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Abstract

More and more data are generated and gathered by computational simulations, network
evaluations, and sensor usage in industrial applications and many other methods. To
make the most out of the collected data, these should be examined in search of (hidden)
patterns or any other predictive information. This analysis gives rise to sparse linear
systems and the need to calculate the smallest eigensolutions of them.

To evaluate these data, matrices via Graph Laplacian or adjacency graphs are defined
and the corresponding eigenproblems need to be solved. These matrices mainly have
a sparse pattern. However, a few rows do not fit in this pattern. They are connected
to more data points. This inhomogeneous pattern is difficult for most linear solvers.
This also holds for classical Algebraic Multigrid (AMG), although it should generally
be well-suited for these systems. It should be promising as it has excellent scaling
properties and is only relying on algebraic information.

AMG, similar to other iterative linear solvers, is a two-phase algorithm. At first, a
setup is constructed. This is then used for the solution. In this thesis, we are modifying
both phases of the AMG solver in order to apply it to data science problems.

We are introducing a new approach for the setup of AMG that can especially handle the
matrix inhomogeneities. Based on this, we will develop an approach to solve (modified)
eigenproblems by exploiting the AMG hierarchy for problems as they arise in data
analysis.

We demonstrate the applicability of these both methods with various examples. In the
first instance, we take the Poisson problem to show the effect of algorithmic variations
we implemented. The setup approach is additionally evaluated for petroleum reservoir
simulations and different Graph Laplacians. We use the eigensolution calculation
also for Graph Laplacians. However, we additionally improve the solution for very
ill-conditioned problems from structural mechanics.
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Zusammenfassung

Durch Computersimulationen, Auswertung von Netzwerken oder Sensordaten in indus-
triellen Produktionen und vielen weiteren Optionen erzeugen wir immer mehr Daten.
Nach Möglichkeit sollten diese Daten ausgewertet werden um Rückschlüsse auf (ver-
steckte) Ähnlichkeiten oder andere weiterverwendbaren Informationen zu erhalten. Bei
dieser Analyse ergeben sich große, dünn-besetzte lineare Gleichungssysteme und die
Notwendigkeit die kleinsten Eigenlösungen zu bestimmen.

Um die Daten auszuwerten werden aus diesen Matrizen als Graph Laplaces oder Ad-
jazenzgraphen berechnet. Diese werden dann benutzt um die zugehörigen linearen
Gleichungssysteme oder Eigenwertprobleme zu lösen. Die entstanden Matrizen haben ein
mehrheitlich dünnes Besetzungsmuster. Jedoch fallen einzelne Zeilen aus diesem Muster
heraus, weil es einige Datenpunkte gibt, die mehr Verknüpfungen zu anderen Datenpunk-
ten haben. Aus dieser inhomogenen Besetzungstruktur ergeben sich Schwierigkeiten
für den linearen Löser. Dies gilt auch für Algebraische Mehrgitter (AMG), welches
grundsätzlich als linearer Löser für diese Matrizen einsetzbar ist. AMG verspricht ein
idealer linearer Löser zu sein, da dieser über gute Skalierungseigenschaften verfügt und
rein algebraisch verwendbar ist.

Wie sehr viele iterative Löser ist auch AMG zweiphasig aufgebaut. Zunächst wird ein
Setup konstruiert. Basierend auf diesem wird die Lösung dann iteriert. In der vorliegen-
den Arbeit werden wir beide Phasen modifizieren um eine bessere Anwendbarkeit für
die Datenprobleme zu erreichen.

Zunächst führen wir eine neue Setup-Strategie für AMG ein um besser mit den Matrixin-
homogenitäten umgehen zu können. Basierend darauf etablieren wir eine Lösungsphase,
die es ermöglicht (generalisierte) Eigenprobleme zu lösen. Bei der Lösung werden wir
die im Setup erzeugte AMG Hierarchie mehrfach wieder verwenden.

An Hand verschiedener Beispiele zeigen wir die Anwendbarkeit beider Methoden.
Zunächst evaluieren wir diverse algorithmische Variationen am bekannten Poisson Prob-
lem. Die Setup-Strategie ist zusätzlich für Ölreservoirsimulationen und verschiedene
Graph Laplace ausgewertet. Die Eigenwertberechnung wenden wir ebenfalls auf Graph
Laplace an. Außerdem verbessern wir mit Eigenvektoren die Lösbarkeit von schlecht
konditionierten Problemen aus der Strukturmechanik.
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CHAPTER 1

Introduction

The continuously emerging need for analyzing huge amounts of data in the fields of
Big Data, Machine Learning, and Artificial Intelligence in both research and industrial
applications creates the requirement for more efficient analysis methods. This thesis
contributes to this research area by improving and extending the applicability of existing
methods.

Simultaneously with the growth of computational power, more and more data is gener-
ated in less time. These data should be analyzed to discover patterns and draw trends.
In a first step, it is very common to reduce the dimension of the data. That means
focusing on the core information of the data. This dimension reduction is possible with
various methods. Principal Component Analysis (PCA) [74] applies a linear transforma-
tion to a lower-dimensional space to extract the core information. In contrast, diffusion
maps [42, 106, 44] calculate non-linear embeddings to a lower-dimensional Euclidean
space. A vast overview of further non-linear dimension reduction approaches is given in
[87]. Another option to analyze the data is to search for patterns inside the data that
have "similar properties", often called feature recognition. Spectral clustering [156, 110]
is one useful family of algorithms to fulfill this task.

