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1. Abstract
Continual and dedicated endeavors are actively underway to advance the field of

cancer immunotherapy, with a specific focus on enhancing the efficacy and

applicability of various methodologies. One prominent avenue of research

involves the ongoing refinement of cytokine-induced killer (CIK) cell therapy, a

promising immunotherapeutic approach. CIK cells cytotoxicity against a variety of

tumor target cells, potentially synergistic with surgery, chemotherapy, and

radiotherapy. In the realm of addressing hematological malignancies and liver

cancer, an enduring endeavor persists to uncover novel therapeutic modalities

with the intent of attaining enhanced clinical outcomes. This pursuit is driven by

the aspiration to curtail instances of recurrence and to efficaciously manage cases

post-recurrence. Our research comprises two distinct components. The first

pertains to the assessment of both the efficacy and underlying mechanisms

associated with the combination of Cytokine-Induced Killer (CIK) cells and anti-

tumor agents encompassing HSP90 inhibitors (namely, 17-DMAG and

Ganetespib) as well as non-anti-tumor agents (such as meticrane) for the

treatment of hematological malignancies and liver cancer. The second facet of our

study involves the elucidation of non-coding RNA (long non-coding RNA, or

lncRNA) profiles within the context of cancer. The primary objectives encompass

prognostic prediction and the identification of potential therapeutic targets inherent

to these intricate molecular signatures. In our publication, our results revealed that

CIK cytotoxicity in Burkitt’s lymphoma (BL) cells was augmented in combination

with HSP90 inhibitors and we provide evidence that CIK cells combination with

HSP90 inhibitors, target BL cells via the Fas–FasL axis rather than the NKG2D

pathway. We also evaluated the antitumor properties of the diuretic drug

mericrane against hematological malignancies and liver cancer, and its synergistic

effect when combined with CIK cells and epigenetic drugs for cancer therapy.

Meticrane exhibited notable anti-cancer properties in the contexts of both liver

cancer and leukemia. Moreover, its application in conjunction with epigenetic

agents displayed an inclination towards additive or synergistic interactions,

thereby presenting a promising avenue for therapeutic enhancement against both
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liver cancer and Hematological malignancies. However, it is noteworthy that no

synergistic effect was observed when combined with Cytokine-Induced Killer

(CIK) cells, as opposed to the independent utilization of CIK cells and meticrane in

addressing Hematological malignancies and liver cancer. We utilized bioinformatic

analysis to discern lncRNAs with plausible associations to the survival outcomes

of cancer patients. Through this rigorous approach, we successfully identified a

subset of lncRNAs that exhibit significant prognostic relevance within the context

of cancer patients.

Collectively, the integrated approach involving the concurrent administration of

Cytokine-Induced Killer (CIK) cells and HSP90 inhibitors presents a promising

avenue for conferring tangible clinical advantages to individuals afflicted with

Burkitt's lymphoma (BL). Furthermore, meticrane has demonstrated pronounced

anti-cancer efficacy, and its conjunction with epigenetic agents has unveiled an

inclination towards additive or synergistic responses in the treatment of liver

cancer and leukemia. In addition, our research has contributed to the identification

of long non-coding RNAs (lncRNAs) closely linked to prognostic considerations,

thereby facilitating their potential deployment as predictive tools and therapeutic

targets. This multifaceted exploration enriches our comprehension of cancer

biology and broadens the horizons of therapeutic strategies.
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2. Introduction

2.1 Background:

2.1.1. CIK cells

Comprising a heterogeneous blend of cell populations, cytokine-induced killing (CIK)

cells encompass T cells (CD3+CD56-), NKT cells (CD3+CD56+), and NK cells (CD3-

CD56+) (Ge et al., 2023). CIK cell therapy has gained notable prominence within the

clinical landscape, as underscored by its substantial presence in over 80 clinical trials

spanning an array of contexts, encompassing both solid tumors and hematologic

malignancies (Sharma and Schmidt-Wolf, 2021). Since its inception in 1991, CIK cell

therapy has been administered to more than 5,000 patients across 30 distinct tumor

categories, either as standalone intervention or in tandem with supportive care, within

the framework of clinical trials (Schmidt-Wolf et al., 1991; Zhang and Schmidt-Wolf,

2020). Moreover, noteworthy statistical enhancements were observed in terms of

median progression-free survival and overall survival parameters, along with a

significant elevation in 5-year survival rates, as ascertained from the CIK-based study.

Owing to their remarkable attributes including MHC-unrestricted tumor lytic capabilities,

facile propagation, prospective efficacy against diverse malignancies, and cost-

effectiveness, CIK cell therapy has emerged as a prominent contender in the domain of

cancer immunotherapy.

2.1.2 Hematologic malignancy and liver cancer

Hematologic malignancies (HM) include a variety of cancers of lymphoid and myeloid

origin, such as acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL),

chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), Hodgkin's

lymphoma (HL), and non-Hodgkin's lymphoma (NHL), among others. Within the

spectrum of hematologic malignancies, lymphoma constitutes a substantial proportion at

approximately 40%, while acute myeloid leukemia (AML) represents a notable subset

comprising around 10% (Klener et al., 2021). These conditions collectively contribute to

a substantial disease landscape, with an estimated 1.2 million new cases of hematologic

malignancies reported annually, culminating in approximately 690,000 fatalities (Song et
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al., 2020). The most common form of acute leukemia in adults is acute myeloid leukemia

(AML) (Shao et al., 2023). Targets for therapeutic intervention within AML encompass a

multifaceted landscape spanning elements such as cell cycle regulators, epigenetic

modulators, immune checkpoint regulators, metabolic pathways, and tumor cell surface

antigens (Noh et al., 2020). Notably, AML holds distinction as the inaugural malignancy

to achieve durable remission through allogeneic hematopoietic stem cell transplantation

(HSCT), an exceptional therapeutic avenue that stands as the pinnacle of both anti-

leukemic strategy and immunotherapy (Xuan and Liu, 2021; Yang et al., 2022).

Nonetheless, the inherent toxicity associated with allogeneic HSCT often renders it an

impractical option, particularly in the context of elderly patients. This underlines the

imperative for immunotherapeutic approaches endowed with precision mechanisms of

action, designed to mitigate toxicities while maintaining clinical efficacy. Burkitt's

lymphoma (BL) represents a highly aggressive subtype of B-cell non-Hodgkin's

lymphoma (NHL), distinguished by the translocation and subsequent dysregulation of

the proto-oncogene MYC. BL manifests rapid disease progression and demonstrates a

pronounced resistance to conventional chemotherapy regimens. While it is considered a

chemosensitive malignancy and one of the early cancers amenable to chemotherapy-

driven cure, it is essential to recognize that despite a relatively favorable 5-year overall

survival (OS) rate ranging from 75% to 85%, the corresponding 3-year progression-free

survival (PFS) and OS metrics stand at 64%, representing a moderate prognosis

(Crombie and LaCasce, 2021). Nevertheless, it is noteworthy that certain patient

subgroups face elevated treatment-related mortality (TRM) and heightened relapse risks.

In light of these clinical complexities, there exists an imperative for the development of

novel therapeutic strategies in the realm of Burkitt's lymphoma. This necessity is

particularly pronounced for patients who are either unsuitable candidates for intensive

therapeutic regimens or who grapple with relapsed disease, thereby underscoring the

urgency of innovative treatment modalities.

Hepatocellular carcinoma (HCC), or liver cancer, constitutes a substantial component of

the global cancer burden (McGlynn et al., 2021). In recent decades, there has been an

observable escalation in the incidence of this ailment across several nations. Despite

ranking as the sixth most prevalent form of primary cancer, liver cancer stands as the

fourth principal contributor to cancer-associated mortality on a global scale (Li et al.,
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2021). It is noteworthy that in the year 2018, the worldwide liver cancer mortality rate 

was estimated at 8.5 per 100,000 individuals (Shi et al., 2021). Immunotherapy has 

substantial attention as a therapeutic avenue, emerging as a consequential option 

beyond the realms of surgery, radiotherapy, and chemotherapy, and in certain cases, 

even advancing to the forefront as a first-line intervention across diverse malignancies 

(Oura et al., 2021). This shift underscores the intricate interplay of factors encompassing 

tumor heterogeneity, dynamic alterations in the tumor microenvironment (TME), the 

emergence of drug resistance, hypervascularity, hypoxia, and the often formidable side 

effects associated with traditional therapies. In the specific context of hepatocellular 

carcinoma (HCC), monotherapies involving immune checkpoint inhibitors (ICIs) or 

adoptive cell therapies (ACT) have encountered challenges in meeting pivotal clinical 

benchmarks, such as tumor size reduction and robust anti-tumor responses (Murciano-

Goroff et al., 2020; Tagliamonte et al., 2020; Sangro et al., 2021). This necessitates a 

judicious approach in the selection of treatment regimens that holds the potential to 

enhance therapeutic efficacy.

While recent decades have witnessed significant strides in the domain of anticancer 

therapies, leading to notable enhancements in survival rates, it remains imperative to 

acknowledge that these therapeutic interventions often entail cytotoxic repercussions 

and subsequent enduring complexities. Such ramifications place a considerable strain 

on both patients and the healthcare infrastructure. Consequently, the imperative for 

more advanced and refined treatment modalities becomes increasingly urgent. In recent 

times, an increasing body of evidence has come to the fore, underscoring the auspicious 

correlation between cytokine-induced killer (CIK) cells and their efficacy against 

hematological malignancies and liver cancer (Schmeel et al., 2014; Lee et al., 2015; 

Pittari et al., 2015; Luo et al., 2016; Yang et al., 2018; Dalla Pietà et al., 2021; Yuan et 

al., 2021). These insights not only underscore the significance of comprehending the 

intricate mechanisms and pertinent targets underlying CIK cell therapy within the 

framework of disease development, progression, and therapeutic interventions, but also 

accentuate the imperative for the continued exploration and thorough investigation of 

this domain.
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2.1.3 Oncologic and Non-oncologic drug

The augmentation of tumor eradication can be achieved through the synergistic interplay 

of cytokine-induced killer (CIK) cells in tandem with chemotherapy (Choi et al., 2022; F 

et al., 2022; Wu et al., 2023). The discernible role of heightened heat shock protein 90 

(HSP90) expression in potentially instigating cancer development has been 

acknowledged (Barrott and Haystead, 2013; Kryeziu et al., 2019). A wealth of 

investigations has elucidated that HSP90 client proteins assume pivotal roles in the 

orchestration of diverse cellular functions. These encompass intricate processes such as 

signal transduction, protein trafficking, chromatin remodeling, autophagy, and the 

regulation of cell proliferation and survival (Terasawa et al., 2005; Whitesell and 

Lindquist, 2005; Tsutsumi et al., 2009; Zuehlke and Johnson, 2010; Miyata et al., 2013). 

A prevalence of HSP90 overexpression has been noted across a diverse spectrum of 

malignancies, prompting investigations into the modulation of its activity as a strategic 

measure in combating cancer. Therefore, HSP90 inhibitors are also widely used in 

cancer treatment. While anticancer/chemotherapy agents exhibit the capability to 

eradicate malignant cells, their action often comes at the cost of detrimental effects on 

healthy cells, giving rise to a range of associated adverse events. Consequently, the 

exploration of non-oncological pharmaceuticals and drugs originally intended for 

disparate medical conditions has surfaced as a promising avenue in the quest for 

potential therapeutic interventions against cancer (Papapetropoulos and Szabo, 2018; 

Zhang et al., 2020).

2.1.4 Long Noncoding RNA

Long noncoding RNAs (lncRNAs), form a separate category of RNA molecules that 

exceed 200 nucleotides in length, characterized by their marked heterogeneity, assume 

a pivotal regulatory role in modulating gene expression through an array of intricate 

mechanisms. Their distinct expression patterns in neoplastic settings are intricately 

linked to the transition from normative cellular states to malignant transformations. 

Certain lncRNAs have been substantiated in their contribution to fundamental processes 

such as proliferation, growth, or the sustained survival of cancerous cells (Ghafouri-Fard 

et al., 2023; Salman et al., 2023; Zhang et al., 2023). Due to their multifarious functional 

implications across numerous malignancies, lncRNAs have garnered considerable 

attention. LncRNAs operate not only as pivotal oncogenes or tumor suppressors, 

participating in a myriad of intricate signaling pathways, but also emerge as noteworthy
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predictive markers within diverse cancer typologies, encompassing acute myeloid

leukemia (AML) and Hepatocellular Carcinoma (Wong et al., 2018; Huang et al., 2020;

Qin et al., 2020; Goyal et al., 2021; Chen et al., 2022, 35790864; Eptaminitaki et al.,

2022; Li et al., 2022b).

2.2 Aims:

Currently, there exists a well-defined signaling pathway and molecular mechanism

elucidating the association between CIK cells and cancer. This dissertation aims at the

following: firstly, to investigate the efficacy and underlying mechanisms of oncology and

Non oncology drug in synergy with CIK cell immunotherapy for the treatment of

hematological malignancies and liver cancer. Secondly, to employ bioinformatics

analyses to discern long non-coding RNAs (lncRNAs) potentially associated with

survival outcomes in cancer patients and seeks to identify additional lncRNAs in cancers

to improve the prediction of cancer patient prognosis and discover potential cancer

targets.
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Abstract: Constant efforts are being made to develop methods for improving cancer immunother-
apy, including cytokine-induced killer (CIK) cell therapy. Numerous heat shock protein (HSP)
90 inhibitors have been assessed for antitumor efficacy in preclinical and clinical trials, highlighting
their individual prospects for targeted cancer therapy. Therefore, we tested the compatibility of CIK
cells with HSP90 inhibitors using Burkitt’s lymphoma (BL) cells. Our analysis revealed that CIK
cytotoxicity in BL cells was augmented in combination with independent HSP90 inhibitors 17-DMAG
(17-dimethylaminoethylamino-17-demethoxygeldanamycin) and ganetespib. Interestingly, CIK cell
cytotoxicity did not diminish after blocking with NKG2D (natural killer group 2, member D), which
is a prerequisite for their activation. Subsequent analyses revealed that the increased expression of
Fas on the surface of BL cells, which induces caspase 3/7-dependent apoptosis, may account for this
effect. Thus, we provide evidence that CIK cells, either alone or in combination with HSP90 inhibitors,
target BL cells via the Fas–FasL axis rather than the NKG2D pathway. In the context of clinical
relevance, we also found that high expression of HSP90 family genes (HSP90AA1, HSP90AB1, and
HSP90B1) was significantly associated with the reduced overall survival of BL patients. In addition
to HSP90, genes belonging to the Hsp40, Hsp70, and Hsp110 families have also been found to be
clinically significant for BL survival. Taken together, the combinatorial therapy of CIK cells with
HSP90 inhibitors has the potential to provide clinical benefits to patients with BL.

Keywords: CIK cell; HSP90 inhibitor; Burkitt’s lymphoma; Fas–FasL; apoptosis

1. Introduction

Despite having an unprecedented understanding of cancer today [1–3], it remains
one of the leading causes of death. Certainly, there have been a number of efforts to im-
prove treatment options for cancer, most notably by exploring various inhibitors (most
recently HSP90 C-terminal inhibitors) in order to understand the molecular and cellular
determinants harboring any clinical relevance [4–6]. Since it has been recognized that the
overexpression of HSP90 plays a potential role in the development of cancer, researchers
have begun to modulate its activity to combat cancer [7–9]. Interestingly, HSP90 over-
expression has been observed in numerous cancers, including breast, urinary, ovarian,
lung, colon, esophageal, ovarian, endometrial, bone, and prostate cancers [10,11]. HSP90
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encompasses various isoforms that exhibit distinct accumulation patterns within cellular
compartments. Among the prominent cytoplasmic variants, HSP90AA1 and HSP90AB1
have been observed to not only localize in the cytoplasm but also in the nucleus. On the
other hand, HSP90B1-GRP94 predominantly targets the endoplasmic reticulum lumen,
where it plays a role in the unfolded protein response [12]. Another significant HSP90
isoform, TNF-receptor-associated protein-1 (TRAP1), primarily functions as a mitochon-
drial protein, contributing to mitochondrial integrity, apoptosis regulation, and protection
against oxidative stress [13,14]. HSP90AA1, HSP90AB1, and HSP90B1 have been associated
with a poor prognosis of tumors [15], and upregulation of TRAP1 promotes the growth
and progression of various cancers [16].

Burkitt’s lymphoma (BL), a rare but extremely aggressive B-cell non-Hodgkin’s lym-
phoma that is usually diagnosed in children and adolescents, seems to be somewhat unique.
Valbuena et al. reported moderate to strong cytoplasmic expression levels of HSP90 in all
BL cases [17]. Giulino-Roth et al. reported that primary BL tumors overexpress HSP90,
and that its inhibition exerts antitumor effects both in vitro and in vivo [18]. These authors
found that the inhibition of HSP90 targets multiple components of PI3K/AKT/mTOR sig-
naling, underscoring the importance of this pathway in BL. By characterizing the molecular
consequences of HSP90 inhibition in BL cells, Walter et al. provided evidence that SYK is a
client protein of HSP90, and that the BCR signaling-dependent phosphorylation of Hsp90
is required for this interaction [19]. Based on these findings, Poole et al. speculated that
the MYC-HSP90 axis may be critical for tumor maintenance in BL and may represent a
novel therapeutic strategy [20]. These authors showed that the MYC oncogene is a client
protein of HSP90 in BL, and that its inhibition using pharmacological inhibitors causes
MYC transcription switching and protein destabilization. Overall, HSP90 appears to be a
critical component of BL; however, chemotherapy remains the mainstay of BL treatment
in the clinic. The use of immunotherapies for BL has also been reported [21,22]; however,
their success rates have not been fully elucidated. Notably, the success rates in refrac-
tory/relapsed BL cases are extremely low; therefore, there is an urgent need to identify new
options. Strikingly, cytokine-induced killer (CIK) cell therapy, which has been successful
for 30 years in treating various cancers, has never been tested for BL [23–26].

