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Abstract

This thesis focuses on sequential decision and prediction (SDP) tasks, comprising structured prediction
(SP) and reinforcement learning (RL) tasks. These tasks are characterized by generation of sequential
outputs that exhibit interdependencies among them. Notable examples include machine translation
(MT), where the objective is to map variable-length input sequences to variable-length output sequences
and robotic RL tasks like object grasping, where a sequence of actions must be generated to accomplish
the task, with each action influencing future actions.

Contextualized representations play a vital role in making decisions at each step. Modern
architectures like Recurrent Neural Networks (RNNs) have become standard tools for obtaining
contextualized inputs and achieving state-of-the-art results in SDP tasks. However, RNNs demand
high-compute GPU resources and are impractical for low-resource settings. Consequently, the first
part of the thesis explores the application of random context encoders, specifically to investigate the
performance gap compared to fully trained RNNs. It begins by showcasing the capabilities of echo
state networks (ESNs), a type of RNNs, to memorize and reproduce arbitrary sequences of data,
such as text, images, and videos, without requiring full training. Next, ESNs are applied to Named
Entity Recognition (NER) and learning control policies using RL, highlighting their effectiveness as
randomized contextualized encoders.

The thesis then shifts its focus to address the challenges of exploration and high sample complexity
in RL. Specifically, two approaches that incorporate additional knowledge into the learning process
are introduced. The first approach considers Novelty Search (NS), a method designed to enhance
exploration and sample complexity, is considered, and a novel approach utilizing auto-encoders to
learn sparse representations of agent behaviors is proposed. This approach outperforms traditional
NS methods and provides a solution to promote exploration in RL tasks. Furthermore, the thesis
introduces a method to construct policy networks by leveraging domain knowledge to improve
transparency, modularity, and data efficiency. This decomposition of policy networks into adaptable
and hand-designed components significantly reduces the number of interactions required for learning
when compared to fully trained end-to-end recurrent networks.

In the final part of the thesis, we closely look at the relation between SP and RL tasks. In particular,
we consider the formulation of SP as an RL task to overcome the problems of data and metric mismatch
associated with training SP using supervised learning. Despite the successful application of RL in
these settings, research in this direction is hindered by a lack of open-source toolkits. To mitigate
this, we first propose NLPGym, a modular toolkit that casts typical NLP tasks as RL tasks, allowing
RL algorithms to directly optimize any application-specific metric. Building upon this and utilizing
large-language models (LLMs), we present an open-source library RL4LMs that can fine-tune LLMs
on arbitrary reward functions, including learned reward models based on automated metrics and
human preferences. Additionally, a comprehensive benchmark to evaluate LLMs on various text
generation tasks and a new algorithm has been introduced to fine-tune LLMs efficiently.
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CHAPTER 1

Introduction

Machine learning (ML) systems have become a critical component of many facets of modern society,
from powering web searches and filtering social media content to recommending products on e-
commerce websites, enabling object identification and speech-to-text transcription on consumer
products like smartphones and laptops. Deep learning (DL) methods have become increasingly
prevalent in these applications due to their ability to learn directly from raw data without requiring hand-
engineered feature extractors, which are commonly required in traditional ML systems. DL achieves
this by performing a series of non-linear transformations on the raw data, with the transformation
of each layer learning a more abstract representation than the previous layer. Crucially, these
transformation layers are learned from the data rather than designed by human engineers. While the
theoretical foundations of DL research date back to the 1980s, the widespread adoption of DL has
been driven by the availability of large-scale datasets, the emergence of Graphical Processing Units
(GPUs), and the development of open-source automatic differentiation libraries like Tensorflow [1]
and Pytorch [2], which make training deep neural networks more accessible.

Deep learning has made significant advancements in many previously unsolved problems, thanks
to its ability to identify complex non-linear patterns in high-dimensional data. While it initially
gained success in computer vision, achieving impressive accuracy in image classification, object
detection, and segmentation [3–6], and in speech recognition [7, 8], it has also outperformed traditional
ML methods in various other fields. For instance, it has proven effective in understanding particle
accelerator data [9], predicting the effects of DNA mutations on gene expression and disease [10, 11],
predicting the activity of potential drug molecules [12, 13], and predicting protein structures [14, 15].
Moreover, DL has led to breakthroughs in generative models such as Generative Adversarial Networks
(GANs) [16], Variational AutoEncoders (VAEs) [17] and diffusion models [18], which can create
realistic images, videos, and even 3D objects [19]. It has also enabled generative artificial intelligence,
where models can generate new content in various domains such as music, art, and text. For instance,
Generative Pre-trained Transformer (GPT) models [20, 21] can produce high-quality natural language
text, making them useful for several NLP tasks. In contrast, other generative models can create images
[18, 22], videos [23], and music [24] with remarkable quality and creativity.

Based on this brief overview of the current state of ML, this thesis focuses on tasks that are inherently
sequential in nature, requiring the generation of sequential data. For instance, text summarization
involves generating a sequence of words that concisely summarizes a longer body of text. Similarly, in
speech recognition, the objective is to convert voice data into a sequence of words. These tasks extend
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Chapter 1 Introduction

beyond Natural Language Processing (NLP) and are also prevalent in other domains. For example,
time-series prediction, such as weather forecasting or stock price prediction, involves forecasting
values for a fixed time horizon. It is important to note that in some of these tasks, the inputs themselves
are sequences. Broadly, these tasks fall under the category of structured prediction (SP) in which
the objective is to map variable-length input sequences to variable-length output sequences. Classic
examples of these include Machine Translation (MT), where a sentence from the source language is
mapped to a corresponding sentence from the target language. Similarly, in sequence labeling tasks
such as Named Entity Recognition (NER) or Part of Speech (POS) tagging, the input is a sentence,
and the output is a label sequence.

SP possesses two distinctive characteristics. First, there exists a dependency among the output
elements. For example, in NER, the outputs must adhere to specific tagging schemes such as the BIO
tagging scheme [25] to identify entities spanning over multiple words. Similarly, in MT, the individual
words in the output sentence must adhere to the grammar rules of the target language. In other words,
SP entails generating structured outputs. Second, to incorporate this output dependence, each output
at each step becomes the input at subsequent steps, meaning that the output at each step is conditioned
on both the input and the partially predicted output.

Interestingly, sequential decision-making in the context of RL [26] shares similar aspects with SP.
In RL, an agent interacts with an unknown environment by observing its current state and decides on
actions to perform. The objective is to train an agent policy that maps states to actions, maximizing the
expected cumulative reward. Similar to SP, the output in RL is also a sequence — a series of actions
that can effectively solve the task at hand. For example, a robotic hand grasping an object performs a
series of actions in the form of joint movements until it successfully holds the object. Moreover, since
actions performed at one step impact future observations, a correlation exists between actions within a
specific trajectory, similar to the structure between outputs in SP.

This thesis focuses on SP and RL tasks, collectively referred to as sequential decision and prediction
tasks (SDP). A common theme among these tasks is that they require a model that can efficiently
process sequential inputs and generate outputs one at a time to solve the given task.

1.1 Exploring Randomized Models for Sequential Decision and
Prediction

SP tasks in NLP deal with the mapping of sequential inputs to sequential outputs. Traditionally, these
tasks were addressed using search techniques [27]. However, the combinatorial nature of the problem
made these techniques intractable, resulting in incremental solutions [28]. As a practical approach,
models for SP tasks now generate outputs one element at a time while parsing the input sequence.
Contextualized inputs play a crucial role in making decisions at each step. For example, in NER, the
contextualized input comprises the current word, neighboring words, and optionally their predicted
labels. In MT, it includes sentences from the source language and partially generated output in the
target language.

A key component of these tasks is the need for effective word representations. Classic methods
relied on high-dimensional features based on n-grams and suffered from generalizability issues [29,
30]. Accordingly, the notion of distributed representations [31] was proposed, leading to popular
Word2Vec [32], Fasttext [33] and Glove [34] which spawned a promising area of language modeling
using neural networks so called as neural language modeling. Although these representations captured

2
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some global context, they did not consider the local context within a given sentence. Tackling these,
Recurrent Neural Networks (RNNs) were used to learn contextual representations, leading to popular
methods of word embeddings such as Flair [35], ELmo [36] and UlmFit [37] which were applied to
several downstream tasks, including NER and POS tagging.

For tasks involving mapping sequences to variable-length sequences, sequence-to-sequence models
[38] were proposed, also leveraging RNNs. These models employ an encoder RNN to map input
sequences to a fixed-length context vector, which is then passed to a decoder RNN that generates
output sequences. However, the process of encoding long sequences into a single vector and decoding
from it poses challenges [39]. To overcome this, the attention mechanism was introduced to sequence-
to-sequence models [39], revolutionizing NLP. It enables the decoder to selectively focus on specific
parts of the encoder’s hidden states, overcoming issues with long sequences. Various forms of attention
[40], extending beyond sequences [41], are widely used for selecting relevant input parts.

Such attention mechanisms paved the way for the transformer architecture [42], which is proposed
as an alternative to RNNs that are computationally slower due to their sequential nature. Instead, the
non-recurrent transformer architecture that employs self-attention mechanisms and fully connected
networks, allows the model to attend to all inputs simultaneously, rather than processing them
sequentially. This parallelization significantly speeds up the training process and allows for longer-
range dependencies to be learned. The transformer architecture serves as the backbone of many
state-of-the-art NLP models, such as BERT (Bidirectional Encoder Representations from Transformers)
[43], GPT (Generative Pretrained Transformer) [20, 44], T5 (Text-to-Text Transfer Transformer)
[45] including the recent breakthroughs in chatbot like instruction following models [46–48]. These
models have achieved remarkable results in various NLP tasks, including language modeling, text
classification, and machine translation, among others.

Interestingly, RL also requires contextualized inputs in some settings. Typically, the interactions
between the agent and the environment are formalized using Markov Decision Processes (MDP). MDP
defines transition dynamics, reward formulations, and other components. Most importantly, it assumes
that the observation provided by the environment at each step satisfies Markov property, meaning
that the current observation fully captures the entire state of the environment. In other words, basing
the action solely on the current observation is sufficient for making informed decisions. However,
in partially observed settings such as Partially Observed Markov Decision Processes (POMDP), the
observation might not fully capture the state of the environment. In such cases, the agents must
consolidate the past observations into contextualized inputs to obtain a Markov state representation
which can be used for decision-making. Here too, RNNs are generally used to consolidate such states
but are often more difficult to train than non-recurrent architectures [49, 50].

While these modern architectures, including RNNs, achieve state-of-the-art results in SDP tasks,
they require high-compute GPU resources, limiting their applicability in low-resource settings.
Consequently, this raises the question whether such computationally expensive tools are truly
necessary for solving SP and RL tasks. Specifically, we would like to examine if random context
encoders that do not explicitly train their recurrent connections can solve SP tasks (RQ1)1.

Addressing this question, this thesis explores the application of random context encoders to SDP
tasks. To achieve this objective, Echo State Networks (ESNs), a type of RNNs is considered. ESNs
were initially developed as a simple alternative to conventional RNNs. This operates under reservoir
computing paradigm, which involves connecting a randomly connected RNN known as a reservoir,

1 RQ - Research Question
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with fixed connection weights. Similarly, the connections from the input to the reservoir are also fixed.
However, the output weights connecting the reservoir to the outputs are adapted for the specific task.
ESNs are known for their simplicity, efficiency and ease of training, although they have been primarily
successful in time-series prediction.

First, to highlight the context-capturing capabilities of ESNs, we apply ESNs to memorize sequences
of various data types such as images and text. Leveraging this capability, a novel application of
ESNs [51] for securing data in private cryptographic systems is proposed. Next, we apply ESNs to
another SP task namely NER [52] where contextualized word representations are essential. Here,
we show that reservoir states act as random contextualized representations that can practically solve
the NER task. Building on these successes, in the following contribution [53], we employ ESNs to
capture the context in sequential decision-making problems. Mainly, ESNs are used to learn policies
for POMDP control tasks and an alternative training is proposed to train them which does not rely
on backpropogation. Through these contributions, we show that ESNs are robust random context
encoders that are very competitive in SDP tasks.

1.2 Improving Efficiency of RL using Domain Knowledge

In RL, the ultimate goal is to teach the agent to make the best possible decisions in order to maximize
the cumulative reward over time. Unlike traditional supervised machine learning techniques, RL
incorporates a feedback loop where the agent receives feedback on its actions, learns from that
feedback, and adjusts its decision-making process accordingly. This allows the agent to improve its
performance over time and adapt to changes in the environment.

While traditional RL using tabular methods has had some successes [54–56] in the past, it has been
limited by scalability issues and has primarily been applied to low-dimensional problems. However, the
adoption of DL in RL has overcome these limitations and has significantly accelerated research in this
field. Specifically, DNNs have been used to approximate value functions or policy functions of agents,
which are essential components of several RL algorithms. This integration of DL and RL, known as
Deep Reinforcement Learning (DRL), has led to significant breakthroughs. One major breakthrough
was the creation of an RL agent capable of playing Atari 2600 video games at a superhuman level
[57] using only reward signals. Another significant success was the development of AlphaGO [58], a
deep RL agent that defeated a human world champion in the game of Go. These achievements are
remarkable and represent major milestones in the development of artificial intelligence (AI), following
the historical successes of IBM’s DeepBlue in Chess [59] and Watson in Jeopardy [60] by several
decades. Further successes in the game-playing RL agents include AlphaZero [58], an RL agent that
can play games of Chess, Shogi and OpenAI’s Five that defeated human players in Dota 2 video game
[61].

Although DRL initially gained recognition for its success in game-playing agents, it has since
expanded its scope to include applications in robotics [62, 63]. By learning control policies directly
from camera inputs, DRL outperforms traditional hand-engineered or learned policies from low-
dimensional robot states. One notable success in this area is Dactyl, a human-like robotic hand [64]
that can solve Rubik’s Cube one-handed using only tactile feedback. This significant achievement
demonstrated the ability of DRL to learn complex and dexterous movements in the physical world,
not just in simulation. Moreover, DRL has been applied to real-world problems in various domains
that require sequential decision-making. For instance, DRL has been used in communications [65],
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autonomous vehicles [66], recommender systems [67], and optimization of energy consumption [68].
Despite the successes of RL in various domains, RL encounters several challenges that hinder its

application. Many sequential decision-making tasks heavily rely on sparse reward signals, which are
only accessible to agents when they reach the goal state. Mainly when dealing with long-horizon
scenarios, assigning temporal credit to past actions becomes a daunting task. Moreover, agents in RL
environments confront the exploration-exploitation dilemma, wherein prioritizing greedy actions that
offer high rewards may impede their ability to discover alternative actions that could ultimately lead to
better overall outcomes. These challenges make exploration difficult, and acquiring a suitable policy
necessitates a substantial number of interactions, resulting in the problem of high sample complexity
in RL. Consequently, the central research question in RL arises: how can exploration and sample
complexity be improved? (RQ2)

The second part of this thesis focuses on the research question of encouraging exploration and
improving the sample complexity of RL. To address this problem, two approaches that incorporate
domain knowledge into the learning process are introduced. The first approach [69, 70] considers
Novelty Search (NS), a class of methods aimed at encouraging exploration. These methods define a
domain-specific Behavior Characteristic (BC) that captures the behavior of agents and then encourages
them to exhibit novelty behaviors. For example, BC is defined as the distance traveled for a bi-pedal
locomotion task. In general, BCs are defined by domain experts, thereby using their expertise
in designing the tasks. However, to compute novelty scores, these methods use neighborhood
methods which do not scale well when storing a large number of BCs. Therefore, we propose
learning representations of agent behaviors using auto-encoders instead of neighborhood methods.
By leveraging the intuition that novel behaviors tend to produce higher reconstruction errors, novelty
scores can be computed on these errors without having to look up on a huge set of observed BCs.
In the subsequent work [71], intending to improve sample efficiency, we present an approach that
incorporates domain knowledge to design parameter-efficient and modular policy networks. Such a
policy network reduces the number of interactions required to learn the policy by a factor of ten.

1.3 Towards Practical SP using RL

SP tasks are commonly trained using supervised learning (SL) methods such as maximum-likelihood
estimation (MLE). MLE aims to maximize the log-likelihood of correct sequences by training models
to predict the next output element based on previously seen ground truth elements. While this approach
is straightforward, it has certain limitations. Firstly, during inference, models may encounter contexts
that differ from those seen during training, leading to a well-known issue called as exposure bias or
data mismatch. This occurs when an incorrect output is predicted and the predicted output at each
step is added to the context in subsequent steps. Essentially, there is a discrepancy in the data that the
model encounters during training and inference. Secondly, SP tasks trained using this objective face
a metric mismatch problem. When deployed to real systems, these tasks are evaluated on different
metrics other than what they are trained on. For example, the generated summary is assessed for its
consistency and factual correctness in text summarization systems.

One approach to tackle these mismatches is to reframe SP as sequential decision-making tasks [28,
72] and apply RL techniques to maximize application-specific metrics directly. For instance, the MT
task using RL can be approached by directly maximizing ROUGE scores [73]. RL enables models
to learn from their own generated sequences during training, bridging the gap between the training
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and testing distributions. This exposure also allows the model to learn from mistakes and adapt its
behavior accordingly.

Nowadays, DRL has been extensively applied to solving SP tasks, [74–79] in NLP. However, there
is currently a lack of open-source frameworks for training RL agents and consistently benchmarking
their performance on SP tasks. While the development of open-source frameworks [80–84] which
have greatly accelerated research in robotic tasks, game-playing agents, similar frameworks are not
available for SP tasks in NLP.

DRL has also been applied to fine-tuning large language models (LLMs) in the modern age of
NLP. LLMs are trained with a next-token prediction objective, where they predict the next token
given previous tokens. Having trained on massive amounts of data with millions of parameters,
LLMs are powerful text generators that can take prompts as inputs and generate textual outputs that
solve most NLP tasks with few-shot capabilities including text generation, summarization, machine
translation, question answering and dialogue generation. However, text generated by LLMs may
sometimes contain bias, toxicity, or harmfulness due to not being trained with direct signals of human
preferences. To address this, LLMs undergo a fine-tuning step where they are trained to maximize
human preferences using DRL.

Consequently, recent methods have focussed on gathering pairwise preferences from humans and
training reward models [46, 85, 86], which serve as proxies for human feedback. This paradigm
is referred to as Reinforcement Learning from Human Feedback (RLHF). RLHF is a fundamental
technique for chat-based assistants like ChatGPT and GPT-4, that aligns LLMs with human preferences.
Despite its achievements, RL is perceived as a very challenging technique [87, 88] and this is mainly
due to the lack of availability of open-source libraries containing RL algorithms suited for NLP. This
leads to a practical research problem: lack of availability of open-source frameworks in the intersection
of SP and RL (RQ3).

Besides the lack of open-source frameworks, there are several pitfalls that contribute to the
perception that RL is challenging for NLP. Firstly, training LLMs involve dealing with large action
spaces. Secondly, models might exploit flaws in reward functions and learn to generate high-reward
sentences that compromise fluency. Thirdly, critical implementation details that affect performance
are undocumented. All these lead to another research question: can we develop stable RL algorithms
for fine-tuning LLMs? (RQ4)

In the final part of the thesis, the focus shifts to addressing RQ3, which concerns the lack of
open-source libraries at the intersection of SP, NLP, and RL. To tackle this issue, two toolkits NLPGym
and RL4LMs, which bridge the gap between SP and RL have been presented. NLPGym [89] is the first
toolkit that casts typical SP tasks in NLP as RL environments. The initial version of the toolkit provides
environments for sequence tagging, question answering, and multi-label sequence classification. These
environments adhere to standard RL interfaces, making them compatible with most RL frameworks.
The toolkit has been thoroughly tested on six tasks and includes a benchmark that serves as a baseline
for further research in this field. Building upon this toolkit, the subsequent work [90] presents RL4LMs,
a modular library that allows fine-tuning of LLMs on any arbitrary reward function using popular
on-policy RL algorithms. These reward functions can be based on automated metrics like BLEU [91]
or learned reward models trained using human preferences. Alongside this library, we introduce a
comprehensive benchmark called Generative Reinforced-language Understanding Evaluation (GRUE),
which consists of seven text generation tasks, including summarization, translation, and dialogue
generation. Additionally, to address RQ4, an on-policy algorithm specifically designed to handle the
large action space associated with LLMs is proposed, making it easier to use in practice.
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In summary, this thesis focuses on practical models for SDP tasks. The objectives include
developing efficient models for solving SP tasks, improving exploration and sample complexity in RL,
implementing practical open-source frameworks for SP and RL, and devising stable RL algorithms for
fine-tuning LLMs.

1.4 Thesis Outline

The remainder of the thesis is divided into three parts. The first part, encompassing four chapters,
explores the utilization of ESNs for SP tasks. The second part, consisting of two chapters, tackles the
challenges of RL and proposes solutions appropriately. Lastly, the third part considers the intersection
of SP and RL, introducing two practical frameworks that frame SP as RL. Furthermore, a preliminary
benchmark of results is provided for these frameworks.

Part-I
Chapter 2 provides a short introduction to echo state networks (ESNs), delving into the relevant

background and discussing design choices that greatly impact their performance.
Building upon this foundation, Chapter 3 explores the application of ESNs in memorizing arbitrary

sequences of data, resulting in the development of a novel neural cryptography system. Furthermore,
Chapter 4 presents the utilization of ESNs for another SP task namely NER, highlighting its practicality
and effectiveness in this specific domain.

Drawing upon these two applications, Chapter 5 delves into the realm of sequential decision-making
problems, investigating the use of ESNs for learning control policies in partially observable RL
settings.

Part-II
In Chapter 6, the focus lies on exploring Novelty Search (NS) methods, which belong to a class

of methods that incentivize the agent to engage in novel behaviors. A novel approach is introduced
in this chapter, which utilizes function approximation instead of relying on neighborhood methods
to calculate novelty rewards. The chapter concludes with experimental results on benchmark tasks,
which suggests that this alternative approach to novelty-guided exploration is a viable option when
compared to traditional NS methods.

Chapter 7 presents a methodology to enhance sample efficiency by designing modular policy
networks. The chapter argues that policy networks can be divided into adaptable and fixed hand-coded
components. Reducing the number of parameters in this manner can significantly reduce the sample
complexity.

Part-III
Chapter 8 presents the toolkit NLPGym that provides simulated environments for casting typical

NLP tasks as sequential decision-making tasks. Experimental results for six tasks using various RL
algorithms are presented that serve as baselines for future research.

Chapter 9 focuses on the challenges of RLHF. First, it presents a new framework RL4LMs which
provides easy tools to fine-tune LLMs on arbitrary reward functions. Then, it proposes a novel on-
policy RL algorithm that is well-suited for NLP tasks. Finally, a comprehensive benchmark consisting
of seven generative NLP tasks is presented, which highlight crucial design choices concerning reward
functions, initialization of policies and more.
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Part I

Echo State Networks for Structured
Prediction
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In this part of the thesis, the utilization of randomized context encoders in addressing sequential
decision and prediction problems is investigated, with a specific focus on the research question RQ1.
The exploration centers around a particular type of RNN known as Echo State Networks (ESNs). An
introductory overview of ESNs, including the discussion of design choices that have a significant
impact on their performance, is provided in Chapter 2.

To expand upon this foundation, a novel method is proposed in Chapter 3, which utilizes ESNs
to memorize arbitrary sequences of data, resulting in the creation of a neural cryptography system.
Additionally, in Chapter 4, the practical and competitive application of ESNs to the Named Entity
Recognition (NER) task is demonstrated.

The exploration of ESNs continues in Chapter 5, delving deeper into their potential in solving
Reinforcement Learning (RL) problems with partial observability. Notably, an alternative training
method for ESNs in control tasks is presented, which outperforms traditional RL methods.
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CHAPTER 2

Introduction to Echo State Networks

Recurrent Neural Networks (RNNs) are powerful tools in NLP for handling sequential data [38, 39,
92, 93]. However, training RNNs is inefficient due to their inherent sequential nature, particularly
when dealing with long sequences. They face several challenges in capturing long-term dependencies
because small error gradients fail to propagate to earlier time steps, while large gradients can cause
unstable learning and hinder convergence. This issue, known as vanishing and exploding gradients
[94, 95] has been partially addressed with the advancements of RNN variants such as Long Short
Term Memory (LSTM) [96] and GRU (Gated Recurrent Unit) networks [97]. An alternative approach
to designing and training RNNs has emerged through Echo State Networks (ESNs) [98] and Liquid
State Machines (LSMs) [99]. These methods propose that adapting all network weights in an RNN
is often unnecessary. Instead, ESNs employ a reservoir, a randomly connected RNN attached to
an output layer. Only the weights of the connections from the reservoir to the output are adapted,
while the recurrent connections in the reservoir remain fixed. This characteristic makes training the
network significantly easier and more stable. This paradigm of training RNNs is currently studied
under Reservoir Computing which is an actively growing research area with many applications and
even extends to deep architectures [100].

2.1 Basic Architecture

An ESN consists of three layers: an input layer consisting of 𝑛𝑖𝑛 input nodes, a randomly connected
reservoir consisting of 𝑛𝑟𝑒𝑠 reservoir nodes and an output layer consisting of 𝑛𝑜𝑢𝑡 output nodes. The
input nodes are connected to reservoir nodes and their corresponding strengths are captured in the
input weight matrix 𝑾𝑖𝑛 ∈ R𝑛𝑟𝑒𝑠×𝑛𝑖𝑛 . Similarly, reservoir nodes are connected to each other and
weights are captured in the reservoir matrix 𝑾𝑟𝑒𝑠 ∈ R𝑛𝑟𝑒𝑠×𝑛𝑟𝑒𝑠 . Finally, reservoir nodes are connected
to output nodes through the output weight matrix 𝑾𝑜𝑢𝑡 ∈ R𝑛𝑜𝑢𝑡×𝑛𝑟𝑒𝑠 . A graphical representation of
an ESN is illustrated in Figure 2.1.

Given this architecture, given an input 𝒙𝑡 ∈ R
𝑛𝑖𝑛 at time step 𝑡, first the reservoir state 𝒓𝑡 ∈ R

𝑛𝑟𝑒𝑠 is
computed. Then, output state is computed as 𝒚𝑡 ∈ R

𝑛𝑜𝑢𝑡 according to the following update equations:

𝒓𝑡 = (1 − 𝛼)𝒓𝑡−1 + 𝛼 𝑓𝑟𝑒𝑠 (𝑾
𝑟𝑒𝑠 𝒓𝑡−1 +𝑾

𝑖𝑛𝒙𝑡 ) (2.1)

𝒚𝑡 = 𝑓𝑜𝑢𝑡 (𝑾
𝑜𝑢𝑡 𝒓𝑡 ), (2.2)
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Figure 2.1: ESN: A sketch of an echo state network consisting of three layers: input layer, reservoir and output
layer. The weights of connections from input to reservoir and inter-connections of the reservoir are generated
randomly and kept fixed. Only the weights of connections from the reservoir to the output nodes are trained for
the given task.

𝑓𝑟𝑒𝑠(.) and 𝑓𝑜𝑢𝑡 (.) are component-wise activation functions that apply non-linearity to reservoir
and output states respectively. For 𝑓𝑟𝑒𝑠(.), typically, a sigmoidal function is chosen for the reservoir
neurons, while for the output layer, the selection is task dependent; usually, a linear or softmax function
is used. Moreover, 𝛼 is the leaking rate, which controls the speed of reservoir state updates. As
discussed earlier, the generation of the input 𝑾𝑖𝑛 and reservoir weight 𝑾𝑟𝑒𝑠 matrices is random and
only the output weight matrix 𝑾𝑜𝑢𝑡 is trained for a given task.

To train an echo state network, one provides a sequence of input data 𝑿 = [𝒙1, 𝒙2, · · · 𝒙𝑇 ] and
desired output sequence 𝒀 = [𝒚1, 𝒚2, · · · 𝒚𝑇 ]. Given this, we can resort to the following process:

1. Generate a randomly connected reservoir that is connected to input nodes (by generating random
weights 𝑾𝑖𝑛 and 𝑾𝑟𝑒𝑠)

2. Run the input sequence 𝑿 through the ESN and collect sequence of output states 𝒀
′
=

[𝒚
′

1, 𝒚
′

2, · · · 𝒚
′

𝑇 ] using update equations (2.1),(2.2)

3. Find optimal weights 𝑾𝑜𝑢𝑡 by minimizing a loss function L(𝒀 ,𝒀
′
)

2.2 Design Choices

While ESNs may give the impression of being randomly generated, in practice, their performance is
significantly influenced by various design choices. Specifically, the weights 𝑾𝑖𝑛 and 𝑾𝑟𝑒𝑠 are not
generated entirely random but based on specific hyperparameters, which will be briefly discussed.

Size of reservoir The reservoir in ESNs serves two essential functions. Firstly, it functions as
a memory component, enabling the incorporation of temporal context crucial for sequential tasks.
Secondly, it acts as a non-linear expansion of inputs, akin to kernel methods, effectively mapping the
input to a higher-dimensional space where inputs become more readily separable, thereby improving

14



2.2 Design Choices

classification tasks. Consequently, the choice of reservoir size, denoted as 𝑛𝑟𝑒𝑠, is important. In
general, a larger reservoir size allows for a broader temporal context, leading to improved performance.

Sparsity of connections It is recommended to enforce sparsity in both the connections from the
input to the reservoir and the interconnections within the reservoir itself. This involves assigning
a substantial number of elements in 𝑾𝑖𝑛 and 𝑾𝑟𝑒𝑠 to zero. Typically, a fixed connectivity ratio is
chosen (e.g., 10% of input connections), where each input node is randomly connected to only 10% of
the reservoir nodes. In general, the reservoir inter-connections are made sparser compared to the input
connections.

Scaling of non-zero elements As discussed earlier, the matrices 𝑾𝑖𝑛 and 𝑾𝑟𝑒𝑠 are sparsely
generated. However, the generation of non-zero elements is crucial for proper learning in ESNs.
Generally, these non-zero elements are randomly generated from a symmetric uniform distribution
within a specific value range. For example, the elements of 𝑾𝑖𝑛 are uniformly generated from the
interval [−𝑎, 𝑎], where 𝑎 represents another hyperparameter. The input scaling parameter 𝑎 controls
the level of influence the current input has on the reservoir state.

Spectral Radius One of the most crucial hyperparameters in an ESN is the spectral radius of the
reservoir matrix 𝑾𝑟𝑒𝑠. The spectral radius, denoted as 𝜌(𝑾𝑟𝑒𝑠), represents the maximum absolute
eigenvalue of the matrix. In order for an ESN to function effectively, the reservoir should exhibit a
property known as the echo state property, which ensures that the reservoir state depends solely on
the input history rather than the initial reservoir conditions. To satisfy this property, it is generally
recommended to set the spectral radius such that 𝜌(𝑾𝑟𝑒𝑠) < 1, as larger values can lead to chaotic
reservoir behavior, violating the echo state property. In practice, a random matrix 𝑾𝑟𝑒𝑠 is generated,
and its spectral radius 𝜌(𝑾𝑟𝑒𝑠) is computed. Subsequently, 𝑾𝑟𝑒𝑠 is divided by 𝜌(𝑾𝑟𝑒𝑠), resulting in
a matrix with a unit spectral radius. The desired spectral radius can then be achieved by scaling 𝑾𝑟𝑒𝑠

accordingly based on the specific task requirements. As a general guideline, a higher spectral radius is
suitable for tasks that require longer memory, while a smaller spectral radius is more appropriate for
tasks that only necessitate a shorter history. The spectral radius and input scaling of 𝑾𝑖𝑛 complement
each other and should be tuned in tandem based on the task at hand.

Leaking Rate Lastly, the leaking rate 𝛼 in equation (2.1) controls the rate at which the reservoir
updates occur. A higher leaking rate leads to faster changes in the reservoir states. When determining
the appropriate value for 𝛼, it is advisable to consider the rate at which the input 𝒙𝒕 or output 𝒚𝒕
changes. Alternatively, setting a very low leaking rate can extend the short-term memory capabilities
provided by ESNs.

For a more comprehensive guide on how to set such hyperparameters, readers are encouraged to
refer to the review in [101].
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CHAPTER 3

Echo State Networks for Cryptography

Given the introduction of echo state networks (ESNs) in Chapter 2, this chapter focuses on sequential
decision and prediction problem. In particular, a structured prediction task of generating sequences is
considered. However, rather than focusing on generating novel sequences, the primary objective is to
investigate the efficacy of echo state networks in memorizing and reproducing arbitrary sequences of
data, such as images, texts, and videos. While ESNs have been successfully applied to time-series
prediction [101, 102], the aspect of sequence memorization remains relatively unexplored.

Hence, in this work, we examine files of various formats, such as images, texts, and videos, which
are inherently stored as sequences of bytes. Our focus lies in determining whether echo state networks
(ESNs) have the ability to memorize such sequences and accurately generate them in an auto-regressive
manner. This research problem holds significant interest for several reasons. Firstly, ESNs are
randomized networks wherein recurrent connections are kept fixed and not explicitly trained for the
given task. Only the output weights are trained for the task at hand. Consequently, the question of
whether this type of training is adequate for sequence memorization is quite intriguing. Secondly,
memorizing arbitrary byte sequences is a challenging problem, unlike textual data. Specifically, in
textual data, models can exploit the statistical co-occurrences of words to predict the likelihood of
certain words following a given context. However, such patterns are harder to obtain for byte sequences
in images and videos, as the ordering can also be somewhat arbitrary.

First, we show that ESNs can indeed memorize short sequences of data with appropriate reservoir
sizes. To achieve this, we train the output weights of the ESN to predict the subsequent byte in a
sequence based on its preceding elements. By employing an auto-regressive generation approach,
the ESN can sequentially generate the memorized sequence, reconstructing the original sequence
one element at a time. However, as the sequence length increases, the computational demands
become impractical when employing a larger reservoir. To address this challenge, we propose a
divide-and-conquer strategy wherein the sequence is partitioned into smaller chunks, and each chunk
is assigned a separate reservoir to memorize its corresponding chunk of data.

This ability to memorize sequences is subsequently leveraged to introduce a novel application in the
field of cryptography. Specifically, we propose utilizing this memorization capability to enhance data
security through a private key cryptography system. Given that ESNs can memorize data precisely,
we exploit the trained output weights and ESN settings as private keys for encryption. To assess the
security of this proposed system, we examine its fundamental properties as a cryptography system and
demonstrate its resilience against common security attacks.
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In summary, this contribution demonstrates the ability of ESNs to effectively memorize sequences,
which is then harnessed for developing a novel and scalable cryptographic system.

This chapter is based on the following publication [51].

• R. Ramamurthy, C. Bauckhage, K. Buza and S. Wrobel, “Using Echo State Networks for
Cryptography”, Proceedings of International Conference on Artificial Neural Networks, 2017,
url: https://doi.org/10.1007/978-3-319-68612-7_75

The original concept of employing echo state networks (ESNs) for cryptography was proposed
and fully implemented by Rajkumar Ramamurthy. Rajkumar Ramamurthy conducted the initial
experiments, including implementing, evaluating, and analyzing the security properties. The co-
authors of the publication participated in the initial discussions and contributed to shaping the
content of the publication. The paper itself was written by Rajkumar Ramamurthy and revised by all
co-authors.

The rest of the chapter is organized as follows: First, a brief motivation for the considered problem
is presented in Section 3.1. Next, Section 3.2 describes how ESNs can be used as memories. Section
3.3 presents the proposed encrypting scheme describing data representation and other practical
aspects. Finally, Section 3.4 presents the experiments confirming that our approach satisfies essential
cryptographic properties such as diffusion and confusion.

3.1 Motivation

The field of neural cryptography, a branch of cryptography, focuses on employing artificial neural
networks for encryption and cryptanalysis. Initial studies explored cryptographic systems based on
recursive autoencoders, demonstrating that feed-forward networks trained using backpropagation can
encrypt plaintext messages by utilizing activation patterns of hidden layer neurons [103]. Subsequent
research introduced key-exchange systems where coupled neural networks synchronize to establish
shared secret keys [104]. Although the original approach had certain vulnerabilities [105], recent
studies have shown that modern convolutional interacting neural networks can effectively safeguard
communication against eavesdroppers [106]. Another popular concept involves combining chaotic
dynamics and neural networks [107–111]. For instance, chaotic neural networks have been utilized for
image encryption, demonstrating high security, and chaotic hopfield networks have been shown to
generate random binary sequences for text encryption.

Based on this brief survey, the proposed approach in this contribution presents a novel idea for
neural cryptography, employing a hybrid strategy that leverages chaotic dynamics and the deterministic
outcome of a training procedure. Specifically, the proposal is to utilize echo state networks [98] for
both encryption and decryption. In the conventional scenario where Alice and Bob exchange messages
and seek to safeguard their communication against eavesdropping by Eve, it is assumed that they
possess identical copies of an echo state network whose internal states evolve based on a non-linear
dynamical system. To encrypt a message (such as text or an image), Alice inputs it into her copy of
the network and trains the output weights such that the input is reconstructed. She then transmits
these output weights to Bob, who employs them in his copy of the network to regenerate the message.
Eve may intercept the communicated output weights, but she cannot decipher the message without
knowledge of the corresponding echo state network’s structure, input weights, and internal weights.
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3.2 Echo State Networks as Memories

Experiments conducted with this private-key or symmetric cryptography system demonstrate that this
approach is easy to use, efficient, scalable and secure.

3.2 Echo State Networks as Memories

As discussed earlier in Chapter 2, ESNs follow the paradigm of reservoir computing where a large
reservoir of recurrently interconnected neurons process sequential data with only minimal adaptation
of weights. Recalling that the central idea is to randomly generate weights 𝑾𝑖𝑛 ∈ R𝑛𝑟𝑒𝑠×𝑛𝑖𝑛 between
input and reservoir neurons as well as weights 𝑾𝑟𝑒𝑠 ∈ R𝑛𝑟𝑒𝑠×𝑛𝑟𝑒𝑠 between reservoir neurons. Only
the weights 𝑾𝑜𝑢𝑡 ∈ R𝑛𝑜𝑢𝑡×𝑛𝑟𝑒𝑠

Given this setup, we would desire to train ESN to memorize a given sequence of data 𝑋 =

[𝒙1, 𝒙2, . . . , 𝒙𝑇 ]. The main idea is to train ESN to predict the next item at 𝒙𝑡+1 in the data given
the current item 𝒙𝑡 . To this end, we collect the desired one-step offsetted target sequence as
𝑌 = [𝒚1, 𝒚2, . . . , 𝒚𝑇 ]. In order to train, one first feeds the training sequence 𝑿 into the reservoir and
collects corresponding states at each time step into a sequence as 𝑹 = [𝒓1, 𝒓2, . . . , 𝒓𝑇 ]. By gathering
the sequences 𝒀 and 𝑹 into matrix forms 𝒀 ∈ R𝑛𝑜𝑢𝑡×𝑇 and 𝑹 ∈ R𝑛𝑟𝑒𝑠×𝑇 respectively, the least squares
method allows computing optimal output weight matrix 𝑾𝑜𝑢𝑡 as follows:

𝑾𝑜𝑢𝑡
= 𝒀𝑹𝑇 (𝑹𝑹𝑇 + 𝛽𝑰)−1 (3.1)

where 𝛽 is a regularization constant. However, for a good practical performance, the scale 𝑎 of 𝑾𝑖𝑛

and the spectral radius 𝜌 of 𝑾𝑟𝑒𝑠 have to be chosen carefully. Together with the leaking rate 𝛼, these
parameters are tuned according to general guidelines discussed in Section 2.2.

An entire input sequence (e.g. a text file) can therefore be stored in- and retrieved from the reservoir,
provided the reservoir is large enough. Hence, the idea in this contribution is to produce an echo state
network with a large reservoir and to train it to memorize an input sequence. Once the training is
complete, the network can run freely to (re)generate the memorized sequence.

In Section 3.3, we delve into further details of representing sequential data so that ESNs can train
them and utilize them for cryptography purposes.

3.3 ESN-Based Encryption and Decryption

We consider the traditional cryptographic scenario where Alice and Bob aim to secure their commu-
nication against Eve’s eavesdropping. Using a secret key, Alice converts her messages, known as
plaintexts into encrypted messages known as ciphertexts. She then sends the ciphertexts to Bob who
uses the same secret key to convert them back into plaintexts.

In this scenario, the idea is to “memorize” a given message using an echo state network at one end
of a communication channel and to “recall” it at the other end using the same network. If Alice and
Bob possess an identical copy of the network, Alice can train it to memorize the data and transmits
only the resulting weights 𝑾𝑜𝑢𝑡 over the insecure channel. Upon receiving these weights, Bob plugs
them into his copy of the network and runs them to reconstruct Alice’s message. In essence, the
weight matrices 𝑾𝑖𝑛 and 𝑾𝑟𝑒𝑠 and leaking rate 𝛼 of the echo state network constitute the secret key
of the proposed cryptographic system. Without having access to this key, Eve can not decipher the
transmitted ciphertext 𝑾𝑜𝑢𝑡 . In practice, it is sufficient to communicate the random seed and other
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global hyperparameters discussed in Section 2.2 as the secret key, using which the weight matrices
𝑾𝑖𝑛 and 𝑾𝑟𝑒𝑠 can be generated at the other end of the communication channel.

3.3.1 Representing Data

In the practical implementations of the above scheme, byte-level representations of messages are
considered. This allows for flexibility and broad applicability because, in the memory of a computer,
texts or images are ultimately represented as a byte-stream after all. To further increase flexibility,
each byte is represented as a “one hot” encoding of 256 possible values; therefore, each byte is a
256-dimensional binary vector.

3.3.2 Memorizing Data

Given an input data which is represented as a byte-sequence 𝑩 = [𝒃1, 𝒃2, . . . , 𝒃𝑇 ], an echo state
network is trained to memorize it as follows: First, a dummy byte 𝑏0 is appended at the beginning
of the original sequence 𝑩 to make the later recall process independent of the value of the original
first byte in the sequence. Second, the resulting sequence is encoded to obtain 𝑯 = [𝒉0, 𝒉1, . . . , 𝒉𝑇 ]
where each 𝒉𝑖 is a binary vector of length 256. With this, input and desired output sequences to train
ESN are set as follows:

𝑿 = [𝒉0, 𝒉1, . . . , 𝒉𝑇 −1] (3.2)
𝒀 = [𝒉1, 𝒉2, . . . , 𝒉𝑇 ] (3.3)

where the indices of the vectors in sequences 𝑿 and 𝒀 differ by one time step. Given an echo
state network with input weights 𝑾𝑖𝑛 and reservoir weights 𝑾𝑟𝑒𝑠, appropriate output weights 𝑾𝑜𝑢𝑡

according to equation (3.1) are computed by iterating on equations (2.1) and (2.2).

3.3.3 Recalling Data

Once 𝑾𝑜𝑢𝑡 has been computed, it can be plugged into an identical copy of the echo state network
at the other end of the communication channel. This network can then auto-regressively regenerate
the encoded message one element at a time. To this end, the same dummy byte 𝑏0 is considered and
“one hot” encoded to obtain 𝒙0 = 𝒉0. Using this as the first input to the network, the system is run
according to equations (2.1) and (2.2) to obtain the output of the network 𝒚0, which is fed as input
again to the network until all the elements are generated.

At each time step, the network output 𝒚𝒕 is obtained, which is not necessarily a binary vector, as a
vector of probabilities for different bytes. This vector is converted to a one-hot vector of 1s and 0s
based on the byte that has the maximum probability. The resulting binary vector is then used as the
input 𝒙𝒕+1 for the next iteration of the network. Moreover, the binary vectors obtained in each step are
decoded into byte sequences 𝑺, which is precisely the original sequence 𝑩 memorized by the echo
state network.
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parameter value

chunk size 𝑚 200 (reservoir size 𝑛𝑟𝑒𝑠 is chosen as 0.95 × 𝑚)
leaking rate 𝛼 0.07
spectral radius 𝜌 of𝑊𝑟𝑒𝑠 1.0
input scaling 𝑎 of𝑊 𝑖𝑛 0.5
random seed randomly chosen
input connectivity input neurons are connected to 30 % of reservoir neurons
reservoir connectivity reservoir neurons are connected to 30% of reservoir neurons
activation function 𝑓 logistic for the reservoir and softmax for the output

Table 3.1: ESN configuration: An overview of hyperparameters that are used for the security analysis of the
proposed cryptography system. The input sequences are split into chunks of 𝑚 = 200 bytes and reservoir size is
set to 0.95 × 𝑚

3.3.4 Working with “Data Chunks”

As the size 𝑇 of the data sequence increases, the size 𝑛𝑟𝑒𝑠 ∈ O(𝑇) of a reservoir that can memorize
it increases, too. This makes the matrix multiplications 𝑾𝑟𝑒𝑠 𝒓𝑡 required for the network’s state
updates expensive. In fact, the total cost for 𝑇 internal updates amounts to O(𝑇3). To reduce this
cost, a “divide-and-conquer” strategy is adopted in which the data is split into chunks of size 𝑚 and
a small reservoir is employed to memorize each chunk. In this case, cost of the reservoir updates
for each chunk is O(𝑚3). Consequently, for an entire sequence, i.e. for 𝑇

𝑚
chunks, efforts reduce to

O( 𝑇
𝑚
× 𝑚3) = O(𝑇𝑚2). For a fixed chunk size 𝑚, the complexity of reservoir updates grows linearly

in the size of the sequence 𝑇 .
Also, for longer sequences, it is impractical to compute closed-form least squares as in equation

3.1 and as a result, splitting them into small chunks is inevitable. Finally, with this approach, the
ciphertext is plainly just the concatenated matrix of 𝑾𝑜𝑢𝑡 of all the small reservoirs used to encrypt
each chunk of data.

3.4 Experiments and Results

In our practical experiments, we found that the proposed usage of echo state networks can indeed
memorize and perfectly recall different types of data such as texts, images, audio files, videos, archives,
etc. In this section, we present results obtained from different kinds of security analysis of our
cryptography scheme. For our experiments, we used the same hyperparameters which we have listed
in the Table 3.1.

3.4.1 Security analysis

Any cryptography system should be robust against common types of attacks such as brute force attacks,
known-plaintext attacks, and ciphertext-only attacks. A brute force attack is an attack in which an
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.1: Key sensitivity: (a),(e) original images; (b),(f) decrypted images using the same key (echo state
network) as used for encryption; both decrypted images are identical to the originals; (c),(d),(g),(h) decrypted
images using slightly modified keys, i.e. slightly modified echo state networks; here, all decrypted images differ
considerably from the original images.

attacker attempts to find the keys of the system through trial and error. It is evident from the Tab. 3.1
that the key space of our proposed system is very large and most of the parameters are unbounded.
This renders brute force attacks extremely time-consuming and practically infeasible.

Brute force attacks Figures 3.1(a) and (e) show two original images, one of which (Lena) was
given as a tiff file, the other (cat) as a png file. Both were encrypted and decrypted using the same
echo state network. Decryption produced the images in Fig. 3.1(b) and (f), which are identical to the
original ones. However, when decrypting with networks with slightly modified parameters, i.e. when
using slight variations of the secret key, we obtained useless images as shown in Fig. 3.1(c), (d), (g),
and (h). These results are prototypical and show that the system is susceptible to the secret key. This
makes it robust against brute force attacks because decryption is only possible if all the parameters of
the secret key are set precisely.

Known-plaintext attacks Known-plaintext attacks are ones where an attacker has access to an
example of a plaintext (a message) and a corresponding ciphertext (a weight matrix 𝑾𝑜𝑢𝑡 ) and attempts
to crack the secret key via a comparative analysis of changes between them. For instance, by analyzing
changes in the ciphertexts of images that differ by just a few pixels, it might be possible to obtain
part of the mapping involved in encryption. Figures 3.2(a) and (f) show original images and Figs.
3.2(c) and (h) show slightly distorted versions where 1% of the pixels were randomly changed. The
corresponding encrypted images (matrices 𝑾𝑜𝑢𝑡 ) are visualized in Fig. 3.2(b), (g), (d), and (i). Only
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.2: Plaintext sensitivity: (a),(f) original images; (b),(g) encrypted images; (c),(h) original images with
1% of their pixels randomly distorted; (d),(i) encryptions of the modified images; (e),(j) difference between
encrypted original and encrypted modified images (33.22% and 37.78%, respectively).
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Figure 3.3: Ciphertext sensitivity: (a),(b) plaintext distribution of the Lena image and corresponding ciphertext
distribution; (c),(d) plaintext distribution of the cat image and corresponding ciphertext distribution. Since
the ciphertext distributions are almost identical, frequency analysis is difficult and the system is robust against
ciphertext-only attacks.

minor changes in the plaintext led to considerable changes in the ciphertext; these differences are
visualized in Fig. 3.2(e) and (j) and amount to about 35%. Thus, our system is sensitive to slight
modifications of the plaintext and therefore renders known-plaintext attacks very difficult.

Ciphertext-only attacks In ciphertext-only attacks, an attacker has access to a set of ciphertexts
however has some knowledge about the statistical distribution of plaintexts. Using frequency analysis
of ciphertexts, for instance, exploiting the fact that “e” is the most frequent character in English texts,
one can map the most frequent parts in ciphertext to corresponding plaintexts. Figure 3.3 shows
frequency distributions for the plaintexts and ciphertexts of the images “Lena” and “cat”. Although
the plaintext distributions of the two images differ, their ciphertext distributions are very similar. From
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Figure 3.4: Encryption and Decryption run times: Run times for encryption and decryption for different
message sizes. It is observed that run times grow linearly with data sizes indicating the scheme is both practical
and scalable

these distributions, it is evident that most of the elements (≈ 50%) in the ciphertext (𝑾𝑜𝑢𝑡 ) are zero
and that the non-zero elements are uniformly distributed. Thus, frequency analysis will be ineffective,
and the proposed system is robust against ciphertext-only attacks.