All of these methods have in common to use a matrix representation of the relation
inside the data. Typically, Graph Laplacians are employed here [40]. This representation
is then used to calculate a few smallest or largest eigensolutions, in some cases only
the eigenvalues or the eigenvectors, or solutions of stationary linear systems. With
these results, the machine learning algorithms are then proceeding and calculating
a lower dimensional representation or feature recognition. As the background of the
data originates from different application fields, we need generic methods to handle
all the occurring eigenproblems. Hence, algorithms that work purely algebraically, i.e.
matrix-based, are preferred.

A powerful algorithm to handle difficult and huge sparse linear systems is Algebraic
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Chapter 1 Introduction

Multigrid (AMG) [23, 63, 137]. AMG has been developed as linear solver for linear
systems that arise from the discretization of elliptic partial differential equations (PDEs)
and works only with the matrix itself and exploits certain properties of it. Nevertheless,
AMG is applicable to linear systems from many applications, e.g., for flow simulations
[139] or petroleum reservoir simulations [59, 60]. Graph Laplacians from data analysis
applications feature almost all those properties that AMG seeks to exploit. Graph
Laplacians are only positive semi-definite [40], but they need to be positive definite to
fulfill the requirements to apply AMG. However, by a rather small change, the Graph
Laplacian can be turned positive definite and, thus, AMG becomes applicable without
negative impacts on the approximated solution, as we can motivate. Thus, AMG would
be a promising method, especially due to its efficiency.

Similar to other iterative linear solvers AMG is a two-phase linear solver - consisting
of a setup phase and a solution phase. During the setup phase, a matrix hierarchy is
constructed. In the solution phase this matrix hierarchy is applied to calculate the
approximate solution. This approach has the advantage that different error compo-
nents of a solution approximation are handled at various matrix hierarchy levels with
appropriate resolutions [23, 148]. Additionally, it shows excellent scaling properties
regarding parallelization [81, 162]. These properties make AMG a very considerable
method to handle the increasing size of data in a reasonable amount of computational
time. Furthermore, we can profit from further optimization options, such as the re-usage
potential of a single setup of AMG.

However, classical AMG is hardly applicable in a straight-forward manner. First of
all, we need to exploit the matrix hierarchy for the solution of an eigenproblem rather
than classical linear systems. And, as Graph Laplacians only nearly fulfill AMG-suited
properties, they pose certain challenges for creating an AMG setup. This originates
from the growing mass of data along with an increasing data connectivity, besides the
positive semi-definiteness of Graph Laplacians. By the first point, the representation
matrices themselves are growing in size and decrease in sparsity. As the connectivity
of the data grows the heterogeneity structure of the sparsity pattern changes. This
pattern is no longer sparse as it initially was assumed by "classical" theory.

To enable the applicability of AMG for matrices that occur from various data applica-
tions, we have two starting points:
On the one hand, we need to improve the setup phase of AMG due to the presence
of varying sparsity patterns. A few rows can extend the "classical" understanding of
sparse.
On the other hand, we need to change the solution phase of AMG to directly combine the
application of the matrix hierarchy with eigensolution calculations. Our contributions
to both aspects, of course, can also be exploited by themselves in other application
fields.
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To summarize the objectives of this thesis, we have two question sets that we will
answer:

How can we adapt the setup phase of AMG to handle growing heterogeneities in the
sparsity pattern? This heterogeneity in the sparsity pattern occurs, for instance, with
social media graphs depending on user activity, as they include strongly frequented
nodes as well as isolated nodes [90]. But besides data analysis, it also is applicable for
geomechanical petroleum reservoir simulations as stone and rock is a highly heteroge-
neous material [7].

We present a setup method for AMG that can especially handle such difficulties. For
that purpose, we algebraize [48] a previously only geometrically applicable technique
[163]. This setup of AMG includes various parameters to fit different connectivity of
nodes on the constructed matrix hierarchy. This is combined with a localized ideal
interpolation for transferring between the matrix hierarchy levels.

This takes us to the second question part. How can we exploit the AMG hierarchy in
the eigensolution approximation? How are eigensolutions - eigenvalues and eigenvectors
- related between various matrix hierarchy levels? Which already known eigensolution
calculation algorithms can we use to extend them with AMG?

We will develop an approach for an eigenproblem solver based on AMG. While being
based on established one-level eigensolver methods such as inverse iteration [6, 161] or
Krylov-Schur method [69, 121, 143, 144, 82], the incorporation of an AMG hierarchy
and necessary modifications to benefit from the AMG hierarchy will increase the appli-
cability to bigger eigenproblems. Inverse iteration is the simplest eigensolver method
to approximate the smallest eigensolution. To do so, this iterative method uses an
inverse matrix and, thus, integration of an AMG hierarchy is a promising idea. The
Krylov-Schur method is a more elaborate eigensolver that can calculate more smallest
eigensolutions and is more promising for challenging problems. We will demonstrate
the strength of both approaches in combination with using the AMG hierarchy with
several practical examples from data science and beyond. And we will point towards
further research directions.

