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Abstract

The rapid advancement of artificial intelligence (AI) systems in recent years is
largely due to the impressive capabilities of artificial neural networks. Their power-
ful capabilities in natural language understanding and computer vision have paved
the way for the wide adoption of AI solutions. However, these models often de-
mand significant computational resources and operate as ”black boxes”, limiting
their utility in sensitive domains, such as finance and healthcare, where strict per-
sonal data protection regulations apply.

This thesis addresses the triadic trade-off between accuracy, explainability, and
resource consumption in the context of supervised learning, with an emphasis on
representation learning for text applications. It starts presenting three use cases:
semantic segmentation for autonomous driving, sentiment analysis via language
models, and text summary evaluation. These cases underscore the need for ro-
bust evaluation techniques to enhance system trustworthiness but also highlight
their limitations, motivating the development of RatVec, an explainable, resource-
efficient framework leveraging kernel PCA and k-nearest neighbors, which is pre-
sented subsequently. RatVec demonstrates a competitive performance under cer-
tain conditions, especially when tasks can be represented as sequence similarity
problems, e.g., protein family classification. For situations where RatVec is less
suitable, such as text classification, the thesis proposes an analogous pipeline us-
ing Transformer-based text representations. This approach, when fine-tuned, ap-
proximates the accuracy from pure neural models while maintaining architectural
explainability, and enables granular explanations of semantic similarity via a novel
technique of pairing contextualized best-matching tokens.

In sum, this thesis advances the pursuit of trustworthy AI systems by introduc-
ing RatVec, a resource-efficient, explainable framework optimally suited to settings
that are naturally translatable to sequence similarity problems, and proposing an
explainable Transformer-based pipeline for text classification tasks. These advance-
ments address some of the challenges of deploying AI in sensitive domains and
suggest several promising avenues for future research.
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Chapter 1

Introduction

1.1 Motivation and Research Context

The current wave of artificial intelligence (AI) is overwhelmingly driven by the remark-
able success of deep neural networks (DNNs) over the past few years across various
fields, including autonomous driving, molecular biology, and text classification. Aim-
ing to foster the widespread adoption and trust in AI systems, machine learning (ML)
researchers tend to focus on three different aspects when proposing new approaches:

(i) Accuracy: the aim is to beat previous best performing models according to some
evaluation metric.

(ii) Explainability: understanding why the model produced an specific output.
(iii) Resource efficiency: reducing runtime and/or memory requirements.

Unfortunately, these three goals are hard to achieve at the same time and constitute
a ”tradeoff triangle”, graphically depicted in Figure 1.1. For instance, let’s consider an
autonomous driving system that employs a ML model to identify and classify objects
on the road. High performance (accuracy) is essential in this scenario, as errors could
potentially lead to accidents. However, should an accident occur, it would be crucial
to understand why the model made a particular decision (explainability). In addition,
given the embedded nature of such systems, the model must be capable of running
on hardware with limited resources (resource efficiency). DNNs have become a stan-
dard tool when the best possible predictions are aimed. However, their superiority on
many tasks when enough data is available comes with vast computation and memory
requirements, which leads to high energy consumption as well. We often need a GPU
even if we only need to fine-tune a pretrained DNN, sometimes even for inference. This
disables deep learning models in scenarios where hardware resources are limited and
when computation in the cloud is not an option, for example in mobile devices with
limited or no internet connection. Furthermore, due to the notable energy consumption
of these models (García-Martín et al., 2019), the research community is encouraged to
embrace computationally efficient hardware and algorithms not only because of envi-
ronmental reasons but also not to make research feasible only for those who can afford
high computational resources (Strubell, Ganesh, and McCallum, 2019). Besides that,
DNNs are black box models whose decisions cannot be really explained if the user de-
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CHAPTER 1. INTRODUCTION

high explainability

high accuracy

high speed / low resource usage

Figure 1.1: The tradeoff triangle: these three aspects are desirable at ML applications
but are also hard to obtain simultaneously.

mands it. This inconvenience disqualifies DNNs in areas where an automated decision
making algorithm is required to provide explanations about any generated output, in-
cluding healthcare, finance, and law. Therefore, we aim to find representation learning
techniques that find a better balance between accuracy, explainability and resource con-
sumption e.g., achieving more explainable models at the cost of a small performance
drop.

Most of the approaches and results presented in this thesis were achieved at research
projects at the Lamarr Institute for Machine Learning and Artificial Intelligence (or its
predecesorML2R competence center) and aremotivated by projects with industry part-
ners at Fraunhofer IAIS. The resulting publications constitute the core of this disserta-
tion, which can be considered as a unifying outline of their various topics. An example
from industry projects motivating this research is presented in Section 3.1. In another
one, we developed a system for extracting Key Performance Indicators (KPIs) from fi-
nancial reports (Brito, Sifa, Bauckhage, et al., 2019). These documents are populated
with tables and text boxes that we could detect with Convolutional Neural Networks
(CNNs). Following this, we used rule-based models to identify the relevant tables and
text boxes. Subsequently, to extract the KPIs from the parsed components, we trained
tree-based classifiers on interpretable features. A visualization of the whole process (as
displayed in Figure 1.2) added another layer of clarity, enabling us to track the progress
of the information extraction and facilitate troubleshooting, while demonstrating the
process to stakeholders as well. These aspects were crucial to the success of this project:
thanks to them, we could not only increasingly improve the accuracy of the extracted
KPIs by understanding the causes of failure, but we could also increase user trust by in-
corporating their feedback and domain expertise into the models. This use case under-
scores the necessity of explainability and high accuracy for achieving user acceptance.

1.2 Research Questions

The main goal of this dissertation is to study and propose representation learning tech-
niques, in particular for natural language understanding (NLU) applications, that en-
able the three aspects of the mentioned tradeoff triangle to a certain extent simulta-
neously. To this end, and considering the aforementioned research context, the main
research question is:

2



1.3. OUTLINE

Figure 1.2: Example of table detection using a CNN (left) and visualization of the KPI
“turnover” values extracted from yearly business reports of two car manu-
facturers. Explainability by visualization and feature importance from in-
terpretable features played a role for troubleshooting the underlying mod-
els and increasing user trust in the system. Images previously published by
Brito, Sifa, Bauckhage, et al., 2019.

• Can we learn competitive ML models that are not only more resource-aware but
also explainable? This general question motivates the following more specific re-
search questions.

• Can a sound statistical evaluation provide any guarantee that alleviates the lack
of explainability to enable trustworthy systems?

• Towhat extent canwe exploit lightweight interpretable approaches to encode (ex-
plainable) similarity among processed entities?

• Can we perform explainable similarity-based classification without a significant
drop in performance compared to transformer-based models?

• What are the saved computational resources by using the proposed models?

1.3 Outline

The remaining chapters of this thesis are structured as follows.
Chapter 2 presents background information on ideas and methods that helps to fol-

low the discussions from the following chapters.
Chapter 3 presents three use cases where we used evaluation as a mean to achieve

trustworthy systems: semantic segmentation for autonomousdriving systems, language
modelling for sentiment analysis, and automatic text summarization. Each use case uti-
lizes different evaluationmethods to enhance trust in the systemand exposes limitations
of using black-box models.

Chapter 4 introduces the RatVec framework as an alternative to pure neuralmethods

3



CHAPTER 1. INTRODUCTION

for reducing computational requirements and increasing model interpretability. The
RatVec framework generates vector representations using rational kernels within ker-
nel PCA, which were later used for classification tasks solved by a k-nearest neighbors
(KNN) classifier, making it resource-efficient and explainable in the sense that elements
are classified according to similar elements from the training set, where the similarity is
given by the applied kernel function.

Chapter 5 focuses on a pipeline that text representations from foundation models
and a KNN classifier, which is structurally similar to the RatVec framework. How-
ever, instead of generating vector representations using rational kernels, it leverages
Transformer-based models, specifically Sentence-BERT (SBERT), to extract text repre-
sentations. This chapter starts comparing the performance gap between the proposed
pipeline and a pure BERT-based classifier, it continues proposing an approach to fine-
tune the SBERT model for multi-label text classification to narrow the measured gap,
and it concludes proposing an explanation method for the classifications delivered by
this pipeline, which does not only show the most similar texts as explanations but also
highlights the tokens that contribute most to the measured semantic similarity.

Chapter 6 provides a summary of the thesis, discussing the key insights and sug-
gesting directions for future research.

To sum up, this dissertation addresses the complex tradeoff between accuracy, ex-
plainability, and resource requirements in ML models. By exploring and proposing
representation learning techniques, such as the RatVec framework and SBERT text rep-
resentations within a similarity-based classification pipeline, we seek to develop solu-
tions that are more interpretable, resource-efficient, and maintain a high level of ac-
curacy. This thesis provides insights into the benefits of these techniques in a variety
of contexts, from protein family classification to multi-label text classification. The po-
tential impact can be significant: more interpretable models mean more transparency
and trust in AI systems, and more resource-efficient models open up the use of AI in
resource-constrained environments and contribute to more sustainable practices.

4



Chapter 2

Preliminaries

This chapter introduces a set of concepts and methods that will be utilized across the
thesis and may help readers that are less familiar with the involved topics.

2.1 Word Embeddings

ML approaches for NLU generally demand a numeric vector representation for words.
We can distinguish any two different words from a fixed vocabulary by assigning them
a one-hot vector, where all entries of the vector are zero-valued but in a single position
that identifies theword. This is a very sparse representation that encodes no information
about the words but their position in the vocabulary.

A more information-rich alternative to one-hot vectors are the so-called word embed-
dings. They are distributed vector representations, which are dense, low-dimensional,
real-valued and can capture latent features of the word (Turian, Ratinov, and Bengio,
2010). Based on the distributional hypothesis from Harris, 1954 (words that appear in
similar contexts have similar meanings), they exploit word co-occurrence so that simi-
lar words are mapped close to each other in the word vector space. These word vectors
encode syntactical and semantical information so that some NLU tasks can be solved
by simple linear vector operations thanks to the distributed nature of the word rep-
resentations. For example, we can answer analogy questions just with additions and
subtractions: if we subtract from a vector representing the word “Madrid” the vector
corresponding to “Spain” and we add the vector “France”, the resulting vector should
be very close to the vector “Paris” (Mikolov, Sutskever, et al., 2013). These vector word
representations have also the advantage that they can be trained efficiently by simple
(shallow) neural networks such as the continuous Skip-gram model (SG) and the Con-
tinuous Bag ofWordsmodel (CBOW) (Mikolov, K. Chen, et al., 2013), both popularized
after the release of the word2vec software. BeyondNLU,word embeddings have also in-
spired research in other areas, such as graph theory, where similar techniques are used
to learn node representations (Grover and Leskovec, 2016).

Although syntax and semantics can be encoded with word2vec embeddings, they
do not incorporate morphological information about the word. As a consequence, mor-
phologically similar words may not be nearby in the word vector space. Some ap-

5



CHAPTER 2. PRELIMINARIES

proaches make use of existing linguistic resources so that the word embeddings cap-
ture not only contextual information but also morphological information (Cotterell and
Schütze, 2015; Jurdzinski et al., 2016). Due to the their dependence on language-specific
resources, they will not work for languages whose available linguistic resources are
scarce.

The SG network is formally defined to predict nearby words. However, we focus on
the the resulting hidden layer weights after the training phase: they constitute dense
vector representations of words. Words are presented to the network with one-hot en-
coding. We can model a projection from the one-hot vector to its embedding by means
of an identity transfer function. In contrast to the most common neural networks mod-
els which require a non-linear transfer function in the hidden layer, the SG model does
not use any non-linear transfer function in the hidden layer but only in the output layer.
The number of necessary neurons in the hidden layer is determined by the number of
features that we want our word embeddings to have: if V is size of the vocabulary and
N the size of our word vectors, we can represent the weights as a V ×N matrix, in which
each row i is the embedding of the corresponding word placed in the position i within
the vocabulary. The context of a word token is defined by setting a maximum window
sizem so that for a token sequence w and a token in position t, the context of the token
w(t) is made of tokens that are at a maximum distance m′ from the central word w(t)
(excluding the central word itself), where m′ is sampled from the interval [1,m]. By
choosing the window size stochastically for each example, we ensure that word tokens
that appear closer to the central word get more importance, as they are more likely to fit
within the context window

w(t−m′) · · ·w(t− 1)w(t+ 1) · · ·w(t+m′). (2.1)

The output layer performsmultinomial logistic regression (without bias term). Since
we do not care about the prediction accuracy but about the quality of the word em-
beddings, the original formulation using softmax as output layer transfer function is
simplified by using negative sampling or hierarchical softmax (Mikolov, Sutskever, et al.,
2013). This is specially important to efficiently train the embeddings since all matrix
calculations needed for the softmax activation function are computationally expensive.

TheCBOWmodelworks in a similarway but defined for the inverse task: in this case,
the context words are the input of the network, which are used to predict the central
word they surround. Also, this prediction task is used only to learn the hidden layer
weights, which correspond to word embeddings exactly as in the SG model.

The Paragraph Vector model (Le and Mikolov, 2014) extends both mentioned mod-
els so that also a set of words such as a sentence or a whole document can be repre-
sented as a vector (the so-called paragraph vector). Paragraph vectors can be derived
using two different architectures: the Distributed Bag of Words (PV-DBOW) and Dis-
tributed Memory (PV-DM) of Paragraph Vectors, which are respectively similar to SG
andCBOW. They consider each paragraph as another token belonging to the vocabulary
that appears in all context windows during the training phase. This approach improves
text classification performance compared to using a mean of word embeddings. For
more details about these models we refer the reader to Le and Mikolov, 2014.
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2.2 Topic Modeling

Topic modeling can be described as a dimensionality reduction technique applied in
classification and clustering tasks. Unlike word embeddings, topic modeling provides
a more interpretable approach to creating vector representations of text. The goal of
topic models is to discover hidden semantic structures that we call topics. In the context
of topic modeling, documents are viewed as a blend of different topics, with each doc-
ument possessing a certain probability of belonging to each topic. Despite the promi-
nence of DNNs for classification, topic models hold the advantage of explainability as
we can identify the words that are most relevant for each topic.

The most commonly utilized topic models are grounded on the distributional hy-
pothesis. The most popular one is Latent Dirichlet Allocation (LDA) (Blei, Ng, and
Jordan, 2003). LDA is a generative statistical model that allows sets of observations to
be attributed to unobserved groups. These groups are our targeted topics, and the ob-
served data are the documents and the words within the documents. Latent semantic
analysis (LSA) (Dumais, 2004) alternatively leverages Singular Value Decomposition
(SVD) on the Term-Document Matrix to identify the relationships between words and
the concepts they form in the text data.

More recent alternatives employ non-negative matrix factorization (NMF) (Arora,
Ge, and Moitra, 2012; Hillebrand et al., 2021). NMF operates as a method that simul-
taneously performs dimensionality reduction and clustering. The non-negativity con-
straint ofNMF results in a parts-based representation. This is becauseNMFdecomposes
the original data into two non-negative matrix factors, which can be interpreted as the
topics and their associated weights. Therefore, each topic is represented by a cluster of
words (parts) that frequently occur together in the data.

Other methods like Anchored CorEx (Gallagher et al., 2017) adopt an information-
theoretic approach instead of relying on a probabilistic generative model.

In the next section, we will discuss Transformer-based models such as the BERT
model, which have also been used to support certain topic modeling techniques (Groo-
tendorst, 2020). These methods utilize the contextual relationships that Transformer
models capture to derive topics. However, these models can be computationally in-
tensive and the interpretability of their topics may not be as straightforward as those
obtained from more ”traditional” non-neural methods.

2.3 Transformer Networks

Inspired by the success of transfer learning techniques in computer vision, which in-
volve pretraining a DNN and then fine-tuning it for a different task, transfer learning
has been adapted to NLU in recent years. This adaptation has taken the form of pre-
trained language models and has led to significant advancements in NLU tasks. A piv-
otal developments in this domain has been the introduction of the Transformer model
Vaswani et al., 2017. The Transformer model, with its attention mechanisms, initiated
the current state-of-the-art paradigm for pretrained language models.

In contrast to previous pretrained word embeddings like word2vec (Mikolov, K.
Chen, et al., 2013; Mikolov, Sutskever, et al., 2013) that provide static vector representa-
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tions for words or text fragments, Transformer models offer context-dependent repre-
sentations after being pretrained on large corpora. These context-dependent representa-
tions, such as Bidirectional Encoder Representations fromTransformers BERT (Devlin et
al., 2019), have demonstrated superior performance over classical word embeddings in
a variety of benchmark NLU tasks. This success has motivated the exploration of Trans-
former models in other domains, including bioinformatics (Clauwaert and Waegeman,
2019; Rives et al., 2019; Ingraham et al., 2019) and multi-horizon forecasting (Lim et al.,
2019).

AmongTransformer-basedmodels, SentenceBERT (SBERT) (Reimers andGurevych,
2019) is a BERT-based model specifically designed to produce contextualized represen-
tations for sentences or short texts. It is intended such that the semantic similarity of
two sentences correlates with the (cosine) similarity of their respective embeddings.
To achieve this, SBERT employs a Siamese network architecture during training, which
encodes two separate sentences using two identical copies of the same BERT model.

The wide-scale adoption of these models across various tasks has led to them being
referred to as foundation models. They are typically first trained on vast amounts of data
without supervision and are later fine-tuned on downstream tasks.

2.4 Knowledge Distillation

Knowledge distillation has been proposed as a technique to train smaller models while
maintaining performance levels comparable to those of their larger ”teacher” models
(Buciluǎ, Caruana, and Niculescu-Mizil, 2006; Hinton, Vinyals, and Dean, 2015). For
instance, DistilBERT significantly reduces the size of a BERT model by 40%, while re-
taining 97% of its language understanding capabilities and offering a 60% speed im-
provement (Sanh et al., 2019). In an effort to extract interpretable insights from deep
neural networks (DNNs), several distilled models have been proposed, including de-
cision trees, finite state automata, graphs, and rule-based models (N. Xie et al., 2020).
Despite these advances, these distilled models may still be unsuitable for low-resource
environments or may not achieve the performance levels of their equivalent DNNs.

2.5 Kernel PCA

Kernel PCA (KPCA) (Bernhard Schölkopf, Alexander Smola, and Müller, 1998) is a
kernel method designed to identify latent structures or principal components within a
dataset, which can then be used for dimensionality reduction (Bernhard Schölkopf,
Alexander Smola, and Müller, 1998). In contrast to (linear) principal component anal-
ysis (PCA), the principal components are not extracted from the input space but in the
feature space, an arbitrary reproducing kernel Hilbert space with higher dimensionality
than the input data. This involves solving the eigendecomposition of the Gram matrix
in the feature space instead of the input space. Using the “kernel trick”, dot products in
the feature space can be replaced by a kernel function defined over the input space. This
opens up the possibility of selecting any kernel function that suitably measures similar-
ity for the task at hand. This freedom for the kernel choice enables performing KPCA
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on non-numeric data, for example by applying string kernels on text pairs.
Defining our input data as a zero-mean matrix X containing n m-dimensional data

points, and C = 1
nXX

> as its covariance matrix, PCA solves

Cv = λv, (2.2)

for the eigenvalues λ and eigenvectors v. By expanding (2.2), we can express every
eigenvector v as a linear combination of the data points of the data matrix X

1

nλ
XX>v = Xβ = v, (2.3)

where β ∈ Rm. Substituting this back into (2.2), we obtain

1

n
XX>Xβ = λXβ (2.4)

and left-multiplying X> on both sides of (2.4) results in

1

n
X>XX>Xβ = λX>Xβ. (2.5)

Replacing the Gramian X>X by a kernel matrix K, where

Kij = k(xi, xk), ∀xi, xk ∈ X (2.6)

for a selected kernel function k, one obtains

1

n
KKβ = γKβ, (2.7)

which, upon multiplication by K−1, results in a kernelized representation of the con-
ventional PCA

1

n
Kβ = γβ, (2.8)

After diagonalizingK, we select the d eigenvectors v1, . . . , vd, where d ≤ n belonging
to the largest eigenvalues and divide them by their respective eigenvalues λ1, . . . , λd to
construct a projection matrix P :

P =

[
v1
λ1
, . . . ,

vd
λd

]
. (2.9)

To extract d principal components for a data point t, we evaluate the kernel function on
t against all the data points in X to obtain a kernelized distance vector rt. The product
of rt with the projection matrix P constitutes the d-dimensional vector representation ut
of t in the feature space.

rt = k(wt,X) and ut = P>rt. (2.10)
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2.6 Weighted Finite-State Transducers and Rational Kernels

Weightedfinite-state transducers, in essence, are classical finite-state automata enhanced
with an additional weight structure. Specifically:

Definition (Cortes, Haffner, and Mohri, 2004). A weighted finite-state transducer T over a
semiring K is an 8-tuple

T = (Σ,∆, Q, I, F,E, λ, ρ), (2.11)

where Σ is the finite input alphabet of the transducer; ∆ is the finite output alphabet;
Q is a finite set of states; I ⊆ Q the set of initial states; F ⊆ Q the set of final states;
E ⊆ Q × (Σ ∪ {ε}) × (∆ ∪ {ε}) × K ×Q a finite set of transitions; λ : I → K the initial
weight function; and ρ : F → K the final weight function mapping F to K.

Definition. Given a transition e ∈ E we denote its previous, next states and weight re-
spectively by p(e), n(e), w(e). Given a path π = e1e2 . . . ek ∈ E∗, n(ei−1) = p(ei), i =
2, . . . , k of length k, we define

p(π) := p(e1), n(π) := n(ek), w(π) :=

k⊗
i=1

w(ei). (2.12)

Definition. A transducer T is called regulated if the sum

[[T ]](x, y) :=
⊕

π∈P (I,x,y,F )

λ(p(π))⊗ w(π)⊗ ρ(n(π)), ∀(x, y) ∈ Σ∗ ×∆∗ (2.13)

converges. Here P (I, x, y, F ) denotes the set of paths starting at an initial state i ∈ I and
ending at a final state f ∈ F , which are labeled by an input label x ∈ Σ∗ and output
label y ∈ ∆∗.