Diffusion and Confusion Diffusion and confusion are the two fundamental properties of a good
cryptography system, according to Shannon [112]. A system that has the diffusion property is one
where a slight change in either plaintext or key causes a significant change in the ciphertext. A system
with the confusion property is one where the mapping between plaintext and ciphertext is complex.
Our experimental results indicate that the proposed system has both of these properties.

3.4.2 Performance

To assess the runtime performance of our proposed system, we determined average encryption and
decryption times for messages of different sizes. Our results are presented in Fig. 3.4. For instance,
encrypting and decrypting a 3KB message took less than one second each and runtimes were found to
grow linearly with the message size. Our approach, therefore, is scalable and practical for real-time
applications.

3.5 Conclusion

In this work, we demonstrated that echo state networks can memorize and reproduce data sequences
despite only training a part of the weights. This capability is then utilized for proposing a novel
neural cryptography system. Through extensive analysis, the proposed system is found to be robust
against common security attacks and satisfies the essential cryptographic properties of diffusion and
confusion. Furthermore, our method is simple, scalable, and suitable for real-time applications.
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CHAPTER 4

Echo State Networks for Named Entity
Recognition

In the broader context of the thesis, this chapter delves into research question RQ1, which explores the
application of ESNs as random context encoders for structured prediction tasks. In the previous chapter
(Chapter 3), we focused on the structured prediction task of memorizing arbitrary data sequences.
The fact that the generated output sequence exhibits a structure makes this task fall under the domain
of structured prediction. More specifically, for the memorization task, the model needs to precisely
generate the original sequence itself. Our findings highlight the efficacy of ESNs, despite their
randomized recurrent nature, in utilizing reservoir states as random contexts for accurately recalling
the complete data in an autoregressive manner.

Further delving into the subject, we explore the application of ESNs in yet another structured
prediction task. Specifically, our focus is on Named Entity Recognition (NER), where the objective is
to predict a sequence of labels for a given sequence of words. State-of-the-art approaches for tackling
this task typically rely on Recurrent Neural Networks, such as LSTMs with word embeddings as their
inputs. In the current era of transformer-based large language models, the general approach involves
fine-tuning BERT-like models, wherein the word representations are fine-tuned further specifically for
the NER task. Notably, NER benefits from contextualized word representations that encompass the
context of the current word.

Nevertheless, RNNs often exhibit slower training times, while transformers require more com-
putational resources. Consequently, these networks may not be practical in scenarios with limited
resources, both in terms of hardware and data. This raises an intriguing question: Can ESNs also
tackle this task, and if so, what is the performance gap between LSTMs and randomized encoders like
ESNs?

With this objective in mind, we employ ESNs solely as random context encoders, utilizing word
embeddings as inputs. In essence, we feed the word embeddings as input and extract the corresponding
reservoir states as contextualized representations. Our findings demonstrate that these representations
derived from ESNs effectively capture the necessary context to perform NER at a competitive level,
all while significantly reducing training times.

In conclusion, this contribution strongly emphasizes the practicality and efficacy of ESNs as powerful
context encoders, mainly when applied to sequence tagging tasks like NER. The demonstrated success
of ESNs in the context of NER further solidifies their standing as versatile and reliable tools for
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tackling a wide range of structured prediction problems.
The chapter is based on the publication [52].

• R. Ramamurthy, R. Stenzel, R. Sifa, A. Ladi and C. Bauckhage, “Echo State Networks for
Named Entity Recognition”, Proceedings of International Conference on Artificial Neural
Networks, 2019, url: https://doi.org/10.1007/978-3-030-30493-5_11

The concept of utilizing ESNs as contextual encoders was proposed by Rajkumar Ramamurthy.
The core implementation of the ESN is developed by Rajkumar Ramamurthy which was then adapted
to the task by a co-author. The set of experiments was outlined by Rajkumar Ramamurthy which was
then carried out by the co-author. The resulting paper was written entirely by Rajkumar Ramamurthy
and the co-author, which is then revised extensively by all other authors. All the authors participated
in the discussion during the course of this work.

The rest of the chapter is organized as follows: First, a brief motivation for using word or sentence
representations is presented in Section 4.1, followed by a brief literature review of randomized neural
networks. Section 4.2 presents the task of Named Entity Recognition. In the subsequent Section 4.3,
we present the approach of applying ESNs as random context encoders. Section 4.4 discusses the
detailed experiments on the performance and practicality of ESNs on NER tasks along with discussion
on crucial hyperparameters.

4.1 Motivation

Natural Language Processing (NLP) consists of a broad range of tasks, including sentence labeling
[113, 114], sentence classification [115], semantic similarity question answering [116], and natural
language inference [117, 118]. A crucial precursor to all these tasks is to obtain an appropriate
representation of lexical units such as words, sentences and documents. These representations
are then considered as features for training machine learning models. For instance, in a sequence
tagging/labeling task, each word in a given sentence needs to be assigned a linguistic tag (eg. a named
entity or a part of speech). Therefore, to train any ML system for solving this, each word should be
converted to a real-valued vector that captures both context and semantics. Similarly, for sequence
classification or semantic clustering, the task boils down to obtaining compact representations of
sentences.

Classically, approaches to obtain word embeddings deal with latent-semantic analysis (LSI) [119]
on term-document matrices using Singular Value Decomposition (SVD) [119] or GloVe [34] that uses
word co-occurrences, context window-based word representations such as Word2Vec [32]. To make
them robust against morphological variations and misspelled words, FastText [33] extends the idea
of Word2Vec to include sub-word information. More recent methods [36, 120] train a bidirectional
language model using LSTMs that can predict future or past words/characters conditioned on history.
With these language models, the representation of any given word is obtained by gathering activations
of hidden layers.

Similarly, traditional approaches to obtain sentence representations use bag-of-words (BOW) or
term-frequency-inverse document frequency (TF-IDF) or LSI [119]. Although simple and effective,
they ignore word ordering and suffer from high dimensionality. More recent methods focussed on
learning compositional operations that map word vectors to sentence vectors using recurrent neural
networks [96], recursive neural networks [121] and convolutional networks [122, 123]. However,
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most of these methods are supervised in the sense that they produce representations specific to a
particular task. However, it is desired to obtain generic sentence representations that work across
various downstream tasks. Consequently, this led to Doc2vec [124], Skip-thought [125] models
learning sentence vectors by extending on the idea of Word2Vec to sentences. Interestingly, InferSent
[126] showed that it is possible to obtain generic representations by training a sentence encoder in a
supervised fashion for natural language inference (NLI). These methods fall under the paradigm of
feature-based methods as they provide general representations of words/sentences which can be used
as features for downstream tasks.

In recent years, an alternating line of work has emerged which allows the training of large language
models in an unsupervised fashion and then fine-tuning downstream tasks. These methods are referred
to as fine-tuning based approaches and the most crucial aspect is that only a few parameters need to be
learned from scratch. Representative approaches of these include UlmFit [37], which first trains a
language model based on bidirectional LSTMs and this language model is then further fine-tuned on a
target task. However, these language models are restricted in a way since RNNs such as LSTMs can
capture only a short range of dependencies and are inefficient due to recurrent processing. To tackle
this, Transformer based architectures which replace recurrent layers with self-attention layers, are
now state-of-the-art in learning generic representations. Based on transformer architectures, BERT
[43] learns representations by pre-training them on masked language modeling and next-sentence
prediction tasks.

Extending on BERT architectures, sentence transformers [127] enrich sentence representations
using contrastive loss functions for semantic similarity comparisons. Another crucial aspect of
fine-tuning based models is that they require very minimal architectural adaptations to downstream
tasks; addition of just a linear or multi-layer perceptron to a pre-trained model is sufficient to train
further for any given downstream task.

Contrary to all these works on sentence encoders, there is surprising evidence [128, 129] that they
are similar to random encoders (e.g. max pooling over pre-trained word embeddings). In other words,
the performance gain achieved by using sentence encoders such as InferSent and SkipThought over
random parameterized methods such as RNNs is surprisingly little.

Inspired by these random encoders for sentences, we would like to analyze the significance of
contextual word encoders. In particular, we focus on a sequence labeling task namely Named-Entity
Recognition (NER). Current methods using Recurrent Neural Networks (RNNs) train a bidirectional
LSTM which takes pre-trained word embeddings as its inputs to get contextual word representation
which is then used for NER classification. In this setting, we are interested in the question What
is the performance gain with contextual encoders over random context encoders?. To answer this
question, we propose to use ESNs to get contextualized word representations which can then be
used for classifying the word into named entities. Since reservoirs are generated randomly and their
connections are not trained for the task, resulting representations are also random yet capture some
context. Therefore, the main contribution of this work is evaluating ESN-based random contextual
encoder and analyze how close they can match the performance of trained contextual encoders.

4.1.1 Related Work

The usage of random projection matrices dates back to the origin of neural networks in which the
first few layers of multi-layer perceptrons are initialized with random weights [130]. It has been
studied under various themes such as extreme learning [131, 132] and reservoir computing [98, 99].
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Of particular interest to us is reservoir computing, which uses ESNs as random context encoders.
ESNs have been successfully applied in various sequential tasks; sequence generation [51], time series
prediction [101, 102]. Extending this to deep architectures, deep ESNs have been applied to detect
Parkinson’s disease [133]. However, its application in natural language processing is relatively an
unexplored area and is limited to learn grammatical structures [134], and systematicity in natural
language [135]. Differing from these methods, our approach focuses on obtaining contextual word
representations to be used in NER, which has not been studied with ESNs.

4.2 Named Entity Recognition

Named Entity Recognition (NER) involves identifying named entities within a given context and
assigning them appropriate labels such as person (PER), organization (ORG), location (LOC), and
so on. NER serves as either an independent task to identify sensitive entities within a document or
as a preliminary step in various other NLP text processing pipelines, including relation extraction
and co-reference resolution. Typically, NER is approached as a sequence labeling task, wherein the
objective is to assign a label to each element in the provided sequence (sentence), as illustrated below:

Raj is living inPER Düsseldorf LOC since 2018 DATE

In a more abstract sense, Named Entity Recognition (NER) can be viewed as a structured
prediction (SP) problem, as the labeled sequence possesses inherent structure and differs from standard
classification or regression tasks. Other examples of SP problems include natural language text
generation (NLG), machine translation, and summarization. One of the primary challenges in solving
SP problems lies in searching for the optimal label sequence within a large, combinatorial output space.
For instance, in the case of NER, the number of possible output sequences scales exponentially with
the number of words in the sequence (N) and the number of potential labels (L), resulting in an output
space of 𝑂 (𝑁𝐿). Due to this inherent complexity, NER is typically not tackled using search-based
methods, where the objective is explicitly finding the optimal label sequences. Instead, an incremental
solution is preferred, where the search process involves parsing the given sentence in a left-to-right (or
vice versa) direction, incrementally determining the optimal label for each word. This incremental
approach reduces the complexity to 𝑂 (𝑁 ∗ 𝐿) and is widely adopted by most NER approaches.

Early NER systems focussed heavily on domain-specific knowledge in the form of lexicons and
simple hand-crafted rules and features; for instance, the morphology of the word, trigger context
words and term frequency. In the later years, these systems were then replaced by supervised machine
learning models by including more sophisticated features such as part-of-speech tagging, word
embedding and context features. For a detailed overview of these earlier approaches, we refer to the
review [136]. In recent years, research has shifted away from these feature-engineered systems towards
automatic feature-inferring systems using neural network-based methods as highlighted in the review
[137]. Most of these NER systems based on LSTMs consist of the same underlying architecture; a
bidirectional LSTM that takes a sequence of word embeddings as its input and returns a sequence of
contextual word embeddings embedding into its sentence context. These contextual word embeddings
are obtained by concatenating the LSTM’s hidden state of a word in both directions. Often, the output
of LSTM is coupled with a Conditional Random Field (CRF), a probabilistic method that can predict
labels of sequences by taking label dependencies into account.
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4.3 ESNs as Random Context Encoders

This section discusses how ESNs can be used to obtain contextualized word representations. Specifically,
we assume each sentence is represented by pre-trained word embeddings. Let us consider a sentence 𝑠
consisting of 𝐿 tokens, which can be represented as a sequence of its pre-trained token embeddings
ie. 𝒔 = (𝒙1, 𝒙2, . . . 𝒙𝑳). With this input sequence and an ESN with randomly initialized input and
reservoir weights, we feed the given input sentence one token at a time and collect its reservoir states
at every time step as 𝒄 = (𝒓1, 𝒓2, . . . 𝒓𝑳) by following equation (2.1).

By computing context in this manner, the representation of a token includes the previous context.
Whereas for NER, previous works [126, 128] observed that that it is beneficial to have a bidirectional
context. To obtain this, we pass the sequence also in reverse order once and collect its corresponding
reservoir states. Therefore, contextual word representation for each token is the concatenated reservoir
states obtained from both directions i.e. 𝒄 = (𝒓1, 𝒓2, . . . 𝒓𝑳) where each 𝒓𝒊 is [−→𝒓𝒊 ,←−𝒓𝒊 ]. It is to be noted
that the same ESN is used for both directions, unlike LSTM-based methods, which use two separate
hidden layers parsing in each direction. This is primarily because 𝑾𝒓𝒆𝒔 is randomly initialized.

To solve a sequence labeling task such as NER, we pass this sequence 𝒄 of contextual-word
representations to the readout layer with weights 𝑾𝒐𝒖𝒕 and its output can be collected in a sequence
𝒚
′

= (𝒚
′

1, 𝒚
′

2, . . . 𝒚
′

𝑳) following equation (2.2) with 𝑓𝑜𝑢𝑡 as softmax activation function. Given a ground
truth sequence 𝒚 = (𝒚1, 𝒚2, . . . 𝒚𝑳) of NER tags where each 𝒚𝒊 is a one-hot encoded vector of possible
tags, then it is sufficient to optimize 𝑾𝑜𝑢𝑡 by using gradient descent at the rate of [ minimizing
cross-entropy loss L between predicted sequence 𝒚

′

and ground truth sequence 𝒚.

L(𝒚
′

, 𝒚) = −
𝐿∑︁
𝑖=1

𝐶∑︁
𝑗=1

𝒚𝑖 ( 𝑗) log(𝒚
′

𝑖 ( 𝑗)) (4.1)

𝑾𝑜𝑢𝑡
= 𝑾𝑜𝑢𝑡 − [∇𝑾 𝑜𝑢𝑡L(𝒚

′

, 𝒚) (4.2)

As input and reservoir weight matrices 𝑾𝑖𝑛 and 𝑾𝑟𝑒𝑠 are kept constant throughout this training
process, we can break this whole procedure naturally into (1) generating contextual-word representations
for all sentences (2) fitting a readout layer. Step (1) can be done just once for each ESN setting and
contextual representations can be cached. In Step (2), any classifier of our choice (shallow or deep)
can be trained offline with batch gradient descent.

4.4 Experiments and Results

Now, we shift our attention to the quantitative experiments in which the contextual-word representations
obtained using ESNs are evaluated on the task of German NER. For this purpose, we test our approach
on GermEval Dataset [138] in which the task is to identify named entities belonging to 12 classes in
total. These include four main classes: PERson, LOCation, ORGanisation and OTHer. Additionally,
each class contains 2 subclasses namely -deriv and -part. One example of a nested entity is “University
of Bonn” which is an ORG but at the same time contains a location entity “Bonn” (LOC-part).
Similarly, the second subclass includes word derivation, for example, “das Bonner Theater” (translated
as “the theater of Bonn”) contains the word “Bonner”(LOC-deriv) derived from the entity “Bonn”.
The entities and their spans are encoded using BIO-scheme. With these subclasses and the encoding
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Figure 4.1: Ablation: (a) Influence of hyperparameters such as spectral radius, leaking rate and input scaling.
(b) Influence of reservoir size on performance; the larger the reservoir, the better the performance. The fact that
the bidirectional variant performs better than the uni-directional suggests that the task depends on context from
both sides

scheme, each token might belong to one of 25 classes. The dataset has pre-defined splits of training,
development and test consisting of 24 000, 2 200 and 5 100 sentences respectively.

4.4.1 ESN Design

Since ESNs have several hyperparameters that must be set beforehand, we tune them by cross-validating
on the development set. To that end, we use pre-trained word embeddings from FastText [139] as the
inputs. For this purpose, we use the Flair implementation1, which offers an easy-to-use framework for
training and evaluating NER models along with access to different types of embeddings. To keep
this tuning process tractable, as discussed before, we first generate contextual-word embeddings for
different settings of ESN. Later, we fit a logistic regression model as our readout layer to train it to
predict NER tags. We use Ada delta optimizer trained for 150 epochs with a learning rate of 0.1
and weight decay of 10−5 to train this readout layer. Next, we briefly explain the settings of ESN
hyperparameters:

Spectral radius: The spectral radius 𝜌(𝑾𝑟𝑒𝑠) which is the maximal absolute eigenvalue of the
reservoir weight matrix. As 𝑾𝑟𝑒𝑠 is initialized randomly, it is essential to set the spectral radius to a
value less than 1.0 to satisfy the echo state property [98]. However, it was shown empirically that
sometimes even higher values satisfy this condition and deliver better performance [101]. We varied
the spectral radius between 0.6 and 1.3 and measured the resulting F1 score. Figure 4.1 shows the F1
scores for different spectral radii; the performance peaks around 0.7 and then decreases continuously
apart from a small local maximum around the unit spectral radius.

Input scaling: Another key parameter of ESNs is the scaling 𝑎 of input weight matrix 𝑾𝑖𝑛. These
weights can be controlled to influence the non-linearity of the reservoir responses. In our setting, we

1 https://github.com/zalandoresearch/flair
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4.4 Experiments and Results

Model Embedding Dimension Run Time Performance

Logistic regression (LR) 300 33 min 52.75 ± 0.19
Bi-ESN + LR 4096 37 min 69.04 ± 0.22
Bi-ESN + NN 4096 47 min 70.54 ± 0.10

Bi-LSTM 4096 10h 12 min 75.45 ± 0.10
Bi-LSTM 256 3h 3 min 76.87 ± 0.21

Table 4.1: NER on Word Embeddings: Comparison of performance of different models using non-
contextualized word embeddings as inputs. Even with simple word embeddings as inputs, reservoir rep-
resentations obtained from Bi-ESNs are very competitive to fully trained Bi-LSTMs.

use tanh(·) activations; for linear tasks, it is thus beneficial to have small weights around 0.0, where
the activation is almost linear. On the other side, for a more complex task, it might be better to choose
a high scaling to use the non-linearity of the activation function. However, it was shown in previous
research [101], which suggests that large weights can make the ESN unstable. In Figure 4.1, the effect
of the input scaling is also presented, with the highest f1-score corresponding to input scaling of 0.25.

Reservoir size: Next, we investigate the influence of reservoir size for both uni- and bidirectional
ESNs. Since a bidirectional ESN produces an embedding of twice the reservoir size, we instead look
at the final embedding sizes to obtain a fair comparison. Figure 4.1(b) shows that the bidirectional
embedding leads to a continuously better f1-score of around 1.5%, indicating the NER task indeed
benefits from having a bidirectional temporal context.

4.4.2 Evaluation on Different Embeddings

Next, we investigate the performance of contextual-word representations obtained from ESN on the
test set by considering two types of word embeddings: FastText and Stacked embedding of FastText
(dimension of 300) and Flair (dimension of 4096) [140]. We also consider two variants of ESN, first
with a logistic regression (Bi-ESN+LR) readout layer and second with a neural network (Bi-ESN
+ NN) with a hidden layer consisting of 1000 neurons and 0.5 dropout. In either case, we fix our
size of the reservoir to have 2048 neurons amounting to 4096-dimensional embedding (bidirectional).
The optimal setting of other hyperparameters is obtained from the analysis presented in the previous
section. We compare our approach to several baseline models: (i) logistic regression (LR), which does
not use any context (ii) bidirectional LSTM (Bi-LSTM) which learns contextual word-representations
in an end-to-end fashion for NER task with hidden size 256 as chosen in [140]. For a fair comparison,
we also train a variant with a hidden size that matches the size of the ESN reservoir.

Word Embeddings as Inputs: Table 4.1 summarizes the performance of all methods trained with
FastText embeddings as inputs. It is evident that the contextual-word representations generated by
ESN lead to a strong improvement over a logistic regression method. Comparing the two ESN variants,
it is noticed that a readout with neural networks has ≈ 1.5% improvement over the logistic regression
readout layer. The most important result is that the difference between the LSTM and the ESN models
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Model Embedding Dimension Run Time Performance

Logistic regression 4396 2h 10 min 73.78 ± 0.18
Bi-ESN + LR 8792 3h 40 min 76.74 ± 0.03
Bi-ESN + NN 8792 4h 40 min 78.17 ± 0.19

Bi-LSTM 8792 75h 81.24 ± 0.13
Bi-LSTM 256 4h 35 min 83.52 ± 0.21

Table 4.2: NER on Flair + Word Embeddings: Comparison of performance of different models using
stacked flair and word embeddings. Although the resulting stacked embedding is contextualized, reservoir
representations obtained using Bi-ESNs still provide a considerable performance gain over original stacked
embeddings

only amounts to a value of 6% This suggests that LSTM variants do not improve much over ESN
methods but only incur longer training times of ≈ 3h. On the other hand, ESN methods can be quickly
trained in less than an hour ≈ 0.5h. This result suggests that random contextual-word representations
obtained from ESN are already competitive and can be used as a baseline while bench-marking
LSTM-based NER models.

Contextualized Word Embeddings as Inputs: Table 4.2 presents the same analysis as before,
combining Flair and FastText token embeddings as inputs. In these experiments, we choose the
reservoir size as 4396 resulting in contextual-word embedding size of 8792 due to bi-direction. One
crucial observation is that all methods have a considerable improvement over the results presented
in Table 4.1 which shows that Flair embeddings are more powerful in the NER task. As Flair
embeddings already encode contextual information as opposed to FastText, one might expect no
further improvement by applying a contextual encoding using ESN or LSTM. Nevertheless, both
the ESN and the LSTM increase the performance noticeably by 3 to 5% and 8 to 10% respectively.
Comparing the LSTM with the ESN models, we observe that the performance gap is just around 5%.
These findings concur with our previous analysis that ESNs are capable of achieving competitive
performance as LSTMs while requiring only a short period of training time.

4.5 Conclusion

In this work, our focus was on exploring the efficacy of ESNs as random contextual-word encoders.
Although these encoders do not train input and recurrent weight connections, they still possess
the capability to capture contextual information that can be valuable for the NER task. Through
a comprehensive set of experiments, we discovered that these encoders can be trained efficiently
and achieve competitive accuracy, comparable to state-of-the-art methods. The slight difference in
performance between trained encoders (such as LSTMs) and our ESN-based random context encoders
makes our approach an ideal baseline for evaluating alternative methods of contextual representation
learning. Several intriguing aspects within ESNs warrant further exploration, including investigating
connection sparsity and exploring different reservoir structures (such as random graphs or scale-free
networks). Additionally, previous research on multi-layer ESNs [141] suggests that incorporating
multiple layers could lead to performance enhancements.
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CHAPTER 5

Echo State Networks for Partial Observability

Chapter 3 showed ESNs are capable of performing a challenging structured prediction problem of
memorizing and recalling sequences of data. Similarly, the subsequent chapter delved into applying
ESNs in Named-Entity Recognition (NER), another task involving structured prediction. Despite their
random architectures, ESNs exhibited a type of short-term memory that proved adequate for achieving
competitive performance in these tasks. These findings highlight the efficacy of ESNs as random
context encoders for structured prediction tasks.

In this chapter, we delve deeper and consider a sequential-decision making problem in the field of
RL. The typical setup is that there is an agent interacting with an unknown environment by observing
its states, performing an action and receiving rewards. The main goal of the agent is to perform a
sequence of actions conditioned on its states such that a long term expected cumulative reward is
maximized. In this context, there exists an inherent structure within the outputs that needs to be
discovered for the specific problem at hand. Moreover, it is crucial to note that the agent’s current
actions have lasting effects on future states that it will encounter; in other words, actions carry
long-term consequences.

Deep neural networks (DNNs) have replaced tabular-based value and policy methods, particularly
when dealing with high-dimensional states and actions that render the latter intractable. However,
employing DNNs in RL introduces its own set of challenges. Even simple feed-forward networks can
suffer from instability and divergence issues, often referred to as the deadly triad which arises from
the combination of bootstrapping and off-policy learning. To address these challenges and enhance
stability in learning, the utilization of an experience replay buffer [142] has proven effective to a
certain extent.

In this work, we are focused on partially observable settings where the observation from the
environment does not fully capture the state of the environment. In such scenarios, in order for the
agent to make informed decisions, it becomes necessary for the agent to incorporate the history of
observations as input in order to select an appropriate action. Typically, an RNN is employed to process
the history, and its hidden state serves as a condensed representation of the historical information for
subsequent processing.

Considering that training RNNs is inherently more difficult, and when combined with the challenges
posed by the deadly triad the task becomes even more challenging. Consequently, our focus shifts
toward investigating whether randomized networks, such as Echo State Networks (ESNs), can also
provide solutions to this problem. Exploring this direction, we aim to discover alternative techniques for
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training ESNs. In particular, we propose using Simultaneous Perturbation Stochastic Approximation
(SPSA), a gradient approximation technique that can effectively compute gradients with just two
function evaluations, regardless of the parameter dimension.

In summary, we explore the usage of ESNs for learning control policies in partially observable RL
settings. We propose an alternative approach to train these policies without using backpropagation of
gradients. Finally, we compare our methods to classic RL value-based methods.

The chapter is based on the publication [53].

• R. Ramamurthy, C. Bauckhage, R. Sifa and S. Wrobel, “Policy Learning Using SPSA”,
Proceedings of International Conference on Artificial Neural Networks, 2018, url: https:
//doi.org/10.1007/978-3-030-01424-7_1

The idea of using ESNs as contextual encoders for partial observability problem was proposed by
Rajkumar Ramamurthy. However, an alternative way of training them using SPSA was proposed by
the second author. Rajkumar Ramamurthy did the implementation thoroughly and performed the
experiments. The paper is written mainly by Rajkumar and the second author. Later, it was revised by
all co-authors.

The rest of the chapter is organized as follows: First, a brief background and motivation of the
problem that we considered is presented in Section 5.1, followed by a short literature review. Section
5.2 presents a short introduction to SPSA and its design choices. Section 5.3 proposes the application
of ESNs are RL control policies, along with training details and variants. In Section 5.4, we present
experimental results on classic control problems and benchmark the proposed method against classic
RL methods.

5.1 Motivation

The primary objective of artificial intelligence research is to create systems that can learn to solve
complex tasks through interactions with their environment. Considerable progress has been made in
this area, primarily through modern reinforcement learning (RL) techniques [143, 144]. Noteworthy
successes include surpassing human-level performance in console-based Atari games [145] and
navigation of 3D virtual environments [146]. AlphaGo Zero [58] made a groundbreaking achievement
by becoming the first program to defeat world-class GO players solely through self-play learning. The
implementation of function approximators like deep neural networks, coupled with off-policy and
bootstrapping techniques such as Q-learning, which were previously unstable and referred to as the
“deadly-triad” [147], has now proven to be a reliable approach. Techniques such as experience replay
[142] have played a vital role in stabilizing learning by incorporating a large replay memory.

Motivated by these achievements, recent research has explored alternative approaches to rein-
forcement learning (RL) that employ black-box optimization methods, eliminating the need for
backpropagation of gradient computations. Notable contributions in this regard include systems
trained using evolution strategies [148, 149], which have demonstrated competitive performance in
playing Atari games. Similarly, comparable results were obtained using genetic algorithms [150],
which were found to scale better than evolution strategies. These advancements have revitalized
interest in black-box methods for RL, mainly due to their potential for parallelization with modern
distributed architectures.
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5.2 Simultaneous Perturbation Stochastic Approximation

However, many real-world systems face the challenge of limited and noisy state information, leading
to partial observability, as encountered in partially observable Markov decision processes (POMDPs).
To tackle RL problems in such scenarios, systems need to incorporate internal memory. Consequently,
recurrent RL methods have recently been investigated to address partial observability, although they
have proven to be challenging to train [151].

This work addresses specific problems using reinforcement learning (RL) techniques in partially
observable environments. Our choice of echo state networks (ESNs) for training parameterized control
policies is based on their simple architecture and short-term memorization capabilities. We propose
adopting Simultaneous Perturbation Stochastic Optimization (SPSA), a gradient approximation
technique, as the training algorithm. Notably, SPSA only requires two objective function evaluations
per iteration, regardless of the parameter dimension. We devise three variations of ESN training
using SPSA, differing in the selection of weight matrices during each iteration. Subsequently, we
employ these ESNs to learn policies and evaluate their performance against baselines in classic control
problems.

Earlier research on training ESNs using black-box methods explored the combination of genetic
algorithms to train internal reservoir weights and stochastic gradient descent for training output weights
[152, 153]. Another approach involved evolving the output weights and spectral radii of internal weight
matrices [154]. Additionally, recent work [155] focused on adapting reservoir matrices using hebbian
learning rules. A hybrid approach [156] that combined hebbian learning and temporal difference
learning was proposed to adapt actor-critic ESNs. In contrast to these previous methods, our approach
utilizes SPSA to optimize the entire network weights, which offers several notable advantages: (i) it
requires only two loss measurements per iteration, (ii) it does not rely on backpropagation of gradients,
(iii) it eliminates the need for maintaining candidate solutions like in genetic algorithms, and (iv) it
can handle stochastic returns, removing the necessity for averaging over multiple measurements to
account for noisy returns.

5.2 Simultaneous Perturbation Stochastic Approximation

In this short section, we briefly recall the main ideas behind SPSA for derivative-free optimization.
Consider the general problem of maximizing a differentiable objective function 𝑓 ( ®\) : R𝑑 → R,

that is, consider the problem of finding ®\∗ = argmax ®\ 𝑓 ( ®\).
For many complex systems, the gradient 𝜕 𝑓 /𝜕 ®\ cannot be computed directly so that 𝜕 𝑓 /𝜕 ®\ = ®0 can

often not be solved. It is, however, typically possible to evaluate 𝑓 ( ®\) at various values of ®\ which, in
turn, allows for computing stochastic approximations of the gradient. One method in this regard is
SPSA due to Spall [157] which iteratively updates estimates of the optimal ®\ as

®\𝑘+1 = ®\𝑘 + 𝑙𝑘 ®̂𝑔𝑘 ( ®\𝑘) (5.1)

where ®̂𝑔𝑘 ( ®\𝑘) is an estimator of the gradient at ®\𝑘 and 𝑙𝑘 is the learning rate in iteration 𝑘 . To estimate
the gradient, two perturbations are generated, namely ( ®\𝑘 + 𝑐𝑘 ®𝛿𝑘) and ( ®\𝑘 − 𝑐𝑘 ®𝛿𝑘) where ®𝛿𝑘 is
a perturbation vector and 𝑐𝑘 is a scaling parameter. Then, the possibly noisy objective function
𝐹 (·) = 𝑓 (·) + 𝑛𝑜𝑖𝑠𝑒 is measured at 𝐹 ( ®\𝑘 + 𝑐𝑘 ®𝛿𝑘) and 𝐹 ( ®\𝑘 − 𝑐𝑘 ®𝛿𝑘) and the gradient is estimated
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using a two-sided gradient approximation

®̂𝑔𝑘 ( ®\𝑘) =
𝐹 ( ®\𝑘 + 𝑐𝑘 ®𝛿𝑘) − 𝐹 ( ®\𝑘 − 𝑐𝑘 ®𝛿𝑘)

2 𝑐𝑘 ®𝛿𝑘
. (5.2)

The convergence of the SPSA algorithm critically depends on the choice of its parameters 𝑙𝑘 , 𝑐𝑘
and ®𝛿𝑘 . Specifically, the learning rate 𝑙𝑘 must meet the Robbins-Monro conditions [158], namely
𝑙𝑘 > 0 and

∑∞
𝑘=1 𝑙𝑘 = ∞, and a common choice in practice therefore is 𝑙𝑘 = 𝑙

(𝐿+𝑘)𝛼 where 𝑙, 𝛼, 𝐿 > 0.

Similarly, the scaling factor 𝑐𝑘 must satisfy
∑∞

𝑘=1
( 𝑙𝑘
𝑐𝑘

)2
< ∞ so that a good choice amounts to 𝑐𝑘 = 𝑐

𝑘
𝛾

where 𝑐, 𝛾 > 0. And, essentially, each element of the perturbation vector ®𝛿𝑘 is sampled from a uniform
distribution over the set {−1, +1}.

5.3 Echo State Networks as Policies

In this section, we will provide a concise overview of policy learning in scenarios involving partial
observability. Subsequently, we will introduce our approach, which involves utilizing ESNs trained
through the SPSA algorithm for policy learning purposes.

5.3.1 Partial Observability

Suppose there is an agent that interacts with an environment. At each time step 𝑡, the agent receives
observations of the environment’s state ®𝑠𝑡 and takes an action 𝑎𝑡 based on a policy 𝜋(𝑎𝑡 |®𝑠𝑡 ), which
maps the state ®𝑠𝑡 to the probability of selecting action 𝑎𝑡 . Consequently, the environment provides a
reward 𝑟𝑡 and transitions to a new state ®𝑠𝑡+1. These interactions are generally modeled as a Markov
Decision Process (MDP). For details, refer to Section 6.3.1

However, when dealing with partially observable environments, the sensory inputs of agents are
limited, resulting in incomplete knowledge of the state information. Consequently, the state ®𝑠𝑡 fails
to satisfy the Markov property as it does not fully capture the past events, making it insufficient for
informed decision-making. In the case of such non-Markovian states, it becomes necessary to design a
policy that depends on a history of states ℎ𝑡 = {®𝑠𝑡 , ®𝑠𝑡−1, . . . } rather than solely relying on the current
state ®𝑠𝑡 . Therefore, the policy is modified to 𝜋(𝑎𝑡 |ℎ𝑡 ).

However, this becomes impractical to compute whenever different tasks require arbitrary lengths of
histories. In situations like these, an ESN can be used to integrate the required history in its reservoir
states. In this way, we can parameterize the policy with weights of an ESN ®\ as 𝜋 ®\ (𝑎𝑡 |®𝑠𝑡 ) which takes
the current state ®𝑠𝑡 as the input and returns probabilities of actions by compacting the history of input
states in the reservoir memory.

5.3.2 Policy Learning Using Echo State Networks

We briefly recall the notion of ESNs and slightly modify it to use it for learning policies. In our setup,
given that the state of the environment ®𝑠𝑡 ∈ R

𝑛𝑠 is given as the input to the network, the hidden states
and output of our policy network are given by ®ℎ𝑡 ∈ R

𝑛ℎ and ®𝜋𝑡 ∈ R
𝑛𝑎 , respectively. The following,
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non-linear dynamical system governs the temporal evolution of such a ESN policy

®ℎ𝑡 = (1 − 𝛽) ®ℎ𝑡−1 + 𝛽 𝑓ℎ
(
𝑾𝑟𝑒𝑠®ℎ𝑡−1 +𝑾

𝑖𝑛®𝑠𝑡
)

(5.3)

®𝜋𝑡 = 𝑓𝜋
(
𝑾𝑜𝑢𝑡 ®ℎ𝑡

)
(5.4)

where 𝛽 ∈ [0, 1] is called the leaking rate and 𝑾𝑖𝑛, 𝑾𝑟𝑒𝑠, and 𝑾𝑜𝑢𝑡 are the input, reservoir, and output
weight matrices, respectively. The functions 𝑓ℎ (·) and 𝑓𝜋 (·) are activation functions of reservoir and
output respectively

At any time, the goal of the agent is to maximize the expected cumulative reward or the return
received over a period of time which is defined as 𝑅𝑇 =

∑𝑇
𝑡=1 𝑟𝑡 . In other words, the objective

function that is to be maximized is 𝑓 ( ®\) = E𝜋 ®\
[
𝑅𝑇

]
and finding an optimal policy amounts to finding

®\∗ = argmax ®\ 𝑓 ( ®\) where we now write ®\ to denote the set of weights of an ESN used to approximate
the policy 𝜋 ®\ (𝑎𝑡 |®𝑠𝑡 ).

According to our discussion in Section 5.2, we can then iteratively learn an optimal ®\ according to a
stochastic gradient ascent rule that follows the gradient ∇\E𝜋\

[
𝑅𝑇

]
. We can now resort to SPSA in

order to approximate this gradient as

∇ ®\E𝜋 ®\
[
𝑅𝑇

]
≈ 𝐹 (

®\ + 𝜖) − 𝐹 ( ®\ − 𝜖)
2𝜖

(5.5)

where 𝐹 (·) is the stochastic return from the environment by running an episode where, in each step,
the agent follows the policy 𝜋 ®\ (𝑎𝑡 |®𝑠𝑡 ) approximated by the ESN and where ®𝜖 is the perturbation
generated by SPSA. A summary of this learning method can be found in Algorithm 1.

Algorithm 1 Learn policies using SPSA

Input: SPSA parameters 𝑙, 𝑐, 𝐿, 𝛼, 𝛾 and initial weight ®\0
for 𝑘 = 0 to 𝑘_𝑚𝑎𝑥 do

𝑙𝑘 =
𝑙

(𝐿 + 𝑘)𝛼

𝑐𝑘 =
𝑐

𝑘
𝛾

®𝛿𝑘 ∼ U(−1, 1)
®\+ = ®\𝑘 + 𝑐𝑘 ®𝛿𝑘
®\− = ®\𝑘 − 𝑐𝑘 ®𝛿𝑘
Compute returns 𝐹 ( ®\+) and 𝐹 ( ®\−) by running an episode with weights ®\+ and ®\− respectively

®̂𝑔𝑘 ( ®\𝑘) =
𝐹 ( ®\+) − 𝐹 ( ®\−)

2 𝑐𝑘 ®𝛿𝑘
®\𝑘+1 = ®\𝑘 + 𝑙𝑘 ®̂𝑔𝑘 ( ®\𝑘)

end for

5.3.3 Tackling Exploration

An agent’s policy can either be deterministic or stochastic. In a discrete action space, the agent may apply
a deterministic, greedy, “winner-takes-all” strategy to select an action, i.e. 𝑎𝑡 = argmax𝑎 𝜋 ®\ (𝑎 |®𝑠𝑡 ).
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However, in order to encourage exploration, the agent can follow a stochastic softmax policy in which
actions are sampled based on action probabilities according to the policy 𝜋 ®\ (𝑎𝑡 |®𝑠𝑡 ), i.e. 𝑎𝑡 ∼ 𝑓𝜋
where 𝑓𝜋 is the softmax function. In a continuous action space, the agent’s actions are sampled from a
Gaussian policy parameterized by mean and variance neurons, that is 𝑓𝜋 is considered a Gaussian
probability distribution. In practice, in case of discrete action space, for each possible action, there
is an output neuron, with 𝑓𝜋 as softmax function applied to the output layer, whereas in continuous
action spaces, for each motor action, there are two neurons (one for mean and one for variance) with
𝑓𝜋 as a gaussian probability distribution applied at the output layer.

5.3.4 Training Variants

Typically, only the output weight matrix 𝑾𝑜𝑢𝑡 is optimized in ESN. However, some tasks require
tuning of the input- and reservoir weights 𝑾𝑖𝑛 and 𝑾𝑟𝑒𝑠 in order to extract relevant information from
observations or to construct missing state information. Therefore, we consider three variants of our
SPSA algorithm using different choices of ®\ at each iteration

1. output_spsa: at each iteration, we optimize only the output weight matrix, that is we let
®\ = 𝑾𝑜𝑢𝑡

2. all_spsa: at each iteration, all of the weight matrices are updated at once, that is we let
®\ = {𝑾𝑖𝑛

,𝑾𝑟𝑒𝑠
,𝑾𝑜𝑢𝑡 }

3. alternating_spsa: at each iteration, we update one of these matrices and alternate in the
subsequent iteration.

5.4 Experiments and Results

We assessed the aforementioned SPSA variations using a set of classic control problems provided by
OpenAI Gym [80], and we compared their performance to temporal difference and policy gradient
learning approaches. Specifically, we focused on two well-known problems: Mountain Car (MC)
and Acrobot. Within the Acrobot environment, we examined two variants: one involving stochastic
policy training and another involving deterministic policy training. The observation space in Acrobot
consists of cosine and sine values representing joint angles, while the available actions are discrete
and involve applying torque of +1, 0, or -1 on the joint between two links. Similarly, we tackled both
the discrete and continuous versions of the MC task. In the discrete variant, the available actions are
either pushing left or right, whereas in the continuous version, the action is a force applied.

5.4.1 Implementation details

We used the same architecture of ESNs consisting of 40 reservoir neurons with 𝑡𝑎𝑛ℎ activation
functions for our SPSA variants and their RL baselines. The number of input- and output neurons and
the output activation function are chosen depending on the task and the type of policy being learned.
The weight matrices are initialized according to parameters such as sparsity, scaling and spectral radius
which are carefully set as per the guidelines in [101]. The input and reservoir matrices are chosen from
a uniform distribution over values [−0.5, 0.5]. However, the output scaling is chosen differently for
each task. The initial spectral radius of the reservoir matrix and the leaking rate are chosen to be 1.0
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(a) acrobot deterministic
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Figure 5.1: Learning curves: (a),(c) Evolution of total episodic reward in learning deterministic policies for
discrete versions of acrobot and mountain car. (b),(d) Evolution of total episodic reward in the learning of a
softmax and Gaussian policy for discrete acrobot and continuous mountain car problems tasks, respectively. It
is evident that SPSA variants perform better than RL methods

and 0.3, respectively, for all tasks. The SPSA parameters such as learning rate, scaling factor, decay
rates and similarly, parameters concerning reinforcement learning methods such as discount factor
and learning rates are tuned for each experiment. Table A.1 lists all hyperparameters and their values.

5.4.2 Results

Initially, we conducted tests on our algorithms to train deterministic greedy policies for the discrete
versions of the acrobot and MC tasks. We observed that the SPSA variants successfully solved both
of these tasks. To quantitatively evaluate their performance, we generated mean learning curves
using 10 different random seeds. These curves were then compared to similar curves obtained from
ESNs trained with temporal difference methods such as Q-learning and SARSA learning, utilizing
stochastic gradient descent. The learning curves, depicted in Figures 5.1 (a) and (b), represent the
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variants deterministic stochastic

Acrobot Mountain Car Acrobot Mountain Car
(discrete) (discrete) (discrete) (continuous)

all_spsa -105.56 -121.61 -121.83 85.34
alternating_spsa -110.07 -124.70 -131.01 80.41
output_spsa -109.16 -144.88 -141.25 80.24
output_q -123.72 -150.69 - -

output_sarsa -132.28 -163.94 - -
actor_critic - - -193.95 72.64

Table 5.1: Performance summary: Evaluation results containing average episodic total reward in the last 100
iterations of policy learning on classic problems for different variants and their baselines (the higher the value,
the better the performance)

progression of episodic total reward throughout the learning process (with higher values indicating
better performance). Notably, all SPSA variants outperformed Q-learning and SARSA learning in
terms of discovering better policies.

Next, we tested our algorithms to learn stochastic policies for a discrete version of the acrobot- and
a continuous version of the MC task. We found that the SPSA variants are able to solve these by
finding a softmax policy and a Gaussian policy for acrobot and MC, respectively. In a quantitative
evaluation, we again computed mean learning curves with 10 different random seeds and compared
them to data obtained using actor-critic methods. In the actor-critic method, two ESNs are used, one
to learn the policy and one to learn the state value function, both act with limited state information
as in our SPSA variants. Figures 5.1 (c) and (d) show the learning curves and it is seen that SPSA
variants perform better than actor-critic methods. Next, in order to visualize the learned Gaussian
policy for the mountain car task, we plotted action probabilities for selected input states. As we can
see in Figure A.1 (b), for the same input states, the resulting action probability distribution is a mixture
of Gaussians, meaning that the actions are sampled from appropriate mixture components based on
the hidden states of the network which constructs the missing velocity information.

The key findings from our evaluations are summarized in Table 5.1, presenting the average episodic
total rewards over the last 100 iterations with 10 different random seeds. (i) In all experiments,
training solely the output weight matrix using SPSA outperforms its RL counterparts, indicating the
efficacy of SPSA as a powerful alternative to common RL methods. (ii) Updating all weight matrices
simultaneously yields the best performance across all tasks. However, training in an alternating
fashion also shows promise, warranting further investigation. (iii) For the acrobot tasks, SPSA exhibits
superior performance in learning a deterministic policy compared to a stochastic policy. This suggests
that introducing stochasticity into the action space may be unnecessary, as exploration already occurs
through parameter space perturbations. This finding aligns with the work done in [148], where
deterministic policies were preferred when using black-box methods. Nonetheless, our approach
demonstrates the feasibility of learning both deterministic and stochastic policies in general.
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5.5 Conclusion

In this work, we explored the usage of ESNs as recurrent policies to effectively capture relevant state
information in partially observable settings. Specifically, we proposed employing SPSA as the training
algorithm, which does not rely on backpropagation. Through experiments conducted on classical
problems, we demonstrated that SPSA serves as a robust alternative to conventional value-based
methods like Q-learning and SARSA. Remarkably, with SPSA, training only the output weights
proved sufficient for learning suitable policies across most tasks. This implies that ESNs can capture a
certain degree of random context, which is adequately informative. However, for tasks seeking higher
performance, SPSA can still be employed also to train the reservoir and input matrices of the ESN.
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Part II

Improving Exploration and Sample
Complexity in RL
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In this section of the thesis, the focus is on addressing challenges in RL related to research question
RQ2. Two approaches are presented that aim to improve sample complexity and exploration in RL by
incorporating domain knowledge into the learning process.

In the first contribution, described in Chapter 6, Novelty Search (NS) methods are considered,
which are a class of methods that encourage the agent to perform novel behaviors. An alternative
function approximation approach is introduced for computing novelty rewards based on auto-encoders.
The chapter concludes with experimental results on benchmark tasks that suggest the viability of this
novelty-guided exploration approach as an alternative to classic novelty search methods.

In the subsequent contribution, presented in Chapter 7, domain knowledge is incorporated in the
design of modular policy networks. Specifically, only a part of the policy network is adapted for the
task, while other parts are hand-designed using domain knowledge. To achieve this, an architecture
from computational biology is revisited to solve a robotic task. Finally, the chapter concludes with
experiments that demonstrate how this method reduces the sample complexity by a factor of ten.
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CHAPTER 6

Guiding Reinforcement Learning via Encoded
Behaviors

In part I of this thesis, we focused on structure prediction tasks such as sequence memorization, named
entity recognition and sequential decision-making. We demonstrated that ESNs can solve these tasks
without having to fully train the networks since they acted as random context encoders.

In this part of the thesis, we turn our attention to challenges concerning Deep Reinforcement
Learning (DRL). DRL has led to significant breakthroughs in several applications, including game-
playing agents, robotics, recommender systems and so on. Despite its successful applications, DRL
is highly challenging due to several reasons. Many of the sequential decision-making tasks heavily
depend on sparse reward signals, using which it is harder to assign credits to a long sequence of
actions. Additionally, due to this sparse feedback, which is available only in the goal states, models
often need to engage in extensive exploration. In other words, learning with RL in such demanding
exploration problems often exhibit high sample complexity.

This chapter focuses on addressing this research question RQ2 which pertains to improving
exploration and sample complexity in RL. To this end, we consider Novelty Search (NS), a class
of methods to encourage exploration. Even without exploiting any environment rewards, they are
capable of learning skills that yield competitive in several tasks. However, these methods rely on
neighborhood models that store behaviors in an archive set to assign novelty scores to policies. Hence,
they do not scale and generalize to complex tasks requiring too many policy evaluations. Addressing
these challenges, we propose a function approximation method that learns sparse representations of
agent behaviors using auto-encoders.

Building on the simple intuition that novel behaviors tend to produce large reconstruction errors;
we propose two variants of auto-encoders. First, in the initial work [69], a multi-layer perceptron that
encodes the agent behavior into an encoded vector and later this latent vector is decoded back to the
original behavior. It is to be noted that agent behaviors are not of fixed length and generally considered
as sequences. For instance, the behavior of an agent which is trying to walk can be characterized as a
trajectory of its path along a 2D or 3D world. Consequently, a sequence-to-sequence auto-encoder
was proposed to handle variable length sequences in [70].

In summary, this chapter presents a scalable alternative to Novelty Search (NS) methods that are
based on deep neural networks, along with experimental results which highlight that the the proposed
approach works better than classic NS methods.