Especially with answering the second questions part, we gain another application of the
eigensolutions. It is possible to use (approximate) eigenvectors to improve the matrix
hierarchy of AMG itself [152, 153, 151, 97]. Then, we can extend the application of
AMG to more ill-conditioned linear systems as possible before. Very roughly spoken,
the eigenvectors are an indicator for those variables that are "more" relevant in the
adjacency graph and should, thus, have a representation on coarser matrix hierarchy
levels.
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Chapter 1 Introduction

Outline of this thesis
In Chapter 2, we start with a short overview of Algebraic Multigrid methods. We
thereby focus on those parts of the wide range in AMG approaches and theory that
are relevant for this thesis. We describe the solution phase and setup phase of AMG.
In both parts, we introduce well-known methods and usage modes that will serve as
reference in later evaluations. We end this chapter by a theoretic part. There we
summarize important results of the convergence theory and define necessary notations.

Chapter 3 focuses on the introduction of Algebraic Multiscale AMG (AM-AMG).
AM-AMG is an extension of aggregative coarsening that includes a separation of
three different function types for the variables in the aggregation process. This is
used to construct overlapping aggregates, which was impossible before in a purely
algebraic manner. Furthermore, we use these function types to construct a locally ideal
interpolation per aggregate. Both aspects make AM-AMG a perfectly suited setup
approach for data science problems with heterogeneous stencil sizes.
The introduction of the three different function types, namely vertices, edges and
interiors, results in a few additional parameters to fine tune the aggregation process.
We explain these effects in Section 3.5. Moreover, we prove that AM-AMG fulfills all
requirements in the convergence theory of AMG. Furthermore, we use AM-AMG in
different application fields to compare it to other setup approaches of AMG.

Chapter 4 is about the application of AMG for eigensolution approximation (EP-AMG).
We present three algorithms for eigensolution approximation that utilize our AMG
hierarchy. We are starting with an initial guess calculation that exploits the full effect
of an existing matrix hierarchy. Afterwards, we explain two eigensolution algorithms,
namely inverse iteration and Krylov-Schur method, and how AMG technology is exploit.
At the end of this chapter, we evaluate our algorithms for various applications.

Our thesis is finalized by Chapter 5. Here we summarize our results and provide an
outlook on further research questions that have arisen during this thesis.
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CHAPTER 2

AMG - Overview of
Algebraic Multigrid Methods

The developments in the scope of this thesis rely on the well-known Algebraic Multigrid
(AMG) method. To embed the newly developed AM-AMG approach from Chapter 3
and the application of AMG as an eigenvalue solver in Chapter 4 in the AMG theory,
we give a short overview of the necessary aspects in this chapter.

Very shortly described, the AMG solution process is separated into a setup phase and
a solution phase. The simplest version for the solution phase of AMG is a two-level
scheme. By successive application of this two-level scheme, a multi-level scheme is
established. In the following, we give a short introduction to the solution phase in
Section 2.2 and the setup phase in Section 2.3. Furthermore, we provide some essential
aspects such as requirements for convergence of an AMG method in Section 2.4.3 or
the smoothing property in Section 2.4.2.

Throughout this chapter, we consider a linear system

Au = b (2.1)

with a sparse, symmetric, positive definite M-matrix [118] A =
(
aij
)

i,j=1,...,n ∈ Rn×n , a
right-hand side vector b = (bi)i=1,...,n ∈ Rn and the solution vector u = (ui)i=1,...,n ∈
Rn . Such linear systems typically arise from the discretization of elliptic partial
differential equations (PDEs).

2.1 Motivation of AMG
Algebraic Multigrid (AMG) is an iterative solution approach for sparse linear systems as
in Equation (2.1), which originally result from the discretization of elliptic PDEs. The
origin for this linear solver is based on Geometric Multigrid (GMG) that constructs a
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Chapter 2 AMG - Overview of Algebraic Multigrid Methods

hierarchy of (geometric) grids with successively smaller grid resolutions [148, 62]. As an
extension and generalization, AMG has been developed with a construction of matrix
hierarchy levels in a purely algebraic manner. For a detailed description about initial
theory and developments of AMG, see [23, 22, 26, 124, 50, 63]. Information about
the applicability in an industrial context is given by [138, 139]. Other methods than
multigrid for solving sparse linear systems are explained and described in [125].

Along with the extension of application fields for Algebraic Multigrid methods, there also
evolved various extensions of specialized techniques for subproblem classes, e.g., Lean
AMG [93], aggregation AMG [111, 153], or smoothed aggregation [153, 152]. A variety
of AMG methods are slightly differently implemented in various software libraries, e.g.,
BoomerAMG [68, 162], BootstrapAMG [24, 25], Trilinos [70], SAMG [136, 139, 119],
AMG-approaches in PETSc [9, 10, 11] . The wide range of various software libraries is
based on different preferred AMG strategies or differing programming languages.

In this work, all described new AMG-technologies are implemented in the software
package SAMG that has been developed by Fraunhofer SCAI [136] and is mainly written
in Fortran.

The mathematical motivation for using a level hierarchy is similar for GMG and AMG
with all its varying application fields. The error of the solution of a linear system as in
Equation (2.1) has a wide error frequency spectrum. It is well-known that one-level
methods, like Jacobi or Gauss-Seidel iteration, reduce high-frequency error components.
Thus, they smooth the error and are called smoothing operators or smoothers S . After
applying such a smoother, the low-frequency error components remain. The aim of
introducing a coarser problem is to create a framework in which the low-frequency error
components can be solved efficiently. We will not go into further details here and refer
to the literature [23, 148].

