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1 Abstract 

Background: Modifiable risk factors, specifically in this work body composition and 

habitual diet, are of great importance in epidemiology. The metabolome is a rich resource 

to explore biological pathways from modifiable risk factors to markers of metabolic health 

and by extension to health conditions. In three studies, we aimed to identify associations 

between the metabolome of adolescents and young adults and body composition (study 

one) or habitual diet (study two). Additionally, we aimed to replicate previous results on 

associations between the metabolome and markers of metabolic health in adolescents 

and young adults and test the newly discovered associations as mediators in the 

relationship of modifiable risk factors and markers of metabolic health (study three). 

Methods: All three studies were performed in a sub-sample of the DONALD open cohort 

study using untargeted metabolome measurements of the urine (all studies) and blood 

metabolome (studies two and three). We used linear and random forest regression (study 

one), as well as partial least squares regression (study two) to discover new associations 

between the modifiable risk factors and the metabolome. We utilized linear regression to 

replicate metabolites associated in two independent studies from our systematic literature 

review and causal mediation analysis to search for mediators (study three). Where 

applicable, we held the false discovery rate at 5% to correct for multiple testing. We used 

imputation to address missing values and stratified all our analyses by sex. 

Results: We identified 30 metabolites associated with body composition (study one), ten 

of which were associated with both body mass index (BMI) and body fat percentage (BF). 

We identified six metabolites as putative biomarkers of habitual dietary intake and 

replicated one additional marker previously reported by others (study two). We replicated 

ten metabolites associated with markers of metabolic health and identified no potential 

mediators (study three). We observed few overlaps between the sexes suggesting strong 

sex differences in all three studies. 

Conclusion: Our work demonstrated the great potential of exploring the metabolome as 

a rich resource and tool in epidemiology. We additionally proposed that sex-specific 

investigations should be considered in future studies. 
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2 Introduction and aims with references 

2.1 Introduction 

Modifiable risk factors are of great importance in epidemiology (Barbaresko et al., 2018; 

Murray et al., 2020). It has been reported in several studies that many modifiable risk 

factors are important determinants of non-communicable chronic diseases. These are in 

turn the most pressing concern for health care research in Western countries, as their 

impact on population health continues to grow (Yach et al., 2004). Two important 

modifiable risk factors are body composition and habitual diet. 

Body composition (specifically high or very low body fat percentages) has been implicated 

for years as a major contributor to increased incidences of a variety of chronic diseases, 

for example diabetes mellitus type 2 or cardio-vascular diseases (Bendor et al., 2020; Guh 

et al., 2009; Murray et al., 2020). However, in recent years it has become clear that this 

influence is not as simple to explain as increased measures of body composition result in 

increased rates of disease. Evidence shows that it is important to note where fat 

accumulation occurs in the body, with visceral fat being far more disadvantageous 

compared to subcutaneous fat (Power & Schulkin, 2008; Zhang et al., 2015). Independent 

of location, fat tissue is an active metabolic and hormonal agent in the homeostasis of the 

human body (Henry & Clarke, 2008). 

Habitual diet is very similar to body composition regarding its early implication in the 

etiology of different diseases (Barbaresko et al., 2018; Murray et al., 2020). There are 

compelling reasons for this: What humans eat is bound to matter, as we introduce a lot of 

different substances to our body that can have beneficial or harmful effects in the body. 

However, diet differs greatly from body composition in terms of the apparent complexity 

of its measurement. Habitual diet is notoriously hard to measure because it is on one hand 

a very mundane, daily ritual, and on the other hand very flexible and always changing 

according to our needs and (seasonal) availability of foods (Conrad et al., 2018; Naska et 

al., 2017). Measuring precisely how much, when and what someone eats, while avoiding 

observation bias is accordingly a complex challenge. Diet is not only difficult to measure 
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but additionally interwoven with other modifiable risk factors, for example body 

composition. 

With the emergence of -Omics technology, like genomics or proteomics, we are 

continuously improving our understanding of the interactions of the intricate biochemical 

systems in the body (Johnson et al., 2016; Rangel-Huerta et al., 2019; Scalbert et al., 

2014). A relatively recent addition to the -Omics Panel, metabolomics, can give us a 

snapshot of the phenotype expressed at certain times. The metabolome is the collection 

of all molecules or metabolites in a defined bio sample, similar to how the genome is the 

collection of all genes. The metabolome is influenced heavily by environmental stimuli, 

therefore it can have quick responses to these stimuli (Johnson et al., 2016). Some 

metabolites change very rapidly and in the short term, others in a slower fashion. These 

differences represent the changing expression of biochemical pathways due to a 

continuous stimulus, for example body composition or habitual diet (Rangel-Huerta et al., 

2019; Scalbert et al., 2014). 

We have established that body composition and habitual diet are important facets of 

lifestyle that may influence future health outcomes. However, we are not yet able to 

establish how these influences are formulated, more specifically which pathways are 

affected, by how much and when. In order to answer these questions, metabolomics can 

be a useful tool (Naska et al., 2017; Rangel-Huerta et al., 2019; Scalbert et al., 2014). As 

explained above, the metabolome is influenced by external stimuli like habitual diet and 

body composition. For researchers to understand which parts of the metabolome are 

affected by habitual diet and body composition the first step is to understand how these 

changes may help preventing and/or delaying the occurrence of non-communicable 

diseases. A macro level example of this is insulin’s role in the development of type two 

diabetes mellitus (Saini, 2010). Similar mechanisms are bound to be present in the 

etiology of many chronic diseases. An additional benefit for habitual diet is in the ability to 

discover dietary intake biomarkers (Scalbert et al., 2014). As introduced earlier, diet is 

challenging to measure well. However, if dietary assessment can be transitioned into a 

more objective measurement, for example through integrating biomarkers into present 

assessment methods, we might be able to disentangle the complex relationship between 
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health and diet more easily (Conrad et al., 2018; Conrad & Nöthlings, 2017; Scalbert et 

al., 2014). 

We conducted our research in an adolescent and young adult population. In adolescence 

biochemical and physiological processes change in dramatic fashion (Viner et al., 2015). 

Additionally, many adolescence lifestyle habits are carried into adulthood. Because of this 

the period of adolescence in life is specifically of interest to the study of the metabolome 

and its connections to lifestyle. Associations present in adolescence that are replicated in 

adults can further improve our understanding of small changes that have important 

impacts over long periods of time. Adolescence is, however, not studied nearly as much 

as adulthood. This is probably due to the increased burden placed on this research: 

participants are harder to recruit, because not only the participant but parents need to be 

involved and interested, ethical approval is more complex, as children and adolescents 

are under special protections, etc. 

Biological sex has an enormous influence on the biochemical processes that make up the 

metabolites of the metabolome (Clegg & Mauvais-Jarvis, 2018). We can see these 

biochemical differences in many aspects of the literature, be it in metabolic processes 

associated with drugs (Whitley & Lindsey, 2009) or simply in the concentrations of long-

established circulating markers for physiological health (Lew et al., 2017). However, 

current metabolomic literature is not well stratified by sex, most likely to preserve power 

because sample sizes are still small. These sex differences are additionally not only 

present in biochemical realities, but also in our lifestyle, as gender roles and stereotypes 

continue to have a large influence on our behaviors (Esteban-Gonzalo et al., 2020; Sloan 

et al., 2009). Therefore, we stratified all our analyses by sex. 

To summarize, small changes in modifiable risk factors may have a large impact on health 

later in life. We can already see the effects of these changes in conventional markers for 

metabolic health. For these markers we often already have a hypothesis for the 

mechanisms that result in associations. For example, we have a well-defined though not 

complete understanding of the mechanism of blood pressure on the incidence of heart 

disease (Oh & Cho, 2020). We additionally know that both diet (Ndanuko et al., 2016) and 

body composition (Landi et al., 2018) can influence blood pressure levels. The larger 

knowledge gap we have today is in the mechanism between the modifiable exposures 
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and the metabolic health markers. Metabolomics could be an important resource in the 

drive to understand these relationships as well.  

2.2 Aims 

To this end, our overarching aim was to identify and confirm metabolites associated with 

modifiable risk factors and their relationship to markers of chronic disease. To achieve 

this, we defined the following sub-targets: 

1. Identify new metabolites associated with the modifiable risk factors body 

composition (see 3.1 Paper 1) and diet (see 3.2 Paper 2). 

2. Find and replicate putative biomarkers of habitual dietary intake (see 3.2 Paper 2). 

3. Investigate the presence of mediation in these metabolites on the path from lifestyle 

to conventional systemic markers for chronic disease (see 3.3 Paper 3). 

4. Confirm previous associations between the metabolome and conventional markers 

of metabolic health in an adolescent population (see 3.3 Paper 3). 
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Abstract: Epidemiologic studies examining the relationship between body composition and the
urine metabolome may improve our understanding of the role of metabolic dysregulation in body
composition-related health conditions. Previous studies, mostly in adult populations, have focused
on a single measure of body composition, body mass index (BMI), and sex-specific associations are
rarely explored. We investigate sex-specific associations of two measures of body composition—BMI
and body fat (BF)—with the urine metabolome in adolescents. In 369 participants (age 16–18,
49% female) of the Dortmund Nutritional and Anthropometric Longitudinally Designed (DONALD)
study, we examined sex-specific associations of these two measures of body composition, BMI and BF,
and 1407 (467 unknown) 24 h urine metabolites analyzed by untargeted metabolomics cross-sectionally.
Missing metabolites were imputed. We related metabolites (dependent variable) to BMI and BF
(independent variable) separately using linear regression. The models were additionally adjusted
for covariates. We found 10 metabolites associated with both BMI and BF. We additionally found
11 metabolites associated with only BF, and nine with only BMI. None of these associations was in
females. We observed a strong sexual dimorphism in the relationship between body composition and
the urine metabolome.

Keywords: metabolomics; adolescents; body composition; sex-specific; body mass index; body fat

1. Introduction

Overweightness (including obesity) has reached epidemic proportions. Approximately 39% of
the adult human population is overweight (BMI (body mass index) � 25 to < 30 kg/m2) or obese
(BMI � 30 kg/m2) [1]. The global prevalence of overweightness (BMI > +1 standard deviation above
the median) among adolescents aged 10 to 19 years has increased steadily over the last 40 years,
from 4.3% in 1975 to 17.3% in 2016 [1,2]. Current research suggests that overweightness and obesity
contribute to the increasing risk of chronic diseases [1]. The global burden of disease study estimated
that in 2015, roughly 7% of deaths from any cause and roughly 5% of disability-adjusted life-years
globally were due to high BMI [3]. Metabolic dysregulation, in addition to inflammation and insulin
resistance, may mediate the link between overweightness and many chronic diseases, like Type 2
diabetes or cardiovascular diseases. There is mounting evidence that these links are already present in

Metabolites 2020, 10, 330; doi:10.3390/metabo10080330 www.mdpi.com/journal/metabolites
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adolescents [1,4,5], implying an increase in risk of future incidence of chronic diseases. Therefore, it is
important to find the metabolic changes already present in adolescence, and to understand the link
between overweightness and disease progression in later life.

Being overweight is known to be related to metabolic changes—for example, through body fat
functioning as an endocrine organ, producing adipokines like leptin or visfatin [6,7]. Additionally,
past studies have shown that overweightness is likely to be a causal influence on the metabolome
phenotype [8]. A recent review [7] that summarizes the current knowledge of the metabolomic
signature of adult obesity concluded that many metabolite groups are altered, including sexual steroids,
amino acids, and acylcarnitines, among others. Interestingly, only a few epidemiological studies
have explored the relationship between body composition and the metabolome in adolescents [9,10].
Cho et al. [9] quantitatively measured the global metabolic repertoire in adolescents, and showed
that endogenous metabolites and inflammation-related metabolites are related to body composition.
Saner et al. [10] investigated metabolomic profiles in obese children and adolescents (ages 6 to 18),
and found associations in post-pubertal males of several metabolites, including fatty acids, triglycerides,
isoleucine, leucine, and glycoprotein with obesity measures. However, overall evidence is scarce
calling for more studies profiling the adiposity metabolome, preferably by untargeted methods.

It is well-known that the body composition of adolescents is sex-specific [5]. While BMI tends
to be comparable between males and females, body fat in females is physiologically higher starting
in late puberty (Tanner stages IV and V). In addition, a sexual dimorphism in metabolism is well
recognized [11]. Thus, investigating sex di↵erences may reveal pathophysiologically relevant variations,
with potential implications for overweightness- or obesity-related health conditions.

We decided to investigate two di↵erent measures of body composition to increase our confidence
in the metabolite–body composition associations that are present for both measures. We used BMI,
as it is the most widely used measure for body composition in observational studies [5,12]. It is
well-understood that BMI is a good marker for body composition on the population level [13].
Specifically, in an adolescent population it has been demonstrated that BMI categories correctly
identify children with excess body fat in roughly 85% of cases [5]. However, it has well-documented
shortcomings regarding body fat distribution [14,15]. To address these shortcomings, we also used
body fat percentage, as estimated with skinfold measurements.

Here, we explored the a priori, sex-stratified relationship between these two measures of body
composition, BMI and BF, and the urine metabolome cross-sectionally among adolescents.

2. Results

2.1. Basic Characteristics

The basic characteristics of the participants (180 females, 189 males) are shown in Table 1.
Females had a higher BF, were less physically active, consumed fewer calories, and were less likely to
be overweight than males. Males were less likely to be current alcohol consumers, and more frequently
their mothers were employed and of higher educational status. Roughly 20% of males and 13% of
females were overweight (BMI � 25).
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Table 1. Characteristics of 369 Dortmund Nutritional and Anthropometric Longitudinally Designed
(DONALD) study participants aged 16 to 18 years.

Variable n
Total Male Female

n = 369 n = 189 n = 180

Age (years) 369 17.3 (1.0) 17.2 (1.0) 17.4 (1.0)
Body Fat Percent 368 21.8 (8.0) 16.6 (5.6) 27.3 (6.4)
BMI (kg/m2) 369 22.2 (3.7) 22.5 (4.0) 21.9 (3.2)
Overweight (BMI � 25): Yes 369 62 (16.8%) 39 (20.6%) 23 (12.8%)
Metabolic Equivalent of Task-Hours (met-h/week) 207 41.3 (37.0) 45.9 (43.3) 36.6 (28.8)
Calories (kcal) 364 2189.2 (616.7) 2545.8 (565.4) 1816.5 (415.4)
Protein (%kcal) 364 13.9 (2.8) 14.1 (2.7) 13.7 (2.8)
Fat (%kcal) 364 33.7 (6.6) 33.9 (7.0) 33.6 (6.1)
Carbohydrates (%kcal) 364 50.5 (6.9) 49.8 (7.4) 51.2 (6.3)
Smoking Status 118
Never 56 (15.2%) 28 (14.8%) 28 (15.6%)
Former 35 (9.5%) 13 (6.9%) 22 (12.2%)
Current 27 (7.3%) 12 (6.3%) 15 (8.3%)
Alcohol Status 155
Never 8 (2.2%) 5 (2.6%) 3 (1.7%)
Former 11 (3%) 5 (2.6%) 6 (3.3%)
Current 136 (36.9%) 65 (34.4%) 71 (39.4%)
Maternal Occupation: Working (full or part-time) 364 222 (60.2%) 122 (64.6%) 100 (55.6%)
Maternal Education: >12 Years of Education 365 190 (51.5%) 101 (53.4%) 89 (49.4%)
Breastfeeding Duration (weeks) 363 25.0 (18.3) 24.3 (18.9) 25.7 (17.7)
Maternal Gestational Weight Gain (kg) 348 12.8 (4.1) 12.7 (4.2) 13.0 (4.1)
Maternal BMI (kg/m2) (kg/m2) 358 23.7 (3.7) 23.8 (3.5) 23.7 (3.9)
Smoking Household: Yes 265 86 (23.3%) 43 (22.8%) 43 (23.9%)

Data are presented as mean (standard deviation) for continuous measures and n (column percent) for categorical
measures. Available n values di↵er because of missing data.

