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Abstract 
Accurate quantitative precipitation forecasts (QPF) by numerical weather prediction 

(NWP) models are and remain of high societal interest, especially in times of global 

warming, which causes an increasing frequency and intensity of heavy precipitation 

events across the earth. The assimilation of weather radar observations in convective-

scale NWP systems has been proven highly beneficial for improving short-term QPF, 

but research has so far mostly focused on the assimilation of non-polarimetric radar 

quantities such as horizontal radar reflectivity 𝑍𝐻 and radar radial wind observations. 

Polarimetric radar data carry more independent information about cloud-precipitation 

microphysics than 𝑍𝐻 observations do and thus have the potential to further improve 

short-term QPF. However, assimilation of polarimetric data is still in its infancy. 

In this study, polarimetric information from the C-band radar network operated by 

the German meteorological service (DWD, Deutscher Wetterdienst) are assimilated 

in DWD’s operational convective-scale ensemble-based NWP system for the first 

time. The polarimetric observations are assimilated using 3D microphysical retrievals 

of liquid and ice water content (LWC and IWC) below and above the melting layer, 

respectively, and the impact on short-term QPF compared to the assimilation of 𝑍𝐻 

observations alone is investigated. For this purpose, this thesis develops an LWC 

estimator based on a large German disdrometer data set and C-band T-matrix 

scattering calculations. It is designed to exploit and mitigate the respective 

advantages and shortcomings of the different polarimetric radar moments known for 

different precipitation characteristics in a hybrid way. When applied to German 

C-band radar observations of four stratiform and five convective warm-season 

events, the adapted hybrid LWC estimator yields an encouraging close-to-zero bias 

and better correlations than all tested non-hybrid new and existing estimators from 

the scientific literature. 

With optimized data assimilation settings, the assimilation of the new hybrid LWC 

estimator below the melting layer mostly improves deterministic and ensemble first-

guess QPF over the assimilation of 𝑍𝐻 observations alone for two intense stratiform 

cases in the summers of 2017 and 2021 and an intense convective case in the summer 

of 2021. Assimilation of polarimetric data above the melting layer using a hybrid 

state-of-the-art IWC retrieval from the scientific literature mostly degrades the first 

guess, especially for convective precipitation, likely because of a lower quality of the 

estimator in these situations. However, first-guess QPF quality is improved notably 

for the 2021 stratiform case, for which the estimation of specific differential phase 

profits from a higher radial radar resolution compared to the other cases. Overall, the 

best first guess is achieved when 𝑍𝐻, LWC, and IWC are assimilated together. 
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The assimilation of 3D LWC or IWC estimates on average slightly improves 

nine-hour QPF for most forecast hours compared to the assimilation of 𝑍𝐻 

observations alone, in particular when LWC estimates are assimilated for the 2017 

convective case and when IWC estimates are assimilated for the 2021 stratiform case. 

Nonetheless, the IWC assimilation degrades deterministic nine-hour QPF again for 

convective precipitation, which suggests the need for the development of convection-

adjusted IWC retrievals for future assimilation studies with polarimetric ice 

microphysical retrievals. Overall, the best QPF over the first six forecast hours is 

yielded when 𝑍𝐻, LWC, and IWC are assimilated together. 
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Chapter 1 

Introduction 

The Sixth Assessment Report of the Intergovernmental Panel on Climate Change 

(IPCC, 2021) has drawn attention to the alarming effects of global warming on 

precipitation patterns across the earth. The report indicates that with high confidence 

the frequency and intensity of heavy precipitation events have increased since the 

1950s for most land areas with sufficient observational data for trend analysis. 

Furthermore, the report emphasizes that these extreme weather events are likely to 

become even more frequent and intense in most regions as global warming continues. 

E.g., extreme daily precipitation events are projected to strengthen globally by about 

7 % for each K of additional global temperature rise. Heavy precipitation events can 

threaten lives, livelihoods, property, and economic structures, not only in regions 

frequently affected by tropical cyclones or monsoon-related precipitation, etc., but 

also in mid-latitude regions such as Central Europe. Extreme stratiform precipitation 

in western parts of Germany and its neighboring countries associated with a slow-

moving low-pressure system in July 2021 led to devastating floods, e.g., in the Ahr 

valley in Rhineland-Palatinate, with more than 180 deaths and an insured loss of more 

than 30 billion euros in Germany alone1. Reducing the impact of such dangerous 

precipitation events on the public is therefore highly desirable and will become even 

more important in the future with further ongoing climate change. 

Quantitative precipitation forecasts (QPF) by numerical weather prediction 

(NWP) models can play a key role in providing early warnings of hazardous 

precipitation to the public. However, the accurate prediction of quantitative 

precipitation by NWP models has been a long-standing goal and challenge for 

weather forecasters, especially during the summer season when the majority of heavy 

precipitation occurs (Olson et al., 1995). Significant improvements in QPF quality 

have been achieved in recent years, primarily due to the increased resolution of 

operational NWP models as a result of increased computing power at national 

meteorological forecast centers. Operational NWP models now have horizontal 

resolutions of only a few kilometers and are thus able to explicitly resolve moist-

convective atmospheric processes. They are often referred to as “convective-scale” 

NWP models. In order for these high-resolution NWP models to provide the best 

possible weather forecasts, high-resolution convective-scale atmospheric 

observations that capture the details of moist-convective processes are needed to 

1 https://www.theguardian.com/world/2022/jul/13/floods-then-and-now-photographs-ger 

many-ahr-valley-flooding-disaster-july-2021 (last accessed 18 June 2023). 
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determine appropriate model initial conditions. This so-called “initialization” of 

operational NWP models is typically done by statistically combining atmospheric 

observations and short-term weather forecasts (also known as the first guess), taking 

into account the respective uncertainties of the available sources of information, in 

order to obtain the best possible estimate of the true state of the atmosphere (also 

known as the analysis). This process is commonly referred to as “data assimilation” 

(DA; e.g., Talagrand, 1997). Proper initialization of convective-scale NWP models 

is particularly challenging because the uncertainties in convective processes are 

difficult to estimate and observations resolving moist-convective atmospheric 

processes are required. Weather surveillance radars can provide these observations at 

uniquely high spatial and temporal resolution and have therefore become an 

indispensable source of information for convective-scale NWP systems.  

The first successful initialization of an NWP model with weather radar 

observations was presented by Lin et al. (1993), who directly inserted wind and 

thermodynamic fields derived from multiple-Doppler radar observations, i.e., 

observations of the same atmospheric spot from several different radars, into their 

NWP model. They were able to show similarities between a predicted convective 

storm and the corresponding observed storm for a short period of time. Since then, 

intensive research has been carried out on the assimilation of weather radar 

observations into NWP models, and several DA techniques have been tested for their 

ability to produce accurate convective-scale weather analyses and forecasts. Besides 

the direct insertion of radar retrieved fields into NWP models, empirical approaches 

and statistical interpolation schemes have been used for model initialization. The 

former comprise the successive corrections method (SCM; e.g., Bergthörsson and 

Döös, 1955) and Newtonian nudging or relaxation (e.g., Hoke and Anthes, 1976). 

The latter include the 3D and 4D variational (3DVar and 4DVar; e.g., Lewis and 

Derber, 1985; Le Dimet and Talagrand, 1986; Courtier et al., 1998) schemes. Over 

roughly the past two decades, radar DA based on the Ensemble Kalman Filter (EnKF; 

Evensen, 1994, 2003) – a Monte Carlo approximation of the original Kalman Filter 

(KF; Kalman, 1960; Kalman and Bucy, 1961) – has become increasingly popular 

because of its ability to estimate the highly flow-dependent forecast uncertainty (the 

forecast error covariance matrix) at the convective scale using an ensemble of model 

forecasts (e.g., Snyder and Zhang, 2003; Tong and Xue, 2005; Aksoy et al., 2009; 

Dowell et al., 2011; Tanamachi et al., 2013; Wheatley et al., 2015; Bick et al., 2016; 

Gastaldo et al., 2021). An additional advantage of the EnKF is that it does not require 

the formulation of tangent linear and adjoint microphysical models and observation 

operators (e.g., Houtekamer and Mitchell, 1998) like in variational approaches. 

However, running a forecast ensemble of sufficient size to robustly estimate the 

forecast error covariance matrix is not feasible in operational forecast routines due to 

high computational cost. Too small ensemble sizes can lead to sampling errors that 

may cause filter divergence and spurious long-range correlations in the model domain 

(e.g., Houtekamer and Mitchell, 1998; Hamill et al., 2001). A common approach to 

mitigate this problem is observation localization (Ott et al., 2004), which restricts the 
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radius of observations affecting the analysis. The Local Ensemble Transform Kalman 

Filter (LETKF; Hunt et al., 2007) – a manifestation of the EnKF approach in which 

observation localization is a key feature and in which analyses are computed 

independently at all grid points allowing for easy parallelization – is currently very 

popular in the (radar) DA community. It is used for research purposes at the Japan 

Meteorological Agency (JMA; e.g., Miyoshi et al., 2010) and the European Centre 

for Medium-Range Weather Forecasts (ECMWF; e.g., Hamrud et al., 2015) and has 

been implemented in operational weather forecasting routines at the Italian 

operational center for meteorology (COMET; Bonavita et al., 2010) and at the 

national meteorological services of Germany (Deutscher Wetterdienst, DWD) and 

Switzerland (Federal Office of Meteorology and Climatology MeteoSwiss). Several 

studies showed that the assimilation of 3D radar observations with the LETKF has a 

positive impact on short-term QPF (e.g., Bick et al., 2016; Gastaldo et al., 2021). 

Since spring 2021, 3D radar data have been assimilated in DWD’s operational 

LETKF-based convective-scale NWP system comprising the DA framework 

KENDA (Kilometre-scale Ensemble Data Assimilation; Schraff et al. 2016) and the 

limited-area setup of the global ICON (Icosahedral Nonhydrostatic) model (Zängl et 

al., 2015) covering Germany and adjacent countries ICON-D2.  

Assimilation of weather radar observations has mostly focused on the horizontal 

radar reflectivity factor (hereafter simply reflectivity) 𝑍𝐻 and the Doppler radial wind 

𝑉𝑟, with only 𝑍𝐻 providing direct information on microphysical processes in clouds 

and precipitation. Dual-polarization (i.e., linear orthogonal polarization diversity; 

Seliga and Bringi, 1976, 1978; hereafter referred to as polarimetric) radar 

observations provide additional independent information on clouds and precipitation, 

such as the size, shape, orientation, and composition of hydrometeors compared to 

𝑍𝐻 observations alone (e.g., Zrnic and Ryzhkov, 1999). Therefore, polarimetric radar 

observations may be valuable for improving the representation of cloud-precipitation 

microphysics in NWP models, weather analyses, and consequently short-term QPF 

through evaluation of NWP models and microphysical parameterizations, 

microphysical parameterization development, and DA (e.g., Kumjian, 2013a; Zhang 

et al., 2019). While polarimetric radar observations have already been used to 

improve attenuation correction (e.g., Bringi et al., 1990; Testud et al., 2000; Snyder 

et al., 2010), quantitative precipitation estimation (QPE; e.g., Zrnic and Ryzhkov, 

1996; Ryzhkov et al., 2005a; Tabary et al., 2011; Chen et al., 2021), severe weather 

observation and detection (e.g., Ryzhkov et al., 2005b; Bodine et al., 2013), 

hydrometeor classification (e.g., Park et al., 2009; Dolan et al., 2013), and model 

validation (e.g., Jung et al., 2012; Putnam et al., 2014, 2017), their assimilation in 

NWP models is still in its infancy. This is partly due to the remaining uncertainties 

in the relationships between the polarimetric radar moments and model microphysical 

state variables needed for DA. Another reason for this is the fact that polarimetric 

upgrades of national weather radar networks just finished within the past decade. E.g., 

the upgrade was completed in the USA in 2013 and in Germany in 2015.  
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Polarimetric radar moments can be linked to model microphysical state variables 

for DA using either radar forward operators or retrieval algorithms. Radar forward 

operators simulate synthetic radar observations based, e.g., on model-simulated 

parameterized particle size distributions that can be compared to the real radar 

observations. Retrievals estimate model microphysical state variables from the real 

radar observations prior to DA in order to establish the link to the model. Both 

approaches can be challenging. The direct approach via forward operators can be 

difficult because, e.g., the shape, size and orientation distributions of hydrometeors, 

all of which influence (polarimetric) radar observations, are still rather rudimentarily 

represented in NWP models (e.g., Schinagl et al., 2019). The indirect approach via 

retrievals circumvents these model deficiencies but suffers from uncertainties within 

the retrieval algorithms. A few case studies from the USA, Japan, and China have 

attempted the direct assimilation of polarimetric radar observations with some 

success using the EnKF approach (e.g., Jung et al., 2008b; Jung et al., 2010b; Putnam 

et al., 2019, 2021; Zhu et al., 2020) or the 3DVar method (e.g., Li et al., 2017; Du et 

al., 2021). Other studies have assimilated polarimetric data indirectly via retrieved 

hydrometeor mixing ratios using the 4DVar approach (e.g., Wu et al., 2000), the 

3DVar approach (e.g., Li and Mecikalski, 2010, 2012), or the EnKF method (e.g., 

Yokota et al., 2016). Furthermore, polarimetric radar observations have been used to 

modify cloud analysis schemes based on polarimetric signatures in convective storms 

(Carlin et al., 2017) or by improving hydrometeor classification (Ding et al., 2022). 

To the author’s knowledge, there is no published study assimilating polarimetric 

weather radar observations in Central Europe. The non-polarimetric radar forward 

operator EMVORADO (Efficient Modular Volume-scanning Radar Forward 

Operator; Zeng et al., 2016), which is in operational use at DWD for the KENDA-

ICON-D2 system, is currently being upgraded to polarimetry in preparation for the 

direct assimilation of polarimetric observations in Germany in the near future. 

However, the polarimetric version of the EMVORADO radar forward operator is still 

in a test phase. For indirect assimilation of polarimetric data, polarimetric 

microphysical retrieval algorithms for liquid water content (LWC) and ice water 

content (IWC) have been proposed in the scientific literature (e.g., Ryzhkov et al., 

1998; Bringi and Chandrasekar, 2001; Doviak and Zrnic, 2006; Carlin et al., 2016; 

Ryzhkov and Zrnic, 2019; Bukovcic et al., 2018, 2020; Carlin et al., 2021), but most 

of these estimators were developed with a focus on S-band radars in the USA. The 

applicability of these retrieval algorithms for Germany, with its national C-band radar 

network and different precipitation climatology, may thus be limited. 

As part of the research project RealPEP (Near-Realtime Quantitative Precipitation 

Estimation and Prediction) funded by DFG (Deutsche Forschungsgemeinschaft), this 

study assimilates polarimetric information from the German national C-band radar 

network into DWD’s LETKF-based convective-scale KENDA-ICON-D2 NWP 

system for the first time and evaluates the assimilation impact on short-term QPF 

compared to the assimilation of 𝑍𝐻 observations alone (submitted for publication, 

Reimann et al., 2023). The assimilation of polarimetric data is performed indirectly 
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using microphysical retrievals of LWC and IWC below and above the melting layer, 

respectively, also because the finalization of DWD’s polarimetric EMVORADO 

radar forward operator is not yet completed. To this end, this thesis develops a 

polarimetric LWC estimator (published in Reimann et al., 2021) for the indirect 

assimilation of polarimetric radar observations below the melting layer, which is 

adapted to the German C-band radar network and precipitation climatology by being 

based on a large German pure-rain disdrometer data set and C-band T-matrix 

scattering calculations. It is designed to exploit and mitigate the respective 

advantages and disadvantages of the different polarimetric radar moments known for 

different precipitation characteristics in a hybrid way. To address these central 

objectives, this thesis aims to answer the following research questions:   

Q1: What is the best-performing polarimetric 𝐋𝐖𝐂 retrieval for application to 

the German C-band radar network? 

 

Q2: Does the assimilation of polarimetric microphysical retrievals into the 

KENDA-ICON-D2 system of DWD improve short-term QPF compared to 

the assimilation of 𝒁𝑯 observations alone? 

Together with this introduction, this thesis is divided into six chapters. Chapter 2 

introduces the basics of polarimetric weather radar observations, including a brief 

introduction to electromagnetic scattering theory and the definition of the 

polarimetric radar moments used. It also describes the German national polarimetric 

C-band radar network, from which observations are used in Chapters 3 and 5 for the 

evaluation of LWC estimators and the assimilation of polarimetric information. 

Chapter 3 develops new polarimetric LWC retrievals adapted to the German C-band 

radar network and precipitation climatology based on a large pure-rain disdrometer 

data set and C-band T-matrix scattering calculations, and formulates a hybrid 

combination of these new relations. It also evaluates the new and existing LWC 

estimators from the literature with real radar observations from nine precipitation 

events in the summers of 2016 to 2019. Chapter 4 reviews the key methods and 

achievements of assimilation of (polarimetric) radar observations into NWP models 

with a focus on the EnKF approach, in particular the LETKF. In Chapter 5, the 

performed DA experiments with polarimetric microphysical retrievals in DWD’s 

KENDA-ICON-D2 system are described. These include the identification of suitable 

DA settings for LWC and IWC based on first-guess quality and the evaluation of the 

assimilation impact on nine-hour QPF compared to the assimilation of 𝑍𝐻 

observations alone. Thereby, the focus is on three intense precipitation periods in the 

summers of 2017 and 2021. Final conclusions and an outlook are given in Chapter 6.
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Chapter 2 

Polarimetric Radar Observations 

and Microphysical Retrievals 

In this study, polarimetric information from the German national C-band radar 

network is assimilated into DWD’s convective-scale KENDA-ICON-D2 NWP 

system for the first time. The assimilation is performed using polarimetric 

microphysical retrievals of LWC and IWC below and above the melting layer, 

respectively. For improving understanding of the approaches, findings, as well as 

conclusions presented in this thesis, Section 2.1 of the present chapter gives a brief 

introduction to the physical principle behind polarimetric weather radars, including 

an introduction to electromagnetic scattering theory and the derivation of the basic 

polarimetric radar moments considered. Furthermore, the German national 

polarimetric C-band radar network operated by DWD is described, from which 

polarimetric observations are used for the evaluation of LWC estimators in Chapter 3 

and for the DA experiments performed in Chapter 5. Section 2.2 subsequently 

reviews the existing LWC estimators for C-band radars from the scientific literature 

potentially usable for polarimetric DA purposes in Germany. 

2.1 Polarimetric Weather Radar 

Weather radars are active remote sensing instruments that emit pulsed and directed 

electromagnetic radiation at microwave frequencies (e.g., about 4 to 8 GHz or 

wavelengths of 75 to 37.5 mm for C-band radars) into the surrounding atmosphere 

and receive the echoes from atmospheric targets such as raindrops, snowflakes, and 

hail or graupel. The detected echoes contain information about the bulk properties of 

the illuminated hydrometeors in clouds and precipitation, such as their size, shape, 

physical composition, and orientation, which can be used to improve the 

understanding of microphysical cloud-precipitation processes, hazard detection, 

hydrometeor classification, and weather forecasting through DA. The type of weather 

radar used (e.g., single- or dual-polarization) thereby determines the amount of 

independent microphysical information provided.  

An electromagnetic wave is a coupled vibration of electric and magnetic forces 

propagating through free space or a medium, and the electromagnetic waves 

transmitted by weather radars can be considered sinusoidal (Ryzhkov and Zrnic, 

 



 

8   

 

Chapter 2. Polarimetric Radar Observations and Microphysical Retrievals 

2019). Far away from the radar antenna, the electric and magnetic field vectors 

oscillate orthogonally to each other in the polarization plane that is perpendicular to 

the direction of wave propagation (Ryzhkov and Zrnic, 2019). The polarization plane 

is defined by the two orthogonal unit vectors 𝑒𝐻 and 𝑒𝑉 (hereafter, vectors are 

indicated by rightwards arrows) with the indices H and V denoting the horizontal 

(parallel to the local earth surface) and vertical directions (Zhang, 2016; Ryzhkov and 

Zrnic, 2019). An important property of electromagnetic waves used by common 

weather radars is the polarization state of the transmitted and received 

electromagnetic waves. The polarization state of an electromagnetic wave is defined 

by the shape that the locus of the electric field vector tip forms in the polarization 

plane as time proceeds (Zhang, 2016). The electric field vector �⃗⃗� of a polarized, 

sinusoidal, and plane electromagnetic wave propagating through a vacuum or an 

isotropic medium can be written in complex notation as the sum of its horizontally 

and vertically polarized components �⃗⃗�𝐻 and �⃗⃗�𝑉 as  

�⃗⃗�(𝑟, 𝑡) = �⃗⃗�𝐻(𝑟, 𝑡) + �⃗⃗�𝑉(𝑟, 𝑡) 

 = 𝐸𝐻
0exp[𝑗(2𝜋𝑓𝑡 − 𝑘𝑟 − 𝜑𝐻)]𝑒𝐻 + 𝐸𝑉

0exp[𝑗(2𝜋𝑓𝑡 − 𝑘𝑟 − 𝜑𝑉)]𝑒𝑉 (2.1) 

with 𝐸𝐻/𝑉
0  the amplitudes of the horizontal/vertical components, 𝑗 the complex 

solution to the equation 𝑗2 = −1, 𝑓 the wave frequency in Hz, 𝑘 the wave number in 

m-1, and 𝜑𝐻/𝑉 the start phases of the horizontal/vertical components (Zhang, 2016; 

Ryzhkov and Zrnic, 2019). The real part of the complex vector �⃗⃗� in Eq. (2.1) Re(�⃗⃗�) 

refers to the physical electric field vector (Ryzhkov and Zrnic, 2019). If the phase 

difference 𝛥𝜑 between the real parts of the horizontally and vertically polarized 

components Re(�⃗⃗�𝐻) and Re(�⃗⃗�𝑉) is 0 or π, the orthogonal wave components are in or 

out of phase and the locus of Re(�⃗⃗�) in the polarization plane forms a straight line. In 

this case, the electromagnetic wave is called linearly polarized. Otherwise, the locus 

of Re(�⃗⃗�) forms an ellipse, and consequently the polarization of the electromagnetic 

wave is called elliptical (Zhang, 2016; Ryzhkov and Zrnic, 2019). A special case of 

elliptical polarization is the circular polarization characterized by a phase difference 

𝛥𝜑 = ±
𝜋

2
 and equal orthogonal component amplitudes 𝐸𝐻

0 = 𝐸𝑉
0.  

A polarimetric radar emits linearly polarized electromagnetic waves in both the 

horizontal and vertical directions and detects the linearly polarized components of the 

echoed signals in both polarization channels (e.g., Kumjian, 2013a). Polarimetric 

radars that transmit and receive electromagnetic radiation in the horizontal and 

vertical polarization channels at the same time are most commonly used in national 

polarimetric radar networks and are referred to as operating in “simultaneous 

transmission/reception” mode or simply SHV-mode (Ryzhkov and Zrnic, 2019). The 

polarimetric variables obtained by polarimetric radars operating in SHV-mode are in 

focus in this thesis and can be derived from electromagnetic scattering theory. 
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2.1. Polarimetric Weather Radar 

2.1.1 Electromagnetic Scattering Theory 

Consider a plane sinusoidal electromagnetic wave propagating in a vacuum or 

another non-attenuating isotropic medium incident on a single hydrometeor like a 

raindrop. The incident electric field �⃗⃗�𝑖 produces electromagnetic currents inside the 

illuminated hydrometeor, which result in secondary radiation being scattered radially 

in all directions (Zhang, 2016). At a far distance from the particle, the scattered 

electric field �⃗⃗�𝑠 behaves like a spherical wave, and both �⃗⃗�𝑖 and �⃗⃗�𝑠 can be related via 

the scattering equation 

 �⃗⃗�𝑠 =
exp[−𝑗𝑘𝑟]

𝑟
𝑺�⃗⃗�𝑖 (2.2) 

with 𝑟 the distance between the hydrometeor and the observation point of �⃗⃗�𝑠, 

𝑘 = 2𝜋 𝜆⁄  the wave number in the background medium with the wavelength 𝜆, and 

𝑺 the complex scattering matrix (e.g., Zhang, 2016; Ryzhkov and Zrnic, 2019; 

hereafter, matrices are indicated by bold capital letters). In Eq. (2.2) and below, the 

time-varying factors are neglected so that �⃗⃗�𝑖 and �⃗⃗�𝑠 represent complex amplitudes or 

so-called phasors (e.g., Ryzhkov and Zrnic, 2019). For polarimetric weather radar 

applications, the scattering matrix 𝑺 is defined in the coordinate system based on the 

horizontal and vertical directions by 

 𝑺 = [
𝑠𝐻𝐻 𝑠𝐻𝑉
𝑠𝑉𝐻 𝑠𝑉𝑉

] (2.3) 

with the complex scattering amplitudes 𝑠𝑋𝑌, which magnitudes quantify the fraction 

of the incident wave field in 𝑋-polarization scattered to 𝑌-polarization and their 

phases quantify the corresponding phase shift with respect to the incident wave field 

(Ryzhkov and Zrnic, 2019). The cases 𝑋 = 𝑌 and 𝑋 ≠ 𝑌 refer to the co- and cross-

polar scattering amplitudes, respectively. Equation (2.2) can be rewritten in matrix 

form as  

 [
𝐸𝑠,𝐻
𝐸𝑠,𝑉

] =
exp[−𝑗𝑘𝑟]

𝑟
[
𝑠𝐻𝐻(�⃗⃗�𝑖, �⃗⃗�𝑠) 𝑠𝐻𝑉(�⃗⃗�𝑖 , �⃗⃗�𝑠)

𝑠𝑉𝐻(�⃗⃗�𝑖, �⃗⃗�𝑠) 𝑠𝑉𝑉(�⃗⃗�𝑖, �⃗⃗�𝑠)
] [
𝐸𝑖,𝐻
𝐸𝑖,𝑉

]           (2.4) 

with �⃗⃗�𝑖 and �⃗⃗�𝑠 the unit vectors in the propagation direction of the incident and 

scattered waves, respectively (Ryzhkov and Zrnic, 2019). Meteorologists are 

typically interested in the portion of the incident wave scattered back to the radar 

antenna that contains information about the illuminated hydrometeors in the probed 

atmospheric volume (Ryzhkov and Zrnic, 2019). For the wave field scattered back to 

the radar, �⃗⃗�𝑠 = −�⃗⃗�𝑖, and the corresponding scattering matrix is called backscattering 
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matrix (Ryzhkov and Zrnic, 2019). In the following, the focus will thus be on the 

backscattering matrix, hereafter simply referred to as the scattering matrix 𝑺.  

Calculating 𝑺 for arbitrary particles can be challenging, but closed-form solutions 

exist for scattering hydrometeors that are spheroidal in shape and small compared to 

the radar wavelength (Rayleigh approximation; Ryzhkov and Zrnic, 2019). For 

C-band radars, the Rayleigh approximation is mostly valid for raindrops, small 

snowflakes, small hail, graupel, and ice crystals, and the spheroid approximation is 

especially suitable for raindrops, which flatten in response to air drag when falling 

(Ryzhkov and Zrnic, 2019). As is common in the literature, the spheroid model is 

used here. A spheroid is described by two axes a and b, where axis a connects the 

poles of the spheroid and axis b connects two points on its equator by cutting through 

its center. Hydrometeors tumble as they fall, which affects the scattering of incident 

electromagnetic waves, and thus makes it necessary to consider particle canting 

(Ryzhkov and Zrnic, 2019). A spheroid projected onto the polarization plane of an 

electromagnetic wave can be rotated by two angles 𝜒 and 𝜓 referring to the angles 

between axis a and the vertical direction in the polarization plane and between axis a 

and the direction of wave propagation. The matrix 𝑺 defined in the horizontal-vertical 

system of the incident wave like in Eq. (2.3) depends on the complex scattering 

amplitudes 𝑠𝑎 and 𝑠𝑏 along the axes a and b of the spheroid and its canting angles 𝜒 

and 𝜓 as  

 𝑺 = [
(𝑠𝑎 − 𝑠𝑏)sin

2(𝜓)sin2(𝜒) + 𝑠𝑏 (𝑠𝑎 − 𝑠𝑏)sin
2(𝜓)sin(𝜒)cos(𝜒)

(𝑠𝑎 − 𝑠𝑏)sin
2(𝜓) sin(𝜒) cos(𝜒) (𝑠𝑎 − 𝑠𝑏)sin

2(𝜓)cos2(𝜒) + 𝑠𝑏
] 

 (2.5) 

(Ryzhkov and Zrnic, 2019). Note that Eq. (2.5) was derived based on the “backscatter 

rule”, which describes the dependencies of 𝑠𝑎 and 𝑠𝑏 on the angle 𝜓 in the Rayleigh 

approximation (Holt and Shepherd, 1979). 

The hydrometeors in a radar resolution volume have different sizes and 

orientations and all of them contribute to the backscattered signal. The size 

distribution in an atmospheric radar volume is characterized by the particle size 

distribution 𝑁(𝐷) with 𝐷 the particle diameter, and integrals over 𝑁(𝐷) are denoted 

in the following by angular brackets  

 〈… 〉 =  ∫𝑁(𝐷)…𝑑𝐷. (2.6) 

Note that in the literature the angular brackets in Eq. (2.6) are often referred to as an 

“ensemble average” rather than as an integral (e.g., in Ryzhkov and Zrnic, 2019),  

which can be misleading. The second-order backscattering moments are  

 〈|𝑠𝐻𝐻|
2〉 =  〈|𝑠𝑏|

2〉 − 2Re(〈𝑠𝑏
∗(𝑠𝑏 − 𝑠𝑎)〉)𝑀2 + 〈|(𝑠𝑏 − 𝑠𝑎)|

2〉𝑀4,  (2.7) 

 〈|𝑠𝑉𝑉|
2〉 =  〈|𝑠𝑏|

2〉 − 2Re(〈𝑠𝑏
∗(𝑠𝑏 − 𝑠𝑎)〉)𝑀1 + 〈|(𝑠𝑏 − 𝑠𝑎)|

2〉𝑀3,  (2.8) 
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 〈|𝑠𝐻𝑉|
2〉 = 〈|𝑠𝑉𝐻|

2〉 = 〈|(𝑠𝑏 − 𝑠𝑎)|
2〉𝑀5,  (2.9) 

and 

 〈𝑠𝐻𝐻
∗ 𝑠𝑉𝑉〉 =   〈|𝑠𝑏|

2〉 + 〈|(𝑠𝑏 − 𝑠𝑎)|
2〉𝑀5 − 〈𝑠𝑏

∗(𝑠𝑏 − 𝑠𝑎)〉𝑀1 − 〈𝑠𝑏(𝑠𝑏
∗ − 𝑠𝑎

∗)〉𝑀2 

  (2.10) 

(Ryzhkov and Zrnic, 2019) with Re(𝑐) the real part and 𝑐∗ the complex conjugate of 

a complex number 𝑐. When the backscattered and forward scattered waves are equal, 

i.e., �⃗⃗�𝑠 = �⃗⃗�𝑖, which is the case for Rayleigh scatterers, the first-order forward 

scattering moments are 

 〈𝑠𝐻𝐻
(0)〉 = 〈𝑠𝑏

(0)〉 − 〈𝑠𝑏
(0)
− 𝑠𝑎

(0)〉𝑀2  (2.11) 

and 

 〈𝑠𝑉𝑉
(0)〉 = 〈𝑠𝑏

(0)〉 − 〈𝑠𝑏
(0)
− 𝑠𝑎

(0)〉𝑀1  (2.12) 

with the superscript “(0)” indicating forward scattering (Ryzhkov and Zrnic, 2019). 

In Eqs. (2.7) through (2.12), 𝑀1−5 are the angular moments 

 𝑀1 = 〈sin
2(𝜓)cos2(𝜒)〉,   (2.13) 

 𝑀2 = 〈sin
2(𝜓)sin2(𝜒)〉,  (2.14) 

 𝑀3 = 〈sin
4(𝜓)cos4(𝜒)〉,  (2.15) 

 𝑀4 = 〈sin
4(𝜓)sin4(𝜒)〉,  (2.16) 

and 

 𝑀5 = 〈sin
4(𝜓)cos2(𝜒)sin2(𝜒)〉 (2.17) 

(Ryzhkov and Zrnic, 2019). Assuming the distributions of particle orientations 

described by the angles 𝜓 and 𝜒 being characterized by a 2D axisymmetric angular 

Gaussian distribution with mean angles 〈𝜓〉 ≈
𝜋

2
 and 〈χ〉 ≈ 0 and corresponding 

standard deviations 𝜎𝜓 and 𝜎𝜒 = 𝜎𝜓/sin(𝜓), the angular moments can be formulated 

following Ryzhkov et al. (2011) as 

 𝑀1 =
1

4
(1 + 𝑟𝜓)

2, (2.18) 

 𝑀2 =
1

4
(1 − 𝑟𝜓

2), (2.19) 
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 𝑀3 = (
3

8
+
1

2
𝑟𝜓 +

1

8
𝑟𝜓
4)2, (2.20) 

 𝑀4 = (
3

8
−
1

2
𝑟𝜓 +

1

8
𝑟𝜓
4)(

3

8
+
1

2
𝑟𝜓 +

1

8
𝑟𝜓
4), (2.21) 

and 

 𝑀5 =
1

8
(
3

8
+
1

2
𝑟𝜓 +

1

8
𝑟𝜓
4)(1 − 𝑟𝜓

4) (2.22) 

with 𝑟𝜓 = exp[−2𝜎𝜓
2] and 𝜎𝜓 in radians.  

When considering electromagnetic waves emitted by a weather radar in 

precipitation, propagation effects due to atmospheric gases and hydrometeors on the 

propagation path of the electromagnetic waves must also be considered. These effects 

include accumulation of phase shift with respect to the theoretical propagation of the 

electromagnetic waves in a vacuum, reduction of wave amplitude due to absorption 

and scattering, also known as attenuation, and depolarization in the presence of 

canted hydrometeors. The changes in an electromagnetic wave traveling from a 

position 0 to a position 𝑟 through an atmospheric volume filled with hydrometeors 

can be calculated using the transmission matrix 𝑻 as 

 [
𝐸𝐻(𝑟)
𝐸𝑉(𝑟)

] = 𝑻 [
𝐸𝐻(0)
𝐸𝑉(0)

] = [
𝑇𝐻𝐻 𝑇𝐻𝑉
𝑇𝑉𝐻 𝑇𝑉𝑉

] [
𝐸𝐻(0)
𝐸𝑉(0)

] (2.23) 

(Zhang, 2016; Ryzhkov and Zrnic, 2019). For simplicity, assume that the mean 

canting angles of hydrometeors are zero, which results in zero depolarization of the 

electromagnetic wave as it propagates due to statistical symmetry and in zero off-

diagonal elements of T as 

 [
𝐸𝐻(𝑟)

𝐸𝑉(𝑟)
] = [

𝑇𝐻𝐻 0
0 𝑇𝑉𝑉

] [
𝐸𝐻(0)

𝐸𝑉(0)
] 

 = [
exp[−𝑗 ∫ 𝐾𝐻𝑑𝑙

𝑟

0
] 0

0 exp[−𝑗 ∫ 𝐾𝑉𝑑𝑙
𝑟

0
]
] [
𝐸𝐻(0)
𝐸𝑉(0)

] (2.24) 

with the effective propagation constants 𝐾𝐻 and 𝐾𝑉 defined by 

 𝐾𝐻 = 𝑘 +
2𝜋

𝑘
〈𝑠𝐻𝐻
(0)〉  (2.25) 

and 

 𝐾𝑉 = 𝑘 +
2𝜋

𝑘
〈𝑠𝑉𝑉
(0)〉 (2.26) 
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(Zhang, 2016). Radar measurements contain information about both the scattering 

and propagation of electromagnetic waves. These two principles have been 

introduced separately above. To obtain a formulation of first-order multiple scattering 

by combining both schemes, the transmission-included scattering matrix 𝑺′ is used to 

relate the radar-transmitted electromagnetic wave field �⃗⃗�𝑡 with the radar-received 

electromagnetic wave field �⃗⃗�𝑟 as 

 [
𝐸𝑟,𝐻
𝐸𝑟,𝑉

] =
1

𝑟
𝑺′ [
𝐸𝑡,𝐻
𝐸𝑡,𝑉

] (2.27) 

with 𝑺′ including propagation effects from the radar antenna to the scatterers, wave 

scattering, and propagation effects from the scatterers back to the radar, and given by 

 𝑺′ = 𝑻𝑺𝑻 = [
𝑠𝐻𝐻exp[−2𝑗 ∫ 𝐾𝐻𝑑𝑙

𝑟

0
] 𝑠𝐻𝑉exp[−𝑗 ∫ (𝐾𝐻 + 𝐾𝑉)𝑑𝑙

𝑟

0
]

𝑠𝑉𝐻exp[−𝑗 ∫ (𝐾𝐻 + 𝐾𝑉)𝑑𝑙
𝑟

0
] 𝑠𝑉𝑉exp[−2𝑗 ∫ 𝐾𝑉𝑑𝑙

𝑟

0
]

] 

  (2.28) 

with 𝑻 and 𝑺 the transmission and scattering matrices, respectively (Zhang, 2016). 

Cross-polar components (off-diagonal elements) of 𝑺′ in the case of zero 

depolarization upon wave propagation are only induced by scattering. The 

transmission-included scattering matrix 𝑺′ can be used to calculate radar variables 

influenced by propagation effects such as phase shift and attenuation (Zhang, 2016). 

More detailed overviews of the topic can be found, e.g., in the books of Bringi and 

Chandrasekar (2001), Zhang (2016) and Ryzhkov and Zrnic (2019). 

2.1.2  Polarimetric Radar Moments 

Perhaps the most basic quantity provided by polarimetric weather radars is the radar 

equivalent reflectivity factor, or simply reflectivity, at horizontal polarization  

 𝑧𝐻 =
4𝜆4

𝜋4|𝐾𝑤|2
〈|𝑠𝐻𝐻|

2〉 (2.29) 

(given in mm6 m-3) with 𝜆 the radar wavelength in mm and |𝐾𝑤| =
𝜀𝑤−1

𝜀𝑤+2
 with 휀𝑤 the 

dielectric constant of water (e.g., Zhang, 2016; Ryzhkov and Zrnic, 2019), which is 

related to the refractive index of water 𝑛𝑤 via 휀𝑤 = 𝑛𝑤
2  (e.g., Kumjian, 2013a). Since 

𝑧𝐻 covers a wide range of possible values, it is typically expressed in logarithmic 

units by 𝑍𝐻 = 10 log(𝑧𝐻) in dBZ. A polarimetric radar can also measure reflectivity 

at vertical polarization 𝑍𝑉. Both 𝑍𝐻 and 𝑍𝑉 depend on the raindrop size and number 

concentration in the radar resolution volume, and in the Rayleigh regime, 𝑍𝐻 > 𝑍𝑉 

due to oblate shapes of raindrops, and both 𝑍𝐻 and 𝑍𝑉 increase continuously with the 
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hydrometeor size, such that 𝑍𝐻/𝑉~𝐷
6 (Ryzhkov and Zrnic, 2019). Moreover, 𝑍𝐻 and 

𝑍𝑉 depend on the dielectric constant of the hydrometeors, which is a function of their 

physical composition, including their density and temperature, and the wavelength of 

the incident electromagnetic waves (Kumjian, 2013a). E.g., the dielectric constant of 

ice is much smaller than that of liquid water, so that the reflectivity of an ice 

hydrometeor with the same shape as a liquid hydrometeor will be much lower (e.g., 

Kumjian, 2013a; Ryzhkov and Zrnic, 2019). The quality of 𝑍𝐻/𝑉 measurements can 

be degraded by partial beam blockage, radar miscalibration, attenuation, non-uniform 

beam filling, resonance scattering, and noise bias, but they are mostly not affected by 

depolarization effects (Kumjian, 2013a). 

The deviation of hydrometeor shapes from the sphere model results in differences 

in the received powers in the horizontal and vertical polarization channels. This effect 

can be quantified with the ratio of the horizontal and vertical reflectivities 

 𝑍𝐷𝑅 = 10 log (
𝑧𝐻

𝑧𝑉
) = 10 log (

〈|𝑠𝐻𝐻|
2〉

〈|𝑠𝑉𝑉|2〉
) (2.30) 

with 𝑧𝑉 in mm6 m-3 known as the differential reflectivity (given in dB; e.g., Ryzhkov 

and Zrnic, 2019) and first introduced by Seliga and Bringi (1976). 𝑍𝐷𝑅 round 0 dB 

corresponds to spherical or randomly oriented hydrometeors in the radar resolution 

volume, such as drizzle rain or dry tumbling hail. For Rayleigh scatterers, positive 

values of 𝑍𝐷𝑅 indicate that the hydrometeors have, on average, a larger extent in the 

horizontal than in the vertical direction, which is the case, as mentioned before, for 

falling raindrops. Thus, 𝑍𝐷𝑅 can be used as an indirect measure of raindrop size, as 

the oblateness of raindrops increases with increasing size. Negative 𝑍𝐷𝑅 can also be 

observed, e.g., in the presence of vertically oriented ice needles in a strong electric 

field or conical graupel, and also due to resonance effects (e.g., Kumjian, 2013a). 

Thus, 𝑍𝐷𝑅 also depends on the average orientation of probed particles. It also depends 

on the particle’s dielectric constant, thus it will be smaller for an ice hydrometeor of 

the same shape as a liquid hydrometeor, but unlike 𝑍𝐻/𝑉, 𝑍𝐷𝑅 does not depend on the 

hydrometeor number concentration or on absolute miscalibration of the radar 

transmitter or receiver (Kumjian, 2013a). However, 𝑍𝐷𝑅 can be negatively affected 

by biases introduced in the radar hardware, biases due to anisotropic beam blockage, 

noise bias, partial beam blockage, non-uniform beam filling, resonance scattering, 

depolarization, and differential attenuation (Kumjian, 2013a). 

The co-polar cross-correlation coefficient 𝜌𝐻𝑉 is another polarimetric radar 

moment that can be used to characterize the synchrony of backscattered signals in 

horizontal and vertical polarizations, and is thus a measure of the diversity of 

hydrometeor types, shapes, and orientations in a radar resolution volume (e.g., 

Kumjian, 2013a; Ryzhkov and Zrnic, 2019). It was introduced by Sachidananda and 

Zrnic (1985) and Jameson and Mueller (1985) and combines the three second-order 

moments 〈|𝑠𝐻𝐻|
2〉, 〈|𝑠𝑉𝑉|

2〉, and 〈𝑠𝐻𝐻
∗ 𝑠𝑉𝑉〉 in Eqs. (2.7), (2.8), and (2.10) to 
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 𝜌𝐻𝑉 =
〈𝑠𝐻𝐻
∗ 𝑠𝑉𝑉〉

(〈|𝑠𝐻𝐻|2〉〈|𝑠𝑉𝑉|2〉)1 2⁄  (2.31) 

(e.g., Ryzhkov and Zrnic, 2019). The variable 𝜌𝐻𝑉 will be equal to one if the Rayleigh 

scatterers in a radar volume differ only in size, and the shapes, orientations, and types 

of hydrometeors are uniform. As this uniformity decreases, i.e., as the diversity of 

types, shapes, and orientations increases, 𝜌𝐻𝑉 will decrease. Moreover, 𝜌𝐻𝑉 is 

strongly reduced in the presence of non-Rayleigh  and non-meteorological scatterers. 

