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Abstract

Knowledge graphs (KGs) have become a fundamental approach to represent
structured data and are employed in academic and industrial applications.
KGs are used in various machine learning applications, such as question an-
swering, dialogue systems, and recommendation systems. Although real-
world KGs contain up to billions of links, they are usually still incomplete,
which can severely impact downstream applications.

Link prediction in KGs is the task of predicting missing links and can be
performed in a transductive or inductive setting. In the past, a wide range
of link prediction approaches have been proposed, encompassing rule-based
and machine learning-based approaches. One promising line of research has
been link prediction based on graph representation learning methods. In
particular, a large number of knowledge graph embedding models (KGEMs)
have been proposed and recently, also graph neural network (GNN) based
approaches are used for link prediction within KGs. Despite the intensive
research efforts in KGEMs, their capabilities are often not transparent. It has
been shown that baseline models can obtain competitive results to the state-
of-the-art models when configured appropriately, indicating that the perfor-
mance of a KGEM may not merely depend on its model architecture, but on
the interplay of various components. Link prediction within KGs has been
investigated mainly within the transductive setting, prohibiting inference
over unseen entities. However, lately, inductive link prediction approaches
have obtained increased attention since they are capable of predicting links
involving unseen entities.

In this thesis, we propose an extensive ecosystem for investigating the
performance of KGEM-based link prediction. We used the developed ecosys-
tem to first perform a reproducibility study in which we investigated the re-
producibility crisis of KGEM-based link prediction experiments. Second, we
performed the most extensive KGEM-based link prediction study in which
we investigated whether incremental performance improvements reported
for KGEMs can solely be attributed to the model architectures or the com-
bination of the KGEM’s components. After providing an in-depth analy-
sis of transductive link prediction within triple-based KGs, we focus on in-
ductive link prediction within hyper-relational KGs. We bridge the concepts
of inductive link prediction and hyper-relational KGs and demonstrate that
hyper-relational information improves semi- and fully-inductive link predic-
tion. Finally, we demonstrate the effectiveness of knowledge graph represen-
tation learning for addressing biomedical applications.
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Chapter 1

Introduction

1.1 Motivation

Representing structured information in the form of KGs has become a fun-
damental approach, and KGs are a crucial component in many academic and
industrial machine learning applications [1]. Typical downstream machine
learning tasks that involve KGs are question answering [2], dialogue sys-
tems [3], and recommendation systems [4]. An exemplary domain in which
KGs are widely applied is the biomedical domain. For instance, KGs are
utilised to model diseases, organisms, and clinical information [5]. Appli-
cations involving KGs depend on the completeness of the KGs and the va-
lidity of the contained triples. Because of limitations in KG construction ap-
proaches and the fast growth of data, real-world KGs such as DBpedia [6],
Wikidata [7], Freebase [8], and Bio2RDF [9] that contain millions of facts
are usually still incomplete and noisy [10, 11]. Therefore, in the past, vari-
ous approaches have been proposed to determine missing links by applying,
for instance, logic-based reasoning using first-order or description logic and
machine-learning-based approaches, such as knowledge graph representa-
tion learning approaches [1, 11].

One line of research that has received significant attention in the last
decade is KGEM-based link prediction [12], and recently graph neural
network-based approaches have received increased attention [13]. Link pre-
diction in KGs has been mainly a transductive task [12, 14], i.e., inference
has been restricted to entities and relations that have been seen during train-
ing. A vast number of models have been proposed to address transductive
link prediction. Often, the reported improvements in the link prediction per-
formance are incremental, and the impact of the proposed contributions is
unclear, mainly for two reasons. First, there is a major challenge in reproduc-
ing reported link prediction experiments. The reasons for this are manifold:
lack of official implementation, employment of slightly different evaluation
procedures [15], missing hyper-parameter specifications, and usage of differ-
ent programming languages and frameworks [14]. Investigating the repro-
ducibility of link prediction experiments under identical conditions provides
a better understanding of the performance of the proposed models. More
specifically, such a study will highlight experiments that can or cannot be
reproduced, adaptions required to reproduce a specific experiment, and po-
tential factors that impede the reproduction of specific experiments.
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Second, it has been shown that baseline model architectures/interaction
models can obtain competitive results when configured appropriately [16],
raising the question of whether the incremental improvements reported in
several works are solely due to the proposed interaction models or the impact
of other components, such as the training approach and the loss function. In
order to answer this question, an extensive study is required in which a large
number of different models based on diverse configurations are evaluated. In
answering this question, a realistic and holistic overview of the performance
of KGEMs for the link prediction task can be established. Furthermore, the
answer to this question can significantly impact the field of KGEM research
by providing a solid foundation by which the research focus for upcoming
studies in this field can be influenced. For instance, the answer can appeal
to continue with the research focus of the last years, i.e., focusing mainly
on developing novel interaction models or shift the research focus to, e.g.,
theoretical understanding of KGEMs. Finally, the results of such a study will
support practitioners in selecting the appropriate KGEM for their use case,
which potentially can have a significant practical impact, e.g., by addressing
biomedical use cases.

Lately, inductive link prediction has received significant attention [17]. In-
ductive link prediction enables inference over unseen entities/relations, and
recent works address different inductive settings. So far, inductive link pre-
diction approaches are restricted to KGs. However, there is an increased us-
age of hyper-relational KGs such as Wikidata [7] that allow modelling edges
of a KG together with a set of attributes in the form of key-value pairs that
are called qualifiers [18]. The hyper-relational information (qualifiers) con-
tained in hyper-relational KGs may improve the generalisation capabilities
of inductive link predictors [18]. Besides the academic interest in investigat-
ing whether exploring hyper-relational information benefits inductive link
prediction, it also has practical relevance since an increasing number of in-
dustrial KGs are employing the hyper-relational paradigm [19].

As indicated above, KGs occupy a central role in the biomedical do-
main [5]. Therefore, it is of huge interest to investigate the effectiveness of
KG representation learning and link prediction for biomedical applications.

1.2 Problem Statement & Challenges

This section presents the problem statement underlying this thesis and the
challenges related to addressing this problem.

1.2.1 Problem Statement

KGs are widely adopted in academic and industrial applications [13]. De-
spite their large size, they are often incomplete, impacting downstream ap-
plications involving KGs [11]. Therefore, investigating approaches to predict
missing links in KGs is crucial. Knowledge graph representation learning,
and especially KGEMs, have been heavily investigated for KG transductive
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link prediction. However, the performance of KGEMs-based link predictors
is often not comprehensible. In particular, the reproduction of various link
prediction experiments is not possible, and the impact of the individual com-
ponents of KGEMs on the model’s performance and their interplay is often
unclear.

Transductive link prediction approaches are limited to entities (and re-
lations) seen during training. To get reliable predictions involving unseen
entities, (generally) a model would need to be retrained, which is impractical
for real-world use cases that involve predictions over continuously evolv-
ing KGs, such as item recommendations within e-commerce platforms [20,
21]. Lately, inductive link prediction that enables inference over unseen enti-
ties has gained increased attention. Because proposed inductive link predic-
tion approaches are designed only for triple-based KGs, but not for hyper-
relational KGs despite the increased adoption of hyper-relational KGs [19], it
yet not evident how exploiting hyper-relational information impacts induc-
tive link prediction.

KGs occupy an important role in many biomedical applications, and KG
representation learning has great potential to be applied in diverse biomedi-
cal use cases such as predicting drug-target links [22]. Nonetheless, KG rep-
resentation learning and link prediction based on KGEMs have been under-
explored in the biomedical domain [22, 23].

1.2.2 Challenges

Reproducibility Challenges

Challenge 1: Lack of Information One challenge for the reproduction of
link prediction experiments is that for several KGEMs, important informa-
tion, i.e., official source code or the detailed description of the experimental
set-up, is not available [14]. In the case of missing source code, we have to
only rely on the information provided in the accompanying paper. How-
ever, all necessary implementation details may not be discussed in the paper.
Trying to recover missing hyper-parameter values can be a tedious process
that does not ensure that appropriate values that ensure the reproduction of
published results can be determined.

Challenge 2: Usage of Different Programming Languages & Frameworks
Unavoidably, different programming languages and (or) underlying frame-
works have been used to implement the KGEMs over the years [14]. This
aspect introduces variability and makes the reproduction of published ex-
periments challenging.

Challenge 3: Different Realisation of the Evaluation Metrics It has been
shown that the definition of the rank, which is the basis for several link pre-
diction evaluation metrics, has been realised differently [15] which can have
a major impact on the link prediction performance [14]. This aspect is espe-
cially critical when official source code is lacking.
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Challenge 4: Lack of Software Ecosystem To conduct the reproduction ex-
periments, to understand potential reasons that hamper reproduction, and
to perform experiments for each model under identical conditions, we re-
quire a software ecosystem that implements the KGEMs to investigate. For
reproducibility, it is crucial that the ecosystem offers implementations that
coincide with the original implementations and does not integrate changes
that, for instance, improve the performance of the models. However, the
landscape of software ecosystems for KGEMs was limited. Often, software
projects for KGEMs are repositories that accompany a publication or cover
a small number of KGEMs or provide implementations that do not rely on
the original implementation or rely on a single realisation of the evaluation
metric, which can hamper reproduction as mentioned above.

Benchmarking Challenges

Challenge 5: Lack of Extensive and Fully Configurable KGEM Software
Ecosystem To perform an extensive benchmarking in order to measure the
impact of individual components of a KGEM and their interplay under iden-
tical conditions, a fully-configurable and extensive software ecosystem is re-
quired that enables such an analysis.

Challenge 6: Need for Extensive Computational Resources Besides a
comprehensive software ecosystem, we also require extensive computational
resources to conduct the benchmarking study. Assuming that we evaluate 21
interaction models on four datasets where, for each interaction model, we
evaluate five loss functions, two training approaches, and the effect of (not)
modelling inverse relations, we would perform 21 · 4 · 5 · 2 · 2 = 1680 abla-
tion studies. If we further assume that for each ablation study, we perform
a hyperparameter-optimisation that requires, on average, 14 GPU hours, we
would require 1680 · 14 = 23520 GPU hours, which corresponds to ≈ 2.7
years of computing time on a single GPU.

Hyper-Relational Inductive Link Prediction Challenges

Challenge 7: Terminology Gap One challenge in investigating inductive
link prediction approaches is the lack of a unified terminology in the induc-
tive link prediction literature. Conceptually similar inductive settings are
called differently [17].

Challenge 8: Lack of Benchmark Datasets Because inductive link predic-
tion in hyper-relational KGs has not yet been investigated to the best of our
knowledge, a further challenge is the lack of benchmark datasets for evalu-
ating inductive link prediction in hyper-relational KGs.
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1.3 Research Questions & Contributions

In this section, we present the research questions we address, the challenges
addressed in the context of these research questions, and the contributions
we made to answer these questions.

RQ1. To which extent are published knowledge graph embedding-based link pre-
diction results reproducible?

This research question addresses the reproducibility of link prediction ex-
periments and covers Challenges 1-4. To answer this question, we made the
following contributions. In a first step, we developed PyKEEN/PyKEEN 1.0
(Chapters 2 and 3), an extensive KGEM library for training and evaluating
KGEMs-based link predictors under identical conditions. Equipped with Py-
KEEN 1.0, we performed a reproducibility study involving 34 experiments
over 15 KGEMs and four datasets (Chapter 4) in which we demonstrated
which results could be reproduced and revealed the existing obstacles in re-
producing reported link prediction experiments. We made four key observa-
tions: i.) a set of experiments could only be reproduced with an alternative
set of hyper-parameter values, ii.) the absence of a detailed experimental
description hampered the reproduction, iii.) the absence of an official imple-
mentation impeded the reproduction, and iv.) specific results depended on
the realised definition of the rank (i.e., depended on the use of the optimistic,
average, and pessimistic ranking).

RQ2. Can the performance of knowledge graph embedding-based link predictors
solely be attributed to the interaction model?

In the context of this research question, we investigate the influence of
a KGEM’s components on the overall model performance. We seek to an-
swer whether the determining factor for the performance of a KGEM is its
interaction model (as postulated in the past) or whether the interplay of var-
ious components is crucial for the model performance. While answering this
research question, we address Challenges 5-6, and make the following contri-
butions. We performed the most extensive benchmarking study in the field of
KGEMs (Chapter 4). We (re-)defined a KGEM as a composition of four com-
ponents (interaction model, loss function, training approach, and the usage
of inverse relations) allowing us to measure the impact of each component on
the KGEMs’ performance individually. For each interaction model, we evalu-
ated various configurations, where a configuration corresponds to a specific
combination of the four components of a KGEM. In particular, our bench-
marking study covered 21 interaction models, two training approaches, five
loss functions, two optimisers and four datasets. Our study involved several
thousands of experiments spanning 24,804 GPU hours to answer the research
question.

We empirically show that the performance of a KGEM is not only depen-
dent on its interaction model, but heavily depends on the model’s configu-
ration, i.e., the composition of the interaction model, loss function, training
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approach, and the decision to explicitly model inverse relations. No com-
position performs best across all datasets, but the performance is dataset-
dependent. We demonstrate that several compositions can compete with the
state-of-the-art when configured appropriately. In several cases, previously
reported results for an interaction model could be outperformed. Finally, we
show that model size can be compressed in certain instances while maintain-
ing competitive performance.

RQ3. Can hyper-relational information improve inductive link prediction?
In the context of research questions RQ1 and RQ2, we focused on trans-

ductive link prediction approaches that have been applied on triple-based
KGs. In the context of this research question, we move one step further
and investigate inductive link prediction within hyper-relational KGs. While
answering this research question, we address Challenges 7-8. In order to
answer the research question, we make the following three contributions.
We first address the terminology gap in the literature and propose a theo-
retical framework to classify inductive link prediction settings (Chapter 5).
Our framework distinguishes between semi-inductive and fully-inductive
settings and shows that proposed approaches fall in either one of these cat-
egories or are a mixture of both. Second, we provide a novel set of bench-
mark datasets to investigate inductive link prediction in hyper-relational
KGs. Third, we adopted two baseline models for the hyper-relational set-
ting and performed extensive quantitative and qualitative experiments for
the fully and semi-inductive link prediction settings to investigate the impact
of hyper-relational information on the inductive link prediction performance
of the models. In summary, we bridged the concepts of inductive link predic-
tion and hyper-relational KGs. We received the Best Research Paper Award
at the International Semantic Web Conference 2021 for our work.

Applications A further contribution of this thesis is the successful utilisa-
tion of knowledge graph representation learning for two biomedical applica-
tions (Chapter 6).

First, we develop BioKEEN, a software library that facilitates the usage
of KGEMs for bioinformaticians without deep knowledge of KGEMs and
the implementation of the models. BioKEEN assists users in configuring
their link prediction experiments and provides access to numerous biomed-
ical databases. In an exemplary use case, we employed BioKEEN to predict
crosstalks and hierarchies between biological pathways in a novel pathway
dataset. We could identify that TGF-beta Receptor Signaling (wikipathways:
WP560) is equivalent to TGF-beta signaling pathway (kegg: hsa04350), and that
Lipoic acid (kegg: hsa00785) is part of Lipid metabolism (reactome: R-HSA-556833.
Both predictions describe novel links demonstrating the effectiveness of Bio-
KEEN in successfully addressing a biomedical link prediction problem.

In a second application, we propose CLEP (CLinical Embedding of Pa-
tients), an approach for learning patient embeddings by combining patient-
level data and prior knowledge in the form of biological KGs. The patients
are incorporated as nodes and linked to the biomedical entities in the KGs
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based on their most characteristic features. Based on the enriched KGs, we
employed KGEMs to learn knowledge graph embeddings. The learned pa-
tient embeddings have been used to train classifiers to discriminate between
patients and healthy controls. The results highlight that the investigated clas-
sifiers performed better when trained on top of the learned patient embed-
dings instead of the raw transcriptomics data.

1.4 List of Publications

1.4.1 Thesis Publications

1. Mehdi Ali, Hajira Jabeen, Charles Tapley Hoyt, and Jens Lehmann.
“The KEEN Universe - An Ecosystem for Knowledge Graph Em-
beddings with a Focus on Reproducibility and Transferability”.
In: The Semantic Web - ISWC 2019 - 18th International Semantic Web
Conference, Auckland, New Zealand, October 26-30, 2019, Proceedings,
Part II. vol. 11779. Lecture Notes in Computer Science. Springer,
2019, pp. 3–18. DOI: 10 . 1007 / 978 - 3 - 030 - 30796 - 7 _ 1. URL:
https://doi.org/10.1007/978-3-030-30796-7_1
Mehdi Ali developed the idea of an ecosystem for KGEMs that focuses
on the reproducibility and transferability of KGEM research. Mehdi
Ali implemented the major parts of the source code. Charles Tapley
Hoyt refactored, and packaged the code, and added additional func-
tionalities. Mehdi Ali wrote the manuscript. All authors revised the
manuscript.

2. Mehdi Ali*, Max Berrendorf*, Charles Tapley Hoyt*, Laurent Vermue*,
Sahand Sharifzadeh, Volker Tresp, and Jens Lehmann. “PyKEEN
1.0: A Python Library for Training and Evaluating Knowledge Graph
Embeddings”. In: Journal of Machine Learning Research 22.82 (2021). *
equal contribution, pp. 1–6. URL: http://jmlr.org/papers/v22/20-
825.html
Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, Sahand Sharifzadeh,
and Laurent Vermue developed the idea of abstracting and implement-
ing KGEMs as the composition of four components that can flexibly be
composed after each author identified limitations of existing works re-
stricting the in-depth analysis of KGEMs. Mehdi Ali, Max Berrendorf,
Charles Tapley Hoyt, and Laurent Vermue implemented the source
code. Mehdi Ali wrote the initial manuscript, and all authors extended
and finalised it.

3. Mehdi Ali, Max Berrendorf*, Charles Tapley Hoyt*, Laurent Vermue*,
Mikhail Galkin, Sahand Sharifzadeh, Asja Fischer, Volker Tresp,
and Jens Lehmann. “Bringing Light Into the Dark: A Large-scale
Evaluation of Knowledge Graph Embedding Models Under a Unified

https://doi.org/10.1007/978-3-030-30796-7_1
https://doi.org/10.1007/978-3-030-30796-7_1
http://jmlr.org/papers/v22/20-825.html
http://jmlr.org/papers/v22/20-825.html


8 Chapter 1. Introduction

Framework”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (2021). * equal contribution. © 2022 IEEE. Reprinted,
with permission, from Mehdi Ali and Max Berrendorf and Charles
Tapley Hoyt and Laurent Vermue and Mikhail Galkin and Sahand
Sharifzadeh and Asja Fischer and Volker Tresp and Jens Lehmann,
Bringing Light Into the Dark: A Large-scale Evaluation of Knowl-
edge Graph Embedding Models Under a Unified Framework, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 01/2022.
DOI: https : / / doi . org / 10 . 1109 / TPAMI . 2021 . 3124805. URL:
https://ieeexplore.ieee.org/abstract/document/9601281
Mehdi Ali initially discussed the existing research gap with Asja
Fischer and Jens Lehmann. Mehdi Ali, Max Berrendorf, Charles Tapley
Hoyt, Sahand Sharifzadeh, and Laurent Vermue developed the idea to
systematically address the challenges in reproducing published KGEM
experiments and investigate the impact of the single components of a
KGEM on its link prediction performance. Mehdi Ali, Max Berrendorf,
Charles Tapley Hoyt, and Laurent Vermue implemented the source
code. Mehdi Ali, Laurent Vermue and Mikhail Galkin performed
the reproducibility and benchmarking experiments. In addition, Max
Berrendorf implemented and performed the relational pattern analysis.
Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt and Laurent Vermue
evaluated the results and wrote the initial manuscript. All authors
revised the manuscript.

4. Mehdi Ali*, Max Berrendorf*, Mikhail Galkin, Veronika Thost,
Tengfei Ma, Volker Tresp, and Jens Lehmann. “Improving Inductive
Link Prediction Using Hyper-relational Facts”. In: Lecture Notes
in Computer Science 12922 (2021). * equal contribution. For this
work, we received the Best Research Paper Award., pp. 74–92. DOI:
10.1007/978-3-030-88361-4_5
The idea to exploit hyper-relational information for inductive link
prediction was proposed by Mehdi Ali and further developed together
with Max Berrendof and Mikhail Galkin. Mehdi Ali, Max Berrendorf,
Mikhail Galkin, Veronika Thost, and Tengfei Ma developed the the-
oretical framework for classifying different inductive link prediction
scenarios. Mikhail Galkin generated the fully-inductive benchmark
datasets, and Mehdi Ali and Max Berrendorf generated based on the
fully-inducive datasets, the semi-inductive datasets. Mehdi Ali and
Max Berrendorf implemented the main part of the source code. Mehdi
Ali conducted the experiments, and Mehdi Ali, Max Berrendorf, and
Mikhail Galkin evaluated the results. Mehdi Ali, Max Berrendorf and
Mikhail Galkin wrote the initial manuscript. All authors revised the
manuscript.

5. Mehdi Ali, Charles Tapley Hoyt, Daniel Domingo-Fernández, Jens
Lehmann, and Hajira Jabeen. “BioKEEN: a library for learning and

https://doi.org/https://doi.org/10.1109/TPAMI.2021.3124805
https://ieeexplore.ieee.org/abstract/document/9601281
https://doi.org/10.1007/978-3-030-88361-4_5
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evaluating biological knowledge graph embeddings”. In: Bioin-
formatics 35.18 (Feb. 2019), pp. 3538–3540. ISSN: 1367-4803. DOI:
10.1093/bioinformatics/btz117. URL: https://doi.org/10.1093/
bioinformatics/btz117
The idea of BioKEEN and showcasing a concrete biomedical applica-
tion was developed by Mehdi Ali and further conceptualized together
with Charles Tapley Hoyt and Daniel Domingo-Fernández. Mehdi
Ali implemented the machine learning functionalities, Charles Tapley
Hoyt and Daniel Domingo-Fernández implemented the adapters for
integrating the biomedical datasets. Mehdi Ali ran the experiments,
and Mehdi Ali, Charles Tapley Hoyt and Daniel Domingo-Fernández
evaluated the results. Mehdi Ali, Charles Tapley Hoyt, and Daniel
Domingo-Fernández wrote the manuscript, and all authors revised the
manuscript.

6. Vinay Srinivas Bharadhwaj, Mehdi Ali, Colin Birkenbihl, Sarah
Mubeen, Jens Lehmann, Martin Hofmann-Apitius, Charles Ta-
pley Hoyt, and Daniel Domingo-Fernández. “CLEP: a hybrid
data- and knowledge-driven framework for generating patient
representations”. In: Bioinform. 37.19 (2021), pp. 3311–3318. DOI:
10.1093/bioinformatics/btab340. URL: https://doi.org/10.1093/
bioinformatics/btab340
Daniel Domingo-Fernández and Charles Tapley Hoyt conceived
and designed the study. Vinay Srinivas Bharadhwaj implemented
CLEP and ran the experiments with supervision and support from
Daniel Domingo-Fernández. Mehdi Ali guided and supported the
implementation of the knowledge graph embedding generation and
classification tasks. Colin Birkenbihl assisted with data and method
development. Sarah Mubeen processed the knowledge graph. All the
authors contributed to the writing of the manuscript. All authors have
read and approved the final manuscript

1.4.2 Other publications

1. Mehdi Ali, Sahar Vahdati, Shruti Singh, Sourish Dasgupta, and Jens
Lehmann. “Improving Access to Science for Social Good”. In: Machine
Learning and Knowledge Discovery in Databases - International Workshops
of ECML PKDD 2019, Würzburg, Germany, September 16-20, 2019,
Proceedings, Part I. vol. 1167. Communications in Computer and Infor-
mation Science. Springer, 2019, pp. 658–673. DOI: 10.1007/978-3-030-
43823-4_52. URL: https://doi.org/10.1007/978-3-030-43823-4_52

2. Mehdi Ali, Charles Tapley Hoyt, Daniel Domingo-Fernández, and Jens
Lehmann. “Predicting Missing Links Using PyKEEN”. in: Proceedings
of the ISWC 2019 Satellite Tracks (Posters & Demonstrations, Industry, and

https://doi.org/10.1093/bioinformatics/btz117
https://doi.org/10.1093/bioinformatics/btz117
https://doi.org/10.1093/bioinformatics/btz117
https://doi.org/10.1093/bioinformatics/btab340
https://doi.org/10.1093/bioinformatics/btab340
https://doi.org/10.1093/bioinformatics/btab340
https://doi.org/10.1007/978-3-030-43823-4_52
https://doi.org/10.1007/978-3-030-43823-4_52
https://doi.org/10.1007/978-3-030-43823-4_52
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Outrageous Ideas) co-located with 18th International Semantic Web Confer-
ence (ISWC 2019), Auckland, New Zealand, October 26-30, 2019. Vol. 2456.
CEUR Workshop Proceedings. CEUR-WS.org, 2019, pp. 245–248. URL:
http://ceur-ws.org/Vol-2456/paper64.pdf

3. Veronika Henk, Sahar Vahdati, Mojataba Nayyeri, Mehdi Ali, Hamed
Shariat Yazdi, and Jens Lehmann. “Metaresearch recommendations
using knowledge graph embeddings”. In: RecNLP workshop of AAAI
Conference. 2019

1.5 Thesis Structure

In the following, we describe the structure of this thesis, comprised of 7 chap-
ters.

Chapter 1 In Chapter 1, we present the introduction to this thesis covering
the motivation, problem statement, challenges, research questions, and con-
tributions made in this thesis. It further lists the publications building the
foundation of the thesis and presents its theoretical background.

Chapter 2 In Chapter 2, we present the KEEN Universe, an ecosystem for
KGEMs. Each component of the KEEN Universe, i.e., PyKEEN, BioKEEN
and the KEEN Model Zoo, is presented. The KEEN Universe builds the
foundation for PyKEEN 1.0 and, therefore, the foundation for the research
questions RQ1 and RQ2.

Chapter 3 In Chapter 3, we present PyKEEN 1.0, a community effort in
which we redesigned and re-implemented PyKEEN to be fully configurable.
PyKEEN 1.0 presents the most extensive KGEMs software library and has
been used to investigate and answer RQ1 and RQ2.

Chapter 4 In Chapter 4, we present our KGEM-based link prediction repro-
ducibility study and the most extensive benchmarking study performed in
order to answer RQ1 and RQ2. We demonstrate which experiments can (can-
not) be reproduced and discuss potential factors that hamper reproduction.
Then, in the context of our benchmarking study, we highlight that the perfor-
mance of a KGEM is often not solely dependent on its interaction model but
on the interplay of the interaction model, training approach, loss function,
and the usage/avoidance of inverse relations.

Chapter 5 In Chapter 5, we present our work addressing RQ3. We present
our theoretical framework for classifying (existing) inductive link prediction

http://ceur-ws.org/Vol-2456/paper64.pdf
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settings, present a novel set of benchmark datasets for inductive link predic-
tion and our study in which we demonstrate that hyper-relational informa-
tion improves inductive link prediction.

Chapter 6 In Chapter 6, we present two applications of knowledge graph
representation learning for the biomedical domain. First, we present Bio-
KEEN, an extension of PyKEEN that supports bioinformaticians lacking ex-
pertise in KGEMs and their implementation to apply KGEMs effectively. We
present an application of BioKEEN in which cross-talks and hierarchies are
predicted between biological pathways. We highlight that BioKEEN can ef-
fectively be applied to predict novel links. Second, we present CLEP, an ap-
proach for learning representations of patients that are incorporated into KGs
that express prior biomedical knowledge. We show that the learned repre-
sentations outperform patients’ raw representations in downstream classifi-
cation tasks.

Chapter 7 In Chapter 7, we summarise the contributions presented in this
thesis and provide an outlook for future works.

1.6 Foundations

1.6.1 General Notation

In the context of this thesis, scalars are expressed as lowercase letters x, vec-
tors as bold-face lowercase letters x, matrices as bold-face uppercase letters
X, three-mode tensors as fraktur font uppercase letters X, and the lp-norm of
vectors as ∥x∥p. To express the conjugate of a complex number x ∈ C, we
use x. Finally, we use ⊙ to represent the Hadamard product: Rd × Rd → Rd:
[x ⊙ y]i = xi · yi [14].

1.6.2 Knowledge Graphs

A KG is defined as a directed multi-relational graph K ⊆ K = E × R × E
where E represents the set of nodes/entities and R the set of edges/relations.
KGs contain triples (h, r, t) ∈ K in which h, t ∈ E denote the head and tail
entities and r ∈ R their respective relation [14, 11]. For instance, in the triple
(John, graduated_from, University of Oxford) contained in the exemplary KG
depicted in Figure 1.1, Peter is the head entity, University of Oxford the tail
entity, and graduated_from represents the relation.

While triples in KGs usually represent true triples, there are different as-
sumptions about triples that are not part of a specific KG. According to the
closed world assumption (CWA), triples which are not contained in the KGs
are considered as non-existing triples, i.e., false triples. For instance, consid-
ering our KG in Figure 1.1, the triple (Gabriele, lives_in, Germany) is consid-
ered as a false triple according the CWA because it is not contained in the
KG. According to the open world assumption (OWA), triples not contained
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in the KGs are regarded as triples, which might be true or false. Therefore,
the previously mentioned exemplary triple is not considered to be necessar-
ily false.

FIGURE 1.1: An exemplary KG. Nodes represent entities and
edges their relations.

So far, we have focused on triples. However, KGs such as Wikidata pro-
vide for a proportion of triples an additional set of key-value pairs which are
called qualifiers according to the Wikidata statement model or triple metadata
in RDF∗ [18, 30]. Triples associated with qualifiers are called hyper-relational
facts. An exemplary hyper-relational fact is depicted in Figure 1.2. The triple
is associated with two qualifier pairs: (Degree, Master of Science) and (Academic
Major, Computer Science).

FIGURE 1.2: An exemplary hyper-relational fact. The triple is
associated with the qualifier pairs (Degree, Master of Science) and

(Academic Major, Computer Science).
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FIGURE 1.3: Transductive vs. inductive link prediction scenar-
ios. Grey nodes represent entities seen during training, and red
nodes are entities seen during inference. Dashed edges repre-

sent edges to be predicted during inference.

1.6.3 Link Prediction

Since real-world KGs are usually incomplete (and noisy), numerous ap-
proaches have been developed to predict missing links. Link prediction is
the task of predicting missing tail/head entities of (h,r)/(r,t)-pairs. Let E•
represent the set of training entities, i.e., they appear as head or tail entities
in the set of training triples Ttrain ⊆ E•×R×E•, and E◦ ⊆ E the set of unseen
entities. Depending on whether the evaluation triples (validation and/or test
triples) Teval involve unseen entities, the link prediction setting is classified
either as a transductive or inductive link prediction setting [17].

Transductive Link Prediction

In transductive link prediction, the evaluation triples Teval involve only seen
entities, i.e., Teval ⊆ E• ×R× E•. Let the exemplary KG in Figure 1.1 be the
training graph, then predicting the tail entity Germany, for the head-relation
pair (Gabriele, lives_in, ?) is an example for predicting a transductive link
since both the head and tail entity (and the relation) have been seen during
training [14].

Inductive Link Prediction

In contrast to transductive link prediction, inductive link prediction involves
entities/relations during inference that are not seen during training (see Fig-
ure 1.3). In the context of this work, we focus on unseen entities, but the
approaches can be generalised to unseen relations, too. Different inductive
link prediction scenarios have been proposed in the literature, and in sev-
eral cases, the same concepts are named differently. Therefore, we follow
the classification presented in [17], which provides a unified categorisation
of the approaches. In particular, it classifies all inductive settings into the
semi-inductive or/and fully-inductive setting.
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Semi-Inductive Link Prediction In the semi-inductive link prediction set-
ting, links between seen and unseen entities are predicted, i.e., Teval ⊆
E• × R × E◦ ∪ E◦ × R × E•. The second example in Figure 1.3 depicts the
semi-inductive setting. The link between the test entity (red node) and a
grey node (training entity) shall be predicted. In the context of this thesis, we
focus on the case in which no additional information for unseen entities in
the semi-inductive setting is provided. However, the so called k-shot learn-
ing scenario setting is proposed where for unseen entities, k links to training
entities are provided [31, 32, 33].

Fully-Inductive Link Prediction In the fully-inductive link prediction set-
ting, links are predicted within an unseen graph Tinf ⊆ E◦ ×R× E◦ where
the set of relations is a subset of the relations of the training graph, but all
the entities in the graph are unseen. The last example in Figure 1.3 illustrates
the described scenario. The graph comprised of the unseen entities is the in-
ference graph Tinf , and links are only predicted within this graph. Because
the relations are shared across the training and the inference graph, the in-
formation learned on the training graph can be transferred to the inference
graph.

1.6.4 Knowledge Graph Embedding Models

In the preceding section, we introduced the task of link prediction. Differ-
ent approaches have been proposed to tackle link prediction covering rule-
based and machine-learning-based approaches. In the last decade, one re-
search field that received increased popularity is the field of KGEMs [11, 14].
KGEMs learn to embed entities and relations of a KG into a latent feature
space/latent feature spaces while best-preserving its inherent structure [11,
12, 14]. We follow the definition presented in [14] and define a KGEM
as a composition of an interaction model (Section 1.6.4), a loss function (Sec-
tion 1.6.5), a training approach (Section 1.6.6), and the usage of inverse rela-
tions (Section 1.6.7). This definition allows us to dissect the performance of
KGEMs based on their individual components as well as their combination.
In the following, we describe each of the components in detail.

Interaction Models

An interaction model is a function f : E × R × E → R of triples that com-
putes real-valued scores representing the plausibility that the triple is true
given the embeddings of the head/tail entities and relations [14, 11]. In the
context of this thesis, a higher score corresponds to a higher plausibility. In-
teraction models can be classified into translational distance based and seman-
tic matching based interaction models [12]. Translational distance interaction
models employ distance functions such as the Euclidean distance to compute
the plausibility of a triple, and semantic matching interaction models employ
similarity-based functions (e.g., inner product) [12].
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In the following, we rely on the notation presented in Ali et al. [14]. When
referring to head/tail entities or relations, we refer to their embeddings h, t
and r. If not indicated otherwise, we assume that they are elements of Rd.

Translational Distance Interaction Models

Unstructured Model Bordes et al. [34] introduced the Unstructured Model
that computes the Euclidean distance between the head and tail entities omit-
ting the relation to compute the plausibility score [14]:

f (h, t) = −∥h − t∥2
2 , (1.1)

Because the relations are ignored, UM does not address the multi-
relational aspect of KGs. For instance, UM would compute for the triples (A,
fatherOf, B) and (A, motherOf, B) the same score which is clearly a limitation.
Nonetheless, the approach can be helpful when the KG is comprised solely
of a single relationship type such as friendOf in simplified social networks.

Structured Embedding In Structured Embedding [35], each relation is
represented by two matrices Mh

r , Mt
r ∈ Rd×d, and are used to project head

and tail entity of a triple separately [14]:

f (h, r, t) = −∥Mh
r h − Mt

rt∥1 . (1.2)

Therefore, the role of an entity in a triple as a head or tail entity is explic-
itly addressed.

TransE In TransE [36], relations are used to translate head entities to tail
entities by enforcing h + r ≈ t [14]:

f (h, r, t) = −∥h + r − t∥p , (1.3)

where p ∈ {1, 2} represents a hyper-parameter. Despite its simplicity and
efficiency in modeling multi-relational data, it cannot model 1-N, N-1, and
N-M relations. Let (h, r, t1), (h, r, t2) ∈ K be two triples part of a KG. Given
the constraint h + r ≈ t, it follows h + r ≈ t1 and h + r ≈ t2 resulting in
t1 ≈ t2.

TransH Wang et al. [37] addressed the limitation of TransE and proposed
TransH. TransH follows the idea of TransE and interprets each relation as
a translation from the head to the tail entity. However, the translation is
performed in a relation-specific hyperplane [14]:

f (h, r, t) = −∥hr + dr − tr∥2
2 . (1.4)

where wr ∈ Rd denotes the relation-specific normal vector of a hyper-
plane and projects the entities into the hyperplane: hr = h − w⊤

r h, tr =
t − w⊤

r t, and dr ∈ Rd denotes the relation-specific translation vector in the
hyperplane.

TransR Lin et al. [38] argue that entities and relations are different ob-
jects and, therefore, should be represented in distinct spaces. They propose
TransR, an extension of TransH that models entities and relations in different
vector spaces [14]:
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f (h, r, t) = −∥hr + r − tr∥2
2 (1.5)

where hr = Mrh, tr = Mrt, r ∈ Rk, and Mr ∈ Rk×d represents a relation-
specific projection matrix that projects the entities into the relational space.

TransD Ji et al. [39] proposed TransD, an extension of TransR that cre-
ates entity-relation-specific projection matrices to project entities into the re-
lational space instead of sharing the same projection matrix of a relation r
with all entities. The reasoning is that entities are of different types and
characterised by distinct attributes. Consequently, not all entities should
be treated equally by projecting them based on the same relational projec-
tion matrix [39]. Each entity and relation is represented by two vectors,
h, hp, t, tp ∈ Rd and r, rp ∈ Rk. One represents its semantics (h, t, r), and
one is used to construct the projection matrices (hp, tp, rp): Mr,h = rphT

p + Ĩ
and Mr,t = rptT

p + Ĩ where Mr,t, Mr,t ∈ Rk×d, and Ĩ ∈ Rk×d that is comprised
with ones on the diagonal and zeros everywhere else. The plausibility score
for the triple is computed using the projected head and tail entities [14]:

f (h, r, t) = −∥hr + r − tr∥2
2 . (1.6)

RotatE RotatE [40] is a complex-valued interaction model that models
each relation as rotation from the head to tail entity [14], i.e., t = h ⊙ r. The
plausibility score for a triple is computed as follows:

f (h, r, t) = −∥h ⊙ r − t∥ , (1.7)

where h, r, t are complex-valued embeddings, i.e. h, r, t ∈ Cd, and |ri| = 1
allowing to represent ri as eiθr,i representing a counterclockwise rotation by
θr,i radians. Overall, Rotate is capable of modelling symmetry/anti-symmetry,
inversion and composition patterns.

MuRE MuRE [41] is the Euclidean realisation of the hyperbolic interac-
tion model MuRP [41]. MuRE computes the distance between the trans-
formed head and tail entities and adds scalar offsets [14] to the computed
distance:

f (h, r, t) = −∥Rh − t + r∥2
2 + bh + bt (1.8)

where R ∈ Rd×d is a diagonal matrix and bh and bt ∈ R.
KG2E KG2E [42] explicitly models uncertainties in the entity and rela-

tion embeddings by modelling entities and relations as probability distri-
butions. Each entity and relation is modelled by a multi-variate Gaussian
N i(µi, Σi) where the mean indicates the embedding’s position in the vector
space and the diagonal covariance matrix expresses its uncertainty. A triple
(h,r,t) obtains a high plausibility score when the distributions between P e =
N h(µi, Σh)−N t(µt, Σt) = N h−t(µh − µt, Σh + Σt) and P r = N r(µr, Σr) are
similar, where N h, N r and N t denote the distributions of the head entity,
relation and tail entity. To compute the similarity between P e and P r, the
Kullback-Leibler (KL) divergence between between both distribution is com-
puted:
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f (h, r, t) = DKL(P e,P r)

=
1
2

{
tr(Σ−1

r Σe) + (µr − µe)
TΣ−1

r (µr − µe)

−log(
det(Σe)

det(Σr)
)− d

}
.

(1.9)

where tr denotes the trace operation. In addition to the asymmetric in-
teraction model based on the KL divergence, a symmetric interaction model
based on the expected likelihood is proposed.

Semantic Matching Interaction Models

RESCAL RESCAL [43] is a tensor factorisation approach in which entities
are represented as vectors and relations as matrices Wr ∈ Rd×d. The relation
matrices can be considered as weight matrices that define the extent of in-
teraction between the head and tail entities’ latent features in that particular
relation [14]:

f (h, r, t) = hTWrt =
d

∑
i=1

d

∑
j=1

w(r)
ij hitj (1.10)

DistMult DistMult [44] is similar to RESCAL, but the relation matrices
are diagonal. Though, reducing the time complexity of RESCAL from O(K2)
to O(K). The interaction model is defined as [45, 14]:

f (h, r, t) = hTWrt =
d

∑
i=1

hi · diag(Wr)i · ti . (1.11)

While the simplification of RESCAL introduced through DistMult im-
proves the computational efficiency, it reduces its expressivity since it con-
siders all relations as symmetric relations, i.e., f (h, r, t) = f (t, r, h).

