
paths of length zero Wy(xq, xo) := {xo}. We say that w € W, (xg,x) is a self-avoiding
walk (SAW) of length n if wy # w; for all k # [ with k,1 < n. The set of self-avoiding
paths in Z? going from x( to x in n > 0 steps is denoted by Wo4W (g, x). Note that
WEAW (o, 20) = Wo (20, 70) and

WA (o, 20) = 0 = WEW (wo,2)  Vag #2,n > 1.
Following [Schif], we define, for n > 0, and z € Z¢

n—1
D) =Py = S ] Dlwswi), (3.4)

weWSAW (0,z) 7=0



where we took the convention that the sum over an empty set equals 0 and the product
over an empty set equals 1. In particular ¢f’(x) = 6,9 and ¢2(0) = 0 Vn > 1. The
function c;; ( ) for n > 1, is proportional to the probability that a self-avoiding random
walk goes from 0 to « in n steps. The corresponding two-point correlation function is
defined as

Ce(x) = C$’SAW(x) = Z P(x)yy", Vr ezl (3.5)

n>0

The sum starts at n = 1 when x # 0, while for z = 0 we have C$(0) =~% = 1. The
corresponding radius of convergence is denoted by Rep.saw(,). Note that in [CS15],
the correlation function is defined in a slightly different way, which can be recovered
from our definition performing the change of variable

- Y
=Y = ==
K K Zz#xD(xvz)

Summing over x we obtain the susceptibility

n—1
Xy =x =3 Cl@) = v > Y [ Pwjwi),  (3.6)

zeZ? n>0  zeZd weWsAW (0,z) j=0

The corresponding radius of convergence is denoted by R, p saw. For n = 2 we have

Z Z HD Wi, Wjt1) Z Z (0,21)D(x1,x)

zeZr weWs AW (0,z) 7=0 2#0 £1#0,7
2
=Y D(O,21) Y D(w,a)< Yy D(0,21) Y Diwr,a) = | Y D(0,2)
170 x#x1,0 170 rFx] 2#0

Repeating this argument for general n > 1 we obtain

Z Z HD Wi, Wjt1) ZDOZ ,

r€ZI weWSAW (0,z) 7=0 270

and hence 1
R.psaw > —=—— > 0. (3.7)
X Zz;éo D(O? Z)

The decay of the two point function of the SAW introduced above has been estimated

n [CS15, Lemma 2.4]. We recall the result here, together with a sketch of the proof,
translated into our language.

Lemma 4 (Decay of the SAW two point function). Assume that D(0,z) < C‘ ¥

holds for some C,a > 0 and for all x # 0. Then the two point function of the SAW
generated by D s bounded by

1
CSW(z) < K

= 0 Wa (38)

Jor all v < Ryp,saw. The constant Ko = Ko(d,a) > 0 can be explicitely written in
terms of the susceptibility X$ as follows:

Ko =077 +2(x3)*1C (3.9)



where £ = {(d,a) > 0 is the minimal distance such that

—_

c(x) == Z Cf,)(u) YD (u,v) < =27 (d+a) Vx| > L.

Ju| <12l <o

\)

Note that £ is well defined since lim |00 ¢(z) = 0 (see below).

Proof. The assumption v < R, «saw ensures C,ly) (x) < oo Vo € Z%. The key ingredient
of the proof is the following inequality, which holds for any 0 < ¢ < ||

< Y CPw) vyD(u,v) CP(z —v) (3.10)
u vEZd
Jul<t<[o]
To prove it, remember that
n—1

P =" > "] Dwjwip).

n>0 weWSAW (0,z)  j=0
For a given path w € W34V (0, ) we define u := wj,, and v := wj, 41 where
Jm = max{j € {0,...,n}| Jw;| < {}.
Since 0 < ¢ < |z| this set is non-empty and 0 < j,, < n. With this definitions the sum

above can be reorganized as

n—1

> 2 S B[] Dlwj wien)vD(u, o) -

| u|’U§Z|d | n,m>0 weWSAW (0,u) w eWSAW (v,z) Jj=0
u|<I<]|v

m H D ]+1 ]]-{wa’ is SAW} < Z C}l/)(u) ’YD(U,’U) C}l/)(x - ’U),
u,UEZd
|ul<e<]v|

where in the last step we applied 1,uy is saw) < 1 and the translation invariance of
D. Set now { = ‘—? The sum on the RHS of (BI0]) can be reorganized as follows