47



Chapter 6 Guiding Reinforcement Learning via Encoded Behaviors

The chapter is based on the following publications [69, 70]:

1. R. Ramamurthy, R. Sifa, M. Lübbering and C. Bauckhage, “Novelty-Guided Reinforcement
Learning via Encoded Behaviors”, Proceedings of International Joint Conference on Neural
Networks, 2020, url: https://doi.org/10.1109/IJCNN48605.2020.9206982

2. R. Ramamurthy, R. Sifa, M. Lübbering and C. Bauckhage, “Guided Reinforcement Learning via
Sequence Learning”, Proceedings of International Conference on Artificial Neural Networks,
2020, url: https://doi.org/10.1007/978-3-030-61616-8_27

The original idea of leveraging auto-encoders as novelty detectors in the context of NS was proposed
by Rajkumar Ramamurthy. Rajkumar Ramamurthy implemented the code entirely and performed the
experiments. The resulting paper was also written fully by Rajkumar, which was later revised by all
coauthors. All the authors actively participated in the discussion of the entire work.

The rest of the chapter is organized as follows: First, a brief introduction is presented in Section 6.1,
followed by a short overview of related work. Section 6.2 presents motivating experiments which
highlight the power of NS methods. A short preliminary section is discussed in Section 6.3. Our
approach of using AEs for novelty-guided RL is presented in Section 6.4. Finally, experimental results
of the proposed approach against classic NS methods are presented in Section 6.5.

6.1 Motivation

Despite the successful application of Reinforcement Learning (RL) in various domains [58, 145,
159–162], RL encounters several challenges that hinder its practical implementation in real-world
systems.

Firstly, the learning process heavily relies on sparse reward signals, which are only available when
agents reach the desired goal state. Particularly in tasks with long time horizons, effectively propagating
reward signals to past actions becomes a significant challenge of temporal credit assignment and
demands a large number of roll-outs to develop an appropriate policy. To tackle this challenge,
numerous approaches have been proposed. These include the utilization of shaping rewards [163]
that offer additional reward signals, employing curriculum learning techniques [164], and employing
temporal difference methods that extend bootstrapping through the use of multi-step returns [165,
166].

Secondly, for many real-world problems, the design of reward functions presents a significant chal-
lenge and is susceptible to various concerns [167]. These concerns include: (i) reward hacking, where
agents exploit loopholes in the reward function to maximize rewards without actually accomplishing
the intended task. For instance, in the context of a bicycle riding system [168], the agent learned to
ride in circles around its starting position because the reward function rewarded progress towards
the goal without penalizing failure to reach the actual goal position; (ii) negative side effects, where
the pursuit of the task inadvertently causes undesired consequences, such as a robot knocking over a
vase while performing a task; (iii) safe exploration, which ensures that agents do not take exploratory
actions with harmful consequences; and (iv) deceptiveness, where reward functions can be misleading.
For example, in a grid environment, an agent learning to navigate with a reward function that rewards
positions close to the goal may get trapped by deceptive walls and fail to reach the actual target.
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6.1 Motivation

To address these challenges, various methods have been proposed. Inverse reinforcement learning
approaches [169, 170] infer reward functions directly from expert demonstrations while simultaneously
learning a policy to solve the given task. Alternatively, approaches involving human interaction [171,
172] rely on obtaining preferences about policies from human trainers to learn the desired optimal
behavior.

Third, when agents interact with RL environments, they face the challenge of balancing exploration
and exploitation. If the agent exclusively chooses actions based on their high estimated value, it
may miss out on discovering alternative actions that could lead to better future rewards. In many
RL solutions, exploration is often implemented through random strategies such as epsilon-greedy
methods or policies based on Gaussian or Boltzmann distributions. Although recent studies have
explored techniques like count-based exploration [173] and intrinsic curiosity [174], these methods
either require exhaustive enumeration of state-action spaces or the learning of complex state-transition
models, making them impractical for tasks with high-dimensional spaces.

Alternatively, exploration in the parameter space of deep neural networks can be achieved using
black-box evolutionary algorithms, such as Evolution Strategies (ES) [148, 175]. ES has shown faster
training times and better scalability than traditional RL algorithms. However, deceptive reward signals
and sparse rewards still contribute to longer training times in ES, emphasizing the need for more
targeted exploration methods rather than relying solely on random exploration.

This work falls within the category of methods known as Novelty Search (NS) [176, 177], which
are particularly effective for promoting directed exploration in problems characterized by sparsity
or deceptiveness. The central concept behind NS is to incorporate a domain-specific behavioral
characteristic (BC) that captures an agent’s behavior, and then encourage the agent to exhibit different
and novel behaviors compared to its previous actions. For example, [178] chose BC as the "final
position of the agent" while [177] utilize the "distance traveled by the agent" in a bipedal locomotion
task, demonstrating that optimizing the novelty of these BCs is more effective than solely optimizing
the standard reward objective. In general, BCs can be defined by domain experts, leveraging their
expertise in designing tasks. Our approach is based on the method [178], which integrates a novelty
objective into the standard reward objective, leading to improved exploration in various benchmark
tasks. However, this approach has two significant drawbacks: (i) Typically, a fixed-size archive set
stores observed policies and their corresponding behaviors. Computing the novelty of a given policy
involves retrieving its nearest neighbors from this archive set, and a simple metric is then used to
assign novelty scores based on the distances to these neighbors. As complex tasks require evaluating
a large number of policies, the computational burden of storing and finding nearest neighbors in
such a large archive set becomes a bottleneck. (ii) BCs are often considered in terms of fixed-length
sequences, which need to be more robust to handle temporal variations effectively.

This work addresses the scalability and fixed-length sequence limitations associated with NS
methods. Our approach involves utilizing a function approximation technique and employing a
sequential auto-encoder to learn representations of agent behaviors. Instead of storing behaviors in an
archive set, we encode them into fixed-length representations. To achieve this, we propose two variants.
First, a straightforward auto-encoder is implemented using a multi-layer perceptron, which operates on
fixed-length behavioral characteristics (BCs). Second, a sequential auto-encoder based on Recurrent
Neural Network (RNN), which takes into account of sequential information and learns encodings of
variable-length BCs by leveraging sequential dependencies. In both cases, the reconstruction errors
can be utilized as novelty bonuses for policies. The underlying concept is that novel behaviors tend to
produce more significant errors than previously observed behaviors. By assigning novelty scores to

49



Chapter 6 Guiding Reinforcement Learning via Encoded Behaviors

policies based on their reconstruction error, we can encourage robust exploration towards less-explored
areas of the behavioral space. Importantly, we simultaneously learn this model alongside the policy
learning process fully online, without the need for a storage buffer or an archive set.

In summary, the main contribution of this work is a simple, scalable and efficient exploration
method using novelty bonuses for policies, along with a detailed experimental evaluation against
classic novelty search and policy gradient methods.

Related Work: Exploration is an actively studied area in reinforcement learning. Several methods
have been proposed to promote directed exploration in RL; The general theme of most approaches is
to encourage agents to visit states that are seldom visited. Early work [179] in this regard proposed
to learn a curiosity model which predicts future events using a history of interactions with the
environment. The arising prediction error is then seen as an intrinsic reward that drives toward
creative solutions. Methods [173, 180] that assign novelty scores based on visitation counts either
on raw states or encoded states were also proposed. On the other hand, approaches that maximize
the information-theoretic objectives [181, 182] to learn exploration strategy by encouraging diversity.
Methods that are most related to our approach are (1) convolutional auto-encoders [183] to encode the
given observation to hash codes upon which count-based exploration rewards are generated (2) models
[174, 184] that learn one-step state dynamics from previous states and actions; and use prediction
error as exploration rewards. While most previous work considered generating exploration bonuses at
each step using input observation space, our work, in contrast, focuses on encoding episodic agent
behaviors in NS methods.

6.2 Motivating Experiments

We consider simple grid environments in which the task is to navigate to a desired goal position. In
particular, we chose to use MiniGrid environments [185] which offers multi-room settings. Rooms
are separated by a door which must be opened first to gain access to the next room and the target is
placed at the last room. The agent is provided with a partially observable symbolic input grid of size
7 × 7 × 3 and available actions are turn left, turn right, move forward, move backward, pick-up/drop
objects, toggle doors etc. Rewards are sparse and given only upon reaching the goal, with a penalty
for the number of steps taken. Despite its simplicity, this setting poses a hard exploration problem
with sparse goal-only rewards, which is difficult to learn with RL alone.

To illustrate the benefits of novelty-guided methods, we consider three variants consisting of two,
three, and four rooms demanding increasingly higher levels of exploration (see Fig 6.1(a)). To solve
these tasks, we consider Evolution Strategies (ES) using only sparse rewards, a classic novelty-guided
ES which computes novelty provided by 𝑘-nearest neighbors, and, finally, the proposed novelty-guided
ES using novelty bonuses provided by a behavior auto-encoder.

Fig 6.1(b) shows the learning progress for the simplest variant with just two rooms. All three
methods can solve this task with ease. When increasing the difficulty to three rooms in Fig 6.1(c), we
observe the benefits of novelty-guided methods, which accelerates learning and, at the same time, ES
guided by the behavior model, performs slightly better. Next, we consider the hardest variant with
four rooms. As seen in Fig 6.1(d), ES, which takes only the environment rewards, completely fails
to discover viable policies; due to the sparse returns, there are no gradients for it to follow most of
the time. While both novelty-guided methods can solve this task, novelty gradients obtained through
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(a) MiniGrid with four rooms
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(b) Learning progress with two rooms
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(c) Learning progress with three rooms
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(d) Learning progress with four rooms

Figure 6.1: Motivating Experiments: Figure shows learning curves of classic ES and ES with novelty rewards
such as Guided KNN and Guided AE (our approach) on different levels of MiniGrid environment. All of the
methods solve the simplest variant with two rooms. However, With increased difficulty, we see that guided
methods accelerate learning. With the hardest variant, ES fails to solve the task whereas guided methods can
solve this task due to additional rewards

behavior models achieve higher returns than classic novelty search, which can only remember limited
number of policies. We further investigate their performances in Sec 6.5 concerning continuous
control tasks.

6.3 Preliminaries

6.3.1 Markov Decision Process

We consider a standard reinforcement learning setting where an agent interacts with an environment.
At each time step 𝑡, the agent receives an observation 𝑜𝑡 about the state 𝑠𝑡 of the environment,
performs an action 𝑎𝑡 , and receives a scalar reward 𝑟𝑡 . In fully observable environments, observations
and states coincide, i.e, 𝑠𝑡 = 𝑜𝑡 . In partially observable environments, however, a history 𝑠𝑡 =

(𝑜𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑜𝑡−1, 𝑎𝑡−1 . . . ) of observations and agent’s interactions may be required to decide for the
next action.

Typically, the environment is stochastic and formulated as a Markov Decision Process (MDP)
defined by a tuple: 〈𝑺, 𝑨,𝑻, 𝑹〉 where 𝑺 is a set of states, 𝑨 is a set of actions an agent can perform, 𝑹
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is the reward function, and 𝑻 is the transition probability. Upon an action 𝑎𝑡 , the environment moves to
a new state 𝑠𝑡+1 according to the transition function 𝑻 (𝑠𝑡+1, 𝑠𝑡 , 𝑎𝑡 ) and responds with a scalar reward
𝑟𝑡 = 𝑹(𝑠𝑡+1, 𝑠𝑡 , 𝑎𝑡 ). The agent’s behavior is characterized by a policy function 𝜋(𝑠𝑡 , 𝑎𝑡 ), which maps
each state-action pair (𝑠𝑡 , 𝑎𝑡 ) to the probability of selecting the action in the particular state. In RL, the
goal of the agent is to maximize the return discounted by _ ∈ (0, 1) over a period of time 𝑇 given as

𝐺𝑇 =

𝑇∑︁
𝑡=1

_
𝑡−1
𝑟𝑡 . (6.1)

The goal is to learn a policy function that maps states to actions to maximize the expected cumulative
reward. For high-dimensional state and action spaces, tabulating the probabilities for each state-action
pair is not feasible. Therefore, the policy 𝜋 is often represented as a deep neural network 𝜋\ with
weights \. The goal is to determine optimal weights \∗ that maximize the expected cumulative reward

\
∗
= argmax

\

E𝜋\

[
𝐺𝑇

]
. (6.2)

Optimization is typically achieved via stochastic gradient ascent where the gradient ∇\E𝜋\

[
𝐺𝑇

]
is

obtained using sampled sequences (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 . . . ) of interactions with the environment and can
be computed via policy gradient methods [148, 162, 186] depending on whether a stochastic or a
deterministic policy is to be found.

6.3.2 Evolution Strategies (ES)

Evolution Strategies (ES) [175, 187] are heuristic search procedures inspired by evolution. In each
iteration, a population of perturbed parameters is generated and an objective function is evaluated.
Using a process akin to natural selection, parameter vectors are combined to create the next population
and this process continues until the population reaches a satisfactory performance. There exist several
flavors of ES w.r.t. the representation of parameters or the selection process. The version we use
here belongs to the class of Natural Evolution Strategies (NES). Let 𝑓 be the objective function
acting upon parameters 𝜽 . In a reinforcement learning setting, the stochastic return is obtained from
the environment. NES algorithms maintain the population as a distribution 𝑝𝜓 over parameters 𝜽.
Typically, the distribution 𝑝𝜓 corresponds to a multivariate Gaussian centered around the current
parameter with co-variance 𝜎2

𝐼. Given this, NES seeks to maximize the average objective of the
population E

𝜖∼N(0,𝜎2
𝐼 ) [𝐹 (𝜽 + 𝝐)] by optimizing the parameters 𝜽 . Generally, NES also updates the

co-variance of the population distribution, but as in other RL approaches, we use a static co-variance
𝜎 by fixing it throughout the training.

To estimate the gradient of the expected cumulative reward in iteration 𝑘 , 𝑛 perturbations are sampled
from the distribution by adding Gaussian noise to the current parameter vector 𝜽 (i.e., 𝜽𝑘 = 𝜽𝑘 + 𝜎𝝐𝑖
where 𝝐𝑖 ∼ N(0, 𝐼)). The gradient is then approximated by a sum of sampled perturbations weighted
by their sum

∇𝜽𝑘E𝜖∼N(0,𝐼 ) [𝐹 (𝜽𝑘 + 𝜎𝜖)] ≈
1
𝑛𝜎

𝑛∑︁
𝑖=1

𝐹 (𝜽 𝑖𝑘)𝜖𝑖 (6.3)
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Typically, the objective function evaluations 𝐹 (𝜽 𝒊𝒌 ) are subject to rank-normalization before
computing the gradients to ensure that the reward scales between different tasks do not affect the
optimization process.

6.3.3 Novelty Search with Nearest Neighbors

One of the reasons why RL can not cope well with sparse/deceptive problems is that the reward
function usually needs to take into account of intermediate stepping stones that would allow for
learning target skills. For instance, in the grid navigation tasks in Sec 6.2, rewards do not encourage
the agent to learn to start navigating the room without getting stuck in walls. Hence, solving such tasks
purely with goal-only rewards raises considerable challenges and demands numerous interactions with
the environment. Novelty Search (NS), inspired by nature’s tendency to evolve increasingly complex
behaviors, tackles this by using novelty as a stepping-stone proxy. In other words, NS aims to drive the
search process towards policies with higher novelty rather than ones with higher cumulative rewards.

In order to differentiate behaviors, each policy 𝜋𝜽 (parameterized by a DNN with weights 𝜽) is
assigned a domain-dependent Behavior Characteristic (BC) denoted as 𝑏(𝜋𝜽). For instance, in the
case of grid navigation or bi-pedal walking domains, it simply could be the final two-dimensional
position of the agent at the end of an episode. However, considering only the final position may not be
sufficient to distinguish different behaviors terminating at the same position; therefore, it is necessary
to capture the trajectory of agent positions concatenated as a sequence to form BC [178].

In the classical sense, a set of fixed size typically known as archive set 𝑨 is maintained to store
observed policies and their behaviors. Given this set, we desire a metric 𝑁 (𝜽 , 𝑨) that allows us to
measure the novelty of a given parameterized policy 𝜋𝜽 . Typically, it is defined as the average distance
to its nearest neighbors 𝑲. The higher the distance to its neighbors, the higher the novelty and vice
versa.

𝑁 (𝜽 , 𝐴) = 1
|𝑲 |

∑︁
𝑖∈𝑲
‖𝑏(𝜋𝜽) − 𝑏(𝑖)‖

2 (6.4)

∇𝜽𝑘E𝜖∼N(0,𝐼 ) [𝑁 (𝜽𝑘 + 𝜎𝜖)] ≈
1
𝑛𝜎

𝑛∑︁
𝑖=1

𝑁 (𝜽 𝑖𝑘 , 𝑨)𝜖𝑖 (6.5)

We can then resort to the ES framework from Sec 6.3.2 to estimate the novelty gradient concerning
current policy parameters 𝜽𝑘 and take a step towards parameters that produce novel behaviors. Initially,
this search scheme may start with idle behaviors or ones that fail immediately. As the optimization
progresses, these behaviors will become less novel paving the way for “stepping stones” to be
discovered such as behaviors that walk for a few time steps. Further along the optimization, behaviors
of increasing complexity are identified, and, eventually, agents learning to walk far or to navigate the
grid will be discovered.

6.3.4 Combining with RL

Novelty Search can be incorporated in both settings; in sparse/deceptive settings where RL is not
just enough (as discussed in MiniGrid experiments) and in general to speed up RL by promoting
exploration even with dense rewards. In either case, NS and RL objectives can be combined [178] as
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Chapter 6 Guiding Reinforcement Learning via Encoded Behaviors

their weighted combination and the update rule is given as follows:

𝜽𝒌+1 = 𝜽𝒌 + 𝛼
1
𝑛𝜎

𝑛∑︁
𝑖=1

𝑤𝐹 (𝜽 𝑖𝑘)𝜖𝑖 + (1 − 𝑤)𝑁 (𝜽
𝑖
𝑘 , 𝑨)𝜖𝑖 (6.6)

where 𝑤 is the importance given to the reward objective, referred as “reward pressure”. By following
gradients to this objective function, policies that are both novel and achieve higher rewards can be
searched. Further 𝑤 can be adapted based on learning progress. Initially, 𝑤 is set to 1.0 to purely
pursue environment reward signals. However, if the performance is not improved in a few iterations
𝑘𝑚𝑎𝑥 , then 𝑤 is decreased by 𝛿𝑤 . At this point, gradients slightly start to follow novelty until the
performance has improved, then 𝑤 is incremented by 𝛿𝑤 .

6.4 Novelty Bonuses via Encoded Behaviors

Classic novelty search has several drawbacks. First, the policies are stored in an archive set; therefore,
to compute the novelty of a policy, its nearest neighbors must be retrieved. Since complex tasks
demand a large dimensional behavior characteristic and evaluate many policies, finding the nearest
neighbors becomes a bottleneck computationally. Second, it may not generalize well to unseen
behaviors as only a limited number of policies can be stored. Therefore, our aim is to come up with a
general mechanism for computing the novelty of a given policy rather than relying on neighborhood
methods to store and retrieve closest agent behaviors.

To that end, we propose to learn representations of agent behaviors such that the prediction error in
behavior space provides a good novelty bonus. These representations can be learned using a deep
neural network consisting of two components: the first component maps the behavior into an encoded
vector and the second component takes the encoded vector as inputs and reconstructs the behavior
back. As novel behaviors are unseen inputs to this model, the arising prediction error can be seen as a
measure of novelty. In the same way, frequently occurring behaviors tend to have lesser prediction
errors and will be assigned a lower novelty score. Aligning with other novelty-search works, we also
consider an episodic setting of reinforcement learning (i.e.) novelty bonuses are assigned to a policy
at the end of an episode. In addition to novelty rewards, agents also receive the cumulative reward
from the environment.

6.4.1 Training

Next, we describe the model of the sequential auto-encoder to learn behavior representations. The
model consists of two components: the encoder network 𝐸 with weights 𝝓𝒆 and the decoder network
𝐷 with weights 𝝓𝒅. The input to the model is a behavior sequence 𝒃 = (𝒃1, 𝒃2, . . . 𝒃𝑻 ) observed in an
episode. The encoder network processes and encodes this sequence into a fixed-length context vector,
which acts as a representation of the behavior sequence. Given this representation as input, the decoder
network reconstructs the whole sequence 𝒃

′

= (𝒃
′

1, 𝒃
′

2, . . . 𝒃
′

𝑻 ). The two components 𝐸 and 𝐷 are
jointly trained to minimize the reconstruction loss 𝐿 between the actual and the predicted sequences:
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𝐿 (𝒃, 𝒃′) = 1
𝑇

𝑇∑︁
𝑖=1
‖𝒃𝒊 − 𝒃

′

𝒊 ‖
2 (6.7)

We propose two auto-encoder variants which differ in the capability to process sequential information
namely a namely a MLP-based auto-encoder and a sequential auto-encoder based on recurrent neural
networks.

First, MLP AE consists of an encoder that projects the given behavior sequence into an embedding,
which is then given to another MLP decoder to reconstruct it. Since MLPs cannot handle variable-
length sequences, inputs to these are fixed-length padded BC sequences subsampled at specific
intervals. However, since BC might contain sequential information which might be crucial for
detecting novel behaviors, we propose to use Seq2Seq AE based on recent advancements in natural
language processing [38] and computer vision [188]. Seq2Seq AE contains an RNN encoder and an
RNN decoder. In order to produce behavior representation, RNN encoder first processes the given
BC sequence one element at a time and once the final element has been processed, the final hidden
state of the RNN acts as the representation. Given this representation, the RNN decoder generates the
sequence one at a time, in reverse order to keep the optimization tractable so that the network learns
easily to predict low-order correlations.

6.4.2 Sparse Encoding:

Further, in order to encode diverse behaviors, we consider k-sparse auto-encoders [189], a simple
variant of auto-encoders to enforce sparse representations. During the feed-forward phase, the hidden
activations of the encoder are sorted and only the top 𝑘 hidden units are retained while the rest of the
units are set to zero. By back-propagating only through these active hidden units, the decoder learns
to reconstruct the given input by using very few units, thereby also acting as a regularizer. To compare
sparsity in networks with different number of hidden units, we define the sparsity level 𝑠𝑝𝑎𝑟𝑠𝑒 as the
ratio of hidden units which are retained for each sample of input. We summarize the training of sparse
auto-encoders in the Algorithm 2.

6.4.3 Novelty Scores

Given a policy 𝜋𝜽 and its behavior characterized by 𝑏(𝜋𝜽) obtained by rolling out an episode with 𝜋𝜽 .
Then the novelty bonus is obtained by passing the behavior sequence to encoder-decoder networks
to obtain the reconstruction error 𝑁 (𝜽) = 𝐿 (𝑏(𝜋𝜽), 𝑏

′(𝜋𝜽)). In summary, our agent is composed of
two sub-systems: a behavior auto-encoder model that outputs a novelty bonus for the given policy
and a policy network that outputs a sequence of actions to maximize the joint objective function of
cumulative reward and novelty. We summarize the entire training approach in the algorithm presented
in Alg 3.

6.5 Experimental Results

We test our methods on the Mujoco continuous control tasks, which provide a standard set of benchmark
tasks. In particular, we consider 4 tasks: Inverted Pendulum, Inverted Double Pendulum, Half-Cheetah
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Algorithm 2 Fit Sparse Behavior Auto-encoders
Input: Learning rate 𝛽, epochs 𝐸 , batch size 𝑚, behavior auto-encoder parameters 𝝓𝒆, 𝝓𝒅, behavior

buffer 𝐴, Sparsity level 𝑠𝑝𝑎𝑟𝑠𝑒
for 𝑖 = 0 to 𝐸 do

Generate 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 of size 𝑚 from the behavior buffer
for 𝒃 in 𝑏𝑎𝑡𝑐ℎ𝑒𝑠 do

Compute encoded vectors 𝒉 by forwarding 𝒃 to the encoder
Find indices of largest activations of 𝒉 according to specified sparsity level 𝒊𝒏𝒅 =

𝑡𝑜𝑝𝑠𝑝𝑎𝑟𝑠𝑒 (𝒉)
Set activation of other units to zero 𝒉(𝒊𝒏𝒅𝑐) = 0
Compute decoded values 𝒃

′

Compute the reconstruction error 𝐿 (𝒃, 𝒃
′

) using Eq. 6.7
Update 𝝓𝒆 and 𝝓𝒅 by taking a gradient descent at the rate 𝛽

end for
end for

Algorithm 3 Novelty-Guided RL via Encoded Behaviors
Input: Learning rate 𝛼, initial reward pressure 𝑤, iterations 𝐾 , ES parameters 𝑛 and 𝜎
Initialize: Policy parameters 𝜽 , behavior auto-encoder parameters 𝝓𝒆, 𝝓𝒅

for 𝑘 = 0 to 𝐾 do
for 𝑖 = 1 to 𝑛 do

Sample 𝜖𝑖 ∼ N(0, 𝜎
2
𝐼)

Compute 𝜽 𝑖𝑘 = 𝜽 𝑖𝑘 + 𝜎𝝐𝑖
Perform a roll-out with policy 𝜋𝜽𝑖𝑘 and obtain behaviors 𝑏(𝜽 𝑖𝑘)
Compute novelty bonus 𝑁 (𝜽 𝑖𝑘) using behavior auto-encoder’s reconstruction error
Compute cumulative reward 𝐹 (𝜽 𝑖𝑘)

end for
Update policy network: 𝜽𝒌+1 = 𝜽𝒌 + 𝛼 1

𝑛𝜎

∑𝑛
𝑖=1 𝑤𝐹 (𝜽

𝑖
𝑘)𝜖𝑖 + (1 − 𝑤)𝑁 (𝜽

𝑖
𝑘)𝜖𝑖

Update behavior auto-encoder: Fit sampled behaviors 𝑏(𝜋𝜽𝑖𝑘 ), 𝑖 = 1 . . . 𝑛 to minimize Eq:6.7
Adapt the reward pressure 𝑤 based on learning progress as discussed in Sec 6.3.4

end for
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and Hopper. For all our experiments, the policy network is a multi-layer perceptron with two hidden
layers containing 64 tanh neutrons each. The input to the network is the observation vector from the
environment and the output is an action vector of motor commands. ES is trained with a learning
rate 𝛼 = 0.01 and a noise standard deviation of 𝜎 = 0.1. For inverted pendulum, we use 𝜎 = 0.01 as
its solutions are sensitive to perturbations. To keep the experiments tractable, we limit the number
of samples drawn from the population distribution in each generation to 𝑛 = 50. For the baseline
novelty method using nearest neighbors, we fix 𝑘 = 10 and use an archive set of size 1000 which is
implemented as a FIFO so that only the recent behaviors are kept. ES implementation is based on
our open-sourced black-box pytorch optimization framework [190], which allows the integration of
multiple objective functions (reward and novelty).

Behavior Characteristic As discussed in Sec 6.3.3, NS methods require a domain-specific behavior
characteristic (BC). For the pendulum tasks, BC is chosen as a trajectory of cart and pole positions.
And for other locomotive tasks, it is chosen to be the 2-D trajectory of agent positions relative to the
start position when the episode begins. Since agents might learn behaviors that move in backward
positions, it is necessary to align this BC concerning the task of moving forward. For this reason, we
clip the behavior space such that all behaviors with negative offsets (with respect to the initial position)
collapse to zero offsets.

Auto-Encoder Setup The MLP-based auto-encoder is composed of feed-forward multi-layer
perceptrons whose configurations and their sparsity levels are chosen based on a formal grid search. It
is trained with Adam optimizer with a learning rate of 𝛽 = 0.001 and batch size of 𝑚 = 100. The
autoencoder consists of encoder and decoder RNNs with Gated Recurrent Units (GRUs)[97] consisting
of several layers. Additionally, the context vector from the encoder is subject to sparsity constraints.
The encoder and decoder networks are jointly trained using Adam optimizer with a batch size of
100. For stable gradient updates, a behavior buffer of size 1000 is used. The behavior sequences are
sampled based on the task to have the maximum sequence length of 50, and padding is not used so that
they are variable-length sequences. Other hyper-parameters such as learning rate, number of GRU
units, and layers are obtained through formal search.

Novelty Search First, we evaluate our method on a pure novelty search scenario by setting the
reward pressure 𝑤 to 0 and compare against the classic method using k-nearest neighbors. Fig 6.2
shows the learning curves of agents trained using only novelty gradients averaged over several runs.
The first main result is that our method of novelty-guided by plain auto-encoders outperforms classic
novelty methods in the tasks of Half-Cheetah, Hopper and Inverted Pendulum. In the task of Inverted
Double Pendulum, classic novelty search performed slightly better than plain autoencoders, yet both
methods cannot solve the task while pursuing the novelty alone. However, sequential auto-encoders
show considerable gains over plain auto-encoders and classic novelty search methods indicating that
sequential information is quite crucial to these tasks.

Novelty-Guided RL Although novelty search methods are able to teach the necessary tasks and skills
without having access to reward functions, they still ignore some other aspects of reward functions,
such as energy efficiency, performance, etc. To that end, they must be combined with reward gradients
by adapting reward pressure accordingly based on learning progress as discussed in Sec 6.3.4. To
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(c) Inverted Double Pendulum
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Figure 6.2: Novelty only learning curves: Average learning curves of agents that are trained using only novelty
gradients

benchmark our methods, we consider the policy gradient method, namely Evolution Strategies (ES),
which considers only reward signals. For the adaptive methods that combine with RL, we initially set
the reward pressure to 𝑤 = 1.0. The maximum stagnation steps is 𝑘𝑚𝑎𝑥 = 50 and 𝛿𝑤 = 0.05. Fig
6.3 shows the learning curves averaged over several runs. The main results in these experiments are
summarized as (i) novelty guided methods which use both novelty and reward signals perform better
than ES and speed up learning in almost tasks (ii) Novelty guided by behavior models outperformed
classic novelty search in three out of four tasks and performed equally well in the other tasks. (iii)
The benefit of novelty-guided methods is observed in difficult tasks such as Half-Cheetah, Hopper
etc. Also, it can be seen that scores of pure novelty search (Fig 6.2 (a), (d)) are higher than that
of novelty-guided methods (Fig 6.3 (a), (d)) in some tasks. This could be because novelty-guided
methods also use reward signals, which penalize agents for the cost of motor actions, which might
hinder learning, whereas pure novelty search ignores these aspects, thereby not impeding the learning
process. (iv) benefits of using sequential autoencoders are seen in three out of four tasks indicating
the learning of sequential dependencies indeed help to encourage exploration.
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(b) Inverted Pendulum

0 250 500 750 1000 1250 1500 1750 2000
Steps

0

2000

4000

6000

8000

Ep
iso

di
c 

To
ta

l R
ew

ar
d

Guided-KNN
RL
Guided-AE
Guided-Seq-AE

(c) Inverted Double Pendulum
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Figure 6.3: Novelty-guided learning curves: Average learning curves of agents that are trained using adaptive
novelty-guided methods

6.5.1 Sparsity Levels

To understand the effect of enforced sparsity constraint, we considered plain behavior auto-encoders
with different hidden layer configurations and sparsity levels of 0.25, 0.5 and 1.0. Note that the
sparsity level of 1.0 corresponds to the classic auto-encoder in which all the hidden units are used to
reconstruct the given input. For this analysis, we consider the final performance of these variants over
several runs. Fig 6.4 captures the effects of sparsity when using only the novelty gradients, with the
help of a box plot showing the distribution of final performance. As observed, in most settings, the
sparse encodings with levels of 0.25 and 0.5 perform better than the dense encoding of 1.0. Next,
we performed the same analysis by considering the final performance when both novelty scores and
rewards were used for learning. The plots in Fig 6.5 also suggest that the sparse encodings performed
better in most cases. In a nutshell, these results indicate that sparse representations are preferred over
dense; however, this is another hyper-parameter that has to be tuned for the given task at hand.
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Figure 6.4: Sparsity in NS methods: Effects of sparsity levels in pure novelty search methods. It is evident that
sparse representations perform better than dense encodings in most settings.

6.5.2 Ablation analysis

Effect of Sequence Length As discussed earlier, the chosen BC is a sequence of 2D agent positions
at specific intervals. For instance, in the task of hopper, the sequence length is fixed to be 50. However,
we would like to vary the sequence length and compare its influence on the final performance for both
novelty-guided methods. We chose the Hopper task as a testbed for this analysis as it is one of the
difficult tasks. Fig 6.6 (a), (b) shows the box plot showing the performance using different sequence
lengths. As seen in Fig 6.6 (a), the performance of neighborhood methods is affected by the sequence
length; more importantly, it does not scale well to longer sequence lengths. As seen in Fig 6.6 (b), for
auto-encoders, the increased sequence length yields better results than shorter ones which show the
scalability of function approximators using autoencoders.

Effect of archive size The neighborhood models rely on a fixed-sized archive set, using which the
novelty scores are computed. Similarly, a fixed-sized behavior buffer is used to sample behaviors
to fit the model for autoencoders. To understand the influence of the size of the archive set and the
behavior buffer, we analyzed the Hopper task again. Fig 6.6 (c), (d) shows the box plot showing
the performance using different sizes for the neighborhood models and autoencoders, respectively.
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Figure 6.5: Sparsity in Novelty-guided methods: Effects of sparsity levels in novelty guided methods. It is
evident that sparse representations perform better than dense encodings in most settings.

Clearly, the size influences the performance of neighborhood models, as seen in 6.6 (c). The larger
the size, the better the performance indicating that accurate novelty scores can be computed using a
larger-sized archive set. On the other hand, as it is observed in 6.6 (d), the size of the buffer does not
influence the performance. In fact, even with a smaller buffer, the results are still competent. This
shows that the autoencoders rely on encoding the behaviors in the network weights and rely less on
stored behaviors in the buffer; therefore, it can scale better compared to neighborhood models. With
further investigation and analysis, the behavior buffer can also be dropped entirely while the learning
can be performed online using the sampled behaviors at each iteration. Regarding computation costs,
the cost of computing novelty score is independent of buffer size 𝐾 when using auto-encoders. In
contrast, for the classic novelty search, it is O(𝐾), which we have avoided with the auto-encoder
approach. Yet, this scalability and generalizability come at the cost of additional training time for
auto-encoders.
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Figure 6.6: Ablation analysis: The plots (a),(b) show the effect of sequence length on the performance for
KNN and AE methods. Similarly, plots (c),(d) show the effect of archive size on the performance of KNN and
AE methods. It is observed that AE scales well to longer sequences and it requires only a small archive set

6.6 Conclusion

In this work, we aimed to overcome the limitations of NS methods in RL, which often suffer from
scalability and generalizability issues. Our proposed approach, based on sparse behavior auto-encoders,
offers a simple and scalable solution by assigning exploration bonuses to novel policies. Experimental
results from continuous control tasks indicate that our approach presents a promising alternative to
traditional NS methods that rely on nearest neighbors among known policies.

Our work opens up several avenues for future research. Firstly, employing BCs instead of reward
functions could be a viable option in RL settings. Defining BCs is relatively straightforward compared
to designing reward functions. However, the modeling and learning of appropriate BCs remain largely
unexplored. Exploring the concept of informed reinforcement, which involves leveraging domain
knowledge in the learning process, appears promising in this regard.

Secondly, the field of learning representations for sequences is actively studied in various domains
of machine learning, such as natural language processing and speech recognition. Our work takes an
initial step towards applying such methods in the context of NS approaches. We hope our findings
inspire further research in learning efficient behavior representations.
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CHAPTER 7

Designing Policy Architecture with Domain
Knowledge

In the broader context of this thesis, this chapter focuses on RQ2, concerning improving and exploration
in RL. As discussed in Chapter 6, DRL has high complexity, especially in hard exploration problems.
The previous chapter proposed accelerating RL by augmenting with novelty rewards that encouraged
the agent to explore novel behaviors. In particular, we replaced classic novelty detectors using k-nearest
neighbors with auto-encoders, resulting in better performance and generalization.

In addition to facing challenges related to high sample complexity, RL systems often lack inter-
pretability. While deep neural networks excel at approximating value and policy networks, they tend
to lack interpretability. As a result, there has been a growing interest in developing RL methods that
offer interpretability [191, 192].

In this work, we focus on addressing these critical challenges in RL, precisely the high sample
complexity and lack of transparency. We propose using domain knowledge to enhance transparency
and construct policy networks that possess characteristics such as modularity, transparency, and
efficiency in terms of data requirements. More specifically, by leveraging domain knowledge, we
suggest decomposing the policy into components that are both learnable and non-learnable.

Intending to achieve this objective, we examine a robotic task called "reacher," wherein the goal is to
train a 2D multi-joint arm to reach an unknown target using feedback. To address this task, we employ
a computational biology-inspired model called Mean of Multiple Computations (MMC), which is
a recurrent neural network capable of generating trajectories that lead to the target. Leveraging the
dynamics of this network, we design our policy network in an informed manner to tackle the reacher
task. By dividing the policy network into learnable and non-learnable components, we reduce the
number of parameters that require RL training. The results indicate that learning such a modular
network necessitates only one-tenth of the interactions compared to fully trained end-to-end networks.

In summary, our contributions in this chapter can be outlined as follows: firstly, we introduce the
concept of using the Mean of Multiple Computations (MMCs) to design policy networks; secondly,
we expand the application of MMCs by incorporating RL to train recurrent connections; and finally,
we empirically validate the performance and sample complexity of MMC nets.

The chapter is based on the following publication [71]:

• R. Ramamurthy, C. Bauckhage, R. Sifa, J. Schücker and S. Wrobel, “Leveraging Domain Know-
ledge for Reinforcement Learning Using MMC Architectures”, Proceedings of International
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Conference on Artificial Neural Networks, 2019, url: https://doi.org/10.1007/978-3-
030-30484-3_48

The proposal of employing MMC networks to tackle the reacher task originated from the second
author. Rajkumar Ramamurthy introduced the concept of decomposing the policy network using
MMC and utilizing RL to train the parameters of MMC. The implementation of the code and execution
of the experiments were carried out by Rajkumar. The initial draft of the paper was written by
Rajkumar, which was subsequently subjected to thorough revisions by all coauthors to refine its
content and structure.

The subsequent sections of this chapter are structured as follows: In Section 7.1, we delve into the
challenges specific to RL that are pertinent to this research. Section 7.2 provides a concise overview
of the reacher task and MMC networks. The concept of decomposing policy networks using MMC
and their RL training is detailed in Section 7.3. Lastly, Section 7.4 presents the experimental results,
comparing the performance of the proposed design with fully trained policy baselines.

7.1 Motivation

Reinforcement learning (RL) faces several limitations in addition to the challenges discussed earlier in
Sections 5.1, 6.1. One major limitation is the high sample complexity involved in the training process.
Even simple tasks require millions of interactions with the environment, and this issue becomes more
pronounced for high-dimensional control tasks. To address this, modern RL approaches employ
offline learning, where state-action transitions are stored in an extensive experience replay memory.
This technique, exemplified in the work by [145] allows agents to learn from experiences and reduces
the number of interactions needed for effective learning. Moreover, frameworks such as the Arcade
Learning Environment [193], OpenAI Gym [80], and DeepMind Control Suite [194] offer high-quality
simulated environments that enable RL agents to gather interactions on a large scale.

However, in the field of robotics, relying solely on simulation-based training poses challenges when
deploying RL policies to real systems. Mismatches often arise between the simulated environment and
the robot, necessitating adaptation. Some works focus on directly transferring learned policies from
simulation to reality, but this approach is only sometimes successful due to the disparities between
the two domains. Others explore domain adaptation techniques [195, 196] which aims to bridge the
gap between simulation and reality. Additionally, specialized architectures [197, 198], have been
developed to transfer low-level features and high-level control policies effectively. These endeavors
provide frameworks that facilitate the transfer of learned behaviors from simulated environments to
real-world robotics applications.

Another limitation of current RL systems is their limited interpretability regarding decision-making.
Deep reinforcement learning employs function approximators like deep neural networks to acquire
policy functions that establish the mapping between states and actions. While this approach is
highly efficient, the resulting networks are predominantly black-boxes and cannot be employed in
safety-critical systems, such as autonomous vehicles, where decision transparency is crucial for legal
reasons. Consequently, there has been a growing interest in the development of interpretable deep
reinforcement learning methods and the formulation of human-readable policies [191, 192].

This work addresses two critical challenges in RL systems: high sample complexity and the lack
of transparency. Our approach involves incorporating expert knowledge into the models to enhance
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7.1 Motivation

transparency and create more reliable systems. Specifically, we integrate domain knowledge into the
architecture of policy networks to develop policy networks that are transparent, modular, and efficient
regarding data requirements.

To illustrate our approach, we focus on a reacher task where an agent, a 2D multi-joint arm, needs
to reach an unknown target using feedback and rewards. Initially, we revisit a model based on the
principle of the "mean of multiple computations" (MMC) [199], which has previously shown success
in modeling biological systems such as analyzing walking behaviors of six-legged insects [200] and
landmark-based navigation [201]. The MMC Net offers several appealing features. Firstly, it is a
simple recurrent neural network capable of generating geometrically accurate solutions by predicting
target-reaching trajectories. Secondly, it can be easily extended to other tasks, such as a 3D 6-DoF
arm, with minimal domain-specific knowledge. Thirdly, it comprises two components: a linear part
that can be numerically optimized based on rewards and a readily available non-linear component.
This modular design facilitates the transfer of learned policies.

Our contributions in this work are threefold: (i) we introduce the idea of MMCs for constructing
modular policy networks using expert knowledge, (ii) we enhance MMC nets by adapting recurrent
connections through reward signals and apply them to solve the reacher task, and (iii) we empirically
compare the performance and sample complexity of MMC nets against end-to-end policy networks.

Related Work Previous work on incorporating prior knowledge into RL has primarily centered on
designing reward signals that consider multiple sub-goals and intermediate rewards based on relative
progress [168, 202, 203]. These supplementary rewards, in addition to sparse environmental rewards,
accelerate the learning process. More recent research [176, 178, 204, 205] explores the integration of
hand-designed behavioral characteristics (BCs) to introduce a novelty objective alongside the existing
reward objective.

Another approach to leverage domain expertise is through learning from expert demonstrations.
Imitation Learning (IL) focuses on developing agents that replicate expert behavior, ranging from
object manipulation using video demonstrations [206, 207] to complex tasks like operating doors or
utilizing tools [208]. Alternatively, learning reward functions from human-generated demonstrations
using reward shaping and inverse reinforcement learning (IRL) has also been pursued [170]. Recent
studies [209, 210] combine transfer learning and human demonstrations, utilizing prior task knowledge
to bootstrap related tasks for adaptation. Approaches involving human interaction [171, 172] rely
on obtaining positive and negative feedback from human trainers to learn desired optimal behavior.
Another popular approach to incorporate knowledge is QS learning [211], which combines Q-learning
with expert-specified state-action similarities to update state-value estimates and has shown better
performance compared to standard temporal difference methods.

Previous work on building modular policy networks has focused on transfer learning by sharing
network layers across different tasks [212, 213]. Notably, interesting research in autonomous
systems [214] utilizes decomposed networks with perception and controller modules, demonstrating
deployability to various vehicles and environmental conditions.

In contrast to these approaches, our focus is on designing policy architectures using domain
knowledge. Specifically, we concentrate on modular networks with hand-designed components rather
than learning them end-to-end. Importantly, by designing components as MMC networks, we propose
a simple method that learns from a reduced number of interactions.
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Figure 7.1: Reacher environment: A simple three-segmented robot arm with a randomized target. The goal is
to plan a sequence of actions using feedback and rewards so that the tip of the arm touches the target.

7.2 Background

In this section, we first present a short introduction to the reacher task, followed by MMC nets that
were initially proposed in [199].

7.2.1 Reacher Task

We will provide a brief overview of the reacher task, which serves as the test bed for our methodology
In this task, we utilize a planar three-segmented robotic arm with an end effector, with the objective of
reaching a target position. The target position is randomly generated at the beginning of each episode,
and its location remains unknown to the agent throughout the task. The agent’s observation consists of
joint angles and a feedback signal, providing information about the arm’s current configuration. The
agent’s actions correspond to desired joint angles for the arm’s trajectory. The negative norm of the
distance between the end effector and the target position determines the reward. Although our setup
shares similarities with the simulation environments offered by OpenAI Gym [80] and DeepMind’s
control suite [194], there are slight differences regarding observations and actions.

7.2.2 Linear MMC Networks

Consider a simple manipulator (a robotic arm) with three joints operating in a 2D space as shown in
Figure 7.2. Orientation and length of the three segments of the arm are denoted as vectors ®𝐿1, ®𝐿2 and
®𝐿3 in a Cartesian coordinate system with the origin located at the shoulder joint. Two additional vectors
®𝐷1, ®𝐷2 connect the shoulder and the second joint and the first joint and the end effector; a vector
®𝑅 connects the shoulder and the end effector. This setting provides the following over-determined
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𝛼
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𝛾
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®𝐿 1

®𝐿 2
®𝐿3

®𝐷 1

® 𝐷
2

Figure 7.2: Robotic arm: A robotic manipulator consisting of three segments denoted as ®𝐿1, ®𝐿2 and ®𝐿3. The
relative angles at the joints are denoted as 𝛼, 𝛽, and 𝛾. The vector pointing to the end-effector (in green) is
described as ®𝑅.

system of equations

®𝐿1 + ®𝐿2 + ®𝐿3 − ®𝑅 = 0
®𝐿2 + ®𝑅 − ®𝐷2 − ®𝐷1 = 0
®𝐿1 − ®𝐿3 + ®𝐷2 − ®𝐷1 = 0

®𝐿1 + ®𝐿2 − ®𝐷1 = 0
®𝐿2 + ®𝐿3 − ®𝐷2 = 0
®𝐿3 − ®𝑅 + ®𝐷1 = 0
®𝐿1 − ®𝑅 + ®𝐷2 = 0

(7.1)

In the system of equations 7.1, each vector appears exactly four times and according to the MMC
principle, we can write every vector as a mean of the corresponding entries in the four equations. For
instance, ®𝐿1 can be computed as

®𝐿1 =
1
4
(−2®𝐿2 + 2 ®𝑅 − 2 ®𝐷2 + 2 ®𝐷1) (7.2)

Given a desired target position ®𝑅, this setting is an instance of inverse kinematics in which the
goal is to solve for the values ®𝐿1,2,3 in an iterative manner. Thus, the mean values are fed back as
input to the system for the next iteration until the system relaxes to the desired position. Note that
®𝑅 is kept constant throughout and its mean value is suppressed during the feedback. Furthermore,
self-excitations are introduced via damping factors 𝑑1, 𝑑2, 𝑑3, with the goal of suppressing oscillations.
In summary, the system represents a simple form of a recurrent neural network whose dynamics can
be written as
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Figure 7.3: MMC architecture: A sketch of MMC architecture described in this paper; it consists of components
for MMC Net sandwiched by forward and inverse transformation components. The computed joint angles are
fed back into the system until the end effector relaxes to the desired target

®𝐿1(𝑡 + 1) = 1
4 + 𝑑1

[𝑑1 ®𝐿1(𝑡) − 2®𝐿2(𝑡) + 2 ®𝑅 − 2 ®𝐷2(𝑡) + 2 ®𝐷1(𝑡)]

®𝐿2(𝑡 + 1) = 1
4 + 𝑑2

[−2®𝐿1(𝑡) + 𝑑2 ®𝐿2 − 2®𝐿3(𝑡) + 2 ®𝐷2(𝑡) + 2 ®𝐷1(𝑡)]

®𝐿3(𝑡 + 1) = 1
4 + 𝑑3

[−2®𝐿2(𝑡) + 𝑑3 ®𝐿3 + 2 ®𝑅 + 2 ®𝐷2(𝑡) − 2 ®𝐷1(𝑡)]

The coefficients of this system of equations can be collected in a matrix 𝜽 (scaling factors are
ignored for readability)

\ =


𝑑1 −2 0 2 −2 2
−2 𝑑2 −2 0 2 2
0 −2 𝑑3 2 2 −2

 (7.3)

which will later be subject to a reinforcement learning policy.
During the relaxation, the lengths of the arm vectors may change, which is, of course, undesirable.

Instead, the system should find a suitable joint configuration to reach the target while leaving the arm
lengths constant. This can be achieved via a non-linear model.

7.2.3 Non-linear MMC Networks

In order to keep the lengths of the three arm segments fixed, we follow [199] and describe the arm
segments in terms of their lengths 𝐿1, 𝐿2 and 𝐿3 and orientations 𝛼, 𝛽, 𝛾. At time 𝑡, 𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡 are
given as input to the system and the outputs are the predicted orientations 𝛼𝑡+1, 𝛽𝑡+1, 𝛾𝑡+1 that will
serve as the input for the next iteration.

The architecture is divided into three components, a forward pass including non-linear transform-
ations, an MMC network component and an inverse component. A sketch of the non-linear MMC
architecture is shown in Fig. 7.3.

In the forward pass, the joint angles are first transformed to arm vectors using the transformations V
and T. V takes a constant length of an arm segment 𝐿 and a joint angle 𝛼 as inputs to compute the
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corresponding arm vector
®𝐿 = 𝐿

[
cos𝛼
sin𝛼

]
(7.4)

The transformation T takes an arm vector ®𝐿 and an angle 𝛼 as input and applies a corresponding
rotation

®𝐿 ′ =
[
𝐿
′
𝑥

𝐿
′
𝑦

]
=

[
cos𝛼 − sin𝛼
sin𝛼 cos𝛼

] [
𝐿𝑥

𝐿𝑦

]
(7.5)

The transformations are applied in sequence; for instance, 𝛾𝑡 is transformed by (V, T, T), where
the latter two transformations are necessary because the joint angles are all relative to their own axis
[Fig. 7.2].