In the following, a brief summary of AMG is given with a focus on those theoretical
aspects that are relevant during this thesis. This summary, including the notation, is
mainly based on Stüben [137, 138].

Due to the original idea of constructing coarser problems induced by the discretization
grids, some literature uses h and H as the subindicies of the matrices to refer to the
fine and coarse grid refinement. As AMG works fully algebraically, we use the notation
indicated by coarse c and fine f level in this thesis.

2.2 Solution Phase of AMG

2.2.1 Two-Level Scheme
The simplest solution phase of AMG is a two-level scheme. This employs a coarse-level
matrix Ac ∈ Rnc×nc based on the original matrix A = Af ∈ Rnf×nf , called fine-level

8



2.2 Solution Phase of AMG

matrix. The construction of the coarse-level matrix is performed in the setup phase
of AMG that we will describe in Section 2.3. During the setup-phase of AMG the
transfer operations between the fine and coarse-level matrices, namely the interpolation
I f
c ∈ Rnf×nc and the restriction I c

f ∈ Rnc×nf operators, and the coarse-level operator
Ac are calculated.

Exemplarily, a few coarsening and interpolation approaches are explained in more
details in Section 2.3 about the setup phase of AMG.

To iteratively calculate an approximate solution uf of the linear system (2.1), a defect
correction ec is calculated on the coarse level. For this purpose, the linear system

Acec = I c
f res

f
old = I c

f
(
bf – Af u

f
old
)
. (2.2)

on the coarse level has to be solved. Afterwards the solution approximation uf is
updated by the interpolated solution ec, i.e.

uf
new = uf

old + I f
c ec. (2.3)

This coarse-level-based defect correction is combined with a smoothing process S on
the fine level. This has the effect that high-frequency error components are handled
on the fine level and low-frequency components on the coarse level, as outlined in the
previous section.

All previously mentioned components of the basic algorithm for AMG as a two-level
scheme are summarized in Algorithm 2.1. As for other iterative methods, a stopping
or convergence criterion C is a requested residual reduction or a maximum number of
iteration steps.

By a recursive strategy for solving the coarse-level equation in Line 5 in Algorithm
2.1, the two-level scheme is extended to a multi-level approach, see Section 2.2.2.
Furthermore, it is possible to use AMG as a preconditioner in different Krylov methods.
This will be described in Section 2.2.3.

2.2.2 Multilevel Scheme
Algorithm 2.1 describes a two-level scheme for AMG. For the solution of the coarse-level
equation in Line 5, the two-level idea can be applied recursively. By this, we iterate
over all coarser constructed matrix hierarchy levels. See Section 2.3 for more details
regarding the matrix hierarchy construction. The multi-level solution phase is described
in Algorithm 2.2.

The constructed matrix hierarchy levels are notated as A = A1 = Af , . . . ,Alev where lev
denotes the number of constructed matrix hierarchy levels. The number of constructed
matrix hierarchy levels depends on various user-defined AMG parameters, see Section

9



Chapter 2 AMG - Overview of Algebraic Multigrid Methods

Algorithm 2.1: Solution phase of Algebraic Multigrid as a Two-Level Scheme
Input: Af : fine-level matrix

b: right-hand side vector
u0: start vector
C (ui): stopping/convergence criterion

depending on current approximation ui

Data: S : smoothing operator
I f
c : interpolation operator
I c
f : restriction operator
Ac: coarse-level matrix
(I f

c , I c
f , Ac calculated in setup phase of AMG, see Section 2.3)

1 while not C (ui) do
2 apply smoothing: ũi = S ui–1
3 calculate residual: resfi = bf – Af ũi
4 restrict residual: resci = I c

f res
f
i

5 solve coarse-level equation: Acec
i = resci with solution ec

i
6 interpolate coarse-level correction: ef

i = I f
c ec

i
7 adding the correction: ûi = ũi + ef

i
8 apply smoothing: ui = S ûi
9 increase loop variable i

2.3. Furthermore, after the setup phase we have interpolation I k
k+1 and restriction

I k+1
k operators between two constructed matrix hierarchy levels k and k + 1 for k =
1, · · · , (lev –1). Additionally, the smoothing process Sk is extended to be applied on
every level to smooth the high frequency error components on this level. Similar to the
two-level scheme in Section 2.2.1.

Figure 2.1 illustrates the typically used structure of the solution process, named V-cycle.
We will not consider other forms of cycles as W- or F-cycle [148] here. These cycle-forms
differ from the standard V-cycle by applying more coarse-level corrections per created
level. For the applications we present in this work, the V-cycle is sufficient enough. The
other cycles would work analogously with AM-AMG and EP-AMG.

2.2.3 AMG as a Preconditioner
Over the last decades, it has been established to use AMG not as a standalone solver, but
rather as a preconditioner in combination with accelerators such as Conjugate Gradient
Method (CG) [5, 125], Generalized Minimal Residual Method (GMRES) [125, 127] or

10



2.2
Solution

Phase
ofA

M
G

ũ1i = S1u1i–1

r̃es1i = b1 – A1ũ1i

res2i = I 12 r̃es1i ũ2i = S2u2i

r̃es2i = res2i – A2ũ2i

· · ·

ukmax
i = A–1

kmax
reskmax

i

· · ·

e2i = I 23 u3i
û2i = ũ2i + e2i

u2i = S2û2i

e1i = I 12 u2i
û1i = ũ1i + e1i

u1i = S1û1i

Figure 2.1: Visualization of Multi-Level Solution Phase of AMG Scheme
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Chapter 2 AMG - Overview of Algebraic Multigrid Methods

Biconjugate Gradient Stabilized Method (Bi-CGSTAB) [150]. The straight-forward
way is to use the full AMG solution cycle, in combination with a previous setup phase,
as a preconditioner [115].