ComplEx ComplEx [45] addresses the limitation of DistMult by repre-
senting entities and relations as complex-valued vectors h, r, t ∈ Cd. It uses
the Hadamard product to compute the plausibility scores of triples [14]:

f (h, r, t) =Re(h ⊙ r ⊙ t), (1.12)

where Re(x) is the real-valued part of the complex-valued score. Com-
pared to DistMult, ComplEx is capable of modelling anti-symmetric relations
since the Hadamard product in not a commutative operation in the complex
space, i.e., in general f (h, r, t) ̸= f (t, r, h).

QuatE QuatE [46] models entities and relations as hypercomplex-valued
vectors, i.e., ei, rj ∈ Hd. Each hypercomplex number is represented by a real
and three imaginary parts. The interaction model is defined as [14]:

f (h, r, t) = h ⊗ r · t, (1.13)
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where ⊗ denotes the Hamilton product and h ⊗ r represents a rotation of
the head entity performed by the relation representation.

SimplE SimplE [47] extends the tensor factorisation approach canonical
polyadic (CP) [47]. CP models each entity ei ∈ E by two vectors he, te ∈ Rd

where he is used when e occurs as the head entity in a triple and te when it
occurs as the tail entity. The limitation of this approach is that he and te are
learned independently, i.e., information learned for the entity ei ∈ E based
on (ei, r1, ej) ∈ K cannot be exploited when predicting (ek, r2, ei) ∈ K. To
overcome this limitation, SimplE add for each relation also its inverse rela-
tion r

′
to the set of relations. The interaction model simultaneously employs

the participating relation r of a triple (h, r, t) ∈ K and its inverse relation r
′

(and the corresponding inverse triple) in order to propagate the information
through both representations of the participating entities [14]:

f (h, r, t) =
1
2

(〈
hei , r, tej

〉
+

〈
hej , r′, tei

〉)
. (1.14)

where ⟨h, r, t⟩ = ∑d
i hi ∗ ri ∗ ti.

TuckER TuckER [48] relies on the tensor factorisation method Tucker [49],
i.e., it decomposes the three-mode adjacency tensor representing a KG into
a set of factor matrices and a core tensor of lower rank. The entity matrix
E = A = C ∈ Rne×de and the relation matrix R = B ∈ Rnr×dr represent the
factor matrices. W = Z ∈ Rde×dr×de denotes the core tensor and expresses the
amount of interaction between entities and relations. The plausibility score
of a triple is computed as follows [14]:

f (h, r, t) = W×1 h ×2 r ×3 t , (1.15)

where the entity representations h and t are rows from E, and the relation
representation r is a row from R. ×n expresses the tensor product, where n
indicates the tensor mode used to compute the product.

ProjE ProjE [50] is characterised by two major operations, a combination
operation ⊗ and a projection operation. The combination operator combines
the embeddings of the head entities and the relations: h ⊗ r = Deh + Drr +
bc. The combination operator makes use of De, Dr ∈ Rk×k representing diag-
onal matrices shared across all entities and relations, and bc ∈ Rk denoting a
shared bias vector. The plausibility score of a triple is computed as [14]:

f (h, r, t) = g(t z(h ⊗ r) + bp) , (1.16)

where g and h denote non-linear activation functions, and bp the projec-
tion bias.

HolE In Holographic embeddings (HolE) [51], the plausibility scores of
triples are computed using the circular correlation operator ⋆ : Rd × Rd →
Rd [51], where a ⋆ b is computed as [a ⋆ b]i = ∑d−1

k=0 ak ∗ b(i+k) mod d. The
interaction model is defined as [14]:

f (h, r, t) = σ(rT(h ⋆ t)) (1.17)
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ERMLP ERMLP [52] is a feed-forward neural network with a hidden
layer W ∈ Rk×3d that expects as input the concatenation of the head, relation
and tail representation of a triple (h, r, t) ∈ K, and an output layer w ∈ Rk

that computes the plausibility score of the triples [14]:

f (h, r, t) = wTg(W[h; r; t]), (1.18)

where g denotes a non-linear activation function.
Neural Tensor Network The Neural Tensor Network (NTN) [53] repre-

sents each entity as a vector, i.e., ei ∈ Rd, and each relation is represented by
the parameters of a bilinear tensor network. Therefore, for each relation, a
relation specific tensor Wr ∈ Rd×d×k is defined that relates the head and tail
representations of a triple [14]:

f (h, r, t) = uT
r · tanh(hWrt + Vr[h; t] + br) , (1.19)

where Vr ∈ Rk×2d and br ∈ Rk are the usual linear projection matrix, and
the bias vector of a hidden feed-forward network, and ur ∈ Rk represents
the weights of the output layer.

ConvKB ConvKB [54] is a convolutional neural network-based approach.
The embeddings of a triple (h, r, t) ∈ K are organised column-wise into a ma-
trix A = [h; r; t] ∈ Rd×3 on which convolutional filters ωi ∈ R1×3, i = 1, . . . , τ
create a set of feature maps. Every convolutional filter convolves row-wise
over A and generates a feature map vi = [vi,1, ..., vi,d] ∈ Rd capturing interac-
tions between the embeddings of a triple. In order to compute the plausibility
score of a triple, the feature maps are concatenated and the dot-product with
a shared weight vector w ∈ Rτd×1 is computed [14]:

f (h, r, t) = [vi; . . . ; vτ] · w , (1.20)

where [vi; . . . ; vτ] ∈ Rτd×1.
ConvE ConvE [55] is like ConvKB, a convolutional neural network-based

interaction model. The head and relation representation of a triple (h, r, t) ∈
K are organised row-wise into a matrix A ∈ R2×d. Before A is passed to
the convolutional-layer, it is reshaped into a matrix B ∈ Rm×n. The first
m/2 half rows of B correspond to the embedding of h, and the second half
of the rows to the embedding of r. B is processed by a convolutional layer
where 2-dimensional convolutional filters Ω = {ωi | ωi ∈ Rr×c} generate a
set of feature maps that reshaped and concatenated to form the feature vector
v ∈ R|Ω|rc. The obtained feature vector v is transformed into eh,r = vTW
by a linear-transformation W ∈ R|Ω|rc×d, and used together with the tail
representation t to compute the plausibility score [14]:

f (h, r, t) = eh,rt . (1.21)

1.6.5 Loss Functions

It has been shown that the impact of loss functions on a KGEM’s performance
can be decisive [56, 14]. Typically, loss functions used to train KGEMs belong
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to the class of pointwise, pairwise, and setwise loss functions [14]. We follow
the categorisation and notation presented in [14] to describe the loss func-
tions. Though, ti ∈ K represents a positive/negative triple, and f denotes
the interaction model of a KGEM.

Pointwise Loss Functions

In pointwise loss functions, the loss term is computed between single triples
and their binary labels, indicating whether the triple is correct or false:

L =
1
|B| ∑

( f (ti),li)∈B
L(ti, li) (1.22)

where li ∈ {0, 1} or l̂i ∈ {−1, 1} represents triple’s i-th label (1 represents
the label of positive and 0/−1 of negative triples), and B represents a batch
of triples. Typical pointwise loss functions are the square error loss, binary cross
entropy loss, pointwise logistic loss, and the pointwise hinge loss.

Pairwise Loss Functions

In pairwise loss functions, the loss terms are computed between pairs of
triples [14]. Mostly applied pairwise loss functions for training KGEMs are
the pairwise hinge loss and the pairwise logistic loss [14] which pairwise com-
bine scores of positive triples and scores of negatives:

L =
1
|B| ∑

(t+i ,t−i )∈B

L( f (t−i )− f (t+i )) , (1.23)

where f (t−i ) represent the plausibility score of the positive triple and
f (t+i ) the score of the negative one. The positive and negative triples are usu-
ally related to each other, i.e., the negative triple is obtained by corrupting the
positive one. Because the loss function does not involve negative labels but
compares negative triples to related positive ones, i.e., negative triples are
not considered as false but as less positive than related positive triples, the
loss function naturally complies with the OWA of KGs.

Setwise Loss Functions

In setwise loss functions, the scores of a set of related triples (usually n >
2) are compared. Typical setwise loss functions that are used to to training
KGEMs are self-adversarial negative sampling loss (NSSAL) [40] and the cross
entropy loss (CEL) [55, 56].

1.6.6 Training Approaches

There are two widely employed training approaches to train KGEMs: the
local closed world assumption (LCWA) and the stochastic local closed world
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assumption (sLCWA) [14]. Both rely on different assumptions about negative
training examples, which we will explain in the following.

Local closed world assumption

Based on the LCWA, each triple (h, r, t) ∈ K all triples (h, r, ti) /∈ K are
considered as false triples and represented in a set T −(h, r). Analogous to
T −(h, r), the sets H−(r, t) and R−(h, t) of negative triples can be created in
which all triples (hi, r, t) /∈ K, and (h, ri, t) /∈ K are contained. Though, to
train KGEMs based on the LCWA, usually T −(h, r) is considered as the set
of negative triples [14].

Stochastic local closed world assumption

Based on the sLCWA, not all triples contained in the sets T −(h, r), H−(r, t),
and R−(h, t) are considered to be false. Instead, negative triples are sam-
ples from these sets. In practice, negative triples are created by corrupting
positive ones, i.e., randomly replacing h, r or t of a triple (h, r, t) ∈ K. Two
widely applied approaches are the uniform negative sampling (UNS) [36]
and Bernoulli negative sampling (BNS) [37], which corrupt the tail/head
entity a positive triple. The set of all potentially negative triples is defined
as [14]:

N =
⋃

(h,r,t)∈K
T (h, r) ∪H(r, t), (1.24)

where T (h, r) = {(h, r, t′) | t′ ∈ E ∧ t′ ̸= t} denotes all negative triples
where for a positive triple (h, r, t) ∈ K the tail entity t is corrupted and simi-
larly H(r, t) = {(h′, r, t) | h′ ∈ E ∧ h′ ̸= h} denotes the sets of triples where
the head entity h is corrupted [14].

The set N of potentially negative triples can contain positives, i.e., when
corrupting a positive triple (h, r, t) ∈ K, a positive example (h, r, ti) ∈ K and
(h,r, t) ∈ K can be sampled. Therefore, theoretically, it would be necessary
to remove known false negatives from N , but because of the compute costs
of the filtering step and considering the fact that there is a relatively low
probability to sample a true negative since often |N | ≫ |K|, the filtering step
is skipped [14].

1.6.7 Explicitly Modelling Inverse Relations

When explicitly modelling inverse relations, for each triple (h, r, t) ∈ K an
inverse triple (t, rinv, h) is introduced where rinv denotes the inverse relation
of r and is added to the set of relations R [47, 57]. In addition to introduc-
ing inverse relations, the behaviour of the interaction model is adapted: pre-
dicting the head entities for (r, t)-pairs is performed by predicting the tail
entities for (t, rinv)-pairs. It has been shown that involving inverse relations
and the adapted behaviour of the interaction model can improve the perfor-
mance [57] and the computational efficiency of dedicated models [55]
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1.6.8 Graph Neural Networks

GNNs represent neural network architectures tailored to graph-structured
data. In general, they rely on node features and learn to encode instead of
learning fixed embeddings and therefore are inherently inductive compared
to KGEMs [13]. Typically applications of GNNs are node classification, graph
classification, and link prediction. The key concept of GNNs is message pass-
ing in which representations/messages are interchanged between neighbour-
ing nodes. In the context of message passing, a node hi is updated based on
aggregate and an update function [13]:

h(k+1)
i = update(k)(hi

(k), aggregate(k)({hv, ∀ ∈ N})), (1.25)

where k denotes the k-th layer of the GNN. The aggregate function sum-
marises the local neighbourhood of a node into a message representation
m(k)

N (i), and the update function combines the previous representation hk
i of

the node i, and m(k)
N (i) to generate the updated representation hk+1

i . The ag-
gregate and the update functions are differentiable and dependent on the
specific GNN. Depending on the number of layers of a GNN, information
from nodes further away in the graph is integrated. Precisely, a k-layer GNN
aggregates the k-hop neighbourhood of a node i [13].

1.6.9 Evaluation of Link Predictors

Link predictors are usually evaluated based on ranking metrics that mea-
sure the model’s performance in ranking (known) true triples higher than
corrupted triples, i.e., assigning higher scores to true triples. Therefore, the
following two sets of corrupted triples are generated for each test triple
(h, r, t) ∈ K. The first set H(r, t) comprises all triples for which the head
entity of the test triple is corrupted, i.e., H(r, t) = {(h′, r, t) | h′ ∈ E − {h}.
Similarly, the second set, T (h, r) = {(h, r, t′) | t′ ∈ E − {t}}, contains all
triples for which the tail entity is corrupted. The model predicts the score for
the test triple and the corresponding corrupted triples, and the test triple’s
rank/position is determined in the list of sorted scores.

It should be noticed that the corrupted triples, i.e., in H(r, t) and T (h, r)
can contain known true triples from the training/validation set, which can
distort the ranking in case they are ranked higher than the test triple. There-
fore, the filtered setting has been introduced in which known false negatives
are removed from the set of corrupted triples [36]. Furthermore, unknown
false negatives can be part of the set of corrupted triples that potentially can
distort the results.

In the following, we present the usually employed rank-based metrics,
i.e., mean rank, mean reciprocal rank, and the hits@k. They all rely on the
previously described ranks of the test triples.

The MR, computes the average rank based on all test triples [14]:
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MR =
1

|Ktest| ∑
t∈Ktest

rank(t) (1.26)

A smaller MR corresponds to better model performance. It should be
noted that the computed rank of a test triple depends on the number of can-
didate entities in a dataset. Generally, the ranking becomes easier when a
test triple is ranked against a smaller set of candidate entities. Therefore, the
MRs computed for different datasets cannot be compared. A novel metric
that addresses this limitation is the adjusted mean rank [58].

The MRR computes the average reciprocal rank over all test triples:

MRR =
1

|Ktest| ∑
t∈Ktest

1
rank(t)

(1.27)

A larger MRR corresponds to better model performance.
The hits@k computes the ratio of test triples that obtained a rank among

the top k predictions:

Hits@k =
|{t ∈ Ktest | rank(t) ≤ k}|

|Ktest|
(1.28)

A larger hits@10 corresponds to better model performance.
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Chapter 2

The KEEN Universe: An Ecosystem
for Knowledge Graph Embeddings
with a Focus on Reproducibility
and Transferability

In this chapter, we present the following publication (see Appendix A):

Mehdi Ali, Hajira Jabeen, Charles Tapley Hoyt, and Jens Lehmann.
“The KEEN Universe - An Ecosystem for Knowledge Graph Em-
beddings with a Focus on Reproducibility and Transferability”.
In: The Semantic Web - ISWC 2019 - 18th International Semantic Web
Conference, Auckland, New Zealand, October 26-30, 2019, Proceedings,
Part II. vol. 11779. Lecture Notes in Computer Science. Springer,
2019, pp. 3–18. DOI: 10 . 1007 / 978 - 3 - 030 - 30796 - 7 _ 1. URL:
https://doi.org/10.1007/978-3-030-30796-7_1

Authors’ contributions: Mehdi Ali developed the idea of an ecosystem
for KGEMs that focuses on the reproducibility and transferability of
KGEM research. Mehdi Ali implemented the major parts of the source
code. Charles Tapley Hoyt refactored, and packaged the code, and
added additional functionalities. Mehdi Ali wrote the manuscript. All
authors revised the manuscript.

https://doi.org/10.1007/978-3-030-30796-7_1
https://doi.org/10.1007/978-3-030-30796-7_1
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Summary

KGs have become a fundamental approach for representing structured infor-
mation in academic and industrial applications, and link prediction is one
of the major tasks within KGs [11, 1]. Therefore, in the last decade, a vast
number of KGEMs have been proposed to tackle link prediction [14]. How-
ever, the performance of KGEMs is often not comprehensible since the re-
production of KGEM experiments remains a major obstacle [14]. Because
KGs are employed in various domains, link prediction becomes consequently
relevant for applications within these domains. One exemplary domain is
biomedicine [22, 59], and exemplary applications include the prediction of
drug-target [22], and protein-protein interactions [60]. Despite the tremen-
dous potential KGEMs offer to address domain-specific use cases, their ap-
plication outside the KGEM-community is limited because it requires strong
expertise in KGEMs and in implementing these approaches.

To tackle the mentioned shortcomings, we developed the KEEN Universe,
an ecosystem for KGEMs with a focus on reproducibility and transferability.
The KEEN Universe consists of three components: the Python packages Py-
KEEN, BioKEEN, and the KEEN Model Zoo.

PyKEEN represents the ecosystem’s underlying machine learning mod-
ule (including additional functionalities for preprocessing). It has a modular
architecture, and the individual modules are organised into two layers: a
configuration layer and a learning layer. In the configuration layer, users can
configure their experiments using an interactive command-line interface that
ensures that experiments are configured correctly. This is especially helpful
for users with limited experience in KGEMs. The learning layer contains the
machine learning functionalities, i.e., the training approach, the evaluator,
and the hyperparameter optimisation components. PyKEEN is built on top
of the machine learning framework PyTorch [61] and currently covers the
implementation of 10 KGEMs, the sLCWA training approach, the hits@k and
MR as evaluation metrics, and random search as the hyperparameter opti-
misation approach. Because of the modular architecture of PyKEEN, users
can easily integrate novel components, i.e., the extension of PyKEEN is facil-
itated. PyKEEN relies on several community standards, ensuring the quality
of the library. To ensure code quality, we use flake81, and pyroma2 to enforce
metadata standards, setuptools3 to package our library, sphinx4 to build our
documentation, Read the Docs5 to host our documentation, and Travis-CI6 as
the continuous integration server.

BioKEEN is an extension of PyKEEN that is tailored to the biomedical do-
main to facilitate bioinformaticians’ usage of KGEMs. We will further present
BioKEEN in the context of Chapter 6.

1https://flake8.pycqa.org/en/latest/
2https://github.com/regebro/pyroma
3https://setuptools.pypa.io/en/latest/
4https://www.sphinx-doc.org/en/master/
5https://readthedocs.org/
6https://travis-ci.org/
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The KEEN Model Zoo is a platform that allows researchers to share their
experimental artefacts, including their trained models, with the community
fostering reproducibility in the field of KGEMs. We defined the following
five requirements to ensure the quality of the model zoo: i.) the experiments
need to be described in a peer-reviewed paper, ii.) all experimental artefacts
created by PyKEEN/BioKEEN need to be shared, iii.) the datasets used need
to be publicly accessible, iv.) a textual description of the experiment needs to
be provided and, v.) and a unit test needs to be implemented ensuring that
the published KGEM can be instantiated.

We evaluated the usability of the KEEN Universe by addressing a use
case from the biomedical domain [23] and one from the domain of scholarly
metadata research [29]. We highlighted that the use cases could be solved
with effectiveness, efficiency, and satisfaction.

Concluding, the KEEN Universe represents the first step towards an ex-
tensive KGEM ecosystem. With its pivot component PyKEEN, researchers
and practitioners can perform analyses of KGEMs and employ them in their
downstream tasks. BioKEEN is a successful example of transferring results of
KGEM research to the field of bioinformatics. A similar approach can be em-
ployed to extend PyKEEN to facilitate the usage of KGEMs in other domains.
With the KEEN Universe, and in particular, with PyKEEN, we build the foun-
dation for PyKEEN 1.0 (Chapter 3) and, therefore, the groundwork for in-
vestigating the reproducibility crisis of link prediction experiments and the
groundwork for performing our large-scale benchmarking study of KGEMs
presented in Chapter 4.
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Chapter 3

PyKEEN 1.0: A Python Library for
Training and Evaluating
Knowledge Graph Embeddings

In this chapter, we present the following publication (see Appendix B):

Mehdi Ali*, Max Berrendorf*, Charles Tapley Hoyt*, Laurent Vermue*,
Sahand Sharifzadeh, Volker Tresp, and Jens Lehmann. “PyKEEN
1.0: A Python Library for Training and Evaluating Knowledge Graph
Embeddings”. In: Journal of Machine Learning Research 22.82 (2021). *
equal contribution, pp. 1–6. URL: http://jmlr.org/papers/v22/20-
825.html

Authors’ contributions: Mehdi Ali, Max Berrendorf, Charles Ta-
pley Hoyt, Sahand Sharifzadeh, and Laurent Vermue developed the
idea of abstracting and implementing KGEMs as the composition
of four components that can flexibly be composed after each author
identified limitations of existing works restricting the in-depth analysis
of KGEMs. Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, and
Laurent Vermue implemented the source code. Mehdi Ali wrote the
initial manuscript, and all authors extended and finalised it.

http://jmlr.org/papers/v22/20-825.html
http://jmlr.org/papers/v22/20-825.html
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Summary

In the previous chapter, we presented PyKEEN as part of the KEEN Uni-
verse. PyKEEN has been the first effort toward an extensive KGEM library
that enables researchers and practitioners to analyse the link prediction per-
formance of KGEMs and apply KGEMs to their downstream tasks. PyKEEN
has attracted the attention of researchers, and a community of core develop-
ers has organised around the project1. Although PyKEEN already provided
rich functionalities, it had certain limitations. In particular, KGEMs were not
fully composable, i.e, the arbitrary composition of an interaction model, train-
ing approach, loss function, and the decision to explicitly model inverse relations
was not possible. However, in order to disentangle the performance of a
KGEM based on its single components, a fully composable KGEM-library is
essential [62]. Evaluating the effect of the single components on the models’
performance allows us to investigate whether the performance of KGEMs is
solely dependent on their interaction models. Furthermore, the evaluation of
KGEMs was (especially for larger KGs) not computationally efficient.

Therefore, in a community effort, we redesigned and re-implemented Py-
KEEN and developed PyKEEN 1.0, a fully composable and extensive KGEM-
library that enables in-depth analysis of KGEMs-based link predictors. At
the time of publishing, PyKEEN 1.0 covered the implementation of 23 in-
teraction models, seven loss functions, two training approaches and enabled
users to employ explicit inverse relations. In addition, PyKEEN 1.0 integrates
21 benchmark datasets, six evaluation metrics and provides hyper-parameter
optimisation (HPO) routines on-top of Optuna [63] ensuring extensive HPO
functionalities.

While developing PyKEEN 1.0, we focused on its entire composability by
realising each KGEM’s component, i.e., interaction model, loss function, and
training approach as independent sub-modules. The modelling of explicit in-
verse relations has been realised within the interaction models. Because each
KGEM’s component follows our unified APIs for the sub-modules, i.e., py-
keen.model.Model for the interaction models, pykeen.loss.Loss for the loss func-
tions, and pykeen.training.TrainingLoop for the training approaches, we can
arbitrarily compose a KGEM based on these modules. The modular architec-
ture of PyKEEN 1.0 facilitates researchers and practitioners to integrate new
components into the library and compare, for instance, their KGEM against
existing ones. The available modules represent a prime reference for imple-
menting customised modules.

The link prediction performance of KGEMs is usually measured based on
ranking metrics. However, it has been highlighted that different definitions
of the rank have been employed in the literature, affecting ranking metrics
and impeding the reproduction of link prediction experiments (in case no of-
ficial implementation is provided) and the comparability of experiments [64].
To foster reproduction and comparability of KGEMs-based link prediction
experiments, we realise the ranking metrics based on the most prevalent rank
definitions, i.e., optimistic, realistic, and pessimistic rank [15].

1https://github.com/pykeen/pykeen/graphs/contributors
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When performing extensive benchmarking studies, a large set of hetero-
geneous model configurations are defined that have different memory re-
quirements. It can quickly happen that the available memory is exceeded
during training and evaluation because of specific model configurations.
Therefore, we realised an automatic memory optimisation that automatically
determines the maximum possible batch size before the actual experiment is
conducted. Suppose the defined batch size exceeds the available hardware.
In that case, the automatic memory optimisation computes the maximum
sub-batch size for the training routine and the maximum possible batch size
for the evaluation routine.

Similar to PyKEEN, we comply with community standards in PyKEEN
1.0 to ensure the library’s quality. We use flake82 to ensure the code quality,
PyTest3 for implementing unit tests, GitHub Actions4 for continuous integra-
tion, built our documentation using Sphinx5 and hosted it on Read the Docs6.

Compared to related software packages, PyKEEN 1.0 provides entire
composability and extensive functionalities, i.e., a large number of interac-
tion models, evaluation metrics and extensive hyperparameter optimisation
functionalities are available. Regarding entire composability, LibKGE [65] is
the only comparable library.

The entire composability and extensive functionalities of PyKEEN 1.0
enabled us to perform our reproducibility and the most-extensive KGEM-
benchmarking study done to date, which is presented in the following chap-
ter. Furthermore, we utilised certain functionalities of PyKEEN 1.0 for in-
vestigating inductive link prediction in hyper-relational KGs as presented in
Chapter 5. Finally, PyKEEN 1.0 is used to generate patient representations in
the context of the CLEP approach presented in Chapter 6.

2https://flake8.pycqa.org/en/latest/
3https://docs.pytest.org/en/7.2.x/
4https://github.com/features/actions
5https://www.sphinx-doc.org/en/master/
6https://readthedocs.org/
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Chapter 4

Bringing Light Into the Dark: A
Large-scale Evaluation of
Knowledge Graph Embedding
Models under a Unified
Framework

In this chapter, we present the following publication (see Appendix C):

Mehdi Ali, Max Berrendorf*, Charles Tapley Hoyt*, Laurent Vermue*,
Mikhail Galkin, Sahand Sharifzadeh, Asja Fischer, Volker Tresp,
and Jens Lehmann. “Bringing Light Into the Dark: A Large-scale
Evaluation of Knowledge Graph Embedding Models Under a Unified
Framework”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (2021). * equal contribution. © 2022 IEEE. Reprinted,
with permission, from Mehdi Ali and Max Berrendorf and Charles
Tapley Hoyt and Laurent Vermue and Mikhail Galkin and Sahand
Sharifzadeh and Asja Fischer and Volker Tresp and Jens Lehmann,
Bringing Light Into the Dark: A Large-scale Evaluation of Knowl-
edge Graph Embedding Models Under a Unified Framework, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 01/2022.
DOI: https : / / doi . org / 10 . 1109 / TPAMI . 2021 . 3124805. URL:
https://ieeexplore.ieee.org/abstract/document/9601281

Authors’ contributions: Mehdi Ali initially discussed the existing
research gap with Asja Fischer and Jens Lehmann. Mehdi Ali, Max
Berrendorf, Charles Tapley Hoyt, Sahand Sharifzadeh, and Laurent
Vermue developed the idea to systematically address the challenges
in reproducing published KGEM experiments and investigate the
impact of the single components of a KGEM on its link prediction
performance. Mehdi Ali, Max Berrendorf, Charles Tapley Hoyt, and
Laurent Vermue implemented the source code. Mehdi Ali, Laurent
Vermue and Mikhail Galkin performed the reproducibility and bench-
marking experiments. In addition, Max Berrendorf implemented and
performed the relational pattern analysis. Mehdi Ali, Max Berrendorf,

https://doi.org/https://doi.org/10.1109/TPAMI.2021.3124805
https://ieeexplore.ieee.org/abstract/document/9601281
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Charles Tapley Hoyt and Laurent Vermue evaluated the results and
wrote the initial manuscript. All authors revised the manuscript.
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Summary

In the last decade, many approaches have been proposed to advance KGEM-
based link prediction. However, comprehending the performance of KGEM-
based link predictors is currently a major challenge, primarily for two rea-
sons. First, the reproduction of reported KGEM-based link prediction ex-
periments remains a major obstacle [66]. Second, it is often not apparent
whether the (usually) incremental improvement of a proposed KGEM-based
link predictor is caused only by its interaction model (model architecture)
or by exchanging the loss function, the training approach, or by explicitly
modelling inverse relations. Prior work indicates that baseline interaction
models can obtain competitive results to sophisticated ones when properly
configured [16, 66]. Moreover, the different realisation of the ranking metrics
used for evaluating KGEM-based link predictors hinders a fair comparison
of published results [67].

Equipped with PyKEEN 1.0 (Chapter 3), we addressed the reproducibility
crisis of link prediction experiments by performing a reproducibility study,
in which we tried to reproduce reported link prediction experiments based
on the information in the corresponding paper and the accompanying im-
plementation if provided. We performed 34 reproduction experiments in-
volving 15 interaction models (a full list is provided in our paper) and four
datasets (FB15K, FB15K-237, WN18, and WN18RR) in the reproducibility
study. Using PyKEEN 1.0 as a framework, we ensured that all the mod-
els were trained and evaluated under identical conditions. To obtain a reli-
able overview of the models’ performance, we computed the ranking metrics
based on the optimistic, realistic, and pessimistic definition of the rank. Our re-
production study revealed that the reproduction of KGEMs-based link pre-
dictors is, even with significant effort, often not possible. In the reproduction
study, we made the following four main observations. First, for a set of exper-
iments, we could not reproduce the results with the reported hyperparame-
ter values but with an alternative set of hyperparameter values, which we
obtained by further investigating the models’ performance. Second, a set of
results depended on the rank’s realised definition (average, optimistic, and
pessimistic rank). Third, the absence of an official implementation hinders
the reproduction of results. Fourth, omitting details about the experimental
setup hampers the reproduction of results.

Next, we performed the most-extensive KGEM-based link prediction
benchmarking study to investigate whether the performance of KGEMs-
based link predictors is solely attributed to their interaction models. Our
benchmarking study involved four benchmark datasets, 21 interaction mod-
els, two training approaches, five loss functions, and two optimisers. Fur-
thermore, we measured the effect of explicitly modelling inverse relations.
Specifically, our benchmarking study involved the Kinships, FB15k-237,
WN18RR, and the YAGO3-10 datasets. Furthermore, we investigated the
sLCWA and LCWA training approach. In our benchmarking study, we mea-
sured the effect of the margin ranking loss (MRL), binary cross entropy loss
(BCEL), Softplus loss (SPL), CEL, and NSSAL loss function on the models’
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performance. Finally, we evaluated the Adam [68] and the ADADELTA [69]
optimisers. In total, we performed several thousand experiments spanning
24,804 GPU hours. Our study evinces that the performance of a KGEM-based
link predictor is not solely determined by its interaction model but often
strongly depends on the combination of the interaction model, loss func-
tion, training approach, and the decision whether or not to explicitly model
inverse relations. Even baseline interaction models such as TransE can out-
perform state-of-the-art interaction models when composed appropriately.
Furthermore, the study revealed that no single configuration performs best
across all datasets. Instead, we found that depending on the dataset, sev-
eral configurations perform comparably well. Finally, we could obtain for
RotatE comparable results to Graph Attenuated Attention Networks [70] on
the WN18RR dataset representing novel state-of-the-art results and present
improved configurations for several interaction models, outperforming the
results presented in the accompanying papers.

We believe that our reproducibility and benchmarking study are impor-
tant contributions to the research field of KGEMs-based link prediction be-
cause they provide a holistic and in-depth analysis of the research field and
help researchers and practitioners to make guided decisions.
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Chapter 5

Improving Inductive Link
Prediction Using Hyper-relational
Facts

In this chapter, we present the following publication (see Appendix D):

Mehdi Ali*, Max Berrendorf*, Mikhail Galkin, Veronika Thost,
Tengfei Ma, Volker Tresp, and Jens Lehmann. “Improving Inductive
Link Prediction Using Hyper-relational Facts”. In: Lecture Notes
in Computer Science 12922 (2021). * equal contribution. For this
work, we received the Best Research Paper Award., pp. 74–92. DOI:
10.1007/978-3-030-88361-4_5

Authors’ contributions: The idea to exploit hyper-relational in-
formation for inductive link prediction was proposed by Mehdi Ali
and further developed together with Max Berrendof and Mikhail
Galkin. Mehdi Ali, Max Berrendorf, Mikhail Galkin, Veronika Thost,
and Tengfei Ma developed the theoretical framework for classifying
different inductive link prediction scenarios. Mikhail Galkin generated
the fully-inductive benchmark datasets, and Mehdi Ali and Max
Berrendorf generated based on the fully-inducive datasets, the semi-
inductive datasets. Mehdi Ali and Max Berrendorf implemented the
main part of the source code. Mehdi Ali conducted the experiments,
and Mehdi Ali, Max Berrendorf, and Mikhail Galkin evaluated the
results. Mehdi Ali, Max Berrendorf and Mikhail Galkin wrote the
initial manuscript. All authors revised the manuscript.

https://doi.org/10.1007/978-3-030-88361-4_5
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Summary

Transductive link prediction has been the prevalent link prediction setting in
KGs in the past. However, transductive link prediction impedes inference
over unseen entities. Typical scenarios involving unseen entities are incre-
mental updates of KGs or the prediction within an entire unseen (sub-)graph
with a known set of relations. Recently, the task of inductive link prediction
has received increased attention [20, 71, 31, 32, 72]. Different semi-inductive
and fully-inductive link prediction approaches have been proposed. How-
ever, all proposed approaches have been developed for triple-based KGs so
far, and inductive link prediction has not yet been investigated within hyper-
relational KGs.

Therefore, we address these limitations and investigate whether hyper-
relational information/qualifiers improve inductive link predictors. In par-
ticular, we make the following three contributions to answering the research
question. First, we address the existing terminology gap and propose a the-
oretical framework upon which existing inductive scenarios can be classi-
fied. Second, we develop a novel set of hyper-relational benchmark datasets
allowing us to analyse the performance of inductive link predictors within
hyper-relational KGs. Third, we adapt two baseline models to the induc-
tive hyper-relational setting and investigate the influence of hyper-relational
information on inductive link prediction performance in the context of the
fully-inductive and semi-inductive setting. We performed quantitative and
qualitative experiments involving four datasets of different complexity.

While studying the inductive link prediction scenario, we identified a
terminology gap. Different namings for conceptually equivalent inductive
settings have been introduced, or the same naming for different induc-
tive settings is employed. In our theoretical framework, we can classify
all existing inductive settings that are applicable to triple-based KGs and
hyper-relational KGs. We differentiate between the semi-inductive and fully-
inductive link prediction scenarios and show that existing approaches are ei-
ther in one of these two categories or a mixture of both. In the semi-inductive
setting, a test statement (or triple) contains exactly one unseen entity that oc-
curs as a head or tail entity. In the fully-inductive setting, both the head
and tail entities are unseen for all test statements (or triples). More specifi-
cally, the inference is performed within a graph comprised solely of unseen
entities. We classified existing approaches based on the set of auxiliary state-
ments (or triples) used during inference, the type of inductive links, i.e., links
between seen and unseen entities or links between unseen entities, and the
set of entities a test statement (or triple) is scored against.

To investigate whether hyper-relational information improves inductive
link prediction, we created a novel set of benchmark datasets based on the
WD50K dataset [7]. We provide two semi-inductive and four fully-inductive
datasets of varying sizes and complexity. The datasets reveal different ratios
of triples with qualifiers ranging from 30% to 100%.
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Our results highlight that hyper-relational information improves induc-
tive link prediction in fully-inductive and semi-inductive settings. The com-
position of the datasets, i.e., the ratio of statements with qualifiers and dataset
size, has a major impact on the performance of the different approaches. Fur-
thermore, we could observe that even a small number of statements with
hyper-relational information improves the link prediction performance of
the models in the semi-inductive setting. In our qualitative analysis, we first
investigated the model performance for statements with and without quali-
fiers. We could observe an increased model performance when more quali-
fiers are provided. Next, we studied how specific qualifiers affect the model
performance. Specifically, we grouped statements based on the qualifying
relations and compared the model performance for each group, i.) when re-
taining the qualifying relation in the inference graph and ii.) when removing
the qualifying relation from the inference graph. Our analysis illustrated that
certain qualifiers can greatly improve or impair the model’s link prediction
performance. We hypothesise that specific qualifying entities introduce ex-
pressive graph structures enabling the link predictors to generalise better,
whereas other entities emerge only as rare qualifying entities impeding the
generalisation capabilities of the models. Finally, we studied the effect of re-
moving qualifying relations from the entire graph, i.e., we do not compare
the model performance within groups that contain a specific qualifying re-
lation but compare the model performance based on all test statements. We
could observe that most qualifying relations improve the model performance
for a small dataset with a full qualifier coverage (i.e., each statement contains
at least one qualifier pair). However, on a larger dataset with a reduced qual-
ifier coverage, some qualifying relations deteriorate the model performance.

In summary, we have bridged two concepts: hyper-relational KGs and
inductive link prediction.
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Applications

In this chapter, we present the following two publications (see Appendices E
and F):

• Mehdi Ali, Charles Tapley Hoyt, Daniel Domingo-Fernández, Jens
Lehmann, and Hajira Jabeen. “BioKEEN: a library for learning and
evaluating biological knowledge graph embeddings”. In: Bioin-
formatics 35.18 (Feb. 2019), pp. 3538–3540. ISSN: 1367-4803. DOI:
10.1093/bioinformatics/btz117. URL: https://doi.org/10.1093/
bioinformatics/btz117

Authors’ contributions: The idea of BioKEEN and showcasing a
concrete biomedical application was developed by Mehdi Ali and
further conceptualized together with Charles Tapley Hoyt and Daniel
Domingo-Fernández. Mehdi Ali implemented the machine learning
functionalities, Charles Tapley Hoyt and Daniel Domingo-Fernández
implemented the adapters for integrating the biomedical datasets.
Mehdi Ali ran the experiments, and Mehdi Ali, Charles Tapley Hoyt
and Daniel Domingo-Fernández evaluated the results. Mehdi Ali,
Charles Tapley Hoyt, and Daniel Domingo-Fernández wrote the
manuscript, and all authors revised the manuscript.

• Vinay Srinivas Bharadhwaj, Mehdi Ali, Colin Birkenbihl, Sarah
Mubeen, Jens Lehmann, Martin Hofmann-Apitius, Charles Ta-
pley Hoyt, and Daniel Domingo-Fernández. “CLEP: a hybrid
data- and knowledge-driven framework for generating patient
representations”. In: Bioinform. 37.19 (2021), pp. 3311–3318. DOI:
10.1093/bioinformatics/btab340. URL: https://doi.org/10.1093/
bioinformatics/btab340

Authors’ contribution: Daniel Domingo-Fernández and Charles
Tapley Hoyt conceived and designed the study. Vinay Srinivas Bharad-
hwaj implemented CLEP and ran the experiments with supervision
and support from Daniel Domingo-Fernández. Mehdi Ali guided and
supported the implementation of the knowledge graph embedding
generation and classification tasks. Colin Birkenbihl assisted with data
and method development. Sarah Mubeen processed the knowledge
graph. All the authors contributed to the writing of the manuscript.
All authors have read and approved the final manuscript

https://doi.org/10.1093/bioinformatics/btz117
https://doi.org/10.1093/bioinformatics/btz117
https://doi.org/10.1093/bioinformatics/btz117
https://doi.org/10.1093/bioinformatics/btab340
https://doi.org/10.1093/bioinformatics/btab340
https://doi.org/10.1093/bioinformatics/btab340
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Summary

KGs have been widely adopted in the biomedical domain [9] to model bio-
logical systems [73], e.g., describing interactions between biomedical entities
or modelling diseases. They are applied in various applications, such as in
clinical decision support systems. Many biological KGs are available, such
as DrugBank [74], KEGG [75] and Gene Ontolgy [76] that can be used for the
described use cases [73]. Considering the broad adoption of biological KGs,
knowledge graph representation learning and KGEM-based link prediction
have great potential to be applied in biomedical use cases.

We present two applications of KGEMs that can be effectively applied
for biomedical use cases. First, we present BioKEEN, an extension of Py-
KEEN that facilitates the usage of KGEMs for bioinformaticians without deep
knowledge about KGEMs and in implementing these models. We first il-
lustrate the effectiveness of BioKEEN in tackling biomedical link prediction
tasks by addressing an exemplary use case in which we predict crosstalks
and hierarchies between biological pathways in a novel pathway dataset.
Second, we present CLEP (CLinical Embedding of Patients), a new approach
for learning patient embeddings by combining patient-level data and prior
knowledge in the form of KGs.

