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1
I N T R O D U C T I O N

The modern world relies heavily on fast computer chips (Figure 1).
The process of specifying and creating the blueprint of a chip before
it goes into manufacturing is called chip design. A central task in
chip design is routing. Sets of pins on the chip must be connected
through wires without intersecting each other and meeting many de-
sign rules and optimization criteria. Each such set of pins is called
a net and, because there can be millions of nets on one chip, rout-
ing is typically divided into two steps. Firstly, a rough global routing
is computed with the ability to optimize global objectives. Secondly,
a detailed routing algorithm uses this rough routing as guidance to
compute the exact wiring, meeting all local design rules. The Bonn-
Tools, a collection of chip design software developed at the Research
Institute for Discrete Mathematics in Bonn in cooperation with IBM,
achieve this by BonnRouteGlobal and BonnRouteDetail.

This thesis is about improvements on BonnRouteGlobal. In Sec-
tion 2, we explain the global routing problem in more detail and
introduce basic notation. The primary focus of this thesis is on the
dynamic local usage which is a more accurate way of measuring rout-
ing density in BonnRouteGlobal and is presented in Section 3. As a
global router, BonnRouteGlobal computes longer wiring connections
on a coarse grid graph that models a condensed version of the chip.
Traditionally, the impact on space of shorter wires that connect to
pins is estimated beforehand and independently of the actual routing
topology. The dynamic local usage establishes a new optimization
model in which all wiring can be optimized simultaneously, thereby
improving the overall routing. The subject of this thesis is the intro-
duction of this model, the development and implementation of al-
gorithms necessary to compute an optimized routing within it, and
enabling the dynamic local usage in the routing flow.

We discuss the impact of the dynamic local usage on the difficulty
of finding good routing solutions on the coarse grid graph. Bonn-

Figure 1: A silicon wafer containing several chips [17].
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2 introduction

RouteGlobal employs the resource sharing framework from [49] to
share the available routing space among the nets and to optimize sig-
nal delay through the wires. The resource sharing algorithm provides
prices for the routing resources. Building on [52], using dynamic pro-
gramming and arithmetics on piece-wise linear functions, we present
an algorithm that computes optimum local wiring in a planar version
of the dynamic local usage model with regard to these prices. To em-
bed the wiring into the chip layers, we use a dynamic program from
[53] whose running time is quadratically dependent on the number
of chip layers. We present an improved version with a linear running
time, that is able to optimize additional properties of the wires. We
briefly outline how to combine the planar and the layer optimization
into a full 3-dimensional optimization. This is followed by a discus-
sion on how to adapt Incremental BonnRouteGlobal, which is a mode
of the global router used intensively during the routing flow to im-
prove timing, for the dynamic local usage.

In Section 4, we evaluate the resulting global routing quality in
terms of routability in BonnRouteDetail and demonstrate the capa-
bility of the dynamic local usage to persistently improve the results
in the routing flow of IBM, leading to improved signal delay, shorter
wire length, and less design rule violations.

Section 5 presents a fast approximation algorithm for a variant
of the rectilinear Steiner tree problem, that contains certain types
of obstacles as additional constraints, expanding on the work of [6,
25]. Some obstacles may not be traversed at all, others may be tra-
versed only horizontally, only vertically, or in both directions. The
total length of each connected component in the intersection of the
tree with the interior of the obstacles is bounded by a constant. This
problem is motivated by the layout of repeater tree topologies, which
is also a central task in chip design. Large obstacles might be crossed
by wires on higher layers, but repeaters may not be placed within the
obstacles and a long unbuffered piece of wiring would lead to tim-
ing violations. Due to special obstacle structures, the traversal can be
restricted to one direction.

We present a 2-approximation algorithm with a worst-case run-
ning time of O

(
(k logk)2

)
, where k is the number of terminals plus

the number of obstacle corner points. Under certain realistic assump-
tions on the obstacle structure, the running time is O

(
k(logk)2

)
. The

algorithm is fast in practice and it solves even large instances aris-
ing from global routing with almost 800000 terminals within 80 sec-
onds, proving its practical applicability. Combined with very effective
post-optimization we obtain better results than previous heuristics
on large obstacle-avoiding DIMACS benchmarks. If the Steiner trees
are allowed to reach over obstacles our algorithm finds significantly
shorter solutions.
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Compared to [6, 25] which this section is based on, we provide a
more thorough case distinction in the proof of the main theorem, clos-
ing gaps in the previous proofs. This is joint work with the authors
of [25], though the majority of the progress is due to the author of
this thesis. Building on [6, 25], we also slightly improve the extrac-
tion of the Steiner tree and extend the post-optimization by an edge
substitution method from [20]. The latter solves an online maximum
cost on tree path problem which is also interesting for the Steiner
tree problem without obstacles. For this problem we improve the pre-
processing time of the algorithm by [31] from O(n logn) to O(n), still
allowing queries in O(logn).

Finally, this thesis provides experimental results of a new appli-
cation of our Steiner tree algorithm for the computation of lower
bounds on wire length and via numbers in BonnRouteGlobal with
the dynamic local usage. Results point out the algorithm’s potential
to generate strong lower bounds significantly faster than the currently
used approach in BonnRouteGlobal that is based on the coarse global
routing grid graph.
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P R E L I M I N A R I E S

In the BonnTools [21, 34], BonnRouteGlobal computes a coarse global
routing solution (Figure 2). Afterwards, BonnRouteDetail computes
exact wiring that is free of overlaps and meets all local design rules
(Figure 3). For this, it uses the coarse global routing solution of Bonn-
RouteGlobal as a guidance and restricts its search area for wires
around the wires of the global routing. Detailed routing is a very
complex task [1] and is heavily dependent on the global routing in-
put, which must be of good quality in terms of routability and other
objectives such as total wiring length, signal delay properties and es-
timated power consumption.

It is possible to perform an intermediate step between global and
detailed routing, called track assignment: Given a global routing solu-
tion, wires are moved in orthogonal routing dimension with the ob-
jective of minimizing total overlap. The detailed router tries to follow
the almost legal result of track assignment [2] potentially resulting
in a shorter running time and improved detailed routing quality. We
will not consider track assignment in this thesis but it is compatible
with the concepts that we describe here.

BonnRouteGlobal creates a coarse grid graph on the chip to sim-
plify the instance and make global optimizations possible. To avoid
congestion hotspots, i.e. high local packing densities of wires that
would pose problems for BonnRouteDetail, BonnRouteGlobal employs
the resource sharing framework described in [49]. Essentially, the
edges of the grid graph are the resources representing the available
space and the nets are the customers whose wires consume from the
edge resources depending on their position, width and length. The
main routing algorithm projects all pin positions to the nodes of the
grid graph and only routes along its edges, trying not to overuse
any edge resources. The resource sharing algorithm computes a con-
vex combination of solutions for each of the nets on which random-
ized rounding is applied to obtain an integral solution, followed by a
heuristic post-optimization. In the very end the routes on the coarse
grid graph are connected to the exact pin shapes through local wiring.

2.1 notation

We start with some basic definitions:

Definition 1 (Chip image). By C = [xmin, xmax]× [ymin,ymax] we de-
note the rectangular area of the chip. Let L = [lmin, ..., lmax] ⊂ N an
interval that represents the set of chip layers. Let Lx ⊔ Ly = L the

5



6 preliminaries

Figure 2: View from the top onto a small part of a global routed chip. The
long green shapes are wires that can have different widths and
are located on different layers on top of each other. The small rect-
angles are vias, which are metal shapes that connect neighboring
layers.

Figure 3: View from the top onto the same excerpt as in Figure 2 after de-
tailed routing. In contrast to global routing the wires must not
overlap each other on the same layer after detailed routing.
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Figure 4: Division of the chip image C into a grid of rectangular global rout-
ing tiles (light and dark gray).

layers with preferred routing dimension x and y respectively, that is
wires on x layers must only run in x-dimension and wires on y layers
must only run in y-dimension.

Usually the routing dimension alternates over the layers. There may
be blockages on the chip image on certain layers (Figure 10 on page
20). Blockages are rectangular areas in which BonnRouteDetail is not
allowed to place wires, which has to be taken into account by Bonn-
RouteGlobal.

BonnRouteGlobal creates the coarse global routing graph on the
chip image :

Definition 2 (Global routing graph). The chip image C is divided
into a grid of nx times ny rectangular global routing tiles (Figure 4),
whose widths and heights are defined by numbers xmin < x1 < ... <
xnx−1 < xmax and ymin < y1 < ... < yny−1 < ymax. To each center
of a global routing tile and for each layer we associate a node in the
global routing graph G (Figure 5). That is, G is a three-dimensional
grid graph with node set

V(G) := {1, ...,nx}× {1, ...,ny}×L

Nodes of neighboring global routing tiles on the same layer are con-
nected through wire edges if those conform with the routing dimen-
sion of the layer the nodes belong to. Nodes that belong to adja-
cent layers and represent the same global routing tile are connected
through via edges.

By □(v) ⊂ C × L we denote the global routing tile area a node
v ∈ V(G) belongs to. In the same way each edge e ∈ E(G) connecting
two nodes on the same layer is associated with a rectangular edge
area □(e) ⊂ C × L spanning the area between the incident nodes
(Figure 6).

Along with the chip image, BonnRouteGlobal is given pins and
nets:
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Figure 5: The global routing graph of a chip with two layers. The bottom
layer has y-routing dimension and the top layer x-routing dimen-
sion. Wire edges are drawn in black and via edges in red.

Layer with x-routing dimension Layer with y-routing dimension

Figure 6: The edge areas (light and dark gray) associated to the wire edges
(thick black), connecting the global routing graph nodes (red).
Note that the edge areas are extended at the chip borders. The
edge areas are offset from the global routing tiles (dashed black).
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Definition 3 (Pin). A pin p is a rectangular shape on the chip image
on a certain layer, that is p ⊂ C×L.

In practice, pins can consist of a set of rectangular shapes, but for
simplicity here we assume that they only consist of one shape.

Definition 4 (Net). A net n is a finite set of pins Pn. By N we denote
the set of all nets of the chip. Each net has a dedicated source pin. The
other pins are referred to as sink pins.

The task of BonnRouteGlobal is to connect the pins in each net with
a route, such that the electrical signal can flow from the source pin to
the sink pins:

Definition 5 (Local route). A local route for a net n ∈ N is an ar-
borescence A with vertices V(A) ⊂ C× L connecting all pins Pn of
n, that is for each p ∈ Pn there is v ∈ V(A) with v ∈ p. The root of
A connects the source pin of n. Nodes on different layers can be con-
nected by so-called vias. Edges connecting nodes on the same layer
must conform with the preferred routing dimension of that layer, that
is for each edge ((x1,y1, z1), (x2,y2, z2)) ∈ E(A) it must either hold

• y1 = y2 and z1 = z2 ∈ Lx (wire in x-dimension),

• x1 = x2 and z1 = z2 ∈ Ly (wire in y-dimension) or

• x1 = x2 and y1 = y2 and |z1 − z2| = 1 (via).

Note that there are cases where in practice we allow jogs that are
wires not running in the preferred dimension of a layer. However,
in this thesis we assume them to be forbidden. Multiple consecutive
via edges without incident wire edges in the middle layers are called
stacked vias.

To speed up the running time and make global optimizations possi-
ble, BonnRouteGlobal projects the pins onto the global routing graph
nodes and computes coarse routes on the global routing graph:

Definition 6 (Coarse Route). A coarse route A for a net n ∈ N has the
same properties as a local route for n with the difference that

• the coarse route is a subset of the global routing graph, that is
V(A) ⊂ V(G) and E(A) ⊂ E(G) and

• a pin p ∈ Pn is considered to be connected by A if there is a
node v ∈ V(A) ⊂ V(G) such that p intersects the global routing
tile of v, that is p∩□(v) ̸= ∅ (note that a pin can intersect several
neighboring global routing tiles).

A coarse route does not need to connect to the exact pin shapes of
a pin but only to the node in the global routing graph representing
the global routing tile on which the pin is located. The coarse route



10 preliminaries

Coarse route on the global routing
graph. Diagonal black arcs indicate

projected pin positions to the
centers of the global routing tiles.

Local route connecting to the exact
pin shapes.

Figure 7: A coarse route and a local route for a net, with the borders of the
global routing tiles (black), edges of the routes (blue) and sink pins
(black rectangles) and the source pin (red).

suffices for BonnRouteDetail to be used as a guidance to compute
exact wiring for a net. For other purposes in BonnRouteGlobal like
timing or wire length evaluation - and congestion estimation within
the new dynamic local usage approach - it is necessary to have a lo-
cal route connecting to the exact pin shapes as in Definition 5. Bonn-
RouteGlobal computes local routes at a later time, sticking to the same
global routing tiles as in the earlier computed coarse routes. Figure 7

shows a coarse route and a local route for a net.
During routing it has to be ensured that all signals arrive early

enough at their destination. They must not arrive too early either, but
since this can be satisfied much easier this will not be considered in
this thesis. The information on how signals are propagated through
the chip is given by the timing graph:

Definition 7 (Timing graph). The timing graph T has node sets Vin,
Vout and Vgate. Vin consists of the primary inputs of the chip and
the output pins of latches which propagate a signal from a previous
computation cycle. Analogously, Vout consists of the primary outputs
of the chip and the input pins of latches, storing a signal for a later
cycle. Vgate contains the input pins of gates. T contains an edge (v,w)
iff v ∈ Vin and w is a sink pin of the net driven by v, or v ∈ Vgate and
w is a sink pin of the net that is driven by an output pin of the gate
that has v as input pin.

Given arrival times at(v) for all v ∈ Vin and required arrival times
rat(w) for w ∈ Vout we want to find routes for the nets such that the
following timing inequality is satisfied for all paths P in the timing
graph T from some v ∈ Vin to w ∈ Vout:

at(v) +
∑

e∈E(P)

delay(e) ⩽ rat(w) (1)
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Here delay(e) denotes the time a signal has to travel through the
edge e in the timing graph, and the inequality describes the assertion
that a signal starting at v reaches w early enough.

[18] describes an easy way to approximate the signal delay through
a tree network consisting of resistors and capacitors. In our applica-
tion this yields the following definition:

Definition 8 (Elmore delay). Given a local route A with source s and
sinks T ⊂ V(A), a source resistance R(s) ⩾ 0 and sink capacitances
C(w) ⩾ 0 for all sink pins w ∈ T and capacitances and resistances
C(e),R(e) ⩾ 0 for all wires and vias e ∈ E(A) we define the down-
stream capacitance of the sub-arborescence Av ⊂ A rooted at v as

C(Av) := C(E(Av)) +C(T ∩ V(Av))

and the Elmore delay from the source s to a sink w ∈ T as

delayA(s,w) := R(s) ·C(A) +
∑

e∈P[s,w]

R(e) ·
(
C(e)

2
+C(Aw)

)

where P[s,w] is the unique path from s to w in A.

The Elmore delay gives a reasonable estimate of the signal delay
through a route while it is easily computable in linear time. For these
reasons it is widely used in VLSI-Design and also employed by Bonn-
RouteGlobal to estimate and optimize timing.

2.2 the global routing problem

We formalize the task of BonnRouteGlobal: In its simplest version the
global routing problem is a weighted Steiner tree packing problem.
As input we are given the set of nets and the global routing graph
along with capacities for the edges. The capacities are chosen such
that they reflect an estimated amount of wiring that can be fit onto
the edge area of a global routing edge, taking into account any pre-
existing wires and blockages on the chip (see e.g. [45, 48, 51, 53] for
more details on capacity estimation). The simplified global routing
problem asks to compute coarse routes for the nets such that the total
number of coarse routes that contain an edge of the global routing
graph does not exceed the capacity of that edge. The total length of
all the coarse routes should be minimum [49].

Problem 9. Simplified Global Routing

Input: Set of nets N, global routing graph G, edge capacities u :

E(G) → Z+.
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Output: A coarse route An for each net n ∈ N such that

|{n ∈ N : e ∈ E(An)}| ⩽ u(e) for each edge e ∈ E(G)

and
∑

n∈N

∑
e∈E(An) length(e) is minimum.

This simplified version assumes all wires to have the same width.
In practice there can be wires with different widths and nets can be
assigned weights. Moreover, further objectives like signal delay, signal
integrity, power consumption and manufacturing yield can be incor-
porated into the problem formulation [49].

2.3 the resource sharing problem

BonnRouteGlobal uses the resource sharing framework to first solve
the relaxed global routing problem, which asks for a convex combi-
nation of coarse routes for each net. For this it models the relaxation
of the global routing problem as a resource sharing problem. An ap-
proximate solution to this problem can be computed efficiently with
the resource sharing algorithm [49].

Problem 10. Resource Sharing

Input:M customers and K resources, indexed by 1, ...,M and 1, ...,K.
For each customerm a finite set of possible solutions Am, indexed
by 1, ..., |Am|. The solutions consume from the resources: Solution
j ∈ Am for customer m consumes wmjk ∈ [0,∞) from resource
k.

Output: For each customer m = 1, ...,M a convex combination zm
of solutions in Am, approximately minimizing the maximum re-
source usage

λ := max
k=1,...,K

 M∑
m=1

∑
j∈Am

zmj ·wmjk


Moreover, for a fixed σ ⩾ 1 we require oracles fm : RK

+ → Am for
each customer m = 1, ...,M. For a cost vector y ∈ RK

+ such an oracle
function should return an element fm(y) with

K∑
k=1

yk ·wmfm(y)k ⩽ σ · optm(y)

Here optm(y) := minj∈Am

∑K
k=1 yk ·wmjk denotes the cost of an op-

timum solution for customer m with respect to the cost vector y. The
oracles are used by the resource sharing algorithm whose approxima-
tion guarantee linearly depends on σ:
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Theorem 11. [49] Consider an instance of the resource sharing problem
with σ-approximate oracles and let θ denote the running time for one oracle
call. Then, for every parameter ω > 0, it is possible to compute a σ(1+ω)-
approximate solution to the resource sharing problem in time

O
(
θ(|M|+ |K|) log |K|

(
log log |K|+ω−2

))
The running time was improved by the following result:

Theorem 12. [8] In the same setting as in Theorem 11, one can compute a
σ(1+ω)-approximate solution to the resource sharing problem in time

O
(
θ(|M|+ |K|)ω−2 log |K|

)
2.4 global routing as a resource sharing problem

Recall that we are given capacities u : E(G) → Z+ for the edges of the
global routing graph. An instance of the relaxed global routing prob-
lem can be modeled as an instance of the resource sharing problem
as follows:

For each edge e ∈ E(G) in the global routing graph we add one re-
source re. For each net n ∈ N we add one customer cn. The solution
set for customer cn corresponds to the possible coarse routes for net n.
Let A be such a coarse route for net n. It consumes 1

u(e) from resource
re if e ∈ E(A). Otherwise, if e /∈ A it consumes nothing from re. By
this definition a fractional assignment of solutions to customers with
a maximum resource usage of at most 1 implies a fractional assign-
ment of coarse routes to the nets such that no capacity constraint of
the global routing graph is violated. The whole set of coarse routes is
not computed explicitly. Only a polynomial number of coarse routes
that are assigned a value greater zero in the output are actually com-
puted. A regular Steiner tree approximation algorithm can be chosen
as an oracle for the computation of the coarse routes.

Other objectives like total netlength can be modeled by additional
resources. BonnRouteGlobal also optimizes arrival times in the timing
graph during global routing within the resource sharing algorithm:
To each edge of the timing graph T it adds a sink delay resource, and
to each node of the timing graph it adds an arrival time customer rep-
resenting the arrival time of the signal at a specific node in the timing
graph. The arrival time customer of a node v consumes from the sink
delay resources of the incident edges δT(v). The later the arrival time
the more it consumes from the outgoing sink delay resources but less
from the incoming sink delay resource. For each source-sink path a
net consumes from the corresponding sink delay resource an amount
of usage that is proportional to the delay on that path from the source
to the sink. Choosing appropriate weights for the usages, a resource
sharing solution with a maximum resource usage of at most 1 implies
a fractional global routing solution with delays and arrival times that
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satisfy the timing assertions (1). Such a solution usually is much better
than working without arrival time customers and using static arrival
times instead, because they do not adapt to the actual delays of the
computed routes. For details we refer to [27]. Using more sophisti-
cated oracles, one can compute coarse routes that are approximately
optimum with regard to sink delay and edge resource usages [53]
(see also Section 3.2).

Given a fractional solution to the relaxed global routing problem,
BonnRouteGlobal applies randomized rounding to obtain an integral
solution (see [7] for more details). [49] shows that the rounded solu-
tion is not much worse than the fractional solution. After rounding
BonnRouteGlobal optimizes the rounded solution heuristically.
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D Y N A M I C L O C A L U S A G E

The quality of a global routing is determined by the ability of the de-
tailed router to connect the nets through overlap-free wires following
the given global routing. BonnRouteGlobal computes coarse routes
within the resource sharing framework, making sure that the pre-
computed capacity of each global routing graph edge is not exceeded.
After applying randomized rounding and heuristic post-processing,
BonnRouteGlobal obtains local routes by connecting the coarse route
of each net to the exact pin shapes through shortest Steiner trees
within the global routing tiles (Figure 7 on page 10). Hence, look-
ing at the overall flow of BonnRouteGlobal (Figure 8), local routes are
only computed at the very end.

The space used by wires connecting to the exact pin shapes has
to be accounted for during the resource sharing algorithm: Heuris-
tic algorithms pre-estimate the usage of this local wiring and addi-
tional space that BonnRouteDetail might need before the resource
sharing starts. However, due to the static nature of the local wiring
pre-estimates they can never represent the actual usage that the local
wiring will eventually have, neither can it be optimized during re-
source sharing. During incremental routing, which is intensively used
in the IBM routing flow to incorporate smaller changes on few nets
after global routing, the pre-estimates cannot account for changes in
the chip structure like moved pins. Moreover the pre-estimates make
use of many parameters which partly have to be re-tuned for new
chip technologies and lead to inefficient packing of wires.

The goal of the dynamic local usage is to overcome these drawbacks
by modeling the local wiring usage and the packing ability of Bonn-
RouteDetail in a simpler way. The computation of the local wiring is
moved from after the randomized rounding into the resource shar-
ing phases right after the computation of the coarse route on the
global routing graph. This enables the resource sharing algorithm
to consider the actual usages of the local wiring and the heuristic
pre-estimates are thus not needed any longer. Using dynamic pro-
gramming, the local wiring can adapt optimally to the current edge
resource usages and also to other objectives like timing over the re-
source sharing phases. Altogether, a near-optimum routing also with
regard to local wiring can be computed during the resource sharing,
improving the overall quality of the output of BonnRouteGlobal. Dur-
ing incremental routing the local wiring usages can adapt to changing
net topology.

To implement the dynamic local usage in BonnRouteGlobal, several
key components and algorithms had to be modified. By the traditional

15
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router we denote BonnRouteGlobal without the dynamic local usage.
Figure 8 shows the main steps of BonnRouteGlobal with and without
the dynamic local usage.

Traditional Router

1. Compute available space cov-
ered by edge resources

2. Estimate space that local wires
will consume

3. Enter resource sharing;
iteratively:

a) Compute coarse routes on
the global routing graph
for all nets

b) Let the resource prices
grow with usage

4. Obtain integral solution by ran-
domized rounding

5. Heuristically improve the inte-
gral solution

6. Obtain local routes by connect-
ing to pins with shortest Steiner
trees within global routing tiles

a) Optimization of x- and y-
positions of Steiner nodes

b) Heuristic layer assignment

Dynamic Local Usage

1. Compute available space cov-
ered by edge resources

2. Enter resource sharing;
iteratively:

a) Compute coarse routes on
the global routing graph
for all nets

b) Obtain local routes by con-
necting to pins with short-
est Steiner trees within
global routing tiles

c) Congestion- and timing-
aware optimization of x-
and y-positions of Steiner
nodes

d) Congestion- and timing-
aware layer assignment

e) Let the resource prices
grow with area usage

3. Obtain integral solution by ran-
domized rounding

4. Heuristically improve the inte-
gral solution

Figure 8: Main steps of the traditional router and of the dynamic local usage.

3.1 usage model

To account for the space that wires consume, they add usage to the
edge resources of the global routing graph within the resource shar-
ing framework. With the traditional router, wires of a coarse route
connecting nodes in the global routing graph add usage proportional
to their width. The width is the sum of the metal width of the wire
and the required spacing to neighboring wires.

To measure the edge resource usages for a local route, the tradi-
tional router filters all wires that cross global routing tile borders and
also accounts usage proportional to the width of the wires, but re-
gardless of their length. In this way, the edge resource usages do not
change when transforming a coarse route to a local route sticking to
the global routing tiles of the coarse route. The static pre-estimate us-
age covers for the wires inside the global routing tiles that connect to
the exact pin shapes and does not depend on the actual routes.
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With the dynamic local usage all wires of a local route consume
space from the edge resources such that their effect on packing den-
sity can be measured. The usage of a wire is proportional to its area
and it is distributed among the edge resources whose edge areas the
wire intersects. This definition holds for all wires, both wires that
cross global routing tile borders and wires that are located inside the
global routing tiles. There is no pre-estimate usage with the dynamic
local usage.

To prevent continuous price changes on global routing tile borders
in orthogonal routing direction, instead of actual areas, we define
sticks for wires and vias which are lines in preferred routing dimen-
sion from the minimum to the maximum expansion of the wire or via.
We will intersect the sticks with the global edge areas and let them
consume usage from the respective edge resources proportional to
the length of the intersection times the width of the wire or via. We
consider spacing requirements in preferred routing direction, the so-
called tip-to-tip spacing, by which the sticks will be extended. For
simplicity, we assume all wires to have unit width in orthogonal di-
rection (including spacing constraints) in most parts of this thesis
including this section. Only in Section 3.3.2 can wires have different
widths, leading to different properties regarding signal propagation
and space consumption. The implementation in BonnRouteGlobal is
also capable of handling wires with different widths.

As BonnRouteGlobal computes routes in a two-step approach by
first computing a coarse route for a net, which is then extended to
a local route, we define the following definitions both for local and
coarse routes.

Definition 13 (Wire and via sticks). Let

disttip(z) ∈ R⩾0

the required tip-to-tip spacing on layer z ∈ L given by the manufac-
turing rules and ktip ⩾ 1 constant. Let A be a local or coarse route and
v = (x,y, z) ∈ V(A). By 1+(v) we denote the indicator function that
is true iff v is not incident to an edge in positive routing dimension.
Analogously, we define 1−(v) to be true iff v is not incident to an edge
in negative routing dimension. We define tip-to-tip lengths as

ltip(z) := ktip ·
disttip(z)

2

l−tip(v) := 1−(v) · ltip(z) l+tip(v) := 1+(v) · ltip(z)

For a wire in x-dimension e = (v,w) = ((x1,y, z), (x2,y, z)) ∈ E(A)

where w.l.o.g. x1 ⩽ x2 we define

stick(e) := [x1 − l
−
tip(v), x2 + l

+
tip(w)]× {y}× {z}
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For a wire in y-dimension e = (v,w) = ((x,y1, z), (x,y2, z)) ∈ E(A)

where w.l.o.g. y1 ⩽ y2 we define

stick(e) := {x}× [y1 − l
−
tip(v),y2 + l

+
tip(w)]× {z}

For a wire in z-dimension e = ((x,y, z1), (x,y, z2)) ∈ E(A) we define
the stick as the empty set

stick(e) := ∅

For a node v = (x,y, z) ∈ V(A) that is incident to a via edge we define

stick(v) :=

[x− 0.5− l−tip(v), x+ 0.5+ l
+
tip(v)]× {y}× {z} z ∈ Lx

{x}× [y− 0.5− l−tip(v),y+ 0.5+ l
+
tip(v)]× {z} z ∈ Ly

For all other nodes v = (x,y, z) ∈ V(A) we define their stick as the
empty set

stick(v) := ∅

In other words, wire edges are geometrically embedded into C×L

and extended by the tip-to-tip penalty. For vias we associate two lines
of length 1 plus the tip-to-tip penalty in preferred routing dimension
around the two end points of the via edge. The tip-to-tip penalty ex-
tension is only applied if a node is not incident to an edge that would
overlap with the tip-to-tip extension (Figure 9). The tip-to-tip length
is given by the tip-to-tip spacing divided by two and multiplied by
ktip. Setting ktip = 1 ensures that any two wires or vias whose asso-
ciated areas do not intersect have a distance of at least disttip(z) in
preferred routing dimension. In Section 3.1.1 we will elaborate more
on the choice of ktip.

The resource sharing framework provides prices for the edge re-
sources, which translate into prices for the global routing graph edge
areas:

Definition 14 (Congestion price function). A function

ψ : C×L → R⩾0

that is constant on each global edge area is called a congestion price
function.

We use this general definition of ψ to make notation easier. How-
ever, keep in mind that for e ∈ E(G) the restriction ψ|□(e) of the con-
gestion price function to one global edge area is a constant function.
For v ∈ V(G) the restriction ψ|□(v) of the congestion price function
to the area of a global routing tile on one layer yields a function as-
suming at most two different values because one global routing tile
intersects exactly two global edge areas except it is located next to the
chip boundary.

Now we can define the congestion costs of a route:
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Figure 9: The wire sticks (dark red) from u to v and v to w intersect the
edge areas A, B and C (light and dark gray). At node v no tip-to-
tip penalty is added because it would overlap with the incident
wires. At nodes u and w tip-to-tip penalty extensions are applied
(light red) and they intersect the edge areas A, C and D.

Definition 15 (Congestion costs of a route). Let A a local or coarse
route and ψ : C×L → R⩾0 a congestion price function. The conges-
tion costs of A are defined as

costcong(A) :=

∫
⋃

e∈E(A) stick(e)∪
⋃

v∈V(A) stick(v)
ψds

In other words, we consider the union of all wire and via sticks,
intersect it with the global edge areas and multiply the length of each
intersection by the respective price (see Figure 9).

At some places we use the following easier-to-handle definition
which ignores overlaps of wire sticks (which happen at Steiner points)
and thus can slightly deviate from Definition 15:

Definition 16 (Intersection-ignoring congestion costs of a route). Let
A a local or coarse route and ψ : C× L → R⩾0 a congestion price
function. The intersection-ignoring congestion costs of A are defined
as

costcong+(A) :=
∑

e∈E(A)

∫
stick(e)

ψds+
∑

v∈V(A)

∫
stick(v)

ψds

The dynamic local usage uses the same timing usage model as
the traditional router [27]. Like the congestion price function that de-
fines prices for the edge resources, the resource sharing also provides
prices for the sink delay resources. To optimize sink delay resource us-
age during resource sharing (see Section 2.4) we define the following
delay costs using the Elmore delay from Definition 8:

Definition 17 (Elmore delay costs). Given a local route A with source
vsource and sink delay prices costdelay(t) for each sink t of A, the El-
more delay costs of A are defined as

costdelay(A) :=
∑

t∈V(A)
t is a sink

delayA(vsource, t) · costdelay(t)
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Wiring (green) of BonnRouteGlobal Wiring (gray) of BonnRouteDetail

Figure 10: The same excerpt of a chip with complicated blockage structure
(yellow): once with global wiring (left) and detailed wiring (right)
on two neighboring layers. Note that many global wires lie on top
of each other.

In addition to congestion and timing costs BonnRouteGlobal ac-
counts costs per length of a wire and per via to favor routes with
short wire length and few vias even if congestion and timing prices
are low. Since these costs do not pose any additional difficulty for the
optimization algorithms and can be modeled by a constant offset to
the congestion costs we will ignore them in this thesis.

3.1.1 Controlling Packing Density

BonnRouteGlobal does not avoid overlaps between wires of different
routes. If BonnRouteGlobal fully packed the chip with wires consider-
ing only their immediate area without additional measures, the pack-
ing would be much too dense for the detailed router which has to
route overlap-free and respect additional design rule constraints. Fig-
ure 10 shows an excerpt of global wiring and the resulting detailed
wiring output. BonnRouteDetail needs to put many more vias and
short segments to be able to realize the global routes given the compli-
cated blockage structure. There are several ways to make BonnRoute-
Global account for these difficulties, trying to model and estimate the
additional space that BonnRouteDetail needs to realize all routes.

global capacity reduction Usually, the capacity of all edge
resources in BonnRouteGlobal is reduced by 10 percent. This is to
account for additional space that BonnRouteDetail will require, but
also to leave some space on the chip for other later local modifications.
As an example via meshes, that are special via structures on top of
some pins, have to be rebuilt several times during the routing flow.
Such small changes are in need of some space left. For the dynamic
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local usage we reduce the global capacity by the same amount as for
the traditional router.

layerwise capacity reduction BonnRouteGlobal can addi-
tionally reduce the capacity of specific layers. This is to account for
layers that are specifically difficult to route for the detailed router, for
example due to hard design rules. This depends on the chip technol-
ogy BonnRouteGlobal is used for. The layerwise capacity reduction
can also be used to account for space that BonnRouteDetail will need
to access the pin shapes, which are usually located on the lower layers.
Again, for the dynamic local usage we use the same paramter settings
as for the traditional router which is to slightly reduce capacity on the
lower layers that contain most of the pins.

local wiring pre-estimates The traditional router computes
an initial usage for each edge resource (Figure 13, 14 and 15 on page
25). This should pre-estimate the usage arising from local wires and
vias inside the global routing tiles. It is computed based on a shortest
Steiner tree in the plane for each net. Depending on the location of
tile-internal edges of this tree usage is added to the edge resources
covering for tile-internal wires. Depending on the location of Steiner
nodes and terminals of this tree usage is added covering for vias.
Since the Steiner trees are two-dimensional only, all usage is collected
for a certain area and then distributed among the layers: starting at
the lowest layer the corresponding edge resources are filled up un-
til some pre-defined threshold. This heuristic distribution of initial
usage over the layers poses a severe inaccuracy of the pre-estimates
which the dynamic local usage avoids. Furthermore, the pre-estimates
are static and do not account for the actual routing of a net which
might differ from a shortest Steiner tree due to congestion or critical
timing. Moreover they do not account for changed pin positions or
added or deleted pins during routing based optimization.

tip-to-tip penalty A wire placed by BonnRouteDetail partially
blocking a routing track poses an obstacle for other nets, that can-
not use this routing track anymore. They can still partly access the
track by vias but it is unlikely that a partly blocked track can be com-
pletely filled up by wires of other nets. This is even impossible due
to the requirement of so called tip-to-tip spacings that we already
mentioned earlier: Manufacturing rules require the detailed router to
leave a certain minimum spacing between wires in preferred routing
dimension. In addition to the tip-to-tip spacing given by the design
rules we also want to cover for space that BonnRouteDetail needs to
pack the wires without overlaps (Figure 11) or that is consumed by
additional detours that BonnRouteDetail has to take to route all nets
conforming with the design rules. This motivates the extension of the
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Figure 11: Assume that the red area is a blockage or are highly congested
global routing tiles. To route around, the traditional router would
account usage for the blue route through the centers of the global
routing tiles (dashed). The dynamic local usage would account
usage for the green route that is shortest possible around the
blocked area. If there are several such routes on top of each other
the dynamic local usage is too optimistic because the detailed
router must spread the routes across the full area of the global
routing tiles to pack them without overlaps. For example the gray
edge area would not be accounted for enough usage. The tip-to-
tip penalty partly compensates for this effect. On the other hand,
the traditional router is too pessimistic if there are less than the
maximum amount of routes that fit into the global routing tiles.
Note that the route of the traditional router and of the dynamic
local usage would look the same if the red blockage was slightly
expanded in all directions. In that situation, the routes would be
too optimistic because they were actually located inside the block-
age.
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area of all wires and vias by more than the tip-to-tip spacing: In Defi-
nition 13 we choose ktip > 1 to approximately model all these effects.
In the implementation in BonnRouteGlobal Definition 13 is slightly
extended:

Definition 18 (Bounded tip-to-tip penalty).

ltip(z)
∗ := min

ktip ·
min

{
disttip(z)

0.6 · (distpitch(z+ 1) + distpitch(z− 1))

}
2

0.4 · lengthtile


The tip-to-tip penalty is bounded at fourty percent of the average

global routing tile length lengthtile to avoid over-congestion in case of
large tip-to-tip spacings. Moreover, to make the definition more inde-
pendent of the tip-to-tip spacing disttip we also take the minimum of
roughly the average of the pitches on the layer above and below. The
pitch of a layer is defined as the minimum distance of the center lines
of two neighbouring wires such that they do not violate any spacing
constraints. Since the detailed router has to route to the layer above or
below for detours it makes sense to consider these numbers in the es-
timate of how much additional space BonnRouteDetail needs to real-
ize the global routing. In practice this definition yields good results in
terms of correlation with BonnRouteDetail, using a value of ktip ∼ 12.
In current 7nm and 5nm technology there are up to fifteen layers and
on the higher layers this results in tip-to-tip penalty lengths of up to
fourty percent of the average global routing tile length. Without the
bound it would be even bigger for wire types with particularly large
tip-to-tip spacings. On lower layers the tip-to-tip penalty lengths are
shorter starting at around eight percent of the average global routing
tile length.