Thus, 𝜌𝐻𝑉 can be used to identify and filter out non-meteorological echoes and is 

therefore a valuable tool for data quality assurance. Furthermore, 𝜌𝐻𝑉 is immune to 

(differential) attenuation effects, partial beam blockage, depolarization, and radar 

miscalibration, and does not depend on the number concentration of hydrometeors, 

but it can be affected by non-uniform beam filling and noise bias (Kumjian, 2013a). 

In addition to the polarimetric radar moments based on the second-order moments 

of the backscattered signal (i.e., 𝑍𝐻/𝑉, 𝑍𝐷𝑅, and 𝜌𝐻𝑉), information about 

hydrometeors in a radar resolution volume is also provided by phase differences of 

the received signals in the horizontal and vertical polarization channels. The total 

differential phase 𝛷𝐷𝑃 is defined by  

 𝛷𝐷𝑃 = 𝛿 + 𝜑𝐷𝑃 = 𝛿 + 2∫ 𝐾𝐷𝑃(𝑙)𝑑𝑙
𝑟

0
 (2.32) 

with 𝛿 = arg(〈𝑠𝐻𝐻
∗ 𝑠𝑉𝑉〉) the backscatter differential phase and 𝜑𝐷𝑃 the propagation 

differential phase (e.g., Trömel et al., 2014; Ryzhkov and Zrnic, 2019). In real 

applications, a third contribution 𝜑𝐷𝑃
𝑠𝑦𝑠

 must be considered to account for the phase 

offset caused by the radar system. According to Eq. (2.32), 𝜑𝐷𝑃 is twice the range 

integral from the radar (𝑙 = 0) to the measurement location (𝑙 = 𝑟) of the specific 

differential phase 𝐾𝐷𝑃 defined by the real parts of the effective propagation constants 

𝐾𝐻 and 𝐾𝑉 in Eqs. (2.25) and (2.26) as 

 𝐾𝐷𝑃 = Re(𝐾𝐻 − 𝐾𝑉) = 𝜆Re(〈𝑠𝐻𝐻
(0)〉 − 〈𝑠𝑉𝑉

(0)〉) (2.33) 

and can be written as 

 𝐾𝐷𝑃 = 
180𝜆

𝜋
(𝑀1 −𝑀2)〈𝑠𝑏

(0) − 𝑠𝑎
(0)〉 ∗ 10−3  (2.34) 

and is given in deg km-1. Equation (2.34) was derived assuming a 2D axisymmetric 

Gaussian distribution of hydrometeor canting angles (Ryzhkov and Zrnic, 2019) and 

𝑠𝑎,𝑏
(0)

 are the forward scattering amplitudes along the axes a and b of a spheroid. 

However, the forward scattering of electromagnetic waves is not measurable with a 

usual polarimetric monostatic (i.e., the same radar transmits and receives the signals) 
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weather radar. Another way to determine 𝐾𝐷𝑃 is to express it as half the range-

derivative of the measurable total differential phase 𝛷𝐷𝑃  

 𝐾𝐷𝑃 =
1

2

𝑑𝛷𝐷𝑃

𝑑𝑟
 (2.35) 

(e.g., Bringi and Chandrasekar, 2001). Note that Eq. (2.35) is only applicable if the 

backscatter differential phase 𝛿 can be neglected such that 𝛷𝐷𝑃 ≈ 𝜑𝐷𝑃. 𝐾𝐷𝑃 shows 

values close to zero for spherical or randomly oriented particles and increases for 

Rayleigh scatterers with increasing oblateness of hydrometeors similar to 𝑍𝐷𝑅, thus 

𝐾𝐷𝑃 is affected by variability in the particle size distribution (Kumjian, 2013a), but 

to a lesser extend (in rain 𝐾𝐷𝑃~𝐷
4.24; Sachidananda and Zrnic, 1986) compared to 

𝑍𝐻/𝑉 (recall 𝑍𝐻/𝑉~𝐷
6; Ryzhkov and Zrnic, 2019). In addition, 𝐾𝐷𝑃 is proportional to 

the hydrometeor number concentration, increases with the density of the particles, 

and increases with increasing LWC, while being relatively immune to dry tumbling 

hail, making it particularly useful for estimating LWC in rain-hail mixtures (e.g., 

Balakrishnan and Zrnic, 1990; Giangrande and Ryzhkov, 2008). As a phase-based 

quantity, 𝐾𝐷𝑃 is also unaffected by attenuation, partial beam blockage, and radar 

miscalibration, and is not affected by noise bias (Kumjian, 2013a). However, proper 

estimation of 𝐾𝐷𝑃 can be challenging in light rain due to noise in the underlying total 

differential phase 𝛷𝐷𝑃 and in the presence of non-Rayleigh scatterers or non-uniform 

beam filling (Ryzhkov and Zrnic, 1998; Gosset, 2004; Kumjian, 2013a). Like in dry 

tumbling hail, the intrinsic 𝐾𝐷𝑃 in large dry snow aggregates is close to zero and 𝐾𝐷𝑃 

estimates can be very noisy (Kumjian, 2013a), but 𝐾𝐷𝑃 can be enhanced in the 

presence of pristine ice crystals with values > 0.5 deg km-1 (e.g., Kennedy and 

Rutledge, 2011) and strongly enhanced in melting snow or hail (Kumjian, 2013a). 

As an electromagnetic wave emitted by a weather radar travels through the 

atmosphere filled with hydrometeors, it loses amplitude due to absorption and 

scattering of the transmitted energy by atmospheric gases and hydrometeors. The 

specific attenuation at horizontal polarization 𝐴𝐻 (given in dB km-1) quantifies this 

loss of energy in the horizontal polarization channel and is defined by  

 𝐴𝐻 = −8.686𝜆 ∗ Im(〈𝑠𝐻𝐻
(0)〉) (2.36) 

with Im(𝑐) the imaginary part of a complex number 𝑐 (likewise, the specific 

attenuation in the vertical channel 𝐴𝑉 can be defined; Ryzhkov and Zrnic, 2019). 

Analogue to Eq. (2.34), Eq. (2.36) can be written as  

 𝐴𝐻 = −8.686𝜆 ∗ {Im(〈𝑠𝑏
(0)〉) − 𝑀2Im(〈𝑠𝑏

(0) − 𝑠𝑎
(0)〉)} (2.37) 

(Ryzhkov and Zrnic, 2019). 𝐴𝐻 depends on the physical composition of 

hydrometeors (e.g., size and dielectric constant) in a radar resolution volume, the 
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temperature, and is inversely related to the radar wavelength, so that radar 

measurements at shorter wavelengths (e.g., X- or C-band) are subject to larger 

attenuation compared to longer wavelengths (e.g., S-band; Kumjian, 2013b). In 

addition, 𝐴𝐻 also depends on the particle size distribution, but is a lower-order 

moment of the size distribution in rain (𝐴𝐻~𝐷
3+𝜂 with 𝜂 between 0.5 and 0.8; 

Ryzhkov and Zrnic, 2019) compared to 𝑍𝐻/𝑉 and also 𝐾𝐷𝑃, which has made it 

particularly interesting for QPE in the past years (Ryzhkov et al., 2014; Diederich et 

al., 2015). Like 𝐾𝐷𝑃, 𝐴𝐻 cannot be calculated in practice from Eq. (2.37), because 

forward scattering from hydrometeors cannot be measured by monostatic weather 

radars. However, a relationship between 𝐾𝐷𝑃 and 𝐴𝐻 is obtained by considering the 

linear attenuation correction proposed by Bringi et al. (1990) 

 ∆𝑍𝐻 = 𝛼𝛷𝐷𝑃 = 2𝛼 ∫ 𝐾𝐷𝑃(𝑙)𝑑𝑙
𝑟

0
 (2.38) 

with ∆𝑍𝐻 the reduction in horizontal reflectivity by attenuation, 𝛼 the attenuation 

parameter in dB deg-1, and assuming the two-way path-integrated attenuation PIA 

 PIA = 2∫ 𝐴𝐻(𝑙)𝑑𝑙
𝑟

0
 (2.39) 

given in dB to be equal to ∆𝑍𝐻 and the parameter 𝛼 to be constant, which is 

 𝐴𝐻 = 𝛼𝐾𝐷𝑃. (2.40) 

The attenuation parameter 𝛼 is sensitive to temperature and variations in the drop size 

distribution (DSD), and for C-band radars, a climatological value for rain of 

0.08 dB deg-1 is suggested, while for the correction of differential attenuation a 

climatological differential attenuation parameter 𝛽 of 0.02 dB deg-1 is commonly 

used (e.g., Ryzhkov and Zrnic, 2019). 

A more sophisticated approach to estimate 𝐴𝐻 is the ZPHI-method following 

Testud et al. (2000), which estimates 𝐴𝐻 from attenuated (measured) reflectivity 

𝑧𝐻,𝑎𝑡𝑡 using PIA (see Eq. (2.39)) as a constraint by 

  𝐴𝐻(𝑟) =  
[𝑧𝐻,𝑎𝑡𝑡(𝑟)]

𝑏𝑍𝑃𝐻𝐼𝐶(𝑏𝑍𝑃𝐻𝐼,PIA)

𝐼(𝑟1,𝑟2)+𝐶(𝑏𝑍𝑃𝐻𝐼,PIA)𝐼(𝑟,𝑟2)
 (2.41) 

with 

 𝐶(𝑏𝑍𝑃𝐻𝐼 , PIA) = exp[0.23𝑏𝑍𝑃𝐻𝐼PIA(𝑟1, 𝑟2)] − 1, (2.42) 

 𝐼(𝑟1, 𝑟2) = 0.46𝑏𝑍𝑃𝐻𝐼 ∫ [𝑧𝐻,𝑎𝑡𝑡(𝑙)]
𝑏𝑍𝑃𝐻𝐼

𝑑𝑙
𝑟2
𝑟1

, (2.43)  
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FIGURE 2.1: Stereographic projection of the area covered by the German national C-band 

weather radar network operated by DWD with polarimetric radars (indicated by red crosses; 

red circles indicate the approximate 150 km ranges around the radars) in Rostock (ROS), 

Boostedt (BOO), Prötzel (PRO), Hannover (HNR), Ummendorf (UMD), Essen (ESS), 

Flechtdorf (FLD), Dresden (DRS), Neuhaus (NEU), Neuheilenbach (NHB), Offenthal 

(OFT), on Eisberg (EIS), in Türkheim (TUR), Isen (ISN), Memmingen (MEM), and on 

Feldberg (FBG), and non-polarimetric radars (indicated by blue crosses and circles) in 

Emden (EMD) and on the island Borkum (ASB). The ASB radar is used only in case of 

system failure of the EMD radar. Green triangles indicate locations of the DWD/University-

of-Bonn surface-based Thies-disdrometers from which observations are used for the 

development and evaluation of LWC estimators in Chapter 3. 
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and 

 𝐼(𝑟, 𝑟2) = 0.46𝑏𝑍𝑃𝐻𝐼 ∫ [𝑧𝐻,𝑎𝑡𝑡(𝑙)]
𝑏𝑍𝑃𝐻𝐼

𝑑𝑙
𝑟2
𝑟

. (2.44) 

In Eqs. (2.41) through (2.44), 𝑏𝑍𝑃𝐻𝐼 is the exponent of an empirical power-law 

relation between unattenuated reflectivity 𝑧𝐻 and specific attenuation 𝐴𝐻 (Ryzhkov 

et al., 2013) and 𝑟1 and 𝑟2 are the lower and upper limits of the range window between 

which 𝐴𝐻 at the range 𝑟 is to be calculated (Testud et al., 2000; Ryzhkov et al., 2013).  

2.1.3 The German National C-Band Radar Network 

DWD operates a network of 18 C-band (approximate wavelength of 53 mm) Doppler 

weather surveillance radars covering the whole of Germany (Fig. 2.1). Sixteen of 

these radars have polarimetric capabilities (red radars in Fig. 2.1) and measure in 

SHV-mode. The remaining two radars are non-polarimetric radars (blue radars in 

Fig. 2.1) of which the radar on the island of Borkum (ASB radar in Fig. 2.1) is only 

used for system failure of the radar in Emden (EMD). The radar moments provided 

by the polarimetric radars include 𝑍𝐻 and 𝑍𝑉, 𝑍𝐷𝑅, 𝜌𝐻𝑉, 𝛷𝐷𝑃, and 𝑉𝑟, while the two 

non-polarimetric radars only provide 𝑍𝐻 and 𝑉𝑟. All radars follow a scan schedule 

that is repeated every 5 min and starts with a so-called “precipitation-scan” at low 

and terrain-following radar elevation angles with an azimuthal resolution of 1 deg 

and a range resolution of 0.25 km with a maximum slant range of about 150 km. The 

precipitation-scan is followed by so-called “volume-scans” consisting of the plan 

position indicators (PPI) monitored at the 10 elevation angles 0.5, 1.5, 2.5, 3.5, 4.5, 

5.5, 8.0, 12.0, 17.0, and 25.0 deg. The volume-scan PPIs have an azimuthal resolution 

of also 1 deg like the precipitation-scan PPIs and a range resolution of only 1 km. In 

March 2021, the radial resolution was increased to 0.25 km at DWD. The maximum 

slant range is 180 km for radar elevation angles from 0.5 to 5.5 deg, 124 km for 

8.0 deg, and 60 km for the higher elevation angles. The scan routine is completed 

with a vertical scan, which is used for radar calibration. A more detailed description 

of the scanning routine at DWD can be found in Helmert et al. (2014).  

2.2 Existing Microphysical Retrievals for C-Band Radars 

This section reviews the existing LWC and IWC estimators for C-band radars 

proposed in the literature potentially usable for polarimetric DA in Germany. 

2.2.1 Liquid Water Content 

One of the first LWC retrievals (hereafter, LWC is always in units of g m-3) based on 

horizontal reflectivity 𝑍𝐻 was proposed by Greene and Clark (1972) as 
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 LWC(𝑧𝐻) = 3.44 ∗ 10
−3 ∗ 𝑧𝐻

0.57   (2.45) 

with 𝑧𝐻 the linear horizontal reflectivity given in mm6 m-3. Equation (2.45) was 

developed based on theoretical considerations with the assumption of rain DSDs 

following the well-known Marshall-Palmer distribution (Marshall and Palmer, 1948) 

and has been used to estimate the horizontal distribution of the liquid water path – 

the vertically integrated LWC – of mesoscale convective systems, and is still a 

commonly used tool to quantify storm intensity and the potential of storms to produce 

hail (Ryzhkov and Zrnic, 2019).  

More recently, Carlin et al. (2016) introduced the empirical relation 

 LWC(𝑧𝐻) = 1.59 ∗ 10
−3 ∗ 𝑧𝐻

0.657 (2.46) 

developed based on a large disdrometer data set (about 47,000 unique DSDs) from 

Oklahoma, including stratiform and convective rainfall data, and warm-rain T-matrix 

scattering calculations at a C-band radar wavelength (53 mm). A very similar 

estimator, also based on a large disdrometer data set from Oklahoma and scattering 

calculations at C-band, was later proposed in the book of Ryzhkov and Zrnic (2019) 

and is given by 

 LWC(𝑧𝐻) = 1.58 ∗ 10
−3 ∗ 𝑧𝐻

0.659. (2.47) 

Carlin et al. (2016) also proposed LWC(𝑍𝐻) estimators adapted to precipitation 

type using the normalized number concentration of raindrops 𝑁𝑤 (given in m-3 mm-1) 

 𝑁𝑤 =

44

𝜋𝜌𝑤
∗LWC

𝐷𝑚
4  (2.48) 

with 𝜌𝑤 the density of water, 𝐷𝑚 the mean volume diameter of raindrops defined as 

the ratio between the third and the fourth DSD moments given in mm (Testud et al. 

2001). 𝑁𝑤 can be interpreted as the y-axis intercept of an exponential DSD with the 

same 𝐷𝑚 and LWC values like the real DSD (Carlin et al., 2016). The proposed 

parameterized relation for C-band is 

 LWC(𝑧𝐻, 𝑁𝑤) = 1.51 ∗ 10
−4 ∗ 𝑧𝐻

0.572𝑁𝑤
0.363. (2.49) 

Another approach undertaken by Carlin et al. (2016) to improve their LWC(𝑍𝐻) 

relation by parameterizing it with additional information about precipitation is the 

empirical bivariate power-law relation 
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 LWC(𝑧𝐻, 𝑧𝐷𝑅) = 1.29 ∗ 10
−3 ∗ 𝑧𝐻

0.701𝑧𝐷𝑅
−0.790 (2.50) 

with 𝑧𝐷𝑅 linear and unitless. Also Bringi and Chandrasekar (2001) proposed a 

LWC(𝑧𝐻, 𝑧𝐷𝑅) relation based on physical considerations and scattering calculations 

for C-band radars given by 

 LWC(𝑧𝐻, 𝑧𝐷𝑅) = 0.6 ∗ 10
−3 ∗ 𝑧𝐻

0.85𝑧𝐷𝑅
−2.36. (2.51) 

The specific attenuation at horizontal polarization 𝐴𝐻 has been identified to be 

strongly beneficial for QPE (Ryzhkov et al., 2014; Diederich et al., 2015) and may 

thus also favor the estimation of LWC. A univariate LWC(𝐴𝐻) relation was proposed 

by Carlin et al. (2016) and is given by 

 LWC(𝐴𝐻) = 11.0𝐴𝐻
0.777 (2.52) 

with 𝐴𝐻 in dB deg-1. The corresponding LWC(𝐴𝐻) relation proposed by Ryzhkov and 

Zrnic (2019) is again very similar to the one introduced by Carlin et al. (2016) in 

Eq. (2.52) and is given by 

 LWC(𝐴𝐻) = 11.6𝐴𝐻
0.794. (2.53) 

Univariate LWC retrievals based on specific differential phase 𝐾𝐷𝑃 have also been 

proposed in the literature. Carlin et al. (2016) suggested the relation 

 LWC(𝐾𝐷𝑃) = 1.27𝐾𝐷𝑃
0.714 (2.54) 

with 𝐾𝐷𝑃 given in deg km-1. Again, a very similar estimator was presented by 

Ryzhkov and Zrnic (2019) given by 

 LWC(𝐾𝐷𝑃) = 1.28𝐾𝐷𝑃
0.713. (2.55) 

In the books of Bringi and Chandrasekar (2001) and Doviak and Zrnic (2006), power-

law LWC(𝐾𝐷𝑃) relations developed based on physical considerations and scattering 

calculations were proposed. They can be written in a generalized form following 

Ryzhkov and Zrnic (2019) as 

 LWC(𝐾𝐷𝑃) = 𝑐1(𝐾𝐷𝑃𝜆 ∗ 10)
𝑐2 (2.56) 

with 𝑐1 = 0.26 and 𝑐2 = 0.77 in Bringi and Chandrasekar (2001) and 𝑐1 = 0.34 and 

𝑐2 = 0.702 in Doviak and Zrnic (2006), and 𝜆 the radar wavelength in mm. 
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In addition, a bivariate power-law LWC estimator combining 𝐾𝐷𝑃 and 𝑍𝐷𝑅 has 

been proposed by Bringi and Chandrasekar (2001) for C-band as 

 LWC(𝐾𝐷𝑃, 𝑧𝐷𝑅) = 2.32𝐾𝐷𝑃
0.83𝑧𝐷𝑅

−1.11. (2.57) 

2.2.2 Ice Water Content 

A number of studies in the literature proposed power-law IWC(𝑍𝐻) relations (e.g., 

Sekhon and Srivastava, 1970; Sassen, 1987; Atlas et al., 1995; Liu and Illingworth, 

2000; Hogan et al., 2006; Delanoe et al., 2014; Heymsfield et al., 2016). The inherent 

uncertainty in these proposed reflectivity-based IWC estimators is primarily due to 

the variability in the ice/snow particle size distribution, but also, to a lesser extent, 

due to the variability in the density of frozen hydrometeors (Ryzhkov and Zrnic, 

2019). Under the assumption of an exponential particle size distribution and a power-

law relationship between particle density and particle diameter, Ryzhkov and Zrnic 

(2019) derived the analytical expression 

 IWC(𝑧𝐻, 𝑁0𝑠, 𝜅) = 3.81 ∗ 10
−4𝜅−0.2𝑁0𝑠

0.4𝑧𝐻
0.6 (2.58) 

with 𝑁0𝑠 the y-axis intercept of an exponential particle size distribution and 𝜅 a factor 

related to the degree of riming. Ryzhkov and Zrnic (2019) further stated that the 

considerable differences between the IWC(𝑍𝐻) relations proposed in the literature 

can be explained by the large variability in the observable 𝑁0𝑠, which has been shown 

to vary by four orders of magnitude for snow in Oklahoma (Bukovcic et al., 2018).  

Also some IWC retrievals using phase-based polarimetric variables have been 

proposed in the literature. A first relation between IWC and 𝐾𝐷𝑃 was proposed by 

Vivekanandan et al. (1994), who used 𝐾𝐷𝑃 and 𝑍𝐷𝑅 to estimate IWC in ice clouds 

consisting of pristine ice crystals. Later, Ryzhkov et al. (1998) proposed another 

relation using 𝐾𝐷𝑃 and 𝑍𝐷𝑅 based on physical considerations applicable to pristine or 

lightly to moderately aggregated ice crystals, which is given by 

 IWC(𝐾𝐷𝑃, 𝑧𝐷𝑅) = 4.46 ∗ 10
−3 𝐾𝐷𝑃𝜆

1−𝑧𝐷𝑅
−1. (2.59) 

The estimator in Eq. (2.59) is largely insensitive to the ice particle shape and 

orientation, because the nominator and denominator are proportionally affected by 

both (Ryzhkov and Zrnic, 2019). However, Eq. (2.59) is sensitive to the particle 

density and thus to the degree of riming, and is negatively affected by errors due to 

𝑍𝐷𝑅 bias, especially in areas of low 𝑍𝐷𝑅, such as in aggregated snow (Carlin et al., 

2021). Equation (2.59) was used with a slightly modified prefactor in Carlin et al. 

(2021) as 
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 IWC(𝐾𝐷𝑃, 𝑧𝐷𝑅) = 4.0 ∗ 10
−3 𝐾𝐷𝑃𝜆

1−𝑧𝐷𝑅
−1  (2.60) 

in combination with the IWC(𝐾𝐷𝑃, 𝑧𝐻) relation of Bukovcic et al. (2018, 2020)  

 IWC(𝐾𝐷𝑃, 𝑧𝐻) = 3.3 ∗ 10
−2(𝐾𝐷𝑃𝜆)

0.67𝑧𝐻
0.33. (2.61) 

Carlin et al. (2021) notes that the estimator in Eq. (2.61) is immune to 𝑍𝐷𝑅 

miscalibration and affected by particle orientations, shapes, and densities. They 

combined Eqs. (2.60) and (2.61) considering their respective advantages and 

disadvantages: Eq. (2.61) is used when 𝑍𝐷𝑅 < 0.4 dB and Eq. (2.60) is used when 

𝑍𝐷𝑅 ≥ 0.4 dB. The high accuracy of this hybrid estimator (Pearson correlation 

coefficient PCC of 0.96 and root mean square deviation RMSD of 0.19 g m-3) was 

demonstrated by Blanke et al. (2023) in an evaluation study with airplane in-situ 

observations on the west coast of the USA. Both parts of the hybrid IWC estimator in 

Eqs. (2.60) and (2.61), however, have been adjusted for snowfall – their derivations 

are based on an inversely proportional relationship between particle density and 

diameter, which usually does not hold for hail and graupel. Therefore, its applicability 

to hail and graupel, which is likely present in intense convective summer precipitation 

in Germany, may be limited.
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Chapter 3 

A Hybrid Liquid Water Content 

Retrieval for C-Band Radars 

Most of the polarimetric LWC and IWC retrievals for C-band radars proposed in the 

literature (see a review in Section 2.2) were developed for utilization in the USA with 

its different precipitation climatology compared to Germany. Thus, their suitability 

for the indirect assimilation of polarimetric radar observations in Germany may be 

limited. In Section 3.2, the applicability of the existing LWC retrievals to German 

C-band radar network in rain is evaluated using a large pure-rain disdrometer data set 

from Germany and T-matrix scattering calculations at C-band (the data used and their 

processing are detailed in Section 3.1). Based on different (sets of) T-matrix 

simulated polarimetric radar variables, new LWC relations are developed and 

subsequently combined in a hybrid way taking into account the respective advantages 

and disadvantages of the different used polarimetric variables known for different 

precipitation characteristics. In Section 3.3, the new (hybrid) LWC relations and the 

existing LWC retrievals for C-band radars are evaluated with observations from the 

German C-band radar network. The approaches and results presented in this chapter 

follow those published in Reimann et al. (2021) and any deviations in this thesis are 

shown and discussed.  

A comparable evaluation of the existing IWC relations from the literature (also 

reviewed in Section 2.2) and the development of new IWC algorithms adapted to 

Germany are not performed. One reason is that measurements in the ice phase by the 

DWD disdrometers are too limited due to the rather rare occurrence of snow on the 

ground in Germany. Another reason is the limitation of the widely used instruments 

to accurately measure particle size distributions in snow and ice (e.g., Battaglia et al., 

2010). More suitable instruments, such as the 2DVD-disdrometers or the Multi-Angle 

Snowflake Camera (e.g., Praz et al., 2017), are not yet widely used by DWD.  

3.1 Data Sets and Processing 

First, the German disdrometer data and their processing, including T-matrix 

scattering calculations at C-band (53 mm), used to develop and evaluate new and 

existing LWC relations based on simulations are detailed. In a second step, the 

polarimetric observations from the German C-band radar network used for the 
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evaluation of the new and existing LWC retrievals in a real-world application 

including their processing are presented. 

3.1.1 Disdrometer Observations  

For the evaluation and development of LWC retrievals in this thesis, a large DSD data 

set obtained from 89 surface-based Thies-disdrometers (see respective locations as 

green triangles in Fig. 2.1), 88 from the DWD observation network and one further 

from the University of Bonn, from the years 2015 to 2019 is used. The provided data 

include measurements of the diameters and fall velocities of individual particles 

averaged over 1 min and are structured in 22 diameter classes from 0.125 to 8.0 mm 

and 20 velocity classes from zero to 11 m s-1 in 2D matrices 𝑴𝐷𝑆𝐷 (the sum of 𝑴𝐷𝑆𝐷 

over all times and stations is shown in Fig. 3.1). The equivalent-volume spherical 

diameter 𝐷 (in mm) and the terminal fall velocity 𝑣𝑡 (in m s-1) of raindrops are related 

according to Brandes et al. (2002) by the polynomial function 

 𝑣𝑡(𝐷) = −0.1021 + 4.932𝐷 − 0.9551𝐷
2 + 0.07934𝐷3 − 0.002362𝐷4. 

  (3.1) 

Individual particles with measured fall velocities less than 50 % or greater than 150 % 

of the corresponding value expected from the relation in Eq. (3.1) (black solid and 

dotted curves in Fig. 3.1) and all 2D matrices 𝑴𝐷𝑆𝐷 corresponding to a non-zero 

intensity of solid precipitation as identified by the Thies-disdrometer software are 

excluded from the data set to avoid contamination by, e.g., frozen particles or insects. 

Frozen particles are further excluded by removing all data corresponding to an 

outside temperature measured by the Thies-disdrometers below the freezing level. 

Data contaminated by, e.g., insects in situations without significant rainfall (less than 

10 particles in total) are further excluded, leaving approximately 818,000 individual 

2D DSD matrices 𝑴𝐷𝑆𝐷 for analysis. 

Raindrop size distributions 𝑁(𝐷) given in m-3 mm-1 are determined by sums of 

𝑴𝐷𝑆𝐷 over all velocity classes 𝑴𝐷𝑆𝐷,𝑑 via 

 𝑁(𝐷) = 𝑴𝐷𝑆𝐷,𝑑(𝐷) ∗ (𝐴𝑇ℎ𝑖𝑒𝑠 ∗ 𝛥𝜏𝐷𝑆𝐷 ∗ 𝑣𝑡(𝐷) ∗ DCW(𝐷))
−1 (3.2) 

with 𝐴𝑇ℎ𝑖𝑒𝑠 the detection area of the Thies-disdrometers in m2, 𝛥𝜏𝐷𝑆𝐷 the considered 

time interval (given in s), 𝑣𝑡 the terminal fall velocity of raindrops in m s-1 following 

Brandes et al. (2002) in Eq. (3.1), and DCW the widths of the diameter classes of the 

disdrometers in mm. LWC can be calculated with the third moment of the DSDs by  

 LWC = 10−9
𝜌𝑤𝜋

6
∫ 𝐷3𝑁(𝐷)𝑑𝐷
∞

0
 (3.3) 
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with 𝜌𝑤 the density of liquid water in g m-3 (e.g., Carlin et al., 2016). Furthermore, 

the T-matrix algorithms1 of Leinonen (2014) are used to simulate synthetic 

polarimetric radar variables for each DSD at C-band (53 mm). The simulations are 

based on a maximum raindrop diameter of 8 mm, a Gaussian-shaped raindrop canting 

angle distribution with a width of 10 deg and a mean of 0 deg, the axis-ratio relation 

according to Brandes et al. (2002), and a complex refractive index calculated as a 

function of the exterior temperature measured by the Thies-disdrometers. The 

simulated polarimetric radar moments are 𝑍𝐻, 𝑍𝐷𝑅, 𝐾𝐷𝑃, and 𝐴𝐻. 

3.1.2 Polarimetric Observations 

The polarimetric data from the C-band radar network of DWD used in this chapter 

for the evaluation of existing and new LWC retrieval algorithms in a real-world 

application include observations of 𝑍𝐻, 𝑍𝐷𝑅, 𝜌𝐻𝑉, and 𝛷𝐷𝑃. The data are from the 10 

FIGURE 3.1: Total counts of 1 min average particle numbers observed in different Thies-

disdrometer particle diameter (in mm) and particle fall velocity (in m s-1) classes in the raw 

large surface-based Thies-disdrometer data set obtained from DWD surface stations and the 

University of Bonn (locations of used disdrometers as green triangles in Fig. 2.1). The black 

solid curve shows the relationship between raindrop diameter and terminal fall velocity 

proposed by Brandes et al. (2002) in Eq. (3.1) and the upper and lower dotted black curves 

show 150 % and 50 % of this expected relationship, respectively. 

1 Used open source T-matrix algorithms for Python by Leinonen (2014) available under   

   https://github.com/jleinonen/pytmatrix (last accessed 25 May 2019). 
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polarimetric radars in Boostedt (BOO), Rostock (ROS), Essen (ESS), Ummendorf 

(UMD), Flechtdorf (FLD), Neuheilenbach (NHB), Offenthal (OFT), Memmingen 

(MEM), Isen (ISN), and on Eisberg (EIS; see red stations in Fig. 2.1). PPIs at only 

the two lowest radar elevation angles of 0.5 and 1.5 deg of the volume-scans 

performed at DWD are used, because data below the melting layer at higher 

elevations are mostly too limited. The focus is on nine summer precipitation events 

to ensure a sufficiently high melting layer and thus a sufficient amount of data usable 

for evaluation. The first four events considered on 20 June 2016, and 24, 25, and 26 

July 2017 were dominated by stratiform precipitation. Another five events considered 

on 19 July 2017, 28 July 2018, 9 August 2018, 20 July 2019, and 29 August 2019 

were dominated by convective rainfall. The data have a temporal, radial, and 

azimuthal resolution of 5 min, 1 km, and 1 deg, respectively, with maximum slant 

ranges of about 180 km (see Section 2.1.3).  

The data are restricted to pure rain below the melting layer, the height of which is 

determined by Quasi-Vertical Profiles (QVP), i.e., azimuthal medians of PPIs at 

sufficiently high elevation angles transferred to a time-height display (e.g., Trömel et 

al., 2014; Ryzhkov et al., 2016), of 𝜌𝐻𝑉 and 𝑍𝐷𝑅, as performed here at a radar 

elevation angle of 5.5 deg, or by means of the height of the freezing level (the height 

of the 273.15 K isotherm) measured by the closest operational radio sounding of 

DWD. The latter approach is used when it is difficult to determine the height of the 

melting layer using QVPs, such as in convective situations with strong vertical 

mixing and thus no clear bright band. The use of measurements from the DWD lidar 

ceilometer network may have the potential to improve the detection of the melting 

layer height (e.g., Sassen and Chen, 1995), but this approach is not followed in this 

study due to limited data access. Kumjian (2013a) notes that pure rain can be 

associated with 𝜌𝐻𝑉 values between 0.95 and 1.01 at S-band. The lower value of 0.95 

is used here as quality threshold for the radar data below the melting layer by 

assuming its validity also at C-band. Unlike in Reimann et al. (2021), a noise 

correction of 𝜌𝐻𝑉 following Ryzhkov and Zrnic (2019) is performed before 

application of the 𝜌𝐻𝑉 threshold. This approach retains more data for evaluation, 

especially at greater distances from the radar station and at the boundaries of 

precipitation systems (not shown). The slight differences in the results due to this 

modification compared to Reimann et al. (2021) are highlighted and discussed. 

Furthermore, as in Reimann et al. (2021), data from ranges below 5 km are excluded 

from the analysis to reduce contamination by ground clutter. 

The horizontal specific attenuation 𝐴𝐻 is estimated by using the filtered and 

smoothed total differential phase 𝛷𝐷𝑃 below the melting layer and the measured 

(attenuated) horizontal reflectivity 𝑧𝑎𝑡𝑡 using the ZPHI-method (see Eqs. (2.41) to 

(2.44); Testud et al., 2000). Different from Reimann et al. (2021), the used total 

increment in 𝛷𝐷𝑃 along a ray below the melting layer 𝛥𝛷𝐷𝑃 is determined by 

subtracting the mean of the last five values of 𝛷𝐷𝑃 from the mean of the first five 

values of 𝛷𝐷𝑃 instead of using only single values. This modification reduces noise in 

the 𝛥𝛷𝐷𝑃 estimate and consequently in the 𝐴𝐻 estimates, especially in weaker 
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precipitation. The attenuation parameter 𝛼 (the ratio between 𝐴 and 𝐾𝐷𝑃 given in 

dB deg-1, see Eq. (2.40)) is optimized for each radar ray below the melting layer using 

the self-consistency method of Bringi et al. (2001): for a ray with 𝛥𝛷𝐷𝑃 > 20 deg, the 

𝛼 value is used that minimizes the difference between 𝛷𝐷𝑃 and the recalculated total 

differential phase obtained with the ZPHI-method; if no optimal 𝛼 value is found in 

a certain range of allowed values (here 0.02 to 0.14 dB deg-1) or if 𝛥𝛷𝐷𝑃 ≤ 20 deg, 

the climatological value for 𝛼 of 0.08 dB deg-1 (Ryzhkov and Zrnic, 2019) is used. 

Proper estimation of the optimal 𝛼 value can be challenging with the coarse radial 

resolution of the radar data used (1 km; recall that the used data is from before March 

2021 when DWD increased the radial volume scan resolution from 1 to 0.25 km, see 

FIGURE 3.2: 2D histogram of pairs of T-matrix calculated 𝑍𝐻 and log(LWC) computed using 

Eq. (3.3) based on the large, filtered disdrometer data set of 1 min average pure-rain DSDs 

(about 818,000). White dots represent pairs of log(LWC)-interval centers (0.1-intervals from  

-2.0 to 0.6) and corresponding interval-median 𝑧𝐻 values used to determine weighted fits to 

the data following the technique of Carlin et al. (2016) and Ryzhkov and Zrnic (2019). The 

black dotted and solid curves are weighted linear and quadratic fits to the data (Eqs. (3.6) and 

(3.7)), the blue curve depicts the LWC(𝑍𝐻) relation of Greene and Clark (1972; Eq. (2.45); 

“G&C1972”), and the orange and red curves show the relations of Carlin et al. (2016; 

Eq. (2.46); “C2016”) and Ryzhkov and Zrnic (2019; Eq. (2.47); “R&Z2019”). The red curve 

mostly covers the orange curve due to similar relationships. 
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Section 2.1.3) combined with the limited data available below the melting layer. The 

optimization of 𝛼 may also be favored by determining 𝛥𝛷𝐷𝑃 from averages over five 

values instead of using only single values, as described above.  

The specific differential phase 𝐾𝐷𝑃 is estimated from 𝛷𝐷𝑃 following the method 

of Vulpiani et al. (2012) with a fixed window size of 9 km. This rather large value is 

required to obtained relatively stable 𝐾𝐷𝑃 estimates and to keep noise rather low due 

to the coarse 1 km radial resolution of the analyzed PPIs. In regions of non-

monotonically increasing 𝛷𝐷𝑃, especially in weak rain, the few values contributing 

to the 𝐾𝐷𝑃 estimation with a 9 km window and the 1 km radial resolution (nine 

values) can lead to negative 𝐾𝐷𝑃 estimates. Using even larger window sizes to 

incorporate more radar pixels would average out local features in the precipitation 

fields too much, especially in convective cores. Later in this chapter, different 

approaches are tested to avoid the problems arising from negative 𝐾𝐷𝑃 values. 

Measured 𝑍𝐻 and 𝑍𝐷𝑅 values suffer from (differential) attenuation. Thus, both 

quantities must be corrected for (differential) attenuation before use in the evaluation 

of LWC algorithms. The correction is done following Ryzhkov and Zrnic (2019) by 

 𝑍𝐻 = 𝑍𝐻,𝑎𝑡𝑡 + 𝛼𝛷𝐷𝑃 (3.4) 

and 

 𝑍𝐷𝑅 = 𝑍𝐷𝑅,𝑎𝑡𝑡 + 𝛽𝛷𝐷𝑃 (3.5) 

with 𝑍𝐻,𝑎𝑡𝑡 and 𝑍𝐷𝑅,𝑎𝑡𝑡 the attenuated (measured) values of 𝑍𝐻 and 𝑍𝐷𝑅, 𝛼 the 

climatological or, if available, optimized attenuation parameter, and the 

climatological differential attenuation parameter 𝛽 for C-band of 0.02 dB deg-1. 

3.2 Retrieval Development and Evaluation with Simulations 

In this section, new LWC retrievals adapted to the German C-band radar network are 

developed and both the new and the existing relations for C-band radars (reviewed in 

Section 2.2.1) are evaluated based on the described German DSD data set and the 

T-matrix scattering calculations performed. The bivariate LWC(𝐾𝐷𝑃, 𝑍𝐷𝑅) relation 

proposed by Bringi and Chandrasekar (2001) in Eq. (2.57) is not considered, because 

problems of the estimator in heavy rain due to negative effects of differential 

attenuation on 𝑍𝐷𝑅 and in light rain because of noise in the 𝐾𝐷𝑃 estimates due to low 

signal-to-noise ratios (SNRs) in the underlying 𝛷𝐷𝑃 can be expected.  

The quality of new and existing LWC retrievals is quantified by the root-mean-

square deviation (RMSD), the Pearson correlation coefficient (PCC), and the mean-

bias deviation (MBD) between the LWC calculated from the observed DSDs via 

Eq. (3.3) and the retrieval-estimated LWC using the DSD-based simulated 

polarimetric radar variables. New estimators are derived following the technique of 
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Carlin et al. (2016) and Ryzhkov and Zrnic (2019) of producing weighted least-

squares fits of the logarithm of LWC, log(LWC), against the logarithm of the median 

simulated polarimetric radar variables calculated for 0.1-intervals of log(LWC). The 

intervals range from values of -2.0 (corresponding to 0.01 g m-3) and 0.6 

(corresponding to about 4.0 g m-3) representing the approximate maximum 

log(LWC) in the DSD data. The weighting is done with respect to the number of 

observations in the log(LWC) intervals multiplied with the corresponding squared 

interval-center LWC values. This approach increases the weight also for the highest 

LWC values, which are only little represented in the DSD data set, but are especially 

important for the accuracy of the developed LWC retrievals even in stronger rain.  

The retrieval development is performed after removing the circa 25,000 DSDs 

(about 3.1 % of the total DSD data set) that contribute to the retrieval evaluation with 

real C-band radar observations in Section 3.3 to allow for an independent evaluation. 

In Reimann et al. (2021), only about 21,000 DSDs were removed from the same total 

DSD data set, which is because in this thesis, unlike in Reimann et al. (2021), 𝜌𝐻𝑉 is 

corrected for noise before filtering (see Section 3.1.2), which retains more radar data 

for comparison with the disdrometer observations. Thus, less DSDs are used for the 

development and evaluation of retrieval relations with simulated radar data while 

more DSDs are used for evaluation with real radar observations in Section 3.3 

compared to Reimann et al. (2021).  

The LWC relations proposed in most other studies (e.g., Greene and Clark, 1972; 

Doviak and Zrnic, 2006; Carlin et al., 2016) are rather simple linear functions in the 

logarithmic scale (i.e., power-law relationships in the linear scale) between the 

logarithm of the polarimetric variables and log(LWC). In this thesis, higher-order 

polynomial fits like quadratic, cubic, or quartic functions (in the logarithmic scale) 

are also considered, while those fits with a non-zero y-axis intercept in the linear scale 

are excluded from the analysis.  

3.2.1 ZH-Based Retrievals 

Starting with the development of LWC(𝑍𝐻) retrievals adjusted for use with German 

C-band radars, the linear and quadratic relations (black dotted and solid lines in 

Fig. 3.2) fitted to 𝑍𝐻-log(LWC) pairs in the DSD data set 

 log(LWC(𝑍𝐻)) = 0.050𝑍𝐻 − 2.18 (3.6) 

and 

 log(LWC(𝑍𝐻)) = −0.0005𝑍𝐻
2 + 0.084𝑍𝐻 − 2.77 (3.7) 
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with 𝑍𝐻 as before in dBZ and LWC in g m-3. The comparison of the LWC retrieved 

from the simulated 𝑍𝐻 data via the linear and quadratic fits (Eqs. (3.6) and (3.7)) with 

the LWC calculated from the DSDs using Eq. (3.3) yields RMSDs of 0.12 and 

0.10 g m-3, PCCs of 0.75 and 0.79, and MBDs for both relations of 0.01 g m-3 (see all 

RMSD, PCC, and MBD values as black numbers in Table 3.1). Slight differences 

between some of the quality values and the corresponding values listed in Reimann 

et al. (2021) are due to the smaller number of DSDs for evaluation used in this thesis 

(quality values listed in Reimann et al. (2021) are shown as grey italicized numbers 

in Table 3.1 where they differ from this thesis). Cubic and quartic fits were also tested, 

but showed non-zero y-axis intercepts on the linear scale and were therefore excluded 

from the analysis. In this thesis, a given new LWC retrieval is considered to 

outperform another relation if at least two of the quality measures RMSD, PCC, and 

MBD considered are better. Thus, the quadratic fit in Eq. (3.7) is the preferred relation 

among the polynomial fits tested.  

The existing LWC(𝑍𝐻) retrievals proposed by Greene and Clark (1972; see 

Eq. (2.45); blue curve in Fig. 3.2), Carlin et al. (2016; see Eq. (2.46); orange curve), 

and by Ryzhkov and Zrnic (2019; see Eq. (2.47); red curve) lead to worse RMSDs 

(0.14, 0.19, and 0.20 g m-3), worse PCCs (0.69, 0.60, and 0.60), and similarly low 

MBDs (0.00, -0.01, and -0.01 g m-3; see all quality values for the existing relations as 

black numbers also in Table 3.1) compared to the found quadratic relation adjusted 

to the German DSDs (0.10 g m-3, 0.79, and 0.01 g m-3). Again, there are slight 

changes in the quality values compared to those listed Reimann et al. (2021) due the 

FIGURE 3.3: Probability density distribution of log(𝑁𝑤) values (see Eq. (2.48)) in the large, 

filtered  disdrometer data set of 1 min average pure-rain DSDs (about 818,000) used in this 

thesis for the development and evaluation of LWC estimators (grey bars). The black dotted 

vertical line indicates the position at which the DSD data set is separated for the retrieval 

development based on the different log(𝑁𝑤) regimes corresponding to the primary and 

secondary maxima of the log(𝑁𝑤) distribution.  
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differences in the evaluation data set. However, the new quadratic relation in this 

thesis still clearly outperforms all the existing relations in terms of RMSD and PCC.   

