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Abstract 

Areal quantitative precipitation estimation (QPE) with high spatial and temporal resolution is 

crucial to feed nowcasting and hydrological models. Ground-based weather radars are the best-

suited tool for this purpose. Despite the upgrades of the German C-band radar network to 

polarimetry, the operational QPE products offered by the German Meteorological Service 

(DWD, Deutscher Wetterdienst) are still based mainly on the traditional radar variable, 

reflectivity 𝑍, leading to large uncertainties. To enhance QPE quality from DWD radars, this 

study presents several novel polarimetric QPE algorithms at C-band. These include i) hybrid 

rainfall estimators based on specific attenuation 𝐴  and specific differential phase 𝐾𝐷𝑃 , 

denoted as 𝑅(𝐴, 𝐾𝐷𝑃) , ii) a polarimetric vertical profile of reflectivity (PVPR) correction 

method for 𝑍 biases within and above the melting layer (ML), and iii) a 𝐾𝐷𝑃-based snowfall 

estimator. Additionally, a warm-rain event is investigated to develop approaches that mitigate 

the impacts of vertical precipitation gradients below the ML on QPE. 

The S-band 𝑅(𝐴) algorithm has been proven to be a powerful tool for rainfall estimation 

and has recently been operational in the U.S.A. The attenuation parameter 𝛼 required for the 

𝐴 calculation, however, is susceptible to the variability of drop size distributions (DSD), which 

is more accentuated at C-band compared to S-band due to stronger resonance effects. This limits 

the applicability of 𝑅(𝐴) to C-band radars. To overcome this challenge, this study derives 

DSD-dependent  𝛼  values based on the slope of differential reflectivity 𝑍𝐷𝑅  against 𝑍 . 

Furthermore, in cases of heavy rain where 𝑍 > 40 dBZ, the 𝑅(𝐴) relationship at C-band 

becomes relatively sensitive to the DSD variability and therefore 𝑅(𝐾𝐷𝑃)  is used. The 

resulting hybrid algorithms 𝑅(𝐴, 𝐾𝐷𝑃) surpass in quality the DWD real-time QPE product, 

particularly for convective rain where the normalized root-mean-square error (NRMSE) is 

reduced by 13% and the normalized mean bias (NMB) by 16%. 

On 14 July 2021, western Europe experienced severe floods caused by intense stratiform 

precipitation, for which the above rainfall algorithms underestimated surface rain with an NMB 

of -30% owing to the increased rain rates below the observing altitudes of the operational radars. 

Since most existing vertical profile of reflectivity (VPR) correction techniques focus on data 

within and above the ML, this study proposes a vertical profile (VP) correction method that 

considers vertical precipitation gradients near the surface for both 𝑍 and 𝐾𝐷𝑃. This correction 

method involves i) projecting radar observations from the bottom of the ML down to 700 m 

taking range-defined quasi-vertical profiles (RD-QVP) as references, and ii) deriving rainfall 

relationships from vertically-pointing radar data in the lower few hundred meters, in order to 

better capture warm-rain processes. Moreover, observations from a local X-band radar are 

utilized to fill gaps in the operational radar network. Results show that the VP correction method 

reduces the NRMSE and NMB values of the estimates by more than 20%, and with the 

additional use of the gap-filling radar, the 𝑅(𝐴, 𝐾𝐷𝑃) retrievals even outperform the hourly 

gauge-adjusted QPE product from DWD. 

When the radar beam intersects and exceeds the height of the ML, significant errors in 

surface precipitation estimates are induced due to 𝑍 biases caused by partially frozen and 

clumped hydrometeors within the ML and beam-broadening effects above it. Current VPR 
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correction approaches mitigating the biases rely solely on 𝑍 and do not explore the potential 

of polarimetry. Here, the - as far as is known - first PVPR correction method for C-band is 

developed. This method reconstructs the intrinsic VPR and estimates 𝑍  biases within and 

above the ML based on the statistics of polarimetric profiles. For pure and uniform stratiform 

rain, the rainfall retrieval based on the corrected 𝑍 has an up to 20% lower NRMSE value than 

the hydrometeor-type-specific rainfall retrieval suggested by Giangrande and Ryzhkov (2008); 

and for estimates above the ML, the PVPR-corrected retrieval is more accurate than the 

polarimetric snowfall retrieval proposed in this study. 

The PVPR correction method is rendered inapplicable when snowfall reaches the ground. 

Additionally, the accuracy of snowfall estimation using 𝑍 is restricted due to the high diversity 

of snowflakes. To solve this issue, Bukovčić et al. (2020) introduced a generalized polarimetric 

snowfall estimator using 𝐾𝐷𝑃 and demonstrated its efficacy with S-band radar observations. 

This estimator considers changes in the shape and orientation of snowflakes or ice crystals by 

incorporating an assumed aspect ratio 𝑎𝑟 and width of the canting angle distribution 𝜎 in a 

power-law snowfall relationship. Our adjustment of the algorithm to C-band yields better 

estimates than conventional 𝑍-based retrievals, and it additionally mirrors the typically higher 

ice concentration within the dendritic growth layer (DGL) at higher levels. 

The novel QPE algorithms exhibit promising results and hold potential for real-time 

applications to C-band radar networks throughout Europe. These advancements profit from the 

strong cooperation with DWD in the program “Near-Realtime Quantitative Precipitation 

Estimation and Prediction (RealPEP)”. Currently, the algorithms are implemented in DWD’s 

operational platform “Polarimetric Radar Algorithms (POLARA)” in order to assess their 

stability, feasibility, and robustness for online applications. In the near future, optimization of 

the algorithms will continue based on evaluations using long-term databases in POLARA. 
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Chapter 1 

Introduction 

Ground-based weather radars offer core information for areawide quantitative precipitation 

estimation (QPE) due to their high spatial and temporal resolution. The resulting QPE data 

serve as input for observation-based nowcasting, data assimilation for short-term weather 

forecasts, and flash-flood predictions, and are also used for the validation of numerical models 

(Clark et al. 1972; Sun 2005; Stephan et al. 2008; Zacharov et al. 2010; Saadi et al. 2022). Thus, 

reliable and timely radar-based QPE is one of the most important tasks for radar meteorologists 

and hydrologists. Since 2014, the German Meteorological Service (DWD, Deutscher 

Wetterdienst) has upgraded its C-band radar network to polarimetry. However, the current 

operational QPE products from DWD, Radar-Online-Aneichung (RADOLAN), still rely 

mainly on linear reflectivity at horizontal polarization 𝑍ℎ. 𝑍ℎ is strongly influenced by the 

structure of hydrometeor size distributions and measurement errors, which leads to large 

uncertainties in QPE. Moreover, DWD’s most accurate gauge-adjusted product RW is delayed 

by at least 30 minutes after each completed hour, making it useless for real-time applications. 

Therefore, polarimetric precipitation retrieval algorithms at C-band are mandatory. 

In recent decades, the quality of radar-based QPE has greatly improved through the 

additional use of polarimetric radar variables, such as differential reflectivity 𝑍𝐷𝑅 , specific 

differential phase 𝐾𝐷𝑃  (Seliga and Bringi 1976; Zrnić and Ryzhkov 1999; Matrosov et al. 

2005a; Steinert et al. 2013), and specific attenuation 𝐴 (Ryzhkov et al. 2014; Diederich et al. 

2015a/b; Chen et al. 2021a). 𝑍𝐷𝑅 is indicative of hydrometeor shape and provides information 

on the average raindrop size within a sampling volume. Phase-based observables such as 𝐾𝐷𝑃 

and 𝐴 have superiorities for QPE over 𝑍ℎ and 𝑍𝐷𝑅, as they are less affected by the variability 

of raindrop size distributions (DSD) or ice particle size distributions (PSD), and immune to 

radar miscalibration, attenuation, partial beam blockage (PBB), and radome effects. 

Furthermore, 𝐴-based rainfall retrievals, also referred to as 𝑅(𝐴), inherit all the advantages of 

𝑅(𝐾𝐷𝑃) but are less noisy or oversmoothed in light rain and comparable in spatial resolution 

to that of 𝑅(𝑍ℎ). Despite their restriction to liquid rain, these features make 𝑅(𝐴) particularly 

beneficial for generating seamless rainfall composites derived from radar observations at 

various wavelengths. 

Weather radars are capable of monitoring various types of hydrometeors in the atmosphere, 

such as rain, graupel/hail, snowflakes/ice crystals, and mixed-phase particles. Therefore, 

accurately estimating precipitation at the surface requires the consideration of the different 

hydrometeor types in polarimetric QPE algorithms. This study proposes a set of specific 

algorithms for C-band that aim to address the challenges associated with the current state of the 

art in the field. These algorithms include i) hybrid rainfall algorithms 𝑅(𝐴, 𝐾𝐷𝑃), ii) a vertical 

profile (VP) correction method for reflectivity 𝑍 and 𝐾𝐷𝑃 below the melting layer (ML) and 

the use of gap-filling radars during warm rain, iii) a polarimetric vertical profile of reflectivity 

https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/wrcr.20471?fbclid=IwAR3VWyO4_MHwEGVE5NtC5ua0W1w-JhjRfhyIswh2QvJSpQ5weQR6BLHxeCE#wrcr20471-bib-0023
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(PVPR) correction method for observations made within and above the ML, and iv) a snowfall 

estimator 𝑆(𝑍ℎ, 𝐾𝐷𝑃). A summary of the challenges and motivations behind these algorithms 

is provided below, with a detailed discussion of their historical development to be presented in 

the following chapter. 

QPE below the ML 

Rain is the most common precipitation in Germany. Recent advances have demonstrated 

the benefits of radar-derived 𝐴  using the ZPHI method [the attenuation correction for 

measured 𝑍 using the total constraint differential phase shift Φ𝐷𝑃, see Testud et al. 2000 and 

Eqs. (2)-(6) in their paper] for rainfall estimation at S- and X-band (Ryzhkov et al. 2014; Wang 

et al. 2019; Cocks et al. 2019; Zhang et al. 2020a; Diederich et al. 2015a/b). Wang et al. (2019) 

first pointed out that the DSD sensitivity of the attenuation parameter 𝛼, required to estimate 

𝐴, needs to be accounted for in the ZPHI method. To this goal, they exploited the change of 

𝑍𝐷𝑅 with 𝑍 - known as the 𝑍𝐷𝑅 slope - to derive 𝛼 values for each radar scan. Trömel et al. 

(2014a), however, demonstrated that resonance effects related to large raindrops and hail at C-

band enhance the dependence of 𝛼 on the DSD variability, and render its change with 𝑍𝐷𝑅 

non-monotonic, which further complicates the methodology in addition to the stronger 

attenuation at this frequency range compared to S-band. Accordingly, only a few research 

studies on 𝑅(𝐴) applications for C-band exist in the literature (Giangrande et al. 2014; Wang 

et al. 2014 and 2017; Boodoo et al. 2015; Chen et al. 2021a). 

Since coefficients in the power-law 𝑅(𝐴) relations strongly vary with different DSD types 

at C-band, Wang et al. (2017) formulated relations for three rain types in Taiwan. In addition, 

Ryzhkov and Zrnić (2019) compared large DSD datasets from Oklahoma in the U.S.A. and the 

western Pacific area, and found that 𝑅(𝐾𝐷𝑃) may outperform 𝑅(𝐴) at C-band in heavier 

continental rain, which contains large raindrops originating from the melting of graupel or hail. 

Consequently, hybrid estimators 𝑅(𝐴, 𝐾𝐷𝑃)  are suggested for C-band to compensate for 

shortcomings of 𝑅(𝐴)  algorithms in rain mixed with hail or rain dominated by large 

resonance-size drops. Note that in hail-contaminated regions, Wang et al. (2019) recommended 

performing segment-wise integration for pure rain along the rays in the ZPHI method, as this 

method does not account for the extra attenuation from hail within the rays. Nevertheless, this 

application may introduce significant errors in QPE due to unreliable Φ𝐷𝑃 within a short-

range interval. 

Advances in radar polarimetry are obstructed by the measurement geometry, wherein 

precipitation is monitored at greater heights with increasing distance from the radar. This 

property poses difficulties in estimating rainfall with vertical intensity changes caused by 

precipitation formation below the lowest radar beam, leading to systematic inaccurate estimates. 

One example is warm-rain formation (Porcacchia et al. 2017) whose occurrence rate increases 

due to global warming (IPCC 2022). Simulations by Kumjian et al. (2014) showed that during 

the coalescence-dominated growth process, the radar variables 𝑍 , 𝑍𝐷𝑅 , and 𝐾𝐷𝑃  increase 

towards the ground as mass from cloud drops or drizzle is shifted to larger particles. Rainfall 

estimates are then negatively biased and thus might fail to activate flooding alerts. McLaughlin 

et al. (2009) and Antonini et al. (2017) demonstrated that a denser network composed of small 

X-band radars could act as cost-effective gap fillers, with increased low-altitude coverage and 

finer spatial resolution compared to current operational networks. 
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Vertical profile of reflectivity (VPR) corrections also reduce biases resulting from the 

uncaptured vertical variability of precipitation intensity below radar observation heights via 

near-surface 𝑍 estimates using observation- or model-based profile information (Koistinen 

1991; Kitchen et al. 1994; Seo et al. 2000; Germann and Joss 2002; Matrosov et al. 2007; 

Anagnostou et al. 2010; Zhang and Qi 2010). The majority of existing VPR correction methods, 

however, assume a constant 𝑍 from the ML height down to the ground, disregarding potential 

precipitation-generating processes below the ML, and only correct 𝑍 biases within and above 

the ML (Andrieu and Creutin 1995; Matrosov et al. 2007). Additionally, most reference profiles 

rely on climatology, which may not adequately handle extreme cases. Chen et al. (2020) 

introduced one of the first VPR corrections aimed at addressing vertical 𝑍 gradients below the 

ML for QPE. They employed 𝑍 observations from vertically-pointing profilers located in four 

zones with different hydrological properties as references for the VPR correction, leading to a 

halved bias in QPE. Any similar corrections for radar polarimetry, however, had not been 

explored until the recent work of Chen et al. (2022), which will be presented in detail later in 

this dissertation. 

QPE within and above the ML 

A perennial issue confronting radar-based QPE is rainfall estimation at ranges where the 

radar signals intersect or pass through the ML. The ML contains mixed-phase particles, which 

result in enhanced 𝑍, known as the bright band (BB), leading to a significant overestimation of 

surface rain. When the beam overshoots the ML and progressive beam-broadening effects 

distort the profiles of radar observables, rainfall is considerably underestimated. These 𝑍 

biases require correction before observations aloft are used to estimate surface precipitation. 

Multiple attempts exist to address this problem through the reconstruction of intrinsic VPR, but 

none of them utilizes polarimetry to their full potential. 

When snowfall reaches the ground, QPE becomes even more challenging because of the 

intricate microphysical properties of hydrometeors associated with density, shape, orientation, 

etc. Therefore, researchers utilized a number of 𝑍ℎ -based algorithms for different 

climatological regions or snow types with different success (Matrosov 2007; Liu 2008; Kulie 

and Bennartz 2009; Matrosov et al. 2009; Hiley et al. 2011; Wolfe and Snider 2012; Huang et 

al. 2015; von Lerber et al. 2017; Cooper et al. 2017). Nevertheless, using 𝑍ℎ alone still limits 

the accuracy of the estimates due to its high uncertainty in the face of snowflake diversity. 

Recently, Bukovčić et al. (2020) investigated the effect of snow diversity on the polarimetric 

variables and proposed a combination of 𝑍ℎ and 𝐾𝐷𝑃 for snowfall estimation, which led to 

improvements for the S-band radar network in the U.S.A. However, concerns remain regarding 

the use of 𝐾𝐷𝑃 owing to the expected loss of 𝐾𝐷𝑃 information towards the surface, resulting 

from increasing randomness of snowflake orientation and decreasing density. While the 

advantages of this approach have not yet been showcased at C-band, the higher magnitude of 

𝐾𝐷𝑃, at least 2-3 times higher than that of S-band, makes it in principle more exploitable at C-

band. 

The central objective of this study is to improve the QPE quality of DWD’s countrywide 

C-band polarimetric radar network through the application of innovative techniques with the 

potential for real-time operation. To begin with, rainfall relations are optimized using locally 

measured DSDs. Next, challenges specific to C-band radar and observational limitations during 
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warm-rain processes are thoroughly examined and taken into account while developing the 

rainfall algorithms. Furthermore, the potential of polarimetry is explored and expanded for 

snow quantification. Finally, the efficacy of the algorithms is assessed by their application to 

several precipitation events, validation against ground-based measurements, and comparison 

with the benchmark algorithms and DWD QPE products. In Chapter 2, the fundamental 

knowledge of radar-based QPE, such as DSD/PSD, radar polarimetry, potential error sources 

that affect QPE performance, and the evolution of QPE algorithms, are introduced. Chapter 3 

describes the data sources used and their processing, while Chapter 4 elaborates on the 

methodologies for estimating liquid, mixture, and solid precipitation, as well as their assessment. 

The application of the algorithms to diverse precipitation events and a discussion on their 

benefits, drawbacks, and possible improvements are presented in Chapters 5 and 6, respectively. 

Chapter 7 concludes the study with key findings and provides an outlook. 
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Chapter 2 

Basics of Radar Polarimetry and To-Date Precipitation 

Retrievals 

The development and understanding of radar-based QPE reside in the connections between 

hydrometeor size distribution, meteorological integral parameters such as rain/snow rates, and 

several polarimetric radar variables. This chapter provides an introduction to these relationships, 

followed by an overview of potential error sources in radar-based QPE and their corresponding 

solutions. Subsequently, it reviews the history and current state-of-the-art of radar-based QPE 

algorithms, helping readers grasp the direction and focus of this research. For more in-depth 

and thorough interpretations of radar polarimetry and its relevance, the monographs authored 

by Bringi and Chandrasekar (2001), Zhang (2016), and Ryzhkov and Zrnić (2019) are highly 

recommended. 

2.1 Hydrometeor size distribution 

The discussion on the characteristics of hydrometeor size distribution involves the 

consideration of the hydrometeor phase. The DSD refers to the number concentration of 

raindrops at given diameter sizes within a volume and is expressed as 

 𝑁(𝐷) = ∫ 𝑁(𝐷)𝑑𝐷
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
, (2.1) 

where 𝑁(𝐷) is the volume density of drops per unit drop diameter in m-3mm-1; 𝐷 is the 

diameter of drops in mm. The minimum diameter of drizzle 𝐷𝑚𝑖𝑛 can be smaller than 0.5 mm, 

while the largest raindrop diameter 𝐷𝑚𝑎𝑥  known so far as reported in Gatlin et al. (2015) is 9.7 

mm. Marshall and Palmer (1948) proposed an exponential relation to describe the shape of 

DSD: 

 𝑁(𝐷) = 𝑁0𝑒−𝛬𝐷, (2.2) 

where 𝑁0 is a constant value of 8000 m-3mm-1, and 𝛬 is a function of rain rate 𝑅 given by 

 𝛬(𝑅) = 4.1𝑅−0.21. (2.3) 

The unit for 𝛬 is mm-1, while the unit for 𝑅 is mm h-1. 

The Marshall-Palmer relation, however, is insufficient for representing the diverse DSDs 

observed in nature, often overestimating the number of small raindrops. Ulbrich (1983) then 

introduced a three-parameter gamma distribution: 

 𝑁(𝐷) = 𝑁0𝐷𝜇𝑒−𝛬𝐷. (2.4) 
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Apart from the slope parameter 𝛬 that mainly determines the concentration of large raindrops, 

Eq. (2.4) includes a shape parameter 𝜇 controlling the number of small raindrops. This gamma 

DSD also encompasses the form of Eq. (2.2) as 𝜇 is set to zero.  

Later, Cao et al. (2008) noted that the values of 𝛬 and 𝜇 can change with climatological 

regimes, precipitation systems, and even their evolution, rendering the previously assumed 

𝛬(𝑅) relation or the 𝛬(𝜇) constraint from Zhang et al. (2001) inadequate. To enable a more 

universal comparison and analysis of DSD characteristics across various environmental 

conditions, Testud et al. (2001) and Bringi et al. (2003) suggested the use of normalized 

raindrop concentration 𝑁𝑤 and mass-weighted mean diameter 𝐷𝑚, which are derived without 

any assumptions or constraints. The equations for these two parameters are given by 

 𝑁𝑤 =
44

𝜋𝜌𝑤

103𝐿𝑊𝐶

𝐷𝑚
4 , and (2.5) 

 𝐷𝑚 =
∫ 𝑁(𝐷)𝐷4𝑑𝐷

𝐷𝑚𝑎𝑥
𝐷𝑚𝑖𝑛

∫ 𝑁(𝐷)𝐷3𝑑𝐷
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛

, (2.6) 

where 𝜌𝑤 is the density of water (1 g cm-3) and 

 𝐿𝑊𝐶 (liquid water content) =
𝜋

6
𝜌𝑤 ∫ 𝑁(𝐷)𝐷3𝑑𝐷

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
  (2.7) 

in g m-3. Bringi et al. (2003) fitted a line of 𝐿𝑜𝑔10(𝑁𝑤)-𝐷𝑚 based on a large dataset of tropical 

stratiform rain, demonstrating the consistency of DSD characteristics in stratiform rain over the 

world. Subsequent studies by Tokay et al. (2008) and Chen (2013) also utilized 𝑁𝑤 and 𝐷𝑚 

to classify different types of precipitation. Generally, small 𝑁𝑤 values and higher 𝐷𝑚 values 

indicate a relatively high fraction of larger drops, which may occur in the pre-convective regime 

of continental rain (Fig. 2.1 in blue), while frontal rain in the middle latitudes gives small 𝑁𝑤 

and 𝐷𝑚 values. High 𝑁𝑤 values with smaller 𝐷𝑚 values are typical for tropical rain formed 

predominantly via the warm-rain process (Fig. 2.1 in green), while deep continental showers 

with abundant raindrops often exhibit high 𝑁𝑤 values with larger 𝐷𝑚 values. 

 

Figure 2.1 Two examples of the raindrop size distribution (DSD), one in blue with a lower value 

of normalized raindrop concentration 𝑁𝑤 and a higher value of mass-weighted mean diameter 

𝐷𝑚, the other one in green with a higher 𝑁𝑤 value and a smaller 𝐷𝑚 value. 𝑁(𝐷) represents 

the volume density of drops per unit drop diameter; 𝐷 denotes the diameter of drops. 
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In addition to rain type, microphysical processes such as aerodynamic breakup, collisional 

breakup, collision coalescence, and evaporation can also alter DSD during raindrop falling. 

Kumjian et al. (2014) simulated these processes and found that, in a steady-state (or near-steady) 

situation, decreases toward the ground in 𝐷𝑚 and increases in 𝑁𝑤 are evident when rain is 

undergoing aerodynamic breakup or collisional breakup, with the latter exhibiting a more 

pronounced tendency. In contrast, when collision-coalescence processes are dominant, 𝐷𝑚 

increases and 𝑁𝑤  decreases. Evaporation primarily impacts and depletes small raindrops, 

leading to a slight increase in 𝐷𝑚 (Kumjian and Ryzhkov 2010; Xie et al. 2016).  

The variability in DSD is strongly related to the quantities of 𝑅, which is expressed as 

 𝑅 =
386.6 𝜋

6
∫ 𝑁(𝐷)𝐷3.67𝑑𝐷

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
, (2.8) 

as well as other radar variables to varying degrees, making it one of the main error sources in 

radar-based QPE. More details on this topic will be presented in the following two sections. 

Exponential relations are commonly used to describe PSDs (Gunn and Marshall 1958). 

However, the parameters 𝑁0 and 𝛬 for ice particles (including graupel, hail, snowflakes, and 

ice crystals) are temperature-dependent and vary significantly due to their complex 

microstructure associated with shape, density, orientation, and phase composition. Delanoë et 

al. (2005 and 2014) derived normalized size distribution 𝑁𝑖 for ice crystals and snowflakes by 

replacing 𝐿𝑊𝐶 with 

 𝐼𝑊𝐶 (ice water content) =
𝜋

6
∫ 𝜌𝑠(𝐷)𝑁(𝐷)𝐷3𝑑𝐷

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
, (2.9) 

in Eq. (2.5). 𝐼𝑊𝐶 is in a unit of g m-3 and the size 𝐷 here means the equivolume diameter of 

ice crystals or snowflakes. The density of these ice particles, denoted as 𝜌𝑠, can be estimated 

using empirical relations, e.g., the one from Brandes et al. (2007): 

 𝜌𝑠(𝐷) = 0.178𝐷−0.922. (2.10) 

The liquid equivalent snowfall rate 𝑆, i.e., snow water equivalent (SWE), also can be 

formulated using PDS as follows 

 𝑆 = 6 × 10−4 𝜋 ∫
𝜌𝑠(𝐷)

𝜌𝑤
𝑉𝑇𝑠(𝐷)𝑁(𝐷)𝐷3𝑑𝐷

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
, (2.11) 

where 𝑉𝑇𝑠 is the fall velocity of snowflakes in m s-1. According to the observations made by 

Brandes et al. (2007), 𝑉𝑇𝑠 can be expressed as 

 𝑉𝑇𝑠(𝐷) = 0.9(
𝑃0

𝑃
)0.5𝐷0.15. (2.12) 

𝑃0 and 𝑃 indicate the atmospheric pressures at mean sea level (MSL, 𝑃0 = 1013.25 mb) and 

at the measured height above the MSL, respectively. The factor (𝑃0/𝑃)0.5  represents the 

terminal velocity adjustment due to the change in air density with altitudes, as noted by Brandes 

et al. (2008). 
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2.2 Radar dual-polarimetry 

Weather radar systems actively transmit microwave radiation, which interacts with 

hydrometeors in the air, and receive backscattered power, namely the portion of the signal 

reflected by the target to the antenna. Traditional weather radar only provides reflectivity at 

horizontal polarization 𝑍ℎ, which can be expressed by the co-polar backscatter coefficient 𝑆𝐻𝐻 

with units in mm6m-3 (Doviak and Zrnić 2006): 

 𝑍ℎ =
4𝜆4

𝜋4|𝑘𝑤|2
〈|𝑆𝐻𝐻|2〉  (2.13) 

(𝑍𝐻 stands for reflectivity at horizontal polarization in dBZ). 𝜆 is the radar wavelength in mm, 

𝑘𝑤 indicates the dielectric constant factor for water, and 〈|𝑆𝐻𝐻|2〉 represents the ensemble 

(probabilistic) average of 𝑆𝐻𝐻 within a unit volume. The first subscript of 𝑆𝐻𝐻 refers to the 

horizontal (H) polarization of the incident field transmitted by the radar, and the second one 

denotes the horizontal (H) polarization of the backscattered field. 

The computation of 𝑍ℎ  assumes the measured hydrometeors are spherical, and can be 

represented by the equation 

 𝑍ℎ =
〈|𝑘|2𝐷6〉

|𝑘𝑤|2 , (2.14) 

where 𝑘  is the dielectric constant factor of the targets, and the angular bracket means 

integration over the ensemble of particles. For raindrops where |𝑘|2 =  |𝑘𝑤|2 , 𝑍ℎ  can be 

written respecting DSD as 

 𝑍ℎ = ∫ 𝑁(𝐷)𝐷6𝑑𝐷
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
. (2.15) 

Apparently, 𝑍ℎ is directly related to both the size and concentration of raindrops, and is easily 

biased towards larger raindrops due to its sixth moment of 𝐷.  

For frozen ice particles, e.g., graupels and hailstones whose dielectric constant and density 

remain unchanged with size, 𝑍ℎ is expressed as 

 𝑍ℎ =
|𝑘𝑖|2

|𝑘𝑤|2 ∫ 𝑁(𝐷)𝐷6𝑑𝐷
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
, (2.16) 

where 𝑘𝑖 is the dielectric constant factor of solid ice. Hailstones can produce large 𝑍ℎ values 

due to their size, which can reach up to 20 cm in diameter as documented by the National Severe 

Storms Laboratory (NSSL, https://www.nssl.noaa.gov/education/svrwv101/hail/) in the U.S.A. 

It is noteworthy that the ratio |𝑘𝑖|
2/|𝑘𝑤|2 is less than one, causing 𝑍ℎ values of graupels or 

small hails to be lower than those of rain with identical size distribution. 

Dry snow, on the other hand, requires the consideration of its density variation with size in 

Eq. (2.14), resulting in the expression of 

 𝑍ℎ =
|𝑘𝑖|2

|𝑘𝑤|2𝜌𝑖
2 ∫ 𝜌𝑠

2(𝐷)𝑁(𝐷)𝐷6𝑑𝐷
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
. (2.17) 

Here, the solid ice density 𝜌𝑖 is equal to 0.92 g cm-3. As per the exponent value in Eq. (2.10), 



2.2 Radar dual-polarimetry                                                    9   

 

𝜌𝑠 is almost inversely proportional to 𝐷, and thus 𝑍ℎ of dry snow is approximately the fourth 

moment of 𝐷 . In addition, given that |𝑘𝑖|2  is smaller than |𝑘𝑤|2  and dry snow has low 

density, 𝑍ℎ values observed in snow are usually much lower than those in rain despite the 

large size of snowflakes. 

In the case of melting (mixed-phase) hydrometeors, the calculation of 𝑍ℎ is influenced not 

only by the hydrometeor size distribution (Fabry and Szyrmer 1999; Zawadzki et al. 2005), but 

also by the mass water fraction (Aydin and Zhao 1990; Aydin et al. 1991; Ryzhkov et al. 2013a). 

E.g., in continental convective rain, large values of 𝑍ℎ shown may arise from the presence of 

melting graupels and hailstones. The intensity of 𝑍ℎ within the ML is also affected by melting 

snowflakes, but in a more complex manner. The factors involved include i) changes in dielectric 

constant factor from snow to water, ii) reduced particle size owing to density changes, and iii) 

decreased particle concentration (based on the conservation of particle concentration flux 

during melting). Furthermore, pronounced resonance effects at C-band may cause 𝑍ℎ values 

to drop when particle size exceeds 20 mm. 

Dual-polarimetric radar operates by transmitting and receiving microwaves at both 

horizontal and vertical polarization, allowing radar meteorologists to gain a deeper insight into 

the physical properties of the observed hydrometeors. By analyzing the differences between the 

signals received in each polarization, information on the size distribution, shape, orientation, 

and composition of the hydrometeors can be retrieved. Some of the polarimetric radar variables 

that can be measured include: 

i. Differential reflectivity: 

The differential reflectivity 𝑍𝐷𝑅 (in dB) is a parameter that provides information about 

the shape of hydrometeors within a radar volume. It is defined as the logarithmic ratio of 

the reflected power between the horizontal and vertical polarizations: 

 𝑍𝐷𝑅 = 10 log10(
𝑍ℎ

𝑍𝑣
) = 𝑍𝐻 − 𝑍𝑉, (2.18) 

where 

 𝑍𝑣 =
4𝜆4

𝜋4|𝐾𝑤|2
〈|𝑆𝑉𝑉|2〉  (2.19) 

is the reflectivity at vertical polarization in a linear unit and 𝑍𝑉 is in dBZ. Similarly, 𝑆𝑉𝑉 

is the co-polar scattering amplitude at the vertical channel. Note that 𝑍𝑑𝑟 is differential 

reflectivity expressed in a linear scale.  

In heavy rain with big raindrops, the shape of the raindrop becomes more oblate, leading 

to a much higher value of 𝑍𝐻 than 𝑍𝑉, i.e., an increased 𝑍𝐷𝑅 value. Thus, 𝑍𝐷𝑅 can be 

considered relative to the average size of raindrops within a volume. For larger raindrops 

from melting graupels or hails, 𝑍𝐷𝑅  values can reach 2-3 dB and even up to 8 dB for 

resonance-size 𝐷  larger than 5 mm at C-band, where this resonance feature is more 

significant at higher temperatures. 

Randomly tumbling hailstones in the air result in a spherical shape with near-zero 𝑍𝐷𝑅 

and strong 𝑍. In the case of aggregated snowflakes, 𝑍𝐷𝑅 is usually small due to the low 

values of 𝑘𝑖  and 𝜌𝑠 , and the chaotic orientation. Pristine ice crystals such as plates, 

columns, needles, and dendrites, however, may have large values of 𝑍𝐷𝑅 because of their 
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low aspect ratio 𝑎𝑟 (𝑎/𝑏 and 𝑎 < 𝑏 for oblate spheroids) and relatively high density. 

𝑍𝐷𝑅  of melting hails is higher than that of dry hails owing to the increasing dielectric 

constant and less tumbling movement stabilized by the water on their surface. In stratiform 

rain, a 𝑍𝐷𝑅 peak is observed near the bottom height of the ML (𝐻𝑏). This peak is more 

remarkable in the case of melting aggregated snowflakes with larger sizes and oblate shapes, 

and less noticeable for the melting of rimed snow. 

ii. Differential phase shift: 

The total differential phase shift Φ𝐷𝑃 is a crucial parameter for both radar data quality 

control and radar-based QPE. It is calculated as the difference between the cumulative phase 

shift at two radar channels Φ𝐻 and Φ𝑉: 

 Φ𝐷𝑃 = Φ𝐻 − Φ𝑉 = 𝜑𝐷𝑃 + 𝛿, (2.20) 

where 𝜑𝐷𝑃  represents the propagation differential phase and 𝛿  is the backscatter 

differential phase, both in degree. The value of 𝛿  is strongly associated with radar 

wavelength and temperature, and it increases with particle size in rain. At C-band where 

resonance effects are more pronounced compared to S- and X-band, δ may exceed 40 deg 

or drop as low as -20 deg for raindrops with 𝐷 > 5 mm, dry/melting hailstones of resonance 

size, and wet snow within the ML (Ryzhkov and Zrnić 2019). Such variation is one of the 

major contributors to the noise in Φ𝐷𝑃 measurements from the DWD radars. To obtain 

accurate 𝜑𝐷𝑃 for further applications, 𝛿 needs to be carefully separated from the radar-

observed Φ𝐷𝑃. 

iii. Specific differential phase: 

The specific differential phase 𝐾𝐷𝑃 (deg km-1) is a powerful phase-based radar variable 

for precipitation estimation. For raindrops, 𝐾𝐷𝑃 can be approximated as 

 𝐾𝐷𝑃 ≈
0.03𝜋𝐹𝑜

𝜆
∫

𝐿𝑎−𝐿𝑏

𝐿𝑎𝐿𝑏
𝑁(𝐷)𝐷3𝑑𝐷

𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
, (2.21) 

where 𝐹𝑜 is the orientation factor associated with the width of the canting angle distribution 

𝜎 in radians: 

 𝐹𝑜 =
1

2
𝑒−2𝜎2

(1 + 𝑒−2𝜎2
), (2.22) 

and 𝐿𝑎 and 𝐿𝑏 are the shape parameters given by 

 𝐿𝑎 =
1+𝑔2

𝑔2 (1 −
tan−1 𝑔

𝑔
), and (2.23) 

 𝐿𝑏 =
1−𝐿𝑎

2
. (2.24) 

The parameter 𝑔 in Eq. (2.23) is a function of 𝑎𝑟: 

 
𝑔 = √(

1

𝑎𝑟
)2 − 1. (2.25) 
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According to Eq. (2.21), 𝐾𝐷𝑃 has an inverse relationship with radar wavelength, indicating 

that radars with shorter wavelengths are more effective in detecting 𝐾𝐷𝑃. 𝐾𝐷𝑃 value is 

dependent on both the size and concentration of raindrops but less weighted by larger sizes 

compared to 𝑍, as it is a lower-order moment of 𝐷. Simulations made by Sachidananda 

and Zrnić (1986) demonstrated that 𝐾𝐷𝑃 scales proportionally with 𝐷4.24. Additionally, 

based on a large dataset of DSDs measured in Oklahoma, Ryzhkov and Zrnić (2019) 

reported that 𝐾𝐷𝑃 is more sensitive to the DSD variability in smaller drops with a size 𝐷 

< 1 mm compared to larger drops.  

