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Abstract

The Earth system is a highly complex dynamical system. While considerable process understand-

ing has been achieved in past research, many processes and relations in the Earth system remain

poorly understood due to this complexity. A better understanding of these processes and relations

can improve weather and climate predictions and eventually help make decisions that protect life

and property. In this thesis, I evolve the recently proposed approach of using interpretable deep

learning to gain new scientific insights into the Earth system. In the approach, a deep learning

model is trained to predict one Earth system variable (referred to as target variable) given some

others as input. After training the model, the relations between input and target variables that the

model learned are analyzed to gain new scientific insights. The major challenge to the approach

is that the model may learn spurious correlations rather than actual causal relations. This is a

challenge, not only because the scientist cannot gain new scientific insights from a model that

learned spurious correlations, but also because detecting whether a given model learned spurious

or causal relations is difficult in complex systems.

Here, I propose a variant approach to identify spurious correlations that any given statistical model

learned. Furthermore, I develop a methodology of causal deep learning models, which combines

the approach of using interpretable deep learning to gain new scientific insights with findings from

causality research to actually obtain a causal deep learning model, i.e. a model that learns the

causal relations between input and target variables. Applied to several examples from hydrome-

teorology, the variant approach is superior to other commonly applied approaches for identifying

spurious correlations that statistical models learn. Moreover, results obtained with causal deep

learning models differ entirely from results obtained with a simple linear correlation analysis, which

stresses the importance of considering non-linear effects and the difference between correlation

and causation.

Finally, I apply both methodologies to gain new insights into soil-moisture–precipitation coupling,

i.e. the question how soil moisture affects precipitation. Improving our understanding of soil-

moisture–precipitation coupling can help to better understand and mitigate extreme events like

droughts and floods, and the effects of land management and climate change. The developed

methodology of causal deep learning models overcomes several common limitations of previous

studies on soil-moisture–precipitation coupling and reveals that an increase in local soil moisture

leads to a subsequent increase in precipitation locally, and a simultaneous decrease in precipita-

tion in a surrounding area. The non-local coupling strength exceeds the local coupling strength.

These findings contribute to our understanding of soil-moisture–precipitation coupling and stress

the importance of non-local effects, which have commonly been neglected in previous studies.
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1. Motivation and outline
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The Earth system comprises countless complex processes relating Earth system variables across

various spatio-temporal scales (e.g. Brutsaert, 2005; Kraus, 2004, see Figure 1.1 for processes in

the water cycle as an example). Despite decades of research that has yielded valuable insights

into the Earth system, many processes and relations remain poorly understood. A better under-

standing of these processes and relations will improve weather and climate predictions and help

make decisions that protect life and property (Santanello et al., 2018). One of these poorly under-

stood processes is soil-moisture–precipitation (SM–P) coupling, i.e. the question how soil moisture

affects precipitation, which is studied in this thesis using a newly developed statistical methodology

based on interpretable deep learning (DL) and causality research.

Planteopptak 

U.S. Dept. of the Interior
U.S. Geological Survey
Howard Perlman, John Evans, USGS 
https://www.usgs.gov/water-science-school 
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This diagram shows the Earth’s “Natural” water cycle, omitting the significant impacts of human influences. 

Figure 1.1: The water cycle comprises numerous complex processes linking water within and between the
atmosphere, land surface, and subsurface. Source: U.S. Geological Survey’s Water Science School (2019).

In light of the huge amount of available geospatial data from observations (e.g. remote sensing

and in situ observations) and model simulations, statistical methodologies are increasingly used

to gain new scientific insights into the Earth system (Reichstein et al., 2019). However, classi-

cal statistical methodologies have several common limitations that constrain their applicability for

scientific discovery in the geosciences, e.g. requiring assumptions on linearity or locality of consid-

ered relations and hand-designed input features. DL can overcome many of these limitations. DL

models are showing ongoing successes across many scientific disciplines in terms of predictive
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performance (Reichstein et al., 2019; Shen, 2018). They can learn the complex, non-linear rela-

tions between Earth system variables from raw geospatial data, and the recently evolving branch

of interpretable DL (Molnar, 2022; Montavon et al., 2018; Samek et al., 2021; Zhang and Zhu,

2018) allows to visualize and analyze the learned relations. In particular, training a DL model to

predict one variable given some other variables and analyzing the relations that the model learned

constitutes a recently suggested, promising methodology for gaining new scientific insights into

the Earth system (Gagne II et al., 2019; Ham et al., 2019; McGovern et al., 2019; Roscher et al.,

2020; Toms et al., 2020).

However, there is a major challenge to this approach: like every other statistical approach for

studying the Earth system, it merely provides insights into statistical associations rather than ac-

tual causal relations between Earth system variables. Determining whether relations that a DL

model learned reflect mere statistical associations (referred to as spurious correlations) or ac-

tual causal relations is challenging. In this thesis, I address this challenge by developing a novel

methodology to identify spurious correlations. Furthermore, I combine the described approach of

using interpretable DL to gain new scientific insights with a result from causality research (Pearl,

2009) stating that a statistical model may learn the actual causal impact of an input variable on a

target variable if suitable additional input variables are chosen. Figure 1.2 illustrates these contri-

butions. In the geosciences, the difference between causality and correlation is still mostly ignored

(Runge et al., 2019).

I apply the proposed methodologies to study the impact of soil moisture changes on subsequent

precipitation. Although known to be important for precipitation prediction, SM–P coupling remains

poorly understood and an active area of research. In this thesis, it is studied across Europe at

a sub-daily time scale using two different data sets, namely ERA5 climate reanalysis data (Hers-

bach et al., 2018) (which is deemed to be close to observations) and data from a high-resolution,

convection-permitting simulation (which is deemed to better resolve the process of convection,

which is essential for SM–P coupling). The developed methodologies provide new scientific in-

sights into SM–P coupling, in particular into the importance of non-local effects.

In Chapters 2, 3 and 4 of this thesis, I provide brief introductions into DL, causality and SM–P cou-

pling, respectively, and put this thesis into the context of previous studies in the respective areas.

In Chapter 5, I describe the variant approach, which I developed to identify spurious correlations

that a DL model learned. In Chapter 6, I combine the described approach of using interpretable DL

to gain new scientific insights with the above-mentioned findings from causality research. Further,

I illustrate the resulting methodology of causal DL models using the example of SM–P coupling

in ERA5 data across Europe. Subsequently, in Chapter 7, I apply the methodology to gain new

scientific insights into SM–P coupling. In particular, I compare the results obtained when applying
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Figure 1.2: Illustration of the original methodology for obtaining new scientific insights into the Earth system
and the methodological contributions in this thesis.

the methodology to ERA5 data and to data from a high-resolution, convection-permitting simu-

lation, respectively, and compare the results to those from previous studies on SM–P coupling.

Further, I provide computational details on a faster implementation of the methodology. Finally,

Chapter 8 concludes this thesis by summarizing the main findings and challenges, and providing

recommendations for future research.
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2. Deep learning
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Deep learning (DL) is a field of machine learning that is based on stacking multiple modules (so-

called layers) on top of each other (Deng and Yu, 2014; Goodfellow et al., 2016; LeCun et al.,

2015; Reichstein et al., 2019). Each of these layers performs simple but non-linear mathematical

operations on its respective inputs (which usually constitute the outputs of the previous layer).

Starting from raw inputs, each layer extracts more complex concepts (features), e.g. the first layer

detecting the existence and orientation of edges in an input image, the second layer detecting

specific arrangements of edges, and so on. Finally, the last layers map the extracted, complex

concepts to some prediction quantity of interest, e.g. whether the image shows a cat or a dog (see

Figure 2.1).

What sets DL apart from many classical statistical approaches is that the extracted features are not

hand-designed by a human expert, but learned from raw data by minimizing some loss function,

usually using backpropagation (LeCun et al., 2012) and variants of stochastic gradient descent.

Combining enough simple layers, DL models can represent any function with arbitrary precision

(Cybenko, 1989; Hornik, 1991; Leshno et al., 1993). Driven by breakthrough performances in im-

age processing, in particular in the ImageNet competition in 2012, where DL models almost halved

the error rates of competing image recognition approaches (Krizhevsky et al., 2012), and further

breakthrough-performances in video, speech, audio and text processing (LeCun et al., 2015), DL

has found its way into sciences and is showing ongoing successes across many scientific disci-

plines (Reichstein et al., 2019; Shen, 2018). For a detailed introduction to DL, I refer to (Goodfellow

et al., 2016).

  

X m
1

Ym
2

m
k

...

Figure 2.1: Schematic representation of a deep learning model. The input X is passed through several
consecutive modules mi (layers), which perform simple but non-linear mathematical operations on their
respective inputs, to produce an output Y . For an example of a state-of-the-art DL model see Chapter 2.3
and Figure 2.2.

In the geosciences, there have been many successful applications of DL in recent years, both in

research projects as well as in operational products (Camps-Valls et al., 2020). They benefit from

the ever-increasing amount of geoscientific data, data from observations (e.g. remote sensing and

in situ observations) and model simulations (Reichstein et al., 2019). Further, they benefit from

the improved capabilities of DL to incorporate spatial and temporal structures in geoscientific data
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compared to classical statistical models that require hand-designed input features. For example,

detecting hurricanes in meteorological data (like fields of precipitation, meridional wind, humidity

and other variables) requires to take into account spatio-temporal context and interactions between

different variables. It is difficult to hand-design suitable features for such a task, which gives DL

models an advantage over classical approaches (Liu et al., 2016; Racah et al., 2017; Reichstein

et al., 2019).

For a textbook and reviews on DL applications in the geosciences, I refer to (Camps-Valls et al.,

2021) and (Reichstein et al., 2019; Shen, 2018), respectively. Successful applications of DL in

the geosciences include weather forecasting (Espeholt et al., 2022), extreme weather detection

(Liu et al., 2016; Racah et al., 2017), El Niño-Southern Oscillation prediction (Ham et al., 2019),

rainfall-runoff modelling (Kratzert et al., 2018), land use and land cover classification (Zhu et al.,

2017), wildfire (Lee et al., 2017) and landslide detection (Liu and Wu, 2016).

2.1. Interpretable deep learning

A downside of stacking many layers and automatically learning features from data, is a potential

loss in interpretability, i.e. it is less clear how inputs relate to predictions of the models than for

simpler statistical models. Under the term of interpretable DL, several interpretation methods for

DL models have been developed in the last years (Molnar, 2022; Montavon et al., 2018; Samek

et al., 2021; Zhang and Zhu, 2018). A prominent subclass of these methods are feature importance

methods, which indicate for each raw input feature (e.g. each pixel of an image) how it contributed

to the prediction of the model. Among the most prominent examples for such methods are the

gradients of the DL model, also called saliency maps (Simonyan et al., 2013) (see Section 2.3.5 of

Appendix A.1), Layerwise Relevance Propagation (LRP; Bach et al., 2015) and Gradient-weighted

Class Activation Mapping (Grad-CAM; Selvaraju et al., 2017).

On the one hand, and particularly relevant for the methodology of causal DL models developed

in Chapter 6, using interpretation methods to understand a DL model’s predictions can lead to

new scientific insights (Gagne II et al., 2019; Ham et al., 2019; McGovern et al., 2019; Montavon

et al., 2018; Roscher et al., 2020; Schütt et al., 2017; Toms et al., 2020). Ham et al. (2019), for

example, identified a previously unreported precursor of the Central-Pacific El Niño type using

these interpretation methods. Nevertheless, telling whether the explanations obtained with these

interpretation methods reflect causal relations or spurious correlations between input and target

variables is challenging even for experts. This limits the usefulness of interpretable DL for gaining

new scientific insights. To tackle this challenge, I propose a variant approach, described in Chap-

ter 5. Further, in Chapter 6, I combine the idea of using interpretable DL to gain new scientific

insights with insights from causality research in order to achieve that the DL model actually learns
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causal relations rather than mere statistical associations (see Figure 1.2).

On the other hand, using interpretation methods to understand why a DL model predicts what it

predicts can build trust in the model (Ribeiro et al., 2016), reveal a model’s limitations (Lapuschkin

et al., 2019), and help improving a model (Schramowski et al., 2020). Lapuschkin et al. (2019), for

example, used interpretation methods to reveal undesired behavior of several DL models, such as

the reliance of an image classification model on copyright tags on certain images. Schramowski

et al. (2020) detected undesired behavior of their DL model using a feature importance method

and corrected the behavior by penalizing meaningless feature importance scores during the train-

ing procedure. A difficulty for using interpretation methods to detect undesired behavior of a DL

model arises when the scientist cannot judge whether an obtained explanation reflects undesired

behavior or not, e.g. when the relations between input and target variables are complex or un-

known. The variant approach proposed in Chapter 5 allows to use interpretation methods for

building trust in a model or revealing a model’s limitations even in these cases.

2.2. Physics-informed deep learning

Next to interpretable DL for scientific discovery, the methodology of causal DL models developed

in Chapter 6 also relates to the research branch of physics-informed DL (Kashinath et al., 2021;

von Rueden et al., 2021). Physics-informed DL aims to include physical knowledge into the for-

mulation of DL tasks in order to increase the physical consistency and performance of DL models.

Examples for physics-informed DL are the inclusion of a physically motivated loss term in the

training procedure (Daw et al., 2017) or physically motivated transformations of the input or tar-

get variables (Dramsch et al., 2019). The combination of interpretable DL and causality research

described in Chapter 6 relates to physics-informed DL in that the choice of input variables in the

approach requires certain physical knowledge of the system, in particular of its causal structure.

However, in general, the motivation for including physical knowledge in physics-informed DL is to

improve the performance of a DL model on a given DL task, while the motivation for including

physical knowledge in the approach of causal DL models is to remove bias in the estimation of

causal effects.

2.3. U-net architecture

In this thesis, I use convolutional neural networks (CNNs), a class of DL models that is particularly

useful when the input in the prediction task has a grid-like topology (Goodfellow et al., 2016),

e.g. one-dimensional time series of measurements at a regular time interval, or two-dimensional

grids of pixels in an image. In Section 2.3.4 of Appendix A.1, I give a short introduction to the

mathematical operations in CNNs. For a more in depth introduction, I refer to (Goodfellow et al.,
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2016) and the countless blogs on deep learning (e.g. Amidi and Amidi).

In Chapters 6 and 7, I use a U-net architecture (Ronneberger et al., 2015, see Figure 2.2), a pop-

ular CNN architecture used when both input and predicted variables have a grid-like topology. U-

nets are commonly used for image segmentation (e.g. medical image segmentation (Ronneberger

et al., 2015; Siddique et al., 2021), road extraction from aerial images (Zhang et al., 2018), land

cover segmentation (Rakhlin et al., 2018; Solórzano et al., 2021), and cloud detection in satellite

imagery (Guo et al., 2020)) and regression tasks (e.g. precipitation prediction (Agrawal et al., 2019;

Han et al., 2022; Sadeghi et al., 2020)). Alternative model architectures used when both input and

predicted variables have a grid-like topology include SegNet (Badrinarayanan et al., 2017) and

FCN (Long et al., 2015). In early experiments in the scope of this thesis, these alternatives as well

as slight architectural variations of Figure 2.2 yielded similar sensitivities but with slightly reduced

predictive performance, which is why I use the U-net architecture in this thesis. Larraondo et al.

(2019) also found the U-net architecture to perform better in precipitation prediction than SegNet

and FCN.

Figure 2.2: U-net model architecture. The input to the model is represented by the leftmost blue box and,
in this example, consists of 12 variables at 120 × 180 input pixels. It is passed through multiple sequential
layers represented by the arrows. Performing simple mathematical operations on its respective inputs, each
layer produces an output represented by the next blue box. In general, this output differs in shape from
the input, as indicated by the grey upright and rotated numbers. This output is fed to the next module until
the rightmost blue box represents the output of the model, in this example a prediction at 80 × 140 target
pixels. For details on the mathematical operations, I refer to (Amidi and Amidi; Goodfellow et al., 2016;
Ronneberger et al., 2015). Figure originally published in (Tesch et al., 2023a).
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3. Learning causal relations from observations
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Understanding causes and effects allows to make sense of and systematically influence the world

around us. Therefore, one of the key objectives in science is to identify and estimate causal re-

lations. A standard class of approaches for studying causal relations is based on experiments

that intervene into the system of interest and evaluate the effects of these interventions (Runge

et al., 2019). Randomized controlled trials (RCTs), for instance, are a standard approach for study-

ing causal relations in medicine and the social sciences (Imbens and Rubin, 2015; Sibbald and

Roland, 1998). For example, for studying the impact of food supplements on mortality, partici-

pants in a study may be randomly partitioned into participants receiving supplements (intervention

group) and participants not receiving supplements (control group) and the difference in mortal-

ity between intervention and control groups assessed (Autier and Gandini, 2007). However, in

many cases, conducting experiments is either infeasible or ethically problematic. For example, we

should not conduct large-scale experiments on the Earth’s atmosphere (Runge et al., 2019). Fur-

ther, while RCTs can yield average causal effects, e.g. the difference between average mortality

in intervention and control groups, often, they cannot yield individual causal effects, because only

one outcome (e.g. either with or without treatment) is observed for each instance (Guo et al., 2021;

Knaus et al., 2020; Yoon et al., 2018). In some sciences, including the geosciences, both issues

can be avoided by resorting to numerical simulations, e.g. simulating precipitation on a certain

day with different initial soil moisture conditions to evaluate the causal effect of soil moisture on

precipitation on that specific day. However, numerical simulations bring their own challenges like

high (computational) costs and strong assumptions on the system (Runge et al., 2019).

Another class of approaches for studying causal relations, which is adopted in this thesis, is to

learn from purely observational data of the system of interest (Guo et al., 2021; Runge et al.,

2019, see Figure 3.1). However, there is a major challenge for these approaches, namely the dif-

ference between statistical associations and causal relations. Indeed, according to Reichenbach’s

common cause principle (Reichenbach, 1956), a statistical association between two variables X

and Y implies that there exists a variable Z that causally influences both (where Z might also be

X or Y as special cases). However, a statistical association between X and Y is far from imply-

ing a causal relation between X and Y . For example, the frequency of storks is correlated with

human birth rates (Matthews, 2000; Schölkopf et al., 2021). However, the correlation between the

frequency of storks and human birth rates is due to common causes (e.g. economic development)

rather than due to a causal link between them.

While most statistical concepts, e.g. conditional expectations, are fully definable in terms of the joint

probability distribution of observed variables, studying causality from observational data requires

to introduce new notation for expressing causal relations. Further, it requires a priori causal as-

sumptions that are not (fully) testable in observational studies (e.g. that no unknown or unobserved
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Figure 3.1: Overview over different areas (boxes) and methodologies (ellipses) of causality research. In this
thesis, regression adjustment is used.

confounders, variables that may affect the considered causal relations, exist) (Pearl, 2009). A gen-

eral theory for causality is described in (Pearl, 2009). It allows to represent causal questions in

mathematical language and to systematically determine what assumptions or measurements are

necessary to answer these questions. The theory is based on structural causal models (SCMs).

These consist of two components, a causal graph and structural equations, which encode the

causal structure of a system (see Figure 3.2 for a simple example). An introduction to this theory

and SCMs is given in Section 2.1 of Appendix B and, for example, in (Guo et al., 2021; Massmann

et al., 2021; Pearl, 2009).

3.1. Causal discovery

One subclass of approaches for studying causal relations from observational data focuses on

causal discovery. Given a set of observed variables {Xi}n
i=1, approaches in this subclass aim

to determine for each pair (Xi, Xj), i ̸= j, whether variable Xi changes if variable Xj is modi-

fied. More formally, in the framework of SCMs, they aim to identify the causal graph underlying

the observed variables {Xi}n
i=1 (Guo et al., 2021; Massmann et al., 2021; Runge et al., 2019).
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structural equations describe these dependencies. fX , fC and fY are functions, and UX , UC and UY are
random variables representing potential chaos and variables not included in the causal graph explicitly.

A prominent example of an approach for causal discovery is Granger causality (Granger, 1969;

Papagiannopoulou et al., 2017; Runge et al., 2019). The original idea of this approach is to test

whether the error of a model predicting the current value of a time series Y from its own and

further covariates’ past decreases when the past of a time series X is included additionally. If

this is the case, X Granger-causes Y . There are several works using Granger causality in the

geosciences, e.g. Papagiannopoulou et al. (2017) investigate climate-vegetation dynamics using

Granger causality.

Another approach for causal discovery is the PC algorithm (Spirtes et al., 2000), a variant of

which is applied for example in (Barnes et al., 2019; Ebert-Uphoff and Deng, 2012, 2017) to study

atmospheric teleconnections. Given a set of observed variables {Xi}n
i=1, the algorithm starts with

edges between every pair of variables (Xi, Xj), i ̸= j. Next, it evaluates for each pair of variables

whether Xi is conditionally independent of Xj given any subset of the remaining variables. If this

is the case, the edge between the variables is removed, because there cannot be a direct causal

link between these variables. Edges that remain upon termination of the algorithm represent

potential causal links between the associated variables. Further applications of causal methods in

the geosciences are described in (Runge et al., 2019). Note that so far, in the geosciences, most

works on causality focus on causal discovery.

3.2. Causal inference

In this thesis, I focus on causal inference (also called causal estimation) rather than causal dis-

covery. Approaches for causal inference focus on determining the strength of causal relations, i.e.

on answering how much a specific variable would change if another variable was modified (Guo

et al., 2021; Massmann et al., 2021; Pearl, 2009). In general, they assume that the basic causal

structure (i.e. the causal graph in the framework of SCMs) is known and the causal effect of inter-

est is identifiable (Pearl, 2009). A causal effect might for example not be identifiable if there are
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unobserved confounders that cannot be adjusted for (see below). Approaches for causal inference

may be divided into approaches for cases with and without unobserved variables, respectively. In

this thesis, I focus on the case that the scientist has access to all relevant variables, i.e. that there

are no unobserved variables. This is reasonable when estimating causal effects from reanalysis

data or output data of a numerical simulation, where the output comprises all relevant variables,

but has to be reconsidered when aiming for direct causal inference from observational data of the

Earth system.

Most approaches for estimating the causal effect of a variable X on Y from data without un-

observed variables are either based on regression adjustment or propensity scores (Guo et al.,

2021). In regression adjustment, a statistical model is trained to predict Y given X and further

input (adjustment) variables Ci, i = 1, . . . , k. To obtain an unbiased estimate of the causal effect

of X on Y , the input variables Ci have to form an admissible (also called “sufficient”) set, either

fulfilling the backdoor criterion (Massmann et al., 2021; Pearl, 2009), or the slightly more general

criterion from (Perković et al., 2018) adopted in Chapters 6 and 7. So far, like causal inference in

general, regression adjustment has received very little attention in the geosciences (Kretschmer

et al., 2016; Massmann et al., 2021; Runge et al., 2014). Note that there is some (theoretical) work

on how to optimally choose the input variables Ci whenever there exist more than one admissible

set (Henckel et al., 2022; Perković et al., 2018; Rotnitzky and Smucler, 2020; Runge, 2021; Witte

et al., 2020), which however does not apply to the case of highly complex non-linear systems and

the DL models considered in this work.

The term propensity score refers to the value P(X = x|{Ci = ci}k
i=1), i.e. the probability of

observing a value X of x given values ci of the covariates Ci (Guo et al., 2021). To motivate

propensity scores, consider the example of estimating the causal effect of a binary treatment X

(e.g. food supplements yes or no) on some outcome variable (e.g. mortality). In RCTs, the causal

effect of the treatment could be determined by simply considering the difference between the

average outcome for all treated individuals and the average outcome for all untreated individuals,

because treatment was assigned randomly, i.e. the probability of being treated or not was identical

for each individual. Given propensity scores, groups of treated and untreated individuals can be

built, where, as in RCTs, all individuals have the same probability of being treated or not (the

same propensity score). For each of these groups, the causal effect of actually receiving the

treatment can be determined by simply building the difference between the average outcome for

all treated individuals and the average outcome for all untreated individuals as in RCTs. This

method is referred to as propensity score matching or propensity score stratification (Guo et al.,

2021). Other causal inference methods based on propensity scores use the propensity scores to

weight samples according to their inverse propensity score to “synthesize a RCT”, or use them in
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combination with regression adjustment (Guo et al., 2021). While propensity score methods may

have some theoretical advantages over simple regression adjustment in some cases (Elze et al.,

2017), in practice they are not necessarily superior to regression adjustment (Cepeda, 2003; Elze

et al., 2017).

Most of the works on causal inference focus on estimating the causal effect of a one-dimensional,

binary treatment on some outcome variable of interest, e.g. the causal effect of food supplements

yes or no on mortality. This is likely due to the binary nature of standard RCTs, which are the gold

standard for studying (average) causal effects (Hariton and Locascio, 2018).

As there are also settings with continuous treatments, methods and theory for learning causality

from observations have partly been extended to continuous treatments (Galagate, 2016). How-

ever, when studying continuous treatments, there is no longer a unique quantity that represents

the (average) causal effect of the treatment on the outcome variable as in the case of a binary

treatment. A common task when studying continuous treatments is to determine the expected out-

come for setting the treatment variable to a range of possible values (independent of the observed

values). In this thesis, I instead consider the question how the outcome is expected to change, if

the treatment variable is slightly modified from the originally observed value (see Chapter 6). This

does not seem to be a common research question, although it provides interesting insights into

the Earth system (see Chapters 7 and 8).

The causal variables considered in Chapters 6 and 7 represent gridded spatial variables, e.g. soil

moisture at a grid of pixels, and the considered causal graph holds locally for each pixel as well as

globally for all pixels. This setting differs from other imaging settings, where causal variables have

to be derived from the images first (see Chapter 3.3). To the best of my knowledge, the setting

considered in this thesis has not been considered before. Therefore, and because many other ap-

proaches for estimating causal effects do not directly extend from the case of a one-dimensional,

binary treatment variable to the considered case of a high-dimensional, continuous treatment vari-

able (Hill, 2011; Knaus et al., 2020; Shi et al., 2019; Wager and Athey, 2018; Yoon et al., 2018) or

require further assumptions, e.g. on the relations in the considered system (Chernozhukov et al.,

2018), I use regression adjustment in this thesis. Nevertheless, adapting other approaches for

estimating causal effects to the cases considered in this thesis provides an interesting avenue for

future work.

3.3. Causal representation learning

Next to causal discovery and causal inference, another line of causality research, which is not

relevant to this thesis, focuses on causal representation learning. This research considers un-
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structured data such as images. In contrast to structured data, where each variable (e.g. in this

thesis, each meteorological variable at some location) represents a variable in a causal graph, in

unstructured data, causal variables have to be derived from the data first. For example, when us-

ing medical images to predict the likelihood of developing a disease, the causal variables are not

the values of fixed pixels, but for instance the size of some organs or other specific patterns in the

image. Within the geosciences, causal representation learning might be used to extract higher-

level variables representing climatological subprocesses from gridded Earth system variables (e.g.

strength of the jet stream) (Runge et al., 2019) rather than directly using the gridded Earth system

variables in the causal graph as done in this thesis. For a review of causal representation learning,

I refer to (Schölkopf et al., 2021).
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Accurate precipitation prediction in weather and climate simulations can help to better understand

and mitigate extreme events like droughts and floods, and the effects of land management and

climate change. Soil-moisture–precipitation (SM–P) coupling refers to the impact of soil moisture

on precipitation. Although this impact is known to be important, and despite decades of research,

sophisticated numerical models and a plethora of observational data, SM–P coupling remains

poorly understood and an active area of research. In what follows, I present the physical processes

relevant to SM–P coupling, introduce the classes of methods used to study the coupling and lay

out common limitations. Lastly, I review recent studies on SM–P coupling that are similar to this

thesis in terms of the considered research question (i.e. how does a change in soil moisture affect

precipitation) and the considered spatial and temporal scales (i.e. studies on diurnal timescales

and local soil moisture changes). For comprehensive reviews on SM–P coupling, I refer to (Liu

et al., 2022; Santanello et al., 2018; Seneviratne et al., 2010)

4.1. Physical processes

Soil moisture affects precipitation via its influence on the land surface water and energy balances.

In particular, increased soil moisture leads to an increase in available energy at the land surface

because it decreases albedo and surface temperature and thereby reduces outgoing short- and

longwave radiation (Eltahir, 1998; Hauck et al., 2011; Schär et al., 1999). Moreover, increased soil

moisture increases the fraction of available energy that is transformed into latent heat of evapora-

tion, while decreasing the fraction that is transformed into sensible heat (Seneviratne et al., 2010).