Note that the traditional router also extends all tile-crossing wires
to the tile centers of the respective global routing tiles for usage com-
putation, that is it extends the wires up to fifty percent of the global
routing tile length. In comparison, the dynamic local usage is less pes-
simistic. Figure 12 shows the area covered by the tip-to-tip penalty for
a route in a real-world chip instance.

In the implementation of the dynamic local usage we do not add
tip-to-tip penalty usage at nodes that are incident to pins. The area
of the pin shapes is already subtracted from the capacity of the be-
longing edge resources and pins can be packed very densely. Adding
tip-to-tip penalty at them would lead to huge over-congestion. An-
other technical aspect is the presence of wires that were placed by
the detailed router and which we call detailed wires. In particular dur-
ing detail routing based optimization (see Section 4.5) there can be
many detailed wires in the input to BonnRouteGlobal. BonnRoute-
Global is supposed to close remaning opens in the routes for which
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All layers A low layer, including used global
edge areas (gray)

Figure 12: Wires of a net (blue), area considered as usage including tip-to-tip
spacing (red)

it may re-use the detailed wires in the input. The purpose of the tip-
to-tip penalty is to account for additional space that BonnRouteDetail
needs. Therefore we do not add it around detailed wires that are al-
ready valid detailed routing output.

Figure 13, 14 and 15 show the tip-to-tip penalty usage on three dif-
ferent layers along with congestion plots and plots of the pre-estimate
usage of the traditional router on one medium-sized chip unit. One
can see clear similarities among the tip-to-tip penalty and the pre-
estimates. However, on the lower layers the pre-estimate usage is
higher than the tip-to-tip penalty usage of the dynamic local usage
(Figure 13). This is due to the fact that the dynamic local usage esti-
mates the space BonnRouteDetail needs for local wiring not only by
the tip-to-tip penalty but also by the actual area of the tile-internal
wires themselves. Many of these tile-internal wires and also much of
the pre-estimate usage within the traditional router is assigned to the
lower layers where most of the pins are located. On the middle lay-
ers, that contain less pins and that hold the most of long interconnect
wires, the tip-to-tip penalty consumes more usage than the traditional
pre-estimates (Figure 14). For this keep in mind that the traditional
router not only creates additional usage by the pre-estimates but also
by extending all tile-crossing wires to the tile centers of the respective
global routing tiles for usage computation. With the dynamic local us-
age the latter effect is partly replaced by the tip-to-tip penalty. On the
highest layers the congestion is very similar among the dynamic local
usage and the traditional router on that chip unit and there is not a
significant difference between the tip-to-tip penalty and pre-estimate
usage neither (Figure 15).
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Congestion
(Traditional router)

Congestion
(Dynamic local usage)

Local wiring pre-estimates
(Traditional router)

Tip-to-tip penalty
(Dynamic local usage)

Figure 13: A low layer on chip C1 (see Section 4.1 for more details on
our testbed). The pre-estimate usage is higher than the tip-to-tip
penalty usage due to the fact that the dynamic local usage adds
separate usage for tile-internal wires based on their actual space
consumption. In hotspots the traditional router and the dynamic
local usage have the same congestion while overall congestion is
lower with the dynamic local usage.
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Congestion
(Traditional router)

Congestion
(Dynamic local usage)

Local wiring pre-estimates
(Traditional router)

Tip-to-tip penalty
(Dynamic local usage)

Figure 14: A medium layer on chip C1. The tip-to-tip penalty requires more
usage than the traditional pre-estimates. The tip-to-tip penalty
also consists of usage from long tile-crossing wires which are
not covered in the pre-estimates of the traditional router. How-
ever, the traditional router extends all global routing tile-crossing
wires to the tile centers for usage computation, so there is less
a difference in overall congestion between the traditional router
and the dynamic local usage.
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Congestion
(Traditional router)

Congestion
(Dynamic local usage)

Local wiring pre-estimates
(Traditional router)

Tip-to-tip penalty
(Dynamic local usage)

Figure 15: A high layer on chip C1. Both the congestion plots and the tip-to-
tip penalty and pre-estimate usage are very similar.
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3.1.2 Estimating Signal Delay

BonnRouteGlobal estimates the signal delay through the routes using
the Elmore delay [27]. As shortly outlined in Section 2.4, BonnRoute-
Global computes timing-optimized routes and distributes the slack
among the nets using the resource sharing framework. For this it is
essential to have a good estimate on the signal delay through a route.
The local routes computed by BonnRouteGlobal usually are shorter
than the routes from BonnRouteDetail (see Section 4). With the dy-
namic local usage the tip-to-tip penalty covers for the additional wires
of BonnRouteDetail in terms of congestion. A similar approach for
timing showed improvements in practice: The resistance and capac-
itance of all wires created by BonnRouteGlobal is multiplied by a
penalty factor. BonnRouteGlobal then optimizes all routes with re-
gard to these adjusted timing values. Unlike the tip-to-tip penalty
this is a multiplicative penalty. Different variants of an additive tim-
ing penalty did not show as good results. In fact, on more recent in-
stances the timing after detailed routing was also good without this
penalty factor during global routing. Therefore, depending on future
technologies, this modification might not be needed in the future any
longer.

Still it has to be kept in mind that the traditional router usually
computes longer routes than the dynamic local usage (see Section
4). Moreover, for the embedding of tile-internal wires the traditional
router does not consider timing. Altogether, the traditional router is
more pessimistic with regard to timing than the dynamic local usage.

3.2 computing coarse routes

At the core of BonnRouteGlobal there is the computation of coarse
routes on the global routing graph which can be described as the
following problem:

Problem 19. Minimum Coarse Route

Input: A net n.

Output: A coarse route A for n minimizing

costcong(A) + costdelay(A)

If delay costs are ignored this is a weighted minimum Steiner tree
problem in graphs which is well-known to be NP-hard [32]. [28] is
among the exact algorithms that are fast enough for instances of
limited size. The best currently known approximation factor achiev-
able in polynomial time is 1.39 by the LP-based approach from [12].
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Only recently [54] showed that the same approximation factor can
be achieved by a purely combinatorial algorithm. However, as the
instances in global routing have enormous sizes only very fast ap-
proximation algorithms are suitable for BonnRouteGlobal. A 2-ap-
proximation to the minimum weighted Steiner tree problem can be
obtained by successively connecting components of terminals in the
graph with shortest paths [35]. For this, BonnRouteGlobal uses Di-
jkstra’s algorithm [49], which is sufficiently fast and in practice the
resulting Steiner trees are usually not much worse than the optimum
solution. Furthermore, there exist various speedup techniques for this
approach [26].

The edge costs for the path searches with Dijkstra’s algorithm can
be easily adapted to the area usage model of the dynamic local usage
in Definition 15. The traditional router uses the same costs for edges
like the dynamic local usage, but computes via congestion costs dif-
ferently by considering the output of the pre-estimates (Section 3.1.1),
causing another dependence on the pre-estimate computation. The
dynamic local usage uses via congestion costs that purely depend on
their area and the prices of the edge resources as in Definition 15.

To correctly model the tip-to-tip penalty costs we introduce node
costs: a node has the cost of a stacked via, including tip-to-tip penalty
costs. That is, for a node v = (x,y, z) ∈ V(G) that is located on an x-
dimension layer z ∈ Lx and a congestion price function ψ, we define

c(v) :=

∫x+0.5+ltip(z)

x−0.5−ltip(z)
ψ(κ,y, z)dκ

If a node v ∈ G has been already added to the tree during an ear-
lier path search we set c(v) := 0 because the tip-to-tip penalty costs
were already accounted for. This way, the costs of stacked vias are
considered correctly during path search.

To compute correct via costs for nodes that are incident to x- or
y-dimension edges, we have to modify the edge costs. For an edge in
x-dimension e = (v,w) = ((x1,y, z), (x2,y, z)) ∈ E(G) with x1 < x2
we reduce the cost induced by its wire stick by one tip-to-tip penalty
extension and half the width of a via at both of its ends v and w, that
is

c(e) :=

∫x2−0.5−ltip(z)

x1+0.5+ltip(z)
ψ(κ,y, z)dκ

Node and edge costs on y-dimension layers are defined analogously.
This definition accounts for the fact that if an x- or y-dimension edge
e is incident to a node v, its stick overlaps with the tip-to-tip penalty
extension that already c(v) accounts for. For a coarse route A ⊂ G we
have ∑

v∈V(A)

c(v) +
∑

e∈E(A)

c(e) = costcong(A)
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with costcong from Definition 15. If in practice there are global edges
with a length shorter than two tip-to-tip penalty extensions, it has
to be made sure that no edge is assigned a negative edge cost to be
able to use Dijkstra’s algorithm. We address this issue by taking the
maximum of the previously defined costs c(e) and zero, leading to
slight inaccuracies only because only few global routing graph edges
are substantially shorter than the average.

Given edge and node costs, Dijkstra’s algorithm still finds a short-
est path. However, the approximation ratio of the underlying Steiner
tree algorithm is not given any longer. In fact [22] shows that it is NP-
hard to approximate the node-weighted Steiner tree problem within a
factor of (1− ϵ) lnk for any constant ϵ > 0 and k being the number of
terminals. In case of bounded node degrees like it is the case for the
global routing graph there is still a constant-factor approximation:

Theorem 20. Assume there is a graph G with edge and node costs c :

V(G)∪ E(G) → R⩾0, a value γ > 0 with

c(v) ⩽ γ

c(v) + ∑
e∈δ(v)

c(e)/2


for all v ∈ V(G), a set of terminals T ⊂ V(G) and d ⩾ 3 with |δ(v)| ⩽ d

for all v ∈ V(G). Let S be a cheapest terminal spanning tree in the metric
closure of G and S∗ a cheapest Steiner tree for the terminals T . Then it holds
that

c(S) ⩽ max (d− 1, (d− 2) · γ+ 2) · c(S∗)

The global routing graph G has a maximum node degree of d = 4.
Assuming uniform global routing graph edge lengths and neglecting
via widths, for any node v = (x1,y, z) ∈ G and two incident edges
e = ((x0,y, z), v) and f = (v, (x2,y, z)) on an x-dimension layer we
have

c(v) =

∫x1+ltip(z)

x1−ltip(z)
ψ(κ,y, z)dκ

⩽ 0.4 ·
∫x1+lengthtile(z)

x1−lengthtile(z)
ψ(κ,y, z)dκ

= 0.8 ·
∫x1+

1
2 lengthtile(z)

x1−
1
2 lengthtile(z)

ψ(κ,y, z)dκ

= 0.8 ·

c(v) + ∑
e∈δ(v)

c(e)/2


The inequality holds by Definition 18 and the same holds for y-dimen-
sion layers. It follows that γ = 0.8 can be chosen in Theorem 20 which
then states that a terminal spanning graph yields a 3.6-approximation
for the minimum Steiner problem with tip-to-tip penalty costs.
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Proof (of Theorem 20). For all v ∈ V(G) with |δS∗(v)| = d let γv ⩽ γ

such that

c(v) = γv

c(v) + ∑
e∈δ(v)

c(e)/2


Rearranging, this is equivalent to

d · c(v)+2
∑

e∈δ(v)

c(e)/2

=((d− 2) · γv + 2) ·

c(v) + ∑
e∈δ(v)

c(e)/2

 (2)

The proof extends the proof that a cheapest terminal spanning tree
is a 2-approximation in the case that there are no node costs [35].
Consider E ′ := E(S∗)⊔E(S∗) which is Eulerian and as such it contains
an Eulerian path P through all terminals T . P traverses each edge of
S∗ at most twice and each node v ∈ V(S) at most |δ(v)| times. Hence
for the cost of the path P it holds that

c(P) ⩽
∑

v∈V(S∗)
|δS∗(v)|<d

(d− 1) · c(v) +
∑

v∈V(S∗)
|δS∗(v)|=d

d · c(v) + 2 ·
∑

e∈E(S∗)

c(e)

=
∑

v∈V(S∗)
|δS∗(v)|<d

(d− 1) · c(v) + 2 ·
∑

e∈δS∗(v)

c(e)/2



+
∑

v∈V(S∗)
|δS∗(v)|=d

d · c(v) + 2 · ∑
e∈δS∗(v)

c(e)/2



⩽(d− 1) ·
∑

v∈V(S∗)
|δS∗(v)|<d

c(v) + ∑
e∈δS∗(v)

c(e)/2



+ ((d− 2) · γ+ 2) ·
∑

v∈V(S∗)
|δS∗(v)|=d

c(v) + ∑
e∈δS∗(v)

c(e)/2


⩽max (d− 1, (d− 2) · γ+ 2) c(S∗)

For the penultimate inequality we used d− 1 ⩾ 2, (2) and γv ⩽ γ.
By short-cutting P one obtains a terminal spanning tree in the metric
closure that has no higher cost than P proving the statement.

Figure 16 shows that the approximation ratio is tight for γ = 1.
Table 17 suggests that in practice the approximation ratio usually is
much better.
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Figure 16: Let d ⩾ 3 and k ⩾ 2 (the image is for d = 4 and k = 2). Consider
a graph Gd,k that contains a central node v0,0 on level zero. v0,0
is adjacent to d nodes on level one, enumerated counterclockwise
by v1,0, ..., v1,d−1. Each of these nodes is adjacent to d− 1 nodes
on level two, all of them are again enumerated counterclockwise
by v2,0, ..., v2,d·(d−1)−1. We do this recursively until level k on
which there are d · (d− 1)k−1 nodes. Additionally, we add edges
between the nodes on level k in counterclockwise order (green
and orange). The nodes on level k are selected as terminals (blue).
The nodes on level k− 1 (red) have cost one, all other nodes have
cost zero. The black edges also have cost zero. The green and
orange edges have costs that equal the cost of the unique path
between their end points using black edges only, that is green
edges have cost one and orange edges have cost two. Consider
the Steiner tree S∗ that consists of all black edges. It connects all
terminals and has cost c(S∗) = d · (d− 1)k−2. The green and or-
ange edges each connect a pair of terminals and have costs that
equal the costs of a shortest path between them. Hence, the set
of the green and all but one orange edge forms a minimum ter-
minal spanning tree S in the metric closure of G. Its cost equals
c(S) = d · (d− 1)k−2 · d− 2, because for each node in level k− 1
it contains d− 2 edges with cost one and one edge with cost 2.
One of the edges of cost 2 is not contained in S. All in all we have
c(S)
c(S∗) =

d·(d−1)k−2·d−2

d·(d−1)k−2 which goes towards d for k → ∞. For
d = 4 the graph Gd,k can arise as an instance of the minimum
coarse route problem: The red nodes are embedded on a global
routing layer with a tip-to-tip penalty length that equals half the
length of the global routing graph edges, all other nodes are em-
bedded on layers with zero tip-to-tip penalty. The edges are re-
alized arbitrarily within the global routing graph while choosing
the correct costs of either zero, one or two. For all other edges
of the global routing graph we choose very large costs such that
they will never be part of a solution.
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Figure 17: Let P1 be the problem of finding an optimum solution for the
minimum coarse route problem. Let P2 be the problem of find-
ing an optimum solution for the minimum coarse route problem
with all tip-to-tip penalties being zero. Certainly the cost of an
optimum solution for P2 is a lower bound for the cost of an op-
timum solution for P1. For this table we computed one approx-
imately optimum solution for problems P1 and P2 each time a
coarse route needed to be computed during global routing, using
the approach described in this section. The table shows the per-
centages of instances for which the quotient of the costs of these
two routes lies in a certain bucket. For the vast majority of in-
stances this quotient is less than 1.08, meaning that the costs do
not increase much with tip-to-tip penalties. Therefore, problem
P1 can be approximated almost as well as problem P2 in practice,
though the theoretic approximation guarantee is almost twice as
bad. Note that a quotient larger than one does not imply that a
solution for P1 is sub-optimal: With tip-to-tip penalties the opti-
mum solution can have arbitrary higher costs than the optimum
solution for the case that all tip-to-tip penalties are zero.

Note that both for the dynamic local usage and for the traditional
router stacked via costs, arising from the width of the via, have to
be accounted per node. While these are much smaller than the ad-
ditional tip-to-tip penalty costs they still have the effect that also the
traditional router only achieves an approximation ratio of 3 in theory
assuming that γ can be chosen small.

So far we only considered congestion costs. The computation of the
coarse route is more elaborate if we want to optimize delay costs. [53]
shows that it is NP-hard to approximate a coarse route optimizing
Elmore delay costs within a constant factor. BonnRouteGlobal imple-
ments a heuristic algorithm from [53] which takes an initial coarse
route A as an input and reconnects sub-arborescences of A to the
source if the delay from the source exceeds a certain threshold. The
best of the initial and the reconnected route in terms of congestion
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and timing costs is taken. To be able to compute their costs accu-
rately BonnRouteGlobal first connects the coarse route to the exact
pin shapes and performs post-optimizations on the resulting local
route as described in the following sections. This has to be kept in
mind for the dynamic local usage, for which the post-optimization of
the local routes is more elaborate and costs more running time.

3.3 computing local routes

BonnRouteGlobal connects the coarse route of a net through Steiner
trees inside the global routing tiles to the exact shapes of the pins of
the net (Figure 18 on the left). Unlike Definition 3, in practice pins can
consist of several shapes which is why we are given a group Steiner
tree problem. The local route only has to access one shape of each
pin. As the group Steiner tree problem is even hard to approximate
[23] BonnRouteGlobal heuristically picks an access point for each pin
considering the locations of the other pins. Then we compute a rec-
tilinear Steiner tree for the set of access points in that global routing
tile and the intersection points of the coarse route with the global
routing tile borders. Replacing the (planar) edges of the coarse route
inside each global routing tile by these Steiner trees yields an arbores-
cence that connects to the two-dimensional projections of the exact
pin shapes. However, as seen in Figure 18, this local route usually
is far from optimum in terms of wire length. The following sections
describe a post-optimization routine that is applied to reduce wire
length, congestion and timing costs. Moreover the arborescence has
to be embedded into layers in order to obtain a local route for the net,
which will be dealt with in Section 3.3.2.

3.3.1 Optimizing x- and y-Coordinates

Having computed a Steiner tree connecting to the exact pin shapes,
BonnRouteGlobal optimizes the x- and y-positions of the Steiner nodes
to minimize its length (see Figure 18). This is in particular impor-
tant to establish short source-sink-paths for a good timing. In the
traditional router this is achieved by a dynamic program solving a
minimum Steiner tree with fixed topology problem [33], in which all
Steiner nodes are constrained to stay in their respective global routing
tile, such that the global layout of the route does not change. As in
the traditional router only wires crossing global routing tile borders
contribute usage, this optimization does not change the edge resource
usages because the route is modified within the global routing tiles
only.

However, with the dynamic local usage edge resource usage can
change through this optimization, since all wires contribute usage
and might be moved to different price regions (see Figure 19 for an
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Local route connecting to the exact
pin shapes.

Local route with optimized
x-y-coordinates.

Figure 18: The local route on the left connects to the exact pin shapes
through shortest Steiner trees inside the global routing tiles (blue).
To optimize the length of the resulting local route, the wires are
moved within the global routing tiles (black) in x- and y-direction
(local route on the right). Resulting diagonal edges are later re-
placed by rectilinear wires.

example). Optimizing the x- and y-coordinates without considering
congestion can lead to congestion issues (see Figure 20). Hence, with
the dynamic local usage we need to optimize the x- and y-coordinates
also with regard to congestion costs. In this section we modify the
dynamic program from [33] to minimize not only the length but also
the cost with regard to congestion. Moreover, we incorporate timing
costs for linear delay or for a lower bound of the Elmore delay.

3.3.1.1 Problem Definition

Problem 21. Min. cost arborescence with fixed topology

Input: An arborescence G with fixed topology, rectangular move
bounds □(v) ⊂ C for all nodes v ∈ V(G), edge costs ce : R2 ×
R2 → R⩾0 for each e ∈ E(G) and node costs cv : R2 → R⩾0 for
each v ∈ V(G).

Output: For each node v ∈ V(G) find a position f(v) ∈ □(v)

minimizing the total cost∑
e=(v,w)∈E(G)

ce(f(v), f(w)) +
∑

v∈V(G)

cv(f(v))

For a Steiner node we will choose the movebound □ as the area of
the global routing tile the node belongs to. For a terminal it will be
set as the area of the rectangular pin shape it connects to. For the
congestion-unaware optimization problem, we choose

ce(p1,p2) := ||p1 − p2||
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x-dimension layers y-dimension layers

Figure 19: Borders of global routing tiles (dashed black), different price re-
gions (light and dark gray). Moving the trunk in the center of the
blue Steiner tree to the left or right changes the amount of wiring
that is contained in some of the price regions on the x-dimension
layers. The y-dimension layers are not affected by this movement.

No x-y-optimization. Congestion-unaware x-y-optimization.

Figure 20: With the dynamic local usage there can be a severe increase in
congestion with the congestion unaware x-y-optimization. Note
that in these runs the tip-to-tip penalty usage was accounted
pointwise at nodes and not distributed along a stick as in Defi-
nition 15 and in the current implementation. Distributing it over
all edge resources that are intersected by the tip-to-tip penalty ex-
tension stick already slightly reduces the increase in congestion.
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Figure 21: There are two rectilinear embeddings of the diagonal arc which
might have different congestion costs on the x-layers.

for all e ∈ E(G) and p1,p2 ∈ R2. The via cost functions are set to
cv ≡ 0 for all nodes v ∈ V(G). To optimize congestion costs, we will
define the edge costs as the sum of the component-wise wire length
times the congestion price of the underlying global edge areas. Note
that each global routing tile contains two different price regions (Fig-
ure 19). The via costs will reflect the congestion costs of the via pads
at a certain location. For terminals t ∈ T we will choose ct ≡ 0. See
Section 3.3.1.4 for detailed definitions. How to additionally approxi-
mate Elmore delay costs is described in Section 3.3.1.5. Linear delay
costs can be easily modeled by an offset to the wire and via prices.

Note that we do not require that the resulting optimized arbores-
cence is rectilinear. This is because the layer embedding algorithm
that follows the optimization of the x- and y-positions in BonnRoute-
Global will optimally choose one of the two possible embeddings of a
diagonal edge (Figure 21). Moreover, the aim is to be able to solve the
minimum cost arborescence with fixed topology problem in x- and y-
dimension independently, which would not be possible if the result
would be required to be rectilinear.

Definition 22. A function c : R2 × R2 → R⩾0 is additively separable
if for some cx, cy : R × R → R⩾0 it can be written as

c(p1,p2) = cx(px1,px2) + c
y(py1 ,py2 )

for all (px1,py1 ) = p1 ∈ R2 and (px2,py2 ) = p2 ∈ R2.

All cost functions ce and cv will be additively separable in the x- and
y-coordinates. In other words, the costs incurred by the length and
position in x-dimension do not depend on the length and position in
y-dimension and vice versa. As the task is to minimize over a sum
of these functions, the whole problem can be solved independently
in x- and y-dimension and thereby gets much simpler. Hence from
now on we consider the one-dimensional problem of optimizing x-
coordinates only. Furthermore we consider cost functions that arise
from an integral so we can use the one-dimensional projection of a
given congestion price function.
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Problem 23. One-dimensional minimum cost arborescence

with fixed topology

Input: An arborescence G with fixed topology, intervals □(v) ⊂
R for all nodes v ∈ V(G), for each edge e = (v,w) ∈ E(G) prices
pe,v and pe,w : R → R⩾0 and node costs cv : R → R⩾0 for all
nodes v ∈ V(G).

Output: For each node v ∈ V(G) find a position f(v) ∈ □(v)

minimizing the total cost

∑
e=(v,w)∈E(G)

min
α∈{v,w}

∣∣∣∣∣
∫f(w)

f(v)
pe,α(κ)dκ

∣∣∣∣∣+ ∑
v∈V(G)

cv(f(v)) (3)

An instance of the minimum cost arborescence with fixed topology
problem can be projected to two instances of the one-dimensional
problem if the cost functions are additively separable with ce = cxe +

c
y
e and cv = cxv + cyv for all e ∈ E(G) and v ∈ V(G) and the cost

functions cxe and cye have the form

(x1, x2) 7→ min
α∈{v,w}

∣∣∣∣∫x2

x1

pe,α(κ)dκ

∣∣∣∣
for functions pe,v and pe,w. In our global routing context, the sepa-
rability of the edge cost functions particularly requires that any two
adjacent nodes in the instance route belong to the same global routing
tile column or row. This is always the case because the coarse routes
are computed on the global routing graph and movement thereafter
is restricted to global routing tile areas.

The cost functions that we will define for the congestion-aware x-y-
optimization will be different for each edge or node, because nodes
and edges whose projections are equal in one dimension may have
different coordinates in the other dimension and hence may belong to
different global routing tiles with different prices. The integral yields
the congestion cost of a wire with unit width as defined in Defini-
tion 15. The intent behind the minimum in (3) is to allow two differ-
ent price functions for all edges, one for each of their end points and
depending on the prices in the global routing tiles of the end points.
If the end points of an edge whose end points are located in different
global routing tiles are moved such that the edge is diagonal, a later
post-processing can choose the cheaper of the two possible rectilin-
ear embeddings (Figure 21) which we want to model in the problem
definition.
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3.3.1.2 Dynamic Programming

Considering a node v ∈ V(G), the costs incurred by this node and in-
cident edges only depend on its position and the positions of adjacent
nodes. Hence there is a straight-forward dynamic program to solve
the one-dimensional minimum cost arborescence with fixed topology
problem (see also [33]). First we give some definitions:

Definition 24. Let vsource the root of the arborescence G. Define for
each node u ∈ V(G):

• pu as the parent node (∅ if u = vsource),

• Yu as the sub-arborescence rooted at u and

• su(x) : □(u) → R⩾0 as the cheapest total cost of Yu if f(u) = x,
that is

su(x) =

min
f:V(G)→R

f(v)∈□(v)∀v∈V(G)
f(u)=x

 ∑
e=(v,w)
∈E(Yu)

min
α∈{v,w}

∣∣∣∣∣
∫f(w)

f(v)
pe,α(κ)dκ

∣∣∣∣∣+ ∑
v∈V(Yu)

cv(f(v))


Algorithm 1 computes the functions s recursively in reversed topo-

logical order. Then, in topological order it assigns the positions to the
nodes for which s is minimum.

A straight-forward induction shows that Algorithm 1 computes
an optimum solution to the one-dimensional minimum cost arbores-
cence with fixed topology problem. The following two sections de-
scribe how to efficiently implement Algorithm 1 with cost functions
defined for the congestion-unaware and congestion-aware minimum
cost arborescence with fixed topology problem.

3.3.1.3 Congestion-Unaware x- and y-Optimization

Assume we are given an instance of the one-dimensional minimum
cost arborescence with fixed topology problem. If we only want to
optimize total wire length one can choose pe,v ≡ pe,w ≡ 1 for all
edges e = (v,w) ∈ E(G) and cv ≡ 0 for all v ∈ V(G). Choosing these
cost functions the cost of an edge equals its length:

min
α∈{v,w}

∣∣∣∣∫x2

x1

pe,α(κ)dκ

∣∣∣∣ = |x1 − x2|

We refer to [52] where it is shown that in this setting all the func-
tions s from Definition 24 are piece-wise linear and have an integral
slope that is monotonically increasing (see Figure 22 for an example).
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Algorithm 1: One-dimensional dynamic embedding
Input: An instance (G,□,p, c) of the one-dimensional min-

imum cost arborescence with fixed topology problem.
Output: Positions for the nodes minimizing total cost and

obeying the movebounds.
1 for u ∈ V(G) in reverse topological order do
2 Compute the function su : □(u) → R⩾0

su(x) = cu(x)+
∑

e=(u,v)∈
δ+
G(u)

min
x ′∈□(v)
α∈{u,v}

(∣∣∣∣∣
∫x ′

x

pe,α(κ)dκ

∣∣∣∣∣+ sv(x ′)
)

3 f(vsource) ∈ arg minx∈□(vsource)
svsource(x)

4 for u ∈ V(G) \ vsource in topological order do
5

f(u) ∈ arg min
x∈□(u)

(
su(x) + min

α∈{pu,u}

∣∣∣∣∫x
f(pu)

p(pu,u),α(κ)dκ

∣∣∣∣)

6 return f

Figure 22: An example of what the function su from Definition 24 for some
u ∈ V(G) might look like with unit edge price functions and no
via costs. In [lu, ru] the function attains its minimum.
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For v ∈ V(G) let [lv, rv] be the interval where sv is minimal. It is
proven in [52] that in order to compute [lv, rv] it suffices to know the
values lu, ru for all children u ∈ Wv and to compute their median.
Computing the median of n numbers can be done in time O(n) [11],
leading to the following result:

Theorem 25. [52] The one-dimensional minimum cost arborescence with
fixed topology problem with unit edge price functions and no via costs can
be solved in time O(|V(G)|).

In [33] this result is extended by modifying the dynamic program to
obtain an optimum solution for which, among all optimum solutions,
all paths from the source to the sinks of the arborescence are shortest
possible. This aids in achieving good timing.

3.3.1.4 Congestion-Aware x- and y-Optimization

We present two variants of cost functions that optimize congestion
costs with the dynamic local usage.

First, assume that we are given an arborescence G along with a
preliminary embedding into the chip image and layers, that is we
have some g : V(G) → C × L. We want to optimize the x- and y-
coordinates within the global routing tiles respecting the given layers.

Definition 26 (Layer-embedded congestion costs). Let G an arbores-
cence embedded into C×L and ψ : C×L → R⩾0 a congestion price
function. We define two instances of the one-dimensional minimum
cost arborescence with fixed topology problem, one for x- and one for
y-dimension.

For v ∈ V(G) let t(v) ∈ V(G) be the global routing graph node
whose tile area contains v. For each v ∈ V(G) define movebound
intervals

□x(v) :=projx(□(t(v)))

□y(v) :=projy(□(t(v)))

as the projection of the belonging tile areas into x- and y-dimension.
For each edge e = (v,w) ∈ E(G) we define edge price functions

pxe,v,pxe,w : projx(C) → R⩾0 and pye,v,pye,w : projy(C) → R⩾0. Here
the cost functions pe,v and pe,w will only depend on e, hence for
simpler notation we only define functions pxe and pye . For each node
v ∈ V(G) we define via price functions cxv : □x(v) → R⩾0 and cyv :

□y(v) → R⩾0.
For an edge in x-dimension e = (v,w) = ((x1,y, z), (x2,y, z)) define

pxe(_) := ψ(_,y, z)

pye (_) :=MAX

Note that ψ(x,y, z) = ψ(x,y ′, z) for any x and y ′ ∈ □y(v) by defi-
nition of the congestion price function ψ. Setting pye (_) := MAX for
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a sufficiently large MAX ∈ R ensures that both endpoints of the
edge e are always embedded at the same y-coordinate, hence the
edge keeps its x-dimension. Analogously, for an edge in y-dimension
e = ((x,y1, z), (x,y2, z)) define

pye (_) := ψ(x, _, z)

pxe(_) :=MAX

For a via edge e = (v,w) = ((x,y, z1), (x,y, z2)) with |z1 − z2| = 1

define

pxe(_) :=MAX

pye (_) :=MAX

For all nodes v = (x,y, z) ∈ V(G) that are incident to a via edge, we
set

cxv(_) :=


∫0.5+ltip(z)

−0.5−ltip(z)
ψ(_ + κ,y, z)dκ z ∈ Lx

0 otherwise

cyv (_) :=


∫0.5+ltip(z)

−0.5−ltip(z)
ψ(x, _ + κ, z)dκ z ∈ Ly

0 otherwise

For all nodes v ∈ V(G) that are not incident to a via edge, we set
cxv ≡ cyv ≡ 0.

In other words, the layer-embedded congestion functions allow the
nodes of G to be moved within the global routing tiles so that each
edge keeps its orientation and has cost according to the congestion
prices on the layer it was embedded into. The x-instance only consid-
ers costs of wires in x-dimension and of vias on x-dimension layers,
while the y-instance does the same for y-dimension and y-layers. Re-
call that we assume wires and vias to have width one; otherwise, we
would have to multiply ψ by the width. Each via is expanded by the
tip-to-tip penalty, which is slightly pessimistic, as we do not check
here if a via is incident to a wire. It is not possible to consider tip-to-
tip penalties exactly at this point because then the x-instance and the
y-instance would not be independent from each other (Figure 23).

If tip-to-tip penalties are zero this model induces the same costs as
in Definition 15:

Remark 27. LetA a local route embedded into C×L and disttip(z) = 0

for all layers z ∈ L. Then the sum of the layer-embedded conges-
tion costs of all edges and nodes of the two instances of the one-
dimensional minimum cost arborescence with fixed topology prob-
lem arising from the underlying arborescence equals the intersection-
ignoring congestion costs of A:
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Figure 23: This example shows that the tip-to-tip penalties in x-dimension
depend on the positions of the nodes in y-dimension. If and only
if nodes v and w do not have the same y-coordinates, tip-to-tip
penalties (light red) have to be accounted for at v and w.

∑
e=((x1,y,z),(x2,y,z))∈E(A)

x1 ̸=x2

∣∣∣∣∫x2

x1

pxe(κ)dκ

∣∣∣∣
+

∑
e=((x,y1,z),(x,y2,z))∈E(A)

y1 ̸=y2

∣∣∣∣∫y2

y1

pye (κ)dκ

∣∣∣∣
+

∑
v=(x,y,z)∈V(A)

cxv(x) + c
y
v (y)

= costcong+(A)

The layer-embedded congestion costs require an arborescence that
is already embedded into the layers of the chip. Right after connect-
ing the coarse route to the exact pin shapes the layout of the resulting
arborescence can be poor as can be seen on Figure 18. Hence it can
be beneficial to first optimize the x- and y-coordinates of the arbores-
cence before embedding it into layers. We will now propose conges-
tion costs that do not assume the arborescence to be embedded into
layers but rather approximate a lower bound on the congestion costs.