. o= >+
ul<El<jol  jui<E, el u<El <<l
We estimate the first sum as follows:
> CP(u) yD(u,v) CF(z —v) < (X))

uf <120 12l <y

(3.11)

1
|$|d+a

where we used B.4), |u—wv| > |z|/6 and D(u,v) <
by

%. The second sum is bounded

|u—

Z C?(u) vD(u,v) C?(.%’ —v) < c¢(z) sup C (x —v) =c¢(x) sup CD( )

o<zl o> 12l
ul <l <ol <l i< vz



where we defined c(z) := ZIU\<M<\UI CD(u) vD(u,v). Putting all this together we
=73

obtain
1

’x’d—I—a'

CP(z) < c(z) sup Cp(v) + (x3)*1C

o] > 121

(3.12)

Using the spatial decay of D we argue

c(x) < Z Cf?(u) yD(u,v) + Cg(u) vD(u,v)

Ju| < 121, 12l o el <)< 12 <o)

1 1 1
D D D
<Xy E Wc|v|d+a + E Cy (u) E Wc|v|d+a <c 7 + Cy (u)|,

jol> 12! jul > 12! [o]21 Juf> 12!

for some constant C’. Since lim 400 Zlu\zlrl C?(u) = 0 we obtain lim ;| c(z) = 0.
Hence there is a / = g(d, a) such that

ofx) < %2*@”@) Viz| > 7.

For 2"17 < lz| < 2¢ with n > 1 we apply n times the inequality (BI2) and obtain

<i i) O)*C _ Eexy +2067)*C

D
C 02j |z|dta = |z|d+a

y (@) < Sadrern SUP Gy (v) +

o] > 121 =

When |z| < ¢ we apply the simple bound CP(z) < xP < ¢80y D /|z|d+a. O

4 Comparison with a long range SAW.

The proof of Theorem [ adapts the strategy of [Sch15l Thm. 1] to the fractional
Anderson model. In particular, this requires to work with Green’s functions defined
on different volumes. Therefore, for any A C Z¢ subset of Z¢ (finite or infinite) we
introduce the restricted Green’s function G*

0, otherwise.

Gé\(:c,y) — {(Hg,w_z)l(x7y)7 Vw,yeA, (41)

where H&w —z € CM s the matrix (finite or infinite) obtained by restricting He,, — 2

to A. This matrix is invertible for all z € C\R. In particular G%d = G.. In the following
A = 74, but we leave the notation A through the proof below to stress the fact that
the same result holds for any volume.

To simplify the notation we also se

A*(zg, ) = —(—A)*(zg, ), Vi, zo € 79,

Note that with this convention A*(z,y) > 0 Vo # y.

Note that this definition differs from the corresponding operator defined via functional calculus by
a phase.

10



Proof of Theorem [ By the resolvent identity we have, for all x # x¢o € A

CMao, 2) = G (xo, o) A% (20, x)GIMZ} (2 1)
+ G (wo,m0) Y Ao, wn) G (wy, z),

w1 EA\{zo,z}

Repeating the procedure N times we obtain

Gy, z) = G2 (w0, z0 [Z Z HA Wi, Wjt1) HGA\{wO’ - 1}(w],w])

n= 1wEWSAW(x0 z) j=0

+ Z H A% (wj, wj 1) H Gi\\{wo,---ij—l}(wj,wj)G;\\{on,~~~,wN}(wN’x))

wGWf,’i‘{V(:vo,m) Jj=0 J=1

Taking the average and using the concavity of the function y — y°* we have

EUG xo, X Z Z HA (wj,wjy1)*
n=1weWsAW (z¢,x) j=0

n N-1
E G2 (w0 20) | TTIGE " ) [+ 3 T A%wj wi)*

J=1 weWﬁ’i‘{V(mo,m) J=0

N—1
“E |G (o, )¢ T 1GEM (wy, wp)* [ G0 (g )|
j=1

The resolvent G?\{wo""’wj 71}(y, y') does not depend on the random variables wy,,i =
0,...j — 1, hence recursive applications of the apriori bound ([B.2]), which holds since
we assume s < 7, yield