2.2. Linear Regression Models

2.2.1. Summarizing Metabolites into Groups Using Independent Component Analysis

We kept the first seven independent components (IC), according to the scree plot. The composition
of the extracted components are recorded in Table A1. In our sample, no IC was associated with BMI
or BF for either sex. A table of �-estimates with confidence limits can be found in Table A2.

2.2.2. Metabolites Associated with Both BMI and BF

There were 10 metabolites (0.8% of metabolites analyzed) significantly associated with both BMI
and BF in males, and zero metabolites in females (Figure 1). A table of �-estimates with confidence
limits can be found in Table A3. The estimates presented here are back-transformed from the log-scale.

There were four amino acids associated significantly with BMI and BF: guanidinosuccinate
(negative, BMI: 0.97 (0.96 to 0.99), BF: 0.98 (0.97 to 0.99)), isobutyrylglycine (C4) (negative, BMI: 0.97
(0.95 to 0.98), BF: 0.98 (0.97 to 0.99)), isovalerylglycine (negative, BMI: 0.96 (0.95 to 0.98), BF: 0.97
(0.96 to 0.98)), and tigloylglycine (negative, BMI: 0.97 (0.96 to 0.99), BF: 0.97 (0.97 to 0.98)).

In the super-pathway of cofactors and vitamins, nicotinamide N-oxide (positive, BMI: 1.05 (1.02
to 1.08), BF: 1.04 (1.03 to 1.06)) was associated. Additionally, the xenobiotic succinimide (negative, BMI:
0.98 (0.97 to 0.99), BF: 0.99 (0.98 to 0.99)) was associated with both BMI and BF significantly.

Furthermore, we found significant associations with both BMI and BF for the partially characterized
molecule glucuronide of C10H18O2 (12) (positive, BMI: 1.05 (1.03 to 1.07), BF: 1.03 (1.02 to 1.04)) as well
as the unknown metabolites X-21851 (positive, BMI: 1.04 (1.02 to 1.06), BF: 1.02 (1.01 to 1.04)), X-24469
(positive, BMI: 1.03 (1.02 to 1.05), BF: 1.02 (1.01 to 1.03)), and X-24801 (positive, BMI: 1.03 (1.02 to 1.05),
BF: 1.02 (1.01 to 1.03)).
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Figure 1. Metabolites associated with body mass index (BMI) and body fat (BF). Estimates are
back-transformed linear regression beta coe�cients, regressing metabolites on body composition (BMI
or BF). BMI is measured in kg/m2 and body fat in percent. Abbreviations: CV, cofactor and vitamins;
PCM: partially characterized molecules; XB: xenobiotics.

2.2.3. Metabolites Associated with Either BMI or BF

There were 20 metabolites (1.6% of metabolites analyzed) significantly associated with either
BMI or BF. Of these, 11 were associated with BF and nine with BMI. All 20 associations were in males,
none in females. A graphical representation of these results is presented in Figure 2. In Table A4,
we present �-estimates and confidence intervals for all metabolites. The estimates presented here are
back-transformed from the log-scale.
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Figure 2. Metabolites associated with either BMI or BF. Estimates are back-transformed linear regression
beta coe�cients, regressing metabolites on body composition (BMI or BF). BMI units are kg/m2 and
body fat units are percent. Abbreviations: NT, nucleotide; PCM, partially characterized molecules.

2.3. Metabolites Associated with BMI

The amino acids formiminoglutamate (positive, BMI: 1.03 (1.02 to 1.05)), 7-hydroxyindole sulfate
(negative, BMI: 0.94 (0.92 to 0.97)), and proline (negative, BMI: 0.97 (0.96 to 0.99)) were associated with
BMI. Additionally, the nucleobase thymine (BMI: 0.98 (0.97 to 0.99)) was associated negatively with
BMI. Two lipids were significantly associated with BMI: decanoylcarnitine (C10) (positive, BMI: 1.04
(1.02 to 1.05)) and 5-dodecenoylcarnitine (C12:1) (positive, BMI: 1.05 (1.03 to 1.07)). Three unknown
metabolites (X-12839 (positive, BMI: 1.04 (1.02 to 1.06)), X-21441 (positive, BMI: 1.04 (1.02 to 1.07)),
and X-25003 (negative, BMI: 0.96 (0.94 to 0.98))) were associated with BMI.

2.4. Metabolites Associated with BF

The amino acids 3-methylcrotonylglycine (negative, BF: 0.97 (0.96 to 0.99)) and isovalerylglutamine
(negative, BF: 0.98 (0.97 to 0.99)) were significantly associated with BF. The energy metabolite malate
(negative, BF: 0.97 (0.96 to 0.99)) was significantly associated with BF as well. Additionally, there were
two partially characterized molecules (glutamine conjugate of C8H12O2 (1) (positive, BF: 1.02 (1.01
to 1.04)) and glycine conjugate of C10H14O2 (1) (positive, BF: 1.04 (1.02 to 1.05)) and seven unknown
metabolites (X-11261 (positive, BF: 1.03 (1.01 to 1.04)), X-15486 (positive, BF: 1.04 (1.02 to 1.05)), X-17676
(negative, BF: 0.98 (0.97 to 0.99)), X-24345 (positive, BF: 1.03 (1.02 to 1.05)), X-24350 (positive, BF: 1.04
(1.02 to 1.06)), X-25442 (positive, BF: 1.04 (1.02 to 1.06)), and X-25464 (positive, BF: 1.03 (1.01 to 1.05)))
that were significantly associated.
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3. Discussion

The current study explores the sex-specific cross-sectional associations of two measures of body
composition, BMI and BF, and the urine metabolome and urine metabolite patterns (ICs) in adolescent
boys and girls. Approximately 2.4% of the urine metabolome was associated with body composition
in boys; no association was seen in girls. Our results underscore the presence of changes in the urine
metabolome in relation to body composition already in adolescence. To our knowledge, this is the first
study to relate two measures of body composition to the urine metabolome in adolescents. Our results
strongly suggests sex-specificity in associations.

We advise the reader that the results of the present study were exploratory, and therefore should
not be overemphasized. Any interpretation we give here in relation to the biological process may only
be seen as one of many possible explanations for the reported associations. In fact, many of the reported
compounds have not been reported in conjunction with body composition before. A more in-depth
investigation of these single compounds is, however, outside of the scope of this study. We found
10 metabolites that related to both measures of body composition in males, and none in females.
These metabolites were guanidinosuccinate, isobutyrylglycine (C4), isovalerylglycine, tigloylglycine,
nicotinamide N-oxide, glucuronide of C10H18O2 (12), X-21851, X-24469, X-24801, and succinimide.
Nicotinamide N-oxide [1] and tigloylglycine [2] have been associated with BMI in prior studies.
The other eight molecules are reported in association with body composition here for the first time.
Additionally, we found 20 metabolites associated with either BMI or BF. When metabolites are
significantly associated with both measures of body composition, we should have higher confidence in
their association. As both measures have their own unrelated measurement error while measuring
di↵erent aspects of the same concept (body composition), a significant association with both BMI
and BF should indicate that it is more likely related to this underlying concept. The metabolites
associated with only BMI or BF, however, were all associated in the same direction with the other body
composition measurement. Additional discussion of these metabolites can be found in Table A5.

In general, our results reinforced the idea of sexual dimorphism in metabolism. The stronger
association in males is consistent with previous studies in mice [3], adults [4,5], and adolescents [6],
as well as our own recent findings within this study population [7]. One potential explanation is that
sex hormones might modify the relationship between body composition and the urine metabolome.
Specifically, prior studies have shown changes in the type of body composition and overall obesity in
relation to sex hormones and displaying sexual dimorphism in their mode of e↵ect [8–11]. Furthermore,
the sexual dimorphism in the urine metabolome is well-documented [4,12–15]. As sex hormones play
an important role in many metabolic pathways, e.g., they have been shown to regulate the liver energy
homeostasis [16], an interaction between sex hormones, body composition, and the urine metabolome
is plausible. Another explanation, as was shown for urine cortisol levels [5], is that sex di↵erences
relate to other factors of metabolism, such as enzyme activity. Wang et al. [17] showed that lipid and
lipoprotein metabolism is in fact independent of sex hormone administration, even though there are
significant sex di↵erences; however, the mechanism remains to be elucidated. The specific mechanism
of sex di↵erence in metabolism might therefore di↵er for di↵erent pathways, and deserves to be studied
further. Our results may help to explain sex di↵erences in weight-related health conditions.

We used independent component analysis (ICA) to summarize metabolites into fewer components
in the current analysis. We chose ICA because the components are statistically independent, and their
interpretation in biological processes allows for the mixture of di↵erent pathways and processes that
contribute to the living system. Because metabolomics takes a snapshot of these processes and systems,
these components hold a large value for understating of processes. In the current study, none of the ICs
we retained were associated with body composition. This suggests that body composition influences
specific metabolic pathways, and not a mixture of di↵erent pathways captured by the ICA.

Guanidinosuccinate is produced by the oxidation of argininosuccinic acid, and was associated
with higher measures of body composition in males. The oxidation of guanidinosuccinate occurs
favorably with increased levels of urea, and results in a decline of hepatic levels of arginine [18]. It is



20 

Metabolites 2020, 10, 330 7 of 20

well-known that the urea cycle is dysregulated with higher adiposity [19]; therefore, reduced renal
function compared to the average adolescent may partly explain our findings. Guanidinosuccinate may
be a marker of the kidneys’ ability to eliminate urea, particularly in males.

Isobutyrylglycine (C4) is a short-chain acylglycine in the catabolism of leucine, isoleucine,
and valine. In newborn screenings, elevated levels of this metabolite are used to diagnose
isobutyryl-CoA dehydrogenase deficiency [20]. Since isobutrylglycine levels decrease with higher
BMI and BF, isobutyryl-CoA dehydrogenase might be upregulated with elevated measures of body
composition. Alternatively, smaller amounts of leucine, isoleucine, and valine might be catabolized
in individuals with abnormal adiposity. However, the present association was independent of
these metabolites.

Isovalerylglycine is an acyl glycine that is produced in the catabolism of leucine [18]. Higher BMI
and BF are associated with the metabolism of leucine in rats [21]; however, no study to date exists
in humans. This metabolite has also been suggested as a biomarker for cheese consumption [22].
Although we did not specifically adjust for cheese intake, the fact that we adjusted for macronutrient
intake suggests that our finding is independent of cheese intake.

Tigloylglycine is an acylglycine that is an intermediate of the isoleucine catabolism [18].
Like isovalerylglycine, it was suggested as a biomarker for the consumption of cheese [18].
Again, we adjusted for nutrition, so an association because of cheese consumption is unlikely.
Urinary acylglycine decreases with higher BMI have been documented before [2]. Similar to other
leucine, isoleucine, and valine metabolites, the enzyme metabolizing this compound might be
upregulated, or the overarching pathway of branched-chain amino acid (BCAA) catabolism might
be dysregulated.

BCAAs have a well-documented association with higher markers of body composition: increased
blood levels of BCAAs correlated with higher levels of body composition [19]. A recent study by Elliot
et al. [23] reported associations between increased urine levels of leucine, isoleucine, and valine and
BMI. Additionally, they reported lower levels of ketoleucine with higher BMI. Ketoleucine is the first
metabolic product in the energy use of leucine [24]. The metabolites we found that decreased with
higher measures of body composition are downstream metabolites of BCAAs, which are produced
through similar processes as ketoleucine from leucine, namely when their respective BCAA is used for
energy in skeletal muscle. As BCAAs are not the first energy source muscles use in response to physical
activity, increased blood levels of BCAAs and decreased levels of their energy pathway downstream
products are in line with decreased physical activity and overabundance of other energy sources in
persons with higher measures of body composition.

Nicotinamide N-oxide is a precursor of nicotinamide adenine dinucleotide (NAD) and a catabolite
of nicotinamide [18,25]. Increased urine nicotinamide N-oxide is associated with high-fat, diet-induced
obesity in mice [26]. In humans, serum levels of another nicotinamide was positively associated with
BMI and waist circumference [1]. This finding suggests that in individuals with higher measures
of body composition, there is a nicotinamide overload, or enzymes catabolizing nicotinamide to
nicotinamide N-oxide are overexpressed or hyper-activated. However, our result is independent of
nicotinamide, which favors the latter explanation.

Succimide is commonly found in anticonvulsant drugs [18]. The fact that a common side e↵ect
of anticonvulsant drugs are changes in weight [27] might provide a potential explanation for the
association with adiposity.

Additionally, there are no available data on the relationship between the unknown metabolites
X-21851, X-24469, and X-24801, or the partially characterized metabolite glucuronide of C10H18O2
(12) and body composition. Besides, since they are without biochemical identities, or only partially
characterized, it is di�cult to provide explanations. Nevertheless, with the rapidly developing field of
metabolomics, the identification of these metabolites should not be far from sight.

The present study has some notable strengths. We investigated the associations between body
composition and the urine metabolome using two measures of body composition, in order to achieve
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a more comprehensive relationship between body composition and alteration in urine metabolites.
The sex-specific investigation defined a priori also ensures that sex-specific relationships are well
explored. Additionally, we used 24 h urine samples in a comparatively large study population to study
the urine metabolome with an untargeted approach. To limit the possibility of false positives that
untargeted approaches entail, we controlled for multiple testing by holding the False Discovery Rate
(FDR) at 5%.

However, we acknowledge several limitations to the study. First, our participants are all Caucasians
(Germans), residing in a large city (Dortmund) and surroundings, mostly from a high socioeconomic
background. Thus, the generalizability of our findings is limited. Further, our study sample had very
few individuals in the extremes of body composition, namely in the underweight (BMI < 18.5) and the
obese (BMI � 30) classifications, our findings may only be generalizable to individuals with normal
and overweight body composition status. More associations of metabolites with BF as compared to
BMI may also be due to BF having a larger variation in our study sample. Additionally, we cannot rule
out residual confounding by either unknown or unmeasured (for example, genetic influences) factors.
Lastly, because we only had one measurement of the urine metabolome, we were not able to establish
a relationship of body composition and variability in the urine metabolome.

Future research should try to identify the unknown or partially characterized molecules that
were associated in this study, as they have potential to help elucidate the biological mechanisms
of the relationship between body composition and metabolic function on the pathway to health
outcomes. Additionally, more studies are needed that stratify their metabolomic analysis by sex,
in order to increase our understanding of the physiological di↵erences in metabolism between males
and females. Furthermore, future studies should try to replicate our findings in an independent
adolescent population, and try to extend the analysis to a longitudinal design to elucidate the temporal
relation of body composition with urine metabolome. Additionally, it would be interesting to evaluate
di↵erences between the blood and urine metabolome in a similar study setting, preferably in the same
participants. Overall, metabolomics would benefit greatly from more unified data analysis approaches
to facilitate meta-analysis of di↵erent cohorts. Lastly, a similar analysis carried out in a cohort with
a larger proportion of overweight and obese participants would help to disentangle the gradient
relationship between body composition and the urine metabolome.

4. Materials and Methods

4.1. Study Design

The present analysis is conducted within the Dortmund Nutritional and Anthropometric
Longitudinally Designed (DONALD) study. Briefly, the DONALD study is a longitudinal open
cohort study with the aim of analyzing detailed data on diet, growth, development, and metabolism
from infancy to adulthood [28]. All study participants were invited to the study center on a regular
basis, every 3 months until their first birthday, biennially in their second year, and annually thereafter.
The anthropometric measurements are conducted by experienced nurses [28]. Data collected includes
demographic, family, and socioeconomic characteristics, as well as anthropometric measurements,
such as height, body weight, skin fold thickness, and 3 day weighed dietary records [28].
Informed written consent was obtained from parents and from participants themselves on reaching
adolescence. The ethics committee of the University of Bonn, Germany (project identification: 098/06)
approved the study.