When appropriately regulated, weighted transducers enjoy properties such as be-
ing closed under summation, products, Kleene-star operations, among others (Cortes,
Haffner, and Mohri, 2004). One can also intuitively think of a transducer as a matrix
over a countable set Σ∗ × ∆∗. Thus, a composition of transducer should be analogous
to matrix multiplication (Cortes, Haffner, and Mohri, 2004).

Proposition. Suppose the weighted transducers T1, T2 are defined over a commutative
semiring K. Provided it converges, the composition of T1, T2 is defined by

[[T1 ◦ T2]](x, y) :=
⊕
z∈∆∗

[[T1]](x, z)⊗ [[T2]](z, y). (2.14)

For further details on transducer compositionwe refer to Cortes, Haffner, andMohri,
2004.

Definition. A kernel function
K : Σ∗ ×∆∗ → R (2.15)
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is called a rational kernel, if there exists a weighted transducer T and a function ψ : K→
R such that

K(x, y) = ψ(T (x, y)), ∀(x, y) ∈ Σ∗ ×∆∗. (2.16)

In many cases of learning algorithms one moreover needs the following property:

Definition. Let X be a non-empty set. A kernel function K : X ×X → R is said to be a
positive definite symmetric (PDS) kernel if

K(x1, x2) = K(x2, x1), ∀(x1, x2) ∈ X ×X, (2.17)

n∑
i,j=1

cicjK(xi, xj) ≥ 0, ∀n ≥ 1,∀{x1, . . . xn} ⊆ X, ∀{c1, . . . , cn} ⊆ R. (2.18)

Proposition (Berg, Christensen, and Ressel, 1984). The class of PDS kernels is closed under
summation, product, tensor products, pointwise limits and power series.

Proposition (Cortes, Haffner, and Mohri, 2004). (Informal) The class of rational PDS ker-
nels is closed under summation, products and Kleene-closures provided the mapping
ψ has some morphism properties.

However, rational PDS kernels are not closed under composition.

2.7 Edit-Distance Families and Indefinite Learning Techniques

Edit-distances measure the similarity between two strings by evaluating the minimum
cost of a sequence of edit operations such as substitutions, deletions, and insertions
(Levenshtein, 1966). These techniques are integral to various tasks as they can optimize
alignments.

All classical edit-distancemeasures can be articulated asweighted transducers, thereby
allowing the use of rational kernels (Cortes, Haffner, and Mohri, 2004). This not only
permits the implementation of efficient algorithms but also provides theoretical tools
for constructing more task-relevant edit-distances. However, it should be noted that
edit-distance kernels are not guaranteed to be PDS (Cortes, Haffner, and Mohri, 2004).
Nonetheless, indefinite kernel methods can be viewed within the context of an appro-
priate pseudo-Euclidean space (X. Huang et al., 2016). For instance, the KPCA algo-
rithm is perceived as an optimal variance problem in this setting. This perspective aids
in theoretically explaining our empirical results, considering that our kernels are not
intrinsically definite. We will refrain from introducing suitable positive definite ap-
proximations, given that our experiments using specific indefinite kernels demonstrate
competitive performance (later shown in Chapter 4).
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Proposition (Cortes, Haffner, and Mohri, 2004). Let Σ be a finite alphabet. For each x, y ∈
Σ∗ let the edit-distance de(x, y) be defined as theminimal number of deletions, substitu-
tions and insertions needed to transform x into y (that is, all three elementary operations
have a fixed cost of 1). Then, de is not positive-definite and, moreover, de is negative def-
inite if and only if Σ consists of exactly one symbol.

The proof proceeds via a direct check, where one uses the following central result:

Theorem (Berg, Christensen, and Ressel, 1984). A symmetric kernel κ : X × X → R is
negative definite if and only if exp(−tκ) is positive definite for all positive numbers t.

Several machine learning algorithms, such as SVMs, make assumptions that necessi-
tate some definiteness to ensure convergence. Additionally, from the interpretive view-
point, the kernel cannot be considered as a scalar product in an appropriate Hilbert
space (i.e., the kernel trick). A method to mitigate these issues is as follows:

Theorem (B. Schölkopf and AJ. Smola, 2002). Suppose the data points x1, . . . , xn ∈ X and
the kernel function κ : X ×X → R are such that the matrix

Kij := κ(xi, xj), 1 ≤ i, j ≤ n, (2.19)

is positive-definite. Then there exists a Hilbert spaceH and amap F : X → H such that

κ(xi, xj) = 〈F (xi), F (xj)〉 (2.20)
Conversely, for a map F into some Hilbert space H , the matrix Kij := 〈F (xi), F (xj)〉 is
positive.

In other words, we only need to ensure that the kernel (similarity) function has an
appropriate behavior when restricted to our dataset. Note that no special structure is
assumed on X - in particular, one can work with non-numeric/non-symbolic entities,
offering substantial flexibility.

Nonetheless, when dealing with indefinite kernel/similarity functions in learning
algorithms is unavoidable, various indefinite-kernel techniques and modifications have
been proposed (X. Huang et al., 2016). For instance, indefinite machine learning algo-
rithms such as SVM and KPCA have been interpreted through distance optimization in
specific pseudo-Euclidean spaces (Haasdonk, 2005) i.e., spaces equipped with a metric
tensor, whose eigenvalues are not necessarily positive (a guiding intuition is given by
computing distances between events in a 4-dimensionalMinkowski spacetime equipped
with the metric gM := dt2 − dx2 − dy2 − dz2).

2.8 Explainability Methods in Classification Tasks

Explainability in machine learning refers to the transparency of the decision-making
process of a model. This clarity is essential in sensitive fields like healthcare or finance
where comprehending the reasoning behind a prediction is as important as the predic-
tion itself. Explainability methods aim to elucidate how a model makes predictions,
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thereby enhancing transparency, trust, and fairness, and reducing bias. These methods
also facilitate model debugging and validation. We can categorize these methods into
four key criteria:

• Ante-hoc vs. Post-hoc: Ante-hoc methods incorporate interpretability into the
model design before training. These include decision tree classifiers, inherently
interpretable due to their simple if-then rule structure, and attention mechanisms
used extensively in Transformer-based models, which highlight the parts of the
input the model focuses on during prediction. Conversely, post-hoc methods in-
terpret models post-training, such as LIME (Local Interpretable Model-Agnostic
Explanations) (Ribeiro, S. Singh, and Guestrin, 2016) and SHAP (SHapley Addi-
tive exPlanations) (Lundberg and S.-I. Lee, 2017).

• Instance/Local vs. Model/Global: Instance or local interpretability methods fo-
cus on explaining individual predictions. LIME is an example of a local expla-
nation method. It explains an individual prediction by approximating the model
locally with an interpretable model. SHAP also falls in the same category provid-
ing a unifiedmeasure of feature importance that allocates the contribution of each
feature to the prediction of each instance. Model or globalmethods aim to provide
an overall understanding of the decision-making process. Counterfactual expla-
nations (Wachter, Mittelstadt, and Russell, 2017), which provide an alternative
instance to a given input instance that would lead to a different model prediction,
are a further example. In contrast to the latter methods, feature importance scores
provided by tree-based models like random forest (Breiman, 2001) can serve as
an example of global explanation. This can be done by measuring how much the
output changes when a the value of a feature is varied. The feature importance is
often calculated based on the number of splits a feature is involved in and the im-
provement to the model from each split. Also CAVs (Concept Activation Vectors)
(Kim et al., 2018) provide global explanations. CAVs are directions in the rep-
resentation space of the model that correspond to human-interpretable concepts.
They are used to quantify the extent to which a given input activates a certain
concept.

• Specific vs. Agnostic: Specificmethods interpret particular types ofmodels, lever-
aging their unique structures and features. For example, DeepLIFT (Deep Learn-
ing Important FeaTures) (Shrikumar, Greenside, and Kundaje, 2017) and visual-
ization of attentionmechanisms aremethods specific to neural networks. Agnostic
methods, in contrast, aim to interpret anymodel, regardless of its structure. LIME
and SHAP, mentioned earlier, are examples of model-agnostic methods.

• Data-Dependent vs. Data-Independent: Data-dependent methods need access
to the training data or data distribution to generate explanations. Partial Depen-
dence Plots (PDPs) (Friedman, 2001) and IndividualConditional Expectation (ICE)
plots (Goldstein et al., 2015) fall into this category as they provide insights into the
relationship between feature values and the prediction by varying feature values
and observing the corresponding changes in predictions. On the other hand, data-
independent methods generate explanations based on the internal parameters or
structure of the model, without requiring access to the original training data. The
visualization of a decision tree is an example of a data-independent method.
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For a more comprehensive overview of explainability methods, we refer to Burkart
and Huber, 2021; Molnar, 2020.
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Chapter 3

Use Cases for Trustworthy
Applications

The increasing prevalence of ML models across various industrial sectors, especially in
safety-critical domains such as autonomous driving (AD), medicine, and finance, has
amplified the demand for trustworthy ML-powered systems. This demand is driven
primarily by the necessity to verify, safeguard, and certify these models (Braiek and
Khomh, 2020; J.M. Zhang et al., 2020). Manydeep learningmodels require vast amounts
of labeled and representative data for training, and even more so for systematic testing
and validation. Single datasets often do not offer sufficient data diversity, making sta-
tistical assessments of how a model performs in all relevant situations impossible (e.g.,
near-accidents in real street scenes).

In this chapter, we explore several use cases where evaluating a black-box model be-
comes necessary to increase trust in theMLmodel. We begin with the AD case, propos-
ing a simulation-based testing approach to validate classificationmodels on street scenes.
Our second use case focuses on evaluating German word embeddings intrinsically and
determining if the top-performing models are also the best in a sentiment analysis task.
We conclude this chapter by proposing an evaluation metric for German text summa-
rization models that outperforms standard evaluation metrics frequently used in the
field of automatic text summarization.

While this chapter does not directly address explainable or resource-aware repre-
sentation learning methods (as in the subsequent chapters), it does highlight use cases
where such methods could potentially offer user-demanded explanations.
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3.1 Validation of Simulation-basedTesting: BypassingDomain
Shift with Label-to-Image Synthesis

This section is an adaptation of the work presented by Rosenzweig et al., 2021, where
the author of this dissertation is co-first author. As such, the author was responsible for
the synthetic data generation and for conceiving the presented framework, which was
jointly designed with the other co-first author Julia Rosenzweig.

3.1.1 Introduction

Testing on real data can be prohibitively expensive or even unfeasible: Some classifi-
cation tasks on video for AD involve recording and manually labeling hours of street
scenes or finding rare critical situations in actual driving data. This motivates training
and testing models with data from simulations (Paranjape et al., 2020; Wagner et al.,
2019; Dosovitskiy et al., 2017), which can be seen as a particular approach within in-
formed ML (Rueden, Mayer, Beckh, et al., 2020; Rueden, Mayer, Sifa, et al., 2020).

Synthetic data generation essentially comes “for free”: Virtual environments allow
for fast and controllable generation of scenes and thereby enable higher (test) coverage
and systematic statistical testing e.g. against occlusions and corner cases, which is un-
feasible in real scenes. However, using synthetic data introduces a domain shift with
respect to the real data that the model was trained on. In this section, we focus on the
question of reliable and realistic testing of semantic segmentationmodels with synthetic
data, namely:

To what extent can we transfer testing results from synthetic data to real data?

In particular, we investigate if testing on synthetic data uncovers exactly the same failure
modes that would occur in a real environment.

We propose to tackle this issue with a modular two-stage framework that allows for
an in-depth investigation beyond aggregated performance scores. It combines label-to-
image synthesis with controllable simulations enabling the generation of test cases, e.g.
a child jumping on the street or any situation stated in safety requirements of regula-
tory entities. In the first step, a paired set of semantically equivalent real and synthetic
scenes allowing a direct comparison (e.g. model performance) is used to assess the
transferability of testing results. If it is satisfactory,1 in the second step test cases can
be generated independently from the previous set using, e.g. a simulator to obtain la-
bels for scene synthesis. In this way, the testing process “bypasses” the domain shift.
With the perspective of avoiding repeated costly tests on real data, various participants
involved in testing ML models can benefit from this workflow, be it as a developer or
auditor in certification bodies.

This work is organized as follows: Section 3.1.2 outlines some topics related to our
work. Section 3.1.3 is dedicated to the description of our conceptual framework, includ-
ing the data generation procedure as well as the validation measures. We validate our

1Results on synthetic data do not need to be identical to those on real data to be useful. However, a
strong correlation in, e.g. failure modes or performances for investigated classes is desirable. Due to the
pairwise correspondence such quantities are directly measurable.

16



3.1. VALIDATION OF SIMULATION-BASED TESTING: BYPASSING DOMAIN SHIFT WITH
LABEL-TO-IMAGE SYNTHESIS

framework in Section 3.1.4 for the use case of semantic segmentation for AD as a proof
of concept. Finally, we conclude in Section 3.1.5 discussing some open questions and
giving an outlook on future work.

3.1.2 Related Work

We outline some directions of related work. One concerns the testing of ML models,
others are domain adaptation and synthetic data generation.

Testing of Machine Learning Models

Our approach falls into the broader category of offline testing methods (in contrast to
online testing methods, which are applied at deployment time) (Haq et al., 2020), and
aims to find and test weak spots. By doing so, it opens up possibilities for simulation-
based safety argumentations (Rudolph, Voget, and Mottok, 2018; Schwalbe and Schels,
2020; Willers et al., 2020). Conventional software-testing approaches are often not di-
rectly applicable for testing ML-based systems or need to be strongly adapted to be ap-
plicable. Hence, newmethods, measures, and evaluation techniques are needed to argue for
the safety of MLmodels (Braiek and Khomh, 2020; J. M. Zhang et al., 2020). In statistical
model checking (Barbier et al., 2019), ML models are validated using KPIs of interest in
combination with statistics and modeling the ML components as probabilistic systems.
In this paper and in many other testing approaches, simulation-based testing is deployed
in which simulators are used to create testing data (Dosovitskiy et al., 2017; Paranjape
et al., 2020; Wagner et al., 2019). However, the frameworks proposed in this context in
part or entirely neglect validating their results in real-world situations. Our approach
addresses exactly this shortcoming by proposing a framework to assess to what degree
testing results obtained on synthetic data are realistic. Closest to our contribution is the
work by Wagner et al., 2019. The authors propose an approach to locally verify the use
of simulation data for testing. Our approach differs significantly in two main aspects:
First, we do not apply any formalism or scene description language to produce corre-
sponding synthetic data from the real data. Instead, we use the real labels as input to a
generative model to produce a paired synthetic dataset (see Subssection 3.1.3). Addi-
tionally, due to the use of the generative model (also on simulation labels, see Section
3.1.3), we can extend the input space coverage not only locally and allow for completely
new (controllable) scenarios to be generated and tested against. This is in line with the
literature about scenario-based testing in the context of AD (Neurohr et al., 2020; Bussler
et al., 2020).

Domain Adaptation and Synthetic Data Generation

While simulations may help with the aforementioned challenges, synthesizing data for
testing creates a domainmismatchw.r.t. the data the systemwill processwhendeployed
in real-world settings. Most domain adaptation approaches aim tomeasure andminimize
the domain gap between a source and the desired target domain during the training
phase so that the system generalizes well on the target domain (Kouw and Loog, 2019;
Mei and Deng, 2018). In contrast, we aim to validate transferability of testing results on
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synthetic data to real-world data regardless of the concrete magnitude of the domain
gap. To this end, we apply a generative adversarial label-to-image synthesis model.
In the particular case of video data employed for our proof of concept, video-to-video
synthesis (D. Chen et al., 2017; T.-C. Wang et al., 2018) can serve as a generative model to
synthesize photo-realistic time-consistent videos given an input video. This task can be
defined as a distributionmatching problem that can be solved by conditional generative
adversarial models. It can also be understood as an image-to-image translation problem,
(Isola et al., 2017; T. Wang et al., 2018), additionally introducing the necessary temporal
dynamics so that the synthesized image sequences are temporally coherent.

Other approaches try to directly learn generative models for synthesizing realistic
scenes that have a low domain gap compared to the real data (Kar et al., 2019; Devaran-
jan, Kar, and Fidler, 2020), or learn models that improve the realism of given simulated
images (Shrivastava et al., 2017). Close to the idea for our data processing procedure
is (Gaidon et al., 2016), where the authors create a simulated world that is cloned from
the corresponding real-world dataset Kitty (Geiger, Lenz, and Urtasun, 2012).

3.1.3 Approach

Our ultimate goal is to assess whether the output, which the system under test pro-
duces on synthetic data is the same as the one produced on corresponding real-life
data. Here the correspondence is defined through representations of the same abstract
events in the real and the synthetic domain. For instance, the abstract scenario of driv-
ing near a crosswalk with pedestrians has representations in both the real, e.g. an im-
age recorded directly on the street, and synthetic domain. Without domain gap, testing
the network on both representations should ideally lead to exactly the same output.
However, as domain gaps can occur in practice, we propose a qualitative framework to
validate the transferability of the testing results by exploring this gap under controlled
circumstances. Although we detail it for semantic segmentation, it is also applicable for
other multi-class classification tasks with slight modifications.

Our framework consists of the following basic components:

(i) An ML model (system under test) trained for a specific semantic segmentation
task on real data featuring the target appearance2,

(ii) a labeled real-world testing dataset featuring the target appearance,
(iii) a generative label-to-image transfer model, which synthesizes data featuring the

target appearance from segmentation masks (or from classification labels with
sufficient semantic information e.g., from meta data)

(iv) a controllable simulation engine that allows us to create labeled synthetic data of
interest, and

(v) a set of (interpretable) testing measures to evaluate transferability of testing re-
sults on synthetic data to corresponding real data.

We initially apply testing measures to validate that the model behavior on synthesized
data obtained from the generativemodel is indicative of its behavior on real data, thereby

2We use the expression “target appearance” to describe the characteristics of the real-world data in
distinction to its synthetic counterpart.
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Figure 3.1: Label-to-image-based synthesis: Generation of the synthetic counterpart to
the real set (upper part) and transformation of the simulated ground truth
masks (lower part).

exploring the domain gap. If our testing measures yield a robust correlation of results
between synthetic and real data, this substantiates the transferability of results and re-
liability of testing3. In this case, testing on simulated scenes of interest, processed by
the generative model, can be expected to yield valid results. The intended validation of
transferability (described in more detail in Section 3.1.3) requires a specific data gener-
ation procedure (described in Section 3.1.3).

Data Generation

First, we describe how to apply the generative model to produce pairs of real and syn-
thesized elements to validate transferability. Secondly, assuming the transferability of
results from synthetic to real data is valid, we detail the extension of the input data
coverage by generating additional data with our controllable simulation engine involv-
ing the same generative transfer procedure. Here, we have the following underlying
assumption (shown in Figure 3.1): Focusing on the ground truths as input for the gen-
erative model implicitly makes use of the advantage that the per-element domain gap
between the ground truth’s of simulated and real data is smaller than between their re-
spective input data. Thus, the synthesized elements resulting from simulation masks
and those resulting from real masks exhibit a smaller domain shift enabling argumen-
tation of transferability. This way, we shift the questions concerning the relevance of the
domain gap from the simulation to a controllable comparison.

Real-Synthetic Paired Dataset
We first need a paired dataset to validate transferability. Let R be our initial, labeled

dataset extracted directly from the real-world data that features the target appearance.
We generate a corresponding synthetic dataset S in the followingway: For each element
ri ∈ R, we synthesize an equivalent element si ∈ S, whose label is the same as ri, by

3Note that w.r.t. testing this can only be seen as a qualitative indicator of transferability.
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applying the generative model to the segmentation label of the real element with the
intention of mimicking the target appearance of R. The procedure is depicted in the
upper part of Figure 3.1. In case the labeled elements from R do not suffice to evaluate
transferability and additional unlabeled elements featuring the target appearance are
available, R can be extended with pseudo-labels and S with the respective synthesized
elements.

Extending Input Coverage: Transformed Simulated Dataset
Corner cases and rare events do not appear frequently enough in many datasets di-

rectly extracted from the real world to allow for extensive testing. However, many use
cases including safety-critical ones require sufficient test coverage and a controllable
framework can help to extend the testing. For this purpose, the simulation engine syn-
thesizes labels containing cases of interest4. We then apply the same generative model
as in Section 3.1.3 so that the synthesized data has the same style as R, see the lower
part of Figure 3.1. Note that here the labels have to be in the same format as used for the
paired dataset.

Validation of Transferability

Correlation and Performance Analysis
To assess transferability, we measure the performance of the model on all elements

ri of the real dataset R and on all corresponding elements si of the synthesized, paired
synthetic set S (see Section 3.1.3). We obtain two sequences (perfri)

|R|
i=1 and (perfsi)

|R|
i=1

of performance scores of same length. As a first step, we compute the sample corre-
lation coefficient of (perfri)

|R|
i=1 and (perfsi)

|R|
i=1. The higher the correlation coefficient,

the stronger the evidence for transferability of overall qualitative model behavior from
the synthetic to the real-world dataset. A high correlation coefficient on the paired set
and the fact that the transformed extended input scenes have (almost) no domain gap
w.r.t. the synthetic paired set justifies further testing with the transformed simulated
dataset (see Section 3.1.3). In a second step, we assess the model performance on it us-
ing the same performance measure, perf, as in step one. We consider the aggregation
of the per-image scores into one global score as a first proxy for potential performance
on corresponding real data.

However, prediction errors can cancel out in case of non-binary performance scores,
like mean-intersection-over-union (mIoU) , or add up to the same global score even
if they are of different nature (e.g. in different regions of an image to be segmented).
Hence, global model performance measures, such as the mentioned aggregated score,
cannot reflect the complete model behavior to inspect our main questions. Therefore,
we need a more differentiated analysis considering error distributions.