Being a mixture of cells, CIK cells include T cells (CD3+CD56-), NKT cells (CD3+CD56+),
and NK cells (CD3-CD56+). CIK cells can significantly lyze cancer cells in an MHC-
unrestricted manner by activating NK cell receptors [27]. Alongside directly killing tumor
cells, CIK cells can also regulate immune function by releasing various cytokines. Evidence
has shown that after stimulation by tumor cells, the amount of proinflammatory cytokines,
such as tumor necrosis factor (TNF)-α, IFN-γ, and IL-2, released by CIK cells were signifi-
cantly increased [28], and these cytokines potentiate systemic antitumor activity. The first
clinical trial of CIK cells in lymphoma was reported by Schmidt-Wolf et al. in 1999 [29].
Subsequently, 17 clinical trials have been conducted for the treatment of lymphoma owing
to the proven safety of CIK cell therapy [30].

Therefore, in this study, we assessed the compatibility of CIK cells with HSP90 in-
hibitors (17-DMAG and ganetespib) in diverse BL cell lines. In addition to highlighting the
possible mechanism behind their favorable synergistic effect, we discussed the clinical sig-
nificance of the expression patterns of the HSP90 family (including HSP90AA1, HSP90AB1,
and HSP90B1) and nine other heat shock proteins (HSPs) in the survival of patients with BL.
To our knowledge, this is the first study to use foreground CIK cell therapy as a potential
treatment option for patients with BL.

2. Results
2.1. HSP90 Inhibitors Showed Synergistic Effect with CIK Cells in Burkitt’s Lymphoma Cells

First, we investigated the viability of BL cells (specifically BL41 and Raji cells) using
two independent HSP90 inhibitors (17-DMAG and ganetespib). An optimal concentration
of 17-DMAG (0.1 µM) and ganetespib (20 nM) was used for further experiments based
on the co-culture experiments (Figure 1A). Thereafter, the subtypes of CIK cells were
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examined (day 14), and NKT cells (CD3+CD56+, 27.66% ± 4.573%), T cells (CD3+CD56-,
71.85% ± 4.607%), and NK cells (CD3-CD56+, 0.7% ± 0.2%) were identified (Figure 1B).
Considering that NKG2D and CD8 were mainly expressed on NKT and T cells, we also
examined their individual proportions, as shown in Figure 1B. In the context of synergy,
significant results were obtained with Raji cells, while the combined effect of DMSO with
CIK cells (25.46% ± 0.2301%, p = 0.0002) and the isolated 17-DMAG (15.38% ± 5.007%,
p < 0.0001) treatment group demonstrated a lower efficacy compared to the combination
of CIK cells with 17-DMAG (55.25% ± 4.725%) (Figure 2A). Similar results, especially
in BL41 cells, were obtained in that the cytotoxicity of CIK cells in combination with
17-DMAG (27.91% ± 4.176%) was significantly higher than that of the controls, such as the
DMSO in combination with CIK cells (13.6% ± 0.7162%, p = 0.0008) and isolated 17-DMAG
(4.317% ± 0.8552%, p < 0.0001) (Figure 2A) groups. In addition, the above findings were
confirmed with ganetespib, as the results showed that ganetespib in combination with CIK
cells (51.47% ± 2.357%) significantly increased the cytotoxicity against Raji cells compared
to the controls, ganetespib alone (12.33% ± 1.911%, p < 0.0001), and DMSO in combination
with CIK cells (24.90% ± 3.954%, p < 0.0001) (Figure 2B). Similarly, for BL41 cells, the
cytotoxicity of CIK cells in combination with ganetespib (72.12% ± 5.537%) was higher
than that of the controls, isolated ganetespib (16.37% ± 5.272, p < 0.0001) treatment, and
DMSO in combination with CIK cells (11.19 ± 1.295, p < 0.0001) (Figure 2B). This indicates
that both HSP90 inhibitors, 17-DMAG and ganetespib, have synergistic effects with CIK
cells against BL cell lines.
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Figure 1. (A) Cell viability of Burkitt’s lymphoma (BL) cells was assessed following treatment
with HSP90 inhibitors. Subsequently, the optimal concentration of HSP90 inhibitors was deter-
mined (17-DMAG-0.1 µM and ganetespib-20 µM, respectively). The presented data represent the
mean ± standard deviation (SD) of triplicates per experimental condition. (B) Phenotype of day
14 CIK cells. The figure shows data from one representative from four donors.
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Figure 2. Cytotoxicity of CIK cells treated with/without 17-DMAG (A) and ganetespib (B) against
Raji and BL41 cells. Analyses were performed on different donors (n = 3) and values are expressed
as mean ± SD. Analyses were performed using the Student’s t-test. (C) MICA/B expression on the
surface of Raji and BL41 cells after treatment with 17-DMAG and ganetespib. Each bar represents the
mean ± SD of a representative donor. (D) Cytotoxicity of CIK cells treated with/without two HSP90
inhibitors against Burkitt’s lymphoma cell lines with/without NKG2D blocking (CIK cells were
completely blocked before co-culture with Raji and BL41 cells). Cytotoxicity assays were conducted
on CIK cells between days 14 and 16. CIK cells and BL cell lines were co-cultured with or without
HSP90 inhibitors for 24 h at an E/T ratio of 10:1. Analyses were performed on 3 donors and one of
them has been indicated. Data analysis was performed using the one-way ANOVA. *** p < 0.001,
**** p < 0.0001, ns: not significant.

2.2. Cytotoxic Effect of CIK Cells Synergizing with HSP90 Is Independent of the
NKD2D/NKG2DL Axis

Given that the NKG2D/NKG2DL axis plays an important role in the anticancer
properties of CIK cells, MICA/B is the major NKG2D ligand on the surface of tumors.
Therefore, we evaluated MICA/B expression on the surface of BL cells (Raji and BL-41) and
investigated any possible alterations induced by HSP90 inhibitors (Figure 2C). Interestingly,
we found that BL cells treated with 17-DMAG and ganetespib did not show altered MICA/B
expression levels compared to the controls. Moreover, no effect on the cytotoxicity of CIK
cells was observed when an anti-human CD314 (NKG2D) antibody was used to block
the NKG2D/NKG2DL axis between the CIK and BL cells (Figure 2D). Importantly, we
observed similar effects similar to those of ganetespib (Figure 2D). This suggests that the
NKD2D/NKG2DL axis does not contribute to the cytotoxic effect of CIK cells in synergy
with HSP90 inhibitors in BL.

2.3. CIK Cells Combined with HSP90 Inhibitors Primarily Induced Apoptosis in BL

Next, we investigated the possible activation of apoptosis induced by CIK cells and/or
HSP90 inhibitors in BL cells. It was found that early apoptosis significantly increased in Raji
cells and 17-DMAG combined with CIK cells (18.767% ± 1.966%) compared with 17-DMAG
(6.893% ± 1.7%, p < 0.0001) and CIK cells (11.867% ± 1.457%, p = 0.0003) (Figure 3A). Inter-
estingly, equally significant results were found for BL41 cells when 17-DMAG was com-
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bined with CIK cells (32.667% ± 2.857%) compared to the control groups, 17-DMAG (6.343%
± 0.184%, p < 0.0001), and CIK cells (12.67% ± 3.247%, p < 0.0001) (Figure 3A). As a proof
of concept, we also tested ganetespib and found comparable results to 17-DMAG. In Raji
cells, an increase in early apoptosis was observed when ganetespib was co-cultured with
CIK cells (54.8% ± 3.818%), compared with ganetespib alone (8.533% ± 1.443%, p < 0.0001)
and CIK cells (28.85% ± 2.616%, p < 0.0001) (Figure 3B). Ganetespib and CIK cells (23.067%
± 1.358%) also exhibited increased early apoptosis in BL cells compared to ganetespib alone
(14.233% ± 0.351%, p < 0.0001) and CIK cells (8.833% ± 1.609%, p < 0.0001) (Figure 3B).
Thus, the combination of HSP90 inhibitors with CIK cells has demonstrated the ability
to enhance late apoptosis in Burkitt’s lymphoma (BL), particularly with ganetespib. In
Raji cells, a notable increase in late apoptosis was observed when ganetespib was com-
bined with CIK cells (32.75 ± 3.182), compared to the individual treatments of ganetespib
(7.857 ± 0.49, p < 0.0001) and CIK cells (23.167 ± 2.747, p = 0.0052) (Figure 3B). Similarly,
significant results were obtained with BL41 cells, where the combination of ganetespib and
CIK cells (16.7% ± 2.946%) demonstrated a substantial increase in late apoptosis compared
to the control groups, ganetespib alone (4.5% ± 0.298, p < 0.0001), and CIK cells alone
(3.54% ± 0.233%, p < 0.0001) (Figure 3B). Thus, CIK cells, in combination with HSP90
inhibitors, were responsible for inducing early apoptosis in BL cells.
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Figure 3. Apoptosis in Raji and BL 41 cells co-cultured with/without CIK cells treated with 17-DMAG
(A) and ganetespib (B). In the apoptosis experiment involving BL cell lines, we utilized CIK cells at
days 14–16, co-cultured with or without HSP90 inhibitors for 24 h, with an E/T ratio of 5:1. Each
bar represents the mean ± SD of a triplicate measurement, and these data are representative of three
independent experiments. Data analysis was conducted using the two-way ANOVA. * p < 0.05,
** p < 0.01, *** p < 0.001, **** p < 0.0001, ns: not significant.
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2.4. Increased Expression of Fas May Lead to the Induction of Caspase 3/7-Dependent Apoptosis in
BL Cells via HSP90 Inhibitors

In addition to NKG2D/NKG2D, Fas/FasL is considered an alternative pathway for
the cytotoxicity of CIK cells, leading to apoptosis; therefore, we examined Fas expression
on the surfaces of BL cells. Interestingly, we found that after treatment with 17-DMAG, the
percentage of Fas expression in BL41 cells significantly increased (p = 0.0003) (Figure 4A).
After confirming that Fas was expressed in almost all Raji cells, we then assessed the
MFI (mean fluorescence intensity) values and confirmed the significantly increased effect
of 17-DMAG (p = 0.0426) (Figure 4A). Similar results were observed when ganetespib
was administered (as shown in Figure 4B). Notably, a significant increase in caspase-3/
7-activated apoptotic cells was observed in BL41 and Raji cells when CIK cells were com-
bined with 17-DMAG compared to 17-DMAG (p = 0.0004 and p = 0.002, respectively) and
CIK cells (p = 0.0088 and p = 0.0123, respectively) alone (Figure 4C). Ganetespib, in co-
culture with CIK cells, also supported the increase in caspase-3/7-activated apoptotic cells
in BL41 and Raji cells compared to the ganetespib (p = 0.0012 and p = 0.0008, respectively)
and CIK cell groups (p = 0.0112 and p = 0.0191, respectively) (Figure 4D). This suggests that
the increased expression of Fas on the BL cell surface may lead to caspase 3/7-dependent
apoptosis induction via HSP90 inhibitors.
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Figure 4. Fas expression on the surface of BL41 and Raji cells treated with/without 17-DMAG
(A) and ganetespib (B). Fas expression was measured using flow cytometry following treatment
with or without HSP90 inhibitors for 48 h. Each bar represents the mean ± SD of three independent
experiments. Data analysis was conducted using the Student’s t-test. Caspase 3/7-activated apoptotic
cells on BL41 and Raji cells treated with/without the 17-DMAG (C) and ganetespib (D) combination
of CIK cells for 12 h, with an E/T of 2.5:1. These data are representative of three independent experi-
ments and analysis was performed using the one-way ANOVA. * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.
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2.5. High Expression of HSP90 Genes Is Significantly Associated with Reduced Overall Survival in
BL Patients

Considering that HSP90 is not the only HSP involved in cancer, we next investigated
the prognostic ability of HSP90 and other HSP-related genes (n = 84) using the TCGA dataset
for BL. We first performed a log-rank test (Mantel–Haenszel) to detect significant differences
in patient survival depending on HSP gene expression (low and high expression groups).
Importantly, we found that the high expression of HSP90 genes (namely HSP90AA1,
HSP90AB1, and HSP90B1) was significantly associated with reduced overall survival
in the KM-plotter cohort (p = 0.015; p = 0.046; and p = 0.031, respectively) (Figure 5).
In addition to the HSP90 genes, several other HSP genes, including HSPA1B, HSPA4,
HSPA9, HSPA14, HYOU1, HSPB11, MKKS, DNAJA1, DNAJA3, DNAJA4, DNAJB6, DNAJB9,
DNAJB11, DNAJC2, DNAJC15, DNAJC17, DNAJC19, and CCT8 were also found to be
clinically significant for BL survival (p ≤ 0.05) (Figure 6 and Supplementary Table S1). Thus,
these findings strengthen the importance of our preclinical model (CIK cells and HSP90)
for BL and prompts a more in-depth investigation of other HSP candidates.
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Figure 5. Expression of three HSP90 genes (HSP90AA1, HSP90AB1, and HSP90B1) predicts the
survival of Burkitt’s lymphoma patients. (A) Kaplan–Meier survival curve based on overall survival
based on gene expression in a cohort of TCGA Burkitt’s lymphoma patients, 95% confidence interval
and the p-value (logarithmic rank test, Mantel–Haenszel). (B) Distribution of three HSP90s expression
in the TCGA Burkitt’s lymphoma dataset. The dotted lines indicate the median gene expression used
as a cutoff to normalize the mRNA data, which were then log2 processed.
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Figure 6. Association of 96 genes encoding heat shock proteins with overall survival of Burkitt’s
lymphoma patients from the KM plotter. The red color represents the genes that are related with
survival, while the green color denotes the genes that are not related with survival.

3. Discussion

Although cancer immunotherapy has become the mainstay of cancer treatment, a
minority of cancer patients still do not respond to it. Consequently, researchers and clin-
icians are currently identifying and investigating alternative and combined treatment
modalities. Immune checkpoint inhibitors (ICI) have been very successful in this context,
but the ability of heat shock proteins (HSPs), especially HSP90, to trigger the immune
system against tumor cells has also been of particular interest. HSP90 inhibitors have
been successfully assessed across a wide range of preclinical/clinical cancers, including
gliomas [31], breast cancer [32], lung cancer [33], prostate cancer [34], and colorectal can-
cer [35]. Furthermore, HSP90 has been implicated in hematological malignancies, including
acute myeloid leukemia [36], mantle cell lymphoma [37], acute lymphoblastic leukemia [38],
T-cell leukemia [39], and chronic lymphocytic leukemia [40]. Interestingly, the outcomes
of clinical trials involving HSP90 in various cancer types (including hematological malig-
nancies) have been encouraging [41–46]. Surprisingly, HSP90 has never been tested with
cytokine-induced killer (CIK) cell therapy, which has recently turned 30 years old and has
been shown to be successful across various hematological malignancies, including B-cell
malignancies [47], multiple myeloma [48], and acute myeloid leukemia [49]. Considering
that Burkitt’s lymphoma (BL) continues to be a challenging hematological malignancy, we
investigated whether the synergy of HSP90 and CIK cells could pave the way for a potential
treatment. To widen our analysis, we used both EBV-negative (BL41) and EBV-positive
(Raji) cell lines in this first preclinical study.

To address this, we first checked the viability of BL cells (BL41 and Raji) using two inde-
pendent HSP90 inhibitors (17-DMAG and ganetespib) with CIK cells and confirmed a syn-
ergistic effect in all combinations. It has been well established that the NKG2D/NKG2DL
axis plays an important role in the anticancer properties of CIK cells, and MICA/B is the
major NKG2D ligand on the surface of tumors [50]. Next, we assessed MICA/B expression
on the surface of BL cells and evaluated possible changes induced by HSP90 inhibitors. The
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results clearly showed that neither HSP90 inhibitor had an effect on MICA/B expression
levels in BL cells. In addition, when anti-human CD314 (NKG2D) antibody was used to
block the NKG2D/NKG2DL axis between the CIK cells and BL cells, no effect was apparent.
In particular, CIK cells, in combination with HSP90 inhibitors, induced early apoptosis
in BL cells. A study on the combination therapy of HSP90 inhibitors for colorectal cancer
indicated that HSP90 can enhance immunotherapy through the Fas/FasL axis between
cancer cells and T cells, HSP90 was able to improve immunotherapy through cancer cells
and the T cell Fas/FasL axis [35]. It was further evident that the increased expression of
Fas on the surface of BL cells resulted in the induction of caspase 3/7-dependent apoptosis.
Thus, it is possible that the Fas/FasL pathway, rather than the NKG2D/NKG2D pathway,
serves as an alternative mechanism for CIK cell cytotoxicity (with HSP90) in BL.

Using TCGA datasets for BL, we examined the prognostic ability of HSP90 and found
that high expression levels of the HSP90 family (specifically HSP90AA1, HSP90AB1, and
HSP90B1) were significantly associated with reduced overall survival. This suggests that
the HSP90-CIK cell combination may serve as an alternative treatment strategy for BL.
However, it cannot be excluded that other HSP-related genes (in addition to HSP90) may
also have an importance in BL. Therefore, we evaluated the expression of all HSP-related
genes (n = 84), and nine of them, including HSPA1B, HSPA8, HSPB11, DNAJA3, DNAJB9,
DNAJC11, DNAJC17, DNAJC19, and DNAJC22, were found to be clinically significant for
BL survival. Importantly, a few of them have already been implicated in different cancers,
such as AML [51], gastric cancer [52], colon cancer [53], lung cancer [54,55], liver cancer [56],
B-cell lymphoma [57] and breast cancer [58]. Taken together, HSPs are closely associated
with BL, and their suitability for CIK cells has been warranted.

It is also worth mentioning that we used first-generation (17-DMAG) and second-
generation (ganetespib) HSP90 inhibitors as a combination strategy with CIK cells, and the
future availability of dual inhibitors (such as HSP90-HDAC [59]) may further contribute
to defining the cytotoxic efficacy of CIK cells in BL. The cytotoxic ability of CIK cells
has been successfully demonstrated in several clinical studies. The functional aspect
of the cytotoxicity of CIK cells via the NKG2D/NKG2DL signaling pathway and/or
Fas/FasL signaling has also been widely discussed in the literature. However, the exact
and alternative modes of functioning for these cells is still unclear, and the involvement of
other mechanisms cannot be ruled out. Particularly, in the context of BL, our study is the
first attempt to show that HSP90 inhibitors can enhance the cytotoxic effect of CIK cells
via the Fas/FasL signaling pathway, which consequently activates caspase3/7-dependent
apoptosis. Certainly, further experiments, especially in vivo, can help to gain further insight
into the deeper mechanisms, but at the preclinical level, our study is the first attempt to
investigate the suitability of cancer immunotherapy of CIK cells together with HSP90 in
Burkitt’s lymphoma.