For dry aggregated snow, 𝐾𝐷𝑃 is close to 

 𝐾𝐷𝑃 ≈
0.27𝜋|𝑘𝑖|2𝐹𝑜

𝜆𝜌𝑖
2 ∫ (𝐿𝑎 − 𝐿𝑏)𝜌𝑠

2𝑁(𝐷)𝐷3𝑑𝐷
𝐷𝑚𝑎𝑥

𝐷𝑚𝑖𝑛
. (2.26) 

Similar to 𝑍𝐷𝑅 , 𝐾𝐷𝑃  also has smaller values in snow compared to rain due to the low 

values of 𝑘𝑖 and 𝜌𝑠, as well as their orientation. 𝐾𝐷𝑃 values increase slowly with the size 

of snowflakes because they are roughly proportional to the first moment of 𝐷. In contrast, 

𝐾𝐷𝑃 values of pristine ice crystals can be even higher than those of rain. Dry graupel and 

small hail yield low 𝐾𝐷𝑃 values for the same reason as 𝑍𝐷𝑅. At C-band, 𝐾𝐷𝑃 values can 

drop below zero due to resonance effects on large raindrops, dry/wet hailstones, and melting 

snow. Since 𝐾𝐷𝑃  contains information about particle orientation, it proves particularly 

useful for studying snowflakes, which can display complex, asymmetrical shapes with 

varying orientations. 

In practice, the slope of the range dependence of processed Φ𝐷𝑃 (assuming ≈ 𝜑𝐷𝑃) is 

used to estimate 𝐾𝐷𝑃 (Rinehart 2004): 

 𝐾𝐷𝑃 =
1

2

𝛥Φ𝐷𝑃

𝛥𝑟
, (2.27) 

where 𝑟 is the range distance in km. 

iv. Co-polar correlation coefficient: 

The co-polar correlation coefficient 𝜌𝐻𝑉 represents the correlation of radar signal powers 

between two channels and can be expressed as 

 𝜌𝐻𝑉 =
〈𝑆𝑉𝑉𝑆𝐻𝐻

∗ 〉

√[〈|𝑆𝐻𝐻|2〉〈|𝑆𝑉𝑉|2〉]
, (2.28) 

where ∗ denotes the complex conjugate. 𝜌𝐻𝑉  does not provide any information about 

precipitation amounts. Instead, it indicates the uniformity of particles within a sampled 

volume in terms of their shape, size, orientation, and phase composition. Typically, outside 

of the ML where liquid and solid precipitation take place, 𝜌𝐻𝑉 values are close to one. 

However, within the ML where snowflakes start melting, 𝜌𝐻𝑉 values can decrease to 0.9. 

In rain or snow, deviations of 𝜌𝐻𝑉  from one are usually attributed to statistical 

measurement errors, non-uniform beam filling (NBF) effects, and, especially at C-band, 

resonance effects. For non-meteorological signals such as interference noises, insects, and 

ground clutter, 𝜌𝐻𝑉 values could be less than 0.8 and thus a threshold value of 𝜌𝐻𝑉 is 

recommended to remove these signals. 
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v. Linear depolarization ratio: 

The linear depolarization ratio 𝐿𝐷𝑅 can be obtained only through a dual-channel radar 

system, which is capable of transmitting linearly polarized signals and receiving power from 

the orthogonal channels. Usually, 𝐿𝐷𝑅 is expressed in dBZ and defined following Bringi 

and Chandrasekar (2001) as 

 𝐿𝐷𝑅 = 10 log10(
〈|𝑆𝐻𝑉|2〉

〈|𝑆𝐻𝐻|2〉
). (2.29) 

〈|𝑆𝐻𝑉|2〉  represents the ensemble average representative of the cross-polar scatterers 

𝑆𝐻𝑉 with the transmission at horizontal polarization and reception at vertical one. 

𝐿𝐷𝑅 is sensitive to the shape and orientation of raindrops and closely correlated with 𝑍𝐷𝑅. 

In dry aggregated snow with low density and an average 𝑎𝑟 of 0.6, 𝐿𝐷𝑅 values typically 

fall below -26 dB (Herzegh and Jameson 1992). Rimed snow further reduces 𝐿𝐷𝑅 values 

due to the net effect of its higher density and more spherical shape [i.e., the impact of shape 

is larger than that of density on 𝐿𝐷𝑅, Ryzhkov et al. (2017)]. Pristine ice crystals with high 

density and less spherical shape, on the other hand, lead to higher values of 𝐿𝐷𝑅.  

Owing to its sensitivity to the water content of mixed-phase hydrometeors and strong 

resonance effects, 𝐿𝐷𝑅 values increase with wet hail size. Herzegh and Jameson (1992) and 

Brandes and Ikeda (2004) also demonstrated that the 𝐿𝐷𝑅 values within the ML exceed -

18 dB, which is considerably greater than those observed in pure rain and dry aggregated 

snow. Consequently, 𝐿𝐷𝑅  provides valuable information for ML detection and hail 

discrimination. 

Notably, current scanning strategies and the use of a single transmitter for simultaneous 

transmission and reception of waves at two polarizations preclude the production of 𝐿𝐷𝑅 

measurements by the radars used in this work (Doviak et al. 2000). 

The last polarimetric radar variables introduced here are specific attenuation at horizontal 

and vertical polarizations, 𝐴𝐻  and 𝐴𝑉 , as well as specific differential attenuation, 𝐴𝐷𝑃 

defined as 

 𝐴𝐷𝑃 =  𝐴𝐻 − 𝐴𝑉 (2.30) 

with all in units of dB km-1. 𝐴𝐻  and 𝐴𝑉 , however, cannot be directly observed by radars. 

Instead, they can be estimated in rain from the measured 𝑍 , Φ𝐷𝑃  and the attenuation 

parameter 𝛼 using the ZPHI method (Testud et al. 2000). 𝛼 is defined as the ratio of 𝐴 to 

𝐾𝐷𝑃 , expressed in units of dB deg-1. Its sensitivity to the DSD variability is particularly 

pronounced for small raindrops at all band frequencies, and for big drops of resonance size at 

C-band. Additionally, 𝛼 increases with decreasing temperature. Further details on estimating 

𝐴  and 𝛼  for rainfall retrieval are presented in the following section and section 4.2, 

respectively. 

In summary, the hydrometeor size distribution serves as the foundation for determining 

rain/snow rates and radar variables. As a result, simulations based on measured DSDs/PSDs 

from disdrometers are frequently used to investigate the impacts of DSD/PSD variability on the 

relationships between precipitation rates and polarimetric variables, and the consequent impact 

on radar-based QPE. 
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2.3 Error sources of radar-based QPE 

Accurate measurement of the power-associated variables 𝑍 and 𝑍𝐷𝑅 is a challenge due to 

errors stemming from radar miscalibration, attenuation along the path, PBB, radome effects, 

etc. While the phase-based variables 𝐾𝐷𝑃 and 𝐴 are immune to these issues, they can still 

suffer from noise in Φ𝐷𝑃  caused by the effects of NBF and backscattering (resonance), 

particularly in the presence of large 𝛿. Moreover, heavy filtering and smoothing applied to 

Φ𝐷𝑃 for noise suppression can lead to spatial degradation. To mitigate these uncertainties, a 

series of quality check procedures are essential in radar meteorology. Here are some well-

known and widely used methods in the field: 

i. Miscalibration of 𝑍: 

The accuracy of 1 dBZ for 𝑍 is deemed desirable in weather radar measurements. To 

achieve this, external calibrations using metal points, solar radio emissions, or disdrometer 

measurements are frequently performed (Ulaby et al. 1982; Sekelsky 2002; Atlas 2002; 

Chandrasekar et al. 2015). Subsequently, with the advent of polarimetric radar, the phase-

based variable Φ𝐷𝑃 has emerged as a constraint, leading to the proposal of various self-

consistency methods for 𝑍 calibration (Gorgucci et al. 1992 and 1999; Scarchilli et al. 1996; 

Vivekanandan et al. 2003). In their works, the 𝐾𝐷𝑃(𝑍ℎ, 𝑍𝐷𝑅) relation in the form of 

 𝐾𝐷𝑃(𝑍ℎ, 𝑍𝐷𝑅) = 𝑓(𝑍𝐷𝑅)𝑍ℎ
𝑎 (2.31) 

has been utilized in rainy conditions to calculate 𝐾𝐷𝑃 (Goddard et al. 1994; Illingworth and 

Blackman 2002). The function 𝑓(𝑍𝐷𝑅) in this equation is represented by a third-degree 

polynomial (Gourley et al. 2009). In situations where the quality of 𝑍𝐷𝑅 is uncertain, 𝐾𝐷𝑃 

can be estimated via a power-law relation based solely on 𝑍ℎ (Lee et al. 2015; Chen et al. 

2021b). Given that the integral of calculated 𝐾𝐷𝑃 over a ray or within a rainy segment (i.e., 

ΔΦ𝐷𝑃
𝑐𝑎𝑙.) is assumed to be consistent with the total span of radar-observed differential phase 

shift ∆ΦDP within the same interval, the offset of reflectivity at horizontal polarization, 

denoted as 𝑍𝐻
𝑜𝑓𝑓𝑠𝑒𝑡

, can be derived by the ratio of ΔΦ𝐷𝑃
𝑐𝑎𝑙. to ∆ΦDP: 

 ΔΦ𝐷𝑃
𝑐𝑎𝑙. = 2 ∫ 𝐾𝐷𝑃[𝑍ℎ(𝑟), 𝑍𝐷𝑅(𝑟)]𝑑𝑟

𝑟2

𝑟1
, (2.32) 

 𝑍𝐻
𝑜𝑓𝑓𝑠𝑒𝑡

= 10
1

𝛾
𝐿𝑜𝑔10

𝛥Φ𝐷𝑃
𝑐𝑎𝑙.

∆Φ𝐷𝑃
. (2.33) 

In Eq. (2.32), the range interval (𝑟1, 𝑟2) only contains the region below the ML, or a small 

rainy radial segment. In Eq. (2.33), the constant 𝛾 is the exponent 𝑎 in Eq. (2.31) or the 

exponent of 𝑍ℎ  in the 𝐾𝐷𝑃(𝑍ℎ)  relation. Note that 𝑍ℎ  and 𝑍𝐷𝑅  are attenuation-

corrected in this context. 

ii. Miscalibration of 𝑍𝐷𝑅: 

Numerous methods exist for 𝑍𝐷𝑅 calibration, with the most common approach involving 

bird-bath scans, which are azimuthal scans conducted at a 90-deg elevation angle (Gorgucci 

et al. 1999; Hubbert et al. 2008). Since 𝑍𝐷𝑅  is assumed to be zero when raindrops are 

viewed at vertical incidence, the average value of 𝑍𝐷𝑅 from the vertical scan is directly 

regarded as its systematic bias. When a vertical scan is unavailable, an alternative approach 
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is to use the mean value of 𝑍𝐷𝑅 in light rain from plan position indicator (PPI) scans at low 

angles. The rationale behind this approach is that small raindrops are nearly spherical and 

the values of 𝑍𝐷𝑅 in light rain are similar regardless of rain type. To apply this approach, 

the light-rain area must be carefully defined, typically by selecting data with 𝑍𝐻 < 20 dBZ, 

signal-to-noise ratio 𝑆𝑁𝑅 > 20 dB, and ∆ΦDP < 20 deg. The latter two conditions ensure 

the high quality of measurements without significant noise and attenuation. The offset of 

𝑍𝐷𝑅  can then be quantified by subtracting the mean of those chosen data from that of 

simulated 𝑍𝐷𝑅 within the same range of simulated 𝑍𝐻 derived from the measured DSDs 

(see section 4.1 regarding this simulation). 

Other methods for determining the systematic bias of 𝑍𝐷𝑅 include using data from dry 

aggregated snow at mid-to-high latitudes (Ryzhkov and Zrnić 1998; Brandes and Ikeda 

2004), Bragg scatter at S-band (Melnikov et al. 2011), cross-polar measurements (Hubbert 

et al. 2003) and ground clutter (Melnikov et al. 2017). 

iii. Attenuation of 𝑍: 

Attenuation is the gradual loss of power as radar energy travels through the atmosphere 

and is absorbed or reflected by gas or hydrometeors. Gas-induced attenuation is negligible, 

while the power-related radar variables at shorter wavelengths are highly susceptible to 

precipitation-induced attenuation. Within the range-bin interval (𝑟1, 𝑟2) of rain, the two-

way path-integrated specific attenuation (𝑃𝐼𝐴 in dB), i.e., the total amount of attenuated 

reflectivity ∆𝑍, can be estimated from ∆Φ𝐷𝑃 and 𝛼 for attenuation correction: 

 𝑃𝐼𝐴 = 𝛼0[Φ𝐷𝑃(𝑟2) − Φ𝐷𝑃(𝑟1)] = 𝛼0∆Φ𝐷𝑃, (2.34) 

where 𝛼0 represents the attenuation parameter 𝛼 specific to rain. It is worth noting that 

𝛼0  is DSD- and temperature-dependent, but in practice, it remains constant within the 

interval (𝑟1, 𝑟2). 

To obtain a more precise estimate, ∆𝑍 can be calculated by integrating 𝐴 along the rainy 

ray. The ZPHI method used to estimate 𝐴 follows: 

 𝐴(𝑟) =
𝑍𝑎(𝑟)𝑏𝐶(𝑏,𝑃𝐼𝐴)

𝐼𝑎(𝑟1,𝑟2)+𝐶(𝑏,𝑃𝐼𝐴)𝐼𝑎(𝑟,𝑟2)
, (2.35) 

where 

 𝐼𝑎(𝑟1, 𝑟2) = 0.46𝑏 ∫ [𝑍𝑎(𝑠)]𝑏𝑟2

𝑟1
𝑑𝑠, (2.36) 

 𝐼𝑎(𝑟, 𝑟2) = 0.46𝑏 ∫ [𝑍𝑎(𝑠)]𝑏𝑑𝑠
𝑟2

𝑟
 and (2.37) 

 𝐶(𝑏, 𝑃𝐼𝐴) = 𝑒0.23𝑏𝑃𝐼𝐴 − 1. (2.38) 

In Eqs. (2.35)-(2.38), 𝑍𝑎  represents the measured, uncorrected apparent 𝑍ℎ  or 𝑍𝑣 , the 

parameter 𝑏 is the exponent in the power-law 𝐴𝐻/𝑉(𝑍ℎ/𝑣) relations and is assumed to be 

a constant of 0.86 and 0.87 for two channels, respectively. In Eqs. (2.36) and (2.37), 𝑠 

denotes the slant range in km. 
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The 𝛼 values in hail are considerably higher than those in rain (Schmidt et al. 2020). 

Also, the assumed 𝐴(𝑍ℎ/𝑣) relations and 𝛼0 used in the ZPHI method are only valid for 

rain. To overcome this limitation, Gu et al. (2011) proposed a reliable attenuation correction 

method for heavy rain mixed with hail at C-band, based on the ZPHI algorithm. In this 

method, the calculation of 𝐴 using Eq. (2.35) is modified by substituting Eq. (2.34) with 

 𝑃𝐼𝐴𝐻𝑆 = 𝛼0[Φ𝐷𝑃(𝑟2) − Φ𝐷𝑃(𝑟1)] + ∆𝛼∆Φ𝐷𝑃(HS), (2.39) 

where HS refers to convective cores with the presence of hail, known as hot spots, and ∆𝛼 

denotes the difference between the 𝛼  values within and outside HS. The method 

determines ∆𝛼 values through an iterative process of incrementing ∆𝛼 in Eq. (2.39) until 

it satisfies the condition given by 

 ∫ 𝐴(𝑟, ∆𝛼)𝑑𝑟 =
𝛼0

2
∆Φ𝐷𝑃OHS

(OHS), (2.40) 

where OHS indicates the radar bins located outside HS. Once ∆𝛼 is determined, ∆𝑍(𝑟) 

can be estimated according to the radar bin location with respect to HS: 

∆𝑍(𝑟) = { 

𝛼0∆ΦDP(𝑟)

𝛼0∆ΦDP(𝑟) + ∆𝛼[∆ΦDP(𝑟) − ∆ΦDP(𝑟3)

𝛼0∆ΦDP(𝑟) + ∆𝛼∆ΦDP(HS)
]      

𝑖𝑓 𝑟 < 𝑟3

𝑖𝑓 𝑟3 < 𝑟 < 𝑟4

𝑖𝑓 𝑟 > 𝑟4

, (2.41) 

where (𝑟3, 𝑟4) is the range-bin interval of HS. After deriving ∆𝑍, the entire process is 

repeated again, but using the latest corrected 𝑍 for better HS detection. 

For the data within the ML, Bellon et al. (1997) found that the BB attenuation could be 3-

5 times the rain-equivalent attenuation, while it is hard to quantify precisely. Conversely, 

attenuation due to dry snow and small graupel is very low and thus ignorable. 

iv. Attenuation of 𝑍𝐷𝑅: 

Estimating two-way path-integrated differential attenuation 𝑃𝐼𝐴𝐷𝑃, namely ∆𝑍𝐷𝑅, in rain 

is similar to the estimation of 𝑃𝐼𝐴 in Eq. (2.34), where ΔΦ𝐷𝑃 is used with the factor 𝛽, 

representing the ratio of 𝐴𝐷𝑃 to 𝐾𝐷𝑃 in dB deg-1. A more precise correction considering 

the contributions from HS can also be made by following the approach outlined in Eq. (2.41). 

To determine ∆𝛽 (the difference in 𝛽 values inside and outside the HS), ∆𝑍𝐷𝑅 behind 

the HS ( 𝑟 > 𝑟4) needs to be first quantified using  

 ∆𝑍𝐷𝑅 = 𝑍𝐷𝑅(𝑍𝐻) − 𝑍𝐷𝑅
𝑜𝑏𝑠., (2.42) 

where 𝑍𝐷𝑅
𝑜𝑏𝑠.  indicates the radar-observed differential reflectivity, while 𝑍𝐷𝑅(𝑍𝐻)  is 

viewed as the expected (true) value of 𝑍𝐷𝑅 derived from the quality-controlled 𝑍𝐻. Note 

that only data points with 𝑍𝐻 values below 40 dBZ are selected for calculation, to reduce 

the impacts of DSD variability on the derived 𝑍𝐷𝑅 in heavy rain. ∆𝛽 then can be written 

as 

 ∆𝛽(𝑟) =
∆𝑍𝐷𝑅(𝑟)−𝛽∆ΦDP(𝑟)

∆Φ𝐷𝑃(𝐻𝑆)
, (2.43) 
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where 𝑟 > 𝑟4. In the rainy segment following the first HS, Eq. (2.43) can be simplified by 

assuming ∆𝑍𝐷𝑅 behind the HS mostly results from hail and thus deleting the second term 

(Ryzhkov et al. 2013b). 

The correction method for 𝑍𝐷𝑅  within the ML is currently unknown due to limited 

studies, while the attenuation of 𝑍𝐷𝑅 above the ML is very small and can be neglected. 

v. Partial beam blockage: 

PBB is a common issue that arises from terrain or local obstacles such as buildings or trees 

near radar sites when the radar beams are still at low altitudes. To estimate the impact of 

beam blockage on 𝑍 at each azimuth and elevation, a digital elevation model is used based 

on the beam’s geometry and occultation (Ryzhkov and Zrnić 2019). Thus, the 𝑍  bias 

resulting from PBB can be minimized by utilizing data from higher elevation scans in the 

affected regions or by applying a correction based on the blocking factor. Moreover, Shakti 

et al. (2013) employed X-band radars as gap fillers over a mountainous region, whereas 

Zhang et al. (2013) and Gou and Chen (2021) corrected PPB through a self-consistency 

method similar to that used for Z calibration. The related bias of 𝑍𝐷𝑅 is less conspicuous 

compared to that of 𝑍. 

vi. Radome effect: 

When rainwater coats or snow accumulates on the surface of a radome, it can introduce 

wet radome effects that cause biases in 𝑍𝐻  and 𝑍𝐷𝑅  (Hudak et al. 2006; Kurri and 

Huuskonen 2008; Frech 2009). These effects are dependent on factors such as precipitation 

intensity, radome material, and radar wavelength. Chen et al. (2021b) indicated that 𝑍𝐻
𝑜𝑓𝑓𝑠𝑒𝑡

 

obtained via the self-consistency method also includes power loss from the wet radome 

effects. The impact on 𝑍𝐷𝑅, however, may result in azimuthal biases, which vary with wind 

speed and direction, making it difficult to correct (Bechini et al. 2006). 

In addition to precipitation, the installation of lightning protection in the radome may 

potentially induce another type of radome effect, thereby affecting the transmission of signal 

power. Notably, this effect brings about a discernible bias in 𝑍𝐷𝑅 that is characterized by 

a consistent and fixed pattern over time. Nevertheless, research in this area is limited. 

vii. Beam-broadening effect: 

Beam-broadening effects can largely degrade the quality of radar observations at far 

ranges from radar sites. As the beam width widens, the occurrence of the NBF effects may 

increase, and 𝑆𝑁𝑅 values, an indicator of the noise level, typically decrease. 

a. Non-uniform beam filling: 

Ryzhkov (2007) developed simple analytical formulas to estimate the NBF-induced 

biases in 𝑍𝐷𝑅 , Φ𝐷𝑃 , and 𝜌𝐻𝑉 , while in practice the associated correction study is 

insufficient and restricted. 

b. Noise: 

When 𝑆𝑁𝑅 falls below 20 dBZ, statistical errors in the phase-based variables become 

more significant. Additionally, the quantitative use of power-related observations like 

𝜌𝐻𝑉 and 𝑍𝐷𝑅 is badly affected due to their high sensitivity to the noise-induced biases. 

As the 𝜌𝐻𝑉-threshold method for non-weather signal removal is frequently applied in 

the field, noise correction for 𝜌𝐻𝑉  becomes important. The corrected 𝜌𝐻𝑉  can be  
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obtained following Ryzhkov and Zrnić (2019): 

 𝜌𝐻𝑉 = 𝜌𝐻𝑉
𝑜𝑏𝑠.(1 +

1

𝑠𝑛𝑟
), (2.44) 

where 𝜌𝐻𝑉
𝑜𝑏𝑠. is observed co-polar correlation coefficient and 𝑠𝑛𝑟 is the signal-to-noise 

ratio in a linear unit estimated via 

 𝑆𝑁𝑅 = 𝑍𝐻 − 20 𝑙𝑜𝑔10(𝑟) + 𝐶. (2.45) 

In Eq. (2.45), 𝑆𝑁𝑅, 𝑍𝐻, and 𝐶 are in units of dB, while 𝑟 is the distance in km. The 

accuracy of 𝑆𝑁𝑅  estimation relies on the value of the constant 𝐶 , which can be 

determined by examining the flatness of the scatterplot of corrected 𝜌𝐻𝑉 against 𝑆𝑁𝑅 

below 20 dB. 

viii. Backscattering effects on ΦDP: 

Backscattering and resonance effects can impact both the quantity and quality of radar 

variables. To process ΦDP and retrieve 𝐾𝐷𝑃 , numerous methods have been published 

(Hubbert and Bringi 1995; Ryzhkov et al. 2005; Lang et al. 2007; Maesaka et al. 2012; 

Vulpiani et al. 2012 and 2015; Giangrande et al. 2013; Schneebeli et al. 2014; Reimel and 

Kumjian 2021). The primary goals of these methods are to smooth noise, mitigate the 

deviation in ΦDP caused by 𝛿, and provide reliable 𝐾𝐷𝑃. Users can select their preferred 

window size for smoothing based on the type of investigated precipitation, the radial bin-

resolution, and the quality of ΦDP. 

ix. Ground clutter contamination: 

Traditional techniques for removing ground clutter from radar observations include the 

use of clutter maps generated from statistical data collected during clear-air conditions, or 

the application of classification methods based on the analysis of Doppler spectra (Siggia 

and Passarelli Jr 2004). The former, however, is limited in its ability to eliminate sporadic 

ground clutter caused by anomalous propagation due to super-refraction. The latter may 

mistakenly filter out useful signals when precipitation movement is perpendicular to the 

radial viewing direction from the radar at the observed location, which leads to near-zero 

Doppler velocity 𝑊 , as is the case with ground clutter. The advent of polarimetry has 

enabled more efficient and accurate ground clutter removal methods. E.g., the utilization of 

𝜌𝐻𝑉 thresholds or polarimetric ground clutter identification methods based on fuzzy-logic 

algorithms have demonstrated greater success in addressing these concerns. 

Apart from errors originating from radar observation itself, other uncertainty sources such 

as the DSD/PSD variability, vertical variation of precipitation, and wind advection are also 

critical for radar-based QPE. Accounting for these uncertainties is essential to enhance the 

accuracy and reliability of QPE results. A corresponding discussion on this matter is provided 

below: 

i. DSD/PSD variability: 

The DSD/PSD variability is an error source for QPE that all radar variables will face, 

albeit to varying degrees. DSD characteristics exhibit significant variation across locations, 

cases, and even within a developing storm. In the case of rain, it is possible for a radar 
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volume with a high/small value of 𝑁𝑤/𝐷𝑚 to yield a value of any radar variable equal to 

that of another volume with a completely different DSD, i.e., a small/high value of 𝑁𝑤/𝐷𝑚, 

even though the former volume typically produces a stronger rain intensity than the latter. 

In this scenario, QPE error due to the DSD variability is expected. Fig. 2.2 displays the 

sensitivity of rainfall retrievals based on different radar variables at C-band to the DSD 

variability, as simulated using DSDs measured in Germany. The scatter of 𝑅 against 𝑍ℎ 

is generally broad across the entire range since 𝑍ℎ is the higher-order moment of 𝐷 (Fig. 

2.2a). In light rain, 𝐾𝐷𝑃  shows the highest sensitivity to DSD variations among all 

variables, whereas having the smallest sensitivity in heavy rain (Fig. 2.2b). In Figs. 2.2c/d, 

𝑅(𝐴𝐻/𝑉) hold the narrowest scatter in light rain compared to all other variables. In heavy 

rain, however, there is a deviation from the line observed in the data points representing 

continental rain (defined as points with 𝐿𝑜𝑔10(𝑁𝑤) < 3 in cyan). Note that 𝐴𝑉  is less 

sensitive to the DSD variability in heavy rain than 𝐴𝐻. As a result, hybrid rainfall estimators, 

that use different radar variables in different rain conditions, are widely suggested and 

implemented in operation to reduce the impacts of DSD variability on QPE (e.g., Figueras 

i Ventura and Tabary 2013 in French; Jung et al. 2018 in South Korea; Zhang et al. 2020a 

in the U.S.A.). 

 

Figure 2.2 Scatterplots of rain rates 𝑅 against (a) linear reflectivity at horizontal polarization 

𝑍ℎ, (b) specific differential phase 𝐾𝐷𝑃, (c) specific attenuation at horizontal polarization 𝐴𝐻 

and (d) specific attenuation at vertical polarization 𝐴𝑉. The radar variables are simulated at C-

band using DSD measurements made in Germany. The cyan dots in (c) and (d) indicate the 

points with 𝐿𝑜𝑔10(𝑁𝑤) less than three.  
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Compared to raindrops, snowflakes exhibit a higher degree of variation in PSD, which has 

led to a limited understanding of their properties and difficulty in accurately quantifying 

snowfall. Simulations conducted by Bukovčić et al. (2018) and illustrated in their Figs. 6 

and 7 indicated that both the 𝑆(𝐾𝐷𝑃) and bivariate 𝑆(𝑍ℎ, 𝐾𝐷𝑃) retrievals improve the 

estimation of 𝐼𝑊𝐶 and snowfall beyond the 𝑍ℎ-based retrievals, with 𝑆(𝑍ℎ, 𝐾𝐷𝑃) giving 

the lowest errors. The improvements are attributed to 𝐾𝐷𝑃 , which is mostly linearly 

proportional to the 𝐷 of snowflakes, while 𝑍ℎ represents the fourth moment of 𝐷. As 𝐴 

cannot be estimated for ice particles, the application of 𝑆(𝐴) is not discussed. 

ii. Variations of the vertical structure of precipitation: 

Microphysical processes occurring within atmospheric columns can lead to vertical 

variations in precipitation. These variations can in turn affect the accuracy of surface QPE 

when radar beams monitor precipitation at high altitudes. This problem is compounded in 

areas with complex topography, where persistent PBB and frequent orographic 

enhancement of rain at lower levels take place (Lee et al. 2018). In such scenarios, VP 

corrections that project radar observations to the surface and gap-filling radars with low 

observing heights are recognized as promising solutions (Kitchen et al. 1994; Chen et al. 

2020; Gehring et al. 2020; Chen et al. 2022).  

iii. Wind advection: 

The impact of wind drift on radar-based QPE cannot be overlooked, as it can cause 

precipitation to fall in unexpected regions. Advection adjustment schemes, such as those 

based on estimated hydrometeor trajectories obtained from model output (Lauri et al. 2012) 

or on temporal interpolation of radar images (Thorndahl et al. 2014; Wang et al. 2015), are 

typically employed to mitigate this issue. Spatial smoothing, by averaging retrieved 

precipitation fields within a certain distance, can also provide a relatively simple solution 

(Berndt et al. 2014). Tracking snowflakes with low 𝑉𝑇𝑠 for adjustment, however, remains 

a challenge, as they may be carried by the wind flow to distant locations from where they 

are measured. The issue is further complicated by the presence of large vertical wind shear. 

2.4 The history and current status of radar-based QPE methodologies 

Radar-based QPE has undergone significant developments over several decades. This section 

provides a historical overview of the evolution of radar-based QPE algorithms, highlighting the 

key innovations and milestones that have shaped the field. The current state of the art in radar-

based QPE methodologies, including recent advances and promising research directions, is also 

discussed. 

Below the ML 

Prior to the establishment of dual-polarimetric radar networks, early rainfall estimates were 

primarily based on 𝑍ℎ . Given the fact that 𝑍ℎ  is highly sensitive to the DSD variability, 

various 𝑍ℎ-based rainfall algorithms were applied according to climatological regimes, seasons, 

and precipitation types (Battan 1973; Zhang et al. 2016). In the initial stages, power-law 𝑅(𝑍ℎ) 

relations were obtained by fitting radar-observed echoes aloft to gauge-measured rain rates at 

the surface (Marshall and Palmer 1948). Subsequently, with the increasing installment of 

disdrometer instruments, rainfall relations were derived mainly from simulations based on 

measured DSDs (Ryzhkov and Zrnić 2019). 
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In recent decades with the aid of polarimetric radar variables, QPE performance has been 

greatly improved (Zrnić and Ryzhkov 1999). The first polarimetric variable exploited was 𝑍𝐷𝑅, 

which helps characterize the average drop size within the sampled volume (Scarchilli et al. 

1993; Zrnić et al. 2000). 𝑍𝐷𝑅  alone, however, does not provide information on particle 

concentration and thus 𝑅(𝑍𝐷𝑅) cannot be used for rainfall estimation. As a consequence, the 

bivariate relation 𝑅(𝑍ℎ, 𝑍𝐷𝑅) was proposed and expected to increase the quality of QPE by 

incorporating additional DSD messages (Seliga et al. 1981; Jameson 1991). Nevertheless, this 

approach requires reliable calibration and attenuation correction, especially for 𝑍𝐷𝑅 where a 

desired accuracy of 0.1 dB is needed for QPE purposes (Sachidananda and Zrnić, 1987). While 

𝑅(𝑍ℎ, 𝑍𝐷𝑅) may turn out a counterproductive attempt for shorter-wavelength radars due to 

larger uncertainties in attenuation than S-band, 𝑍𝐷𝑅 enhances the capability of hydrometeor 

classification algorithms (HCA), as noted by Bringi et al. (1984), Aydin et al. (1986), and Park 

et al. (2009). In their work, polarimetric HCAs have shown advantages over non-polarimetric 

HCAs with limited discrimination. This advancement has driven the development of 

hydrometeor-type-specific rainfall algorithms that are widely used in many operational 

environments (Steinert et al. 2013). 

Later on, the phase-based measurement ΦDP has gained attention in the field. It improves 

QPE by offering 𝐾𝐷𝑃  as well as reliable attenuation correction methods for power-related 

variables. Specifically, 𝐾𝐷𝑃  exhibits lower sensitivity to DSD variations, and immunity to 

radar miscalibration, moderate attenuation, (wet) radome effect, and PBB (Zrnić and Ryzhkov 

1996). 𝑅(𝐾𝐷𝑃) is particularly suggested for heavy rain due to the demand for heavy spatial 

averaging to counteract the noise in light rain, resulting in a loss of accuracy (Zrnić and 

Ryzhkov 1999). For situations where rain is mixed with hail, 𝐾𝐷𝑃  better estimates liquid 

precipitation than 𝑍ℎ , as it is less affected by water-coated hail, which appears as large 

raindrops in 𝑍ℎ-based retrievals, leading to an overestimation of rainfall (Balakrishnan and 

Zrnić 1990; Ryzhkov et al. 2013b). Note that 𝑅(𝐾𝐷𝑃) is more advantageous for radars at C- 

or X-band and thus can be applied to a wider range of rain intensities. 

Most recently, another phase-based variable  𝐴 has emerged as a powerful information 

source for QPE, gradually replacing the use of 𝑅(𝑍ℎ) and 𝑅(𝐾𝐷𝑃) in light-to-moderate rain 

(Ryzhkov et al. 2014; Diederich et al. 2015 and 2015b). Its success lies not only in its low 

sensitivity to the DSD variability in these rain intensities (Atlas and Ulbrich 1977), but also in 

its higher spatial resolution compared to 𝑅(𝐾𝐷𝑃). 𝐴𝑉  is even expected to provide greater 

accuracy of QPE than 𝐴𝐻 in areas with strong attenuation, where 𝑍𝐻 may be buried in noise 

while 𝑍𝑉  can still be reliably measured (Diederich et al. 2015b). Nevertheless, 𝐴  is a 

relatively new tool for rainfall retrieval, and scientists are still working on optimizing it based 

on the ZPHI method (Testud et al. 2000). 

The main challenge in using 𝐴 for accurate rainfall estimation is the sensitivity of 𝛼 to 

the DSD variability. To overcome this challenge, 𝛼 estimators based on the change of 𝑍𝐷𝑅 

with respect to 𝑍𝐻 (called 𝑍𝐷𝑅 slope) or 𝑍𝐷𝑅 itself have been studied (Ryzhkov et al. 2022). 