The normalized number concentration 𝑁𝑤 (see Eq. (2.48); Testud et al., 2001) is 

calculated for each DSD and its distribution shows a bimodal structure on the 

logarithmic scale (grey bars in Fig. 3.3). This bimodality can also be seen in the 𝑍𝐻-

log(LWC) histogram (see Fig. 3.2). Most DSDs can be associated with the primary 

maximum of the log(𝑁𝑤) distribution (Fig. 3.3) at a value of about 3.7 –

approximately followed by the tested LWC(𝑍𝐻) estimators (see Fig. 3.2). The 

secondary maximum of the log(𝑁𝑤) distribution at a value of about 5.0 produces the 

secondary peak below 25 dBZ in the 𝑍𝐻-log(LWC) histogram (see Fig. 3.2), which 

can be associated with DSDs dominated by very small raindrops, such as in drizzle 

 

TABLE 3.1: Comparison of the quality of the different tested existing and newly developed 

LWC(𝑍𝐻), LWC(𝑍𝐻 , 𝑍𝐷𝑅), LWC(𝐴𝐻), and LWC(𝐾𝐷𝑃) estimators in terms of RMSD (in 

g m-3), PCC, and MBD (in g m-3). The quality measures are determined from pairs of 

calculated LWC (in g m-3) using Eq. (3.3) and the LWC retrieved from DSD-based T-matrix 

simulated polarimetric variables via the tested retrievals. The evaluated existing retrievals 

are those proposed by Greene and Clark (1972; “G&C1972”), Carlin et al. (2016; “C2016”), 

Bringi and Chandrasekar (2001; “B&C2001”), Ryzhkov and Zrnic (2019; “R&Z2019”), and 

Doviak and Zrnic (2006; “D&Z2006”). The quality values for the respective new fits to the 

DSD data are also shown. The best quality measures for specific retrieval types are printed 

in bold, the best among all tested retrievals are underlined. Grey italicized values indicate the 

corresponding values listed in Reimann et al. (2021) where they differ from this thesis.  
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rain. Therefore, the use of different LWC(𝑍𝐻) estimators adapted to the different 

log(𝑁𝑤) regimes may have the potential to improve the quality of LWC estimation. 

The DSD data corresponding to the primary log(𝑁𝑤) maximum are here roughly 

separated from the DSDs corresponding to the secondary log(𝑁𝑤) maximum at a 

log(𝑁𝑤) value of 4.7 (see black dotted vertical line in Fig. 3.3). Polynomial fits are 

derived for both sub-data sets: the best LWC(𝑍𝐻) estimator for the low log(𝑁𝑤) 

region (primary maximum in Fig. 3.3) is, like for the total DSD data set, a quadratic 

relation given by 

 log(LWC(𝑍𝐻)) = −0.0004𝑍𝐻
2 + 0.084𝑍𝐻 − 2.87, (3.8) 

and for the secondary maximum in Fig. 3.3 a linear relation given by 

 log(LWC(𝑍𝐻)) = 0.050𝑍𝐻 − 1.70. (3.9) 

The similarity of the quadratic relation in Eq. (3.8) to that based on the full DSD data 

set in Eq. (3.7) emphasizes the dominance of the fits to the full data set by the data 

corresponding to the primary log(𝑁𝑤) maximum. The combination of both relations 

(Eqs. (3.8) and (3.9)) gives an RMSD of 0.09 g m-3, an PCC of 0.82, and an MBD of 

0.01 g m-3 (values not shown in Table 3.1), which values are indeed slightly better 

than those of the found quadratic fit to the full data set (Eq. (3.7); 0.10 g m-3, 0.79, 

and 0.01 g m-3).  

Another approach to include information from 𝑁𝑤 in the estimation of LWC is the 

parameterization of LWC(𝑍𝐻) relations with 𝑁𝑤 as suggested by, e.g., Carlin et al. 

(2016) noted in Eq. (2.49). Their parameterized relation yields, applied to the German 

DSD data set, further improved quality values (RMSD of 0.05 g m-3, PCC of 0.94, and 

a zero MBD; values also not shown in Table 3.1). An alternative parameterized 

relation derived from the German DSDs is  

 log(LWC(𝑍𝐻, log(𝑁𝑤))) = 0.056𝑍𝐻 + 0.439log(𝑁𝑤) − 4.09, (3.10) 

which, as expected, yields even better quality values (0.03 g m-3, 0.97, and a zero 

MBD; values also not shown in Table 3.1). However, an application of Eqs. (3.8) 

through (3.10) to observations from the German C-band radar network showed much 

larger errors in the LWC estimation compared to the quadratic fit to the full DSD data 

set in Eq. (3.7) (not shown). One reason may be that proper estimation of 𝑁𝑤 from 

real radar data, e.g., using the “ZZDR” algorithm of Illingworth and Thompson 

(2005) and Tabary et al. (2011) is challenging because it requires intrinsic (non-

attenuated) high-quality values of 𝑍𝐻 and 𝑍𝐷𝑅, which is often difficult at shorter radar 

wavelengths (e.g., C- or X-band). In addition, the low radial resolution of the radar 

data used (1 km) may be a hindrance.  
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3.2.2 ZH-ZDR-Based Retrievals 

A new LWC(𝑍𝐻) retrieval parameterized with the differential reflectivity 𝑍𝐷𝑅 in the 

form of a bivariate linear fit derived from the German DSD data set is 

 log(LWC(𝑍𝐻, 𝑍𝐷𝑅)) = 0.058𝑍𝐻 − 0.118𝑍𝐷𝑅 − 2.36 (3.11) 

with 𝑍𝐷𝑅 as usual in dB. The relation in Eq. (3.11) results in an RMSD of 0.06 g m-3, 

an PCC of 0.88, and an MBD of 0.01 g m-3, and thus in clearly improved RMSDs and 

PCCs compared to the new quadratic LWC(𝑍𝐻) relation (Eq. (3.7); 0.10 g m-3 and 

0.79). Bivariate polynomial fits and relations based on fitting the logarithmic ratio 

between LWC and 𝑍𝐻 as a polynomial function of 𝑍𝐷𝑅 (personal communication 

FIGURE 3.4: As Fig. 3.2, but with DSD-based pairs of T-matrix-calculated log(𝐴𝐻) and 

log(LWC) computed using Eq. (3.3). White dots represent pairs of log(LWC)-interval 

centers (0.1-intervals from -2.0 to 0.6) and corresponding interval-median 𝐴𝐻 used to 

determine weighted fits to the data. The black dotted, solid, and dashed curves are weighted 

linear, quadratic, and cubic fits to the DSD data (Eqs. (3.12) through (3.14)), the blue curve 

depicts the LWC(𝐴𝐻) relation of Carlin et al. (2016; Eq. (2.52); “C2016”), and the orange 

curve draws the relation of Ryzhkov and Zrnic (2019; Eq. (2.53); “R&Z2019”).  
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Alexander Ryzhkov, The University of Oklahoma) were also tested. These 

approaches only partially resulted in improved quality measures when applied to the 

simulated radar data (the fitting method suggested by Alexander Ryzhkov was tested 

with a third-order polynomial relation, which resulted in a worse RMSD of 0.08 g m-3, 

a better PCC of 0.93, and a similar MBD compared to the new bivariate linear fit in 

Eq. (3.11); values not shown in Table 3.1), but led to strongly enhanced errors when 

applied to real observations from the German C-band radar network (not shown). 

Therefore, only the found bivariate linear fit in Eq. (3.11) is considered in this thesis.  

The bivariate structure of the data seen in the log(𝑁𝑤) distribution (Fig. 3.3) and 

in the 𝑍𝐻-log(LWC)  histogram in Fig. 3.2 is also evident in the 3D 𝑍𝐻-𝑍𝐷𝑅-

log(LWC) histogram (not shown), which suggests that the development of separate 

relations for the two main 𝑁𝑤 regimes potentially further improves the LWC(𝑍𝐻, 𝑍𝐷𝑅) 

retrieval quality. Although the adapted relations again gave better quality values 

compared to the bivariate linear relation fitted to the whole DSD data set in Eq. (3.11) 

when applied to the simulated data (RMSD of 0.05 g m-3, PCC of 0.92, and MBD of 

0.01 g m-3; values not shown in Table 3.1), their application to real radar observations 

again resulted in clearly enhanced errors in the LWC estimation (not shown).  

The LWC(𝑍𝐻, 𝑍𝐷𝑅) estimators proposed by Bringi and Chandrasekar (2001; 

Eq. (2.51)) and by Carlin et al. (2016; Eq. (2.50)) result in clearly worse RMSDs and 

PCCs (0.08 and 0.09 g m-3 and 0.86 and 0.79, see Table 3.1) compared to the new 

LWC(𝑍𝐻, 𝑍𝐷𝑅) relation (RMSD of 0.06 g m-3 and PCC of 0.88). 

3.2.3 AH-Based Retrievals 

New LWC estimators based on 𝐴𝐻 adapted to Germany are also derived in this thesis. 

The respective linear, quadratic, and cubic fits (drawn as dotted, solid, and dashed 

black curves in Fig. 3.4) are given by 

 log(LWC(𝐴𝐻)) = 0.663log(𝐴𝐻) + 0.76, (3.12) 

 log(LWC(𝐴𝐻)) = −0.1415log(𝐴𝐻)
2 + 0.209log(𝐴𝐻) + 0.46, (3.13) 

and 

log(LWC(𝐴𝐻)) = 0.00985log(𝐴𝐻)
3 − 0.0924log(𝐴𝐻)

2 + 0.281log(𝐴𝐻) + 0.49. 

  (3.14)  

The quadratic and cubic fits (Eqs. (3.13) and (3.14)) perform best with the same 

RMSDs, PCCs, and MBDs of 0.06 g m-3, 0.91, and 0.01 g m-3; thus, the quadratic fit 

in Eq. (3.13) is the preferred choice. A quartic fit was also tested, but resulted in a 

non-zero y-axis intercept at the linear scale and is therefore not considered.  

The bimodal distribution previously identified in the log(𝑁𝑤) data (see Fig. 3.3) 

can also be identified for the log(𝐴𝐻)-log(LWC) data pairs, although the secondary 
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maximum is very close to the primary maximum and therefore not clearly visible in 

Fig. 3.4. This finding emphasizes the lower sensitivity of the specific attenuation 𝐴𝐻 

to DSD variations compared to 𝑍𝐻 (see Section 2.1.2). As expected, the development 

of separate estimators for the two main 𝑁𝑤 regimes did not lead to clear 

improvements over the quadratic relation fitted to the full data set.  

The quite similar LWC(𝐴𝐻) relations proposed by Carlin et al. (2016; Eq. (2.52)) 

and Ryzhkov and Zrnic (2019; Eq. (2.53)) result in similar and clearly worse quality 

measures RMSD (0.13 and 0.14 g m-3), PCC (0.82 and 0.81), and MBD (both 

0.02 g m-3) compared to the new adjusted relation (Eq. (3.13); 0.06 g m-3, 0.91, and 

0.01 g m-3) when applied to the simulated radar data. 

3.2.4 KDP-Based Retrievals 

Finally, new univariate LWC estimators based on the specific differential phase 𝐾𝐷𝑃 

are developed. Linear, quadratic, and cubic fits to the German DSD data set are 

 log(LWC(𝐾𝐷𝑃)) = 0.568log(𝐾𝐷𝑃) + 0.06, (3.15) 

 log(LWC(𝐾𝐷𝑃)) = −0.0315log(𝐾𝐷𝑃)
2 + 0.520log(𝐾𝐷𝑃) + 0.05, (3.16) 

and 

 log(LWC(𝐾𝐷𝑃)) = 0.00045 log(𝐾𝐷𝑃)
3 − 0.0303 log(𝐾𝐷𝑃)

2 

           +0.521 log(𝐾𝐷𝑃) + 0.05. (3.17) 

The linear relation in Eq. (3.15) is the most suitable fit with an RMSD of 0.06 g m-3, 

an PCC of 0.87, and an MBD of 0.01 g m-3 among the tested relations. Again, a quartic 

fit was also tested, but resulted in a non-zero y-axis intercept on the linear scale.  

The log(𝐾𝐷𝑃)-log(LWC) data pairs in the German DSDs also show a clear 

bimodal structure as seen for log(𝑁𝑤) in Fig. 3.3 with a secondary maximum located 

below log(𝐾𝐷𝑃) values of -2.0 (see Fig. 3.5). Separated estimators adapted to the two 

main 𝑁𝑤 regimes again resulted in better performance when applied to the simulated 

radar data (RMSD of 0.05 g m-3, PCC of 0.92, and MBD of 0.01 g m-3; values again 

not included in Table 3.1) compared to the new linear fit adjusted to the full DSD 

data set (Eq. (3.15); 0.06 g m-3, 0.87, and 0.01 g m-3); again, clearly enhanced LWC 

errors were obtained in the application to real radar observations (not shown).  

The LWC(𝐾𝐷𝑃) relations proposed by Bringi and Chandrasekar (2001) and Doviak 

and Zrnic (2006; both Eq. (2.56) with corresponding coefficients), by Carlin et al. 

(2016; Eq. (2.54)), and in the book of Ryzhkov and Zrnic (2019; Eq. (2.55)) yield 

similar to slightly worse RMSDs (0.07, 0.06, 0.07, and 0.07 g m-3) and MBDs (-0.03, 

-0.02, -0.01, and -0.01 g m-3), and worse PCCs (0.83, 0.85, 0.85, and 0.85) compared 

to the new linear fit (Eq. (3.15); 0.06 g m-3, 0.01 g m-3, and 0.87). Note that the small 
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difference in the MBD of the relation of Doviak and Zrnic (2006) compared to the 

value listed in Reimann et al. (2021) is again due to the changed evaluation data set. 

3.2.5 A Hybrid Retrieval 

The above analysis suggests that the combined use of the horizontal reflectivity 𝑍𝐻 

and the differential reflectivity 𝑍𝐷𝑅 for estimating LWC using the new bivariate linear 

relation in Eq. (3.11) is superior to estimating LWC from 𝑍𝐻 alone using the 

corresponding adjusted quadratic relation in Eq. (3.7) in terms of RMSD and PCC (see 

Table 3.1 and Fig. 3.6a,b). The results also show that the new quadratic LWC(𝐴𝐻) 

relation in Eq. (3.13) further improves the quality of LWC estimation compared to the 

new LWC(𝑍𝐻, 𝑍𝐷𝑅) retrieval in terms of PCC, while the RMSDs and MBDs are 

FIGURE 3.5: As in Figs. 3.2 and 3.4, but with DSD-based pairs of T-matrix-calculated 

log(𝐾𝐷𝑃) and log(LWC) computed using Eq. (3.3). White dots represent pairs of log(LWC)-

interval centers (0.1-intervals from -2.0 to 0.6) and corresponding interval-median 𝐾𝐷𝑃 

values used to determine weighted fits to the data. Black solid, dotted, and dashed curves are 

weighted linear, quadratic, and cubic fits (Eqs. (3.15) through (3.17)), the blue, orange, red, 

and turquoise curves show the LWC(𝐾𝐷𝑃) relations of Bringi and Chandrasekar (2001; 

Eq. (2.56); “B&C2001”), Doviak and Zrnic (2006; Eq. (2.56); “D&Z2006”), Carlin et al. 

(2016; Eq. (2.54); “C2016”), and Ryzhkov and Zrnic (2019; Eq. (2.55); “R&Z2019”).  
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comparable (Fig. 3.6b,c). The new linear LWC(𝐾𝐷𝑃) estimator in Eq. (3.15) also 

gives clearly better PCCs and RMSDs than the new LWC(𝑍𝐻) estimator in Eq. (3.7), 

while the PCC is slightly lower compared to the new LWC(𝑍𝐻, 𝑍𝐷𝑅) and LWC(𝐴𝐻) 

estimators (see Table 3.1 and Fig. 3.6). However, for LWC above about 1.0 g m-3, the 

new LWC(𝐾𝐷𝑃) estimator seems to perform best (see Fig. 3.6d).   

The good performance of the new LWC(𝐴𝐻) and LWC(𝐾𝐷𝑃) estimators is 

promising, because the polarimetric radar variables 𝐴𝐻 and 𝐾𝐷𝑃, as phase-based 

quantities, do not suffer from radar observation deficiencies such as (differential) 

attenuation, radar miscalibration, and partial beam-blockage (see Section 2.1.2). In 

practice, estimating LWC from real radar observations using 𝐴𝐻 and 𝐾𝐷𝑃 can be 

challenging because the underlying 𝛷𝐷𝑃 suffers more from low SNRs at lower LWC. 

Conversely, the use of 𝑍𝐻 and 𝑍𝐷𝑅 for the estimation of LWC can be challenging in 

regions of high LWC due to potential (differential) attenuation effects. Therefore, it 

FIGURE 3.6: 2D histograms of DSD-based pairs of LWC (given in g m-3) computed using 

Eq. (3.3) (LWCobserved) and LWC retrieved from T-matrix simulated radar variables 

(LWCretrieval) via the new a) LWC(𝑍𝐻), b) LWC(𝑍𝐻 , 𝑍𝐷𝑅), c) LWC(𝐴𝐻), and d) LWC(𝐾𝐷𝑃) 

estimators (Eqs. (3.7), (3.11), (3.13), and (3.15)). Each subplot shows the respective quality 

values RMSD (given in g m-3), PCC, and MBD (given in g m-3). 
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is desirable to combine the newly developed LWC retrievals (Eqs. (3.7), (3.11), 

(3.13), and (3.15)), so that the respective advantages and disadvantages of the 

different employed polarimetric radar moments known in different precipitation 

situations are taken into account. Such a hybrid LWC estimator is expected to retrieve 

LWC more accurately compared to the pure estimators and thus to favor the indirect 

assimilation of polarimetric information as performed in Chapter 5. 

The total increment in total differential phase 𝛥𝛷𝐷𝑃 below the melting layer is a 

crucial measure for potential negative effects of (differential) attenuation on the data 

along a radar ray. If 𝛥𝛷𝐷𝑃 is less than 5 deg, the effects of (differential) attenuation 

on 𝑍𝐻 and 𝑍𝐷𝑅 can be assumed to be small and the new LWC(𝑍𝐻) or LWC(𝑍𝐻, 𝑍𝐷𝑅) 

estimators can be applied along the entire radar ray below the melting layer. Since 

the adjusted LWC(𝑍𝐻 , 𝑍𝐷𝑅) estimator was found to clearly outperform the new 

LWC(𝑍𝐻) estimator in terms of RMSD and PCC (see Table 3.1), the new 

LWC(𝑍𝐻, 𝑍𝐷𝑅) relation in Eq. (3.11) is used for the hybrid LWC retrieval in regions 

with low precipitation intensity. For radar rays with stronger rain and correspondingly 

stronger negative effects of (differential) attenuation on 𝑍𝐻 and 𝑍𝐷𝑅, as characterized 

by 𝛥𝛷𝐷𝑃 ≥ 5 deg, the new phase-based LWC(𝐴𝐻) and LWC(𝐾𝐷𝑃) relations in 

Eqs. (3.13) and (3.15) are used. However, the LWC(𝐴𝐻) estimator is less reliable in 

the presence of hail, requiring either an appropriate 𝑍𝐻 threshold or the prior use of a 

hydrometeor classification algorithm (e.g., Park et al., 2009; Dolan et al., 2013). For 

simplicity, a 𝑍𝐻 threshold of 45 dBZ as listed by Kumjian (2013a) as the lowest 

typical 𝑍𝐻 for hail at S-band is used by assuming its validity also at C-band. 

Accordingly, the new LWC(𝐴𝐻) relation is applied if 𝛥𝛷𝐷𝑃 ≥ 5 deg and if 

𝑍𝐻 < 45 dBZ. Otherwise, if 𝛥𝛷𝐷𝑃 ≥ 5 deg and 𝑍𝐻 ≥ 45 dBZ, the new LWC(𝐾𝐷𝑃) 

retrieval is used, because 𝐾𝐷𝑃 is less affected by hail than 𝐴𝐻 (e.g., Kumjian, 2013a). 

In summary, this thesis proposes the following hybrid LWC estimator for the indirect 

assimilation of polarimetric C-band radar observations in Germany: 

 LWC(𝑍𝐻, 𝑍𝐷𝑅)     for     𝛥𝛷𝐷𝑃 < 5 deg, (3.18) 

 LWC(𝐴𝐻)     for     𝛥𝛷𝐷𝑃 ≥ 5 deg   and   𝑍𝐻 < 45 dBZ, (3.19) 

and 

 LWC(𝐾𝐷𝑃)     for     𝛥𝛷𝐷𝑃 ≥ 5 deg   𝑎𝑛𝑑   𝑍𝐻 ≥ 45 dBZ. (3.20) 

3.3 Retrieval Evaluation with Radar Observations 

The LWC retrievals in the previous section were developed and evaluated with 

synthetic radar data obtained from DSD-based T-matrix scattering calculations. For 

use in real applications in Germany, the newly developed LWC relations including 

the new hybrid retrieval (Eqs. (3.18) through (3.20)) must also be evaluated with 

radar observations from DWD’s C-band radar network. For this purpose, PPIs of 
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LWC at the radar elevation angles of 0.5 and 1.5 deg are retrieved from the 

polarimetric data described in Section 3.1 using the LWC algorithms assessed in 

Section 3.2. The radar-estimated LWC values are then compared with the ground-

based disdrometer observations that did not contribute to the assessment in 

Section 3.2 (about 25,000 1 min average DSDs). For each disdrometer site considered 

(see green triangles in Fig. 2.1), the corresponding radar range-azimuth bins within a 

radius of 1500 m are averaged. The averaging is only performed if at least 50 % of 

the radar pixels in the radius considered have valid values but at least two valid radar 

pixels are included, which is especially relevant for disdrometers far from the radar 

site, where the respective radar pixels correspond to larger radar resolution volumes 

compared to those closer to the radars. Radar pixels may have invalid values due to 

the applied 𝜌𝐻𝑉 threshold (see Section 3.1), which removes data from beyond pure 

rain or with a low overall quality.  

Despite the applied data filtering and averaging, there are several sources of error 

in this radar-ground LWC comparison. One is the inherent uncertainties in the radar 

and disdrometer observations. Another is the considerable difference in the spatial 

and temporal extent of the radar and disdrometer measurements: the disdrometer 

measurements are ground-based point observations averaged over 1 min (in their raw 

format, see Section 3.1), while the radar measurements represent snapshots of 3D 

spatial averages of comparatively much larger observation volumes in several 100 to 

1,000 m height. These different observation heights introduce another error source: 

DSDs are likely to change as rain falls over long distances through the atmosphere 

due to microphysical processes such as raindrop breakup or coalescence. The 

influence of these error sources on the comparison results is here partially 

compensated for by not only comparing 1 min averaged disdrometer data with the 

corresponding radar snapshots, but also by performing the evaluation with temporal 

averages of up to 6 h. However, the consideration of even longer time periods resulted 

in too small data sets for a reasonable evaluation, since continuous time series of both 

the disdrometer and radar data are required.  

The quality of the different tested LWC retrievals when applied to real radar data 

is quantified, like for the evaluation with simulated data, by means of RMSD, PCC, 

and MBD. To test whether the PCC of a given LWC retrieval is statistically 

significantly different compared to another given algorithm or not, an F-test is 

performed. The corresponding test statistic considered is 

 𝐹𝑡𝑒𝑠𝑡 =
PCC𝐴

PCC𝐵
 (3.21) 

with the Pearson correlation coefficient PCC𝐴/𝐵 of the estimator A/B assumed to be a 

𝜒2-distributed random variable following an F-distribution 𝐹[𝑛𝐴 − 1 − 𝑑𝐴, 𝑛𝐵 − 1 −

𝑑𝐵] under the null hypothesis of 𝐻0: PCC𝐴 ≤ PCC𝐵 with 𝑛𝐴/𝐵 the sample size and 

𝑑𝐴/𝐵 the degrees of freedom of the retrieval A/B. The different time periods 

considered for the radar-disdrometer comparison 1 (instantaneous), 20, 60, 180, and 
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360 min (1, 4, 12, 36, and 72 consecutive radar snapshots) lead to the different sample 

sizes of 39,926, 8,052, 1,981, 371, and 90 individual LWC retrieval-observation pairs, 

respectively. The different existing and newly developed LWC estimators evaluated 

in this section exhibit two (all univariate power-law relations on the linear scale; e.g., 

Eqs. (2.45), (3.6), and (3.15)) or three (all bivariate power-law relations on the linear 

scale or the quadratic functions on the logarithmic scale; e.g., Eqs. (2.51), (3.7), and 

(3.11)) degrees of freedom. The resulting PCC thresholds that must be exceeded to 

identify two retrievals as statistically significantly different (with a significance level 

of 5 %) are thus 0.01, 0.02, 0.05, 0.11, and 0.22 for the 1, 20, 60, 180, and 360 min 

comparisons. Note that in Reimann et al. (2021) the numbers of comparison pairs 

were generally lower due to the 𝜌𝐻𝑉 noise correction applied in this thesis (see 

Section 3.1.2) leading to a different PCC threshold for statistical significance for the 

180 min comparison of 0.14 in Reimann et al. (2021) instead of 0.11 in this thesis, 

and the 360 min comparison was not performed in Reimann et al. (2021).  

3.3.1 New Retrievals 

First, the focus is on the new LWC estimators developed in Section 3.2 and hourly 

comparisons (Fig. 3.7). The PCC of the new LWC(𝑍𝐻, 𝑍𝐷𝑅) estimator in Eq. (3.11) is 

0.67 (all quality values shown as black numbers in Table 3.2) and thus slightly higher 

than that yielded by the new LWC(𝑍𝐻) estimator in Eq. (3.7) of 0.66 (see Fig. 3.7a,b). 

This difference is not significant according to the F-test performed (recall that 0.05 

must be exceeded). Both PCC values are slightly higher than those listed in Reimann 

et al. (2021) of 0.66 and 0.65 (values differing in this thesis from those listed in 

Reimann et al. (2021) are shown in grey italics in Table 3.2). These differences are 

again caused by the changed evaluation DSD data set (see Section 3.1.2). The new 

LWC(𝐴𝐻) estimator in Eq. (3.13) and the new LWC(𝑍𝐻) estimator give comparable 

PCCs (both 0.66, see Fig. 3.7a,c), thus also no significant difference. The new 

LWC(𝐾𝐷𝑃) estimator in Eq. (3.15) results (with negative 𝐾𝐷𝑃 values in weak 

precipitation replaced by zero) in a worse PCC compared to the LWC(𝑍𝐻) retrieval 

and an even significantly worse PCC compared to the LWC(𝑍𝐻, 𝑍𝐷𝑅) estimator of 

0.61. Note that a significant difference in PCC between the new LWC(𝐾𝐷𝑃) and 

LWC(𝑍𝐻, 𝑍𝐷𝑅) relations was not found in Reimann et al. (2021), possibly due to the 

inclusion of additional noise in the 𝐾𝐷𝑃 estimates by the 𝜌𝐻𝑉 noise correction applied 

here (see Section 3.1.2). The performance of the retrievals based on 𝐴𝐻 and 𝐾𝐷𝑃 was 

expected to be clearly better in terms of PCC compared to the LWC(𝑍𝐻) estimator 

based on the simulations (see Fig. 3.6a,c,d). A likely reason are low SNRs of 𝛷𝐷𝑃 in 

weak precipitation, which also favor negative 𝐾𝐷𝑃 estimates, especially with the low 

radial resolution of the radar data used (1 km), as discussed before. The correlation 

for the LWC(𝐾𝐷𝑃) retrieval improves when negative 𝐾𝐷𝑃 estimates are replaced with 

a 𝐾𝐷𝑃(𝑍𝐻) relation derived from the German DSD data set given by 

 log(𝐾𝐷𝑃(𝑍𝐻)) = −0.0006𝑍𝐻
2 + 0.125𝑍𝐻 − 4.52  (3.22) 
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to 0.63 (see quality values for the LWC(𝐾𝐷𝑃, 𝑍𝐻) estimator in Table 3.2). Note that 

the quadratic relation in Eq. (3.22), when applied to the simulated radar data, gives 

much better performance in terms of RMSD and PCC than the linear 𝐾𝐷𝑃(𝑍𝐻) relation 

proposed and used in Reimann et al. (2021; not shown). Also note that a direct 

comparison of the results for the LWC(𝐾𝐷𝑃, 𝑍𝐻) estimator using Eq. (3.22) with the 

corresponding results shown in Reimann et al. (2021) is not meaningful due to an 

error in the computer code used: the 𝐾𝐷𝑃(𝑍𝐻) relation was used for all comparison 

pairs in Reimann et al. (2021), so that no 𝛷𝐷𝑃-based 𝐾𝐷𝑃 was employed, which made 

their LWC(𝐾𝐷𝑃, 𝑍𝐻) relation effectively an LWC(𝐾𝐷𝑃(𝑍𝐻)) estimator. 

The new LWC(𝑍𝐻 , 𝑍𝐷𝑅) estimator gives an RMSD of 0.07 g m-3 (Fig. 3.7b), which 

is slightly lower than the corresponding value of the new LWC(𝑍𝐻) relation 

(0.08 g m-3, Fig. 3.7a). The new LWC(𝐴𝐻) and LWC(𝐾𝐷𝑃) estimators (Fig. 3.7c,d) 

give RMSDs comparable to that of the LWC(𝑍𝐻) relation (all 0.08 g m-3), and the 

LWC(𝐾𝐷𝑃, 𝑍𝐻) estimator (negative 𝐾𝐷𝑃 substituted using Eq. (3.22); Fig. 3.7e) gives 

an even slightly higher RMSD (0.09 g m-3). Thus, the LWC(𝐴𝐻) and LWC(𝐾𝐷𝑃) 

estimators, against  the  expectations  from the simulations (Fig. 3.6a,c,d), do also not   

FIGURE 3.7: 2D histograms of hourly averaged pairs of disdrometer-measured LWC and the 

LWC retrieved from polarimetric radar observations from Germany using the new  

a) 𝐿𝑊𝐶(𝑍𝐻), b) LWC(𝑍𝐻 , 𝑍𝐷𝑅), and c) LWC(𝐴𝐻) retrievals in Eqs. (3.7), (3.11), and (3.13). 

In d), the new LWC(𝐾𝐷𝑃) estimator (Eq. (3.15)) is used with negative 𝐾𝐷𝑃 replaced by zero. 

In e), the same new LWC(𝐾𝐷𝑃) relation is used with negative 𝐾𝐷𝑃 substituted using the 

empirical 𝐾𝐷𝑃(𝑍𝐻) relation in Eq. (3.22) derived from the German DSD data set. In f), the 

hybrid LWC estimator (Eqs. (3.18) to (3.20)) is applied. Also shown are the respective quality 

measures RMSD (given in g m-3), PCC, and MBD (given in g m-3). Pixels marked by violet 

circle and pentagon shapes are discussed in Section 3.3.1. 
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TABLE 3.2: Comparison of RMSD (in g m-3), PCC, and MBD (in g m-3) values between 

disdrometer-measured LWC and radar-estimated LWC via the new and existing LWC(𝑍𝐻), 

L𝑊C(𝑍𝐻 , 𝑍𝐷𝑅), LWC(𝐴𝐻), and LWC(𝐾𝐷𝑃) relations proposed by Greene and Clark (1972; 

“G&C1972”), Carlin et al. (2016; “C2016”), Bringi and Chandrasekar (2001; “B&C2001”), 

Ryzhkov and Zrnic (2019; “R&Z2019”), and Doviak and Zrnic (2006; “D&Z2006”) for time 

intervals from 1 to 360 min for nine warm-season rainfall events. In the LWC(𝐾𝐷𝑃) estimator, 

negative 𝐾𝐷𝑃 is substituted by zero. Also shown are the results for the new LWC(𝐾𝐷𝑃) 

estimator with negative 𝐾𝐷𝑃  replaced using an empirical 𝐾𝐷𝑃(𝑍𝐻) relation (Eq. (3.22); 

LWC(𝐾𝐷𝑃 , 𝑍𝐻) estimator), and for the new hybrid estimator (hybrid). Grey italicized values 

show values listed in Reimann et al. (2021) where different from this thesis. 
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outperform the LWC(𝑍𝐻) relation in terms of RMSD, possibly again because of low 

SNRs of 𝛷𝐷𝑃 in weak rain. However, the MBDs of all the new LWC(𝑍𝐻), 

LWC(𝑍𝐻, 𝑍𝐷𝑅), LWC(𝐴𝐻), and LWC(𝐾𝐷𝑃) estimators are generally low (0.01, 

0.00, -0.01, and 0.02 g m-3), except for the LWC(𝐾𝐷𝑃, 𝑍𝐻) estimator (0.04 g m-3). 

Next, the new hybrid LWC retrieval, which uses the new LWC(𝑍𝐻, 𝑍𝐷𝑅), 

LWC(𝐴𝐻), and LWC(𝐾𝐷𝑃) estimators depending on the rainfall characteristic 

(Eqs. (3.18) through (3.20)), is also evaluated with observations from the German C-

band radar network (Fig. 3.7f). It yields the highest PCC of 0.68 among all new LWC 

retrievals in the hourly comparison (see Table 3.2). This PCC value is not 

significantly better than the PCC values of the pure new LWC(𝑍𝐻), LWC(𝑍𝐻, 𝑍𝐷𝑅), 

and LWC(𝐴𝐻) relations, but is statistically significantly better than that of the new 

LWC(𝐾𝐷𝑃) estimator (with negative 𝐾𝐷𝑃 substituted by zero). In contrast, the RMSD 

of the hybrid estimator is comparable to that of all the other relations (0.08 g m-3), 

and the MBD is small (0.01 g m-3) like it is the case for all the individual new relations, 

which is an encouraging result for the application of the new hybrid LWC estimator 

to the indirect assimilation of polarimetric information in Chapter 5.  

The benefit of using phase-based polarimetric variables in the hybrid LWC 

estimator is emphasized by the much better performance of LWC estimation using the 

hybrid compared to the single LWC(𝑍𝐻) and LWC(𝑍𝐻, 𝑍𝐷𝑅) retrievals in certain 

situations. E.g., the highest hourly-averaged disdrometer-measured LWC values 

contributing to the ground-radar comparison (histogram pixel marked by violet 

circles in Fig. 3.7) is underestimated by more than 50 % using the LWC(𝑍𝐻) and 

LWC(𝑍𝐻, 𝑍𝐷𝑅) retrievals (Fig. 3.7a,b). In contrast, the 𝛷𝐷𝑃-based LWC(𝐴𝐻) and 

LWC(𝐾𝐷𝑃) estimators and the new hybrid retrieval show much better performance in 

that comparison (Fig. 3.7c,d,f). Investigation shows that the respective hourly LWC 

value is measured by the DWD disdrometer in Braunlage in the Harz mountains in 

central Germany (see black crosses in Fig. 3.8a-d), while observations from the DWD 

radar in Ummendorf (radar UMD, see Fig. 2.1; black circles in Fig. 3.8) at an 

elevation angle of 0.5 deg were used for the radar-retrieved LWC. The histograms in 

Figs. 3.7c and 3.7f suggest that the LWC(𝐴𝐻) retrieval was used in the hybrid retrieval 

for the data point considered. The rays corresponding to the disdrometer location (all 

within the radius of 1500 m) have 𝛥𝛷𝐷𝑃 > 5 deg and 𝑍𝐻 < 45 dBZ  (see hourly 

averaged 𝑍𝐻 and 𝛷𝐷𝑃 in Fig. 3.8a and b) for all time steps in the hour considered (not 

shown), thus the hybrid estimator indeed uses the LWC(𝐴𝐻) estimator for all 

aggregated values (see Eq. (3.19)). The inferior performance of the 𝑍𝐻-based 

estimators (Fig. 3.7a,b) is most likely due to partial beam blockage by the Harz 

mountain rise behind which the Braunlage disdrometer is located along the radar ray 

(see Fig. 3.8c,d). As phase-based polarimetric radar variables, 𝐴𝐻 and 𝐾𝐷𝑃 are not 

affected by partial beam blockage (see Section 2.1.2), which may be responsible for 

the found better performance of the LWC(𝐴𝐻), LWC(𝐾𝐷𝑃), and hybrid LWC 

estimators (Fig. 3.7c,d,f) compared to the 𝑍𝐻-based retrievals (Fig. 3.7a,b). A similar 

picture is obtained for another distinct and analyzed data point (pixels marked by 
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violet pentagons in Fig. 3.7): radar rays from the UMD radar at the 0.5 deg elevation 

angle in the direction of the DWD disdrometer in Braunschweig, Lower Saxony are 

partially (about 50 %) blocked by the orography (not shown), which possibly again 

leads to the worse performance of the LWC(𝑍𝐻) and LWC(𝑍𝐻, 𝑍𝐷𝑅) estimators 

compared to the LWC(𝐴𝐻), LWC(𝐾𝐷𝑃), and hybrid LWC estimators.  

As expected, the instantaneous comparison yields the largest RMSDs and the 

lowest PCCs for the new LWC(𝑍𝐻), LWC(𝑍𝐻, 𝑍𝐷𝑅), LWC(𝐴𝐻), and LWC(𝐾𝐷𝑃) 

estimators and also for the new hybrid estimator (RMSDs of 0.13, 0.14, 0.15, 0.15, 

and 0.14 g m-3, PCCs of 0.57, 0.54, 0.54, 0.49, and 0.55; see Table 3.2) among all the 

comparison time periods considered (1, 20, 60, 180, and 360 min averages). The 

LWC(𝑍𝐻) estimator performs significantly better in terms of PCC than all other new 

relations including the hybrid estimator (recall that for the instantaneous comparison 

a difference in PCC of 0.01 must be exceeded). Unlike in Reimann et al. (2021), the 

LWC(𝑍𝐻, 𝑍𝐷𝑅) estimator is not significantly better than the LWC(𝐴𝐻) estimator, and 

the LWC(𝐴𝐻) and LWC(𝐾𝐷𝑃) estimators differ significantly, which again are results 

FIGURE 3.8: Investigation of the histogram pixel marked in Fig. 3.7 by violet circles. The 

hourly mean a) 𝑍𝐻 and b) 𝛷𝐷𝑃 PPIs measured at 0.5 deg elevation angle by the DWD radar 

station Ummendorf (radar location marked by black circles in a)-d); see radar UMD in 

Fig. 2.1) in the area of the investigated DWD surface disdrometer in Braunlage (black 

crosses; red line in d)). In c), the orography of the earth’s surface is shown. In d), the 

orographic profile along the connection line between the radar and the disdrometer (black 

dotted lines in a)-c)) is depicted and the approximate radar beam center (blue solid curve) 

and the half power beam radius is illustrated (blue dotted curves). 
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of the larger evaluation DSD data set and/or the modified 𝛥𝛷𝐷𝑃 estimation procedure 

for the 𝐴𝐻 derivation, which leads to less noisy 𝐴𝐻 estimates (see Section 3.1.2). 

Averaging of the data pairs over 20, 60, 180, and 360 min always decreases the 

RMSDs for all new LWC(𝑍𝐻), LWC(𝑍𝐻, 𝑍𝐷𝑅), LWC(𝐴𝐻), and LWC(𝐾𝐷𝑃) estimators 

and the hybrid relation (see Table 3.2). The PCCs systematically increase up to the 

60 min comparison and decrease again for longer averaging times, except for the 

LWC(𝐴𝐻) and the hybrid LWC algorithm, for which the PCCs are highest for the 

360 min comparison (0.70 and 0.72; however, not significantly higher than for the 

other new relations). The PCC of the hybrid LWC estimator is always (although 

statistically insignificantly) higher than that of the other new pure LWC relations for 

time periods longer than 20 min. Interestingly, the MBDs for all new individual and 

the hybrid LWC estimators continuously decrease from the instantaneous to the 

360 min comparisons (see again Table 3.2). Separating the analysis for rainfall 

dominated by convective (five events) and stratiform (four events) precipitation 

shows that the MBDs for stratiform rainfall are generally lower compared to the 

convective events (compare black with grey italic numbers in Table 3.3). Note that 

about 83 % of the observations considered are from stratiform rainfall, and with 

increasing time intervals considered, the stratiform cases, which usually lead to 

longer lasting rainfall at a given location compared to the convective cases, are better 

represented in the data set than the convective events: for the instantaneous, 20, 60, 

180, and 360 min comparisons there are 33,199 and 6,727, 6,957 and 1,095, 1,803 

and 178, 364/7, as well as 90 and zero data pairs available for comparison for the 

TABLE 3.3: Comparison of RMSD (in g m-3), PCC, and MBD (in g m-3) values between 

disdrometer-measured LWC and radar-estimated LWC via the new LWC(𝑍𝐻), 

LWC(𝑍𝐻 , 𝑍𝐷𝑅), LWC(𝐴𝐻), and LWC(𝐾𝐷𝑃) estimators for time intervals from 1 to 360 min 

for four stratiform (black numbers) and five convective (grey italic numbers) warm-season 

rainfall events. The RMSDs, PCCs, and MBDs are calculated for at least 10 comparison pairs. 

In the LWC(𝐾𝐷𝑃) estimator, negative 𝐾𝐷𝑃 is substituted by zero. Also shown are the results 

for the new LWC(𝐾𝐷𝑃) estimator with negative 𝐾𝐷𝑃 substituted using an empirical 𝐾𝐷𝑃(𝑍𝐻) 

relation (Eq. (3.22); LWC(𝐾𝐷𝑃 , 𝑍𝐻) estimator), and for the new hybrid estimator (hybrid). 
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stratiform and convective cases, respectively. Thus, the MBDs of the entire data set 

(stratiform and convective events together) approximate those of the stratiform events 

with increasing time intervals considered. Also note that the better performance of 

the stratiform events with respect to MBD compared to the convective events may be 

because the retrieval development in Section 3.2 was based on a DSD data set also 

dominated by stratiform rainfall. Adjusting LWC retrievals to different 𝑁𝑤 regimes 

(see Section 3.2) may potentially result in a better representation of stratiform and 

convective rainfall, but, as noted earlier in this chapter, the performance of the LWC 

estimation generally suffered when radar-estimated 𝑁𝑤 was used (not shown). 

3.3.2 Existing Retrievals 

The quality of the existing LWC estimators from the literature when applied to real 

radar observation is also examined for comparison. The PCCs are always better for 

the new LWC(𝑍𝐻), LWC(𝑍𝐻 , 𝑍𝐷𝑅), and LWC(𝐴𝐻) estimators than for the respective 

existing counterparts, except for the 360 min comparison for the LWC(𝑍𝐻) and 

LWC(𝑍𝐻, 𝑍𝐷𝑅) estimators (see also the quality values of the existing relations as black 

numbers in Table 3.2). The new LWC(𝑍𝐻) relation is even significantly better in 

terms of PCC compared to the respective relations of Carlin et al. (2016; Eq. (2.46)) 

and Ryzhkov and Zrnic (2019; Eq. (2.47)) in the instantaneous and 20 min 

comparisons. The new LWC(𝑍𝐻, 𝑍𝐷𝑅) relation yields a significantly better PCC than 

the corresponding relation proposed by Bringi and Chandrasekar (2001; Eq. (2.51)) 

for the 1, 20, and 60 min comparisons, and significantly better than the relation of 

Carlin et al. (2016; Eq. (2.50)) in the 20 min comparison. The PCC of the new 

LWC(𝐴𝐻) estimator is also significantly better than that of the existing counterparts 

by Carlin et al. (2016; Eq. (2.52)) and Ryzhkov and Zrnic (2019; Eq. (2.53)) in the 

instantaneous and 20 min comparisons. However, the new LWC(𝐾𝐷𝑃) estimator 

mostly gives similar or even lower PCCs compared to the respective existing relations 

from the literature (Eqs. (2.54), (2.55), and (2.56)) and the respective PCC is even 

significantly lower than that of the existing relations in the instantaneous comparison.  