; . 0\
B | 163l TT162 0wl < (§:)
_ =1

N-1
E ’GA(m'Q 1_0)‘5 H ‘G;\\{woh..,wj—l}(wA w)’s ’GA\{wO’”"wN}(U)N 1_))‘5 < & N 1
z ) R} z ) — \\S ’RGZ‘S

Jj=1

A\ {wo,...,wN}(

where we also applied the inequality |G yx)| < \R}szl Inserting these

estimates in the sums above and using the translation invariance of A%* we get

N

0 6:\"
E [’G?(m’()’x)‘s] < Fnz:l (F) Z H A w],w]+1

weEWSAW (0,2—x0) 7=0

0, \Y 1 N )
N m Z H A*(wj, wjy1)

wEWf/j‘r‘{V(O,x—a}o) Jj=0

_l’_

Cb

< —C’D(:U —x0) +

S ETT(N)

|Re2[*
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where ,? (x — xp) is the two point function of the SAW generated by D(z,y) :=
Az, y)" = |(=A)*(x,y)|* with v = % The error term Err(N) satisfies

Err(N) := (%)N > ]ﬁl A (wj, wipr)?

wEWﬁﬁ‘{V(O,x—mo) J=0
o\ N N—-1
: (T) >, > I A%wwmy
yeZ? wewAW (0,y) J=0
Up to now, the above sums may be infinite. The generating kernel for the SAW satisfies
04 S
> 00 = T %0 = D200 £ 0T
y#0 y#0 y#0

The sum above is finite for all s > ﬁ. Finally, the assumption A > Ag ensures that
7 < Ryasaw holds and hence limy_,o Err(N) = 0 since the susceptibility is finite.
This completes the proof of the theorem. O

5 Properties of the fractional Laplacian.

5.1 Matrix elements

In this section we collect some properties of the fractional Laplacian. The matrix
elements of (—A)* admit the following explicit representation for all z,y € Z¢

d
o dt _
A1) = ey [ g [ T @O =8| G
j=1

where I, is the modified Bessel function of order p € Z, which is defined as

1 " 2q+p
I,(¢) := — (= . 5.2
a2 q;qlr(p+q+1)<2> 62
This follows from the representation
& dt
(=A% Foa / pEe et —1d), (5.3)

where the integral converges under the operator norm, see [Kwal7, Theorem 1.1 (c)],
together with the relation (cf. equations (5.3)-(5.4) in [GRM20])

d
B (x,y) = e 2 H Lz, —y;) (2t) Va,y € 7.
j=1

Note that, since I' has simple poles in the set of the non-positive integers, the equality

1
Len= Y L g

| |
(>0prgz0 1P+ )

12



holds for all p € Z. In particular this implies I,(2t) > 0 V¢ > 0 and p € Z and
> Tp(2t) = €. (5.4)
PEL

Note that I, = I_,, ¥p > 0, hence, using also I'(n + 1) = n! for all n > 0 we obtain

2q+|p
)= L (%) Vp € Z. (5.5)

! !
= allpl +a)!

Proposition 5. The matriz elements of (—A)* satisfy (—A)*(x,y) <0 for all x # y
and

(A z,x)=— Y (-A)=z,y), VoeZl (5.6)
yeZM\{x}
In particular (—A)*(z,z) = (—A)%(0,0) > 0.