The 𝑍𝐷𝑅 slope method is especially beneficial in case no bird-bath scans are available for 𝑍𝐷𝑅 

calibration, as it is not affected by the potential radar system biases of 𝑍 and 𝑍𝐷𝑅. This method 

has already been applied to S-band (Wang et al. 2017 and 2019; Zhang et al. 2020a). However, 

Zhang et al. (2020a) and Chen et al. (2021a) have pointed out that the 𝛼 adjustment using 𝑍𝐷𝑅 

slope on a scan basis may not be robust enough due to the inhomogeneity of precipitation 
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regimes within a scan. At S-band, this problem can be resolved by including a ratio factor of 𝛼 

derived from 𝑍 to scan-wise 𝛼 in the power-law 𝑅(𝐴) relation, as the exponent value for S-

band is close to one (Zhang et al. 2020b). Conversely, at C-band where the exponent value is 

relatively low, an optimization of 𝛼 along radial rays for different rain types is recommended, 

but remains challenging (Huang et al. 2020; Ryzhkov et al. 2022). The difficulties in 

implementing this approach are discussed in section 4.2. 

Since 𝐴 is only valid in the pure-rain segment, Wang et al. (2017 and 2019) excluded the 

contribution of intense convective cells with potential hail contamination from the integration 

path in the ZPHI algorithm. This exclusion strategy, however, did not account for the extra 

attenuation from hail cores, which should propagate to the radar bins behind. As a result, 𝐴 

and thus 𝑅(𝐴) were overestimated in the former rainy segments and underestimated in the 

latter (Chen et al. 2021a). This is especially problematic for shorter-wavelength radars with 

pronounced attenuation effects. To further increase the accuracy of radar-derived 𝐴 and thus 

QPE, the integration in the ZPHI algorithm should be reset for each pure-rain segment. 

The vertical gradients of radar variables and rain intensities may increase towards the 

surface below the ML during warm-rain processes or precipitation enhancement over complex 

terrain. However, the radar beams, which rise with distance from the radar site, may not detect 

these changes. In such cases, utilizing gap-filling X-band radars to monitor rain at lower 

altitudes and applying VP corrections for radar variables or derived rain rates have proven to 

be effective (McLaughlin et al. 2009; Antonini et al. 2017; Chen et al. 2020). Chen et al. (2020) 

used observations from profiler radars as a VP reference and estimated 𝑍 near the surface by 

adding the 𝑍-difference between the surface and the observing height of the scanning radar 

seen in the referred VP to the observations of the scanning radar (see Fig. 3a in their paper). It 

has reduced negative biases by at least 30% in two case studies. Chen et al. (2022) extended 

this method by using range-defined quasi-vertical profiles (RD-QVP, Tobin and Kumjian 2017) 

as VP references and likewise correcting for 𝐾𝐷𝑃. 

Within and above the ML 

In rain events characterized by low ML heights, radar beams tend to sample mixed-phase 

and solid precipitation at short ranges. In situations like this, 𝑍ℎ-based estimators are still 

widely used owing to the incomplete understanding of the relationship between precipitation 

rates and polarimetric variables for melting and solid particles. A method to address issues 

related to BB contamination and beam overshooting of the ML is QPE based on hydrometeor 

type. E.g., Giangrande and Ryzhkov (2008) introduced additional multipliers of 0.6 and 2.8 to 

the 𝑅(𝑍ℎ) relations for wet snow within the BB and dry snow/crystals above, respectively, 

which are currently implemented in the operational radar network in the U.S.A. This 

methodology, however, is heavily reliant on temperature information and always produces 

discontinuities in the rainfall fields associated with the switching between different 

hydrometeor types. 

Several articles have attempted to mitigate the overestimation of rainfall in BB-

contaminated areas and the underestimation caused by weaker echoes of snowflakes and beam-

broadening effects via reconstructing the intrinsic VPR (Koistinen 1991; Kitchen et al. 1994; 

Seo et al. 2000; Germann and Joss 2002; Matrosov et al. 2007; Anagnostou et al. 2010; Zhang 

and Qi 2010, among others). The apparent vertical profile of reflectivity (AVPR) method 

presented by Zhang and Qi (2010) is one of the most successful techniques. In this algorithm, 
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convective and stratiform regions are first discriminated based on the vertical integrated liquid 

(VIL) parameter, allowing identification of BB-affected areas within the stratiform region. 

Subsequently, the mean AVPR from radar observations and model outputs are combined to 

efficiently compute the VPR. The resulting VPR is then used to correct the observed local 

profile of 𝑍 for rainfall estimation at the surface. The AVPR-corrected precipitation fields 

were found to be continuous, unlike those derived from the HCA-based method. Until recently, 

Ryzhkov et al. (2022) recommended the utilization of polarimetry for the VPR correction, 

which involves better detection of BB range and more precise estimation of 𝑍 biases. This 

technique is expected to increase the accuracy of ensuing QPE. 

Due to the large sensitivity of 𝑍 to PSD, similar to the retrieval of rain rate using 𝑅(𝑍ℎ), 

a variety of power-law 𝑆(𝑍ℎ) relations have been employed to quantify snowfall according to 

the climatological regions and hydrometeor classifications (Matrosov 2007; Liu 2008; Kulie 

and Bennartz 2009; Matrosov et al. 2009; Hiley et al. 2011; Wolfe and Snider 2012; Huang et 

al. 2015; von Lerber et al. 2017; Cooper et al. 2017). To better classify ice particles, additional 

measurements from multi-frequency microwave sensors (Huang et al. 2019) or disdrometers 

(Tao et al. 2021; Shen et al. 2022) can be used to estimate the parameters of PSD, and optimize 

the coefficients in 𝑆(𝑍ℎ) relations. Recent studies have focused on overcoming the challenge 

associated with the vast diversity of snowflakes using polarimetry. Hassan et al. (2017) 

introduced the first polarimetric snowfall estimator at C-band that combined 𝑍𝑑𝑟 with 𝑍ℎ to 

better measure large aggregates. Similarly, Bukovčić et al. (2018) proposed snowfall estimators 

using 𝐾𝐷𝑃  for S-band. Later, Bukovčić et al. (2020) developed the generalized bivariate 

𝑆(𝑍ℎ, 𝐾𝐷𝑃) and 𝑆(𝑍𝑑𝑟 , 𝐾𝐷𝑃) relations that are applicable to different climatologies and radars 

at various wavelengths. These relations incorporated adjustable assumptions regarding the 𝜎 

and 𝑎𝑟 of snowflakes and ice crystals, and were applied to several snowstorms in the U.S.A. 

The outcomes indicated that the polarimetric retrievals demonstrated better agreement with 

ground-based measurements than the 𝑆(𝑍ℎ) retrieval. The decreasing information of 𝐾𝐷𝑃 

due to increasing aggregation of snowflakes towards the ground, however, may be a drawback 

of 𝑆(𝑍ℎ, 𝐾𝐷𝑃) and 𝑆(𝑍𝑑𝑟 , 𝐾𝐷𝑃) retrievals at S-band, but less problematic for C- and X-band 

radars. 

At the end of this section, radar-based QPE algorithms based on variational schemes and 

artificial intelligence (AI) techniques (e.g., machine learning) are briefly overviewed. 

Variational approaches are capable of dynamically integrating models, radar measurements, 

and climatological (background) information based on physical constraints. By accounting for 

the properties of precipitation microphysics in various rainfall algorithms and minimizing radar 

observation errors, they have led to further improvements in QPE (Chang et al. 2016; Huang et 

al. 2018 and 2020). In addition to this, the rapid progress in computer science and 

supercomputer has accelerated the development of AI-based algorithms, which have also 

gained popularity in the field of radar meteorology. Recent research has utilized long-term 

databases from precipitation radars and ground-based sensors to train and refine models for 

radar-based QPE (Zhang et al. 2021; Yo et al. 2021; Hassan et al. 2022). AI-based algorithms 

have also enhanced radar-based QPE by providing improved hydrometeor classification 

(Roberto et al. 2017; Wang et al. 2017; Lu and Kumar 2019) or advanced radar-gauge merging 

methods (Zhang et al. 2022). 
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Chapter 3 

Precipitation Sensors and Data Processing 

This chapter covers the collection and processing of data from ground-based instruments that 

provide DSD information, and radar observations used for precipitation retrieval.

3.1 Ground-based instruments providing DSD information 

In this study, DSDs measured by local disdrometers or retrieved from vertically-pointing radars 

are utilized as inputs to T-matrix scattering calculations for radar variable simulations 

(Waterman 1971). The following subsections introduce the working principles of these devices 

and the associated data processing techniques. 

3.1.1 Thies Clima Laser Precipitation Monitor 

Measurements of Thies Clima Laser Precipitation Monitor (LPM) disdrometers from DWD are 

chosen to investigate the impact of DSD variability on key parameters of rainfall retrievals at 

C-band. LPM, an optical laser-based disdrometer, utilizes an infrared beam with a wavelength 

of 785 nm and a total horizontal area of 45.6 cm2 (228 mm × 20 mm × 0.75 mm) to observe 

𝐷 and fall velocity 𝑉𝑇 (m s-1) of individual hydrometeors, from which DSDs are estimated. It 

separates particles into 22 𝐷- and 20 𝑉𝑇- classes resulting in a 𝐷-𝑉𝑇 matrix with 440 bins 

saved as telegrams transmitted every minute by the instrument (Bloemink et al. 2005). The data 

used in this study and their processing procedures follow Chen et al. (2021a), but with 

additional details provided below. 

Northwestern Germany and the coast in the north are under the maritime influence, 

exhibiting DSD characteristics similar to those of tropical rain with relatively high 𝑁𝑤 and 

small 𝐷𝑚 values. In contrast, the climate becomes more continental-like farther inland and 

towards the south. In such transition zone from the European marine regime to the continental 

regime in Germany, it is crucial to gather representative DSDs. However, due to limited access 

to the DWD LPM data, measurements from 68 LPMs operated within a 150-km range of six 

DWD C-band radars are selected. These radars include Hannover (HNR), Essen (ESS), 

Boostedt (BOO) radar in the northwest, and Isen (ISN), Memmingen (MEM), Eisberg (EIS) 

radar in southeast part of Germany (Fig. 3.1 purple triangles and dots). From these disdrometers, 

thirty rain days covering various types of precipitation across different seasons from 2015 to 

2017 are chosen and listed in Table 3.1. In total, 1,020,000 1-minute DSDs were collected, 

including the LPM measurements from the rooftop of the Institute for Geosciences, Department 

of Meteorology at the University of Bonn (Fig. 3.1 cyan dot) between October 2011 and April 

2019. 
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Figure 3.1 Spatial coverage of the current radar network operated by the German 

Meteorological Service (DWD, Deutscher Wetterdienst), and a local research radar operated by 

the Laboratory for Clouds and Precipitation Exploration (CPEX-LAB). Distributions of the 

ground-based precipitation sensors from DWD and the University of Bonn are also depicted. 

The black circles correspond to the measurement ranges (150 km) of the operational radars, and 

the measurement range of the research radar in Hohenpeißenberg is represented with the blue 

dotted circle. The red circle highlights the measurement range of the local X-band research 

radar, JuXPol, situated near Jülich. The green/purple crosses mark the locations of rain 

gauges/Thies Clima Laser Precipitation Monitor (LPM) disdrometers utilized for quantitative 

precipitation estimation (QPE) evaluations. The purple triangles are the LPMs used for QPE 

algorithm developments, and the purple dots are those used for both QPE evaluations and 

algorithm developments. The cyan dot indicates the location of the Institute for Geosciences, 

Department of Meteorology, University of Bonn where the LPM and Micro Rain Radar (MRR) 

are co-located. The cyan square is the MRR installed in the village of Bergheim. 
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Table 3.1 Dates on which the measurements of Thies Clima Laser Precipitation Monitor (LPM) 

disdrometers from the German Meteorological Service (DWD, Deutscher Wetterdienst) were 

used for quantitative precipitation estimation (QPE) algorithm developments. The locations 

correspond to radar sites within a 150-km range of which the selected LPMs were installed. 

location date [yyyy/mm/dd] 

HNR, ESS, BOO 

2015/10/15-16, 2015/11/14-15, 2015/11/30, 2015/12/11-12, 

2016/06/20, 2016/06/23-25, 2017/03/19, 2017/07/19, 2017/07/24-25, 

2017/09/30, 2017/10/05 

ISN, MEM, EIS 

2015/10/13-14, 2015/11/20, 2015/12/01, 2016/06/16-17, 2016/06/25, 

2017/02/28, 2017/03/09, 2017/03/18, 2017/07/26, 2017/10/03, 

2017/11/05 

In the quality control procedure for the collected data, four criteria are employed to filter 

out undesired and unreliable data: 

i. Particles whose observed 𝑉𝑇 deviates from the expected fall velocity of a raindrop 𝑉𝑇
𝑒𝑥𝑝., 

as determined by the equation 

 𝑉𝑇
𝑒𝑥𝑝.(𝐷) = −0.1021 + 4.932D − 0.9551𝐷2 + 0.07934𝐷3 − 0.002362𝐷4 (3.1) 

(Brandes et al. 2002), by a factor of 0.5 or more are excluded from the 𝐷-𝑉𝑇 matrix (e.g., 

Fig. 3.2), because they may not be raindrops (Tokay et al. 2013). 

ii. In addition to the filtering based on 𝑉𝑇 deviation, isolated single raindrops without any 

particles measured in the neighboring eight bins in the matrices are also removed as outliers. 

Together, these criteria led to the elimination of 30% of the particles. 

iii. The remaining data in each 𝐷 row of the cleaned matrixes are summed up and further 

averaged using a 5-minute moving window for noise reduction. Note that in this smoothing 

process, only DSDs recorded in consecutive 5-minute intervals and reporting as 

precipitation are included. This resulted in a total of 187,211 DSDs. The smoothed datasets 

are then converted from the measured number to the concentration, namely 𝑁(𝐷). 

 

Figure 3.2 Matrices of 𝐷 and fall velocity 𝑉𝑇 of observed particles (a) before and (b) after 

filtering based on the empirical relation between the measured 𝐷 and the expected fall velocity 

𝑉𝑇
𝑒𝑥𝑝. of a raindrop from Brandes et al. (2002). The filtering excludes particles whose observed 

𝑉𝑇 deviates by 0.5 or more from 𝑉𝑇
𝑒𝑥𝑝. (black lines). 



26                                Chapter 3 Precipitation Sensors and Data Processing  

iv. DSDs containing particles identified as solid by the software or with rain intensities 

calculated from DSDs using Eq. (2.8) less than 0.1 mm h-1 are also excluded, resulting in 

84,169 DSDs. 

Apart from their use in T-matrix simulations, the processed DSDs can be utilized to derive 

other DSD parameters and integral variables such as 𝑁𝑤, 𝐷𝑚, 𝐿𝑊𝐶, and 𝑅 using Eqs. (2.5)-

(2.8). Note that the derived 𝑅 then can be utilized for QPE evaluations (Fig. 3.1 purple crosses 

and dots). 

3.1.2 Micro Rain Radar 

The Micro Rain Radar (MRR) is a K-band (24 GHz) microwave profiler that measures the 

Doppler spectra of hydrometeors within a sampled volume, providing information on 𝑍 and 

𝑉𝑇 (Figs. 3.3a/b). Using an empirical relation between 𝐷 and 𝑉𝑇, DSDs are retrieved from 

the measured 𝑍 and 𝑉𝑇 profiles at each height bin (Metek 2012). These DSDs are then used 

to derive integral variable profiles and simulate polarimetric radar variables for the study 

purposes (Reinoso-Rondinel and Schleiss 2021). Additionally, the DSDs help correct the 

attenuation of observed 𝑍 profiles in an iterative manner starting from bins near the surface 

towards bins at higher altitudes, assuming negligible 𝑃𝐼𝐴 at the ground (Figs. 3.3c/d, Peters 

et al. 2010). This attenuation correction can be made without polarimetric measurements and is 

available directly from the MRR software. It is, however, only applicable to liquid precipitation 

and feasible for data with 𝑃𝐼𝐴 ≤ 10 dB, as the correction algorithm becomes unstable above 

this threshold (e.g., right after 1800 UTC in Fig. 3.3d). 

 

Figure 3.3 Vertical profiles (VP) of MRR-measured (a) reflectivity 𝑍  without attenuation 

correction, (b) 𝑉𝑇 , (c) attenuation-corrected 𝑍 , and (d) two-way path-integrated specific 

attenuation (𝑃𝐼𝐴) in Bergheim on 14 July 2021. 
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In the present case, the ML height is estimated to be 3 km based on the clear vertical gradient 

of 𝑉𝑇  shown in Fig. 3.3b, which signifies the complete transformation of snowflakes into 

raindrops. The attenuation correction method proposed by Peters et al. (2010), however, 

becomes invalid above the ML height due to the occurrence of mixed-phase or solid 

precipitation, leading to considerable weak 𝑍  above this height. Furthermore, the DSD 

retrieval from Doppler velocity spectra may not account for the effects of vertical wind speeds, 

potentially affecting the results. To ensure high data quality, only observations of stratiform 

rain events with clear MLs implying weak vertical wind draft, and data with 𝑃𝐼𝐴 less than 10 

dB and below the ML height are used in this study. 

The MRR offers thirty bins and allows users to choose a vertical bin resolution between 10 

to 200 m, depending on their research needs. In this study, data from two MRRs located in 

Bonn and Bergheim (Fig. 3.1 cyan dot and square) were used. The data had a bin resolution of 

200 m, covering a vertical range of up to 6 km, and were collected at a temporal resolution of 

1 minute. The retrieved DSDs were smoothed using a 5-minute moving-window average, 

similar to the LPM observations, before being input into the T-matrix simulation. 

3.2 Radar measurements for precipitation retrieval 

This section provides an overview of the DWD C-band radars and a local X-band research radar.  

Furthermore, it outlines the quality-control procedures utilized to ensure the reliability of data 

collected by these radars at both frequencies. 

3.2.1 German C-band radar network 

DWD operates a network of 17 polarimetric Doppler C-band radars, which are named after the 

towns where they are installed (Fig 3.1 black circles, Helmert et al. 2014). Two scanning 

strategies, both with a 1-deg azimuthal resolution, are utilized for different applications (Table. 

3.2). The precipitation scan is the first choice for generating QPE products, with a radial 

resolution of 250 m and a measurement range of 150 km. This scan mode involves terrain-

following elevation angles that change azimuthally between 0.2 and 1.8 deg to minimize the 

effects of PBB and most ground clutters (Fig. 3.4). The second strategy is the volume scan 

mode, which scans at fixed elevation angles and covers a decreasing radial range from 180 km 

to 60 km as elevation angles increase. The radial resolution of this mode was upgraded from 

1,000 m to 250 m in March 2021. Additionally, DWD performs a vertical scan at each time step 

for 𝑍𝐷𝑅 calibration. The precipitation scan is first conducted, followed by the volume scans 

and the vertical scan in 5-minute cycles. 

This study develops the 𝑅(𝐴) rainfall algorithm using six rain events, which caused severe 

local flooding over Germany. Among the six events, four are convective events characterized 

by organized squall lines and intense rain mixed with small-to-moderate hail, propagating from 

west to east (case [1], [3], [4], and [7] outlined in Table 3.3), and two are stratiform events 

characterized by widespread, intense, and continuous rain (case [2] and [11]). Case [11] is 

additionally chosen to assess the performance of the algorithms aimed at correcting biases from 

vertical precipitation gradients. Case [5], a stratiform rain event with a very low ML height, is 

selected for evaluating the efficacy of the correction method attempting to mitigate 𝑍 biases 

within and above the ML. Finally, the polarimetric snowfall algorithm is investigated using the 

observations made during case [5] and four snowfall events (case [6], [8], [9], and [10]). 
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Table 3.2 Specification of precipitation and volume scans obtained from the DWD polarimetric 

Doppler C-band radars. 

type of scan elevation (deg) 
radial 

resolution (m) 

number of 

range bin 

max. slant 

range (km) 

precipitation terrain-following 250 600 150 

volume 0 5.5 1000/250 180/720 180 

volume 1 4.5 1000/250 180/720 180 

volume 2 3.5 1000/250 180/720 180 

volume 3 2.5 1000/250 180/720 180 

volume 4 1.5 1000/250 180/720 180 

volume 5 0.5 1000/250 180/720 180 

volume 6 8.0 1000/250 124/496 124 

volume 7 12.0 1000/250 60/240 60 

volume 8 17.0 1000/250 60/240 60 

volume 9 25.0 1000/250 60/240 60 

 
Figure 3.4 Terrain-following elevation angles of the DWD precipitation scans obtained from 

each radar. 
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Table 3.3 Information on studied precipitation events, including time period, precipitation type, 

bottom height of the melting layer (ML) above mean sea level (MSL), denoted as 𝐻𝑏 , 

maximum hourly accumulated precipitation measured by rain gauges, and the radars involved. 

No. 

time 

[yyyy/mm/dd] 

[hh-hh UTC] 

precipitation 

type 

lowest 

𝐻𝑏 (m) 

max. hourly 

precipitation 

(mm) 

used radars 

1 
2017/07/19 

1200-2400 
convective rain 2600 48.8 

BOO, DRS, ESS, FLD, 

HNR, NEU, OFT, PRO, 

ROS, UMD 

2 
2017/07/25 

0000-2400 
stratiform rain 1700 38.5 

BOO, DRS, ESS, FLD, 

HNR, NEU, OFT, PRO, 

ROS, UMD 

3 
2018/07/28 

1200-2400 
convective rain 2500 36.7 

BOO, DRS, ESS, FLD, 

HNR, OFT, PRO, ROS, 

UMD 

4 
2018/08/09 

1200-2400 
convective rain 3000 28.2 

BOO, DRS, ESS, FLD, 

HNR, OFT, PRO, ROS, 

UMD 

5 
2018/09/23 

1000-2400 

stratiform rain 

with low ML 
900 24.1 

ESS, FLD, HNR, PRO, 

UMD 

6 
2019/02/03 

0000-2400 
snow x 6.3 DRS, EIS, ISN, MEM 

7 
2019/07/20 

1200-2400 
convective rain 2500 30.5 

BOO, DRS, ESS, FLD, 

HNR, OFT, PRO, ROS, 

UMD 

8 
2021/01/14 

0000-2400 
snow x 5.7 FBG, MEM, TUR 

9 
2021/01/24 

0400-1200 
snow x 4.2 ESS, FLD, OFT 

10 
2021/02/07-08 

0000-2400 
snow x 5.0 DRS, HNR, PRO, UMD 

11 
2021/07/14 

0000-2400 
stratiform rain 2500 63.5 ESS, FLD, NHB, OFT 
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3.2.2 Local X-band radar, JuXPol 

JuXPol is a local polarimetric Doppler X-band radar that forms a part of the Laboratory for 

Clouds and Precipitation Exploration (CPEX-LAB, http://www.cpex-lab.de/) infrastructure. 

The radar is installed atop the artificial hill Sophienhöhe, which was created as a result of nearby 

open-pit lignite mining. It is located approximately 6 km east of the city center of Jülich and 

named accordingly as JuXPol (Fig. 3.1 red circle). In the current study, it functions as a gap-

filling radar between the DWD radars ESS and Neuheilenbach (NHB) for the study case [11]. 

JuXPol provides data with radial and azimuthal resolutions of 25-150 m and 1 deg, respectively 

(Table. 3.4). A range height indicator (RHI) scan and 11 volume scans, which include a vertical 

scan, are scheduled every 5 minutes. The lowest elevation scan at 0.6 deg is used here for 

rainfall estimation. 

Table 3.4 Specification of volume and range height indicator (RHI) scans obtained from the 

local polarimetric Doppler X-band radar, JuXPol. 

type of scan 
elevation/ 

azimuth (deg) 

radial 

resolution (m) 

number of 

range bin 

max. slant 

range (km) 

volume 0 28.0 100 360 36 

volume 1 18.0 100 500 50 

volume 2 14.0 100 620 62 

volume 3 11.0 100 800 80 

volume 4 8.2 100 1050 105 

volume 5 6.0 100 1400 140 

volume 6 4.5 150 1000 150 

volume 7 3.1 150 1000 150 

volume 8 1.7 150 1000 150 

volume 9 0.6 150 1000 150 

vertical 90.0 25 1200 30 

RHI 235 75 666 50 

 

Figure 3.5 (a) Topography height and (b) beam-blockage percentage of the 0.6-deg elevation 

scan from the local polarimetric Doppler X-band radar JuXPol. 

http://www.cpex-lab.de/
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Figure 3.6 (a) Field of differential reflectivity 𝑍𝐷𝑅  and (b) azimuthal offset change of 

differential phase shift ΦDP  caused by lightning protection installed in the radome of the 

Flechtdorf (FLD) radar on 25 July 2017 at 1945 UTC. 

3.2.3 Quality control  

Since the DWD radars provide scans with terrain-following elevation angles and JuXPol 

experiences minimal beam blocking (only 25% less in the southwest as shown in Fig. 3.5), this 

study does not perform additional error correction for PBB. The lightning protection equipped 

symmetrically around the radome of the DWD radars, however, could result in 𝑍𝐷𝑅 biases at 

the position of lightning rods (Fig. 3.6a), and so far no practical solution has been developed 

yet for this issue. At the DWD radar sites, signal processors remove undesired echoes using a 

set of thresholds for noise, signal quality index, signal power, clutter power, 𝜌𝐻𝑉, and speckle 

filtering (Werner 2014 and 2017). A similar processing routine is also applied to JuXPol 

measurements. Consequently, pre-processed 𝑍  and 𝑍𝐷𝑅  are chosen, and post-processing 

procedures for the power-based variables are applied to both C-band radars and JuXPol. These 

procedures include: 

i. Noise correction for 𝜌𝐻𝑉 and non-weather signal removal: 

In this study, the noise correction method for 𝜌𝐻𝑉 as described in section 2.3 is employed. 

Specifically, the constant value 𝐶  in Eq. (2.45) is determined through an incremental 

increase of 0.2 dB to 𝐶 until the corrected 𝜌𝐻𝑉 values within the range of 0.95 and 1.01 

have the highest proportion in the dataset with 𝑆𝑁𝑅 less than 20 dB. In the illustrated 

example in Fig. 3.7, 𝐶 is found to be 38 dB, leading to increased 𝜌𝐻𝑉 values particularly 

in areas where 𝑆𝑁𝑅 < 10 dB. To eliminate non-meteorological signals, a threshold value 

of 0.8 for 𝜌𝐻𝑉 is set. Following the noise correction, both the X- and C-band radars are 

able to retain meteorological signals at far distances where 𝑆𝑁𝑅 values are low (Fig. 3.8). 

ii. Removal of isolated points and patching of small holes: 

Isolated data points refer to cases where the number of valid points from the neighboring 

eight bins is three or less. Such cases may arise from inadequate elimination of ground 

clutter with higher 𝜌𝐻𝑉  values relative to the surrounding clutter. Subsequently, the 

removal of these data points is followed by a hole-filling process using the mean of 

neighboring data points. Note that at least five out of eight bins must be valid for the 

interpolation to take place. 
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Figure 3.7 Scatterplots of co-polar correlation coefficient 𝜌𝐻𝑉 (a) before, and (b) after noise 

correction, against the signal-to-noise ratio 𝑆𝑁𝑅  obtained from the observations of the 

Ummendorf (UMD) radar on 25 July 2017. 

 
Figure 3.8 Fields of (a) raw 𝜌𝐻𝑉  and (b) 𝜌𝐻𝑉  with noise correction applied, from the 

observations of UMD on 25 July 2017 at 1230 UTC. 

iii. Attenuation correction for 𝑍 and 𝑍𝐷𝑅: 

During pure rain events, the attenuation of 𝑍𝐻/𝑉 below the ML is corrected using 𝑃𝐼𝐴. 

This approach uses preset average values of 𝛼𝐻/𝑉 at the two polarizations: 0.093 and 0.071 

dB deg-1 for C-band, and 0.31 and 0.27 dB deg-1 for X-band, respectively. These values are 

estimated via the relation 𝐴𝐻/𝑉 = 𝛼𝐻/𝑉𝐾𝐷𝑃 fitted to the simulated 𝐴𝐻/𝑉 and 𝐾𝐷𝑃 values 

from the local LPM-measured DSDs. Correction of 𝑍𝐷𝑅 is performed with 𝛽 values of 

0.021 and 0.046 dB deg-1 at C- and X-band, respectively. The advanced method proposed 

by Gu et al. (2011) that considers HS is only applied to the observations from three DWD 

radars. These radars are deliberately selected to assess the feasibility of segment-wise 

application in the ZPHI algorithm (see section 4.2). 

Regarding the attenuation of melting snow, ∆ΦDP within the ML is multiplied by three 

for 𝑃𝐼𝐴 and 𝑃𝐼𝐴𝐷𝑃 calculations. Since the attenuation caused by snowflakes/crystals is 

thought to be negligible, only 𝑃𝐼𝐴/ 𝑃𝐼𝐴𝐷𝑃 obtained ahead of the top height of the ML, 

denoted as 𝐻𝑡, is counted and carried over to the observations above it. 
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iv. Calibration of 𝑍 and 𝑍𝐷𝑅: 

The calibration of 𝑍  for the DWD radars is achieved through the use of solar radio 

emissions and is performed on the radar-site computer; therefore, no calibration is required 

by users. Moreover, 𝑍𝐷𝑅  offset values have been archived for each volume scan since 

August 2017, enabling users to extract them from the files and calibrate the data accordingly. 

In cases where observations were made prior to this time, the mean value of 𝑍𝐷𝑅 in weak-

echo regions is used. 

JuXPol utilizes a self-consistency method for 𝑍 calibration, as detailed in section 2.3. 

The 𝐾𝐷𝑃(𝑍ℎ) relation used in the process is given by 

 𝐾𝐷𝑃(𝑍ℎ) = 0.0012𝑍ℎ
0.64 (3.2) 

at X-band. As a result, an average of 4.8 dBZ was added to the 𝑍𝐻 measurements on 14 

July 2021 (Fig. 3.9). As for 𝑍𝐷𝑅, the observed 𝑍𝐷𝑅 values were adjusted by subtracting 

the mean value of 𝑍𝐷𝑅 obtained from vertical scans, estimated to be 0.9 dB for the same 

study day (Fig. 3.10). 

 
Figure 3.9 Scatterplot of the total span of calculated differential phase shift 𝛥Φ𝐷𝑃

𝑐𝑎𝑙. against 

measured differential phase shift ∆ΦDP from JuXPol on 14 July 2021. The ratio of 𝛥Φ𝐷𝑃
𝑐𝑎𝑙. to 

measured ∆ΦDP is used to derive the offset of reflectivity at horizontal polarization, 𝑍𝐻
𝑜𝑓𝑓𝑠𝑒𝑡

. 

 

Figure 3.10 𝑍𝐷𝑅 field from vertical scans obtained from JuXPol on 14 July 2021. 
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v. Areal smoothing: 

To enhance the accuracy of snowfall estimates by reducing the impact of wind advection 

and noise at far ranges from the radar site caused by beam-broadening effects, the 𝑍 field 

in snow undergoes additional smoothing. This process involves averaging each radar bin 

with its adjacent points within a radius of 3 km, and the smoothing is performed in a linear 

unit. 

The ΦDP processing is critical for the investigated QPE algorithms as the accuracies of 

both 𝐾𝐷𝑃  and 𝐴  strongly depend on the ΦDP  quality. In particular, the disturbance 

originating from strong 𝛿 at C-band requires mitigation (Trömel et al. 2013 and 2014b). To 

this end, this study applies a series of consecutive steps for ΦDP  processing and 𝐾𝐷𝑃 

estimation, as outlined below: 

i. Unfolding ΦDP: 

Due to a folding effect in the ΦDP field, values exceeding 180 deg fold to -180 deg. Thus, 

360 deg is added to ΦDP if its value falls below the initial estimated offset value. 

ii. First filtering: 

To remove radar bins with poor ΦDP quality, those with ΦDP standard deviations above 

a given value within a moving window of five bins are excluded. For radar data with a 1-

km radial resolution, a threshold of 10 deg is applied, while a higher threshold of 20 deg is 

used for finer-resolved data (i.e., 250 m or less). Additionally, non-weather signals and 

isolated points are removed as well. 

 

Figure 3.11 Radial profiles of radar variables at the 220.5-deg azimuth from the Boostedt (BOO) 

radar on 28 July 2018 at 1335 UTC, including (a) reflectivity at horizontal polarization 𝑍𝐻 (in 

dBZ), (b) raw ΦDP in black, smoothed ΦDP in blue and bump-free ΦDP in red, (c) 𝜌𝐻𝑉, and 

(d) 𝐾𝐷𝑃  in blue/red derived before/after bump removal, and 𝐾𝐷𝑃 in green with further areal 

smoothing. The detected ΦDP bump is marked between two gray dashed lines. 
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iii. Second filtering: 

When the ΦDP-difference between an observation and its mean value within a moving 

window of 17 range bins is larger than 1.25 times the standard deviation of the same window, 

the observed ΦDP value is replaced with the mean value (Hubbert and Bringi 1995). This 

filtering process is iterated five times. 

iv. Smoothing: 

The resulting ΦDP is further smoothed by an unweighted average with a moving window 

of five range bins (Fig. 3.11b blue line). 

v. Correction for ΦDP bumps: 

The presence of NBF effects at C-band frequencies, e.g., at the edges of strong convective 

cells where 𝜌𝐻𝑉  values decrease, can cause considerable excursions from a monotonic 

increase of ΦDP along the ray (Figs. 3.11a-c black lines, Ryzhkov and Zrnić 2005). In 

some cases, these bumps may be too large to be corrected through the filtering and 

smoothing methods introduced earlier, and may lead to wrong estimates of 𝐾𝐷𝑃 : 

abnormally high 𝐾𝐷𝑃 values before the cell followed by small or even negative values 

within the HS (Fig. 3.11d blue line). Therefore, ΦDP  bumps should be identified and 

corrected before deriving 𝐾𝐷𝑃. 

To this goal, 𝐾𝐷𝑃 is temporarily estimated from the smoothed ΦDP (Fig. 3.11b blue line) 

using a 2-km window size following Vulpiani et al. (2012). The interval below the ML 

encompassing the segment with 𝑍𝐻  larger than 50 dBZ and negative 𝐾𝐷𝑃  backside is 

regarded as the potential location of the bump. As bumps always exhibit a rapid increase in 

ΦDP in front, the starting point of the interval is determined by searching forward from the 

segment until the ΦDP difference between two consecutive bins drops less than 1.5 deg. 

The endpoint is defined as the last bin with a negative value of 𝐾𝐷𝑃 extending behind the 

segment. The data within this interval, i.e., between the gray dashed lines in Fig. 3.11, are 

removed and filled with linear-interpolated values (Fig. 3.11b red line). 

vi. ∆ΦDP (total span of ΦDP below the ML) calculation: 

The offset of ΦDP shows an azimuthal change due to the radome effects. Therefore, the 

offset is determined for each ray by calculating the median value of the first-five valid ΦDP 

data along each ray over all time steps (Fig. 3.6b). The ∆ΦDP field can then be obtained 

by subtracting the ΦDP offsets from the smoothed ΦDP. 

 

Figure 3.12 Fields of (a) raw, (b) filtered, and (c) interpolated ΦDP from the observations of 

the Hannover (HNR) radar on 25 July 2017 at 0740 UTC. 
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vii. Linear interpolation: 

It is apparent from the observations of the HNR, Neuhaus (NEU), and Offenthal (OFT) 

radars that ΦDP experiences significant instability within certain value ranges (Fig 3.12a). 