The RMSD of the new LWC(𝑍𝐻) estimator is generally lower than for the 

respective relations of Carlin et al. (2016) and Ryzhkov and Zrnic (2019) and similar 

or also slightly lower than for the relation of Greene and Clark (1972). The new 

LWC(𝑍𝐻, 𝑍𝐷𝑅) relation generally also gives a lower RMSD than the respective 

existing relations. This also holds for the new LWC(𝐴𝐻) relation, while the 

corresponding relation of Carlin et al. (2016) performs similarly well for the 180 and 

360 min comparisons. The new LWC(𝐾𝐷𝑃) estimator generally gives similar to even 

larger RMSDs compared to the existing relations, except for the 360 min comparison, 

where the new algorithm slightly outperforms the existing ones.  

In terms of bias, the existing LWC(𝑍𝐻) and LWC(𝑍𝐻, 𝑍𝐷𝑅) relations yield similar 

MBDs like the new fits for the instantaneous and 20 min comparisons, but the 

(absolute) MBDs for the existing relations tend to increase with increasing time 

intervals. MBDs of the existing LWC(𝐴𝐻) relations are generally similar to those of 
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the new relation and low. The MBDs of the existing LWC(𝐾𝐷𝑃) relations are highest 

for the relations of Bringi and Chandrasekar (2001) and Doviak and Zrnic (2006), 

and those of the other existing LWC(𝐾𝐷𝑃) relations of Carlin et al. (2016) and of 

Ryzhkov and Zrnic (2019) are generally comparable to that of the new LWC(𝐾𝐷𝑃) 

relation and also low. 

The new hybrid estimator always gives higher PCCs compared to all existing 

retrievals, except for the LWC(𝑍𝐻) retrieval of Greene and Clark (1972) in the 

instantaneous comparison. Yielded RMSDs are generally lower compared to all 

existing relations, especially for time intervals greater than 60 min, where also MBDs 

are better compared to all existing relations (see Table 3.2). 

3.4 Summary and Conclusions 

In this chapter, new LWC(𝑍𝐻),  LWC(𝑍𝐻, 𝑍𝐷𝑅), LWC(𝐴𝐻), and LWC(𝐾𝐷𝑃) retrievals 

applicable to C-band radars in Germany were developed and evaluated together with 

respective existing LWC estimators from the literature based on a large German 

surface-based disdrometer data set and T-matrix scattering calculations at C-band. 

Quadratic relations (on the logarithmic scale) were found most suitable for the 

LWC(𝑍𝐻) and LWC(𝐴𝐻) estimators in terms of root-mean-square deviation (RMSD), 

Pearson correlation coefficient (PCC), and mean-bias deviation (MBD) when applied 

to simulated radar data, while a linear function and a bivariate linear function (also 

on the logarithmic scale) were found best for the LWC(𝐾𝐷𝑃) and LWC(𝑍𝐻, 𝑍𝐷𝑅) 

retrievals. When evaluated with the synthetic radar data, the newly developed 

retrievals mostly gave much better PCCs and RMSDs compared to their respective 

existing counterparts, while biases (MBD) were similar and generally low.  

The adapted and existing LWC relations were then evaluated with real radar 

observations from the German C-band radar network of four summertime stratiform 

and five summertime convective rainfall events for time periods up to 6 h. The new 

retrievals yielded overall satisfactory results in terms of generally low biases, but the 

differences in RMSDs and PCCs between the new LWC(𝑍𝐻, 𝑍𝐷𝑅) and LWC(𝐴𝐻) 

estimators and the new LWC(𝑍𝐻) estimator were less pronounced than expected from 

the simulations. The LWC(𝐾𝐷𝑃) estimator mostly resulted in even worse RMSDs and 

PCCs compared to the new LWC(𝑍𝐻) relation. Although the new LWC retrievals 

mostly outperformed the respective existing counterparts, the differences in the 

RMSDs and PCCs between the new and the existing retrievals were also smaller than 

expected from their application to the synthetic radar data. It remains to be explored 

to what extent these smaller-than-expected improvements of the new LWC(𝑍𝐻), 

LWC(𝑍𝐻, 𝑍𝐷𝑅) and LWC(𝐴𝐻) retrievals and the mostly even worse performance of 

the new LWC(𝐾𝐷𝑃) estimator are caused by errors in the comparison of in-situ with 

remotely sensed observations, and to what extent low SNRs of the C-band radar 

products, spatial degradation of 𝐾𝐷𝑃, and radar calibration problems are responsible.  
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The new LWC(𝑍𝐻 , 𝑍𝐷𝑅), LWC(𝐴𝐻), and LWC(𝐾𝐷𝑃) estimators were combined to 

exploit and mitigate the respective strengths and shortcomings of the used 

polarimetric variables 𝑍𝐻, 𝑍𝐷𝑅, 𝐴𝐻, and 𝐾𝐷𝑃 known for different precipitation 

characteristics in a hybrid way. For light rain as characterized by a total differential 

phase increment below the melting layer smaller than 5 deg, where the negative effect 

of (differential) attenuation on 𝑍𝐻 and 𝑍𝐷𝑅 can be expected small, and 𝐴𝐻 and 𝐾𝐷𝑃 

are potentially noisy due to low SNRs of 𝛷𝐷𝑃, the new LWC(𝑍𝐻, 𝑍𝐷𝑅) estimator is 

used, which showed a better performance than the new LWC(𝑍𝐻) relation in terms of 

RMSD and PCC when applied to the simulated radar data. The new LWC(𝐴𝐻) and 

LWC(𝐾𝐷𝑃) estimators are used for stronger rain as characterized by total differential 

phase increments larger than 5 deg, where the negative effect of (differential) 

attenuation on 𝑍𝐻 and 𝑍𝐷𝑅 is more pronounced, and 𝐴𝐻 and 𝐾𝐷𝑃 are potentially less 

affected by low SNRs of 𝛷𝐷𝑃. LWC(𝐾𝐷𝑃) is used for radar pixels with potential hail 

contamination as characterized by 𝑍𝐻 ≥ 45 dBZ and LWC(𝐴𝐻) is used elsewhere, 

because 𝐾𝐷𝑃 is less affected by hail than 𝐴𝐻 is. Application of the hybrid LWC 

estimator to observations from the German C-band radar network gave the overall 

best PCCs among the new retrievals for time intervals longer than 20 min, while 

RMSDs and MBDs were comparable to the pure new estimators. The hybrid estimator 

generally also outperformed the existing retrievals from the literature.
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Chapter 4 

Assimilation of Polarimetric 

Radar Data: State of the Art 

The assimilation of polarimetric radar observations in NWP models is still in its 

infancy. While one reason is the lack of widespread polarimetric observations from 

national weather radar networks in the past, another reason is the remaining 

uncertainties in the relationships between polarimetric radar moments and the 

microphysical state variables of the NWP models. However, first successful attempts 

of assimilating simulated or real polarimetric radar observations directly using 

polarimetric radar forward operators or indirectly using, e.g., hydrometeor mixing 

ratios as surrogates for polarimetric radar moments have been made in the past about 

two decades (see Section 4.1.4). The rather novel field of assimilating polarimetric 

radar observations in NWP models is fundamentally based on the findings, 

approaches, and achievements in the assimilation of non-polarimetric radar data, such 

as 𝑍𝐻 and 𝑉𝑟 observations, which in contrast has been studied extensively over the 

past three to four decades. Therefore, Section 4.1 first provides an overview of the 

key approaches and achievements in radar data assimilation in general and 

subsequently the assimilation of polarimetric radar data is considered. Section 4.2 

then describes the operational assimilation of (non-polarimetric) radar observations 

in Germany, including a description of the convective-scale NWP model ICON-D2 

and the DA framework KENDA, in preparation of the assimilation experiments 

presented later in this thesis (Chapter 5).  

4.1 Key Approaches and Achievements 

This section provides a general overview of the key approaches and achievements of 

radar DA in NWP models to date. The review begins with a brief description of the 

earliest attempts to diagnose wind, microphysical, and thermodynamic fields from 

dual- or single-Doppler radar observations and to use these fields directly to initialize 

NWP models. In a second step, empirical DA methods that have been used for the 

assimilation of radar observations, such as those based on successive corrections or 

Newtonian relaxation or nudging, are briefly considered. Most of the research on 

radar data assimilation in recent decades has been devoted to statistical interpolation 

methods, including variational DA methods, sequential DA methods based on the 

EnKF approach, hybrid ensemble-variational fusions of both methods, or attempts 
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based on the particle filter. These methods and the corresponding achievements in 

radar DA are presented here with a focus on the EnKF method, in particular the 

LETKF, which is included in the KENDA suite at DWD and is used in this thesis for 

the assimilation of polarimetric radar data (Chapter 5). Finally, an overview of the 

state of the art in polarimetric radar DA in NWP models is provided. 

4.1.1 Doppler Retrievals 

Towards the end of the 20th century, researchers began to use Doppler radar 

observations to initialize NWP models, with a focus on convective storm forecasting 

(e.g., Lin et al., 1993). A key challenge in radar DA has been to establish an 

appropriate link between the radar observations and model state variables. Therefore, 

in the late 1970s and 1980s, techniques to retrieve thermodynamic and microphysical 

fields from 3D winds derived from multiple-Doppler radar observations (i.e., 

observations of the same atmospheric spot by two or more different Doppler radars) 

were developed (e.g., Gal-Chen, 1978; Roux, 1985; Ziegler, 1985). Lin et al. (1993) 

were the first to initialize a convective-scale NWP model with such Doppler-radar 

retrieved fields. They used radar-derived wind speeds merged with the horizontal 

environmental wind determined from a radio sounding, temperature and pressure 

perturbations retrieved following Hane and Ray (1985), and specified water 

substance fields, to initialize the Colorado State University Regional Atmospheric 

Modelling System model. They showed that the model initialization by direct 

insertion of the retrievals resulted in a good agreement of the ensuing predicted 

convective storm with its observed counterpart for less than 15 min.  

However, the use of multiple-Doppler observations for the initialization of 

operational NWP models is generally not suitable because multiple-Doppler 

coverage is mostly not provided by operational Doppler-radar networks due to the 

large distances between the individual radar stations. It quickly became apparent that 

techniques for retrieving wind fields also from single-Doppler observations needed 

to be developed. Several techniques for doing so emerged, including the so-called 

simple adjoint method (e.g., Qiu and Xu, 1992; Xu and Qiu, 1994) and the two-scalar 

method (Shapiro et al., 1995). Most of these approaches have shown reasonable 

accuracy in retrieving low-level winds compared to multiple-Doppler wind retrievals. 

Weygandt et al. (2002) conducted a similar study like Lin et al. (1993), but they 

initialized their NWP model with single- instead of multiple-Doppler observations 

using the wind retrieval of Shapiro et al. (1995) and then retrieved thermodynamic 

fields from the derived winds following Gal-Chen (1978). Their simulated convective 

storm agreed well with the observed one for about 35 min.  

The use of wind as well as thermodynamic and microphysical fields retrieved from 

Doppler radar observations for the initialization of NWP models by direct insertion 

is advantageous due to the relatively low computational costs required. In the case of 

only single-Doppler coverage, as common for operational NWP, a multi-step 

procedure is required, as performed by Weygandt et al. (2002), including a wind 
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retrieval and an ensuing thermodynamical retrieval procedure. However, Hu et al. 

(2006a) argue that the inclusion of several consecutive steps and the use of retrieved 

rather than direct observations make it difficult to achieve optimal analyses. 

4.1.2 Empirical Approaches  

This section provides a brief overview of the empirical approaches that have been 

used to initialize NWP models with radar data and the respective main achievements, 

starting with the successive corrections method (SCM). Then, the empirical 

approaches based on Newtonian relaxation or nudging are briefly outlined. 

4.1.2.1 Successive Corrections Method 

The SCM is an empirical method that has been successfully used to initialize NWP 

models with radar observations and was originally proposed by Bergthörsson and 

Döös (1955) in Sweden and by Cressman (1959) at the US Weather Service. In the 

SCM approach, the background (or first-guess) gridded field determined, e.g., from 

a previous short-range model forecast, represents the first gridded field estimate. 

Consecutive field estimations are then obtained by “successive corrections” towards 

the observations using specifically defined weighting factors, which can be defined 

in different ways. E.g., Cressman (1959) defined the weights empirically as functions 

of the distance between an observation and a given field grid point with a maximum 

radius of influence 𝑅𝑠𝑐𝑚 which can be changed over the iterations.   

Barnes (1964) introduced another empirical version of the SCM that has been 

widely used to produce analyses in the absence of background fields such as for radar 

observations. In this SCM version, the squared radius of influence 𝑅𝑠𝑐𝑚
2  changes 

iteration-wise by a factor 𝛾𝑠𝑐𝑚, such that 𝛾𝑠𝑐𝑚 = 1 corresponds to the case that only 

the large scales are captured and that 𝛾𝑠𝑐𝑚 < 1 corresponds to the case that the 

analysis converges towards the smaller scales with the successive iterations. The 

Barnes (1964) SCM version was implemented in the Local Analysis and Prediction 

System (LAPS; Albers, 1995) of the National Oceanic and Atmospheric 

Administration Forecast Systems Laboratory to produce high-resolution analyses 

including gridded 𝑉𝑟 observations used in the second iteration pass with a smaller 

radius of influence 𝑅𝑠𝑐𝑚 to preserve smaller-scale features captured in the radar data. 

Another version of the SCM approach was proposed by Bratseth (1986). It is not 

based on empirical formulations of the weighting coefficients, but uses appropriately 

chosen weights that make the scheme converge towards a proper statistical 

interpolation (Kalnay, 2003). This method allows accounting for background errors 

and errors in each individual observation source, and results in a relatively low 

sensitivity to fluctuations in data density (Sun, 2005b). The scheme is used at the 

Center for Analysis and Prediction of Storms at the University of Oklahoma for the 

Advanced Regional Prediction System’s (ARPS; Xue et al., 2003) Data Assimilation 

System (ADAS; Brewster, 1996), which also assimilates 𝑉𝑟 observations. 
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Albers et al. (1996) developed a “cloud analysis” that was implemented in LAPS. 

A cloud analysis was also implemented for ADAS using the LAPS cloud analysis 

algorithms in a customized, enhanced, and refined version (Zhang et al., 1998). The 

cloud analysis uses 𝑍𝐻, satellite, and surface-based cloud observations to derive 3D 

precipitation and cloud fields, and can be used for moisture initialization of ARPS. 

The gridded variables include 3D cloud cover and cloud type, precipitation type, 

cloud liquid, cloud ice, rain, snow, and hail mixing ratios, and cloud base, top, and 

ceiling information. The cloud analysis also applies an in-cloud temperature 

adjustment through either a latent heat or a moist-adiabatic scheme (e.g., Hu et al., 

2006a), which is particularly important for maintaining existing convection in the 

numerical model (Hu and Xue, 2007). The cloud analysis scheme with ADAS has 

proven to be advantageous, e.g., for QPF in Spain (e.g., Souto et al., 2003). The cloud 

analysis scheme has also attracted attention for its ease of implementation and 

computational efficiency (e.g., for rapid update cycling) while being disadvantageous 

in terms of being based on semi-empirical relationships and sensitive to the tuning 

and configuration of the DA settings (Hu and Xue, 2007). 

4.1.2.2 Newtonian Relaxation or Nudging 

Radar observations have also been successfully assimilated into NWP models via the 

empirical approaches of Newtonian relaxation or nudging (e.g., Hoke and Anthes, 

1976), where prognostic model variables are dynamically relaxed towards 

observations within an empirically defined time window by modifying the tendency 

equation of a particular prognostic model variable. An early application of Newtonian 

nudging to radar DA was, e.g., performed by Xu et al. (2004), who assimilated 3D 

rain water mixing ratios derived from gridded 𝑍𝐻 observations over the north-east 

USA using a nudging scheme into the Fifth-Generation Pennsylvania State 

University–National Center for Atmospheric Research Mesoscale Model (MM5). 

They introduced an additional source term in the prognostic model equation for 

rainwater that accounted for the difference between the pseudo-observed and 

forecasted rain mixing ratios. The nudging-based assimilation of 𝑍𝐻 observations had 

a positive impact on the forecast of a case-study winter storm. Furthermore, they 

noted a positive effect of nudging latent heat information derived from the difference 

between observed and forecasted rain water.  

The nudging of latent heat increments derived from near-surface precipitation 

rates derived from 𝑍𝐻 observations is a widely used and successful method of 

assimilating radar observations and is known as Latent Heat Nudging (LHN). LHN 

was first formulated by Wang and Warner (1988) and is described in detail by Jones 

and Macpherson (1997). It is based on the assumption that the near-surface rain rate 

𝑅𝑅 is proportional to the latent heat released through condensation integrated over 

the atmospheric column above it. Thus, 𝑅𝑅 is assumed to be proportional to a given 

temperature change within this vertical column. The ratio between the observed rain 

rate 𝑅𝑅𝑜𝑏𝑠 and the modeled rain rate 𝑅𝑅𝑚𝑜𝑑  



 

55 

 

4.1. Key Approaches and Achievements 

 𝛼𝐿𝐻𝑁 =
𝑅𝑅𝑜𝑏𝑠

𝑅𝑅𝑚𝑜𝑑
 (4.1) 

is used to determine the incremental temperature profile ∆𝑇𝐿𝐻𝑁 via 

 ∆𝑇𝐿𝐻𝑁(ℎ) = (𝛼𝐿𝐻𝑁 − 1)∆𝑇𝐿𝐻,𝑚𝑜𝑑(ℎ) (4.2) 

with ℎ the vertical coordinate and ∆𝑇𝐿𝐻,𝑚𝑜𝑑 the vertical profile of modelled 

temperature change by latent heating (Schraff et al., 2016). The temperature profile 

used for scaling can also be predefined, but using the modeled latent heating profile 

∆𝑇𝐿𝐻,𝑚𝑜𝑑 allows for consistency with the model’s parameterization scheme and for 

temporal evolution of the vertical profile (Jones and Macpherson, 1997). Equations 

4.1 and 4.2 show that the increment ∆𝑇𝐿𝐻𝑁 is positive (negative) if the observed rain 

rate 𝑅𝑅𝑜𝑏𝑠 is higher (lower) than the background rain rate 𝑅𝑅𝑚𝑜𝑑. The determined 

temperature increment is then used to apply Newtonian nudging with the 

thermodynamic prognostic model equations over a defined time interval. Positive 

increments lead to heating and upward air motion in the model leading to 

condensation and precipitation generation (Schraff et al., 2016). In addition, a specific 

humidity increment is often added to avoid and immediate decrease in relative 

humidity and connected cloud dissipation in the model (Schraff et al., 2016). 

Several studies have shown that the assimilation of 𝑍𝐻 observations with LHN has 

a positive impact on QPF (e.g., Leuenberger and Rossa, 2007; Stephan et al., 2008; 

Schraff et al., 2016; Jacques et al., 2018; Jacques and Michelson, 2022). These 

encouraging results led to the operational implementation of LHN at several national 

meteorological services including the MetOffice (Jones and Macpherson, 1997; 

Macpherson, 2001), MeteoSwiss (Leuenberger and Rossa, 2007), and at DWD 

(Schraff et al., 2016). However, a clear drawback of the Newtonian relaxation or 

nudging approach is the fact that it can only be used to assimilate prognostic model 

variables, which limits its applicability to exploit, e.g., the full 3D structure of 

(polarimetric) radar observations in DA. 

4.1.3 Statistical Interpolation Schemes 

Over the past decades, the emphasis for initializing NWP models with radar 

observations has been on statistical interpolation methods. This section details the 

main statistical DA schemes that have been used for radar DA. These methods 

include variational DA schemes and sequential DA methods based on the EnKF 

(Evensen, 1994, 2003). First, the 3DVar method (Courtier et al., 1998) is derived, 

and the considerations and derivations made subsequently hand over to the 

formulations of the 4DVar method (e.g., Lewis and Derber, 1985; Le Dimet and 

Talagrand, 1986) – a generalization of the 3DVar method in terms of the inclusion of 

the time dimension of the observations – and the EnKF methods. The focus here is 

on the EnKF, in particular the LETKF (Hunt et al., 2007), which currently enjoys 
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great popularity in the (radar) DA community and is used in this thesis to assimilate 

polarimetric data from the German national C-band radar network (Chapter 5). In 

addition, first attempts to also use hybrid DA schemes and the particle filter are 

shortly described. 

4.1.3.1 The 3DVar Method 

The general objective of statistical DA schemes is to produce the best estimate of the 

true state of the atmospheric flow represented on the model grid (the analysis) in a 

least-squares sense by statistically combining meteorological observations and 

typically a prior model estimate in the form of a short-range model forecast (the 

background or first guess) considering their respective uncertainties (Talagrand, 

1997; Kalnay, 2003). The background model state can be expressed as an 𝑁-

dimensional vector �⃗�𝑏 consisting of the arrayed prognostic model fields with 𝑁 the 

number of model grid points times the number of prognostic model variables, which 

is on the order of 107 for modern operational NWP models (Kalnay, 2003). The 

observations can be described by an 𝑂-dimensional vector �⃗�𝑜, where 𝑂 is usually 

much smaller (about 104) than 𝑁. The uncertainties associated with the background 

and observation vectors �⃗�𝑏 and �⃗�𝑜 can be expressed through the 𝑁 × 𝑁 and 𝑂 × 𝑂 

covariance matrices of their respective (unknown) errors 휀⃗𝑏 and 휀⃗𝑜   

 𝑩 = E[휀⃗𝑏휀⃗𝑏
𝑇] (4.3) 

and 

 𝑹 = E[휀⃗𝑜휀⃗𝑜
𝑇]  (4.4) 

with �⃗�𝑇indicating the transpose of a vector �⃗� and E[𝑥] is the expected value of a 

random variable 𝑥. The length of the vectors 휀⃗𝑏 and 휀⃗𝑜 is 𝑁 and 𝑂, respectively, and  

 휀⃗𝑏 = �⃗�𝑏 − �⃗�𝑡 (4.5) 

and 

 휀⃗𝑜 = �⃗�𝑜 −ℋ(�⃗�𝑡) (4.6) 

with ℋ a (non-linear) observation operator, which maps a state vector �⃗� from model 

space (model grid points and variables) to observation space (observation locations 

and variables), e.g., using spatial interpolations or/and physical laws (Kalnay, 2003), 

and �⃗�𝑡 the (of course unknown) true atmospheric state represented on the model grid 

with dimension 𝑁. The background and observation errors 휀⃗𝑏 and 휀⃗𝑜 are assumed to 

be unbiased and uncorrelated. 
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The true state �⃗�𝑡 is treated as random variable described by a probability density 

function, which is attempted to be determined using Bayesian probabilistic arguments 

(e.g., Lorenc, 1986). According to Bayes’ rule, the a posteriori probability of the 

occurrence of an event A, given that an event B is known to have occurred, is 

proportional to the prior probability of the occurrence of the event A multiplied by 

the probability of the occurrence of the event B, given that the event A has occurred. 

This can be formulated mathematically by 

 𝑃(A|B) ∝ 𝑃(B|A)𝑃(A) (4.7) 

(Lorenc, 1986). Applied to DA, the prior probability 𝑃(A) is the probability that a 

random model state �⃗� is equal to the true atmospheric state �⃗�𝑡, 𝑃(B|A) is the 

conditional probability of the occurrence of the observation vector �⃗�𝑜 given the 

occurrence of �⃗�, and the a posteriori probability 𝑃(A|B) is the probability that �⃗� is 

equal to �⃗�𝑡 given the observations �⃗�𝑜, such that  

 𝑃(�⃗�|�⃗�𝑜) ∝ 𝑃(�⃗�𝑜|�⃗�)𝑃(�⃗�) (4.8) 

(Lorenc, 1986). The Bayesian estimate of �⃗�𝑡 is the vector �⃗� that maximizes the a 

posteriori probability 𝑃(�⃗�|�⃗�𝑜) (Lorenc, 1986). Both the prior probability 𝑃(�⃗�) and 

the conditional probability 𝑃(�⃗�𝑜|�⃗�) must be known to solve this problem. 

In the 3DVar method (and the 4DVar and EnKF methods), both probabilities 𝑃(�⃗�)  

and 𝑃(�⃗�𝑜|�⃗�) from Eq. (4.8) are assumed to be Gaussian distributed as  

 𝑃(�⃗�) = [(2𝜋)
𝑁

2 |𝑩|
1

2]−1exp[−
1

2
(�⃗�𝑏 − �⃗�)

𝑇𝑩−1(�⃗�𝑏 − �⃗�)] (4.9) 

and 

 𝑃(�⃗�𝑜|�⃗�) = [(2𝜋)
𝑂

2 |𝑹|
1

2]−1exp[−
1

2
(�⃗�𝑜 −ℋ(�⃗�))

𝑇
𝑹−1(�⃗�𝑜 −ℋ(�⃗�))] (4.10) 

(Kalnay, 2003). The prior distribution 𝑃(�⃗�) in Eq. (4.9) is the only source of 

information about the truth before the observations are considered, and thus the model 

state �⃗� that is most likely �⃗�𝑡 is given by �⃗� = �⃗�𝑏. Equation (4.8) can be written as 

𝑃(�⃗�|�⃗�𝑜) ∝ exp[− {
1

2
(�⃗� − �⃗�𝑏)

𝑇𝑩−1(�⃗� − �⃗�𝑏) +
1

2
(�⃗�𝑜 −ℋ(�⃗�))

𝑇
𝑹−1(�⃗�𝑜 −ℋ(�⃗�))}]

  (4.11) 

and the maximum a posteriori probability is obtained when the exponent 
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 𝐽(�⃗�) =
1

2
(�⃗� − �⃗�𝑏)

𝑇𝑩−1(�⃗� − �⃗�𝑏)⏟              
𝐽𝑏(�⃗�)

+
1

2
(�⃗�𝑜 −ℋ(�⃗�))

𝑇
𝑹−1(�⃗�𝑜 −ℋ(�⃗�))⏟                    

𝐽𝑜(�⃗�)

 (4.12) 

is minimized (Lorenc, 1986; Kalnay, 2003). The term 𝐽𝑏(�⃗�) measures the misfit 

between the background and �⃗� weighted by 𝑩, while 𝐽𝑜(�⃗�) quantifies the misfit 

between the observations and the background in observation space weighted by 𝑹. 

By linearizing the observation operator ℋ in Eq. (4.12) around the background state 

�⃗�𝑏 one may obtain the gradient of the cost function 𝐽 in Eq. (4.12) with respect to �⃗� 

 ∇𝐽(�⃗�) = 𝑩−1(�⃗� − �⃗�𝑏) + 𝑯
𝑇𝑹−1𝑯(�⃗� − �⃗�𝑏) − 𝑯

𝑇𝑹−1(�⃗�𝑜 −ℋ(�⃗�)) (4.13) 

(Kalnay, 2003) with 𝑯𝑇 the adjoint of a linearization 𝑯 of the nonlinear observation 

operator ℋ.  

The 3DVar method attempts to minimize the cost function in Eq. (4.12), i.e., 

finding that �⃗�, for which the gradient of the cost function vanishes, which is the 𝑁-

dimensional analysis vector �⃗�𝑎, such that 

 ∇𝐽(�⃗�𝑎) = 0. (4.14) 

Combination of Eqs. (4.13) and (4.14) finally results in   

 �⃗�𝑎 = �⃗�𝑏 + (𝑩
−1 +𝑯𝑇𝑹−1𝑯)−1𝑯𝑇𝑹−1(�⃗�𝑜 −ℋ(�⃗�𝑏)), (4.15) 

so that the analysis state �⃗�𝑎 is equal to the background state �⃗�𝑏 plus the observation 

increment (or innovation) 𝑑 = �⃗�𝑜 −ℋ(�⃗�𝑏) weighted by a weighting matrix 

(𝑩−1 +𝑯𝑇𝑹−1𝑯)−1𝑯𝑇𝑹−1. Equation (4.15) is the formal solution of the 3DVar 

problem.    

In practice, iterative approaches such as the steepest descent and conjugate 

gradient or quasi-Newton (Navon and Legler, 1987) methods are used to find the 

minimum of the cost function 𝐽 in Eq. (4.12) using its gradient in Eq. (4.13) (Kalnay, 

2003). In addition, the observation and background error covariance matrices 𝑹 and 

𝑩 must be estimated, since the exact error statistics of the observations and the 

background model field are never fully known. The matrix 𝑹 is typically assumed to 

be diagonal (e.g., Gao et al., 2004; Hu et al., 2006a), so that correlations between 

individual observations are neglected. The matrix 𝑩 filters the observations and 

defines how analysis increments are distributed over the model domain (e.g., Kalnay, 

2003). For operational weather forecasting, 𝑩 typically contains more than 1010 

elements (𝑁2), which must be determined from the innovation vectors 𝑑 

corresponding to about 107 to 108 observations per year (Courtier et al., 1998). 

Therefore, it is difficult to determine reasonably stable background statistics from 
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observations, which are instead inferred using statistical models, such as the NMC 

(National Meteorological Center) method (Parrish and Derber, 1992). This leads to a 

lack of appropriate balances between the model variables (e.g., Ge et al., 2012), which 

is a major drawback of 3DVar. Another drawback is the use of static background 

error covariance matrices (Kalnay, 2003; Gustafsson et al., 2018), especially at the 

convective scale. The ability to assimilate indirect observations and to solve the 

analysis problem globally are advantages of 3DVar (Kalnay, 2003; Sun, 2005b). 

Assimilation of Doppler radar observations with the 3DVar method resulted in 

improved QPF. E.g., Xiao et al. (2005) demonstrated positive effects of assimilating 

𝑉𝑟 observations with 3DVar on heavy rainfall prediction over South Korea. They used 

preconditioned control variables, i.e., the variables with respect to which the cost 

function minimization is performed. Such preconditioning is a common approach to 

achieve faster convergence by a more “spherical” 3DVar cost function (e.g., Parrish 

and Derber, 1992; Kalnay, 2003). Hu et al. (2006b), Hu and Xue (2007), and 

Schenkman et al. (2011a,b) also presented positive impacts of assimilating 𝑉𝑟 data 

using 3DVar in combination with a cloud analysis for assimilating 𝑍𝐻 observations 

on convective storm forecasts. More recently, Simonin et al. (2014) also showed 

positive impacts of assimilating 𝑉𝑟 data on the forecasts of rain and wind by the 

MetOffice Unified Model for a few hours. 

However, the direct assimilation of 𝑍𝐻 observations with 3DVar posed a greater 

challenge to the research community because appropriate background error statistics 

for hydrometeor variables such as rain mixing ratios are particularly difficult to 

obtain, e.g., via the NMC-method (Xiao et al., 2007). A technique to overcome this 

problem was developed by Xiao et al. (2007) for the MM5 3DVar DA system, in 

which they used the model total liquid water mixing ratio as the control variable 

instead of the rain-water mixing ratio, and partitioned the moisture and hydrometeor 

increments using a warm-rain microphysical process, its linear, and its adjoint. They 

then used the partitioned rain-water mixing ratio to enable direct assimilation of 𝑍𝐻 

data, which together with the assimilation of 𝑉𝑟 data, resulted in an improved short-

range QPF for a typhoon at landfall in South Korea. Routray et al. (2010) used this 

technique to investigate the impact of 𝑉𝑟 and 𝑍𝐻 data on the forecasts of Indian 

monsoon depressions using the Weather Research and Forecasting (WRF) model and 

its 3DVar system and showed positive effects of the radar DA on QPF. Sugimoto et 

al. (2009) presented improved QPF when using the technique of Xiao et al. (2005, 

2007) for the assimilation of Doppler radar observations in convective situations. To 

avoid potential problems due to the linearization of the 𝑍𝐻 operator in the 3DVar 

analysis, Wang et al. (2013a) assimilated 𝑍𝐻 data indirectly using an in-cloud water 

vapor estimator and showed significantly improved QPF up to seven hours. 

Work has also been done to improve the balance between model state variables in 

the 3DVar analysis by including weak constraints in the 3DVar cost function that 

allow the distribution of observational information also to model state variables that 

are not directly observed. This can be done by adding a “penalty-term” 𝐽𝑐 to the 

3DVar cost function in Eq. (4.12), which, e.g., incorporates a mass continuity 
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constraint (e.g., Gao et al., 2004; Hu et al., 2006b) also taken into account in the 

minimization process. Gao and Stensrud (2012) used the technique of Gao et al. 

(2004) within the ARPS 3DVar system, applied a 𝑍𝐻 forward operator that included 

a simple hydrometeor classification based on the model background temperature 

fields and reported an improved analysis and a dramatic improvement in the model 

spin-up for a convective storm. Another approach was taken by Vendrasco et al. 

(2016) to address the problem of spurious precipitation in the model domain and large 

errors in precipitation location and amount, in which they constrained the cost 

function in the WRF 3DVar system through a large-scale analysis at coarser 

resolution and found improved forecast skill. Similarly, Tong et al. (2016) used a 

divergence constraint in WRF 3DVar system and found reduced spurious 

precipitation and improved QPF. 

The found positive effects on short-term QPF, its ability to directly assimilate 

radar observations, and its overall computational efficiency, which makes real-time 

applications relatively practical (Ge et al., 2012), led to the use of the 3DVar method 

for assimilation of Doppler radar observations also in operational settings, e.g., in the 

French Application of Research to Operations at Mesoscale model and at the Korean 

Meteorological Administration. However, the use of static background error 

covariances, especially at the convective scale, and the need for the development of 

tangent linear radar forward operators and respective adjoints (see Eq. (4.13)) overall 

limit the usability of the 3DVar method to directly assimilate radar observations. 

4.1.3.2 The 4DVar Method 

The 4DVar DA method is a generalization of the 3DVar method, which was 

introduced to meteorology in the mid 1980s (e.g., Lewis and Derber, 1985; Le Dimet 

and Talagrand, 1986; Talagrand and Courtier, 1987) and saw its first operational 

implementation at the ECMWF (e.g., Rabier et al., 2000). The 4DVar method, unlike 

3DVar, considers the time dimension of observations distributed over an assimilation 

time window and also attempts to minimize a cost function (Kalnay, 2003) 

 𝐽(�⃗�(𝑡0)) = 𝐽𝑏(�⃗�(𝑡0)) + 𝐽𝑜(�⃗�(𝑡0)) (4.16) 

with 

 𝐽𝑏(�⃗�(𝑡0)) =
1

2
(�⃗�(𝑡0) − �⃗�𝑏(𝑡0))

𝑇𝑩0
−1(�⃗�(𝑡0) − �⃗�𝑏(𝑡0)) (4.17) 

and 

 𝐽𝑜(�⃗�(𝑡0)) =
1

2
∑ (ℋ(�⃗�𝑖) − �⃗�𝑜,𝑖)

𝑇
𝑹𝑖
−1(ℋ(�⃗�𝑖) − �⃗�𝑜,𝑖)

𝒯
𝑖=0 . (4.18) 
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Unlike 3DVar, in the 4DVar cost function in Eqs. (4.16) to (4.18), the control variable 

is the model state at the beginning of the assimilation time window �⃗�(𝑡0). The term 

𝐽𝑏 in Eq. (4.17) measures the misfit between the variable initial model state �⃗�(𝑡0) and 

the background state �⃗�𝑏 (at the initial time) weighted by the background error 

covariance matrix at the initial time 𝑩0. The term 𝐽𝑜 (Eq. (4.18)) is a time summation 

of all observation increments weighted by the observation error covariance matrix at 

the ith of 𝒯 observation times 𝑹𝑖 and is computed from the model state at the ith 

observation time �⃗�𝑖, which is obtained from the initial state �⃗�(𝑡0) by integration of 

the forecast model to the ith observation time. The analysis at the end of the 

assimilation window is obtained by integration of the model from time 𝑡0 to the end 

time 𝑡𝒯  with the initial model state �⃗�(𝑡0) that minimizes the cost function in 

Eq. (4.16) (Kalnay, 2003). In other words, the 4DVar method attempts to find an 

initial model state, which leads to a model forecast over the assimilation window that 

best fits the observations distributed over it. Therefore, the forecast model is a strong 

constraint on the 4DVar analysis solution (Sasaki, 1970; Kalnay, 2003).  

In practice, iterative minimization algorithms like the steepest decent method and 

the conjugate gradient or quasi-Newton (Navon and Legler, 1987) are utilized to 

solve the 4DVar problem like for 3DVar. To this end, the gradient of the cost function 

𝐽 in Eq. (4.16) with respect to �⃗�(𝑡0) is required, which can be expressed as 

 ∇𝐽𝑏(�⃗�(𝑡0)) = 𝑩0
−1(�⃗�(𝑡0) − �⃗�𝑏(𝑡0)) (4.19) 

for the background term and 

 ∇𝐽𝑜(�⃗�(𝑡0)) = ∑ 𝑳(𝑡𝑖, 𝑡0)
𝑇𝑯𝑖

𝑇𝑹𝑖
−1(ℋ(�⃗�𝑖) − �⃗�𝑜,𝑖)

𝒯
𝑖=0  (4.20) 

for the observation term (Kalnay, 2003). In Eq. (4.20), 𝑳(𝑡𝑖, 𝑡0)
𝑇 is the adjoint linear 

tangent forecast model operator (consisting of the product of the adjoint linear model 

operators at all observation times from 𝑡𝑖 to 𝑡0), which propagates the observation 

information backward from time 𝑡𝑖 to the initial time 𝑡0, and 𝑯𝑖
𝑇 is the adjoint 

linearized observation operator in the vicinity of the model state at the ith observation 

time �⃗�𝑖 obtained from the incipient model forward integration. The integrations of the 

adjoint forecast model backward to the initial time in Eq. (4.20) are common for 

multiple time intervals. Thus, the calculation of the gradient of 𝐽 can be made more 

feasible by rewriting Eq. (4.20) as  

 ∇𝐽𝑜(�⃗�(𝑡0)) = 𝑑
̇
0 + 𝑳0

𝑇(𝑑
̇
1 + 𝑳1

𝑇 (𝑑
̇
2 +⋯+ 𝑳𝒯−1

𝑇 𝑑
̇
𝒯)) (4.21) 

with the negative observation increments weighted by 𝑹𝑖 in model space 
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 𝑑
̇
𝑖 = 𝑯𝑖

𝑇𝑹𝑖
−1(ℋ(�⃗�𝑖) − �⃗�𝑜,𝑖)  (4.22) 

and 𝑳𝑖−1
𝑇  the adjoint linear tangent forecast model in the vicinity of �⃗�𝑖 propagating a 

state vector from time 𝑡𝑖 to time 𝑡𝑖−1 (Kalnay, 2003).  

The 4DVar method has the advantage of being able, like 3DVar, to assimilate 

indirect observations such as radar observations with certain constraints. In contrast 

to 3DVar, if the forecast model was perfect and the background error covariance 

matrix at the in initial time 𝑩0 was exact, the 4DVar analysis at the end of the 

assimilation window was found to coincide with the analysis obtained with the 

extended KF (Lorenc, 1986), which uses the linearized forecast model to advance the 

background error covariance matrix and calculates the analysis error covariance 

matrix based on the Kalman gain (Kalnay, 2003). Thus, 4DVar is able to implicitly 

advance the background error covariance to the analysis time (Kalnay, 2003). 

However, the analysis error covariance matrix at the end of the assimilation window 

is not provided in 4DVar. Consequently, it must be assumed to be static as in 3DVar 

(Gustafsson et al., 2018). The perfect model assumption intrinsic in 4DVar is a 

drawback, since observations from the end of the assimilation window are weighted 

in the same way as those from the beginning, even though the newer observation 

information is integrated by the adjoint of the (non-perfect) model more often than 

the older information (Kalnay, 2003). In addition, the 4DVar method is 

computational expensive because the forecast model is used several times in the 

minimization process (Sun, 2005b). Finally, another advantage of 4DVar is that all 

the observations in the assimilation window are considered at their respective 

observation times and a global solution is sought for all observations simultaneously. 

Thus, the 4DVar analysis satisfies the model equations (Kalnay, 2003). 

The 4DVar technique was first tested for radar observations by, e.g., Sun et al. 

(1991) and Kapitza (1991), who attempted, with some success, to retrieve unobserved 

velocity and temperature fields from single-Doppler radar data using high-resolution 

boundary layer models and their adjoints. Sun and Crook (1997) developed the 

frequently used 4DVar Doppler Radar Analysis System (VDRAS), which assimilated 

single- or multiple-Doppler radar observations into a cloud-scale NWP model with a 

warm-rain parameterization scheme. They showed that VDRAS was able to retrieve 

the detailed structure of the wind, thermodynamics, and microphysics from both 

single- and dual-Doppler radar data of a simulated convective storm. However, they 

also noted difficulties in minimizing the 4DVar cost function due to high 

nonlinearities in the parameterization scheme used. Indirect assimilation of synthetic 

𝑍𝐻 data using rain-water mixing ratio estimators produced better results than their 

direct assimilation, which they attributed to the nonlinearity introduced into the cost 

function by the highly nonlinear reflectivity observation operator. Sun and Crook 

(1998) applied VDRAS to a real convective storm over Florida and found that the 

vertical velocity, buoyancy, and water-vapor mixing ratio fields could be retrieved 

well by assimilating 𝑉𝑟 data and 𝑍𝐻-based rain-water mixing ratios. Later, VDRAS 
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was also successfully applied in several studies for convective-scale storm analyses 

and forecasting (e.g., Sun, 2005a; Sun and Zhang, 2008; Sun et al., 2010).  

Wang et al. (2013b) described the implementation of Doppler radar data 

assimilation in the WRF model 4DVar system. They modified the existing WRF 

4DVar system by adding cloud water, rainwater, and vertical velocity as control 

variables, by modeling the respective error covariances, and incorporating the 

tangent-linear and adjoint models of a Kessler warm-rain microphysics scheme 

following Sun and Crook (1997) to allow for better minimization of the cost function. 

Moreover, they used a large ensemble to determine the background error covariance, 

and assimilated 𝑍𝐻 indirectly, similar to Sun and Crook (1997), following Wang et 

al. (2013a) to avoid a dry bias in the rainwater analysis. Their modifications resulted 

in successful convective-scale analyses and improved QPF. Kawabata et al. (2011) 

modified the 4DVar system of a nonhydrostatic convective-scale model to directly 

assimilate 𝑍𝐻 data using the full nonlinear forward model including ice microphysics, 

and a warm-rain-only adjoint model, which resulted in an improved prediction of 

heavy rainfall in the Tokyo, Japan, metropolitan area. More recently, Hawkness-

Smith and Simonin (2021) investigated the direct assimilation of 𝑍𝐻 observations in 

the MetOffice Unified Model with an hourly 4DVar cycle. Only rainwater mixing 

ratios diagnosed from cloud water increments were updated in the 4DVar analysis, 

although the ice phase contributed to the 𝑍𝐻 forward operator.  

