
Approaching
Partial Differential Equations

with Physics-Driven Deep Learning

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Nils Wandel
aus

Heidelberg

Bonn 2023

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Reinhard Klein
2. Gutachter: Prof. Dr. Jürgen Gall

Tag der Promotion: 27.10.2023
Erscheinungsjahr: 2023

Acknowledgements

First and foremost, I want to thank Prof. Dr. Reinhard Klein for giving me the opportunity to
work in his lab and to pursue a Dr. rer. nat. under his supervision. Second, I want to thank
Prof. Dr. Michael Weinmann for his great support regarding the achieved publications. I
also want to thank Dr. Michael Neidlin for his collaboration on the Spline-PINN project.
Further thanks go to Patrick for providing me with his gorgeous thesis template and all the
other colleagues for the inspiring discussions during lunch breaks. Finally, I want to thank
my family and Hannah for their ongoing encouragement in this endeavour.

iii

Abstract

Partial Differential Equations (PDEs) play an important role in describing continuous physical
systems such as fluids, air-flows, waves and many more. Thus, by solving these equations,
one can simulate smoke and water effects in computer graphics, analyse lift and drag
coefficients of vehicles in engineering applications, or compare experimental observations
with predictions from fundamental theories in basic research.

However, in most scenarios, analytic solutions of PDEs are not available and traditional
numerical solutions are computationally expensive. In contrast, recent deep-learning based
methods promise great gains in efficiency by infering solutions in a single forward pass
through a neural network and streightforwardly allow for parallelization on GPUs.

In this work, we tackle challenges of deep-learning based approaches in the context of
PDEs with respect to: ground truth data generation, neural network architectures, the
generalization capability of neural networks to obtain solutions for unseen domain geometries,
differentiability, speed and stability.

To this end, we built on top of recent advances in physics-driven deep-learning that, in contrast
to data-driven approaches, allow to train neural networks directly on the underlying PDEs and
therefore alleviate the need of large ground truth datasets that are expensive to generate. We
developed a novel training cycle, that, in conjunction with a physics-based loss and a training
pool of randomized domains, allows end-to-end training without any precomputed ground
truth data. To describe the field states of the underlying PDEs, we investigated a Marker
and Cell grid representation and a continuous representation based on Hermite-splines.
Our unpretentious pipeline does not rely on additional components such as a differentiable
fluid solver or a particle tracer. This way, we obtained robust and accurate surrogate models
that yield stable results over long time-horizons in two as well as in three dimensions.
Furthermore, we developed interactive demonstrators to show the generalization capabilities
of our approach in real-time. Since our models are fully differentiable, gradients can be
efficiently computed throughout the simulation by using backpropagation through time.
This can be exploited, for example, in inverse problems, as we have shown in a simplistic
experiment on fluid control.

In the future, we hope that the insights gained in this work can form a foundation for new
applications that require fast, robust and differentiable solutions of PDEs such as for example
real-time physics-engines for computer games or interactive computational fluid dynamics
for engineering. To this end, we share the source-code for all of our publications on github.

v

Contents

I Introduction 1

1 Introduction 3
1.1 What are PDEs and why do we need them? . 3
1.2 Why is solving PDEs hard? . 4
1.3 Why are artificial neural networks a good option for solving PDEs? 4
1.4 What are the challenges of neural network based approaches? 4
1.5 What are the contributions of this work? . 7
1.6 Overview . 8

2 Related work 9
2.1 Lagrangian methods . 11
2.2 Hybrid methods . 11
2.3 Eulerian methods . 12
2.4 Splines in Neural Networks . 14
2.5 Differentiable models for fluid control . 15

3 Foundations 17
3.1 Partial Differential Equations . 17

3.1.1 Differential operators . 17
3.1.2 The initial-boundary-value-problem (IBVP) 19
3.1.3 Properties of PDEs . 19

3.2 Incompressible Navier-Stokes Equation . 21
3.2.1 Incompressibility equation . 22
3.2.2 Momentum equation . 25
3.2.3 What is density 𝜌? . 25
3.2.4 What is viscosity �? . 26
3.2.5 What is pressure 𝑝? . 27
3.2.6 Drag and Lift coefficients . 28
3.2.7 Reynolds-Number . 28
3.2.8 Important effects . 32
3.2.9 Simplifications of the Navier-Stokes equation 34

3.3 Damped Wave Equation . 35
3.3.1 Important effects . 36

vii

3.4 Artificial Neural Networks . 36
3.4.1 Implicit Neural Representation Networks 37
3.4.2 Convolutional Neural Networks . 39

3.5 Spline-Interpolation . 40

II Publications 43

4 Learning Incompressible Fluid Dynamics from Scratch - Towards Fast, Differen-
tiable Fluid Models that Generalize 45
4.1 Summary . 45
4.2 Author Contributions . 47

5 Teaching the Incompressible Navier-Stokes Equations to Fast Neural Surrogate
Models in 3D 49
5.1 Summary . 49
5.2 Author Contributions . 50

6 Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed
Hermite-Spline CNNs 53
6.1 Summary . 53
6.2 Author Contributions . 55

III Conclusion 57

7 Conclusion 59
7.1 Summary . 59
7.2 Limitations and Future Work . 61
7.3 Outlook . 62

Bibliography 63

List of Figures 73

List of Tables 75

IV Appendix 77

Publication: “Learning Incompressible Fluid Dynamics from Scratch - Towards Fast,
Differentiable Fluid Models that Generalize” 79

Publication: “Teaching the Incompressible Navier-Stokes Equations to Fast Neural
Surrogate Models in 3D” 97

viii

Publication: “Spline-PINN: Approaching PDEs without Data using Fast, Physics-
Informed Hermite-Spline CNNs” 109

ix

Part I

Introduction

1

Chapter 1

Introduction

Why are partial differential equations important? And why should we approach these
equations with deep-learning based methods? The following chapter motivates the research
field of physics-driven deep learning that lies at the intersection of numerical methods to solve
partial differential equations and recent developments in machine learning. Furthermore,
key challenges of this research field are highlighted and the contributions of this thesis are
introduced.

1.1 What are PDEs and why do we need them?

Partial Differential Equations (PDEs) are special mathematical equations that put constraints
on the partial derivatives of a multivariate function. They can be used for example to define
the dynamics of continuous physical systems such as fluids, waves, heat distributions and
many more. Continuous physical systems are usually described by multivariate functions
(fields) that map domain coordinates (e.g. space and time) onto field values (e.g. velocity,
pressure, height, temperature). The constraints on the partial derivatives of these fields are
needed to impose physical laws such as conservation of momentum, mass or energy. More
information on PDEs is provided in Section 3.1.

Solutions of such PDEs play an important role in a wide range of applications: In computer
games and computer generated imagery, PDEs are required to visualize for example water
or smoke effects. In engineering, PDEs are needed to complement or even replace expensive
wind-tunnel experiments with computational fluid dynamics (CFD). They provide deepened
insights into the velocity and pressure fields causing drag on vehicles and help out in
scenarios where accurate wind-tunnel experiments are practically not feasible1. In basic
research, fundamental theories rely on PDEs (see e.g. the Schrödinger equation for quantum
mechanics or the general theory of relativity for gravity) that need to be solved in order to
verify their accordance with our observations as well as to make new predictions about the
universe.
1 Imagine for example the extreme scenario of a space capsule entering the atmosphere of mars at several times

the speed of sound.

3

Chapter 1 Introduction

1.2 Why is solving PDEs hard?

Unfortunately, for most PDEs, closed form solutions are not available. Hence, approximate
solutions have to be computed numerically. However, the development of approximate PDE
solvers is a complex task, and, depending on the specific application, one has to find trade-offs
between various computational properties such as speed, parallelism, memory requirements,
accuracy or stability. In settings such as for example optimal control or sensitivity analysis,
having a differentiable PDE solver is an additional important property. Over the last decades
many solvers have emerged for different applications with various trade-offs for the above
mentioned properties and the development of new improved solvers is still an active field of
ongoing research.

1.3 Why are artificial neural networks a good option for solving
PDEs?

Traditional numerical solvers (such as for example finite differences, finite volumes, finite
elements) are usually computationally expensive as they require solving large implicit
systems of equations in order to obtain stable simulations. On the other hand, deep learning
based methods can learn a heuristic or "intuition" with a neural network to provide accurate
approximate solutions of PDEs. Since neural networks can infer solutions in a single forward
pass and offer easy parallelization on GPUs, they are often faster and computationally
significantly more efficient compared to traditional methods.

Several works (see Section 2) based on neural networks have already shown promising results
for various PDEs such as Burgers equation, wave equations, Darcy flows, the Navier-Stokes
equation etc. but are still limited by their generalization capability to novel simulation
domain geometries, computational speed or high demands of training data.

In the future, such deep-learning based methods could allow for accelerated fluid and smoke
simulations in computer games and graphics, more rapid prototyping in engineering2 or
quick checks whether physical theories are in accordance with our observations. Over the
next decade, we believe that deep learning will have a similarly profound impact on the
field of solving partial differential equations as deep learning already had over the past
decade on numerous other fields in computer science such as for example computer vision
or reinforcement learning.

1.4 What are the challenges of neural network based approaches?

Before explaining the specific design-decisions and contributions of this work in more detail
in Section 1.5, we want to highlight some of the general challenges in deep learning, as well
2 For example extrality.ai is a start-up that aims to accelerate computational fluid dynamics with deep-learning

to decrease time-to-market.

4

https://www.extrality.ai/

1.4 What are the challenges of neural network based approaches?

as challenges that arise in particular in the context of solving PDEs.

Data representation When facing a deep-learning problem, first, a suitable data represen-
tation must be chosen. A fluid can be described for example by a set of smoothed particles
with parameters such as velocity, density or shape in methods such as smoothed particle
hydrodynamics that rely on a Lagrangian frame of reference (see Section 2.1). Furthermore,
grid or mesh based representations are common in methods such as lattice-Boltzmann
methods or finite element methods that rely on an Eulerian frame of reference (see Section
2.3). And implicit functions can be used to obtain continuous field descriptions. The wide
variety of different data representations makes the field of solving PDEs and fluid dynamics
in particular a fruitful ground for deep learning based approaches as these representations
require various different neural network designs to exploit the underlying properties and
symmetries of the data.

Neural network design Neural networks are often considered to be a kind of blackbox
universal function approximator. However, choosing a network architecture that reflects the
underlying data structure is crucial to achieve good performance [Bronstein et al., 2017]. For
example, on grids, convolutional neural networks exploit the translational symmetry of the
data. On mesh data, graph neural networks or message passing neural networks allow for
efficient processing of data on nodes and edges. And on point cloud data, PointNets can
handle permutation equivariance. The mentioned network architectures directly incorporate
the symmetries of the underlying data representation and thus are able to make efficient
use of network parameters by sharing weights across input signals. Apart from reduced
memory and computational requirements, this also enables training on significantly less
training data and leads to better generalization performance.

On top of these commonly used design decisions for neural network architectures in deep-
learning, in fluid dynamics, several works have extended the neural network pipeline by
harnessing additional components from traditional solvers such as e.g. a particle tracer to
deal with the advection term [Tompson et al., 2017] or a "traditional", differentiable low
resolution fluid solver [Um et al., 2020]. However, these components increase the complexity
of the overall method and impede end-to-end training if differentiability of a component is
not given.

In contrast to these explicit neural architectures that work directly on the field representations
of the underlying PDEs, implicit neural architectures map domain coordinates to field values
and thus implicitly encode field representations by their network parameters. These implicit
neural architectures yield continuous results and play an important role in physics-informed
neural networks, however, they are not capable to significantly generalize beyond given
training domains and thus cannot be applied in interactive scenarios.

Training data and loss function When training a neural network, typically, the first step
consists of gathering ground truth training data. In the context of learning partial differential

5

Chapter 1 Introduction

equations, this ground truth training data could be real data (for example satellite images
captured for weather forecasting), or, when real data is not available, synthetic data that
needs to be generated by traditional PDE solvers. Since the performance of a neural network
usually can not significantly surpass the ground truth data it is trained on, it is important to
generate a dataset of very high quality. Furthermore, the more data is available, the better
a neural network can generalize. However, generating a large and highly accurate dataset
using traditional PDE solvers is computationally demanding and large real-world datasets
are often not available.

Once the training data is set up, a neural network can be fit (trained) to that data by minimizing
a certain error (loss) function using gradient descent. There exist various common loss terms
and choosing proper ones for the loss function is a crucial part of training as it strongly
impacts the final performance of the neural network. Important loss terms include: 𝐿1 error,
𝐿2 error, cross-entropy, adversarial loss functions in conjunction with various regularization
terms and often multiple of these loss terms are combined. Recently, physics-informed loss
terms that directly incorporate the residuals of the underlying PDEs became more and more
popular in the context of learning PDEs as they allow to train with less ground truth data
compared to other data-driven methods and sometimes even allow to train with no ground
truth data at all.

Testing, Stability and Generalization Capability In order to test the performance of a
deep learning model, typically, a certain subset of the dataset (e.g. 20 percent) is kept secret
which is referred to as test data. After training the model only on the remaining training
data (i.e. here: 80 percent), we can evaluate the performance of the model on the test data
with respect to a specified metric and check, if our model is able to generalize to this unseen
data or if it overfits the training data.

However, this strategy fails if a model is evaluated on chaotic PDEs over long time horizons.
Solutions of chaotic PDEs diverge even after tiny initial perturbations and, thus, it is
not possible to make exact predictions over long time horizons that can be compared to
predictions of a respective test dataset. An important example of chaotic PDEs are turbulent
fluid dynamics at high Reynolds numbers 3. Thus, since comparing against test data on
reasonably long time-horizons is not possible, we can check instead, how well the PDEs
themselves are fulfilled. This can be done by investigating the residuals of the PDEs.

Another important property of PDE solvers is stability. This means that simulations should
not diverge towards unrealistic states after many iterations. For example in fluid simulations,
the solver must not introduce unrealistic high energies or pressure gradients. This can be
investiged again by checking the residuals of the PDEs over time.

Finally, in order to test the generalization capability of a PDE model, it should be confronted
with boundary conditions that were not captured in the training dataset.

3 In popular literature this sensitivity to initial perturbations is often illustrated by the butterfly effect, which
states that the flap of a butterfly could cause or prevent even a tornado on the other side of the earth when
enough time has elapsed.

6

1.5 What are the contributions of this work?

1.5 What are the contributions of this work?

In this work, we addressed the aforementioned challenges of deep learning in the context of
solving PDEs in order to learn fast, interactive, differentiable simulations without ground
truth data using neural networks. To this end, we made the following contributions regarding
data representation, neural network design, training and testing:

Data representation Over the course of this thesis, we developed code for two different
data representations based on uniform grids. First, we chose a Marker and Cell (MAC) grid
in 2d and 3d, which allows for convenient computations of finite differences that can be used
to formulate a physics-constrained loss. Second, we implemented a representation based on
Hermite spline interpolations on a uniform grid. This yields continuous results that can be
derived analytically and thus allows to compute a physics-informed loss.

Neural network design Since our data representations are based on uniform grids, convo-
lutional neural network architectures are a natural design choice for our neural surrogate
models. In particular, we investigated the use of a U-Net architecture [Ronneberger et al.,
2015] that can be considered a multi-resolution hierarchy of convolutional neural networks.
However, our approach is model agnostic and we also tested smaller architectures for
increased simulation speed. Since our method does not rely on additional components
from traditional solvers such as particle tracers, computing gradients with backpropagation
through time (BPTT) is straight forward and allows to apply our method for example in
inverse problems or fluid control scenarios. We demonstrated this in an example application
where BPTT was used to control the frequency of a vortex street behind an obstacle by
adjusting the flow velocity.

Training data and loss function We developed a novel training cycle that does not require
any precomputed training data. To this end, we implemented a physics-constrained loss for
MAC grid representations and a physics-informed loss for Hermite spline representations
respectively. Furthermore, we make use of a training pool that gets filled automatically with
more and more realistic data produced by the neural networks themselves as a byproduct
during training.

Testing, Stability and Generalization Capability We tested our approach for the incom-
pressible Navier-Stokes as well as the wave equation and performed quantitative comparisons
to established solvers. By investigating errors over hundreds of iterations we demonstrate
the stability of our method and interactive simulations show the generalization capabilities
of the trained models to new domain geometries.

The contributions of this thesis have led to three peer-reviewed publications accompanied by
open-source implementations:

7

Chapter 1 Introduction

• Learning Incompressible Fluid Dynamics from Scratch - Towards Fast, Differentiable Fluid
Models that Generalize
Nils Wandel, Michael Weinmann, Reinhard Klein,
International Conference on Learning Representations (ICLR) 2021
Code: https://github.com/wandeln/Unsupervised_Deep_Learning_of_Incompressible_
Fluid_Dynamics
Chapter 4 and Appendix 1 of this thesis

• Teaching the Incompressible Navier Stokes Equations to Fast Neural Surrogate Models in 3D
Nils Wandel, Michael Weinmann, Reinhard Klein,
Physics of Fluids, Volume 33
Code: https://github.com/wandeln/Teaching_Incompressible_Fluid_Dynamics_
to_3D_CNNs
Chapter 5 and Appendix 2 of this thesis

• Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed Hermite-Spline
CNNs
Nils Wandel, Michael Weinmann, Michael Neidlin, Reinhard Klein
Proceedings of the AAAI Conference on Artificial Intelligence 2022
Code: https://github.com/wandeln/Spline_PINN
Chapter 6 and Appendix 3 of this thesis

1.6 Overview

In the next section, we will discuss related research and in Section 3, we will provide
foundations for a more in depth insight into our methodology. Sections 4, 5 and 6 contain
short summaries of our papers. For more details, we recommend reading the full papers
that are attached in the Appendix. Since each of these papers comes with its own specific
related work, method, results and conclusion section, the corresponding sections of the
overall thesis are kept broader to provide a more general overview. In Section 7, we sum
up the results of our work, discuss its current limitations as well as possible future research
directions and talk about its potential impact on the field of physics-driven deep-learning.
Finally, we want to conclude with a broader vision for physics-driven deep-learning and an
outlook regarding its positive implications for prospective real-world applications.

8

https://github.com/wandeln/Unsupervised_Deep_Learning_of_Incompressible_Fluid_Dynamics
https://github.com/wandeln/Unsupervised_Deep_Learning_of_Incompressible_Fluid_Dynamics
https://github.com/wandeln/Teaching_Incompressible_Fluid_Dynamics_to_3D_CNNs
https://github.com/wandeln/Teaching_Incompressible_Fluid_Dynamics_to_3D_CNNs
https://github.com/wandeln/Spline_PINN

Chapter 2

Related work

In general, partial differential equations do not possess analytic solutions. Thus, computing
numerical approximations is often the only viable option. Over the past decades, a wide
variety of numerical solvers for PDEs evolved including common traditional methods
such as finite differences, finite volumes, finite elements or particle based methods. These
solvers do not require learning of parameters but rely on handcrafted algorithms with high
computational complexity. On top of these traditional methods, recently, deep-learning
based strategies emerged that aim to drastically reduce computational costs and speed up
simulations by means of neural surrogate models.

In this section, a short review of related work is given. We will look at how different
"traditional" numerical solvers can be complemented by corresponding deep-learning
based methods. Furthermore, we will look at data-based learning strategies that rely on
ground truth training data as well as physics-based learning strategies that rely on the
underlying partial differential equations. Since our contributions focus in particular on the
incompressible Navier-Stokes equation, the main emphasis is put on fluid simulations.

The behavior of incompressible fluids can be described by the incompressible Navier-Stokes
equation. As discussed in Section 3.2 in more detail, there are two alternative views on
the velocity field of a fluid: First, the Lagrangian view considers the velocity field from
the perspective of individual particles moving within the fluid. Second, the Eulerian view
considers the velocity field from a fixed outside perspective. Depending on the particular
application, one or the other frame of reference can facilitate computations and in certain
scenarios, "hybrid"-approaches that incorporate both views can be beneficial.

In the following, for each view (Lagrangian / Hybrid / Eulerian), we will first cover
traditional numerical approaches followed by recent deep learning based advances. Finally,
we will also briefly discuss related work in the field of deep-learning based fluid control.

9

Chapter 2 Related work

Lagrangian Hybrid Eulerian

"t
ra

di
tio

na
l" • Distinct Element

Method [Cundall
and Strack, 1979]

• Smoothed Particle
Hydrodynamics
[Gingold and Mon-
aghan, 1977; Lucy,
1977]

• Position-Based Dy-
namics [Müller et al.,
2007]

• Position-Based Flu-
ids [Macklin and
Müller, 2013]

• Particle In Cell [Har-
low, 1962]

• FLIP [Brackbill et al.,
1988]

• Material-Point
Method [Sulsky et al.,
1995; Stomakhin
et al., 2013]

• Animation of Liquids
[Foster and Metaxas,
1996]

• Stable Fluids [Stam,
1999]

• Finite Differences
[Harlow and Welch,
1965]

• Lattice Boltzmann
[Chen and Doolen,
1998]

• Finite Volumes [Ey-
mard et al., 2000]

• Finite Elements
[Quarteroni and
Quarteroni, 2009]

de
ep

-le
ar

ni
ng

• Regression Forests
[Ladický et al., 2015]

• SP-Nets [Schenck
and Fox, 2018]

• Continuous Convolu-
tions [Ummenhofer
et al., 2020]

• Graph Neural
Networks [Sanchez-
Gonzalez et al., 2020]

• Pressure Projection
[Tompson et al., 2017]

Data-Driven:

• Solver in the Loop
[Um et al., 2020]

• RANS [Thuerey et al.,
2019]

• GNN [Pfaff et al.,
2021]

Physics-Based:

• Physics-Informed
NN [Raissi et al.,
2018]

• Physics-Constrained
NN [Zhu et al., 2019;
Geneva and Zabaras,
2020]

Table 2.1: A selection of influential Lagrangian / Hybrid / Eulerian Fluid-Solvers relying on
"traditional" and recent deep-learning based solvers

10

2.1 Lagrangian methods

2.1 Lagrangian methods

Lagrangian methods consider a dynamical system in the frame of reference of individual
particles. For example, distinct element methods [Cundall and Strack, 1979] simulate distinct
particles of a granular medium that interact only at direct contact. However, if the number
of particles is large (e.g. because the domain is big or because the particles are small such as
molecules or atoms), this method becomes computationally infeasible. Thus, new artificial
particles need to be introduced that describe quantities such as density or velocity of a
collection of underlying physical particles. For example, in Smoothed Particle Hydrodynamics
(SPH) [Gingold and Monaghan, 1977; Lucy, 1977], (isotropic Gaussian) smoothing kernels
are used to simulate collections of particles in order to test astrophysical models of star
formation. To allow for smoothing kernels that adjust their shape depending on the spacing
to neighboring particles, adaptive SPH have been introduced in the context of high strain
hydrodynamics [Liu et al., 2006]. Position Based Dynamics (PBD) [Müller et al., 2007] directly
work on particle positions yielding unconditionally stable simulations over time and thus is
a popular choice for game engines or in CGI. On top of PBD, Position Based Fluids (PBF)
[Macklin and Müller, 2013] have been developed to enforce the incompressibility constraint
of fluid simulations using an iterative Newton solver.

However, these traditional methods are computationally expensive even for medium sized
scenes and require small time-steps for numerical stability. Thus, recently, deep-learning
based approaches are employed more and more often that aim to drastically speed-up
simulations. To this end, methods based on regression forests [Ladický et al., 2015], Graph
Neural Networks [Mrowca et al., 2018; Li et al., 2019; Sanchez-Gonzalez et al., 2020] or
continuous convolutions [Ummenhofer et al., 2020] have been introduced. Furthermore,
Smooth Particle Nets were developed [Schenck and Fox, 2018] that implement the Position
Based Fluid algorithm [Macklin and Müller, 2013] in a differentiable manner such that it can
be used as a neural network layer in a deep-learning pipeline to solve control tasks.

While Lagrangian methods can provide robust simulations that automatically ensure
conservation of mass for free-surface flows or multi-phase flows, they suffer from high
dissipation and low accuracy within a fluid domain when in lack of sufficiently many
particles. Furthermore, error estimation tends to be difficult in particle based methods.

2.2 Hybrid methods

Several works combine the Lagrangian and Eulerian frames of reference such that individual
terms of the underlying PDEs can be handled in their most suitable frames of reference. For
this reason, we call these methods "hybrids". Typically, advection terms are treated in the
Lagrangian frame and the remaining terms are treated in the Eulerian frame of reference.

For example in "Stable fluids" [Stam, 1999], the advection term of the Navier-Stokes equation
is computed by a particle tracer in the Lagrangian frame of reference and the viscosity as

11

Chapter 2 Related work

well as the pressure term are solved on a grid in the Eulerian frame of reference:

𝜕𝑡𝒗 = − 𝒗 · ∇𝒗︸︷︷︸
Lagrangian

+ 1
𝜌
(�Δ𝒗 − ∇𝑝 + 𝒇𝑒𝑥𝑡)︸ ︷︷ ︸

Eulerian

Further "traditional" hybrid methods include Particle-in-Cell methods [Harlow, 1962], FLIP
[Brackbill et al., 1988] or material-point methods [Sulsky et al., 1995; Stomakhin et al., 2013].

To accelerate the pipeline of [Stam, 1999], [Tompson et al., 2017] propose to use a CNN to
solve the pressure term more efficiently (see also Section 3.2, "Helmholtz Decomposition
Theorem").

While hybrid methods combine the benefits of Eulerian and Lagrangian methods in that
they allow for fairly accurate simulations within a domain as well as dynamic free-surface
boundaries, their computational pipeline is fairly complex. Furthermore, the mapping
between grid and particle representations can introduce additional numerical diffusion.

2.3 Eulerian methods

Eulerian methods consider a dynamical system from a fixed point of view. This could be for a
example a grid, a mesh or an implicit function. Common traditional Eulerian solvers include
finite difference methods [Harlow and Welch, 1965; Foster and Metaxas, 1996] that rely on a
staggered Marker And Cell (MAC) grid, Lattice-Boltzman methods [Chen and Doolen, 1998;
Guo, 2021], finite volume methods and finite element methods. These traditional Eulerian
methods can produce highly accurate results and are wildly used in industrial applications
of computational fluid dynamics, but they are computationally expensive as they typically
require solving large systems of linear equations to obtain stable simulations.

Therefore, in recent years, several papers investigated deep-learning strategies to speed-up
Eulerian methods. These works can be categorized into data-driven and physics-based
works:

Data-driven methods rely on existing ground truth data that is usually generated by a high
quality but computationally expensive traditional CFD solver. By training a neural network
to mimic the traditional solver, these methods aim to achieve a similar performance at
significantly reduced computational costs. For example, [Wiewel et al., 2019] train an auto-
encoder to project a fluid state onto a smaller latent description and a recurrent prediction
network to efficiently evolve the fluid state in this latent space over time. [Geneva and Zabaras,
2022] also rely on an autoencoder to obtain latent representations but replace the recurrent
prediction network by a transformer network. [Um et al., 2020] aim to correct numerical
errors of a low resolution differentiable fluid solver by a convolutional neural network (CNN)
that is trained on data obtained from a higher resolution fluid solver. Similarly, [Kochkov
et al., 2021] use a CNN to achieve significant speed-ups while maintaining high accuracy
by learning corrections steps for a finite volume method. [Thuerey et al., 2019] use a CNN

12

2.3 Eulerian methods

to learn solutions of the Reynolds-averaged Navier-Stokes equation around airfoil profiles.
Generative Adversarial Network (GAN) based approaches were developed by [Xie et al.,
2018], who propose a temporally coherent, volumetric GAN (Tempo-GAN) to increase the
resolution of smoke simulations and by [Kim et al., 2019], who propose a recurrent GAN for
simulations of turbulent flow fields in pipe-domains. And Graph Neural Network (GNN)
based methods are used in works by [Gao et al., 2021; Harsch and Riedelbauch, 2021; Pfaff
et al., 2021] to learn the dynamics of various physical systems such as cloth, metal plates and
fluids on a mesh. This allows to focus on parts of the fluid domain that are of special interest
by choosing a mesh with higher resolution for example at boundary layers.

While these data-driven methods are relatively straight forward to train using standard
losses such as 𝐿2 for steady-state or short-term predictions of laminar flows, long-term
predictions at high Reynolds-numbers can become problematic due to the chaotic nature of
fluids. In this case, minimal changes of the input fields lead to vastly different outcomes
and optimizing for an 𝐿2 loss would result in a blurry mean value, which is usually not a
desirable outcome. Thus, more sophisticated training strategies are needed that are based for
example on adversarial losses, which on the other hand are challenging due to issues such as
mode collapse, temporal coherence or lack of physical plausibility. Furthermore, significant
generalization beyond domain geometries of the training data and stable simulations over
long time horizons tend to be difficult. To this end, traditional, differentiable low-resolution
solvers can be incorporated into the simulation pipeline, however, they come at the cost
of significantly increasing the overall complexity of the method. Finally, the accuracy of
data-driven methods is always limited by the quality and amount of the underlying ground
truth data generated by traditional methods. However, generating large datasets of high
quality is computationally expensive and might become a bottleneck. Thus, in the long run,
if deep-learning based approaches are to surpass the accuracy of traditional solvers, they
probably have to get emancipated from traditional methods and should learn directly on the
underlying PDEs.

To this end, physics-based loss terms were introduced to drastically reduce or even completely
avoid the need for ground truth data by directly penalizing residuals of the underlying PDEs.
Here, physics-informed methods can be discerned from physics-constrained methods.

Physics-Informed neural networks (PINNs) [Grohs et al., 2018; Sirignano and Spiliopoulos,
2018; Khoo et al., 2019; Raissi et al., 2019] are based on implicit neural representations that
continuously map domain coordinates in space and time (e.g. 𝑥, 𝑦, 𝑡) to corresponding field
values (e.g. 𝒗 , 𝑝). This allows to deal with high dimensional PDEs that could not be dealt
with in discretized settings due to the curse of dimensionality [Grohs et al., 2018]. To train
such models, a physics-informed loss that incorporates the residuals of a PDE is computed
by automatic differentiation. PINNs have been popularized by [Raissi et al., 2019] and have
been applied to fluids [Yang et al., 2016; Raissi et al., 2018], the Hamilton-Jacobi-Bellman
PDE and Burgers equation [Sirignano and Spiliopoulos, 2018]. Further applications include
flow simulations through porous media [Tripathy and Bilionis, 2018; Zhu and Zabaras,
2018; Zhu et al., 2019], turbulence modeling [Ling et al., 2016; Geneva and Zabaras, 2019]
and simulations of propagating waves [Sitzmann et al., 2020; Rasht-Behesht et al., 2021].
Unfortunately, by the nature of implicit neural representation networks, these methods are

13

Chapter 2 Related work

trained to overfit on one single domain. Thus, they cannot generalize to new domains and
require retraining of the entire neural network which is computationally expensive.

Physics-Constrained methods on the other hand are usually applied on discrete domain
representations. These discrete representations (e.g. a grid) are then explicitly mapped from
one time-step 𝑡 to the next time-step 𝑡 + 𝑑𝑡 by a neural network (e.g. a CNN). To compute
a physics-constrained loss, the residuals of the underlying PDE are evaluated on the grid
based on finite differences. This method has been used in [Tompson et al., 2017] to solve the
Poisson equation for a pressure projection step in the context of inviscid fluids. However, in
this work, a particle tracer was needed to deal with advection. Furthermore, although no
labeled data is needed, this method still requires some fluid data generated by a traditional
solver in order to achieve better generalization performance by training the model on fluid
states that resemble real-world data. In contrast, [Zhu et al., 2019] do not require any ground
truth data to solve Darcy flow problems by using on a physics-constrained loss. However,
Darcy flows describe stationary "creeping" flows through porous media and thus do not
result in dynamic simulations. Shortly after, dynamic fluid simulations without ground
truth data were obtained by [Geneva and Zabaras, 2020]. They used a physics-constrained
loss to solve Burger’s equation which produces interesting shock patterns. But in contrast
to the full incompressible Navier-Stokes equation, the Burger’s equation does not contain a
pressure term. Furthermore, this work does not consider variable boundary conditions that
would allow for interactions with the neural surrogate model in real-time.

Techniques that combine the advantages of physics-informed and physics-constrained neural
networks, namely continuous field representations and fast, interactive simulations, can be
achieved with continuous spline interpolations as we show in our work on Spline-PINNs
[Wandel et al., 2022].

2.4 Splines in Neural Networks

The usage of splines in neural networks has been explored by numerous previous works.
In [Igelnik and Parikh, 2003] and [Fakhoury et al., 2022], splines were proposed to obtain
flexible activation functions. [Fey et al., 2017] propose to train continuous convolutional
kernels based on B-splines to deal with irregular structured data. On uniform grids,
B-Splines have been used in conjunction with CNNs by [Barrowclough et al., 2021] to
do binary segmentation of medical images. Furthermore, [Cho et al., 2021] developed
differentiable spline approximations to solve Poisson equations on top of performing image
segmentation and point cloud reconstruction. However, to the best of our knowledge, splines
in conjunction with CNNs have not yet been exploited to approach complex dynamical
systems of partial differential equations such as the wave equation or the incompressible
Navier-Stokes equation.

14

2.5 Differentiable models for fluid control

2.5 Differentiable models for fluid control

Several works have investigated the use of differentiable fluid models and neural networks
in fluid control settings. For example, [Schenck and Fox, 2018] implemented a differentiable
version of the lagrangian position based fluid (PBF) solver with a deep neural network in
order to learn control tasks such as pouring water into a bowl or steering a water puddle on
a plate. And an eulerian differentiable fluid solver (Phiflow) was used by [Holl et al., 2020]
in combination with neural networks to plan and control flow trajectories. However, both
differentiable fluid solvers rely on complex handcrafted algorithms with only few learned
paramters.

In this thesis, we build on top of these groundbreaking works and develop novel approaches
that combine some of the mentioned approaches and their individual advantages: By
using a physics-based loss we forgo any ground truth data for training. Our surrogate models
generalize to variable boundary conditions, thereby allowing for real-time interactive simulations.
Since our light-weight inference pipeline is fully differentiable, it can be used for example for
gradient-based optimization of control algorithms. Finally, in our last work on Spline-PINNs,
we aimed to combine the benefits of physics-constrained with physics-informed neural
networks in order to achieve continuous simulations with fewer discretization artifacts on top
of our fast, interactive and differentiable simulation pipeline.

15

Chapter 3

Foundations

In this chapter, we want to develop some basic theoretical foundations in order to explain
our work in more detail.

3.1 Partial Differential Equations

In general, partial differential equations are equations that impose relationships between
the partial derivatives of a multivariable function. Here, we focus on physical systems,
where multivariable functions are often used to describe fields such as pressure, velocity or
displacement and their partial derivatives describe quantities such as the force of a pressure
gradient, change of velocity over time, viscous friction, acceleration etc.

Based on these field descriptions and their derivatives we can formulate partial differential
equations that impose the laws of physics in order to make predictions about their future
dynamics.

Examples of PDEs in physics are: Wave equation, Maxwell equations, Navier-Stokes equation,
and many more. In this work, we focus mainly on the incompressible Navier-Stokes equation
as well as the damped wave equation.

3.1.1 Differential operators

To abbreviate the notations of partial derivatives, certain differential operators are commonly
used. In this thesis, the following operators are of importance:

17

Chapter 3 Foundations

Nabla-Operator The Nabla 1 Operator is a vector that comprises partial derivatives:

∇ =
©«
𝜕𝑥
𝜕𝑦
𝜕𝑧

ª®¬
Note: Here, the Nabla operator only refers to spatial derivatives. Temporal derivatives are
still denoted by 𝜕𝑡 .