BioKEEN As we identified great potential in employing KGEMs in the
biomedical domain, we developed BioKEEN [23]. BioKEEN extends Py-
KEEN such that bioinformaticians can effectively use KGEMs for their use
cases without having profound knowledge about these models and their im-
plementation. In BioKEEN, we integrate the Bio2BEL [77] software that pro-
vides direct access to a large number of biological databases capturing struc-
tured knowledge. BioKEEN is comprised of an adapted configuration layer,
a data acquisition and transformation layer, and a learning layer. In the config-
uration layer, an interactive command-line interface assists users in config-
uring their experiments, particularly ensuring that correct hyperparameters
are chosen for a KGEM. Additionally, the user can provide his dataset or se-
lect one of the integrated biological datasets through the configuration layer.
Furthermore, the training and evaluation routines are set up in the configu-
ration layer. Here, the user can decide to configure a standard training run or
a hyperparameter optimisation run. In the data acquisition and transforma-
tion layer, the directly accessible databases are accessed through the Bio2BEL
software and provided as input to the subsequent layer. In BioKEEN 14, bi-
ological databases are currently directly accessible, covering a wide range
of biological knowledge, such as disease-differentially expressed gene inter-
actions, pathway-pathway interactions, and drug-target interactions. Users
are not expected to deal with the time-consuming process of pre-processing
the data. Through the learning layer, BioKEEN users have full access to the
machine learning functionalities of PyKEEN. Consequently, a KGEM can be
trained with user-defined hyperparameter values or random search can be
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applied to find a suitable set of hyperparameter values to support inexpe-
rienced users. The models are evaluated based on the mean rank and the
hits@k.

In order to measure the effectiveness of BioKEEN, we applied it to Com-
Path [78], a novel dataset containing biological pathway mappings. Com-
Path describes equivalences and hierarchies between pathways and is di-
rectly accessible within BioKEEN. We were interested in predicting novel
equivalences and hierarchies in this use case. We employed the following
five KGEMs in our experiments: TransE, TransH, TransR, DistMult and UM.
For each model, we performed a hyperparameter optimisation and demon-
strated the sensitivity of using appropriate hyperparameter values and the
effectiveness of BioKEEN in assisting in finding suitable hyperparameter
values. We selected the best-performing model for predicting novel equiva-
lences and hierarchies between pathways. After filtering out reflexive triples
from the set of predicted links, a domain expert analysed the highest-ranked
predictions and found two novel links describing TGF-beta Receptor Signal-
ing (wikipathways: WP560) is equivalent to TGF-beta signaling pathway (kegg:
hsa04350), and Lipoic acid (kegg: hsa00785) is part of Lipid metabolism (reactome:
R-HSA-556833. This use case demonstrated the effectiveness of BioKEEN in
addressing biomedical applications.

Despite the already rich functionalities of BioKEEN and its effectiveness
in tackling biomedical applications, BioKEEN could further be improved
with additional functionalities. Considering the heterogeneity of biomedi-
cal data, multi-modal KGEMs could further extend BioKEEN’s application
scope within the biomedical domain. Furthermore, adding negative sam-
pling approaches that ensure the generation of true negatives by incorpo-
rating prior knowledge and constraints could further improve the models’
performance. Exemplary constraints are type constraints, constraints on the
attribute range for relations, or functional constraints such as mutual ex-
clusion [11]. Although the hyperparameter optimisation supports inexpe-
rienced users in finding suitable hyperparameter values, choosing a suit-
able KGEM requires a profound understanding of these models. Therefore,
BioKEEN could be improved by additionally assisting in finding appropri-
ate KGEMs by, for instance, defining a set of rules capturing limitations of
KGEMs in modelling certain relational patterns (e.g., DistMult is not de-
signed for antisymmetric patterns).

CLEP In the biomedical domain, a large set of heterogeneous data is avail-
able, such as patient measurements (e.g., transcriptomic data) and biological
networks/KGs modelling interactions between biomedical entities. Leverag-
ing several data sources to obtain more expressive features facilitating clas-
sification tasks is still underexplored. Therefore, in a second application, we
propose CLEP [26], a new approach for generating patient embeddings by
combining patient-level data and KGs expressing prior knowledge. Specifi-
cally, in CLEP, transcriptomics data of patients are mapped to a KG contain-
ing protein-protein interactions (PPIs) from several biomedical datasets. To
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map measured patients’ features to entities of the KG, CLEP computes a ref-
erence distribution for each measured feature across all patients (or healthy
controls), i.e., for n measured features, CLEP will generate n reference dis-
tributions. For each reference distribution, CLEP determines the patients ly-
ing on the extreme ends of the distribution and adds these patients to the
KG by representing them as nodes and linking them to corresponding nodes
within the KG that represent the measured features. Patients are added to
the KG based on two relationship types: +1 indicating that a high value has
been measured for a particular feature and -1 indicating that a low value has
been measured. If a patient lies on the extreme ends of the reference dis-
tributions for all n measured features, the patient-node will be connected to
n nodes in the KG. The enriched KG combines prior biological knowledge
and patient-level data because of the links between the feature nodes and the
links between patient nodes and the feature nodes. Based on the enriched
KG, PyKEEN 1.0 is employed to learn knowledge graph embeddings that
serve as inputs to classifiers that are trained to discriminate between patients
and healthy controls.

In the experiments, the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [79] dataset has been used. More specifically, the blood plasma tran-
scriptomic data gathered during the study [80] has been employed. The
dataset is comprised of 260 healthy controls and 484 impaired patients with
different impairment levels ranging from early mild cognitive impairment to
Alzheimer’s disease. The second transcriptomics dataset is comprised of 83
healthy controls and 99 patients with psychiatric disorders (major depressive
disorder, schizophrenia, or bipolar disorder). For both datasets, a protein-
protein interaction KG comprising PPIs from six databases has been utilised.
Specifically KEGG [75], Reactome [81], WikiPathways [82], BioGrid [83], In-
tAct [84], and Pathway Commons [85] have been integrated. A binary classi-
fication task has been defined for both settings: healthy controls vs cognitively
impaired and healthy controls vs psychiatric disorders. As a first step, CLEP in-
tegrates the patients and the healthy controls into the KG. Next, knowledge
graph embeddings based on four KGEMs (RotatE, TransE, ComplEx, and
HolE) are computed. For each KGEM, a hyperparameter optimisation has
been performed in order to find a suitable set of hyperparameter values.
Here, insights obtained from our large-scale benchmarking study (Chap-
ter 4) have been exploited. It is worth mentioning that through the use of
KGEMs to learn patient representations, the dimensionality of the patient
representation can significantly be reduced. While in the first classification
task, i.e., classifying healthy controls vs cognitively impaired patients, the
raw transcriptomics data of a patient had more than 40.000 features, the fi-
nal learned knowledge graph embedding of the patient had a dimension size
of 256. Based on the learned patient embeddings, several classifiers (Logis-
tic Regression, Support Vector Machines, Random Forest and XGBoost) have
been optimised to discriminate patients from healthy controls. Our results
demonstrate that the classifiers obtained better performance when trained
on top of the patient embeddings instead of the raw transcriptomics data of
the patients. Therefore, CLEP is an excellent example of employing graph
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representation learning within biomedical applications.
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Chapter 7

Conclusion & Future Work

7.1 Conclusion

In this thesis, we provided in-depth analyses of link prediction in KGs based
on graph representation learning approaches and highlighted the effective-
ness of KG representation learning for addressing biomedical use cases.
Overall, the contributions of this thesis can be split into four major parts: i.)
development of an extensive software ecosystem for investigating the per-
formance of KGEM-based link prediction approaches, ii.) an in-depth analy-
sis of KGEM-based link prediction covering a reproducibility study and the
most extensive benchmarking study of its kind, iii.) improving inductive link
prediction, and iv.) the effective application of KGEMs for predicting novel
links between biological pathways. Finally, we demonstrated how to utilise
KGEMs to generate expressive patient embeddings that can be employed in
downstream classification tasks in biomedicine.

In Chapter 2, we present the KEEN Universe, an ecosystem for KGEMs.
The KEEN Universe consists of the KGEM library PyKEEN, its extension
BioKEEN, and the KEEN Model Zoo. PyKEEN is the main component of
the KEEN Universe and represents the first step towards an extensive library
for KGEMs. PyKEEN covered the implementation of 10 KGEMs, as well as
a training, an evaluation, a hyperparameter optimisation, and an inference
routine. It realised the sLCWA training loop, implemented hits@k and MR as
evaluation metrics, and performed hyperparameter optimisation using ran-
dom search. Because of its modular architecture, the integration of novel
components is facilitated. The reproducibility of experiments is ensured by
exporting the experimental artefacts. Precisely, the entire experimental setup,
the evaluation results, the mappings of entities/relations to their ids and the
mappings of entities/relations to the learned embeddings are exported as
JSON files. We developed the library in compliance with community stan-
dards (flake81, setuptools2, pyroma3, sphinx4, Read the Docs5, and Travis-CI6) to

1https://flake8.pycqa.org/en/latest/
2https://setuptools.pypa.io/en/latest/
3https://github.com/regebro/pyroma
4https://www.sphinx-doc.org/en/master/
5https://readthedocs.org/
6https://travis-ci.org/
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ensure the high quality of the library. Finally, the library has successfully
been applied in several applications [24]. We extended PyKEEN and devel-
oped BioKEEN, which facilitates the usage of KGEMs within the bioinfor-
matics community. The KEEN Model Zoo enables researchers to share their
experimental artefacts created with PyKEEN or BioKEEN. We defined sev-
eral requirements for sharing artefacts through the model zoo in order to
ensure the quality of the models available in the model zoo. In the subse-
quent chapter, we focused on PyKEEN, which represents the foundation for
the work presented in Chapter 3.

In Chapter 3, we addressed the limitations of PyKEEN and developed in
a community effort PyKEEN 1.0. The main limitations of PyKEEN were that
KGEMs were not fully configurable, the evaluation procedure was too slow,
and it was designed to be used mainly through a command-line interface. We
redesigned the library from scratch and addressed all the above-mentioned
limitations. Furthermore, we added a large set of novel components. At
the time of publishing PyKEEN 1.0 [25], it covered the implementation of
23 interaction models, seven loss functions, two training approaches, 21 in-
tegrated benchmark datasets, and six evaluation metrics. In addition, it in-
tegrated the framework Optuna [63] ensuring extensive hyper-parameter-
optimisation functionalities. One of the primary functionalities of PyKEEN
1.0 is the entire composability of KGEMs, i.e., each KGEM can be composed
arbitrarily based on the existing interaction models, loss functions, train-
ing approaches, and the decision to model inverse relations explicitly. Py-
KEEN 1.0 follows unified APIs for defining interaction models, loss func-
tions, and training approaches, ensuring the easy integration of novel com-
ponents. While developing PyKEEN 1.0, we comply with community stan-
dards to ensure code quality. PyKEEN 1.0 has become a community project
with more than 30 contributors that received over 1000 stars on GitHub7

and has been employed in several applications (e.g., for biomedical appli-
cations [26, 86]). For instance, a research lab from the large pharmaceutical
company AstraZeneca used PyKEEN 1.0 to investigate KGEMs for drug dis-
covery [86].

In Chapter 4, we presented two major contributions: i.) we addressed the
reproducibility crisis of KGEM-based link prediction experiments by per-
forming a reproducibility study, and ii.) we investigated whether the per-
formance of KGEM-based link predictors is solely dependent on their inter-
action models by performing the most extensive benchmarking study of its
type. Both studies have been performed using PyKEEN 1.0, which has been
presented in Chapter 3.

In our reproducibility study, we examined which KGEM-based link pre-
diction experiments were reproducible and made four main observations.
First, we observed that certain experiments could only be reproduced with an
alternative set of hyperparameter values. Second, specific results depend on

7https://github.com/pykeen/pykeen
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the realisation of the ranking metric, i.e., the results for the same experiment
heavily vary depending on whether the optimistic, realistic, or pessimistic
ranking has been employed. Third, for a set of experiments, no official im-
plementation was provided, hampering their reproduction. Fourth, for a
set of experiments, the entire experimental setup had not been described,
impeding their reproduction. Overall, 14 out of 34 experiments were soft-
reproducible (i.e., could be reproduced up to a margin δ), for four out of 15
investigated KGEMs, no official implementation was available, and for six
out of 15 models, the entire experimental setup was described, and source
code was provided.

In our benchmarking study, we investigated whether the performance of
KGEMs can solely be attributed to their interaction models. We defined a
KGEM as a composition of an interaction model, a loss function, a training
approach, and the usage of inverse relations. This abstraction emphasises
each component’s importance and allows measuring the effect of each com-
ponent individually on the model’s performance or in combination. Based
on this abstraction, we evaluated the performance of different configurations
for an KGEM, i.e., the combination of the interaction model, loss function,
training approach, and the usage of explicit inverse relations. For each con-
figuration, we performed a hyperparameter optimisation to find suitable hy-
perparameter values. In our study, we performed several thousands of ex-
periments over 24,804 GPU hours involving four datasets, two optimisers, 21
interaction models, two training approaches, five loss functions, and inves-
tigated the effect of explicit modelling inverse relations. Our study revealed
that the KGEM’s performance cannot solely be attributed to the interaction
model, but is often dependent on the specific composition of the four compo-
nents of a KGEM. Even interaction models considered as baselines, such as
TransE, can outperform state-of-the-art interaction models when composed
appropriately. Furthermore, we did not find any configuration that per-
formed best across all datasets. Instead, for certain datasets, we could deter-
mine several competitive configurations. We extracted the top-performing
configurations for each dataset and found out that several interaction mod-
els were part of the top-performing interaction models for different datasets.
Moreover, we demonstrated that the MRL was the worst-performing loss
function and that both training approaches obtained strong performance. We
further showed that the explicit modelling of inverse relations benefits, in
particular, the LCWA training approach. We could improve the reported re-
sults for a set of interaction models by providing novel configurations. Lastly,
we could determine a RotatE-based configuration that performs comparably
to Graph Attenuated Attention Networks [70] on the WN18RR dataset rep-
resenting novel state-of-the-art results.

In Chapter 5, we bridged two concepts, namely hyper-relational KGs and
inductive link prediction, and demonstrated that hyper-relational facts im-
prove inductive link prediction. We first addressed the terminology gap
existing in the literature by providing a theoretical framework based on
which all existing inductive link prediction scenarios can be categorised.
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In particular, we differentiate between fully-inductive and semi-inductive
link prediction scenarios. Next, we provided novel hyper-relational bench-
mark datasets of varying size and complexity for fully- and semi-inductive
link prediction. In particular, we provide four fully-inductive and two
semi-inductive datasets with varying ratios of qualifier pairs per triple. We
adopted two baselines for the hyper-relational setting and performed 46 ab-
lation studies in which we investigated the effect of employing two, four,
six or no qualifiers per triple. Our ablation studies highlight that employing
qualifiers/hyper-relational information improves inductive link prediction.
Finally, we performed qualitative analyses and demonstrated that certain
qualifiers improve inductive link prediction performance, whereas others de-
teriorate it.

In Chapter 6, we demonstrated, based on two applications, that knowl-
edge graph representation learning can be effectively employed to address
biomedical use cases.

First, we present BioKEEN, an extension of PyKEEN (Chapter 2) that
facilitates the usage of KGEMs for bioinformaticians. BioKEEN integrates
the Bio2BEL [77] software for directly accessing various biomedical sources.
Users can easily configure their experiments, including the dataset selection,
through an interactive command-line interface. Because BioKEEN is built on
top of PyKEEN, all machine learning functionalities of PyKEEN are available
within BioKEEN. Users do not need to focus on re-implementing the KGEMs
but can focus on their use case. We used BioKEEN to predict crosstalks
and hierarchies in a novel dataset containing biological pathways. In par-
ticular, we performed hyperparameter optimisations for five models and se-
lected the best-performing to generate new predictions. We provided the
top-ranked predictions to a domain expert who identified the novel crosstalk
between TGF-beta Receptor Signaling (wikipathways: WP560) and TGF-beta sig-
naling pathway (kegg: hsa04350). Furthermore, we identified that Lipoic acid
(kegg: hsa00785) is a part of Lipid metabolism (reactome: R-HSA-556833). This
application showcased that KGEMs can effectively be used to generate valid
novel predictions.

Second, we presented CLEP, a novel approach that combines patient-level
data (e.g. transcriptomics data) and prior knowledge in the form of KGs.
Patients are integrated as nodes in a KG, and their features are represented as
edges to biomedical entities. We used PyKEEN 1.0 to learn knowledge graph
embeddings for the enriched KG. The learnt patient (and healthy control)
representations are used in downstream classification tasks to discriminate
between patients and healthy controls. We were able to show that classifiers
trained on top of the learned representations outperform classifiers trained
based on the raw data of the patients.
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7.2 Future Work

There are several directions to further explore in the context of link prediction
in KGs and KG representation learning in general. In this thesis, we provided
deep insights into link prediction within KGs based on extensive empirical
studies. We highlighted that even baseline (transductive) interaction mod-
els obtain state-of-the-art performance. Therefore, further elaborating on the
theoretical understanding of link predictors is of major interest. In many ap-
plications, the prediction of an incorrect link is less critical. However, there
are link prediction applications, such as recommending certain treatments
or drugs to patients, where incorrect predictions can cause serious personal
damage. Therefore, investigating explainability and uncertainty quantifica-
tion for link prediction has significant practical relevance. Uncertainty quan-
tification is further relevant in the context of inductive link prediction, where
inference over unseen entities is performed. Because inductive link predic-
tion involves uncertainty, quantifying this uncertainty could help obtain re-
liable predictions.
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Abstract. There is an emerging trend of embedding knowledge graphs
(KGs) in continuous vector spaces in order to use those for machine
learning tasks. Recently, many knowledge graph embedding (KGE) mod-
els have been proposed that learn low dimensional representations while
trying to maintain the structural properties of the KGs such as the sim-
ilarity of nodes depending on their edges to other nodes. KGEs can be
used to address tasks within KGs such as the prediction of novel links
and the disambiguation of entities. They can also be used for downstream
tasks like question answering and fact-checking. Overall, these tasks are
relevant for the semantic web community. Despite their popularity, the
reproducibility of KGE experiments and the transferability of proposed
KGE models to research fields outside the machine learning community
can be a major challenge. Therefore, we present the KEEN Universe, an
ecosystem for knowledge graph embeddings that we have developed with
a strong focus on reproducibility and transferability. The KEEN Universe
currently consists of the Python packages PyKEEN (Python KnowlEdge
EmbeddiNgs), BioKEEN (Biological KnowlEdge EmbeddiNgs), and the
KEEN Model Zoo for sharing trained KGE models with the community.
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1 Introduction

In the last two decades, representing factual information as knowledge graphs
(KGs) has gained significant attention. KGs have been successfully applied to
tasks such as link prediction, clustering, and question answering. In the context
of this paper, a KG is a directed, multi-relational graph that represents entities
as nodes, and their relations as edges, and can be used as an abstraction of the
real world. Factual information contained in KGs is represented as triples of the
form (h, r, t), where h and t denote the head and tail entities, and r denotes
their respective relation. Prominent examples of KGs are DBpedia [18], Wiki-
data [25], Freebase [5], and Knowledge Vault [10]. Traditionally, KGs have been
processed in their essential form as symbolic systems, but recently, knowledge
graph embedding models (KGEs) have become popular that encode the nodes
and edges of KGs into low-dimensional continuous vector spaces while best pre-
serving the structural properties of the KGs. The learned embeddings can be
used to perform algebraic operations on the corresponding KGs, and common
tasks are link prediction and entity disambiguation [26]. Furthermore, we can
observe that KGEs are applied in downstream tasks such as question answering
(QA) [23].

Although KGEs are becoming popular, the reproducibility of KGE experi-
ments and the transferability of the proposed models to research fields outside
the machine learning community such as the semantic web or the biomedical
domain remains a challenge. Depending on the used hyper-parameter values and
the optimization approach, the model performance can vary significantly. For
instance, in the experiments performed by Akrami et al. [2] an increase of 14.4%
for the TransE model and 23.6% for the DistMult model in the hits@k metric has
been reported. However, the reasons for the performance discrepancies are often
not discussed in depth [29,30], impeding the reproducibility of experiments. Fur-
thermore, applying proposed KGE models requires both expertise in KGEs and
in implementing these models which can be obstacles for non-machine learning
researchers. These are significant shortcomings considering that in research fields
like the semantic web or the bioinformatics community, KGs are widely applied,
and KGE models might have a strong potential to be used in many tasks. Ini-
tiatives like the SIGMOD1 guidelines defined by the database community or the
FAIR data principles [28] highlight that reproducibility and transferability is
not only a fundamental challenge inside the research field of KGEs, but it is a
cross-domain issue.

In this paper, we describe a software ecosystem that we have developed with
a strong emphasis on reproducibility and transferability. Our contribution is
the KEEN Universe that currently consists of: (i) PyKEEN (Python Knowl-
Edge Graph EmbeddiNgs), a Python package encapsulating the machine learning
functionalities, (ii) BioKEEN (Biological KnowlEdge Graph EmbeddiNgs) [3], a
Python package specifically developed to facilitate the use of KGEs within the
bioinformatics community and (iii) the KEEN Model Zoo, a platform to share

1 http://db-reproducibility.seas.harvard.edu/.
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pre-trained KGE models. Furthermore, we evaluate the usability of the KEEN
Universe on two case scenarios from the area of scholarly metadata research and
bioinformatics.

2 Impact and Use Cases

2.1 Impact

Impact on the KGE Community. By providing an ecosystem that enables
researchers to easily share code, experimental set-ups and research results with-
out requiring additional overhead, the KEEN Universe is an essential step in the
direction of reproducible KGE research. Specifically, researchers can integrate
their new KGE models into our ecosystem to enhance comparability with exist-
ing approaches as well as to share their trained models through our model zoo to
make it easily accessible for the community. The functionalities provided by the
KEEN Universe will save researchers significant amount of time and facilitate
the work on complex tasks.

Impact Beyond the KGE Community. KGs have become a standard in
representing factual information across different domains. Considering that KGs
are often incomplete and noisy, the KEEN Universe can be applied in numerous
applications to derive new facts. For instance, the KEEN Universe has been used
on scholarly KGs to provide research recommendations [14] and on biomedical
KGs to predict associations between biomedical entities [3,17]. Moreover, it can
be used in downstream tasks like QA and dialogue generation [6,19].

Impact on Industry. KGs are established in several major companies such
as Google, Facebook, Bayer, Siemens, and KGEs are for instance used to build
KGE based recommender systems [6,15]. Furthermore, the evolution of industry
to Industry 4.0 paves a new way for KGEs to be applied in the observation
of manufacturing processes: (knowledge) graphs are a convenient approach to
model the data produced by sensors which can be used to model the status of
production pipelines. The encoded information can be fed to machine learning
based systems for predictive maintenance. Instead of performing feature engi-
neering which is time-consuming and complex, KGEs can be used to encode the
information of KGs [11]. Enterprises could use the KEEN Universe to experiment
with KGEs before performing major investments to build their own specialized
systems.

Impact on Teaching. The KEEN Universe can be used by students to learn
how KGE models and their training and evaluation procedures are implemented
which helps them to implement new KGE models that in turn could be integrated
into the KEEN Universe. It has been already successfully applied in two master
theses and currently, it is being used in a further master thesis to compare link
prediction approaches based on handcrafted KG features against KGEs based
link prediction approaches. Furthermore, it is used in the Knowledge Graph
Analysis Lab (University of Bonn) to introduce KGE models to master students.
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2.2 Use Cases

Bioinformatics. Bio2Vec2 is a project that aims to provide a platform to
enable the development of machine learning and data analytic tools for biological
KGs with the goal of discovering molecular mechanisms underlying complex dis-
eases and drugs’ modes of action. This project also aims to provide pre-trained
embeddings for existing biological data, and additional data created and pro-
duced within this project. BioKEEN and PyKEEN have been applied already
within Bio2Vec to predict hierarchies and cross-talks between biological path-
ways [3] and to predict protein-protein interactions [17]. Furthermore, the model
to predict interactions between biological pathways has been shared through
the KEEN Model Zoo (https://github.com/SmartDataAnalytics/KEEN-Model-
Zoo/tree/master/bioinformatics/ComPath/compath model 01).

Bayer Crop Science R&D. The department of Computational Life Science
(CLS) at Bayer Crop Science R&D3 developed a large knowledge graph to
describe field trial experiments in which candidates for crop protection products
are tested across many experimental settings. The knowledge graph is augmented
with trial properties, wherein each node contains information beyond the graph
structure. However, a subgraph of the property graph can be extracted in such
a way that only important relationships are preserved between nodes. This sub-
graph is stored as a collection of subject-predicate-object triples to allow for a
range of embedding techniques to be easily applied. Since different use cases may
require a different approach to mining the graph structure for suggested links or
node similarities, it is necessary to have a framework that can simply consume
the same graph data and apply new models without a large time investment.

The modular design of PyKEEN makes it a perfect fit for the needs of Bayer
CLS researchers. The knowledge graph contains nodes of various categories and
relation types, as well as many-to-one and one-to-many relations, requiring the
use of advanced embedding methods. In addition, new embedding algorithms
can be simply added to or modified from the existing framework. As an initial
use case, Bayer CLS researchers implemented the included TransR embedding
method to their subgraph and, with very little effort, produced an embedding
space that demonstrated clear clusters between node categories. Additionally,
they were easily able to add node category support to PyKEEN in order to
extend the functionality of the existing TransD algorithm. The team at Bayer
CLS expects to provide insights into field trial design, future field trial planning,
and data quality checks using link predictions from graph embeddings trained
and optimized within PyKEEN.

3 System Description

To improve the reproducibility of KGE experiments, we have defined the follow-
ing requirements for our ecosystem: (i) provide users the full control of the exper-
imental setup, (ii) provide transparent training procedure for all KGE models,

2 http://bio2vec.net/.
3 https://agrar.bayer.de/.
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and (iii) provide identical evaluation procedure for all KGE models. To enable
the transferability of KGE research, we have defined two requirements: (i) enable
experts and inexperienced users to use the ecosystem, (ii) easy to specialize for
requirements in different domains. In the following, we explain how these require-
ments are addressed within the KEEN Universe. First, we describe PyKEEN
(Sect. 3.1), then we introduce BioKEEN (Sect. 3.2), and finally, we present the
KEEN Model Zoo (Sect. 3.3).

3.1 PyKEEN

Here, we present PyKEEN’s software architecture, give an overview of the sup-
ported data formats, explain our approach for configuring KGE experiments,
describe the training and evaluation procedures, describe which experimental
artifacts are exported and finally, we present our inference workflow.

Software Architecture. PyKEEN consists of a configuration and a learning
layer (Fig. 1). In the configuration layer, users can define their experiments, i.e.
select the KGE model, its hyper-parameters, and define the evaluation proce-
dure. The experimental setup is saved and passed to the learning layer that exe-
cutes the experiment. In PyKEEN, a KGE model can be trained based on user
defined hyper-parameter values or a hyper-parameter optimization can be per-
formed to find suitable values. Finally, the experimental artifacts are exported.

PyKEEN has a modular architecture (Fig. 2) and depending on the task dif-
ferent modules are executed and interact with each other. The command line
interface (CLI) module enables users to configure experiments through a termi-
nal, the Pipeline module starts and controls the configured experiment, KGE-
Model modules represent KGE models, the Training module is responsible for
training a KGEModel module and the Evaluator module for its evaluation. A
HPOOptimizer module performs the hyper-parameter optimization (currently
only random search is available). To perform inference the Inference module has
been developed.

Supported Data Formats. PyKEEN supports KGs represented as RDF, from
NDEx [22], and as tab-separated values. We provide support for RDF, because
it is an established data format to represent KGs [19]. Examples of popular KGs
available as RDF are DBpedia [18] and Bio2RDF [4]. NDEx is an online commons
for exchanging biological networks, and of interest for life science researchers.
Finally, a tab separated file containing the triples of a KG can also be provided
directly to PyKEEN. Overall, by supporting these data formats, many KGs can
directly be used, allowing users to focus on their experiments rather than on
data pre-processing.

Configuration of Experiments. To provide users full control of the exper-
imental setup we have developed the configuration layer (Fig. 1) that enables
users to specify every detail of an experiment, i.e. the datasets, the execution
mode (training or HPO mode), the KGE model along with its hyper-parameter
values, the details of the evaluation procedure, the seed for the random generator,
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Fig. 1. Software architecture of PyKEEN: (1) the configuration layer assists users to
specify experiments and (2) the learning layer trains a model with user-defined hyper-
parameters or performs a hyper-parameter search.

and the preferred training device (graphics processing unit (GPU) or CPU). To
address experts and inexperienced users, experiments can be either configured
through the interactive command line interface (CLI) that assists inexperienced
users, or programmatically. The CLI ensures that an experiment is configured
correctly. In case that users provide an incorrect value for a hyper-parameter
such as a negative number for the embedding dimension, the CLI notifies the
users and provides an example of a correct input.

Training of KGE Models. In PyKEEN we have clearly defined training pro-
cedures: KGE models are trained based on the open world assumption i.e. triples
that are not contained in a KG are not considered as non-existing, but as
unknowns which might be true or false facts. The models are trained accord-
ing the algorithm described by Bordes et al. [7], and the margin ranking loss
and the binary cross entropy are used as loss functions [19]. Selecting suitable
hyper-parameter values is fundamental for the model performance and strongly
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Fig. 2. PyKEEN’s modules and their interactions [3].

depends on the expertise and experience of the users. To address both, expe-
rienced and inexperienced users, we have developed the training and hyper-
parameter optimization mode (HPO). In training mode users provide for each
hyper-parameter the corresponding value. Optionally, a trained KGE model can
be evaluated in training mode. In HPO mode, users have to define for each
hyper-parameter a set of possible values (or single values) and PyKEEN assists
users to find suitable hyper-parameter values by applying random search [12].
The hyper-parameters obtained by the hyper-parameter optimization can be
used later to train the final model in training mode.

Evaluation of KGE Models. Within PyKEEN all the KGE models are evalu-
ated based on the procedure described in Bordes et al. [7] and the widely applied
metrics mean rank and hits@k are computed [7]. Users can provide a set of test
triples, or they can use PyKEEN to automatically split the input KG into train-
ing and test triples based on a user defined splitting ratio. This is especially
relevant if a separate test set is not available. Furthermore, users can specify
whether they want to compute the mean rank and hits@k in the raw or fil-
tered setting. In the filtered setting, artificially created negative samples that are
contained as positive examples in the training set will be removed [7]. Usually,
results for both settings are reported.

Exporting Experimental Artifacts. To ensure the reproducibility of a KGE
experiment, we export all relevant experimental artifacts after an experiment
is conducted. Specifically, we export a configuration file (JSON) describing the
experimental setup, the evaluation results (as JSON file), mappings of enti-
ties and relations to unique IDs (JSONs), mappings of entities and relations to
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their learned embeddings (JSONs), and the trained model in a serialized format
(pickle). The exported artifacts can be distributed by our model zoo.

Inference. Inference can be performed in two ways within PyKEEN. On the
one hand, a trained KGE model can be used to provide predictions for a set of
triples by calling its predict function. On the other hand, we have implemented
an inference workflow that provides additional functionalities: for a set of user
defined entities and relations, automatically all triple-permutations are created
for which predictions are computed. The set of generated triples can be filtered
by providing triples that should be removed. This is for instance relevant in
a setting, in which predictions for all possible triples except those contained
in the training set should be computed. Furthermore, it can be defined that
all reflexive triples of the form (e, r, e) should be excluded. The output of the
inference workflow is a file containing the triples and their predicted scores where
the most plausible triples are located at the beginning of the file.

3.2 BioKEEN

With the development of BioKEEN we demonstrate how KGE research can be
transferred to research domains outside the machine learning community. While
developing BioKEEN we took into account that expertise in KGE models and in
their implementation might be limited in the bioinformatics community. Within
BioKEEN we provide direct access to numerous biomedical databases without
requiring the user to process them.

Software Architecture. BioKEEN consists of a three-layered architecture
(Fig. 3). Its configuration layer is an extension of PyKEEN’s configuration layer
and enables users to select one of the biomedical databases that are directly
accessible through BioKEEN, the Data Acquisition Layer provides access to
these databases and the learning layer (part of PyKEEN) performs the training
of the KGE models.

Easy Access to Numerous Biomedical Databases. Within the biomedical
domain, numerous databases containing structured knowledge are available [4].
However, data pre-processing is a time consuming process. For this reason, we
have created the Data Acquisition Layer that automatically retrieves and con-
verts the content of numerous biomedical databases and makes it available within
BioKEEN (a full list is available at https://biokeen.readthedocs.io/en/latest/
bio2bel repositories.html). The data acquisition layer makes use of the Bio2BEL
[16] software to access the databases. Bio2BEL is a framework that gathers
biological data sources and represents them in the Biological Expression Lan-
guage (BEL)4. By integrating the Bio2BEL software users have direct access to
several biomedical databases, can automatically update the database version,
and retrieve further databases as they are integrated to Bio2BEL. This func-
tionality allows bioinformaticians to focus on their experiments instead of data
pre-processing.

4 http://openbel.org/.
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Fig. 3. BioKEEN’s Software Architecture [3].

Overall, the data acquisition layer, the HPO mode and the interactive com-
mand line interface are essential features to make KGE research transferable to
the domain of bioinformatics considering that the expertise in KGE models and
their implementation might be limited.

3.3 KEEN Model Zoo

We have created the KEEN Model Zoo as a GitHub project to provide a platform
on which researchers can share their experimental artifacts (i.e. trained KGE
models, configuration files, evaluation summaries, etc.) that have been created
using components of the KEEN Universe. Providing these artifacts publicly will
improve the reproducibility of KGE research, and we aim the community to
contribute to this project.

To ensure the quality of the model zoo, we have defined following require-
ments: (i) conducted experiments must be reported in a scientific paper, (ii) all
experimental artifacts that have been created by Py/BioKEEN for an experi-
ment needs to be provided, (iii) the used datasets have to be publicly accessible,
(iv) a description of the experiment must be provided, (v) a unit test needs to be
implemented checking that the provided model can be instantiated. Within the
model zoo, we split experiments based on their research domains (e.g. bioinfor-
matics, scholarly metadata research, etc.), and within each research domain, the
experiments are categorized according to the datasets on which the experiments
have been conducted.

Researchers that want to share their experimental artifacts are asked to create
a pull request that will be reviewed and merged into the master branch if all
requirements are fulfilled.

4 Implementation

We have implemented PyKEEN and BioKEEN in Python since it is an
established programming language for implementing machine learning models5.
PyTorch [21] has been used as the underlying machine learning framework,

5 https://github.blog/2019-01-24-the-state-of-the-octoverse-machine-learning.
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because it provides flexibility in implementing machine learning models, is easy
to debug and through it’s GPU support the training procedure can be accel-
erated. Furthermore, we make use of the scientific Python stack for scientific
computing (NumPy6, SciPy7, Scikit-Learn8, Pandas9). Moreover, we apply fol-
lowing community standards: flake8 10 to ensure code quality, setuptools11 to
create distributions, pyroma12 to ensure package metadata standards, sphinx 13

to build our documentation and Read the Docs14 to host it. Finally, Travis-CI 15

is used as continuous integration server.

Extensibility. The KEEN Universe can be extended in various ways. New
machine learning related components can be added (extension of PyKEEN is
required), further data reader can be implemented to load additional data for-
mats (extension of PyKEEN), further components specifically relevant for the
bioinformatics community can be integrated (extension of BioKEEN is required),
finally extensions of PyKEEN specialized for further research domains can be cre-
ated. Here, we describe how new machine learning components can be integrated
into our ecosystem by extending PyKEEN. Figure 2 depicts the sub-modules of
PyKEEN and the most relevant with regards to an extension are the KGE-
Model and the HPOOptimizer modules. The modular architecture of PyKEEN
facilitates its extension.

Integration of an Additional KGE Model. Within PyKEEN, a KGEModel
module interacts with the Pipeline, the Training, and the Inference module
(Fig. 2). To ensure that a new KGE model can interact with these modules,
it needs to provide implementations of a forward() and a predict() function.
The forward should expect two multi-dimensional arrays (tensors) containing
the batch of positive and negative training triples (or a batch of training triples
and corresponding labels; depends on the KGE model) and return the loss value
computed for this batch. The predict function should expect a tensor of triples
for which predictions should be computed and returned. There are no further
constraints for the model implementation.

Integration of an Additional Hyper-Parameter Optimization Algo-
rithm. Currently, random search is applied to perform hyper-parameter opti-
mizations and RandomSearchHPO is the corresponding module. It extends our
abstract class AbstractHPOoptimizer which contains the two abstract functions
optimise hyperparams and sample parameter value, where the former is used to

6 http://www.numpy.org/.
7 https://www.scipy.org/.
8 https://scikit-learn.org/stable/.
9 https://pandas.pydata.org/.

10 http://ake8.pycqa.org/en/latest/.
11 https://github.com/pypa/setuptools/tree/master/setuptools.
12 https://github.com/regebro/pyroma.
13 http://www.sphinx-doc.org/en/master/.
14 https://readthedocs.org/.
15 https://travis-ci.org/.
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initiate the optimization procedure and the latter is called in each optimiza-
tion iteration to sample new hyper-parameter values. To add a new hyper-
parameter optimizer, the respective module has to extend the abstract class
AbstractHPOoptimizer and provide implementations for its two abstract func-
tions to ensure that the optimizer can interact with the Pipeline, the Training,
and the Evaluator module.

Overall, the modular architecture of PyKEEN and the simple API of the
KGE and hyper-parameter optimization modules facilitate the integration of
new machine learning components to PyKEEN.

5 Availability and Maintenance

Availability. PyKEEN, BioKEEN and the KEEN Model Zoo are available at
our GitHub repositories under the MIT License. Furthermore, PyKEEN and
BioKEEN are also available through PyPI enabling users to install the software
packages easily through pip.

Maintenance. We aim that researchers from different communities (e.g.,
semantic web, machine learning, bioinformatics, crop science) will support us
in maintaining and extending the KEEN Universe. Before this state is reached,
the maintenance of the KEEN Universe is ensured through the Bio2Vec16 and
the German national funded BmBF project MLwin17 at least till 2022.

6 Evaluation of the Usability of the KEEN Universe

Usability is defined as the extent a software system can be used to achieve a
goal with effectiveness (extent to which the tasks can be completed), efficiency
(resources required to achieve the goals) and satisfaction (feeling of the users
towards the software) in a specified context [1]. We evaluate these aspects based
on two case scenarios: co-author recommendations for a scholarly KG, and the
predictions of crosstalks and hierarchies between biological pathways.

6.1 Co-author Recommendations Based on KGEs

In the work of Henk et al. [14], PyKEEN has been used to provide co-
author recommendations based on KGEs for a scholarly KG. The KG
contains the entity types author, paper, department and event. Further-
more, it contains the relationship types isAuthorOf, isCoAuthorOf, isAf-
filiatedIn and isPublished. The goal was to evaluate co-author recommen-
dations i.e. triples of the form (author, isCoAuthorOf, author). For addi-
tional information including the experimental set-up and the evaluation, we
refer to [14] and the final experimental artifacts are available at our model

16 http://bio2vec.net/.
17 https://mlwin.de/.
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zoo (https://github.com/SmartDataAnalytics/KEEN-Model-Zoo/tree/master/
scholarly data related recommendations/SG4MR/sg4mr model 01).

Effectiveness. The KEEN Universe provides all components to completely
achieve the goal: PyKEEN has been used to train four KGE models (DistMult,
TransE, TransH and TransR) on the KG, and through the hyper-parameter
optimization mode, a suitable combination of KGE model and hyper-parameter
values has been automatically determined. Based on the model that performed
best, we have used the inference workflow to provide co-author recommendations
which have been manually evaluated by a domain expert that classified the top
predictions as valid recommendations.

Efficiency. Considering efficiency with regards to the computation time, we
made use of the GPU support of PyKEEN (PyTorch) to reduce the training time.
The models have been trained on a single GPU. Efficiency with respect to the
time necessary to learn the software to be able to solve the task, the main author
could quickly set-up and run her experiments through the command line interface
which assisted and ensured that the experiments have been configured correctly.
The whole process has been performed without any programming required by
the author.

Satisfaction. The main author didn’t have any prior knowledge about KGEs
and the software ecosystem, but she could easily achieve her goals. This positive
experience has helped her to get into the field of KGEs.

6.2 Prediction of Cross-Talks and Hierarchies Between Biological
Pathways

In the work of Ali et al. [3], BioKEEN has been used to predict novel
cross-talks and hierarchies between biological pathways. ComPath [9], a novel
database for biological pathways has been used to train the KGE models.
ComPath contains two types of relationships: equivalentTo expressing that two
pathways correspond to the same biological process, and isPartOf express-
ing a hierarchy of pathways. Again, we refer to [3] for additional informa-
tion and to https://github.com/SmartDataAnalytics/KEEN-Model-Zoo/tree/
master/bioinformatics/ComPath/compath model 01 to access the experimental
artifacts of the final model.