Error Distribution Analysis
So far, the approach was application-agnostic. For simplicity of notation, we here

assume a semantic segmentation task. With slight modifications, the below approach
can be adjusted to, e.g. other multi-class classification-related tasks. We first introduce
some notation to formalize our approach for the error distribution analysis. Let the se-

4Note that for this procedure, we don’t need the actual simulated elements but only their labels.
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mantic segmentation problemhaveC ∈ N classes, let o(xi) be the predictionmask of the
segmentation network to the input xi ∈ {ri, si}, ri ∈ R, si ∈ S, and denote by yi the cor-
responding segmentation ground truth mask (the mask is the same for both paired ele-
ments). Further, let Yc(i) := {yi = c} be the subset of yi that has class c, for c ∈ {1, . . . C}
(i.e., pixels of an image that belong to that class). Let Oc,k(i) := {e ∈ Yc(i) : o(xi) = k}
be the subset of Yc(i) in which the model outputs class k ∈ {1, . . . C}. Now, in a sec-
ond part of our transferability assessment, we analyze the error distribution on the real
dataset R compared to its corresponding synthesized set S. We construct a confusion
matrix per class of interest. That is, per fixed class c ∈ {1, . . . , C} and element xi, we
save the true positives as well as false negatives - distinguishing w.r.t. all other classes -
and normalize these values so that the resulting values add up to one: TPc(i) =

|Oc,c(i)|
|Yc(i)|

and FNc,k(i) =
|Oc,k(i)|
|Yc(i)| for k 6= c. Finally, we average over all elements of the respective

dataset, resulting in one relative mean true positive score TPSc :=
1
|R|
∑|R|

i=1 TPc(i) and
C − 1 false negative scores FNSc,k := 1

|R|
∑|R|

i=1 FNc,k(i) for k 6= c w.r.t. the ground truth
class of choice c. Note that a TPSc score of one is ideal. This procedure is repeated for
all classes c. The resulting quantities TPSc and FNSc,k, c ∈ {1, . . . , C}, now are com-
pared per class across the real and synthetic datasets resulting in a detailed analysis
about whether the same misclassifications are made. This in turn provides evidence as
to how far qualitative mistakes and semantic failures identified in one of the datasets
also constitute errors on the other dataset. Comparing these findings from the paired
set with the error distributions on the transformed simulated dataset provides an addi-
tional plausibility check. It aims to substantiate that testing on the transformed simu-
lated scenes is justified and a corresponding real scene would lead to comparable model
behavior. However, since the extended set might contain intentionally challenging ele-
ments, the error distribution may deviate. This points to semantic concepts that could
lead to failure modes in corresponding real data.

We propose to visualize the findings with radar plots, one for each class c, since
they allow for a systematic visual comparison and readable overview of errors on the
different datasets. The axes in the plots correspond to the classes and to guide the eye
lines are connected, the values being TPSc for the ground truth class c and FNSc,k for
the other axes k 6= c, see Figure 3.7 for an example. In addition, we propose boxplots of
the distributions of the errors across the elements of the datasets, where each boxplot
has the perspective of one ground truth class and shows the distributions of the TPc(i)
and FNc,k(i) scores w.r.t. c.

Discriminating Model Outputs and Errors
While it provides a more comprehensive analysis than solely comparing aggregated

performance scores, our error distribution analysis still lacks detail about where exactly
these errors happen: we cannot assess whether the model behavior (especially regard-
ing the kinds of committed errors as e.g. errors in different regions of a segmentation
prediction) on the synthetic dataset is indistinguishable from the behavior on the real-
world dataset. By training a discriminator to distinguish between model output on real
data and synthesized data (or model errors, respectively) we target exactly this ques-
tion. The underlying assumption is that if a discriminator cannot distinguish between
model outputs/errors to real and synthetic input, they are sufficiently close in the sense
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that we can consider the model behavior to be ”the same” (up to discriminator preci-
sion) and, thus, synthetic testing is realistic. By choosing an interpretable discriminator
setup, we can enhance the interpretability of the differences in model behavior on the
real and synthetic sets.

3.1.4 Experimental Setting

We validate our approach described in Section 3.1.3 for an AD scenario by assessing
transferability of tests on simulation videos. Our setup consists of the following com-
ponents:

• The HRNetV2-W48 neural network (J. Wang et al., 2020)5 for semantic segmenta-
tion with 19 classes trained on the Cityscapes training set (Cordts et al., 2016). We
use without further modification the pretrained version available for download6,

• the Cityscapes high resolution (2048 x 1024) validation set serving as the testing
dataset,

• the generative adversarial video-to-video synthesis tool vid2vid (T.-C. Wang et
al., 2018)7, in particular, without further modifications the variant pretrained on
Cityscapes,

• the controllable CARLA simulation engine (Dosovitskiy et al., 2017), and
• as the testing measures, we employ the score mIoU as the performance measure

for the correlation analysis, an error distribution analysis for each of the 19Cityscapes
classes and SkopeRules as rule learner based on the feature engineering from
MetaSeg (M. Rottmann et al., 2020)8 as discriminator of model outputs and er-
rors.

The technical implementation is detailed further in the following subsections.

Generating Synthetic data

The video-to-video synthesis tool vid2vid generates a video sequence using both a se-
quence of instance and pixel-level semantic segmentation masks. Following our ap-
proach described in Section 3.1.3, we generated two different datasets via vid2vid:

Real-Synthetic Paired Dataset: Cityscapes - Synthetic Cityscapes
We transform the 500 Cityscapes validation segmentation masks (corresponding to

three different video sequences) with fine annotations (containing 30 classes) to three
synthetic video sequences via vid2vid in Cityscapes style. We call the resulting video
sequenceswith the corresponding labels synthetic Cityscapes A, in contrast to the original
Cityscapes video sequences and labels, which we call real Cityscapes A. Note that both
datasets share the same segmentation labels and differ only in the corresponding im-
age frames. Vid2vid requires the labeled images to be time-consistent to generate high-

5 https://github.com/HRNet/HRNet-Semantic-Segmentation/tree/pytorch-v1.1
6https://onedrive.live.com/?authkey=%21AErsWO7%2DxcLEVS0&cid=F7FD0B7F26543CEB&id=

F7FD0B7F26543CEB%21169&parId=F7FD0B7F26543CEB%21166&action=locate
7https://github.com/NVIDIA/vid2vid
8We use an internal code base provided by the authors of MetaSeg (M. Rottmann et al., 2020), which is

an extension to their existing repository under https://github.com/mrottmann/MetaSeg
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Figure 3.2: Depiction of the performed synthetic generation processeswith the involved
datasets.

quality sequences – a condition that the aforementioned dataset does not completely
fulfill due to its frequent temporal discontinuities. Thus we follow the suggestion of
T.-C. Wang et al., 2018 and generate pseudo-labels for the unlabeled Cityscapes valida-
tion images, which are more time-consistent, with HRNetW48 + OCR + SegFix (Yuan
and Jingdong Wang, 2018; L. Huang et al., 2019; Yuan, X. Chen, and Jingdong Wang,
2020; Yuan, J. Xie, et al., 2020)9 (we use without modifications the variant pretrained
on Cityscapes) and Mask Scoring R-CNN for instance segmentation (He et al., 2017)
(pretrained onMS COCO (T.-Y. Lin et al., 2014) and further fine-tuned on a proprietary
dataset) that are also synthesized with the pretrained vid2vid model10. This results in
15,000 new images that, together with the pseudo-labels, we call synthetic Cityscapes B in
contrast to the pseudo-labels and original video sequences, which we call real Cityscapes
B11. The schematic processing of datasets is depicted in Figure 3.2. The transformation

9https://github.com/openseg-group/openseg.pytorch
10This setup leads to an improved segmentation compared to the HRNetW-48 under test.
11Note that the real Cityscapes A images are contained in real Cityscapes B. However, for consistency,
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(a) Share of Cityscapes B (b) Pseudo-label

(c) Paired synthetic Cityscapes B image

Figure 3.3: Example from the paired dataset generation. We pseudo-label an unlabeled
Cityscapes image (a) with HRNetW48 + OCR + SegFix, resulting in a seg-
mentation mask (b), and vid2vid transforms it to a paired synthetic image
(c).

process from an unlabeled Cityscapes image (from real Cityscapes B) to its synthetic
counterpart (synthetic Cityscapes B) is displayed in the example in Figure 3.3. Notice
the quality of the generated image despite the pseudo-labels.

Extending Input Coverage: Transforming CARLA to Cityscapes Style
We generate 100 random video scenes (i.e., random city, weather, lighting, etc.) of

about 140 images per sequence with a proprietary variant of the CARLA simulator
(Dosovitskiy et al., 2017) together with labels, calling this original CARLA dataset. The
corresponding segmentation masks are mapped to the 30 Cityscapes classes and pro-
cessed by vid2vid. This, togetherwith the labels, now constitutes the transformedCARLA
dataset. For the schematic process see Figure 3.2. An example image from transformed
CARLA is displayed in Figure 3.4.

Validation of transferability

Correlation and Performance Analysis
Weconduct the performance analysis on the paired set, synthetic and real Cityscapes

A, described in Section 3.1.4 usingmIoU as the performancemetric. We use the reduced
set of 19Cityscapes classes anddistinguish between them to gather IoUs per class aswell
as mIoU scores per image. We average these quantities over all images of the respective
dataset and compute the sample correlation coefficients as described in Section 3.1.3.

we use the pseudo-labels as ground truth here.
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Figure 3.4: Example of a vid2vid-generated image from a CARLA segmentation mask.
Notice how the artifact on the right almost has stop sign shape.

We repeat this procedure for paired Cityscapes B. The obtained results can be seen in
Figure 3.5 and Figure 3.6. Figure 3.5 depicts class-wise IoU and class-wise correlation
coefficients on both paired sets, in which one can observe a relatively high class-wise
correlation coefficient when the network performs well (i.e., it has a rather good IoU for
that class), e.g. for the classes road, building and vegetation as well as the particularly
safety-relevant classes person and car. Note that despite a high IoU for both synthetic
and real sets for the class sky, the correlation coefficient is relatively low.

Plotting the mIoU on paired real and synthetic Cityscapes A in the upper part of
Figure 3.6 shows how they correlate (the sample correlation coefficient is approximately
0.403). The lower part of Figure 3.6 shows an analogous plot for the B sets, in which the
sample correlation coefficient is slightly higher with 0.457. The displayed peaks and
dips of the image-wise mIoU scores on the synthetic set matching those on the real set
qualitatively suggest a rather good transferability. From a testing perspective, especially
the negative correspondence, i.e., low performance on synthetic data coinciding with
lower real data performance, are important as they might help reveal failure modes.
Evaluation of the function on the extended scenes of transformedCARLAyields amIoU
of 0.196, constituting a decrease of around 0.07 compared to synthetic Cityscapes A.
However, the performance on the transformed CARLA seems to depend on the choice
of the particular sequence of videos. This might provide a first insight that semantic
concepts in these sequences might constitute failure modes.

Error Distribution Analysis
Conducting the error distribution analysis described in Section 3.1.3, we find that

FNSc,k values differ for the datasets, i.e., the error distribution across the datasets differs,
providing evidence that errors are not always transferable (in this work we only show
one example radar plot, omitting the rest). This effect is in particular visible for trans-
formed CARLA errors. On paired Cityscapes B, we see that errors are rather compara-
ble, especially for the larger classes such as road, sidewalk, building, wall, and sky. We
observe that the better quality of the real B set, relative to the requirements of vid2vid,
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Figure 3.5: Correlation and performance analysis results on paired Cityscapes A and B
as well as transformed CARLA classwise IoUs. Note that there is no corre-
lation coefficient for class ’train’ on Cityscapes A since there are not enough
samples from the synthetic and real sets. Classes in CARLA that have no
IoU value are not available from simulation.

enhances the comparability of errors. However, the outcome is still class-dependent,
hinting at the fact that the current simulated data might only be suitable for testing
w.r.t. some particular classes. We observe that errors tend to fall into naturally adjacent
classes. The example radar plot in Figure 3.7 shows the ground truth class sidewalk get-
ting mistaken for road and building. By definition our FNSc,k measures the (relative)
amount of wrongly segmented pixel area. Similar to IoU, we expect FNSc,k to be more
fluctuating for objects of smaller area, which is apparent in the larger stability for afore-
mentioned classes with typically large pixel areas. Lastly, we expect the measure to be
correlated to the IoU itself, as they are related quantities: To be precise, the smaller the
IoU of an object, the larger it contributes to FNSc,k.

Discriminator on Model Outputs and Errors
We train the SkopeRules rule learner based on feature engineering of MetaSeg (M.

Rottmann et al., 2020) to distinguish whether a model output/error belongs to a real or
synthetic input image. More precisely, using MetaSeg, we compute various quantities
from the predicted pixel-wise class probabilities, which are aggregated per connected
component (segment) of the model’s output segmentation mask. These quantities in-
clude dispersion measures, i.e., the pixel-wise entropy, probability margin, and varia-
tion ratio. These measures get aggregated over each whole predicted segment as well
as only the corresponding boundary and the inner. The aggregation is performed by
considering both mean and variance over all pixel-values that correspond to the whole
segment, the inner or the boundary, respectively. Furthermore, we consider the size
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Figure 3.6: Correlation of mIoU per image on paired Cityscapes A (top) and on paired
Cityscapes B (bottom).

measures, i.e., the size of the whole segment, its boundary and its inner as well as frac-
tality measures like the segment size over the boundary size. Altogether we obtain a
structured dataset that contains a number of interpretable scalar values per predicted
segment. For further details, we refer to M. Rottmann et al., 2020. Moreover, MetaSeg
stores labels and IoUs for each segment. This diversity of computed metrics allows for
a distinct uncertainty assessment for the predicted segments, enabling a geometric in-
terpretation of the sets of rules. For instance, a rule for some class c including boundary
entropy as a classifier for real vs. synthetic input implies that differences between the
sets lie on the boundaries of the respective class segments.

In total, we compute 35 different metrics per segment of the prediction mask of the
HRNet for each image of paired Cityscapes A and B, respectively, and save information
about the belonging dataset. We then separate the dataset according to the 19 semantic
classes of Cityscapes (classwise choosing the minority dataset - real or synthetic - as the
target to learn rules for) and perform a random 80 : 20 train-test split. In a first step, we
learn rules on all classwise segments before we filter (again classwise) for errors, i.e.,
for segments with IoU = 0. The same analysis is performed on a subset (of the same
size as Cityscapes A) of images from paired Cityscapes B. The accuracy scores of the
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Figure 3.7: Error distribution analysis: Radar plots w.r.t. class sidewalk for paired
Cityscapes A and transformed CARLA (left) as well as on paired Cityscapes
B (right).

resulting rule sets can be seen in Figure 3.8.12 Overall, the accuracy scores are rather
high (see Figure 3.8a) – our discriminator can (easily) tell the inputs apart – implying
that the model behavior differs on real and synthetic paired input data. Additionally,
on both Cityscapes A and B, the restriction to only error components leads to higher
mean accuracy of the set of rules, i.e., a better distinguishability of real and synthetic
input data. However, as seen in Figure 3.8a, the accuracy scores on Cityscapes B are
lower on average, indicating that better quality of synthetic data makes it more difficult
to differentiate between real and synthetic inputs. We observe that the rule accuracy
scores do not reflect any IoU performance gap, as we see in Figure 3.8b and Figure 3.8c.
This underlines our claim that performance metrics such as (m)IoU (as described in
Subsecion 3.1.3) alone cannot assess the comparability of model behavior. Interestingly,
concerning hyperparameters, a maximal depth of 1 turns out to be optimal for the rule
sets across all classes in all our discriminator experiments. Also, the rule sets for model
outputs on paired Cityscapes A contain mostly boundary metrics, whereas the differ-
ences between the datasets are rather scattered and thus more difficult to interpret for
the remaining experiments. Thismight be due to the increased difficulty of synthesizing
boundary pixels via vid2vid.

Finally, we can say that our proposed methods and metric correlate well with the
visually perceptible quality difference in the synthetic set: On the more realistic look-
ing synthetic Cityscapes B, rule accuracy scores drop. Nevertheless, the results of the
discriminator analysis show that the proposed metrics provide a good way to identify
the domain shift present between real and synthesized datasets. Note, however, that for
practical testing purposes it may not be necessary to fully close this gap.

12Weused the (top k) rules optimized for theminority class, thus sometimes degrading overall accuracy.
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3.1.5 Conclusion and Discussion

Wepresented a conceptual framework to validate simulation-based testing of real-world
ML applications, which we instantiated on a semantic segmentation task in the context
of AD. As simulation and real-world data have a domain gap, our work explicitly ad-
dresses the question of transferability of testing results. We employ a generative label-to-
image transfer method, mapping from the ground truth labels back to the (real world)
image domain, which provides two key advantages: First, we can map a given labeled
(real) dataset onto a synthesized version of itself allowing us to directly and in detail
investigate the resulting domain gap incurred by the generativemethod. Second, apply-
ing the same generative model to ground truth data from any source, e.g. a simulator,
we can test the ML application. Under the condition that the simulated ground truth
is of the same form as the real world one, we have almost no domain gap between the
synthesized real data and the data synthesized from a simulation. So, using this two-
stage approach we can largely bypass the question of domain gap regarding simulated
test data, and instead shift it to a more controllable comparison between two datasets
with identical ground truths.

While the performance of the generator is not crucial, it is clear that our approach
still benefits from a small domain gap between the actual and the synthesized data.
Improvements regarding better generative models, more available data, and additional
validationmetrics can easily be incorporated into ourmodular framework. With seman-
tically rich enough labels to facilitate data generation, our approach could be used on
other tasks such as e.g., object detection, using mean average precision as performance
score, and on other application domains as, e.g. in the context of text mining.

Turning, at last, to the concrete instantiating of the framework on the segmentation
task, we evaluated transferability calculating class-wise mIoU correlation coefficients
and found for cars or person surprisingly strong and encouraging values of 0.7. A
deeper analysis of failure modes based on manual feature extraction, however, revealed
that failures can be still clearly classified as belonging to the real data or its synthesized
counterpart. Lastly, while we demonstrated the feasibility of the approach the actual
test of the segmentation model, e.g., active weak-spot search, is left for future work.
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(a) Classwise accuracy scores of rule-sets onmodel outputs
and errors on paired Cityscapes A and B.

(b) Classwise rule-set accuracy scores together with differ-
ences in IoU performance on paired Cityscapes A.

(c) Classwise rule-set accuracy scores together with differ-
ences in IoU performance on paired Cityscapes B.

Figure 3.8: Results from rule learning onmodel outputs and errors on pairedCityscapes
A andB.Note that for some classes no rules could be found or that therewere
not enough components to learn rules, leading to lacking data points in the
plots.
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3.2 EvaluatingGermanWordEmbeddings on aSentimentAnal-
ysis Use Case

This section is an adaptation of the work presented by Brito, Sifa, Cvejoski, et al., 2017.
The first author was principally responsible for the conception and execution of the ex-
periments presented, as well as the drafting of the text.

3.2.1 Introduction

Although vector representations for text are nowadays ubiquitous across NLU applica-
tions, the majority of research still focuses on the English language. The generalization
of proposed models for non-English languages such as German, or even for domain-
specific English corpora, is not always clear. Furthermore, the selection of hyperpa-
rameters, a crucial factor for high-quality representations, is often under-documented.
This issue was especially noticeable at the time of publication for Brito, Sifa, Cvejoski,
et al., 2017 was published, when continuous distributed representations for words (the
so-called word embeddings) were a hot topic among NLU researchers.

In the initial part of our work, we train German embeddings from SdeWaC, a large
German corpus created by web-crawling the “.de” domain (Faaß and Eckart, 2013; Ba-
roni et al., 2009). We train 11 word vector models with varying hyperparameter com-
binations and evaluate them on a similarity task to assess whether the general recom-
mendations for English word embeddings also apply to German.

Using the word embeddings generated in the previous task as a foundation, wemap
Google Play reviews to the same vector space using the ParagraphVectormodel (Le and
Mikolov, 2014). We then use these new vectors to predict whether a user liked an app
based on a given review using three different algorithms: logistic regression, decision
trees, and random forests. Even though no correlation was found between our quality
measures at a word representation level (the results of the word similarity evaluation)
and at a prediction level (geometric mean of accuracy), our best word embedding mod-
els can still yield satisfactory prediction models.

This work aims to clarify how different hyperparameter combinations impact the re-
sulting word embeddings, and how these representations can be part of more complex
predictive models. The latter does not only serve as an extrinsic evaluation of the Ger-
manword embeddings but also shows the feasibility of predicting preferences only from
document embeddings, allowing to analyze inherently rich text corpora for Business In-
telligence. Using this approach, stakeholders at any company can build predictivemod-
els over the text base that is augmented by social media content to have more insights
about their customers. Namely, combined with the methods from the mature field of
predictive analytics, having numerical data representations for chunks of customer text
will allow us to analyze trends, implicit and explicit user feedback and future interest in
company products. For that, we present a case study to predict implicit user feedback
of German Google Play reviews. As a whole, this work must be understood as an initial
feasibility study about performing sentiment analysis on informal and noisy German
texts by means of word representations. Further optimization of our best models is left
for future work.
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3.2.2 Data

We use two different datasets to infer German embeddings: SdeWaC (Faaß and Eckart,
2013) for rather generic word embeddings and SCARE (Sänger et al., 2016) to produce
document embeddings tailored for sentiment analysis. For evaluating the representa-
tion quality of theword embeddings, we use the Gur350 dataset (Gurevych, 2005; Zesch
and Gurevych, 2006).

SdeWaC

The SdeWaC corpus is a subset of the deWaC corpus, a web-crawled collection of Ger-
man texts extracted from the “.de” domain in the scope of the WaCky project (Baroni
et al., 2009). It consists of 846.159.403 word tokens in 44.084.442 sentences, including
1.094.902 different word types. Thanks to its variety and size, this corpus is suitable to
generate general purpose embeddings tomodel the German language. We apply amin-
imal pre-processing to this corpus before it is processed: it is only tokenized, lowercased
and shuffled, taking a sentence as a text unit.