Gradient and Jacobian Using the Nabla operator, the gradient of a scalar field 𝑠 and the
jacobian 2 of a vector field 𝒗 can be conveniently denoted by:

∇𝑠 = ©«
𝜕𝑥𝑠
𝜕𝑦𝑠
𝜕𝑧𝑠

ª®¬ ; ∇𝒗 =
©«
𝜕𝑥𝑣𝑥 𝜕𝑦𝑣𝑥 𝜕𝑧𝑣𝑥
𝜕𝑥𝑣𝑦 𝜕𝑦𝑣𝑦 𝜕𝑧𝑣𝑦
𝜕𝑥𝑣𝑧 𝜕𝑦𝑣𝑧 𝜕𝑧𝑣𝑧

ª®¬
Divergence The divergence of a vector field 𝒗 can be considered as the scalar product of
the Nabla operator with that vector field:

∇ · 𝒗 = 𝜕𝑥𝑣𝑥 + 𝜕𝑦𝑣𝑦 + 𝜕𝑧𝑣𝑧

Curl The curl of a vector field 𝒗 can be computed by taking the cross product of the Nabla
operator with that vector field:

∇ × 𝒗 =
©«
𝜕𝑦𝑣𝑧 − 𝜕𝑧𝑣𝑦
𝜕𝑧𝑣𝑥 − 𝜕𝑥𝑣𝑧
𝜕𝑥𝑣𝑦 − 𝜕𝑦𝑣𝑥

ª®¬
Laplace Operator The Laplace3 operator Δ is defined as the divergence of the gradient.
Applying it onto a scalar field 𝑠 or a vector field 𝒗 respectively yields:

Δ𝑠 = ∇ · ∇𝑠 = 𝜕2
𝑥𝑠 + 𝜕2

𝑦𝑠 + 𝜕2
𝑧 𝑠 ; Δ𝒗 = ∇ · ∇𝒗 =

©«
𝜕2
𝑥𝑣𝑥 + 𝜕2

𝑦𝑣𝑥 + 𝜕2
𝑧𝑣𝑥

𝜕2
𝑥𝑣𝑦 + 𝜕2

𝑦𝑣𝑦 + 𝜕2
𝑧𝑣𝑦

𝜕2
𝑥𝑣𝑧 + 𝜕2

𝑦𝑣𝑧 + 𝜕2
𝑧𝑣𝑧

ª®¬
1 The name "Nabla" originates from a harp-like Phoenician stringed instrument that resembled this sign.
2 Carl Gustav Jacobi, German mathematician (1804 - 1851)
3 Pierre-Simon de Laplace, French mathematician (1749–1827)

18

3.1 Partial Differential Equations

3.1.2 The initial-boundary-value-problem (IBVP)

Usually, we want to restrict the solution of a PDE to a certain domain Ω and its boundary
𝜕Ω. In computer simulations, this is done by limiting Ω to a given spatial geometry as well
as to a given time-range.

To specify the solution of the PDE at the domain boundaries 𝜕Ω, we introduce boundary
and initial conditions that need to be fulfilled at the spatial boundaries of the geometry and
at the beginning of the simulation respectively.

Boundary Conditions In order to model interactions with the surroundings at the domain
boundaries, additional constraints need to be imposed. In this thesis, we focus on Dirichlet
boundary conditions that specify directly the field values at the domain boundaries 𝜕Ω.
Further types of boundary conditions such as for example Neumann boundary conditions
might also impose constraints on the derivatives of a field.

Initial Conditions Initial conditions are commonly used to specify the state at the beginning
of a simulation (i.e. usually at 𝑡 = 0). For example, in case of the Navier-Stokes equation (see
Section 3.2), this would be the initial velocity and pressure fields 𝒗0 and 𝑝0 respectively.

3.1.3 Properties of PDEs

We can classify PDEs by certain characteristics in order to choose appropriate techniques
to solve or approximate their solutions. In this section, some basic important properties of
PDEs are highlighted.

Order of a PDE The order of a PDE is given by its highest partial derivatives in a certain
dimension. For example, the Laplace equation is a second order PDE:

Δ𝑢 = 𝜕2
𝑥𝑢 + 𝜕2

𝑦𝑢 + 𝜕2
𝑧𝑢 = 0 (3.1)

The order of a PDE is important for example in finite difference or spline methods since it
directly affects the size of a finite difference kernel or the order of spline-kernels that needs
to be chosen.

Homogeneous and Nonhomogeneos PDEs Let’s assume, we have a PDE for an unknown
function 𝑢(𝑡 , 𝑥, 𝑦) in 3 variables 𝑡 , 𝑥, 𝑦. To distinguish homogeneous from nonhomogeneous
PDEs, we first group all terms that contain 𝑢 and its derivatives into 𝒟(𝑢) and all terms that
do not contain 𝑢 into 𝑓 (𝑡 , 𝑥, 𝑦) in order to obtain:

𝒟(𝑢) = 𝑓 (𝑡 , 𝑥, 𝑦) (3.2)

19

Chapter 3 Foundations

If the right hand side, 𝑓 (𝑡 , 𝑥, 𝑦), is zero, the PDE is called homogeneous, otherwise, it is
called nonhomogeneous.

Linear and Nonlinear PDEs If 𝒟(𝑢) in Equation 3.2 is linear, that means 𝒟(𝛼𝑢 + 𝑣) =
𝛼𝒟(𝑢) +𝒟(𝑣), then the PDE is also called linear. Otherwise, the PDE is called nonlinear. For
example, the wave equation (see section 3.3) is a linear PDE while the Navier-Stokes equation
(see section 3.2) is nonlinear. If an Operator 𝒟 is linear, we can compute eigenfunctions 𝑢𝑖
and eigenvalues �𝑖 of the form:

𝒟(𝑢𝑖) = �𝑖𝑢𝑖

If we can find coefficients 𝑐𝑖 , such that:

𝑓 =
∑
𝑖

𝑐𝑖𝑢𝑖

we can construct a solution for 𝒟(𝑢) = 𝑓 by setting:

𝑢 =
∑
𝑖

𝑐𝑖

�𝑖
𝑢𝑖 ⇒ 𝒟(𝑢) =

∑
𝑖

�𝑖
𝑐𝑖

�𝑖
𝑢𝑖 =

∑
𝑖

𝑐𝑖𝑢𝑖 = 𝑓

If 𝒟 is symmetric, (that means ⟨𝒟𝑢, 𝑣⟩ = ⟨𝑢,𝒟𝑣⟩), we can find orthonormal eigenfunctions
(that means ⟨𝑢𝑖 , 𝑢𝑗⟩ = 𝛿𝑖 , 𝑗) and thus the coefficients can be determined by taking the
scalar-product between 𝑢𝑖 and 𝑓 :

𝑐𝑖 = ⟨𝑢𝑖 , 𝑓 ⟩

Furthermore, if we can separate the variables of 𝒟, we can transform the PDE into separate
ODEs which drastically reduces the complexity and in some cases enables analytical
solutions.

Following the notation of Farlow, 1993, a linear second order PDE of a function 𝑢(𝑥, 𝑦) in
two variables 𝑥, 𝑦 can be written for example as:

𝐴𝜕2
𝑥𝑢 + 𝐵𝜕𝑥𝜕𝑦𝑢 + 𝐶𝜕2

𝑦𝑢 + 𝐷𝜕𝑥𝑢 + 𝐸𝜕𝑦𝑢 + 𝐹𝑢 = 𝐺 (3.3)

where 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺 can be considered as arbitrary functions of 𝑥, 𝑦.

If we consider the special case of a PDE that on top of being linear is also homogeneous
(in Equation 3.3 that would mean: 𝐺 = 0), we can linearly combine solutions of the PDE
to obtain new solutions. This allows for methods such as separation of variables that can
potentially even provide analytical solutions.

Elliptic / Parabolic / Hyperbolic PDEs By investigating the coefficients of equation 3.3 we
can classify linear second order PDEs into 3 categories: elliptic, parabolic and hyperbolic
PDEs .

20

3.2 Incompressible Navier-Stokes Equation

1. If 𝐵2 − 4𝐴𝐶 < 0, the PDE is said to be elliptic and describes steady-state phenomena
such as the Laplace-equation (see Equation 3.1).

2. If 𝐵2 − 4𝐴𝐶 = 0, the PDE is said to be parabolic and describes for example diffusion
processes such as heat flow.

3. If 𝐵2 − 4𝐴𝐶 > 0, the PDE is said to be hyperbolic and describes vibrating systems such
as the wave-equation. (See Section 3.3)

This naming convention stems from an analogy to conic sections. If we plot solutions of the
general equation for conic sections:

𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 + 𝐸𝑦 + 𝐹 = 0 (3.4)

we obtain ellipses for 𝐵2 − 4𝐴𝐶 < 0, parabolas for 𝐵2 − 4𝐴𝐶 = 0 and hyperbolas for
𝐵2 − 4𝐴𝐶 > 0. Examples for these 3 cases are shown in Figure 3.1.

Figure 3.1: Conic sections for different values of 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹. Left: Ellipse, Center: Parabola, Right:
Hyperbola

Knowledge about the type of the underlying PDE might be important to choose a proper
solver.

In the following, we will look at 2 particular PDEs in more detail, namely the incompressible
Navier-Stokes equation and the damped wave equation.

3.2 Incompressible Navier-Stokes Equation

The incompressible Navier4-Stokes5 equation6 is a non-linear PDE that describes the dynamics
of an incompressible fluid by means of a vector field 𝒗 that contains the fluids velocity
4 Claude-Louis Navier, French engineer and physicist (1785 - 1836)
5 Sir George Stokes, Anglo-Irish physicist and mathematician, (1819 - 1903)
6 Interesting side note: The existence of smooth solutions of the Navier-Stokes equation has not been proven yet

and proving or disproving its existence remains a 1.000.000 $ millennium prize problem. However, in this
work we do not attempt to make a contribution in this regard.

21

Chapter 3 Foundations

Figure 3.2: The divergence of a vector field ∇𝒗 measures the total amount of inflow into and outflow
from an infinitesimal volume around a point 𝑥 of the domain. If 𝒗 is divergence-free, the inflow and
outflow have to cancel each other at any given point.

and a scalar field 𝑝 that contains the fluids pressure. It comprises 2 equations that need to
be fulfilled at any given point within the domain Ω. First, the incompressibility equation
(Equation 3.5) and second, the momentum equation (Equation 3.6):

∇ · 𝒗 = 0 in Ω (3.5)

𝜌
𝐷

𝐷𝑡
𝒗 = 𝜌(𝜕𝑡𝒗 + 𝒗 · ∇𝒗) = �Δ𝒗 − ∇𝑝 + 𝒇ext in Ω (3.6)

At the domain boundary 𝜕Ω, we specify Dirichlet boundary conditions as follows:

𝒗 = 𝒗𝑑 on 𝜕Ω (3.7)

If 𝒗𝑑 corresponds to the velocity of an obstacle within the domain Ω, this boundary condition
is often referred to as no-slip condition which holds under the common assumption that fluid
particles exactly follow the velocity of an obstacle at its surface.

In the following, we will investigate the incompressibility and momentum equation in more
detail.

3.2.1 Incompressibility equation

The incompressibility equation ensures that the fluid remains incompressible. It states that
the amount of liquid entering any infinitesimal small patch in Ω must match the amount
exiting that infiniteximal patch (see also Figure 3.2). This is equivalent to enforcing the
divergence of the velocity field 𝒗 to be 0:

∇ · 𝒗 = 𝜕𝑥𝑣𝑥 + 𝜕𝑦𝑣𝑦 = 0

22

3.2 Incompressible Navier-Stokes Equation

Figure 3.3: If a vector field 𝒗 is divergence-free (∇ · 𝒗 = 0), the total amount of liquid entering a
subdomain 𝐴 through its surface 𝑆 always matches the amount of fluid exiting that subdomain again.

By using Gauss’s7 theorem, we can show that the total amount of inflow and outflow into
an arbitrary subdomain 𝐴 of Ω is always 0 if the velocity field is divergence-free (see also
Figure 3.3): ∮

𝑆

𝒗 · 𝒏 𝑑𝑆
Gauss
=

∫
𝐴

∇ · 𝒗 𝑑𝐴
∇·𝒗=0
= 0

Helmholtz Decomposition Theorem The Helmholtz8 decomposition theorem states that
every vector field 𝒗 can be written as the sum of the gradient of a scalar potential 𝑞 and the
curl of a vector potential 𝒂:

𝒗 = ∇𝑞 + ∇ × 𝒂

By plugging in the definitions of gradient, divergence and curl, it can be shown that the
curl of ∇𝑞 is always zero (∇ × (∇𝑞) = 0) and that the divergence of ∇ × 𝒂 is always zero
as well (∇ · (∇ × 𝒂) = 0). This result can be used to ensure that the velocity field fulfills
incompressibility (∇ · 𝒗 = 0).

A common way to ensure incompressibility based on the Helmholtz decomposition theorem
is to compute a pressure projection step (Stam, 1999; Tompson et al., 2017). Here, we
decompose a given vector field �̃� that might not be divergence-free into the gradient of a
"pressure" field 𝑞 and a divergence-free velocity field 𝒗 = ∇ × 𝒂:

�̃� = ∇𝑞 + ∇ × 𝒂︸︷︷︸
𝒗

Since 𝑞 and 𝒂 are unknown, we solve a Poisson equation for the "pressure" field 𝑞 given �̃� as

7 Carl Friedrich Gauß, German mathematician and physicist (1777 - 1855)
8 Hermann von Helmholtz, German physicist and physician (1821 - 1894)

23

Chapter 3 Foundations

Figure 3.4: The amount of liquid flowing through an area 𝐴 can be computed by integrating the vector
potential 𝒂 along the border 𝑆 of that area.

follows:
∇ · �̃� = ∇ · (∇𝑞) + ∇ · (∇ × 𝒂)︸ ︷︷ ︸

=0

= Δ𝑞

By subtracting the gradient of the obtained "pressure" field, ∇𝑞, we can project �̃� onto the
divergence-free vector field 𝒗:

�̃� − ∇𝑞 = 𝒗︸︷︷︸
∼∇×𝒂

⇒ ∇ · 𝒗 = ∇ · �̃� − Δ𝑞 = 0

Solving the Poisson9 equation can be done efficiently in frequency domain using the fast
fourier transform in case of periodic boundary conditions [Stam, 1999]. In more evolved
settings, this step is computationally more expensive, thus Tompson et al., 2017 approached
this step with a deep learning based method. However, depending on the accuracy of the
Poisson solver, this method does not guarantee exact solutions for the incompressibility
equation.

On the other hand, it is also possible to directly work on the vector potential 𝒂 and set
𝒗 = ∇× 𝒂 [Kim et al., 2019; Raissi et al., 2019; Mohan et al., 2020]. This automatically ensures
strict incompressibility and thus is the method of choice in this work.

Stokes theorem (see Figure 3.4) provides some intuition for the vector potential 𝒂:∮
𝑆

𝒂 · 𝑑𝑆Stokes
=

∫
𝐴

(∇ × 𝒂) · 𝑑𝐴∇×𝒂=𝒗=

∫
𝐴

𝒗 · 𝑑𝐴

This implies that we can compute the amount of liquid flowing through a surface-area 𝐴 by
integrating the vector potential 𝒂 along the border 𝑆 of that area. This way, the complexity
of a 2D surface integral can be reduced to a simpler 1D line integral.

9 Baron Siméon Denis Poisson, French mathematician and physicist (1781 - 1840)

24

3.2 Incompressible Navier-Stokes Equation

3.2.2 Momentum equation

The momentum equation describes how different forces such as viscous drag (�Δ𝒗), a
pressure gradient (∇𝑝) or external forces (𝒇ext) act on a fluid. There are two different view
points to approach the momentum equation: the Lagrangian and the Eulerian frame of
reference.

Lagrangian frame of reference In the Lagrangian10 frame of reference, the fluid is viewed
from the perspective of individual particles. Thus, the accelerations of the fluid particles are
denoted by 𝐷

𝐷𝑡𝒗 and the change of momentum per volume is given by 𝜌 𝐷
𝐷𝑡𝒗 (see left hand

side of Equation 3.6). By Newtons second law, this change of momentum must equal the
sum of forces acting on the fluid such as viscous, pressure and external forces (see right hand
side of Equation 3.6).

Eulerian frame of reference In the Eulerian11 frame of reference, the fluid is viewed from
a fixed perspective. Thus, the accelerations of the fluid particles not only depend on the
partial derivative of the velocity field with respect to time (𝜕𝑡𝒗) but also on an advection
term (𝒗 · ∇𝒗). The intuition of this advection term is that particles get accelerated if they
move into regions of different velocities. For example, in Figure 3.9, particles get accelerated
when they move into the narrow pipe region and decelerated when they exit again into the
wide pipe region. Note that these accelerations take place although the fluids velocity field
is in a steady state (𝜕𝑡𝒗 = 0), which might be a bit counter-intuitive at first. Furthermore,
note that this advection term is also the reason why the Navier-Stokes equation is non-linear
and thus particularly hard to solve.

In the following, we want to develop more intuition on the different parts of the momentum
equation and derive the units for 𝜌, � and 𝑝.

3.2.3 What is density 𝝆?

The density 𝜌 of a liquid is defined as mass per volume of a liquid. Thus, in SI-units, it is
specified by 𝑘𝑔/𝑚3. Since we consider the incompressible Navier-Stokes equation, we can
assume that the density is constant everywhere within the liquid.

In the Lagrangian view, the density can be considered as the inertia of fluid particles that get
affected by the surrounding forces such as the pressure gradient, viscous friction or external
forces. If we use the SI-units of 𝜌 and plug them into the left hand side of the momentum
equation (see Equation 3.6), we obtain the following SI units:

10 Joseph-Louis Lagrange, Italian mathematician and astronomer (1736 - 1813)
11 Leonhard Euler, Swiss mathematician, physicist and astronomer (1707 - 1783)

25

Chapter 3 Foundations

𝑘𝑔

𝑚3︸︷︷︸
𝜌

· 1
𝑠︸︷︷︸
𝐷
𝐷𝑡

· 𝑚

𝑠︸︷︷︸
𝒗

=
𝑘𝑔

𝑚2𝑠2 =
𝑁

𝑚3 (3.8)

This corresponds to a force (here in Newton 𝑁 =
𝑘𝑔·𝑚
𝑠2) per unit volume. These SI-units have

to be matched as well by every individual term on the right hand side of Equation 3.6.

3.2.4 What is viscosity 𝝁?

The viscosity � of a fluid describes the siziness of a fluid. For example, honey has high
viscosity while oil is less viscous and water has low viscosity. In the momentum equation,
the viscosity-term (�Δ𝒗) can be considered as a drag force between fluid particles. If the
surrounding of a particle moves in average in a different direction (denoted by the Laplacian
of the velocity field Δ𝒗), it applies a drag force proportional to the viscosity � (see Figure
3.5 a). If we consider the SI-units of the viscosity term (�Δ𝒗) in the momentum equation
(Equation 3.6) and set them equal to Equation 3.8, we obtain the following units for �:

𝑁𝑠

𝑚2︸︷︷︸
�

· 1
𝑚2︸︷︷︸
Δ

· 𝑚

𝑠︸︷︷︸
𝒗

=
𝑁

𝑚3

Thus, the SI-units of viscosity � have to match 𝑁𝑠
𝑚2 , which is also called one Poiseuille 12

(𝑃𝐼).

On top of applying a drag force on particles within a fluid, viscosity also causes drag on
the domain boundaries 𝜕Ω given by �(∇𝒗)𝒏. This boundary drag force per surface area is
proportional to the viscosity � and the velocity-gradient ∇𝒗 along the surface normal 𝒏 (see
Figure 3.5 b). To verify that this drag force term (�(∇𝒗)𝒏) indeed yields a force per unit area,
we can check the SI-units again:

𝑁𝑠

𝑚2︸︷︷︸
�

· 1
𝑚︸︷︷︸
∇

· 𝑚

𝑠︸︷︷︸
𝒗

· (unit-free)︸ ︷︷ ︸
𝒏

=
𝑁

𝑚2

Thus, in order to compute the drag force 𝑭� caused by viscous friction on an object within a
fluid, we can integrate over its surface 𝑆:

𝑭� =

∮
𝑆

�(∇𝒗)𝒏𝑑𝑠

12 Jean Léonard Marie Poiseuille, French physicist and physiologist (1797 - 1869)

26

3.2 Incompressible Navier-Stokes Equation

(a) Velocity profile around a fluid particle. Viscous
friction causes a drag force on a particle to assimilate
the velocity of the local surrounding.

(b) Slice of a velocity field (blue) perpendicular to
a No-Slip boundary surface (grey). The drag force
caused by the fluid on the boundary is proportional
to the viscosity � and the velocity gradient ∇𝒗 along
the surface normal 𝒏.

Figure 3.5: Effects of viscosity on particles within a fluid and on domain boundaries.

3.2.5 What is pressure 𝒑?

The pressure field 𝑝 acts like a scalar potential and applies a force proportional to its gradient
on the fluid particles. By investigating the SI-units of the pressure term in the momentum
equation (∇𝑝 in Equation 3.6) and setting them equal to Equation 3.8, we obtain the following
units for 𝑝:

1
𝑚︸︷︷︸
∇

· 𝑁

𝑚2︸︷︷︸
𝑝

=
𝑁

𝑚3

Thus, the SI-units of the pressure field 𝑝 must match 𝑁
𝑚2 , which is in accordance with the

definition of one Pascal13 (𝑃𝑎) and our intuition of pressure being a force per unit (surface)
area.

If we want to compute the pressure force 𝑭𝑝 on an object within the fluid, we have to integrate
the pressure forces 𝑝 along the surface normals 𝒏 over the objects surface 𝑆:

𝑭𝑝 =

∮
𝑆

𝑝𝒏𝑑𝑠

27

Chapter 3 Foundations

Figure 3.6: Drag (𝐹𝐷) and lift (𝐹𝐿) forces acting on an object within a flow field

3.2.6 Drag and Lift coefficients

By combining the viscous force 𝑭� and the pressure force 𝑭𝑝 , we can obtain the total force
𝑭tot that a fluid exerts on an object.

𝑭tot = 𝑭� + 𝑭𝑝

Now, we take the parallel drag-force component 𝐹𝐷 and the perpendicular lift-force compo-
nent 𝐹𝐿 of 𝑭tot with respect to the average velocity of the fluid stream (see Figure 3.6) and
define the drag and lift coefficient 𝐶𝐷 and 𝐶𝐿 respectively as follows:

𝐶𝐷 =
2𝐹𝐷

𝜌𝑈2
mean𝐴

, 𝐶𝐿 =
2𝐹𝐿

𝜌𝑈2
mean𝐴

(3.9)

Here, 𝑈mean is the average velocity of the surrounding fluid stream and 𝐴 denotes the surface
area of the object. The drag and lift coefficients are dimension-less quantities as can be
easily shown by investigating the SI-units of a force term (𝐹 ∼ 𝑁) divided by a density term
(𝜌 ∼ 𝑘𝑔

𝑚3), a squared velocity term (𝑈2 ∼
(
𝑚
𝑠

)2) and a surface area term (𝐴 ∼ 𝑚2):

𝑁
𝑘𝑔

𝑚3 ·
(
𝑚
𝑠

)2 · 𝑚2
=

𝑘𝑔 𝑚

𝑠2

𝑘𝑔

𝑚3 · 𝑚2

𝑠2 · 𝑚2
=

𝑘𝑔 𝑚

𝑠2

𝑘𝑔 𝑚

𝑠2

= 1

3.2.7 Reynolds-Number

The Reynolds14-number is an important unit-free quantity that describes the qualitative
behavior of a fluid. It is defined as:

𝑅𝑒 =
𝜌𝑈mean𝐿

�
(3.10)

13 Blaise Pascal, French mathematician, physicist, and theologian (1623 - 1662)
14 Osborne Reynolds, Irish mathematician and engineer (1842 - 1912)

28

3.2 Incompressible Navier-Stokes Equation

Figure 3.7: If 2 Systems have the same Reynolds-Number, solutions of the Navier-Stokes equations
can be deduced from the same underlying velocity (𝒗) and pressure (𝑝) fields up to constant scaling
factors.

Here, 𝑈mean is the average fluid velocity and 𝐿 is the characteristic length scale of the domain
(e.g. the diameter of an obstacle). By plugging SI-units into the Reynolds-number, we can
easily verify that the Reynolds-number is indeed unit-free:

𝑘𝑔

𝑚3 · 𝑚
𝑠 · 𝑚

𝑁 𝑠
𝑚2

=

𝑘𝑔

𝑚 𝑠

𝑘𝑔 𝑚

𝑠2 · 𝑠
𝑚2

=

𝑘𝑔

𝑚 𝑠

𝑘𝑔

𝑚 𝑠

= 1

Now, one might wonder: Why do systems with equal Reynolds-numbers show qualitatively
similar behavior - even if the fluids exhibit very different viscosities, densities and spatial /
temporal scales? The answer is given by a scaling argument: Let us suppose we have two
systems (System 1 and System 2) with identical (but scaled) fluid domains Ω1 and Ω2 (see
Figure 3.7). Now, we say that System 1 and System 2 behave qualitatively equivalent, if their
velocity- and pressure-fields (𝒗1 , 𝑝1) and (𝒗2 , 𝑝2) can be ascribed to the same underlying
velocity-/pressure-fields (𝒗 , 𝑝) up to scaling factors (𝑈1 , 𝑃1 , 𝑇1 , 𝐿1) and (𝑈2 , 𝑃2 , 𝑇2 , 𝐿2):

𝒗1(𝑡 , 𝒙) = 𝑈1 𝒗(
𝑡

𝑇1
,
𝒙
𝐿1

) 𝑝1(𝑡 , 𝒙) = 𝑃1 𝑝(
𝑡

𝑇1
,
𝒙
𝐿1

)

𝒗2(𝑡 , 𝒙) = 𝑈2 𝒗(
𝑡

𝑇2
,
𝒙
𝐿2

) 𝑝2(𝑡 , 𝒙) = 𝑃2 𝑝(
𝑡

𝑇2
,
𝒙
𝐿2

)

To this end, the Navier-Stokes equation have to be fulfilled in both systems.

The incompressibility equation is automatically fulfilled in both systems, since, if ∇ · 𝒗 = 0 is

29

Chapter 3 Foundations

true in one system, this is also true for any scaled version 𝒗𝑖 :

∇ · 𝒗𝑖 = ∇ ·𝑈𝑖𝒗

(
𝑡

𝑇𝑖
,
𝒙
𝐿𝑖

)
=

𝑈𝑖

𝐿𝑖
∇ · 𝒗∇·𝒗=0

= 0

However, for the momentum equation (Equation 3.6), one has to take care that the prefactors
of the indiviudual terms are in correspondence with each other (here, we ignore external
forces):

𝜌𝑖𝜕𝑡𝒗𝑖 + 𝜌𝑖𝒗𝑖 · ∇𝒗𝑖 = �𝑖Δ𝒗𝑖 − ∇𝑝𝑖

=
𝜌𝑖𝑈𝑖

𝑇𝑖︸︷︷︸
1

𝜕𝑡𝒗 +
𝜌𝑖𝑈

2
𝑖

𝐿𝑖︸︷︷︸
2

𝒗 · ∇𝒗 =
�𝑖𝑈𝑖

𝐿2
𝑖︸︷︷︸

3

Δ𝒗 − 𝑃𝑖

𝐿𝑖︸︷︷︸
4

∇𝑝

To ensure that this equation can be fulfilled by the same underlying fields 𝒗 and 𝑝 for both
systems (𝑖 = 1 and 𝑖 = 2), 1 , 2 , 3 , 4 must have the same proportions, in the following
denoted as A , B , C , D :

𝜌1𝑈1

𝑇1
= 𝛼

𝜌2𝑈2

𝑇2︸ ︷︷ ︸
A

;
𝜌1𝑈

2
1

𝐿1
= 𝛼

𝜌2𝑈
2
2

𝐿2︸ ︷︷ ︸
B

;
�1𝑈1

𝐿2
1

= 𝛼
�2𝑈2

𝐿2
2︸ ︷︷ ︸

C

; 𝑃1
𝐿1

= 𝛼
𝑃2
𝐿2︸ ︷︷ ︸

D

where 𝛼 is a proportionality constant.

If we divide B by C , we obtain:

𝜌1𝑈
2
1

𝐿1
�1𝑈1

𝐿2
1

=

𝛼
𝜌2𝑈

2
2

𝐿2

𝛼
�2𝑈2

𝐿2
2

⇔ 𝜌1𝑈1𝐿1

�1
=

𝜌2𝑈2𝐿2

�2

As you can see immediately, these are the Reynolds-numbers of System 1 and System 2 that
have to match.

We proceed analogously to obtain a relationship between the time-scalings 𝑇1 and 𝑇2. To this

30

3.2 Incompressible Navier-Stokes Equation

end, we divide B by A :

𝜌1𝑈
2
1

𝐿1
𝜌1𝑈1

𝑇1

=

𝛼
𝜌2𝑈

2
2

𝐿2

𝛼
𝜌2𝑈2

𝑇2

⇔ 𝑇1
𝑈1
𝐿1

= 𝑇2
𝑈2
𝐿2

This relationship states that the smaller the velocity 𝑈𝑖 or the bigger the characteristic length
𝐿𝑖 , the bigger is the time-scaling 𝑇𝑖 .

To obtain a ratio between the pressure scalings 𝑃1 and 𝑃2 we divide D by B :

𝑃1
𝐿1

𝜌1𝑈
2
1

𝐿1

=

𝛼
𝑃2
𝐿2

𝛼
𝜌2𝑈

2
2

𝐿2

⇔ 𝑃1

𝜌1𝑈
2
1
=

𝑃2

𝜌2𝑈
2
2

Thus, the bigger the density 𝜌𝑖 or the squared velocity 𝑈2
𝑖
, the bigger is the pressure scaling

𝑃𝑖 .

Knowing about these scaling arguments is crucial when making e.g. wind-tunnel experiments
with down-scaled prototypes.

Furthermore, it comes in handy when working with grid-units: In grid-units, we define �, 𝜌
and 𝑡 in terms of grid-cell lengths (in contrast to SI-units where we use 𝑚 or 𝑠). By rescaling
�, 𝜌 and the time-step 𝑑𝑡 according to the ratios discussed above, we can easily change for
example the resolution of the grid without having to write new code.

Figure 3.8 shows examples of qualitative behavior of the Navier-Stokes equation at different
Reynolds-Numbers: At very low Reynolds-Numbers, the flow becomes time-reversible,
which can be seen by the symmetry of the stream-lines around obstacles. At slightly higher
Reynolds-Numbers (𝑅𝑒 ⪆ 10), the flow forms a laminar wake behind obstacles but remains
steady (𝜕𝑡𝒗 = 0). When further increasing the Reynolds-Number (𝑅𝑒 ⪆ 90), the wake begins
to form a regularly oscillating pattern of vortices. This pattern is also called a von Kármán
vortex street15. At even higher Reynolds-numbers (𝑅𝑒 ⪆ 1000), the wake dynamics become
turbulent resulting in a chaotic and unpredictable behavior.

An intuition for this behavior could be, that at low Reynolds-numbers the viscous forces
dominate in the momentum equation and, thus, the PDE resembles an elliptic PDE. In
contrast, at high Reynolds-numbers, the non-linear advection term dominates over the
friction term in the momentum equation and produces chaotic, turbulent behavior.

15 Theodore von Kármán, Austria-hungarian physicist (1881-1963)

31

Chapter 3 Foundations

Figure 3.8: At different Reynolds-numbers, the dynamics of fluids exhibit vastly different qualitative
behaviors.

3.2.8 Important effects

Fluid dynamics comprise a wide variety of different behaviors that sometimes seem to
contradict our intuitions. This makes fluid dynamics a very challenging but also interesting
deep-learning problem for neural networks. In this section, we highlight some important
effects that need to be reproduced by a neural surrogate model in order to obtain realistic
simulations.

Venturi effect If the fluids viscosity � and external forces 𝒇ext can be assumed negligible,
Bernoulli’s16 principle states for steady flows (𝜕𝑡𝒗 = 0) that the pressure 𝑝 decreases as the
fluid’s velocity 𝒗 increases:

𝑝 +
𝜌

2 ∥𝒗∥2
= const

Bernoulli’s principle can be counterintuitive if the velocity field 𝒗 gets confused with the
root-mean-square velocity of individual fluid particles

(
𝑣rms =

√
⟨𝑣2⟩

)
. In this case, it might

be tempting to apply the kinetic theory of ideal gases, which states that 𝑣2
rms is proportional

to temperature, which in turn is proportional to pressure. Or in simpler terms: if particles
inside a fluid become faster, they slam faster into the domain boundaries and thus increase
pressure. However, 𝒗 does not describe the velocities of individual particles but the average
speed of particles at a certain point inside the domain and the temperature can be considered

16 Daniel Bernoulli, Swiss mathematician and physicist (1700 - 1782)

32

3.2 Incompressible Navier-Stokes Equation

to be fixed within the fluid. Figure 3.9 of the Venturi17 effect provides a more intuitive
explanation: A pipe contraction results in a higher flow velocity inside the narrow section
in order to satisfy the incompressibility equation (Equation 3.5). Thus, the fluid entering
the narrow section must be accelerated while the fluid exiting the narrow section must
be decelerated. However, if we follow our initial assumption and neglect �Δ𝒗 and 𝒇ext of
the momentum equation (Equation 3.6), there is only the negative gradient of the pressure
field left to accelerate the fluid at the entry of the narrow section, or, respectively, a positive
pressure gradient to decelerate the fluid at the exit of the narrow section. Thus, the pressure
within the narrow section must be smaller compared to the wider sections. A more formal
proof of Bernoulli’s principle can be derived from the law of conservation of energy where 𝑝

is considered a potential energy term and 𝜌
2 ∥𝒗∥

2 a kinetic energy term so the sum of both
terms must stay constant.

Figure 3.9: Qualitative visualization of the Venturi effect: The contraction of a pipe (e.g. a stenosis of
an artery) results in a higher flow velocity and a lower pressure field inside the narrow section.

Magnus effect The Magnus18 effect appears at spinning objects within a flow field and
produces a charactistic Magnus force (𝒇𝑚 ∝ 𝒗 × 𝝎) proportional to the cross-product of the
fluid velocity 𝒗 and the objects angular velocity 𝝎. A qualitative visualization of this effect
is provided in Figure 3.10. Here, the pressure fields can be explained by Bernoullis principle
(see paragraph above), which states that higher fluid velocities result in lower pressure fields
and vice versa. At the top of the rotating cylinder in Figure 3.10, the surface of the cylinder
moves in the same direction as the fluid resulting in a higher velocity compared to the bottom
of the cylinder, where the surface moves in the opposite direction of the fluid and thus slows
the fluid down due to viscous friction. This results in a lower pressure field at the top of the
cylinder compared to the bottom and consequently in a Magnus force pointing upwards.

The Magnus effect is harnessed in many common ballsports such as soccer, golf or tennis by
spinning the ball to deflect its path. Furthermore, prototypes of planes and sailboats have
been developed that replaced wings and sails by rotating cylinders.

Karman vortex street The Karman vortex street is a phenomenon that produces periodically
oscillating flow patterns behind an obstacle (see e.g. Figure 3.8 at Re=100). It starts to appear
at Reynolds-Numbers bigger than 90 and plays an important role in engineering as the
17 Giovanni Battista Venturi, Italian physicist (1746 – 1822)
18 Heinrich Gustav Magnus, German physicist (1802 - 1870)

33

Chapter 3 Foundations

Figure 3.10: Qualitative visualization of the Magnus effect: A spinning object causes a characteristic
reduced pressure field on the side that moves along the fluids velocity.

oscillating flow patterns can cause resonance when hitting the natural frequency of an object
such as e.g. a chimney or an antenna and, thus, result in material fatigue.