These controls of soil moisture on the land surface water and energy balances give rise to a

complex interplay of processes affecting precipitation (see Figure 4.1). Namely, increased latent

heat flux can increase precipitation via an increase in atmospheric water content (referred to by

moisture recycling, Eltahir, 1998) or via an increase in moist static energy in the boundary layer

(Findell and Eltahir, 2003a,b; Gentine et al., 2013). However, increased sensible heat flux has been

associated with stronger thermals and growth of the atmospheric boundary layer, which can also

trigger precipitation (Findell and Eltahir, 2003a,b; Gentine et al., 2013; Hohenegger et al., 2009).

Finally, spatial heterogeneity in sensible and latent heat fluxes can cause spatial heterogeneity in

the temperature and humidity profiles of the lower atmosphere, which in turn can affect mesoscale

circulations and precipitation (Adler et al., 2011; Eltahir, 1998; Gentine et al., 2019; Taylor, 2015;

Taylor et al., 2011). Due to the complex interplay of these processes, increased soil moisture

can lead to both increases and decreases in precipitation and the effect can arguably not be

distinguished from theoretical considerations alone.
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Figure 4.1: Concurring effects of soil moisture increases on subsequent precipitation. Adapted from (Tesch
et al., 2023a).

4.2. Modelling and statistical studies on soil-moisture–precipitation

coupling

Over the last decades, many studies have investigated SM–P coupling using different modelling

and statistical approaches. By modelling approaches, I refer to approaches that study SM–P cou-

pling by performing multiple simulations with varying soil moisture conditions, e.g. with varying soil

moisture initializations. In contrast, by statistical approaches, I refer to analyses of observational

data, reanalysis data and analyses of other simulations. From a causality perspective, modelling

approaches correspond to experiments that intervene into the system of interest and evaluate the

effects of these interventions. Accordingly, statistical approaches correspond to approaches that

learn causal relations from (observational) data (see Chapter 3).

Likely the most prominent example for a modelling approach is the Global Land Atmosphere Cou-

pling Experiment (GLACE; Guo et al., 2006; Koster et al., 2004). In this experiment, twelve atmo-

spheric general circulation models (AGCMs) were used to identify hot spots of SM–P coupling, i.e.

specific locations where soil moisture variations have a substantial impact on precipitation. Each

AGCM was used to generate an ensemble of 16 simulations of boreal summer (June through Au-

gust) in which soil moisture varied between the simulations, and an ensemble of 16 simulations in

which soil moisture was taken from one of the former simulations and forced to be the same across

the ensemble. Then, hot spots of SM–P coupling were identified by identifying regions where the

difference in the variability of precipitation between the first 16 and the latter 16 simulations was

largest. It was found that the major hot spots lie in transition zones between wet and dry climates,

where evaporation is very sensitive to soil moisture and high enough to have a substantial impact

on precipitation.
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A prominent example for a statistical approach for studying SM–P coupling is (Taylor et al., 2012).

First, the authors defined that a rain event at a location occurred if afternoon rain at the location

exceeded 3 mm and was larger than afternoon rain at locations in a specified surrounding area.

For each such rain event, they computed the difference between the early morning soil moisture

anomaly at the rain location and at the location in the surrounding area with the least afternoon

rain. Next, they evaluated whether, on average, this difference was larger or smaller than the

difference on non-event days. In an attempt to prevent confounding, they excluded days with more

than 1 mm precipitation in the morning and mountainous as well as coastal regions from their

analysis. Applying the methodology to different observational data sets, they concluded that there

is a preference for afternoon precipitation over drier soils, whereas they found a preference for

afternoon precipitation over wetter soils when applying the methodology to output from various

global simulation models.

Next to these classes of approaches, there are also approaches based on water-vapour tagging

in climate models or computation of back-trajectories (Seneviratne et al., 2010). I do not dis-

cuss these approaches here, because they consider only a particular aspect of soil-moisture–

precipitation coupling, namely moisture recycling (Figure 4.1a).

4.3. Limitations of existing approaches

Although many different approaches have been applied for studying SM–P coupling, there are sev-

eral common limitations. Modelling approaches, on the one hand, have high computational costs

and, even more importantly, rely on the correct representation of SM–P coupling in the consid-

ered models. However, there exist countless uncertainties with respect to Earth system models.

These uncertainties are for example demonstrated by a high variability in SM–P coupling between

the AGCMs in the GLACE study described above (Koster et al., 2004) and by the opposing signs

of SM–P coupling that (Taylor et al., 2012) found when applying the above-described statistical

methodology to observational and modelling data sets, respectively.

One option for reducing these uncertainties is to perform simulations at higher resolution. This

allows to represent crucial processes like convection and thermally driven circulations more realis-

tically than in standard, lower-resolution Earth system models (Hohenegger et al., 2009; Leutwyler

et al., 2021). While computational advances in the last years have enabled the use of high-

resolution, convection-permitting Earth system models, computational constraints still limit the

suite of experiments that can be performed with these models to study SM–P coupling. Indeed,

(Leutwyler et al., 2021) is the only study on SM–P coupling that uses convection-permitting simula-

tions at continental scale and spanning several years instead of smaller domains and/or consider-

ing case studies on daily time scales. Moreover, they considered only three different soil moisture
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configurations at these spatial and temporal scales (realistic initial soil moisture and homogeneous

perturbations of initial soil moisture saturations by ±25 % across the entire simulation domain). In

addition to approaches based on convection-permitting models still being computationally con-

strained, there are also many uncertainties remaining in these models with respect to precipitation

(Cioni and Hohenegger, 2017; Kendon et al., 2021), as for example illustrated by the large differ-

ences in precipitation between the members of the first multi-model ensemble of regional climate

simulations at kilometer-scale resolution (Ban et al., 2021).

Statistical approaches, on the other hand, usually have much lower computational costs and can

directly be applied to observational and simulation data sets (observational data sets of course

bringing their own uncertainties and challenges like availability and missing data (Guillod et al.,

2014; Santanello et al., 2018)), relaxing the above limitations. However, current statistical ap-

proaches are also often limited, for example due to strong assumptions like linearity or locality of

SM–P coupling, the negligence of the difference between correlation and causation (see Chap-

ter 3), and metrics that are difficult to interpret. The latter limitation is for example illustrated by

the methodology from (Taylor et al., 2012) described above. Considering (pixel-wise) soil moisture

anomalies in the computed difference and defining rain events as precipitation being larger than

in a specific surrounding area makes the interpretation of the results difficult, e.g. because a pixel

with a dry anomaly may still be wetter than a neighboring pixel with a wet anomaly, and because

the absolute values of precipitation are mostly ignored in this definition. Moreover, this metric does

not seem to be suitable to answer the classical question how a change in soil moisture affects

precipitation. The statistical approach of causal deep learning (DL) models developed in Chap-

ter 6 and applied to SM–P coupling in Chapter 7 overcomes these limitations of current statistical

approaches.

4.4. Results from previous studies on soil-moisture–precipitation coupling

In this section, I review recent studies on SM–P coupling that address a similar research question

as Chapter 7 of this thesis (i.e. how does a change in soil moisture affect precipitation) and consider

similar spatial and temporal scales (i.e. diurnal timescales and local soil moisture changes).

4.4.1. Modelling approaches

Most modelling studies based on low-resolution general circulation models indicated positive SM–

P coupling, i.e. an increase in precipitation for increased soil moisture (Seneviratne et al., 2010;

Taylor et al., 2012). However, it has been shown that SM–P coupling is sensitive to the param-

eterization of convection in low-resolution modelling frameworks to an extent that even the sign

of the coupling may be reversed (Hohenegger et al., 2009; Leutwyler et al., 2021; Taylor et al.,
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2013). Convection-permitting simulations have been found to agree better with observations (Ho-

henegger et al., 2009; Leutwyler et al., 2021; Taylor et al., 2013), although many uncertainties

remain (see limitations described above). Therefore, in the following review of modelling studies, I

focus on studies using convection-permitting simulations. Since all studies differ greatly in the re-

gions considered and time periods simulated, they are listed chronologically. A summary is given

afterwards.

Hohenegger et al. (2009) simulated a single month with extremely warm temperatures, weak

synoptic-scale forcing, and enhanced convective activity over a 1100 km × 700 km domain cov-

ering the Alpine region. They performed simulations with realistic initial soil moisture as well as

with uniformly perturbed initial soil moisture (±30 %). At most locations, they observed a negative

coupling, i.e. a decrease in accumulated precipitation for simulations with higher initial soil mois-

ture. They explained the result by the existence of a shallow layer of stable air sitting on top of

the planetary boundary layer, and shallow clouds in the dry run being more likely to transform into

deep convective cells due to stronger thermals.

Hauck et al. (2011) simulated three separate 24 h case studies exhibiting different trigger mech-

anisms of convection initiation over a 1200 km × 1300 km domain with mountainous terrain in

central Europe. They simulated each day with realistic initial soil moisture and with uniformly

perturbed initial soil moisture (±25 %), respectively. Their results showed no simple relationship

regarding the sign of SM–P coupling. For instance, for one case study, both a decrease and an

increase in initial soil moisture led to a decrease in precipitation. They explained this by boundary

layer dynamics, arguing that an increase in soil moisture inhibited convective activity due to a lack

of thermal forcing, while a decrease in soil moisture inhibited convective activity due to a decrease

in convective available potential energy (CAPE).

Barthlott and Kalthoff (2011) simulated a single summer day with weak synoptic forcing over a

similar domain as Hauck et al. (2011). They performed simulations with realistic initial soil moisture

and with initial soil moisture varying uniformly from 50 % to 150 % of the reference simulation in

steps of 5 %. They found a systematic increase in regionally averaged precipitation for increasing

soil moisture in the drier than reference runs (i.e. a positive coupling). For wetter than reference

runs, they found that precipitation amounts fluctuated around 80 % to 90 % of the value of the

reference run. In addition, they noted that maximum precipitation in the domain increased when

initial soil moisture was increased between 50 % and 125 % of the reference run. The fraction of

the domain that received precipitation during the simulated day increased when initial soil moisture

was increased between 50 % and 85 %. For further increases in initial soil moisture, this fraction

decreased again. The non-linear behavior of total precipitation amounts, maximum precipitation in

the domain and fraction of the domain receiving precipitation with respect to changes in initial soil
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moisture emphasizes the complexity of SM–P coupling.

Imamovic et al. (2017) simulated multiple times a five day period with typical European summer

day conditions. They considered an initially resting atmosphere over an artificial 256 km × 256 km

domain with a central, Gaussian-shaped mountain with a radius of approximately 30 km. Between

the simulations, they varied the height of the mountain (0-500 m) and the initial soil moisture con-

ditions. Namely, they ran reference simulations with domain-wide initial soil moisture saturation of

60 % (typical European conditions) and additional simulations with initial soil moisture saturation

varying from 70 % to 130 % of the reference run in steps of 10 %. Moreover, they ran simulations

with initial soil moisture saturation varying only at the central mountain from the reference simu-

lations. They observed a systematic increase in accumulated precipitation for the domain-wide

increases in initial soil moisture (i.e. a positive coupling), while they observed a mainly local de-

crease in accumulated precipitation for the local increases at the central mountain (i.e. a negative

coupling). The latter effect, in particular, was weaker, when the height of the central mountain was

increased. They explained the increases in precipitation for domain-wide increases in soil moisture

by an increase in regional moisture recycling. The decrease in precipitation for increases in soil

moisture at the central mountain was explained by drier mountains strengthening mountain-valley

circulations and thus increasing accumulated precipitation. They hypothesized that this effect was

weaker for higher mountains because mountain-valley circulations are stronger for higher moun-

tains and may therefore be less affected by soil moisture.

Cioni and Hohenegger (2017) simulated two separate days over an artificial 100 km × 100 km

domain at even higher resolution using a large-eddy simulation model. They considered homo-

geneous soil moisture initializations varying from 40 % saturation to 100 %. They discovered that

total precipitation was always decreased over dry soils (positive coupling) although convection

can be triggered earlier over dry soils than over wet soils under certain atmospheric conditions.

Further, they saw that large-scale effects or winds can reduce the strength of SM–P coupling.

Baur et al. (2018) simulated eleven separate 24 h case studies over a 1200 km × 1300 km do-

main in central Europe. In addition to simulations with realistic initial soil moisture conditions, they

considered simulations with soil-moisture bias of ±25 %, combined with different soil-moisture

heterogeneity length-scales ranging from 30 to 140 km introduced by chessboard patterns. They

discovered that precipitation averaged over the domain increased, when the initial soil moisture

bias was increased (positive coupling), while precipitation tended to occur over drier soils due to

thermally induced vertical circulations and background wind causing updraft regions at the down-

stream flank of dry patches. Further, they observed only weak SM–P coupling for the four cases

exhibiting moderate rather than weak synoptic forcing.
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Henneberg et al. (2018) simulated a single day with convective precipitation and strong synoptic

forcing over a 400 km × 450 km domain in northern Germany. They performed several simula-

tions with extreme, homogeneous changes in initial soil moisture (completely dry and +50 %) over

the entire or parts of the domain, and realistic changes in initial soil moisture (taken from differ-

ent days), respectively. To assess the uncertainty of the observed SM–P coupling, they created

ensembles by slightly shifting the domain or initialization time. Only in experiments with unreal-

istically large variations of soil moisture, they found changes in precipitation to exceed the model

spread, indicating the danger of potential impacts of soil moisture being masked by the precise

model setup and the chaotic nature of convection. Besides, they observed no clear sign of SM–P

coupling, but showed that both an increase and decrease in soil moisture can lead to a decrease

in precipitation.

Schneider et al. (2019) simulated six separate 24 h case studies, three of them exhibiting weak and

three strong synoptic forcing, over a 750 km × 700 km domain in central Europe. They performed

several simulations with initial soil moisture differing homogeneously or heterogeneously (e.g. in

chessboard patterns as in (Baur et al., 2018) described above) from a reference run and found

that an increase in soil moisture led in most cases to an increase in domain-averaged precipitation

(positive coupling), while they did not observe significant impacts of soil moisture heterogeneity.

In addition, they discovered that the coupling was on average stronger for weak than for strong

synoptic forcing.

Leutwyler et al. (2021) simulated ten summer seasons in continental Europe, each with realistic

initial spring soil moisture and with perturbations of initial soil moisture saturations by ±25 % in

parts and the entire region, respectively. They found that a uniform increase in soil moisture

led to an increase in precipitation (positive coupling), while the effect of subcontinental variations

in soil moisture was more complex. They attributed the complexity of SM–P coupling to their

observation that an increase in soil moisture led to less triggered convection events due to less

thermal circulation, but, at the same time, to more intense events due to larger CAPE values. They

identified the largest difference between wet and dry runs in the Alpine region. Because differences

in evaporation between wet and dry runs were small in the Alpine region, they hypothesized that

this was due to more humidity being advected to the Alpine region from neighboring regions in the

wet runs.

Summarizing, modelling studies based on high-resolution simulations found positive as well as

negative impacts of soil moisture on precipitation. However, on average, it appears that soil mois-

ture changes at large scales (e.g. domain-wide) have a positive impact on regionally averaged

precipitation, while the impact of soil moisture changes at smaller scales (e.g. parts of the domain)

is less clear. Furthermore, soil moisture increases seem to have a negative impact on the prob-
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ability of precipitation events. Lastly, stronger synoptic forcing appears to weaken SM–P coupling

and convection appears to initiate more often over soils that are relatively dry compared to their

surrounding areas.

4.4.2. Statistical approaches

Next to modelling studies, several studies on SM–P coupling used statistical approaches. These

approaches have been applied to observational data, reanalysis data, but also modelling data. In

the latter case, they differ from the above modelling studies in that they did not use the model to

explicitly simulate the effect of soil moisture changes via manipulation of soil moisture conditions

(see the definition of modelling studies in Chapter 4.2).

Findell et al. (2011) considered data from the North American Regional Reanalsysis (NARR;

Mesinger et al., 2006) for 25 summer seasons and studied the impact of morning evaporative

fraction (EF; ratio of latent heat over the sum of latent and sensible heat) on the frequency and

magnitude of afternoon rainfall for each pixel (separately). In the analysis, they partitioned the data

with respect to the early morning atmospheric state (using the CTP-HIlow framework developed in

(Findell and Eltahir, 2003a,b)), and ignored days with precipitation in the morning and days with

atmospheric conditions that are too stable to support convection to mitigate confounding effects

due to large-scale synoptic systems and precipitation persistence. They detected that high EF en-

hanced the probability, but only slightly the intensity of afternoon rainfall, in parts of the study region

(positive EF–precipitation coupling) while not affecting afternoon rainfall in other parts. Aires et al.

(2014) extended that analysis using a neural network approach rather than the simpler binning

approach in (Findell et al., 2011). They confirmed that an increase in EF leads to an increase in

precipitation frequency (positive EF–precipitation-probability coupling), but depending on the con-

sidered region to either an increase or a decrease in precipitation magnitude. Guillod et al. (2014)

performed a similar analysis using various observational data sets in addition to NARR and found

a positive EF–precipitation-probability coupling in some regions. However, they detected large dif-

ferences when using different data sets due to large uncertainties in the EF data, and found that

the obtained positive EF–precipitation-probability coupling might to a large extent be explained by

the confounding effect of precipitation persistence.

Froidevaux et al. (2014) considered data from three, several weeks long convection-permitting sim-

ulations over an artificial region resembling a large and flat midlatitude grassland area in summer

under constant synoptic influence. The three simulations differed in the strength of the back-

ground wind speed (but not in initial soil moisture). To analyze SM–P coupling, they considered

the pixel-wise linear correlation between morning soil moisture and various atmospheric variables,

including afternoon precipitation. They observed that convection is preferentially initiated over
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drier patches, but that convective cells strengthen and preferentially precipitate when propagated

over wet patches. They concluded that there is a weak negative SM–P coupling when the wind

is too weak to propagate convective cells to wet patches, while there is a stronger positive SM–P

coupling otherwise.

Welty and Zeng (2018) considered observational and reanalysis data of ten summer seasons

over the US Southern Great Plains and studied how soil moisture affects the development of

afternoon precipitation events after their initiation. To that purpose, they considered only days with

afternoon precipitation (and no morning precipitation), partitioned these days into three dynamic

regimes based on daily water vapor convergence, and computed for each resulting group of days

the correlation between morning soil moisture and afternoon precipitation magnitude. They found

that the sign of the correlation depends on the dynamic regime (positive for high dynamic regime,

negative for low dynamic regime) and becomes insignificant when all regime days are considered

together.

Holgate et al. (2019) considered observational data over Australia and computed pixel-wise linear

correlations at different spatial scales between daily average soil moisture and next-day rainfall.

They noted that the locality assumption in many statistical approaches for studying SM–P coupling

(where soil moisture at a pixel is compared to precipitation at the same pixel) is problematic: for

example the linear correlation between soil moisture and precipitation at a pixel is meaningless

if the wind speed is too large with respect to the considered spatial and temporal scales of the

analysis. Consequently, for their analysis, they filtered out all days for which this assumption was

not valid because the wind speed was too large. They also filtered out all precipitation events with

previous day precipitation exceeding 1 mm to account for the confounding effect of precipitation

persistence and studied each season separately to account for the confounding effect of season-

ality. Depending on the location, they found mainly positive or no correlations, apart from Austral

winter when they also found slightly negative correlations.

Another prominent statistical study on SM–P coupling is (Guillod et al., 2015). They used obser-

vational data and various metrics in an attempt to reconcile previous findings of different signs of

SM–P coupling. First, Guillod et al. (2015) considered the methodology from (Taylor et al., 2012)

described above. Second, they compared the strength of early morning soil moisture anomalies

on rain event days to early morning soil moisture anomalies on non-event days. Lastly, they com-

pared the average standard deviation of early morning soil moisture anomalies in the surrounding

area of an afternoon rain event to the average standard deviation of early morning soil moisture

anomalies for non-rain events. They concluded that afternoon rain is more likely to occur dur-

ing wet and heterogeneous soil moisture conditions, while being located over comparatively drier

patches.
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A similar study but with other observational data sets is (Hsu et al., 2017). They used a different

metric than (Guillod et al., 2015) to characterize whether the location of a rain event was relatively

dry or wet compared to its surroundings before the event. They found that afternoon rain is more

likely to occur at patches that are relatively dry compared to their surroundings, but that this pref-

erence is weakened under wetter soil conditions and even reversed in extremely wet times. More-

over, they observed that the preference of afternoon rain to occur at patches that are relatively dry

compared to their surroundings strengthens the stronger the soil moisture inhomogeneities are.

Ford et al. (2015) used in situ observational data from eleven summer seasons in the US Southern

Great Plains. Considering only afternoon precipitation events with no precipitation in the morning

and without synoptic forcing (as assessed by manual inspection), and binning early morning soil

moisture values, they found a clear preference for afternoon precipitation events to occur over drier

than median soils (which could indicate a negative SM–P coupling, but could also be related to the

above-described preference of afternoon rain to occur at patches that are relatively dry compared

to their surroundings). Ford et al. (2018) considered different remote sensing observational data

over the US Great Plains and classified afternoon precipitation events into weakly or synoptically

forced. Comparing morning soil moisture anomalies for days with and without afternoon precipi-

tation events for the different data sets and groups of days, they identified different signs of SM–P

coupling for different soil moisture data sets and for different convective environments (i.e. weakly

or synoptically forced).

Graf et al. (2021) considered the output of convection-permitting simulations of the summer season

2016 for two regions, a prealpine, humid region in Southern Germany and a semiarid region in

West Africa. Aligning the average magnitude of the soil moisture gradient in some area with

next-hour precipitation in that area, they found a preference for precipitation to initiate over areas

with high soil moisture gradients for the region in Southern Germany. Besides, they detected a

preference for precipitation to initiate over dry areas in the region in Southern Germany, and over

wet areas in the region in West Africa.

A particularly promising statistical approach for determining the actual causal impact (see Chap-

ter 3) of soil moisture increases on precipitation was described in (Li et al., 2020; Tuttle and

Salvucci, 2016, 2017). It uses Granger causality (see Chapter 3) to investigate the relation be-

tween soil moisture and the occurrence of next-day precipitation. The concept is to train two

separate models with several input variables representing a set of processes that could influence

subsequent precipitation occurrence. For one of the two models (the full model), soil moisture is

included as an input variable while for the other (the restricted model) soil moisture is not included.

Then, the scientist evaluates if the prediction capability of the full model is (significantly) better than

that of the restricted model. For all locations where this is the case, the data set is divided into
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days with higher than seasonal median soil moisture (wet days) and days with lower than seasonal

median soil moisture (dry days). Next, the ratio of the precipitation probability predicted by the full

model and by the restricted model, averaged over all wet and dry days, respectively, is computed.

If this ratio is larger than one for wet days and smaller than one for dry days, the impact of soil

moisture on precipitation is called positive, while it is called negative if the ratio is smaller than one

for wet days and larger than one for dry days.

Applying this approach to observational data over the contiguous United States, Tuttle and Salvucci

(2016) found that an increase in soil moisture at some pixel caused an increase in next-day precip-

itation probability at that pixel in arid regions (positive soil-moisture–precipitation-probability cou-

pling), while it caused a decrease in next-day precipitation probability in more humid, vegetated

areas. However, they remarked that the detected negative coupling might be erroneous due to

uncertainties in the data in the respective region. Indeed, using various additional observational

and reanalysis data sets, as well as non-linear instead of linear models, Li et al. (2020) confirmed

the positive soil-moisture–precipitation-probability coupling over dry and transition zones, but not

the negative coupling. Li et al. (2020) detected a particularly strong positive impact of soil mois-

ture on next-day precipitation probability at the leeward slope of the Rocky Mountains, which they

explained by water vapor being blocked by the mountains leading to evaporation being strongly

controlled by soil moisture rather than by the horizontal transport of water vapor.

In summary, studies based on statistical approaches agree with the above findings from modelling

studies that an increase in soil moisture tends to be associated with an increase in precipitation.

However, most of them also indicate that an increase in soil moisture increases the probability

of precipitation events, which seems to be in contrast to the results from the above modelling

studies. Nevertheless, a strong dependence of the coupling signs on the considered data set, the

synoptic situation, and the considered region have been reported. Studies based on statistical

approaches agree with modelling studies that convection seems to initiate more often over soils

that are relatively dry compared to their surrounding area. Altogether, current results on SM–P

coupling are inconclusive and many aspects of the coupling remain poorly understood.
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5. Variant approach for identifying spurious

relations that deep learning models learn

This chapter summarizes the research article

T. Tesch, S. Kollet, and J. Garcke. Variant Approach for Identifying Spurious Relations That Deep

Learning Models Learn. Frontiers in Water, 3, 2021a. doi: 10.3389/frwa.2021.745563.

The article is attached as Appendix A.

http://dx.doi.org/10.3389/frwa.2021.745563
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As one of the main research topics of this thesis, I evolve the recently proposed approach of

using interpretable deep learning (DL) to gain new scientific insights into the Earth system. In this

approach, a DL model is trained to predict one (target) variable given some other (input) variables.

During training, the model learns a function relating the input and target variables. After training,

an interpretation method is used to obtain descriptions of the learned function (e.g. representing

the importance of different input variables for the predictions of the model; see Figure 1.2). Finally,

these descriptions are analyzed to obtain new scientific insights. The major challenge to this

approach is that it merely provides insights into statistical associations rather than actual causal

relations between Earth system variables (see Chapter 3). Deciding whether relations that a DL

model learned reflect mere statistical associations (referred to as spurious correlations) or actual

causal relations is challenging because the relations between Earth system variables are often

unknown or complex. In this article, I address this challenge developing a novel methodology to

identify spurious correlations that a DL model learned.

In the proposed methodology (referred to as variant approach), separate instances of the consid-

ered DL model (referred to as variant models) are trained on modified prediction tasks (referred to

as variant tasks) for which it is assumed that causal relations between input and target variables

either remain stable or vary in specific ways. Next, the descriptions of the functions that original

and variant models learn are compared and it is evaluated whether they reflect the assumed stabil-

ity or specific variation, respectively, of causal relations. If this is not the case for some parts of the

descriptions, these parts likely reflect spurious correlations. The approach constitutes a general-

ization of sampling approaches, where separate instances of the considered DL model are trained

on random samples of the training set and the obtained descriptions are compared or aggregated

(Bin et al., 2015; Gagne II et al., 2019).

To illustrate the methodology, I consider two prediction tasks from hydrometeorology. In the first

task, the occurrence of rain at a target location is predicted given geopotential fields at different

pressure levels in a surrounding region. In the second task, the water level at a location in a river

is predicted given the water level upstream and downstream 48 h earlier. As the proposed variant

approach is not restricted to DL models, but valid for any statistical method, I demonstrate the ap-

proach using linear models (linear and logistic regression) as well as neural networks (multilayer

perceptrons and convolutional neural networks (CNNs)). Note that, in the article, I also provide

an introduction to all considered statistical models, in particular to CNNs, which are also used in

Chapters 6 and 7 of this thesis. After training one of the statistical models on one of the predic-

tion tasks, an interpretation method is applied to obtain a measure of the average importance of

different input locations for the predictions of the model. Then, the variant approach is used to

identify if this importance reflects spurious instead of causal relations between input and target
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variables. I consider simple prediction tasks and simple descriptions of the learned functions to be

able to decide whether parts of the descriptions that the variant approach identifies as spurious

do indeed reflect spurious correlations. This is necessary to evaluate the variant approach. In the

next chapters, I also apply the variant approach in my study of soil-moisture–precipitation (SM–P)

coupling, which constitutes a highly complex relation.

The considered examples demonstrate the superiority of the proposed variant approach over pure

sampling approaches. Indeed, the variant approach allows to identify spurious correlations that go

unnoticed when applying pure sampling approaches. For the rain prediction task, where I assume

causal relations to remain stable between original and variant tasks, the variant approach allows

to correctly identify spurious correlations that the statistical models learned by formally evaluating

the distances between original and variant descriptions. This means that the approach requires

only minimal human intervention after the variant tasks are defined (e.g. adjusting a threshold).

In the water level prediction task, where formally specifying the assumed variation of causal rela-

tions is more involved, the variant approach also allows to identify spurious correlations that the

statistical models learned. However, this task also demonstrates a challenge to the approach:

when the assumed variation of causal relations in the variant tasks cannot be formalized, then the

evaluation of distances between original and variant descriptions cannot be formalized either and

requires expert visual assessment of original and variant descriptions.

An important aspect to consider when applying the variant approach is that it cannot guarantee that

all spurious correlations reflected in a description are identified. For example, when considering

variant tasks for which causal relations are assumed to remain stable, spurious correlations can

only be identified if they do not remain stable between original and variant tasks. Thus, the variant

approach can increase the confidence that a description reflects causal relations (or reject that

this is the case), but it cannot guarantee it.