The consideration of only warm-rain microphysical processes in the assimilation 

of radar observations with the 4DVar method, to the best of the author’s knowledge, 

may be due to difficulties in formulating linear adjoints of highly complex ice 

microphysical processes, which may hamper the ability of the method to update NWP 

models with respect to the ice phase. Ice processes, however, play an important role 

not only in intense summertime convective situations, but especially also in winter 

ice-phase precipitation. For the assimilation of ice-phase radar data in these 

situations, the EnKF approach, detailed in the following section, is much more 

appropriate, because it estimates the highly flow-dependent forecast uncertainties at 

the convective scale from an ensemble of model forecasts and does not require the 

utilization of linearized models and operators and their adjoints. 

4.1.3.3 The Ensemble Kalman Filter 

The KF (Kalman, 1960; Kalman and Bucy, 1961) and 3DVar are formally similar 

approaches to determine the analysis. The former attempts to solve the analysis 

problem by computing the optimal weight (or gain) matrix, while the latter attempts 

to solve it by minimizing a cost function (Kalnay, 2003). A major difference between 

the two methods, however, is that the background error covariance matrix in the KF 

is advanced using the forecast model, while a static covariance matrix is used in the 

3DVar method. For typical weather forecast models, the extended KF (EKF) is more 

appropriate, as it allows for nonlinear forecast models to advance the model state 

while a model linearization is used to advance the forecast error covariance matrix 
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(Ide et al., 1997; Kalnay, 2003). More specifically, the EKF forecast step evolves the 

analysis �⃗�𝑎 and the analysis error covariance matrix 𝑷𝑎 from time 𝑡𝑖−1 to 𝑡𝑖 as  

 �⃗�𝑓(𝑡𝑖) = ℳ𝑖−1(�⃗�𝑎(𝑡𝑖−1)) (4.23) 

and 

 𝑷𝑓(𝑡𝑖) = 𝑳𝑖−1𝑷𝑎(𝑡𝑖−1)𝑳𝑖−1
𝑇 + 𝑸(𝑡𝑖−1). (4.24) 

(Ide et al., 1997; Kalnay, 2003). In Eq. (4.23), �⃗�𝑓 is the forecasted model state and 

ℳ𝑖−1 is the (non-linear) forward model operator used to evolve a model state from 

time 𝑡𝑖−1 to 𝑡𝑖. In Eq. (4.24), 𝑷𝑓 is the advanced forecast error covariance matrix, 

𝑳𝑖−1 is the linear tangent forecast model transforming a perturbation from time 𝑡𝑖−1 

to 𝑡𝑖 (Lorenz, 1965), 𝑳𝑖−1
𝑇  is its adjoint, and 𝑸 is the covariance matrix of a zero-mean 

noise process representing subgrid-scale processes not resolved by the forecast model 

(Ide et al., 1997). The EKF analysis step then generates the new analysis state �⃗�𝑎 and 

the new analysis error covariance matrix 𝑷𝑎 at time 𝑡𝑖 according to  

 �⃗�𝑎(𝑡𝑖) = �⃗�𝑓(𝑡𝑖) + 𝑲𝑖[�⃗�𝑜,𝑖 −ℋ𝑖 (�⃗�𝑓(𝑡𝑖))] (4.25) 

and 

 𝑷𝑎(𝑡𝑖) = (𝑰 − 𝑲𝑖𝑯𝑖)𝑷𝑓(𝑡𝑖) (4.26) 

with 𝑰 the identity matrix and the Kalman gain (or weighting matrix) 

 𝑲𝑖 = 𝑷𝑓(𝑡𝑖)𝑯𝑖
𝑇[𝑹𝑖 +𝑯𝑖𝑷𝑓(𝑡𝑖)𝑯𝑖

𝑇]−1 (4.27) 

equal to the weighting matrix in Eq. (4.15) in the case that 𝑷𝑓 in Eq. (4.27) and 𝑩 in 

Eq. (4.15) were identical (Ide et al., 1997; Kalnay, 2003). The EKF can provide the 

best (least-squares) linear unbiased estimate of the true state �⃗�𝑡 and its associated 

error covariance matrix if the system under consideration is not too unstable and the 

observations are not too sparse in time (Miller et al., 1994). Unfortunately, the 

application of the EKF to meteorological DA problems is inappropriate, since the 

updating of the forecast error covariance matrix in the forecast step (Eq. (4.24)) 

requires computational expenses that are as high as performing 𝑁, the number of 

degrees of freedom of the model state (~107), model integrations (Kalnay, 2003). 

The ensemble KF (EnKF), originally proposed by Evensen (1994) is a Monte 

Carlo approximation of the classical KF (Whitaker and Hamill, 2002). It uses an 

ensemble of short-term model forecasts to estimate the forecast error covariance 
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matrix at the analysis time required for the calculation of the Kalman gain, which is 

then used to generate the analysis ensemble. The ensemble means of the forecast and 

analysis ensembles �⃗�𝑓
̅̅̅ and �⃗�𝑎

̅̅ ̅ (ensemble means hereafter denoted by overbars) 

correspond to the states �⃗�𝑓 and �⃗�𝑎 in the EKF in Eqs. (4.23) and (4.25), respectively, 

while the spreads of the forecast and analysis ensembles �⃗�𝑓
𝑚 and �⃗�𝑎

𝑚 (ensemble 

members hereafter indicated by the superscript m) can be used to estimate the error 

covariance matrices 𝑷𝑓 and 𝑷𝑎 in Eqs. (4.24) and (4.26) (Houtekamer et al., 2005). 

The EnKF forecast and analysis step equations in Eqs. (4.23) to (4.26) can be written, 

dropping the time index for time 𝑡𝑖 for clarity, as (Houtekamer and Mitchell, 2005): 

 �⃗�𝑓
𝑚 = ℳ(�⃗�𝑎

𝑚(𝑡𝑖−1)) + �⃗�
𝑚    with    �⃗�𝑚~𝒩(0,𝑸), (4.28) 

 𝑷𝑓𝑯
𝑇 =

1

𝑀−1
∑ (�⃗�𝑓

𝑚 − �⃗�𝑓
̅̅̅)(ℋ(�⃗�𝑓

𝑚) −ℋ(�⃗�𝑓
𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑇𝑀

𝑚=1 , (4.29) 

 𝑯𝑷𝑓𝑯
𝑇 =

1

𝑀−1
∑ (ℋ(�⃗�𝑓

𝑚) −ℋ(�⃗�𝑓
𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )(ℋ(�⃗�𝑓

𝑚) −ℋ(�⃗�𝑓
𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑇𝑀

𝑚=1 , (4.30) 

 𝑲 = 𝑷𝑓𝑯
𝑇(𝑹 + 𝑯𝑷𝑓𝑯

𝑇)−1, (4.31) 

 �⃗�𝑜
𝑚 = �⃗�𝑜 + 𝑟

𝑚     with    𝑟𝑚~𝒩(0, 𝑹), (4.32) 

and 

 �⃗�𝑎
𝑚 = �⃗�𝑓

𝑚 +𝑲(�⃗�𝑜
𝑚 −ℋ(�⃗�𝑓

𝑚)). (4.33) 

To obtain the new forecast ensemble in Eq. (4.28) with the full nonlinear model ℳ, 

the noise process �⃗�𝑚, which is normally distributed respecting the noise covariance 

matrix 𝑸, is added. The Kalman gain 𝑲 in Eq. (4.31) can be calculated directly from 

the terms 𝑷𝑓𝑯
𝑇 in Eq. (4.29) and 𝑯𝑷𝑓𝑯

𝑇 in Eq. (4.30) determined from the forecast 

ensemble, with 𝑀 the ensemble size, without the need for a linearization of the 

observation operator ℋ or adjoints. Moreover, the very large forecast error 

covariance matrix 𝑷𝑓 required for the calculation of 𝑲 in Eq. (4.31) does not need to 

be computed, and thus only the ensemble members �⃗�𝑓
𝑚, but not 𝑷𝑓, need to be stored. 

Finally, Eq. (4.33) shows the EnKF analysis step using observations normally 

perturbed by respecting the observation error covariance matrix 𝑹 (see Eq. (4.32)).  

Observation perturbation was not implemented in the original EnKF (Evensen, 

1994). Burgers et al. (1998) stated that without the use of randomly perturbed 

observations for atmospheric applications, the error covariance matrix determined 

from the analysis ensemble is significantly underdetermined, potentially leading to 

filter divergence (Whitaker and Hamill, 2002). This point can be clarified writing the 

EnKF analysis step equation in Eq. (4.33) in terms of an update to the ensemble mean 
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 �⃗�𝑎
̅̅ ̅ = �⃗�𝑓

̅̅̅ + 𝑲(�⃗�𝑜
̅̅̅ − ℋ(�⃗�𝑓

̅̅̅)) (4.34) 

and an update of the deviations from the ensemble mean 

 �⃗�𝑎
𝑚′ = �⃗�𝑓

𝑚′ + �̃�(�⃗�𝑜
𝑚′ −ℋ(�⃗�𝑓

𝑚′)) (4.35) 

with primes denoting deviations from the ensemble mean and 𝑲 and �̃� the classical 

Kalman gain (see Eq. (4.31)) and the gain for updating the deviations from the 

ensemble mean (Whitaker and Hamill, 2002). The �⃗�𝑜
̅̅̅ can be interpreted as the 

original observations, while the �⃗�𝑜
𝑚′ are the perturbations from �⃗�𝑜

̅̅̅ respecting 𝑹. The 

update of the analysis error covariance matrix 𝑷𝑎 may be written as  

 𝑷𝑎 = (𝑰 − 𝑲𝑯)𝑷𝑓 = (𝑰 − 𝑲𝑯)𝑷𝑓(𝑰 − 𝑲𝑯)
𝑇 +𝑲𝑹𝑲𝑇 (4.36) 

(Whitaker and Hamill, 2002). Burgers et al. (1998) noted that when 𝑲 = �̃�, as in the 

original EnKF (Whitaker and Hamill, 2002), and no observation perturbations are 

used (i.e., �⃗�𝑜
𝑚′ = 0), there is no analog to the term 𝑲𝑹𝑲𝑇 in Eq. (4.36) in the analysis 

ensemble error covariance matrix (the same observations are used for all ensemble 

members), resulting in a systematic underestimation of 𝑷𝑎.  

There are various manifestations of the EnKF, most of which can be classified as 

either stochastic or deterministic in generating the analysis ensemble (Tippett et al., 

2003; Meng and Zhang, 2011). The stochastic approaches use perturbed observations 

as described above to maintain spread in the analysis ensemble (Eqs. (4.28) to (4.33); 

e.g., Houtekamer and Mitchell, 1998), while the deterministic approaches use a 

deterministic transformation of the forecast to the analysis ensemble without the need 

for observation perturbations. The deterministic approaches, mostly in the form of 

ensemble square-root filters (EnSRF; for a review see Tippett et al., 2003), are 

justified by the argument that the perturbation of the observations, as done in the 

stochastic approaches, represents an additional source of sampling error, which, 

especially for smaller ensemble sizes, can reduce the accuracy of the analysis error 

covariances and increase the probability of their underestimation, potentially leading 

to filter divergence (Tippett et al., 2003; Houtekamer and Mitchell, 2005). Ensembles 

usable for atmospheric applications are typically severely limited in size due to 

computational constraints, so the deterministic EnKF approaches have been used 

more frequently overall. E.g., Whitaker and Hamill (2002) proposed a serial EnSRF 

that uses the traditional Kalman gain 𝑲 to update the ensemble mean (as in 

Eq. (4.34)), but uses a modified gain �̃� to update the deviations from the ensemble 

mean, so that the resulting analysis ensemble satisfies Eq. (4.36) without applying 

observation perturbations. Their scheme has proven success in some mesoscale 

ensemble-based assimilation studies (e.g., Snyder and Zhang, 2003). Further 

deterministic EnKF approaches equivalent to the serial EnSRF of Whitaker and 
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Hamill (2002) in terms of functionality are, e.g., the ensemble adjustment KF (EAKF; 

Anderson, 2001) and the ensemble transform KF (ETKF; Bishop et al., 2001). Both 

methods generate the analysis ensemble mean using of the traditional Kalman gain 

𝑲 and both methods generate the updated deviations from the analysis ensemble 

mean with the constraint of satisfying Eq. (4.36). The EAKF utilizes a linear operator 

𝑨 = 𝑰 − �̃�𝑯 to generate an analysis ensemble with a sample covariance matrix that 

satisfies Eq. (4.36) by “adjusting” the background forecast ensemble. The ETKF uses 

an ensemble transformation and a normalized observation operator to obtain the 

analysis error covariances directly from the background error covariances in a low-

dimensional space spanned by the ensemble perturbations.  

Since forecast ensemble sizes are typically very limited in practice, non-zero 

uncertainty in the model state estimate can only be described in the subspace spanned 

by the ensemble (Hunt et al., 2007), i.e., the ensemble-estimated forecast error 

covariance matrix is severely rank deficient. In the case of a high-dimensional 

unstable system, such as a weather forecast model, forecast errors will grow in 

directions outside of the ensemble subspace and the analysis will not be able to make 

corrections for these errors (Hunt et al., 2007). As a result, the analysis ensemble 

spread tends to be significantly underestimated (Meng and Zhang, 2011), which can 

lead to filter divergence by giving too much credibility to the background state 

relative to new observations, i.e., the model trajectory decouples from the truth (Hunt 

et al., 2007). A common solution to avoid too small analysis ensemble spreads is 

covariance inflation, which artificially increases either the spread of the forecast 

ensemble or the spread of analysis ensemble. Inflating the background ensemble 

covariance can be interpreted as localizing observations in time, since the influence 

of past observations on the current analysis decays exponentially with increasing 

observation age by increasing the uncertainty in the background state (which contains 

information about the past observations) in each analysis cycle (Hunt et al., 2007). 

Especially in the presence of model errors (which is always the case), such temporal 

observation localization is advantageous, because the erroneous model is not able to 

reliably propagate past observation information over an unlimited time period (Hunt 

et al., 2007). Covariance inflation can be accomplished, e.g., by multiplicative 

covariance inflation (MCI; Anderson and Anderson, 1999), additive covariance 

inflation (ACI; e.g., Mitchell et al., 2002), or covariance relaxation to prior 

perturbations (CRPP; Zhang et al., 2004) or to prior spread (CRPS; Whitaker and 

Hamill, 2012). In MCI, all ensemble perturbations, i.e., the deviations of the ensemble 

members from the ensemble mean, either of the forecast or of the analysis ensemble, 

are multiplied by a factor slightly larger than one to increase the ensemble spread. 

ACI attempts to achieve a similar result by adding a small multiple of the identity 

matrix to either the background or the analysis ensemble covariance matrices. In 

CRPP, each analysis ensemble member is linked to a background ensemble member 

and the new analysis perturbation from the analysis ensemble mean is a weighted 

average of the former analysis perturbations and the corresponding background 

perturbations from their background ensemble means. Similarly, in CRPS the new 
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analysis ensemble spread is obtained as a weighted average of the actual analysis 

ensemble and the forecast ensemble spreads.  

Another challenge posed by small ensemble sizes is sampling error. Erroneously 

large estimated correlations between model grid points that are far apart in the model 

domain can lead to spurious updates in the analysis step (Houtekamer and Mitchell, 

1998; Hamill et al., 2001). Such spurious long-range correlations would result in 

random analysis increments if not suppressed (Hunt et al., 2007). Spatial observation 

localization is often used to overcome this problem, and there are two general ways 

to achieve this: explicit and implicit observation localization (Hunt et al., 2007). In 

the explicit approach, only observations within a certain radius around an analysis 

grid point are used for the analysis (e.g., Houtekamer and Mitchell, 1998; Ott et al., 

2004), and all observations beyond this radius are neglected. In the implicit approach, 

the entries of the forecast error covariance matrix are multiplied by a function that 

continuously decays from one to zero as the observation location moves from the 

position of the analysis grid point to a certain distance from that grid point. For this 

purpose, a Schur or Hadamard (element-wise) product of the ensemble-estimated 

forecast error covariance matrix with a correlation function with local support is 

applied to produce the localized forecast error covariance matrix (e.g., Houtekamer 

and Mitchell, 2001; Hamill et al., 2001; Whitaker and Hamill, 2002). Typically, a 

fifth-order function of Gaspari and Cohn (1999) is used, which is similar to a 

Gaussian function but has compact support (i.e., the function has zero values beyond 

a certain distance). Covariance localization can be performed in both horizontal and 

vertical directions, and is not only advantageous for reducing the effects of spurious 

long-range correlations, but also for reducing computational costs and alleviating the 

problem of covariance matrix rank deficiency (Meng and Zhang, 2011). Covariance 

localization is a key element of the Local Ensemble KF (LEKF) introduced by Ott et 

al. (2004), which follows the idea that the forecast error vectors corresponding to 

local regions tend to lie in subspaces of the full model state space of much lower 

dimensionality. Thus, the LEKF uses observations only within local subspaces and, 

instead of processing the observations serially as in the ETKF, was designed to 

compute analyses at different model grid points in parallel.  

The LETKF following Hunt et al. (2007) is closely related to the ETKF and the 

LEKF approaches. It uses a symmetric square root to generate the analysis ensemble 

from the forecast ensemble and thus is a deterministic EnKF approach. It was 

developed for being easily implemented and computationally efficient also for large 

spatiotemporally chaotic systems, and constructs the analysis ensemble from 

appropriate linear combinations of the forecast ensemble members simultaneously 

and independently for each analysis grid point via  

 �⃗�𝑎
𝑚 = �⃗�𝑏

̅̅ ̅ + 𝑿𝑏 �⃗⃗⃗�𝑎
𝑚 (4.37) 
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(Hunt et al., 2007). In Eq. (4.37), �⃗�𝑎
𝑚 is the mth of 𝑀 analysis ensemble members of 

dimension 𝑁, �⃗�𝑏
̅̅ ̅ is the 𝑁-dimensional background ensemble mean, 𝑿𝑏 is a 𝑁 ×𝑀 

matrix of perturbation vectors of the background ensemble members from the 

background ensemble mean 

 𝑿𝑏 = [�⃗�𝑏
𝑚=1 − �⃗�𝑏

̅̅ ̅ ⋯ �⃗�𝑏
𝑚=𝑀 − �⃗�𝑏

̅̅ ̅] (4.38) 

with �⃗�𝑏
𝑚 the mth background ensemble member, and �⃗⃗⃗�𝑎

𝑚 is an 𝑀-dimensional 

weighting coefficient vector. The vector �⃗⃗⃗�𝑎
𝑚 can be decomposed into an ensemble 

mean �⃗⃗⃗�𝑎
̅̅ ̅̅  and a perturbation 𝑾𝑎

𝑚 by 

 �⃗⃗⃗�𝑎
𝑚 = �⃗⃗⃗�𝑎

̅̅ ̅̅  + 𝑾𝑎
𝑚 (4.39) 

with all 𝑀 columns 𝑾𝑎
𝑚 of the 𝑀 ×𝑀 weighting matrix 𝑾𝑎. The LETKF attempts 

to determine appropriate vectors 𝒘𝑎
𝑚, which is done like in the 3DVar and 4DVar 

approaches by minimizing a cost function 

 𝐽(�⃗�) = (�⃗� − �⃗�𝑏
̅̅ ̅)

𝑇
𝑷𝑏
−1(�⃗� − �⃗�𝑏

̅̅ ̅) + (�⃗�𝑜 −ℋ(�⃗�))
𝑇
𝑹−1(�⃗�𝑜 −ℋ(�⃗�)) (4.40) 

with the background error covariance matrix 𝑷𝑏 estimated from the forecast ensemble 

 𝑷𝑏 = (𝑀 − 1)−1𝑿𝑏𝑿𝑏
𝑇 (4.41) 

to determine the analysis ensemble mean �⃗�𝑎
̅̅ ̅. The estimation of 𝑷𝑏 from an ensemble 

of size 𝑀 ≪ 𝑁 makes 𝑷𝑏 to be severely rank deficient (rank at most 𝑀− 1), thus 𝑷𝑏 

is not invertible and the cost function in Eq. (4.40) can not be minimized. However, 

𝑷𝑏
−1 is well-defined on the subspace 𝒮 spanned by the ensemble perturbation vectors 

(the column space of 𝑿𝑏), and the cost function can thus be minimized on 𝒮 (Hunt et 

al., 2007). Performing the analysis for the ensemble mean on 𝒮 is challenging, 

because the individual perturbation vectors representing the basis for 𝒮 are linearly 

dependent by definition (see Eq. (4.38)). This problem can be avoided by considering 

another 𝑀-dimensional subspace �̃� from which the perturbation matrix 𝑿𝑏 transforms 

an 𝑀-dimensional vector �⃗⃗⃗� into the 𝑀-dimensional subspace 𝒮 spanned by the 

ensemble perturbations (Hunt et al., 2007). A model state �⃗� can then be expressed by 

 �⃗� = �⃗�𝑏
̅̅ ̅ + 𝑿𝑏 �⃗⃗⃗�. (4.42) 

The cost function in Eq. (4.40) can then be reformulated for the subspace �̃� with �⃗⃗⃗� 

as control variable regarded as a Gaussian random vector with zero mean and 

covariance matrix (𝑀 − 1)−1𝑰 to 
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 𝐽(�⃗⃗⃗�) = (𝑀 − 1)�⃗⃗⃗�𝑇 �⃗⃗⃗� + [�⃗�𝑜 −ℋ(�⃗�𝑏
̅̅ ̅ + 𝑿𝑏 �⃗⃗⃗�)]

𝑇𝑹−1[�⃗�𝑜 −ℋ(�⃗�𝑏
̅̅ ̅ + 𝑿𝑏 �⃗⃗⃗�) 

  (4.43) 

(Hunt et al., 2007). It can be shown that if �⃗⃗⃗�𝑎
̅̅ ̅̅  minimizes 𝐽 given by Eq. (4.43), then 

�⃗�𝑎
̅̅ ̅ = �⃗�𝑏

̅̅ ̅ + 𝑿𝑏 �⃗⃗⃗�𝑎
̅̅ ̅̅  minimizes 𝐽 given by Eq. (4.40) (Hunt et al., 2007). By applying 

the (non-linear) observation operator ℋ to all background ensemble members, 

�⃗�𝑏
𝑚 =  ℋ(�⃗�𝑏

𝑚), and calculating the corresponding ensemble mean in observation 

space, �⃗�𝑏
̅̅ ̅ = ℋ(�⃗�𝑏

𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , ℋ can be “linearized” through interpolation between �⃗�𝑏
𝑚 and 

the corresponding ensemble mean �⃗�𝑏
̅̅ ̅ using  

 ℋ(�⃗�𝑏
̅̅ ̅ + 𝑿𝑏 �⃗⃗⃗�) ≈ �⃗�𝑏

̅̅ ̅ − 𝒀𝑏 �⃗⃗⃗� (4.44) 

(Hunt et al., 2007). In Eq. (4.44), the 𝑂 ×𝑀 matrix 𝒀𝑏 comprises, similar to 𝑿𝑏, the 

perturbations from the ensemble mean in observation space 

 𝒀𝑏 = [�⃗�𝑏
𝑚=1 − �⃗�𝑏

̅̅ ̅ ⋯ �⃗�𝑏
𝑚=𝑀 − �⃗�𝑏

̅̅ ̅]. (4.45) 

Using Eq. (4.44) in the cost function in Eq. (4.53) yields  

 𝐽∗(�⃗⃗⃗�) = (𝑀 − 1)�⃗⃗⃗�𝑇 �⃗⃗⃗� + [�⃗�𝑜 − �⃗�𝑏
̅̅ ̅ − 𝒀𝑏 �⃗⃗⃗�]

𝑇𝑹−1[�⃗�𝑜 − �⃗�𝑏
̅̅ ̅ − 𝒀𝑏 �⃗⃗⃗�], (4.46) 

which formulation in the low-dimensional ensemble space �̃� allows for the explicit 

calculation of its minimizer �⃗⃗⃗�𝑎
̅̅ ̅̅ , i.e., the weighting coefficient vector for the analysis 

ensemble mean, as  

 �⃗⃗⃗�𝑎
̅̅ ̅̅ = �̃�𝑎𝒀𝑏

𝑇𝑹−1(�⃗�𝑜 − �⃗�𝑏
̅̅ ̅) (4.47) 

(Hunt et al., 2007; Schraff et al., 2016) and the corresponding analysis error 

covariance matrix in �̃� as 

 �̃�𝑎 = [(𝑀 − 1)𝑰 + 𝒀𝑏
𝑇𝑹−1𝒀𝑏]

−1. (4.48) 

Finally, the analysis ensemble mean in the full model space is given by 

 �⃗�𝑎
̅̅ ̅ = �⃗�𝑏

̅̅ ̅ + 𝑿𝑏 �⃗⃗⃗�𝑎
̅̅ ̅̅ , (4.49) 

and the analysis ensemble perturbations 

 𝑿𝑎 = [�⃗�𝑎
𝑚=1 − �⃗�𝑎

̅̅ ̅ ⋯ �⃗�𝑎
𝑚=𝑀 − �⃗�𝑎

̅̅ ̅] = 𝑿𝑏𝑾𝑎 (4.50) 
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are constructed using a symmetric square-root  

 𝑾𝑎 = [(𝑀 − 1)�̃�𝑎]
1/2, (4.51) 

which is applied to ensure that the sum of analysis ensemble perturbations from the 

analysis ensemble mean is zero and that the matrix 𝑾𝑎 is a continuous function of 

the covariance matrix �̃�𝑎 (Hunt et al., 2007; Schraff et al., 2016). The analysis 

ensemble can then be sampled using Eqs. (4.37) and (4.49). When observations are 

very frequent and irregularly distributed in time, the LETKF is best used in a 4D 

fashion (Hunt et al., 2007), which seeks linear combinations of the forecast ensemble 

trajectories over an assimilation time window that best fit the distributed observations 

rather than seeking optimal linear combinations of model states at particular times. 

Thus, the 4D version of the LETKF uses the ensemble-estimated 4D background 

covariance matrix at the times and locations of the observations to produce the 

analysis at the end of the DA window (Schraff et al., 2016).  

The EnKF method has become increasingly popular in recent decades because of 

its ability to explicitly estimate and evolve the highly flow-dependent background 

error covariance matrix using an ensemble of forecasts (Schraff et al., 2016). The 

ensemble-estimated covariances are valuable for DA especially at the convective 

scale, because in principle all the variables of a model can be updated from any 

observation type, e.g., temperature or humidity fields can be updated by assimilating 

𝑍𝐻 or 𝑉𝑟 observations, even at model grid points far from the observation location 

(e.g., Snyder and Zhang, 2003; Snook et al., 2015). In addition, the EnKF does not 

require linearizations and adjoints of the forecast model (Hunt et al., 2007; Snook et 

al., 2011). This is a clear advantage over 3DVar and 4DVar and also allows the use 

of highly nonlinear observation operators, which is especially important for the direct 

assimilation of polarimetric radar observations (Putnam et al., 2019). Since 

linearizations and adjoints are not required, the use of the EnKF is relatively easy to 

implement and, most obviously for LETKF, to parallelize (Dowell et al., 2011). 

Furthermore, the EnKF analysis ensembles typically provide reasonable initial 

conditions for ensemble forecasts, which are considered valuable for weather 

prediction at the convective scale (Snook et al., 2015). However, compared to 3DVar, 

the EnKF has the disadvantage of much higher computational costs due to the need 

for forward integration of an ensemble of model states (e.g., Snook et al., 2015). The 

use of relatively small ensembles to reduce computational cost can lead to insufficient 

ensemble spreads and consequently filter divergence (e.g., Gao and Xue, 2008). 

Furthermore, uncertainty can only be quantified in the subspace spanned by the 

ensemble, which can be a strong constraint if the ensemble size is significantly 

smaller than the number of degrees of freedom of the model (Hunt et al., 2007). 

Another strong limitation of the EnKF, but also of 3DVar and 4DVar, is the 

assumption of Gaussian error statistics (Bick et al., 2016), especially at the convective 

scale. However, the strong advantages of the EnKF have led to its operational 

implementation in the form of the LETKF in Italy at COMET (Bonavita et al., 2010), 
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at DWD, and MeteoSwiss (Schraff et al., 2016), and for research purposes in Japan 

at JMA (Miyoshi et al., 2010) and at the ECMWF (Hamrud et al., 2015). 

The application of the EnKF to radar DA was first tested by Snyder and Zhang 

(2003). They assimilated simulated single-Doppler 𝑉𝑟 observations of a splitting 

supercell storm in a perfect model context into the cloud model of Sun and Crook 

(1997) and showed that the used EnSRF system of Whitaker and Hamill (2002) with 

observation localization using a 3D cutoff radius of four kilometers produced 

accurate analyses even of the unobserved model state variables after assimilation of 

about 30 minutes of data. Another such early observing system simulation experiment 

(OSSE) with simulated 𝑉𝑟 observations of supercell storms was performed by Zhang 

et al. (2004) who used the same cloud model and also assimilated their data using the 

same EnSRF approach and a 3D cutoff radius of three kilometers for observation 

localization. Unlike Snyder and Zhang (2003), they used covariance relaxation to 

maintain sufficient spread in their 20-member ensemble. They evaluated the 

influence of more realistic initial fields and variations in the availability, resolution, 

and quality of the synthetic 𝑉𝑟 observations on the analyses, and showed that the 

EnKF system performed well in these more realistic scenarios. Follow-up OSSE 

studies with EnKF systems also included the assimilation of synthetic 𝑍 observations. 

E.g., Caya et al. (2005) made a direct comparison between EnKF and 4DVar for the 

assimilation of simulated 𝑉𝑟 and 𝑍𝐻 observations from a convective storm into the 

cloud model of Sun and Crook (1997) using the EnSRF system of Whitaker and 

Hamill (2002) with a 100-member ensemble and a Gaspari-Cohn correlation function 

for horizontal and vertical observation localization. They reported that the 4DVar 

scheme produced better analyses than the EnKF method when data from a very short 

period were assimilated while the result was reversed after several assimilation 

cycles, in part due to potential problems with proper ensemble initialization for the 

EnKF. Tong and Xue (2005) showed that by assimilating simulated 𝑉𝑟 and 𝑍𝐻 data 

of a convective storm in the ARPS model, not only wind and thermodynamic fields 

were well analyzed, but also multiple ice species associated with a multi-class ice-

microphysical scheme were successfully retrieved, confirming that the EnKF is able 

to spread information also to unobserved variables. They implemented the 

observation perturbation method following Burgers et al. (1998) and Houtekamer and 

Mitchell (1998), using a 100-member ensemble, and observation localization with a 

3D Gaspari-Cohn correlation function. Best storm analyses were obtained by 

assimilating 𝑉𝑟 and 𝑍𝐻 data together. Similarly, Xue et al. (2006) also studied the 

assimilation of simulated 𝑉𝑟 and 𝑍𝐻 data from a supercell storm in the ARPS model 

including ice-microphysics, but they used the EnSRF approach of Whitaker and 

Hamill (2002) and, unlike the previous studies, the radar data were sampled at the 

radar PPIs instead of at the analysis grid points. They reported encouraging analyses  

despite the non-uniform resolution of the radar data in the radar PPIs. Sobash and 

Stensrud (2013) focused on the question how the choice of covariance localization 

affects the analysis of a mesoscale convective system assimilating synthetic 𝑉𝑟 and 

𝑍𝐻 data using the EAKF method. They found that increasing the horizontal 
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observation localization using a Gaspari-Cohn correlation function and decreasing 

the vertical localization generally improved analysis quality, but they noted that the 

proper choice of covariance localization depends on the choice of ensemble size and 

covariance inflation method. To reduce computational costs associated with the 

EnKF procedure while preserving its benefits, Gao and Xue (2008) successfully 

tested a dual-resolution approach with simulated 𝑉𝑟 observations, in which they used 

the flow-dependent background error covariance matrix estimated from an ensemble 

at a lower-resolution grid to generate an analysis at a higher-resolution grid.  

A first real-data study with radar observations using EnKF is Dowell et al. (2004). 

They used the warm-rain cloud model of Sun and Crook (1997) and assimilated real 

𝑉𝑟 and 𝑍𝐻 observations from a single Doppler radar of an isolated convective storm 

using an EnSRF with a 50-member ensemble, multiplicative covariance inflation, and 

covariance localization using a Gaspari-Cohn correlation function. By calculating 

background 𝑍𝐻 data via a rather simple reflectivity-rain water content relation and 

only updating model rain-water content from 𝑍𝐻 observations, the locations of the 

analyzed main storm updraft and the mesocyclone corresponded relatively well to the 

observations of another radar station, dual-Doppler wind syntheses, and in situ 

instrument tower measurements. Aksoy et al. (2009) presented another real-data 

study, in which they assimilated 𝑉𝑟 and 𝑍𝐻 measurements from a single Doppler radar 

of different convective cases in the WRF model using the EAKF method, MCI, and 

a Gaspari-Cohn correlation function for covariance localization. They found that their 

EnKF method produced robust results for all convective cases and that the 

assimilation of 𝑍𝐻 data in “no-precipitation” areas, i.e. regions with 𝑍𝐻 low enough 

to be considered free of precipitation, following Tong and Xue (2005) could 

successfully suppress spurious precipitation in the ensemble members. Another real-

world study focusing solely on analysis quality is Dowell and Wicker (2009). They 

developed an additive-noise method to maintain sufficient spread in the ensemble, in 

which model temperature, wind, and water vapor fields are locally perturbed where 

𝑍𝐻 indicates precipitation. By using a simplified cloud model, 𝑉𝑟 observations from 

a supercell storm in Oklahoma, the EnSRF approach of Whitaker and Hamill (2002), 

and, similar to many other studies, a Gaspari-Cohn correlation function for 

covariance localization, they were able to show that the additive-noise method, in 

addition to providing a generally good analysis of the considered storm, could reduce 

the number of spurious precipitation cell compared to previously used storm-scale 

ensemble methods. Snook et al. (2011) and Jung et al. (2012) presented further real-

data assimilation studies with a focus on analyses using the EnSRF approach of 

Whitaker and Hamill (2002), the ARPS model, and 𝑉𝑟 and 𝑍𝐻 observations from 

tornadic storms. Snook et al. (2011) demonstrated that their EnKF system was able 

to clearly improve storm analyses by incorporating radar observations from different 

radar networks and showed that the use of three different ice-microphysical schemes 

for the different ensemble members helped to increase the spread in the forecast 

ensemble. Polarimetric radar data from Oklahoma were used in Jung et al. (2012) to 

evaluate the quality of storm analyses based on non-polarimetric data from another 
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radar station and using single- and double-moment microphysical schemes in the 

ARPS model. They showed that 𝑉𝑟 and 𝑍𝐻 were analyzed well with both schemes, 

however, the double-moment scheme yielded significantly better analyzed 

polarimetric signatures compared to the one-moment-scheme (more below). 

Several studies also focused on the impact of assimilating real radar observations 

in an EnKF system on short-term QPF (e.g., Zhang et al., 2009; Aksoy et al., 2010; 

Dong and Xue, 2012; Chang et al., 2014; Snook et al., 2015; Johnson et al., 2015; 

Gao and Min, 2018). The effect of assimilating radar observations in an EnKF system 

on forecasts of Hurricanes was investigated by Zhang et al. (2009) and Dong and Xue 

(2012), where the former assimilated 𝑉𝑟 observations from three radars along the Gulf 

coast in the WRF model and the latter also assimilated 𝑍𝐻 observations of two radars 

in the ARPS model using the EnSRF approach of Whitaker and Hamill (2002). Zhang 

et al. (2009) noted that the assimilation of 𝑉𝑟 improved deterministic forecasts of the 

considered Hurricane with respect to the case that no radar data was assimilated or a 

4DVar scheme was used with the same radar data. Dong and Xue (2012) also reported 

improved Hurricane forecasts, both deterministic and ensemble-based, for up to 12 

hours forecast lead time with a larger effect attributable to the 𝑉𝑟 observations 

compared to the 𝑍𝐻 data. Unlike most of the previous EnKF radar studies, Chang et 

al. (2014) considered, besides two convective summertime precipitation cases with 

squall-line and small-scale structures, also a case with widespread stratiform rainfall 

over the Montreal, Canada region. They examined the analysis and short-term 

forecasts resulting from the assimilation of 𝑉𝑟 observations from these three cases 

using the stochastical EnKF method of Houtekamer and Mitchell (1998) in the 

Canadian Meteorological Center’s Global Environmental Multiscale Limited-Area 

Model, and reported a clear impact on the update of unobserved variables through the 

background error covariance matrix estimated from an 80-member ensemble. Both 

Snook et al. (2015) and Johnson et al. (2015) reported improved QPF using the 

EnSRF method of Whitaker and Hamill (2002) for model initialization with 𝑉𝑟 and 

𝑍𝐻 observations. Snook et al. (2015) considered a mesoscale convective system 

simulated with the ARPS model and found substantially improved ensemble QPF 

through radar DA. Johnson et al. (2015) considered multiple diverse rainfall cases 

and directly compared analyses and ensuing QPF produced with EnKF and a 3DVar 

scheme after assimilation of observations from both meso- and synoptic-scale 

networks and radar data. Produced EnKF analyses resulted in a five times longer 

improvement in QPF due to the assimilation of radar data compared to the 3DVar 

approach, which they reason by better analyses of the meso-scale environment and 

convective-scale features with the EnKF method due to lack of flow-dependence in 

the static background error covariance matrix used in the 3DVar scheme.  

More recently, using the LETKF scheme for the assimilation of radar observations 

into NWP models has gained popularity. One of the first studies using LETKF is 

Lange and Craig (2014), who assimilated simulated 𝑍𝐻 and 𝑉𝑟 observations in a 

perfect model context into the COSMO (Consortium for Small-scale Modeling) 

model. They tested the influence of different assimilation length scales on analyses 
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and short-term forecasts of long-living convective systems in terms of observation 

localization length scale, the length scale of the observations modified by averaging 

the observations spatially to so-called superobservations (“superobbing”; Alpert and 

Kumar, 2007), the calculation of the LETKF analyses at reduced-resolution analysis 

grids (Yang et al., 2009), and the modification of the temporal analysis window 

length. The high-resolution LETKF settings were found to produce the best analyses 

with respect to RMSD and field-oriented measures after three hours of assimilation, 

and subsequent three-hour forecasts were found to be best when initiated with the 

high-resolution analysis up to the first hour, but to be comparable to the coarser 

schemes thereafter. They supposed that the more rapid error growth in the forecast 

associated with the high-resolution setting may likely be attributable to a smaller 

predictability of the small scales, gravity wave noise, and spurious convective 

precipitation. Another more recent application of the LETKF for the assimilation of 

real 𝑍𝐻 observations from Germany in the COSMO model is Bick et al. (2016). They 

assimilated 3D 𝑍𝐻 fields observed by the national German C-band weather radar 

network in combination with conventional observations for a case study using the 

KENDA assimilation system, an implementation of the LETKF scheme developed 

by DWD and its partners (more details on the KENDA system in Section 4.2). 

Background 𝑍𝐻 data were simulated using the EMVORADO radar forward operator 

on the radar PPIs, the radar observations and the background values were superobbed, 

no-precipitation information was assimilated like in Aksoy et al. (2009) setting all 𝑍𝐻 

values below 5 dBZ to 5 dBZ, a fixed observation error standard deviation of 10 dBZ 

was assumed upon experimentation, the analysis grid was coarsened by a factor of 

three following Yang et al. (2009), and covariance inflation was performed using 

CRPS. In addition, covariance localization was performed using a Gaspari-Cohn 

correlation function. The direct assimilation of 3D 𝑍𝐻 data had a clear positive impact 

on the analysis and ensuing (ensemble) QPF for up to four hours. Taking into account 

a seven-day period of precipitation over Germany, the direct assimilation of 3D 𝑍, 

although at the time still experimental, yielded results comparable to the operational 

LHN approach used at DWD. Gastaldo et al. (2018) also used the KENDA system 

for the assimilation of 3D 𝑍𝐻 observations from the Italian C-band weather radar 

network, also in combination with conventional observations, in the COSMO model 

for a four-day case study in February 2017. Superobbing was performed and no-

precipitation areas were  assimilated with a value of 5 dBZ like in Bick et al. (2016), 

but unlike this previous study, an observation error standard deviation of 5 dBZ 

estimated from observation-minus-first-guess and observation-minus-analysis  

residuals following Desroziers et al. (2005) was used. They performed sensitivity 

tests for the observations error by modifying it to values of 0.5 dBZ and 10 dBZ, and 

for the length of the assimilation window. QPF up to a few hours was improved 

through the 3D 𝑍𝐻 assimilation for both experiment variants using LHN or not. A 

more thorough investigation in Italy using the KENDA system and the convection-

permitting limited-area version of the COSMO model over Italy COSMO-2I 

considering 37 precipitation days in 2018 was conducted by Gastaldo et al. (2021). 
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Their results showed that the assimilation of 3D 𝑍𝐻 data on average outperformed the 

already operational LHN method for up to seven hours lead time with improvements 

stronger for convective precipitation. Based on these encouraging results, a parallel 

preoperational framework was set up for the COSMO-2I model, in which LHN is 

replaced by the direct 3D 𝑍𝐻 assimilation using the KENDA assimilation framework. 

Finally, Vobig et al. (2021) attempted to resolve the problem of radar DA within the 

KENDA-ICON-D2 system at DWD at model grid points with a zero ensemble spread 

but radar-observed precipitation. They developed the “Targeted Covariance 

Inflation” method, which artificially enhances sensitivity through perturbations in the 

first-guesses to achieve background correlations between 𝑍𝐻 and humidity, and 

showed improved LETKF analyses and ensuing QPF in a case study. 

4.1.3.4 Hybrid Schemes and the Particle Filter 

The use of flow-dependent background error covariances estimated from ensembles 

of model states in the EnKF has been shown to be beneficial for analyses (e.g., Tong 

and Xue, 2005) and subsequent weather forecasts (e.g., Johnson et al., 2015). 

However, the EnKF approach is suboptimal, in part because the background 

uncertainty can only be represented in the subspace spanned by the ensemble 

perturbations, thus limiting the freedom of the analysis solution, and sampling errors 

can occur. In contrast, the variational approaches such as 3DVar are suboptimal 

because they use static and more unrealistic background error covariances, which are, 

however, more robust in a statistical sense compared to the ensemble-estimated 

covariances in EnKF (Bannister, 2017). Combining ensemble and variational 

methods into hybrid ensemble-variational (EnVar) schemes to complement their 

respective strengths may be done as described by Hamill and Snyder (2000) by 

solving the 3DVar cost function using a blended background error covariance matrix 

in terms of a weighted average of the static 3DVar covariance matrix and the 

ensemble-estimated flow-dependent covariance matrix. E.g., Lorenc (2003) 

developed this approach into the so-called extended control variable method, where 

the control variable – the variable with respect to which the cost function is 

minimized – is the sum of an analysis increment associated with the static 3DVar 

background error covariance matrix and an analysis increment produced from local 

linear combinations of the ensemble perturbations, i.e., an analysis increment 

associated with the flow-dependent covariances. Wang (2010) described the 

implementation of this EnVar method in the Gridpoint Statistical Interpolation (GSI; 

Wu et al., 2002) assimilation system. A different but mathematically equivalent 

(Wang et al., 2007) version of EnVar was later proposed by Buehner (2005).  