3.2.9 Simplifications of the Navier-Stokes equation

Solving the full incompressivle Navier-Stokes equation is hard. Thus, several simplifications
were developed that hold under certain assumptions:

Incompressible Stokes equation Stokes flows describe incompressible fluids at very low
Reynolds numbers (𝑅𝑒 ≪ 1). In this case, accelerations within the fluid become nearly zero
(𝜌 𝐷

𝐷𝑡𝒗 → 0) and the momentum equation becomes:

�Δ𝒗 − ∇𝑝 + 𝒇ext = 0

Since solutions of this equation are steady state and usually describe highly viscous fluids,
they are sometimes also referred to as "creeping flows".

Incompressible Euler equation In contrast to Stokes flows, the Euler equation describes
incompressible fluids at very high Reynolds numbers (𝑅𝑒 → ∞). Under the assumption that
the fluids viscosity is nearly zero (� → 0), the momentum equation becomes:

𝜌
𝐷

𝐷𝑡
𝒗 = 𝜌(𝜕𝑡𝒗 + 𝒗 · ∇𝒗) = −∇𝑝 + 𝒇ext

34

3.3 Damped Wave Equation

Burgers equation Burgers19 equation describes fluids without a pressure term and external
forces:

𝜌
𝐷

𝐷𝑡
𝒗 = 𝜌(𝜕𝑡𝒗 + 𝒗 · ∇𝒗) = �Δ𝒗

In contrast to the incompressible Stokes / Euler / Navier-Stokes equations, the Burgers
equation does not enforce incompressibility and solutions of the Burgers equation can form
interesting shock patterns.

3.3 Damped Wave Equation

The damped wave equation is a linear partial differential equation that can be used to
describe for example the dynamics of a thin membrane at small excitations (see Figure 3.11).
It imposes the following equations on a displacement field 𝑧 and a velocity field 𝑣𝑧 :

𝜕𝑡𝑧 = 𝑣𝑧 (3.11)
𝜕𝑡𝑣𝑧 = 𝑘Δ𝑧 − 𝛿𝑣𝑧 (3.12)

Here, 𝑘 is a factor that can be interpreted as a tension-force on the membrane divided by
its density. A common choice is to use 𝑐2 instead of 𝑘 where 𝑐 is the propagation speed of
waves within the medium. 𝛿 can be considered a damping factor proportional to the velocity
of the membrane.

These 2 equations are often combined into a single second order PDE in time by plugging
Equation 3.11 into 𝑣𝑧 of Equation 3.12:

𝜕2
𝑡 𝑧 = 𝑘Δ𝑧 − 𝛿𝜕𝑡𝑧 (3.13)

However in the following, for the sake of intuitive simplicity and consistency with our
Spline-PINN paper, we stick with the first notation.

Figure 3.11: On a thin membrane described by 𝑧(𝑡 , 𝑥, 𝑦), tension forces act proportional to the
curvature Δ𝑧.

19 Johannes Martinus Burgers, Dutch physicist (1895 - 1981)

35

Chapter 3 Foundations

3.3.1 Important effects

The wave equation exhibits several interesting effects. In particular, the Doppler effect and
interference patterns, which will be covered in the following.

Doppler effect The Doppler20 effect appears if an oscillator moves at a certain speed
through the domain. This results in a shortened wavelength in front of the oscillator and an
elongated wavelength behind the oscillator (see Figure 3.12, left). The Doppler effect can be
observed, for example, in the changing pitch of a siren when an ambulance passes by and
has important applications in radar technology, for example, where the reflected wavelength
of an object can be used to determine its speed.

Interference Interference patterns appear when waves of the same frequency get superim-
posed from different directions. This leads to regions where waves accumulate or cancel
out each other, which is also referred to as constructive and destructive interference (see
Figure 3.12, right). These interference patterns play an important role in many fields such as
acoustics (e.g. in active noise-cancelling (ANC) earbuds) or quantum mechanics (see e.g. the
double-slit experiment).

Figure 3.12: Left: Doppler effect of an oscillator moving to the right. Right: Interference patterns of
two oscillators

3.4 Artificial Neural Networks

Artificial neural networks (ANNs) can be considered as a special class of functions inspired
by the functioning of biological neural networks (see Figure 3.13 a).
20 Christian Andreas Doppler, Austrian mathematician and physicist (1803 - 1853)

36

3.4 Artificial Neural Networks

(a) Basic schematic of a feed-forward neural network: A
neural network consists of several layers that comprise
individual neurons ("units") and are interconnected by
synapses.

(b) Convolutional neural networks usually
work on grid data. The synaptic weights are
comprised in a kernel that is swept over the
input grid to compute the output.

Figure 3.13: Fundamental concepts of artificial neural networks.

They consist of individual units ("neurons") that take a weighted sum of input signals
("dendrites with synaptic weights") and apply a non-linear activation function to compute
an output value ("firing rate"). Usually, multiple units form a layer and in fully connected
NN, every unit of a certain layer is connected with all units of the preceding layer. The first
layer is usually called the input layer and the last layer is called the output layer. However,
in contrast to biological neural networks, ANNs are trained by gradient descent instead of
Hebbian learning rules and often require a large amount of (labelled) training data that is
not temporally ordered. Furthermore, while biological neurons produce individual spikes,
units in ANNs return firing rates and rely on activation functions that often lack biological
plausibility (e.g. activation functions can be negative, unbounded or even periodic while
firing rates of biological neurons must be bigger than zero and saturate at high frequencies).
On top of that, ANNs are often feed-forward networks while biological NN inherently
contain a high degree of recurrent connectivity.

Despite these differences, over the past decade, ANNs have proven to be extremely successful
in a variety of applications ranging from computer vision to natural language processing to
computer graphics to reinforcement learning and even outperform humans in several specific
tasks such as image classification [He et al., 2015] or board games [Silver et al., 2016]. Lately,
ANNs have also found their way into numerics and solving partial differential equations.

In the following, we introduce different neural architectures that can be used to approach
PDEs and that are of importance in this work.

3.4.1 Implicit Neural Representation Networks

Neural networks can be used to learn scene representations by mapping domain coordinates
onto field values. For example, a neural network can represent a 3D geometry by learning a
signed distance function that maps coordinates 𝑥, 𝑦, 𝑧 onto signed distance values 𝑠. Further

37

Chapter 3 Foundations

Figure 3.14: Conceptual differences between Physics-Informed NNs, Physics-Constrained NNs, and
our Spline-PINN architecture. While the original PINN architecture directly maps domain coordinates
to field values, Physics-Constrained NN map discrete field representations from a time-point 𝑡 to a
time-point 𝑡 + 𝑑𝑡. Spline-PINNs combine both approaches and build a latent representation based on
Hermite-Spline coefficients that can be continuously interpolated within the domain between 𝑡 and
𝑡 + 𝑑𝑡.

applications21 include image representations (map coordinates 𝑥, 𝑦 onto color values 𝑟, 𝑔, 𝑏),
radiance fields (map coordinates and view directions 𝑥, 𝑦, 𝑧, 𝜙, � onto color and density
values 𝑟, 𝑔, 𝑏, 𝜎) or partial differential equations (map domain coordinates 𝑥, 𝑦, 𝑧, 𝑡 ∈ Ω onto
field values, such as for example flow and pressure fields 𝒗 , 𝑝).

Physics-Informed Neural Networks (PINNs) In this work, the application of implicit
neural representations to solve PDEs is of particular interest as it allows training using
gradient descent on a physics-informed loss.

To this end, derivatives of the neural representation can be obtained by automatic differentia-
tion and a loss function can be formulated such that residuals of the underlying PDE get
penalized. This way, the physics-informed neural network is automatically incentivised to
represent a solution of the PDE. Note that, in order to compute higher order derivatives
of the neural network by automatic differentiation, proper activation functions must be
chosen to ensure differentiability up to the degree of the underlying PDE. Another benefit of
21 A more elaborate, curated list of implicit neural representations can be found at Sitzmann, 2021.

38

3.4 Artificial Neural Networks

neural implicit representations is that they deliver continuous results and can overcome the
curse of dimensionality. However, implicit neural representations need to be retrained if the
domain-geometry is changed which is computationally expensive and prohibits their use in
interactive scenarios.

3.4.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) usually work on grid representations and are widely
applied for example in audio-processing (1D grids), image classification / segmentation /
generation (2D pixel grids) or in analysing 3D CT/MRI scans (3D voxel grids). Instead of
connecting every grid point to every unit in a layer (see fully connected NN), in a CNN, each
unit considers only a local receiptive field. Furthermore, the synaptic weights are shared
between the individual units of a layer. This allows for efficient implementations based
on convolutions (see Figure 3.13 b) by sweeping a kernel over the input grid and requires
fewer parameters compared to a fully connected NN while taking local correlations and
translational equivariance of grid values into account.

U-Net A popular CNN architecture for segmentation tasks is the U-Net architecture
by Ronneberger et al., 2015. U-Nets make use of pooling layers and strided transposed
convolutions to incorporate global features at low resolution layers while preserving fine
details at high resolution layers through shortcut connections. This architecture is of
particular importance for solving the the Navier-Stokes equation as forces from viscous
friction act locally, while the pressure field needs to be solved globally.

Physics-Constrained Neural Networks In contrast to implicit PINNs, CNNs do not
represent field values implicitly but explicitly map a grid-based fluid state from one time-step
𝑡 to the next time-step 𝑡 + 𝑑𝑡 (see Figure 3.14, Physics-Constrained NN). Thus, the residuals
of the underlying PDE cannot be computed with automatic differentiation but we must use
finite differences on the grid to compute a physics-constrained loss. While the discrete nature
of physics-constrained approaches can lead to discretization-artifacts, these methods are
often able to generalize to new domain-geometries without requiring retraining and can be
used in interactive scenarios.

Marker And Cell grid A convenient grid representations for fluid simulations is the
Marker And Cell (MAC) grid (see Figure 3.15). Its staggered arrangement of field values
allows to compute centered finite differences more efficiently compared to on a regular
grid. For example, when computing the divergence of the velocity field, we can simply
compare the incoming and outgoing velocity components of a cell that are orthogonally
placed at the centers of the cell faces. In contrast, on a regular grid, computing the divergence
would require taking both adjacent cells into account thus increasing 𝑑𝑥 by a factor of
two. Similarly, the momentum equation can be handled more efficiently as well, since

39

Chapter 3 Foundations

finite-difference gradients of the pressure field align automatically with the corresponding
velocity components.

Figure 3.15: Single unit cell of a 3D Marker And Cell (MAC) grid. On a MAC grid, the different field
values are placed in a staggered manner to facilitate the computation of finite differences. The red
box denotes pressure, blue arrows denote the 𝑥, 𝑦, 𝑧 components of the velocity field and the green
arrows denote the 𝑥, 𝑦, 𝑧 components of the vector potential. The glass plane marks the components
contained in a 2D MAC grid.

3.5 Spline-Interpolation

In our work on Spline-PINNs we make use of spline-interpolation to obtain continuous field
representations from a discrete set of coefficients on a uniform grid (see Figure 3.14). This
allows to combine the advantages of physics-informed and physics-constrained approaches,
namely continuous results with fewer discretization artifacts and interactive applications
due to the generalization capabilities of CNNs on uniform grids.

Splines 22 are piecewise polynomials that are widely used in computer graphics and computer
aided design. They can be defined as follows:

Let [𝑎, 𝑏] ⊂ R be an interval in R and 𝑡𝑖 ∈ [𝑎, 𝑏], 𝑖 = 0, 1, ..., 𝑘 be so called knots that fulfill
𝑎 = 𝑡0 ≤ 𝑡1 ≤ ... ≤ 𝑡𝑘 = 𝑏 and divide the interval [𝑎, 𝑏] into 𝑘 pieces [𝑡𝑖 , 𝑡𝑖+1]. Furthermore,
let 𝑃𝑖 be polynomials of degree 𝑛 that map [𝑡𝑖 , 𝑡𝑖+1] → R. Then, the piecewise polynomial:

𝑆 : [𝑎, 𝑏] → R, 𝑡 ↦→ 𝑆(𝑡) = {𝑃𝑖(𝑡) if 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖 + 1]

is called a spline of smoothness 𝑟, if 𝑆 ∈ 𝒞𝑟 is 𝑟 times continuously differentiable. The
resulting space of splines is often denoted as 𝒮𝑟

𝑛 .

22 The term "spline" originates from flexible wooden strips used by draftsmen to draw smooth lines (an interesting
blog post about the history of splines can be found at Noe, 2016)

40

3.5 Spline-Interpolation

Figure 3.16: Cardinal B-spline kernels of degree 0 (constant), 1 (linear), 2 (quadratic) and 3 (cubic).

To facilitate the handling of such a spline space 𝒮𝑟
𝑛 , usually, a set of basis splines 𝜙 𝑗(𝑥) ∈ 𝒮𝑟

𝑛

is introduced that already fulfills the given smoothness properties. This allows to form
arbitrary splines of that spline space by linear combination of 𝜙 𝑗(𝑥) with spline coefficients
𝑐 𝑗 :

𝑠(𝑥) =
∑
𝑗

𝑐 𝑗𝜙 𝑗(𝑥)

A popular basis for splines in 𝒮𝑛−1
𝑛 are B-splines. They are denoted as 𝐵𝑖 ,𝑛(𝑥) and defined

as functions in 𝒮𝑛−1
𝑛 that only have support in [𝑡𝑖 , 𝑡𝑖+𝑛+1] and sum up to 1 (

∑
𝑖 𝐵𝑖 ,𝑛(𝑥) = 1).

These constraints yield unique solutions for 𝐵𝑖 ,𝑛(𝑥) that can be elegantly computed by the
De Boor’s 23 recursion formula:

𝐵𝑖 ,0(𝑥) =
{

1, if 𝑡𝑖 ≤ 𝑥 < 𝑡𝑖+1

0 else
(3.14)

𝐵𝑖 ,𝑘(𝑥) =
𝑥 − 𝑡𝑖

𝑡𝑖+𝑘 − 𝑡𝑖
𝐵𝑖 ,𝑘−1(𝑥) +

𝑡𝑖+𝑘+1 − 𝑥

𝑡𝑖+𝑘+1 − 𝑡𝑖+1
𝐵𝑖+1,𝑘−1(𝑥) (3.15)

Since we are using CNNs that work on uniform grids, we are particularly interested in
equidistant distributions of knots (𝑡𝑖+1 − 𝑡𝑖 = ℎ). This makes handling of splines a lot easier
as the basis kernels always have the same shape and thus can be efficiently combined at
different grid offsets using convolutions. B-splines with equidistant knots are also called
cardinal B-splines and are shown in Figure 3.16 for degrees 0, 1, 2, 3. Apart from De Boor’s
recursion formula, another equivalent way to compute cardinal B-splines is to set 𝜙0(𝑡) equal
to a box function that returns 1, if 𝑡 ∈ [0, ℎ] and 0 everywhere else. Then, 𝜙𝑛 = 𝜙0 ∗ 𝜙𝑛−1 is
recursively defined as a convolution of 𝜙0 with the preceding B-spline 𝜙𝑛−1. As follows from
the central limit theorem, for large 𝑛, 𝜙𝑛 converges towards a normal distribution and the
support of 𝜙𝑛 grows linearly with 𝑛. Thus, cardinal B-splines of order 𝑛 can be considered as
smoothing filters that corresponds to a convolution with a Gaussian kernel approximated by
piecewise polynomials of order 𝑛 or, if we go into frequency domain, they can be considered
as a multiplication by sinc(𝑥)𝑛+1.

However, in our work on Spline-PINNs, we rely on Hermite splines. In contrast to B-splines,
Hermite spline representations only span two neighboring spline segments and specify the

23 Carl-Wilhelm Reinhold de Boor, German-American mathematician (*1937)

41

Chapter 3 Foundations

Figure 3.17: Hermite-spline basis kernels.

value and first 𝑛 derivatives at each knot. Thus, Hermite basis functions (see ℎ
𝑗

𝑖
(𝑥) in Figure

3.17) have a smaller support compared to B-splines for 𝑛 > 2 and thus can be computed
more efficiently due to smaller convolutional kernel sizes and can restore high frequency
signals more easily. For Hermite splines, each interval must have 2𝑛 + 2 degrees of freedom
since both adjacent knots impose 𝑛 + 1 constraints (for the first 𝑛 derivatives as well as the
actual function value). Thus, the piecewise polynomials must be at least of degree 2𝑛 + 1
and the basis splines ℎ𝑛

𝑖
are in 𝑆𝑛

2𝑛+1. The polynome coefficients of the hermite spline kernels
can be obtained by solving the corresponding systems of linear equations.

For B-splines as well as Hermite splines, higher dimensional grid representations can be
obtained by taking the outer product of the individual basis functions. Finally, these basis
functions can be combined on a multidimensional grid with coordinates �̂� , �̂� , 𝑡 ∈ �̂� × �̂� × �̂�

as follows in order to obtain a continuous function 𝑔(𝑥, 𝑦, 𝑡):

𝑔(𝑥, 𝑦, 𝑡) =
∑

𝑖 , 𝑗 ,𝑘∈[0:𝑙]×[0:𝑚]×[0:𝑛]
�̂� ,�̂� ,𝑡∈�̂�×�̂�×�̂�

𝑐
𝑖 , 𝑗 ,𝑘

�̂�,�̂� ,𝑡
ℎ 𝑙𝑖(𝑥 − �̂�)ℎ𝑚𝑗 (𝑦 − �̂�)ℎ𝑛

𝑘
(𝑡 − 𝑡) (3.16)

here, 𝑐 𝑖 , 𝑗 ,𝑘
�̂�,�̂� ,𝑡

are the discrete spline coefficients that can be efficiently processed by a CNN and

ℎ 𝑙
𝑖
(𝑥 − �̂�)ℎ𝑚

𝑗
(𝑦 − �̂�)ℎ𝑛

𝑘
(𝑡 − 𝑡) is the outer product of Hermite spline kernel functions. The

orders 𝑙 , 𝑚, 𝑛 of the Hermite spline kernel in 𝑥, 𝑦, 𝑡 directions must be chosen such that
𝑔(𝑥, 𝑦, 𝑡) is sufficiently smooth to be processed by the differential operators of the underlying
PDE (e.g.: if the underlying PDE is of third order in 𝑥 and second order in 𝑦, 𝑙 must be at
least 2 and 𝑚 must be at least 1).

42

Part II

Publications

43

Chapter 4

Learning Incompressible
Fluid Dynamics from Scratch
- Towards Fast, Differentiable
Fluid Models that Generalize

Nils Wandel, Michael Weinmann, and Reinhard Klein.
“Learning Incompressible Fluid Dynamics from Scratch - Towards Fast, Differentiable
Fluid Models that Generalize.”
9th International Conference on Learning Representations, ICLR, 2021.

4.1 Summary

In our work on "Learning Incompressible Fluid Dynamics from Scratch - Towards Fast,
Differentiable Fluid Models that Generalize", we developed a novel approach that allows
to learn the dynamics of the incompressible Navier-Stokes equation in two dimensions by
a convolutional neural network without any precomputed ground truth data. To this end,
we use a physics constrained loss function on a Marker-and-Cell grid in conjunction with a
novel training data recycling strategy. Furthermore, we argue that, using back-propagation
through time, the learned fluid model is fully differentiable and consequently show, how
this can be exploited in a flow control application.

Solving the incompressible Navier-Stokes equation is a hard problem as in general there
exist no analytic solutions and classical numerical methods are computationally expensive.
Following the advances of deep-learning based methods over the past decade, recent works
also investigate the application of such strategies in the realm of computational fluid dynamics
in order to lower the computational burden of traditional methods.

45

Chapter 4 Learning Incompressible Fluid Dynamics from Scratch - Towards Fast,
Differentiable Fluid Models that Generalize

Prior work that aims to learn solutions of partial differential equations on grids using
convolutional neural networks includes Tompson et al., 2017; Thuerey et al., 2019; Zhu et al.,
2019; Geneva and Zabaras, 2020. While [Thuerey et al., 2019] relies on a large set of training
data, further works [Tompson et al., 2017; Zhu et al., 2019; Geneva and Zabaras, 2020] use a
physics constrained loss to reduce the amount of required training data. Zhu et al., 2019;
Geneva and Zabaras, 2020 even completely avoid any training data, however, they consider
Darcy flows and Burgers equation instead of the incompressible Navier-Stokes equation and
do not allow for dynamic domain boundaries. Computational pipelines that aim to fully
simulate incompressible fluids with dynamic domain boundaries often require additional
components to yield stable simulations such as a particle tracer [Tompson et al., 2017] or
a differentiable fluid solver [Um et al., 2020]. In contrast, our approach allows to train a
neural surrogate model on the full incompressible Navier-Stokes equation that interacts with
changing domain boundaries without the need for any ground truth data or additional
components in the pipeline such as a particle tracer or a differentiable fluid-solver.

To this end, we use a convolutional neural network 𝑛𝑛 : (𝒂𝑡 , 𝑝𝑡 ,Ω𝑡 , 𝒗𝑡
𝑑
) ↦→ (𝒂𝑡+𝑑𝑡 , 𝑝𝑡+𝑑𝑡) based

on the U-Net architecture [Ronneberger et al., 2015] to map a fluid state and boundary
conditions at timestep 𝑡 to a new fluid state at timestep 𝑡 + 𝑑𝑡. The fluid state is defined by a
vector-potential 𝒂𝑡 and a pressure field 𝑝𝑡 on a 2D Marker-and-Cell (MAC) grid (see Figure
3.15) which allows to compute finite-differences very conveniently. For the velocity-field 𝒗𝑡 ,
we exploit the Helmholtz decomposition theorem by setting 𝒗𝑡 = ∇ × 𝒂𝑡 as the curl of the
vector potential 𝒂𝑡 . This automatically ensures that the incompressibility equation (∇ · 𝒗 = 0)
is fulfilled and reduces degrees of freedom of the fluid state since for symmetric reasons
in 2D only the 𝑧-component of 𝒂, 𝑎𝑧 , is of interest. The domain geometry Ω𝑡 is given by a
binary mask and the Dirichlet boundary conditions are given by 𝒗𝑡

𝑑
.

To train this model without precomputed ground truth data we introduce a data recycling
strategy that makes use of a training pool and a physics constrained loss (see Figure 4.1).
First, we 0-initialize a training pool with initial vector-potentials 𝒂0

𝑖
= 0 and pressure fields

𝑝0
𝑖
= 0. Furthermore, we assign for every sample 𝑖 of the training pool randomized domain

geometries Ω0
𝑖

and Dirichlet conditions 𝒅0
𝑑,𝑖

. Now, in every training step, we draw a random
mini-batch (𝒂𝑡

𝑖
, 𝑝𝑡

𝑖
,Ω𝑡

𝑖
, 𝒗𝑡

𝑖,𝑑
) from the training pool and make a prediction for (𝒂𝑡+𝑑𝑡

𝑖
, 𝑝𝑡+𝑑𝑡

𝑖
)

using the PDE model. Based on these predictions, we can compute a physics-constrained
loss that penalizes residuals of the momentum equation and deviations from the given
boundary conditions. By using gradient descent, we can optimize the fluid model to make
better predictions over time. Finally, to close the cycle, we feed the predictions of the fluid
model back into the training pool. This way, we not only optimize the model but also fill the
training pool over time with more and more realistic training data. One could consider this
strategy also as a way to generate our own training data on the fly during training.

We tested our trained models at a wide range of Reynolds-numbers and obtained time-
reversible, laminar and turbulent flows. Our models were able to successfully reproduce
important qualitative effects such as the Magnus effect, Karman Vortex streets or the Bernoulli
effect and run at over 300 iterations per second on a 100×100 grid. Furthermore, we compared
our trained models to a recent state of the art differentiable fluid solver (Phiflow) that relies
on a MAC grid as well and found our approach to be superior with respect to computational

46

4.2 Author Contributions

Figure 4.1: Using a training cycle we not only improve the PDE model but also the pool of training
domains in every turn. Since the training pool can be 0-initialized, no precomputed training data is
needed.

complexity as well as accuracy for viscous fluids. Finally, we demonstrated that our trained
models can be used as an efficient differentiable fluid solver by controlling the fluid velocity
using gradient descent in order to produce a vortex street behind an obstacle with a specified
frequency.

Code and pretrained models to reproduce our results are made publicly available on
Github:

https://github.com/wandeln/Unsupervised_Deep_Learning_of_Incompressible_Fluid_
Dynamics

4.2 Author Contributions

In this publication, I developed and implemented the code including the novel training cycle,
the physics-constrained loss based on finite differences on a 2D MAC grid and the control
experiment. Furthermore, I conducted the presented evaluations.

47

https://github.com/wandeln/Unsupervised_Deep_Learning_of_Incompressible_Fluid_Dynamics
https://github.com/wandeln/Unsupervised_Deep_Learning_of_Incompressible_Fluid_Dynamics

Chapter 5

Teaching the Incompressible
Navier-Stokes Equations to

Fast Neural Surrogate Models in 3D

Nils Wandel, Michael Weinmann, and Reinhard Klein.
“Teaching the Incompressible Navier-Stokes Equations to Fast Neural Surrogate Models
in 3D.”
Physics of Fluids, 2021.
doi: 10.1063/5.0047428

5.1 Summary

In our work "Teaching the Incompressible Navier-Stokes Equations to Fast Neural Surrogate
Models in 3D" we introduced significant extensions to our previous work on fluid simulations
that worked only in two dimensions (see Section 4). In particular we focused on two major
improvements: First, we went from two dimensions to three dimensions. This not only
imposes much higher computational and memory requirements but also requires learning
all 3 degrees of freedom for the vector-potential 𝒂 as opposed to only one for 𝑎𝑧 in the
two-dimensional case and thus significantly increases the complexity of the learning task 1.
Second, we aimed to use the same model in various fluid settings with different viscosities
and densities by conditioning the fluid model on the fluids viscosity and density. In our
previous work, handling different fluids required different, separately trained models.

Accelerating or refining 3D fluid simulations on a grid using neural networks motivated
several prior works such as Tompson et al., 2017; Xie et al., 2018; Um et al., 2020. However,
these works require precomputed ground truth data and often incorporate additional parts
in the pipeline such as a particle tracer [Tompson et al., 2017] or a differentiable fluid solver
1 Indeed, learning a 3D vector potential was considered infeasible by reviewers of our previous publication in

2D, which highlights the difficulty of this learning task.

49

https://doi.org/10.1063/5.0047428

Chapter 5 Teaching the Incompressible Navier-Stokes Equations to Fast Neural Surrogate
Models in 3D

[Um et al., 2020] in order to obtain stable simulations over many timesteps. In this work,
we wanted to simplify the pipeline and training process by building up on our previous
experiences in 2D to obtain stable and versatile fluid models in 3D.

While the methodology of training a 3 dimensional fluid model without ground truth data
shares commonalities with the 2 dimensional case, there are several significant differences
that required reimplementing major parts of our code base from our previous work: First, a
3D marker and cell grid was implemented and the residuals of the Navier-Stokes equation
were extended to 3D finite-difference kernels. In order to train the 3D fluid model without
ground truth data, we rely again on the concept of a training cycle that was developed in our
preceding publication. To this end, we 0-initialize a training pool of 3D fluid states consisting
of vector-potentials 𝒂 and pressure fields 𝑝. From this pool, we draw random mini-batches
to make predictions using the fluid model. Then, we compute the physics-constrained loss
function by taking the mean square residuals of the Navier-Stokes equation and boundary
conditions and use gradient descent to optimize the fluid model. However, in contrast to
our previous work, since we train the model on multiple viscosities and densities at the
same time, we extended the training pool as well as the inputs of the fluid model by two
additional channels that contain the viscosity and density parameters. Finally, we feed the
model predictions back into the training pool in order to improve the training set with more
realistic data as the fluid model gets better over time.

Using this approach, we were able to produce dynamic, interactive simulations of various
fluids ranging from time-reversible to laminar to turbulent flows at Reynolds-Numbers
ranging from 0.64 to 800 using only a single model. Since 3D grids are computationally
expensive, we tested two neural network architectures: First, a 3D U-Net as proposed by
Ronneberger et al., 2015 which is able to simulate a 64 × 64 × 128 grid at 16 steps per seconds,
and second, a pruned version with slightly lower accuracy that increased the inference
speed to 36 steps per second. Our models are able to capture many intriguing effects in
3D such as Karman Vortex Streets or the Magnus effect and generalize well to new domain
geometries that were not contained in the set of randomized domains of the training pool.
By investigating the evolution of errors over time, we showed that our models deliver stable
simulations over tousands of timesteps. Visualizations of the resulting flow and pressure
fields were plotted in Paraview (an Example is shown in Figure 5.1). An animated video can
be found on youtube: www.youtube.com/watch?v=tKcYJaJtHJE

To play with our interactive demo or to reproduce our results we made code and pretrained
models publicly available on Github:

https://github.com/wandeln/Teaching_Incompressible_Fluid_Dynamics_to_3D_CNNs

5.2 Author Contributions

In this publication, I extended our previous work from 2D to 3D. This includes implementing
new 3D training domains, a modified physics-constrained loss based on a 3D MAC grid
and 3D convolutional neural network models that take additional input channels for fluid

50

https://www.youtube.com/watch?v=tKcYJaJtHJE
https://github.com/wandeln/Teaching_Incompressible_Fluid_Dynamics_to_3D_CNNs

5.2 Author Contributions

Figure 5.1: Exemplary visualization of our 3D network predictions in Paraview. The presented
submarine geometry was not part of the set of randomized training domains, which demonstrates
the generalization capabilities of our method.

parameters such as density and pressure. Finally, I evaluated our method and visualized the
3D results in Paraview.

51

Chapter 6

Spline-PINN:
Approaching PDEs without Data

using Fast, Physics-Informed
Hermite-Spline CNNs

Nils Wandel, Michael Weinmann, Michael Neidlin, and Reinhard Klein.
“Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed Hermite-
Spline CNNs.”
Proceedings of the 36th AAAI Conference on Artificial Intelligence, 2022.
doi: 10.1609/aaai.v36i8.20830

6.1 Summary

In our work "Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed
Hermite-Spline CNNs", we combine the benefits of continuous physics-informed neural
networks with the generalization capabilities of discrete physics-constrained approaches.
To this end, we introduce Spline-PINNs - an extension to convolutional fluid models based
on Hermite-Splines to obtain continuous field representations. By interpolating spline
coefficients on a grid, we can evaluate field values as well as a physics-informed loss
analytically at arbitrary points within the continuous domain Ω. This way, we aim to obtain
higher fidelity results with fewer discretization artifacts compared to our previous finite-
difference methods based on a marker and cell grid. To assess our method quantitatively we
not only investigated the progression of the physics-based loss over the course of a simulation
but also computed drag and lift coefficients on a benchmark setup [The CFD Benchmarking
Project 2021] for fluid simulations and compared the results with an industrial CFD solver. To
show that this versatile method is suitable for a wide range of PDEs, we not only investigated
the incompressible Navier-Stokes equation, but also the damped wave equation.

53

https://doi.org/10.1609/aaai.v36i8.20830

Chapter 6 Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed
Hermite-Spline CNNs

Physics-informed Neural Networks (PINNs) as popularized by Raissi et al., 2019 offer
continuous solutions of PDEs by learning an implicit neural representation that maps
domain coordinates (e.g. 𝑡 , 𝑥, 𝑦) to field values (e.g. 𝒗 , 𝑝). By incorporating the residuals
of the underlying PDEs directly into the training loss, they can be trained with little to no
ground truth data. However, since these implicit neural network representations overfit to
only one single domain, they do not generalize to new domain geometries and, thus, are
not suitable for interactive applications. On the other hand, physics-constrained approaches
rely on neural networks that map an explicit field representation (e.g. a discrete grid)
from one timepoint 𝑡 to another timepoint 𝑡 + 𝑑𝑡 and allow to compute a loss based on
the residuals of a PDE using finite differences. These physics-constrained approaches have
already shown to successfully generalize to new domains [Tompson et al., 2017; Wandel
et al., 2021a] but are prone to discretization artifacts at high Reynolds numbers. Thus, in this
work, we combine both approaches by using a convolutional neural network that evolves
Hermite spline coefficients in time. This way, we obtain continuous solutions and get rid of
discretization artifacts as in physics-informed neural networks while maintaining the good
generalization capabilities of physics-constrained approaches. As we show in Figure 3.14,
the Hermite spline coefficients can be interpreted as a latent grid-based representation of an
implicit continuous field description.

To train the Spline-PINN model, we make use of a training cycle as introduced in our work
on "Learning Incompressible Fluid Dynamics from Scratch - Towards Fast, Differentiable
Fluid Models that Generalize" (see Figure 4.1 in Chapter 4): First, we initialize a training pool
with randomized boundary conditions and set the initial conditions (i.e. the initial spline
coefficients) to zero. Next, we draw a random mini-batch from that training pool and feed
it into the PDE model in order to obtain the spline coefficients of the next timestep. This
allows to evaluate the field values as well as their derivatives analytically at any point in
space and time and thus to compute a physics-informed loss based on the mean squared
residuals of the underlying PDEs. Since Hermite splines of order 𝑙 are only of bounded
variation up to derivatives of order 𝑙 + 1, one has to choose a high enough order 𝑙 depending
on the order of the underlying PDE to be able to compute the loss. After updating the neural
surrogate model based on that physics-based loss using gradient descent, we also update
the training pool with the predicted spline coefficients. This way, in every training cycle, we
not only improve the PDE model but also the training pool with more and more realistic
spline coefficients.

Once the Spline-PINN model is trained, it can be used to infer fast solutions of PDEs. For the
incompressible Navier-Stokes equation, we used a Spline-PINN to obtain fluid simulations
and were able to reproduce various important effects such as the Magnus effect, Bernoulli
effect or Kármán Vortex streets. To increase the interactivity of our demo and show the
generalization capabilities of our approach, we also allow the user to paint arbitrary new
boundary conditions inside the fluid domain (see Figure 6.1). The resulting continuous flow
fields effectively reduced discretization artifacts that become a problem in MAC-grid based
approaches at high Reynolds-numbers. Furthermore, we computed drag an lift forces of a
liquid on a cylindrical obstacle by integrating pressure and viscous forces along the boundary
of that obstacle. This way, we could determine the corresponding drag and lift coefficients on
a standardized benchmark domain [The CFD Benchmarking Project 2021] and compare them

54

6.2 Author Contributions

Figure 6.1: Flow velocity (top) and pressure / streamline visualizations (bottom) of the incompressible
Navier-Stokes equation produced by our Spline-PINN approach. The boundaries were painted in an
interactive setting to show the generalization capabilities of our method.

with official results and a professional industrial CFD solver (AnSys). Compared to previous
data-free deep-learning approaches, the accuracy of the computed drag and lift coefficients
got significantly closer to the accuracy of an industrial CFD solver while being considerably
faster. To show that this approach is not limited to fluid simulations, we also trained a model
on the damped wave equation. These experiments revealed further important effects such as
interference patterns, the Doppler effect and wave reflections at the domain boundaries.

We made the code as well as pretrained models publicly available on Github so it is possible
to try out our interactive demo and reproduce our results:

https://github.com/wandeln/Spline_PINN

6.2 Author Contributions

In this publication, I replaced the MAC grid that was used in our previous publication by
Hermite-Splines. This way, a continuous field representation is obtained. To train the PDE
models, I implemented a physics-informed loss function and to show the interactive speed
and generalization capabilities of the resulting fluid simulations, I implemented a proof
of concept paint application that allows to dynamically modify the domain boundaries.
Furthermore, I compared the results to our previous MAC grid based solver and an implicit
PINN. Special thanks go to Michael Neidlin who provided additional results with AnSys for a
more in depth comparison with an industrial CFD solver. Finally, an additional Spline-PINN
was developed to solve the damped wave equation in order to demonstrate that this concept
is not limited to the Navier-Stokes equation but also works for further PDEs.