I developed the described methodology with contributions from Stefan Kollet and Jochen Garcke.

The experiments described in the article were designed by me with suggestions by Stefan Kollet. I

conducted all experiments. I analyzed the results and prepared the manuscript with contributions

from Stefan Kollet and Jochen Garcke. All co-authors agreed to the use of the article in this thesis

and the description of author contributions.
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6. Causal deep learning models for studying

the Earth system

This chapter summarizes the research article

T. Tesch, S. Kollet, and J. Garcke. Causal deep learning models for studying the Earth system.

Geoscientific Model Development, 16(8):2149–2166, 2023a. doi: 10.5194/gmd-16-2149-2023.

Highlight article.

The article is attached as Appendix B.

http://dx.doi.org/10.5194/gmd-16-2149-2023
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The major challenge to the approach of using interpretable deep learning to gain new scientific

insights is that DL models learn statistical associations rather than causal relations between Earth

system variables. This article considers modifications of the prediction task and training procedure

to obtain a causal DL model, i.e. a model that actually learns the causal relation between some

input variable and the target variable. Specifically, in this article, I combine the approach of using

interpretable DL to gain new scientific insights with a result from causality research (Pearl, 2009)

stating that a statistical model may learn the causal impact of an input variable on a target variable

if suitable additional input variables are chosen to prevent confounding (see also Chapter 3). In

contrast to the variant approach described in the previous chapter, which considers just any al-

ready trained DL model and addresses the challenge of identifying spurious correlations that the

model learned, the methodology described in this chapter focuses on obtaining a causal DL model

by modifying the prediction task and training procedure (see Figure 1.2).

The article begins with an introduction to the framework of structural causal models (SCMs) (Pearl,

2009), which provides notation and concepts for formalizing research on causal relations. In par-

ticular, it introduces causal graphs and structural equations, which are the basis for describing a

(sub)system of interest (e.g. part of the Earth system) within the framework of SCMs. Further-

more, it introduces the do-operator, which represents arbitrary interventions, here into the Earth

system, and is used to formalize the notion of causal effects. In this framework, variables have

a deterministic and a random component (see Figure 3.2). The randomness represents random

aspects of the system like turbulence and aspects of the system that are not modelled explicitly,

for example due to the considered spatial scale.

After the introduction to SCMs, a causal DL model is defined as a DL model that approximates the

map

(x, {cℓ}k
ℓ=1) → E[Y |do(X = x), {Cℓ = cℓ}k

ℓ=1], (6.1)

where Y ∈ Rn is the considered target variable, X ∈ Rd is the input variable of interest, and

{Cℓ}k
ℓ=1 are additional input variables. Note that small letters x, y and cℓ refer to particular values

of the random variables X, Y and Cℓ, respectively.

The expression do(X = x) distinguishes a causal DL model from a standard DL model. It rep-

resents an arbitrary intervention into the considered system, such that the term on the right hand

side of Equation 6.1 is the expected value of Y given the variables {Cℓ}k
ℓ=1 and given that one in-

tervened into the system and set X to some arbitrary value x (as one could do in a real experiment

or when using numerical models of the considered system). Obtaining a causal DL model requires

a careful choice of loss function, DL model and additional input variables, which is described in

detail in this article.
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Given a causal DL model, the partial derivatives of the model approximate the partial derivatives

of the map from Equation 6.1, i.e.

sij(x, {cℓ}k
ℓ=1) = ∂E[Yi|do(X = x), {Cℓ = cℓ}k

ℓ=1]
∂Xj

, (6.2)

where i ∈ {1, . . . , n}, j ∈ {1, . . . , d}. These partial derivatives describe how Yi changes if one

intervened into the system and slightly changed the value of Xj , i.e. they represent the causal

impact of Xj on Yi. They may be averaged over several input samples (x, {cℓ}k
ℓ=1) to obtain the

average impact of a change in Xj on Yi, and aggregated over several indexes i and j to obtain for

example the impact of a change in Xj on the sum
∑n

i=1 Yi.

In addition to the methodology itself, I propose several further analyses to assess whether results

obtained with the methodology are statistically significant, i.e. reflect more than random correla-

tions or artifacts of the DL training procedure, and whether they reflect more than known corre-

lations. Further, I propose the variant approach from Chapter 5 to assess whether the obtained

results reflect (potentially unknown) spurious correlations rather than actual causal relations.

The methodology itself as well as the additional analyses are illustrated with the example of soil-

moisture–precipitation (SM–P) coupling in ERA5 data across Europe. The impact of soil moisture

on subsequent precipitation is highly complex and remains poorly understood despite decades

of research (see Chapter 4). My results indicate that a local increase in soil moisture leads to

a local increase in precipitation, but to a regional decrease in precipitation. This effect seems to

be enhanced by mountainous regions and ridges. As the focus of this article is the methodology,

further investigation and discussion of these results follow in another article (see Chapter 7).

The obtained results on SM–P coupling differ entirely from results obtained with a simple linear

correlation analysis between soil moisture and precipitation. This stresses the importance of tak-

ing into account the difference between correlation and causation and the importance of using

statistical models that can represent the non-linearity of relations in the Earth system.

I developed the described methodology with contributions from Stefan Kollet and Jochen Garcke.

I conducted the experiments for the illustrative example of SM–P coupling. I analyzed the results

and prepared the manuscript with contributions from Stefan Kollet and Jochen Garcke. All co-

authors agreed to the use of the article in this thesis and the description of author contributions.
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7. Converse local and non-local

soil-moisture–precipitation couplings

across Europe

This chapter summarizes a research article ready for submission to a scientific journal. The au-

thors of the article are Tobias Tesch, Stefan Kollet, Jochen Garcke, Stergios Kartsios, and Eleni

Katragkou. The article is attached as Appendix C.
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In this article, I apply the methodology of causal deep learning (DL) models, developed in the pre-

vious chapter, to study the impact of soil moisture changes on subsequent precipitation across Eu-

rope at a sub-daily time scale. Two different data sets are used for this analysis: first, ERA5 climate

reanalysis data (Hersbach et al., 2018) across Europe, which are a reanalysis of the past decades

(1950 to today) provided by the European Centre for Medium-Range Weather Forecasts (ECMWF)

and contain hourly estimates of a large number of Earth system variables on a regular latitude-

longitude grid of 0.25 degrees (≈ 30 km). Reanalysis means that they combine simulation data

and observations into a single description of the global climate and weather to obtain estimates of

the considered Earth system variables that are as close to reality as possible. Second, I consider

data from a high-resolution, convection-permitting simulation covering the years 2000 to 2014 and

containing hourly estimates of several Earth system variables on a rotated latitude-longitude grid

of 0.0275 degrees (≈ 3 km) across central Europe (Tesch et al., 2022b), hereafter referred to by

CP data. While this is no reanalysis and the estimates of the considered Earth system variables

might be less close to reality than in the ERA5 data, the high-resolution, convection-permitting

simulation represents processes more realistically that are essential for soil-moisture–precipitation

(SM–P) coupling, e.g. convection and thermally driven circulations (Leutwyler et al., 2021).

In terms of methodology, in this article, I describe a more efficient way of computing the required

partial derivatives of the DL models, because the naive way for computing these derivatives is

computationally infeasible for the CP data. Further, I add an analysis related to Granger causality

(see Chapter 3), where the performance of the original DL model is compared to the performance

of a DL model trained on permuted soil moisture data to assess whether the original DL model

learned useful information on SM–P coupling in terms of predictive performance apart from noise,

and the correlations between SM and topography or seasonality (which are preserved by the

considered soil moisture permutations).

The obtained results confirm the results from the illustrative example in the previous chapter: a

local increase in soil moisture leads to a local increase in precipitation, but to a regional decrease

in precipitation, and this effect is enhanced by mountainous regions and ridges. Note that the latter

is not due to enhanced precipitation in mountainous regions, but actually due to a stronger impact

of soil moisture changes on precipitation. Furthermore, the average impact of local soil moisture

changes on local and regional precipitation is found to be qualitatively very similar to the average

impact on local and regional precipitation probability. Although the results for ERA5 data and CP

data are qualitatively similar, the obtained SM–P couplings for the CP data are not significant at

many pixels in the considered region, i.e. do not differ significantly from the couplings obtained

for models trained on permuted soil moisture data. I believe that this is due to the highly chaotic

nature of convection (Leutwyler et al., 2021), and because less training years were available for
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the CP data than for the ERA5 data, while the considered DL model even had more parameters.

These aspects make it more difficult for the DL model to learn correct SM–P coupling for the CP

data than for the ERA5 data.

In the article, the results are discussed in light of related studies (see also Chapter 4). The obtained

positive local SM–P coupling is in line with most previous statistical and modelling studies on

SM–P coupling, which found that precipitation tends to increase in regions where soil moisture is

increased. Concerning the obtained negative non-local SM–P coupling, there is only one study

(Imamovic et al., 2017) considering this question on a similar spatial scale. They found that local

precipitation was reduced for a local increase in soil moisture (negative local coupling), while

non-local precipitation was less affected. This is in contrast to my findings on a positive local

and a negative non-local SM–P coupling, while it agrees with an overall (regional) negative SM–

P coupling. Note however, that Imamovic et al. (2017) considered a different time scale, and

specific atmospheric, topographic, and initial soil moisture conditions. My findings on enhanced

SM–P coupling in mountainous regions agree with findings in (Leutwyler et al., 2021) who found

particularly strong SM–P coupling in the Alpine region, and (Li et al., 2020) who found particularly

strong SM–P coupling at the leeward slope of the Rocky Mountains, while it is again in contrast

to findings in (Imamovic et al., 2017). An important result from this study for future research on

SM–P coupling is the importance of non-local effects in the coupling, which cause converse signs

in local and regional SM–P couplings in my experiments and have commonly been neglected in

previous studies.

I developed the faster implementation of the methodology of causal DL models and the addi-

tional significance analysis. I conducted all experiments. I analyzed the results and prepared the

manuscript with contributions from Stefan Kollet and Jochen Garcke. Stergios Kartsios and Eleni

Katragkou performed the convection-permitting simulations. All co-authors agreed to the use of

the article in this thesis and the description of author contributions.
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8.1. Summary

In this thesis, I evolved the recently proposed approach of using interpretable deep learning (DL) to

gain new scientific insights into the Earth system. In particular, I addressed the main challenge to

the approach, which is that DL models may learn spurious correlations rather than causal relations

between input and target variables.

In a first step, I proposed a variant approach to identify spurious correlations that any given statisti-

cal model learned, and illustrated the superiority of the approach over commonly applied sampling

approaches using two examples from hydrometeorology in combination with various statistical

models. The variant approach allowed to identify various spurious correlations that the models

learned, while some of these relations went unnoticed in commonly applied sampling approaches.

Next, I developed the methodology of causal DL models. It combines the approach of using inter-

pretable DL to gain new scientific insights with findings from causality research in order to achieve

that a DL model actually learns causal relations between input and target variables rather than

spurious correlations. Moreover, I proposed several analyses to assess the correctness of results

obtained with this methodology. These analyses include, but are not limited to, the aforemen-

tioned variant approach. I applied the developed methodology to study soil-moisture–precipitation

(SM–P) coupling obtaining results that differ substantially from results obtained with a simple linear

correlation analysis. This underlines that the considerations made in the methodology, in partic-

ular on the difference between correlation and causation, and the use of statistical models that

can represent non-linear relations, are crucial to obtain new scientific insights on SM–P coupling.

These considerations and the proposed methodology are also useful to obtain new insights into

other complex relations in the Earth system.

After developing and illustrating the methodology of causal DL models, I applied it to gain new

scientific insights on SM–P coupling. Applying the methodology to reanalysis data and data from a

high-resolution, convection-permitting simulation, I found a local increase in soil moisture to cause

an increase in subsequent local precipitation, but an even stronger decrease in subsequent non-

local precipitation. Both effects are enhanced by mountainous regions and ridges. Further, I found

the average impact of local soil moisture changes on local and regional precipitation (amount) to

be qualitatively very similar to the average impact on local and regional precipitation probability. In

particular, these results stress the importance of taking into account non-local effects, which have

mostly been neglected in previous works, in future studies on SM–P coupling.
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8.2. Challenges and limitations

In terms of methodology, the fact that DL models may learn spurious correlations rather than causal

relations between input and target variables remains challenging despite the progress made in this

thesis. While the proposed variant approach has proven useful in identifying spurious correlations

that a given DL model learned, it cannot guarantee that the model learned causal relations, such

that some uncertainty concerning the correctness of the learned relations remains. Quantifying

this uncertainty seems extremely challenging as well.

The developed methodology of causal DL models, in theory, ensures that a DL model learns causal

rather than spurious correlations between input and target variables. However, in practice, this is

only the case if no confounding variables are neglected in the choice of input variables, i.e. if the

input variables fulfil the adjustment criteria from (Shpitser et al., 2010), and if the DL model provides

a perfect approximation of the expected value of the considered target variable given all input

variables (i.e. of the function in Equation 6.1). Neither is realistic: the former due to the complexity

of the Earth system with its large number of spatially and temporally continuous variables, and

the latter due to common problems of DL, such as overfitting, i.e. making good predictions on

the training set but for wrong reasons. Furthermore, the former aspect favors including a large

number of input variables, while the latter penalizes the number of input variables (see Figure 8.1).

Indeed, additional input variables increase the complexity of the approximated expected value,

and increase the general risk of overfitting. The choice of input variables is further complicated

because both aspects, i.e. the error in the learned relations due to neglected confounders as well

as the error due to the approximation of the considered expected value, are challenging to quantify.

  

number of input variables

error in the approximated 
expected value

error due to confounding

Figure 8.1: Schematic of the errors in the methodology of causal deep learning models. When more input
variables are considered, the error due to confounding decreases, but the error in the approximated ex-
pected value increases.
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In this thesis, I performed several further analyses increasing the confidence in my results, e.g.

finding with high confidence that the results do not only reflect spurious correlations between soil

moisture and topography or seasonality. However, some uncertainty remains, and again, quanti-

fying this uncertainty is extremely challenging. It is important to note that these challenges apply

not only to the proposed methodology, but that any other approach for studying the highly complex

nature of the Earth system brings its own challenges and uncertainties. For example, approaches

based on numerical simulations rely on temporal and spatial discretizations and a large num-

ber of parameterized processes based on simplifying assumptions (e.g. vegetation processes or

micro-physical processes in clouds). The resulting uncertainties are very challenging to quantify

as well. Meanwhile, other statistical approaches face the same challenges concerning for exam-

ple the difference between correlation and causation (although the existence of this challenge is

often ignored). Avoiding these model and statistical uncertainties by using interventional in-situ

experiments in the Earth system is in many cases infeasible.

In terms of SM–P coupling, an additional difficulty is the chaotic nature of convection and the low

signal-to-noise-ratio. Both aspects complicate learning SM–P coupling for a DL model. Further,

they complicate assessing whether a DL model learned more than spurious correlations. Indeed,

to that purpose, one of the considered analyses compared the performance of the original DL

model to the performance of a separate instance of the model trained on permuted soil moisture

data (hereafter referred to as variant model). While the performance averaged over the entire

target region was significantly better for the original model than for the variant model, the absolute

performance improvement was small. Furthermore, comparing the performance of the original

model and the variant model for each target pixel separately revealed chaotic patterns showing an

increase in performance for some pixels, but also a decrease for other pixels. The fraction of pixels

showing an increase in performance for the original model increased with an increasing number

of considered test years. This indicates that the original model is equally good or better than the

variant model for all pixels, but that this is masked by the chaotic nature of convection and the low

signal-to-noise-ratio. More test years would have been required to uncover these improvements.

8.3. Recommendations for future work

Regarding the presented results on SM–P coupling, some uncertainty remains due to the consid-

ered data sets and methodology (see previous section). Future works should further corroborate

or reject these results. An important finding from this thesis for future research on SM–P coupling

is that non-local effects are essential for the overall coupling and should not be neglected as it was

the case in most previous studies.

In terms of methodology, there are several avenues for future work: first, additional methodologies
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beyond the variant approach and the analyses described in Chapters 6 and 7 should be developed

to identify spurious correlations that a DL model learned. Moreover, methods should be explored

to quantify the uncertainty with that a learned relation is classified as causal or spurious. Some

recently proposed methods for analyzing the uncertainty in predictions of DL models (rather than

in the relations that these models learned) (Blundell et al., 2015; Lakshminarayanan et al., 2017;

Loquercio et al., 2020) might be adapted for this purpose.

Another avenue for future research with respect to the developed methodology of causal DL mod-

els is the adaptation of other approaches for estimating causal effects. While regression adjust-

ment is considered in this thesis, there are also more sophisticated approaches, e.g. based on

propensity scores. An adaptation of these approaches to the cases considered here is not straight-

forward due to the continuous and high dimensional variables (as opposed to, for example, binary

or discrete variables when studying the effects of medical treatments), as well as the complexity

of the Earth system, but it might still be worthwhile.

Considering applications of the proposed methodologies, there are numerous opportunities for

future studies. For instance, it would be interesting to study SM–P coupling in different data

sets, different regions, or at different time scales. Apart from this, there are countless other

complex relations in the Earth system that may be studied with the proposed methodology. To

name a few examples, there are soil-moisture–temperature coupling (Schumacher et al., 2019;

Schwingshackl et al., 2017; Seneviratne et al., 2006), soil-moisture–atmospheric-carbon-dioxide-

coupling (Green et al., 2019; Humphrey et al., 2021), evaporation–precipitation coupling (Findell

et al., 2011), snow-cover–precipitation coupling (Wallace and Minder, 2021), vegetation-cover–

convective-boundary-layer coupling (Fisch et al., 2004), and groundwater–atmospheric-boundary-

layer, groundwater–convective-available-potential-energy, and groundwater–precipitation coupling

(Rahman et al., 2015).

In this work, I applied the developed methodologies to SM–P coupling in order to gain new scientific

insights. Another application could be for validating if the coupling is correctly represented in

a given numerical model. To that purpose, one could investigate differences in SM–P coupling

between different numerical models, or between numerical models and observational data. Li

et al. (2020), for example, proceeded similarly to study the ability of different numerical models to

identify regions on Earth with particularly strong SM–P coupling. A conceptually similar approach

for such process-oriented model validation is given in (Nowack et al., 2020). They apply a causal

discovery algorithm to obtain a causal graph of atmospheric interactions in model simulations.

To validate a model, they compare the causal graph obtained for that model to the causal graph

obtained for reanalysis data, as a proxy for observations.
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Concerning applications of the proposed variant approach, it would be interesting to further eval-

uate its potential for automatically identifying spurious correlations that DL models learn. La-

puschkin et al. (2019), for example, found that their DL model predicted that a given image shows

a horse if it contains a certain copyright tag. This was because many horse images in the consid-

ered training set contained this copyright tag. The variant approach could help to uncover such

flawed behavior of DL models. In the example from (Lapuschkin et al., 2019), a variant task could

be to train separate instances of the considered DL model (variant models) on subsets of the data

coming from different sources. If the copyright tag was not present in one of these sources, the

faulty behavior could be uncovered by automatically comparing descriptions of the functions (e.g.

feature importance scores) that the different variant models learn. In general, the proposed variant

approach may be useful for debugging a DL model whenever the user cannot judge whether an

explanation obtained by an interpretation method reflects undesired behavior of the DL model or

not, i.e. when the relations between input and target variables are complex or unknown. This is a

common case across scientific disciplines.

Concluding, this thesis demonstrated the potential of combining DL and causality research to gain

new scientific insights into the Earth system. The developed methodologies provided important

insights into soil-moisture–precipitation coupling and have several further promising applications

in the geosciences and beyond. This thesis calls for more research on the combination of DL and

causality research, as well as on applications of causal inference methods in the geosciences.
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E. Rogers, E. H. Berbery, M. B. Ek, Y. Fan, R. Grumbine, W. Higgins, H. Li, Y. Lin, G. Manikin,
D. Parrish, and W. Shi. North American Regional Reanalysis. Bulletin of the American Meteo-
rological Society, 87(3):343–360, 2006. doi: 10.1175/bams-87-3-343.

J. W. Miller, R. Goodman, and P. Smyth. On loss functions which minimize to conditional expected
values and posterior probabilities. IEEE Transactions on Information Theory, 39:1404–1408,
1993. doi: 10.1109/18.243457.

C. Molnar. Interpretable Machine Learning. 2022. https://christophm.github.io/
interpretable-ml-book.

G. Montavon, W. Samek, and K.-R. Müller. Methods for interpreting and understanding deep
neural networks. Digital Signal Processing, 73:1–15, 2018. doi: 10.1016/j.dsp.2017.10.011.

P. Nowack, J. Runge, V. Eyring, and J. D. Haigh. Causal networks for climate model evaluation
and constrained projections. Nature Communications, 11(1), 2020. doi: 10.1038/s41467-020-
15195-y.

A. Odena, V. Dumoulin, and C. Olah. Deconvolution and Checkerboard Artifacts. Distill, 2016. doi:
10.23915/distill.00003.

http://dx.doi.org/10.1016/j.procs.2016.07.144
http://dx.doi.org/10.48550/arXiv.1605.01156
http://dx.doi.org/10.1109/CVPR.2015.7298965
http://dx.doi.org/10.1109/lra.2020.2974682
http://dx.doi.org/10.1109/lra.2020.2974682
http://dx.doi.org/10.48550/arXiv.2105.00912
http://dx.doi.org/10.1111/1467-9639.00013
http://dx.doi.org/10.1111/1467-9639.00013
http://dx.doi.org/10.1175/bams-d-18-0195.1
http://dx.doi.org/10.1175/bams-87-3-343
http://dx.doi.org/10.1109/18.243457
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
http://dx.doi.org/10.1016/j.dsp.2017.10.011
http://dx.doi.org/10.1038/s41467-020-15195-y
http://dx.doi.org/10.1038/s41467-020-15195-y
http://dx.doi.org/10.23915/distill.00003
http://dx.doi.org/10.23915/distill.00003


64 References

J. Padarian, A. B. McBratney, and B. Minasny. Game theory interpretation of digital soil mapping
convolutional neural networks. SOIL, 6:389–397, 2020. doi: 10.5194/soil-6-389-2020.

B. Pan, K. Hsu, A. AghaKouchak, and S. Sorooshian. Improving Precipitation Estimation Us-
ing Convolutional Neural Network. Water Resources Research, 55(3):2301–2321, 2019. doi:
10.1029/2018wr024090.

S. J. Pan and Q. Yang. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data
Engineering, 22(10):1345–1359, 2010. doi: 10.1109/tkde.2009.191.

C. Papagiannopoulou, D. G. Miralles, S. Decubber, M. Demuzere, N. E. C. Verhoest, W. A. Dorigo,
and W. Waegeman. A non-linear Granger-causality framework to investigate climate–vegetation
dynamics. Geoscientific Model Development, 10(5):1945–1960, 2017. doi: 10.5194/gmd-10-
1945-2017.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chil-
amkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems
32, pages 8026–8037. Curran Associates, Inc., 2019. http://papers.nips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

J. Pearl. Causal inference in statistics: An overview. Statistics Surveys, 3, 2009. doi: 10.1214/09-
ss057.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011. doi: 10.48550/arXiv.1201.0490.
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A deep learning (DL) model learns a function relating a set of input variables with a set of

target variables. While the representation of this function in form of the DL model often

lacks interpretability, several interpretation methods exist that provide descriptions of the

function (e.g., measures of feature importance). On the one hand, these descriptions may

build trust in the model or reveal its limitations. On the other hand, they may lead to new

scientific understanding. In any case, a description is only useful if one is able to identify

if parts of it reflect spurious instead of causal relations (e.g., random associations in the

training data instead of associations due to a physical process). However, this can be

challenging even for experts because, in scientific tasks, causal relations between input

and target variables are often unknown or extremely complex. Commonly, this challenge

is addressed by training separate instances of the considered model on random samples

of the training set and identifying differences between the obtained descriptions. Here,

we demonstrate that this may not be sufficient and propose to additionally consider

more general modifications of the prediction task. We refer to the proposed approach as

variant approach and demonstrate its usefulness and its superiority over pure sampling

approaches with two illustrative prediction tasks from hydrometeorology. While being

conceptually simple, to our knowledge the approach has not been formalized and

systematically evaluated before.

Keywords: interpretable deep learning, statistical model, machine learning, spurious correlation, causality,

hydrometeorology, geoscience

1. INTRODUCTION

A deep learning (DL) model learns a function relating a set of input variables with a set of
target variables. While DL models excel in terms of predictive performance, the representation
of the learned function in form of the DL model (e.g., in form of a neural network) often
lacks interpretability. To address this lack of interpretability, several interpretation methods have
been developed (see e.g., Gilpin et al., 2018; Montavon et al., 2018; Zhang and Zhu, 2018;
Molnar, 2019; Samek et al., 2021) providing descriptions of the learned function (e.g., measures of
feature importance, FI). On the one hand, such descriptions can build trust in a model (Ribeiro
et al., 2016) or reveal a model’s limitations. Lapuschkin et al. (2019), for example, analyzed FI
scores and found that their image classifier relied on a copyright tag on horse images. Similarly,
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Schramowski et al. (2020) analyzed FI scores and found (and
corrected) that their DL model classified sugar beet leaves as
healthy or diseased while incorrectly focusing on areas outside
of the leaves.

On the other hand, descriptions of the learned function
can lead to new scientific understanding. Ham et al. (2019),
for example, analyzed FI scores and identified a previously
unreported precursor of the Central-Pacific El Niño type; Gagne
et al. (2019) analyzed FI scores to gain a better understanding
of the relations between environmental features and severe
hail; McGovern et al. (2019) analyzed FI scores to gain a
better understanding of the formation of tornadoes; and Toms
et al. (2020) analyzed FI scores and identified regions related
to the El Niño-Southern Oscillation (ENSO) and regions
providing predictive capabilities for land surface temperatures at
seasonal scales. Roscher et al. (2020) provide a general review
of explainable machine learning for scientific insights in the
natural sciences.

Whether descriptions of the function that a DL model learns
are computed to build trust in the model, study the model’s
limitations, or gain new scientific understanding, it is important
to identify if parts of a description reflect spurious instead of
causal relations (e.g., random associations in the training data
instead of associations due to a physical process). Examples
for spurious relations are the above-mentioned copyright tag
on horse images and the area outside of the classified sugar
beet leaves. However, especially in prediction tasks involving
physical, biological or chemical systems with several non-
linearly interacting components, identifying spurious relations
is challenging even for experts. Note that this does not only
apply to the identification of spurious relations in descriptions
of functions that DL models learn, but in general to the
identification of spurious relations in descriptions of functions
that any statistical model learns.

Commonly, this challenge is addressed by training separate
instances of the considered model on random samples of
the training set and aggregating or comparing the obtained
descriptions. De Bin et al. (2015), for instance, compared
subsampling and bootstrapping for the identification of relevant
input variables in multivariable regression tasks. They applied
a feature selection strategy repeatedly to samples of the
original training set obtained by subsampling or bootstrapping,
respectively, and identified relevant features by analyzing feature
selection frequencies. As another example, Gagne et al. (2019)
trained 30 instances of different statistical models on sampled
training and test sets to take into account that the models’ skills
and the relations between input and target variables that the
models learn might depend on the specific training and test set
composition. Here, we propose to not only consider sampling,
but also more general modifications of the original prediction
task. We refer to this more general approach as variant approach.
In the approach, separate instances of the considered statistical
model (referred to as variant models) are trained on modified
prediction tasks (referred to as variant tasks) for which it is
assumed that causal relations between input and target variables
either remain stable or vary in specific ways. Subsequently,
the descriptions of the functions that original and variant

models learn are compared and it is evaluated whether they
reflect the assumed stability or specific variation, respectively,
of causal relations. If this is not the case for some parts of the
descriptions, these parts likely reflect spurious relations. The
approach constitutes a generalization of sampling approaches in
that sampling is one of many ways for modifying the original
prediction task in order to obtain a variant task.

A similar concept to ours has, to the best of our knowledge,
only been pursued systematically in a strict causality framework
[for details on this framework see e.g., Pearl, 2009 or for a more
methodological focus (Guo et al., 2020)]. Peters et al. (2016), for
example, consider modifications of an original prediction task
for which they require the conditional distribution p(y|ExS) of
the target variable y given the complete set ExS of variables that
directly cause y to remain stable. Exploiting this requirement,
they aim to identify the subset S of (direct) causal predictors
within all observed features. While this approach is conceptually
related to the proposed variant approach, the latter does not
require the strict causality framework but is applicable to any
machine learning prediction task. Note that in our work the terms
causal and spurious do not refer to an underlying causal graph or
other concepts from the strict causality framework but should be
interpreted with common sense: a pixel in an image, for instance,
is causally related to the label “dog” if and only if it belongs to
a dog in the image, and the value of a meteorological variable at
a specific location and time is causally related to the value of a
meteorological variable at another location and time if and only
if one value influences the other via some physical process.