4.2. Study Participants

The current study sample were DONALD participants from a previous study that explored BMI
trajectories [29]. These 689 individuals are singletons, full-term (37 to 42 weeks of gestation), and had a
birth weight of at least 2500 g. Of these, 369 participants had a 24 h urine samples between the ages of
16 to 18, from which the urine metabolome were profiled by an untargeted metabolomics approach.
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4.3. Variable Assessment

4.3.1. Outcome: Untargeted Metabolomic Profiling of the Urine Metabolome

Ultra-high-performance liquid chromatography–tandem mass spectroscopy (UPLC-MS/MS) was
used to identify metabolites in the 24 h urine samples. Peak identification was done in the propriety
Laboratory Information Management System (LIMS) of Metabolon Inc. (Morrisville, NC, USA).
Compounds were identified by comparison of their retention time/index (RI), mass-to-charge ratio
(m/z), and chromatographic data (e.g., MS/MS spectral data) to library standards. Structurally unknown
biochemicals were identified by occurrence. Peaks were quantified using area-under-the-curve and
normalized with block correction corrected for inter-day instrument tuning di↵erences. Further details
on the methodology of the metabolic profiling have been reported elsewhere [30]. This analysis resulted
in 1407 annotated features used in this analysis.

4.3.2. Exposure: Body Composition Measures

Body composition parameters were examined at every follow-up by experienced nursing sta↵. BMI
was calculated using height and weight. BF was calculated from four skin-fold thickness measurements
(biceps, triceps, iliaca, and scapula), using age, puberty status, and sex-specific equations from
Deurenberg et al. [31].

4.3.3. Covariates

We constructed a directed acyclic graph (DAG; cf. cf. Supplemental Figure S1) to assess the
minimally su�cient sets of variables to use for covariate adjustment in the analysis of the present data.

Family and socioeconomic characteristics around birth were assessed at the first study visit in
the DONALD study, at around three months after birth. We included maternal employment (full- or
part-time employment vs. no employment), maternal education (>12 vs. 12 years of education),
smoking in the household (yes vs. no), maternal BMI (kg/m2), and duration of breast-feeding (weeks).
Dietary intake was assessed annually by three-day weighted dietary records. We calculated individual
means of daily calorie and macronutrient intake, using our continuously updated in-house food
composition database LEBTAB [32]. Macronutrient intake was estimated as percent of calories
consumed. Using the method described by Schofield [33], the metabolic equivalents of task-hours
(met-h) were determined from basal rates. The expanded met-h per week were subsequently calculated
from the Adolescent Physical Activity Recall Questionnaire (APARQ) [34]. Alcohol and smoking
status were assessed via questionnaire. Participants were grouped into current, former, and never
drinkers (or smokers). Missing values were filled backwards for never drinkers (or smokers) and
forwards for current and former drinkers (or smokers). Backwards filling means “never” consumption
was used later to fill in missing values at time points prior to the non-missing answer, e.g., “never”
consumption at age 20 was used to fill a missing value at age 16, since the participant was never
a consumer. Forward filling refers to the same concept but forwards in time, e.g., current alcohol
consumption at age 15 was used to fill a missing value for the current alcohol consumer at age 17.

4.4. Statistical Analysis

Statistical Analysis was performed using SAS software (Version 9.4 of the SAS System for Windows,
copyright 2002–2012 SAS Institute Inc., Cary, NC, USA) and R software (Version 3.6) [35]. All analyses
were a priori and were stratified by sex.

4.4.1. Data Pre-Treatment

Metabolite concentration were normalized by urine osmolality and rescaled to set the median
equal to 1. Because the distributions of most metabolites were skewed, we performed natural
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log-transformation. We excluded metabolites with more than 20% of missing values (n = 140) to keep
the data quality acceptable. Missing values for the remaining 1267 metabolites were imputed.

4.4.2. Imputation of Missing Values

Missing values for all variables were imputed with multiple imputations (as implemented in the
R package “mice” [36]) with 10 imputations and five iterations. We used the random forest method
built into the “mice” package. The variables used as predictors for imputation for each “to be imputed”
variable were selected according to the suggestions of the authors of the mice package [37]: variables
were selected as predictors in the imputation if they had at least a correlation of r = 0.35 with the “to
be imputed” variable, and at least 70% of the observations used for imputation had complete data.
Imputation was stratified by sex.

4.4.3. Summarizing Metabolites into Groups Using the Independent Component Analysis

To reduce intercorrelation among metabolites, we summarized them into fewer interpretable
components using independent component analysis (ICA). We used the “icafast” function from the
“ica” Package [38] to perform the ICA, stratified by sex. We used the mean across all imputed datasets
to extract the component model. The number of components to include in the regression analysis
was selected by visual inspection of the scree plot. We then calculated the component scores for each
imputed dataset according to the mean model. We characterized the components by their correlation
with the metabolites, using the top 20 most correlated metabolites.

4.4.4. Linear Regression Model

In order to model the associations between BMI and BF and the urine metabolome, we fitted a
linear regression model for each of the 1177 log-transformed metabolites and seven ICs as dependent
variables, and either BMI or BF as independent variables. The models were additionally adjusted for the
minimally su�cient set suggested by the DAG, which are physical activity (met-h/week), age, alcohol
and smoking status, nutrition (total energy (kcal), protein (%kcal), fat (%kcal), and carbohydrates
(%kcal)), smoking household, maternal occupation at study entry, maternal education, breastfeeding
duration, and maternal BMI at study entry. If not otherwise specified, variables were measured during
the same follow-up as the 24 h urine sample was taken. We performed multiple testing corrections
by controlling the false discovery rate at five percent with the Benjamini–Hochberg procedure [39].
Metabolites associated with both BMI and BF were considered a signature of body composition.

5. Conclusions

In conclusion, 10 metabolites (10 in males, none in females) were associated with both measures of
body composition, which could collectively be considered a metabolic signature of body composition.
The sexual dimorphism in the relationship between body composition and the urine metabolome may
explain sex di↵erences in body composition-related health conditions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/8/330/s1,
Figure S1: Directed acyclic graph for the association between body composition and the urinary metabolome
in adolescents
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Appendix A : Additional Information on Independent Components

Table A1. Names of the Independent Components.

IC Constructed by

Sex: female
IC1 Amino acid (10), unknown (5), lipid (2), nucleotide (2), and xenobiotics (1)
IC2 Amino acid (6), xenobiotics (5), unknown (5), partially characterized molecules (3), and peptide (1)
IC3 Unknown (10), xenobiotics (4), amino acid (3), peptide (2), and lipid (1)
IC4 Unknown (9), xenobiotics (5), amino acid (3), and lipid (3)
IC5 Amino acid (6), lipid (5), unknown (5), partially characterized molecules (2), nucleotide (1), and xenobiotics (1)
IC6 Unknown (12), amino acid (3), xenobiotics (2), lipid (1), partially characterized molecules (1), and peptide (1)
IC7 Amino acid (5), xenobiotics (5), unknown (5), lipid (2), nucleotide (1), partially characterized molecules (1), and peptide (1)

Sex: male

IC1 Unknown (9), xenobiotics (4), amino acid (3), nucleotide (2), energy (1), and lipid (1)

IC2 Amino acid (5), lipid (5), nucleotide (3), xenobiotics (2), unknown (2), carbohydrate (1), partially characterized
molecules (1), and peptide (1)

IC3 Unknown (8), amino acid (5), xenobiotics (3), lipid (2), carbohydrate (1), and energy (1)
IC4 Xenobiotics (13), unknown (6), and lipid (1)
IC5 Xenobiotics (7), unknown (6), partially characterized molecules (4), amino acid (1), lipid (1), and nucleotide (1)
IC6 Unknown (10), lipid (4), partially characterized molecules (4), amino acid (1), and xenobiotics (1)
IC7 Xenobiotics (8), unknown (6), carbohydrate (4), lipid (1), and partially characterized molecules (1)
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Table A2. Regression Coe�cients for the ICs and body composition.

IC � Body Mass Index 95% CI p (FDR) � Body Fat Percent 95% CI p (FDR)

Sex: Female

IC1 1.025 0.890 to 1.180 0.991 0.996 0.914 to 1.086 0.991
IC2 0.974 0.832 to 1.141 0.991 1.030 0.943 to 1.125 0.991
IC3 0.979 0.838 to 1.143 0.991 1.024 0.946 to 1.109 0.991
IC4 0.945 0.829 to 1.076 0.991 1.014 0.942 to 1.093 0.991
IC5 0.885 0.733 to 1.070 0.991 1.054 0.942 to 1.179 0.991
IC6 0.930 0.814 to 1.064 0.991 1.057 0.979 to 1.141 0.991
IC7 0.928 0.799 to 1.078 0.991 1.034 0.949 to 1.126 0.991

Sex: Male

IC1 1.012 0.903 to 1.135 1.000 0.986 0.893 to 1.088 1.000
IC2 0.969 0.880 to 1.067 1.000 1.001 0.923 to 1.086 1.000
IC3 1.045 0.940 to 1.162 1.000 0.974 0.891 to 1.064 1.000
IC4 0.980 0.877 to 1.095 1.000 1.053 0.958 to 1.157 1.000
IC5 0.993 0.896 to 1.100 1.000 1.039 0.959 to 1.127 1.000
IC6 0.956 0.872 to 1.048 1.000 1.015 0.943 to 1.093 1.000
IC7 0.991 0.889 to 1.104 1.000 0.952 0.870 to 1.041 1.000

Estimates were generated from linear regression models, with independent components as the dependent variable and body mass index or body fat percent as the dependent variable.
Multiple testing adjustments were performed by controlling the false discovery rate at 5%. Estimates are bac-transformed. The models were additionally adjusted for age, calories
consumed, protein consumed, carbohydrates consumed, fat consumed, maternal gestational weight gain, maternal BMI, breastfeeding duration, smoking status, smoking household,
alcohol status, maternal occupation, maternal education, metabolic equivalent of task-hours. Abbreviations: IC, independent component; FDR, False Discovery Rate
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Appendix B : Regression Coe�cient Tables

Table A3. Metabolites associated with both body composition measures.

Biochemical Sub Pathway � Body Mass Index 95% CI p (FDR) � Body Fat Percent 95% CI p (FDR)

Super-pathway: Amino Acid
guanidinosuccinate Guanidino and acetamido metabolism 0.971 0.957 to 0.986 0.046 0.977 0.967 to 0.987 0.014

isobutyrylglycine (C4) Leucine, isoleucine, and valine metabolism 0.967 0.954 to 0.979 0.002 0.976 0.967 to 0.985 0.001
isovalerylglycine Leucine, isoleucine, and valine metabolism 0.965 0.953 to 0.976 0.000 0.972 0.964 to 0.980 0.000

tigloylglycine Leucine, isoleucine, and valine metabolism 0.974 0.961 to 0.987 0.036 0.974 0.965 to 0.983 0.000
Super-pathway: CV

Nicotinamide N-oxide Nicotinate and nicotinamide metabolism 1.050 1.025 to 1.075 0.030 1.043 1.026 to 1.060 0.001
Super-pathway: PCM

Glucuronide of C10H18O2 (12) * Partially characterized molecules 1.047 1.029 to 1.066 0.001 1.028 1.015 to 1.041 0.016
Super-pathway: Unknown

X-21851 1.038 1.020 to 1.057 0.021 1.025 1.012 to 1.038 0.044
X-24469 1.035 1.018 to 1.052 0.025 1.023 1.011 to 1.035 0.044
X-24801 1.032 1.017 to 1.047 0.016 1.024 1.014 to 1.034 0.004

Super-pathway: XB
Succinimide Chemical 0.976 0.965 to 0.986 0.011 0.985 0.978 to 0.993 0.046

Estimates were generated from linear regression models with natural log-transformed biochemicals as the dependent variables, and body mass index or body fat percent as the dependent
variable. Multiple testing adjustment was performed by controlling the false discovery rate at 5%. Estimates are back-transformed. The models were additionally adjusted for age,
calories consumed, protein consumed, carbohydrates consumed, fat consumed, maternal gestational weight gain, maternal BMI, breastfeeding duration, smoking status, smoking
household, alcohol status, maternal occupation, maternal education, metabolic equivalent of task-hours. * Compound was not identified by a standard, but we are confident in its identity.
Abbreviations: CV, cofactors and vitamins; PCM, partially characterized molecules; XB, xenobiotics; FDR, False Discovery Rate.
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Table A4. Metabolites associated with either BMI or BF.

Biochemical Sub-Pathway Body Mass Index 95% CI p (FDR) Body Fat Percent 95% CI p (FDR)

Super-Pathway: Amino Acid

Formiminoglutamate Histidine metabolism 1.033 1.016 to 1.051 0.041 1.019 1.007 to 1.031 0.162
3-methylcrotonylglycine Leucine, isoleucine, and valine metabolism 0.971 0.954 to 0.988 0.091 0.975 0.963 to 0.986 0.021

Isovalerylglutamine Leucine, isoleucine, and valine metabolism 0.978 0.966 to 0.991 0.120 0.980 0.972 to 0.989 0.016

7-hydroxyindole sulfate Tryptophan metabolism 0.944 0.915 to 0.973 0.050 0.961 0.940 to 0.982 0.060
proline Urea cycle; arginine and proline metabolism 0.974 0.962 to 0.986 0.023 0.988 0.979 to 0.997 0.281

Super-Pathway: Lipid

decanoylcarnitine (C10) Fatty acid metabolism (acyl carnitine, medium chain) 1.035 1.017 to 1.054 0.046 1.023 1.010 to 1.036 0.083

5-dodecenoylcarnitine (C12:1) Fatty acid metabolism
(acyl carnitine, monounsaturated) 1.048 1.027 to 1.070 0.009 1.025 1.010 to 1.041 0.110

Super-Pathway: Nucleotide

Thymine Pyrimidine metabolism, thymine containing 0.978 0.966 to 0.989 0.046 0.987 0.979 to 0.995 0.169

Super-Pathway: PCM

Glutamine conjugate of C8H12O2 (1) * Partially characterized molecules 1.030 1.013 to 1.047 0.065 1.025 1.013 to 1.036 0.021

Glycine conjugate of C10H14O2 (1) * Partially characterized molecules 1.044 1.019 to 1.069 0.071 1.036 1.019 to 1.054 0.023

Super-Pathway: Unknown

X-11261 1.032 1.013 to 1.051 0.111 1.025 1.012 to 1.039 0.045

X-12839 1.042 1.020 to 1.065 0.048 1.024 1.009 to 1.040 0.175
X-15486 1.039 1.015 to 1.064 0.118 1.035 1.018 to 1.052 0.021

X-17676 0.981 0.969 to 0.993 0.142 0.983 0.975 to 0.991 0.034

X-21441 1.043 1.020 to 1.067 0.047 1.029 1.013 to 1.046 0.078
X-24345 1.040 1.015 to 1.065 0.123 1.033 1.016 to 1.050 0.044

X-24350 1.040 1.014 to 1.067 0.156 1.038 1.020 to 1.056 0.020

X-25003 0.957 0.936 to 0.979 0.044 0.976 0.960 to 0.992 0.192
X-25442 1.041 1.016 to 1.067 0.120 1.038 1.020 to 1.055 0.015

X-25464 1.039 1.017 to 1.062 0.076 1.030 1.015 to 1.046 0.037

Estimates were generated from linear regression models, with natural log-transformed biochemicals as the dependent variable and body mass index or body fat percent as the dependent
variable. Multiple testing adjustments were performed by controlling the false discovery rate at 5%. Estimates are back-transformed. The models were additionally adjusted for age,
calories consumed, protein consumed, carbohydrates consumed, fat consumed, maternal gestational weight gain, maternal BMI, breastfeeding duration, smoking status, smoking
household, alcohol status, maternal occupation, maternal education, metabolic equivalent of task-hours. * Compund was not identified by a standard, but we are confident in its identity.
Abbreviations: CV, cofactors and vitamins; PCM, partially characterized molecules; XB, xenobiotics. Associations in females are highlighted in italic. The significant association for each
metabolite is highlighted in bold.
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Appendix C : Additional Discussion for Metabolites Associated with Either BMI or BF

Table A5. Additional discussion for metabolites associated with either BMI or BF.

Biochemical Sub-Pathway Sex Body Composition Discussion

Super-Pathway: Amino Acid

7-hydroxyindole sulfate Tryptophan metabolism male BMI

Part of the serotonin-related pathway of
tryptophan [18]. A relationship to mood and
depression, which has been documented to be
influenced by weight and the perception thereof
in adolescents [40], is a possible explanation for
this association.