Proof. The first statement follows from the fact that I,(¢) > 0 holds V¢ > 0, p € Z. To
prove (B.0) we argue

N 1 S I
- Y AR = e 2 /0 g 2de11($].%)<%)

yeLZN\{x} yeZN\{z}

_ 1 At o dI
ERE > e ).

yez\{z}j=1

Using I, = I, and (B.4]) we compute

d d
Z H Ly (2t) = Z H Iy, (2t)

yezd\{z} j=1 y#0 j=1
d
=[], 20 - To(2t)? = 2 —Tp(2t)¢,
yezd j=1
and hence
1 > dt _
- > (A ) = ‘r(_a)‘/ Tra [1 —e 2dt10(2t)d] = (=A)%(z, ).
yez\{z} ’
This concludes the proof. O

The limits « — 0 and « — 1 can be controlled. This is the content of the next
proposition. The proof extends the strategy of [CRST18, Thm. 1.2] to the case d € N.

Theorem 6. The matriz elements of (—A)* satify,

lim sup [(—A)*(z,0)] =0, lim sup [(=A)*(x,0)| =0 if |x| > 1 (5.7)
a1 51 %=0g>1
lim [(~A)*(,0) =1, lim [(~A)%@,0|=0 ifle]=1  (5.8)
a—1 a—0
lim |[(=A)%(0,0)| =2d, lim |[(—A)%*(0,0)] =1 if |x| = 0. (5.9)
a—1 a—0

13



Note that this result implies, in particular, using (&.0]),

. A - . A -~
lim 0 |(—A)%(@,0)| =2d,  lim 3 |(~4)%(x,0)| = 1.
x#0 x#0
Proof. Remember that for z = (z1,...,24) we defined |z| = |z]2 = (Z;l:1 x?)% Set
also |z|; := Z;lzl ||

Using (B10) and (&3]), we have

o d
F(=o] [(~2)%(,0)] = /0 e T 20— o

7j=1
et
- 0 it

—2dt e

n / dq 2lahHeh—1-a,—2dt
> [t

l[gl1>11i=1
= Si(«, |z[1) +52(<X, !wh),
where
Si(a, 0) :/ dt 71 <1 e, (5.10)
0
¢
el H lz:[! (2d) |$|1 &l (el — o) for |z[1 >0, (5.11)
i=1 Ti
and for all |z|; >0
1
oleh) = 2 qu ql+|:c@| 1 Rayena Gl tleh - o). (512)

|q|1>1 =1

We claim that, V|z|; > 0,

Sa(e, |z]y) _ 2d)*(A —)l(1 — ) ,
0< : < C = (2d)*x(1 — x)C, 5.13
]F(—oc)\ “ﬂ(_oc)’ d ( ) ( ) d ( )
for some constant C’; > 0 independent of « and x. This implies
_ Sy(e,|z)h) N PIC )
lim ————==0= —_— > 0. .
M rCor T im T Veh 20 (5:14)

To prove the claim, note that, since |g|; > 1 we have 2|g|; + |z|1 > 2 and hence, using

n—1
Fz4+n)=z2(z4+1)--(z+n—-1I(2) = 2I(2) H(z +1),
=1
and 0 < a < 1, we get
2lgl1+|z1—1
F@lgh +leh —0)=(1-al(l-a) J] (-«
=2
L e e e (TR
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Inserting this bound in Sa(e, |z|1) we obtain

1 (2|q]1 + |z|1)! 1
Sy, |z)1) < (2d)%(1 — o)T(1 — ) |
g;l 2lql + |2l [T, qil(gi + |2a])! (2d)21ahFleh
(5.15)
In the case d = 1 we have
1 1 (2q+ |=))!

< (1 - - '
Sale [21) < (2d)%(1 = a)P(1 Mg;%+¢d?ﬁx¢@+ww

Note that the binomial coefficient ! 7T is maximal at n; = ng, hence, together with
Stirling’s formula, we get

n! n! c n
< < —
nilng! = (|2))2 = 8

for some constant C7 > 0. Inserting this bound above we obtain

1 1 (2 ! 1 1 2tz 1
) oy <Gy g
q q

— 2q + |z| 2241l gl (g + |])! = 2q + || 220+l /g 2 e

which proves (BI3]) for d = 1.