55

https://github.com/wandeln/Spline_PINN

Part III

Conclusion

57

Chapter 7

Conclusion

In this section, we first summarize the contributions and results of the publications covered
by this thesis. Then, current limitations of our method as well as potential further research
directions to mitigate mentioned limitations are pointed out. Finally, we venture an outlook
on future applications of physics-based deep learning and discuss the potential impact of
our works on the field of physics-based deep-learning.

7.1 Summary

In this work, we explored how solutions of partial differential equations such as the
incompressible Navier-Stokes equation or the damped wave equation can be efficiently
approximated by neural surrogate models. To this end, we developed a novel training
approach that allows to solve PDEs using convolutional neural networks without any
precomputed ground truth data. For this purpose, we developed a training cycle that works
as follows: At the beginning, a training pool of PDE states is 0-initialized and randomized
domains and boundary conditions are generated that have to be solved by the PDE model.
Then, we iterate over the following steps: First, we draw a random mini-batch from the
training pool and feed it into the PDE model. Then, the PDE model makes a prediction for
the fluid state at the next timestep. This prediction is used to compute a physics-based loss
that penalizes errors of the underlying PDE. Next, we improve the parameters of the PDE
model doing a gradient descent step. Finally, we update the PDE states of the mini-batch
inside the training pool with the predictions made by the PDE model. This way, in every
cycle, not only the neural PDE model gets improved by gradient descent but also the training
pool gets improved with more and more realistic PDE states. Since the training pool is
0-initialized, no precomputed ground truth data is required in the entire training process.

In our papers, we applied this training strategy to different state representations based on a
MAC grid and Hermite-splines, different neural surrogate models as well as different PDEs
such as the incompressible Navier-Stokes equation and the wave equation.

In our first work, we represent the state of a fluid domain by a pressure and velocity field on
a 2 dimensional marker and cell grid and trained a convolutional neural network (U-Net)

59

Chapter 7 Conclusion

to solve the incompressible Navier-Stokes equation. The marker and cell grid allows to
efficiently compute a physics-constrained loss based on finite differences. After training,
we obtained fast simulations that allowed for over 300 iterations per second on a 100 × 100
grid. This speed-up compared to traditional methods was made possible since only one
single forward pass of the fluid state through a neural surrogate model is needed in order
to obtain the next state instead of having to solve large systems of equations that are of
high computational complexity. Furthermore, we observed that our fluid models generalize
well to new domain geometries that were not considered during training. We tested this
approach for a wide range of Reynolds-Numbers and were able to obtain many characteristic
qualitative results such as von Karman vortex streets, the Magnus effect or the Bernoulli
effect. Furthermore, since the entire recurrent inference pipeline is differentiable, gradients
can be efficiently computed throughout the simulation using backpropagation through
time. We demonstrated the effectiveness of this approach in a rudimentary flow control
experiment that aimed to control the frequency of a von Karman vortex street behind an
obstacle by adjusting the fluids velocity with gradient descent. However, this work also
had limitations: first, only two dimensional domains were considered and second, fluids
with different viscosities and densities required separate models that had to be retrained for
every fluid modality. Furthermore, discretization artifacts start to appear at high Reynolds
numbers.

Thus, in our second work, we addressed limitations of our previous work by representing
the fluid state on a 3D marker and cell grid and by extending the neural PDE model from a
2D U-Net to a 3D U-Net. Simulating 3D fluid dynamics is considered to be a significantly
more complex problem compared to 2D as it not only increases computational and memory
demands but also increases the degrees of freedom of the vector potential that describes the
velocity field by a factor of three. Furthermore, we conditioned the fluid model not only
on the previous fluid state but also hand over the fluids viscosity and density as additional
inputs. To train the model, we reapplied the training cycle as introduced in our first work
but extended the 2D physics-constrained loss to 3 dimensions and enabled variable viscosity
and density values. This way, after training, we were able to simulate fluid dynamics in
3D efficiently. We tested two models with different speed / accuracy trade-offs and were
able to achieve 16 iterations per second on a 128 × 64 × 64 grid with our large model and 36
iterations per second on the same domain with a smaller but slightly less accurate model.
Furthermore, we were able to continuously interpolate between different fluid viscosities and
densities and simulate various Reynolds-Numbers ranging from laminar to turbulent flows
by the same neural surrogate model. Finally, we showed that, as in 2D, our models were able
to generalize to new domain geometries that were not contained in the set of randomized
training domains.

In our third work, we moved from a MAC grid based fluid representation to a continuous
representation based on Hermite-spline coefficients on a grid. This allows to evaluate field
values at arbitrary points within the domain by continuous interpolation and enables the
use of a physics-informed loss instead of a physics-constrained loss inside the training cycle.
Using this representation, we observed fewer discretization artifacts and more detailed flow
fields at lower grid resolutions compared to our previous MAC grid based approaches.
Furthermore, we computed drag and lift coefficients of a cylinder at different Reynolds

60

7.2 Limitations and Future Work

numbers and compared our results to official benchmark results, a professional industrial
CFD solver (AnSys) and results from other physics-based deep-learning approaches namely
an implicit PINN approach and our marker and cell grid based approach. While the deep-
learning based approaches generally did not achieve as high accuracy as the professional
solver, our Spline-PINN approach made a big leap forward and achieved results that
came significantly closer to the performance of AnSys. Regarding computational speed for
unsteady flow simulations, our Spline-PINN method outperformed AnSys by two orders
of magnitude and returned from simulation after 10 seconds while AnSys took about 37
minutes. Finally, we also tested this approach on the damped wave equation to demonstrate
the general applicability of this method to a wide range of PDEs.

In conclusion, this work demonstrates the feasibility and effectiveness of unsupervised
physics-based deep-learning to obtain simulations that are significantly faster than common
traditional PDE solvers. Our framework allows to train neural surrogate models without
any precomputed ground truth data and does not require additional components such as
differentiable fluid-solvers or a particle tracer. After training, our models generalize to
new domains that were not considered during training and yield stable simulations for
thousands of timesteps. Furthermore, since the entire pipeline is differentiable, gradients
can be efficiently computed by backpropagation through time. Finally, we demonstrated
that this approach is not limited to fluid simulations but can be employed to further PDEs
such as the damped wave equation as well.

7.2 Limitations and Future Work

The presented approach still exhibits a few limitations that might be subject of future
research. So far, we mainly relied on U-Net architectures. However, since our training
cycle is model agnostic, additional neural network architectures could be tested to further
increase accuracy. For example, transformer architectures could tested as in Geneva and
Zabaras, 2022 or steerable CNNs [Weiler and Cesa, 2019] could be used to exploit rotational
symmetries that are prevalent in many PDEs on top of translational symmeties. Furthermore,
the accuracy of the model predictions could be iteratively refined, similar to the stacked
hourglass architecture that was proposed in context of human pose estimation [Newell et al.,
2016].

To put more focus on important areas of the domain (for example boundary layers), a
multigrid approach based on sparse convolutions [Graham and Maaten, 2017] could be
implemented on top of our current implementations, which so far rely solely on uniform
grids.

In this work, we focused on Dirichlet boundary conditions, but in the future, more boundary
conditions such as Neumann boundaries, free surfaces or multi-phase flows could be
considered as well.

61

Chapter 7 Conclusion

On top of that, our approach could be tested for a wider variety of PDEs such as Darcy
flows, the Burgers equation or the compressible Navier-Stokes equation to investigate further
interesting effects such as for example shock wave formation.

7.3 Outlook

We believe that physics-based deep-learning approaches will have a profound impact on
a wide range of applications that rely on solving PDEs. In computer generated imagery
and computer games, these methods could enable fast, photo-realistic fluid and smoke
visualizations and allow physics engines to simulate more plausible interactions with the
environment in real-time. In engineering, these approaches could build the foundation
for significantly faster CFD simulations in order to speed-up rapid prototyping and, thus,
decrease time to market. Furthermore, since neural network based models are inherently
differentiable, they could be applied in inverse problems, gradient-based shape optimization
(e.g. to minimize drag while maximizing volume), in control algorithms or in reinforcement
learning scenarios.

In the long run, in order to surpass the accuracy of traditional fluid solvers on complex
domains, we believe that deep learning-based approaches must emancipate from ground-
truth data because the accuracy as well as the computational complexity of generating a
diverse dataset will become a limiting factor. Instead, physics-based loss functions can
offer the required learning incentives, and a training cycle in conjunction with a constantly
updated training pool will render any ground truth data unnecessary. This development
could resemble the latest developments in reinforcement learning where algorithms that rely
solely on self-play outperform all previous reinforcement learning techniques that (partially)
relied on prior human knowledge by a significant margin [Silver et al., 2018].

At the current speed of progress in physics-driven deep-learning, we believe that in the
foreseeable future similar accuracies to traditional methods can be achieved while maintaining
advantages with respect to computational speed and efficiency. We hope that our work can
make a strong contribution towards this goal by presenting a way to obtain fast, accurate,
differentiable surrogate models based on physics-driven deep-learning that can be applied
for a wide variety of PDEs and domain geometries without precomputed ground truth
data.

62

Bibliography

Ainsworth, Mark and Justin Dong (2021). “Galerkin Neural Networks: A Framework for
Approximating Variational Equations with Error Control.” arXiv preprint arXiv:2105.14094.

Avila Belbute-Peres, Filipe de, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J. Zico Kolter
(2018). “End-to-End Differentiable Physics for Learning and Control.” Advances in Neural
Information Processing Systems 31.

Bar-Sinai, Yohai, Stephan Hoyer, Jason Hickey, and Michael P Brenner (2019). “Learning
data-driven discretizations for partial differential equations.” Proceedings of the National
Academy of Sciences.

Barrowclough, Oliver JD, Georg Muntingh, Varatharajan Nainamalai, and Ivar Stangeby
(2021). “Binary segmentation of medical images using implicit spline representations and
deep learning.” Computer Aided Geometric Design.

Berg, Jens and Kaj Nyström (2018). “A unified deep artificial neural network approach to
partial differential equations in complex geometries.” Neurocomputing. issn: 0925-2312. doi:
https://doi.org/10.1016/j.neucom.2018.06.056. url: http://www.sciencedirect.
com/science/article/pii/S092523121830794X.

Brackbill, Jeremiah U, Douglas B Kothe, and Hans M Ruppel (1988). “FLIP: a low-dissipation,
particle-in-cell method for fluid flow.” Computer Physics Communications.

Bronstein, Michael M, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst
(2017). “Geometric deep learning: going beyond euclidean data.” IEEE Signal Processing
Magazine.

Chen, Shiyi and Gary D Doolen (1998). “Lattice Boltzmann method for fluid flows.” Annual
review of fluid mechanics.

63

https://doi.org/https://doi.org/10.1016/j.neucom.2018.06.056
http://www.sciencedirect.com/science/article/pii/S092523121830794X
http://www.sciencedirect.com/science/article/pii/S092523121830794X

Bibliography

Cho, Minsu, Aditya Balu, Ameya Joshi, Anjana Deva Prasad, Biswajit Khara, Soumik Sarkar,
Baskar Ganapathysubramanian, Adarsh Krishnamurthy, and Chinmay Hegde (2021).
“Differentiable Spline Approximations.” Advances in Neural Information Processing Systems.
Edited by M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan. url:
https://proceedings.neurips.cc/paper/2021/file/a952ddeda0b7e2c20744e52e728e5594-
Paper.pdf.

Çiçek, Özgün, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas Brox, and Olaf Ronneberger
(2016). “3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation.”
CoRR. arXiv: 1606.06650. url: http://arxiv.org/abs/1606.06650.

Cundall, Peter A and Otto DL Strack (1979). “A discrete numerical model for granular
assemblies.” geotechnique.

Degrave, Jonas, Michiel Hermans, Joni Dambre, and Francis Wyffels (2019). “A differentiable
physics engine for deep learning in robotics.” Frontiers in neurorobotics.

Durkan, Conor, Artur Bekasov, Iain Murray, and George Papamakarios (2019). “Neural
spline flows.” Advances in neural information processing systems.

Eymard, Robert, Thierry Gallouët, and Raphaèle Herbin (2000). “Finite volume methods.”
Handbook of numerical analysis.

Fabregat, Alexandre, Ferran Gisbert, Anton Vernet, Josep Anton Ferré, Ketan Mittal, Som
Dutta, and Jordi Pallarès (2021). “Direct numerical simulation of turbulent dispersion of
evaporative aerosol clouds produced by an intense expiratory event.” Physics of Fluids.
doi: 10.1063/5.0045416. eprint: https://doi.org/10.1063/5.0045416. url: https:
//doi.org/10.1063/5.0045416.

Fakhoury, Daniele, Emanuele Fakhoury, and Hendrik Speleers (2022). “ExSpliNet: An
interpretable and expressive spline-based neural network.” Neural Networks.

Farlow, Stanley J (1993). Partial differential equations for scientists and engineers.

Fey, Matthias, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller (2017). “SplineCNN: Fast
Geometric Deep Learning with Continuous B-Spline Kernels.” CoRR. arXiv: 1711.08920.
url: http://arxiv.org/abs/1711.08920.

Foster, Nick and Dimitri Metaxas (1996). “Realistic Animation of Liquids.” Graphical Models
and Image Processing. issn: 1077-3169. doi: https://doi.org/10.1006/gmip.1996.0039.
url: http://www.sciencedirect.com/science/article/pii/S1077316996900398.

Gao, Han, Matthew J. Zahr, and Jian-Xun Wang (2021). “Physics-informed graph neural
Galerkin networks: A unified framework for solving PDE-governed forward and inverse
problems.” CoRR. arXiv: 2107.12146. url: https://arxiv.org/abs/2107.12146.

64

https://proceedings.neurips.cc/paper/2021/file/a952ddeda0b7e2c20744e52e728e5594-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/a952ddeda0b7e2c20744e52e728e5594-Paper.pdf
https://arxiv.org/abs/1606.06650
http://arxiv.org/abs/1606.06650
https://doi.org/10.1063/5.0045416
https://doi.org/10.1063/5.0045416
https://doi.org/10.1063/5.0045416
https://doi.org/10.1063/5.0045416
https://arxiv.org/abs/1711.08920
http://arxiv.org/abs/1711.08920
https://doi.org/https://doi.org/10.1006/gmip.1996.0039
http://www.sciencedirect.com/science/article/pii/S1077316996900398
https://arxiv.org/abs/2107.12146
https://arxiv.org/abs/2107.12146

Geneva, Nicholas and Nicholas Zabaras (2019). “Quantifying model form uncertainty in
Reynolds-averaged turbulence models with Bayesian deep neural networks.” Journal of
Computational Physics. issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2019.01.
021. url: http://www.sciencedirect.com/science/article/pii/S0021999119300464.

Geneva, Nicholas and Nicholas Zabaras (2020). “Modeling the dynamics of PDE systems
with physics-constrained deep auto-regressive networks.” Journal of Computational Physics.

Geneva, Nicholas and Nicholas Zabaras (2022). “Transformers for modeling physical sys-
tems.” Neural Networks.

Gingold, Robert A. and Joseph J. Monaghan (1977). “Smoothed particle hydrodynamics:
theory and application to non-spherical stars.” Monthly notices of the royal astronomical
society.

Graham, Benjamin and Laurens van der Maaten (2017). “Submanifold Sparse Convolutional
Networks.” arXiv preprint arXiv:1706.01307.

Grohs, Philipp, Fabian Hornung, Arnulf Jentzen, and Philippe Von Wurstemberger (2018).
“A proof that artificial neural networks overcome the curse of dimensionality in the
numerical approximation of Black-Scholes partial differential equations.” arXiv preprint
arXiv:1809.02362.

Guo, Zhaoli (2021). “Well-balanced lattice Boltzmann model for two-phase systems.” Physics
of Fluids. doi: 10.1063/5.0041446. eprint: https://doi.org/10.1063/5.0041446. url:
https://doi.org/10.1063/5.0041446.

Harlow, Francis H (1962). The particle-in-cell method for numerical solution of problems in fluid
dynamics. Technical report. Los Alamos National Lab.(LANL), Los Alamos, NM (United
States).

Harlow, Francis H. and J. Eddie Welch (1965). “Numerical calculation of time-dependent
viscous incompressible flow of fluid with free surface.” The physics of fluids.

Harsch, Lukas and Stefan Riedelbauch (2021). Direct Prediction of Steady-State Flow Fields in
Meshed Domain with Graph Networks. arXiv: 2105.02575 [physics.flu-dyn].

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification.” Proceedings of
the IEEE international conference on computer vision.

Holl, Philipp, Vladlen Koltun, and Nils Thuerey (2020). “Learning to Control PDEs with
Differentiable Physics.” ICLR.

65

https://doi.org/https://doi.org/10.1016/j.jcp.2019.01.021
https://doi.org/https://doi.org/10.1016/j.jcp.2019.01.021
http://www.sciencedirect.com/science/article/pii/S0021999119300464
https://doi.org/10.1063/5.0041446
https://doi.org/10.1063/5.0041446
https://doi.org/10.1063/5.0041446
https://arxiv.org/abs/2105.02575

Bibliography

Hsieh, Jun-Ting, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, and Stefano Ermon
(2019). “Learning neural PDE solvers with convergence guarantees.” arXiv preprint
arXiv:1906.01200.

Hu, Yuanming, Jiancheng Liu, Andrew Spielberg, Joshua B Tenenbaum, William T Freeman,
Jiajun Wu, Daniela Rus, and Wojciech Matusik (2019). “ChainQueen: A real-time differen-
tiable physical simulator for soft robotics.” 2019 International Conference on Robotics and
Automation (ICRA).

Igelnik, Boris and Neel Parikh (2003). “Kolmogorov’s spline network.” IEEE transactions on
neural networks.

Ingraham, John, Adam Riesselman, Chris Sander, and Debora Marks (2019). “Learning
protein structure with a differentiable simulator.” International Conference on Learning
Representations.

Jin, Xiaowei, Shengze Cai, Hui Li, and George Em Karniadakis (2021). “NSFnets (Navier-
Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes
equations.” Journal of Computational Physics. issn: 0021-9991. doi: 10.1016/j.jcp.2020.
109951. url: http://dx.doi.org/10.1016/j.jcp.2020.109951.

Karumuri, Sharmila, Rohit Tripathy, Ilias Bilionis, and Jitesh Panchal (2020). “Simulator-free
solution of high-dimensional stochastic elliptic partial differential equations using deep
neural networks.” Journal of Computational Physics.

Khoo, Yuehaw, Jianfeng Lu, and Lexing Ying (2019). “Solving for high-dimensional committor
functions using artificial neural networks.” Research in the Mathematical Sciences.

Kim, Byungsoo, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and
Barbara Solenthaler (2019). “Deep fluids: A generative network for parameterized fluid
simulations.” Computer Graphics Forum.

Kim, Junhyuk and Changhoon Lee (2020). “Deep unsupervised learning of turbulence
for inflow generation at various Reynolds numbers.” Journal of Computational Physics.
issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2019.109216. url: http:
//www.sciencedirect.com/science/article/pii/S0021999119309210.

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for Stochastic Optimization.”
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings.

Kochkov, Dmitrii, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer (2021). “Machine learning–accelerated computational fluid dynamics.” Proceedings
of the National Academy of Sciences.

66

https://doi.org/10.1016/j.jcp.2020.109951
https://doi.org/10.1016/j.jcp.2020.109951
http://dx.doi.org/10.1016/j.jcp.2020.109951
https://doi.org/https://doi.org/10.1016/j.jcp.2019.109216
http://www.sciencedirect.com/science/article/pii/S0021999119309210
http://www.sciencedirect.com/science/article/pii/S0021999119309210

Ladický, L’ubor, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross
(2015). “Data-Driven Fluid Simulations Using Regression Forests.” ACM Trans. Graph. issn:
0730-0301. doi: 10.1145/2816795.2818129. url: https://doi.org/10.1145/2816795.
2818129.

Lagaris, I. E., A. Likas, and D. I. Fotiadis (1998). “Artificial neural networks for solving
ordinary and partial differential equations.” IEEE Transactions on Neural Networks.

Lagaris, I. E., A. C. Likas, and D. G. Papageorgiou (2000). “Neural-network methods for
boundary value problems with irregular boundaries.” IEEE Transactions on Neural Networks.

Li, Yunzhu, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba (2019).
“Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and
Fluids.” ICLR.

Li, Zhaobin, Xinlei Zhang, Ting Wu, Lixing Zhu, Jianhua Qin, and Xiaolei Yang (2021).
“Effects of slope and speed of escalator on the dispersion of cough-generated droplets
from a passenger.” Physics of Fluids. doi: 10.1063/5.0046870. eprint: https://doi.org/
10.1063/5.0046870. url: https://doi.org/10.1063/5.0046870.

Liang, Junbang, Ming Lin, and Vladlen Koltun (2019). “Differentiable Cloth Simulation for
Inverse Problems.” Advances in Neural Information Processing Systems.

Ling, Julia, Andrew Kurzawski, and Jeremy Templeton (2016). “Reynolds averaged turbulence
modelling using deep neural networks with embedded invariance.” Journal of Fluid
Mechanics.

Liu, MB, GR Liu, and KY Lam (2006). “Adaptive smoothed particle hydrodynamics for high
strain hydrodynamics with material strength.” Shock Waves.

Long, Zichao, Yiping Lu, Xianzhong Ma, and Bin Dong (2018). “PDE-Net: Learning PDEs
from data.” 35th International Conference on Machine Learning, ICML 2018.

Lu, Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis (2021). “DeepXDE: A deep
learning library for solving differential equations.” SIAM Review.

Lucy, Leon B (1977). “A numerical approach to the testing of the fission hypothesis.” The
astronomical journal.

Ma, Pingchuan, Yunsheng Tian, Zherong Pan, Bo Ren, and Dinesh Manocha (2018). “Fluid
directed rigid body control using deep reinforcement learning.” ACM Transactions on
Graphics (TOG).

Macklin, Miles and Matthias Müller (2013). “Position based fluids.” ACM Transactions on
Graphics (TOG).

67

https://doi.org/10.1145/2816795.2818129
https://doi.org/10.1145/2816795.2818129
https://doi.org/10.1145/2816795.2818129
https://doi.org/10.1063/5.0046870
https://doi.org/10.1063/5.0046870
https://doi.org/10.1063/5.0046870
https://doi.org/10.1063/5.0046870

Bibliography

Mao, Zhiping, Ameya D Jagtap, and George Em Karniadakis (2020). “Physics-informed neural
networks for high-speed flows.” Computer Methods in Applied Mechanics and Engineering.

Meade, A.J. and A.A. Fernandez (1994a). “Solution of nonlinear ordinary differential equations
by feedforward neural networks.” Mathematical and Computer Modelling. issn: 0895-7177. doi:
https://doi.org/10.1016/0895-7177(94)00160-X. url: http://www.sciencedirect.
com/science/article/pii/089571779400160X.

Meade, A.J. and A.A. Fernandez (1994b). “The numerical solution of linear ordinary differ-
ential equations by feedforward neural networks.” Mathematical and Computer Modelling.
issn: 0895-7177. doi: https://doi.org/10.1016/0895-7177(94)90095-7. url: http:
//www.sciencedirect.com/science/article/pii/0895717794900957.

Meng, Xuhui and George Em Karniadakis (2020). “A composite neural network that learns
from multi-fidelity data: Application to function approximation and inverse PDE prob-
lems.” Journal of Computational Physics.

Meng, Xuhui, Zhen Li, Dongkun Zhang, and George Em Karniadakis (2020). “PPINN:
Parareal physics-informed neural network for time-dependent PDEs.” Computer Methods
in Applied Mechanics and Engineering.

Mohan, Arvind T., Nicholas Lubbers, Daniel Livescu, and Michael Chertkov (2020). Embedding
Hard Physical Constraints in Neural Network Coarse-Graining of 3D Turbulence. arXiv: 2002.
00021 [physics.comp-ph].

Morton, Jeremy, Antony Jameson, Mykel J Kochenderfer, and Freddie Witherden (2018).
“Deep Dynamical Modeling and Control of Unsteady Fluid Flows.” Advances in Neural
Information Processing Systems 31. Edited by S. Bengio, H. Wallach, H. Larochelle, K.
Grauman, N. Cesa-Bianchi, and R. Garnett. url: http://papers.nips.cc/paper/8138-
deep-dynamical-modeling-and-control-of-unsteady-fluid-flows.pdf.

Mrowca, Damian, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B. Tenenbaum,
and Daniel L. K. Yamins (2018). “Flexible Neural Representation for Physics Prediction.”
Proceedings of the 32nd International Conference on Neural Information Processing Systems.

Müller, Matthias, Bruno Heidelberger, Marcus Hennix, and John Ratcliff (2007). “Position
based dynamics.” Journal of Visual Communication and Image Representation.

Newell, Alejandro, Kaiyu Yang, and Jia Deng (2016). “Stacked hourglass networks for human
pose estimation.” European conference on computer vision.

Noe, Rain (2016). When Splines Were Physical Objects. https://www.core77.com/posts/
55368/When-Splines-Were-Physical-Objects. (accessed at 08-Jan-2023).

68

https://doi.org/https://doi.org/10.1016/0895-7177(94)00160-X
http://www.sciencedirect.com/science/article/pii/089571779400160X
http://www.sciencedirect.com/science/article/pii/089571779400160X
https://doi.org/https://doi.org/10.1016/0895-7177(94)90095-7
http://www.sciencedirect.com/science/article/pii/0895717794900957
http://www.sciencedirect.com/science/article/pii/0895717794900957
https://arxiv.org/abs/2002.00021
https://arxiv.org/abs/2002.00021
http://papers.nips.cc/paper/8138-deep-dynamical-modeling-and-control-of-unsteady-fluid-flows.pdf
http://papers.nips.cc/paper/8138-deep-dynamical-modeling-and-control-of-unsteady-fluid-flows.pdf
https://www.core77.com/posts/55368/When-Splines-Were-Physical-Objects
https://www.core77.com/posts/55368/When-Splines-Were-Physical-Objects

O’Reilly, H. and Jeffrey M. Beck (2006). “A Family of Large-Stencil Discrete Laplacian
Approximations in Three Dimensions.” International Journal For Numerical Methods in
Engineering.

OpenCFD (2007). OpenFOAM - The Open Source CFD Toolbox - User’s Guide. 1.4.

Pfaff, Tobias, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia (2021).
Learning Mesh-Based Simulation with Graph Networks. ICLR 2021: 2010.03409 (cs.LG).

Psichogios, Dimitris C. and Lyle H. Ungar (1992). “A hybrid neural network-first principles
approach to process modeling.” AIChE Journal. doi: 10.1002/aic.690381003. eprint:
https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690381003. url:
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690381003.

Quarteroni, Alfio and Silvia Quarteroni (2009). Numerical models for differential problems.

Raissi, Maziar, P. Perdikaris, and George Em Karniadakis (2019). “Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations.” Journal of Computational Physics. issn: 0021-9991.
doi: https://doi.org/10.1016/j.jcp.2018.10.045. url: http://www.sciencedirect.
com/science/article/pii/S0021999118307125.

Raissi, Maziar, Alireza Yazdani, and George Em Karniadakis (2018). “Hidden Fluid Mechanics:
A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization
Data.” arXiv preprint arXiv:1808.04327.

Rasht-Behesht, Majid, Christian Huber, Khemraj Shukla, and George Em Karniadakis (2021).
Physics-informed Neural Networks (PINNs) for Wave Propagation and Full Waveform Inversions.
arXiv: 2108.12035 [physics.geo-ph].

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (2015). “U-net: Convolutional networks
for biomedical image segmentation.” International Conference on Medical image computing
and computer-assisted intervention.

Sanchez-Gonzalez, Alvaro, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter Battaglia (2020). “Learning to simulate complex physics with graph networks.”
International Conference on Machine Learning.

Schenck, Connor and Dieter Fox (2018). “SPNets: Differentiable Fluid Dynamics for Deep
Neural Networks.” Conference on Robot Learning.

Schöberl, Markus, Nicholas Zabaras, and Phaedon-Stelios Koutsourelakis (2019). “Predictive
collective variable discovery with deep Bayesian models.” The Journal of Chemical Physics.
doi: 10.1063/1.5058063. eprint: https://doi.org/10.1063/1.5058063. url: https:
//doi.org/10.1063/1.5058063.

69

2010.03409
https://doi.org/10.1002/aic.690381003
https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690381003
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690381003
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
http://www.sciencedirect.com/science/article/pii/S0021999118307125
http://www.sciencedirect.com/science/article/pii/S0021999118307125
https://arxiv.org/abs/2108.12035
https://doi.org/10.1063/1.5058063
https://doi.org/10.1063/1.5058063
https://doi.org/10.1063/1.5058063
https://doi.org/10.1063/1.5058063

Bibliography

Schultz, M. G., C. Betancourt, B. Gong, F. Kleinert, M. Langguth, L. H. Leufen, A. Mozaffari,
and S. Stadtler (2021). “Can deep learning beat numerical weather prediction?” Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. doi:
10.1098/rsta.2020.0097. eprint: https://royalsocietypublishing.org/doi/pdf/
10.1098/rsta.2020.0097. url: https://royalsocietypublishing.org/doi/abs/10.
1098/rsta.2020.0097.

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
et al. (2016). “Mastering the game of Go with deep neural networks and tree search.”
nature.

Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. (2018). “A
general reinforcement learning algorithm that masters chess, shogi, and Go through
self-play.” Science.

Sirignano, Justin and Konstantinos Spiliopoulos (2018). “DGM: A deep learning algorithm
for solving partial differential equations.” Journal of computational physics.

Sitzmann, Vincent (2021). List of Implicit Representations. https://github.com/vsitzmann/
awesome-implicit-representations. (accessed at 08-Jan-2023).

Sitzmann, Vincent, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein
(2020). “Implicit neural representations with periodic activation functions.” Advances in
Neural Information Processing Systems.

Stam, Jos (1999). “Stable fluids.” Proceedings of the 26th annual conference on Computer graphics
and interactive techniques.

Stomakhin, Alexey, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle (2013).
“A material point method for snow simulation.” ACM Transactions on Graphics (TOG).

Sulsky, Deborah, Shi-Jian Zhou, and Howard L Schreyer (1995). “Application of a particle-in-
cell method to solid mechanics.” Computer physics communications.

Takahashi, Tetsuya, Junbang Liang, Yi-Ling Qiao, and Ming C Lin (2021). “Differentiable
Fluids with Solid Coupling for Learning and Control.”

The CFD Benchmarking Project (2021). http://www.mathematik.tu-dortmund.de/ featflow/en/
benchmarks/cfdbenchmarking.html. (accessed at 08-Sep-2021).

Thuerey, Nils, Konstantin Weißenow, Lukas Prantl, and Xiangyu Hu (2019). “Deep Learning
Methods for Reynolds-Averaged Navier–Stokes Simulations of Airfoil Flows.” AIAA
Journal.

70

https://doi.org/10.1098/rsta.2020.0097
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2020.0097
https://royalsocietypublishing.org/doi/pdf/10.1098/rsta.2020.0097
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2020.0097
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2020.0097
https://github.com/vsitzmann/awesome-implicit-representations
https://github.com/vsitzmann/awesome-implicit-representations

Tompson, Jonathan, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin (2017). “Ac-
celerating eulerian fluid simulation with convolutional networks.” Proceedings of the 34th
International Conference on Machine Learning-Volume 70.

Toussaint, Marc, Kelsey R Allen, Kevin A Smith, and Joshua B Tenenbaum (2019). “Differen-
tiable physics and stable modes for tool-use and manipulation planning.” Proceedings of the
28th International Joint Conference on Artificial Intelligence.

Tripathy, Rohit K. and Ilias Bilionis (2018). “Deep UQ: Learning deep neural network surrogate
models for high dimensional uncertainty quantification.” Journal of Computational Physics.
issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.08.036. url: http:
//www.sciencedirect.com/science/article/pii/S0021999118305655.

Um, Kiwon, Raymond Fei, Philipp Holl, Robert Brand, and Nils Thuerey (2020). Solver-in-
the-Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers. arXiv:
2007.00016 [physics.comp-ph].

Ummenhofer, Benjamin, Lukas Prantl, Nils Thuerey, and Vladlen Koltun (2020). “La-
grangian Fluid Simulation with Continuous Convolutions.” 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. url: https:
//openreview.net/forum?id=B1lDoJSYDH.

Vecci, Lorenzo, Francesco Piazza, and Aurelio Uncini (1998). “Learning and approximation
capabilities of adaptive spline activation function neural networks.” Neural Networks.

Wandel, Nils, Michael Weinmann, and Reinhard Klein (2021a). “Learning Incompressible
Fluid Dynamics from Scratch - Towards Fast, Differentiable Fluid Models that Generalize.”
9th International Conference on Learning Representations, ICLR. url: https://openreview.
net/forum?id=KUDUoRsEphu.

Wandel, Nils, Michael Weinmann, and Reinhard Klein (2021b). “Teaching the Incompressible
Navier-Stokes Equations to Fast Neural Surrogate Models in 3D.” Physics of Fluids (AIP),
Volume 33, Issue 4. doi: 10.1063/5.0047428.

Wandel, Nils, Michael Weinmann, Michael Neidlin, and Reinhard Klein (2022). “Spline-PINN:
Approaching PDEs without Data using Fast, Physics-Informed Hermite-Spline CNNs.”
Proceedings of the 36th AAAI Conference on Artificial Intelligence. doi: 10.1609/aaai.v36i8.
20830.

Wang, Hengjie, Robert Planas, Aparna Chandramowlishwaran, and Ramin Bostanabad
(2021). “Train Once and Use Forever: Solving Boundary Value Problems in Unseen
Domains with Pre-trained Deep Learning Models.” CoRR. arXiv: 2104.10873. url: https:
//arxiv.org/abs/2104.10873.

71

https://doi.org/https://doi.org/10.1016/j.jcp.2018.08.036
http://www.sciencedirect.com/science/article/pii/S0021999118305655
http://www.sciencedirect.com/science/article/pii/S0021999118305655
https://arxiv.org/abs/2007.00016
https://openreview.net/forum?id=B1lDoJSYDH
https://openreview.net/forum?id=B1lDoJSYDH
https://openreview.net/forum?id=KUDUoRsEphu
https://openreview.net/forum?id=KUDUoRsEphu
https://doi.org/10.1063/5.0047428
https://doi.org/10.1609/aaai.v36i8.20830
https://doi.org/10.1609/aaai.v36i8.20830
https://arxiv.org/abs/2104.10873
https://arxiv.org/abs/2104.10873
https://arxiv.org/abs/2104.10873

Bibliography

Wang, Rui, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu (2019). “To-
wards Physics-informed Deep Learning for Turbulent Flow Prediction.” arXiv preprint
arXiv:1911.08655.

Weiler, Maurice and Gabriele Cesa (2019). “General E(2)-Equivariant Steerable CNNs.”
Conference on Neural Information Processing Systems (NeurIPS).

Wiewel, Steffen, Moritz Becher, and Nils Thuerey (2019). “Latent space physics: Towards
learning the temporal evolution of fluid flow.” Computer graphics forum.

Xie, You, Erik Franz, Mengyu Chu, and Nils Thuerey (2018). “TempoGAN: A Temporally
Coherent, Volumetric GAN for Super-Resolution Fluid Flow.” ACM Trans. Graph. issn:
0730-0301. doi: 10.1145/3197517.3201304. url: https://doi.org/10.1145/3197517.
3201304.