The output of the forward pass is the arm vectors ®𝐿1(𝑡), ®𝐿2(𝑡), ®𝐿3(𝑡) which are then fed to the linear
MMC Net to compute the predicted arm vectors for the next time step, ®𝐿1(𝑡 + 1), ®𝐿2(𝑡 + 1), ®𝐿3(𝑡 + 1).

Finally, in the inverse component, these vectors are converted back to the corresponding arm
orientations 𝛼𝑡+1, 𝛽𝑡+1, 𝛾𝑡+1 by using the inverse of T and A, which is the inverse of V and computes
the arm orientation given an arm vector

𝛼 = arctan(𝐿𝑦 , 𝐿𝑥) (7.6)

In summary, a non-linear MMC architecture can be decomposed into three components (i) forward
components that perform feature selection, (ii) a linear MMC net that plays a role in trajectory
prediction, and (iii) inverse controllers that control the actuators.

7.3 Learning a Modular Policy Network

So far, we have discussed planning a trajectory toward a target position using MMC networks. However,
in an RL setting, the agent cannot access target positions directly. For instance, in the reacher task, the
agent instead receives a feedback vector which is usually the distance between the end-effector and the
target denoted as ®𝑅𝑡 . Thus, it can be treated as a proxy for the actual target position. In this case, too,
the coefficients of the MMC Net have to be solved, but instead of solving by hand, they can now be
trained based on reward signals. To this end, we define the policy 𝜋 as a MMC policy network 𝜋𝜽 with
weights 𝜽 which can be then adapted by a policy learning method.

7.3.1 Approach For Solving Reacher Tasks

The main idea is to decompose our MMC policy network 𝜋\ into linear and non-linear components
and to adapt only the linear component while non-linear components are used off-the-shelf. At time 𝑡,
observation 𝑜𝑡 is processed as

1. Forward Component: This part of the network converts the joint angles contained in the given
observation ®𝑜𝑡 = (𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡 , ®𝑅𝑡 ) into input vectors ®𝐿1(𝑡), ®𝐿2(𝑡) and ®𝐿3(𝑡) via transformations
V and T.

2. MMC Component: This is a linear MMC net with weights ®\, which are adapted by a learning
method through interaction with the environment. This component then acts as a planning
module that predicts the next point in the trajectory ®𝐿1(𝑡 + 1), ®𝐿2(𝑡 + 1) and ®𝐿3(𝑡 + 1).
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(b) Variant II

Figure 7.4: Learning curves: Evolution of total episodic reward in the learning of Reacher task with two
variants; (a) Variant I: in which target position as given in the observation and (b) Variant II: in which target
position is not directly available, but as a feedback signal in the observation. As observed, MMC networks
outperform end-end approaches in both variants.

3. Inverse Component: This complements the forward component. Outputs of the MMC net,
such as the predicted arm vectors ®𝐿1(𝑡 + 1), ®𝐿2(𝑡 + 1) and ®𝐿3(𝑡 + 1), will be converted back to
joint angles 𝛼𝑡+1, 𝛽𝑡+1, 𝛾𝑡+1 resulting in an action vector ®𝑎𝑡

Using such a modular system, forward- and inverse components can be shared between similar
tasks or can be engineered using domain knowledge to solve different tasks. Only the MMC net needs
to be trained for the given task. Most importantly, the task can be solved efficiently by designing the
inputs passed to MMC net.

7.3.2 Learning Method

Our goal is to find the optimal value for 𝜽 such that the expected cumulative reward is maximized
𝜽∗ = argmax𝜽 𝐽 (𝜽) where 𝐽 (𝜽) = E𝜋\

[
𝐺𝑇

]
. To train 𝜽 of the MMC net, we use a stochastic

approximation method, namely Simultaneous Perturbation Stochastic Approximation (SPSA) discussed
in Section 5.2.

7.4 Experimental Results

In this section, we demonstrate the performance of the proposed MMC policy network using a
simulation environment as shown in Fig. 7.1. In particular, we focus on benchmarking performance
metrics such as episodic total reward and sample complexity. Furthermore, we consider Variant
I, where the agent can observe the desired target position directly, and Variant II, where the agent
receives a feedback signal based on the difference between end effector position and target position.

We evaluate our MMC policy network against end-end policy networks on learning a deterministic
policy that predicts the desired joint angles. Since angular velocities are not included in the observation,
we also consider a recurrent neural network as a baseline, treating it as a partially observable task.
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(a) MLP (b) RNN (c) MMC

(d) MLP (e) RNN (f) MMC

Figure 7.5: Agent behaviors: Initial and final arm positions are shown in orange and red respectively; (a), (d)
trajectories toward the target with MLP agent; (b), (e) trajectories toward the target with RNN agent; and (c) and
(f) with MMC agent. The MMC agent quickly approaches the target and is able to maintain its position around
the target throughout the episode

Implementation details: In our experiments, the length of each episode is limited to 30 time steps;
Therefore the goal is not just to reach fast but also to maintain the end effector around the target.
Our MMC net is implemented as a linear model consisting of 8 input neurons and 6 output neurons.
Our baselines are (i) a fully connected multi-layer perceptrons (MLP) with 3 hidden layers with tanh
activation functions, (ii) a recurrent neural network (RNN) of gated-recurrent units (GRU) with 3
hidden layers.

All networks are trained using SPSA parameters 𝑎 = 0.01, 𝐴 = 10, [ = 0.1, 𝑐 = 0.01, 𝜏 = 0.1.
Furthermore, gradients are smoothed via RMSprop with a decay rate of 0.9. Finally, for stable learning,
several pairs of perturbations 𝐾 are evaluated to compute the average gradient for each step and are
tuned based on the network size.

7.4.1 Learning Performance

In order to evaluate the performance of the MMC network quantitatively, we consider the learning
of an optimal policy using MMC networks and comparing them to baseline techniques. Figure 7.4
shows the evolution of total episodic reward (averaged over different random seeds) in the learning
process (the higher the better) for both variants of the task. These results suggest that the MMC policy
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Figure 7.6: Sample Complexity: (a) Evolution of reward at each step averaged over 100 runs; showing MMC
networks quickly relax to high reward gaining trajectories as soon as an episode starts. (b) a summary of total
interactions with the environment to learn an optimal policy with different networks and variants of the Reacher
task; MMC networks are 10 times sample-efficient than end-end approaches

Variants MLP RNN MMC

Variant I -7.37 -9.06 -3.18
Variant II -10.01 -12.64 -4.12

Table 7.1: Performance Comparison: Final Performance in terms of total episodic reward (higher is better)
of best policies with different networks averaged over 100 episodes; MMC nets outperform other end-end
architectures

network can learn optimal behaviors in only a few iterations. MMC networks also perform similarly
well in both variants of the task, which shows the robustness of the proposed modular architecture. On
the other hand, the end-to-end approaches seem to have more difficulties when learning a suitable
policy for variant II than in the case of variant I. Finally, we compare the performance of the best
policies of each network in 100 episodes and summarize their average performance in Table 7.1.

7.4.2 Behaviors

In order to compare the behavior of agents, we ran the task with two random seeds with final trained
best policies from each network and plotted their behaviors observed throughout the episode in Fig 7.5.
Fig 7.5 (a), (d) show the behavior of agents whose policies were learned using multi-layer perceptrons;
(b) ,(e) reflect policies learned by gated recurrent units, and, finally, (c) and (f) were obtained from
MMC policy networks.

These examples suggest that agents trained with the MMC policy network quickly approach the

72



7.5 Conclusion and Future Work

target, thus gaining high rewards, whereas the other methods slowly adapt to the feedback signal.
Fig. 7.6 (a) captures similar behavior in terms of reward obtained at each step in an episode. By
averaging over 100 runs, we observe that MMC networks are able to stabilize themselves to high reward
positions from very early in the episode (approx 𝑡 = 2) when compared to end-to-end approaches.

7.4.3 Sample Complexity

To evaluate the sample complexity of policy learning with MMC networks, we consider the number
of interactions with the environment required for achieving the best performance of the baseline
models. To this end, we consider the learning curves in Figure 7.4. For variant I, the baseline
models required 2000 iterations to reach their best performance, whereas a MMC achieved similar
performance within only about 250 iterations. While training the baseline networks, gradient updates
in each iteration are computed after evaluating 100 pairs of perturbations. Similarly, with our MMC
policy network, an update is performed after evaluating 50 pairs of perturbations. Therefore, a total
of 200.000 interactions is required for the baselines. However, the MMC approach required only
250 × 50 = 12.500 interactions with the data. This shows that our MMC network is 16 times more
data-efficient than the end-to-end approaches. A similar analysis for variant II shows a 12 fold speed
up for the MMC networks. These results are summarized in Fig. 7.6 (b).

7.5 Conclusion and Future Work

We introduced a novel approach to RL by utilizing MMC architectures. Our proposed method enables
domain experts to incorporate their knowledge into policy networks by designing and constructing
modular components tailored to specific tasks. Through our experiments, we demonstrated that
the suggested policy network learns superior policies for variations of the "reacher task" in a more
efficient manner, requiring fewer samples compared to baseline techniques. Furthermore, it achieves a
remarkable speed increase of over 10 times compared to competing architectures.

The resulting system adopts a modular structure consisting of fixed non-linear transformations and a
trainable linear policy network. This decomposition offers an advantage, as the explicit transformations
of the non-linear part are known, which is often preferable in practical applications over end-to-end
systems composed of neural networks that lack transparency. Consequently, the integration of domain
knowledge not only reduces the complexity of obtaining samples but also represents a significant step
toward creating more interpretable systems.

MMC networks can be extended in various ways. Firstly, it should be possible to engineer forward
and inverse components for other continuous control tasks, such as bi-pedal walking, hopping,
swimming, and more, by leveraging expert domain knowledge, although it is not straightforward, it
might require extensive engineering.

Secondly, the inherent recurrent nature of the approach, coupled with the ability to predict future
states in a trajectory towards a target, allows for trajectory unrolling over time. This unrolling can be
utilized for planning extended actions, i.e., actions performed over prolonged durations, facilitating
the development of hierarchical policies.
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Part III

Practical Structured Prediction using
Reinforcement Learning
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In this section of the thesis, the focus shifts to addressing practical challenges of SP tasks namely
RQ3 and RQ4.

Chapter 8 presents the toolkit NLPGym that provides simulated environments for casting typical
NLP tasks as sequential decision-making tasks. Experimental results for six tasks using various RL
algorithms are presented that serve as baselines for future research.

Chapter 9 focuses on the challenges of RLHF. First, it presents a new framework RL4LMs which
provides easy tools to fine-tune LLMs on arbitrary reward functions. Then, it proposes a novel on-
policy RL algorithm that is well-suited for NLP tasks. Finally, a comprehensive benchmark consisting
of seven generative NLP tasks is presented, which highlight crucial design choices concerning reward
functions, initialization of policies and more.
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CHAPTER 8

NLPGym - A toolkit for training RL agents on
Natural Language Processing Tasks

In Part I of this thesis, our focus was on sequential decision and prediction (SDP) tasks, specifically
exploring the application of echo state networks (ESNs) as random context encoders for three tasks:
sequence memorization (Chapter 3), named-entity recognition (Chapter 4) and control tasks (Chapter
5). We demonstrated that ESNs can effectively solve these tasks without adapting the recurrent
connections.

Moving on to Part II, our focus shifted towards addressing challenges in reinforcement learning
(RL). In Chapter 6, our emphasis was on improving exploration, where we proposed a straightforward
method that guides RL using auto-encoders to provide auxiliary novelty rewards. Similarly, Chapter 7
presented a technique to decompose policy networks based on an architecture from computational
biology, enhancing both parameter and data efficiency while increasing the interpretability of deep
neural networks.

Returning to SP tasks, we will examine the close relationship between SP and RL. In particular, we
address the limitations of training SP tasks using supervised learning objectives such as maximum
likelihood estimation (MLE). These approaches suffer from exposure bias or data mismatch, as the
model is exposed to inputs that differ from those seen during training when incorrect outputs are
predicted. This is mostly because prediction in each step is fed as inputs in subsequent steps and the
mistakes accumulate over the inference process. Moreover, they also suffer from metric mismatch,
where models are evaluated on metrics different from the ones they were trained on. For instance, a
text summarization system is evaluated for its consistency and factual correctness.

To tackle these issues, one alternative is to cast SP as RL, enabling models to be trained directly to
optimize application-specific metrics. For example, maximizing BLEU or ROUGE scores can solve
machine translation tasks. Further, RL facilitates learning from the model’s own generated sequences
during training, bridging the gap between the training and testing distributions.

Most NLP tasks can now be cast as a sequential-decision making problem and can be solved by
RL. While RL is increasingly applied to these tasks [74–79], there is a lack of simulated textual
environments available for researchers to consistently apply and benchmark RL on natural language
processing (NLP) tasks. To address this gap, we introduce NLPGym, an open-source Python toolkit
that provides interactive textual environments for standard NLP tasks such as sequence tagging,
multi-label classification, and question answering. The proposed toolkit is modular, easy to use
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and compatible with standard RL frameworks such as stable-baselines. Further, new tasks, reward
functions, datasets can be easily added by users. We also present experimental results for six tasks
using various RL algorithms, serving as valuable baselines for future research. The chapter is based
on the publication by [89],

• R. Ramamurthy, R. Sifa and C. Bauckhage, “NLPGym – A Toolkit for Evaluating RL agents on
Natural Language Processing Tasks”, Proceedings of Wordplay Workshop in NeurIPS 2020,
url: https://doi.org/10.48550/arXiv.2011.08272

Rajkumar Ramamurthy proposed the initial framework that casts SP into RL. Rajkumar Ramamurthy
took the lead role and carried out the implementation, experimental design and training of the algorithms.
He also drafted the initial version of the paper, which was later revised extensively by all authors. All
authors actively contributed to the discussion of the work throughout the entire process.

The remainder of the chapter is organized as follows: Section 8.1 provides a brief motivation for the
use of RL in the field of NLP, followed by Section 8.2 introducing the NLPGym toolkit, highlighting
its usage and supported tasks. In Section 8.3, the toolkit is utilized to obtain a benchmark of the
provided tasks using different RL algorithms and reward functions, serving as baseline results for
future research.

8.1 Motivation

Comprehension and communication using natural language is a major characteristic of human
intelligence. In the domain of artificial intelligence, to assist humans with language-oriented tasks,
artificial agents have to acquire similar natural language understanding (NLU) capabilities. In this
regard, there has been tremendous progress and machines have become well-versed in natural language
processing (NLP) tasks such as language modeling [42, 43], information extraction [215, 216], text
summarization [217, 218], or question answering [219, 220].

Deep reinforcement learning (DRL) has become popular in the NLP domain as most tasks can
now be formulated as a sequential-decision making problem [28, 72]. This is auspicious for several
reasons. First, RL is inherently interactive, allowing training agents through rewards to optimize human
preferences directly. Second, learning based on rewards allows the agents to be trained to maximize
application-specific metrics such as F1 or ROUGE scores which are generally non-differentiable and
cannot be optimized by traditional supervised learning approaches.

Typical applications of DRL in NLP include: (a) sequence tagging [28, 72] where RL is used to
solve structured prediction tasks such as named entity recognition and part of speech tagging; (b)
text summarization [74–76] where agents select sentences to be included in summaries; (c) question
answering [77] where agents rank and select relevant paragraphs and it is interesting to note that
question answering can be cast as an interactive game [78]; (d) information extraction [79] where
agents query and extract information from external resources to extract information; (e) solving
text-based games [83, 221, 222].

Despite their increased use in NLP, there are no frameworks for testing RL agents on standard NLP
tasks. In other words, it seems that the application of RL to NLP suffers from lack of availability of
open-source frameworks which are similar to Gym [80], Malmo [81], Arcade Learning Environment
(ALE) [82], TextWorld [83], or Baby AI [84] which accelerated research on solving robotic tasks,
mine-craft playing, ATARI game-playing, text-based games and ground language agents.
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Figure 8.1: NLPGym Environments: An overview of sample episodic interactions of agent-environments
for three different tasks. (a) tagging a sequence with NER tags; (b) answering multiple-choice questions; c)
generating label sequence for a given sentence

In this work, we therefore present NLPGym, a toolkit to bridge the gap between applications of
RL and NLP. This aims at facilitating research and benchmarking of DRL applications on natural
language processing tasks. Our toolkit provides interactive environments for standard NLP tasks such
as sequence tagging, question answering, and sequence classification. The environments offer standard
RL interfaces and therefore can be used together with most RL frameworks such as baselines [223],
stable-baselines [224], and RLLib [225]. Furthermore, the toolkit is designed modularly, providing
flexibility for users to extend tasks with their custom data sets, observations, and reward functions.

To illustrate the capabilities of NLPGym, this paper also provides examples and detailed experimental
results on the above tasks using different RL algorithms, featurizers and reward functions. These
results will serve as baselines for further research in this area.

Indeed, in future work, we plan to include environments for text summarization, text generation and
machine translation tasks as they can also be formulated as MDP problems. We hope that NLPGym
becomes an ever-growing test-bed for testing agents for learning language and understanding.

Related Work We present a short survey of related work concerning frameworks for solving
language-oriented tasks. They fall under two main categories: grounded language learning and
text-based games. Notable works in grounded-language learning include 3D simulated environments
[226, 227] for developing language-informed agents. Building upon this idea of specifying goals
using language, BabyAI [84] enables agents to interact and manipulate objects in environments. In the
category of text-based games, TextWorld [83] offers gym-style environments for solving text-based
adventure games. Likewise, Jericho [228] supports various interactive fiction games. Focussing
on dialogue research, LIGHT [229] provides a platform for studying conversational agents that can
interact with characters and objects in a large-scale text-based adventure game. Since most toolkits
only focus on language-informed tasks and text-based games, there is a need for equivalent frameworks
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for developing agents to solve NLP tasks, which we address with our work of NLPGym.

8.2 NLPGym Toolkit

The NLPGym toolkit consists of interactive environments for learning natural language processing
tasks. It includes environments for three tasks: sequence tagging, question answering, and multi-label
sequence classification. Each task is formulated as a Markov Decision Process (MDP) defined by
a tuple: 〈𝑺, 𝑨,𝑻, 𝑹〉 where 𝑺 is a set of states, 𝑨 is a set of actions, 𝑹 is the reward function, and
𝑻 is the transition probability. Figure 8.1 shows an overview of sample episodic interactions of
agent-environment for the provided tasks.

The toolkit is implemented in Python, extending on OpenAI Gym’s API with step(), reset() and
render() functions for observing and interacting with the environment (see Appendix B.1). Due to its
compliance with Gym’s API, NLPGym can be easily integrated with most RL frameworks [223–225].
Additionally, each environment has default implementations of reward functions, and observation
featurizers (see Appendix B.2) and can be used out of the box. Therefore, training a DQN agent
can be done with less than 10 lines of code (see Listing 8.1). Moreover, the toolkit is designed in a
modular fashion, allowing users to plug-in custom components such as reward functions, featurizers
for observation and datasets. For more details, we refer to Appendix B.3, which elaborates on their
extensibility using code snippets.

Listing 8.1: Training DQN agent using NLPGym
from nlp_gym.data_pools.custom_seq_tagging_pools import UDPosTagggingPool
from nlp_gym.envs.seq_tagging.env import SeqTagEnv
from nlp_gym.envs.seq_tagging.reward import EntityF1Score
from stable_baselines.deepq.policies import MlpPolicy as DQNPolicy
from stable_baselines import DQN
from stable_baselines.common.env_checker import check_env
from rich import print

# data pool
data_pool = UDPosTagggingPool.prepare(split="train")

# reward function
reward_fn = EntityF1Score(dense=True, average="micro")

# seq tag env
env = SeqTagEnv(data_pool.labels(), reward_function=reward_fn)
for sample, weight in data_pool:
env.add_sample(sample, weight)

# check the environment
check_env(env, warn=True)

# train a MLP Policy using DQN
model = DQN(env=env, policy=DQNPolicy, gamma=0.99, batch_size=32, learning_rate=5e-4,

double_q=True, exploration_fraction=0.1,
prioritized_replay=False, policy_kwargs={"layers": [100, 100]},
verbose=1)

model.learn(total_timesteps=int(1e+4))
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8.2.1 Tasks

Sequence Tagging (ST): Sequence tagging is one of the core tasks in NLP for natural/spoken
language understanding (NLU/SLU) and typical tasks include named-entity recognition (NER) and
part-of-speech (POS) tagging. Formally, given a sentence with words (𝑤1, 𝑤2, . . . 𝑤𝑡 ), the task is to
generate its associated label sequence (𝑙1, 𝑙2, . . . 𝑙𝑡 ). This task can be cast as an MDP [72] in which
the sentence is parsed in left-to-right order, one word at a time. The environment state 𝑠𝑡 at step 𝑡
consists of 𝑤𝑡 and predicted labels for previous words. However, the agent’s observation 𝑜𝑡 at each
step is just the current word 𝑤𝑡 and context (predicted label of the previous word 𝑙𝑡−1), which renders
the environment partially observable. The available actions are to TAG the current word with one
of the possible labels and the action space is thus discrete. On performing any action, the transition
function is deterministic and trivial, that the tagged label is added to the label sequence. The reward is
computed as the entity-level F1-score between actual and predicted labels. It comes in two flavors;
sparse (given at the end of the episode) and dense (difference in scores between consecutive steps).

Multiple-choice Question Answering (QA): Multiple-choice question answering (QA) is at the
core of machine reading comprehension [230, 231]. The task of QA is to answer a given question 𝑞
by selecting one of the multiple choices 𝑐1, 𝑐2, . . . 𝑐𝑡 . Besides, questions are often accompanied by
supporting facts 𝑓 , which contain further context. Selecting the correct option out of all choices can be
considered as a sequential decision-making task. Each episode spawns with a question to be answered.
At each step 𝑡, the question 𝑞, supporting facts 𝑓 , and one of the multiple choices 𝑐𝑡 are given as
the observation to agents. Given this observation, agents’ actions are binary whether to answer ANS
or to continue with the next choice CONT. Consequently, on choosing the action ANS, the episode
terminates and the last observed choice is considered the final answer. On the other hand, on selecting
CONT, the environment moves to the next choice and presents its corresponding observation. The
reward is given only at the end of the episode, either 0 or 1, based on the selected choice’s correctness.

Multi-label Classification (MLC) Multi-label classification is a generalization of several NLP tasks
such as multi-class sentence classification and label ranking [232]. The task of multi-label classification
is to assign a label sequence 𝑙1, 𝑙2 . . . 𝑙𝑛 to the given sentence. In information retrieval, this task
corresponds to label ranking when preferential relation exists over labels. Likewise, the task reduces
to a simple multi-class classification when any label sequence’s maximum length is at most one.
In any case, generating this label sequence can be cast as a sequential decision-making task. Each
episode begins with a sentence and an empty label sequence. The observation at each step 𝑡 is the
given sentence and generated label sequence until 𝑡. Similar to sequence tagging, available actions are
to INSERT one of the possible labels. Moreover, agents can terminate the episode using the TERM
action. The reward is chosen as the F1-score between actual and predicted label sequences, either
sparse or dense. For ranking problems, users can provide their desired ranking metric [233] as the
reward function.

8.2.2 Towards Interactive Learning

Each environment relies on annotated data points that are used in generating episodes. NLPGym
supports injecting samples into the environment dynamically at any point in time. This feature offers
the flexibility to develop algorithms in two settings; batch setting in which all of the data points
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(e) MLC with AAPD
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Figure 8.2: Learning Curves: Averaged learning curves of PPO and DQN agents with variations. (a),(d)
learning curves for sequence tagging with NER and POS tags. (b),(e) MLC with Reuters and AAPD datasets;
(c), (f) QA tasks with QASC and AIRC datasets

are added at once and an interactive/online setting in which they are added one at a time. A demo
script illustrating this has been provided in Appendix B.1. Human-in-the-loop applications favor
the later setting in which samples are first annotated by humans and then added to the environment.
Furthermore, RL agents can pre-annotate them, thereby reducing human annotation efforts.

8.3 Demo Experiments

To demonstrate the usage of our toolkit, we run the provided environments by plugging-in with
benchmark datasets and train Deep Q Networks (DQN) and Proximal Policy Optimization (PPO)
agents using stable-baselines [224]. Each experiment is repeated 5 times to obtain average learning
curves. All our experiments are run in a batch setting (train data points are added to the environments
at once) and evaluated on test split.

Sequence Tagging We chose CONLL [234] and UDPOS [235] as datasets for ST environments. We
vary the observation featurizer with fasttext [139] and bytepair [236] embeddings. For each of these
settings, we train DQN and PPO agents. For DQN, we chose a feedforward multi-layer perceptron
(MLP) with two hidden layers, each consisting of 100 neurons. A discount factor of 0.99 is used. The
experiences are stored in a replay buffer and a batch size of 32 is used for sampling. Additionally,
Double-Q learning is used. For PPO, we chose the MLP policy with the same number of hidden
layers and neurons. The other settings for PPO such as discount factor, batch size, clip parameter,
entropy co-efficient are set to 0.99, 64, 0.2 and 0.0 respectively. Both PPO and DQN are trained with
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Model/Task Sequence Tagging Multi-Label Question Answering

Embedding CONLL UDPOS Reuters AAPD QASC AIRC

DQN
Fasttext 0.92 0.69 0.72 0.35 0.49 0.35

Byte-Pair 0.91 0.58 0.65 0.26 - -

PPO
Fasttext 0.93 0.77 0.76 0.61 0.14 0.24

Byte-Pair 0.91 0.65 0.70 0.49 - -
Table 8.1: Test Performance: Summary of performance of selected DQN and PPO agents on the test set. For
ST and MLC, micro F1-scores are reported, and for QA, accuracy is reported

a learning rate of 0.0005.

Question Answering For the QA environment, we test it on QASC [230] and AIRC [237] datasets.
The QA experiments are run with two featurizers: simple and informed featurizers (see observation
featurizers in Appendix B.2 for details). The Q network in DQN and policy network in PPO consists
of two hidden layers, each consisting of 64 neurons. Both are trained with a learning rate of 0.0001.
Other parameters are set to the same values specified in ST experiments.

Multi-label Classification For the MLC environment, we picked Reuters [238] and AAPD [239]
datasets. Like in ST, we vary the observation featurizer with fasttext [139] and bytepair [236]
embeddings. For this task, we chose Q-network and policy network to consist of two hidden layers,
each with 200 neurons and they are trained with a learning rate of 0.001. Other settings are the same
as specified in ST experiments.

Results and Discussion Figure 8.2 shows learning curves for the described agents and Table 8.1
summarizes their generalization performance. Further, in Appendix B.4, we present the predictions
(actions) of trained agents. For each agent and its variation, we first evaluate them on the validation
set dev and select one model based on the validation performance. The selected models are then
evaluated on the hold-out test set, and their scores are summarized in the Table 8.1. We report micro
F1-scores for ST and MLC, and for QA, accuracy is reported. It is observed that both DQN and PPO
agents are able to solve ST and MLC tasks with a very good performance, and PPO performs better
than DQN agents in most cases.

However, QA tasks are generally difficult to solve and require more complex representations (e.g.,
BERT [43]), which would improve the results of QA experiments. From Figure 8.2 and Table 8.1,
it is seen that the agents seem to memorize the training questions resulting in poor generalization.
Nevertheless, all of these results indicate that RL agents can indeed be trained to perform NLP tasks
using our toolkit.
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8.4 Conclusion

In this work, we presented and demonstrated the usage of NLPGym for applying DRL to solving NLP
tasks. The initial release of this toolkit contains environments for three standard tasks that are ready
to use with default components and datasets. The results presented here act as simple baselines to
promote the research and benchmarking of RL in NLP settings. We believe that NLPGym becomes a
standard toolkit for testing agents for learning language and understanding. Moreover, in the next
Chapter 9, we extend this framework to other NLP tasks such as text summarization, generation and
machine translation leveraging the fine-tuning capabilities of large language models.
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CHAPTER 9

RL4LMs - Building Blocks, Baselines and
Benchmark for NLG using RL

In this part of the thesis, our main focus is to address the limitations associated with structured
prediction (SP) tasks. We have discussed that these tasks often face challenges such as data mismatch
and metric mismatch. To overcome these challenges, one potential solution is to treat SP as a sequential
decision-making problem. This approach is intuitive because both SP and reinforcement learning (RL)
share similar characteristics. They both involve generating structured outputs that are essential for the
task at hand. Additionally, both SP and RL require step-by-step output generation, where predictions
made at each step serve as inputs for subsequent steps.

In the previous chapter, we introduced the toolkit called NLPGym, which utilizes RL environments
to frame typical NLP tasks and allows direct training to optimize application-specific metrics. However,
it’s important to acknowledge that this library has its own limitations. For example, the featurizers
provided by the language models are simple word embeddings that remain unchanged throughout the
training process, with only the final task-specific layers being adapted. Furthermore, modern NLP
systems now primarily rely on large language models (LLMs) that can solve most NLP tasks with
little or no fine-tuning.

These powerful LLMs are typically trained using a supervised learning objective that predicts the
next word given a specific context. With the use of massive amounts of data and billions of parameters,
LLMs can effectively handle most NLP tasks with proper prompting. However, despite being fluent
text generators, the generated text may sometimes contain biases, toxicity, and harmful outputs. To
mitigate this, LLMs undergo Reinforcement Learning from Human Feedback (RLHF) [46, 240] to
align their outputs with human preferences. However, there is currently a lack of well-benchmarked
open-source toolkits available, making systems like ChatGPT and GPT-4 non-reproducible and
inaccessible.

In addition to the accessibility problem, there are several challenges associated with RLHF. Firstly,
training LLMs involves dealing with large action spaces. Secondly, LLMs may exploit flaws in
reward functions and prioritize generating high-reward sentences at the cost of fluency. These factors
contribute to the perception that RL is a challenging paradigm for fine-tuning LLMs.

To address the accessibility and stability issues related to RLHF, we first introduce a framework
RL4LMs. This framework enables the training of decoder and encoder-decoder LLMs using on-policy
algorithms such as PPO and A2C. Additionally, we present a benchmark (GRUE) consisting of seven
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generative NLP tasks, including abstractive summarization, text continuation, generative common-
sense reasoning, data-to-text, machine translation, question answering, and dialog generation. Within
this benchmark, we explore a wide range of reward functions and highlight crucial implementation
details for training LLMs. Furthermore, we propose a variant of PPO namely Natural Language Policy
Optimization (NLPO) that remains stable even when dealing with large action spaces.

The chapter is based on the publication by [90],

• R. Ramamurthy, P. Ammanabrolu, K. Brantley, J. Hessel, R. Sifa, C. Bauckhage, H. Hajishirzi
and Y. Choi, “Is Reinforcement Learning (Not) for Natural Language Processing: Benchmarks,
Baselines, and Building Blocks for Natural Language Policy Optimization”, Proceedings of
International Conference on Learning Representations, 2023, url: https://openreview.
net/forum?id=8aHzds2uUyB

The initial concept of a framework for fine-tuning LLMs using RL was proposed by Prithviraj
Ammanabrolu, while Rajkumar Ramamurthy took on the role of lead developer and implemented the
core components of the library, including the PPO and A2C algorithms. Prithviraj built the NLPO
algorithm on top of this framework. The experimental design and task setups were carried out by
Rajkumar, Prithviraj and Kiante Brantley. Jack Hessel provided support with human evaluations and
the training of reward models based on human preferences. The resulting paper represents a significant
collaborative effort by the main authors and has undergone extensive revisions by all authors.

The remainder of this chapter is organized as follows: In the next section, we provide a brief
motivation for utilizing RL in training LLMs, followed by a concise review of the existing literature.
Then, in the subsequent section, we introduce RL4LMs, discussing text generation environments,
reward functions, evaluation metrics, and on-policy algorithms. The NLPO approach is presented in
the following section. Finally, we present the GRUE benchmark in the last section 9.4, which focuses
on seven generative NLP tasks. We provide details on the experimental setup, evaluation results,
and delve into various experiments related to reward hacking, preference reward learning, practical
considerations, and data budget.

9.1 Motivation

The primary objective of natural language generation (NLG) systems is to engage with and assist
humans in various applications, including summarization, information extraction, question answering,
and interactive dialogue assistance. Although these applications inherently involve interaction, most
systems rely on training large language models without direct human preference signals. Instead, they
use supervised targets that only serve as a rough approximation of human preferences. Moreover,
supervised methods often require numerous expert demonstrations and are susceptible to exposure
bias.

One approach to incorporating user feedback is through human-in-the-loop training, where users
provide feedback for each sample while the model is being trained. However, this level of dense
supervision can be inefficient and challenging. Another alternative lies in automated metrics, which
offer a promising middle ground between fully supervised and fully interactive training paradigms.
Metrics such as BERTScore [241], BLEURT [242], and others have shown improved correlation with
human judgments compared to earlier lexical overlap metrics like BLEU [91] and METEOR [243].
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9.1 Motivation
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Figure 9.1: Natural Language Policy Optimization (NLPO) in the case of sentiment-guided continuation.
Here, the LM (i.e., the policy) needs to produce a positive sentiment continuation given a review prompt (we
cover other models of human preference in Sec. 9.2.2). Two objectives are balanced: 1) an automated proxy of
human preference that serves as a reward (here: a sentiment classifier); and 2) “naturalness" as measured by
a KL divergence from an LM not trained with explicit human feedback. The plots show validation learning
curves comparing our NLPO to the popular policy gradient method PPO. (Top plot:) RL methods can easily
achieve high reward if the KL penalty is removed, (Bottom:) but at the cost of higher perplexity. NLPO+KL,
our proposed approach, succeeds in balancing reward and naturalness more effectively than prior work.

Furthermore, these metrics are more cost-effective to obtain than human preferences. Nevertheless,
these metrics provide scores for complete generations and do not offer per-token level scores.

Reinforcement Learning (RL) provides a solution by framing natural language generation (NLG) as
a sequential decision-making problem and optimizing non-differentiable scalar objectives. However,
Goodhart’s Law [244] warns us that when a measure becomes the target, it ceases to be a good measure.
This suggests that imperfect metrics utilizing neural networks can inadvertently generate nonsensical
samples that achieve high-quality scores, while the actual task remains unsolved. This phenomenon is
known as reward hacking.

Recent research has demonstrated promising results in aligning language models with human
preferences through RL, incorporating fluency considerations in preference-based rewards [46, 240].
However, the progress and reproducibility of this line of research are hindered by the lack of open-
source libraries and algorithmic implementations, which leads to the misconception that RL is a
challenging paradigm for natural language processing (NLP) [87, 88].

Several under documented pitfalls contribute to this perception. Firstly, training large language
models involves dealing with large action spaces (vocabulary), coupled with the high variance in
automated metrics, leading to instabilities. Secondly, reward hacking occurs when models exploit
flaws in the reward function and learn to generate high-reward sentences for incorrect reasons, such
as producing task relevant outputs but not fluent text or vice-versa. Finally, critical implementation
details that greatly impact the performance of models, are often undocumented.

To facilitate easeness in training large language models using RL and research in building RL
algorithms to better align LMs, we release a library, a comprehensive benchmark and a novel RL
algorithm that is well-suited for natural language tasks.

• First, we release the RL4LMs library, which enables training of generative transformers models
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(eg., GPT-2 or T5) using a variety of existing RL algorithms like PPO/A2C/etc.

• As the second contribution, we train these transformer based LMs using RL4LMs to the new
GRUE (General Reinforced-language Understanding Evaluation) benchmark consisting of
a collection of non-exhaustive NLP tasks. These are: (1) abstractive summarization, (2) text
continuation, (3) data-to-text, (4) generative commonsense reasoning, (5) machine translation,
and (6) question-answering (7) dialog generation. See Table 9.1 for details. In contrast to
existing NLP benchmarks, we pair each task with multiple applicable reward function(s). GRUE
is designed to challenge RL algorithms to optimize these reward functions while being fluent
language generators.

• Next, we introduce a novel on-policy RL algorithm called NLPO (Natural Language Policy
Optimization), that dynamically learns task-specific constraints over the distribution of language
at a token level.

• Finally, we highlight some of the implementation details that are crucial for training of LMs
using RL and identify suitable NLP tasks for the RL paradigm

Experiments on GRUE and human evaluations show that NLPO better balances learning preference
rewards while maintaining language fluency compared to alternatives, including PPO (See Figure 9.1).
We find that using RL to learn from scalar reward feedback can be more: (1) data efficient than using
additional expert demonstrations via supervised learning (though a combination of both is best)—a
learned reward function enables greater performance when used as a signal for an RL method than
a supervised method trained with 5 times more data, and (2) parameter efficient—enabling a 220
million parameter model trained with a combination of supervision and NLPO to outperform a 3
billion supervised model. We hope that the benchmarks, baselines, and building blocks we release
serve to drive forward research in aligning LMs to human preferences.

9.1.1 Related Work

Natural Language Generation (NLG) research on sequential decision-making can be broadly categorized
into two main paradigms: imitation learning (IL) and reinforcement learning (RL).

Imitation learning for NLP: Numerous IL algorithms have been developed to mimic expert
demonstrations. These include Schedule Sampling (SS) [245], Parallel SS [246], SS for Transformers
[247], Differential SS [248], LOLS [249, 250], and SEARNN [251], which draw inspiration from
DAGGER [252] and SEARN [28]. However, these algorithms are known to suffer from the cliff MDP
problem [253–255].

RL for NLP: RL techniques have been successfully applied to improve various NLP models,
including machine translation [256, 257], summarization [86, 258], dialogue [259–261], image
captioning [262], question generation [263], and text-games [221, 264], among others [265, 266]. For
example, [267] adapt reward-conditioned transformers [268] for various language generation tasks. RL
has also been explored to align language models with human preferences [85, 86, 240, 269]. Notably,
[46] fine-tuned a 175B parameter language model with Proximal Policy Optimization (PPO) [270] to
align with models of human preference, although their non-public dataset restricts comparisons.

Despite RL’s success in some of the aforementioned use cases, it has also been criticized for its
instability compared to supervised language model training [87]. As a result, there is little consensus

90



9.2 RL4LMs - A library to train language models using RL

on whether RL, particularly through models of human preference, is a viable approach for training
language models compared to alternatives like collecting additional supervised data.

RL for Large Action Spaces: MIXER [265] combined ideas from scheduled sampling and
REINFORCE [271]. Additionally, [272] proposed an actor-critic algorithm to address the variance and
large action space problems associated with using REINFORCE for language generation. Subsequent
works such as KG-A2C [273], TrufLL [274], AE-DQN [275], and GALAD [276] have tackled similar
challenges by attempting to reduce or eliminate the action space during exploration.

9.2 RL4LMs - A library to train language models using RL

First, we present RL4LMs, an open-source library consisting of building blocks for fine-tuning of
language models for natural language text generation. The library is built on HuggingFace transformers
library [277] and stable-baselines-3 [278], adapting their interfaces to work together which allows
interchanging different language models and on-policy algorithms. RL4LMs allows training of any
decoder only (eg. GPT2) or encoder-decoder transformer models (eg. T5) from HuggingFace with
any on-policy RL algorithm such as PPO [270], TRPO [162], A2C [146], and our own NLPO (See
section 9.3) from stable-baselines3.

In addition, we release implementations of popular on-policy RL algorithms that are tailored for
transformer-based LM fine-tuning together with our own novel algorithm. In the initial release, we
provide 7 NLG tasks, 16+ evaluation metrics/rewards and 4 RL algorithms. The library is modular
and customizable which enables users to easily plug-in their customized versions of tasks, reward
functions, metrics and algorithms.

9.2.1 Environments: Generation as a Token-level MDP

Each environment corresponds to a natural language processing (NLP) task. We are provided with a
supervised dataset, denoted as D = {(𝒙𝑖 , 𝒚𝑖)}𝑁𝑖=1, containing 𝑁 examples. Here, 𝒙 ∈ X represents a
language input, and 𝒚 ∈ Y represents the target string that we aim to predict. We can consider the task
of generating output as a Markov Decision Process (MDP) denoted as 〈S,A,R, 𝑃, 𝛾, 𝑇〉, utilizing a
finite vocabularyV.

Each episode in the MDP starts by randomly selecting a datapoint (𝒙, 𝒚) from our dataset and
terminates either when the current time step 𝑡 surpasses the predefined horizon 𝑇 or when an end-
of-sentence (EOS) token is generated. The input 𝒙 = (𝑥0, · · · , 𝑥𝑚) represents a task-specific prompt
and serves as our initial state 𝒔0 = (𝑥0, · · · , 𝑥𝑚), where 𝒔0 ∈ S and S denotes the state space, with
𝑥𝑚 ∈ V.

An action within the environment, denoted as 𝑎𝑡 ∈ A, corresponds to selecting a token from our
vocabulary V. The transition function 𝑃 : S × A → S deterministically appends an action 𝑎𝑡 to
the end of the state 𝒔𝑡−1 = (𝑥0, · · · , 𝑥𝑚, 𝑎0, · · · , 𝑎𝑡−1). This process continues until reaching the end
of the horizon 𝑡 ≤ 𝑇 , resulting in a state 𝒔𝑇 = (𝑥0, · · · , 𝑥𝑚, 𝑎0, · · · , 𝑎𝑇 ). At the end of an episode, a
reward is emitted based on the (𝒔𝑇 , 𝒚) pair, denoted as R : S × A ×Y → R1. This reward could be
determined using automated metrics such as PARENT [279].

The RL4LMs framework provides an OpenAI Gym [80]-style API for an RL environment that
simulates this MDP formulation based on language models. By abstracting the specific details of the
MDP environment structure, it enables the swift addition of new tasks while maintaining compatibility
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with all implemented algorithms, without necessitating any dataset-specific modifications.

9.2.2 Reward Functions and Evaluation Metrics

Due to its generic interface for per-token or per-sequence generation rewards, it becomes possible to
easily apply a diverse range of reinforcement learning (RL) algorithms to a similarly wide array of
textual metrics-as-rewards. We provide interfaces for several types of metrics, including:

1. n-gram overlap metrics such as ROUGE [73], BLEU [91], SacreBLEU [280], and METEOR
[243];

2. model-based semantic metrics such as BertScore [241] and BLEURT [242], which typically
exhibit stronger correlations with human judgment;

3. task-specific metrics such as CIDER [281], SPICE [282] (for captioning/commonsense genera-
tion), PARENT [279] (for data-to-text), and SummaCZS [283] (for factuality of summarization);

4. diversity/fluency/naturalness metrics including perplexity, Mean Segmented Type Token
Ratio (MSSTR) [284], Shannon entropy over unigrams and bigrams [285], the ratio of distinct
n-grams over the total number of n-grams (Distinct-1, Distinct-2), and the count of n-grams that
appear only once in the entire generated text [286];

5. task-specific, model-based human preference metrics such as classifiers trained on human
preference data collected following the methodology of [46].

9.2.3 On-policy Actor-critic Algorithms

RL4LMs supports fine-tuning and training LMs from scratch via on-policy actor-critic algorithms on
language environments. Formally, this class of algorithms allows us to train a parameterized control
policy defined as 𝜋\ : S → A, a function that attempts to select an action in a given state so as to
maximize long term discounted rewards over a trajectory E𝜋 [

∑𝑇
𝑡=0 𝛾

𝑡R(𝒔𝑡 , 𝑎𝑡 )].
Our benchmark experiments focus on fine-tuning a pre-trained LM denoted as 𝜋0 from which we

initiate our agent’s policy 𝜋\ = 𝜋0. Similarly, the value network 𝑉𝜙 used to estimate the value function
is also initialized from 𝜋0 except for the final layer which is randomly initialized to output a single
scalar value. As with other deep RL actor-critic algorithms, we define our value and Q-value functions
as 𝑉 𝜋

𝑡 = E𝑎𝑡∼𝜋 [
∑𝑇

𝜏=𝑡 𝛾𝑅(𝒔𝜏 , 𝑎𝜏 , 𝒚)], 𝑄
𝜋
𝑡 (𝒔𝑡 , 𝑎𝑡 ) = 𝑅(𝒔𝑡 , 𝑎𝑡 , 𝒚) + 𝛾E𝑠𝑡+1∼𝑃 [𝑉

𝜋
𝑡+1(𝒔𝑡+1)] leading to a

definition of our advantage function as 𝐴𝜋
𝑡 (𝒔, 𝑎) = 𝑄

𝜋
𝑡 (𝒔, 𝑎) − 𝑉

𝜋
𝑡 . To increase training stability,

advantage is approximated using Generalized Advantage Estimation [287].
Given an input-output pair (𝒙, 𝒚) and generation predictions from our agent; because the environment

rewards are sequence-level and sparse, following [240] we regularize the reward function using a
token-level KL penalty for all on-policy algorithms, to prevent the model from deviating too far from
the initialized LM 𝜋0. Formally, the regularized reward function is:

�̂�(𝒔𝑡 , 𝑎𝑡 , 𝒚) = 𝑅(𝒔𝑡 , 𝑎𝑡 , 𝒚) − 𝛽KL
(
𝜋\ (𝑎𝑡 |𝒔𝑡 ) | |𝜋0(𝑎𝑡 |𝒔𝑡 )

)
(9.1)

where �̂� is the regularized KL reward, 𝒚 is gold-truth predictions, KL
(
𝜋\ (𝑎𝑡 |𝒔𝑡 ) | |𝜋0(𝑎𝑡 |𝒔𝑡 )

)
=

(log 𝜋0(𝑎𝑡 |𝒔𝑡 ) − log 𝜋\ (𝑎𝑡 |𝒔𝑡 )) and the KL coefficient 𝛽 is dynamically adapted [85] during training
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where,

𝑒𝑡 = clip

(
KL

(
𝜋(𝑎𝑡 |𝑠𝑡 ) | |𝜋0(𝑎𝑡 |𝑠𝑡 )

)
− KLtarget

KLtarget
,−0.2, 0.2

)
(9.2)

𝛽𝑡+1 = 𝛽𝑡 (1 + K𝛽𝑒𝑡 ) (9.3)

where KLtarget is user-specified KL divergence between initial model 𝜋0 and current policy 𝜋 and
K𝛽 is rate of update which we generally set to 0.2 in our experiments.

9.3 NLPO: Natural Language Policy Optimization

The magnitude of language generation action spaces far surpasses the design scope of most reinforce-
ment learning algorithms that handle discrete action spaces [265, 288]. For example, GPT-2/3 and T5
possess a vocabulary size of 50K and 32K respectively. We hypothesize that the extensive size of the
action space constitutes a fundamental factor contributing to the instability encountered when training
language models using current RL techniques.

To tackle this issue, we propose NLPO (Natural Language Policy Optimization), which draws
inspiration from previous work on action elimination and invalid-action masking [273, 275, 289].
NLPO extends the PPO (Proximal Policy Optimization) algorithm with parameterized masking,
allowing it to learn how to mask out less relevant tokens within the context during training. NLPO
achieves this through the utilization of top-𝑝 sampling, a technique that limits the token selection to
the smallest possible set whose cumulative probability exceeds the probability threshold 𝑝 [290].

NLPO incorporates a masking policy, denoted as 𝜋𝜓, which closely mirrors the current policy (𝜋\ ),
but undergoes updates only after every ` steps. This policy maintains a parameterized-invalid-mask
obtained by selecting the top-𝑝 tokens from the vocabulary, followed by applying an invalid-mask to
the remaining tokens. The invalid-mask sets the probabilities of these tokens to zero when sampling
actions from 𝜋\ during training. It is worth noting that alternative sampling techniques such as top-𝑘
or beam search (or even domain expert-defined rules) could be used to train 𝜋𝜓, but our empirical
findings indicate that top-𝑝 sampling is the most effective approach in practice. This periodic update
of the policy 𝜋𝜓 is inspired by off-policy Q-learning algorithms [291], enabling 𝜋\ to strike a balance
between maximizing task-relevant information and mitigating potential issues related to reward
manipulation derived from 𝜋0 through the application of a KL penalty.