Even with the aforementioned procedure, these noises cannot be completely filtered out and 

thus need manual removal (Fig 3.12b). During weak precipitation, low-quality ΦDP can 

persist over long distances if it falls within this specific range. In such cases, linear 

interpolation is employed to fill the gap (Fig 3.12c). The ensuing ∆ΦDP  field is then 

utilized to calculate 𝑃𝐼𝐴 and 𝑃𝐼𝐴𝐷𝑃 for attenuation correction and to retrieve 𝐾𝐷𝑃. 

viii. Correction of noisy ΔΦDP for the use in the ZPHI method: 

In light rain, ΦDP is susceptible to noise and small fluctuations, leading to unreliable 

values of ΔΦDP used for 𝑃𝐼𝐴 calculations. To address this issue, a strategy is adopted to 

replace ΔΦDP values below 5 deg within the rainy segment with ΔΦ𝐷𝑃
𝑐𝑎𝑙. derived from 

quality-controlled 𝑍ℎ. The 𝐾𝐷𝑃(𝑍ℎ) relation for obtaining ΔΦ𝐷𝑃
𝑐𝑎𝑙. at X-band is given as 

Eq. (3.2), while for C-band it is defined as 

 𝐾𝐷𝑃(𝑍ℎ) = 0.00016𝑍ℎ
0.83. (3.3) 

Finally, to ensure smoothness and continuity of the resulting data along the azimuth, the 

final ΔΦDP is smoothed by the mean of the four closest rays if it remains below 10 deg. 

ix. 𝐾𝐷𝑃 estimation: 

In order to better capture the texture of convective cells while reducing noise in light rain, 

two different window sizes are employed for the 𝐾𝐷𝑃  calculation during rain events. 

Specifically, a 2-km window is applied when attenuation-corrected 𝑍𝐻 exceeds 40 dBZ, 

and a 6-km window is used for 𝑍𝐻 values below 40 dBZ (Fig. 3.11d red line). To mitigate 

the discontinuities at the switch between these conditions, 𝐾𝐷𝑃 along the ray is averaged 

using a 5-bin moving window. In contrast, 𝐾𝐷𝑃 is always derived using a 6-km window 

for snow observations. 

x. Areal smoothing for 𝐾𝐷𝑃: 

The process of areal averaging for 𝑍𝐻 in snow is similarly applied to 𝐾𝐷𝑃, but for all 

precipitation conditions. It should be noted that prior to this process, any remaining negative 

𝐾𝐷𝑃  values in rain are set to NaN. Finally, the smoothed 𝐾𝐷𝑃  field displaying fewer 

negative values is deemed suitable for QPE (Fig. 3.11d green line). 

Even though neither the original ΦDP field (Fig. 3.11b blue line) nor the filled artifact (Fig. 

3.11b red line) can provide the true pattern of 𝐾𝐷𝑃 within the bump interval, the latter does 

yield less problematic values. Note that Chen et al. (2021a) utilized proxy 𝐾𝐷𝑃 in heavy rain, 

which is calculated using quality-controlled 𝑍ℎ and constraint ΔΦDP (Lim et al. 2013; Zhang 

et al. 2013), as a means of mitigating the impact of ΦDP bump on QPE. This proxy, however, 

is only valid in pure rain and not suitable for the presence of bumps, as it may signify hail. 

Therefore, it is irrelevant for this study. 
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Chapter 4 

Methodologies for QPE and Their Assessment 

This chapter details the methodology employed to establish regional polarimetric rainfall 

relations using measured DSDs. Subsequently, the proposed radar-based QPE approaches are 

elaborated, including the modified/optimized 𝑅(𝐴)  algorithms for C-band radars, the 

application of VP correction to observations below the ML and gap-filling for warm-rain 

precipitation, the PVPR correction method aimed at 𝑍 biases within and above the ML, and 

the use of polarimetry for snowfall quantification. Finally, the chapter introduces the compared 

QPE retrievals and methodologies used for evaluation. 

4.1 T-matrix simulation and rainfall algorithms for C-band radar 

The T-matrix method is a computational technique for simulating non-spherical scattering 

(Waterman 1971). In this study, the processed DSDs are used in T-matrix simulations to 

compute the polarimetric variables at various frequencies and temperature environments. These 

simulations assist in optimizing the parameters required for radar data quality check and the 

ZPHI method, as well as coefficients in rainfall relationships for the regional precipitation 

climatology. One of the publicly available T-matrix code packages is chosen and accessed at 

https://github.com/jleinonen/pytmatrix. 

The simulation of raindrops utilizes size-dependent 𝑎𝑟  following a fourth-order 

polynomial equation (Brandes 2002) 

 𝑎𝑟(𝐷) = 0.9951 +  0.0251𝐷 −  0.03644𝐷2 +  0.005303𝐷3 −  0.0002492𝐷4 (4.1) 

when 𝐷  is larger than 1 mm, and equals one otherwise. Additionally, a canting angle 

distribution with a mean value of 0 deg and a standard deviation (𝜎) of 8 deg is assumed. All 

simulations are restricted to 𝐷 values below 8 mm, which appears more appropriate for local 

climate conditions. The simulations are conducted at a temperature of 15℃, as the polarimetric 

variables, except for 𝐴 and 𝛿, are relatively insensitive to temperature. Wang et al. (2014) 

showed that the temperature effects on the attenuation parameter 𝛼 are opposite to those on 

the intercept parameter in 𝑅(𝐴) relations. Such cancellation of both dependencies in the final 

retrieved rainfall, however, unlike at S-band is incomplete at C-band. At present, this study 

does not account for the temperature effects on the 𝑅(𝐴) retrieval. 

The power-law rainfall relations utilized for the German C-band radar network are 

established based on the fitting of calculated rain rates and simulated radar variables derived 

from long-term LPM observations. The corresponding relations are listed below: 

 𝑅(𝑍ℎ) = 0.052𝑍ℎ
0.57

, (4.2) 

 𝑅(𝑍ℎ) = 0.022𝑍ℎ
0.61

. (4.3) 

https://github.com/jleinonen/pytmatrix
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 𝑅(𝐾𝐷𝑃) = 20.4𝐾𝐷𝑃
0.75

, (4.4) 

 𝑅(𝐴𝐻) = 307𝐴𝐻
0.92

 and (4.5) 

 𝑅(𝐴𝑉) = 452𝐴𝑉
0.98. (4.6) 

These relations, as well as any other relations used in this study, are derived via the Levenberg-

Marquardt algorithm (Levenberg 1944), which aims to solve nonlinear least squares problems. 

Unlike least squares polynomial fit, this regression method is less weighted by the more 

frequent observations with lower rain intensities, and offers a better fit in more relevant heavy 

rain. The 𝑅(𝑍ℎ) relation in Eq. (4.2) is derived from the entire database, while Eq. (4.3) is 

based on data with 𝐿𝑜𝑔10(𝑁𝑤) < 3.1 (the 10th percentiles of 𝑁𝑤 representing continental rain) 

to compensate for the absence of simulations for melting graupel and hail. To align with the 

hybrid rainfall algorithms (see next paragraph), only data with 𝑍𝐻 > 40 dBZ are included for 

the derivation of the 𝑅(𝐾𝐷𝑃) relation, while data with 𝑍𝐻 < 40 dBZ are used for the 𝑅(𝐴𝐻/𝑉) 

relations. 

Four rainfall algorithms are compared and evaluated in this study. The first algorithm is the 

traditional 𝑍ℎ-based retrieval, which uses Eq. (4.2) for attenuation-corrected 𝑍𝐻 values below 

55 dBZ, and Eq. (4.3) for areas with 𝑍𝐻 ≥ 55 dBZ, assuming they are hail cores or rain mixed 

with hail. The other three hybrid algorithms are 𝑅(𝑍ℎ) [i.e., Eq. (4.2)] or 𝑅(𝐴𝐻/𝑉) retrievals 

in combination with the 𝑅(𝐾𝐷𝑃) retrieval when 𝑍𝐻 exceeds 40 dBZ, denoted as 𝑅(𝑍ℎ, 𝐾𝐷𝑃) 

and 𝑅(𝐴𝐻/𝑉, 𝐾𝐷𝑃), respectively. The 𝑅(𝑍ℎ, 𝐾𝐷𝑃) algorithm serves as a benchmark to assess 

the proposed 𝑅(𝐴, 𝐾𝐷𝑃) algorithms, given its widespread use in rainfall estimation. 

 

Figure 4.1 Quasi-vertical profiles (QVP) of (a) 𝑍, (b) 𝑍𝐷𝑅, (c) 𝐾𝐷𝑃, and (d) 𝜌𝐻𝑉 derived from 

Neuheilenbach (NHB) radar observations at the 1.5-deg elevation angle on 14 July 2021. 
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Since rainfall retrievals are only provided for radar observations below 𝐻𝑏 , the quasi-

vertical profile (QVP, Ryzhkov et al. 2016) methodology is used to detect the ML height. This 

approach averages radar data at a fixed elevation angle along the azimuths to generate a time-

height format with significantly reduced statistical errors. Even though most radar variables 

exhibit changes in their values with clear bands when the radar beams intersect the ML, 𝜌𝐻𝑉 

gives the most robust overview of BB contamination areas (Fig. 4.1 with 0-°C isotherm height 

at about 3.5 km). Therefore, a threshold value of 0.975 for 𝜌𝐻𝑉 is utilized to identify the lower 

boundary of the ML from the QVP. To simplify the process, the lowest 𝐻𝑏 obtained from the 

scan data at the 1.5-deg elevation angle over the rain events determines the height, above which 

data are excluded from the analysis. 

4.2 𝑹(𝑨) rainfall retrievals 

This study employs the ZPHI algorithm (Testud et al. 2000) to estimate 𝐴  from C-band 

observations. This algorithm, however, is limited to pure rain; hence, 𝐴 is computed for 𝑍𝐻 

< 50 dBZ or outside the defined hail cores below the ML. Nevertheless, the reliable estimation 

of ∆ΦDP over a short ray interval pose a challenge in the segment-wise integration of the ZPHI 

algorithm, owing to the pronounced resonance effects observed in hailstorms at C-band. As a 

compromise, this study adopts the approach suggested by Wang et al. (2017), which excludes 

the hail region from the integration path using Eqs. (6)-(7) in their paper to handle hail 

contamination. When ΦDP  bumps hinder the accurate extraction of ∆ΦDP within the hail 

cores, the integral over 𝐾𝐷𝑃 is used as ∆ΦDP. Although the segment-wise application of the 

ZPHI algorithm is not implemented in operational environments due to the trade-off between 

computational efficiency and accuracy, this study accesses this application by using the data 

from three radars with better-quality measurements and fewer isolated convective cells. 

Two methods are proposed to optimize 𝛼 for 𝐴 estimates at C-band: i) adaptive scan-

wise 𝛼  estimators derived from the DSDs through the 𝑍𝐷𝑅  slope, and ii) estimation of 

ray/segment-wise 𝛼 values based on the 𝛼(𝑍𝐷𝑅) relation. The following subsections provide 

further details on the developments of these methods. 

4.2.1 Scan-wise 𝜶 derived from the 𝒁𝑫𝑹 slope 

The widely-used average value of 𝛼𝐻 at C-band is around 0.08 dB deg-1, but 𝛼𝐻 can vary 

from 0.05 to 0.18 dB deg-1 at a certain temperature, depending on the DSDs (Trömel et al. 

2014a). Recent studies by Wang et al. (2019) and Zhang et al. (2020a) have shown their success 

in estimating real-time adjusted 𝛼𝐻 values at S-band using the slopes of 𝑍𝐷𝑅 dependence on 

𝑍𝐻. This method has been optimized and extended for the C-band algorithm development in 

this study (also reported in Chen et al. 2021a). The simulations based on locally-observed DSDs 

are first stratified into different DSD classes using 𝑁𝑤 as a proxy, which is determined using 

Eqs. (2.5)-(2.7). Subsequently, 𝛼𝐻  and 𝛼𝑉  estimators are derived from the representative 

𝛼𝐻/𝑉 values and 𝑍𝐷𝑅 slopes of each class. 

The dataset is stratified into eight classes based on the 𝑁𝑤 values, using the 10th, 20th, 30th, 

40th, 50th, 65th, and 80th percentiles as thresholds (Fig. 4.2 red dashed lines). For each 𝑁𝑤 class, 

representative values of 𝛼𝐻/𝑉 are estimated using the relation 𝐴𝐻/𝑉 = 𝛼𝐻/𝑉𝐾𝐷𝑃, which best 

fits the simulated 𝐴𝐻/𝑉 and 𝐾𝐷𝑃 data from the DSDs (Fig. 4.3a). In deriving the 𝛼𝐻 values, 

data points with 𝑍𝐻 > 45 dBZ in each class, and with 𝑍𝐻 > 40 dBZ in the first class (i.e., the 
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Figure 4.2 Histogram of 𝑁𝑤 in logarithmic scale derived from 84,169 DSDs measured by the 

LPMs from DWD during 2015-2017 and the Institute for Geosciences, Department of 

Meteorology, University of Bonn during 2011-2019. The red dashed lines indicate the 10th, 20th, 

30th, 40th, 50th, 65th and 80th percentiles of 𝑁𝑤. 

 

Figure 4.3 Scatterplots of (a) 𝐴𝐻  and 𝐾𝐷𝑃 , and (b) 𝑍𝐷𝑅  and 𝑍𝐻  for the two selected 𝑁𝑤 

classes: the 0th-10th percentile and 65th-80th percentile intervals (marked with subscripts). 𝛼𝐻 

is an attenuation parameter defined as the ratio of 𝐴𝐻 to 𝐾𝐷𝑃, and 𝐾𝐻 is the 𝑍𝐷𝑅 slope with 

respect to 𝑍𝐻. 

lowest 𝑁𝑤 class) are excluded. This is because 𝛼𝐻 values in heavy rain are relatively variable 

due to resonance effects, and they play a minority but influential role in fitting, which needs to 

be mitigated (Carey and Petersen, 2015). Fortunately, the hybrid QPE algorithms use the 𝐾𝐷𝑃-

based retrieval in this range of rain intensity. As for vertical polarization, only data points with 

𝑍𝐻 > 45 dBZ in the first class are removed to determine the representative 𝛼𝑉 value. In the 

case of the 𝛼𝐻/𝑉 values from the last class (i.e., 𝑁𝑤 > 80th percentile), data points with 𝑍𝐷𝑅 

< 0.3 dB are additionally eliminated from the calculation in order to reduce the impact of very 

small raindrops with unrealistically high 𝛼𝐻/𝑉 values caused by close-to-zero 𝐾𝐷𝑃 values. 

Consequently, 𝛼𝐻 of 0.153 dB deg-1 and 𝛼𝑉 of 0.147 dB deg-1 are assigned to the last class. 

The 𝑍𝐷𝑅 slope with respect to 𝑍𝐻, denoted as 𝐾𝐻, for each class is estimated by fitting a 

straight line to the median 𝑍𝐷𝑅 values derived for each 1 dBZ interval of 𝑍𝐻 between 25 dBZ 

and 40 dBZ. The 𝑍𝐻 range considered for this analysis is reduced from (20 dBZ, 50 dBZ) 
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Figure 4.4 Curves of 𝛼𝐻 (red solid line) and 𝛼𝑉 (green solid line) as a function of 𝐾𝐻. The 

red dashed line indicates the curve of 𝛼𝐻 versus 𝐾𝐻 when all data with potential resonance 

effects are included. The red/green stars mark the (𝛼𝐻/𝑉, 𝐾𝐻) pairs derived from the seven 𝑁𝑤 

classes, respectively. The black dashed line marks the lowest threshold of 𝐾𝐻. 

suggested by Wang et al. (2019) to (25 dBZ, 40 dBZ) because of the less pronounced resonance 

effects in this range and the lower occurrence of 𝑍𝐻 > 40 dBZ in stratiform rain in Germany. 

Within this range, the dependence of 𝑍𝐷𝑅 on 𝑍𝐻 is almost quasi-linear with a distinct slope 

depending on 𝑁𝑤 (Fig. 4.3b). 𝐾𝐻 values are found to be higher for lower 𝑁𝑤 classes and 

vice versa. In the final step, the relationships between the derived 𝛼𝐻/𝑉  and 𝐾𝐻  values, 

namely 𝛼𝐻/𝑉 estimators, are formulated as ratios of polynomial functions (rational function): 

 𝛼𝐻(𝐾𝐻) =
1.36−7.17×101𝐾𝐻+1.36×103𝐾𝐻

2

1×101−7.03×102𝐾𝐻+1.57×104𝐾𝐻
2 , and (4.7) 

 𝛼𝑉(𝐾𝐻) =
1.05−5.35×101𝐾𝐻+8.40×102𝐾𝐻

2

1×101−6.21×102𝐾𝐻+1.12×104𝐾𝐻
2. (4.8) 

The (𝛼𝐻/𝑉, 𝐾𝐻) pair from the last class is excluded from deriving Eqs. (4.7) and (4.8) since the 

𝑍𝐻 values in this class are mostly below 30 dBZ, far from the 40-dBZ threshold required for 

determining the corresponding 𝐾𝐻  value. The 𝛼 estimators presented in this study reveal that, 

both 𝛼𝐻 and 𝛼𝑉 values initially decrease with increasing 𝐾𝐻 and then remain constant (Fig. 

4.4 solid lines). However, incorporating all data points in the fitting of the 𝛼𝐻 estimator shows 

that 𝛼𝐻 values first drop and then increase with increasing 𝐾𝐻 (Fig. 4.4 dashed line). 

In real-time radar observations, 𝐾𝐻 value is estimated from the precipitation scan data for 

each time step. It is determined using the same aforementioned fitting method, but only the 

median 𝑍𝐷𝑅 values derived from more than a hundred samples for each 1 dBZ interval are 

considered. Despite prior correction for attenuation in 𝑍𝐻 and 𝑍𝐷𝑅, radar bins with ΦDP > 

30 deg are excluded from the 𝐾𝐻 calculation in order to minimize uncertainties associated with 

attenuation. To ensure the 𝐾𝐻  quality, the derived value is counted only when Pearson’s 

correlation coefficient between the median 𝑍𝐷𝑅  and given 𝑍𝐻  values is higher than 0.95; 

otherwise, the collected data is retained and included in the next time step. 𝐾𝐻  values are 

constrained to be above 0.035 dB dBZ-1, which is close to the value derived from the seventh 

class (Fig 4.4 black dashed line), to avoid excessively high 𝛼𝐻/𝑉 values. 
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The 𝛼𝐻/𝑉 values are calculated for 𝐴 estimates using the derived 𝐾𝐻 value and Eqs. (4.7) 

and (4.8). Note that the renewal of 𝛼 estimates for each scan is contingent upon the availability 

of over 20,000 valid points for the 𝐾𝐻 derivation. If this requirement is not met, the 𝛼 value 

from the previous time step is utilized, and the data are collected for the next time step. When 

there is insufficient data or an absence of valid 𝛼 from the previous time step, default values 

of 0.09 and 0.07 dB deg-1 for 𝛼𝐻/𝑉 are applied. These default values are derived from the 

simulated data with 𝑍𝐻 < 50 dBZ. 

Chen et al. (2021a) applied the highest 𝛼𝐻/𝑉  values from the last 𝑁𝑤  class to radar 

observations when the maximum valid interval of 𝑍𝐻 for fitting 𝐾𝐻 is below 30 dBZ. QPE 

results, however, showed significant negative biases in stratiform rain. Consequently, two 

additional conditions for the use of these 𝛼𝐻/𝑉 values are included here. Specifically, when 

the mean plus one standard deviation of 𝑍𝐻  and 𝑍𝐷𝑅  is less than 30 dBZ and 1.5 dB, 

respectively, 𝛼𝐻/𝑉 values derived from the last 𝑁𝑤 class are used. This criterion is chosen as, 

in a normal distribution, already around 84% of data fall below these thresholds. 

4.2.2 Ray/segment-wise 𝜶 derived from 𝒁𝑫𝑹 

Ryzkhov et al. (2022) recommended using ray/segment-wise 𝛼 value derived from 𝑍𝐷𝑅 for 

𝐴 estimates, but its practical implementation has not yet been achieved. This can be attributed 

to several factors: i) the derivation of segment-wise 𝛼 involves segment-wise integration in 

the ZPHI method, which is hindered by the unreliability of ∆ΦDP within short bin intervals or 

light rain, ii) at C-band significant attenuation uncertainties still exist in attenuation-corrected 

𝑍𝐷𝑅 in hailstorms, and iii) for the DWD radars radome effects from lightning pods on 𝑍𝐷𝑅 

cannot be ignored. Despite these challenges, this study aims to explore the potential benefits of 

this methodology using observations from the BOO, HNR, and Ummendorf (UMD) radar in 

five rain events. These radars were selected because of their minimal radome effects and fewer 

scattering isolated convective cells, which could complicate obtaining reliable ∆ΦDP. 

Accurate estimation of 𝛼 strongly relies on precise measurement of 𝑍𝐷𝑅 as well as 𝑍𝐻, 

particularly during hailstorms where additional attenuation from hail is a concern. To account 

for this, the attenuation correction method proposed by Gu et al. (2011), as described in section 

2.3, is applied. The HS segment is defined using the following steps: 

i. Search for bins with attenuation-corrected 𝑍𝐻 > 50 dBZ (the correction using 𝑃𝐼𝐴 with a 

default value of 0.093 dB deg-1 for 𝛼𝐻). 

ii. Concatenate the adjacent bins/intervals that are within five bins of each other. 

iii. Retain intervals with ∆Φ𝐷𝑃 greater than 10 deg and a length of more than 10 bins. 

This ensures that the defined HS segment is not too fragmented, avoiding unnecessary 

algorithmic complexity and conserving computational resources. During the correction process, 

if ∆Φ𝐷𝑃(OHS) in Eq. (2.40) is negative due to backscattering effects or noisy Φ𝐷𝑃 in light 

rain, it is replaced with ∆Φ𝐷𝑃
𝑐𝑎𝑙. using Eq. (3.3). The 𝑍𝐷𝑅(𝑍𝐻) relation in Eq. (2.42) follows 

the equation 

 𝑍𝐷𝑅(𝑍𝐻) = 0.20335179 − 0.02225738𝑍𝐻 + 0.00122115𝑍𝐻
2, (4.9) 
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Figure 4.5 Fields of 𝑍𝐻 and 𝑍𝐷𝑅 obtained from the UMD radar on 19 July 2017 at 1945 UTC. 

These include (a) raw 𝑍𝐻, (b) 𝑍𝐻 corrected for attenuation using 𝑃𝐼𝐴, and (c) 𝑍𝐻 corrected 

for attenuation using the ZPHI method considering hot spots (HS, hail cores), and (d)-(f) the 

same for 𝑍𝐷𝑅 fields.  

which is derived from the measured DSDs with 𝑍𝐻 below 40 dBZ. If multiple HSs are present 

within a ray, sufficient data points need to be well-assigned behind each HS to derive ∆𝛽 in 

Eq. (2.43). Therefore, the rainy segment between two HSs is evenly separated into two parts, 

attaching the closest HS individually, so that each HS is enclosed by two rainy segments. If 

data behind the HS are all above 40 dBZ, a mode value of 0.05 dB deg-1 is assigned to ∆𝛽. No 

correction is applied to the HS located at the end of the ray below the ML, as 𝑅(𝐾𝐷𝑃) takes 

responsibility there. This method successfully restores the 𝑍 and 𝑍𝐷𝑅 fields behind the HS 

(Figs. 4.5c/f) compared to the 𝑃𝐼𝐴-/𝑃𝐼𝐴𝐷𝑃 -based method, which still gives negative 𝑍𝐷𝑅 

values after the HS (Fig. 4.5e). It is also observed that the attenuation effects of HS impact 𝑍𝐷𝑅 

more than 𝑍 (Figs. 4.5a/b and d/e), highlighting the potential danger of using 𝑍𝐷𝑅 at C- and 

X-band. 

The net 𝛼 value within a given rainy segment (𝑟1, 𝑟2), denoted as ⟨𝛼⟩, can be estimated 

from 𝑍ℎ and 𝑍𝐷𝑅 corrected for attenuation. The estimation of ⟨𝛼⟩ begins with the formula 

 
⟨𝛼⟩ =

𝑃𝐼𝐴

∆Φ𝐷𝑃
=

∫ 𝐴(𝑟)
𝑟2

𝑟1
𝑑𝑟

∫ 𝐾𝐷𝑃(𝑟)
𝑟2

𝑟1
𝑑𝑟

=
∫ 𝐴(𝑟)

𝑟2
𝑟1

𝑑𝑟

∫
𝐴(𝑟)

𝛼(𝑟)

𝑟2
𝑟1

𝑑𝑟
, (4.10) 

where 𝛼(𝑟) is the local 𝛼 primarily dependent on 𝑍𝐷𝑅, and thus is expressed as 𝛼[𝑍𝐷𝑅(𝑟)]. 

The ZPHI method assumes 𝐴 = 𝑎𝑍ℎ
𝑏, and hence, Eq. (4.10) can be reformulated as  

 
⟨𝛼⟩ =

∫ 𝑍ℎ
𝑏(𝑟)

𝑟2
𝑟1

𝑑𝑟

∫
𝑍ℎ

𝑏(𝑟)

𝛼[𝑍𝐷𝑅(𝑟)]

𝑟2
𝑟1

𝑑𝑟

. (4.11) 
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Figure 4.6 Scatterplot of 𝛼𝐻 against 𝑍𝐷𝑅 at C-band. 

The simulated data from the measured DSDs show that 𝛼𝐻 values vary from several orders 

of magnitude down to 0.6 dB deg-1 when the raindrop size is small (Fig. 4.6). This variability 

may bias the ensuing 𝐴  if a single 𝛼(𝑍𝐷𝑅)  relation is used. Therefore, two 𝛼𝐻(𝑍𝐷𝑅) 

relations and two 𝛼𝑉(𝑍𝐷𝑅) relations are used depending on the 𝐷𝑚 value. The relations for 

horizontal polarization, as indicated by the black and blue lines in Fig. 4.6, are given by 

 𝛼𝐻(𝑍𝐷𝑅) =
9.84×10−1−6.08×10−1𝑍𝐷𝑅+6.12×10−1𝑍𝐷𝑅

2

1−1.08×101𝑍𝐷𝑅+5.62×10−1𝑍𝐷𝑅
2    𝑖𝑓 𝐷𝑚 < 1.5, and (4.12) 

 𝛼𝐻(𝑍𝐷𝑅) =
1.08×10−1−4.68×10−2𝑍𝐷𝑅+2.96×10−2𝑍𝐷𝑅

2

1+9.68×10−2𝑍𝐷𝑅+7.48×10−2𝑍𝐷𝑅
2    𝑖𝑓 𝐷𝑚  > 1.5, (4.13) 

and for vertical polarization  

 𝛼𝑉(𝑍𝐷𝑅) =
1.74−5.95×10−1𝑍𝐷𝑅+7.96×10−1𝑍𝐷𝑅

2

1+2.40×101𝑍𝐷𝑅+2.33𝑍𝐷𝑅
2    𝑖𝑓 𝐷𝑚 < 1.5, and (4.14) 

 𝛼𝑉(𝑍𝐷𝑅) =
9.60×10−2−4.20×10−2𝑍𝐷𝑅+1.60×10−2𝑍𝐷𝑅

2

1−4.96×10−2𝑍𝐷𝑅+7.40×10−2𝑍𝐷𝑅
2    𝑖𝑓 𝐷𝑚  > 1.5.  (4.15) 

The 𝐷𝑚 values can be estimated from 𝑍ℎ and 𝑍𝐷𝑅 (Cao et al. 2008) following the equation 

 𝐷𝑚

𝑍ℎ
0.042 = 6.82 × 10−2𝑍𝐷𝑅

3 − 4.60 × 10−1𝑍𝐷𝑅
2 + 1.33𝑍𝐷𝑅 + 4.83 × 10−1, (4.16) 

which is derived based on the local DSDs. The threshold of 1.5 mm for 𝐷𝑚 is due to being 

close to the midpoint between the means of stratiform and convective 𝐷𝑚 presented in Fig. 6 

of Wen et al. (2016). 

The 𝑍𝐷𝑅 observation is susceptible to noise, which can introduce errors that bias ⟨𝛼⟩. To 

minimize the impact of noise, two boundaries are used to constrain 𝑍𝐷𝑅 observations. These 

boundaries are determined based on the 𝑍𝐷𝑅(𝑍𝐻) relations derived from the 0th-20th percentile 

(upper bound) and 80th-100th percentile (lower bound) intervals of 𝑁𝑤, respectively, given by 

 𝑍𝐷𝑅(𝑍𝐻) = 5.51 × 10−4𝑍𝐻
2.18 , and (4.17) 
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 𝑍𝐷𝑅(𝑍𝐻) = 3.06 × 10−7𝑍𝐻
3.44 . (4.18) 

Accordingly, any observed 𝑍𝐷𝑅 value that is greater than 1.25 times the value derived from 

Eq. (4.17) or smaller than 0.75 times the value derived from Eq. (4.18) is set to the derived 

value (Fig. 4.7).  

In heavy rain, resonance effects at C-band can cause considerable variability in 𝑍𝐷𝑅 values 

for a given 𝑍𝐻. To mitigate this uncertainty, ⟨𝛼⟩ is computed only within a segment where 

𝑍𝐻  is below 40 dBZ. The segment-wise integration is also based on this limit. To ensure 

reliable corresponding ∆Φ𝐷𝑃 within the segment, its value is replaced with ΔΦ𝐷𝑃
𝑐𝑎𝑙. when it is 

either two times larger or half times lower than ΔΦ𝐷𝑃
𝑐𝑎𝑙.. 

 

Figure 4.7 Scatterplots of 𝑍𝐷𝑅  against 𝑍𝐻  based on (a) simulations at C-band, and (b) 

observations from UMD, HNR, and BOO on 28 July 2018. The dashed lines indicate the 

constraint lines for 𝑍𝐷𝑅 observation.  

4.3 Warm-rain precipitation 

In warm rain, vertical precipitation gradients increasing towards the surface are a common 

occurrence. However, radar beams, which monitor precipitation at increasing heights above the 

ground with increasing distance from the site, often fail to detect such gradients. Furthermore, 

the current rainfall relations are derived mainly from simulated radar variables at the surface, 

rather than those observed aloft and matched to surface-measured rain rates. This can result in 

a large underestimation of rainfall due to the high variability in the vertical structure of 

precipitation. Warm-rain processes are often associated with flooding (Chen et al. 2011; Grams 

et al. 2014), and climate change has increased the frequency and intensity of such extreme 

events (Nissen and Ulbrich 2017; Myhre et al. 2019; Tabari 2020). The propagation of these 

errors into forecast models can lead to significant deviations from actual precipitation patterns 

and potentially severe consequences. As a result, it becomes mandatory to correct for the 

vertical gradients of radar variables utilized to estimate rainfall below the ML in operational 

applications. To this end, two mitigation strategies are proposed and evaluated for a heavy rain 

event on 14 July 2021. The first strategy involves a VP correction method that includes vertical 

projections of 𝑍 and 𝐾𝐷𝑃 to low altitudes and the use of MRR-DSD-derived rainfall relations. 

The second strategy entails the inclusion of observations from an X-band radar to fill gaps in 

low-altitude coverage. This section briefly summarizes the impact and microphysical 
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characteristics of the investigated rain event, followed by a description of the two 

methodologies, as presented by Chen et al. (2022). 

4.3.1 Overview of the study case 

The 14 July 2021 witnessed heavy precipitation across western Europe, with western Germany 

being particularly affected, as well as neighboring countries Belgium, Luxembourg, and the 

Netherlands (Puca et al. 2021). The intense and prolonged stratiform rain produced more than 

160 mm of precipitation over the German states of Rhineland-Palatinate and North Rhine-

Westphalia, causing extreme flash floods, especially but not only in the Ahr river. In July of 

that year, the floods resulted in at least 196 fatalities and left 1,300 people missing in Germany 

(Eddy and Specia 2021). Moreover, the estimated cost of the damage incurred reached $40 

billion (Libatique 2022). This disaster underscores the critical need for accurate and timely QPE 

products to enable reliable flash-flood predictions. 

The precipitation event occurring on 14 July 2021 was characterized by warm-rain 

processes during rain formation. Its vertical structure shows a different pattern from the 

stratiform rain on 25 July 2017, with the latter having little 𝑍𝐻  gradient (Fig. 4.8). Data 

retrieved from observations of the MRR indicate that 𝐷𝑚 , 𝐾𝐷𝑃 , 𝑅 , and 𝐿𝑊𝐶  increase 

towards the ground with decreasing 𝑁𝑤 (Fig. 4.9). Analysis of the contributions of drizzle 

(defined as 𝐷 < 0.5 mm) and raindrops with 𝐷 between 2 and 4 mm to the DSDs reveals that 

the former shows a secondary peak right below 1 km height, followed by a rapid decrease 

downwards (Fig. 4.10a). In contrast, the mean number concentration of big raindrops constantly 

increases towards the ground below the ML (Fig. 4.10b). Thus, the observed increases in 𝑅 

and 𝐿𝑊𝐶  towards the surface can be attributed to the transformation of water vapor into 

droplets above 1 km, which subsequently transform into rainwater via warm-rain processes 

below. However, due to the geometry of radar measurements, the DWD weather radar network 

was unable to measure the lower atmosphere below up to 2.5 km above the ground over parts 

of the affected region, even with the largest overlap of the four operational radars: ESS, 

Flechtdorf (FLD), NHB, and OFT (Pejcic et al. 2020). As a result, rainfall was significantly 

underestimated. 

 

Figure 4.8 Simulated 𝑍𝐻 profiles based on MRR measurements from the University of Bonn 

on (a) 25 July 2017 and (b) 14 July 2021. 
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Figure 4.9 Retrieved profiles from the MRR-derived DSDs on 14 July 2021, including (a) 𝐷𝑚, 

(b) 𝑁𝑤, (c) 𝐾𝐷𝑃, (d) 𝑅, and (e) liquid water content (𝐿𝑊𝐶). 

 

Figure 4.10 Mean number concentration profiles of (a) drizzle with 𝐷 < 0.5 mm, and (b) 

raindrops with 2 mm < 𝐷 < 4 mm calculated from the DSDs retrieved from the two MRR 

observations. 
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4.3.2 Vertical profile correction 

Chen et al. (2022) investigated the efficacy of two QPE methodologies for warm rain: i) vertical 

projection of observations to low altitudes, and ii) the use of rainfall relations derived from 

MRR observations. The present study combines these two methodologies by regarding 

projection as an explicit VP correction and MRR-DSD-derived relations as an implicit VP 

correction. Additionally, the 𝐾𝐷𝑃  in the 𝑅(𝐴, 𝐾𝐷𝑃)  retrieval is also corrected using the 

explicit method, which was not included in the previous study by Chen et al. (2022). 