Formiminoglutamate Histidine metabolism male BMI

Measurements in urine after oral application of
histidine are used to determine folate deficiency
[18]. Higher levels of this metabolite in the urine
of individuals with higher adiposity might point
to an increased need for folate. In fact,
overweightness was previously shown to be
associated with decreased levels of folate [41].

Proline Urea cycle; arginine and proline metabolism male BMI

Proline was inversely associated with adiposity
in our study. This is in agreement with findings
in children, in which lower levels of the
metabolite have been observed in overweight
children [42], but is in contrast to findings in
adults [43,44]. This suggests that the relationship
of adiposity with proline varies with the
developmental stage of life.

3-methylcrotonylglycine Leucine, isoleucine, and valine metabolism male BF

A catabolite of leucine. Elevated levels of this
metabolite in urine are usually found in patients
with a deficiency of 3-methylcrotonyl-CoA
carboxylase, an inborn error of the metabolism
[18]. Decreased levels in our sample could be
explained by hyperactivation of
3-methylcrotonyl-CoA carboxylase or disruption
of the leucine metabolism.

Isovalerylglutamine Leucine, isoleucine and valine metabolism male BF No information
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Table A5. Cont.

Biochemical Sub-Pathway Sex Body Composition Discussion

Super Pathway: Lipid

5-dodecenoylcarnitine (C12:1) Fatty acid metabolism
(acyl carnitine, monounsaturated) male BMI Medium-chain acylcarnitines (MCACs),

see decanoylcarnitine (C10)

Decanoylcarnitine (C10) Fatty acid metabolism (acyl carnitine, medium chain) male BMI

Decanoylcarnitine (C10) is a medium-chain fatty
acid acylcarnitine that was significantly
associated with higher measures of body
composition. In fact, urine decanoylcarnitine has
been shown to di↵erentiate young men with
normal weight from those with obesity [45],
and di↵erentiates individuals with metabolically
healthy obesity from those with metabolically
abnormal obesity [46]. Additionally, it is among
a group of acylcarnitines that is positively related
to fat oxidation [47]. It was suggested previously
that high levels of medium-chain acylcarnitines
(MCACs) reflect distal �- oxidation for energy
use. C6 and C10 in particular are used as
markers for MCAC flux [48]. Higher levels of
MCAC have also been related to a disrupted
branched-chain amino acid (BCAA) metabolism
[49,50]. Additionally, increased levels of MCAC
were suggested as markers for insulin resistance
in overweight and obese individuals [51].
Increased levels of C10 in our sample are in line
with the findings of previous studies in adults
and children, reporting either higher levels of
closely related acylcarnitines or C10 exactly [19].
However, most of these were using di↵erent
tissues (e.g., blood or muscle fiber) as their
biospeciminen [19].

Super Pathway: Nucleotide

Thymine Pyrimidine metabolism, thymine containing male BMI

Change within increasing adiposity is in line
with cytosine per thymine change present in a
single-nucleotide polymorphism (SNP) that is
associated with BMI and BF [52]. This supports
evidence that adiposity has a genetic component.
Future studies should explore the relation
between this SNP and adiposity
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Table A5. Cont.

Biochemical Sub-Pathway Sex Body Composition Discussion

Super-Pathway: PCM

Glutamine conjugate of C8H12O2 (1) * Partially characterized molecules male BF No information

Glycine conjugate of C10H14O2 (1) * Partially characterized molecules male BF No information

Super-Pathway: Unknown

X-12839 male BMI No information

X-21441 male BMI No information

X-25003 male BMI No information

X-11261 male BF No information

X-15486 male BF No information

X-17676 male BF No information

X-24345 male BF No information

X-24350 male BF No information

X-25442 male BF No information

X-25464 male BF No information

* Compound was not identified by a standard, but we are confident in its identity. Abbreviations: BF, body fat percentage; BMI, body mass index; CV, cofactors and vitamins; PCM,
partially characterized molecules; XB, xenobiotics.
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Exploring the Association between Habitual Food Intake
and the Urine and Blood Metabolome in Adolescents and
Young Adults: A Cohort Study
Christian Brachem,* Kolade Oluwagbemigun, Julia Langenau, Leonie Weinhold,
Ute Alexy, Matthias Schmid, and Ute Nöthlings

Scope: Habitual diet may be reflected in metabolite profiles that can improve
accurate assessment of dietary exposure and further enhance our
understanding of their link to health conditions. The study aims to explore the
relationship of habitual food intake with blood and urine metabolites in
adolescents and young adults.
Methods: The study population comprises 228 participants (94males and 134
females) of the DONALD study. Dietary intake is assessed by yearly repeated
3d-food records. Habitual diet is estimated as the average consumption of 23
food groups in adolescence. Using an untargeted metabolomics approach, the
study quantifies 2638metabolites in plasma and 1407metabolites in urine. In
each sex, unique diet–metabolite associations using orthogonal projection to
latent structures (oPLS) and random forests (RF) is determined.
Results: Six metabolites in agreement between oPLS and RF in urine, one in
female (vanillylmandelate to processed/other meat) and five in males
(indole-3-acetamide, and N6-methyladenosine to eggs; hippurate,
citraconate/glutaconate, and X – 12111 to vegetables) are observed. No
association in blood in agreement is observed.
Conclusion: A limited reflection of habitual food group intake by single
metabolites in urine and not in blood is observed. The explored biomarkers
should be confirmed in additional studies.

1. Background

Dietary intakes are generally obtained by self-reports using in-
struments like food records, 24-h recalls, or food frequency
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questionnaires. However, these methods
are costly and prone to measurement er-
ror and improvements in dietary intake
assessment are sought.[1 ] Multiple ad-
ministrations of short-term instruments
or using a combination of different in-
struments help to capture habitual food
intake.[1,2a,b,c,3 ] These combinations still
carry the risk of measurement error, even
though diminished.[4 ]

Dietary biomarkers can improve the
assessment of habitual food intake either
replacing or strengthening self-reports.[3 ]

With the advent of –omics technology in
health sciences, it has become more fea-
sible to explore the vast amount of data
contained in the human metabolome to
search for candidate biomarkers.[3,5 ] The
metabolome provides a rich resource of
potential diet biomarkers. Prior studies
have already suggested putative biomark-
ers for habitual or recent consump-
tion of meat,[6,7 ] cocoa,[8,9 ] wine,[7,10 ]

cabbage,[11a,b] citrus,[12,13 ] and more. An-
dersen et al.[14 ] and Rebholz et al.[15 ] also
showed that it is possible to distinguish
more complex

dietary patterns with markers in the metabolome. In a previ-
ous paper from our group, we conducted a systematic review of
habitual food intake—blood metabolite associations replicated at
least twice and identified 82 putative biomarkers,[16 ] 44 of which
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we were able to test in this study. We replicated 26 of these 44
associations.
Praticò et al.[17 ] proposed eight criteria to validate putative

biomarkers for food intake: plausibility, dose–response, time–
response, robustness, reliability, stability, analytical performance,
and reproducibility. However, before the putative biomarker can
be validated, candidates for validation need to be identified. For
habitual intake, this can be achieved with observational studies
assessing both habitual food intake and the metabolome, and
exploring their associations. In order to improve the chance to
validate putative biomarkers, discovery studies should already
implement sensible constraints, for example uniqueness of
associations to facilitate better performance in one or more
validation criteria. For conclusive validation, there is a need for
independent studies ideally designed specifically to evaluate one
or multiple validity criteria. Additionally, biomarker discovery
is not only a matter of repeated association in observational
studies but should rather also be founded in biological validity
of the association. Randomized controlled trials (RCTs) are
an essential part of this process as well. Only the interplay of
discovery in observational studies and validation in independent
and well designed RCTs may lead to valid and robust markers fit
to enhance or replace current assessment methods.[18a,b]

In adolescence, behaviors such as smoking, physical activ-
ity, and dietary patterns are often initiated and can be tracked
into adulthood.[19 ] However, there is a substantial lack of stud-
ies exploring food metabolite associations in adolescents and
young adults. Current diet-metabolomics studies in adolescents
explored the effect of dietary counseling,[20 ] inadequate nutrient
intake,[21 ] or the specific diet needed for phenylketonuria.[22a,b]

However, no study to date has explored the relationship of ha-
bitual food intakes in adolescence with the metabolome. Adoles-
cence is the phase with the largest physiological developments
in human life,[19 ] thus intake biomarkers or the strength of the
relationship between habitual food intake and the metabolome
may differ from adults. Thus, our exploration of the habitual food
intake–metabolome associations in adolescence will help to un-
derstand further the use of metabolomics in nutritional epidemi-
ology.
While exploring the metabolome for markers of habitual

food intake the choice of bio specimen—commonly used are
blood or urine—has a large influence.[23 ] Both blood and urine
were shown to reflect short term food intake (∼3 h after food
consumption),[24 ] and both have been successfully used in longi-
tudinal settings to study habitual food intake.[8,12,25,26 ] The choice
of bio specimen often depends on facets of study designs and
practical implications for future use. In order to facilitate most
use cases, we investigated both 24-h urine samples and plasma
blood samples for our study. The aim of the current project was
to explore potential urine and bloodmetabolite biomarkers of ha-
bitual food intake among adolescents and young adults.

2. Experimental Section

2.1. Study Design

The present analysis was conducted in the DOrtmund Nutri-
tional and Anthropometric Longitudinally Designed (DONALD)
study.[27,28 ] Informed written consent was obtained from par-

ents and from participants themselves on reaching adolescence.
The ethics committee at the medical faculty of the Rheinische
Friedrich-Wilhelms-University Bonn, Germany (project identi-
fication: 098/06) approved the study. Briefly, DONALD was
an ongoing longitudinal open cohort study situated in Dort-
mund, Germany, with the goal of analyzing detailed data on
diet, growth, development, andmetabolism between infancy and
adulthood.[27,28 ] Participants were first examined at the age of 3
months and returned for three more visits in the first year of
life, two in the second, and annually thereafter until the age of
18, when examinations started following a 5-year cycle. Examina-
tions included 3-day weighed dietary records (3d-WDR), anthro-
pometric measurements, collection of 24-h urine samples (start-
ing at age 3–4), collection of blood samples (starting at age 18),
and interviews on lifestyle andmedical examinations. Further de-
tails on the study design had been published elsewhere.[27 ,28 ]

2.2. Study Participants

The current study included DONALD participants that were sin-
gletons, full term births (37–42 weeks of gestation), and had a
birth weight of at least 2500 g. For the current analysis partici-
pants had to have a measurement of both the urine and blood
metabolome, as well as at least two 3d-WDR in adolescence (age
10–18). Overall, 228 participants were eligible for the current
study.

2.3. Variable Assessment

2.3.1. Assessment of Usual Dietary Intake

Multiple annually applied 3d-WDR to assess dietary intake was
used. Participants had to have at least two 3d-WDR. This study
defined habitual intake during adolescence as the mean intake
across all available 3d-WDRs between the ages 10 and 18.
Habitual food group intake was standardized to grams per

1000 kcal to account for inter- and intra-individual differences in
daily calorie consumption. This study grouped single food items
to 23 food groups according to our in house food composition
database LEBTAB.[29 ] Using the database, recipes of commercial
food products had been decomposed to their ingredients before
food grouping. The following 23 food groups were constructed
for the current analysis: dairy, cheese, eggs, beef, pork, poultry,
processed and other meat, fish, animal fat, vegetable fat, cereals,
pasta, potatoes, vegetables, vegetable juice, legumes, fruit, fruit
juice, nuts, water, alcohol, instant beverages, and sweets.

2.3.2. Untargeted Metabolomic Profiling of the Metabolome

Metabolon Inc. (Morrisville, NC, USA) performed an untargeted
metabolomics assay with lipodomics on plasma and an un-
targeted metabolomics assay on urine samples. For both the
plasma and urine untargeted assays, Metabolon used ultra-high
performance liquid chromatography-tandem mass spectroscopy
(UPLC-MS/MS) to identify metabolites in the samples. Peak
identification was done in their propriety Laboratory Informa-
tion Management System. Peaks were identified by comparison

Mol. Nutr. Food Res. 2022, 66, 2200023 2200023 (2 of 9) © 2022 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH GmbH
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of their retention time/index (RI), mass to charge ratio (m/z), and
chromatographic data (e.g., MS/MS spectral data) to Metabolons
library. Metabolon maintained a library of authenticated stan-
dards with over 3300 commercially available purified standard
compounds as well as information on unnamed biochemical
identified by recurring occurrence. Peaks were quantified using
area-under-the-curve and normalized with block correction cor-
recting for inter-day instrument tuning differences. Further de-
tails on the metabolic profiling had been reported elsewhere[30 ]

and the full analytical report provided by Metabolon could be
found in Additional File 1, Supporting Information. Both blood
and urine untargeted assays were performed in this fashion. Both
urine and blood metabolite values were corrected for inter day
tuning differences by scaling their median to one (block cor-
rection). Urine metabolite values were additionally corrected for
urine osmolality post-acquisition. Both urine and blood metabo-
lite values were log transformed, centered to a mean of zero and
scaled to a standard deviation of one prior to analysis.
Metabolon quantified 1042 (811 known and 231 unknown) and

1407 (940 known and 467 unknown) in blood and urine, respec-
tively.

2.3.3. Complex Lipid Platform Measurement

Lipids were extracted from samples in methanol:
dichloromethane in the presence of internal standards. The
extracts were concentrated under nitrogen and reconstituted
in 0.25 mL of 10 mM ammonium acetate dichloromethane:
methanol (50:50). The extracts were transferred to inserts and
placed in vials for infusion-MS analysis, performed on a Shi-
mazdu LC with nano PEEK tubing and the Sciex SelexIon-5500
QTRAP. The samples were analyzed via both positive and nega-
tive mode electrospray. The 5500 QTRAP scan was performed in
MRM mode with the total of more than 1100MRMs. Individual
lipid species were quantified by taking the peak area ratios of
target compounds and their assigned internal standards, then
multiplying by the concentration of internal standard added
to the sample. Lipid class concentrations were calculated from
the sum of all molecular species within a class, and fatty acid
compositions were determined by calculating the proportion of
each class comprised by individual fatty acids. Nine hundred
sixty six lipid species in 14 classes as well as 265 fatty acids were
identified.

2.3.4. Covariates

Body weight and height were measured at every follow-up by ex-
perienced nursing staff. Body mass index (BMI) was calculated
using height (meters) and weight (kilograms) with the formula
BMI = weight

height2
. This study calculated the mean age at diet exami-

nation as the mean age of the available protocols.

2.4. Statistical Analysis

Statistical analysis was performed using R (Version 4.0.3).[31 ]

All analyses were stratified by sex, because in both diet and
metabolome large sex differences were known.[32a,b,c,d,e,f ]

2.4.1. Data Analysis

First, both male and female datasets were splitted into a training
(70%) and a testing (30%) set. Orthogonal projection was used
to latent structures (oPLS) to explore the association between
food groups and the metabolome in the training data (discov-
ery model). The oPLS procedure used in this study was imple-
mented for application in metabolomics[33 ] according to the orig-
inal method by Trygg and Wold.[34 ] Briefly, oPLS extended PLS
(projection to latent structures) by removing the non-correlated
systematic variation of the descriptor variables (in this case: the
metabolites). The resulting components were easier to interpret.
PLSmodels extracted components (latent variables) on which the
descriptor variables were loaded, similar to PCA (principal com-
ponent analysis), with the major difference that the components
were built supervised to maximally explain the variance in the
Y-variable (in this case food group consumption). The loading
on the component could be read as the strength of association
between X and Y (metabolites and food group consumption, re-
spectively). The ‘opls()‘-function from the ‘ropls‘ R package was
used to calculate themodels.[33 ] Sevenfold cross-validation (in the
training dataset) was used to select the ideal number of orthog-
onal components for each model. Then, the performance of the
oPLSmodel was evaluated in the test data (Additional File 2, Sup-
porting Information).
To validate the above findings, the study also explored the

metabolome associations using random forests (RF) regression
with the ‘‘ranger’’ R package[35 ] in the training data on default
tuning parameters (validation model). Random forest was an en-
semble machine learning tool that was based on combining the
results ofmultiple decision treemodels. Splits weremade accord-
ing to the Gini impurity, measuring howwell a potential split was
separating the samples of the classes (food groups) in this par-
ticular node. Food groups were used as the dependent variable
and all metabolites as the independent variables. Again, in order
to evaluate overfitting the model to predict group assignment in
the test dataset was used (Additional File 2, Supporting Informa-
tion). The results of the RF were presented as the rank of the vari-
able importance measure, i.e., how important each variable was
for making accurate predictions. The gini impurity importance
measure was used.
The results from the discovery models were also used to try to

replicate the 82 putative blood biomarkers identified in at least
two independent study populations in a recent systematic litera-
ture search conducted by our group[16 ] in this study population.
The oPLSmodel results were searched without additional criteria
for the presence of these food–metabolite associations.
For the food–metabolite associations from above, this study

additionally estimated their correlations adjusting for BMI, time
difference between habitual diet examination and metabolome
measurement (difference = age at sample collection –mean age
at diet examination), and age at the sample collection of the re-
spective bio specimen.
Metabolites were discussed further as putative biomarkers

when they were 1) in the top 50 most loaded (absolute loading)
on a component for only one food group in the oPLS model and
2) in the top 50most important metabolites in the random forest
model. The ranking was performed for each model individually,
meaning separately for each food group and again stratified
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Table 1. Characteristics of 228 adolescents in the DONALD study.