Definition 28 (Planar congestion costs). Let G an arborescence em-
bedded into the chip image C and ψ : C× L → R⩾0 a congestion
price function. Again we define two instances of the one-dimensional
minimum cost arborescence with fixed topology problem, one for x-
and one for y-dimension.

For v ∈ V(G) let t(v) ∈ V(G) a global routing graph node on any
layer whose projected tile area contains v. For each v ∈ V(G) define
the same movebound intervals as in Definition 26:

□x(v) :=projx(□(t(v)))

□y(v) :=projy(□(t(v)))

For each edge e = (v,w) ∈ E(G) we define edge price functions
pxe,v,pxe,w : projx(C) → R⩾0 and pye,v,pye,w : projy(C) → R⩾0. Here
the cost functions pe,v and pe,w will only depend on v and w, hence
for simpler notation we only define functions pxv and p

y
v for each
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v ∈ V(G). Moreover, for each node v ∈ V(G) we define via price
functions cxv : □x(v) → R⩾0 and cyv : □y(v) → R⩾0.

For a node v = (x,y) ∈ V(G) define edge price functions

pxv(_) := min
z∈Lx

ψ(_,y, z)

pyv (_) := min
z∈Ly

ψ(x, _, z)

Let p1,p2 be the two prices that pxv assumes in the global routing
tile □(t(v)) and l1, l2 the layers at which the congestion price function
assumed these values. Let xcut be the coordinate (that is the global
routing edge border) at which pxv switches from p1 to p2. via1 := (1+

2ltip(l1)) · p1 is the cost of a via pad including tip-to-tip penalty on
the edge area with price p1. Likewise, define via2 := (1+2ltip(l2)) ·p2.
The via price function is now defined as

cxv(κ) := via1 for κ ⩽ xcut − ltip(l1)

cxv(κ) := via2 for κ ⩾ xcut + ltip(l2)

From xcut − ltip(l1) to xcut + ltip(l2) we let cxv(_) transition linearly
between the two values. cyv (_) is defined analogously.

The planar congestion costs assume that the wires will be embed-
ded on the cheapest possible layers. On those cheapest layers, the via
cost functions add for every Steiner node the cost of one via pad in-
cluding tip-to-tip penalty. The wire cost functions p alone constitute a
lower bound on the congestion costs of the resulting route. Together
with the via cost functions the planar cost functions are not a lower
bound though: The arborescence could be embedded into layers such
that no vias are used on nodes whose incident edges have the same
routing dimension. However, one would need to know both the x-
and y-coordinates of the nodes to determine those nodes. Not consid-
ering any via costs would lead to a real lower bound of the congestion
costs, however that did not yield good results in practice.

In contrast to the setting with unit edge price functions and no via
costs in Section 3.3.1.3, both with the planar and the layer-embedded
cost functions the resulting cost functions s in the dynamic program
can have several local minima (Figure 24). We will show that they are
still piece-wise linear, using the fact that the edge price functions are
piece-wise constant and the via cost functions are piece-wise linear
because the congestion price function is piece-wise constant.

Definition 29 (Piece-wise linear function). Let [a,b] ⊂ R. A function
f : [a,b] → R is piece-wise linear if there are intervals

[a, x1), [x1, x2), ..., [xn,b]

such that the restriction of f to any of these intervals is a linear func-
tion. a, x1, x2, ..., xn,b are referred to as break points.
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Figure 24: Consider the x-dimension instance resulting from this arbores-
cence either with planar or layer-embedded congestion costs. The
colors indicate the prices of the edge areas. The Steiner nodes u,
v and w can be moved in x-direction within the global routing
tiles (dashed). On the right the cost functions su, sv and sw are
drawn in x-dimension. Because the red edge area has costs two,
and v and w have only one child, it is su = sv + sw. The sum su
has two local minima. As u is accessed from the left the optimum
solution puts all Steiner nodes u, v and w on one vertical line
below the top terminal (blue square).

Definition 30 (Piece-wise constant function). Let [a,b] ⊂ R. A func-
tion g : [a,b] → R is piece-wise constant if it is piece-wise linear and
has constant slope except at its discontinuities.

A piece-wise linear function f with m break points can be repre-
sented by 3m − 2 numbers: the coordinates x1, ..., xm of the break
points, the function values f(x1), ..., f(xm−1) and the slopes of f be-
tween the break points. A piece-wise constant function g with m

break points can be represented by 2m− 1 numbers: the coordinates
x1, ..., xm of the break points and the function values f(x1), ..., f(xm−1).
By d

dκ↓f we denote the derivative from above which is defined at the
full support of a piece-wise linear function f, because the intervals
[a, x1), [x1, x2), ..., [xn,b] in Definition 29 are assumed to be closed at
their lower ends.

The via cost functions defined in Definition 26 and 28 are piece-
wise linear, the edge price functions are piece-wise constant. Given a
piece-wise constant edge price function p : [a,b] → R⩾0 with break
points a, x1, ..., xm,b, the integral∫u

l

p(x)dκ

is both piece-wise linear in u for any fixed l ∈ [a,b] and in l for any
fixed u ∈ [a,b] with the break points being a, x1, ..., xm,b, the same
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as of p, plus the fixed value of l or u. From now on we will assume
that all edge price functions are piece-wise constant and all via cost
functions are piece-wise linear.

Adding, subtracting or computing the pointwise minimum of two
piece-wise linear functions again results in a piece-wise linear func-
tion. To show that the function computed in line 2 of the dynamic
program 1 is piece-wise linear is the subject of the following two lem-
mas:

Lemma 31. Let [a,b] ⊂ R and p : [a,b] → R⩾0 piece-wise constant and
s : [a,b] → R⩾0 piece-wise linear and x ∈ [a,b] fixed. Moreover fix an
operator ◦ ∈ {⩽,⩾,∨} (we say that r∨ s is true for all r, s ∈ R). Then

min
x ′∈[a,b]
x ′◦x

(∣∣∣∣∣
∫x ′

x

p(κ)dκ

∣∣∣∣∣+ s(x ′)
)

= min
x ′ break point of p or s, or x ′=x

x ′◦x

(∣∣∣∣∣
∫x ′

x

p(κ)dκ

∣∣∣∣∣+ s(x ′)
)

Proof. Define

c(x, x ′) :=

∣∣∣∣∣
∫x ′

x

p(κ)dκ

∣∣∣∣∣
c(x, _) is piece-wise linear and has the same break points as p apart
from potentially x.

The direction ⩽ is clear. For ⩾ let

x ′′ := arg min
x ′∈[a,b]
x ′◦x

(
c(x, x ′) + s(x ′)

)
If x ′′ is a break point of s or c(x, _) or x ′′ = x we are done. Otherwise
let xl be the nearest break point left of x ′′ of s or c(x, _), or xl = x if
x comes first. Analogously let xr the nearest break point right of x ′′

or xr = x. Since x ′′ ◦ x it must also hold that xl ◦ x and xr ◦ x. The
restrictions of s(_) and c(x, _) to [xl, xr) must be linear functions. It
follows that also c(x, _) + s(_) is linear on [xl, xr) and thus must be
even constant, as otherwise x ′′ would not be the minimum. Therefore

min
x ′∈[a,b]

(
c(x, x ′) + s(x ′)

)
= c(x, x ′′) + s(x ′′) = c(x, xl) + s(xl)

while xl is a break point of s or c(x, _) and xl ◦ x.

Lemma 32. Let [a,b] ⊂ R and p : [a,b] → R⩾0 piece-wise constant and
s : [a,b] → R⩾0 piece-wise linear. Letm the number of distinct break points
of p and s. Then

t(x) := min
x ′∈[a,b]

(∣∣∣∣∣
∫x ′

x

p(κ)dκ

∣∣∣∣∣+ s(x ′)
)

is piece-wise linear and can be computed in time O(m).
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Algorithm 2: Right-Min-Propagation
Input: [a,b] ⊂ R, p : [a,b] → R⩾0 piece-wise constant,

s : [a,b] → R⩾0 piece-wise linear.
Output: A piece-wise linear function as in Claim 32.1.

1 x0 := a

2 if d
dκ↓s(x0) > p(x0) then

3 x1 := min
({
x ∈ (x0,b) : s(x) = s(x0) +

∣∣∣∫xx0
p(κ)dκ

∣∣∣}∪ {b}
)

4 g(x) := s(x0) +
∣∣∣∫xx0

p(κ)dκ
∣∣∣ for all x ∈ [x0, x1)

5 else
6 x1 := next break point of p or s after x0, or b
7 g(x) := s(x) for all x ∈ [x0, x1)
8 x0 := x1
9 if x0 < b then
10 goto 2

11 g(b) := limx↑b g(x) // Extend g to the right border of [a,b]
12 return g

Proof. Again we define

c(x, x ′) :=

∣∣∣∣∣
∫x ′

x

p(κ)dκ

∣∣∣∣∣
By Lemma 31 (with ◦ = ∨) and using c(x ′, x ′) = 0 for all x ′ we know

t(x) = min
x ′ break point of p or s, or x ′=x

(
c(x, x ′) + s(x ′)

)
(4)

For each break point x ′, c(_, x ′) + s(x ′) is piece-wise linear as a sum
of two piece-wise linear functions. Hence t is piece-wise linear as it is
the minimum of finitely many piece-wise linear functions.
t could be computed as the pointwise minimum of m + 1 piece-

wise linear functions with m distinct break points in total. By [10]
this can be done in time O(m logm). In general, this is also a natural
lower bound for computing the pointwise minimum of piece-wise
linear functions with m break points in total because it is necessary
to sort the break points of all functions given as input.

However, here we are given the break points of p and s in sorted
order and the functions c(_, x ′) + s(x ′) share many similarities. To
achieve linear running time for this problem we make use of Algo-
rithm 2. This algorithm iterates over all break points of p and s from
left to right and hence has running time O(m). Let g the returned
function. Define

r(x) := min
x ′ break point of p or s, or x ′=x

x⩾x ′

(
c(x, x ′) + s(x ′)

)
Claim 32.1. r is piece-wise linear, has at most 2m break points and it is
g = r ⩽ s.
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Proof. Lines 2 and 3 of Algorithm 2 ensure g ⩽ s. As for all x ∈ [a,b]
it is g(x) = c(x, x ′) + s(x ′) for some break point x ′ ⩽ x of p or s,
or g(x) = c(x, x) + s(x) (using c(r, r) = 0 for all r) we have g ⩾ r.
Together it is r ⩽ g ⩽ s. Now fix any x ∈ [a,b]. Let

x ′′ = max

 arg min
x ′ break point of p, or x ′=x

x⩾x ′

(
c(x, x ′) + s(x ′)

) (5)

that is r(x) = c(x, x ′′)+ s(x ′′). If x ′′ = xwe have r(x) = s(x) and hence
g(x) = r(x) as desired.

So now assume that x ′′ < x and x ′′ is a break point of p or s. We
know g(x ′′) ⩽ s(x ′′). Let x ′ ⩽ x ′′ be such that g(x ′′) = c(x ′′, x ′) +
s(x ′) and x ′ = x ′′ or x ′ is a break point of p or s. We want to show
g(x ′′) = s(x ′′): If x ′ = x ′′, then this follows by c(x ′′, x ′′) = 0. Other-
wise, x ′ must be a break point of p or s. If g(x ′′) < s(x ′′) it would
be

c(x, x ′) + s(x ′) = c(x, x ′′) + c(x ′′, x ′) + s(x ′)

= c(x, x ′′) + g(x ′′) < c(x, x ′′) + s(x ′′) = r(x)

which is a contradiction to the definition of r. Hence g(x ′′) = s(x ′′).
Because g(x ′′) = s(x ′′) and x ′′ is a break point of p or s the algo-

rithm once enters line 2 with x0 = x ′′. By the definition of x ′′ in (5)
the algorithm must enter the first condition. Then x1 > x in line 3

as otherwise x ′′ would not be biggest possible in (5). Hence the al-
gorithm sets g(κ) := s(x ′′) + c(κ, x ′′) for all x ′′ ⩽ κ < x1 including
g(x) := s(x ′′) + c(x, x ′′).
g is piece-wise linear by construction. All break points of g arising

from line 7 are also break points of s. Break points arising from line
4 are either break points of p or equal x1 defined in line 3. Assume
x1 ̸= b. If s has a break point in the interval (x0, x1) that is not a
break point of g, the new break point x1 is balanced out. If s has no
break points in the interval (x0, x1), p must have a break point in this
interval because otherwise it would be impossible that g(x0) = s(x0)
and g(x1) = s(x1) and g < s on (x0, x1). That is why g can have
at most m more break points than s has, because for each such new
break point x1 there must be another one of p in (x0, x1).

Claim 32.2. For x ∈ [a,b] we have

t(x) = min
x ′ break point of p or r, or x ′=x

x ′⩾x

(
c(x, x ′) + r(x ′)

)
(6)

Proof. Let x ∈ [a,b] fixed.
“⩾”: By (4) there is x ′ which is a break point of p or s or x ′ = x

with t(x) = c(x, x ′) + s(x ′). If x ′ ⩽ x we have

t(x) = c(x, x) + (c(x, x ′) + s(x ′)) ⩾ c(x, x) + r(x)
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If x ′ > x, let x0 ⩽ x ′ ⩽ x1 the nearest break points of p or r left and
right of x ′ or x whatever comes first. We have

t(x) = c(x, x ′) + (c(x ′, x ′) + s(x ′))

⩾ c(x, x ′) + r(x ′)

⩾ min{c(x, x0) + r(x0), c(x, x1) + r(x1)}

The last inequality follows because c(x, _) + r(_) is linear on [x0, x1].
“⩽”: Let x ′ a break point of p or r or x ′ = x attaining the minimum

in (6). Let x ′′ ∈ [a,b] with x ′′ = x ′ or x ′′ a break point of p or s and
x ′′ ⩽ x ′ such that r(x ′) = c(x ′, x ′′) + s(x ′′). Therefore, the right-hand
side of (6) equals c(x, x ′) + c(x ′, x ′′) + s(x ′′) = c(x, x ′′) + s(x ′′). If x ′′

is a break point of p or s or x ′′ = x we are done by (4). Otherwise let
x0 ⩽ x ′′ ⩽ x1 the nearest break points of p or s left and right of x ′′ or
x whatever comes first. By (4) it is

t(x) ⩽ min{c(x, x0) + s(x0), c(x, x1) + s(x1)} ⩽ c(x, x ′′) + s(x ′′)

The second inequality is true because c(x, _)+ s(_) is linear on [x0, x1].

We first run Algorithm 2 on p and s obtaining r. Then we run a re-
versed version of Algorithm 2 that iterates over the break points from
right to left on p and r obtaining the desired function t by Claim 32.2.
As r has at most 2m break points, the second call of Algorithm 2 has
running time O(m). Hence, this is also the total running time proving
the lemma.

Theorem 33. An instance (G,□,p, c) of the one-dimensional minimum
cost arborescence with fixed topology problem with piece-wise constant edge
price functions and piece-wise linear via cost functions can be solved by
Algorithm 1 in time O(|V(G)| ·m), where m is the maximum number of
break points occurring within the computed piece-wise linear functions.

Proof. Correctness can be shown by a straight-forward induction.
Adding two piece-wise linear functions or computing their point-

wise minimum yields another piece-wise linear function. By Lemma 32

we know that

x→ min
x ′∈□(v)

{∣∣∣∣∣
∫x ′

x

pe,α(κ)dκ

∣∣∣∣∣+ sv(x ′)
}

(7)

in line 2 of Algorithm 1 is a piece-wise linear function given that pe,α

is piece-wise constant and sv is piece-wise linear. As all the via cost
functions are piece-wise linear as well it follows by induction in re-
verse topological order that su is piece-wise linear for all u ∈ V(G).
Adding two piece-wise linear functions with n1 and n2 break points
or computing their pointwise minimum can be done straightforward
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in time O(n1 +n2). Finding the minimum of a piece-wise linear func-
tion with n break points can be done in time O(n). Hence, line 3 of
Algorithm 1 can be implemented in time O(m) and line 4 and 5 in
O(|V(G)| ·m). In line 2, for each node v ∈ V(G) \ vsource (when iterat-
ing over its parent node pv) we have to compute two functions (7) and
add their pointwise minimum to another piece-wise linear function to
compute spv . This can be done in time O(m) using Lemma 32. In total,
this amounts to a running time of O(|V(G)| ·m) for Algorithm 1.

We will now show how to bound the number of break points that
occur in Algorithm 1.

Lemma 34. Assume we are given an instance (G,□,p, c) of the one-dimen-
sional minimum cost arborescence with fixed topology problem. Let

G ′ := (V(G), {(v,w) ∈ E(G) : □(v)∩□(w) ̸= ∅}

that is G ′ is a branching containing all nodes of G and only those edges
whose endpoints have intersecting movebound intervals. Now let C be a
connected component of G ′ and [a,b] ⊂ R such that

⋃
v∈C□(v) ⊂ [a,b].

Define

T := {v ∈ C : □(v) ̸= [a,b]}

Bp :=
⋃

e=(v,w)∈E(C)
α∈{v,w}

{break points of pe,α|(a,b)}

Bc :=
⋃

v∈V(C)

{break points of cv|(a,b)}

For all v ∈ C, the number of break points of the function sv computed in
Algorithm 1 can be bounded by

|Bc|+ |Bp|+ 2+ 2|T |+ 4|Bp| · (|C|− 1)

Proof. Given a piece-wise linear function g : [a,b] → R2
⩾0 and piece-

wise constant p : [a,b] → R2
⩾0, define for x ∈ [a,b]

p+[g](x) := min
a⩽y⩽x

(
g(y) +

∫x
y

p(κ)dκ

)
p−[g](x) := min

x⩽y⩽b

(
g(y) +

∫y
x

p(κ)dκ

)
p[g](x) := p−[p+[g]](x)

By Lemma 31 p+[g] and p−[g] are piece-wise linear and therefore
also p[g] is piece-wise linear. Using Lemma 31 and Claim 32.2, it is
p[g](x) = mina⩽y⩽b

(
g(y) +

∣∣∫y
x p(κ)dκ

∣∣). See Figure 25 for an exam-
ple.



3.3 computing local routes 51

Figure 25: Consider the x-dimension instance resulting from this arbores-
cence with planar congestion costs. The colors indicate the prices
of the edge areas. The Steiner nodes u and v can be moved in x-
direction within the global routing tiles (dashed). Let pu the edge
price function for incident edges of u. On the right there are the
cost functions sv and p+u [sv] (dashed), which has one additional
break point compared to sv.

Remark 35. Let g,h : [a,b] → R⩾0 piece-wise linear and p : [a,b] →
R⩾0 piece-wise constant. If g ⩽ h then

p+[g] ⩽ p+[h] and p−[g] ⩽ p−[h]

In line 2, Algorithm 1 computes a function of the form min(p[g],q[g]).
We want to bound the number of its break points. For this, we first
rewrite min(p[g],q[g]):

Claim 35.1. Let g : [a,b] → R⩾0 piece-wise linear and p,q : [a,b] → R⩾0

piece-wise constant. For the pointwise minimum it holds that

min(p[g],q[g]) = min(p−[min(p+[g],q+[g])],q−[min(p+[g],q+[g])])

Proof. “⩾” follows by the fact that p+[g] ⩾ min(p+[g],q+[g]) and
q+[g] ⩾ min(p+[g],q+[g]) and hence Remark 35 implies

min(p[g],q[g]) = min(p−[p+[g]],q−[q+[g]])

⩾ min(p−[min(p+[g],q+[g])],q−[min(p+[g],q+[g])])

For “⩽” fix any x ∈ [a,b]. Without loss of generality, assume

min(p−[min(p+[g],q+[g])](x),q−[min(p+[g],q+[g])](x))

= p−[min(p+[g],q+[g])](x)

Now distinguish two cases:

1. Assume p−[min(p+[g],q+[g])](x) = p+[g](y)+
∫y
x p(κ)dκ for some

x ⩽ y ⩽ b. The latter is greater or equal p−[p+[g]](x), proving
the claim.
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2. Assume p−[min(p+[g],q+[g])](x) = q+[g](y)+
∫y
x p(κ)dκ for some

x ⩽ y ⩽ b and q+[g](y) = g(z) +
∫y
z q(κ)dκ for some a ⩽ z ⩽ y,

that is we have

p−[min(p+[g],q+[g])](x) = g(z) +
∫y
z

q(κ)dκ+

∫y
x

p(κ)dκ (8)

If z > x then (8) is greater or equal than

g(z) +

∫z
x

p(κ)dκ ⩾ p−[g](x) ⩾ p−[p+[g]](x)

Otherwise, if z ⩽ x then (8) is greater or equal than

g(z) +

∫x
z

q(κ)dκ ⩾ q+[g](x) ⩾ q−[q+[g]](x)

showing the claim in both cases.

Now we bound the number of break points of min(p[g],q[g]):

Claim 35.2. Let g : [a,b] → R⩾0 piece-wise linear and p,q : [a,b] →
R⩾0 piece-wise constant. Let P the set of break points of p and q. Define
g ′ := min(p+[g],q+[g]). g ′ has at most 2|P| more break points that are not
contained in P than g has.

By symmetry, the same holds for g ′′ := min(p−[g],q−[g]).

Proof. It is g ′ ⩽ g. Partitioning the interval [a,b] at the intersections
of g and g ′ yields intervals

[a,b] = [x1, x2]⊔ [x2, x3]⊔ ... ⊔ [xn−1, xn]

such that for each interval [xi, xi+1] it holds that either

g ′
|[xi,xi+1]

= g|[xi,xi+1]

or

g ′
|(xi,xi+1)

< g|(xi,xi+1) and g ′(xi) = g(xi) and g ′(xi+1) = g(xi+1)

To bound the number of additional break points of g ′ that are not
contained in P we only have to consider the intervals where g ′ is
strictly smaller than g, hence let [a ′,b ′] be such an interval. g ′ must
be continuous on this interval.

First consider the set X of break points of g ′ in (a ′,b ′) \ P. We
will consider a ′,b ′ later. Let x ∈ X arbitrary and x ′ the next smaller
break point in X or a ′ if there is none. As a ′ < x < b ′ it is g(x) >
g ′(x). Because x is not a break point of p or q and by definition of
g ′ it must be g ′(x) = p+[g](x) = q+[g](x), otherwise x could not
be a break point of g ′. It follows that p+[g](x) = q+[g](x) < g(x)

and x is not a break point of p+[g](x) or q+[g](x) as well. Moreover,
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it is g ′(x ′) = p+[g](x ′) = q+[g](x ′): If a ′ ̸= x ′ this follows by the
same argumentation as above, otherwise if a ′ = x ′ this holds because
always g ′ ⩽ p+[g],q+[g] ⩽ g and g ′(a ′) = g(a ′).

Now we want to show that there must be some y ∈ P with y ∈
(x ′, x). Assume that there is no such y. Hence g ′ has no break points
in (x ′, x). Because x is a break point of g ′ but neither of p+[g] nor
q+[g] the slopes of p+[g] and q+[g] must be different at x. W.l.o.g as-
sume 0 ⩽ p(x) = d

dκ↓p
+[g](x) < d

dκ↓q
+[g](x) = q(x). Hence d

dκ↑g
′(x) =

d
dκ↓q

+[g](x) and since g ′ has no break points in (x ′, x) it is

d

dκ ↓
g ′(x ′) =

d

dκ ↑
g ′(x) =

d

dκ ↓
q+[g](x)

Because g ′(x ′) = p+[g](x ′) it is d
dκ↓g

′(x ′) <= d
dκ↓p

+[g](x ′) = p(x ′)

by definition of g ′. Altogether, we get p(x) < q(x) ⩽ p(x ′) which is a
contradiction because p has no break points in (x ′, x]. Hence there is
y ∈ P with y ∈ (x ′, x) and it follows that to each x ∈ X we can assign
a unique p ∈ P. Therefore, g ′ has at most |P| break points that are not
break points of g, p and q and at which g is strictly larger than g ′.

Finally look at a ′ and b ′. a ′ must be a break point of g or p or q
because g ′(a ′) = g(a ′) and g ′

|(a ′,b ′) < g|(a ′,b ′). If a ′ was not a break
point we would obtain a contradiction to the definition of p+[g] and
q+[g]. Hence we do not have to account for a ′. Consider the case that
b ′ is a break point of g ′ but not of g and b ′ /∈ P.

First consider the case that (a ′,b ′) ∩ P = ∅. We want to show that
g has a break point x in (a ′,b ′): Assume g has no break point in
(a ′,b ′). We saw earlier that then g ′ cannot have a break point in
(a ′,b ′) neither as we assumed (a ′,b ′)∩ P = ∅. This is a contradiction
to the fact that g(a ′) = g ′(a ′) and g(b ′) = g ′(b ′) and g is strictly
larger than g ′ in (a ′,b ′). So let x ∈ (a ′,b ′) a break point of g. We can
now assign x to b ′ as a break point of g that is not a break point of
g ′, canceling out the break point b ′ of g ′.

Now consider the case (a ′,b ′)∩ P ̸= ∅. We take any x ∈ (a ′,b ′)∩ P
and assign it to b ′. We might have already assigned x to a break point
of g ′ in (a ′,b ′), so we bound the total number of such break points
b ′ by an additional summand of |P|.

As all break points of g ′ that are not break points of g and not
contained in P can be covered by an element in P such that each
x ∈ P is assigned to at most two break points, the number of such
break points of g ′ can be bounded by 2|P|.

Claim 35.3. Let g : [a,b] → R⩾0 piece-wise linear and p,q : [a,b] →
R⩾0 piece-wise constant. Let P the set of break points of p and q. Then
min(p[g],q[g]) has at most 4|P| more break points that are not contained in
P than g has.

Proof. By Claim 35.1 it is

min (p[g],q[g]) = min
(
p−[min(p+[g],q+[g])],q−[min(p+[g],q+[g])]

)
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The statement follows by applying Claim 35.2 on

g ′ := min(p+[g],q+[g])

and then on min(p−[g ′],q−[g ′]).

Now we conclude the proof of Lemma 34. For this we ignore break
points that are contained in Bc ∪ Bp ∪ {a,b} but instead bound their
number by |Bc|+ |Bp|+ 2 beforehand. The sum of two piece-wise lin-
ear functions has no break points additional to those of the two sum-
mands. We bound the number of occurences a function sv has a break
point that none of its children‘s functions had, subtracting the num-
ber of break points a children’s function had but which is no longer
a break point of sv. If we bound this number by 2|T |+ 4|Bp| · (|C|− 1)
this proves the statement, as all the functions sv are computed in re-
verse topological order from each other.

Clearly, any interval border of a node in T can introduce a new
break point, whose number we bound by 2|T |. Adding the via cost
function in line 2 of Algorithm 1 only adds break points in Bc ∪ {a,b},
which we ignore at this point. Now look at the following function in
line 2 of Algorithm 1

min
x ′∈□(v)
α∈{v,w}

(∣∣∣∣∣
∫x ′

x

pe,α(κ)dκ

∣∣∣∣∣+ sv(x ′)
)

(9)

which is computed by running Algorithm 2 twice as described in
Lemma 32, once for α = v and α = w and computing the pointwise
minimum. First note that for a child v of u in G that is not contained
in C, i.e. □(u)∩□(v) = ∅, function (9) has no break points other than
possibly Bp on the whole domain □(u). Hence no break points out-
side of Bp are introduced and we now restrict ourselves to children
that are also contained in C.

By Claim 35.3 at most 4|Bp| additional break points can arise in
(9) during the computation of sp(u) for any node u ∈ C. C is an
arborescence, thus there are |C|− 1 nodes in C that have a parent in
C and we can bound the total number of break points added in this
way by 4|Bp| · (|C|− 1) proving the statement.

Corollary 36. Assume we are given an instance (G,□,p, c) of the one-
dimensional minimum cost arborescence with fixed topology problem with
layer-embedded or planar congestion price functions. Let

G ′ := (V(G), {(v,w) ∈ E(G) : □(v)∩□(w) ̸= ∅}

Let C a connected component of G ′ and [a,b] ⊂ R and T ⊂ C the number
of terminals within C. For all v ∈ C and with layer-embedded congestion
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price functions, the number of break points of the function sv computed in
Algorithm 1 can be bounded by

2|L|+ 2|T |+ 4|C|− 2

With planar congestion price functions, it can be bounded by

2|T |+ 4|C|

Proof. With the layer-embedded or planar congestion costs, the move-
bound intervals □ are defined as the x- or y-projections of the global
routing tiles. Therefore, all nodes in the component C must be lo-
cated in the same global routing tile column or row, depending on
whether the given instance is the x- or y-projection of the original
two-dimensional instance. Hence, in the setting of Lemma 34, Bp

consists of the unique break point of the congestion price function
within the global routing tile column or row. The via cost functions
from Definition 26 or 28 can have two break points with a specific tip-
to-tip penalty. With layer-embedded congestion costs, these tip-to-tip
penalty lengths can be different depending on the layer of the node
in the input, whereas the planar congestion costs always assume the
cheapest layer. Hence we have |Bc| ⩽ 2|L| for the layer-embedded con-
gestion costs and |Bc| ⩽ 2 for the planar congestion price functions.
Only terminals can have intervals that are not equal to the whole
range of the respective global routing tile, hence we bound |T | by the
number of terminals. Plugging this into the statement of Lemma 34

yields the claim.

In the worst case the number of break points can be linear in the
number of nodes resulting in total quadratic running time. However,
in practice the number of break points is small as Figure 26 shows.
Most instances in global routing attain a maximum of ten to twenty
break points, without any extreme outliers. By modeling the cost func-
tions of the sub-arborescences as piece-wise continuous functions bad
solution candidates for the nodes are pruned away automatically. This
is in contrast to an approach in which solution candidates are com-
puted on a Hanan grid (Section 3.3.3). If running time should become
an issue it would also be possible to only store approximations of the
piece-wise linear functions with a bounded number of break points.

3.3.1.5 Delay Costs

In a timing-driven routing context it is important to have a routing
that is not only short and optimized with regard to congestion but
also has good timing properties.

Definition 37 (Downstream capacitance lower bound). Let Cmin the
minimum unit capacity over the layers. Given an instance (A,□,p, c)
of the minimum cost arborescence with fixed topology problem we
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Figure 26: Percentages of instances with certain maximum numbers of break
points that occur in Algorithm 1 during global routing on three
chip instances. On these instances, there never occurred more
than 65 break points.

define a lower bound on the downstream capacitance for all w ∈
V(A):

Cmin(Yw) := min
f:V(Yw)→R2

f(v)∈□(v)∀v∈V(Yw)

∑
e=(u,v)∈E(Yw)

Cmin · |f(u), f(v)|

Since Cmin(Yw) is defined as the minimum possible length of the
sub-arborescence Yw respecting the move bounds □ multiplied by the
minimum unit capacity it is a lower bound on the downstream capac-
ity Cdown(w) for any feasible positioning f : V(Yw) → R2. It can be
computed efficiently using the dynamic program for the congestion-
unaware x-y-optimization from Section 3.3.1.3.

Having projected an instance of the minimum cost arborescence
with fixed topology problem to two instances of the one-dimensional
minimum cost arborescence with fixed topology problem, we can add
a lower bound delay cost to the edge prices:

Definition 38 (Layer-embedded congestion costs with lower-bound
delay costs). Let G be an arborescence embedded into C × L and
px,py and cx, cy the layer-embedded congestion cost functions for
two instances of the one-dimensional minimum cost arborescence
with fixed topology problem as in Definition 26. For w ∈ V(G) let
Cmin(Yw) the lower bound on the downstream capacitance at w from
Definition 37. Let R(z) the unit resistance on layer z ∈ L. For an edge
in x-dimension e = (v,w) = ((x1,y, z), (x2,y, z)) ∈ E(G) define

p
x,delay
e (_,y, z) := pxe(_,y, z) + R(z) ·Cmin(Yw)



3.3 computing local routes 57

Analogously, for an edge in y-dimension e = (v,w) = ((x,y1, z), (x,y2, z))
define

p
y,delay
e (x, _, z) := pye (x, _, z) + R(z) ·Cmin(Yw)

For v ∈ V(G) define

c
x,delay
v := cxv and c

y,delay
v := cyv

Remark 39. Let A be a local route embedded into C×L and assume
disttip(z) = 0 for all layers z ∈ L. Then the sum of the layer-embedded
congestion costs with lower-bound delay costs of all edges and nodes
of the two instances of the one-dimensional minimum cost arbores-
cence with fixed topology problem for the underlying arborescence
is at most the sum of the intersection-ignoring congestion cost and
delay cost of A:

∑
e=((x1,y,z),(x2,y,z))∈E(A)

x1 ̸=x2

∣∣∣∣∫x2

x1

p
x,delay
e (κ)dκ

∣∣∣∣
+

∑
e=((x,y1,z),(x,y2,z))∈E(A)

y1 ̸=y2

∣∣∣∣∫y2

y1

p
y,delay
e (κ)dκ

∣∣∣∣
+

∑
v=(x,y,z)∈V(A)

c
x,delay
v (x) + c

y,delay
v (y)

⩽ costcong+(A) + costdelay(A)

The ratio between these two terms can be arbitrary large, because
the delay cost can be arbitrarily larger than the lower-bound delay
cost. In case there is only one terminal in the sub-arborescence Yv
of a node v and that terminal is located inside the movebound of v,
there is not even a lower bound greater than zero, because v could be
placed on top of the terminal. Hence an optimum solution with re-
gard to the layer-embedded congestion costs with lower-bound delay
costs, as it can be computed by Algorithm 1, is not a constant factor
approximation with regard to congestion and delay costs.

Analogously to Definition 38 we define lower-bound delay costs for
the planar congestion costs:

Definition 40 (Planar congestion costs with lower-bound delay costs).
Let G be an arborescence embedded into C and px,py and cx, cy

the planar congestion cost functions for two instances of the one-
dimensional minimum cost arborescence with fixed topology prob-
lem as in Definition 28. For w ∈ V(G) let Cmin(Yw) a lower bound on
the downstream capacitance at w. Let Rmin the minimum unit resis-
tance over the layers. For a node w = (x,y, z) ∈ V(G) define

p
x,delay
w (_,y, z) := pxw(_,y, z) + Rmin ·Cmin(Yw)
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p
y,delay
w (x, _, z) := pyw(x, _, z) + Rmin ·Cmin(Yw)

c
x,delay
w := cxw and c

y,delay
w := cyw

Though there are no strong theoretical guarantees, the planar con-
gestion costs with lower-bound delay costs yield slightly better results
in practice with regard to timing.

3.3.1.6 Experimental Results

timing-unaware Table 2 shows results on several chip instances
for the congestion-aware x-y-optimization with planar congestion
costs (see Sections 4.1 and 4.2 for details on the testbed and the
metrics). It was run within BonnRouteGlobal after connecting the
coarse route to the exact pin shapes within the global routing tiles.
The x-y-optimization was followed by a layer embedding algorithm
that we will describe later in Section 3.3.2. For comparison, there are
runs of BonnRouteGlobal without any x-y-optimization and with the
congestion-unaware x-y-optimization. One can see that already the
congestion-unaware x-y-optimization achieves to reduce the conges-
tion (wACE4), wire length and via number dramatically. That is be-
cause shorter routes lead to less edge resource usage and hence less
detours requiring fewer vias.

The congestion-aware x-y-optimization manages to obtain an even
slightly better wire length with additional benefits in congestion and
via count. In particular the number of vias decreases substantially,
which is partly due to the fact that the implementation favors solu-
tions that contain less corner points (Steiner points) if the costs are
identical otherwise. Low numbers of vias during global routing also
benefit the number of vias in detailed routing as can be seen in the
experiments in Section 4.