SCARE

The Sentiment Corpus of App Reviews (SCARE) consists of 802,860 German app re-
views collected from Google Play Store. These reviews are divided in 11 different app
categories: instant messengers, fitness trackers, social network platforms, games, news
applications, alarm clocks, navigation and map applications, office tools, weather apps,
sport news and music players. From each category, between 10 and 15 different apps
are considered. All these reviews contain a text and a rating with a 1-5 star score. Both
are used for our sentiment analysis task.

Gur350

The Gur350 dataset contains 350 pairs of German words with a human-annotated se-
mantic relatedness scorewhichwas originally introduced tomeasure distances between
words (Gurevych, 2005; Zesch and Gurevych, 2006).

3.2.3 Experiments

Word Embedding Benchmarking

Wemake use of the word2vec package (Mikolov, Sutskever, et al., 2013) to obtain vector
representations of German words. It learns word embeddings with mini-batch asyn-
chronous stochastic gradient descent on a shallow neural network, which can have two
possible architectures: continuous Skip-gram (SG) architecture or continuous bag-of-
words (CBOW) (Mikolov, K. Chen, et al., 2013). With the purpose to check the effect of
SG andCBOWhyperparameters that need to be specified in word2vec, we train 11 differ-
ent models on the SdeWaC corpus. A description of the hyperparameters is presented
in Table 3.1 and the tested values for them are shown in Table 3.2.
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Table 3.1: word2vec hyperparameters

Hyperparameter Meaning
cbow Network architecture: 0 for SG, 1 for CBOW
window Maximum skip length between words within

a context window (maximum window size)
sample Threshold for word subsampling
hs Hierarchical Softmax
negative Number of negative samples
min-count Word types below this count value are discarded

Table 3.2: Hyperparameters used for the 11 trained word vector models

Model cbow window sample hs negative min-count
0 0 8 0 1 10 50
1 1 8 0 1 10 50
2 0 5 0 1 10 50
3 0 15 0 1 10 50
4 0 8 1e-5 1 10 50
5 0 8 1e-3 1 10 50
6 0 8 0 0 10 50
7 0 8 0 1 0 50
8 0 8 0 1 20 50
9 0 8 0 1 10 10
10 0 8 0 1 10 100

All models were set to generate vectors of size 300, which is a frequent value among
publications about word embeddings. Since the usually recommended ranges for the
hyperpameters may not apply for the German language (most of the available publi-
cations focus on the English language), all models from 1 to 10 differ only in one hy-
perparameter compared to model 0 so that the effect of each hyperparameter can be
assessed13.

The resulting embeddings are evaluated on a similarity task. The cosine distance is
our similarity measure between our word vectors. By calculating the Spearman’s rank
correlation coefficient (Spearman, 1904) between the cosine distances of word vector
pairs and the semantic relatedness from the Gur350 dataset, we can evaluate the quality
of our word embeddings.

From Table 3.3 we can observe that the model with best performance (model 4) on
the similarity evaluation corresponds to the one subsampling the most frequent words
with highest threshold (1e-3). Considering that the other model applying subsampling
(1e-5) obtained the third best Pearson’s correlation, the recommendation of introducing
subsampling during the training phase seems to be also valid for German embeddings.

13Model 0 corresponds to the only previous work that we could find about German word em-
beddings in which hyperparameter settings are explicitly specified: https://github.com/devmount/
GermanWordEmbeddings
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Table 3.3: Spearman’s ρ between the trained word embeddings and Gur350 word pairs
human-annotated semantic relatedness

Model ρ

0 0.7153
1 0.5510
2 0.6933
3 0.7325
4 0.7479
5 0.7335
6 0.7399
7 0.7002
8 0.7103
9 0.7222
10 0.7249

Table 3.4: Geometric Mean of Negative and Positive Class Accuracy Values of Classify-
ing of Liking of Fitness Tracker Applications

Model LR DT RF1 RF2
0 0.791 0.677 0.729 0.696
1 0.766 0.650 0.661 0.645
2 0.789 0.685 0.730 0.695
3 0.788 0.679 0.725 0.686
4 0.784 0.689 0.729 0.691
5 0.791 0.674 0.727 0.697
6 0.788 0.685 0.719 0.693
7 0.790 0.684 0.734 0.699
8 0.783 0.680 0.726 0.693
9 0.799 0.679 0.732 0.693
10 0.789 0.668 0.724 0.693

Besides that, we see that the only model applying the CBOWmodel (model 1) is clearly
worse than the rest. Although one observation does not suffice to claim that SG out-
performs CBOW, our result is in line with previous observations that the CBOW model
cannot produce better word embeddings than SG in spite of being a more expressive
model (Levy, Goldberg, and Dagan, 2015). Regarding the window size, we confirmed
our expectations that larger window sizes lead to better results. Therefore, model 3
(window size 15) improves model 0 (window size 8) whereas model 2 (window size
5) drops the Spearman’s correlation.

Predictive Sentiment Analysis

We evaluate our word representations with a Business Intelligence use case which in-
volves predicting user preferences from a given text document. This does not only help
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us to gain insight about the hyperparameter space for the learning process of word em-
beddings, but also shows that we can obtain high accuracy values for predicting user
decisions by only using paragraph embeddings as data input. We train document rep-
resentations for German Google Play Reviews from (Sänger et al., 2016) for the fitness
trackers category. The dataset contains 22,188 anonymized reviews with ranking rang-
ing from one to five. We binarized (or implicitized) the review score by assigning False
class to ratings one, two and three and True class to ratings four and five to respectively
model the notion of user’s not liking and liking of the product. After this pre-processing
step the resulting dataset contained a 26/74 class distribution ratio.

Similar to (Le andMikolov, 2014), we learn document representations of the reviews
by means of the Paragraph Vector with Distributed Bag of Words model (PV-DBOW) (Le
andMikolov, 2014) implemented in gensim doc2vec14. Since PV-DBOWdoes not explic-
itly learn word embeddings but only the paragraph vectors (document embeddings),
the doc2vec implementation initializes the word vectors randomly if not specified oth-
erwise. Although the learning algorithm should be able to work with this setting, the
performance degrades severely in practice (Lau and Baldwin, 2016). Therefore, we ini-
tialize our model with the pre-trained word vectors trained with the large external cor-
pus SdeWaC that we obtained from our experiment explained in Section 3.2.3. Then,
we train 300-dimensional document vectors during 1000 epochs using PV-DBOW with
a maximum window size of 15 and 5 negative samples per context window. We also
subsample themost frequent words setting the threshold to 1e-5. By keeping this hyper-
parameter combination fixed, we can assess which of the pre-trained word embedding
models lead to a better performance for our predictive sentiment analysis task.

For the supervised learning task of sentiment analysis, we used Logistic Regression
(LR), Decision Trees (DT) and Random Forests with 101 and 11 random trees (RF1 and
RF2 respectively). In Table 3.4 we show the evaluation of the predictions using 10-fold
cross-validation in terms of the geometric mean of the accuracy values of both of the
classes.

Overall, Logistic Regression yielded the best results for predicting the user’s prefer-
ences with respect to the geometric mean accuracy. Whenwe compare the experimental
settings we observe that reducing the minimum count of words to be considered in the
learning phase improves the representation with larger window sizes reaching almost
up to 0.8 percent of the geometric mean for positive and negative classes.

It is also noticeable that the CBOW word embedding model has not performed well
in terms of representation learning compared to all the SG models, which was already
indicated by Levy, Goldberg, and Dagan, 2015 for the English language. However, the
results on the sentiment analysis correlate poorly with the intrinsic evaluation using the
Gur350 dataset. This fact is in line with recent research on evaluating word embeddings
showing that most word similarity datasets available for word similarity evaluations are
not useful to predict a good performance on an extrinsic task such as sentiment analysis
(Faruqui et al., 2016). Our results suggest that Gur350 also suffers from this problem
and it is thus not suitable to be used as an intrinsic evaluation dataset for German word
embeddings.

14https://github.com/RaRe-Technologies/gensim
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3.2.4 Conclusion and Future Work

We observed that some of the general recommendations to learn word embeddings
in English (such as those from Levy, Goldberg, and Dagan, 2015) also apply for the
German language when they are evaluated on a word similarity task: the continuous
skip-gram model outperforms the continuous bag of word models and negative sam-
pling provides better results than hierarchical softmax, where more negative samples
improve the result. Furthermore, we detected that the threshold to downsample the
most frequent words has the highest impact on the similarity score among all tested hy-
perparameters. Nonetheless, we also noticed that the models that perform the best on
the similarity task do not necessarily provide the best contributions when they are used
to infer document embeddings for the predictive sentiment analysis task. Like Faruqui
et al., 2016 does for the English language, we suggest not to rely on similarity tasks to
assess the quality of German word embeddings until a suitable evaluation dataset is
available. We also showed the feasibility of performing sentiment analysis on informal
German text using document embeddings as features of the classifiers.

As a future work, we will focus on optimizing the sentiment analysis approach and
the document representations on concrete use cases. It would be also interesting to
check if our findings generalize across other German text collections and with other
text pre-processing approaches.
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3.3 Hybrid Ensemble Predictor as Quality Metric for German
Text Summarization: Fraunhofer IAIS atGermEval 2020Task
3

This section is based on the work presented by Biesner et al., 2020, where the author
of this dissertation served as a co-first author. As such, the author contributed to the
conception and execution of the experimental framework, and drafting the results in
the submitted manuscript.

3.3.1 Introduction

In our previous work on automatic text summarization (Brito, Lübbering, et al., 2019),
we concluded criticizing the suitability of ROUGE scores (C.-Y. Lin, 2004) for overall
evaluation purposes. These and other common quality metrics found in the automatic
text summarization literature like BLEU (Papineni et al., 2002) or METEOR (Banerjee
and Lavie, 2005) are far from being optimal since they only focus on the lexical overlap
as a proxy for assessing content selection. They do not only penalize certain abstractions
(e.g., when the original sentences are heavily reformulated or when synonyms are ap-
plied) but they also ignore other aspects that are usually considered desirable in good
summaries, including grammatical correctness and compactness.

The second German Text Summarization Challenge aims to address this issue by
releasing a text corpus with several summaries per text15. Its participants were asked
to rate these summaries with new ideas and solutions regarding an automatic quality
assessment of German text summarizations. We propose to combine the advantages of
neural approaches that excel at encoding semantic textual similarity (and are thus suit-
able to predict content) with statistical and rule-based metrics that can evaluate other
important summarization aspects such as compactness and abstractiveness.

In our approach, we employ an ensemble of 7 statistically significant predictors (p-
value < 15%) in a linear regression model (see Table 3.6). Comparing our predictions
to the competition host’s own non-public annotations we achieved a score (i.e. loss) of
33.72, one of the lowest and therefore best scores of participating teams.

In the following sections, we detail the different metrics that we considered and how
we optimized its combination.

3.3.2 Experimental Setup

This section describes our experimental setup, namely the underlying dataset and the
methodological approach.

Data

The shared task organizers released a corpus consisting of 216 texts with a correspond-
ing reference summary and a generated summary, each of them rated with a value be-
tween 0 (bad) to 1 (excellent).

15https://swisstext-and-konvens-2020.org/2nd-german-text-summarization-challenge.
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In order to evaluate themethodswemanually annotated all summaries in the dataset
with a score from 0 to 1. We independently rated a part of the corpus each, such that
different human biases can be compensated to a certain extent. A submission of these
annotations to the competition received a high score, indicating a large similarity to the
gold standard annotations set by the organizers. Additionally, we expanded the dataset
by considering the given reference summaries as perfect generated summaries with an
automatic score of 1.

This results in a dataset of 248 summary texts with their corresponding score, which
is used to evaluate the unsupervised methods described below.

Methodology

We address this challenge as a metric learning problem, where we define a set of unsu-
pervised predictors covering one or several features that answer the required properties
of a good summary (content relevancy, compactness, abstractiveness and grammatical
correctness). After calculating all predictor scores (unsupervised) for each document
we apply min-max normalization to assure all scores lay in the closed 0-1 interval. In
a final step, we ensemble these predictors in a capped linear regression model (out-
put between 0 and 1), which is trained via ordinary least squares on our manual sum-
mary annotations (see Section 3.3.2). We iteratively remove non-significant predictors,
p-value ≥ 15%, and re-run the regression model until all predictors yield significant
t-statistics, namely their coefficients lay within the two-sided 85% confidence interval.
Due to the limited amount of documents and the loss of interpretability, we refrain from
including non-linearities (e.g. multiple layers, non-linear activation functions, interac-
tion terms of different polynomial degrees, etc.) into the regression model. Also, by
using a simple linear ensemble model, we reduce the likelihood of overfitting on our
annotations, especially since no validation set for parameter tuning is available.

The following subsections lay the focus on our predictors and describe their func-
tionality. We start presenting three content predictors, which all determine the most
important words in the original text and compute the fraction of how many of these
words occur in the generated summaries. We assume that the most important words in
a document capture the essence of the text and thus, function as proxy for contentual
relevance. We continue with neural language model driven predictors which primarily
focus on contentual relevance and grammatical correctness. We also include the stan-
dard quality metrics for automatic summary evaluation, ROUGE, BLEU, andMETEOR,
which all aim to measure contentual relevance, as well. The remaining predictors are
mainly rule-based and refer largely to compactness and abstractiveness.

• Tf-Idf content predictor Avery popular text vectorizationmethod is tf–idf (Term
frequency – Inverse document frequency). It is a frequency-based statistic, which
intends to reflect how important aword is to a “document” in a corpus. Given that
our entire corpus contains N documents and the vocabulary of our corpus is of
sizeK, we can collect the individual tf–idf scores in somematrixM ∈ RN×K. Each
row vector in this matrix corresponds to a document embedding. We find the top
10 important words per document by decreasingly sorting the tf-idf scores within
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each embedding. Weutilize the sklearn 16 implementation of the TfidfVectorizer
and restrict our vocabulary to words with a document frequency below 0.9. Be-
fore vectorization, we apply lower-casing, punctuation and stop word removal,
and stemming to the entire text corpus, which helps to better capture meaning
and content in the text’s vector representation.

• NMF content predictor NMF (Nonnegative Matrix Factorization) (Paatero and
Tapper, 1994; D. D. Lee and Seung, 2001) is a common matrix factorization tech-
nique frequently used for topic modeling. In previous work, we find that NMF
achieves good results in clustering document words to a predefined number of
latent topics. Assuming that a good summary should cover all main topics in a
text, we apply NMF on each document, and determine the top 5 important words
per latent topic dimension. In particular, we factorize the document’s symmetrical
co-occurrence matrix17 S ∈ RN×N into a nonnegative loading matrix W ∈ RN×M

and a nonnegative affinity matrix H ∈ RM×N,

S = WH+ E , (3.1)

whereN is the vocabulary size of the document at question,M = 10 is the number
of latent topics and E ∈ RN×N is the error matrix, whose elements approach zero
for a perfect decomposition. For both,W andHT weassign eachword (rowvector)
to the latent topic dimension with the highest value. Next, we decreasingly sort
the assigned words per topic, so that the most distinct topic words are ranked on
top. Finally, we get the important words per document by removing all duplicates
from the selected topic words of W and H.

• Flair NER content predictor Flair (Akbik, Blythe, and Vollgraf, 2018) is a specific
contextual string embedding architecture. The backbone of the flair framework is a
pretrained character-based languagemodel (based on an LSTM18-RNN), which is
bidirectionally trained on a huge independent text corpus for different languages,
including German. Build on top of this language model, the framework provides
a German named entity tagger, which is pretrained on the Conll-03 dataset (Sang
and De Meulder, 2003). First, raw and unprocessed text is fed sequentially into
the encoding part of the bidirectional language model. Second, we retrieve for
each word i a contextual embedding by concatenating the forward model’s hid-
den state after word i and the backward model’s hidden state before word i. This
word embedding is then passed into a vanilla BiLSTM-CRF19 sequence labeler. We
apply this sequence tagger on our raw input documents and consider all predicted
named entities as the document’s important words.

• Flair grammar predictor In order to evaluate grammatical correctness, we again
leverage the aforementioned flair language model, which was trained as an auto-
encoder to correctly predict the next character in a text. For a grammatically cor-
rect text we would expect the model to mostly guess the next character correctly.

16https://github.com/scikit-learn/scikit-learn.
17We apply the same document preprocessing as in Section 3.3.2 before calculating the co-occurrence

matrix. Also, we choose a window size of 5 and each context word j contributes 1/d to the total word pair
count, given it is d words apart from the base word i.

18Long Short Term Memory.
19Bi-directional Long Short-Term Memory Conditional Random Field.
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A text with grammatical errors however would not match the expectations of the
model, thus creating a larger reconstruction error on the characters that do not
fit grammatically. To assess grammatical correctness we feed the summary text
through the model and score the summary based on the accumulated reconstruc-
tion error.

• Sentence-BERT predictor We explore how sentence embeddings can be used to
measure “how similar” (semantically) a summary is compared to its original text.
In particular, we infer sentence embeddings with the pretrained bert-base-german-
uncased BERT model from the HuggingFace’s transformers library (Wolf et al.,
2019) in the fashion proposed with the Sentence-BERT architecture (Reimers and
Gurevych, 2019). The output of the BERT model is max-pooled to obtain a fixed-
size vector for each processed piece of text. This way, we can obtain embeddings
for both the original text and each of the summaries. The resulting predictor score
is thus the cosine similarity of the summary vector with the original text vector.

• ROUGE predictor The ROUGE score is a classic metric for assessing the quality
of summaries. Even though it alone is not sufficient to evaluate summaries it can
give useful insight when applied in an ensemble setting. We calculate the rouge-1,
rouge-2 and rouge-L scores between the summary and both the full original text
and the reference summary. While rouge-1 and rouge-2 calculates the overlap
of unigrams and bigrams (i.e. single words and adjacent word pairs) between
reference text and summary, rouge-L evaluates the longest common subsequence
between reference and summary.

• BLEU predictor BLEU is a metric that calculates an n-gram precision between one
or multiple reference texts and a summary hypothesis, in which n-gram counts in
the summary are compared to their maximum count in one of the references.

• METEORpredictorMETEOR is ametric that calculates a harmonicmean between
the recall and precision of an n-gram matching which considers word order be-
tween a reference text and a summary.

• Compactness predictor We calculate the compactness score as the compression
rate with respect to the original text, where the text length is measured by the
number of characters.

• Number matching predictorA good summary should be factually correct. While
there might be some ambiguity from different word choices between original text
and summary, there usually is only one way to display exact numbers like dates.
We thus expect every number in the summary to also appear in the original text. To
assess factual correctness regarding numbers, we count howmany of the numbers
in the summary are also present in the text.

• Sentence copying predictorAt times, one can generate a usable summary by sim-
ply extracting the first sentences of the original text, since they often provide an
introduction and therefore a mini-summary of the remaining text. However, the
goal of our evaluation is finding abstractive and novel summaries. We therefore
perform a binary check on whether the summary exactly matches the first sen-
tences of the original text and assign a 1 if they are extracted from the original text
and a 0 if they are more abstracted.

40



3.3. HYBRID ENSEMBLE PREDICTOR AS QUALITY METRIC FOR GERMAN TEXT
SUMMARIZATION: FRAUNHOFER IAIS AT GERMEVAL 2020 TASK 3

coef std_err P> |t|

constant 0.072 0.095 0.447
tfidf_content 0.535 0.107 0.000
flair_grammar 0.226 0.109 0.038
sbert 0.169 0.106 0.110
sentence_copying −0.168 0.064 0.009
rouge-1 2.560 0.571 0.000
rouge-2 −1.531 0.340 0.000
rouge-L −1.329 0.646 0.041

Table 3.5: Regression coefficients, standard errors and p-values for final predictor set.

3.3.3 Evaluation

In this section, we report and analyze our results of employing a capped linear regres-
sionmodel to ensemble the significant subset of our predictors to generate a representa-
tive summarization quality metric. We start by fitting a capped linear regression model
to the full set of predictors, including an intercept, and consider the p-values of each
predictor. We iteratively remove the most insignificant predictor (largest p-value) and
re-run the linear regression. We stop once all predictors are statistically significant to
the 15% level.

The final regression model on the remaining 7 significant predictors is described in
Table 3.5.

The columns show the estimated coefficients, standard errors and p-values of each
predictor. Since all predictors have been normalized (min-max normalization) prior to
the regression, their regression coefficients are directly comparable in magnitude. It can
be seen that the rouge-1 predictor has the highest coefficient and thus, is most impor-
tant for predicting the summary evaluation score. However, the other predictors also
contribute significantly to the prediction outcome, which gets evident when comparing
the final ensemble error of 33.72 (see Table 3.6) to the individual rouge-1 error of 35.99
(see Table 3.7).

Further, the coefficients of the sentence copying, rouge-2 and rouge-L predictors im-
ply a negative correlation to the annotated summary scores. This is expected because
all three predictors yield high scores, when entire sentences, bigrams or common subse-
quences of the original documents get copied to or make up the generated summaries.
Yet, our annotations favor abstractive summaries which is why a higher score of one
of the above predictors indicates a worse summary when taking abstractiveness as a
quality indicator into account.

Table 3.6 shows the final error values obtained by different predictor ensembles in
the shared task public ranking. Despite of more predictors increasing the likelihood of
overfitting on our manual annotations and thereby lowering our final error score, one
can observe the opposite. Removing insignificant predictors actually yields the best
performing model and puts us among the top participating teams.
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Ensemble Error Predictors

7 predictors 33.72 constant, tfidf_content,
flair_grammar, sentence_copying
sbert, rouge-1,
rouge-2, rouge-L

10 predictors 33.90 + nmf_content,
bleu, meteor

13 predictors 33.82 + flair_ner_content,
compression, number_matching

Table 3.6: Error values obtained in the shared task public ranking by different predictor
ensembles. A lower value means better performance.