4. Materials and Methods
4.1. Cell Lines and Cell Culture

The Burkitt’s lymphoma lines (Raji and BL41) were cultured in RPMI-1640 (Pan-
Biotech, Aidenbach, Bavaria, Germany) medium supplemented with 10% FBS (Sigma-
Aldrich Chemie GmbH, Munich, Germany) and 1% penicillin/streptomycin (P/S) (Gibco,
Schwerte, Germany) at 37 ◦C and 5% CO2. Both cell lines were purchased from DSMZ
(Braunschweig, Germany) and detected as mycoplasma-free using a Mycoplasma Detection
Kit (Thermo Fisher Scientific, Darmstadt, Germany).

4.2. Reagents

The antibodies (FITC-CD3, PE-CD56, APC-NKG2D, BV421-CD8, and APC-MICA/B)
and their respective isotype antibodies were purchased from BioLegend (San Diego,
CA, USA). The Annexin V-FITC -7AAD (7-Amino-Actinomycin D) kit was also purchased
from BioLegend (San Diego, CA, USA). The HSP90 inhibitors 17-DMAG and ganetespib
(STA-9090) were purchased from Selleckchem (Boston, MA, USA). These HSP90 inhibitors
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were dissolved in DMSO and stored at −80 ◦C at a concentration of 50 mM (please note
that the control DMSO concentration of 17-DMAG was 0.1‰, and that the control DMSO
concentration of ganetespib was 0.02‰). The FxCycle™ Violet stain and CellTrace™ CFSE
Cell Proliferation Kit (Invitrogen, Thermo Fisher Scientific, Eugene, OR, USA) were used to
distinguish tumor cells from CIK cells using flow cytometry. Hoechst 34580 (Merck, Sigma,
Darmstadt, Germany) was added prior to flow cytometry to stain the dead cells. The
CellEvent Tm Caspase-3/7 Green flow cytometry assay kit was purchased from Invitrogen
(Thermo Fisher Scientific Inc., Waltham, MA, USA).

4.3. Generation of Cytokine-Induced Killer (CIK) Cells

CIK cells were generated according to a previously described protocol [60]. Briefly,
peripheral blood mononuclear cells (PBMCs) were isolated from the blood of healthy
donors (blood bank of the University Hospital Bonn, Bonn, Germany) through gradient
centrifugation using Pancoll (Aidenbach, Bavaria, Germany). PBMCs were cultured at
2 × 106/mL in a 75 cm2 flask, and 1000 U/mL of IFN-γ (ImmunoTools GmbH, Aidenbach,
Bavaria, Germany) was added 2 h later. On the second day, monocytes were removed,
and 100 U/mL of IL-1β (ImmunoTools GmbH, Aidenbach, Bavaria, Germany), 600 U/mL
of IL-2 (ImmunoTools GmbH, Aidenbach, Bavaria, Germany) and 50 ng/mL of anti-CD3
(Thermo Fisher Scientific, CA, USA) were added. CIK cells were then cultured in RPMI-
1640 medium (Pan-Biotech, Aidenbach, Bavaria, Germany), and supplemented with 10%
FBS (Sigma-Aldrich Chemie GmbH, Munich, Germany), 2.5% HEPES (Gibco, Thermo
Fisher Scientific, Inc.), and 1% penicillin/streptomycin (P/S) (Gibco, Schwerte, Germany)
at 37 ◦C, 5% CO2, and humidified atmosphere. Subcultures were obtained every 3 days at
0.5–1 × 106 cells/mL in fresh medium containing 600 U/mL of IL-2. After two weeks of ex
vivo expansion, CIK cells were collected for the experiments.

4.4. CCK8 Assay

Cell viability was assessed using the Cell Counting Kit-8 (CCK8, Dojindo Molecular
Technologies, Inc., Rockville, MD, USA) assay. Raji and BL41 cells were seeded at a density
of 1 × 104 cells per well in a U-bottom Nunclon™ 96-well plate and exposed to a range
of concentrations of 17-DMAG and ganetespib for 48 h. Subsequently, 10 µL of CCK-8
working solution was added to each well and incubated for 2–4 h. Absorbance at 450 nm
and 650 nm was measured using a Fluostar OPTIMA microplate reader (BMG Labtech,
Ortenberg, Germany).

4.5. Phenotype Expression of CIK Cells

Mature CIK cells (at day 14) were used to confirm their phenotype using flow cytome-
try. The CIK cells were stained with PE-CD56, FITC-CD3, APC-NKG2D, BV421-CD8, and
their corresponding isotype antibodies. 7AAD was used to stain the dead cells. Samples
were acquired using flow cytometry (FACS Canto II, BD Biosciences, Heidelberg, Germany).

4.6. Cytotoxicity of CIK Cells

Tumor cells (1 × 106) were labeled with 1uM CFSE in 1 mL DPBS and incubated
for 15 min at 37 ◦C in darkness. The cells were then washed twice with 10 mL culture
medium to remove any excess CFSE dye. Subsequently, 2 × 104 tumor cells per well were
co-cultured with a medium containing either 17-DMAG (0.1 µM) or ganetespib (20 nM) in
a 37 ◦C, 5% CO2 incubator for 24 h. Afterward, CIK cells were added while maintaining the
E:T ratio of 10:1. To perform NKG2D blocking experiments, CIK cells were pretreated with
purified anti-human CD314 (clone 1D11, BioLegend, Koblenz, Germany) or isotype mouse
IgG1 κ (10 ug/mL) for 30 min. Following pre-treatment, CIK cells were co-cultured with
tumor cells for 20–24 h. Dead cells were then labeled with Hoechst 34580 and analyzed
using flow cytometry. The CFSE-labeled cells were identified as tumor cells, whereas the
other cells were identified as CIK cells. The formula used to calculate cytotoxicity was
described as the following: Cytotoxicity (%) = (CT − TE)/CT × 100. CT: tumor live cells
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with CFSE. TE denotes live tumor cells with CFSE following treatment with HSP90 inhibitor
or/and CIK cells.

4.7. MICA/B Expression

Raji and BL41 cells were seeded at a density of 2 × 104 cells per well in 48-well plates
with complete medium containing 17-DMAG (0.1 µM) or ganetespib (20 nM) at a total
volume of 300 µL per well for 48 h. The cells were then collected and washed twice with
DPBS to remove any remaining medium. To assess MICA/B expression, cells were stained
with an APC-MICA/B antibody and analyzed using flow cytometry; viable cells were
labeled with Hoechst.

4.8. The Apoptosis of Burkitt’s Lymphoma Cells

To analyze the apoptosis of BL cells, 1 × 106 Raji and BL41 cells in 1ml DPBS were
labeled with 0.5 µM violet dye for marking tumor cells under the conditions of 37 ◦C in
darkness for 15 min. The cells were then washed twice with 10 mL culture medium to
remove any excess dye. Subsequently, 2 × 104 cells per well were seeded in 48-well plates
(with a total volume of 300 µL) and co-cultured with HSP90 inhibitors (experimental group)
or DMSO (control group) for 24 h. The appropriate number of CIK cells were then added
to maintain an E:T ratio of 5:1 for 20–24 h. Afterward, the cells were washed with Annexin
V buffer and stained with FITC-Annexin V antibody and 7AAD dye for 15 min.

4.9. Caspase 3/7 Activity

To label the tumor cells, Raji and BL41 cells (1 × 106) were incubated with 0.5 µM violet
dye in 1 mL DPBS at 37 ◦C for 15 min in an incubator. The cells were washed twice with
10 mL culture medium to eliminate excess dye and then seeded at a density of 1 × 104 cells
per well in 96-well plates with or without HSP90 inhibitors for 36 h. Next, CIK cells were
added at an E:T ratio of 2.5:1. To evaluate caspase3/7 activity, the CellEvent™ Caspase-
3/7 Green Flow Cytometry Assay Kit was utilized to stain the tumor cells with 0.5 µM
CellEvent™ Caspase-3/7 Green Detection Reagent and 1 µM SYTOX™ AADvanced™
Dead Cell Stain at room temperature for 1 h and 5 min, respectively. The percentage of
activated caspase-3/7 cells was determined using flow cytometry.

4.10. Fas Expression

Raji and BL41 cells (2 × 104 cells per well) were seeded in 48-well plates and treated
with HSP90 inhibitors at 37 ◦C and 5% CO2 for 48 h. After washing with PBS twice, the
cells were stained with PE-CD95 for 30 min. Hoechst 34580 was then added, following
which flow cytometry measurements were taken.

4.11. Correlation of HSP Genes with BL Patients

The BL dataset was downloaded from the TCGA database (https://portal.gdc.cancer.
gov/projects/CGCI-BLGSP (accessed on 26 March 2023), Project ID: CGCI-BLGSP). The log-
rank test (Mantel–Haenszel) was used to detect significant differences in patient survival
according to HSP expression (low and high expression groups). The cut-off value for each
gene was the median expression.

4.12. Statistical Analysis

Flow cytometry datasets were analyzed using FlowJo V10.6 (LLC, Ashland, OR,
USA). Statistical analyses were performed and figures were prepared using GraphPad
Prism software (version 9.0; GraphPad Software, San Diego, CA, USA), including the
one-way or two-way analysis of variance (ANOVA) with the Bonferroni test and Student’s
t-test. Bioinformatics analyses were performed using R statistical software (version 4.1.1).
Statistical significance was set at p < 0.05. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Non-oncology drug (meticrane)
shows anti-cancer ability in
synergy with epigenetic
inhibitors and appears to
be involved passively in
targeting cancer cells

Yulu Wang1, Amit Sharma1,2, Fangfang Ge1, Peng Chen1,
Yu Yang3, Hongjia Liu3, Hongde Liu3, Chunxia Zhao4,
Lovika Mittal5, Shailendra Asthana5

and Ingo G. H. Schmidt-Wolf1*

1Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital
Bonn, Bonn, Germany, 2Department of Neurosurgery, University Hospital Bonn, Bonn, Germany,
3State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering,
Southeast University, Nanjing, China, 4School of Nursing, Nanchang University, Nanchang, China,
5Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster,
Faridabad, Haryana, India
Emerging evidence suggests that chemotherapeutic agents and targeted

anticancer drugs have serious side effects on the healthy cells/tissues of the

patient. To overcome this, the use of non-oncology drugs as potential cancer

therapies has been gaining momentum. Herein, we investigated one non-

oncology drug named meticrane (a thiazide diuretic used to treat essential

hypertension), which has been reported to indescribably improve the

therapeutic efficacy of anti-CTLA4 in mice with AB1 HA tumors. In our

hypothesis-driven study, we tested anti-cancer potential meticrane in

hematological malignance (leukemia and multiple myeloma) and liver cancer

cell lines. Our analysis showed that: 1) Meticrane induced alteration in the cell

viability and proliferation in leukemia cells (Jurkat and K562 cells) and liver cancer

(SK-hep-1), however, no evidence of apoptosis was detectable. 2) Meticrane

showed additive/synergistic effects with epigenetic inhibitors (DNMT1/5AC,

HDACs/CUDC-101 and HDAC6/ACY1215). 3) A genome-wide transcriptional

analysis showed that meticrane treatment induces changes in the expression

of genes associated with non-cancer associated pathways. Of importance,

differentially expressed genes showed favorable correlation with the survival-

related genes in the cancer genome. 4) We also performed molecular docking

analysis and found considerable binding affinity scores of meticrane against PD-

L1, TIM-3, CD73, and HDACs. Additionally, we tested its suitability for

immunotherapy against cancers, but meticrane showed no response to the

cytotoxicity of cytokine-induced killer (CIK) cells. To our knowledge, our study is

the first attempt to identify and experimentally confirm the anti-cancer potential

of meticrane, being also the first to test the suitability of any non-oncology drug
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in CIK cell therapy. Beyond that, we have expressed some concerns confronted

during testing meticrane that also apply to other non-oncology drugs when

considered for future clinical or preclinical purposes. Taken together, meticrane

is involved in some anticancer pathways that are passively targeting cancer cells

and may be considered as compatible with epigenetic inhibitors.
KEYWORDS

meticrane, CIK cells, non-oncology drug, epigenetics, cancer
Introduction

It has been well established that while anti-cancer/

chemotherapy drugs kill cancer cells, they can also damage the

healthy cells, causing a plethora of side effects. To avoid this

collateral damage, special attention has been paid to the concept

of testing non-oncology drugs, prompting the strategy of “drug

repurposing,” i.e., drugs already approved for other diseases being

identified as potential cancer therapies (1, 2). One of the best

examples demonstrating the use of non-oncology drug

repurposing is metformin, a classic anti-diabetic drug, that has

been under intense investigation across multiple cancer types (3, 4).

Of interest is a recent article summarizing several small molecule

non-oncology drugs with therapeutic potential in cancer and

discussing their putative targets and key pathways relevant to

cancer treatment (5).

Notwithstanding all this new progress, it is still too early to

definitively assess the success of these proposed potential drugs,

although early indications point to positive results. Pushpakom and

colleagues recently discussed the challenges being faced by the

repurposing community and recommended some innovative

ways to address them (6). As a broader concept, the testing of

selective (computationally/dockings, high throughput screenings)

non-oncology drugs in diverse cancer models, and how they may

respond to individual epi(genomic) characteristics remain to be

carefully evaluated. In particular, if they can be well combined

with other clinically proven drugs/active compounds for

cancer. For instance, the combination of epigenetic drugs with

chemotherapeutic regimens has proven to be a synergistically

relevant as treatment approach (7, 8). More importantly, if the

newly selective drug is compatible with cancer immunotherapy

related approach.

Considering this, herein, we investigated one non-oncology

drug named meticrane (a thiazide diuretic used to treat essential

hypertension), which undescribably improved the therapeutic

efficacy of anti-CTLA4 in AB1-HA tumor-bearing mice (9). In

this hypothesis-driven study, we tested the anti-cancer potential

meticrane in hematological malignance (leukemia and multiple

myeloma) and liver cancer cell lines. We further extend our

analyses by assessing the additive/synergistic potential of

meticrane with two epigenetic inhibitors (DNMT1/5AC and

HDAC/CUDC-101) in these cells, which was further supported
02
by the molecular docking analysis. Besides, we evaluated the

compatibility of meticrane with cytokine-induced killer (CIK)

cells, a clinically established effective adoptive immunotherapy

approach. To our knowledge, our study is the first attempt to

identify and experimentally confirm the anticancer potential

of meticrane.
Materials and methods

Generation of PBMCs and CIKs

Both Peripheral Blood Mononuclear Cells (PBMCs) and

Cytokine-induced killer (CIK) cells were generated, as described

previously (10–13). To isolate PBMCs from healthy donors by

gradient density centrifugation, Pancoll (Pan-Biotech, Aidenbach,

Bavaria, Germany) was used. All donors included in our study were

from the blood bank of the University Hospital Bonn. To generate

CIK cells, fresh PBMCs were seeded at 3×106 cells/mL in a 75 cm2

flask and 1000 U/ml IFN-g (ImmunoTools GmbH, Aidenbach,

Bavaria, Germany) was added after 2 hours. On the following day,

50 ng/ml anti-CD3 antibody (OKT, eBioscience, Thermo Fisher

Scientific, Inc. San Diego, CA, USA), 600 U/ml IL-2 (ImmunoTools

GmbH, Aidenbach, Bavaria, Germany) and 100 U/ml IL-1b
(ImmunoTools GmbH, Aidenbach, Bavaria, Germany) were

supplemented. Both PBMCs and CIK cells were cultured in

RPMI-1640 medium (Pan-Biotech, Aidenbach, Bavaria,

Germany) supplemented with 10% FBS (Sigma-Aldrich Chemie

GmbH, Munich, Germany) and 1% penicillin/streptomycin (P/S)

(Gibco, Schwerte, Germany), at 37°C, 5% CO2, and humidified

atmosphere. CIK cells were subcultured every 2-3 days with fresh

medium supplemented with 600U/ml IL-2 (1×106 cells/ml). On

completion of 14 days of expansion, the CIK cells were collected for

the experiments.
Cell culture, meticrane compound and
epigenetic inhibitors

We utilized seven cell lines in this study. The cell lines K562,

SK-hep-1, HepG2, and CCD18co were purchased from the

American Type Culture Collection (ATCC, Manassas, Virginia,
frontiersin.org
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USA). Whereas the cell lines Jurkat, U266 and OPM2 were acquired

from the German Collection of Microorganisms and Cell Cultures

(DSMZ, Braunschweig, Germany). We cultured K562, U266,

Jurkat, and OPM2 in RPMI1640 medium (Pan-Biotech,

Aidenbach, Bavaria, Germany) supplemented with 10% FBS

(Sigma-Aldrich Chemie GmbH, Munich, Germany) and 1%

penicillin/streptomycin (P/S) (Gibco, Schwerte, Germany). While

SK-hep-1, HepG2, and CCD18co cells were maintained in EMEM

medium (Pan-Biotech, Aidenbach, Bavaria, Germany)

supplemented with 10% FBS (Sigma-Aldrich Chemie GmbH,

Munich, Germany) and 1% penicillin/streptomycin (P/S) (Gibco,

Schwerte, Germany). Meticrane (Sigma-Aldrich Chemie GmbH,

Munich, Germany) was dissolved in DMSO and stored at -20°C at a

concentration of 200mM. The HDAC inhibitor CUDC-101 (Selleck

Chemicals GmbH, Munich, Germany) and the selective HDAC6

inhibitor ACY1215 (Cayman Chemical, Ann Arbor, Michigan, US)

was dissolved in DMSO and stored at -20°C at a concentration of

50mM. Also, DNMT1 inhibitor 5-Azacytidine (5AC) (STEMCELL

Technologies Germany GmbH, Cologne, Germany) was dissolved

in DMSO and stored at -20°C at a concentration of 25mM.
Cell viability assay and cells number
counting assay

In case of suspension cells (K562, U266, OPM2, Jurkat, and

PBMCs), the cells were seeded in 96-well flat-bottom plates and

then immediately mixed with compounds (meticrane, CUDC-

101, 5AC and ACY1215). For adherent cells (SK-hep-1, HepG2,

and CCD18co), the drugs were added 4 hours later allowing the

cells to adhere first. Considering the different growth rates of

tumor cells, 0.5×104 K562 cells, 2×104 U266 cells, 2×104 OPM2

cells, 10×104 PBMCs, 0.5×104 Jurkat cells, 0.25×104 CCD18co

cells, 0.3×104 SK-hep-1 cells, and 0.3×104 HepG2 cells were

seeded. CCK8 assay (Dojindo EU GmbH, Munich, Germany)

was used to determine the cell viability according to its

manufacturer’s instructions. In addition, based on the CCK8

results, the combined effects of meticrane and HDAC inhibitors

(CUDC101, 5AC and ACY1215) were evaluated using the

formula, as described elsewhere (14):

Combination index Q 

=   KEð a + b)=(KEa  +  KEb �  KEa �  KEb)

KE represents the killing effect of drugs on cells, while a and b

represent drug a and drug b. KE(a+b) means the killing effect of

combination drug a and drug b.