Yang, Cheng, Xubo Yang, and Xiangyun Xiao (2016). “Data-driven projection method
in fluid simulation.” Computer Animation and Virtual Worlds. doi: 10.1002/cav.1695.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cav.1695. url: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/cav.1695.

Yang, Liu, Xuhui Meng, and George Em Karniadakis (2021). “B-PINNs: Bayesian physics-
informed neural networks for forward and inverse PDE problems with noisy data.” Journal
of Computational Physics.

Yang, Liu, Dongkun Zhang, and George Em Karniadakis (2020). “Physics-informed generative
adversarial networks for stochastic differential equations.” SIAM Journal on Scientific
Computing.

Zhang, Dongkun, Lu Lu, Ling Guo, and George Em Karniadakis (2019). “Quantifying total
uncertainty in physics-informed neural networks for solving forward and inverse stochastic
problems.” Journal of Computational Physics.

Zhu, Yinhao and Nicholas Zabaras (2018). “Bayesian deep convolutional encoder–decoder
networks for surrogate modeling and uncertainty quantification.” Journal of Computational
Physics. issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.04.018. url:
http://www.sciencedirect.com/science/article/pii/S0021999118302341.

Zhu, Yinhao, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris
(2019). “Physics-constrained deep learning for high-dimensional surrogate modeling
and uncertainty quantification without labeled data.” Journal of Computational Physics.
issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2019.05.024. url: http:
//www.sciencedirect.com/science/article/pii/S0021999119303559.

72

https://doi.org/10.1145/3197517.3201304
https://doi.org/10.1145/3197517.3201304
https://doi.org/10.1145/3197517.3201304
https://doi.org/10.1002/cav.1695
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cav.1695
https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.1695
https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.1695
https://doi.org/https://doi.org/10.1016/j.jcp.2018.04.018
http://www.sciencedirect.com/science/article/pii/S0021999118302341
https://doi.org/https://doi.org/10.1016/j.jcp.2019.05.024
http://www.sciencedirect.com/science/article/pii/S0021999119303559
http://www.sciencedirect.com/science/article/pii/S0021999119303559

List of Figures

3.1 Conic sections for different values of 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹. Left: Ellipse, Center:
Parabola, Right: Hyperbola . 21

3.2 The divergence of a vector field ∇𝒗 measures the total amount of inflow into
and outflow from an infinitesimal volume around a point 𝑥 of the domain. If
𝒗 is divergence-free, the inflow and outflow have to cancel each other at any
given point. 22

3.3 If a vector field 𝒗 is divergence-free (∇ · 𝒗 = 0), the total amount of liquid
entering a subdomain 𝐴 through its surface 𝑆 always matches the amount of
fluid exiting that subdomain again. 23

3.4 The amount of liquid flowing through an area 𝐴 can be computed by inte-
grating the vector potential 𝒂 along the border 𝑆 of that area. 24

3.5 Effects of viscosity on particles within a fluid and on domain boundaries. . . 27
3.6 Drag (𝐹𝐷) and lift (𝐹𝐿) forces acting on an object within a flow field 28
3.7 If 2 Systems have the same Reynolds-Number, solutions of the Navier-Stokes

equations can be deduced from the same underlying velocity (𝒗) and pressure
(𝑝) fields up to constant scaling factors. 29

3.8 At different Reynolds-numbers, the dynamics of fluids exhibit vastly different
qualitative behaviors. 32

3.9 Qualitative visualization of the Venturi effect: The contraction of a pipe (e.g. a
stenosis of an artery) results in a higher flow velocity and a lower pressure
field inside the narrow section. 33

3.10 Qualitative visualization of the Magnus effect: A spinning object causes a
characteristic reduced pressure field on the side that moves along the fluids
velocity. 34

3.11 On a thin membrane described by 𝑧(𝑡 , 𝑥, 𝑦), tension forces act proportional to
the curvature Δ𝑧. 35

3.12 Left: Doppler effect of an oscillator moving to the right. Right: Interference
patterns of two oscillators . 36

3.13 Fundamental concepts of artificial neural networks. 37

73

List of Figures

3.14 Conceptual differences between Physics-Informed NNs, Physics-Constrained
NNs, and our Spline-PINN architecture. While the original PINN architecture
directly maps domain coordinates to field values, Physics-Constrained NN
map discrete field representations from a time-point 𝑡 to a time-point 𝑡 + 𝑑𝑡.
Spline-PINNs combine both approaches and build a latent representation
based on Hermite-Spline coefficients that can be continuously interpolated
within the domain between 𝑡 and 𝑡 + 𝑑𝑡. 38

3.15 Single unit cell of a 3D Marker And Cell (MAC) grid. On a MAC grid,
the different field values are placed in a staggered manner to facilitate the
computation of finite differences. The red box denotes pressure, blue arrows
denote the 𝑥, 𝑦, 𝑧 components of the velocity field and the green arrows denote
the 𝑥, 𝑦, 𝑧 components of the vector potential. The glass plane marks the
components contained in a 2D MAC grid. 40

3.16 Cardinal B-spline kernels of degree 0 (constant), 1 (linear), 2 (quadratic) and 3
(cubic). 41

3.17 Hermite-spline basis kernels. 42

4.1 Using a training cycle we not only improve the PDE model but also the pool
of training domains in every turn. Since the training pool can be 0-initialized,
no precomputed training data is needed. 47

5.1 Exemplary visualization of our 3D network predictions in Paraview. The
presented submarine geometry was not part of the set of randomized training
domains, which demonstrates the generalization capabilities of our method. . 51

6.1 Flow velocity (top) and pressure / streamline visualizations (bottom) of
the incompressible Navier-Stokes equation produced by our Spline-PINN
approach. The boundaries were painted in an interactive setting to show the
generalization capabilities of our method. 55

74

List of Tables

2.1 A selection of influential Lagrangian / Hybrid / Eulerian Fluid-Solvers relying
on "traditional" and recent deep-learning based solvers 10

75

Part IV

Appendix

77

Publication:
“Learning Incompressible Fluid Dynamics
from Scratch - Towards Fast, Differentiable

Fluid Models that Generalize”

Nils Wandel, Michael Weinmann, and Reinhard Klein

9th International Conference on Learning Representations, ICLR

2021

79

Published as a conference paper at ICLR 2021

LEARNING INCOMPRESSIBLE FLUID DYNAMICS FROM
SCRATCH - TOWARDS FAST, DIFFERENTIABLE FLUID
MODELS THAT GENERALIZE

Nils Wandel
Department of Computer Science
University of Bonn
wandeln@cs.uni-bonn.de

Michael Weinmann
Department of Computer Science
University of Bonn
mw@cs.uni-bonn.de

Reinhard Klein
Department of Computer Science
University of Bonn
rk@cs.uni-bonn.de

ABSTRACT

Fast and stable fluid simulations are an essential prerequisite for applications
ranging from computer-generated imagery to computer-aided design in research
and development. However, solving the partial differential equations
of incompressible fluids is a challenging task and traditional numerical
approximation schemes come at high computational costs. Recent deep learning
based approaches promise vast speed-ups but do not generalize to new fluid
domains, require fluid simulation data for training, or rely on complex pipelines
that outsource major parts of the fluid simulation to traditional methods.
In this work, we propose a novel physics-constrained training approach that
generalizes to new fluid domains, requires no fluid simulation data, and allows
convolutional neural networks to map a fluid state from time-point t to a
subsequent state at time t + dt in a single forward pass. This simplifies the
pipeline to train and evaluate neural fluid models. After training, the framework
yields models that are capable of fast fluid simulations and can handle various fluid
phenomena including the Magnus effect and Kármán vortex streets. We present
an interactive real-time demo to show the speed and generalization capabilities
of our trained models. Moreover, the trained neural networks are efficient
differentiable fluid solvers as they offer a differentiable update step to advance
the fluid simulation in time. We exploit this fact in a proof-of-concept optimal
control experiment. Our models significantly outperform a recent differentiable
fluid solver in terms of computational speed and accuracy.

1 INTRODUCTION

Simulating the behavior of fluids by solving the incompressible Navier-Stokes equations is of great
importance for a wide range of applications and accurate as well as fast fluid simulations are a
long-standing research goal. On top of simulating the behavior of fluids, several applications such
as sensitivity analysis of fluids or gradient-based control algorithms rely on differentiable fluid
simulators that allow to propagate gradients throughout the simulation (Holl et al. (2020)).

Recent advances in deep learning aim for fast and accurate fluid simulations but rely on vast datasets
and / or do not generalize to new fluid domains. Kim et al. (2019) present a framework to learn
parameterized fluid simulations and allow to interpolate efficiently in between such simulations.
However, their work does not generalize to new domain geometries that lay outside the training
data. Kim & Lee (2020) train a RNN-GAN that produces turbulent flow fields within a pipe
domain, but do not show generalization results beyond pipe domains. Xie et al. (2018) introduce a
tempoGAN to perform temporally consistent superresolution of smoke simulations. This allows to

1

Published as a conference paper at ICLR 2021

produce plausible high-resolution smoke-density fields for arbitrary low-resolution inputs, but our
fluid model should output a complete fluid state description consisting of a velocity and a pressure
field. Tompson et al. (2017) present how a Helmholtz projection step can be learned to accelerate
Eulerian fluid simulations. This method generalizes to new domain geometries, but a particle tracer
is needed to deal with the advection term of the Navier-Stokes equations. Furthermore, as Eulerian
fluids do not model viscosity, effects like e.g. the Magnus effect or Kármán vortex streets cannot
be simulated. Geneva & Zabaras (2020) propose a physics-informed framework to learn the entire
update step for the Burgers equations in 1D and 2D, but no generalization results for new domain
geometries are demonstrated. All of the aforementioned methods rely on the availability of vast
amounts of data from fluid-solvers such as FEniCS, OpenFOAM or Mantaflow. Most of these
methods do not generalize well or outsource a major part of the fluid simulation to traditional
methods such as low-resolution fluid solvers or a particle tracer.

In this work, we propose a novel unsupervised training framework to learn incompressible fluid
dynamics from scratch. It does not require any simulated fluid-data (neither as ground truth
data, nor to train an adversarial network, nor to initialize frames for a physics-constrained loss)
and generalizes to fluid domains unseen during training. It allows CNNs to learn the entire
update-step of mapping a fluid domain from time-point t to t + dt without having to rely on
low resolution fluid-solvers or a particle-tracer. In fact, we will demonstrate that a physics-
constrained loss function combined with a simple strategy to recycle fluid-data generated by the
neural network at training time suffices to teach CNNs fluid dynamics on increasingly realistic
statistics of fluid states. This drastically simplifies the training pipeline. Fluid simulations
get efficiently unrolled in time by recurrently applying the trained model on a fluid state.
Furthermore, the fluid models include viscous friction and handle effects such as the Magnus
effect and Kármán vortex streets. On top of that, we show by a gradient-based optimal control
example how backpropagation through time can be used to differentiate the fluid simulation.
Code and pretrained models are publicly available at https://github.com/aschethor/
Unsupervised_Deep_Learning_of_Incompressible_Fluid_Dynamics/.

2 RELATED WORK

In literature, several different approaches can be found that aim to approximate the dynamics of
PDEs in general and fluids in particular with efficient, learning-based surrogate models.

Lagrangian methods such as smoothed particle hydrodynamcs (SPH) Gingold & Monaghan (1977)
handle fluids from the perspective of many individual particles that move with the velocity field.
Following this approach, learning-based methods using regression forests by Ladický et al. (2015),
graph neural networks by Mrowca et al. (2018); Li et al. (2019) and continuous convolutions by
Ummenhofer et al. (2020) have been developed. In addition, Smooth Particle Networks (SP-Nets)
by Schenck & Fox (2018) allow for differentiable fluid simulations within the Lagrangian frame of
reference. These Lagrangian methods are particularly suitable when a fluid domain exhibits large,
dynamic surfaces (e.g. waves or droplets). However, to simulate the dynamics within a fluid domain
accurately, Eulerian methods, that treat the Navier-Stokes equations in a fixed frame of reference,
are usually better suited.

Continuous Eulerian methods allow for mesh-free solutions by mapping domain coordinates (e.g.
x,y,t) directly onto field values (e.g. velocity ~v / pressure p) (Sirignano & Spiliopoulos (2018);
Grohs et al. (2018); Khoo et al. (2019)). Recent applications focused on flow through porous
media (Zhu & Zabaras (2018); Zhu et al. (2019); Tripathy & Bilionis (2018)), fluid modeling
(Yang et al. (2016); Raissi et al. (2018)), turbulence modeling (Geneva & Zabaras (2019); Ling
et al. (2016)) and modeling of molecular dynamics (Schöberl et al. (2019)). Training is usually
based on physics-constrained loss functions that penalize residuals of the underlying PDEs. Similar
to our approach, Raissi et al. (2019) uses vector potentials to obtain continuous divergence-free
velocity fields to approximate the incompressible Navier-Stokes equations. Continuous methods
return smooth, accurate results and can overcome the curse of dimensionality of discrete techniques
in high-dimensional PDEs (Grohs et al. (2018)). However, these networks are trained on a specific
domain and cannot generalize to new environments or be used in interactive scenarios.

2

Published as a conference paper at ICLR 2021

Discrete Eulerian methods, on the other hand, aim to solve the underlying PDEs on a grid and early
work dates back to Harlow & Welch (1965) and Stam (1999). Accelerating such traditional works
with deep learning techniques is a major field of research and all of the methods mentioned in the
introduction fall into this category. Further methods include the approach by Thuerey et al. (2019)
to learn solutions of the Reynolds-averaged Navier-Stokes equations for airfoil flows, but requires
large amounts of training data and does not generalize beyond airfoil flows. In the work by Um
et al. (2020), a correction step is learned that brings solutions of a low-resolution differentiable fluid
solver closer to solutions of a high-resolution fluid simulation. However, generalization results for
new domain geometries were not presented. The works of Mohan et al. (2020) and Kim et al. (2019)
show that vector potentials are suitable to enforce the incompressibility constraint in fluids but do
not generalize to new fluid domains beyond their training data.

3 METHOD

In this section, we briefly review the incompressible Navier-Stokes equations, which are to be solved
by the neural network. Then, we explain how the Helmholtz decomposition can be exploited to
ensure incompressibility within the fluid domain. Furthermore, we provide details of our discrete
spatio-temporal fluid representation and introduce the fluid model. Afterwards, we formulate a
physics-constrained loss function based on residuals of the Navier-Stokes equations and introduce a
pressure regularization term for very high Reynolds numbers. Finally, we explain the unsupervised
training strategy.

3.1 INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

Most fluids can be modeled with the incompressible Navier-Stokes equations - a set of non-linear
equations that describe the interplay of a velocity field ~v and a pressure field p within a fluid domain
Ω:

∇ · ~v = 0 incompressibility on Ω (1)

ρ~̇v = ρ

(
∂~v

∂t
+ (~v · ∇)~v

)
= −∇p+ µ∆~v + ~f conservation of momentum on Ω (2)

Here, ρ describes the fluid density and µ the viscosity. Equation 1 states that the fluid is
incompressible and thus ~v is divergence-free. Equation 2 states that the change in momentum of
fluid particles must correspond to the sum of forces that arise from the pressure gradient, viscous
friction and external forces. Here, external forces on the fluid (such as e.g. gravity) can be neglected,
so we set ~f = 0.

These incompressible Navier-Stokes equations shall be solved by a CNN given initial conditions
~v0 and p0 at the beginning of the simulation and Dirichlet boundary conditions which constrain the
velocity field at the domain boundary ∂Ω:

~v = ~vd Dirichlet boundary condition on ∂Ω (3)

3.2 HELMHOLTZ DECOMPOSITION

A common method to ensure incompressibility of a fluid (see Equation 1) is to project the flow field
onto the divergence-free part of its Helmholtz decomposition. The Helmholtz theorem states that
every vector field ~v can be decomposed into a curl-free part (∇q) and a divergence-free part (∇×~a):

~v = ∇q +∇× ~a (4)

Note, that ∇ × (∇q) = ~0 and ∇ · (∇ × ~a) = 0. The Helmholtz projection consists of solving
the Poisson problem ∇ · ~v = ∆q for q, followed by substracting ∇q from the original flow field.
However, solving the Poisson equation on arbitrary domains comes at high computational costs for
classical methods and one has to rely e.g. on conjugate gradient methods to approximate its solution.

Here, we propose a different approach and directly try to learn a vector potential ~a with ~v = ∇×~a.
This ensures that the network outputs a divergence-free velocity field within the domain Ω and

3

Published as a conference paper at ICLR 2021

automatically solves Equation 1. In this work, we consider 2D fluid simulations, so only the z-
component of ~a, az , is of interest since vz and all derivatives with respect to the z-axis are zero:

∇× ~a =

(
∂yaz − ∂zay
∂zax − ∂xaz
∂xay − ∂yax

)
=

(
∂yaz
−∂xaz

0

)
=

(
vx
vy
0

)
= ~v (5)

3.3 DISCRETE SPATIO-TEMPORAL FLUID REPRESENTATION

Marker-And-Cell (MAC) grid To solve the Navier-Stokes equations, we represent the relation
between az, vx, vy, p on a 2D staggered marker-and-cell (MAC) grid (see Figure 1a). Therefore, we
discretise time and space as follows:

~a(x, y, t) =

0
0

(az)
t
i,j

 ; ~v(x, y, t) =

(
(vx)

t
i,j

(vy)
t
i,j

)
; p(x, y, t) = pti,j (6)

Obtaining gradient, divergence, Laplace and curl operations on this grid with finite differences is
straight forward and can be efficiently implemented with convolutions (see appendix A).

(a) Layout of Staggered Marker-
And-Cell (MAC) grid in 2D.

(b) Diagram of the fluid model. By recurrently applying the
model on the fluid state (pt and at), we can unroll the fluid
simulation in time.

Figure 1: MAC grid and diagram of the fluid model.

Explicit, Implicit, Implicit-Explicit (IMEX) time integration methods The discretization of the
time domain is needed to deal with the time-derivative of the velocity field ∂~v

∂t in Equation 2, which
becomes:

ρ

(
~vt+dt − ~vt

dt
+
(
~vt
′ · ∇

)
~vt
′
)

= −∇pt+dt + µ∆~vt
′
+ ~f (7)

The goal is to take as large as possible timesteps dt while maintaining stable and accurate solutions.
Stability and accuracy largely depend on the definition of vt

′
. In literature, choosing vt

′
= vt is

often referred to as explicit integration methods and frequently leads to unstable behavior. Choosing
vt
′

= vt+dt is usually associated with implicit integration methods and gives stable solutions at the
cost of numerical dissipation. Implicit-Explicit (IMEX) methods, which set vt

′
= (vt + vt+dt)/2

are a compromise between both methods and considered to be more accurate but less stable than
implicit methods.

4

Published as a conference paper at ICLR 2021

3.4 FLUID MODEL

We represent the fluid dynamics by a recurrent model that maps the fluid state pt,~at for timestep t
and the domain description Ωt+dt, ~vt+dt

d to the fluid state pt+dt,~at+dt of the next timestep. Here,
pt describes the pressure field and ~at describes the vector potential of ~vt. For t = 0, we consider
initial states p0 = 0 and ~a0 = ~0, however, other initial conditions could be considered as well.
Ωt+dt is a binary mask that contains the domain geometry and is 1 for the fluid domain and 0
everywhere else. For the boundary of the domain, we simply take the inverse of Ω: ∂Ω = 1 − Ω.
~vt+dt
d represents the Dirichlet boundary conditions and contains a velocity field that must be

matched by ~vt+dt at the domain boundaries. Figure 1b shows a diagram of the fluid model.
First,

(
pt,~at,Ωt+dt, ~vt+dt

d

)
are taken to derive a slightly more meaningful feature representation

that comprises
(
pt, at,∇× at,Ωt+dt, ∂Ωt+dt,Ωt+dt · ∇ × at,Ωt+dt · pt, ∂Ωt+dt · ~vt+dt

d

)
. These

features can be very efficiently computed with convolutions and are then fed into a U-Net
(Ronneberger et al. (2015)) with a reduced number of channels (the exact network configuration
can be found in appendix B). The mean of the U-Net output is set to 0 in order to keep p and ~a well
defined and prevent drifting offset values. Finally, the output is added to pt and ~at to obtain the
updated fluid state pt+dt and ~at+dt.

3.5 PHYSICS-CONSTRAINED LOSS FUNCTION

Using the residuals of the Navier-Stokes equations (Equations 1 and 2), we can formulate the
following loss terms on Ω and ∂Ω:

Ld = ‖∇ · ~v‖2 divergence loss on Ω (8)

Lp =

∥∥∥∥ρ
(
∂~v

∂t
+ (~v · ∇)~v

)
+∇p− µ∆~v − ~f

∥∥∥∥
2

momentum loss on Ω (9)

Lb = ‖~v − ~vd‖2 boundary loss on ∂Ω (10)

Combining the described loss terms, we obtain the following loss function:

L = αLd + βLp + γLb (11)

where α, β, γ are hyperparameters that weight the contributions of the different loss terms. Note
that if we use a vector potential ~v = ∇×~a, Ld = 0 is automatically fulfilled and we can set α = 0.
This loss function can be computed very efficiently with convolutions in O(N) (where N = number
of grid cells), whereas solving the Navier-Stokes equations explicitly would be computationally a
lot more expensive. For detailed descriptions regarding the fully discretized loss-function, we refer
to appendix A.

3.6 PRESSURE REGULARIZATION

For very high Reynolds numbers (see Equation 13) and inviscid flows, training becomes unstable as
viscous friction cannot dissipate enough energy out of the system. This leads to unrealistic gradients
in ~v and p. For such cases, we introduce an additional regularization term for the loss function (11)
that can be traded off with Lp to stabilize training:

Lr = ‖∇p‖2 (12)

The intuition behind this regularization term is, that we want to penalize unrealistically high energies
in the pressure field.

5

Published as a conference paper at ICLR 2021

3.7 TRAINING STRATEGY

Training starts with initializing a pool {Ω0
k, (vd)0k, (az)0k, p

0
k} of randomized domains Ω0

k and
boundary conditions (vd)0k as well as initial conditions for the vector potential and pressure fields
that we both set to zero ((az)0k = 0 and p0k = 0). The resolution of our training domains is 100x300
grid cells and example-domains of the training pool are shown in appendix C. Note that our training
pool does not rely on any previously simulated fluid-data.

At each training step, a random mini-batch {Ωt
k, (vd)tk, (az)tk, p

t
k}{k∈minibatch} is drawn from the pool

and fed into the neural network which is designed to predict the velocity (~vt+dt
k = ∇× ~at+dt

k) and
pressure (pt+dt

k) fields of the next time step. Based on a physics-constrained loss-function (Equation
11), we update the weights of the network using the Adam optimizer (Kingma & Ba (2015)). At the
end of each training step, the pool is updated by replacing the old vector potential and pressure fields
(az)tk, p

t
k by the newly predicted ones (az)t+dt

k , pt+dt
k . This recycling strategy fills the training pool

with more and more realistic fluid states as the model becomes better at simulating fluid dynamics.

From time to time, old environments of the training pool are replaced by new randomized
environments and the vector potential as well as the pressure fields are reset to 0. This increases
the variance of the training pool and helps the neural network to learn "cold starts" from ~0-velocity
and 0-pressure fields.

Besides the fluid model described above, which we denote as ~a-Net in the following, we also trained
an ablation model, ~v-Net, that directly learns to predict the velocity field without a vector potential.
For the implementation of both models, we used the popular machine learning framework Pytorch
and trained the models on a NVidia GeForce RTX 2080 Ti. Training converged after about 1 day.
The hyperparameters in the loss-function for the ~a-Net were β = 1 and γ = 20. The reason
for choosing a higher weight for the loss term Lb than for Lp was the observation, that errors in
Lb can lead to unrealistic flows leaking through boundaries. For the ablation study (~v-Net), we
used α = 100, β = 1, γ = 0.001. Here, we had to choose a very high weight for Ld to ensure
incompressibility of the fluid, otherwise unrealistic source and sink effects start to appear. For Lb,
on the other hand, we used a very low weight as the boundary conditions can be trivially learned by
the ~v-Net. We used these parameter settings for all experiments.

4 RESULTS

To evaluate the potential of our method, we assess its ability to reproduce physical effects such
as Kármán vortex streets and the Magnus effect. In addition, we demonstrate its generalization
capability and real-time performance. Finally, we test the fluid models quantitatively.

4.1 QUALITATIVE EVALUATION

Qualitative analysis of wake dynamics Qualitative effects in fluid dynamics such as the wake
dynamics behind an obstacle are closely related to the Reynolds number. It is a dimensionless
quantity defined by:

Re =
ρ ‖~v‖D

µ
(13)

Here, ρ is the fluid density, ‖~v‖ is the fluid speed, D is the diameter of the obstacle, and µ is the
viscosity. (We use the units of the grid).

We retrained models for different values of µ and ρ to compare the fluid behavior for a wide range
of Reynolds numbers. Figure 2 shows, that the trained models are able to predict the wake dynamics
behind an obstacle in good accordance with qualitative expectations from fluid dynamics. As a rule
of thumb, for Re � 1, the flow becomes time-reversible. This can be noticed in Figure 2a by the
symmetry of the flow before and after the obstacle and the nearly constant pressure gradient within
the pipe. Starting from Re ≈ 10, the flow is still laminar but a static wake is forming behind the
obstacle (see Figure 2b). For Reynolds numbers Re >≈ 90, Kármán vortex streets start to appear
(see Figure 2c). A Kármán vortex street consists of clock and counterclockwise spinning vortices
that are generated at the obstacle and then start moving in a regularly oscillating pattern with the

6

Published as a conference paper at ICLR 2021

flow. For very large Reynolds numbers or inviscid flows, the flow field becomes turbulent, which
can be recognized by the irregular patterns behind the obstacle in Fig 2d.

(a) Re=0.6, µ = 5, ρ = 0.2 (b) Re=30, µ = 0.5, ρ = 1

(c) Re=600, µ = 0.1, ρ = 4 (d) Re→ ∞, µ = 0, ρ = 1
(obtained with regularization on ∇p)

Figure 2: After training, our models are able to show correct wake flow dynamics for a wide range of different
Reynolds numbers. (D = 30, ‖~v‖ = 0.5). Streamlines indicate flow direction, linewidth indicates speed and
colors represent the pressure field (blue: low pressure / yellow: high pressure).

Magnus effect The Magnus effect appears when a flow interacts with a rotating body. It is widely
known e.g. in sports such as soccer or tennis where spin is used to deflect the path of a ball. The
reason for the deflection stems from a low pressure field where the surface of the object moves along
flow direction and a high pressure field where the object surface moves against the flow. Figure 3a
shows, that our models are able to reproduce the Magnus effect around a rotating cylinder.

(a) Magnus effect on a clock-wise turning cylinder.(b) Generalization example: Note that the fluid
model has never been confronted with wing-
profiles during training.

Figure 3: Our models feature the Magnus effect and generalize to new fluid domains. Further examples are
presented in appendix D and the video.

Analysis of generalization capability We tested the networks capability to generalize to objects
not seen during training. Figure 3b shows the networks capability to meet boundary conditions of an
airfoil and return a plausible pressure field that produces lift (see low pressure on top of wing). Note
that in contrast to the approach by Thuerey et al. (2019), which learns simplified, time-averaged
solutions of the Navier-Stokes equations, our method is able to simulate the full incompressible
Navier-Stokes equations for an airfoil without relying on any ground truth data or having seen airfoil-
geometries during training. In fact, the network was only trained on simple randomized domains as
highlighted in appendix C and Figure 7. Possible reasons for the networks generalization capabilities
are:

• During training, the network gets confronted with an infinite number of different flow-
fields and randomized domain configurations because the training pool gets updated at
every training step. This prevents the network from over-fitting.

7

Published as a conference paper at ICLR 2021

• The dynamics of a fluid-particle are mostly determined by its local neighborhood /
surrounding particles. This means, the update step for a certain cell on the MAC grid is
mostly determined by close / neighboring MAC-grid cells. Since more complicated shapes
can be seen locally as a composition of basic shapes (e.g. the front of the wing can be
locally regarded as a cylinder), it suffices to train on basic shapes that provide the network
with enough examples to generalize to more complicated shapes.

Further generalization examples are provided in appendix D.

Real-time capability The fluid simulation can be easily parallelized and takes low computational
costs as one time-integration step consists just of a single forward pass through a convolutional
neural network. This enables for example interactive real-time simulations. We implemented a
demo that allows to interact with a fluid by moving obstacles, rotating spheres and changing the
flow speed within a pipe (see video in supplementary material and source code). Our method runs
at 250 timesteps per second on a 100x300 grid. In the respective experiments, we used a NVidia
GeForce RTX 2080 Ti consuming about 860 MB of GPU memory.

4.2 QUANTITATIVE EVALUATION

We compare our method (~a-Net) quantitatively with PhiFlow by Holl et al. (2020). Phiflow is a
recent, open source, differentiable fluid simulator based on a MAC grid data structure. Furthermore,
we provide an ablation study (~v-Net) that does not make use of the Helmholtz decomposition but
directly works on the velocity field ~v.

Quantitative comparison of different fluid solvers is challenging, as their performance is highly
dependent on factors like the geometry of the domain, fluid parameters such as viscosity or density,
flow speed or the timestep of the integrator. As benchmarks for fluid simulations on MAC grids are
not yet available, we built a simple toy domain on a 100 x 100 grid which simulates a flow around
an obstacle within a pipe (more details are provided in appendix E).

First, we compared the computational speed on a CPU and GPU by comparing the integration
time-steps per second (see Table 1). The ~v-Net as well as the ~a-Net are significantly faster than
PhiFlow (11x on CPU and 40x on GPU) as they do not rely on an iterative conjugate gradient solver
but instead use a single forward pass through a convolutional neural network that can be easily
parallelized on a GPU. To provide a fair comparison onLd, we set the velocity field at the boundaries
equal to ~vd. This enables us to compute Ld for the ~a-Net architecture on the domain boundaries
which would otherwise have zero divergence everywhere. This way, Ld can be interpreted as a
metric on how well the orthogonal components of the Dirichlet boundary conditions are met (i.e.
no flow leaks through the boundaries). For dt = 4, we outperformed Phiflow by several orders of
magnitude. For both, Ld and Lp, the ~a-Net architecture significantly outperformed the more naive
~v-Net approach.

Furthermore, we investigated stability by evaluating the evolution of Lp and Ld for the ~a-Net over
time (see Figure 4). As the fluid state is initialized with az = 0 and p = 0, the ~a-Net has to perform
a cold-start which is the reason for high Lp and Ld during the first circa 70 steps. Afterwards, the
~a-Net continues an accurate and stable fluid simulation.

Method CPU [TPS] GPU [TPS] Ld Lp

PhiFlow 7 - 6.2e-4 -
~v-Net (ours) 82 311 8.66e-7 4.87e-5
~a-Net (ours) 82 311 5.44e-7 1.56e-5

Table 1: Quantitative comparison of timesteps per second (TPS)
on CPU / GPU as well as divergence loss and momentum loss for
differentiable fluid solvers on a 100x100 grid for viscosity µ =
0.1, density ρ = 4 and timesteps of size dt = 4.

Figure 4: Long term stability of fluid
simulations performed by the ~a-Net

8

Published as a conference paper at ICLR 2021

4.3 OPTIMAL CONTROL OF VORTEX SHEDDING FREQUENCY

In this section, we present a proof-of-concept experiment that aims at controlling the shedding
frequency of a Kármán vortex street behind an obstacle by changing the flow speed (see Figure
5a). To this end, we exploit our previously trained differentiable fluid models.

(a) control setup (domain size:
200x100 grid cells)

(b) frequency distribution before reaching
convergence

(c) optimization curve

Figure 5: The frequency of vortex streets can be controlled using our differentiable fluid models.

First, we measure the y-component of the velocity field vy(t) behind an obstacle (see white box in
Figure 5a) over 200 time steps. Then, we compute the frequency spectrum Vy(f) of vy(t) using
the fast Fourier transform (see Figure 5b). Now, we want to adjust the inflow / outflow boundary
conditions in ~vd such that E[|Vy(f)|2] = f̂ . Here, f̂ is the target frequency. To optimize ~vd, we
define a loss function L = (E[|Vy(f)|2]− f̂)2 and compute the gradients ∂L

∂~vd
with backpropagation

through time. This is possible since all parts of the loss function including the fluid simulation that is
performed by our trained neural fluid model as well as the fast Fourier transform are differentiable.
Computing the gradients with a standard automatic differentiation library (Pytorch) took 3.5 seconds
for all 200 time steps on our 200x100 domain setup. This is considerably faster than the current
state-of-the-art differentiable fluid solver by Takahashi et al. (2021) which takes 5.42 seconds for
only 30 time steps on a smaller 128x128 grid. The update steps of ~vd are done using the ADAM-
optimizer and converge after approximately 70 iterations (see Figure 5c). We want to emphasize
that differentiable fluid simulations are limited to scenarios with low Reynolds numbers as in the
presence of turbulences, chaotic behavior will lead to exploding gradients.

5 DISCUSSION AND OUTLOOK

In this work, we present an unsupervised learning scheme for the incompressible Navier-Stokes
equations and introduce a fluid model that uses a vector potential to output divergence-free velocity
fields. Qualitative results of our trained fluid models are in good accordance with expectations from
fluid dynamics for a wide range of Reynolds numbers and generalize to unknown fluid domains.
Quantitative assessment showed superior performance in terms of accuracy and speed compared to
Phiflow and an ablation study that directly predicts the velocity field. We present a real-time demo
and demonstrate how differentiability can be used in a proof-of-concept fluid control scenario. We
believe that our fluid models can significantly speed up more sophisticated fluid control pipelines
such as described by Holl et al. (2020).

First experiments of extending this approach to 3D deliver encouraging results and are topic of future
research. Furthermore, on top of Dirichlet boundary conditions, Neumann boundary conditions and
multi-phase domains could be incorporated in future fluid models as well.

9

Published as a conference paper at ICLR 2021

REFERENCES

Nicholas Geneva and Nicholas Zabaras. Quantifying model form uncertainty in reynolds-averaged
turbulence models with bayesian deep neural networks. Journal of Computational Physics, 383:
125 – 147, 2019. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2019.01.021. URL http:
//www.sciencedirect.com/science/article/pii/S0021999119300464.

Nicholas Geneva and Nicholas Zabaras. Modeling the dynamics of pde systems with physics-
constrained deep auto-regressive networks. Journal of Computational Physics, 403:109056, 2020.

Robert A. Gingold and Joseph J. Monaghan. Smoothed particle hydrodynamics: theory and
application to non-spherical stars. Monthly notices of the royal astronomical society, 181(3):
375–389, 1977.

Philipp Grohs, Fabian Hornung, Arnulf Jentzen, and Philippe Von Wurstemberger. A proof that
artificial neural networks overcome the curse of dimensionality in the numerical approximation
of black-scholes partial differential equations. arXiv preprint arXiv:1809.02362, 2018.

Francis H. Harlow and J. Eddie Welch. Numerical calculation of time-dependent viscous
incompressible flow of fluid with free surface. The physics of fluids, 8(12):2182–2189, 1965.

Philipp Holl, Vladlen Koltun, and Nils Thuerey. Learning to control pdes with differentiable physics.
ICLR, 2020.

Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving for high-dimensional committor functions
using artificial neural networks. Research in the Mathematical Sciences, 6(1):1, 2019.

Byungsoo Kim, Vinicius C. Azevedo, Nils Thuerey, Theodore Kim, Markus Gross, and Barbara
Solenthaler. Deep fluids: A generative network for parameterized fluid simulations. In Computer
Graphics Forum, volume 38, pp. 59–70. Wiley Online Library, 2019.

