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Kurzfassung 

Die Hypothese des effizienten Marktes (Efficient Market Hypothesis, EMH) besagt, dass 

Kursbewegungen aus Änderungen der Markterwartungen resultieren, wenn neue 

Informationen verfügbar werden. Die vorliegende Arbeit befasst sich mit solchen 

Erwartungsänderungen im Zusammenhang mit der Veröffentlichung geplanter 

öffentlicher Bekanntmachungen, die Informationen über die fundamentale Marktdaten 

enthalten. Konkret untersucht die Arbeit die Rolle von Meldungen des 

Landwirtschaftsministeriums der Vereinigten Staaten (USDA) bei der Preisfindung an 

den Agrarrohstoff- und Aktienmärkten in den letzten 15 Jahren. Die drei durchgeführten 

Studien bieten sowohl neue empirische Erkenntnisse als auch methodische Beiträge zur 

bestehenden Literatur. 

Die erste Studie untersucht umfassend die Entwicklung vorausschauender Unsicherheit 

und der Stimmung an den Mais- und Sojabohnenmärkten (erfasst durch die 

optionsimplizierte Volatilität – Ivol) rund um die Tage der Veröffentlichung vier 

wichtiger Gruppen von USDA-Berichten. Sie zeigt, dass die Berichte eine entscheidende 

Rolle bei der Reduzierung von Unsicherheit und für die Stimmung auf den Märkten im 

Vorfeld eines Ereignisses spielen. Der Umfang der Auswirkungen hängt von dem 

Ausmaß ab, in dem die Berichte den Markt überraschen, sowie von der vorher 

bestehenden Unsicherheit und Stimmung der Markterwartungen - abgebildet durch 

verschiedene Merkmale der Verteilung von Analystenprognosen vor dem Ereignis. 

Die zweite Studie zeigt, dass – obwohl die Meldungen des USDA keine weitreichenden 

Auswirkungen auf die US-Aktienmärkte haben – die Berichte signifikante Reaktionen 

auf die Aktienkurse von Unternehmen des Lebensmittelsektors hervorrufen. Die 

Richtung und der Umfang der Reaktionen hängen davon ab, wie und in welchem Ausmaß 

die unerwarteten Nachrichtenkomponenten in den Berichten die erwarteten Cashflows 

der Unternehmen beeinflusst und ob sich die Auswirkungen auf die erwarteten Cash 

Inflows (d.h. Umsätze) oder Outflows (d.h. Inputkosten) beziehen. 

Im letzten Teil der Arbeit wird eine innovative Methode entwickelt, mit der die ex-post-

Überraschungskomponente geplanter öffentlicher Bekanntmachungen aus den 

Markterwartungen vor dem Ereignis herausgelöst werden kann, ohne sich auf 

Analystenumfragen vor dem Ereignis zu stützen. Die Methode kombiniert die 

theoretischen Grundlagen der EMH mit der Flexibilität nichtparametrischer Techniken 

des Maschinellen Lernens (ML), um eine theoretisch konsistente und dennoch 

hochflexible Methode zur Extraktion von ex-ante-Marktüberraschungen bereitzustellen, 

welche in verschiedenen Marktzusammenhängen angewandt werden kann. Eine 

Anwendung auf die USDA-Berichte über die Entwicklung und den Zustand der 

Nutzpflanzenbestände (Crop Progress and Condition Reports, CPCRs) zeigt, dass die 

Methode in der Lage ist, aus einer großen Anzahl möglicher Vorhersagefehler, die durch 

den ML-Algorithmus generiert werden, effektiv den besten Proxy für 

Marktüberraschungen nach der Veröffentlichung zu ermitteln. Die Anwendung zeigt 
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auch, dass die CPCRs eine beträchtliche Menge an neuen Informationen liefern, die über 

das hinausgehen, was der Markt trotz der jüngsten Fortschritte in der Datenanalyse 

vorhersieht. Anhand der erheblichen Marktreaktionen auf diese Informationskomponente 

wird deutlich, dass der Informationsgehalt der Berichte für die Marktteilnehmer nach wie 

vor wertvoll ist. 

 

Schlüsselwörter: Marktüberraschungen, Markterwartungen, Marktunsicherheit, 

Agrarrohstoffe, Aktienmarktreaktionen, Regelmäßige Nachrichten, USDA-Meldungen, 

Maschinelles Lernen  
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Abstract 

The Efficient Market Hypothesis (EMH) states that price movements result from changes 

in market expectations when new information becomes available. This thesis focuses on 

such revisions of expectations around the releases of scheduled public announcements 

containing relevant information regarding market fundamentals. Specifically, the thesis 

investigates the role of USDA announcements in the price discovery processes in 

agricultural commodity and equity markets in the last fifteen years. The three studies 

conducted offer both novel empirical findings and methodological contributions to the 

extant literature. 

The first study provides a thorough examination of the evolution of forward-looking 

uncertainty and sentiment in corn and soybean markets (as captured by Option-implied 

Volatility – Ivol) around the announcement days of four important groups of USDA 

reports. It shows that the reports still play a crucial role in resolving pre-event market 

uncertainty and sentiment. The scope of effects depends on the extent to which the reports 

surprise the market, as well as the pre-existing uncertainty and sentiment in market 

expectations – proxied by different characteristics of the pre-event analyst forecast 

distribution. 

The second study reveals that – even though USDA announcements do not have a broad 

impact on U.S. stock markets – the reports do cause significant reactions in stock prices 

of food-sector companies. The sign and magnitudes of reactions is determined by how 

and how much the news component in the reports affects the expected cash-flows of 

firms, and whether the effect is on expected cash in-flows (i.e., revenues) or out-flows 

(i.e., input costs). 

The last part of the thesis develops an innovative method to tease out the ex-post surprise 

component of scheduled public announcements from the pre-event market expectations 

without relying on pre-event analyst surveys. The methodology combines the theoretical 

foundation of EMH and the flexibility of nonparametric Machine Learning (ML) 

techniques to provide a theoretically consistent yet highly flexible method to extract ex-

ante market surprises that can be employed in various market settings. An application to 

the USDA Crop Progress and Condition reports (CPCRs) demonstrates that the 

framework can effectively identify the best proxy for post-release market surprises among 

a large set of possible prediction error outcomes generated by ML algorithm. The 

application also reveals that the CPCRs still provide a substantial amount of new 

information beyond what the market anticipates, despite recent advancements in data 

analytics. Through the significant market reactions to this news component, it is evident 

that the informational content of the reports is still valuable to market participants. 

 

Keywords: Market Surprises, Market Expectations, Market Uncertainty, Agricultural 

Commodities, Stock Market Reactions, Scheduled News, USDA Announcements, Machine 

Learning 
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Chapter 1  
Introduction and overview of the thesis 

“…These guys had been trading millions of dollars of soybean futures contracts, yet they 

don’t recognize a soybean plant, but that’s okay. They didn’t need to know what the plant 

looked like to do their job and do it well. What they did need to know about were crop 

prices.” 

(Irwin and Peterson 2023, p. 21). 

 Motivation 

The original story (McDermott 2016) is about a man nailing a soybean plant to the wall 

of the trading pit without anyone there recognizing it. This is an illustration of the widely-

accepted view that price signals are the most condensed version of relevant information 

regarding market fundamentals (e.g., Fama et al. 1969). But which type of information is 

relevant to market participants and how the information gets embedded into price signals 

– which themselves become a secondary type of information – are long-lived subjects of 

study for many markets. Not only because the knowledge is relevant for various 

stakeholders – from market participants to academics and regulators – but also because 

of the dynamic nature of most markets, leading to the need to periodically update the 

findings for every episode with distinct market structure and environment. 

For a long time, U.S. Department of Agriculture (USDA) reports have been considered 

an important source of information regarding agricultural commodities’ supply and 

demand fundamentals (Adjemian 2012; Adjemian and Irwin 2018; Fortenbery and 

Sumner 1993; Isengildina, Irwin and Good 2006; Isengildina-Massa et al. 2008; Lehecka, 

Wang and Garcia 2014; McKenzie 2008; McNew and Espinosa 1994; Ying, Chen and 

Dorfman 2019). These USDA reports, scheduled at different periodicities, aim to provide 

market participants with timely, reliable and publicly available information, leading to 

higher information transparency and ultimately more market efficiency. Indeed, 

numerous studies confirm that the information content of the reports is valuable to market 

participants through many channels: facilitating price discovery (Adjemian and Irwin 

2018; Dorfman and Karali 2015; Hu et al. 2020), providing unbiased demand and supply 

projections (Egelkraut et al. 2003; Isengildina-Massa, Karali and Irwin 2020; McKenzie 
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2008), reducing information asymmetry (Fernandez-Perez et al. 2019; Wang, Garcia and 

Irwin 2014), resolving uncertainty (Isengildina-Massa et al. 2008; McNew and Espinosa 

1994), and so on.  Despite the extensive research already devoted in this area, several 

important issues remain unaddressed. Unravelling them makes up two main blocks of 

contributions of this thesis: empirical findings and methodology. 

1.1.1 The role of USDA reports in resolving agricultural commodity markets’ 

uncertainty and impacting sentiment; moving beyond agricultural commodity 

markets: their impact on stock market valuations 

Both the releasing processes of various USDA reports and the structure of agricultural 

commodity markets have undergone significant changes in recent time. Most remarkable 

on the USDA side is the changes in the timing of the releases of many important reports 

(e.g., World Agricultural Supply and Demand Estimates (WASDE) and Crop Production 

reports), from “before” to “during” the trading session, and from “with” to “without” pre-

release media access (Adjemian and Irwin 2020). More recently, the USDA’s National 

Agricultural Statistics Service (NASS) also makes efforts to supplement the traditional 

reports with finer-scaled geospatial datasets, of which the weekly Crop Progress and 

Condition report (CPCR) is one particular example (USDA 2021). Not only can such 

changes affect the speed and the accuracy of market judgements (Adjemian and Irwin 

2020), but the second change in particular may contribute to improving forecasting 

models that market participants use to form their expectations as well. 

On the market side, similar to the markets for other commodities and for financial 

instruments, the last decade has witnessed rapid developments of agricultural commodity 

markets in mutually reinforcing aspects. First, coming out of the commodity price booms 

2007/08 and 2011/12, there is an increasing connectedness among markets. There is 

evidence that the interdependencies are strengthened in various dimensions: cross-

country food price transmissions (Fernández, González and Rodríguez 2018), among the 

markets of different commodities (Bonato 2019; Zhang and Broadstock 2020) and 

between commodity markets and equity markets (Büyüksahin, Haigh and Robe 2010; 

Büyükşahin and Robe 2014; Cheng, Kirilenko and Xiong 2015; Tang and Xiong 2012). 

This increased integration potentially results in an expansion of the information set upon 

which market expectations are formed, and thus alter the ways in which specific news 

impact the markets on both ends. For example, one could also ask to which extent news 

about agricultural fundamentals affect stock market prices, and not only vice versa. 

Second, for major agricultural commodities such as grains and oilseeds, the tendency of 

geographical diversification continues further on the supply side. Specifically, the United 

States (USA) now account for only one-third of global corn and soybean exports and one-
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seventh of global wheat exports, as compared to more than two-thirds (of corn and 

soybeans) and one-third (of wheat) in the early 1990s (Zulauf et al. 2021). At the same 

time, the export shares of other world players such as Brazil, Argentina, and Ukraine (for 

corn), Brazil and Argentina (for soybeans), and Russia, the European Union (EU) and 

Canada (for wheat) have increased. As a consequence, it is natural to question if the 

relevance of the information about U.S. supply fundamentals released in the USDA 

reports to the market has changed amid this decentralization tendency. 

The way in which markets absorb public information can also be driven by the evolution 

of other factors, such as climate change or the rapid rise of information technology. On 

the one hand, recent research shows that as climate change progresses, weather anomalies 

occur more frequently and more extremely (Coumou and Rahmstorf 2012; Stott 2016). 

As agricultural production depends heavily on weather conditions, this tendency can 

introduce more market uncertainty, both in terms of production output (Schlenker and 

Roberts 2009) and market expectation formation (Schlenker and Taylor 2021). On the 

other hand, unceasing advancements in computer science and information technology 

have enabled the “electronification” of major exchange floors– i.e., the replacement of 

trading pits by computer-based clearing systems. For agricultural commodity markets, 

this change happened mostly around 2006-07 (Huang et al. 2022). At the same time, these 

advancements have resulted in the use of high-speed, sophisticated market analyzing tools 

for trading decisions (Karali et al. 2019; McKenzie 2008). Consequently, the market can 

be expected to be more complex in the way information is incorporated into market 

movements – as more data and techniques are available for market analysis. Indeed, the 

increasing role of high-frequency trading and algorithmic trading in price discovery and 

market volatility change is documented by recent literature (Haynes et al. 2017; Haynes 

and Roberts 2015; Raman, Robe and Yadav 2019). 

Suppose that those structural changes in market institutions and trading environment lead 

to some evolution in market participants’ information set, as well as in how they process 

and incorporate such information into trading decisions. Then, it is necessary to revisit 

the market influences of USDA reports amid these trends. Indeed, several recent studies 

have looked at the changes in certain aspects (Adjemian and Irwin 2020; Huang et al. 

2022; Karali, Isengildina-Massa and Irwin 2019; Ying, Chen and Dorfman 2019). 

However, among the issues discussed above, the literature prior to this thesis lacks 

empirical answers for two important questions. First, within agricultural commodity 

markets, how much do USDA reports still help resolve market uncertainty and impact 

sentiment, as compared to the period preceding these changes (e.g., as documented by 

Isengildina-Massa et al. (2008) and McNew and Espinosa (1994))? Second, given the 

discussion and general evidence on the strengthened connectedness between markets it 

seems a relevant question to ask to which extent we can expect that the impact of the 
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news about agricultural fundamentals released in USDA reports goes beyond agricultural 

commodity markets – in particular, to stock markets? As will be presented in detailed in 

the next Section, a large part of this thesis is devoted to addressing these crucial questions. 

1.1.2 A novel method of separating anticipated from surprise components in public 

announcements 

The second block of this thesis focuses on a long-standing puzzle in studying the 

informational value of public announcements: how to separate the news component of 

the report from the portion of the report already anticipated by the market. To date, most 

works in this topic focus on the market impact of the announcements under the basic 

assumptions of the Efficient Market Hypothesis (i.e., EMH – Fama et al. (1969)). Broadly 

speaking, EMH states that the market should only react to the news in (i.e., the 

unanticipated component of) an announcement, since its predictable component must 

have been incorporated into the price before the report’s release. However, market 

expectations are unobservable by nature, and therefore the news is also unobservable. 

Thus, any study concerned with the market impact of public announcements faces, first 

and foremost, the challenge of recovering the ex-ante market expectations about these 

announcements. 

Announcement surprises are one kind of “shock” to the market. In theory, various models 

– either parametric or nonparametric – can be considered to capture pre-announcement 

market expectations. The proxy for the shocks is then derived as the forecast errors of 

such market expectation models. 1  In practice, however, parametric models are not 

satisfactory because they require many restrictive assumptions about the functional form 

of the aggregated expectation formation process, which are not observable to the 

econometrician. This limitation manifests itself when the underlying relationship between 

the predicted information and the predictors is complex and highly nonlinear, such as (to 

take just an example on which this thesis focuses) the relationship between crop condition 

or yields and the weather. The question is then reduced to how to approximate market 

expectation nonparametrically. To that effect, it is customary among the extant literature 

to proxy for ex-ante market expectations regarding the announcement using the analyst 

forecast “consensus” (e.g.: Freeman and Tse 1992; Garcia et al. 1997; Kinney, 

Burgstahler and Martin 2002). However, as pointed out by many previous studies (e.g.: 

Chiang et al. 2019; Karali, Irwin, and Isengildina‐Massa 2019; Rigobon and Sack 2008), 

 

1 Popular methods to study price discovery such as Information Shares (Hasbrouck 1995) and Component Shares 

(Harris, McInish, and Wood 2002) are good examples of the parametric approach to separate market expectations and 

information shocks, though beyond in the context of event study for announcement effects. 
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this proxy is prone to bias, potentially due to stale information (i.e., expectation revisions 

between the survey and the announcement) and analysts’ incentives to deliberately bias 

their forecasts (see, e.g., Chiang et al. (2019) and the references therein). As a 

consequence, both market expectations and the market impact of the news (i.e., the 

difference between the announced information and market expectations) are subject to 

biases. 

Apart from the estimation of the market impact, how much information in a public 

announcement can be anticipated using the available information prior to the release is a 

relevant question in its own right. This is particularly helpful for many USDA reports 

such as the CPCRs, since their usage is not only limited to market participants but may 

also be relevant to other users outside the market such as crop insurers, policy makers, 

and agronomists (Beguería and Maneta 2020; Bundy and Gensini 2022; Schnepf 2020; 

Wardlow, Kastens and Egbert 2006).  

These considerations motivate the need to develop an alternative method to disentangle 

the unpredictable from the predictable content of the reports without resort to analyst 

forecasts. As much as advancements in information and computing technologies widen 

market participants’ information access and expand their toolkits for analysis, they also 

provide researchers of market-expectation formation with the same possibilities. One 

remarkable case is the increasing use of Machine Learning (ML) in the market analysis 

literature, especially in commodity markets (Gu, Kelly, and Xiu 2020; Ouyang, Wei, and 

Wu 2019; Roznik, Mishra, and Boyd 2023; Sirignano and Cont 2019; Xu and Zhang 

2021). Furthermore, the exploration of such information sources and toolkits for market 

research, in parallel with their utilization in trading, is essential since the ultimate goal of 

the researcher is to approximate the true market expectations as closely as possible. This 

makes up the second contribution of this thesis: an ML-based methodology for 

decomposing the scheduled public announcement into ex-ante market expectations and 

ex-post market surprises. The scope of this contribution goes far beyond agricultural 

commodity markets, as the resulting framework can be employed for many other markets, 

ranging from different commodity types to equities, bonds, and foreign exchange.  

 Research objective and structure of the thesis 

The overarching objective of this thesis is to quantify the news component of public 

information released in USDA reports, and its impact on agricultural commodity and 

stock markets for the past fifteen years. To that end, it focuses on three sets of research 

questions, corresponding to the thesis’ three main chapters. This Section presents these 

research questions and provides an overview of the thesis’ structure.  
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1.2.1 Research questions 

The thesis contributes to the extant literature by addressing the three following sets of 

research questions: 

(I) How do USDA reports impact uncertainty and sentiment in agricultural 

commodity markets in present time? 

The analysis conducted in this thesis follows prior literature (Bekaert, Hoerova 

and Lo Duca 2013; Ederington and Lee 1993; Patell and Wolfson 1979) to use 

option-implied volatilities (Ivol) as proxies for market participant’s forward-

looking volatility and sentiment, since changes in uncertainty and sentiment2 

map directly into the cost of options-based strategies (Goyal and Adjemian 

2020). Options are a financial instrument that is widely traded on commodity 

derivatives markets. They are designed to protect against, or alternatively to bet 

on, future fluctuations in commodity prices. Their risk profile is achieved 

through the right to trade the commodity at a fixed price level at a given future 

time that is different than the current price of the commodity. Thus, option prices 

(or “premia”) reflect the market valuation of this right, and thereby reflect the 

degree of forward-looking volatility expected by the market. The more uncertain 

it is for the market to gauge the future value of the commodity, the more valuable 

the option is.  

Answering this research question involves investigating different aspects of 

market uncertainty and sentiment around USDA announcement days. Previous 

works shows that, both theoretically (Ederington and Lee 1996) and empirically 

for USDA reports (Isengildina-Massa et al. 2008; McNew and Espinosa 1994), 

Ivols drop following scheduled public announcements, indicating the 

uncertainty resolution effect of the news. Whether this pattern still holds true 

after 2008 is the starting point of analysis. After finding that there is still a 

significant drop on the day of announcement, the thesis then extends the question 

to several novel dimensions to provide a more thorough understanding of the 

impact beyond previous studies: 

(i) How do Ivols evolve on the days before and after the announcement day? 

In equity market, the literature acknowledges that the impact of news – 

e.g., earning announcement surprises – can last for several days around 

the scheduled event-day (Chiang et al. 2019). Thus, there is no obvious 

 

2 In this context, sentiment can be broadly defined as the factors that causes prices movements beyond what can be 

explained by supply and demand fundamentals. See, e.g., Barberis, Shleifer, and Vishny (1998) and Baker and Wurgler 

(2006) 
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reason to assume that Ivols change following USDA announcements 

should be only a one-day event. 

(ii) To what extent do USDA announcements’ impact on uncertainty and 

market sentiment relate to from pre-event market expectations (as 

reflected in analyst forecasts)? 

(iii) On a regular (e.g., daily) basis, forward-looking uncertainty and 

sentiment in commodity market are positively driven by the uncertainty 

and sentiment in macroeconomic and broad financial market 

environment (Adjemian, Bruno, and Robe, 2017; Covindassamy, Robe, 

and Wallen, 2017; Robe and Wallen 2016). But does this relationship 

hold on USDA announcement days? That is, how do the uncertainty and 

sentiment from the broad-market environment and USDA 

announcements interact and jointly impact agricultural commodity 

market uncertainty and sentiment on scheduled USDA event days? 

 

(II) To what extent do USDA reports move stock markets in general, and food-sector 

stocks specifically? 

To date, studies about the value of USDA reports examine their impact on a wide 

range of agricultural commodity markets. But whether their impact ripples 

beyond those markets and penetrates the equity market – as reflected in the stock 

prices of publicly traded food-sector firms – has never been answered. As with 

research question (I), a comprehensive conclusion about this issue requires 

splitting it into two subproblems and investigating them in sequence: 

(i) Do USDA report releases affect U.S. stock market returns and volatility 

as a whole? Not only is the answer to this question informative in itself, 

but it also provides the direction for the investigation of the food-sector-

specific effect in the remaining part of the analysis. Asset pricing theories 

maintain that the price of a company’s stocks is the total value of 

expected future cash-flows of that company, discounted to the present 

time using appropriate risk-adjusted required return rates. Thus, a change 

in stock price can stem from changes in either cash-flow expectations or 

in discount rates, or both. Given the small fraction of food-sector stocks 

in the U.S. stock market, and the fact that many firms do not depend on 

agricultural prices, it is unlikely that USDA reports could influence the 

expected cash-flows of the whole stock market. In turn, for the reports’ 

effect to be through discount rates, it must be that market risk (i.e., risk 

that affects a major part of the whole stock market systematically) would 

be altered significantly following USDA report releases. This is also 
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unlikely. Indeed, since we find that the overall market does not 

significantly react to USDA reports, we can exclude this discount rate 

channel as well. In that case, when examining the causal paths through 

which USDA news may affect food-sector stock returns and volatility, 

one can ignore the discount rate pathway and focus solely on the 

revisions in expected cash-flows at the company level following the 

news, for firms that should be impacted – i.e., firms from the food sector. 

(ii) How do USDA announcements affect firms’ excess returns, contingent 

on the sub-sector in which firms are operated (e.g.: farm machinery, 

restaurant, food retailer, etc.) and the type of information released? 

Provided that the discount-rate pathway can be excluded, price changes 

in food-sector firms’ stock must be attributed to revisions in market 

expectations regarding the future cash-flows of these firms. However, the 

main business activities of food-sector firms are split between farms’ 

input and output markets. Thus, the same news regarding agricultural 

commodity fundamentals can impact market expectations about firms’ 

future cash-flows in different directions, depending on whether the news 

have negative or positive implications for firms’ input costs or revenues. 

Furthermore, for a given firm in a given subsector, the magnitude and 

direction of the impact should intuitively also vary with the type of 

information (e.g.: planted acreage, inventory level, etc.). Hence, without 

conditioning on these factors, one cannot make robust conclusions about 

the role of USDA announcements in the stock market for those firms. 

(III) How to disentangle the ex-ante market expectations and ex-post market surprises 

about a public announcement without resorting to analyst surveys? 

While the two previous research questions focus on empirical findings, the last 

chapter’s contribution is mainly methodological. As a practical exercise, it also 

provides a useful application to the case of CPCRs, which are released at weekly 

frequency by USDA NASS. Steps to tackle this challenge include: 

(i) Building a theoretical framework for market expectation formation, 

allowing for expectations to be revised not only through incorporating 

more information but also through updating forecasting models over 

time. 

(ii) Establishing the selection criterion to select the candidates that are most 

correlated with the true market expectations from a set of predictions. 
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(iii) Identifying a plausible information set base on which market participants 

form their expectations about the upcoming crop condition information 

released in the CPCRs. 

(iv) Generating a sufficiently large number of crop condition predictions as 

candidates for market expectations with a wide range of predicting 

accuracy using the framework developed in (i) and the information set 

identified in (iii). 

(v) Validating the selected proxies for market expectations about crop 

condition using extraneous information about the situation of crop 

production in the sample period. 

(vi) Assessing the market impact of the CPCRs for the respective period 

using the surprise proxies corresponding to the selected market 

expectation proxies. 

  

1.2.2 Structure 

The remainder of this introduction chapter is organized as follows. Section 1.3 provides 

an overview of the data and methodologies employed to answer the research questions 

and achieve our research objectives, followed by a summary of the key findings of each 

of the three main chapter in Section 1.4. Section 1.5 concludes and lays on outlook for 

future research in this topic. 

Chapters 2-4 address each of the aforementioned set of research questions/objectives 

separately, and hence are structured as independent research papers. The research paper 

presented in chapter 2 is already published as “Cao, A. N. Q. and Robe, M. A. (2022). 

“Market uncertainty and sentiment around USDA announcements.” Journal of Futures 

Markets, 42(2), 250-275. The paper addresses research question (I) by investigating the 

effect of four main groups of USDA reports (WASDE, GS, PP and AR) on option-implied 

volatilities in the corn and soybean markets around USDA announcement days. The paper 

employs both parametric and nonparametric statistical tests and Seemingly Unrelated 

Regressions (SUR). Chapter 3 constitutes a working paper pre-published as “Cao, A. N. 

Q., Ionici, O. and Robe, M. A. (2023). “USDA Reports Affect the Stock Market, Too.” 

SSRN Electronic Journal. Advance online publication.” The paper has received a “Revise 

and Resubmit” invitation from the Journal of Commodity Markets and is currently under 

revision. It deals with research questions (II). To that effect, it investigates the impact of 

news regarding agricultural commodity fundamentals released in the same groups of 

USDA reports as in chapter 2 but looks at their impact on stock prices – both in general, 

and for agriculture-related firms in particular. Conclusions are drawn based on the result 

of a set of statistical tests (both parametric and nonparametric) and unbalanced-panel 
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fixed-effect regressions. Chapter 4 is pre-published as a working paper titled “Cao, A. N. 

Q., Gebrekidan, B. H., Heckelei, T. and Robe, M. A. (2023). “Market surprises, machine 

learning and USDA Crop Progress and Condition reports.” SSRN Electronic Journal.” 

This last chapter is devoted to developing a ML-based framework in order to tease out 

the ex-ante market expectations of, and the corresponding ex-post market surprises from, 

the USDA’s CPCRs under the semi-strong form assumptions of EMH. Hence, it answers 

the research question stated in (III). It blends the flexibility and powerful predicting power 

of the nonparametric Extreme Gradient Boosting (XGB) algorithm with a theoretical 

model of market expectation revision – together with the fundamental principle of linear 

regression with error in variable – to generate a sound method of distinguishing the news 

and not-news of the crop condition ratings in CPCRs based on post-event market 

reactions.   

 Data and methodologies 

To answer these important research questions, the thesis employs a wide range of methods 

and data. Section 1.3.1 presents the datasets and the motivations behind their usage. 

Section 1.3.2 provides a brief description of the methodologies employed in every 

chapter. 

1.3.1 Data 

This thesis focuses on the impact of USDA announcements on futures and option markets 

of agricultural commodities (e.g.: corn, soybeans and wheat), as well as on stock markets. 

The datasets employed can be divided into four main groups: commodity market data, 

stock market data, Bloomberg pre-announcement analyst surveys of USDA 

announcements, and finally the geospatial data for crop condition and the information set 

used as its predictors. For chapter 2 and chapter 3, the sample period starts from 

September 2009 and ends in October 2019. For chapter 4, the sample period includes the 

planting seasons from 2015 to 2021, as the gridded dataset for crop condition is only 

available for the years since 2015. 

(I) Commodity market data are from Bloomberg. Daily constant 90-day Ivols (of 

corn and soybeans) are used in chapter 2. According to Cui (2012), the Ivol 

estimates are extracted nonparametrically from at-the-money option prices at 

the daily market close. In chapter 4, the close-to-open “new-crop” price returns 

of corn and soybeans are used to evaluate the price movements due to the news 

released in the CPCRs. Among all corn and soybean contracts traded on CME, 
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new-crop contracts are the contracts with the delivery and expiration dates due 

right after the harvest (i.e., November for soybeans and December for corn). 

(II) Stock market data are mostly from Compustat and CRSP. The study in chapter 

3 draws conclusion about the effect of the USDA reports on overall U.S. stock 

market by comparing the daily returns on the Standard & Poor’s 500 stock 

market index (SPX) – obtained from The Center for Research in Security Prices 

(CPRS) database. Filtering out the food-sector groups relies on Standard 

Industrial Classification (SIC) codes, resulting in a list of 154 food-sector firms 

with detailed information obtained from Compustat. These firms are then 

categorized further into sub-sectors based on their main activities. The 

categories include the input side of farms (e.g.: machinery, fertilizers, 

pesticides and agricultural technologies) and the output side of farms (e.g.: food 

processors, livestock producers, biofuel refiners, beverage manufacturers, etc.). 

The selection of firms into the final sample takes into account various factors 

such as mergers, acquisition and de-listings. CPRS database is then used to 

obtain the daily stock returns of the selected firms. For teasing out the 

proportion of returns stemming from the systematic risk which affects every 

stock in the market we also need the US Treasury Bill Rates (“T-bill rates”) 

obtained from Bloomberg. The VIX index – a proxy for overall uncertainty and 

sentiment in equity market used in chapter 2 and chapter 3 – is also obtained 

from Bloomberg. 

(III) Bloomberg pre-announcement analyst surveys of USDA announcements.  The 

answers to research questions (I) and (II) are drawn on an extensive set of 

important USDA reports – i.e., the World Agricultural Demand and Supply 

Estimates (WASDE), the Grain Stocks (GS), the Prospective Plantings (PP) 

and the Acreage (AR) reports. Starting from October 2009, Bloomberg has 

frequently published the results of its analyst surveys regarding these reports – 

typically a week before the scheduled release of the reports. In these surveys, 

analysts are asked to provide predictions of the key information in the 

upcoming USDA report, similar to the ways surveys are conducted for 

macroeconomic announcements, for instance the surveys about the federal 

fund rate announced after Federal Open Market Committee (FOMC) meetings 

(e.g.: Kurov et al. 2019). In the absence of an alternative proxy for pre-

announcement market expectations, the sample mean or median of the sampled 

forecasts is widely adopted to represent market consensus expectations – 

despite its limitation as will be discussed in chapter 4. Resultantly, the analysis 

in chapter 2 also makes use of the direction of this consensus figure (i.e., 

decrease or increase from previous period) to capture the general sentiment 
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(i.e., “pessimistic” or “optimistic”) in the market prior to the announcements, 

and the dispersion of the sampled forecast distribution as a proxy for the 

dispersion of the forecast distribution in the whole market. Chapter 2 focuses 

on the reported information for corn and soybeans only, whereas chapter 3 

utilizes the information for wheat as well. 

(IV) Geospatial data for CPCRs and weather variables as their main predictors. As 

mentioned previously, beside the traditional format, NASS recently introduced 

a novel gridded dataset with much finer spatial resolution (i.e., 9x9 kilometers), 

as compared to the traditional state-level tabular dataset. This dataset opens the 

opportunity to evaluate the use of fine-scale weather data to predict crop 

condition, and only then to verify the conjecture that the market can predict 

accurately the reports in advance (e.g.: Bain and Fortenbery 2017). The main 

goal in building the predicting models for CPCRs is to construct an information 

set that is (i) highly relevant for crop condition and (ii) as similar as possible to 

the information set which is available to the markets. Weather variables and 

previous crop progress and condition are the most prominent candidates for 

this purpose. Weather variables come from the daily Parameter-elevation 

Regressions on Independent Slopes Model (PRISM) weather dataset (UCAR 

2022). This dataset is at daily frequency and has a 4x4 kilometer spatial 

resolution. The predicting models fully utilize the dataset with all variables in 

it, including maximum temperature (Tmax), minimum temperature (Tmin), 

average temperature (tmean), precipitation (ppt), mean dew point temperature 

(tdmean), minimum vapor pressure deficit (vpdmin), and maximum vapor 

pressure deficit (vpdmax). Finally, the aggregation from pixel-level crop 

condition to an overall crop condition of the main production states in the US 

resorts to two additional data sources: (i) NASS Quick Stats database for the 

county-level planted acreage, and (ii) the boundary files from United States 

Census Bureau (for county and state boundaries) and from Esri ArcGIS Online 

Platform (for agricultural district boundaries). The information in these 

datasets is crucial to determine the weight of each geographical unit (i.e., 

county or state) in the overall crop condition. 

1.3.2 Methodologies 

Across all three studies conducted, theoretical analysis is the starting point and shapes the 

design of empirical strategies. 

For research question (I), the main theoretical consideration is to predict how Ivols change 

before and after a scheduled announcement. Answering this question requires going back 
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to the idea of using Ivols as a measure of market expectations regarding price volatility 

of the underlying asset in the remaining life of the option. Thus, the change in Ivols around 

an announcement ties in with how market expectations about volatility are revised around 

that time. The theoretical model developed in chapter 2 is a variant of the model of 

implied variance (IMV) introduced by Ederington and Lee (1996), which is extended to 

allow for constant-maturity Ivols (i.e., 90-day synthetic) instead of the Ivols of nearby 

options. From this model, a set of theoretical hypotheses are derived. Next, the study 

identifies suitable empirical methods to test these hypotheses, including statistical tests 

and regression analysis. Specifically, statistical tests (e.g.: paired-sample tests of 

mean/median, multiple comparisons across more than two samples) are used to determine 

the direction of Ivol changes on announcement day, and how it evolves several days 

before and after the event day (i.e., part (i) of research question (I)). To account for the 

nonnormality of Ivol changes, both parametric and nonparametric tests are employed. 

SUR is then used to address part (ii) of the research question simultaneously for corn and 

soybeans – as it is more efficient compared to Ordinary Least Squares (OLS) due to the 

existence of cross-equation correlation among regression residuals. Especially, the 

regression aims to capture the asymmetric effects of report surprises on the magnitude of 

event-day Ivol changes by separating the surprises into price-bullish and price-bearish 

surprises. For part (iii), together with the SUR results obtained previously, OLS and 

different variants of Generalized AutoRegressive Conditional Heteroskedasticity 

(GARCH) models are used to clarify the contradicting relationship between VIX and 

commodity Ivols on USDA-announcement vs. non-USDA-announcement days. 

Likewise, addressing research question (II) starts from the fundamental of asset pricing 

theory to identify the potential mechanism through which USDA announcements may 

affect stock market. Next, demand and supply theories offer guidance for hypothetical 

predictions of the direction and the degree of impact of different types of information on 

stocks in different agriculture-related subsectors. Econometric analysis is then used to test 

these hypotheses empirically. The main method to investigate subproblem (i) is paired-

sample tests, similar to those employed for part (i) of research question (I). For 

subproblem (ii), the conclusions are drawn upon both statistical tests and panel 

regressions, but using excess returns instead of raw returns. Unlike in agricultural 

commodity markets, stock prices are more strongly driven by factors related to the 

macroenvironment (i.e., the market risk). Moreover, intuitions suggest that these factors 

can have long-lasting impact, as opposed to the transitory nature of USDA news generally 

restricted to crop seasons and reporting cycles. Consequently, there is a risk of 

endogeneity (when the omitted macroeconomic condition affects agricultural inventory 

level, for example) and autocorrelation (when the impact of those factors is carried 

forward to multiple future periods). Hence, to obtain unbiased and precise estimates of 
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the impact of the announcement on food-sector firms, it is crucial to purge the portion of 

returns as reward for market risk out of the raw stock returns before analyzing the effect 

of USDA news. To tackle this problem, the study employs Capital Asset Pricing Models 

(CAPM) (Sharpe 1964; Treynor 1961a, 1961b) with rolling windows to estimate the 

expected returns induced from market risk for each trading day. The resulting excess 

returns – i.e., the difference between raw return realization and that expected market-risk 

reward – capture stock price movements due to factors that are specific to firms, to which 

USDA news belong. With a rich panel of 154 firms over 151 USDA-report events, 

unbalanced fixed-effect regressions are then used to efficiently estimate the impact of the 

news on this excess return component to address part (ii) of the research question. The 

regression analysis is carried out for the firms on the input-side and output-side of farms 

separately, as necessitated by previous discussion. 