Predictor Error (original) Error (fitted)

rouge-1 44.26 35.99
rouge-2 52.50 36.08
rouge-L 44.27 36.12
bleu 64.16 36.11
meteor 53.05 36.06

Table 3.7: Error values obtained by some of the common evaluation metrics for auto-
matic text summarization after uploading their scores to the shared task pub-
lic ranking. A lower value means better performance. The middle column
represents the errors for the min-max normalized predictor scores. The right
column shows the final errors for the normalized predictor scores being fitted
via linear regression to our manual summary annotations.

3.3.4 Comparison with Standard Metrics

In order to show the validity of our approach and its improvement over previously es-
tablished methods, we take a look at the performance of BLEU, METEOR and ROUGE
as single predictors.

We implement each metric using the standard definition and further employ min-
max normalization as described above in order to receive a metric that assigns a score
between 0 (bad) and 1 (good) so that both extremes appear in the dataset. This ap-
proach is developed entirely without manual annotations. The scores received on the
challenge task are depicted in the middle column of Table 3.7.

Furthermore, we use ourmanual annotations to adjust the predictors to the available
dataset, fitting a linear regression of a single predictor to the annotated summary scores.
These scores are depicted in the right column of Table 3.7.

As already signified, we see that using these metrics out-of-the-box results in signif-
icantly worse performance than both the fitted algorithm and our ensemble approach.
While the fitted metrics score is considerably higher than their original counterpart, we
still see a distinct improvement when employing an ensemble of different predictors.
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3.3.5 Conclusion and Future Work

We showed that a hybrid combination of rule-based, statistical and deep-learning tech-
niques outperforms other alternatives for automatic evaluation of automatically gener-
ated German text summarization given the provided shared task dataset.

Although the text corpus covers a wide range of topics, the text style is quite ho-
mogeneous. Mostly, it consists of generally grammatically perfect descriptive texts. It
would be interesting to test if our approach also works for more informal noisy texts.
Furthermore, it would be also interesting to evaluate different state-of-the-art summa-
rization approaches with our new metric.
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Chapter 4

RatVec: An Explainable
Similarity-based Representation
Learning Framework for Finite
Domain Sequences

The evaluation strategies presented in Chapter 3 help to alleviate the opacity of themod-
els under inspection to increase trust in the deployed applications. Nevertheless, the in-
sights these approaches can provide about the underlying models may be insufficient.
Additionally, deep learningmodels may be too computationally expensive for some set-
tings, prompting a search for explainable, resource-aware alternatives.

In this chapter, we put together the theoretical representation learning framework
via rational kernels elaborated by Brito, Georgiev, et al., 2019 with its published ap-
plications for text, including spelling correction (Beeksma et al., 2018), historical text
analysis (Schraagen, Wall, and Brito, 2020) and part-of-speech tagging (Brito, Sifa, and
Bauckhage, 2017); and for biological sequences, in particular, splice-junction detection
on DNA sequences (Brito, Sifa, and Bauckhage, 2017) and protein family classifica-
tion (Brito, Georgiev, et al., 2019). We demonstrate how to construct an explainable-
by-architecture classification pipeline that can achieve competitive performance while
keeping its computational requirements much lower than the best-performing models.

4.1 Introduction

The success of distributed vector representations in various natural language process-
ing tasks has motivated their adoption in other fields, such as biological sequence anal-
ysis (Asgari and Mofrad, 2015). Most existing approaches consider similarity between
words in terms of the distributional hypothesis (Harris, 1954): ”words that occur in sim-
ilar contexts are similar”. Consequently, they generate vector representations that are
close to each other in their vector space if the entities they represent frequently appear
together. However, state-of-the-art models of this kind usually encounter issues that
preclude them from a series of use cases, as we discussed in Chapter 3. On the other
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hand, relying solely on interpretable features can result in models that are too limited
when the goal is to increase user trust in the systems built upon them.

As an alternative to both, we implement a general framework to generate dense vec-
tor representations of non-numeric entities such as text, DNA, and protein sequences.
This is based on similarity functions that can be expressed as rational kernels (see Sec-
tion 2.6). By obtaining vector representations via KPCA that we use for a straightfor-
ward KNN classifier, we construct an efficient and explainable (due to its similarity-
basednature) classificationpipeline demonstrating competitive performance across var-
ious tasks.

In essence, the machinery of rational kernels allows us to design domain-specific
(i.e., knowledge-based) similarity functions, supported by a robust theoretical frame-
work and efficient computation algorithms. Moreover, applying domain-specific simi-
larity functions curated by domain experts (i.e., an informedmachine learningmethod-
ology) can not only be more efficient than learning from scratch in a fully data-driven
approach, but it can also reduce complexity, diminishing the size of necessary training
data to generate high-quality representations. In setupswhere data is high-dimensional
and the number of examples is limited, knowledge-based learning seems to bemore ap-
propriate than purely data-driven deep neural models.

Our work is characterized by the following features:
(i) By learning suitable representations, wederive competitive solutionswith no need

for complex (computationally expensive) classification models: a simple KNN
classifier with a very small k suffices.

(ii) Our similarity-based classification pipeline is explainable: an entity will be classi-
fied into a particular class because it is similar (in a domain-specific, explainable
sense) to the labeled entities that the classifier was trained with.

Sincemany reasonable knowledge-based similarity functions tend to lack certain for-
mal properties (e.g., definiteness), we highlight some central insights from the field of
indefinite kernel methods to provide a sound theoretical interpretation of our empirical
results (e.g., KPCA algorithms in the setting of pseudo-Euclidean geometry).

4.2 Related Work

The approach presented here generalizes our previouswork onKPCA embeddings (Brito,
Sifa, and Bauckhage, 2017), where we studied vector representations for words and
DNA sequences via KPCA, with the dot (scalar) product replaced by a specific similar-
ity function. There exists a large body of relevant literature - below we mention several
works that are most related to our work.

Cristianini, Shawe-Taylor, and Lodhi, 2002 presented a kernel method for text classi-
fication that learns a kernel function by applying singular value decomposition (SVD)
on a document matrix, where each document is represented by a term frequency vector.
The kernel function is used to train a support vector machine (SVM) for text classifica-
tion. This is analogous to our approach for documents viewed as a bag of words where
the similarity function is the intersection of terms of both documents. In this case, the
similarity is learned rather than given (contrasting with our ”informed learning” ap-
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proach). Furthermore, while their approach involves training an SVM classifier, our
work leverages KNN classifiers.

Similarly, Lodhi et al., 2002 used string kernels for the same task. Although the ker-
nels they present are analogous to the similarity functions used within our framework,
they trained the SVM model directly. Conversely, the approach in Lodhi et al., 2002
does not learn any explicit vector representation, and the direct SVM approach appears
to lack explainability.

Further studies (Giuliano, 2009) combine a latent semantic kernel similar to (Cris-
tianini, Shawe-Taylor, and Lodhi, 2002) for named entity recognition. In this case, the
logarithm of the inverse document frequency (log(idf)) is also added.

Ishii et al., 2006 presented a pipeline where they first grouped similar words, after
which LSA was applied for document classification via KNN. Assuming one omits the
grouping step this approach introduces, it is similar to our work, particularly with a
similarity function based on term frequency and log(idf).

4.3 Theoretical Background

Weutilize the framework of rational kernels, i.e., kernels induced by certain automatons,
and KPCA.We briefly recalled the main tools and ideas on Sections 2.5, 2.6, and 2.7. For
thorough background on the subject, we refer to Cortes, Haffner, and Mohri, 2004.

4.3.1 Indefinite Kernel PCA

We briefly discuss the case of indefinite KPCA which will be relevant for our exper-
imental results. Suppose a data set {xi}ni=1 ⊂ X and a symmetric kernel function
κ : X ×X → R are given and consider the eigenequation:

Lα = λα, (4.1)

where L is the (normalized) matrix as in the application of :

Lij := κ(xi, xj)−
1

n

n∑
s=1

κ(xi, xs)−
1

n

n∑
s=1

κ(xj , xs) +
1

n2

n∑
s,l=1

κ(xs, xl). (4.2)

Here, according to the indefiniteness assumption, the matrix κ possesses both pos-
itive and negative eigenvalues. This is not an obstruction for applying the projection
methods outlined in Section 2.5 andperforming experiments. However, the above eigen-
and optimization- problems should be seen from the perspective of pseudo-Euclidean
spaces:

Proposition (X. Huang et al., 2016). Suppose κ is an indefinite kernel and let α∗ be a so-
lution of (4.1).

Then, there exists feature mappings F+, F− giving the stationary point

(w∗
+, w

∗
−) :=

(
n∑

i=1

α∗
i (F+(xi)− µ+) ,

n∑
i=1

α∗
i (F−(xi)− µ−)

)
, (4.3)
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to the following primal problem:

max
w+,w−,ξ

γ

2

n∑
i=1

ξ2i −
1

2

(
wT
+w+ − wT

−w−
)
, (4.4)

s. t. ξ = wT
+ (F+(xi)− µ+) + wT

− (F−(xi)− µ−) , i = 1, . . . , n. (4.5)

Here we have also set

(µ+, µ−) :=

(
1

n

n∑
i=1

F+(xi),
1

n

n∑
i=1

F−(xi)

)
. (4.6)

Furthermore, the primal problem (4.4) is dual to the eigenproblem (4.1).

Proof (Sketch). We decompose the indefinite kernel κ into positive and negative part,
that is

κ = κ+ − κ−, (4.7)

where κ+, κ− are both positive semidefinite. Then according to Theorem 2.7.3 we find
feature mappings F+, F− with

κ+(xi, xj) = F+(xi, xj)
TF+(xi, xj), κ−(xi, xj) = F−(xi, xj)

TF−(xi, xj) (4.8)

We nowneed to demonstrate that the above primal problemhas (w∗
+, w

∗
−) as a stationary

point and is moreover dual to the eigenproblem. This is achieved in a direct manner by
writing out explicitly the corresponding Lagrangian equations.

To summarize, the above discussion sheds light on the interpretation of indefinite
kernel methods. In particular, the KPCA algorithm can be understood as an optimal
variance problem in a suitable pseudo-Euclidean space. This standpoint aids the the-
oretical explanation of our empirical results as we mainly work in a setting where the
kernels are not by definition definite and we do not pursue the introduction of suit-
able (positive) definite approximations. As it is seen below, the experiments with our
particular indefinite kernels deliver competitive performance.

4.3.2 Similarity Functions Based on n-grams

Many entities can be represented as a string of elements from a predefined finite vocab-
ulary. For instance, words can be seen as a sequence of characters from a specific alpha-
bet, DNA sequences as a finite series of the four nucleobases or proteins as a sequence of
amino acids. Hence, string similarities are widely applied in natural language process-
ing and bioinformatics. Moreover, many of these string similarities can be expressed by
means of rational kernels.

The length of the longest common subsequence (LCS) of two sequences can be used
as similarity function. For an alphabet Σ, LCS can be trivially modeled as a transducer
with one initial and accepting state and |Σ + 1|2 transitions, where each transition has
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either weight 1 if the input label belongs to the alphabetΣ and its identical to the output
level, or it has weight 0 else.

Kondrak, 2005 generalizes LCS to n-grams by defining the n-gram similarity (n-
SIM). His concept of n-SIM of is equivalent to defining an n-gram alphabet Σn−gram

as the n-fold Cartesian product of Σ with itself, then converting each sequence to a se-
quences its n-grams and finally computing LCS on them. Hence, n-SIM can also be
expressed as a finite-weighted transducer and is thus a rational kernel.

4.3.3 Similarity Based on Sequence Alignments

Sequence alignment algorithmsuse dynamic programming andbacktracking techniques
to optimize an alignment scoring function that can either match two identical tokens,
match two different tokens at a cost, or insert a gap at a cost then ultimately recover
the sequence with the minimum score. These scores can be transformed into similarity
metrics, and an all-by-all calculation of pairwise alignments of a given corpus can be
used to generate a similarity matrix appropriate for KPCA embedding.

Global alignment algorithms (Needleman and Wunsch, 1970) are appropriate for
scoring pairwise alignments of protein sequences, whose entire sequences should be
aligned. Alternatively, local alignment algorithms (Smith and Waterman, 1981) are
more appropriate scoring pairwise alignments of genomic sequences, in which several
regions in each of a pair of sequences may be independently related. In a contrast to
more simplistic implementations of pairwise alignment algorithms which use a con-
stant cost for mismatching tokens, biological applications use cost matrices with entries
for each pair of tokens i and j mapping to integers that are calculated based on prior
biological knowledge about sequence alignments. The most famous, the blocks sub-
stitution matrices (BLOSUM), were introduced in order to support the calculation of
protein sequence alignments (S. Henikoff and J. G. Henikoff, 1992).

Derivation of BLOSUM

Prior knowledge and programs like PROTOMAT (S. Henikoff and J G Henikoff, 1991)
used to categorize similar sections, or domains, of proteins were used to manually iden-
tify highly locally aligned regions. The observed frequency of occurrence fij of a pair of
amino acids i and j was calculated counting the occurrence of all pairs of amino acids
over all pairs of sequences in the local alignments (which usually containmore than two
sequences).

qij =
fij∑20

m=1

∑m
n=1 fmn

(4.9)

The observed probability of occurrence qij of a pair of amino acids i and j is pre-
sented in equation (4.9).

pi = qii +
1

2

20∑
j=1,i 6=j

qij (4.10)
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The probability of the occurrence of the ith amino acid in a given pair is given by
equation 4.10.

eij =

{
pipj i = j

2pipj i 6= j
(4.11)

The expected probability of occurrence eij of a pair of amino acids i and j is pre-
sented in equation 4.11.

sij = log2
qij
eij

(4.12)

The log of odds ratio sij of the observed probability qij and the expected probability
eij of of a pair of amino acids i and j is presented in equation 4.12. Ultimately, these
ratios are scaled by a factor of 2 and rounded to the nearest integer to generate the BLO-
SUM matrix.

Using standard implementations of either local or global sequence alignments, such
as those provided by BioPython (Dalke et al., 2009), we can calculate all-by-all pair-
wise alignments. Finally, a matrix encoding the pairwise similarities of all elements of
a corpus S can be generated using the following transformation:

Sij =
1

1 + score(i, j)
(4.13)

4.4 Approach

Weexploit the fact thatwe can define kernel functions also on non-numeric entities (e.g.,
words) so that we can generate vector representations from the principal components
derived from KPCA. As we saw in Section 2.5, KPCA can extract an arbitrary number d
of principal components of a data point t, by
(i) Computing a kernel matrix K as in Equation (2.6),
(ii) Diagonalizing K to construct a projection matrix P as in Equation (2.9),
(iii) Project the data point t to a d-dimensional vector ut as in Equation (2.10).

LetX be a dataset consisting of n (non-numeric) elements, to which we will further
refer as the full vocabulary; and k a rational kernel (a particular similarity function).
Computing a kernel matrix K from X may be computationally prohibitive for large
datasets due to its time and space complexity (O(n2)) unless approximations or im-
plementations tricks are performed. Since KPCA allows to project unseen data points
as long as you can evaluate the kernel function on them together with the elements
processed to build K, we can also select just the m elements that we consider ”most
representative” (in a domain-specific formulation) from X . These representative ele-
ments constitute our representative vocabulary V . The choice of m can be adjusted to fit
the computation resources of the user.

Once the representative vocabulary V is defined, we can compute a kernelmatrixKV
from all element pairs from V . After centering and diagonalizing KV, we construct our
projectionmatrixPV . This is required to generatem-dimensional representations for the
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Figure 4.1: Visualization of learned vectors for two different protein families using bi-
gram similarity and a representative vocabulary of 1,000 sequences. The
first three components of the vectors provide clear separation between the
two families, demonstrating the effectiveness of our approach. Best seen in
color.

full vocabulary. In a last step, we assign the first d ≤ m components of each computed
vector to each full vocabulary element, which constitute the final d-dimensional vector
representations thatwe obtain fromour approach. When the applied similarity function
is suitable for the task, d being of a lower order of magnitude thanm can lead to optimal
results, as we will see in Section 4.5.

The produced representations tend to cluster naturally according to the domain-
specific concept of similarity applied by the selected rational kernel, as we can see in
Fig. 4.1. This has two main advantages:

(i) A simple KNN classifier (eventually 1NN) can suffice for classification tasks.
(ii) Learning the vector representations and KNN constitute an explainable classifica-

tion pipeline: an entity is assigned to a particular class because it is similar to the
labeled entities used to train the classifier. This level of interpretability is a sig-
nificant advantage of our method, as it provides transparency into the decision-
making process of the model. In many applications, particularly those with regu-
latory oversight or significant consequences (such as medical diagnoses or finan-
cial predictions, as motivated in Section 1.1), the ability to understand and justify
model decisions can be just as important as accuracy.
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4.5 Applications

The RatVec framework enables classification of sequences from very different nature,
including

(i) Text: for part-of-speech (PoS) tagging (Brito, Sifa, andBauckhage, 2017), for spelling
correction; (Beeksma et al., 2018), historical text analysis (Schraagen, Wall, and
Brito, 2020)

(ii) DNA: for splice-junction detection (Brito, Sifa, and Bauckhage, 2017);
(iii) and proteins: for protein family classification (Brito, Georgiev, et al., 2019).

4.5.1 German Verb Classification

We chose German verb classification as our first proof-of-concept task due to the chal-
lenges it involves. German is a language with a rich morphological structure, where
changes in tense, person, number, andmode are often expressed throughmodifications
to the verb itself. As such, amodel capable of accurately classifyingGermanverbswould
demonstrate its strength in handling complex morphological patterns, thus serving as
a strong proof-of-concept for our RatVec framework.

We restrict our vocabulary to the tokens tagged as verbs from the TIGER treebank
(Brants et al., 2004). This simplifies the problem to classify the correct morphological
tag (consisting of grammatical person, number, tense and mode when they apply) of a
German verb only from its representation.

First, we extract all tokens tagged as verb (corresponding to the TIGER tags VVFIN,
VAFIN, VMFIN, VVIMP, VAIMP, VVINF, VVIZU, VAINF, VMINF, VVPP, VMPP, VAPP)
and remove all duplicates. This leads to 13370 unique verbs with 31 different morpho-
logical tags, whose distribution is showed in figure 4.2. We build a training set consisting
of 80% of the verbs and a test set with the remaining 20%. Then, we apply the approach
described in section 4.4.

We adapt the the Sørensen-Dice coefficient by considering not only bigrams, but
n-grams of any length in general to construct our similarity function. Let Gn(w) the n-
grams of a word w. We define a similarity function s of two words x, y ∈ V as follows:

s(x, y) =
∑
n∈N+

αn
2|Gn(x) ∩ Gn(y))|
|Gn(x)|+ |Gn(y)|

,
∑
n

αn = 1 (4.14)

where αi determines the weight of the Sørensen-Dice coefficient term for each n-
gram length. We apply non-linear kernel function (in particular different RBF kernels
and polynomial kernels) to s to define the kernel function k that fits in our framework.
We consider only bigrams and trigrams to compute the similarity function for each pair
of verbs by selecting five different weight distributions (different values for α2 and α3

in equation 4.14). We also incorporate an additional character at the beginning and at
the end of each verb when producing the n-grams. After running our framework on
the training set, we infer vector represen tations of the verbs from the test set. By using
the produced representations as a features and the morphological tag as label, we train
k-nearest neighbors classifiers to predict the morphological tag of a word from only
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Figure 4.2: Distribution of 31 different morphological tags from the TIGER treebank.
Note the imbalance especially with respect to first and second person forms.

the KPCA embedding. As baseline representations, we also learn a word2vec model
(Mikolov, Sutskever, et al., 2013; Mikolov, K. Chen, et al., 2013) for each different vector
size (by the time we released our experiments, word2vec was the de facto standard for
word embeddings). These word vectors were learned applying the default hyperpa-
rameter values.