Other approaches in machine learning that consider
modifications of an original prediction task predominantly aim
to improve the predictive performance of a statistical model
rather than to analyze the relations between input and target
variables. Transfer learning (Pan and Yang, 2010), for instance,
aims to extract knowledge from one or more source tasks to
apply it to a target task, e.g., training a neural network first on
a similar task before fine-tuning the weights on the target task.
Adversarial training, as another example, optimizes the loss over
a set of perturbations of the input (Goodfellow et al., 2015; Sinha
et al., 2018) to become less susceptible to adversarial attacks
(Szegedy et al., 2014), imperceptible changes to the input that can
change the model’s prediction. Traditional importance weighting
(Shimodaira, 2000) or more recent methods (Lakkaraju et al.,
2020), as further examples, shift the input distribution in order
to perform better on a known or unknown test distribution.

In this work, we demonstrate the proposed variant approach
with two illustrative prediction tasks from hydrometeorology.
First, we predict the occurrence of rain at a target location,
given geopotential fields at different pressure levels in a
surrounding region. Second, we predict the water level
at a location in a river, given the water level upstream
and downstream 48 h earlier. As statistical models, we
consider linear models and neural networks. After training
a model on one of these tasks, we apply an interpretation
method to obtain a description of the learned function. This
description indicates the average importance of the different
input locations for the predictions of the model. To identify
if this importance reflects spurious instead of causal relations
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between input and target variables, we apply the proposed
variant approach.

The article is structured as follows: in section 2, we formalize
the variant approach and define the two prediction tasks
and variants thereof that illustrate the approach. Further, we
introduce the statistical models and interpretation methods used
in this work. Subsequently, we present and discuss the results
obtained when training the statistical models on the considered
prediction tasks and applying the variant approach. In section
4, we summarize our main findings and discuss perspectives for
future research and applications of the variant approach.

2. MATERIALS AND METHODS

2.1. Variant Approach
During the training phase, a statistical model learns a function
f :Rn → Rk relating an input space X ⊆ Rn with a target space
Y ⊆ Rk given a training set T = {( Exi, Eyi)}

N
i=1 with Exi ∈ X,

Eyi ∈ Y . As the representation of f in form of the statistical model
(e.g., in form of a neural network) often lacks interpretability,
several interpretation methods have been developed (see e.g.,
Gilpin et al., 2018; Montavon et al., 2018; Zhang and Zhu, 2018;
Molnar, 2019; Samek et al., 2021). Most of these methods yield

vector-valued descriptions Ed ∈ Rd of f (e.g., measures of feature
importance). These descriptions can be global or local, in the
latter case not only depending on f but on a subset Xd ⊂ X
as well. An example of a global description are the weights of a

linear regression model. An example of a local description Ed(Ex) is
the gradient of a neural network evaluated at a location Ex ∈ X.

A description Ed reflects the relations between input and
target variables that the statistical model learned. Whether

the user aims to use Ed to build trust in the model, reveal
the model’s limitations, or gain new scientific understanding,

it is important to identify if parts of the vector Ed reflect
spurious instead of causal relations. In many cases, this is
challenging even for experts. Therefore, we propose a variant
approach. The approach consists of three steps. First, the original
prediction task is modified in such a way that causal relations

reflected in specific parts of Ed are assumed to either remain
stable or vary in a specific way. We refer to the modified
prediction task as variant task. Second, a separate instance of
the considered statistical model (referred to as variant model)
is trained on the variant task and a corresponding description
Edv (referred to as variant description) of the function f v

that the variant model learns is computed. Third, original
and variant descriptions are compared and it is evaluated
whether the previously specified parts of original and variant
descriptions reflect the assumed stability or specific variation,
respectively, of causal relations. If this is not the case, the

respective parts of the vector Ed or of the vector Edv reflect
spurious relations.

Formalizing the approach, we define a variant task by an
input space Xv ⊆ Rnv , a target space Yv ⊆ Rkv , a training set

Tv = {( Exvi ,
Eyvi )}

Nv

i=1 with Exvi ∈ Xv, Eyvi ∈ Yv, an interpretation
method (in most cases the same as for the original task) that

provides a description Edv ∈ Rdv of the learned function
f v :Rnv → Rkv , two sets of m boolean vectors EIj ∈ {0, 1}d and
EIvj ∈ {0, 1}d

v
, j = 1, . . . ,m, and m corresponding smooth (not

necessarily symmetric) distance functions distj :Rd × Rdv →

R≥0, j = 1, . . . ,m. We denote by Ed(EIj) [and analogously by
Edv( EIvj )] the restriction of Ed to the dimensions specified by the

boolean vector EIj and refer to Ed(EIj) as a part of Ed. The distance
function distj incorporates the user’s assumption about how the

part Ed(EIj) of Ed changes for the variant task if it reflects causal
relations, and quantifies the deviation of this stability or specific
variation, respectively. In other words, distj computes a value

distj(Ed, Edv) which is 0 if Ed(EIj) and Edv( EIvj ) exhibit the assumed

stability or systematic variation, respectively, of causal relations.
In turn, the more they deviate from this assumed stability or

specific variation, respectively, the larger the value distj(Ed, Edv)
should be.

Let us consider some examples of variant tasks. As already
mentioned in the introduction, one way to modify the original
prediction task in order to obtain a variant task is to consider
a sampled training set, e.g., obtained by randomly sampling
the original training set in the context of subsampling or
bootstrapping (De Bin et al., 2015). In this case, we assume
that all causal relations remain stable. Hence, we may choose
to evaluate the dimensionwise distance between an original

description Ed ∈ Rd and the corresponding variant description
Edv ∈ Rd of the function f v that a separate instance of the
original model learns when trained on the sampled training set.
Using the above formalism, this corresponds to defining the

boolean vectors (EIj)i = ( EIvj )i = δji ∈ Rd (vectors with 0

components in all dimensions except from dimension j where

the component is 1) and the distance functions distj(Ed, Edv) =

|Edj − Edvj| for j = 1, . . . ,m = d. Now, distj(Ed, Edv) ≫ 0 for some

j ∈ {1, . . . , d} indicates that the part Ed(EIj) = Edj of the original

description, or the part Edv( EIvj ) = Edvj of the variant description,

reflects spurious relations. Note that we can repeat the sampling
procedure several times, leading to multiple variant tasks of the
same type.

A second example for the definition of a variant task is to
consider a modification of the input space. Later, for instance,
we consider the task to predict a rain event at a target location
given input variables in the 60 × 60 pixels neighborhood (see
Figure 1A). As a variant task, we consider the input variables in
the 80× 80 pixels neighborhood instead. As original description
Ed ∈ R60×60, we consider a measure of the average importance
of each pixel in the 60 × 60 pixels neighborhood for the
predictions of the original model, and as variant description
Edv ∈ R80×80, we analogously measure the average importance
of each pixel in the 80 × 80 pixels neighborhood for the
predictions of the variant model. In this case, we assume
that causal relations between pixels in the 60 × 60 pixels
neighborhood and rain events at the target location remain
stable when enlarging the considered neighborhood by 10 pixels
on each side. Hence, we choose to evaluate the dimensionwise
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FIGURE 1 | Set up of the two original prediction tasks. (A) Predict whether the precipitation averaged over the red 2×2 pixels target patch in the center of the 60×60

pixels input region exceeds 1 mm in the next 3 h. (B) Predict the water level at the red pixel given the water level 48 h earlier at the red pixel and the pixels upstream

and downstream marked dark blue in the inset. Light blue indicates pixels with ponded water at the land surface during the entire simulation period (rivers, lakes, …).

distance between the original description Ed and the central

60 × 60 pixels of the variant description Edv. Using the above
formalism, this corresponds to defining the boolean matrices
(EIj1j2 )i1i2 = δj1j2 ,i1i2 ∈ R60×60 (matrices with 0 components in
all dimensions except from dimension j1j2 where the component
is 1), the boolean matrices ( EIvj1j2 )i1i2 = δj1+10j2+10,i1i2 ∈ R80×80

(10 corresponds to the offset between the neighborhoods for
original and variant task, i.e., input index (j1 + 10, j2 + 10)
in the variant task corresponds to the same location as input
index (j1, j2) in the original task) and the distance functions

distj1j2 (
Ed, Edv) = |Edj1j2 − Edvj1+10,j2+10| for j1, j2 = 1, . . . , 60.

Now, distj1j2 (
Ed, Edv) ≫ 0 for some j1, j2 ∈ {1, . . . , 60}2 indicates

that the part Ed(EIj1j2 ) = Edj1j2 of the original description, or

the part Edv( EIvj1j2 ) = Edvj1+10,j2+10 of the variant description,
reflects spurious relations. Note that for some statistical models,
this type of variant task might require slight changes to the
model architecture.

A third example for the definition of a variant task is to

consider a modification of the target variable. Later, for instance,

we predict the water level at a location in a river given the water

level in some specified segment of the river (see Figure 1B).
As a variant task, we consider the same segment of the river
but shift the target location by τ pixels along the river (see

Figure 2B). As original and variant descriptions Ed, Edv ∈ Rd, we
consider a measure of the average importance of each pixel in
the specified river segment for the predictions of the original
model and the variant model, respectively. In this case, we

assume that causal relations are shifted along the river by the
same distance as the target location is (i.e., by τ pixels). Hence,
we choose to compute the dimensionwise distance between the

original description Ed and the variant description Edv shifted by

τ dimensions (i.e., we consider the distance |Edj − Edvj+τ | for all
j for that j + τ ∈ {1, . . . , d}). Using the above formalism, this

corresponds to defining the boolean vectors (EIj)i = ( EIvj )i+τ = δji

and the distance functions distj(Ed, Edv) = |Edj − Edvj+τ | for all

j = 1, . . . , d for that j + τ ∈ {1, . . . , d}. Now, distj(Ed, Edv) ≫ 0

indicates that the part Ed(EIj) = Edj of the original description,

or the part Edv( EIvj ) = Edvj+τ of the variant description, reflects

spurious relations.
In this example, it might be more realistic to assume that

causal relations are not shifted along the river by exactly τ pixels,
but that the shift distance depends on the flow velocity and
potentially further influences. The proposed formalism allows

to take this into account by varying the definition of EIj, EI
v
j and

distj. Suppose, for instance, that the flow velocity around the
original target location is twice as high as around the shifted
target location. In this case, we might assume that the sum of
importance of the two pixels upstream of the original target
location should be identical to the importance of the single pixel
upstream of the shifted target location. Hence, we might decide

to consider (EIj)i = δji + δj−1,i, ( EI
v
j )i+τ = δji (as above), and

distj(Ed, Edv) = |(Edj+Edj−1)− Edvj+τ |, where the index j corresponds

to the original target location. In this case, distj(Ed, Edv) ≫ 0
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indicates that the part Ed(EIj) (corresponding to Edj and Edj−1) of the

original description, or the part Edv( EIvj ) = Edvj+τ of the variant

description, reflects spurious relations.
In general, however, it is difficult to take variations of flow

velocity and further influences into account when defining EIj, EI
v
j

and distj. This is for example due to unavailable data on flow
velocity and nonlinear behavior (e.g., that the sum of importance
of the two pixels upstream of the original target location should
be identical to the importance of the single pixel upstream of
the shifted target location if the flow velocity in the respective
river segment is twice as high, likely represents a too strong
assumption on linearity). We will come back to this in the
discussion of the results.

Let us return to the formal definition of the variant approach.
The first step was to define a variant task. The second step consists
of training a separate instance of the original model (a variant
model) on this task and computing a variant description. The
third step of the approach consists of comparing original and

variant description and evaluating distj(Ed, Edv) ≫ 0 for all j =

1, . . . ,m. If distj(Ed, Edv) ≫ 0 for some j ∈ {1, . . . ,m}, the user

infers that Ed(EIj) or Edv( EIvj ) reflects spurious relations. Note that the

converse is not possible, i.e., if distj(Ed, Edv) ≈ 0, the user cannot

infer that Ed(EIj) reflects causal relations (as it might be that both
Ed(EIj) and Edv( EIvj ) reflect spurious relations). Note further that the

specification of the condition distj(Ed, Edv) ≫ 0 should in general
take into account the specific original and variant task, the choice
of the distance function distj, and the certainty of the assumed
stability or systematic variation, respectively, of causal relations.
Moreover, in case the user does not need a binary identification

of parts of Ed that reflect spurious relations, it might be better not

to consider the binary condition distj(Ed, Edv)≫ 0, but to consider

raw values distj(Ed, Edv), where higher distances indicate a higher

probability that Ed(EIj) or Edv( EIvj ) reflects spurious relations.

For all variant tasks defined in this work, the expression

distj(Ed, Edv) corresponds to the relative distance between a single

component Edj1 of an original description and a single component
Edvj2 of a corresponding variant description, i.e., it takes the form

distj(Ed, Edv) =
|Edj1 −

Edvj2 |

|Edj1 | + | Edvj2 | + ε
, (1)

with some regularization parameter ε ≥ 0. By considering
relative distances rather than absolute distances, we define, for
instance, that Edj1 = 100, Edvj2 = 101 agree better than Edj1 = 1,
Edvj2 = 2, or, in other words, in the latter case it is more likely that

the value Edj1 or the value
Edvj2 reflects spurious relations. Further,

an advantage of considering relative distances is that all distances
lie between zero and one (when neglecting ε) which allows to

apply a threshold t ∈ (0, 1) to specify the condition distj(Ed, Edv)≫0

and to mark all parts Ed(Ij) of the original description as spurious

for which distj(Ed, Edv) > t. In this study, we use t = 0.5 as
threshold and ε = 1e − 3 as regularization parameter. Choosing
a smaller threshold, more values are marked as spurious (with

all values marked as spurious for t = 0), and choosing a larger
threshold, fewer values are marked as spurious (with no values
marked as spurious for t = 1) by definition. For the examples
considered below, t = 0.5 seems to be a good choice.

2.2. Illustrative Tasks
In this section, we define two prediction tasks and corresponding
variant tasks that illustrate the proposed variant approach.
We chose simplified tasks and global descriptions of the
learned functions to be able to decide whether parts of the
descriptions that the variant approach marks as spurious do
indeed reflect spurious relations. The data underlying both
tasks is 3-hourly data at 412 × 424 pixels over Europe. The
data was obtained from a long-term (January 1996–August
2018), high-resolution (≈ 12.5 km) simulation (Furusho-
Percot et al., 2019) performed with the Terrestrial Systems
Modeling Platform (TSMP), a fully integrated groundwater-soil-
vegetation-atmosphere modeling system (Gasper et al., 2014;
Shrestha et al., 2014). Note that the statistical models and
interpretation methods applied in this work are described in
section 2.3.

2.2.1. Task 1 – Rain prediction
In the first example, we predict the occurrence of rain at a 2 × 2
pixels target patch, given the geopotential fields at 500, 850, and
1,000 hPa in the 60×60 pixels neighborhood (see Figure 1A).We
model this as a classification task and define that rain occurred, if
the precipitation averaged over the target patch exceeds 1 mm
in the following 3 h. Previous works (Larraondo et al., 2019;
Pan et al., 2019) have used CNNs to predict precipitation
given geopotential fields to improve the parameterization of
precipitation in numerical weather prediction models. Thus,
apart from the simplifications of only one target location and a
binary target, this is a realistic prediction task.

As statistical models, we consider a logistic regression model
and two convolutional neural networks (CNNs) of different
depth and complexity. As description of the function that the
logistic regression model learns, we consider the absolute values
of the model weights averaged over the pressure level axis. As
descriptions of the functions that the CNNs learn, we consider
saliency maps averaged over the pressure level axis and over all
training samples. These descriptions can be seen as measures
of the average importance of each pixel in the 60 × 60 pixels
input region for the predictions of the models (for details see the
respective sections below).

To identify whether parts of the descriptions reflect spurious
relations that the models learned, we compute descriptions for
variant models trained on three types of variant tasks. The first
type (later referred to as sampling type) considers the same task,
but a modified training set obtained by randomly sampling 70 %
of the original training set without replacement. In this case, we
assume that all causal relations remain stable. Hence, we compute
the pixelwise distance between original and variant descriptions.
We repeat the sampling procedure 10 times obtaining 10 variant
tasks of this type. The second type of variant tasks (later referred
to as size type) considers the same task but the input variables
in the 80 × 80 pixels neighborhood of the target patch. In
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this case, we assume that causal relations between pixels in the
60 × 60 pixels neighborhood and rain events at the target patch
remain stable when enlarging the considered neighborhood by
10 pixels on each side. Hence, we compute the pixelwise distance
between the original descriptions and the central 60 × 60 pixels
of the variant descriptions. The third type of variant task (later
referred to as location type) considers the same task but for eight
different target patches obtained by moving the original target
patch by five pixels to the left or right, and up or down. The
input regions are shifted accordingly (see Figure 2A). In this case,
we assume again that all causal relations remain stable. Hence,
we again compute the pixelwise distance between original and
variant descriptions.

Note that to compute the variant descriptions for the
functions that separate instances of the CNNs learn when trained
for different target locations, we average the saliency maps over
all training samples from the original task. This is because
the distribution p(Ex) of geopotential fields differs at different
locations. Thus, if we averaged the saliency maps for a variant
CNN over all training samples from a variant task, the obtained
variant description would differ from the original description
even if original and variant models learned the exact same
function relating geopotential fields and rain events.

We obtained the geopotential fields and precipitation
data from the aforementioned simulation. We selected the
geopotential fields in the considered input regions and created
the binary rain event time series for the corresponding target
patches. Next, we split the time series using the first 56,000 time
steps as training candidates and the last 10,183 time steps as
validation candidates. Finally, training and validation sets were
obtained by selecting all time steps followed by a rain event at the
considered target patch and an equal amount of randomly chosen
additional time steps for non-rain events from the training and
validation candidates, respectively. This resulted in balanced
training and validation sets of a total of approximately 10,000
time steps for each target patch. Handling strongly unbalanced
data sets as it would be necessary without such a selection of time
steps is out of scope for this work.

2.2.2. Task 2 – Water Level Prediction
As a second example, we predict the water level at a location in a
river, given the water level in a specific segment of the river 48 h
earlier (see Figure 1B).

As statistical models, we consider a linear regression model
and a multilayer perceptron (MLP). As description of the
function that the linear regression model learns, we consider
as in Task 1 the absolute values of the model weights. For the
MLP, we consider again the saliency maps averaged over all
training samples. Analogously to Task 1, these descriptions can
be seen as measures of the average importance of each pixel in
the considered river segment for the predictions of the models
(for details see the respective sections below).

To identify whether parts of the descriptions reflect spurious
relations that the models learned, we compute descriptions for
variant models trained on two types of variant tasks. The first
type (later referred to as sampling type) considers the same task,
but a modified training set obtained by randomly sampling 70 %

of the original training set without replacement. In this case, we
assume that all causal relations remain stable. Hence, we compute
the pixelwise distance between original and variant descriptions.
We repeat the sampling procedure 10 times obtaining 10 variant
tasks of this type. The second type of variant tasks (later referred
to as location type) considers the same river segment as input, but
target locations closely upstream and downstream of the original
target location (see Figure 2B). In this case, we assume that causal
relations are shifted along the river by the same distance as
the target location is. Hence, we compute the pixelwise distance

between the original description Ed and the variant description Edv

shifted by τ pixels, where τ is the number of pixels that the target

location was shifted (i.e., we consider the distance |Edj− Edvj+τ | for
all j for that j+ τ ∈ {1, . . . , d}).

We obtained the water level data from the aforementioned
simulation. In contrast to Task 1, this task is not a classification
but a regression task; discarding time steps to obtain a balanced
data set is not necessary. Hence, we use water level data for all
64,240 3-hourly time steps between January 1996 and December
2017. We randomly selected the years 1997, 2004, 2008, and
2015 as test data, covering the whole period of time, and use the
remaining years to train the models.

2.3. Statistical Models and Descriptions
In this section, we present the statistical models used in this study.
Further, we describe saliency maps, the interpretation method
applied to obtain descriptions of the functions that the neural
networks (MLP and CNNs) learn. Note that for the considered
examples, layerwise relevance propagation (LRP) and Grad-
CAM give very similar results to saliency maps. The section is
ordered with respect to the complexity of the described methods
from simple to complex.

2.3.1. Linear Regression
Given training samples (Exi, yi)

n
i=1 with Exi ∈ RN , yi ∈ R, a linear

regression model learns a function f :RN → R of the form

f (Ex) = β0 + ExT · Ēβ , (2)

where Eβ = (β0,
Ēβ) = (β0,β1, . . . ,βN) ∈ RN+1 are the weights

of the model. Those weights are obtained by minimizing the
squared error on the training set

n
∑

i=1

(f (Exi)− yi)
2. (3)

Optionally, a regularization term can be added to the objective.
We calculate theminimizing weights Eβ using the implementation
of scikit-learn (Pedregosa et al., 2011). In our case, the inputs Exi
are elements of R30 representing the water level at the 30 pixels
in the considered river segment (see Figure 1B) and the targets
yi ∈ R represent the water level at the target pixel 48 h later.

As description of the function that a linear regression model

learned, we consider the absolute values of the weights Ēβ . This
can be seen as a measure of the average importance of each pixel
in the river segment for the predictions of the model (Molnar,
2019).
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FIGURE 2 | Location variant tasks. (A) Original target patch (center) with its input region and eight additional target patches and their (overlapping) input regions. (B)

Original target location (center) and two additional target locations closely upstream and downstream.

2.3.2. Logistic Regression
Given the task to predict a binary target y ∈ {0, 1} from an input
Ex ∈ RN , a logistic regression model yields

P(y = 1|Ex, Eβ) =
1

1+ exp(−(β0 + ExT · Ēβ))
, (4)

where Eβ = (β0,
Ēβ) = (β0,β1, . . . ,βN) ∈ RN+1 are the

weights of the model. These weights are obtained by minimizing
the function

−

n
∏

i=1

P(yi = 1|Exi, Eβ)
yi · (1− P(yi = 1|Exi, Eβ))

1−yi + λR( Eβ) (5)

with respect to Eβ . Here, (Exi, yi)
n
i=1 are training samples with

Exi ∈ RN , yi ∈ {0, 1}, and λR( Eβ) is a regularization term.
The product represents the probability with that – according
to the logistic regression model with weights Eβ – the targets yi
are observed given the input samples Exi. Thus, minimizing the
negative product with respect to Eβ corresponds to finding the
Eβ for that the highest probability is assigned to observing the
targets yi given the inputs Exi from the training set. We use scikit-
learn (Pedregosa et al., 2011) (solver “liblinear”) to approximate
the minimizing weights Eβ . In our case, the inputs Exi are the
geopotential fields at 500, 850 and 1000 hPa flattened to vectors in
R3·60·60 and the targets yi ∈ {0, 1} represent whether a rain event
took place or not.

As description of the function that a logistic regression model

learned, we consider the weights Ēβ . We reshape the vector Ēβ to
the shape of the original input, 3×60×60, take the absolute value
and build an average over the first (pressure level) axis. This can
be seen as a measure of the average importance of each pixel in
the 60 × 60 pixels input region for the predictions of the model
(Molnar, 2019).

2.3.3. Multilayer Perceptron
Multilayer Perceptrons (MLPs), also referred to as fully-
connected neural networks, are feedforward artificial neural
networks. They are composed of one or more hidden layers
and an output layer. Each layer comprises several neurons. Each
neuron in the first hidden layer builds a weighted sum of all input
variables, while each neuron in the subsequent layers builds a
weighted sum of the outputs of the neurons in the respective
previous layer. In case of a neuron in a hidden layer, the sum
is passed through a nonlinear activation function and forms the
input to the next layer. In case of a neuron in the output layer, the
sum is optionally passed through a nonlinear activation function
and forms the output of the neural network. The weights of
the MLP are learned by minimizing a loss function on training
samples (Exi, Eyi)

n
i=1, Exi ∈ RN , Eyi ∈ RK , using backpropagation

(LeCun et al., 2012).
In our case, the inputs to the MLP are elements Ex of R30

representing the water level at the 30 pixels in the considered river
segment (see Figure 1B). The targets yi ∈ R represent the water
level at the target pixel 48 h later. Section 2.3.5 describes how
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we obtained a description of the function that the MLP learned.
The network and training of the MLP were implemented using
the deep learning library Pytorch (Paszke et al., 2019). A detailed
description of the used architecture and training procedure can
be found in the Supplementary Material.

2.3.4. Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are frequently
employed DL models designed to process stacks of multiple
arrays containing spatially structured data. This can, for
example, be a stack of 2-dimensional arrays for an RGB image
(Exi ∈ R3×height×width) or, as in our case, a stack of 2-dimensional
geopotential fields at different pressure levels in the atmosphere
(Exi ∈ R3×60×60). Typically, a CNN consists of three types of
layers: convolutional layers, pooling layers and fully-connected
layers. In the following short review of the typical CNN layers,
we consider the case of one or multiple 2-dimensional input
arrays. A generalization of the concepts to N-dimensional input
arrays is straightforward.

The input to a convolutional layer is a stack of cin 2-
dimensional arrays and its output is a stack of cout 2-dimensional
arrays. The convolutional layer is characterized by cout kernels,
which are 3-dimensional tensors of shape cin × k × k, where
the kernel size k is usually between 1 and 7. The output of the
layer are the cout 2-dimensional arrays obtained by convolving
the input with each kernel along the last two dimensions. Usually,
a convolutional layer is directly followed by a nonlinear activation
function which is applied elementwise to the layer’s output.
In contrast to a fully-connected layer, a convolutional layer
preserves the spatial structure of the input: only neurons in a
neighborhood defined by the kernel size influence the output of a
specific neuron.

As for convolutional layers, the input to a pooling layer is a
stack of cin 2-dimensional arrays of shape n × m. Pooling layers
reduce the dimensionality of the 2-dimensional arrays creating
invariances to small shifts and distortions. A typical form of
pooling is max-pooling with a kernel size of two. This reduces
the resolution along both axes of each of the cin 2-dimensional
arrays by a factor of two, picking always the maximum value of a
2× 2 patch of the original array. Thus, the output of this pooling
layer is a stack of cout = cin 2-dimensional arrays of shape n

2 ×
m
2 .

After several alternating convolutional and pooling layers
which extract features of increasing complexity, the resulting
c 2-dimensional arrays are flattened into a single vector and
one or more fully-connected layers, as described for the MLP,
follow. The weights for the kernels in the convolutional layers
and the fully-connected layers are learned by minimizing a loss
function on training samples (Exi, Eyi)

n
i=1, Exi ∈ RN , Eyi ∈ RK ,

using backpropagation (LeCun et al., 2012). To prevent CNNs
from overfitting, dropout regularization (Srivastava et al., 2014)
and batch normalization (Ioffe and Szegedy, 2015) are commonly
employed techniques.

In our case, the inputs Exi are the geopotential fields at 500,
850 and 1000 hPa, Exi ∈ R3×60×60. The targets yi ∈ {0, 1}
represent whether a rain event took place or not.We consider two
convolutional neural networks of different depth and complexity.
CNN1 is a shallow CNN with only two convolutional layers

followed by a single fully-connected layer. CNN2 is a commonly
employed, much deeper CNN architecture called resnet18 (He
et al., 2016) for which the last fully-connected layer was adapted
to have only two output neurons to fit our binary prediction
task. Section 2.3.5 describes how we obtained descriptions
of the functions that the CNNs learned. The networks and
training were implemented using the deep learning library
Pytorch (Paszke et al., 2019). A detailed description of the used
CNN architectures and training procedure can be found in the
Supplementary Material.

2.3.5. Saliency Maps
A common subgroup of interpretation methods providing
descriptions of the functions that neural networks (NNs) learn,
are methods that assign an importance to each dimension of
individual input samples Ex ∈ RN (local feature importance
scores), see e.g., Samek et al., 2021. Among the most employed
and well-known methods for that purpose are saliency maps
(Simonyan et al., 2014), layerwise relevance propagation (LRP)
(Bach et al., 2015) and Grad-CAM (Selvaraju et al., 2017). In the
examples presented in this work, all three methods yield similar
results. Therefore and for the sake of brevity, we focus on saliency
maps (although e.g., Montavon et al., 2018 argue that saliency
maps provide a bad measure of feature importance because they
indicate how the prediction of a model changes when the value of
a feature is changed, rather than indicating whatmakes themodel
make a prediction).