With research question (III), building up a plausible theoretical model of how market 

participants update their expectations plays a decisive role in designing the predicting 

models to generate the candidates for market expectation and surprise proxies. In the 

context of linear regressions with measurement errors in explanatory variables, 

econometric theories then offer guidance to find the most appropriate selection criterion, 

which is used to select the best proxies among those candidates. As argued in chapter 4, 

in the absence of the true market surprises, the selected surprise proxies must be able to 

explain the more of the variation in post-announcement market returns than alternative 

surprise measures. Consequently, the R2 of the univariate linear regression of returns on 

the surprise candidates is an appropriate criterion to select the best surprise proxy. The 

combination of these two blocks results in a new the ML routine to tackle the research 

question. This novel routine is based on the nonparametric Extreme Gradient Boosting 

(XGB) algorithm, which can handle the large geospatial datasets described in previous 

Section efficiently. 

 Empirical findings 

This Section presents three sets of empirical findings of the three studies conducted in the 

thesis. In chapter 2 and chapter 3, the findings are the direct goals of the analyses 

answering research questions (I) and (II). In chapter 4, the findings are not the main focus 

and result from an application of a more general methodological framework, which is the 

solution to the challenge posed in research question (III). The scope of application of this 

framework moves beyond the CPCRs, as it can be adopted in various contexts. 

Nevertheless, altogether, the empirical findings in the three studies shed light on several 
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important angles of the value of USDA announcements that remained uncovered in the 

extant literature. 

1.4.1 USDA reports still resolve uncertainty and sentiment in agricultural commodity 

market in the period 2009-2019. 

Consistent with previous studies, the analysis shows that Ivols of both corn and soybeans 

drop significantly on the days when USDA reports are released. The constant 90-day Ivols 

in use reflect market expectations about the actual (i.e., realized) volatility in commodity 

prices within the next 90 days. Thus, the drop indicates that the expectations are revised 

downward on the event days. As the underlying theoretical model suggests, the main 

source of this revision is the removal of the event day out of the 90-day window, as it has 

then become the present day. The drop is thus evidence that the market had expected 

higher-than-normal realized volatility on the announcement day, which in turns results 

from the price discovering process. Such situation only occurs when the market as a whole 

had been confused about the fundamental information of interested and had expected that 

the released information in the upcoming report would help resolve such confusion. The 

resolution effect of USDA reports to market uncertainty and sentiment is therefore 

maintained. 

Having confirmed that there is indeed a significant drop in Ivols on the announcement 

days, the study provides further insights into the development of Ivols around those days, 

as well as the determinants of the drop. These findings correspond to the three sub-

questions of research question (I): 

(i) Both corn and soybean Ivols remain lower than normal for a week after the 

announcement. For corn, there is a slight tendency of increasing Ivol in the 

run-up to the report releases – though not statistically significant. For 

soybeans, there is no clear pattern of Ivol change before the releases of the 

reports. Hence, it is apparent that their uncertainty and sentiment resolution 

effect lasts longer than just one day. 

(ii) The extent of the effect depends on how much news the reports bring to the 

market – as compared to the pre-event market expectations, proxied by analyst 

forecast consensus. It is also contingent on the degree of forecast dispersion 

among the analysts, and the overall sentiment posed by the consensus 

forecasts. The economic and statistical significance of the effects vary with 

commodity and the type of report, but the data support a similar direction for 

both corn and soybean markets. In general, their directions of impact are 

consistent with what theories suggest. For examples, both price-bullish and 

price bearish surprises in GS reports (which indicate the current inventory 
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level) seem to drive Ivols upward likely due to stronger implications for the 

current demand and supply balance, and thus triggering more immediate price 

adjustments. On the other hand, the surprises caused by WASDE reports do 

not significantly affect the Ivol changes when they are price-bearish, but the 

data support upward moving Ivols when they are price-bullish. That said, only 

when the projected inventory level by the end of the marketing year (which is 

the key information released in the WASDE) turns out to be lower than what 

the market expected, the resolution effect is weakened according to the results. 

This is because low-inventory condition generally implies more volatility to 

be expected, whereas the effect of abundant stocks is more ambiguous (Baur 

and Dimpfl 2018; Geman and Smith 2013), and more so in a longer time 

horizon. Likewise, when the disagreement among the analysts is stronger or 

when the overall sentiment among their forecasts is more pessimistic (i.e., 

more price-bullish) compared to the previous period, the market will resort 

more to the announcement. Consequently, the announcement date can be 

expected to experience stronger price adjustments, and thus removing it from 

the Ivol window will cause a larger drop in the Ivol figure on that day. 

(iii) While forward-looking volatility in macroenvironment (captured by the VIX 

index) positively affect forward-looking volatility in agricultural commodity 

markets, USDA reports mitigate this spillover volatility on the announcement 

days. Both OLS and GARCH models confirms that the changes of Ivols are 

positively driven by the changes in VIX on a daily basis. However, on USDA 

announcement days, the drop due to the scheduled events offsets the spillover 

effect from macroenvironment. 

1.4.2 The impact of USDA reports moves beyond agricultural commodity markets and 

reaches the agriculture-related segment of US stock market in the period 2009-

2019. 

The findings corresponding to the two subproblems in research question (II) are the 

following: 

(i) The overall US stock market does not react significantly to USDA 

announcements. Statistical tests on the broad market effects focus on three 

measures: SPX index returns, the absolute values of them as a measure of 

realized volatility, and the VIX index as a measure of forward-looking 

volatility. For all three measures, the tests fail to reject the null hypothesis that 

there is a significant difference between USDA-event days and non-USDA-

event days. Thus, when examining the effect of the reports on the stocks of 



 

1.4 Empirical findings

 

17 

food-sector firms, it is plausible to exclude the discount risk as a channel 

through which the effect is materialized. 

(ii) Food-sector stocks, on the other hand, react significantly to USDA 

announcements. As argued in part (ii) of research question (II), the impact of 

USDA news on the expected cashflows of these stocks is contingent on both 

the nature of firm activities and the nature of the reported information. For 

instance, stock returns of firms on the input-side and output-side of farms 

experience contradicting impacts of the same GS surprises. According to the 

results, companies that produce farms’ input (e.g.: fertilizer, machinery, etc.), 

if the current commodity inventory is lower (higher) than expected, it 

contributes positively (negatively) to the excess returns, since it implies more 

(less) input needed to produce a larger (smaller) crop. Conversely, for firms 

that use agricultural commodities as their input, when the inventory level turns 

out to be lower (higher) than expected, it implies a potential increase 

(decrease) in input cost for them, and thus has a negatively (positively) impact 

on the excess returns. Reports about the planted acreage (i.e., PP and AR) 

positively affect the excess returns of farm-input stocks when the figures are 

lower than expected – indicating that the eased cashflow constraints for farm 

investments (due to higher commodity prices) might be more important for 

determining farms’ increasing input demand than the reduced cropping area 

in one particular year. As for stocks on the commodity-user side, the results 

are intuitive: more acreage than expected predicts lower input cost for firms, 

thereby increase firms’ profitability and consequently excess returns, and vice 

versa. For WASDE reports, the effects are ambiguous for firms on both sides 

of farms. 

1.4.3 CPCRs still generate substantial surprises to agricultural commodity markets, 

and the market significantly reacts to its surprises. 

The following empirical findings result from the application of the methodological 

framework sought in research question (III) to USDA Crop Progress and Condition 

reports.  

(i) The new geospatial dataset of crop condition is an unbiased representation of 

the state-level, tabular data in the real-time releases of CPCRs. Since we want 

to use the new high-resolution CPCR dataset to assess the predictability of crop 

condition, it is important to first verify the compatibility of this dataset to the 

traditional state-level data. The comparison reveals that the two datasets 

closely resemble each other, with negligible discrepancies for the most part of 

the sample period. Thus, it can be concluded with confidence that NASS has 
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properly reproduced the gridded condition layers from the original reports. The 

gridded data are therefore reliable for the purpose of separating ex-ante 

expectations and ex-post surprises of crop condition reports.  

(ii) Using an information set that is publicly available to market participants prior 

to the report releases, XGB algorithm is capable of predicting crop condition 

with high accuracy. For each corn and soybean crop season, the models 

generate 12,800 series of crop condition predictions, corresponding to 12,800 

unique combinations of six important XGB hyperparameters. The sets of 

values for these hyperparameters are defined to achieve a broad range of 

predictive accuracy, as there are no reasons to restrict the possible proxies of 

market expectations to be among the best predictions. Nevertheless, out of all 

prediction series for each year, the best prediction series closely approach the 

actual condition, as pair-sample tests fail to reject the null that the two are 

drawn from the same population. The second-best predictions are the medians 

of the prediction sets. 

(iii) The best prediction series are, however, not the best proxies for pre-event 

market expectations, as revealed by post-event market price movements. 

Despite that the models can generate such highly accurate predictions of crop 

condition, the log-difference errors of those best prediction series fail to explain 

the variations in post-announcement returns, as indicated by R2 of the market 

return regressions – the selection criterion proposed by the methodological 

framework. Instead, the prediction series with the errors that yield the highest 

R2 are far away from both the best predictions and the median predictions. This 

result is consistent in all years in the sample for both crops. 

(iv) Ex-post price movements do not support the conjecture that the CPCRs no 

longer surprise the public. The fact that the selected market expectation proxies 

are distant away from the best condition predictions which are highly accurate 

makes clear that the CPCRs still surprise the market substantially in the present 

time. Despite the availability of powerful forecasting tools and the accessibility 

of high-resolution weather data, the market is unable to fully anticipate the 

content of the reports before they are released. In extreme cases, the selected 

proxies indicate that the reports can surprise the market by up to 30 percent 

deviation from what had been expected. Moreover, additional information 

about the contradiction between yield forecasts and crop developments in the 

studied period lends support to the plausibility of these proxies. In general, both 

corn and soybean markets tend to be overoptimistic in anticipating crop 

condition. 
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(v) The new information released in the CPCRs still impact the market 

significantly. In the period 2016-2021, the analysis suggests that both corn and 

soybean new-crop future prices still react significantly to the news released in 

the reports, as captured by the selected surprise proxies. The direction of impact 

is consistent with supply and demand theories: a better-than-expected crop 

condition revises the expectations about crop size upward, and is thus price 

bearish, and vice versa. However, the size of effect is modest. Given that the 

estimated surprise component of the reports is non-trivial, it can be argued that 

the small market impact is not due to the predictability of the aggregate crop 

condition, but is rather due to the transitory nature of crop condition 

information, which is updated frequently throughout growing season. 

 Conclusion and outlook 

This thesis starts with the observation that several aspects of the market impact of USDA 

reports – not only on the markets of the commodities themselves but also on the stock 

market – remain unexplored. For the latter, the focus is particularly put on companies that 

either provide input for agricultural production or use agricultural commodities as their 

input. These questions are addressed by three separate studies, which comprise the next 

three chapters of the thesis. The studies contribute greatly to the understanding of the 

market impact of publicly announced information in general, as well as USDA reports in 

specific, both by empirical findings and methodological innovations. 

The first study investigates the role of USDA reports in resolving commodity market 

uncertainty and sentiment embed in option premia. If the report releases facilitate price 

discovery process, expected uncertainty and sentiment will be reduced, which can be 

observed via the drops in Ivol – the option-implied future volatility. The analysis carried 

out throughout the chapter strongly confirms this effect. It also shows, for the first time, 

that the effect lasts longer than just one day, as the report releases hold the expected 

volatility level lower than normal for up to a week afterwards. Furthermore, using pre-

report analyst surveys organized by Bloomberg as a proxy for pre-event market 

expectations, the study finds evidence that the extent of Ivol drops following the report 

releases is partially determined by the how (i.e., the direction) and how much (i.e., the 

magnitude) the reported information differs from the analyst consensus, the level of 

disagreement among the analysts, and the overall sentiment about the current situation 

(of inventory level) compared to the previous report. Finally, it also suggests that forward-

looking volatility in agricultural commodity markets are less prone to spillover effect 

from the broader financial environment – as reflected in the VIX index – on days when 

important USDA reports are released. 
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The second study examines potential impact of USDA reports on US stock market, 

especially the segment of food-sector companies. Stock returns reflect changes in either 

discount rates or market expectations about cashflows of firms. The first part of the study 

verifies that the reports do not significantly affect the whole US stock market. Thus, it 

also lends support to rule out the possibility that food-sector stocks can be affected by 

changing discount rate. Therefore, in the second part, theoretical predictions focus on the 

potential changes in expected cashflows of food-sector firms due to new information 

released in USDA reports. Results show that, indeed, when conditioning on the type of 

information released in the reports and whether firms operate on the input or output side 

of farms, USDA reports significantly affect the excess returns of food-sector companies’ 

stocks. Firms that produce input for farms experience negative (positive) excess returns 

if the released news predicts lower (higher) input demand for agricultural production. 

Reversely, USDA news positively (negatively) affects excess returns of firms that use 

agricultural commodities as their input when the news indicates that commodity supply 

is more abundant (scarcer), and hence the input costs of those firms are lower. 

The first and the second studies share a main limitation regarding the proxies for pre-

event market expectations and new information released in the reports. The use of pre-

event analyst surveys as a proxy for market expectations is widely adopted in finance 

literature, but such proxy is highly subject to measurement errors. The third study tackles 

this challenge by developing a novel ML-based method to separate the news from the 

anticipated component of public announcements without relying on analyst surveys. This 

unique framework departs from the traditional approach in previous studies in two major 

features. One, it reverses the usual procedure of identification: using market prices to 

identify the ex-post surprises and ex-ante market expectations. Among a large set of 

prediction outcomes and their corresponding forecast errors generated by the XGB 

algorithm, post-released market returns are used to determine the surprise candidate that 

explains the most variation in them. Thus, it eliminates the sources of bias induced by 

analyst surveys. Two, the models that produce the best market expectation and surprise 

proxies are allowed to be updated overtime, reflecting the market’s progress in both data 

utilization and predicting skills. Hence, it reduces further the number of arbitrary 

restrictions on market expectation formation. An application of the framework on USDA 

CPCRs shows that, contradicting to the belief that crop condition can be well anticipated 

by market participants in advance, the reports still bring a substantial amount of new 

information to the market, and thereby impact post-event futures returns of crops 

significantly. 

Since USDA reports costs tens of “millions of dollars to collect and disseminate” (Karali 

et al. 2019, p. 66), the concern that they have become redundant and thus their 
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continuation should be reconsidered is a valid one. However, the findings in this thesis 

suggest that such decision should be made with caution. The empirical findings across 

three studies deliver an important message: USDA announcements are still relevant to 

market participants, and their scope of impact is not limited to only agricultural 

commodity markets. In particular, the results of the last study clearly demonstrate that the 

market as a whole can be considerably flat-footed when anticipating the information 

released in the reports, even for a type of report whose available information set for 

expectation formation is publicly and highly accessible. 

Going forward, the thesis opens several venues for future research. The methodological 

framework developed in chapter 4 is highly applicable to many research questions which 

require an estimate of market expectations. One particular interesting question is to which 

extend option-implied volatility of agricultural commodities in major exchanges such as 

CME can help predict food price volatility in low-income countries, where local food 

prices are potentially dependent on world market fluctuations. In a world with climate 

change and increasing connectedness among markets, food price volatility can have more 

severe impacts on global food security. On the one hand, futures and option markets on 

major exchanges are operated with advanced technologies and highly liquid. On the other 

hand, local food markets in low-income countries are often faced by low liquidity and 

high transaction cost due to constraints in market infrastructures. Thus, information 

asymmetry is a more persistent problem in case of the latter. First, a better understanding 

of how and which type of information is incorporated into volatility expectations of 

market participants on option markets (as captured in Ivols) is necessary to determine 

whether the such volatility expectations are formed efficiently. Then, one can examine 

the predictive power of Ivols to the realized volatility of given local markets in various 

predicting models with different information sets and different time horizons. An analysis 

of these information sets and the ones used by option markets as well as the predictive 

performances across model variants will shed light on whether and how local markets 

response to changes in expected volatility. The investigation will potentially improve the 

predictability of local food price volatility, and thus facilitate efficient coping strategy to 

mitigate its negative impact. For such study, the insights provided by chapter 2 and the 

methodology put forward in chapter 4 are particularly relevant. 

Finally, this thesis illustrates an important caution regarding the use of ML methodologies 

for applied works and market analysis specifically, and for causal identification in applied 

economics in general. The development of the ML-based methodology described in 

chapter 4 makes clear that the ML toolbox can offer powerful techniques for 

understanding market mechanisms, especially when highly nonlinear, complex data 

generating processes are involved. Yet, their usefulness is governed first and foremost by 

a comprehensive understanding of market theories. ML can efficiently substitute other 
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quantitative methods when the research question involves prediction tasks, but it cannot 

substitute an appropriate research design giving the prediction task its purpose in the 

overall identification approach ensuring unbiasedness and consistency of the conclusions. 

Therefore, what ML methods can and cannot do for a given research problem is an 

important question to ask, but only after a conceptual framework for the analysis has been 

defined. 
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Chapter 2  
Market Uncertainty and Sentiment 

around USDA Announcements3 

Abstract: We investigate forward-looking commodity price volatility expectations 

(proxied by option-implied volatilities or IVols) around scheduled USDA reports. We 

show that corn and soybean IVols are significantly lower for several trading days after a 

report. The IVol response to a release depends on agricultural market experts’ 

disagreement and sentiment prior to the USDA report, and on the extent to which the 

USDA information surprises the market. Whereas commodity IVols are generally 

positively related to financial-market sentiment and macroeconomic uncertainty (jointly 

captured by the VIX), this co-movement breaks down on report days—with the VIX and 

commodity IVols moving in opposite directions.   

JEL classification: Q11, G14, G13, G41, Q13 

Keywords: Commodities, Scheduled News, Forward-Looking Volatility, Surprise, 

Dispersion, Market Sentiment 

  

 

3 Chapter 2 is published as Cao, A. N. Q. and Robe, M. A. (2022). Market uncertainty and sentiment around USDA 

announcements. Journal of Futures Markets, 42(2), 250-275. https://doi.org/10.1002/fut.22283 
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 Introduction 

A vast literature in finance documents that equity and bond markets react to many U.S. 

macroeconomic announcements—see, e.g., Kurov et al. (2019). In the commodity space, 

similarly, prior work shows that agricultural markets react significantly to scheduled 

USDA announcements. The latter fact supports the notion that USDA reports contain 

valuable news and help resolve disagreements among market participants regarding 

demand and supply fundamentals.  

Most of the literature investigates what happens to commodity price levels on USDA 

event days (e.g., Adjemian, 2012; Karali et al., 2019; Ying, Chen and Dorfman, 2019) or 

shows how fast the USDA information is impounded into those prices (e.g., Adjemian 

and Irwin 2018; Lehecka, Wang, and Garcia 2014). As McNew and Espinosa (1994), 

McKenzie, Thomsen, and Phelan (2007), and Isengildina-Massa et al. (2008) note, 

however, one cannot capture the full impact of the USDA reports without also analyzing 

how they affect market uncertainty and sentiment.  

Documenting that effect, and exploring for the first time its duration and its determinants, 

is our objective in this paper. We focus on corn and soybeans, because they are the two 

main U.S. agricultural commodities and also because their growing areas and crop (and, 

thus, news) cycles broadly overlap. Since changes in uncertainty and sentiment map 

directly into the cost of options-based strategies (Goyal and Adjemian 2021), our results 

have important implications not only for policy makers and academics, but also for 

commodity speculators and for the significant fraction of Corn Belt farmers who use 

options on futures to alter the exposure of a substantial part of their crop income to 

commodity price risk (Prager et al. 2020).  

In equity and bond markets, financial economists and accountants have long used changes 

in option-implied return volatilities (“IVol”) to study the impact of news on forward-

looking market uncertainty (Ederington and Lee 1993; Patell and Wolfson 1979). In 

agricultural markets, two papers by McNew and Espinosa (1994) and Isengildina-Massa 

et al. (2008) use near-dated options-on-futures implied volatilities for the same purpose.4 

We extend that prior work along several dimensions.  

First, agricultural markets have evolved massively over the course of the past two 

decades. Quantitatively, the open interests in corn and soybean options and futures are 

many times what they were 15 years ago (Robe and Roberts 2019). Qualitatively, changes 

 
4 In contrast to those studies and our paper, articles that look at market volatility around USDA events focus on realized 

volatility (captured by the variance equation in GARCH-type models or by the realized sample volatility) rather than 

forward-looking volatility. An exception is Adjemian et al. (2018), who value a missing 2013 WASDE report due to a 

U.S. government shutdown. Fortenbery and Sumner (1993) is the first study of option prices around scheduled USDA 

events. See Ying, Chen and Dorfman (2019) for a thorough review of the literature on USDA announcements.  
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that could materially impact the manner or the extent of market reactions to USDA news 

include the growth (and, later, the dominance) of electronic and high-frequency trading 

(Haynes and Roberts 2015; Haynes et al. 2017), the demise of the futures trading pits 

(Gousgounis and Onur 2018), and the influx of ever more sophisticated private 

forecasting services (Karali et al. 2019; McKenzie 2008). Our first contribution is to 

complement the early literature, which uses data from two decades ago or more (i.e., 

predating any of those developments), by investigating agricultural IVol responses to 

scheduled USDA news releases in more modern times.  

Intuitively, if “the timing, although not the content, of scheduled announcements is known 

a priori,” then the IVols should already, pre-release, “impound the anticipated impact of 

important releases on price volatility and (should) decline post-release as this uncertainty 

is resolved” (Ederington and Lee 1996, p. 513). Using an event-study methodology and 

data for four different types of USDA announcements in 2009-2019, 5 we find that the 

commodity IVols fall significantly on the USDA event day—by 2 (soybean) to 2.7 (corn) 

percent on average in our 2009-2019 sample period. While these decreases are smaller in 

magnitude than those documented by Ederington and Lee (1996) in interest rate markets, 

they are similar to the IVol drops found for corn and soybeans two decades ago by 

Isengildina-Massa et al. (2008), using data from 1985 to 2002.6   

For USDA reports that market observers generally view as the most important (which 

make up half of our sample of 151 events), we show that the average IVol drop is almost 

twice as large—3.6 (soybeans) or 5.7 (corn) percent. Furthermore, the IVol remains 

significantly lower for at least four trading days, and sometimes more than a week, after 

the event day. These results complement the finding of Adjemian (2012) and Karali et al. 

(2019) regarding the magnitude of commodity futures returns on USDA crop report days: 

they indicate that, as a group, scheduled USDA reports in recent years remain highly 

payoff-relevant to agricultural market participants.  

Second, our analysis of commodity IVols innovates by recognizing that USDA reports 

are not released in a vacuum. Precisely, we use regression analyses to establish that the 

sign and the magnitude of the post-release IVol change depend on agricultural market 

experts’ opinions in the run-up to a release.  

Ahead of all major USDA announcements, companies like Bloomberg and Reuters have 

for over a decade conducted and published surveys of market analysts’ expectations 

regarding the upcoming reports. Those news organizations typically release the details of 

 
5 We consider the monthly WASDE, quarterly Grain Stocks, annual Prospective Plantings, and annual Acreage reports. 

McNew and Espinosa (1994) look at crop production reports only; Isengildina-Massa et al.  (2008) focus on WASDE 

reports. 
6 Precisely, Isengildina-Massa et al.  (2008) find that the average magnitude of the IVol decline equals about 3 percent 

of the annualized IVol level on the day before the report release for corn, and 4 percent for soybeans. As documented 

in EL96 and in this paper, the IVol on the day before the event is higher than average. 
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their surveys in the week before the USDA announcement. We argue theoretically and, 

armed with Bloomberg survey information, provide empirical evidence that the 

magnitude of the grain and oilseed IVol responses to scheduled USDA announcements is 

significantly impacted by (i) the gap between the pre-release expert “consensus” forecast 

and the actual USDA figure (i.e., how big the market surprise is on the event day), (ii) the 

dispersion of individual expert forecasts around that consensus (which captures 

disagreements among market experts and, as such, can be seen as a proxy for pre-existing 

commodity-specific uncertainty), and (iii) the pre-release expert “sentiment.”7   

Looking first at surprises, we document that their effects are significant mostly in the case 

of inventories-related news contained in the monthly WASDE (prospective) and quarterly 

(realized) Grain Stocks (GS) reports. With the GS reports, any surprise—whether 

“bullish” for prices (when USDA figures come in lower than analysts expected) or 

“bearish” (when the USDA figures are higher than analyst forecasts)—pushes IVols 

upward significantly (ceteris paribus). In the case of the WASDE reports, the same is true 

only when the surprise is price-bullish (i.e., when the USDA announces lower future stock 

levels than the Bloomberg consensus had foreseen)—and, the more bullish the WASDE 

surprise is for prices, the more the forward-looking volatility increases. 8  Practically 

speaking, while commodity IVols generally decrease after a USDA report, the decrease 

is muted (so much so that the forward-looking volatility could actually go up) when the 

market is caught flat-footed by the USDA—all the more so when the news is bullish for 

prices.  

Next, we look at analyst dispersion, i.e., the extent to which market experts disagree about 

an upcoming report. Intuitively one would expect that, when experts are “confused” as a 

group, the USDA news would “settle the market”—resetting participants’ expectations 

and clarifying the path forward. Indeed, for the corn WASDE, the bigger the dispersion 

of pre-event analyst opinions, the more the IVol drops after the USDA release. The results 

for other corn reports and for soybeans are statistically insignificant, however, which 

suggests that dispersion matters less than surprises in agricultural markets.  

 
7 Two recent studies of USDA announcement also consider the possible roles of analyst expectations and uncertainty. 

Karali et al. (2019) use a DCC MGARCH-X model to investigate the role of report surprises on price levels and on the 

realized variance of agricultural commodity returns. We examine instead the link between prior expert opinions market 

expectations of future volatility. We look not only at whether expert forecasts were close to the actual release, but also 

at the extent to which analysts disagreed and at their sentiment (pessimistic or optimistic) prior to the news release. 

Further afield, Fernandez-Perez et al. (2019) examine the link between consensus forecast error and analyst dispersion 

on futures bid-ask spreads (which acts as a proxy for asymmetric information). Both of those recent studies posit that 

the price or bid-ask spread changes after USDA announcements can be solely attributed to the reports’ informational 

value, whereas we also control for (i) changes in macroeconomic uncertainty and financial market sentiment around 

USDA events and (ii) physical market conditions in the runup to the event. 
8 Price-bearish WASDE surprises, in contrast, do not statistically significantly modify the typical commodity IVol 

response to a scheduled announcement. 
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Finally, we tease out how the pre-event expert sentiment influences the market’s reaction 

to USDA reports. For each report, we rate the prevailing analyst consensus as 

“pessimistic” (resp. “optimistic”) when the median pre-report expert forecast predicts a 

decrease (resp. an increase) in the forecasted USDA variable compared to an objective 

past reference point. We find, in the case of Grain Stocks reports (but not other USDA 

reports), a significant negative association between the analyst pessimism prior to the 

report and the IVol drop on the announcement day. Since we already control for 

fundamentals-related news (i.e., USDA surprises) and uncertainty (i.e., analyst 

dispersion) when running the analysis, this result indicates that, when experts had been 

pessimistic about the actual level of grain inventories, the release of the GS information 

by the USDA has a stronger market-calming effect. This finding is a novel contribution 

to a large literature showing the importance of inventories to commodity price dynamics 

– see, e.g., Bobenrieth et al. (2021). 

Our third contribution is to show the importance—when assessing the impact of USDA 

news on agricultural market uncertainty and sentiment—of also controlling for 

concomitant (i.e., event-day) changes in broad financial market uncertainty and 

sentiment. Bekaert, Hoerova, and Lo Duca (2013) show that the VIX index (i.e., the 

Standard and Poor 500 equity-index option-implied volatility) captures jointly the 

uncertainty about global macroeconomic conditions and the risk aversion among 

investors. Intuitively, the same should be true in agricultural markets. In essence, insofar 

as risk aversion affects all asset classes, risk aversion levels in commodity markets should 

move at least partly in sync with equity-market risk aversion. In the same vein, given that 

the demand for physical commodities reflects the strength of the economy, uncertainty 

about the latter should also percolate into agricultural markets.  

Consistent with this intuition, Adjemian et al. (2017) show that, in the long run, changes 

in grains and livestock IVols are driven to a significant extent on a day-to-day basis by 

changes of the VIX index in the same direction. The question we ask here is whether a 

similar pattern is seen on USDA announcement days—and, thus, if controlling for the 

VIX helps separate the respective impacts of global vs. commodity-specific market 

uncertainty and sentiment. Surprisingly, we find that the IVol change on USDA 

announcement days is statistically significantly negatively related to the VIX change on 

that day. That is, while prior research shows that commodity market sentiment and 

uncertainty generally move in the same direction as the VIX, we show that this overall 

pattern is reversed on days when USDA announcements take place. Ceteris paribus, if the 

VIX increases on the event day, then the IVol drops more that day—and vice-versa.  

The chapter proceeds as follows. Section 2.2 extends Ederington and Lee’s (1996) 

theoretical model of market reactions to scheduled announcements, and draws on other 
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literature, to derive testable hypotheses. Sections 2.3 describes the data. Section 2.4 

discusses our empirical methodology. Section 2.5 presents our empirical findings. Section 

2.6 concludes and discussions possible extensions. 

 Theory and hypothesis development  

We extend the Ederington and Lee (1996, EL96 for short) model to guide our study of 

how USDA reports should affect forward-looking commodity market uncertainty and 

sentiment. 

2.2.1 Predicted IVol change before and after a scheduled USDA announcement 

As noted in the Introduction, EL96 show theoretically that the expectation of future return 

volatility embedded in the price of a given option (IVol) should, ceteris paribus, first rise 

in the days leading to a scheduled news release and then fall in the latter’s aftermath. In 

what follows, we adapt their model to predict IVol patterns when using constant-maturity 

options.  

In the EL96 model, the implied variance (IMV) on a given day t is the average of the 

daily expected variances over the remaining life of a given option, starting from day t+1. 

Option traders form expectations using all information available up to day t. Thus, the 

IMV change on the scheduled report day, say T, is the sum of two changes:  

(i) removing the expected realized variance on the event day T from the set of days 

(until the option’s expiration) that was used to calculate the IMV on day T-1 (because day 

T is now the current day and thus no longer “expected”);  

(ii) revising the expectation of volatility (or variance) of all the option’s remaining 

days to expiration, starting on day T +1. 

Regarding the second term (ii) above, EL96 argue that, depending on whether the realized 

day- T volatility is higher or lower than had been expected at T -1, market participants 

will revise upward or downward their expectations of what future realized volatility will 

be until the option’s expiration. However, “rational expectations imply that (...) upward 

and downward revisions are equally likely and the mean revision across many such 

scheduled announcements should be approximately zero” (EL96, p.517). We will return 

to this component in Section 2.2.2; for now, we can focus on the first term.  

For the first term (i) above, the core assumption of the EL96 model is that, if there is a 

scheduled announcement on day T, then on day T-1 market participants should expect 

that asset returns will be more volatile than average on day T. The intuition is that prices 
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should move a lot to react to the new information, an assumption that is indubitably borne 

out in the commodity space.9 Thus, if the maturity date of the option (whose price EL96 

use to extract volatility expectations) is fixed, then going from T-1 to T means removing 

a higher-than-normal volatility day from the expectation set in (i), which makes the 

resulting unconditional average IMV fall on day T. The same mechanics drive an increase 

in the IMV in the runup to the event day.  

Unlike EL96, we rely for our empirical analysis on constant-maturity (90-day synthetic) 

options rather than on nearby options (whose time-to-maturity, as in EL96, would instead 

decrease over time). With constant-maturity options, it is straightforward to show 

analytically that (keeping the other assumptions of the EL96 model unchanged) the IVol 

does not increase as the event day approaches but that it still drops in the aftermath the 

scheduled news release.10   

In the EL96 model and in our variant thereof, there is no theoretical reason why the post-

event IVol decrease should be a one-day affair. First, note that USDA news are 

incorporated into prices promptly (Adjemian and Irwin, 2018), so the realized volatility 

increase on which EL96 focus is limited to the event day T. Second, insofar as the USDA 

reports convey large amounts of information to agricultural market participants 

(Adjemian, 2012), one can show that a given report’s impact on part (i) of the IMV in the 

EL96 model should last for several days—until either new, non-USDA information is 

released or until a new USDA event day is included in the average (i). Our first testable 

hypothesis is thus straightforward:  

Hypothesis 1: On average, commodity IVols fall on scheduled USDA report days. This 

decrease remains statistically significant for several business days and is 

greater for major USDA reports. There is no IVol increase in the run-up to a 

USDA report. 

2.2.2 Pre-existing commodity-market beliefs and IVol response to USDA news 

As noted in the Introduction, the present paper is the first to ask whether agricultural 

IVols’ responses to scheduled USDA announcements depend on the extents to which 

market participants are surprised by the information and to which, before the event, 

experts disagreed about the upcoming release (a proxy for commodity-market 

uncertainty) and were pessimistic (a proxy for commodity-market sentiment).  

 
9 For example, Janzen and Bunek (2017) show that the realized volatility of intraday winter wheat futures prices shoots 

up right after the USDA reports. 
10 One exception is when the 90th day added is also an event day, in which case the IVol should be unaffected by the 

news release on average. There are very few such cases in our sample. While the low number of such observations 

makes it difficult to control for this caveat, including those few observations in the sample should bias against our 

finding an IVol drop on USDA days. 
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(1) Market consensus and USDA surprise  

The “surprise” is the deviation of the information in the scheduled announcement from 

pre-event market expectations. It is the unanticipated shock that leads market participants 

to revise their expectations post-event.  

As noted in Section 2.2.2 above, the surprise is zero on average in the EL-96 model, and 

so part (ii) of the IMV change on the event day T is zero. Equity, bond, and forex markets, 

however, tend to react asymmetrically to “good” vs. “bad” news. For example, Braun, 

Nelson, and Sunier (1995) find significant predictive asymmetry in both the market-wide 

and the firm-specific components of volatility for various stock portfolios. In a real-time 

analysis of U.S. dollar spot exchange rates, Andersen et al. (2003) report larger surprise-

induced conditional-mean jumps when the surprise is bad, compared to the good surprise 

case. In the same vein, Beber and Brandt (2010) investigate the respective effects of good 

vs. bad macroeconomic news in the U.S. treasury bond market: they find that bond returns 

react more strongly to bad news than to good news during expansions, and vice-versa 

during recessions.  