From Table 4.1 we can observe that a mean accuracy above 77% can be achieved by
classifiers taking only the nearest neighbor (k = 1). This can be interpreted as a high ac-
curacy considering the extremely unbalanced label distribution (see figure 4.2). Among
the trained classifiers, we can also find some improvement when the trigram similarity
weight (α3) is at least as high as the bigram similarity (α2). In addition, any RatVec
model beats all word2vec models for this task. For the sake of a fair comparison, the
displayed word2vec results from Table 4.1 correspond to models where their vector size
and the k values for k-nearest neighbors match. Nonetheless, we also tested additional
word2vec models with vector sizes up to 100 and up to 100 neighbors. None of these
larger models reached a mean accuracy above 27%.
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d α3 k = 1 k = 3 k = 5 k = 10

RatVec
5 1 76.76 65.20 63.02 60.56
5 0.75 76.67 65.94 63.74 60.85
5 0.5 76.56 65.78 63.33 60.50
5 0.25 76.72 65.14 63.01 60.27
5 0 77.01 65.14 62.64 59.60
word2vec
5 12.08 10.92 13.43 15.56

RatVec
10 1 77.38 66.64 64.92 62.59
10 0.75 77.13 66.26 63.70 61.37
10 0.5 76.59 64.87 62.19 59.91
10 0.25 76.63 65.31 62.60 59.65
10 0 77.05 65.96 63.72 60.68
word2vec
10 13.91 12.23 15.41 17.39

RatVec
15 1 77.55 66.96 65.13 63.27
15 0.75 76.97 65.96 64.02 61.79
15 0.5 77.28 66.55 64.62 62.22
15 0.25 77.46 67.45 65.45 63.65
15 0 77.72 67.46 65.43 63.83
word2vec
15 14.29 13.99 17.69 20.08

RatVec
20 1 77.22 66.43 64.92 62.75
20 0.75 77.11 65.84 64.68 61.65
20 0.5 77.56 66.42 65.11 62.52
20 0.25 77.55 67.03 65.16 63.20
20 0 77.49 66.96 65.47 63.59
word2vec
20 13.76 14.47 18.61 20.91

(a) Polynomial kernel (degree 3)

d α3 k = 1 k = 3 k = 5 k = 10

RatVec
5 1 77.08 64.95 63.02 60.48
5 0.75 76.89 66.03 64.50 61.38
5 0.5 76.75 66.05 63.78 61.86
5 0.25 76.95 65.69 63.64 61.02
5 0 76.89 65.53 63.65 61.26
word2vec
5 12.08 10.92 13.43 15.56

RatVec
10 1 76.80 66.38 64.54 61.92
10 0.75 76.72 66.83 64.30 61.95
10 0.5 77.17 66.70 64.36 61.96
10 0.25 77.23 66.78 64.40 62.43
10 0 77.13 66.67 64.42 62.16
word2vec
10 13.91 12.23 15.41 17.39

RatVec
15 1 77.28 66.96 64.82 62.60
15 0.75 77.05 66.66 64.44 61.90
15 0.5 77.23 66.17 64.01 62.00
15 0.25 76.82 65.51 63.45 61.11
15 0 76.51 65.34 63.76 60.98
word2vec
15 14.29 13.99 17.69 20.08

RatVec
20 1 77.51 67.00 65.06 62.67
20 0.75 76.93 66.00 64.23 62.22
20 0.5 77.05 65.29 63.76 61.61
20 0.25 76.67 64.94 63.10 61.22
20 0 76.43 64.70 62.76 60.94
word2vec
20 13.76 14.47 18.61 20.91

(b) RBF kernel (σ = 2.26)

Table 4.1: Mean accuracy in % predicting the verb tag with k nearest neighbors, trigram
ratio α3 (α2 = 1− α3) and d principal components applying different kernel
functions. For the word2vec baselines, d refers to the word vector size.
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Error type (occurrences) Valkuil (baseline) RatVec (ours)
TP FN Acc. TP FN Acc.

capitalization (165) 0 0 - 105 12 0.90
non-word (62) 21 0 1.0 24 15 0.62

redundant punctuation (53) 0 3 0.0 8 5 0.62
missing punctuation (18) 1 0 1.0 3 0 0.5

archaic spelling (5) 0 0 - 1 0 1.0

TOTAL (303) 22 3 0.88 141 35 0.80

Table 4.2: Results of our system compared to Valkuil (CLIN28 shared task baseline) in
terms of successful corrections (TP), wrong corrections (FN), and accuracy
(Beeksma et al., 2018)a.

a https://github.com/LanguageMachines/CLIN28_ST_spelling_correction

4.5.2 Dutch Spelling Correction

Dutch spelling correction presents a significant challenge due to its complex morphol-
ogy and the influence of multiple dialects. Spell checkers involve two steps: misspelling
detection and correction. The latter generally requires ranking a set of correction can-
didates. Generating them implies finding all valid words differing from the detected
misspelling less than a determined edit distance, which is mostly set to 1 for real-world
applications to limit computation time (Tijhuis, 2014), but this strategy may miss valid
corrections. Our RatVec approach bypasses this constraint by computing a vector rep-
resentation for all words in our vocabulary and selecting corrections based on similarity
in the vector space. This method increases the potential pool of corrections without an
exponential increase in computational cost.

This section reports our participation in the CLIN28 shared task, where our system
obtained the best F1 score among the competing teams (Beeksma et al., 2018). The
task focused on correcting errors in extracts from Dutch Wikipedia pages. We used an
obsolete implementation of our approach that we keep for reproducibility purposes1.

In our RatVec framework, our full vocabulary is wdutch, a word list from the Open-
Taal project, fromwhich the 3000 most frequent words form our representative vocabu-
lary. The applied rational kernel is the composition of the bigram similarity (Kondrak,
2005) with the homogeneous polynomial kernel of degree 2. We generated a vector
representation for each full vocabulary word with 2000 dimensions.

Once a misspelling is detected, we compute its RatVec representation and search for
the closest precomputed vector. Its related word (its nearest neighbor) is our correction
to the misspelling. Formally, this is equivalent to training a 1NN classifier where each
valid word is assigned a different label.

Our RatVec framework is only relevant during the correction phase for spelling mis-
takes that are related to the word form. Hence, we restrict our analysis to the correc-
tion results on the five error categories where the word form is relevant, namely those
displayed in Table 4.2. Although the baseline system Valkuil achieves a better average

1https://github.com/fraunhofer-iais/kpca_embeddings
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(i) Graf Hendrick van den Berch heeft daer gewoont gehadt.
(ii) Graf Hendrick van den Berch heeft daer gewoont.

Figure 4.3: The first sentence shows an original example where have-doubling takes
place (translated: “Count Hendrick van den Berch has there lived had”).
Removing the have-participle “gehadt” results in the second sentence, which
is used as example to construct the dataset to train text classifiers.

accuracy than our approach for the analyzed misspellings, RatVec outperforms Valkuil
in some categories where it completely fails (redundant punctuation errors) or where
it cannot be even evaluated because it failed to detect any error (capitalization and ar-
chaic spelling errors). From these results, we interpret that our word vectors encode
word forms in a suitable way so that similar words can be retrieved.

4.5.3 Have-doubling Context Detection in Historical Varieties of Dutch

The objective of the CLIN30 Shared Task was to determine whether a given sentence
provides the context for a have-doubling construction, which is a syntactic phenomenon
combining a past participle construction with an additional participle, e.g., “he has had
lived there” (Schraagen, Wall, and Brito, 2020). Although have-doubling takes place
nowadays only in some dialects of Dutch, German, and French and it is not present
in their modern standard variants, recognizing this structure has some applications on
historical text analysis and under-resourced NLP (Schraagen, Wall, and Brito, 2020).

The main aspect of interest is not to detect have-doubling as such, but rather to
discover which properties of the sentence are related to it. Hence, the defining oc-
currence of the past participial form of have were striped out from examples of have-
doubling to construct the shared task dataset. The task for a text classifier is thus to
determine whether a sentence originally contained have-doubling or not, i.e., whether
the have-participle has been removed from a sentence or not. Figure 4.3 illustrates an
example where a sentence is constructed from an actual example of have-doubling, for
which the classifier should predict that this sentence was constructed from an actual
example of have-doubling. If it is feasible to classify these sentences, we can argue that
sentences with have-doubling are different in some extent. If we can also make use of
interpretable features and analyze the results of the text classifier, we may better under-
stand the nature of the have-doubling phenomenon.

The resulting dataset consists of 1044 example sentences in historical Dutch, rang-
ing from the 13th century to the 19th century. Half of the examples (522 sentences)
contain have-doubling. The other half of the data contains negative examples, i.e., sen-
tences without perfect doubling. All data is selected from two different sources: 284
positive examples and 522 negative examples from the Digital Library of Dutch Litera-
ture (DBNL)2, containing documents from all historical time periods for written Dutch
of usually very high quality, with virtually no transcription errors; and the Nederlab
project, predominantly (227 examples) from the correspondence archive of the Dutch

2https://www.dbnl.org
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Approach Accuracy
RatVec 0.67
Naive Bayes 0.77
Logistic Regression 0.79
LSTM (pre-trained embeddings) 0.65
LSTM (on-the-fly embeddings) 0.72

Table 4.3: Overview of classification accuracy of the tested approaches for the CLIN 30
Shared Task.

politician Anthonie Heinsius (1641-1720). The latter resource consists of letters digi-
tized using OCR, and contains a high degree of transcription errors. Almost all of these
documents (all but 11) originate from the period between 1710 and 1720, from a variety
of correspondents (Schraagen, Wall, and Brito, 2020).

We train aRatVecmodel computing the composition of the 2-spectrumkernel (Leslie,
Eskin, and Noble, 2002) with the RBF kernel (γ = 0.8) on coarse PoS sequences related
to 3000 randomly selected sentences from the subcorpora j,k, l, m, and n of the Cor-
pus GesprokenNederlands (“Corpus Spoken Dutch”) (Eynde, Zavrel, and Daelemans,
2000). The dataset sentences were converted to PoS sequences by means of the Frog
parser(Bosch et al., 2007). In order to improve PoS tagging, we translate the historical
sentences to modern Dutch with the tool provided for the CLIN27 shared task (Tjong
Kim Sang et al., 2017). Then, our RatVec pipeline transforms their PoS tag sequences
to 22-dimensional vectors, which constitutes the training dataset for a 19–nearest neigh-
bors classifier.

In parallel, other three machine learning algorithms were applied (Schraagen, Wall,
and Brito, 2020):

(i) Multinomial naive Bayes with the Scikit-learn implementation (Szymański and
Kajdanowicz, 2017), converting the input to lower case and uses a pattern consist-
ing of 2 or more alphanumeric characters to represent tokens, with punctuation
characters used as token separator. This creates a vocabulary of around 10 thou-
sand words on which the term frequency matrix is based. The classifier itself has
very few parameters, which have been left to Scikit defaults.

(ii) Logistic regression also with the Scikit-learn library and same tokenization. This
classifier uses the Limited-memoryBroyden–Fletcher–Goldfarb–Shanno algorithm
(lbfgs) as solver and a multinomial distribution over the labels.

(iii) Long Short Term Memory network (LSTM) as implemented in the Python li-
brary Keras with TensorFlow backend, using the softmax activation function, the
categorical cross-entropy loss function and the Adaptive Moment Estimation op-
timizer (Adam). Two different sets of word embeddings were used : pre-trained
Word2Vec embeddings generated from a 4.5 million word corpus of Early Mod-
ern Dutch (1600–1750) obtained from DBNL, and on-the-fly embeddings based
on the input data which are trained together with the classifier.

TheRatVec pipeline achieved amean 10-fold-crossvalidation accuracy of 0.672 (0.701
on the positive class, 0.647 on the negative class). The necessary code to reproduce the
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Figure 4.4: Sentences represented by their two first principal components obtained via
the RatVec approach. The positive class refers to the sentences containing
perfect doubling. Best seen in color.
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Class Nr. sequences Ratio
EI 767 25%
IE 768 25%
Neither 1655 50%

Table 4.4: Class distribution of the splice-junction DNA sequences dataset

results can be found on Github3. The generated vector representations allow the vi-
sualization of the represented sentences: similar sentences (according to the applied
similarity function) are mapped to vectors close to each other in their vector space. Fig-
ure 4.4 shows the two first principal component analysis for the RatVec classifier colored
according to their class. This visualization provides some insights. By checking the rep-
resented sentences, the first principal component (x-axis) seems to be correlated with
sentence length. In fact, a Pearson’s correlation of -0.62 (calculated with the sentence
length measured as number of tokens) validates this observation (shorter sentences
tend to appear rather in the right-hand side of Figure 4.4). This can be explained by
the applied 2-spectrum kernel. It indirectly makes sentences ”distinguishable” by their
number of tokens since the longer the sentences are, the more likely they are going to
common bigrams with other sequences. Sentences containing perfect doubling (posi-
tive class) are on average longer than the rest, which helps to distinguish them from the
rest based on their length (Schraagen, Wall, and Brito, 2020).

The results from Table 4.3 show that simpler models such as Naive Bayes and Logis-
tic Regression generally perform better than the more complex models such as neural
networks and the RatVec approach. The RatVec system was trained on the Corpus Spo-
ken Dutch, which is rather different from the language used in the historical sources of
the Shared Task. Training on a different, more closely related corpus is likely to result
in improved performance. None of the proposed models provide straightforward ways
to explain the predictions of the classifier, limiting the possibilities of gaining linguistic
insights from the models. However, feature and error analysis has shown a linguis-
tic approach of analyzing the examples of perfect doubling based on classifier results
(Schraagen, Wall, and Brito, 2020).

4.5.4 Splice Junction Recognition on DNA Sequences

In this section, we demonstrate the application of RatVec to recognize splice junctions in
DNA sequences. We utilized the ”Molecular Biology (Splice-junction Gene Sequences)
Data Set” from the UCI Machine Learning Repository (Lichman, 2013)4. The dataset
contains DNA subsequences consisting of 30 characters from the four nucleobases (A,
T, C, G), along with four other characters (D, N, S, R) indicating ambiguity. Each se-
quence might contain a splice junction between the first 30 and the last 30 characters.
The sequences are classified into three classes: exon/intron boundary (EI class), in-
tron/exon boundary (IE class), or neither (N class). The class distribution is presented

3https://github.com/ebritoc/clin30_ratvec
4https://archive.ics.uci.edu/ml/datasets/Molecular+Biology+(Splice-junction+Gene+

Sequences)
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d k
1 3 6 10 14 19

Polynomial kernel (degree 2)
1 57.21 55.49 58.46 61.91 62.54 62.07
2 73.98 76.18 79.31 79.78 81.03 80.72
3 92.16 92.63 93.42 93.57 94.51 93.89
4 91.22 92.32 93.10 93.26 93.42 93.42
5 90.44 92.63 93.10 93.26 93.89 93.89
6 89.66 92.79 93.42 92.95 93.57 94.04
7 90.75 92.48 92.95 93.57 93.57 94.51
8 90.13 93.57 93.89 93.89 93.89 93.89
9 90.13 91.22 92.95 93.73 94.67 93.57
10 89.50 91.69 92.16 92.95 93.42 93.42

RBF kernel (σ = 0.72)
1 52.66 56.11 59.09 58.78 61.44 60.19
2 70.06 75.24 74.92 77.12 76.18 76.49
3 90.60 90.44 90.28 91.38 92.01 92.32
4 92.79 93.42 94.04 93.26 93.26 94.04
5 92.32 92.79 93.26 94.04 94.20 93.89
6 91.85 92.79 93.42 93.89 92.95 93.26
7 90.91 93.42 93.89 94.04 93.73 93.73
8 90.13 92.16 93.42 93.57 92.95 93.42
9 88.87 91.22 92.16 93.89 94.67 94.04
10 88.87 91.85 92.63 93.26 92.63 91.54

Table 4.5: Mean accuracy in % predicting splice junctions with k nearest neighbors and
d principal components applying different kernel functions. Several results
beat the baseline system KBANN (93.68% mean accuracy).

in Table 4.4.
To calculate the similarity function as defined in Equation 4.14, we considered all

n-grams and assigned an equal weight to all terms:

αi =

{
1/58, i ∈ {2, · · · , 59}
0, i /∈ {2, · · · , 59}

(4.15)

We trained k-NN classifiers on the computed representations to predict the class of
each DNA sequence. The prediction performance, summarized in Table 4.5, reveals a
mean accuracy of 94.67% with two different kernels. This performance surpasses all
baseline systems provided with the dataset, including the knowledge-based artificial
neural network (KBANN) (Noordewier, Towell, and Shavlik, 1991).

The explainable character of our classification pipeline allows to understandwhyour
approach is best-performing by just visualizing the generated representations. Figure
4.5 plots our DNA sequence embeddings using the RBF kernel with σ = 0.72 and seven
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Figure 4.5: Visualization of our embeddings generated from the DNA sequences with
RBF kernel, σ = 0.72 and seven principal components. Our dataset con-
sists of DNA subsequences represented as 30 characters out of the four nu-
cleobases (A, T, C, G) plus other four characters (D, N, S, R) which mark
ambiguity. The sequences may contain a spline junction between the 30
first and the 30 last characters. They are thus labeled with three different
categories depending if they contain exon/intron boundary (EI class), in-
tron/exon boundary (IE class) or neither (N). Only their first three compo-
nents are plotted. Best seen in color.

principal components, illustrating a clear differentiation between the three classes.

4.5.5 Protein Family Classification

In this task, we classify protein sequences to their corresponding families with the same
Swiss-Prot dataset as stated by Asgari and Mofrad, 2015, containing 7,027 protein fami-
lies and 324,018 protein sequences5. The system is evaluated for each protein family by
10-fold cross-validation on a balanced dataset consisting of all amino acid sequences of
the family and as many randomly sampled sequences from all other families.

Weproduce protein representationswith 25 dimensions applying our approachwith
bigram and trigram similarity and train a nearest neighbor classifier (1NN). We gen-
erate our representative vocabulary by taking the shortest sequence of the 1,000 most

5http://dx.doi.org/10.7910/DVN/JMFHTN
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Dataset BioVec (baseline) RatVec (bigram sim.) RatVec (trigram sim.)
n = 1000 0.94 0.94 0.91
n = 2000 0.93 0.93 0.91
n = 3000 0.92 0.93 0.91
n = 4000 0.91 0.93 0.91
All families 0.93 0.93 0.91

Table 4.6: Accuracy of RatVec in different subdatasets compared to BioVec Asgari and
Mofrad, 2015 on datasets consisting of the top n families and on the full
dataset.

n = 1000 n = 2000 n = 3000 n = 4000 All families
SVM 1NN SVM 1NN SVM 1NN SVM 1NN SVM 1NN
0.94 0.94 0.93 0.94 0.92 0.93 0.91 0.93 0.93 0.93

Table 4.7: Accuracy of BioVec representations with a SVM (Asgari and Mofrad, 2015)
and a KNN classifier on the top n families and on the full dataset.

frequent protein families. We evaluate this pipeline in the same setting as Asgari and
Mofrad, 2015. We report theweighted average accuracy results in Table 4.6. Also, the re-
sults of the evaluation limited to subsets of the full dataset are presented (e.g. sequences
belonging to the 1,000 most frequent protein families).

The results fromTable 4.6 show that our approachwith the bigram similarity reaches
the same accuracy as the baseline and or even outperforms it when we restrict the
dataset to the first 3,000 or 4,000 most frequent protein families. Given that the reported
BioVec representations are four times longer than ours, our approach to encode proteins
demonstrates higher space efficiency, providing comparable performancewith a signifi-
cantly reduced representation size. Additionally, our representations are explainable in
the sense that proteins with similar sequences get assigned close vectors in the output
vector space.

In contrast to Asgari and Mofrad, 2015, we do not train any support-vector machine
(SVM) but a 1NN classifier. To assess the impact of the different classification algo-
rithm, we evaluate a pretrained BioVec model 6 with our setup. The results from Table
4.8, showing that 1NN is more suitable than SVMs for this task, are in line with our
previous experiments on classification tasks using distributed vector representations,
where simple algorithms such as KNN and logistic regression outperform more com-
plex ones such as random forests or neural networks (Brito, Sifa, and Bauckhage, 2017;
Brito, Sifa, Cvejoski, et al., 2017).

4.6 Conclusion and Future Work

We showed that our approach involving rational kernels on KPCA for vector space em-
beddings provides rich representations for different kinds of sequences, including text,

6https://github.com/kyu999/biovec
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Dataset SVM 1NN
Top 1000 families 0.94 0.94
Top 2000 families 0.93 0.94
Top 3000 families 0.92 0.93
Top 4000 families 0.91 0.93
All families 0.93 0.93

Table 4.8: Accuracy achieved by BioVec representations as reported by Asgari by train-
ing a SVM (Asgari and Mofrad, 2015) compared to training a KNN classifier

DNA, and proteins. Our results are comparable to state-of-the-art approaches in various
tasks. Nonetheless, our approach is comparatively advantageous for real-world appli-
cations: on one hand, it makes use of simple KNN classifiers enabling explainability and
reducing complexity compared to other existing neural network models; on the other
hand, we back our framework by connecting it to the existing theoretical work about on
indefinite learning and rational kernels. We only set the constraints on the user-defined
similarity function that can be used for our approach to work: they have to be rational
kernels.

In future work, we aim to learn optimal similarity metrics (modeled as transducers)
that, incorporated in our presented approach, solve a particular task.
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Chapter 5

Explainable Text Classification via
Semantic Similarity From
Foundation Models

Throughout previous chapters, we have examined the opaque nature of neural clas-
sification models and the issues it presents. An alternative can consist of a similarity-
based (KNN-like) classification pipeline, since similar items can explain how themodel
classifies. We explored this option in Chapter 4 using rational kernels to measure the
similarity between two entities. In this chapter, we derive the similarity metric from
foundation models aimed to capture semantic textual similarity. Although the partic-
ular models that we experiment within our setting are models mostly designed for in-
formation retrieval tasks, we can adapt them for classification. An advantage of such
a similarity-based pipeline is that we can combine the explanations for each classifica-
tion of the form ”an element x is classified as C because similar elements belong to this
class” while incorporating the capabilities of foundation models. This implies relaxing
our goal to have models with low resource consumption.

In this chapter, we start measuring the performance gap between of a similarity-
based classification pipeline with a more standard neural baseline classifier. We con-
tinue with a first attempt to close the measured gap via fine-tuning on the classifica-
tion task. We conclude proposing an explanation method applicable to the mentioned
similarity-based approaches and discuss its potential in the context of trustworthy in-
formation retrieval.

65
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FOUNDATION MODELS

5.1 Assessing the Performance Gain on Retail Article Catego-
rization at the Expense of Explainability and Resource Effi-
ciency

In this section, we explicitly assess the ”trade-off” triangle presented in Section 1.1,
specifically within the context of product cataloging for online shops. The content is
adapted from the work presented by Brito, Gupta, et al., 2022, where the author of this
dissertation served as the first author. As such, the authorwas responsible for designing
the experimental framework, executing the experiments concerning the topic models
and the SBERT models, and drafting the manuscript.

5.1.1 Introduction

The online shopping expansion from the last years has led to a more varying product
offer so that an automated product cataloguing process is necessary when the man-
ual maintenance becomes unsustainable. This generally involves solving a multi-class
(eventuallymulti-label) text classification task based on the product descriptions, which
is challenging due to the often very skewed label distribution: few categories are domi-
nant, appearing on a majority of products, while many categories hardly appear on few
products. This power-law distribution that appears on many NLU tasks can be extreme
on some datasets. While the current Transformer-based approaches can achieve aston-
ishing results even in such challenging settings, these mainly consist of very large mod-
els, whose complexity may be problematic for real-world implementations. Not only
are the implementation-related costs and unexpected high energy consumption gener-
ally ignored by machine learning practitioners (García-Martín et al., 2019), but also the
current best performing models normally run on specialized hardware (mostly GPUs
or TPUs) to obtain results in a feasible time. This requirement limits the access to these
models andmay also be responsible for a significant carbon footprint (Strubell, Ganesh,
and McCallum, 2019). Even ignoring training time, the computational complexity dur-
ing the inference phase may be an issue when it introduces extra latency on web appli-
cations, eventually deteriorating user satisfaction. Furthermore, black-box models are
difficult to inspect when issues arise (”why this unexpected label for this product?”).
We present exactly such an use case where our client required a low-resource solution
where some categories must not be confused (e.g. ”sex toys” must not be misclassified
as ”toys”).