Junhyuk Kim and Changhoon Lee. Deep unsupervised learning of turbulence for inflow generation
at various reynolds numbers. Journal of Computational Physics, 406:109216, 2020. ISSN 0021-
9991. doi: https://doi.org/10.1016/j.jcp.2019.109216. URL http://www.sciencedirect.
com/science/article/pii/S0021999119309210.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015.

L’ubor Ladický, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and Markus Gross. Data-
driven fluid simulations using regression forests. ACM Trans. Graph., 34(6), October 2015.
ISSN 0730-0301. doi: 10.1145/2816795.2818129. URL https://doi.org/10.1145/
2816795.2818129.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning particle
dynamics for manipulating rigid bodies, deformable objects, and fluids. In ICLR, 2019.

Julia Ling, Andrew Kurzawski, and Jeremy Templeton. Reynolds averaged turbulence modelling
using deep neural networks with embedded invariance. Journal of Fluid Mechanics, 807:155–
166, 2016.

Arvind T. Mohan, Nicholas Lubbers, Daniel Livescu, and Michael Chertkov. Embedding hard
physical constraints in neural network coarse-graining of 3d turbulence, 2020.

Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B. Tenenbaum,
and Daniel L. K. Yamins. Flexible neural representation for physics prediction. In Proceedings
of the 32nd International Conference on Neural Information Processing Systems, NIPS’18, pp.
8813–8824, Red Hook, NY, USA, 2018. Curran Associates Inc.

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: A navier-
stokes informed deep learning framework for assimilating flow visualization data. arXiv preprint
arXiv:1808.04327, 2018.

10

Published as a conference paper at ICLR 2021

Maziar Raissi, P. Perdikaris, and George Em Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686 – 707, 2019. ISSN 0021-
9991. doi: https://doi.org/10.1016/j.jcp.2018.10.045. URL http://www.sciencedirect.
com/science/article/pii/S0021999118307125.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing and
computer-assisted intervention, pp. 234–241. Springer, 2015.

Connor Schenck and Dieter Fox. Spnets: Differentiable fluid dynamics for deep neural networks.
In Conference on Robot Learning, pp. 317–335, 2018.

Markus Schöberl, Nicholas Zabaras, and Phaedon-Stelios Koutsourelakis. Predictive collective
variable discovery with deep bayesian models. The Journal of Chemical Physics, 150(2):024109,
2019. doi: 10.1063/1.5058063. URL https://doi.org/10.1063/1.5058063.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of Computational Physics, 375:1339 – 1364, 2018. ISSN 0021-
9991. doi: https://doi.org/10.1016/j.jcp.2018.08.029. URL http://www.sciencedirect.
com/science/article/pii/S0021999118305527.

Jos Stam. Stable fluids. In Proceedings of the 26th annual conference on Computer graphics and
interactive techniques, pp. 121–128, 1999.

Tetsuya Takahashi, Junbang Liang, Yi-Ling Qiao, and Ming C Lin. Differentiable fluids with solid
coupling for learning and control. 2021.

Nils Thuerey, Konstantin Weißenow, Lukas Prantl, and Xiangyu Hu. Deep learning methods for
reynolds-averaged navier–stokes simulations of airfoil flows. AIAA Journal, pp. 1–12, 2019.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating eulerian
fluid simulation with convolutional networks. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pp. 3424–3433. JMLR. org, 2017.

Rohit K. Tripathy and Ilias Bilionis. Deep uq: Learning deep neural network surrogate models for
high dimensional uncertainty quantification. Journal of Computational Physics, 375:565 – 588,
2018. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.08.036. URL http://www.
sciencedirect.com/science/article/pii/S0021999118305655.

Kiwon Um, Raymond Fei, Philipp Holl, Robert Brand, and Nils Thuerey. Solver-in-the-loop:
Learning from differentiable physics to interact with iterative pde-solvers, 2020.

Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid
simulation with continuous convolutions. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.
URL https://openreview.net/forum?id=B1lDoJSYDH.

You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. Tempogan: A temporally coherent, volumetric
gan for super-resolution fluid flow. ACM Trans. Graph., 37(4), July 2018. ISSN 0730-0301. doi:
10.1145/3197517.3201304. URL https://doi.org/10.1145/3197517.3201304.

Cheng Yang, Xubo Yang, and Xiangyun Xiao. Data-driven projection method in fluid simulation.
Computer Animation and Virtual Worlds, 27(3-4):415–424, 2016. doi: 10.1002/cav.1695. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/cav.1695.

Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder–decoder networks for
surrogate modeling and uncertainty quantification. Journal of Computational Physics, 366:415
– 447, 2018. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.04.018. URL http:
//www.sciencedirect.com/science/article/pii/S0021999118302341.

Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification
without labeled data. Journal of Computational Physics, 394:56 – 81, 2019. ISSN 0021-9991.
doi: https://doi.org/10.1016/j.jcp.2019.05.024. URL http://www.sciencedirect.com/
science/article/pii/S0021999119303559.

11

Published as a conference paper at ICLR 2021

A PHYSICS-CONSTRAINED LOSS ON A MAC GRID

As mentioned in Section 3.3 of the paper, our method relies on a staggered marker-and-cell grid
representation for the vector potential as well as the velocity and pressure fields. In the following, we
provide further details on how to apply this representation to learn incompressible fluid dynamics.

To calculate the velocity field ~v = ∇ × ~a of a vector potential ~a on a MAC grid in 2D, we have to
compute the curl as follows:

(vx)i,j = (az)i+1,j − (az)i,j
(vy)i,j = (az)i,j − (az)i,j+1

(14)

If this vector potential is inserted into the divergence operator on a MAC grid, we can show that
∇ · ~vi,j = 0 is indeed fulfilled:

∇ · ~vi,j = (vx)i,j+1 − (vx)i,j + (vy)i+1,j − (vy)i,j (15)

=
((az)i+1,j+1 − (az)i,j+1)− ((az)i+1,j − (az)i,j)

+ ((az)i+1,j − (az)i+1,j+1)− ((az)i,j − (az)i,j+1)
(16)

=0 (17)

Thus, for the ~a-Net, the incompressibility equation is automatically fulfilled and no further training
on the divergence loss Ld is required. However, for the ~v-Net, the residuals of the divergence are
still of importance:

(Rd)t+dt
i,j = ∇ · ~vt+dt

i,j (= 0 for ~a-Net) (18)

The residuals of the momentum equation in x-direction can be computed as follows:

(Rpx)t+dt
i,j =ρ

(
(vx)t+dt

i,j − (vx)ti,j
dt

+ (vx)t
′
i,j ·

(vx)t
′
i,j+1 − (vx)t

′
i,j−1

2

+

(vy)
t′
i,j−1+(vy)

t′
i,j

2 ·
(

(vx)t
′
i,j − (vx)t

′
i−1,j

)
+

(vy)
t′
i+1,j−1+(vy)

t′
i+1,j

2 ·
(

(vx)t
′
i+1,j − (vx)t

′
i,j

)

2

+
(
pt+dt
i,j − pt+dt

i,j−1
)
− µ ·∆(vx)t

′
i,j

(19)

Here, we use the following isotropic Laplace operator:

∆si,j =
1

4
(1 ∗ si−1,j−1 + 2 ∗ si−1,j + 1 ∗ si−1,j+1

+2 ∗ si,j−1 − 12 ∗ si,j + 2 ∗ si,j+1

+1 ∗ si+1,j−1 + 2 ∗ si+1,j + 1 ∗ si+1,j+1)

(20)

The derivation of the advection term for Rpx is a bit more complex since on a MAC grid, vx and
vy are displaced by half a pixel in x-direction and y-direction. To obtain the residuals of the
momentum equation in y-direction, (Rpy

)i,j , one has to take (Rpx
)i,j and swap x and y and the

indices respectively.

Now, the discretized loss terms can be written as follows:

Lt+dt
d =

∑

i,j

Ωt+dt
i,j ((Rd)t+dt

i,j)2 (21)

Lt+dt
p =

∑

i,j

Ωt+dt
i,j

(
((Rpx

)t+dt
i,j)2 + ((Rpy

)t+dt
i,j)2

)
(22)

Lt+dt
b =

∑

i,j

∂Ωt+dt
i,j

∥∥~vt+dt
d − ~vt+dt

∥∥2 (23)

12

Published as a conference paper at ICLR 2021

Note, that all mentioned operations can be efficiently implemented with convolutions. To obtain the
final velocities on a square grid, we project the velocity fields of the MAC grid back onto the ~a-grid
using linear interpolation:

~v =
1

2

(
(vx)i−1,j + (vx)i,j
(vy)i,j−1 + (vy)i,j

)
(24)

B NETWORK ARCHITECTURE

Our fluid model is based on the U-Net architecture (Ronneberger et al. (2015)) with fewer channels
(see Figure 6). As the pressure field and vector potential can have an arbitrary offset, we always
normalize the mean of the pressure (∆p) and vector potential (∆az) to 0 to keep these fields well-
defined and prevent drifting offset values.

Figure 6: U-Net architecture with fewer channels.

C EXAMPLES OF TRAINING DOMAINS

The domains we used for training consist of 100 × 300 grids. We used 3 different randomized
domains as exemplary depicted in Figure 7. First, we have boxes with randomized height and width
that float on randomized paths inspired by Brownian motion in a pipe with randomized flow speed.
Second, we have the same setup but replaced the boxes by cylinders with randomized radii and
angular velocities in order to learn the Magnus effect. Finally, we have a folded pipe system with
randomized flow speed, that is randomly flipped along the x-axis.

D FURTHER EXAMPLES OF GENERALIZATION

Note that the network was only trained on simple domain geometries as presented in appendix C.
Still, as can be seen in Figure 8, the network is capable of generalizing to far more complicated
domain geometries (e.g. shark, car). Figure 8c shows that it can generalize to multiple objects in the
scene, although the training set contained at most one object per scene. And Figure 8d shows that
we can alter the outer boundary conditions as well. For real-time simulations, please have a look at
our source code and the supplementary video.

E QUANTITATIVE ANALYSIS: THE BENCHMARK PROBLEM

Figure 9 shows the domain Ω and vd on a 100×100 grid which was used as the benchmark problem
for quantitative analysis. The flow speed for the inlet and outlet was set to 0.5. The timestep of
the integrator was set to dt = 4 and the viscosity and fluid density were set to µ = 0.1 and ρ = 4
respectively.

13

Published as a conference paper at ICLR 2021

(a) (b)

(c) (d)

(e) (f)

Figure 7: The left column shows Ω (in white) / ∂Ω (in black) and the right column shows ~vd for three examples
of training domains. (Colors indicate the direction and magnitude of ~vd as depicted in Figure 9a)

(a) Shark (b) Car

(c) Smiley (d) Smiley in cave

Figure 8: Our models generalize to various domain geometries, although being trained only on simple shapes
(see Figure 7)

F QUALITATIVE COMPARISON OF ~a-NET AND ~v-NET

We give a qualitative example to show the benefits of using a vector potential. Figure 10
demonstrates that the~a-Net finds plausible solutions for a folded pipe domain while the ~v-Net looses
most of the flow in the center of the domain. This is in good accordance with quantitative results
shown in section 1. The folded pipe domain is particularly difficult to learn as the flow field contains
long range dependencies to the inlet and outlet (as shown in the bottom row in Figure 7).

G TRAINING WITHOUT RESETTING ENVIRONMENTS

We performed an ablation study to investigate what happens if we do not reset old environments from
time to time and, thus, do not continuously present the fluid model with cold starts during training.
Figure 11 shows that in this case, large error spikes appear in the validation curve. These error spikes
appear since the model has troubles to perform a cold start as can be seen in Figure 11b: compared

14

Published as a conference paper at ICLR 2021

(a) (b) (c)

Figure 9: a) shows legend for ~vd; b) shows Ω (in white) / ∂Ω (in black) for the benchmark problem; c) shows
~vd for the benchmark problem. (Colors indicate the direction of ~vd as depicted in a)

(a) ~a-Net (b) ~v-Net

Figure 10: Qualitative comparison of ~a-Net and ~v-Net in a folded pipe domain

to a properly trained model (see Figure 4) the model takes longer to perform a cold start (ca 100
steps) and converges to a solution with high Lp- and Ld- losses. By resetting the environments from
time to time during training, we can prevent these error spikes as shown in Figure 11c.

(a) (b) (c)

Figure 11: a) ablation study without resetting environments: validation curve shows large error spikes during
training; b) error spike: the fluid model takes longer to perform a cold start and converges to a solution with
high losses; c) original training with resetting environments: validation curve is stable

15

Publication:
“Teaching the Incompressible Navier-Stokes
Equations to Fast Neural Surrogate Models in

3D”

Nils Wandel, Michael Weinmann, and Reinhard Klein

Physics of Fluids

2021

Reproduced from Nils Wandel et al. [2021b]. “Teaching the Incompressible Navier-Stokes
Equations to Fast Neural Surrogate Models in 3D.” Physics of Fluids (AIP), Volume 33, Issue 4.

Volume 33. 4. AIP Publishing LLC, page 047117. doi: 10.1063/5.0047428, with the
permission of AIP Publishing

97

https://doi.org/10.1063/5.0047428

Phys. Fluids 33, 047117 (2021); https://doi.org/10.1063/5.0047428 33, 047117

© 2021 Author(s).

Teaching the incompressible Navier–Stokes
equations to fast neural surrogate models in
three dimensions
Cite as: Phys. Fluids 33, 047117 (2021); https://doi.org/10.1063/5.0047428
Submitted: 13 February 2021 • Accepted: 06 April 2021 • Published Online: 30 April 2021

 Nils Wandel, Michael Weinmann and Reinhard Klein

ARTICLES YOU MAY BE INTERESTED IN

Super-resolution and denoising of fluid flow using physics-informed convolutional neural
networks without high-resolution labels
Physics of Fluids 33, 073603 (2021); https://doi.org/10.1063/5.0054312

A point-cloud deep learning framework for prediction of fluid flow fields on irregular
geometries
Physics of Fluids 33, 027104 (2021); https://doi.org/10.1063/5.0033376

Uncovering near-wall blood flow from sparse data with physics-informed neural networks
Physics of Fluids 33, 071905 (2021); https://doi.org/10.1063/5.0055600

Teaching the incompressible Navier–Stokes
equations to fast neural surrogate models in three
dimensions

Cite as: Phys. Fluids 33, 047117 (2021); doi: 10.1063/5.0047428
Submitted: 13 February 2021 . Accepted: 6 April 2021 .
Published Online: 30 April 2021

Nils Wandel,a) Michael Weinmann,b) and Reinhard Kleinc)

AFFILIATIONS

Institute of Computer Science, University of Bonn, Friedrich-Hirzebruch-Allee 8, 53115 Bonn, Germany

a)Author to whom correspondence should be addressed: wandeln@cs.uni-bonn.de
b)Electronic mail: mw@cs.uni-bonn.de
c)Electronic mail: rk@cs.uni-bonn.de

ABSTRACT

Physically plausible fluid simulations play an important role in modern computer graphics and engineering. However, in order to achieve
real-time performance, computational speed needs to be traded-off with physical accuracy. Surrogate fluid models based on neural networks
(NN) have the potential to achieve both fast fluid simulations and high physical accuracy. However, these approaches rely on massive
amounts of training data, require complex pipelines for training and inference, or do not generalize to new fluid domains. In this work, we
present significant extensions to a recently proposed deep learning framework, which addresses the aforementioned challenges in two dimen-
sions (2D). We go from 2D to three dimensions (3D) and propose an efficient architecture to cope with the high demands of 3D grids in
terms of memory and computational complexity. Furthermore, we condition the neural fluid model on additional information about the flu-
id’s viscosity and density, which allows for simulating laminar as well as turbulent flows based on the same surrogate model. Our method
allows us to train fluid models without requiring fluid simulation data beforehand. Inference is fast and simple, as the fluid model directly
maps a fluid state and boundary conditions at a moment t to a subsequent fluid state at t þ dt. We obtain real-time fluid simulations on a
128 � 64 � 64 grid that include various fluid phenomena such as the Magnus effect or K�arm�an vortex streets and generalize to domain
geometries not considered during training. Our method indicates strong improvements in terms of accuracy, speed, and generalization capa-
bilities over current 3D NN-based fluid models.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0047428

I. INTRODUCTION

Computational fluid dynamics play an important role in applica-
tions ranging from computer games to computer generated imagery to
applications in industry to basic research in fields such as weather fore-
casting1 or simulations of aerosol clouds produced by expiratory
events.2,3 For all of these applications, certain tradeoffs with respect to
speed, accuracy, and stability have to be made.

While physical correctness is of utmost importance for engineer-
ing applications like aerodynamic design, applications in computer
graphics such as simulations for games or movies particularly focus on
computational efficiency under the constraint of producing visually
plausible results. Often, physical accuracy is sacrificed by means of
introducing pseudo-forces in order to get more appealing curls or by a
physically inaccurate notion of viscosity to mitigate numerical
dissipation.

As solving the equations of fluid dynamics based on numerical
approximation schemes comes at high computational costs that can-
not be handled in real time, recent developments particularly focused
on exploiting the potential of deep learning in the context of surrogate
fluid solvers to significantly reduce the computational burden while
maintaining high physical accuracy.4–8 Grid-based, physics-informed
learning strategies have been shown to allow convolutional neural net-
works (CNNs) to advance a fluid state in time efficiently and to gener-
alize well to new domain geometries that are not contained in the
training set.4,5 In contrast to the approach by Tompson et al.,4 the
approach by Wandel et al.5 can handle viscous fluids and dynamic
boundary conditions while not relying on the availability of training
data from fluid simulations. Nevertheless, this method is limited to
simulations in two dimensions (2D) domains and, hence, not suitable
for the description of general three dimensions (3D) fluid behavior

Phys. Fluids 33, 047117 (2021); doi: 10.1063/5.0047428 33, 047117-1

Published under license by AIP Publishing

Physics of Fluids ARTICLE scitation.org/journal/phf

since symmetry along the third dimension cannot be expected in gen-
eral. Using 3D grids, in turn, comes at the cost of significantly increas-
ing computational complexity and memory requirements. Additional
challenges are given by the increasing number of degrees of freedom
for 3D fluid motion as well as the more complex boundary conditions
in 3D domains.

In this paper, we address these challenges by a novel unsuper-
vised approach of learning incompressible fluid dynamics, i.e., how a
fluid state at time step t changes to a subsequent state at time step
tþ dt, in 3D. For this purpose, we represent the fluid on a 3D staggered
marker-and-cell grid and formulate a physics-informed loss function
by penalizing residuals of the Navier–Stokes equations on this repre-
sentation. We test our method on a 3D U-Net9 architecture and, to
meet the demands for real-time performance, we also propose an
efficient pruned 3D U-Net-based architecture. This allows for fluid
simulations on a 128� 64� 64 grid at 36 time steps per second while
taking into account various fluid phenomena such as the Magnus effect
and K�arm�an vortex streets. Furthermore, our framework allows us to
generalize to 3D domain geometries not considered during training
and does not rely on previously generated fluid data, hence significantly
increasing its practical relevance as there is no need to consider large
amounts of data from fluid solvers such as FEniCS, OpenFOAM10 or
Mantaflow for the training of the fluid model. As demonstrated by our
experiments, our method indicates strong improvements in terms of
accuracy, speed, and generalization capabilities compared to existing
deep learning-based approaches. The code and data to reproduce our
results are made available at: https://github.com/aschethor/Teaching_
Incompressible_Fluid_Dynamics_to_3D_CNNs.

II. RELATED WORK

In recent years, the rapid progress in deep learning inspired
several approaches to approximate the dynamics of partial differential
equations (PDEs) with efficient, learning-based surrogate models.

Lagrangian methods such as smoothed particle hydrodynamics
(SPH)11 model fluids based on a large number of individual particles
that move with the fluid’s velocity field, i.e., each particle has different
properties like mass or velocity. As a result, the conservation of mass
can be easily preserved. Respective Lagrangian learning-based
approaches for fluid simulation have been proposed based on regres-
sion forests,12 graph neural networks13,14 and continuous convolu-
tions.15 Furthermore, differentiable fluid simulations have been
achieved based on Smooth Particle Networks (SP-Nets).16 Whereas
Lagrangian methods are particularly suitable for fluid domains with
large, dynamic surfaces such as waves or droplets, the accurate simula-
tion of fluid dynamics within a fluid domain usually can be better
achieved with Eulerian methods.

Eulerian methodsmodel fluid properties such as the fluid’s veloc-
ity or pressure field on a fixed frame of reference. This includes meth-
ods that describe the fluid state using implicit neural representations,
finite elements, or grid structures.

Continuous Eulerian methodsmap domain coordinates (e.g., x, y,
t) directly onto field values (e.g., velocity ~v/pressure p) using, e.g.,
implicit neural representations, thereby allowing for mesh-free
solutions.17–19 Respective applications include the modeling of flow
through porous media,20–22 fluid modeling,23,24 turbulence model-
ing25,26 and modeling of molecular dynamics.27 Such learning-based
approaches typically involve a training process that includes a physics-

informed loss function to penalize residuals of the underlying PDEs.
Furthermore, similar to our approach, Raissi et al.28 focused on the
approximation of the incompressible Navier–Stokes equations based
on leveraging vector potentials to obtain continuous divergence-free
velocity fields. While such continuous methods allow smooth and
accurate simulations as well as overcoming the curse of dimensionality
of discrete techniques in high-dimensional PDEs,18 the training of the
respective networks relies on a specific domain. Hence, these networks
are not capable of generalizing to new domains or being used in inter-
active scenarios.

In contrast, discrete Eulerian methods such as finite difference
approaches, lattice Boltzmann29,30 or finite element methods solve the
underlying PDEs on a grid or a mesh. While seminal work has been
published decades ago,31,32 recent techniques particularly focus on
leveraging the potential of deep learning techniques to achieve speed-
ups while maintaining accuracy. Frameworks to learn parameterized
fluid simulations7 allow an efficient interpolation between such simu-
lations. Furthermore, a recurrent generative adversarial network
(RNN-GAN) has been used to produce turbulent flow fields within a
pipe domain.33 However, in both cases, a generalization to new
domain geometries not considered during training has not been
achieved. The tempoGAN introduced by Xi et al.34 allows temporally
consistent super-resolution in the context of smoke simulations,
thereby producing plausible high-resolution smoke-density fields for
low-resolution inputs. This, however, is not in accordance with our
goal to obtain a fluid model that provides complete fluid state repre-
sentations including velocity and pressure fields. With a focus on
accelerating the simulation of Eulerian fluids, Tompson et al.4 have
shown how a Helmholtz projection step can be learned. While this
method is capable to generalize to domain geometries not considered
during training, the technique relies on a particle tracer to deal with
the advection term of the Navier–Stokes equations. In addition, char-
acteristic effects such as the Magnus effect or K�arm�an vortex streets
cannot be simulated since Eulerian fluids do not model viscosity and
dynamics boundary conditions were not considered. Several works7,35

make use of discretized vector potentials to ensure incompressibility
within the fluid domain but do not generalize to new fluid domains
beyond their training data. Discarding the pressure term in the
Navier–Stokes equation, Geneva et al.8 introduced a physics-informed
framework to learn the update step for the Burgers’ equation. Thuerey
et al.36 proposed to learn solutions of the Reynolds-averaged
Navier–Stokes equations for airfoil flows. However, their approach
does not generalize beyond airfoil flows and Reynolds-averaged
Navier–Stokes equations do not model the temporal evolution of a
fluid state. Furthermore, Um et al.6 focused on learning a correction
step so that solutions of a high-resolution fluid simulation can be
approximated by a low-resolution differentiable fluid solver. However,
generalization to new domain geometries has not been demonstrated.

The approach of Wandel et al.5 also falls into this category of
discrete Eulerian approaches. However, unlike the aforementioned
approaches, this approach does not rely on the availability of vast
amounts of data from fluid solvers such as FEniCS, OpenFOAM10 or
Mantaflow and handles dynamic boundary conditions allowing for
interactions with the fluid in 2D. In this paper, we extend this
approach to 3D fluid dynamics and extend the networks capability
toward also handling changes of fluid parameters such as viscosity and
density during simulation.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 047117 (2021); doi: 10.1063/5.0047428 33, 047117-2

Published under license by AIP Publishing

III. METHOD

In this section, we first provide a brief introduction of the incom-
pressible Navier–Stokes equations, which describe the dynamics of
most incompressible fluids. This is followed by a review of the
Helmholtz decomposition that can be used to ensure incompressibility
within a fluid domain. Afterwards, we present the details of our dis-
crete neural fluid model and show how a physics-informed loss func-
tion can be used to learn fluid dynamics in 3D without training data.

A. Incompressible Navier–Stokes Equations

The Navier–Stokes equations are a well-established model for the
dynamics of most incompressible fluids. If we consider the state of an
incompressible fluid consisting of a velocity field~v and a pressure field
p on a fluid domain X, then the incompressible Navier–Stokes equa-
tions describe its evolution over time by a set of two partial differential
equations, which are often referred to as incompressibility equation
and momentum equation.

The incompressibility equation ensures incompressibility of the
fluid by enforcing that~v is divergence-free

r �~v ¼ 0 inX: (1)

The momentum equation ensures conservation of momentum
within the fluid

q _~v ¼ q
@~v
@t
þ ~v � rð Þ~v

� �
¼ �rpþ lD~v þ~f inX: (2)

Here, q denotes the fluid density and l the viscosity. The left-hand
side of this equation can be interpreted as the change in momentum of
fluid particles and the right-hand side represents the sum of the forces
acting on them. These forces include the pressure gradientrp, viscous
friction lD~v and external forces~f . In this work, we set~f ¼ 0 since
external forces, such as gravity, can be neglected.

On top of ensuring incompressibility and conservation of
momentum within X, we also have to match initial conditions~v0 and
p0 at the beginning of the simulation and fulfill Dirichlet boundary
(no-slip) conditions at the boundary of the domain @X. The Dirichlet
boundary conditions state that the velocity field ~v has to match the
velocity~vd at the domain boundaries, i.e.,

~v ¼~vd on @X: (3)

B. Ensuring incompressibility using a vector potential

The Helmholtz theorem states that every vector field ~v can be
decomposed into a curl-free part rq and a divergence-free part
r�~a, that is

~v ¼ rqþr�~a: (4)

Note that rq is curl-free (r� ðrqÞ ¼~0) and r�~a is
divergence-free (r � ðr�~aÞ ¼ 0).

A common method to ensure incompressibility is to project ~v
onto its divergence free part by solving the Poisson problem r �~v
¼ Dq followed by subtracting rq from ~v .4,32 Solving the Poisson
problem, however, comes at high computational costs. Approximate,
learned solutions4 cannot guarantee proper projections onto the

divergence-free part and thus might not fulfill incompressibility within
the domain exactly.

For this reason, we directly predict a vector potential~a similar to
previous work.5,7,28 This guarantees incompressibility of the velocity
field ~v ¼ r�~a within the domain and automatically solves the
incompressibility equation [Eq. (1)].

C. Discrete spatio-temporal 3D fluid representation

In order to process the fluid state with a 3D convolutional neural
network, we consider the following spatial and temporal
discretizations:

~a ¼

axð Þti;j;k
ayð Þti;j;k
azð Þti;j;k

0
BBB@

1
CCCA; ~v ¼

vxð Þti;j;k
vyð Þti;j;k
vzð Þti;j;k

0
BBB@

1
CCCA; p ¼ pti;j;k: (5)

The relationship between ~a; ~v and p can be efficiently repre-
sented by arranging the discretized quantities on a Marker-And-Cell
(MAC) grid as depicted in Fig. 1(a). This grid representation allows us
to compute gradients, divergence, curl, and Laplace operations for the
Navier–Stokes equations in a straightforward manner.

To calculate the velocity field~v ¼ r�~a of a vector potential~a
on a MAC grid in 3D, we have to compute the curl as follows:

ðvxÞi;j;k
ðvyÞi;j;k
ðvzÞi;j;k

0
BB@

1
CCA ¼

ðazÞi;jþ1;k � ðazÞi;j;k � ðayÞi;j;kþ1 þ ðayÞi;j;k
ðaxÞi;j;kþ1 � ðaxÞi;j;k � ðazÞiþ1;j;k þ ðazÞi;j;k
ðayÞiþ1;j;k � ðayÞi;j;k � ðaxÞi;jþ1;k þ ðaxÞi;j;k

0
BB@

1
CCA: (6)

The divergence of the velocity field~v can be computed as follows:

r �~vi;j;k ¼ðvxÞiþ1;j;k � ðvxÞi;j;k þ ðvyÞi;jþ1;k � ðvyÞi;j;k
þ ðvzÞi;j;kþ1 � ðvzÞi;j;k (7)

¼ 0: (8)

By inserting the results from Eq. (6) into Eq. (7), we immediately arrive
at Eq. (8) (~v is divergence-free and the fluid thus incompressible).

For the Laplace operator, we use a 3D convolution with the
27-point stencil by37 as it provides a more isotropic estimate of
the Laplacian at similar computational costs compared to 7-point or
19-point stencils.

The temporal derivative in Eq. (2) is handled as follows:

q
~vtþdt �~vt

dt
þ ~vt

0 � r
� �

~vt
0

� �
¼ �rptþdt þ lD~vt

0 þ~f : (9)

In literature, there are several different methods to assign ~vt
0
. The

explicit method sets ~vt
0 ¼~vt whereas the implicit method sets

~vt
0 ¼~vtþdt . Here, we focus on an implicit–explicit (IMEX) scheme

that sets~vt
0 ¼ ~v tþ~vtþdt

2 .

D. Fluid model

Building upon this discrete representation, we now introduce a
recurrent model for fluid dynamics, F, that maps the fluid state speci-
fied by the vector potential~at and the pressure field p0 at time point t

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 047117 (2021); doi: 10.1063/5.0047428 33, 047117-3

Published under license by AIP Publishing

to its subsequent state~atþdt and ptþdt at time point t þ dt, given the
domain Xtþdt with boundary conditions ~vtþdt ¼~vtþdtd and fluid
parameters ltþdt ;qtþdt :

ð~a; pÞtþdt ¼ Fðð~a; pÞt ;Xtþdt ;~vtþdtd ;ltþdt ;qtþdtÞ: (10)

By recurrently applying F on the initial fluid state (~a0; p0), the fluid
simulation can be unrolled in time for given boundary conditions and
fluid parameters (Xt ;~vtd;l

t ;qt):

ð~a;pÞn�dt ¼ Fð…Fðð~a;pÞ0;Xdt ;~vdtd ;l
dt ;qdtÞ…;Xn�dt ;~vn�dtd ;ln�dt ;qn�dtÞ:

(11)

Figure 1(b) gives an overview over the fluid model F. First, a fea-
ture representation is build based on the inputs:

Features ¼ pt ;~at ;r�~at ;Xtþdt ; @Xtþdt ;Xtþdt � r �~at ;
�
Xtþdt � pt; @Xtþdt �~vtþdtd ; ln ðltþdtÞ; ln ðqtþdtÞÞ: (12)

Here, the boundary (@X) is simply set to 1� X. These features
can be efficiently computed with convolutions and are then fed into a
3D CNN. We can make arbitrary choices for the 3D CNN and tested
2 different variants (see Fig. 2): a 3D U-Net9 version for accurate simu-
lations and a pruned 3D U-Net version that is less accurate but consid-
erably faster. For this smaller model, we replaced concatenations with
sums and removed 2 pooling stages as well as hidden layers at every
stage. Then, the output of the 3D CNN is mean-normalized to prevent
drifting offsets of~a/p and added to the previous state of~at and pt to
obtain the fluid state of the next time step~atþdt and ptþdt .

E. Physics-informed loss function

In the following, we introduce a loss function based on the resid-
uals of the Navier–Stokes equations [Eqs. (1) and (2)] as well as the
boundary conditions [see Eq. (3)]. Incompressibility [Eq. (1)] is
already ensured by the vector potential. To enforce the momentum

FIG. 1. (a) 3D Marker-And-Cell (MAC) grid and (b) diagram of the fluid model. (a) Positions and directions of pressure coordinates (red box in the center), velocity coordinates
(blue arrows perpendicular to lattice faces) and vector potential coordinates (green arrows along lattice edges) in a 3D staggered Marker-And-Cell (MAC) grid. (b) Pipeline of the
3D CNN-based fluid model. We unroll the fluid simulation in time by recurrently applying this fluid model on the fluid state ð~a; pÞt . We tested 2 different 3D CNNs (see Fig. 2).

FIG. 2. Two variants of 3D convolutional neural networks that were used inside the fluid model [see Fig. 1(b)]. (a) 3D U-Net architecture and (b) pruned 3D U-Net architecture.
A U-Net consists of a downsampling part (performed by max pool operations marked in red), an upsampling part (performed by up-convolutions marked in green) and shortcut
connections to preserve high-resolution features (marked in grey). (a) 3D U-Net architecture as introduced by Cicek et al.9 (b) Pruned 3D U-Net architecture.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 047117 (2021); doi: 10.1063/5.0047428 33, 047117-4

Published under license by AIP Publishing

equation [Eq. (2)] to be fulfilled, we formulate the following momen-
tum loss term:

Lp ¼ q
~vtþdt �~vt

dt
þ ~vt

0 � r
� �

~vt
0

� �
þrptþdt � lD~vt

0 �~f
����

����
2

inX:

(13)

Furthermore, the compliance with the Dirichlet boundary conditions
[Eq. (3)] is enforced by a boundary loss term:

Lb ¼ k~vtþdt �~vtþdtd k2 on @X: (14)

Combining the described loss terms, we obtain the following loss
function:

L ¼ aLp þ bLb: (15)

a and b are hyperparameters to weight the different loss terms.
We chose a¼ 1 and b¼ 20, because errors in Lb lead to very unrealis-
tic fluxes penetrating the boundaries. Note that in contrast to solving
the Navier–Stokes equations explicitly, computing these loss terms can
be done very efficiently by convolutions in O(N) where N corresponds
to the number of grid cells.

F. Training strategy

To start training, we initialize a pool f~a0k; p0k;X
0
k; ð~vdÞ

0
k;

lk; qkgfk2poolg of initial states for the vector potential~a
0
k and pressure

field p0k as well as randomized domains X0
k, boundary conditions

ð~vdÞ0k, and fluid parameters lk;qk. For simplicity, the initial fluid states
are set to 0 (~a0k ¼ 0 and p0k ¼ 0). The randomized domains contain
primitive shapes such as boxes, spinning balls, or cylinders, and the
resolution of these domains is 128 � 64 � 64 voxels. Figure 3 shows
examples of such training domains. In the future, more complex train-
ing domains could be added to further refine the fluid models. Note
that in contrast to other 3D grid-based training methods (including
Refs. 4 and 8) we do not need any simulated fluid-data.

For every training step, we draw a random mini-batch
f~atk; ptk;X

t
k; ð~vdÞ

t
k; lk; qkgfk2minibatchg (batch size¼ 14) from the pool

and feed it into the neural network. Then, the neural network is asked
to predict the velocity (~vtþdtk ¼ r�~atþdtk) and pressure (ptþdtk) fields
of the next time step. Based on a physics-informed loss-function
[Eq. (15)], we update the weights of the network using the Adam opti-
mizer38 (learning rate¼ 0.000 5). At the end of each training step, the
pool is updated by replacing the old vector potential and pressure
fields ~atk; p

t
k by the newly predicted ones ~atþdtk ; ptþdtk . This recycling

strategy fills the training pool with more and more realistic fluid states
as the model becomes better at simulating fluid dynamics.

From time to time, old environments of the training pool are
replaced by new randomized environments, and the vector potential
as well as the pressure fields is reset to 0. This increases the variance of
the training pool and helps the neural network to learn “cold starts”
from~0-velocity and 0-pressure fields.