There is no reason to believe that commodity markets are any different. One can readily 

extend the EL96 model to account for the fact that one can sign the surprise insofar as (a) 

one has data about market expectations regarding the upcoming USDA news and (b) 

lower-than expected inventories or tighter-than-expected supply/demand balances should 

boost realized price volatility. There is a long line of research showing theoretically and 

empirically that commodity prices are more volatile during a scarcity phase than amid 

conditions of plenty—see, e.g., Geman and Smith (2013) and references cited therein. In 

the same vein, the theory of storage (Kaldor 1939; Working 1948) states that high levels 

of commodity inventories help smooth out the impact of demand and/or supply shocks 

on commodity prices and therefore smooth out price volatility.11 Defining price-bullish 

surprises as “tighter commodity supply and/or inventories or higher demand than 

expected, which should boost prices and volatility,” and price-bearish surprises as the 

opposite, one can extend the EL96 model to derive the following prediction for the event-

day IVol change conditional on the surprise:  

Hypothesis 2: The IVol response to the USDA news depends on market participants’ 

pre-release expectations. In case of a “bearish” surprise, the IVol should drop 

more on the event day than it would absent a surprise (i.e., if the market’s 

prior expectations had been met by the content of the announcement). In case 

 
11 See Baur and Dimpfl (2018) for a recent summary of that literature. 
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of a “bullish” surprise, the IVol should drop less (and could even increase) 

post-release than it does on average.12    

(2) Forecast dispersion  

Intuitively, the magnitude of the IVol change after a scheduled USDA report should 

depend on the level of disagreement between commodity market participants before that 

announcement. Studies in the equity space document a positive relationship between 

analysts’ forecast dispersion and stock price volatility around firms’ earnings 

announcements. A possible explanation is that forecast dispersion among analysts 

represents idiosyncratic risk: given that analysts are experts at their forecasted subjects, a 

high level of dispersion likely reflects uncertainty regarding the subject (Dubinsky et al. 

2019; Johnson 2004).13 If this view is shared by those who predicts future price volatility, 

then we should also expect that the pre-event volatility expectation for the event day T of 

the IMV in the EL96 model is larger when analyst forecasts are more highly dispersed, 

causing the IVol to drop more after the USDA event day T is removed from the averaging 

set—component (i) in Section 2.2.1 above—once the announcement has taken place. 

Therefore, we have:  

Hypothesis 3: Ceteris paribus, the IVol change after a USDA information release is 

inversely related to the pre-release dispersion of analyst forecasts.  

(3) Commodity-specific market sentiment  

The EL96 model is predicated upon the Rational Expectation Hypothesis, so that a change 

in volatility expectations can only be explained by the arrival of new fundamental 

information. In contrast, the behavioral economics literature suggests that changes in 

“market sentiment” can also cause a volatility reaction and that sentiment’s effect on 

market volatility may be asymmetrical: in a seminal paper, Barberis, Shleifer and Vishny 

(1998) develop a theory where “representativeness bias” causes investor to project the 

most recent news into their future expectation. As such, a negative piece of news is likely 

to be followed by other negative news, which could imply that more uncertainty ought to 

be expected for the future (and vice versa).  

 
12 Hypothesis 2 predicts that the effect of a USDA surprise is asymmetrical. An alternative intuition, which is outside 

the scope of the EL96 model, is that the IVol response is instead symmetrical: that is, if the market always becomes 

unsettled whenever it is surprised then, the bigger the surprise is, the smaller the IVol drop should be (or, in extreme 

cases, the commodity IVol could even increase after any surprise). 
13 Another view brought by the difference-of-opinion school of thought (e.g., Diether, Malloy and Scherbina 2002), 

posits that forecast dispersion is a result of diverging opinions among market participants, which brings about 

mispricing once short-sale constraints arise on the market. In the case of commodity futures markets, however, this 

argument seems moot since there are no short sales constraints. 
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Proxying commodity-specific sentiment by the degree of analyst optimism/pessimism 

about the upcoming announced information, we hypothesize that if market analysts are 

pessimistic before the USDA announcement day T about the supply/stock situation, then 

market participants should expect higher volatility on day T (compared to what it would 

be in the EL96 model), causing the IVol to drop more after day T is removed from the 

averaging set on the announcement day (i.e., from component (i) in the EL96 model). 

Therefore, we have:  

Hypothesis 4: After controlling for analyst surprise and dispersion, the magnitude of the 

IVol change depends on pre-release commodity-market analyst sentiment. 

2.2.3 Global macroeconomic environment and commodity IVol response on event day  

Hypotheses 3 and 4 look, respectively, at the possibilities that the pre-announcement 

commodity-market uncertainty and sentiment could impact the IVol response to the 

USDA news. In this Section, we turn to the possibility that changes in the macroeconomic 

environment on the event day T itself may also matter for the commodity IVol behavior 

that day.  

Recent empirical work finds that, for a wide range of commodities, IVols are impacted 

by the VIX: when the VIX increases, IVols go up—and vice-versa.14 In order to tease out 

the impact of scheduled USDA events on corn and soybean IVols, one should therefore 

control for concomitant changes in the macroeconomic and financial environments:  

Hypothesis 5: The IVol response to the USDA news depends on the VIX return on the 

event day, i.e., on concomitant changes in broad financial market uncertainty 

and sentiment. 

 Data  

We examine four groups of scheduled USDA announcements: monthly WASDE, 

quarterly Grain Stocks (GS), and annual Prospective Plantings (PP) and Acreage (AR) 

reports. Those are the main reports published by the USDA about the global grain and 

oilseed markets.  

These four sets of reports are released on 15 different USDA announcement days per year 

(except in 2013 and 2019, when there were only 14 announcement days per year due to 

U.S. government shutdowns). From September 2009 to October 2019, there are 120 

WASDE reports, 41 GS reports (of which 10 overlap with the January WASDE), 10 PP 

 
14 See Robe and Wallen (2016) in the crude oil space. See Covindassamy, Robe, and Wallen (2017) in the softs space. 

And see Adjemian et al. (2017) and Goyal and Adjemian (2021) in the livestock and grains spaces. 
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reports, and 10 AR reports. Altogether, we collect a sample of 151 USDA announcement 

days and the corresponding Bloomberg surveys for 181 reports in total. Table 2.1 

synopsizes the characteristics of the reports, including their coverage, frequency and 

timing, and key information surveyed by Bloomberg. 

 

Table 2.1. USDA Reports Overview 

  WASDE Grain Stocks (GS) 
Prospective 

Plantings (PP) 
Acreage (AR) 

Frequency Monthly Quarterly Yearly Yearly 

Timing 2nd week of the month 
2nd week of January & 

End of 1st-3rd Quarters 
End of March End of June 

Overlap 1st GS (January) 1st WASDE; PP; AR 2nd GS (March) 3rd GS (June) 

Information 

surveyed by 

Bloomberg 

Projected U.S. ending 

stock of the on-going 

marketing year 

U.S. Ending stock 

estimates as of 1st 

Dec, 1st Mar, 1st Jun 

and 1st Sep 

U.S. farmers’ 

planting intention 

for upcoming crop 

season 

Survey-based 

estimate of U.S. 

planted area for 

current crop season 

Baseline for 

Forecast 

“Pessimism” 

WASDE of previous 

month 

GS of previous year’s 

same quarter 
AR of previous year PP of current year 

Note: Table 2.1 describes the 151 USDA reports that we collect for our sample from September 2009 through October 

2019. On some dates, the USDA releases more than one report: the third row in the table (labeled “Overlaps”) explains 

which of the WASDE, GS, PP and AR reports overlap. For part of the empirical analysis (see Table 2.5), we include 

information regarding expert opinions prior to the USDA news release. The information regarding analyst opinions 

comes from periodic Bloomberg surveys of market experts. The last row of the table indicates the baseline that we use 

to characterize whether the analyst consensus about upcoming news is optimistic or pessimistic, as explained in 

Appendix 2.A.1 

 

Since September 2009, Bloomberg has conducted analyst surveys prior to each of these 

reports. Results of the surveys are released at varying times on Bloomberg News, 

typically one week before USDA release. The exact timing of the result release is not 

documented in the survey dataset, so we recover it by tracing back each release on 

Bloomberg News manually to define the event window for our analysis.  
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Our Bloomberg survey dataset contains detailed information about the forecasters who 

participated in each survey. A typical survey summarizes the opinions of about 20 

commodity analysts regarding an upcoming USDA announcement. This information 

allows us to assess the distribution of analyst forecasts and to compute both a “consensus” 

value (which we set as the median analyst forecasts) and the dispersion of individual 

analyst forecasts around the consensus.  

A few of the USDA reports overlap. Specifically, the PP (March) and AR (June) reports 

are released together with the second and third GS reports, respectively. As well, the 

January WASDE and GS reports are released simultaneously. The latter overlap might 

seem problematic, in that both reports contain information on grain stocks. However, the 

nature of the information in the two reports is different: the January GS report provides 

information on what actual stocks were as of December 1st of the previous year, whereas 

the January WASDE estimates what future stocks should be at the end of the current 

marketing year.15   

Since we are interested in forward-looking volatility, we use the constant 90-day IVol for 

CBOT corn and soybean. To match this maturity choice, we likewise use the CBOE’s 

constant 90-day Volatility index (VIX) to test Hypothesis 3. All market series, such as 

the daily VIX, commodity IVols and futures prices, as well as data on USDA 

announcements and analyst surveys, are retrieved from Bloomberg.16   

 Methodology 

In this Section, we describe the testing strategies for our hypotheses and the construction 

of the variables needed for that purpose. With Hypothesis 1, we focus on statistical 

hypothesis testing with the IVol sample around USDA announcements. We examine 

Hypotheses 2 to 5 using multivariate regressions. 

 
15 In addition to the WASDE, PP, AR, and GS reports, the U.S. Department of Agriculture also releases NASS Crop 

Production (CP) reports simultaneously with the WASDE. The NASS CP and the WASDE methodologies to produce 

crop production estimates are different—see Good and Irwin (2011). Still, the WASDE future stock projections reflect, 

in part, information about potential crop size (Isengildina-Massa et al., 2021). For this reason, our empirical analysis 

(precisely, the part dealing with the impact of analyst surprise, dispersion, and sentiment on commodity IVol responses 

to USDA announcements) focuses on the WASDE reports. 
16 A Bloomberg document authored by Cui (2012) details that company’s methodology for extracting forward-looking 

volatility estimates from at-the-money option prices at the daily market close. Ederington and Guan (2002) and Yu, 

Lui, and Wang (2010) discuss some of the technical advantages of relying on Bloomberg implied-volatility estimates. 

One major advantage, in the opinion of the present paper’s authors, is that it makes the analyses easily reproducible.  
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2.4.1 Testing Hypothesis 1: Commodity IVols decrease on the announcement day  

(1) Event-day testing. As a first step, we compare the mean and median IVols on the event 

day T against the corresponding values on day T-1. Following Isengildina-Massa et al. 

(2008), we use both a parametric paired sample t-test and a nonparametric Wilcoxon 

signed rank test to account for the nonnormality of the distribution of IVol changes. 

Denoting the IVol levels on days T and T-1 respectively as IvolT and IvolT-1, the common 

null-hypothesis of these two tests is:17 

H0: IvolT ≥ IvolT-1  against  H1: IvolT < IvolT-1 

(2) Event-window extension. Moving beyond the event-day IVol change, we seek a 

broader picture of how option-implied volatilities behave for five days on either side of 

the event. Our approach is to perform multiple comparisons of the IVol changes within 

the event window from a pre-event-window reference. By doing so, we can learn about 

the timing of any change in the commodity IVol, as well as how persistent these changes 

are.   

Extensions of the t-test and Wilcoxon test that allow comparisons of more than two 

samples include the parametric one-way ANOVA test to compare group means, and the 

nonparametric Kruskal-Wallis test to compare group medians. However, they only test 

the null that all group means/medians are equal, i.e., H0: IvolT-5 = IvolT-4 = … = 

IvolT+5, against the alternative that at least one group has statistically a significantly 

different mean or median. Without further analysis, it is not possible to know whether 

each group’s mean or median differs from the others. Therefore, we perform multiple 

comparison procedure using the Turkey-Kramer method based on the result of one-way 

ANOVA and Kruskal-Wallis test.18  

(3) Event-window and pre-event-window reference. To capture possible differences 

between the pre- and post-event IVol change patterns, we consider a window of 5 days 

before and 5 days after the USDA announcement day. A natural baseline reference to 

assess within-window IVol changes would be the period just before that 11-day window 

around the event. One complication is that, because the timing of the Bloomberg analyst 

surveys varies from one to seven days before a USDA announcement, there can be an 

overlap between the post-Bloomberg and the pre-USDA periods. To avoid such overlaps, 

 
17 The difference between the two tests is that the one-sided t-test assumes that IvolT (i.e., IvolT – IvolT-1) follows a 

normal distribution with mean 0 and unknown variance under the null-hypothesis, while the Wilcoxon signed rank test 

only assumes that IvolT is drawn from a continuous distribution that has 0 median and is symmetric around this median 

under the null. For a detailed description of these two tests, see Isengildina-Massa et al. (2008).  
18 An important motivation for using multiple comparisons (rather than simultaneously applying t-tests to every pair 

of samples) is that the rate of type-I error will be inflated in proportion to the number of pairs of groups being compared 

simultaneously. Consequently, we can no longer be sure that the probability of incorrectly rejecting the null is no larger 

than the specified  (Hochberg and Tamhane 1987). The Turkey-Kramer procedure is designed to circumvent this issue 

by using a studentized range distribution, and adjust the p-values of the pairwise test-statistics accordingly. See, e.g., 

Stoline (1981) for a review of multiple comparison methods, including the Turkey-Kramer procedure.  
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we choose as the reference (i.e., baseline) IVol the 5-day average IVol before the 

Bloomberg survey is released, denoted 𝐼𝑣𝑜𝑙. Figure 2.1 illustrates the timeline and the 

overlap.  

For each day in the window around the event day T, we calculate the percentage IVol 

change as  

𝛥𝐼𝑣𝑜𝑙𝑇+𝑖 = 𝑙𝑛 (
𝐼𝑣𝑜𝑙𝑇+𝑖

𝐼𝑣𝑜𝑙
), where 𝑖 = −5, −4, … 5 (2.1) 

We first apply one-way ANOVA and Kruskal-Wallis tests to see if there is at least one 

day in the event window when the mean or median  IvolT+i differs significantly from the 

others. If the test fails to reject the null, then no further action is needed. Otherwise, we 

feed the resulting estimated mean (or median) and standard errors into the Turkey-Kramer 

procedure to compare all possible pairs of IvolT+i and IvolT+j.  

 

2.4.2 Testing Hypotheses 2 to 5: Determinants of the IVol drop  

We regress the event-day commodity IVol change on a set of Bloomberg-survey-related 

variables (see Hypotheses 2 to 4 in Section 2.2.2), on the VIX return (our proxy for the 

event-day change in macroeconomic uncertainty and financial market sentiment—see 

Hypothesis 5 in Section 2.2.3), and on additional control variables (see Item 5 below). 

Figure 2.1. Timing of Bloomberg Analyst Surveys and Scheduled USDA 

Announcements 
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Due to the partial overlaps in the four different reports’ respective release schedules, we 

consider the impact of the four reports on commodity IVols simultaneously.  

The information of interest in PP and AR reports is similar in nature (acreage expected to 

be or actually planted in the current year). Effectively, the AR report is an updated version 

of the PP report released earlier that year. Thus, we treat the PP and AR reports as a single 

type of reports, which we call “Planted Area” (denoted PA). This approach has two 

advantages: it cuts the number of right-hand side variables, and thus increases the number 

of degrees of freedom; and it helps reduce multicollinearities among the surprise, 

dispersion, and sentiment variables related to those two annual reports, a problem that 

stems from their low frequency and the large proportion of observations for these 

variables that simultaneously have a null value. 

Formally, we estimate the following relationship:   

𝛥𝐼𝑣𝑜𝑙𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑆𝑖,𝑗 +

𝑗

∑ 𝛿𝑗𝐷𝑖,𝑗

𝑗

+ ∑ 𝛾𝑗𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑖,𝑗

𝑗

+ 𝜑𝛥𝑉𝐼𝑋𝑖

+ 𝜂𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖 + 𝜀𝑖 

(2.2) 

where 𝑖 = 1,  2, . . . ,  151  denotes the ith event day in our eleven-year sample; 𝑗 =

{𝑊𝐴𝑆𝐷𝐸, 𝐺𝑆, 𝑃𝐴} denotes the type of report; and, the  operator denotes daily close-to-

close returns (log difference) on the event day T from the previous day T-1.  

Our variables of interest include: 

(1) Surprise, Si,j. As in Couleau et al. (2020), we use the median Bloomberg analyst 

forecast as a proxy for the consensus market expectations prior to a USDA announcement. 

For report j, on the ith event in our sample, we define the “report surprise” as the 

percentage difference (approximated as a log difference) between the USDA’s announced 

value Ai,j  and the median forecast value Fi,j  in the corresponding survey:   

𝑆𝑖,𝑗 = 𝑙𝑛 (
𝐴𝑖,𝑗

𝐹𝑖,𝑗
) (2.3) 

As discussed in Section 2.2.2, we split the surprises into “bullish” vs. “bearish” surprises. 

A price-bullish surprise 𝑆𝐼,𝑗
−  occurs if the USDA announces lower stocks (WASDE, GS) 

or acreage levels (PP, AR) than had been forecasted by the market consensus (hence the 

negative superscript in our notation); a price-bearish surprise 𝑆𝑖𝑗
+ captures the opposite 

situation.   

𝑆𝑖,𝑗
+ = {

𝑆𝑖,𝑗,  𝑖𝑓 𝑆𝑖,𝑗 > 0

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   ; 

and 

(2.4) 
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𝑆𝑖,𝑗
− = {

𝑆𝑖,𝑗,  𝑖𝑓 𝑆𝑖,𝑗 < 0

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

The regression Equation (2.2) thus becomes: 

𝛥𝐼𝑣𝑜𝑙𝑖 = 𝛽0 + ∑ 𝛽𝑗
−𝑆𝑖,𝑗

−

𝑗

+ ∑ 𝛽𝑗
+𝑆𝑖,𝑗

+

𝑗

+ ∑ 𝛿𝑗𝐷𝑖,𝑗 + ∑ 𝛾𝑗𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝑖,𝑗

𝑗

+

𝑗

𝜑𝛥𝑉𝐼𝑋𝑖 + 𝜂𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖

+ 𝜀𝑖 

(2.5) 

By comparing the signs and magnitudes of 𝛽𝑗
−and 𝛽𝑗

+, we can test whether there is an 

asymmetry in the reaction of grain and oilseed volatility expectations to USDA surprises.  

(2) Dispersion Di,j. For each forecasted piece of information, we follow prior work—see, 

e.g., Fernandez-Perez et al. (2019) and references cited therein—and calculate dispersion 

as the ratio of the interquartile range (IQR) to the mean forecast:   

𝐷𝑖,𝑗 =
𝐼𝑄𝑅𝑖,𝑗

𝜇𝑖,𝑗
 (2.6) 

This approach avoids issues related to outliers, unlike the alternative methodology of 

using the standard deviation of analyst forecasts as a dependent variable.  

(3) VIX changes, 𝛥𝑉𝐼𝑋𝑖. Grain and oilseed markets are much smaller than equity markets, 

so we treat the VIX as an exogeneous variable for the purposes of this study.  

(4) Expert 𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝐼,𝑗 . Having controlled for forecasters’ expectation (through the 

surprise), pre-existing commodity-market uncertainty (through dispersion) and global 

market uncertainty and sentiment (through the VIX), we can test whether the IVol drop 

on the event day is related to other non-fundamental factors, i.e., to commodity-market 

“sentiment.” We take the “pessimism” of forecasters about an upcoming report as a form 

of prior market sentiment.19 We rate a consensus forecast as “pessimistic” when the 

median predicts a decrease in the forecasted indicator from a reference point. When it 

predicts an increase, we rate it as “optimistic”. 20  To keep things simple, we set 

 
19 This approach is related to the concept of “forecast change” pioneered by Amir and Ganzach (1998). In a corporate 

finance context, these authors show that the sign of the “forecast change” (defined as the difference between the 

analysts’ earnings forecasts and the previous actual earning of a company) is a significant predictor of the over- or 

under-reaction in forecasts. Thus, if we find that the pessimistic/optimistic tenor of the market experts’ forecasts 

statistically significantly affects the extent of the USDA-induced IVol drop, then it would be a sign that market 

sentiment plays a role in how the market reacts to the announcement.  
20 It is important to note that forecast pessimism and forecast surprise need not have the same sign. For instance, the 

surprise can be “price-bearish” when the USDA releases less “bad” information than what the analysts had predicted. 
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𝑆𝑒𝑛𝑡𝑖𝑚𝑒𝑛𝑡𝐼,𝑗 equal to 1 if the median of the analyst forecast for report j released on the 

ith event day in our sample is pessimistic, and 0 otherwise. The last row of Table 2.1 lists 

the reference point used to rate the sentiment for each type of report; Appendix 2.A.1 

provides additional details.  

(5). Regression Equation (2.5) specifies a vector of control variables including day-of-

the-week dummies, seasonal dummies, as well as a set of lagged daily returns: 

a. Seasonality. Every year, IVols in the U.S. corn and soybean markets generally 

start increasing from April to June, which coincides broadly with the U.S. 

planting phase (see Appendix 2.A.2 for a visual illustration). To capture this 

seasonal pattern, we use dummies corresponding to the main development 

phases of the U.S. crop cycle: planting (April through June), pollination (July 

and August), and harvest (September through November). The baseline 

season is the period when the land lays fallow (i.e., December through the 

following March).  

b. Day-of-the-Week. We control for the possibility that the IVol reaction to a 

USDA announcement might differ depending on which specific day of the 

week the release takes place, by including four weekday dummies (Tuesday 

to Friday).  

c. Lagged returns: for each commodity, we include 1-day lagged returns (using 

closing prices two days and one day before the ith event day) for the nearby 

commodity futures, the 90-day commodity IVols, and the VIX.  

 Results 

In this Section, we first provide a summary of the data before presenting the results of our 

empirical analyses. 

2.5.1 First look at the data 

Table 2.2 reports summary statistics for our main variables of interest, including the levels 

and returns for the commodity IVol and the VIX, the analyst surprises and dispersions, 

and the percentage forecast changes (FC)—precisely, the log difference between the 

median Bloomberg forecast and the corresponding reference point that we use to 

determine our sentiment variables (see Item 4 in Section 2.4.2). The Table provides values 

for medians, means, standard deviations (SD), minima and maxima, as well as (in the last 

column) the counts of negative observations.  

 There is a clear pattern: the median and the mean of the daily IVol return are negative on 

the announcement day, for both corn and soybeans. USDA event days with negative IVol 

returns make up more than three-quarters of the whole sample for each commodity and, 
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across all 151 USDA event days, the IVols fall by 2 (soybeans) to 2.7 (corn) percent on 

average.  

Not all USDA reports are equally important: only a good half of the 151 USDA reports 

in our sample are considered by market observers to be “big events.”21 On “big” days, the 

proportion of event days with negative IVol returns jumps from three quarters to almost 

six sevenths, and the median IVol drop is almost twice as large, averaging 3.6 (soybeans) 

to 5.7 (corn) percent. 

The event-day market surprise is small on average (in absolute terms, less than 0.4 percent 

of the median forecast for corn and less than 1.1 percent for beans) but its standard 

deviation is very large. In the case of corn, surprises tend to be bearish for prices and 

volatility (with all three types of USDA reports), whereas they tend to be bullish for prices 

and volatility in the case of soybeans.  

The pre-event median dispersion of expert forecasts is widest for WASDE reports (11.1 

percent of the average forecast for soybeans, and 6.5 percent for corn), followed by 

forecasts of the quarterly GS reports. The annual PA forecasts exhibit the least dispersion. 

These patterns hold for both corn and beans.  

Turning to expert sentiment ahead of USDA reports, the analyst forecasts are mostly 

optimistic (the only exception is the corn PA analyst forecasts), i.e., analysts tend to 

anticipate higher levels of grain stocks or planted areas compared to the (previous) 

reference point. The forecast change is largest on average in the case of the quarterly GS 

reports, for both commodities. The magnitude of the change, however, is generally small.  

Finally, both the mean and median of the VIX return are small on USDA event days, 

although the return’s standard deviation is large in the sample.  

  

 
21 Adjemian & Irwin (2018) list the “big events” for corn and soybeans as the WASDE reports released in January, 

August, September, October, and November, as well as all the Grain Stocks, Prospective Plantings, and Acreage 

reports. 
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Table 2.2. Summary Statistics 

  

 Median Mean SD Min Max No. Obs 
Obs  

< 0 

VIX 17.65 18.99 5.15 11.85 43.38 2,567 N/A 

VIX daily returns 

(USDA event days 

only) 

-0.009 -0.003 0.047 -0.109 0.184 151 88 

A. Corn        

IVol, daily 25.68 26.06 7.06 11.41 45.09 2,567 N/A 

IVol, all USDA event 

days † 
25.41 25.80 6.73 11.73 43.34 151 N/A 

IVol, big-event days ‡ 23.84 25.13 7.03 11.73 43.34 82 N/A 

Ivol daily returns, all 

days 
-2.8e-4 -2.9e-4 0.03 -0.41 0.36 2,567 1,295 

Ivol daily returns, all 

USDA event days 
-0.027 -0.032 0.053 -0.231 0.198 151 119 

Ivol daily returns, 

only big-event days 
-0.057 -0.045 0.063 -0.231 0.199 82 69 

WASDE surprise 0.004 0.006 0.077 -0.242 0.326 121 52 

Grain Stocks surprise 0.002 0.011 0.068 -0.165 0.196 41 20 

Planted Area surprise 0.004 0.007 0.018 -0.017 0.055 20 8 

WASDE dispersion 0.065 0.083 0.058 0.006 0.253 121 N/A 

Grain Stocks         

dispersion 
0.021 0.029 0.024 0.009 0.131 41 N/A 

Planted Area 

dispersion 
0.008 0.009 0.004 0.005 0.022 20 N/A  

WASDE forecast 

change§ 
0.000 -0.005 0.169 -0.621 1.008 121 58 

Grain Stocks        

forecast change 
0.010 0.010 0.189 -0.558 0.376 41 15 

Planted Area 

forecast change 
-0.001 -0.004 0.026 -0.067 0.043 20 10 
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Table 2.2 (cont.). Summary Statistics 

Note:  

Table 2.2 provides summary statistics for the main variables used in our analysis, including the event-day “surprise” 

relative to analysts’ consensus forecast prior to the event and the “dispersion” of those forecasts around the consensus. 

The last three rows of each panel are the changes compared to the baselines used to capture analyst sentiments ahead 

of the forecast. The sample runs from September 2009 through October 2019 and covers 151 USDA reports in that 

period—see Table 2.1.  

† Computed for all 151 Grain Stocks, Prospective Planting, Acreages and WASDE announcement days in the sample. 
‡ Corn and soybean “Big-event” days include the WASDE reports in January, August, September, October, and 

November (not any other), as well as all Grain Stocks, Prospective Plantings, and Acreages report—see Adjemian & 

Irwin (2018).  
§ “Forecast change” is the log difference between (a) the value forecasted by the analysts interviewed by Bloomberg 

for the upcoming USDA announcement and (b) the reference value. See Table 2.1 for a summary and Appendix 2.A.1 

for details. 

  

 Median Mean SD Min Max No. Obs 
Obs < 

0 

B. Soybean        

IVol, daily 20.43 20.72 4.63 10.87 37.23 2567 N/A 

IVol, all USDA event 

days† 
19.98 20.35 4.40 11.05 31.95 151 N/A 

IVol, big-event days‡ 19.84 20.03 4.44 11.36 31.95 82 N/A 

Ivol daily returns, all 

days 
-0.001 -4.2e-4 0.032 -0.301 0.258 2567 1337 

Ivol daily returns, all 

USDA event days 
-0.020 -0.022 0.045 -0.153 0.210 151 114 

Ivol daily returns, only 

big-event days 
-0.036 -0.032 0.048 -0.153 0.155 82 67 

WASDE surprise 0.000 0.000 0.101 -0.310 0.452 121 55 

Grain Stocks surprise -0.011 0.001 0.091 -0.346 0.265 41 26 

Planted Area surprise -0.004 -0.008 0.021 -0.078 0.034 20 15 

WASDE dispersion 0.111 0.125 0.076 0.011 0.401 121 N/A 

Grain Stocks         

dispersion 
0.036 0.047 0.030 0.012 0.118 41 N/A 

Planted Area dispersion 0.011 0.011 0.006 0.005 0.025 20 N/A 

WASDE forecast 

change§ 
0.000 0.007 0.146 -0.357 0.747 121 60 

Grain Stocks        

forecast change 
0.077 0.093 0.298 -0.623 0.821 41 11 

Planted Area  

forecast change 
0.009 0.009 0.022 -0.041 0.053 20 4 
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2.5.2 Hypothesis 1: IVols decrease on average following a scheduled USDA 

announcement 

In the first two columns of Table 2.3, we report the test-statistics for one-sided t-test and 

Wilcoxon signed rank test. For both the corn and the soybean markets, the null can be 

rejected with a high level of confidence, i.e., there is a statistically significant commodity 

IVol drop on the USDA announcement day.  

In last two columns of  Table 2.3, one-way ANOVA and Kruskal-Wallis tests show that, 

for both commodities, there are at least two days in the 11-day event window whose 

𝛥𝐼𝑣𝑜𝑙 values (where the log difference  is computed by reference to the 5-day average 

IVol value before the latest pre-event Bloomberg survey of agricultural market analysts) 

are significantly different from each other. 22  We therefore perform the multiple 

comparison procedure described in Section 2.4.1.  

The results of these multiple-comparison tests are visualized in Figure 2.2(a) (corn) and 

Figure 2.2(b) (soybeans). Table 2.4 reports the p-values of the test statistics. For both 

commodities, the patterns of the log IVol differences between (a) each of the 11 days 

around the USDA announcement and (b) the 5-day average or “normal” IVol prior to the 

Bloomberg survey are clearly dissimilar:  

• In general, corn and soybean IVols are higher than “normal” on the five days leading 

up to the announcement but, as predicted by Hypothesis 1, the increase is never 

statistically significant.23  

• In sharp contrast to that pre-event behavior, commodity IVols fall significantly on the 

USDA event day and they remain statistically significantly lower than “normal” for 

at least four trading days thereafter. Figure 2.2(a) and Figure 2.2(b) show that, for 

both commodities, the IVol gradually reverts toward its “normal” level. This visual 

observation is confirmed by the one-sided t-test, as shown in the first column of Table 

2.4.24  

In short, the empirical evidence supports Hypothesis 1. Our above results extend to the 

past decade early findings in Isengildina-Massa et al. (2008) and McNew and Espinosa 

(1994), that IVols drop significantly on the day of a USDA report release. More 

importantly, we extend those previous finding by showing that commodity IVols trend 

upward (though not statistically significantly) for several days before the USDA 

 
22 For corn, the statistical significance holds for all tests and for all events – small and big. For soybeans, the statistical 

significance is strongest for the subset of 87 USDA reports that market observers rank as “most important”—see 

Adjemian and Irwin (2018). 
23 The corn IVol gradually increases for four days before the announcement and reaches its highest pre-event level on 

the day before the USDA event day. The soybean IVol does not exhibit any visible change from the “normal” level 

prior to the event day. None of those increases, however, is statistically significant.  
24 The Kruskal-Wallis (KW) tests yield similar results. Tables summarizing the KW test result are available by request.  
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announcement, before dropping significantly on the event day and remaining 

significantly below “normal” for approximately one week. 

Table 2.3. Paired t-Test and Wilcoxon Signed Rank Test Results  

 IVol on USDA event day T vs. day 

T-1 

11-day event window around day T 

 Paired sample        

t-test 

Wilcoxon signed 

rank test 

One-way 

ANOVA test 

Kruskal-Wallis 

test 

A. Corn 

     

All USDA announcements -6.39*** -7.24*** 6.66*** 83.38*** 

Big-event days -5.89*** -6.05*** 16.47*** 187.03*** 

Small-event days -3.51*** -3.58*** 2.21*** 16.62* 

B. Soybean 

     

All USDA announcements -5.13*** -6.17*** 3.55*** 58.68*** 

Big-event days -5.60*** -5.27*** 6.70*** 102.81*** 

Small-event days -1.41* 3.30*** 1.14 8.54 

Note: The first two columns of Table 2.3 present the two-sample parametric (Student t) and nonparametric (Wilcoxon 
signed rang) test statistics for 𝐻0 :   𝐼𝑣𝑜𝑙𝑇 ≥ 𝐼𝑣𝑜𝑙𝑇−1. The two rightmost columns show the results of one-way analysis 
of variance (ANOVA) and Kruskal-Wallis tests for 𝐻0 : 𝛥 𝐼𝑣𝑜𝑙𝑇−5 = 𝛥𝐼𝑣𝑜𝑙𝑇−4 = ⋯ = 𝛥𝐼𝑣𝑜𝑙𝑇+5, with. For the t-tests, 
Table 2.3 reports left-sided t-values; for the Wilcoxon tests, the left-sided z-values. For the one-way ANOVA and 
Kruskal-Wallis tests, the F- and chi-square statistics are reported. For both commodities, we run each test for all USDA 
announcements together, and also separately for “big-event” days and “small-event” days (see Table 2.2 for the 
definition of “big” and “small” USDA events). 
Statistical significance is denoted using * (10 percent), ** (5 percent), and *** (1 percent).   
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(a) Corn 

 (b) Soybeans    

Figure 2.2. Daily IVol Changes (vs. 5-day average IVol Prior to the Latest 

Bloomberg Survey) 
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Note: The circles in Figure 2.2(a) (corn) and 2.2(b) (soybeans) show the mean estimates of  IVolT+i (i = -5, -4, …, +5) 

for five days before and five days after 151 USDA scheduled announcement days (day t) from September 2009 to 

October 2019. For each day, we compute log differences between (a) the 90-day commodity option-implied volatility 

(IVol) at the market close on day T+i and (b) the average IVol for the five days before the most recent pre-event 

Bloomberg survey (which typically takes place five to seven days before the USDA event day). For each day, the 

colored bars represent the estimated 95-percent confidence intervals. If the confidence intervals of two days overlap 

each other, then the difference between IVols on those two days are not statistically significant. Likewise, if a colored 

bar crosses the zero dashed line, then the IVol on that day is not statistically significantly different from the average 

IVol in the five days before the Bloomberg survey. Test results (bars) for each of the five days before a USDA 

announcement are plotted in red; the bars for the announcement day T and for the next five trading days appear in blue.  

Sources: USDA, Bloomberg and authors’ computations. 
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Table 2.4. IVols Around USDA Announcements – Multi-Day Comparison Tests 

Panel A: Corn  

 𝐼𝑣𝑜𝑙 𝑇 − 5 𝑇 − 4 𝑇 − 3 𝑇 − 2 𝑇 − 1 𝑇 𝑇 + 1 𝑇 + 2 𝑇 + 3 𝑇 + 4 𝑇 + 5 

𝑇 − 5 0.62            

𝑇 − 4 0.05** 1.00           

𝑇 − 3 0.02** 1.00 1.00          

𝑇 − 2 <0.00*** 0.92 1.00 1.00         

𝑇 − 1 0.03** 0.98 1.00 1.00 1.00        

𝑇 <0.00*** 0.26 0.04** 0.02** <0.00*** 0.01***       

𝑇 + 1 <0.00*** 0.10* 0.01* <0.00*** <0.00*** <0.00*** 1.00      

𝑇 + 2 <0.00*** 0.15 0.02** 0.01*** <0.00*** <0.00*** 1.00 1.00     

𝑇 + 3 0.01*** 0.30 0.05* 0.03** <0.00*** 0.01*** 1.00 1.00 1.00    

𝑇 + 4 0.01*** 0.38 0.08* 0.04** 0.01*** 0.02** 1.00 1.00 1.00 1.00   

𝑇 + 5 0.06* 0.79 0.32 0.20 0.04** 0.10* 1.00 0.98 0.99 1.00 1.00  
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Panel B: Soybeans 

 𝐼𝑣𝑜𝑙 𝑇 − 5 𝑇 − 4 𝑇 − 3 𝑇 − 2 𝑇 − 1 𝑇 𝑇 + 1 𝑇 + 2 𝑇 + 3 𝑇 + 4 𝑇 + 5 

𝑇 − 5 0.54            

𝑇 − 4 0.61 1.00           

𝑇 − 3 0.51 1.00 1.00          

𝑇 − 2 0.14 1.00 1.00 1.00         

𝑇 − 1 0.07* 1.00 1.00 1.00 1.00        

𝑇 <0.00*** 0.20 0.25 0.18 0.04** 0.30       

𝑇 + 1 <0.00*** 0.08* 0.11 0.07* 0.01** 0.14 1.00      

𝑇 + 2 <0.00*** 0.19 0.24 0.17 0.04** 0.28 1.00 1.00     

𝑇 + 3 0.02** 0.53 0.61 0.50 0.18 0.67 1.00 1.00 1.00    

𝑇 + 4 0.07* 0.91 0.94 0.89 0.57 0.96 0.99 0.92 0.98 1.00   

𝑇 + 5 0.33 1.00 1.00 1.00 0.99 1.00 0.54 0.31 0.52 0.88 1.00  

Note: Table 2.4 shows the p-value matrix of ANOVA-based multiple comparison tests comparing (a) the IVol values on the days in the event window (columns 2 to 12 covering days T-5 

to T+5) and paired t-tests (column 1) to (b) the average IVol value in the five days before the Bloomberg survey of grain and oilseed market analysts. Each cell in columns 2 to 12, denoted 

𝑝𝑖𝑗, reports the p-value for𝐻0 : 𝛥 𝐼𝑣𝑜𝑙𝑇+𝑖 = 𝛥𝐼𝑣𝑜𝑙𝑇+𝑗 , with 𝑖, 𝑗 = −5, −4, … ,  5 and 𝑖 ≠ 𝑗. In the first column, each cell reports the p-value for a one-sided t-test of each 𝐼𝑣𝑜𝑙𝑇+𝐼 against 

the average IVol on the five trading days before the Bloomberg survey, denoted 𝐼𝑣𝑜𝑙. For the days before the USDA announcement day T (i.e., from T-5 to T+5), the null hypothesis is that 

the IVol on that day is larger than 𝐼𝑣𝑜𝑙, indicating an increase in commodity implied volatility. In contrast, the null for the days after USDA announcement (i.e., from 𝑇 + 1 to 𝑇 + 5) is 

that the mean IVol on that day is smaller than 𝐼𝑣𝑜𝑙, indicating a drop in implied volatility following the USDA report release. Panel A shows the result for corn; Panel B, for soybeans. 