Note that in contrast to the weights of linear and logistic
regression models, saliency maps are local descriptions of the
learned functions, i.e., the importance assigned to an input
dimension (in our case an input pixel) depends on the input
sample Ex. To get a global description of the learned function and a
measure of the average importance of each input pixel, we average
the saliency maps over all training samples.

In the rain prediction task, the NN defines an (almost
everywhere) differentiable function f that maps geopotential
fields Ex ∈ R3×60×60 to probabilities f (Ex) = y ∈ (0, 1) that a rain
event occurs. The partial derivative

wcij(Ex) =
∂f

∂xcij
(Ex), c = 1, 2, 3, i, j = 1, . . . , 60 (6)

indicates how a small perturbation of the c-th geopotential field
at pixel (i, j) affects the prediction of the NN. The saliency map

Mij(Ex) =
1

3

3
∑

c=1

|wcij(Ex)|, i, j = 1, . . . , 60 (7)

considers the absolute value of the partial derivatives averaged
over the pressure level axis to obtain for each pixel in the 60× 60
pixels input region a measure of its importance for the model’s
prediction for sample Ex.

In the water level prediction task, the neural network maps
water levels Ex ∈ R30 to a water level prediction f (Ex) = y ∈ R.
The saliency map

Mi(Ex) = |wi(Ex)| =

∣

∣

∣

∣

∂f

∂xi
(Ex)

∣

∣

∣

∣

, i = 1, . . . , 30 (8)
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FIGURE 3 | (A) Description Ed of the function that CNN1 learned when it was trained on the original rain prediction task (see Figure 1A). The description is a measure

of the average importance of each pixel in the 60× 60 pixels input region for the predictions of the model. Yellow color indicates high and blue color low importance.

(B–D) As (A), but pixels for which the relative distance between the original description Ed and one of the variant descriptions Edvi obtained for the sampling, size, and

location variant tasks, respectively, exceeds the threshold of t = 0.5, are masked.

provides for each pixel in the considered river segment a measure
of its importance for the model’s prediction for sample Ex.

3. RESULTS AND DISCUSSION

3.1. Task 1 – Rain Prediction
Figure 3A shows the description Ed of the function that CNN1
learned when it was trained on the original rain prediction task.
Remember that the considered description is a measure of the
average importance of each pixel in the 60 × 60 pixels input

region for the predictions of the model. Our objective is to
apply the variant approach to identify parts of the description

that reflect spurious relations. To that purpose, we defined

several variant tasks above. As a next step, we computed the
corresponding variant descriptions, i.e., the descriptions of the

functions that separate instances of CNN1 learned when trained

on these variant tasks. For illustration, Figure 4 shows the
original description (center, same as Figure 3A) and the variant

descriptions Edvi , i = 1, . . . , 8, obtained for the eight location
variant tasks (see Figure 2A).

For each of these variant descriptions Edvi ∈ R60×60, i =
1, . . . , 8, we evaluated the pixelwise relative distance to the

original description Ed ∈ R60×60 (see Equation 1), and masked all

pixels of the original description Ed for which this distance exceeds

the threshold of t = 0.5 for any Edvi . The resulting masked version

of Ed is shown in Figure 3D. Note that in this case, there is no
pixel for which the relative distance between original description
and any of the variant descriptions exceeds 0.5, hence Figure 3D
is identical to Figure 3A. Analogously to Figures 3B,D shows

the masked version of Ed obtained when masking all pixels for

which the pixelwise relative distance between Ed and one of the

variant descriptions Edvi obtained for the sampling variant tasks
exceeds 0.5. We observe that some pixels in the west of the
inner area of importance are masked, indicating that the inner
area of importance might actually extend further to the west.

Figure 3C shows themasked version of Ed obtained whenmasking

all pixels for which the pixelwise relative distance between Ed and

the central 60 × 60 pixels of the variant description Edvi obtained
for the size variant task exceeds 0.5. Notably, all the boundary
pixels with high values in Figure 3A are masked, indicating that
these values likely reflect spurious relations.

Figure 5 shows the same as Figure 3 but for CNN2. Only few
pixels are masked for the sampling and location variant tasks.
However, the mask obtained for the size variant task indicates
that the checkerboard pattern in the original description Ed, which
is shown in Figure 5A, likely reflects spurious relations. Note that
this checkerboard pattern is indeed a known artifact of strided
convolutions and max-pooling layers used in CNN2 (Odena
et al., 2016).

Figure 6 shows the same as Figures 3 and 5 but for the logistic
regression model. For the sampling variant tasks, large parts of

the original description Ed are masked. This indicates that these
parts likely reflect spurious relations. For the size variant task, on
the other side, only few pixels are masked. Lastly, for the location
variant tasks, nearly all pixels are masked. This indicates that the

original description Ed shown in Figure 6A likely reflects spurious
relations only.

For this task, we know that the physical importance of
a pixel averaged over a long time period decreases with the
pixel’s distance to the central target patch. Further, due to the
predominantly westerly winds, the average physical importance
of pixels is slightly shifted to the west. Given this knowledge,
we can confirm that the variant approach successfully identified
all pixels in Figures 3A, 5A, 6A which reflect spurious relations.
Note that the sampling approach alone (see Figures 3B, 5B, 6B),
which is the commonly applied method, is not sufficient to
identify all pixels reflecting spurious relations.

Note further that the examples emphasize once again the
following: even if parts of a description are not indicated as
spurious by any considered variant task, we cannot conclude
that they reflect causal relations. Imagine, for instance, that
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FIGURE 4 | Descriptions obtained when training separate instances of CNN1 for the nine different locations depicted in Figure 2A. Each description is a measure of

the average importance of each pixel in the 60× 60 pixels input region for the predictions of the respective instance of CNN1. Yellow color indicates high and blue

color low importance. The central location is the original target location, hence the central description identical to Figure 3A.

we had only considered the size variant task. For this variant
task and the logistic regression model, only a small number
of pixels is masked although Figure 6A seems to exclusively
reflect spurious relations. Hence, variant tasks can only indicate
parts of an original description as likely reflecting spurious
relations and do not allow for any direct inference about
other parts of the description. Nevertheless, this can be
useful already.

3.2. Task 2 – Water Level Prediction
Figure 7A shows the description Ed of the function that the MLP
learned when it was trained on the original water level prediction
task. Remember that the considered description is a measure
of the average importance of each pixel in the considered river
segment for the predictions of the model. Our objective is to
apply the variant approach to identify parts of the description
that reflect spurious relations. To that purpose we computed
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FIGURE 5 | Same as Figure 3 but for CNN2. (A) Original. (B) Sampling. (C) Size. (D) Location.

FIGURE 6 | Same as Figure 3 but for the logistic regression model. (A) Original. (B) Sampling. (C) Size. (D) Location.

the variant descriptions Edvi for all sampling and location variant

tasks, and masked all pixels of Ed for which the relative distance

between the original description Ed and one of the (shifted) variant
descriptions exceeds the threshold of t = 0.5. The resulting
masked versions of Figure 7A are shown in Figures 7B, C.

For this task, we know that the development of the water
level at the target location depends only on the water level
closely upstream and downstream. Hence, Figure 7A is [apart
from the moderately high importance of pixel (11,17)] close to
our understanding of the physical importance of the considered
pixels. Nevertheless, especially in Figure 7C, many of the
pixels further upstream and downstream of the target location
are masked, i.e., the variant approach indicates (mistakenly)
that the low feature importance of these pixels likely reflects
spurious relations. We suspect that this happened because
we considered relative rather than absolute distances between
original and variant descriptions (see Equation 1), which can
cause two small values to have a large distance which in turn
causes the corresponding pixel to be mistakenly masked as
spurious. Apart from pixels with low feature importance, also
pixel (11,11) closely upstream of the original target location
seems to be mistakenly masked as spurious in Figure 7C. We
suspect that this is due to our assumption that causal relations

are shifted along the river by the exact same number of
pixels as the target location is. While this assumption enables
us to simply consider pixelwise relative distances between

original description Ed and shifted variant descriptions Edvi

(see section 2), it might be overly simplified as for example
the flow velocity at different locations in the river might
differ, and the river might cross some pixels diagonally and
others straight.

Here, a visual assessment of the individual variant descriptions
seems to be superior to the formal evaluation of distances
performed for Figure 7C because it allows a softer comparison

between original and variant descriptions Ed and Edvi . Indeed, upon
visual assessment of the location variant descriptions depicted in
Figure 8, and with the assumption in mind that causal relations
approximately reflect the shift of the target location, the only
pixel in Figure 7A that we would mark as potentially reflecting
spurious relations, is pixel (11,17).

Figures 9, 10 show the same as Figures 7, 8 but for the linear
regression model. In this case, the formal evaluation of distances
between original and location variant descriptions performed for
Figure 9C indicates that Figure 9A reflects spurious relations
at nearly all pixels except from the target location and the
neighboring pixel upstream. In this case, the formal evaluation
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FIGURE 7 | (A) Description Ed of the function that the MLP learned when it was trained on the original water level prediction task (see Figure 1B). The description is a

measure of the average importance of each pixel in the considered river segment for the predictions of the model. Yellow color indicates high and blue color low

importance. (B,C) As (A), but pixels for which the relative distance between the original description Ed and one of the sampling and (shifted) location variant

descriptions Edvi , respectively, exceeds the threshold of t = 0.5, are masked. Gray marks pixels outside the considered river segment.

FIGURE 8 | Descriptions of the functions that separate instances of the MLP learned when trained for the different target locations [From left to right the target

location is at (10,10), (12,12), (12,15), see Figure 2B]. Note that (B) shows the same as Figure 7A. Gray marks pixels outside the considered river segment. (A)

Lower target location. (B) Central target location. (C) Upper target location.

agrees well with the visual assessment of the location variant
descriptions depicted in Figure 10. Indeed, visual assessment of
Figure 10 also indicates that the neighboring pixel upstream of
the target location and maybe the target location itself are the
only two pixels for which the assigned importance approximately
reflects the shift of the target location between Figures 10A–C.

4. CONCLUSIONS

Given a description Ed ∈ Rd of the function that a statistical
model learned during a training phase, we proposed a variant

approach for the identification of parts of Ed that reflect spurious
relations. We successfully demonstrated the approach and its
superiority over pure sampling approaches with two illustrative
hydrometeorological predictions tasks, various statistical models
and illustrative descriptions. For the rain prediction task, where
we assumed causal relations to remain stable between original
and variant tasks, the formal evaluation of distances between
original and variant descriptions enabled us to correctly identify
all spurious relations that the statistical models learned. For
the water level prediction task, where formally specifying the
assumed variation of causal relations was more involved, we
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FIGURE 9 | Same as Figure 7 but for the linear regression model. (A) Original. (B) Sampling. (C) Location.

FIGURE 10 | Same as Figure 8 but for the linear regression model. (A) Lower target location. (B) Central target location. (C) Upper target location.

found the formal evaluation of distances to be of limited use.
However, visual assessment enabled us again to correctly identify
all spurious relations that the statistical models learned.

In this work, we considered simplified tasks and global
descriptions of the learned functions to be able to decide
whether parts of the descriptions that the variant approach
identifies as spurious do indeed reflect spurious relations. This
was necessary to evaluate the variant approach. However, we
expect the approach to be beneficial for a wide range of more
complex prediction tasks. Naming two possible applications
outside the geosciences, it might be used to identify spurious
relations reflected in (local) descriptions of functions that
DL models trained on electroencephalography (EEG) data
(Sturm et al., 2016) learned by comparing them to variant
descriptions obtained for variant models trained for different
(groups of) patients; or to automatically detect spurious

relations reflected in (local) descriptions of functions that
a DL model trained on a common image data set learned
(Lapuschkin et al., 2019) by automatically comparing them
to variant descriptions for variant models trained on different
image data sets. Applications of the variant approach to more
complex prediction tasks in the geosciences and beyond, and
to local descriptions of the learned functions, are planned
in future.

A challenge when applying the proposed variant approach
may be to define variant tasks beyond random sampling of
the training data. However, a data set is often composed of
different sources constituting in themselves variants. Further, the
modification of the rain prediction task, where we were able to
identify parts of the original description as spurious by merely
changing the size of the input region, indicates that even small
modifications of the original prediction task can be useful.

Frontiers in Water | www.frontiersin.org 13 September 2021 | Volume 3 | Article 745563



Tesch et al. Variant Approach for Identifying Spurious Relations

Apart from the variant approach, which considers a fixed
statistical model and modifications of an original prediction
task, another approach for identifying spurious relations that
a considered statistical model learned might be to compare
the relations between input and target variables that different
models learn when trained on the (fixed) prediction task. In
such an approach, the degree of variation between models may
differ from varying configurations in Monte-Carlo dropout,
over random seeds for the weight initialization of otherwise
identical models to completely different statistical models.
Formalization and evaluation of this approach is out of scope of
this work.
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Supplementary Material

1 MODEL ARCHITECTURES AND TRAINING
1.1 Multilayer Perceptron (MLP)

The MLP considered for the water level prediction task receives as input 25 × 25 pixels water level
fields flattened to vectors x⃗ ∈ R25·25. Those vectors are passed through a hidden layer with 100 neurons
and a rectified linear unit (ReLU) nonlinear activation function to an output layer with one neuron whose
linear activation is the prediction of the network. The target y ∈ R is the water level at the target location
normalized to have a mean of 0 and a standard deviation of 1 on the training set.

We trained the network for 150 epochs using the Adam optimizer with the learning rate and weight
decay parameters both set to 1e-3, a batch size of 256 and the mean squared error as loss function. We
implemented this using the deep learning library Pytorch (Paszke et al., 2019).
1.2 Convolutional Neural Networks (CNNs)

The input to the CNNs are geopotential fields at 500, 850 and 1000 hPa. For each pressure level, we
normalized the geopotential fields to have a mean of 0 and a standard deviation of 1 on the training set.

CNN1 is a shallow CNN with two convolutional layers, each consisting of 24 kernels of size 3 and
rectified linear units (ReLU) nonlinear activation functions. The convolutional layers are followed by
a fully-connected layer connecting the second convolutional layer to two output neurons. CNN2 is a
commonly employed, much deeper CNN architecture called resnet18 (He et al., 2016) for which the last
fully-connected layer was adapted to have only two output neurons to fit our prediction task.

The networks predict a rain event for a given input if the value of the second output neuron is higher than
the value of the first output neuron. To obtain a 2-dimensional vector with no rain and rain probabilities
which sum to one, a softmax function is applied

P (rain event)i =
exp(outi)

exp(out1) + exp(out2)
, (S1)

where outi is the activation of the i-th output neuron. Note that for the saliency maps, we consider the
derivative of the output of the second output neuron before the application of the softmax layer. Applying
the saliency maps to the first output neuron yields very similar results. The target vector for an input x⃗ is a
2-dimensional vector indicating whether a rain event occurred (y⃗ = (0, 1)) or not (y⃗ = (1, 0)).

We trained both networks for 60 epochs using the Adam optimizer with a learning rate of 1e-3, a
batch size of 1000, the CrossEntropyLoss-criterion and the ReduceLROnPlateau scheduler with patience
parameter set to 6. We implemented this using the deep learning library Pytorch (Paszke et al., 2019).

Note that for CNN1 the number of neurons in the fully-connected layer has to be adapted when the size
of the input region is changed to 80 × 80 pixels. This is not the case for the resnet18 model, as for this
model, the output of the last convolutional layer is always pooled to a fixed size.
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Abstract. Earth is a complex non-linear dynamical system.
Despite decades of research and considerable scientific and
methodological progress, many processes and relations be-
tween Earth system variables remain poorly understood. Cur-
rent approaches for studying relations in the Earth system
rely either on numerical simulations or statistical approaches.
However, there are several inherent limitations to existing ap-
proaches, including high computational costs, uncertainties
in numerical models, strong assumptions about linearity or
locality, and the fallacy of correlation and causality. Here,
we propose a novel methodology combining deep learning
(DL) and principles of causality research in an attempt to
overcome these limitations. On the one hand, we employ
the recent idea of training and analyzing DL models to gain
new scientific insights into relations between input and target
variables. On the other hand, we use the fact that a statisti-
cal model learns the causal effect of an input variable on a
target variable if suitable additional input variables are in-
cluded. As an illustrative example, we apply the methodol-
ogy to study soil-moisture–precipitation coupling in ERA5
climate reanalysis data across Europe. We demonstrate that,
harnessing the great power and flexibility of DL models, the
proposed methodology may yield new scientific insights into
complex non-linear and non-local coupling mechanisms in
the Earth system.

1 Introduction

The Earth system comprises many complex processes and
non-linear relations between variables that are still not
fully understood. Considering, for example, soil-moisture–
precipitation coupling, i.e., the question of how precipitation
changes if soil moisture is changed, it is well known that soil
moisture affects the temperature and humidity profile of the
atmosphere and thereby influences the development and on-
set of precipitation (Seneviratne et al., 2010; Santanello et al.,
2018). However, because there are several concurring path-
ways of soil-moisture–precipitation coupling, it remains an
open question whether an increase in soil moisture leads to
an increase or decrease in precipitation. Answering this ques-
tion might lead to improved precipitation predictions with
numerical models.

Approaches for studying relations in the Earth system may
be broadly divided into approaches based on numerical sim-
ulations (e.g., Koster, 2004; Seneviratne et al., 2006; Hartick
et al., 2021) and statistical approaches (e.g., Taylor, 2015;
Guillod et al., 2015; Tuttle and Salvucci, 2016). Both classes
of approaches have several inherent limitations. Approaches
based on numerical simulations usually have high compu-
tational costs and, even more importantly, rely on the cor-
rect representation of the considered relations in the numer-
ical model. For example, precipitation in numerical models
lacks accuracy due to several simplified parameterizations;
thus, using these models to study soil-moisture–precipitation
coupling is problematic. On the other hand, statistical ap-
proaches usually have much lower computational costs and
can directly be applied to observational data. However, cur-
rent statistical approaches have strong limitations on their
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own, for example, due to assumptions on linearity or local-
ity of considered relations and negligence of the difference
between causality and correlation.

A recent statistical approach for studying relations in the
Earth system is to (i) train deep learning (DL) models to pre-
dict one Earth system variable given one or several others and
(ii) use methods from the realm of interpretable DL (Zhang
and Zhu, 2018; Montavon et al., 2018; Gilpin et al., 2018;
Molnar, 2019; Samek et al., 2021) to analyze the relations
learned by the models (Roscher et al., 2020). The approach
has been applied in several recent studies (Ham et al., 2019;
Gagne et al., 2019; McGovern et al., 2019; Toms et al., 2020;
Ebert-Uphoff and Hilburn, 2020; Padarian et al., 2020), and
the use of DL models allows us to overcome common as-
sumptions in other statistical approaches like linearity or lo-
cality. So far, however, the difference between causality and
correlation has been neglected in studies using this approach.
Indeed, DL models might learn various (spurious) correla-
tions between input and target variables, while researchers
striving for new scientific insights are most interested in
causal relations.

Therefore, in this work, we propose extending the ap-
proach by combining it with a result from causality research
stating that a statistical model may learn the causal effect of
an input variable on a target variable if suitable additional
input variables are included (Pearl, 2009; Shpitser et al.,
2010). In the geosciences, this result has only recently re-
ceived attention in the work of Massmann et al. (2021). In
this work, it is combined with the methodology of training
and analyzing DL models to gain new scientific insights for
the first time. Note that there are several other recent stud-
ies on causal inference methods in the geosciences (e.g.,
Tuttle and Salvucci, 2016, 2017; Ebert-Uphoff and Deng,
2017; Green et al., 2017; Runge, 2018; Runge et al., 2019;
Barnes et al., 2019; Massmann et al., 2021). However, most
of them focus on discovering causal dependencies between
variables, while the proposed methodology assumes prior
knowledge on causal dependencies and focuses on quantify-
ing the strength and sign of a particular causal dependency.
As an illustrative example, we apply the proposed methodol-
ogy to study soil-moisture–precipitation coupling in ERA5
climate reanalysis data across Europe. Other geoscientific
questions that could be addressed with the proposed method-
ology are, for example, soil-moisture–temperature coupling
(Seneviratne et al., 2006; Schwingshackl et al., 2017; Schu-
macher et al., 2019) and soil-moisture–atmospheric-carbon-
dioxide coupling (Green et al., 2019; Humphrey et al., 2021).

This paper is structured as follows: Section 2 introduces
the background on causality research and details the pro-
posed methodology. Section 3 presents the application to
soil-moisture–precipitation coupling and provides a compar-
ison to other approaches. Finally, Sect. 4 contains several ad-
ditional analyses to assess the statistical significance and cor-
rectness of results obtained with the proposed methodology.

2 Methodology

To introduce the proposed methodology, which combines
deep learning with a result from causality research, we first
give a basic introduction into the required concepts from
causality research. Based on that, we describe how one can
train a DL model that reflects causality.

2.1 Background on causality

If we could change the value of any Earth system vari-
able, e.g., increase soil moisture in some area, this would
potentially affect numerous other Earth system variables,
e.g., evaporation, temperature and precipitation. The variable
that was changed thus has a causal impact on the latter vari-
ables. Formally, the causal effect of some variable X ∈ Rd
on another variable Y ∈ Rn is the expected response of Y to
changing the value of X. To determine this impact, one has
to determine the expected value of Y given that one sets X to
some arbitrary value x. In the framework of structural causal
models (SCMs) introduced below, setting X to x is repre-
sented by a mathematical intervention operator do(X = x),
and the sought value is referred to as the post-intervention
expected value E[Y |do(X = x)].

In some cases, E[Y |do(X = x)] can be determined exper-
imentally by setting X to x while monitoring Y . For exam-
ple, in Earth System Modeling, one may be able to set X to
x in numerical experiments. However, often it is impossible
to determine E[Y |do(X = x)] experimentally due to com-
putational constraints or because of the lack of appropriate
numerical models. Obviously, analog experiments are even
harder to perform or impossible in case of large-scale inter-
actions in the Earth system.

The framework of SCMs (Pearl, 2009) provides a deeper
understanding of the notion E[Y |do(X = x)] and describes
how it can be determined without experimentally setting X

to x. The framework is briefly introduced in the following.
For a more in-depth introduction we refer to Pearl (2009). An
introduction to the framework in the context of geosciences
is given in Massmann et al. (2021).

2.1.1 Structural causal models

In the framework of SCMs, the considered system, e.g., the
Earth system, is described by a causal graph and associ-
ated structural equations. A causal graph is a directed acyclic
graph, in which nodes represent the variables of the system
and edges encode the dependencies between these variables.
For example, in the system described by Fig. 1a, variable Y

depends on all other variables, although the lack of an edge
from X to Y implies that X only affects Y indirectly via its
impact on C2. Parents of a considered variable (node) are
all variables that have a direct effect on that variable, i.e., all
variables with an edge pointing to that variable. In the follow-
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Figure 1. Example for a causal graph (a) and corresponding causal
graph for setting variable X to some arbitrary value x (b). The grey
circles are referred to as nodes of the graph, while the arrows are
referred to as directed edges.

ing, the terms “node” and “variable” are used interchange-
ably.

Formally, a variable in the causal graph is determined by
a function f , whose inputs are its parents and a random
variable U representing potential chaos and variables not in-
cluded in the causal graph explicitly. For example, for the
system in Fig. 1a, the four variables are determined by four
functions fC1 ,fC2 ,fX,fY :

C1 = fC1(UC1), X = fX(C1,UX),

C2 = fC2(X,UC2), Y = fY (C1,C2,UY ). (1)

These equations are called structural equations. The ran-
dom variables UC1 ,UC2 ,UX,UY are assumed to be mutu-
ally independent and give rise to a probability distribution
P(C1,C2,X,Y ), which describes the probability of observ-
ing any tuple of values (c1,c2,x,y). Integrating the prod-
uct of Y and this probability distribution over all tuples
(c1,c2,y) for some fixed value x, one obtains the expected
value of Y given that one observes the value x of X, i.e.,

E[Y |X = x] =

∫
c1,c2,y

y ·P[C1 = c1,C2 = c2,Y = y|X = x]. (2)

As stated above, to determine the causal effect of X on Y , one
has to determine the expected value of Y given that one set X

to some arbitrary value x, i.e., the post-intervention expected
value E[Y |do(X = x)]. By setting X to some arbitrary value
x, all dependencies of X on other variables are eliminated.
Within the framework of SCMs, this corresponds to remov-
ing all edges in the causal graph pointing to X and modifying
the structural equation for X accordingly. For example, when
studying the causal effect of X on Y in Fig. 1a, the modified
system is described by the causal graph in Fig. 1b with the
associated structural equations

C1 = fC1(UC1), X = x, C2 = fC2(X,UC2),

Y = fY (C1,C2,UY ). (3)

Again, the random variables UC1 ,UC2 ,UY give rise to a
probability distribution P(C1,C2,Y |do(X = x)), referred to
as the post-intervention probability distribution, and the cor-
responding post-intervention expected value E[Y |do(X =

x)]. This expected value is used to determine the causal ef-
fect of X on Y and differs from the expected value for the
original system, E[Y |X = x]. For instance, in the example
from Fig. 1, knowing X allows us to draw conclusions about
Y both in the original system (Fig. 1a) and in the modified
system (Fig. 1b), because X has a causal effect on Y (via its
impact on C2). However, in the original system, knowing X

allows us to draw additional conclusions about C1. This is
the case although the edge in the causal graph points from
C1 to X; i.e., C1 affects X, not vice versa. For example, if
X was simply the sum of C1 and the random term UX, a
high value of X would probably imply a high value of C1.
These conclusions about C1 cannot be drawn in the modi-
fied system, where the edge from C1 to X is removed. The
knowledge about C1 allows us to draw further conclusions
about Y because C1 also affects Y . Summarizing, due to the
confounding influence of C1, knowing X reveals more about
Y in the original system than in the modified system, which
is why the original expected value E[Y |X = x] and the post-
intervention expected value E[Y |do(X = x)] differ.

If we could observe the modified system, i.e., if we
could experimentally set variable X to arbitrary values x,
we could approximate the post-intervention expected value
E[Y |do(X = x)] by training a suitable (see Sect. 2.2.1) sta-
tistical model on the observed tuples (x,y) to predict Y given
X. However, in the cases considered in the proposed method-
ology, it is impossible or undesirable to experimentally set X

to x. Thus, we can only observe the original system and ap-
proximate the original expected value E[Y |X = x] by analo-
gously training a statistical model on observed tuples (x,y)
of the original system. Consequently, we have to bridge the
gap between the original expected value E[Y |X = x] and the
post-intervention expected value E[Y |do(X = x)].

2.1.2 Adjustment criteria

To bridge the gap between the original expected value
E[Y |X = x] and the post-intervention expected value
E[Y |do(X = x)], we must take into account variables other
than X and Y . Indeed, in the example from Fig. 1, we showed
that original and post-intervention expected values differ be-
cause, in the original system, knowing X allows inferences
about C1 that are not possible in the modified system. How-
ever, if we actually knew C1, this would not be the case;
thus, the original expected value E[Y |X = x,C1 = c1] and
the post-intervention expected value E[Y |do(X = x),C1 =

c1] are identical. Analogously to E[Y |X = x], the expected
value E[Y |X = x,C1 = c1] can be approximated by observ-
ing the original system and training a statistical model on
the observed tuples (x,y,c1) to predict Y given X and
C1. Therefore, this equality allows us to approximate the
post-intervention expected value E[Y |do(X = x),C1 = c1]

by only observing the original system and without experi-
mentally setting X to x.
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In the proposed methodology, we exploit the fact that the
equality

E[Y |X = x, {C` = c`}
k
`=1]

= E[Y |do(X = x), {C` = c`}
k
`=1] (4)

holds for any causal graph, thus allowing us to determine
the post-intervention expected value E[Y |do(X = x), {C` =

c`}
k
`=1] from observations alone, if the additional variables

C` ∈ Rd` ,`= 1, . . .,k, fulfill the following adjustment crite-
ria (Shpitser et al., 2010):

1. the variables {C`}
k
`=1 block all non-causal paths from

X to Y in the original causal graph;

2. no {C`}
k
`=1 lies on a causal path from X to Y .