In the case d > 2 we write

Sa(ec ) = (24)%(1 = 0F(1 = o0 3 5 Ly Cotled)!

d
=1 20+l )b S T ail(a: + )

We develop the binomial coefficient as follows
(2n + |z|1)! (2n A fz)y)! (n+ |x|1)! n!
[Tmyait(ai + D)t 7t (0 )b T (o + ) T @

(5.16)

Using (n 7l < 2™ for all 0 < ¢ < n, and the fact that the multinomial coefficient
Hdni!q-' is maximal when all ¢; are equal, together with Stirling’s formula, we get
1=14J"
2 ! ! ! d"
('n+|$|1) < 92Hel ang dn < _ <2
n!(n+ |z[1)! [T 45! (Lg))! ns

for some constant Cy > 0. Inserting these bounds in (.I6) we obtain
o) () @
[Ty ait(gi + Jasi])! [Tici(gi + |zt n2

Using

> d(n o)t el
lgli=n Hi:l(%’ + ‘.%'Z’)'

and inserting all these bounds in Sa(«, |z|1) we obtain

1 1 dr
Sa(a, |z]1) < (2d)*(1 — &)I(1 — &)C 92ntlxly gntlel =
2 (o, [z]1) < (2d)%( )T( ) dn§z1: 2n + [z, (2d)2n e =
1

n>12n 2

< 2d)*(1 — o)l(L —)Ca ) = )1 - (1 - )y
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where 0 < C’, < oo. This proves ([I3) for d > 1.
We study now the term S (e, |z|1). We distinguish three cases.

Case 1: |x| > 1. In this case |z|; > 2 and therefore, using 0 < & < 1,
Mz —o) < (1— )1 — a)(Jz| —1)!.
It follows, using (G.11I),

Si(e, [z1) (1=l — o) (Jz); —1)! 1 .
‘1]—‘(_0()‘1 = ]F(—oc)] H;ill |xz|' (2d)|$|1*tx < (X(l - O()(Qd) .

Together with (5.14]) this yields (5.7).

Case 2: |x|a =1 = |x|;. In this case

Sy(e, 1) 1 I'(l-«w o

el ~ @O (-]~ @)=

Together with (5.14]) this yields (5.8]).
Case 3: |r|y = 0 = |z|;. Inserting 1 — =24 = fol 2dte=25ds in (BI0) we obtain

Sl(oc, 0)
M=o

ocr(l_o‘) ! SS—l-i—oc_ ocr(l_oc) o o
rCar /) = 24 Ry — @4

Hence limy_y1 % = 2d and limy_1 ‘Srl((f‘&g)' 1. Together with (5.14)) this yields (5.9I)

and concludes the proof of the theorem. O

— (2d)

5.2 Resolvent decay

In this section we consider the operator [(—A)% +m?]~! with m > 0. This operator is
well defined and bounded since —m? ¢ o((—A)%) = [0, (4d)*], for all m > 0.

Recall that (see [GRM20, Thm. 2.2] or [Slal8, Lemma 2.1])
Caa = lim |z —y[ (= (=A)*(z,y)) > 0. (5.17)

le—y|—o0

Theorem 7. Set m >0 and 0 < « < 1. The matrix elements of the resolvent satisfy

inf ((=A)% + m?) " Nz,y) >0  Va,y €z (5.18)
and o
|x_1§}|“ioo | — YT (=A)% + m?) " (2,y) = # (5.19)

where ¢y q is the constant introduced in (BIT). Moreover there are constants C; =
Ci(m, o, d) >0 and ¢; = c1(x,d) > 0 such that

(&1 . Cl
g S (AT ) < p— g Ve Ay (5.20)

where the constant ¢ is independent of the mass m.

Note that the asymptotic behavior (5.19]) is compatible with the upper bound obtained
in [SIaI8l Lemma 3.2]) with other techniques.
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Proof. To prove the lower bound note that
(—=A)* +m? =mild - P,

where P(z,y) = —(=A)%(z,y) = [(-=A)*(z,y)] > 0 for x # y, P(xz,z) := 0 and
m?2 =m? + (—A)*(0,0). For m > 0 the Neumann series

(804 mt) o) = 1+ 3 (P ) (o)
o n>1 e o

is a sum of positive terms and converges for all z,y € Z¢. Bounding the sum below by
the first non-zero term we obtain for z =y
1 1