Statistical significance is denoted using * (10 percent), ** (5 percent), and *** (1 percent).
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2.5.3 Hypotheses 2 to 4: Pre-event expert forecasters’ influence on the IVol response 

Equation (2.5) could be estimated by Ordinary Least Squares (OLS) for each commodity 

separately, since the residuals are not serially correlated across announcement days.25 

However, because we find significant cross-equation residual correlations, Seemingly 

Unrelated Regressions (SUR)—as proposed by Zellner (1962)—are more efficient.26 We 

therefore focus on the results obtained with the SUR method.27  

Table 2.5 summarizes our estimations of Equation (2.5) jointly for corn and soybean 

markets using the SUR estimator. Heteroskedasticity-consistent standard errors are 

reported in brackets. To compare the predictive importance of the explanatory variables, 

we also report standardized regression coefficients.  

Our result shows that the effects of market surprise and analyst dispersion vary across 

markets and across reports, in terms of signs as well as magnitudes.  

(1) The role of report surprises.  

Given how we compute surprises, price-bearish surprises are positive while bullish 

surprises are negative. Hence, a negative coefficient for bearish surprises (βj
+ < 0) 

indicates an IVol decrease, whereas a positive value of βj
+ indicates an IVol increase. The 

opposite holds for a bullish surprise βj
−. Hypothesis 2 therefore implies that βj

+and βj
− 

should both be negative.  

 
25 Breusch-Godfrey statistics for serial correlation tests, using a maximum of 30 lags, are 22.239 and 37.398 for corn 

and soybeans OLS residuals, respectively. With these test statistics, we cannot reject the null hypothesis of no serial 

correlation of any order up to 30 across event days for both commodities. 
26 The cross-equation (i.e., between corn and soybeans) residual correlation is 0.353. The Breutsch-Pagan test statistic 

is 18.867, which strongly rejects the diagonality (i.e., null-covariance) of the corn and soybean IVol residual variance-

covariance matrix.  
27 OLS results are available upon request. 
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Table 2.5. Forecast Surprise, Analyst Dispersion, Sentiment, and Commodity IVol 

Changes† 

 Corn Soybean 

 Unstandardized Standardized ‡ Unstandardized Standardized‡ 

Constant 
-0.055*** 

(0.017) 

-0.416 

(0.301) 

-0.037** 

(0.018) 

-0.169 

(0.345) 

Bearish§ WASDE Surprise 
-0.081 

(0.103) 

-0.073 

(0.084) 

0.073 

(0.068) 

0.091 

(0.091) 

Bullish§ WASDE Surprise 
-0.363* 

(0.208) 

-0.261*** 

(0.077) 

-0.263** 

(0.112) 

-0.336*** 

(0.090) 

Bearish§ Grain Stocks 

Surprise 

0.711*** 

(0.296) 

0.383*** 

(0.119) 

0.266*** 

(0.100) 

0.192* 

(0.109) 

Bullish§ Grain Stocks 

Surprise 

-0.614* 

(0.318) 

-0.221** 

(0.106) 

-0.278*** 

(0.076) 

-0.201** 

(0.093) 

Bearish§ Planted Area 

Surprise 

-1.598 

(1.662) 

-0.189 

(0.131) 

-0.257 

(0.942) 

-0.018 

(0.083) 

Bullish§ Planted Area 

Surprise 

-1.267 

(2.460) 

-0.059 

(0.105) 

1.451** 

(0.617) 

0.236* 

(0.108) 

WASDE Dispersion 
-0.158** 

(0.068) 

-0.182* 

(0.101) 

-0.070 

(0.061) 

-0.131 

(0.117) 

Grain Stocks Dispersion 
-0.311 

(0.450) 

-0.104 

(0.136) 

0.280 

(0.212) 

0.164 

(0.117) 

Planted Area Dispersion 
1.290 

(5.310) 

0.082 

(0.177) 

1.351 

(1.467) 

0.134 

(0.134) 

WASDE Sentiment ¶ 
0.005 

(0.006) 

0.102 

(0.167) 

0.010 

(0.007) 

0.229 

(0.169) 

Grain Stocks Sentiment¶ 
-0.060*** 

(0.021) 

-1.124*** 

(0.334) 

-0.042** 

(0.016) 

-0.938** 

(0.410) 

Planted Area Sentiment¶ 
-0.018 

(0.029) 

-0.340 

(0.440) 

-0.018 

(0.025) 

-0.402 

(0.549) 

VIX returns 
-0.135** 

(0.061) 

-0.120* 

(0.074) 

-0.088 

(0.069) 

-0.093 

(0.078) 

Observations 151  151  

R2 0.359  0.283  

F Statistic (df = 23; 127) 3.078***  2.196***  

Cross-equation residual 

correlation 
0.353   

 

Breusch-Pagan test of 

diagonality 
18.867***   
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Note: Table 5 reports the Seemingly Unrelated Regression (SUR) estimation results for corn and soybeans. 

Heteroskedasticity-consistent standard errors are reported in brackets. Variables are described in Table 2.2. 

 Sample period: September 2009 to October 2019.  

† For both commodities, the dependent variable is IVol daily returns on the day of USDA announcement.  

‡ The standardized coefficients report the number of standard deviations change in the dependent variable associated 

with one standard deviation change in the independent variables, except for dummy variables.  

§ Given the way in which we compute the surprises, bearish surprises are positive and bullish surprises are negative. 

Hence, a negative bearish surprise coefficient (𝛽𝑗
+ < 0) indicates an IVol decrease, whereas a positive 𝛽𝑗

+indicates an 

IVol increase, while holding all other factors constant.  
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Table 5 shows that, for both corn and soybeans, the bullish-surprise coefficients (𝛽𝑗
−) are 

indeed statistically significantly negative for both WASDE and GS announcements.28 In 

other words, a lower-than-predicted level of commodity inventories (whether actual in a 

GS report, or projected in a WASDE) brings about a smaller-than-average IVol drop (or 

even an outright IVol increase) post-announcement. Precisely, if the USDA corn (resp. 

soybean) stock projection in a WASDE comes in one percent under the median 

Bloomberg forecast, then the result is ceteris paribus a 0.36 (resp. 0.26) percent increase 

in the 90-day corn (resp. soybean) IVol on the USDA announcement day. For GS reports, 

the corresponding numbers are 0.61 and 0.28 percent.  

In contrast, the estimated bearish-surprise coefficient 𝛽𝑗
+do not appear to support the part 

of Hypothesis 2 predicting that IVols should drop more strongly following a bearish 

report surprise. First, we find that bearish WASDE and PA surprises have statistically 

insignificant impacts on the post-event IVol change. Put differently, apart from the IVol 

drop due to the removal of expected high volatility on the announcement day T (as 

discussed in Section 2.2.1), the market’s corn and soybean volatility expectations (IVols) 

are not significantly revised further downward due to a higher-than-expected projected 

stock level or planted area. Second, bearish GS surprises are actually followed by a 

significant IVol increase in corn and soybean IVols. This finding implies that any GS 

surprise, whether bearish or bullish for prices, drives IVols upward (by similar amounts 

in both cases).  

(2) The role of forecast dispersion.  

For most reports, we do not find statistically significant coefficients for analyst 

dispersion. The only exception is for the corn WASDE. Consistent with Hypothesis 3, we 

find that the pre-event WASDE forecast dispersion significantly predicts the post-event 

IVol change in the corn market. Insofar as more disagreement among analysts (who could 

be traders too) implies greater corn market uncertainty prior to the WASDE release, the 

negative corn WASDE dispersion coefficient implies that the information released in the 

report becomes the new market consensus and resolves that uncertainty. Quantitatively, 

we find that a one-percent increase in WASDE forecast dispersion around the mean 

analyst forecast contributes to a statistically significant 0.16 percent decrease in the corn 

IVol (other things held equal). This finding complements the conclusion of Karali et al. 

(2019), that USDA reports remain valuable even in the presence of private forecasts.  

 
28 For corn, bullish PA report surprises are not statistically significant. The effect of bullish soybean PA surprises is 

negative and significant—an unexpected result. Bearish PA surprises have statistically insignificant impacts on the 

event-day IVol return, for both commodities.  
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(3) The role of forecaster sentiment. 

As discussed in Section 2.2.2, we expect coefficients of our forecast sentiment dummies 

to be negative. This is indeed what we find for GS reports. Ceteris paribus, the corn (resp. 

soybean) IVol drops an extra 6.0 (resp. 4.2) percent when a majority of forecasters are 

pessimistic (sentiment dummy = 1) about the corn (resp. soybean) inventory level in an 

upcoming GS report, compared to when a majority are optimistic or neutral (sentiment 

dummy = 0). Both percentage drops are equivalent to about one standard deviation of the 

IVol change, either for corn and soybeans.  

The Efficient Market Hypothesis (EMH) states that fundamentals-related information 

should be incorporated into market expectations as soon as it becomes available to market 

participants. Hence, having controlled for new fundamental-related information (proxied 

by surprises) and for uncertainty (proxied by dispersion), IVol change on day T should 

not be significantly predicted by information available prior to that day. Given how we 

construct the sentiment variable (see Appendix 2.A.1) and given the timing of the 

Bloomberg survey’s release, the pessimistic/optimistic nature of the median analyst 

forecast is already known to market participants at the latest by day T-1. Therefore, the 

implication of our finding a significant GS sentiment coefficient is that market sentiment 

(not just market fundamentals) plays a role in how commodity IVols react to USDA 

announcements.  

2.5.4 Hypothesis 5: Macroeconomic uncertainty and financial market sentiment.   

For both corn and soybeans, the coefficient of the VIX return is negative. It is statistically 

significant for corn. All other things equal, a one-percent VIX increase on the USDA 

event day is associated with a 0.14 percent decrease in corn IVol. As noted in the 

development of Hypothesis 5 (see Section 2.2), prior work documents empirically that 

daily VIX and commodity IVol returns are positively correlated.  

One possible interpretation of our surprising VIX finding is that it lends additional support 

to the argument that the USDA information is the “new market consensus.” Given that 

commodity IVol changes are generally positively driven by VIX changes, it must be that, 

on those few days when the USDA announcements take place, the USDA news helps 

mitigate the VIX spillover.  

In order to verify empirically our conjecture that the influence (on grain and oilseed 

IVols) of financial market uncertainty and sentiment is reduced on USDA event days, we 

run an additional analysis of the relation between VIX and commodity IVol returns for 
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all days in sample period.29 For each commodity, we run the following regression across 

all 2,567 days in our sample:   

𝛥𝐼𝑉𝑜𝑙𝑡 = 𝛽0 + 𝛽1𝛥𝑉𝐼𝑋𝑡 + 𝛽2𝐷𝑈𝑆𝐷𝐴,𝑡 + 𝛽3𝛥𝑉𝐼𝑋𝑡 ∗ 𝐷𝑈𝑆𝐷𝐴,𝑡 + 𝛽4𝛥𝐼𝑉𝑜𝑙𝑡−1

+ 𝜀𝑡 
(2.7) 

in which ΔIVolt is the daily log-difference of IVol, 𝛥𝑉𝐼𝑋𝑡 is the daily log-difference of 

VIX, and 𝐷𝑈𝑆𝐷𝐴,𝑡  is a dummy variable set equal to 1 when day 𝑡  is a USDA 

announcement day.  

Analogously to Goyal and Adjemian (2021), we first use simple OLS to estimate 

Equation (2.7). To account for conditional heteroskedasticity, we also estimate Equation 

(2.7) with standard GARCH (i.e., sGARCH) and exponential GARCH (i.e., eGARCH). 

For the sGARCH and eGARCH models, our diagnostic tests indicate that a GARCH(1,1) 

with ARMA(1,1) is sufficient for corn, while soybeans require a GARCH(1,1) with 

ARMA(3,1).  

Table 2.6 summarizes our regression results. As in earlier studies, we find that the 

coefficient of 𝛥𝑉𝐼𝑋𝑡 (𝛽1) is positive for both commodities.30 Likewise, 𝛽2 is consistently 

negative and highly significant for both commodities in all three specifications, which 

reinforces the conclusion that USDA reports reduce commodity IVols. However, the 

effect of the VIX return on the IVol return is reversed on USDA announcement days: 𝛽3is 

negative across all specifications for both corn and soybeans—with statistically 

significant values for corn (all models) and soybeans (eGARCH model). Moreover, in all 

cases, the absolute size of 𝛽3 is much larger than that of β1, leading to a negative net 

effect of the VIX change on the IVol change on USDA announcement days.  

In sum, our results show that, while in general grain and oilseed IVol returns are positively 

related to changes in macroeconomic uncertainty and sentiment (jointly captured by the 

VIX), this relationship does not hold on USDA announcement days. This empirical 

finding points to the need for theoretical work to understand why the value placed by 

agricultural market participants on the commodity-specific (but consensus-making) 

information of the USDA reports seems to increases in the level of financial market 

uncertainty.  

  

 

29 We run the regressions in first differences to ensure that all series are stationary.  
30 As in Table 2.6, the VIX regression coefficient is statistically significant for corn but not for soybeans. This lack of 

significance may reflect the conjunction of two facts. One, historical decompositions by Adjemian et al. (2017) show 

that, in contrast to other determinants of agricultural IVols, macroeconomic uncertainty and financial market sentiment 

matter the most during periods of elevated financial stress. Two, with the exception of August 2011, there is no major 

VIX spike in our sample period (2009-2019).  
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Table 2.6. VIX Impact on Commodity IVols—Regular Days vs. USDA Event Days 

 
Corn Soybeans 

 OLS sGARCH eGARCH OLS sGARCH eGARCH 

Constant 
0.002*** 

(0.001) 

0.002*** 

(0.001) 

0.002*** 

(0.000) 

0.001 

(0.001) 

0.000 

(0.001) 

0.001*** 

(0.000) 

VIX 
0.032** 

(0.014) 

0.043*** 

(0.013) 

0.047*** 

(0.006) 

0.003 

(0.014) 

0.011 

(0.015) 

0.013 

(0.009) 

USDA 

announcement 

-0.034*** 

(0.004) 

-0.033*** 

(0.004) 

-0.032*** 

(0.003) 

-0.023*** 

(0.004) 

-0.023*** 

(0.003) 

-0.022*** 

(0.003) 

VIX*USDA 

announcement 

-0.152* 

(0.088) 

-0.159** 

(0.079) 

-0.166*** 

(0.021) 

-0.094 

(0.072) 

-0.053 

(0.079) 

-0.057*** 

(0.010) 

Lagged daily IVol 

log-difference 

-0.045 

(0.057) 

-0.814*** 

(0.204) 

-0.767*** 

(0.017) 

0.032 

(0.038) 

0.844*** 

(0.072) 

0.860*** 

(0.043) 

AIC -10153 -4.1388 -4.2140 -10339 -4.1420 -4.1585 

BIC -10118 -4.1114 -4.1798 -10304 -4.1101 -4.1243 

Wald/LM tests 17.375*** 0.4641 0.5078 11.316*** 3.203 3.860 

Notes: Table 2.6 provides estimates of the daily impact of VIX changes on commodity IVol changes on USDA vs. non-

USDA days. Daily models cover the period from August 17, 2009 to October 31, 2019. For both eGARCH and 

sGARCH models, we estimate a GARCH(1,1) with ARMA(1,1) for corn, and a GARCH(1,1) with ARMA(3,1) for 

soybean; the choice of model is based on diagnostic tests as in Goyal and Adjemian (2021). For the regression 

coefficients, heteroskedasticity-consistent standard errors are reported in brackets. Wald test statistics are reported for 

the OLS models; weighted ARCH LM test statistics are reported for the GARCH models at lag 7. In all cases, statistical 

significance is denoted using * (10 percent), ** (5 percent), and *** (1 percent).   
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2.5.5 Discussion: Information value of Bloomberg surveys  

As a final check of our results, we revisit the Bloomberg analyst surveys that precede a 

scheduled announcement. We ask two questions. One, do the surveys themselves contain 

new information—in which case, they might influence commodity returns or IVols prior 

to a USDA information release (which in turn would impact our measure of the IVol 

change on the announcement day). Second, is the median analyst survey a biased 

predictor of the USDA numbers—in which case, our measure of surprise could be 

affected?31  

To answer these questions, we adopt and adapt the approach proposed by Balduzzi, Elton, 

and Green (1998) to study analyst forecasts of corporate earnings (see Appendix 2.A.3 

for details). We regress the value of each USDA figure on (i) the median forecasted value 

in the Bloomberg survey and (ii) the IVol and price returns between the survey 

publication day and the USDA day. Table 2.7 in Appendix 2.A.3 summarizes the results. 

They suggest that the Bloomberg analyst forecasts are informationally valuable to market 

participants: the regression coefficient for the median forecast is significantly different 

from 0 in all specifications. Table 2.7 also suggests that the median forecast is an unbiased 

predictor of the USDA information: none of the intercepts is significantly different from 

0, and the median forecast coefficients are not significantly different from 1.32 Most 

importantly for our analysis, however, the BEG3 specifications in Table 2.7 show that the 

IVol return coefficients are not statistically significant after we control for the price 

returns. We conclude that market participants do not significantly revise their volatility 

expectations between the Bloomberg survey and the USDA announcement day, which 

assuages the concern of measurement errors. 

 Conclusion 

We provide novel evidence on the impact of scheduled USDA information releases on 

forward-looking volatilities (IVols) in agricultural markets. We document that, for up to 

five trading days after the release of a scheduled USDA report (WASDE, Grain Stocks, 

Prospective Plantings, and Acreage), corn and soybean IVols are significantly lower than 

they had been a week before the release. The USDA reports’ uncertainty-resolution power 

is substantial for both commodities.  

 
31 Karali, Irwin, and Isengildina‐Massa (2019) raise a measurement-error concern in the case of surveyed analysts’ crop 

production forecasts.  
32 In the case of soybean Grain Stock reports, the F-statistic for the joint hypothesis that the intercept is equal to 0 and 

the median forecast coefficient is equal to 1 is rejected at 10% level of significance. However, the size of these 

coefficients is very close to 1: we cannot reject, using t-tests, the hypothesis that the median forecast coefficients equal 

1. We therefore conclude that, even if there is a bias in the case of analysts’ soybean GS forecasts, it is very small. 
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The benefit of the USDA information in resolving market uncertainty is impacted by 

analyst disagreement and sentiment ahead of the report, and by the extent to which the 

market is surprised on the announcement day. Those three variables, however, do not 

have uniform impacts on the USDA reports’ uncertainty resolution. Notably, for WASDE 

and Grain Stock reports, event-day surprises that are bullish for prices tend to boost 

commodity IVols. The effect of price-bearish surprises is more muted, except for Grain 

Stock reports. The impact of disagreement among market experts in the run-up to a report 

is usually insignificant, except for the corn WASDE (with greater pre-USDA dispersion 

boosting the IVol drop on the event day).  

Sentiment also matters—both commodity experts’ sentiment ahead of the release and 

changes in broad financial market sentiment on the event day. One, in the case of the 

Grain Stocks reports, we document that the calming effect of USDA news is larger when 

market analysts had been pessimistic about stock levels. Two, while commodity IVols 

are in general positively related to broad financial-market sentiment and macroeconomic 

uncertainty (jointly captured by the VIX index), we show that this co-movement 

surprisingly breaks down on USDA report days—with the VIX and commodity IVols 

moving in opposite directions on that day.  

Our findings offer both practical and policy implications for market participants and 

policy makers. First, they show that the USDA information has value and impacts market 

volatility expectations. Second, short-run hedging and other derivatives-market 

positioning around USDA announcements could be improved by considering the IVol 

forecast-to-announcement patterns that we document, leading to more efficient pricing 

and risk management in the long run. Finally, public programs involving price volatility, 

such as crop insurance (Sherrick 2015) or USDA season-average price forecasts that 

incorporate forward-looking volatility—as advocated by Adjemian, Bruno and Robe 

(2020)—should also benefit from our conclusions.  

Our findings suggest several venues for further research. First, most our empirical 

predictions are theoretically grounded in an extension of the Ederington and Lee (1996) 

model of implied volatility around scheduled public announcements. While our empirical 

analysis provides strong support for most of those predictions, it also points to the need 

for more theoretical work to better understand (i) why analyst surprises regarding grain 

inventories boost (ceteris paribus) the market’s post-USDA-report volatility expectations 

when the surprise is bearish for prices and (ii) why the generally positive relationship 

between VIX returns and commodity IVols reverses on USDA event days.  

Second, our paper focuses on commodity IVols that can be used as forecasts of future 

realized volatility (Egelkraut, Garcia, and Sherrick 2007). The IVols on which we rely 

are derived from the most liquid, at-the-money, options. Options on agricultural 
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commodities, however, are unique in that out-of-the-money call options are usually more 

expensive than puts (Norland 2019). In other words, agricultural options exhibit positive 

skew. Given that the underlying returns in these markets generally do not exhibit positive 

skewness, the likely explanation is market structure: food buyers appear more willing to 

pay a premium for upside protection than farmers seem ready to pay for downside 

protection. A natural question is what happens to the volatility skew around USDA 

events. We leave this question for further research. 
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 Appendices 

2.A.1 Baselines for “Pessimism” in Forecasts 

Based on the nature of the forecasted information in each report, we define their 

respective reference points as follows:  

1. WASDE. The forecast we use is also the most frequently surveyed information—the 

projected U.S. ending stock of the current marketing year. Every month, the USDA 

updates the projections in the WASDE in light of demand and supply developments. As 

reference point or baseline, we therefore choose the actual value in previous month’s 

report.  

2. GS reports. The USDA estimates U.S. ending stocks as of the end of the previous 

quarter. Due to the seasonality of crop production and demand, grain and oilseed 

inventories also fluctuate seasonally. We therefore use the same quarter of the previous 

year as the reference point. When forecasters predict a lower (resp. higher) stock level 

than at the same time in the prior year, we call them “pessimistic” (resp. “optimistic”) 

about the inventory situation.  

3. PP and AR reports. The Prospective Plantings and the Acreage reports both provide 

information on the planting area of the current crop year. By construction, the AR report 

is the updated version of the PP report for the same crop year. For the AR report, we 

therefore proceed as for the WASDE reports, and use the earlier information (in the PP 

report) to determine if the estimates in the later report (AR) is lower (“pessimistic”) or 

higher (“Optimistic”). For the PP report, we define “optimistic” or “pessimistic” analyst 

sentiment by comparing the current year’s planting intentions (in the PP report) to the 

planted area in the previous year (in the prior year’s AR report).  
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2.A.2 Seasonality of Agricultural Option-Implied Volatilities (IVol), 2009-2019 

Note: The above Figures plot the daily values of the 3-month VIX and of the forward-looking return volatilities that 

are embedded in the prices of (synthetic) constant-maturity 90-day at-the-money options on agricultural futures (corn, 

IVC3; soybean, ICS3) from August 2009 through September 2019. The top panel plots the actual values in percent. 

The bottom panel expresses the commodity IVols in terms of the contemporaneous VIX. The spring season is shaded 

to better highlight the seasonality of the commodity IVols (Source: Bloomberg).  

2.A.3 Informational Value of the Bloomberg-Survey Analyst Forecasts 

Balduzzi, Elton and Green (1998) propose the regression equation (hereafter, the BEG 

equation): 

𝐴𝑖,𝑗 = 𝛼0 + 𝛼1𝐹𝑖,𝑗 + 𝛼2𝑅𝑖 + 𝜀𝑖,𝑗 (2.A.3.1) 

where 𝐴𝐼,𝑗 and 𝐹𝐼,𝑗 are, respectively, the actual and the forecasted values of indicator 𝑗 for 

the announcement day 𝑖 , and 𝑅𝐼  is the cumulative market return from the day when 

Bloomberg releases the survey result to the announcement day. Several hypotheses can 

be tested with this regression:  

• If 𝛼1 is significantly different from zero, then the forecast contains information;  

• If 𝛼0 is not significantly different from zero and 𝛼1is not significantly different 

from 1, then the forecast is unbiased;  
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• If 𝛼2  is significantly different from zero, then market expectations have been 

revised between the forecast day and the announcement day. In this case, new 

information arrives in the market after the forecast.  

 

Table 2.7. BEG Regressions 

  

 BEG1 BEG2 BEG3 

 
WASDE GS WASDE GS WASDE GS 

A. Corn 

Constant (𝛼0)  27.29 

(31.47) 

38.02 

(43.91) 

-8.67 

(35.42) 

43.69 

(56.46) 

10.66 

(33.08) 

50.58 

(44.31) 

𝐹𝑖,𝑗 0.99*** 

(0.02) 

1.00*** 

(0.01) 

1.00*** 

(0.02) 

1.00*** 

(0.01) 

0.99*** 

(0.02) 

1.00*** 

(0.01) 

𝑅𝑖 -1856.50*** 

(361.82) 

-2473.96*** 

(522.37) 
  

-1694.21*** 

(374,65) 

-2620.53*** 

(526.74) 

𝛥𝐼𝑣𝑜𝑙𝑖  
  

-516.56*** 

(190.35) 

109.63 

(347.59) 

-284.21 

(183.60) 

386.72 

(278.30) 

Observations 120 41 120 41 120 41 

R2 0.96 1.00 0.96 1.00 0.96 1.00 

F Statistic 

(𝐻0: 𝛼0 =
0; 𝛼1 = 1) 

0.51 0.55 0.04 0.53 0.94 1.23 

B. Soybeans 

Constant (𝛼0)  5.25 

(6.18) 

11.13 

(9.96) 

-5.14 

(7.42) 

9.33 

(9.98) 

5.09 

(6.84) 

10.25 

(10.12) 

𝐹𝑖,𝑗 1.00*** 

(0.01) 

0.99*** 

(0.01) 

1.01*** 

(0.02) 

0.99*** 

(0.01) 

1.00*** 

(0.01) 

0.99*** 

(0.01) 
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Table 2.7 (cont.) BEG Regressions 

Note: Table 2.7 reports the result of three different versions of the BEG equation. For each version, we run a regression 

for the monthly WASDE ending stock forecasts and one for the quarterly Grain Stocks estimates (there are too few 

observations for the regression to make sense in the case of the annual PP and AR reports). The original BEG regression 

is presented in the first two columns of Table 2.7 (“BEG1”); in the next two columns (“BEG2”), 𝑅𝐼 is replaced by 

𝛥𝐼𝑣𝑜𝑙𝐼   (i.e., returns of commodity IVol from the forecast day to the announcement day). The last two columns 

(“BEG3”) include both 𝑅𝐼 and 𝛥𝐼𝑣𝑜𝑙𝐼 in one regression. Finally, the last row of each panel shows the F-statistic of the 

joint hypothesis test for 𝐻0: 𝛼0 = 0; 𝛼1 = 1 – implying the analyst forecasts are unbiased.  In all cases, statistical 

significance is denoted using * (10 percent), ** (5 percent), and *** (1 percent).   

 

 BEG1 BEG2 BEG3 

 
WASDE GS WASDE GS WASDE GS 

B. Soybeans 

𝑅𝑖 -787.92*** 

(130.67) 

-168.14 

(208.62) 
  

-785.49*** 

(138.62) 

-152.64 

(211.51) 

𝛥𝐼𝑣𝑜𝑙𝑖  
  

-103.42* 

(58.61) 

-71.58 

(95.64) 

-3.00 

(55.03) 

-63.80 

(96.85) 

Observations 120 41 120 41 120 41 

R2 0.98 1.00 0.97 1.00 0.98 1.00 

F Statistic 

(𝐻0: 𝛼0 =
0; 𝛼1 = 1) 

0.69 3.19* 0.27 3.29** 0.49 3.23* 
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Chapter 3  
USDA Reports Affect the Stock Market, 

Too33 

Abstract: We document that the stock prices of food-sector firms react to USDA news. 

The economic and statistical significance of the effect depends on the commodity, type 

of scheduled USDA report, and direction and extent to which the USDA information 

surprises the market. Individual stock price responses to USDA news differ between firms 

on the input-side vs. firms on the output-side of agricultural (farm) production, based on 

which component of the firm’s cash-flow expectations (costs or revenues) and which 

variable (commodity price or expected firm output) is impacted by the news. Planted Area 

surprises have the largest effect for both subsets of firms (ag-as-inputs and ag-as-output), 

followed by Grain Stocks news—with the effects having the expected sign. In contrast, 

WASDE surprises have very modest and mixed impacts on food-sector stock returns. Our 

findings establish that USDA announcements have an impact well beyond their 

recognized relevance to commodity markets. 

JEL classification: G12, G14, Q02, Q11 

Keywords: Commodity news, Stock market reactions, USDA Announcements 

  

 

33 Chapter 3 is pre-published as a working paper titled Cao, A. N. Q., Ionici, O. and Robe, M. A. (2023). USDA Reports 

Affect the Stock Market, Too. SSRN Electronic Journal. Advance online publication. 

https://doi.org/10.2139/ssrn.4391882. The paper has received a “Revise and Resubmit” invitation from the Journal of 

Commodity Markets and is currently under revision. 

https://doi.org/10.2139/ssrn.4391882
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 Introduction 

The U.S. Department of Agriculture (USDA) has long gathered information on physical 

conditions in agricultural markets. It disseminates those data, free of charge, through 

numerous reports. This activity, of course, is not costless. Yet, the “actual amount of 

agricultural production and marketing information that is mandated by U.S. law is small 

relative to the actual information produced by USDA” (Pruitt et al. 2014, p.25). Given 

that taxpayers foot the bill for the USDA’s reports, the latter’s usefulness is therefore 

open to reexamination every time “a new farm bill is created or when economic 

conditions prompt lawmakers to contend with growing budget deficits” (Ellison and Lusk 

2011, p.1).34  

In such an environment, a key question is whether the information published by the 

USDA is valuable—and who values it. The extant literature provides evidence of value 

by documenting that agricultural futures and options markets react significantly to the 

news contained in various USDA reports.35 That prior research investigates their impact 

on commodity prices (e.g., Adjemian 2012; Goyal and Adjemian 2021; Karali et al. 2019; 

Ying, Chen, and Dorfman 2019) or volatility expectations and market sentiment (e.g., 

Cao and Robe 2022; Isengildina-Massa et al. 2008; McNew and Espinosa 1994). In 

contrast, the present paper asks whether USDA news ripple beyond commodity markets. 

Specifically, we investigate for the first time whether USDA news also affect the stock 

market as a whole and, if not, whether they move the stock prices of publicly listed 

companies in the “food” sector.  

Equity prices are net present values of expected future company cash-flows, discounted 

at the appropriate risk-adjusted required rates of return. USDA news can therefore, in 

theory, affect share prices if they alter the expectations of equity market participants 

regarding the stream of future corporate cash-flows or if they impact the rate at which 

investors discount that stream.  

 

34 The concern that any given USDA report might be discontinued is more than theoretical. To wit, just three years ago 

(in February 2020), the USDA’s National Agricultural Statistics Service (NASS) announced that it would “no longer 

publish county-level estimates for dry edible beans, flaxseed, hay (alfalfa and other), potatoes, sugarbeets, sugarcane, 

sunflower (non-oil and oil varieties) and tobacco” because funding had not been renewed to cover the “collection cost 

for the surveys used to gather the data used for county level estimates” (USDA 2020).  

35 The same is true of EIA (U.S. Department of Energy) announcements in energy markets. In the same vein, a large 

body of work in financial economics establishes empirically that U.S. macroeconomic announcements impact equity 

and bond prices significantly. See, e.g., Kurov et al. (2019) for a review of that work. 
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Given that food-sector companies only make up a small fraction of the U.S. stock 

market,36 there is little reason to expect more than a trivial impact on the broad stock 

market from news about agricultural commodities.37 Therefore, after providing empirical 

evidence that USDA reports indeed do not significantly impact the U.S. stock market as 

a whole, we ignore discount rates and focus on the cash-flow channel.  

On the cash-flow side, intuition suggests several reasons why one could expect 

agricultural prices to impact future earnings of companies in the food sector. On the one 

hand, in the case of companies that make production factors for the agricultural sector 

(e.g., fertilizer producers, farm machinery manufacturers, agricultural technology 

developers, etc.), demand for their products may be affected if a USDA report has 

implications for planted acreage—either directly (in the annual Prospective Plantings or 

Acreage reports) or indirectly (for example, if the news’ price implications of a World 

Agricultural Supply and Demand Estimates or WASDE report are sufficient to bring 

about a change in market expectations of future acreage allocated to food production). 

Furthermore, regardless of acreage considerations, suppose that financial constraints limit 

farmers’ ability or willingness to purchase capital goods. Then, insofar as the USDA 

news’ implications are bullish for commodity prices and imply a relaxation of those 

constraints, one should expect farm equipment purchases (machinery, investments in 

technology) to increase—thus boosting manufacturers’ revenues and (assuming their 

costs are not impacted much) earnings.  

On the other hand, for companies in the food transformation sector such as mills, beverage 

makers, biofuel producers, etc. (resp. for restaurant and grocery chains), agricultural 

commodities (resp. products derived from them) are an input. USDA news might thus be 

expected to affect commodity users’ costs in the opposite direction of the first set of 

companies. Thus, the ultimate impact on those companies’ future earnings depends (a) on 

the degree to which they hedge against commodity price fluctuations, and (b) if they do 

not, on the extent to which their competitive position allows them to pass through an 

increase in input costs to their own customers. If the latter’s demand is not perfectly 

inelastic, then the impact of the cost increase should dominate.  

Our question, then, is an empirical one: using data from 2009-2019 (before the COVID 

pandemic), we ask whether the stock prices of publicly traded companies from different 

sub-sectors (food processors such as Coca Cola and Kraft-Heinz; farm machinery 

 

36 In 2019, for example, less than one sixteenth (6.5 percent) of all the firms that make up Standard and Poor’s S&P 

500 stock market index belonged to the “food” sector (as defined by the SIC codes used to delineate the sample in the 

present paper).   

37 In contrast, for the energy sector, there is evidence of feedback between crude oil and equity index prices—see, e.g., 

Huang (1996) and Kilian and Park (2009). 
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producers like John Deere and Caterpillar; fertilizer manufacturers; biofuel producers; 

restaurants chains; grocery stores; etc.) react significantly to USDA announcements. 