Here, a path is any consecutive sequence of edges. A path
between X and Y is causal from X to Y if all edges point
towards Y , and it is non-causal otherwise. A path is blocked
by a set S = {C`}

k
`=1 of nodes if either (i) the path contains

at least one edge-emitting node, i.e., a node with at least one
adjacent edge pointing away from the node (. . .↔ C→ . . .),
that is in S (e.g., the path X← C1→ Y in Fig. 1 is blocked
by S if S contains C1), or (ii) the path contains at least one
collision node, i.e., a node with both adjacent edges point-
ing towards the node (. . .→ C← . . .), which is outside S
and has no descendants in S (e.g., the path X→ C← Y is
blocked if S does not contain C).

The first adjustment criterion generalizes the example of
C1 in Fig. 1, where adjusting for the edge-emitting node C1,
i.e., considering E[Y |X = x,C1 = c1] rather than E[Y |X =
x], blocks the non-causal path X← C1→ Y such that X is
only used to draw conclusions about Y via the causal path
X→ C2→ Y . In general, the criterion ensures that X is
only used to draw conclusions about Y via causal paths from
X to Y and not via any non-causal path between X and Y .

The second adjustment criterion ensures that no causal
path from X to Y is blocked, such that the post-intervention
expected value E[Y |do(X = x), {C` = c`}

k
`=1] actually re-

flects the causal effect of X on Y . For example, considering
the causal path X→ C2→ Y in Fig. 1, C2 blocks the only
causal path between X and Y . Thus, E[Y |do(X = x),C2 =

c2] = E[Y |C2 = c2] would indicate that there is no causal
effect of X on Y .

Summarizing this section, we can approximate the post-
intervention expected value E[Y |do(X = x), {C` = c`}

k
`=1]

from observations alone, if we can describe the considered
system by a causal graph and find variables C` ∈ Rd` ,`=
1, . . .,k, that fulfill the above adjustment criteria. Describ-
ing the system by a causal graph requires knowledge on
which variables are relevant to the considered relation (rep-
resented by the nodes in the graph) and on the existence of
causal dependencies between these variables (represented by
the edges in the graph). Nevertheless, it does not require
knowledge on the sign or strength of these dependencies,

i.e., on the structural equations. Note that the parents of X

in the causal graph always fulfill the adjustment criteria. In
the proposed methodology, we exploit the post-intervention
expected value E[Y |do(X = x), {C` = c`}

k
`=1] to determine

the causal effect of X on Y as detailed in Sect. 2.2.2.

2.2 Steps of the methodology

The proposed methodology is as follows: given a complex re-
lation between two variables X ∈ Rd and Y ∈ Rn, for exam-
ple, soil-moisture–precipitation coupling, we train a causal
deep learning (DL) model to predict Y given X and ad-
ditional input variables C` ∈ Rd` ,`= 1, . . .,k. In a second
step, we perform a sensitivity analysis of the trained model
to analyze how Y would change if we changed X, i.e., to
determine the causal effect of X on Y .

2.2.1 Training a causal DL model

DL models (LeCun et al., 2015; Reichstein et al., 2019) learn
statistical associations between their input and target vari-
ables. By training a causal DL model, we mean that we train a
DL model that approximates for each input tuple (x, {c`}k`=1)

the post-intervention expected value E[Y |do(X = x), {C` =

c`}
k
`=1], i.e., the model approximates the map

(x, {c`}
k
`=1)→ E[Y |do(X = x), {C` = c`}

k
`=1]. (5)

To obtain a causal DL model, the loss function, model ar-
chitecture and additional input variables {C`}

k
`=1 have to be

chosen carefully. In particular, we choose a loss function that
is minimized by the original expected value of Y given X

and the other input variables, i.e., by the map

(x, {c`}
k
`=1)→ E[Y |X = x, {C` = c`}

k
`=1]. (6)

An example for such a loss function is the expected mean
squared error,

(m : (X, {C`}
k
`=1)→ Rn)→ E[(Y −m(x, {c`}

k
`=1))

2
], (7)

which maps a function m : (X, {C`}
k
`=1)→ Rn, represent-

ing the predictions of the DL model, to its expected mean
squared error (Miller et al., 1993). Furthermore, in terms
of model architecture, we choose a differentiable DL model
(e.g., a neural network) that can represent the potentially
complicated function from Eq. (6). Finally, we choose addi-
tional input variables {C`}

k
`=1 that fulfill the adjustment cri-

teria from Sect. 2.1.2, such that the maps from Eqs. (5) and
(6) become identical. The choice of additional input variables
requires prior knowledge on which variables are relevant for
the considered relation and on the existence of causal depen-
dencies between these variables. However, it does not require
prior knowledge on the strength, sign, or functional form of
these dependencies (see Sect. 2.1.2), which can be obtained
from the proposed methodology.
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2.2.2 Sensitivity analysis of the trained model

To determine the causal effect of X ∈ Rd on Y ∈ Rn, we con-
sider partial derivatives of the map from Eq. (5), i.e.,

sij (x, {c`}
k
`=1)=

∂E[Y i |do(X = x), {C` = c`}
k
`=1]

∂Xj

, (8)

where i ∈ {1, . . .,n}, j ∈ {1, . . .,d}. These partial derivatives
indicate how Y i is expected to change if we experimentally
varied the value of Xj by a small amount for given values
X = x, {C` = c`}

k
`=1. We approximate these derivatives by

the corresponding partial derivatives of the DL model, i.e., by
the derivative of the predicted Y i with respect to the input
Xj , denoted qij (x, {c`}k`=1).

The target quantity in the proposed methodology is
the expected value of sij (x, {c`}k`=1) with respect to the
probability distribution of X and {C` = c`}

k
`=1, i.e., sij =

Ex,{c`}
k
`=1
[sij (x, {c`}

k
`=1)]. This quantity, which we refer to

as the causal effect of X on Y , indicates how Y i is expected
to change if we experimentally varied the value of Xj by
a small amount. To approximate this quantity, we average
the partial derivatives qij (x, {c`}k`=1) of the DL model over
a large number of observed tuples (x, {c`}k`=1). For instance,
when studying soil-moisture–precipitation coupling, we av-
erage qij (x, {c`}k`=1) over the T samples from the test set;
i.e., we consider

qij =
1
T

∑
(x,{c`}

k
`=1)∈test set

qij (x, {c`}
k
`=1). (9)

Note that one might also combine partial derivatives for dif-
ferent tuples (i,j), for example, to analyze the impact of
a change in Xj on the sum

∑n
i=1Y i . When studying soil-

moisture–precipitation coupling, we combine different par-
tial derivatives to study the local and regional impact of soil
moisture changes on precipitation (see Sect. 3.4).

In theory, the proposed methodology identifies the causal
effect of X on Y exactly. In practice, however, we make two
important approximations. First, due to the complexity of the
Earth system, the additional input variables {C`}

k
`=1 may not

strictly fulfill the adjustment criteria from Sect. 2.1.2, such
that the map from Eq. (6) is only approximately identical to
the map from Eq. (5). Second, the DL model only approx-
imates the map from Eq. (6). Thus, the partial derivatives
qij (x, {c`}

k
`=1) of the DL model only approximate the partial

derivatives sij (x, {c`}k`=1) that we are interested in. We will
come back to this in Sects. 3.3 and 4.

3 Application to soil-moisture–precipitation coupling

As an illustrative example, we apply the proposed method-
ology to study soil-moisture–precipitation coupling, i.e., the
question how precipitation changes if soil moisture is

changed. Although it is well known that soil moisture af-
fects precipitation (Seneviratne et al., 2010; Santanello et al.,
2018), it remains unclear whether an increase in soil mois-
ture results in an increase or decrease in precipitation. This
is due to several concurring pathways of soil-moisture–
precipitation coupling (see Fig. 2). Improving our under-
standing of soil-moisture–precipitation coupling is important
to improve precipitation predictions with numerical models.

We apply the proposed methodology to study soil-
moisture–precipitation coupling across Europe at a short
timescale of 3 to 4 h. Namely, we train a causal DL model to
predict precipitation P [t + 4h] ∈ R80×140 at 80× 140 target
pixels across Europe, given soil moisture SM[t] ∈ R120×180

and further input variables C`[t] ∈ R120×180, e.g., antecedent
precipitation, that approximately fulfill the adjustment crite-
ria from Sect. 2.1.2, at 120×180 input pixels (see Fig. 3). In
a second step, we perform a sensitivity analysis of the trained
model to analyze how the precipitation predictions change if
the soil moisture input variable is changed. Note that the in-
put region is larger than the target region because P [t + 4 h]
depends on input variables in a surrounding region.

3.1 Data

The data underlying our example are ERA5 hourly data
(Hersbach et al., 2023) constituting an atmospheric re-
analysis of the past decades (1950 to today) provided by
the European Centre for Medium-Range Weather Forecasts
(ECMWF). Reanalysis means simulation data and observa-
tions have been merged into a single description of the global
climate and weather using data assimilation technologies.
ERA5 data contain hourly estimates for a large number of
atmospheric, ocean-wave and land-surface quantities on a
regular latitude–longitude grid of 0.25◦ (≈ 30 km). In this
study, soil moisture refers to the ERA5 variable “volumet-
ric soil water in the upper soil layer (0–7 cm)”. The target
variable, precipitation P [t+4h], represents an accumulation
of precipitation over the time interval [t+3 h, t+4 h]. In our
analyses, we consider ERA5 data from 1979 to 2019 across
Europe. Because soil-moisture–precipitation coupling in Eu-
rope is strongest during the summer months, we only con-
sider the months June, July and August. Further, we restrict
our analyses to daytime processes considering precipitation
predictions, P [t + 4 h], for times t + 4h between noon and
23:00 UTC.

3.2 Loss function, model architecture and training

As described in Sect. 2.2.1, the loss function should be mini-
mized by the expected value of precipitation P [t+4h], given
soil moisture SM[t] and the other input variables C`[t],
i.e., by the function (see Eq. 6)

(SM[t], {C`[t]}
k
`=1)→ E[P [t + 4h]|SM[t], {C`[t]}

k
`=1]. (10)
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Figure 2. Concurring pathways of soil-moisture–precipitation coupling. An increase in soil moisture can increase latent heat flux and decrease
sensible heat flux at the land surface (Seneviratne et al., 2010). This can increase precipitation via an increase in atmospheric water content
(a; Eltahir, 1998). At the same time, it can increase or decrease precipitation via boundary layer dynamics (b; Findell and Eltahir, 2003a, b;
Gentine et al., 2013) or via effects of spatial heterogeneity in latent and sensible heat fluxes on mesoscale circulations (c; Eltahir, 1998; Adler
et al., 2011; Taylor et al., 2011; Taylor, 2015).

Figure 3. Input and target regions in the example of soil-moisture–
precipitation coupling. The colored region represents the 120×180
pixel input region and the red box the 80× 140 pixel target region.
Note that the offset between input and target region is 20 pixels on
each side and distorted by the projection.

This holds true for the expected mean squared error from
Eq. (7). Given N training time steps ti , associated values
(SM[ti], {C`[ti]}

k
`=1,P [ti + 4h])Ni=1 and model predictions

m(SM[ti], {C`[ti]}
k
`=1)

N
i=1, the expected mean squared error

is approximated by the sum

1
N

N∑
i=1

mean((P [ti + 4h]−m(SM[ti], {C`[ti]}
k
`=1))

2). (11)

Here, the mean operator denotes the mean over the 80× 140
target pixels across Europe.

The employed DL model should be able to represent the
presumably highly non-linear function from Eq. (10). We
choose a convolutional neural network (CNN; LeCun et al.,
2015) whose architecture is inspired by the U-Net architec-
ture (see Fig. 4; Ronneberger et al., 2015). Two concepts
are important in applying CNNs in representing the function
from Eq. (10). The first is the concept of receptive fields.
Namely, the prediction of the model at some target location
is fully determined by the input variables in a surrounding
region, the so-called receptive field. In our case, the size of
the receptive field is ≤ 52× 52 pixels; i.e., the precipitation
prediction at a target location is fully determined by the input
variables in a ≤ 52× 52 pixel surrounding region.

The second concept is that of translation invariance. Trans-
lation invariance means that the function f̂ , which maps the
input variables in the receptive field to a prediction, is identi-
cal for all target locations. In our case, due to the arithmetic
details of the considered model architecture (Dumoulin and
Visin, 2016), the DL model is block translation invariant;
i.e., the prediction at a target location (i,j) is not determined
by a single function f̂ for all target locations but by one of
4× 4 fixed functions f̂nk,n,k = 1, . . .,4, depending on the
values imod4 and jmod4.

Both concepts, receptive field and translation invariance,
are important features of CNNs, because they counteract
overfitting, i.e., making (nearly) perfect predictions on the
training data but not generalizing to unseen data. How-
ever, both concepts constitute constraints that may prevent
CNNs from representing the function from Eq. (10). In-
deed, the translation invariance requires including additional
input variables {C`}k`=1 that lead to spatial variability in
soil-moisture–precipitation coupling. We will discuss this in
Sect. 3.3. Note that we can mostly ignore the general con-
straint of receptive fields, because the lead time of the pre-
dictions is only 4 h and the receptive field is large enough
to take into account all relations between soil moisture and
precipitation at that timescale.
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Figure 4. Model architecture in the example of soil-moisture–precipitation coupling. The leftmost blue box represents the input to the
model, which consists of 12 variables (including soil moisture) at the 120× 180 input pixels (see Fig. 3). This input is passed through
multiple sequential modules represented by the arrows. Each module performs simple mathematical operations on its respective inputs and
produces an output that is fed to the next module. This output is represented by the next blue box and, in general, differs in shape from the
input, as indicated by the grey upright and rotated numbers. For details on the mathematical operations we refer to Ronneberger et al. (2015).
The rightmost blue box represents the output of the model, which consists of the precipitation prediction at the 80× 140 target pixels. The
combination of multiple simple modules allows the model to represent complex functions.

Before training the model, we split our data into training,
validation and test sets. Due to potential correlations between
subsequent time steps, an entirely random split would lead to
high correlations between samples in training, validation and
test sets. To achieve independence between samples belong-
ing to different sets, we randomly choose all samples from
the years 2010 and 2016 for validation, all samples from the
years 2012 and 2018 for testing, and all samples from the re-
maining 37 years for training. The test set is not used during
the entire training and tuning process of the model.

During training, the Adam optimizer (Kingma and Ba,
2017) is used to adapt the approximately 2.3 million, ran-
domly initialized weights of the model to minimize the mean
squared error on the training set. In terms of implementa-
tion, we use the PyTorch (Paszke et al., 2019) wrapper sko-
rch (Tietz et al., 2017) with default parameters for training
the model: set the maximum number of epochs to 200, the
learning rate in the Adam optimizer to 1× 10−3, the batch
size to 64, and patience for early stopping (i.e., the number
of epochs after which training stops if the loss function eval-
uated on the validation set does not improve by some thresh-
old) to 30 epochs. During training, we further use data aug-
mentation. Namely, we randomly rotate by 180◦ (or not) and
subsequently horizontally flip (or not) the considered region
for each training sample and each training epoch indepen-
dently. Similar to the translation invariance of the model, this
requires including input variables which lead to spatial vari-
ability in soil-moisture–precipitation coupling as discussed
in the next section.

3.3 Choice of input variables

The choice of additional input variables {C`}
k
`=1 repre-

sents a crucial aspect of the proposed methodology for
two reasons (see Sect. 2.2.2). First, we need the addi-
tional input variables to (approximately) fulfill the ad-
justment criteria from Sect. 2.1.2, such that the map-
ping of input variables (SM[t], {C`[t]}

k
`=1) to E[P [t +

4 h]|SM[t], {C`[t]}
k
`=1] (see Eq. 10) is a good approxima-

tion of the map

(SM[t], {C`[t]}
k
`=1)→ E[P [t + 4h]|do(SM[t]), {C`[t]}

k
`=1]. (12)

Second, the choice of additional input variables affects how
accurately the CNN approximates the map from Eq. (10)
and finally the partial derivatives of this map with respect
to SM[t] values that are computed in the sensitivity analysis
(see Sect. 3.4).

Choosing additional input variables that fulfill the adjust-
ment criteria is usually based on a causal graph of the con-
sidered system. However, a generally applicable causal graph
of the Earth system does not exist. Thus, we make use of the
fact that causal parents of SM[t] always fulfill the adjust-
ment criteria; i.e., we look for a set of Earth system variables
that is sufficient to determine SM[t]while not being affected
by SM[t]. Given the temporal resolution of the ERA5 data
and the timescale of our analysis, a reasonable example is the
set of variables in the second column in Fig. 5.

If we included all of these variables, the adjustment cri-
teria would be met and the map from Eq. (10) would be
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Figure 5. Causal graph in the example of soil-moisture–
precipitation coupling. The dark grey nodes represent the chosen in-
put variables, while light grey nodes represent variables that are ig-
nored in our analysis (see text). Land properties comprise the time-
independent variables topography, land–sea mask, and fractions of
high and low vegetation cover. The state of the atmosphere at time
t is represented by temperature and dew point temperature at 2 m
height at time t , as well as wind at 100 m height at time t . In addi-
tion to these variables, we included short- and long-wave radiation
at the land surface at time t . Note that the depicted causal graph only
includes nodes and edges that are relevant for the adjustment criteria
from Sect. 2.1.2 (e.g., no edge from “other variables” to P [t−1h, t],
and no nodes on the causal path from SM[t] to P [t + 3h, t + 4h],
such as evaporation [t, t + 3h]).

identical to that from Eq. (12). Nevertheless, obtaining a
good approximation of the map from Eq. (10) with our
DL model would be difficult due to the strong correlation
between SM[t − 1 h] and SM[t]. Furthermore, the strong
correlation between evaporation [t − 1h, t] and evaporation
[t, t + 3h] may prevent us from identifying any causal ef-
fect of SM[t] on P [t + 4 h], because evaporation [t, t +
3h] is a direct descendant of SM[t] on every causal path
from SM[t] to P [t + 4 h] (see motivation of the second
adjustment criterion in Sect. 2.1.2). Therefore, we decided
to exclude SM[t − 1 h] and evaporation [t − 1 h, t]. Never-
theless, this leads to unblocked non-causal paths between
SM[t] and P [t + 4h] via these variables (e.g., SM[t] ←

SM[t −1h] → state of the atmosphere[t] → P [t +4h]). To
block these paths, we include additional input variables that
represent the state of the atmosphere at time t .

Approximating the map from Eq. (10) and its partial
derivatives with respect to SM[t] gets more difficult with
increasing number of input variables. This is because addi-
tional input variables increase the complexity of this map
and the general risk of overfitting. Therefore, and because
SM[t−1h] and evaporation [t, t−1 h] presumably affect the
lower atmosphere more strongly than the higher atmosphere,

we focus on variables representing the state of the lower at-
mosphere in this example.

The above considerations are valid for any model architec-
ture and training procedure. In our example, we further must
take into account the translation invariance of the considered
DL model and the rotation and flipping of the region used for
data augmentation during the training procedure. A seem-
ingly valid option is to include latitude–longitude informa-
tion as additional input variables. However, if we did so, the
DL model would have to learn a different mapping for each
location (i,j), and data augmentation in the form of flipping
and rotation of the region would not be useful. Instead, we
include short- and long-wave radiation at the land surface
[t]. Thus, the above requirement is approximately fulfilled,
and the model does not have to learn a different mapping for
each location, which presumably leads to it learning a better
approximation of the map from Eq. (10).

The choice of input variables is where we insert prior
knowledge in the proposed methodology (see Sect. 2.2.1).
There is no unique choice of input variables, but several sub-
jective decisions that have to be made. For example, above
we could have started from a different set of causal par-
ents, e.g., going not one but several hours into the past from
time t , but at least theoretically that makes no difference (see
Sect. 4). Starting from a set of causal parents and replac-
ing variables strongly correlated with X, as described above,
seems to be a valid strategy for the choice of input variables,
which is applicable to many relations in the Earth system be-
sides soil-moisture–precipitation coupling. It is in line with
the fact that causal parents always fulfill the adjustment crite-
ria and with the general finding from causality research that
input variables strongly correlated with X reduce the effi-
ciency of statistical estimators of causal effects (Witte et al.,
2020). The causal graph clearly conveys to other scientists
the assumptions underlying a specific application of the pro-
posed methodology.

3.4 Sensitivity analysis

Given our trained DL model, we consider different combi-
nations of partial derivatives of the model to study the local
and regional effects of soil moisture changes on precipitation
(see Sect. 2.2.2). We define the causal effect of a soil mois-
ture change at a pixel (i,j) on precipitation at the very same
pixel as the local effect or local soil-moisture–precipitation
coupling. Accordingly, we consider for each pixel (i,j) in
the target region the partial derivative

q loc
ij =

∂pij (SM, {C`}
k
`=1)

∂SM ij

, (13)

where pij denotes the precipitation prediction of the DL
model for pixel (i,j), and SM and {C`}

k
`=1 are the input

variables to the model. We average these derivatives over all
input samples (SM, {C`}

k
`=1) from the test set denoted by

q loc
ij .
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Next to the local soil-moisture–precipitation coupling,
we define the regional effect or regional soil-moisture–
precipitation coupling as the causal effect of a soil moisture
change at a pixel (i,j) on precipitation in the entire target
region. Accordingly, we consider for each pixel (i,j) in the
target region the sum of partial derivatives

q
reg
ij =

80∑
î=1

140∑
ĵ=1

∂p
î ĵ
(SM, {C`}

k
`=1)

∂SM ij

. (14)

Note that most of the derivatives in the sum are zero, be-
cause, e.g., a change in soil moisture in Great Britain at time
t does not affect precipitation in Italy 4 h later. Outside of
a 52× 52 pixel surrounding region, this is enforced by the
architecture of the DL model (see Sect. 3.2), and inside of
this region, it is learned during training of the model. As for
local soil-moisture–precipitation coupling, qreg

ij denotes the
average of qreg

ij over all input samples from the test set.
To obtain robust results, we computed local and regional

couplings for 10 instances of the DL model that were trained
from different random weight initializations. Next, we av-
eraged the obtained couplings (q loc

ij and qreg
ij ) over the 10

instances. The results are shown in Fig. 6. Notably, the differ-
ence in sign between positive local and negative regional im-
pact demonstrates the importance of taking into account non-
local effects of soil-moisture–precipitation coupling, which
are neglected by many other approaches. Moreover, Fig. 6
indicates particularly strong local and regional couplings in
mountainous regions and ridges. We will further discuss the
correctness of these results in Sect. 4.

3.5 Comparison to other approaches

A common approach for studying relations in the Earth sys-
tem is to consider the linear correlation between variables
(Froidevaux et al., 2014; Welty and Zeng, 2018; Holgate
et al., 2019). Here, we compare our results on regional soil-
moisture–precipitation coupling to results obtained from a
linear correlation analysis. For each location in the consid-
ered target region, Fig. 7 shows the linear correlation coeffi-
cient of soil moisture SM[t] at that location and subsequent
precipitation P [t + 4 h] summed over the 15× 15 pixel sur-
rounding region. In contrast to our analysis of regional soil-
moisture–precipitation coupling, the linear correlation anal-
ysis assumes linearity of relations between local soil mois-
ture and regional precipitation and neglects the difference be-
tween causality and correlation. The obtained regional soil-
moisture–precipitation coupling in Fig. 7 then also differs in
sign and spatial pattern from the coupling in the right panel of
Fig. 6, stressing the importance of accounting for non-linear
effects and for the difference between causality and correla-
tion in the proposed methodology.

Another approach for studying soil-moisture–precipitation
coupling is to perform multiple numerical simulations that
differ only in initial soil moisture and to analyze the differ-

Figure 6. Local and regional soil-moisture–precipitation couplings.
(a) Impact of local soil moisture changes (m3 waterm−3 soil) on lo-
cal precipitation (mmh−1) for each pixel in the target region (in the
text denoted by qloc

ij ). (b) Impact of local soil moisture changes
on regional precipitation for each pixel in the target region (in the
text denoted by qreg

ij ). For better comparability of local and re-
gional values, the unit mmh−1 for precipitation refers to a single
pixel in both panels. Missing hatching indicates that the coupling
reflects more than random correlations between soil moisture and
precipitation in the training data, artifacts of the DL training pro-
cedure, seasonality, and the correlation between soil moisture and
topography (see Sect. 4.2). The green and yellow elevation contour
lines indicate 370 and 750 m, respectively.

Figure 7. Linear correlation coefficient of local soil moisture and
regional precipitation. For each location, the linear correlation co-
efficient of soil moisture SM[t] at the location and subsequent pre-
cipitation P [t + 4h] summed over the 15× 15 pixel surrounding
region of the location is shown.

ences in precipitation between these simulations (Imamovic
et al., 2017; Baur et al., 2018; Leutwyler et al., 2021). This
approach allows us to evaluate the effects of soil mois-
ture changes on precipitation within the employed numerical
model precisely. However, for some questions, it is computa-
tionally infeasible. For instance, in this work, we used ERA5
data to analyze the effects of soil moisture changes at each
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of 80× 140 target pixels on subsequent precipitation in the
target region. We averaged these effects over all time steps
in 2 test years, constituting 2208 time steps. Performing an
analogous study based on numerical simulations would re-
quire at least 80×140×2208= 24 729 600 4-hourly simula-
tions with the ECMWF Earth system model used to produce
the considered ERA5 data. Each simulation would be initial-
ized with the state of the reference simulation at one of the
2208 considered time steps, with the only difference being
that soil moisture would be slightly increased or decreased at
one of the 80×140 target pixels. This corresponds to simulat-
ing more than 10000 years with the ECMWF Earth system
model and is computationally infeasible. Furthermore, an ad-
vantage of the proposed methodology over approaches based
on numerical simulations is that it can directly be applied to
observational data, if suitable observational data are avail-
able. In this case, the proposed methodology does not rely
on any assumptions incorporated into numerical models.

4 Additional analyses to verify the results

To ensure that the proposed methodology provides reliable
results, this section presents some additional analyses. The-
oretically, the proposed methodology determines the causal
effect of X on Y exactly. However, in practice, we make
two important approximations (see Sect. 2.2.2). First, the ad-
ditional input variables {C`}

k
`=1 may not strictly fulfill the

adjustment criteria from Sect. 2.1.2, such that the mapping
of input variables to the original expected value E[Y |X =
x, {C` = c`}

k
`=1] in Eq. (6) is only approximately identi-

cal to the mapping to the post-intervention expected value
E[Y |do(X = x), {C` = c`}

k
`=1] in Eq. (5). Second, the DL

model represents only an approximation of the map from
Eq. (6). Both errors are difficult to quantify, because both
maps are unknown.

For example, the performance of the DL model on the
test set cannot indicate how well the DL model approxi-
mates the map from Eq. (6), because the loss value for this
map is not known. For instance, for a system described by
the causal graph X→ Y ← C and the structural equation
Y =X+ 1000 ·C (where X and C vary in similar ranges),
the adjustment criteria from Sect. 2.1.2 imply that it suffices
to consider X as the only input variable in the proposed
methodology. Nevertheless, even if the trained DL model
perfectly represented the map x→ E[Y |X = x], the associ-
ated loss value would be high as knowing X does not reveal
much about Y , which is mainly determined by C.

The results of the proposed methodology are the partial
derivatives qij of the DL model computed in the sensitivity
analysis. Due to the above approximations, these derivatives
are only approximations of the partial derivatives sij of the
map from Eq. (5), which represent the causal effect of X

on Y (see Sect. 2.2.2). However, even quantifying the two
approximation errors mentioned above would not give us a

good estimate of the errors in these results. In this section, we
propose several additional analyses to build confidence in re-
sults obtained with the proposed methodology. Particularly,
the proposed analyses show if results are statistically signif-
icant, i.e., reflect more than random correlations or artifacts
of the DL training procedure (Sect. 4.1), and if they reflect
more than specific (known) correlations (Sect. 4.2). More-
over, the analyses proposed in Sect. 4.3 allow us to identify
(potentially unknown) spurious correlations in the results. Fi-
nally, we propose some further sanity checks in Sect. 4.4.
We illustrate the analyses with our results on soil-moisture–
precipitation coupling from Sect. 3.

For reference only, we provide here the normalized mean
squared error on the test set (target variable normalized to a
mean of 0 and standard deviation of 1 on the training set)
for our application to soil-moisture–precipitation coupling:
it is 0.60 for the DL model. For a persistence prediction,
i.e., when predicting the input P [t] as target P [t+4h], which
is a simple baseline prediction, it is 1.54.

4.1 Statistical significance

To test whether results obtained with the proposed method-
ology are statistically significant, i.e., represent more than
random correlations between X and Y in the training data
and random artifacts of the procedure for training the DL
model, we propose the following procedure. First, randomly
permute X in the training data, thereby breaking all non-
random correlations between X and Y . For example, in the
application to soil-moisture–precipitation coupling, permute
soil moisture temporally and spatially. Next, train a separate
instance of the original DL model with a random initializa-
tion of model weights on the modified training data. Repeat
this procedure several times. If the original results deviate
significantly from the results obtained from this procedure,
they are statistically significant.