> >0 (5.21)

(=A)* +m?) Nz, 2) > (—A)%(0,0)

uniformly in m > 0. In the case z # y, using also ([LLT]), we obtain

1 1 Cod 1
—A“+m2 -1 x,y > —P T,Y) = —F —Ao‘x,y Zii
((=4) ) (,y) m‘,}(( ) m§|( )*(, y)] md T g
ch,d 1

= (_A)cx(()’ 0)2 |x _ y|d+2¢x' (5'22)

This concludes the proof of (B.18)) and the lower bound in (5.20).
To prove (EI9) and the upper bound in (G20), note that [(—A)* + mQ]fl is defined

via discrete Fourier transform as follows:

_ dk  eilz—y)k
—A)* +m?] () = / 2
[( ) +m ] (x7y) [77—[77—[]d (27_[)d f(kj)(x +m27 (5 3)
where
d
Z 2(1 — cos k;) (5.24)

This operator is invariant under translations, hence it suffices to consider the case y = 0.
Applying N > 2 times the identity
1 1 f(k)*

f(k)*+m2 — m2  m2(f(k)* +m2)

we obtain
1 _N—l (_1)]»
f(k)* +m?2 Z m20+1)
7=0

(=17 f(k)N*
m2N f(k)* +m?2’

£(k)* +

Inserting this decomposition in the integral and using f[_ ] ekl = 0 for all « # 0,
we obtain

[(—A)* +m2) 7 (2,0) = — (—(—A) (@) + 3 G (—AY*(2,0)




where the function F': [0,00) — [0, 00) is defined by

N
F(zx):=

x4+ m?2’

Since 0 < a < 1 there is a Ny > 2 such that a(Ny — 1) < 1 and «Ny > 1. Setting
N = Ny and using (L) (for &(Ny — 1) = 1 we obtain (—A)(x,y) which is a finite
range kernel)

Neo—1 . Ng—1 (1)
(—1) , Cin,d C;

; —A I xz, S E - . — < )
;::2 m20+1) I NG = m2(]+1)’x . y’d+2m |z — y‘d+4oc

where

a ._ Ciad
Cri= No max, oGy

The limit (5.19]) and the upper bound in ([B.20) now follow from the following estimate

o @
‘/[_mﬂddk F(f(k)%) k| < !w\;” Va # 0, (5.25)

for some constant sz) > 0. To prove it, note that F' € C*([0, 00)) with F(z) = O(2)
as x — 0. On the contrary, the function k ~— f(k)* is in C°°([—n,7]¢\ {0}). The first
derivative equals
o 2sink;

f(k)
and hence |9y, f(k)*| < O(|k[**~!). Any additional derivative brings an additional |k|~*
divergence factor. Therefore near k = 0 we have

O, (k)™ = och(k)

07 F(£(k)*)] < Clg1 0 nO (k> N1, (5.26)

This implies that alfF(f(k)“) € LY([-n,7]?) for all |8] < d + 2. In addition f(k) is
periodic with period 27 in all variables. Since f(k) is even, we can assume without loss
of generality x; > 0Vj =1,...,d, so that |z|1 = >_, z;. We argue

iz, / dk 98 F(£(k)%)) e = / dk OPF(E(k)™)) By, ¢
[—’/'I,’/'I]d [—’/'I,’/'I]d

— — lim dk P F(£(k)*)) 8, ek
e=0 J[—rmd\ B (0) e FECR))) O,

Performing partial integration we obtain

/ dk O] F(£(k)*)) Oy, e™* = / AHI1Y F(H(k))) vj(k)e'™®
[—m,m]4\ Be (0) dB<(0)

- / dk Oy, 0 F(£(k)*)) e*
[_7.[77.[]d\Bg (0)

where v(k) = ﬁkz and the periodicity of f(k) garantees there is no contribution from
the boundary of [—7,7]%. For |3| < d + 1 and «N > 1, using (5.20)

lim sup | de_lafF(f(k)“)) vj(k)e™*| < Climsup 2N l8lgd=1 — o
e—0 0B:(0) e—0
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and hence
—imj/ dk BlfF(f(k:)“)) ek = / dk 3kj3£F(f(k)06)) ik
[~ [—m,m] @

where the last integral is well defined since |5] + 1 < d + 2. The integrability of the
derivative ensures we can repeat the procedure above inductively until |5| + 1 = d + 2.
This concludes the proof of (.20 and of the theorem. O