According to the combination index Q value, the combined

effects of meticrane and epigenetic inhibitors on tumor cells were

classified as antagonism (< 0.85), additive (0.85 - 1.15) or synergism

(> 1.15). The live cell count was performed using the Canto II flow

cytometer (BD Biosciences, Heidelberg, Germany). Hoechst 33258

(Cayman Chemical, Ann Arbor, Michigan, US) was used to stain

dead cells, and then precision count beads (BioLegend GmbH,

Koblenz, Germany) were used to count the number of live cells.
Frontiers in Oncology 03
Cell proliferation and apoptosis assays

To assess cell proliferation, 0.25mM CFSE (Cell Trace carboxyfl

fluorescein succinimidyl ester) (Thermo Fisher Scientific, Eugene,

USA) was used to stain 1×106 cells in PBS for 20 minutes at room

temperature. While 1ul FITC-annexin (BioLegend GmbH, Koblenz,

Germany) and 1ul eBioscience™ 7-AADViability Staining Solution

(Thermo Fisher Scientific, Eugene, USA) were added to stain tumor

cells (100ul volume) for 15mins at room temperature and then were

used to assay cell apoptosis. In addition, CellEvent™ Caspase-3/7

Green Flow Cytometry Assay Kit (Thermo Fisher Scientific,

Eugene, USA) was used to further evaluate the apoptosis and

caspase 3/7 activation level. 0.5mM CellEvent™ Caspase-3/7

Green Detection Reagent and 1mM SYTOX™ AADvanced™

Dead Cell Stain were utilized to stain tumor cells at room

temperature for 1h and 5 mins respectively. In these three

experiments, 0.5×104 K562 cells, 0.5×104 Jurkat cells and 0.3×104

SK-hep-1 cells were seeded in 96-well flat-bottom plates for 3 days.

Of note, adherent cells (SK-hep-1) were added to the wells and

meticrane was added 4 hours afterwards. Flow cytometry was

performed for these three experiments.
Cytotoxicity assay of CIK cells

0.25mMCFSE was used to stain tumor cells (1×106) in 1ml PBS,

20 min at room temperature. Subsequently, 1×104 cells of K562

were seeded in 96-well flat-bottom plates and then meticrane and

10×104 CIK cells (4h co-culture time), 10×104 CIK cells (24h co-

culture time) and 20×104 CIK cells (24h co-culture time) were

added respectively. Likewise, 1×104 SK-hep-1 cells were seeded in

96-well flat-bottom plates and 4 hours later meticrane and 40×104

CIK cells (4h coculture time), 10×104 CIK cells (24h coculture time)

and 20×104 CIK cells (24h coculture time) were added. Flow

cytometry was used to test the cytotoxicity of CIKs against

tumors at 4 and 24 hours of coculture. The cytotoxicity was

calculated as following formula: cytotoxicity (%) = ((TC-TT)/TC)

×100. TC: percentage of live tumor cells in control tubes (tumor

cells alone), TT: percentage of live tumor cells in test tubes (tumor

cells + CIK cells).
RNA isolation and whole
transcriptome analysis

K562 (1×105 cells), Jurakt (1×105 cells) and SK-hep-1 (0.6×105

cells) were seeded in six well plates. As previous described,

meticrane was added promptly in K562 and Jurkat cells but in

SK-hep-1 cells, it was introduced 4h later. RNA isolation was

performed using the RNeasy plus mini kit (QIAGEN GmbH,

Hilden, Germany) following the manufacturer’s instructions.

Whole transcriptome analysis (3’-mRNA sequencing) was

performed at the NGS Core Facility in Bonn, Germany. The data

was analyzed using Histat2 (mapping tool) and EdgeR2 (differential

analysis tool). The cutoff value (logFC > 2 and FDR< 0.05) was
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applied to select the differential genes between the untreated and

treated meticrane groups. KEGG pathway enrichment analysis (R

package: clusterProfiler) were performed on the basis of based on

differential genes. The heatmap (R package: pheatmap) was used to

show the comparative analysis of differential genes between the

untreated and treated meticrane groups.
Identification of the potential
targets of meticrane

To identify potential targets of meticrane, we used previously

described methodology (15). Briefly, AML (Acute Myeloid

Leukemia) and HCC (Hepatocellular carcinoma) specific gene

expression data (log2 (FPKM+1)) (TCGA data from TCGA

database, https://portal.gdc.cancer.gov/, project:TCGA-LAML and

TCGA-LIHC) and survival data (TCGA data from Ucsc Xena

database, https://xenabrowser.net/datapages/, cohort: GDC TCGA

Liver Cancer (LIHC) and GDC TCGA Acute Myeloid Leukemia

(LAML)) were utilized to imitate the clinical model. Using the

TCGA data, we identified genes relevant to survival based on the

following criteria: KM curve (p< 0.001), Cox regression (p< 0.001) and

the difference in five-year survival between the low and high gene

expression groups of more than 10%. Based on the HR (hazard ratio)

value from the Cox regression, we further distinguish between genes

with a high risk (poor prognosis) (HR > 1) and those with a low risk

(good prognosis) (HR< 1). We then overlap differentially expressed

genes (RNA-sequence data) with prognostic genes from TCGA

patients’ data. In particular, overlapping of low risk group with up-

regulated genes and a high-risk group with down-regulated genes

induced by meticrane treatment. All the overlapping genes were used

to build protein-protein interaction (string: https://string-db.org/) and

KEGG analysis (R package: clusterProfiler).
Molecular docking and molecular
dynamics (MD) simulation

In addition, molecular docking was used to further explore the

potential targets of meticrane, particularly focusing on known

immune checkpoint (CTLA-4, PD-1, PD-L1, LAG-3, TIM-3, B7-

H4, TIGIT, CD73) and epigenetic targets (DNMT1, HDACs). For

this purpose, the crystal structures of the corresponding proteins

were first extracted from the protein database (www.rcsb.org) and

the respective proteins CTLA-4/1I8L, PD-1/4ZQK, PD-L1/6R3K,

LAG-3/7TZH, TIM-3/7M3Z, B7-H4/4GOS, TIGIT/5V52, CD73/

6TWA, DNA methyltransferase 1/3PTA, and Histone deacetylases

(HDAC2/7JS8, HDAC3/4A69, HDAC4/2VQJ, HDAC6/5EDU,

HDAC7/3ZNR, HDAC8/7JVU and HDAC10/7U3M were

identified. Since for HDACs, three small molecules bound crystal

structures were available, therefore, we used all of them to

comprehensively analyze different binding modes of ligands in

their respective pockets. The protein structures were prepared by

using the protein preparation wizard (PPW) module of maestro

(Schrodinger LLC, New York, NY, USA) was used to pre-process

the structures (16–20). Then, the ligand (meticrane) was prepared
Frontiers in Oncology 04
using Schrödinger suite (LLC, New York, NY, 2020) LIGPREP

(module of maestro), which generates tautomers, and possible

ionization states at the pH range 7 ± 2 using Epik (21) and also

generates all the stereoisomers of the compound, if necessary (16).

The optimization was done using the OPLS3 (Optimized

Potentialsfor Liquid Simulations) force field (22). Finally, Glide

module of Schrodinger was used to perform the molecular docking

and Prime MM-GBSA for binding free energy quantification. The

grids were generated using the centroid of co-crystals by using the

Receptor Grid Generation panel in Glide. The most favorable

ligand-receptor conformations for a drug complex provided by a

docking study (18). Glide is a comprehensive and systematic search

tool for the molecule of interest from the virtual libraries. The

obtained docked poses were then subjected to short MD simulations

to study their dynamicity in the pocket. Desmond v3.6 module from

Schrodinger suite was used to perform the MD simulations. The

systems were built via Systems builder using OPLS3 force field and

solvated with TIP3P water solvent model. All the complexes were

placed in the orthorhombic periodic boundary conditions with a

size of repeating buffered units at 10Å. Counter ions were also

added to neutralize the systems. An energy minimization step was

done for each system for 100ps. The NPT ensemble was employed

for the simulations with the Nose-Hover chain thermostat and the

martyna-tobias-klein barostat. RESPA integrator was used with a

time step of 0.002ps. For short range coulombic interactions, a 9.0 Å

cut-off was considered. Bonds to hydrogen were constrained using

the MSHAKE algorithm of Desmond. The coordinates were saved

at intervals of 10 ps.
Statistical analysis

All experiments were performed in triplicate and repeated

thrice. Besides, the experiments involving CIK cells were

performed with three independent donors. FACS data were

analyzed using FlowJo V10.6 software (FlowJo, LLC, Ashland,

Oregon, U.S.A.). The mean values and standard deviations were

used in the figures to demonstrate the experimental data. Also,

figures and statistical analyses including one-way or two-way

analyses of variance (ANOVA) with Bonferroni’s post-hoc test

and T-tests were performed using GraphPad Prism v.8.0

(GraphPad Soft-ware, Inc., San Diego, CA, U.S.A.). For

bioinformatic data, the statistical analyses and figures were

performed by R software. A p< 0.05 was considered as significant.

*p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001; ns: not significant.
Results

Meticrane-induced alteration in the cell
viability and proliferation is independent
from the apoptosis signaling pathway

To investigate the anticancer effect of meticrane, all cancer cells

were co-cultured with meticrane at a concentration of 0.06 to 1 mM

at 72 h. The leukemia cells (K562 and Jurkat) were found to be more
frontiersin.org
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sensitive to meticrane from 0.125 mM to 1 mM compared to the

control cells (PBMCs) (Figure 1A). The cell viability was found to be

decrease with increase in meticrane concentration in K562

(0.06mM: p=0.2384, 0.125mM: p=0.0264, 0.25mM: p=0.0323,

0.5mM: p=0.0005, 1mM: p<0.0001) and Jurkat (0.06mM:

p=0.0103, 0.125mM: p=0.0073, 0.25mM: p=0.0017, 0.5mM:

p<0.0001, 1mM: p<0.0001). However, myeloma cells (U266 and

OPM2) (Figure 1A) showed no significant difference at any

concentration compared to the controls (all p values at each

concentration were more than 0.05). Likewise, in liver cells, SK-

hep-1 cells showed significantly lower viability compared to the

control cells (CCD18co cells), whereas HepG2 cells showed no

significant difference (Figure 1B). The cell viability was found to be

decrease with increase in meticrane concentration in SK-hep-1

(0.06mM: p=0.011, 0.125mM: p=0.0025, 0.25mM: p=0.0001,

0.5mM: p<0.0001, 1 mM: p<0.0001) and HepG2 (all p values at

each concentration were more than 0.05) (Figure 1B). Considering

cell viability is directly correlated to the viable/alive cells, we next

investigated and found that the number of alive K562 cells
Frontiers in Oncology 05
(p=0.026), Jurkat cells (p=0.0013), and SK-hep-1 cells (p=0.0011)

significantly decreased in the meticrane (1mM)-treated group

compared with the untreated group after 72 h (Figure 1C),

suggesting that meticrane could reduce the number of tumor

cells. In addition, the MFI (Mean fluorescent intensity) of CFSE

(Cell Trace carboxyfl fluorescein succinimidyl ester) of K562 cells

(p<0.0001), Jurkat cells (p=0.0002), and SK-hep-1 cells (p=0.0007)

was also found to be higher in the presence of meticrane

(Figure 1D), suggesting that the proliferation of these cell were

inhibited due to meticrane. Interestingly, no significant difference

was observed between early and late apoptosis in all observed

groups of K562 cells, Jurkat cells and SK-hep-1 cells by using

Annexine V and 7AAD dyes (Figure 1E). Besides, we checked

both apoptosis and caspase 3/7 activation level potentially caused by

meticrane, and found no alterations by using CellEvent™ Caspase-

3/7 Green Flow Cytometry Assay Kit (Supplementary Figure 1).

Both two apoptosis experiments suggested that the strongly reduced

cell viability is independent of the apoptosis-related signaling

pathway. It can therefore be concluded that meticrane may
D

E

A B

C

FIGURE 1

Effect of meticrane on the cell viability, alive cell number, proliferation and apoptosis of tumor cells. (A) CCK8 assay for cell viability for leukemia cell
lines, myeloma cell lines and control cells. PBMCs (control cells), myeloma (U266 and OPM2) and leukemia (K562 and Jurkat) cells. P value were
calculated by two-way ANOVA and Bonferroni’s post-hoc test. All data were representative of at least three independent experiments (n≥3).
(B) CCK8 assay for cell viability for liver cancer cell lines and control cells. CCD18co (control cells), and liver cancer (HepG2 and SK-hep-1) cells. P
value were calculated by two-way ANOVA and Bonferroni’s post-hoc test. All data were representative of at least three independent experiments
(n≥3). (C) FASC assay for the relative alive cell number for Jurkat (left), K562 cells (middle) and SK-hep-1 cells (right). All data were representative of
three independent experiments (n=3). P value were calculated by T tests. (D) Proliferation of Jurkat (left), K562 cells (middle) and SK-hep-1 cells
(right). Data are mean ± SD of triplicate measurements; data are one representative of three independent experiments. T test were applied to
calculate the p values. MFI, Mean Fluorescent Intensity. (E) The apoptosis of K562, Jurkat and SK-hep-1 cells. All data were representative of at four
independent experiments (n=4). P value were calculated by two-way ANOVA and Bonferroni’s post-hoc test. *p< 0.05, **p< 0.01, ***p< 0.001,
****p< 0.0001, ns, no significant.
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induce the alteration of cell viability and proliferation in selected

hematologic and liver cancer cells, through independent of the

apoptosis signaling pathway.
Meticrane showed additive/synergistic
effect with epigenetic inhibitors

Whether the effects of meticrane led to the alteration in cell

viability and proliferation in leukemia cells (K562 and Jurkat) and

liver cancer cells (SK-hep-1) can be enhanced with known

epigenetic inhibitors, we assayed both the DNMT1 inhibitor

(5AC) and HDAC inhibitor (CUDC-101) in these cells for 72 h

using CCK8 assay (Figures 2A, B). To ensure consistency, meticrane

(125mM) was combined with 5AC (31.25nM-1000nM) and CUDC

-101 (6.25nM-200nM) against K562 and Jurkat cells, whereas

CUDC -101 (0.125mM-4mM) or 5AC (0.313mM-10mM) was

optimized against SK-hep-1 cells. Of interest, in all cell lines, the
Frontiers in Oncology 06
addition of 5AC in combination with meticrane showed significant

differences in Jurkat cells (all p<0.0001), K562 cells (1000nm:

p=0.0033, 31.25-500nM: all p values< 0.0001) and SK-hep-1 cells

(0.313-1.25mM: all p<0.05, 2.5mM: p=0.0014) compared to the 5AC

alone. Notably, in Jurkat cells, meticrane (125mM) in combination

with 5AC (250nM: p=0.0499, 500nM: p=0.001 and 1000nM:

p<0.0001) showed higher inhibitory effect than meticrane alone

(Figure 2A). This effect was also observed in K562 (125nM:

p=0.0104, 250nM: p=0.0004, 500nM: p<0.0001 and 1000nM:

p<0.0001) and SK-hep-1 cells (0.625mM: p=0.0006, 1.25mM-

10mM: all p<0.0001). Like 5AC, CUDC -101 also in combination

with meticrane showed significant differences in Jurkat cells

(6.25nM: p=0.0005, 12.5nM: p=0.0019, 25nM: p=0.0018, 50nM:

p=0.0221), K562 cells (6.25nM-25nM: all p<0.0001, 50nM:

p=0.0002, 100nM: p<0.0001, 200nM: p=0.0016), and SK-hep-1

cells (0.125mM: p<0.0001, 0.25mM: p=0.0001, 0.5mM: p=0.0116)

compared to the CUDC-101 alone. The higher inhibitory effect of

meticrane in combination with CUDC-101 was observed in Jurkat
A

B

C

FIGURE 2

The combination effect of meticrane with epigenetic inhibitors or CIK cells. 5AC (A) or CUDC-101 (B) were used to test the cell viability (CCK8 assay)
in Jurkat, K562 and SK-hep-1 cells. All data were representative of at least three independent experiments (n≥3). When comparing these two groups
(no meticrane group vs. combined meticrane group), p-values were calculated using two-way ANOVA and Bonferroni’s post-hoc test. When
comparing the different dose in the group with meticrane, the p-value was calculated using a one-way ANOVA and the Bonferroni post-hoc test. (C)
Cytotoxicity of CIK cells with/without meticrane against K562 and SK-hep-1 cells at 4 hours (left) and 24 hours (right) point time. Data are mean ±
SD of triplicate measurements; data are one representative of three independent experiments. T test (4h) and two-way ANOVA (Bonferroni’s post-
hoc test) (24h) were applied to calculate the p values. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. ns, no significant.
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cells (25nM: p=0.0033, 50nM-200nM: all p<0.0001), K562 (100nM:

p<0.0001, 200nM: p<0.0001) and Sk-hep-1 cells (0.125mM:

p=0.0126, 0.25mM-4mM: p<0.0001) compared to meticrane alone.