NLPO employs a masking policy, denoted as 𝜋𝜓, to learn the process of masking irrelevant language.
This masking policy is a replica of the current policy (𝜋\ ), but it undergoes updates only at regular
intervals of every ` steps. Given 𝑍 (𝜋\ ), which represents the normalization value obtained by
summing the probabilities of all actions 𝑎 in the action spaceA for a given state 𝑠 ∈ S, letV 𝑝

𝜋\
be the

parameterized top-𝑝 vocabulary subset. This subset comprises the 𝑝 highest probability vocabulary
tokens with respect to the policy 𝜋\ . More formally, let 𝑍 𝑝 represent the normalization value for
the parameterized top-𝑝 vocabulary, which can be defined as the subset of tokens that maximizes
𝑍
𝑝 (𝜋\ ) =

∑
𝑎∈V𝑘

𝜋\

𝜋\ (𝑎 |𝑠). Consequently, optimizing a policy based on the parameterized top-𝑝
vocabulary can be defined as follows:

𝜋𝜓 (·|𝑠, 𝜋\ ) =
{
𝜋\ (·|𝑠)/𝑍

𝑝 (𝜋\ ) if 𝑎 ∈ 𝑉 𝑝
𝜋\

and 𝑍 (𝜋\ )
0 otherwise. (9.4)
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Algorithm 4 NLPO - Natural Languge Policy Optimization

Input: Dataset D = {(𝒙𝑖 , 𝒚𝑖)}𝑁𝑖=1 of size 𝑁
Input: initial policy parameters 𝜋\0
Input: initial LM 𝜋0
Input: initial value function parameters 𝑉𝜙0
Input: initialize parameterized masked policy 𝜋𝜓0

(·|·, 𝜋\0
) with parameterized top-𝑝 policy 𝜋\0

Input: policy update frequency `
repeat

Sample mini-batch D𝑚 = {(𝒙𝑚, 𝒚𝑚)}𝑀𝑚=1 from D
Collect trajectories T𝑚 = {𝜏𝑖} by running policy 𝜋𝜓𝑛

in for batch D𝑚 in env. ⊲ Eq.9.4
Compute Preference and KL penalty rewards �̂�𝑡 ⊲ Eq. 9.1
Compute the advantage estimate �̂�𝑡 ⊲ Sec. 9.2.3
Update the policy by maximizing the PPO-Clip objective:

𝜋\𝑚+1
= argmax\

1
|D𝑚 |𝑇

∑︁
𝜏∈D𝑚

𝑇∑︁
𝜏=0

min
(
𝑟𝑡 (\)𝐴

𝜋\𝑚 , clip(𝑟𝑡 (\), 1 − 𝜖, 1 + 𝜖)𝐴
𝜋\𝑚 )

)
where 𝑟𝑡 (\) =

𝜋\ (𝑎𝑡 |𝑠𝑡 )
𝜋\𝑚
(𝑎𝑡 |𝑠𝑡 )

.
Update the value function:

𝑉𝜙𝑚+1
= argmin𝜙

1
|D𝑚 |𝑇

∑︁
𝜏∈D𝑚

𝑇∑︁
𝑡=0

(
𝑉𝜙 (𝑠𝑡 ) − �̂�𝑡

)2

Update the parameterized masked policy every ` iterations:

𝜋𝜓𝑛+1
(·|·, 𝜋\𝑚+1)

until convergence and return 𝜋\

Finally, the pseudocode of the proposed is presented in Algorithm 4 (green portions highlight the
differences with PPO).

9.4 General Reinforced-language Understanding Eval - GRUE
Benchmark

GRUE consists of a collection of 7 generative NLP tasks. To address the issue of reward hacking
based on a single metric, each task is evaluated at test time using a task-specific combination of
metrics, which are outlined in detail in Table 9.1. These metrics are categorized into two groups: Task
preference metrics assess how well the models generate outputs that meet the specific requirements
of each task. For example, in the case of Commongen, the metrics assess whether the generated
outputs covers all the required concepts, while for IMDB, they measure the positive sentiment of the
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Dataset Task Input Output Task Preference Metrics(s) Naturalness
Metrics(s)

IMDB
[292]

Text Continu-
ation

Partial Movie
Review

A positive completion of the
movie review. Learned Sentiment Classifier Perplexity

(GPT-2)

CommonGEN
[293]

Generative
Common-
sense

Concept Set A sentence coherently using
all input concepts.

CIDER; ROUGE-2,L; BLEU-3,4;
METEOR; Coverage SPICE

CNN Daily Mail
[219] Summarization News Article Summarized article. SummaCZS; ROUGE-1, 2, L,

LSum; METEOR; BLEU BertScore

ToTTo
[294] Data to Text Highlighted

Wiki Table
Factually accurate text

describing the information. SacreBLEU; PARENT BLEURT

WMT-16 (en-de)
[295]

Machine
Translation Text (English) Translated text (German).

TER; cHRF; ROUGE-1, 2, L,
LSum, METEOR; SacreBLEU,

BLEU

BertScore

NarrativeQA
[296]

Question An-
swering

Question
Context (a Story)

Abstractive answer to the
question.

ROUGE-1, 2, L, LSum, LMax;
METEOR; BLEU; SacreBLEU BertScore

DailyDialog
[297]

Chitchat Dia-
logue

Dialogue
History A conversational response METEOR; Learned Intent

Classifier BertScore

Table 9.1: GRUE Benchmark using RL4LMs showing the various tasks, input and output types, and the
metrics used. We note that we test RL algorithms on these tasks for a wider range of possible rewards than just
the task specific ones shown here. Unless specified, datasets are in English.

generated completions. On the other hand, Naturalness metrics focus on aspects such as fluency and
readability, providing insights beyond semantics. During training, there are no specific constraints
imposed: models are allowed to utilize supervised data, compute metrics on intermediate generations,
and so on. The train/validation/test splits adhere to the original works, with the models being trained
on the designated train splits. All reported results are averaged across multiple seeds, and specific
counts can be found in the Appendix C.

Experimental Setup: We utilize the RL4LMs to conduct extensive evaluations of various algorithms
on the GRUE benchmark. Specifically, we compare three algorithms for direct fine-tuning: Supervised,
PPO (Proximal Policy Optimization), and NLPO (Natural Language Policy Optimization). In addition,
we also consider a hybrid approach that combines supervised learning with RL methods. This involves
applying PPO and NLPO to checkpoints that have undergone supervised fine-tuning, which we refer
to as Supervised+PPO and Supervised+NLPO, respectively. As an additional baseline, we conduct
zero-shot evaluations where we design prompts that aim to elicit task-specific generations without any
training data or parameter updates.

To isolate the impact of the training method, we select a single pre-trained LM backbone for each
task. For IMDB text continuation, we utilize GPT-2 with 117 million parameters, while for the
remaining tasks, we employ T5-base with 220 million parameters.

For our RL models (PPO, NLPO, Supervised+PPO, Supervised+NLPO), we conduct separate
experiments to thoroughly investigate how reward-hacking may interact with the GRUE evaluation.
We optimize multiple task rewards for each task independently, running individual experiments for
each metric. For example, in the case of Commongen, which has six task rewards (CIDER, ROUGE-2,
ROUGE-L, BLEU-3, BLEU-4, METEOR), we perform six different experiments, each optimizing a
specific metric independently. We report all the metrics presented in Table 9.1, regardless of which
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individual metric was being optimized for in each experiment.
Human Participant Study: We have collected human judgments for five of the tasks included in

the GRUE benchmark. Our objective in doing so is twofold: 1) to validate the correlation between
the automated metrics we have selected for GRUE and human judgments, specifically in terms of
the relative ranking of models. 2) to provide additional empirical comparisons, particularly between
NLPO and PPO, as well as conducting ablations to investigate the effects of the KL naturalness
penalty and other factors. The tasks we specifically focus on for human judgment collection are
IMDB, Commongen, ToTTo, DailyDialog, and CNN Daily Mail. For each individual sample in a task,
we requested the input of three unique human raters to provide Likert judgments on two aspects: 1)
quality, i.e., for the specific task, how correct/appropriate is the generation, given the context, and 2)
fluency, i.e., how well-written is the generation. We utilized Amazon Mechanical Turk as the platform
for collecting these judgments and ensured that crowdworkers were paid a minimum of 15 per hour
for their participation. Additional details, including qualification information, interface screenshots,
instructions, and more, can be found in the Appendix C.
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Figure 9.2: GRUE results: Summarized results via automated metrics across all 7 GRUE tasks for each of the
5 algorithms we consider, and human participant studies for the 5 tasks suitable for human studies. Test results
are averaged over all the respective metrics seen in Table 9.1.
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Questions Tasks
IMDB CommonGen CNN/DM ToTTO IWSLT-17 NarQA

Needs Warm Start 7 3 7 3 7 3

Easily reward hackable? 3 3 7 7 7 7

RL > Sup (auto)? 3 7 7 7 7 7

RL > Sup (human)? 3 7 7 7 - -
Sup+RL > Sup (auto)? 3 3 3 3 3 3

Sup+RL > Sup (human)? 3 7 3 3 - -
Sup+NLPO > Sup+PPO (auto)? 3 3 3 3 3 3

Sup+NLPO > Sup+PPO (human)? 3 3 3 3 - -

Table 9.2: Key questions answered using GRUE + RL4LMs:
This table summarizes the results found in the ablations and Fig.
and provides an overview of the questions we ask in Section 9.4:
which tasks require warm starts or are easily reward hackable; when
to use RL over Supervised, when to use both; and when to use
NLPO over PPO. All conclusions drawn are the result of statistical
analysis as discussed in the experimental setup.

Ablation Sentiment Perplexity
Zero Shot 0.489 32.171
Supervised 0.539 35.472
PPO 0.605 33.497
NLPO 0.637 32.667
Warm Starting (Sec. 9.4.1)
PPO+Supervised 0.617 34.078
NLPO+Supervised 0.645 33.191
Data Budget (Reward trained on 10% of data, Sec. 9.4.3)
PPO 0.598 35.929
NLPO 0.599 33.536
Removing NLPO Top-𝑝 Constraints (Sec. 9.4.2)
(𝑝 = 1 is equivalent to PPO, 𝑝 = 0.9 is NLPO)
NLPO 𝑝 = 0.1 0.579 32.451
NLPO 𝑝 = 0.5 0.588 32.447
Removing KL Constraints (Sec. 9.4.2)
PPO-no-KL 0.859 37.553
NLPO-no-KL 0.853 36.812
Discount Ablations (𝛾 = 1) (Sec. 9.4.4)
PPO 0.651 41.035
NLPO 0.624 43.72

Table 9.3: IMDB Ablation Results

9.4.1 Results on GRUE

Figures 9.2(a), 9.2(b) present the results on GRUE, split into automated task metrics and naturalness
metrics, and Tables 9.2, 9.3 highlight key results via ablation studies. Full results are available in
Appendix C.1

RL vs Supervised: For text continuation and summarization, with non-trivial zero-shot performance,
RL tends to perform better than supervised training, but for tasks like Commongen and ToTTo, which
have very low zero-shot performance, supervised training performs best—with both approaches
outperforming zero-shot.

However, using RL+Supervised learning in conjunction works best; NLPO+supervised and
PPO+supervised usually always outperforms NLPO/PPO (or supervised in isolation) across both task
metrics and naturalness metrics. Supervised warm-starting is particularly effective for Commongen
and ToTTo, which our results suggest are more prone to reward hacking. The one exception to this
trend is DailyDialog where the RL models outperform warm-started Supervised+RL models likely
due to the low performance of the Supervised models.

We note that Supervised+NLPO using a T5-base (220m parameter) LM currently outperforms all the
models on the ToTTo leaderboard, many of which have ≥ 3b parameter supervised models—suggesting
that RL is parameter efficient as well. In these cases, it is critical that the initial policy already contain
(some) signal for the task due to it being used as a KL constraint and masking constraint in NLPO.
If the mask contains no initial priors about task specific language, it will be eliminating the wrong
actions—a better initial policy leads to better RL performance downstream.

Human agreement with automated metrics: We incorporate additional statistical analyses to
mitigate the potential noise in human judgments. These analyses include assessing inter-annotator
agreement using Krippendorf’s alpha score and conducting a one-way ANOVA followed by a post-hoc
Tukey HSD test. These statistical measures allow us to determine the significance of differences in
average scores among different models.

Our findings reveal that the trends observed in human evaluations generally align with those observed
in automated metrics for both task-related and naturalness-related assessments (refer to Figures 9.2(c)
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and 9.2(d) which summarize Appendix Tables C.7, C.13, C.20, C.26, and C.37). These trends
indicate that the performance ranking is as follows: Supervised+NLPO is superior to Supervised, and
Supervised+PPO is better than or equal to Supervised and NLPO, while PPO outperforms Zero-shot.
However, there is an exception where Supervised outperforms Supervised+PPO in two out of five
tasks, despite automated metrics suggesting the opposite.

Based on these observations, we draw two conclusions:

1. When the generated text surpasses a certain naturalness threshold, the automated metrics
generally align with human judgments.

2. This alignment is mostly consistent but not always perfect, as evident in the performance
comparison between Supervised and Supervised+PPO. It suggests the possibility of reward
hacking behaviors that go unnoticed by automated metrics but are captured by human preference
feedback.

9.4.2 Preference Reward Learning, Selection, and Hacking

While the GRUE benchmark’s metric for each task is an average over several measures, the RL models
we trained optimized only a single metric independently. Thus, we can empirically investigate which
metric for which GRUE produces the best results. We observe that many possible single metric
rewards provide task performance gains over supervised methods (results shown in Fig. C.1(a), 9.2(c)
are averaged across these reward functions) with the condition that the text is also coherent and natural.

Which constraints are most effective in preventing reward hacking? To prevent reward hacking,
the reward function in Equation 9.1 incorporates a KL constraint that balances a task-specific reward.
This constraint penalizes models for deviating too far from a base LM in their quest for high reward.
As evidenced by Table 9.3 and Table C.2, removing KL constraints altogether allows models to exploit
the system and achieve significantly higher sentiment scores at the expense of naturalness, leading to
an increase in perplexity.

However, the choice of the base regularizing LM greatly influences the effectiveness of this
approach. When the initial policy, i.e., the raw pretrained model, performs poorly on the task, the KL
penalty tends to push the policy towards generating nonsensical outputs. For instance, in the case
of Commongen and ToTTo, the trained policy learns to repetitively reproduce parts of the input (as
observed in Tables C.1.4 and C.1.6). This undesired behavior can be mitigated by using the supervised
model as the base regularizing LM, as the reward encourages the policy to strike a balance between
the task-specific reward and a more sensible regularization term. Thus, deriving KL penalties from
warm-started initial policies is crucial for achieving optimal performance on such tasks.

PPO vs. NLPO. Figure 9.2 illustrates that NLPO generally surpasses PPO and supervised methods,
particularly when applied after supervised training. We hypothesize that the primary reason behind
NLPO’s enhanced performance and stability lies in the masking policy, which imposes an additional
constraint on the current policy. Unlike the KL penalty, which is based on the initial untuned policy,
this constraint derives from the policy used ` iterations ago and likely incorporates more task-relevant
knowledge acquired during RL training.

The results presented in Table 9.3 (and Appendix Table C.5) demonstrate how performance initially
increases and then decreases as the 𝑝 value in top-𝑝 sampling is raised for the masking policy. This
relaxation of the constraint leads to fewer tokens being eliminated at each step, implying that there
exists a balance in the level of constraint imposed during RL training.
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Human Preference Reward Learning. Up until now, our experiments have primarily focused on
optimizing evaluation metrics that correlate with human judgments, such as METEOR. In addition,
we conducted tests to assess the effectiveness of learning preferences from direct human feedback. To
conduct these tests, we chose Commongen, a benchmark dataset that is well-suited for highlighting
differences resulting from human preferences. Initially, we randomly selected prompts from the training
set of Commongen and generated a single completion from both the Supervised and Supervised+NLPO
models. These prompt-completion pairs were then presented to three different crowdworkers, who
were asked to indicate their preferred option based on commonsense and fluency considerations for a
total of 417 unique pairs (Krippendorf 𝛼 = .28). We used this data to train a reward model, T5-11B
[298], using a balanced binary classification task.

The goal was to predict which completion was preferred by the majority of the three annotators,
given the prompt and completion. The resulting model achieved a test ROC AUC of 69.5, indicating
that it successfully captures average human preferences. Further details about this process can
be found in Appendix C.1.4. As a baseline, we trained the Supervised+RL model using only the
METEOR reward and compared it to a reward function that employed the fine-tuned T5-11B model.
Subsequently, we repeated the same pairwise preference collection procedure, this time sampling
from the Commongen test set, and sought human participants’ opinions to compare the generations
produced by a preference-optimized RL policy with the previously superior Supervised+NLPO policy.
When comparing the METEOR-only model to the preference model, the human feedback model was
preferred in 682 cases, while the METEOR-only model was preferred in 587 cases (𝑝 < 0.01). This
suggests that the pipeline of collecting preferences, training a reward model, and further fine-tuning
the policy leads to improved alignment with human preferences.

9.4.3 Data Budget: Improve your Reward or Gather More Demonstration?

When given a fixed data collection budget, the question arises: is it more efficient to gather feedback
to enhance a learned reward function or to gather additional expert demonstrations? To explore this,
we focus on the IMDB text continuation task as a case study. In this task, a model is provided with a
partial movie review as a prompt and is tasked with continuing it as positively as possible, even if
the initial prompt was negative. The original dataset consists of movie reviews with sentiment labels
indicating positive, negative, or neutral sentiments. We train a DistilBERT classifier [299] on these
labels, which generates sentiment scores representing the level of positivity in a given text. These
sentiment scores serve as the task reward. The dilemma lies in deciding whether to acquire more
sentiment labels (to improve the reward) or gather positive sentiment reviews (to enhance supervised
training).

To investigate this, we train a classifier on various amounts of training data and evaluate its
performance on a held-out test dataset. As expected, we observe that increasing the amount of training
data improves test accuracy, resulting in a higher-quality reward. Subsequently, we utilize these
rewards of varying quality during RL training and evaluate the performance using the same metric
as the benchmark. As presented in Table 9.3, we find that enhancing the quality of the reward leads
to improved performance of the language model. Additionally, we train a supervised model using
at least the same number of samples as those used to train each reward classifier. Intriguingly, we
discover that a learned reward function enables superior performance when used as a signal for an
RL method compared to a supervised method trained with five times more data. This implies that
enhancing reward models can be more data-efficient for a given task compared to collecting expert
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demonstrations. Moreover, it is worth noting that assigning sentiment labels is likely a simpler task
than writing complete demonstrations. The ablation details for this experiment can be found in
Appendix Table C.3.

9.4.4 Practical Considerations: Which Implementation Details Matter Most?

Generation as a token-level MDP, not a bandit environment. Recent approaches to fine-tuning
Language Models (LMs) using Reinforcement Learning (RL) typically assign rewards for all tokens in
the sentence, and then adjust the probabilities of generating the entire text accordingly [46, 240, 267].
This approach can be viewed as a bandit feedback environment, where the action space represents all
possible generated sequences for the given task [26]. In our RL formulation, we can simulate this type
of environment by setting the discount factor (𝛾) to 1. However, our experiments on IMDB dataset,
presented in Table 9.3 (and Appendix Table C.4), demonstrate that this approach leads to training
instability in terms of naturalness when using both PPO and NLPO. Our standard setting is 𝛾 = 0.95
when calculating discounted rewards-to-go in the token-level MDP formulation, which reduces the
magnitude of the reward that is applied to tokens selected at the beginning. The sentiment scores are
approximately the same between both settings but the naturalness of language in the bandit setting is
significantly less —indicating that discounting rewards with 𝛾 < 1 via a token-level MDP formulation
is at least sometimes more effective for language generation.

Dropout and Sampling. We have identified two additional implementation details that significantly
impact the stability of RL training. The first crucial aspect is dropout, which has been observed to
introduce instability in policy gradient methods within continuous control scenarios, as highlighted by
[300]. We have observed a similar effect when utilizing dropout during RL training of LLMs, where
training loss often diverges when dropout > 0 in training.

The second important factor, particularly influential in the machine translation task, pertains to the
choice of sampling methods. The sampling approach employed to select actions (tokens) from the LM
during exploration and at inference plays a crucial role. We have found that using consistent sampling
methods throughout both exploration and inference is essential for achieving strong performance on
test metrics, as it ensures that the model can effectively generalize its training rewards to test scenarios.
Otherwise, the model may exhibit high rewards during training but fail to demonstrate desirable
performance on test data.

9.5 Conclusion

In this work, we proposed the GRUE benchmark and the RL4LMs library that will help progress in
aligning language models to human preferences via RL fine-tuning, by providing the community a
standard means of comparing methods. Furthermore, we are highly hopeful that as training stability
and consistency improve, our methods will unlock a pathway for iterative advancements in language
technologies. This pathway involves crucial steps such as deploying models, actively collecting user
feedback, and iteratively re-optimizing them.
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CHAPTER 10

Conclusion

In this thesis, the primary focus was on sequential decision and prediction tasks (SDP), which
include structured prediction (SP) and reinforcement learning (RL) tasks. These tasks share two
key characteristics. First, in SP, the output is generated incrementally, one element at a time, with
each predicted output being fed as input in the subsequent steps. RL follows a similar setup, where
actions are decided one at a time, and these actions have consequences on future states. Second, the
outputs exhibit interdependencies, and there exists a temporal structure among them. A common
requirement for these tasks is a sequential model that can effectively process both sequential inputs and
outputs. While RNNs (such as GRUs and LSTMs), CNNs, and transformers are commonly used to
model sequences in various applications and have achieved state-of-the-art results, their computational
demands limit their applicability in low-resource settings. Consequently, this gives rise to our research
question (RQ1): Can random context encoders, such as ESNs, suffice to solve these tasks, and what is
the performance gap between them and fully trained RNNs?

To address this research question, Chapter 3 focused on a challenging SP task called sequence
memorization. In this chapter, we demonstrated that ESNs have the capability to memorize and
reproduce arbitrary sequences of data, including text, images, and videos. Remarkably, ESNs, which
are simply randomized networks without full training, achieve this impressive feat. We then leveraged
this capability of ESNs to propose a novel cryptography system.

Furthermore, in Chapter 4, we explored the application of ESNs in another SP task, namely NER
in NLP. While state-of-the-art approaches for NER rely on LSTMs or transformer architectures to
obtain contextualized word representations, we demonstrated that the reservoir states in ESNs act as
randomized contextualized representations, which are sufficient to solve the task. ESNs for NER offer
practical advantages, requiring significantly lower training times compared to RNNs.

Shifting our focus to RL, Chapter 5 investigated a sequential decision-making task. Specifically, we
applied ESNs to a partially observable setting, where the inputs from the environment do not fully
capture the state of the environment. In this setting as well, ESNs provide a form of randomized
context that proves effective in solving control tasks in RL. In summary, our work on ESNs highlights
their effectiveness as random context encoders, capable of successfully tackling a wide range of SDP
tasks.

Next part of the thesis focused on the primary challenges that exist in RL. In many sequential-
decision making tasks, agents are only rewarded in the goal state, necessitating a significant number of
interactions to acquire a suitable policy. This gives rise to a fundamental research question identified as
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(RQ2): how can exploration and sample complexity be enhanced? Addressing this question, Chapter 6
examined Novelty Search (NS), which belongs to a class of methods designed to promote exploration.
NS is capable of learning competitive behaviors in various tasks without relying on environment
rewards. Its underlying concept involves defining a behavior characteristic (BC) specific to the task and
providing agents with novelty rewards. However, NS methods often rely on neighborhood models that
store behaviors in an archive set, limiting their scalability and generalization to complex tasks requiring
numerous policy evaluations. To tackle these challenges, we propose a function approximation method
that utilizes auto-encoders to learn sparse representations of BC. Our experimental results demonstrate
that the proposed approach outperforms traditional NS methods.

In an effort to enhance sample complexity in RL, Chapter 7 introduced the concept of constructing
policy networks by leveraging domain knowledge, aiming to improve transparency, modularity,
and data efficiency. We accomplished this by decomposing policy networks into adaptable and
hand-designed components, based on an architecture inspired by computational biology, and apply
it to solve a robotic task. The experimental results illustrated that learning such a modular network
requires only one-tenth of the interactions compared to fully trained end-to-end recurrent networks.

In the final part of the thesis, the focus shifted to addressing practical challenges pertaining to SP
tasks. SP tasks that are trained with MLE objectives suffer from data and metric mismatch problems.
One alternative is to cast SP as RL task which enables models to be trained directly to optimize
application-specific metrics. Now that most NLP tasks are reformulated this way, there is a lack of
open-source libraries that provide simulated environments to test them consistently (RQ3) To address
this gap, we presented NLPGym, a modular, easy-to-use toolkit that casts typical NLP tasks such as
sequence labeling, multi-label classification and multiple choice question answering as RL tasks.

Extending this approach to modern large language models (LLMs) and also addressing the
accessibility issues pertaining to Reinforcement Learning from Human Feedback (RLHF), we presented
RL4LMs, an open-source library to fine-tune LLMs of decoder type (eg. GPT2), encoder-decoder
(eg. T5) type on any arbitrary reward function. These reward functions can be based on automated
metrics like BLEU or learned reward models trained using human preferences. Alongside this library,
we introduced a comprehensive benchmark called Generative Reinforced-language Understanding
Evaluation (GRUE), which consists of seven text generation tasks, including summarization, translation,
and dialogue generation. Additionally, to address RQ4, an on-policy algorithm specifically designed
to handle the large action space associated with LLMs is proposed, making it easier to use in practice.

10.1 Outlook

While the presented work in this thesis has made several contributions toward practical and efficient
methods for SDP tasks, there are still opportunities for further research to enhance its findings and at
the same time, it is essential to acknowledge the limitations.

Let us examine the work presented in the first part of the thesis concerning the application of
Echo State Networks (ESNs) as random context encoders for SDP tasks. Our notable contribution in
Chapter 3 is the proposal of a neural cryptographic system that meets basic security requirements.
However, it should be noted that the size of the output weights used as keys (ciphertext) for the
system may exceed that of the original sequence (plaintext). To address this issue, it is necessary
to explore techniques that encourage the model to learn sparse weights, thereby ensuring that the
final ciphertext size is comparable. Recently, quantization techniques [301] have been proposed to
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reduce the computational and memory costs of Deep Neural Networks (DNNs). These techniques
involve representing weights and activations using low-precision data types, such as 8-bit integers
(int8), instead of the traditional 32-bit floating-point format. Leveraging these techniques could be
beneficial for the proposed security system. In the subsequent work (Chapter 4), we demonstrated
the effectiveness of ESNs as context encoders for Named Entity Recognition (NER) tasks. Although
ESNs are practical and efficient to train, there remains a slight performance gap when compared to
fully trained RNNs. Previous research on deep ESNs suggests that incorporating multiple layers of
reservoirs could potentially enhance performance. Furthermore, it would be intriguing to compare the
performance with Transformer-based context encoders.

In Chapter 6, our work addressed the issues of scalability and generalizability in NS methods by
replacing neighborhood models with auto-encoders. This work opens up several potential extensions.
First, given that modern NLP systems have replaced RNNs with transformers, utilizing transformers as
auto-encoders for modeling BCs could be an interesting avenue to explore. Second, the aspect of BCs
is intriguing because, in most applications, it is easier to define BCs than reward functions. Therefore,
exploring the design of BCs could be a future direction for leveraging domain knowledge to improve
the learning process. Furthermore, in Chapter 7, our work proposes incorporating domain knowledge
by decomposing policy networks into different components, including learnable and non-learnable
forward and inverse kinematics components. This approach resulted in easily interpretable, modular,
and efficient policy networks specifically designed for the reacher task. Extending this approach to
other tasks, such as bipedal walking, hopping, and more, is possible but not straightforward and may
require substantial engineering efforts.

Our contribution discussed in the Chapter 9, is particularly promising for future research. Since the
initial release of RL4LMs, a multitude of works have emerged utilizing this framework. Notably, the
NLPO algorithm, which we proposed, has been effectively employed to train guiding models that offer
hints [302, 303] or critiques to enhance text generation tasks [304]. Furthermore, the RL4LMs library
has been utilized to train LLMs capable of guiding agents in Dungeons and Dragons (DnD) [305].

Despite the extensive work in RLHF, there remain several open research questions. Firstly, the
current RLHF pipeline is not entirely online; rather, it follows an iterative process consisting of several
steps: supervised fine-tuning, preference data collection, training reward models, and fine-tuning
using RL. This decoupling of reward model training and RL fine-tuning limits their applicability
in interactive applications. For instance, in the case of ChatGPT, user feedback is not immediately
incorporated into fine-tuning the reward model or LLMs. We desire an approach that trains the reward
model and language model together in an online fashion while users are actively interacting with
the system. Such an approach is crucial for developing personalized LLMs. Secondly, the rewards
provided by preference-based RLHF are often sparse and unreliable when it comes to evaluating long
sentences. Moreover, relying on a single preference signal for judging sentences may be challenging
for users, and more fine-grained feedback is desired [306]. Therefore, exploring alternative ways to
train reward models using different forms of interaction is worth exploring.

Another interesting direction for future research involves the recent success of LLMs, which can
handle various NLP tasks through a unified text-in and text-out approach. LLMs are trained on vast
amounts of data and can perform tasks with zero-shot/few-shot learning. In contrast, RL is criticized
for its sample inefficiency, as it aims to learn every task from scratch, and the concept of a foundational
model capable of performing multiple tasks remains unexplored. One potential idea is to leverage the
reasoning capabilities of LLMs and formulate RL tasks also in a text format. This approach could
help improve the sample complexity of RL.
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APPENDIX A

ESN for Partial Observability

category parameter
deterministic stochastic

Acrobot Mountain Car Acrobot Mountain Car
(discrete) (discrete) (discrete) (continuous)

SPSA

learning rate (𝑙) 1e-6 1e-3 5e-5 5e-3
scaling factor (𝑐) 1e-1 1e-1 1e-1 1e-1

𝐿 10 100 10 100
𝛼 0.102 0.602 0.102 0.602
𝛾 0.101 0.101 0.101 0.101

ESN

reservoir size 40 40 40 40
input connectivity 0.7 0.3 0.3 0.7

reservoir connectivity 0.7 0.3 0.7 0.7
output scaling 0.1 0.1 1e-5 1e-2
spectral radius 1.0 1.0 1.0 1.0
leaking rate 0.3 0.3 0.3 0.3

RL discount factor 0.99 1.0 0.99 0.99
learning rate 1e-2 1e-2 1e-3 1e-3

Table A.1: Summary of Hyperparameters: Hyperparameters and their values for different experiments.
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Figure A.1: Visualization of MC policy: Visualization of a Gaussian policy learned for the mountain car task.
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NLPGym

B.1 Demo Scripts

Sample Interactions

from nlp_gym.data_pools.custom_question_answering_pools import QASC
from nlp_gym.envs.question_answering.env import QAEnv

# data pool
pool = QASC.prepare("train")

# custom answering env
env = QAEnv()
for sample, weight in pool:
env.add_sample(sample)

# play an episode
done = False
state = env.reset()
total_reward = 0
while not done:
action = env.action_space.sample()
state, reward, done, info = env.step(action)
total_reward += reward
env.render()
print(f"Action: {env.action_space.ix_to_action(action)}")

print(f"Total reward: {total_reward}")

Step 0
Question: Machines can use gasoline to do what?
Fact: a gasoline lawn mower converts gasoline into motion
Fact: Machines mow down forests much as a lawn mower cuts grass.
Choice A: energy
Action: CONTINUE
Step 1
Question: Machines can use gasoline to do what?
Fact: a gasoline lawn mower converts gasoline into motion
Fact: Machines mow down forests much as a lawn mower cuts grass.
Choice A: energy
Fact: a gasoline lawn mower converts gasoline into motion
Fact: Machines mow down forests much as a lawn mower cuts grass.
Choice B: destroy matter
Action: ANSWER
Total reward: 0.0
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Online Learning

We illustrate below the usage of the environment in an online setting. In each iteration, one sample
(data point) is added to the environment for sampling. This allows us to develop interactive algorithms
(for instance, active learning systems) that involve human interaction. A complete run of such an
algorithm corresponds to precisely one pass over the entire dataset.
from nlp_gym.envs.seq_tagging.env import SeqTagEnv
from nlp_gym.data_pools.custom_seq_tagging_pools import UDPosTagggingPool
from stable_baselines.common.policies import MlpPolicy
from stable_baselines import PPO1
from nlp_gym.envs.seq_tagging.reward import EntityF1Score
from nlp_gym.envs.seq_tagging.featurizer import DefaultFeaturizerForSeqTagging
from nlp_gym.metrics.seq_tag import EntityScores
import tqdm

def predict(model, sample):
done = False
obs = env.reset(sample)
predicted_label = []
while not done:
action, _ = model.predict(obs)
obs, _, done, _ = env.step(action)
predicted_label.append(env.action_space.ix_to_action(action))

return predicted_label

# data pool
data_pool = UDPosTagggingPool.prepare(split="train")

# reward function
reward_fn = EntityF1Score(dense=True, average="micro")

# seq tag env
env = SeqTagEnv(data_pool.labels(), reward_function=reward_fn)

# observation featurizer
feat = DefaultFeaturizerForSeqTagging(env.action_space, embedding_type="fasttext")
env.set_featurizer(feat)

# PPO model
model = PPO1(MlpPolicy, env, verbose=0)

# train loop that goes over each sample only once
running_match_score = 0
for ix, (sample, _) in enumerate(tqdm.tqdm(data_pool)):

# run the sample through the model and get predicted label
predicted_label = predict(model, sample)

# after few epochs, predicted_label can be used as pre-annotated input
# then the user can just correct it
# to reduce human efforts

# get annotated label from user (just simulated for now)
annotated_label = sample.oracle_label

# match score
match_ratio = EntityScores()(annotated_label, predicted_label)["f1"]
running_match_score += match_ratio

108



B.2 Default Featurizers

# add the new sample to the environment
sample.oracle_label = annotated_label
env.add_sample(sample)

# train agent for few epochs
model.learn(total_timesteps=1e+2)

if (ix+1) % 50 == 0:
print(f"Running match score {running_match_score/50}")
running_match_score = 0.0

B.2 Default Featurizers

The toolkit provides its users with simple observation featurizers based on pre-trained word embeddings
to get started with the environments without much setup. T hey are easily extendable and replaceable
with custom components (see B.3)

Sequence tagging (ST): In this environment, observation at any time step is a word/token and a
tagged label of the previous word. The word is vectorized into one of the pre-trained word embeddings
such as fasttext [139], byte-pair [236] and flair embeddings [215]. On the contrary, the tagged label is
converted to a one-hot encoded representation since the label vocabulary is known. In the end, the
observation vector is simply a concatenation of the word vector and the label vector.

Multi-Label Classification (MLC): The observation at any time step in this environment is a sentence
and a generated label sequence up to the time step. The sentence is converted to a fixed-length
representation by pooling over its corresponding word embeddings (pre-trained embeddings). The
label sequence is converted to a Bag-of-Words representation (BoW). To obtain the observation vector,
the representations of these two are concatenated together.

Question-answering (QA): For the QA environment, the observation is a triplet consisting of
question, choice and facts. The toolkit offers two types of featurizers: simple and informed. The
simple featurizer converts the observation into a concatenated vector of sentence representations of
the question, choice and facts. On the contrary, informed featurizer leverages the fact that the correct
choice should be semantically similar to the question and the given facts than other choices. To this
end, the observation is simply a 2-D vector consisting of cosine similarity between choice-question
and choice-facts.

B.3 Custom Components

The environments provide ready-to-use default implementations for observation featurizers, reward
functions and datasets. However, the toolkit is modular in a way that users can plug-in their own
implementations of these components. This gives the flexibility to implement some of the components
to have trainable components (e.g. observation featurizer) that can be optimized either end-to-end or
by pre-training. Fig shows the class diagram of NLPGym toolkit capturing relationships between
different components.
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ObservationFeaturizer

+ featurize(Observation): tensor

+ get_observation_dim(): int

RewardFunction

+ __call__(Observation obs, String action, List targets) : float

Env

+ reward_function: RewardFunction

+ samples: Sample *
+ featurizer: ObservationFeaturizer

+ add_sample(Sample sample)

+ set_featurizer(ObservationFeaturizer featurizer)
+ render()
+ close()
+ reset(Sample sample = None): Observation
+ step(Int action): Tuple[Union[Observation, tensor], Int, Bool, Dict Sample

+ input 1

+ input 2
..
+ input N
+ oracle_label

Observation

+ text 1

+ text 2
..
+ text N

provides

featurizes

Figure B.1: Class diagram of NLPGym:

Datasets

For instance, to create a custom sequence tagging dataset, users must provide a list of samples (data
points) and possible labels (that correspond to agent actions). These samples should be instances of
the Sample data class as shown below.

class Sample:
"""
Dataclass for holding datapoints

Attributes:
input_text - textual input
oracle_label - true label for the given data point

"""
input_text: str
oracle_label: List[str]

With this setup, the creation of a custom dataset is straightforward, as shown below:
custom_dataset = SeqTaggingPool(samples, possible_labels=[""])

Reward Function

Users can define their own custom reward function by sub-classing RewardFunction which is a
Callable that takes BaseObservation, current action, targets and returns a scalar reward.
from nlp_gym.envs.common.observation import BaseObservation
from nlp_gym.envs.common.reward import RewardFunction

class MyRewardFunction(RewardFunction)
def __call__(self, observation: BaseObservation, action: str, targets: List[str]) -> float:
"""
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My custom reward function
Args:
observation (BaseObservation): current observation at t
action (str): current action at t
targets (List[str]): targets of the current sample

Returns:
- a scalar reward

"""
pass

Observation Featurizer

Similarly, observation featurizer can have its custom implementation by sub-classing it from
BaseObservationFeaturizer as shown below. Each featurizer must implement featurize() and
get_observation_dim() by default. Additionally, based on the task, some more functions need
to be provide by user. For instance, for the sequence tagging environment, the featurizer must
additionally implement init_on_reset() which is called by the environment on reset().

class BaseObservationFeaturizer(ABC):

@abstractmethod
def featurize(self, observation: BaseObservation) -> torch.Tensor:
raise NotImplementedError

def get_observation_dim(self) -> int:
"""
Returns the observation dim
"""
return self.get_input_dim() + self.get_context_dim()

# for sequence tagging environment
class ObservationFeaturizer(BaseObservationFeaturizer):

@abstractmethod
def init_on_reset(self, input_text: Union[List[str], str]):
"""
Takes an input text (sentence) or list of token strings and featurizes it or prepares it
This function would be called in env.reset()
"""
raise NotImplementedError
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B.4 Qualitative Analysis

This section presents the predictions (actions) of trained agents on the given tasks by applying them
on the hold-out set. The best PPO agent from each task has been selected for this introspection as it
performed well in most experiments.

Sequence Tagging

We present the results of samples, predictions, true labels and their total reward for two datasets:
CONLL and UDPOS, separately.

--------------------------------------------------------------------------------
"text": "Justin suffered a sprained right shoulder in the third quarter

and did not return ."
"true_label": ["PER", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O",

"O", "O", "O", "O"],
"predicted_label": ["PER", "O", "O", "O", "O", "O", "O", "O", "O", "O",

"O", "O", "O", "O", "O"],
"total_reward": 1.0
--------------------------------------------------------------------------------
"text": "Ricky Watters , who leads the NFC in rushing , left the game after

getting kneed to the helmet after gaining 33 yards on seven carries ."
"true_label": ["PER", "PER", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O",

"O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O",
"O", "O"],

"predicted_label": ["PER", "PER", "O", "O", "O", "O", "ORG", "O", "O", "O", "O",
"O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O",
"O", "O", "O", "O"],

"total_reward": 0.9629629629629629
--------------------------------------------------------------------------------
"text": "SACRAMENTO 6 12 .333 8",
"true_label": ["ORG", "O", "O", "O", "O"],
"predicted_label": ["LOC", "O", "O", "O", "O"],
"total_reward": 0.8000000000000002
--------------------------------------------------------------------------------
"text": "Tampico port authorities said fishing restrictions were in place in

an area adjacent to the port because of a geophysical study being
carried out in deep waters of the region from the ship Kenda ."

"true_label": ["LOC", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O",
"O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O",
"O", "O", "O", "O", "O", "O", "O", "O", "MISC", "O"],

"predicted_label": ["ORG", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O",
"O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O",
"O", "O", "O", "O", "O", "O", "O", "O", "O", "O", "O",
"PER", "O"],

"total_reward": 0.9428571428571428
--------------------------------------------------------------------------------
"text": "BEIJING 1996-12-06",
"true_label": ["LOC", "O"],
"predicted_label": ["LOC", "O"],
"total_reward": 1.0
--------------------------------------------------------------------------------
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--------------------------------------------------------------------------------
"text": "Wei Ligang , a rising star of modern art in China , just had an

exhibition in mid-July , 2005 in Hong Kong .",
"true_label": ["PROPN", "PROPN", "PUNCT", "DET", "VERB", "NOUN", "ADP", "ADJ",

"NOUN", "ADP", "PROPN", "PUNCT", "ADV", "VERB", "DET", "NOUN",
"ADP", "PROPN", "PUNCT", "NUM", "ADP", "PROPN", "PROPN", "PUNCT"],

"predicted_label": ["PROPN", "PROPN", "PUNCT", "DET", "VERB", "NOUN", "ADP", "ADJ",
"NOUN", "ADP", "PROPN", "PUNCT", "ADV", "VERB", "DET", "NOUN",
"ADP", "PROPN", "PUNCT", "NUM", "ADP", "PROPN", "PROPN",
"PUNCT"],

"total_reward": 1.0
--------------------------------------------------------------------------------
"text": "What if Google Morphed Into GoogleOS ?",
"true_label": ["PRON", "SCONJ", "PROPN", "VERB", "ADP", "PROPN", "PUNCT"]
"predicted_label": ["PRON", "CCONJ", "PROPN", "VERB", "ADP", "PROPN", "PUNCT"]
"total_reward": 0.8571428571428571
--------------------------------------------------------------------------------
"text": "They know that the American advent implies for them a demotion ,

and an elevation of the Shiites and Kurds , and
they refuse to go quietly .",

"true_label": ["PRON", "VERB", "SCONJ", "DET", "ADJ", "NOUN", "VERB", "ADP",
"PRON", "DET", "NOUN", "PUNCT", "CCONJ", "DET", "NOUN", "ADP",
"DET", "PROPN", "CCONJ", "PROPN", "PUNCT", "CCONJ",
"PRON", "VERB", "PART", "VERB", "ADV", "PUNCT"]

"predicted_label": ["PRON", "VERB", "PRON", "DET", "ADJ", "NOUN", "VERB", "ADP",
"PRON", "DET", "NOUN", "PUNCT", "CCONJ", "DET", "NOUN",
"ADP", "DET", "PROPN", "CCONJ", "PROPN", "PUNCT", "CCONJ",
"PRON", "VERB", "ADP", "VERB", "ADV", "PUNCT"],

"total_reward": 0.9285714285714286
--------------------------------------------------------------------------------
"text": "...",
"true_label": ["SYM"]
"predicted_label": ["PUNCT"]
"total_reward": 0.0
--------------------------------------------------------------------------------
"text": "Can police trace a cell phone even if it is switched off ?"
"true_label": ["AUX", "NOUN", "VERB", "DET", "NOUN", "NOUN", "ADV",

"SCONJ", "PRON", "AUX", "VERB", "ADP", "PUNCT"]
"predicted_label": ["AUX", "ADJ", "NOUN", "DET", "NOUN", "NOUN",

"ADV", "CCONJ", "PRON", "AUX", "VERB", "ADP", "PUNCT"]
"total_reward": 0.7692307692307693
--------------------------------------------------------------------------------
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Multi-Label Classification

--------------------------------------------------------------------------------
"text": "FED EXPECTED TO ADD RESERVES VIA CUSTOMER RPS\n

The Federal Reserve is expected to enter\n
the government securities market to add reserves via customer\n
repurchase agreements, economists said.\n
They expected the amount to total around 1.5 billion to two\n
billion dlrs.\n
Economists added that the low rate on federal funds\n
indicates the Fed is unlikely to add funds agressively through\n
overnight system repurchases, unless it feels the need to calm\n
volatile financial markets.\n
Federal funds were trading at 7-1/8 pct, down from\n
yesterday’s average of 7.61 pct.\n \n\n",

"true_label": ["interest", "money-fx"],
"predicted_label": ["money-fx", "interest"],
"total_reward": 1.0
--------------------------------------------------------------------------------
"text": "NERCI &lt;NER> UNIT CLOSES OIL/GAS ACQUISITION\n

Nerco Inc said its oil and gas\n
unit closed the acquisition of a 47 pct working interest in the\n
Broussard oil and gas field from &lt;Davis Oil Co> for about 22.5\n
mln dlrs in cash.\n
Nerco said it estimates the field’s total proved developed\n
and undeveloped reserves at 24 billion cubic feet, or\n
equivalent, of natural gas, which more than doubles the\n
company’s previous reserves.\n
The field is located in southern Louisiana.\n \n\n",

"true_label": ["acq", "crude", "nat-gas"],
"predicted_label": ["crude"],
"total_reward": 0.5
--------------------------------------------------------------------------------
"text": "SOFTWARE SERVICES OF AMERICA INC &lt;SSOA.O> NET\n

3rd qtr Feb 28\n
Shr profit 14 cts vs loss four cts\n
Net profit 311,994 vs loss 66,858\n
Revs 2,229,273 vs 645,753\n
Nine mths\n
Shr profit 51 cts vs profit two cts\n
Net profit 1,126,673 vs profit 42,718\n
Revs 7,277,340 vs 1,378,372\n \n\n",

"true_label": ["earn"],
"predicted_label": ["earn"],
"total_reward": 1.0
--------------------------------------------------------------------------------
"text": "PORTUGUESE CONSUMER PRICES UP 1.4 PCT IN MARCH\n

Portugal’s consumer prices rose 1.4 pct\n
in March after a one pct increase in February and a 1.2 pct\n
rise in March 1986, the National Statistics Institute said.\n
The consumer price index (base 100 for 1976) rose to 772.0\n
from 761.3 in February and compared with 703.4 in March 1986.\n
This gave a year-on-year March inflation rate of 9.8 pct\n
against 9.5 pct in February and 12.2 pct in March 1986.\n
Measured as an annual average rate, inflation in March was\n
10.9 pct compared with 11.1 pct in February. The government\n
forecasts annual inflation of about eight pct this year.\n \n\n",

"true_label": ["cpi"],
"predicted_label": ["money-supply"],
"total_reward": 0.0
--------------------------------------------------------------------------------
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--------------------------------------------------------------------------------
"text": "a relay channel is one in which a source and destination use an

intermediate relay station in order to improve communication rates
we propose the study of relay channels with classical inputs and
quantum outputs and prove that a partial decode and forward strategy
is achievable we divide the channel uses into many blocks and build
codes in a randomized , block markov manner within each block the relay
performs a standard holevo schumacher westmoreland quantum measurement
on each block in order to decode part of the source ’s message and then
forwards this partial message in the next block the destination performs
a novel sliding window quantum measurement on two adjacent blocks in
order to decode the source ’s message this strategy achieves non trivial
rates for classical communication over a quantum relay channel",

"true_label": ["quant-ph", "cs.IT", "math.IT"],
"predicted_label": ["cs.IT", "math.IT"],
"total_reward": 0.8
--------------------------------------------------------------------------------
"text": "recently , social phenomena have received a lot of attention not only

from social scientists , but also from physicists , mathematicians and
computer scientists , in the emerging interdisciplinary field of complex
system science opinion dynamics is one of the processes studied ,
since opinions are the drivers of human behaviour , and play a crucial
role in many global challenges that our complex world and societies are
facing global financial crises , global pandemics , growth of cities ,
urbanisation and migration patterns , and last but not least important ,
climate change and environmental sustainability and protection opinion
formation is a complex process affected by the interplay of different
elements , including the individual predisposition , the influence of
positive and negative peer interaction \\( social networks playing
a crucial role in this respect \\) , the information each individual is
exposed to ,and many others several models inspired from those in use in
physics have been developed to encompass many of these elements , and to
allow for the identification of the mechanisms involved in the opinion
formation process and the understanding of their role , with the
practical aim of simulating opinion formation and spreading under various
conditions these modelling schemes range from binary simple models such
as the voter model, to multi dimensional continuous approaches here ,
we provide a review of recent methods , focusing on models employing
both peer interaction and external information , and emphasising the
role that less studied mechanisms , such as disagreement , has in
driving the opinion dynamics",

"true_label": ["physics.soc-ph", "cs.SI"],
"predicted_label": ["physics.soc-ph", "cs.SI"],
--------------------------------------------------------------------------------
"text": "we propose a new platform for implementing secure wireless ad hoc

networks our proposal is based on a modular architecture ,
with the software stack constructed directly on the ethernet layer
within our platform we use a new security protocol that we designed
to ensure mutual authentication between nodes and a secure key exchange
the correctness of the proposed security protocol is
ensured by guttman ’s authentication tests",

"true_label": ["cs.CR", "cs.NI"],
"predicted_label": ["cs.CR", "cs.NI"],
"total_reward": 1.0
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Question Answering

--------------------------------------------------------------------------------
"question": "What can increase the chances of flooding?",
"facts": ["if weather is stormy then there is a greater chance of rain",

"Rain is good, but lots of rain causes destructive flooding."],
"choices": {
"A": "filter feeders",
"B": "low tide",
"C": "permeable walls",
"D": "fortifying existing levees",
"E": "higher corn prices",
"F": "stormy weather",
"G": "Being over land",
"H": "feedback mechanisms"

},
"true_label": "F",
"predicted_label": "F",
"total_reward": 1.0
--------------------------------------------------------------------------------
"question": "How can animals like cyptosporidium be classified?",
"facts": ["Protozoa can be classified on the basis of how they move.",

"Cryptosporidium parvum is the hardest protozoa to kill."],
"choices": {
"A": "prokaryotic cells",
"B": "holding nutrients",
"C": "Laboratory",
"D": "how they move",
"E": "eukaryotic cells",
"F": "coelenterates",
"G": "melanin content",
"H": "angiosperm"

},
"true_label": "D",
"predicted_label": "A"
--------------------------------------------------------------------------------
"question": "What can magnets be used to do?",
"facts": ["a compass is used for determining direction",

"Magnets are used in compasses."],
"choices": {
"A": "capture prey",
"B": "moving over land",
"C": "feedback mechanisms",
"D": "Destroy magnets",
"E": "reproduce",
"F": "help other species benefit",
"G": "Direct a play",
"H": "Determine direction"

},
"true_label": "H",
"predicted_label": "H",
"total_reward": 1.0
--------------------------------------------------------------------------------

116



APPENDIX C

RL4LMs

C.1 Experimental Details

C.1.1 Crowdworking Details

Qualification round We ran a qualification round using the IMDB task. We opened the qualification
around to users from {AU, CA, NZ, GB, US} with 5K prior approved HITs and a minimum acceptance
rate of 97% on their previous HITs. We gathered judgments over 600 generations from 3 annotators
per generation. One of the authors of this paper also completed 17 random HITs to serve as a proxy
for “ground truth." After gathering these annotations, we selected workers who: 1) didn’t significantly
disagree with other annotators on the same instance more than 20% of the time; 2) who completed at
least 5 HITs; 3) who didn’t disagree with the author annotator on the 17 HITs by more than 1 point;
and 4) (likely) spent a reasonable amount of time reading the instructions/examples provided. In the
end, 56 annotators were qualified. Additional per-task details are provided in the per-task sections of
the Appendix.