5.3 Inverse

Theorem 8. Let0 < o« < 4. The inverse (—A)~%(z,y) 1= limyy o [(—A)* + m?] _1(x, Y)
is well-defined and admits the represention via discrete Fourier transform

ei(mf )-k
(=8)"H(z,y) = / %# (5.27)

[—’/'I,’/'I]d

This operator is invariant under translations, its matric elements satisfy (—A)~%(x,y) >
0 Va,y € Z4%, and
lim o — g2 (- A) (2, ) = ca (5.28)
lz—y|—00
where ¢y is the constant introduced in ([B33). Moreover there are constants Co =
Ca(o,d) > 0 and ca = ca(ot,d) > 0 such that

1 1

Py <A TN S G

Vo # y. (5.29)
The fact that (—A)~* is well-defined and Ineq. [£.29 holds are known (see e.g. [Slal8],
Sect. 2] and references therein). Here, we provide an alternative, more analytical proof,
which we believe is new in this context. It uses the discrete Fourier transform and is
based on arguments in [GRM20, Lemma A.1].

Proof.
By I8) we have (—A)"*(z,y) = limyy,o [(—A)o‘+mz]_1(x,y) > 0 Va,y € Z%
Moreover, remember that, for all m > 0, (cf. ([E23]))

N 271 _ dk  elrmuk
[( A) +m j| (iE,y) - /[\7[77[]d (27_[)0[ f(k’)“—}—?’)’lg,

where f(k) is defined in (524]). Note that [f(k)*+m?]~! < f(k)~* which is an unbounded
integrable function. Indeed this function behaves near k = 0 as “C'% which integrably
divergent as long as « < %. Therefore, by dominated convergence, the limit ¢ — 0 is

well defined and formula (5.27]) holds.

To prove (5.29) we approximate the discrete Laplacian —A on Z¢, with eigenvalues
f(k), by the continuous Laplacian —A. on R?, with eigenvalues |k|?, and use the known
decay |(—Aq) Yz, y)| < ﬁ, which holds in distributional sense for some C' > 0
(cf. Proposition [@ below for a precise statement). By translation invariance it suffices
to consider the case y = 0, z # 0.
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The two functions f(k) and |k|? coincide only near k = 0, therefore we introduce a
smooth cut-off function P € C°(R%,[0,1]) such that suppy C B;(0) and P(k) = 1
Vk € B% (0). Hence (—A)~%(0,z) = I1(x) + I2(x) where

dk (k) s dk 1 —=U(k) s
I (x ::/ e, Ih(x ::/ — LM, 5.30
D= J s GO TR = e @7 TR 230
Note that k +— 1;(2’)(5) € C*®([—m,7]%). Moreover, along the boundary of [—7,7]?
we have 1;2’)(5 ) — F kl)(x, which is a periodic function with period 27 in all variables.
Therefore, by partiai integration, we obtain

dk

1—(k
2N Iy()] g/[m]d 2 oy f(;l)’i)

‘ < CNa
where no boundary contribution appears by periodicity. It follows, for all N > 1
Cn
[I2()| < EL Vo # 0,
for some constant C'y > 0. Therefore we only need to study the first integral 1 (z). We
wite k1 k1
hie) = [ s ) ¢ = [ e o
-mge (270) [K] ke (270) ||

where we defined

(k) = () v, k0, (5.31)
1, k=0

and in the last step we used the fact the 1 has support inside B;(0) to extend the
integral from [—7, 71]% to R The function ® is smooth ®(k) € C®(RY) ¢ S(RY), and
hence it is the continuous Fourier transform of a function @ € S(RY) (see [Graldl