Explicit VP correction 

Chen et al. (2020) employed profiler radar observations as a reference to explicitly correct 

the VPR. This work proposes an extension of their approach by using the real-time RD-QVP 

as a reference, and correcting the 𝐾𝐷𝑃  measurements in the same manner. The correction 

involves adding the difference of radar variable values between a pre-defined lower altitude 

and the observing height as seen in the RD-QVPs to the observations. However, the explicit 

correction for 𝐴  is impractical due to its partial correlation with temperature dependence 

(Trömel et al. 2014a), making it difficult to separate its dependencies on the temperature and 

the rain rates. 

An RD-QVP is a range-defined average of QVPs from several elevation scans using inverse 

distance weighting (IDW) beyond the specified range from the radar. The resulting RD-QVPs 

are influenced by the elevations of the scans included in the analysis and the specified range. 

To identify the most appropriate scans for inclusion, two different procedures are compared. 

The first procedure uses data from all volume scans, while the second procedure only uses the 

two lowest scans, that may encompass the elevation angle ranges of the precipitation scans. The 

former method produces more reliable and finer resolved profiles at higher altitudes, primarily 

due to smaller beam-broadening effects. The specified range of 75 km is chosen for this event 

because it provides the best coverage of the scans with precipitation. The ensuing RD-QVPs of 

𝑍𝐻, 𝐾𝐷𝑃 and 𝑍𝐷𝑅 (Figs. 4.11a-c) agree well with the MRR retrievals (Figs. 4.8b and 4.9), 

indicating a high likelihood of collision-coalescence processes occurring below the ML during 

this event. Note that the 𝑍𝐻 gradient observed in the RD-QVP is unlikely to be caused by 

attenuation accumulated at high altitudes (far ranges), as attenuation correction is already 

applied, and 90% of the data show 𝑃𝐼𝐴 values below 2.5 dB during this stratiform rain event. 

The explicit correction for 𝑍𝐻 and 𝐾𝐷𝑃 fields is restricted to a minimum height of 700 m 

above MSL, as it is close to the highest altitude (628 m) of the contributing radars, and to avoid 

the contamination of ground clutter in the VP correction. Radar variables observed above 700 

m are projected to this height, and no correction is applied to data below 700 m and above 𝐻𝑏. 

The values of 𝐻𝑏 range from 2 to 2.7 km as indicated by the RD-QVP of 𝜌𝐻𝑉 from each radar 

(e.g., ≈ 2.5 km for the NHB radar in Fig. 4.11d). For each radar bin and every time step, the 

final corrected 𝑍𝐻 or 𝐾𝐷𝑃 value is the weighted average using IDW of the estimates, that take 

different radar-derived RD-QVPs as references for projection (Fig. 4.12). Only when 

precipitation covers more than one-third of the radar domain, the referred RD-QVPs are 

included for correction. Since 𝐾𝐷𝑃 value scales with the inverse of radar wavelength, the ratio 

0.64 of 𝐾𝐷𝑃 at C-band to at X-band is considered for calculating the 𝐾𝐷𝑃-difference when the 

RD-QVP is derived from radar observations at a different wavelength. Finally, the corrected 

𝑍𝐻 values are truncated at 55 dBZ, as these values are considered unrealistic for pure rain. 
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Figure 4.11 Range-defined quasi-vertical profiles (RD-QVP) of (a) 𝑍𝐻, (b) 𝐾𝐷𝑃, (c) 𝑍𝐷𝑅, and 

(d) 𝜌𝐻𝑉 derived from the NHB radar observations on 14 July 2021. The black dashed lines in 

(a) and (b) mark the time step of VPs at 1655 UTC, which are shown in Fig. 4.12. 

 

Figure 4.12 VPs of (a) 𝑍𝐻 and (b) 𝐾𝐷𝑃 obtained from the RD-QVPs of the Essen (ESS, blue 

line) and NHB (red line) radars on 14 July 2021 at 1655 UTC. The cyan dot is the NHB-

observed 𝑍𝐻 (𝐾𝐷𝑃) located 30 km northwest of the radar and 119 km southwest of ESS. The 

blue and red triangles denote the estimated 𝑍𝐻 (𝐾𝐷𝑃) using the corresponding blue and red 

lines as VP references. The black dot represents the final corrected, i.e., weighted average using 

inverse distance weighting, 𝑍𝐻 (𝐾𝐷𝑃) at a height of 700 m. 
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Implicit VP correction 

The above-mentioned VP correction is only applicable to radar data above 700 m height. 

To account for the vertical gradients of precipitation below that height, rainfall relations derived 

from 1,728 DSDs observed by two MRRs during this event are used. These relations link radar 

variables (e.g., Figs.4.8b and 4.9c) in the lowest three resolved levels to rainfall rates measured 

at the surface, and are given by 

 𝑅(𝑍ℎ) = 0.026𝑍ℎ
0.69

, (4.19) 

 𝑅(𝐾𝐷𝑃) = 30.4𝐾𝐷𝑃
0.7

, (4.20) 

 𝑅(𝐴𝐻) = 427𝐴𝐻
0.94

, and (4.21) 

 𝑅(𝐴𝑉) = 572𝐴𝑉
0.97. (4.22) 

The heights of the MRR sites plus the three resolved levels spanning 600 m correspond to a 

height of 675 m above MSL. This height covers the altitude range between 185 and 628 m of 

the four DWD radar sites and is in close proximity to the 700 m height. While it may seem 

optimal to establish rainfall relations for each height level using MRR data and apply them to 

radar observations at the corresponding height, there are limitations to this approach. The 

uncertainties associated with attenuation in MRR measurements increase with height, which 

may significantly bias the relations at high levels. In addition, the limited number of MRRs 

available during the event and the insufficient sample collected from each level to derive robust 

relations are also concerns. Hence, the MRR-based relations are used solely to adjust the 

projected radar data up to 700 m height. 

To estimate error contributions caused by using DSDs from long-term observations and 

neglecting vertical changes in rainfall intensities near the surface, the QPE relations derived 

using 2,588 LPM-measured DSDs during the event within the domain of interest are compared 

to Eqs. (4.19)-(4.22): 

 𝑅(𝑍ℎ) = 0.023𝑍ℎ
0.68

, (4.23) 

 𝑅(𝐾𝐷𝑃) = 24.4𝐾𝐷𝑃
0.75

, (4.24) 

 𝑅(𝐴𝐻) = 320𝐴𝐻
0.93

 and (4.25) 

 𝑅(𝐴𝑉) = 438𝐴𝑉
0.98. (4.26) 

The findings indicate that during light rain, the long-term LPM-based 𝑅(𝑍ℎ) relation yields 

higher rain rates, while in moderate-to-heavy rain, it produces lower rates compared to the 

event-specific 𝑅(𝑍ℎ) relations (Fig. 4.13a). For the relations derived from the measurements 

during this event, the MRR-based 𝑅(𝑍ℎ) relation gives slightly higher rain rates than the 

LPM-based 𝑅(𝑍ℎ) relation for the entire 𝑍ℎ  range. In light-to-moderate rain conditions 

where 𝑅(𝐴) is derived, the different DSD statistics between this rain event and the 

climatology does not significantly affect the 𝑅(𝐴𝐻/𝑉) relations, whereas their MRR-based 

relations as well as 𝑅(𝐾𝐷𝑃)’s produce the highest rain intensities for the entire range (Figs.  
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Figure 4.13 Rainfall relations at C-band based on (a) 𝑍ℎ, (b) 𝐾𝐷𝑃, (c) 𝐴𝐻, and (d) 𝐴𝑉 derived 

from long-term LPM-measured DSDs (black), and from DSDs observed by LPMs (red) and by 

MRRs (blue) during the rain event. 

4.13b-d). Thus, these comparisons suggest that the choice of MRR-based rainfall relations 

could significantly impact rainfall estimates. 
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Figure 4.14 Observation heights for (a) the composite of the four C-band radars operated by 

DWD, namely ESS, FLD, NHB, and Offenthal (OFT), and (b) the same composite with the 

additional measurements from JuXPol. The white circles are the locations of rain gauges 

selected for further analysis (IDs 03263, 15000, and 05619, hereafter named A, B, and C). The 

black frame in (a) indicates the area shown in (b). 
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4.3.3 Inclusion of the gap-filling radar, JuXPol 

In the flood-affected region, the radar sampling volume can reach up to 3 km height at a range 

of 100 km from the radar sites in the radar composite obtained from the DWD precipitation 

scan data (Fig. 4.14a). The use of JuXPol as a gap filler between the ESS and NHB radar, 

however, can reduce observation heights by up to 1.5 km (Fig. 4.14b), which is anticipated to 

improve QPE performance. 

The X-band rainfall relations derived using the long-term LPM-measured DSDs are given 

by 

 𝑅(𝑍ℎ) = 0.098𝑍ℎ
0.47

, (4.27) 

 𝑅(𝐾𝐷𝑃) = 15.0𝐾𝐷𝑃
0.88

, (4.28) 

 𝑅(𝐴𝐻) = 38𝐴𝐻
0.69

 and (4.29) 

 𝑅(𝐴𝑉) = 47𝐴𝑉
0.73. (4.30) 

The corresponding relations based on the MRR-retrieved DSDs are 

 𝑅(𝑍ℎ) = 0.058𝑍ℎ
0.57

, (4.31) 

 𝑅(𝐾𝐷𝑃) = 22.9𝐾𝐷𝑃
0.71

, (4.32) 

 𝑅(𝐴𝐻) = 67𝐴𝐻
0.78

 and (4.33) 

 𝑅(𝐴𝑉) = 74𝐴𝑉
0.78. (4.34) 

For 𝐴 estimates at X-band, the fixed average 𝛼𝐻/𝑉 values of 0.31 and 0.27 dB deg-1 are 

used. Similar to the C-band algorithm, data with 𝑍𝐻  > 50 dBZ are excluded from the 

integration path in the ZPHI method, and a 𝑍𝐻 threshold of 40 dBZ is utilized in the QPE 

hybrid approach. 

4.4 Snow quantification 

Algorithms based on polarimetric radar variables are believed to be more accurate in 

quantifying melting snow within the ML and snowfall at the surface, compared to those relying 

solely on 𝑍ℎ. This potential, however, has not yet been put into practice. When the radar beams 

reach BB at a short distance from the radar and experience bean-broadening issues at far ranges, 

the area of exploitable radar observations shrinks. To overcome this limitation and take full 

advantage of observations made over long ranges, such as those obtained by the DWD radars 

up to 180 km away, many VPR correction methods have been proposed. This study adopts the 

first polarimetric method for correcting the blurring of VPR, as recommended by Ryzkhov et 

al. (2022). Nonetheless, the QPE results based on the corrected 𝑍ℎ have not been validated yet 

in their study. In the presence of snow at the surface, the polarimetric approach suggested by 

Bukovčić et al. (2020) is extended and adapted to C-band radars to improve the accuracy of 

snowfall estimates. These two novel methodologies for the two different situations are 

elaborated in the following subsections. 
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Figure 4.15 VPs of (a) 𝑍𝐻 and (b) 𝜌𝐻𝑉 with noise correction. These profiles are derived from 

the QVPs of NHB at different elevation angles shown in different colors on 14 July 2021 at 

1445 UTC. 

4.4.1 Polarimetric vertical profile of reflectivity correction 

In the context of monitoring snow-to-rain transformation within the ML of a typical stratiform 

cloud, the 𝑍𝐻  field exhibits artificial enhancements, followed by rapid decreases at longer 

distances due to beam-broadening effects and weak echoes of snowflakes and ice crystals. In 

contrast, the presence of mixed-phase hydrometeors within the ML causes 𝜌𝐻𝑉 to drop. The 

radial profile of 𝜌𝐻𝑉 is found to correlate well with that of 𝑍𝐻 within the ML, albeit with 

some variability owing to different microphysical characteristics (Trömel et al. 2019; Griffin et 

al. 2020). Furthermore, 𝜌𝐻𝑉  provides a more reliable BB discrimination than 𝑍𝐻 . 

Consequently, the PVPR correction method reconstructs intrinsic 𝑍𝐻  profiles from the 

observed 𝜌𝐻𝑉 profiles to correct for 𝑍𝐻. 

In addition to the precipitation microphysics process, changes in radar variables within and 

above the ML are also affected by the radar elevation angle. This dependence arises because 

the elevation angle determines the width of the radar beam, and thus, the extent of beam-

broadening effects at the observation point. Fig. 4.15a demonstrates that the VPR at the 0.5-deg 

elevation angle loses the BB signature and has the lowest 𝑍𝐻 values, implying the greatest 𝑍 

biases amongst other profiles due to severe beam-broadening effects (black line). The same 

problem occurs for 𝜌𝐻𝑉 as the 𝜌𝐻𝑉 curve at the 0.5-deg elevation angle is the first one that 

responds to the BB contamination but never increases beyond the ML, even after applying the 

noise correction (Fig. 4.15b black line). On the other hand, the highest elevation scan at 25 deg 

shows the maximum (minimum) value of 𝑍𝐻 (𝜌𝐻𝑉) caused by the BB contamination (Fig. 4.15 

red lines). Thus, the differences in radar measurements at various elevation angles need to be 

considered in the PVPR correction. 

The PVPR correction method is designed to reconstruct the intrinsic profile of 𝑍𝐻 from 

𝜌𝐻𝑉 and correct 𝑍𝐻 using estimated 𝑍𝐻 biases. To achieve this, the intrinsic profiles of 𝜌𝐻𝑉 

and 𝑍𝐻 with respect to the ML are first modeled through statistical analysis of QVPs. Based 

on the obtained intrinsic profiles, the observed profiles of 𝜌𝐻𝑉 and 𝑍𝐻 are then simulated, 

taking into account the effects of beam broadening. Subsequently, several parameters 

associated with simulated 𝜌𝐻𝑉  are stored in lookup tables to facilitate the reconstruction 

process. Additionally, reflectivity biases relative to the intrinsic 𝑍𝐻  value below the ML, 

denoted as 𝑍𝐻
𝑣𝑝.𝑏𝑖𝑎𝑠

, are estimated and also stored in lookup tables for given elevation angles. 
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The entire process is detailed below: 

i. Model the intrinsic profiles of 𝜌𝐻𝑉 and 𝑍𝐻: 

According to Ryzhkov and Krause (2022), the intrinsic profiles of 𝜌𝐻𝑉  and 𝑍𝐻  are 

modeled as piecewise linear functions, parameterized by a number of microphysical 

parameters as shown in Fig. 4.16 and given by 

a. the minimum value of co-polar correlation coefficient within the ML (𝜌𝐻𝑉
𝑚𝑖𝑛),  

b. reflectivity in rain below the ML (𝑍𝐻
𝑟𝑎𝑖𝑛), 

c. the maximum value of reflectivity within the ML (𝑍𝐻
𝑚𝑎𝑥), 

d. reflectivity in snow right above the ML (𝑍𝐻
𝑠𝑛𝑜𝑤),  

e. the vertical gradient of reflectivity above the melting layer (𝛽𝑀𝐿), and 

f. the ML depth (∆𝐻 in km) determined by the value of 𝜌𝐻𝑉 (i.e., 𝐻𝑡 − 𝐻𝑏 where 𝐻𝑏 

and 𝐻𝑡  are defined as the heights at which 𝜌𝐻𝑉  starts decreasing below 0.975 and 

exceeds again 0.975 after crossing the ML). 

 

Figure 4.16 Model intrinsic VPs of 𝜌𝐻𝑉 and 𝑍𝐻 with respect to the melting layer (ML). 

QVPs offer a systematic examination of high-resolved features within and above the ML. 

In this regard, ∆𝐻 and the difference in values between 𝑍𝐻
𝑚𝑎𝑥  and 𝑍𝐻

𝑟𝑎𝑖𝑛 , denoted as 

∆𝑍𝐻
𝑀𝐿, are estimated using the functions of 𝜌𝐻𝑉

𝑚𝑖𝑛 obtained from S-band observation-based 

QVPs ( Griffin et al. 2020) as follows 

∆𝑍𝐻
𝑀𝐿(𝜌𝐻𝑉

𝑚𝑖𝑛) = 4.27 + 6.89(1 − 𝜌𝐻𝑉
𝑚𝑖𝑛) + 341(1 − 𝜌𝐻𝑉

𝑚𝑖𝑛)2, and (4.35) 

∆𝐻(𝜌𝐻𝑉
𝑚𝑖𝑛) = −0.64 + 30.8(1 − 𝜌𝐻𝑉

𝑚𝑖𝑛) + 315(1 − 𝜌𝐻𝑉
𝑚𝑖𝑛)

2
+ 1115(1 − 𝜌𝐻𝑉

𝑚𝑖𝑛)
3

. (4.36) 

Note that such analysis at C-band has never been performed yet and herein the statistics at 

S-band are assumed to be valid at C-band. In addition to 𝜌𝐻𝑉 and 𝑍𝐻, the intrinsic 𝑍𝐷𝑅 

profile is also modeled. Other associated assumptions include 

a. 𝜌𝐻𝑉 is equal to one below 𝐻𝑏 and above 𝐻𝑡, 

b. 𝑍𝐻
𝑟𝑎𝑖𝑛 is a constant, 
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c. 𝑍𝐻
𝑚𝑎𝑥 is 36 dBZ, 

d. the height of 𝑍𝐻
𝑚𝑎𝑥 is at 𝐻𝑏 + 0.8∆𝐻, 

e. the top height of the ML in terms of 𝑍𝐻 is at 𝐻𝑏 + 1.6∆𝐻, 

f. 𝑍𝐻
𝑠𝑛𝑜𝑤 = 𝑍𝐻

𝑟𝑎𝑖𝑛 − 2 dBZ, 

g. 𝛽𝑀𝐿 is equal to 4 dB km-1, 

h. differential reflectivity in rain below the ML (𝑍𝐷𝑅
𝑟𝑎𝑖𝑛) is expressed as a function of 𝑍𝐻

𝑟𝑎𝑖𝑛, 

where 𝑍𝐷𝑅
𝑟𝑎𝑖𝑛 = 0.75 − 0.0623𝑍𝐻

𝑟𝑎𝑖𝑛 + 0.00184𝑍𝐻
𝑟𝑎𝑖𝑛2

,  

i. the maximum value of differential reflectivity within the ML (𝑍𝐷𝑅
𝑚𝑎𝑥) is determined by 

𝜌𝐻𝑉
𝑚𝑖𝑛 as per the formula 𝑍𝐷𝑅

𝑚𝑎𝑥 = 16.65 − 17𝜌𝐻𝑉
𝑚𝑖𝑛, 

j. 𝑍𝐷𝑅
𝑚𝑎𝑥 is at the same height as 𝜌𝐻𝑉

𝑚𝑖𝑛, and 

k. differential reflectivity in snow right above the ML (𝑍𝐷𝑅
𝑠𝑛𝑜𝑤) is equal to 0 dB. 

ii. Simulate the observed profiles of 𝜌𝐻𝑉 and 𝑍𝐻: 

Fig. 4.15 illustrates the necessity to account for distortion caused by range-dependent 

beam broadening at arbitrary antenna elevation. Consequently, the simulated observed 

reflectivity factors at two channels, referred to as 𝑍ℎ/𝑣
𝑠.𝑜𝑏𝑠., are determined using the formula 

from Ryzhkov (2007): 

 𝑍ℎ/𝑣
𝑠.𝑜𝑏𝑠.(𝑟0) = ∫ 𝑍ℎ/𝑣

𝑖. (𝑟𝑣)𝐼 (𝑟𝑣, 𝑟0)𝑑𝑟𝑣, (4.37) 

where 𝑟0 and 𝑟𝑣 refer to the distance from the radar site to the center of a radar beam 

volume and to any point within a beam volume, respectively, and 𝑍ℎ/𝑣
𝑖.  correspond to the 

intrinsic values of reflectivity factors at two channels. The illumination function 𝐼(𝑟𝑣, 𝑟0) 

relies on the radar pulse length and beam width at 𝑟0 and is strongly linked to the elevation 

angles.  

The beam-broadening effects on 𝜌𝐻𝑉, however, cannot be estimated by the computation 

of the integral similar to Eq. (4.37). Instead, the simulated observed co-polar correlation 

coefficient, denoted as 𝜌𝐻𝑉
𝑠.𝑜𝑏𝑠., is calculated at 𝑟0 using the ratio of 

 
𝜌𝐻𝑉

𝑠.𝑜𝑏𝑠.(𝑟0) =
|𝑅𝐻𝑉

𝑠.𝑜𝑏𝑠.|(𝑟0)

[𝑍ℎ
𝑠.𝑜𝑏𝑠.(𝑟0)𝑍𝑣

𝑠.𝑜𝑏𝑠.(𝑟0)]
2, (4.38) 

where 𝑅𝐻𝑉
𝑠.𝑜𝑏𝑠. is the simulated observed complex covariance given by 

 𝑅𝐻𝑉
𝑠.𝑜𝑏𝑠.(𝑟0) = ∫ 𝑅𝐻𝑉

𝑖. (𝑟𝑣) 𝐼(𝑟𝑣, 𝑟0)𝑑𝑟𝑣. (4.39) 

In Eq. (4.39), 𝑅𝐻𝑉
𝑖.  is the intrinsic complex covariance depending on several radar variables 

and is expressed as (Ryzhkov et al. 2017): 

𝑅𝐻𝑉
𝑖. = 𝑍ℎ

𝑖.𝑍𝑑𝑟
𝑖. −1/2

𝜌𝐻𝑉
𝑖. 𝑒𝑥𝑝[𝑗(Φ𝐷𝑃 − Φ𝐷𝑃

𝑡 − Φ𝐷𝑃
𝑟 )] + 𝑍ℎ

𝑖.𝐿𝑑𝑟
𝑖. 𝑒𝑥𝑝[𝑗(Φ𝐷𝑃

𝑡 − Φ𝐷𝑃
𝑟 )], (4.40) 

where 𝑍𝑑𝑟
𝑖. , 𝐿𝑑𝑟

𝑖.  and 𝜌𝐻𝑉
𝑖.  represent the intrinsic values of differential reflectivity, linear 
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depolarization ratio in linear units, and co-polar correlation coefficient, respectively. Φ𝐷𝑃
𝑡  

indicates the transmitted system differential phase, and Φ𝐷𝑃
𝑟  is the received system 

differential phase. If cross-coupling effects are negligible (i.e., 𝐿𝑑𝑟
𝑖.  is small), the second 

term in Eq. (4.40) can be ignored and the value of 𝜌𝐻𝑉
𝑠.𝑜𝑏𝑠. only relies on 𝑍ℎ/𝑣

𝑠.𝑜𝑏𝑠., 𝑍𝑑𝑟
𝑖. , and 

𝜌𝐻𝑉
𝑖. . This simulation also considers attenuation effects. 

iii. Generate comprehensive lookup tables: 

Lookup tables are utilized to determine ∆𝐻 and 𝐻𝑏 (i.e., the intrinsic profile of 𝑍𝐻) 

from radar-observed 𝜌𝐻𝑉 and to obtain the corresponding 𝑍𝐻
𝑣𝑝.𝑏𝑖𝑎𝑠

 for PVPR correction. 

Once the radial profiles of 𝜌𝐻𝑉
𝑠.𝑜𝑏𝑠. are calculated using Eqs. (4.38)-(4.40), three parameters 

are assigned to their respective lookup tables: 

a. the distance 𝑟𝑏 to the starting point of the 𝜌𝐻𝑉
𝑠.𝑜𝑏𝑠. dip (< 0.975) caused by the ML, 

b. the distance 𝑟𝑡 to the endpoint of the 𝜌𝐻𝑉
𝑠.𝑜𝑏𝑠. dip, and 

c. the melting layer strength 𝑆𝑀𝐿 defined as 

 𝑆𝑀𝐿 = ∫ 𝜌𝐻𝑉
𝑡ℎ.𝑟𝑡

𝑟𝑏
− 𝜌𝐻𝑉

𝑠.𝑜𝑏𝑠.(𝑟)𝑑𝑟, (4.41) 

where 𝜌𝐻𝑉
𝑡ℎ.  is the threshold of 𝜌𝐻𝑉 set to 0.975 at C-band. 

Additionally, 𝑍𝐻
𝑣𝑝.𝑏𝑖𝑎𝑠

 is estimated using 

 𝑍𝐻
𝑣𝑝.𝑏𝑖𝑎𝑠(𝑟) = 𝑍𝐻

𝑠.𝑜𝑏𝑠.(𝑟) − 𝑍𝐻
𝑟𝑎𝑖𝑛, (4.42) 

and stored in lookup tables.  

To accommodate variations in precipitation microphysics processes, the lookup tables for 

the parameters 𝑟𝑏, 𝑟𝑡 and 𝑆𝑀𝐿 are generated with 15 values of 𝐻𝑏 and 8 values of ∆𝐻 

(indexed as 𝑖ℎ and 𝑖𝑑), as shown in Tables 4.1-4.3 for a certain elevation scan. It is found 

that the values of 𝑟𝑏 for a given 𝐻𝑏 are a function of ∆𝐻, and decrease for thicker ∆𝐻. 

Similarly, 𝑆𝑀𝐿 depends on both 𝐻𝑏 and ∆𝐻. Moreover, the vectors 𝑎 and 𝑏 required 

to compute 𝐻𝑏 are stored for the given elevation angle (Table 4.4). 

For the DWD radars, it is recommended to estimate 𝑖ℎ and 𝑖𝑑 from the elevation scan 

data at 1.5 deg, and use these indices for PVPR correction at various elevation angles. Data 

from the lowest elevation angle at 0.5 deg should be avoided since the radial profile of 𝜌𝐻𝑉 

may not rebound to values exceeding the threshold of 0.975 above the ML, making reliable 

estimation of 𝑆𝑀𝐿  impossible. Furthermore, 𝑍  may become too weak due to beam-

broadening effects to be identified as ML. The approach may also be hindered by 

contamination from ground clutter, PBB, and any other potential artifacts at the 0.5-deg 

elevation scan. 

Ideally, these lookup tables should be provided for the same antenna elevation. However, 

if the ML parameters (i.e., 𝑖ℎ and 𝑖𝑑) do not significantly change with distance from the 

radar, then lookup tables generated for one elevation angle can be used for PVPR correction 

at another elevation angle. As the elevation angle of the DWD precipitation scans is adjusted 

to the terrain azimuthally, the lookup tables of 𝑍𝐻
𝑣𝑝.𝑏𝑖𝑎𝑠

 are created for angles ranging from 

0.1 to 2 deg with an interval of 0.1 deg and a radial resolution of 250 m. 
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Table 4.1 Lookup table for the radial distance 𝑟𝑏 (km) from the radar to the starting point of 

the simulated observed co-polar correlation coefficient 𝜌𝐻𝑉
𝑠.𝑜𝑏𝑠. dip caused by the ML at both 

S- and C-bands for an elevation angle of 1.5 deg. 

 ML depth ∆𝐻 (km) 

0.55 0.53 0.51 0.49 0.45 0.40 0.36 0.32 

𝐻
𝑏
 
(k

m
) 

0.2 8 8 8 8 8 8 9 9 

0.4 14 14 14 14 14 14 15 15 

0.6 19 19 19 20 20 20 21 21 

0.8 24 24 25 25 25 26 26 27 

1.0 29 29 30 30 31 31 32 33 

1.2 34 34 35 35 36 36 37 39 

1.4 38 39 39 40 41 42 43 45 

1.6 43 43 44 45 46 47 48 51 

1.8 47 48 49 50 51 52 54 58 

2.0 52 53 53 55 56 57 59 64 

2.2 56 57 58 59 61 62 65 70 

2.4 60 61 63 64 65 67 70 77 

2.6 65 66 67 69 70 72 76 84 

2.8 69 70 72 73 75 77 81 92 

3.0 73 74 76 78 80 82 86 86 

Table 4.2 Lookup table for the radial distance 𝑟𝑡 from the radar to the endpoint of the 𝜌𝐻𝑉
𝑠.𝑜𝑏𝑠. 

dip caused by the ML at both S- and C-bands for an elevation angle of 1.5 deg. 

 ML depth ∆𝐻 (km) 

0.55 0.53 0.51 0.49 0.45 0.40 0.36 0.32 

𝐻
𝑏
 
(k

m
) 

0.2 47 42 38 34 30 26 22 19 

0.4 60 55 50 45 40 35 32 28 

0.6 72 66 60 56 50 45 40 35 

0.8 84 77 71 65 60 54 48 43 

1.0 94 87 81 75 69 62 56 50 

1.2 105 97 90 84 77 70 64 57 

1.4 115 107 99 92 85 78 71 63 

1.6 125 116 108 101 93 85 78 69 

1.8 130 125 117 109 101 93 85 75 

2.0 130 130 125 117 109 100 91 80 

2.2 130 130 130 125 116 106 97 85 

2.4 130 130 130 130 123 113 104 90 

2.6 130 130 130 130 130 120 109 94 

2.8 130 130 130 130 130 126 115 97 

3.0 130 130 130 130 130 130 121 121 
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Table 4.3 Lookup table for the melting layer strength 𝑆𝑀𝐿  at both S- and C-bands for an 

elevation angle of 1.5 deg. 

 ML depth ∆𝐻 (km) 

0.55 0.53 0.51 0.49 0.45 0.40 0.36 0.32 

𝐻
𝑏
 
(k

m
) 

0.2 2.10 1.72 1.37 1.08 0.79 0.52 0.32 0.17 

0.4 2.36 1.90 1.48 1.15 0.83 0.52 0.31 0.15 

0.6 2.62 2.09 1.60 1.23 0.87 0.53 0.30 0.13 

0.8 2.87 2.28 1.73 1.31 0.91 0.54 0.29 0.11 

1.0 3.11 2.45 1.84 1.37 0.94 0.55 0.28 0.10 

1.2 3.34 2.61 1.94 1.44 0.97 0.55 0.27 0.08 

1.4 3.55 2.77 2.04 1.49 0.99 0.55 0.26 0.07 

1.6 3.76 2.91 2.13 1.54 1.01 0.55 0.25 0.05 

1.8 3.94 3.04 2.21 1.59 1.03 0.54 0.23 0.04 

2.0 4.04 2.89 2.29 1.63 1.04 0.54 0.22 0.03 

2.2 4.05 3.22 2.35 1.66 1.05 0.53 0.21 0.02 

2.4 3.98 3.20 2.37 1.70 1.06 0.52 0.19 0.01 

2.6 3.84 3.11 2.33 1.69 1.07 0.51 0.18 0.01 

2.8 3.66 2.98 2.25 1.64 1.05 0.51 0.17 < 0.01 

3.0 3.44 2.80 2.12 1.56 1.01 0.50 0.16 0.16 

Table 4.4 Predetermined eight-element vectors 𝑎 and 𝑏 for an elevation angle of 1.5 deg. 

vector 𝑎 -0.230 -0.215 -0.206 -0.194 -0.183 -0.164 -0.150 -0.089 

vector 𝑏 0.044 0.043 0.042 0.040 0.039 0.038 0.036 0.033 
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To reconstruct the intrinsic profile of 𝑍𝐻, the values of 𝑟𝑏 and 𝑆𝑀𝐿 at each ray are first 

estimated based on the radar-observed 𝜌𝐻𝑉 at 1.5 deg. The value of 𝑆𝑀𝐿 is then utilized to 

determine ∆𝐻. Finally, the known values of 𝑟𝑏 and ∆𝐻, along with the vectors 𝑎 and 𝑏, 

enable the derivation of 𝐻𝑏. The overall process involves the use of a melting layer detection 

algorithm (MLDA), which follows a specific sequence of steps: 

i. Estimate the range interval (𝑟𝑏 , 𝑟𝑡): 

The estimated 𝐻𝑏 value based on the QVP of 𝜌𝐻𝑉, denoted as 𝐻0, is used to identify 

the initial value of 𝑖ℎ  in the lookup tables of 𝑟𝑏  and 𝑟𝑡 . Following that, the range 

interval (𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥) utilized to search for the possible interval of (𝑟𝑏, 𝑟𝑡) is determined, 

given by 

 (𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥) = (
2

3

𝑟𝑏[𝑖ℎ,4]

𝑑𝑟
,

5

4

𝑟𝑡[𝑖ℎ,4]

𝑑𝑟
), (4.43) 

where 𝑑𝑟 represents the radial resolution of radar beams in km. The value in the middle 

column (𝑖𝑑 = 4) of the lookup tables is assumed in Eq. (4.43) since the value of ∆𝐻 is 

still unknown at this stage. Moreover, the range interval (𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥) is defined as slightly 

larger than the first guess of (𝑟𝑏 , 𝑟𝑡), namely (𝑟𝑏[𝑖ℎ, 4], 𝑟𝑡[𝑖ℎ, 4]), by factors 2/3 and 5/4. 

ii. Determine 𝑟𝑏: 

The data within the range interval (𝑟𝑏 , 𝑟𝑡) are expected to meet the criteria of 0.8 < 𝜌𝐻𝑉 

< 0.975 and 20 dBZ < 𝑍𝐻 < 50 dBZ. If the count of bins satisfying these criteria within 

the interval (𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥) is less than five, 𝑟𝑏[𝑖ℎ, 4] is assigned as 𝑟𝑏 . Otherwise, the 

median of the five lowest qualified bins is set as 𝑟𝑏. 

iii. Determine ∆𝐻 from 𝑆𝑀𝐿: 

Determining 𝑟𝑏 alone is not adequate to estimate 𝐻𝑏 due to the considerable variation 

of 𝑟𝑏  with ∆𝐻 , even when 𝐻𝑏  is held constant. Therefore, the value of ∆𝐻  is 

estimated using 𝑆𝑀𝐿. If less than 80% of the expected valid bins are found within the 

interval ( 𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥 ), the default value of 𝑆𝑀𝐿[𝑖ℎ, 4]  is used. Otherwise, 𝑆𝑀𝐿  is 

calculated by summing the differences between 0.975 and the observed 𝜌𝐻𝑉 values from 

the valid bins. The index of ∆𝐻 (𝑖𝑑) can then be determined by identifying the column 

in the 𝑆𝑀𝐿 table having the values closest to the calculated 𝑆𝑀𝐿. 

iv. Determine 𝐻𝑏: 

Obtaining 𝑟𝑏 and 𝑖𝑑 is sufficient to confirm the true value of 𝐻𝑏 using the equation 

of 

 𝐻𝑏 = 𝑎(𝑖𝑑) + 𝑏(𝑖𝑑) 𝑟𝑏. (4.44) 

Subsequently, 𝐻𝑡  can be computed using the known value of ∆𝐻 in addition to 𝐻𝑏. 

Both 𝐻𝑏 and 𝐻𝑡 are smoothed along the azimuth by averaging with a moving window 

of 21 rays. 

Once the indices of 𝑖ℎ and 𝑖𝑑 are identified in the lookup table, the value of 𝑍𝐻
𝑣𝑝.𝑏𝑖𝑎𝑠

 can 

be retrieved and used to correct 𝑍𝐻 for rainfall retrieval. The resulting reflectivities, referred 

to as 𝑍𝐻
𝑣𝑝.𝑐𝑜𝑟.

, can be expressed as 
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 𝑍𝐻
𝑣𝑝.𝑐𝑜𝑟.(𝑟) = 𝑍𝐻

𝑜𝑏𝑠. − 𝑍𝐻
𝑣𝑝.𝑏𝑖𝑎𝑠(𝑖ℎ, 𝑖𝑑, 𝑟), (4.45) 

where 𝑍𝐻
𝑜𝑏𝑠. represents the observed reflectivities, and 𝑟 is the range bin. Note that if data 

above the ML are classified as graupel or hail by the HCA (as introduced later in section 4.5), 

no PVPR correction is applied. 