Cost function wACE4 GR wire length GR vias

Planar cong. costs 83.2% 33.2 22723566

Layer-embedded cong. costs 84.6% +1.4% 33.4 +0.6% 23177438 +2.0%

Table 1: Average results over five units (B2,B3,C1,C2,C3) comparing the
x-y-optimization with planar congestion costs and layer-embedded
costs. In particular the number of vias is much better with planar
congestion costs.

Table 1 shows results with the layer-embedded congestion costs. Be-
fore running the x-y-optimization with layer-embedded congestion
costs, the route that already connects to the pin shapes is embed-
ded into the layers using the algorithm from Section 3.3.2. That algo-
rithm is called a second time on the x-y-optimized route. The layer-
embedded congestion costs have the major disadvantage that the ori-
entation of the wires remains fixed. Recall that their orientation orig-
inates from the planar arborescences connecting to the pin shapes
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Chip Nets Router RS time RS reroutes wACE4 Wire length Vias

B1 1732566 DLU (no x-y-opt.) 00:45:01 16575780 86.79 28.7738 16482039
DLU (cong. unaware x-y-opt.) 00:30:29 -32.30% 13061217 -21.20% 84.69 -2.10% 26.8726 -6.61% 15258846 -7.42%
DLU (cong. aware x-y-opt.) 00:30:48 -31.58% 12269469 -25.98% 83.16 -3.63% 26.7896 -6.90% 14868741 -9.79%

B2 1202357 DLU (no x-y-opt.) 00:12:05 4458765 86.37 20.7273 11790427
DLU (cong. unaware x-y-opt.) 00:13:17 +9.93% 4511960 +1.19% 85.21 -1.16% 19.6423 -5.23% 11104898 -5.81%
DLU (cong. aware x-y-opt.) 00:22:36 +86.89% 6536968 +46.61% 82.59 -3.78% 19.5849 -5.51% 10815995 -8.26%

B3 372283 DLU (no x-y-opt.) 00:05:16 2130416 83.67 6.4290 3577123
DLU (cong. unaware x-y-opt.) 00:05:04 -3.65% 1833810 -13.92% 81.87 -1.80% 6.0898 -5.28% 3345867 -6.46%
DLU (cong. aware x-y-opt.) 00:05:17 +0.37% 1706589 -19.89% 80.85 -2.82% 6.0809 -5.41% 3256918 -8.95%

C1 373556 DLU (no x-y-opt.) 00:04:40 6663570 86.62 2.4139 3342100
DLU (cong. unaware x-y-opt.) 00:03:48 -18.48% 4719780 -29.17% 83.41 -3.21% 2.1340 -11.60% 2940100 -12.03%
DLU (cong. aware x-y-opt.) 00:04:37 -1.31% 4339666 -34.87% 82.61 -4.01% 2.1321 -11.67% 2860501 -14.41%

C2 245235 DLU (no x-y-opt.) 00:01:10 810072 79.68 3.0571 2052029
DLU (cong. unaware x-y-opt.) 00:01:29 +28.48% 890484 +9.93% 77.17 -2.51% 2.8825 -5.71% 1929154 -5.99%
DLU (cong. aware x-y-opt.) 00:01:53 +62.21% 864423 +6.71% 75.70 -3.98% 2.8802 -5.79% 1883992 -8.19%

C3 147877 DLU (no x-y-opt.) 00:00:57 486993 78.53 2.1324 1234789
DLU (cong. unaware x-y-opt.) 00:00:54 -6.07% 420697 -13.61% 76.68 -1.85% 2.0401 -4.33% 1178705 -4.54%
DLU (cong. aware x-y-opt.) 00:01:00 +4.24% 414044 -14.98% 76.52 -2.01% 2.0392 -4.37% 1155236 -6.44%

Summary DLU (no x-y-opt.) 01:09:12 31125596 83.61 63.5335 38478507
DLU (cong. unaware x-y-opt.) 00:55:04 -20.41% 25437948 -18.27% 81.51 -2.10% 59.6613 -6.09% 35757570 -7.07%
DLU (cong. aware x-y-opt.) 01:06:13 -4.31% 26131159 -16.05% 80.24 -3.37% 59.5069 -6.34% 34841383 -9.45%

Table 2: The dynamic local usage without x-y-optimization, congestion-unaware x-y-optimization and the congestion-aware x-y-optimization with
planar congestion costs on 7nm instances.
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D1 215089 DLU (timing-unaware x-y-opt) 00:06:46 2004232 86.35 2.0998 1647039 -663156 -202
DLU (timing-aware x-y-opt.) 00:06:55 +2.22% 1997283 -0.35% 86.36 0.01% 2.0995 -0.01% 1646600 -0.03% -660693 -0.37% -202 0

D2 184853 DLU (timing-unaware x-y-opt) 00:05:02 1555380 82.15 2.1011 1361490 -58153 -62
DLU (timing-aware x-y-opt.) 00:04:39 -7.73% 1551557 -0.25% 82.30 0.15% 2.1012 +0.00% 1361437 +0.00% -57759 -0.68% -62 0

D3 146458 DLU (timing-unaware x-y-opt) 00:04:03 1382280 84.48 1.3389 1109144 -77952 -74
DLU (timing-aware x-y-opt.) 00:04:06 +0.98% 1377187 -0.37% 84.60 0.12% 1.3388 -0.01% 1109560 +0.04% -77805 -0.19% -74 0

D4 87766 DLU (timing-unaware x-y-opt) 00:03:19 682245 84.56 0.8593 759305 -14186 -66
DLU (timing-aware x-y-opt.) 00:03:16 -1.61% 678487 -0.55% 84.45 -0.11% 0.8600 +0.08% 759051 -0.03% -14168 -0.12% -66 0

D5 79065 DLU (timing-unaware x-y-opt) 00:02:19 550981 82.31 0.8489 594660 -259161 -320
DLU (timing-aware x-y-opt.) 00:02:28 +6.51% 547745 -0.59% 82.25 -0.06% 0.8488 -0.01% 594491 -0.03% -259127 -0.01% -320 0

D6 43477 DLU (timing-unaware x-y-opt) 00:00:59 335739 82.67 0.3303 296172 -9540 -200
DLU (timing-aware x-y-opt.) 00:01:03 +5.88% 335524 -0.06% 82.48 -0.19% 0.3303 +0.00% 295979 -0.07% -9515 -0.26% -200 0

D7 13764 DLU (timing-unaware x-y-opt) 00:00:33 109410 81.27 0.0918 102501 -1505 -42
DLU (timing-aware x-y-opt.) 00:00:35 +6.24% 109220 -0.17% 81.21 -0.06% 0.0918 +0.00% 102400 -0.10% -1473 -2.16% -42 1

Summary DLU (timing-unaware x-y-opt) 00:23:05 6620267 83.40 7.6701 5870311 -1083652 -320
DLU (timing-aware x-y-opt.) 00:23:05 -0.04% 6597003 -0.35% 83.38 -0.02% 7.6704 +0.00% 5869518 -0.01% -1080540 -0.29% -320 0

Table 3: The dynamic local usage with planar congestion costs within the x-y-optimization on 5nm instances; once without timing costs and once with
the lower-bound delay costs.
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within the global routing tiles, not considering congestion and lay-
ers of the pin shapes. In contrast to the layer-embedded congestion
prices the planar congestion prices allow and favor diagonal edges
where possible. This enables the layer embedding algorithm (Section
3.3.2) to choose the optimum layers with regard to congestion and via
costs, greatly reducing the number of vias. Pin shapes can be accessed
much more efficiently. This is why in all experiments of Section 4 the
planar congestion costs are used.

timing-aware Table 3 shows results for the congestion-aware x-
y-optimization with planar congestion costs and lower-bound delay
costs. As for the planar congestion costs without lower-bound delay
costs the route is embedded into the layers after its x-y-coordinates
have been optimized. One can see a slight improvement regarding
the sum of negative slacks. Moreover, the number of resource shar-
ing reroutes drops throughout the whole testbed supporting the fact
that the routes are better optimized with regard to timing and hence
behave more harmonically with the other timing-aware algorithms of
BonnRouteGlobal.

3.3.2 Optimizing Layers and Wire Types

The last step during the computation of a local route is to embed the
x- and y-optimized arborescence into layers. The traditional router
keeps the layers of wires that cross global routing tile borders fixed
as they were chosen in the coarse route by the path search. All tile-
internal wires that were added to connect to the exact pin shapes
are heuristically assigned to the layers, taking into account the layers
of the pin shapes and the allowed layer ranges of the nets. As tile-
internal wires do not count towards congestion with the traditional
router, their assigned layers do not affect congestion. However they
do affect timing. With the dynamic local usage also tile-internal wires
affect congestion, making it necessary to embed them into layers more
carefully. [53] describes a dynamic programming approach that finds
an almost optimum layer embedding with regard to congestion and
timing, improving on a result from [45]. Here we present an improved
faster version of [53] that can additionally optimize wire types.

So far we assumed all wires to have the same width and the same
properties with regard to timing propagation. In fact, wires can be as-
signed different so-called wire types. A wire type defines the width of
a wire, spacing constraints and timing properties like resistance and
capacitance. Usually a thicker wire type has less resistance, but more
capacitance and space consumption than a thinner wire type. For a
timing critical net it might be beneficial to choose a thicker wire type
in order to achieve a better signal delay due to the smaller resistance.
The path search algorithm of BonnRouteGlobal (Section 3.2) is not
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able to choose between different wire types but only uses the default
wire type of a net, which is given as input to BonnRouteGlobal. How-
ever, it can still be beneficial to choose among different wire types
during the optimization of the local route.

Definition 41. We say that a rectilinear two-dimensional arborescence
Y = (V ,E) with V ⊂ C ⊂ R2 connects a net n, if Y connects the two-
dimensional projections of all pins of n, that is for each pin p ∈ n

there is v ∈ V with v ∈ projxy(p), and Y is oriented from the source
to the sinks of n.

Using the previous definition we define the problem as follows,
extending the problem defined in [53] for layer optimization only.

Problem 42. Layer and Wire Type Assignment

Input: A rectilinear two-dimensional arborescence Y for a net
n with source vsource and sinks T ⊂ n, a source resistance
R(vsource) ∈ R⩾0, sink capacitances C : T → R⩾0, timing prices
costdelay : T → R⩾0, a set of layers L = {lmin, ..., lmax} and a
set of wire types W, a non-empty set of allowed layers Le ⊂ L

and allowed wire types We ⊂ W for each e ∈ E(Y), layer- and
wire type-dependent wire and via congestion costs costwire :

E(Y)×L×W → R⩾0, costvia : V(Y)×L×W → R⩾0, and wire
resistance and capacitance values R,C : E(Y)×L×W → R⩾0 and
via resistances R : L×L → R⩾0.

Output: A layer and wire type assignment z : E(Y) → L, ω :

E(Y) → W with z(e) ∈ Le and ω(e) ∈ We for all e ∈ E(Y) such
that incident edges on the same layer are assigned the same wire
type, minimizing

cost(Yz,ω) :=

costdelay(Y
z,ω) +

∑
e∈E(Yz,ω)

costwire(e) +
∑

v∈V(Yz,ω)

costvia(v)

where Yz,ω is the route arising from the arborescence Y and the
layer assignment z and the wire types ω by lifting the edges of
Y to the chosen layers and adding vias to keep connectivity. Wire
types for vias are determined implicitly by ω so that they match
the wire type of incident wires. For stacked vias we choose the
thinnest (that is cheapest) wire type.

We are looking for a layer assignment such that the sum of the wire,
via and timing costs (Definition 17) of the resulting route is minimum.
Wire types can only be changed at vias, which is why incident wires
on the same layer have to share the same wire type. Vias have very
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small capacitances which is why we ignore their capacitance in this
section, and mostly also in the implementation, for simplicity. More-
over, we currently do not consider wire type-dependent resistances
for vias but instead always assume the resistance of the smallest de-
fault wire type which is slightly pessimistic. To make this more pre-
cise one would have to check for compatibility of via wire types with
the wire types chosen on the layer above and below, which we also
want to avoid for simplicity.

Tip-to-tip penalty costs as defined in Definition 15 can be easily in-
corporated by adjusting the edge and via congestion costs like it was
also done for path search in Section 3.2. For each node v ∈ V(Y), layer
z ∈ L and wire type w ∈ W we let costvia(v, z,w) the congestion cost
of a stacked via pad at node v on layer z with wire type w including
tip-to-tip penalty extension costs in both directions. For each edge
e ∈ E(Y), layer z ∈ L and wire type w ∈ W we let costwire(e, z,w)
the congestion cost of the wire area of e on layer z with wire type w,
subtracted by the cost of one tip-to-tip penalty extension at each end
of the wire. For details, see Section 3.2.

[53] showed that even with |W| = 1 the layer and wire type
assignment problem is NP-hard using a reduction from [50] from
the NP-hard partition problem. The difficulty of the layer and wire
type assignment problem lies in the fact that the delay through an
edge e = (u, v) depends on the capacitances and layers of all edges
in the sub-arborescence Yv. Here we describe a dynamic program
that approximately solves the layer and wire type assignment prob-
lem by finding an optimum solution with regard to an approxima-
tion of costdelay based on lower bounds for the capacitances of sub-
arborescences. The following definitions are based on [53] and ex-
tended by wire types. We always assume an instance of the layer and
wire type assignment problem to be given.

Definition 43. For e ∈ E(Y) define minimum edge resistances and
capacitances

Rmin(e) := min
z∈Le
w∈We

R(e, z,w) Cmin(e) := min
z∈Le
w∈We

C(e, z,w)

For v ∈ V(Y) derive a lower bound on the downstream capacitance of
the sub-arborescence Yv as

Cmin(Yv) := Cmin(E(Yv)) +C(T(Yv))

We define approximate delay costs based on the capacitance lower
bounds, which constitute a lower bound on the Elmore delay costs in
Definition 8:

Definition 44. For e = (u, v) ∈ E(Y), z ∈ Le and w ∈We define

rcpwire(e, z,w) := costdelay(T(Yv)) ·R(e, z,w) ·
(
C(e, z,w)

2
+Cmin(Yv))

)
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rcpwire(e, z,w) is smaller than the actual Elmore delay price in-
duced by this edge if edges in the sub-arborescence Yv are assigned
to layers and wire types on which they have larger capacitance than
the minimum capacitance. To partially compensate for this error, we
consider lower bounds on the resistance in a path from the source to
another node:

Definition 45. Let lsource ∈ L the predefined layer of the source ter-
minal. For e = (u, v) ∈ E(Y) and z ∈ Le define the capacitance price
lower bound as

cplb(e, z) := costdelay(T) · R(vsource) (10)

+ costdelay(T(Yv))

max{lsource,z}−1∑
z ′=min{lsource,z}

R(z ′, z ′ + 1) (11)

+
∑

(x,y)∈P[vsource,u]

costdelay(T(Yy)) · Rmin((x,y)) (12)

Here P[vsource,u] denotes the unique path from the source vsource to u in
the arborescence Y.

In other words, if in any layer assignment z : E(Y) → L an edge
e is moved from layer z(e) to layer z ′ increasing its capacitance by
c, the total cost of the route would increase by at least c · cplb(e, z

′):
The additional capacitance c increases the delay through the root (10),
through a minimum number of vias to reach the source layer (11)
and through the upstream path edges from v to vsource (12). The same
happens if e is assigned another wire type increasing its capacitance
by c.

Definition 46. The additional capacitance that an edge e ∈ E(Y) has
on layer z ∈ Le with wire type w ∈We compared to the lower bound
is defined as

Ccorr(e, z,w) := C(e, z,w) −Cmin(e)

Multiplying Ccorr by cplb yields a lower bound on the delay costs
that are missing in rcpwire:

Definition 47. For e ∈ E(Y), z ∈ Le and w ∈We define

rcpcorr(e, z,w) := cplb(e, z) ·Ccorr(e, z,w)

Altogether we obtain the following cost functions:

Definition 48. For e ∈ E(Y), z ∈ Le and w ∈We define

rcp(e, z,w) := costwire(e, z,w) + rcpwire(e, z,w) + rcpcorr(e, z,w)
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Given a layer and wire type assignment z : E(Y) → L and ω : E(Y) →
W and v ∈ V(Y), let (u1,w1), ..., (uk,wk) ∈ E(Yz,ω) the via edges at
v in the local route Yz,ω and [l1, l2] their layer range. Define via costs

rcp(v, z,ω) :=

l2∑
l=l1

costvia(v, l,ω)

+

k∑
i=1

R (projz(ui), projz(wi)) · costdelay
(
T(Yz,ω

wi
)
)
·Cmin(Y

z,ω
wi

)

Finally we define

rcp(z,ω) :=costdelay(T) · R(vsource) ·Cmin(Y)

+
∑

v∈V(Y)

rcp(v, z,ω) +
∑

e∈E(Y)

rcp(e, z(e),ω(e))

We want to compute a layer and wire type assignment z,ω mini-
mizing rcp(z,ω). To quantify its quality we need the following analog
from Definition 45:

Definition 49. Given a layer and wire type assignment z,ω, define
the capacitance price for a non-via edge e = (u, v) ∈ E(Yz,ω) as

cp(e) := costdelay(T) · R(vsource)

+
∑

(x,y)∈
PYz,ω[vsource,u]

costdelay(T(Y
z,ω
y )) · R ((x,y), z(x,y),ω(x,y))

The following theorem extends a result from [53] who showed an
analogous statement for the case |W| = 1 with a slightly slower run-
ning time of O(|E(Y)| · |L|2.

Theorem 50. Given an instance Y of the layer and wire type assignment
problem, let z,ω be a layer and wire type assignment minimizing rcp(z,ω)

and z∗,ω∗ minimizing cost(Yz∗,ω∗). Then it holds that

cost(Yz,ω) ⩽ (1+ (α− 1)(1−β)) · cost(Yz∗,ω∗)

where

α := max
v∈V(Yz,ω)

C(Yz,ω
v )

Cmin(Y
z,ω
v )

β := min
e∈E(Yz,ω)

cplb(e)

cp(e)

Given that Y has bounded vertex degrees such a layer and wire type as-
signment z,ω can be computed in time O(|E(Y)| · |L| · |W|) using dynamic
programming.

The approximation factor is good if the wire capacitances do not
vary too much over the layers and wire types, or the capacitance
prices of Yz,ω are not much bigger than the lower bound capacitance
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prices from Definition 45. The latter is the case if Yz,ω does not con-
tain too many vias and the wire resistances do not vary much over
the layers and wire types.

In current chip technologies, resistances can vary by up to a factor
of several thousands over all layers and wire types making it difficult
to find a useful bound on β. However, capacitances vary much less,
roughly by a factor of 2. Because it holds that

α ⩽ max
e∈E(Y),z∈L,w∈W

C(e, z,w)
Cmin(e)

Theorem 50 implies a 2-approximation in practice. We obtain an even
better bound if layers only are optimized and the default wire type
is chosen for all wires. On many smaller chip instances the highest
layers are not available and even if they are, only a part of the nets is
allowed to use them. Excluding the highest layers yields a bound of
α near 1, implying an almost exact algorithm.

The huge differences of the resistance values over the layers point
out the importance of considering timing when assigning the wires
to layers, as the choice of layers has a huge impact on the signal delay.
If all timing costs are zero the dynamic program finds an optimum
solution with regard to wire and via congestion costs.

We now proof Theorem 50:

Proof. The approximation ratio can be shown by proving

cost(Yz,ω) ⩽ (1+ (α− 1)(1−β)) · rcp(z,ω)

⩽ (1+ (α− 1)(1−β)) · rcp(z∗,ω∗)
⩽ (1+ (α− 1)(1−β)) · cost(Yz∗,ω∗)

The second inequality is satisfied by the choice of z,ω and the third
because rcp is a lower bound on cost. We omit the details of the proof
for the first inequality because it works exactly the same as the proof
in [53] for the case that |W| = 1 except that different wire types have
to be considered in all calculations.

To compute a solution minimizing rcp(z,ω) we use Algorithm 3

which is a modification of the dynamic program in [53]. It computes
partial candidates cand(e, l,w) for all edges e ∈ E(Y), layers l ∈ Le
and wire types w ∈We.

Definition 51. Given e = (u, v) ∈ E(Y), l ∈ Le,w ∈ We, cand(e, l,w)
denotes the partial costs of a layer and wire type assignment z :

E(Yv) ∪ {e} → L and ω : E(Yv) ∪ {e} → W for which z(e) = l and
ω(e) = w, minimizing∑

v ′∈V(Yv)

rcp(v ′, z,ω) +
∑

e ′∈E(Yv)∪{e}

rcp(e ′, z(e ′),ω(e ′))

If additionally given an ordering e1 ⩾ ... ⩾ ek of δ+Y (v), cand⩾(e, l,w)
denotes the same minimum partial costs with the additional con-
straint that z(e1) ⩾ ... ⩾ z(ek).
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Algorithm 3: Layer and wire type assignment dynamic program
Input: Instance of the layer and wire type assignment problem.
Output: An approximately optimal layer and wire type assignment.

1 Y := (V(Y)⊔ {vsource},E(Y)∪ {(v ′source, vsource)}) where v ′source is the copy of vsource

2 for e = (u, v) ∈ E(Y) in reverse topological order do
3 foreach ordering e1 = (u1, v1) ⩾ ... ⩾ ek = (uk, vk) of δ+Y (v) do

// Compute upper partial candidates
4 foreach i ∈ {0, ...,k} do
5 OPT↓(i, lmax,w) := costvia(lmax,w) +

∑i
j=1 cand(ej, lmax,w) ∀w ∈ W

6 αi :=
∑i

j=1

(
Cmin(ej) +Cmin(Yvj

)
)
·
∑i

j=1 costdelay(Yvj
)

7 for l = lmax − 1, ..., lmin do
8 OPT↓(0, l,w) := costvia(l,w) ∀w ∈ W

9 for i = 1, ...,k do
10

OPT↓(i, l,w) :=

min

 min
w ′∈W

(
OPT↓(i, l+ 1,w ′)

)
+ costvia(l,w) + R(l, l+ 1) ·αi

OPT↓(i− 1, l,w) + cand(ei, l,w)

 ∀w ∈ W

// Compute lower partial candidates
11 foreach i ∈ {0, ...,k} do
12 OPT↑(i, lmin,w) := costvia(lmin,w) +

∑k
j=i cand(ej, lmin,w) ∀w ∈ W

13 βi :=
∑k

j=i

(
Cmin(ej) +Cmin(Yvj

)
)
·
∑k

j=i costdelay(Yvj
)

14 for l = lmin + 1, ..., lmax do
15 OPT↑(k+ 1, l,w) := costvia(l,w) ∀w ∈ W

16 for i = k, ..., 1 do
17

OPT↑(i, l,w) :=

min

 min
w ′∈W

(
OPT↑(i, l− 1,w ′)

)
+ costvia(l,w) + R(l− 1, l) ·βi

OPT↑(i+ 1, l,w) + cand(ei, l,w)

 ∀w ∈ W

// Compose upper and lower partial candidates
18 foreach l ∈ Le do
19

cand⩾(e, l,w) := rcp(e, l,w)

+ min
i=0,...,k

(
OPT↓(i, l,w) + OPT↑(i+ 1, l,w) − costvia(l,w)

)
∀w ∈We

20 foreach l ∈ Le do

21 cand(e, l,w) := minall orderings⩾

(
cand⩾(e, l,w)

)
∀w ∈We

22 return minw∈W cand((v ′source, vsource), lsource,w)
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For l ∈ L \ Le or w ∈ W\We we set cand(e, l,w) := ∞.

By the following remark, line 21 in Algorithm 3 is correct:

Remark 52. For all e = (u, v) ∈ E(Y), l ∈ Le,w ∈We it is

cand(e, l,w) = min
all orderings ⩾ of δ+

Y (v)
(cand⩾(e, l,w))

To verify the computation of cand⩾(e, l,w) we fix e = (u, v) ∈ E(Y)
and an ordering ⩾ of the edges in δ+Y (v), that is e1 = (u1, v1) ⩾ ... ⩾
ek = (uk, vk). We define upper partial candidates that optimally em-
bed all child edges e1, ..., ei using some layer range {l, ..., lmax}. They
will be computed from the top layer to the bottom layer.

Definition 53 (Upper partial candidates). For l ∈ L and w ∈ W,
OPT↓(i, l,w) denotes the partial costs of a layer and wire type assign-
ment

z :
⋃

j=1,...,i

(
E(Yvj

)∪ {ej}
)
→ L and ω :

⋃
j=1,...,i

(
E(Yvj

)∪ {ej}
)
→ W

for which z(e1) ⩾ ... ⩾ z(ei) ⩾ l and which contains vias at v from l

to z(e1) and uses wire type w on layer l, minimizing∑
v ′∈

⋃
j=1,...,i V(Yvj

)

rcp(v ′, z) +
∑

e ′∈
⋃

j=1,...,i E(Yvj
)

rcp(e ′, z(e ′),ω(e ′))

+

z(e1)∑
l ′=l

costvia(v, l ′,ω) +

z(e1)∑
l ′=l+1

R
(
l ′ − 1, l ′

)
·αl ′

(13)

where for l ′ ∈ L

αl ′ :=
∑

j:z(ej)⩾l ′

(
Cmin(ej) +Cmin(Yvj

)
)
·

∑
j:z(ej)⩾l ′

costdelay
(
T(Yvj

)
)

The first two summands in (13) cover the costs incurred by rcp
except for the vias at v which are covered by the last two summands.

Analogously, lower partial candidates are defined that optimally
embed all child edges ei, ..., ek using some layer range {lmin, ..., l}.
They will be computed from the bottom layer to the top layer.

Definition 54 (Lower partial candidates). For l ∈ L and w ∈ W,
OPT↑(i, l,w) denotes the partial costs of a layer and wire type as-
signment

z :
⋃

j=i,...,k

(
E(Yvj

)∪ {ej}
)
→ L and ω :

⋃
j=i,...,k

(
E(Yvj

)∪ {ej}
)
→ W
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for which l ⩾ z(ei) ⩾ ... ⩾ z(ek) and which contains vias at v from
z(ek) to l and uses wire type w on layer l minimizing its partial costs∑

v ′∈
⋃

j=i,...,k V(Yvj
)

rcp(v ′, z) +
∑

e ′∈
⋃

j=i,...,k E(Yvj
)

rcp(e ′, z(e ′),ω(e ′))

+

l∑
l ′=z(ek)

costvia(v, l ′,ω) +

l−1∑
l ′=z(ek)

R
(
l ′, l ′ + 1)

)
·αl ′

where for l ′ ∈ L

αl ′ :=
∑

j:z(ej)⩽l ′

(
Cmin(ej) +Cmin(Yvj

)
)
·

∑
j:z(ej)⩽l ′

costdelay
(
T(Yvj

)
)

The following claim shows correctness of line 19 in the dynamic
program:

Claim 54.1. For l ∈ Le and w ∈We it holds that

cand⩾(e, l,w) = rcp(e, l,w)

+ min
i=0,...,k

(
OPT↓(i, l,w) + OPT↑(i+ 1, l,w) − costvia(l,w)

)
Proof. Let z : E(Yv) ∪ {e} → L and ω : E(Yv) ∪ {e} → W for which
z(e) = l, ω(e) = w and which respects the ordering ⩾. Let

i := max
{
j = 1, ...,k : z(ej) ⩾ l

}
Then the cost of the partial layer and wire type assignment
cand⩾(e, l,w) equals the sum of the costs of an upper and lower par-
tial assignment at v by splitting z,ω at child edge i, adding the cost
of the edge e and subtracting the cost of a via at layer l at v because
both the upper and lower partial assignment contain such a via at
layer l.

Finally, we want to show the correct computation of the partial
upper candidates in line 10. An analogous statement can be proven
for the partial lower candidates in line 17.

Claim 54.2. For l ∈ L and w ∈ W and i = 1, ...,k it holds that

OPT↓(i, l,w) =

min

 min
w ′∈W

(
OPT↓(i, l+ 1,w ′)

)
+ costvia(l,w) + R(l, l+ 1) ·αi

OPT↓(i− 1, l,w) + cand(ei, l,w)


where αi :=

∑i
j=1

(
Cmin(ej) +Cmin(Yvj

)
)
·
∑i

j=1 costdelay(Yvj
).

Proof. Consider an optimum layer and wire type assignment z,ω for
OPT↓(i, l,w):
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1. If z(ei) > l then z,ω contain an optimum wire and layer assign-
ment for OPT↓(i, l+ 1,w ′) for some wire type w ′ to which we
have to add the cost of a via at layer l and the delay costs from
layer l to layer l + 1 to obtain the costs of the optimum layer
and wire type assignment z,ω for OPT↓(i, l,w). The delay costs
through the via from layer l to l+ 1 equal R(l, l+ 1) ·αi because
exactly the child edges e1, ..., ei are embedded above layer l.

2. If z(ei) = l then z,ω contain an optimum wire and layer as-
signment for OPT↓(i− 1, l,w ′) to which we have to add the cost
cand(ei, l,w) of an optimum embedding of child edge ei and
its sub-arborescence to obtain the costs of an optimum layer
and wire type assignment z,ω for OPT↓(i, l,w).

To compute OPT↓(i, lmax,w) we have to sum up the costs of one via
pad at layer lmax and the costs of optimum partial candidates for the
child edges e1, ..., ei at layer lmax as it is done in line 5. OPT↓(0, l,w)
only consists of the cost of a via pad at layer l showing the correctness
of line 8.

cand ((v ′source, vsource), lsource,w) denotes the complete cost of an op-
timum layer and wire type assignment, assuming that we use wire
type w on the source terminal. Note that the artificial pointwise edge
(v ′source, vsource) added at the beginning has zero costs. Minimizing
over the wire types, Algorithm 3 correctly returns the cost of a solu-
tion minimizing rcp on line 22. The actual solution can be rebuilt by
storing back pointers to the partial candidates from which a candi-
date was computed.

The running time is dominated by the nested loops iterating over all
edges, all orderings of outgoing edges, all layers, all outgoing edges
and all wire types. Note that minw ′∈W

(
OPT↓(i, l+ 1,w ′)

)
in line 10

does not depend on w and hence can be computed separately. By the
assumption that all node degrees of Y are bounded by a constant, we
obtain the desired running time of O(|E(G)| · |L| · |W|).

Algorithm 3 is implemented in BonnRouteGlobal and used with
the dynamic local usage. The assumption on the constant vertex de-
gree is important. Even for |W| = 1 [53] shows that it is NP-hard to
find a layer and wire type assignment z,ω minimizing rcp(z,ω) if
the vertices of the given arborescence have arbitrary degrees. In our
situation we can always assume Y to have bounded degrees: since Y
is required to be rectilinear there are only four directions from which
a node in Y can be accessed. If parallel edges are removed beforehand
the degrees can hence be bounded by five, taking into account that a
node might additionally connect to a pin.
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3.3.3 Simultaneous Optimization

Sections 3.3.1 and 3.3.2 described how to optimize x- and y-
coordinates first and layers and wire types afterwards. Here we
briefly outline how to optimize them simultaneously in order to
achieve an approximation guarantee for the overall problem of em-
bedding an arborescence into the chip image and the layers and as-
signing wire types obeying the given move bounds. It is possible to
generalize the approaches from Sections 3.3.1 and 3.3.2: For an edge
e = (u, v) of the given arborescence, a candidate cand(e, l,w) for a
layer l and wire type w would not consist of a single optimum value
but of a function s : □(u) → R⩾0 that returns the optimum cost of an
embedding of the sub-arborescence Yv ∪ {e} given that u is located on
a specific position in its move bound. These functions s could still be
represented by a finite number of anchor points and the sum or the
pointwise minimum of such functions would be well-defined. How-
ever, optimizing x- and y-coordinates together with the layers, the
cost functions s are no longer separable in the x- and y-coordinates:

Theorem 55. Assume that we are given an arborescenceA that connects the
pin shapes of a net n. The minimum costs sv(x,y, z) for an embedding of the
sub-arborescence rooted at v ∈ V(A), under the condition that v is embedded
at (x,y, z), are not additively separable in the x- and y-coordinates. This
holds even if there are no tip-to-tip penalties, and wire costs and via costs are
constant on each layer.

Proof. Consider the sample instance in Figure 27. Assume that w is
a terminal fixed at coordinates (0, 0, l1) and that there are four layers
l1, ..., l4 with Lx = {l1, l3} and Ly = {l2, l4}. Unit wire length costs
amount to 2 on layers l1 and l2 and to 1 on layers l3 and l4. Assume
that a via from l1 to l2 has zero costs, from l2 to l3 it costs 5 and from
l3 to l4 its costs are 0.

Consider three different locations for a node v that has w as its only
child node. It is sv(0, 0, l1) = 0. A straight connection on layer l1 suf-
fices to connect w to (10, 0, l1), hence sv(10, 0, l1) = 20. To connect to
(0, 10, l1) one has to use a via to layer l2 and again down to l1, whose
costs are zero. Therefore, sv(0, 10, l1) = 20 as well. For a connection to
(10, 10, l1) it is beneficial to pay for a via up to and down from layers
l3 and l4 in order to profit from the lower wire costs on l3 and l4.
This results in minimum costs of sv(10, 10, l1) = 30.

If sv were additively separable in the x- and y-coordinates it could
be written as sv(x,y, z) = s1(x, z) + s2(y, z) for some functions s1 and
s2. This leads to the following contradiction:

30 =sv(10, 10, l1) + sv(0, 0, l1)

=s1(10, l1) + s2(10, l1) + s1(0, l1) + s2(0, l1)

=sv(10, 0, l1) + sv(0, 10, l1) = 40
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Figure 27: This example shows that the route costs are not additively sep-
arable in the x- and y-coordinates if layers are optimized simul-
taneously. This holds even without tip-to-tip penalty costs and
constant wire and via costs on each layer.

In order to optimize x-, y- and z-coordinates simultaneously, one
would have to deal with two-dimensional piece-wise linear functions,
i.e. polygons, for each layer. This might be cumbersome and it is also
questionable whether running times would be fast enough in practice.

In the context of continuous routing, that uses rhomboidal global
routing tiles instead of the rectilinear tiles on our grid graph G, [51]
uses a Hanan grid to embed a planar arborescence into three di-
mensions optimally with regard to linear prices including congestion
costs. This translates into our global routing setting with rectilinear
tiles. Essentially, using a Hanan grid is the same as the approach from
Section 3.3.1.4, but instead of modeling the cost functions on continu-
ous intervals only values of the cost functions at certain grid positions
are kept. Using a Hanan grid one can directly apply the dynamic pro-
gram from Section 3.3.2: A candidate cand(e, l,w, x,y) additionally
contains the x- and y-position of the end node v of e = (u, v). The
computation of such a candidate works similarly as in Algorithm 3.