Compensation details As per Amazon Mechanical Turk policy, annotators were compensated on a
per-HIT basis. In addition, we used a timing script to estimate hourly wages to ensure our target of
$15/hr was met. In cases where this minimum hourly rate was not met, we manually assigned bonuses.

C.1.2 GRUE Experiment Setup

We benchmark 5 training algorithms on 6 tasks (see Table 9.1) using either an encoder model (eg.
GPT-2) or encoder-decoder model (eg. T5). We train policies using PPO, NLPO with variations of
whether supervised pre-training is applied before RL fine-tuning and compare against supervised
policy. The choice of LM is based on the type of task. For IMDB text continuation, we use GPT-2
and T5 for rest of the tasks. We use two separate LM models as actor and critics networks (i.e. no
shared layers) in which the critic network has an additional linear layer mapping last token’s hidden
representation to a scalar value. We use AdamW optimizer [307] with fixed learning rate and no
scheduling.

C.1.3 IMDB
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Figure C.1: Results summary: Summarized results via automated metrics across all 7 GRUE tasks for each of
the 5 algorithms we consider, and human participant studies for the 5 tasks suitable for human studies. We
break up the metrics into task-specific, e.g. average positive sentiment for IMDB task, and naturalness metrics,
such as perplexity and human perceived coherence for the human rated metrics. This plot differs from Figure
9.2 as this one averages over multiple reward functions per each task.

Setup We consider IMDB dataset for the task of generating text with positive sentiment. The dataset
consists of 25k training, 5k validation and 5k test examples of movie review text with sentiment labels
of positive and negative. The input to the model is a partial movie review text (upto 64 tokens) that
needs to be completed (generating 48 tokens) by the model with a positive sentiment while retaining
fluency. For RL methods, we use a sentiment classifier [299] that is trained on pairs of text and labels
as a reward model which provides sentiment scores indicating how positive a given piece of text is.
For supervised Seq2Seq baselines, we consider only the examples with positive labels. We chose
GPT-2 as LM for this task as it is more suited for text continuation than encoder-decoder LMs (eg.
T5). We use top-k sampling with 𝐾 = 50 as the decoding method and for fair comparison, we keep
this setting for all methods. For PPO and NLPO models, we train for 64𝑘 steps in total and update
policy and value networks every 1280 steps with a mini-batch size of 64 and epochs of 5 per update.
We apply adaptive KL controllers with different target KLs of 0.02, 0.05, 0.2, 0.5, 1.0, inf with an
initial KL co-efficient of 𝛽 = 0.01. Table C.1 provides an in-depth summary of all hyperparameters
and other implementation details.

Results and Discussion

Target KL ablation Fig C.2 shows learning curves for PPO and NLPO in terms of episodic training
reward, corpus level sentiment scores and perplexity scores on validation set averaged for 5 random
seeds. It is seen that higher target KL of 0.2 is desired to achieve higher rewards but results in drifting
away from pre-trained LM and loses fluency. Therefore, a lower target KL (0.02 or 0.05) is required to
keep the LM closer to original LM. This is also seen in Table C.2 where we presented a comparative
analysis of final performance of all models.
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Model Params value

supervised batch size: 64
epochs: 10
learning rate: 0.00001

ppo steps per update: 1280
total number of steps: 64000
batch size: 64
epochs per update: 5
learning rate: 0.000001
discount factor: 0.99
gae lambda: 0.95
clip ratio: 0.2
value function coeff: 0.5

nlpo steps per update: 1280
total number of steps: 64000
batch size: 64
epochs per update: 5
learning rate: 0.000001
discount factor: 0.99
gae lambda: 0.95
clip ratio: 0.2
top mask ratio: 0.9
target update iterations: 5

decoding sampling: true
top k: 50
min length: 48
max new tokens: 48

tokenizer padding side: left
truncation side: left
max length: 64

Table C.1: IMDB Hyperparams: Table shows a list of all hyper-parameters and their settings

Training data size ablation We vary the amount of data used to train the reward classifier and
the supervised baseline model to understand whether it is more efficient to gather data to improve
reward model or to gather expert demonstrations for supervised learning. As observed in Table C.3,
improving the quality of reward function increases the performance on the overall task better than
training with more data for supervised training, indicating that improving reward models is efficient
than collect expert demonstrations for supervised training from a data efficiency perspective.

Discount factor ablation To understand the effect of discounted vs undiscounted (bandit)
environments, we report sentiment and perplexity scores for different values of discount factor (0.5,
0.95 and 1.0) in Table C.4 and observe that using a bandit environment (discount factor of 1.0) results
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Figure C.2: Learning Curves: Averaged learning curves over 5 different runs by varying target KL, shaded
regions indicate one standard deviation. (a) shows the rollout episodic total reward during training (b) shows
evolution of sentiment scores on the validation split (c) shows evolution of perplexity on the validation split.
From (a) and (b), it is seen that higher target KL (0.2) is desired to achieve higher rewards. However, this setting
drifts away from the original LM too much and loses fluency. Therefore a lower target KL (0.02 or 0.05) is
required to keep the model closer to original LM. Similar trends hold for NLPO but when compared to PPO, it
retains lower perplexities and is more stable even with higher KL targets, enabling higher sentiment scores.

in performance loss in the case of NLPO and reward hacking in the case of PPO, indicating that
discounted setting (with 0.95) is desired.

NLPO params Table. C.5 shows ablation on different hyperparameters in NLPO algorithm.

Human Participant Study Figure C.3 shows the IMDB instructions, example, and interface used
both for the qualification round, and then later, for the human evaluation experiments. Tables C.6,
C.7 show averaged results, annotator agreement, and the results of statistical significance tests to
determine which models output better generations when rated by humans.
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Target-KL Semantic and Fluency Metrics Diversity Metrics

Sentiment Score ↑ Perplexity ↓ MSTTR Distinct1 Distinct2 H1 H2 Unique1 Unique2

Zero-Shot 0.489 ± 0.006 32.171 ± 0.137 0.682 ± 0.001 0.042 ± 0.001 0.294 ± 0.001 8.656 ± 0.004 13.716 ± 0.003 5063 ± 14.832 47620 ± 238
Supervised 0.539 ± 0.004 35.472 ± 0.074 0.682 ± 0.001 0.047 ± 0.001 0.312 ± 0.002 8.755 ± 0.012 13.806 ± 0.016 5601 ± 57 51151 ± 345

PPO
0.02 0.530 ± 0.021 32.921 ± 0.322 0.680 ± 0.002 0.042 ± 0.001 0.293 ± 0.002 8.642 ± 0.015 13.676 ± 0.025 5042 ± 135 47554 ± 418
0.05 0.578 ± 0.022 33.469 ± 0.532 0.660 ± 0.021 0.044 ± 0.002 0.287 ± 0.011 8.553 ± 0.130 13.389 ± 0.356 5352 ± 251 46158 ± 2568
0.2 0.585 ± 0.006 33.627 ± 0.236 0.665 ± 0.005 0.044 ± 0.001 0.287 ± 0.008 8.584 ± 0.055 13.438 ± 0.124 5315 ± 171 46834 ± 1469
0.5 0.605 ± 0.023 33.497 ± 0.447 0.666 ± 0.013 0.043 ± 0.002 0.287 ± 0.008 8.575 ± 0.073 13.484 ± 0.244 5230 ± 363 46483 ± 1318
1.0 0.579 ± 0.025 33.161 ± 0.117 0.676 ± 0.002 0.042 ± 0.001 0.291 ± 0.007 8.625 ± 0.041 13.625 ± 0.089 5027 ± 173 47082 ± 1375
inf 0.847 ± 0.039 40.650 ± 2.154 0.566 ± 0.038 0.035 ± 0.006 0.200 ± 0.025 7.715 ± 0.289 11.763 ± 0.496 4380 ± 775 32462 ± 5020

PPO+supervised
0.5 0.617 ± 0.011 34.078 ± 0.253 0.672 ± 0.003 0.047 ± 0.002 0.308 ± 0.007 8.725 ± 0.054 13.711 ± 0.068 5513 ± 173 50410 ± 1277
inf 0.829 ± 0.049 46.906 ± 2.168 0.615 ± 0.037 0.037 ± 0.005 0.225 ± 0.04 8.072 ± 0.373 12.537 ± 0.707 4480 ± 443 35583 ± 6631

NLPO
0.02 0.530 ± 0.020 32.824 ± 0.227 0.680 ± 0.002 0.043 ± 0.001 0.295 ± 0.004 8.658 ± 0.031 13.689 ± 0.050 5129 ± 169 47863 ± 840
0.05 0.581 ± 0.017 32.298 ± 0.362 0.674 ± 0.004 0.043 ± 0.001 0.295 ± 0.008 8.647 ± 0.040 13.638 ± 0.099 5110 ± 121 47911 ± 1478
0.2 0.591 ± 0.012 32.602 ± 0.261 0.663 ± 0.015 0.044 ± 0.001 0.287 ± 0.012 8.586 ± 0.096 13.442 ± 0.240 5314 ± 166 46665 ± 2124
0.5 0.611 ± 0.014 32.241 ± 0.932 0.650 ± 0.035 0.042 ± 0.002 0.271 ± 0.013 8.389 ± 0.270 13.081 ± 0.741 5159 ± 536 43840 ± 1217
1.0 0.637 ± 0.013 32.667 ± 0.631 0.677 ± 0.014 0.044 ± 0.002 0.288 ± 0.010 8.588 ± 0.100 13.484 ± 0.236 5205 ± 189 46344 ± 2688
inf 0.859 ± 0.041 37.553 ± 3.22 0.567 ± 0.037 0.036 ± 0.007 0.205 ± 0.034 7.725 ± 0.326 11.772 ± 0.571 4568 ± 1046 33056 ± 6365

NLPO+supervised
1.0 0.645 ± 0.027 33.191 ± 0.187 0.656 ± 0.014 0.049 ± 0.005 0.3 ± 0.026 8.648 ± 0.213 13.396 ± 0.331 6053 ± 609 49468 ± 4745
inf 0.853 ± 0.106 36.812 ± 0.207 0.427 ± 0.081 0.054 ± 0.019 0.205 ± 0.077 6.82 ± 1.0 9.684 ± 1.475 7788 ± 2718 35213 ± 13349

Table C.2: Target KL Ablations: Mean and standard deviations over 5 random seeds is reported for sentiment
scores along with fluency and diversity metrics. It is seen from perplexity scores that a lower target KL constraint
is desired to keep the model closer to the original model. On the otherhand, a higher target KL yields higher
sentiment scores at the cost of fluency. inf KL penalty (target KL of inf), model simply learns to generate
positive phrases (eg: "I highly recommend this movie to all!", "worth watching") regardless of the context

Perc Data (size) Semantic and Fluency Metrics Diversity Metrics

Sentiment Score ↑ Perplexity ↓ MSTTR Distinct1 Distinct2 H1 H2 Unique1 Unique2

Zero-Shot 0.489 ± 0.006 32.371 ± 0.137 0.682 ± 0.001 0.042 ± 0.001 0.294 ± 0.001 8.656 ± 0.004 13.716 ± 0.003 5063 ± 14.832 47620 ± 238

Supervised
0.0 (0k) 0.489 ± 0.006 32.371 ± 0.137 0.682 ± 0.001 0.042 ± 0.001 0.294 ± 0.001 8.656 ± 0.004 13.716 ± 0.003 5063 ± 14 47620 ± 238
0.1 (1k) 0.531 ± 0.005 34.846 ± 0.123 0.685 ± 0.001 0.045 ± 0.001 0.313 ± 0.004 8.775 ± 0.023 13.854 ± 0.032 5215 ± 62 51125 ± 685
0.5 (5k) 0.536 ± 0.006 35.008 ± 0.229 0.684 ± 0.001 0.047 ± 0.000 0.314 ± 0.002 8.764 ± 0.010 13.837 ± 0.0178 5489 ± 44 51284 ± 576
1.0 (10k) 0.539 ± 0.004 35.472 ± 0.074 0.682 ± 0.001 0.047 ± 0.001 0.312 ± 0.002 8.755 ± 0.012 13.806 ± 0.016 5601 ± 57 51151 ± 345

PPO
0.0 (0k) 0.492 ± 0.01 33.57 ± 0.323 0.69 ± 0.02 0.047 ± 0.001 0.321 ± 0.015 8.816 ± 0.149 13.866 ± 0.36 5629 ± 240 52911 ± 1786
0.1 (2k) 0.598 ± 0.017 35.929 ± 1.397 0.698 ± 0.009 0.051 ± 0.003 0.339 ± 0.012 8.968 ± 0.083 14.013 ± 0.158 6173 ± 360 55918 ± 2641
0.5 (10k) 0.593 ± 0.026 35.95 ± 2.177 0.666 ± 0.073 0.049 ± 0.003 0.314 ± 0.046 8.635 ± 0.634 13.432 ± 1.173 5882 ± 356 51403 ± 9297
1.0 (20k) 0.605 ± 0.023 33.497 ± 0.447 0.666 ± 0.013 0.043 ± 0.002 0.287 ± 0.008 8.575 ± 0.073 13.484 ± 0.244 5230 ± 363 46483 ± 1318

NLPO
0.0 (0k) 0.487 ± 0.01 32.572 ± 0.165 0.685 ± 0.003 0.043 ± 0.001 0.299 ± 0.003 8.691 ± 0.023 13.787 ± 0.034 5126 ± 177 48475 ± 491
0.1 (2k) 0.599 ± 0.007 33.536 ± 0.378 0.67 ± 0.01 0.043 ± 0.001 0.289 ± 0.009 8.608 ± 0.061 13.576 ± 0.192 5125 ± 220 46755 ± 1449
0.5 (10k) 0.617 ± 0.021 33.409 ± 0.354 0.668 ± 0.005 0.041 ± 0.001 0.281 ± 0.006 8.552 ± 0.044 13.533 ± 0.091 4926 ± 183 45256 ± 1022
1.0 (20k) 0.637 ± 0.013 32.667 ± 0.631 0.677 ± 0.014 0.044 ± 0.002 0.288 ± 0.010 8.588 ± 0.100 13.484 ± 0.236 5205 ± 189 46344 ± 2688

Table C.3: Evaluation of GPT2 with different algorithms on IMDB sentiment text continuation task, data
budget ablations: Mean and standard deviations over 5 random seeds is reported for sentiment scores along
with fluency and diversity metrics. This table measures performance differences as a function of the fraction of
the dataset that has been used. In the case of the RL approaches, this measures how much data is used to train
the reward classifier, and for the supervised method it directly measures fraction of positive reviews used for
training. We note that using even a small fraction of data to train a reward classifier proves to be effective in
terms of downstream task performance while this is not true for supervised approaches. This lends evidence to
the hypothesis that adding expending data budget on a reward classifier is more effective than adding more gold
label expert demonstrations.
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Gamma Semantic and Fluency Metrics Diversity Metrics

Sentiment Score ↑ Perplexity ↓ MSTTR Distinct1 Distinct2 H1 H2 Unique1 Unique2

Zero-Shot 0.489 ± 0.006 32.371 ± 0.137 0.682 ± 0.001 0.042 ± 0.001 0.294 ± 0.001 8.656 ± 0.004 13.716 ± 0.003 5063 ± 14.832 47620 ± 238

PPO
0.5 0.511 ± 0.023 35.945 ± 0.92 0.69 ± 0.001 0.044 ± 0.002 0.304 ± 0.007 8.726 ± 0.041 13.793 ± 0.055 5304 ± 285 49668± 1496
0.95 0.605 ± 0.023 33.497 ± 0.447 0.666 ± 0.013 0.043 ± 0.002 0.287 ± 0.008 8.575 ± 0.073 13.484 ± 0.244 5230 ± 363 46483 ± 1318
1.0 0.651 ± 0.05 41.035 ± 2.885 0.691 ± 0.017 0.042 ± 0.004 0.295 ± 0.031 8.697 ± 0.237 13.563 ± 0.396 5127 ± 460 48319 ± 5650

NLPO
0.5 0.49 ± 0.01 37.279 ± 5.137 0.688 ± 0.01 0.045 ± 0.002 0.312 ± 0.016 8.746 ± 0.113 13.873 ± 0.25 5395 ± 192 50828 ± 2506
0.95 0.637 ± 0.013 32.667 ± 0.631 0.677 ± 0.014 0.044 ± 0.002 0.288 ± 0.010 8.588 ± 0.100 13.484 ± 0.236 5205 ± 189 46344 ± 2688
1.0 0.624 ± 0.039 43.72 ± 2.475 0.662 ± 0.019 0.05 ± 0.007 0.3 ± 0.038 8.624 ± 0.277 13.360 ± 0.537 6337 ± 921 49441 ± 6520

Table C.4: Evaluation of GPT2 with different algorithms on IMDB sentiment text continuation task,
discount factor ablations: Mean and standard deviations over 5 random seeds is reported for sentiment scores
along with fluency and diversity metrics. This table measures performance differences for the discount factor.
We note that most NLP approaches using RL follow the style of [240, 259] and use a discount factor of 1. This
is equivalent to reducing the generation MDP to a bandit feedback environment and causes performance loss (in
the case of NLPO) and reward hacking and training instability (in the case of PPO).

Hyperparams Semantic and Fluency Metrics Diversity Metrics

Sentiment Score ↑ Perplexity ↓ MSTTR Distinct1 Distinct2 H1 H2 Unique1 Unique2

Target Update Iterations `
1 0.594 ± 0.018 32.671 ± 0.201 0.669 ± 0.008 0.042 ± 0.002 0.284 ± 0.007 8.575 ± 0.064 13.503 ± 0.181 4986 ± 265 45916± 1168
10 0.622 ± 0.014 32.729 ± 0.567 0.659 ± 0.019 0.042 ± 0.002 0.274 ± 0.007 8.489 ± 0.106 13.31 ± 0.272 5138 ± 385 43989 ± 1120
20 0.637 ± 0.013 32.667 ± 0.631 0.677 ± 0.014 0.044 ± 0.002 0.288 ± 0.010 8.588 ± 0.100 13.484 ± 0.236 5205 ± 189 46344 ± 2688
50 0.603 ± 0.015 33.397 ± 0.325 0.67 ± 0.006 0.043 ± 0.001 0.287 ± 0.004 8.605 ± 0.041 13.54 ± 0.116 5228 ± 113 46418 ± 685

Top-p mask
0.1 0.579 ± 0.021 32.451 ± 0.243 0.67 ± 0.008 0.042 ± 0.001 0.283 ± 0.01 8.569 ± 0.084 13.515 ± 0.195 5018 ± 47 45760 ± 1579
0.3 0.588 ± 0.019 32.451 ± 0.303 0.666 ± 0.007 0.043 ± 0.001 0.285 ± 0.004 8.568 ± 0.032 13.482 ± 0.172 5201 ± 247 46357± 539
0.5 0.588 ± 0.01 32.447 ± 0.393 0.669 ± 0.001 0.044 ± 0.003 0.291 ± 0.008 8.614 ± 0.053 13.535 ± 0.06 5305± 384 47251 ± 1226
0.7 0.619 ± 0.013 32.373 ± 0.329 0.663 ± 0.008 0.043 ± 0.001 0.28 ± 0.006 8.533 ± 0.043 13.366 ± 0.129 5186 ± 216 45149 ± 1452
0.9 0.637 ± 0.013 32.667 ± 0.631 0.677 ± 0.014 0.044 ± 0.002 0.288 ± 0.010 8.588 ± 0.100 13.484 ± 0.236 5205 ± 189 46344 ± 2688

Table C.5: Evaluation of GPT2 with different algorithms on IMDB sentiment text continuation task,
NLPO hyperparameter ablations: Mean and standard deviations over 5 random seeds is reported for sentiment
scores along with fluency and diversity metrics. This table shows results of NLPO’s stability to the unique
hyperparameters introduced in the algorithm - all other parameters held constant from the best PPO model. The
number of iterations after which the masking model syncs with the policy and the top-p nucleus percentage for
the mask model itself. We see that in general, the higher the top-p mask percentage, the better the performance.
For target update iterations, performance is low if the mask model is not updated often enough or if it updated
too often.

Algorithm Unique N Coherence Sentiment
Value Alpha Skew Value Alpha Skew

NLPO with KL 27 3.49 0.196 3.497 3.61 0.2 3.601
NLPO without KL 29 3.16 0.21 3.158 4.41 0.158 4.403
PPO without KL 27 3.16 0.17 3.163 4.36 0.196 4.363
PPO with KL 29 3.46 0.124 3.462 3.58 0.116 3.575
Zero Shot 28 3.6 0.162 3.591 3.1 0.13 3.097
Supervised 29 3.51 0.192 3.512 3.43 0.2 3.428
Human 27 4.13 0.159 4.128 3.01 0.31 3.017
Supervised+PPO 22 3.45 0.211 3.147 3.64 0.21 3.161
Supervised+NLPO 22 3.48 0.181 3.226 3.73 0.22 3.047

Table C.6: IMDB Human Study Results: Results of the human subject study showing the number of
participants N, average Likert scale value for coherence and sentiment, Krippendorf’s alpha showing inter-
annotator agreement, and Skew. For each model a total of 100 samples were drawn randomly from the test set
and rated by 3 annotators each, resulting in 300 data points per algorithm.
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C.1 Experimental Details

Figure C.3: IMDB Human Study Setup: Instructions, example, and interface for the IMDB sentiment
completion task.
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Group 1 Group 2 Coherence Sentiment
Diff (G2-G1) p-values Diff (G2-G1) p-values

PPO with KL PPO without KL -0.3 0.035 0.783 0.001
PPO with KL NLPO with KL 0.03 0.9 0.027 0.9
PPO with KL NLPO without KL -0.3 0.035 0.827 0.001
PPO with KL Supervised 0.05 0.9 -0.15 0.591
PPO with KL Human 0.667 0.001 -0.567 0.001
PPO with KL Zero Shot 0.137 0.776 -0.483 0.001
PPO without KL NLPO with KL 0.33 0.013 -0.757 0.001
PPO without KL NLPO without KL 0.001 0.9 0.043 0.9
PPO without KL Supervised 0.35 0.006 -0.933 0.001
PPO without KL Human 0.967 0.009 -1.35 0.001
PPO without KL Zero Shot 0.437 0.001 -1.267 0.001
NLPO with KL NLPO without KL -0.33 0.013 0.8 0.001
NLPO with KL Supervised 0.02 0.9 -0.177 0.404
NLPO with KL Human 0.637 0.001 -0.593 0.001
NLPO with KL Zero Shot 0.107 0.9 -0.51 0.001
NLPO without KL Supervised 0.35 0.006 -0.977 0.001
NLPO without KL Human 0.967 0.001 -1.393 0.001
NLPO without KL Zero Shot 0.437 0.001 -1.31 0.001
Supervised Human 0.617 0.001 -0.417 0.001
Supervised Zero Shot 0.087 0.9 -0.333 0.0027
Human Zero Shot -0.53 0.001 0.083 0.9
Supervised+PPO Supervised+NLPO 0.03 0.9 0.09 0.035
Supervised+PPO NLPO with KL 0.04 0.9 -0.03 0.9
Supervised+PPO NLPO without KL -0.29 0.001 0.77 0.001
Supervised+PPO PPO without KL -0.29 0.006 0.72 0.001
Supervised+PPO PPO with KL 0.01 0.9 -0.06 0.001
Supervised+PPO Zero Shot 0.15 0.035 -0.54 0.001
Supervised+PPO Supervised 0.06 0.001 -0.21 0.001
Supervised+PPO Human 0.68 0.001 -0.63 0.001
Supervised+NLPO NLPO with KL 0.01 0.9 -0.12 0.001
Supervised+NLPO NLPO without KL -0.32 0.001 0.68 0.001
Supervised+NLPO PPO without KL -0.32 0.035 0.63 0.001
Supervised+NLPO PPO with KL -0.02 0.9 -0.15 0.006
Supervised+NLPO Zero Shot -0.12 0.001 -0.63 0.001
Supervised+NLPO Supervised 0.03 0.9 -0.3 0.001
Supervised+NLPO Human 0.65 0.001 -0.72 0.006

Table C.7: IMDB Human Study Tukey Results: Results of an post-hoc Tukey HSD Test for difference in
means between pairs of algorithms (Group 2 - Group 1) and corresponding 𝑝-values. Individually statistically
significant results are bolded and are used to discuss results in the analysis. Overall 𝑝-values showing that
there is a significant difference in means between the models via a one-way ANOVA test are significant with
𝑝 � 0.05 for both coherence and sentiment.
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Qualitative Results

We show sample generations from each of the algorithms for three randomly picked prompts below.
Sample 1
Prompt: A man and his wife are not getting along because of the wife’s jealousy and drinking

problems. When the wife disappears, her sister begins a vigorous search involving the
Zero-Shot: husband’s sister, which leads several men to a remote cabin and then a boat. The wife

and her husband then start to see the same things. Finally, a strange woman is driving out
to her cabin and discovers the husband’s disappearance but

References: local police, state government, and a television crime show. What she finds out stuns
the entire community. Good drama with lots of fine performances; based on a true story

PPO: police and the local public. At the end, the woman is killed and the wife is found naked and
with a red head tattooed on her back. This is part of a special feature called"On the Road,
Hidden" which was

PPO-no-KL: police and other local governments. Written by G. Scott Fitzgerald, who also stars in
this production, "A Very Merry Christmas" is a wonderful family movie with a wonderful
soundtrack and wonderful characters. It brings home the true beauty of small-

NLPO: mother while the brother goes under. After all, his sister, who was apparently kidnapped
but who turns out to be a man, is no longer in her place. If a film that was made in the
1950s

NLPO-no-KL: friends of the wife, and also the friend of the wife of the woman that is missing,
and eventually he begins to find that she has gone to Germany and he has made a very good
friend. There is a good scene between John and

Supervised: amily tree. The widower, now widowed, returns, the daughter, daughter is not pleased
when his wife is mistaken for one of her sons, and the patriarch, then a wealthy man, falls
victim to a jealous husband. The

Sample 2
Prompt: A very credible and unsettling movie portraying the effects of war on the general public,

Shame gives us a chilling understanding oh Ingmar Bergman’s beliefs. The absence of color
and sound (as in a soundtrack) helps to give the film a more realistic feeling. There is no
soft or hard lighting or a variety of camera angles to give the story a charming or dramatic
effect. Everything is very simply portrayed as it would be in reality. At times the
storyline was confusing, but perhaps in order to give a sense of the characters’ frame of
mind how they too do now know what is happening or why. The simplicity of the

Zero-Shot: camera work is at once apparent and fascinating in the manner in which it affects the
way things are portrayed. In other films these two have been referred to from time to time
in a form and manner more suited to the screen. The film shows

References: film made it somewhat boring, but I could understand how the director is trying not
to glamorize the story and points. He depicted the harsh and unsettling events and effects
of war. In the beginning the characters were introduced and shown as content with the
lighter settings

PPO: characters relationships is so engrossing and the great and unique story presented by each
pair of brothers and sisters creates a truly gripping and enjoyable experience. To put it
simply, I strongly recommend to everyone who plays the role to buy this DVD!!!

PPO-no-KL: movie helps it to flow along in a believable way. Rating 4 out of 5 Great Movie! I
highly recommend these movies! I highly recommend these movies! Rating 5 out of 5 Great
Movie! I highly recommend these movies! Rating 10 of"

NLPO: novel makes it one of the first books I have read by a British actor. It is a fun way for
someone who likes their books, like me, to sit through a novel. If you like to read novels,
check it out.

NLPO-no-KL: setting makes the final product very enjoyable to watch. Highly recommended!! ~
Michael Bowerman, SPSA Film Festival Host, SPSA, WA (December 17, 2006), 8/17/2006 Great
photography, good acting,

Supervised: "Dakota Clan" and his sister, the two become friends with Ted Masters who soon finds
the chance to fly back to their home land and go back to save his brother’s life and his
family. The

Sample 3
Prompt: Shakespearean language is wild and rambling, saturated in multiple meanings, word play

and metaphor. To be understood it must be wrangled and tamed by an actor with the strength
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and knowledge to do so. When an actor fails, the words pour forth in a torrent of
incomprehensible words, but when he succeeds, the English language springs to life with an
immediacy and vibrancy that takes your breath away. Al Pacino is one such actor, and here
displays an incredible level of clarity and control that, were there any justice,

Zero-Shot: might still be seen in the world today. This movie, like "Vacation", is an effort at
telling the tale of two families from different races. One is African but never grew up the
other. One of them, a man

References: would sweep every award in the offering. He meets the challenge of presenting Shylock
head on, and delivers an extraordinarily subtle and nuanced performance. It would be a
crime if we never got the opportunity to see what he does with King Lear.<br /><br />The
supporting cast

PPO: would have made him an instant-classic. This movie captures the spirit of childhood and has
everyone in the world watching it. It’s a love story and it’s really heartbreaking. And at
the same time, it’s a classic. It

PPO-no-KL: will bring victory to the fight against hatred and extremism. Al Pacino is a very
beautiful, well executed actor who brings an absolute intensity and sensibility to his
portrayal of love and loyalty. A must see! Recommended! Also, an Excellent

NLPO: I would watch and enjoy. 7/10, Oscar Wilde is always a pleasure to see. A must see. Highly
recommend. Highly recommend! One of my top ten films of all time. A must see!!

NLPO-no-KL: the whole film would have fallen to the same fate, just as it did just a couple
hundred years ago. Don’t miss it. It’s a real classic. Highly Recommended. * outta five
stars for it!

Supervised: his performance (so far) would seem mere shadow. He is truly in the middle of a movie
, and this film is one of those films where he can be convincing in it (and his trademark
acting, as you can see in the

C.1.4 CommonGen

Setup CommonGen [293] deals with task of generating coherent sentences describing an input set
of concepts (eg. "a man is throwing a frisbee"). For training RL methods, we consider 3 traditional
lexical rewards namely Rouge-1, Rouge-avg (which is an average of Rouge-1, 2 and L) and meteor.
Additionally, we also train with task-specific rewards such as CIDEr [281], SPICE [282] and SPiDer
[308] which is a just a linear combination of both with equal weights. We chose T5-base as the base
LM since it is well-suited for structure to text tasks. We additionally note that concept set inputs are
prefixed with "generate a sentence with:" to encourage exploration.

During our initial experiments when fine-tuning directly on LM, we observed that policy learns to
repeat the prompted concepts in order to maximize rewards resulting in a well-known problem of
reward hacking. To mitigate this, we add a penalty score of −1 to final task reward if the n-grams
of prompt text overlaps with generated text. In contrast, when initialized with a supervised policy,
this problem is not seen and hence penalty score is not applied. We use beam search as the decoding
method during evaluation whereas for rollouts, we use top k sampling to favor exploration over
exploitation. Table C.8 provides an in-depth summary of setting of hyperparameter values along with
other implementation details.

Results and Discussion Tables C.10, C.9 presents our benchmarking results with 6 reward functions
along with supervised baseline performances on dev and test sets respectively. Our main finding is
that warm-started initial policies are crucial for learning to generate coherent sentences with common
sense. Without warm-start, policies suffer from reward hacking despite application of repetition
penalty and task-specific metrics such as CIDer etc. Further, we find that RL fine-tuned models obtain
very high concept coverage which is also seen in Table C.1.4. Supervised models often tend to miss
few concepts in its generation compared to RL methods.
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Model Params value

supervised batch size: 8
epochs: 4
learning rate: 0.00001
learning rate scheduler: cosine
weight decay: 0.01

ppo/ nlpo steps per update: 1280
total number of steps: 256000
batch size: 64
epochs per update: 5
learning rate: 0.000002
entropy coefficient: 0.01
initial kl coeff: 0.001
target kl: 2.0
discount factor: 0.99
gae lambda: 0.95
clip ratio: 0.2
value function coeff: 0.5
top mask ratio: 0.9
target update iterations: 20

supervised+ ppo (or nlpo) steps per update: 1280
total number of steps: 128000
batch size: 64
epochs per update: 5
learning rate: 0.000002
entropy coefficient: 0.01
initial kl coeff: 0.01
target kl: 1.0
discount factor: 0.99
gae lambda: 0.95
clip ratio: 0.2
value function coeff: 0.5
top mask ratio: 0.9
target update iterations: 20

decoding num beams: 5
min length: 5
max new tokens: 20

tokenizer padding side: left
max length: 20

Table C.8: CommonGen Hyperparams: Table shows a list of all hyper-parameters and their settings
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Tasks _ Lexical and Semantic Metrics
Alg LM Reward function Rouge-2 Rouge-L Bleu (n=3) Bleu (n=4) Meteor CIDEr SPICE Coverage

CommonGen

Zero-Shot T5 0.016 0.264 0.029 0.006 0.203 6.200 0.115 91.070

PPO T5 Rouge-1 0.085 ± 0.008 0.354 ± 0.004 0.161 ± 0.011 0.087 ± 0.009 0.235 ± 0.002 8.673 ± 0.234 0.157 ± 0.001 88.544 ± 2.36
T5 Rouge-Avg 0.093 ± 0.005 0.351 ± 0.001 0.169 ± 0.032 0.097 ± 0.017 0.224 ± 0.012 8.212 ± 1.329 0.159 ± 0.011 82.584 ± 2.569
T5 Meteor 0.091 ± 0.008 0.308 ± 0.007 0.166 ± 0.016 0.088 ± 0.013 0.220 ± 0.006 7.251 ± 0.453 0.161 ± 0.007 79.718 ± 2.267
T5 SPice 0.065 ± 0.003 0.302 ± 0.002 0.115 ± 0.063 0.067 ± 0.041 0.193 ± 0.014 6.571 ± 1.312 0.175 ± 0.011 69.340 ± 3.617
T5 CiDer 0.066 ± 0.003 0.304 ± 0.002 0.132 ± 0.057 0.074 ± 0.036 0.211 ± 0.009 6.877 ± 1.218 0.143 ± 0.017 80.114 ± 4.852
T5 SPider 0.117 ± 0.005 0.352 ± 0.007 0.224 ± 0.014 0.137 ± 0.011 0.226 ± 0.01 9.162 ± 0.539 0.186 ± 0.006 73.374 ± 6.073

NLPO T5 Rouge-1 0.087 ± 0.002 0.339 ± 0.009 0.127 ± 0.048 0.069 ± 0.035 0.213 ± 0.002 6.962 ± 0.883 0.145 ± 0.022 80.89 ± 9.544
T5 Rouge-Avg 0.095 ± 0.001 0.338 ± 0.002 0.159 ± 0.02 0.093 ± 0.013 0.216 ± 0.009 7.55 ± 0.688 0.153 ± 0.008 77.944 ± 2.770
T5 Meteor 0.110 ± 0.005 0.332 ± 0.003 0.214 ± 0.007 0.124 ± 0.007 0.235 ± 0.004 8.669 ± 0.164 0.173 ± 0.002 82.007 ± 1.012
T5 SPice 0.014 ± 0.006 0.242 ± 0.001 0.037 ± 0.011 0.018 ± 0.007 0.156 ± 0.007 4.685 ± 0.283 0.168 ± 0.008 56.998 ± 3.548
T5 CiDer 0.046 ± 0.001 0.241 ± 0.003 0.078 ± 0.028 0.043 ± 0.016 0.143 ± 0.018 3.964 ± 0.792 0.103 ± 0.012 49.606 ± 7.971
T5 SPider 0.060 ± 0.006 0.258 ± 0.001 0.090 ± 0.008 0.056 ± 0.005 0.151 ± 0.022 4.411 ± 0.837 0.123 ± 0.022 49.230 ± 10.468

Supervised T5 0.215 ± 0.001 0.438 ± 0.001 0.444 ± 0.001 0.329 ± 0.001 0.321 ± 0.001 16.385 ± 0.046 0.299 ± 0.001 94.476 ± 0.172

Supervised + PPO T5 Rouge-1 0.232 ± 0.002 0.453 ± 0.002 0.454 ± 0.006 0.338 ± 0.006 0.320 ± 0.002 16.233 ± 0.159 0.288 ± 0.004 96.412 ± 0.424
T5 Rouge-Avg 0.230 ± 0.001 0.450 ± 0.001 0.448 ± 0.005 0.334 ± 0.005 0.319 ± 0.001 16.069 ± 0.167 0.287 ± 0.003 96.116 ± 0.679
T5 Meteor 0.234 ± 0.002 0.450 ± 0.003 0.462 ± 0.007 0.342 ± 0.007 0.327 ± 0.001 16.797 ± 0.152 0.295 ± 0.001 97.690 ± 0.371
T5 SPice 0.227 ± 0.004 0.447 ± 0.003 0.450 ± 0.007 0.336 ± 0.008 0.319 ± 0.002 16.208 ± 0.249 0.288 ± 0.003 96.492 ± 0.29
T5 CiDer 0.224 ± 0.003 0.446 ± 0.003 0.427 ± 0.012 0.309 ± 0.01 0.316 ± 0.004 15.497 ± 0.428 0.283 ± 0.004 96.344 ± 0.547
T5 SPider 0.226 ± 0.003 0.448 ± 0.002 0.436 ± 0.005 0.319 ± 0.004 0.317 ± 0.003 15.678 ± 0.192 0.281 ± 0.003 96.154 ± 0.426

Supervised + NLPO T5 Rouge-1 0.229 ± 0.002 0.450 ± 0.001 0.454 ± 0.005 0.338 ± 0.004 0.320 ± 0.003 16.206 ± 0.175 0.289 ± 0.002 96.342 ± 0.572
T5 Rouge-Avg 0.232 ± 0.003 0.451 ± 0.002 0.458 ± 0.01 0.342 ± 0.009 0.321 ± 0.003 16.351 ± 0.335 0.290 ± 0.005 95.998 ± 0.496
T5 Meteor 0.231 ± 0.003 0.449 ± 0.002 0.454 ± 0.007 0.334 ± 0.008 0.326 ± 0.002 16.574 ± 0.269 0.292 ± 0.003 97.374 ± 0.457
T5 SPice 0.223 ± 0.002 0.442 ± 0.001 0.435 ± 0.011 0.321 ± 0.010 0.315 ± 0.004 15.747 ± 0.401 0.283 ± 0.005 96.25 ± 0.313
T5 CiDer 0.226 ± 0.002 0.447 ± 0.004 0.433 ± 0.007 0.315 ± 0.008 0.318 ± 0.003 15.741 ± 0.170 0.285 ± 0.001 96.354 ± 0.971
T5 SPider 0.226 ± 0.004 0.447 ± 0.003 0.434 ± 0.006 0.316 ± 0.006 0.319 ± 0.002 15.739 ± 0.311 0.284 ± 0.003 96.333 ± 0.644

Table C.9: CommonGen test evaluation Table shows official scores obtained from CommonGen hold-out
evaluation. The most important result is that RL fine-tuning on a supervised model yields better performance
across most metrics especially Coverage which indicates the ratio of concepts covered in generated texts

Tasks _ Lexical and Semantic Metrics
Alg Reward Function Top k LM Rouge-1 Rouge-2 Rouge-L Rouge-LSum Meteor BLEU BertScore Cider Spice

CommonGen

Zero-Shot T5 0.415 0.016 0.270 0.270 0.179 0.0 0.854 0.640 0.231

PPO Rouge-1 50 T5 0.537 ± 0.004 0.093 ± 0.012 0.380 ± 0.006 0.380 ± 0.006 0.235 ± 0.005 0.016 ± 0.002 0.896 ± 0.001 0.950 ± 0.015 0.318 ± 0.016

Rouge-Avg 50 T5 0.519 ± 0.0185 0.102 ± 0.007 0.377 ± 0.013 0.376 ± 0.014 0.225 ± 0.024 0.020 ± 0.002 0.897 ± 0.005 0.921 ± 0.102 0.328 ± 0.009

Meteor 50 T5 0.411 ± 0.009 0.090 ± 0.008 0.304 ± 0.006 0.304 ± 0.006 0.210 ± 0.005 0.029 ± 0.004 0.875 ± 0.007 0.638 ± 0.048 0.259 ± 0.017

SPice 50 T5 0.439 ± 0.035 0.079 ± 0.045 0.323 ± 0.036 0.323 ± 0.036 0.183 ± 0.022 0.012 ± 0.009 0.891 ± 0.005 0.777 ± 0.140 0.400 ± 0.012

CiDer 50 T5 0.453 ± 0.038 0.081 ± 0.037 0.326 ± 0.033 0.326 ± 0.033 0.203 ± 0.022 0.017 ± 0.009 0.885 ± 0.008 0.770 ± 0.134 0.291 ± 0.036

SPider 50 T5 0.512 ± 0.008 0.141 ± 0.007 0.388 ± 0.002 0.388 ± 0.003 0.242 ± 0.007 0.032 ± 0.003 0.902 ± 0.001 1.045 ± 0.034 0.380 ± 0.006

NLPO Rouge-1 50 T5 0.499 ± 0.012 0.089 ± 0.003 0.328 ± 0.007 0.328 ± 0.007 0.198 ± 0.002 0.021 ± 0.001 0.872 ± 0.005 0.815 ± 0.009 0.305 ± 0.008

Rouge-Avg 50 T5 0.47 ± 0.01 0.096 ± 0.004 0.312 ± 0.006 0.312 ± 0.006 0.202 ± 0.008 0.025 ± 0.002 0.843 ± 0.013 0.816 ± 0.026 0.299 ± 0.007

Meteor 50 T5 0.389 ± 0.013 0.1 ± 0.004 0.293 ± 0.008 0.293 ± 0.008 0.226 ± 0.024 0.035 ± 0.004 0.832 ± 0.018 0.691 ± 0.04 0.266 ± 0.016

SPice 50 T5 0.329 ± 0.015 0.036 ± 0.008 0.247 ± 0.013 0.247 ± 0.013 0.137 ± 0.009 0.006 ± 0.002 0.817 ± 0.024 0.515 ± 0.033 0.323 ± 0.021

CiDer 50 T5 0.515 ± 0.006 0.143 ± 0.008 0.387 ± 0.006 0.308 ± 0.006 0.19 ± 0.001 0.019 ± 0.001 0.865 ± 0.015 0.726 ± 0.018 0.282 ± 0.009

SPider 50 T5 0.393 ± 0.008 0.086 ± 0.012 0.297 ± 0.007 0.297 ± 0.007 0.183 ± 0.007 0.02 ± 0.003 0.842 ± 0.019 0.717 ± 0.026 0.297 ± 0.019

Supervised T5 0.503 ± 0.001 0.175 ± 0.001 0.411 ± 0.001 0.411 ± 0.001 0.309 ± 0.001 0.069 ± 0.001 0.929 ± 0.000 1.381 ± 0.011 0.443 ± 0.001

Supervised + PPO Rouge-1 50 T5 0.537 ± 0.004 0.198 ± 0.005 0.433 ± 0.002 0.433 ± 0.002 0.314 ± 0.003 0.070 ± 0.002 0.930 ± 0.001 1.426 ± 0.018 0.449 ± 0.001

Rouge-Avg 50 T5 0.536 ± 0.001 0.198 ± 0.002 0.433 ± 0.002 0.433 ± 0.002 0.311 ± 0.002 0.070 ± 0.002 0.929 ± 0.001 1.421 ± 0.028 0.446 ± 0.004

Meteor 50 T5 0.540 ± 0.005 0.204 ± 0.005 0.436 ± 0.004 0.436 ± 0.004 0.329 ± 0.003 0.076 ± 0.003 0.930 ± 0.001 1.474 ± 0.022 0.447 ± 0.004

SPice 50 T5 0.532 ± 0.006 0.194 ± 0.007 0.430 ± 0.005 0.430 ± 0.005 0.311 ± 0.004 0.068 ± 0.003 0.929 ± 0.001 1.415 ± 0.029 0.458 ± 0.001

CiDer 50 T5 0.530 ± 0.004 0.191 ± 0.003 0.427 ± 0.004 0.427 ± 0.004 0.309 ± 0.008 0.063 ± 0.002 0.928 ± 0.001 1.337 ± 0.040 0.444 ± 0.002

SpiDer 50 T5 0.536 ± 0.002 0.197 ± 0.002 0.430 ± 0.002 0.430 ± 0.002 0.313 ± 0.002 0.064 ± 0.002 0.928 ± 0.001 1.374 ± 0.018 0.445 ± 0.003

Supervised + NLPO Rouge-1 50 T5 0.545 ± 0.002 0.197 ± 0.002 0.432 ± 0.001 0.432 ± 0.001 0.31 ± 0.002 0.068 ± 0.001 0.929 ± 0.0 1.41 ± 0.012 0.449 ± 0.001

Rouge-Avg 50 T5 0.541 ± 0.003 0.2 ± 0.003 0.435 ± 0.002 0.435 ± 0.002 0.313 ± 0.002 0.07 ± 0.002 0.93 ± 0.001 1.424 ± 0.023 0.447 ± 0.003

Meteor 50 T5 0.537 ± 0.003 0.201 ± 0.004 0.431 ± 0.002 0.431 ± 0.002 0.326 ± 0.002 0.074 ± 0.003 0.93 ± 0.0 1.464 ± 0.025 0.448 ± 0.002

SPice 50 T5 0.535 ± 0.007 0.193 ± 0.008 0.429 ± 0.005 0.429 ± 0.005 0.3 ± 0.003 0.064 ± 0.002 0.927 ± 0.001 1.333 ± 0.017 0.459 ± 0.003

CiDer 50 T5 0.533 ± 0.003 0.197 ± 0.004 0.43 ± 0.003 0.43 ± 0.004 0.316 ± 0.004 0.066 ± 0.001 0.929 ± 0.001 1.381 ± 0.014 0.446 ± 0.004

SPider 50 T5 0.532 ± 0.006 0.196 ± 0.006 0.431 ± 0.004 0.431 ± 0.004 0.314 ± 0.004 0.066 ± 0.002 0.929 ± 0.0 1.371 ± 0.011 0.448 ± 0.002

Table C.10: CommonGen - Lexical and Semantic Metrics on dev set: Table shows lexical and semantic for
best performing models found in each algorithm-reward function combinations along with best performing
supervised baseline models. Generated text from these models are submitted to official CommonGen test
evaluation to obtain test scores presented in Table C.9
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Tasks _ Diversity Metrics
Alg Reward Function Top k LM MSTTR Distinct1 Distinct2 H1 H2 Unique1 Unique2 Mean Output Length

CommonGen

Zero-Shot T5 0.430 0.090 0.335 5.998 7.957 345 1964 8.797

PPO Rouge-1 50 T5 0.526 ± 0.020 0.128 ± 0.005 0.518 ± 0.036 6.679 ± 0.132 10.572 ± 0.234 437.4 ± 42.017 2418.8 ± 167.947 7.214 ± 0.374

Rouge-Avg 50 T5 0.536 ± 0.069 0.141 ± 0.022 0.510 ± 0.056 6.777 ± 0.539 10.348 ± 0.134 458.6 ± 19.734 2244.4 ± 162.855 6.887 ± 1.006

Meteor 50 T5 0.547 ± 0.012 0.147 ± 0.003 0.529 ± 0.014 7.62 ± 0.127 11.464 ± 0.151 1039.4 ± 63.276 5197.2 ± 280.004 13.660 ± 0.324

SPice 50 T5 0.546 ± 0.054 0.149 ± 0.019 0.545 ± 0.072 6.721 ± 0.441 10.492 ± 0.330 409.2 ± 41.605 1878.4 ± 167.492 5.706 ± 0.678

CiDer 50 T5 0.597 ± 0.081 0.195 ± 0.040 0.639 ± 0.106 7.732 ± 0.682 11.131 ± 0.502 777.0 ± 144.676 3350.8 ± 503.419 7.393 ± 0.572

SPider 50 T5 0.482 ± 0.015 0.133 ± 0.003 0.472 ± 0.021 6.372 ± 0.221 10.303 ± 0.228 502.6 ± 33.422 2281.4 ± 252.471 7.489 ± 0.358

NLPO Rouge-1 50 T5 0.559 ± 0.01 0.148 ± 0.003 0.555 ± 0.012 7.059 ± 0.067 10.657 ± 0.105 457.9 ± 11.108 2349.6 ± 60.345 6.586 ± 0.094

Rouge-Avg 50 T5 0.512 ± 0.019 0.146 ± 0.011 0.513 ± 0.012 6.781 ± 0.15 10.424 ± 0.156 484.18 ± 17.303 2357.54 ± 152.113 7.131 ± 0.487

Meteor 50 T5 0.503 ± 0.003 0.132 ± 0.005 0.471 ± 0.008 7.146 ± 0.192 10.727 ± 0.313 648.05 ± 33.963 3536.0 ± 444.638 11.062 ± 1.301

SPice 50 T5 0.543 ± 0.023 0.174 ± 0.004 0.568 ± 0.026 7.176 ± 0.212 10.551 ± 0.216 479.45 ± 19.77 2065.8 ± 288.843 5.785 ± 0.431

CiDer 50 T5 0.550 ± 0.02 0.179 ± 0.005 0.576 ± 0.014 7.286 ± 0.125 10.812 ± 0.089 661.46 ± 21.776 2726.32 ± 71.253 7.13 ± 0.223

SPider 50 T5 0.525 ± 0.024 0.167 ± 0.009 0.537 ± 0.025 6.986 ± 0.262 10.451 ± 0.171 530.14 ± 16.805 2263.4 ± 166.221 6.687 ± 0.372

Supervised T5 0.509 ± 0.001 0.101 ± 0.001 0.339 ± 0.001 6.531 ± 0.006 10.079 ± 0.016 503.600 ± 6.530 2158.8 ± 24.514 10.934 ± 0.020

Supervised + PPO Rouge-1 50 T5 0.527 ± 0.007 0.112 ± 0.001 0.393 ± 0.004 6.680 ± 0.044 10.289 ± 0.040 498.2 ± 8.931 2317.0 ± 22.609 9.667 ± 0.105

Rouge-Avg 50 T5 0.526 ± 0.004 0.114 ± 0.002 0.395 ± 0.005 6.682 ± 0.0297 10.274 ± 0.042 506.4 ± 6.829 2326.4 ± 41.778 9.614 ± 0.102

Meteor 50 T5 0.514 ± 0.004 0.105 ± 0.002 0.378 ± 0.008 6.631 ± 0.053 10.270 ± 0.064 507.0 ± 17.146 2424.6 ± 72.550 10.551 ± 0.271

SPice 50 T5 0.532 ± 0.008 0.113 ± 0.0038 0.392 ± 0.009 6.736 ± 0.058 10.338 ± 0.057 507.4 ± 14.319 2313.8 ± 27.694 9.742 ± 0.208

CiDer 50 T5 0.518 ± 0.009 0.110 ± 0.003 0.382 ± 0.006 6.614 ± 0.082 10.166 ± 0.053 490.4 ± 9.457 2295.4 ± 51.554 9.838 ± 0.265

SpiDer 50 T5 0.524 ± 0.007 0.112 ± 0.001 0.394 ± 0.004 6.673 ± 0.066 10.247 ± 0.066 504.8 ± 7.440 2361.8 ± 20.856 9.761 ± 0.121

Supervised + NLPO Rouge-1 50 T5 0.529 ± 0.002 0.114 ± 0.002 0.399 ± 0.005 6.705 ± 0.018 10.301 ± 0.03 498.86 ± 8.594 2311.46 ± 33.451 9.463 ± 0.111

Rouge-Avg 50 T5 0.530 ± 0.006 0.113 ± 0.002 0.396 ± 0.008 6.708 ± 0.05 10.318 ± 0.074 493.64 ± 10.068 2319.42 ± 55.738 9.596 ± 0.123

Meteor 50 T5 0.516 ± 0.006 0.106 ± 0.002 0.377 ± 0.008 6.634 ± 0.044 10.26 ± 0.077 506.04 ± 3.502 2401.32 ± 38.569 10.453 ± 0.194

SPice 50 T5 0.553 ± 0.013 0.12 ± 0.004 0.415 ± 0.014 6.908 ± 0.118 10.445 ± 0.057 508.075 ± 4.669 2343.3 ± 53.274 9.249 ± 0.225

CiDer 50 T5 0.516 ± 0.009 0.108 ± 0.003 0.379 ± 0.01 6.583 ± 0.077 10.165 ± 0.084 490.78 ± 9.734 2304.52 ± 62.068 9.923 ± 0.213

SPider 50 T5 0.521 ± 0.005 0.109 ± 0.002 0.385 ± 0.005 6.623 ± 0.034 10.223 ± 0.049 485.325 ± 5.683 2297.575 ± 21.271 9.798 ± 0.179

Table C.11: CommonGen - Diversity Metrics on dev set: Table shows diversity metrics for best performing
models found in each algorithm-reward function combinations along with best performing supervised baseline
models. Generated text from these models are submitted to official CommonGen test evaluation to obtain test
scores presented in Table C.9

Algorithm Unique N Coherence Commonsense
Value Alpha Skew Value Alpha Skew

PPO+Supervised 25 4.14 0.073 4.137 4.03 0.137 4.023
NLPO+Supervised 26 4.25 0.036 4.253 4.16 0.002 4.163
Zero Shot 24 2.15 0.391 2.154 2.29 0.342 2.291
PPO 24 2.84 0.16 2.849 3.03 0.081 3.027
Supervised 23 4.39 0.159 4.387 4.21 0.225 4.209
NLPO 24 2 0.335 2.003 2.13 0.265 2.124

Table C.12: CommonGen Human Study Results: Results of the human subject study showing the number
of participants N, average Likert scale value for coherence and sentiment, Krippendorf’s alpha showing
inter-annotator agreement, and Skew. For each model a total of 100 samples were drawn randomly from the test
set and rated by 3 annotators each, resulting in 300 data points per algorithm.
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Group 1 Group 2 Coherence Commonsense
Diff (G2-G1) p-values Diff (G2-G1) p-values

NLPO PPO 0.847 0.001 0.897 0.001
NLPO Supervised 2.397 0.001 2.083 0.001
NLPO NLPO+Supervised 2.257 0.001 2.033 0.001
NLPO PPO+Supervised 2.143 0.001 1.897 0.001
NLPO Zero Shot 0.153 0.515 0.157 0.624
PPO Supervised 1.550 0.001 1.187 0.001
PPO NLPO+Supervised 1.410 0.001 1.137 0.001
PPO PPO+Supervised 1.297 0.001 1.000 0.001
PPO Zero Shot -0.693 0.001 -0.740 0.001
Supervised NLPO+Supervised -0.140 0.601 -0.050 0.900
Supervised PPO+Supervised -0.253 0.050 -0.187 0.045
Supervised Zero Shot -2.243 0.001 -1.927 0.001
NLPO+Supervised PPO+Supervised -0.113 0.008 -0.137 0.007
NLPO+Supervised Zero Shot -2.103 0.001 -1.877 0.001
PPO+Supervised Zero Shot -1.990 0.001 -1.740 0.001

Table C.13: CommonGen Human Study Tukey Results: Results of an post-hoc Tukey HSD Test for difference
in means between pairs of algorithms (Group 2 - Group 1) and corresponding 𝑝-values. Individually statistically
significant results are bolded and are used to discuss results in the analysis. Overall 𝑝-values showing that
there is a significant difference in means between the models via a one-way ANOVA test are significant with
𝑝 � 0.05 for both coherence and sentiment.
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Figure C.4: CommonGen Human Study Setup: Instructions, examples, and interface for the Commongen
task.