Effectiveness. The KEEN Universe provides all components to completely
achieve the goal: We have used BioKEEN to train five KGE models (UM,
DistMult, TransE, TransH and TransR) on ComPath that is directly accessi-
ble through BioKEEN. We performed a hyper-parameter optimization to find
the best combination of KGE model and hyper-parameters, showed the sensi-
bility of choosing appropriate hyper-parameter values and the effectiveness of
the HPO mode to find suitable hyper-parameter values (performance increase
from 19.10% to 63.20% for the hits@k metric). The final model has been used
to predict new interactions between pathways based on the inference workflow.
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The top predictions have been evaluated by domain experts and we found fol-
lowing novel links that have been added to ComPath: the first link states that
the TGF-beta signaling pathway is equivalent to the TGF-beta Receptor Signal-
ing pathway, and the second link expresses that Lipoic Acid is part of Lipid
Metabolism.

Efficiency. Because ComPath is not a large KG, we trained the KGE mod-
els on a single CPU (efficiency regarding computation time). Furthermore, no
pre-processing of the dataset was required since it is directly accessible within
BioKEEN. Although the primary author has no domain expertise regarding
pathway interactions, he effortlessly provided new predictions to domain experts
who validated them (efficiency with respect to use the software for solving the
task).

Satisfaction. Through BioKEEN the main author was able to get to know a
new application area in the field of bioinformatics. Furthermore, researchers from
different research fields could work successfully in an interdisciplinary team.

7 Related Work

Supported KGE Models. KGE models can be divided into translational dis-
tance models (TDM) and semantic matching models (SMM) where the former
compute the plausibility of a fact by a distance function (e.g. using the Euclidean
norm) and the latter apply similarity-based scoring functions (considering the
similarity of the latent features of the entities and relations) [26]. Table 1 lists
all the KGE models that are currently available within the KEEN Universe.

Existing Ecosystems for KGE Models. The available software for KGE
models is limited, and an ecosystem like the KEEN Universe is to the best
of our knowledge unique. However, there exist software projects that provide
implementations of different KGE models. One of them is scikit-kge18 that pro-
vides implementations of three KGE models and different negative sampling
approaches. The project doesn’t seem to be maintained since the last commit
dates back to the year 2016. A recently published framework which enables users
to train and evaluate several KGE models is OpenKE [13] that can be compared
to PyKEEN (Sect. 3.1). While allowing users to reproduce KGE experiments,
we argue that it has not been developed with the goal of making KGE research
transferable to domains outside the machine learning community and usable for
both, experts and non-experts. For instance, it supports only one data format
(a text-file consisting of three columns) whereas within PyKEEN a KG can be
provided as tab separated values, RDF and from NDEx (Sect. 3.1). Users with-
out expertise in programming might face difficulties to run the software since it
doesn’t provide an interactive command line interface, and users without exper-
tise in KGE models might have issues in finding appropriate combinations of

18 https://github.com/mnick/scikit-kge.
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Table 1. KGE Models available within the KEEN Universe.

Type Reference Model

TDM [26] TransE

[26] TransH

[26] TransR

[26] TransD

[26] Unstructured Model (UM)

[26] Structured Embedding (SE)

SMM [20] RESCAL

[26] DistMult

[26] ERMLP

[8] ConvE

KGE models and corresponding hyper-parameter values since it doesn’t pro-
vide a hyper-parameter optimization procedure. Further software repositories
containing implementation for different KGE models can be found at19 and20.

8 Limitations and Future Work

Currently, all the KGE models available within the KEEN Universe make only
use of the triples of a KG. However, several KGs contain additional information
such as textual descriptions of entities, images and numerical values which can be
used to train multimodal KGE models. Based on multimodal data, KGE models
can be developed that are capable of performing inference among different KGs
which is currently not possible with models that are trained only based on the
entities and relations of a KG [30]. We plan to integrate an additional software
package to our ecosystem that contains implementations of multimodal KGE
models.

Within PyKEEN, negative samples are created based on the approach
described in Bordes et al. [7]. However, it has been shown that alternative
approaches such as bern [27] can yield better performance. Therefore, we aim to
implement additional negative sampling approaches.

KGE models are evaluated within our ecosystem based on the widely applied
metrics mean rank and hits@k, but additional metrics such as the AUC-ROC
and AUC-PR curve might be of interest [19]. Furthermore, Sharma et al. [24]
propose a geometrical analysis of learned embeddings that can provide valuable
insights. We plan to implement these additional evaluation metrics within the
KEEN Universe.

19 https://github.com/bookmanhan/Embedding.
20 https://github.com/TimDettmers/ConvE.
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Abstract

Recently, knowledge graph embeddings (KGEs) have received significant attention,
and several software libraries have been developed for training and evaluation. While
each of them addresses specific needs, we report on a community effort to a re-design
and re-implementation of PyKEEN, one of the early KGE libraries. PyKEEN 1.0 enables
users to compose knowledge graph embedding models based on a wide range of interaction
models, training approaches, loss functions, and permits the explicit modeling of inverse
relations. It allows users to measure each component’s influence individually on the model’s
performance. Besides, an automatic memory optimization has been realized in order to
optimally exploit the provided hardware. Through the integration of Optuna, extensive
hyper-parameter optimization (HPO) functionalities are provided.

Keywords: Knowledge Graphs, Knowledge Graph Embeddings, Relational Learning

1. Introduction

Knowledge graphs (KGs) encode knowledge as a set of triples K ⊆ E×R×E where E denotes
the set of entities and R the set of relations. Knowledge graph embedding models (KGEMs)
learn representations for entities and relations of KGs in vector spaces while preserving the
graph structure. The learned embeddings can support machine learning tasks such as
entity clustering, link prediction, entity disambiguation, as well as downstream tasks such
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as question answering and item recommendation (Nickel et al., 2015; Wang et al., 2017;
Ruffinelli et al., 2020; Kazemi et al., 2020).

Most publications of KGEMs are accompanied by reference implementations, but they
are seldomly written for reusability or maintained. Existing software packages that provide
implementations for different KGEMs usually lack composability: model architectures (or
interaction models), training approaches, loss functions, and the usage of explicit inverse
relations cannot arbitrarily be combined. The full composability of KGEMs is fundamental
for assessing their performance because it allows the assessment of individual components
and not solely the sum of differences in published approaches (Ruffinelli et al., 2020). In
most previous libraries, only limited functionalities are provided, e.g., a small number of
KGEMs are supported, or functionalities such as hyper-parameter optimization (HPO) are
missing. For instance, in PyKEEN (Ali et al., 2019a,b), one of the early software packages
for KGEMs, models can only be trained under the stochastic local closed-world approach,
the evaluation procedure was too slow for larger KGs, and it was designed to be mainly
used through a command-line interface rather than programmatically, in order to facilitate
its usage for non-experts. This motivated the development of a reusable software package
comprising several KGEMs and related methodologies that is entirely configurable.

Here, we present PyKEEN (Python KnowlEdge EmbeddiNgs) 1.0, a community effort
in which PyKEEN has been re-designed and re-implemented from scratch to overcome the
mentioned limitations, to make models entirely configurable, and to extend it with more
interaction models and other components.

2. System Description

In PyKEEN 1.0, a KGEM is considered as a composition of four components that can flex-
ibly be combined: an interaction model (or model architecture), a loss function, a training
approach, and the usage of inverse relations. PyKEEN 1.0 currently supports 23 interaction
models, seven loss functions, four regularizers, two training approaches, HPO, six evaluation
metrics, and 21 built-in benchmarking datasets. It can readily import additional datasets
that have been pre-stratified into train/test/evaluation and generate appropriate splits for
unstratified datasets. Additionally, we implemented an automatic memory optimization
that ensures that the available memory is best utilized.

Composable KGEMs To ensure the composability of KGEMs, the interaction mod-
els, loss functions, and training approaches are separated from each other and imple-
mented as independent submodules, whereas the modeling of inverse relations is han-
dled by the interaction models. Our modules can be arbitrarily replaced because we
ensured through inheritance that all interaction models, loss functions, and training ap-
proaches follow unified APIs, which are defined by pykeen.model.Model, pykeen.loss.Loss,
and pykeen.training.TrainingLoop. Currently, we provide implementations of 23 interac-
tion models, the most common loss functions used for training KGEMs including the
binary-cross entropy, cross entropy, mean square error, negative-sampling self-adversarial
loss, and the softplus loss, as well as the local closed-world assumption (also referred as
KvsAll) and the stochastic local closed-world assumption training approach (also refereed
as NegSamp) (Ruffinelli et al., 2020). In PyKEEN, each interaction model can be trained
based on both approaches. To enable users to investigate the effect of explicitly modeling
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inverse relations (Lacroix et al., 2018; Kazemi and Poole, 2018) on the model’s performance,
each model can be trained with explicit inverse relations in PyKEEN 1.0, i.e., for each rela-
tion r ∈ R an inverse relation rinv is introduced, and the task of predicting the head entity
of a (r, t)-pair becomes the task of predicting the tail entity of the corresponding inverse
pair (t, rinv).

To facilitate the composition of KGE models for non-experts, we provide the pykeen.pipe-
line.pipeline() functions, which provides a high-level entry point into the functionalities of
PyKEEN. Users define the components to be used, and the pipeline ensures the correct com-
position of the KGEM and the correct composition of the training and evaluation workflow.

Evaluation KGEMs are usually evaluated on the task of link prediction. Given (h, r) (or
(r, t)), all possible entities E are considered as tail (or head) and ranked according to the
KGEMs interaction model. The individual ranks are commonly aggregated to mean rank,
mean reciprocal rank, and hits@k. However, these metrics have been realized differently
throughout the literature based on different definitions of the rank, leading to difficulties
in reproducibility and comparability (Sun et al., 2019). The three most common rank
definitions are the average rank, optimistic rank, and pessimistic rank. In PyKEEN 1.0,
we explicitly compute the aggregation metrics for all common rank definitions, average,
optimistic, and pessimistic, allowing inspection of differences between them. This can help
to reveal cases where the model predicts exactly equal scores for many different triples,
which is usually an undesired behavior. In addition, we support the recently proposed
adjusted mean rank (Berrendorf et al., 2020), which allows the comparison of results across
differently sized datasets, as well as offering an interface to use all metrics implemented in
scikit-learn (Pedregosa et al., 2011), including AUC-PR and AUC-ROC.

Automatic Memory Optimization Allowing high computational throughput, while
ensuring that the available hardware memory is not exceeded during training and evaluation,
requires the knowledge of the maximum possible training and evaluation batch size for the
current model configuration. However, determining the training and evaluation batch sizes
is a tedious process, and not feasible when a large set of heterogeneous experiments are run.
Therefore, we implemented an automatic memory optimization step that computes the
maximum possible training and evaluation batch sizes for the current model configuration
and available hardware before the actual experiment starts. If the user-provided batch
size is too large for the used hardware, the automatic memory optimization determines the
maximum sub-batch size for the training.

Extensibility Because we defined a uniform API for each interaction model, any new
model can be integrated by following the API of the existing models (pykeen.models). Sim-
ilarly, the remaining components, e.g., regularizers, and negative samplers follow a unified
API, so that new modules can be smoothly integrated.

Community Standards PyKEEN 1.0 relies on several community-oriented tools to en-
sure it is accessible, reusable, reproducible, and maintainable. It is implemented for Python
3.7+ using the PyTorch package. It comes with a suite of thorough unit tests that are au-
tomated with PyTest, Tox, run in a continuous integration setting on GitHub Actions, and
are tracked over time using codecov.io. Code quality is ensured with flake8 and careful
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Library AMO Models HPO ES
Evaluation
Metrics

Set
TA

Set
Inv.
Rels.

Set
Loss
Fct.

MGS DTR

AmpliGraph
(Costabello et al., 2019)

- 6 X X 3 - X X - -

DGL-KE
(Zheng et al., 2020)

- 6 - - 3 - - X X X
GraphVite
(Zhu et al., 2019)

- 6 - - 4 - - - X -

LibKGE
(Broscheit et al., 2020)

- 10 X X 3* X X X - -

OpenKE
(Han et al., 2018)

- 11 - - 3 - - X - -

PyTorch-BigGraph
(Lerer et al., 2019)

- 4 - - 4 - - X X X
Pykg2vec
(Yu et al., 2019)

- 18 X X 2 - - - - -

PyKEEN
(Ali et al., 2019b)

- 10 X - 2 - - - - -

PyKEEN 1.0 X 23 X X 6* X X X - -

Table 1: An overview of the functionalities (determined July 2020) of PyKEEN 1.0 and
similar libraries. AMO refers to automatic memory optimization, ES to early
stopping, * indicates that ranking metrics are computed for different definitions of
the rank, Set TA refers to interchanging the training approach, Set Inv. Rels.
to the explicit modeling of inverse relations, MGS to multi-GPU support, i.e.,
training a single model across several GPUs, and DTR to distributed training.

application of the GitHub Flow development workflow. Documentation is quality checked
by doc8, built with Sphinx, and hosted on ReadTheDocs.org.

3. Comparison to Related Software

Table 1 depicts the most popular KGE frameworks and their features. It shows that Py-
KEEN 1.0, in comparison with related software packages, emphasizes on both, full compos-
ability of KGEMs and extensive functionalities, i.e., a large number of supported interaction
models, and extensive evaluation (several metrics are supported) and HPO functionalities.
Concerning the evaluation metrics, PyKEEN and LibKGE are the only libraries that com-
pute the ranking metrics (i.e., mean rank and hits@k) for different definitions of the rank,
which ensures that undesired cases are detected in which the model predicts equal scores for
many triples. Finally, PyKEEN 1.0 is the only library that performs an automatic memory
optimization that ensures that the memory is not exceeded during training and evaluation.
GraphVite, DGL-KE, and PyTorch-BibGraph focus on scalability, i.e., they provide support
for multi-GPU/CPU or/and distributed training, but focus less on compositionality and ex-
tensibility. For instance, PyTorch-BigGraph supports only a small number of interaction
models that follow specific computation blocks.

4. Availability and Maintenance

PyKEEN 1.0 is publicly available under the MIT License at https://github.com/pykeen/
pykeen, and is distributed through the Python Package Index. It will be maintained by
the core developer team that is supported by the Smart Data Analytics research group
(University of Bonn), Fraunhofer IAIS, Munich Center for Machine Learning (MCML),
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Siemens, and the Technical University of Denmark (section for Cognitive Systems and
section for Statistics and Data Analysis). The project is funded by the German Federal
Ministry of Education and Research (BMBF) under Grant No. 01IS18036A and Grant No.
01IS18050D (project MLWin) as well as the Innovation Fund Denmark with the Danish
Center for Big Data Analytics driven Innovation (DABAI) which ensures the maintenance
of the project in the next years.
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Abstract—The heterogeneity in recently published knowledge graph embedding models’ implementations, training, and evaluation
has made fair and thorough comparisons difficult. To assess the reproducibility of previously published results, we re-implemented and
evaluated 21 models in the PyKEEN software package. In this paper, we outline which results could be reproduced with their reported
hyper-parameters, which could only be reproduced with alternate hyper-parameters, and which could not be reproduced at all, as well
as provide insight as to why this might be the case. We then performed a large-scale benchmarking on four datasets with several
thousands of experiments and 24,804 GPU hours of computation time. We present insights gained as to best practices, best
configurations for each model, and where improvements could be made over previously published best configurations. Our results
highlight that the combination of model architecture, training approach, loss function, and the explicit modeling of inverse relations is
crucial for a model’s performance and is not only determined by its architecture. We provide evidence that several architectures can
obtain results competitive to the state of the art when configured carefully. We have made all code, experimental configurations, results,
and analyses available at https://github.com/pykeen/pykeen and https://github.com/pykeen/benchmarking.

Index Terms—Knowledge graph embeddings, link prediction, reproducibility, benchmarking
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1 INTRODUCTION

AS the usage of knowledge graphs (KGs) becomes more
widespread, their inherent incompleteness can pose a lia-

bility for typical downstream tasks that they support, e.g.,

question answering, dialogue systems, and recommendation
systems [1]. Knowledge graph embedding models (KGEMs)
present an avenue for predicting missing links. However, the
following twomajor challenges remain in their application.

First, the reproduction of previously reported results
turned out to be a major challenge — there are even exam-
ples of different results reported for the same combinations
of KGMs and datasets [2]. In some cases, the lack of avail-
ability of source code for KGEMs or the usage of different
frameworks and programming languages inevitably intro-
duces variability. In other cases, the lack of a precise specifi-
cation of hyper-parameters introduces variability.

Second, the verification of the novelty of previously
reported results remains difficult. It is often difficult to attri-
bute the incremental improvements in performance reported
with each new state of the art model to the model’s architec-
ture itself or instead to the training approach, hyper-parame-
ter values, or specific prepossessing steps, e.g., the explicit
modeling of inverse relations. It has been shown that base-
line models can achieve competitive performance to more
sophisticated ones when optimized appropriately [2], [3].
Additionally, the variety of implementations and interpreta-
tions of common evaluation metrics for link prediction
makes a fair comparison to previous results difficult [4].

This paper makes two major contributions towards
addressing these challenges:

1) We performed a reproducibility study in which we
tried to replicate reported experimental results in the
original papers (when sufficient information was
provided).
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2) We performed an extensive benchmark study on 21
KGEMs over four benchmark datasets in which we
evaluated the models based on different hyper-
parameter values, training approaches (i.e. training
under the local closed world assumption and stochastic
local closed world assumption), loss functions, optimiz-
ers, and the explicit modeling of inverse relations.

Previous studies have already investigated important
aspects for a subset of models: Kadlec et al. [3] showed that
a fine-tuned baseline (DistMult [5]) can outperform more
sophisticated models on FB15K. Akrami et al. [2], [6] exam-
ined the effect of removing faulty triples from KGs on the
model’s performance. Mohamed et al. [7] studied the influ-
ence of loss functions on the models’ performances for a set
of KGEMs. Concurrent to the work on this paper, Rufinelli
et al. [8] performed a benchmarking study in which they
investigated five knowledge graph embedding models.
After describing their benchmarking [8], they called for a
larger study that extends the search space and incorporates
more sophisticated models. Our study answers this call and
realizes a fair benchmarking by completely re-implement-
ing KGEMs, training pipelines, loss functions, and evalua-
tion metrics in a unified, open-source framework. Inspired
by their findings, we have also included the cross entropy
loss (CEL) function, which has been previously used by
Kadlec et al. [3]. Our benchmarking can be considered as a
superset of many previous benchmarkings — to the best of
our knowledge, there exists no study of comparable breadth
or depth. A further interesting study with a different focus
is the work of Rossi et al. [9] in which they investigated the
effect of the structural properties of KGs on models’ per-
formances, instead of focusing on the combinations of dif-
ferent model architectures, training approaches, and loss
functions.

This article is structured as follows: in Section 2, we intro-
duce our notation of KG and the link prediction task and
introduce an exemplary KG to which we refer in examples
throughout this paper. In Section 3, we present our defini-
tion of a KGEM and review the KGEMs that we investigated
in our studies. In Section 4, we describe and discuss estab-
lished evaluation metrics as well as a recently proposed
one [10]. In Section 5, we introduce the benchmark datasets
on which we conducted our experiments. In Sections 6 and
7, we present our respective reproducibility and bench-
marking studies. In Section 8, we investigate how well the
investigated KGEMs can model symmetry, anti-symmetry,
and composition patterns. Finally, we provide a discussion
and an outlook for our future work in Section 9.

2 KNOWLEDGE GRAPHS

For a given set of entities E and set of relations R, we con-
sider a knowledge graph K " K ¼ E $R$ E as a directed,
multi-relational graph that comprises triples ðh; r; tÞ 2 K in
which h; t 2 E represent a triples’ respective head and tail
entities and r 2 R represents its relationship. Fig. 1 depicts
an exemplary KG. The direction of a relationship indicates
the roles of the entities, i.e., head or tail entity. For instance,
in the triple (Sarah, CEO_Of, Deutsche_Bank), Sarah is the
head and Deutsche_Bank is the tail entity. KGs usually con-
tain only true triples corresponding to available knowledge.

In contrast to triples in a KG, there are different philoso-
phies, or assumptions, for the consideration of triples not con-
tained in a KG [11], [12]. Under the closed world
assumption (CWA), all triples that are not part of a KG are
considered as false. Based on the example in Fig. 1, the triple
(Sarah, lives_in, Germany) is a false fact under the CWA since
it is not part of the KG. Under the open world assumption
(OWA), it is considered unknown as to whether triples that
are not part of the KG are true or false. The construction of
KGs under the principles of the semantic web (and RDF)
rely on the OWA as well as most of the relevant works to
this paper [11], [13].

Because KGs are usually incomplete and noisy, several
approaches have been developed to predict new links. In
particular, the task of link prediction is defined as predict-
ing the tail/head entities for ðh; rÞ/ðr; tÞ pairs. For instance,
given queries of the form (Sarah, studied_at, ?) or (?, CEO_of,
Deutsche Bank), the task is the correctly detect the entities
that answer the query, i.e. (Sarah, studied_at, University of
Oxford) and (Sarah, CEO_of, Deutsche Bank). While classical
approaches have relied on domain-specific rules to derive
missing links, they usually require a large number of user-
defined rules in order to generalize [11]. Alternatively,
machine learning approaches learn to predict new links
based on the set of existing ones. It has been shown that
especially relational-machine learning methods are success-
ful in predicting missing links and identifying incorrect
ones, and recently knowledge graph embedding models
have gained significant attention [11].

3 KNOWLEDGE GRAPH EMBEDDING MODELS

Knowledge graph embedding models (KGEMs) learn latent
vector representations of the entities e 2 E and relations r 2
R in a KG that best preserve its structural properties [1],
[11], [14]. Besides for link prediction, they have been used
for tasks such as entity disambiguation, and clustering as
well as for downstream tasks such as question answering,
recommendation systems, and relation extraction [1]. Fig. 2
shows an embedding of the entities and relations in R2 from
the KG from Fig. 1.

Here, we define a KGEM as four components: an interac-
tion model, a training approach, a loss function, and its usage of
explicit inverse relations. This abstraction enables investigation
of the effect of each component individually and in combina-
tion on each KGEMs’ performance. Each are described in

Fig. 1. Exemplary KG: Nodes represent entities and edges their respec-
tive relations.
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detail in their following respective Sections 3.1, 3.2, 3.3, and
3.4. We focus on shallow embedding approaches [15] in this
work, i.e., matrix lookups represent the entity and relation
encoders. Recently, several graph neural network (GNN)-
based approaches for learning representations of KGs have
been developed. GNNs encode entities and relations by
neighbor aggregation. We refer interested readers to [14],
[15]. Furthermore, learning representation for temporal KGs
has gained increased interest. Because learning representa-
tion for temporal KGs is a distinct line of research with its
own benchmarking datasets, we do not discuss temporal
KGEMs in this work. Instead, we refer interested readers
to [16].

In this paper, we use a boldface lower-case letter x to
denote a vector, kxkp to represent its lp norm, a boldface
upper-case letter X to denote a matrix, and a fraktur-font
upper-case letter X to represent a three-mode tensor. Fur-
thermore, we use ' to denote the Hadamard product ' :
Rd $Rd ! Rd:

½a' b)i ¼ ai * bi (1)

Finally, we use x to denote the conjugate of a complex
number x 2 C.

3.1 Interaction Models
An interaction model f : E $R$ E ! R computes a real-
valued score representing the plausibility of a triple ðh; r;
tÞ 2 K given the embeddings for the entities and relations.
In general, a larger score indicates a higher plausibility. The
interpretation of the score value is model-dependent, and
usually, it cannot be directly interpreted as a probability.
We follow [1], [14] and categorize interaction models into
translational distance based and semantic matching based
interaction models. Translational distance interaction mod-
els compute the plausibility of triples based on a distance
function, e.g., Euclidean distance between (projected) enti-
ties, and semantic similarity matching models exploit the
similarity of the latent features usually induced by inner a
product formulation.

3.1.1 Translational Distance Interaction Models

Unstructured Model. The Unstructured Model (UM) [17]
scores a triple by computing the distance between the head
and tail entity

fðh; tÞ ¼ +kh+ tk22; (2)

where h; t 2 Rd are the embeddings of head and tail entity,
respectively. A small distance between these embeddings
indicates a plausible triple. In the UM, relations are not
considered, and therefore, it cannot distinguish between
different relationship types. However, the model can be
beneficial for learning embeddings for KGs that contain
only a single relationship type or only equivalent relation-
ship types, e.g. GrandmotherOf and GrandmaOf. Moreover,
it may serve as a baseline to interpret the performance of
relation-aware models.

Structured Embedding. Structured Embedding (SE) [18]
models each relation by two matrices Mh

r ;M
t
r 2 Rd$d that

perform relation-specific projections of the head and tail
embeddings:

fðh; r; tÞ ¼ +kMh
rh+Mt

rtk1: (3)

As before, h; t 2 Rd are the embeddings of head and tail entity,
respectively. By employing different projections for the
embeddings of the head and tail entities, SE explicitly distin-
guishes between the subject- and object-role of an entity.

TransE. TransE [19] models relations as a translation of
head to tail embeddings, i.e. hþ r - t. Thus, the interaction
model is defined as:

fðh; r; tÞ ¼ +khþ r+ tkp; (4)

with p 2 f1; 2g is a hyper-parameter. A major advantage of
TransE is its computational efficiency which enables its
usage for large scale KGs. However, it inherently cannot
model 1-N, N-1, and N-M relations: assume ðh; r; t1Þ;
ðh; r; t2Þ 2 K, then the model adapts the embeddings in
order to ensure hþ r - t1 and hþ r - t2 which results in
t1 - t2.

TransH. TransH [20] is an extension of TransE that specif-
ically addresses the limitations of TransE in modeling 1-N,
N-1, and N-M relations. In TransH, each relation is repre-
sented by a hyperplane, or more specifically a normal vector
of this hyperplane wr 2 Rd, and a vector dr 2 Rd that lies in
the hyperplane. To compute the plausibility of a triple
ðh; r; tÞ 2 K, the head embedding h 2 Rd and the tail embed-
ding t 2 Rd are first projected onto the relation-specific
hyperplane: hr ¼ h+w>

r hwr and tr ¼ t+w>
r twr. Then,

the projected embeddings are used to compute the score for
the triple ðh; r; tÞ:

fðh; r; tÞ ¼ +khr þ dr + trk22: (5)

TransR. TransR [21] is an extension of TransH that explic-
itly considers entities and relations as different objects and
therefore represents them in different vector spaces. For a
triple ðh; r; tÞ 2 K, the entity embeddings, h, t 2 Rd, are first
projected into the relation space by means of a relation-spe-
cific projection matrix Mr 2 Rk$d: hr ¼Mrh and tr ¼Mrt.
Finally, the score of the triple ðh; r; tÞ is computed:

fðh; r; tÞ ¼ +khr þ r+ trk22; (6)

where r 2 Rk.
TransD. TransD [22] is an extension of TransR that, like

TransR, considers entities and relations as objects living in
different vector spaces. However, instead of performing the

Fig. 2. An example embedding of the entities and relations from the
knowledge graph portrayed by Fig. 2.
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same relation-specific projection for all entity embeddings,
entity-relation-specific projection matrices Mr;h;Mt;h 2
Rk$d are constructed. To do so, all head entities, tail entities,
and relations are represented by two vectors, h;hp; t; tp 2
Rd and r; rp 2 Rk, respectively. The first set of embeddings

is used for calculating the entity-relation-specific projection

matrices: Mr;h ¼ rph
T
p þ ~I and Mr;t ¼ rptTp þ ~I, where ~I 2

Rk$d is a k$ d matrix with ones on the diagonal and zeros
elsewhere. Next, h and t are projected into the relation
space by means of the constructed projection matrices: hr ¼
Mr;hh and tr ¼Mr;tt. Finally, the plausibility score for
ðh; r; tÞ 2 K is given by:

fðh; r; tÞ ¼ +khr þ r+ trk22: (7)

RotatE. RotatE [23] models relations as rotations from
head to tail entities in the complex space: t ¼ h' r, where
h; r; t 2 Cd and jrij ¼ 1; that is the complex elements of r are
restricted to have a modulus of one. Because of the latter, ri
can be represented as eiur;i , which corresponds to a counter-
clockwise rotation by ur;i radians. The interaction model is
then defined as:

fðh; r; tÞ ¼ +kh' r+ tk; (8)

which allows to model symmetry, antisymmetry, inversion,
and composition [23].

MuRE. MuRE [24] is the Euclidean counterpart of MuRP,
a hyperbolic interaction model that is capable of effectively
modeling hierarchies in KG. Its interaction model involves
a distance function:

fðh; r; tÞ ¼ +kRh+ tþ rk22 þ bh þ bt; (9)

where the head entity is transformed by the diagonal
matrix R 2 Rd$d and the tail entity by the relation r. bh and
bt represent scalar offsets.

KG2E KG2E [25] aims to explicitly model (un)certainties
in entities and relations (e.g. influenced by the number of
triples observed for these entities and relations). Therefore,
entities and relations are represented by probability distri-
butions, in particular by multi-variate Gaussian distribu-
tions NN iðmmi;SSiÞ where the mean mmi 2 Rd denotes the
position in the vector space and the diagonal variance SSi 2
Rd$d models the uncertainty. Inspired by the TransE model,
relations are modeled as transformations from head to tail
entities: HH+ TT - RR where HH . NN hðmmh;SShÞ, HH . NN tðmmt;
SStÞ, RR . PrPr ¼ NN rðmmr;SSrÞ and HH+ TT . Pe ¼ NN h+tPe ¼ NN h+t ðmmh +
mmt;SSh þ SStÞ (since head and tail entities are considered to
be independent with regards to the relations). The interac-
tion model measures the similarity between PePe and PrPr by
means of the Kullback-Leibler (KL) divergence:

fðh; r; tÞ ¼ DKLðPPe;PPrÞ

¼ 1

2

!
trðSS+1r SSeÞ þ ðmmr + mmeÞ

TSS+1r ðmmr + mmeÞ

+log detðSSeÞ
detðSSrÞ

" #
+ d

$
:

(10)

Besides the asymmetric KL divergence, the authors propose
a symmetric variant which uses the expected likelihood.

3.1.2 Semantic Matching Interaction Models

RESCAL RESCAL [26] is a bilinear model that models enti-
ties as vectors and relations as matrices. The relation matri-
ces Wr 2 Rd$d contain weights wi;j that capture the amount
of interaction between the i-th latent factor of h 2 Rd and
the jth latent factor of t 2 Rd [11], [26]. Thus, the plausibility
score of ðh; r; tÞ 2 K is given by:

fðh; r; tÞ ¼ hTWrt ¼
Xd

i¼1

Xd

j¼1
wðrÞij hitj (11)

DistMult DistMult [5] is a simplification of RESCAL
where the relation matrices Wr 2 Rd$d are restricted to
diagonal matrices:

fðh; r; tÞ ¼ hTWrt ¼
Xd

i¼1
hi * diagðWrÞi * ti: (12)

Because of its restriction to diagonal matrices DistMult is
computational more efficient than RESCAL, but at the same
time less expressive. For instance, it is not able to model
anti-symmetric relations, since fðh; r; tÞ ¼ fðt; r; hÞ.

ComplEx ComplEx [27] is an extension of DistMult that
uses complex valued representations for the entities and
relations. Entities and relations are represented as vectors
h; r; t 2 Cd, and the plausibility score is computed using the
Hadamard product:

fðh; r; tÞ ¼Reðh' r' tÞ (13)

where ReðxÞ denotes the real component of the complex
valued vector x. Because the Hadamard product is not com-
mutative in the complex space, ComplEx can model anti-
symmetric relations in contrast to DistMult.

QuatE QuatE [28] learns hypercomplex valued represen-
tations (quaternion embeddings) for entities and relations,
i.e., ei; rj 2 Hd. Hypercomplex representations extend com-
plex representations by representing each number with one
real and three imaginary components. In QuatE, relations
are modelled as rotations in the hypercomplex space. More
precisely, the relation is used to rotate the head entity: hr ¼
h/ r, where in this context / represents the Hamilton prod-
uct. The final score is obtained by computing the inner
product between the rotated head and the the tail entity:

fðh; r; tÞ ¼ hr * t: (14)

In contrast to ComplEx, QuatE is capable of modeling
composition patterns.

SimplE SimplE [29] is an extension of canonical polyadic
(CP) [29], one of the early tensor factorization approaches.
In CP, each entity e 2 E is represented by two vectors
he; te 2 Rd and each relation by a single vector r 2 Rd.
Depending whether an entity participates in a triple as the
head or tail entity, either he or te is used. Both entity repre-
sentations are learned independently, i.e. observing a triple
ðe1; r; e2Þ, the method only updates he1 and te2 . In contrast
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to CP, SimplE introduces for each relation r the inverse
relation r0, and formulates the interaction model based on
both:

fðh; r; tÞ ¼ 1

2
hei ; r; tej

D E
þ hej ; r

0; tei

D E% &
: (15)

Therefore, for each triple ðe1; r; e2Þ 2 K, both he1 and te2 as
well as he2 and te1 are updated [29].

TuckER TuckER [30] is a linear model that is based on the
tensor factorization method Tucker [31] in which a three-
mode tensor X 2 RI$J$K is decomposed into a set of factor
matrices A 2 RI$P , B 2 RJ$Q, and C 2 RK$R and a core
tensor Z 2 RP$Q$R (of lower rank): X - Z$1 A$2 B$3 C,
where $n is the tensor product, with n denoting along
which mode the tensor product is computed. In TuckER, a
KG is considered as a binary tensor which is factorized
using the Tucker factorization where E ¼ A ¼ C 2 Rne$de

denotes the entity embedding matrix, R ¼ B 2 Rnr$dr rep-
resents the relation embedding matrix, and W ¼ Z 2
Rde$dr$de is the core tensor that indicates the extent of interac-
tion between the different factors. The interaction model is
defined as:

fðh; r; tÞ ¼W $1 h$2 r$3 t; (16)

where h; t correspond to rows of E and r to a row ofR.
ProjE ProjE [32] is a neural network-based approach with

a combination and a projection layer. The interaction model
first combines h and r by a combination operator [32]: h/
r ¼ DehþDrrþ bc, where De;Dr 2 Rk$k are diagonal
matrices which are used as shared parameters among all
entities and relations, and bc 2 Rk represents the candidate
bias vector shared across all entities. Next, the score for the
triple ðh; r; tÞ 2 K is computed:

fðh; r; tÞ ¼ gðt zðh/ rÞ þ bpÞ; (17)

where g and z are activation functions, and bp represents the
shared projection bias vector.

HolE Holographic embeddings (HolE) [33] make use of
the circular correlation operator to compute interactions
between latent features of entities and relations:

fðh; r; tÞ ¼ sðrT ðh?tÞÞ: (18)

where the circular correlation ? : Rd $Rd ! Rd is defined
as ½a?b)i ¼

Pd+1
k¼0 ak 0 bðiþkÞ mod d. By using the correlation

operator each component ½h?t)i represents a sum over a
fixed partition over pairwise interactions. This enables
the model to put semantic similar interactions into the
same partition and share weights through r. Similarly
irrelevant interactions of features could also be placed
into the same partition which could be assigned a small
weight in r.

ERMLP ERMLP [34] is a multi-layer perceptron based
approach that uses a single hidden layer and represents
entities and relations as vectors. In the input-layer, for each
triple the embeddings of head, relation, and tail are
concatenated and passed to the hidden layer. The output-
layer consists of a single neuron that computes the plausibil-
ity score of the triple:

fðh; r; tÞ ¼ wT gðW½h; r; t)Þ; (19)

where W 2 Rk$3d represents the weight matrix of the hid-
den layer, w 2 Rk, the weights of the output layer, and g
denotes an activation function such as the hyperbolic
tangent.

Neural Tensor Network. The Neural Tensor Network
(NTN) [35] uses a bilinear tensor layer instead of a standard
linear neural network layer:

fðh; r; tÞ ¼ uT
r * tanhðhWrtþVr½h; t) þ brÞ; (20)

where Wr 2 Rd$d$k is the relation specific tensor, and the
weight matrix Vr 2 Rk$2d, the bias vector br; and the
weight vector ur 2 Rk are the standard parameters of a
neural network, which are also relation specific. The
result of the tensor product hWrt is a vector x 2 Rk

where each entry xi is computed based on the slice i of
the tensor Wr: xi ¼ hWi

rt [35]. As indicated by the inter-
action model, Neural Tensor Network (NTN) defines for
each relation a separate neural network which makes the
model very expressive, but at the same time computa-
tionally expensive.

ConvKB ConvKB [36] uses a convolutional neural net-
work (CNN) whose feature maps capture global interac-
tions of the input. Each triple ðh; r; tÞ 2 K is represented as a
input matrix A ¼ ½h; r; t) 2 Rd$3 in which the columns rep-
resent the embeddings for h; r and t. In the convolution
layer, a set of convolutional filters vvi 2 R1$3; i ¼ 1; . . .; t; are
applied on the input in order to compute for each dimen-
sion global interactions of the embedded triple. Each vvi is
applied on every row of A creating a feature map vi ¼
½vi;1; :::; vi;d) 2 Rd:

vi ¼ gðvvjAþ bÞ; (21)

where b 2 R denotes a bias term and g an activation func-
tion which is employed element-wise. Based on the result-
ing feature maps v1; . . . ;vt , the plausibility score of a triple
is given by:

fðh; r; tÞ ¼ ½vi; . . . ;vt) *w; (22)

where ½vi; . . . ;vt) 2 Rtd$1 and w 2 Rtd$1 is a shared
weight vector. ConvKB may be seen as a restriction of
ER-MLP with a certain weight sharing pattern in the first
layer.

ConvE ConvE [37] is a CNN-based approach. For each
triple ðh; r; tÞ, the input to ConvE is a matrixA 2 R2$d where
the first row ofA represents h 2 Rd and the second row rep-
resents r 2 Rd. A is reshaped to a matrix B 2 Rm$n where
the first m=2 half rows represent h and the remaining m=2
half rows represent r. In the convolution layer, a set of 2-
dimensional convolutional filters V ¼ fvvi j vvi 2 Rr$cg are
applied on B that capture interactions between h and r. The
resulting feature maps are reshaped and concatenated in
order to create a feature vector v 2 RjVjrc. In the next step, v
is mapped into the entity space using a linear transforma-
tion W 2 RjVjrc$d, that is eh;r ¼ vTW. The score for the triple
ðh; r; tÞ 2 K is then given by:

fðh; r; tÞ ¼ eh;rt: (23)
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Since the interaction model can be decomposed into
fðh; r; tÞ ¼ f 0ðh; rÞ; th i, the model is particularly designed to
1-N scoring, i.e. efficient computation of scores for ðh; r; tÞ
for fixed h; r and many different t.

3.2 Training Approaches
Because most KGs contain only positive examples, we
require training approaches involving techniques such as
negative sampling to avoid over-generalization to true facts.
Here, we describe two common training approaches found
in the literature: the local closed world assumption (LCWA)
and the stochastic local closed world assumption (sLCWA).
It should be noted that the local closed world assumption
(LCWA) and the stochastic local closed world assumption
(sLCWA) do not affect the evaluation.

3.2.1 Local Closed World Assumption

The LCWAwas introduced by [34] and used in subsequent
works as an approach to generate negative examples dur-
ing training [30], [37]. In this setting, for any triple
ðh; r; tÞ 2 K that has been observed, a set T +ðh; rÞ of nega-
tive examples is created by considering all triples ðh; r;
tiÞ =2 K as false. Therefore, for our exemplary KG (Fig. 1)
for the pair (Peter, works_at), the triple (Peter, works_at,
DHL) is a false fact since for this pair only the triple (Peter,
works_at, Deutsche Bank) is part of the KG. Similarly, we
can construct H+ðr; tÞ based on all triples ðhi; r; tÞ =2 K, or
R+ðh; tÞ based on the triples ðh; ri; tÞ =2 K. Constructing
R+ðh; tÞ is a popular choice in visual relation detection
domain [38], [39]. However, most of the works in knowl-
edge graph modeling construct only T +ðh; rÞ as the set of
negative examples, and in the context of this work refer to
T +ðh; rÞ as the set of negatives examples when speaking
about LCWA.

3.2.2 Stochastic Local Closed World Assumption

Under the stochastic local closed world assumption
(sLCWA), instead of considering all possible triples ðh; r;
tiÞ =2 K, ðhi; r; tÞ =2 K or ðh; ri; tÞ =2 K as false, we randomly
take samples of these sets.