To avoid a quadratic dependence of the running time on the num-
ber of possible x-coordinates (analogously y-coordinates) one can per-
form an analogous technique as in [51] or in Algorithm 32. Having
computed optimum candidates cand(e ′, l,w, x ′,y) for a child edge e ′

of e and fixed l ∈ Lx,w,y and for all possible values of x ′ one can
propagate the minimum costs that the sub-arborescence rooted at e ′

induces to the candidates of the parent edge cand(e, l,w, x ′,y) for all
possible values of x ′ by only sweeping once over all candidates of e ′

from left to right and right to left.
Timing can be optimized as well: A lower bound on the down-

stream capacitance can be computed similarly as in Section 3.3.1.5
with the difference that the lower bounds are stronger, because for
cand(e = (u, v), l,w, x,y) we know the fixed position v = (x,y) in
contrast to the setting in 3.3.1.5 where v can be moved within its
move bound. Similarly, one can compute a lower bound on the up-
stream resistance. The capacitance correction factor for a certain em-
bedding of an edge e = (u, v) (analogously to Section 3.3.2) would
have to consider the difference in the downstream capacitance lower
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bounds from u and v and the capacitance of e. This approach general-
izes Section 3.3.2 and the approximation algorithm for timing-aware
path search from [53] and the achievable approximation ratio would
be a combination of these two results. While the approach from [53]
only works for paths, here we can deal with arbitrary arborescences
because we assume their topology to be fixed making it possible to
compute reasonable lower bounds on the downstream capacitance.

The drawback of this approach is that its running time depends on
the size of the Hanan grid which might be large in case of many pins.

A completely different solution would be to skip the computation
of the coarse route and to try to immediately compute an optimum
local route. This would require a denser global routing graph and is
similar to what the continuous router in [51] is doing. In this way it
would be possible to establish an approximation ratio for the whole
problem of computing a local route which is not possible if this task
is subdivided into the computation of a coarse and local route. How-
ever, also [51] only uses a coarser version of the Hanan grid for the
computation of the local route and performs post-processing after-
wards including an optimization of the wires that access the exact
pin shapes. Therefore, the approach for the dynamic local usage that
we described in this thesis and which is implemented in BonnRoute-
Global is already very similar with the difference that our global rout-
ing graph still is much coarser than the graph used in [51].

Finally, instead of running the x-y-optimization followed by the
z-optimization once one could run them in an alternating sequence.
Besides a longer running time, this did not prove useful in practice
with the layer-embedded congestion costs as demonstrated in Section
3.3.1.6. The same holds true for a modification of the planar conges-
tion costs to use the layers of a previously-run layer optimization. In
particular, it is not clear how to best use given layers within the pla-
nar congestion costs, as the routing dimension of the wires can still
change, making it necessary to embed them into other layers than
might have been considered in the costs during the x-y-optimization.

3.4 incremental routing

Once BonnRouteGlobal has completed all the steps outlined in Fig-
ure 8 on page 16 it is possible to immediately proceed with the de-
tailed routing. However, IBM performs an additional step between
global and detailed routing called routing based optimization [53].
External tools make small changes on few nets to improve the overall
timing of the chip. Among these changes there can be the insertion
of buffers (buffering), moving and resizing logical gates (gate sizing)
and the modification of net properties like its wire type or assignable
layer range. All these optimizations are also performed before global
routing, but at that point optimizations have to rely on estimates for
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the wire length and timing of the nets. Only after global routing it
becomes clear which nets are timing-critical with worse delays than
estimated beforehand. This can happen in case of large detours that
were necessary to avoid high congested areas. During global rout-
ing based optimization many small changes are performed on the
nets based on the timing properties of the given global routing. Anal-
ogously, there is detailed routing based optimization after detailed
routing. In Section 4.5 we describe this flow in more detail.

Having moved, added or deleted pins of a net or having changed
its properties makes it necessary to reroute the net (Figure 28). This
should be done with as few disruptions as possible so that the tim-
ing properties of the net do not change too much and no other nets
have to be rerouted due to rising congestion. Incremental BonnRoute-
Global has been developed to address this task [53]. Using the meth-
ods from Sections 3.2 and 3.3 the incremental router works together
with the dynamic local usage with one difference which we will ex-
plain in the following.

To reroute the nets with as little disruption as possible, Incremental
BonnRouteGlobal solves the following problem [53]:

Problem 56. Coarse Minimal Reroute

Input: A net n, an initial arborescence Y0 that is part of the global
routing graph G and connects the global routing tiles of a subset
of the pins of n.

Output: A coarse route A for n minimizing

costcong(A \ Y0)

that is A can use wires and vias in Y0 for free.

Up to now Incremental BonnRouteGlobal is not timing-aware
which is why we ignore timing in the problem formulation. This is
partly due to the fact that we usually reroute only small parts of an
existing local route during incremental routing reducing the need to
optimize timing. Moreover, employing the techniques of the timing-
aware computation of coarse routes described in 3.2 and reconnecting
sinks to the source might lead to too much disruption. Nonetheless,
with the dynamic local usage we use the timing-aware algorithms de-
scribed in Section 3.3 to optimize local routes. In the future it might be
desirable to consider timing in some way already in the path search
during incremental routing.

The incremental router considers the coarse minimal reroutes prob-
lem since tile-internal wires do not affect congestion within the tradi-
tional router. It can be reduced to a minimum Steiner tree problem
in the global routing graph by contracting the edges of the initial ar-
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borescence. Hence the incremental router can employ the techniques
from Section 3.2. In addition, it slightly modifies the edge costs of the
global routing graph for the path search depending on the position
of the wires of the initial arborescence to heuristically improve wire
length of the local routes: If a large part of a global routing graph edge
is covered by an input wire its length objective cost is reduced propor-
tionally during path search (see [53] for details). With the traditional
router this approach is limited to objective costs because congestion
costs are not influenced by tile-internal input wires. However, using
area usages with the dynamic local usage, one could apply the same
modification on the congestion costs of an edge, that is, if a larger
portion of a global routing graph edge is covered by an input wire
one could reduce the congestion costs of that edge proportionally. If
the path search decides to use this route it is likely that the result-
ing post-processed local route will use the input wire, justifying the
reduction in congestion costs. In fact, using this modification, conges-
tion got slightly worse in practice. Possibly this is due to the fact that
even if a congested edge is largely covered by an input wire it might
still be necessary to put additional vias or wires to be able to actu-
ally connect to the input wires in the local route, causing additional
congestion.

Having computed the coarse route as a solution to the coarse min-
imal reroutes problem, the traditional router computes a local route
as described in Section 3.3 and embeds the tile-internal wires heuris-
tically into layers. In this step it can optimize all tile-internal wires
including those of the initial arborescence (Figure 28).

With the dynamic local usage local movements of wires inside the
global routing tiles affect congestion. Using the same approach as
for the traditional router that allows movements of wires inside the
global routing tiles would lead to a significant increase of congestion
during incremental routing on some instances, similar as in Figure 20.
This is why we want to solve the following more restrictive problem
with the dynamic local usage:

Problem 57. Local Minimal Reroute

Input: A net n, an initial local route A0 for n with the exception
that A0 does not need to connect all pins of n.

Output: A local route A for n minimizing

costcong(A \A0)

that is A can use wires and vias in A0 for free.

The difference is that we optimize the congestion costs of the local
route and keep the wires of the initial local route fixed. If Incremental



76 dynamic local usage

BonnRouteGlobal was extended such that it reroutes not only the
modified nets but, at certain points of time, a larger number of nets
that consume from congested edge resources, one might allow some
re-optimization of tile-internal wires of the initial local route.

We solve the local minimal reroute problem heuristically with the
same two-step approach as used during the resource sharing algo-
rithm: We take a solution of the coarse minimal reroutes problem and
connect it to the exact pin shapes as described in Section 3.3 taking
the existing wires of the initial local route into account. Afterwards,
we optimize the resulting local route as in sections 3.3.1 and 3.3.2 for
which we fix the positions and layers of the wires that are taken from
the initial route.

Although the increase in congestion on any edge resource is kept
as small as possible with this approach, this comes with the disadvan-
tage that rerouted nets might not have optimum wire length inside
the global routing tiles (Figure 28). However, already the coarse route
often does not have optimum total wire length because that is not
the objective of the coarse minimal reroutes problem. Practical exper-
iments show that wire length increases only slightly during routing
based optimization (Section 4.5). On the contrary, congestion some-
times increases noticeable with the dynamic local usage showing that
the major effort should be on keeping congestion low. For this rea-
son we also weigh congestion costs stronger with the dynamic local
usage than with the traditional router during incremental routing. Fu-
ture work might put efforts on trying to optimize existing wiring in
areas that are not highly congested. Independently of the dynamic lo-
cal usage, Incremental BonnRouteGlobal might be made more robust
with regard to congestion by adding bulk reroute phases, in which
all nets in highly congested areas are rerouted. Still, the number of
rerouted nets would have to be kept as low as possible in order not
to destroy the efforts of the routing based optimization tools.
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Initial local route. The source pin (red) has
been flipped and moved

to another position.

The local route is
reconnected to the new

pin position.

Figure 28: Incremental BonnRouteGlobal reconnects a route after a pin has
moved. Assuming that all wires are contained in one global rout-
ing tile the traditional router re-optimizes the wires removing
the U-shape on the right and obtaining optimum wire length
(dashed). The dynamic local usage never modifies pre-existing
wires which is why for this instance the rerouted local route does
not have optimum wire length. Re-optimizing wires inside global
routing tiles would disturb congestion with the dynamic local
usage, even if done congestion-aware. This is even the case if
re-optimization is restricted to global routing tiles in which the
net has changed (a pin was added, moved or deleted) and fixing
wires in tiles where there were no changes except for potential
price changes of the edge resources.





4
D Y N A M I C L O C A L U S A G E I N P R A C T I C E

The dynamic local usage was implemented in BonnRouteGlobal and
tested on chip units provided by IBM, with whom the Research In-
stitute for Discrete Mathematics collaborates with. Moreover, it was
tested within the routing flow at IBM with the goal of using the dy-
namic local usage in the IBM chip design process.

4.1 testbed

Our testbed consists of chips with 5nm and 7nm technology.
For 7nm, there is chip A1 that by far has the largest chip image in

our testbed but most nets have already been routed, chips B1 to B3

that are also large with a high number of nets, and chips C1 to C4

that have medium to small sizes. C4 is so small that we exclude it in
most of the experiments.

For 5nm, we have chips D1 to D7 that have medium to small sizes,
chips E1, E2 and F1 that are larger with a large number of nets, and
chips G1 to G5 that are also medium to small and which are the most
recent instances. Not all of the IBM routing flow was running for
chips G1 to G5 at the time of writing.

It should be noted that the instances and the whole code environ-
ment were constantly slightly changing. This is why results on the
same chip but from different experiments are not necessarily compa-
rable.

4.2 metrics

The following metrics are used to evaluate the experimental results:

rs time The running time of the resource sharing algorithm in
BonnRouteGlobal in hours : minutes : seconds. All runs that are com-
pared to each other were executed on the same machine, while runs
of different test setups are not necessarily comparable in terms of
running time.

rs reroutes The number of reroutes during the resource sharing
algorithm. Nets are only rerouted if the cost of the previously com-
puted route has increased to a certain minimum amount (see [49]
and Section 5.4.3 for more details). With the dynamic local usage all
nets contribute to congestion including those whose pins are all lo-
cated inside one global routing. Therefore, the set of nets that have
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to be rerouted during resource sharing generally is larger with the
dynamic local usage than with the traditional router.

wace4 The wACE4-metric measures critical congestion of a chip
[56] and is computed as follows: Let cδ% denote the average conges-
tion of the δ% most congested area on the chip. The wACE4 value
is defined as the average of the four numbers c0.5%, c1%, c2% and c5%.
This way the average congestion of the 0.5% most congested area is
counted 46.25%, the area in the range of 0.5% to 1% 21.25%. The area
in the range of 1% to 1.5% and 1.5% to 2% is counted 8.75% each and
that in the range of 2% to 5% 2.5% per 0.5% step. Hence there is an
increasing dependence on the congestion of the 5% most congested
area of the chip.

As it depends on the usage model, the wACE4 is not compara-
ble between the traditional router and the dynamic local usage. The
wACE4-metric is used to predict detailed routability of a chip and
hence is required to be stable and correlated with how difficult it is
for BonnRouteDetail to route the chip without too many design rule
violations, shorts and opens.

wirelength The total length of the wires in all routes in meters.
This includes wires that were already present in the input.

vias The total number of vias in all routes, including vias in the
input.

failed searches The number of unsuccessful path searches in
BonnRouteDetail, making it necessary to enlarge the search area. A
higher number hints at a higher difficulty for BonnRouteDetail to
route the chip following the given routes by BonnRouteGlobal.

dr time The total running time of BonnRouteDetail in hours : min-
utes : seconds.

scenic 125 / 150 / 200 The number of nets whose route com-
puted by BonnRouteDetail is at least 25% / 50% / 100% longer than
the route computed by BonnRouteGlobal. A higher value indicates
problems of BonnRouteDetail to follow the global routes.

steiner scenic 125 / 150 / 200 The number of nets whose
route computed by BonnRouteDetail is at least 25% / 50% / 100%
longer than a planar shortest Steiner tree for the pins.

drcs The total number of design rule violations (DRCs) in the
routes computed by BonnRouteDetail. Usually it is easier for Bonn-
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RouteDetail to compute routes that do not have too many DRCs if the
routes computed by BonnRouteGlobal are not packed too densely.

ws The worst slack over all routes in pico seconds. At a sink pin the
slack is the difference between the required arrival time given by the
design specifications and the actual arrival time resulting from the
computed routes by BonnRouteGlobal / BonnRouteDetail. The worst
slack is the minimum among these.

sns The sum of all negative slacks in pico seconds.

slew violations The number of slew violations. The slew de-
scribes how fast the voltage of a signal changes. It is defined as the
length of the time interval in which the voltage of a signal lies be-
tween 10 and 90% of the maximum voltage. The slew must not be too
large.

shorts The total number of shorts after detailed routing. A short
is an overlap of wires that belong to different nets and must be
avoided, as it would cause signal errors.

4.3 timing-unaware

Tables 4 and 5 show results on seven chip units of the 7nm technol-
ogy node and with different numbers of nets of a global to detail
routing flow: First, BonnRouteGlobal is run, whose output is given to
BonnRouteDetail. Once BonnRouteGlobal is run with the traditional
router and once with the dynamic local usage.

Looking at Table 4, the congestion metric wACE4 drops signifi-
cantly with the dynamic local usage across the entire testbed by more
than 4 percent on average. This means that it is necessary to adjust the
congestion thresholds when assessing routability of a chip with the
dynamic local usage. The smaller pessimism of the dynamic local us-
age with regard to congestion also reflects in shorter wire length and
in particular in much fewer vias. Due to the different usage models,
changes in these metrics are expected and do not necessarily mean
that metrics will improve in the detailed router. However, as Table
5 shows, BonnRouteDetail is still able to pack the wires despite the
smaller pessimism. Moreover, wire length and via numbers after de-
tailed routing improve as well, suggesting that decreased wire length
and via numbers in global routing are desirable in order to achieve
good detailed routing results as long as the routes are not too densely
packed. With the dynamic local usage, the number of resource shar-
ing reroutes drops on almost all instances, which can be explained by
the lower congestion that makes resource sharing prices grow slower
and less reroutes necessary. Moreover, the dynamic computation of
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Chip Nets Router RS time RS reroutes wACE4 Wire length Vias

B1 1735036 Traditional 00:12:01 7088771 86.51 27.2609 16155665
DLU 00:15:43 +30.81% 5214158 -26.44% 82.29 -4.22% 26.7957 -1.71% 14617797 -9.52%

B2 1206790 Traditional 00:10:25 5145961 86.23 19.7871 11711717
DLU 00:16:13 +55.80% 3877853 -24.64% 82.76 -3.47% 19.6026 -0.93% 10571000 -9.74%

B3 373431 Traditional 00:02:03 1092355 84.84 6.1440 3505605
DLU 00:02:35 +26.55% 742870 -31.99% 80.48 -4.36% 6.0811 -1.02% 3177167 -9.37%

C1 373611 Traditional 00:00:42 1515062 86.73 2.1339 3184455
DLU 00:02:26 +243.30% 1534078 +1.26% 81.34 -5.39% 2.1324 -0.07% 2859398 -10.21%

C2 246194 Traditional 00:00:27 668912 81.88 2.8710 2034164
DLU 00:00:56 +109.29% 435933 -34.83% 75.59 -6.29% 2.8779 +0.24% 1842539 -9.42%

C3 148801 Traditional 00:00:17 297160 80.70 2.0419 1215662
DLU 00:00:52 +200.49% 299924 +0.93% 76.60 -4.10% 2.0398 -0.10% 1124175 -7.53%

Summary Traditional 00:25:57 15808221 84.48 60.2388 37807268
DLU 00:38:50 +49.63% 12104816 -23.43% 79.84 -4.64% 59.5295 -1.18% 34192076 -9.56%

Table 4: Results of BonnRouteGlobal on 7nm instances; once with the traditional router and once with the dynamic local usage. The resource sharing
algorithm takes only a fraction of the running time of BonnRouteGlobal which on B1 took one hour and 14 minutes in total.
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Chip Router DR time Failed searches Wire length Vias Scenic 125 Scenic 150 Scenic 200 DRCs

B1 Traditional 10:20:33 94 28.7246 18508522 23948 3303 416 1064
DLU 12:03:23 +16.57% 66 -29.79% 28.2433 -1.68% 18270841 -1.28% 25406 +6.09% 3728 +12.87% 487 +17.07% 1006 -5%

B2 Traditional 07:02:13 47 20.8139 13473228 9175 1055 126 1402
DLU 06:57:17 -1.17% 45 -4.26% 20.6289 -0.89% 13365593 -0.80% 10893 +18.72% 1528 +44.83% 212 +68.25% 1438 +3%

B3 Traditional 02:01:26 12 6.4396 3957512 2397 319 46 123
DLU 01:43:06 -15.10% 5 -58.33% 6.3817 -0.90% 3949313 -0.21% 3201 +33.54% 539 +68.97% 85 +84.78% 124 +1%

C1 Traditional 01:04:37 3 2.3177 3455421 4067 246 12 79
DLU 01:16:19 +18.11% 9 +200.00% 2.3196 +0.08% 3420389 -1.01% 5017 +23.36% 448 +82.11% 24 +100.00% 126 +59%

C2 Traditional 00:46:56 2 3.0081 2327123 1527 104 8 370
DLU 00:52:43 +12.32% 1 -50.00% 3.0201 +0.40% 2327579 +0.02% 1962 +28.49% 232 +123.08% 26 +225.00% 365 -1%

C3 Traditional 00:38:02 3 2.1275 1366605 670 114 7 153
DLU 00:32:46 -13.85% 7 +133.33% 2.1270 -0.02% 1364513 -0.15% 916 +36.72% 183 +60.53% 19 +171.43% 144 -6%

Summary Traditional 21:53:47 161 63.4314 43088411 41784 5141 615 3191
DLU 23:25:34 +6.99% 133 -17.39% 62.7206 -1.12% 42698228 -0.91% 47395 +13.43% 6658 +29.51% 853 +38.70% 3203 +0%

Table 5: Results of BonnRouteDetail on 7nm instances; once following the traditional router and once the dynamic local usage.
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local wiring usage might make it easier to compute good local routes.
Only on C1 and C3, that have particularly many large obstacles, the
number of reroutes slightly increases.

The running time of the resource sharing algorithm increases with
the dynamic local usage because each time a net is rerouted, an op-
timized local route has to be computed while the traditional router
does so only after the resource sharing. Furthermore, the usage com-
putation takes more time as all wires of the computed local routes
have to be accounted for.

Unlike the results after global routing, the results after detailed
routing in Table 5 are directly comparable between the traditional
router and the dynamic local usage. The running times of the detailed
router are similar on average. The number of failed searches during
detailed routing decreases on average proving the ability of the dy-
namic local usage to successfully match the packing density for the
detailed router on most chip instances. The wire length after detailed
routing decreases by more than one percent over the whole testbed,
which is a substantial improvement. The via number also improves by
almost one percent, which is significant as well. This does not come
at the cost of more DRCs, whose numbers do not change on average,
again underlining the ability of the dynamic local usage to reasonably
pack the global wires letting enough space for the detailed router to
realize the wiring meeting all design constraints. It should be noted
that on one instance the number of DRCs increases by almost sixty
percent indicating that on some special input the traditional router
might still estimate the packing density better than the dynamic local
usage.

The only metric that is getting worse on average is the number
of scenic routes. Because the dynamic local usage creates shorter
and therefore denser routes, BonnRouteDetail potentially struggles
on some of the routes to exactly follow the global routing corridors.
Large scenic numbers can pose problems when routing with timing: If
BonnRouteDetail cannot stick to the routing corridor that BonnRoute-
Global chose and computed the timing for, the timing can degrade af-
ter detailed routing. Currently, BonnRouteDetail is not timing-aware
itself and relies on good timing properties of the routes by BonnRoute-
Global. However, Section 4.5 shows that throughout the whole IBM
routing flow the dynamic local usage can achieve very good timing
also.

4.4 large global routing tiles

The granularity of a global routing can be controlled by the density of
the global routing graph. If this graph is chosen to be less dense, that
is each global routing tile covers a larger area of the chip, the global
routing problem becomes easier as there are fewer nodes and edges
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and more pins are mapped to the same global routing graph node.
This immediately reduces the running time of BonnRouteGlobal and,
in particular, of the resource sharing algorithm. For large instances
long running times can pose a difficulty in early design stages during
which the congestion of an instance has to be evaluated very often,
and choosing large global routing tiles can solve this problem. The
question is whether the results are still meaningful. With a coarser
global routing graph BonnRouteGlobal loses some ability to detect
and estimate local packing issues, since all the congestion is spread
and flattened out over a larger area. Moreover, blockage structures
that are smaller than the global routing tiles cannot be captured ac-
curately. Therefore, it is important to verify the performance of the
dynamic local usage on large global routing tile sizes. With larger
global routing tiles more wires are located inside single global rout-
ing tiles. This poses an advantage for the dynamic local usage which
measures the congestion of the tile-internal wires dynamically during
the resource sharing algorithm in contrast to the traditional router,
which relies on the static local wiring pre-estimates. These have an
even greater impact in combination with large global routing tiles.

Tables 6 and 7 show results of BonnRouteGlobal on the largest 7nm
instances of our testbed with default global routing tile size and four
times the default size. The running time of the resource sharing algo-
rithm reduces significantly with both the traditional router and with
the dynamic local usage. The dynamic local usage is very stable in
terms of wire length which is almost the same with four times the
global routing tile size as with the default size. The number of vias re-
duces by a few percent. The congestion reduces substantially with the
dynamic local usage (Figures 29 and 30). With the traditional router
there is less a reduction in congestion but at the cost of a largely
increased wire length. Moreover the number of vias decreases signif-
icantly with the traditional router with large tile sizes. Using large
tile sizes the coarse routes have to make larger detours in case of
congestion or blockages. This explains the larger wire length of the
traditional router, because its congestion map adapts to the longer
coarse routes during resource sharing. On the contrary, the dynamic
local usage computes local routes already during the resource shar-
ing and optimizes their wire length inside the global routing tiles. It
accounts usage for the optimized local routes resulting in much less
congestion.

Like the traditional router extends all tile-crossing wires to tile-
center to tile-center wires for usage computation, the dynamic local
usage extends the wires by the tip-to-tip penalty. Both strategies help
to face the problem that the optimized local routes of the global router
might be much shorter than the routes by the detailed router because
the latter has to pack them without overlaps (Figure 11 on page 22).
This inconsistency grows proportionally with the tile size. The tra-
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Chip Nets Router RS time RS reroutes wACE4 Wire length Vias

A1 1783142 Traditional 1x 00:08:20 3648215 85.63 299.8292 19296867
Traditional 4x 00:01:05 -86.82% 2481836 -31.97% 76.50 -9.13% 304.6716 +1.62% 17864486 -7.42%

B1 1732566 Traditional 1x 00:07:19 8389754 87.31 29.2103 19868611
Traditional 4x 00:03:58 -45.79% 7485771 -10.77% 86.68 -0.63% 30.7097 +5.13% 18172221 -8.54%

B2 1202357 Traditional 1x 00:07:54 7146521 87.78 21.1050 14284172
Traditional 4x 00:02:47 -64.79% 5168919 -27.67% 86.98 -0.80% 22.4745 +6.49% 13137176 -8.03%

B3 372283 Traditional 1x 00:01:09 1290122 85.85 6.5241 4277007
Traditional 4x 00:00:37 -45.91% 1046003 -18.92% 86.47 +0.62% 7.0094 +7.44% 3939969 -7.88%

Summary Traditional 1x 00:24:44 20474612 86.64 356.6686 57726657
Traditional 4x 00:08:28 -65.72% 16182529 -20.96% 84.16 -2.49% 364.8652 +2.30% 53113852 -7.99%

Table 6: Results of BonnRouteGlobal with the traditional router on the largest 7nm instances; once with default global routing tile size and once with
four times the default size.



4.
4

l
a

r
g

e
g

l
o

b
a

l
r

o
u

t
i
n

g
t

i
l

e
s

8
7

Chip Nets Router RS time RS reroutes wACE4 Wire length Vias

A1 1783142 DLU 1x 00:13:44 3908967 89.43 297.2586 17340224
DLU 4x 00:02:42 -80.23% 2440354 -37.57% 69.79 -19.64% 296.3549 -0.30% 16611509 -4.20%
DLU 4x *) 00:02:44 -80.10% 2575937 -34.10% 71.28 -18.15% 296.5431 -0.24% 16596235 -4.29%

B1 1732566 DLU 1x 00:06:00 4991799 82.52 26.8382 15786132
DLU 4x 00:02:54 -51.63% 3078731 -38.32% 78.46 -4.06% 26.7088 -0.48% 15374236 -2.61%
DLU 4x *) 00:04:49 -19.90% 7141757 +43.07% 81.72 -0.80% 26.8727 +0.13% 15532210 -1.61%

B2 1202357 DLU 1x 00:09:47 4257787 83.69 19.7074 11391032
DLU 4x 00:02:47 -71.44% 2486680 -41.60% 80.18 -3.51% 19.6190 -0.45% 11172824 -1.92%
DLU 4x *) 00:03:27 -64.62% 2991347 -29.74% 83.08 -0.61% 19.7502 +0.22% 11247779 -1.26%

B3 372283 DLU 1x 00:01:09 890822 81.27 6.0859 3438506
DLU 4x 00:00:38 -43.90% 668365 -24.97% 78.87 -2.40% 6.0979 +0.20% 3358891 -2.32%
DLU 4x *) 00:00:38 -44.80% 811679 -8.88% 81.29 +0.02% 6.1224 +0.60% 3394769 -1.27%

Summary DLU 1x 00:30:42 14049375 84.23 349.8901 47955894
DLU 4x 00:09:04 -70.45% 8674130 -38.26% 76.83 -7.40% 348.7806 -0.32% 46517460 -3.00%
DLU 4x *) 00:11:39 -62.04% 13520720 -3.76% 79.34 -4.88% 349.2884 -0.17% 46770993 -2.47%

Table 7: Results of BonnRouteGlobal with the dynamic local usage on the largest 7nm instances; once with default global routing tile size and once
with four times the default size. *) In the third run the tip-to-tip penalty was increased by fourty percent.
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Traditional router 1x Traditional router 4x

Dynamic Local Usage 1x Dynamic Local Usage 4x

Figure 29: Congestion over all layers on chip B1 with the traditional router
and the dynamic local usage, once using default global routing
tile size and once four times the default size. Congestion hotspots
are clearly visible also with large tile sizes and both with the
traditional router and with the dynamic local usage.
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ditional router compensates for this by extending the wires propor-
tionally to the global routing graph tile size. In fact this might be
overly pessimistic since with larger tile sizes global routing edge re-
sources rarely are completely packed by wires. In these experiments
the tip-to-tip penalty of the dynamic local usage does not adapt to
the tile size, explaining the drop in congestion with larger tiles. It is
possible to make the tip-to-tip penalty depend on the tile size: The
third line in Table 7 shows results of the dynamic local usage with
large tile sizes and a tip-to-tip penalty that is increased by fourty per-
cent. In this setting the congestion drops much less on three of the
instances while wire length remains almost unchanged and the num-
ber of vias matches better with that of the default tile size. Depending
on future technologies, it might be beneficial to increase the tip-to-tip
penalty even further for large tile sizes. Likewise, first experiments
have shown that for very small tile sizes one should use smaller tip-
to-tip penalties.

In general it is expected that both with the traditional router and
the dynamic local usage the congestion decreases with larger tile
sizes, as local packing issues and blockage structures cannot be con-
sidered accurately. It would be possible to adjust parameters that con-
trol the packing density (see Section 3.1.1) to keep congestion stable
with larger tile sizes. However that would be artifical and not match
the granularity of the congestion with smaller tile sizes.

Overall the dynamic local usage is much more stable in terms of
wire length with large tile sizes than the traditional router. The con-
gestion reduces only slightly and can be made more stable by increas-
ing the tip-to-tip penalty, proving that the dynamic local usage is a
valid tool for congestion assessment.

4.5 timing-aware routing flow

BonnRouteGlobal and BonnRouteDetail are used by IBM to design
chips with state-of-the-art technology. Routing at IBM comprises of a
complex flow in which BonnRouteGlobal and BonnRouteDetail play
a major role. One key motivation for the dynamic local usage was to
improve overall results within this routing flow, having an immediate
impact on chip development at IBM.

Figure 31 shows the part of the flow that is affected by BonnRoute-
Global. At this point, all components have already been placed on
the chip and need to be connected through wires. BonnRouteGlobal
computes a global routing, followed by the global routing based op-
timization. In this step, external tools perform local changes of the
chip topology to improve timing, based on the computed global rout-
ing. These changes involve movements, deletions or additions of pins,
deletions or additions of nets and changing the properties of specific
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Traditional router 1x Traditional router 4x

Dynamic Local Usage 1x Dynamic Local Usage 4x

Figure 30: Congestion over all layers on an excerpt of chip A1 with the tra-
ditional router and the dynamic local usage, once using default
global routing tile size and once four times the default size. The
chip has a vertical bottleneck caused by blockages through which
BonnRouteGlobal struggles to put all wires through, leading to
huge over-congestion with both the traditional router and the dy-
namic local usage.
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BonnRouteGlobal

Incremental BonnRouteGlobal

BonnRouteGlobal

BonnRouteDetail

Incremental BonnRouteGlobal

BonnRouteDetail

Global Routing based Optimization (GRBO)

Detailed Routing based Optimization (DRBO)

Figure 31: The routing flow consists of several calls to BonnRouteGlobal,
BonnRouteDetail and Incremental BonnRouteGlobal. During
global and detail routing based optimization external tools per-
form optimizations on nets that are going to be rerouted by Incre-
mental BonnRouteGlobal.

nets. All affected nets are rerouted by Incremental BonnRouteGlobal
(see Section 3.4).

Since Incremental BonnRouteGlobal reroutes single nets only and
does not reroute a larger number of nets in case of developing conges-
tion hotspots, the quality of the global routing might degrade during
the global routing based optimization. Moreover, the external tools
currently do not assess congestion but only timing during global rout-
ing based optimization. That is why BonnRouteGlobal is called again
afterwards to route all nets from scratch considering the optimized
chip topology. At the time of writing, this is the only call of Bonn-
RouteGlobal that is run with arrival time customers (Section 2.4). The
first call to BonnRouteGlobal is timing-aware but uses static timing
budgets. Incremental BonnRouteGlobal is not timing-aware but only
optimizes timing costs during the computation of the local routes
with the dynamic local usage (see Section 3.4).

Thereafter, BonnRouteDetail computes a detailed routing based on
the second global routing. This is followed by detailed routing based
optimization, during which again external tools perform modifica-
tions to single nets, but based on the detailed routing. Incremental
BonnRouteGlobal reroutes changed nets by adding global wires, that
is the wires are not necessarily overlap-free with other wires. In a fi-
nal call to BonnRouteDetail all nets that still contain global wires are
rerouted such that all wires conform to local design rules and there
are no overlaps.
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Afterwards, IBM computes the timing with more refined models
to detect persisting signal delay issues. Furthermore, the routing is
checked for design rule violations.

Tables 9, 10, 11 and 12 show results at different points in the IBM
routing flow for the 5nm instances in our testbed with the traditional
router and with the dynamic local usage. After the first run of Bonn-
RouteGlobal the dynamic local usage achieves a shorter wire length
and better timing while there are both instances with higher and with
lower congestion (Table 9). After global routing based optimization
congestion and timing look worse on many instances with the dy-
namic local usage. Unlike the traditional router, the dynamic local us-
age sees local usage changes during incremental routing. Therefore, it
is more prone to an increase of congestion than the traditional router,
in particular as the tools used during routing based optimization do
not monitor congestion but only timing.

Moreover, there is a significant degradation of timing during the
last step of global routing based optimization (Table 8). In this step,
gates are flipped if that reduces the wire length. For a gate with two
output pins this would mean that the two pins swap positions which
might reduce the wire length of the pin’s routes. This affects all nets of
the chip and not all routes are becoming shorter, making it necessary
to perform many smaller local reroutes that affect timing and conges-
tion in particular with the dynamic local usage. The traditional router
also sees a degradation in timing, suggesting that this is not a specific
problem of the dynamic local usage. The degradation is only tem-
porary as after the second call of BonnRouteGlobal, which reroutes
everything from scratch, congestion and timing improve again (Table
10).

Before Flip Gate Opt. After Flip Gate Opt.

Chip Router SNS wACE4 SNS wACE4

E1 Traditional -2282 92.4 -8395 92.4

DLU -403 97.2 -27191 97.5

E2 Traditional -3883 92.3 -9573 92.2

DLU -2213 92.5 -19861 92.7

F1 Traditional -1859 87.7 -1874 87.9

DLU -1711 90.4 -2121 90.5

Table 8: Results in the IBM Routing Flow before and after the flip gate op-
timization during global routing based optimization. Timing de-
grades both with the traditional router and with the dynamic local
usage.

The wire length after the first run of BonnRouteDetail is better with
the dynamic local usage on all of the instances except for one, with
some instances experiencing a substantial improvement (Table 10).
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Along with the shorter wire length there come substantial benefits
in timing, namely the sum of negative slacks decreases significantly
on most instances. The number of slew violations decreases on half
of the instances. The improved numbers of shorts on all instances ex-
cept for one indicate that BonnRouteDetail can handle the input of
the dynamic local usage without difficulty.