For the implementation of the fluid models, we used the machine
learning framework Pytorch and trained the models on an NVidia
GeForce RTX 2080 Ti. Training converged after about 5 days.

IV. RESULTS

In the following, we present qualitative results for various
different Reynolds numbers as well as quantitative results to
compare the performance of the U-Net with the small model
version.

A. Qualitative evaluation

Here, we provide a qualitative analysis of the wakeflow dynamics
for different Reynolds numbers and show that our technique is capable
of handling the Magnus effect as well as generalizing to new domains
not seen during training.

1. Wakeflow dynamics

Snapshots of the velocity and pressure fields around an elongated
obstacle that were generated by our fluid model are visualized in Fig. 4
with Paraview. In the following, we will discuss the produced wake
dynamics and pressure fields qualitatively.

The wake dynamics behind an obstacle depend largely on the
Reynolds number of a flow field. The Reynolds number is defined as
follows:

Re ¼ qk~vkD
l

; (16)

where q and l are the fluid density and viscosity, respectively, jj~vjj is
the flow speed, and D the obstacle’s diameter. For very small Reynolds
numbers [see Fig. 4(a)], the flow becomes time-reversible. This means,
if we would reverse the simulation, the streamlines would still look the
same. This can be recognized by the symmetry of the streamlines
before and after the obstacle and the pressure gradient. For Reynolds
numbers around 10, the fluid starts to form a laminar wake behind the
obstacle. This can be seen in Fig. 4(b), where two vortices are forming

FIG. 3. (a)/(b)/(c) show examples of randomized training domains (resolution: 128 � 64 � 64 voxels). The inflow/outflow boundaries are on the left/right sides of the domains
(see red boxes). (a) Box environment. (b) Ball environment. (c) Cylinder environment.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 047117 (2021); doi: 10.1063/5.0047428 33, 047117-5

Published under license by AIP Publishing

behind the obstacle. For Reynolds numbers beyond 100, the wake
becomes unstable and vortices generated at the obstacle start to detach
and travel downstream. Figure 4(c) (Re¼ 800) clearly shows this tur-
bulent behavior.

2. Magnus effect

The Magnus effect appears if a fluid streams around a rotating
body. In this case, a high pressure field arises where the surface of the
rotating body moves against flow direction and a low pressure field
arises where the surface moves along flow direction. The Magnus

effect plays a crucial role in sports such as, e.g., soccer or tennis where
it is used to deflect the path of a spinning ball or in Flettner rotors to
create a force perpendicular to a stream of air. In Fig. 5, this effect can
be clearly recognized.

3. Generalization

We also tested the model’s capability to generalize to new domain
geometries that were not contained in the training dataset. In particu-
lar, we considered the shapes of a fish and 3 boxes (see Fig. 6).
Generalizing to multiple objects was considered to be notably hard,
since none of our randomized training domains contains more than
one obstacle (see Fig. 3). Still, in both cases, our fluid model is able to
match the boundary conditions and produce plausible flow and pres-
sure fields (see streamlines evading the obstacles and high pressure
fields in front of the obstacles).

To further improve the performance on domains not seen during
training, pretrained fluid models can be fine-tuned on new domains.

4. Video

Impressions of the time-dependent fluid dynamics produced by
our model are provided in the supplementary video [see Fig. 7
(Multimedia view)]. The frame rate of the renderings is synchronized
with the speed of the fluid model to demonstrate its real-time capabil-
ity. We show examples for the magnus effect, interpolation of different
fluid viscosities and densities as well as generalization results for
domains not considered during training.

B. Quantitative evaluation

In the following, we provide quantitative results of our method
and investigate the stability of the fluid simulations over time.

1. U-Net/Pruned U-Net/Phiflow

We compare the performance of the U-Net, the pruned U-Net,
and the recently released, open-source fluid simulation package
Phiflow39 quantitatively on a 128 � 64 � 64 benchmark problem [see
Fig. 8(a)]. Table I summarizes our measurements of the speed in time
steps per second on an Intel Core i9-9940X (CPU) and a Nvidia
GeForce RTX 2080 Ti (GPU) as well as the accuracy with respect to
Lp, Ld and E½jjr �~vjj�. E½jjr �~vjj� is defined as the mean L2 norm of
the velocity divergence. To compute Ld and E½jjr �~vjj� for the
(pruned) U-Net, we set the velocity field at the boundaries equal to the
boundary conditions. Otherwise, r �~v would be 0 everywhere due to
the underlying vector potential. While the U-Net provides highly accu-
rate results for Lp, Ld, and E½jjr �~vjj�, the small model yields consider-
ably faster solutions with slightly less accuracy and is suitable for real-
time simulations. Furthermore, the small model gets along with a dras-
tically reduced number of parameters.

We also tested Phiflow on the benchmark problem and modeled
viscosity with a diffusion step on the velocity field.32 For l ¼ 0:1;
q ¼ 4, we observed significantly higher losses compared to our
approach. Furthermore, the U-Net as well as the pruned U-Net are
considerably faster than Phiflow since they only require one forward
pass through a convolutional neural network which can be easily par-
allelized and Phiflow relies on an iterative conjugate gradient solver.
For l ¼ 1; q ¼ 1, the simulation with Phiflow became unstable. This

FIG. 4. (a)/(b)/(c) show streamlines of the velocity field and transparent isosurfaces
of the pressure field for flows around square rods at different Reynolds numbers.
The diameter of the rod is D¼ 16 (we use the units of the grid). All of these results
were obtained by the same model (U-Net) and visualized with Paraview. Seamless
interpolation between these states is possible as demonstrated in the supplemen-
tary video. (a) Time-reversible flow ðRe ¼ 0:64;l ¼ 5;q ¼ 0:2Þ. (b) Laminar flow
ðRe ¼ 80; l ¼ 0:2; q ¼ 1Þ. (c) Turbulent flow (Re ¼ 800; l ¼ 0:1;q ¼ 5).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 047117 (2021); doi: 10.1063/5.0047428 33, 047117-6

Published under license by AIP Publishing

could be avoided by choosing smaller time steps, however, smaller
time steps would further slowdown the simulation with Phiflow.

Note that a direct comparison to the approach by Tompson
et al.4 is not possible since their approach only considers Eulerian flu-
ids and therefore does not model viscosity. However, when consider-
ing E½jjr �~vjj� our method indicates significantly lower divergence of

the velocity field (by 3 orders of magnitude)—presumably because our
method learns a vector field instead of a Helmholtz projection step.
Furthermore, our approach is significantly faster than the approach
by Um et al.,6 which reports 7.6 time steps per second on a smaller 64
� 32 � 32 fluid-domain. In contrast, our simulation runs at 36 time
steps per second for a domain of size 128 � 64 � 64. This may result
from the fact that our method does not rely on a differentiable fluid
solver.

2. Stability

Figure 8(b) shows the evolution of E½jjr �~vjj� and Lp over time
of a simulation performed by the U-Net on the benchmark setup [see
Fig. 8(a)]. Since the simulation starts with the vector potential and
pressure field set to 0 (~a0 ¼~0 and p0 ¼ 0), several time steps are
needed for warm-up. After about 500 time steps, good stability charac-
teristics are shown over thousands of time steps with only marginal
increases in E½jjr �~vjj� and Lp.

V. DISCUSSION AND OUTLOOK

In this work, we proposed a novel unsupervised approach of
learning incompressible fluid dynamics in 3D using an efficient surro-
gate fluid model based on a convolutional neural network. For this
purpose, we used the combination of a physics-informed loss function

FIG. 5. Streamlines of the velocity field
and transparent isosurfaces of the pres-
sure field for Magnus effect on a clock-
wise spinning cylinder (l ¼ 0:5;q ¼ 1).

FIG. 6. Streamlines of the velocity field and transparent isosurfaces of the pressure field of generalization examples for objects not seen during training. (a) shows flow around
a fish shape and (b) shows flow around multiple objects. For a better visualization of the dynamic fluid behavior, we refer to the supplementary video. (a) Exemplary simulation
result for fish shapes that were not considered in the training set. (l ¼ 0:5; q ¼ 1). (b) Exemplary simulation result for multiple objects. During training, the domain contained
only one obstacle. (l ¼ 0:5; q ¼ 1.)

FIG. 7. Video of results obtained by the fluid model. Multimedia view: https://
doi.org/10.1063/5.0047428.1

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 047117 (2021); doi: 10.1063/5.0047428 33, 047117-7

Published under license by AIP Publishing

on a 3D staggered grid and a data pool that automatically gets filled
with more and more realistic fluid states over the course of training. In
contrast to other approaches, our approach does not rely on the avail-
ability of any data from fluid solvers such as FEniCS, OpenFOAM10 or
Mantaflow. Our fluid models allow for fast fluid simulations while tak-
ing into account various fluid phenomena such as the Magnus effect
and K�arm�an vortex streets. Furthermore, they can handle dynamically
changing boundary conditions as required for interactive scenarios
and generalize to new domains.

The speed of our method allows for real-time graphics applica-
tions such as games. In addition, the fluid models are fully differentia-
ble and thus enable efficient gradient propagation throughout the fluid
simulation as shown by Wandel et al.5 This could be exploited for sen-
sitivity analysis, to estimate the viscosity and density of a fluid by
investigating its velocity and pressure fields or in machine learning sce-
narios that aim at controlling fluid fields using gradient-based meth-
ods. In the future, more sophisticated network architectures could be
explored to further increase speed and accuracy of the simulation.
Furthermore, Neumann boundary and external force fields could be
incorporated into the surrogate model.

REFERENCES
1M. G. Schultz, C. Betancourt, B. Gong, F. Kleinert, M. Langguth, L. H. Leufen,
A. Mozaffari, and S. Stadtler, “Can deep learning beat numerical weather pre-
diction?,” Philos. Trans. R. Soc. A 379(2194), 20200097 (2021).

2A. Fabregat, F. Gisbert, A. Vernet, J. A. Ferr�e, K. Mittal, S. Dutta, and J.
Pallarès, “Direct numerical simulation of turbulent dispersion of evaporative
aerosol clouds produced by an intense expiratory event,” Phys. Fluids 33(3),
033329 (2021).

3Z. Li, X. Zhang, T. Wu, L. Zhu, J. Qin, and X. Yang, “Effects of slope and speed
of escalator on the dispersion of cough-generated droplets from a passenger,”
Phys. Fluids 33(4), 041701 (2021).

4J. Tompson, K. Schlachter, P. Sprechmann, and K. Perlin, “Accelerating Eulerian
fluid simulation with convolutional networks,” in Proceedings of the 34th
International Conference on Machine Learning (2017), Vol. 70, pp. 3424–3433.

5W. Nils, W. Michael, and K. Reinhard, “Learning incompressible fluid dynam-
ics from scratch—towards fast, differentiable fluid models that generalize,” 9th
International Conference on Learning Representations (ICLR) (2021).

6U. Kiwon, R. Fei, P. Holl, R. Brand, and N. Thuerey, “Solver-in-the-loop:
Learning from differentiable physics to interact with iterative PDE-solvers,”
Adv. Neural Info. Process. Syst. (published online 2020).

7B. Kim, V. C. Azevedo, N. Thuerey, T. Kim, M. Gross, and, and B. Solenthaler,
“Deep fluids: A generative network for parameterized fluid simulations,”
Comput. Graphics Forum 38, 59–70 (2019).

8N. Geneva and N. Zabaras, “Modeling the dynamics of PDE systems with
physics-constrained deep auto-regressive networks,” J. Comput. Phys. 403,
109056 (2020).

9€O. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, “3d U-
Net: Learning dense volumetric segmentation from sparse annotation,”
arXiv:1606.06650 (2016).

10OpenCFD, OpenFOAM—The Open Source CFD Toolbox—User’s Guide, 1.4 ed.
(OpenCFD Ltd., United Kingdom, 2007).

11R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrodynamics: Theory
and application to non-spherical stars,” Mon. Not. R. Astron. Soc. 181(3),
375–389 (1977).

FIG. 8. (a) Benchmark setup; (b) stability
analysis of the U-Net over time. (a)
Benchmark setup. The red rectangles on
the left and right side mark the inflow/out-
flow boundaries of the domain. (b) Stability
of the U-Net for l ¼ 0:1; q ¼ 4; dt ¼ 4.
Section IV B 2 discusses the stability
behavior over time.

TABLE I. Quantitative comparison of accuracy with respect to Lp, Ld and E½jjr �~v jj� for different l=q and computational speed in time steps per second (TPS) on a CPU and
GPU as well as number of trainable parameters (nparams). The grid size was 128 � 64 � 64 and dt¼ 4. � unstable loss due to diffusion step.

Speed (TPS) l ¼ 0:1; q ¼ 4 l ¼ 1;q ¼ 1

Method CPU GPU L_p L_d E½jjr �~vjj� L_p L_d E½jjr �~vjj� nparams

PhiFlow 0.22 � � � � � � 2.668 48 � 10�4 1.631 7 � 10�3 � � � 1.261 4 � 105 � 4.8894 � 0
U-Net 0.5 16 1.056 18 � 10�4 6.589 4 � 10�7 1.619 95 � 10�4 1.732 59 � 10�4 7.531 65 � 10�7 1.519 11 � 10�4 29M
Pruned
U-Net

1.19 36 1.182 33 � 10�4 1.057 7 � 10�6 1.825 98 � 10�4 5.329 99 � 10�4 1.548 98 � 10�6 2.056 91 � 10�4 649k

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 047117 (2021); doi: 10.1063/5.0047428 33, 047117-8

Published under license by AIP Publishing

12L. Ladick�y, S. Jeong, B. Solenthaler, M. Pollefeys, and M. Gross, “Data-driven
fluid simulations using regression forests,” ACM Trans. Graphics 34(6), 1
(2015).

13D. Mrowca, C. Zhuang, E. Wang, N. Haber, L. Fei-Fei, J. B. Tenenbaum, and D.
L. K. Yamins, “Flexible neural representation for physics prediction,” in
Proceedings of the 32nd International Conference on Neural Information
Processing Systems (NIPS’18) (Curran Associates Inc., Red Hook, NY, USA,
2018), pp. 8813–8824.

14Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Torralba, “Learning particle
dynamics for manipulating rigid bodies, deformable objects, and fluids,” ICLR
(2019).

15U. Benjamin, P. Lukas, T. Nils, and K., Vladlen, “Lagrangian fluid simulation
with continuous convolutions,” in 8th International Conference on Learning
Representations (ICLR), Addis Ababa, Ethiopia, 26–30 April, 2020.

16S. Connor and F. Dieter, “SPNets: Differentiable fluid dynamics for deep neural
networks,” in Conference on Robot Learning (2018), pp. 317–335.

17S. Justin and S. Konstantinos, “DGM: A deep learning algorithm for solving
partial differential equations,” J. Comput. Phys. 375, 1339–1364 (2018).

18G. Philipp, H. Fabian, J. Arnulf, and P. V. Wurstemberger, “A proof that artifi-
cial neural networks overcome the curse of dimensionality in the numerical
approximation of black-scholes partial differential equations,”
arXiv:1809.02362 (2018).

19Y. Khoo, J. Lu, and L. Ying, “Solving for high-dimensional committor functions
using artificial neural networks,” Res. Math. Sci. 6(1), 1 (2019).

20Y. Zhu and N. Zabaras, “Bayesian deep convolutional encoder–decoder net-
works for surrogate modeling and uncertainty quantification,” J. Comput.
Phys. 366, 415–447 (2018).

21Y. Zhu and N. Zabaras, “Phaedon-Stelios Koutsourelakis, and Paris Perdikaris.
Physics-constrained deep learning for high-dimensional surrogate modeling
and uncertainty quantification without labeled data,” J. Comput. Phys. 394,
56–81 (2019).

22R. Tripathy and I. Bilionis, “Deep UQ: Learning deep neural network surrogate
models for high dimensional uncertainty quantification,” J. Comput. Phys. 375,
565–588 (2018).

23C. Yang, X. Yang, and X. Xiao, “Data-driven projection method in fluid simu-
lation,” Comput. Animation Virtual Worlds 27(3–4), 415–424 (2016).

24R. Maziar, Y. Alireza, and G. E. Karniadakis, “Hidden fluid mechanics: A
Navier-Stokes informed deep learning framework for assimilating flow visuali-
zation data,” arXiv:1808.04327 (2018).

25N. Geneva and N. Zabaras, “Quantifying model form uncertainty in Reynolds-
averaged turbulence models with Bayesian deep neural networks,” J. Comput.
Phys. 383, 125–147 (2019).

26J. Ling, A. Kurzawski, and J. Templeton, “Reynolds averaged turbulence model-
ling using deep neural networks with embedded invariance,” J. Fluid Mech.
807, 155–166 (2016).

27M. Sch}oberl, N. Zabaras, and P.-S. Koutsourelakis, “Predictive collective variable
discovery with deep Bayesian models,” J. Chem. Phys. 150(2), 024109 (2019).

28M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations,” J. Comput. Phys. 378,
686–707 (2019).

29S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,” Annu.
Rev. Fluid Mech. 30(1), 329–364 (1998).

30Z. Guo, “Well-balanced lattice Boltzmann model for two-phase systems,” Phys.
Fluids 33(3), 031709 (2021).

31F. H. Harlow and J. E. Welch, “Numerical calculation of time-dependent vis-
cous incompressible flow of fluid with free surface,” Phys. Fluids 8(12),
2182–2189 (1965).

32J. Stam, “Stable fluids,” in Proceedings of the 26th Annual Conference on
Computer Graphics and Interactive Techniques (1999), pp. 121–128.

33J. Kim and C. Lee, “Deep unsupervised learning of turbulence for inflow gener-
ation at various Reynolds numbers,” J. Comput. Phys. 406, 109216 (2020).

34Y. Xie, E. Franz, M. Chu, and N. Thuerey, “tempoGAN: A temporally coherent,
volumetric GAN for super-resolution fluid flow,” ACM Trans. Graphics 37(4),
1 (2018).

35A. T. Mohan, N. Lubbers, D. Livescu, and M. Chertkov, “Embedding hard phys-
ical constraints in neural network coarse-graining of 3d turbulence,” in
International Conference on Learning Representations (ICLR, 2020).

36N. Thuerey, K. Weißenow, L. Prantl, and X. Hu, “Deep learning methods for
Reynolds-averaged Navier–Stokes simulations of airfoil flows,” AIAA J. 58,
25–12 (2020).

37H. O’Reilly and J. M. Beck, “A family of large-stencil discrete Laplacian approx-
imations in three dimensions,” Int. J. Numer. Methods Eng. 2006, 1–16.

38D. P. Kingma and B. Jimmy, “Adam: A method for stochastic optimization,” in
3rd International Conference on Learning Representations (ICLR), San Diego,
CA, USA, 7–9 May, 2015.

39P. Holl, V. Koltun, and and N. Thuerey, “Learning to control PDEs with differ-
entiable physics,” ICLR (2020).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 047117 (2021); doi: 10.1063/5.0047428 33, 047117-9

Published under license by AIP Publishing

Publication:
“Spline-PINN: Approaching PDEs without

Data using Fast, Physics-Informed
Hermite-Spline CNNs”

Nils Wandel, Michael Weinmann, Michael Neidlin, and
Reinhard Klein

Proceedings of the 36th AAAI Conference on Artificial Intelligence

2022

109

Spline-PINN: Approaching PDEs without Data
Using Fast, Physics-Informed Hermite-Spline CNNs

Nils Wandel,1 Michael Weinmann,2 Michael Neidlin,3 Reinhard Klein 1

1 University of Bonn
2 Delft University of Technology

3 RWTH Aachen University
wandeln@cs.uni-bonn.de, m.weinmann@tudelft.nl, neidlin@ame.rwth-aachen.de, rk@cs.uni-bonn.de

Abstract

Partial Differential Equations (PDEs) are notoriously difficult
to solve. In general, closed-form solutions are not available
and numerical approximation schemes are computationally
expensive. In this paper, we propose to approach the solu-
tion of PDEs based on a novel technique that combines the
advantages of two recently emerging machine learning based
approaches. First, physics-informed neural networks (PINNs)
learn continuous solutions of PDEs and can be trained with
little to no ground truth data. However, PINNs do not gener-
alize well to unseen domains. Second, convolutional neural
networks provide fast inference and generalize but either re-
quire large amounts of training data or a physics-constrained
loss based on finite differences that can lead to inaccuracies
and discretization artifacts.
We leverage the advantages of both of these approaches by
using Hermite spline kernels in order to continuously inter-
polate a grid-based state representation that can be handled
by a CNN. This allows for training without any precomputed
training data using a physics-informed loss function only and
provides fast, continuous solutions that generalize to unseen
domains. We demonstrate the potential of our method at the
examples of the incompressible Navier-Stokes equation and
the damped wave equation. Our models are able to learn sev-
eral intriguing phenomena such as Karman vortex streets,
the Magnus effect, Doppler effect, interference patterns and
wave reflections. Our quantitative assessment and an inter-
active real-time demo show that we are narrowing the gap
in accuracy of unsupervised ML based methods to industrial
solvers for computational fluid dynamics (CFD) while being
orders of magnitude faster.

Introduction
Partial differential equations (PDEs) are an important math-
ematical concept to describe for example the motion of flu-
ids, the propagation of waves, the evolution of stock mar-
kets, gravity and more. However, solving partial differential
equations is a hard problem since closed-form solutions are
rarely available. Thus, developing fast and accurate numeri-
cal schemes in order to find approximate solutions is of great
interest for applications such as e.g. physics engines in com-
puter games, computer generated imagery (CGI) for movies,

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

or computational fluid dynamics (CFD) to help engineers
with simulated wind tunnel experiments.

Recently, advances of machine learning (ML) based ap-
proaches have led to promising results coping with the
high computational costs associated with classical numeri-
cal methods. Furthermore, some ML based approaches are
by design differentiable. This means that they offer gradi-
ents that can be used for stability analysis, optimal control
or reinforcement learning. However, ML based approaches
often do not generalize to domains not seen during training
[Kim and Lee 2020, Mohan et al. 2020, Thuerey et al. 2019,
Um et al. 2020, Raissi, Perdikaris, and Karniadakis 2019]
or rely on large amounts of training data which capture the
variations to be expected in foreseen scenarios [Pfaff et al.
2021, Kim et al. 2019, Ladický et al. 2015].Recent physics-
constrained approaches based on finite differences [Tomp-
son et al. 2017, Zhu et al. 2019, Wandel, Weinmann, and
Klein 2021a,b] exhibit the potential to mitigate these prob-
lems but might lead to inaccuracies and discretization arti-
facts, especially at high Reynolds-Numbers.

Here, we propose to use a Hermite spline CNN to ob-
tain continuous solutions that can be trained with a physics-
informed loss only. This approach combines the advantages
of i) leveraging physics-informed neural networks (PINNs)
to overcome the need for large amounts of training data [Jin
et al. 2021, Raissi, Yazdani, and Karniadakis 2018, Raissi,
Perdikaris, and Karniadakis 2019] and ii) leveraging the
faster inference and better generalization capabilities offered
by convolutional neural networks [Tompson et al. 2017,
Wandel, Weinmann, and Klein 2021a,b]. We demonstrate
the effectiveness of our approach for the incompressible
Navier-Stokes equations as well as the damped wave equa-
tion. The incompressible Navier-Stokes equations, which
are particularly hard to solve due to the non-linear advec-
tion term and thus the main focus of this paper, are in-
vestigated for Reynolds numbers ranging from 2-10000. To
assess the accuracy of our method, we compute drag and
lift coefficients on a CFD benchmark domain [Schäfer and
Turek 1996] and compare the results with official bench-
mark values. For both equations, we perform generalization
experiments, evaluate the stability over long time horizons
and present an interactive real-time demonstration. To en-
sure full reproducibility, our code is publicly available on
github: https://github.com/aschethor/Spline PINN.

The Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22)

8529

Related Work
Recent developments indicate the potential of efficient sur-
rogate models based on machine learning, and in particular
deep learning, to approximate the dynamics of partial differ-
ential equations (PDEs).

Lagrangian methods like smoothed particle hydrody-
namics (SPH) [Gingold and Monaghan 1977] represent flu-
ids in the reference frame of individual particles that fol-
low the fluid’s velocity field. Relying on this principle,
learning-based Lagrangian approaches include the simula-
tion of fluids based on regression forests [Ladický et al.
2015], graph neural networks [Mrowca et al. 2018, Li et al.
2019], continuous convolutions [Ummenhofer et al. 2020]
and Smooth Particle Networks (SP-Nets) [Schenck and Fox
2018]. While Lagrangian methods are particularly suitable
for fluid domains that exhibit large, dynamic surfaces such
as waves and droplets, however, Eulerian methods typically
allow a more accurate simulation of fluid dynamics within a
certain fluid domain (see [Foster and Metaxas 1996]).

Eulerian methods model domain characteristics such as
a velocity or pressure field on a fixed reference frame. Re-
spective techniques leverage implicit neural representations,
grid- and mesh-structures to describe the domain of a PDE.

Continuous Eulerian methods exploit the direct mapping
of domain coordinates (i.e. positional coordinates and time)
to field values (i.e. velocity, pressure, etc.) relying e.g. on
implicit neural representations to obtain smooth and accu-
rate simulations [Sirignano and Spiliopoulos 2018a, Grohs
et al. 2018, Khoo, Lu, and Ying 2019, Raissi, Perdikaris,
and Karniadakis 2019, Lu et al. 2021] and handle the curse
of dimensionality faced by discrete techniques in the case of
high-dimensional PDEs [Grohs et al. 2018]. Respective ap-
plications include the modeling of flow through porous me-
dia [Zhu and Zabaras 2018, Zhu et al. 2019, Tripathy and
Bilionis 2018], fluid modeling [Yang, Yang, and Xiao 2016,
Raissi, Yazdani, and Karniadakis 2018], turbulence model-
ing [Geneva and Zabaras 2019, Ling, Kurzawski, and Tem-
pleton 2016], wave propagation [Rasht-Behesht et al. 2021,
Sitzmann et al. 2020] and the modeling of molecular dynam-
ics [Schöberl, Zabaras, and Koutsourelakis 2019]. Train-
ing typically relies on penalizing residuals of the underlying
PDEs based on physics-informed loss functions for a spe-
cific domain, which prevents the networks from generaliz-
ing to new domain geometries and being used in the scope
of interactive scenarios. Recently, Wang et al. [Wang et al.
2021] proposed to stitch pretrained Deep Learning models
together to speed up the learning process for boundary value
problems. However, temporal dependencies are not embed-
ded in their method yet preventing interactive applications.

Discrete Eulerian methods such as finite difference, lat-
tice Boltzmann [Chen and Doolen 1998, Guo 2021] or fi-
nite element methods instead tackle the underlying PDEs on
an explicit representation such as a discrete grid or a graph
structure. Beyond early seminal work [Harlow and Welch
1965, Stam 1999], recent developments focus on exploiting
the potential of deep learning techniques to achieve signif-
icant speed-ups while preserving accuracy. Learning fluid

simulations has been approached with deep generative mod-
els for efficient interpolations between various simulation
settings [Kim et al. 2019] and turbulent flow fields within
pipe domains [Kim and Lee 2020]. However, both of these
approaches do not generalize to new domain geometries that
have not been used during training. To speed up Eulerian
fluid simulations, Tompson et al. [Tompson et al. 2017] pro-
posed to learn a Helmholtz projection step with a CNN that
generalizes to new domain geometries that have not been
used during the training. However, this approach requires a
path tracer to deal with the advection term of the Navier-
Stokes equations. Furthermore, as viscosity is not consid-
ered in Eulerian fluid models, phenomena such as the Mag-
nus effect and Karman vortex streets cannot be simulated.
Ensuring incompressibility of fluids has been achieved with
discretized vector potentials [Kim et al. 2019, Mohan et al.
2020], however, these techniques are not capable of gener-
alizing to domain geometries not seen during the training.
The approach by Geneva et al. [Geneva and Zabaras 2020]
discards the pressure term in the Navier-Stokes equations
which leads to the simpler Burgers’ equations, for which
they learned the update step based on a physics-constrained
framework. Thuerey et al. [Thuerey et al. 2019] learn to
solve the Reynolds-averaged Navier-Stokes equations, but
the specific approach prevents a generalization beyond air-
foil flows and discards the temporal evolution of the fluid
state. Um et al. [Um et al. 2020] proposed to learn a correc-
tion step which allows approximating solutions of a high-
resolution fluid simulations in terms of a low-resolution dif-
ferentiable fluid solver, but the generalization capability to
domain geometries that have not been used during training
has not been shown. In contrast to the aforementioned tech-
niques, the approach by Wandel et al. [Wandel, Weinmann,
and Klein 2021a] and its 3D extension [Wandel, Wein-
mann, and Klein 2021b] overcome the dependence on huge
amounts of training data by using a physics-constrained loss
and introducing a training cycle that recycles data gener-
ated by the network during training. This allows handling
dynamic boundary conditions as required for interactions
with the fluid [Wandel, Weinmann, and Klein 2021a,b] and,
with an improved network [Wandel, Weinmann, and Klein
2021b], also dealing with temporally varying fluid parame-
ters such as viscosity and density during simulation. How-
ever, their physics-constrained loss can lead to discretiza-
tion artifacts and requires a pressure gradient regularizer for
high Reynolds numbers. Further learning-based approaches
also exploit graph representations in terms of graph neural
networks [Harsch and Riedelbauch 2021, Sanchez-Gonzalez
et al. 2020], graph convolutional networks [Gao, Zahr, and
Wang 2021] as well as mesh representations [Pfaff et al.
2021] or subspace representations [Sirignano and Spiliopou-
los 2018b, Ainsworth and Dong 2021]. Unfortunately, graph
neural networks cannot make use of the highly efficient
implementations for convolutional operations on grids and
thus usually come with higher computational complexity per
node compared to grid based CNNs.

To the best of our knowledge, the potential of Spline
CNNs [Fey et al. 2017] has not yet been investigated for
learning the dynamics of PDEs and, hence, the presented

8530

physics-informed Hermite Spline CNN (Spline-PINN) ap-
proach is the first method that leverages both implicit and
explicit characteristics to obtain fast, interactive, continuous
surrogate models that generalize and can be trained without
training data using a physics-informed loss based on the un-
derlying PDEs.

Method
In the main part of our paper, we first briefly discuss the
background regarding partial differential equations with a
focus on the Navier-Stokes equations and the damped wave
equation, before we introduce our physics-informed Her-
mite spline CNN approach (Spline-PINN), that combines
the advantages of PINNs regarding physics-informed train-
ing without training data and Spline-CNNs regarding their
generalization capability.

Partial Differential Equations
Partial Differential Equations describe the dependencies be-
tween partial derivatives of a multivariate function inside a
domain Ω and usually need to be solved for given initial
conditions at the beginning of the simulation and boundary
conditions at the domain boundaries ∂Ω.

The Incompressible Navier-Stokes Equations describe
the dynamics of a fluid with a pressure-field p and a velocity-
field v⃗ inside a domain Ω by means of the incompressibility
and momentum equation:

∇ · v⃗ = 0 in Ω (1)

ρ ˙⃗v = ρ(∂tv⃗ + v⃗ · ∇v⃗) = µ∆v⃗ − ∇p + f⃗ in Ω (2)

Here, ρ represents the fluid’s density and µ its viscosity. The
external forces f⃗ are neglected in our experiments. These
two equations have to be solved for given initial conditions
v⃗0, p0 and boundary conditions (BCs). Here, we consider
the Dirichlet BC to set the velocity field v⃗ = v⃗d at the do-
main boundaries ∂Ω. In this work, we exploit the Helmholtz
decomposition theorem and use a vector potential a⃗ with
v⃗ = ∇ × a⃗ to automatically ensure incompressibility. Fur-
thermore, we restrict our considerations to 2D flows and,
hence, only the z-component of a⃗, az , is needed. The Navier-
Stokes equations are considered particularly hard to solve
due to the non-linear advection term (v⃗ · ∇v⃗) and, therefore,
are the main focus of our investigations.

The Damped Wave Equation can be used to describe for
example the dynamics of a thin membrane with height-field
z and velocity-field vz .

∂tz = vz in Ω (3)
∂tvz = k∆z − δvz in Ω (4)

Here, k is the stiffness constant of the membrane and δ is
a damping constant. As for the Navier-Stokes equations, we
solve these equations for given initial conditions z0, vz0 and
Dirichlet boundary conditions: z = zd on ∂Ω.

Although the damped wave equation contains only linear
components, we present this additional example to demon-
strate that our method might also work for different classes

of PDEs. The wave equation lays the foundation for many
more complex equations such as the electromagnetic wave
equation or the Schrödinger equation. Furthermore, for high
damping constants δ, z converges towards the solution of the
Laplace equation.

Spline-PINN
In this section, we introduce our Physics-Informed Hermite
Spline CNN. First, we provide an overview on Hermite
splines and then show how to incorporate them into a CNN
for solving PDEs.

Hermite Splines In general, Hermite splines are piece-
wise polynomials that are defined by their values and their
first n derivatives at given support points. To facilitate CNN-
based processing, we arrange the support points on a regu-
lar grid. Figure 1 shows an example of Hermite spline ker-
nel functions in 1D for n = 0, 1, 2. We define the kernel
functions hn

i (x), such that the values and first n derivatives
at the support points (x = −1, 0, 1) are set to 0 except
the ith derivative at x = 0 which takes a value such that
hn

i (x) ∈ [−1, 1]. In contrast to B-Spline kernels, the sup-
port of Hermite spline kernels ranges only over the directly
neighboring grid cells. This facilitates learning of high fre-
quencies and allows for computationally more efficient in-
terpolations with comparatively small transposed convolu-
tion kernels. By linearly combining Hermite spline kernel
functions of order n at every grid-cell we obtain continu-
ous piecewise polynomials with (n + 1)-th derivatives of
bounded variation. Choosing the right spline order n is im-
portant to be able to compute the physics informed loss for
a given PDE as will be discussed below.

To obtain kernel functions in multiple dimensions, we use
the tensor product of multiple 1D kernel functions:

hl,m,n
i,j,k (x, y, t) = hl

i(x)hm
j (y)hn

k (t) (5)

In the supplementary, we show how basis flow fields can be
obtained by taking the curl of hl,m

i,j (x, y). On a grid x̂, ŷ, t̂ ∈
X̂ × Ŷ × T̂ with discrete spline coefficients ci,j,k

x̂,ŷ,t̂
, we obtain

a continuous Hermite spline g(x, y, t) as follows:

g(x, y, t) =
∑

i,j,k∈[0:l]×[0:m]×[0:n]

x̂,ŷ,t̂∈X̂×Ŷ ×T̂

ci,j,k

x̂,ŷ,t̂
hl,m,n

i,j,k (x − x̂, y − ŷ, t − t̂)

(6)
Our goal is, to find spline coefficients ci,j,k

x̂,ŷ,t̂
such that

g(x, y, t) matches the solution of PDEs as closely as pos-
sible. The partial derivatives of g with respect to x, y, t can
be directly obtained by taking the corresponding derivatives
of the spline kernel functions.

Pipeline Figure 2 depicts the pipeline of our Spline-PINN.
We use a CNN (PDE Model) to map discrete Hermite-spline
coefficients and boundary conditions from a timepoint t̂ to
spline coefficients at a succeeding timepoint t̂ + dt. By re-
currently applying the PDE Model on the spline coefficients,
the simulation can be unrolled in time. From these discrete
spline-coefficients, continuous Hermite splines can be effi-
ciently obtained using transposed convolutions (see Equa-
tion 6) with interpolation kernels as depicted in Figure 1.

8531

Figure 1: 1D Hermite spline kernels for n = 0, 1, 2 (scaled between -1 and 1). Note, that these kernel functions are in Cn and
thus, the (n + 1)-th derivatives are of bounded variation. The case n = 0 could be considered as a linear interpolation between
spline coefficients.