Two common approaches for generating negative sam-
ples are uniform negative sampling (UNS) [19] and ber-
noulli negative sampling (BNS) [20] in which negative
triples are created by corrupting a positive triple ðh; r; tÞ 2
K by replacing either h or t. We denote with N the set of all
potential negative triples:

T ðh; rÞ ¼fðh; r; t0Þ j t0 2 E ^ t0 6¼ tg (24)

Hðr; tÞ ¼fðh0; r; tÞ jh0 2 E ^ h0 6¼ hg (25)

N ¼
[

ðh;r;tÞ2K
T ðh; rÞ [Hðr; tÞ: (26)

Theoretically, we would need to exclude all positive tri-
ples from this set of candidates for negative triples, i.e.,
N + ¼ N n K. In practice, however, since usually jN j1 jKj,
the likelihood of generating a false negative is rather low.

Therefore, the additional filter step is often omitted to lower
computational cost. It should be taken into account that a
corrupted triple that is not part of the KG can represent a
true fact.

UNS and BNS differ in the way they define sample
weights for ðh0; r; tÞ or ðh; r; t0Þ:

Uniform Negative Sampling. With uniform negative
sampling (UNS) [19], the first step is to randomly (uni-
formly) determine whether h or t shall be corrupted for
a positive triple ðh; r; tÞ 2 K. Afterwards, an entity e 2 E
is uniformly sampled and selected as the corrupted
head/tail entity.

Bernoulli Negative Sampling. With bernoulli negative sam-
pling (BNS) [20], the probability of corrupting h or t in
ðh; r; tÞ 2 K is determined by the property of the relation r:
if the relation is a one-to-many relation (e.g. motherOf), BNS
assigns a higher probability to replace h, and if it is a many-
to-one relation (e.g. bornIn) it assigns a higher probability to
replace t. More precisely, for each relation r 2 R the average
number of tails per head (tph) and heads per tail (hpt) are
first computed. These statistics are then used to define a Ber-
noulli distribution with parameter tph

tphþhpt . For a triple
ðh; r; tÞ 2 K the head is corrupted with probability tph

tphþhpt
and the tail with probability hpt

tphþhpt . The described approach
reduces the chance of creating corrupted triples that repre-
sent true facts [20].

3.3 Loss Functions
The loss function can have a significant influence on the per-
formance of KGEMs [7]. In the following, we describe point-
wise, pairwise, and setwise loss functions that have been
frequently be used within KGEMs. For additional discus-
sion and a slightly different categorization we refer to the
work of Mohamed et al. [7].

3.3.1 Pointwise Loss Functions

Let f denote the interaction model of a KGEMs. With ti, we
denote a triple (i.e. ti 2 K), and with li 2 f0; 1g or l̂i 2
f+1; 1g its corresponding label, where 1 corresponds to the
label of the positive triples, and 0 / -1 to the label of the neg-
ative triples. Pointwise loss functions compute an indepen-
dent loss term for each triple-label pair, i.e. for a batch
B ¼ fðti; liÞgjBji¼1, the loss is given as

L ¼ 1

jBj
X

ðti;liÞ2B
Lðti; liÞ: (27)

In the following, we describe four different pointwise losses:
The square error loss, binary cross entropy loss (BCEL), pointwise
hinge loss, and logistic loss.

Square Error Loss. The square error loss function com-
putes the squared difference between the predicted scores
and the labels li 2 f0; 1g [7]:

Lðti; liÞ ¼
1

2
ðfðtiÞ + liÞ2: (28)

The squared error loss strongly penalizes predictions that
deviate considerably from the labels, and is usually used for
regression problems. For simple models it often permits
more efficient optimization algorithms involving analytical
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solutions of sub-problems, e.g. the Alternating Least Squares
algorithm used by [26].

Binary Cross Entropy Loss. The binary cross entropy loss is
defined as [37]:

Lðti; liÞ ¼ + ðli * log ðsðfðtiÞÞÞ
þ ð1+ liÞ * log ð1+ sðfðtiÞÞÞÞ;

(29)

where li 2 f0; 1g and s represents the logistic sigmoid
function. Thus, the problem is framed as a binary classifi-
cation problem of triples, where the model’s outputs are
regarded as logits. The loss is not well-suited for transla-
tional distance models because these models produce a
negative distance as score and cannot produce positive
model outputs. ConvE and TuckER were originally trained
in a multi-class setting using the binary cross entropy loss
where each ðh; rÞ-pair has been classified against e 2 E
simultaneously, i.e., if jEj ¼ n, the label vector for each
ðh; rÞ-pair has n entries indicating whether the triple
ðh; r; eiÞ is (not) part of the KG, and along each dimension
of the label vector a binary classification is performed. It
should be noted that there exist different implementation
variants of the binary cross entropy loss that address numeri-
cal stability. ConvE and TuckER employed a numerically
unstable variant, and in the context of this work, we refer to
this variant when referring to the binary cross entropy loss.

Pointwise Logistic Loss/Softplus Loss. An alternative, but
equivalent formulation of the binary cross entropy loss is
the pointwise logistic loss (or Softplus loss (SPL)):

Lðti; liÞ ¼ log ð1þ expð+l̂i * fðtiÞÞ (30)

where l̂i 2 f+1; 1g [7]. It has been used to train ComplEx,
ConvKB, and SimplE. We consider both variants separately
because both have been used in different model implemen-
tations, and their implementation details might yield differ-
ent results (e.g., to numerical stability).

Pointwise Hinge Loss. The pointwise hinge loss sets the
score of positive examples larger than a margin parameter !
while reducing the scores of negative examples to values
below +!:

Lðti; liÞ ¼ maxð0;!+ l̂i * fðtiÞÞ (31)

where l̂i 2 f+1; 1g. The loss penalizes scores of positive
examples which are smaller than !, but does not impose
any restriction on values > !. Similarly, negative scores
larger than +! contribute to the loss, whereas all values
smaller than +! do not have any loss contribution [7].
Thereby, the model is not encouraged to further optimize
triples which are already predicted well enough (according
to the margin parameter !).

3.3.2 Pairwise Loss Functions

Next, we describe widely applied pairwise loss functions
that are used within KGEMs, namely the pairwise hinge loss
and the pairwise logistic loss. They both compare the scores
of a positive triple tþ and a negative triple t+. The negative
triple in a pair is usually obtained by corrupting the positive
one. Thus, the pairs often share common head or tail entities
and relations. For a batch of pairs B ¼ fðtþi ; t+i Þg

jBj
i¼1, the loss

is given as

L ¼ 1

jBj
X

ðtþi ;t+i Þ2B

Lðfðt+i Þ + fðtþi ÞÞ: (32)

Hence, the loss function evaluates the difference in scores
D ¼ fðt+i Þ + fðtþi Þ between a positive and a negative triple,
rather than their absolute scores. This is in accordance to
the OWA assumption, where we do not assume to have
negative labels, but just ”less positive” ones.

Pairwise Hinge Loss/Margin Ranking Loss. The pairwise
hinge loss or margin ranking loss (MRL) is given by

LðDÞ ¼ maxð0;!þ DÞ: (33)

Pairwise Logistic Loss. The pairwise logistic loss is defined
as [7]:

LðDÞ ¼ log ð1þ expðDÞÞ: (34)

Thus, it can be seen as a soft-margin formulation of the pair-
wise hinge loss with a margin of zero.

3.3.3 Setwise Loss Functions

Setwise loss functions neither compare individual scores, or
pairs of them, but rather more than two triples’ scores.
Here, we describe the self-adversarial negative sampling
loss (NSSAL) and the cross entropy loss (CEL) as examples
of such loss functions that have been applied within
KGEMs [7], [23].

Self-Adversarial Negative Sampling Loss. The self-adver-
sarial negative sampling loss (NSSAL) addresses the lim-
itation that many negative examples are trivial and do
not provide helpful information. The authors of [23] pro-
pose to overcome this limitation by sampling negative
samples according to the scores predicted by the interac-
tion model [23]:

pððh0
i; r; t

0
iÞjðhi; ri; tiÞÞ ¼

expðafðh0
i; r; t

0
iÞÞPn

j¼1 expðafðh0
j; r; t

0
jÞÞ

; (35)

where ðhi; ri; tiÞ 2 K denotes a true triple, fðh0
i; r; t

0
iÞg

K
i¼1 it’s

set of negative samples generated, and a 2 R a temperature
parameter. Because sampling from this distribution may be
computationally expensive, the probabilities obtained by
Equation (35) are used to weight the generated negative
examples in the loss function [23].

L ¼+ log ðsðg þ fðh; r; tÞÞÞ

+
XK

i¼1
pððh0; r; t0ÞÞ * log ðsð+ðg þ fðh0

i; r; t
0
iÞÞÞÞ:

(36)

Thus, negative samples for which the model predicts a high
score relative to other samples are weighted stronger.

Cross Entropy Loss. The cross entropy loss (CEL) has been
successfully applied together with 1-N scoring, i.e., predict-
ing for each ðh; rÞ-pair simultaneously a score for each pos-
sible tail entity, and framing the problem as a multi-class
classification problem [3], [8]. To apply the CEL, first, the
labels are normalized in order to form a proper probability
distribution. Second, the predicted scores for the tail entities
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of ðh; rÞ-pair are normalized by a softmax:

pðt jh; rÞ ¼ expðfðh; r; tÞÞP
t02E expðfðh; r; t0ÞÞ

: (37)

Finally, the cross entropy between the distribution of the
normalized scores and the normalized label distribution is
computed:

L ¼ +
X

t02E
I½ðh; r; t0Þ 2 K) * log ðpðt jh; rÞÞ; (38)

where I denotes the indicator function. Note that this loss
differs from the multi-class binary cross entropy as it
applies a softmax normalization implying that this is a
single-labelmulti-class problem.

3.4 Explicitly Modeling Inverse Relations
Inverse relations introduced by [29] and [40] are explicitly
modeled by extending the set of relations R by a set of
inverse relations rinv 2 Rinv with Rinv \R ¼ ;. This is
achieved by training an inverse triple ðt; rinv; hÞ for each
triple ðh; r; tÞ 2 K. Equipping a KGEM with inverse rela-
tions implicitly doubles the relation embedding space of
any model that has relation embeddings. The goal is to
alter the scoring function, such that the task of predicting
the head entities for ðr; tÞ pairs becomes the task of predict-
ing tail entities for ðt; rinvÞ pairs. The explicit training of the
implicitly known inverse relations can lead to better model
performance [40] and can for some models increase the
computational efficiency [37].

4 EVALUATION METRICS FOR KGEMS

KGEMs are usually evaluated based on link prediction,
which is on KG defined as predicting the tail/head enti-
ties for ðh; rÞ/ðr; tÞ pairs. For instance, given queries of
the form (Sarah, studied_at, ?) or (?, CEO_of, Deutsche
Bank) the capability of a link predictor to predict the cor-
rect entities that answer the query, i.e. (Sarah, studied_at,
University of Oxford) and (Sarah, CEO_of, Deutsche Bank)
is measured.

However, given the fact that usually true negative exam-
ples are not available, both the training and the test set con-
tain only true facts. For this reason, the evaluation
procedure is defined as a ranking task in which the capabil-
ity of the model to differentiate corrupted triples from
known true triples is assessed [19]. For each test triple tþ ¼
ðh; r; tÞ 2 Ktest two sets of corrupted triples are constructed:

1) Hðr; tÞ ¼ fðh0; r; tÞ jh0 2 E + fhg which contains all
the triples where the head entity has been corrupted,
and

2) T ðh; rÞ ¼ fðh; r; t0Þ j t0 2 E + ftgg that contains all the
triples with corrupted tail entity.

For each tþ and its corresponding corrupted triples, the
scores are computed and the entities sorted accordingly.
Next, the rank of every tþ among its corrupted triples is
determined, i.e. the position in the score-sorted list.

Among the corrupted triples in Hðr; tÞ / T ðh; rÞ, there
might be true triples that are part of the KG. If these false
negatives are ranked higher than the current test triple tþ,

the results might get distorted. Therefore, the filtered evalua-
tion setting has been proposed [19], in which the corrupted
triples are filtered to exclude known true facts from the train
and test set. Thus, the rank does not decrease when ranking
another true entity higher.

Moreover, we want to draw attention to the fact that the
metrics can be further be distorted by unknown false nega-
tives, i.e., true triples that are contained in the set of cor-
rupted triples but are not part of the KG (and therefore
cannot be filtered out). Therefore, it is essential to investi-
gate the predicted scores of a KGEM and not solely rely on
the computed metrics.

Basedupon these individual ranks, the followingmeasures
are frequently used to summarize the overall performance:

Mean Rank. The mean rank (MR) represents the average
rank of the test triples, i.e.

MR ¼ 1

jKtestj
X

t2Ktest

rankðtÞ (39)

Smaller values indicate better performance.
Adjusted Mean Rank. Because the interpretation of the

mean rank (MR) depends on the number of available
candidate triples, comparing MRs across different data-
sets (or inclusion of inverse triples) is difficult. This is
sometimes further exacerbated in the filtered setting
because the number of candidates varies. Therefore, with
fewer candidates available, it becomes easier to achieve
low ranks. The adjusted mean rank (AMR) [10] compen-
sates for this problem by comparing the mean rank
against the expected mean rank under a model with ran-
dom scores:

AMR ¼ MR
1
2

P
t2Ktest

ð"ðtÞ þ 1Þ (40)

where "ðtÞ denotes the number of candidate triples
against which the true triple t 2 Ktest is ranked. In the
unfiltered setting we have "ðtÞ ¼ jEj + 1 for all t 2 Ktest.
Thereby, the measure also adjusts for chance, as a random
scoring achieves an expected adjusted mean rank of 1.
The adjusted mean rank (AMR) has a fixed value range
from 0 to 1, where smaller values (AMR 2 1) indicate
better performance.

Mean Reciprocal Rank. The mean reciprocal rank (MRR) is
defined as:

MRR ¼ 1

jKtestj
X

t2Ktest

1

rankðtÞ (41)

where Ktest is a set of test triples, i.e. the mean reciprocal
rank (MRR) is the mean over reciprocal individual ranks.
However, the MRR is flawed since the reciprocal rank is an
ordinal scale and not an interval scale, i.e. computing the
arithmetic mean is statistically incorrect [41], [42]. Still, it is
often used for early stopping since it is a smooth measure
with stronger weight on small ranks, and less affected by
outlier individual ranks than the mean rank. The MRR has a
fixed value range from 0 to 1, where larger values indicate
better performance.
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Hits@K. Hits@K denotes the ratio of the test triples that
have been ranked among the top k triples, i.e.,

Hits@k ¼ jft 2 Ktest j rankðtÞ 3 kgj
jKtestj

: (42)

Larger values indicate better performance.
Additional Metrics. Further metrics that might be relevant

are the area under the Receiver Operating Characteristic
curve (AUC-ROC) and the area under the precision-recall
curve (AUC-PR) [11]. However, these metrics require the
number of true positives, false positives, true negatives, and
false negatives, which in most cases cannot be computed
since the KGs are usually incomplete.

5 EXISTING BENCHMARK DATASETS

In this section, we describe the benchmark datasets that
have been established to evaluate KGEMs. A summary is
also given in Table 1.

FB15K. Freebase is a large cross-domain KG consisting of
around 1.2 billion triples and more than 80 million entities.
Bordes et al. [19] extracted a subset of Freebase, which is
used as a benchmark dataset and named it FB15K. It con-
tains 14,951 entities, 1,345 relations, as well as more than
half a million triples describing facts about movies, actors,
awards, sports, and sports teams [37].

FB15K-237. FB15K has a test-leakage, i.e. a major part of
the test triples (.81%) are inverses of triples contained in
the training set: for most of the test triples of the form
ðh; r; tÞ, there exists a triple ðh; r0; tÞ or ðt; r0; hÞ in the training
set. Therefore, Toutanova and Chen [43] constructed
FB15K-237 in which inverse relations were removed [43].
FB15K-237 contains 14,541 entities and 237 relations.

WN18. WordNet1 is a lexical knowledge base in which
entities represent terms and are called synsets. Relations in
WordNet represent conceptual-semantic and lexical rela-
tionships (e.g. hyponym). Bordes et al. [17] extracted a sub-
set of WordNet named WN18 that is frequently used to
evaluate KGEMs. It contains 40,943 synsets and 18 relations.

WN18RR. Similarly to FB15K, WN18 also has a test-
leakage (of approximately 94%) [43]. For instance, for
most of the test triples of the form (h, hyponym, t), there
exists a triple (t, hypernym, o) in the training set. Dettmers
et al. [37] have shown that a simple rule-based system can

obtain results competitive to the state of the art results on
WN18. For this reason, they constructed WN18RR by
removing inverse relations similarly to the procedure
applied to FB15K. WN18RR contains 40,943 entities and
11 relations.

Kinships. The Kinships [44] dataset describes relation-
ships between members of the Australian tribe Alyawarra
and consists of 10,686 triples. It contains 104 entities
representing members of the tribe and 26 relationship
types that represent kinship terms such as Adiadya or
Umbaidya [17].

Nations. The Nations [45] dataset contains data about
countries and their relationships with other countries.
Exemplary relations are economic_aid and accusation [17].

Unified Medical Language System. The Unified Medical
Language System (UMLS)[46] is an ontology that describes
relationships between high-level concepts in the biomedical
domain. Examples of contained concepts are Cell, Tissue,
and Disease, and exemplary relations are part_of and exhib-
its [17], [46].

YAGO3-10. Yet Another Great Ontology (YAGO)[47] is a
KG containing facts that have been extracted fromWikipedia
and aligned with WordNet in order to exploit the large
amount of information contained in Wikipedia and the taxo-
nomic information included in WordNet. It contains general
facts about public figures, geographical entities, movies, and
further entities, and it has a taxonomy for those concepts.
YAGO3-10 is a subset of YAGO3 [48] (which is an extension
of YAGO) that contains entities associated with at least ten
different relations. In total, YAGO3-10 has 123,182 entities
and 37 relations, andmost of the triples describe attributes of
persons such as citizenship, gender, and profession [37].

6 REPRODUCIBILITY STUDIES

The goal of the reproducibility studies was to investigate
whether it is possible to replicate experiments based on
the information provided in each model’s accompanying
paper. If specific information was missing, such as the
number of training epochs, we tried to find this informa-
tion in the accompanying source code if it was accessible.
For our study, we focused on the two most frequently
used benchmark datasets, FB15K and WN18, as well as
their respective subsets FB15K-237 and WN18RR. Table 5
(Appendix A1, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2021.3124805.) illustrates for which mod-
els results were reported (in the accompanying publica-
tions) for the considered datasets. A checkmark denotes
that results were reported, and green background indi-
cates that the entire experimental setup for the corre-
sponding dataset was described. Results have not been
reported for every model for every dataset because some
of the benchmark datasets were created after the models
were published. Therefore, these models have been
excluded from our reproducibility study.

Experimental Setup. For each KGEM, we applied identical
training and evaluation settings as described in their con-
comitant papers. We ran each experiment four times with
random seeds to measure the variance in the obtained
results. We evaluated the models based on the ranking

TABLE 1
Existing Benchmark Datasets

Dataset Triples Entities Relations

FB15K 592,213 14.951 1,345
FB15K-237 272,115 14,541 237
WN18 151,442 40,943 18
WN18RR 93,003 40,943 11
Kinships 10,686 104 26
Nations 11,191 14 56
Unified Medical
Language System (UMLS)

893,025 135 49

YAGO3-10 1,079,40 132,182 37

1. https://wordnet.princeton.edu/
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metrics MR, AMR, MRR, and Hits@K. As discussed in [4],
[10], the exact computation of ranks differs across different
codebases, and can lead to significant differences [4]. We
follow the nomenclature of Berrendorf et al. [10], and report
scores based on the optimistic, pessimistic, and realistic
rank definitions.

Tables 8-11 (Appendix A3-A4, available in the online sup-
plemental material) represent the results for FB15K, FB15K-
237, WN18, andWN18RR where experiments highlighted in
black were reproducible, in blue soft-reproducible experi-
ments (i.e., could be reproduced by a margin 3 5%), and
experiments highlighted in orange could not be reproduced.
In the following, we discuss the observations that we made
during our experiments.

6.1 Reproductions Requiring Alternate
Hyper-Parameters

One of the observations we made is that for some experi-
ments, results could only be reproduced with a different
set of hyper-parameter values. For instance, the results for
TransE could only be reproduced by adapting the batch
size and the number of training epochs. We trained
TransE on WN18 for 4000 epochs compared to a reported
number of 1000 epochs in order to obtain comparable
results. Furthermore, for RotatE on FB15K and WN18, we
received better results when adapting the learning rate.
The reason for these differences might be explained by
the implementation details of the underlying frameworks
which have been used to train the models. Authors of
early KGEMs often implemented their training algorithms
themselves or used frameworks that were popular at the
respective time but are not used anymore. Therefore, dif-
ferences between the former and current frameworks may
require an adaption of the hyper-parameter values. Even
within the same framework, bug fixes or optimizations of
the framework can lead to different results based on the
used version. Our benchmarking study highlights that
with adapted settings, results can be reproduced and
even improved.

6.2 Unreported Hyper-Parameters
Impedes Reproduction

Some experiments did not report the full experimental
setup impeding the reproduction of results. For example,
the embeddings in the ConvKB experiments have been pre-
trained based on TransE. However, the batch size for train-
ing TransE has not been reported, which can significantly
affect the results, as previously discussed. Furthermore, we
obtained a high deviation for the reported results for HolE
on FB15K. The apparent reason is that we could not find the
hyper-parameter setting for FB15K, such that we used the
same setting as for WN18, which we found in the accompa-
nying implementation.

6.3 Two Perspectives: Publication
versus Implementation

While preparing our experiments, we observed that for
some experiments, essential aspects, which are part of the
released source code, have not been discussed in the paper.
For instance, in the publication describing ConvE, it is not

mentioned that inverse triples have been added to the KGs
in a pre-processing step. This step seems to be essential to
reproduce the results. A second example is SimplE, for
which the predicted scores have been clamped to the range
of ½+20; 20). This step was not mentioned in the publication,
but it can have a significant effect when the model is evalu-
ated based on an optimistic ranking approach, which is the
case for SimplE.

6.4 Lack of Official Implementations
Impedes Reproduction

During our experiments, we observed that for DistMult and
TransD, we were able to reproduce the results on WN18,
but not on FB15K. A reason might be differences in the
implementation details of the frameworks used to train and
evaluate the models. For example, the initialization of the
embeddings or the normalization of the loss values could
have an impact on the performance. Since there exists no
official implementation (see Table 5 in Appendix A1, avail-
able in the online supplemental material) for DistMult and
TransD, it is not possible to check the above-mentioned
aspects. Furthermore, we were not able to reproduce the
results for TransH for which also no official implementation
is available. There exist reference implementations,2 which
slightly differ from the model initially proposed.

6.5 Reproducibility is Dependent on the
Ranking Approach

As discussed in [4], [10], the ranking metrics have been
implemented differently by various authors. In our experi-
ments, we report results based on three common implemen-
tations of the ranking metrics: i.) realistic, ii.) optimistic and
iii.) pessimistic ranking (Section 4). If a model predicts the
same score for many triples, there will be a large discrepancy
between the three ranking approaches. We could observe
such a discrepancy for SimplE for which the results on
FB15K (Table 8 in Appendix A3, available in the online sup-
plemental material) and WN18 (Table 10 in Appendix A4,
available in the online supplemental material) were almost
0% based on the realistic ranking approach, but were much
higher based on the optimistic ranking approach. Similar
observations for other KGEMhave beenmade in [4].

7 BENCHMARKING

In our benchmarking studies, we evaluated a large set of
different combinations of interaction models, training
approaches, loss functions, and the effect of explicitly
modeling inverse relations. Additionally, we evaluated
how well the interaction models can model symmetry,
anti-symmetry and composition patterns (Appendix 8.1,
available in the online supplemental material). In particu-
lar, we investigated 21 interaction models, two training
approaches, and five loss functions on four datasets. We
refer to a specific combination of interaction model, train-
ing approach, loss function, and whether inverse relations
are explicitly modeled as a configuration, e.g., RotatE +
LCWA + Softplus loss (SPL) + inverse relations. We do
not refer to different hyper-parameter values such as

2. https://github.com/thunlp/OpenKE
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batch size or learning rate when we use the term configu-
ration. For each configuration, we used random search to
perform the hyper-parameter optimizations over all other
hyper-parameters and applied early stopping on the vali-
dation set. Each hyper-parameter optimization experi-
ment lasted for a maximum of 24 hours or 100 iterations,
in which new hyper-parameters have been sampled in
each iteration. Overall, we performed individual hyper-
parameter optimizations for more than 1,000 configura-
tions. We retrain the model with the best hyper-parame-
ter setting and report evaluation results on the test set.

Before presenting our results, we provide an overview of
the experimental setup, comprising the investigated interac-
tionmodels, training approaches, loss functions, negative sam-
plers, and datasets. We used the sLCWA and LCWA as
training approaches. For the sLCWAwe applied a 1:k-Scoring
as usually done throughout the literature [19], [27], where k
denotes the number of negative examples for each positive.
For the LCWA, we applied a 1:N-Scoring, i.e., we sample each
batch against all negatives examples as typically done for train-
ing with the LCWA [37]. Table 6 (Appendix A1, available in
the online supplemental material) shows the hyper-parameter
ranges for the sLCWAand the LCWAassumptions.

Datasets. We performed experiments on the following
four datasets: WN18RR, FB15K-237, Kinships and YAGO3-
10. We selected WN18RR and FB15K-237 since they are
widely applied benchmarking datasets. We chose Kinships
and YAGO3-10 to investigate the performance of KGEMs
on a small and a larger dataset.

Interaction Models. We investigated all interaction models
described in Section 3.1. Because of our vast experimental
setup and the size of YAGO3-10, we restricted the number
of interaction models on YAGO3-10 as otherwise, the
computational effort would be prohibitive. Based on their
variety of model types as described in Section 3.1, we
selected the following interaction models: ComplEx,
ConvKB, DistMult, ERMLP, HolE, MuRE, QuatE, RESCAL,
RotatE, SE, TransD, and TransE.

Training Approaches. We trained the interaction models
based on the sLCWA (Section 3.2.2) and the LCWA
(Section 3.2.1) training approaches. Due of the extent of our
benchmarking study and the fact that YAGO3-10 contains
more than 132,000 entities, which makes the training based
on the LCWA with 1-n scoring expensive, we restricted the
training approach to the sLCWA for YAGO3-10.

Loss Functions. We investigated margin ranking loss
(MRL), binary cross entropy loss (BCEL), SPL, NSSAL, and
CEL since they represent the variety of types described in
Section 3.3 and because they have been previously shown to
yield good results. MRL has not been historically used in
the 1-N scoring setting likely due to the fact that in 1-N scor-
ing, the number of positive and negative scores in each
batch is not known in advance and dynamic. Thus, the
number of possible pairs varies as well ranging from N + 1
to ðN=2Þ2 for each ðh; rÞ combination. The accompanying
variance in memory requirements for each batch thus poses
practical challenges. Therefore, we did not use the MRL in
combination with the 1-N scoring setting.

Negative Sampler. When using the sLCWA, we generated
negative samples with UNS. When training with the LCWA
and 1-N scoring, no explicit negative samplingwas required.

Early Stopping. We evaluated each model every 50 epochs
and performed early stopping with a patience of 100 epochs
on all datasets except for YAGO3-10. There, considering the
larger number of triples seen in each epoch we evaluated
each model every 10 epochs and performed early stopping
with a patience of 50 epochs.

Below, we describe the results of our benchmarking
study. In the four following subsections, we summarize the
results for each dataset (i.e., Kinships, WN18RR, FB15K-237,
YAGO3-10) along with a discussion of the effect of the mod-
els’ individual components (i.e., training approaches, loss
functions, the explicit modeling of inverse relations) and
optimizers on the performance. Finally, we compare the
model complexity versus performance. In the appendix,
available in the online supplemental material, we provide
further results. In particular, we provide for each model the
results of all tested combinations of interaction model, train-
ing approach, and loss function.

7.1 Results on the Kinships Dataset
Investigating the model performances on Kinhsips is inter-
esting because it is a comparatively small KG and thus per-
mits for each configuration a large number of HPO
iterations for all interaction models. Fig. 4 provides a gen-
eral overview of the results, i.e., performance of the interac-
tion models, loss functions, training approach, the effect of
modeling inverse relations, and the effect of the optimizers.
Overall, it can be observed that for most interaction models,
several well-performing configurations can be determined.
However, some interaction models heavily depend on spe-
cific configurations such as KG2E and QuatE. Although link
prediction on Kinships seems to be relatively easy, there are
several translational distance-based interaction models that
perform relatively poor (i.e., TransD, TransE, TransH,
TransR, and UM). The poor performance of UM is not sur-
prising considering that it omits the multi-relational infor-
mation of the data. Finally, the results illustrate that Adam
outperforms Adadelta (in many cases with high margin).
Therefore, we decided to progress only with Adam as opti-
mizer for the remaining datasets in order to reduce the
computational costs.

Impact of the Training approach. Fig. 5 depicts the effect of
the training approaches. We focus only on the BCEL and
the SPL (which is equivalent to BCEL, but numerical more
stable, see Section 3.3.1) since they have been trained with
both training approaches. It can be observed that some
interaction models such as MuRE perform equally well on
both training approaches on Kinships whereas others such
as RESCAL benefit from one of the training approaches (in
this case from the sLCWA).

Impact of the Loss Function. Fig. 4 highlights that selecting
the appropriate loss function is crucial also for relatively
small dataset such as Kinships. Although all five loss func-
tions achieve high performance, all except the MRL exhibit
high variance. Comparing an interaction model that has
been trained with the MRL with an interaction model that
has been trained with a different loss function can lead to
misleading conclusions since finding a suitable configura-
tion for the loss functions except for the MRL is more
difficult.
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Impact of Explicitly Modeling Inverse Relations. Figs. 4
and 6 present the effect of explicitly modeling inverse
relations. Overall, explicitly modeling inverse relations
results in less variance across the investigated configura-
tions (Fig. 4). Further investigating the effect of modeling
of inverse relations on the different loss functions and
training approaches (Fig. 6), it can be observed that in
general, the LCWA benefits from explicit usage of
inverse relations in terms of robustness. This is to be
expected since, in the LCWA, the model only learns to
perform tail predictions, and without explicitly modeling
inverse relations, the model might have difficulties in
correctly predicting head entities. However, when explic-
itly modeling inverse relations, the head predictions are
obtained by predicting the tail entities of the correspond-
ing inverse triples (see Section 3.4)

Interestingly, MRL and NSSAL-based configurations,
which are both only trained with the sLCWA (i.e., the model
already learns to perform head and tail predictions) are
more robust when trained with inverse relations. Therefore,
depending on the dataset, it might be helpful to employ
inverse relation for these loss functions even though they
might be trained with sLCWA.

Model Complexity versus Performance. Fig. 17 (Appendix A9,
available in the online supplemental material) plots themodel
size against the obtained performance. The results highlight

that there is no strong correlation betweenmodel size and per-
formance, i.e., models with a small number of parameters can
perform equallywell as largemodels on the Kinships data set.
The skyline comprises small UM models, some intermediate
HolE and ProjE models, and larger RotatE and TuckER mod-
els. A full list is provided in Table 14 in Appendix A6, avail-
able in the online supplementalmaterial.

7.2 Results on the WN18RR Dataset
Fig. 7 depicts the overall results over WN18RR. A detailed
overview of all configurations can be found in Fig. 20 in
Appendix A12, available in the online supplemental material.

Fig. 3. Visualization of different training approaches for the relation
works_at in the KG in Fig. 1. Red color indicates positive examples, i.e.
true triples present in the KG. Dark blue color denotes triples used as
negative examples in LCWA. Light blue color sampling candidates for
negative examples in sLCWA. Yellow color indicates triples that are not
considered.

Fig. 5. Impact of training approach on the performance for a fixed inter-
action model and loss function for the Kinships dataset based on Adam.

Fig. 4. Overall hits@10 results for Kinships where box-plots summarize the best results across different configurations, i.e., combinations of interac-
tion models, training approaches, loss functions, and the explicit usage of inverse relations.

Fig. 6. Impact of explicitly modeling inverse relations on the performance
for a fixed loss function for the Kinships dataset.
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The results highlight that there are several combinations of
interaction models, loss functions, and training approaches
that obtain hits@10 results that are competitive with state-of-
the-art results.3 In particular, ComplEx (53.74%), ConvE
(56.33% compared to 52.00% in the original paper [37] ), Dis-
tMult (52.62%), MuRE (57.90% compared to 55.50% in the
original paper [24]), KG2E (52.30%), ProjE (51,73%), TransE
(56.98%), RESCAL (53.92%), RotatE (60.09% compared to
56.61% in the original paper [23]), SimplE (50.89%), and
TuckER (56.09% compared to 52.6% in the original paper [30])
obtained high performance. Especially the result obtained by
TransE is impressive since with a suitable configuration, it
beatsmost of the published state-of-the-art results. The results
highlight that determining an appropriate combination of
interaction model, loss function, training approach, and the
decision to explicitly modeling inverse relation is fundamen-
tal since many interaction models such as ConvE and KG2E
reveal a high variance across different configurations. The
results for ComplEx and RESCAL further underpin this
observation. They reveal competitive results with very spe-
cialized configurations that represent outliers. Another inter-
esting observation is the performance of UM, which does not
model relations, but can still compete with some of the other
interaction models onWN18RR. This observation might indi-
cate that the relational patterns inWN18RR are not too diverse
across relations.

Impact of the Training Approach. Figs. 7 and 8 depict the
impact of the training approach. Again, we focus only on
BCEL and SPL since they have been trained under both the
sLCWA and LCWA. The figures highlight that for both real-
izations of the binary cross entropy loss, the LCWA achieves
higher maximum performance, but at the same time, it
reveals a larger variance on both loss functions. Conse-
quently, it may be more difficult to find configurations that
obtain high performance. The overall lower variance of SPL
can be explained by the fact that it is numerically more sta-
ble than the BCEL.

Fig. 8 shows the impact of the training approaches for
fixed interaction models and used loss functions. The
results indicate that for some combinations of interaction
models and loss functions, the training approach’s choice
has a significant impact on the results. For instance, ConvE,
RotatE, TransE and TuckER reveal stronger performance

when trained with the LCWA whereas TransH suffer under
the LCWA.

Impact of the Loss Function. Fig. 7 depicts the perfor-
mance of the different loss functions. State-of-the-art
results for WN18RR are currently between 50% and 60%,
and for each loss function, at least 50% could be
achieved (Fig. 20 in Appendix A12, available in the online
supplemental material). However, the MRL is comparably
less competitive than the other loss functions. This obser-
vation is especially important considering that early
KGEMs have often been trained with the MRL. The results
highlight that there is a trade-off between highest perfor-
mance and robustness, i.e., SPL and BCEL achieve the
highest performance (when trained under the LCWA), but
also have high variance across different configurations
(especially BCEL + LCWA).

Fig. 24 (Appendix A16, available in the online supple-
mental material) reveals that some interaction models
can obtain a further performance boost when configured
with specific loss functions. For instance, the perfor-
mance of ComplEx, ProjE and RESCAL can be increased
by a significant margin when composed together with
the CEL.

Impact of Explicitly Modeling Inverse Relations. Fig. 9 illus-
trates that it is easier to find a strong performing sLCWA-
configurations when trained without inverse relations. Sur-
prising is that for LCWA based configurations, the interac-
tion models are still competitive when trained without
inverse relations. This observation is surprising because
KGEMs that are configured with the LCWA and without
inverse relations are not explicitly trained to predict the
head entities of triples.

Fig. 7. Overall hits@10 results for WN18RR where box-plots summarize the results across different combinations of interaction models, training
approaches, loss functions, and the explicit usage of inverse relations.

Fig. 8. Impact of training approach on the performance for a fixed inter-
action model and loss function for the WN18RR dataset.

3. https://paperswithcode.com/sota/link-prediction-on-wn18rr
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Model Complexity versus Performance. Fig. 17 (Appendix
A9, available in the online supplemental material) high-
lights that there is no significant correlation between model
size and performance. Instead, the results show that with an
appropriate configuration, the model complexity can be sig-
nificantly reduced (Table 15 in Appendix A6, available in
the online supplemental material). For instance, for RotatE,
several high-performing configurations have been found
(Fig. 20 in the Appendix A12, available in the online supple-
mental material), and the second-best configuration
achieved a hits@10 value of 58.33% while trained with an
embedding dimension of 64 (in the complex space). This is
especially interesting considering that RotatE originally
obtained a performance of 57.1% hits@10 [23] with an
embedding dimension of 500 (in the complex space) using
the sLCWA as training approach and the NSSAL as loss
function.4 By changing the training approach and the loss
function, the embedding dimension could be reduced sig-
nificantly while getting at the same time an improvement in
the hits@10 score.

7.3 Results on the FB15K-237 Dataset
Fig. 10 provides an overall overview of the results obtained on
FB15K-237. For the results for each individual configuration,
we refer to Fig. 21 in Appendix A13, available in the online
supplemental material. We can observe that TuckER outper-
forms the other interaction models followed by RotatE. Dis-
tMult again obtains surprisingly good results (Table 21 in
Appendix 13, available in the online supplemental mate-
rial) considering that the interaction model enforces sym-
metric relations. The results illustrate again that choosing
a suitable composition is essential for the performance of
an interaction model. For instance, TuckER and QuatE
perform well only with dedicated compositions. A further
example is DistMult, which again obtains surprisingly
good results (Table 21 in Appendix A13, available in the
online supplemental material) considering that the inter-
action model enforces symmetric relations. DistMult,

however, achieves a strong performance only when com-
posed with the LCWA and the CEL (Table 17 in Appen-
dix A17, available in the online supplemental material),
highlighting that a simple interaction model can obtain
strong performance when composed beneficially.

Impact of the Training Approach. Fig. 10 shows that for
both, BCEL and SPL, the LCWA obtains significantly
higher results, but they express a high variance at the
same time. Figs. 11 and 25 (Appendix A17, available in
the online supplemental material) illustrate that some
interaction models are extremely sensitive to the choice
of the training approaches. For instance, it can be
observed that RotatE, TransE, and TuckER suffer when
trained together with the sLCWA for both loss functions.
Table 17 (Appendix A7, available in the online supple-
mental material) shows that most of the interaction mod-
els obtain their best performance on FB15K-237 when
trained together with the LCWA.

Impact of the Loss Function. Fig. 10 illustrates that the BCEL
and SPL outperform the other loss functions, but they also
exhibit higher variance. Fig. 25 (Appendix A17, available in
the online supplemental material) expresses that some inter-
actionmodels seem to bemore sensitive to the usage of differ-
ent loss function. For instance, ConvE and TuckER suffer
from the MRL and the NSSAL, DistMult together with the
CEL outperforms the other loss functions. However, TransE
performs similarly for all loss functions except theNSSAL.

Impact of Explicitly Modeling Inverse Relations. Fig. 12
reveals, as for the previous datasets, that in general, the
usage of inverse relations is crucial for the training based on
the LCWA approach. Different from the results obtained for
WN18RR, the LCWA is not competitive when trained with-
out inverse relations.

Model Complexity versus Performance. Fig. 17 (Appendix A9,
available in the online supplemental material) illustrates that
for FB15K-237, there is no clear correlation between model
size and performance. Tinymodels can already obtain similar
performance as largermodels. The skyline comprises an inter-
mediate UM, TransE and DistMult models, and a larger
TuckER model. A full list is provided in Table 13 (Appendix
A6, available in the online supplementalmaterial).

7.4 Results on the YAGO3-10 Dataset
YAGO3-10 is the largest benchmark dataset in our study.
Therefore, it is of interest to investigate how the different inter-
action models perform on a larger KG. As mentioned in the
introduction of this chapter, we reduced the experimen-
tal setup for YAGO3-10 in order to reduce the computa-
tional complexity of our entire study. Fig. 13 depicts the
overall results obtained for YAGO3-10. Detailed results
for all configurations are illustrated in Fig. 22 in Appen-
dix A14, available in the online supplemental material.

The results highlight the previous observation that the per-
formance of many KGEMs heavily depends on the choice of
its components and is dataset-specific. For instance,MuRE, the
best-performing interaction model, and especially RotatE,
which is among the top-performing interactionmodels, exhibit
high variance across their configurations. TransE, which was
among the top-performing interaction models on WN18RR,
performed poorly on YAGO3-10. One might conclude that

Fig. 9. Impact of explicitly modeling inverse relations on the performance
for a fixed loss function for the WN18RR dataset.