We perceive for this particular use case an example of the ”trade-off triangle” pre-
sented in Section 1.1: we have three aspects that we cannot fully achieve at the same
time when choosing a classification model architecture: performance, explainability,
and low resource requirements. In this work, we aim to quantify the performance gap
between black-box transformer-based methods and more lightweight explainable mod-
els. For the former, we deliberately omit to experimentwith current state-of-the-art deep
networks for extreme multi-label classification. Instead, DistilBERT (Sanh et al., 2019),
usually performing slightly worse than its transformer-based competitors while being
significantly more compact, can act as a ”ceiling model” for the presented alternatives
in this work. In parallel, we evaluate a KNN-based classification pipeline trained on a
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set of various text representations of different degrees of computational complexity and
explainability, including topic models and neural language models. We find this frame-
work explainable since we can trivially show the neighbors (the most similar product
descriptions) as explanations for every classified article. We test our pipeline on two
retail article categorization datasets of different complexity and compare it with Distil-
BERT. Although we observe the expected performance gap, the difference is hardly rel-
evant on the simpler dataset while we measure much larger CPU times for DistilBERT.
We also consider the explainability aspect, questioning the suitability of huge neural
networks as standard option when they need to be run in a production environment.

5.1.2 Related Work

Recent proposals for text classification are generally transformer-basedmodels (Vaswani
et al., 2017). In the particular case of multi-label classification, various deep learning
models are state of the art (Bhatia et al., 2016). All these models share a lack of ex-
plainability. In the broader context of (text) sequence classification, some approaches
rely on similarity measures to a set of prototypes (Pluciński, Lango, and Stefanowski,
2021; Hong, Baek, and TongWang, 2021; Brito, Georgiev, et al., 2019). Although there is
no consensus to measure interpretability in machine learning (Molnar, 2020), we find
these approaches as inherently explainable since the computed similarities can serve as
explanations for the model decisions. Our presented similarity-based classifier fits to
this class of models but we rather focus on evaluating existing representation learning
methods within our framework. We also evaluate the runtime-related cost, which only
partially correlates to model complexity i.e., to less explainability.

5.1.3 Experiments

Data

German Product Migration (GPM) is an internal dataset used to automate the prod-
uct cataloging process for a retail online store, where certain run time and explainability
requirements were requested. Each article contains a title and a description in German
and is assigned a label from a three-level category hierarchy. For our experiments, we
focus on the 599 categories belonging to the deepest level, ranging from clothing and
accessories to health and personal care. Figure 5.1 shows the very skewed label distri-
bution.

AmazonCat-13K is an extreme multi-label classification dataset provided by Ama-
zon. It consists of product reviews taggedwith≈ 13K product categories. The train split
has 1.186.239 instances and the test split has 306.782 instances. In Figure 5.2 we provide
visualizations of the distribution of the number of labels associated to input texts, the
distribution of the number of positive training instances per label and the distribution
of the document lengths measured using a DistilBERT-tokenizer.

Methods

Nearest Neighbor
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Figure 5.1: Label frequency distribution and tokens per document from GPM.

Figure 5.2: Distribution of active labels, label frequency, and number of tokens per doc-
ument from AmazonCat-13K.

We vectorize each article title and description with a common dimensionality to
make them comparable (512 for GPM, 768 for AmazonCat-13K, both determined by
the pretrained models we use). Each represented article from the test set obtains the
label(s) from the training set article whose vector representation is closest according to
cosine distance. The respective vector is derived from the following four methods.

Latent Dirichlet allocation (LDA) (Blei, Ng, and Jordan, 2003). We train a topic
model from the word tokens marked as (proper) nouns by the spaCy POS tagger (Hon-
nibal et al., 2020) using the de_core_web_sm model for GPM and en_core_web_sm for
AmazonCat-13K.

Anchored CorEx (Gallagher et al., 2017). We train two topic models with the same
preprocessing pipeline as for LDA. The first one is trained in a purely unsupervised
fashion. The other by assigning 10 anchor words to start the topic model training. We
automatically generate anchor words by finding the words that have the highest mutual
information with each label, as proposed by Jagarlamudi, Daumé III, and Udupa, 2012.
In the case of the AmazonCat-13K, we restrict this procedure to the 768 most frequent
labels.

FastText (Bojanowski et al., 2017). We train a fastText embedding model for each
dataset, whose obtained article representations are based on the average of k-gram fea-
tures.

SentenceBERT (SBERT) (Reimers and Gurevych, 2019). We transform each text
with a pretrainedmodel: distiluse-base-multilingual-cased-v1 forGPM, and sentence-
transformers/all-mpnet-base-v2 for AmazonCat-13K.

ML-KNNWe train aML-KNNmodel (M.-L. Zhang and Zhou, 2007) on the already
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by the previous methods computed vector representations with the scikit-multilearn
implementation (Szymański and Kajdanowicz, 2017). For each of the produced repre-
sentations, we run a 3-fold cross-validation on 100,000 random articles from the training
set to determine the number of neighbors k and the smoothing parameter s.

DistilBERT We fine-tune a DistilBERT model. The architecture is given by Distil-
BERT as the encoder and a linear decoder with fan-out to all labels, activated with sig-
moid and loss function given by binary cross-entropy. The forward pass of the complete
architecture is given by

xid, xattn ←− DistilBERTTok(x),
out←− Pool(DistilBERTθ(xid, xattn)),

out←− GELU(W1out+ b1),

out←− GELU(W2out+ b2),

out←− GELU(W3out+ b3),

out←− BCE(σ(out), ŷ)

(5.1)

for input text x andmulti-label binarized target ŷ ∈ {0, 1}L whereL denotes the number
of distinct labels. The DistilBERT-tokenizer returns the input-ids and the attentionmask
xid, xattn of x. These are fed into the transformer and the hidden state of the [CLS]-token
is pooled. Afterwards the hidden state is fed through 3 linear layers with biases each
of which is activated with GELU (Gaussian error linear unit) (Hendrycks and Gim-
pel, 2016). The final logits are activated with sigmoid σ and the loss function is given
by binary cross entropy as usual for multi-label classification problems. The linear lay-
ers are initialized with Xavier initialization (Glorot and Bengio, 2010) and have shapes
(768, 2048), (2048, 1024) and (1024, L). For training we used smart padding and mixed
precision (Benesty, 2020). The idea is to sort train and test examples into batches such
that elements in batches have a similar length. Afterwards the batches are padded dy-
namically which means that each element is padded to the longest length inside the
batch or truncated to the tokenizer max length Tmax if the element is longer than Tmax.
This gives a computational speed-up since it reduces the expected number of [PAD]-
tokens during training compared to dynamic padding. This results in faster time until
convergence.

Evaluation

Metrics
We evaluate each method applied in the single-label classification setting (GPM

dataset) on the F1-score, both micro-averaged and macro-averaged on all the classes.
For the multi-label setting (AmazonCat-13K), we include not only the widespreadmet-
rics P@k (precision at k) and nDCG@k (normalized discounted cumulative gain at k)
with k ∈ {1, 3, 5} but also their propensity-scored variants PSP and PSnDCG to better
assess the performance on the less frequent classes as proposed in (Jain, Prabhu, and
Varma, 2016), taking the default propensity values A = 0.55, B = 1.5. We also measure
the training time and prediction time of each method when running on a single CPU.
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Table 5.1: Performance on the GPM
dataset.

Method F-1 score
Macro Micro
avg. avg.

Nearest Neighbor
+ LDA 0.65 0.90
+ CorEx 0.69 0.92
+ Anchored CorEx 0.69 0.91
+ SBERT 0.87 0.97
+ FastText 0.66 0.94
DistilBERT 0.92 0.98

Table 5.2: Training and prediction time with
AmazonCat-13K on an Intel® Xeon®

Gold 6226R CPU @ 2.90GHz.

CPU time (in min.)
Method Training Prediction
Nearest Neighbor 0.05 156
MLkNN 5,000 930
+ LDA + 1,370 + 25.8
+ (Anchored) CorEx + 1,880 + 5.22
+ SBERT + 01 + 29.2
+ FastText + 86 + 9.4
DistilBERT 72,0001 510

Table 5.3: Performance of the evaluated methods on AmazonCat-13K evaluated as in
Bhatia et al., 2016. Please note that nDCG@1=P@1 and PSnDCG@1=PSP@1.

Method P nDCG PSP PSnDCG
@1 @3 @5 @3 @5 @1 @3 @5 @3 @5

Nearest Neighbor
+ LDA 58.81 52.51 42.31 57.84 56.74 31.53 42.03 46.42 39.74 43.60
+ CorEx 56.10 48.47 38.76 54.45 52.94 28.19 36.37 39.96 35.21 38.33
+ Anchored CorEx 55.50 48.25 38.22 53.79 52.24 27.95 36.41 39.53 34.87 37.92
+ SBERT 75.94 67.92 55.58 74.50 73.45 41.65 55.51 62.18 52.29 57.58
+ FastText 67.98 61.54 51.18 67.42 67.31 36.81 49.50 55.96 46.63 51.81
MLkNN
+ LDA 60.93 50.87 39.62 39.62 54.36 31.89 39.86 42.57 38.24 40.93
+ CorEx 56.27 49.09 38.95 54.67 53.19 28.30 36.96 39.96 35.37 40.17
+ Anchored CorEx 55.93 48.52 38.51 54.11 52.62 28.17 36.64 39.84 35.09 38.21
+ SBERT 80.14 71.25 57.10 78.14 75.97 42.78 56.88 62.54 53.60 58.32
+ FastText 75.56 65.53 51.73 72.49 69.93 38.94 50.35 54.30 47.95 51.71
DistilBERT 95.91 82.21 66.60 90.99 88.93 55.48 68.05 74.98 65.59 71.22

Results
The performance results of the evaluated methods are displayed in Table 5.1 for the

GPM dataset and in Table 5.3 for the AmazonCat-13K dataset. As expected, the neural-
based methods perform better on both datasets than the topic models. In particular,
DistilBERT performs best on all evaluation metrics. However, the performance gap is
reduced on the GPM dataset, especially on micro-averaged precision. We also observe
that ML-KNN brings some performance improvement compared to the nearest neigh-
bor baseline, although the gain is limited in several metrics, in particular when applied
to the least performing topic models. We can see the training and prediction time of the
different methods in Table 5.2. As expected, DistilBERT takes the longest CPU time.

1We omit the needed time for the pretrained model due the given CPU-only setting.
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5.1.4 Discussion

The results seem to confirm the hypothesized triangular trade-off: the most complex
model (DistilBERT) outperforms by a large margin the simpler interpretable models
(LDA and CorEx), while those in between in terms of explainability (SBERT some-
what more interpretable than DistilBERT due to its similarity-based nature) or regard-
ing computational complexity (FastText) achieve intermediate results. However, the
performance gap is notably smaller in the single-label classification setting of the GPM
dataset. Since many online shops do not handle datasets as complex as AmazonCat-
13K but rather like GPM, we question the convenience of applying the best performing
available model by default disregarding significant computational and implementation
costs. In some cases, the precision gain separating these models from ”cheaper” models
is not relevant. The combination of SBERT with a KNN-based classifier may be a good
trade-off: it can perform close to the best model while keeping explainable predictions
(an article gets a label because similar articles have that label). FastText can also be
an option in setups where no GPU is available. Moreover, there are still open options to
increase the accuracy of the explainable framework. For instance, the SBERT representa-
tions do not incorporate the label information from Amazon-Cat-13k as DistilBERT did
during training. Hence, we may easily improve the SBERT-backed model by just fine-
tuning it. This is in line with some authors claiming that there is not always necessarily
an accuracy-explainability trade-off when standard processes for knowledge discovery
are followed (Rudin, 2019). Although using anchor words within anchored CorEx im-
proved nomodel on any dataset (probably because of the anchor selectionmethod), we
value the possibility of selecting anchor words to control how specific topics are built
for use cases where sensitive categories must not be confused.

5.1.5 Conclusion and Future Work

We evaluated several text representations on two datasets for retail product categoriza-
tion within an explainable similarity-based framework. We compared themwith a pure
neural-based baseline not only on classification performance but also on the required
training and prediction time. We additionally discussed the trade-off between obtain-
ing a good performance, having some degree of explainability, and keeping the required
computational resources low depending on the application. For future work, we plan to
fine-tune an SBERT model on Amazon-Cat-13K by assigning product pairs a similarity
score. We also envision a systematic model robustness inspection for specific sensitive
labels. Enforcing separations via anchorwordsmay turn anchoredCorExmore valuable
than our work showed.
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5.2 Fine-tuningSentenceTransformers for SimilarityBasedMulti-
label Text Classification

We showed in Section 5.1 how an SBERT model can be used for a similarity-based clas-
sification pipeline and achieve close to state-of-the-art results while keeping some de-
gree of explainability. In this section, we aim to close the performance gap between
the SBERT-based pipeline and the pure Transformer-based models by fine-tuning the
SBERT model on a classification task. This section is based on the results obtained af-
ter supervising the Master’s student Mahnaz Mirhaj in the scope of the Lab Development
and Application of Data Mining and Learning Systems: Data Science and Big Data during the
winter semester 2022-2023 at the University of Bonn.

5.2.1 Introduction

Transformers are often considered the top-performing models for text classification, as
they excel at capturing the contextual relationships between words and phrases within
a sentence or document (Devlin et al., 2019). Their powerful capabilities stem from
understanding these relationships within the full context of the text. However, as we
noted in 5.1, their functioning as a black-box model can make it difficult to interpret
how they generate their predictions or encode semantic information in sentences. In
this work, we aim to provide a more transparent approach to text classification by using
semantic similarity as our model explanation: ”a document is assigned specific labels
because the most similar documents in the training set have them”.

We build upon the framework presented by Brito, Gupta, et al., 2022 (also exposed
in Section 5.1) and fine-tune an SBERT model based on the idea that documents with
similar labels are likely to be related. Using the shared labels of documents, we construct
characteristic vectors and compute cosine similarity scores between them as a measure
of similarity. With this fine-tuned SBERTmodel, we generate sentence embeddings and
train a KNN model to perform the classification task. We then evaluate our approach
and compare our results with those obtained from the original SBERT model. By incor-
porating label information from the training dataset and using semantic similarity as
our model explanation, we aim to achieve a high-performing explainable model.

To this end, we experiment on the AmazonCat13k dataset and evaluate our results
using the Precision@k and nDCG@k metrics.

5.2.2 Experiments

Data

We conducted our experiments on the AmazonCat-13k dataset (Bhatia et al., 2016),
which consists of product reviews and their associated labels from the “Amazon.com”
website. This dataset spans across 13,000 different product categories and contains
1,186,239 instances in the training split and 306,782 instances in the testing split.
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Pipeline

We executed the following pipeline to conduct our experiments:
(i) Preprocessing: To preprocess the AmazonCat13k dataset, we downsampled the

training data to 10% (118,623 documents), selecting them based on the number
of shared labels. Since the objective is to incorporate label information in creat-
ing text embeddings and many of the documents share 0 labels which leads to 0
cosine similarity. We utilized 1% of the down-sampled documents due to com-
putational resource limitations. We calculated the characteristic vectors and the
cosine similarity for each pair of the selected documents.

(ii) Fine-tuning SBERT: Using the sentence-transformers Python library (Reimers
and Gurevych, 2019), we fine-tuned the SBERT model over 1,000 training doc-
uments. We trained the model by feeding it document pairs and their cosine
similarity as the similarity score. We used the all-mpnet-base-v2 model as the
SBERT model, which maps documents to a 768-dimensional dense vector space.
We trained the model in 2 steps using a batch size of 5. We used warm-up steps
of 20 and the cosine similarity loss function. No further hyperparameters were
tested due to the limited availability of computational resources. With the fine-
tuned model, we computed the embeddings over the entire dataset for the train
and test split.

(iii) KNN model: Due to memory limitations, we randomly chose 3,500,000 training
documents and fed their embeddings and labels to a KNNmodel using the scikit-
learn (Pedregosa et al., 2011) implementation for a prediction task. We evaluated
the model with over 15,000 validation documents and predicted their labels. In
the embedding space, we chose the k documents whose embeddings were closest
to the embedding of the validation sample based on cosine similarity. Based on
majority voting on the k neighbors predicted label(s), the KNNmodel assigned la-
bel(s) to the validation sample. Based on our evaluation results, we identified 4 as
the optimum number of neighbors. Additionally, we chose the KDTree algorithm
for the KNN model as it is efficient in memory.

Evaluation

We evaluate our pipeline on the following evaluation metrics for multi-label classifica-
tion:

• nDCG@k (normalized Discounted Cumulative Gain at k), a metric used to eval-
uate the quality of a ranking algorithm. The nDCG@k score ranges from 0 to 1,
with 1 being the best possible score. nDCG@k is based on DCG (Discounted Cu-
mulative Gain) which measures the quality of a ranking algorithm based on the
relevance scores of the items in the ranked list. nDCG@k is defined as

nDCG@k =
DCG@k
IDCG@k , DCG@k =

k∑
i=1

2reli−1

log2(i+ 1)
, (5.2)

where reli is the relevance score of the item at position i and IDCG@k is the ideal
DCG at position k. That is the maximum possible DCG@k score for the list, calcu-
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Table 5.4: Evaluation Results

Metric Fine-tuned SBERT Model Original SBERT Model
P@1 90.56 82.95
P@3 89.11 84.15
P@5 82.68 79.96
nDCG@1 77.08 75.63
nDCG@3 68.89 64.59
nDCG@5 63.51 59.97

lated by sorting the list by relevance score and taking the DCG@k of that sorted
list. We used a scikit-learn implementation to compute nDCG@1, nDCG@3, and
nDCG@5 to determine how relevant the predicted labels are to the documents.

• Precision@k (p@k), a metric used to evaluate the effectiveness of a search or rec-
ommendation algorithm by measuring the proportion of relevant items in the top
k results. In other words, it measures how many of the items at the top of the
list are relevant to the user query or preferences. We sorted the predicted labels
based on themost frequent ones. The intersection of the top-k predicted labels and
true labels was divided by the total number of predicted labels for each validation
document to compute the p@k. The reported p@k is the mean p@k.

Results

Table 5.4 displays the performance outcomes of the evaluated methods. As expected,
the KNN classifier which is trained over the fine-tuned model embedding results per-
forms better on all evaluation metrics than the pretrained SBERT model on the Ama-
zonCat13k dataset.

5.2.3 Conclusion and Future Work

In this work, we demonstrated how incorporating label information in the SBERTmodel
can increase its performance and create an explainable model for multi-label classifica-
tion tasks. Our results demonstrate that fine-tuning the SBERTmodel on a small subset
of training data that includes label information, and subsequently using the resulting
embeddings in a KNN model, can lead to improved performance with respect to preci-
sion and nDCG metrics. This suggests that there is not necessarily a trade-off between
performance and explainability in classification pipelines.

However, due to computational resource limitations, we could only fine-tune the
SBERT model on a relatively small number of training samples, and future work could
investigate the performance of this approach on larger datasets. Additionally, since
the labels in the AmazonCat13k dataset are skewed, we suggest exploring weighting
schemas such as TF-IDF for the label information to further enhance the pipeline’s per-
formance. Overall, this work highlights the potential benefits of incorporating label
information in SBERT models for multi-label classification tasks.
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5.3 MaxSimE: ExplainingTransformer-basedSemantic Similar-
ity via Contextualized Best Matching Token Pairs

As discussed in the previous sections, KNN-based classification pipelines employing
contextualized text representations not only deliver competitive performance, but inher-
ently provide an explanation for each classified item. This explanation takes the form
of ”X is classified as category C because the most similar items are labeled as such”.
This section is an adaptation of the work presented by Brito and Iser, 2023, where we
dig deeper into this kind of explanations and inspect if we can also explain the under-
lying semantic similarity by finding token pairs that are most similar when computing
the similarity between two texts.

5.3.1 Introduction

Modern ranking systems often depend on pre-trained languagemodels to compute rep-
resentations for queries and documents (Paaß and Giesselbach, 2023). Because of the
black-box nature of the large deep neural networks theymostly rely on, thesemodels are
not suitable when the user requires some explanation to trust the system or to correct it
when its output is erroneous (Beckh et al., 2023). Among the recent Transformer-based
(Vaswani et al., 2017) approaches, ColBERT (Khattab and Zaharia, 2020) introduces a
late interaction mechanism to a pre-trained BERT model (Devlin et al., 2019). This ad-
ditional layer is used to calculate a similarity score between a query and a document
by matching each token vector representation from the query to the closest document
token representations, summing them all into a global similarity score. This sum of
similarity scores over query terms is similar to more standard ranking methods such
as BM25 (Robertson, Zaragoza, et al., 2009) and we can exploit it to generate expla-
nations about the similarity score. Under the hood, this so-called MaxSim operation
matches each query token to the most semantically similar document token within their
respective contexts. Since we can compute the cosine similarity between any two token
representations, we can show the matched tokens by decreasing order of similarity i.e.,
by decreasing contribution to the global similarity score, so that we can visualize why
a retrieved document is (not) similar to the input query. Since the BERT tokens are
mostly (sub)words, the matched token pairs can be interpretable terms that are found
to be similar.

In this work, we provide examples of where these matches seem informative and
discuss the limitations of their interpretability. Additionally, we extend this approach
to more ’standard’ BERT-basedmodels and compare the resulting explanations to those
obtained fromColBERTv2. Our contribution onMaxSim-basedExplanations (MaxSimE)2
is twofold:

(i) We propose an explainability method for Transformer-based semantic similarity,
whose fidelity is maximal when applied to models fine-tuned via late interaction
such as ColBERTv2 (Santhanam et al., 2022). Visualizing the contextualized best
matching tokens can help to confirm a highly ranked document or to hint at some

2Source code available on https://github.com/fraunhofer-iais/MaxSimE
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model failure e.g., paired tokens wrongly contributing to a high similarity score.
(ii) We intrinsicallymeasure the correctness ofMaxSimE takingColBERTv2 as a proxy

for the ground truth to discuss the settings where our explanations are most in-
formative while considering their limitations as well.