4.4.2 𝑲𝑫𝑷-based snowfall estimator 

Bukovčić et al. (2020) developed a generalized bivariate relationship for 𝑆(𝑍ℎ, 𝐾𝐷𝑃) based on 

2-dimensional video disdrometer (2DVD) data. This relation is applicable for particles with 𝑎𝑟 

values ranging from 0.5 to 0.8 and 𝜎 values ranging from 0 to 40 deg, and for radars at various 

frequencies. The relation is formulated using Eqs. (2.2), (2.10)-(2.12), (2.17), and (2.26), and 

is given by 

 𝑆(𝑍ℎ, 𝐾𝐷𝑃) =
27.9×10−3

[𝐹𝑜(𝐿𝑎−𝐿𝑏)]0.615
(

𝑃0

𝑃
)0.5𝑍ℎ

0.33(𝐾𝐷𝑃𝜆)0.615. (4.46) 

Fig. 4.17 demonstrates that the intercept parameter in the 𝑆(𝑍ℎ, 𝐾𝐷𝑃) relation is proportional 

to the values of 𝑎𝑟 and 𝜎. Bukovčić et al. (2020) also proposed a generalized relationship for 

𝑆(𝑍𝑑𝑟 , 𝐾𝐷𝑃), but its use with DWD radars is not recommended due to radome effects. 

The intercept value of the C-band 𝑆(𝑍ℎ, 𝐾𝐷𝑃) relation can be determined using a given 𝜆 

value and the provided information of 𝑃, 𝑎𝑟, and 𝜎 for each radar bin. As previously 

mentioned, 𝑎𝑟 is associated with the shape factors 𝐿𝑎 and 𝐿𝑏, while 𝜎 is related to the 

orientation factor 𝐹𝑜. The value of 𝑃 is obtained from the radiosonde observations available 

on the platform administered by the Department of Atmospheric Sciences at the University of 

Wyoming (http://weather.uwyo.edu/upperair/sounding.html). As for 𝑎𝑟, its value is assumed 

to be 0.6 based on the previous studies of Korolev and Isaac (2003) and Hogan et al. (2012), as 

their findings suggested average values of 𝑎𝑟 between 0.5 and 0.7 for irregular and aggregated 

snowflakes. The uncertainty regarding orientation, however, remains an issue. The value of 𝜎 

for ice particles varies from 10 deg for pristine or lightly aggregated ice crystals to 40 deg for 

heavily aggregated snowflakes, as indicated by Hendry et al. (1987), Matrosov et al. (2005b),  

 

Figure 4.17 Impact of the particle aspect ratio 𝑎𝑟 and canting angle distribution width 𝜎 on 

the intercept parameter of the snowfall relation 𝑆(𝑍ℎ, 𝐾𝐷𝑃). The mean canting angle is set to 0 

deg and the atmospheric pressure 𝑃 is assumed to be 1013.25 mb. 

http://weather.uwyo.edu/upperair/sounding.html
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Figure 4.18 (a) QVP of 𝑍𝐷𝑅 obtained from the Isen (ISN) radar at a 1.5-deg elevation angle 

on 3 February 2019 and (b) time series of 𝑍𝐷𝑅 (blue) and corresponding 𝜎 (black) values at 

the lowest levels of the QVP. 

and Melnikov and Straka (2013). This variability affects the intercept value in the 𝑆(𝑍ℎ, 𝐾𝐷𝑃) 

relation significantly, and thus, this study estimates 𝜎 based on 𝑍𝐷𝑅. Picca et al. (2014) have 

reported that the 𝑍𝐷𝑅 value of dry snow aggregates ranges from 0 to 0.5 dB, while heavily 

aggregated snowflakes have a near-zero value. Assuming a negative linear relationship between 

𝑍𝐷𝑅 and 𝜎 within the range of (0 dB, 0.5 dB) for 𝑍𝐷𝑅 and (10 deg, 40 deg) for 𝜎, the 𝜎 

value near the surface or above 𝐻𝑡 is determined using the median of 𝑍𝐷𝑅 at the lowest five 

QVP levels above the ground or 𝐻𝑡 (Fig. 4.18). When the 𝑍𝐷𝑅 value exceeds 0.5 dB, it is 

capped at 0.5 dB. At higher levels, specifically within and above the dendritic growth layer 

(DGL), 𝜎 is equal to 10 deg. The DGL typically spans between -10° and -20°C height, and 

thus its altitude is determined based on the radiosonde observations. Once the location of the 

DGL and the value of 𝜎 near the surface or above 𝐻𝑡 are confirmed, the values of 𝜎 are then 

linearly interpolated into each height level. This process allows for the adjustment of the 

intercept value in the 𝑆(𝑍ℎ, 𝐾𝐷𝑃) relation at each radar bin and time step. In the case of 𝐾𝐷𝑃 

being zero or negative, the 𝑍ℎ-based snowfall retrieval given by 

 𝑆(𝑍ℎ) = 0.115𝑍ℎ
0.5 (4.47) 

is applied instead. This equation is currently implemented in the operational Multi-Radar Multi-

Sensor (MRMS) system in the U.S.A. (Vasiloff 1997; Zhang et al. 2016). 

4.5 QPE comparison and evaluation 

The QPE retrievals obtained in the present study are assessed using ground-based 

measurements collected by the rain gauges and disdrometers operated by DWD. In addition, 

the performance of these retrievals is compared against both DWD’s operational QPE products 

and other retrievals documented in the existing literature. The rain gauge information, the 

compared retrievals and the evaluation methodologies are described below. 

The DWD runs one of the world's most densely distributed networks of rain gauges, 

consisting of over 7,500 stations (Zolina et al. 2014). The DWD Climate Data Center platform 

(CDC, https://opendata.dwd.de/climate_environment/CDC/) provides access to data from 1032 

of these gauges (Fig. 3.1 green crosses) that have undergone quality control and offer temporal 

https://opendata.dwd.de/climate_environment/CDC/
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Figure 4.19 Comparison of the 𝑍ℎ-based rainfall relations, referred to as 𝑅(𝑍ℎ), derived in this 

study (black, red, and blue) and those used in the DWD QPE product Radar-Online-Aneichung 

(RADOLAN) RY (green). 𝑆𝐷 represents the standard deviation (texture) within the nearest 

12 radar bins. 

resolutions ranging from 1 minute to annual. Hundreds of them are used for QPE evaluation, 

with the exact number dependent on the precipitation events. The gauges are of the weighing 

OTT Pluvio type, which enables its use in measuring various forms of precipitation, including 

rain, hail, and snow, without the need for additional heating equipment. As compared to tipping-

bucket precipitation gauges, this gauge type yields higher accuracy (Habib et al., 2001). 

This study includes a comparison between the proposed precipitation retrievals and DWD’s 

RADOLAN product RY. The RY product has a high temporal and spatial resolution of five 

minutes and 1 km, respectively, but it is not publicly available. The RY algorithm consists of 

several 𝑅(𝑍ℎ)  relations, formulated based on different thresholds of 𝑍𝐻  intensities and 

standard deviations (texture) calculated from the nearest 12 radar bins (Bartels et al. 2004). As 

depicted in Fig. 4.19, the 𝑅(𝑍ℎ) relations utilized in RY for heavy rain lie between those 

derived in this study from the long-term and event-specific (i.e., warm-rain event) LPM 

measurements, whereas they differ significantly for light-to-moderate rain. 

Another RADOLAN product RW is available from the CDC platform 30 minutes after the 

completion of an hour. RW is based on RY, but adjusted to hourly rain gauge measurements 

using a weighted average of radar-gauge differences and ratios. During the processing of the 

RW product, each hour 20% of the gauges are randomly chosen and reserved as audit data, 

which do not contribute to the adjustment. In addition, radar and gauge data from neighboring 

countries are included (further details about the RADOLAN products can be found at 

http://www.dwd.de/RADOLAN). Although RW has a long processing time, limiting its use for 

nowcasting and flashflood warnings, it serves as an ideal benchmark for evaluating the 

proposed QPE algorithms. A coding error, however, caused potential 10-minute precipitation 

accumulations to be missing from RW between 25 April 2018 and 17 August 2021. Therefore, 

a corrected version of RW was ordered from DWD specifically for evaluation during the 

flooding event on 14 July 2021. It is important to note that the conclusion drawn by Chen et al. 

(2021a) regarding the comparison of proposed QPE retrievals with RW is incorrect due to this 

error. 

http://www.dwd.de/RADOLAN
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The evaluation of QPE retrievals involves a comparison of their hourly or event-

accumulated precipitation sums against gauge measurements. This comparison utilizes three 

statistical measures, including the normalized root-mean-square error (NRMSE), normalized 

mean bias (NMB), and Pearson’s correlation coefficient (CC), and defined as 

 
NRMSE =

√∑ (𝑅𝑖−𝐺𝑖)2𝑁
𝑖=1

𝑁

𝜎(G)
× 100 %, 

(4.48) 

 NMB =

∑ (𝑅𝑖−𝐺𝑖)𝑁
𝑖=1

𝑁

G̅
× 100 %, and (4.49) 

 CC =
∑ (𝑅𝑖−�̅�)(𝐺𝑖−G̅)𝑁

𝑖=1

√∑ (𝑅𝑖−�̅�)2𝑁
𝑖=1 ∑ (𝐺𝑖−G̅)2𝑁

𝑖=1

. (4.50) 

In Eqs. (4.48)-(4.50), 𝑁  represents the total number of QPE-gauge/disdrometer pairs 

compared, while 𝑅𝑖  and 𝐺𝑖  denote the radar-estimated and gauge/disdrometer-observed 

precipitation sums at the ith station. �̅�  and �̅�  refer to the mean values of 𝑅𝑖  and 𝐺𝑖 , 

respectively, and 𝜎(𝐺) is the standard deviations of 𝐺𝑖.  

In the evaluation of QPE performance over a wide area, radar observations are transformed 

into 1-km-resolution composites, following the same grid format as RY and RW. The 

WRADLIB package, an open-source library for processing weather radar data, is employed to 

calculate the weighted average radar-estimated precipitation rates or other input variables and 

subsequently generate the corresponding composite data (Heistermann et al. 2013, 

https://docs.wradlib.org/en/stable/comp.html). In the overlap areas with observations from two 

radars or more, the weight is determined based on the sampling volume of the radar beam per 

bin that varies depending on the range and beam width. The locations of gauges and 

disdrometers are also converted into the same grid format for pairing. On the other hand, when 

analyzing and discussing the performance of individual radars, the gauge-measured 

rainfall/snowfall sums are paired with the mean of radar-retrieved sums within a horizontal 

range of 1 km from the gauge locations in the original radar polar coordinate grid. The RY and 

RW products are excluded from this comparison. 

The other compared QPE algorithms, including those summarized in Table 4.5, are 

described below, along with their respective evaluation methodologies. 

i. 𝑅(𝐴) algorithm based on scan-wise 𝛼 derived from the 𝑍𝐷𝑅 slope: 

This study compares the accuracy of the proposed 𝑅(𝐴, 𝐾𝐷𝑃) algorithms, which use 

scan-wise adjusted 𝛼  values for 𝐴  estimates and are henceforth referred to as 

𝑅(𝐴𝑎𝑑𝑗., 𝐾𝐷𝑃), with 𝑅(𝑍ℎ) and 𝑅(𝑍ℎ, 𝐾𝐷𝑃). Additionally, the fixed 𝛼𝐻/𝑉 values of 0.093 

dB deg-1 and 0.071 dB deg-1, respectively, obtained from the entire database are used to 

derive 𝐴𝐻/𝑉  values, and the resulting hybrid QPEs, denoted as 𝑅(𝐴𝑓𝑖𝑥., 𝐾𝐷𝑃), serve as 

another benchmark to determine whether the scan-wise adjustment of 𝛼 can enhance radar-

based QPE. To further assess the improvements from the German-regime relations, the 

𝑅(𝐴𝐻/𝑉) and 𝑅(𝐾𝐷𝑃) relations derived from Oklahoma’s DSDs (Ryzhkov et al. 2014; 

Ryzhkov and Zrnić 2019) are also employed. They are given by 

https://docs.wradlib.org/en/stable/comp.html
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 𝑅(𝐴𝐻) = 294𝐴𝐻
0.89, (4.51) 

 𝑅(𝐴𝑉) = 393𝐴𝑉
0.93, and (4.52) 

 𝑅(𝐾𝐷𝑃) = 25.3𝐾𝐷𝑃
0.78. (4.53) 

The gauge-adjusted RW product is anticipated to yield the lowest errors when evaluated 

using the same gauge data. To compare RW with other rainfall retrievals, additional 

measurements from sixty LPMs, collected by DWD (Fig. 3.1 purple dots and crosses) and 

the University of Bonn on 19 July 2017, are used as rain gauges for evaluation (Fehlmann 

et al. 2020). All evaluations are performed in the RADOLAN grid and by the data below 

the ML only. 

ii. 𝑅(𝐴) algorithm based on ray/segment-wise 𝛼 derived from 𝑍𝐷𝑅: 

Due to the limited number of radars selected for algorithm development, the evaluation of 

the presented algorithm is conducted in polar coordinates without composing. The 

application of ray/segment-wise 𝛼, i.e., 〈𝛼〉, requires segment-wise integration in the ZPHI 

method, which creates an opportunity to investigate the feasibility of this integration 

approach and the impact of HS on 𝐴 estimation. Consequently, the study compares the 

performance of 𝑅(𝐴𝑎𝑑𝑗., 𝐾𝐷𝑃)  with two equivalents that derive 𝐴  using i) 〈𝛼〉  and 

segment-wise integration, denoted as 𝑅(𝐴〈𝛼〉, 𝐾𝐷𝑃), and ii) scan-wise adjusted 𝛼 values 

and segment-wise integration, denoted as 𝑅(𝐴〈𝑎𝑑𝑗.〉, 𝐾𝐷𝑃). 

iii. QPE for warm-rain precipitation: 

In order to identify the primary causes of underestimation in the investigated rainfall event, 

five additional rainfall algorithms are evaluated alongside the original algorithm that uses 

DWD radar observations and rainfall relations derived from long-term LMP measurements. 

These algorithms are as follows: i) utilizing rainfall relations obtained from event-specific 

LPM-measured DSDs, ii) applying explicit VP correction (projection) down to a height of 

700 m, iii) combing explicit VP correction with implicit VP correction, which involves the 

use of MRR-DSD-derived relations, as a complete VP correction, iv) including JuXPol 

observations as gap-filling, and v) using both complete VP correction and JuXPol data. The 

last two algorithms are assessed only in the domain where JuXPol provides measurements 

at lower altitudes than the DWD radars. The comparison is carried out in the RADOLAN 

grid. 

To evaluate the accuracy of QPE in regions where DWD radar beams reach high altitudes 

above the ML but JuXPol observations fill gaps below, precipitation estimates above 𝐻𝑏 

are included in the composite. The PVPR correction, however, is ineffective in this case, as 

the ML height is already quite high (> 2.5 km), making the signature of BB less apparent 

for data with low scanning angles. Therefore, QPE within and above the ML height, which 

is defined by the QVP of 𝜌𝐻𝑉, is calculated using the 𝑅(𝑍ℎ) relation of Eq. (4.2) along 

with additional multipliers of 0.6 and 2.8, respectively. To mitigate the discontinuity in the 

rain-field map between areas below and within the ML, a 15-km-wide transition zone is 

defined from the lower bounds of the ML towards the radar. Within this zone, the results of 

the 𝑅(𝑍ℎ) and 𝑅(𝐴𝑎𝑑𝑗., 𝐾𝐷𝑃) retrievals are averaged using IDW. 
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iv. QPE with PVPR correction: 

The accuracy of the rainfall retrieval derived from PVPR-corrected 𝑍ℎ fields is compared 

to that derived from uncorrected 𝑍ℎ fields, and that generated using the 𝑅(𝑍ℎ) relation 

with multipliers of 0.6 and 2.8. Unlike the previous application of the multipliers merely 

based on the ML height, they are assigned in this case based on the results of an HCA 

developed at Colorado State University (code package available at https://github.com/CSU-

RadarMet/CSU_RadarTools). The HCA employs a fuzzy-logic method and in this study the 

classification process utilizes default settings for assigning weights to the temperature 

information and radar observations, with the exception of 𝐿𝐷𝑅 which is not provided by 

the used radar. The 𝑅(𝑍ℎ) relation is then multiplied by different factors according to the 

respective hydrometeor types, i.e., 0.6 for wet snow and 2.8 for any solid particles except 

for hail and graupel. 

To evaluate the performance of QPE with the PVPR correction, the focus is on areas at 

far distances from the radar site (within and above the ML). Therefore, the evaluation is 

based on measurements of individual radars in polar coordinates. 

v. Snowfall polarimetric algorithm: 

To investigate the potential increase in the accuracy of snowfall estimates through the use 

of polarimetry, the 𝑆(𝑍ℎ, 𝐾𝐷𝑃) algorithm is compared with the 𝑆(𝑍ℎ) algorithm from 

Vasiloff (1997), i.e., Eq. (4.47). In four snowfall events, both algorithms are applied to 

observations from the DWD precipitation scans and volume scans at the 1.5- and 2.5-deg 

angles, respectively, in order to evaluate their performance at different heights (given the 

possible impact of decreasing 𝐾𝐷𝑃 values towards the surface). Additionally, the proposed 

snowfall retrieval is compared to the RY product, and thus the data are converted into the 

RADOLAN grid for analysis. 

Furthermore, the performance of 𝑆(𝑍ℎ, 𝐾𝐷𝑃) is compared with that of PVPR-corrected 

𝑅(𝑍ℎ) in areas above the low ML height during a stratiform rain event. This validation is 

based on the assumed conservation of the precipitation flux through the ML. This allows 

the rain rates measured by gauges at the surface to be utilized as the ground truth for the 

snow flux just above the ML. The comparison is evaluated in polar coordinates. 
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Table 4.5 A set of QPE retrieval algorithms compared in this study. It includes i) 𝑅(𝑍ℎ), a 

rainfall retrieval based on linear reflectivity at horizontal polarization 𝑍ℎ, ii) 𝑅(𝑍ℎ, 𝐾𝐷𝑃), a 

hybrid rainfall retrieval based on both 𝑍ℎ  and specific differential phase 𝐾𝐷𝑃 , and iii) 

𝑅(𝐴𝐻/𝑉, 𝐾𝐷𝑃), hybrid rainfall retrievals based on specific attenuation at horizontal or vertical 

polarizations 𝐴𝐻/𝑉 and 𝐾𝐷𝑃. For the 𝑅(𝐴𝐻/𝑉 , 𝐾𝐷𝑃) algorithms, four different approaches to 

estimate 𝐴𝐻/𝑉  in the ZPHI method are compared: i) 𝐴𝐻/𝑉
𝑓𝑖𝑥. , derived using fixed values of 

attenuation parameter 𝛼𝐻/𝑉  and a ray-wise integration technique, ii) 𝐴𝐻/𝑉
𝑎𝑑𝑗. , derived using 

scan-wise adjusted 𝛼𝐻/𝑉 values and the ray-wise integration technique, iii) 𝐴𝐻/𝑉
〈𝑎𝑑𝑗.〉, the same 

as ii) but using a segment-wise integration technique, and iv) 𝐴𝐻/𝑉
〈𝛼〉

, derived using segment-

wise 𝛼𝐻/𝑉 values, i.e., net 𝛼𝐻/𝑉 within the rainy segment denoted as 〈𝛼〉, and the segment-

wise integration technique. Additionally, two snowfall retrieval algorithms are included: one 

based on 𝑍ℎ , denoted as 𝑆(𝑍ℎ) , and the other based on both 𝑍ℎ  and 𝐾𝐷𝑃 , denoted as 

𝑆(𝑍ℎ, 𝐾𝐷𝑃). 

QPE algorithm description 

𝑅(𝑍ℎ) 

A rainfall retrieval based on attenuation-corrected 𝑍ℎ. The attenuation 

correction is performed using the path-integrated specific attenuation 

(𝑃𝐼𝐴) with an 𝛼𝐻 value of 0.093 dB deg-1. This value is derived from 

the entire data set of drop size distributions (DSD) measured in 

Germany. 

𝑅(𝑍ℎ, 𝐾𝐷𝑃) 

A hybrid rainfall retrieval based on 𝑍ℎ  and combined with 𝑅(𝐾𝐷𝑃) 

when the attenuation-corrected reflectivity at horizontal polarization in 

dBZ, referred to as 𝑍𝐻, exceeds 40 dBZ. 

𝑅(𝐴𝐻/𝑉
𝑓𝑖𝑥.

, 𝐾𝐷𝑃) 

Hybrid rainfall retrievals based on 𝐴𝐻/𝑉 and combined with 𝑅(𝐾𝐷𝑃) 

when attenuation-corrected 𝑍𝐻 exceeds 40 dBZ. The 𝐴𝐻/𝑉 values are 

obtained using fixed 𝛼𝐻/𝑉  values of 0.093 and 0.071 dB deg-1, 

respectively, and a ray-wise integration technique suggested by Wang 

et al. (2017). This technique excludes the contribution of intense 

convective cells (defined as those with 𝑍𝐻 > 50 dBZ) from the 

integration path to avoid potential hail contamination. 

𝑅(𝐴𝐻/𝑉
𝑎𝑑𝑗.

, 𝐾𝐷𝑃) 

The same as 𝑅(𝐴𝐻/𝑉
𝑓𝑖𝑥. , 𝐾𝐷𝑃) but with the 𝐴𝐻/𝑉  values derived using 

scan-wise adjusted 𝛼𝐻/𝑉  values based on the changes in differential 

reflectivity 𝑍𝐷𝑅 with respect to 𝑍𝐻. 

𝑅(𝐴𝐻/𝑉
〈𝑎𝑑𝑗.〉

, 𝐾𝐷𝑃) 

Hybrid rainfall retrievals based on 𝐴𝐻/𝑉 and combined with 𝑅(𝐾𝐷𝑃) 

when attenuation-corrected 𝑍𝐻 exceeds 40 dBZ. The 𝐴𝐻/𝑉 values are 

obtained using scan-wise adjusted 𝛼𝐻/𝑉  values and a segment-wise 

integration technique in the ZPHI method. The segment-wise integration 

is limited to rain with 𝑍𝐻 values of less than 40 dBZ. 

𝑅(𝐴𝐻/𝑉
〈𝛼〉

, 𝐾𝐷𝑃) 
The same as 𝑅(𝐴𝐻/𝑉

〈𝑎𝑑𝑗.〉, 𝐾𝐷𝑃) but with the 𝐴𝐻/𝑉 values derived using 
〈𝛼〉, which is determined by the local 𝑍𝐷𝑅 values. 

𝑆(𝑍ℎ) A snowfall retrieval based on 𝑍ℎ (Vasiloff 1997).  
𝑆(𝑍ℎ, 𝐾𝐷𝑃) A snowfall retrieval based on both 𝑍ℎ and 𝐾𝐷𝑃. 
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Chapter 5 

Application to Real Precipitation Events 

The study assesses the performance of various proposed QPE algorithms, which target different 

hydrometeor types including rain, melting graupel/hail, mixed-phase hydrometeors within the 

ML, and snowflakes. This assessment is conducted by evaluating these algorithms using both 

gauge and LPM measurements, and comparing them with existing QPE retrievals. 

5.1 Phase-based retrievals below the melting layer 

For measurements observed below the ML, the hybrid rainfall estimators 𝑅(𝐴𝐻/𝑉, 𝐾𝐷𝑃) are 

utilized. To achieve precise estimates of 𝐴 using the ZPHI method, two types of approaches 

for deriving 𝛼  are proposed: i) scan-wise adjustment of  𝛼  based on 𝑍𝐷𝑅  slopes, and ii) 

segment/ray-wise 𝛼 derived from local 𝑍𝐷𝑅 values. 

5.1.1 𝑹(𝑨) retrievals using scan-wise 𝜶 

The rain events listed in Table 3.3 are analyzed, excluding the one with low ML height on 23 

September 2018. The evaluation statistics by gauge measurements for all compared algorithms 

and the RADOLAN RY product from the six events are summarized in Table 5.1. The 

convective and stratiform events are first examined separately, followed by a performance 

comparison of rainfall relations derived from DSDs measured in Germany and Oklahoma. 

Convective rain 

Based on the rain gauge observations, the 𝑍ℎ -based retrievals, including the proposed 

𝑅(𝑍ℎ) retrieval and RY, exhibit the highest NRMSE values above 70% and the lowest CC 

values for all cases. The 𝑅(𝑍ℎ) retrieval, however, demonstrates a more stable performance 

than RY, which gives large positive biases ranging from 13% to 32%. With regards to the hybrid 

retrievals, it is noticeable that 𝑅(𝐴𝐻
𝑓𝑖𝑥., 𝐾𝐷𝑃) consistently results in the highest NMB values, 

while the use of scan-adjusted 𝛼 reduces NMB values compared to the use of fixed 𝛼, with a 

more pronounced improvement seen for the horizontal polarization. As a consequence, 

𝑅(𝐴𝐻
𝑎𝑑𝑗., 𝐾𝐷𝑃) shows success in reducing the impact of relatively large DSD variability on 𝐴𝐻 

by the scan-wise adjustment of 𝛼𝐻 and produces accuracy similar to 𝑅(𝐴𝑉
𝑎𝑑𝑗., 𝐾𝐷𝑃). Overall, 

𝑅(𝐴𝑎𝑑𝑗., 𝐾𝐷𝑃) surpass in quality the RY product with a reduction in NRMSE of 13% and in 

NMB of 16%. The lowest NRMSE values are obtained by 𝑅(𝑍ℎ, 𝐾𝐷𝑃), but it also yields larger 

negative NMB values compared to 𝑅(𝐴𝑎𝑑𝑗., 𝐾𝐷𝑃). When evaluated using LPM observations, 

Fig. 5.1 indicates that the score numbers of RY remain the worst, while those of the proposed 

hybrid retrievals are significantly improved and approach RW’s scores. 

Stratiform rain 

The RY product stands out in terms of having the least biases among all algorithms, whereas 

𝑅(𝑍ℎ) significantly underestimates rainfall amounts. 𝑅(𝑍ℎ, 𝐾𝐷𝑃) performs similarly to or 



70                                       Chapter 5 Application to Real Precipitation Events    

 

Table 5.1 Evaluation of six proposed QPE retrievals and DWD’s operational product Radar-

Online-Aneichung (RADOLAN) RY against rain gauge measurements for hourly 

accumulations in six rain events. The evaluation metrics include the normalized root-mean-

square error (NRMSE), normalized mean bias (NMB), and Pearson’s correlation coefficient 

(CC). The retrievals with the top (second to top) quality measures from the compared retrievals 

are highlighted in bold (bold-italics), while RY is not included in the ratings. The total numbers 

of data points 𝑁 available for the evaluation are also noted. 

R
Y

 

co
n
v
ec

ti
v
e 

ra
in

 

7
4
.6

 

1
6
.4

 

0
.6

8
 

7
9
.5

 

2
7
.4

 

0
.6

8
 

7
1
.3

 

1
3
.3

 

0
.7

2
 

9
3
.5

 

3
2
.8

 

0
.6

7
 

st
ra

ti
fo

rm
 r

ai
n

 

6
3
.8

 

-9
.6

 

0
.7

8
 

6
6
.0

 

-2
6
.0

 

0
.8

0
 

𝑅
(𝐴

𝑉𝑎
𝑑

𝑗
. ,𝐾

𝐷
𝑃

) 

6
6
.0

 

1
4
.0

 

0
.7

7
 

6
5
.7

 

3
.4

 

0
.7

6
 

6
3
.5

 

-0
.2

 

0
.7

8
 

6
9
.0

 

5
.9

 

0
.7

6
 

6
5
.5

 

-2
2
.1

 

0
.7

9
 

5
6
.6

 

-3
0
.2

 

0
.8

7
 

𝑅
(𝐴

𝑉𝑓
𝑖𝑥

. ,𝐾
𝐷

𝑃
) 

6
6
.5

 

1
5
.7

 

0
.7

7
 

6
5
.2

 

3
.1

 

0
.7

6
 

6
3
.4

 

-0
.5

 

0
.7

8
 

6
8
.0

 

7
.4

 

0
.7

7
 

7
9
.9

 

-5
1
.0

 

0
.8

2
 

6
1
.3

 

-4
1
.8

 

0
.8

9
 

𝑅
(𝐴

𝐻𝑎
𝑑

𝑗
. ,𝐾

𝐷
𝑃

) 

6
6
.5

 

1
2
.8

 

0
.7

6
 

6
6
.1

 

1
.4

 

0
.7

5
 

6
3
.6

 

-1
.3

 

0
.7

7
 

6
9
.7

 

3
.1

 

0
.7

5
 

6
3
.5

 

-2
2
.5

 

0
.8

1
 

5
7
.0

 

-3
0
.8

 

0
.8

8
 

𝑅
(𝐴

𝐻𝑓
𝑖𝑥

. ,𝐾
𝐷

𝑃
) 

6
8
.6

 

2
0
.0

 

0
.7

6
 

6
6
.1

 

6
.0

 

0
.7

5
 

6
4
.1

 

2
.7

 

0
.7

7
 

7
0
.3

 

9
.6

 

0
.7

5
 

7
1
.8

 

-4
0
.8

 

0
.8

2
 

5
8
.3

 

-3
4
.9

 

0
.8

8
 

𝑅
(𝑍

ℎ
,𝐾

𝐷
𝑃

) 

6
4
.4

 

6
.8

 

0
.7

7
 

6
5
.5

 

-8
.8

 

0
.7

6
 

6
3
.3

 

-1
1
.0

 

0
.7

8
 

6
7
.7

 

-6
.1

 

0
.7

5
 

6
8
.1

 

-2
7
.1

 

0
.8

1
 

6
8
.8

 

-4
5
.0

 

0
.9

0
 

𝑅
(𝑍

ℎ
) 

7
2
.8

 

1
2
.8

 

0
.7

1
 

7
3
.8

 

-5
.5

 

0
.6

8
 

7
0
.6

 

-1
4
.7

 

0
.7

2
 

7
7
.4

 

-1
.1

 

0
.6

8
 

6
6
.5

 

-2
6
.1

 

0
.8

2
 

6
9
.8

 

-4
4
.8

 

0
.8

9
 

 

N
R

M
S

E
 (

%
) 

N
M

B
 (

%
) 

C
C

 

N
R

M
S

E
 (

%
) 

N
M

B
 (

%
) 

C
C

 

N
R

M
S

E
 (

%
) 

N
M

B
 (

%
) 

C
C

 

N
R

M
S

E
 (

%
) 

N
M

B
 (

%
) 

C
C

 

N
R

M
S

E
 (

%
) 

N
M

B
 (

%
) 

C
C

 

N
R

M
S

E
 (

%
) 

N
M

B
 (

%
) 

C
C

 

 

2
0
1
7
/0

7
/1

9
 

𝑁
=

 1
1
9
4

 

2
0
1
8
/0

7
/2

8
 

𝑁
=

 9
9
1

 

2
0
1
8
/0

8
/0

9
 

𝑁
=

 1
0
0
3

 

2
0
1
9
/0

7
/2

0
 

𝑁
=

 1
3
0
6

 

2
0
1
7
/0

7
/2

5
 

𝑁
=

 5
2
9
9

 

2
0
2
1
/0

7
/1

4
 

𝑁
=

 2
1
1
4

 



5.1 Phase-based retrievals below the melting layer                                 71  

 

 

Figure 5.1 Scatterplots of hourly rainfall sums for the convective rain event on 19 July 2017, 

obtained from four different sources against LPM-measured rainfall sums. These sources 

include the RADOLAN (a) RY, and (b) RW products, and (c) and (d) hybrid rainfall retrievals 

based on 𝐾𝐷𝑃 and 𝐴𝐻/𝑉, with the latter derived using scan-wise adjusted 𝛼𝐻/𝑉 and ray-wise 

integration in the ZPHI method, denoted as 𝑅(𝐴𝐻/𝑉
𝑎𝑑𝑗., 𝐾𝐷𝑃). The evaluation statistics normalized 

root-mean-square error (NRMSE), normalized mean bias (NMB), and Pearson’s correlation 

coefficient (CC) are shown in each panel. The total number of data points evaluated is 55. 

slightly worse than 𝑅(𝑍ℎ), likely due to the limited number of data points with 𝑍𝐻 > 40 dBZ 

and insensitivity of 𝐾𝐷𝑃 to stratiform rain. The significant underestimation by 𝑅(𝐴𝑓𝑖𝑥., 𝐾𝐷𝑃) 

is attributed to too low 𝛼 values. The adjustment of 𝛼 on a scan-wise basis increases QPE 

accuracy, resulting in the lowest errors of all proposed algorithms. It, however, still yields 

negative biases of up to 30%. The improvements achieved by adjusted 𝛼 are smaller for the 

case on 14 July 2021 than for those on 25 July 2017. The underestimation of rainfall in the 

former case comes from vertical gradients of rain intensities near the surface observed during 

warm rain, which will be discussed in the next subsection. 

The impact of PBB on the 𝑍ℎ-based retrievals, including RW and 𝑅(𝑍ℎ, 𝐾𝐷𝑃), is mostly 

alleviated by employing the precipitation scan. Consequently, the immunity of 𝐴 -based 

retrievals to this impact is not particularly advantageous, as observed in a few rays from the 

measurements of the HNR and Rostock (ROS) radars (Fig. 5.2 black arrows). Note that in those 

rainfall maps, some radar coverages deviate from the circular shape due to the terrain-following 

scan strategy and the constraint of retrievals to observations below the ML. Nevertheless, in the 

mountainous southern region of Germany, specifically in the measurement rage of the Feldberg 

(FBG) radar where PBB cannot be entirely avoided by applying a terrain-following elevation 

angle, great benefits can be expected from the utilization of 𝑅(𝐴) algorithms. 
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Figure 5.2 Daily-accumulated rainfall composite maps of the stratiform rain event on 25 July 

2017, generated from (a) RADOLAN RW, (b) 𝑅(𝑍ℎ, 𝐾𝐷𝑃) , (c) 𝑅(𝐴𝐻
𝑎𝑑𝑗., 𝐾𝐷𝑃) , and (d) 

𝑅(𝐴𝑉
𝑎𝑑𝑗., 𝐾𝐷𝑃). The black arrows indicate the rays affected by partial beam blockage (PBB) in 

the 𝑍ℎ-based rainfall retrieval fields. 

 

Figure 5.3 Comparison of the hourly NRMSE (upper panel) and NMB (bottom panel) for the 

𝑅(𝐴𝐻
𝑎𝑑𝑗., 𝐾𝐷𝑃) (left column) and 𝑅(𝐴𝑉

𝑎𝑑𝑗., 𝐾𝐷𝑃) (right column) retrievals evaluated by gauge 

data. The blue and green bars mark the 𝑅(𝐴, 𝐾𝐷𝑃) retrievals obtained using rainfall relations 

derived from DSDs measured in Germany and Oklahoma in the U.S.A., respectively. The bars 

on the left/right-hand side of the dashed lines represent the convective/stratiform rain events. 
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Oklahoma rainfall relations 

The utilization of 𝑅(𝐴, 𝐾𝐷𝑃) relations obtained from Oklahoma leads to increased errors 

in the convective events, with higher NMB values by over 10% compared to those derived from 

local DSD measurements (Fig. 5.3). Despite lower errors observed in the stratiform event when 

using Oklahoma's relations, the improvements, especially in NRMSE, are relatively minor and 

insufficient to counterbalance their substandard performance in convective precipitation. In 

general, the rainfall relations established in this study provide a better representation of the 

German region, indicating the need for regional precipitation relationships. 