This way, training samples as well as evaluation samples can
be taken at any point in space and time.

Figure 2: Pipeline of PDE Model with Hermite spline inter-
polation. Since the solution is continuous, training samples
and evaluation samples can be obtained at any point in space
and time. More detailed views of the PDE Models used for
the Navier-Stokes equations and damped wave equation are
provided in the supplementary material.

Physics Informed Loss When training neural networks on
PDEs, the information provided by the PDEs themselves can
be used to save or even completely spare out training-data.
In literature, two major approaches have been established:

Physics-constrained approaches [Zhu et al. 2019] com-
pute losses explicitly - usually on a grid topology using fi-
nite differences in order to approximate the derivatives of a
PDE. This approach is suitable to train CNNs and allows
neural networks to learn e.g. the incompressible Navier-
Stokes equations without any ground truth training-data and
generalize to new domains [Wandel, Weinmann, and Klein
2021a]. However, relying on finite differences may lead to
inaccuracies and strong discretization artifacts - especially
at high Reynolds-numbers (see Figure 3).

In contrast, physics-informed approaches [Raissi,
Perdikaris, and Karniadakis 2019] compute losses implicitly
- usually by taking derivatives of an implicit field descrip-
tion. This approach enables efficient training of implicit
neural networks and yields continuous solutions that can be
evaluated at any point in space and time. However, implicit
neural networks do not generalize well to novel domains
but usually require retraining of the network.

Here, we can combine the advantages of both approaches:

By using a convolutional neural network that processes
spline coefficients which can be considered as a discrete hid-
den latent description for a continuous implicit field descrip-
tion based on Hermite splines, our Spline-PINN approach is
capable to generalize to new domain geometries and yields
continuous solutions that avoid the detrimental effects of a
discretized loss function based on finite differences.

We aim to optimize the spline coefficients such that the
integrals of the squared residuals of the PDEs over the do-
main / domain-boundaries and time steps are minimized.
To compute these integrals, we uniform randomly sample
points within the given integration domains.

For the Navier-Stokes equation, we consider a momentum
loss term Lp defined as:

Lp =

∫

Ω

∫ t̂+dt

t̂

||ρ(∂tv⃗ + v⃗ · ∇v⃗) − µ∆v⃗ + ∇p||2 (7)

It is important that the residuals are of bounded variation,
otherwise we can not compute the integral. Lp contains
third order derivatives for az in space (see viscosity term:
µ∆(∇ × az)) and thus, following the argument in Figure 1,
we have to choose at least l,m = 2 for the Hermite spline
kernels of az . The boundary loss term Lb is given by:

Lb =

∫

∂Ω

∫ t̂+dt

t̂

||v⃗ − v⃗d||2 (8)

Lp and Lb are then combined in the final loss term Lflow
tot

according to:
Lflow

tot = αLp + βLb (9)

Here, we set hyperparameters α = 10 and β = 20. β was
chosen higher compared to α to prevent the flow field from
leaking through boundaries. A more thorough discussion re-
garding the choice of hyperparameters is provided in the
supplementary material.

For the damped wave equation, we need two loss terms
inside the domain Ω:

Lz =

∫

Ω

∫ t̂+dt

t̂

||∂tz − vz||2 (10)

Lv =

∫

Ω

∫ t̂+dt

t̂

||∂tvz − k∆z + δvz||2 (11)

8532

Figure 3: Severe discretization artifacts appear using a physics-constrained loss based on a finite differences Marker and Cell
grid at Re = 10000 - even at twice the resolution compared to our Hermite spline approach.

Similar to the incompressible Navier-Stokes equation, we
have second order derivatives of z in space (see k∆z-Term)
and thus have to choose at least l,m = 1 for the Hermite
spline kernels of z. The boundary loss term is:

Lb =

∫

∂Ω

∫ t̂+dt

t̂

||z − zd||2 (12)

Lz, Lv and Lb are then combined in the final loss term Lwave
tot :

Lwave
tot = αLz + βLv + γLb (13)

For the wave equation, we set the hyperparameters α =
1, β = 0.1, γ = 10.

Training Procedure As presented in Figure 4, we use a
training procedure similar to [Wandel, Weinmann, and Klein
2021a] but replace the physics-constrained loss based on fi-
nite differences by the just introduced physics-informed loss
on the spline coefficients. First, we initialize a training pool
of randomized training domains and spline coefficients. At
the beginning, all spline coefficients can be set to 0, thus no
ground truth data is required. Then, we draw a random mini-
batch (batchsize = 50) from the training pool and feed it into
the PDE Model, which predicts the spline coefficients for
the next time step. Then, we compute a physics-informed
loss inside the volume spanned by the spline coefficients
of the minibatch and the predicted spline coefficients in or-
der to optimize the weights of the PDE Model with gradi-
ent descent. To this end, we use the Adam optimizer (learn-
ing rate = 0.0001). Finally, we update the training pool with
the just predicted spline coefficients in order to fill the pool
with more and more realistic training data over the course
of training. From time to time, we reset spline coefficients
to 0 in the training pool in order to also learn the warm-up
phase from 0 spline coefficients. Training took 1-2 days on
a NVidia GeForce RTX 2080 Ti.

Results
In the following, we provide qualitative and quantitative
evaluations of our approach for fluid and wave simulations.
Additional results as well as demonstrations where the user
can interact with the PDE by dynamically changing bound-
ary conditions, are contained in our supplemental.

Fluid Simulation
Qualitative Evaluation The dynamics of a fluid depends
strongly on the Reynolds number, which is a dimensionless
quantity that relates the fluid density ρ, mean velocity ||v⃗||,
obstacle diameter L and viscosity µ in the following way:

Figure 4: Training cycle similar to [Wandel, Weinmann, and
Klein 2021a]

Re =
ρ||v⃗||L

µ
(14)

To validate our method, we reconstructed the DFG bench-
mark setup [Schäfer and Turek 1996] and scaled its size and
viscosity by a factor of 100. This way, we obtained a grid
size of 41 × 220 cells for the fluid domain and the obstacle
diameter is 10 cells.

For very small Reynolds numbers, the flow field becomes
basically time-reversible which can be recognized by the
symmetry of the stream lines in Figure 5 a). At Re = 20
a steady wake is forming behind the obstacle (see Figure 5
b). For higher Reynolds numbers such as Re = 100, this
wake becomes unstable and a von Karman vortex street is
forming (see Figure 5 c). Figure 5 d) and e) show turbulent
flow fields at very high Reynolds numbers (Re = 1000 and
Re = 10000). Notice the high level of details in the velocity
field learned by our method without any ground truth data.

Quantitative Evaluation To evaluate our method quanti-
tatively, we computed the forces exerted by the fluid on a
cylinder (see Figure 6) and compared the resulting drag and
lift coefficients to an implicit physics-informed neural net-
work similar to [Raissi, Yazdani, and Karniadakis 2018], a
MAC grid based physics-constrained neural network [Wan-
del, Weinmann, and Klein 2021a], an industrial CFD solver
(Ansys) and official results reported on a CFD benchmark
[Schäfer and Turek 1996]. To the best of our knowledge, this
is the first time such forces were obtained by a fully unsu-
pervised machine learning based approach. The forces can
be separated into two terms stemming from viscous friction

8533

(a) time-reversible flow(Re = 2, µ = 1, ρ = 1)

(b) laminar flow (Re = 20, µ = 0.1, ρ = 1)

(c) laminar vortex street(Re = 100, µ = 0.1, ρ = 1)

(d) turbulent flow(Re = 1000, µ = 0.1, ρ = 10)

(e) turbulent flow (Re = 10000, µ = 0.01, ρ = 10)

Figure 5: Flow and pressure fields around a cylinder obtained by our method at different Reynolds numbers. Left side: velocity
magnitude; Right side: pressure field and stream lines of velocity field. An animated real-time visualization of these experiments
is provided in the supplementary video (www.youtube.com/watch?v=QC98LCtCZn0).

(F⃗µ) and the pressure field (F⃗p):

F⃗µ =

∫

S

µ(∇v⃗)n⃗ds ; F⃗p =

∫

S

−pn⃗ds (15)

F⃗tot = F⃗µ + F⃗p (16)

Figure 6 shows the distribution of such viscous drag and
pressure forces along the cylinder surface S with surface
normals n⃗.

The drag-force FD is the parallel force-component of F⃗tot

to the flow direction (FD = F⃗tot,x) while the lift force FL is
its orthogonal component (FL = F⃗tot,y). From these forces,
it is possible to compute drag and lift coefficients as follows:

CD =
2FD

U2
meanL

, CL =
2FL

U2
meanL

(17)

Tables 1 and 2 compare the drag and lift coefficients
obtained by our method to an implicit PINN, a finite-
difference based MAC grid approach [Wandel, Weinmann,
and Klein 2021a], an industrial CFD solver (Ansys) and
the official DFG benchmark [Schäfer and Turek 1996] for
Reynolds numbers 2, 20 and 100. For all Reynolds num-
bers, the Spline-PINN approach returned significantly im-
proved drag coefficients compared to the implicit PINN and

Figure 6: White arrows indicate viscous and pressure forces
(see Equation 15) acting on a cylinder at Re = 100 (see
Figure 5 c). While forces from viscous friction are parallel
to the obstacle’s surface, pressure forces are always perpen-
dicular to the surface.

MAC-approach. For Re = 100, the implicit PINN fails to
capture the dynamics of the von Karman vortex street as it
is only trained on the domain boundaries without any addi-
tional information stemming for example from a moving die
[Raissi, Yazdani, and Karniadakis 2018] or dynamic bound-
ary conditions [Jin et al. 2021]. In contrast, our method is

8534

able to reproduce such oscillations as can be seen in Fig-
ure 7. The implicit PINN required retraining for every set-
ting which took about 1 day while performing the compu-
tations with the MAC grid based approach or our Spline-
PINN was achieved basically in real-time at 60 and 30 iter-
ations per second respectively. The Ansys solver took 9 sec
for Re = 2, 13 sec for Re = 20 and 37 min for Re = 100.
A comparison of errors in E[|∇ · v⃗|] and Lp as well as a
stability analysis can be found in the supplemental.

Figure 7: Oscillating drag and lift coefficients over time ob-
tained by our Spline-PINN at Re = 100.

Wave Simulation
Qualitative Evaluation Figure 8 shows several experi-
mental results that were obtained by our method for the
damped wave equation on a 200 × 200 domain. First, we in-
vestigated interference patterns that arise when waves from
different directions are superimposed. In Figure 8 a), the
waves of 4 oscillators interfere with each other. Then, in Fig-
ure 8 b), we investigate whether our method is able to learn
the Doppler effect for moving oscillators. This effect is well-
known e.g. for changing the pitch of an ambulance-car that
drives by. Finally, in Figure 8 c), we show the reflection and
interference behavior of waves hitting Dirichlet boundaries.

As for the fluid simulations, all of these results were ob-
tained without relying on any ground truth data. Further-
more, the domain in Figure 8 c) was not contained in the
randomized set of training domains indicating good gener-
alization performance.

Quantitative Evaluation Table 3 compares the losses of
our method on the oscillator domain (see Figure 8 a). We
trained two versions with two different spline orders in the
spatial dimensions (l,m = 1 and l,m = 2) and observed
significantly better performance for l,m = 2. The stability
of our approach for the wave equation is examined in the
supplementary material.

Conclusion
In this work, we approach the incompressible Navier-Stokes
equation and the damped wave equation by training a con-
tinuous Hermite Spline CNN using physics-informed loss
functions only. While finite-difference based methods break
down at high Reynolds-numbers due to discretization arti-
facts, our method still returns visually appealing results at

(a) Interference patterns forming around 4 oscillators.

(b) Doppler effect of an oscillator moving to the right.

(c) Wave reflections on domain boundaries.

Figure 8: Results of our method for the wave equa-
tion (k = 10, δ = 0.1). Left side: height field z;
Right side: velocity field vz . The domain boundaries
are marked in black. For better performance, second-
order splines were used in x and y. An animated real-
time visualization of these experiments can be found at
www.youtube.com/watch?v=QC98LCtCZn0.

Re = 10000. Furthermore, we investigated drag and lift
coefficients on a CFD benchmark setup and observed rea-
sonable accordance with officially reported values which is
remarkable given the fact that our method does not rely on
any ground truth data.

In the future, further boundary conditions (e.g. von Neu-
mann BC) could be incorporated into the PDE model as
well. To further refine the solutions at the boundary layers,
a multigrid Hermite spline CNN could be considered. The
fully differentiable nature of our method may also help in
reinforcement learning scenarios, optimal control, sensitiv-
ity analysis or gradient based shape optimization.

We believe that our method could have applications
in physics engines of computer games or in computer-
generated imagery as it provides fast and visually plausible
solutions. The obtained drag and lift coefficients indicate
that in the future, unsupervised ML based methods could
reach levels of accuracy that are sufficiently close to tradi-
tional industrial CFD solvers making them suitable for fast
prototyping in engineering applications. We firmly believe

8535

Re=2 Re=20
Method CD CL CD CL

implicit PINN 25.3 0.478 3.299 0.0744
MAC grid

[Wandel, Weinmann, and Klein 2021a] 25.76 -0.824 4.414 -0.597

Spline-PINN (ours) 29.7 -0.456 4.7 5.64e-04
Ansys 32.035 0.774 5.57020 0.00786

DFG-Benchmark
[Schäfer and Turek 1996] - - 5.58 0.0106

Table 1: Drag and lift coefficients obtained by an implicit PINN, our Hermite spline approach, an industrial CFD solver (Ansys)
and official results from the DFG-benchmark [Schäfer and Turek 1996] for Re = 2, 20.

Re=100
Method CD CL time

implicit PINN 1.853 -0.02445 ∼ 1 day
MAC grid

[Wandel, Weinmann, and Klein 2021a] (2.655 / 2.693 / 2.725)* (-0.757 / 0.0184 / 0.86)* ∼ 15 sec

Spline-PINN (ours) (2.985 / 3.068 / 3.188)* (-0.926 / 0.179 / 1.295)* ∼ 10 sec
Ansys (3.234 / 3.273 / 3.31)* (-1.14 / -0.059 / 1.07)* 37 min

DFG-Benchmark
[Schäfer and Turek 1996] (3.1569 / 3.1884 / 3.220)* (-1.0206 / -0.0173 / 0.9859)* -

Table 2: Drag and lift coefficients obtained by an implicit PINN, our Hermite spline approach, an industrial CFD solver (Ansys)
and official results from the DFG-benchmark [Schäfer and Turek 1996] for Re = 100. *:(minimum/average/maximum)-values
for oscillating coefficients

Spline order Lz Lv Lb

l,m = 1 8.511e-02 1.127e-02 1.425e-03
l,m = 2 5.294e-02 6.756e-03 1.356e-03

Table 3: Quantitative results of wave equation.

that moving from explicit physics-constrained losses to im-
plicit physics-informed losses on continuous fields based on
discrete latent descriptions such as spline coefficients will
positively influence the performance of future ML based
PDE solvers that generalize.

Acknowledgements
This work has been supported by the German Research
Foundation (DFG), FOR 2535 Anticipating Human Behav-
ior.

References
Ainsworth, M.; and Dong, J. 2021. Galerkin Neural Net-
works: A Framework for Approximating Variational Equa-
tions with Error Control. arXiv preprint arXiv:2105.14094.

Chen, S.; and Doolen, G. D. 1998. Lattice Boltzmann
method for fluid flows. Annual review of fluid mechanics,
30(1): 329–364.

Fey, M.; Lenssen, J. E.; Weichert, F.; and Müller, H. 2017.
SplineCNN: Fast Geometric Deep Learning with Continu-
ous B-Spline Kernels. CoRR, abs/1711.08920.

Foster, N.; and Metaxas, D. 1996. Realistic Animation of
Liquids. Graphical Models and Image Processing, 58(5):
471 – 483.
Gao, H.; Zahr, M. J.; and Wang, J. 2021. Physics-
informed graph neural Galerkin networks: A unified frame-
work for solving PDE-governed forward and inverse prob-
lems. CoRR, abs/2107.12146.
Geneva, N.; and Zabaras, N. 2019. Quantifying model form
uncertainty in Reynolds-averaged turbulence models with
Bayesian deep neural networks. Journal of Computational
Physics, 383: 125 – 147.
Geneva, N.; and Zabaras, N. 2020. Modeling the dynam-
ics of PDE systems with physics-constrained deep auto-
regressive networks. Journal of Computational Physics,
403: 109056.
Gingold, R. A.; and Monaghan, J. J. 1977. Smoothed parti-
cle hydrodynamics: theory and application to non-spherical
stars. Monthly notices of the royal astronomical society,
181(3): 375–389.
Grohs, P.; Hornung, F.; Jentzen, A.; and Von Wurstemberger,
P. 2018. A proof that artificial neural networks overcome the
curse of dimensionality in the numerical approximation of
Black-Scholes partial differential equations. arXiv preprint
arXiv:1809.02362.
Guo, Z. 2021. Well-balanced lattice Boltzmann model for
two-phase systems. Physics of Fluids, 33(3): 031709.
Harlow, F. H.; and Welch, J. E. 1965. Numerical calculation
of time-dependent viscous incompressible flow of fluid with
free surface. The physics of fluids, 8(12): 2182–2189.

8536

Harsch, L.; and Riedelbauch, S. 2021. Direct Prediction
of Steady-State Flow Fields in Meshed Domain with Graph
Networks. arXiv:2105.02575.
Jin, X.; Cai, S.; Li, H.; and Karniadakis, G. E. 2021.
NSFnets (Navier-Stokes flow nets): Physics-informed neural
networks for the incompressible Navier-Stokes equations.
Journal of Computational Physics, 426: 109951.
Khoo, Y.; Lu, J.; and Ying, L. 2019. Solving for high-
dimensional committor functions using artificial neural net-
works. Research in the Mathematical Sciences, 6(1): 1.
Kim, B.; Azevedo, V. C.; Thuerey, N.; Kim, T.; Gross, M.;
and Solenthaler, B. 2019. Deep fluids: A generative network
for parameterized fluid simulations. In Computer Graphics
Forum, volume 38, 59–70. Wiley Online Library.
Kim, J.; and Lee, C. 2020. Deep unsupervised learning of
turbulence for inflow generation at various Reynolds num-
bers. Journal of Computational Physics, 406: 109216.
Ladický, L.; Jeong, S.; Solenthaler, B.; Pollefeys, M.; and
Gross, M. 2015. Data-Driven Fluid Simulations Using Re-
gression Forests. ACM Trans. Graph., 34(6).
Li, Y.; Wu, J.; Tedrake, R.; Tenenbaum, J. B.; and Tor-
ralba, A. 2019. Learning Particle Dynamics for Manipulat-
ing Rigid Bodies, Deformable Objects, and Fluids. In ICLR.
Ling, J.; Kurzawski, A.; and Templeton, J. 2016. Reynolds
averaged turbulence modelling using deep neural networks
with embedded invariance. Journal of Fluid Mechanics,
807: 155–166.
Lu, L.; Meng, X.; Mao, Z.; and Karniadakis, G. E. 2021.
DeepXDE: A Deep Learning Library for Solving Differen-
tial Equations. SIAM Review, 63(1): 208–228.
Mohan, A. T.; Lubbers, N.; Livescu, D.; and Chertkov,
M. 2020. Embedding Hard Physical Constraints in
Neural Network Coarse-Graining of 3D Turbulence.
arXiv:2002.00021.
Mrowca, D.; Zhuang, C.; Wang, E.; Haber, N.; Fei-Fei, L.;
Tenenbaum, J. B.; and Yamins, D. L. K. 2018. Flexible Neu-
ral Representation for Physics Prediction. In Proceedings of
the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, 8813–8824. Red Hook, NY,
USA: Curran Associates Inc.
Pfaff, T.; Fortunato, M.; Sanchez-Gonzalez, A.; and
Battaglia, P. W. 2021. Learning Mesh-Based Simulation
with Graph Networks. ICLR 2021:2010.03409.
Raissi, M.; Perdikaris, P.; and Karniadakis, G. E. 2019.
Physics-informed neural networks: A deep learning frame-
work for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Compu-
tational Physics, 378: 686 – 707.
Raissi, M.; Yazdani, A.; and Karniadakis, G. E. 2018.
Hidden Fluid Mechanics: A Navier-Stokes Informed Deep
Learning Framework for Assimilating Flow Visualization
Data. arXiv preprint arXiv:1808.04327.
Rasht-Behesht, M.; Huber, C.; Shukla, K.; and Karni-
adakis, G. E. 2021. Physics-informed Neural Networks
(PINNs) for Wave Propagation and Full Waveform Inver-
sions. arXiv:2108.12035.

Sanchez-Gonzalez, A.; Godwin, J.; Pfaff, T.; Ying, R.;
Leskovec, J.; and Battaglia, P. W. 2020. Learning
to Simulate Complex Physics with Graph Networks.
arXiv:2002.09405.
Schenck, C.; and Fox, D. 2018. SPNets: Differentiable Fluid
Dynamics for Deep Neural Networks. In Conference on
Robot Learning, 317–335.
Schäfer, M.; and Turek, S. 1996. Benchmark Computations
of Laminar Flow Around a Cylinder (The CFD Benchmark-
ing Project). http://www.mathematik.tu-dortmund.de/ feat-
flow/en/benchmarks/cfdbenchmarking.html. (accessed at
08-Sep-2021).
Schöberl, M.; Zabaras, N.; and Koutsourelakis, P.-S. 2019.
Predictive collective variable discovery with deep Bayesian
models. The Journal of Chemical Physics, 150(2): 024109.
Sirignano, J.; and Spiliopoulos, K. 2018a. DGM: A deep
learning algorithm for solving partial differential equations.
Journal of Computational Physics, 375: 1339 – 1364.
Sirignano, J.; and Spiliopoulos, K. 2018b. DGM: A deep
learning algorithm for solving partial differential equations.
Journal of computational physics, 375: 1339–1364.
Sitzmann, V.; Martel, J.; Bergman, A.; Lindell, D.; and Wet-
zstein, G. 2020. Implicit neural representations with peri-
odic activation functions. Advances in Neural Information
Processing Systems, 33.
Stam, J. 1999. Stable fluids. In Proceedings of the 26th an-
nual conference on Computer graphics and interactive tech-
niques, 121–128.
Thuerey, N.; Weißenow, K.; Prantl, L.; and Hu, X. 2019.
Deep Learning Methods for Reynolds-Averaged Navier–
Stokes Simulations of Airfoil Flows. AIAA Journal, 1–12.
Tompson, J.; Schlachter, K.; Sprechmann, P.; and Perlin, K.
2017. Accelerating eulerian fluid simulation with convolu-
tional networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, 3424–3433.
JMLR. org.
Tripathy, R. K.; and Bilionis, I. 2018. Deep UQ: Learn-
ing deep neural network surrogate models for high dimen-
sional uncertainty quantification. Journal of Computational
Physics, 375: 565 – 588.
Um, K.; Fei, R.; Holl, P.; Brand, R.; and Thuerey, N. 2020.
Solver-in-the-Loop: Learning from Differentiable Physics to
Interact with Iterative PDE-Solvers. arXiv:2007.00016.
Ummenhofer, B.; Prantl, L.; Thuerey, N.; and Koltun, V.
2020. Lagrangian Fluid Simulation with Continuous Convo-
lutions. In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.
Wandel, N.; Weinmann, M.; and Klein, R. 2021a. Learn-
ing Incompressible Fluid Dynamics from Scratch - Towards
Fast, Differentiable Fluid Models that Generalize. 9th In-
ternational Conference on Learning Representations, ICLR
2021.
Wandel, N.; Weinmann, M.; and Klein, R. 2021b. Teaching
the Incompressible Navier-Stokes Equations to Fast Neural
Surrogate Models in 3D. Physics of Fluids (AIP).

8537

Wang, H.; Planas, R.; Chandramowlishwaran, A.; and
Bostanabad, R. 2021. Train Once and Use Forever: Solv-
ing Boundary Value Problems in Unseen Domains with Pre-
trained Deep Learning Models. CoRR, abs/2104.10873.
Yang, C.; Yang, X.; and Xiao, X. 2016. Data-driven projec-
tion method in fluid simulation. Computer Animation and
Virtual Worlds, 27(3-4): 415–424.
Zhu, Y.; and Zabaras, N. 2018. Bayesian deep convolutional
encoder–decoder networks for surrogate modeling and un-
certainty quantification. Journal of Computational Physics,
366: 415 – 447.
Zhu, Y.; Zabaras, N.; Koutsourelakis, P.-S.; and Perdikaris,
P. 2019. Physics-constrained deep learning for high-
dimensional surrogate modeling and uncertainty quantifi-
cation without labeled data. Journal of Computational
Physics, 394: 56 – 81.

8538

Supplementary
Magnus effect and generalization examples
Figure 3 a) demonstrates that our Spline-PINN approach is
capable of handling the Magnus effect. The Magnus effect
appears e.g. on rotating bodies within a stream and leads to a
characteristic low pressure field on the side that moves in the
same direction as the flow field. This effect is often exploited
in ballsports such as soccer (banana cick) or tennis (topspin)
to deflect the path of a ball. Figure 3 b) shows a generaliza-
tion example of the Spline-PINN. During training, we con-
fronted the Spline-PINN with randomized environments that
contained at most one obstacle. Nevertheless, our approach
is able to generalize to multiple obstacles as shown here by
the smiley face.

Video - interactive demo
In our supplementary video, we present dynamic simula-
tions obtained by our Spline-PINN method. All simulations
were done in real time on a NVidia GeForce RTX 2080 Ti.
To allow for dynamic interactions, we allow the user to dy-
namically paint new boundaries into the fluid domain during
simulation. This proves the high generalization capabilities
of our method to scenarios not considered during training.
Furthermore, we show dynamic solutions for the wave equa-
tion.

Stability of Spline-PINNs
Here, we evaluate the stability of our approach at the exam-
ple of the incompressible Navier-Stokes equations and the
damped wave equation.

Incompressible Navier-Stokes equation We investigated
the stability of Spline-PINNs on the incompressible Navier-
Stokes equations over hundreds of iterations on the DFG
benchmark [1] problem at Re = 100. As can be seen in Fig-
ure 1, after a short warm-up phase of around 50 iterations,
in which the network has to start up the simulation from 0
pressure and velocity fields, our method is able to provide
stable results over long time horizons.

Figure 1: Stability of Spline Net while solving the Navier
Stokes equation on the DFG benchmark problem at Re =
100.

Damped wave equation As can be seen in Figure 2, our
method delivers stable results for the damped wave equation
on the interference problem setup (see Figure 8 a) in paper).
In contrast to the loss curves for the Navier Stokes equa-
tion (see Figure 1), there is no significant warmup phase as
0 spline coefficients already fulfill the boundary conditions
and wave equation at the beginning of the simulation very
well.

Figure 2: Stability of solution for wave equation (l,m = 2)
on the interference problem setup.

Neural network architecture
In Figure 4, we present the network architectures that we
used for the incompressible Navier-Stokes equation and the
damped wave equation. Ωt contains the occupancy grid of
the domain at a timepoint t and v⃗td/z

t
d contain respective

Dirichlet boundary conditions. For the Navier-Stokes equa-
tion, we internally rely on a U-Net architecture [2] while
for the damped wave equation, a simple 3-layer CNN was
already sufficient. These networks were used to compute a
residual (∆ci,j) to be added to cti,j in order to obtain the
spline coefficients of the next time-step ct+dt

i,j . In the case
of the Navier-Stokes equations, the vector potential az as
well as the pressure field p are only defined up to a constant.
Thus, we mean-normalize the coefficients of the first Spline-
mode for these fields to zero (

∑
x̂,ŷ c

0,0,0

x̂,ŷ,t̂
= 0).

Basis flow fields
Figure 5 shows how flow fields can be obtained by taking
the curl of individual Hermite spline kernel functions for the
vector potential az . These vector fields could be considered
as basis flow fields for the velocity field v⃗.

Choice of hyperparameters α, β, γ
We investigated the sensitivity of our method with respect
to different loss weights in Equation 9. Figure 6 shows how
different ratios between α and β affect the losses for the mo-
mentum equation Lp and boundary conditions Lb after train-
ing. If we put too little weight on the fluid domain (α), the
accuracy of the momentum equation drops, while if we put
too little weight on the boundaries (β), we get unrealistic
flows leaking through the boundary. Tuning these parame-
ters is fairly intuitive and depending on the application, one

(a) Magnus effect on clockwise turning cylinder (µ = 0.01, ρ = 10)

(b) Generalization example (drawing of smiley) (µ = 0.1, ρ = 10)

Figure 3: Flow and pressure fields for Magnus effect and a generalization example. Left side: velocity magnitude; Right side:
pressure field and stream lines of velocity field.

Figure 4: Network architectures used for the incompressible Navier-Stokes equation (left) and damped wave equation (right).
The numbers located below the blue bars indicate the number of channels of the individual layers.

can choose a corresponding sweet-spot. For the wave equa-
tion, one can proceed similarly. Too little weight on α and
β decreases the performance of the Spline CNN within Ω,
while too little weight on the boundaries (γ) leads to inferior
adherence to the boundary conditions. In the future, more
elaborate methods such as proposed e.g. by Wang et al. [3]
could be used to automate the process of finding proper loss
weights.

Loss values for Navier-Stokes equation
We compared E[|∇ · v⃗|] and Lp of an implicit physics-
informed neural network, a MAC grid based physics-
constrained neural network [4], our Hermite Spline ap-
proach and an industrial CFD solver (Ansys) on the DFG
Fluid-Benchmark at Re = 2, Re = 20 and Re = 100.
All machine learning based approaches were trained with-
out any ground truth data but only using a physics-based
loss and the boundary conditions of the benchmark setup

[1]. Since a vector potential is used for the ML-based meth-
ods, we computed E[|∇ · v⃗|] by measuring the flow leaking
through the boundaries as an effect of not perfectly match-
ing the boundary conditions. This corresponds to a thin layer
that does not preserve the incompressibility equation. The
losses on the MAC grid were computed using finite differ-
ences and the loss for Ansys was computed based on the
field-values and derivatives provided by Ansys.

While the implicit PINN provides a very high accuracy
for the momentum equation (see low Lp values), it fails to
achieve similar performance on matching the boundary con-
ditions (see high E[|∇ · v⃗|] values). The Marker-and-Cell
grid based approach delivers the lowest loss values. How-
ever, these losses do not consider the inaccuracies delivered
by the finite-difference approximations within the MAC grid
itself. The high losses for the Ansys solver could stem from
the fact that solutions are internally not optimized in strong
form but based on Galerkin / Finite-Elements methods and

Re=2 Re=20 Re=100
Method E[|∇ · v⃗|] Lp E[|∇ · v⃗|] Lp E[|∇ · v⃗|] Lp

implicit PINN 3.692e-04 5.543e-08 2.371e-04 1.142e-07 1.855e-03 1.465e-06
MAC grid 6.039e-05 1.986e-05 8.99e-06 3.436e-07 5.796e-05 4.358e-06
Spline Net 8.32e-05 3.847e-03 1.07e-04 1.92e-05 7.492e-04 9.04e-04

Ansys 1.46e-04 1.511e-02 1.072e-05 2.348e-05 8.912e-04 2.038e-02

Table 1: Quantitative results for implicit PINN, MAC grid, Spline Net and Ansys. Note: A direct comparison of these loss values
is difficult as the losses had to be computed in different ways: The values for the implicit PINN and Spline Net were computed
based on physics-informed losses while the losses for the MAC grid method were based on physics-constrained losses and the
values of the Ansys-solver were computed based on the outputs on the underlying mesh representation. Thus, we argue that our
results on drag and lift coefficients (see Table 1 and 2) are more expressive in terms of overall performance.

Figure 5: Curl of 2D Hermite spline kernels with l,m = 2.
Note that these ”basis flow fields” all conserve ∇ · v⃗ = 0,
since ∇ · ∇ × az = 0. Thus the total flow field is incom-
pressible as well.

that the provided derivatives might not be as accurate. We
conclude that a comparison of such loss values is very dif-
ficult and one has to be very careful with drawing conclu-
sions - especially on a Marker and Cell grid as the grid itself
might introduce errors due to finite difference approxima-
tions. Furthermore, local loss values do not translate directly
into physical accuracy for more global phenomena such as
drag and lift forces.

Acknowledgement
This work has been supported by the German Research
Foundation (DFG), FOR 2535 Anticipating Human Behav-
ior.

References
[1] The cfd benchmarking project.

http://www.mathematik.tu-dortmund.de/ feat-

Figure 6: Impact of different ratios between α and β in Lflow
tot

on Lp and Lb after training (see Equation 9).

flow/en/benchmarks/cfdbenchmarking.html, 2021.
(accessed at 08-Sep-2021).

[2] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional networks for biomedical image
segmentation. In International Conference on Medi-
cal image computing and computer-assisted interven-
tion, pages 234–241. Springer, 2015.

[3] Sifan Wang, Yujun Teng, and Paris Perdikaris. Under-
standing and mitigating gradient pathologies in physics-
informed neural networks, 2020.

[4] Nils Wandel, Michael Weinmann, and Reinhard Klein.
Learning incompressible fluid dynamics from scratch -
towards fast, differentiable fluid models that generalize.
9th International Conference on Learning Representa-
tions, ICLR 2021, 2021.

	I Introduction
	1 Introduction
	1.1 What are PDEs and why do we need them?
	1.2 Why is solving PDEs hard?
	1.3 Why are artificial neural networks a good option for solving PDEs?
	1.4 What are the challenges of neural network based approaches?
	1.5 What are the contributions of this work?
	1.6 Overview

	2 Related work
	2.1 Lagrangian methods
	2.2 Hybrid methods
	2.3 Eulerian methods
	2.4 Splines in Neural Networks
	2.5 Differentiable models for fluid control

	3 Foundations
	3.1 Partial Differential Equations
	3.1.1 Differential operators
	3.1.2 The initial-boundary-value-problem (IBVP)
	3.1.3 Properties of PDEs

	3.2 Incompressible Navier-Stokes Equation
	3.2.1 Incompressibility equation
	3.2.2 Momentum equation
	3.2.3 What is density ρ?
	3.2.4 What is viscosity µ?
	3.2.5 What is pressure p?
	3.2.6 Drag and Lift coefficients
	3.2.7 Reynolds-Number
	3.2.8 Important effects
	3.2.9 Simplifications of the Navier-Stokes equation

	3.3 Damped Wave Equation
	3.3.1 Important effects

	3.4 Artificial Neural Networks
	3.4.1 Implicit Neural Representation Networks
	3.4.2 Convolutional Neural Networks

	3.5 Spline-Interpolation

	II Publications
	4 Learning Incompressible Fluid Dynamics from Scratch - Towards Fast, Differentiable Fluid Models that Generalize
	4.1 Summary
	4.2 Author Contributions

	5 Teaching the Incompressible Navier-Stokes Equations to Fast Neural Surrogate Models in 3D
	5.1 Summary
	5.2 Author Contributions

	6 Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed Hermite-Spline CNNs
	6.1 Summary
	6.2 Author Contributions

	III Conclusion
	7 Conclusion
	7.1 Summary
	7.2 Limitations and Future Work
	7.3 Outlook

	Bibliography
	List of Figures
	List of Tables

	IV Appendix
	Publication: "Learning Incompressible Fluid Dynamics from Scratch - Towards Fast, Differentiable Fluid Models that Generalize"
	Publication: "Teaching the Incompressible Navier-Stokes Equations to Fast Neural Surrogate Models in 3D"
	Publication: "Spline-PINN: Approaching PDEs without Data using Fast, Physics-Informed Hermite-Spline CNNs"