Another possibility is to use an accelerator on every constructed matrix hierarchy
level [116, 113], also called K-cycle. This provides additional robustness in certain
ill-conditioned applications. These are not relevant for this thesis and the test cases
that we will be concerned with.

Due to the fact that, in contrast to typically one-level preconditioners, e.g. ILU, AMG
efficiently handles all error components, it provides an efficient preconditioner for elliptic
problems.
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2.2 Solution Phase of AMG

Algorithm 2.2: Solution phase of Algebraic Multigrid as a Multi-Level
Scheme AMG (A,b,u0)
Input: A = A1: fine-level matrix

b: right-hand side vector
u0: start vector
kmax: number of created levels
C
(
u1i
)
: stopping/convergence criterion
depending on current approximation u1i

Data: each for k = 1, . . . , kmax – 1
Sk : smoothing operator on level k
I k
k+1: interpolation operator from level k + 1 to k
I k+1
k : restriction operator from level k to k + 1
Ak+1: Galerkin operator on level k + 1
(I k

k+1, I
k+1
k , Ak+1 calculated in setup phase of AMG, see Section 2.3)

1 while not C
(
u1i
)
do

2 apply smoothing: ũk
i = Skuk

i–1
3 calculate residual: reski = bk – Ak ũk

i
4 restrict residual: resk+1

i = I k+1
k reski

5 solve coarse-level equation:
6 if k + 1 = kmax then
7 direct solver: ek+1

i = A–1
k+1res

k+1
i

8 else
9 init ek+1

i
10 AMG(Ak+1,resk+1

i , ek+1
i )

11 interpolate coarse-level correction: ek
i = I k

k+1e
k+1
i

12 adding the correction: ûk
i = ũk

i + ek
i

13 apply smoothing: uk
i = Sk ûk

i
14 increase loop variable i

13
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2.3 Setup Phase of AMG
During the setup phase of AMG, the matrix hierarchy for a given matrix A is constructed.
There exists a wide range of applications for AMG technology. Hence, the linear systems
to be solved provide various requirements. To handle these, different approaches for
construction a matrix hierarchy during the setup phase exists. The setup phase of AMG
itself is divided into three parts:

• Coarsening (or C/F-splitting)
During the coarsening process, a set of variables is defined that induces the
coarse-level variables C .

• Construction of the interpolation I f
c

During the interpolation setup, the interpolation operator I f
c for transferring

between coarse- and fine-level variables is constructed. Additionally, the restriction
operator I c

f as reverse operation, i.e. transferring between fine- and coarse-level
variables, is constructed.

• Calculation of the coarse-level operator Ac
Based on the interpolation operator I f

c and the corresponding restriction operator
I c
f , the coarse-level operator Ac is calculated as Galerkin product of interpolation
and restriction.

In the wide range of possible setup strategies we focus on Ruge-Stüben coarsening
with direct or standard interpolation [137], aggressive coarsening (as a well-established
variant of Ruge-Stüben) with indirect/multi-pass interpolation [137], and aggregation
coarsening with piecewise-constant interpolation [111, 153, 21]. With them, we will
compare our newly developed coarsening method AM-AMG with the locally ideal
interpolation in Chapter 3. Furthermore, there exists many other coarsening and
interpolation strategies especially suited for specific request of the application field as,
e.g., PMIS/HMIS for high core numbers [141] or energy-based coarsening for further
improving interpolation/restriction operators [29, 32].

The coarse-level matrix Ac is a coarse-level approximation of the fine-level matrix Af
via its construction as Galerkin product Ac := I c

f Af I
f
c , with the interpolation I f

c and
the restriction I c

f . By recursively applying a coarsening and a calculation of interpola-
tion/restriction operators, a full matrix hierarchy of Galerkin operators A2, . . . ,Alev
can be constructed based on the fine-level matrix Af = A1.

Normally, the construction of the matrix hierarchy ends when the coarsest matrix Alev
has a size that is suited for a (sparse) direct solver. The construction process can, for
instance, be stopped after a fixed number of constructed levels is reached, the coarsest
matrix is small enough for a direct solver, or a given density threshold is reached.
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Throughout this thesis, we consider the restriction to be the transpose of the inter-
polation, i.e., I c

f =
(
I f
c
)T

. This is a common procedure, as this ensures a symmetric
coarse level operator Ac and, hence, a symmetric cycling in the solution phase, see
Section 2.2. However, there are other options available, as e.g., a modified restriction
[96, 95] that locally modifies the restriction to ensure an optimized restriction for a
small surrounding of coarse-level variables.

The so-called accuracy of interpolation gives a formal relation between convergence
of AMG and the constructed setup (coarsening and interpolation) of AMG. When
this condition is fulfilled the full AMG cycle converges. We shortly embed this in the
mathematical framework in Section 2.4.3 as Theorem 3.1.

Before describing how some coarsening approaches work in the Sections 2.3.2 to 2.3.4,
we introduce some necessary notations.