We also calculated the combination index Q values of meticrane

with different concentrations of CUDC101 or 5AC on tumor cells

(K562, Jurkat and SK-hep-1), and found mainly the additive/

synergetic effects (Tables 1, 2).
Meticrane showed no compatibility with
cytokine-induced killer cells

To further investigate the potential effect of meticrane with

immunotherapy, cytokine-induced killer cells (CIKs) were assessed

with meticrane. Meticrane (1mM) in combination with CIK cells

was tested against K562 cells and SK-hep-1 cells. In particular,

meticrane did not change the cytotoxicity of CIKs against K562 cells

(p=0.2391) and SK-hep-1 cells (p=0.424) tested at time point 4h

(Figure 2C). Due to this different sensitivity of CIKs against K562

and SK-hep-1 cells at 4h, we applied a different E/T ratio for K562

(E/T=10) and SK-hep-1 (E/T=40). Likewise, meticrane did not

change the cytotoxicity of CIKs against K562 cells (E/T=10 p=1,

E/T=20 p=0.1548) and SK-hep-1 cells (E/T=10 p=0.344, E/T=20

p=0.0673) tested at time point 24h (Figure 2C). Of note, as shown in

the tumor only group in Figure 2C at 4h and 24 time point,

meticrane alone (without CIKs) did not show cytotoxicity against
Frontiers in Oncology 07
K562 (4 hours p=1, 24 hours p=0.6757) or SK-hep-1 cells (4 hours

p=1, 24 hours p=1) at either 4 hours or 24 hours (Figure 2C).

Overall, meticrane showed no compatibility with cytokine-induced

killer cells.
Meticrane exerts no effect on
cancer-associated signaling
pathways in cancer cells

A genome-wide transcriptional analysis was performed to

investigate the transcriptional changes in the cells treated with

meticrane (Figures 3A-C). Based on differential genes between

untreated and treated meticrane groups, we obtained meticrane

induced significantly upregulated/downregulated genes from

leukemia cell lines (Jurkat: 1500 up-regulated and 1519 down-

regulated, Supplementary Table 1; K562: 1521 up-regulated and

1237 down-regulated, Supplementary Table 2) and liver cancer cell

line (SK-hep-1: 1195 up-regulated and 1557 down-regulated,

Supplementary Table 3). Using KEGG enrichment analysis to

identify the ten most enriched metabolic pathways, we found that

the leukaemia cell lines (Jurkat and K562) were highly enriched in

oxidative phosphorylation, mTOR signalling, RNA degradation and

regulation of cancer-related metabolic pathways. For the liver

cancer cell line (SK-hep-1), there was significant enrichment in

ferroptosis, focal adhesion and signaling pathways that play an
TABLE 1 Combination index Q of meticrane with CUDC101 in K562, Jurkat and SK-hep-1 cells.

Jurkat K562 SK-hep-1

meticrane CUDC101 Index Q meticrane CUDC101 Index Q meticrane CUDC101 Index Q

125mM 0nM 1.00 125mM 0nM 1.00 125mM 0mM 1.00

125mM 6.25nM 0.99 125mM 6.25nM 0.90 125mM 0.125mM 1.02

125mM 12.5nM 0.96 125mM 12.5nM 0.98 125mM 0.25mM 0.96

125mM 25nM 1.02 125mM 25nM 0.85 125mM 0.5mM 0.96

125mM 50nM 1.05 125mM 50nM 0.80 125mM 1mM 0.97

125mM 100nM 1.03 125mM 100nM 1.05 125mM 2mM 0.98

125mM 200nM 1.00 125mM 200nM 1.03 125mM 4mM 1.01
fro
TABLE 2 Combination index Q of meticrane with 5AC in K562, Jurkat and SK-hep-1 cells.

Jurkat K562 SK-hep-1

meticrane 5AC Index Q meticrane 5AC Index Q meticrane 5AC Index Q

125mM 0nM 1.00 125mM 0nM 1.00 125mM 0mM 1.00

125mM 31.25nM 1.17 125mM 31.25nM 1.39 125mM 0.313mM 1.03

125mM 62.5nM 1.14 125mM 62.5nM 1.26 125mM 0.625mM 0.99

125mM 125nM 1.06 125mM 125nM 1.05 125mM 1.25mM 1.03

125mM 250nM 1.02 125mM 250nM 1.07 125mM 2.5mM 1.02

125mM 500nM 1.03 125mM 500nM 1.03 125mM 5mM 1.00

125mM 1000nM 1.01 125mM 1000nM 0.95 125mM 10mM 1.00
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important role in cancer regulation, such as protein processing in

the ribosome and endoplasmic reticulum. Thus, meticrane showed

no direct/predominant effect on cancer-related signaling pathways

in leukemia cell lines, and a distant impact (i.e., pathways not

directly involved in cancer) to cancer in liver cancer cells.
Meticrane induced differentially
expressed genes showed association
with survival-related genes in cancer

We identified survival relevant genes for AML (high risk genes:

n=135 and low risk genes: n=35; Supplementary Table 4) and HCC

(high risk genes: n=469 and low risk genes: n=23; Supplementary

Table 5) were found using TCGA datasets. Subsequently, the low-risk

genes were correlated with the up-regulated genes induced by

meticrane (RNA-sequence) and the high-risk genes were correlated

with the down-regulated genes induced by meticrane. In this pattern,

we identified groups of overlapping genes in for AML (low-risk/up-

regulated genes: n=5; high-risk/down-regulated genes: n=21) and

HCC (low-risk/up-regulated genes: n=1; high-risk/down-regulated

genes: n=83) (Figures 3D, E; Supplementary Table 6). By combining

our in vitro data and information from TCGA’s publicly available

clinical portal, we described 110 genes (AML=26 genes; HCC=84

genes) (Supplementary Table 6) as potential targets of meticrane in

these two cancers. We then established PPI (protein-protein

interaction, cutoff interaction value: 0.4.) on these genes and found

moderate to weak interactions in HCC and AML, respectively

(Figures 3D, E). Using KEGG analysis of these selective genes, we

also found that they are specifically involved in non-cancer pathways

(Supplementary Figure 2).
Frontiers in Oncology 08
Molecular docking and molecular
dynamics (MD) simulation analysis
confirmed the binding affinity of meticrane
with known oncological targets

To further explore the potential targets of meticrane, we

performed a molecular docking analysis by aligning Meticrane

against known immune checkpoints (CTLA-4, PD-1, PD-L1,

LAG-3, TIM-3, B7-H4, TIGIT, CD73) and epigenetic targets

(DNMT1, HDACs) (Figure 4; Supplementary Figure 3). On the

basis of molecular docking followed by MM-GBSA scores, it is

evident that meticrane has considerable binding affinity against

some oncological targets such as PD-L1, TIM-3, CD73, and HDACs

(HDAC2, HDAC3, HDAC4, HDAC6, HDAC7, HDAC8 and

HDAC10) (Figure 4). Given the small size of meticrane, the

binding affinity score is considerable, suggesting that these

proteins may be possible targets. As proof of principle, we

selected HDAC6 for further analysis. Interestingly, when HDAC6

inhibitor (ACY1215) was combined with meticrane, a significantly

high impact on the viability of tumor cells (K562, Jurkat and SK-

hep-1) were observed (Supplementary Figures 4A-C). Additionally,

we found that meticrane with ACY1215 has additive/synergistic

effects against tumor cells, based on the combination index Q values

(Supplementary Figure 4D).

To extend the analysis, we also performed MD simulations and

investigated the dynamic behavior of the protein and ligands using

the RMSD parameter, in which the structural deviations in the

molecule are calculated over time with respect to the initial

structure (docked pose). The RMSD of the ligands (plateau

reached) confirms the stability of the meticran in the pocket of

each protein, suggesting that these proteins may be of interest as
DA

B

E

C

FIGURE 3

A genome wide transcriptional analysis and correlation with the patient survival. The differentially expressed genes, heat map of the 30 most important
differential genes and KEGG pathways comparing the meticrane-treated group and the meticrane-untreated group (DMSO control group) in Jurkat (A),
K562 (B) and SK-hep-1 (C). Venn diagram (left) of meticrane upregulated/downregulated genes and low/high risk genes and protein-protein interaction
(right) of overlapping genes between upregulated/downregulated genes and low/high risk genes for leukemia (D) and liver cancer (E).
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potential targets for thorough experimental validation in the future

(Supplemental Figure 5).
Discussion

Certainly, there are enormous number of chemotherapeutic

agents and targeted anti-cancer drugs, however, their side effects on

the patient’s healthy cells/tissues are not negligible. Given that the

development of new anti-tumor drugs requires extensive preclinical

and clinical studies, drug repositioning (also known as “drug

repurposing”) has emerged as a rapid alternative strategy,

particularly related to non-oncology drugs (23). Moreover, several

putative non-oncology drugs have been predicted, but their

potential as future cancer therapeutics is unknown (24). Broadly,

metformin is currently a typical example of a non-oncology

anticancer drug (25), driven by the hypothesis of reducing the

availability of glucose and insulin to slow down the tumor growth

and progression. Herein, we tested another non-oncological drug

named as meticrane, a thiazide diuretic commonly used to treat

essential hypertension. Previously, meticrane in combination with

CTLA-4 treatment was reported to improve the survival of

mesothelioma mice (9), however, the anticancer effect of

meticrane in tumors remained unexplored. In the current study,

for the first time, we investigated the anti-cancer ability of meticrane

in hematologic malignancies (myeloma and leukemia) and liver

cancer cell lines.

We first cultured meticrane with cancer cells and found that

leukemia cells (K562 and Jurkat) were more sensitive, whereas

myeloma cells (U266 and OPM2) lacked a similar response.

Similarly, some liver cancer cells (SK-hep-1) responded more

effectively to meticrane, whereas others did not (HepG2).

Notably, all the cell lines included in this study have a very

distinctive (epi-)genetic profile, e.g., K562 (adult female/53 years,

TP53 mutation), Jurkat (young male/14 years, TP53, BAX,
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NOTCH1, MSH1/6, INPP5D mutations), U266 (adult male/53

years, TP53, BRAF, TRAF3, MSH6 mutations), OPM2 (adult

female/56 years, TP53, SMAD2, CDKN2A, FGFR3 mutations),

SK-hep-1 (adult male/52 years, BRAF, CDKN2A mutations), and

HepG2 (young male/15 years, TERT, NRAS mutations). Thus, we

confirmed that meticrane indeed has an anti-cancer potential that

specifically targets certain genetic constellations. Certainly,

some discrepancies in the experiments are expected owing to

heterogeneity among cancer cell lines in addition to (epi-)

genomic factors (26). In addition, we also tested and confirmed

that meticrane has the potential to significantly reduce the number

of tumor cells and proliferation. Particularly, these effects were

validated in three cell lines (K562, Jurakt and SK-hep-1). We also

examined whether apoptosis-related signaling pathways (cell death)

might contribute to this noticeable cytotoxic effect, but confirmed

that no evidence of apoptosis was detectable in K562, Jurkat, or SK-

hep-1 cells, suggesting that it may inhibit cancer cell proliferation in

an apoptosis-independent manner. In fact, some previous evidence

suggests that a few compounds can cause cancer cell death via an

apoptosis-independent pathway (27, 28). Whether meticrane would

be of greater benefit to patients, who do not respond to clinical

drugs due to apoptosis resistance, will be of future interest.

Next, we combined meticrane with the established epigenetic

inhibitors CUCD-101 (HDACi) and 5AC (DNMTi), as epigenetic

alterations are also known to influence numerous aspects of cancer

and such inhibitors have already been tested in multiple cancer/

clinical studies (29). Noticeably, meticrane in combination with

CUDC-101 or 5AC showed a higher inhibitory effect in

hematological malignancies (K562 and Jurkat cells) and in liver

cancer (SK-hep-1) cells compared to meticrane or epigenetic

inhibitors alone. The combination of meticrane and epigenetic

inhibitors (CUDC-101 or 5AC) showed additive/synergistic effects

on K562, Jurkat and SK-hep-1 cells. Therefore, this combo

(meticrane+epigenetic inhibitors) might be a possible replacement

for toxic substances used for cancer treatment, however, in-vivo
FIGURE 4

Molecular docking analysis for meticrane. Molecular docking of meticrane on established oncological targets is shown. The bi-axis docking energy
and MM-GBSA scores (in kcal/mol) are marked. The cut-off is shown in a red dotted line. The interaction mapping of all targets with significant
docking energy and MM-GBSA scores (>= to cut-off) are highlighted. In the interaction map, the meticrane and amino acids of each protein are
shown in licorice color and colored by atoms as C: white/orange, O: red, N: blue, S: yellow, respectively. From the interaction map the aromatic
residues that appear to be essential for the binding and stability of the metachrane have been identified (highlighted with underlining).
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studies are warranted in this context. Motivated by the optimistic

results attained with a cocktail of meticrane and epigenetic

inhibitors for anticancer efficacy, we subsequently tested its

suitability for immunotherapy against cancers, in particular,

cytokine-induced killer (CIK) cell therapy. Being a pioneer of CIK

cell therapy (30), we have already demonstrated the favorable effect

of CIK cells with known cancer inhibitors (e.g. PD-1/PD-L1) (31)

and even epigenetic compounds (e.g. HDAC) (32). Intriguingly,

meticrane showed no response to the cytotoxicity of CIKs against

K562 cells and Sk-hep-1 cells over 4-24 hours of treatment. At this

point, we cannot conclude whether similar effect will also prevail for

other immunomodulatory effects of CIK cells when used under in

vivo conditions. To our knowledge, this is the very first study to test

any non-oncology drug against CIK cells. To gain better insight into

the transcriptional role of meticrane, we performed genome-wide

transcriptional analyses in both untreated and treated groups of

meticrane in Jurkat, K562 and SK-hep-1 cells. Interestingly, we

identified both up-regulated and down-regulated genes in all

experimental groups, showed no direct/predominant effect on

cancer-related signaling pathways in leukemia cell lines, and a

distant impact to cancer in liver cancer cells. This suggests that

meticrane can induce changes in cancer cells (as confirmed by the

changes in cell viability and proliferation), but in a passive manner.

As a proof of concept, we also overlap the obtained meticrane

induced differentially expressed genes with the cancer specific

survival data from the publicly available TCGA dataset and found

a correlation among them. Therefore, it is reasonable to speculate

that meticrane is involved in some anticancer pathways that are

passively involved in targeting cancer cells and may be considered

as compatible with other clinically safe drugs, particularly

epigenetic inhibitors. These findings also prompted us to conduct

molecular docking analysis in order to further explore the potential

targets of meticrane. We specifically focused on known immune

checkpoints (CTLA-4, PD-1, PD-L1, LAG-3, TIM-3, B7-H4,

TIGIT, CD73) and epigenetic targets (DNMT1, HDACs). Of

interest, we found considerable binding affinity scores of

meticrane against PD-L1, TIM-3, CD73, and HDACs. To

validate, we focused on HDAC6 for further analysis, and found a

significantly high impact on the viability of tumor cells when

HDAC6 inhibitor (ACY1215) was combined with the meticrane.

Since meticrane showed additive/synergistic effects with CUDC101,

5AC and ACY1215 in our analysis, this could partly explain its

positive molecular binding affinity with these epigenetic target

proteins. Certainly, additional analyses for other putative targets

are warranted. On a broader view, it is reasonable to speculate that

meticrane may not alter any specific cancer-related pathway, but

may exert its distant effects on the cancer cells (passively) via well-

known immune-regulatory/epigenetic signaling pathways,

preferably via targeting PD-L1, TIM-3, CD73, and HDACs.

It is equally important to address the limitations and future

prospects of our (similar) studies, for instance, 1) As we have

observed in case of meticrane, other non-oncology drugs may also

not have direct targets associated with cancer, and therefore
Frontiers in Oncology 10
experiments like RNA sequencing (whole transcriptome analysis)

studies following co-cultures in cancer cells may not be sufficient to

draw any conclusions. 2) It is entirely possible that these drugs show

anticancer activity only at high doses, so screening with variable

concentrations (min to max) is recommended. At least in the case of

meticrane, synthesis of other next-generation compounds (based on

its structure) with a stronger tendency to inhibit the proliferation of

cancer cells may solve this problem to some extent. 3) The genetic/

epigenetic background of the cancer type and even gender

differences may lead to different outcomes with these drugs in

clinics. Specifically, when it is also known about the considerable

overlapping between gene expression variation and the association

of altered mutational pathways across the cancer genome (33, 34).

Therefore, larger panels of cancer cell lines with multiple genetic

constellations are necessary to confirm their potential mode of

action. 4) Considering that cancer patients have a limited

therapeutic window, it will be a significant question to follow

whether non-oncology drugs (presumably alone) are sufficient to

prolong the survival, especially in patients without any signs of

cancer for a certain period of time after the treatment. 5) Such drugs

may not be appropriate for all cancer immunotherapy types, hence,

a critical selection of specific immunotherapy (broadly activating

the immune system and/or precisely targets of the tumor) should be

pre-addressed. Overall, we were able to show that meticrane, a non-

oncology drug, exhibits anticancer potential with epigenetic

inhibitors in-vitro, but not with cytokine-induced killer (CIK) cells.
Conclusions

Non-oncology drug (meticrane) effectively synergizes with

epigenetic inhibitors in leukemia and liver cancer cells. Though

we have demonstrated its anticancer ability, its mechanistic

inference is still unclear. In the current study, we also expressed

some important concerns encountered during the meticrane

testing, which are also relevant to other non-oncology drugs

when considering their future clinical or preclinical use.
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Owing to their functional diversity in many cancers, long noncoding RNAs
(lncRNAs) are receiving special attention. LncRNAs not only function as
oncogenes or tumor suppressors by participating in various signaling pathways
but also serve as predictive markers for various types of cancer, including acute
myeloid leukemia (AML). Considering this, we investigated lncRNAs thatmay act as
amediator between two processes, i.e., heat shock proteins and ferroptosis, which
appear to be closely related in tumorigenesis. Using a comprehensive
bioinformatics approach, we identified four lncRNAs (AL138716.1, AC000120.1,
AC004947.1, and LINC01547) with prognostic value in AML patients. Of interest,
two of them (AC000120.1 and LINC01547) have already been reported to be AML-
related, and AC004947.1 is considered to have oncogenic potential. In particular,
the signature obtained showed a lower survival probability with high-risk patients,
and vice versa. To our knowledge, this is the first predictive model of lncRNA that
may correlate with the processes of heat shock proteins and ferroptosis in AML.
Nevertheless, validation using patient samples is warranted.