Overall, N = 228a) Male, N = 94a) Female, N = 134a) p-valueb)

Age at blood draw 18.2 [5.9] 18.1 [5.4] 18.4 [6.0] 0.2

BMI at blood draw 22.3 [4.3] 23.2 [4.9] 21.9 [3.8] 0.004

Age at urine collection 18.09 [1.00] 18.09 [1.04] 18.09 [0.87] 0.3

BMI at urine collection 21.9 [3.7] 22.1 [3.8] 21.9 [3.7] 0.4

Median age at diet examination 14.07 [0.57] 14.06 [0.59] 14.07 [0.51] 0.5

Smoking status at urine collection 0.6

Never 33 (41%) 11 (41%) 22 (42%)

Former 25 (31%) 7 (26%) 18 (34%)

Current 22 (28%) 9 (33%) 13 (25%)

Unknown 148 67 81

BMI and Age had no missing values. Mean age at diet examination is calculated as the mean age from all available 3d-WDRs; a)Median [IQR]; n (%); b)Wilcoxon rank sum
test; Pearson’s Chi-squared test.

by sex. For these metabolites, this study additionally computed
partial correlations between the food group intake and the
metabolite value, adjusting for BMI at sample collection, time
difference between habitual diet examination and metabolome
measurement, and age at sample collection. The ‘pcor()‘ func-
tion was used from the ‘ppcor‘ package to calculate the partial
correlations.

2.4.2. Missing Values

Because every participant had at least two 3d-WDR, this study did
not impute the missing dietary records for participants with less
than their maximum possible 3d-WDR.
Metabolites were excluded from the analysis when more than

70% of data were missing. Based on this, the study excluded 91
and 67 metabolites in female blood and urine, respectively, and
87 and 74metabolites in male blood and urine, respectively.
Missing values in the oPLS models were handled by applying

the NIPALS (“Nonlinear Iterative Partial Least Squares”) algo-
rithm for the estimation of components. The method was first
described in 1966 by Wold[36 ] for PCA and had been expanded
to many similar methods, including oPLS. The advantage of NI-
PALS was, that it did not impute missing values, but rather the
algorithm could iterate with missing values in the data, with only
computation time rising with larger percentages of missing val-
ues. For the random forest model, this study performed a single
imputation with the ‘missRanger()‘ function, using 10 trees with
a maximum depth of six and three non-missing candidate values
for predictive mean matching.
For partial correlation coefficients this study used pairwise

complete cases, of metabolite, food group, BMI at sample col-
lection, and age at sample collection.

3. Results

Males and females in our study population were similar in
many characteristics. Females had slightly lower BMI (−1.3
and −0.2 median BMI, at blood and urine collection, respec-
tively) (Table 1). Participants had a median age of 18.20 [IQR:
5.50] years at blood draw, and 18.09 [IQR: 1.00] years at urine
collection.

Table 2. Median habitual food group consumption of 228 males and fe-
males in the DONALD study.

Food group b) Overall, N
= 228a)

Male,
N = 94a)

Female,
N = 134a)

Dairy 88 [70] 96 [77] 82 [62]

Cheese 9 [8] 10 [8] 9 [8]

Eggs 4.24 [3.61] 4.13 [3.54] 4.35 [3.82]

Beef 3.2 [4.2] 3.5 [4.6] 2.7 [4.0]

Pork 5.2 [5.8] 6.8 [6.5] 4.6 [5.4]

Poultry 3.1 [4.7] 3.4 [5.2] 2.9 [4.3]

Other meat 6.9 [5.9] 7.6 [7.5] 6.2 [4.9]

Fish 2.02 [3.87] 2.22 [3.86] 1.75 [3.60]

Animal fat 4.58 [3.13] 4.15 [2.67] 5.06 [3.25]

Vegetable fat 8.3 [4.7] 8.0 [3.8] 8.7 [5.3]

Cereals 133 [42] 132 [40] 136 [41]

Pasta 0.07 [1.01] 0.14 [1.22] 0.00 [0.85]

Potatoes 18 [13] 18 [13] 18 [13]

Vegetables 29 [22] 24 [21] 32 [24]

Vegetable juice 0.00 [0.03] 0.00 [0.04] 0.00 [0.02]

Legumes 0.69 [1.91] 0.58 [1.82] 0.73 [2.05]

Fruit 34 [30] 27 [30] 41 [33]

Fruit Juice 35 [38] 37 [41] 35 [37]

Nuts 2.38 [1.98] 2.47 [2.45] 2.37 [1.62]

Water 289 [186] 288 [188] 295 [169]

Alcohol 0.1 [2.1] 0.2 [7.8] 0.1 [0.7]

Beverages,
instant

0.00 [0.02] 0.00 [0.01] 0.00 [0.03]

Sweets 40 [18] 39 [20] 40 [17]

a)Median [IQR]; b) Consumption is measured in g
1000 kcal

, averaged over all available
protocols before urine collection and in adolescence (age 10–20) for each participant.

Notably different intakes across sexes were the higher dairy,
fruit juice, and alcohol consumption in males, as well as the
higher fruit and higher vegetable consumption in females. For
the other food groups, males and females reported similar me-
dian consumption amounts (Table 2), though energy intake dif-
fered significantly, as expected. Males had a median daily caloric
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Table 3.Male—metabolites associated uniquely in oPLS and important in RF.

Bio specimen Biochemical Super pathway Sub pathway Loadinga) RF rankb) Partial correlationc)

Eggs

Urine Indole-3-acetamide Xenobiotics Chemical −0.09 28 −0.25
Urine N6-methyladenosine Nucleotide Purine metabolism, adenine containing −0.10 31 −0.14
Vegetables

Urine Hippurate Xenobiotics Benzoate metabolism 0.07 21 0.06

Urine Citraconate/glutaconate Energy TCA cycle 0.07 31 0.14

Urine X - 12111 0.07 35 −0.12
a) Loading is generated from oPLSModels; b) RF Rank is the rank according to the importancemeasure in random forest; c) Partial correlation is partial for BMI, time difference
between habitual diet and metabolome measurement, and age.

intake of 2329 kcal and females had 1923 kcal. Participants com-
pleted on average 7.76 of the eight possible 3d-WDRs.Males com-
pleted slightly fewer protocols on average (males = 7.69 as com-
pared to females = 7.81).
The complete model results, without additional constraints,

are available in Additional File 2, Supporting Information. The
cross-validation search in the oPLS models for number of com-
ponents suggested three components for the combination of eggs
and male urine as well as vegetables and male urine. For other
and processed meats and male blood, female urine, and male
urine, fruit juice and female urine, pork and male urine, and
cheese andmale blood the search suggested two components. No
other model surpassed the cross-validation threshold to select a
component (Q2Y improvement), suggesting that the predictive
value of these models is too low.
In the oPLS models, 34 (of the top 50) metabolites were

uniquely loaded on components for other and processed meat
across both male and female sex in urine (Additional File 3, Sup-
porting Information). No metabolite in the top 50 was associated
uniquely with a food group in both urine and blood (across bio
specimen). In the RF model alcohol (seven metabolites), other
meat (seven metabolites), dairy (six metabolites), fruit juice (six
metabolites), pork (six metabolites), eggs (five metabolites), pasta
(five metabolites), legumes (five metabolites), water (five metabo-
lites), potatoes (four metabolites), cereals (three metabolites),
fish (three metabolites), vegetables (three metabolites), vegetable
juice (three metabolites), poultry (three metabolites), vegetable
fat (two metabolites), nuts (two metabolites), fruit (two metabo-
lites), beef (one metabolite), beverages, instant (one metabolite),
animal fat (one metabolite), cheese (one metabolite) and, sweets
(onemetabolite) were ranked in the top 50 in both sexes in blood.
In urine processed and other meat (10), poultry (eight metabo-
lites), cereals (four metabolites), beef (three metabolites), ani-
mal fat (three metabolites), dairy (three metabolites), vegetables
(three metabolites), fruit (three metabolites), fruit juice (three
metabolites), pork (three metabolites), alcohol (two metabolites),
eggs (two metabolites), vegetable fat (two metabolites), fish (two
metabolites), legumes (two metabolites), sweets (two metabo-
lites), water (two metabolites), cheese (one metabolite), potatoes
(one metabolite), and pasta (one metabolite) had metabolites
ranked in the top 50 in both sexes (Additional File 4, Supporting
Information). In the RFmodels, there is no metabolite ranked in
the top 50 in both bio specimen as well. We additionally provide

spearman correlation coefficients for all metabolite–food group
combinations in Additional File 5, Supporting Information. As
shown in Table 3, in male participants, we found five unique
food–metabolite associations across methods in urine and none
in blood. The associations were eggs with indole-3-acetamide,
and N6-methyladenosine, as well as vegetables with hippurate,
citraconate/glutaconate, and X – 12111.
As shown in Table 4, in females, we found one unique food–

metabolite association across methods in urine and none in
blood. The metabolite vanillylmandelate (VMA) is associated
with processed and other meat.
Of the 82 prior reported blood metabolites,[16 ] we have mea-

surements of 31 in blood and 32 in urine. Of these, 28 are mea-
sured both in urine and in blood. Combining this with roughly
similar food groups, we were able to search our models for eight
possible replications, where both food group andmetabolite were
available in our data. We were able to replicate one association in
male urine: pork consumption and the unknownmetabolites X –
11381. The metabolite was additionally associated with eggs and
vegetables in our models (Table 5). The metabolite has a partial
correlation with habitual pork consumption of r = −0.10.

4. Discussion

This study among 228 adolescents and young adults suggests
that habitual food intake is reflected to a limited extent in the
metabolome when focusing on single metabolites. A limited
number of associations were found in urine, but not in blood.
The associations we found were also sex dependent. In our dis-
covery analysis, we identified six uniquely associated putative
biomarkers in urine. We observed more and different associa-
tions inmales compared to females. To our knowledge, this is the
first study to relate habitual consumption ofmultiple food groups
assessed with food records to both the untargeted urine and the
bloodmetabolome in adolescents and young adults. We addition-
ally were able to replicate one association between metabolites
and food groups that were associated with more than one food
group.
One of our findings relates to hippurate or hippuric acid which

is an acyl glycine formed in the conjugation of benzoic acid
with glycine.[37 ] It was associated with increased vegetable con-
sumption in male urine. It is a regular component of urine
and increased levels were previously associated with increased

Mol. Nutr. Food Res. 2022, 66, 2200023 2200023 (5 of 9) © 2022 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH GmbH
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Table 4. Females—metabolites associated uniquely in oPLS and important in RF.

Bio specimen Biochemical Super pathway Sub pathway Loadinga) RF rankb) Partial correlationc)

Processed and other meat

Urine Vanillylmandelate (VMA) Amino acid Tyrosine metabolism 0.06 42 −0.00
a) Loading is generated from oPLSModels; b) RF Rank is the rank according to the importancemeasure in random forest; c) Partial correlation is partial for BMI, time difference
between habitual diet and metabolome measurement, and age.

Table 5.Metabolites replicated from literature.

Sex Food group Food group (Literature) Biochemical Other associated food Groups Loadinga) RF rankb) Partial correlationc)

Urine

Male Pork Red meat X - 11381 Eggs, vegetables −0.05 884 −0.10
a) Loading is generated from the oPLS Model; b) RF Rank is the rank according to the importance measure in random forest; c) Partial correlation is partial for BMI, time
difference between habitual diet and metabolome measurement, and age.

consumption of phenolic compounds such as tea, wine, fruits,
or vegetables.[37 ] Previous investigations in a different subpopu-
lation of our study cohort documented an association between
hippuric acid and fruit and vegetable consumption[38 ] and later
suggested urinary hippuric acid excretion as a biomarker for di-
etary flavonoid intake from fruit and vegetables.[39 ] This associa-
tion was recently also replicated in adults.[40 ] This suggests that
hippuric acid may be a good candidate biomarker for vegetable
intake, especially for high polyphenol containing vegetables.
Indole-3-acetamide is a 3-alkylindole[37 ] and is also known as 2-

(3-indolyl)acetamide or IAM. In our analysis, its urine levels were
associated negatively with habitual egg consumption in males. It
was previously detected in several foods, like butternut squash,
pineapples, or the common pea.[37 ] IAM is one of the bacte-
rial tryptophan catabolites[41 ] produced in the gut and eggs are
among the richest sources of dietary tryptophan.[42 ] Additionally,
peas are a common replacement for soy in chicken feed,[43 ] there-
fore this association might be due to changes in the food chain.
N6-Methyladenosine (m6A) is an endogenous urinary nucleo-

side product of the degradation of tRNA. It was associated with
decreased egg consumption in males in our sample. Unfortu-
nately, there are no prior studies relating urine levels to dietary
intake. However, one of the dietary factors that regulate m6A-
RNA-methylation, betaine,[44 ] was associated in plasma with egg
consumption,[45 ] which may be the pathway for the association
between m6A and eggs.
Vanillylmandelate (VMA) was associated negatively with pro-

cessed and other meat in female urine. VMA is a chemical in-
termediate in the synthesis of artificial vanilla flavorings and
an end-stage metabolite of the catecholamines.[37 ] Processed
meat has been previously associated with the catecholamine
metabolism.[46 ] It may be associated in females specifically be-
cause of different consumption habits within processed and
othermeat. Females in our sample ate more game, less sausages,
and less meat dishes compared to males. However, most of
the consumption in the processed and other meat group for
both sexes is due to sausages. VMA may be associated specif-
ically with processed and other meats due to different levels
of catecholamines contained in the meats used in the produc-
tion of the processed meat products. It was additionally asso-

ciated with an increased risk for colorectal cancer,[47 ] which is
known to be associated with higher consumption of processed
meats.[48 ]