Answering this question requires teasing out the news contained in each USDA report, as 

well as accounting for the extent to which the changes in companies’ share prices on 

USDA event days might simply be echoing broad U.S. stock market movements that have 

nothing to do with the USDA news. For the first task, we exploit the fact that, ahead of 

all major scheduled USDA announcements, companies like Bloomberg and Reuters have, 

for more than a decade, published surveys of commodity analysts’ expectations regarding 

the upcoming reports. Those news organizations typically release the details of their 

surveys in the week before a USDA news event, which allows us to compute the market 

surprise on the event day. For the second task, we compute, for each stock, excess returns 

on the USDA announcement-days. We do so using a rolling multi-month window leading 

up to ten days before a USDA announcement (precisely, before a scheduled WASDE, 

Grain Stocks, Prospective Plantings, or Acreage report).  

Our sample contains 154 publicly traded companies between September 2009 and 

October 2019. The starting year reflects the availability of Bloomberg data on commodity 

analyst surveys, which we use to compute the USDA surprises. We choose the ending 

year to predate the start of the COVID-19 pandemic. In constructing our dataset, we 

account carefully for mergers, spin-offs, acquisitions, and de-listings. The resulting 

sample is unbalanced, and our empirical methodology accounts for that fact.  

We consider the stock price reactions for each firm individually and for six sub-sectors 

(fertilizer and pesticide producers; farm machinery and technology firms; biofuel 

producers; food processors and beverage firms; restaurant chains and catering firms; food 

retailers and supermarket chains). Our results yield insights for agribusinesses and 

financial analysts in the food sector, and they provide a novel measure of USDA reports’ 

value to market participants.  

Section 3.2 proposes testable hypotheses. Sections 3.3 describes the data. Section 3.4 

discusses our empirical methodology. Section 3.5 presents our results. Section 3.6 

discusses policy implications of our findings. Section 3.7 concludes the paper and outlines 

possible venues for further research.  

 Hypothesis development  

In this Section, we propose several hypotheses regarding how scheduled releases of 

USDA news about three key U.S. agricultural commodities (corn, soybean, wheat) could 

affect the U.S. stock market as a whole (returns, Section 3.2.1), the stock prices of U.S. 
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companies that operate in the “food industry” broadly defined (excess returns on USDA 

event days, Section 3.2.2), and USDA-days excess returns for different sub-sectors of that 

broad industry (Section 3.2.3).  

3.2.1 U.S. Stock Market Returns and Volatility on USDA Event Days 

As noted in the Introduction, food-sector firms make up a small fraction of the overall 

stock market in the United States, both in terms of the number of companies and in terms 

of total market value. Furthermore, even if the food sector did make up a large share of 

the US stock market, that very sector comprises both companies whose stock price should 

react positively to a USDA surprise (e.g., a WASDE report that is price-bullish for grains 

and oilseeds) and also companies whose share price should move in the opposite direction 

in response to the same event; therefore, on average across all stocks, the broad stock 

market returns should be the same on USDA scheduled announcement days and non-

event days. Thus:  

Hypothesis 1a:  E(RM | USDA day) = E(RM | non-event day) 

where, RM denotes the daily rate of return on the market portfolio (proxied by Standard 

and Poor’s value-weighted S&P 500 stock market index).  

In the same vein, insofar as the food sector does not drive the U.S. economy, we 

conjecture that the overall stock market volatility (both realized volatility and forward-

looking uncertainty) to be indistinguishable on USDA event days and on non-event days. 

Thus, we have: 

Hypothesis 1b:  E(|RM | | USDA day) = E(|RM | | non-event day) 

Hypothesis 1c:  E(VIX | USDA day) = E(VIX | non-event day) 

where, we use the absolute daily return on the S&P 500 index |RM| as a measure of realized 

stock market volatility and the S&P 500 option-implied volatility index, VIX, as the 

measure of forward-looking stock market volatility.  

3.2.2 Average Food-Sector Stock Returns on USDA vs. non-Event Days 

USDA reports often contain surprises regarding agricultural quantities that can move 

commodity prices substantially (Adjemian 2012). Some surprises are bullish for 

agricultural prices; some are price-bearish. Therefore, on average across all USDA 

events, the average excess returns for food-sector firms should be zero under the joint 

hypothesis that (i) the CAPM is well specified and (ii) the expected market return (RM) is 

the same on event and non-event days (i.e., Hypothesis 1 holds): 
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Hypothesis 2: there are no significant difference in food-sector companies’ average 

excess stock returns on USDA scheduled announcement days vs. non-event days.  

where, excess stock returns are defined by reference to the Capital Asset Pricing Model 

(CAPM).  

3.2.3 Sub-Sector Stock Returns and USDA news 

Notwithstanding Hypothesis 2, as long as Hypothesis 1a holds, we should be able to sign 

the excess returns for firms that belong to different food-related industry sub-sectors—

based on whether the USDA surprise has implications for the total acreage planted with 

wheat, corn, or beans, and/or whether the surprise is price-bullish or price-bearish for 

agricultural commodities.  

The starting point of our analysis is the fact that the quantity or demand/supply balance 

surprise in a USDA report has mirror implications for commodity prices, as shown in 

Table 3.1. For instance, lower (resp. higher) than expected grain stocks constitute a 

bullish (resp. bearish) commodity price signal:38  

 

Table 3.1. Price-bullish vs. -bearish USDA Surprises 

 WASDE Grain Stocks 
Prospective 

Plantings 
Acreage 

Quantity 

Surprise 
+    /    − +    /   − +    /   − +    /   − 

Commodity 

Price Impact 

−   /    + 

(Bearish /   bullish) 

−   /    + 

(Bearish /   bullish) 

−   /   + 

(Bearish /   bullish) 

−   /    + 

(Bearish /   bullish) 

 

Then, the connection between the excess return on a company’s share and a quantity 

and/or commodity price surprise is obtained by identifying the impact of each surprise in 

the equation that defines a company’s stock price as the present value of all future profits 

that accrue to its shareholders, properly discounted:  

𝑆𝑖 = ∑
𝛱𝑖,𝑡

(1 + 𝑘)𝑡

∞

𝑡=1

= ∑ (
𝑅𝑒𝑣𝑖,𝑡(𝐴𝑡, 𝑃𝑡) − 𝐶𝑜𝑠𝑡𝑖,𝑡(𝐴𝑡, 𝑃𝑡)

(1 + 𝑘)𝑡
)

∞

𝑡=1

 (3.1) 

where, 𝑆𝐼  is the stock price of company i, k is the risk-adjusted discount rate for its 

periodic stream of profits 𝛱𝐼,𝑡, and 𝑅𝑒𝑣𝐼,𝑡(𝐴𝑡, 𝑃𝑡) and 𝐶𝑜𝑠𝑡𝐼,𝑡(𝐴𝑡, 𝑃𝑡) capture the reality 
 

38 See Cao and Robe (2022) and references cited therein 
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that company i’s period t revenues and costs may be impacted by the acreage 𝐴𝑡 devoted 

to growing a given agricultural commodity and the price 𝑃𝑡 of the latter.  

As discussed in the Introduction, if we assume that the discount rate k from Equation (3.1) 

is not impacted by USDA surprises, then the impact of USDA news on food-sector 

company excess returns (for companies that are not fully hedged against that possible 

impact) should depend solely on the numerator. In Sections 3.2.3, we develop hypotheses 

regarding how that impact varies by sub-sector.  

Intuitively, the impact of USDA news on a company’s stock price should depend on 

whether it uses grains and oilseeds for its own output, or whether it produces (or 

contributes to the production) of the commodities themselves. For this reason, we 

investigate separately the impact of USDA news on stock prices for “farm input-side” 

and “farm-output side” (Section 3.2.3) firms. For the same reason, we eliminate from our 

final sample four food-sector companies that are vertically integrated and, hence, cannot 

easily be classified in either category.  

(1) “Farm Input-side” Companies: Machinery, Fertilizers, and Agricultural Technology 

As a first-order approximation, the product development and production costs of 

companies that manufacture inputs into the production of agricultural commodities (e.g., 

farm machinery, new technologies for agriculture, fertilizers) should not be affected by 

changes in agricultural prices (at least in the short run). The impact of USDA news, if 

any, thus must come from the revenue side, 𝑅𝑒𝑣𝐼,𝑡(𝐴𝑡, 𝑃𝑡)—potentially through both 

acreage 𝐴𝑡 and commodity price 𝑃𝑡.  

On the acreage side 𝐴𝑡, the more surface used for growing food, the greater the need for 

farm inputs—seeds, fertilizers, and even tractors or automation technology. Companies 

that make such inputs should therefore be positively impacted by unexpected increases in 

planted acres. Hence, higher than expected figures in the WASDE, Prospective Plantings 

(PP), or Acreage reports (AR) should be good for their stock prices, as should lower than 

expected grain stocks (insofar as the latter may provide the impetus for additional 

planting—in the Northern or Southern hemisphere, depending on the time of year).  

On the commodity price side, 𝑃𝑡 , the effect of USDA news’ on those three types of 

companies’ revenues should come from the possible relaxation of financial constraints 

that might curtail farmers’ purchases of capital goods and production inputs. Surprises 

that are bullish for commodity prices and imply a relaxation of those constraints, then, 

should boost those companies’ revenues. Together, those observations lead to our third 

hypothesis, which is detailed in Table 3.2:  
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Hypothesis 3: The effect of Grain Stock (GS) surprises on the share prices of companies 

that manufacture inputs for crops is unequivocally positive (resp. negative) when the 

surprise is price-bullish (resp. bearish). In contrast, the net effect of USDA surprises 

depends on the relative magnitudes of the Atand Pt impacts in the case of the WASDE, 

PP and AR reports. 

 

Table 3.2. USDA Surprises and “Farm Input-side” Company Stock Returns 

 WASDE Grain Stocks 
Prospective 

Plantings 
Acreage 

USDA Quantity 

Surprise 
+     /     − +     /     − +     /     − +     /     − 

Commodity 

Price Impact 

−    /     + 

(Bearish /   bullish) 

−    /     + 

(Bearish /   bullish) 

−    /     + 

(Bearish /   bullish) 

−    /     + 

(Bearish /   bullish) 

Revenue Impact 

(A_t) 
+     /     − −    /     + +     /     − +     /     − 

Revenue Impact 

(P_t) 
−    /     + −    /     + −    /     + −    /     + 

Stock Price 

Impact 
? −    /     + ? ? 

 

(2) “Farm Output-side” Firms: Transformers, Distributors, Food Retailers, Restaurants 

In this Section, we turn to companies that use agricultural commodities as inputs—

whether directly (in the food processing sector including grain mills, brewers, or 

vegetable oil, meat, alcohol, biodiesel producers, etc.) or more indirectly (as would be the 

case for processed food wholesalers, distributors, retailers, or restaurants).39  

In Section 3.2.3 we argued that, in the case of “input-side” companies (i.e., those 

associated with the production of agricultural commodities), both acreage and price 

surprises have distinct implications for share prices—and the transmission channel is the 

impacts on corporate revenues. In contrast, the exposure of firms that use agricultural 

commodities, process them, or distribute the resulting food and products comes from the 
 

39 Four of the 158 firms in our sample (ADM, The Andersons Inc., Bunge Ltd., and The Seaboard Corp.) have activities 

tied to both the production and the transformation of grains and oilseeds. Furthermore, in their business as commodity 

merchandisers, those four companies are mostly exposed to calendar spread prices (i.e., the net costs of storage) but 

not to outright commodity prices (Robe and Roberts 2019). It is therefore not clear whether (let alone how) their stock 

prices should react to USDA news. For this reason, we therefore exclude them from our analysis. 
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cost side of the corporate profit equation. The ultimate impact on profits (and, hence, on 

share prices) therefore depends on the price elasticity of the demand for those firms’ 

respective products. In what follows, we assume that none of those demands is perfectly 

inelastic, so that any agricultural commodity price increases resulting from USDA 

surprises cannot be fully passed through to customers.  

Hypothesis 4: the share prices of companies that use agricultural commodities experience 

negative (resp. positive) excess returns following a price-bullish (resp. bearish) USDA 

surprise. The absolute value of that excess return increases with the elasticity of the 

demand for those firms’ products. 

It is worth noting here that, historically, “increases in agricultural commodity prices have 

contributed little to U.S. retail food price increases, because of the small cost share of 

agricultural products in food prices” (Baumeister and Kilian 2014). Therefore, the impact 

of USDA commodity price surprises on the share prices of restaurant chains, catering 

firms, and food distributors and retailers (groceries) should be directionally similar to, but 

lower in magnitude than, that of firms in the transformation sector. Our empirical 

methodology, however, does not allow us to gauge the intensity of the price reactions: 

Hypothesis 4 therefore covers all those firms. Table 3.3 summarizes Hypothesis 4. 

 

Table 3.3. USDA Surprises and “Farm Output-side” Food Company Stock 

Returns 

 WASDE Grain Stocks 
Prospective 

Plantings 
Acreage 

USDA Quantity 

Surprise 
+     /     − +     /     − +     /     − +     /     − 

Commodity 

Price Impact 

−    /     + 

(Bearish /   bullish) 

−    /     + 

(Bearish /   bullish) 

−    /     + 

(Bearish /   bullish) 

−    /     + 

(Bearish /   bullish) 

Cost Impact 

(C_(I, t)) 
−     /     + −    /     + −     /     + −     /     + 

Stock Price 

Impact 
+     /     − +     /     − +     /     − +     /     − 

 

Practically, one could run a t-test for Hypotheses 3 and 4 as long as one could construct 

an aggregate index of the USDA surprises. Since there is no obvious way to construct a 

“surprise index” across commodities (or across different reports whenever two or more 

reports are published simultaneously), the way to test Hypotheses 3 and 4 is to run 

regressions using commodity- and report-specific variables. To carry out those 
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regressions, we split the sample into sub-groups (after dropping the four commodity 

merchandisers) between “ag-as-output” and “ag-as-input” firms.  

 Data 

Our analysis requires financial market data and information on USDA announcements. 

Section 3.3.1 describes the construction of our sample of food-sector firms and the 

information that we gather for each firm, as well as other financial market data. Section 

3.3.2 describes the data that we gather regarding USDA announcements. 

3.3.1 Stock Market Data 

We use Compustat to identify all the food-sector companies that were listed on the NYSE, 

AMEX or NASDAQ markets at some point between September 2009 and October 2019. 

We create a list of the pertinent SIC codes and use it to construct a sample comprising a 

wide range of companies—firms that use agricultural products as inputs (food processors, 

livestock producers, biofuel refiners, beverage manufacturers, restaurant or catering 

chains, grocery chains and food distributors) and firms that produce inputs for farmers 

(machinery, fertilizers, ag technology, pesticides, …). We carefully account for mergers, 

acquisitions, spin-offs, and de-listings (for example, if two firms merge, then they are 

considered separately before the merger and jointly thereafter). As discussed in Section 

3.2.3, we drop four grain merchandising firms from the sample. 40  We also drop 

companies for which not all quarterly reports or reporting dates are available in the period 

when they are publicly listed.41 Our final sample comprises 154 distinct entities.42  

We collect the daily stock returns for the chosen stocks from CRSP between January 2009 

and October 2019. For benchmarking using a 3-month or 6-month CAPM model, we also 

extract between January 2009 and October 2019 (i) CRSP data regarding the daily returns 

on the S&P 500 stock market index (SPX) and (ii) Bloomberg daily data on the 90-day 

and 180-day T-bill rates.  

 

40 See especially footnote 38.  

41 We employ Compustat for the earnings announcement dates for the period 2006-2019. We match Compustat and 

Bloomberg information to obtain a list of firm-quarter observations with earnings announcement time stamps. 

42 We use SEC filings, as well as data gathered from Wikipedia, Investopedia, and Google searches, to reconstruct a 

continuous time series for the current tickers regardless of mergers, acquisitions, splits, and other corporate events. 
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3.3.2 Data on USDA Announcements 

We examine four sets of periodic USDA reports for the three main US agricultural 

commodities (corn, soybeans, and wheat): the monthly WASDE, the quarterly GS 

reports, and the annual PP and AR reports.  

These four categories of reports are released on a total of 15 pre-announced dates each 

year (except in 2013 and 2019, when there were only 14 announcement days due to U.S. 

government shutdowns). Using the same tallying as in Cao and Robe (2022, p.256), “from 

September 2009 to October 2019, there are 120 WASDE reports, 41 GS reports (of which 

10 overlap with the January WASDE), 10 PP reports, and 10 AR reports.”  

For each report, we also collect the results of a Bloomberg pre-event survey of corn, 

soybean, and wheat market analysts. Bloomberg has conducted such expert surveys since 

September 2009. Bloomberg News typically publishes the results of its surveys one week 

before the corresponding USDA event.43 The Bloomberg survey information contains 

detailed information about the forecasters who participated in each survey. A typical 

survey summarizes the opinions of about 20 commodity analysts regarding an upcoming 

USDA announcement.  

The Bloomberg information allows us to assess the distribution of analyst forecasts and 

to compute both a “consensus” value (which we set as the median analyst forecasts). 

Table 3.8 in the Appendix, reproduced with permission from Cao and Robe (2022), 

summarizes the characteristics of the 151 reports in our sample—including their 

coverage, frequency and timing, and key information surveyed by Bloomberg. 44 

Appendix Table 3.9 provides summary statistics regarding the USDA “news” for each 

event (i.e., the surprise defined as the difference between the actual USDA figure and the 

market analysts’ most recent pre-release Bloomberg consensus forecast).  

Altogether, our final sample encompasses 154 companies on 2,560 trading days (Table 

3.10 in the Appendix lists their stock tickers, by farm’s input/output side and sub-sector) 

and 151 USDA news events for four types of reports: WASDE, GS, AR, and PP.  

 Methodology 

In this Section, we describe our approach to achieve three main tasks: (i) tease out the 

excess returns of food-sector company stocks using the CAPM model, so as to isolate 

sample-firm returns due to the USDA report release from the part of the returns due to 

 

43 As noted by Cao and Robe (2022), “the exact timing of the result release is not documented in the survey dataset, so 

(one must) recover it by tracing back each release on Bloomberg News manually.” 

44 For more details about the figures of interest in each report, see Cao and Robe (2022).  
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overall stock market price movements on USDA event days; (ii) constructing proxies for 

the news component in the USDA reports; and (iii) testing our hypotheses using these 

measures. 

3.4.1 Estimating excess returns 

Financial asset returns are potentially affected by two types of risk: systematic risk and 

idiosyncratic risk. While the former affects every stock in the market and thus cannot be 

diversified, the latter is specifically related to a certain asset (or sector) and thus can be 

diversified by combining different assets (or sectors) into a portfolio. Since food-sector 

companies only account for a small fraction of the U.S. stock market broadly defined, the 

risk tied to USDA-announcements should be considered as sector-specific and thus 

irrelevant to the market risk premium.  

According to the Capital Asset Pricing Model (CAPM) (Sharpe 1964; Treynor 1961a, 

1961b), the expected asset returns as a reward for non-diversifiable market risk can be 

estimated over a certain period of time using the relation 

𝑅𝑖,𝑡 = 𝑅𝑓 + 𝛽𝑖(𝑅𝑀,𝑡 − 𝑅𝑓) + 𝜀𝑖,𝑡 (3.2) 

where: 

𝑅𝑖,𝑡 is the periodic return on company i 

𝑅𝑓 is the risk-free interest rate 

𝑅𝑀,𝑡 is the periodic return on the market portfolio 

𝜀𝑖,𝑡 is a residual or excess return component that is orthogonal to the market risk. 

In our empirical analysis, we use the S&P 500 stock index returns as proxies for the 

market returns and U.S. T-bill rates as proxies for the risk-free interest rates.45  

For each USDA event day, we must separate price movements stemming from the 

undiversifiable market risk from the potential impact of USDA announcement on stock 

returns. To do so, we first obtain an estimate of βI in Equation (3.2) for each stock i and 

each trading day in our sample. We use two rolling windows (of either 90 or 180 days) to 

do so. We end each regression 10 days prior to the day for which we need to compute an 

excess return, in order to abstract from food-sector stock price movements that might 

result from the publication of Bloomberg surveys of commodity analysts (which takes 

 

45 3-Month T-bill for the 90-day window, and 6-Month T-bill for the 180-day window 
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place up to 7 business days prior to a scheduled USDA report). Second, we use the 

relevant 𝛽𝐼  estimate (as well as the contemporaneous risk-free interest and market 

returns) to predict each stock’s return on each given trading day. Finally, we subtract 

those expected returns from the actual stock returns to generate a daily time series of 

excess returns 𝜀𝐼,𝑡 for each stock i.  

A large literature in finance and accounting shows that another component of individual 

stock returns is the price change around the company’s earnings announcement (EA) 

(e.g., Kross and Schroeder 1984; Nichols and Wahlen 2004). On the one hand, for each 

company in our sample, we could exclude the subset of EA dates that overlap with the 

USDA dates when performing statistical tests. On the other hand, overlapping EA-USDA 

event days account for a very small fraction of the observations in our sample (typically 

ranging from 0-2%, with a maximum of 7% of the active sample of a stock). For this 

reason, we retain all observations (including the overlapping ones) and add a dummy 

control variable that takes the value 1 when a USDA event day overlaps with an EA day. 

3.4.2 Measuring the news component of USDA reports 

Like macroeconomic and corporate announcements, scheduled USDA reports contain 

anticipated and unanticipated (i.e., news or “surprise”) components. Including the part of 

its content that had been expected by market participants could bias the estimate of a 

report’s market impact. Therefore, to unbiasedly assess the effect of a report on stock 

returns, we must first extract that report’s news component.  

As noted in Section 3.3, we use the Bloomberg analyst surveys before each USDA report 

to assess market experts’ expectations regarding the upcoming report. Specifically, for 

each report-date, we follow Cao and Robe (2022) and compute the surprise as the log-

difference between the actual USDA announced figure and the median (“consensus”) 

Bloomberg forecast. The same procedure is applied for three commodities: corn, 

soybeans, and wheat—which are the most important crops grown in the United States. 

Appendix Table 3.9 provides summary statistics regarding the consensus forecasts and 

USDA news for each USDA event.  

3.4.3 Testing methodology 

In this Section, we present the methodologies that we employ to test the five hypotheses 

presented in Section 3.2. 
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(1) Testing hypotheses 1a to 1c and 2: Compare excess returns on USDA announcement 

days vs. non-USDA announcement days 

Assuming that the market returns and food-sector companies’ estimated excess returns 

are all normally distributed, these hypotheses can be tested using two-sample t-test on the 

USDA days vs. non-USDA days. Alternatively, the nonparametric Kruskal-Wallis (KW) 

test can also be applied to account for the case of nonnormality, including the market 

forward-looking volatility (proxied by the VIX index). For each test, the null hypothesis 

is that there is no difference in the mean (t-test) or median (KW test) values on USDA 

days vs. “normal” days. 

In the case of all food companies’ excess stock returns (i.e., for testing hypothesis 2), one 

key issue for the test is the choice of the “normal” benchmark for non-USDA daily 

returns. To avoid any potential price movement in the run-up to, and also just after, the 

announcement day t, we compute the average excess returns of three trading days before 

day t-2 (that is, from day t-5 to day t-3) and three trading days after day t+2 (i.e., from 

day t+3 to day t+5). When any of these normal days happens to be an EA day as well, 

we replace it by one day further backward or forward. For consistency, we apply the same 

procedure to test Hypotheses 1a, 1b and 1c. 

(2) Testing Hypotheses 3 and 4: Regression analysis 

We carry out a standard panel data analysis to assess the role of USDA news on the excess 

returns of food-sector company stocks on USDA days. As discussed in Section 3.2.3, we 

run the regression for two subsets of excess returns: “farm input-side” (Hypothesis 3) and 

“farm output-side” (Hypothesis 4) companies. To capture the differentiated effects of 

commodity price-bearish vs. price-bullish surprises in the USDA reports, we split the 

surprise variable into commodity price-bearish (denoted 𝑆𝑡
+ ) and commodity price-

bullish (denoted 𝑆𝑡
−) surprises. For each of our two subsets of food sector-linked firms, 

the general regression equation is thus given by: 

𝐸𝑅𝑖,𝑡 = 𝜇 + 𝛾+𝑆𝑡
+ + 𝛾−𝑆𝑡

− + 𝛿𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖,𝑡 + 𝛼𝑖 + 𝑣𝑖,𝑡 (3.3) 

where 𝑖 = 1, 2, … , 154;  𝑡 = 1, 2, … , 2560; 𝑎𝑛𝑑: 

𝐸𝑅𝑖,𝑡 is the excess returns of stock i on trading day t;46 

𝜇 is the overall intercept; 

 

46 ERi,t in Equation (3.3) is the estimate of 𝜀𝑖,𝑡 in Equation (3.2).  
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𝑆𝑡
+  is a column vector of the commodity price-bearish news components 

(“surprises”) of all commodities of interest for all USDA announcements released 

on day t.47 Since we are interested in three commodities (corn, soybeans, wheat) 

reported in three types of USDA reports (WASDE, GS, and Planted Area48), 𝑆𝑡
+ 

has 9 elements in total, each of which is  

cross-sectionally invariant (i.e., for each day t, all stocks have the same vector 

𝑆𝑡
+); 

𝑆𝑡
− is a column vector of the nine commodity price-bullish news components that 

we construct analogously to 𝑆𝑡
+; 

𝛾+ is the row vector of coefficients that capture the marginal effect of the USDA 

price-bearish surprises on stock excess returns; 

𝛾− is the row vector of coefficients that measure the marginal effect of the USDA 

price-bullish surprises on stock excess returns; 

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑖,𝑡  is a vector of control variables that capture other time-varying 

characteristics of firms (the firm’s market capitalization the month before, plus a 

dummy variable indicating whether the USDA event day is also an earnings 

announcement day for that firm); 

𝛼𝑖 + 𝑣𝑖,𝑡 ≡ 𝜁𝑖,𝑡 is a composite error that contains a firm-specific, time-invariant 

unobserved effect 𝛼𝐼  and a zero-mean, homoscedastic, non-serially-correlated 

disturbance 𝑣𝑖𝑡. 

We are interested in the estimates of the influence of USDA report surprises, which are 

captured in the vectors 𝛾−̂ and  𝛾+̂. 

 Since not all the companies in our samples have full-length return observations 

throughout the sample period (September 2009 to October 2019),49 our sample constitutes 

an unbalanced panel of stock returns with sample lengths varying from stock to stock.50  

When it comes to the question of whether firm fixed-effect (FE) or random-effect (RE) 

estimators should be used to estimate Equation (3.3), two arguments favor FE. Firstly, as 
 

47 For each type of report, for those trading days when there is no scheduled report, the values of both surprise variables 

are set equal to zero. 

48 By construction, the Acreage report (released end of June) is a mid-season update for the Prospective Planting report 

(released end of March). Therefore, to keep the model parsimonious, we follow Cao and Robe (2022) and group these 

two reports into one single group called “Planted Area.” 

49 Some companies start to trade publicly, or are delisted, after September 2009. Furthermore, some firms are taken 

over or merge at some point in our sample. 

50 There are 86 out of 154 companies with full-length sample, i.e., with 2,560 trading day and no missing values.  
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discussed, we hypothesize that the extent to which a company’s stock price reacts to 

USDA information depends on the sub-industry to which the company belongs. For 

example, the implication of an unexpected increase in wheat acreage should be different 

for manufacturers of fertilizer vs. mills or restaurant chains. Since the sub-industry to 

which it belongs is a time-invariant characteristic of a company, its effect can be captured 

in 𝛼𝐼, together with other time-invariant characteristics that may affect how a specific 

stock generally reacts to news. The possible correlation between αI  and other time-

varying USDA-related explanatory variables will cause a bias in 𝛾−̂  and 𝛾+̂  and, 

therefore, should be eliminated—which supports using FE estimators. Secondly, for 

unbalanced panels, the latter usually produce more robust estimates (Wooldridge 2020, 

p. 447).51 

The panel methodology applied in our regressions draws heavily on Wooldridge (2020). 

We carry out our empirical analysis using the MATLAB Panel Data Toolbox developed 

by Álvarez, Barbero, and Zofío (2017).  

 Results 

In this Section, we present the results for each of the tasks described in Section 3.4.  

3.5.1 CAPM model estimates of excess returns 

For each firm and trading day, we estimate a CAPM model with two different rolling 

windows (90 and 180 trading days) and two estimation methods (OLS and maximum-

likelihood estimation with expectation maximization algorithm to account for missing 

data (Dempster, Laird and Rubin 1977). Figure 3.1 plots the resulting excess returns from 

these four models, for each of our 154 firms on the x-axis, on 151 USDA event days 

(blue) vs. the normal baseline on non-USDA days (orange) on the y-axis.  

Looking at Figure 3.1, we see qualitatively similar results for the four models. There is a 

clear pattern that excess returns tend to be larger in absolute value on USDA days (blue 

dots), whereas for non-USDA days they are concentrated more closely around zero 

(orange dots). In all four models, however, the average (not absolute) excess returns seem 

to be distributed around 0. 

 

51 In addition to those theoretical arguments, we find empirical evidence to support the FE model in our setting. 

Specifically, in Tables 3.6 and 3.7 below, we estimate both the FE and RE models and we show, using Hausman (1978) 

and Mundlak (1978) tests, that the FE estimator is indeed preferred to the RE estimator. Regardless, the two estimators 

yield similar numerical estimates.  
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Figure 3.1. Alternative Estimations for Excess Returns Plotted by Firm ID Number 
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Table 3.4 provides summary statistics for the raw and the estimated excess returns on 

both USDA and non-USDA event days. The Table focuses on the 180-day OLS 

estimation for brevity, as the empirical results are similar across these four 

specifications.52 Table 3.4 indicates that, both for the raw and for the estimated excess 

returns, the difference between the returns on USDA event days vs. on normal days is 

minimal on average, as both are close to zero and have large variance. 

Table 3.4. Summary Statistics – Food Sector Raw and Excess Returns on USDA-

announcement Days  

 

52 Since the 180-day rolling window generally requires more non-missing return data to provide plausible estimates, 6 

are dropped out of the initial sample of 160 firms, resulting in a total number of 154 firms in the final sample. 

 Median Mean SD Min Max 

Jarque-

Bera test 

statistics 

No. non-

missing 

Obs 

A. Raw returns 

All trading days 0.0003 0.0006 0.0264 -0.4915 3.1123 1.5x1010*** 308,393 

“Normal” baseline 0.0000 0.0005 0.0395 -0.4894 2.6182 1.0 x109*** 18,184 

USDA days 0.0014 0.0019 0.0268 -0.4894 1.1830 4.4 x107*** 18,184 

        

B. 180-day CAPM excess returns, all firms 

All trading days -0.0015 -0.0016 0.0257 -0.5014 3.1304 1.9x1010*** 308,393 

“Normal” baseline -0.0010 -0.0016 0.0120 -0.1225 0.5860 1.1x108*** 18,184 

USDA days -0.0012 -0.0011 0.0262 -0.5014 1.1587 4.8x107*** 18,184 

        

Statistical significance code: *** 0.01 **0.05 *0.10  
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Table 3.4 (cont.). Summary Statistics – Food Sector Raw and Excess Returns on 

USDA-announcement Days 

  

 Median Mean SD Min Max 

Jarque-

Bera test 

statistics 

No. non-

missing 

Obs 

C. 180-day CAPM excess returns,  Input firms 

All trading days -0.0000 0.0003 0.0284 -0.5014 3.1304 1.8x1010*** 54,496 

“Normal” baseline 0.0003 0.0003 0.0145 -0.0754 0.5860 9.2 x107*** 3,212 

USDA days -0.0006 -0.0002 0.0278 -0.5014 0.5373 9.1 x105*** 3,212 

        

D. 180-day CAPM excess returns, Output firms 

All trading days -0.0019 -0.0020 0.0250 -0.4875 2.5848 4.1x109*** 253,897 

“Normal” baseline -0.0013 -0.0020 0.0114 -0.1225 0.3561 6.0 x106*** 14,972 

USDA days -0.0014 -0.0013 0.0259 -0.4398 1.1587 5.5 x107*** 14,972 

        

Statistical significance code: *** 0.01 **0.05 *0.10  



 

USDA Reports Affect the Stock Market, Too

 

94 

3.5.2 Hypotheses 1a to 1c and 2 

Table 3.5 summarizes the testing results for Hypotheses 1a to 1c and 2, using paired 

sample t-tests and Wilcoxon signed-rank tests. Since the Jarque-Bera test statistics (in 

Table 3.4) consistently reject the normality of the return distributions for both raw and 

excess returns, we focus in what follows on the results of the nonparametric Wilcoxon 

signed rank tests.  

As Panel A in Table 3.5 shows, we cannot reject the null hypothesis that the S&P 500 

index returns are not statistically significantly different on USDA announcement days vs. 

on non-announcement days. This result is consistent with our intuition in Section 3.2.1, 

that any potential significant movements of food-sector stocks on USDA announcement 

days should either be (1) cancelled out across all food-sector firms or (2) too small to 

move the stock market as a whole.  

Panels B and C of Table 3.5 show that, in general, there is no significant difference in 

stock market volatility between USDA event and non-event days, consistent with 

Hypotheses 1b and 1c. Using the absolute returns of the S&P 500 index, |RSPX|, as the 

proxy for realized market volatility, Panel B shows that we cannot reject the null 

hypothesis that the realized volatility of the stock market is no different on USDA days 

compared to normal days. Likewise, Panel C shows that we cannot reject the null 

hypothesis that the VIX (i.e., the stock market’s forward-looking volatility) is not affected 

by USDA events. 

Figure 3.2 plots the distribution (by firm) of p-values of Wilcoxon signed rank test 

statistics of USDA-days excess returns against the “normal” average excess returns, as 

discussed in Section 3.2.2. Consistent with what is suggested by the summary statistics, 

Figure 3.2 shows that the p-values of the test are “spread evenly” between 0 and 1. 

Altogether, there are only 15 stocks (out of 154) for which the test’s p-value is lower than 

0.1. Without conditioning on the news content of the reports, at this stage, the statistical 

evidence suggests that USDA events have very little impact on food-sector companies 

(except for a small number of firms)—as predicted by Hypothesis 2.
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Table 3.5. Statistical Test Results for Hypotheses 1a to 1c and 2 

 Null  

hypothesis 

Alternative hypothesis Paired sample 

t-test 

Wilcoxon signed 

rank test 

Panel A. 

Hypothesis 1a 

E(RSPX | USDA) = 

E(RSPX | non-USDA) 

E(RSPX | USDA) ≠ 

E(RSPX | non-USDA) 
  

Test-statistics   0.664 0.942 

p-value   0.508 0.346 

Conclusion 
  

Cannot reject 

the null 

Cannot reject the 

null 

Panel B. 

Hypothesis 1b 

E(|RSPX|| USDA ) = 

E(|RSPX|| non-USDA )  

E(|RSPX|| USDA ) ≠ 

E(|RSPX|| non-USDA) 
  

Test-statistics   0.464 -0.528 

p-value   0.643 0.598 

Conclusion 
  

Cannot reject 

the null 

Cannot reject the 

null 

Panel C. 

Hypothesis 1c 

E(VIX | USDA) = 

E(VIX| non-USDA) 

E(VIX | USDA) ≠ 

E(VIX| non-USDA) 
  

Test-statistics   

Not applicable 

-0.813 

p-value   0.416 

Conclusion 
  

Cannot reject the 

null 

Panel D. 

Hypothesis 2 

E(ERi | USDA) = 

 E(ERi | non-USDA) 

E(ERi | USDA) ≠ 

 E(ERi | non-USDA) 
  

Test-statistics   See Figure 3.2 See Figure 3.2 

p-value     

Conclusion 
 

 Cannot reject 

the null 

Cannot reject the 

null 

Statistical significance code: *** 0.01 **0.05 *0.10 
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3.5.3 Testing Hypotheses 3 and 4 

This Section focuses on the results of the unbalanced fixed-effect panel regressions 

described in Section 3.4.3. This part of the analysis is designed to tease out the different 

dimensions of USDA reports’ effect on firms’ excess returns.  