KEYWORDS

acute myeloid leukemia, heat shock proteins, ferroptosis, long noncoding RNAs,
prognosis

Introduction

It has been almost two decades since gene expression-based prognostic classification has
been introduced in acute myeloid leukemia (AML). Undeniably, several approved
approaches ranging from coding (Li et al., 2020a; Li et al., 2020b) to noncoding,
including micro-RNA and long noncoding RNA (lncRNA) expression, have been
successfully used to model patients’ stratifications in AML (Wallace and O’Connell,
2017; Gourvest et al., 2019; Singh et al., 2021). This, in turn, also raises the possibility of
further integrating and understanding the unrelated molecular processes involved in
different types of cancer, including AML.

In particular, lncRNAs have received considerable attention in recent years due to their
involvement in developmental processes and various diseases, including AML. For
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instance, one study investigated the differential expression profiles
of lncRNAs in AML patients by microarray and found that
SNHG5 significantly regulates chemotherapy resistance in AML
through the miR-32/DNAJB9 axis (Wang et al., 2020).
Underexpression of LINC00649 has been reported to be an
unfavorable prognostic marker in acute myeloid leukemia (Guo
et al., 2020). Garzon et al. revealed that some deregulated lncRNAs
were associated with recurrent mutations and clinical outcome in
AML patients (Garzon et al., 2014). Serum LINC00899 was
predicted to be a potential and useful noninvasive biomarker
for the early clinical detection and prognosis of AML (Wang
et al., 2018). Interestingly, several lncRNA-based integrated
models have been developed for the stratification of AML
patients (Liu et al., 2021; Zhu et al., 2023). Recently, an
integrated prognostic signature encompassing five immune-
related protein-coding genes and an immune-related lncRNA
has been successfully constructed to predict the survival and
stratification of AML patients (Zhao et al., 2022). Notably, the
expression of heat shock proteins (HSPs) is associated with major
adverse prognostic factors in AML (Thomas et al., 2005), and some
HSP90 inhibitors have been confirmed to be effective agents
against primary AML (Flandrin et al., 2008; Lazenby et al.,
2015). Likewise, research on ferroptosis-related processes and
clinical outcomes in AML is gaining momentum (Zheng et al.,
2021; Cui et al., 2022). In addition, some pieces of evidence suggest
a link among oncogenes, HSPs, and ferroptosis. For instance,
members of the HSP family, such as HSP72/73, HSP70, and
HSP90, have been linked to TP53 mutations in numerous
cancers (Lane et al., 1993; Sun et al., 1997; Calderwood et al.,
2006). Similarly, mutations in RAS and TP53 have been
demonstrated as being associated with both HSPs and
ferroptosis (Ye et al., 2020; Chen et al., 2021).

Considering that a link between HSPs and ferroptosis in AML
has been recently suspected (Dai and Hu, 2022; Liu et al., 2022;
Aolymat et al., 2023), herein, we investigated lncRNAs that may act
as mediators between two processes like HSPs and ferroptosis in
AML. To our knowledge, this is the first computational study
integrating these two processes, i.e., HSP and ferroptosis.

Materials and methods

Data generation for AML patients from The
Cancer Genome Atlas database

Transcriptomic profiling data for AML patients were obtained
from The Cancer Genome Atlas (TCGA) database (https://portal.
gdc.cancer.gov/repository, TCGA-LAML), while clinical data
(cytogenetic risk, age, blast cells, bone marrow blast cells,
hemoglobin, leucocytes, FAB classification, and gender) and
survival data for AML patients were downloaded from UCSC
Xena (https://xena.ucsc.edu/). From the TCGA-LAML dataset, we
extracted the gene expression of 97 HSP genes (Supplementary
Table S1), 268 ferroptosis genes (Supplementary Table S1), and
lncRNAs. Overall, 150 patients were included in our study. By
overlapping gene expression data with survival data, 131 patients
were included for further analysis. Of these, 84 patients had
mutation data and 127 patients had clinical data.

Identification of HSP and ferroptosis-
associated lncRNAs (HSP/ferroptosis-
lncRNAs) and construction of a novel
prognostic signature

According to Pearson’s correlation analysis, lncRNAs related to
HSP genes (HSP-associated lncRNAs) and ferroptosis genes
(ferroptosis-associated lncRNAs) were considered on the basis of
the following standard: Pearson’s analysis: |R|>0.6 and p < 0.001.
LncRNAs overlapping between HSPs and ferroptosis-related
lncRNAs were designated as HSP-dependent and ferroptosis-
related lncRNAs (HSP/ferroptosis-lncRNAs). A total of
131 patients (gene expression and survival data were included)
were randomly assigned to a training cohort (n = 66) and a
validation cohort (n = 65). A new signature was then determined
in the training cohort using the aforementioned HSP/ferroptosis-
lncRNAs. In brief, 64 survival-related HSP/ferroptosis-lncRNAs
were determined by univariable Cox regression analysis in the
training cohort. Cox regression analysis with least absolute
shrinkage and selection operator (LASSO) was then used to
further test the survival-associated lncRNAs. Based on 10-fold
cross-validation and lambda.min values, five lncRNAs were
obtained. Multivariate Cox regression analysis based on the
minimum value of the Akaike information criterion (AIC) was
used to generate a prognostic signature of HSP/ferroptosis-
lncRNAs. The signature risk score of each patient was calculated
via the following formula: risk score = ∑n

1Coe f i × Exp ri (Coe f i �
coef f icient, Exp ri � expression value of HSP dependent ferroptosis
related lncRNA). After summarizing the risk scores for the
66 patients, the median risk score was used as a cutoff point to
classify them into high- and low-risk groups. It is worth noting that
the same cutoff value was also used in the test and overall groups. In
addition, a chi-squared test was used to confirm the unbiasedness of
the clinical baseline data between the validation (test and overall
cohorts) and training cohorts.

Evaluation of the prognostic signature of the
four lncRNAs

The training, test, and overall cohorts were assessed for
predictive ability between the high- and low-risk groups using
Kaplan–Meier (KM) curves. Receiver operating characteristic
(ROC) curves and a concordance index (C-index) were
introduced to further validate the predictive ability of the
signature in the overall cohort. The CPH function from the ‘rms’
R package was used to perform C-index analysis. Univariable and
multivariate Cox regression analyses were used to examine potential
independent predictors of survival in the overall cohort by
combining signature and clinical characteristics. In addition, this
signature was applied to the overall cohort to assess its prognostic
potential in subgroups of individual clinical characteristics. Of note,
the cutoff values for continuous clinical characteristics were age/
60 years, blast cells/median value, bone marrow/median value,
hemoglobin/median value, and leucocytes/median value,
respectively, while subgroups of the remaining clinical
characteristics were cytogenetic risk (favorable/normal vs. poor),
FAB classification (non-M3 vs. M3), and sex (male vs. female).
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Functional enrichment analysis

We compared the gene expression of the high-risk and low-risk
groups to obtain differential genes that must meet the following
criterion: false discovery rate (FDR) < 0.05 and log2-fold change
(logFC) > 1. Then, Gene Ontology (GO) enrichment analysis was
used to identify biological processes (BPs), cellular components
(CCs), and molecular functions (MFs). The Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis was used to explore
potential biological signaling pathways.

Investigating the association of immune
function, Tumor Immune Dysfunction and
Exclusion, and tumormutation burden using
the obtained signature

Single-sample gene set enrichment analysis (ssGSEA) was used
to assess the different immune functions between the high-risk and
low-risk groups. The Tumor Immune Dysfunction and Exclusion
(TIDE) score can help physicians select patients who are best-suited
to receive immune checkpoint therapy, so we calculated the TIDE
score of AML patients in TCGA. The TIDE algorithm was used to
calculate the TIDE score, and we compared the differential TIDE
values between the high- and low-risk groups using the Wilcoxon
rank-sum test. We further implemented the R package “maftools” to
visualize the mutation profiles of AML patients. The first 16 mutated

genes were TP53, TTN, IDH2, NPM1, DNMT3A, FLT3, ASXL1, KIT,
PAN2, FAT2, IDH1, IQCN, KRAS, MUC16, RUNX1, and BCORL1.
The difference in the tumor mutation burden (TMB) between the
high- and low-risk groups was compared using the Wilcoxon rank-
sum test. The differences in survival probability between the high-
TMB and low-TMB groups are also presented using KM curves. The
optimal cutoff value for the TMB was determined using the surv_
cutpoint function in R.

IC50 scores

The determination of the half-maximal inhibitory concentration
(IC50) serves as a crucial parameter for assessing the effectiveness of
and response to a drug treatment. In our study, we utilized the
“pRRophetic” package to predict the clinical chemotherapeutic
response for each sample.

Statistical analysis

Statistical analyses were performed using R software. Pearson’s
correlation analysis, LASSO Cox regression, univariable and
multivariable Cox regression, Kaplan–Meier curves, ROC curves,
C-index, and Wilcoxon rank-sum test were used to analyze our
study data. p < 0.05 was considered significant. *p < 0.05; **p < 0.01;
and ***p < 0.001; ns: not significant.

FIGURE 1
Study flowchart for our analysis. TCGA: The Cancer Genome Atlas; KM curve: Kaplan–Meier curve; ROC: receiver operating characteristic; C-index:
concordance index; GO/KEGG: Gene Ontology/Kyoto Encyclopedia of Genes and Genomes; TIDE: Tumor Immune Dysfunction and Exclusion; and
TMB: tumor mutation burden.
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Results

Establishing a signature from HSP/
ferroptosis-associated lncRNAs (HSP/
ferroptosis-lncRNAs) in AML patients

The flowchart of this study is given in Figure 1.We extractedHSP,
ferroptosis, and lncRNA gene expression from the RNA-seq data of
AML patients from the TCGA database. Using Pearson’s correlation
analysis (|R|>0.6 and p < 0.001), 713 lncRNAs associated with HSP
genes and 1,537 lncRNAs associated with ferroptosis genes were
identified (Supplementary Table S2, 3). Overlapping 526 lncRNAs
from the HSP-associated and ferroptosis-associated lncRNAs were
determined as HSP/ferroptosis-lncRNAs (Supplementary Table S4).
Subsequently, 131 patients (gene expression and survival data) were
randomized to the training and test cohorts in a 1:1 ratio. We then

determined the prognostic signature in the training group. First, in
combination with survival data, we used univariable Cox regression to
find the top 64 lncRNAs that were associated with survival time
(Supplementary Table S5). To further test the lncRNAs for survival,
we used LASSO Cox regression and obtained five lncRNAs
(AL138716.1, AC000120.1, AC004947.1, AC020934.2, and
LINC01547) (Supplementary Figure S1). In addition, multivariate
Cox regression analysis was performed to generate a novel prognostic
signature containing four lncRNAs associated with HSP/ferroptosis
(AL138716.1, AC000120.1, AC004947.1, and LINC01547) (Table 1).
As shown in Supplementary Table S6, all clinical factors were
unbiasedly distributed between the training and test cohorts, which
was confirmed by using the chi-squared test method (p-values >0.05).

Evaluating and confirming the prognosis of
the signature

We calculated the risk score of each patient using the
formula given in Materials and Methods. According to the
median value of the risk score of the patients in the training
cohort, we classified the patients in the three cohorts (training,
test, and overall cohorts) into high- and low-risk groups. The
risk level, survival status, and survival time between the high-
and low-risk groups in these three cohorts are shown in Figure 2
and Supplementary Figure S2. The expression of the four

TABLE 1 Multivariate Cox regression analysis.

LncRNA Coefficient

AL138716.1 −0.936

AC000120.1 −1.149

AC004947.1 0.658

LINC01547 0.798

FIGURE 2
Establishment of a prognostic HSP/ferroptosis-lncRNA signature. (A) Survival time, risk score, and heatmap for the overall cohort. (B) KM survival
curve for AML patients in the overall cohort. (C) C-index analysis for the risk score (based on the signature) and clinical characteristics. (D) ROC curves of
the risk score (based on the signature) and clinical characteristics (left) and ROC curves for risk score (based on the signature) at different time points (1, 3,
and 5 years) in the overall cohort. (E) Multivariate Cox regression analysis. (F) PCA of the HSP/ferroptosis-lncRNA signature.
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lncRNAs associated with HSP and ferroptosis for each patient in
the different cohorts is shown as a heatmap (Figure 2A and
Supplementary Figure S2A). Survival analysis (KM method)
showed that the OS of the low-risk group was longer than
that of the high-risk group in the training cohort (p < 0.001),
test cohort (p = 0.046), and overall cohort (p < 0.001) (Figure 2B
and Supplementary Figure S2B). The prognostic significance of
the signature was further confirmed using the ROC curve and
C-index analysis in the overall cohort. As shown in Figure 2C,
the risk score based on our signature and age showed values
greater than 0.65 for the C-index method, and the risk score is
higher than the age. Moreover, compared with other clinical
characteristics, the risk score has the highest AUC (0.741) in the
ROC curve (Figure 2D). In addition, the AUC values of the ROC
curve at different time points were all above 0.700 at 1 year
(AUC = 0.741), 3 years (AUC = 0.719), and 5 years (AUC =
0.783) (Figure 2D). Thus, the signature represents a robust
model for predicting survival in AML patients.

Univariable cox regression was used to confirm that the risk
score (based on the signature), FAB classification, and age are
factors that can predict survival in AML patients (Supplementary
Figure S2C). In addition, by combining the risk score (signature-
based) and clinical characteristics, we confirmed the risk score and
age to be independent predictors of survival in AML patients using
multivariate Cox regression (Figure 2E). PCA was then performed
to test the ability to cluster the high- and low-risk patients in
different groups including the HSP/ferroptosis-lncRNA signature,
overall gene expression profile, HSP genes, HSP-associated
lncRNAs, ferroptosis genes, ferroptosis-associated lncRNAs, and

HSP-associated and ferroptosis-associated lncRNAs.
Supplementary Figure S3 and Figure 2F show that the HSP/
ferroptosis-lncRNA signature group showed a significant
distribution between the high- and low-risk subgroups, whereas
the other groups were relatively dispersed between the high- and
low-risk subgroups. These results showed that the prognostic
signature can discriminate well between high- and low-risk
groups.

Given that elderly patients, patients with high leukocyte value
and/or poor cytogenetics risk, etc., have poor prognosis in clinic,
we further assessed the predictive ability of the obtained signature
in clinical subgroups using KM curves (Figure 3). We divided the
clinical characteristics into the following subgroups: sex (male and
female), age (≥60 and <60), FAB (M3 and non-M3) and
cytogenetic risk (favorable + normal and poor), blast cells (high
and low), bone marrow blast cells (high and low), hemoglobin
(high and low), and leucocytes (high and low). Of note, the
classification of blast cells, bone marrow blast cells,
hemoglobin, and leucocytes into high and low groups was
based on their median value. After applying the obtained
signature to classify the patients into low and high risk, the
differential survival probability between low- and high-risk
patients was shown as gender (male, p = 0.001), gender
(female, p = 0.016), age (≥60, p < 0.001), age (<60, p = 0.024),
FAB (M3 group, p = 0.198), FAB (non-M3, p = 0.002), cytogenetic
risk (favorable + normal, p = 0.002), cytogenetic risk (poor, p =
0.008), blast cells (high, p = 0.005), blast cells (low, p = 0.006),
bone marrow blast cells (high, p = 0.087), bone marrow blast
cells (low, p < 0.001), hemoglobin (high, p < 0.001), hemoglobin

FIGURE 3
Evaluating the predicting ability of the obtained signature in clinical subgroups using KM curves.
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FIGURE 4
Functional enrichment and immune and mutation-associated analysis. (A, B) GO and KEGG enrichment analysis. (C, D) Differential immune
indicators and TIDE scores between low-risk and high-risk groups based on the obtained signature. (E)Waterfall plot showing the mutation landscape of
high-risk and low-risk group AML patients. (F) Difference in the TMB between high-risk and low-risk groups. (G) Survival probability between high- and
low-expression TMB.

FIGURE 5
Distribution of IC50 scores of targeted drugs in different HSP-ferroptosis-related lncRNA risk groups. (A) 17-AAG, (B) axitinib, (C) CGP-60474, (D)
CP466722, (E) crizotinib, (F) cytarabine, (G) GDC0449, (H) GNF-2, (I) GSK429286A, (J) NG-25, (K) NPK76-II-72–1, (L) NSC-207895, (M) PF-4708671, (N)
TGX221, (O) TL-2-105, (P) tubastatin A, and (Q) ZM-447439.
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(low, p = 0.241), leucocytes (high, p = 0.781), and leucocytes
(low, p < 0.001) in Figure 3. Overall, the signature has prognostic
ability in most clinical subgroups.

Correlation of functional enrichment,
immune function, mutations, and TIDE
analysis with the obtained signature

To elucidate the relationship between the signature and
potential function (BP, CC, MF, and pathway), we performed
functional enrichment analysis using the GO and KEGG method
(Figures 4A,B). Interestingly, the enrichment analysis revealed the
involvement of many immune-related BPs, MFs, and pathways for
the signature. To examine changes in immune markers between the
high- and low-risk groups based on our signature, we used the
ssGSEA and Wilcoxon rank-sum test (Figure 4C). The results
showed that APC inhibition/stimulation, interferon (IFN) type
I/II responses, chemokine receptor (CCR), para-inflammation,
human leukocyte antigen (HLA), major histocompatibility
complex (MHC) class I, checkpoint, T-cell stimulation, and
promotion of inflammation were significantly more active in the
high-risk group than in the low-risk group. Thus, this signature is
implicated in the immune progression/functioning in AML patients.
Considering this, we further investigated the association of the
immune checkpoint blockade with the signature using TIDE
analysis (Figure 4D). The high-risk group showed a high TIDE
score compared to the low-risk group, suggesting a lower sensitivity
to immune checkpoint inhibitors in the high-risk group, which
could help in predicting ICI treatment in the clinic for patients
classified based on the signature.

Given that gene mutations are an important part of AML, we
analyzed the mutation data in our study. The 16 most mutated genes
from 84 samples (samples that contained gene mutation data) were
used in a high-risk group (48 samples) and a low-risk group
(36 samples) to assess the differential mutation landscapes, as
shown in Figure 4E. In particular, the mutation rates of the
NPM1 and RUNX1 genes in the high-risk group and the
IDH2 gene in the low-risk group were 10%, 10%, and 14%,
respectively. As shown in Figure 4F, the TMB estimates in the
low-risk group exceeded those in the high-risk group (p = 0.0076).
However, there was no difference in survival time between the high-
and low-risk groups with respect to the TMB (Figure 4G).