Citraconate/glutaconate is an energymetabolite in the TCA cy-
cle. In our analysis, its urine levels were associated with vegetable
consumption in males. It has been previously reported in as-
sociation with habitual coffee-consumption in postmenopausal
women[25 ] and with a short term diet intervention of whole grain
wheat intake versus refined grain wheat intake.[49 ] In our sample,
this metabolite was associated with coffee consumption as well,
though only few participants were consuming coffee. In further
analysis, we observed that the association between vegetable in-
take and citraconate/glutaconate was independent of coffee in-
take. This suggests that the association between vegetable intake
and citraconate/glutaconate is unlikely to be influenced by coffee
intake.
The unknown metabolite X – 12111 in male urine was asso-

ciated with vegetable consumption in our study. It was previ-
ously associated with habitual consumption of total citrus and
juices.[50 ] However, this metabolite is not structurally identified
so that further discussion is not possible, yet.
Furthermore, we replicated the association of the unknown

metabolite X – 11381 with pork in the urine of males. As before,
this metabolite is not structurally identified, therefore identifica-
tion is needed prior to additional discussion is possible.
There are other well-documented diet–metabolite associations

that we were not able to replicate in our study, because we did
not have a measure for this specific metabolite (e.g., proline be-
taine). This is due to the untargeted nature of our metabolomics
analysis. Additionally, we usedmultiple 3d-WDRs to estimate ha-
bitual food intake, compared to most other studies using food
frequency questionnaires.
Our approach to combine two sophisticated statisticalmethods

and apply rigid criteria for further discussion proved successful
in this context. With hippurate, we identified a very promising
putative biomarker that other studies with different contexts sug-
gested previously as well. This gives us further confidence that
the stringent criteria succeeded to suggest associations that are
unlikely to be spurious. However, discovery of markers of habit-
ual intake in population-based studies is a complex multi-step
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process, ideally including explorative studies (like ours) andmore
targeted analyses focusing in on single food groups. No univer-
sal standard analysis approach has emerged, yet, which would
greatly increase the replicability of studies. The low correlation
between the food and metabolites suggests that linear associa-
tion may be a suboptimal measure of the biological effect of the
current foods on their associated metabolites in this study popu-
lation.
Though successful in our more homogeneously collected

urine metabolome data, our approach suggested molecules only
for a limited number of food groups and with varying de-
grees of plausibility. In the more heterogeneously collected blood
metabolome data the combination approach was not successful,
as the differentmethods selected different kinds ofmetabolites—
oPLS suggested mostly lipid-based metabolites while RF did
not select the lipid-based metabolites even in the top 500 most
relevant metabolites. Based on these findings we conducted
a sensitivity analysis separating blood metabolites and blood
lipodomics, resulting in some blood metabolites associated in fe-
males according to our criteria and no lipodomics associated. We
included these results in Additional File 6, Supporting Informa-
tion but emphasize the large impact of excluding half the vari-
ables from amodel is bound to have as well as the deviation from
our analysis protocol due to results. These results should be con-
sidered only for exploratory analysis. Besides, the choice of sta-
tistical methods seems to be have a huge impact on the results of
metabolomics analysis.
Additionally it is important to remember that, though the

metabolome measurement in our study is untargeted it is not
‘‘complete.’’ The humanmetabolome database contains roughly
220,000 human metabolites,[37 ] while single studies can identify
thousands and more metabolites in their sample this still repre-
sent only a fraction of all availablemetabolites. Furthermore, food
groups are very heterogeneously defined among studies, for ex-
ample, dairy might include cheeses in some but not all studies.
These differences might be an additional hurdle to overcome in
the replication of food–metabolite associations. A single study
reporting few or no associations is therefore not a suggestion
that there is nothing to find, but rather that in this specific study
population with its characteristics, food groups, and measured
metabolites there was no association. Replications in other stud-
ies are necessary to confirm our findings.

4.1. Strengths and Limitations

The present study has some notable strengths. We investigated
the associations between the habitual group food intake, esti-
mated by repeated food records, and the global metabolome from
two biofluids to achieve a more comprehensive overview of the
metabolome response to habitual food intake. We used multiple
3d-WDR as the measurement of habitual food intake, as well as
24 h urine samples and blood plasma in a comparatively large
study populationwith an untargetedmetabolomics approach.We
employed two sophisticated statistical analysis and stringent cri-
teria to identify putative biomarkers in order to increase the reli-
ability of our results. Identification of putative intake biomarkers
in explorative analysis depend on the methods for measurement
of the metabolome, the information on diet, the size of the study

population, and the statistical analysis.[51 ] By combining para-
metric and non-parametric statistical methods, we aimed to de-
crease the influence of method choice on our results and in turn
increase reproducibility. Additionally, we constrained novel asso-
ciations to be uniquely associated with only one food group to
increase plausibility, reliability, and reproducibility. We adapted
our food group definitions to better fit food groups in the litera-
ture and increase the chance of reproducibility. However, because
there is no universal standard to define food groups used across
studies and different assessment instruments, heterogeneity in
the food group definition remains.
On the other hand, we acknowledge several limitations to the

study. First, our participants are all Caucasians (Germans), resid-
ing in a large city (Dortmund) and surroundings, and are mostly
from a high socioeconomic background. This may limit the gen-
eralizability of our findings. Further, because we did not select
participants based on their diet, the ranges of food consump-
tion amounts were not as large in all food groups as in stud-
ies designed with one comparison in mind. We used one type
of dietary assessment, 3-day food records, albeit repeated. In-
cluding another dietary assessment instrument such as the FFQ
may improve the estimation of habitual dietary intake. The cur-
rent method of estimation may underestimate infrequently con-
sumed food groups and over estimate food groups consumed in
large quantities during the observation period. The time between
3d-WDR and blood collection differed greatly between partici-
pants. We accounted for this by adjusting for the time difference,
yet heterogeneity in these data remain. Additionally, we cannot
rule out residual confounding by either unknown or unmeasured
factors such as genetic influences or cooking method. Lastly, be-
cause we only had one measurement of urine and blood metabo-
lites the temporal reproducibility of these findings is unknown.

4.2. Future Research

Future research should try to validate the putative biomarkers we
have identified. Additional research should further aim to iden-
tify more biological pathways of known diet–metabolite associ-
ations. The unknown or partially characterized molecules that
were associated in this study should be identified, as they have
potential to help elucidate the biological mechanisms of the re-
lationship between diet and the metabolome as well as and may
function as possible biomarkers. Additionally, more studies are
needed that stratify their metabolomic analysis by sex, in order
to increase our understanding of the physiological differences
in metabolism between males and females. Furthermore, future
studies should try to replicate our findings in an independent
population and extend this analysis to repeatedmetabolomemea-
surements. Further investigation of the identified compounds as
potential biomarkers, for example, in feeding intervention tri-
als, or their exact metabolic pathway would be especially valuable
as well. Future studies would benefit greatly from an integrated
model where intervention studies and population-based stud-
ies inform each other, while using the exact same metabolome
measurement. Overall, metabolomics would benefit greatly from
both a more unified data analysis approach as well as a uni-
fied measurement approach to better facilitate meta-analysis and
replication of results from different studies.
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Future studies could aim to focus more on single food
groups, utilizing controlled-feeding trials and observational stud-
ies where participants are selected tomaximize the difference be-
tween intakes of a single food group. For explorative studies like
our present study, a combination of two or more statistical meth-
ods seems to deliver promising results.

5. Conclusion

We observed a limited reflection of habitual diet in the urine
metabolome, identifying six putative biomarkers of habitual food
intake in urine of adolescents and young adults in two indepen-
dent statistical methods. Additionally, we replicated one associ-
ation from the literature in the urine of male adolescents. We
propose to consider these metabolites as biomarkers of habitual
intake in future validation studies.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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3.3 Publication 3: Replication and mediation of the association between the 
metabolome and clinical markers of metabolic health in an adolescent 
cohort study 
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Replication and mediation 
of the association 
between the metabolome 
and clinical markers of metabolic 
health in an adolescent cohort 
study
Christian Brachem 1*, Leonie Weinhold 2, Ute Alexy 1, Matthias Schmid 2, 
Kolade Oluwagbemigun 1,3 & Ute Nöthlings 1,3

Metabolomics-derived metabolites (henceforth metabolites) may mediate the relationship between 
modifiable risk factors and clinical biomarkers of metabolic health (henceforth clinical biomarkers). 
We set out to study the associations of metabolites with clinical biomarkers and a potential mediation 
effect in a population of young adults. First, we conducted a systematic literature review searching for 
metabolites associated with 11 clinical biomarkers (inflammation markers, glucose, blood pressure 
or blood lipids). Second, we replicated the identified associations in a study population of n = 218 (88 
males and 130 females, average age of 18 years) participants of the DONALD Study. Sex-stratified 
linear regression models adjusted for age and BMI and corrected for multiple testing were calculated. 
Third, we investigated our previously reported metabolites associated with anthropometric and 
dietary factors mediators in sex-stratified causal mediation analysis. For all steps, both urine and 
blood metabolites were considered. We found 41 metabolites in the literature associated with clinical 
biomarkers meeting our inclusion criteria. We were able to replicate an inverse association of betaine 
with CRP in women, between body mass index and C-reactive protein (CRP) and between body fat 
and leptin. There was no evidence of mediation by lifestyle-related metabolites after correction for 
multiple testing. We were only able to partially replicate previous findings in our age group and did not 
find evidence of mediation. The complex interactions between lifestyle factors, the metabolome, and 
clinical biomarkers warrant further investigation.
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CVD  Cardio vascular disease
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BMI  Body mass index
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DONALD  Dortmund nutritional and anthropometric longitudinally designed
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3d-WDR  Three day weighed dietary record
UPLC-MS/MS  Ultra-high performance liquid chromatography-tandem mass spectroscopy
RI  Retention time/index
m/z  Mass to charge ratio
BP  Blood pressure
ACME  Average causal mediation effect
SD  Standard deviation
PLS  Partial least squares

Chronic diseases such as cardiovascular disease (CVD), type 2 diabetes mellitus (T2DM), and cancers are among 
the largest public health burdens modern societies’  face1,2. Important for the prevention of these diseases are key 
modifiable risk factors such as body composition and dietary intake.

Metabolomics is a rich resource in the process of elucidating the etiology of  diseases3,4. To realize the potential 
of the metabolome it is important to validate putative biomarkers (henceforth called “metabolites”) and replicate 
their associations across studies and  settings5. Well-established clinical biomarkers of metabolic health (hence-
forth called “clinical biomarkers”), for example cholesterol as a clinical biomarker for  CVD6,7, HBa1C for  T2DM8, 
or inflammation markers (e.g. CRP, IL-8)4 appear to be intricately linked with  metabolites3,5,9,10. However, study 
findings are largely inconsistent, and might differ by sex and age  groups11–16 calling for in depth confirmation 
and replication across sexes and age groups.

Modifiable lifestyle factors including body composition and food intake are linked to a number of chronic 
diseases such as type 2  diabetes17–20,  CVD7,21–23 or cancer  types24–27 through alterations in the human metabo-
lome. With respect to prevention, a life course approach elucidates preventive potential in younger age groups, 
e.g. early adulthood, which has been shown to be  relevant28,29. In these age groups, clinical biomarkers are of 
importance to evaluate chronic disease risk. While the relationship of body composition and dietary intake 
with clinical biomarkers is well reported, less is known on potential mediation through the metabolome. We 
recently reported associations between body composition and the metabolome (19 metabolites for body mass 
index (BMI) and 20 for body fat (BF) in  urine30, as well as between habitual food intake (in food groups) and 
the metabolome (6 metabolites) in urine and  blood31). The association of body composition and dietary intake 
with clinical biomarkers may be linked via some of these metabolites.

To investigate this complex relationship, the aims of the current study were first to identify associations of 
metabolites with clinical biomarkers based on a systematic literature review (SLR), second to replicate these 
associations in our study population, and third to evaluate whether our previously reported body composition- 
and habitual food intake-associated metabolites mediate the association of body composition and habitual food 
intake with clinical biomarkers. Of note, we focused on the age groups of adolescents and young adults as a 
particular time window of relevance for prevention.

Methods
Systematic literature review. We first conducted a SLR of studies indexed in PubMed, separate for each 
clinical biomarker, to identify relationships between metabolites and clinical biomarkers to be replicated in our 
study. A detailed description of the search terms and flow-charts can be found in Additional File S1. Briefly, we 
included studies that reported associations between Inflammation markers (C-reactive protein (CRP), Interleu-
kin-6 (IL-6), Interleukin-18 (IL-18), Adiponectin, and Leptin), glucose, blood pressure (BP) (systolic blood pres-
sure, diastolic blood pressure, and Hypertension) and blood lipids (high-density lipoprotein (HDL), low-density 
lipoprotein (LDL), total triglycerides) and the human blood or urine metabolome. We developed a search term 
for each of these clinical biomarkers. The review was conducted by CB only.

We included all studies where at least one association was reported. We identified additional studies through 
screening of citations and literature reviews. Information about associations of metabolites and clinical biomark-
ers was finally extracted from each included study. Of these, only associations reported in at least two independ-
ent studies were considered “consistent” and further used in the current study.

Study design. Both, the confirmation and mediation analyses were conducted in a subpopulation of the 
DOrtmund Nutritional and Anthropometric Longitudinally Designed (DONALD)  study32,33. Briefly, the DON-
ALD Study is an ongoing longitudinal open cohort study in Dortmund, Germany, with the goal of analyzing 
detailed data on diet, growth, development, and metabolism between infancy and  adulthood32,33. Participants 
are first examined at the age of 3 months and return for three more visits in the first year of life, two in the second 
and annually thereafter until the age of 18, when examinations start following a five-year cycle. Examinations 
include 3-day weighed dietary records (3d-WDR), anthropometric measurements, collection of 24-h urine sam-
ples (starting at age 3–4), collection of blood samples (starting at age 18), and interviews on lifestyle and medical 
examinations. Further details on the study design have been published  elsewhere32,33.

Study participants. We included all DONALD study participants that were singletons, full term births 
(37–42 weeks of gestation) and had a birth weight of at least 2500 g. For the current analysis participants had to 
have a measurement of both the urine and blood metabolome, as well as at least one measurement of each clini-
cal biomarker. Overall, 218 participants were eligible for the current study.

Variable assessment. Assessment of clinical biomarkers. Inflammation markers (C-reactive protein 
(CRP), Interleukin-6 (IL-6), Interleukin-18 (IL-18), Adiponectin, and Leptin), glucose, and blood lipids (high-
density lipoprotein (HDL), low-density lipoprotein (LDL), total triglycerides) were measured in non-fasted 
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blood plasma. Measurements in blood were always at the same follow-up and from the same sample as metabo-
lome measurement. Blood measurement was always at the same follow-up visit or later than urine metabolome 
measurement.

Blood pressure (mmHg) was measured multiple times by experienced nursing staff. We used the mean of two 
repeated measurements for both systolic and diastolic blood pressure. We chose the blood pressure measurement 
closest after the corresponding metabolome measurement for analysis of the respective participant, which was 
always at the next study visit.

Untargeted metabolomic profiling. The metabolome measurement was already described  elsewhere31. Briefly, 
Metabolon Inc. (Morrisville, NC, USA) performed an untargeted metabolomics assay with lipidomics on plasma 
and an untargeted metabolomics assay on urine samples. For both the plasma and urine untargeted assays, 
Metabolon used ultra-high performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) 
to identify metabolites in the samples. Peak identification was done in their propriety Laboratory Information 
Management System. Compounds were identified by comparison of their retention time/index (RI), mass to 
charge ratio (m/z) and chromatographic data (e.g. MS/MS spectral data) to library standards. Metabolon main-
tains a library of authenticated standards with over 3300 commercially available purified standard compounds. 
Structurally unnamed biochemicals were identified by occurrence. Peaks are quantified using area-under-the-
curve and normalized with block correction correcting for inter-day instrument tuning differences. Further 
details on the metabolic profiling have been reported  elsewhere34. Both blood and urine untargeted assays were 
performed in this fashion. Urine metabolite values were additionally normalized to urine osmolality to account 
for differences in metabolite levels due to differences in the amount of material present in each sample. Metabo-
lon quantified 1042 (811 known and 231 unknown) and 1407 (940 known and 467 unknown) in blood and 
urine, respectively. A deeper explanation of the metabolomics methods can be found in Additional File S2.

Complex lipid platform measurement. Lipids were extracted from samples in methanol:dichloromethane in 
the presence of internal standards. The extracts were concentrated under nitrogen and reconstituted in 0.25 mL 
of 10 mM ammonium acetate dichloromethane:methanol (50:50). The extracts were transferred to inserts and 
placed in vials for infusion-MS analysis, performed on a Shimazdu LC with nano PEEK tubing and the Sciex 
SelexIon-5500 QTRAP. The samples were analyzed via both positive and negative mode electrospray. The 5500 
QTRAP scan was performed in MRM mode with the total of more than 1100 MRMs. Individual lipid species 
were quantified by taking the peak area ratios of target compounds and their assigned internal standards, then 
multiplying by the concentration of internal standard added to the sample. Lipid class concentrations were cal-
culated from the sum of all molecular species within a class, and fatty acid compositions were determined by 
calculating the proportion of each class comprised by individual fatty acids. We identified 966 lipid species in 
14 classes as well as 265 fatty acids. A deeper explanation of the lipidomics methods can be found in Additional 
File S2.