(1) Hypothesis 3: “Farm input-side” companies 

Table 3.6 reports the estimates of 𝛾−̂ (resp. 𝛾+̂), i.e., of the effect of different types of 

USDA reports’ price-bullish (resp. bearish) surprises on the USDA days’ excess stock 

returns for the 26 farm-input suppliers in our sample. Heteroskedasticity-robust standard 

Figure 3.2. Histogram of p-Values of Wilcoxon Signed Rank Test Statistics 

of USDA Excess Returns against the “Normal” Average Excess Returns 
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errors are reported. According to Hypothesis 3 (see Table 3.2), the signs of the 

coefficients for WASDE and Planted Area surprises are ambiguous and to be determined 

empirically. In contrast, for GS reports, 𝛾+̂ should be negative for price-bearish surprises 

to have a negative impact on those firms’ excess returns. Likewise,  𝛾−̂ should also be 

negative for price-bullish GS surprises to have a positive impact on the excess returns of 

farm input producers.53 

Table 3.6 shows that the WASDE surprises, as expected from the above discussion, have 

a mixed effect on the excess returns across three commodities. Moreover, that impact is 

generally small. Starting with wheat, we see that a one percent WASDE surprise (from 

the pre-event Bloomberg consensus forecast) for ending-stock projections only brings 

about a (statistically significant) 0.046 percent negative excess return (compared to non-

USDA days) when the surprise is price-bearish. But a statistically significant average 

negative excess return of similar magnitude (0.063 percent) is also observed when the 

wheat surprise is price-bullish. For corn, in contrast, a price-bullish WASDE surprise 

causes a statistically significant positive excess return (an average 0.067 percent per one 

percent ending-stocks surprise), whereas the effect of a price-bearish surprise is 

insignificant. Soybean ending-stock projection surprises do not significantly move excess 

returns of firms in our sample in any direction. From those varied results, we conclude 

that it is ambiguous whether the cash-flow expectation adjustment (which causes the 

excess returns, as shown in Equation (3.1), and is induced by WASDE surprise) is driven 

more by the adjustment in acreage expectation or in the commodity output price 

expectation.  

In contrast to the mixed results for WASDE, Table 3.6 shows that the GS surprise 

coefficients that are statistically significant are all negative, consistent with Hypothesis 

3. First, a price-bearish corn GS surprise (which means the measured realized inventory 

level is higher than expected) yields 0.062 percent negative excess returns per one percent 

of higher-than-expected stock level. Second, the impact of a price-bullish wheat stocks 

announcement is even stronger: 0.22 percent negative excess returns per one percent of 

lower-than-expected stock level. The rest of the GS coefficients are not statistically 

significant. 

The Planted Area surprise coefficients in Table 3.6 are the largest in magnitude among 

the three types of announcements. It is apparent that price-bearish planting surprises 

significantly precede negative excess returns (almost 0.4 percent for corn), while price-

bullish acreage surprises cause positive excess returns (nearly 0.5 percent for corn and 

0.2 percent for soybeans). Unlike the case of WASDE, here the cash-flow expectations 
 

53 By construction, bullish surprises only take negative values, so they must be multiplied by a negative coefficient to 

yield positive excess returns. 
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through the commodity price channel Pt clearly dominates the acreage (i.e., quantity) 

channel 𝐴𝑡 (see Table 3.2). 

 

Table 3.6. Unbalanced Panel FE Estimates of the Effect of USDA Surprises on 

Food-sector Stock Excess Returns on USDA Announcement Days, Farms' Input 

Producer Firms† 

 
Corn Soybeans Wheat 

 
Coefficients 

Robust standard 

errors 
Coefficients 

Robust 

standard errors 
Coefficients 

Robust standard 

errors 

WASDE 

Bearish 

Surprise 

0.027 0.033 -0.019 0.014 -0.046** 0.019 

Grain Stocks 

Bearish 

Surprise 

-0.062*** 0.018 -0.020 0.018 -0.001 0.005 

Planted area 

Bearish 

Surprise 

-0.357*** 0.010 0.139 0.171 0.150 0.127 

WASDE 

Bullish 

Surprise 

-0.067*** 0.016 -0.010 0.007 0.063** 0.029 

Grain Stocks 

Bullish 

Surprise 

0.037 0.027 0.033 0.021 -0.222** 0.081 

Planted area 

Bullish 

Surprise 

-0.486** 0.218 -0.227** 0.089 0.060 0.147 

EA day 

dummy‡ 
-0.0001 0.0014     

Statistical significance code: *** 0.01 **0.05 *0.10 
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No. stocks (N): 26    

No. USDA days (T): 151    

No. non-missing daily return 

observations (n): 
54,496    

F Statistic of individual effects:§ 12.96***    

Wooldridge’s test statistics:§§ 0.005    

Hausman test statistics:⁋ 4.09    

Mundlak’s test statistics:⁋⁋ 179.07***    

Note: Table 3.6 reports the unbalanced panel FE estimation results for the subset of stocks of companies which produces 

farms’ input, including machinery, fertilizer, pesticides, and biotechnology. Heteroskedasticity-consistent standard 

errors are reported. 

† For all report-commodity combinations, the independent variables of interest are the surprises (percentage deviation 

of the actual USDA information from the Bloomberg median forecast). Given the way these independent variables are 

measured, their regression coefficients characterize the “elasticity” of excess returns (also measured in the percentage 

terms) to the correspondent change in the interest variables on the day of USDA announcement.  

‡ To avoid misunderstandings, the EA day dummy is a stand-alone explanatory variable in the regression equation, 

without being interacted with any other variable. 

§ F-test for the null hypothesis that all unobservable individual effects, i.e., 𝛼𝐼, are not significantly different from zero. 

The test statistics follows an F-distribution with (N-1, n-N-K) degrees of freedom under the null, with K being the 

number of time-varying regressors in the model. 

§§ Wooldridge’s test is used to test the null hypothesis that there is no serial correlation among the residuals. The test 

statistics follows an F-distribution with (1, N) degrees of freedom under the null. 

⁋ Hausman test is used to test the null hypothesis that there is no significant difference between RE and FE estimated 

coefficients. Thus, a rejection of the null means RE estimator is consistent. FE is estimator is consistent under both the 

null and the alternative hypothesis (Wooldridge 2020). The test statistics follows a Chi-squared distribution with K 

degrees of freedom under the null, with K being the number of time-varying regressors in the model. 

⁋⁋ Mundlak test tests the null hypothesis that individual means are zero, which imply that RE model should be preferred. 

The test statistics follows a Chi-squared distribution with K degrees of freedom under the null.  
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(2) Hypothesis 4: “Farm output-side” companies 

Analogously to Table 3.6, Table 3.7 reports the FE coefficients 𝛾−̂ and  𝛾+̂ estimated 

using the subset of 128 “farm-output side” firms (i.e., companies that use farms’ 

agricultural production as their input). Those include food/beverage processors, biofuel 

producers, catering/restaurant chains, and food retailers/distributors. According to 

Hypothesis 4 (see Table 3.3), we expect the coefficients for all three USDA report types 

to be positive, such that a price-bearish USDA surprise will cause positive excess returns, 

and a price-bullish one will cause negative excess returns.  

For the majority of the statistically significant coefficients in Table 3.7, this turns out to 

be the case. For example, a one percent bearish Planting Area surprise is estimated to 

yield about 0.3 percent positive excess returns (for corn and soybeans), whereas a bullish 

Planting Area surprise of the same size causes about 0.2. percent negative excess returns 

(for soybeans and wheat). As with the farms’ input producers, here Planted Area news 

also has the largest impact on commodity buyer stocks.  

For GS reports, we find that only price-bearish corn stock surprises significantly move 

excess returns upward. However, the size of effect is very modest: 0.025 percent excess 

returns per one percent of higher-than-expected actual corn stocks. 

Finally, as for “input-side firms”, WASDE surprises again have a mixed and very subtle 

impact on the excess returns of the present subgroup of food company shares. Price-

bearish news about soybean and wheat projected ending-inventories bring about 

statistically significant excess returns (as expected from Table 3.3), but only by 0.012 and 

0.032 percent, respectively. In contrast, corn price-bearish WASDE surprises bring about 

0.023 percent negative excess returns for “farm output-side” firms—which is not 

predicted by Hypothesis 4. However, that same-size corn surprise, when price-bullish, 

also moves the excess returns downward to almost the same extent: 0.014 percent, which 

is consistent with Hypothesis 4. Another unexpected effect is the wheat price-bullish 

surprise, which cause a positive excess return of 0.06 percent on average.   
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Table 3.7. Unbalanced Panel FE Estimates of the Effect of USDA Surprises on 

Food-sector Stock Excess Returns on USDA Announcement Days, Farms' Output 

Buyer Firms† 

 
Corn Soybeans Wheat 

 
Coefficients 

Robust standard 

errors 
Coefficients 

Robust standard 

errors 
Coefficients 

Robust standard 

errors 

WASDE 

Bearish 

Surprise 

-0.023*** 0.005 0.012*** 0.004 0.032*** 0.007 

Grain 

Stocks 

Bearish 

Surprise 

0.025*** 0.007 -0.008 0.010 0.021 0.023 

Planted 

area 

Bearish 

Surprise 

0.272*** 0.073 0.275*** 0.054 -0.142 0.104 

WASDE 

Bullish 

Surprise 

0.014*** 0.005 0.002 0.004 -0.060*** 0.011 

Grain 

Stocks 

Bullish 

Surprise 

0.003 0.014 -0.000 0.005 -0.021 0.032 

Planted 

area Bullish 

Surprise 

-0.094 0.071 0.161*** 0.046 0.246*** 0.053 

EA day 

dummy‡ 
-0.000 0.001     

Statistical significance code: *** 0.01 **0.05 *0.10 
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No. stocks (N): 128     

No. USDA days (T): 151     

No. non-missing daily return 

observations (n): 
253,897     

F Statistic of individual 

effects:§ 
21.29***     

Wooldridge’s test statistics:§§ 0.79     

Hausman test statistics:⁋ 92.72***     

Mundlak’s test statistics:⁋⁋ 959.80***     

Note: Table 3.7 reports the unbalanced panel FE estimation results for the subset of stocks of companies who are the 

buyers of farms’ output, including food/beverage processors, biofuel producers, catering/restaurant chains and food 

retailers/distributors. Heteroskedasticity-consistent standard errors are reported. 

† For all report-commodity combinations, the independent variables of interest are the surprises (percentage deviation 

of the actual USDA information from the Bloomberg median forecast). Given the way these independent variables are 

measured, their regression coefficients measure the “elasticity” of excess returns (also measured in the percentage 

terms) to the correspondent change in the interest variables on the day of USDA announcement.  

‡ To avoid mis understanding, the EA day dummy is a stand-alone explanatory variable in the regression equation, 

without being interacted with any other variable. 

§ F-test for the null hypothesis that all unobservable individual effects, i.e., 𝛼𝐼, are not significantly different from zero. 

§§ Wooldridge’s test is used to test the null hypothesis that there is no serial correlation among the residuals. 

⁋ Hausman test is used to test the null hypothesis that there is no significant difference between RE and FE estimated 

coefficients. Thus, a rejection of the null means RE estimator is consistent. FE is estimator is consistent under both the 

null and the alternative hypothesis (Wooldridge 2020). 

⁋⁋ Mundlak test tests the null hypothesis that individual means are zero, which imply that RE model should be preferred. 
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3.5.4 Robustness 

The results so far focus on results with excess returns based on a CAPM estimated using 

OLS over a 180-day rolling window. As mentioned earlier, we also estimated the CAPM 

excess returns using different rolling window lengths (i.e., 90 days instead of 180 days) 

and performed the analysis on both. Results are similar for both, except that the standard 

errors tend to be larger for the 90-day variant—both in Equation (3.2) and Equation (3.3). 

We find qualitatively similar results using maximum-likelihood estimators. 

Despite the trivial fraction of USDA event days that overlap with earning announcement 

days, we control for this confounding factor by including in Regression Equation (3.3) a 

dummy variable that takes the value 1 if a firm announces its earning on that trading day. 

Results (reported in Table 3.6 and Table 3.7) show that, for the firms in our sample in the 

2009-2019 period, an earnings announcement drift (as suggested by earlier literature) is 

not visible.  

 Policy implications  

The magnitude of the USDA news’ impact that we find for food-sector equities is smaller 

than the price reaction identified in commodity futures markets (see, e.g., Adjemian 

2012)—but that is as it should be: equity prices discount cash-flows for numerous years 

(over the course of which the relevance of a given USDA report will fade), while 

agricultural futures prices reflect the current supply-demand balance of a storable but 

ultimately perishable commodity. Regardless, the point of our analysis is to show that 

there is an equity-market impact and that it is statistically significant.  

An obvious policy implication is that USDA announcements matter to the broad 

economy. That is, while “plenty of research investigates whether USDA are influential 

on commodity futures markets from a variety of angles” (Ying, Chen, and Dorfman 2019, 

p. 991), our paper identifies a new dimension along which to measure and quantify the 

value of this public information that costs tens of “millions of dollars to collect and 

disseminate” (Karali et al., 2019, p. 66). Precisely, we provide empirical evidence that 

the USDA’s public reports do more than to “facilitate the efficient functioning” of, and 

to “reduce information asymmetries and facilitate the policy and program formation, 

operation and evaluation processes” in, commodity markets (ibid., p.67): in fact, USDA 

reports’ informational impact ripples beyond their immediate reflection in the commodity 

space, with USDA news reflected in the prices of long-term assets such as food-sector 

equities.  

A vast literature in finance and accounting investigates the impact of earnings surprises. 

In a Journal of Finance study using a period (1983-2015) that partly overlaps with ours, 
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Chiang et al. (2019) find that a one standard deviation increase in their measure of 

surprise generates a 1.5 percent cumulative abnormal stock return three days after a 

quarterly earnings announcement. This kind of magnitude comes to about 0.5 percent per 

day, and thus it explains both the attention paid to analyst forecasts by investors and the 

care taken by corporate insiders to provide markets with corporate guidance.54 While the 

kind of surprise that we investigate is different, the one-day excess returns that we find 

following USDA grain stocks (resp. acreage) surprises are 0.22 percent (resp. 0.5 percent) 

for some commodities. A second implication of our findings is that corporate insiders and 

investors should thus pay attention to USDA news. In line with this recommendation, 

equity research teams who track firms in the “food/ags,” “clean energy,” “ferts/chems,” 

“machinery” or related sub-sectors pay close attention to the same USDA reports that we 

analyze in the present paper, and they provide information to their clients regarding 

scheduled USDA releases.55  

A third policy implication directly follows from the above. It relates to the importance of 

security measures to prevent information leakage prior to the release of scheduled agency 

reports.56 Market authorities typically focus on commodity derivatives trading venues in 

the case of EIA and USDA reports. Yet, options trade on many of the stocks in our sample, 

and a simple back-of-the-envelope computation shows that a trader could earn a juicy 

one-day return of over ten percent on an at-the-money (ATM) one-month stock option 

following a 0.5 percent stock price reaction to an Acreage surprise.57 This reality suggests 

 

54 Many firms manage market expectations of their earnings—see Bertomeu et al. (2021) and references therein—and 

a majority of companies start issuing earnings guidance right after they first go public (Allee et al. 2020). 

55 To take just one example, the October 12, 2022 OPCO Equity Research report on Green Plains Inc., an ethanol 

producer in our sample, refers to the September 2022 WASDE report in to forecast demand for the company’s output.  

56 See Adjemian and Irwin (2018) for a discussion of the USDA lockup and other safety procedures around report 

releases. See also Huang, Serra, and Garcia (2021) for a discussion of how analyses that (unlike the present paper) rely 

on very high-frequency data must account for possible intraday information leakage.  

57 The 10 percent figure assumes 20 percent stock price volatility, 30 days to option expiration, no dividends, and 5 

percent interest rate; Appendix Table 3.11 give returns for various combinations of parameter values (volatility, time 

to maturity). We compute the option returns using a plain Black-Scholes model, as the percentage difference in option 

price resulting from a 0.5 percent change in the underlying stock price. The delta of an ATM option is always one half, 

so the dollar price change is half the underlying stock price change; however, because the option price is much less 

than the stock price, the percentage return is much higher for the option than for the stock. Put differently, option 

positions are “levered”—which is why unscrupulous traders use options to trade on ill-gotten information (see, e.g., 

Augustin, Brenner, and Subrahmanyam (2019), Fishe and Robe (2004), and references cited in those papers).  
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that market regulators may have to look further afield (namely, in equity markets) for 

possible malfeasance involving USDA information.  

 Conclusion 

Our paper provides the first investigation of stock market reactions to scheduled USDA 

reports. As our starting point, we separate food-sector firms’ daily raw returns into event-

day market-risk reward and excess return, and focus our analysis on the latter. To that 

end, we compute excess returns for 154 publicly-listed U.S. food-sector companies in our 

sample, using 180-day rolling windows, between 2009 and 2019. Both parametric and 

nonparametric tests show that, when averaged across all types of reports and across all 

grain and oilseeds, the prices of food-sector stocks in general do not react significantly to 

USDA surprises.  

In contrast, we document that food-sector stocks do respond, once one controls for the 

commodity, type of USDA report, and direction and extent to which the USDA news 

surprises the market. In particular, stock price responses to USDA news differ between 

firms on the input-side vs. firms on the output-side of agricultural (farm) production, 

contingent on which component of firm’s cash-flow expectations (costs or revenues, price 

or quantity) is impacted by the news.58  

Our empirical results support several intuitive hypotheses. On the one hand, for firms that 

supply inputs to farms (fertilizer, pesticides, machinery, or technology), a positive 

deviation from expected future commodity supply delivered in the WASDE and in the 

Prospective Planting or Acreage reports should be a “good news” (as more input will be 

needed). At the same time, the same news also implies expected falling agricultural 

commodity prices, thus tightening farmers’ cash constraint for further investments. In that 

sense, this kind of surprise should be “bad news” for those firms too. In contrast, a higher-

than-expected actual inventory level (in a Grain Stocks report) ought to consistently 

reduce those firms expected future cash-flows, given that plantings elsewhere in the world 

should adjust downward for the next harvest. On the other hand, for firms that use 

agricultural commodities as inputs, we should expect a more consistent pattern of stock 

price reactions for all types of USDA reports, given that news in all these reports affects 

the expectation of such firms’ margins through the same channel (namely, input costs). 

That said, a larger-than-expected commodity supply implied by any of these reports 

should in turn imply a cost reduction for these firms so long as the demand for their own 

 

58 For this set of analyses, we exclude from the sample vertically-integrated, publicly-listed agribusinesses that cannot 

be easily classified as either input- or output-side firms. 
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products is not perfectly inelastic, and thus leads to an upward revision of firms’ expected 

cash-flows.59 

Overall, our empirical results support these hypotheses statistically in the case of Planted 

Area and Grain Stock news. Planted Area surprises have the largest absolute effect on 

returns (with up to 0.5 percent excess returns) for both subsets of firms (ags-as-inputs and 

ags-as-output), followed by the GS reports. In both cases, the effects have the expected 

sign. In contrast, for both subsets of firms, we find that WASDE surprises have a very 

modest (and mixed) impact on stock returns.  

Our study is the first to shed light on the question of whether, and how, USDA report 

releases have an impact beyond commodity markets in general, and the stock prices of 

food-sector firms specifically. Our findings have important policy implications, which we 

spell out in Section 3.6. They also suggest additional paths for further research. First, our 

findings are at the daily frequency. Research in agricultural economics, however, shows 

that the commodity futures-market impact of USDA news takes places withing ten 

minutes of the announcement (e.g., Lehecka, Wang, and Garcia 2014). It would be 

interesting to revisit our analysis using intraday data, as the high frequency would sharpen 

the computation of excess returns. Second, our analysis abstracts from the possibility that 

some companies may hedge their exposure to commodity price fluctuations. Future 

research could investigate the relationship between firms’ hedging decisions and the 

extent to which their stock prices react to USDA news.   

 

59 The reverse holds true for a negative news. 
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 Appendix 

Table 3.8. USDA Reports Overview 

  WASDE Grain Stocks (GS) 
Prospective 

Plantings (PP) 
Acreage (AR) 

Frequency Monthly Quarterly Yearly Yearly 

Timing 
2nd week of the 

month 

2nd week of January 

& 

End of 1st-3rd 

Quarters 

End of March End of June 

Overlap 1st GS (January) 1st WASDE; PP; AR 2nd GS (March) 3rd GS (June) 

Information 

surveyed by 

Bloomberg 

Projected U.S. 

ending stock of the 

on-going marketing 

year 

U.S. Ending stock 

estimates as of 1st 

Dec, 1st Mar, 1st Jun 

and 1st Sep 

U.S. farmers’ 

planting intention 

for upcoming crop 

season 

Survey-based 

estimate of U.S. 

planted area for 

current crop season 

 

Note: Table 3.8, drawn from Cao and Robe (2022), describes the 151 USDA reports that we collect for our sample 

from September 2009 through October 2019. On some dates, the USDA releases more than one report: the third row 

in the Table (labeled “Overlaps”) explains which of the WASDE, GS, PP and AR reports overlap. For part of the 

empirical analysis (see Section 3.2.3), we include information regarding expert opinions prior to the USDA news 

release. The information regarding analyst opinions comes from periodic Bloomberg surveys of market experts.  
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 Table 3.9. Summary Statistics – Bloomberg Surveys and USDA News 

  

 Median Mean SD Min Max No. Obs Obs < 0 

A. Corn        

WASDE surprise 0.004 0.006 0.077 -0.242 0.326 121 52 

Grain Stocks surprise 0.002 0.011 0.068 -0.165 0.196 41 20 

Planted Area surprise 0.004 0.007 0.018 -0.017 0.055 20 8 

        

 Median Mean SD Min Max No. Obs Obs < 0 

B. Soybean        

WASDE surprise 0.000 0.000 0.101 -0.310 0.452 121 55 

Grain Stocks surprise -0.011 0.001 0.091 -0.346 0.265 41 26 

Planted Area surprise -0.004 -0.008 0.021 -0.078 0.034 20 15 
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Table 3.9 (cont.). Summary Statistics – Bloomberg Surveys and USDA News 

Note: Table 3.9 provides summary statistics for the event-day “USDA surprise” relative to analysts’ consensus forecast 

prior to the USDA scheduled event. The sample runs from September 2009 through October 2019 and covers 151 

USDA reports in that period—see Table 3.8. The information in Table 3.9 for corn and soybeans is similar to Table 2 

in Cao and Robe (2022).  

  

 Median Mean SD Min Max No. Obs Obs < 0 

C. Wheat        

WASDE surprise 0.006 0.007 0.039 -0.139 0.138 121 45 

Grain Stocks surprise 0.012 0.007 0.029 -0.074 0.055 41 16 

Planted Area surprise 0.004 -0.001 0.016 -0.038 0.018 20 9 
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Table 3.10. Sample Firms 

Sector Sub-Sector Stock Tickers 

Farm’s input-side 

Firms 

Farm Machinery & 

Technology (15) 

AGFS, BLT, TITN, ALG, ARTW, CAT, DE, LNN, SANW, 

TSCO, TTC, TWI, UAVS, AG/AGCO, CNH/CNHI 

Fertilizers & Pesticides 

(11) 

DD, DOW, DWDP, SYT, AVD, CF, FMC, MBII, MON, 

MOS, RKDA 

Farm’s output-side 

Firms 

 

 

Beverages & Food 

Processors (60) 

AQB, BETR, BNNY, BUD, GMCR, HNZ, KFT, KRFT, 

MDLZ, PF, POST, RAH, SFD, BGS, BRID, CAG, CALM, 

CPB, DAR, DEO, FARM, FLO, FRPT, GIS, HAIN, HRL, 

HSY, JBSS, JJSF, K, KHC, KO, LANC, LW, LWAY, MED, 

MGPI, MKC, NBEV, PEP, PPC, REED, RMCF, SAFM, 

SAM, SJM, SMPL, STZ, SXT, TAP, THS, TR, TSN, 

TWNK, BREW/HOOK, CPO/INGR, EAST/ESDI, FIZ/FIZZ, 

HANS/MNST, DPS/KDP 

 

Catering & Restaurant 

Chains (43) 

BOBE, CPKI, ARKR, ARMK, BDL, BJRI, BLMN, CAKE, 

CBRL, CHUY, CMG, DENN, DNKN, DPZ, DRI, EAT, 

FAT, FRGI, GTIM, JAX, LOCO, LUB, MCD, NATH, 

NDLS, PBPB, PLAY, PZZA, RRGB, RUTH, SBUX, SHAK, 

STKS, TACO, TAST, TXRH, WEN, WING, YUM, 

BBQ/DAVE, DIN/IHP, JACK/JBS, PZZI/RAVE 

Food Retailers & 

Distributors (17) 

HTSI, KR, CASY, CHEF, COKE, CORE, HFFG, IFMK, 

NGVC, PFGC, SFM, SVU, SWY, UNFI, USFD, WMK, 

WFM/WFMI 

Biofuels (8) AMRS, GEVO, GPP, AMTX, FF, GPRE, REGI, REX/RSC 

Integrated  Merchandisers (4) ADM, ANDE, BG, SEB 
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Note: Table 3.11 shows the returns that would accrue to the holder of an at-the-money stock option, from a 0.5 percent 

change in the underlying stock price. Panel A shows the prices of at-the-money calls and puts on a $100 stock, for 

various values of the volatility on the underlying asset (percent, annualized) and of the options’ times to maturity. Panel 

B shows the option returns from a stock price increase, Panel C, from a stock price decrease. 

  

Table 3.11. At-the-money Option Returns 
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Chapter 4  
Market surprises, machine learning and 

USDA Crop Progress and Condition 

reports60 

Abstract: Traditionally, a predefined surprise proxy (such as the consensus errors of 

analyst forecasts) is used to estimate the market impact of public announcements. We 

instead use the post-event price movements to tease out what the market consensus must 

have been, and to estimate the event-day surprises. Our empirical analysis focuses on the 

USDA’s weekly Crop Progress and Condition reports (CPCRs), which we show can be 

forecasted using weather “big” data. Departing from conventional Machine Learning 

(ML) approaches, we create a new ML routine to incorporate important features of a 

market expectation model under the Efficient Market Hypothesis’ semi-strong form. We 

find that the market often overestimates the condition of both crops by about 5-6%, with 

occasional spikes up to 22%. Moreover, these surprise estimates suggest that the reports 

still cause significant post-release market reactions, though of small magnitudes. 

JEL classification: C53, G14, Q02, Q11 

Keywords: Market Surprises, Market Expectations, Machine Learning, Crop Condition, 

Commodities, Scheduled News, USDA announcements  

 

60 Chapter 4 is pre-published as a working paper titled Cao, A. N. Q., Gebrekidan, B. H., Heckelei, T. and Robe, M. A. 

(2023). Market surprises, machine learning and USDA Crop Progress and Condition reports. SSRN Electronic Journal. 

Advance online publication. https://ssrn.com/abstract=4515193.  
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 Introduction 

Public announcements regarding market fundamentals greatly facilitate the price 

discovery process, and thereby improve market efficiency (Adjemian 2012; Baur and 

Orazem 1994; Brunnermeier 2005; Ederington and Lee 1993; Garcia et al. 1997). In the 

spirit of the Efficient Market Hypothesis (EMH, Fama et al. 1969), most studies to date 

focus on estimating a post-release market impact (e.g., on price returns, volatility, etc.) to 

assess the extent to which such announcements bring new information to the market. This 

new information component (i.e., the market surprise) is the difference between the 

announced figure and the ex-ante market expectation about that figure. Unfortunately, the 

market expectations are unobservable ex-ante, and thus so are the surprises ex-post. As a 

remedy, most studies to date use a pre-event consensus forecast (Chiang et al. 2019) as a 

proxy for ex-ante market expectations. However, this proxy is prone to serious 

measurement errors, which may be either correlated or uncorrelated with the true market 

expectations.61 Consequently, the resulting estimates of market impact using such proxy 

are subject to biases, and one might not be able to draw correct conclusions about the 

market impact of the reports. Additional efforts have been devoted to developing new 

estimators (e.g., Karali, Irwin, and Isengildina‐Massa 2019; Rigobon and Sack 2008) as 

well as to constructing alternative analyst-forecast-based expectations (e.g., Chiang et al. 

2019; Hirshleifer, Lim and Teoh 2009). Still, all these studies stick to analyst forecasts as 

the starting point of the surprise computation, and thus the risk of getting biased estimates 

of market impact persists – especially the one induced by incentive-driven biases. 

These considerations have two implications. One, to see how much new information a 

public announcement brings to the market requires to examine the surprise component 

itself in magnitude and pattern, and not only the estimated market impact. Two, to that 

effect, an analyst-forecast-free method of extracting the surprises must be considered. 

These are the two main goals of this paper. 

Towards both ends, we develop a novel nonparametric framework to extract the surprises 

of the announcement content without relying on analyst forecasts. The intuition 

underlying our approach is simple: regardless of whether the true surprise causes a large 

market reaction or not, it should be the most correlated with price movements compared 

to other proxies with measurement errors, provided that the measurement errors satisfy 

classical error-in-variable assumptions. Hence, in the absence of the true news, we can 

select the proxy that explains the most variation in the price returns among a set of 

candidates, when the set is large and able to generate unbiased proxies for the news. 

Critically, rather than computing some pre-defined “consensus forecast error” using 

 

61 Bartolini (2008) provides a helpful discussion of the problems associated with using such a proxy.  
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analyst surveys and taking its impact on prices as the impact of the news, as is done in 

much of the extant accounting, financial, and agricultural economics literatures, we let 

the post-event price signals speak out and choose the proxy that best explains its 

movements. In our theoretical framework, based on which the surprise candidates are 

generated, we allow for the expectation formation process to change over time to 

incorporate potential structural changes affecting the way in which market participants 

access and process information.  

For our analysis, we choose a report that is widely known to market participants, and that 

can be forecasted using objective, highly accessible and publicly available information. 

For these reasons, we focus on a weekly report that (we show) can be forecasted 

unbiasedly using high-resolution weather data: the Crop Progress and Condition Report 

(CPCR) published weekly by the U.S. Department of Agriculture’s (USDA) National 

Agricultural Statistics Service (NASS).  

The CPCR’s main role is to keep market participants up to date on the progress and the 

condition of major U.S. crops (like corn and soybeans) during their respective growing 

seasons. Despite its subjective, survey-based nature, the CPCR is a timely, 

comprehensive, and accurate assessment of crop development across the main U.S. 

production areas (Beguería and Maneta 2020). As long as a crop’s condition during the 

growing period determines the final yield, news regarding the development of crops are 

a crucial determinant of agricultural prices (Boudoukh et al. 2007; Schnepf 2006; Stevens 

1991). Thus, one would expect that the reports are valuable to market participants and, 

therefore, that CPCR surprises have significant post-release impact on the market. It is 

true that some monthly or quarterly USDA reports, such as the World Agricultural Supply 

and Demand Estimates (WASDE) and grains stock reports, command more attention in 

the academic literature. Furthermore, some of the literature to date (Bain and Fortenbery 

2017; Dorfman and Karali 2015; Lehecka 2014; Ying, Chen and Dorfman 2019) suggests 

that CPCRs impact commodity prices less than other USDA reports do, and that the 

impact has been falling over time as the market has gotten better at anticipating CPCR’s 

content. This said, a number of other studies demonstrate how the CPCRs can be used 

effectively for early in-season yield forecasting (Beguería and Maneta 2020; Irwin and 

Hubbs 2018; Kruse and Smith 1994) and as a ground-truth validation source for remote-

sensing-based crop mapping (Gao et al. 2017; Wardlow, Kastens and Egbert 2006; 

Worrall, Rangarajan and Judge 2021). As we submitted at the beginning of this 

introduction, these two seemingly contradictory sets of findings suggest that the surprise 

component itself must be investigated in order to properly assess the contribution of the 

CPCRs to market participants and other user groups. 
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In 2021, NASS introduces the “county-level” gridded CPCRs dataset for the years starting 

from 2015, in additional to the traditional state-level data. The present paper is the first to 

deploy this fine-scale dataset, together with weather data at high-resolution (both spatially 

and temporally), to produce a large set of predicted conditions of corn and soybeans 

during 2016-2021. We choose ML to accomplish this task due to its flexibility in dealing 

with complex relationships (such as the relationship between weather and crop 

condition/yield) as well as its capacity to handle such large amount of data efficiently. 

However, we depart from conventional, built-in ML cross validation routines to select the 

“best predicting model,” and create a new routine that can best reflect our theoretical 

framework and produce numerous candidates for market expectations in the way that is 

similar to the expectation formation process. The development of this routine is a second, 

technical contribution of our paper.  

Precisely, our routine is developed on the basis of Extreme Gradient Boosting (XGB) – a 

powerful nonparametric ML algorithm. We create a hyperparameter space that contains 

12,800 combinations of six important XGB hyperparameters, and let the models produce 

12,800 surprise series candidates for each year-crop in our sample period. Among these 

candidates, we choose the ones that explain the most variations in the post-release price 

movements. 

Results show that our models can generate highly accurate predictions for both U.S. crop 

condition (i.e., less than 0.5 percent away from the actual release on average). Consistent 

with our theoretical prediction, however, we find that these best predictions are 

consistently rejected by market returns as being appropriate proxies for the market’s 

expectations. Instead, using the post-event price movements to identify the latter, our 

algorithm picks the forecasts that are far away from the best predictions and the median 

predictions as the best proxies for the market expectations. Our empirical analysis 

indicates that both corn and soybean markets tend to be five to six percent overoptimistic 

(in log-difference terms) about crop condition during our sample period. In extreme cases, 

actual corn and soybean condition can be 18 percent (resp. 22 percent) below what the 

market had been expecting. This is a third contribution of our paper (to the agricultural 

economics literature), beside the broader methodological contributions (to the financial 

economics literature) of using a tailored ML routine and correlations between forecast 

errors and event-day price reactions to tease out the market surprise. 

We provide evidence that the market surprises derived from our models can plausibly 

characterize the developments of crop cycles in the sample period. For example, the 

overoptimistic expectations in 2021 are consistent with the fact that yield expectations in 

both markets were always at records that year – according to historical statistics of yield 

surveys provided by NASS Quick Stats database, despite the continuously worsening 
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crop condition reports as the year progressed. Putting our proxies together for the whole 

period 2016-2021, we find that the sign and magnitude of the surprises that we identify 

are consistent with the theory: a report of better (resp. worse) than expected crop 

condition is price-bearish (resp. bullish). Remarkably, market reactions to the crop 

condition news are statistically significant during this period, though with small size. 

Our work contributes to the extant literature in at least three different ways. First, we 

demonstrate that machine-learning routines, when developed rigorously based on market 

theories, have a great potential to be an effective method to derive a parameter-free, 

analyst-forecast-free proxy for the surprise component of public consensus information, 

in particular the USDA reports. We are not aware of any other work in which supervised 

machine-learning routines are employed to separate the unanticipated component of 

public consensus information. Second, to the best of our knowledge, we are also the first 

to effectively exploit market returns to identify the underlying surprise without having to 

resort to analyst forecasts.62 Third, we provide empirical evidence that contradicts the 

notion that the CPCRs nowadays provide only a limited amount of new information to 

the public. This may change the perception of various user groups of the reports, as well 

as how they incorporate the information content of the reports into many relevant 

estimates. 

The remainder of the paper proceeds as follows. Section 4.2 describes the CPCRs, as well 

as the weather and market data used in our analyses, which provides the reader with the 

necessary context for corn and soybean markets. Section 4.3 discusses several important 

theoretical aspects of the market expectation formation model, in the context of crop 

condition forecasting under the semi-strong form EMH. Section 4.4 builds on that 

discussion and introduces the design of the new ML routine. Section 4.5 discusses our 

empirical findings. Section 4.6 concludes.  

 The new geospatial CPC dataset: an opportunity for ML analysis 

The CPCR is a survey-based, weekly report that has been produced by NASS since 1986. 

It is the most comprehensive and frequently published information source for U.S. main 

crops’ progress and condition. The report is released every first business day of the week, 

with information available for each crop throughout its growing season.  