5.1.2 𝑹(𝑨) retrievals using ray/segment-wise 𝜶 

Table 5.2 reveals that neither the use of ⟨𝛼⟩ for each rainy segment nor the segment-wise 

integration technique in the ZPHI method can reliably enhance the accuracy of the derived 𝐴 

and thus 𝑅(𝐴) for convective rain. Instead, the 𝑅(𝐴, 𝐾𝐷𝑃) algorithms using 𝐴〈𝛼〉 , 𝐴〈𝑎𝑑𝑗.〉 , 

and 𝐴𝑎𝑑𝑗., respectively, perform on a case-by-case basis. On the other hand, 𝑅(𝐴〈𝛼〉, 𝐾𝐷𝑃) 

provides the lowest errors during the stratiform rain event, while the segment-wise integration 

technique does not work effectively because of the limited detected HS. 

Nevertheless, Fig. 5.4 illustrates that the rain field obtained from 𝑅(𝐴𝐻
𝑎𝑑𝑗., 𝐾𝐷𝑃) displays 

several bundles of rays with notably underestimated rain rates in areas behind the strongly 

attenuating hail cores, whereas 𝑅(𝐴𝐻
〈𝑎𝑑𝑗.〉, 𝐾𝐷𝑃) generates less biased rays (black circles). Upon 

closer examination of the radial profiles in Fig. 5.5, 𝐴𝐻
〈𝑎𝑑𝑗.〉 rectifies the overestimated values 

of 𝐴𝐻
𝑎𝑑𝑗. before and the underestimated values after the HS (i.e., the range within two black 

dashed lines). Note that the imbalance of 𝐴𝐻
𝑎𝑑𝑗. occurs because the attenuation from the intense 

cell is missed in the integration path, resulting in less 𝑃𝐼𝐴 erroneously assigned to the bins 

located behind. 

Table 5.2 Evaluation (NRMSE, NMB, and CC) of 𝑅(𝐴𝐻/𝑉, 𝐾𝐷𝑃) retrievals for five rain events 

against hourly gauge measurements. 

 𝐴𝐻
〈𝛼〉

 𝐴𝐻
〈𝑎𝑑𝑗.〉 𝐴𝐻

𝑎𝑑𝑗. 𝐴𝑉
〈𝛼〉

 𝐴𝑉
〈𝑎𝑑𝑗.〉 𝐴𝑉

𝑎𝑑𝑗. 

convective rain 

2017/07/19 

𝑁 = 641 

NRMSE (%) 64.0 63.6 64.1 62.3 63.1 63.5 

NMB (%) 17.7 14.8 13.5 14.3 11.7 15.0 

CC 0.80 0.79 0.79 0.80 0.79 0.80 

2018/07/28 

𝑁 = 651 

NRMSE (%) 69.8 70.0 69.6 69.8 70.0 69.4 

NMB (%) 5.4 -1.0 4.5 4.7 -3.8 6.1 

CC 0.72 0.72 0.72 0.72 0.72 0.73 

2018/08/09 

𝑁 = 524 

NRMSE (%) 67.5 67.9 67.4 67.8 69.0 67.9 

NMB (%) -11.3 -13.1 -7.4 -12.1 -14.7 -5.4 

CC 0.74 0.74 0.74 0.74 0.73 0.74 

2019/07/20 

𝑁 = 688 

NRMSE (%) 62.1 61.6 62.4 62.2 61.9 62.3 

NMB (%) 4.8 -0.2 4.4 3.4 -3.0 6.1 

CC 0.79 0.79 0.79 0.79 0.79 0.80 

stratiform rain 

2017/07/25 

𝑁 = 1789 

NRMSE (%) 56.3 59.5 59.5 54.7 59.8 60.2 

NMB (%) -11.8 -20.0 -20.1 -8.7 -18.1 -17.9 

CC 0.85 0.83 0.83 0.85 0.82 0.82 
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Figure 5.4 Instantaneous rainfall maps on 19 July 2017 at 1725 UTC, obtained from HNR radar 

observations using (a) 𝑅(𝐴𝐻
𝑎𝑑𝑗., 𝐾𝐷𝑃)  and (b) 𝑅(𝐴𝐻

〈𝑎𝑑𝑗.〉, 𝐾𝐷𝑃)  with 𝐴𝐻  calculated using 

scan-wise adjusted 𝛼𝐻 and segment-wise integration in the ZPHI method. The black circles 

mark rays with underestimated rain rates behind the HSs. 

 
Figure 5.5 Radial profiles of (a) Φ𝐷𝑃 in black and 𝑍𝐻 in green, and (b) 𝐴𝐻

𝑎𝑑𝑗. in cyan and 

𝐴𝐻
〈𝑎𝑑𝑗.〉 in blue. These profiles are obtained at the 255-deg azimuth of HNR radar observations 

on 19 July 2017 at 1725 UTC. 

5.2 Warm-rain precipitation 

During the flooding event on 14 July 2021, the rainfall algorithms presented in subsection 5.1.1, 

which rely on climatological DSDs and DWD radar data, exhibit noticeable deficiencies (Figs. 

5.6 and 5.7 left column). As demonstrated in the first row group of Table 5.3, even the most 

favorable 𝑅(𝐴𝑎𝑑𝑗., 𝐾𝐷𝑃) retrievals have an NMB value of approximately -30%. To mitigate 

such underestimation, the VP correction and gap-filling methods thus are proposed. 

Quantitative analysis 

For daily rainfall totals exceeding 40 mm, the deviation from the one-to-one line for rainfall 

totals derived at high altitudes is greater than those obtained at low altitudes in all QPE 

algorithms (Fig. 5.7 left column). This discrepancy can be attributed to the increased rain rates 

towards the ground during this event. Of all the rainfall retrievals, RY displays the widest scatter 

against gauge-measured rainfall sums and gives the lowest CC value (Fig. 5.8a). The other 

DWD QPE product RW with gauge adjustments also yields a negative bias with an NMB value 
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close to -12% (Fig. 5.8b). Note that an isolated point within its scatter originates from DWD’s 

ground clutter removal processing (red arrow). By excluding this point from the evaluation, the 

NRMSE and NMB values of RW slightly decrease to 17.7% and -10.9%, respectively. 

According to the second row group of Table 5.3, the use of event-specific LPM-based 

relations leads to limited improvements in NMB, and only slightly better NRMSE compared to 

the relations derived from long-term DSD observations. However, the explicit VP correction 

for the 𝑍ℎ-based retrievals, including 𝑅(𝑍ℎ) and 𝑅(𝑍ℎ, 𝐾𝐷𝑃), does improve the results as 

indicated in the third row group. Furthermore, the addition of MRR-DSD-derived relations, i.e., 

the implicit VP correction, significantly reduces errors by around 20% for all retrievals (see the 

last row group). Accordingly, the middle column of Fig. 5.6 clearly depicts enhanced rainfall 

amounts, and large differences in rainfall accumulations between the 𝑍ℎ-based and 𝐴-based 

retrievals are mitigated, especially in the southwest region where the gaps between radar 

observations and the surface are vast due to the high location of NHB (black circles). The 

𝑅(𝐴𝑎𝑑𝑗., 𝐾𝐷𝑃) algorithms with the VP correction outperform the others and even produce 

qualities comparable to RW. Therefore, considering the vertical precipitation gradients in QPE 

has a more positive and apparent impact than taking into account differences in DSD types 

between this event and climatology. Finally, Fig. 5.6 also illustrates that the phase-based 

𝑅(𝐴𝑎𝑑𝑗., 𝐾𝐷𝑃)  retrievals eliminate the notable radome effect of NHB caused by lightning 

protections, which is not the case for the 𝑍ℎ-based retrievals. 

Using only the data acquired from the lowest elevation scan of JuXPol for rainfall 

estimation causes rain fields with some holes near the southwest of the radar site due to ground 

clutter removal (Fig. 5.6 right column). Nonetheless, incorporating observations from the gap-

filling radar leads to higher and thus more accurate rainfall estimates in the domain ranging 

from 50.5° to 51.0°N and from 6.0° to 7.5°E (black squares). Although the decreases in errors 

achieved by gap-filling are smaller than those obtained from the VP correction, the CC values 

overall increase further (the second and third row groups of Table. 5.4). In contrast to the 𝑍ℎ- 

based algorithms, the inclusion of JuXPol data results in greater improvement in QPE quality 

for the phase-based algorithms. This difference can be attributed to the high sensitivity of Φ𝐷𝑃 

to rain rates at X-band, leading to less noise than C-band. Moreover, the shorter-wavelength 

radars have stronger attenuation uncertainties in power-related variables, further contributing 

to the superior performance of phase-based algorithms with JuXPol data. The advantage of gap-

filling is most pronounced in areas where JuXPol provides observations at considerably lower 

height levels than the DWD radars, as evidenced by the strong correlation between the 

reductions of normalized bias [defined as NB = (𝑅𝑖 − 𝐺𝑖)/𝐺𝑖 × 100 % ] and the height 

difference (Fig. 5.9). These correlations are lower for the 𝐴-based retrievals than for the 𝑅(𝑍ℎ) 

and 𝑅(𝑍ℎ, 𝐾𝐷𝑃) retrievals because at some points, the NB values of 𝑅(𝐴𝑎𝑑𝑗., 𝐾𝐷𝑃) remain 

similar regardless of the height levels from which they are obtained. 

The VPs of JuXPol observations are also corrected, and the final QPE retrievals are 

generated by fusing the VP-corrected data from JuXPol with those from the DWD radars. As a 

result, the errors in QPE are reduced by at least 45% of NRMSE and 30% of NMB compared 

to the original QPE algorithms (see the first and last row groups in Table 5.4). The scatters of 

ensuing accumulated retrievals against gauge-measured rain totals are also much closer to the 

one-to-one line (Fig. 5.7 right column). Overall, the performance of the final 𝑅(𝐴𝑎𝑑𝑗., 𝐾𝐷𝑃) 

retrievals surpasses that of RW. 
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Table 5.3 Evaluation of four QPE retrievals obtained from DWD radar observations against 

gauge-measured daily accumulations for the rain event on 14 July 2021. These retrievals are 

derived using long-term or event-specific rainfall relations, and with explicit vertical profile 

(VP) correction, or complete VP correction (i.e., the combination of explicit and implicit VP 

correction). The evaluation is based on 306 data points. 

  𝑅(𝑍ℎ) 𝑅(𝑍ℎ, 𝐾𝐷𝑃) 𝑅(𝐴𝐻
𝑎𝑑𝑗., 𝐾𝐷𝑃) 𝑅(𝐴𝑉

𝑎𝑑𝑗., 𝐾𝐷𝑃) 

long-term relation 

(original version) 

NRMSE (%) 59.8 59.9 45.0 44.3 

NMB (%) -41.2 -41.4 -30.3 -29.8 

CC 0.97 0.97 0.97 0.97 

event-specific relation 

NRMSE (%) 54.5 56.8 42.6 43.6 

NMB (%) -39.6 -41.4 -29.5 -30.4 

CC 0.97 0.97 0.97 0.97 

long-term relation 

explicit VP Cor. 

NRMSE (%) 51.2 52.8 44.5 45.4 

NMB (%) -33.2 -34.2 -29.6 -30.5 

CC 0.97 0.97 0.97 0.97 

VP Cor. 

(explicit + implicit) 

NRMSE (%) 29.9 33.7 25.6 23.8 

NMB (%) -14.3 -17.5 -9.6 -6.3 

CC 0.97 0.97 0.97 0.98 

Table 5.4 Evaluation of four QPE retrievals derived from DWD radar data with additional 

JuXPol measurements against gauge-measured daily accumulations on 14 July 2021. The 

evaluation is based on 32 data points. 

  𝑅(𝑍ℎ) 𝑅(𝑍ℎ, 𝐾𝐷𝑃) 𝑅(𝐴𝐻
𝑎𝑑𝑗., 𝐾𝐷𝑃) 𝑅(𝐴𝑉

𝑎𝑑𝑗., 𝐾𝐷𝑃) 

long-term relation 

NRMSE (%) 93.0 91.8 73.2 72.9 

NMB (%) -44.9 -44.7 -34.3 -34.4 

CC 0.93 0.94 0.93 0.93 

VP Cor. 

NRMSE (%) 38.8 45.5 43.4 41.0 

NMB (%) -12.3 -16.2 -12.8 -10.9 

CC 0.95 0.94 0.93 0.93 

long-term relation 

+ JuXPol 

NRMSE (%) 78.9 77.3 55.3 54.5 

NMB (%) -37.1 -37.6 -24.9 -25.1 

CC 0.94 0.96 0.97 0.97 

+ JuXPol 

VP Cor. 

NRMSE (%) 34.1 35.1 26.1 24.7 

NMB (%) -4.1 -8.5 4.0 4.6 

CC 0.94 0.95 0.97 0.97 
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Figure 5.6 Composite maps of daily-accumulated rainfall sums on 14 July 2021 obtained using 

𝑅(𝑍ℎ), 𝑅(𝑍ℎ, 𝐾𝐷𝑃), 𝑅(𝐴𝐻
𝑎𝑑𝑗., 𝐾𝐷𝑃), and 𝑅(𝐴𝑉

𝑎𝑑𝑗., 𝐾𝐷𝑃) algorithms (top to bottom). The three 

columns from left to right represent the rainfall estimates derived based on four DWD C-band 

radar data, with VP correction, and with the additional inclusion of JuXPol data and VP 

correction, respectively. The measurement range of NHB is depicted by black circles in the 

middle column, while the black squares in the right column highlight areas where JuXPol 

provides lower-altitude observations than the DWD radars with enhanced rainfall sums. The 

colored dots indicate the rainfall accumulations measured by 306 DWD gauges. 
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Figure 5.7 Scatterplots of daily-accumulated QPE retrievals and gauge-measured rain totals on 

14 July 2021. The retrievals are generated using the 𝑅(𝑍ℎ), 𝑅(𝑍ℎ, 𝐾𝐷𝑃), 𝑅(𝐴𝐻
𝑎𝑑𝑗., 𝐾𝐷𝑃), and 

𝑅(𝐴𝑉
𝑎𝑑𝑗., 𝐾𝐷𝑃)  algorithms (top to bottom). The left column shows the rainfall estimates 

obtained based on the DWD radar data, while the right column displays the estimates with the 

inclusion of JuXPol observations and VP correction. The color of the dots represents the heights 

of radar observations above the ground.  
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Figure 5.8 As in Fig. 5.7, but for the DWD RADOLAN (a) RY and (b) RW products. 

 

Figure 5.9 Scatterplots of the reduction in normalized bias (NB) achieved by including JuXPol 

data against the measurement height difference for the (a) 𝑅(𝑍ℎ) , (b) 𝑅(𝑍ℎ, 𝐾𝐷𝑃) , (c) 

𝑅(𝐴𝐻
𝑎𝑑𝑗., 𝐾𝐷𝑃) , and (d) 𝑅(𝐴𝑉

𝑎𝑑𝑗., 𝐾𝐷𝑃)  algorithms. Only data points with rainfall totals 

exceeding 40 mm are included in the analysis. Pearson’s correlation coefficient between the 

reduction in NB and the height difference is given in each panel. 
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Figure 5.10 Time series of accumulated rain totals on 14 July 2021, as measured by three DWD 

rain gauges (a) A, (b) B, and (c) C (full black lines) compared to RY (full cyan lines), RW 

(dashed black lines), and the proposed rainfall retrievals. The dotted, dashed-dotted, and dashed 

lines depict the original retrievals based on the DWD radar data, retrievals with VP correction, 

and retrievals with both VP correction and inclusion of JuXPol data, respectively. The lines in 

red, green, and blue correspond to the 𝑅(𝑍ℎ), 𝑅(𝑍ℎ, 𝐾𝐷𝑃), 𝑅(𝐴𝐻
𝑎𝑑𝑗., 𝐾𝐷𝑃) algorithms. The 

heights of radar observations above the ground, before and after the inclusion of JuXPol data, 

are indicated in each panel. 

Time series of accumulated rainfall from different QPE algorithms 

For further analysis, three DWD gauges, with IDs 03263, 15000, and 05619, are exemplary 

selected and referred to as gauges A, B, and C, respectively (Fig. 4.14 white circles). These 

gauges have radar coverages at varying heights and have recorded different rainfall intensities 

throughout the day. The objective of this analysis is to compare the rain total time series of 

these gauges with those of the proposed retrievals and DWD QPE products. Note that the 

𝑅(𝐴𝑉
𝑎𝑑𝑗., 𝐾𝐷𝑃)  algorithm is not included in this comparison due to its high similarity to 

𝑅(𝐴𝐻
𝑎𝑑𝑗., 𝐾𝐷𝑃). 

Gauge A is located outside of JuXPol’s coverage, and thus the retrievals derived from VP-

corrected DWD radar measurements and from radar measurements with additional JuXPol data 

coincide in Fig. 5.10a. The 𝑍𝐻 values observed above gauge A consistently remain below 40 

dBZ, indicating that 𝑅(𝐾𝐷𝑃) does not contribute to the rainfall estimates. Consequently, the 

curves of 𝑅(𝑍ℎ) and 𝑅(𝑍ℎ, 𝐾𝐷𝑃) also coincide. In line with the above evaluation, the 𝑍ℎ-

based algorithms produce the lowest estimated rainfall, and the less DSD-sensitive 

𝑅(𝐴𝐻
𝑎𝑑𝑗., 𝐾𝐷𝑃)  algorithm performs slightly better. The 𝑅(𝐴𝐻

𝑎𝑑𝑗., 𝐾𝐷𝑃)  retrieval with VP 

correction displays the curve closest to gauge A among all the proposed retrievals, followed by 

the others which have also corrected for VP. 
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For gauge B, which is situated between the ESS and NHB radar and near JuXPol, the results 

are opposite to gauge A when the VP correction method is applied to DWD radar data alone. 

The ensuing retrievals are not significantly improved and have similar performance to RY (Fig. 

5.10b). This could be due to the fact that the altitude of the DWD radar observations is already 

beyond 2 km height, where the representativeness of RD-QVP fades as data from wider and 

farther areas are averaged. In such cases, the gap-filling radar plays a crucial role and all 

associated curves closely follow the gauge observations: the 𝑍ℎ -based retrievals, although 

lagging behind in the second half of the period, give rainfall sums close to the RW product in 

the end; the curve of 𝑅(𝐴𝐻
𝑎𝑑𝑗., 𝐾𝐷𝑃) is shifted upwards, leading to improvements of two factors 

and the best agreement with the gauge. 

At locations where both JuXPol and DWD radars monitor precipitation at similar height 

levels, gap-filling is not as effective. Hence, the 𝑅(𝐴𝐻
𝑎𝑑𝑗., 𝐾𝐷𝑃) retrieval including the JuXPol 

measurements cannot fully replicate the highest daily-accumulated rainfall amount of up to 160 

mm during the day, as measured by gauge C (Fig. 5.10c). In contrast to gauge B, where larger 

height differences need to be bridged, rainfall retrievals with VP correction exhibit better 

correlation with the gauge observations throughout the entire time span. 

5.3 Snow quantification 

To assess the potential of PVPR correction to reduce 𝑍𝐻 biases within and above the ML for 

surface rainfall estimation, a rainfall event with an ML height of around 0.9 km is chosen. The 

resulting PVPR-corrected 𝑅(𝑍ℎ)  retrieval is compared to the uncorrected 𝑅(𝑍ℎ)  and 

hydrometeor-type-specific 𝑅(𝑍ℎ) retrievals. In addition, the performance of the polarimetric 

snowfall algorithm  𝑆(𝑍ℎ, 𝐾𝐷𝑃)  is evaluated by applying it to four snowfall events, and 

comparing the outcomes to those obtained from the traditional 𝑆(𝑍ℎ) algorithm. This section 

presents the preliminary results of these two methodologies. 

5.3.1 Polarimetric vertical profile of reflectivity correction 

Both the HCA and PVPR correction methods demonstrate increased accuracy of QPE in 

comparison to the uncorrected 𝑅(𝑍ℎ)  retrieval (Table 5.5). The success of the PVPR 

correction method in rainfall estimation is highlighted by the HNR and Prötzel (PRO) radars, 

with improvements of over 30% in NRMSE and up to 0.3 in CC as compared to the uncorrected 

𝑅(𝑍ℎ) retrieval. In the case of the PRO radar as shown in Fig. 5.11, the HCA-based retrieval 

method mitigates overestimated rainfall caused by BB contamination and underestimated 

rainfall at far distances. The appearance of discontinuities in the rain field, however, is visible 

and strongly depends on the temperature information (Fig. 5.12). On the other hand, the PVPR 

correction method reduces the 𝑍𝐻 biases within and above the ML without any discontinuity, 

which leads to more accurate rainfall estimates than the other two retrieval methods. 

For the remaining three radars, the PVPR correction method, however, yields the greatest 

negative biases among all retrievals (Table 5.5 and Fig. 5.13). The BB signature observed by 

ESS, enclosed by the dashed line in Fig. 5.13d, is limited to the north and is not as clear and 

symmetrical as it appears in Fig. 5.11d. This discrepancy can be due to the spatial heterogeneity 

of the ML, which can hinder the efficacy of ML detection. Moreover, severe underestimation 

in the south results from diminished convective cells due to erroneous ML detection (Fig. 5.13f). 

A further discussion on the causes of this outcome will be presented in subsection 6.3.1. 
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Table 5.5 Evaluation of three 𝑍ℎ -based rainfall retrievals against hourly rain gauge 

measurements on 23 September 2018 using five radar observations. These retrievals are based 

on uncorrected 𝑍ℎ , hydrometeor classification algorithm (HCA), and 𝑍ℎ  with polarimetric 

vertical profile of reflectivity (PVPR) correction, respectively. Bold numbers mark retrievals 

with the top-quality measures. 

  𝑅(𝑍ℎ) HCA-based 𝑅(𝑍ℎ) PVPR-Cor. 𝑅(𝑍ℎ) 

ESS 

𝑁 = 1035 

NRMSE (%) 86.3 80.6 91.6 

NMB (%) -44.5 -34.7 -54.9 

CC 0.64 0.67 0.67 

FLD 

𝑁 = 1684 

NRMSE (%) 82.9 76.8 85.0 

NMB (%) -47.8 -32.6 -52.3 

CC 0.70 0.71 73 

HNR 

𝑁 = 1340 

NRMSE (%) 105.5 83.4 62.7 

NMB (%) -15.7 7.4 -12.6 

CC 0.49 0.68 0.79 

PRO 

𝑁 = 789 

NRMSE (%) 91.6 73.4 60.8 

NMB (%) 15.8 17.0 -6.3 

CC 0.67 0.74 0.80 

UMD 

𝑁 = 1430 

NRMSE (%) 90.6 74.9 84.6 

NMB (%) -34.4 -23.9 -40.0 

CC 0.51 0.70 0.65 

 

Figure 5.11 Scatterplots (upper panel) and rainfall maps (bottom panel) of event-accumulated 

rainfall sums derived from three 𝑅(𝑍ℎ) retrievals using Prötzel (PRO) radar observations 

against gauge-measured rainfall sums on 23 September 2018. These retrievals are obtained 

using uncorrected 𝑍ℎ, based on the results of a hydrometeor classification algorithm (HCA), 

and from 𝑍ℎ with polarimetric vertical profile of reflectivity (PVPR) correction, respectively, 

from left to right. 
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Figure 5.12 Maps of the (a) interpolated temperature field derived from radiosonde 

measurements on 23 September 2018 at 1200 UTC, and (b) hydrometeor types classified based 

on PRO radar observations on the same day at 1355 UTC. 

 

Figure 5.13 As in Fig. 5.11 but using the observations from the ESS radar. The black dashed 

line in (d) encloses the enhanced rainfall caused by bright-band (BB) contamination. 
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5.3.2 𝑲𝑫𝑷-based snowfall estimator 

In all snowfall events except for the one occurring on 14 January 2021, the 𝑆(𝑍ℎ, 𝐾𝐷𝑃) 

algorithm performs better than the 𝑆(𝑍ℎ) algorithm (Table 5.6). The results indicate that 

𝑆(𝑍ℎ, 𝐾𝐷𝑃) yields a minimum improvement of 0.1 in CC values and a reduction of up to 20% 

in NRMSE values. Conversely, the RY product generally produces the least accurate estimates 

of snowfall. 

On 14 January 2021, the event-accumulated snowfall maps reveal a spatial shift between 

radar-estimated and gauge-measured snowfall fields from the northeast to the southwest (Figs. 

5.14d-f). This shift becomes more pronounced with increasing observation heights, as depicted 

by the black dashed lines, leading to an overestimation of up to 32% in NMB values. Note that 

this shift is not a consequence of beam-broadening effects or an inappropriate 𝜎 assumption 

of 10 deg at far ranges (i.e., high altitudes within the DGL), as both factors tend to produce 

smaller snowfall estimations. Instead, it may be attributed to the influence of wind advection 

on snowflake falling trajectories. Correcting for horizontal advection of snowflakes is 

challenging, particularly in the presence of strong vertical wind, or when radar data are not 

interpolated into the same height (e.g., constant altitude plan position indicator, CAPPI) for 

further examination. In the case of the other event on 7-8 February 2021, a noticeable 

overestimation of snowfall is observed in the north (Figs. 5.14j-l). Nonetheless, there is no clear 

tendency regarding the possible contributing factors mentioned above, such as the snowfall 

algorithms used, radar-observing heights, or spatial shift, to this phenomenon. Thus, further 

investigation into this matter falls outside the scope of the present study. 

To investigate the QPE performance at various heights and antenna angles, the snowfall 

event on 3 February 2019 is selected due to its less spatial shift. Regardless of the snowfall 

algorithms or elevation scans used, the precipitation amounts are typically underestimated when 

radar observations are taken above 2.5 km height as a result of weak echoes of dry snow as well 

as beam-broadening effects (Fig. 5.15). This underestimation is more pronounced for 𝑆(𝑍ℎ) 

than for 𝑆(𝑍ℎ, 𝐾𝐷𝑃)  at all elevation angles, while at the 1.5- and 2.5-deg angles, the 

𝑆(𝑍ℎ, 𝐾𝐷𝑃) retrieval obtained at lower altitudes produces smaller snowfall sums compared to 

those derived from the 𝑆(𝑍ℎ)  retrieval (Fig. 5.16). Additional analysis of the QPE 

performance as a function of height levels, as depicted in Fig. 5.17, indicates that 𝑆(𝑍ℎ) 

derived using the precipitation scan data consistently has lower NRMSE values and higher CC 

values than those obtained from the data at higher elevation angles across the entire height range. 

This, however, is not the case for 𝑆(𝑍ℎ, 𝐾𝐷𝑃) . At the first height level, the 𝑆(𝑍ℎ, 𝐾𝐷𝑃) 

retrievals at different elevation angles perform similarly to each other, but slightly worse than 

the 𝑆(𝑍ℎ)  retrievals in terms of NRMSE values. At the second level, the 𝑆(𝑍ℎ, 𝐾𝐷𝑃) 

retrievals at both the 1.5- and 2.5-deg angles display a significant jump/drop in NRMSE/CC 

values (red arrows), giving the worst scores of all the compared retrievals. In contrast, at the 

third and fourth levels, 𝑆(𝑍ℎ, 𝐾𝐷𝑃) at the 1.5-deg angle yields the lowest NRMSE values 

among all retrievals. Finally, beyond the fifth level, the retrieval of 𝑆(𝑍ℎ, 𝐾𝐷𝑃) derived using 

the precipitation scan data outperforms those at the higher elevation angles, due to the expected 

decrease in QPE accuracy caused by wind drift above a certain height. The change in the 

performance of 𝑆(𝑍ℎ, 𝐾𝐷𝑃) retrievals at different height levels and elevation scans can also be 

attributable to deficiencies in 𝐾𝐷𝑃, which will be discussed in subsection 6.3.2. 
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Table 5.6 Evaluation of two snowfall quantification retrievals and the RY product derived from 

the DWD precipitation scan data against hourly gauge measurements in four snowfall events. 

The ratings include RY. 

  𝑆(𝑍ℎ) 𝑆(𝑍ℎ, 𝐾𝐷𝑃) RY 

2019/02/03 

𝑁 = 3714 

NRMSE (%) 82.7 76.0 90.9 

NMB (%) -17.0 -4.3 -39.2 

CC 0.60 0.70 0.61 

2021/01/14 

𝑁 = 1946 

NRMSE (%) 105.4 112.4 113.6 

NMB (%) 18.7 32.4 20.6 

CC 0.34 0.49 0.43 

2021/01/24 

𝑁 = 1159 

NRMSE (%) 111.7 89.6 111.8 

NMB (%) -4.5 -11.7 -36.6 

CC 0.43 0.59 0.42 

2021/02/07-08 

𝑁 = 6080 

NRMSE (%) 101.8 92.1 102.5 

NMB (%) 14.4 16.7 6.6 

CC 0.43 0.58 0.55 
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Figure 5.14 Event-accumulated snowfall composite maps obtained from the 𝑆(𝑍ℎ)  (left 

column) and 𝑆(𝑍ℎ, 𝐾𝐷𝑃)  (middle column) algorithms, and the observation heights of 

precipitation scans above the ground (right column) for four snowfall events (each row). 
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Figure 5.15 Scatterplots of event-accumulated snowfall sums derived from the 𝑆(𝑍ℎ) and 

𝑆(𝑍ℎ, 𝐾𝐷𝑃) retrievals (up and bottom), against gauge-measured snowfall sums on 3 February 

2019. The retrievals are obtained using data from the precipitation scan, 1.5-deg elevation scan, 

and 2.5-deg elevation scan, respectively, from left to right. The color of the dots represents the 

heights of radar observations above mean sea level (MSL). 

 

Figure 5.16 As in Fig.5.15 but for scatterplots of 𝑆(𝑍ℎ, 𝐾𝐷𝑃) against 𝑆(𝑍ℎ). 
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Figure 5.17 NRMSE, NMB, and CC (top to bottom) of event-accumulated snowfall sums 

derived from  𝑆(𝑍ℎ)  and 𝑆(𝑍ℎ, 𝐾𝐷𝑃)  (left and right) against gauge measurements on 3 

February 2019. The performance metrics at different elevation scans, indicated by the colors, 

are shown as a function of the observing heights of the precipitation scan above the ground. 

The first height level pertains to altitudes below 0.7 km, the second to fifth levels refer to 

altitudes from 0.7 km to 1.7 km with an interval of 0.2 km, and the sixth level corresponds to 

altitudes from 1.7 km to 2.5 km. 
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Figure 5.18 Scatterplots of precipitation sums derived from three QPE retrievals using the HNR 

data above the ML against hourly gauge measurements on 23 September 2018. These retrievals 

include (a) 𝑆(𝑍ℎ), (b) 𝑆(𝑍ℎ, 𝐾𝐷𝑃), and (c) PVPR-corrected 𝑅(𝑍ℎ). (d)-(f) display the same 

analysis but using the measurements from the PRO radar. 

When estimating surface precipitation using measurements above the ML, the 𝑆(𝑍ℎ, 𝐾𝐷𝑃) 

retrieval is additionally compared to the 𝑅(𝑍ℎ)  retrieval with the PVPR correction. The 

PVPR-corrected 𝑅(𝑍ℎ)  retrieval demonstrates the highest consistency with gauge 

observations and the least pronounced error dependency on observation heights among all 

retrievals (Fig. 5.18). Overestimated points in 𝑆(𝑍ℎ) may result from the overcorrection of 𝑍ℎ 

for attenuation within the ML, which propagates to the data above the ML. Similarly, 

overestimation in 𝑆(𝑍ℎ, 𝐾𝐷𝑃)  may occur due to small 𝑍𝐷𝑅  values without appropriate 

attenuation correction within the ML, leading to excessive intercept values in the relation. 

Therefore, uncertainties arising from attenuation, especially for data within the ML, affect not 

only the direct use of 𝑍ℎ in snowfall retrieval algorithms, but also 𝑍𝐷𝑅 used for estimating 𝜎 

right above the ML. Consequently, the preference for the 𝑅(𝑍ℎ) algorithm with the PVPR 

correction in such cases is further justified. 
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Chapter 6 

Advantages/Disadvantages, and Potential Improvement 

The approaches presented in this study aim to enhance QPE quality beyond the current DWD 

RY product, or even the gauge-adjusted RW product. This chapter summarizes the benefits and 

drawbacks of these approaches, and discusses potential solutions for open problems that must 

be addressed before implementing these algorithms in operational applications of C-band radar 

networks. 

6.1 Phase-based retrievals below the melting layer 

In the ZPHI method, an incorrect 𝛼 value will cause an erroneous estimation of 𝑃𝐼𝐴 from 

ΦDP, leading to incorrect values of 𝐴 or 𝑅(𝐴) along a ray. To avoid this problem, the use of 

scan-wise adjusted 𝛼 values derived from the 𝑍𝐷𝑅 slope is suggested, as it is immune to radar 

miscalibration and less susceptible to noise and resonance effects of 𝑍𝐷𝑅 owing to its statistical 

approach. The improvement achieved by using 𝑅(𝐴𝑎𝑑𝑗., 𝐾𝐷𝑃) over 𝑅(𝐴𝑓𝑖𝑥., 𝐾𝐷𝑃), however, 

is limited to reducing biases in convective rain events. This is because a scan-wise 𝛼 value 

represents an average value and cannot distinguish between different precipitation types within 

an azimuthal scan. An illustration of coexisting convective and stratiform rain in the radar 

domain is demonstrated in the BOO observations on 20 July 2019 (Figs. 6.1a-c). The data 

depicts two distinct 𝑍𝐷𝑅 slopes: a steeper slope originating from the squall line in the east, and 

a flatter slope arising from stratiform regions located behind the convective rain band. The 

merging of these two slopes results in an intermediate 𝐾𝐻 value. Higher (lower) 𝐾𝐻 values 

typically correspond to lower (higher) 𝛼  values, which usually happen in continental 

convection (tropical or marine stratiform). As a consequence, the scan-wise 𝛼 values tend to 

overestimate the heavier convective rain and underestimate the lighter stratiform rain. Similar 

experiences have been documented for the 𝑅(𝐴) algorithm at S-band (e.g., Wang et al. 2019). 

Note that in the derivation of 𝑍𝐷𝑅 slopes, only data with ∆ΦDP less than 30 deg are included 

to minimize the effects of attenuation at C-band. Thus, in the case of heavy rain, data closer to 

the radar site may dominate the results and cause a loss of representativeness in the derived 𝐾𝐻 

values. 