The good results of the dynamic local usage persist through de-
tailed routing based optimization (Table 11). At the time of writing,
not all of the routing flow was enabled for the most recent instances
G1 to G5. For those instances that did go through the entire flow, the
dynamic local usage resulted in much better timing, wire length, and
via numbers, as well as significantly fewer design rule violations at
the end of the routing flow (Table 12). These results demonstrate that
the dynamic local usage is capable of making persistent and signifi-
cant improvements on routing. Currently, IBM is testing the dynamic
local usage with the aim of making it the default and replacing the
traditional router.
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After 1st BRG After GRBO

Chip Nets Router WS SNS Wire length wACE4 WS SNS Wire length wACE4

E1 820000 Traditional -44 -17747 12.4204 92.6 -28 -8395 12.4953 92.4

DLU -27 -3959 12.3887 93.7 -38 -27191 12.4807 97.5

E2 332000 Traditional -41 -22481 6.5533 92.3 -24 -9573 6.5979 92.2

DLU -38 -8362 6.4401 91.7 -28 -19861 6.4982 92.7

F1 418000 Traditional -24 -4065 8.1812 87.7 -19 -1874 8.2236 87.9

DLU -20 -3709 8.1678 88.5 -22 -2121 8.2163 90.5

G1 99599 Traditional -151 -129042 0.7934 109.1 -43 -925 0.7953 109.7

DLU -119 -70960 0.7699 98.6 -46 -1361 0.7776 104.4

G2 53925 Traditional -30136 -30633 0.8232 78.9 -30117 -30613 0.8238 78.4

DLU -30136 -30600 0.8220 79.9 -30117 -30580 0.8233 80.2

G3 27911 Traditional -127 -18572 0.2632 103.9 -17 -136 0.2632 105.9

DLU -149 -15424 0.2538 97.4 -13 -47 0.2563 100.7

G4 12547 Traditional -11 -6 0.0884 85.0 5 0 0.0898 85.6

DLU -22 -17 0.0881 87.1 5 0 0.0890 88.0

G5 12165 Traditional -59 -890 0.0826 81.8 -3 0 0.0831 81.0

DLU -50 -741 0.0824 86.5 -3 0 0.0832 86.5

Table 9: Results in the IBM Routing Flow after first BonnRouteGlobal and after Global Routing Based Optimization.
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After 2nd BRG After 1st BRD

Slew Steiner Steiner

Chip Router wACE4 WS SNS violations Shorts Wire length Vias Scenic 150 Scenic 200

E1 Traditional 89.1 -34 -12869 1539 101 12.3616 9028705 3664 229

DLU 88.4 -37 -8189 799 34 12.3204 9017757 1949 33

E2 Traditional 90.0 -46 -6439 2695 9 6.8934 3672522 4585 715

DLU 88.9 -35 -4768 1336 0 6.7343 3646841 1473 144

F1 Traditional 87.7 -19 -2283 1139 33 8.5267 3941481 2003 120

DLU 87.8 -26 -2282 1229 22 8.5324 3946702 1781 110

G1 Traditional 102.5 -296 -88546 760 59455 0.9288 1150479 2189 699

DLU 96.4 -250 -63968 594 42201 0.8822 1108086 1384 471

G2 Traditional 77.4 -30114 -30593 463 287 0.8588 449789 15 5

DLU 75.9 -30115 -30613 475 298 0.8584 445549 6 1

G3 Traditional 99.2 -153 -6752 145 2450 0.2966 380373 605 130

DLU 96.6 -104 -4832 86 2204 0.2857 373482 395 92

G4 Traditional 83.2 -59 0 423 72 0.0963 105605 4 0

DLU 82.6 -46 0 447 65 0.0955 105226 1 0

G5 Traditional 75.5 37 0 1139 33 0.0885 86271 3 0

DLU 71.4 38 0 1229 22 0.0883 85478 1 0

Table 10: Results in the IBM Routing Flow after the second call to BonnRouteGlobal and the first call to BonnRouteDetail.
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After DRBO After 2nd BRD

Slew

Chip Router WS SNS Wire length WS SNS violations Shorts Wire length

E1 Traditional -116 -45408 13.1826 -117 -24479 4050 68 13.1826

DLU -96 -43383 13.1170 -43 -19129 3099 24 13.1171

E2 Traditional -32 -16742 6.8941 -41 -9063 1600 8 6.8941

DLU -24 -14867 6.7338 -39 -6186 807 0 6.7338

F1 Traditional -29 -13425 8.5310 -22 -3449 613 18 8.5310

DLU -28 -13709 8.5374 -22 -3018 528 21 8.5374

G1 Traditional -494 -168773 0.9308 *) *) *) *) *)

DLU -495 -164569 0.8862 *) *) *) *) *)

G2 Traditional -30114 -30600 0.8589 -30114 -30600 457 272 0.8589

DLU -30114 -30624 0.8584 -30115 -30624 457 269 0.8584

G3 Traditional -5 0 0.2975 -218 -2654 69 5324 0.2975

DLU -4 0 0.2868 -184 -2445 68 3759 0.2868

G4 Traditional 34 0 0.0969 25 0 354 63 0.0969

DLU 32 0 0.0962 31 0 381 55 0.0962

G5 Traditional -36 0 0.0885 35 0 0 21 0.0885

DLU -39 0 0.0884 37 0 0 21 0.0884

Table 11: Results in the IBM Routing Flow after Detailed Routing Based Optimization and the second call to BonnRouteDetail. *) At the time of writing,
not the whole flow was running through on instance G1 due to congestion issues.
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End of routing flow

Slew

Chip Router WS SNS violations Shorts Wire length Vias DRCs

E1 Traditional -96 -16805 2941 68 13.2286 9096609 839

DLU -37 -12528 2255 24 13.1629 9088511 305

E2 Traditional -37 -6247 1051 8 6.9141 3698352 145

DLU -36 -4357 500 0 6.7539 3666115 101

F1 Traditional -22 -3273 519 18 8.5575 3969742 467

DLU -21 -2949 485 21 8.5617 3964583 465

G1 Traditional *) *) *) *) *) *) *)

DLU *) *) *) *) *) *) *)

G2 Traditional -30114 -30628 456 240 0.8589 450363 *)

DLU -30114 -30652 454 239 0.8585 446203 *)

G3 Traditional -131 -272 32 5993 0.3022 397932 *)

DLU -43 -74 29 4301 0.2914 388368 *)

G4 Traditional 19 0 354 64 0.0969 106085 *)

DLU 22 0 381 56 0.0962 105776 *)

G5 Traditional 36 0 0 21 0.0885 86331 *)

DLU 37 0 0 21 0.0884 84541 *)

Table 12: Results at the end of the IBM routing flow. *) At the time of writing, not the whole flow was running through on instance G1 due to congestion
issues. Moreover, for all the most recent instances G1, ...,G5 the final check for design rule violations was not working yet.





5
R E A C H - A N D D I R E C T I O N - R E S T R I C T E D S T E I N E R
T R E E S

This section is about the minimum rectilinear Steiner tree problem
in the presence of obstacles. Some obstacles may not be traversed
at all; others may be traversed only horizontally, only vertically, or
in both directions. In any case, the total length of each connected
component in the intersection of the tree with the interior of the
obstacles is bounded by a constant. For this problem we present
a fast 2-approximation algorithm. Compared to [6, 25], which this
work is based on, we provide a more thorough case distinction in
the proof of the main theorem, closing gaps in the previous proofs.
This is joint work with the authors of [25], though the majority of
the progress is due to the author of this thesis. Building on [6, 25],
we also slightly improve the extraction of the Steiner tree and extend
the post-optimization by an edge substitution method from [20]. The
latter solves an online maximum cost on tree path problem for which
we improve the pre-processing time of the algorithm by [31] from
O(n logn) to O(n). Finally, we present results of a new application
of our Steiner tree algorithm in BonnRouteGlobal with dynamic lo-
cal usage to compute lower bounds on the total wire length and the
number of vias.

5.1 preliminaries

Besides routing, another important step in chip design is buffering [5]:
repeaters are inserted into the routes, repropagating and strengthen-
ing incoming signals. This becomes necessary if a net must power a
large downstream capacitance, resulting in long delays. IBM mainly
performs buffering before the routing flow that is described in Sec-
tion 4.5. Nonetheless, some buffers are also inserted during global
and detailed routing based optimization. The computation of rectilin-
ear Steiner trees is a central task during buffering [4, 24]. Buffering
can be restricted by macro cells, which correspond to areas where no
repeaters can be placed. Often, the top-level layout is dominated by
big macros, leaving only small gaps for repeaters. Wires, on the other
hand, may well reach over some of the macros using higher routing
layers. However, unbuffered components of the wires must not be-
come too long to avoid capacitance, slew, and delay violations. This
motivates bounding the length of tree components sitting on top of
macros. In addition, some macros may reach up to the chip ceiling,
preventing any routing on top of them, and others may leave only

99
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Figure 32: A chip instance with fully blocked area (dark gray), vertically-
restricted (blue), horizontally-restricted (orange) and length-
restricted-only area (light gray).

a single layer of the chip free, restricting routing to the dimension
of that layer. In general, macros can be perforated by routing tracks
on single layers to provide routing space for the outer entity, result-
ing in arbitrary unidirectional routing restrictions. Figure 32 shows a
real-world example of the obstacle structure on a chip.

We use the following definitions:

Definition 58. For X ⊆ R2, X◦ denotes the interior of X, and ∂X de-
notes the boundary of X. The set of obstacles consists of three finite sets
of rectangles R,Rh,Rv. We further define the horizontally-restricted
area Ah :=

⋃
r∈Rh

r, the vertically-restricted area Av :=
⋃

r∈Rv
r and the

length-restricted (or blocked) area A :=
⋃

r∈R∪Rh∪Rv
r. The complement

R2 \A is the unblocked area. Ah ∩Av is the fully blocked area.

Definition 59. A length-/vertically-/horizontally-restricted obstacle
is a maximal closed area O ⊆ A/Av/Ah whose interior is connected.

Note that all the area of a vertically- or horizontally-restricted ob-
stacle O is also length-restricted, though O itself is not necessarily
a length-restricted obstacle in terms of this definition. A direction-
restricted obstacle O needs not to be maximal with regard to A and
can be a proper subset of a length-restricted obstacle.

While this definition is simple, it still allows for nested holes and
obstacles within holes. We can now define the reach- and direction-
restricted Steiner tree (RDRST) problem:

Problem 60. Reach- and direction-restricted Steiner tree

Input: A 5-tuple (S,A,Ah,Av,L), where A, Ah, and Av are
length-restricted, horizontally-restricted and vertically-restricted
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Figure 33: A length-restricted obstacle containing a fully blocked obstacle on
the left. For L = "6 squares" the unique optimal solution contains
(geometrically) parallel edges.

areas, S ⊂ R2 \A◦ is a finite set of terminals, and L ⩾ 0 the reach
length.

Output: A shortest feasible RDRST, that is a rectilinear Steiner tree
T for S that satisfies that

1. each segment in E(T)∩A◦
h is horizontal,

2. each segment in E(T)∩A◦
v is vertical and

3. the length of each connected (geometric) component in
E(T)∩A◦ is at most L.

A rectilinear Steiner tree for S is a tree T with S ⊆ V(T) ⊂ R2, such
that each edge {v,w} ∈ E(T) is horizontal or vertical (v and w have
the same y-coordinates or x-coordinates). Its length l(T) is the sum
of the lengths of line segments represented by its edges. For easier
notation, we denote by E ′ ⊆ E(T) a set of graph edges and also a set
of (geometric) line segments in the plane. For r, s ∈ R2, an r-s-path is
an embedded Steiner tree for {r, s}.

Note that by definition we always have Ah,Av ⊆ A. The edges of a
feasible RDRST are not allowed to intersect A◦

h ∩A◦
v. The feasibility of

an embedded Steiner tree depends only on the restricted areas A,Ah,
and Av, and not on the structure of the underlying rectangle sets
R,Rh, and Rv. We say that a Steiner tree is reach-aware if it is feasible
with regard to the length-restricted obstacles, analogously direction-
aware if it is feasible with regard to the direction-restricted obstacles.
There is no restriction for edges on the boundary ∂A of the blocked
area. Moreover, parallel edges are allowed and may be necessary on
length-restricted obstacles; see Figure 33.

We make the simplifying assumption that no terminal is located
within the interior of an obstacle, that is, S ⊂ R2 \A◦. If terminals
are allowed to be in the interior of the blocked area A, it becomes
NP-complete to decide whether a feasible solution exists, as a reduc-
tion from the rectilinear Steiner tree problem shows: For L > 0, an
instance of the latter can be placed inside a large length-restricted ob-
stacle, such that all terminals are further than L from unblocked area.
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Hence no terminal can be connected to the unblocked area in a feasi-
ble RDRST. Therefore, a solution to the RDRST problem exists if and
only if there is a rectilinear Steiner tree for the terminals of length at
most L.

Under the reasonable restriction that the distance of each terminal
to unblocked area is at most L, it is still NP-hard to compute a 2-
approximation for the RDRST problem as can be seen in [6]. This
result is extended in [9] to show that it is even NP-hard to compute
an f(k)-approximation where k is the input size of the instance and
f : N → R an arbitrary function.

With the assumption that no terminal is located within the interior
of an obstacle, the RDRST problem remains NP-hard, since it gener-
alizes the NP-hard rectilinear Steiner tree problem.

The special case where L = 0 (or A = Ah ∩Av) is known as the
Obstacle-Avoiding Rectilinear Steiner Tree (OARST) problem, which has
been studied extensively. Several heuristics and approximation algo-
rithms were proposed by [3, 13, 14, 30, 37, 43]. A near-linear-time
PTAS for the analog of the obstacle-avoiding Steiner tree problem in
any uniform orientation metric was presented in [47]. ObSteiner, an
obstacle-avoiding extension of the exact GeoSteiner algorithm [55],
was developed in [29]. Finally, algorithms for multilayer obstacle-
avoiding Steiner trees were proposed in [36, 38, 42].

The special case in which all obstacles can be traversed in both
directions was introduced by [46], who also developed approximation
algorithms based on an extended Hanan grid. Typically, the extended
Hanan grid has a quadratic size. The algorithm of [25] builds on the
sub-quadratic visibility graph of [16] to obtain a smaller graph size
and faster running time. [6] extends this algorithm to also account
for direction-restrictions on obstacles. In this thesis, we extend and
improve upon [6, 25].

Heuristics for similar models were proposed by [57, 58], obeying a
slew limit instead of a reach length. It was extended to perform an
explicit buffer insertion [57].

Like many algorithms for similar variants [37, 43, 46], our algorithm
has three main phases: First, we construct a visibility graph for the
union of the terminals S and obstacle corners that contains a shortest
path between every pair of vertices. During the second phase, we use
a Dijkstra-Kruskal approach [40] to compute a Steiner tree for the
terminal set S in this graph. Finally, the Steiner tree is post-optimized
by local search heuristics. Since the visibility graph is shortest-path
preserving, our algorithm achieves an approximation factor of two,
given by the Steiner ratio in graphs.
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5.2 path structure theorem

The aim of this section is to prove Theorem 64 about the structure of
feasible paths among length- and direction-restricted obstacles.

Our algorithm computes a visibility graph extending a construc-
tion of Clarkson et al. [16] for the special case L = 0. Clarkson’s ver-
sion used to compute shortest paths avoiding polygonal (not necesser-
ily rectilinear) obstacles. We define the bounding box BB(x,y) of two
points x = (x1, x2) and y = (y1,y2) as the closed axis-aligned rectan-
gle

BB(x,y) = {(z1, z2) ∈ R2 : min(xi,yi) ⩽ zi ⩽ max(xi,yi) (i ∈ {1, 2})}

Clarkson’s visibility graph is based on the observation that every
obstacle-avoiding shortest path can be modified (while preserving the
length) in such a way that the new path can be decomposed into
shortest sub-paths between terminals and blockage corners such that
the interior of the bounding boxes spanned by the sub-path endpoints
neither intersect blockages nor terminals and its length equals the
distance between its endpoints.

The construction in [16] ensures that between each pair of vertices,
there is a so-called median line, a vertical line to which both vertices
are connected by a horizontal segment (if possible). If the bounding
box of two consecutive points does not intersect any obstacle, this is
always possible. This construction is indeed shortest-path preserving.
Note that horizontal instead of vertical median lines could be used
equivalently.

For our length- and direction-restricted obstacles shortest paths
may reach over obstacles. Therefore, we cannot require that the in-
terior of the bounding box spanned by two consecutive sub-path end-
points does not intersect obstacles. However, we can at least require
that for a suitable set of points, a shortest path is decomposable into
subpaths such that the bounding box spanned by the endpoints of a
subpath does not contain any other such point, and the length of each
subpath equals the distance of its endpoints. This special set of path
endpoints, which we will call base points in the following, is defined
as follows.

Let K := {corners of A} ∪ {corners of Ah} ∪ {corners of Av} denote
the set of all obstacle corners.

Furthermore, for any x ∈ R2, we define a set Px of projection points
and a set of escape points Ex as follows (see also Figure 34). For each
of the four directions north, east, south and west, if an arbitrary small
step from x in that direction ends in the interior of an obstacle, we add
the nearest point in that direction on the boundary of unblocked area
and different from x as a projection point to Px. If an arbitrary small
step from x to east or west x ends in Ah we add the nearest point in
∂Ah different from x as horizontal escape point to Ex. Analogously, we
add vertical escape points with respect to Av to Ex.
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Figure 34: A length-restricted obstacle containing another horizontally-
restricted obstacle. The (white) corner of Ah in the middle has
four projection points (green) and one escape point (blue).

Figure 35: If L is sufficiently small, the shortest path from r to s is unique.
BB(r, s) is not free, and hence the projection point r ′ of r is re-
quired.

Finally, we define the set of base points as

B := S∪K∪
⋃
x∈K

(Px ∪ Ex)

We will construct a visibility graph that contains a shortest path for
each pair of base points.

Since each obstacle corner has at most four projection points and
four (two horizontal and two vertical) escape points, |B| ⩽ |S|+ 9|K|.

Remark 61. B contains the projection and escape points of all base
points in B∩A◦.

Proof. All base points in B ∩ A◦ are either corners of direction-
restricted obstacles, for which B contains their projection and escape
points by definition, or escape points. Let p ∈ B ∩A◦ be an escape
point of some q ∈ K. Then, p is located on the boundary e of some
direction-restricted obstacle. If p is an obstacle corner, B contains
its projection and escape points by definition. Otherwise, the projec-
tion points along the boundary e are either the corner points of that
boundary or their projection points. The projection and escape points
orthogonal to e are either q or its projection or escape points.

In the remainder of the paper, we will often use the notion of free
bounding boxes with a constant obstacle structure.

Definition 62. (Free Bounding Box) Given a set of base points B and
s, t ∈ R2, the bounding box BB(s, t) of s and t is free if it does not
contain any base points except for (potentially) s or t.
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Note that free bounding boxes may intersect obstacles whose cor-
ners are located outside the box. Being free also depends on the
boundary of the bounding box, and thus it depends on the choice
of its spanning points s and t.

The concept of base points and free bounding boxes allows us to
generalize Clarkson’s approach to our setting.

Definition 63. A rectilinear s-t-path P is called an ℓ1-path if∑
{x,y}∈E(P)

∥x− y∥1 = ∥s− t∥1

Given obstacle areas A,Ah,Av and a reach length L, P is called a
feasible ℓ1-path if it is feasible for the instance ({s, t},A,Ah,Av,L).

Let P be an s-t-path, and let X ⊆ R2. Let {p1, . . . ,pk} = X ∩ V(P)
such that p1, . . . ,pk appear along P from s to t in this order. We say
that P is X-simple if for i ∈ {0, . . . ,k}

• BB(pi,pi+1) is free; and

• the subpath of P from pi to pi+1 is an ℓ1-path.

where p0 = s and pk+1 = t.

The statement of the main theorem of this section is that any feasi-
ble shortest path can be transformed into a B-simple path:

Theorem 64. Let (S,A,Ah,Av,L) be an RDRST instance and s, t ∈ B.
Every s-t-path P for ({s, t},A,Ah,Av,L) of minimum length can be trans-
formed into a B-simple feasible s-t-path P̄ of the same length.

Figure 35 shows that projection points are needed as base points, to
enable the transformation into B-simple paths. An analogous exam-
ple with direction-restricted obstacles shows the necessity of escape
points.

To prove Theorem 64, we will first prove a specialized statement
for ℓ1-paths in Lemma 66. Then, in Lemma 67 and Lemma 68, we
will show that a path P that is not an ℓ1-path can be subdivided
into ℓ1-subpaths that start and end at base points. For each of these
subpaths, we will apply Lemma 66, yielding a path that satisfies the
conditions of Theorem 64.

Aside from some trivial cases, in the proof of Lemma 66 we will
transform the given path in three different ways, depending on the
obstacle structure. We use the following notion of tightly-covered boxes
(Figure 36):

Definition 65. Let s, t ∈ R2. We say that their bounding box BB(s, t)
is tightly-covered, if there is an obstacle O (recall Definition 59) that is
either length-restricted or vertically-restricted (inside a larger length-
restricted obstacle) that is aligned with the bottom of BB(s, t), extends
past the upper and right boundary of BB(s, t) and either aligns with
or extends past the left boundary of BB(s, t). The corners of BB(s, t)
may be located on the boundary ∂O or in its interior O◦.
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Figure 36: On the left, the bounding box of s and t is tightly-covered by the
length-restricted obstacle. In the middle, it is both tightly-covered
by the vertically-restricted and by the containing length-restricted
obstacle. On the right, it is tightly-covered by the vertically-
restricted obstacle but not by the containing length-restricted ob-
stacle, that extends past the lower boundary of BB(s, t).

Case 1 Case 2a Case 2b

Figure 37: The staircase C (blue), the path P (green), the modified path P ′

(yellow).

In contrast to the notion of tightly-covered boxes that requires an
obstacle to align with the lower boundary of the box, we say that the
bounding box BB(s, t) of s, t ∈ R2 is completely covered by an obstacle
O if BB(s, t) \ {s, t} ⊂ O◦. Similarly, a path P from s to t is completely
covered by O if P \ {s, t} ⊂ O◦. Note that in both cases, s and t may
be located in the interior or on the boundary of O.

Lemma 66. Let (S,A,Ah,Av,L) be an RDRST instance, and let r, s ∈
B∪

(
R2 \A◦) be two points, connected by a feasible ℓ1-path P. Then P can

be transformed into a feasible B-simple r-s-ℓ1-path P ′.

Proof. Let P be an r-s-path as in the statement of the lemma. We pro-
ceed by induction on |(BB(r, s) \ {r, s})∩B|. If |(BB(r, s) \ {r, s})∩B| =

0, then BB(r, s) is free and since P is an ℓ1-path, it follows that P is B-
simple. If r and s can be joined by an axis-parallel line, we subdivide
P at each base point located along the line to obtain P ′.

Therefore, we may assume (after translation, rotation, and mirror-
ing) that r = (0, 0) and s = (x,y) with x,y > 0, and moreover, BB(r, s)
is not free. We define a “staircase” C as the upper-right boundary of
{u ∈ R2

⩾0 : BB(r,u) is free} (see Figure 37). Let p be the first inter-
section point of P with C starting from r. Since BB(r, s) is not free, it
follows that p exists (p = s is possible). By subdividing the edge of
E(P) containing p, we may assume that p ∈ V(P).

From the definition of C, it follows that BB(r,p)◦ ∩B = ∅. Assume
that (∂BB(r,p))∩ (B\ {r,p}) = ∅, that is, there are no other base points



5.2 path structure theorem 107

on the boundary of BB(r,p) other than possibly r and p. It follows
that p ∈ B, as otherwise p ∈ C was impossible. Hence BB(r,p) is free
and we can apply induction to the remaining subpath of P from p to
s.

Now assume that (∂BB(r,p)) ∩ (B \ {r,p}) ̸= ∅. Since p is at the
boundary of the points u ∈ R2

⩾0 for which BB(r,u) is free, r and p
cannot be located on an axis-parallel line; i.e. BB(r,p)◦ ̸= ∅. By sym-
metry, we may assume that the first edge of P containing p is vertical,
and thus, it meets C from below (otherwise flip x- and y-coordinates
of the instance). By the definitions of C and p, there cannot be any
base points on the right, lower and left boundary of ∂BB(r,p), except
for possibly r and p and the upper left corner of BB(r,p). Therefore,
the upper boundary of ∂BB(r,p) contains a base point different from
p; let q be the left-most such base point. Note that q is either the left
end of C or a corner of the staircase.

The idea is to reroute P to P ′ through some base point b for which
BB(r,b) is free, such that we can apply induction on the remaining
subpath P ′

[b,s]. The reroute is conducted such that the length over
blockages does not increase so that the final path satisfies the reach
condition inductively. We will re-route P in three different ways, de-
pending on the structure of the obstacles and P:

1. P leaves r upwards or BB(r,p) is not tightly-covered (Defini-
tion 65):

Let q ′ be the first intersection point of P with the vertical line
through q. We obtain P ′ from P by replacing the q ′-p-subpath
of P by a vertical q ′-q-segment s1 and a horizontal q-p-segment
s2 (case 1 in Figure 37).

2. P leaves r to the right and BB(r,p) is tightly-covered by a length-
restricted obstacle O:

The projection point of q is located on the lower boundary of
BB(r,p). By the definition of C, there cannot be any base points
on the lower boundary of BB(r,p) apart from r, hence q must
be located directly above r. Let y be the intersection of the lower
boundary of O with the staircase C (see cases 2a and 2b in Fig-
ure 37). Such a y must exist since, by definition, the staircase C
is restricted by the lower right corner point of O. Starting at r,
let x be the first intersection of P after p with the boundary of O
or with the vertical line through y. Such an intersection must ex-
ist, as by the assumption of the lemma s would be a base point
if it were located inside the same obstacle O. But then, s could
not be inside O and left to the vertical line through y, as this
would imply a projection point on the line from r to y.

a) If x is not on the vertical line through y, let o be the in-
tersection of a vertical line through q and a horizontal line
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through x. We obtain P ′ by replacing the r− x-subpath by
the rectilinear path from r through q and o to x.

b) Otherwise, we replace the r− x-subpath of P by the recti-
linear path from r through y to x to obtain P ′.

3. P leaves r to the right and BB(r,p) is not tightly-covered by a
length-restricted obstacle but by a vertically-restricted obstacle:

We define P ′ analogously to case 2a with regard to the vertically-
restricted obstacle. For details, see Claim 72 in Section 5.2.1.

In all cases, the length of the path is preserved. We have to show
feasibility of P ′ with regard to the obstacles. Note that Definition 65

is bound to length- and vertically-restricted obstacles only, because
there cannot be a horizontally-restricted obstacle that tightly-covers
BB(r,p). Otherwise, P would be infeasible as we assumed P to meet
p from below.

In cases 2a and 2b, the path P might be partially unblocked as
shown in Figure 37. However, the path P ′ from case 1 could be cov-
ered by O to a larger extent making it potentially infeasible for cases
2a and 2b if L is small enough. This is why P has to be rerouted differ-
ently in these cases. On the other hand we will see that the fact that
O aligns with the lower boundary of BB(r,p) implies simple obstacle
structures in cases 2a and 2b.

To show the feasibility of P ′ in all cases, the length restrictions
and the direction restrictions can be handled independently of each
other. For the sake of simplicity, here we will only show the feasibility
with regard to length-restricted obstacles. Feasibility with regard to
direction-restricted obstacles can be shown similarly using the escape
points instead of the projection points, as may be seen in Claim 70

and Claim 71 in Section 5.2.1.

Claim 66.1. In case 1, where BB(r,p) is not tightly-covered (Definition 65)
or P leaves r upwards, the path P ′ is feasible with regard to length-restricted
obstacles.

Proof. Consider a length-restricted obstacleO that intersects BB(r,p)◦.
Without loss of generality assume BB(r,p)◦∩O contains only one con-
nected component (if not consider each connected component sepa-
rately). By the definition of the staircase C it follows that BB(r,p)◦ ∩
B = ∅, therefore O cannot have corners inside BB(r,p)◦. More-
over, since BB(r,p) ∩ B \ {r} is contained in the upper boundary of
∂BB(r,p), O◦ must intersect the lower or right boundary of BB(r,p),
that is, O must be at least one of

• horizontally spanning, which means that O◦ intersects the right
boundary of ∂BB(r,p) (that is, O extends past the right bound-
ary) and O intersects the left boundary of ∂BB(r,p), or
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Type α: vertically
spanning and

length-restricted

Type β: horizontally
spanning and

length-restricted

Figure 38: Possibly problematic obstacles.

• vertically spanning, which means O◦ intersects the lower bound-
ary of ∂BB(r,p) (that is O extends past the lower boundary) and
O intersects the upper boundary of ∂BB(r,p).

See case 1 in Figure 37 for a horizontally spanning obstacle. Note
that O can be both horizontally and vertically spanning at the same
time. To prove that P ′ is feasible with regard to length restrictions,
we will show that P ′ is feasible with respect to each length-restricted
obstacle O intersecting BB(r,p)◦ separately.

Assume O is horizontally spanning and s2 ∩O◦ = ∅. Then we have
l(E(P ′) ∩ O◦) ⩽ l(E(P) ∩ O◦), and thus, P ′ is feasible with respect
to O since P is feasible. If O is vertically spanning and s1 ∩O◦ = ∅,
analogously P ′ is feasible due to l(E(P ′)∩O◦) ⩽ l(E(P)∩O◦).

Now suppose that there is a length-restricted obstacle O which is
either vertically spanning with s1 ∩O◦ ̸= ∅ (type α), or horizontally
spanning with s2∩O◦ ̸= ∅ (type β, Figure 38). Recall that obstacles can
be of both types at the same time, if they cover the entire bounding
box BB(r,p). Using the projection points we will show that in both
cases the obstacles must contain BB(r,p), completely covering P[r,p].
This shows feasibility of P ′ since P is feasible and P ′ has the same
length as P.

Type α: Suppose that O is a length-restricted and vertically span-
ning obstacle and s1 ∩O◦ ̸= ∅. We want to show that O must reach
beyond the left boundary of BB(r,p): If q is on the upper left corner
of BB(r,p), this follows by the fact that s1 ∩O◦ ̸= ∅. Otherwise, there
are four possibilities for the structure of O around q (see Figure 39). If
the left boundary of the obstacle did not reach beyond r, there would
be a base point (a projection point of q in cases Q1 and Q2, using
Remark 61, or an obstacle corner in cases Q3 and Q4) on the upper
boundary of ∂BB(r,p) left of q, contradicting the choice of q.

Now that we have proven that O must reach beyond the left bound-
ary of BB(r,p), there are two cases to consider at r (Figure 40). In both
cases the right boundary of O must reach beyond p, as otherwise the
projection point of r would be on the lower boundary of ∂BB(r,p). In
case R1 r has a projection point because it is a corner point, in case
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Case Q1 Case Q2 Case Q3 Case Q4

Figure 39: Possible cases around q.

Case R1 Case R2

Figure 40: Possible cases around r.

R2 due to Remark 61 and by the lemma’s assumption that r is a base
point if it is located in the interior of A.

Hence we know that O spans the entire bounding box of r and p
and extends past the left, lower and right boundary of BB(r,p). Also,
the lower right corner of BB(r,p) must be inside O, as otherwise it
would be a corner of O and hence a base point located on the right
boundary of BB(r,p). It follows that P[r,p] is completely covered by O,
which is why l(E(P ′) ∩O◦) ⩽ l(E(P) ∩O◦). Thus, P ′ is feasible with
respect to O.

Type β: Suppose that O is a length-restricted and horizontally span-
ning obstacle and s2 ∩ O◦ ̸= ∅, hence O extends past the upper
boundary of BB(r,p). O must at least reach until exactly r to the
bottom, because otherwise the projection point of q would be located
in BB(r,p)◦ or on the left boundary of BB(r,p) between r and q. As
O is horizontally spanning it must reach beyond p to the right.

If P leaves r upwards, let g be the point where P first goes to the
right. P[g,p] is completely covered by O. Otherwise, if P leaves r to
the right, BB(r,p) is not tightly-covered by assumption and hence O
must also extend past the lower boundary. Thus P[r,p] is completely
covered by the length-restricted obstacle O. In both cases l(E(P ′) ∩
O◦) ⩽ l(E(P) ∩O◦) and therefore P ′ must be feasible with respect to
O.

It follows that P ′ is feasible with regard to length restrictions prov-
ing the statement of the claim.

Claim 66.2. In case 2, where P leaves r to the right and BB(r,p) is tightly-
covered by a length-restricted obstacle O, the modified path P ′ is feasible
with respect to length-restricted obstacles.
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Figure 41: The vertically-restricted obstacle O, part of path P (green), the
rerouted path (yellow).

Proof. In case 2a, O cannot have any corners on the upper boundary
from o to x, as otherwise their projection points were located on the
line from r to y. Thus, the segment from o to x runs at the boundary
of O. The segment from r to o possibly intersects O, but l(E(P) ∩
O◦) ⩾ l(E(P ′

[r,o])∩O
◦) because O tightly-covers BB(r,p) and thus P ′

is feasible.
In case 2b, let g be the most right intersection point of P with the

horizontal line from r to y. g is located to the right of r as, by as-
sumption, P leaves r to the right. P and P ′ only differ between g

and x, while P[g,x] is completely covered by O which tightly-covers
BB(r,p). Therefore, also P ′ must be feasible with regard to length
restrictions.

We now conclude the proof of Lemma 66: In case 1 and 2a BB(r,q)
is free, the same holds for BB(r,y) in case 2b. q is a base point by
definition. y must be a base point, since otherwise the staircase C
would not end at y. Applying induction to the subpath of P ′ from q

to s (case 1 and 2a) and from y to s (case 2b) yields the statement of
the lemma.

Given a path P as in Theorem 64, that is not necessarily an ℓ1-path,
we want to apply Lemma 66 to ℓ1-subpaths of P. This will finally
prove the theorem if the subpaths start and end at base points. Split-
ting a path into ℓ1-subpaths that start and end at base points is the
content of the following two lemmas. The first one shows this for
paths that are fully contained in length-restricted area. The second
one deals with general paths, but has stronger preconditions.

Lemma 67. Let obstacles A,Ah,Av, a reach length L, a,b ∈
B ∪

(
R2 \A◦) be given. Let P be a shortest feasible path for the

instance ({a,b},A,Ah,Av,L) that is completely covered by length-
restricted obstacles. Then P can be subdivided into ℓ1-subpaths P =

P[a,r1],P[r1,r2], ...,P[rm−1,rm],P[rm,b] such that ri ∈ B for i = 1, ...,m.

Proof. Assume that it is not possible to divide P into such ℓ1-subpaths.
We will show that P can be shortened while remaining feasible, con-
tradicting its optimality. P must contain a non-ℓ1-subpath that cannot
be decomposed. Without loss of generality, after rotation and reflec-
tion, there must exist a U-shaped subpath as depicted in Figure 41,
with no base points on the lower side. The only reason that prevents
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us from moving up the lower segment infinitesimally and thereby
shortening the path could be some vertically-restricted obstacle O
right above. There cannot be any corners at the upper boundary of
O, since otherwise there were escape points at the lower boundary
at which we could split up the path. For the same reason, a,b can-
not be inside O. Hence, we can reroute P along the upper boundary,
reducing its length also in this case.

The following lemma assumes that we have a subdivision of a path
into ℓ1-paths that start and end at base points inside blockages but
at arbitrary points outside of blockages. If additionally consecutive
base points on the path have free bounding boxes, one can show that
the subdivision can be modified to start and end at base points also
outside of blockages.

Lemma 68. Let obstacles A,Ah,Av, a reach length L, a,b ∈ B ∪(
R2 \A◦) be given. Let P = P1, ...,Pn be a shortest feasible path for the

instance ({a,b},A,Ah,Av,L), such that for the subpath Pi (i = 1, ...,n),
starting at ri and ending at ri+1, it holds that

• Pi is an ℓ1-path with ri, ri+1 ∈ B∪
(
R2 \A◦),

• for i < n, Pi combined with Pi+1 is not an ℓ1-path and

• the bounding box of successive points p,q ∈ B ∪ {ri, ri+1} on Pi is
free.

Then P can be subdivided into ℓ1-subpaths P = P ′
1, ...,P ′

m such that for all
P ′
i from r ′i to r ′i+1 it holds that r ′i, r

′
i+1 ∈ B∪ {a,b}.

Proof. Assume that this is not possible. We will show that P can be
made shorter, contradicting its optimality. Without loss of generality,
there must exist a U-shaped subpath with no base points on its lower
side, enclosed by two ℓ1-subpaths Pi and Pi+1, as depicted in Fig-
ure 42. Starting at ri, let q the last base point on Pi before ri+1 (or ri
if there is no such base point). Let s be the first base point on Pi+1

after ri+1 (or ri+2 if there is no such base point). If the lower side
of the U-shape is unblocked, the only reason which could prevent us
from shortening P by moving it up could be a length-restricted (pos-
sibly also vertically-restricted) obstacle O aligning with the U-shape
as shown in case W1 in Figure 42. If the lower side of the U-shape is
blocked, the only such reason could be a vertically-restricted obstacle
as in case W2 in Figure 42. In case W1 we might violate the reach
length by moving it up, in case W2 we would violate the direction
restriction of O.