Formally, we propose to interpret a result r ∈ R of the
proposed methodology, e.g., local or regional soil-moisture–
precipitation coupling at some pixel (i,j) (see Sect. 3.4), as
a sample of a random variable r̂ :�→ R, where � is the
probability space

�= {Training data}× {Weight initialization of the DL model}. (15)

Thus, r̂ computes the considered result, e.g., local or regional
soil-moisture–precipitation coupling at pixel (i,j) according
to the proposed methodology, for any given sample ω ∈�.
We define the null hypothesis that r represents random cor-
relations between X and Y in the training data or random
artifacts of the procedure for training the DL model. To test
this hypothesis, we create m samples ω1

0, . . .,ω
m
0 of � by the

above-described procedure of permuting X and randomly
initializing the weights of separate instances of the consid-
ered DL model. Moreover, we compute the associated values
r i0 = r̂(ω

i
0), i = 1, . . .,m, representing samples of r̂ under the

null hypothesis.
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If the original value r differs from these samples, we can
reject the null hypothesis and conclude that r is statistically
significant. In particular, if m is large enough, we can reject
the null hypothesis at some significance level α (e.g., α =
5%), if the original value r lies outside the middle 100%−α
of the values r1

0 , . . ., r
m
0 , i.e., if

r 6∈ [percentile({r1
0 , . . ., r

m
0 },α/2),

percentile({r1
0 , . . ., r

m
0 },100 %−α/2)]. (16)

However, because we have to train m DL models for this
analysis, it may not be feasible to choose m large enough
to get reasonable approximations of these percentiles. In this
case, we propose computing the mean µ and standard devi-
ation σ of the values r1

0 , . . ., r
m
0 , assuming a normal distri-

bution of r̂ under the null hypothesis, and rejecting the null
hypothesis at significance level α if r is not in the middle
100%−α of the distribution N(µ,σ), i.e., if

r 6∈ [percentile(N(µ,σ),α/2),percentile(N(µ,σ),

100%−α/2)]. (17)

4.2 Known spurious correlations

As mentioned above, the proposed methodology identifies
the exact causal effect of X on Y in theory, but not neces-
sarily in practice, where results might reflect spurious cor-
relations. In this section, we propose two analyses to test
whether results obtained with the proposed methodology rep-
resent more than spurious correlations. The analyses apply
whenever the spurious correlations are known, and X can be
permuted such that the considered correlations are preserved
while other correlations between X and Y break. For exam-
ple, there exists a spurious correlation between SM[t] and
P [t + 4h] via topography, because topography affects both
SM[t] and P [t + 4h] (SM[t] ← topography→ P [t + 4 h];
see Sect. 2.1.1). Further, there might exist a spurious corre-
lation between SM[t] and P [t + 4 h] via seasonality, e.g., if
both soil moisture and precipitation were generally lower in
August than in June. Both correlations are preserved if we
permute soil moisture year-wise as illustrated in Fig. 8. All
other cases of spurious correlations are discussed in the next
section, in particular unknown spurious correlations.

The first proposed analysis is identical to the analysis de-
scribed in Sect. 4.1 except that X in the training data is not
permuted randomly but in such a way that the considered
spurious correlations are preserved. If the original results de-
viate significantly from the results obtained in this analysis,
they are statistically significant and do not only represent
the considered spurious correlations. In our example of soil-
moisture–precipitation coupling, we permuted SM[t] year-
wise as illustrated in Fig. 8 and trained m= 10 separate in-
stances of the DL model. The analysis indicates that our re-
sults on soil-moisture–precipitation coupling are statistically
significant and represent more than correlations between soil

moisture and topography or seasonality (missing hatching in
Fig. 6). Intriguingly, the regional coupling is statistically sig-
nificant (albeit weak) at most ocean locations, although one
would not expect the DL model to learn a systematic effect
of soil moisture variations on precipitation at these locations,
since soil moisture does not vary at these locations. Indeed,
we set soil moisture to 1 m3 water per cubic meter at all ocean
locations for all time steps, while it is smaller than 0.75 at
all non-ocean locations. We assume that the statistical sig-
nificance of the regional coupling at ocean locations is an
artifact of the DL model architecture, which favors general-
ization between locations, ocean and non-ocean.

The second proposed analysis evaluates whether the orig-
inal DL model learned useful information in terms of pre-
dictive performance on the relation between X and Y , apart
from the considered spurious correlations. In the analysis,
we train m separate instances of the original DL model on
the original training data. The m instances differ in the ran-
dom initialization of model weights (see Sect. 3.4). For each
model instance, we compute the value of the loss function on
the test set, obtaining m values l1, . . ., lm ∈ R. Next, for each
model instance separately, we randomly permute X in the
test data such that the considered spurious correlations are
preserved, and we compute the value of the loss function on
the modified test set, obtaining m values lperm

1 , . . ., l
perm
m ∈ R.

Finally, we use a permutation test (Hesterberg, 2014) to test if
the expected value of the loss function is smaller on the origi-
nal test set than on the modified test set. If this is the case, the
DL models learned something useful in terms of predictive
performance on the relation between X and Y , apart from
the considered spurious correlations. In our example of soil-
moisture–precipitation coupling, we trainedm= 10 separate
instances of the DL model. We considered the year-wise per-
mutation of soil moisture in the test data as described above.
In this case, the analysis indicates at a confidence level of
99 % that the model learned useful information in terms of
predictive performance on soil-moisture–precipitation cou-
pling, apart from the correlations between soil moisture and
topography or seasonality. However, for the validity of this
analysis, it may be limiting that there are only two test years
in this example and thus only one possible permutation of
years apart from the original one. Therefore, we repeated
the analysis and permuted soil moisture in the test data com-
pletely randomly in time. While this does not preserve cor-
relations between soil moisture and seasonality, it still pre-
serves the correlation between soil moisture and topography.
Furthermore, it ensures the validity of the analysis as there
are a lot of possible permutations. In this case, the analysis
indicates at a confidence level of 99 % that the model learned
useful information in terms of predictive performance on
soil-moisture–precipitation coupling, apart from the correla-
tion between soil moisture and topography. Note that even
if the first analysis indicates that some result reflects more
than the considered correlations, it cannot exclude that the
results are partly affected by the considered spurious corre-

https://doi.org/10.5194/gmd-16-2149-2023 Geosci. Model Dev., 16, 2149–2166, 2023



2160 T. Tesch et al.: Causal deep learning models for studying the Earth system

Figure 8. Modification of the training data for the year-wise permutation of SM[t]. The modification of the test data works analogously.

lations. Analogously, if the second analysis indicates that the
DL model learned useful information in terms of predictive
performance on the relation between X and Y , apart from
the considered spurious correlations, it cannot exclude that
the predictions are partly affected by the considered spurious
correlations.

4.3 Further spurious correlations

In the previous section, we analyzed specific spurious corre-
lations, i.e., spurious correlations that were known, and for
that X could be permuted such that the spurious correlations
are preserved, while other correlations between X and Y

break. As an additional analysis to identify any spurious cor-
relations reflected in obtained results, we propose a variant
approach. The concept of the approach is related to the ideas
in Tesch et al. (2021) and Peters et al. (2016). It consists of
training separate instances of the original DL model (referred
to as variant models) on modified prediction tasks (referred
to as variant tasks) for which it is assumed that causal rela-
tions between input and target variables either remain stable
or vary in specific ways. Subsequently, the results obtained
from original and variant models are compared, and it is eval-
uated whether they reflect the assumed stability or specific
variations, respectively, of causal relations. If not, the origi-
nal model or one of the variant models (or all models) learned
spurious correlations.

For example, we may assume that the general (causal)
mechanisms of soil-moisture–precipitation coupling do not
vary in time or space. Then, if the couplings in Fig. 6 reflect
the causal effect of soil moisture on precipitation, we should
obtain the same couplings from separate instances of the DL
model that are trained only on

– data from the first or second half of the training years;

– data from June, July or August; or

– the left or right half of the considered region.

On the other hand, if Fig. 6 reflected spurious correlations
and these spurious correlations differed for the different sub-
sets of training data listed above, we should obtain different
couplings from the different model instances.

Appendix Figs. A1 to A3 show the local and regional cou-
plings obtained from the different model instances trained on
the listed training subsets. As expected for the case in which
all instances learned the causal effect of soil moisture on pre-
cipitation, all couplings are very similar to the ones shown in
Fig. 6. Note, however, that this does not guarantee that they
show causal relations.

4.4 Task-specific sanity checks

To further assess the correctness and increase trust in results
obtained from the proposed methodology, we propose to per-
form further, task-specific sanity checks. For instance, in our
example of soil-moisture–precipitation coupling, precipita-
tion P can be partitioned into convective precipitation P con
(occurring at spatial scales smaller than the spatial resolu-
tion of the numerical model) and large-scale precipitation P ls
(occurring at larger spatial scales), such that P = P con+P ls.
Accordingly, soil-moisture–precipitation coupling, SM–P

coupling, can be decomposed into the sum of SM–P con cou-
pling and SM–P ls coupling. As a sanity check for the re-
sults in Fig. 6, we applied the proposed methodology to ob-
tain SM–P con coupling and SM–P ls coupling by replacing
P by P con and P ls, respectively, and compared the sum of
the obtained couplings with Fig. 6. Appendix Fig. A5 shows
the sum of local and regional SM–P con and SM–P ls cou-
plings, which are indeed very similar to the couplings shown
in Fig. 6.

Further, SM–P coupling can approximately be factorized
into instantaneous (local) soil-moisture–evaporation (SM–
E) coupling times evaporation–precipitation (E–P ) cou-
pling. As another sanity check for the results in Fig. 6, we ap-
plied the proposed methodology to obtain SM–E coupling
and E–P coupling by once replacing the target variable P by
E and the other time replacing the input variable SM by E.
Appendix Fig. A7 shows the product of local SM–E and lo-
cal and regional E–P couplings. The obtained couplings are
very similar to the couplings shown in Fig. 6, despite being
slightly weaker in general and far weaker in the high Alps.
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4.5 Control experiment

As a simple control experiment for the proposed methodol-
ogy and analyses, we replaced the target variable P [t + 4 h]
by random noise. As expected from the missing correlations
between SM[t] and random noise, the methodology identi-
fied no statistically significant (see Sect. 4.1) causal effect of
soil moisture on the target variable in this case.

Defining a more complex control experiment confirm-
ing the results obtained in the application to soil-moisture–
precipitation coupling is not possible. This is because the
maps in Eqs. (6) and (5), and thus the errors in their approxi-
mations, would differ if, for example, we replaced SM[t] by
a variable X that is highly correlated with P [t+4 h] but does
not causally affect P [t + 4 h]. However, we believe that the
analyses proposed in this section build high confidence in the
methodology and the results.

5 Conclusions

In this study, we proposed a novel methodology for studying
complex, e.g., non-linear and non-local, relations in the Earth
system. The methodology is based on the recent idea of train-
ing and analyzing a DL model to gain new scientific insights
into the relations between input and target variables. It ex-
tends this idea by combining it with concepts from causality
research. A crucial aspect in the proposed methodology is the
choice of additional input variables for the DL model. This
choice requires prior knowledge on which variables are rele-
vant to the considered relation and on the existence of depen-
dencies between these variables. However, it does not require
prior knowledge on the strength or sign of these dependen-
cies, which can be obtained from the proposed methodology.
When the required prior knowledge does not exist, meth-
ods from causal discovery (Guo et al., 2021) might be used
to identify a causal graph anyway, such that the proposed
methodology might still be applicable.

In addition to the methodology, we presented analyses to
assess whether results obtained with the proposed method-
ology are statistically significant, i.e., reflect more than ran-
dom correlations or artifacts of the DL training procedure;
whether they reflect more than specific (known) correlations;
and whether they actually reflect causal rather than (poten-
tially unknown) spurious correlations. Finally, we proposed
sanity checks for the obtained results. While the analyses
cannot guarantee the correctness of obtained results, we be-
lieve that the proposed analyses provide a solid indication
of the correctness of obtained results. Taking into account
the difference between causality and correlation, and over-
coming common assumptions on linearity and locality in sta-
tistical approaches, as well as high computational costs and
assumptions of numerical approaches, we believe that the
proposed methodology may yield new scientific insights into
various complex mechanisms in the Earth system.

As an illustrating example, we applied the methodol-
ogy and the proposed analyses to study soil-moisture–
precipitation coupling in ERA5 climate reanalysis data
across Europe. Our main findings are the difference in sign
between positive local and negative regional impact and par-
ticularly strong local and regional couplings in mountain-
ous regions and ridges. While we believe that these findings
may contribute to a better understanding of soil-moisture–
precipitation coupling, in this article, we focused on demon-
strating the methodology. An extension and discussion of our
results on soil-moisture–precipitation coupling in terms of
physical processes are the subject of a future study.

Appendix A

Figure A1. Local and regional soil-moisture–precipitation cou-
plings for models trained on the first and second half of the train-
ing years, respectively. (a, c) Local couplings. (b, d) Regional cou-
plings. (a, b) Model trained on the first half of all training years
(1979–1997). (c, d) Model trained on the second half of all training
years (1998–2019).
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Figure A2. Local and regional soil-moisture–precipitation cou-
plings for models trained only on data from June, July and August,
respectively. (a, c, e) Local couplings. (b, d, f) Regional couplings.
(a, b) Model trained on data from June. (c, d) Model trained on data
from July. (e, f) Model trained on data from August.

Figure A3. Local and regional soil-moisture–precipitation cou-
plings for models trained on the left and right half of the considered
region, respectively. (a, c) Local couplings. (b, d) Regional cou-
plings. (a, b) Model trained on the left half of the considered region.
(c, d) Model trained on the right half of the considered region (see
Appendix Fig. A4). Note that the models were trained only on the
left and right half, respectively, but the model architecture allows us
to compute local and regional couplings for the entire region.

Figure A4. Location variant tasks. The input region was divided
into a left and a right input region with corresponding target regions
(indicated by the red and blue boxes).
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Figure A5. Sum of local and regional soil-moisture–convective-
precipitation and soil-moisture–large-scale-precipitation couplings.
(a) Sum of local couplings. (b) Sum of regional couplings. See Ap-
pendix Fig. A6 for soil-moisture–convective-precipitation and soil-
moisture–large-scale-precipitation couplings.

Figure A6. Local and regional soil-moisture–convective-
precipitation and soil-moisture–large-scale-precipitation cou-
plings. (a, c) Local couplings. (b, d) Regional couplings. (a,
b) Soil-moisture–convective-precipitation coupling. (c, d) Soil-
moisture–large-scale-precipitation coupling.

Figure A7. Product of local soil-moisture–evaporation and lo-
cal and regional evaporation–precipitation couplings. (a) Prod-
uct of local soil-moisture–evaporation and local evaporation–
precipitation couplings. (b) Product of local soil-moisture–
evaporation and regional evaporation–precipitation couplings. See
Appendix Fig. A8 for local soil-moisture–evaporation and local and
regional evaporation–precipitation couplings.

Figure A8. Local soil-moisture–evaporation and local and regional
evaporation–precipitation couplings. (a) Local soil-moisture–
evaporation coupling. (b) Local evaporation–precipitation coupling.
(c) Regional evaporation–precipitation coupling.
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Keypoints
• We use causal deep learning models to study soil-moisture–precipitation coupling in reanalysis and

simulation data.

• We find a positive impact of local soil moisture changes on local precipitation and a negative impact

on non-local precipitation.

• The impact is particularly strong in and around mountainous regions and ridges.

Abstract
Soil moisture affects the temperature and humidity profiles of the atmosphere, thereby influencing the de-

velopment and onset of precipitation. However, it remains an open question if an increase in soil moisture

leads to an increase or decrease in precipitation. Here, we address this question by applying a recently pro-

posed statistical approach of causal deep learning models to ERA5 climate reanalysis data as well as data

from a convection-permitting simulation across Europe. In particular, the considered approach accounts for
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non-local effects of soil moisture changes on precipitation and the difference between causation and corre-

lation, both commonly being neglected in studies on soil-moisture–precipitation coupling. We find that local

increases in soil moisture lead to local increases in precipitation, while decreasing non-local precipitation.

In this diverging response, the non-local coupling strength exceeds the local coupling strength. Further, we

find soil-moisture–precipitation coupling to be strongest in and around mountainous regions.

Plain Language Summary
It is well-known that soil moisture affects precipitation, but it remains an open question how, i.e. if an in-

crease in soil moisture leads to more or less precipitation. A better understanding of the impact of soil

moisture on precipitation may improve weather and climate predictions. Here, we study the impact using a

recently proposed statistical approach of causal deep learning models. The approach overcomes several

common limitations of previous studies on soil-moisture–precipitation coupling. Considering different data

sets, we find that local increases in soil moisture lead to more precipitation locally, but less precipitation in

a neighborhood. Moreover, we find that mountains enhance the strength of these effects. A key finding

for future studies on soil-moisture–precipitation coupling is the importance of non-local effects, which have

mostly been neglected in previous studies.

1 Introduction
In order to improve process understanding, weather and climate predictions and ultimately enhance decision-

making capabilities that protect life and property, the study of soil-moisture–precipitation (SM–P) coupling,

i.e. the question how soil moisture (SM) affects precipitation, has been ongoing for several decades and

remains an active area of research (Liu et al., 2022; Santanello et al., 2018; Seneviratne et al., 2010). The

impact of SM on precipitation commences with the impact of SM on the land surface water and energy

balances. In these balances, the role of SM is twofold: on the one hand, an increase in SM can increase the

amount of available energy, because SM can decrease albedo and surface temperature and thereby reduce

outgoing short- and longwave radiation (Eltahir, 1998; Hauck et al., 2011; Schär et al., 1999). On the other

hand, an increase in SM can increase the fraction of available energy that is transformed into latent heat

flux and decrease the fraction that is transformed into sensible heat flux (Seneviratne et al., 2010).

Multiple pathways for SM–P coupling arise from these effects (see Figure 1). While an increase in latent

heat flux may lead to an increase in precipitation via an increase in atmospheric water content (Eltahir, 1998)

or via an increase in moist static energy within the boundary layer (Findell and Eltahir, 2003a,b; Gentine

et al., 2013), a higher sensible heat flux may lead to stronger thermals and growth of the atmospheric

boundary layer, which can induce convective activity and trigger precipitation (Findell and Eltahir, 2003a,b;

Gentine et al., 2013; Hohenegger et al., 2009). Lastly, spatial heterogeneity in sensible and latent heat

fluxes can cause spatial heterogeneity in the temperature and humidity profiles of the lower atmosphere,

which in turn can induce and affect mesoscale circulations and precipitation (Adler et al., 2011; Eltahir,

1998; Gentine et al., 2019; Taylor, 2015; Taylor et al., 2011). These different pathways of SM–P coupling
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Figure 1: Concurring effects of soil moisture increases on subsequent precipitation. Originally pub-
lished in (Tesch et al., 2023).

suggest that an increase in SM can lead to both an increase (positive coupling) and a decrease (negative

coupling) in precipitation. Furthermore, they suggest that the impact of an increase in SM on precipitation

amount may differ from the impact on precipitation probability, i.e. on whether or not a precipitation event of

arbitrary magnitude occurs at all (hereafter referred to by soil-moisture–precipitation-probability coupling).

The different pathways of SM–P coupling make the coupling extremely complex and arguably impossible to

determine from theoretical considerations alone.

Over the last decades, many studies have investigated SM–P coupling using different modelling and statisti-

cal approaches (Liu et al., 2022; Santanello et al., 2018; Seneviratne et al., 2010). By modelling approaches,

we refer to approaches that study SM–P coupling by performing multiple simulations with differing soil mois-

ture conditions, e.g. with different soil moisture initializations. In contrast, by statistical approaches, we

refer to analyses of observational data, reanalysis data and analyses of single simulations. From a causal-

ity perspective (Runge et al., 2019), modelling approaches correspond to experiments that intervene into

the system of interest and evaluate the effects of these interventions. Accordingly, statistical approaches

correspond to approaches that learn causal relations from purely observational data.

While most modelling studies based on standard, low-resolution Earth system models have indicated pos-

itive SM–P coupling (Seneviratne et al., 2010; Taylor et al., 2012), it has been shown that the coupling

is sensitive to the parameterization of convection in low-resolution modelling frameworks to an extent that

even the sign of the coupling may be reversed (Hohenegger et al., 2009; Leutwyler et al., 2021; Taylor et al.,

2013). While many uncertainties remain (Cioni and Hohenegger, 2017; Kendon et al., 2021), high-resolution

(convection-permitting (CP)) simulations have been found to agree better with observations (Hohenegger

et al., 2009; Leutwyler et al., 2021; Taylor et al., 2013). Several modelling studies based on CP simulations

have confirmed the complexity of SM–P coupling (Barthlott and Kalthoff, 2011; Baur et al., 2018; Cioni and

Hohenegger, 2017; Hauck et al., 2011; Henneberg et al., 2018; Hohenegger et al., 2009; Imamovic et al.,

2017; Leutwyler et al., 2021; Schneider et al., 2019), finding positive and negative coupling depending on

the considered region and synoptic situation. Nevertheless, in summary, these modelling studies indicate

that SM changes at large scales (in general over the entire simulation domain) on average have a positive

impact on the total amount of precipitation, while the impact of SM changes at smaller scales (in parts of

the domain) seems to be more involved. Further, they indicate that increases in SM on average have a

negative impact on the probability of precipitation events. Note however that computational constraints still
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limit the suite of feasible experiments that can be performed at CP resolution, e.g. (Leutwyler et al., 2021)

being the only study on SM–P coupling that uses CP simulations at continental scale and spanning several

years instead of smaller domains and/or considering case studies on daily time scales.

Statistical approaches for studying SM–P coupling have lower computational costs and can directly be

applied to observational data in many cases, circumventing uncertainties due to imperfect representations

of SM–P coupling in numerical models. Summarizing the results from several recent studies on SM–P

coupling based on statistical approaches (Aires et al., 2014; Findell et al., 2011; Ford et al., 2015, 2018;

Froidevaux et al., 2014; Graf et al., 2021; Guillod et al., 2014; Holgate et al., 2019; Li et al., 2020; Tuttle

and Salvucci, 2016; Welty and Zeng, 2018), they agree with the findings from modelling studies in that

an increase in SM tends to be associated with a (local) increase in precipitation. However, most of these

studies also indicate that an increase in SM increases the probability of precipitation events, which is in

contrast to the results from the modelling studies. Furthermore, a strong dependence of the coupling sign

on the considered data set (Ford et al., 2018; Guillod et al., 2014), the synoptic situation (Ford et al., 2018;

Froidevaux et al., 2014; Holgate et al., 2019; Welty and Zeng, 2018), and the considered region (e.g. Aires

et al., 2014; Tuttle and Salvucci, 2016) have been reported.

Here, we apply a recently proposed statistical approach for studying complex relations in the Earth system

(Tesch et al., 2023) to study SM–P coupling in 41 years of ERA5 climate reanalysis data (Hersbach et al.,

2018) across Europe and 15 years of data from a CP simulation across central Europe (Tesch et al., 2022a).

Using this approach, we study the impact of SM changes at small spatial scales (local SM changes) on both

local and non-local precipitation. Note that modelling approaches are not suitable to study the effects of a

large number of separate, local SM changes due to computational constraints. On the other hand, previous

statistical approaches for studying the effects of SM changes on precipitation have generally neglected non-

local effects although they have been shown to be important for overall SM–P coupling (Seneviratne et al.,

2010; Wei and Dirmeyer, 2019).

In addition to integrating non-local effects of SM changes, the considered statistical approach integrates

insights from causality research (Pearl, 2009) to estimate the causal effect of SM changes on precipitation,

rather than mere statistical associations. Previously, this has only been done in (Tuttle and Salvucci, 2016)

and the follow-up works (Li et al., 2020; Tuttle and Salvucci, 2017). In particular, our study differs from these

studies in that we consider non-local effects of SM on precipitation. Second, to quantify SM–P coupling, we

consider the average effect that a small change in SM would have on precipitation, while Tuttle and Salvucci

(2016) and follow-up works consider the average difference in precipitation (probability) between “wet” and

“dry” days. Third, we consider both SM–precipitation coupling and SM–precipitation-probability coupling,

while Tuttle and Salvucci (2016) and follow-up works focus on SM–precipitation-probability coupling. Lastly,

our approach differs in the input variables that are considered in the statistical model in order to prevent

confounding and obtain the actual causal effect of SM changes on precipitation. We formally justify our

choice of input variables within the framework of structural causal models (see section 2.2).
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2 Data and Method

2.1 Data

We apply the considered statistical approach to ERA5 hourly data (Hersbach et al., 2018), which is a

reanalysis of the past decades (1950 to today) provided by the European Centre for Medium-Range Weather

Forecasts (ECMWF). ERA5 data contains hourly estimates for a large number of atmospheric, ocean-wave

and land-surface quantities on a regular latitude-longitude grid of 0.25 degrees (≈ 30 km). In this study, we

consider ERA5 data from 1979 to 2019 across Europe (see region depicted in upper panels of Figure 3).

In addition, we apply the considered statistical approach to data from a convection-permitting (CP) simu-

lation across central Europe (see region depicted in lower panels of Figure 3; Tesch et al., 2022a). The

simulation was performed with the WRF model (the Weather Research and Forecasting modeling system,

Powers et al., 2017), version 3.8.1, using the Advanced Research dynamical core (Skamarock et al., 2008).

It was driven by the ERA-Interim reanalysis and covers the years 2000 to 2014, providing hourly estimates

of several Earth system variables on a rotated latitude-longitude grid of 0.0275 degrees (≈ 3 km). The

considered simulation is part of the first multi-model ensemble of regional climate simulations at kilometer-

scale resolution (Ban et al., 2021; Coppola et al., 2018; Pichelli et al., 2021). More information on the CP

simulation can be found in (Ban et al., 2021).

Because SM–P coupling in Europe seems to be strongest during the summer months (e.g. Schär et al.,

1999), we only consider data from the months June, July and August. Moreover, we restrict our analyses

to daytime processes, considering the effect of SM on precipitation occurring between 11 am and 11 pm

UTC. In this study, SM refers to the volumetric soil water in the upper soil layer, which has depths of 7 cm in

the ERA5 data and 10 cm in the CP data. Note that previous studies (e.g. Guillod et al., 2015) found SM–P

coupling to be insensitive to the considered depth.

2.2 Method

In this work, we study SM–P coupling using a recently proposed statistical approach of causal deep learning

models for studying complex relations in the Earth system (Tesch et al., 2023). In order to study SM–P

coupling, a causal deep learning (DL) model is trained to predict precipitation at each pixel in a target

region given SM (and additional input variables; see below) at each pixel in the corresponding input region.

A sensitivity analysis of the trained model is performed to analyze how precipitation changes when SM is

changed.

A DL model is called causal if it approximates the map (Tesch et al., 2023)

(SM[t], {Ci[t]}k
i=1) → E

[
P[t + 4 h]|do(SM[t]), {Ci[t]}k

i=1

]
, (1)

where SM[t] represents SM at time t at all input pixels, {Ci[t]}k
i=1 represent the additional input variables

(see below) at the same pixels, and P[t+4 h] represents the accumulated precipitation over the time interval

[t+3 h, t+4 h] at all target pixels. The expression do(SM[t]) distinguishes a causal DL model from a standard

DL model. It originates from the framework of structural causal models (Pearl, 2009) and represents an
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arbitrary intervention into the Earth system. Thus, the term on the right hand side of equation (1) is the

expected value of P[t + 4 h] given the variables {Ci[t]}k
i=1 and given that one intervened into the Earth

system and set SM at time t to some arbitrary value SM[t] (as one could do it in a modelling approach for

studying SM–P coupling). The key for obtaining such a causal DL model is a suitable choice of additional

input variables {Ci[t]}k
i=1 to prevent confounding (Tesch et al., 2023). Topography, for example, correlates

strongly with soil moisture and precipitation. By including topography as an additional input variable to the

DL model, we ensure that the DL model does not erroneously attribute the strong effects of topography on

precipitation to soil moisture. For both data sets, we perform two experiments with different choices of input

variables summarized in Figure 2. More details on the choice of input variables are given in (Tesch et al.,

2023, section 3.3). Further, Supplementary Text 1 contains details on the considered DL models and the

training procedure for these models.