The 𝑅(𝐴𝑎𝑑𝑗., 𝐾𝐷𝑃)  algorithms offer substantial mitigation to the underestimation of 

rainfall caused by the 𝑅(𝐴𝑓𝑖𝑥., 𝐾𝐷𝑃) algorithms in two stratiform rain events. It, however, still 

generates an NMB value greater than 20%. Specifically, the underestimation during the event 

on 25 July 2017 remains unresolved, despite the absence of pronounced vertical precipitation 

gradients below the radar-observing heights, that are typically associated with warm-rain 

processes and were observed in the other investigated stratiform rain event. Located at the 

center of the involved radars and effectively monitoring precipitation during the event, the 

UMD radar data is further examined and indicates that more than 90% of observations are 

below 30 dBZ. The small percentage of higher 𝑍𝐻  with higher 𝑍𝐷𝑅  from embedded 
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convection, however, strongly dominates the fitting of 𝑍𝐷𝑅  slope, producing smaller 𝛼 

values and subsequently underestimated rainfall estimates (Figs. 6.1d-f). 

Based on the findings of Chen et al. (2021a), the performance of their 𝑅(𝐴𝑎𝑑𝑗., 𝐾𝐷𝑃) 

algorithms in stratiform rain deteriorated when using scan-wise 𝛼  values. Hence, 

modifications have been made in this study to the conditions for applying the most tropical and 

highest 𝛼 values derived from the last 𝑁𝑤 class, leading to significant improvements in QPE 

quality. During the adjustment of 𝛼, these high 𝛼 values are employed when one standard 

deviation of 𝑍𝐻 above the mean collected from each scan exceeds 30 dBZ. This, however, can 

cause significant fluctuations in 𝛼 values from one scan to another when the referred 𝑍𝐻 

values (mean plus a standard deviation) move around the threshold of 30 dBZ (Fig. 6.2 red 

arrows). The 𝛼 estimators are also highly sensitive to the change of 𝐾𝐻 in low-value regions. 

Thus, when 𝐾𝐻 fluctuates below 0.05 dB dBZ-1, the derived 𝛼 value can exhibit oscillations 

(Fig. 6.2 black arrow). These two factors can lead to noticeable temporal discontinuity in 

derived rainfall fields. By utilizing the most tropical 𝛼𝐻/𝑉 values of 0.153 and 0.147 dB deg-

1, respectively, for 𝐴𝐻/𝑉 estimates throughout the rain event on 25 July 2017, the resulting 

NRMSE and NMB values are reduced by 10% and 15%, respectively, compared to those 

obtained using scan-wise 𝛼  values (Fig. 6.3). This finding suggests that higher 𝛼  values 

better represent the average in this specific case, underscoring the need to establish more robust 

criteria for the use of most tropical 𝛼 values based on a larger database. 

 

Figure 6.1 Fields of (a) 𝑍𝐻 and (b) 𝑍𝐷𝑅, and (c) scatterplot of 𝑍𝐷𝑅 against 𝑍𝐻 acquired from 

the BOO radar on 20 July 2019 at 0445 UTC. Panels (d)-(f) demonstrate the same data as (a)-

(c) but obtained from the UMD radar on 25 July 2017 at 0820 UTC. The black stars in (c) and 

(f) depict the median values of 𝑍𝐷𝑅 at given 𝑍𝐻 values, while the black lines are the resulting 

𝑍𝐷𝑅 slope (i.e., 𝐾𝐻). 
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Figure 6.2 Time series of scan-wise 𝛼 values (blue) derived from the observations of UMD 

on 25 July 2017. The gray solid line corresponds to the mean 𝑍𝐻 plus one standard deviation 

for each scan, and the gray dashed line marks the value of 30 dBZ. 

 

Figure 6.3 Scatterplots of daily-accumulated rainfall sums derived from (a) 𝑅(𝐴𝐻, 𝐾𝐷𝑃), and 

(b) 𝑅(𝐴𝑉 , 𝐾𝐷𝑃) against rain gauge measurements for the stratiform event on 25 July 2017. The 

red dots represent the use of scan-wise 𝛼𝐻/𝑉 values, while the blue dots refer to the use of 

fixed 𝛼𝐻/𝑉 values of 0.153 and 0.147 dB deg-1. The evaluation statistics are based on the 336 

blue dots. 

Optimizing 〈𝛼〉 along individual rays or within segments has the potential to provide a 

better representation of local 𝛼 in heterogeneous precipitation (e.g., the comparison between 

Figs. 6.4d and f) and thus increase the accuracy of 𝐴 estimates. The efficacy of this approach, 

however, cannot be guaranteed in all cases. The derivation of ray/segment-wise 𝛼 values, in 

particular, requires precise measurements of both 𝑍𝐷𝑅  and 𝑍𝐻  through calibration and 

attenuation correction. Additionally, obtaining reliable estimations of ∆ΦDP within a short 

rainy range interval poses another obstacle. As a result, the benefits of utilizing ray/segment-

wise 𝛼 values in 𝐴 estimates are limited. 

The application of ray/segment-wise 𝛼 values in stratiform rain has shown improved QPE, 

likely due to reduced uncertainties in attenuation and the decreased need for complex segment-

wise integration in the ZPHI method. In such cases, the performance of 𝑅(𝐴〈𝛼〉, 𝐾𝐷𝑃) heavily 
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depends on the accuracy of 𝑍𝐷𝑅 calibration. Fig. 6.4 illustrates that a 𝑍𝐷𝑅 offset of about 0.3 

dB has already a considerable impact on the resulting 〈𝛼〉. For observations made prior to 

August 2017, the 𝑍𝐷𝑅 offsets are determined by taking the mean values of 𝑍𝐷𝑅 in the weak-

echo regions. For rain events occurring after August 2017, the available archived 𝑍𝐷𝑅 offsets 

provided by DWD, however, can differ by up to 0.5 dB from the values obtained using this 

method. Using different sources for 𝑍𝐷𝑅 offset results in a change of at most 10% in NMB 

values. Nevertheless, it is difficult to conclude which source is more accurate, as there is no 

clear pattern indicating which value leads to better QPE performance. 

In convective rain, the presence of scattered and isolated strong cells can impede the 

efficacy of the attenuation correction method proposed by Gu et al. (2011). Moreover, to avoid 

resonance effects in heavy rain, only segments with 𝑍𝐻 values less than 40 dBZ are considered 

in the ZPHI method, which further complicates the estimation of reliable ∆ΦDP. To ensure the 

quality of ∆ΦDP, 𝛥Φ𝐷𝑃
𝑐𝑎𝑙. values calculated from 𝑍ℎ  with quality control replace observed 

values that are either two times larger or 0.5 times smaller than the former. It is observed, 

however, that up to 40% of noisy ∆ΦDP values within the segments can be substituted. This 

indicates that a large proportion of 𝐴 values are derived based on 𝑍𝐻 instead of the phase-

based variable, making the advantages of 𝑅(𝐴) underutilized. 

In light of the importance of using more representative 𝛼 values for local regions and the 

resistance of the scan-wise 𝛼 adjustment to measurement errors, it is more favorable to utilize 

a rain-type classifier on the entire scan and optimize 𝛼  values individually for each 

hydrometeor type through 𝑍𝐷𝑅 slopes. Implementing this approach successfully necessitates 

the development of an HCA that is specifically tailored to German climatology. 

 

Figure 6.4 Fields of (a) 𝑍𝐻, (b) uncalibrated 𝑍𝐷𝑅, (c) calibrated 𝑍𝐷𝑅, (d) scan-wise 𝛼𝐻 (equal 

to 0.087 dB deg-1), (e) segment-wise 𝛼𝐻 derived from uncalibrated 𝑍𝐷𝑅, and (f) segment-wise 

𝛼𝐻 derived from calibrated 𝑍𝐷𝑅 on 25 July 2017 from the UMD radar. 
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6.2 Warm-rain precipitation 

The application of long-term LPM-based rainfall relations to DWD C-band radar measurements 

yields significant underestimation in a warm rain event on 14 July 2021, especially when 

employing 𝑍ℎ-based algorithms. Despite better performance, the hybrid polarimetric retrievals 

𝑅(𝐴𝑎𝑑𝑗 , 𝐾𝐷𝑃) still exhibit a bias (NMB) of around -30%. The use of event-specific LPM-based 

relations only results in minor enhancement in NRMSE. The underestimation tendency 

increases with radar observation height, and the vertical gradients of radar variables and rain 

rates, as observed in both MRR observations and RD-QVPs, are identified as sources of errors. 

The evaluation of the VP correction method reveals that the utilization of MRR-DSD-

derived rainfall relations (implicit correction) yields more considerable reductions in NRMSE 

and NMB values compared to the projection of radar observations (explicit correction). This 

finding underscores the importance of the DSD profiles obtained from MRR observations at 

lower altitudes in optimizing rainfall relations in such scenarios. The implementation of the 

implicit correction method in practical settings, however, requires more robust and generalized 

relations of this kind. Such relations can be established based on a larger dataset that includes 

various rain intensity gradients near the surface. In addition to DWD, several universities and 

research institutions in Germany have MRR measurements available, which can be utilized for 

this purpose. Once optimized, the relations can be applied to certain rain regimes when distinct 

precipitation gradients below the ML are identified via real-time RD-QVPs. Notably, deploying 

MRRs in areas with high observation altitudes of operational radars is particularly 

recommended, as it offers an affordable means of addressing vertical precipitation gradients in 

stratiform rain. 

The complete VP correction method has been found to reduce retrieval errors by a minimum 

of 20%, with the 𝑅(𝐴𝑎𝑑𝑗., 𝐾𝐷𝑃) algorithms showing the most pronounced improvements. In 

the case of heterogeneous precipitation, however, very local gradients or the decreased 

representativeness of RD-QVPs for a larger area of interest may limit the efficacy of the VP 

correction. Thus, further research to investigate the spatiotemporal variabilities of vertical 

gradients is necessary. To facilitate wide-area explicit VP corrections, it is anticipated that small, 

embedded convective cells in stratiform rain must be identified and excluded from RD-QVPs. 

For precipitation within convective cores, VP correction should either be ignored or estimated 

and applied separately. The VP of convective cells can be described using the columnar vertical 

profile (CVP, Murphy et al. 2020) methodology. CVPs, however, are valid at low altitudes only 

when the data are collected in close proximity to radar sites. To extend their utility, a feasible 

strategy is to assume that the profiles derived from convective cells located near the radar are 

representative of cells within the entire scan. As for stratiform rain, the profiles generated from 

RD-QVPs are sensitive to the defined range, and require careful adjustment based on the 

evolution of the precipitation system. 

The explicit VP correction has been applied to 𝑍 and 𝐾𝐷𝑃, but not to 𝐴 because of its 

temperature dependence. With decreasing temperature, the value of the parameter 𝛼  (and 

consequently 𝐴 ) increases, while the intercept parameter in power-law 𝑅(𝐴)  relations 

decreases. At C-band, however, these opposing effects only partially cancel out. In addition, in 

practice 𝛼 is treated as a constant within each segment or ray in the ZPHI method, and thus its 

change with temperature is usually not accounted for in 𝐴 estimation. Similarly, the selection 

of 𝑅(𝐴) relations based on environment temperature is not considered. Nonetheless, it can be 



96                        Chapter 6 Advantages/Disadvantages, and Potential Improvement   

inferred that the temperature factor has a lesser impact on the derived 𝑅(𝐴) compared to 𝐴. 

To enable the exploitation, at least to some extent, of 𝑅(𝐴)  in warm-rain processes, an 

alternative approach is investigated within a Master thesis. This approach involves projecting 

the derived 𝑅(𝐴) to lower altitudes using the VP of 𝑅(𝑍ℎ), 𝑅(𝑍ℎ, 𝐾𝐷𝑃) or any other rainfall 

retrieval without temperature effects. Note that in situations where rain intensities increase 

towards the ground, the VP of observation-derived 𝐴  shows a steeper slope than that of 

intrinsic 𝐴. Therefore, the implicit VP correction for 𝐴 is particularly advantageous in warm 

rain. 

In heterogeneous precipitation conditions, the utilization of cost-effective X-band radars as 

gap fillers is highly recommended to enhance the accuracy of precipitation measurements near 

the surface (recall the improvements achieved at the location of gauge B by including JuXPol 

data, as demonstrated in section 5.2). The 𝑅(𝑍ℎ) and 𝑅(𝑍ℎ, 𝐾𝐷𝑃) algorithms exhibit smaller 

improvements from gap-filling compared to the 𝑅(𝐴𝑎𝑑𝑗., 𝐾𝐷𝑃) algorithms due to the favorable 

application of phase-based variables at X-band and, on the other hand, higher attenuation 

uncertainties in power-related radar measurements at shorter wavelengths. The attenuation of 

𝑍 can cause complete extinction at short ranges, as observed in the case of BoXPol, another 

local X-band radar in Bonn, during this event. It is encouraging to note that in Germany, four 

additional operational X-band radars will soon complement the existing network of C-band 

radars, a positive step towards improved precipitation monitoring, particularly during warm-

rain processes. 

6.3 Snow quantification 

Section 4.4 introduces innovative PVPR correction and polarimetric snowfall retrieval 

techniques at C-band frequencies. Section 5.3 demonstrates their potential in improving surface 

precipitation estimations in scenarios where the radar beams are monitoring at a certain distance 

within and above the ML, and when snowfall is reaching the ground, respectively. This section 

also evaluates their limitations and explores possible pathways for further development. 

6.3.1 Polarimetric vertical profile of reflectivity correction 

The rain event on 23 September 2018 displays various spatial characteristics of the ML within 

radar domains. This offers an opportunity to assess the efficacy of the proposed MLDA and 

PVPR correction methods under different precipitation conditions. It is found that the success 

of the PVPR correction method relies on accurate estimations of 𝑟𝑏 and 𝐻𝑏.  

In the case of pure and uniform stratiform rain, an initial estimate of 𝐻𝑏 , i.e., 𝐻0 , is 

determined using QVPs of 𝜌𝐻𝑉 with sufficient quality. Thus, the method effectively mitigates 

BB contaminations and corrects negative 𝑍𝐻  biases above the ML. Figs. 6.5a/b and d/e 

illustrate the regions affected by BB contamination, which are clearly visible in the 𝜌𝐻𝑉 field 

at the higher antenna elevation of 1.5 deg. The increase in 𝑍𝐻 associated with hydrometeor 

mixtures within the ML is strongly correlated with 𝑆𝑀𝐿. At the lower elevation angle of 0.83 

deg, the BB areas are less pronounced and more diffused compared to 1.5 deg. Nonetheless, 

consistent results achieved for different elevation angles confirm the applicability of the PVPR 

method (Figs. 6.5c/f). This implies that when observations from the lowest elevation scan are 

severely contaminated by ground clutter, the 𝑍𝐻 measurements at successive elevation angles 

can improve the estimates of 𝑍𝐻 and 𝑅(𝑍ℎ) near the surface. 
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Figure 6.5 Fields of (a) noise-corrected 𝜌𝐻𝑉, (b) raw 𝑍𝐻, and (c) PVPR-corrected 𝑍𝐻 at the 

1.5-deg elevation angle of PRO, and (d)-(f) the same but from the precipitation scan at 0.83 deg 

on 23 September 2018 at 1355 UTC.  

 

Figure 6.6 Fields of 𝜌𝐻𝑉 (a) at the 1.5-deg elevation angle, and (b) from the precipitation scan 

obtained by the FLD radar on 23 September 2018 at 1215 UCT. The black lines depict the areas 

contaminated by BB. 



98                        Chapter 6 Advantages/Disadvantages, and Potential Improvement   

 

Nevertheless, significant azimuthal variations of the ML height complicate BB detections. 

In such situations, the BB appears weaker but thicker in the QVPs due to the averaging of the 

signature observed at different height levels. This results in a lower defined value of 𝐻0 than 

the average true 𝐻𝑏. The MLDA searches for 𝑟𝑏 within an estimated interval based on 𝐻0, 

i.e., (𝑖𝑚𝑖𝑛, 𝑖𝑚𝑎𝑥) in Eq. (4.43). However, when 𝑟𝑏 exceeds 𝑖𝑚𝑎𝑥 on the side where the ML 

height tiles upwards, the algorithm wrongly determines 𝑟𝑏 using the default value. Fig. 6.6 

provides an example where 𝐻𝑏 increases from northwest to southeast, causing the rain in the 

southeast to be mistakenly identified as being within the ML (depicted by black lines). 

Subsequently, a presumed positive bias is subtracted, leading to an underestimation of rainfall. 

To overcome this issue, sector-specific QVPs are suggested to detect 𝐻0  within smaller 

azimuthal ranges. Moreover, precise modeling of the ML that takes into account potential 

height variations can enable a spatially resolved detection of the BB, thereby improving the 

correction. 

This study uses observations at the higher elevation angle of 1.5 deg to determine 𝐻𝑏 and 

∆𝐻 , as lower elevation scans are subject to ground clutter contamination and reduced 

information of 𝜌𝐻𝑉 at far ranges, rendering the estimation of 𝑆𝑀𝐿 unreliable. The obtained 

𝐻𝑏 and ∆𝐻 are then utilized to estimate and correct 𝑍𝐻 biases at various scanning angles, 

e.g., the precipitation scans. Inconsistent 𝐻𝑏 between the two elevation scans, however, can 

affect the correction accuracy at the precipitation scans and thus result in substantial errors in 

QPE. In Fig. 6.6, for example, the ML height measured by the precipitation scan is higher 

towards the east than that measured by the 1.5-deg elevation scan. Consequently, a mismatch 

arises between the detected BB area and the low-𝜌𝐻𝑉 region in the east at the precipitation scan 

(Fig. 6.6b).  

The coexistence of the ML and strong convection within the estimated BB ranges can also 

pose a challenge for the MLDA, because both conditions cause reductions in 𝜌𝐻𝑉 at C-band. 

As a consequence, the convective cell is misinterpreted as the ML, leading to a significant 

underestimation of rainfall in the ESS, FLD, and UMD radars (Fig. 6.7 black dashed circles). 

Although the PVPR correction is not applied to observations classified as rain, graupel, or hail, 

the current HCA struggles to distinguish between ice particles and moderate/heavy rain due to 

its strong dependency on temperature (Fig. 6.7c). To resolve this issue, it is recommended to 

include the texture information (i.e., standard deviations) of 𝑍𝐷𝑅 and the vertical gradients of 

radar variables as additional membership functions in the current HCA (Penide et al. 2013; 

Powell et al. 2016). These features are highly distinguishable between the ML and convective 

cores, and are expected to improve the accuracy of QPE based on the PVPR-corrected 𝑍𝐻 

fields. 

The PVPR correction method estimates 𝑍𝐻  biases within and above the ML based on 

certain assumptions in a model. However, one deficiency in the current model is the usage of a 

constant value for 𝛽𝑀𝐿, which may not adequately account for the diversity of precipitation 

types. Therefore, the variability of 𝛽𝑀𝐿 needs to be considered through statistical analysis. 

Moreover, the model employed in this study relies on QVP statistics at S-band, but for more 

precise lookup tables, it is crucial to perform such statistics at C-band. 
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Figure 6.7 Observations from the UMD radar on 23 September 2018 at 1515 UCT. It includes 

𝜌𝐻𝑉 and 𝑍𝐻 fields at the 1.5-deg elevation angle (top to bottom in the left column), and 𝜌𝐻𝑉 

and 𝑍𝐻 fields from the precipitation scan (middle column). The right upper panel shows the 

results of hydrometeor classification, and the right lower panel displays the PVPR-corrected 

𝑍𝐻 field. The black dashed lines mark the convective cells near the BB. 

6.3.2 𝑲𝑫𝑷-based snowfall estimator 

The aggregation of snowflakes during their fall causes a decrease in 𝐾𝐷𝑃 values. To estimate 

snowfall, this decrease is compensated for by the assumption of a linear increase in 𝜎 towards 

the ground in Eq. (4.46), which in turn increases the intercept parameter in the 𝑆(𝑍ℎ, 𝐾𝐷𝑃) 

relation. Moreover, the potential to exploit 𝐾𝐷𝑃 is greater at C-band than at S-band, as 𝐾𝐷𝑃 

value is inversely proportional to the radar wavelength. Nonetheless, a rapid decline in the 

𝑆(𝑍ℎ, 𝐾𝐷𝑃) retrieval in lower layers is still apparent in all snowfall events (e.g., Fig. 6.8f). This 

is because the 𝐾𝐷𝑃 retrieval process amplifies the extent of 𝐾𝐷𝑃 values decreasing towards 

the ground, leading to near-zero values at low altitudes (Fig. 6.8b). Specifically, in the case of 

snow observations, 𝐾𝐷𝑃 is derived using a window size of 25 gates, which allows for relatively 

reliable estimates after at least 6 km in radial distance from the first valid bin. Hence, 𝐾𝐷𝑃 is 

less usable below about 350 m height above the DWD radar locations at the lowest two to four 

elevation angles. This explains the smaller snowfall sums obtained from 𝑆(𝑍ℎ, 𝐾𝐷𝑃) compared 

to those from 𝑆(𝑍ℎ) at low altitudes, as shown in Fig. 5.16, and the worsened NRMSE and 

CC values of 𝑆(𝑍ℎ, 𝐾𝐷𝑃) at the second height level in Fig. 5.17. Note that the discontinuity of 

the 𝑆(𝑍ℎ, 𝐾𝐷𝑃) retrieval below 1 km height in Fig. 6.8f is a result of the replacement of 

𝑆(𝑍ℎ, 𝐾𝐷𝑃) with 𝑆(𝑍ℎ) as 𝐾𝐷𝑃 values become zero or negative. This also clarifies why the 

performance of 𝑆(𝑍ℎ, 𝐾𝐷𝑃) is better at the first height level than at the second level in Fig. 

5.17. 

Validation of snowfall estimates at higher altitudes using ground-based gauges can be 

challenging, due to the horizontal movement of snowflakes during their descent. Despite the 

scarcity of in-situ observations at these heights, the expected intensification of snowfall rates in 
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the DGL provides insight into the efficacy of the polarimetric snowfall algorithm. On 14 

January 2021 between 0400 and 0800 UTC, a clear DGL was observed at altitudes of 3-4 km, 

characterized by enhanced 𝐾𝐷𝑃  and 𝑍𝐷𝑅  values, and relatively low 𝑍𝐻  and 𝜌𝐻𝑉  values 

(Figs. 6.8a-d). The 𝑆(𝑍ℎ, 𝐾𝐷𝑃) algorithm produces higher snowfall estimates within the DGL 

than below it, mainly owing to reduced and less reliable 𝐾𝐷𝑃 at lower altitudes (Fig. 6.8f). In 

contrast, snowfall rates calculated using 𝑆(𝑍ℎ) exhibit an increase below the DGL, eventually 

reaching the surface with some delay (Fig. 6.8e). Previous studies by Kennedy and Rutledge 

(2011) and Trömel et al. (2019) have demonstrated a strong correlation between 𝐾𝐷𝑃 in the 

DGL and subsequent precipitation rates near the surface. Therefore, it is reasonable to conclude 

that 𝑆(𝑍ℎ, 𝐾𝐷𝑃)  gives superior QPE accuracy within the DGL than 𝑆(𝑍ℎ) , while 𝑆(𝑍ℎ) 

provides better quality near the surface compared to 𝑆(𝑍ℎ, 𝐾𝐷𝑃) . This conclusion is also 

supported by the evaluation of the other snowfall event presented in Fig. 5.17, where the 𝑆(𝑍ℎ) 

retrieval yields smaller errors than the 𝑆(𝑍ℎ, 𝐾𝐷𝑃) retrieval at the first height level. However 

at the third and fourth levels, the 𝑆(𝑍ℎ, 𝐾𝐷𝑃) retrieval based on observations at the higher 

elevation angle of 1.5 deg performs the best among all retrievals. Consequently, further analyses 

on the height-dependent combination of 𝑆(𝑍ℎ, 𝐾𝐷𝑃) and 𝑆(𝑍ℎ) are required. 
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Figure 6.8 QVPs at the 2.5-deg elevation angle of (a) 𝑍𝐻 , (b) 𝐾𝐷𝑃 , (c) 𝑍𝐷𝑅 , (d) 𝜌𝐻𝑉 , (e) 

𝑆(𝑍ℎ), and (f) 𝑆(𝑍ℎ, 𝐾𝐷𝑃) from the Memmingen (MEM) radar on 14 January 2021. 
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Chapter 7 

Conclusions, and Outlook 

The current real-time QPE product RY from DWD has limited accuracy due to its reliance on 

𝑅(𝑍ℎ) relations alone. Although the alternative gauge-adjusted product RW is of higher quality 

than RY, it is made on an hourly basis and thus cannot provide timely output for certain 

applications. To overcome these deficiencies, this study proposes several advanced polarimetric 

QPE algorithms at C-band. The performance of the final QPE retrievals for different 

precipitation types is evaluated using DWD gauge and disdrometer measurements, and 

compared with those obtained from other benchmark algorithms and DWD products. The 

findings demonstrate that the proposed algorithms hold promise in improving the accuracy and 

timeliness of the precipitation estimations. Some suggestions are also presented for refining and 

optimizing the algorithms to explore their potential applications in a wider range of 

precipitation conditions.  

Rainfall retrieval algorithms 

The successful application of 𝑅(𝐴) algorithms to the operational S-band radars in the 

U.S.A. prompts the need to adapt and optimize them for widely-used C-band radar networks in 

Europe. The implementation of C-band 𝑅(𝐴) algorithms, however, poses several challenges, 

including the higher sensitivity of both  𝛼  and  𝑅(𝐴) relations to the DSD variability, and 

stronger resonance effects and attenuation in rain mixed with hail compared to S-band. To 

address these challenges, this study derives various regional relationships and parameters for 

optimizing the algorithms, based on the DSDs measured in Germany. The classification of 

DSDs and radar observations according to 𝑁𝑤 and 𝑍𝐷𝑅 slope is also exploited to adjust 𝛼 

values for each radar scan. Moreover, 𝑅(𝐴) is combined with 𝑅(𝐾𝐷𝑃) when 𝑍𝐻 exceeds 40 

dBZ. The ensuing hybrid 𝑅(𝐴𝑎𝑑𝑗., 𝐾𝐷𝑃)  algorithms perform better than the benchmark 

algorithm 𝑅(𝑍ℎ, 𝐾𝐷𝑃) and the RY product, as evidenced by reduced NRMSE and NMB values 

by more than 20% when evaluated with gauge measurements. Additional evaluation with 

independent disdrometer observations shows that these 𝑅(𝐴𝑎𝑑𝑗., 𝐾𝐷𝑃) algorithms have the 

potential to provide near-online QPE products with accuracy approaching RW’s.  

The use of scan-wise 𝛼 estimators is found to reduce biases in QPE when compared to 

fixed 𝛼 values, but their ability to improve NRMSE and CC values is limited. This limitation 

is attributed to the inhomogeneity of precipitation within a scan, which corrupts adequate 𝑍𝐷𝑅-

slope estimates. One possible solution is the optimization of 〈𝛼〉 along each ray or segment by 

deriving local 𝛼 values based on 𝑍𝐷𝑅. Stratiform rain benefits from this approach, showing 

an improvement of approximately 10% in NMB values. The approach, however, is less reliable 

in convective rain due to the larger uncertainties in 𝑍𝐷𝑅 and the increased requirement for 

complex segment-wise integration in the ZPHI method. To account for varying precipitation 

types within a scan and minimize the impact of radar miscalibration, attenuation, and noisy 

∆ΦDP on 𝐴 estimates, this study recommends the adjustment of 𝛼 based on 𝑍𝐷𝑅  slopes, 
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which are obtained from areas classified as the same precipitation types within the scan. These 

adjusted 𝛼 values can then be applied to the corresponding observations, as a more efficient 

and effective approach in practical applications. 

Warm-rain precipitation 

The recent notorious flooding event in western Germany has highlighted the crucial role of 

accurate QPE products in hydrological models and flash-flood predictions, especially in light 

of escalating climate change impacts. However, the proposed QPE algorithms exhibited 

significant negative biases of up to 30% in the estimated rainfall amounts during this event, 

mainly due to warm-rain processes that led to intensified rain rates near the surface and were 

not captured by operational radars at their observing heights.  

To compensate for these observation limitations, this study proposes two approaches: the 

VP correction, and the inclusion of measurements from the JuXPol X-band radar for gap-filling. 

The VP correction approach involves i) projecting the data below the ML down to a height of 

700 m using RD-QVPs as VP references, and ii) utilizing rainfall relationships derived from 

the rain rates measured near the surface and DSD profiles in the lowest three bin levels of MRR, 

specifically at heights of 675 m and below. The results show that the VP correction approach 

achieves larger error reductions than the inclusion of JuXPol data, while the latter approach 

further increases the CC values. The proposed 𝑅(𝐴𝑎𝑑𝑗., 𝐾𝐷𝑃) algorithms, which incorporate 

both the VP correction and gap-filling approaches, yield the lowest errors (an NMB value of 

less than 2%) among all QPE retrievals, including the gauge-adjusted RW product. Moreover, 

these improved QPE retrievals have been demonstrated to increase the accuracy of hydrological 

models and associated flash flooding warnings (Saadi et al. 2022). 

The need for identifying and taking into account vertical gradients in precipitation flux for 

QPE and nowcasting has been overlooked in many operational environments (Bringi et al. 

2023). This study underscores the importance of this consideration and serves as a pilot 

investigation into the application of gap-filler radars in such cases, as the DWD is currently 

installing four additional X-band radars in its radar network. To enhance the efficacy and 

usability of the VP correction approach in heterogeneous precipitation, it is advisable to exclude 

embedded convection from stratiform rain during the correction process. Additionally, local 

VPs derived from convective cores near the radar can be utilized as references to carry out the 

correction for convective cores across the scan.  

The PVPR correction 

Unlike the previous VP correction method for warm rain, most of the available VPR 

correction techniques are designed to target measurements within and above the ML. In this 

study, a novel PVPR correction method that employs polarimetry is introduced as the first of 

its kind. Specifically, the method uses the statistical analysis of QVP obtained from S-band to 

characterize the VP properties of 𝑍𝐻 and 𝜌𝐻𝑉 regarding the impact of the ML at C-band, for 

which QVP statistics are currently lacking. Based on these properties, the biases of 𝑍𝐻 caused 

by BB contamination and beam-broadening effects are estimated. To identify areas where 

biases need correction in radar observations, an MLDA is utilized to search for the BB-

contaminated areas along each radial ray using initial estimates from QVP.  

In pure uniform stratiform rain, the PVPR correction method is highly effective in 

mitigating the enhanced 𝑍𝐻 within the BB and increasing the weak 𝑍𝐻 above the ML at any 
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given elevation angle. Similar patterns are observed in the 𝑍𝐻 fields across different elevation 

scans, indicating the possibility of integrating data from the lowest antenna tilts to ensure an 

optimal quality of 𝑍𝐻 for conversion to rain rate. Furthermore, the PVPR-corrected 𝑅(𝑍ℎ) 

retrieval demonstrates noticeable advantages, with the highest CC values reaching about 0.8, 

over other existing techniques, e.g., the hydrometeor-type-specific 𝑅(𝑍ℎ) retrieval introduced 

by Giangrande and Ryzhkov (2008) and the polarimetric snowfall retrieval presented in this 

study. 

However, the PVPR correction method encounters difficulties in situations where the 

current MLDA cannot accurately estimate the BB-contaminated areas. This is particularly true 

when the height of the ML significantly varies with azimuth, or when a convective cell 

penetrates the estimated BB zone. The latter case occurs because the C-band 𝜌𝐻𝑉 values drop 

during intense convection, similar to the behavior of mixtures within the ML. To handle the 

tilted ML issue, sector-specific QVP, which provides highly-resolved initial estimates of the 

BB range, is recommended. As for the problem with embedded convection, a new HCA is 

required to differentiate convective cores from the ML. These modifications will enable the 

extension of the PVPR correction method to more heterogeneous scenarios. Finally, it is 

suggested to perform the PVPR correction based on the QVP statistics at C-band to better 

represent the BB features at this frequency. 

Snowfall estimation 

In the absence of the ML, the PVPR correction method loses its utility. Furthermore, 

traditional 𝑆(𝑍ℎ) relations suffer from great uncertainties due to their large sensitivity to the 

PSD variability. Bukovčić et al. (2020) thereby proposed a generalized 𝑆(𝑍ℎ, 𝐾𝐷𝑃) 

relationship, which dynamically includes changes in the shape and orientation of snowflakes 

and ice crystals. In this study, its first application to C-band radar data is discussed, resulting in 

considerably increased CC values by up to 0.15 compared to the 𝑍ℎ-based retrieval and RY. 

Additionally, the enhanced precipitation band within the DGL, where ice is generated, can only 

be observed from the QVP of 𝑆(𝑍ℎ, 𝐾𝐷𝑃). An analysis of QPE performance with respect to 

height reveals that 𝑆(𝑍ℎ, 𝐾𝐷𝑃)  surpasses 𝑆(𝑍ℎ)  at high altitudes, while 𝑆(𝑍ℎ)  produces 

smaller errors than 𝑆(𝑍ℎ, 𝐾𝐷𝑃)  at low altitudes where 𝐾𝐷𝑃  is less reliable. Therefore, a 

height-dependent combination of 𝑆(𝑍ℎ) and 𝑆(𝑍ℎ, 𝐾𝐷𝑃) is recommended, which offers new 

insights into improved QPE in snow. 

The ultimate objective of this research is to develop a robust and operational QPE algorithm 

that maximizes the benefits of 𝐴  in synergistic use with 𝐾𝐷𝑃  and 𝑍ℎ  for C-band radar 

networks. The study has provided valuable outcomes and findings that contribute to this 

development. Currently, the proposed QPE algorithms are being integrated into the DWD 

software framework “Polarimetric Radar Algorithms (POLARA)” under the program “Near-

Realtime Quantitative Precipitation Estimation and Prediction (RealPEP)”. As the presented 

results are based on a limited number of case studies, a comprehensive evaluation of the 

algorithms will soon follow, using an extended database covering a more diverse range of rain 

types in POLARA. This evaluation will ensure the practical implementation of the algorithms 

and facilitate their future use with a positive impact on various applications, including weather 

nowcasting, flood forecasting, agriculture, hydrology, and disaster management. 
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4.5 A set of QPE retrieval algorithms compared in this study. It includes i) 𝑅(𝑍ℎ), a rainfall 

retrieval based on linear reflectivity at horizontal polarization 𝑍ℎ , ii) 𝑅(𝑍ℎ, 𝐾𝐷𝑃) , a 

hybrid rainfall retrieval based on both 𝑍ℎ and specific differential phase 𝐾𝐷𝑃, and iii) 
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approaches to estimate 𝐴𝐻/𝑉 in the ZPHI method are compared: i) 𝐴𝐻/𝑉
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fixed values of attenuation parameter 𝛼𝐻/𝑉 and a ray-wise integration technique, ii) 𝐴𝐻/𝑉
𝑎𝑑𝑗.

, 

derived using scan-wise adjusted 𝛼𝐻/𝑉 values and the ray-wise integration technique, iii) 

𝐴𝐻/𝑉
〈𝑎𝑑𝑗.〉, the same as ii) but using a segment-wise integration technique, and iv) 𝐴𝐻/𝑉

〈𝛼〉
, derived 
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𝑍ℎ and 𝐾𝐷𝑃, denoted as 𝑆(𝑍ℎ, 𝐾𝐷𝑃) ------------------------------------------------------------67 
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retrievals with the top (second to top) quality measures from the compared retrievals are 

highlighted in bold (bold-italics), while RY is not included in the ratings. The total 

numbers of data points 𝑁 available for the evaluation are also noted ---------------------70 
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