Body composition and habitual dietary intake. Body weight and height were measured at every follow-up by 
experienced nursing staff. Body mass index (BMI) was calculated using height (m) and weight (kg) with the 
formula BMI = weight

height2
 . Body fat percent (BF) was calculated from four skin/fold thickness measurements 

(biceps, triceps, iliaca, and scapula), using age, puberty status, and sex/specific equations from Deurenberg 
et al.35. Previous associations with BMI used in the mediation analysis and further details on body composition 
assessment were reported in Brachem et al.30.

We used multiple annually applied 3d-WDRs to assess habitual food intake on the food group level. Par-
ticipants had to have at least two 3d-WDR in adolescence (according to the WHO definition, age 10–19). We 
defined habitual intake as the mean intake across all available records in adolescence. To account for differences 
in consumed calories, we standardized intake to grams per 1000 kcal. Previous associations with habitual food 
intake used in the mediation analysis and further details on dietary assessment were reported in Brachem et al.31.

Statistical analysis. Statistical analysis was performed using R software (Version 4.0.3)36. All analyses were 
stratified by sex.

Metabolomics data pre-treatment. Both urine and blood metabolite values were log transformed, centered to a 
mean of zero and scaled to a standard deviation of one prior to analysis.

Replication. We used ordinary least squares regression to replicate associations between the metabolites and 
clinical biomarkers in the DONALD study. The clinical biomarkers were used as the dependent variables and 
metabolites as the independent variables. We adjusted the models for BMI and age, both at sample collection. 
Data was split into training (70%) and testing (30%) data to evaluate overfitting. We trained the model on the 
training data and used these models to predict clinical biomarker values in the test data. Results from the test 
data were used only to evaluate the model quality. We additionally accounted for multiple testing by holding the 
false discovery rate at 5%37.

Mediation analysis. We used causal mediation analysis to evaluate whether our previously reported body 
composition-30 and habitual food intake-related  metabolites31 mediate the association of body composition and 
habitual food intake with clinical biomarkers. For the first, BMI and BF were the exposure and the clinical bio-
marker (BP, IL-6, IL-18, CRP, Adiponectin, leptin, total cholesterol, HDL, LDL, and triglyceride levels) were the 
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outcomes. The 19 (5-dodecenoylcarnitine (C12:1), 7-hydroxyindole sulfate, decanoylcarnitine (C10), formimino-
glutamate, glucuronide of C10H18O2 (12), guanidinosuccinate, isobutyrylglycine (C4), isovalerylglycine, nicotina-
mide N-oxide, proline, succinimide, thymine, tigloylglycine, X—12839, X—21441, X—21851, X—24469, X—24801, 
and X—25003) BMI-associated metabolites and 20 (3-methylcrotonylglycine, glucuronide of C10H18O2 (12), glu-
tamine conjugate of C8H12O2 (1), glycine conjugate of C10H14O2 (1), guanidinosuccinate, isobutyrylglycine (C4), 
isovalerylglutamine, isovalerylglycine, nicotinamide N-oxide, succinimide, tigloylglycine, X—11261, X—15486, 
X—17676, X—21851, X—24345, X—24350, X—24469, X—24801, X—25442, and X—25464) BF-associated 
metabolites were considered as mediators. For the second, habitual food intake was the exposure, the afore-
mentioned clinical biomarker markers were the outcomes, and the six (eggs: indole-3-acetamide, N6-methyl-
adenosine; vegetables: hippurate, citraconate/glutaconate, X—12111; processed and other meat: vanillylmandelate 
(VMA)) food group-associated metabolites were considered as mediators. We used the ‘mediate()’-function in 
the R package ‘mediation’38 for the analysis. We used 1000 simulations (the recommended default) and quasi-
Bayesian approximation to estimate the standard errors. We used the model-based  approach38. The mediator 
model is the linear regression model that regresses the metabolites on BMI, BF, or habitual food intake adjusted 
for age at sample collection. The habitual food intake models were additionally adjusted for BMI at sample col-
lection. The outcome model is a linear regression model that regresses clinical biomarker on BMI, BF, or habitual 
food intake, the mediator (metabolites), and adjustment variables. From these models the causal mediation 
analysis is performed as described by Imai et al.39. Briefly, the model estimates the average causal mediation 
effect (ACME), which is a numeric measure of how much influence the presence of the mediator has on the total 
effect of the exposure-outcome association, as well as the average direct effect, the average total effect, and the 
proportion mediated. We corrected for multiple testing by holding the false discovery rate at 5%.

Missing values. We excluded metabolites from the analysis when more than 70% of data was missing. Based 
on this we excluded 91 and 67 metabolites in female blood and urine, respectively, and 87 and 74 metabolites in 
male blood and urine, respectively.

For the mediation analysis and the regression models, we performed a single imputation with the “mis-
sRanger” package, using 10 trees with a maximum depth of six and three non-missing candidate values for 
predictive mean matching. We used random forest imputation, as it is recommended for imputation of missing 
metabolomics  data40.

Sensitivity analysis. We performed sensitivity analysis on the choice of the missing data threshold in the impu-
tation approach, repeating the complete study protocol excluding metabolites with more than 30% missing data 
(instead of 70% in the main analysis). In males we additionally excluded 103 metabolites and 106 metabolites 
in blood and urine, respectively, while in females we excluded 123 and 108 additional metabolites in blood and 
urine, respectively.

Ethics approval and consent to participate. Informed written consent was obtained from parents 
and from participants themselves on reaching adolescence. The ethics committee of the University of Bonn, 
Germany (project identification: 098/06) approved the study. We confirm that all methods were performed in 
accordance with relevant guidelines and in accordance with the Declaration of Helsinki.

Results
In the SLR, we found metabolites associated with blood pressure and CRP in at least two independent studies 
(Table 1). Six metabolites (4-hydroxyhippurate, Androsterone sulfate, Glutamine, Isoleucine, Phenylalanine, and 
Tryptophan) for blood pressure and four metabolites (Betaine, Glutamine, Isoleucine, and Tryptophan) for CRP 

Table 1.  Metabolites associated with conventional systemic markers of chronic disease risk in at least two 
independent observational studies. According to systematic search in PubMed. Metabolites without a match in 
our metabolites and those we did not replicated are available in Additional File S3.

Metabolite Sources
Blood pressure
 4-Hydroxyhippurate Zheng et al.41,42

 Androsterone sulfate Zheng et al.41,42

 Glutamine Goïta et al.43, Le Wang et al.44

 Isoleucine Liu et al.45, Le Wang et al.44

 Phenylalanine Hao et al.46, Wawrzyniak et al.47, Goïta et al.43, Meyer et al.48, Øvrehus et al.49

 Tryptophan Liu et al.45, Le Wang et al.44

CRP
 Betaine Jutley et al.50, Pietzner et al.51

 Glutamine Jutley et al.50, Pietzner et al.51

 Isoleucine Jutley et al.50, Oluwagbemigun et al.52

 Tryptophan Jutley et al.50, Kosek et al.53, Oluwagbemigun et al.52
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were present in more than two studies. The full metabolite list we identified in at least one study with their cor-
responding references can be found in Additional File S3.

In Table 2, we present characteristics of the DONALD study population. Aside from the BMI at blood sam-
pling, there were no differences for basic characteristics between the sexes. Except for diastolic blood pressure 
at urine collection, IL-6, IL-18, and total blood triglycerides, all clinical biomarkers were significantly different 
between the sexes though directions differed. Blood pressure (diastolic at blood draw and systolic at both blood 
draw and urine collection) and blood glucose were higher in males, while CRP, leptin, adiponectin, total cho-
lesterol, HDL, LDL, and triglycerides were higher in females.

We were able to test associations for 41 of the 46 metabolites associated with clinical biomarkers. We were 
able to replicate metabolite associations for 10 out of the 41 metabolites we found (Table 3), four out of five for 
CRP and six out of 36 for blood pressure. We discovered six significant associations in female participants, while 
there were five significant associations in male participants. Across bio specimens, there were more associations 
present in urine (six) compared to blood (five). One metabolite, phenylalanine, was associated across sexes with 
systolic blood pressure. Another metabolite, glutamine, was associated with both diastolic and systolic blood 
pressure. However, the association between glutamine and diastolic blood pressure for male participants was 
positive, while the association between glutamine and systolic blood pressure for females was inverse. Across 
sexes and bio specimen more metabolites (six) were associated negatively. When correcting for multiple testing 
only the association between betaine and CRP in females remained significant. The complete model results, 
including direct sex comparisons, can be found in Additional File S4. The test set model metrics can be found 
in Additional File S5.

We found no metabolite significantly mediating the relationship of either body composition or habitual food 
intake and clinical biomarkers after correcting for multiple testing (Table 4). However, we observed two signifi-
cant total effects, both in male urine. One between CRP and BMI, CRP is estimated to increase by 0.5 standard 
deviations (SD) as BMI increases by one unit (p-Value (FDR) < 0.0001) and one between leptin and BF, leptin 
is estimated to increase by 0.62 standard deviations as BF increases by 1 unit (p-Value (FDR) = 0.040). The full 
model results are available in Additional File S6. The test set model metrics can be found in Additional File S5.

Table 2.  Characteristics and markers of metabolic health of 218 DONALD participants. 1 Median [IQR]. 
2 Wilcoxon rank sum test Males VS Females. Unknown metabolites are not displayed.

N Overall, N =  2181 Male, N =  881 Female, N =  1301 p-value2

BMI [kg/m2] at blood draw 218 22.30 [20.65, 24.91] 23.25 [21.21, 26.16] 21.89 [20.31, 24.09] 0.005
BMI [kg/m2] at urine collection 218 21.88 [19.96, 23.63] 22.06 [20.38, 23.54] 21.85 [19.88, 23.68] 0.4
Age [years] at blood draw 218 18.00 [18.00, 23.00] 18.00 [18.00, 23.00] 18.00 [18.00, 23.75] 0.5
Age [years] at urine collection 218 18.00 [17.00, 18.00] 18.00 [16.00, 18.00] 18.00 [17.00, 18.00] 0.7
Age difference [years] between last dietary record and 
blood draw 218 1.00 [0.00, 6.75] 1.00 [0.00, 4.00] 1.50 [0.00, 7.00] 0.7

Age difference [years] between last dietary record and 
urine collection 218 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.4

3-Methylcrotonylglycine 206 0.99 [0.71, 1.25] 1.00 [0.83, 1.25] 0.94 [0.61, 1.24] 0.075
5-Dodecenoylcarnitine (c12:1) 218 0.93 [0.58, 1.38] 1.18 [0.73, 1.66] 0.84 [0.50, 1.26] 0.001
7-Hydroxyindole sulfate 211 0.92 [0.54, 1.62] 1.25 [0.81, 1.97] 0.68 [0.46, 1.11] < 0.001
Citraconate/glutaconate 218 1.00 [0.63, 1.80] 1.09 [0.72, 2.00] 0.88 [0.57, 1.68] 0.042
Decanoylcarnitine (c10) 217 0.95 [0.64, 1.44] 0.92 [0.64, 1.58] 1.00 [0.64, 1.39] 0.7
Formiminoglutamate 218 0.97 [0.64, 1.33] 1.01 [0.76, 1.35] 0.85 [0.54, 1.31] 0.020
Glucuronide of c10h18o2 (12) 217 1.00 [0.68, 1.58] 1.03 [0.79, 1.44] 0.98 [0.66, 1.65] 0.4
Glutamine conjugate of c8h12o2 (1) 218 0.98 [0.68, 1.54] 0.98 [0.72, 1.45] 0.99 [0.63, 1.58] 0.7
Glycine conjugate of c10h14o2 (1) 218 0.95 [0.59, 1.68] 1.00 [0.68, 1.92] 0.87 [0.59, 1.63] 0.4
Guanidinosuccinate 218 0.96 [0.70, 1.30] 1.10 [0.81, 1.31] 0.83 [0.61, 1.23] 0.005
Hippurate 218 0.99 [0.69, 1.44] 0.92 [0.69, 1.35] 1.07 [0.70, 1.50] 0.3
Indole-3-acetamide 198 0.93 [0.58, 1.87] 1.06 [0.57, 2.03] 0.88 [0.61, 1.78] 0.5
Isobutyrylglycine (c4) 218 0.98 [0.67, 1.31] 1.08 [0.82, 1.33] 0.87 [0.61, 1.28] 0.011
Isovalerylglutamine 218 0.99 [0.66, 1.36] 1.15 [0.96, 1.44] 0.83 [0.56, 1.16] < 0.001
Isovalerylglycine 218 1.00 [0.69, 1.44] 1.21 [0.82, 1.51] 0.86 [0.62, 1.34] < 0.001
N6-methyladenosine 215 0.99 [0.71, 1.42] 1.06 [0.77, 1.44] 0.96 [0.69, 1.41] 0.14
Nicotinamide n-oxide 214 1.01 [0.60, 1.59] 1.00 [0.65, 1.50] 1.05 [0.57, 1.78] 0.7
Proline 218 0.99 [0.69, 1.27] 1.09 [0.78, 1.42] 0.90 [0.66, 1.13] 0.004
Succinimide 217 0.98 [0.70, 1.35] 1.14 [0.90, 1.60] 0.86 [0.60, 1.22] < 0.001
Thymine 217 1.00 [0.75, 1.33] 1.09 [0.82, 1.42] 0.90 [0.64, 1.23] 0.004
Tigloylglycine 218 0.93 [0.71, 1.28] 1.11 [0.83, 1.41] 0.82 [0.68, 1.23] 0.004
Vanillylmandelate (vma) 218 0.99 [0.79, 1.36] 1.11 [0.86, 1.44] 0.93 [0.76, 1.27] 0.007
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In our sensitivity analysis on the amount of missing data we observed one additional significant association 
after correcting for multiple testing, between glutamine and CRP in male urine (p (FDR) = 0.046, ß = − 0.39, − 0.63 
to − 0.15). Additionally, we observed one additional significant total effect in the mediation analysis, between 
BMI and leptin in male urine and no mediators. The full results tables for the sensitivity analysis can be found 
in Additional File S7.

Discussion
In the present study, we conducted an SLR identifying 41 metabolite- clinical biomarker associations (36 for 
BP, 5 for CRP) that were reported in at least two independent studies. Of these 41, we were able to replicate 10 
associations, in our own study population one of which was significant after multiple testing correction. Addi-
tionally, we found no evidence of a metabolite mediating the association between body composition or habitual 
food intake and clinical biomarkers.

Table 3.  Replicated risk-markers-metabolites association for CRP, diastolic blood pressure, and systolic 
blood pressure. Estimates are generated from linear regression. Models were adjusted for age and BMI, both 
at sample collection. Metabolites were log-transformed prior to analysis. Estimates and 95% CI are on the log 
scale. We controlled the false discovery rate (FDR) at 5% to account for multiple testing. Metabolites significant 
after correction for multiple testing are marked in italics.

Metabolite Sex Bio specimen Super pathway Sub pathway β 95% CI p-value p-value (FDR)
Clinical biomarker: CRP

 Betaine Female Blood Amino acid
Glycine, serine 
and threonine 
metabolism

− 0.40 − 0.61 to − 0.19 0.0002 0.0220

 Glutamine Male Urine Amino acid Glutamate 
metabolism − 0.39 − 0.63 to − 0.15 0.0022 0.1008

 Isoleucine Male Urine Amino acid
Leucine, isoleu-
cine and valine 
metabolism

− 0.29 − 0.53 to − 0.04 0.0218 0.2060

 Tryptophan Male Urine Amino acid Tryptophan 
metabolism − 0.38 − 0.63 to − 0.13 0.0033 0.1137

Clinical biomarker: diastolic blood pressure

 Glutamine Male Blood Amino acid Glutamate 
metabolism 0.25 0.02–0.48 0.0337 0.2682

Clinical biomarker: systolic blood pressure
 4-Hydroxyhip-
purate Female Urine Xenobiotics Benzoate 

metabolism 0.28 0.08–0.48 0.0072 0.1374

 Androsterone 
sulfate Female Blood Lipid Androgenic 

steroids − 0.17 − 0.35 to − 0.00 0.0496 0.3076

 Glutamine Female Blood Amino Acid Glutamate 
metabolism − 0.24 − 0.41 to − 0.07 0.0064 0.1368

 Phenylalanine
Female Urine

Amino Acid Phenylalanine 
metabolism

0.19 0.00–0.38 0.0477 0.3076
Male Blood 0.25 0.02–0.48 0.0328 0.2682

 Tryptophan Female Urine Amino Acid Tryptophan 
metabolism 0.19 0.00–0.38 0.0466 0.3076

Table 4.  Metabolites mediating the association of body composition and habitual food intake with clinical 
biomarkers. Estimates and confidence intervals are in standard deviations. ACME average causal mediation 
effect, CRP C-reactive Protein. 1 p-values are corrected for multiple testing by holding the false discovery rate at 
5%.