In both cases, by assumption, the bounding boxes BB(q, ri+1) and
BB(ri+1, s) are free, hence O cannot have corners inside the bounding
boxes and must extend past the right boundary of BB(ri+1, s) and
past the left boundary of BB(q, ri+1). It follows that O cannot extend
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Case W1 Case W2

Figure 42: Possible cases in Theorem 64. The modified path P ′ in yellow.

Figure 43: This instance shows that Lemma 66 does not hold without the as-
sumptions on r, s. L is chosen small enough such that the shortest
feasible path is unique.

past q or s to the top, as otherwise their projection points (case W1) or
escape points (case W2) were located inside BB(q, ri+1) or BB(ri+1, s).
Hence, we can shorten P as depicted in Figure 42.

We are now ready to prove Theorem 64 on page 105, that states
that for s, t ∈ B any shortest feasible s-t-path P for the instance
({s, t},A,Ah,Av,L) can be transformed into a B-simple feasible s-t-
path of the same length.

Proof. (Theorem 64) We want to subdivide P at base points into ℓ1-
subpaths and then apply Lemma 66 on these subpaths. For this, let
P = P1, ...,Pm an arbitrary subdivision of P into ℓ1-subpaths which
is always possible. By Lemma 67 and looking at the parts of P cov-
ered by lenght-restricted area, we can at least assume that all divi-
sion points are located in R2 \A◦ or are base points. Hence we can
apply Lemma 66 on each of these subpaths, resulting in P ′

1, ...,P ′
m.

P ′ := P ′
1, ...,P ′

m satisfies the stronger preconditions of Lemma 68.
Thus, we can subdivide the whole path P ′ at base points into ℓ1-
subpaths. Finally apply Lemma 66 on these ℓ1-subpaths, and the re-
sulting path P̄ has the desired properties.

Corollary 69. Let s, t ∈ B \ A◦ be two base points not in the interior
of length-restricted obstacles. Let P be a shortest feasible path from s to t,
modified according to Theorem 64. If P crosses a base point in the interior
of a length-restricted obstacle, then P both enters and leaves this obstacle



114 reach- and direction-restricted steiner trees

Figure 44: A priori situation in Corollary 69 (the proof shows r = p ′).

on non-terminal base points (i.e. base points which are not contained in the
terminal set S).

Proof. Let p be the last base point on P in the interior of the length-
restricted obstacle and r be the following one. r is located outside the
obstacle or on its boundary and the bounding box of p and r must
be free by assumption (Figure 44). The projection point p ′ of p lies
in the bounding box of p and r. Thus r must be equal p ′, which is a
non-terminal base point.

5.2.1 Direction-Restricted Obstacles

For completeness, here we prove feasibility of the modified paths in
Lemma 66 with regard to direction-restricted obstacles. This can be
accomplished in a similar manner as the proof for length-restricted
obstacles. The following claims use the notation of the proof of
Lemma 66.

Claim 70. Given that P leaves r upwards or BB(r,p) is not tightly-covered,
the path P ′ in case 1 is feasible with regard to direction-restricted obstacles.

Proof. Let O a direction-restricted obstacle intersecting BB(r,p)◦.
Without loss of generality assume BB(r,p)◦ ∩ O contains only one
connected component (if not consider each connected component sep-
arately). As seen in the proof of Lemma 66 O must be horizontally or
vertically spanning.

Assume O is horizontally spanning and s2 ∩O◦ = ∅. If P ′ inter-
sects O◦, P does the same. As P is feasible and crosses O in vertical
direction O cannot be horizontally-restricted and thus P ′ is feasible
with respect to O as well. Now assume O is vertically spanning and
s1 ∩O◦ = ∅. Analogously, if P ′ intersects O◦, P does the same. As P is
feasible O cannot be vertically-restricted and thus P ′ is feasible with
respect to O.

Now suppose that there is a direction-restricted obstacle O which
is either vertically spanning with s1 ∩O◦ ̸= ∅ (type γ), or horizontally
spanning with s2 ∩O◦ ̸= ∅ (type δ, Figure 45).

Using the escape points we will show that in both cases the obsta-
cles must contain BB(r,p), completely covering P[r,p]. This leads to a
contradiction as P is feasible. Hence, such obstacles cannot exist.



5.2 path structure theorem 115

Type γ: vertically
spanning and

horizontally-restricted

Type δ: horizontally
spanning and

vertically-restricted

Figure 45: Possibly problematic obstacles.

Type γ: Suppose that O is a direction-restricted and vertically span-
ning obstacle and s1 ∩O◦ ̸= ∅. O must be horizontally-restricted as
otherwise P would be infeasible. We want to show that O must reach
beyond the left boundary of BB(r,p): If q is on the upper left cor-
ner of BB(r,p), this follows by the fact that s1 ∩O◦ ̸= ∅. Otherwise,
there are four possibilities for the structure of O around q (see Fig-
ure 39). If the left boundary of the obstacle did not reach beyond r,
there would be a base point (an escape point of q in cases Q1 and Q2,
using Remark 61, or an obstacle corner in cases Q3 and Q4) on the
upper boundary of ∂BB(r,p) left of q, contradicting the choice of q.

Now that we have proven that O must reach beyond the left bound-
ary of BB(r,p), there are two cases to consider at r (Figure 40). In both
cases the right boundary of O must reach beyond p, as otherwise the
escape point of r would be on the lower boundary of ∂BB(r,p). In
case R1 r has an escape point because it is a corner point, in case R2

due to Remark 61 and by the assumption of the lemma that r is a base
point if it is located in the interior of A.

Hence we know that the horizontally-restricted obstacle O spans
the entire bounding box of r and p and extends past the left, lower
and right boundary of BB(r,p). This contradicts the fact that P is
feasible, hence such an obstacle O cannot exist.

Type δ: Suppose that O is a direction-restricted and horizontally
spanning obstacle and s2 ∩O◦ ̸= ∅, hence O extends past the right
and upper boundary of BB(r,p). As P crosses O in vertical direction
O must be vertically-restricted. It follows that O must at least reach
until exactly r to the bottom, because else the southern escape point of
q would be located in BB(r,p)◦ or on the left boundary of BB(r,p) be-
tween r and q. If P leaves r upwards P later has to cross O in horizon-
tal direction constituting a contradiction to its feasibility. If P leaves
r to the right, by assumption O does not tightly-cover BB(r,p) and
hence must also extend past the lower boundary of BB(r,p). Again
this contradicts the fact that P is feasible, hence such an obstacle O
cannot exist.

Therefore, P ′ is feasible with regard to direction restrictions.
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Claim 71. Given that P leaves r to the right and BB(r,p) is tightly-covered
by a length-restricted obstacle O, the modified paths P ′ in cases 2a and 2b
are feasible with regard to direction-restricted obstacles.

Proof. Note that any direction-restricted obstacle must be contained
in O. First consider case 2a: As the path segment o− x of P ′ runs on
the boundary of O it cannot interfere with any direction-restricted ob-
stacle. If the path segment r− q or q− o intersected with the interior
of a horizontally-restricted obstacle, the very same obstacle would
also have to intersect the path P, because otherwise its corners would
imply projection points on the line from r to y which is impossible.
Hence P would be infeasible which is a contradiction.

Analogously feasibility with regard to direction-restricted obstacles
can be shown in case 2b: The path segment r− y is feasible because
it runs on the boundary of O and a horizontally-restricted obstacle
intersecting the path segment y− x would also intersect the feasible
path P.

The following claim shows how to modify the path in case 3 of the
proof of Lemma 66:

Claim 72. Given that P leaves r to the right and BB(r,p) is not tightly-
covered by a length-restricted obstacle but by a vertically-restricted obsta-
cle O, we can modify P to P ′ such that it fulfills the desired properties of
Lemma 66.

Proof. We modify P to P ′ as in case 2a of Lemma 66 with respect to
the vertically-restricted obstacle O. Case 2b cannot happen as then P
would be infeasible. Whenever we used projection points during the
construction of P ′ in case 2a we now have to use escape points.

Let O ′ the length-restricted obstacle containing O. Since BB(r,p) is
not tightly-covered by a length-restricted obstacle, O ′ must not only
extend past the right and upper boundary of BB(r,p) but also past
the lower boundary. Since in addition P leaves r to the right, P[r,x] is
completely covered by the length-restricted obstacle. It follows that
P ′ must also be feasible with regard to length-restricted obstacles as
it has the same length as P. The feasibility with respect to direction-
restricted obstacles can be shown in the very same way as in Claim 71,
but using escape points instead of projection points at the boundary
of O.

Induction can be applied on the remaining subpath P ′
[q,s] to obtain

a path fulfilling the desired properties of Lemma 66.

5.3 algorithm

In this section we describe an algorithm that computes a 2-
approximation for the reach- and direction-restricted Steiner tree
problem. We use Theorem 64 to prove its approximation ratio.
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5.3.1 Construction of a Visibility Graph

We want to construct a graph that contains feasible shortest paths be-
tween all pairs of vertices. From this graph we extract a terminal span-
ning tree yielding a 2-approximation. By Theorem 64 it suffices to con-
nect pairs of base points with free bounding box by l1-paths (where
this is feasible) to obtain such a graph. To ensure feasibility of the
extracted Steiner tree, all these connecting paths should be direction-
aware. Moreover, we have to make sure that the extracted Steiner tree
is reach-aware. This can be achieved by forbidding Steiner points on
obstacles and only inserting edges into the visibility graph which are
reach-aware themselves. This means that we cannot add base points
to the graph that are located in the interior of length-restricted area
(corners of direction-restricted obstacles). Still, they might be part of
shortest paths between some terminals. The solution to this problem
is to find reach-aware shortest paths over length-restricted area with
separate calls to a shortest-path algorithm. The following graphs will
be computed:

1. Inter-Blockage graph Ginter: A graph containing shortest paths
between pairs of base points, crossing obstacles with at most
one single edge. All computed paths are reach- and direction-
aware.

2. Intra-Blockage graphs: For each connected component of
length-restricted obstacles, computation of a graph Gintra con-
taining shortest paths between pairs of base points on this com-
ponent, running over this component only. These paths also re-
spect the direction-restricted obstacles, but are not necessarily
reach-aware.

3. Visibility graph Gvis: This graph contains all nodes and edges
of the Inter-Blockage graph Ginter. Moreover, for each pair of
base points on the boundary of a connected component of
length-restricted obstacles a shortest path is computed on the
intra-blockage graph Gintra of that component. If the length does
not exceed L, an edge representing this path is inserted into Gvis.
If this edge is later chosen to be in the Steiner tree, the exact path
over the length-restricted area will be reconstructed.

To efficiently connect pairs of base points with free bounding box
by l1-paths we use the same idea as in [16], which is to insert so-called
vertical median lines recursively, making sure that there is inserted at
least one between every pair of base points. Then the base points are
connected to the median lines via horizontal edges if possible.

For the computation of the inter-blockage graph Ginter, let p,q be
two base points not in the interior of length-restricted area and with
free bounding box, connectable by a feasible ℓ1-path. If there are no
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M1. Horizontally
spanning
obstacle

M2. Vertically
spanning
obstacle

M3. Vertically
spanning

obstacle on the
median line

M4. BB(p,q) is
completely

covered by an
obstacle

Figure 46: Cases to consider when connecting to the median line (dashed),
added nodes (dark grey) and edges (black).

obstacles intersecting BB(p,q), p and q can simply be connected by
edges to a vertical median line between them. The same holds if p,q
share a common x or y-coordinate. Otherwise, BB(p,q)◦ ̸= ∅ and ob-
stacles intersect the bounding box. Using the notation from the proof
of Lemma 66, the obstacles must be horizontally or vertically span-
ning because no other base points may lie in the bounding box. End-
points other than p,q may not even lie on the boundary ∂BB(p,q) as
opposed to the situation in the proof of Lemma 66, because BB(p,q)
is free. If an obstacle encloses one of the points as depicted in case M4

in Figure 46, the obstacle must already completely cover the bound-
ing box due to the projection points of its corners. Thus, the following
four cases for the inserted median line can occur (Figure 46):

M1. In the presence of horizontally spanning obstacles, not com-
pletely covering BB(p,q), p,q can be directly connected by hor-
izontal edges to the vertical median line.

M2. If the median runs between vertically spanning obstacles, not
completely covering BB(p,q), p,q can be connected in the same
way.

M3. If the median runs over a vertically spanning obstacle, not com-
pletely covering BB(p,q), p,q can be connected to the contour
of the obstacle. Steiner points on the contour will be connected
in a post-processing step.

M4. If BB(p,q) is completely covered by an obstacle, p,q will not be
connected in the inter-blockage graph.

Having selected one component of length-restricted obstacles, we
ignore reach constraints during the computation of the intra-blockage
graph on that component, because at the end we will only add paths
from the intra-blockage graph to the inter-blockage graph that are
not longer than the reach length L. Let p,q be two base points with
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free bounding box, connectable by a feasible ℓ1-path. If no direction-
restricted obstacles intersect BB(p,q) or p,q share a common coordi-
nate, they can be directly connected by edges to the vertical median
line. Otherwise, case M1 to M3 in Figure 46 can occur with direction-
restricted obstacles and are handled in the same way as in the inter-
blockage graph. Case M4 cannot occur, since then BB(p,q) would
be completely covered by a direction-restricted obstacle making any
ℓ1-path from p to q infeasible.

To make the insertion of the median lines efficient, they are inserted
recursively. First, a line is inserted on the median x-coordinate of all
base points, then the function is called for the set of base points left
of this coordinate and for the base points right of this coordinate. The
median lines are inserted from left to right, so we can keep track of
the obstacles on the median in a sweepline.

Algorithm 4 and Algorithm 5 implement the outlined approach. In
contrast to Algorithm 4, Algorithm 5 connects points on the median
line only if the resulting segment is contained in the length-restricted
component that is currently considered to avoid unnecessary compu-
tations. In the code, a point is blocked by a length-restricted or by a
direction-restricted obstacle, if it lies in A◦, or A◦

h ∪A◦
v respectively.

A point p is visible from a point q if p,q are located on the same
horizontal or vertical line and their direct connection is feasible with
regard to the obstacles, which are subject to the input of the algorithm.
We define the visible interval of a base point p ∈ B as the union of the
maximum horizontal feasible lines starting at p to the left and to the
right. This makes it possible to check if a base point can see another
point in constant time. The visible intervals can be precomputed with
a sweepline algorithm.

Inter-Blockage-Insert-Median is called with the set of unblocked base
points and those located on the boundary of a length-restricted ob-
stacle. For each connected component of length-restricted obstacles,
Intra-Blockage-Insert-Median is called with all non-terminal base points
of this component, making sure the running time to compute the
intra-blockage graph of a connected component only depends on the
complexity of that obstacle component.

Algorithm 6 shows the overall code for the computation of the vis-
ibility graph. Figure 47 illustrates the graphs computed.

Proposition 73. For an RDRST instance (S,A,Ah,Av,L), the graph Gvis

computed by Algorithm 6 contains shortest feasible paths for all pairs of
terminals.

Proof. Let p,q ∈ S two terminals and P a shortest feasible B-simple
path from p to q according to Theorem 64, i.e. the bounding box of
any two successive base points x,y ∈ E(P) is free and P[x,y] is an ℓ1-
path. Define r0 := p and rn := q and let r1, ..., rn−1 be the remaining
base points on P, on which P transitions from unblocked to blocked
area. Let Pi be the subpath from ri to ri+1. Now we show that all
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Algorithm 4: Inter-Blockage-Insert-Median(B ′,A,Ah,Av,L)

1 Let xm be the median of the x-coordinates of B ′

2 Inter-Blockage-Insert-Median({(x,y) ∈ B ′ : x < xm} ,A,Ah,Av,L)
3 foreach p = (x,y) ∈ B ′ increasing in y do
4 if (xm,y) is visible from p then
5 if (xm,y) /∈ A◦ then
6 Add node (xm,y) and edge {(xm,y),p}
7 if ∃ previous node (xm,y ′) on the median visible from (xm,y) then
8 Connect (xm,y) with (xm,y ′)

else
9 Let (xl, xr) ∋ xm be max. interval s.t. (x ′,y) ∈ A◦ ∀ x ′ ∈ (xl, xr)
10 s := arg max {∥p− p ′∥ : p ′ ∈ {(xl,y), (xr,y)}}
11 r := arg min {∥p− p ′∥ : p ′ ∈ {(xl,y), (xr,y)}}
12 if r and s are visible from p then
13 Add r and connect with p
14 Add s and connect with r
15 Inter-Blockage-Insert-Median({(x,y) ∈ B ′ : x > xm} ,A,Ah,Av,L)

Algorithm 5: Intra-Blockage-Insert-Median(B ′,A,Ah,Av,L)

1 Let xm be the median of the x-coordinates of B ′

2 Intra-Blockage-Insert-Median({(x,y) ∈ B ′ : x < xm} ,A,Ah,Av,L)
3 foreach p = (x,y) ∈ B ′ increasing in y do
4 if (xm,y) ∈ A and (xm,y) is visible from p then
5 if p ∈ A◦

h ∪A◦
v or (xm,y) /∈ A◦

h ∪A◦
v then

6 Add node (xm,y) and edge {(xm,y),p}
7 if ∃ previous node (xm,y ′) on the median visible from (xm,y) and

[(xm,y), (xm,y ′)] is contained in A then
8 Connect (xm,y) with (xm,y ′)

9 else if (xm,y) ∈ A◦
h then

10 Let (xl, xr) ∋ xm be max. interval s.t. (x ′,y) is blocked by
horizontally-restricted obstacles for all x ′ ∈ (xl, xr)

11 s := arg max {∥p− p ′∥ : p ′ ∈ {(xl,y), (xr,y)}}
12 r := arg min {∥p− p ′∥ : p ′ ∈ {(xl,y), (xr,y)}}
13 if r and s are visible from p then
14 Add r and connect with p
15 Add s and connect with r
16 Intra-Blockage-Insert-Median({(x,y) ∈ B ′ : x > xm} ,A,Ah,Av,L)
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Algorithm 6: Computation of a visibility graph
Input: An RDRST instance (S,A,Ah,Av,L).
Output: A visibility graph that contains a shortest feasible path

between every pair of terminals.
// Preprocessing

1 Compute connected components of A
2 K := {corners of A,Ah,Av}

3 Compute projection and escape points for all x ∈ K

4 B := S∪K∪
⋃

x∈K{projection and hor./ver. escape points for x}
5 Compute horizontal visible intervals for each p ∈ B.

// Inter-blockage graph computation
6 B ′ := {p ∈ B \A◦}.
7 Ginter := (B ′, ∅)
8 Run Inter-Blockage-Insert-Median(B ′,A,Ah,Av,L) on Ginter

9 Connect points on the contour of A in G

// Intra-blockage graphs and visibility graph computation
10 Gvis := Ginter

11 foreach Z connected component of A do
12 B ′′ := (B \ S)∩Z
13 Gintra := (B ′′, ∅)
14 Run Intra-Blockage-Insert-Median(B ′′,A,Ah,Av,L) on Gintra

15 Connect points on the contour of Ah ∩Z in Gintra

16 foreach p ∈ B ′′ on the boundary of A do
17 Compute a shortest-path tree in Gintra with root p
18 foreach q ∈ B ′′ on the boundary of A do
19 if dist(p, q) ⩽ L then
20 Add edge {p,q} to Gvis of weight dist(p, q)
21 return Gvis

Inter-blockage
graph

Intra-blockage
graphs

Resulting
visibility graph

with edges from
the inter-blockage
graph (black) and

intra-blockage
graphs (yellow)

Extracted Steiner
tree

Figure 47: Result of the algorithm with terminals (green) and other base
points (white).
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these subpaths are contained (in an equivalent form) in the graph
Gvis computed by Algorithm 6.

For i ∈ {0, ...,n− 1} let s0 = ri, s1, ..., sm−1, sm = ri+1 be the base
points on Pi. Consider three cases (Figure 48):

1. Pi is not completely covered by a length-restricted obstacle:

By definition of ri and ri+1 none of the s1, ..., sm−1 can be a tran-
sition point of Pi from unblocked to blocked area. Furthermore,
none of these points can be located in the interior of length-
restricted obstacles, because otherwise Pi would be completely
covered by Corollary 69. Hence none of the subpaths P[sj,sj+1]

(j = 0, ...,m− 1) is completely covered. Because in addition all
the P[sj,sj+1] are ℓ1-paths and sj, sj+1 have free bounding box, sj
and sj+1 (j = 0, ...,m− 1) are connected by the Inter-Blockage-
Insert-Median function on line 8 and through the obstacle con-
tours computed in line 9.

2. Pi is completely covered by a length-restricted obstacle and
passes through a base point in the interior of that obstacle:

We can assume ri and ri+1 to be non-terminal base points
by Corollary 69. For j = 0, ...,m − 1 the points sj, sj+1 can
be connected by a feasible ℓ1-path and their bounding box is
free. Hence, the graph Gintra computed in lines 14 and 15 of
the algorithm contains ℓ1-paths between successive base points
s0, ..., sm. Thus the shortest-path tree with root ri computed in
the loop in line 17 contains a path from ri to ri+1 of length at
most L. Hence an edge from ri to ri+1 is added to Gvis.

3. Pi is completely covered by a length-restricted obstacle but does
not pass any base point in the interior of that obstacle:

The bounding box of ri and ri+1 must be free. If the points
are on the same horizontal or vertical line they are connected
by the Inter-Blockage-Insert-Median function on line 8. Other-
wise ri and ri+1 must be located on corner points which, as
non-terminal base points on the boundary of A, are going to
be connected through the intra-blockage graph of that obstacle
component (like in the previous case).

5.3.2 Extraction of the Steiner Tree

The extraction of the Steiner tree is based on the same approach as in
[25]. Given a visibility graph Gvis = (V ,E) for the terminal set S, we
are now interested in extracting a Steiner tree. Since Gvis is shortest-
path preserving, any minimum terminal spanning tree routine will
provide an approximation guarantee of two. In our implementation,
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Figure 48: Completely covered subpaths (yellow), remaining subpaths
(green).

Steiner trees are found in O (|E| log |E|) time using the Dijkstra-Kruskal
approach from [40]. We also applied Mehlhorn’s algorithm [44], with
a faster running time of O (|E|+ |V | log |V |), but found it slower in
practice. This Steiner tree is a 2-approximation of an optimal RDRST,
because it is at most as long as a reach- and direction-aware minimum
spanning tree. In fact, since Steiner points on obstacles are forbidden,
it is a 2-approximation algorithm for a less restrictive version of the
problem wherein the longest path across blocked area has length ⩽ L,
since both problems coincide for minimum spanning trees and our
solution is feasible for both.

Extending [6, 25], we improve the computation of the Steiner tree
as follows. The minimum terminal spanning tree routine from [40]
starts with a forest consisting of the terminals. It uses two heaps: one
for propagating the distances from the terminals and one for con-
necting terminals of different components by shortest paths. This is
sufficient for a minimum terminal spanning tree, but a shorter length
might be achievable by adding shortest paths between tree compo-
nents and not only between terminals. This can be done only if Steiner
nodes that were added to the tree are relabeled and propagated with
distance zero. Doing this can result in a runtime of Θ (|V ||E| log |V |),
since Θ(|V |) times components are connected, each resulting in an
effort of Θ(|E| log |V |) for repropagating distances in the worst case.
However, we found that with this approach in practice the runtime
only slightly increases while the extracted Steiner tree gets signifi-
cantly shorter (see Table 13).

5.3.3 Running Time

Let k := |B| denote the number of base points. If we assume the inte-
rior of all rectangles in R∪Rh ∪Rv are pairwise disjunct (apart from
fully blocked obstacles that are modeled by two identical rectangles
in Rh and Rv), then k is linear in the input size |R|+ |Rh|+ |Rv|+ |S|.

Pre-processing can be done with sweeplines in time O(k · logk).
During the computation of the inter-blockage graph each base point
is in the input of at most O(logk) calls of the Inter-Blockage-Insert-
Median function. Hence, the loop in the Inter-Blockage-Insert-Median
function is executed O(k · logk) times, each of which needs time
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O(logk) through the use of the sweeplines. In total, the running time
is O

(
k · (logk)2

)
. In each loop pass a constant number of edges and

nodes is added to Ginter, thus Ginter has a size of O(k · logk).
Let Z be a connected component of A (that is, Z is a length-

restricted obstacle) and |Z| the number of non-terminal base points on
its boundary and its interior. Analogously to the computation of the
inter-blockage graph the computation of the intra-blockage graph for
Z needs time O

(
|Z| · (log |Z|)2

)
, since only obstacles and base points of

the current component have to be considered. The constructed graph
Gintra has O(|Z| · log |Z|) nodes and edges, which is why a call of Dijk-
stra consumes time

O (|Z| · log |Z| · log(|Z| · log |Z|)) = O
(
|Z| · (log |Z|)2

)
All O(|Z|) calls of Dijkstra need O

(
|Z|2 · (log |Z|)2

)
time in total. At

most O
(
|Z|2

)
edges, and no additional nodes are added to the graph

Gvis.
Denote by l the maximum size of a connected component, then the

computation of all intra-blockage graphs takes time

O

 ∑
Z connected
component

|Z| · l · (log l)2

 = O
(
kl · (log l)2

)
and O(kl) edges are added to Gvis. Moreover, Gvis contains O(k · logk)
nodes and edges from Ginter, amounting to a total number of O(k ·
logk) nodes and O(k · logk+ kl) edges.

The total running time can be estimated by

O
(
k · (logk)2 + kl · (log l)2

)
= O

(
kl · (logk)2

)
.

The time of the final extraction of the Steiner tree, without repropa-
gating labels from added Steiner points as described in Section 5.3.2,
also amounts to O

(
kl · (logk)2

)
. If k is the only upper bound on l,

the final runtime is O
(
k2 · (logk)2

)
. Otherwise, if l is assumed to be

constant the final runtime is O
(
k · (logk)2

)
, which is the same as in

the obstacle-avoiding case [16].

5.3.4 Post-Processing

The length of the extracted Steiner can be reduced significantly
through heuristic post-processing (Table 13). We apply an edge sub-
stitution method followed by geometric local recomputations of the
Steiner tree.

5.3.4.1 Edge Substitution

Given the visibility graph Gvis and the extracted Steiner tree T , divide
T at nodes of degree at least three and at the terminals into path
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Figure 49: Adding edge e and the shortest paths from its end points to the
tree allows the deletion of the longest path segment f on the path
from path segment a to b.

segments (in Figure 49 each path segment of T is colored differently).
Consider some edge e ∈ E(Gvis) that is not part of T and for which the
nearest path segments a,b to each of its end points are not identical.
Removing the longest path segment f on the tree path from a to b
and adding the edge e and the shortest paths from e to a and e to b,
T remains a tree (see Figure 49). The weight decreases by

gain(e,a,b,f) := length(f) − length(e) − dist(e,a) − dist(e,b)

(e,a,b, f) is called a substitution candidate. We look for all sub-
stitution candidates with positive gain and sort them in descending
order by gain. Then we employ all substitution candidates (e,a,b, f)
one by one if the path segments a,b and f have not been removed
during an earlier substitution. If a,b and f are still part of the tree, it
can be shown that f must still be on the unique path from a to b, as-
suming a fixed order of path segments of equal length. Therefore, ap-
plying the substitution candidate (e,a,b, f) leaves the tree connected
and achieves the gain that was computed before sequentially apply-
ing the substitution candidates. The whole procedure can be iterated,
though in our experiments more than two iterations were not worth
the additional runtime. This heuristic was described in [20] (p. 57) as
a generalization of the edge substitution heuristic in [43]. Two itera-
tions of this heuristic substantially improve the length of the Steiner
tree as can be seen in Table 13.

Checking whether a path segment has been removed during an
earlier substitution can be done in constant time. Finding the longest
edge on the tree path between two nodes can be described as the
following problem:

Problem 74. Online Maximum Cost Edge on Tree Path

Input: A weighted Steiner tree T .
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Figure 50: Edge-weighted tree as sample instance for the maximum cost on
tree path problem. The edge with weight three is the most ex-
pensive edge on the path from a to b, and it is contained in Ka

(ellipses denote components of directed edges).

Output: An oracle that, for any pair of nodes a,b ∈ V(T), returns
the most expensive edge on the unique path from a to b in T .

Using a pre-processing time of O(|V(T)| · log |V(T)|), [31] shows how
to obtain such an oracle that answers queries in time O(log |V(T)|).
Together with an initial shortest path search in V(Gvis) starting at all
nodes of T to find the nearest path segments for each edge e ∈ V(Gvis)

we obtain a total running time of O(|E(Gvis)| · log |V(Gvis)|) for one
edge substitution iteration.

As a side node, the pre-processing time in the result from [31] for
the maximum cost edge on tree path problem can be improved as
follows:

Theorem 75. Let T a weighted Steiner tree. After a pre-processing time of
O(|V(T)|), for any two nodes a,b ∈ V(T) the most expensive edge on the
path from a to b in T can be found in time O(log |V(T)|).

Proof. Unlike [31] we do not initially sort the edges of T by weight. In-
stead, we perform the algorithm that is described in [31] for intuition
only:

For each node u ∈ V(T) we direct its cheapest incident edge e
away from u and set edge(u) := e. This way, some edges remain
undirected, some become unidirected and some bidirected (Figure
50). Now consider the subgraph of T that contains all uni- and bidi-
rected edges. Each connected component K in this subgraph consists
of one bidirected edge e and two, possibly empty, anti-arborescences
attached to its endpoints. Let T ′ the tree that arises from T by col-
lapsing each such connected component K to a single node q and set
parent(u) := q for each node u ∈ K. Because each connected compo-
nent contains one bidirectional edge, it is |V(T ′)| ⩽ |V(T)|/2.
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This procedure is repeated iteratively. One iteration requires linear
running time, and because after each iteration the tree size halves at
least, the total running time amounts to O(|V(T)|).

Queries are performed the same way as in [31]: Let a,b ∈ V(T). We
return the more expensive edge of edge(a), edge(b), and the most
expensive edge on the path from parent(a) to parent(b) in the con-
tracted tree T ′. The latter can be found recursively with the same
procedure and since each of the contracted trees has at most half the
size of its predecessor, the depth of this recursion is O(log |V(T)|).

To prove correctness, let Ka,Kb be the connected components in
the subgraph of T consisting of unidirectional and bidirectional edges
with a ∈ Ka and b ∈ Kb. Let e = (v,w) the most expensive edge on
the path from a to b.

First assume that e ∈ Ka ∪Kb. That means that e is directed and it
is the cheapest incident edge for one of its endpoints. Because e is the
most expensive edge on the path from a to b, e must be incident to
a or b and it is the cheapest incident edge of that node. Without loss
of generality assume that e is incident to a (Figure 50). The incident
edge to b that is on the path from b to a is either e or a cheaper edge.
Therefore the more expensive edge of edge(a) and edge(b) equals the
most expensive edge on the path from a to b.

Now consider the case that e /∈ Ka ∪ Kb. Thus, e is located on the
path from parent(a) to parent(b) in the contracted tree T ′ on which
we find it recursively. a and b must both be incident to cheaper edges
which is why edge(a) and edge(b) are both cheaper than e, proving
correctness also in this case.

5.3.4.2 Geometric Optimizations

In this section we describe the way in which we recompute local un-
blocked components of the Steiner tree, taken from [25]. Since the visi-
bility graph only contains certain shortest paths, we found that a com-
bination of simple local search heuristics can significantly improve
the result for most instances. Especially in practical instances, we of-
ten encountered large clusters of terminals in an unblocked area. For
those, any (obstacle-unaware) Steiner tree algorithm could be used
instead. Therefore, during post-processing, we collect maximal com-
ponents of the constructed tree with unblocked bounding box and
reconnect them using the exact FLUTE algorithm [15] for up to 9 ter-
minals and a Prim heuristic in the Delaunay triangulation for larger
terminal sets.

Furthermore, there are some nonoptimal local configurations, such
as trunks with more branches on one side and L-shapes that can be
mirrored to decrease the length. They can be found and processed
efficiently for the entire tree by changing the edge structure locally if
the resulting tree is feasible.
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This procedure can be iterated for better results; in our experience,
a good trade-off of running time and solution quality is achieved
by one iteration for chip instances and two iterations for benchmark
instances (Table 13).

plain + repropagation + 2x edge substitution + 2x postopt

Instance length time length time length time length time

IND1 665 0,00 642 0,00 632 0,00 632 0,00

IND2 10700 0,00 10700 0,00 10600 0,00 10500 0,00

IND3 696 0,00 688 0,00 680 0,00 670 0,00

IND4 1196 0,00 1163 0,00 1163 0,00 1145 0,00

IND5 inf. 0,00 inf. 0,00 inf. 0,00 inf. 0,00

RC01 29040 0,00 28230 0,00 27970 0,00 26660 0,00

RC02 44810 0,00 44000 0,00 42880 0,00 42270 0,00

RC03 58510 0,00 57250 0,00 56060 0,00 54470 0,00

RC04 62790 0,00 62300 0,00 61000 0,00 60100 0,00

RC05 81660 0,00 79580 0,00 78050 0,00 75300 0,01

RC06 89072 0,03 84835 0,03 82565 0,06 80719 0,05

RC07 119002 0,02 116043 0,03 114272 0,05 111419 0,05

RC08 126517 0,04 120691 0,05 118387 0,08 115358 0,08

RC09 121381 0,05 118242 0,05 116081 0,11 113118 0,11

RC10 181820 0,02 178160 0,01 173600 0,03 167840 0,03

RC11 254111 0,02 250244 0,02 243734 0,06 234542 0,07

RC12 834103 0,76 802694 0,97 786445 1,76 765277 1,85

RL01 520700 0,43 507575 0,54 497957 1,22 482599 1,13

RL02 691479 0,21 682818 0,26 665927 0,86 636527 0,89

RL03 694918 0,28 687170 0,25 669350 0,82 638864 0,94

RL04 756458 0,30 748095 0,25 728209 0,91 694676 1,02

RL05 729978 0,04 729978 0,04 729978 0,04 723191 0,12

RT01 2342 0,04 2272 0,03 2236 0,04 2211 0,04

RT02 51510 0,04 49269 0,04 48354 0,04 47142 0,05

RT03 8973 0,04 8620 0,03 8405 0,04 8190 0,05

RT04 10944 0,06 10470 0,06 10221 0,09 9992 0,09

RT05 57595 0,14 55109 0,16 54046 0,24 52957 0,25

Total 5540970 2,54 5436838 2,84 5328802 6,48 5156369 6,86

100,00% 100,00% 98,12% 111,70% 96,17% 254,48% 93,06% 269,55%

Table 13: Increase of running time and decrease of length by the repropaga-
tion technique, the edge substitution heuristic and the geometric
postopt routines, performed consecutively. See Section 5.4 for more
details on the test setup.