2.3.1 Relevant Notations for Coarsening Description

The set C denotes all variables to be transferred to the coarse level. The set F is the
complementary set of variables that remain on the fine level. By this setting, the full set
of variables Ωf on the fine level is the disjunct union of C and F . Thus, the coarsening
is also called C/F-splitting.

For the sake of simplicity, we formulate the following notations and definitions without
explicitly mentioning the level index with the matrix A and all relevant sets.

Two variables i and j are called coupled if aij 6= 0. We define the neighborhood Ni of a
variable i as all variables j that have a coupling to the variable i, i.e.,

Ni :=
{
j ∈ Ω|i 6= j, aij 6= 0

}
, (2.4)

and the complementary set N 0
i of variables j that are not included in the neighborhood

of i, i.e.,

N 0
i :=

{
j ∈ Ω|i 6= j, aij = 0

}
= Ω \ (Ni ∪ {i}) . (2.5)

As a criterion for the coarsening, the so-called coupling strength between two variables is
used. This measure indicates how strong or weak the coupling aij between two variables
i and j is. The greater the coupling strength between two variables is, the better the
smoothing of the error in the direction of these variables is [137]. Thus, for a good
convergence behavior, strongly connected variables should ideally span the coarse-level
matrix. A coupling between i and j is considered strong when the condition

–aij ≥ εstrmax
k 6=i
|aik | (2.6)

15



Chapter 2 AMG - Overview of Algebraic Multigrid Methods

with fixed 0 < εstr < 1 is fulfilled. In practical applications, εstr = 0.25 has been
established as a reasonable value to use. The set of strong couplings Si is then defined
as

Si := {j ∈ Ni |i strongly coupled to j} . (2.7)

The couplings that are not strong are called weak couplings. The set of weak couplings
is notated as Wi = Ni \ Si . The set of coarse- or fine-level variables of i are all coarse-
or fine-level variables that are strongly connected, i.e., Ci = C ∩ Si and Fi = F ∩ Si ,
respectively.
The concept of strong couplings can be extended to longer paths of couplings. Two
variables i and j have a strong coupling along a path of length l, if there exists a sequence
of strongly coupled variables i = i0, i1, · · · , j = il , i.e., ik+1 ∈ Sik for k = 0, · · · , l – 1.
Additionally, this can be extended to the variable i strongly connected to variable j
w.r.t (p, l): there exists p sequences such that i has a strong coupling to j along a path
of the length ≤ l. The general set of strong couplings S (p,l)

i for a variable i is then
defined as

S (p,l)
i := {j ∈ Ω|i strongly coupled to j w.r.t. (p, l)} . (2.8)

For the set of strong couplings, it yields Si = S (1,1)
i .

The entries of the interpolation operator I f
c = (wik)i=1,...,nf

k=1,...,nc

∈ Rnf×nc are named

interpolation weights wik .

2.3.2 Ruge-Stüben Coarsening
The Ruge-Stüben coarsening [137] sets up a splitting into coarse-level variables C and
fine-level variables F with the following two properties:

(RS1) The coarse-level variables C form a maximal independent set of variables in terms
of strong connectivity, i.e., two coarse-level variables have no strong coupling.

(RS2) For every fine-level variable i ∈ F and each strongly connected variable j ∈ Si ,
the variable j is either a coarse-level variable, i.e., j ∈ C , or strongly coupled to
another coarse-level variable, i.e., Sj ∩ C 6= ∅.

In the simplest version, the Ruge-Stüben coarsening is combined with a direct inter-
polation to calculate the coarse-level correction ef

i on the fine level. With the direct
interpolation, the fine-level variables are only interpolated along the directly strongly
connected coarse grid points. That is, the interpolation weights wij are given as

wij = –αi
aij
aii

(2.9)
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for each fine-level variable i ∈ F and each strongly coupled coarse-level variable j ∈ Ci

to the variable i. The factor αi =

∑
k∈Wi

aik∑
k∈Ci

aik
that takes all weak couplings into account is

applied to ensure that a constant vector on the coarse level is exactly interpolated to a
constant vector on the fine level. This is a pre-requisite for robust convergence.

Commonly, Ruge-Stüben coarsening is used in combination with standard interpolation
[137]. Standard interpolation is an extension of the direct interpolation that includes
the interpolation of fine-level variables by all strongly coupled coarse-level variables.

In [137] it is proven that Ruge-Stüben coarsening with direct or standard interpolation
fulfills the accuracy of interpolation (Theorem 2.3 in Section 2.4.3). This means that the
overall constructed multigrid cycle by Ruge-Stüben coarsening and direct or standard
interpolation approach converges.

Asides the direct or standard interpolation formulation, there are further ones, such
as (modified) classical interpolation [68] or extended interpolation [140]. These further
improve the accuracy of interpolation, but follow the same principle as direct or standard
interpolation. But they are not relevant in the ongoing work of this thesis.

2.3.3 Aggressive Coarsening

In some cases it might be necessary that the coarse level is much smaller than the fine
level, e.g., due to a higher density of the fine-level matrix Af or memory restrictions or
performance reasons.

The splitting described in the previous Section 2.3.2 can also be applied to a more
general set S (p,l)

i of strong couplings, see Equation (2.8).

In [137], two types of aggressive coarsening, mainly S (1,2)i and S (2,2)i , are referenced. By
using more general sets of strong couplings, it may happen that a fine-level variable has
no direct connection to a coarse-level variable. Such variables are then interpolated from
their strongly coupled fine-level variables, called indirect interpolation or multi-pass
interpolation, cf. Section 4.3 and 7.2.2 in [137].