4. https://github.com/DeepGraphLearning/
KnowledgeGraphEmbedding
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TransE performs better on smaller KGs, but the results
obtained on Kinships do not support this assumption. It
should be taken into account that some interaction models
might benefit from being trained with the LCWA on YAGO3-
10 as observed for TransE on WN18RR. Therefore, TransE
might perform much better when trained with the LCWA
approach. Remarkably, ComplEx andQuatE seem to be robust
for all sLCWA configurations. With regards to the loss func-
tions, all loss functions except MRL obtain comparable results.
Though, theMRL ismore robust than other loss functions.

Impact of the Loss Function. Fig. 13 shows again that the
choice of the loss functions has an import impact on the
models’ performance: the margin ranking loss and the self-
adversarial negative sampling loss are less competitive than
the Softplus loss. Fig. 22 (Appendix A 14, available in the
online supplemental material) highlights that some interac-
tion models are susceptible to the choice of the loss function.
For instance, RotatE and TransE suffer when trained with
BCEL and SPL whereas ERMLP suffers when trained with
the MRL.

Impact of Explicitly Modeling Inverse Relations. Fig. 14
shows the effect of explicitly modeling inverse relations for
fixed loss functions (it should be noted that the results are
obtained based only on the sLCWA training approach). In
contrast to the results observed for WN18RR and FB15K-
237, the MRL benefits from explicitly modeling inverse rela-
tions. Furthermore, also the SPL obtains its best perfor-
mance with inverse inverse relations.

Model Complexity versus Performance. Fig. 17 (Appendix A9,
available in the online supplemental material) expresses that

there is a low correlation betweenmodel size and performance
for YAGO3-10. However, the improvement is tiny compared
to the differences inmodel size. It should be taken into account
that for KGEMs, the model size is usually dependent on the
number of entities and relations. Therefore, dependent on the
space complexity of the interaction model (Table 4 in Appen-
dix A1, available in the online supplemental material), the size
can grow fast for large KGs. The skyline comprises an interme-
diate TransE, DistMult and ConvKB model, and a larger
MuREmodel. A full list is provided in Table 16 (Appendix A6,
available in the online supplementalmaterial).

8 RELATIONAL PATTERN ANALYSIS

Knowledge graphs exhibit relational patterns such as symme-
try (e.g., the relation marriedTo), and the performance of
KGEMs depend on how well these patterns can be modeled.
Four major relational patterns that have been investigated in
the literature are symmetry, anti-symmetry, inversion, and compo-
sition [23], [27], [43]. Here, we provide a large-scale perfor-
mance analysis of our investigated KGEMs in modeling
symmetry, anti-symmetry, and composition patterns for the data-
sets FB15k-237, WN18RR, and YAGO3-10. First, we provide
statistics about the support and confidence of the symmetry,
anti-symmetry, inversion, and composition patterns in the
FB15k-237, WN18RR and YAGO3-10 datasets. Next, we

Fig. 10. Overall hits@10 results for FB15K-237 where box-plots summarize the results across different combinations of interaction models, training
approaches, loss functions, and the explicit usage of inverse relations.

Fig. 11. Impact of training approach on the performance for a fixed inter-
action model and loss function for the FB15K-237 dataset.

Fig. 12. Impact of explicitly modeling inverse relations on the perfor-
mance for a fixed loss function for the FB15K-237 dataset.
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describe our experimental setup. Finally, we present the
results of our relational pattern analysis.

8.1 Relational Patterns and Their Detection
Here, we formally define the relational patterns symme-
try, anti-symmetry, inversion, and composition patterns
according to [23], the measures support and confidence,
and provide an overview of the support and confidence of
the these patterns in the FB15k-237, WN18RR and
YAGO3-10 datasets.

Definition 1 (Symmetric Relation). A relation r 2 R is
symmetric, if ðh; r; tÞ 2 T ) ðt; r; hÞ 2 T

Definition 2 (Anti-Symmetric Relation). A relation r 2 R
is anti-symmetric, if ðh; r; tÞ 2 T ) ðt; r; hÞ =2 T

Definition 3 (Inverse Relation). A relation r 2 R is inverse
to rinv 2 R, if ðh; r; tÞ 2 T ) ðt; rinv; hÞ 2 T . If there exists a
r0 2 R with r0 6¼ r and r0 is inverse to r, then we call r an
inverse relation.

Definition 4 (Composite Relation). A relation r 2 R is a
composition of two relations r1; r2 2 R, if ða; r1; bÞ 2
T ^ ðb; r2; cÞ 2 T ) ða; r; cÞ 2 T . We call r a composite rela-
tion, if such two relations exist.

Since KGs are known to be incomplete, a false anteced-
ent, i.e., right-hand side of a rule, may not only be caused

by the relation not being of the relation type of interest,
but also originate from the KG’s incompleteness. Thus,
we detect relation types using a support and confidence
threshold, defined akin to the concepts of association rule
mining.

The support of one of the aforementioned patterns p for a
relation r indicates the number of different assignments of
entities such that the precedent, i.e., the left-hand side of a
rule, holds. For most of the simple rules this is equivalent to
the relation frequency, but, e.g., for composite relations, we
need to consider all pairs of triples with matching the candi-
date relations r1; r2 and being linked by the intermediate
entity b.

The confidence of a relational pattern is the number of
times the right-hand side holds divided by the support.
Thus, it can be interpreted as an estimate of the the condi-
tional probability of the antecedent, given the precedent
holds.

8.2 Relation Patterns in Benchmark Datasets
Table 2 shows the frequency of the detected pattern types
for the three studied benchmark datasets. Similar to related
work we used a confidence threshold of 97% [43]. Note that
we did not detect a single inverse relation, since FB15k-237
and WN18RR have been explicitly preprocessed to remove
such.

8.3 Experimental Setup
To measure the performance of the investigated KGEMs in
modeling symmetry, anti-symmetry, and composition pat-
terns, we slightly adapted the standard link prediction eval-
uation procedure (Section 4). Instead of computing the
metrics based on all test triples, we extracted for each rela-
tional pattern all test triples that contain the associated rela-
tions, aggregated the single ranks obtained of each triple in
the subset, and computed the hits@10 metric for each sub-
set. Therefore, we can express how well a knowledge graph
embedding model (KGEMs) can model a specific relational
pattern.

Fig. 13. Overall hits@10 results for YAGO3-10 where box-plots summarize the results across different combinations of interaction models, training
approaches, loss functions, and the explicit usage of inverse relations. In contrast, to the previous datasets, the models have only been trained based
on the stochastic local closed world assumption.

Fig. 14. Impact of explicitly modeling inverse relations on the perfor-
mance for a fixed loss function for the YAGO3-10 dataset.
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8.4 Results
Fig. 15 shows the overall performance on pattern types per
dataset. We show the distribution of best models’ perfor-
mance for each configuration in terms of H@10. We gener-
ally observe a tendency that symmetric relations are easier
to model than anti-symmetric and composite relations,
which seem to be equally challenging.

Fig. 16 (Appendix A2, available in the online supplemen-
tal material) shows the performance of best models’ for
each configuration for each dataset and pattern type,
grouped by interaction function. For the most simple pat-
tern, symmetry, almost all interaction functions can obtain
strong results on WN18RR, with NTN, TransD and SE
slightly falling behind. For FB15k237, we observe similar
results, except that SimplE and KG2E fail to capture this
pattern (while performing still sufficiently good on other
patterns). On YAGO3-10, translation-based methods such
as TransE or TransD cannot match the performance of,
ComplEx, RotatE and DistMult, with ER-MLP’s perfor-
mance in between.

On the more difficult anti-symmetry and composition
patterns, the differences are more pronounced. Overall,
RotatE and TransE obtain the best results, whereas UM and
NTN cannot obtain good results.

9 DISCUSSION & FUTURE WORK

Table 7 (Appendix A1, available in the online supplemental
material) illustrates the extent of our studies and Table 3
(Appendix 18, available in the online supplemental mate-
rial) summarizes the main findings our work. Although the
re-implementation of all machine learning components into
a unified, fully configurable framework was a major effort,
we believe it is essential to analyze reproducibility and
obtain fair results on benchmarking. In particular, we were
able to address the issue of incompatible evaluation proce-
dures and preprocessing steps in previous publications that
are not obvious. We highlighted that the evaluation metrics,
which usually are utilized to evaluate the performance of
knowledge graph embedding models, are realized differ-
ently depending on the definition of the rank. Specifically,
three major rank definitions are employed: optimistic, realis-
tic, and pessimistic ranking. Because the optimistic and pessi-
mistic ranking can lead to distorted conclusions in cases
where a KGEMs predicts the same score for many triples,
we recommend evaluating knowledge graph embedding
models based on the realistic ranking approach.

During our reproducibility study, we found that the
reproduction of experiments is a major challenge and, in
many cases, not possible with the available information in

current publications. In particular, we observed the follow-
ing four main aspects:

! For a set of experiments, the results can sometimes
only be reproduced with a different set of hyper-
parameter values.

! For some experiments, the entire experimental setup
was not provided, impeding the reproduction of
experiments.

! The lack of an official implementation hampers the
reproduction of results.

! Some results are dependent on the utilized ranking
approach (average, optimistic, and pessimistic rank-
ing approach). For example, the optimistic rank may
lead to incorrect conclusions about the model’s
performance.

Our benchmarking study shows that the term KGEMs
should be used with caution and should be differenti-
ated from the actual interaction model since our results
highlight that the specific combination of the interaction
model, training approach, loss function, and the usage of
explicit inverse relations is often fundamental for the
performance.

No configuration performs best across all datasets.
Depending on the dataset, several configurations can be
found that achieve comparable results (Tables 17-20 in
Appendix A7-A8, available in the online supplemental
material, and Figs. 19-22 in Appendix A11-A14, available in
the online supplemental material). Moreover, with an
appropriate configuration, the model size can significantly
be compressed (see Pareto-optimal configurations in Tables
13-16 in Appendix A6, available in the online supplemental
material) that has especially a practical relevance when
looking for a trade-off between required memory and
performance.

The results also highlight that even interaction models
such as TransE that have been considered as baselines can
outperform state-of-the-art interaction models when trained
with an appropriate training approach and loss function.
This raises the question of the necessity of the vast number
of available interaction models. However, for some interac-
tion models such as RotatE, MuRE or TuckER, we can
observe a good performance across all datasets (note:
TuckER has not been evaluated on YAGO3-10). For RotatE,
we even obtained the state-of-the-art results on WN18RR
(similar results were obtained by Graph Attenuated Atten-
tion Networks [49]), and for ConvE, MuRE, and TuckER,
we obtained results superior to the originally published

Fig. 15. Performance Distribution of all best models per configuration in
H@10.

TABLE 2
Frequency of Detected Relation Patterns Across the

Benchmark Datasets

pattern anti-symmetry composition symmetry

dataset

fb15k237 205 147 3
wn18rr 7 1 3
yago310 30 3 2
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ones. ComplEx proved to be a very robust interaction model
across different configurations. This can, in particular, be
observed from the results obtained on YAGO3-10 (Fig. 13).

We discovered that no loss function consistently achieves
the best results. Instead it can be seen that with different loss

functions, such as the BCEL, NSSAL, and SPL, good results
can be obtained across all datasets. Remarkably, the MRL is
overall the worst-performing loss function. However, one
might argue that the MRL is the most compatible loss func-
tion with the sLCWA since it does not assume artificially

TABLE 3
Summary of Main Insights Over All Datasets

Interaction Models

RotatE Among top-ten-performing interaction models across all datasets.
MuRE Among top-ten-performing interaction models on WN18RR, FB15K-237, and YAGO3-

10.
ConvE Among top-ten-performing interaction models on Kinships and FB15K-237 (has not

been evaluated on YAGO3-10).
ComplEx Among top-ten-performing interaction models on Kinships and YAGO3-10.
TuckER Among top-ten-performing interaction models for Kinships, and FB15K-237 (has not

been evaluated on YAGO3-10).
DistMult Among top-ten-performing interaction models on FB15K-237.
QuatE Among top-ten-performing interaction models on YAGO3-10.
TransE Among top-ten-performing interaction models on WN18RR.
Structured Embedding (SE) Among top-ten-performing interaction models on Kinships.
Loss Functions
BCEL Among top-ten-performing loss functions across all datasets.
NSSAL Among top-ten-performing loss functions across all datasets.
SPL Among top-ten-performing loss functions across all datasets.
CEL Among top-ten-performing loss functions on Kinships and FB15K-237 (has not been

evaluated on YAGO3-10).
MRL Among top-ten-performing loss functions on Kinships.
Training Approaches
sLCWA Among top-ten-performing training approaches across all datasets.
LCWA Among top-ten-performing training approaches on Kinships, WN18RR and FB15K-237

(has not been evaluated on YAGO3-10).
Explicit Modeling of Inverse Relations

Is usually beneficial in combination with the local closed world assumption.
Configurations
Performance Appropriate combination of interaction model, training assumption, loss function,

choice of explicitly modeling inverse relations is crucial for the performance, e.g.,
TransE can compete when with several state-of-the-art interaction models on WN18RR
when appropriate configuration is selected.
There is no single best configuration that works best for all dataset.

Variance Some interaction models exhibit a high variance across different configurations, e.g.,
RotatE on YAGO3-10 (Fig. 13 on page 16)

Pareto-Optimal Configurations Tables 13-16 in Appendix A6, available in the online supplemental material, describe
Pareto-optimal configurations. It can be seen that there are configurations that require
fewer parameters while obtaining almost the same performance. In some cases, for the
same interaction model, the model can be significantly compressed.

Reproducibility
Results For FB15K, four out of 13, for WN18, five out of 13, for FB15K-237, two out of three, and

for WN18RR, three out of five experiments can be categorized as soft-reproducible.
Code For four out of 15 models, no official implementation was available.
Parameters For six out of 15 papers, source code was available and full experimental setup was

precisely described.
General Insights
SOTA For WN18RR, we achieve based on a RotatE-configuration (together with Graph

Attenuated Attention Networks [49]) state-of-the-art results in terms of hits@10 through
our study (60.09% Hits@10). Furthermore, we found a TransE configuration that
achieves high performance beating most of the published SOTA results (56.98%
Hits@10). Based on our results, we emphasize to further investigate the hyper-
parameters space for the most promising configurations for the remaining
benchmarking datasets.

Improvements For ConvE (56.33% compared to 52.00% [37]), MuRE (57.90% compared to 55.50% [24])
and TuckER (56.09% compared to 52.6% [30]), we are beating the reported results in the
original papers due selecting appropriate configurations and hyper-parameters on
WN18RR.

Each component (i.e., interaction model, loss function, and training approach) is considered to be among the top-ten performing configurations when they occur at
least once in the top-ten performing configurations. Note that a single component is part of several configurations, and therefore, can occur multiple times in the
top-ten performing configurations.
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generated negative examples to be actually false in contrast
to the other loss functions used. TheMRL only learns to score
positive examples higher than corresponding negative exam-
ples, but it does not ensure that a negative example is scored
lower than every other positive example. Thus, the absolute
score values are not interpretable and cannot be used to com-
pare triples without common head/tail entities. They can
only be interpreted relatively, and only when comparing
scores for triples with the same ðhrÞ/ðrtÞ. Although loss
functions such as BCEL or SPL treat generated negative tri-
ples as true negatives that actually contain also unknown
positive examples, they obtain good performance. This
might be explained by the fact that usually the set of
unknown triples are dominated by false triples. Therefore, it
is likely that a major part of the generated triples are actually
negative. Consequently, the KGEMs learns to distinguish
better positive from negative examples.

Considering the explicit usage of inverse relations, we
found out that the impact of inverse relations can be signifi-
cant, especially when the interaction model is trained under
the LCWA. This might be explained by the fact that based
on the LCWA-training, the KGEM only learns to perform
one-side predictions (i.e., it learns to either predict head or tail
entities), but during the evaluation, it is asked to perform
both-side predictions. Through the inclusion of inverse rela-
tions, the model learns to perform both-side predictions
based on one side, i.e., ð0; r; tÞ can be predicted through
ðt; rinverse; 0Þ. Overall, our results indicate that further inves-
tigations on FB15K-237 and YAGO3-10 might lead to results
that are competitive to the state-of-the-art.

Looking forward, it would be of great interest to re-inves-
tigate previously performed studies that analyze the rela-
tionship between the performance of KGEMs and the
properties of the underlying KGs to verify that their find-
ings indeed can be attributed to the interaction model alone,
rather than the exact configuration including the loss func-
tion, the training approach and the explicit modeling of
inverse relations. Further, the effect of explicitly modeling
inverse relations has not been analyzed in depth, in particu-
lar how the learned representations of a relation and its
inverse are related to each other. Ultimately, we believe our
work provides an empirical foundation for such studies
and a practical tool to execute them.
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TABLE 4
Investigated interaction models [33] and their required number of

parameters. k corresponds to the number of neurons in the hidden
layer, nf to the number of convolutional kernels, kr and kc to the height

and width of the convolutional kernels.

Model Parameters

ComplExa |E|2d + |R|2d

ConvEb |E|d + |R|d + d + nf krkc + 2 + 2nf + 2d
+(h � kr + 1)(w � kc + 1)nf d + |E|

ConvKB |E|d + |R|d + nf (d + 4) + 1
DistMult |E|d + |R|d
ER-MLP |E|d + |R|d + k(3d + 2) + 1
HolE |E|d + |R|d
KG2E |E|2d + 2|R|d
MuRE |E|(d + 2) + 3|R|d
NTN |E|d + |R|k(d2 + 2d + 2)
ProjE |E|d + |R|d + 3d + 1
QuatEc |E|4d + |R|4d
RESCAL |E|d + |R|d2

RotatEa |E|2d + |R|d
SE |E|d + 2|R|d2

SimplE |E|2d + 2|R|d
TransE |E|d + |R|d
TransH |E|d + 2|R|d
TransR |E|de + |R|dr + dedr

UM |E|d
TuckER |E|de + |R|dr + d2

edr + 4de

a 2d, because of complex valued vectors, i.e. imaginary
and real part of a number.

b w and h correspond to the height and weight of the
reshaped input.

c 4d, because of hyper-complex valued (quaternion) vec-
tors, i.e. a real part and three imaginary parts of a
quaternion.

TABLE 5
Denotes for each proposed model whether results have been reported
for FB15K, WN18, or their alterations. Furthermore, it indicates whether

an official implementation exists where P corresponds to a PyTorch
based implementation, T to a TensorFlow based implementation, and O

to other implementations. A green background indicates that the full
experimental setup was available. The models highlighted with * where

included in the reproducibility study.

Model Code FB15K FB15K-237 WN18 WN18RR

ComplEx* O X X
ConvE* P X X X X
ConvKB* T X X
DistMult* - X X
ER-MLP -
HolE* O X X
KG2E* - X X
MuRE* P X X
NTN -
ProjE T X X
QuatE*a P X X X X
UM -
RESCAL O
RotatE* P X X X X
SE O
SimplE* T, P X X
TransD* - X X
TransE* O X X
TransH* - X X
TransR* O X X
TuckER* P X X X X
UM -
a Code is based on the framework OpenKE https://github.com/

thunlp/OpenKE.

TABLE 6
Hyper-Parameter Ranges for Ablation Experiments

Hyper-Parameter Range

Sh
ar

ed

Embedding-Dimension {64,128,256}
Initialization {Xavier}
Optimizersa {Adam, Adadelta}
Learning Rate (log scale) [0.001, 0.1)
Batch Sizeb {128, 256, 512}
Model inverse relations {Yes, No}
Epochs 1,000

sL
C

W
A

Loss {BCEL, MRL, NSSAL, SPL}
Margin for MRL {0.5, 1.5, ... , 9.5}
Margin for NSSAL {1, 3, 5, ... , 29}
ADVT for NSSAL {0.1, 0.2, ... , 1.0}
Number of Negativesc {1, 2, ... , 100}

LC
W

A Loss {BCEL, CEL, SPL}
Label Smoothing (log scale) [0.001, 1.0)

a For Kinships, we evaluated Adam and Adadelta, and for the
remaining datasets we sticked to Adam since it performed
almost in every experiment at least equally good as Adadelta
and in many experiments significantly better.

b For YAGO3-10, the batch-size has been sampled from the set
{1024, 2048, 2096, 8192}.

c For YAGO3-10, the number of negative triples per each each
positive has been sampled from the set {1, 2, ..., 50}.

TABLE 7
Evaluation statistics

Metric Value

Datasets 4
Interaction Models 21
Training approaches 2
Loss Functions 5
Negative Samplers 1
Optimizers 2
Ablation Studies 1,207
Number of Experiments 73,683
Compute Time (hours) 24,804
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Fig. 16. Performance of best models’ for each configuration for each dataset and pattern type, grouped by interaction function.
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ADDITIONAL RESULTS FROM REPRODUCIBILITY STUDY

TABLE 8
Reproduction of Studies on FB15K where pub refers to published results, R to results based on the realistic ranking, O to results based on the
optimistic ranking, and P to results based on the pessimistic ranking. For published results, there are two additional rank types, U for undefined

due to missing official implementation and ND for non-deterministic. We only show the results of the optimistic and pessimistic ranking in case they
differ from the realistic ranking.

MRR (%) Hits@1 (%) Hits@3 (%) Hits@5 (%) Hits@10 (%) MR AMR (%)
model

ComplEx pub (O) 69.20 59.90 75.90 84.00
R 21.94 ± 0.71 12.73 ± 0.74 24.18 ± 0.65 30.67 ± 0.60 40.61 ± 0.74 170.56 ± 17.18 2.31 ± 0.23

ConvE pub (ND) 65.70 55.80 72.30 83.10 51.00
R 75.45 ± 0.17 68.26 ± 0.27 80.47 ± 0.08 83.94 ± 0.01 87.68 ± 0.04 43.97 ± 0.60 0.60 ± 0.01

DistMult pub (U) 35.00 57.70
R 28.47 ± 0.23 18.59 ± 0.19 31.77 ± 0.29 38.24 ± 0.38 47.81 ± 0.36 127.16 ± 0.85 1.72 ± 0.01

HolE pub (ND) 52.40 40.20 61.30 73.90
R 39.72 ± 0.32 27.15 ± 0.33 46.13 ± 0.40 54.05 ± 0.36 64.02 ± 0.27 186.22 ± 6.21 2.52 ± 0.08

KG2E pub (U) 71.50 59.00
R 0.63 ± 0.08 0.15 ± 0.04 0.41 ± 0.11 0.66 ± 0.17 1.25 ± 0.21 5784.42 ± 22.26 78.31 ± 0.30

QuatE1 pub (O) 77.00 70.00 82.10 87.80 41.00
R 22.19 ± 0.17 14.65 ± 0.16 23.76 ± 0.26 29.37 ± 0.40 37.42 ± 0.39 229.99 ± 1.57 3.11 ± 0.02

RotatE pub (ND) 79.70 74.60 83.00 88.40 40.00
R 64.94 ± 0.03 53.05 ± 0.05 73.31 ± 0.06 78.74 ± 0.06 84.85 ± 0.03 35.66 ± 0.06 0.48 ± 0.00

SimplE pub (O) 72.70 66.00 77.30 83.80
R 0.04 ± 0.00 0.01 ± 0.00 0.03 ± 0.01 0.03 ± 0.01 0.05 ± 0.00 7386.02 ± 2.11 99.99 ± 0.03
O 23.62 ± 12.90 11.67 ± 8.68 24.65 ± 16.33 34.28 ± 20.19 51.91 ± 24.57 148.27 ± 89.28
P 0.03 ± 0.00 0.01 ± 0.00 0.03 ± 0.01 0.03 ± 0.01 0.05 ± 0.00 14623.77 ± 91.95

TransD pub (U) 77.30 91.00
R 37.30 ± 0.05 24.45 ± 0.08 44.22 ± 0.09 51.78 ± 0.09 61.31 ± 0.07 146.55 ± 3.10 1.98 ± 0.04

TransE pub (U) 47.10 125.00
R 29.11 ± 0.20 17.99 ± 0.27 33.53 ± 0.18 40.76 ± 0.21 50.84 ± 0.28 122.01 ± 1.09 1.65 ± 0.01

TransH pub (U) 64.40 87.00
R 2.59 ± 0.27 1.89 ± 0.35 2.87 ± 0.23 3.16 ± 0.11 3.46 ± 0.15 6318.90 ± 18.86 85.54 ± 0.26

TransR pub (ND) 68.70 77.00
R 1.23 ± 0.04 0.38 ± 0.00 1.34 ± 0.10 1.93 ± 0.12 2.79 ± 0.09 6130.41 ± 9.59 82.99 ± 0.13

TuckER pub (ND) 79.50 74.10 83.30 89.20
R 79.02 ± 0.12 73.10 ± 0.11 83.05 ± 0.13 85.93 ± 0.16 89.10 ± 0.10 40.35 ± 0.83 0.55 ± 0.01

TABLE 9
Reproduction of Studies on FB15K-237 where pub refers to published results, R to results based on the realistic ranking, O to results based on

the optimistic ranking, and P to results based on the pessimistic ranking. For published results, there are two additional rank types, U for undefined
due to missing official implementation and ND for non-deterministic. We only show the results of the optimistic and pessimistic ranking in case they

differ from the realistic ranking.

MRR (%) Hits@1 (%) Hits@3 (%) Hits@5 (%) Hits@10 (%) MR AMR (%)
model

ConvE pub (ND) 32.50 23.70 35.60 50.10 244.00
R 29.69 ± 0.19 21.13 ± 0.21 32.32 ± 0.19 38.57 ± 0.12 47.19 ± 0.08 245.83 ± 4.97 3.45 ± 0.07

ConvKB pub (O) 39.60 51.70 257.00
R 4.22 ± 0.18 2.75 ± 0.27 3.65 ± 0.19 4.44 ± 0.19 7.18 ± 0.71 4314.45 ± 27.24 60.46 ± 0.38

MuRE pub (R) 33.60 24.50 37.00 52.10
R 25.16 ± 0.20 16.12 ± 0.30 27.67 ± 0.21 34.21 ± 0.32 43.78 ± 0.13 190.61 ± 0.58 2.67 ± 0.01

QuatE1 pub (O) 31.10 22.10 34.20 49.50 176.00
R 0.26 ± 0.02 0.18 ± 0.03 0.23 ± 0.02 0.25 ± 0.02 0.30 ± 0.01 7119.76 ± 36.06 99.78 ± 0.51

RotatE pub (ND) 33.80 24.10 37.50 53.30 177.00
R 28.79 ± 0.07 19.74 ± 0.08 31.67 ± 0.05 37.89 ± 0.07 47.13 ± 0.07 176.70 ± 0.48 2.48 ± 0.01

TuckER pub (ND) 35.80 26.60 39.40 54.40
R 35.51 ± 0.08 26.20 ± 0.15 39.05 ± 0.10 45.59 ± 0.12 54.11 ± 0.04 152.46 ± 2.32 2.14 ± 0.03
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TABLE 10
Reproduction of Studies on WN18 where pub refers to published results, R to results based on the realistic ranking, O to results based on the
optimistic ranking, and P to results based on the pessimistic ranking. For published results, there are two additional rank types, U for undefined

due to missing official implementation and ND for non-deterministic. We only show the results of the optimistic and pessimistic ranking in case they
differ from the realistic ranking.

MRR (%) Hits@1 (%) Hits@3 (%) Hits@5 (%) Hits@10 (%) MR AMR (%)
model

ComplEx pub (O) 94.10 93.60 94.50 94.70
R 18.28 ± 2.10 11.65 ± 1.32 19.04 ± 2.44 23.38 ± 3.06 30.70 ± 3.90 442.51 ± 47.32 2.16 ± 0.23

ConvE pub (ND) 94.30 93.50 94.60 95.60 374.00
R 94.23 ± 0.08 93.54 ± 0.16 94.68 ± 0.04 95.03 ± 0.02 95.39 ± 0.09 462.53 ± 32.15 2.26 ± 0.16

DistMult pub (U) 83.00 94.20
R 82.41 ± 0.24 74.74 ± 0.31 89.09 ± 0.19 91.36 ± 0.22 93.44 ± 0.15 454.41 ± 43.08 2.22 ± 0.21

HolE pub (ND) 93.80 93.00 94.50 94.90
R 73.43 ± 0.40 63.22 ± 0.57 81.80 ± 0.40 85.81 ± 0.20 89.30 ± 0.26 786.05 ± 33.16 3.84 ± 0.16

KG2E pub (U) 92.80 331.00
R 3.73 ± 0.22 1.46 ± 0.19 3.27 ± 0.26 4.77 ± 0.32 7.39 ± 0.33 2732.49 ± 57.69 13.35 ± 0.28
O 3.74 ± 0.22 1.46 ± 0.19 3.27 ± 0.26 4.77 ± 0.32 7.39 ± 0.33 2732.49 ± 57.69

QuatE1 pub (O) 94.90 94.10 95.40 96.00 388.00
R 67.28 ± 0.70 58.38 ± 0.88 73.05 ± 0.61 77.86 ± 0.53 83.25 ± 0.38 327.12 ± 12.44 1.60 ± 0.06

RotatE pub (ND) 94.90 94.40 95.20 95.90 309.00
R 93.71 ± 0.03 92.27 ± 0.03 94.87 ± 0.06 95.34 ± 0.04 95.83 ± 0.05 270.22 ± 7.24 1.32 ± 0.04

SimplE pub (O) 94.20 93.90 94.40 94.70
R 0.04 ± 0.02 0.01 ± 0.01 0.03 ± 0.02 0.04 ± 0.03 0.06 ± 0.03 20355.98 ± 19.42 99.48 ± 0.09
O 32.95 ± 8.10 28.19 ± 6.94 33.94 ± 8.84 37.28 ± 9.69 42.40 ± 10.53 469.49 ± 161.36
P 0.03 ± 0.01 0.01 ± 0.01 0.03 ± 0.02 0.04 ± 0.03 0.06 ± 0.03 40242.47 ± 195.66

TransD pub (U) 92.20 212.00
R 37.33 ± 0.52 4.31 ± 0.42 67.90 ± 0.93 81.01 ± 0.30 87.80 ± 0.33 460.00 ± 7.40 2.25 ± 0.04

TransE pub (U) 89.20 251.00
R 37.04 ± 1.37 9.29 ± 1.83 60.28 ± 1.25 72.02 ± 0.75 81.51 ± 0.52 489.84 ± 42.13 2.39 ± 0.21

TransH pub (U) 82.30 388.00
R 0.17 ± 0.17 0.08 ± 0.12 0.17 ± 0.20 0.21 ± 0.24 0.31 ± 0.29 19551.68 ± 166.54 95.55 ± 0.81

TransR pub (ND) 92.00 225.00
R 0.24 ± 0.03 0.00 ± 0.01 0.22 ± 0.05 0.38 ± 0.05 0.63 ± 0.07 18882.20 ± 240.51 92.27 ± 1.18

TuckER pub (ND) 95.30 94.90 95.50 95.80
R 94.89 ± 0.05 94.52 ± 0.05 95.17 ± 0.07 95.30 ± 0.07 95.50 ± 0.06 532.05 ± 45.91 2.60 ± 0.22

TABLE 11
Reproduction of Studies on WN18RR where pub refers to published results, R to results based on the realistic ranking, O to results based on the
optimistic ranking, and P to results based on the pessimistic ranking. For published results, there are two additional rank types, U for undefined

due to missing official implementation and ND for non-deterministic. We only show the results of the optimistic and pessimistic ranking in case they
differ from the realistic ranking.

MRR (%) Hits@1 (%) Hits@3 (%) Hits@5 (%) Hits@10 (%) MR AMR (%)
model

ConvE pub (ND) 43.00 40.00 44.00 52.00 4187.00
R 45.28 ± 0.13 41.93 ± 0.19 46.64 ± 0.25 49.07 ± 0.22 51.98 ± 0.24 5203.77 ± 129.07 25.67 ± 0.64

ConvKB pub (O) 24.80 52.50 2554.00
R 0.34 ± 0.05 0.11 ± 0.04 0.27 ± 0.02 0.43 ± 0.06 0.63 ± 0.08 13905.99 ± 962.71 68.60 ± 4.75

QuatE1 pub (O) 48.10 43.60 50.00 56.40 3472.00
R 0.58 ± 0.05 0.38 ± 0.06 0.56 ± 0.08 0.66 ± 0.06 0.88 ± 0.09 20404.47 ± 196.81 100.65 ± 0.97

RotatE pub (ND) 47.60 42.80 49.20 57.10 3340.00
R 49.39 ± 0.06 45.49 ± 0.12 51.03 ± 0.10 53.36 ± 0.15 57.05 ± 0.14 4046.79 ± 89.15 19.96 ± 0.44

TuckER pub (ND) 47.00 44.30 48.20 52.60
R 47.62 ± 0.58 44.91 ± 0.62 48.81 ± 0.59 50.40 ± 0.58 52.80 ± 0.45 5646.84 ± 146.30 27.85 ± 0.72

a For MuRE, we obtained non-finite loss values while training on WN18RR with the setting defined in [24]. This might be explained by the
fact that the specified learning rate of 50 is comparably large. In our benchmarking study, we show that we can outperform the published
results with a different setting (Section 7.2).
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TABLE 12
Model sizes in bytes for the best reported configurations studied for the the reproducibility study.

Dataset FB15K FB15K-237 WN18 WN18RR
Model

ComplEx 26.1 MB - 49.2 MB -
ConvE 22.5 MB 20.3 MB 41.2 MB 40.9 MB
ConvKB - 5.9 MB - 8.2 MB
DistMult 6.5 MB - 16.4 MB -
HolE 9.8 MB - 24.6 MB -
KG2E 6.5 MB - 16.4 MB -
RotatE 130.4 MB 117.9 MB 163.8 MB 162.3 MB
SimplE 26.1 MB - 65.5 MB -
TransD 6.5 MB - 16.4 MB -
TransE 3.3 MB - 3.3 MB -
TransH 7.1 MB - 8.2 MB -
TransR 16.7 MB - 8.4 MB -
TuckER 46.1 MB - 37.6 MB -



ALI et al. A6

ADDITIONAL RESULTS FROM BENCHMARKING STUDY

TABLE 13
Pareto-optimal models for FB15k237 regarding Model Bytes and Hits@10

Model Loss Training Approach Inverse Relations Model Bytes Hits@10 (%)

TuckER BCEL LCWA yes 8.0 MiB 52.857
DistMult CEL LCWA yes 3.7 MiB 47.387
TransE SPL LCWA no 3.6 MiB 45.318
UM MRL sLCWA no 3.5 MiB 3.432
UM MRL sLCWA yes 3.5 MiB 3.305

TABLE 14
Pareto-optimal models for Kinships regarding Model Bytes and Hits@10

Model Loss Training Approach Inverse Relations Model Bytes Hits@10 (%)

TuckER SPL LCWA yes 1.0 MiB 98.603
RotatE MRL sLCWA yes 154.0 KiB 98.557
RotatE MRL sLCWA no 129.0 KiB 98.324
SimplE BCEL LCWA yes 77.0 KiB 97.765
ProjE SPL sLCWA yes 39.3 KiB 96.648
ProjE SPL sLCWA no 33.0 KiB 94.600
HolE CEL LCWA no 32.2 KiB 88.873
UM SPL LCWA yes 26.0 KiB 11.313
UM SPL sLCWA yes 26.0 KiB 6.844

TABLE 15
Pareto-optimal models for WN18RR regarding Model Bytes and Hits@10

Model Loss Training Approach Inverse Relations Model Bytes Hits@10 (%)

RotatE BCEL LCWA yes 79.3 MiB 60.089
RotatE SPL LCWA yes 19.8 MiB 58.328
TuckER CEL LCWA yes 11.9 MiB 56.088
MuRE SPL LCWA no 10.2 MiB 55.489
TransH MRL sLCWA no 9.9 MiB 48.170
UM SPL LCWA yes 9.9 MiB 44.682
UM SPL sLCWA yes 9.9 MiB 39.022

TABLE 16
Pareto-optimal models for YAGO310 regarding Model Bytes and Hits@10

Model Loss Training Approach Inverse Relations Model Bytes Hits@10 (%)

MuRE SPL sLCWA yes 61.1 MiB 66.851
ConvKB NSSAL sLCWA no 30.1 MiB 52.921
DistMult SPL sLCWA yes 30.1 MiB 50.562
TransE BCEL sLCWA no 30.1 MiB 14.663
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TABLE 17
Best configuration for each model in FB15k237

Model Loss Training Approach Inverse Relations Hits@10 (%)

ComplEx CEL LCWA True 44.838
ConvE BCEL LCWA True 49.212
ConvKB SPL sLCWA False 32.261
DistMult CEL LCWA True 47.387
ERMLP BCEL LCWA True 45.100
HolE CEL LCWA True 42.225
KG2E SPL LCWA True 45.501
MuRE BCEL LCWA True 47.199
NTN SPL sLCWA False 20.342
ProjE BCEL LCWA True 41.616
QuatE CEL LCWA True 46.166
RESCAL CEL LCWA True 46.460
RotatE NSSAL sLCWA False 49.750
SE NSSAL sLCWA True 39.427
SimplE CEL LCWA True 40.307
TransD MRL sLCWA True 41.856
TransE MRL sLCWA False 46.423
TransH MRL sLCWA False 35.295
TransR CEL LCWA True 39.187
TuckER BCEL LCWA True 52.857
UM CEL LCWA False 8.024

TABLE 18
Best configuration for each model in Kinships

Model Loss Training Approach Inverse Relations Hits@10 (%)

ComplEx CEL LCWA True 98.371
ConvE NSSAL sLCWA True 98.557
ConvKB NSSAL sLCWA True 97.067
DistMult CEL LCWA True 93.529
ERMLP SPL sLCWA True 97.486
HolE CEL LCWA True 93.715
KG2E MRL sLCWA True 91.853
MuRE SPL LCWA True 95.019
NTN BCEL sLCWA True 93.622
ProjE SPL sLCWA True 96.648
QuatE CEL LCWA True 98.184
RESCAL SPL sLCWA True 97.719
RotatE NSSAL sLCWA False 98.557
SE NSSAL sLCWA True 98.324
SimplE BCEL sLCWA False 98.277
TransD CEL LCWA True 45.205
TransE CEL LCWA True 92.877
TransH CEL LCWA True 52.048
TransR MRL sLCWA False 73.324
TuckER SPL LCWA True 98.603
UM SPL LCWA True 11.313
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TABLE 19
Best configuration for each model in WN18RR

Model Loss Training Approach Inverse Relations Hits@10 (%)

ComplEx CEL LCWA False 53.745
ConvE CEL LCWA True 56.327
ConvKB NSSAL sLCWA True 42.083
DistMult CEL LCWA True 52.616
ERMLP SPL sLCWA True 47.657
HolE CEL LCWA False 50.017
KG2E SPL LCWA False 52.035
MuRE SPL LCWA True 57.900
NTN MRL sLCWA False 31.857
ProjE CEL LCWA True 51.727
QuatE CEL LCWA False 55.010
RESCAL CEL LCWA False 53.916
RotatE BCEL LCWA True 60.089
SE SPL sLCWA False 45.486
SimplE CEL LCWA True 50.889
TransD MRL sLCWA False 46.546
TransE SPL LCWA False 56.977
TransH MRL sLCWA False 48.170
TransR MRL sLCWA False 42.510
TuckER CEL LCWA True 56.088
UM SPL LCWA False 44.887

TABLE 20
Best configuration for each model in YAGO310

Model Loss Training Approach Inverse Relations Hits@10 (%)

ComplEx BCEL sLCWA True 62.575
ConvKB SPL sLCWA True 58.149
DistMult BCEL sLCWA False 55.580
ERMLP BCEL sLCWA True 58.531
HolE BCEL sLCWA False 60.177
MuRE SPL sLCWA True 66.851
QuatE SPL sLCWA True 60.709
RESCAL SPL sLCWA True 54.045
RotatE NSSAL sLCWA True 63.077
SE NSSAL sLCWA True 29.757
TransD MRL sLCWA False 35.397
TransE MRL sLCWA True 49.217
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Fig. 17. Scatter plots comparing model size in number of bytes and model performance in terms of Hits@10 for all trained models on each dataset.
The color indicates the model type, and the model size is shown on a logarithmic axis. Pareto-optimal models are highlighted by cross symbols. In
general we only see a low correlation between model size and performance. A more thorough comparison can be found in Figures 4, 7, 10, and 13.
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Fig. 18. Results for all configurations on Kinships based on Adadelta. BCEL refers to the binary cross entropy loss, CEL to the cross entropy loss,
MRL to the margin ranking loss, NSSAL refers to the negative sampling self-adversarial loss, SPL to the softplus loss, LCWA to the local closed
world assumption training approach and sLCWA to the stochastic local closed world assumption training approach.
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Fig. 19. Results for all configurations on Kinships based on Adam. BCEL refers to the binary cross entropy loss, CEL to the cross entropy loss,
MRL to the margin ranking loss, NSSAL refers to the negative sampling self-adversarial loss, SPL to the softplus loss, LCWA to the local closed
world assumption training approach and sLCWA to the stochastic local closed world assumption training approach.
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Fig. 20. Results for all configurations on WN18RR based on Adam. BCEL refers to the binary cross entropy loss, CEL to the cross entropy loss,
MRL to the margin ranking loss, NSSAL refers to the negative sampling self-adversarial loss, SPL to the softplus loss, LCWA to the local closed
world assumption training approach and sLCWA to the stochastic local closed world assumption training approach.