IC50 scores

In our study, we examined the differences in the IC50 scores for
chemotherapy between high- and low-risk groups based on the
obtained signature. Specifically, we observed that the IC50 values for
axitinib, CP466722, crizotinib, cytarabine, GNF-2, GSK429286A, NK-
25, NPK76-II-72–1, NSC-207895, PF-4708671, TL-2-105, tubastatin,
and ZM-447439 were higher in the high-risk group. Conversely, the
IC50 values for 17-AAG, CGP-60474, GDC0449, and TGX221 were
lower in the high-risk group (Figure 5). These findings support the
notion that there is a statistically significant difference in the
distribution of IC50 values for targeted agents among high- and
low-risk groups based on the obtained signature.

Discussion

Although studies in recent decades have improved our
understanding of AML, the underlying pathogenesis of this lethal
disease has not yet been fully elucidated. With the development of
NGS technologies, more and more AML-related mechanisms have
emerged, including the eventual contribution of long noncoding RNAs
(lncRNAs) (Mer et al., 2018; Liu et al., 2019; Mishra et al., 2022). In fact,
several studies have established lncRNA-based prognostic models for
clinical characterization in AML patients (Zhao et al., 2021; Ding et al.,
2022; Li et al., 2022; Zhang et al., 2022). Independently, an association of
HSPs (Li and Ge, 2021) and ferroptosis-related lncRNAs (Zheng et al.,
2021) has been demonstrated in AML. Given that HSPs and ferroptosis
appear to be closely linked to tumorigenesis (Liu et al., 2022), using a
comprehensive bioinformatics approach, we sought to identify
lncRNAs that may overlap with these processes with predictive
relevance for AML patients.

To determine this, we extracted the HSP-, ferroptosis-, and
lncRNA-related gene expression data of AML patients using
the TCGA database. Using Pearson’s correlation analysis, we
identified overlapping lncRNAs (termed HSP/ferroptosis-
lncRNAs), and subsequent analysis revealed four lncRNAs
associated with HSP/ferroptosis genes (AL138716.1, AC000120.1,
AC004947.1, and LINC01547) as a prognostic signature. In
particular, AC000120.1 has been recently reported in a prediction
model based on seven cuproptosis-related lncRNAs for AML
prognosis (Zhu et al., 2023). Similarly, LINC01547 has been
reported in m6A-related lncRNAs associated with prognosis and
immune response in AML patients (Li et al., 2021). While
AC004947.1 has shown oncogenic potential (Zhao et al., 2020),
AL138716.1 has not yet been reported in studies. Notably, when
we tested the obtained signature to classify AML patients, we
found that high-risk patients had a lower survival probability
compared to the low-risk group, indicating the prognostic ability of
the signature in AML, and the following analysis confirms that the
signature is a robust independent factor for AML patients. In addition,
the prognostic ability also presents its potential predicting ability in
different clinical subgroups.

Both GO and KEGG analysis provided immune-related evidence in
AML. Some immune indicators in possible different between low-risk
and high-risk group.Moreover, the high-risk group showed a highTIDE
score, indicating a lower sensitivity to immune checkpoint inhibitors in
the high-risk group, potentially helping to predict ICI treatment in the
clinic for patients classified on the basis of the signature. Overall, these
lines of evidence revealed the relation of the obtained signature with
immune response. The differential landscapes of gene mutation and
tumor mutational burden were found between high- and low-risk
groups, which may partly contribute to the prognostic ability of our
signature. Furthermore, our study contributes valuable insights into the
varying treatment sensitivity among AML patients by conducting drug
sensitivity analysis for the high-risk and low-risk groups based on the
HSP–ferroptosis–lncRNA status.

It is also worth noting the limitation to this study, as the analysis
relies purely on comprehensive bioinformatics and requires effective
experimental validation. Nevertheless, two out of four lncRNAs in
our signature have been proven in AML, thus providing evidence
that our predictive model of lncRNA may correlate with the
processes of HSPs and ferroptosis in AML.
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Simple Summary: Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer,
which is more prevalent in adults. Herein, we established the first immuno-autophagy-related long
non-coding RNA (IARlncRNA) signature displaying a prognostic ability among HCC patient groups.

Abstract: Background: The dysregulation of autophagy and immunological processes has been linked
to various pathophysiological conditions, including cancer. Most notably, their particular involvement
in hepatocellular carcinoma (HCC) is becoming increasingly evident. This has led to the possibility
of developing a prognostic signature based on immuno-autophagy-related (IAR) genes. Given that
long non-coding RNAs (lncRNAs) also play a special role in HCC, a combined signature utilizing IAR
genes and HCC-associated long noncoding RNAs (as IARlncRNA) may potentially help in the clinical
scenario. Method: We used Pearson correlation analysis, Kaplan–Meier survival curves, univariate and
multivariate Cox regression, and ROC curves to generate and validate a prognostic immuno-autophagy-
related long non-coding RNA (IARlncRNA) signature. The Chi-squared test was utilized to investigate
the correlation between the obtained signature and the clinical characteristics. CIBERSORT algorithms
and the Wilcoxon rank sum test were applied to investigate the correlation between signature and
infiltrating immune cells. GO and KEGG analyses were performed to derived signature-dependent
pathways. Results: Herein, we build an IAR-lncRNA signature (as first in the literature) and demon-
strate its prognostic ability in hepatocellular carcinoma. Primarily, we identified three IARlncRNAs
(MIR210HG, AC099850.3 and CYTOR) as unfavorable prognostic determinants. The obtained signature
predicted the high-risk HCC group with shorter overall survival, and was further associated with
clinical characteristics such as tumor grade (t = 10.918, p = 0.001). Additionally, several infiltrating
immune cells showed varied fractions between the low-risk group and the high-risk HCC groups in
association with the obtained signature. In addition, pathways analysis described by the signature
clearly distinguishes both risk groups in HCC. Conclusions: The immuno-autophagy-related long
non-coding RNA (IARlncRNA) signature we established exhibits a prognostic ability in hepatocellular
carcinoma. To our knowledge, this is the first attempt in the literature to combine three determinants
(immune, autophagy and LnRNAs), thus requiring molecular validation of this obtained signature in
clinical samples.

Keywords: liver cancer; hepatocellular carcinoma; lncRNAs; autophagy; biomarker; kyoto encyclopedia
of genes and genomes; prognosis; signature; immune genes
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1. Introduction

Autophagy as a conserved process captures and degrades intracellular components
primarily to maintain metabolism and cellular homeostasis. Dysregulation of this process
has been linked to several pathophysiological conditions, such as cancer and neurodegen-
erative diseases [1,2]. Particularly in hepatocellular carcinoma (HCC), autophagy has been
shown to play a role by promoting the metastatic colonization of HCC cells [3].

HCC, the most common malignancy of the liver, is currently the fourth leading cause
of cancer-related death worldwide [4]. Primary risk factors for the development of HCC
include chronic liver disease and cirrhosis, most of which are caused by chronic viral
hepatitis (B + C) and excessive alcohol consumption. Several genetic and epigenetic factors
have also been implicated in the molecular pathogenesis of HCC [5]. Considering the
overlap of mutational pathways in cancers [6], studies have also prompted the analysis of
the prognostic potential of certain genes across the spectrum of multiple cancers, including
HCC [7]. Likewise, the relative contribution of autophagy in HCC is becoming increasingly
apparent; for instance, Wu et al. showed that autophagic degradation machinery and the
cell-cycle regulator cyclin D1 are linked to HCC tumorigenesis [8]. It has also been discussed
that activation of autophagy decreases the expression of oncogenic microRNA-224, and thus
impedes tumorigenesis in hepatitis B virus-related HCC [9]. Of interest, several compounds
have been shown to exert antitumor effects in liver cancer via autophagy [10–12]. In the
context of autophagy-related genes (ATG), lower expression was previously observed in
HCC, which was predicted to contribute to tumor growth and the poor prognosis of the
disease [13,14]. Of interest, there have been few recent attempts to identify a prognostic
signature of ATGs in HCC [15,16]. Besides this, immunoautophagy-related genes (IARGs)
were also recently evaluated for their potential prognostic significance in HCC patients [17].
Considering that long non-coding RNAs (lncRNAs) also play a special role in cancer, their
ability to regulate tumor growth by modulating autophagy in liver, bladder, and pancreatic
cancers has already been implicated [18,19]. In HCC, a study discussed the potential
involvement of lncRNA HULC (highly upregulated in liver cancer) in the autophagy and
chemoresistance of HCC cells [20]. Similarly, the lncRNA SNHG1 has been shown to
induce resistance to the drug sorafenib in HCC through activation of the Akt pathway [21].
Recently, the prognostic value of an autophagy-related lncRNA signature in HCC has been
discussed [22].

Considering this plethora of literature, we have attempted to combine immune-,
autophagy, and noncoding RNAs to generate immunoautophagy-related long noncoding
RNA (IAR-lncRNA). Herein, we build an IAR-lncRNA signature (first in the literature) and
demonstrate its prognostic ability in hepatocellular carcinoma.

2. Materials and Methods
2.1. Gene Expression Data and Clinicopathological Characteristics

Gene expression data (workflow type: HTSeq—FPKM) and associated clinical infor-
mation of patients with hepatocellular carcinoma of the liver (HCC) were downloaded from
UCSC Xena (https://xena.ucsc.edu/, accessed on 22 October 2021). The reference database
was the GDC TCGA Liver Cancer (LIHC) dataset, which contains 374 tumor samples with
comprehensive gene expression data. Of these, 371 samples were from primary tumors
(mainly used in this study), and the remaining 3 samples were from recurrent tumors
(3 samples from 2 patients), which were excluded from the analysis. Only 365 samples
have both gene expression data and survival data (survival time and survival status).
Based on the available clinical characteristics, only 163 samples were further processed for
the clinical comparisons. In total, 210 genes involved in autophagy were retrieved from
the Human Autophagy Database (HADb, http://autophagy.lu/clustering/index.html,
accessed on 22 May 2021). A total of 1344 immune-related genes were retrieved from
Immport Shared Data (https://www.immport.org/shared/home, accessed on 27 June
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2021). We focused our analysis on 371 HCC samples, excluding recurrent samples due
to their peculiar clinical/biological characteristics. Log2(FPKM + 1) gene expression data
were applied to obtain AR genes, IR genes and lncRNAs. Due to the sizes of genes and
lncRNAs, the average gene expression (log2(FPKM + 1)) of AR genes and IR genes (no
more than 0) and lncRNAs (no more than 0.5) was excluded. Log2 was further applied for
the gene expression data (log2(FPKM + 1)) in order to obtain fitting normalized distribution.
Since lncRNAs were expressed at relatively low levels, the correlation of gene (AR and IR)
expression (Log2(log2(FPKM + 1) + 1)) and lncRNA expression (log2(FPKM + 1)) was used
to establish AR- and IR-related lncRNAs. LncRNA expression (Log2(log2(FPKM + 1) + 1))
data were subsequently used in statistical analyses.

2.2. Development of the Prognostic Immuno-Autophagy-Related lncRNAs Signature

Univariate Cox regressions were applied to select survival-related autophagy genes
and immune genes, which were based on p-values < 0.01. Then the correlation between
lncRNAs and survival-related autophagy genes was determined by Pearson correlation
analysis. LncRNAs with correlation coefficients |R| > 0.4 and p values < 0.01 were consid-
ered autophagy-related. The correlation between lncRNAs and survival-related immune
genes was determined by Pearson correlation analysis. LncRNAs with correlation coeffi-
cients |R| > 0.6 and p values < 0.01 were defined as immune-related. Thus, we obtained
autophagy-related lncRNAs (ARlncRNAs) and immune-related lncRNAs (IRlncRNAs) for
the further steps. Next, we determined the lncRNA was associated with immunoautophagy
(IARlncRNA) if the lncRNA belonged to both ARlncRNAs and IRlncRNAs concurrently.
Then, univariate Cox regression was performed to select survival-related IARlncRNA. Sub-
sequently, multivariate Cox regression analysis was performed based on the lowest Akaike
information criterion (AIC) to determine the optimal prognostic signature. Risk scores were
calculated using the following formula: (βgene 1 × expgene 1) + (βgene 2 × expgene 2)
+ --- + (βgene n × expgene n). Here, expgene represents the expression of lncRNA. Of
note, the cutoff value for the high-risk group and the low-risk group was the median risk
score. The differential expressions of the lncRNAs in signature between high- and low-risk
groups were assessed by Wilcoxon rank sum test.

2.3. Prognostic Ability of Immuno-Autophagy-Related lncRNAs Signature

The Kaplan–Meier survival curve was applied to investigate the survival rate between
high-risk and low-risk groups, and p < 0.05 was considered as a significant difference.
Subsequently, an ROC curve was performed to test the predicting value of the signature.
Univariate Cox regression and multivariate Cox regression were used to assess the inde-
pendent ability of the signature, primarily based on p < 0.05 when clinical features (age,
gender, Child–Pugh classification, AFP, fibrosis, grade and stage) were considered.

2.4. Correlation between Immune Cells and Signature

CIBERSORT analysis was performed to explore the percentages of 22 immune cells in
each patient. Wilcoxon rank-sum test was used to determine the varying of immune cells
in low- and high-risk groups (p < 0.05).

2.5. GO and KEGG Analysis

Differential genes were found between the low-risk group and the high-risk group
based on log2 fold change (logFC) > 1 and false discovery rate (FDR) < 0.05 using the
Wilcoxon rank sum test. Subsequently, these genes were included in GO and KEGG
analyses using the R package “clusterProfiler” to explore pathways, which were selected
with a q value < 0.05.

2.6. Statistical Analysis

Pearson correlation analysis, Chi-squared test, Wilcoxon rank sum test, Cox regression,
Kaplan–Meier curves, survival status, heat map, ROC curve, cibersort algorithm, GO
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analysis and KEGG analysis were performed using R software. The coexpression network
between genes (ARgenes and IRgenes) along with an lncRNA coexpression network was
illustrated using CYTOSCAPE software.

3. Results
3.1. Correlating Autophagy-Related Genes and Immune-Related Genes with lncRNAs

We first derived autophagy-related genes from the Human Autophagy Database (HADb,
http://autophagy.lu/clustering/index.html, accessed on 22 May 2021) and immune-related
genes from the Immport Shared Data (https://www.immport.org/shared/home, accessed
on 27 June 2021). Subsequently, the gene expression datasets of LIHC (GDC TCGA Liver
Cancer (LIHC)) were downloaded from the UCSC Xena. Next, we extracted the lncRNA
genes, autophagy-related (AR) genes and immune-related (IR) genes corresponding to HCC
from the TCGA data. First, univariate Cox regressions were performed to select survival-
related AR genes and IR genes. Subsequently, Pearson correlation was used to confirm
the correlation between autophagic genes and lncRNA (|R| > 0.4 and p-value < 0.01),
in addition to the correlation between immune-related genes and lncRNA (|R| > 0.6
and p-value < 0.01). Using these parameters, a total of 244 ARlncRNAs (Supplementary
File S1) and 36 IRlncRNAs (Supplementary File S2) was identified. When combined, the
ARlncRNAs and IRlncRNAs yielded 36 IARlncRNAs. The overview of the complete
strategy is shown in a flowchart (Figure S1).

3.2. A Signature Involving 3 Immuno-Autophagy-Related lncRNAs with Prognostic Potential

The aforementioned 36 immuno-autophagy-related lncRNAs were analyzed in com-
bination with clinical survival data. Univariate Cox regression analysis was performed
with a p-value of less than 0.01, resulting in the mapping of 10 lncRNAs (BACE1-AS,
MIR210HG, AC073896.4, AC099850.3, AC026401.3, MAPKAPK5-AS1, LINC01018, CYTOR,
AC115619.1, and F11-AS1) (Figure 1A). In addition, we used a multivariate Cox regres-
sion analysis based on the lowest Akaike information criterion (AIC) to determine the
β-values that were subsequently used to calculate the risk scores. The analysis revealed
three immunoautophagy-related lncRNAs (MIR210HG, AC099850.3, and CYTOR) as the
strongest candidates with prognostic potential (Table S1). The correlation between the
IARlncRNA of the obtained signature and the genes (AR genes and IR genes) is shown
in Figure 1C. Of interest, all these genes showed high expression in the high-risk group
(Figure 1B), and were considered unfavorable prognostic determinants (Figure 1D).

3.3. Validating the Prognostic Potential of Immuno-Autophagy-Related lncRNA Signature in Low-
and High-Risk HCC Groups

Next, we determined the functionality of the obtained signature within the low-risk
group and high-risk group HCC patients (Figure 2). The scatter plot shows that both
survival rates and survival time were lower in the high-risk group compared to the low-
risk group (Figure 2A).

Additionally, an expression pattern between lncRNAs and signature risk was observed
in the heat map (Figure 2A). The Kaplan–Meier survival curve showed a significant differ-
ence in overall survival between the low-risk and high-risk groups (Figure 2B). Notably,
the high-risk group showed shorter overall survival compared with the low-risk group.
In addition, we performed univariable (Figure 2C) and multivariable Cox (Figure 2D)
regression analyses to identify independent prognostic factors with clinical characteristics,
and found that age, stage, and risk score were independent predictive determinants of
survival in HCC patients. Additionally, an ROC curve was used to confirm the model, for
which the AUC values of the risk score for the prediction times of 1, 2, and 3 years were
0.746, 0.700, and 0.674, respectively, for each prediction time (Figure 2E).
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Figure 1. Identification of immuno-autophagy-related lncRNAs with prognostic potential. (A) Univariate Cox regression 
analysis: ten survival-related IARlncRNAs. (B) A network of prognostic lncRNA (black nodes) with co-expressed genes 
(green) in HCC. (C) The differential gene expression of IARlncRNAs between high- and low-risk groups. (D) Kaplan–
Meier survival curves for 3 IARlncRNAs (MIR210HG, AC099850.3, and CYTOR) associated with HCC. *** p < 0.001 

  

Figure 1. Identification of immuno-autophagy-related lncRNAs with prognostic potential. (A) Univariate Cox regression
analysis: ten survival-related IARlncRNAs. (B) The differential gene expression of IARlncRNAs between high- and low-risk
groups. (C) A network of prognostic lncRNA (black nodes) with co-expressed genes (green) in HCC. (D) Kaplan–Meier
survival curves for 3 IARlncRNAs (MIR210HG, AC099850.3, and CYTOR) associated with HCC. *** p < 0.001.
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3.4. Association of Immuno-Autophagy-Related lncRNA Signature with Clinical Characteristics

To determine the association between immuno-autophagy-related lncRNA signa-
ture and clinical characteristics, we divided each feature into two groups, such as age
(over/under 65 years), gender (male/female), grade (GI–G2/G3–G4), stage (I–II/III–IV),
Child–Pugh classification (A/B + C), AFP/alpha-fetoprotein (over/under 400 ng/mL) and
fibrosis (with/without) status of patients (Table 1). The analysis showed that a high-risk
score was associated significantly with the higher grade (t = 10.918, p = 0.001).