Human Participant Study

Figure C.4 shows the commongen instructions, examples, and interface used for the human evaluation
experiments. Different from the other human evaluations, we didn’t provide any prompt because
knowing the set of words to be used isn’t required for rating either of the axes. Tables C.12, C.13 show
averaged results, annotator agreement, and the results of statistical significance tests to determine
which models output better generations when rated by humans.
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Human Preference Learning Experiments

First, we randomly select prompts from the Commongen train dataset and sample a single completion
from both the Supervised and Supervised+NLPO models. Next, we filter to prompts where both
models at least attempted to use all input concepts. This filtration step was conducted because if
a model fails to use all concepts, it may generate a more natural/fluent sentence, but, a priori, it
shouldn’t be preferred by crowdworkers; instead of training crowdworkers to prefer sentences with all
concepts, we perform this filter. Figure C.5 shows the task presented to the crowdworkers. We then
present the prompt and the two completion candidates to 3 unique crowdworkers and ask them to
select which one they prefer with respect to commonsense/fluency; We gathered 3 annotations on
417 pairs (Krippendorf 𝛼 = .28), and split into 60/20/20 train/val/test split. We then trained a reward
model, T5-11B [298], on the balanced binary classification task of predicting which of the pair was
preferred by a majority of 3 annotators, conditioned on the prompt and completion. The resulting
model achieved 69.5 test ROC AUC suggesting it indeed captures average human preferences. The
model is then used as a reward function. We train Supervised+RL with a METEOR-only reward as a
baseline, and compare it to a reward function that uses the fine-tuned T5-11B model. We design the
reward function based on the preference model as 𝑟 = 𝑚𝑒𝑡𝑒𝑜𝑟 + 𝑝𝑟𝑒 𝑓 /(1+ |𝑚𝑖𝑠𝑠 |) where 𝑚𝑖𝑠𝑠 is a set
of concepts not covered in the generated text, in an attempt to mimic the data collection process that
humans are instructed to follow. This reward function accounts for both the task of using all concepts
and also human’s preferences for how a sentence should look within the constraints stipulated by the
task. Finally, we rerun the same pairwise preference collection procedure—this time sampling from
Commongen test—with human participants to compare the generations from a preference optimized
RL policy to the previously best Supervised+NLPO policy. Comparing the METEOR-only to the
preference model head-to-head, the generations produced by the human feedback model are preferred
in 682 cases, compared to the METEOR-only model which is preferred in 587 cases (𝑝 < 0.01 the
models are equally preferred).

Qualitative Analysis

This section shows sample generations from different algorithms for three randomly picked prompts.
Sample 1
Prompt: generate a sentence with: apron cut hat kitchen sausage
Zero-Shot: generate a sentence with: apron cut hat kitchen sausage.
PPO: sausage in the kitchen on an apron.
NLPO: sausage cut hat cut hat cut hat cut apron cut hat
Supervised: A man is cutting sausage on an apron in a kitchen.
Supervised + PPO: A man cutting sausage from a hat on an apron in the kitchen.
Supervised + NLPO: A man cuts sausage in a hat on an apron in the kitchen.

Sample 2
Prompt: generate a sentence with: backhand competition player reach shuttlecock
Zero-Shot: backhand competition player reach shuttlecock.
PPO: the ball in the backhand and the competition player in the shuttlecock.
NLPO: backhanded competition player reaches shuttlecock.
Supervised: tennis player reaches for a shuttlecock during a competition.
Supervised + PPO: football player reaches for a shuttlecock in backhand during the

competition.
Supervised + NLPO: football player reaches for a shuttlecock after hitting a backhand during

the competition.

Sample 3
Prompt: generate a sentence with: bowl combine cucumber onion pasta
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Figure C.5: CommonGen Pairwise Study Setup: Instructions and interface for the pairwise Commongen HIT.

Zero-Shot: cucumber onion pasta.
PPO: the cucumber onion pasta in a small bowl.
NLPO: the in a bowl Combine cucumber onion pasta in a large bowl. Toss pasta
Supervised: A bowl containing pasta, tomatoes, cucumbers, and onions.
Supervised + PPO: A bowl containing pasta topped with cucumbers, onions, and peppers.
Supervised + NLPO: A bowl containing a mixture of pasta, cucumber, and onion.

C.1.5 CNN/DM

Setup As a representative of the summarization task, we consider CNN/DM dataset consisting
of long news articles and their highlights written by news authors. The dataset consists of 287k
training, 13k validation and 11k test examples. We trained RL methods using 3 different automated
metrics, namely Rouge-1, Rouge-avg and Meteor. We chose T5 as our base LM as it is pre-trained in a
unified text-to-text framework and relishes Zero-Shot capabilities. For decoding, we use multinomial
sampling with a temperature of 0.7 for all the models.
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Model Params value

supervised batch size: 16
epochs: 2
learning rate: 0.0001
learning rate scheduler: cosine
weight decay: 0.1

ppo/ nlpo steps per update: 5120
total number of steps: 512000
batch size: 64
epochs per update: 5
learning rate: 0.000002
entropy coefficient: 0.0
initial kl coeff: 0.001
target kl: 0.2
discount factor: 0.99
gae lambda: 0.95
clip ratio: 0.2
value function coeff: 0.5
rollouts top k: sweep of (50,100)
top mask ratio: 0.9
target update iterations: sweep of (10, 20, 30)

supervised+ppo/ nlpo steps per update: 5120
total number of steps: 256000
batch size: 64
epochs per update: 5
learning rate: 0.000002
entropy coefficient: 0.0
initial kl coeff: 0.01
target kl: 0.2
discount factor: 0.99
gae lambda: 0.95
clip ratio: 0.2
value function coeff: 0.5
rollouts top k: sweep of (50,100)
top mask ratio: 0.9
target update iterations: sweep of (10, 20, 30)

decoding sampling: True
temperature: 0.7
min length: 50
max new tokens: 100

tokenizer padding side: left
truncation side: right
max length: 512

Table C.14: CNN/DM Hyperparams: Table shows a list of all hyper-parameters and their settings

Results and Discussion

Tables C.15, C.16 presents benchmarking results on test set reporting a wide range of metrics: lexical,
semantic, factual correctness and diversity metrics. As baselines, we report lead-3 which selects first
three sentences as the summary, Zero-Shot and a supervised model. PPO and NLPO models are
on par with supervised performance on several metrics including Rouge-2, Rouge-L, and Bleu. On
fine-tuning on top of supervised model, performance improves consistently on all metrics indicating
that RL fine-tuning is beneficial. Another interesting finding is that, RL fine-tuned models are factually
consistent as measured by SummaCZS metric. For ablations on PPO params, NLPO params, we refer
to Tables C.17,C.18.
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Tasks _ Lexical and Semantic Metrics Factual Consistency
Alg Reward Function LM Rouge-1 Rouge-2 Rouge-L Rouge-LSum Meteor BLEU BertScore SummaCZS

CNN/DM

Lead-3 0.401 0.175 0.250 0.363 0.333 0.099 0.874 0.993

Zero-Shot T5 0.372 0.145 0.247 0.311 0.256 0.077 0.864 0.654

PPO Rouge-1 T5 0.410 0.182 0.283 0.349 0.276 0.095 0.876 0.622

Rouge-Avg T5 0.396 0.176 0.273 0.338 0.270 0.095 0.874 0.622

Meteor T5 0.408 0.178 0.276 0.342 0.301 0.109 0.873 0.527

NLPO Rouge-1 T5 0.404 0.180 0.278 0.344 0.275 0.096 0.875 0.636

Rouge-Avg T5 0.404 0.177 0.279 0.344 0.274 0.094 0.874 0.586

Meteor T5 0.405 0.180 0.277 0.343 0.292 0.108 0.872 0.578

Supervised T5 0.411 0.177 0.276 0.343 0.309 0.108 0.876 0.654

Supervised + PPO Rouge-1 T5 0.417 0.189 0.294 0.358 0.278 0.101 0.882 0.722

Rouge-Avg T5 0.425 0.194 0.297 0.363 0.296 0.114 0.882 0.728

Meteor T5 0.426 0.194 0.293 0.361 0.316 0.125 0.880 0.726

Supervised + NLPO Rouge-1 T5 0.421 0.193 0.297 0.361 0.287 0.108 0.882 0.740

Rouge-Avg T5 0.424 0.193 0.296 0.363 0.295 0.115 0.882 0.743

Meteor T5 0.429 0.194 0.293 0.361 0.319 0.124 0.880 0.743

Table C.15: CNN/Daily Mail test evaluation (Lexical and Semantic metrics): Table presents a wide range
of metrics: lexical, semantic and factual correctness. As baselines, we report lead-3 which selects first three
sentences as the summary, Zero-Shot and a supervised model. PPO and NLPO models are on par with
supervised performance on several metrics including Rouge-2, Rouge-L, and Bleu. On fine-tuning on top of
supervised model, performance improves consistently on all metrics indicating that RL fine-tuning is beneficial.
Another interesting finding is that, RL fine-tuned models are factually consistent as measured by SummaCZS
metric.

Tasks _ Diversity Metrics
Alg Reward Function LM MSTTR Distinct1 Distinct2 H1 H2 Unique1 Unique2 Mean Output Length

CNN/DM

Lead-3 0.750 0.0482 0.386 10.481 16.631 21465 273153 84

Zero-Shot T5 0.725 0.061 0.414 10.285 16.183 19113 193999 55

PPO Rouge-1 T5 0.760 0.068 0.464 10.661 16.437 18189 191383 47

Rouge-Avg T5 0.773 0.071 0.490 10.830 16.664 19478 209140 48

Meteor T5 0.765 0.060 0.447 10.699 16.688 20528 234386 61

NLPO Rouge-1 T5 0.771 0.069 0.480 10.789 16.618 18677 201971 48

Rouge-Avg T5 0.765 0.066 0.476 10.744 16.620 18179 206368 50

Meteor T5 0.772 0.064 0.471 10.802 16.766 20212 231038 56

Supervised T5 0.727 0.057 0.401 10.459 16.410 21096 230343 68

Supervised + PPO Rouge-1 T5 0.750 0.070 0.459 10.595 16.389 18184 184220 46

Rouge-Avg T5 0.747 0.066 0.445 10.589 16.458 18939 200617 52

Meteor T5 0.741 0.059 0.420 10.532 16.491 20395 224432 63

Supervised + NLPO Rouge-1 T5 0.748 0.067 0.446 10.528 16.313 18204 185561 48

Rouge-Avg T5 0.744 0.065 0.443 10.570 16.444 18747 201705 53

Meteor T5 0.745 0.059 0.422 10.574 16.516 20358 226801 63

Table C.16: CNN/Daily Mail test evaluation (Diversity Metrics): Table presents a wide range of diversity
metrics on test set
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_ Lexical and Semantic Metrics
Alg Reward Function Top k Rouge-1 Rouge-2 Rouge-L Rouge-LSum Meteor BLEU BertScore

PPO

Rouge-1 50 0.404 0.181 0.280 0.346 0.273 0.095 0.874
100 0.412 0.186 0.286 0.354 0.276 0.094 0.876

Rouge-Avg 50 0.401 0.177 0.276 0.342 0.271 0.092 0.873
100 0.399 0.179 0.275 0.342 0.270 0.094 0.874

Meteor 50 0.413 0.182 0.279 0.348 0.301 0.110 0.873
100 0.409 0.179 0.276 0.345 0.296 0.108 0.871

Supervised+PPO

Rouge-1 50 0.414 0.190 0.293 0.358 0.272 0.097 0.881
100 0.420 0.193 0.295 0.362 0.277 0.100 0.881

Rouge-Avg 50 0.426 0.196 0.298 0.366 0.294 0.114 0.881
100 0.427 0.196 0.298 0.366 0.294 0.113 0.881

Meteor 50 0.429 0.197 0.297 0.367 0.306 0.122 0.881
100 0.432 0.199 0.297 0.367 0.317 0.131 0.879

Table C.17: PPO Ablation/Model Selection: Evaluation of PPO models on validation set with different reward
functions and top k values for rollouts. For each alg-reward combo, best model (top k ) is chosen.

_ Lexical and Semantic Metrics
Alg Reward Function Top k (rollout) Top p (Action mask) target update 𝑛𝑖𝑡𝑒𝑟𝑠 Rouge-1 Rouge-2 Rouge-L Rouge-LSum Meteor BLEU BertScore

NLPO

Rouge-1 50 0.9 10 0.400 0.178 0.275 0.343 0.269 0.094 0.872
20 0.396 0.173 0.274 0.340 0.257 0.082 0.873
30 0.396 0.174 0.273 0.339 0.265 0.091 0.872

100 0.9 10 0.407 0.177 0.279 0.347 0.265 0.085 0.875
20 0.406 0.182 0.281 0.347 0.273 0.094 0.874
30 0.405 0.180 0.279 0.347 0.269 0.091 0.875

Rouge-Avg 50 0.9 10 0.400 0.180 0.276 0.343 0.271 0.096 0.873
20 0.349 0.147 0.241 0.298 0.237 0.078 0.858
30 0.393 0.173 0.272 0.336 0.267 0.092 0.870

100 0.9 10 0.396 0.174 0.274 0.339 0.265 0.088 0.872
20 0.406 0.179 0.280 0.347 0.272 0.092 0.874
30 0.400 0.178 0.279 0.344 0.266 0.087 0.874

Meteor 50 0.9 10 0.404 0.177 0.274 0.343 0.286 0.102 0.872
20 0.406 0.180 0.276 0.343 0.292 0.107 0.871
30 0.401 0.172 0.271 0.337 0.288 0.099 0.870

100 0.9 10 0.405 0.178 0.276 0.343 0.294 0.107 0.870
20 0.406 0.176 0.276 0.343 0.291 0.106 0.872
30 0.409 0.184 0.280 0.348 0.291 0.108 0.873

Supervised + NLPO

Rouge-1 50 0.9 10 0.425 0.196 0.299 0.366 0.285 0.106 0.882
20 0.417 0.191 0.295 0.360 0.276 0.100 0.881
30 0.418 0.192 0.296 0.361 0.278 0.101 0.881

100 0.9 10 0.424 0.196 0.299 0.366 0.286 0.106 0.882
20 0.423 0.196 0.299 0.365 0.289 0.110 0.881
30 0.420 0.193 0.296 0.362 0.279 0.102 0.881

Rouge-Avg 50 0.9 10 0.426 0.197 0.298 0.367 0.294 0.115 0.881
20 0.425 0.196 0.298 0.366 0.292 0.112 0.881
30 0.424 0.194 0.297 0.365 0.287 0.107 0.881

100 0.9 10 0.424 0.196 0.298 0.365 0.291 0.113 0.881
20 0.428 0.198 0.300 0.368 0.296 0.115 0.882
30 0.429 0.199 0.300 0.369 0.296 0.116 0.882

Meteor 50 0.9 10 0.430 0.197 0.294 0.364 0.320 0.130 0.879
20 0.432 0.198 0.297 0.367 0.318 0.130 0.880
30 0.423 0.191 0.293 0.361 0.297 0.116 0.879

100 0.9 10 0.435 0.200 0.298 0.369 0.320 0.131 0.881
20 0.433 0.198 0.297 0.368 0.319 0.130 0.879
30 0.434 0.200 0.297 0.369 0.324 0.132 0.879

Table C.18: NLPO Ablation/Model Selection: Evaluation of NLPO models on validation set with different
reward functions, top k values for rollouts and target update iterations. For each alg-reward combo, best model
is chosen
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Algorithm Unique N Coherence Quality
Value Alpha Skew Value Alpha Skew

PPO+Supervised 22 4.21 0.198 4.224 3.97 0.256 3.98
NLPO+Supervised 19 4.3 0.26 4.308 3.98 0.089 4
Zero Shot 17 3.73 0.1 3.757 3.69 0.25 3.722
Supervised 19 4.25 0.116 4.241 3.99 0.2 3.986
NLPO 17 4.03 0.13 4.042 3.83 0.191 3.832
PPO 21 3.94 0.111 3.945 3.76 0.129 3.767
Human 19 3.89 0.277 3.902 3.77 0.029 3.769

Table C.19: CNN/DM Human Study Results: Results of the human subject study showing the number
of participants N, average Likert scale value for coherence and sentiment, Krippendorf’s alpha showing
inter-annotator agreement, and Skew. For each model a total of 50 samples were drawn randomly from the test
set and rated by 3 annotators each, each resulting in 150 data points per algorithm.

Coherence Quality
Group 1 Group 2 Diff (G2-G1) p-values Diff (G2-G1) p-values

Human NLPO 0.147 0.755 0.060 0.900
Human NLPO+Supervised 0.413 0.001 0.213 0.047
Human PPO 0.053 0.900 -0.007 0.900
Human PPO+Supervised 0.327 0.024 0.200 0.544
Human Supervised 0.360 0.008 0.220 0.043
Human Zero Shot -0.160 0.679 -0.080 0.900
NLPO NLPO+Supervised 0.267 0.012 0.153 0.008
NLPO PPO -0.093 0.900 -0.067 0.900
NLPO PPO+Supervised 0.180 0.564 0.140 0.860
NLPO Supervised 0.213 0.361 0.160 0.754
NLPO Zero Shot -0.307 0.044 -0.140 0.860
NLPO+Supervised PPO -0.360 0.008 -0.220 0.043
NLPO+Supervised PPO+Supervised -0.087 0.009 -0.013 0.009
NLPO+Supervised Supervised -0.053 0.009 0.007 0.900
NLPO+Supervised Zero Shot -0.573 0.001 -0.293 0.012
PPO PPO+Supervised 0.273 0.106 0.207 0.508
PPO Supervised 0.307 0.044 0.227 0.394
PPO Zero Shot -0.213 0.361 -0.073 0.900
PPO+Supervised Supervised 0.033 0.900 0.020 0.900
PPO+Supervised Zero Shot -0.487 0.001 -0.280 0.155
Supervised Zero Shot -0.520 0.001 -0.300 0.101

Table C.20: CNN/DM Human Study Tukey Results: Results of an post-hoc Tukey HSD Test for difference in
means between pairs of algorithms (Group 2 - Group 1) and corresponding 𝑝-values. Individually statistically
significant results are bolded and are used to discuss results in the analysis. Overall 𝑝-values showing that
there is a significant difference in means between the models via a one-way ANOVA test are significant with
𝑝 � 0.05 for both coherence and sentiment.
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Figure C.6: CNN/DM Human Study Setup: Instructions and interface for the summarization task.

Human Participant Study

Figure C.6 shows the summarization instructions and interface used for the human evaluation
experiments. Participants weren’t required to read the entire article, but to encourage some reading, a
minimum time on the window of 15s was enforced via hiding the sliders. Tables C.19, C.20 show
averaged results, annotator agreement, and the results of statistical significance tests to determine
which models output better generations when rated by humans.

Qualitative Analysis

We show sample generations from each of the algorithms for three randomly picked prompts below.
Sample 1
Prompt: Manchester City are confident UEFAâĂŹs punishment for breaching financial fairplay

regulations will be lifted this summer which would allow them to bid for stellar
names like Raheem Sterling, Gareth Bale, Kevin de Bruyne and Ross Barkley. City boss
Manuel Pellegrini has been hampered over the past year by UEFA restricting them to a
net transfer spend of 49million in each window and keeping the clubâĂŹs overall wage
bill to its current level of 205million-a-year. UEFAâĂŹs settlement with City
published in May stated those penalties would remain in place until the end of the
2015/16 season but the clubâĂŹs latest financial figures showed drastically-reduced
losses of 23million which they feel proves they are now compliant with FPP
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regulations. Manuel Pellegrini is hoping that the financial restrictions imposed by
UEFA for a breach of FFP rules will be lifted at the end of this season . Manchester
City have been limited to a net spend of 49million in the last two transfer windows -
they spent 25m bringing Wilfried Bony in from Swansea in January . Ahead of Monday
nightâĂŹs trip to Crystal Palace, Pellegrini was certainly talking like a man excited
at the prospect of signing ’crack’ players this summer. âĂŸI think that next season
we donâĂŹt have any restrictions so we will be in the same position that all the
other English clubs have,âĂŹ said Pellegrini. âĂŸItâĂŹs important. You have so many
strong teams here in England and in Champions League, you can not allow them to keep
the advantage every year; having less players to put in your squad or spending less
money. We spend money, of course we always spend money, but they spent more.âĂŹ
Manchester United, Barcelona, Liverpool and Arsenal have all paid more in transfer
fees in the past 12 months than City who were traditionally EuropeâĂŹs biggest
spenders after the club was taken over by Abu Dhabi owners in 2008. Uefa also ordered
City to play with a reduced squad from 25 players to 21 in the Champions League this
season and while that restriction has now ended, any time reduction in the penalties
on spending and wages is more controversial. Arsenal have paid more in transfer fees
than City in the last 12 months, including 30m on Alexis Sanchez . The document
published last May by UEFAâĂŹs Club Financial Control Body investigative chamber
explicitly said CityâĂŹs financial penalties would run for two seasons at least and
there has been no official deviation from that decision.

The published statement said at the time: âĂŸManchester City agrees to significantly limit
spending in the transfer market for the seasons 2014/15 and 2015/16. It means City
will have to argue their case with Uefa that as they have been financially compliant
over the past year, they deserve to be free of restrictions moving forward. They have
successfully argued their case with UEFA before. Last summer they persuaded the
governing body to allow them to bypass the normal quota of eight homegrown players as
their Champions League squad had been reduced. Eliaquim Mangala joined the champions
from Porto for 32m last summer . The reigning Premier League champions have only
paid money for Fernando, Willie Caballero, Eliaquim Mangala and Wilfried Bony in the
last two transfer windows and that was part-paid by the sales of Javi Garcia and Jack
Rodwell. Pellegrini admitted they werenâĂŹt in a position to compete with neighbours
United for established world stars like Angel di Maria because of the FFP penalties.
It has cost City on the pitch. Even if they win their remaining eight Premier League
fixtures their points tally will be lower than last season and they crashed out once
again at the last-16 stage of the Champions League. Pellegrini and director of
football Txiki Begiristain both accept the squad needs replenishing and they want to
be in the market for the top available players. Manchester City have been heavily
linked with a move for former Chelsea midfielder Kevin de Bruyne . The club also want
to be involved in any race for Liverpool contract rebel Raheem Sterling . They have
been strongly linked with former Chelsea winger Kevin de Bruyne who has been one of
the best players in the Bundesliga with Wolfsburg. And if Liverpool do allow Sterling
to leave, City want to be involved in the chase for one of EnglandâĂŹs most
outstanding talents to help fit in with quotas for homegrown players. âĂŸIf you are
the manager or a player of a big tem, you are always open to criticism because
everyone expects a high level of performance,âĂŹ he said. âĂŸThe major issue with our
team always seems to be the money but this season I think we were the team that
spent less than any other team. That is the weird thing. âĂŸFor this club trying to
be a big team in so few years, maybe we are paying the cost for that.âĂŹ Since the
transfer penalties were introduced, City have spent 91million on players in the last
two windows (Net spend 68million). That compares to Manchester United 145.5million,
Liverpool 113million, Arsenal 92.5million and Chelsea 82.6million. Over the same time
period Barcelona spent 118.3million on players and Real Madrid 81.2million though
they also broke the world transfer record for Gareth Bale the previous summer.

Zero-Shot: manuel Pellegrini hoping UEFAâĂŹs punishment for breaching financial fairplay
regulations will be lifted this summer. city have been restricted to a net transfer
spend of 49million in each window. a total of 23million has been lost in the last
year.

References: Manchester City have been restricted to a net transfer spend of 49m .Club’s
also had to keep overall wage bill to its current level of 205m .Punishments imposed
by UEFA for breaching Financial Fair Play rules .The spending restrictions were set
for this season and the next one .But City are confident they will be lifted early
after their compliance .
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PPO: Manuel Pellegrini is hoping UEFAâĂŹs punishment for breaching financial fairplay
rules will be lifted this summer. Manchester City have been limited to a net spend of
49million in each transfer window. the club also keep the club’s overall wage bill
to its current level of 205million-a-year.

NLPO: Manchester City are confident UEFAâĂŹs punishment for breaching financial fairplay
regulations will be lifted this summer. that would allow them to bid for stellar
names like Raheem Sterling, Kevin de Bruyne and Ross Barkley.

Supervised: Manchester City have been limited to a net transfer spend of 49million in each
window. City’s overall wage bill is 205m-a-year due to a breach of UEFA rules. City
are confident the financial restrictions will be lifted at the end of the current
season in order to bid for stars such as Raheem Sterling. Manuel Pellegrini is hoping
that the financial restrictions will be lifted at the end of the 2015/16 season

Supervised + PPO: Manchester City have been restricted to a net spend of 49million in each
window and kept their overall wage bill at 205m. Manuel Pellegrini believes these
restrictions will be lifted at the end of the season. Arsenal have spent more in
transfer fees than City in the last 12 months, including 30m on Alexis Sanchez.

Supervised + NLPO: Manchester City are confident UEFAâĂŹs punishment for a breach of
financial fairplay regulations will be lifted this summer. The club have been
restricted to a net transfer spend of 49million over the past two window. They aim to
bid for stars like Raheem Sterling, Gareth Bale and Kevin de Bruyne. City lost 23m
on transfers in the last 12 months due to financial restrictions imposed by UEFA for
breach

Sample 2
Prompt: (CNN)Larry Johnson remembers the fear and feeling of helplessness from being on

the SkyWest Airlines flight that made an emergency landing in Buffalo, New York. "I
thought we were done," he said Thursday, one day later. "There was no doubt in my
mind that we weren’t going to land." Johnson was flying with his brother, his
girlfriend and his 8-month-old son when he says a flight attendant came over the
speaker asking for someone who was medically trained to help with a sick passenger.
Minutes later, Johnson says, the attendant announced there was a pressurization
problem and told passengers to prepare for the emergency landing. "You’re going to
feel dizzy and woozy and lightheaded, and you’re not going to be able to breathe,"
Johnson recalled the flight attendant saying. The Federal Aviation Administration on
Wednesday initially reported a pressurization problem with SkyWest Flight 5622, and
said it would investigate. It later issued a statement that did not reference any
pressurization issues. "It was like being trapped and you couldn’t do anything. You
have no control over it. Your body just felt pressured," Johnson said. Johnson said
his girlfriend was seeing spots and that "when I was blinking, it was really bright.
I could barely see." According to Marissa Snow, spokeswoman for SkyWest, three
passengers reported a loss of consciousness while on the flight. Fifteen passengers
were examined by medical personnel at the Buffalo airport, but no one was transported
to the hospital, she said. The spokeswoman said that maintenance personnel found no
indication of a pressurization problem with the aircraft, an Embraer E170, and that
the airline continues to investigate the cause. An official with the National
Transportation Safety Board told CNN that the agency is in communication with the FAA
and SkyWest to gather information on the incident to better understand what took
place.

Mary Cunningham was the nurse on board who attended to the first sick passenger. "There
was a woman, very lethargic, very nauseous, turning gray, just not looking good,"
Cunningham said. After administering oxygen to the woman, Cunningham, a nurse at Yale-
New Haven Hospital in Connecticut, returned to her seat. Soon after, Cunningham said,
she was called up again by the flight attendant after another women near the first
started to lose consciousness. "It was something that was affecting oxygen in that
area," which was near the middle of the plane, she said. Cunningham said she had to
return to her seat after feeling lightheaded. There were 84 passengers on board the
plane, including nine crew members. Flight 5622 was originally scheduled to fly from
Chicago to Hartford, Connecticut. The plane descended 28,000 feet in three minutes. "
It would feel like a roller coaster -- when you’re coming over the top and you’re
going down," CNN aviation analyst Mary Schiavo said, describing how such a descent
would feel. "You know that these pilots knew they were in a very grave and very
serious situation." Johnson, flying to visit his parents with their only grandchild,
was glad that roller coaster ride ended safely. "It was a shaky ride. It wasn’t
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anything I would like to experience again," he said. CNN’s Jean Casarez, Josh Gaynor,
Dana Ford and Stephanie Gallman contributed to this report.

Zero-Shot: "you’re going to feel dizzy and woozy and lightheaded," Johnson says. "it was
like being trapped and you couldn’t do anything," Johnson says. "the plane was trying
to get back on the ground," passenger says of fear.

References: Three passengers report a loss of consciousness on SkyWest flight .But
officials say there is no evidence of a pressurization problem .

PPO: SkyWest flight 5312 made emergency landing in Buffalo, new york. passengers were told
they were not going to be able to breathe, passenger recalls attendant. the faa
initially reported a pressurization problem with the flight 5622.

NLPO: SkyWest flight 5622 made emergency landing in buffalo, new york.Larry Johnson says
flight attendant announced there was a pressurization problem. three passengers
reported loss of consciousness while on flight; no one transported to hospital.

Supervised: The FAA says it is investigating the cause of the emergency landing. SkyWest
Flight 5622 made an emergency landing in Buffalo, New York. The flight was carrying a
family of three people. The flight attendant told the passengers to prepare for the
landing.

Supervised + PPO: "I thought we were done," the father of one passenger says. The flight
attendant announced there was a pressurization problem. The flight made an emergency
landing in Buffalo, New York. Three passengers reported a loss of consciousness while
on the flight.

Supervised + NLPO: SkyWest Airlines flight made an emergency landing in Buffalo, New York,
on Thursday. "There was no doubt in my mind that we weren’t going to land,"
passenger says. "You’re going to feel dizzy and woozy and lightheaded...you’re not
going to be able to breathe," he says."

Sample 3
Prompt: For Inverness the latest chapter in their remarkable story featured not one, but

two, plot-changing twists. One featured penalty Celtic didn’t get for 2-0 in which
Josh Meekings handball should have also led to a sending off. The other the spot kick
they did, followed by a red card for Craig Gordon. ’I’ve not seen it yet, but going
by the reaction of the Celtic players we got away with a penalty and a sending off
and that was probably the turning point in the game,’ acknowledged Caley manager John
Hughes after. Inverness’s Josh Meekings appears to get away with a handball on the
line in their win over Celtic . Caley boss John Hughes says the break, which could
have meant a penalty and red card, was a turning point . ’I’ve not spoken to Josh. I
haven’t seen it - but going by the media it was definitely a hand ball. We look at
the referee behind the line and all that and I know Ronny will feel aggrieved -
because I certainly would. ’But it’s part and parcel of football and you need a wee
bit of luck to beat Celtic. ’This was their biggest game of the season because they
will go on and win the league and if they had beaten us today there was a good chance
they would have gone on and won the Scottish Cup. ’But when Marley Watkins was
clipped by Craig Gordon and they were down to 10 men that was advantage Inverness. ’
We weren’t going to give Celtic the ball back, they had to come and get it and we had
to be patient. ’When big Edward put us into the lead we thought it was going to be
our day on the back of things that had happened. ’Celtic equalised with another free
kick but it’s typical of Inverness that we don’t do anything easy. ’We do it the hard
way and we came up with the winner through David Raven.’ Hughes hauled Raven, his
Scouse defender, from his backside as extra-time beckoned. Offended by the sight of
one of his players resting he had a message to impart. Caley players celebrate after
upsetting Celtic in a Scottish Cup semi-final 3-2 thriller . Celtic, depleted by
games and absentees, were virtually on their knees after a relentless programme of
midweek games. In last season’s League Cup Final Inverness had been passive and
unambitious prior to losing on penalties. This was no time to repeat the mistake. ’I
tried to emphasise to the players they would never have a better time to go on and
beat Celtic, down to 10 men in the semi final of a cup. We needed to go for it,’
Hughes said. ’Before Raven scored at the back post I was looking to change it.

I was going to bring on another winger, Aaron Doran, and put him in the full-back position
over on the right, but more advanced so he could take their left back on. Thankfully
I didn’t do that and David Raven came up with the goal. Virgil Van Dijk (centre)
fired Celtic into an early lead with a superb free-kick in the 18th minute . ’I didn’
t realise this is the first time the club have been in the final of the Scottish Cup
and that’s a remarkable achievement given it was only formed 20 years ago. ’It is a
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great story isn’t it? It’s an absolutely fantastic story. It is 20 odd years since
the amalgamation. We are a small provincial club up there in the Highlands. ’We have
lost a real inspirational skipper in Richie Foran right from the start of the season.
He has never played. We have had to adjust to that. ’We had to sell Billy McKay, our
top goalscorer, at Christmas. We have had to go again and adjust. I am a very humble
guy and I am grateful and thankful that injuries have never caught up with us.’
There is remarkable irony in the fact Falkirk will be the opponents for the final. A
former Bairns captain, he was manager of the club in 2009 when they lost to Rangers
at Hampden. Former Falkirk captain and manager John Hughes will take on his former
club in the final . ’I had a lot of great times at Falkirk. So much so that it is
possibly my favourite time in my playing career. I am still friendly with an awful
lot of the characters who were in that dressing room. Neil Oliver is a good friend of
mine from my Falkirk days. He comes along and sits on the bench and gives me a wee
hand out. ’That is the spirit that we had at that club. I have met some great guys.
Brian Rice, my ex-coach, Davie Weir, Ian McCall, the list is endless. I was just
talking the other day about that day at Falkirk. There are times even now when I see.
’I have a real special, special feel for the place. I am not kidded Falkirk is a
right good side, trust me on that. No side goes to Tynecastle and beats Hearts
without being a good side. No side beats Hibs the way they were playing without being
a good side. You might say we are favourites I say it is even stevens and I am just
looking forward to when the days comes.’ David Raven (second right) celebrates with
his Inverness team-mates following his extra-time winner . An Inverness and Falkirk
final would not have been the choice of sponsors William Hill, you suspect. Vast
swathes of Hampden’s west stand were empty, a 12.15 kick-off for the benefit of
broadcasters proving unhelpful . There will be no ticket rows this time. Not over a
final unlikely to raise a crowd much higher than 35,000 in a stadium of 52,000. The
contract with Hampden plc is signed, with no question of moving it. If the bitter
amalgamation of 21 years ago produced a fine football club it also disenfranchised
many of those who followed the old ones. ’I hope this encourages the next generation
to follow Inverness,’ added Hughes. ’In the peer groups it is still Celtic and
Rangers they follow but I hope the next ones will want to support their local club. ’
If we can add another few hundred or thousand to the support then we are playing our
part.

Zero-Shot: inverness beat Celtic 2-0 in their opening game of the season. Josh Meekings
was the subject of a handball after the break. the break could have meant a penalty
and a red card for Craig Gordon.

References: Josh Meekings handball should have been a penalty and a red card .If the
penalty was awarded and converted Celtic would have gone to 2-0 .Caley manager John
Hughes admitted his side were fortunate in win .Virgil van Dijk scored Celtic’s
opener with a superb free-kick .Celtic keeper Craig Gordon was sent off early in the
second half .Greg Tansey, Edward Ofere and finally Daven Raven scored for Caley .

PPO: Josh Meekings handball could have meant sending off for Celtic in extra-time win.
John Hughes says the break could have meant an penalty and red card. Caley boss also
admits he would feel aggrieved had Celtic won the championship.

NLPO: Caley beat Celtic 2-0 in their Scottish Cup clash. Josh Meekings handball could have
led to a penalty and red card. John Hughes says the break was probably the turning
point in the game. defender does not believe defensive striker can get away with
being shown the yellow card - despite playing in same half we never scored.

Supervised: Inverness beat Celtic 2-0 in their Scottish Cup clash. Josh Meekings appeared
to get away with a handball on the line. Another player was sent off for a spot kick
which ended in a red card. Caley manager John Hughes says the break could have meant
a penalty. Hughes says he ’would feel aggrieved’ after the break.

Supervised + PPO: Caley beat Celtic 1-0 in their Scottish Cup encounter at the Etihad.
Josh Meekings’ handball on the line should have also seen a sending off. But Craig
Gordon got away with a spot kick and sending off. John Hughes said it was a turning
point in the game for Inverness.

Supervised + NLPO: Josh Meekings appears to get away with a handball after Inverness’s win.
Inverness were down to 10 men when Craig Gordon was sent off. John Hughes says the
break could have meant a penalty and red card. Hughes says Celtic will go on and win
the Scottish Cup with win
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C.1.6 ToTTo

Setup ToTTo [294] is a controlled table-to-text generation task in which the goal is to produce
one-sentence description of highlighted table cells. For training RL methods, we consider 5 different
reward functions: BLEU, SacreBLEU, METEOR, PARENT and a combination of Meteor and
PARENT. We chose T5 as our base LM here too, as they are more suitable for structure to text tasks.
For decoding, we use beam search during inference and for generating rollouts, we use top k sampling.
Other implementation details are captured in Table C.21.

Model Params value

supervised batch size: 8
epochs: 4
learning rate: 0.0001
learning rate scheduler: constant with warm up
weight decay: 0.1

ppo/nlpo steps per update: 2560
total number of steps: 256000
batch size: 64
epochs per update: 5
learning rate: 0.000002
entropy coefficient: 0.0
initial kl coeff: 0.001
target kl: 2.0
discount factor: 0.99
gae lambda: 0.95
clip ratio: 0.2
rollouts top k : 0
value function coeff: 0.5
top mask ratio: 0.9
target update iterations: 20

supervised+ ppo (or nlpo) steps per update:2560
total number of steps: 256000
batch size: 64
epochs per update: 5
learning rate: 0.0000005
entropy coefficient: 0.0
initial kl coeff: 0.01
target kl: 0.2
discount factor: 0.99
gae lambda: 0.95
clip ratio: 0.2
rollouts top k : 50
value function coeff: 0.5
top mask ratio: 0.9
target update iterations: 20

decoding num beams: 5
min length: 10
max new tokens: 50

tokenizer padding side: left
truncation side: right
max length: 512

Table C.21: ToTTO Hyperparams: Table shows a list of all hyper-parameters and their settings

Results and Discussion

Tables C.22, C.23, C.24 presents our benchmarking results with 5 reward functions along with
supervised baseline performances on dev and test sets respectively. Similar to other tasks, our
main finding is that warm-started initial policies are crucial for learning to generate descriptions
from highlighted cells. Without warm-start, policies suffer from reward hacking and resulting in
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sub-optimal solutions despite application of task-specific metrics such as PARENT etc. We find that
Supervised+NLPO method outperforms all models on ToTTo leaderboard in terms of PARENT metric.