5.3.2 Related Work

From the wide spectrum of available explanation methods (Beckh et al., 2023; Burkart
and Huber, 2021; Molnar, 2020), feature attribution aims to identify the important fea-
tures or terms that contribute to a particular result. Among them, Local Interpretable
Model-agnostic Explanations (LIME) (Ribeiro, S. Singh, and Guestrin, 2016) is a popu-
lar method that has been adapted for information retrieval tasks (J. Singh and Anand,
2019; Verma and Ganguly, 2019). More recent approaches focus on generating explana-
tions that consider not only individual retrieved documents but also the context of the
entire search result list to provide more coherent and diverse explanations (Yu, Rahimi,
and Allan, 2022). While all these approaches provide post-hoc explanations, whose
fidelity to the ranker cannot be guaranteed, we focus instead on an explainable by ar-
chitecture approach. Formal, Piwowarski, and Clinchant, 2021 report how BERT-based
representations implicitly capture term importance and how the ColBERT fine-tuning
approach amplifies this effect, improving the retrieval results. Our approach explicitly
exploits this fact to generate explanations highlighting thematched terms and their con-
tribution to the similarity score. Some frameworks focus on inspecting ranking models
by evaluating on diagnostic datasets to detect global properties of the tested ranking
models (MacAvaney et al., 2022; Câmara and Hauff, 2020; Rau and Kamps, 2022). They
progress towards a better understanding of why contextualized word embeddings out-
perform traditional term-based IR methods. Our approach does not aim to analyze
model behavior as a whole like them but rather explain a similarity score i.e., to provide
local explanations. Calculating semantic similarity based on token embeddings is not a
new idea and it has been explored to rank documents (Xiong et al., 2017). However, we
do not aim to build a ranking model from the computed similarity scores but to explain
existing models instead.

5.3.3 MaxSimE

MaxSimE is a method to generate local explanations for document retrieval systems
using language models from which the semantic similarity between two tokens can be
measured by the cosine similarity between their vector representations. Its purpose is to
provide insights into why a document was retrieved given a query by highlighting the
tokens in both the query and the document that contribute the most to their similarity
score. We adopt the notation from Santhanam et al., 2022 and define a similarity func-
tion Sq,d between a query q of N tokens and a document d ofM tokens as the summa-
tion of query-side MaxSim operations, namely, the maximum cosine similarity between
each query token embedding and all document token embeddings (implemented as
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Query Embeddings

q1
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qN

maxMj=1 qi · dj

Document Embeddings
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d4
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dM

Figure 5.3: Visualization of the MaxSim operation. Each embedding represents a token
created by the BERT tokenizer. Given a query q and a document d, for a
query embedding qi, MaxSim selects the closest document embedding dj .
When the represented query token is an interpretable term, this is equivalent
to finding the most semantically similar term appearing in d, represented by
the document embedding dj .

dot-products assuming normalized embeddings):

Sq,d :=
N∑
i=1

Mmax
j=1

Qi ·DT
dj
, (5.3)

where Q is a matrix of N vectors encoding q and D a matrix of M vectors encoding d,
being each vector an embedding of a token.

We match each query token to the most similar document token (given a context)
according to the MaxSim operation, as displayed in Figure 5.3. Formally, given a query
embedding qi, our matching function fmatch returns the document token embedding dj
with the highest dot product to qi:

fmatch(qi) := argmax
dj

qi · dj , (5.4)

i ∈ J1..NK, j ∈ J1..MK

Applying ourmatching function to all embeddings from a query results in a list of token
pairs with the highest similarity according to the cosine similarity of their respective
embeddings. These token pairs with their respective similarity scores (computed from
their dot product) construct an explanation about ”why” document dj was retrieved
given qi as a query.
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5.3.4 Experiments

Data

Our experiments are performed on the LoTTE benchmark, a collection of questions and
answers sourced from StackExchange. The benchmark covers a wide range of topics,
includingwriting, recreation, science, technology, and lifestyle (Santhanam et al., 2022).
To pair documents, we use ColBERTv2 to rank the documents, and we select the top-1-
ranked document for each question.

5.3.5 Fully Faithful Explanations from ColBERT-based Models

We apply our approach first to a ColBERTv2 model to generate explanations. The first
observed explanations seem to be informative from a qualitative point of view, as seen
in the example from Table 5.5. The fidelity of the explanations is maximal because Col-
BERTv2 scoring is directly reliant on the sum of query side MaxSim scores, and the
similarity function has been optimized through fine-tuning, thereby givingmore signif-
icance to the best matching token pairs. In addition, these explanations come at no cost,
since theMaxSim scores for each query token are already computed in the retrieval pro-
cess. Considering that ColBERTv2 approaches state-of-the-art level according to most
of the metrics from the BEIR benchmark for dense retrieval (Thakur et al., 2021), we
assume these explanations to be our ”gold standard” for further experiments.

Explanations from Other BERT-based Models

We generate explanations with our approach from other BERT-based models that were
not fine-tuned with a late interaction mechanism like ColBERT. We aim to confirm if
these explanations are trustworthy andwe thus compare the resulting explanationswith
those extracted from ColBERTv2 as in Section 5.3.5, assuming the latter as the reference.
As shown in the example from Table 5.5, the matched tokens partially coincide with
those obtained from the ColBERTv2 model although the contribution of the token pairs
to the similarity score differs to a greater extent. Performance-wise, generating explana-
tions for non-ColBERT architectures involves N ·M cosine distance computations (see
Equation 5.3).

Evaluation

Despite the absence of ground truth and user feedback, we aim to evaluate the cor-
rectness of our explanations extracted from several BERT-based models by comparing
them with the ColBERTv2 explanations we generated in Section 5.3.5, which we take as
a proxy for a ”gold standard”. Let T be the number of correctly retrieved document to-
kens, P the number of retrieved query/token pairs according to the gold standard, and
N the number of query tokens. For each query document, we evaluate the following
metrics on the Top-1 document retrieved by ColBERTv2:

(i) Token precision: T
N
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Table 5.5: Matched tokens from the query ”Why do kittens love packets?” and first
ranked document by the pretrained ColBERTv2 model. MaxSim was per-
formed on ColBERTv2 and S-BERTbase, sorted by descending similarity score.

Query ColBERTv2 S-BERTbase

Token Token Score Token Score
why because 0.874 because 0.911
kitten [D] 0.809 cats 0.891
##s they 0.756 they 0.874
[CLS] [CLS] 0.728 [CLS] 0.843
do which 0.722 to 0.848
love love 0.694 love 0.912
packets boxes 0.485 dart 0.787
? boxes 0.466 means 0.843

(ii) Matching accuracy: P
N

(iii) Spearman’s rank correlation of the matching token scores with the gold standard.

Notice that the matching accuracy is a stricter variant of the token precision since the to-
ken precision just measures howmany of the expected document tokens were retrieved
(independent from the query tokens they were matched to), whereas the matching ac-
curacy only counts thematcheswhere the tokens are correct both from the query and the
document side. The Spearman’s rank correlation is intended to capture the similarity in
terms of ranking query tokens.

We compare the explanations from twomodel architecture classes: Cross-Encoders,
which use a regression head to compute the similarity of two input texts directly; and
Bi-Encoders, which produce one embedding per document either by Mean/Max Pool-
ing token embeddings or by selecting the [CLS] token embedding so that the simi-
larity of two texts is measured by the cosine similarity of the respective embeddings.
Bi-Encoders therefore also use a late-interaction mechanism for similarity estimation
whereas Cross-Encoders are fully attention-based. We analyze the effect this has on the
generated explanations. ForCross-Encoderswe choose theMSMARCOpretrainedTiny-
BERTandMiniLM-L6model, providedby the sentence-transformers library (Reimers
and Gurevych, 2019). For Bi-Encoders we compare the S-BERTbase model with its dis-
tilled variant DistilBERT and with the MiniLM-L6 model.

Results

We first analyze the explanations generated by both ColBERTv2 and the Bi-Encoder S-
BERTbase. Table 5.5 shows token matching pairs of both models. Qualitatively, we can
observe that both explanations match similar document tokens to the query. Partially
these matches coincide between the two models. From Figure 5.4 we can observe a
noticeable difference in absolute score values, especially in the ranking of the matching
token pairs. In comparison, S-BERTbase yields higher scores for query tokens ranked
lower by ColBERTv2. Furthermore, the score values produced by ColBERTv2 exhibit a
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Figure 5.4: Cosine similarity distribution of the top 8 ranked query tokens for each
query from the LoTTE dataset.

greater degree of variance, especially for these lower-ranked tokens. We assume that
this is due to the fine-tuning of ColBERTv2 token representations with theMaxSim late-
interaction mechanism, which forces the model to also perform a fine-grained ranking
on the token level.

When evaluating the correctness of our explanations on non-ColBERT models, we
observe that token precision is generally high across most models (as displayed in Ta-
ble 5.6). All metrics have high variance, which suggests that the quality of the explana-
tions is highly dependent on the query sentence. Especially the matching accuracy and
ranking of the tokens are inconsistent throughout the dataset. For the smaller model
MiniLM-L6, we see that the Bi-Encoder variant provides explanations closer to our gold
standard. This could be explained by the fact that the late-interaction mechanism used
in sentence transformers (especially with mean pooling) is more similar to the MaxSim
operation than the regression head in Cross-Encoders.

Discussion

We observe that, although the non-ColBERTmodels were not trained using theMaxSim
operations, the generated explanations largely alignwith those ofColBERTv2, as demon-
strated by the example in Table 5.5. The similarity between the explanations suggests
that they similarly capture term importance, in line with previous white box analysis on
ColBERT (Formal, Piwowarski, and Clinchant, 2021). Considering that the ranking per-
formance does differ, we guess that the different similarity value distributions assigned
to the matches have a noticeable impact on the global similarity score and thus on the
ranked documents. The distributions in Figure 5.4 illustrate how ColBERTv2 weights
with significantly higher similarity scores for the most semantic relevant terms than the
rest of the tokens, whereas the similarity score difference among embeddings coming
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Table 5.6: Similarity of explanations from BERT-based models to our ColBERTv2 gold
standard measured by token precision (TP), match accuracy (MA), and
Spearman’s rank correlation (SR).

Model TP MA SR
Bi-Encoders

S-BERTbase 0.730± 0.153 0.471± 0.213 0.427± 0.380
DistilBERT 0.740± 0.163 0.444± 0.212 0.349± 0.386
MiniLM-L6 0.664± 0.149 0.411± 0.200 0.473± 0.376

Cross-Encoders

TinyBERT 0.749± 0.158 0.446± 0.204 0.391± 0.343
MiniLM-L6 0.387± 0.233 0.307± 0.192 0.270± 0.284

from BERTbase is clearly less differentiated. Despite this, the high token precision (dis-
played in Table 5.6) implies that non-ColBERTmodels frequentlymatch the same tokens
as ColBERT.

Although we demonstrated how we can generate meaningful explanations for both
ColBERT and other BERT-based models using the MaxSim operation, we acknowledge
two main limitations of our approach: the limited faithfulness to the model for non-
ColBERT architectures and the limited interpretability of some explanations because of
the contribution of the [MASK] tokens to the similarity score.

First, our explanations from non-late-interaction-based models i.e., Bi- and Cross-
encoders (Reimers and Gurevych, 2019), cannot guarantee faithfulness to their respec-
tive ranking models because their computed similarity usually comes from either a
regression head or from the cosine similarity of [CLS] or mean pooled embeddings.
Although Cross-Encoder models may achieve better evaluation scores, their computa-
tional cost is much higher, becoming impractical for most setups. Hence, we favor late
interaction models for ranking not only because of their efficiency on ranking tasks but
also because we can extract fully faithful explanations from the underlying language
model. Second, (Khattab and Zaharia, 2020) use [MASK] tokens within the ColBERTv2
model for query expansion. These non-interpretable tokens are also included in the
late-interaction scoring mechanism, leading to best-matching token pairs that cannot be
explained in a meaningful way. Depending on the length of the query, these [MASK]
tokens make up for up to 62% of the final score of the retrieved document. Nonethe-
less, Lassance et al., 2021 show that these special tokens can be safely removed without
affecting model performance in a significant way.

Finally, we could only evaluate the correctness of the explanations extracted from the
different models by comparing them to our ColBERTv2 gold standard, which we con-
sider confirmed when they correlate but we cannot discard otherwise. Other explain-
ability aspects such as plausibility (Jacovi and Goldberg, 2020) are yet to be assessed
as well. Despite the limitations, we find our first exploratory results promising and we
hope to motivate more work towards trustworthy information retrieval.
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5.3.6 Conclusion and Future Work

We leveraged the MaxSim operation from the ColBERT approach to generate explana-
tions for the documents retrieved by the ranking system, based on the most relevant
document tokens that match those of the query. We also demonstrated that our method
can be applied to other BERT-based models, although we cannot guarantee its fidelity
for those models. The correlation between the explanations generated by the different
models confirms that our proposed method can provide insights into the underlying
model, and can be used as a proxy to evaluate explanation correctness. Our presented
method enables ”explanations for free” i.e., without needing to learn any explanation
model, from similarity functions constructed upon BERT-based language models. Our
proposed approach may have applications beyond information retrieval e.g., text classi-
fication use cases where unfaithful explanations from black-box models are not accept-
able andwhere a similarity-based classifier can be usedwithout a dramatic performance
loss compared to the best-performing black-box deep learning model (Brito, Gupta, et
al., 2022); or even less related areas where Transformer-based models can deal with a
concept of semantic similarity such as computer vision (C. Zhang, Liwicki, and Cipolla,
2022).

In future work, we aim to systematically compare the ranking performance of dif-
ferent BERT-based models with our evaluation results, including additional evaluation
criteria and benchmark datasets where ColBERTv2was not fine-tuned. From amore ap-
plied perspective, we also plan to apply our approach to domain-specific settings e.g.,
information retrieval on legal texts to support lawyers finding previous similar legal
cases when facing a new one, which is an opportunity to assess the plausibility of our
explanations.
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Chapter 6

Conclusion

This chapter provides a summary of the thesis, discusses the main results obtained, and
outlines possible research directions to be pursued based on this work.

6.1 Summary

The thesis began bypresenting the triangular trade-off thatMLpractitioners face: achiev-
ing maximum accuracy, explainability, and resource efficiency simultaneously is chal-
lenging.

Chapter 3 displayed three use cases where we used evaluation as a mean to achieve
trustworthy systems: semantic segmentation for autonomousdriving systems, language
modelling for sentiment analysis, and automatic text summarization. Each use case uti-
lized different evaluation methods to enhance trust in the system. For the first, an ap-
proach to validate simulation-based testing was proposed while its limitations, mainly
dependend on the quality of the available simulations, where also exposed. The ex-
periments testing German word embeddings on sentiment analysis provided some im-
plementation insights and showed the inadequacy of some intrisic evaluations. For the
latter use case on automatic text summarization, an ensemble of evaluation metrics was
combined to automatically evaluate text summaries in German, obtaining a higher cor-
relation with human judgement than well-established evaluation metrics.

Chapter 4 introduced the RatVec framework as an alternative to pure neural meth-
ods for reducing computational requirements and increasing model interpretability.
The RatVec framework generates vector representations using rational kernels within
KPCA, which were later used for classification tasks solved by a KNN classifier, mak-
ing it resource-efficient and explainable in the sense that elements are classified accord-
ing to similar elements from the training set, where the similarity is given by the ap-
plied kernel function. Competitive performance was achieved on various tasks, such
as spelling correction, DNA splice junction detection, and protein family classification.
However, the approach was limited to problems closely related to aligning finite do-
main sequences, where sequence similarity was measured using string kernels such as
edit distance-based kernel functions. To overcome these limitations, the combination of
the explainability of the RatVec framework with the rich text representations provided
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by foundation models was later explored in Chapter 5. The performance gap between
a pipeline consisting of SBERT text representations and a KNN classifier, and a pure
BERT-based classifier was measured on two datasets in the context of the product cat-
aloguing, showing that the proposed similarity-based pipeline has potential to reach
competitive performance. Encouraged by the results, the SBERT model was fine-tuned
for multi-label text classification to narrow the performance gap. Additionally, an ex-
planation method for the classifications delivered by this pipeline was proposed, which
not only showed the most similar texts as explanations but also highlighted the tokens
contributing most to the measured semantic similarity.

6.2 Discussion

Significant contributionsweremade towards enhancing trustworthiness in the use cases
presented inChapter 3. For semantic segmentation in street scenes, the ability to identify
whether simulation-based testing performs similarly to testing on real data was demon-
strated. This transferability of testing results is essential when obtaining sufficient real
data is challenging. The key point of this use case was to detect model failures on sim-
ulated data that would have occurred with equivalent real data. The results showed
a high correlation in mIoU when comparing the results between testing on simulated
and real data. However, a rule learner could easily identify whether errors were made
on synthetic or real data. The performance of the rule learner dropped significantly on
synthetic data with higher quality, suggesting that validating simulation-based testing
may be feasible when the quality of the simulations is sufficiently high.

The fine-tuning of German word embeddings for sentiment analysis, a use case that
provided valuable insights at the time of its publication, also gave us the opportunity to
critique the use of intrinsic evaluation metrics. However, with the emergence of foun-
dation models, the current relevance of these results is somewhat limited.

In the automatic text summarization use case, an evaluation metric that correlated
better with human judgment thanwell-establishedmetrics like ROUGEwas developed.
Thismetricwas also to some extent interpretable, as it consisted of an ensemble of differ-
ent summarization aspects. This result is significant because summarization methods
are often considered ”better” if they outperform previous models on established met-
rics, which continue to be standard despite criticism.

We extended previous work on rational kernels to create an explainable network
comprising a representation learning part based on rational kernels and a KNN classi-
fier. State-of-the-art performance was achieved on several tasks with a significantly less
complex model and an explainable-by-design pipeline. The RatVec framework excelled
in classification tasks where data points of the same class tended to cluster based on
string similarity. Thiswas evident in tasks such as spelling correction and protein family
classification, where sequence similarity played a crucial role. However, the approach
did not perform as well in tasks where there was no obvious translation to a sequence
similarity problem, such as converting sentences to a PoS sequence for double-having
detection in historical Dutch texts. Furthermore, the experiments were limited to pre-
defined string kernels without learning the underlying similarity function, which may

84



6.3. OUTLOOK

lead to better results.
Regarding the similarity-based pipelines using representations encoding semantic

similarity extracted from foundation models, we measured the performance gap be-
tween these pipelines and plain foundationmodels fine-tuned for the task. Despite lim-
itations in the experiments, such as the generalization of results (we tested only on two
datasets for the product cataloguing use case) and the specificity of the tested methods,
the findings were consistent with previous experiences. The most complex language
model achieved the best results, but its lack of interpretability and computational costs
may not outweigh the performance advantage. Motivated by this, a SBERT model was
fine-tuned to capture semantic text similarity for multi-label task classification. The pre-
sented approach represented a preliminary step towards narrowing the performance
gap between our proposed similarity-based pipeline and competing models.

Further contributions were made to enhance the explainability of similarity-based
classification pipelines by generatingmore fine-grained explanationswith theMaxSimE
approach. These explanations not only pointed to the most similar neighbors for clas-
sification but also identified the contextualized tokens that contributed the most to the
measured semantic similarity. The explanations appeared informative, particularly for
the ColBERT case. However, their usefulness needs to be confirmed through user expe-
rience studies and their generalization to diverse datasets. Furthermore, the highlighted
tokens are mostly words obtained from a BERT tokenizer. For some use cases that in-
volve longer documents and longer queries, less granular explanations may be more
suitable e.g., by matching at sentence or paragraph level.

6.3 Outlook

The research presented in this thesis can be further pursued in several interesting direc-
tions. Firstly, a valuable line of investigation would be to explore the boundaries of the
RatVec framework by learning rational kernels from available data, as opposed to rely-
ing solely on predefined string kernels. As rational kernels are weighted transducers,
finding an approach to determine the suitable number of states and optimal weighted
transitions would be necessary. Additionally, quantifying the computational resource
savings offered by RatVec-based solutions and assessing their adjustability by varying
the rational kernel and embedding dimensionality would be essential to assess their
plausibility for production environments. Also in the context of resource-awareness,
the performance gap analysis in Section 5.1 only measured CPU time as a proxy for
resource consumption, which is a limited metric. Memory consumption and the uti-
lization of specialized hardware, such as GPUs, should also studied as well.

Closing the performance gap between similarity-based frameworks and pure neural
models can be pursued through more exhaustive fine-tuning of the semantic similarity
metric learningwith a SBERTmodel. However, this would inherently increase complex-
ity and computational resource consumption, necessitating an assessment of whether
the trade-off is justified for each specific use case.

Regarding the advancements made in explainability, while the generated MaxSimE
explanations appear promising, their usefulness and generalization to diverse datasets
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need to be confirmed through user studies. Moreover, the scope of the matched tokens
apart from the word level should be further investigated to figure out if less granular
explanations would be more suitable for each particular use case. Anyhow, conducting
user studies would provide quantitative evaluations of the extent towhich the proposed
explanation method increases trust in the system and saves user time.
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Acronyms

AD Autonomous Driving.
AI Artificial Intelligence.

BERT Bidirectional Encoder Representations from Transformers.

DNN Deep Neural Network.

KNN k-Nearest Neighbors.
KPCA Kernel Principal Component Analysis.

LCS Longest Common Subsequence.

mIoU mean Intersection over Union.
ML Machine Learning.

NLU Natural Language Understanding.

PCA Principal Component Analysis.
PoS Part-of-Speech.

SBERT
Sentence-BERT.

SVM Support Vector Machine.
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