EnVar schemes have mostly been applied to meso- or global-scale NWP models 

so far (e.g., Wang et al., 2008). Few studies have focused on storm-scale applications, 

including radar observations. One of the first studies to assimilate radar observations 

using a hybrid scheme is Li et al. (2012), who assimilated 𝑉𝑟 observations of two 

coastal radars sampling a hurricane at the Gulf Coast in the WRF ensemble-3DVar 

scheme (Wang et al., 2008), which implements the extended control variable 
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approach of Lorenc (2003). They found that the hybrid method resulted in better wind 

forecasts, improved three-hour QPF, and a better track prediction of the hurricane 

compared to the pure 3DVar method. They stated that the improved forecast of the 

hurricane could be attributed to dynamically more consistent analyses produced by 

the hybrid approach using flow-dependent error covariances. Gao et al. (2013) 

described the development of a hybrid 3DVar-EnKF scheme following Buehner 

(2005) for the ARPS model, applied it to a case study of assimilating simulated 

Doppler radar data of a supercell storm, and compared the results with pure EnKF 

and pure 3DVar schemes. They reported that for the assimilation of data from a single 

radar, the pure EnKF method performed best for the analysis of dynamical variables, 

while the new hybrid approach performed best for the retrieval of variables related to 

hydrometeors, and the 3DVar method was generally worse in terms of RMSD. The 

spin-up time of the simulated storm was shortest for the hybrid approach. More 

recently, e.g., Wang and Wang (2017) proposed an approach to directly assimilate 

𝑍𝐻 data in the GSI EnVar assimilation system, and Duda et al. (2019) made a 

comparison of the same system to a cloud analysis.  

In contrast to the variational and EnKF approaches and the EnVar hybrid methods, 

which are all based on the assumption of linearity and Gaussian error statistics, 

nonlinear and non-Gaussian DA approaches, such as the particle filter (for a review, 

see van Leeuwen, 2009), have been developed. However, their application to storm-

scale NWP models for the assimilation of radar observations is still in a more 

preliminary stage than the hybrid EnVar methods. One of the few investigations was 

conducted by Poterjoy et al. (2017), who used a localized version of the particle filter 

(Poterjoy, 2016) to assimilate simulated 𝑉𝑟 and 𝑍𝐻 data of a squall line into the WRF 

model. They showed that, compared to EnKF, the particle filter was advantageous 

for probabilistic analyses of non-Gaussian variables such as hydrometeor mixing 

ratios, and that the particle filter yielded more accurate forecasts at the cost of higher 

posterior RMSD values. Based on their initial tests, they stated that in the future, the 

particle filter approach could be valuable for better assimilating remotely sensed 

observations that are nonlinearly related to the model state, such as radar reflectivities 

or satellite radiances.  

4.1.4 Assimilation of Polarimetric Observations 

The assimilation of polarimetric radar observations in NWP models is still at an early 

stage. Besides the lack of widespread polarimetric radar observations in the past, until 

national radar networks started to be upgraded to polarimetry in recent years, another 

reason is the difficulty in developing accurate polarimetric radar forward operators 

that produce realistic polarimetric variables from the variables of the model’s 

microphysical schemes, which are under continuous development themselves. To 

avoid the problems associated with the inadequacies of the polarimetric radar forward 

operators, a few studies have assimilated polarimetric data indirectly by retrieving 

model state variables (mostly hydrometeor mixing ratios) from the polarimetric radar 
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data prior to assimilation. A first such approach with real radar data was made by Wu 

et al. (2000), who, besides 𝑉𝑟 observations, assimilated rainwater and hail and graupel 

mixing ratios estimated from 𝑍𝐻 and 𝑍𝐷𝑅 observations of a severe thunderstorm in 

the USA with a 4DVar scheme in the cloud model of Sun and Crook (1997). They 

extended its original warm-rain-only microphysics scheme to simple ice categories 

(cloud ice, hail, and graupel), and the results showed that the 4DVar method was 

generally able to analyze the storm well, but difficulties were reported in accurately 

tracking the storm’s evolution. Shortcomings of the simple microphysical scheme or 

the cloud model used in representing the true nonlinear cloud-precipitation processes 

were suggested as reasons. Later, e.g., Li and Mecikalski (2010, 2012, 2013) and 

Yokota et al. (2016) also followed the indirect assimilation approach, but with 

different DA schemes. Li and Mecikalski (2010, 2012, 2013) assimilated real 

polarimetric observations from convective storms with 3DVar in the WRF model 

with a warm-rain single-moment bulk microphysics scheme. They used 𝑍𝐻 and 𝑍𝐷𝑅 

(Li and Mecikalski, 2010), and 𝑍𝐻, 𝑍𝐷𝑅, and 𝐾𝐷𝑃 (Li and Mecikalski, 2012, 2013) 

observations to retrieve rainwater mixing ratios before assimilation and used the total 

water mixing ratio as the control variable in the 3DVar cost function. Storm-scale 

analyses and short-term forecasts were notably improved by the inclusion of the 

polarimetric data. Moreover, a sensitivity experiment performed by Li and 

Mecikalski (2013) showed that the choice of retrieval relation had a significant 

impact on the produced thermodynamic, kinematic, and microphysical fields of the 

storm while the general location and motion of the storms were largely unaffected. 

Yokota et al. (2016) used the indirect assimilation approach with the LETKF scheme. 

They investigated the impact of assimilating rainwater mixing ratios estimated from 

real 𝑍𝐻 and 𝐾𝐷𝑃 observations from four C-band radars in combination with surface 

network measurements in the JMA non-hydrostatic model on the prediction of a 

tornadic storm over Japan. Rainwater mixing ratios were estimated from 𝑍𝐻 for 

weaker rain, from 𝐾𝐷𝑃 for stronger rain, and a mixture of both in the transition zone 

due to enhanced noise in the 𝐾𝐷𝑃 estimate in weak precipitation. The prediction of a 

strong low-level mesocyclone near the observed tornado track was successfully 

predicted, and the exclusion of either the surface data or the radar data from the 

assimilation failed to produce this particular storm feature in the forecast. These 

recent indirect assimilation studies have all focused on warm-rain microphysics and 

neglected ice processes, which, however, are important, especially in convective 

situations. In addition, only single-moment bulk microphysics schemes were used, 

further limiting the ability of the models employed to realistically simulate 

microphysical processes in clouds and precipitation. 

Another attempt to indirectly assimilate polarimetric radar data was made by 

Carlin et al. (2017), who made temperature and moisture adjustments to the ARPS 

cloud analysis based on observations of columns of enhanced 𝑍𝐷𝑅 values above the 

melting layer as indicators of strong updrafts in convective storms (𝑍𝐷𝑅-columns; 

Kumjian et al., 2014). With these modifications, the analyses and forecasts of two 

tornadic supercells in the USA improved in terms of updraft analyses, predicted 𝑍 
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structures, a better agreement between predicted updraft helicity and radar-derived 

rotation tracks, and improved 𝑍𝐻 frequency biases and equitable threat scores. 

Recently, Ding et al. (2022) took a similar approach by modifying the GSI cloud 

analysis based on polarimetric radar measurements (𝑍𝐷𝑅, 𝜌𝐻𝑉, and 𝐾𝐷𝑃) by 

employing a fuzzy-logic hydrometeor classification, an improved determination of 

liquid and ice phase regions, and a new hydrometeor number concentration retrieval. 

Tests with a squall-line case in China showed improved analyzed precipitation 

structures including polarimetric signatures and consistently improved QPF.  

Polarimetric radar observations have also been directly assimilated through the use 

of polarimetric radar forward operators, which simulate radar observations from the 

variables provided by the model microphysical schemes. Such forward operators 

have been proposed by, e.g., by Jung et al. (2008a), Pfeifer et al. (2008), Jung et al. 

(2010a), Ryzhkov et al. (2011), Matsui et al. (2019), and Zhang et al. (2021). Jung et 

al. (2008b) developed a polarimetric radar simulator for a single-moment bulk 

microphysics scheme (i.e., typically only hydrometeor mixing ratios are simulated), 

including ice microphysics for 𝑍𝐻, 𝑍𝐷𝑅, the reflectivity difference 𝑍𝐷𝑃, and 𝐾𝐷𝑃. The 

operators used the hydrometeor axis ratio relation following Zhang et al. (2001), a 

simple melting model, and radar scattering amplitude functions fitted to T-matrix 

scattering calculations for the liquid phase and to the Rayleigh approximation for 

frozen particles. They showed that the new radar simulator produced polarimetric 

signatures such as the bright band and realistic spatial distributions of 𝑍𝐷𝑅 and 𝐾𝐷𝑃 

of simulated convective storms. This set of polarimetric forward operators was 

subsequently used in Jung et al. (2008b), which represents the first work in the 

literature to directly assimilate polarimetric radar observations in a storm-scale NWP 

model. They applied the EnSRF approach following Whitaker and Hamill (2002) to 

directly assimilate simulated 𝑍𝐷𝑅, 𝑍𝐷𝑃, and 𝐾𝐷𝑃 data, along with 𝑍𝐻 and 𝑉𝑟 data, of a 

convective storm into the ARPS model with a single-moment microphysics scheme 

including ice processes. They reported improved storm analyses by assimilating the 

polarimetric observations, especially in the rainwater mixing ratio, vertical velocity, 

and water vapor fields, and found that 𝑍𝐷𝑅 had the largest positive impact among the 

assimilated polarimetric variables. Jung et al. (2010a) proposed a more general set of 

polarimetric operators compared to that proposed by Jung et al. (2008a). It was 

developed to be applicable to the output of convective-scale models with not only 

single-moment, but also double- or triple-moment bulk microphysical schemes. In 

double-moment bulk microphysical schemes, the number concentration of 

hydrometeor classes is typically simulated along with the corresponding mixing 

ratios, and in triple-moment schemes, the corresponding 𝑍𝐻 is typically forecasted in 

addition. Their radar simulator was also developed to be usable with different radar 

wavelengths, included T-matrix scattering calculations also for frozen particles, and 

accounted for continuous melting processes. Applied to a convective storm simulated 

with a double-moment scheme, various characteristic polarimetric radar signatures 

could be realistically simulated. Direct comparison of the application of the simulator 

to the output of a single-moment microphysical scheme revealed that certain 



 

80   

 

Chapter 4. Assimilation of Polarimetric Radar Data: State of the Art 

polarimetric signatures could not be produced with the single-moment scheme, which 

they suggested was due to the fact that the single-moment scheme was not able to 

simulate shifts in the particle size distributions at constant mixing ratios, and stated 

that higher-moment schemes are required to adequately simulate crucial polarimetric 

fingerprints.  

Putnam et al. (2019) were the first to assimilate real polarimetric radar 

observations into a storm-scale model using a multi-moment microphysical scheme 

including ice processes with an EnKF approach and an advanced polarimetric radar 

observation forward operator. The radar simulator used was the one proposed by Jung 

et al. (2010a), slightly modified for reasons of computational efficiency, while 

retaining most of its accuracy. The radar variables 𝑍𝐻, 𝑉𝑟, and 𝑍𝐷𝑅 were assimilated 

into the ARPS convective-scale model with the EnSRF method following Whitaker 

and Hamill (2002). The assimilation of 𝑍𝐷𝑅 observations below the melting layer of 

a supercell storm in Oklahoma, USA clearly improved storm analyses in terms of 

polarimetric signatures such as the so called 𝑍𝐷𝑅-arc (arc of enhanced 𝑍𝐷𝑅 values in 

the forward flank of supercell storms associated with size sorting due to storm-

relative wind shear; Kumjian and Ryzhkov, 2008) and 𝑍𝐷𝑅-columns. In a follow-up 

study, Putnam et al. (2021) investigated the impact of assimilating real 𝑍𝐷𝑅 

observations of convective storms in Oklahoma with different assimilation window 

lengths (30, 45, and 60 min) in the same DA system like used in Putnam et al. (2019) 

on storm-scale ensemble forecasts. They found that 𝑍𝐷𝑅 observations can improve 

storm predictions for smaller assimilation window lengths if the assimilation window 

covers the initial development and organization stages of the storms, where observed 

𝑍𝐷𝑅-columns contribute to the storm analyses. Similar to Putnam et al. (2019), Zhu 

et al. (2020) investigated the impact of directly assimilating 𝑍𝐷𝑅 data of a tornadic 

storm in an OSSE framework in the ARPS EnSRF system, including a double-

moment microphysical scheme using the polarimetric radar simulator of Jung et al. 

(2010a). Errors in all analyzed state variables were reduced by the inclusion of 𝑍𝐷𝑅, 

the structure and intensity of the analyzed hydrometeor fields were improved, and 

polarimetric signatures such as 𝑍𝐷𝑅-columns and 𝑍𝐷𝑅-arcs were better reproduced. 

In addition, sensitivity experiments were conducted in which certain state variables 

were not updated from the 𝑍𝐷𝑅 observations. When the hydrometeor number 

concentrations were not updated, the assimilation of the 𝑍𝐷𝑅 data was largely 

ineffective, and the updating of the water vapor mixing ratio and the vertical wind 

velocity were also found to be important for the improvements found. Therefore, they 

concluded that the cross-variable covariances provided by the forecast ensemble in 

the EnKF were highly beneficial for their storm-scale analyses. Despite this clear 

advantage of the EnKF method for the direct polarimetric radar DA, studies have also 

investigated using the 3DVar method for this purpose. E.g., Li et al. (2017) 

assimilated real 𝐾𝐷𝑃 estimates in the WRF 3DVar system using a newly developed  

single-moment ice microphysical forward model and empirical relations between 

𝐾𝐷𝑃 and mixing ratios as forward operators, and reported a positive effect of the 𝐾𝐷𝑃 

estimates on the analysis of a mesoscale convective system in Alabama, USA. 



 

81 

 

4.2. Assimilation of Radar Observations in Germany 

4.2 Assimilation of Radar Observations in Germany 

The assimilation of 𝑍𝐻 observations from the German C-band radar network at DWD 

started in 2007 with LHN (Stephan et al., 2008; Milan et al., 2008) in the, at that time, 

operational convective-scale NWP model covering Germany and parts of its 

neighboring states COSMO-DE (Baldauf et al., 2011). The COSMO-DE model was 

replaced at DWD by the now operational convective-scale NWP model ICON-D2 in 

2021. The KENDA system, an implementation of the LETKF, is the DA framework 

currently used for the ICON-D2 model at DWD. LHN is still included in KENDA 

and recently also the direct assimilation of 3D 𝑍𝐻 and 𝑉𝑟 observations from the 

German C-band radars was implemented operationally. This section describes the 

ICON-D2 model and the KENDA DA system, including the direct 3D 𝑍𝐻 and 𝑉𝑟 DA 

technique used, which are used later in this thesis to assimilate for the first time 

polarimetric data in a convective-scale NWP system in Germany (Chapter 5).  

4.2.1 The ICON-D2 Model 

The ICON modeling framework (Zängl et al., 2015) is a global NWP and climate 

modeling system jointly developed by DWD and the Max Planck Institute for 

Meteorology in Hamburg, Germany. It became operational in the DWD forecast 

system in 2015. The convective-scale, limited-area setup of the ICON model ICON-

D2 covers Germany and parts of its neighboring countries. It has an unstructured 

triangular grid with a horizontal resolution of about 2.2 km and 65 vertical levels, of 

which the near-ground levels are terrain-following and the higher ones gradually shift 

to constant heights with increasing altitude. Lateral boundary conditions are provided 

by the ICON-EU model, a nesting setup of the ICON model over Europe.  

The ICON-D2 model provides prognostic variables including the 3D wind 

velocity components and the virtual potential temperature. The total density of the 

air-water mixture and the individual mass fractions of dry air, water vapor, cloud 

water, cloud ice, rain, snow, and graupel are further prognostic variables simulated 

through a coupled single-moment bulk microphysical scheme representing a two-

component system of dry air and water that can occur in all three states of matter. A 

more detailed overview of the ICON model can be found in Prill et al. (2020). 

4.2.2 The KENDA Suite 

The KENDA system is the DA framework for the operational ICON-D2 model at 

DWD. It includes the LETKF scheme following Hunt et al. (2007) in a 4D manner, 

which is achieved by computing innovations using the observation operator during 

the model forward integration at each observation time (Schraff et al., 2016). In 

addition to the currently used 40-member ensemble, an additional deterministic 

analysis and forecast cycle is performed in KENDA (40+1 mode) by applying the 

LETKF Kalman gain for the ensemble mean  
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 𝑲 = 𝑿𝑏�̃�𝑎𝒀𝑏
𝑇𝑹−1 (4.52) 

to the innovations of the unperturbed deterministic run 

 �⃗�𝑎
𝑑𝑒𝑡 = �⃗�𝑏

𝑑𝑒𝑡 +𝑲(�⃗�𝑜 −ℋ(�⃗�𝑏
𝑑𝑒𝑡)) (4.53) 

with �⃗�𝑎
𝑑𝑒𝑡 and �⃗�𝑏

𝑑𝑒𝑡 the deterministic analysis and background states, respectively. 

This allows for the use of the ensemble-estimated flow-dependent background error 

covariance matrix for the deterministic analysis (Schraff et al., 2016). To reduce 

computational cost, the analysis in ensemble space can be calculated on a coarsened 

grid, which is then interpolated to the full-resolution model grid before determining 

the analysis in model space (Yang et al., 2009). Since the analysis in ensemble space 

is the weights for linear combinations of the forecast ensemble members (see 

Eq. (4.47)), the final analysis in model space still captures the small-scale features 

(Schraff et al., 2016). Currently, KENDA uses a coarsening factor of three. 

Furthermore, the KENDA suite includes various tools to address the problem of 

underestimation of background and analysis error covariances, which is typically 

observed in EnKF schemes and arises partly from sampling errors due to too small 

ensemble sizes and partly from inadequate representation of background and 

observation errors (Schraff et al., 2016). Horizontal and vertical observation 

localization is performed in KENDA by scaling the inverse observation error 

covariance matrix 𝑹−1 with a Gaspari-Cohn correlation function (Gaspari and Cohn, 

1999). KENDA allows for adaptive horizontal observation localization so that the 

number of observations influencing an analysis grid point, which should be somewhat 

larger than the number of ensemble members, is kept constant (Schraff et al., 2016). 

Thus, the radius of influence is smaller in regions with dense data than in regions 

with sparse data. Adaptive horizontal localization is applied in KENDA within the 

limits of localization length-scales of 50 and 100 km corresponding to the radii of 

main observation influence of 100 and 200 km, respectively. The vertical observation 

localization length-scale increases gradually from the model surface to the model top 

from 0.075 to 0.5 in logarithm of pressure (ln(p)). KENDA also allows for the 

determination of background error variances and their adaptation following 

Desroziers et al. (2005). MCI (Anderson and Anderson, 1999), CRPP (Zhang et al., 

2004), and CRPS (Whitaker and Hamill, 2012) are usable in KENDA, where MCI 

can be used also adaptively. Adaptive MCI with factors between 0.5 and 3.0, and 

CRPP with a weight for the background ensemble perturbations set to a value of 0.75 

are currently used in KENDA, and CRPS is not applied. 

4.2.3 Radar Data Assimilation with KENDA 

As stated above, 𝑍𝐻 observations can be indirectly assimilated with LHN in KENDA, 

which is applicable to both the ensemble members and the deterministic run during 

model forward integration. KENDA allows for the parallel use of LHN and direct 3D 



 

83 

 

4.2. Assimilation of Radar Observations in Germany 

radar DA. For the direct radar DA, first-guess PPIs of 𝑍𝐻 and 𝑉𝑟 at all 10 measured 

radar elevation angles between 0.5 and 25 deg for each of the 17 radar stations of 

DWD (see Fig. 2.1) and every 5 min in correspondence to the observations are 

calculated from the model states using the EMVORADO radar forward operator. The 

EMVORADO simulator considers various physical aspects of radar measurements, 

such as beam bending, broadening, and shielding, partially melted hydrometeors, 

reflectivity attenuation, reflectivity weighting, and particle fall velocity for Doppler 

radial wind, as well as the Rayleigh- or Mie-scattering theory, which are implemented 

in a modular way and can be optionally chosen based on the user’s needs regarding 

the degree of approximation and computational cost (Zeng et al., 2016). E.g., Mie-

scattering calculations are currently used in KENDA through efficient look-up tables, 

and particle size distributions are described by modified gamma distributions, which 

parameters are determined from the model hydrometeor fields and pre-definitions 

depending on the particular microphysical scheme used (personal communication 

Jana Mendrok, DWD).  

For the direct 3D radar DA in KENDA, 𝑍𝐻 data of only the five radar elevation 

angles of 1.5, 3.5, 5.5, 8.0, and 12.0 deg are used as a compromise between 

observation impact and computational effort (personal communication Ulrich Blahak 

and Christian Welzbacher, DWD). Similarly, 𝑉𝑟 observations are only assimilated for 

the radar elevation angles 0.5, 1.5, and 3.5 deg. 𝑍𝐻 and 𝑉𝑟 observations from heights 

from below 600 and above 9,000 m are not used. The assimilation of the radar 

observations in their full PPI resolution may lead to a degradation of the model state 

in the analysis step due to the much coarser analysis grid especially for the data close 

to the radar stations (Liu and Rabier, 2002). Thus, radar observations are spatially 

averaged elevation-wise for each radar station to approximate the analysis grid 

resolution. This procedure known as superobbing (e.g., Alpert and Kumar, 2007; 

Bick et al., 2016) is performed in KENDA within the EMVORADO forward 

operator, is applied to both the observed and background radar data, and contains the 

following steps. First, a 2D horizontal Cartesian grid with a resolution of 𝐿𝐶 

approximating the analysis grid used (𝐿𝐶 is 10 km for the ICON-D2 model using a 

coarsening factor of three) is defined. In a second step, the azimuth-range radar bins 

are projected onto the Cartesian grid to find the closest radar bin for each Cartesian 

grid point, which become the centers of the averaging performed in the radar polar 

coordinates. The averaging is performed within azimuth-range intervals, where the 

number of radar bins contributing to the averaging decreases with the range: the width 

of the range interval is determined by 𝐿𝐶√2 and the width of the azimuth interval is 

determined by 2arctan {(
𝐿𝐶√2

2
)/𝑟0} with 𝑟0 the range of the determined center radar 

bin. Averaging is performed on the linear scale and only if 𝑟0 ≥ 0.75𝐿𝐶√2 and if the 

number of range-azimuth bins with valid values within the superobbing window is at 

least three observations (Fig. 5.1 exemplifies superobbing). 

The assimilation of 𝑍𝐻 data is also performed in regions without precipitation (no-

precipitation areas), which has been found valuable in some studies to suppress 
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spurious precipitation (e.g., Tong and Xue, 2005; Aksoy et al., 2009; Bick et al., 

2016). The observed 𝑍𝐻 can span a range from about -30 to 60 dBZ, of which the no-

precipitation echoes can cover a significant fraction, possibly resulting in large 

differences between the observed no-precipitation 𝑍𝐻 and the corresponding model 

background 𝑍𝐻 values, which can lead to large and unphysical analysis increments 

(Bick et al., 2016). To alleviate this problem, no-precipitation data identified by a 

lower no-precipitation threshold is set to the selected threshold, keeping the weight 

of the no-precipitation data in the analysis step within reasonable limits. Currently, 

the lower threshold is 0 dBZ in KENDA and is applied to the observed and first-guess 

𝑍𝐻 data before superobbing. The observational error standard deviation for 𝑍𝐻 is 

chosen to be fixed and 10 dBZ based on experiments (personal communication Klaus 

Stephan, DWD), while that for 𝑉𝑟 is set to 2.5 m s-1. The horizontal observation 

localization length-scales for 𝑍𝐻 and 𝑉𝑟 data are set to a fixed value of 16 km, 

corresponding to a radius of main observation influence of 32 km. The vertical 

observation localization for 𝑉𝑟 is set to a fixed value of 0.3 ln(p), while the one for 

the 𝑍𝐻 assimilation follows the height-dependent profile as for the other observations 

(gradually increasing from 0.075 to 0.5 ln(p) with height).
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Chapter 5 

Assimilation of 3D Microphysical 

Retrievals in Germany 

In this chapter, polarimetric observations from the German national C-band radar 

network are assimilated in the operational convective-scale KENDA-ICON-D2 

system of DWD for the first time. The assimilation is performed using 3D 

polarimetric microphysical retrievals of LWC and IWC below and above the melting 

layer, respectively. Their impact on short-term QPF in Germany in comparison to the 

assimilation of 𝑍𝐻 observations alone is evaluated. Section 5.1 describes the 

observational and model data sets used as well as their processing. Section 5.2 then 

describes the retrieval assimilation technique applied and the assimilation 

experiments performed. In the first part of the experiment, the impact of the 3D 

microphysical retrievals on first-guess QPF quality with different DA settings is 

investigated. In the second part of the experiment, nine-hour forecasts of the 

ICON-D2 model initiated with the most successful retrieval assimilation settings 

found are evaluated. Results are presented in Section 5.3, and finally, a summary and 

conclusions are given in Section 5.4. The assimilation approach and results presented 

in this chapter are submitted for publication in Reimann et al. (2023).  

5.1 Data Sets and Processing 

Heavy summer precipitation events can pose serious risks to society and the economy 

in Central Europe and are particularly difficult to predict (Olson et al., 1995). 

Therefore, this thesis focuses on three intense summer precipitation events in 

Germany. The first event considered covered a 1.5-day period from 19 to 20 July 

2017 and was dominated by convective precipitation including a squall-line that 

crossed Germany in the evening hours of 19 July 2017 (case C2017). The second 

event covered a 3-day period from 24 to 26 July 2017 and was characterized by 

widespread intense and mostly stratiform precipitation (case S2017). It caused 

flooding, especially in Lower Saxony in the middle of Northern Germany along the 

Bode River catchment. The third event was dominated by heavy stratiform 

precipitation resulting from a slow-moving low-pressure system over Central Europe 

and covered a 2-day period from 13 to 14 July 2021 (case S2021). It caused 

devastating flooding, e.g., along the Ahr River in Rhineland-Palatinate in western 
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parts of Germany with more than 180 deaths and an insured loss of more than 

30 billion euros in Germany alone1. 

5.1.1 Conventional Observations 

Conventional observations taken from the DWD archive are assimilated as a baseline 

in this thesis. They include 10 m horizontal wind and pressure observations from 

surface weather stations, horizontal wind and temperature observations reported from 

commercial aircrafts, horizontal wind observations by pilot balloons and wind 

profilers, horizontal wind, relative humidity, and temperature observations from 

radiosondes, and sea-surface observations of, e.g., air pressure and horizontal wind. 

5.1.2 Polarimetric Observations 

For the direct assimilation of 3D 𝑍𝐻 observations employed in this study, 𝑍𝐻 

observations already processed, including quality assurance and attenuation 

correction, from the DWD data archive are used. For the estimation of LWC and IWC, 

raw polarimetric radar moments are processed from scratch. The basic polarimetric 

moments used include horizontal reflectivity 𝑍𝐻, differential reflectivity 𝑍𝐷𝑅, total 

differential phase 𝛷𝐷𝑃, and co-polar cross-correlation coefficient 𝜌𝐻𝑉. As performed 

in Chapter 3 for the evaluation of estimators with real radar observations, data 

below/above the melting layer are used for 𝜌𝐻𝑉 > 0.95/0.85 according to Kumjian 

(2013a) with 𝜌𝐻𝑉 corrected for noise before filtering following Ryzhkov and Zrnic 

(2019). QVPs of 𝜌𝐻𝑉 and 𝑍𝐷𝑅, as derived from PPIs at a 5.5 deg radar elevation angle, 

or the closest operational radio sounding of DWD, are used to estimate the height of 

the melting layer. In addition, only radar bins at ranges greater than 5 km are 

considered to reduce negative effects of ground clutter.  

As in Chapter3, 𝐾𝐷𝑃 is estimated from the filtered and smoothed 𝛷𝐷𝑃 following 

Vulpiani et al. (2012) with a fixed window size of 9 km. This rather large window 

size is, as described before, needed because of the coarse radial resolution (1 km) of 

most of the PPIs considered to allow for proper 𝐾𝐷𝑃 estimation and to keep noise in 

the 𝐾𝐷𝑃 estimates rather low. Only one of the considered precipitation cases (S2021) 

has data with a radial resolution of 0.25 km (recall the increase of the radial resolution 

of the DWD volume-scan in March 2021, see Section 2.1.3). Nevertheless, 𝐾𝐷𝑃 is 

also estimated for the S2021 case with a 9 km window for reasons of comparability.  

Also as in Chapter 3, the horizontal specific attenuation 𝐴𝐻 is derived below the 

melting layer using the filtered and smoothed 𝛷𝐷𝑃 and the measured (attenuated) 𝑍𝐻 

using the ZPHI-method (Testud et al., 2000). Thereby, the attenuation parameter 𝛼 is 

optimized for each ray below the melting layer using the self-consistency method 

proposed by Bringi et al. (2001).  

1 https://www.theguardian.com/world/2022/jul/13/floods-then-and-now-photographs-ger 

many-ahr-valley-flooding-disaster-july-2021 (last accessed 18 June 2023). 
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Finally, the raw 𝑍𝐻 and 𝑍𝐷𝑅 observations are corrected for (differential) 

attenuation using the optimized or climatological (0.08 dB deg-1) 𝛼 values below or 

above the melting layer, respectively, and the climatological value for the differential 

attenuation parameter 𝛽 for C-band of 0.02 dB deg-1 is used everywhere (see 

Eqs. (3.4) and (3.5) in Section 3.1.2, or Ryzhkov and Zrnic, 2019).  

5.2 Setup of Assimilation Experiments 

The hybrid LWC retrieval adapted to the German C-band radar network and 

developed in Chapter 3 (Eqs. (3.11), (3.13), (3.15), and (3.18) through (3.20)) and 

published in Reimann et al. (2021) is used to assimilate polarimetric radar 

observations below the melting layer into DWD’s KENDA-ICON-D2 system. A 

recent study by Blanke et al. (2023) showed that the hybrid IWC estimator proposed 

by Carlin et al. (2021) noted in Eqs. (2.60) and (2.61) performed best in terms of 

RMSD (0.19 g m-3) and also good in terms of PCC (0.96) when applied to X-band 

radar data over the west coast of the USA and evaluated with aircraft in-situ 

observations. These encouraging results, although obtained with an X-band radar 

over US terrain, motivate the use of that hybrid estimator for the assimilation of 

polarimetric radar observations from above the melting layer in this thesis. However, 

as stated before, the selected IWC estimator of Carlin et al. (2021) was developed 

based on assumptions valid for snowfall, but not, e.g., for hail and graupel, like an 

inversely proportional relationship between hydrometeor size and density. Thus, its 

applicability to especially hail and/or graupel bearing convective situations may be 

limited. The same holds for the newly developed LWC retrieval, which was derived 

from pure-rain disdrometer observations (see Chapter 3). 

5.2.1 Retrieval Resolution 

The LWC and IWC values are estimated on the radar PPIs and thus have the same 

resolution as the raw radar observations. As for the 𝑍𝐻 DA in KENDA, the LWC and 

IWC estimates require superobbing prior to assimilation to better match the analysis 

grid resolution in the analysis step. Superobbing of the LWC and IWC estimates is 

performed in the linear scale with a minimum number of valid values for averaging 

in the superobbing window 𝑀𝑉 of three observations (see an example of superobbing 

of LWC and IWC estimates in Fig. 5.1), like for the 𝑍𝐻 data in KENDA. Here, the 

superobbing window length 𝐿𝑆 (given in km), which is equal to the Cartesian grid 

resolution 𝐿𝐶 for the 𝑍𝐻 DA in KENDA (10 km for an analysis coarsening factor of 

three), is used to allow modifications of the superobbing window size for the LWC 

and IWC estimates independent of the selected analysis grid coarsening factor.  

The microphysical estimates are assimilated with a lower limit 𝐿𝐿 according to the 

no-precipitation threshold of 0 dBZ used for the assimilation of 3D 𝑍𝐻 data in 

KENDA. However, the LWC and IWC retrievals in no-precipitation regions are 

mostly filtered  out  by  the 𝜌𝐻𝑉 thresholds  applied. The use of such a lower limit can   
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FIGURE 5.1: a) PPI at 1.5 deg elevation angle of the DWD radar in Neuheilenbach (NHB; 

see Fig. 2.1 of radar-estimated LWC (in g m-3) using the hybrid estimator developed in 

Chapter 3 (Eqs. (3.11), (3.13), (3.15), and (3.18) to (3.20)) below the melting layer (upper 

and lower boundaries of the melting layer are marked by violet circles in both subplots) and 

of the radar-estimated IWC (in g m-3) using the hybrid retrieval proposed by Carlin et al. 

(2021; Eqs. (3.60) and (3.61)) above the melting layer for the stratiform case on 14 July 2021 

(S2021) at 16 UTC. b) Superobbed PPI data from subplot a) (colored cycles) on the 

logarithmic scale matching approximately the analysis grid resolution (10 km), and 

corresponding superobbed 𝑍𝐻 data (in dBZ) where no superobbed LWC and IWC estimates 

are available (grey/black squares), e.g., within the melting layer. 
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still be beneficial to limit the variability of the LWC and IWC data and can also be 

used for tuning purposes (personal communication Ulrich Blahak, DWD). The 

comparison of measured log(LWC) and synthetic 𝑍𝐻 observations obtained from 

T-matrix scattering calculations at C-band in the large German pure-rain disdrometer 

data set used for the development and evaluation of the LWC retrievals in Chapter 3 

indicates that the 0 dBZ no-precipitation threshold for the 𝑍𝐻 assimilation 

corresponds approximately to a log(LWC) value of -2.3 (see red and grey dashed 

lines in Fig. 5.2). The rare occurrence of snow at the surface in Germany and 

instrument restrictions mentioned in Chapter 3 make a similar analysis for the IWC 

estimates difficult. Thus, -2.3 is also used for 𝐿𝐿 for log(IWC).  

FIGURE 5.2: 2D histogram of DSD-based pairs of T-matrix calculated 𝑍𝐻 and log(LWC) 

computed using Eq. (3.3). The dashed red vertical line indicates the lower limit (𝐿𝐿) of 0 dBZ 

used in KENDA for the assimilation of 𝑍𝐻 data in no-precipitation regions, the dashed grey 

horizontal line indicates the approximately corresponding value for log(LWC) of -2.3. Also 

shown are the fraction that 10 dBZ (observation error standard deviation 𝑂𝐸 for the 𝑍𝐻 

assimilation in KENDA) covers of the full range of 𝑍𝐻 in the DSD data set (about 89 dBZ or 

11 %), and the corresponding 11 % fraction in the full range of log(LWC) data (about 4.3) of 

0.5 used as pre-selected 𝑂𝐸 value for the log(LWC) assimilation. 
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Analogous to the assimilation of 𝑍𝐻 data in KENDA, PPIs of LWC and IWC 

estimates are assimilated at only the radar elevation angles of 1.5, 3.5, 5.5, 8.0, and 

12.0 deg, and data from heights below 600 and above 9,000 m remain unconsidered. 

Using comparable DA settings allows for a better comparability of the assimilation 

impact of the 𝑍𝐻 observations and the microphysical LWC and IWC estimates. As 

with the 𝑍𝐻 assimilation in KENDA, the LWC and IWC retrievals are assimilated in 

the logarithmic scale, which leads to better results (not shown). 

5.2.2 Assimilation Settings and First Guess 

A fixed observation error standard deviation 𝑂𝐸 of 10 dBZ is currently used in 

KENDA for the direct assimilation of 3D 𝑍𝐻 observations. For the assimilation of 3D 

log(LWC) values, a fixed 𝑂𝐸 value of 0.5 is used, which is obtained statistically from 

the large German disdrometer data set used above for the evaluation and development 

of LWC retrievals in Chapter 3. A difference in log(LWC) of 0.5 covers a similar 

fraction of the full range of log(LWC) data (about 11 %) as 10 dBZ does of the full 

range of simulated 𝑍𝐻 data (about 89 dBZ, see Fig. 5.2). Again, the same 𝑂𝐸 value 

is also used for log(IWC). The horizontal and vertical observation localization length-

scales 𝐿𝐻 and 𝐿𝑉 for the microphysical estimates are set to 16 km and to a height-

dependent profile (i.e., increasing from 0.075 to 0.5 ln(p) with height), respectively, 

as in KENDA for the assimilation of 3D 𝑍𝐻 observations. 

The model counterpart (first-guess) LWC and IWC data are calculated using a 

simple “forward operator” which uses the prognostic model variables total air density 

including liquid and solid water (𝜌𝑡𝑜𝑡, given in kg m-3) and the rain and cloud water 

mixing ratios 𝑞𝑟 and 𝑞𝑐 for LWC as well as the snow, graupel, and cloud ice mixing 

ratios 𝑞𝑠, 𝑞𝑔, and 𝑞𝑖 (all given in g m-3) for IWC at the model grid points to compute 

 LWC =  103𝜌𝑡𝑜𝑡(𝑞𝑟 + 𝑞𝑐) (5.1) 

and 

 IWC =  103𝜌𝑡𝑜𝑡(𝑞𝑠 + 𝑞𝑔 + 𝑞𝑖). (5.2) 

The first-guess LWC and IWC data at the model grid points are then projected with 

the nearest-neighbor method onto the polar PPI grid of the observed LWC and IWC 

data, followed by superobbing as with the observed estimates. The procedure is 

performed for each of the 40 ensemble members and the deterministic run. 

5.2.3 Model Initial and Lateral Boundary Data 

ICON-D2 model data in 40+1 mode from the DWD data archive for 22 UTC 12 July 

2021, 00 UTC 23 July, and 00 UTC 18 July 2017 are used. These data are output 

from the regular ICON-D2 routine and thus do not require further “spin-up” 
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integrations to be used for the assimilation experiments performed in this thesis. 

Hourly assimilation cycles with the KENDA-ICON-D2 system with assimilation of 

conventional and 3D radar observations, including LHN as in the operational routine 

are performed to obtain model states for the initial times of the experiment periods 

00 UTC 13 July 2021, 00 UTC 24 July 2017, and 11 UTC 19 July 2017. ICON-EU 

model data from the DWD archive serves as lateral boundary conditions.   

5.2.4 Experiment Part A: Assimilation Configurations 

Starting from the initial times (11 UTC 19 July 2017, 00 UTC 24 July 2017, and 

00 UTC 13 July 2021) of the experiment periods (C2017, S2017, and S2021), 3D 

LWC and IWC estimates obtained from the polarimetric radars of the DWD radar 

network (see red radars in Fig. 2.1) are assimilated in hourly assimilation cycles 

instead of 𝑍𝐻 observations, where available. This procedure seek to avoid potential 

problems arising from assimilating the information from the 𝑍𝐻 data twice – first 

directly and second indirectly via the retrievals. This strategy also allows to study the 

differences in the assimilation impact of the 𝑍𝐻 data and the microphysical estimates. 

Thus, 𝑍𝐻 data are always assimilated within the melting layer and in precipitation-

free regions, where the LWC and IWC estimates are not available due to the applied 

𝜌𝐻𝑉 thresholds. The assimilation of 3D 𝑉𝑟 observations and LHN are not performed 

in the hourly assimilation cycles in order to focus on the assimilation of microphysical 

information from the DWD radar network. The LWC and IWC estimates are 

assimilated separately to study their individual impact on the first guess, but also to 

find the best DA parameter (DAP; 𝐿𝐻, 𝐿𝑉, 𝑂𝐸, 𝐿𝑆, 𝐿𝐿, and 𝑀𝑉) sets for both 

quantities separately. Therefore, 𝑍𝐻 data are also assimilated above the melting layer 

when LWC is assimilated, and 𝑍𝐻 data are also assimilated below the melting layer if 

IWC is assimilated. The respective assimilation configurations also assimilate 

conventional observations as a baseline and are therefore referred to as the 

CNV+LWC/Z and CNV+IWC/Z configurations. The assimilation configurations 

assimilating only conventional observations and assimilating both conventional and 

3D 𝑍𝐻 data are considered as references in this study (CNV and CNV+Z).  

The impact of the 3D LWC and IWC assimilation on the first-guess deterministic 

and ensemble QPF is quantified by the Fractions Skill Score (FSS; Roberts and Lean, 

2008) and the Brier Skill Score (BSS; following Wilks, 2019) using the RADOLAN 

(Radar Online Aneichung) QPE product of DWD as verification data. The 

RADOLAN data used1, the so-called “RW” product, are hourly precipitation 

accumulations obtained from 𝑍𝐻 observations and adjusted to surface-network rain 

gauges in an equidistant grid covering Germany and parts of its neighboring states 

with a resolution of 1 km in a polar-stereographic projection. The FSS is calculated 

1The open source RADOLAN data of DWD used, the “RW” product (hourly accumulations), 

were downloaded from https://opendata.dwd.de/climate_environment/CDC/grids_germany 

/hourly/radolan/historical/asc/ (last accessed 17 May 2022). 
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after projection of the forecasted and observed precipitation accumulations onto the 

chosen verification grid, namely the RADOLAN grid reduced to 3 km resolution, to 

better fit the model data of about 2.2 km horizontal resolution. The RADOLAN data 

are averaged over nine grid points in the original RADOLAN grid, while the model 

data are selected by the nearest-neighbor method. The projected fields of observations 

𝑃𝑂 and model first-guess 𝑃𝑀 are converted to binary fields 𝐼𝑂 and 𝐼𝑀 for the chosen 

precipitation accumulation thresholds 𝑞𝑡ℎ as 

 𝐼𝑂,(𝑞𝑡ℎ) = {
1    𝑓𝑜𝑟 𝑃𝑂 ≥ 𝑞𝑡ℎ
 0   𝑓𝑜𝑟 𝑃𝑂 < 𝑞𝑡ℎ

  (5.3) 

and 

 𝐼𝑀,(𝑞𝑡ℎ) = {
1   𝑓𝑜𝑟 𝑃𝑀 ≥ 𝑞𝑡ℎ
0   𝑓𝑜𝑟 𝑃𝑀 < 𝑞𝑡ℎ

 (5.4) 

(Roberts and Lean, 2008). Fractions of surrounding points within squares of 

𝑛𝐹𝑆𝑆 × 𝑛𝐹𝑆𝑆 data points in the binary fields 𝐼𝑂,(𝑞𝑡ℎ) and 𝐼𝑀,(𝑞𝑡ℎ), 𝐹𝑂,(𝑛𝐹𝑆𝑆,𝑞𝑡ℎ) and 

𝐹𝑀,(𝑛𝐹𝑆𝑆,𝑞𝑡ℎ), that have a value of one are calculated for each verification grid point. 

The FSS for a window size 𝑛𝐹𝑆𝑆 and a precipitation threshold 𝑞𝑡ℎ then is  

 FSS(𝑛𝐹𝑆𝑆,𝑞𝑡ℎ) = 1 −
MSD(𝑛𝐹𝑆𝑆,𝑞𝑡ℎ)

MSD(𝑛𝐹𝑆𝑆,𝑞𝑡ℎ),𝑟𝑒𝑓
 (5.5) 

with the mean squared deviation (MSD) for the observed and forecasted fractions 

 MSD(𝑛𝐹𝑆𝑆,𝑞𝑡ℎ) =
1

𝑉
∑ [𝐹𝑂,(𝑛𝐹𝑆𝑆,𝑞𝑡ℎ),𝑖−𝐹𝑀,(𝑛𝐹𝑆𝑆,𝑞𝑡ℎ),𝑖]

2𝑉
𝑖=1  (5.6) 

and the total number 𝑉 of verification grid points (Roberts and Lean, 2008). The 

reference MSD given by 

 MSD(𝑛𝐹𝑆𝑆,𝑞𝑡ℎ),𝑟𝑒𝑓 =
1

𝑉
∑ 𝐹𝑂,(𝑛𝐹𝑆𝑆,𝑞𝑡ℎ)𝑖

2 + 𝐹𝑀,(𝑛𝐹𝑆𝑆,𝑞𝑡ℎ)𝑖
2𝑉

𝑖=1  (5.7) 

represents the largest possible MSD from the observation and forecast fractions 

(Roberts and Lean, 2008). The FSS shows values between zero and one with the 

higher values the better. A value for 𝑛𝐹𝑆𝑆 of five (like used in Bick et al., 2016) 

corresponding to a 15 km window is used in this thesis. 