Tasks _ Lexical and Semantic Metrics Factual Consistency
Alg LM Reward function Rouge-1 Rouge-2 Rouge-L Rouge-LSum Meteor BertScore SacreBleu PARENT

Overall Overlap Non-Overlap Overall Overlap Non-Overlap

ToTTo

Zero-Shot T5 0.131 0.055 0.127 0.127 0.057 0.805 0.038 0.042 0.034 0.118 0.119 0.116

Supervised T5 0.410 0.279 0.388 0.388 0.223 0.953 0.458 0.533 0.387 0.586 0.633 0.540

PPO T5 bleu 0.274 0.138 0.249 0.249 0.139 0.844 0.068 0.071 0.066 0.251 0.250 0.251
T5 sacrebleu 0.341 0.166 0.300 0.300 0.165 0.858 0.09 0.094 0.086 0.300 0.299 0.300
T5 meteor 0.322 0.157 0.286 0.286 0.173 0.888 0.147 0.163 0.133 0.358 0.367 0.350
T5 parent 0.268 0.125 0.251 0.251 0.119 0.890 0.150 0.158 0.143 0.337 0.332 0.342
T5 meteor + parent 0.266 0.128 0.251 0.251 0.130 0.886 0.165 0.175 0.155 0.348 0.346 0.350

NLPO T5 bleu 0.267 0.134 0.24 0.24 0.137 0.84 0.068 0.071 0.065 0.238 0.239 0.237
T5 sacrebleu 0.341 0.168 0.297 0.297 0.183 0.863 0.089 0.093 0.085 0.32 0.324 0.317
T5 meteor 0.322 0.157 0.286 0.286 0.173 0.888 0.147 0.163 0.133 0.358 0.367 0.350
T5 parent 0.283 0.132 0.264 0.264 0.133 0.894 0.163 0.174 0.153 0.36 0.357 0.364
T5 meteor + parent 0.299 0.14 0.276 0.276 0.142 0.896 0.171 0.181 0.161 0.369 0.365 0.372

Supervised + PPO T5 bleu 0.408 0.283 0.388 0.388 0.222 0.954 0.477 0.549 0.405 0.596 0.644 0.550
T5 sacrebleu 0.395 0.275 0.378 0.378 0.211 0.955 0.477 0.554 0.401 0.577 0.621 0.535
T5 meteor 0.410 0.282 0.389 0.389 0.223 0.954 0.469 0.540 0.398 0.593 0.642 0.547
T5 parent 0.401 0.277 0.382 0.382 0.215 0.953 0.470 0.543 0.394 0.598 0.647 0.550
T5 meteor + parent 0.406 0.281 0.386 0.387 0.220 0.954 0.473 0.544 0.399 0.600 0.648 0.553

Supervised + NLPO T5 bleu 0.410 0.283 0.388 0.388 0.222 0.954 0.476 0.548 0.404 0.597 0.644 0.552
T5 sacrebleu 0.397 0.276 0.38 0.38 0.214 0.955 0.477 0.555 0.401 0.581 0.628 0.535
T5 meteor 0.411 0.283 0.389 0.39 0.224 0.954 0.474 0.547 0.403 0.6 0.649 0.554
T5 parent 0.405 0.28 0.386 0.386 0.219 0.954 0.469 0.541 0.398 0.598 0.645 0.552
T5 meteor + parent 0.405 0.28 0.386 0.386 0.219 0.954 0.474 0.547 0.398 0.598 0.646 0.552

Table C.22: ToTTo dev evaluation (Lexical, Semantic and Factual Consistency Metrics): Table shows
lexical, semantic and factual correctness metric scores of algorithms with different reward functions on dev
set. Without supervised pre-training, both PPO and NLPO results in sub-optimal solutions, with NLPO better
than PPO. With supervised pre-training, PPO and NLPO achieve better scores across all metrics showing RL
fine-tuning is beneficial. Most importantly, RL fine-tuned models produce more factually correct text as seen in
higher PARENT scores. Another observation, fine-tuning with a task-specific metric PARENT is better than
training just on task-agnostic lexical metrics
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Tasks _ Diversity Metrics
Alg LM Reward function

MSTTR Distinct1 Distinct2 H1 H2 Unique1 Unique2 Mean Output Length

ToTTo

Zero-Shot T5 0.428 0.084 0.238 6.703 9.933 8387 26490 19.964

Supervised T5 0.715 0.162 0.511 9.995 14.468 15168 54706 17.791

PPO T5 bleu 0.403 0.091 0.308 10.659 14.511 7536 34232 28.545
T5 sacrebleu 0.469 0.121 0.407 11.071 14.880 10138 48195 26.612
T5 meteor 0.625 0.136 0.482 10.189 14.910 12346 54925 21.484
T5 parent 0.764 0.202 0.646 11.068 14.988 13068 50313 13.035
T5 meteor + parent 0.702 0.181 0.594 10.096 14.432 14422 55770 15.354

NLPO T5 bleu 0.448 0.1 0.359 11.259 14.623 9029 47209 28.472
T5 sacrebleu 0.494 0.111 0.373 11.007 15.032 9455 43379 27.977
T5 meteor 0.625 0.136 0.482 10.189 14.910 12346 54925 21.484
T5 parent 0.824 0.223 0.691 11.493 15.127 14344 55542 14.204
T5 meteor + parent 0.779 0.214 0.674 11.072 15.275 14939 58737 15.141

Supervised + PPO T5 bleu 0.722 0.167 0.525 10.080 14.524 15203 54724 17.296
T5 sacrebleu 0.728 0.174 0.539 10.086 14.518 14846 52327 16.063
T5 meteor 0.718 0.165 0.516 10.037 14.467 15182.0 54446 17.542
T5 parent 0.732 0.174 0.545 10.209 14.660 15379.0 55421 16.826
T5 meteor + parent 0.727 0.170 0.532 10.143 14.586 15330 55211 17.185

Supervised + NLPO T5 bleu 0.721 0.167 0.524 10.077 14.532 15213 54948 17.408
T5 sacrebleu 0.729 0.174 0.54 10.124 14.544 14940 52986 16.334
T5 meteor 0.727 0.171 0.536 10.156 14.612 15341 55292 17.637
T5 parent 0.716 0.165 0.519 10.019 14.5 15218 54793 17.095
T5 meteor + parent 0.727 0.171 0.536 10.156 14.612 15341 55292 17.095

Table C.23: ToTTo dev evaluation (Diversity Metrics) : Table shows diversity metrics of algorithms with
different reward functions on dev set.
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Tasks _ Lexical and Semantic Metrics Factual Consistency
Alg LM Reward function SacreBleu BLEURT PARENT

Overall Overlap Non-Overlap Overall Overlap Non-Overlap Overall Overlap Non-Overlap

ToTTo

Zero-Shot T5 0.036 0.040 0.032 -1.392 -1.387 -1.397 0.116 0.119 0.112

PPO T5 bleu 0.065 0.067 0.063 -1.074 -1.045 -1.098 0.246 0.246 0.244
T5 sacrebleu 0.086 0.090 0.083 -0.979 -0.955 -1.003 0.293 0.292 0.294
T5 meteor 0.144 0.155 0.132 -0.769 -0.713 -0.826 0.356 0.361 0.351
T5 parent 0.146 0.153 0.128 -0.721 -0.688 -0.753 0.336 0.335 0.339
T5 meteor + parent 0.161 0.169 0.152 -0.891 -0.861 -0.922 0.345 0.342 0.348

NLPO T5 bleu 0.062 0.065 0.059 -1.077 -1.057 -1.097 0.235 0.236 0.233
T5 sacrebleu 0.085 0.088 0.083 -0.945 -0.917 -0.972 0.314 0.315 0.313
T5 meteor 0.102 0.108 0.097 -1.044 -1.009 -1.079 0.329 0.328 0.330
T5 parent 0.159 0.166 0.152 -0.710 -0.675 -0.745 0.357 0.351 0.363
T5 meteor + parent 0.166 0.175 0.158 -0.704 -0.668 -0.740 0.365 0.362 0.368

Supervised T5 0.457 0.535 0.377 0.204 0.327 0.081 0.583 0.631 0.534

Supervised + PPO T5 bleu 0.473 0.548 0.395 0.200 0.323 0.078 0.590 0.638 0.542
T5 sacrebleu 0.474 0.557 0.389 0.209 0.340 0.077 0.573 0.620 0.525
T5 meteor 0.468 0.541 0.392 0.203 0.325 0.082 0.590 0.638 0.542
T5 parent 0.469 0.547 0.388 0.175 0.300 0.050 0.595 0.641 0.549
T5 meteor + parent 0.473 0.547 0.392 0.192 0.314 0.069 0.595 0.642 0.549

Supervised + NLPO T5 bleu 0.475 0.548 0.399 0.208 0.330 0.085 0.593 0.639 0.546
T5 sacrebleu 0.475 0.557 0.392 0.208 0.335 0.081 0.577 0.625 0.529
T5 meteor 0.468 0.541 0.392 0.201 0.322 0.079 0.594 0.641 0.546
T5 parent 0.474 0.550 0.392 0.192 0.315 0.068 0.596 0.643 0.550
T5 meteor + parent 0.471 0.546 0.393 0.204 0.326 0.081 0.592 0.640 0.544

Table C.24: ToTTo test evaluation: Table shows lexical, semantic and factual correctness metric scores of
algorithms with different reward functions on hold-out test set. Without supervised pre-training, both PPO
and NLPO results in sub-optimal solutions, with NLPO better than PPO. With supervised pre-training, PPO
and NLPO achieve better scores across all metrics showing RL fine-tuning is beneficial. Most importantly,
RL fine-tuned models produce more factually consistent text as seen in higher PARENT scores. Another
observation, fine-tuning with a task-specific metric PARENT is better than training on task-agnostic lexical
rewards

Algorithm Unique N Coherence Correctness
Value Alpha Skew Value Alpha Skew

Zero Shot 25 1.63 0.718 1.642 1.93 0.503 1.946
PPO+Supervised 24 4.57 0.221 4.579 4.48 0.098 4.483
PPO 26 2.75 0.427 2.753 3.23 0.214 3.227
NLPO 28 2.25 0.401 2.247 2.61 0.419 2.613
Supervised 24 4.59 0.173 4.592 4.54 0.189 4.537
NLPO+Supervised 26 4.58 0.244 4.601 4.57 0.144 4.581

Table C.25: ToTTo Human Study Results: Results of the human subject study showing the number of
participants N, average Likert scale value for coherence and sentiment, Krippendorf’s alpha showing inter-
annotator agreement, and Skew. For each model a total of 50 samples were drawn randomly from the test set
and rated by 3 annotators each, resulting in 150 data points per algorithm.
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Group 1 Group 2 Coherence Correctness
Diff (G2-G1) p-values Diff (G2-G1) p-values

PPO NLPO -0.507 0.001 -0.613 0.001
PPO NLPO+Supervised 1.827 0.001 1.340 0.001
PPO Supervised 1.833 0.001 1.313 0.001
PPO PPO+Supervised 1.813 0.001 1.253 0.001
PPO Zero Shot -1.120 0.001 -1.293 0.001
NLPO NLPO+Supervised 2.333 0.001 1.953 0.001
NLPO Supervised 2.340 0.001 1.927 0.001
NLPO PPO+Supervised 2.320 0.001 1.867 0.001
NLPO Zero Shot -0.613 0.001 -0.680 0.001
NLPO+Supervised Supervised 0.007 0.9 -0.027 0.009
NLPO+Supervised PPO+Supervised -0.013 0.009 -0.087 0.009
NLPO+Supervised Zero Shot -2.947 0.001 -2.633 0.001
Supervised PPO+Supervised -0.020 0.009 -0.060 0.009
Supervised Zero Shot -2.953 0.001 -2.607 0.001
PPO+Supervised Zero Shot -2.933 0.001 -2.547 0.001

Table C.26: ToTTo Human Study Tukey Results: Results of an post-hoc Tukey HSD Test for difference in
means between pairs of algorithms (Group 2 - Group 1) and corresponding 𝑝-values. Individually statistically
significant results are bolded and are used to discuss results in the analysis. Overall 𝑝-values showing that
there is a significant difference in means between the models via a one-way ANOVA test are significant with
𝑝 � 0.05 for both coherence and sentiment.
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Human Participant Study

Figure C.7 shows the ToTTo instructions, example, and interface used for the human evaluation
experiments. We made small modifications to the original code release’s HTML renderer to make the
tables display in our HITs. Tables C.25, C.26 show averaged results, annotator agreement, and the
results of statistical significance tests to determine which models output better generations when rated
by humans.

Qualitative Analysis

We show sample generations from each of the algorithms for three randomly picked prompts below.
Sample 1
Prompt: <table> <cell> August 1, 1992 <col_header> Date </col_header> <col_header> North America

</col_header> <col_header> Australasia </col_header> <col_header> Asia </col_header> <
col_header> North America </col_header> </cell> <cell> Allentown <col_header> City </
col_header> <col_header> North America </col_header> <col_header> Australasia </col_header>
<col_header> Asia </col_header> <col_header> North America </col_header> </cell> <cell>
Allentown Fairgrounds Grandstand <col_header> Country </col_header> <col_header> North
America </col_header> <col_header> Australasia </col_header> <col_header> Asia </col_header>
<col_header> North America </col_header> </cell> </table><page_title> Under My Spell Tour
</page_title> <section_title> Tour dates </section_title> <table> <cell> August 1, 1992 <
col_header> Date </col_header> <col_header> North America </col_header> <col_header>
Australasia </col_header> <col_header> Asia </col_header> <col_header> North America </
col_header> </cell> <cell> Allentown <col_header> City </col_header> <col_header> North
America </col_header> <col_header> Australasia </col_header> <col_header> Asia </col_header>
<col_header> North America </col_header> </cell> <cell> Allentown Fairgrounds Grandstand <
col_header> Country </col_header> <col_header> North America </col_header> <col_header>
Australasia </col_header> <col_header> Asia </col_header> <col_header> North America </
col_header> </cell> </table>

Zero-Shot: table> cell> Under My Spell Tour /section_title> Tour dates /cell> cell> August 1,
1992 col_header> Date /col_header>

PPO: Under My Spell Tour, August 1, 1992. August 1, 1992.
NLPO: Under My Spell Tour dates Under My Spell Tour dates Allentown Fairgrounds Grandstand August

1, 1992. Under My Spell Tour dates Under My Spell Tour dates Allentown Fairgrounds
Grandstand August 1, 1992 table>

Supervised: The Under My Spell Tour began on August 1, 1992 at the Allentown Fairgrounds
Grandstand in Allentown.

Supervised + PPO: On August 1, 1992, Under My Spell Tour was held at the Allentown Fairgrounds
Grandstand in Allentown.

Supervised + NLPO: On August 1, 1992, Under My Spell Tour was held at the Allentown Fairgrounds
Grandstand in Allentown.

Sample 2
Prompt: <table> <cell> Philip IV the Fair, the Iron King (Philippe) <col_header> Name </

col_header> </cell> <cell> 5 October 1285 <col_header> King from </col_header> </cell> <cell
> King of France and of Navarre (Roi de France et de Navarre) <col_header> Title </
col_header> </cell> </table><page_title> List of French monarchs </page_title> <
section_title> House of Capet (987âĂŞ1328) </section_title> <table> <cell> Philip IV the
Fair, the Iron King (Philippe) <col_header> Name </col_header> </cell> <cell> 5 October 1285
<col_header> King from </col_header> </cell> <cell> King of France and of Navarre (Roi de
France et de Navarre) <col_header> Title </col_header> </cell> </table>

Zero-Shot: > </table><page_title> List of French monarchs <
PPO: Philip IV the Fair, the Iron King (Philippe) 5 October 1285. Title: King of France and of

Navarre (Roi de France et de Navarre
NLPO: King (Philippe) Philip IV the Fair, the Iron King (Philippe) 5 October 1285
Supervised: Philip IV the Fair, the Iron King (Philippe) was King of France and Navarre from

1285.
Supervised + PPO: Philip IV the Fair, the Iron King was King of France and Navarre from 1285.
Supervised + NLPO: Philip IV the Fair, the Iron King (Philippe) was King of France and Navarre (

Roi de France et de Navarre) in 1285.
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Figure C.7: ToTTo Human Study Setup: Instructions, two examples, and interface for the ToTTo table
description task.
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Sample 3
Prompt: <table> <cell> Benjamin A. Smith II (D) <col_header> Vacator </col_header> </cell> <cell>

Successor elected November 6, 1962. <col_header> Reason for change </col_header> </cell> <
cell> Ted Kennedy (D) <col_header> Successor </col_header> </cell> <cell> November 7, 1962 <
col_header> Date of successor’s formal installation </col_header> </cell> </table><
page_title> 87th United States Congress </page_title> <section_title> Senate </section_title
> <table> <cell> Benjamin A. Smith II (D) <col_header> Vacator </col_header> </cell> <cell>
Successor elected November 6, 1962. <col_header> Reason for change </col_header> </cell> <
cell> Ted Kennedy (D) <col_header> Successor </col_header> </cell> <cell> November 7, 1962 <
col_header> Date of successor’s formal installation </col_header> </cell> </table>

Zero-Shot: cell> Ted Kennedy (D) col_header> Vacator /col_header> /cell> cell> November 7, 1962
col_header> Reason for change

PPO: Ted Kennedy (D) succeeding November 6, 1962 as Vacator of the 87th United States Congress.
NLPO: Ted Kennedy (D) Successor elected November 6, 1962. table> cell Benjamin A. Smith II (D)

col_header Reason for change: Date of successor’s formal installation November 7, 1962.
Supervised: Benjamin A. Smith II (D) served as senate until November 6, 1962 which was later

served by Ted Kennedy (D) from November 7, 1962.
Supervised + PPO: Benjamin A. Smith II (D) served until November 6, 1962 and Ted Kennedy (D)

succeeded him from November 7, 1962.
Supervised + NLPO: Benjamin A. Smith II (D) served until November 6, 1962 and Ted Kennedy (D)

succeeded him from November 7, 1962.

C.1.7 NarrativeQA

Setup NarrativeQA [296] deals with task of generating answers to questions about a given story.
For training RL methods, we consider 2 traditional lexical rewards namely Rouge Combined and
Rouge-L-Max. We chose T5-base as the base LM since it has been shown to do well at question
answering in prior work [309]. We note that the supervised models we use are trained on the UnifiedQA
dataset, which contains other QA datasets, and is shown by [309] to outperform supervised fine-tuning
only on NarrativeQA. Hyperparams for our models can be found in Table C.27.

Results and Discussion

Tables C.28 and C.29 presents our benchmarking results with 2 reward functions along with supervised
baseline performances on the NarrativeQA test set. Similar to other methods, our main finding is that
warm-started initial policies are crucial for learning to generate answers that successfully use the input
context.

Qualitative Results

We show sample generations from each of the algorithms for three randomly picked prompts below.
Sample 1
Prompt: who is mark hunter? mark hunter (slater), a high school student in a sleepy suburb of

phoenix, arizona, starts an fm pirate radio station that broadcasts from the basement of his
parents’ house. mark is a loner, an outsider, whose only outlet for his teenage angst and
aggression is his unauthorized radio station. his pirate station’s theme song is "everybody
knows" by leonard cohen and there are glimpses of cassettes by such alternative musicians as
the jesus and mary chain, camper van beethoven, primal scream, soundgarden, ice-t, bad
brains, concrete blonde, henry rollins, and the pixies. by day, mark is seen as a loner,
hardly talking to anyone around him; by night, he expresses his outsider views about what is
wrong with american society. when he speaks his mind about what is going on at his school
and in the community, more and more of his fellow students tune in to hear his show.nobody
knows the true identity of "hard harry" or "happy harry hard-on," as mark refers to himself,
until nora diniro (mathis), a fellow student, tracks him down and confronts him the day
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Model Params value

ppo/nlpo steps per update: 5120
total number of steps: 512000
batch size: 64
epochs per update: 5
learning rate: 0.000002
entropy coefficient: 0.0
initial kl coeff: 0.001
target kl: 1.0
discount factor: 0.99
gae lambda: 0.95
clip ratio: 0.2
rollouts top k : 50
value function coeff: 0.5
top mask ratio: 0.9
target update iterations: 20

supervised+ ppo (or nlpo) steps per update:2560
total number of steps: 512000
batch size: 64
epochs per update: 5
learning rate: 0.0000005
entropy coefficient: 0.0
initial kl coeff: 0.001
target kl: 0.2
discount factor: 0.99
gae lambda: 0.95
clip ratio: 0.2
rollouts top k : 50
value function coeff: 0.5
top mask ratio: 0.9
target update iterations: 20

decoding num beams: 4
max new tokens: 50

tokenizer padding side: left
truncation side: right
max length: 512

Table C.27: NarQA Hyperparams: Table shows a list of all hyper-parameters and their settings

after a student named malcolm commits suicide after harry attempts to reason with him. the
radio show becomes increasingly popular and influential after harry confronts the suicide
head-on, exhorting his listeners to do something about their problems instead of
surrendering to them through suicideÃćÂĂÂŤat the crescendo of his yelled speech, an
overachieving student named paige woodward (who has been a constant listener) jams her
various medals and accolades into a microwave and turns it on. she then sits, watching the
awards cook until the microwave explodes, injuring her. while this is happening, other
students act out in cathartic release.eventually, the radio show causes so much trouble in
the community that the fcc is called in to investigate. during the fracas, it is revealed
that the school’s principal (annie ross) has been expelling "problem students," namely,
students with below-average standardized test scores, in an effort to boost the district’s
test scores while still keeping their names on the rolls (a criminal offense) in order to
retain government funding.realizing he has started something huge, mark decides it is up to
him to end it. he dismantles his radio station and attaches it to his mother’s old jeep,
creating a mobile transmitter so his position can’t be triangulated. pursued by the police
and the fcc, nora drives the jeep around while mark broadcasts. the harmonizer he uses to
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Tasks Lexical and Semantic Metrics
Alg Reward Function LM Rouge-1 Rouge-2 Rouge-L Rouge-LSum Rouge-LMax Meteor BLEU BertScore

NarQA

Zero Shot T5 0.095 0.022 0.084 0.084 0.117 0.095 0.009 0.835

PPO Rouge Combined T5 0.101 0.025 0.088 0.088 0.122 0.099 0.01 0.837
Rouge-L Max T5 0.099 0.025 0.087 0.087 0.122 0.099 0.01 0.835

NLPO Rouge Combined T5 0.097 0.023 0.085 0.085 0.118 0.098 0.009 0.836
Rouge-L Max T5 0.102 0.026 0.089 0.089 0.124 0.1 0.01 0.837

Supervised T5 0.378 0.190 0.367 0.367 0.581 0.099 0.209 0.931

Supervised + PPO Rouge Combined T5 0.38 0.177 0.371 0.371 0.585 0.09 0.229 0.931
Rouge-L Max T5 0.368 0.18 0.36 0.36 0.585 0.083 0.239 0.931

Supervised + NLPO Rouge Combined T5 0.398 0.21 0.393 0.373 0.589 0.096 0.24 0.971
Rouge-L Max T5 0.381 0.194 0.383 0.383 0.588 0.093 0.243 0.932

Table C.28: Evaluation of NarrativeQA (Lexical and Semantic Metrics): Reference Metrics, supervised is
based on UnifiedQA [309].

Tasks Diversity Metrics
Alg Reward Function LM MSTTR Distinct1 Distinct2 H1 H2 Unique1 Unique2 Mean Output Length

NarQA

Zero Shot T5 0.415 0.026 0.097 9.641 13.468 1880 11495 31.688

PPO Rouge Combined T5 0.462 0.03 0.125 9.759 13.789 2522 17806 32.352
Rouge-L Max T5 0.439 0.029 0.119 9.653 13.618 2292 15816 31.479

NLPO Rouge Combined T5 0.418 0.025 0.096 9.652 13.528 1816 10980 32.117
Rouge-L Max T5 0.445 0.029 0.118 9.776 13.75 2181 14569 31.555

Supervised T5 0.609 0.156 0.534 9.807 13.657 3250 14995 4.923

Supervised + PPO Rouge Combined T5 0.640 0.174 0.559 10.132 13.547 3326 13785 4.353
Rouge-L Max T5 0.641 0.187 0.576 10.201 13.452 3287 12436 3.913

Supervised + NLPO Rouge Combined T5 0.679 0.185 0.595 10.304 13.694 3371 15067 4.728
Rouge-L Max T5 0.645 0.187 0.59 10.2 13.397 3287 12171 3.889

Table C.29: Evaluation of NarrativeQA (Diversity Metrics): Reference Metrics, supervised is based on
UnifiedQA [309].

disguise his voice breaks, and with no time left to fix it, mark decides to broadcast his
final message as himself. they finally drive up to the crowd of protesting students, and
mark tells them that the world belongs to them and that they should make their own future.
the police step in and arrest mark and nora. as they are taken away, mark reminds the
students to "talk hard." as the film ends, the voices of other students (and even one of the
teachers) speak as intros for their own independent stations, which can be heard
broadcasting across the country.

Zero-Shot: hunter (slater) is a high school student in a sleepy suburb of phoenix, arizona. he
starts an fm pirate radio station that broadcasts from the basement of his

References: he is a high school student in phoenix 2) loner and outsider student with a radio
station

PPO: hunter (slater), a high school student in a sleepy suburb of phoenix, arizona, starts an fm
pirate radio station that broadcasts from the basement of his parents’ house

NLPO: hunter (slater), a high school student in a sleepy suburb of phoenix, arizona, starts an fm
pirate radio station that broadcasts from the basement of his parents’ house

Supervised: a high school student
Supervised + PPO: a high school student
Supervised + NLPO: a high school student

Sample 2
Prompt: what was the principle doing with the problem students? mark hunter (slater), a high

school student in a sleepy suburb of phoenix, arizona, starts an fm pirate radio station
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that broadcasts from the basement of his parents’ house. mark is a loner, an outsider, whose
only outlet for his teenage angst and aggression is his unauthorized radio station. his
pirate station’s theme song is "everybody knows" by leonard cohen and there are glimpses of
cassettes by such alternative musicians as the jesus and mary chain, camper van beethoven,
primal scream, soundgarden, ice-t, bad brains, concrete blonde, henry rollins, and the
pixies. by day, mark is seen as a loner, hardly talking to anyone around him; by night, he
expresses his outsider views about what is wrong with american society. when he speaks his
mind about what is going on at his school and in the community, more and more of his fellow
students tune in to hear his show.nobody knows the true identity of "hard harry" or "happy
harry hard-on," as mark refers to himself, until nora diniro (mathis), a fellow student,
tracks him down and confronts him the day after a student named malcolm commits suicide
after harry attempts to reason with him. the radio show becomes increasingly popular and
influential after harry confronts the suicide head-on, exhorting his listeners to do
something about their problems instead of surrendering to them through suicideÂĂÂŤat the
crescendo of his yelled speech, an overachieving student named paige woodward (who has been
a constant listener) jams her various medals and accolades into a microwave and turns it on.
she then sits, watching the awards cook until the microwave explodes, injuring her. while
this is happening, other students act out in cathartic release.eventually, the radio show
causes so much trouble in the community that the fcc is called in to investigate. during the
fracas, it is revealed that the school’s principal (annie ross) has been expelling "problem
students," namely, students with below-average standardized test scores, in an effort to
boost the district’s test scores while still keeping their names on the rolls (a criminal
offense) in order to retain government funding.realizing he has started something huge, mark
decides it is up to him to end it. he dismantles his radio station and attaches it to his
mother’s old jeep, creating a mobile transmitter so his position can’t be triangulated.
pursued by the police and the fcc, nora drives the jeep around while mark broadcasts. the
harmonizer he uses to disguise his voice breaks, and with no time left to fix it, mark
decides to broadcast his final message as himself. they finally drive up to the crowd of
protesting students, and mark tells them that the world belongs to them and that they should
make their own future. the police step in and arrest mark and nora. as they are taken away,
mark reminds the students to "talk hard." as the film ends, the voices of other students (
and even one of the teachers) speak as intros for their own independent stations, which can
be heard broadcasting across the country.

Zero-Shot: mark hunter (slater) starts an fm pirate radio station that broadcasts from the
basement of his parents’ house. by day, mark is seen as a loner, an outsider, whose only
outlet

References: 1) expelling them. 2) expelling the students
PPO: mark hunter (slater) starts an fm pirate radio station that broadcasts from the basement of

his parents’ house. mark is a loner, an outsider, whose only outlet for his teenage ang
NLPO: mark hunter (slater) starts an fm pirate radio station that broadcasts from the basement of

his parents’ house. mark is a loner, an outsider, whose only outlet for his teenage ang
Supervised: he was taking them to a psychiatric hospital.
Supervised + PPO: addressing them
Supervised + NLPO: he was expelling them

Sample 3
Prompt: what happens to the people maskull meets in his travels to various lands? maskull, a man

longing for adventures, accepts an invitation from krag, an acquaintance of his friend
nightspore, to travel to tormance after a seance. the three set off in a crystal ship from
an abandoned observatory in scotland but maskull awakens to find himself alone on tormance.
in every land he passes through he usually meets only one or two persons; these meetings
often (though not always) end in the death of those he meets, either at his own hand or by
that of another. he learns of his own impending death, meets krag again, and dies shortly
after learning that he is in fact nightspore himself. the book concludes with a final
revelation from krag (who claims to be known on earth as "pain") to nightspore about the
origin of the universe. the author turns out to support a variation of the doctrine of the
demiurge, somewhat similar to that propounded by some gnostics.all of the characters and
lands are types used to convey the author’s critique of several philosophical systems. on
tormance, most such viewpoints or ways of life are accompanied by corresponding new bodily
sense organs or modifications of the same, thus each distinct weltanschauung landscape has
its corresponding sensorium.

Zero-Shot: what happens to the people maskull meets in his travels to various lands? n maskull, a
man longing for adventures, accepts an invitation from krag to travel to tormance after
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References: 1) they usually die by his hand or anothers. 2) they die
PPO: what happens to the people maskull meets in his travels to various lands? n maskull, a man

longing for adventures, accepts an invitation from krag to travel to tormance after
NLPO: maskull meets krag, an acquaintance of nightspore, to travel to tormance after a seance.

maskull awakens to find himself alone on tormance. in every land
Supervised: they die either from his own hand or from another person’s death.
Supervised + PPO: they end up dying either at his own hand or by another’s.
Supervised + NLPO: they end up dying either at his own hand or by another’s

C.1.8 Neural Machine Translation

Setup We benchmark on two datasets: 1) IWSLT-17 [310] contains transcriptions of TED talks
in many languages. 2) WMT-16: We pick two languages, English and German, and frame this task
similarly to other machine translation tasks—requiring the models to translate from English to German.
We train models on 4 rewards: SacreBLEU, chRF, TER, and BertScore.

Results and Discussion

Tables C.31, C.32 presents our benchmarking results with 4 reward functions along with supervised
baseline performances on test set. Our main finding is that NLPO + Supervised performs better than
PPO and supervised models.
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Model Params value

supervised batch size: 64
epochs: 5
learning rate: 0.00001
learning rate scheduler: constant
weight decay: 0.1

ppo/nlpo steps per update: 5120
total number of steps: 256000
batch size: 64
epochs per update: 5
learning rate: 0.0.000001
entropy coefficient: 0.0
initial kl coeff: 0.001
target kl: 0.2
discount factor: 0.99
gae lambda: 0.95
clip ratio: 0.2
rollouts top k : 10
value function coeff: 0.5
top mask ratio: 0.5
target update iterations: 20

supervised+ ppo (or nlpo) steps per update:2560
total number of steps: 256000
batch size: 64
epochs per update: 5
learning rate: 0.0000005
entropy coefficient: 0.0
initial kl coeff: 0.001
target kl: 0.2
discount factor: 0.99
gae lambda: 0.95
clip ratio: 0.2
rollouts top k : 10
value function coeff: 0.5
top mask ratio: 0.5
target update iterations: 20

decoding num beams: 4
length penalty: 0.6
max new tokens: 128

tokenizer padding side: left
truncation side: right
max length: 128

Table C.30: NMT Hyperparams: Table shows a list of all hyper-parameters and their settings
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Datasets Lexical and Semantic Metrics
Alg LM Reward Function Rouge-1 Rouge-2 Rouge-L Rouge-LSum Meteor BLEU SacreBLEU chRf TER BertScore

WMT16

Zero-Shot T5 0.635 0.414 0.591 0.591 0.483 0.294 0.348 0.613 0.543 0.882

PPO T5 SacreBLEU 0.636 0.415 0.591 0.591 0.482 0.294 0.348 0.614 0.539 0.882
T5 chRF 0.635 0.414 0.591 0.591 0.481 0.291 0.346 0.612 0.540 0.882
T5 TER 0.638 0.416 0.595 0.594 0.484 0.294 0.350 0.616 0.534 0.883
T5 BertScore 0.637 0.417 0.593 0.593 0.479 0.294 0.347 0.613 0.534 0.882

NLPO T5 SacreBLEU 0.635 0.415 0.592 0.592 0.484 0.297 0.352 0.615 0.542 0.882
T5 chRF 0.634 0.413 0.59 0.59 0.481 0.291 0.345 0.612 0.540 0.882
T5 TER 0.633 0.412 0.59 0.59 0.477 0.286 0.341 0.608 0.540 0.881
T5 BertScore 0.622 0.397 0.58 0.581 0.458 0.269 0.323 0.591 0.546 0.876

Supervised T5 0.635 0.411 0.590 0.590 0.482 0.294 0.350 0.617 0.540 0.882

Supervised + PPO T5 SacreBLEU 0.640 0.416 0.595 0.595 0.487 0.298 0.355 0.620 0.533 0.883
T5 chRF 0.640 0.416 0.596 0.596 0.486 0.298 0.354 0.621 0.532 0.883
T5 TER 0.637 0.414 0.594 0.594 0.483 0.295 0.352 0.618 0.533 0.882
T5 BertScore 0.637 0.413 0.593 0.594 0.482 0.294 0.350 0.616 0.533 0.882

Supervised + NLPO T5 SacreBLEU 0.642 0.419 0.596 0.596 0.497 0.297 0.355 0.621 0.533 0.888
T5 chRF 0.636 0.412 0.592 0.592 0.492 0.293 0.349 0.617 0.534 0.886
T5 TER 0.637 0.414 0.594 0.594 0.491 0.292 0.349 0.615 0.531 0.886
T5 BertScore 0.64 0.417 0.598 0.598 0.499 0.287 0.349 0.62 0.538 0.887

IWSLT2017

Zero-Shot T5 0.619 0.386 0.588 0.587 0.445 0.254 0.308 0.577 0.573 0.870

PPO T5 SacreBLEU 0.621 0.383 0.587 0.587 0.448 0.243 0.296 0.575 0.583 0.869
T5 chRF 0.622 0.385 0.590 0.590 0.448 0.248 0.301 0.578 0.575 0.870
T5 TER 0.623 0.384 0.591 0.591 0.443 0.246 0.303 0.572 0.568 0.869
T5 BertScore 0.533 0.326 0.507 0.507 0.321 0.143 0.174 0.406 0.573 0.839

NLPO T5 SacreBLEU 0.624 0.385 0.59 0.59 0.45 0.245 0.299 0.578 0.578 0.87
T5 chRF 0.624 0.386 0.59 0.59 0.451 0.248 0.302 0.581 0.576 0.87
T5 TER 0.622 0.384 0.59 0.59 0.443 0.246 0.303 0.573 0.57 0.869
T5 BertScore 0.611 0.377 0.58 0.58 0.425 0.239 0.291 0.555 0.573 0.866

Supervised T5 0.638 0.400 0.610 0.609 0.461 0.280 0.337 0.593 0.538 0.878

Supervised + PPO T5 SacreBLEU 0.640 0.407 0.610 0.610 0.465 0.277 0.332 0.596 0.542 0.877
T5 chRF 0.639 0.406 0.609 0.609 0.464 0.277 0.331 0.596 0.543 0.877
T5 TER 0.637 0.406 0.609 0.609 0.457 0.274 0.331 0.589 0.535 0.876
T5 BertScore 0.612 0.381 0.585 0.585 0.418 0.240 0.291 0.548 0.559 0.867

Supervised + NLPO T5 SacreBLEU 0.641 0.418 0.614 0.614 0.474 0.289 0.343 0.597 0.535 0.877
T5 chRF 0.643 0.418 0.621 0.621 0.464 0.291 0.345 0.596 0.539 0.877
T5 TER 0.639 0.419 0.621 0.621 0.471 0.289 0.346 0.593 0.535 0.877
T5 BertScore 0.633 0.401 0.606 0.606 0.448 0.267 0.323 0.580 0.537 0.875

Table C.31: WMT-16 and IWSLT test evaluation - lexical and semantic: Table shows lexical, semantic
metrics for RL algorithms with different reward functions bench-marked against supervised baseline models
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Tasks Diversity Metrics
Alg Reward Function LM MSTTR Distinct1 Distinct2 H1 H2 Unique1 Unique2 Mean Output Length

WMT16

Zero-Shot T5 0.732 0.193 0.675 10.100 14.561 7290 33691 20.533

PPO T5 SacreBLEU 0.738 0.198 0.687 10.166 14.613 7503 34140 20.375
T5 chRF 0.738 0.196 0.687 10.175 14.611 7376 34116 20.337
T5 TER 0.736 0.196 0.683 10.132 14.588 7447 33977 20.356
T5 BertScore 0.736 0.195 0.685 10.129 14.574 7272 33477 20.035

NLPO T5 SacreBLEU 0.735 0.193 0.68 10.125 14.592 7395 34276 20.672
T5 chRF 0.738 0.196 0.686 10.164 14.606 7399 34056 20.351
T5 TER 0.74 0.2 0.694 10.204 14.63 7522 34234 20.151
T5 BertScore 0.739 0.2 0.698 10.194 14.608 7203 33169 19.482

Supervised T5 0.729 0.190 0.669 10.048 14.530 7205 33430 20.622

Supervised + PPO T5 SacreBLEU 0.732 0.191 0.674 10.080 14.552 7222 33723 20.605
T5 chRF 0.735 0.192 0.677 10.093 14.569 7319 33923 20.586
T5 TER 0.732 0.192 0.676 10.079 14.553 7265 33635 20.441
T5 BertScore 0.732 0.192 0.677 10.082 14.550 7187 33385 20.305

Supervised + NLPO T5 SacreBLEU 0.734 0.191 0.675 10.089 14.568 7308 33941 20.686
T5 chRF 0.735 0.194 0.681 10.112 14.571 7372 33814 20.348
T5 TER 0.737 0.194 0.682 10.105 14.566 7243 33482 20.159
T5 BertScore 0.737 0.227 0.742 10.042 14.179 5438 22574 12.63

IWSLT2017

Zero-Shot T5 0.662 0.097 0.4700 9.276 14.526 8312 52947 18.739

PPO T5 SacreBLEU 0.657 0.095 0.464 9.230 14.498 8285 53000 19.069
T5 chRF 0.660 0.096 0.468 9.253 14.526 8243 53142 18.912
T5 TER 0.659 0.097 0.474 9.244 14.536 8129 51914 18.268
T5 BertScore 0.673 0.120 0.541 9.288 14.388 6642 37267 11.602

NLPO T5 SacreBLEU 0.656 0.094 0.463 9.207 14.483 8240 52822 19.043
T5 chRF 0.658 0.095 0.464 9.233 14.502 8230 53167 19.073
T5 TER 0.661 0.098 0.476 9.271 14.552 8223 52438 18.344
T5 BertScore 0.667 0.102 0.491 9.31 14.576 8134 50740 17.162

Supervised T5 0.655 0.095 0.467 9.210 14.492 7970 51430 18.440

Supervised + PPO T5 SacreBLEU 0.654 0.094 0.461 9.176 14.467 8061 51840 18.803
T5 chRF 0.656 0.094 0.464 9.202 14.497 8054 52198 18.794
T5 TER 0.658 0.097 0.475 9.239 14.529 7969 51255 18.048
T5 BertScore 0.665 0.102 0.495 9.270 14.524 7495 47629 16.051

Supervised + NLPO T5 SacreBLEU 0.655 0.094 0.461 9.182 14.469 8073 51797 18.777
T5 chRF 0.657 0.095 0.466 9.212 14.503 8074 52056 18.642
T5 TER 0.658 0.096 0.473 9.231 14.521 8025 51389 18.133
T5 BertScore 0.661 0.098 0.482 9.26 14.547 7852 50672 17.496

Table C.32: WMT-16 and IWSLT test evaluation - diversity metrics Table shows diversity metrics for RL
algorithms with different reward functions bench-marked against supervised baseline models
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Qualitative Results

We show sample generations from each of the algorithms for three randomly picked prompts from
IWSLT below.

Sample 1
Prompt: translate English to German: Several years ago here at TED, Peter Skillman introduced

a design challenge called the marshmallow challenge.
Zero-Shot: Vor einigen Jahren hat Peter Skillman hier bei TED eine Design-Herausforderung

namens Marshmallow Challenge vorgestellt.
PPO: Vor einigen Jahren, hier bei TED, stellte Peter Skillman einen Design-Wettbewerb namens

"Die Marshmallow-Herausforderung" vor
NLPO: Vor einigen Jahren hier bei TED fÃĳhrte Peter Skillman eine Design-Herausforderung

namens Marshmallow Challenge ein.
Supervised: Vor einigen Jahren hier bei TED fÃĳfchrte Peter Skillman eine Design-

Herausforderung namens Marshmallow Challenge ein.
Supervised + PPO: Vor einigen Jahren hier bei TED, fÃĳhrte Peter Skillman eine Design-

Herausforderung namens Marshmallow-Herausforderung ein.
Supervised + NLPO: Vor einigen Jahren hier bei TED fÃĳchrte Peter Skillman eine Design-

Herausforderung ein, die Marshmallow-Herausforderung.

Sample 2
Prompt: translate English to German: They spend the majority of their time assembling the

sticks into ever-growing structures.
Zero-Shot: Sie verbringen den grÃűÃ§ten Teil ihrer Zeit damit, die StÃűcke in immer wachsende

Strukturen zu montieren.
References: Sie investieren einen GroÃ§teil ihrer Zeit in den Zusammenbau stÃďndig wachsender

Strukturen
PPO: Sie verbringen den GroÃ§teil ihrer Zeit damit, die StÃűcke in immer grÃűÃ§er werdende

Strukturen zu montieren.
NLPO: Sie verbringen den GroÃ§teil ihrer Zeit, die StÃűcke in immer wachsende Strukturen zu

montieren.
Supervised: Sie verbringen den GroÃ§teil ihrer Zeit damit, die StÃűcke in immer wachsende

Strukturen zu montieren.
Supervised + PPO: Sie verbringen den GroÃ§teil ihrer Zeit damit, die StÃűcke in immer

wachsende Strukturen zu montieren.
Supervised + NLPO: Sie verbringen den GroÃ§teil ihrer Zeit damit, die StÃűcke in immer

wachsende Strukturen zu montieren.

Sample 3
Prompt: translate English to German: And of course there are teams that have a lot more "ta-

da" structures, and among the best are recent graduates of kindergarten.
Zero-Shot: Und natÃĳrlich gibt es Teams, die viel mehr "ta-da" Strukturen haben, und zu den

besten gehÃűren jÃĳngste Absolventen des Kindergartens.
References: Und natÃĳrlich gibt es auch Teams die viel mehr "ta-da"-Gebilde haben und unter

den Besten sind frische Absolventen des Kindergartens.
PPO: Und natÃĳrlich gibt es Teams, die viel mehr "ta-da" Strukturen, und unter den besten

sind jÃĳngste Absolventen des Kindergartens.
NLPO: Und natÃĳrlich gibt es Teams, die viel mehr "t
a-da" Strukturen haben, und unter den besten sind jÃĳngste Absolventen des Kindergartens
Supervised: Und natÃĳrlich gibt es Teams, die viel mehr "ta-da"-Strukturen haben, und unter

den besten sind jÃĳngste Absolventen des Kindergartens.
Supervised + PPO: Und natÃĳrlich gibt es Teams, die viel mehr "ta-da"-Strukturen haben, und

unter den besten sind jÃĳngste Absolventen des Kindergartens.
Supervised + NLPO: Und natÃĳlich gibt es Teams, die viel mehr "ta-da"-Strukturen haben, und

unter den besten sind jÃĳngste Absolventen des Kindergartens.

C.1.9 Dialy Dialog

Setup We consider DailyDialog [297] as the test bed for the dialogue generation task. The dataset
includes conversations written by human on various topics. In addition, each utterance contains labels
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of intent and emotional information. For simplicity, we focus only on generating the next utterance,
given the dialogue context. We chose a context window of size 5, which results in 35k training, 3k
and 3k utterances. The input to the model is dialogue history in which utterances are concatenated
using a <EOU> token. We picked GPT-2 as the LM as they are more suited for text continuation than
encoder-decoder LMs. For a fair comparison, we use top-k sampling with 𝑘 = 20 as the decoding
method for all methods. For RL methods, we use a linear combination of meteor score and intent
match score (whether the generated text’s intent matches with the reference’s intent) as the reward
function. The coefficients for meteor and intent are chosen based on both lexical scores and intent
accuracy on the validation set. For this purpose, we trained an intent classifier (fine-tuned RoBERTa
[311]) that classifies given text into intent categories such as inform, question, directive and commisive,
etc. Table C.33 provides a summary of hyperparameters and implementation details.

Results and Discussion

Tables C.34 and C.35 presents our benchmarking results of RL methods along with supervised baseline
performances on test sets. Our main finding is that RL methods generally achieve better intent accuracy
and automatic metric scores, in particular NLPO variants perform better than all other methods.

Human Participant Study

Figure C.8 shows the Daily Dialogue instructions and interface used for the human evaluation
experiments. Tables C.36, C.37 show averaged results, annotator agreement, and the results of
statistical significance tests to determine which models output better generations when rated by
humans.
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Model Params value

ppo/nlpo steps per update: 1280
total number of steps: 128000
batch size: 64
epochs per update: 5
learning rate: 0.000001
entropy coefficient: 0.0
initial kl coeff: 0.2
target kl: 0.5
discount factor: 0.99
gae lambda: 0.95
clip ratio: 0.2
rollouts top k : 20
value function coeff: 0.5
meteor coeff: 0.25
intent coeff: 0.75
top mask ratio: 0.9
target update iterations: 20

supervised+ ppo (or nlpo) steps per update:1280
total number of steps: 64000
batch size: 64
epochs per update: 5
learning rate: 0.000001
entropy coefficient: 0.0
initial kl coeff: 0.2
target kl: 0.5
discount factor: 0.99
gae lambda: 0.95
clip ratio: 0.2
rollouts top k : 20
value function coeff: 0.5
meteor coeff: 0.5 0.25
intent coeff: 0.5 0.75
top mask ratio: 0.9
target update iterations: 20

decoding top k: 20
min length: 2
max new tokens: 50

tokenizer padding side: left
truncation side: right
max length: 128

Table C.33: DailyDialog Hyperparams: Table shows a list of all hyper-parameters and their settings
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Tasks Lexical and Semantic Metrics
Alg Reward Function LM Rouge-1 Rouge-2 Rouge-L Rouge-LSum Meteor SacreBLEU BertScore Intent Accuracy

Dialog

Zero Shot GPT-2 0.157 0.012 0.131 0.131 0.191 0.066 0.854 0.427

Supervised GPT-2 0.162 0.020 0.138 0.138 0.186 0.064 0.855 0.437

PPO Meteor + Intent GPT-2 0.168 0.012 0.142 0.142 0.221 0.085 0.861 0.474

NLPO Meteor + Intent GPT-2 0.169 0.013 0.142 0.142 0.221 0.087 0.860 0.490

Supervised + PPO Meteor + Intent GPT-2 0.169 0.021 0.144 0.144 0.198 0.071 0.857 0.455

Supervised + NLPO Meteor + Intent GPT-2 0.171 0.020 0.146 0.146 0.205 0.074 0.858 0.454

Table C.34: Evaluation of Daily Dialog: Table shows lexical, semantic metrics for RL algorithms bench-marked
against supervised baseline models

Tasks Diversity Metrics
Alg Reward Function LM MSTTR Distinct1 Distinct2 H1 H2 Unique1 Unique2 Mean Output Length

Dialog

Zero Shot GPT-2 0.608 0.055 0.316 7.787 11.831 1574 12327 18.685

Supervised GPT-2 0.635 0.065 0.342 8.051 12.119 1925 13952 18.919

PPO Meteor + Intent GPT-2 0.581 0.058 0.310 7.653 11.437 1719 12156 18.538

NLPO Meteor + Intent GPT-2 0.568 0.059 0.309 7.630 11.351 1718 11946 18.397

Supervised + PPO Meteor + Intent GPT-2 0.626 0.068 0.348 8.056 12.015 1983 14170 18.829

Supervised + NLPO Meteor + Intent GPT-2 0.624 0.070 0.349 8.044 11.990 2051 14213 18.763

Table C.35: Evaluation of Daily Dialog: Table shows diversity metrics for RL algorithms bench-marked against
supervised baseline models

Algorithm Unique N Coherence Quality
Value Alpha Skew Value Alpha Skew

Zeroshot 31 3.84 0.225 4.181 3.2 0.125 3.352
NLPO 30 4.18 0.114 4.17 3.35 0.159 3.318
PPO 32 4.18 0.112 4.032 3.32 0.163 3.478
Supervised+PPO 31 3.99 0.148 4.133 3.48 0.166 3.58
Supervised+NLPO 31 4.13 0.186 3.953 3.58 0.178 3.597
Supervised 31 3.96 0.249 3.834 3.59 0.236 3.196

Table C.36: DailyDialog Human Study Results: Results of the human subject study showing the number
of participants N, average Likert scale value for coherence and sentiment, Krippendorf’s alpha showing
inter-annotator agreement, and Skew. For each model a total of 100 samples were drawn randomly from the test
set and rated by 3 annotators each, each resulting in 300 data points per algorithm.
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Group 1 Group 2 Coherence Quality
Diff (G2-G1) p-values Diff (G2-G1) p-values

NLPO PPO -0.003 0.900 -0.030 0.900
NLPO Supervised -0.227 0.043 0.238 0.020
NLPO Supervised+NLPO -0.050 0.900 0.234 0.022
NLPO Supervised+PPO -0.194 0.013 0.127 0.803
NLPO Zero Shot -0.345 0.001 -0.154 0.655
PPO Supervised -0.224 0.049 0.268 0.010
PPO Supervised+NLPO -0.047 0.900 0.264 0.011
PPO Supervised+PPO -0.191 0.144 0.157 0.636
PPO Zero Shot -0.341 0.001 -0.124 0.822
Supervised Supervised+NLPO 0.177 0.021 -0.003 0.900
Supervised Supervised+PPO 0.033 0.900 -0.110 0.896
Supervised Zero Shot -0.117 0.645 -0.391 0.002
Supervised+NLPO Supervised+PPO -0.144 0.444 -0.107 0.009
Supervised+NLPO Zero Shot -0.294 0.002 -0.388 0.003
Supervised+PPO Zero Shot -0.151 0.390 -0.281 0.008

Table C.37: DailyDialog Human Study Tukey Results: Results of an post-hoc Tukey HSD Test for difference
in means between pairs of algorithms (Group 2 - Group 1) and corresponding 𝑝-values. Individually statistically
significant results are bolded and are used to discuss results in the analysis. Overall 𝑝-values showing that
there is a significant difference in means between the models via a one-way ANOVA test are significant with
𝑝 � 0.05 for both coherence and sentiment.
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C.1 Experimental Details

Qualitative Analysis

We show sample generations from each of the algorithms for three randomly picked prompts below.
Sample 1
Prompt: Right . And China is the homeland of tea . <EOU> Yes , Chinese people love drinking

tea so much . Some even claim they can’t live without tea . <EOU> Do you know there are
several catagories of Chinese tea ? <EOU> Yes , I believe there are green teas , black
teas and scented teas . Any Others ? <EOU> Well , have you ever heard of Oulong tea and
compressed tea ? <EOU>

References: Oh , yeah . Oulong tea is good for one’s health . isn’t it ?
Zero-Shot: I know that Oulong tea can be enjoyed with very few meals, and there are very few
PPO: I have, but it’s not as strong as Oulong tea.
NLPO: I haven’t. I don’t have tea.
Supervised: Yes. I hear they do good. And I heard this Taijiquan Tea is very good
Supervised + PPO: Actually, I have had Oulong tea, but I haven’t had any for awhile now.
Supervised + NLPO: No, I’ve never heard of that.

Sample 2
Prompt: I think I might have a dahl . <EOU> what’s in a dahl ? <EOU> it’s got chickpeas and

vegetables in a spicy curry sauce with rice . <EOU> that sounds nice . Do you want to
share some kebabs as well ? <EOU> ok . How about some lamb kebabs ? <EOU>

References: that’s my favourite . Do you want to have some wine or beer ?
Zero-Shot: they’re very salty
PPO: well you might want to take a peek.
NLPO: well I like that.
Supervised: ok, here they are. I’m so thirsty. I can’t wait until the next bus to
Supervised + PPO: I’ve tried that a few times, but they’re too dry and I don’t want any of
Supervised + NLPO: oh, ok. That’s a good choice. I’ll take it.

Sample 3
Prompt: Really ? Have you had an auto-reverse break before ? <EOU> Yes , twice now . I think

it’s too high-tech , and so it’s the first part that breaks . <EOU> Hmm . You know , the
problem might be dust . Did you clean the unit often ? <EOU> Well . No , I didn’t clean
it.But still , I only had the last one two months , and it broke . I don’t trust auto-
reverse . <EOU> Alright . Well . We have many units without auto-reverse.Here is a good
unit . Very reliable.It has an AM / FM band , built-in microphone , recording capability
, and no auto-reverse . <EOU>

References: How much is it ?
Zero-Shot: Oh. So you don’t have the AM / FM band?
PPO: You said AM / FM. Are you sure about that?
NLPO: Well. Well. I had no idea when it was, and didn’t care.
Supervised: Good.Well, what else I need?
Supervised + PPO: But I think it lacks the CD player or its CD player accessories.
Supervised + NLPO: Cool! So what’s the trouble with it?
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Figure C.8: DailyDialog Human Study Setup: Instructions and interface for the Daily Dialogue task.
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