5.3.5 Multiple Nets

This section also originates from [25]. As already seen, there can be
millions of nets on one chip. Many nets consist of only two or three
terminals and it would be too time-consuming to compute the visibil-
ity graph from scratch for each net. Because the set of obstacles usu-
ally is persistent, we proceed as follows when processing all nets of a
chip: Some pre-processing steps are independent of the terminal set
and can be pre-computed for all nets. Using this information, we con-
struct an obstacle visibility graph, i.e. a visibility graph for an empty



5.4 experimental results 129

set of terminals. This obstacle graph can be extended to a visibility
graph for a given set of terminals by inserting a new median line
through every terminal and connecting all unblocked obstacle base
points and other terminals to this line (if possible). This preserves the
visibility graph invariant of having a median line between each pair
of base points with free bounding box containing an ℓ1-path between
them. Note that we do not have to connect terminals to base points
on length-restricted obstacles, because by Corollary 69 for any pair of
terminals we can find a shortest path which, if it crosses a blocked
base point, enters that obstacle on another base point. In particular
the terminals themselves must not lie on obstacles by our definition
of the problem.

This construction is most useful if a net has few terminals and L
is small. In our experience, the number of terminals for which this
construction is applied should be less than logarithmic in the number
of obstacles and linear (with a very small slope) in L. For sufficiently
large L, constructing an l1-Steiner tree built by an obstacle-unaware
heuristic initially and checking feasibility leads to better results and
running times of our algorithm.

5.4 experimental results

We performed experiments on standard benchmarks from the litera-
ture for the obstacle-avoiding Steiner tree problem, along with some
very big practical chip instances. Those tests were carried out on an
Intel® Xeon® E5-2667 v2 CPU @ 3.3GHz, 384 GB RAM with 16 cores.
Moreover we applied our algorithm in BonnRouteGlobal to compute
lower bounds on the wire length and via number of nets. Those ex-
periments were carried out on an AMD®EPYC®7601 CPU @ 2.7GHz,
512 GB RAM with 32 cores.

5.4.1 Standard Benchmarks

The standard benchmarks include the following instances: IND1-
IND5 are industrial test cases by Synopsys, RC01-RC12 are randomly
generated instances by Feng et al. [19], RL01-RL05 are large random
instances by Long et al. [43] and RT01-RT05 have a fixed ratio of ter-
minals to obstacles of 5, 10 and 50 and were introduced by Lin et al.
[37].

The instances are given as sets of rectangles whose union represents
the blocked area. In most of them, no obstacle has both width and
height exceeding 10% of the size of the bounding box of the whole in-
stance. To obtain instances with direction-restrictions we once turn all
the obstacles into into horizontally-, and once into vertically-restricted
obstacles.
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Opt [29] [39] [3] [41] [14] (seq.) [25] Ours (L = 0)

Instance |S| |O| length time length time length time length time length time length time length time

IND1 10 32 604 0,11 626 1 604 0 604 0 619 0,01 629 0,01 632 0,00

IND2 10 43 9500 0,25 9700 1 9500 0 9600 0 9500 0,03 10600 0,00 10500 0,00

IND3 10 50 600 0,19 600 1 600 0 600 0 600 0,01 678 0,00 670 0,00

IND4 25 79 1086 0,87 1095 2 1129 0 1092 0 1096 0,01 1160 0,01 1145 0,00

IND5 33 71 1341 1,03 1364 2 1364 0 1374 0 1360 0,01 inf. 0,00 inf. 0,00

RC01 10 10 25980 0,16 26740 1 25980 0 26040 0 25980 0,04 27360 0,00 26660 0,00

RC02 30 10 41350 0,52 42070 1 42110 0 41570 0 42010 0,09 42830 0,00 42270 0,00

RC03 50 10 54160 0,68 54550 1 56030 0 54620 0 54390 0,08 55160 0,01 54470 0,00

RC04 70 10 59070 0,95 59390 1 59720 0 59860 0 59740 0,09 60010 0,00 60100 0,00

RC05 100 10 74070 1,31 75430 1 75000 0 74770 0 74650 0,07 74930 0,01 75300 0,01

RC06 100 500 79714 335 81903 17 81229 0,03 81854 0,02 81607 0,38 85077 0,03 80719 0,05

RC07 200 500 108740 541 111752 26 110764 0,03 111211 0,03 111542 0,75 114211 0,03 111419 0,05

RC08 200 800 112564 24170 118349 43 116047 0,05 116132 0,04 115931 1,35 120554 0,06 115358 0,08

RC09 200 1000 111005 14174 114928 49 115593 0,06 113559 0,05 113460 1,75 118041 0,06 113118 0,11

RC10 500 100 164150 176 167540 16 168280 0,02 167460 0,01 167620 0,3 168720 0,03 167840 0,03

RC11 1000 100 230837 706 234097 21 234416 0,03 236018 0,02 235283 0,94 237088 0,05 234542 0,07

RC12 1000 10000 n.a. n.a. 780528 681 756998 1,19 762435 1,2 761606 147,14 795269 0,9 765277 1,85

RL01 5000 5000 n.a. n.a. n.a. n.a. 483027 1,15 n.a. n.a. 481813 27,39 494238 0,73 482599 1,13

RL02 10000 500 n.a. n.a. n.a. n.a. 637753 1,18 n.a. n.a. 638439 23,3 641150 0,6 636527 0,89

RL03 10000 100 n.a. n.a. n.a. n.a. 640902 1,13 n.a. n.a. 642380 21,47 643309 0,59 638864 0,94

RL04 10000 10 n.a. n.a. n.a. n.a. 697125 1,57 n.a. n.a. 699502 27,72 697993 0,58 694676 1,02

RL05 10000 0 n.a. n.a. n.a. n.a. 728438 0,12 n.a. n.a. 730857 31,08 729978 0,07 723191 0,12

RT01 10 500 2146 25 2259 17 2191 0 2193 0,01 2231 0,19 2283 0,02 2211 0,04

RT02 50 500 45852 31 48684 18 48156 0,02 47488 0,02 47297 0,64 49821 0,03 47142 0,05

RT03 100 500 7964 840 8347 20 8282 0,03 8231 0,02 8187 0,23 8387 0,03 8190 0,05

RT04 100 1000 9693 34521 10221 40 10330 0,06 9893 0,04 9914 0,43 10609 0,06 9992 0,09

RT05 200 2000 51313 276621 53745 78 54598 0,15 52509 0,12 52473 3,38 55760 0,13 52957 0,25

Table 14: Comparison of wire lengths and running times on standard benchmark instances with results from [29], [39], [3], [41], [14] and [25]. We use
the same more restrictive interpretation of obstacles as [25] which is why [25] and our algorithm considers IND5 infeasible.
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Figure 51: Our solution for IND5 with L = 5% instance width. In the upper
right corner there is a vertex surrounded by a ring of obstacles
making this instance infeasible for small L.

Table 14 compares our lengths and running times with other publi-
cations for the case L = 0. At the cost of slightly higher running time,
we improve significantly on many instances compared to [25], on
which this work is based on. In comparison with [3] and [14], which
are the only other publications that also solve the RL instances, we
solve 14 respectively 11 instances better. Our running times are simi-
lar to those of [3] and much faster than [14]. Optimum lengths are re-
ported from [29]. They have a slightly different definition of obstacle-
avoiding. Edges between two rectangles that share a boundary may
be used, whereas with our definition they would pass through the
interior of the blocked area and thus not be obstacle-avoiding. This
is why, for any L < ∞, their Steiner trees can be strictly shorter than
the optimum according to our definition. Furthermore, our algorithm
solves a more general problem.

There are some larger instances for which the optimum solution
is not known. Our algorithm is able to improve on the best-known
solution from literature for L = 0, even with our stricter definition
of being obstacle-aware. Our definition renders IND5 infeasible for
small L (⩽ 1% of the bounding box), as can be seen in Figure 51

where there is a vertex surrounded by obstacles.
Table 15 shows the lengths of RDRSTs found by our algorithm for

different values of L, relative to the length of the longer side of the
bounding box of the instance including obstacle corners. One can
see that, usually, the tree length gradually decreases with increasing
value of L. As expected, if all obstacles are turned horizontally- or
vertically-restricted, the lengths become generally longer due to the
more restricted instances.

The reported running times are generally fast and typically increase
with growing L because more and more edges reaching over obstacles
are added. For L = ∞ and without direction restrictions on the obsta-
cles the running times are fastest, since in that case the obstacles can
be completely ignored.
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Reach length Running time in seconds

Instance L = 0 1% 5% 10% ∞ L = 0 1% 5% 10% ∞
IND1 632 632 609 609 609 0.00194 0.00178 0.00091 0.00102 0.00009

IND1 (hor) 614 614 609 609 609 0.00248 0.00229 0.00153 0.00181 0.00231

IND1 (ver) 614 614 618 618 623 0.00226 0.00228 0.00308 0.00328 0.00363

IND2 10500 10500 9100 9100 9100 0.00215 0.00218 0.00149 0.00199 0.00013

IND2 (hor) 10600 10600 9600 9700 9700 0.00339 0.00322 0.00414 0.00546 0.00621

IND2 (ver) 10600 10600 9600 9600 9600 0.00325 0.00324 0.00450 0.00612 0.00700

IND3 670 670 600 587 587 0.00215 0.00217 0.00230 0.00160 0.00010

IND3 (hor) 670 670 600 600 600 0.00345 0.00335 0.00388 0.00463 0.00642

IND3 (ver) 670 670 626 621 625 0.00330 0.00333 0.00398 0.00456 0.00726

IND4 1145 1145 1090 1090 1092 0.00347 0.00328 0.00468 0.00586 0.00023

IND4 (hor) 1145 1145 1101 1095 1092 0.00517 0.00505 0.00785 0.00966 0.01353

IND4 (ver) 1145 1145 1105 1110 1110 0.00505 0.00527 0.00731 0.01013 0.01376

IND5 inf. inf. 1331 1323 1312 0.00387 0.00375 0.00461 0.00542 0.00029

IND5 (hor) inf. inf. 1335 1330 1330 0.00573 0.00583 0.00703 0.00916 0.01039

IND5 (ver) inf. inf. 1368 1365 1365 0.00544 0.00549 0.00676 0.00900 0.01048

RC01 26660 26660 25290 25290 25290 0.00133 0.00118 0.00047 0.00055 0.00011

RC01 (hor) 26040 26040 25550 25550 25550 0.00145 0.00136 0.00141 0.00153 0.00174

RC01 (ver) 26040 26040 25780 25780 25780 0.00138 0.00136 0.00167 0.00154 0.00190

RC02 42270 42270 41620 40430 41330 0.00202 0.00210 0.00211 0.00232 0.00032

RC02 (hor) 42280 42280 42020 40750 40720 0.00228 0.00231 0.00229 0.00236 0.00247

RC02 (ver) 42280 42280 42280 42100 42100 0.00225 0.00215 0.00233 0.00232 0.00262

RC03 54470 54470 53050 53360 52470 0.00298 0.00300 0.00299 0.00309 0.00065

RC03 (hor) 54360 54360 54360 54270 54250 0.00342 0.00330 0.00346 0.00346 0.00349

RC03 (ver) 54360 54360 52740 52740 53060 0.00342 0.00338 0.00351 0.00363 0.00372

RC04 60100 60100 56960 55830 55330 0.00373 0.00366 0.00364 0.00370 0.00091

RC04 (hor) 60150 60150 59660 58950 58950 0.00440 0.00422 0.00425 0.00428 0.00428

RC04 (ver) 60150 60150 57590 57590 57590 0.00425 0.00434 0.00429 0.00448 0.00486

RC05 75300 75300 73050 72860 71610 0.00511 0.00528 0.00565 0.00556 0.00125

RC05 (hor) 75070 75070 73600 73350 73350 0.00579 0.00560 0.00558 0.00580 0.00600

RC05 (ver) 75070 75070 74800 74800 74300 0.00549 0.00540 0.00553 0.00546 0.00600

RC06 80719 80920 79118 78720 77472 0.04733 0.04580 0.06157 0.06452 0.00089

RC06 (hor) 80726 80588 79379 79379 79379 0.06279 0.06435 0.07302 0.07238 0.06919

RC06 (ver) 80726 80220 79735 79815 79815 0.05828 0.06328 0.07650 0.07911 0.07810

RC07 111419 109151 107746 107675 107190 0.05022 0.05346 0.07137 0.09688 0.00212

RC07 (hor) 112072 109428 108374 108264 108264 0.11754 0.11226 0.08756 0.12194 0.12852

RC07 (ver) 112072 110880 109583 109583 109583 0.11049 0.11572 0.14500 0.14498 0.14180

RC08 115358 112271 110212 110038 109589 0.10493 0.13243 0.17966 0.18242 0.00221

RC08 (hor) 115577 114528 113292 113560 113560 0.16977 0.17116 0.19385 0.18155 0.17006

RC08 (ver) 115577 113361 112281 112266 112266 0.15269 0.18101 0.20803 0.18239 0.14994

RC09 113118 111616 108688 108663 107561 0.10055 0.13664 0.20710 0.17206 0.00193

RC09 (hor) 114126 113146 110638 111217 111217 0.16382 0.20378 0.18215 0.17594 0.16056

RC09 (ver) 114126 112813 111260 111559 111559 0.13636 0.18721 0.23878 0.23708 0.23803

RC10 167840 167840 164430 165260 164570 0.03167 0.03289 0.03520 0.03977 0.00548

RC10 (hor) 167990 167990 166020 165990 165990 0.03753 0.03714 0.03735 0.03936 0.03997

RC10 (ver) 167990 167990 166820 166670 166670 0.03721 0.03670 0.03980 0.04205 0.04259

RC11 234542 234267 234144 234144 230651 0.06828 0.06996 0.07590 0.07333 0.01203

RC11 (hor) 234716 235062 234523 234523 234523 0.07343 0.07656 0.07824 0.08579 0.08407

RC11 (ver) 234716 234733 234498 234498 234498 0.07477 0.07821 0.07860 0.09495 0.07716

RC12 765277 762584 762584 762584 754414 2.14789 2.90277 2.75320 2.81839 0.01107

RC12 (hor) 768418 762736 762736 762736 762736 3.36088 3.92927 3.61235 3.63293 3.46926

RC12 (ver) 768418 763800 763800 763800 763800 2.55562 2.98395 3.12483 2.97985 2.98284

RL01 482599 476846 476719 476795 472780 1.49863 2.12899 2.29964 2.51280 0.06394

RL01 (hor) 482970 479907 479471 479832 479675 1.92268 1.90503 2.10141 2.11231 2.08375

RL01 (ver) 482970 479484 479719 480134 480004 1.95358 2.37386 2.58948 2.86925 2.81634

RL02 636527 636506 636728 636689 634123 1.27647 1.39860 1.52954 1.62878 0.19333

RL02 (hor) 636606 636685 636656 636638 636714 1.39796 1.42677 1.49955 1.41780 1.49021

RL02 (ver) 636606 636439 636305 636434 636509 1.37749 1.48312 1.69129 1.70332 1.74625

RL03 638864 638466 638264 638420 636541 1.34251 1.27189 1.36364 1.32884 0.17625

RL03 (hor) 638966 638739 638668 638850 638926 1.36539 1.36683 1.12059 1.27097 1.38710

RL03 (ver) 638966 638625 638644 638476 638659 1.39409 1.36182 1.37702 1.14170 1.19863

RL04 694676 694676 691661 691661 691670 1.32500 1.24035 0.16418 0.16173 0.14405

RL04 (hor) 694620 694620 691661 691661 691661 1.29650 1.39276 0.22096 0.19360 0.22246

RL04 (ver) 694620 694620 694501 694506 694403 1.20327 1.23502 1.29069 1.20884 1.43502

RL05 723191 723191 723191 723191 723191 0.16037 0.13078 0.14535 0.23667 0.13193

RL05 (hor) 723191 723191 723191 723191 723191 0.15051 0.17756 0.15985 0.18324 0.15058

RL05 (ver) 723191 723191 723191 723191 723191 0.14171 0.13356 0.13538 0.14091 0.13790

RT01 2211 1857 1817 1817 1817 0.04765 0.04223 0.01703 0.01739 0.00012

RT01 (hor) 2214 1996 1962 1938 1938 0.05312 0.05774 0.06975 0.06098 0.06787

RT01 (ver) 2214 2097 2095 2094 2095 0.05088 0.05720 0.06808 0.06719 0.08034

RT02 47142 45154 45747 45747 45747 0.04996 0.05458 0.01561 0.01676 0.00051

RT02 (hor) 47252 45992 46148 46460 46460 0.06127 0.07020 0.06893 0.07824 0.06907

RT02 (ver) 47252 46510 46256 46063 46063 0.05971 0.07014 0.07112 0.08584 0.10514

RT03 8190 7749 7690 7728 7697 0.04849 0.06041 0.07281 0.07194 0.00110

RT03 (hor) 8162 8005 8002 7992 7992 0.08168 0.09123 0.08539 0.09323 0.08020

RT03 (ver) 8162 7957 7961 7993 7993 0.06712 0.07297 0.08278 0.08440 0.10331

RT04 9992 7880 7788 7788 7788 0.09371 0.13650 0.04900 0.05242 0.00115

RT04 (hor) 10090 8218 8207 8223 8271 0.18067 0.15777 0.16638 0.17339 0.17642

RT04 (ver) 10090 9410 9363 9296 9430 0.12968 0.13517 0.18324 0.18863 0.20825

RT05 52957 44252 44191 43747 43152 0.26029 0.31407 0.36095 0.38126 0.00241

RT05 (hor) 52885 48583 47986 48224 48051 0.32767 0.39366 0.46930 0.49662 0.50661

RT05 (ver) 52885 47250 47111 47074 47259 0.37094 0.38373 0.45282 0.45101 0.52196

Table 15: Results for the standard benchmark instances with different reach
lengths. (hor) denotes runs in which all obstacles have been turned
horizontally-restricted, for (ver) all obstacles have been turned
vertically-restricted.
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Reach length Running time in seconds

Instance |S| |O| L∗ L = 0 L = L∗ ∞ L = 0 L = L∗ ∞
BIG1 109 101 90 31326 31101 28497 0.00828 0.00789 0.00056

BIG1 (hor) 31317 31218 29004 0.01987 0.01637 0.01529

BIG1 (ver) 31317 31152 31134 0.01282 0.01349 0.01447

BIG2 23292 54 2400000 363287646 362221731 361716147 1.13470 1.17664 0.18032

BIG2 (hor) 363216228 363215808 363066843 1.23131 1.24668 1.25541

BIG2 (ver) 363216228 362166693 362254641 1.29920 1.28907 1.35333

BIG3 35574 158 1500000 743030175 743103261 735048651 1.69111 1.75364 0.23441

BIG3 (hor) 742991343 743028063 736149153 1.77393 1.73988 1.94106

BIG3 (ver) 742991343 743106183 743038551 1.76380 1.76184 2.10307

BIG4 46269 127 1500000 1069891260 1069129080 1068441780 2.95649 3.06826 0.42039

BIG4 (hor) 1070206260 1070189820 1070804460 3.13122 3.11375 3.15266

BIG4 (ver) 1070206260 1069568280 1071304440 3.10641 3.02021 3.27745

BIG5 108500 141 4200000 1972388850 1962285570 1957072785 7.58347 8.43931 1.06194

BIG5 (hor) 1971575745 1971720045 1971823395 8.13504 8.30368 8.03928

BIG5 (ver) 1971575745 1962581505 1960243890 8.21008 8.77973 8.51052

BIG6 129399 210 1500000 inf. 2604131070 2603190780 8.35788 10.01026 1.52484

BIG6 (hor) inf. inf. 2649117810 9.70341 9.64304 10.23198

BIG6 (ver) inf. 2605043970 2603567850 9.56935 9.07445 10.53251

BIG7 639639 382 4200000 1.1645e+10 1.1612e+10 1.1603e+10 49.63901 55.10863 7.30162

BIG7 (hor) 1.1643e+10 1.1642e+10 1.164e+10 51.76650 61.53187 56.50063

BIG7 (ver) 1.1643e+10 1.1614e+10 1.1614e+10 59.36982 56.91737 55.32617

BIG8 783352 175 1200000 1.4827e+10 1.4824e+10 1.4816e+10 68.58012 74.95037 9.72992

BIG8 (hor) 1.4827e+10 1.4827e+10 1.4827e+10 75.03546 74.51239 72.38267

BIG8 (ver) 1.4827e+10 1.4824e+10 1.4824e+10 74.42497 78.52251 76.44396

Table 16: Results for the BIG instances arising from chip instances provided
by IBM.

5.4.2 Chip Instances

We created eight instances from chips provided by IBM. They have
between 109 and 783352 terminals. The bigger ones represent reset
trees with low performance requirements, where short length is a
major focus. These instances are published as the BONN instances as
part of the 11th DIMACS benchmark suite on Steiner trees:

http://dimacs11.zib.de/downloads.html

Table 16 shows the resulting lengths for these instances of an
obstacle-avoiding tree (L = 0), for the given reach length L∗ that
depends on the technology and the metal stack of the underlying
chip, and for ignoring all obstacles (L = ∞). Moreover there are runs
with all obstacles being treated as horizontally-restricted or vertically-
restricted. As for the standard benchmark instances, one can observe
that the lengths decrease with growing L, even though major parts
of the length are incurred by unblocked clusters of terminals. As ex-
pected, the additional direction-restrictions make the trees longer. The
running times demonstrate the ability of our algorithm to handle even
the largest instances efficiently.

Figure 52 shows plots of BIG6 for L = L∗. The reach length is to
small to allow the tree passing over the biggest obstacles, but some
wires cross smaller obstacles in the center of the chip. If all obstacles
are horizontally-restricted, BIG6 becomes infeasible.
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Lengths Running times in seconds

Instance |S| |O| L∗ L = 0 L = L∗ no obst. L = 0 L = L∗ no obst.

Net 1 27 6809 158571 3570869 3316044 3241525 0.28605 6.94602 0.00041

Net 2 27 6809 158571 3567062 3310007 3148652 0.29015 6.95211 0.00042

Net 3 30 6809 158571 3635507 3507721 3313738 0.29373 6.95189 0.00044

Net 4 179 6809 158571 6188916 5827283 5737373 0.30901 6.98753 0.00158

Net 5 49 6809 158571 2854609 2635307 2582880 0.28108 6.91907 0.00068

Net 6 49 6809 158571 2845119 2581950 2557111 0.30171 6.92185 0.00059

Net 7 27 6809 158571 3570413 3282960 3246599 0.30061 6.97059 0.00038

Net 8 26 6809 158571 1745077 1665501 1615335 0.26909 6.90393 0.00033

Net 9 26 6809 158571 1954896 1880497 1837458 0.27356 6.92398 0.00035

Net 10 49 6809 158571 2454448 2229314 2144957 0.27614 6.90590 0.00057

Net 11 44 6809 158571 2262645 2080426 2050934 0.27789 6.90964 0.00057

Net 12 31 6809 158571 4038285 3736192 3646412 0.28854 6.95349 0.00041

Table 17: Results for BIG9. This instance contains both horizontally- and
vertically-restricted obstacles.

Figure 52: Result for instance BIG6 with L = L∗ (left). Restricting all obsta-
cles horizontally (orange, right) makes BIG6 infeasible for L = L∗
due to the enclosed terminals (figure shows excerpt only).

Table 17 shows results for several nets of chip BIG9. This chip
contains obstacles reaching to the very top layers, resulting in fully
blocked area. At some places, exactly one layer remains unblocked
creating horizontally- or vertically-restricted obstacles. One can see
that letting the nets cross obstacles in the allowed direction (L = L∗)
reduces the length significantly compared to the obstacle-avoiding
case (L = 0). Figure 53 shows such a net that has to take a large
detour in the latter case.

5.4.3 Computing Lower Bounds in BonnRouteGlobal

This section presents an application of the reach- and direction-res-
tricted Steiner tree problem in global routing. Route costs do not
only comprise congestion and timing costs but also so-called objec-
tive costs, which are accounted per wire length and per via and de-
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Figure 53: Net 4 of BIG9 with L = 0 on the left and L = 158571 on
the right. There are obstacles that are fully-blocked (dark gray),
vertically-restricted (blue), horizontally-restricted (orange), and
length-restricted only (light gray). For L = 158571 the big obstacle
in the center may be crossed vertically, reducing length substan-
tially.

pend on the layer. This is to encourage the creation of short routes
using a small number of vias even if congestion and timing resource
prices are low. As for congestion, BonnRouteGlobal creates a resource
for objective usage [49]. In this way, the overall wire length and via
number can be controlled by the capacity of this resource.

To speed up the resource sharing algorithm, not all nets are
rerouted in every phase [49]. Instead, if the route that was computed
for a net in the previous phase is not much more expensive with re-
gard to the current resource prices compared to the prices of the last
phase, the net is not rerouted. To improve the estimation whether a
net should be rerouted, BonnRouteGlobal computes a lower bound
on the increase of the costs that is unavoidable for any route. Since
for any global routing graph edge there is usually always a possible
route avoiding that edge, the lower bound computation is restricted
to the objective costs.

For a net, let Rlb a route with minimum possible objective resource
usage. During resource sharing, given the costs cold and the route Rold

of the previous iteration and the costs cnew of the current iteration, a
new route for the net is computed only if, for a fixed ϵ > 1,

cnew(Rold) > ϵ ·
(
cold(Rold) + σ

(
cnew|obj(Rlb) − cold|obj(Rlb)

))
(14)

Here, cold|obj denotes the cost function cold restricted to the objective
resource, that is, all other resources have price zero. σ is the approxi-
mation factor of the oracle used in the resource sharing algorithm. If
(14) does not hold the old route Rold is reused in the current iteration,
saving running time. [49] shows that this modified oracle still has an
approximation guarantee of ϵσ.
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BonnRouteGlobal with dynamic local usage computes approxima-
tions for the lower bound routes Rlb by performing a path search on
the global routing graph followed by the post-processing described
in Section 3.3. Only objective costs are considered while congestion
and timing costs are set to zero. We denote the resulting approxi-
mate lower bounds by graph-based initial routing values. This approach
comes with the disadvantage that the global routing graph can be
huge, making the path search slow. If there are only objective costs
the granularity of the global routing graph is not needed. However,
blockages must still be respected. The problem of finding a shortest
coarse route under these circumstances can be formulated as a length-
and direction-restricted Steiner tree problem: We choose points in
the pin shapes as terminals. Let Ln ⊂ L the layers that net n is
allowed to use for routing. Let Al the union of the global routing
graph edge areas on layer l ∈ Ln for which the capacity has been
estimated to be zero due to blockages and wires in the input. We
then set Ah :=

⋂
l∈Ln∩Ly

Al and Av :=
⋂

l∈Ln∩Lx
Al. In this way, Ah

denotes the area where there is no y-dimension layer with a positive
global routing graph edge capacity, implying that the Steiner tree can-
not run in y-dimension in Ah. Analogously, this holds for Av and x-
dimension layers. In the following experiments, we choose L = ∞ as
the reach length because most buffering has already been performed
beforehand.

After solving the reach- and direction-restricted Steiner tree prob-
lem, one can obtain a geometric initial routing value as follows: We
multiply the length of the tree by the minimum objective wire usage
over the routing layers Ln and add the costs of the minimum number
of vias required to reach the routing layers from the pin shapes. How-
ever, in practice, this has been found to be a weak lower bound on
the objective usage, leading to more resource sharing reroutes than
the graph-based initial routing values obtained by the path search.

To improve the geometric approach, the Steiner tree can be embed-
ded into the layers using the algorithm described in Section 3.3.2. This
approach properly considers vias between pin shapes on different lay-
ers and at Steiner points of the tree, while also respecting different
wire objective costs on the layers. However, this is slightly too pes-
simistic since the Steiner tree algorithm does not optimize the number
of corners (in the embedded representation in R2), resulting in more
vias than are obtained by the path search and the post-processing
described in Section 3.3.

To address this issue, we perform the xy-optimization as described
in Section 3.3.1 before embedding the Steiner tree into the layers.
The xy-optimization attempts to embed adjacent Steiner nodes on
the same x- or y-coordinates if doing so incurs the same costs, thus
reducing the number of vias required to embed the route into the
layers.
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Figure 54: Blockages Ah (orange) and Av (blue) on chip C3.

Table 18 presents the results obtained by BonnRouteGlobal with
the dynamic local usage and using the geometric initial routing val-
ues. The geometric initial routing values are almost identical to those
obtained using the graph-based approach. On two instances the initial
routing values of the geometric approach are even shorter, which can
be well-explained by the superior post-optimization of the length re-
stricted Steiner tree routine. An exception are A1 and C3, which have
particularly many large blockages (Figure 54). If a pin is located on
such a blockage, the current implementation of the Steiner tree algo-
rithm connects it to all corners of the boundary of the blockage before
connecting it to the remaining tree. In case of a large blockage, this
might result in sub-optimal Steiner trees if nearby pins are located
on a large blockage. During the computation of the coarse routes,
BonnRouteGlobal adjusts the search-area on the global routing graph
according to the computed initial routing values. If those are very
large, substantial parts of the chip are labeled. This explains the large
running time of the resource sharing algorithm on A1, where a small
number of nets account for large parts of the increase in running time
compared to the graph-based initial routing values, despite the fact
that the number of reroutes is almost the same as with the graph-
based approach.

The geometric initial routing values themselves are computed
much faster than the graph-based initial routing values, in particular
on the largest instance A1. The gain in running time compensates for
the increased resource sharing running time. Moreover, the geomet-
ric approach shows a very small advantage in global routing quality
in terms of wACE4, wire length, and via number. This demonstrates
the feasibility of the geometric initial routing. In combination with a
better handling of terminals on blockages and a slight increase of the
value of ϵ in inequality (14), reflecting the better post-optimization, it
should be possible to bring the number of resource sharing reroutes
and their running time to the same level as in the runs with the graph-
based approach. Altogether, this shows the potential of the length-
and direction-restricted Steiner tree algorithm to deliver as good or
even slightly better initial routing values than the graph-based ap-
proach, with a significantly shorter running time.
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Chip Nets Approach Initial routing time Initial routing value R.S. time R.S. reroutes wACE4 GR Wirelength GR Vias

A1 1783142 Graph-based 02:50:27 1180200 16:33:11 4253149 96.85 302.7398 17442352
Geometric 00:51:58 -69.50% 1181900 +0.14% 18:26:13 +11.38% 4249160 -0.09% 96.88 +0.03% 302.7106 -0.01% 17444899 +0.01%

B1 1732566 Graph-based 00:35:52 133400 03:44:56 6498177 82.41 26.7469 15563943
Geometric 00:32:55 -8.22% 133450 +0.04% 03:43:58 -0.43% 6402371 -1.47% 82.40 -0.01% 26.7485 +0.01% 15558503 -0.03%

B2 1202357 Graph-based 00:23:25 97910 03:01:35 4472815 83.93 19.6469 11209677
Geometric 00:21:07 -9.81% 97910 +0.00% 03:06:49 +2.88% 4512686 +0.89% 83.78 -0.15% 19.6440 -0.01% 11204043 -0.05%

B3 372283 Graph-based 00:08:48 30447 00:31:22 882239 81.31 6.0654 3406589
Geometric 00:07:56 -9.77% 30442 -0.02% 00:34:22 +9.57% 963801 +9.24% 81.31 +0.00% 6.0646 -0.01% 3403339 -0.10%

C1 373556 Graph-based 00:03:56 14144 00:19:55 1216705 81.60 2.1312 3081397
Geometric 00:03:43 -5.51% 14138 -0.04% 00:20:12 +1.38% 1223024 +0.52% 81.61 +0.01% 2.1311 +0.00% 3081275 +0.00%

C2 245161 Graph-based 00:02:44 14915 00:10:23 478578 79.08 2.8789 2009673
Geometric 00:02:28 -10.14% 14917 +0.01% 00:10:39 +2.49% 481811 +0.68% 79.03 -0.05% 2.8783 -0.02% 2009102 -0.03%

C3 147877 Graph-based 00:01:44 10201 00:08:50 341595 77.11 2.0337 1205177
Geometric 00:01:30 -14.10% 10236 +0.34% 00:09:23 +6.25% 363598 +6.44% 76.91 -0.20% 2.0337 +0.00% 1205172 +0.00%

Summary Graph-based 04:06:59 1481217 1d 00:30:16 18143258 83.18 362.2428 53918808
Geometric 02:01:40 -50.74% 1482993 +0.12% 1d 02:31:39 +8.26% 18196451 +0.29% 83.13 -0.05% 362.2108 -0.01% 53906333 -0.02%

Table 18: Results of BonnRouteGlobal with the dynamic local usage on 7nm instances (see Sections 4.1 and 4.2 for more details on the testbed and the
metrics); once with the graph-based and once with the geometric approach using the length- and direction-restricted Steiner tree routine. In
both approaches, this is followed by the xy- and z-optimization. Lower bounds time depicts the running time needed to compute initial routing
values for all the nets (in hours : minutes : seconds); Lower bounds value is the computed value summed over all nets (no unit). All tests were
performed without wires in the input, as they are not supported by the current implementation of the reach- and direction-restricted Steiner
tree algorithm. To make the number of resource sharing phases more stable and to better compare running times, the initial routing values
and the resource sharing algorithm were run single-threaded.
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S U M M A RY

In this thesis we consider the global routing problem which is a cen-
tral task in chip design. Up to millions of sets of pins on a chip, so
called nets, have to be connected through wires without intersecting
each other and meeting many design rules. Global routing operates
on a coarse grid graph modeling a condensed version of the chip, al-
lowing to optimize global objectives. The result is used as guidance
by a detailed routing algorithm to compute the exact wiring.

BonnRouteGlobal, the global router that is developed at the Re-
search Institute for Discrete Mathematics, employs the resource shar-
ing framework from [49] to share available routing space among the
nets and to optimize signal delay through the wires. Traditionally, the
impact on space of shorter wires that connect to pins is pre-estimated
before long connections on the coarse grid graph are computed. In
this thesis we establish a new optimization model, called the dynamic
local usage, in which all wiring can be optimized simultaneously.

We discuss the impact of the dynamic local usage on BonnRoute-
Global and, based on [52, 53], develop algorithms to approximately
optimal embed local wires, that connect to pins, into the chip image
and into the layers. The algorithms implemented consider the current
prices of the resource sharing algorithm and thus fit into the resource
sharing framework. We evaluate the resulting global routing qual-
ity in terms of routability during detailed routing and demonstrate
the capability of the dynamic local usage to persistently improve re-
sults in the routing flow of IBM with better signal delay, shorter wire
length, and less design rule violations. At the time of writing, IBM is
performing tests with the aim of enabling the dynamic local usage as
default.

Another problem that often occurs during routing is the rectilinear
Steiner tree problem. We consider a variant in which we are given a
set of rectangles: Some may not be crossed at all, some only in hor-
izontal direction, and some only in vertical direction. Moreover the
length of any tree component on such a rectangle is bounded. This
models the situation during buffering, which is also an important step
in chip design. To speed up signal propagation, nets are subdivided
by buffers, which must not be placed on top of obstacles, motivating
bounding the length of unbuffered wiring on top of them. Special ob-
stacle structures can make it impossible to place horizontal or vertical
wires.

We present a fast 2-approximation algorithm for this problem. We
provide a more thorough case distinction in the proof of the main
theorem than [6, 25] which this work is based on, closing gaps in the
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previous proofs. Moreover, we slightly improve the extraction of the
Steiner tree and extend the post-optimization by an edge substitution
method from [20]. As a side result, we improve on the pre-processing
time of the algorithm by [31] for the online maximum cost edge on
tree path problem.

At the end, we present an application of the Steiner tree algorithm
for the computation of lower bounds on wire length and via numbers
with the dynamic local usage. The results point out the potential of
our algorithm to generate strong lower bounds significantly faster
than the currently used approach in BonnRouteGlobal.
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