ALI et al. A13

Fig. 21. Results for all configurations on FB15K-237 based on Adam. BCEL refers to the binary cross entropy loss, CEL to the cross entropy loss,
MRL to the margin ranking loss, NSSAL refers to the negative sampling self-adversarial loss, SPL to the softplus loss, LCWA to the local closed
world assumption training approach and sLCWA to the stochastic local closed world assumption training approach.
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Fig. 22. Results for all configurations on YAGO3-10 based on Adam. BCEL refers to the binary cross entropy loss, CEL to the cross entropy loss,
MRL to the margin ranking loss, NSSAL refers to the negative sampling self-adversarial loss, SPL to the softplus loss, LCWA to the local closed
world assumption training approach and sLCWA to the stochastic local closed world assumption training approach.
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Fig. 23. Impact of the training approach on the performance for a fixed interaction model and loss function for the Kinships dataset (results represent
for each setting the best-performing configuration). BCEL refers to the binary cross entropy loss, CEL to the cross entropy loss, MRL to the margin
ranking loss, NSSAL refers to the negative sampling self-adversarial loss, SPL to the softplus loss, LCWA to the local closed world assumption
training approach and sLCWA to the stochastic local closed world assumption training approach.
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Fig. 24. Impact of the training approach on the performance for a fixed interaction model and loss function for the WN18RR dataset (results represent
for each setting the best-performing configuration). BCEL refers to the binary cross entropy loss, CEL to the cross entropy loss, MRL to the margin
ranking loss, NSSAL refers to the negative sampling self-adversarial loss, SPL to the softplus loss, LCWA to the local closed world assumption
training approach and sLCWA to the stochastic local closed world assumption training approach.



ALI et al. A17

Fig. 25. Impact of the training approach on the performance for a fixed interaction model and loss function for the FB15K-237 dataset (results
represent for each setting the best-performing configuration). BCEL refers to the binary cross entropy loss, CEL to the cross entropy loss, MRL
to the margin ranking loss, NSSAL refers to the negative sampling self-adversarial loss, SPL to the softplus loss, LCWA to the local closed world
assumption training approach and sLCWA to the stochastic local closed world assumption training approach.
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Abstract. For many years, link prediction on knowledge graphs (KGs)
has been a purely transductive task, not allowing for reasoning on unseen
entities. Recently, increasing efforts are put into exploring semi- and fully
inductive scenarios, enabling inference over unseen and emerging entities.
Still, all these approaches only consider triple-based KGs, whereas their
richer counterparts, hyper-relational KGs (e.g., Wikidata), have not yet
been properly studied. In this work, we classify different inductive set-
tings and study the benefits of employing hyper-relational KGs on a
wide range of semi- and fully inductive link prediction tasks powered
by recent advancements in graph neural networks. Our experiments on a
novel set of benchmarks show that qualifiers over typed edges can lead to
performance improvements of 6% of absolute gains (for the Hits@10 met-
ric) compared to triple-only baselines. Our code is available at https://
github.com/mali-git/hyper relational ilp.

1 Introduction

Knowledge graphs are notorious for their sparsity and incompleteness [16], so
that predicting missing links has been one of the first applications of machine
learning and embedding-based methods over KGs [9,22]. A flurry [2,20] of such
algorithms has been developed over the years, and most of them share cer-
tain commonalities, i.e., they operate over triple-based KGs in the transductive
setup, where all entities are known at training time. Such approaches can neither
operate on unseen entities, which might emerge after updating the graph, nor

M. Ali and M. Berrendorf—Equal contribution.
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Fig. 1. Different types of inductive LP. Semi-inductive: the link between The Martian

and Best Actor from the seen graph. Fully-inductive: the genre link between unseen
entities given a new unseen subgraph at inference time. The qualifier (nominee: Matt

Damon) over the original relation nominated for allows to better predict the semi-
inductive link.

on new (sub-)graphs comprised of completely new entities. Those scenarios are
often unified under the inductive link prediction (LP) setup. A variety of NLP
tasks building upon KGs have inductive nature, for instance, entity linking or
information extraction. Hence, being able to work in inductive settings becomes
crucial for KG representation learning algorithms. For instance (cf. Fig. 1), the
director-genre pattern from the seen graph allows to predict a missing genre

link for The Martian in the unseen subgraph.
Several recent approaches [13,24] tackle an inductive LP task, but they usu-

ally focus on a specific inductive setting. Furthermore, their underlying KG
structure is still based on triples. On the other hand, new, more expressive KGs
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like Wikidata [26] exhibit a hyper-relational nature where each triple (a typed
edge in a graph) can be further instantiated with a set of explicit relation-entity
pairs, known as qualifiers in the Wikidata model. Recently, it was shown [17]
that employing hyper-relational KGs yields significant gains in the transductive
LP task compared to their triple-only counterparts. But the effect of such KGs on
inductive LP is unclear. Intuitively (Fig. 1), the (nominee: Matt Damon) qual-
ifier provides a helpful signal to predict Best Actor as an object of nominated
for of The Martian given that Good Will Hunting received such an award with
the same nominee.

In this work, we systematically study hyper-relational KGs in different induc-
tive settings:

– We propose a classification of inductive LP scenarios that describes the set-
tings formally and, to the best of our knowledge, integrates all relevant exist-
ing works. Specifically, we distinguish fully-inductive scenarios, where target
links are to be predicted in a new subgraph of unseen entities, and semi-
inductive ones where unseen nodes have to be connected to a known graph.

– We then adapt two existing baseline models for the two inductive LP tasks
probing them in the hyper-relational settings.

– Our experiments suggest that models supporting hyper-relational facts indeed
improve link prediction in both inductive settings compared to strong triple-
only baselines by more than 6% Hits@10.

2 Background

We assume the reader to be familiar with the standard link prediction setting
(e.g. from [22]) and introduce the specifics of the setting with qualifiers.

2.1 Statements: Triples Plus Qualifiers

Let G = (E ,R,S) be a hyper-relational KG where E is a set of entities, R is a
set of relations, and S a set of statements. Each statement can be formalized as
a 4-tuple (h, r, t, q) of a head and tail entity1 h, t ∈ E , a relation r ∈ R, and a
set of qualifiers, which are relation-entity pairs q ⊆ P(R × E) where P denotes
the power set. For example, Fig. 1 contains a statement (Good Will Hunting,

nominated for, Best Actor, {(nominee, Matt Damon)}) where (nominee,

Matt Damon) is a qualifier pair for the main triple. We define the set of all
possible statements as set

S(EH ,R, ET , EQ) = EH × R × ET × P(R × EQ)

with a set of relations R, a set of head, tail and qualifier entities EH , ET , EQ ⊆
E . Further, Strain is the set of training statements and Seval are evaluation
statements. We assume that we have a feature vector xe ∈ Rd associated with

1 We use entity and node interchangeably.
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each entity e ∈ E . Such feature vectors can, for instance, be obtained from
entity descriptions available in some KGs or represent topological features such
as Laplacian eigenvectors [6] or regular graph substructures [10]. In this work,
we focus on the setting with one fixed set of known relations. That is, we do
not require xr ∈ Rd features for relations and rather learn relation embeddings
during training.

2.2 Expressiveness

Models making use of qualifiers are strictly more expressive than those which
do not: Consider the following example with two statements, s1 = (h, r, t, q1)
and s2 = (h, r, t, q2), sharing the same triple components, but differing in their
qualifiers, such that s1|q1 = False and s2|q2 = True. For a model fNQ not
using qualifiers, i.e., only using the triple component (h, r, t), we have fNQ(s1) =
fNQ(s2). In contrast, a model fQ using qualifiers can predict fQ(s1) �= fQ(s2),
thus being strictly more expressive.

Table 1. Inductive LP in the literature, a discrepancy in terminology. The approaches
differ in the kind of auxiliary statements Sinf used at inference time: in whether they
contain entities seen during training Etr and whether new entities Einf are connected
to seen ones (k-shot scenario), or (only) amongst each other, in a new graph. Note that
the evaluation settings also vary.

Named scenario Sinf Unseen ↔ Unseen Unseen ↔ Seen Scoring against In our framework

Out-of-sample [1] k-shot – � Etr SI

Unseen entities [12] k-shot – � Etr SI

Inductive [8] k-shot – � Etr SI

Inductive [24] New graph � – Einf FI

Transfer [13] New graph � – Einf FI

Dynamic [13] k-shot + new graph � � Etr ∪ Einf FI/SI

Out-of-graph [4] k-shot + new graph � � Etr ∪ Einf FI/SI

Inductive [27] k-shot + new graph � � Etr ∪ Einf FI/SI

3 Inductive Link Prediction

Recent works (cf. Table 1) have pointed out the practical relevance of different
inductive LP scenarios. However, there exists a terminology gap as different
authors employ different names for describing conceptually the same task or,
conversely, use the same inductive LP term for practically different setups. We
propose a unified framework that provides an overview of the area and describes
the settings formally.

Let E• denote the set of entities occurring in the training statements Strain

at any position (head, tail, or qualifier), and E◦ ⊆ E \ E• denote a set of unseen
entities. In the transductive setting, all entities in the evaluation statements
are seen during training, i.e., Seval ⊆ S(E•,R, E•, E•). In contrast, in inductive
settings, Seval, used in validation and testing, may contain unseen entities. In
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order to be able to learn representations for these entities at inference time,
inductive approaches may consider an additional set Sinf of inference statements
about (un)seen entities; of course Sinf ∩ Seval = ∅.

The fully-inductive setting (FI) is akin to transfer learning where link
prediction is performed over a set of entities not seen before, i.e., Seval ⊆
S(E◦,R, E◦, E◦). This is made possible by providing an auxiliary inference graph
Sinf ⊆ S(E◦,R, E◦, E◦) containing statements about the unseen entities in Seval.
For instance, in Fig. 1, the training graph is comprised of entities Matt Damon,

Good Will Hunting, Best Actor, Gus Van Sant, Milk, Drama. The infer-
ence graph contains new entities The Martian, Alien, Ridley Scott, Blade

Runner, Sci-fi with one missing link to be predicted. The fully-inductive set-
ting is considered in [13,24].

In the semi-inductive setting (SI), new, unseen entities are to be connected
to seen entities, i.e., Seval ⊆ S(E•,R, E◦, E•) ∪ S(E◦,R, E•, E•). Illustrating with
Fig. 1, The Martian as the only unseen entity connecting to the seen graph,
the semi-inductive statement connects The Martian to the seen Best Actor.
Note that there are other practically relevant examples beyond KGs, such as
predicting interaction links between a new drug and a graph containing existing
proteins/drugs [5,18]. We hypothesize that, in most scenarios, we are not given
any additional information about the new entity, and thus have Sinf = ∅; we will
focus on this case in this paper. However, the variation where Sinf may contain
k statements connecting the unseen entity to seen ones has been considered too
[1,8,12] and is known as k-shot learning scenario.

A mix of the fully- and semi-inductive settings where evaluation statements
may contain two instead of just one unseen entity is studied in [4,13,27]. That
is, unseen entities might be connected to the seen graph, i.e., Seval may contain
seen entities, and, at the same time, the unseen entities might be connected to
each other; i.e., Sinf �= ∅.

Our framework is general enough to allow Seval to contain new, unseen rela-
tions r having their features xr at hand. Still, to the best of our knowledge,
research so far has focused on the setting where all relations are seen in training;
we will do so, too.

We hypothesize that qualifiers, being explicit attributes over typed edges,
provide a strong inductive bias for LP tasks. In this work, for simplicity, we
require both qualifier relations and entities to be seen in the training graph, i.e.,
EQ ⊆ E• and RQ ⊆ R, although the framework accommodates a more general
case of unseen qualifiers given their respective features.

4 Approach

Both semi- and fully-inductive tasks assume node features to be given. Recall
that relation embeddings are learned and, often, to reduce the computational
complexity, their dimensionality is smaller than that of node features.
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4.1 Encoders

In the semi-inductive setting, an unseen entity arrives without any graph struc-
ture pointing to existing entities, i.e., Sinf = ∅. This fact renders message
passing approaches [19] less applicable, so we resort to a simple linear layer to
project all entity features (including those of qualifiers) into the relation space:
φ : Rdf → Rdr

In the fully inductive setting, we are given a non-empty inference graph
Sinf �= ∅, and we probe two encoders: (i) the same linear projection of features
as in the semi-inductive scenario which does not consider the graph structure;
(ii) GNNs which can naturally work in the inductive settings [11]. However, the
majority of existing GNN encoders for multi-relational KGs like CompGCN [25]
are limited to only triple KG representation. To the best of our knowledge, only
the recently proposed StarE [17] encoder supports hyper-relational KGs which
we take as a basis for our inductive model. Its aggregation formula is:

x′
v = f

⎛
⎝ ∑

(u,r)∈N (v)

Wλ(r)φr(xu, γ(xr,xq)vu)

⎞
⎠ (1)

where γ is a function that infuses the vector of aggregated qualifiers xq into the
vector of the main relation xr. The output of the GNN contains updated node
and relation features based on the adjacency matrix A and qualifiers Q:

X′,R′ = StarE(A,X,R, Q)

Finally, in both inductive settings, we linearize an input statement in a
sequence using a padding index where necessary: [x′

h,x′
r,x

′
qr
1
,x′

qe
1
, [PAD], . . .].

Note that statements can greatly vary in length depending on the amount of
qualifier pairs, and padding mitigates this issue.

Table 2. Semi-inductive (SI) and fully-inductive (FI) datasets. Sds(Q%) denotes the
number of statements with the qualifiers ratio in train (ds = tr), validation (ds = vl),
test (ds = ts), and inductive inference (ds = inf ) splits. Eds is the number of distinct
entities. Rds is the number of distinct relations. Sinf is a basic graph for vl and ts in
the FI scenario.

Type Name Train Validation Test Inference

Str (Q%) Etr Rtr Svl (Q%) Evl Rvl Sts (Q%) Ets Rts Sinf (Q%) Einf Rinf

SI WD20K (25) 39,819 (30%) 17,014 362 4,252 (25%) 3544 194 3,453 (22%) 3028 198 – – –

SI WD20K (33) 25,862 (37%) 9251 230 2,423 (31%) 1951 88 2,164 (28%) 1653 87 – – –

FI WD20K (66) V1 9,020 (85%) 6522 179 910 (45%) 1516 111 1,113 (50%) 1796 110 6,949 (49%) 8313 152

FI WD20K (66) V2 4,553 (65%) 4269 148 1,480 (66%) 2322 79 1,840 (65%) 2700 89 8,922 (58%) 9895 120

FI WD20K (100) V1 7,785 (100%) 5783 92 295 (100%) 643 43 364 (100%) 775 43 2,667 (100%) 4218 75

FI WD20K (100) V2 4,146 (100%) 3227 57 538 (100%) 973 43 678 (100%) 1212 42 4,274 (100%) 5573 54
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4.2 Decoder

Given an encoded sequence, we use the same Transformer-based decoder for all
settings:

f(h, r, t, q) = g(x′
h,x′

r,x
′
qr
1
,x′

qe
1
, . . .)T x′

t with

g(x′
1, . . . ,xk) = Agg(Transformer([x′

1, . . . ,x
′
k]))

In this work, we evaluated several aggregation strategies and found a simple
mean pooling over all non-padded sequence elements to be preferable. Interaction
functions of the form f(h, r, t, q) = f1(h, r, q)T f2(t) are particularly well-suited
for fast 1-N scoring for tail entities, since the first part only needs to be computed
only once.

Here and below, we denote the linear encoder + Transformer decoder model
as QBLP (that is, Qualifier-aware BLP, an extension of BLP [13]), and the
StarE encoder + Transformer decoder, as StarE.

4.3 Training

In order to compare results with triple-only approaches, we train the models, as
usual, on the subject and object prediction tasks. We use stochastic local closed
world assumption (sLCWA) and the local closed world assumption (LCWA)
commonly used in the KG embedding literature [2]. Particular details on sLCWA
and LCWA are presented in Appendix A. Importantly, in the semi-inductive
setting, the models score against all entities in the training graph Etr in both
training and inference stages. In the fully-inductive scenario, as we are predicting
links over an unseen graph, the models score against all entities in Etr during
training and against unseen entities in the inference graph Einf during inference.

5 Datasets

We take the original transductive splits of the WD50K [17] family of hyper-
relational datasets as a leakage-free basis for sampling our semi- and fully-
inductive datasets which we denote by WD20K.

5.1 Fully-Inductive Setting

We start with extracting statement entities E ′, and sample n entities and their
k-hop neighbourhood to form the statements (h, r, t, q) of the transductive train
graph Strain. From the remaining E ′ \ Etrain and S \ Strain sets we sample m
entities with their l-hop neighbourhood to form the statements Sind of the induc-
tive graph. The entities of Sind are disjoint with those of the transductive train
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graph. Further, we filter out all statements in Sind whose relations (main or
qualifier) were not seen in Strain. Then, we randomly split Sind with the ratio
about 55%/20%/25% into inductive inference, validation, and test statements,
respectively. The evaluated models are trained on the transductive train graph
Strain. During inference, the models receive an unseen inductive inference graph
from which they have to predict validation and test statements. Varying k and
l, we sample two different splits: V1 has a larger training graph with more seen
entities whereas V2 has a bigger inductive inference graph.

5.2 Semi-inductive Setting

Starting from all statements, we extract all entities occurring as head or tail
entity in any statement, denoted by E ′ and named statement entities. Next,
we split the set of statement entities into a train, validation and test set:
Etrain, Evalidation, Etest. We then proceed to extract statements (h, r, t, q) ∈ S
with one entity (h/t) in Etrain and the other entity in the corresponding state-
ment entity split. We furthermore filter the qualifiers to contain only pairs where
the entity is in a set of allowed entities, formed by Asplit = Etrain ∪ Esplit, with
split being train/validation/test. Finally, since we do not assume relations to
have any features, we do not allow unseen relations. We thus filter out relations
which do not occur in the training statements.

5.3 Overview

To measure the effect of hyper-relational facts on both inductive LP tasks,
we sample several datasets varying the ratio of statements with and with-
out qualifiers. In order to obtain the initial node features we mine their
English surface forms and descriptions available in Wikidata as rdfs:label

and schema:description values. The surface forms and descriptions are con-
catenated into one string and passed through the Sentence BERT [23] encoder
based on RoBERTa [21] to get 1024-dimensional vectors. The overall datasets
statistics is presented in Table 2.

6 Experiments

We design our experiments to investigate whether the incorporation of quali-
fiers improves inductive link prediction. In particular, we investigate the fully-
inductive setting (Sect. 6.2) and the semi-inductive setting (Sect. 6.3). We ana-
lyze the impact of the qualifier ratio (i.e., the number of statements with quali-
fiers) and the dataset’s size on a model’s performance.
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Table 3. Results on FI WD20K (100) V1 & V2. #QP denotes the number of qualifier
pairs used in each statement (including padded pairs). Best results in bold, second
best underlined.

Model #QP
WD20K (100) V1 WD20K (100) V2

AMR(%) MRR(%) H@1(%) H@5(%) H@10(%) AMR(%) MRR(%) H@1(%) H@5(%) H@10(%)

BLP 0 22.78 5.73 1.92 8.22 12.33 36.71 3.99 1.47 4.87 9.22
CompGCN 0 37.02 10.42 5.75 15.07 18.36 74.00 2.55 0.74 3.39 5.31
QBLP 0 28.91 5.52 1.51 8.08 12.60 35.38 4.94 2.58 5.46 9.66

StarE 2 41.89 9.68 3.73 16.57 20.99 40.60 2.43 0.45 3.86 6.17
StarE 4 35.33 10.41 4.82 15.84 21.76 37.16 5.12 1.41 7.93 12.89
StarE 6 34.86 11.27 6.18 15.93 21.29 47.35 4.99 1.92 6.71 11.06
QBLP 2 18.91 10.45 3.73 16.02 22.65 28.03 6.69 3.49 8.47 12.04
QBLP 4 20.19 10.70 3.99 16.12 24.52 31.30 5.87 2.37 7.85 13.93
QBLP 6 23.65 7.87 2.75 10.44 17.86 34.35 6.53 2.95 9.29 13.13

Table 4. Results on the FI WD20K (66) V1 & V2. #QP denotes the number of
qualifier pairs used in each statement (including padded pairs). Best results in bold,
second best underlined.

Model #QP
WD20K (66) V1 WD20K (66) V2

AMR(%) MRR(%) H@1(%) H@5(%) H@10(%) AMR(%) MRR(%) H@1(%) H@5(%) H@10(%)

BLP 0 34.96 2.10 0.45 2.29 4.44 45.29 1.56 0.27 1.88 3.35
CompGCN 0 35.99 5.80 2.38 8.93 12.79 47.24 2.56 1.17 3.07 4.46
QBLP 0 35.30 3.69 1.30 4.85 7.14 42.48 0.94 0.08 0.79 1.82

StarE 2 37.72 6.84 3.24 9.71 13.44 52.78 2.62 0.74 3.55 5.78
StarE 4 38.91 6.40 2.83 8.94 13.39 51.93 5.06 2.09 7.34 9.82
StarE 6 38.20 6.87 3.46 8.98 13.57 47.01 4.42 2.04 5.73 8.97
QBLP 2 30.37 3.70 1.26 4.90 8.14 53.67 1.39 0.41 1.66 2.59
QBLP 4 30.84 3.20 0.90 4.00 7.14 37.10 2.08 0.38 2.20 4.92
QBLP 6 26.34 4.34 1.66 5.53 9.25 39.12 1.95 0.41 2.15 4.10

6.1 Experimental Setup

We implemented all approaches in Python building upon the open-source library
pykeen [3] and make the code publicly available.2 For each setting (i.e., dataset
+ number of qualifier pairs per triple), we performed a hyperparameter search
using early stopping on the validation set and evaluated the final model on the
test set. We used AMR, MRR, and Hits@k as evaluation metrics, where the
Adjusted Mean Rank (AMR) [7] is a recently proposed metric which sets the
mean rank into relation with the expected mean rank of a random scoring model.
Its value ranges from 0%–200%, and a lower value corresponds to better model
performance. Each model was trained at most 1000 epochs in the fully inductive
setting, at most 600 epochs in the semi-inductive setting, and evaluated based
on the early-stopping criterion with a frequency of 1, a patience of 200 epochs
(in the semi-inductive setting, we performed all HPOs with a patience of 100
and 200 epochs), and a minimal improvement δ > 0.3% optimizing the hits@10
metric. For both inductive settings, we evaluated the effect of incorporating 0,
2, 4, and 6 qualifier pairs per triple.

2 https://github.com/mali-git/hyper relational ilp.



Improving Inductive Link Prediction Using Hyper-relational Facts 83

6.2 Fully-Inductive Setting

In the full inductive setting, we analyzed the effect of qualifiers for four different
datasets (i.e., WD20K (100) V1 & V2 and WD20K (66) V1 & V2, which have
different ratios of qualifying statements and are of different sizes (see Sect. 5). As
triple-only baselines, we evaluated CompGCN [25] and BLP [13]. To evaluate the
effect of qualifiers on the fully-inductive LP task, we evaluated StarE [17] and
QBLP. It should be noted that StarE without the use of qualifiers is equivalent
to CompGCN.

General Overview. Tables 3 and 4 show the results obtained for the four
datasets. The main findings are that (i) for all datasets, the use of qualifiers
leads to increased performance, and (ii) the ratio of statements with qualifiers
and the size of the dataset has a major impact on the performance. CompGCN
and StarE apply message-passing to obtain enriched entity representations while
BLP and QBLP only apply a linear transformation. Consequently, CompGCN
and StarE require Sinf to contain useful information in order to obtain the entity
representations while BLP and QBLP are independent of Sinf. In the following,
we discuss the results for each dataset in detail.

Results on WD20K (100) FI V1 & V2. It can be observed that the per-
formance gap between BLP/QBLP (0) and QBLP (2,4,6) is considerably larger
than the gap between CompGCN and StarE. This might be explained by the
fact that QBLP does not take into account the graph structure provided by
Sinf, therefore is heavily dependent on additional information, i.e. the qualifiers
compensate for the missing graph information. The overall performance decrease
observable between V1 and V2 could be explained by the datasets’ composition
(Table 2), in particular, in the composition of the training and inference graphs:
Sinf of V2 comprises more entities than V1, so that each test triple is ranked
against more entities, i.e., the ranking becomes more difficult. At the same time,
the training graph of V1 is larger than that of V2, i.e., during training more enti-
ties (along their textual features) are seen which may improve generalization.

Results on WD20K (66) FI V1 & V2. Comparing StarE (2,4) to CompGCN
(0), there is only a small improvement on this dataset. Also, the improvement of
QBLP (2,4,6) compared to BLP and QBLP (0) is smaller than on the previous
datasets. This can be connected to the decreased ratio of statements with quali-
fiers. Besides, the training graph also has fewer qualifier pairs, Sinf which is used
by CompGCN and StarE for message passing consists of only 49% of statements
with at least one qualifier pair, and only 50% of test statements have at least one
qualifier pair which has an influence on all models. This observation supports
why StarE outperforms QBLP as the amount of provided qualifier statements
cannot compensate for the graph structure in Sinf.
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6.3 Semi-inductive Setting

In the semi-inductive setting, we evaluated BLP as a triple-only baseline and
QBLP as a statement baseline (i.e., involving qualifiers) on the WD20K SI
datasets. We did not evaluate CompGCN and StarE since message-passing-based
approaches are not directly applicable in the absence of Sinf. The results highlight
that aggregating qualifier information improves the prediction of semi-inductive
links despite the fact that the ratio of statements with qualifiers is not very large
(37% for SI WD20K (33), and 30% for SI WD20K (25)). In the case of SI WD20K
(33), the baselines are outperformed even by a large margin. Overall, the results
might indicate that in semi-inductive settings, performance improvements can
already be obtained with a decent amount of statements with qualifiers.

Table 5. Results on the WD20K SI datasets. #QP denotes the number of qualifier
pairs used in each statement (including padded pairs).Best results in bold, second
best underlined.

Model #QP
WD20K (33) SI WD20K (25) SI

AMR(%) MRR(%) H@1(%) H@5(%) H@10(%) AMR(%) MRR(%) H@1(%) H@5(%) H@10(%)

BLP 0 4.76 13.95 7.37 17.28 24.65 6.01 12.45 5.98 17.29 23.43
QBLP 0 7.04 28.35 14.44 28.58 36.32 6.75 17.02 8.82 22.10 29.50

QBLP 2 11.51 35.95 20.70 34.98 41.82 5.99 20.36 11.77 24.86 32.26
QBLP 4 11.38 34.35 19.41 33.90 40.20 12.18 21.05 12.32 24.07 30.09
QBLP 6 4.98 25.94 15.20 30.06 38.70 5.73 19.50 11.14 24.73 31.60

Fig. 2. Distribution of individual ranks for head/tail prediction with StarE on WD20K
(66) V2. The statements are grouped by the number of qualifier pairs.
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6.4 Qualitative Analysis

We obtain deeper insights on the impact of qualifiers by analyzing the StarE
model on the fully-inductive WD20K (66) V2 dataset. In particular, we study
individual ranks for head/tail prediction of statements with and without quali-
fiers (cf. Fig. 2) varying the model from zero to four pairs. First, we group the
test statements by the number of available qualifier pairs. We observe gener-
ally smaller ranks which, in turn, correspond to better predictions when more
qualifier pairs are available. In particular, just one qualifier pair is enough to
significantly reduce the individual ranks. Note that we have less statements with
many qualifiers, cf. Appendix D.

We then study how particular qualifiers affect ranking and predictions. For
that, we measure ranks of predictions for distinct statements in the test set with
and without masking the qualifier relation from the inference graph Sinf . We then
compute ΔMR and group them by used qualifier relations (Fig. 3). Interestingly,
certain qualifiers, e.g., convicted of or including, deteriorate the performance
which we attribute to the usage of rare, qualifier-only entities. Conversely, having
qualifiers like replaces reduces the rank by about 4000 which greatly improves
prediction accuracy. We hypothesize it is an effect of qualifier entities: helpful
qualifiers employ well-connected nodes in the graph which benefit from message
passing.

Qualifying relation

2

0

2

4

M
R

×103

replaces
statement disputed by

including

convicted of

Fig. 3. Rank deviation when masking qualifier pairs containing a certain relation.
Transparency is proportional to the occurrence frequency, bar height/color indicates
difference in MR for evaluation statements using this qualifying relation if the pair is
masked. More negative deltas correspond to better predictions.
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Table 6. Top 3 worst and best qualifier relations affecting the overall mean rank
(the last column). Negative ΔMR with larger absolute value correspond to better
predictions.

WD20K (100) V1 FI

Wikidata ID relation name ΔMR

P2868 subject has role 0.12
P463 member of -0.04
P1552 has quality -0.34

P2241 reason for deprecation -26.44
P47 shares border with -28.91
P750 distributed by -29.12

WD20K (66) V2 FI

P805 statement is subject of 13.11
P1012 including 5.95
P812 academic major 5.07

P17 country -19.96
P1310 statement disputed by -20.92
P1686 for work -56.87

Finally, we study the average impact of qualifiers on the whole graph, i.e., we
take the whole inference graph and mask out all qualifier pairs containing one
relation and compare the overall evaluation result on the test set (in contrast
to Fig. 3, we count ranks of all test statements, not only those which have that
particular qualifier) against the non-masked version of the same graph. We then
sort relations by ΔMR and find top 3 most confusing and most helpful relations
across two datasets (cf. Table 6). On the smaller WD20K (100) V1 where all
statements have at least one qualifier pair, most relations tend to improve MR.
For instance, qualifiers with the distributed by relations reduce MR by about
29 points. On the larger WD20K (66) V2 some qualifier relations, e.g., statement
is subject of, tend to introduce more noise and worsen MR which we attribute
to the increased sparsity of the graph given an already rare qualifier entity. That
is, such rare entities might not benefit enough from message passing.

7 Related Work

We focus on semi- and fully inductive link prediction approaches and disregard
classical approaches that are fully transductive, which have been extensively
studied in the literature [2,20].

In the domain of triple-only KGs, both settings have recently received a
certain traction. One of the main challenges for realistic KG embedding is the
impossibility of learning representations of unseen entities since they are not
present in the train set.
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In the semi-inductive setting, several methods alleviating the issue were pro-
posed. When a new node arrives with a certain set of edges to known nodes,
[1] enhanced the training procedure such that an embedding of an unseen node
is a linear aggregation of neighbouring nodes. If there is no connection to the
seen nodes, [27] propose to densify the graph with additional edges obtained
from pairwise similarities of node features. Another approach applies a special
meta-learning framework [4] when during training a meta-model has to learn
representations decoupled from concrete training entities but transferable to
unseen entities. Finally, reinforcement learning methods [8] were employed to
learn relation paths between seen and unseen entities.

In the fully inductive setup, the evaluation graph is a separate subgraph dis-
joint with the training one, which makes trained entity embeddings even less
useful. In such cases, the majority of existing methods [12,13,28,29] resort to
pre-trained language models (LMs) (e.g., BERT [15]) as universal featurizers.
That is, textual entity descriptions (often available in KGs at least in English)
are passed through an LM to obtain initial semantic node features. Neverthe-
less, mining and employing structural graph features, e.g., shortest paths within
sampled subgraphs, has been shown [24] to be beneficial as well. This work
is independent from the origin of node features and is able to leverage both,
although the new datasets employ Sentence BERT [23] for featurizing.

All the described approaches operate on triple-based KGs whereas our work
studies inductive LP problems on enriched, hyper-relational KGs where we show
that incorporating such hyper-relational information indeed leads to better per-
formance.

8 Conclusion

In this work, we presented a study of the inductive link prediction problem
over hyper-relational KGs. In particular, we proposed a theoretical framework
to categorize various LP tasks to alleviate an existing terminology discrep-
ancy pivoting on two settings, namely, semi- and fully-inductive LP. Then, we
designed WD20K, a collection of hyper-relational benchmarks based on Wiki-
data for inductive LP with a diverse set of parameters and complexity. Prob-
ing statement-aware models against triple-only baselines, we demonstrated that
hyper-relational facts indeed improve LP performance in both inductive settings
by a considerable margin. Moreover, our qualitative analysis showed that the
achieved gains are consistent across different setups and still interpretable.

Our findings open up interesting prospects for employing inductive LP and
hyper-relational KGs along several axes, e.g., large-scale KGs of billions state-
ments, new application domains including life sciences, drug discovery, and KG-
based NLP applications like question answering or entity linking.

In the future, we plan to extend inductive LP to consider unseen relations
and qualifiers; tackle the problem of suggesting best qualifiers for a statement;
and provide more solid theoretical foundations of representation learning over
hyper-relational KGs.
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A Training

In the sLCWA, negative training examples are created for each true fact (h, r, t) ∈
KG by corrupting the head or tail entity resulting in the triples (h′, r, t)/(h, r, t′).
In the LCWA, for each triple (h, r, t) ∈ KG all triples (h, r, t′) /∈ KG are con-
sidered as non-existing, i.e., as negative examples.

Under the sLCWA, we trained the models using the margin ranking loss [9]:

L(f(t+i ), f(t−i )) = max(0, λ + f(t−i ) − f(t+i )) , (2)

where f(t+i ) denotes the model’s score for a positive training example and
f(t−i ) for a negative one.

For training under the LCWA, we used the binary cross entropy loss [14]:

L(f(ti), li) = − (li · log(σ(f(ti)))

+ (1 − li) · log(1 − σ(f(ti)))),
(3)

where li corresponds to the label of the triple ti.

B Hyperparameter Ranges

The following tables summarizes the hyper-parameter ranges explored during
hyper-parameter optimization. The best hyper-parameters for each of our 46
ablation studies will be available online upon publishing.

C Infrastructure and Parameters

We train each model on machines running Ubuntu 18.04 equipped with a
GeForce RTX 2080 Ti with 12 GB RAM. In total, we performed 46 individual
hyperparameter optimizations (one for each dataset/model/number-of-qualifier
combination). Depending on the exact configuration, the individual models have
between 500k and 5M parameters and take up to 2 h for training.

D Qualifier Ratio

Figure 4 shows the ratio of statements with a given number of available qualifier
pairs for all datasets and splits. We generally observe that there are only few
statements with a large number of qualifier pairs, while most of them have zero
to two qualifier pairs.
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Table 7. Hyperparameter ranges explored during hyper-parameter optimization. FI
denotes the fully-inductive setting and SI the semi-inductive setting. For the sLCWA
training approach, we trained the models with the margin ranking loss (MRL), and
with the LCWA we used the BCEL (Binary Cross Entropy loss)

Hyper-parameter Value

GCN layers {2,3}
Embedding dim. {32, 64, ... , 256 }
Transformer hid. dim. {512, 576, ... , 1024 }
Num. attention heads {2, 4}
Num. transformer heads {2, 4}
Num. transformer layers {2, 3, 4}
Qualifier aggr. {sum, attention}
Qualifier weight 0.8

Dropout {0.1, 0.2, ... , 0.5 }
Attention slope {0.1, 0.2, 0.3, 0.4 }
Training approaches {sLCWA, LCWA}
Loss fcts. {MRL, BCEL}
Learning rate (log scale) [0.0001, 1.0)

Label smoothing {0.1, 0.15}
Batch size {128, 192, ... , 1024}
Max Epochs FI setting 1000

Max Epochs SI setting 600

Fig. 4. Percentage of statements with the given number of available qualifier pairs for
all datasets and splits.
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Abstract

Summary: Knowledge graph embeddings (KGEs) have received significant attention in other

domains due to their ability to predict links and create dense representations for graphs’ nodes and

edges. However, the software ecosystem for their application to bioinformatics remains limited

and inaccessible for users without expertise in programing and machine learning. Therefore, we

developed BioKEEN (Biological KnowlEdge EmbeddiNgs) and PyKEEN (Python KnowlEdge

EmbeddiNgs) to facilitate their easy use through an interactive command line interface. Finally, we

present a case study in which we used a novel biological pathway mapping resource to predict

links that represent pathway crosstalks and hierarchies.

Availability and implementation: BioKEEN and PyKEEN are open source Python packages publicly

available under the MIT License at https://github.com/SmartDataAnalytics/BioKEEN and https://

github.com/SmartDataAnalytics/PyKEEN

Contact: mehdi.ali@cs.uni-bonn.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Knowledge graphs (KGs) are multi-relational, directed graphs in

which nodes represent entities and edges represent their relations

(Bordes et al. 2013). While they have been successfully applied for

question answering, information extraction and named entity dis-

ambiguation outside of the biomedical domain, their usage in bio-

medical applications remains limited (Su et al., 2018).

Because KGs are inherently incomplete and noisy, several meth-

ods have been developed for deriving or predicting missing edges

(Nickel et al., 2016). One method is to apply reasoning based on

formal logic to derive missing edges, but it usually requires a large

set of user-defined formulas to achieve generalization. Another

method is to train KG embeddings (KGEs; low-dimensional vector/

matrix representations of entities and relations whose elements

correspond to latent features of the KG) that best preserve the struc-

tural characteristics of the KG and then predict new edges using

their respective KGE models (Wang et al., 2017).

In a biological setting, relation prediction not only enables

researchers to expand their KGs, but also to generate new hypothe-

ses that can be tested experimentally.

Here, we present BioKEEN (Biological KnowlEdge EmbeddiNgs):

a Python package for training and evaluating KGEs on biological

KGs that is accessible and facile for bioinformaticians without expert

knowledge in machine learning through an interactive command line

interface (CLI). Through the integration of the Bio2BEL software

(https://github.com/bio2bel) within BioKEEN, numerous biomedical

databases containing structured knowledge are directly accessible.

Additionally, we have externalized BioKEEN’s core machine learning

components for training and evaluating KGE models in an
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independent Python package, PyKEEN, such that they can be reused

in other domains (see Fig. 1).

Although there exists other toolkits like OpenKE (Han et al., 2018)

and scikit-kge (https://github.com/mnick/scikit-kge), they are not speci-

alized for bioinformatics applications and require more expertise in

programming and in KGEs. To the best of our knowledge, BioKEEN is

the first framework specifically designed to facilitate the use of KGE

models for users in the bioinformatics community.

2 Software architecture

The BioKEEN software package consists of three layers: (i) the

model configuration layer, (ii) the data acquisition and transform-

ation layer and (iii) the learning layer (see Fig. 1).

2.1 Configuration layer
Because every KGE model has its own set of hyper-parameters, the

configuration of an experiment for a non-expert can be very compli-

cated and discouraging. This possible obstacle is addressed in the

configuration layer through an interactive CLI that assists users in

setting up their experiments (i.e. defining the datasets, the model,

and its parameters). Based on the configuration, BioKEEN builds a

machine learning pipeline containing the appropriate components

(e.g. data acquisition, training, evaluation and prediction).

Currently, we provide implementations of 10 embedding models

(e.g. TransE, TransH, ConvE etc.; Dettmers et al., 2017; Wang

et al., 2017). A full list can be found in Supplementary Table S1.

Moreover, BioKEEN can be executed in training and hyper-

parameter optimization (HPO) mode.

2.2 Data acquisition layer
Because extracting and preparing training data can be a time-

consuming process, BioKEEN integrates the Bio2BEL software to

download and parse numerous biomedical databases (Supplementary

Table S2). This allows users to focus on the experiments, to automat-

ically incorporate the latest database versions, and to have access to

new datasets as they are incorporated into Bio2BEL. In addition,

users can provide their own datasets as tab-separated values, RDF or

from NDEx (Pratt et al., 2015). BioKEEN processes the selected and

provided datasets then transforms them into a tensor (i.e. a multi-

dimensional matrix) for further processing.

2.3 Learning layer
Determining the appropriate values for the hyper-parameters of a KGE

model requires both machine learning and domain specific knowledge.