Corollary 2.2.15])
1

(k) = ¢(k) = =

7 / dy e Wk o(y).
2 R4

It follows, by Proposition [0 below,

dk 1 4 1
L(z)= | ————®(k) &™F = dy ——————
o= e ¢ “ f G

where the constant ¢y is given in (B33]). The integral above is well-defined since ¢ €
S (RdE. Using this result and Proposition [0 below, we argue

’m‘d—Z(x

lim |z|Y7%(=A)"*0,2) = ¢x lim [ dy

| o0 2| oo Jra © |x — yld—2x

— o [y 0s) = ap(0) = c2B(0) = co > 0,
R

o(y)

where in the last step we used ®(0) = 1. The limit (B28]), as well as the upper and
lower bounds in ([5.29) now follow. O

*The function Ia[@](y) = ca [pa dy m(p(y) is called Riesz potential.
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We collect finally two techical results that are necessary for the proof above. The first
proposition can be found in [LLOI, Section 5.9] (the constants are slightly different
because of our choice of definition of Fourier transform), see also [Ste70, Chapter 5].
For completeness we give here a sketch of the proof. The second proposition is based
on the same arguments as the proof of [GRM20, Lemma A.1].

Proposition 9. [LL0O1, Thm. 5.9] Let « € (0, 2) and let ¢ € S(RY), then

dk 1 . i 1
T e o [ dy o e() (5.32)
/]Rd (2m)% K[ ¥ Jra 7w =yl
where 4
F(§ — ) d_,
= —4£ 792 % 5.33
N P (5.33)
Proof. Using the identity, which holds for all p > 0 and 0 < & < 1,
o
! / dt % e3P,
px  2%T(et) Jo
we can write
1 1 o0 712
= dt t% e zlk vk e R\ {0}. 5.34
), e S, \{0) (5.34)

It follows, using Fubini and the Fourier transform of a product,

dt 1 , 1 o dk £ 112 ,
—_(b(k)e+zk-m _ / dt tocl/ e*g\k\ (b(k)e+2k'm
/]Rd (2m)% |k[** 25T () Jo R (271)%

1 e 1

29T (o) +5 JRd
00
~ s ot [Tarei ettt [y
This concludes the proof. O
Proposition 10. Let o € (0,2) and let ¢ € S(RY), then
. 2%
i f 4 m@(@/) = /R Ldy o(y). (5.35)

Proof. We decompose the integral as follows:

’m‘dfmx ’m‘dfmx ‘x’dfmx
dyi@y:/ dyi@y‘i‘/ dy ————==-0(y)-
Lo tpmew= [ apamew s [ avp aret)

lz] |z]
2 o

The first integral can be reorganized as
‘x’dfmx ‘x’dfmx
dy — gz = dy —gz ez +y).
/l;z(:v) |x_y|d 2o B‘z‘(O) |y|d 2a

2 2
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Since @ € S(RY) we have |@(y)| < ISTJX, for y # 0 for all N > 1. Therefore, since

|z + y| > % inside the ball B, (0) we have
2

< Cn 2N Cy
Ty T jxV

lo(r +y)

Inserting this bound in the integral and fixing N > d we obtain

I / ay T oy + )| < lmsup2¥e |“’”|d_2“/ dy —
im sup Y — Y+ )| < imsup N Y i
|z| =00 By (0) |y|d 20 |z| =00 |‘T|N By (0) |y|d 2
=z T
2NCN|Sd—1| . |x|d 0
= ————— limsup—~ =0,
20022 |z|—o00 |x|N

where |S971| is the surface volume of the unit sphere in R?. Hence

|x|d_2°‘
jelo0 S, @) =Yl
=z

¢(y) =0.

We consider now the first integral. Note that, since, the center of the ball B, ()
2

escapes at infinity as |x| — oo it holds

TN (y)=1 Vyezd
im c = .
|z| =00 |£C — y|d72¢x B_Q_\z\ (@) y y
Since in addition

|:U|d_2°‘

Wch‘%‘ @ @e)] <27 p(y)| € L'(RY)

holds, we obtain, by dominated convergence,

‘x’dfmx
lim dy —= _ d 7

2

which concludes the proof of the proposition. O
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