The Brier Score (BS; Wilks, 2019) is a measure for the accuracy of probabilistic 

forecasts and takes the forecast ensemble into account via 
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 BS(𝑞𝑡ℎ) =
1

𝑉
∑ [𝑝(𝑞𝑡ℎ),𝑖 − 𝐼𝑂,(𝑞𝑡ℎ),𝑖]

2𝑉
𝑖=1  (5.8) 

with 𝑝(𝑞𝑡ℎ),𝑖 the fraction of ensemble members within the ensemble exceeding the 

threshold 𝑞𝑡ℎ at the ith verification grid point. The BSS for a threshold 𝑞𝑡ℎ then is 

calculated by 

 BSS(𝑞𝑡ℎ) = 1 −
BS

BS𝑟𝑒𝑓
, (5.9) 

(e.g., Bick et al., 2016) with BS𝑟𝑒𝑓 the Brier score of a reference ensemble forecast 

(here forecasts resulting from the CNV configuration). The BSS shows 

positive/negative values if the probabilistic QPF fits the observations better/worse 

compared to the probabilistic reference QPF.  

Using Latin Hypercube Sampling (LHS), a near-random sample of DAP settings 

is generated (DAP settings S1-01 through S1-12 in Table 5.2) by modifying the DAP 

values from their pre-selected values (pre-selected and varied values in Table 5.1): 

the pre-selected values for the DAPs 𝐿𝐻, 𝑂𝐸, 𝐿𝑆, and 𝐿𝐿 are doubled or halved; for 

𝐿𝑉, fixed values of 0.2 and 0.5 ln(p) instead of the height-dependent profile are used 

as variations; 𝑀𝑉 is modified from an absolute value of three valid observations 

required for superobbing to the fractions 25 or 50 % of valid values in the 

superobbing window required for averaging. The DAP configurations/values are 

compared with each other in terms of first-guess deterministic and ensemble QPF 

quality by considering a single univariate measure – the joint quality score (JQS) 

 JQS𝑐/𝑣 = median𝑤(𝛥CNV+ZFSS𝑛𝑜𝑟𝑚[CNV+∴/Z])  

                   +median𝑤(𝛥CNV+ZBSS𝑛𝑜𝑟𝑚[CNV+∴/Z]). (5.10) 

TABLE 5.1: Pre-selected values for the DAPs 𝐿𝐻 and 𝐿𝑉 (horizontal and vertical observation 

localization length-scales in km and ln(p), with “h.d.” for 𝐿𝑉 standing for “height-dependent” 

from 0.075 to 0.5 ln(p)), 𝑂𝐸 (observation error standard deviation), 𝐿𝑆 (superobbing window 

size in km), 𝐿𝐿 (lower limit of data applied before superobbing), and 𝑀𝑉 (the minimum 

required number of valid observations for superobbing), and two variations considered each.  
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In Eq. (5.10), 𝛥𝐶𝑁𝑉+𝑍 indicates differences with respect to the CNV+Z assimilation 

configuration, “∴” is either LWC or IWC, the index “norm” denotes normalization 

with the means of 𝛥CNVFSS[CNV+Z] or BSS[CNV+Z] over all considered 

precipitation accumulation thresholds (0.5, 1.0, 2.0, and 4.0 mm h-1) and cases 

(C2017, S2017, and S2021), and median𝑤(… ) indicates a weighted median. 

Medians are used instead of means to reduce the effect of outliers in FSS and BSS. 

The weights are determined by the fractions of threshold exceedances for a given 

time and threshold in the total number of exceedances in all thresholds and cases 

considered in the RADOLAN data (see fractions in Fig. 5.3). Thus, the number 

threshold exceedances is taken into account by JQS, and lower (more frequently 

exceeded) accumulation thresholds generally have a larger influence on the result 

compared to higher (less frequently exceeded) thresholds. Weighted medians over all 

cases and thresholds are calculated to compare first-guess QPF quality between 

different DAP configurations (JQSc), and medians are additionally calculated over all 

DAP settings with the same DAP values to compare individual DAP values (JQS𝑣). 

TABLE 5.2: Near-random sample of DAP settings from the pre-selected and varied DAP 

values in Table 5.1 generated with Latin Hypercube Sampling (LHS). The first sample S1-01 

to S1-12 is generated based on all DAP values in Table 5.1. The second sample S2-01 to 

S2-10 is generated with a reduced number of DAP values from Table 5.1 with the reduction 

of DAP values performed by consideration of the univariate measure JQSv defined in 

Eq. (5.10) determined from the first DAP setting sample (S1-01 to S1-12). 
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Besides best-performing DAP settings for LWC and IWC, this thesis also attempts 

to find best-performing combinations of the radar data sets considered (i.e., LWC, 

IWC, and 𝑍𝐻). For this purpose, the parallel assimilations of LWC or IWC and 𝑍𝐻 

(CNV+LWC+Z or CNV+IWC/Z, respectively), the combined assimilation of LWC 

and IWC instead of 𝑍𝐻, where available (CNV+[LWC+IWC]/Z), or in parallel to 𝑍𝐻 

(CNV+LWC+IWC+Z) are also evaluated with respect to first-guess deterministic 

and ensemble QPF quality quantified by the univariate measure JQS𝑐. 

5.2.5 Experiment Part B: Nine-Hour Forecasts 

In the second and final step, the impact of assimilating the 3D polarimetric LWC and 

IWC retrievals with KENDA on deterministic forecasts of the ICON-D2 model with 

lead times greater than one hour is evaluated. The 3D microphysical estimates are 

assimilated in hourly assimilation cycles using the identified best-performing DAP 

settings and radar data set configurations from the previous experiment part and 

subsequently nine-hour forecasts of the ICON-D2 model are initiated every third hour 

from the produced analyses. The quality of deterministic QPF is evaluated, as before, 

by considering the FSS and also the Frequency Bias (FBI) defined by 

 FBI(𝑞𝑡ℎ) =
𝑎(𝑞𝑡ℎ)+𝑏(𝑞𝑡ℎ)

𝑎(𝑞𝑡ℎ)+𝑐(𝑞𝑡ℎ)
 (5.11) 

FIGURE 5.3: Time series of the fractions of the number of precipitation accumulation 

threshold exceedances in the RADOLAN QPE data of DWD (“RW”-product, hourly 

accumulations) in the thresholds 0.5, 1.0, 2.0, and 4.0 mm h-1 (black, red, blue, and golden 

curves) for a) the 2017 convective case C2017, b) the 2017 stratiform case S2017, and c) the 

2021 stratiform case S2021 of the total number of threshold exceedances in all thresholds 

and precipitation cases in the DWD RADOLAN data. Fractions are used to calculate 

weighted median FSS/BSS values and the univariate measure JQS defined in Eq. (5.10). 
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(e.g., Bick et al., 2016) with 𝑎(𝑞𝑡ℎ) the total number of verification grid points that 

exceed the threshold 𝑞𝑡ℎ in 𝑃𝑂 and 𝑃𝑀, 𝑏(𝑞𝑡ℎ) the total number of points where 𝑞𝑡ℎ is 

exceeded in 𝑃𝑀 but not in 𝑃𝑂, and 𝑐(𝑞𝑡ℎ) the total number of points for which the 

threshold 𝑞𝑡ℎ is not exceeded in 𝑃𝑀, but in 𝑃𝑂. The FBI shows values below/above 

one in the case of underforecasted/overforecasted number of threshold exceedances. 

Ensemble forecasts remain unconsidered here due to data storage restrictions. 

5.3 Numerical Results 

5.3.1 Experiment Part A: Assimilation Configurations 

The assimilation of 3D LWC estimates as alternatives to 𝑍𝐻 observations, where 

possible (CNV+LWC/Z), yields different FSS and BSS values for the 12 different 

DAP settings (S1-01 through S1-12 in Table 5.2) and three different precipitation 

cases (C2017, S2017, and S2021) considered (Fig. 5.4a,c). Improvements in FSS and 

BSS over the assimilation of 𝑍𝐻 data alone (CNV+Z) considering all precipitation 

cases together are obtained, e.g., with the DAP sets S1-01 through S1-03, S1-06, or 

S1-08 (see Fig. 5.4a4,c4). These best-performing DAP settings are characterized by 

small horizontal observation localization length-scales (𝐿𝐻 of 8 and 16 km) and 

rather high lower limits of the microphysical estimates (𝐿𝐿 of -2.30 and -1.15). Thus 

best first-guess QPF quality is obtained when the influence of the microphysical 

retrievals on the model state is rather small, probably because of discrepancies 

between true and model microphysics. The assimilation of IWC instead of 𝑍𝐻 data, 

where possible (CNV+IWC/Z), also yields different FSS and BSS values for the 

different DAP settings and precipitation cases (Fig. 5.4b,d). Improvements in first-

guesses over the CNV+Z configuration are mostly limited to the stratiform S2021 

case, e.g., DAP settings S1-02 or S1-05 (Fig. 5.4b3,d3), while the first-guess QPF 

quality is always degraded for the convective C2017 case (Fig. 5.4b1,d1). 

In order to identify the best-performing DAP sets for LWC and IWC while taking 

into account all three precipitation cases C2017, S2017, and S2021, the univariate 

measure JQS𝑣 (introduced in Section 5.2.4 and Eq. (5.10)), which is based on the first-

guess FSS and BSS values, is used. The DAP values that yield the worst (and negative) 

JQS𝑣 values among the tested DAP values in Table 5.1 for each DAP calculated from 

the DAP sample S1-01 to S1-12 in Table 5.2 are 32 km, 0.5 ln(p), 0.5, 5 km, -4.6, 

and 25 % (i.e., 25 % of the radar pixels in the superobbing window must have valid 

values for superobbing) for the DAPs 𝐿𝐻, 𝐿𝑉, 𝑂𝐸, 𝐿𝑆, 𝐿𝐿, and 𝑀𝑉, respectively, for 

both LWC and IWC (black and grey bars in Fig. 5.5a). Another 10 DAP settings are 

sampled with LHS in the vicinity of the better performing ones (S2-01 through S2-10 

in Table 5.2). Using the new DAP settings for LWC and IWC again yields different 

first-guess FSS and BSS values for the different new DAP settings and considered 

precipitation cases (Fig. 5.4e-h). Improvements in the first-guess FSS and BSS values 

compared  to  the  assimilation  of  𝑍𝐻  data  alone (CNV+Z) are again evident for the   
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FIGURE 5.4: Weighted medians of differences in first-guess deterministic FSS (first and third 

panel rows) and BSS (second and fourth panel rows) between the CNV+LWC/Z (left block) 

or CNV+IWC/Z (right block) configurations with the near-random sampled DAP settings 

(S1-01 to S1-12 and S2-01 to S2-10 in Table 5.2) and the CNV+Z configuration for the 

precipitation accumulation thresholds 0.5, 1.0, 2.0, and 4.0 mm h-1 and the 2017 convective 

(C2017; left most columns within the two blocks), 2017 stratiform (S2017; second column 

within each block), and 2021 stratiform (S2021; third columns within each block)  

precipitation periods considered. The right most column in each block depicts the weighted 

median over all considered precipitation cases. The weights are determined by threshold 

exceedances in the RADOLAN data (see Fig. 5.3). Green colors indicate improvements in 

first-guesses with respect to the CNV+Z configuration, red colors deteriorations. 
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FIGURE 5.5: a) Comparison of the tested values for the DAPs 𝐿𝐻, 𝐿𝑉, 𝑂𝐸, 𝐿𝑆, 𝐿𝐿, and 𝑀𝑉 

in Table 5.1 using the univariate measure JQSv defined in Eq. (5.10) for the LWC (black bars) 

and IWC (grey bars) assimilation in the CNV+LWC/Z and CNV+IWC/Z assimilation 

configurations with the DAP settings from the first DAP setting sample (S1-01 to S1-12 in 

Table 5.2). In b), all 22 sampled DAP settings (first and second samples S1-01 to S1-12 and 

S2-01 to S2-10 in Table 5.2) plus the pre-selected DAP setting (setting S-pre in Table 5.1) 

are compared with each other in terms of the univariate measure JQSc for the LWC (black 

bars) and IWC (grey bars) assimilation considering all rainfall cases C2017, S2017, and 

S2021 together. Panels c), d), and e) are like panel b), but with the univariate measure JQSc 

calculated for the individual rainfall cases C2017, S2017, and S2021, respectively. 
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LWC assimilation (Fig. 5.4e,g) and mostly limited to the stratiform S2021 case for 

the IWC assimilation (Fig. 5.4f3,h3). However, the new DAP sets (S2-01 through 

S2-10 in Table 5.2; Fig. 5.4e-h) do  not  perform  significantly better compared to the  

first sample (S1-01 through S1-12 in Table 5.2; Fig. 5.4a-d) on average, except that 

strong negative outliers do not exist anymore. 

The 22 DAP settings in Table 5.2 are compared to each other for the LWC and 

IWC assimilations in terms of their impact on first-guess deterministic and ensemble 

QPF quality by using the univariate measure JQS𝑐 defined in Eq. (5.10). Several DAP 

FIGURE 5.6: Time series of the difference in first-guess deterministic FSS (first rows for  each 

case, i.e., panels a), b), e), f), i), and j)) and BSS (second rows for each case, i.e., panels c), 

d), g), h), k), and l)) values for precipitation accumulation thresholds of 0.5 (left column) and 

4.0 mm h-1 (right column) between the CNV+LWC/Z and CNV+Z  configurations with the 

found best-performing DAP settings for LWC (S2-06, see Table 5.2) for the a)-d) 2017 

convective case (C2017), e)-h) 2017 stratiform case (S2017), and i)-l) 2021 stratiform case 

(S2021). Green shading indicate improvements using the CNV+LWC/Z configuration over 

the CNV+Z configuration, red colors indicate deteriorations. 
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settings (e.g., S2-01, S2-04, or S2-06) yield positive JQS𝑐 values for the LWC 

assimilation (black bars in Fig. 5.5b) and thus improved first-guess FSS and BSS 

values compared to the assimilation of 𝑍𝐻 data alone (CNV+Z). In contrast, for the 

IWC assimilation, positive JQS𝑐 values are visible for only a few DAP settings for the 

stratiform S2021 case (grey bars in Fig. 5.5e). Among all 22 tested settings, the 

setting S2-06 (𝐿𝐻 of 8 km, 𝐿𝑉 of 0.2 ln(p), 𝑂𝐸 of 0.25, 𝐿𝑆 of 20 km, 𝐿𝐿 of -1.15, and 

𝑀𝑉 of 3; see Table 5.2) results in the best JQS𝑐 value for the LWC assimilation 

considering all cases (black bars in Fig. 5.5b). For IWC, the DAP setting S1-02 (𝐿𝐻 

of 8 km, 𝐿𝑉 of 0.5 ln(p), 𝑂𝐸 of 0.25, 𝐿𝑆 of 10 km, 𝐿𝐿 of -1.15, and 𝑀𝑉 of 50 %; see 

Table 5.2) yield the best (but around zero) overall JQS𝑐 (grey bars in Fig. 5.5b). The 

identified best-performing DAP settings S2-06 and S1-02 are hereafter used to 

assimilate the LWC and IWC estimates, respectively, in this study.  

The assimilation of the LWC estimates in the CNV+LWC/Z configuration with the 

respective best DAP set improves first-guesses for the 2017 precipitation cases 

FIGURE 5.7: As Fig. 5.6, but for the IWC assimilation with the CNV+IWC/Z configuration 

using the corresponding found best DAP setting (S1-02, see Table 5.2). 
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(Fig. 5.4e1,e2,g1,g2 and black bars in Fig. 5.5c,d) compared to the CNV+Z 

configuration, but mostly degrades the first-guess QPF quality for the 2021 stratiform 

case (Fig. 5.4e3,g3 and black bars in Fig. 5.5e). As expected, the time series of the 

first-guess FSS and BSS values for an accumulation threshold of 0.5 mm h-1 show 

slight, systematic improvements for the 2017 precipitation cases over the 

configuration assimilating 𝑍 data alone (CNV+Z) in some time periods (green colors 

in Fig. 5.6a,c,e,g), but more pronounced degradations for the 2021 case (red colors in 

Fig. 5.6i,k). Improvements can also be found for the highest investigated threshold of 

4.0 mm h-1 for the 2017 cases (see Fig. 5.6b,d,f,h), especially for the BSS and the first 

about 18 first guesses of the C2017 case (Fig. 5.6d), while for the 2021 case the result 

is rather neutral compared to the CNV+Z configuration (see Fig. 5.6j,l). The 

assimilation of IWC (CNV+IWC/Z) with the best-performing DAP set yields 

improved first guess QPF compared to the CNV+Z configuration particularly for the 

stratiform S2021 case (Fig. 5.4b3,d3 and grey bars in Fig. 5.5e), but clear quality 

decreases for the convective C2017 case (Fig. 5.4b1,d1 and grey bars in Fig. 5.5c). 

Time series of first-guess FSS and BSS values at a threshold of 0.5 mm h-1 underscore 

FIGURE 5.8: Comparison of different radar data set configurations in terms of the univariate 

measure JQSc defined in Eq. (5.10). Configurations assimilating LWC and/or IWC with 

respective best DAP sets (S2-06 and S1-02 in Table 5.2) a) instead of 𝑍𝐻 data, where possible 

(“alternative 𝑍𝐻 DA”), in the CNV+LWC/Z, CNV+IWC/Z, and CNV+[LWC+IWC]/Z 

configurations (lower, middle, and upper bars), and b) together with 𝑍𝐻 data (“parallel 𝑍𝐻 

DA”) at the same superobbing points in the CNV+LWC+Z, CNV+IWC+Z, and 

CNV+LWC+IWC+Z configurations (lower, middle, and upper bars) are compared. Black 

bars indicate the JQSc values calculated over all three precipitation cases considered, and red, 

blue, and golden bars indicate the JQSc values for individual cases C2017, S2017, and S2021. 
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this finding: slight, systematic improvements are evident for the 2021 case in some 

situations (Fig. 5.7i,k), while clear first-guess quality degradations are evident for the 

2017 convective case (Fig. 5.7a,c). A very similar picture is obtained for the highest 

investigated threshold of 4.0 mm h-1 (right panel column in Fig. 5.7).  

The better performance of the IWC assimilation for the 2021 stratiform case may 

be due to the higher radial resolution of the more recent radar data of DWD (recall 

that the resolution was increased from 1 to 0.25 km in spring 2021), which results in 

FIGURE 5.9: Vertical profiles of differences in standard deviations (SD; middle column) with 

respect to the CNV configuration and of mean-bias deviations (MBD; right column) of first-

guess forecasts obtained from hourly assimilation cycles with the CNV (black dotted curves), 

CNV+Z (black solid curves), CNV+LWC/Z (red curves), CNV+IWC/Z (yellow curves), and 

CNV+LWC+IWC+Z (blue curves) assimilation configurations of temperature (upper row), 

relative humidity (middle row), and u-wind (lower row) from conventional measurements 

over Germany. The respective numbers of observations contributing to the SD and MBD 

calculations are shown in the left column (grey curves). All rainfall cases are considered 

together and the best-performing DAP settings for LWC and IWC (S2-06 and S1-02 in 

Table 5.2) are used in the LWC and/or IWC assimilating configurations.  
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better 𝐾𝐷𝑃 estimates, because many more consecutive radar bins are considered for 

the 9 km window used for the 𝐾𝐷𝑃 estimation in this thesis. The same window length 

for the lower-resolution data for the 2017 cases contains only one quarter of the data 

compared to the high-resolution 2021 case and thus may pose difficulties for proper 

𝐾𝐷𝑃 estimation in certain situations. E.g., estimating 𝐾𝐷𝑃 from only nine consecutive 

values may favor negative 𝐾𝐷𝑃 estimates resulting in negative IWC estimates, which 

are set to the lower limit (𝐿𝐿) prior to superobbing and are thus treated as “no-

precipitation”. Replacing such negative 𝐾𝐷𝑃 values with zero or with the IWC(𝑍𝐻) 

relation proposed by Atlas et al. (1995) resulted in some improvements, but the first-

guess QPF quality achieved with these two approaches was still below that of the 

CNV+Z configuration (not shown). 

The parallel assimilation of LWC estimates and 𝑍𝐻 data at the same superobbing 

points (CNV+LWC+Z) overall results in a reduction in the JQS𝑐 compared to the 

alternative assimilation approach used before (CNV+LWC/Z), but is still better than 

the assimilation of 𝑍𝐻 data alone (CNV+Z; lower black bars in Fig. 5.8). In contrast, 

the parallel assimilation of IWC estimates with 𝑍 data (CNV+IWC+Z) leads to an 

improvement in the JQS𝑐 compared to the alternative assimilation strategy 

(CNV+IWC/Z; middle black bars in Fig. 5.8) above the CNV+Z quality. Assimilation 

of all radar data sets together (CNV+LWC+IWC+Z) gives the best JQS𝑐 value among 

the tested configurations (upper black bar in Fig. 5.8b). 

The effect of assimilating the 3D microphysical LWC and IWC estimates on first-

guesses of temperature, relative humidity, and u-wind speed is investigated by means 

of conventional observations (e.g., from commercial airplanes or radio soundings) 

over Germany. The assimilation of radar information (i.e., 𝑍𝐻, LWC, and IWC) 

generally reduces respective standard deviations (SD) compared to the assimilation 

of conventional observations alone (differences of CNV+Z, CNV+LWC/Z, 

CNV+IWC/Z, and CNV+LWC+IWC+Z configurations with respect to the CNV 

configuration drawn as black solid, red, yellow, and blue curves in Fig. 5.9b,e,h), 

while the impact on the bias (MBD) is less clear overall (CNV, CNV+Z, 

CNV+LWC/Z, CNV+IWC/Z, and CNV+LWC+IWC+Z configurations shown as 

black dotted, black solid, red, yellow, and blue lines in Fig. 5.9c,f,i). The assimilation 

of LWC or/and IWC estimates in the CNV+LWC/Z, CNV+IWC/Z, and 

CNV+LWC+IWC+Z configurations show SD and MBD values similar to the 

assimilation of 𝑍𝐻 data alone (CNV+Z), but slightly, systematically improved SD 

values in the u-wind speed with the assimilation of IWC estimates as alternatives to 

𝑍𝐻 data (CNV+IWC/Z; compare yellow with black curve in Fig. 5.9h) are evident. 

5.3.2 Experiment Part B: Nine-Hour Forecasts 

From the analyses produced in hourly assimilation cycles with the different 

assimilation configurations tested (with the best-performing DAP settings used for 

the LWC and IWC assimilations), nine-hour forecasts with the ICON-D2 model are 

produced. Assimilating 𝑍𝐻 observations (CNV+Z) clearly improves the deterministic 
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FSS for a threshold of 0.5 mm h-1 for all forecast hours compared to the assimilation 

of no radar information (CNV) on average over all cases and over each individual 

case (compare black with grey curves in Fig. 5.10a,d,g,j). The same qualitative result 

is obtained with the deterministic FBI on mean over all cases (black curve closer to 

FIGURE 5.10: Left panel column: time series of the deterministic FSS for a 0.5 mm h-1 

threshold of nine-hour forecasts initiated every third hour from hourly assimilation cycles 

with the CNV and CNV+Z configurations (grey and black curves) as means over all 

precipitation cases considered (upper row), over the 2017 convective case C2017 only 

(second row), over the 2017 stratiform case S2017 only (third row), and over the 2021 

stratiform case S2021 only (lower row). Middle column: corresponding deviations in mean 

deterministic FSS from the CNV+Z configuration of the CNV+LWC/Z (red curves), 

CNV+IWC/Z (yellow curves), and CNV+LWC+IWC+Z (blue curves) configurations using 

the best-performing DAP settings found for LWC and IWC (S2-06 and S1-01 in Table 5.2). 

Right column: corresponding mean deterministic FBI values. 
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the zero line than the grey curve in Fig. 5.10c) and for the stratiform S2017 and S2021 

cases (Fig. 5.10i,l), while for the convective C2017 case the underforecasting is 

enhanced by the 𝑍𝐻 assimilation compared to CNV (compare black with grey curve 

in Fig. 5.10f). For the highest threshold of 4.0 mm h-1, similar results for FSS are 

obtained (compare black with grey curves in Fig. 5.11a,d,g,j), while overforecasting 

quantified by FBI is enhanced by the 𝑍𝐻 assimilation on average (Fig. 5.11c).  

Assimilating LWC estimates instead of 𝑍𝐻 data where possible (CNV+LWC/Z) 

further improves the FSS on average slightly over all cases for most of the forecast 

time (red curve mostly above zero line in Fig. 5.10b). This improvement arises from 

improvements over the CNV+Z configuration for the first 6 h of the convective 

C2017 case (red curve in Fig. 5.10e) and the forecast hours five to nine of the 2021 

stratiform case (Fig. 5.10k). FBI improvements over the CNV+Z configuration are 

FIGURE 5.11: As Fig. 5.10, but for an accumulation threshold of 4.0 mm h-1. 
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also achieved due to the LWC assimilation for up to seven hours lead time on average 

over all cases (compare red with black curve in Fig. 5.10c) and at least for the first 

four forecast hours for the individual cases (Fig. 5.10f,i,l). Similarly, the 

CNV+LWC/Z configuration slightly improves the FSS for the highest investigated 

threshold of 4.0 mm h-1 for the first 7 h lead time on mean over all cases as well (red 

curve in Fig. 5.11b). In contrast to the assimilation of 𝑍𝐻 data alone (CNV+Z), the 

assimilation of LWC instead of 𝑍𝐻 where possible (CNV+LWC/Z) improves the FBI 

compared to the assimilation of no radar information (CNV) on mean over all cases 

for the 4.0 mm h-1 threshold (compare red, black, and grey curves in Fig. 5.11c). Note 

FIGURE 5.12: Mean standard deviations (SD; upper panel row) and mean bias deviations 

(MBD; lower panel row) of model forecasted 2 m temperature (left panel column), 2 m 

relative humidity (middle panel column), and 10 m u-wind (right panel column) from 

conventional near-surface observations in Germany as functions of forecast lead time. Means 

are calculated over nine-hour forecasts initiated every third hour from hourly assimilation 

cycles with assimilation configurations CNV (grey curves), CNV+Z (black curves), 

CNV+LWC/Z (red curves), CNV+IWC/Z (yellow curves), and CNV+LWC+IWC+Z (blue 

curves), using the best DAP settings for LWC and IWC (S2-06 and S1-02 in Table 5.2), and 

taking all precipitation cases C2017, S2017, and S2021 into account. 
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that the much smaller data set the investigation for the 4.0 mm h-1 threshold is based 

on makes the respective results more prone to sampling errors and thus less reliable 

compared to the respective results of 0.5 mm h-1 threshold evaluation (compare 

golden with black curve in Fig. 5.3). 

Assimilation of IWC estimates as alternatives to 𝑍𝐻, where possible 

(CNV+IWC/Z), also slightly improves the FSS for a threshold of 0.5 mm h-1 on 

average over all cases for the first five forecast hours (yellow curve in Fig. 5.10b). 

As expected from the first-guess analysis, the mean FSS for the 2017 convective case 

is degraded for most forecast hours compared to the CNV+Z configuration (yellow 

curve below zero line in Fig. 5.10e), and the stratiform cases, especially the 2021 

case, show improvements (yellow curves in Fig. 5.10h,k). The FBI is improved on 

mean over all cases for the first 7 h lead time and is best among all tested 

configurations for the first 5 h (compare yellow with remaining lines in Fig. 5.10c). 

As for FSS, the mean FBI deteriorates compared to the CNV+Z configuration for the 

convective 2017 case, while improvements are achieved for the stratiform cases 

(Fig. 5.10i,l). However, mean FSS is below the assimilation of 𝑍𝐻 data alone 

(CNV+Z) for the highest 4.0 mm h-1 threshold considered (yellow curve in 

Fig. 5.11b), where improvements are still visible for the mean FBI (Fig. 5.11c). 

The on average best-performing FSS for the low 0.5 mm h-1 threshold for the first 

6 h lead time is obtained when all radar data sets are assimilated together 

(CNV+LWC+IWC+Z; blue curve in Fig. 5.10b). However, the good FBI results of 

the CNV+IWC/Z configuration are not achieved, but the FBI is still improved with 

respect to the CNV+Z configuration for the first six forecast hours (compare blue, 

yellow, and black curves in Fig. 5.10c). For the highest 4.0 mm h-1 threshold, the 

CNV+LWC+IWC+Z configuration yields the worst FSS on average for the first 5 h 

lead time (blue curve in Fig. 5.11b), while the average FBI values are still improved 

compared to CNV+Z (compared blue and black curves in Fig. 5.11c).  

As expected, the SDs of 2 m temperature, 2 m relative humidity, and 10 m u-wind 

generally increase as functions of the forecast lead time in all DA configurations 

(CNV, CNV+Z, CNV+LWC/Z, CNV+IWC/Z, and CNV+LWC+IWC+Z drawn as 

grey, black, red, yellow, and blue curves in Fig. 5.12a,c,e). The assimilation of radar 

observations always reduces the SDs compared to the assimilation of conventional 

measurements only (CNV; compare grey with the other curves in Fig. 5.12a,c,e). The 

assimilation of IWC estimates instead of 𝑍𝐻 data, where possible (CNV+IWC/Z), 

yields the best SDs for the near-surface relative humidity and u-wind (yellow curves 

in Fig. 5.12a,c) among all tested configurations and is only marginally outperformed 

by the assimilation of all radar data sets together (CNV+LWC+IWC+Z) for the 2 m 

temperature (compare blue with yellow curve in Fig. 5.12a). Assimilation of radar 

data generally only reduces MBDs for the 10 m u-wind compared to the configuration 

without radar DA (CNV; compare grey with other curves in Fig. 5.12b,d,f), except 

for the CNV+LWC+IWC+Z configuration, which yields the lowest bias for the 2 m 

relative humidity among all tested DA configurations (blue curve in Fig. 5.12d). 
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5.4 Summary and Conclusions 

In this chapter, polarimetric observations from the German C-band radar network 

were assimilated in Germany in DWD’s convective-scale KENDA-ICON-D2 system 

for the first time. The polarimetric information was assimilated indirectly using 

microphysical retrievals of LWC and IWC below and above the melting layer, 

respectively, and their impact on short-term QPF was evaluated. The LWC estimator 

used was the one developed in Chapter 3 of this thesis, while for the IWC estimation 

a state-of-the-art hybrid estimator proposed in the literature was used. In a first part, 

the impact of the microphysical retrieval assimilation on first-guess (hourly) QPF was 

investigated with different data assimilation parameter (DAP) settings and radar data 

set configurations. Then, nine-hour forecasts initiated from hourly assimilation cycles 

with the most successful assimilation settings were evaluated. 

Four data set configurations were considered to identify the best-performing DAP 

settings for LWC and IWC: only conventional observations (CNV), conventional plus 

3D 𝑍𝐻 observations (CNV+Z), conventional observations plus LWC estimates 

replacing 𝑍𝐻 observations, where available (CNV+LWC/Z), and conventional data 

plus IWC estimates replacing 𝑍𝐻 data, where possible (CNV+IWC/Z). For the two 

intense stratiform precipitation cases in the summers of 2017 and 2021 and the intense 

convective case in the summer of 2017 considered, a rather small horizontal 

observation localization length-scale of 8 km and a lower limit of -1.15 in log(LWC) 

and log(IWC) yielded the best first-guess. This suggests that first-guess QPF benefits 

from a rather small influence of the microphysical estimates on the model state, most 

likely due to discrepancies between the model and true microphysics. Moreover, a 

relatively small observation error standard deviation of 0.25 in log(LWC) and 

log(IWC) yielded the best first-guess results. The best values for the remaining DAPs 

considered differed for LWC and IWC: the vertical localization length-scales were 0.2 

in logarithm of pressure for LWC and 0.5 in logarithm of pressure for IWC; the best 

superobbing window sizes were 20 km for LWC and 10 km for IWC; the minimum 

required number of valid values in the superobbing window for superobbing were 

three observations for LWC and 50 % valid observations of the full number of radar 

pixels in the superobbing window required for IWC. 

The assimilation of the LWC estimates (CNV+LWC/Z) with the respective best-

performing DAP setting improved the first-guess for most precipitation cases and 

accumulation thresholds compared to the assimilation of 𝑍𝐻 data alone (CNV+Z). In 

contrast, the best DAP set for IWC mostly degraded the first guess, especially for the 

2017 convective case, except for the 2021 stratiform period, which showed 

improvements over the CNV+Z configuration. The latter may be due to the much 

higher radial resolution of the more recent data after the volume scan resolution was 

increased at DWD from 1 to 0.25 km in spring 2021. The higher resolution improves 

the 𝐾𝐷𝑃 estimation because for a given estimation window four times more radar bins 

contribute to the 𝐾𝐷𝑃 estimate compared to the 2017 data, which leads to more stable 

𝐾𝐷𝑃 estimates and less noise. The same effect might be less visible for LWC because 
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the hybrid LWC retrieval uses 𝐾𝐷𝑃 only for high-intensity precipitation 

(𝑍𝐻 > 45 dBZ; see Chapter 3). One reason for the poor performance of the IWC 

assimilation especially for the 2017 convective case, besides possible inadequacies 

in the model’s ice module, may be the fact that the IWC retrieval is based on 

assumptions valid for snowfall, but not for hail or graupel, like the assumed inversely 

proportional relationship assumed between the density and size of hydrometeors. 

However, hail and/or graupel likely is present in intense summer convective 

precipitation in Germany, which may be at least in part a reason for the worse 

performance of the IWC assimilation for convective precipitation. Interestingly, the 

LWC assimilation for the same case led to clearly improved first-guess results, despite 

the fact that the LWC retrieval was not adapted to hail and/or graupel as well (see 

Chapter 3). The utilization of a higher 𝜌𝐻𝑉 threshold below the melting layer for 

filtering of the radar data potentially also masked out radar bins contaminated by hail 

and/or graupel, which thus may serve as an explanation for the better results achieved.   

Overall, the best first-guess QPF was yielded when all radar data sets considered 

(i.e., 𝑍𝐻, LWC, and IWC) were assimilated together (CNV+LWC+IWC+Z).  

Deterministic nine-hour QPF initiated with radar observations (i.e., CNV+Z, 

CNV+LWC/Z, CNV+IWC/Z, or CNV+LWC+IWC+Z, with LWC and IWC 

assimilated with the respective best DAP sets) in general clearly outperformed those 

forecasts initiated with conventional data only (CNV) in terms of Fraction Skill Score 

(FSS) and Frequency Bias (FBI). Forecasts initiated from the assimilation of LWC 

estimates (CNV+LWC/Z) using the respective best-performing DAP setting slightly 

outperformed the ones produced with the assimilation of 𝑍𝐻 data alone (CNV+Z) in 

terms of deterministic FSS on average over all cases and for most forecast lead times; 

best results were obtained for the 2017 convective case overall. The same applies to 

the assimilation of IWC (CNV+IWC/Z) with the respective best DAP set, however, 

the mean FSS mostly deteriorated for the 2017 convective case compared to the 

CNV+Z configuration, but was slightly, systematically improved for the high-

resolution 2021 stratiform case for a 0.5 mm h-1 threshold. Forecasts initiated with 

the assimilation of all radar data sets considered together (CNV+LWC+IWC+Z) gave 

the best FSS for a 0.5 mm h-1 threshold on average for the first 6 h lead time. Finally, 

the assimilation of LWC and/or IWC in general mostly improved the average FBI over 

all cases compared to the assimilation of 𝑍𝐻 data alone (CNV+Z). 
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Conclusions and Outlook 

Accurate quantitative precipitation forecasts (QPF) by numerical weather prediction 

(NWP) models are and remain of high societal interest, especially in times of global 

warming, which leads to increasing frequency and intensity of heavy precipitation 

events across the earth (IPCC, 2021). The assimilation of horizontal radar reflectivity 

𝑍𝐻 and radar radial wind observations in convective-scale NWP systems has been 

shown to be highly beneficial for improving QPF (e.g., Bick et al., 2016). 

Polarimetric radar observations contain additional independent information on cloud-

precipitation microphysics compared to 𝑍𝐻 alone and thus have the potential to 

further improve QPF through data assimilation. However, the assimilation of 

polarimetric measurements in NWP models is still in its infancy. 

This study made a first step in assimilating polarimetric information from the 

German national C-band weather radar network into the operational convective-scale 

NWP system of the German meteorological service (DWD, Deutscher Wetterdienst). 

The system uses the ICON-D2 model, a limited-area setup of the Icosahedral 

Nonhydrostatic (ICON; Zängl et al., 2015) model over Germany, and the KENDA 

(Kilometre-scale Ensemble Data Assimilation; Schraff et al., 2016) data assimilation 

system, which includes the LETKF (Local Ensemble Transform Kalman Filter; Hunt 

et al., 2007) scheme. Polarimetry-based microphysical retrievals of liquid and ice 

water content (LWC and IWC) below and above the melting layer, respectively, were 

assimilated and the impact on short-term QPF compared to the assimilation of 𝑍𝐻 

observations alone was evaluated. To this goal, a new polarimetric LWC estimator 

was developed for C-band. Here, the central research questions formulated in 

Chapter 1 are revisited in view of the findings presented in the former chapters. 

Q1: What is the best-performing polarimetric 𝐋𝐖𝐂 retrieval for application to 

the German C-band radar network? 

Based on a large German pure-rain disdrometer data set and T-matrix scattering 

calculations at C-band, a set of LWC retrievals based on reflectivity 𝑍𝐻, the 

combination of 𝑍𝐻 and differential reflectivity 𝑍𝐷𝑅, specific horizontal attenuation 

𝐴𝐻, and specific differential phase 𝐾𝐷𝑃 was developed. For the LWC(𝑍𝐻), 

LWC(𝑍𝐻, 𝑍𝐷𝑅), LWC(𝐴𝐻), and LWC(𝐾𝐷𝑃) estimators, a quadratic, a bivariate linear, 

a quadratic, and a linear relation (on the logarithmic scale), respectively, yielded the 

best results and outperformed existing retrievals from the scientific literature, when 
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applied to simulated radar observations. Their application to four stratiform and five 

convective summer precipitation events monitored with the German C-band radar 

network yielded overall satisfactory results in terms of low biases. However, the new 

polarimetric LWC(𝑍𝐻, 𝑍𝐷𝑅) and LWC(𝐴𝐻) retrievals resulted in less pronounced 

improvements compared to the new LWC(𝑍𝐻) estimator than expected from the 

simulations. In addition, the new LWC(𝐾𝐷𝑃) estimator resulted in an even worse 

performance. In general, improvements achieved above existing LWC estimators 

were also smaller than expected from the simulations. This may partly be attributed 

to errors introduced by the comparison of in-situ with remotely sensed observations, 

and partly to additional uncertainties arising from low signal-to-noise ratios of the 

radar data, especially of the total differential phase in weak precipitation, spatial 

degradation of 𝐾𝐷𝑃, and radar calibration problems. 

A hybrid LWC estimator was used for the assimilation of polarimetric information 

below the melting layer. In weak rain (total differential phase shift < 5 deg) the new 

LWC(𝑍𝐻, 𝑍𝐷𝑅) retrieval is used because phase-based variables (𝐴𝐻 and 𝐾𝐷𝑃) may 

suffer from low signal-to-noise ratios while the impact of (differential) attenuation 

on 𝑍𝐻 and 𝑍𝐷𝑅 is small. In stronger rain (total phase shift > 5 deg), where estimates 

of 𝐴𝐻 and 𝐾𝐷𝑃 are more reliable, the new LWC(𝐴𝐻) retrieval is applied where 

𝑍𝐻 < 45 dBZ, and the new LWC(𝐾𝐷𝑃) retrieval is used elsewhere. This hybrid LWC 

retrieval resulted in low biases and gave better correlations than all non-hybrid 

estimators, when applied to C-band observations over Germany. 

Q2: Does the assimilation of polarimetric microphysical retrievals into the 

KENDA-ICON-D2 system of DWD improve short-term QPF compared to 

the assimilation of 𝒁𝑯 observations alone? 

Polarimetric LWC and IWC retrievals from the German national C-band radar 

network were assimilated in the KENDA-ICON-D2 system. The hybrid LWC 

estimator (see above and published in Reimann et al., 2021) was used for polarimetric 

information below the melting layer and the hybrid IWC estimator proposed by Carlin 

et al. (2021) and evaluated with in-situ observations by Blanke et al. (2023) for 

observations above the melting layer. The results of the assimilation were analyzed 

for two stratiform precipitation cases in the summers of 2017 and 2021 and one 

convective precipitation case in the summer of 2017.  

The first-guess (hourly) QPF quality was used to identify optimal data assimilation 

settings (e.g., observation localization length scales and errors) for LWC and IWC. 

With the optimal settings, the LWC assimilation mostly improved first-guess QPF 

quality compared to the assimilation of 𝑍𝐻 data alone while the IWC assimilation 

mostly degraded the first-guess except for the 2021 stratiform case. The latter most 

probably profited from an increase in radial resolution of the observations from 1 to 

0.25 km and thus better 𝐾𝐷𝑃 estimates. Since the IWC retrieval was developed based 

on assumptions valid for snowfall but not for graupel and/or hail, such as the inversely 
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proportional relationship assumed between hydrometeor density and size, the 

potential presence of graupel and/or hail in convection likely in intense convective 

summertime precipitation in Germany may at least be partly responsible for the 

especially bad performance for the 2017 convective case. The best first-guess QPF 

quality was obtained when 𝑍𝐻, LWC, and IWC were assimilated together.  

Based on the analyses produced with the optimal data assimilation settings, nine-

hour forecast runs were performed and evaluated. The LWC assimilation slightly 

improved the deterministic Fraction Skill Score (FSS) values compared to the 

assimilation of 𝑍𝐻 alone for most forecast hours with best results for the 2017 

convective case. Systematic improvements were also found for the mean 

deterministic Frequency Bias (FBI). The IWC assimilation slightly improved the 

mean FSS values only in the first five forecast hours over the assimilation of 𝑍𝐻 

observations alone. As expected from the first-guess evaluation, best results were 

obtained for the 2021 stratiform case, but clear FSS degradations were found for the 

2017 convective case. The FBI improved on average, but was degraded for convective 

precipitation as well. The best FSS values on average for the first six forecast hours 

were obtained when 𝑍𝐻, LWC, and IWC were assimilated together. Overall, the 

assimilation of polarimetric microphysical retrievals from the German C-band radar 

network in the KENDA-ICON-D2 system at DWD could slightly improve short-term 

QPF compared to the assimilation of 𝑍𝐻 observations alone. The IWC assimilation 

alone was only successful in stratiform precipitation when the radar data have a high 

radial resolution but degraded QPF quality for convective precipitation. 

The assimilation experiment conducted in this thesis (and submitted for 

publication, Reimann et al., 2023) was based on the operational standard 

configuration of KENDA, which produces analysis increments only for the 

microphysical variables cloud water mixing ratio and specific humidity in the LETKF 

analysis step besides for temperature, pressure, and horizontal wind. The other 

hydrometeor species in the single-moment microphysical scheme are not 

simultaneously updated due to assimilation impact considerations made for the 𝑍𝐻 

assimilation at DWD. Thus, they are only indirectly updated via analysis increments 

in the other updated model variables in the ensuing model forecast. The choice of 

simultaneously updated microphysical variables can, however, impact the 

microphysical state of the model; thus, additional investigations should be performed 

for final conclusions (personal communication Klaus Stephan, DWD). E.g., it should 

be explored if QPF improves when LWC estimates also update (via cross-correlations 

in the first-guess ensemble) rain mixing ratios in the analysis step, or when IWC 

estimates also update ice species such as cloud ice and snow mixing ratios.  