Bio specimen Sex
Clinical 
biomarker

Mediating 
metabolite

Total effect ACME
Estimate 95% CI p-value1 Estimate 95% CI p-value1

Exposure: BMI

 Urine Male CRP
5-Dodecenoyl-
carnitine 
(C12:1)

0.51 0.254–0.747 0.000 − 0.03 − 0.134 to 
0.035 0.983

Exposure: body fat (%)

 Urine Male Leptin
Glucuronide 
of C10H18O2 
(12)*

0.62 0.203–1.040 0.040 − 0.10 − 0.285 to 
0.018 0.983
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Systematic literature review. We identified 41 metabolites associated with clinical biomarker variables 
in at least two studies. Interestingly, these were distributed only between two clinical biomarker variables: blood 
pressure and CRP. Most of the metabolites (36 of 41) were associated with blood pressure. The methods applied 
to investigate the relationships of the metabolome and the clinical biomarker variables were very heterogene-
ous. They ranged from correlation analysis (e.g.54), through regression (e.g.46) to advanced machine learning 
methods like random forests (e.g.55) or PLS (partial least squares) variants (e.g.56). Additionally, it would be very 
useful for future SLR to have an easier format to export all study results in an appendix. Because of the large 
number of associations usually present in metabolomics studies, this would greatly increase the possibility for 
future studies to build on. Another important observation in the SLR is that only four out of 50  studies43,52,57,58 
stratified by sex, with two additional studies having cohorts restricted to either  males59 or  females60, though 
many additional studies adjusted for or matched by sex. Given how strong the  influence11–13,15,16,30,31,52 of sex is 
on many different aspects of the metabolome, a better and ideally unified strategy to account for these influences 
in future studies is needed. Most studies included in the SLR were in exclusively adult study populations. Three 
studies studied  children53,61,62 and two  studies52,57 adolescents and young adults. Age is another influential factor 
in the composition of the metabolome that may need additional adjustment strategies in the long  term63.

Replication. We were able to replicate 10 out of the 41 metabolites testable in our study sample. We found 
more metabolites replicated in females compared to males (six and five, respectively) and only one metabolite, 
phenylalanine, associated with systolic blood pressure across sexes. In this replication analysis, only one associa-
tion, the negative association between betaine measured in the blood of males and CRP remained significant 
after correction for multiple testing. Betaine is an essential osmolyte derived from either diet or by oxidation 
of  choline64,65. Insufficiencies of betaine have been associated with many chronic diseases, such as metabolic 
syndrome, T2DM or vascular  diseases65. Additionally, betaine is considered as an anti-oxidant64 and fulfills anti-
inflammatory  functions66. The inverse association between betaine in male blood and CRP we observed is there-
fore in line with the literature.

Phenylalanine was not significantly associated with systolic blood pressure after correction for multiple test-
ing but it is interesting. It is the only metabolite associated across sexes and indirectly across bio specimen. It’s 
association with higher blood pressure is in line with previous literature, that reported a strong association with 
infant pulmonary  hypertension67 and more generally elevated cardiovascular  risk68. Furthermore, it was elevated 
in metabolically unhealthy obese (compared to metabolically healthy obese)69. Because it is a precursor to cat-
echolamines an increase in blood pressure even has a known physiological pathway  already64. More studies are 
needed to discern the causal order and exact mechanism of phenylalanine on blood pressure.

Mediation. We did not identify any metabolite as potential mediator of the relationship between either body 
composition or habitual food intake and clinical biomarkers.

While we did not identify any mediators in our sample, we still believe there will be mediators identified in 
the future. Mediators are notoriously hard to identify, as their study requires many association tests (which in 
turn requires a correction for multiple testing), a large study population and large effect sizes. All three of which 
were limiting factors within our study.

Sensitivity analysis. We performed sensitivity analysis on the amount of missing data permitted in the 
metabolites prior to imputation. We excluded over 100 additional metabolites, but the results did not change 
in meaning. In the replication analysis, as was expected by reducing the number of metabolites and therefore 
statistical tests, the metabolite closest to significance in the main analysis was statistically significant in the sen-
sitivity analysis. However, the point estimates of the metabolites remained the same. In the mediation analysis, 
one additional total effect remained significant after correcting for multiple testing but no mediating effects, the 
same as the main analysis. Therefore, interpretation of the results was not depended on the choice of missingness 
permitted in the metabolites prior to imputation.

Future research. Future research should take the sex differences we reported into consideration in their 
own study design, ideally by stratification, in order to further our understanding of the physiological differences 
in metabolism between males and females. A study evaluating the metabolites associated with metabolic health 
markers as mediators to lifestyle factors would be a great continuation of the present study, ideally in a larger 
cohort. Lastly, metabolomics would greatly benefit from both a more unified data analysis approach as well as a 
unified measurement approach to better facilitate meta-analysis and ease the burden of replicating results from 
different studies.

Strengths and limitations. The present study has some notable strengths. We used results from our own 
previous studies to investigate mediation and conducted a SLR to facilitate replication of previously reported 
associations in the literature. We were able to use global measurements of the urine and blood metabolome in 
the same participants for both analyses in a comparatively (for metabolomics) large study population. Though 
the number of statistical tests required for metabolomics in relation to the available data in our study is high, 
therefore sampling power may be a reason for few total associations found. We employed state of the art statistical 
analysis and machine learning to investigate both the mediation and the replication. However, we acknowledge 
several limitations to the study. Our participants are Caucasians (Germans), residing in a large city (Dortmund) 
and surrounding area and are mostly from a high socio-economic background. This may limit the generalizabil-
ity of our findings. We used non-fasted plasma samples, which increases the variability of inter and intra par-
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ticipant variability of measurements introducing non-differential measurement error. We constructed habitual 
diet from multiple measurements in adolescence, which increases the time difference between diet measurement 
and metabolome assessment. This limits results to more long-term markers but increases the effect size needed 
to detect a signal. Additionally, we cannot rule out residual confounding by either unknown or unmeasured 
confounders or related factors such as genetics. In our mediation analysis, we had, compared to other mediation 
analysis, a relatively small sample size. Lastly, we only have one measurement of the metabolome available, so the 
temporal reproducibility of these findings is unknown.

Conclusions
In summary, we identified 41 metabolites associated in at least two independent studies with clinical biomarker 
and replicated ten associations in our own data, only one of which was significant after multiple testing correc-
tion. Additionally, there was no metabolite mediating the relationship between body composition or habitual 
diet and clinical biomarker. The intricate interplay between lifestyle factors, the metabolome, and metabolic 
health warrants further investigation.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due data protection 
concerns for sensitive data but are available on reasonable request and approval of the principal investigator. 
Requests can be sent to epi@uni-bonn.de. All model results are available in the supplement to this article.
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4 Discussion and conclusion with references 

4.1 Discussion 

We published three research articles exploring the metabolome and replicating metabolite 

associations in adolescents and young adults. In the first research article (see 3.1), we 

explored the urine metabolome for associations with body composition factors BMI and 

BF. We identified 30 metabolites, 10 of which were associated with both BMI and BF. In 

the second research article (see 3.2), we explored the urine and blood metabolome of the 

same participants for associations with a focus on putative biomarkers, as well as 

searching for replicates from a previous literature search. We identified six metabolites as 

putative biomarkers and replicated one additional marker from the literature search. In the 

third research article (see 3.3), we conducted a systematic literature search showing 41 

metabolites associated in at least two independent studies with markers of metabolic 

health and replicated ten of these metabolites in our own cohort. Additionally, we extended 

the existing results with a mediation analysis identifying no mediating metabolites in the 

relationship between lifestyle and risk markers. 

In all three research articles we found a strong sexual dimorphism of the metabolome. In 

both blood and urine we saw stronger and/or more associations in one sex depending on 

the context. For example, in our investigation of body composition we found no metabolite 

associated with female body composition in our sample, even though statistical reasons 

are unlikely (as sample size and distribution of variables were approximately equal). In the 

association with systemic risk markers for chronic disease, however, we found more 

replicated associations with females compared to males. Only one association was 

present in both males and females. These results reinforce previous findings both in our 

own study population (Oluwagbemigun et al., 2020; Oluwagbemigun et al., 2021), in mice 

(Won et al., 2013), and in independent adult (Darst et al., 2019; Krumsiek et al., 2015; Rist 

et al., 2017) and adolescent (Saner et al., 2019) study populations. There are multiple 

hypotheses as to why these sex differences exist. The complete mechanism, however, 

remains to be elucidated. One popular hypothesis is that sex hormones may be 

responsible for these differences. Sex hormones play important roles in many different 

metabolic pathways, like liver energy metabolism (Shen & Shi, 2015) or enzyme activity 

in the cortisol metabolism (Raven & Taylor, 1996). However, sex hormones are not the 
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only differentiating factor for the metabolome and its associated pathways. The lipid and 

lipoprotein metabolism for example shows large sex differences, which were independent 

of sex hormone administration in a study by Wang et al. (Wang et al., 2011). In summary, 

there is no one clear explanation for sex differences in the metabolome. Fortunately, there 

are simple statistical methods, like stratification, that are efficient and appropriate for such 

stark differences. Unfortunately, to date not many metabolomics studies have stratified 

their populations by sex (or accounted for the differences in another way). Future studies 

should consider these marked differences in all steps of their study planning, especially in 

the design of the statistical analysis. 

In our research on body composition, we identified both novel and replicated metabolites. 

This may suggest that adolescents and young adults differ slightly from adult populations, 

though some associations were consistent. However, these differences might also stem 

from other factors related to body composition. For example, the location of fatty tissue 

(subcutaneous, visceral, or even more specific in the liver) may play a major role in the 

metabolomic signature of body composition (Rangel-Huerta et al., 2019). Additionally, 

further factors like current activity level or muscle mass may influence the biochemical 

pathways that are activated in relationship to body composition (Rangel-Huerta et al., 

2019). Future studies should consider these factors, as we did with the use of multiple 

measures of body composition as opposed to only BMI. 

Habitual diet is an important, yet exceedingly complex, exposure in epidemiology (Conrad 

et al., 2018; Conrad & Nöthlings, 2017). In our second research article, we identified new 

putative biomarkers and replicated an association from a previous literature review 

(Langenau et al., 2020). Our results were in line with previous studies (for example for 

hippuric acid (Clarke et al., 2020; Penczynski et al., 2015)) and we have identified 

promising metabolites for further studies. Future studies should test and replicate these 

markers in different settings to understand the pathways to association and their possible 

application as biomarkers of habitual intake. However, it is important to acknowledge that 

many well replicated associations were not present in our study. This shows the 

complexity of diet research in observational studies. Additionally, methodological aspects 

continue to have a large impact on diet results as well – in our case, the untargeted 

measurement of the metabolome (compared to more common targeted measurements) 
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and the use of weighed dietary records to estimate habitual diet (compared to food 

frequency questionnaires). The efforts to improve and standardize diet assessment are 

ongoing. Future studies should integrate multiple state-of-the-art measurements of diet. 

In metabolome-diet associations the use of integrated designs combining both 

intervention and observational studies that inform each other while using the same tools 

for metabolome and diet measurement may greatly increase the potential knowledge gain 

in this complex setting. 

In the third paper we were able to confirm multiple associations between metabolites and 

markers of metabolic health from the literature and identified no mediators. We confirmed 

10 of the 41 metabolite-metabolic health marker associations identified in two independent 

study populations in our systematic literature search. We identified no mediators for either 

body composition or food intake. We still believe there will be mediators identified in the 

future because any mediation effects in a complex system like the metabolome seem 

probable. Mediators are notoriously hard to identify, as their study requires many 

association tests (which in turn requires a correction for multiple testing), a large study 

population, and large effect sizes, all three of which were limiting factors within the 

presented study (see 3.3). Though we were able to contribute important results with this 

study, showing that association between metabolites and risk markers for chronic disease 

are already present at an early age, we were not able to show associations to disease 

outcomes. Accordingly, future studies should extend our research and analysis methods 

to specific disease outcomes. This would elucidate specific pathways from lifestyle 

exposures through the metabolome and known risk markers of disease-to-disease 

outcomes. These results in turn may be instrumental in the long-term understanding of 

disease etiology and might help to develop new approaches to therapy or drug discovery. 

In our three papers we applied multi-faceted methods and stringent criteria to identify 

associations. We chose this approach in order to gain more actionable, robust results from 

exploratory analysis. In our first analysis we used multiple independent measures (BMI 

and body fat) of the same concept (body composition) and concentrated on agreement 

between both measures. In our second paper we used two exploratory methods and 

applied stringent criteria to select putative biomarkers of intake. In our third research 

article we used the results of the previous studies as well as already established 
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associations found in the literature. In all three cases this approach was successful, as we 

found and replicated relevant results that fit well with the literature and established 

hypotheses in addition to some newly discovered associations. There are, however, also 

some limitations to this approach. While the average relevance of our results may be high, 

we cannot completely rule out false positives. Additionally, false negatives are more likely 

with more restrictions placed on the models, as power decreases and sample size is 

limited. Both of these concerns can be alleviated through proper replication of presented 

findings in future studies and good documentation and publication of full models and 

analysis strategies, so that borderline results may still contribute to future literature 

reviews and meta-analysis. 

The metabolomics literature is very heterogeneous. In all three research articles we 

explored the literature and in the third article we conducted a systematic literature review. 

It was clear throughout that methods, reporting, and interpretation of results are not 

standardized. First, there are several initiatives to standardize certain aspects, for 

example the Metabolomic Standards Reporting Initiative (Sumner et al., 2007), as well as 

tools to facilitate analysis, for example MetaboAnalyst (Pang et al., 2021). However, these 

initiative and tools are not widespread yet and no common ground has emerged. This is 

even visible in our own studies, as we applied four different methods (linear regression, 

random forest regression, orthogonal projection to latent structures, and causal mediation 

analysis) in the different contexts of the studies. Even though we based our choices on 

available literature and simulation studies (see the papers for more details) and took 

concentrated efforts to use standard implementations and widely used methods, very few 

other studies are available that would allow for a meta-analysis of any of the three main 

focuses of our studies. Second, a meta-analysis of the current literature on metabolomics 

would be nearly impossible because the measurements of the metabolome are widely 

different between untargeted and targeted metabolomics, but even within scope kits may 

differ greatly in accuracy and number of metabolites detected. The applied methods form 

an additional hurdle, as evident in two popular methods: partial least squares regression 

and random forest. The results of these methods cannot be aggregated together in a 

meta-analysis. Third, studies often do not publish full model results or full data sets. An 

increased drive for standardization of the measurement of the metabolome, on the 
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analysis of metabolomics datasets, and their reporting might greatly increase the quality 

of knowledge gained from metabolomics in the future. 

4.2 Conclusion 

We identified over 30 new and replicated metabolites associated with the modifiable risk 

factors body composition or habitual diet. The seven (six new, one replicated) metabolites 

associated with habitual diet are putative biomarkers of habitual dietary intake. We were 

not able to detect mediation on the path from lifestyle to conventional systemic markers 

of chronic disease. Ten previous associations between the metabolome and conventional 

markers of metabolic health in the DONALD study were confirmed. In all research contexts 

we observed a strong sexual dimorphism. 

Given these results, metabolomics presents itself as a valuable tool and a rich resource 

to understand the complex interactions of biochemical pathways with exposures and their 

relationship to disease etiology. However, additional efforts in standardization and 

replication of results is required to exploit its full potential in the context of modifiable risk 

factors in epidemiology.  
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