In an analogous way as for Ruge-Stüben coarsening, the fulfillment of the accuracy
of interpolation (Theorem 2.3 in Section 2.4.3) is motivated in [137]. This ensures
convergence of the complete multigrid cycle under certain assumptions that are given
in our cases.

The computation of the extended strong couplings sets S (q,l)
i is quite expensive. Thus,

for practical reasons, roughly spoken, the Ruge-Stüben coarsening is simply applied
twice.
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Figure 2.2: Schematic construction of aggregates (yellow and purple) with aggregative
coarsening of size nine. This considers a Poisson problem discretized by a
five-point stencil on a uniformly structured grid. The red points mark the
coarse-level variables. Ideally, these variables are centrally located inside
the aggregate.

2.3.4 Aggregative Coarsening
In contrast to both previously described coarsening strategies that firmly distinguish
between coarse- and fine-level variables, in aggregation-type coarsening strategies dis-
joint aggregates of the fine-level variables are constructed [18, 35]. For every aggregate
one variable i is set as coarse-level variable. Thus, we notate these aggregates as Gi
with i ∈ C and Gi ∩Gj = ∅ for i, j ∈ C and i 6= j.

These aggregates only contain variables j ∈ Gi that are strongly connected to at
least one other variable, i.e., Sj ∩ Gi 6= ∅. Each of these aggregates is much smaller
than the fine level set of variables, i.e., |Gi | � |Ωf |. This provides a rather lean and
well-parallelizable way of coarsening at the expense of less robustness. In Figure 2.2, we
show two disjoint aggregates on an uniformly structured grid. For each aggregate, one
variable is set as coarse-level variable and marked by a red point. Ideally, the coarse
level variable is a central variable of the aggregate.

The aggregate construction is also based on the concept of strongly coupled variables.
By this, the smoothing of the low-frequency errors on the coarse level is ensured. In
[152, 153], a slightly different definition for the set of strongly coupled variables to a
variable i is given, such that the variable i itself is included and the strong connectivity
definition is symmetric. The symmetry is relevant, as for this coarsening approach one
fine-level variable only relates to one coarse-level variable. Thus, a strong coupling
should be strong in both directions.

As each fine-level variable only relates to one coarse-level variable, only piecewise-
constant interpolation inside one aggregate is possible. For piecewise-constant interpo-
lation, each fine-level variable of one aggregate takes the same value as the coarse-level
variable of this aggregate. The interpolation weights are given as

wij = 1 (2.10)
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for each fine-level variable i ∈ F and j ∈ C with i ∈ Gj , all other are set to 0. This
is quite unstable and the convergence would depend on the aggregate sizes. Due to
this, the convergence rate per default is much worse than for Ruge-Stüben or aggressive
coarsening.

To achieve a robust convergence for aggregation-type coarsening strategies, some
adaptions are possible. In [34, 152, 153, 151] the problems of the piecewise-constant
interpolation are solved by smoothing of the prolongation operator. This naturally
includes multiple coarse-level information in the interpolation of one fine-level variable.
However, at the expense of loosing the simplicity of the aggregation approach.

Another correction of the piecewise-constant interpolation by smoothing the interpolated
error is feasible, which is often named as smoothed correction or V*-cycle [21, 138].
This targets in the same direction as the smoothed aggregation does. However, it is
limited to the solution vector instead of considering the entire interpolation operator.

A further possibility is to use a K-cycle that adapts the coarse-level error correction on
each matrix hierarchy level by using an additional Krylov solver [116, 111, 113, 112].
This addresses the limitations of the aggregation process by combining the AMG-cycle
with further solver methods.

2.3.5 System-AMG Approaches
In various simulations, AMG is not only applied to linear systems based on a scalar
PDE. In such systems, not only one (physical) unknown is considered, but nu unknowns
with a coupled system of PDEs. For an easier description, we assume the linear system
to be ordered by the nu different (physical) unknowns 1, i.e. the linear system (2.1)
has the form 

A[1,1] A[1,2] · · · A[1,nu ]

A[2,1] A[2,2]
...

... . . .
A[nu ,1] · · · A[nu ,nu ]




u[1]
u[2]
...

u[nu ]

 =


f[1]
f[2]
...

f[nu ]

 .

For the unknowns i = 1, . . . , nu u[i] and f[i] are the corresponding slices of the solution
vector and the right-hand side vector. The submatrices A[i,j] for i, j = 1, . . . , nu include
the couplings between the variables that are affiliated to the (physical) unknowns i and
j, e.g., pressure or velocity in x-, y- or z-direction.

A straight-forward way to handle this linear system is by the unknown-based approach
[41]. The coarsening and interpolation are applied independently to each (physical)
unknown. That is only the submatrices A[i,i] are considered during the coarsening and

1Every system can be sorted trivially by unknowns. This is only done to enhance readability.
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the construction of the interpolation operators of AMG. This coincides with using

Ã =


A[1,1] 0 · · ·

0 . . .
0 A[nu ,nu ]


as matrix for the setup phase of AMG, i.e., coarsening and interpolation/restriction
are constructed on the basis of Ã. For the calculation of the coarse-level matrix as
Galerkin operator then there exist two variations: the block Galerkin Ac = I c

f ÃI
f
c or

the full Galerkin Ac = I c
f AI

f
c [41]. The latter one is typically used, as this includes the

couplings between different unknowns in the coarse-level matrix.
Another approach to handle system problems is to use the so-called point-based approach.
In this approach, a coarsening is constructed on a point-based adjacency graph. For
the applications that we use in this work, this AMG approach is not relevant. For the
system examples that we are concerned with in this work, the unknown-based approach
is sufficient. For further details, however, see the description in [41] and references
therein.