 

62 Our approach has some connection to the principal component analysis (PCA) exercise of Rigobon and Sack (2008). 

But, differently from them, we construct an explicit information set for market expectations and do not merely rely on 

market price data. Thus, our model outcomes can be interpreted more intuitively than the PCA factors. Yet, our model 

selection approach does not prevent us to draw valid inferences about the market impact of this surprise component. 
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Here we briefly introduce the newly available “county-level” gridded crop condition 

dataset63 developed by NASS and its potential advantages compared to the traditional 

state-level data. This new dataset is an important motivation for our use of ML methods 

in estimating the unanticipated report content. The weather dataset as well as commodity 

futures market data are also described in this Section. 

4.2.1 Two innovations for a gridded crop condition dataset 

Figure 4.1 illustrates the difference of the new format (left) vs. the traditional format 

(right) of the crop condition dataset. Until 2020, CPCRs were only published at the state 

level, using the standard format shown in panel (a). Though the surveys have always been 

carried out at county level, one goal of the state-level aggregation is to protect farmers’ 

confidentiality (USDA 2021). For each state-crop, the CPCR reports the proportions of 

acreage in five rating categories summing up to 100%: very poor (VP), poor (P), fair (F), 

good (G), and excellent (EX) conditions. The crop condition is reported only for the 

crop’s main production states. 

Deriving a reliable proxy for ex-ante market expectations of this dataset is challenging 

for several reasons. First, unlike quantitative information such as grain stocks or demand 

and supply estimates, a crop’s condition is a qualitative metric and there is no unique 

approach of quantifying it. To our knowledge, there exists no public guidance on how to 

classify a certain crop into the five aforementioned categories. This ordinal structure and 

the lack of reference are critical obstacles for parametric inferences of pre-event 

expectation of the CPCR, as such inferences would typically require restrictive 

distributional and functional assumptions on the data generating processes.  

Second, the CPCRs are highly spatially aggregated; in contrast, crop condition predictors 

(in particular, weather variables) are available at much higher spatiotemporal resolutions. 

Weather variables interact spatially, temporally, and cross-sectionally (e.g., between 

temperature and precipitation) in a complex fashion (Schlenker and Roberts 2009; 

Westcott and Jewison 2013). Furthermore, the production of corn and soybeans spans a 

wide geographic area of the USA characterized by heterogeneous growing conditions. In 

such a setting, arbitrary model specifications and data aggregation – as would be required 

in traditional parametric analyses – are likely to cause a serious loss of information.  

Finally, while nonparametric proxies of market consensus derived from pre-report analyst 

surveys seem promising in reducing bias (Chiang et al. 2019), they were not available in 

 

63 Both the traditional and the new formats of the CPCR contains two main indicators: (i) crop progress and (ii) crop 

condition. In this paper, we only focus on the information about crop condition. For more discussion about the crop 

progress, see Hubb and Irwin (2020a) and Lehecka (2014). 
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the case of CPCR until recently, likely due to the lack of common understanding of the 

crop rating criteria as discussed above. 

In response to the rising demand for finer-scale analysis (USDA 2021), NASS introduced 

in 2021 weekly gridded layers for both progress and condition data of corn, soybeans, 

and wheat. NASS made the information available retroactively, going back to 2015.64 A 

visualized example of this dataset is provided in panel (b) of Figure 4.1. Though the 

dataset is produced using the same surveys that are used for the state-level reports, NASS 

has made efforts to bring it much closer to county level. The new spatial resolution is 9x9 

kilometers, which potentially reduces the loss of information due to spatial aggregation. 

Furthermore, instead of discrete categories, the new dataset provides continuous indices 

of the crop condition based on equally-spaced integer values attached to each 

category/development phases. 65 Though it is not clear how the numerical values assigned 

to the categories/phases were chosen, it has the potential to be an official reference for 

how market agents could combine the categorical information. 66  With these two 

important innovations, the gridded presentation of the CPCRs opens an opportunity for 

more flexible nonparametric methods to exact the surprise component of the report 

content. In this paper, we propose a highly flexible ML approach to accomplish this task. 

 

64 According to NASS, it is unlikely that the gridded data will be produced for the years before 2015. Consequently, 

our current sample only contains seven years from 2015 to 2021, which is relatively short compared to previous studies. 

Also, this dataset does not replace but complements the traditional CPCR format, which is still regarded as the official 

format of the reports. 

65 See the dataset documentation provided by NASS at: 

https://www.nass.usda.gov/Research_and_Science/Crop_Progress_Gridded_Layers/CropProgressDescription.pdf  

66 Another caveat according to NASS is that the fine-scale dataset might be subject to some discrepancies from the 

original figures when aggregated back to state- and country level crop condition. This is due to smoothing and 

interpolation in the production of the fine-scale gridded dataset, as the data collecting and processing process was 

initially designed for state-level reports only USDA (2021). If the difference is large enough, it might introduce serious 

measurement errors into the new dataset and consequently bias the estimated market expectations. Thus, it is necessary 

to assess the numerical differences between the two data formats, as will be discussed in Section 4.5.1. 

https://www.nass.usda.gov/Research_and_Science/Crop_Progress_Gridded_Layers/CropProgressDescription.pdf
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4.2.2 Weather and market data 

With recent rapid developments in information technologies, weather data have become 

publicly accessible with much finer spatial and temporal resolutions and in ever more 

timely fashion. A natural question is to which extent these developments have contributed 

to the predictability CPCRs content.  

 

In this paper, we approach predictability using the daily Parameter-elevation Regressions 

on Independent Slopes Model (PRISM) weather dataset, which has a 4x4 kilometer 

spatial resolution. This dataset was developed, and is maintained by Oregon State 

University’s PRISM Climate Group. Alongside Daymet, it is one of the two most widely-

used sources of weather and climate data for the US continent in studies about the impact 

of climate and weather on agriculture (Mourtzinis et al. 2017; UCAR 2022). The daily 

data comprise seven weather variables: maximum temperature (Tmax), minimum 

temperature (Tmin), average temperature (tmean), precipitation (ppt), mean dew point 

temperature (tdmean), minimum vapor pressure deficit (vpdmin), and maximum vapor 

pressure deficit (vpdmax).67  

 

67  For more detailed description about the dataset, see: https://climatedataguide.ucar.edu/climate-data/prism-high-

resolution-spatial-climate-data-united-states-maxmin-temp-dewpoint  

Figure 4.1. Gridded, “County-level” Crop Condition (left) vs. Traditional, Ordinal 

State-level Crop Condition Formats (right) 

https://climatedataguide.ucar.edu/climate-data/prism-high-resolution-spatial-climate-data-united-states-maxmin-temp-dewpoint
https://climatedataguide.ucar.edu/climate-data/prism-high-resolution-spatial-climate-data-united-states-maxmin-temp-dewpoint
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In our sample period (2015-2021), all trading of CBOT corn and soybean futures is 

electronic after July 2015, and pit trading’s share of the total CBOT futures trading 

volume was small in the runup to pits’ closure (Gousgounis and Onur 2018). On the 

CME’s Globex (i.e., the electronic platform used for CBOT futures trading), each trading 

day has two sessions. The “U.S. night” session starts at 7PM Central Time (CT) on U.S. 

calendar day 𝑡 − 1  (which is formally called the “day t  open”, because it is already 

calendar day 𝑡 in Asia) and ends at 7:45AM CT on U.S. calendar day 𝑡. The “U.S. day” 

session that starts at 8:30AM CT and closes at 1:20PM CT on U.S. calendar day 𝑡.  For 

the purposes of our price analyses, we follow the approach adopted by Lehecka (2014). 

We use the “day 𝑡 close”-to-“day 𝑡 + 1 open” price returns to capture the market impact 

of the CPCRs, given that the latter are released at 4PM on calendar day t (i.e., at a time 

when the U.S. grain and oilseed futures markets are closed). We use close-to-open future 

returns of “new-crop” (i.e., December) corn and (November) soybean contracts traded on 

the Chicago Mercantile Exchange (CME). As their name suggests, these contracts expire 

shortly after the harvest of the current crops. Thus, news about current crop condition is 

directly relevant to the market valuation of these contracts. We use open and close 

(settlement) prices as reported on Bloomberg. 

As discussed in Sections 4.4.3 and 4.5.1 below, we also use the Acreage Planted data 

from NASS Quick Stats (USDA 2017) to calculate county- and state-level crop 

production shares when it comes to the national crop condition surprises.  

 Theoretical framework 

The futures prices of agricultural commodities reflect the aggregate expectations about 

what their spot prices will be at a certain point in the future. Futures price movements 

thus follow changes in expectations about market fundamentals. For a CPCR to cause a 

market reaction at the time of its release, it must be that market participants rely on the 

reports to revise their crop yield expectations. This is because once a crop has been 

planted, its condition during the planting season is a crucial determinant of the end-of-

season crop size. 68  As a crop’s condition changes continuously during the growing 

season, traders will revise their yield expectations accordingly, which will be reflected in 

price movements. If this updating process is efficient, then the price movement caused by 

each CPCR will only reflect traders’ reaction to the unanticipated portion of the 

information released in that report – since all the previously publicly available 

information has already been incorporated into the market prices beforehand. This is the 

 

68 For a thorough discussion about the relationship among weather, crop condition and expected yield, see Bundy and 

Gensini (2022) and the references therein. 
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basic assumption of semi-strong form EMH. Based on this intuition, we present a simple 

model of crop condition market expectation revision. 

Suppose that the market’s expectation of crop condition 𝐶𝑡  in period t  can be 

approximated by some model 𝑓(. ), using publicly available information 𝐼𝑡 at time 𝑡. The 

market surprise 𝑆𝑡  is then the forecast error of this forecasting process, 

𝑆𝑡  =  𝐶𝑡 − 𝑓(𝐼𝑡) (4.1). 

Over time, market expectations are revised as new information arrives. But a change in 

market expectations can also be due to changes in the way the market processes the same 

information, such as advancements in data analyzing techniques and computing power or 

in the structure of the data-generating processes.69 Thus, we should allow this expectation 

formation process to be updated after some periods. To see why this is important, suppose 

that in period 𝑡 + 1, 𝑓(. ) is no longer the best approximation to market expectations, but 

is instead replaced by some other function ℎ(. ). The surprise of this period is then the 

forecast error of the updated process 

𝑆𝑡+1  =  𝐶𝑡+1 − ℎ(𝐼𝑡+1) (4.2). 

At the same time, the new crop condition can be thought of as what was there previously 

plus some development ∆𝐶𝑡+1, 

𝐶𝑡+1  =  𝐶𝑡 + ∆𝐶𝑡+1 (4.3). 

The previous crop condition 𝐶𝑡 is, obviously, known to everyone at time 𝑡 + 1. Thus, it 

should be fully incorporated into the information set 𝐼𝑡+1 to form an optimal forecast for 

the next period, ℎ(𝐼𝑡+1), under the semi-strong form EMH. Hence, the prediction task in 

period 𝑡 + 1 concentrates on ∆𝐶𝑡+1, and the surprise component 𝑆𝑡+1 must be part of it: 

∆𝐶𝑡+1  =  
𝑑ℎ(. )

𝑑𝐼
 ∆𝐼𝑡+1 + 𝑆𝑡+1 (4.4), 

with  

 

69  For example, the relationship between crop condition and weather can also changes due to advancements in 

biotechnologies, or climate change. 
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∆𝐼𝑡+1 = 𝐼𝑡+1 − 𝐼𝑡 (4.5) 

being the new information that arrives between t and 𝑡 + 1. This explains why the entire 

week-to-week change ∆𝐶𝑡+1 is not a good proxy for the market surprise, as noted by 

Lehecka (2014). 

Recursively substituting (4.3), (4.4), and (4.1) into (4.2) yields 

ℎ(𝐼𝑡+1)  =  𝑓(𝐼𝑡)  +  𝑆𝑡  +  
𝑑ℎ(. )

𝑑𝐼
 ∆𝐼𝑡+1 (4.6). 

Equation (4.6) shows that the updated process of expectations embraces three 

components: the formerly ideal process 𝑓(𝐼𝑡), the unexpected error 𝑆𝑡  of that former 

process, and finally the revised expectation due to both new information ∆𝐼𝑡+1  and 

changing the model. The last term on the right-hand side – as intuitions suggest – implies 

that in the process of updating the market expectation model from 𝑓(. ) to ℎ(. ) in period 

𝑡 + 1, ℎ(. ) must be used to process all the data available at time t in retrospect.70 Thus, 

errors from the fit of ℎ(𝐼𝑡) should not explain any market reaction at time 𝑡.  

On the other hand, if we were to continue using 𝑓(. ) for period 𝑡 + 1 when that functional 

form is no longer the best approximation to market expectations, then 

𝑆𝑡+1
𝑓

 =  𝐶𝑡+1 − 𝑓(𝐼𝑡+1) (4.7). 

Substituting the relationships in (4.2) and (4.6) into (4.7) and then rearranging yields 

𝑆𝑡+1
𝑓

= [
𝑑ℎ(.)

𝑑𝐼
 −

𝑑𝑓(.)

𝑑𝐼
] ∆𝐼𝑡+1 + 𝑆𝑡 + 𝑆𝑡+1  (4.8). 

Equation (4.8) shows that the consequence of continuing to use (4.8) when the expectation 

formation process has changed is that the pseudo-surprise 𝑆𝑡+1
𝑓

 differs from the true 

surprise 𝑆𝑡+1  by two components: the disagreement between the two models on the 

revised expectation due to new information ∆𝐼𝑡+1, and the surprise from the previous 

period 𝑆𝑡. In other words, even if 𝑆𝑡 is truly unanticipated (i.e., no bias in expectations), 

if we keep on using 𝑓(. )  while it is no longer the best representation of market 

 

70 In case of nonoptimal model updating, the refit for period 𝑡 can be thought of as some weighted average of the 

updated model ℎ(𝐼𝑡) and the old one, 𝑓(𝐼𝑡). 
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expectations, it will be carried forward to the future estimates. The same intuition holds 

true for individual forecasters: if one does not learn from one’s previous forecast errors 

when revising the forecasting model for future periods, then the mistake will persist.  

In what follows, we show that nonparametric ML approaches, when properly designed, 

can be an effective way to incorporate such updating process in the estimation of market 

expectations and surprises. 

 Methodology: an innovative ML routine 

This Section focuses on ML’s capability to tease out the surprises contained in the 

USDA’s crop condition reports. First, we discuss our motivation for choosing a 

nonparametric ML method over traditional parametric analyses. Despite ML’s 

advantages, there are important reasons why we cannot use a standard ML approach to 

find the crop condition surprises. To see why, we provide a brief overview of the standard 

ML approach. From there, we point out the need for modifications to make it suitable for 

extracting the crop condition surprises, and we show how these modifications are 

incorporated into our modeling framework. 

4.4.1 Why do we need ML? 

Apart from greater data availability as introduced in Section 4.2, our rationales for the use 

of a nonparametric ML approach mainly come from its strength in dealing with complex, 

nonlinear relationships in the data generating process (Storm, Baylis and Heckelei 2020). 

Theory is quite silent when searching for the appropriate functional forms. This is 

especially true for the complex market expectation formation, as well as the relationship 

between weather and crop yield.  

First, as demonstrated by Chiang et al. (2019), an ideal measure of the surprise is a highly 

nonlinear aggregating function of individual forecasts, which depends on many unknown 

parameters. Consequently, it is impossible to come up with a theoretically motivated 

parametric measure of the surprise, which necessitates the use of a nonparametric 

approach. 

Second, in the agricultural context, weather variables make up an essential part of the 

information set based on which end-of-season supply expectations are formed after the 

crop has been planted. The processes governing impacts of the different weather 

characteristics on crop conditions are highly complex and highly nonlinear across space 

and time, leaving market participants with infinitely many different ways to approximate 

them. That complexity weakens further any theoretical justification for using a specific 

functional form of aggregated expectations. 
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Finally, as our theoretical framework makes clear, under the EMH any previous public 

information should be incorporated into the information set used for the current period, 

including past forecast errors. Since predictive accuracy can be improved either by adding 

more data or adapting to a more appropriate modeling structure, the best model used for 

some previous periods is not necessarily the best one for the next periods. Allowing for 

such configuration updating requires a great deal of flexibility, which is limited in 

parametric models. 

4.4.2 A standard ML approach with cross-validation 

In the first place, ML is designed specifically for prediction. Predictive accuracy is its 

ultimate objective. This objective is accomplished through finding the balance between 

the in-sample (i.e., training set) good fit and the out-of-sample (i.e., test set) 

generalizability. In ML terminology, we want a model that produces the smallest errors 

possible, not only in training but also in test sets.71  

Different procedures have been developed for this purpose, mostly as standardized, built-

in routines. Figure 4.2 illustrates one of the most popular ones: the train-validation-test 

split approach. For a given prediction task, one needs to predefine the relative sizes of the 

in- and out-of-sample subsets, the ML algorithm, the objective function, and the 

hyperparameter space. Each point in this hyperparameter space is a specific configuration 

of the ML algorithm. Tuning these configurations regulates various aspects of the 

algorithm’s operation, such as the rate of learning or the degree of complexity allowed to 

guard against overfitting, and find the model with the best predictive performance. 

Depending on the algorithm used and how wide the set of possible values for each 

hyperparameter is, this space can contain a very large number of hyperparameter 

combinations. 

The general idea of this process is to split the training set (i.e., the subset of data used for 

learning the underlying relationships between the outcome variable and the predictors)72 

into smaller subsets, or folds. For each possible hyperparameter combination, each fold 

will take turns serving as a semi-final test set (often called the validation set), while the 

model is trained (i.e., fitted) on all remaining folds. The average value of the objective 

function across all these validation sets is then computed. This average, often referred to 

as the cross-validation error, is used to determine the best configuration across the 

hyperparameter space. 

 

71 For more intuitive explanations of this tradeoff, see Storm, Baylis and Heckelei (2020). 

72 In this paper, we only focus on the supervised ML category. The unsupervised ML methods – in which an outcome 

or target variable is absent – is not referred to since they are not suitable for our task. 
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Nowadays, this whole process of trying different combinations of hyperparameters 

usually happens within built-in routine,73 also called hyperparameter tuning. To optimize 

computational and storage resources, these routines will only return the model 

configuration that produces the smallest average loss (largest average gain) across all 

validation folds, depending on the choice of the objective function. Finally, the winning 

model configuration is used to predict on the final test set, where the ultimate interest of 

the task normally concentrates. In the context of our paper, one example is to use the 

forecast errors in the test set as a proxy for the crop condition surprises during that period 

– provided that the test set spans across a consecutive period and is representative of a 

full geospatial unit of interest such as county, state, or country – and make statistical 

inference for the market impact within this test set.  

Though this a powerful and widely-used approach to achieve high predictive accuracy, 

as we explain in the next Section, it cannot be applied mechanically to our problem, i.e., 

to estimating the crop condition surprise. 

4.4.3 Tailored ML routine and selection criterion 

The fact that the standard ML routines only focus on the best predictive model turns out 

to be a critical shortcoming for our purpose. Our objective is not to come up with the best 

crop condition forecast, as there is no reason to assume that market expectations are 

always the best forecasts.  

It is true that coming up with the most accurate forecast should be the goal of individual 

market participants. But since some will do better than others, the aggregate (market) 

expectation need not be the winner of them all. In other words, the surprises and the 

forecast errors produced by the best predicting model may not be the same. Because the 

standard cross-validation described above only returns the model with the best predicting 

performance, it is not possible to examine other candidates to see if they produce forecasts 

that better approximate the true market expectations. This intuition prompt us to “open 

the black box” of build-in validation routines, i.e., to explicitly evaluate the forecasts and 

forecast errors produced by every candidate in the hyperparameter space – not just the 

best one. 

 

73 In Python language, examples are the packages GridSearchCV and RandomizedSearchCV. 
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Figure 4.2. An Example of a Standard ML Workflow with K-fold Validation 
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The core question that follows directly is, how do we know if a given series of weekly 

crop condition forecasts closely resembles the market expectations of that period? In other 

words, how do we know if a given series of forecast errors is more correlated with the 

true market surprises than the other series? Obviously, an average value is not informative 

since the variation in it is discarded. Because the true market expectations are 

unobservable, we must rely on some other observable process that can be plausibly 

assumed to be correlated with them. But, as Bartolini (2008, p. 364) precisely points out, 

“there is no instrument correlated with the true news that can be used to address this 

problem: if there were one such instrument, 𝑧𝑡
∗  would not be news anymore.”74 This 

leaves us with the only possibility: the post-release market returns. To access the quality 

of a proxy for the announcement surprises, we propose to consider its relationship with 

the observable post-announcement market reactions. 

This conclusion leads us to a selection criterion beyond the possibilities provided by 

conventional ML approaches: the ability of the resulting forecast errors to explain the 

observed market returns. Suppose that a ML model predicts crop condition as 𝑔(𝐼𝑡) and 

has a forecast error 𝑋𝑡, i.e., 

𝑋𝑡 = 𝐶𝑡 −  𝑔(𝐼𝑡)  (4.9). 

The idea is to find 𝑔(𝐼𝑡) that is most similar to 𝑓(𝐼𝑡) such that 𝑋𝑡  is closest to 𝑆𝑡  in 

Equation (4.1). But market expectation 𝑓(𝐼𝑡) is not observable, and neither is the market 

surprise 𝑆𝑡. However, under the maintained assumption that the market consensus is an 

unbiased forecast, it is natural to assume that St is distributed with mean zero and a finite 

variance 𝜎𝑠
2. 

For a ML algorithm designed to produce an unbiased forecast of the crop condition (and 

due to the regularization in most ML algorithms), its forecast errors 𝑋𝑡  should be 

distributed with mean zero and a finite variance 𝜎𝑋
2 . Following Karali, Irwin, and 

Isengildina‐Massa (2019), we acknowledge that this forecast error differs from the true 

market surprise 𝑆𝑡 by a random measurement error component 𝜂𝑡,  

𝑋𝑡 = 𝑆𝑡 + 𝜂𝑡 (4.10). 

As there is no reason to believe that this measurement error is correlated with the true 

surprise 𝑆𝑡, we can assume that it fits the classical error-in-variables assumptions and is 

 

74 𝑧𝑡
∗ refers to the true surprise, equivalent to 𝑆𝑡 in our notations. 
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distributed with mean zero and variance 𝜎𝜂
2 . Post-announcement market returns are 

defined as 

𝑟𝑡 = 𝑙𝑛𝑃𝑡,1 − 𝑙𝑛𝑃𝑡,0 (4.11), 

where 𝑃𝑡,1  and 𝑃𝑡.0  are market prices after and before the announcement of period 𝑡 , 

respectively. Assuming that the impact of the news released in the announcement on 

market returns is orthogonal to other factors, its marginal effect on market returns can be 

captured by the coefficient 𝛽1 in the simple linear regression equation 

𝑟𝑡 = 𝛽0 + 𝛽1𝑆𝑡 + 𝜀𝑡 (4.12), 

where 𝜀𝑡  satisfies the usual assumptions.75 The proportion of the variation in returns 

explained by this news component is then measured by the coefficient of determination 

of Equation (4.12), denoted 𝑅𝑆
2. 

𝑅𝑆
2 = 1 −

�̂�𝜀
2

�̂�𝑟
2  (4.13), 

with �̂�𝜀
2 and �̂�𝑟

2 being the estimated sample variance of the regression residuals 𝜀𝑡 and 𝑟𝑡, 

respectively. Analogously, for any proxy 𝑋𝑡 we can run the regression 

𝑟𝑡 = 𝑏0 + 𝑏1𝑋𝑡 + 𝑣𝑡  (4.14) 

and obtain the corresponding coefficient of determination 𝑅𝑋
2, 

𝑅𝑋
2 = 1 −

�̂�𝑣
2

�̂�𝑟
2

 (4.15). 

Using asymptotic theory, it can be shown that76 

𝑝𝑙𝑖𝑚𝑅𝑋
2 = 𝑅𝑆

2 𝜎𝑋
2 −𝜎𝜂

2

𝜎𝑋
2   (4.16). 

 

75 In equity space, this equation is known as “POSTCAR regression” Chiang et al. (2019).  

76 This result is consistent with Karali, Irwin, and Isengildina‐Massa (2019). Readers should read that article for a more 

general discussion about the consequence of measurement errors on the estimated impacts of USDA announcements 

in agricultural markets. 
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That is, under classical error-in-variables, the coefficient of determination of the market 

impact regression with a given news proxy is smaller than the one obtained using the true 

surprises by a fraction of measurement error’s variance in total variance of the observed 

proxy. Thus, as a proxy gets closer to the true surprise, 𝜎𝜂
2  becomes smaller. 

Consequently, this difference should become narrower. Though one can never completely 

eliminate the measurement errors in any proxy for the true surprises due to its latent 

nature, a measure most correlated with the true surprise must have the highest explanatory 

power to the corresponding market movement outcomes among a set of candidates. 

Therefore, choosing the candidate that yields the highest 𝑅𝑋
2  in regression Equation 

(4.12) will pull us close to the true surprise.77 

It is important to point out that our approach does not jeopardize the assessment of the 

market impact of the news, so long as the slope coefficient estimates in Equation (4.12) 

are not involved in the selection criteria. The true market surprise variable 𝑆𝑡, with the 

highest 𝑅2 as shown, can have an insignificant impact 𝛽1 on market returns over a given 

time interval, and so can the proxy 𝑋𝑡. 

Until here, it is clear that both the workflow and the objective function for model selection 

must be different from those in standard ML approaches. But further modifications must 

be incorporated to make sure that the proxy 𝑋𝑡 is generated in a similar manner to the 

expectation formation process. In the context of crop condition expectations, neither the 

time nor the spatial dimensions of the data can be neglected. As it is natural with crop 

development and market expectation formation, ensuring that we do not use the data of 

the future to predict the past is critical.78 Furthermore, consistent with our theoretical 

framework, allowing for the possibility of updating the model over time is important. For 

example, suppose that we are interested in drawing conclusion about the market surprise 

during the period 2020-2021. Using a standard approach, we would have all the data of 

 

77 To get a sense of how this relationship holds for small samples, we perform a simple Monte Carlo simulation with 

10,000 repetitions for a sample size of 20 observations, resembling an average crop cycle when the CPCRs are 

available. Each time, a noise component is added to the pre-defined surprise variables before a regression of the market 

returns on this noisy proxy is run. The experiment reveals that the probability of getting an �̂�𝑋

2
 that is higher than the 

“true” �̂�𝑆
2 is around 3%. 

78 In principle, methods to account for the time dimension of the data are available within conventional ML frameworks 

(see, e.g., Oliveira, Torgo, and Santos Costa (2021), for a thorough review of cross-validation schemes in 

spatiotemporal settings). However, these treatments still leave a gap between the periods used to fit the data and the 

periods in the final test set, namely the periods used in the validation set. From expectation revision perspective, what 

works well for the validation set may not work that well for the test set. More importantly, without the possibility to 

evaluate every model candidate separately, they can only improve temporal forecast accuracy, not market expectation 

replication. 
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this period as the test set, and the training set would contain all available data before 2020. 

But by making those choices, the data that we would use for the year 2021 would be 

restricted to be smaller than the information set available to market participants, which 

also includes the year 2020. At the same time, that approach would exclude the possibility 

that a different model configuration might perform better after having the 2020 data 

included in the training set, as compared to the one selected from a training set that ends 

in 2019. Hence, ideally, incorporating the most recent data and evaluating the models 

must be done simultaneously.  

Likewise, as market participants ultimately care about the implication of crop condition 

on the overall crop size of the US, it is natural to weigh the crop condition of a 

geographical unit by the production share of that unit when assessing the national figures. 

Since the loss (gain) in built-in ML routines is the arithmetic mean across all observations, 

it washes out the heterogeneous importance of across time and space, and is thus likely 

to be a biased estimator of the nationally aggregated surprises.79 

To sum up, to have a ML workflow function in a similar way to how market expectations 

are formed as suggested by theories, we cannot adapt a standard workflow that is 

primarily designed to achieve the highest possible predictive power. Figure 4.3 

summarizes the modified workflow, discussed in this Section, that addresses these 

concerns. 

 

79 Introducing customized loss (gain) functions is also possible with available ML routines. However, to our best 

knowledge, the latter do not allow for dynamic updates of the weights across different parts of the dataset. This is 

necessary because the production share of each geographical unit changes from year to year. Even within a year (when 

the production share can be argued to be invariant), crop planting does not happen at the same time across all production 

areas. Using fixed weights will likely result in biased estimates of the national condition. We discuss these issues in 

detail in Section 4.5.1. 
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Figure 4.3. Modified ML Workflow to Estimate the Surprise Component of Crop Condition Reports 
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 Empirical implementation and results 

Our ultimate goal is to assess the surprise component of the crop condition content in the 

CPCRs. To that end, we proceed in four steps as presented in Figure 4.4, including: (i) – 

data preprocessing, (ii) – consistency check of the new condition dataset, (iii) – extracting 

the surprise component, and (iv) – assessing the impact of the surprises on corn and 

soybean new-crop futures prices. This Section describes the procedures we follow and 

our findings for these steps. Since both CPCR gridded layers and PRISM data are in 

geospatial format, we follow a standard workflow of preprocessing geospatial data for 

ML applications. Hence, for abbreviation, this step is not described in detail here.80 A list 

of predictors used to predict pixel-level crop condition is provided in Appendix 4.A.1. 

4.5.1 Consistency check: how reliable is the gridded dataset? 

Before using the gridded CPCR dataset for our analysis, it is important to verify that this 

newly developed dataset is not a biased representation of the original dataset, which is 

the one released to the markets in real time. In this Section, we therefore check whether 

interpolation and smoothing introduce a serious inconsistency between the crop 

conditions reported by the two datasets. 

As described in Section 4.2.1, the two datasets are different in two important attributes: 

the numerical format, and the level of spatial aggregation. Hence, for comparison we must 

bring them to the same expression. The former can be easily done using the formula 

provided in NASS documentation of the new gridded dataset (USDA 2021) to convert 

the ordinal format of the original datasets to the continuous form as used in the gridded 

dataset. For a given week-geographical unit (e.g., county, state, or all 18 production 

states) 81, this formula is given by 

 

80 Nevertheless, the Python scripts used for this step are available on our documentation homepage. 

81 For corn, 18 production states include CO, IL, IN. IA, KS, KY, MI, MN, MO, NE, NC, ND, OH, PA, SD, TN, TX, 

WI: For soybeans, they are AR, IL, IN, IA, KS, KY, LA, MI, MN, MS, MO, NE, NC, ND, OH, SD, TN, WI. 

Figure 4.4. Implementation Steps 
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𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 5 ∗ 𝐸𝑋 + 4 ∗ 𝐺 + 3 ∗ 𝐹 + 2 ∗ 𝑃 + 1 ∗ 𝑉𝑃  (4.17), 

where Condition is a continuous index that can take values ranging from one to five. The 

five abbreviated terms represent the crop shares in five categories, ranging from Excellent 

(EX) down to Very Poor (VP). 

The second reconciliation, with respect to the spatial dimension, is more complicated. 

Though NASS documentation provides a helpful overview of how the 9x9 km weekly 

layers are created, for confidentiality reasons it is not meant to provide a precise procedure 

with all data used. Hence, reverse-engineering the state or national condition from these 

layers requires a rigorous treatment.  

Figure 4.5 summarizes the procedure that we develop for this purpose. Its significant 

development beyond NASS guidance is the use of agricultural district boundaries to 

identify the “Other (combined) counties” (i.e., counties that do not appear separately 

under their names in the database, but instead are merged in one group within each 

district). These counties make up a nontrivial share of the total corn and soybean acreage 

planted within the main production states.82 Omitting them from the aggregation would 

likely cause a bias in the aggregated crop condition for 18 states. Another important 

calibration is our dynamic weighting scheme to determine the contribution of each 

geographical unit (e.g., county or state) to the aggregate crop condition. The timing of 

crop cycles varies a lot across a large production area in the United States. Thus, assuming 

a constant influence of each county to the 18-state condition throughout the growing 

season would be unrealistic. For each state-week, we first exclude the counties with no 

reported condition in that week. Then, we take the annual acreage shares of the remaining 

counties and scale them up, such that they always sum up to one for a given state-week. 

We apply the same method when aggregating crop condition from state level to 18-state 

level. 

In Figure 4.6, we plot the resulting 18-state (national) condition indices from the two 

datasets for corn (panel a) and soybeans (panel b). 𝑔𝑐𝑐 (in blue, solid) denotes “gridded 

crop condition”, whereas 𝑜𝑐𝑐 (in orange, solid) denotes “original crop condition”. The 

two series are plotted using the left-hand-side vertical axis. In addition, 𝑙𝑛 (𝑔𝑐𝑐 𝑜𝑐𝑐)⁄  (in 

red, dotted) is the log-difference between the two series, plotted using the right-hand-side 

vertical axis. 

 

82 In 2019, for example, they account for almost 21% and 22 % corn and soybean acreage planted in 18 production 

states of each crop, according to NASS Quick Stats. 
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During the period 2015-2021, there are 153 (resp. 135) weeks when gridded and 

traditional corn (resp. soybean) condition data are both available.83 Despite the many 

challenges with identification described above, the overall discrepancies between the two 

resulting indices are minimal, which is an assurance that the gridded dataset is well-

developed and is reliable for our analysis. It also proves that our aggregation scheme is 

generally appropriate.   

 

83 For some unknown reason, soybean gridded condition is not available for week 32 in 2018, and thus is dismissed 

from the analysis. 
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Note: 

+ County boundary shapefiles are obtained from the official website of the United States Census Bureau: 

https://www.census.gov.html. 

++ Agricultural district shapefiles for the entire USA are obtained from Esri ArcGIS Online Platform: 

https://www.esri.com/en-us/arcgis/products/arcgis-open-data. The agricultural district boundaries are necessary to 

identify which counties are included in the “Other (combined) counties” of each district. Only then, we determine the 

weighted crop condition of these counties, and their respective contribution to the overall crop condition of the state 

and 18-state production area of each crop. For a given agricultural district, the exact acreage planted in each of the 

“Other (combined) counties” is not available, but their sum is available. Using this sum, we first calculate the acreage 

share of the whole combined group. Then, we use their respective shares in the total number of available crop condition 

pixels of the group to split further the group acreage share into county shares. Without combining the county boundary 

files with the agricultural district boundaries file, it is not possible to locate the counties within these groups (all named 

the same in NASS database: “Other (combined) counties”) to their right position on the map, neither to correctly 

determine the number of active crop condition pixels per week within each of them.  

  

Figure 4.5. Aggregation Procedure from Pixel-level to 18-state Crop Condition 

https://www.census.gov.html/
https://www.esri.com/en-us/arcgis/products/arcgis-open-data
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A few exceptions are a couple of large differences in 2018 for corn, and medium-sized 

differences starting late 2020 for both crops. There is no obvious explanation for the 

former, but it is unlikely due to our aggregation procedure – since the procedure closely 

replicates the original reports for the most part.84 The latter is similar for both crops and 

can be explained by the fact that, starting from 2020, NASS Quick Stats stopped reporting 

the acreage planted in “Other (combined) counties” within each agricultural district. As 

noted, without this information, it is not possible to account for the contribution of those 

counties to the state- and national-level crop conditions. As it turns out, this missing 

information underestimates the aggregated 18-state condition of both crops in that year 

by about two percent on average. This result is not surprising, provided that the “Other 

(combined) counties” altogether make up a considerable acreage share of 18 production 

states. But if NASS still takes them into account to produce the state-level crop condition 

while the information is no longer available to the public, then the forecast errors 

stemming from their absence are likely incorporated into the true market surprises. 

Consistent with the plots, the summary statistics of 𝑔𝑐𝑐, 𝑜𝑐𝑐 and 𝑙𝑛 (𝑔𝑐𝑐 𝑜_𝑐𝑐)⁄  for corn 

(panel a) and soybean (panel b) of Table 4.1 indeed confirm that the two datasets are in 

general very close when converted to a unified format. The average discrepancy between 

the two datasets is less than two percent (resp. 0.5 percent) for corn (resp. soybeans). 