In the sensitivity analysis, we do the following: before training the DL models, we partitioned the available

data into training, validation and test sets (see Supplementary Text 1). For each time step in the test set (all

time steps in the years 1986, 1994, 2002, 2010 and 2018 for the ERA5 data, and all time steps in the years

2005 and 2013 for the CP data) and each tuple (i, j) of two target pixels, we compute the partial derivative

of the DL model’s precipitation prediction at pixel j with respect to the SM input at pixel i. These derivatives

approximate the corresponding derivatives of the map from equation (1), i.e.

sij = ∂E
[
P[t + 4 h]j |do(SM[t]), {Cn[t]}k

n=1
]

∂SM[t]i
, (2)

which represent how precipitation at pixel j at time t + 4 h would change if we intervened into the Earth

system and slightly increased SM at pixel i at time t. We average these derivatives over all time steps in the

respective test set to obtain the average impact of a slight increase in SM at pixel i on subsequent precip-

itation at pixel j (hereafter referred to by sij). Further, in this study, we focus on two aggregations of these

derivatives. Namely, for each target pixel i, we consider sii, i.e. the impact of a slight increase in SM at pixel

i on subsequent precipitation at pixel i itself, referred to as local SM–P coupling, and
∑

j∈{target pixels} sij , i.e.

the impact of a slight increase in SM at pixel i on subsequent precipitation anywhere in the target region,

referred to as regional SM–P coupling. Note that due to the architecture of the considered DL models,

changes in the SM input at some pixel i can only affect the precipitation predictions of the models inside a

certain neighborhood (52 × 52 pixels for the ERA5 data and 116 × 116 pixels for the CP data), such that sij

is zero for all target pixels j outside this neighborhood (see Supplementary Text 1).

To assess the significance of the obtained couplings, we permute the training years such that each original

year yorig is mapped randomly to some other year yperm(yorig) (e.g. 1979 to 1985, 1980 to 2003, . . . , 1987

to 1980 and so on). Then, we modify the training data set by replacing the SM input field for each time

step t by the SM input field from a corresponding time step t′, where t′ is the time step corresponding to

the same time of the day and day of the year as t, but to the year yperm(yorig(t)) rather than to year yorig(t)
(illustrated in Supplementary Figure 4). Next, we train a new, randomly initialized instance of the DL model

on the modified training set (hereafter referred to as variant model). We repeat this procedure 10 times

and evaluate whether the mean squared error (MSE) on the original test set is significantly smaller for 10

randomly initialized instances of the DL model trained on the original training set (original models) than
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Other variables

Soil moisture[t-1 h]

Evaporation[t-1 h, t]

Precipitation[t-1 h, t]

Snow cover[t-1 h, t]

Land properties (topography, 
land cover, land-sea mask)

Soil properties

State of the 
atmosphere[t]

Soil moisture[t]

Precipitation
[t+3 h, t+4 h]

Figure 2: Causal graph summarizing our choice of additional input variables {Ci[t]}k
i=1. Figure

adapted from Tesch et al. (2023). Information on the interpretation of the causal graph and the choice
of input variables is given in (Tesch et al., 2023, section 2.1 and section 3.3, respectively). The dark grey
nodes in the graph represent the chosen input variables. For both data sets, we perform two experiments
with varying input variables, where both experiments mainly differ in the approximation of the state of the at-
mosphere at time t: in the first experiment, we represent this state only by near-surface variables, namely, by
near-surface temperature[t] and humidity[t], as well as 100 m U and V components of wind[t]. In the second
experiment, we additionally include surface pressure[t], vertically integrated atmospheric water content[t]
and water vapor content[t] as well as boundary layer height[t] to describe the state of the atmosphere. Fur-
ther, in all experiments, we include precipitation[t - 1 h, t] and topography as input variables. Snow cover
[t - 1 h, t] is included in all experiments except from the first experiment for the ERA5 data for compatibility
of this experiment with (Tesch et al., 2023). In both experiments using ERA5 data, we further include high
and low vegetation cover as well as land-sea mask, which were not available for the CP data. In addition to
these variables, we include short- and long-wave radiation at the land surface[t] in all experiments.
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for the 10 variant models. This analysis is related to Granger causality (Granger, 1969) and the analysis in

(Tuttle and Salvucci, 2016), where the performance of a model for predicting precipitation given several input

variables including SM is compared to the performance of a model with the same input variables but without

SM in order to determine whether SM “Granger-causes” precipitation. Using permuted rather than no SM

as input for the variant models as described above, our analysis also indicates whether the original models

learn information on SM–P coupling apart from noise, and the correlations between SM and topography or

seasonality (which are preserved by the described modification of the training set). In addition, we evaluate

at what pixels local and regional couplings obtained from the original models differ significantly from the

respective couplings obtained from the variant models. For more details on the significance analyses, we

refer to Supplementary Text 3.

3 Results and Discussion

In the first experiment for the ERA5 data, the performance of the original models is better than that of

the variant models with a confidence of 1. This means that the original models learned useful information

on SM–P coupling in terms of predictive performance apart from noise, and correlations between SM and

topography or seasonality (see section 2.2). The upper row in Figure 3 shows the local and regional SM–P

couplings obtained from these models. Missing hatching indicates where the couplings differ significantly

from the couplings obtained from the variant models, i.e. where they not only reflect noise or correlations

between SM and topography or seasonality. Most strikingly, we observe opposite signs of local and regional

couplings, indicating that an increase in local SM leads to a local increase but an even stronger, non-local

decrease in subsequent precipitation. Further, we observe that mountainous regions and ridges enhance

the magnitude of soil-moisture–precipitation coupling. Note that this is not due to enhanced precipitation

in these regions, as ensured by including topography as an input variable, and confirmed by the performed

significance analyses (see section 2.2). In the second experiment, where we use more input variables in

addition to SM to further reduce the impact of confounding variables on the obtained SM–P couplings (see

Figure 2), we find very similar local and regional couplings (see upper row in Supplementary Figure 6). The

main difference in the couplings obtained in the second experiment is that the regional coupling is strongest

in the vicinity of mountains rather than directly in the mountains (most prominently visible in the Alps).

In the first experiment for the CP data, the performance of the original models is better than that of the

variant models with a confidence of 0.9. The obtained local and regional SM–P couplings (see bottom

row in Figure 3) are qualitatively similar to the ones obtained for the ERA5 data indicating positive local

and negative regional couplings, which are strongest in the vicinity of mountainous regions and ridges. In

contrast to the couplings obtained for the ERA5 data, at many pixels the couplings are not significant, i.e. do

not differ significantly from the couplings obtained for the variant models. Indeed, we believe that it is more

challenging for the DL model to learn SM–P coupling correctly for the high-resolution CP data than for the

ERA5 data, because the highly chaotic nature of convection in CP simulations may mask SM–P coupling

(Henneberg et al., 2018), and because less training years were available for the CP data than for the ERA5

data, while the considered DL model even had more parameters (see Supplementary Text 1).
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Figure 3: Local (left) and regional (right) SM–P couplings for ERA5 data (top) and CP data (bottom).
Local SM–P couplings describe the impact of local SM changes (m3 water · m−3 soil) on local precipitation
(mm h−1), while regional SM–P couplings describe the impact of local SM changes on regional precipitation
(see section 2.2). For better comparability of the strength of local and regional couplings, the unit mm h−1

refers to a single pixel in all panels. Missing hatching at a pixel indicates that the coupling at that pixel does
not only reflect noise or correlations between SM and topography or seasonality (see section 2.2). The blue
and red boxes represent the considered input and target regions, respectively (see section 2.2). The input
regions comprise 180 × 120 pixels for the ERA5 data and 436 × 484 pixels for the CP data, respectively.
The target regions comprise 140 × 80 pixels for the ERA5 data and 348 × 396 pixels for the CP data,
respectively. The couplings are computed for all target pixels except from very few pixels that are subject
to boundary effects (see Supplementary Text 2). The green and yellow elevation contour lines indicate
370 m and 750 m, respectively. Supplementary Figure 1 shows the topography of the regions. This figure
shows the results obtained for the first experiment (see Figure 2). Similar results obtained for the second
experiment are shown in Supplementary Figure 6.



10 3 Results and Discussion

The overall positive local SM–P coupling found in this study is in line with most previous statistical and mod-

elling studies on SM–P coupling (e.g. Leutwyler et al., 2021; Li et al., 2020, see also Introduction), which

mostly found that precipitation increases in regions where SM is increased. To the best of our knowledge,

there are no statistical studies on the question how a local increase in SM affects subsequent non-local or

regional precipitation (i.e. positively or negatively) and the only modelling study based on CP simulations

that addresses this question at a similar spatial scale as our study is (Imamovic et al., 2017). The authors

simulated multiple times 5 days with typical European summer day conditions and an initially resting atmo-

sphere over an artificial 256 km × 256 km domain with a central, Gaussian-shaped mountain with varying

heights (0-500 m) and a radius of approximately 30 km. Between their simulations, they varied initial SM

heterogeneously at the central mountain from -30 % to +30 % in steps of 10 %, with respect to a reference

simulation with domain-wide homogeneous initial SM saturation of 60 % (typical European conditions). In

this setting, they found that local precipitation was reduced for a local increase in SM (negative coupling),

while non-local precipitation was less affected. This is in contrast to our findings on a positive local and a

negative non-local SM–P coupling, although it agrees with an overall (regional) negative SM–P coupling.

Note however, that Imamovic et al. (2017) considered a different time scale, and specific atmospheric, topo-

graphic, and initial SM conditions. Other modelling studies on SM–P coupling are not suitable to answer the

question how a local increase in SM affects regional precipitation at the spatial scales considered here, as

variations in initial SM are mostly performed across the entire simulation domain or in rather large subdo-

mains (Henneberg et al., 2018; Leutwyler et al., 2021). In the former cases, mostly positive SM–P coupling

was found, while in the latter cases, both positive and negative signs of local and regional SM–P couplings

were found.

Concerning the particularly strong local and regional couplings in the vicinity of mountainous regions and

ridges, our results agree with findings in (Leutwyler et al., 2021), who simulated 10 summer seasons in

continental Europe, each with realistic initial spring SM and with homogeneous perturbations of initial SM

saturations by ±25 %. With an overall positive SM–P coupling, they found the strongest coupling (i.e. the

largest differences in precipitation between the runs with high and low initial SM saturations) in the Alpine

region. Because differences in evaporation between wet and dry runs were small in the Alpine region, they

hypothesized that this is due to more humidity being advected to the Alpine region from neighboring regions

in the wet runs. An analysis performed in (Tesch et al., 2023) indicates another hypothesis as to why the

magnitude of SM–P coupling is enhanced in mountainous regions. Namely, it indicates that SM–evaporation

coupling in these regions is weak, but evaporation-precipitation coupling is particularly strong, the latter

potentially being caused by more (topographically induced) vertical air movement (topographic lift) in these

regions. Since SM–P coupling is the product of SM–evaporation coupling and evaporation-precipitation

coupling, a particularly strong evaporation-precipitation coupling could also explain the particularly strong

SM–precipitation coupling in the mountains. Using a statistical approach, Li et al. (2020) found a particularly

strong positive local impact of SM on next-day precipitation probability at the leeward slope of the Rocky

Mountains. They explained this by water vapor being blocked by the mountains leading to evaporation

(and eventually precipitation) being strongly controlled by SM rather than by the horizontal transport of

water vapor. In the top right panel of Figure 3, we might observe a similar effect in northern Italy. On

the other hand, our findings on particularly strong local and regional couplings in and around mountainous
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regions and ridges are in contrast with findings in (Imamovic et al., 2017). Namely, Imamovic et al. (2017)

performed the above described simulations with varying heights (0-500 m) of the central mountain and also

with homogeneous variations of initial SM, and found a weakening of SM–P coupling for higher mountains,

which they explain by mountain-valley circulations and associated convective events dominating over the

SM–P feedback for higher mountains.

When considering the impact of changes in SM on precipitation probability (by replacing the target variable

P[t + 4 h] in section 2.2 by P[t + 4 h] ≥ 1 mm), we found very similar patterns compared to Figure 3 (see

Supplementary Figure 7). In both cases, local coupling is positive and regional coupling negative, and all

couplings are strongest in or around mountainous regions and ridges. To some extent, this is surprising,

as different processes can be relevant for precipitation occurrence and magnitude. For example, in the

experiments described above, Leutwyler et al. (2021) found that a homogeneous increase in SM leads to

less convection events due to less thermal circulation, but, at the same time, to more intense events due to

larger values of convective available potential energy (CAPE).

4 Conclusion

While being important, previous studies on soil-moisture–precipitation coupling have mostly neglected non-

local effects of soil moisture changes on precipitation. Here, we applied a recently proposed, statistical

approach of causal deep learning models to study the effects of local soil moisture changes on subse-

quent local and non-local precipitation in ERA5 climate reanalysis data and in data from a high-resolution,

convection-permitting simulation. We found that increases in local soil moisture lead to increases in sub-

sequent local precipitation, but to decreases in non-local precipitation. The impact on non-local precipita-

tion exceeds the local impact, leading to an overall negative regional soil-moisture–precipitation coupling.

This stresses the importance of taking into account non-local effects in future studies on soil-moisture–

precipitation coupling. We found the magnitude of soil-moisture–precipitation coupling to be enhanced in

and around mountainous regions and ridges. Note that this is not due to enhanced precipitation in these

regions, as ensured by including topography as an input variable, and confirmed by the performed signif-

icance analyses (see section 2.2). We also found that the average impact of local soil moisture changes

on local and regional precipitation is qualitatively very similar to the average impact on local and regional

precipitation probability.

5 Open Research

In this work, we use publicly available ERA5 climate reanalysis data (Hersbach et al., 2018) as well as

publicly available data from a convection-permitting simulation (Tesch et al., 2022a). Software code to

reproduce this study is available on Zenodo under the MIT license (Tesch et al., 2022b).
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Introduction
In the following sections we present more details on the considered methodology, namely on

1. the considered DL models and training procedure,

2. computational details of the sensitivity analysis, and

3. the significance analyses.



2

Text S1 – DL Models and Training Procedure
Figure S2 shows the architecture of the considered DL models. As in (Tesch et al., 2023), we chose convo-

lutional neural networks (CNNs) whose architecture was inspired by the U-Net architecture (Ronneberger

et al., 2015). An important concept in the context of this architecture is that of receptive fields. Namely, the

prediction of the model at some target pixel is fully determined by the input variables in a certain neighbor-

hood, the so called receptive field. For the ERA5 data, the size of the receptive field is ≤ 52 × 52 pixels, i.e.

the precipitation prediction at a target pixel is fully determined by the input variables in a ≤ 52 × 52 pixels

neighborhood (see Text S2). For the CP data, a receptive field of ≤ 52 × 52 might not be large enough for

the model to take into account all relations between SM and precipitation at the considered time scale due

to the higher spatial resolution. Therefore, for the CP data, we increased the depth of the DL model (see

Figure S2), resulting in a receptive field of ≤ 116 × 116 pixels (see Text S2).

Concerning the training of the DL models, we followed the same procedure as described in (Tesch et al.,

2023). First, we split the data into training, validation and test sets. For the ERA5 data, the test set comprises

the years 1986, 1994, 2002, 2010 and 2018, the validation set comprises the years 1982, 1990, 1998, 2006

and 2014, and the training set comprises the remaining 31 years between 1979 and 2019. For the CP data,

the test set comprises the years 2005 and 2013, the validation set comprises the years 2001 and 2009 and

the training set comprises the remaining 11 years between 2000 and 2014. After partitioning the data into

training, validation and test sets, we used the Adam optimizer (Kingma and Ba, 2017) to adapt the randomly

initialized weights of the respective DL model to minimize the mean squared error (MSE) on the respective

training set. The validation set was used for early stopping (i.e. we stopped training if the MSE evaluated on

the validation set did not improve by some threshold for a certain number of epochs), while the test set was

held out during the entire training and previous tuning process of the model.

In terms of implementation, we used the Pytorch (Paszke et al., 2019) wrapper skorch (Tietz et al., 2017)

with default parameters for training the model, set the maximum number of epochs to 200, the learning rate

in the Adam optimizer to 1e − 3, the batch size to 64 and patience for early stopping to 20 epochs. During

training, we further used data augmentation as in (Tesch et al., 2023). Namely, we randomly rotated by 180◦

(or not) and subsequently horizontally flipped (or not) the considered region for each training sample and

each training epoch independently. Further, for the CP data, we randomly cropped the input region from

440 × 490 pixels to 436 × 484 pixels.

Text S2 – Sensitivity Analysis
Computing the partial derivatives in equation (2) from the main article is computationally expensive because

they have to be computed separately for each target pixel. This is because the DL framework used in this

work (Pytorch; Paszke et al., 2019) only implements backpropagation for scalars and not for vectors. When

considering the CP data, there are 348 × 396 target pixels, such that computing the partial derivatives of the

model’s predictions with respect to the SM input at the 436×484 input pixels for a batch x ∈ RN×10×436×484

of N input time steps (with 10 being the number of input variables) requires a single forward pass of the

batch through the DL model and 348 · 396 = 137, 808 backward passes. For the considered DL model, this
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is computationally infeasible.

In the following, we detail the strategy that we used to reduce the compute time. First, we noted that the pre-

diction of the DL model at a target pixel is fully determined by the input variables in a certain neighborhood

(the receptive field of that target pixel). For the DL model considered for the CP data (see Figure S2), the

receptive field is smaller or equal to 116 × 116 pixels (see below). The partial derivatives of the prediction

at a target pixel with respect to SM at input pixels outside of the receptive field is 0. When only the input

variables in the receptive field are fed to the DL model, the model produces an output of size smaller or

equal to 28 × 28 pixels. One of these pixels corresponds to the originally considered target pixel, while the

other pixels are artifacts due to boundary effects (see below). To reduce the compute time, we only pass

the input variables in the receptive field of a target pixel to the DL model and backpropagate the prediction

at the pixel corresponding to the originally considered target pixel through the model. In this way, computing

the partial derivatives of the model’s predictions with respect to the SM input at the 436 × 484 input pixels

for a batch x ∈ RN×10×436×484 requires 348 × 396 forward passes and 348 × 396 backward passes, but

each for an input tensor of shape smaller or equal to N × 10 × 116 × 116. In a test with N = 1, this was

approximately 15 times faster than the naive way of computing the derivatives described above. When the

objective is to compute the partial derivatives for many input time steps (in our case the number of input

time steps for the sensitivity analysis, i.e. the numer of time steps in the test set of the CP data, is 2208),

we expect the speed-up to be even larger, as the reduction in input pixels allows to increase the batch size

without causing memory issues.

In the following, we provide the required details for the strategy described above. The architecture of the

considered DL model is illustrated in Figure S2. The model contains three types of layers that affect the

receptive field of a target pixel, namely convolutional layers (except from the last, 1 × 1 convolutional layer,

which does not affect the receptive field), max-pooling layers, and transposed-convolutional layers. Fig-

ure S3 illustrates the effect of these layers on the receptive field in the 1-dimensional analogue of the

configurations used in this work (note that one could also use different configurations, for example convo-

lutional kernels of different size, different padding and so on, resulting in different effects on the receptive

fields). For a convolutional layer, the output at index i ∈ {0, . . . , n − 3} is affected by the input at indexes

i, i + 1 and i + 2. For a max-pooling layer, the output at index i ∈ {0, . . . , n
2 − 1} is affected by the input at

indexes 2i and 2i + 1. Finally, for a transposed-convolutional layer, the output at index i ∈ {0, . . . , 2n − 1}
is affected by the input at indexes i

2 − 1 and i
2 if i is even and

⌊
i
2
⌋

and
⌊

i
2
⌋

+ 1 otherwise (except from the

first and the last output indexes, which are affected by boundary effects).

Iterating these dependencies backwards through the architecture of the DL model, we found the receptive

field of each target pixel with respect to the input pixels. As there are three transposed-convolutional layers

in the model, we had to distinguish between eight different cases (target index i mod 8). The results are

summarized in the first three columns of Table S1. From these considerations, it also follows that the first

seven and the last eleven target indexes are subject to boundary effects. Consequently, they were neglected

in this work.

When only feeding the input variables in the receptive field of a target index to the considered DL model,

the model produces 20 output indexes in cases with a receptive field of size 108, and 28 output indexes

in cases with a receptive field of size 116. The output at one of these indexes corresponds to the original
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output at the considered target pixel. The other output indexes are due to boundary effects occurring in

the transposed-convolutional layers. The easiest way to determine which of the output indexes in this small

output corresponds to the respective target index in the original output is brute force. Namely, it is only

necessary to evaluate at what output index in the small output the prediction of the model is identical to the

original output at the considered target pixel. To that purpose, we passed several random input fields to the

model. The results of this analysis are summarized in column 4 of Table S1.

Note that in the case of the ERA5 data, where there are less target pixels and the DL model consists of

less layers, the described procedure for performing the sensitivity analysis also leads to a large speed-up

compared to the naive procedure. Table S2 contains the same information as Table S1, but for the smaller

model considered for the ERA5 data. In this case, the first and the last three target indexes are subject to

boundary effects and neglected.

Text S3 – Significance Analyses
To determine the confidence with that the MSE on the original test set is smaller for the 10 original models

than for the 10 variant models, we used a permutation test (Hesterberg, 2014). The procedure was as

follows: first, we computed the difference between the mean MSE of the original models and the variant

models, difforig. Then, we randomly permuted all 20 MSE values and computed the difference between the

mean of the first 10 and the mean of the last 10 values. We repeated this 100, 000 times and determined

the number of permutations for that the computed difference was larger than difforig. This number divided

by the total number of considered permutations is the confidence with that the MSE on the original test set

is smaller for the original models than for the variant models.

Note that we also compared the pixel-wise MSE of the original models to that of the variant models in order

to evaluate whether we could partition the target region into pixels where the MSE of the original models is

lower than that of the variant models (e.g. pixels in regions with strong SM–P coupling), and pixels where

the MSE of the original models is similar to that of the variant models (e.g. pixels in regions with no or very

weak SM–P coupling). However, we obtained chaotic patterns showing increases in MSE at some pixels,

but also decreases at other pixels (see Figure S5). We evaluated how this pattern evolved when only one,

two, three, four or all five test years were considered in the computation of the MSE and observed that the

fraction of pixels showing lower MSE for the original models than for the variant models increased with an

increasing number of considered test years. Therefore, we concluded that there are not enough test years

to perform this analysis on a pixel-wise level: for the considered number of test years, on a pixel-wise level,

the chaotic nature of convection seems to mask the small improvements in precipitation prediction that are

due to the inclusion of correct SM data.

To evaluate at what pixels local and regional couplings obtained from the original models differ significantly

from the respective couplings obtained from the variant models, we did the following: for each target pixel i,

we computed the mean over the local and regional couplings obtained from the ten original models, referred

to as morig(li) and morig(ri), respectively. Next, we computed the mean and the standard deviation over the

local and regional couplings obtained from the ten variant models, referred to as mvar(li) and svar(li), and
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mvar(ri) and svar(ri), respectively. Finally, we evaluated if

∣∣∣morig(li) − mvar(li)
∣∣∣ > 1.645 · svar(li),

and ∣∣∣morig(ri) − mvar(ri)
∣∣∣ > 1.645 · svar(ri),

respectively. If this was the case, we concluded that the local and regional couplings, respectively, at

pixel i obtained from the original models differ significantly from the respective couplings obtained from the

variant models. If the values of local and regional couplings obtained from the variant models were normally

distributed, this procedure would test whether morig(li) and morig(ri), respectively, lie within the central 90 %

of the respective distributions.
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Figure S1: Topography of the considered regions for the ERA5 data (left) and the CP data (right).
The blue and red boxes represent the considered input and target regions, respectively.
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Figure S2: Model architectures considered for the ERA5 data (upper panel) and the CP data (lower
panel) in the first experiment. The model architectures were inspired by the U-Net architecture (Ron-
neberger et al., 2015). The inputs to the models are represented by the leftmost blue boxes. They consist
of 12 variables at the 120 × 180 input pixels for the ERA5 data, and 10 variables at the 436 × 484 input
pixels for the CP data, respectively. The inputs are passed through multiple sequential modules, each of
which performs simple mathematical operations on its respective inputs and produces an output that is fed
to the next module as indicated by the arrows. In general, this output differs in shape from the input, as
indicated by the grey upright and rotated numbers. For details on the mathematical operations we refer to
(Ronneberger et al., 2015). The rightmost blue boxes represent the outputs of the models, which consist
of the precipitation predictions at the 80 × 140 target pixels for the ERA5 data, and at the 348 × 396 target
pixels for the CP data, respectively. The only difference in the second experiment is the number of input
variables (17 and 14, respectively).
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Figure S3: Model layers that affect the receptive field of a target pixel. The considered DL model (see
Figure S2) contains three types of layers that affect the receptive field of a target pixel, namely convolutional
layers, max-pooling layers and transposed-convolutional layers. Here, the effect of these layers on the
receptive field is illustrated in the 1-dimensional analogue of the configurations used in this work. See
section 2.2 and Text S2.

Figure S4: Procedure to obtain variant models for the significance analysis. See Text S3.
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Figure S5: Pixel-wise difference in MSE on the test set between original and variant models for the
ERA5 data in the first experiment. The difference is smaller than 0 for 60 % of all target pixels. See
Text S3.
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Figure S6: Local (left) and regional (right) SM–P couplings for ERA5 data (top) and CP data (bottom).
Same as Figure 3, but for the second experiment, where we use more additional input variables (see
Figure 2). For the ERA5 data, the confidence that the original models perform better than the variant
models decreases from 1 in the first experiment to 0.84 in the second experiment. For the CP data, the
confidence decreases from 0.9 to 0.74. We assume that the decrease is because the mapping of input
variables to the expected value of the target variable is harder to learn for more input variables (Tesch
et al., 2023, Sect. 3.3), and because of correlations between the additional input variables in the second
experiment and SM, which may provide some information on real SM values to the variant models.
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Figure S7: Local (left) and regional (right) SM–precipitation-probability couplings for ERA5 data
(top) and CP data (bottom). Same as Figure 3, but for precipitation probability, i.e. for replacing the
target variable P[t + 4 h] by P[t + 4 h] ≥ 1 mm (see last paragraph in section 3). Note that regional SM–
precipitation-probability is defined analogously to regional SM–P coupling in section 2 (by building a sum
of precipitation probabilities over single pixels). As for regional SM–P coupling, this was done for better
comparability of the strength of local and regional couplings. However, it complicates the interpretation of
regional SM–precipitation-probability coupling itself. For the ERA5 data, the original models perform better
than the variant models with a confidence of 0.93. For the CP data, the confidence is 0.98.
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Figure S8: Local (left) and regional (right) SM–precipitation-probability couplings for ERA5 data (top)
and CP data (bottom). Same as Figure 7, but for the second experiment, where we use more additional
input variables (see Figure 2). The confidence that the original models perform better than the variant
models is 0.17 for the ERA5 data and 0.08 for the CP data, which corresponds to a confidence of 0.83 and
0.92, respectively, that it is larger for the original models than for the variant models. This could indicate
that, for some reason, the original models learned a statistical association between SM and precipitation
that is not causal and does not generalize to the test set.
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Table S1: Receptive field of a target index i for CP data. The receptive field of a target index i are
the indexes in the input that could theoretically affect predictions at target index i. Last column: index that
corresponds to target index i in the output obtained when only feeding the input variables in the receptive
field to the considered DL model. The first seven and the last eleven target indexes are subject to boundary
effects and neglected. See Text S2.

Case
Receptive field of

target index i
Receptive field size

Index in small output
corresponding to i

i mod 8 = 0 i − 8, . . . , i + 99 108 8
i mod 8 = 1 i − 9, . . . , i + 98 108 9
i mod 8 = 2 i − 10, . . . , i + 97 108 10
i mod 8 = 3 i − 11, . . . , i + 96 108 11
i mod 8 = 4 i − 12, . . . , i + 95 108 12
i mod 8 = 5 i − 13, . . . , i + 102 116 13
i mod 8 = 6 i − 14, . . . , i + 101 116 14
i mod 8 = 7 i − 7, . . . , i + 100 108 7

Table S2: Receptive field of a target index i for ERA5 data. As Table S1, but for the smaller DL model
considered for the ERA5 data. For this model, the first and the last three target indexes are subject to
boundary effects and neglected.

Case
Receptive field of

target index i
Receptive field size

Index in small output
corresponding to i

i mod 4 = 0 i − 4, . . . , i + 43 48 4
i mod 4 = 1 i − 5, . . . , i + 46 52 5
i mod 4 = 2 i − 6, . . . , i + 45 52 6
i mod 4 = 3 i − 3, . . . , i + 44 48 3
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