If the user specifies hyper-parameters, BioKEEN can be run directly in

training mode. Otherwise, it first runs in HPO mode, where random

search is applied to find suitable hyper-parameters values from (user)

predefined sets. We implemented random search instead of the widely

applied grid search because it converges faster to appropriate hyper-

parameter values (Goodfellow et al. 2016). Finally, the user can run

BioKEEN in training mode with the resulting hyper-parameter values.

To train the models, negative training examples are generated

based on the algorithm described in Bordes et al. To evaluate the

trained models, BioKEEN computes two common evaluation met-

rics for KGE models: mean rank and hits@k.

3 Application

We used BioKEEN to train and evaluate several KGE models on the

pathway mappings from ComPath (Domingo-Fernández et al.,

2019), the first manually curated intra- and inter-database pathway

mapping resource that bridges the representations of similar bio-

logical pathways in different databases. Then, we used the best

model to predict new relations representing pathway crosstalks and

hierarchies. After removing reflexive triplets, we found that the

highest ranked novel equivalence between TGF-beta Receptor

Signaling (wikipathways: WP560) and TGF-beta signaling pathway

(kegg: hsa04350), as well as the highest ranked hierarchical link that

Lipoic acid (kegg: hsa00785) is a part of Lipid metabolism (reac-

tome: R-HSA-556833) both represented novel pathway crosstalks.

Upon manual evaluation, each fulfilled the ComPath curation crite-

ria and can be added to the resource.

We performed HPO for five different models to illustrate the need

for choosing the appropriate hyper-parameter values. For the TransE

model, comparing the hyper-parameters similar to those reported by

Bordes et al. with the hyper-parameters from HPO showed an im-

provement in the hits@10 metric from 19.10 to 63.20%.

Moreover, the nature of the model strongly influences the

results. We found that the simpler models (e.g. TransE, UM and

DistMult) performed similar or even better than the more complex

ones (e.g. TransH and TransR). This might be explained by the fact

that the more expressive models overfit since ComPath is a not a

large dataset. Ultimately, this case scenario illustrates the ability of

BioKEEN to assist users in finding reasonable combinations of mod-

els and their hyper-parameter values to predict novel links.

4 Discussion and future work

Although BioKEEN already includes several models and compo-

nents to build machine learning pipelines, it has limitations that

could benefit from several additions and improvements.

Modeling multiscale biology (i.e. the -omics, pathway, pheno-

type and population levels) results in KGs with a variety of composi-

tions, structural features, and topologies for which different KGE

models that have not yet been included in BioKEEN may be more

appropriate. Further, because of the heterogeneity and lack of struc-

ture in most biological and clinical data, we plan to implement add-

itional KGE models that incorporate text, logical rules, and images

in addition to the triples in KGs (Hamilton et al. 2018; Wang et al.,

2017).

The negative sampling approach described by Bordes et al.

included in BioKEEN is prone to false negatives. We plan to mitigate

them by incorporating prior biological knowledge and constraints

to generate triples guaranteed to be true negatives such as: (i) type

constraints for predicates (e.g. the relation transcribed is only

valid from gene to protein), (ii) valid attribute range for predicates

(e.g. protein weight is below 1000 kDa) and (iii) functional

Fig. 1. Software architecture of BioKEEN (i) Configuration: Users define

experiments through the CLI. (ii) Data Acquisition: Dataset(s) are (down-)

loaded and transformed into a tensor. (iii) Learning: The KGE model is trained

with user-defined hyper-parameters or a hyper-parameter search is applied

to find the best set of hyper-parameter values. The functionality of this layer

is externalized in the Python KnowlEdge EmbeddiNgs package
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constraints such as mutual exclusion (e.g. a protein is coded by one

gene) (Nickel et al., 2016).

Although BioKEEN assists in HPO, it does not provide assist-

ance in selecting a particular KGE model, which is an obscure pro-

cess even for machine learning experts. We plan to address this by

implementing KG analyses with rule-based suggestions (e.g.

DistMult performs poorly for KGs with antisymmetric relations).

Finally, we plan to present this software as a web application to

enable a wider audience of researchers who may not be comfortable

with scripting or CLIs to train and evaluate KGE models.

Acknowledgements

We thank our partners from the Bio2Vec, MLwin and SimpleML projects for

their assistance.

Funding

This research was supported by Bio2Vec project (http://bio2vec.net/, CRG6)

grant [3454] with funding from King Abdullah University of Science and

Technology (KAUST).

Conflict of Interest: none declared.

References

Bordes,A. et al. (2013) Translating embeddings for modeling multi-relational

data. In: Burges,C.J.C. et al. (eds) Advances in Neural Information Processing

Systems 26, Curran Associates, Inc., pp. 2787–2795, http://papers.nips.cc/

paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf.

Dettmers,T. et al. (2017) Convolutional 2d knowledge graph embeddings.

arXiv Preprint arXiv, 1707, 01476.

Domingo-Fernández,D. et al. (2019) ComPath: an ecosystem for exploring,

analyzing, and curating pathway databases. NPJ Syst. Biol. Appl., 5, 3.

Goodfellow,I. et al. (2016) Deep Learning. Vol. 1. MIT Press, http://www.

deeplearningbook.org.

Hamilton,W. et al. (2018) Embedding logical queries on knowledge graphs.

arXiv Preprint arXiv, 1806, 01445.

Han,X. et al. (2018) OpenKE: an open toolkit for knowledge embedding. In:

Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing: System Demonstrations. pp. 139–144.

Nickel,M. et al. (2016) A review of relational machine learning for knowledge

graphs. Proc. IEEE, 104.1, 11–33.

Pratt,D. et al. (2015) NDEx, the network data exchange. Cell Syst., 1,

302–305.

Su,C. et al. (2018) Network embedding in biomedical data science. Brief.

Bioinformatics, bby117.

Wang,Q. et al. (2017) Knowledge graph embedding: a survey of approaches

and applications. IEEE Trans. Knowledge Data Eng., 29, 2724–2743.

3540 M.Ali et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/18/3538/5320556 by SLU
B D

resden user on 22 D
ecem

ber 2021



A93

Appendix F

CLEP: a hybrid data- and
knowledge-driven framework for
generating patient representations



Systems biology

CLEP: a hybrid data- and knowledge-driven framework

for generating patient representations

Vinay Srinivas Bharadhwaj1,2, Mehdi Ali 3,4, Colin Birkenbihl1,2, Sarah Mubeen1,2,5,

Jens Lehmann3,4, Martin Hofmann-Apitius1,2, Charles Tapley Hoyt 1,3,5 and

Daniel Domingo-Fernández 1,3,5,*

1Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, 53757 Sankt Augustin, Germany, 2Bonn-

Aachen International Center for Information Technology (B-IT), University of Bonn, 53115 Bonn, Germany, 3Rheinische Friedrich-

Wilhelms-Universität Bonn, 53113 Bonn, Germany, 4Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS),

Dresden and Sankt Augustin, Germany and 5Fraunhofer Center for Machine Learning, Bonn, Germany

*To whom correspondence should be addressed.

Associate Editor: Inanc Birol
Received on November 5, 2020; revised on March 29, 2021; editorial decision on April 29, 2021; accepted on May 3, 2021

Abstract

Summary: As machine learning and artificial intelligence increasingly attain a larger number of applications in the
biomedical domain, at their core, their utility depends on the data used to train them. Due to the complexity and
high dimensionality of biomedical data, there is a need for approaches that combine prior knowledge around known
biological interactions with patient data. Here, we present CLinical Embedding of Patients (CLEP), a novel approach
that generates new patient representations by leveraging both prior knowledge and patient-level data. First, given a
patient-level dataset and a knowledge graph containing relations across features that can be mapped to the dataset,
CLEP incorporates patients into the knowledge graph as new nodes connected to their most characteristic features.
Next, CLEP employs knowledge graph embedding models to generate new patient representations that can ultim-
ately be used for a variety of downstream tasks, ranging from clustering to classification. We demonstrate how
using new patient representations generated by CLEP significantly improves performance in classifying between
patients and healthy controls for a variety of machine learning models, as compared to the use of the original tran-
scriptomics data. Furthermore, we also show how incorporating patients into a knowledge graph can foster the in-
terpretation and identification of biological features characteristic of a specific disease or patient subgroup. Finally,
we released CLEP as an open source Python package together with examples and documentation.

Availability and implementation: CLEP is available to the bioinformatics community as an open source Python pack-
age at https://github.com/hybrid-kg/clep under the Apache 2.0 License.

Contact: daniel.domingo.fernandez@scai.fraunhofer.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent advancements in machine learning (ML) and artificial intelli-
gence (AI) methodologies have initiated a paradigm shift in bioinfor-
matics. As new technologies have steadily generated large volumes
of -omics data, AI methods have garnered great insights into human
health and biology. With the availability of large-scale biological
datasets, ML/AI are becoming highly relevant for biomedical appli-
cations, such as predictive modeling, patient stratification and simu-
lation (Fröhlich et al., 2018). However, despite the successful
application of ML/AI in the biomedical domain, the datasets under-
lying the generation of models can play a far more crucial role in a

given application than the complexity of the model itself. For ex-
ample, in some cases, if data is predictive enough, simpler methods
can outperform state-of-the-art ML/AI methods in prediction tasks
(Lynam et al., 2020; Smith et al., 2020).

The development of novel high-throughput experimental techni-
ques has led to a broad availability of biological data from multiple
entity types (Zitnik et al., 2019). In practice, integrating multiple
data types can be advantageous, particularly in the context of com-
plex diseases, where no single type of data can effectively explain
the cause of dysfunction. However, biological datasets tend to be
both inherently complex and noisy (Fan et al., 2014), making their
integration challenging. Furthermore, biological data typically
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contain a far greater number of features than samples due to several
factors, including a lack of available resources and obstacles in sam-
ple collection (Xu and Jackson, 2019). In failing to address these
challenges and generating comprehensive representations of bio-
logical data, novel techniques can suffer in a range of analytic tasks.

One approach adopted by the systems biology community is in
representing biological data in the form of networks. By doing so,
multiple scales of biology can be represented, as can the relation-
ships within and across these scales. These networks are also advan-
taged by their ability to integrate heterogeneous biological data
types (Hu et al., 2017). Generally, one can classify biological net-
works into two categories depending on the source of information
used to generate them (Yu et al., 2013).

The first of these two classes of networks are constructed from
biological data by using a variety of methodologies. For instance,
co-expression networks can be generated from transcriptomics data
to represent pairwise correlations between genes (Langfelder and
Horvath, 2008). Another example is Bayesian networks which can
be used to model conditional interdependencies across heteroge-
neous biological entities (Khanna et al., 2018). While the majority
of these methods transform biological data into networks compris-
ing relations between the biological entities under study, other meth-
ods directly translate patient-level data into networks through
correlation techniques (e.g. Pearson correlation) as an indicator of
similarity between patients. These patient similarity networks close-
ly link patients that are more similar to each other while less similar
patients contain fewer close connections. Patient similarity networks
have been successfully used to represent multimodal patient level-
data for clustering tasks (Cavalli et al., 2017; Pai et al., 2019; Pai
and Bader, 2018; Raphael et al., 2017; Wang et al., 2014a). While
so far, these methods have been mostly employed for clustering tasks
based on patient similarity networks, (Pai et al., 2019) recently
expanded the concept to incorporate gene-level measurements into
pathways (via gene sets) in order to reduce dimensionality and ul-
timately use pathway features for patient classification.

A second class of networks can be generated from prior know-
ledge of known interactions between biological entities. When sets
of these interactions are assembled, they can be used to represent
discrete biological networks. These networks can be referred to as
knowledge graphs (KGs) when they comprise entities from various
biological modalities and the complex interactions between them.
However, despite their advantages, networks cannot be directly rep-
resented in vector space; thus, impeding their direct use by ML/AI
techniques. This impediment has led to the development of method-
ologies (i.e. Knowledge Graph Embedding Models; KGEMs)
designed to encode entities and relations in a KG into a latent fea-
ture space while preserving its structure. While these new represen-
tations can be used for entity disambiguation, clustering and several
downstream ML/AI tasks, they have been primarily used in the bio-
medical domain for link prediction tasks, including the prediction of
side effects (Zitnik et al., 2018), disease-gene associations
(Himmelstein and Baranzini, 2015) and novel therapeutic targets
(Muslu et al., 2020). Recently, the notion of adding patients into
KGs has been proposed from Electronic Health Records (EHRs) (i.e.
MIMIC-III dataset) with the ultimate goal of generating patient
embeddings through KGEMs that can be used for clustering (Gong
et al., 2021) and medicine recommendation tasks (Lin et al., 2020).
However, until now, there have yet to be integrative approaches
which incorporate both patient-similarity networks and KGs from
non-textual patient-level data, such as multi-omics, and prior
knowledge.

In this work, we introduce CLinical Embedding of Patients
(CLEP), a hybrid data- and knowledge-driven framework that
exploits -omics patient-level data and incorporates this information
into a KG. Once the KG has been generated by CLEP, the frame-
work then drives the generation of novel patient representations
through various KGEMs. In building upon previous data-driven
approaches (Pai et al., 2019; Wang et al., 2014a) which have dem-
onstrated the advantages of representing patients as nodes in a net-
work, we show that additionally integrating prior knowledge can
make for more robusts analyses. We showcase our approach by

generating new patient representations derived from two different
transcriptomics datasets and a KG comprising heterogenous pro-
tein–protein interactions from multiple biological databases. Using
the new patient representations, we find that performance on a
panel of ML models trained to classify between patients and con-
trols is significantly improved with respect to the use of original
data. Furthermore, the flexibility of our approach makes it applic-
able to heterogenous multimodal biological datasets, enabling
researchers to generate new patient representations by combining
patient-level data with the prior knowledge contained in a KG.
Finally, we have made CLEP available to the bioinformatics com-
munity as an open source Python package (https://github.com/hy
brid-kg/clep) under the Apache 2.0 License.

2 Materials and methods

2.1 Framework description
Figure 1 illustrates each step of the presented framework. The meth-
odology requires a patient-level dataset and a KG. Patients are incor-
porated into the KG as new nodes and connected to features that
most closely characterize a given patient. Once patients are
embedded into the KG, KGEMs are then used to generate new pa-
tient representations, learnt from both prior knowledge underlying
the KG and the patient-feature connections that have been gener-
ated. Finally, these novel patient representations can subsequently
be employed for a variety of downstream applications, as we dem-
onstrate in the case scenarios section.

2.1.1 Input data

Our framework requires two inputs: a patient-level dataset and a
KG (Fig. 1a). It can be applied to any dataset and KG so long as the
dataset features can be mapped to nodes in the KG. In other words,
if we intend to use CLEP on a transcriptomics dataset such as RNA-
Seq, the KG must contain relationships between genes/proteins that
are mappable to the transcripts that have been measured. We would
like to note that although the framework does not require that all
features in the dataset are also present in the KG, it is recommended
to maximize this overlap.

2.1.2 Incorporating patients into the knowledge graph

The first step of the methodology consists of incorporating patients
as nodes in the KG in order to subsequently generate novel individu-
alized feature representations for each patient (i.e. embeddings)
through the use of KGEMs (Fig. 1b). These models generate the
embeddings by exploiting the topology of the KG. Generating com-
prehensive embeddings requires an approach that can position a pa-
tient node in the KG according to that patient’s most informative
features (i.e. features that distinguish them from patients who pos-
sess clinically different features). This way, patient nodes with simi-
lar features would be close together in a network and would thus
have similar embeddings, while patients with dissimilar features
would be farther away (see example in Fig. 4b). On the other hand,
connecting every patient to a large number of nodes in the KG in-
stead of a smaller node set that represents a patient’s most relevant
features, would result in poor patient representations due to large
overlaps of irrelevant features. The positioning of the patient nodes
in the KG can be seen as a feature selection technique in which our
method identifies the most characteristic features of each patient in
order to generate edges between the patient and these features, thus,
embedding the patient as a node in the KG. The rationale behind
this method is that by connecting patients with their most character-
istic features, we are able to generate a KG that integrates patient-
specific information (i.e. relations between patients and features)
together with prior knowledge (i.e. relations among these features).

To identify the most characteristic features and incorporate
patients into the KG, our methodology leverages the empirical cu-
mulative distribution function (eCDF) based on the quantitative
measurements for each feature in the dataset which can be mapped
to the KG. Using all samples in the dataset or exclusively the healthy
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controls data, we generate a reference distribution with data points
that represent the measurements of each feature. We then identify
patients that fall at the extreme ends of this distribution based on a
predetermined threshold (e.g. 5% of the eCDF) (Fig. 1b). Finally,
these patients are connected to the node in the KG that represents
that particular feature with an edge (i.e. -1 or þ1) depending on the
extreme in which the patient falls. The sign of the edge indicates
whether a particular patient has a higher or lower measurement for
that given feature to differentiate the patient from other patients in
the distribution.

In the Supplementary Text, we present alternative methodologies
that can similarly be used to incorporate patients to the KG.
However, we have focused here on one specific method as it can be
applied to any type of patient-level data and it does not make any
assumptions on the feature distribution as opposed to other methods
which either require pathway information or assume that the fea-
tures are normally distributed.

2.1.3 Generating new patient representations

Once patients have been incorporated into the KG, the next step
involves generating new patient representations through KGEMs
(Fig. 1c). We restricted ourselves to KGEMs since they consider
both directionality and edge types, and our KG contains several
directed edge types. Incorporating edge types during the learning
process can help the model to differentiate between node types (e.g.
patients and biological entities) and node sub-types (e.g. diseased
patients, and controls). CLEP has adopted PyKEEN (Ali et al.,
2021) as the KGEM-software due to its wide range of functionalities
(e.g. a large number of KGEMs, hyperparameter optimization
functionalities).

2.1.4 Applications of patient representations

Once novel patient representations have been generated with CLEP,
they can be used for a vast number of applications including classifi-
cation and clustering tasks (Fig. 1d). Because our approach leverages
prior knowledge of known interactions, we hypothesize that the use
of these representations can yield superior performances on these
tasks with respect to the use of the original patient-level datasets
from which they were generated. Furthermore, our methodology
facilitates biologically meaningful interpretations of patient-level
data by positioning patients into different KG neighborhoods which
may potentially correspond to biological processes that are charac-
teristic for specific patient subgroups.

2.2 Software implementation
CLEP is implemented as a Python package to facilitate its usage
within the scientific community. It contains several workflows cor-
responding to each of the steps presented in the methods from gener-
ating new patient representations to conducting downstream
applications presented in the case scenario. Each workflow is both
accessible through a command line interface (CLI) as well as pro-
grammatically, allowing users to input their own patient-level data-
sets and custom KGs. In total, CLEP offers three different methods
for incorporating patients into the KG, all KGEMs available
through PyKEEN (Ali et al., 2021), and five ML classifiers.
Furthermore, thanks to its flexible implementation, users can inde-
pendently use each of its modules as well as incorporate classifiers
tasks into the framework (Supplementary Fig. S2). Finally, the
source code of the CLEP Python package is available at https://
github.com/hybrid-kg/clep under the Apache 2.0 License, its latest
documentation can be found at https://clep.readthedocs.io, and it is
distributed via PyPI at https://pypi.org/project/clep.

2.3 Case scenarios
2.3.1 Patient-level data

The first dataset, the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (Mueller et al., 2005), is one of the world’s largest dementia
cohorts and, with more than 1300 citations, the most referential re-
source for data-driven dementia research. In this work, we used the
blood plasma transcriptomic data collected in the study [we refer to
Saykin et al. (2015) and http://adni.loni.usc.edu for details]. The
dataset is already preprocessed and contains a total of 260 cognitive-
ly healthy control participants, 215 patients with early mild cogni-
tive impairment, 225 patients with late mild cognitive impairment
and 44 patients with Alzheimer’s disease. To conduct the binary
classification task, the latter three (i.e. all cognitively impaired
patients) were grouped together into a single class (n¼494).
Preprocessed gene expression data [Robust Multichip Average
(RMA) normalized data] was directly used as a baseline for the

Fig. 1. Schematic illustration of the framework. (a) CLEP requires two inputs: (i) a

patient-level dataset such as multi-omics, and (ii) a KG comprising relations be-

tween features measured in the previously mentioned dataset. (b) Using one of the

proposed methods, CLEP incorporates patients into the KG by connecting them to

their most distinctive features in the dataset. (c) KGEMs are then used to generate

new patient representations based on both data- and knowledge-driven features. (d)

These patient representations can subsequently be used for several downstream

tasks, such as patient classification and stratification. A high quality version of this

figure is available at https://doi.org/10.6084/m9.figshare.12834605
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benchmarking of CLEP. To incorporate the patients into the KG,
the expression of genes whose transcripts appear multiple times
were considered individually.

The second dataset is a transcriptomics dataset containing sam-
ples from three psychiatric disorders (i.e. major depressive disorder,
schizophrenia and bipolar disorder) and healthy controls
(Hagenauer et al., 2018). In total, this dataset contains 172 samples
(41 major depressive disorder, 22 schizophrenia, 26 bipolar disorder
and 83 control samples). Similar to the ADNI dataset, the prepro-
cessed gene expression data (RMA normalized data) from the se-
cond dataset was directly used as a baseline for the validation of
CLEP. Similar to the previous dataset, we grouped the three psychi-
atric indications together to conduct a binary classification task.

2.3.2 Knowledge graph

For the case scenario, we employ a KG referred to as PPI-KG, which
comprises protein–protein interactions from six resources: PathMe
(Domingo-Fernández et al., 2019) [which includes KEGG (Kanehisa
et al., 2017) Reactome (Jassal et al., 2020) and WikiPathways
(Slenter et al., 2018)], BioGrid (Oughtred et al., 2019), IntAct
(Orchard et al., 2014) and Pathway Commons (Rodchenkov et al.,
2020) (Supplementary Text).

2.3.3 Generating representations of patients

We used different thresholds (i.e. the 1%, 1.5%, 2.5%, 5% 10%
and 20% quantiles of the eCDF) to define the tail of the distribution
(i.e. extreme) which is required to incorporate ADNI patients and
the patients of the GSE92538 dataset to the PPI-KG using the eCDF-
based method described in Section 4.1. By applying this method on
each threshold, we generated different KGs (i.e. one for each thresh-
old) by connecting the patients that fall in the extremes of the
reference distributions (Supplementary Table S4). Reference
distributions were generated based on the expression values of
healthy controls for each gene that was present in both the transcrip-
tomics data and the PPI-KG (Supplementary Fig. S3). The vast ma-
jority of nodes in the PPI-KG were among the proteins measured in
the transcriptomics dataset, resulting in 8085 mapped proteins in
total.

We would like to note that the resulting KG (i.e. PPI-KG after
incorporating the ADNI patients) must be split into three triple sets
(i.e. training, validation and testing set) in order to train a KGEM.
Thus, we developed an algorithm that splits a given KG in a way
that relations and nodes are balanced across the three different
splits. The pseudocode for this algorithm can be found in the
Supplementary Figure S1 and is implemented in the CLEP Python
package.

2.3.4 Selected knowledge graph embedding models

We selected RotatE (Sun et al., 2019), TransE (Bordes et al., 2013),
ComplEx (Trouillon et al., 2016) and HolE (Nickel et al., 2016) to
learn the patient embeddings, because they have been shown to be
effective in a large-scale benchmarking study for KGEMs (Ali et al.,
2020). To train the final models, we used the best hyperparameters
obtained by the hyperparameter optimization (Supplementary Table
S3).

2.3.5 Classifying between cognitively impaired and healthy

controls

The new representations generated from KGEMs were used to clas-
sify between normal and cognitively impaired patients (i.e. AD and
MCI) using five different statistical modeling and ML methods
(Table 1).

Prediction performance was evaluated via 5 times repeated 5-
fold cross-validation in which the hyperparameters of the model
were tuned within the cross-validation loop via a grid search
(Fig. 2). The cross-validation prediction performance for the binary
classification task was evaluated using the area under the receiver
operating characteristic curve (AUC-ROC) or the area under the
precision–recall curve (AUC-PR) as a metric.

We then conducted three experiments to evaluate the robustness
of our results. First, we trained the ML models using the new repre-
sentations generated from RotatE with the 5% threshold while per-
muting patient labels (i.e. y-scrambling). Second, we trained the ML
models on patient representations again generated using RotatE
with a 5% threshold but using instead a permuted version of the KG
generated using the XSwap algorithm (Hanhijärvi et al., 2009) in
order to investigate if a KG’s topology makes meaningful improve-
ments to performance. By using this algorithm, we ensured that the
permuted versions preserved the original structure of the original
network (i.e. each node has the same number of in- and out-edges)
but edges were randomly generated. Third, we trained the ML mod-
els using a subset of the PPI-KG corresponding to a single database
(i.e. either WikiPathways or KEGG) in order to investigate the im-
portance of KG size and completeness.

2.3.6 Classifying between psychiatric disorders and healthy

controls

Using the same setting used in the previous dataset (Fig. 2), we
trained the same five ML models to classify between normal samples
and patients with a psychiatric disorder (i.e. bipolar disorder, major
depressive disorder and schizophrenia) using both the raw data and
the new representations of the GSE92538 data generated by CLEP.
Similar to the previous dataset, we used RotatE KGEM and a
threshold value of 2.5% on either side of the control distribution for
generating the new representations.

3 Results

3.1 CLEP’s representations outperform raw data in

classifying cognitively impaired patients and healthy

controls
Here, we present the results of our methodology and demonstrate
how CLEP can improve the performance of ML models on patient
classification tasks within the context of Alzheimer’s disease (AD).
We incorporated ADNI patients (Mueller et al., 2005) into a pro-
tein–protein interaction KG (i.e. PPI-KG) in order to generate novel
patient representations using various KGEMs (see Section 2). We
then compared the performance of several ML models in distin-
guishing between cognitively impaired patients from controls de-
pending on whether the input data was the original transcriptomics
data or novel patient representations. We summarize the perform-
ance of each of the five ML models in Figure 3a and b.

Our results show that using original transcriptomics data as in-
put for the binary classifier leads to relatively low prediction power
(Fig. 3b), as opposed to the new representations generated by CLEP
which substantially increase prediction performance (Fig. 3a). As an
illustration, the SVM model, which was the highest performing,
yielded area under the receiver operator characteristic curve (AUC-
ROC) values ranging from 0.48 to 0.64 when trained on the tran-
scriptomics data. In comparison, the same model, when trained on
the new patient representations, yielded AUC-ROC values between
0.83 and 0.91. This difference was consistent across each of the five
ML models, demonstrating how CLEP generates patient representa-
tions that significantly outperform the original data for this particu-
lar binary classification task. However, it is worth noting that the
performance of the two tree-based methods (i.e. random forest and
XGBoost) is significantly worse than the remaining models, yet they
still outperformed their corresponding counterpart models trained
on the raw data. Furthermore, to validate that the results are not an
effect of the class imbalance between cognitively impaired patients
and healthy controls (Saito and Rehmsmeier, 2015), we reevaluated
the ML models using the area under the precision–recall curve
(AUC-PR) as a metric, which resulted in similar results
(Supplementary Fig. S6). Finally, we would like to note that through
the usage of the KGEMs, the dimension of the patient representa-
tions could significantly be compressed since the input dimension of
the raw transcriptomics was larger than 40 000 features, while the
representations generated by the KGEMs had a dimension of 256.
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To investigate the robustness of our approach, we conducted
two independent experiments. The first experiment consisted of
training each of the five classifiers using new representations with
randomized patient labels (Fig. 3c) in order to confirm that the mod-
els did not fit to arbitrary artifacts in the data. In contrast, in the se-
cond experiment, patient representations were generated on a
permuted version of the original KG (see Section 2 for details) to en-
sure that new representations reflect the information encoded in the
KG by generating patient representations on a permuted version of
the original KG (Fig. 3d). The results of these experiments yielded
models with a performance equivalent to a random classifier (i.e.
AUC-ROC values � 0.5); thus, confirming (i) the robustness of our
model evaluation strategy and (ii) that the new representations are
driven by information in the KG.

While we were able to show how CLEP successfully generated
novel representations that yield superior prediction performance,
the process of generating these representations is non-trivial. As an
initial step, a threshold that determines which patient-measurable
edges will be incorporated into the KG must first be selected as this
parameter influences the KG generated (see Section 4.1). We demon-
strate the effect of the threshold on the previous binary classification
task by training a single classifier using KGs derived from different
thresholds (Supplementary Fig. S4). Unsurprisingly, while lower
threshold settings (i.e. from 1% to 5%) resulted in increased predict-
ive power, higher thresholds (i.e. 10% and 20%) penalized the per-
formance of the model. This can be attributed to the fact that a low

threshold exclusively creates connections between KG nodes and the
patients falling at the extreme ends of a feature distribution, thus
capturing patients that can best characterize a particular feature. On
the other hand, higher thresholds generate a larger number of edges

Table 1. List of statistical modeling and machine learning methods available at CLEP for conducting classification tasks

Model Reference Implementation

Logistic regression with L2 regularization – scikit-learn (Pedregosa et al., 2011)

Logistic regression with elastic net regularization Zou and Hastie (2005) scikit-learn (Pedregosa et al., 2011)

Support Vector Machines Cortes and Vapnik (1995) scikit-learn (Pedregosa et al., 2011)

Random Forest Ho (1995) scikit-learn (Pedregosa et al., 2011)

XGBoost Chen and Guestrin (2016) XGBoost (Chen and Guestrin, 2016)

Fig. 2. Schematic representation of the model evaluation strategy. The first step is to

split the data into training (80%) and hold-out test set (20%). Next, we performed

5-fold stratified cross-validation by further repeatedly splitting the training data into

80% training and 20% validation in order to identify the best hyperparameter set-

tings. Once these five cross-validation rounds were performed, the best hyperpara-

meters were used to train the model on the full training data and the trained model

was evaluated on the held-out test set. This entire strategy was repeated 5 times to

generate 5 AUC-ROC scores that were used to determine the performance of each

of the five models (Table 1). We would like to note that the first split (training-test)

ensured maintaining the overall class distribution and classes have been shuffled be-

forehand to avoid having the same data used in training/test. Furthermore, we chose

AUC-ROC scores as evaluation metrics for both best hyperparameter selection and

model evaluation. A high quality version of this figure is available at https://doi.org/

10.6084/m9.figshare.12834608

Fig. 3. Benchmarking of five ML models trained to classify between cognitively

impared patients and healthy controls. Each boxplot shows the distribution of the

AUC-ROC values over 5 repeats of the 5-fold nested cross-validation procedure.

Statistical modeling and ML methods are listed in Table 1. The new patient repre-

sentations were generated by incorporating ADNI patients into the PPI-KG using a

threshold of 2.5% on the eCDF of the control distribution for each mapped feature.

The RotatE KGEM was trained on the KG using PyKEEN. The patient representa-

tions were used to train the five ML models with the original patient labels (a) and

compared against the raw transcriptomics data (b). To investigate the robustness of

our results, we randomized patient labels and trained the five ML models using the

new representations (c). Furthermore, we trained the five ML models using the new

representations generated from a permuted version of the original KG (d). Both ro-

bustness analyses yielded AUC-ROC values on all machine learning models equiva-

lent to that of a random classifier (i.e. AUC-ROC values �0.5)

Fig. 4. Incorporating patients into a KG fosters biological interpretation and identifi-

cation of patient subgroups. (a) PPI-KG subgraph after incorporating ADNI partici-

pants visualized using a circular layout. Red nodes represent ADNI patients and

blue nodes represent proteins present in the PPI-KG. The majority of connections

are between ADNI patients and their most characteristic proteins, which is repre-

sented by the large number of outgoing edges between the right part of the circle

(where patients are located) and the rest of the KG. (b) Local neighborhood around

the subgroup of cognitively impaired patients investigated in the case scenario. Red

nodes represent patients, dark blue the six proteins linked to the patient subgroup

and light blue other related proteins present in the neighborhood
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between patients and features, resulting both in a loss of specificity
and the ability to distinguish between different patient groups.

The right choice of the KGEM is essential for generating patient
representations that are useful for the classifiers. While the results of
the case scenario are based on RotatE, we also generated patient
representations based on further KGEMs (Supplementary Fig. S5).
We can observe that patient representations generated by RotatE
outperforms the remaining KGEMs by a large margin. It is known
that specific relational patterns that can be modeled by RotatE can-
not be modeled by TransE (Bordes et al., 2013), ComplEx
(Trouillon et al., 2016) and HolE (Nickel et al., 2016). However, to
obtain a clearer picture, relational patterns around patient nodes
could be investigated. Finally, we also investigated the effect the size
of a KG can have on results by evaluating the performance of ML
models on smaller versions of the PPI-KG. As expected, smaller PPI-
KGs resulted in lower performance for each of the ML models
(Supplementary Fig. S7).

3.2 Biological interpretation and patient subgroup

identification through CLEP
Though the advent of machine learning methods have led to a new
range of applications in the biomedical field, these methods inher-
ently come with a tradeoff with regards to interpretability. The
so-called black-box models lack transparency, providing no explan-
ation as to what accounts for the predictions they generate. In the
biomedical field in particular, this can often translate to a lack of
success in clinical practice (Fröhlich et al., 2018); while discrete pat-
terns that arise from ML techniques can be discerned, without an
understanding of the fundamental cause and the characteristic fea-
tures of a disease, clinicians may not have an adequate level of
knowledge to make a confident diagnosis. In this section, we demon-
strate how the hybrid KG generated by CLEP can drive the identifi-
cation of patient-specific mechanisms and pathways made possible
by the incorporation of patients into a KG comprising mechanistic
knowledge (Fig. 4a).

In the previous section, we demonstrated how novel representa-
tions generated on the ADNI dataset outperformed raw data in a
diagnosis prediction task. However, these representations cannot be
directly interpreted as they are low-dimensional vector representa-
tions embedded in a latent space. Nonetheless, because the original
KG comprises biological knowledge, features and/or mechanisms
that are connected to a given embedded patient or patient subgroup
can be easily pinpointed by studying their local neighborhood in the
KG. Thus, using the KG derived from the ADNI dataset, we identi-
fied sets of genes with connections to cognitively impaired patients
(groups) but without any connections to control participants. Of
these gene sets, we focused on a particular set of genes (HS2ST1,
ESR2, IKBKG, UBE2D3, PCGF5 and NFIC), all of which were con-
nected to each other, and were also identified in a subgroup of cog-
nitively impaired patients (n¼15). We then investigated the
interplay of genes in the local neighborhood of the KG around this
subset of patients in order to identify and deconvolute common
pathways that could be responsible for their phenotypic make-up
(Fig. 4b).

To identify the biological pathways these genes participate in,
pathway enrichment analysis was run on this gene set
(Supplementary Table S2). Of the nine enriched pathways we identi-
fied (q-value < 0.05), six were related to Toll-like receptor signaling
(specifically, Toll-like receptor 4 signaling) due to the involvement
of IKBKG and UBE2D3 in this pathway. Interestingly, this inflam-
matory pathway is often noted for its association to AD (Tahara
et al., 2006; Walter et al., 2007), while UBE2D3 has been proposed
as a potential biomarker for Alzheimer’s disease (Wu et al., 2019).
Furthermore, HS2ST1 is a member of the heparan sulfate biosyn-
thetic enzyme family and responsible for the synthesis of heparan
sulfate (HS), the latter of which is known to cause protein aggrega-
tion and lead to neurodegenerative disease (Maı̈za et al., 2018).
Additionally, ESR2 polymorphisms have been linked to cognitive
impairment and an increased risk for AD, predominantly in women
(Ulhaq and Garcia, 2020; Zhao et al., 2015). It is worth noting that

by investigating patient subgroups characterized by particular fea-
tures, we can also assess whether they share common alleles. Finally,
the remaining two genes, HFIC and PCGF5, are both present in the
enriched ‘Gene expression (transcription)’ pathway, and are associ-
ated with the regulation of transcriptional factors.

3.3 CLEP’s representations outperform raw data in

classifying psychiatric conditions and healthy controls
We also reproduced our methodology on an additional dataset con-
taining transcriptomics experiments on psychiatric conditions and
healthy controls (see Section 2). The results for this dataset
resembled the ones observed in the previous case scenario (Fig. 5).
The patient representations generated by CLEP outperformed the
original data in the binary classification task by a large margin. By
investigating the individual ML models, we observed that the differ-
ence in performance between the two tree-based methods (i.e. ran-
dom forest and XGBoost) and the rest was smaller for this dataset.
Similarly to the previous case scenario, SVM yielded the highest per-
formance. However, the variability in performance for the elastic
net, random forest, and XGBoost was significantly larger compared
to the ADNI dataset.

4 Discussion

In this work, we have presented CLEP, a novel hybrid data- and
knowledge-driven framework which leverages patient-level data and
KGs for generating personalized patient representations. In the case
scenarios, we demonstrated the utility of our framework on two in-
dependent datasets by employing transcriptomics data and an inte-
grative KG containing knowledge from several protein–protein
interaction databases. When compared to the raw transcriptomics
data, we have shown how these representations yield superior per-
formance in a binary classification task using a broad panel of ma-
chine-learning models. Furthermore, we have illustrated how
incorporating knowledge from the KG for the generation of patient
representations not only improves performance in classification
tasks, but also facilitates the interpretation of the biological mecha-
nisms that uniquely characterize patients and/or patient subgroups.
In summary, we have shown the utility of a hybrid approach for the
generation of new patient representations that can then be used in a
broad range of applications, ranging from predictive modeling to
personalized medicine. We have also made CLEP available as an ex-
tensible and reproducible software package, enabling researchers to
conduct these experiments on various kinds of datasets and
networks.

Our framework shares several limitations inherent to many ML
methods. The first is the computational cost and time associated
with training and optimizing KGEMs, which could be improved
with the help of libraries focused on using multiple GPUs and dis-
tributing computation across a cluster. The second is that our

Fig. 5. Benchmarking of five ML models trained to classify between psychiatric

patients and healthy controls. Each boxplot shows the distribution of the AUC-

ROC values over 5 repeats of the 5-fold nested cross-validation procedure.

Statistical modeling and ML methods are listed in Table 1. The new patient repre-

sentations were generated by incorporating the patient data from GSE92538 into

the PPI-KG using a threshold of 2.5% on the eCDF of the control distribution for

each mapped feature. The RotatE KGEM was trained on the KG using PyKEEN.

The patient representations were used to train the five ML models with the original

patient labels (a) and compared against the raw transcriptomics data (b)
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methodology does not compensate for a lack of training data, as is
often the case with clinical datasets, nor for poor quality data. The
third is that this approach relies on the ability to meaningfully inte-
grate two or more datasets with a KG. If there are too few mappable
features between the clinical data and the KG, then the resulting pa-
tient representations may only have limited quality and utility, and
some patients may be excluded entirely. Fourthly, the methodology
to incorporate patients into the KG has been exclusively devised for
continuous features. Lastly, despite our framework being generaliz-
able to any dataset, there may be cases where CLEP fails to improve
the performance as the original dataset possesses sufficient inform-
ative power for a particular application. In these cases, however,
one could always employ the KG to interpret and identify biological
mechanisms (e.g. pathways in the KG) associated with an individual
or group of patients, as demonstrated in our case scenario.

While we generated two types of edges (i.e. -1 or þ1) between
ADNI patients and proteins in the PPI-KG, we also implicitly gener-
ated negative edges between each ADNI patient and all other pro-
teins to which neither a -1 nor þ1 edge was inferred. Unfortunately,
we were unable to explicitly incorporate them in the training algo-
rithm because PyKEEN, as well as most KGEM packages, generate
negative edges through uniform negative sampling or Bernoulli
negative sampling (Wang et al., 2014b) with respect to the given
positive KG. Thus, we are interested to make improvements to the
upstream package itself to enable these kinds of explicit inclusions,
as there are a growing number of negative edges available in various
biological knowledge sources.

There are a number of applications in precision medicine for the
representations generated by CLEP. For instance, in the AD area,
patient representations of cognitively impared patients could be sys-
tematically used to stratify patients in order to identify shared mech-
anisms that explain their observed phenotype. Furthermore, our
approach can be generalized such that different types of patient-level
data can be integrated and mapped to heterogeneous biological
KGs, thus enabling scientists to combine their datasets with context-
specific knowledge. In the future, we plan to extend this work as
well as to adapt it to well-known network representation learning
methods such as node2vec (Grover and Leskovec, 2016) and LINE
(Tang et al., 2015). Finally, we ambition that our framework could
serve as an integration platform for multimodal datasets including
clinical, imaging and -omics data which could lead to more compre-
hensive patient representations.
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