Nevertheless, for consistency between the predicted condition (pixel-wise) and the actual 

condition, in what follows we stick to the gridded condition when calculating the surprise 

proxy. That way, potential discrepancies are neutralized and do not bias our surprise 

estimates. 

  

 

84 These are weeks 32, 41, and 42 in 2018. The first week is associated with missing data for soybeans as well. Hence, 

we suspect that some systematic issue might occur in the production of the gridded dataset for that specific week. 
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Figure 4.6. Comparison between the Gridded Condition and Original Condition 

Dataset during 2015-2021 
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Table 4.1. Summary Statistics – gridded vs. Original Crop Condition Data during 

2015-2021 

Statistical significance code: *** 0.01 **0.05 *0.10  

Note:Table 4.1 provides summary statistics for corn condition (panel a) and soybean (panel b) condition of 18 

production states according to CPCRs during 2015-2021. For each crop, the condition index values are calculated with 

two datasets: the gridded, “county-level” dataset (𝑔𝑐𝑐) and the original, “state-level” dataset (𝑜𝑐𝑐). The statistics of the 

log-difference between the two datasets (𝑙𝑛 (𝑔𝑐𝑐 𝑜𝑐𝑐)⁄  are also provided. 

† Jarque-Bera test for the null hypothesis that the sample comes from a normal distribution with an unknow mean and 

variance. 

  

 

Mean Median SD Min Max 

Jarque-

Bera test 

statistics† 

No. non-

missing 

Obs 

A. Corn    

        

𝑔𝑐𝑐  3.6917 3.7366 0.1424 3.3837 3.9133 10.27*** 
153 

𝑜𝑐𝑐  3.6977 3.7300 0.1279 3.4700 3.9200 10.37*** 153 

𝑙𝑛 (𝑔𝑐𝑐 𝑜𝑐𝑐)⁄  -0.018 0.019 0.0165 -0.1081 0.0206 3.23e+3*** 153 

B. Soybeans    

        

𝑔𝑐𝑐  3.6317 3.6382 0.1382 3.3819 3.8614 9.62*** 
135 

𝑜𝑐𝑐  3.6487 3.6400 0.1230 3.4200 3.8600 8.40** 
135 

𝑙𝑛 (𝑔𝑐𝑐 𝑜𝑐𝑐)⁄  -0.0048 -0.0034 0.0086 -0.0343 0.0088 56.80*** 135 
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4.5.2 ML workflow in practice 

We choose Extreme Gradient Boosting (XGB) for our empirical analysis. This tree-based 

ML algorithm has gained its popularity in recent time for its flexibility and predictive 

performance (see Roznik, Mishra, and Boyd (2023) and the references cited therein). 

XGB does not require hand-crafted feature engineering and thus saves us from having to 

make arbitrary assumptions about the functional form. In the same vein, pre-train feature 

selection is not necessary, which allows the model to freely exploit different random sets 

of weather predictors at a higher temporal frequency than the reported condition (i.e., 

daily weather vs. weekly CPCRs). Our own preliminary experiments also show that XGB 

is much more computationally efficient compared to other methods such as Random 

Forests or Neural Networks, which makes it especially attractive for our large datasets. 

The computation is parallelized and distributed on the University of Illinois’ high-

performance computing cluster. 

As emphasized earlier, we do not aim for the highest accuracy, so to give our models the 

freedom to search for the most suitable surprise proxy in any range of predictive accuracy. 

Thus, we define a hyperparameter space that is fairly broad in terms of prediction 

variability, from poorly to highly accurate. Our hyperparameter space contains 12,800 

combinations, which are the cartesian products of six important XGB hyperparameters 

whose value ranges spread as widely as possible. Details of these hyperparameters and of 

the resulting distributions of predicted crop condition are presented in Appendix 4.A.2. 

As previously discussed, it is important to allow the possibility of updating the model 

regularly. However, changing the configuration too frequently (e.g., on a weekly basis) 

is practically costly, both in terms of computational resource and of degrees of freedom 

(when evaluating correlations with commodity price returns). In our particular case, due 

to the seasonal nature of crop production, it is plausible that the development of a full 

crop cycle is required to evaluate model performance. Hence, we allow for the predicting 

model to be updated after each crop year. We follow the procedure in Figure 4.3, in 

particular: 

1 – For each crop year, we train 12,800 model candidates on all data available prior to the 

crop season, using all hyperparameter combinations. Then, we use each of them to predict 

the crop condition throughout the year. Within each year, we also include the condition 

and progress of the previous week to the set of predictors. This is to ensure that all 

previous relevant information up to the weekend before each report is included in all 

models. 

2 – For each week, the pixel-wise predicted condition is aggregated to 18-state predicted 

condition using the procedure described in Section 4.5.1, denoted 𝑔𝑝𝑐𝑡
. The standardized 
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surprise proxy, 𝑥𝑡  is defined as the log-difference between the aggregated gridded 

condition, 𝑔𝑐𝑐𝑡
, and this predicted value85: 

𝑥𝑡 = 𝑙𝑛 (
𝑔𝑐𝑐𝑡

𝑔𝑝𝑐𝑡

)  (4.18). 

3 – To evaluate these 12,800 xt series, we regress the post-event close-to-open returns of 

the new-crop future contracts on each of them to obtain 

𝑟𝑡 = �̂�0 + �̂�1𝑥𝑡 + 𝑣𝑡  (4.19). 

Then, following the reasoning in Section 4.4.3, we select the 𝑥𝑡  series that yields the 

highest 𝑅2 as the best surprise proxy for that year.86 

4 – We repeat the procedure for each year separately until 2021. That way, we can 

estimate the surprise for 6 years in total, from 2016 to 2021. 

4.5.3 Model outcome 

Our position is that adopting the best predictions from some given model as a proxy for 

market expectations is not justifiable. However, in the absence of an accurate prediction, 

this hypothesis cannot be tested. Thus, in the first place, we must prove that a highly 

accurate prediction can be generated by our model. Only then can we reliably test its 

explanatory power to price movements against another candidate. 

Figure 4.7 and Figure 4.8 summarize the prediction distributions of our ML pipeline for 

corn and soybean conditions, respectively. Weekly actual crop condition indices are 

plotted in green, solid lines. For each year, each model candidate produces a series of 

crop condition prediction spanning the crop season – which typically includes 20-22 

weeks. Hence, for each reported week, we obtain a sample of 12,800 predictions of crop 

condition. The sample medians of the distributions are plotted in blue dashed lines. The 

areas shaded in light blue mark the range where 95 percent of model predictions fall in 

 

85 The log-difference surprises are conventionally used (e.g., Garcia et al. (1997), Karali, Irwin, and Isengildina‐Massa 

(2019), Cao and Robe (2022)) to the interpretation of the slope coefficient from different units of measurement and 

scales of the surprises. It does not alter the results conceptualized in Section 4.3. 

86 We also calculate the Bayesian Information Criterion (BIC) for every regression. Results are consistent with the 𝑅2
 

and is available upon request. 
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(i.e., 47.5 percent above and 47.5 percent below the median).87 Among these 12,800 

series, the series with the smallest root mean aggregated square error (RMWSE)88 – “best 

predictions” – are plotted in orange, solid line. The series that explain the most variations 

in the post-event new-crop future price returns (i.e., yield the highest 𝑅2 for Equation 19) 

are plotted in red, solid lines89. In the same manner, in Figure 4.9 (corn) and Figure 4.10 

(soybeans) we plot the distributions of log-difference prediction errors, i.e., the surprise 

proxies 𝑥𝑡. 

Consistently across all years and commodities, our best predictions are very close to the 

actual conditions reported by the USDA, indicating that our model design can predict the 

condition of a crop with very high accuracy. The sample medians of predictions follow 

closely in terms of predictive accuracy. In some cases (in 2016 for both corn and soybeans 

and 2017 for soybeans), the median series and the best series even coincide. This minimal 

difference suggests that the median can be a promising candidate when predictive 

accuracy is the main focus. This said, it has a slight tendency of overpredicting in some 

years for corn, compared to the best forecast series. The strong predictive performance of 

our models is also apparent from the distribution of predictions as a whole. Since the 

number of predictions falling within the 95% area is distributed evenly above and below 

the median, the narrower area above the median lines in in Figure 4.7 (corn) and Figure 

4.8 (soybeans) indicates that the majority of model predictions concentrates on the highest 

tier of crop condition index range. Because the actual figures (in green) are distributed 

mostly in this upper range, as confirmed by the summary statistics in Table 4.1, it follows 

that the likelihood of getting close to the true value of the condition using our 

hyperparameter space is relatively high. Comparing the two commodities, our best 

models produce slightly better predictions for corn than for soybean conditions. This 

difference can be attributed to the fact that corn production in the USA is not only 

relatively larger than soybean in terms of acreages, but is also characterized by longer 

growing periods (USDA 2017).90 The pixel-week dataset for corn is thus significantly 

 

87 The mean prediction plots are available in Figure 4.11 and Figure 4.12 of Appendix 4.A.2. As it shows, the mean 

and the median predictions are very similar, both in magnitude and in pattern.  

88 In general, this is a modified version of the root mean square error (RMSE) criterion used in conventional ML 

applications. For each week, squared forecast errors at pixel level are aggregated to 18-state condition using the 

procedure described in Figure 4.5. Then, we take the average of all weeks in the year and finally take the square root 

of it to obtain the RMWSE. 

89 The plots of the 𝑅2 against RMWSE of the surprise candidates are provided in Appendix 4.A.2. 

90 According to NASS Quick Stats database, in the period 2015-2021, the average planted acreage of corn across 18 

production main production states are approximately 81 million acres per year. For soybeans, it is around 78 million 

acreages per year. 
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larger for corn, which boosts predictive performance.91 The reverse patterns of the log-

difference errors in Figure 4.9 (corn) and Figure 4.10 (soybeans) are consistent with the 

information conveyed from Figure 4.7 (corn) and Figure 4.8 (soybeans). 

Table 4.2 provides the summary statistics of these series continuously from 2016 through 

2021. We also compute the test statistics for the Jarque-Bera test of normality for both 

the prediction and the log-difference error series. Similar to Table 4.1, the test consistently 

rejects the normality of all series – except the best surprise proxy for corn condition. Thus, 

in the last columns, when performing paired sample test of each series against the best 

market expectation and best surprise proxies, we report the nonparametric Wilcoxon 

signed rank test statistics. Consistent with our observations from the graphs, Table 4.2 

confirms that for the entire period from 2016 to 2021, the best models produced unbiased 

and highly accurate forecasts for both crops.92 On average, the log-difference errors of 

the best prediction series are not significantly different from zero. The median forecasts 

of both crops exhibit some upward bias but with small magnitudes (less than 2 percent 

for both crops), as can be observed in the prediction plots (Figure 4.7 for corn and Figure 

4.8 for soybeans) and log-difference error plots (Figure 4.9 for corn and Figure 4.10 for 

soybeans). 

 

 

91 The average number of pixel-week observations in corn dataset is about 953.2 thousand per year. For soybeans, it is 

about 522.5 thousand pixel-week per year. 

92 For each crop, we also compute Wilcoxon signed rank test statistic for the null hypothesis that the best prediction 

and the actual condition comes from the same population. The test fails to reject the null for both crops. 
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Figure 4.7. Model Predictions for Crop Condition during 2016-2021 – Corn 
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Note: 

- Best prediction: the outcome of the model candidate which produces the smallest root mean weighted square error (RMWSE), averaged across all weeks of the year.  

- Median prediction: the sample median of 12,800 predicted crop condition values that are produced by 12,800 model candidates. Each of them is an 18-state aggregate using the 

procedure in Figure 4.5. 

- Actual: 18-state aggregated crop condition from NASS gridded dataset, which is denoted as 𝑔𝑐𝑐   in Section 4.5.1. 

- Market expectation: the outcome of the model candidate which produces the surprise proxy that best explains post-even market returns in that year. That is, among all 

candidates, the regression in equation (4.19) yields the highest 𝑅2 with this surprise proxy. 

- 95% realization: from 2.5-percentile to 97.5-percentile of 12,800 predicted crop condition values as explained above. In other words, 47.5 percent of predictions above the 

median prediction and 47.5 percent of predictions below the median prediction fall within this range. 

- 𝐹𝐸̅̅ ̅̅  is the yearly simple average of the median prediction. 

- Figure 4.8 below is produced analogously for soybeans. The disrupted gap on the subplot 2018 is due to the missing dataset in week 32 for soybeans, as discussed in Section 

4.5.1. Since we need the condition and progress of the previous week as predictors, the prediction for week 33 cannot be made neither. 
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Note: See notes below Figure 4.7

Figure 4.8. Model predictions for Crop Condition during 2016-2021 – Soybeans 
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Figure 4.9. Model prediction errors in log-difference during 2016-2021 – Corn 
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Note: 

- Best: the log-difference error of the model candidate which produces the smallest root mean weighted square error (RMWSE), averaged across all weeks of the year.  

- Median: the sample median of 12,800 aggregate log-difference error of 12,800 model candidates. The actual and predicted conditions used to calculate this log-difference error 

is aggregated over 18 production state using the procedure in Figure 4.5. 

- Selected: the surprise proxy that best explains post-even market returns in that year. That is, among all candidates, the regression in equation (4.19) yields the highest 𝑅2 with 

this surprise proxy. 

- 95% realization: from 2.5-percentile to 97.5-percentile of 12,800 log-difference error values as explained above. In other words, 47.5 percent of 𝑥𝑡 above the median prediction 

and 47.5 percent of 𝑥𝑡 below the median error fall within this range. 

- 𝑙𝑛 (𝑎𝑐𝑡𝑢𝑎𝑙 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the yearly simple average of the median log-difference error. 

- Figure 4.10 below is produced analogously for soybeans. The disrupted gap on the subplot 2018 is due to the missing dataset in week 32 for soybeans, as discussed in Section 

4.5.1. Since we need the condition and progress of the previous week as predictors, the prediction for week 33 cannot be made neither. 
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Note: See notes below Figure 4.9. 

Figure 4.10. Model prediction errors in log-difference during 2016-2021 – Soybeans 
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Table 4.2. Summary Statistics – Predicted Crop Condition and Errors during 

2016-2021 

  

 

Mean Median SD Min Max 

Jarque-

Bera test 

statistics† 

Wilcoxon 

test 

statistics†† 

No. non-

missing 

Obs 

A. Corn 

Actual 

condition§ 
3.6774 3.6528 0.1489 3.3837 3.9133 9.12*** 3677 131 

Best 

prediction 
3.6823 3.6659 0.1416 3.0935 3.9017 6.15** N/A  131 

Median 

prediction 
3.7450 3.7269 0.1224 3.2392 3.9603 4.43* 223*** 131 

Best market 

expectation 

proxy 

3.9064 3.8731 0.1397 3.4570 4.3601 6.87** 141*** 131 

Log-

difference 

errors of best 

prediction§§ 

-0.001 -0.001 0.018 -0.109 0.096 2284.6*** 3650 131 

Median log-

difference 

errors 

-0.018 -0.019*** 0.020 -0.128 0.054 250.05*** 141*** 131 

Best surprise 

proxy 
-0.061 -0.066*** 0.039 -0.178 0.021 0.648 192*** 131 

         

Statistical significance code: *** 0.01 **0.05 *0.10  
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Table 4.2 (cont.). Summary Statistics –predicted crop condition and errors 

during 2016-2021 

Note: Table 4.2 provides summary statistics for corn (panel a) and soybean (panel b) condition, their predicted 

conditions and log-difference errors. Statistics are reported for the aggregate of 18 production states during 2016-2021.  

† Jarque-Bera test for the null hypothesis that the sample comes from a normal distribution with an unknow mean and 

variance. 

†† For each condition series that is not the best prediction, Wilcoxon signed rank test statistics is reported for the null 

hypothesis that it comes from the same population with the best predictions. Likewise, for each log-difference error 

series that is not the errors of the best prediction series, the null hypothesis is that it comes from the same population 

with the best prediction’s log-different errors. For the best predictions’ log different error series, the null is that it comes 

from a population with zero median. For the best prediction series, the test is not applicable since by construction, crop 

condition index (and consequently its best prediction) takes a minimum value of 1. 

§ Actual condition, best prediction, median prediction and best market expectation proxy are defined as in Figure 4.7. 

§§ Log-difference error of best prediction, median log-difference errors and best surprise proxy are defined as Figure 

4.9.

 

Mean Median SD Min Max 

Jarque-

Bera test 

statistics† 

Wilcoxon 

test 

statistics†† 

No. non-

missing 

Obs 

B. Soybeans 

Actual 

condition§ 
3.6292 3.6433 0.1491 3.3819 3.8614 11.15*** 3089 115 

Best 

prediction 
3.6150 3.6415 0.1739 2.9120 3.8569 48.48*** N/A  115 

Median 

prediction 
3.6566 3.6747 0.1584 2.9860 3.8924 114.69*** 553*** 115 

Best market 

expectation 

proxy 

3.7869 3.8014 0.2337 2.5538 4.3123 328.72*** 492*** 115 

Log-

difference 

errors of best 

prediction§§ 

0.004 -0.002 0.037 -0.071 0.166 198.65*** 3067 115 

Median log-

difference 

errors 

-0.007 -0.016*** 0.040 -0.094 0.153 112.83*** 555*** 115 

Best surprise 

proxy 
-0.041 -0.051*** 0.070 -0.223 0.312 177.19*** 498*** 115 
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Most importantly, Figures 4.7 to 4.10 and Table 4.2 convincingly prove that the best 

predictions are far different from the best market expectation proxies. This holds true for 

almost every year and for both crops, with the exception of 2016. In Figure 4.7 (corn) and 

Figure 4.8 (soybeans), not only are the model-selected proxies for market expectations 

(in red) clearly distant from the best prediction and the median series, but they also 

oscillate more strongly than all other series on the graphs. Occasionally, they spike 

outside the zone of 95-percent predictions. The Wilcoxon test statistics in Table 4.2 

consistently reject the null hypothesis that these returns-derived surprise series are drawn 

from the same distribution with the best forecasts’ errors, neither the median forecasts’ 

errors. The test also rejects the null that the median of the surprise proxy is not 

significantly different from zero. 

According to Table 4.2, the post-event price movements during 2016-2021 reveal that the 

CPCRs surprise the market by 6 percent below what had been expected for corn condition, 

and 5 percent for soybean condition – using the median statistic. This finding suggests 

that the market as a whole have a general tendency of overestimating the corn and soybean 

condition during this period. In extreme cases, the CPCRs even report soybean conditions 

22 percent below market expectations (for week 31 in 2019) and corn conditions 18 

percent below market expectations (for week 41 in 2018).  

The 2019 growing season is considered a historically bad soybean season with late 

planting, flooding, and below-average temperature (USDA 2020). Since that year’s 

soybean crop’s progress and condition kept falling below historical records, they must 

have been more difficult to predict. Thus, the strong swings in expectations seen on the 

plot are plausible.  

Nevertheless, in the case of corn, this underestimation should be taken with caution due 

to the unreasonable discrepancy detected in Section 4.5.1. Because the corn condition 

reported in the gridded dataset is about 9 percent below its counterpart in the traditional 

dataset (consistent with a 10 percent difference between the best prediction and the actual 

condition of the same week, as can be observed on the plot), it is possible that the true 

surprise is about half of the figure reported above. Even so, it is still the largest negative 

surprise for corn, and does not alter the median surprise reported above.  

While the CPCRs do not bring much better-than-expected news regarding corn condition, 

our analysis shows that for soybean the announced condition can be 31 percent better than 

expected by the market (for week 30 in 2017). This large positive surprise is consistent 

with the fact that soybean condition had been consistently dropping since the beginning 

of the planting season until that point (as showed clearly in Figure 4.6), which reasonably 

caused a generally pessimistic outlook among observers (Irwin 2017). Hence, when 
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soybean condition finally reverses that week, the resulting positive surprise is credibly 

large.  

Finally, it is interesting to note that the derived surprises for both crops exhibit very 

similar patterns in 2021. According to price signals, the market consistently overestimates 

the condition of both crops by about 10 percent during that year. Our investigation in 

Section 4.5.1 reveals that the gridded condition is below the traditional figures for both 

crops in the same period only by 2 percent due to the unallocated pixels in 

“Other/combined counties”. This is about the same size with the upward bias in the 

median predictions for that year. Even when we adjust for that bias, the reports still bring 

considerable negative surprises to the markets, as reflected in the price returns. There are 

two possible explanations for this phenomenon. First, as discussed in Section 4.5.1, most 

market participants might overestimate the crop condition because NASS considers some 

part of the planted acreage that is no longer publicly available in their state-level crop 

condition estimates. As both corn and soybean conditions deteriorate throughout 2021 

crop season, it is not improbable that this unobservable crop portion pulls down the actual 

estimates, compared to market expectations. Since the original reports are produced at the 

state level and then interpolated to pixel-level for the gridded data, all the pixels within 

each state will inherit these lower-than-expected estimates – both the unallocated ones 

and the remaining ones. Thus, having removed the -2 percent of the excluded pixels, the 

other -8 percent difference from actual condition is likely the market surprise due to such 

unobservable information. The second possibility is that the reported crop condition 

throughout contradicts various yield forecasts that year. For example, all NASS yield 

surveys (in August, September, October, November, and end-of-season) had consistently 

reported near-record yield estimates for that year, both for corn and soybeans (USDA 

2017). The final figures in the Crop Production 2021 Summary report indeed confirms 

that corn yields reach 177 bushels per acre (bpa) and soybean yields reach 51.4 bpa – 

which are the highest and the second highest yields since 1990, respectively. Clearly, it 

is reasonable for the market to expect better crop condition, provided such consistently 

high yield outlooks – especially provided that such negative correlation between 

condition and yield estimates rarely occurs (Bundy and Gensini 2022).93 

 

93 The authors document similar contradiction between corn condition and yield anomaly signals for 2020, 2017 and 

2005 as well – but out of 35 years from 1986 to 2020. Thus, the overoptimistic pattern in corn condition expectations 

for 2020 and 2017 can be reasoned similarly. This explanation is also consistent with the situation of soybeans in some 

part of 2017, except those pessimistic plunges as discussed earlier. 
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4.5.4 Explanatory power of the surprise proxies for the period 2016-2021 

Having derived the surprise series and shown that they can explain the situation of 

specific years, it is helpful to check their explanatory power to market returns for the 

entire period 2016-2021. With this step, we can achieve several objectives. First, as a 

robustness check, we can verify if the price impact of the derived surprises is consistent 

with what theory suggests. Second, conditioning on its theoretical validity, we can 

compare its explanatory power to price movements against the forecast errors of the best 

predictions, as well as the median predictions. Finally, we can draw conclusion about the 

market impact of it for the given period.  

In Table 4.3, we report the regression results using Equation (4.19) for corn and soybeans 

in the entire period 2016-2021. Consistent with the yearly results, the best proxies for 

crop condition surprises yield the highest 𝑅2. More importantly, the negative sign of the 

slope coefficients is consistent with the theory: a better-than-expected condition (i.e., 

positive surprise) is price bearish because it implies that the crop size at the end of the 

season will be larger than what the market had been expected, and vice versa. The 

coefficients are highly significant for both corn and soybeans, supporting that the crop 

condition news do move the market as soon as the reports are released, though with small 

magnitude. The size of the reaction is similar for corn and soybeans, which is about -

0.017. Thus, an average surprise of -6 percent for corn and -5 percent for soybeans (as 

presented in Table 4.2) are translated into approximately one percent (resp. 0.8 percent) 

increase in close-to-open returns on corn (resp. soybean) new-crop futures.  
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Table 4.3. Corn and Soybean New-crop Future Returns Explained by Different 

Surprise Proxies during 2016-2021 

Dependent variable: rt = lnPt,1 − lnPt,0
† 

 Corn Soybeans 

 
Best 

surprise 

proxy 

Best 

predictions’ 

errors 

Median 

predictions’ 

errors 

Best surprise 

proxy 

Best 

predictions’ 

errors 

Median 

predictions’ 

errors 

       

Constant -0.0012*** 

(0.0004) 

-0.0002 

(0.0003) 

-0.0007* 

(0.0004) 

-0.0003 

(0.0003) 

0.0005 

(0.0003) 

0.0002 

(0.0003) 

       

Log-

difference 

surprises: xt 

-0.0174** 

(0.0071) 

-0.0243 

(0.0218) 

-0.0282 

(0.9175) 

-0.0167*** 

(0.0052) 

-0.019** 

(0.0082) 

-0.0197*** 

(0.007) 

       

Observations 131 131 131 115 115 115 

       

R2 0.0292 0.0117 0.0207 0.1285 0.0448 0.0582 

       

Statistical significance code: *** 0.01 **0.05 *0.10  

Note: Table 4.3 reports the market impact estimation results for corn and soybean condition surprise during 2016-2021. 

Heteroskedasticity-consistent standard errors are reported in brackets. 

† For both commodities, the dependent variable is the future returns of new-crop contracts (December for corn and 

November for soybeans). Similar to Lehecka (2014), we use the close-to-open returns from the event day to the next 

trading day as post-even market returns. This is because CPCRs are released after the closing time of the CME markets, 

as explained in Section 4.2.2. 
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 Conclusion 

One important function of public announcements about the demand and supply 

fundamentals of commodities is to guarantee information transparency, and thus to 

improve market efficiency. But how much new information they still bring to the market 

– or to put it differently, how much information in them had been anticipated by the 

market in advance – remains an unsettled question. The question becomes even more 

relevant in the era of big data analytics, when information is increasingly accessible and 

processible – in both volume and speed. In this paper, we propose a novel method to 

tackle this longstanding challenge with one such public report: the USDA Crop Progress 

and Condition reports. 

Our theoretical framework extends semi-strong form Efficient Market Hypothesis with 

an important feature: to allow for the model that best approximates market expectations 

to be updated over time. To accommodate such great deal of flexibility in search of 

aggregated expectations, we argue that nonparametric ML can be an effective and 

powerful tool – as much as it can be exploited by individual market participants in 

prediction. Towards that end, we deploy the recent availability of the reports’ gridded 

dataset with substantial improvements in spatial resolution. We develop an innovative 

ML modeling framework based on Extreme Gradient Boosting algorithm, which allows 

us to generate a large set of predicted corn and soybean conditions for the period 2016-

2021. Our metric to evaluate the correlation between these candidates and the true market 

expectations is unique but intuitive: the ability to explain post-event price movements. 

Despite the fact that highly accurate predictions can be generated within our models, post-

release price movements point to an average CPCR surprise of 5-6 percent from what the 

market might have expected during 2016-2021, with occasional spikes up to 30 percent 

in absolute terms. There are a few over-pessimistic episodes observed in soybean 

condition expectations. But more often, both markets tend to hold more optimistic 

expectations about the crop rating than what actually comes out later in CPCRs.  Given 

that crop condition rating only provides a transitory prospect of final crop size (as evident 

from the disagreement with yield forecasts) and is to be updated frequently throughout 

the crop season, the small market reaction to it is not surprising. 

Our work contributes to the extant literature in many regards. Most importantly, we offer 

a new methodological approach to the problem of disentangling the unanticipated 

component of public announcements. We show that ML can be a good alternative to 

traditional parametric analyses for this complex setting, but only after we modify it 

properly according to the underlying theories. Though the relevant information set for 

market expectations varies with markets and report types, our ML modeling framework 

is applicable in various contexts. For example, by complementing the analyst forecast 
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errors with our ML-based surprise proxies, we can shed more light on the puzzle of 

natural gas returns on the days of Energy Information Administration’s storage 

announcements, as recently raised by Prokopczuk, Simen and Wichmann (2021). Given 

the excellent predictive performance of our predicting models, they can also be employed 

to several other research directions, including in-season price forecasting (Adjemian, 

Bruno, and Robe 2020), spatial variation of local bases (Bain and Fortenbery 2017) or 

crop insurance (Sherrick 2015). One interesting question is to which extent crop progress 

and condition predictions can help reduce the moral hazard in prevent planting claims in 

the early phase of crop season, as detected by Wu, Goodwin, and Coble (2020). In this 

particular context of the CPCRs, despite rapid developments in information technology, 

we reject the doubt that the market can anticipate crop condition well in advance and the 

CPCRs no longer provide new information to market participants, as questioned by Bain 

and Fortenbery (2017). Thus, not only market participants but also other user groups – to 

whom crop condition information is relevant, such as crop insurers and agronomists – 

should pay attention to the CPCRs. 

For expositional purpose and consistent with previous literature, our study makes use of 

simple linear, bivariate specification for the returns-surprise equation. It can be argued 

that this choice is sufficient to evaluate the correlation with price movements among the 

surprise candidates, especially due to the distinct timing of the CPCR report releases. 

However, future research in different contexts should discover the possibility to 

incorporate more complex market reaction processes into the model selection phase. One 

example is the S-shape pattern of surprise-return relationship that has long been observed 

in stock price reactions to earning announcement surprises (Freeman and Tse 1992; 

Kinney, Burgstahler, and Martin 2002). 
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 Appendices 

4.A.1 Predictors used to train XGB models for pixel-level crop condition prediction 

Table 4.4. List of Models' Predictors 

Category Variable Data type 
Spatial 

resolution 

Temporal 

resolution 
Temporal lags 

Total number 

of predictors 

Temporal 

information 

Year Categorical 9x9 km Weekly current week 1 

Calendar 

week 
Cyclical94 9x9 km Weekly current week 2 

Spatial 

information 
State Categorical 9x9 km weekly current week 1 

Previous 

CPCRs 

Crop 

progress 
continuous 9x9 km weekly 

one previous 

week 
1 

Crop 

condition 
Continuous 9x9 km weekly 

one previous 

week 
1 

Weather 

variables 

Minimum 

temperature 
Continuous 4x4 km daily 

current week and 

two previous 

weeks 

21 

Maximum 

temperature 
Continuous 4x4 km daily 

current week and 

two previous 

weeks 

21 

Average 

temperature 
Continuous 4x4 km daily 

current week and 

two previous 

weeks 

21 

Precipitation Continuous 4x4 km daily 

current week and 

two previous 

weeks 

21 

Mean dew 

point 

temperature 

Continuous 4x4 km daily 

current week and 

two previous 

weeks 

21 

Minimum 

vapor 

pressor 

deficit 

continuous 4x4 km daily 

current week and 

two previous 

weeks 

21 

Maximum 

vapor 

pressure 

deficit 

continuous 4x4 km daily 

current week and 

two previous 

weeks 

21 

Total 153 

 

94 cyclical transformation into sin and cosin numerical variables 
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4.A.2 XGB implementation: further notes 

Table 4.5 provides an overview of the XGB hyperparameters used for our training process 

described in Section 4.4.3 and 4.5.2. Figure 4.11 (resp. Figure 4.12) then depict the full 

range of corn (resp. soybean) condition predictions generated by 12,800 model candidates 

corresponding to these 12,800 hyperparameter combinations. The two Figure are 

constructed analogously to the plots of selected 95 percent of realizations in Figure 4.7 

and Figure 4.8, but here we also add the full range from lowest to highest prediction 

values for each week (i.e., the yellow-shaded area below the 2.5-percentile and above the 

97.5-percentile). As shown by both Figure 4.10 and Figure 4.11, our choice of 

hyperparameter spaces successfully serves the purpose of generating a wide range of 

predictions, from poorly underpredicting to extremely overpredicting. This dispersed 

distribution of predicting outcomes help reducing the risk of selecting bias surprise 

proxies due to the lack of outcomes distributed in some certain ranges of the distributions. 

In addition, we provide the plots of the 𝑅2 of the market impact regression using Equation 

(19) against the Root Mean Weighted Square Error (RMWSE) of our surprise proxy 

population in Figure 4.13 and Figure 4.14 for corn and soybeans, respectively. These plots 

strengthen our arguments in Section 4.4.3 and 4.5.3, that there is no obvious relationship 

between predictive accuracy and capability to explain post-release price movements – 

except the fact that for none of the year-crop combinations, the most accurate model is 

selected as the model which generates the most correlated errors with price returns. 

Neither is it true for the poorly predicting candidates. 
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Table 4.5. Hyperparameter Space Used for XGB 

Hyperparameter Data type Value range/set 
Total number of 

possible values 

n_estimators: number of decision trees to 

be boosted; more trees tend to increase 

the precision and robustness of the 

prediction, but at the cost of time and 

computational resource. 

integer 
[20,1000]; increasing 20 

stepwise 
50 

max_depth: the maximum depth of a tree. 

Deeper trees increase the complexity of 

the model and thus improve model fit, but 

at the risk of overfitting. 

Integer 
[3, 10]; increasing 1 

stepwise 
8 

colsample_bytree: the fraction by which a 

subset of predictors is randomly sampled 

for each tree. A lower fraction increases 

the variability of features (i.e., predictors) 

among the trees and thus leads to a less 

conservative model. 

Fraction [0.8] 1 

subsample: the fraction of observations 

randomly sampled for each tree. A lower 

fraction increases the variability of the 

samples used among the trees and thus 

leads to a less conservative model. 

Fraction [0.5; 0.8] 2 

learning_rate: step size shrinkage used in 

updating model weights to prevents 

overfitting. A lower value indicates a 

slower speed of updates. 

Fraction [0.01; 0.1; 0.5; 1] 4 

Reg_lambdas: Ridge’s type of regulation 

on weights. A higher value makes the 

model more conservative. 

Fraction [0.00001; 0.01; 0.1; 1] 4 

Cartesian product of all sets 12,800 

Source: XGBoost documentation page, https://xgboost.readthedocs.io/en/stable/parameter.html  

https://xgboost.readthedocs.io/en/stable/parameter.html
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Figure 4.11. Full Distributions of Predicted Crop Condition Generated by 12,800 Model Candidates for Each Year 

during 2016-2021 – Corn 
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Note: 

- Median prediction: the sample median of 12,800 predicted crop condition values that are produced by 12,800 model candidates. Each of them is an 18-state aggregate using the 

procedure in Figure 4.5. 

- Mean prediction: the sample mean of 12,800 predicted crop condition values that are produced by 12,800 model - candidates. Each of them is an 18-state aggregate using the 

procedure in Figure 4.5. 

- Actual: 18-state aggregated crop condition from NASS gridded dataset, which is denoted as gcc  in Section 4.5.1. 

- 95% realization: from 2.5-percentile to 97.5-percentile of 12,800 predicted crop condition values as explained above. In other words, 47.5 percent of predictions above the 

median prediction and 47.5 percent of predictions below the median prediction fall within this range. 

- from Min to Max: from the lowest predicted value to the highest predicted value of crop condition among 12,800 predicted condition series. 

- 𝐹𝐸̅̅ ̅̅  is the yearly simple average of the median prediction. 

- Figure 4.12 below is produced analogously for soybeans. The disrupted gap on the subplot 2018 is due to the missing dataset in week 32 for soybeans, as discussed in Section 

4.5.1. Since we need the condition and progress of the previous week as predictors, the prediction for week 33 cannot be made neither. 
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Figure 4.12. Full Distributions of Predicted Crop Condition Generated by 12,800 Model Candidates for Each Year 

during 2016-2021 – Soybeans 
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Figure 4.13. Post-event Returns Variation Explained by Models’ Surprise Proxies during 2016-2021 – Corn 
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Note:  

- RMWSE: Root Mean Weighted Square Error. This is a modified version of the root mean square error (RMSE) criterion used in conventional ML applications. For each week, 

squared forecast errors at pixel level are aggregated to 18-state condition using the procedure described in Figure 4.5. Then, we take the average of all weeks in the year and 

finally take the square root of it to obtain the RMWSE 

- As it appears on Figure 4.7, 95 percent of predictions are distributed within a range of ±2 around the medians (in absolute terms of the continuous index’s value range). Hence, 

for better visualization, in this Figure we only focus on those series with a maximum RMWSE value of 2. As it becomes clear on the graphs, all the series which highest 𝑅2 

have RMWSE below 2. 

- Figure 4.14 below is produced analogously for soybeans. 
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Figure 4.14. Post-event Returns Variation Explained by Models’ Surprise Proxies during 2016-2021 – Soybeans 
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