This research is a first step towards an operational assimilation of polarimetric 

radar observations in Germany in the future. The results suggest that the radial 

resolution of the polarimetric C-band radar data plays an important role especially for 

the IWC estimation and its subsequent assimilation via better 𝐾𝐷𝑃 estimates. Since 

the present analysis is based to a major extent on data with only 1 km radial 
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resolution, the optimal data assimilation settings and configurations should also be 

revised with high-resolution data prior to a potential operationalization. The study 

did also not investigate the sensitivity of the nine-hour QPF quality to modifications 

in the data assimilation settings due to limited data storage and computing time, 

which may be worthwhile, because first-guess quality does not automatically 

translate to similar improvements in QPF with longer lead times.  

This thesis gave first insights into the benefits of assimilating state-of-the-art 3D 

polarimetric microphysical LWC and IWC retrievals into a convective-scale 

Ensemble-Kalman-Filter-based NWP system in Germany. It demonstrated that the 

assimilation of the IWC retrievals above the melting layer posed problems 

particularly for convective precipitation, potentially due to the presence of hail and/or 

graupel in these situations. Accordingly, the development of more appropriate IWC 

retrieval algorithms for convective precipitation cores represents one of the next steps 

to further improve the exploitation of polarimetric ice microphysical retrievals for 

radar data assimilation in Germany in the future. Besides estimators of LWC and IWC, 

the assimilation of other polarimetric microphysical retrievals such as retrievals of 

the mean-volume diameter or the total number concentration of particles per unit 

volume remains to be explored. However, a double moment microphysical scheme, 

which simulates particle number concentrations besides hydrometeor mixing ratios, 

would be necessary for these experiments. To what extent such higher moment 

schemes would favor the assimilation of the polarimetric information contained in 

the microphysical LWC and IWC estimates remains to be investigated as well, 

because double moment schemes are more able to reproduce polarimetric signatures 

than single moment schemes (e.g., Jung et al., 2010a). 

The direct assimilation of polarimetric radar observations using the polarimetric 

version of the EMVORADO (Efficient Modular Volume-scanning Radar Forward 

Operator; Zeng et al., 2016) radar simulator implemented in the KENDA data 

assimilation system remains another target of future research in radar data 

assimilation in Germany. However, the reproduction of realistic polarimetric 

moments above the melting layer with the EMVORADO simulator for data 

assimilation is challenging due to the T-matrix scattering method being largely 

inappropriate in the ice phase (e.g., Shrestha et al., 2022). Currently, steps are 

undertaken to solve this problem by coupling scattering data bases to the 

EMVORADO radar simulator within the research project PROM (Polarimetric Radar 

Observations meet Atmospheric Modelling) funded by DFG (Deutsche 

Forschungsgemeinschaft). Besides the ongoing refinement of the polarimetric 

EMVORADO forward operator for the ice phase, near-future research may explore, 

as a first step, the direct assimilation of polarimetric radar moments in the liquid phase 

below the melting layer, for which the T-matrix method is more appropriate than for 

applications above the melting layer.
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3DVar 3D Variational DA scheme 

4DVar 4D Variational DA scheme 

ACI Additive Covariance Inflation 

ADAS ARPS’ Data Assimilation System 

AR6 IPCC  Sixth Assessment Report of the Intergovernmental  

Panel on Climate Change 

ARPS Advanced Regional Prediction System 

ASB DWD radar on Borkum 

BOO DWD radar in BOOstedt 

C2017 Convective precipitation DA case from 19 to 20  

July 2017 

CNV Assimilation of CoNVentional data only 

CNV+IWC+Z Like CNV plus 3D 𝐈𝐖𝐂 estimates plus 3D 𝒁𝑯 data 

CNV+IWC/Z Like CNV plus 3D 𝐈𝐖𝐂 estimates instead of 𝒁𝑯 data  

where possible 

CNV+LWC+IWC+Z Like CNV plus 3D 𝐋𝐖𝐂 estimates plus 3D 𝐈𝐖𝐂 

estimates plus 3D 𝒁𝑯 data 

CNV+LWC+Z Like CNV plus 3D 𝐋𝐖𝐂 estimates plus 3D 𝒁𝑯 data 

CNV+LWC/Z Like CNV plus 3D 𝐋𝐖𝐂 estimates instead of 𝒁𝑯 data  

where possible 

CNV+Z Like CNV plus 3D 𝒁 data 

CNV+[LWC+IWC]/Z Like CNV plus 3D 𝐋𝐖𝐂 and 𝐈𝐖𝐂 estimates  

instead of 𝒁𝑯 data where possible 

COMET Centro Operativo per la METeorologia (Italian 

operational center for meteorology) 

COSMO COnsortium for Small-scale MOdeling model 

COSMO-DE/2I Limited-area convection-allowing version of the  

COSMO model over Germany/Italy 

CRPP Covariance Relaxation to Prior Perturbations 

CRPS Covariance Relaxation to Prior Spread 

DA Data Assimilation 

DAP Data Assimilation Parameter 

DFG Deutsche ForschungsGemeinschaft (German  

research community) 

DRS DWD radar in DReSden 

DSD Drop Size Distribution 

DWD Deutscher WetterDienst (German national 

meteorological service) 
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EAKF Ensemble adjustment Kalman filter 

ECMWF European Centre for Medium-Range Weather Forecasts 

EIS DWD radar on EISberg 

EKF Extended Kalman Filter 

EMD DWD radar in EMDen 

EMVORADO Efficient Modular VOlume scanning RADar forward 

Operator 

EnKF Ensemble Kalman Filter 

EnSRF Ensemble Square-Root Filter 

EnVar Hybrid Ensemble-Variational DA scheme 

ESS DWD radar in ESSen 

ETKF Ensemble Transform Kalman Filter 

FBG DWD radar on FeldBerG 

FLD DWD radar in FLechtDorf 

GSI Gridpoint Statistical Interpolation 

HNR DWD radar in HaNnoveR 

ICON ICOsahedral Nonhydrostatic model 

ICON-D2 Limited-area setup of the ICON model over Germany 

ICON-EU Nesting setup of the ICON model over Europe 

ISN DWD radar in ISeN 

JMA Japan Meteorological Agency 

KENDA Kilometre-scale ENsemble Data Assimilation 

KF Kalman Filter 

LAPS Local Analysis and Prediction System 

LEKF Local Ensemble Kalman Filter 

LETKF Local Ensemble Transform Kalman Filter 

LHN Latent Heat Nudging 

LHS Latin Hypercube Sampling 

MCI Multiplicative Covariance Inflation 

MEM DWD radar in MEMmingen 

MM5 Fifth-Generation Pennsylvania State University–National 

Center for Atmospheric Research Mesoscale Model 

NEU DWD radar in NEUhaus 

NHB DWD radar in NeuHeilenBach 

NMC-method National Meteorological Center method to derive the 

background error covariance matrix statistically 

NWP Numerical Weather Prediction 

OFT DWD radar in OFfenThal 

OSSE Observing System Simulation Experiment 

PPI Plan Position Indicator 

PRO DWD radar in PROetzel 
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QPE Quantitative Precipitation Estimation 

QPF Quantitative Precipitation Forecast 

QVP Quasi Vertical Profile 

RADOLAN RADar OnLine ANeichung (DWD’s QPE product)  

RealPEP Near-Realtime Quantitative Precipitation Estimation and 

Prediction (name of DFG-funded project) 

ROS DWD radar in ROStock 

S2017 Stratiform precipitation DA case from 24 to 26 July 2017 

S2021 Stratiform precipitation DA case from 13 to 14 July 2021  

SCM Successive Corrections Method 

SHV-mode Scan mode of Simultaneous transmission/reception in 

Horizontal and Vertical polarization channels 

TUR DWD radar in TUeRkheim 

UMD DWD radar in UMmenDorf 

VDRAS 4DVar Doppler Radar Analysis System 

WRF Weather Research and Forecasting model 

ZPHI-method Method to derive specific attenuation 
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𝑎(𝑞𝑡ℎ)  Total number of points that exceed 𝑞𝑡ℎ in 𝑃𝑂 and 𝑃𝑀 

𝑨  Linear operator 𝑨 = 𝑰 − �̃�𝑯 in the ETKF scheme 

𝐴𝐻/𝑉  Horizontal/vertical specific attenuation (dB/km) 

𝐴𝑇ℎ𝑖𝑒𝑠  Detection area of the Thies-disdrometers (m2) 

arg(𝑐)  Argument of a complex number 𝑐 

𝑏(𝑞𝑡ℎ)  Total number of points where 𝑞𝑡ℎ is exceeded in 𝑃𝑀 but not in 𝑃𝑂 

𝑏𝑍𝑃𝐻𝐼  Exponent of an empirical power law relationship between 

(unattenuated) 𝑧𝐻  and 𝐴𝐻 
𝑩  𝑁 × 𝑁 background error covariance matrix 

𝑩0  𝑩 at the initial time of the 4DVar assimilation window 

BS  Brier score 

BSS  Brier skill score 

𝑐(𝑞𝑡ℎ)  Total number of points where 𝑞𝑡ℎ is not exceeded in 𝑃𝑀 but in 𝑃𝑂 

𝑐∗  Complex conjugate of a complex number 𝑐 

𝑑𝐴/𝐵  Degrees of freedom of retrieval A/B 

𝑑  Observation increment or innovation vector of dimension 𝑂 

𝑑
̇
𝑖  

Negative observation increment vector of dimension 𝑂 

𝐷  Particle diameter (mm) 

𝐷𝑚  Mean volume diameter of raindrops (mm) 

DCW  Width of diameter classes of Thies-disdrometers (mm) 

E[𝑥]  Expected value of a random variable 𝑥 

𝐸𝐻/𝑉  Magnitude of �⃗⃗�𝐻/𝑉 (V m-1) 

𝐸𝐻/𝑉
0   Maximum magnitude of �⃗⃗�𝐻/𝑉 (V m-1) 

𝐸𝑖/𝑠/𝑡/𝑟  Magnitude of incident/scattered/transmitted/radar-received electric  

field vector (V m-1) 

�⃗⃗�  Electric field vector (V m-1) 

�⃗⃗�𝐻/𝑉  Horizontal/vertical electric field vector component (V m-1) 

�⃗⃗�𝑖/𝑠/𝑡/𝑟  Incident/scattered/transmitted/radar-received electric field  

vector (V m-1) 

𝑓  Wave frequency (Hz) 

𝐹𝑂/𝑀  Fields of fractions obtained from 𝐼𝑂/𝑀 
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𝐹𝑡𝑒𝑠𝑡  F-test statistic 

FBI  Frequency bias 

FSS  Fractions skill score 

𝑯  Linearized observation operator  

𝑯𝑇  Adjoint of 𝑯 

𝑯𝑖  𝑯 at the ith time in the 4DVar assimilation window 

𝑯𝑖
𝑇  Adjoint of 𝑯𝑖 

ℋ  (Non-linear) Observation operator 

𝑰  Identity matrix 

𝐼𝑂/𝑀  Binary fields obtained from 𝑃𝑂/𝑀 

Im(𝑐)  Imaginary part of a complex number 𝑐 

IWC  Ice water content (g m-3) 

𝑗  Complex solution to the equation 𝑗2 = −1 

𝐽  3DVar/4DVar Cost function 

𝐽𝑏/𝑜/𝑐  Background/observation/penalty term of 𝐽 

𝐽  Cost function on subspace �̃� 

𝐽∗  Cost function 𝐽 with linearized observation operator 

JQS  Joint quality score 

𝑘  Wave number (m-1) 

�⃗⃗�𝑖/𝑘  Unit vectors in the propagation direction of the incident/scattered waves 

𝑲  Kalman gain obtained from ensemble 

�̃�  Kalman gain for updating the deviations from the ensemble mean 

𝐾𝐷𝑃  Specific differential phase (deg km-1) 

𝐾𝐻/𝑉  Effective propagation constants at horizontal/vertical polarization (m-1) 

|𝐾𝑤|  Function of 휀𝑤, |𝐾𝑤| =
𝜀𝑤−1

𝜀𝑤+2
 

𝑳𝑇  Adjoint of linear tangent forecast model operator  

𝑳𝑖−1
𝑇   𝑳𝑇 in the vicinity of �⃗�𝑖 

𝐿𝐶  Resolution of Cartesian grid (km) 

𝐿𝐻  Horizontal observation localization length-scale (km) 

𝐿𝐿  Lower limit of data for superobbing 

log(𝑥)  Decadic logarithm of a number 𝑥 

𝐿𝑆  Superobbing window size (km) 

𝐿𝑉  Vertical observation localization length-scale (ln(p)) 

LWC  Liquid water content (g m-3) 
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𝑀  Ensemble size 

ℳ  (Nonlinear) Forward model operator 

𝑀𝑖  ith angular moment of the canting angle distribution 

𝑴𝐷𝑆𝐷  2D matrix of counts in Thies-disdrometer diameter (mm)  

and velocity (m s-1) classes 

𝑴𝐷𝑆𝐷,𝑑  Sum of 𝑴𝐷𝑆𝐷 over all velocity classes (mm) 

MBD  Mean-bias deviation 

MSD  Mean squared deviation 

𝑀𝑉  Minimum number of valid values for superobbing 

𝑛𝐴/𝐵  Sample size for retrievals A/B for F-test 

𝑛𝐹𝑆𝑆  Window size for fractions in FSS calculation 

𝑛𝑤  Refractive index of water 

𝑁  Dimension of model state vector 

𝒩  Normal distribution 

𝑁(𝐷)  Particle size distribution  (m-3mm-1) 

𝑁0𝑠  y-axis intercept of an exponential particle size distribution (m-3mm-1) 

𝑁𝑤  Normalized number concentration of raindrops (m-3mm-1) 

𝑂  Dimension of the observation vector 

𝑂𝐸  Observation error standard deviation 

𝑝𝑒𝑛𝑠  Fraction of ensemble members 

𝑃(A)  Probability of an event A 

𝑃(A|B)  Probability of an event A given that an event B occurred 

𝑃𝑂/𝑀  Projected fields of RADOLAN/model data 

𝑷𝑎/𝑏/𝑓  𝑁 × 𝑁 analysis/background/forecast error covariance matrix  

obtained from ensemble  

�̃�𝑎  𝑁 × 𝑁 analysis error covariance matrix from ensemble in subspace �̃� 

PCC  Pearson correlation coefficient 

PCC𝐴/𝐵  PCC yielded by retrieval A/B 

PIA  Two-way path-integrated attenuation (dB) 

𝑞𝑟/𝑐/𝑠/𝑔/𝑖  Rain/cloud water/snow/graupel/cloud ice mixing ratios (g m-3) 

𝑞𝑡ℎ  Accumulation threshold (mm h-1) 

�⃗�𝑚  mth subgrid-scale noise process ensemble member of dimension 𝑁 

𝑸  Covariance matrix of a zero-mean noise process representing subgrid-

scale processes not resolved by the forecast model of dimension 𝑁 × 𝑁 

𝑟0  Range of center bin for superobbing (km) 

𝑟𝑚      Observation perturbation for the mth ensemble member following 𝑹 
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𝑟𝜓  Function of 𝜎𝜓, 𝑟𝜓 = exp[−2𝜎𝜓
2] (exp[radians2]) 

𝑹  𝑂 × 𝑂 observation error covariance matrix 

𝑹𝑖  𝑹 at the ith time in the 4DVar assimilation window 

𝑅𝑠𝑐𝑚  Maximum radius of observation influence in SCM 

Re(𝑐)  Real part of a complex number 𝑐 

RMSD  Root mean square deviation 

𝑅𝑅  Near-surface rain rate (mm h-1) 

𝑅𝑅𝑚𝑜𝑑  Simulated rain rate in LHN approach (mm h-1) 

𝑅𝑅𝑜𝑏𝑠  Observed rain rate in LHN approach (mm h-1) 

𝑠𝑎/𝑏  Complex scattering amplitude along a spheroid’s axis a/b 

𝑠𝐻𝐻  Complex (back)scattering amplitudes; the first index denotes the 

polarization channel that transmits, the second index denotes the 

polarization channel that receives; H/V denote the horizontal/vertical 

polarization channels 

𝑠𝐻𝑉  

𝑠𝑉𝑉  

𝑠𝑉𝐻  

𝑠𝐻𝐻
(0)

  Complex forward scattering amplitudes; the first index denotes the 

polarization channel that transmits, the second index denotes the 

polarization channel that receives; H/V denote the horizontal/vertical 

polarization channels 
𝑠𝑉𝑉
(0)

  

𝑺  (Back)Scattering Matrix 

𝒮  Subspace spanned by the ensemble perturbation vectors in the LETKF 

of dimension 𝑀 

�̃�  Subspace from which the perturbation matrix 𝑿𝑏 transforms an 𝑀-

dimensional vector �⃗⃗⃗� into the 𝑀-dimensional subspace 𝒮 

𝑺′  Transmission-included scattering matrix 

SD  Standard deviation 

SNR  Signal-to-noise ratio (dB) 

𝑻  Transmission matrix 

𝑇𝐻𝐻  Elements of the transmission matrix 𝑻; the first index denotes the 

polarization channel that transmits, the second index denotes the 

polarization channel that receives; H/V denote the horizontal/vertical 

polarization channels 

𝑇𝐻𝑉  

𝑇𝑉𝑉  

𝑇𝑉𝐻  

∆𝑇𝐿𝐻𝑁  Incremental temperature profile in LHN approach (K) 

∆𝑇𝐿𝐻,𝑚𝑜𝑑  Vertical profile of modelled temperature change by latent heating in 

LHN approach (K) 

𝒯  Number of observations in the 4DVar assimilation window 

𝑣𝑡  Terminal fall velocity of particles (m s-1) 

�⃗�𝑇  Transpose of a vector �⃗� 
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𝑉  Number of verification grid points for FSS, BSS, and FBI 

𝑉𝑟  Doppler radial wind (m s-1) 

�⃗⃗⃗�𝑎
𝑚  Weighting vector for mth ensemble member in LETKF of dimension 𝑀 

�⃗⃗⃗�𝑎
̅̅ ̅̅   Ensemble mean of �⃗⃗⃗�𝑎

𝑚 

𝑾𝑎  𝑀 ×𝑀 matrix of weights in the LETKF  

𝑾𝑎
𝑚  mth column of 𝑾𝑎 

�⃗�  Variable model state vector of dimension 𝑁 

�⃗�𝑎/𝑏  Analysis/background state vector of dimension 𝑁 

�⃗�𝑓  Forecast model state of dimension 𝑁 

�⃗�𝑖  Model state integrated to the ith observation time in the 4DVar window 

�⃗�𝑡  True state of the atmosphere on the model grid of dimension 𝑁 

�⃗�𝑎/𝑏
𝑑𝑒𝑡  Deterministic analysis/background state vector of dimension 𝑁 

�⃗�𝑏/𝑎
𝑚   mth background/analysis ensemble member of dimension 𝑁 

�⃗�𝑏/𝑎
̅̅ ̅̅ ̅̅   Background/analysis ensemble mean of dimension 𝑁 

�⃗�𝑓/𝑎
̅̅ ̅̅ ̅̅   Ensemble mean �⃗�𝑓/𝑎 of dimension 𝑁 

�⃗�𝑓/𝑎
𝑚   mth forecast/analysis state ensemble member of dimension 𝑁 

�⃗�𝑓/𝑎
𝑚′   Deviation of �⃗�𝑓/𝑎

𝑚  from �⃗�𝑓/𝑎
̅̅ ̅̅ ̅ of dimension 𝑁 

𝑿𝑏/𝑎  𝑁 ×𝑀 matrix of ensemble perturbations from �⃗�𝑏/𝑎
̅̅ ̅̅ ̅̅   

�⃗�𝑜  Observation vector of dimension 𝑂 

�⃗�𝑏
𝑚  mth background ensemble member in observation space of dimension 𝑂 

�⃗�𝑏
̅̅ ̅  Ensemble mean of �⃗�𝑏

𝑚 of dimension 𝑂 

�⃗�𝑜
̅̅̅  Ensemble mean observation vector of dimension 𝑂 

�⃗�𝑜
𝑚′  mth observation perturbation from �⃗�𝑜

̅̅̅ of dimension 𝑂 

𝒀𝑏  𝑂 ×𝑀 matrix of ensemble perturbations from �⃗�𝑏
̅̅ ̅ 

𝑧𝐷𝑅  Linear differential reflectivity  

𝑧𝐻/𝑉  Linear horizontal/vertical reflectivity factor (mm6 m-3) 

𝑍𝐻/𝑉  Logarithmic horizontal/vertical reflectivity factor (dBZ) 

𝑍𝐻,𝑎𝑡𝑡  Attenuated (measured) 𝑍𝐻 (dBZ) 

𝑧𝐻,𝑎𝑡𝑡  Attenuated (measured) 𝑧𝐻 (mm6 m-3) 

𝑍𝐷𝑃  Reflectivity difference (mm6 m-3) 

𝑍𝐷𝑅  Differential reflectivity (dB) 

𝑍𝐷𝑅,𝑎𝑡𝑡  Attenuated (measured) 𝑍𝐷𝑅 (dB) 

∆𝑍𝐻  Reduction in 𝑍𝐻 along a ray by attenuation (dBZ) 

𝛼  Attenuation parameter (dB deg-1) 
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𝛼𝐿𝐻𝑁  Ratio between 𝑅𝑅𝑜𝑏𝑠 and 𝑅𝑅𝑚𝑜𝑑 in LHN approach 

𝛽  Differential attenuation parameter (dB deg-1) 

𝛾𝑠𝑐𝑚  Factor for 𝑅𝑠𝑐𝑚 in Barnes (1964) SCM approach 

𝛿  Backscatter differential phase (deg) 

휀𝑤  Dielectric constant of water 

휀⃗𝑏  Background error vector with dimension 𝑁 

휀⃗𝑜  Observation error vector with dimension 𝑂 

𝜅  Factor related to the degree of riming 

𝜆  Radar wavelength (mm) 

𝜌𝐻𝑉  Co-polar cross-correlation coefficient 

𝜌𝑡𝑜𝑡  Total air density (kg m-3) 

𝜌𝑤  Density of water (g m-3) 

𝜎𝜒/𝜓  Standard deviations of 𝜒/𝜓 with 𝜎𝜒 = 𝜎𝜓/𝑠𝑖𝑛(𝜓) (radians) 

 𝛥𝜏𝐷𝑆𝐷  Time interval for single drop size distributions (s)  

𝜑𝐻/𝑉  Start phases of �⃗⃗�𝐻/𝑉 (deg) 

𝜑𝐷𝑃  Propagation differential phase (deg) 

𝜑𝐷𝑃
𝑠𝑦𝑠

  Differential phase from the radar system (deg) 

𝛥𝜑  Difference between 𝜑𝐻 and 𝜑𝑉 (deg) 

𝛷𝐷𝑃  Total differential phase (deg) 

𝛥𝛷𝐷𝑃  Total increment in 𝛷𝐷𝑃 along a ray below the melting layer (deg) 

𝜒  Angle between the spheroid axis a and the vertical direction in the 

polarization plane (deg) 

𝜓  Angle between the spheroid axis a and the direction of wave 

propagation (deg) 

∇  Gradient 

〈… 〉  Integral over 𝑁(𝐷) 
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2.1 Stereographic projection of the area covered by the German national 

C-band weather radar network operated by DWD with polarimetric 

radars (indicated by red crosses; red circles indicate the approximate 

150 km ranges around the radars) in Rostock (ROS), Boostedt (BOO), 

Prötzel (PRO), Hannover (HNR), Ummendorf (UMD), Essen (ESS), 

Flechtdorf (FLD), Dresden (DRS), Neuhaus (NEU), Neuheilenbach 

(NHB), Offenthal (OFT), on Eisberg (EIS), in Türkheim (TUR), Isen 

(ISN), Memmingen (MEM), and on Feldberg (FBG), and non-

polarimetric radars (indicated by blue crosses and circles) in Emden 

(EMD) and on the island Borkum (ASB). The ASB radar is used only 

in case of system failure of the EMD radar. Green triangles indicate 

locations of the DWD/University-of-Bonn surface-based Thies-

disdrometers from which observations are used for the development 

and evaluation of LWC estimators in Chapter 3. 

18 

3.1 Total counts of 1 min average particle numbers observed in different 

Thies-disdrometer particle diameter (in mm) and particle fall velocity 

(in m s-1) classes in the raw large surface-based Thies-disdrometer data 

set obtained from DWD surface stations and the University of Bonn 

(locations of used disdrometers as green triangles in Fig. 2.1). The 

black solid curve shows the relationship between raindrop diameter and 

terminal fall velocity proposed by Brandes et al. (2002) in Eq. (3.1) and 

the upper and lower dotted black curves show 150 % and 50 % of this 

expected relationship, respectively. 

27 

3.2 2D histogram of pairs of T-matrix calculated 𝑍𝐻 and log(LWC) 

computed using Eq. (3.3) based on the large, filtered disdrometer data 

set of 1 min average pure-rain DSDs (about 818,000). White dots 

represent pairs of log(LWC)-interval centers (0.1-intervals from  -2.0 

to 0.6) and corresponding interval-median 𝑧𝐻 values used to determine 

weighted fits to the data following the technique of Carlin et al. (2016) 

and Ryzhkov and Zrnic (2019). The black dotted and solid curves are 

weighted linear and quadratic fits to the data (Eqs. (3.6) and (3.7)), the 

blue curve depicts the LWC(𝑍𝐻) relation of Greene and Clark (1972; 

Eq. (2.45); “G&C1972”), and the orange and red curves show the 

relations of Carlin et al. (2016; Eq. (2.46); “C2016”) and Ryzhkov and 

Zrnic (2019; Eq. (2.47); “R&Z2019”). The red curve mostly covers the 

orange curve due to similar relationships. 

29 
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3.3 Probability density distribution of log(𝑁𝑤) values (see Eq. (2.48)) in 

the large, filtered  disdrometer data set of 1 min average pure-rain 

DSDs (about 818,000) used in this thesis for the development and 

evaluation of LWC estimators (grey bars). The red vertical line 

indicates the position at which the DSD data set is separated for the 

retrieval development based on the different log(𝑁𝑤) regimes 

corresponding to the primary and secondary maxima of the log(𝑁𝑤) 

distribution. 

32 

3.4 As Fig. 3.2, but with DSD-based pairs of T-matrix-calculated log(𝐴𝐻) 
and log(LWC) computed using Eq. (3.3). White dots represent pairs of 

log(LWC)-interval centers (0.1-intervals from -2.0 to 0.6) and 

corresponding interval-median 𝐴𝐻 used to determine weighted fits to 

the data. The black dotted, solid, and dashed curves are weighted linear, 

quadratic, and cubic fits to the DSD data (Eqs. (3.12) through (3.14)), 

the blue curve depicts the LWC(𝐴𝐻) relation of Carlin et al. (2016; 

Eq. (2.52); “C2016”), and the orange curve draws the relation of 

Ryzhkov and Zrnic (2019; Eq. (2.53); “R&Z2019”). 

35 

3.5 As in Figs. 3.2 and 3.4, but with DSD-based pairs of T-matrix-

calculated log(𝐾𝐷𝑃) and log(LWC) computed using Eq. (3.3). White 

dots represent pairs of log(LWC)-interval centers (0.1-intervals from -

2.0 to 0.6) and corresponding interval-median 𝐾𝐷𝑃 values used to 

determine weighted fits to the data. Black solid, dotted, and dashed 

curves are weighted linear, quadratic, and cubic fits (Eqs. (3.15) 

through (3.17)), the blue, orange, red, and turquoise curves show the 

LWC(𝐾𝐷𝑃) relations of Bringi and Chandrasekar (2001; Eq. (2.56); 

“B&C2001”), Doviak and Zrnic (2006; Eq. (2.56); “D&Z2006”), 

Carlin et al. (2016; Eq. (2.54); “C2016”), and Ryzhkov and Zrnic 

(2019; Eq. (2.55); “R&Z2019”). 

38 

3.6 2D histograms of DSD-based pairs of LWC (given in g m-3) computed 

using Eq. (3.3) (LWCobserved) and LWC retrieved from T-matrix 

simulated radar variables (LWCretrieval) via the new a) LWC(𝑍𝐻), b) 

LWC(𝑍𝐻, 𝑍𝐷𝑅), c) LWC(𝐴𝐻), and d) LWC(𝐾𝐷𝑃) estimators (Eqs. (3.7), 

(3.11), (3.13), and (3.15)). Each subplot shows the respective quality 

values RMSD (given in g m-3), PCC, and MBD (given in g m-3). 

39 

3.7 2D histograms of hourly averaged pairs of disdrometer-measured LWC 

and the LWC retrieved from polarimetric radar observations from 

Germany using the new a) 𝐿𝑊𝐶(𝑍𝐻), b) LWC(𝑍𝐻, 𝑍𝐷𝑅), and c) 

LWC(𝐴𝐻) retrievals in Eqs. (3.7), (3.11), and (3.13). In d), the new 

LWC(𝐾𝐷𝑃) estimator (Eq. (3.15)) is used with negative 𝐾𝐷𝑃 replaced 

by zero. In e), the same new LWC(𝐾𝐷𝑃) relation is used with negative 
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 𝐾𝐷𝑃 substituted using the empirical 𝐾𝐷𝑃(𝑍𝐻) relation in Eq. (3.22) 

derived from the German DSD data set. In f), the hybrid LWC estimator 

(Eqs. (3.18) to (3.20)) is applied. Also shown are the respective quality 

measures RMSD (given in g m-3), PCC, and MBD (given in g m-3). 

Pixels marked by violet circle and pentagon shapes are discussed in 

Section 3.3.1. 

 

3.8 Investigation of the histogram pixel marked in Fig. 3.7 by violet circles. 

The hourly mean a) 𝑍𝐻 and b) 𝛷𝐷𝑃 PPIs measured at 0.5 deg elevation 

angle by the DWD radar station Ummendorf (radar location marked by 

black circles in a)-d); see radar UMD in Fig. 2.1) in the area of the 

investigated DWD surface disdrometer in Braunlage (black crosses; 

red line in d)). In c), the orography of the earth’s surface is shown. In 

d), the orographic profile along the connection line between the radar 

and the disdrometer (black dotted lines in a)-c)) is depicted and the 

approximate radar beam center (blue solid curve) and the half power 

beam radius is illustrated (blue dotted curves). 

46 

5.1 a) PPI at 1.5 deg elevation angle of the DWD radar in Neuheilenbach 

(NHB; see Fig. 2.1 of radar-estimated LWC (in g m-3) using the hybrid 

estimator developed in Chapter 3 (Eqs. (3.11), (3.13), (3.15), and 

(3.18) to (3.20)) below the melting layer (upper and lower boundaries 

of the melting layer are marked by violet circles in both subplots) and 

of the radar-estimated IWC (in g m-3) using the hybrid retrieval 

proposed by Carlin et al. (2021; Eqs. (3.60) and (3.61)) above the 

melting layer for the stratiform case on 14 July 2021 (S2021) at 16 

UTC. b) Superobbed PPI data from subplot a) (colored cycles) on the 

logarithmic scale matching approximately the analysis grid resolution 

(10 km), and corresponding superobbed 𝑍𝐻 data (in dBZ) where no 

superobbed LWC and IWC estimates are available (grey/black 

squares), e.g., within the melting layer. 

88 

5.2 2D histogram of DSD-based pairs of T-matrix calculated 𝑍𝐻 and 

log(LWC) computed using Eq. (3.3). The dashed red vertical line 

indicates the lower limit (𝐿𝐿) of 0 dBZ used in KENDA for the 

assimilation of 𝑍𝐻 data in no-precipitation regions, the dashed grey 

horizontal line indicates the approximately corresponding value for 

log(LWC) of -2.3. Also shown are the fraction that 10 dBZ 

(observation error standard deviation 𝑂𝐸 for the 𝑍𝐻 assimilation in 

KENDA) covers of the full range of 𝑍𝐻 in the DSD data set (about 

89 dBZ or 11 %), and the corresponding 11 % fraction in the full range 

of log(LWC) data (about 4.3) of 0.5 used as pre-selected 𝑂𝐸 value for 

the log(LWC) assimilation. 
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5.3 Time series of the fractions of the number of precipitation 

accumulation threshold exceedances in the RADOLAN QPE data of 

DWD (“RW”-product, hourly accumulations) in the thresholds 0.5, 

1.0, 2.0, and 4.0 mm h-1 (black, red, blue, and golden curves) for a) the 

2017 convective case C2017, b) the 2017 stratiform case S2017, and c) 

the 2021 stratiform case S2021 of the total number of threshold 

exceedances in all thresholds and precipitation cases in the DWD 

RADOLAN data. Fractions are used to calculate weighted median 

FSS/BSS values and the univariate measure JQS defined in Eq. (5.10). 

95 

5.4 Weighted medians of differences in first-guess deterministic FSS (first 

and third panel rows) and BSS (second and fourth panel rows) between 

the CNV+LWC/Z (left block) or CNV+IWC/Z (right block) 

configurations with the near-random sampled DAP settings (S1-01 to 

S1-12 and S2-01 to S2-10 in Table 5.2) and the CNV+Z configuration 

for the precipitation accumulation thresholds 0.5, 1.0, 2.0, and 

4.0 mm h-1 and the 2017 convective (C2017; left most columns within 

the two blocks), 2017 stratiform (S2017; second column within each 

block), and 2021 stratiform (S2021; third columns within each block)  

precipitation periods considered. The right most column in each block 

depicts the weighted median over all considered precipitation cases. 

The weights are determined by threshold exceedances in the 

RADOLAN data (see Fig. 5.3). Green colors indicate improvements in 

first-guesses with respect to the CNV+Z configuration, red colors 

deteriorations. 

97 

5.5 a) Comparison of the tested values for the DAPs 𝐿𝐻, 𝐿𝑉, 𝑂𝐸, 𝐿𝑆, 𝐿𝐿, 

and 𝑀𝑉 in Table 5.1 using the univariate measure JQSv defined in 

Eq. (5.10) for the LWC (grey bars) and IWC (grey bars) assimilation in 

the CNV+LWC/Z and CNV+IWC/Z assimilation configurations with 

the DAP settings from the first DAP setting sample (S1-01 to S1-12 in 

Table 5.2). In b), all 22 sampled DAP settings (first and second samples 

S1-01 to S1-12 and S2-01 to S2-10 in Table 5.2) plus the pre-selected 

DAP setting (setting S-pre in Table 5.1) are compared with each other 

in terms of the univariate measure JQSc for the LWC (black bars) and 

IWC (grey bars) assimilation considering all rainfall cases C2017, 

S2017, and S2021 together. Panels c), d), and e) are like panel b), but 

with the univariate measure JQSc calculated for the individual rainfall 

cases C2017, S2017, and S2021, respectively. 

98 

5.6 Time series of the difference in first-guess deterministic FSS (first rows 

for  each case, i.e., panels a), b), e), f), i), and j)) and BSS (second rows 

for each case, i.e., panels c), d), g), h), k), and l)) values for 

precipitation accumulation thresholds of 0.5 (left column) and 

4.0 mm h-1 (right column) between the CNV+LWC/Z and CNV+Z 
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 configurations with the found best-performing DAP settings for LWC 

(S2-06, see Table 5.2) for the a)-d) 2017 convective case (C2017), e)-

h) 2017 stratiform case (S2017), and i)-l) 2021 stratiform case (S2021). 

Green shading indicate improvements using the CNV+LWC/Z 

configuration over the CNV+Z configuration, red colors indicate 

deteriorations. 

 

5.7 As Fig. 5.6, but for the IWC assimilation with the CNV+IWC/Z 

configuration using the corresponding found best DAP setting (S1-02, 

see Table 5.2). 

100 

5.8 Comparison of different radar data set configurations in terms of the 

univariate measure JQSc defined in Eq. (5.10). Configurations 

assimilating LWC and/or IWC with respective best DAP sets (S2-06 

and S1-02 in Table 5.2) a) instead of 𝑍𝐻 data, where possible 

(“alternative 𝑍𝐻 DA”), in the CNV+LWC/Z, CNV+IWC/Z, and 

CNV+[LWC+IWC]/Z configurations (lower, middle, and upper bars), 

and b) together with 𝑍𝐻 data (“parallel 𝑍𝐻 DA”) at the same 

superobbing points in the CNV+LWC+Z, CNV+IWC+Z, and 

CNV+LWC+IWC+Z configurations (lower, middle, and upper bars) 

are compared. Black bars indicate the JQSc values calculated over all 

three precipitation cases considered, and red, blue, and golden bars 

indicate the JQSc values for individual cases C2017, S2017, and S2021. 

101 

5.9 Vertical profiles of differences in standard deviations (SD; middle 

column) with respect to the CNV configuration and of mean-bias 

deviations (MBD; right column) of first-guess forecasts obtained from 

hourly assimilation cycles with the CNV (black dotted curves), 

CNV+Z (black solid curves), CNV+LWC/Z (red curves), 

CNV+IWC/Z (yellow curves), and CNV+LWC+IWC+Z (blue curves) 

assimilation configurations of temperature (upper row), relative 

humidity (middle row), and u-wind (lower row) from conventional 

measurements over Germany. The respective numbers of observations 

contributing to the SD and MBD calculations are shown in the left 

column (grey curves). All rainfall cases are considered together and the 

best-performing DAP settings for LWC and IWC (S2-06 and S1-02 in 

Table 5.2) are used in the LWC and/or IWC assimilating configurations. 

102 

5.10 Left panel column: time series of the deterministic FSS for a 0.5 mm h-1 

threshold of nine-hour forecasts initiated every third hour from hourly 

assimilation cycles with the CNV and CNV+Z configurations (grey 

and black curves) as means over all precipitation cases considered 

(upper row), over the 2017 convective case C2017 only (second row), 

over the 2017 stratiform case S2017 only (third row), and over the 2021 

stratiform case S2021 only (lower row). Middle column: corresponding  
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 deviations in mean deterministic FSS from the CNV+Z configuration 

of the CNV+LWC/Z (red curves), CNV+IWC/Z (yellow curves), and 

CNV+LWC+IWC+Z (blue curves) configurations using the best-

performing DAP settings found for LWC and IWC (S2-06 and S1-01 in 

Table 5.2). Right column: corresponding mean deterministic FBI 
values. 

 

5.11 As Fig. 5.10, but for an accumulation threshold of 4.0 mm h-1. 105 

5.12 Mean standard deviations (SD; upper panel row) and mean bias 

deviations (MBD; lower panel row) of model forecasted 2 m 

temperature (left panel column), 2 m relative humidity (middle panel 

column), and 10 m u-wind (right panel column) from conventional 

near-surface observations in Germany as functions of forecast lead 

time. Means are calculated over nine-hour forecasts initiated every 

third hour from hourly assimilation cycles with assimilation 

configurations CNV (grey curves), CNV+Z (black curves), 

CNV+LWC/Z (red curves), CNV+IWC/Z (yellow curves), and 

CNV+LWC+IWC+Z (blue curves), using the best DAP settings for 

LWC and IWC (S2-06 and S1-02 in Table 5.2), and taking all 

precipitation cases C2017, S2017, and S2021 into account. 
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3.1 Comparison of the quality of the different tested existing and newly 

developed LWC(𝑍𝐻), LWC(𝑍𝐻 , 𝑍𝐷𝑅), LWC(𝐴𝐻), and LWC(𝐾𝐷𝑃) 

estimators in terms of RMSD (in g m-3), PCC, and MBD (in g m-3). The 

quality measures are determined from pairs of calculated LWC (in 

g m-3) using Eq. (3.3) and the LWC retrieved from DSD-based T-

matrix simulated polarimetric variables via the tested retrievals. The 

evaluated existing retrievals are those proposed by Greene and Clark 

(1972; “G&C1972”), Carlin et al. (2016; “C2016”), Bringi and 

Chandrasekar (2001; “B&C2001”), Ryzhkov and Zrnic (2019; 

“R&Z2019”), and Doviak and Zrnic (2006; “D&Z2006”). The quality 

values for the respective new fits to the DSD data are also shown. The 

best quality measures for specific retrieval types are printed in bold, the 

best among all tested retrievals are underlined. Grey italicized values 

indicate the corresponding values listed in Reimann et al. (2021) where 

they differ from this thesis. 

33 

3.2 Comparison of RMSD (in g m-3), PCC, and MBD (in g m-3) values 

between disdrometer-measured LWC and radar-estimated LWC via the 

new and existing LWC(𝑍𝐻), L𝑊C(𝑍𝐻, 𝑍𝐷𝑅), LWC(𝐴𝐻), and 

LWC(𝐾𝐷𝑃) relations proposed by Greene and Clark (1972; 

“G&C1972”), Carlin et al. (2016; “C2016”), Bringi and Chandrasekar 

(2001; “B&C2001”), Ryzhkov and Zrnic (2019; “R&Z2019”), and 

Doviak and Zrnic (2006; “D&Z2006”) for time intervals from 1 to 

360 min for nine warm-season rainfall events. In the LWC(𝐾𝐷𝑃) 
estimator, negative 𝐾𝐷𝑃 is substituted by zero. Also shown are the 

results for the new LWC(𝐾𝐷𝑃) estimator with negative 𝐾𝐷𝑃  replaced 

using an empirical 𝐾𝐷𝑃(𝑍𝐻) relation (Eq. (3.22); LWC(𝐾𝐷𝑃, 𝑍𝐻) 
estimator), and for the new hybrid estimator (hybrid). Grey italicized 

values show values listed in Reimann et al. (2021) where different from 

this thesis. 

44 

3.3 Comparison of RMSD (in g m-3), PCC, and MBD (in g m-3) values 

between disdrometer-measured LWC and radar-estimated LWC via the 

new LWC(𝑍𝐻), LWC(𝑍𝐻, 𝑍𝐷𝑅), LWC(𝐴𝐻), and LWC(𝐾𝐷𝑃) estimators 

for time intervals from 1 to 360 min for four stratiform (black numbers) 

and five convective (grey italic numbers) warm-season rainfall events. 

The RMSDs, PCCs, and MBDs are calculated for at least 10 comparison 

pairs. In the LWC(𝐾𝐷𝑃) estimator, negative 𝐾𝐷𝑃 is substituted by zero. 

Also shown are the results for the new LWC(𝐾𝐷𝑃) estimator with 

negative 𝐾𝐷𝑃 substituted using an empirical 𝐾𝐷𝑃(𝑍𝐻) relation 

(Eq. (3.22); LWC(𝐾𝐷𝑃, 𝑍𝐻) estimator), and for the new hybrid 

estimator (hybrid). 
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5.1 Pre-selected values for the DAPs 𝐿𝐻 and 𝐿𝑉 (horizontal and vertical 

observation localization length-scales in km and ln(p), with “h.d.” for 

𝐿𝑉 standing for “height-dependent” from 0.075 to 0.5 ln(p)), 𝑂𝐸 

(observation error standard deviation), 𝐿𝑆 (superobbing window size 

in km), 𝐿𝐿 (lower limit of data applied before superobbing), and 𝑀𝑉 

(the minimum required number of valid observations for superobbing), 

and two variations considered each. 
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5.2 Near-random sample of DAP settings from the pre-selected and varied 

DAP values in Table 5.1 generated with Latin Hypercube Sampling 

(LHS). The first sample S1-01 to S1-12 is generated based on all DAP 

values in Table 5.1. The second sample S2-01 to S2-10 is generated 

with a reduced number of DAP values from Table 5.1 with the 

reduction of DAP values performed by consideration of the univariate 

measure JQSv defined in Eq. (5.10) determined from the first DAP 

setting sample (S1-01 to S1-12). 
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