Table 1. The relation between risk of signature with clinical features.

Risk Total High Risk Low Risk t p Value

Age <65 95 (58.28%) 46 (63.89%) 49 (53.85%) 1.280 0.258
≥65 68 (41.72%) 26 (36.11%) 42 (46.15%)

Gender Female 50 (30.67%) 24 (33.33%) 26 (28.57%) 0.234 0.629
Male 113 (69.33%) 48 (66.67%) 65 (71.43%)

Child–Pugh A 147 (90.18%) 64 (88.89%) 83 (91.21%) 0.053 0.819
B + C 16 (9.82%) 8 (11.11%) 8 (8.79%)

AFP ≥400 30 (18.4%) 17 (23.61%) 13 (14.29%) 1.748 0.186
<400 133 (81.6%) 55 (76.39%) 78 (85.71%)

Fibrosis Fibrosis 113 (69.33%) 50 (69.44%) 63 (69.23%) 0 1
No Fibrosis 50 (30.67%) 22 (30.56%) 28 (30.77%)

Grade G1–G2 99 (60.74%) 33 (45.83%) 66 (72.53%) 10.918 0.001 **
G3–G4 64 (39.26%) 39 (54.17%) 25 (27.47%)

Stage Stage I–II 131 (80.37%) 57 (79.17%) 74 (81.32%) 0.021 0.885
Stage III–IV 32 (19.63%) 15 (20.83%) 17 (18.68%)

** p < 0.01.

3.5. Association of Infiltrating Immune Cells and Obtained Signature

Considering the obtained signature involved both immune and autophagy deter-
minants, its relationship with immune infiltration cells was investigated. The relative
percentages of 22 immune cells in each patient are shown in Figure S2. The distribution of
these cells in risk groups is shown in Figure 3A. The Wilcoxon rank sum test was applied
to determine the difference between each immune cell in the low- and high-risk groups
(Figure 3B). Interestingly, B cells (naïve, p < 0.01; memory, p < 0.01), T cells CD4 memory
(resting, p = 0.007; activated, p < 0.001), T cells follicular helpers (p < 0. 001), NK cells
resting (p = 0.018), macrophages M0 (p < 0.001), macrophages M2 (p = 0.034) and mast cells
resting (p = 0.015) were significantly different between low- and high-risk groups.

3.6. GO and KEGG Pathway Enrichment Analysis of the Obtained Signature

We further investigated the cellular and molecular pathways associated with the
obtained signature. The differential genes between high- and low-risk groups are listed
in Supplementary File S3. The biological/cellular processes obtained from GO analysis
(Figure S3) show that the signature is mainly associated with mitosis and chromosome segre-
gation. Additionally, the molecular function of the signature was related to tubulin binding
and kinase activity. The KEGG analysis shows that the signature is clearly associated with
seven signaling pathways, including cell cycle, oocyte meiosis, progesterone-mediated
oocyte maturation, p53 signaling pathway, human T-cell leukemia virus 1 infection, cellular
senescence, and human immunodeficiency virus 1 (Figure 3C).
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Figure 3. The relationship between immuno-autophagy-related lncRNA signature, infiltration immune cells and potential
pathways. (A) Heatmap of 22 immune cells in high/low-risk group. (B) The fractions of immune cells in high- and low-risk
group. (C) KEGG analysis.

4. Discussion

Cancer is a relatively complex disease [6,23], driven primarily by genetic/epigenetic
processes that help these cells to proliferate and fuel cancer progression. Overall, the
dynamics of dysregulated mechanisms involving several key cellular signaling pathways
act as a critical factor for the slow to fast progression of this disease. Among them,
autophagy and immune-related processes also play a crucial role in both promoting and
suppressing tumor growth. Likewise, the peculiar contribution of long non-coding RNA
(IARlncRNA) can also not be excluded. To date, several prognostic signatures involving
autophagy-related (AR) and immune-related (IR) genes have been shown [24–26], and
some have even attempted to combine them with lncRNAs [27,28]. However, to date, no
combinatorial signature utilizing IR, AR and lncRNAs has been shown.

With a special focus on hepatocellular carcinoma (HCC), herein, we sought to investi-
gate a possible immuno-autophagy-related long non-coding RNA (IARlncRNA) signature,
primarily to predict survival in HCC patients. At first, we selected survival-related IR
and AR genes, and combined them lncRNAs to identify ARlncRNAs and IRlncRNAs
datasets. Following this, specific sets of ARlncRNAs (n = 244) and IRlncRNAs (n = 36)
were generated, and then a preliminary signature of IARlncRNAs (n = 36) was derived
from the aforementioned data sets. Among them, 10 IARlncRNAs (BACE1-AS, MIR210HG,
AC073896.4, AC099850.3, AC026401.3, MAPKAPK5-AS1, LINC01018, CYTOR, AC115619.1,
and F11-AS1) were found to be associated with survival. Of importance, three of them
(MIR210HG, AC099850.3, and CYTOR) displayed a robust prognostic signature with unfa-
vorable prognosis. Previously, these three IARlncRNAs had all been implicated in HCC;
for instance, it has been shown that the silencing of MIR210HG expression leads to the
inhibition of HCC tumor growth [29]. Similarly, CYTOR has been shown to promote HCC
proliferation, and its disruption inhibited HCC growth [30,31]. Additionally, AC099850.3
has been shown to increase proliferation and migration in HCC [32], thus providing strong
evidence for the utility of our prognostic signature in the clinical spectrum of HCC patients.
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We next determined the functionality of the obtained signature within the HCC patient
groups, and found that both survival rates and survival time were significantly low in the
high-risk group. In addition, an inverse expression pattern was observed in lncRNAs and
risk groups. Of interest, among several clinical characteristics, risk score was found to be
an independent predictive determinant of survival in HCC patients. We also examined the
relationship between the obtained signature and the infiltrating immune cells. The analysis
showed that a higher proportion of naïve B cells, resting memory CD4 T cells, resting
NK cells, M2 macrophages, and resting mast cells predominated in the low-risk group,
whereas the proportion of memory B cells, activated memory CD4 T cells, follicular helper
T cells, and M0 macrophages was specific for the high-risk group. GO analysis showed that
differential gene expressions between risk groups were significantly enriched in biological
processes (mitosis and chromosome segregation), cellular components (chromosomes),
and molecular functions (tubulin binding and kinase activity). In addition, seven defined
signaling pathways (cell cycle, oocyte meiosis, progesterone-mediated oocyte maturation,
p53 signaling pathway, human T-cell leukemia virus 1 infection, cellular senescence, and
human immunodeficiency virus 1) were found to be associated with the obtained signature.
To our knowledge, we have presented for the first time an immuno-autophagy-related long
non-coding RNA (IARlncRNA) signature prognostic ability in hepatocellular carcinoma.
It is worth mentioning that molecular validation of this obtained signature using clinical
samples is required. Prognostic models for HCC based on lncRNAs have also been reported
previously. For instance, a recent study identified five autophagy-related long non-coding
RNAs (AR-lncRNAs) (including TMCC1-AS1, PLBD1-AS1, MKLN1-AS, LINC01063, and
CYTOR) for HCC patients from the TCGA database [27]. Likewise, one independent
study described four-immune-related-LncRNA signatures for predicting the prognosis and
guiding the application of immunotherapy in HCC [33]. However, it is worth mentioning
that the heterogeneity within clinical samples submitted to repositories (as previously
described by Sharma et al. [34]) and especially the selection of different computational
analytical methods makes these predictive markers less effective in the clinical environment.
In the present study, we have provided a detailed description of the methods used in our
analysis, which offers a platform for methodological compression to enable similar analyses
in HCC or in other cancers.

5. Conclusions

The immuno-autophagy-related long non-coding RNA (IARlncRNA) signature we
established exhibits a prognostic ability in hepatocellular carcinoma.
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4. Discussion
4.1 Main findings

Cancer immunotherapy encompasses a diverse array of strategies, spanning categories

such as checkpoint inhibitors, lymphocyte-activating cytokines, CAR T cells, other cell-

based therapies, agonistic antibodies targeting co-stimulatory receptors, cancer

vaccines, oncolytic viruses, and biologics (Riley et al., 2019). These modalities

specifically modulate the immune response to foster recognition and attack against

cancer cells (Kennedy and Salama, 2020). Despite notable strides in the field of

immunotherapy, its clinical implementation continues to confront significant challenges

concerning both efficacy and safety. The pursuit of effecting cancer immunotherapy in a

more controlled and secure manner is a pivotal objective. This innovative approach

holds the potential to extend the therapeutic reach of these interventions to a broader

patient cohort, simultaneously ameliorating concerns of treatment-related toxicity. In

synopsis, this study is oriented towards addressing the following inquiries within the

context of hematological malignancies (specifically Burkitt's lymphoma and acute

myeloid leukemia) and liver cancer: 1) Elucidating the dynamics of tumor cell eradication

and the intricate mechanisms underlying the synergy achieved through the co-

administration of conventional anti-tumor agents and non-tumor pharmaceuticals with

cytokine-induced killer (CIK) cells. 2)Investigating the plausible association between long

non-coding RNAs (lncRNAs) as prospective prognostic markers and their correlation

with survival outcomes in the spectrum of cancer patients.

In the first publication, In light of the persistent challenges posed by Burkitt's lymphoma

(BL) as a formidable hematological malignancy, our study delves into the potential

therapeutic avenue forged through the synergistic integration of HSP90 inhibitors and

cytokine-induced killer (CIK) cells. To address this inquiry, we initiated our investigation

by assessing the viability of BL cells (BL41 and Raji) under the influence of two distinct

HSP90 inhibitors (17-DMAG and ganetespib) in conjunction with CIK cells, leading to the

discernment of a robust synergistic effect across all permutations. The NKG2D/NKG2DL

axis stands acknowledged as pivotal in CIK cell-mediated anticancer responses, with

MICA/B emerging as the predominant NKG2D ligand on tumor cell surfaces (Fan et al.,

2017; Nwangwu et al., 2017; Wu et al., 2020, 2021b). Our focus then shifted to
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evaluating MICA/B expression on BL cell surfaces and appraising potential modifications

resulting from HSP90 inhibitors. The findings unequivocally demonstrated that neither

HSP90 inhibitor exerted any discernible influence on MICA/B expression levels in BL

cells. Intriguingly, our investigations unveiled that CIK cells, when combined with HSP90

inhibitors, precipitated an early apoptotic response within BL cells. Furthermore,

heightened Fas expression on the surfaces of BL cells was associated with the

instigation of apoptosis reliant on caspase 3/7 activity. These observations suggest the

plausibility of the Fas/FasL pathway, in lieu of the NKG2D/NKG2D pathway, serving as

an alternative mechanism underlying CIK cell-mediated cytotoxicity (in the presence of

HSP90) against BL cells.

In the second publication, Our research is concentrated on the exploration of the

prospective application of non-oncology drugs in conjunction with epigenetic agents for

the management of hematological malignancies (including leukemia and multiple

myeloma) as well as liver cancer. Within this investigative framework, meticrane, a

Thiazide diuretic traditionally employed for essential hypertension, emerges as a subject

of scrutiny due to its underexplored anticancer properties. Consequently, our study

endeavors to elucidate the anticancer potential of meticrane in the context of

hematological malignancies and hepatocarcinoma cell lines. Preliminary results indicate

that meticrane, administered in isolation or in combination with cytokine-induced killer

(CIK) cells, demonstrated limited or negligible efficacy in treating leukemia, myeloma,

and hepatocellular carcinoma cells. Subsequent investigations sought to evaluate the

cumulative effects achieved through the co-administration of meticrane with established

epigenetic agents. These combinations of meticrane and epigenetic inhibitors exhibited

discernible additive or even synergistic impacts on leukemia and liver cancer cells,

thereby potentially mitigating the inherent toxicity often associated with standalone

epigenetic drug regimens in clinical settings. Noteworthy is the observation that

meticrane displayed a fractionally significant binding affinity compared to a majority of

HDACs. In summation, our investigation centered on meticrane, a non-oncological drug

with clinical applications, in tandem with epigenetic inhibitors as a prospective contender

for combination therapy.
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In the third publication, There is a need to develop markers to select cases that are

expected to benefit before or early in treatment and to improve the therapeutic effect of

combination therapy with other molecularly targeted agents. several studies have

established lncRNA-based prognostic models for clinical characterization in AML

patients (Wang et al., 2020a; Zhao et al., 2021; Zhang et al., 2022). In light of these

considerations, we embarked on an inquiry into long non-coding RNAs (lncRNAs) that

could potentially serve as mediators bridging two converging processes: heat shock

proteins and ferroptosis. These processes hold a discernible interconnectedness in the

context of tumorigenesis. Employing an exhaustive bioinformatics approach, we

successfully identified four distinct lncRNAs (AL138716.1, AC000120.1, AC004947.1,

and LINC01547) bearing significant prognostic implications in the milieu of acute

myeloid leukemia (AML) patients. Notably, within this group, two lncRNAs (AC000120.1

and LINC01547) have been previously associated with AML, reinforcing their relevance

in this context, while AC004947.1 is noted for its oncogenic potential (Zhu et al., 2023).

The resulting signature unveiled a distinct survival trajectory, with high-risk patients

exhibiting diminished survival probabilities, and conversely, low-risk patients displaying

more favorable outcomes. Importantly, we believe our work marks the first endeavor to

devise a predictive model centered around lncRNAs that potentially underlie the

intersection of heat shock proteins and ferroptosis within the framework of AML.

In our fourth publication, with a particular focus on hepatocellular carcinoma (HCC), this

article attempts to investigate possible immunoautophagy-associated long noncoding

RNA (IARlncRNA) signatures, primarily for predicting survival in HCC patients. Drawing

from the repertoire of these lncRNAs, we devised a predictive model comprising three

specific lncRNAs, namely MIR210HG, AC099850.3, and CYTOR. This meticulously

constructed signature emerged as an independent and robust prognostic determinant for

clinical prognosis in hepatocellular carcinoma (HCC) patients. Remarkably, the influence

of these three lncRNAs (MIR210HG, AC099850.3, and CYTOR) integrated within the

signature extended to the modulation of liver cancer's proliferative and growth dynamics

(Wang et al., 2019; Wu et al., 2021a; Liu and Geng, 2022). Collectively, our findings

shed light on the intricate interrelationship between lncRNAs and the survival outcomes

of cancer patients, thereby suggesting their potential as viable targets for therapeutic

interventions aimed at enhancing clinical outcomes in the realm of cancer patients.
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4.2 Future perspectives

In this thesis, our investigation represents an inaugural endeavor in demonstrating that

the incorporation of HSP90 inhibitors can synergistically enhance the cytotoxic potency

of cytokine-induced killer (CIK) cells. This augmentation is achieved via the mediation of

the Fas/FasL signaling cascade, which subsequently instigates caspase3/7-dependent

apoptotic pathways. While deeper insights can potentially be gleaned from subsequent

in vivo experiments, our current preclinical study marks a pioneering attempt to elucidate

the compatibility of cancer immunotherapy involving CIK cells in tandem with HSP90

inhibitors, specifically within the context of Burkitt's lymphoma. The functional aspect of

the cytotoxicity of CIK cells via the NKG2D/NKG2DL signaling pathway and/or Fas/FasL

signaling has also been widely discussed in the literature, especially for

NKG2D/NKG2DL in hematological malignancies (Laport et al., 2011). The utilization of

HSP90 inhibitors in conjunction with cytokine-induced killer (CIK) cells can potentially be

extended to encompass the treatment of additional hematological malignancies,

including but not limited to acute myeloid leukemia (AML), multiple myeloma (MM),

chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), and non-

Hodgkin's lymphoma. This expanded scope aims to assess the potential of HSP90

inhibitors in augmenting the cytotoxicity of CIK cells and to delve into the underlying

mechanistic intricacies governing this synergy. Histone deacetylases (HDACs) constitute

a class of epigenetic enzymes that have garnered substantial attention as potential anti-

tumor therapeutic targets (Wang et al., 2020b; Ramaiah et al., 2021; Roca et al., 2022;

Tang et al., 2022). Emerging research has unveiled an expanding array of non-histone

proteins that serve as substrates for HDACs, encompassing a diverse spectrum from

molecular chaperones to cytoskeletal proteins and transcription factors. Notably, within

this landscape, heat shock protein 90 (Hsp90) emerges as an indispensable molecular

chaperone within eukaryotic systems. Recently, investigations have unveiled intricate

and significant interactions between Hsp90 and HDACs, further accentuating the

complexity of their interplay (Li et al., 2022a). Looking ahead, the prospective availability

of dual inhibitors, exemplified by HSP90-HDAC inhibitors, holds the promise of further

refining the cytotoxic efficacy of CIK cells in the milieu of Burkitt's lymphoma, thereby

contributing to a more comprehensive understanding of this therapeutic approach.
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Leveraging openly accessible RNA sequencing datasets in conjunction with clinical

information, this dissertation successfully delineates a distinctive cohort of long non-

coding RNAs (lncRNAs) intricately linked to the survival outcomes of two distinct

cancers, namely acute myeloid leukemia (AML) and hepatocellular carcinoma (HCC).

These identified lncRNAs exhibit the potential to serve as discerning classifiers for the

stratification of cancer patients upon initial diagnosis. It is pertinent to acknowledge a

noteworthy constraint inherent in this thesis, whereby the analysis is primarily founded

on comprehensive bioinformatics approaches, necessitating the imperative of rigorous

experimental validation for substantiation and robustness. Furthermore, they furnish

valuable insights into potential epigenetic targets, thereby presenting novel vistas for the

development of cancer therapies. The cumulative strengths of these findings distinctly

amplify the dissertation's significance, fortifying its potential contributions to the realm of

cancer research and therapeutic advancements.
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