2.4 Theoretical Basics and Notation of AMG
Under certain assumptions, it has been proven that AMG converges to a solution of the
linear system (2.1) [23, 137]. We choose the mathematical integration in the theoretical
framework given by Ruge and Stüben, inter alia in [124]. Before we give a brief overview
of the accuracy of interpolation in Section 2.4.3, which is a criterion for the quality of
the interpolation to ensure convergence of AMG, we shortly introduce some further
necessary notations in the following.

2.4.1 Notations for AMG
The interpolation weights I f

c = (wik)i=1,...,nf
k=1,...,nc

∈ Rnf×nc specify the interpolation

calculation from a given coarse-level vector vc = (vc
i )i=1,...,nc

∈ Rnc as follows,

vf
i =

(
I f
c vc)

i =


vc
i if i ∈ C∑
k
wikvc

k if i ∈ F =
(
ICC
IFC

)
=
(

1C
IFC

)
(2.11)

with vf =
(
vf
i
)

i=1,...,nf
∈ Rnf .

For a given splitting into coarse-level C and fine-level F variables, we can implicitly
reorder 2 the original fine-level matrix Af and formulate it in terms of submatrices of
2This is only necessary for readability.
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the following form

A = Af =
A[F ,F ] A[F ,C ]
A[C ,F ] A[C ,C ]

 , (2.12)

where A[·,·] are the submatrices that include the couplings between fine-level variables F
and/or coarse-level variables C . Furthermore, we define D[·,·] := diag

(
A[·,·]

)
as only the

diagonal of the submatrices A[·,·] and Df := diag
(
Af
)
as the diagonal of the fine-level

matrix Af .

For the explanations of the smoothing property, in Section 2.4.2, and the accuracy of
interpolation, in Section 2.4.3, we define the three scalar products

〈u, v〉1 := 〈Af u, v〉,
〈u, v〉2 := 〈D–1

f Af u,Af v〉,
〈uF , vF 〉0,F := 〈D[F ,F ]uF , vF 〉

and the induced norms ‖.‖1, ‖.‖2, ‖.‖0,F by this. Here, 〈·, ·〉 is the Euclidean scalar
product, u, v ∈ Rnf , and uF , vF ∈ RnF with uF = u|F and vF = v|F .

After finishing the AMG setup, the matrix complexity can be computed. It relates the
number of non-zero entries in the whole matrix hierarchy to the number of non-zero
entries of the original matrix, i.e., written as a formula

matrix complexity :=

lev∑
i=1
|Ai |

|A1|

where |B| is the number of non-zero entries of a matrix B. With the matrix complexity,
an indicator for the memory consumption of the matrix hierarchy is provided.

2.4.2 Smoothing Property
2.1 Definition ([137], Section 3.2)
An operator S satisfies the smoothing property with respect to a symmetric and positive
definite matrix A ∈ Rn×n, if

‖S e‖21 ≤ ‖e‖21 – σ‖e‖22 (2.13)

holds with σ being independent of e ∈ Rn.

The smoothing property essentially ensures that high-frequent error components are
efficiently reduced by the smoother. The error ek

i = uk
∗ – uk

i of the current solution
approximation uk

i to the exact solution uk
∗ on matrix hierarchy level k is smoothed by
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applying the smoothing operator S before and after the coarse-level correction, see
Lines 2 and 13 in Algorithm 2.2.

In Section A.3.2 in [137], it is shown that Gauss-Seidel and ω-Jacobi relaxation fulfill
the smoothing property. We mainly use Gauss-Seidel smoother in our applications later
on.

2.4.3 Accuracy of Interpolation
To ensure convergence for a two-level multigrid cycle, the interpolation should be reliable
in some sense. The following theorems give properties for the interpolation and the
underlying C/F-splitting. Essentially, the error correction of the coarse-level correction
operator T := 1f – I f

c A–1
c I c

f should give a well-reducible error for post-smoothing
afterwards. Especially, low-frequent errors should be reduced by the error correction.

The overview on convergence estimates of the two-level AMG method that is given in
this section is based on the results presented in [124, 137].

2.2 Theorem ([137], Theorem A.4.1)
Let A be a symmetric positive definite matrix and S be the smoothing operator, which
fulfills the smoothing property (2.13). Furthermore, we assume the C/F-splitting and
the interpolation to fulfill

‖T e‖21 ≤ τ‖T e‖22 (2.14)

with τ > 0 independent of e ∈ Rf . Then yields τ ≥ σ and ‖S T ‖1 ≤
√
1 – σ

τ .

This theorem can directly be proven by combing the smoothing property (2.13) and
(2.14).

The following theorem gives an easier condition. It only requires a condition for the
constructed C/F-splitting and the calculated interpolation such that Equation (2.14) is
fulfilled.

2.3 Theorem ([137], Theorem A.4.2)
If the C/F-splitting and interpolation IFC are such that for all e ∈ Rf ,

‖eF – IFC eC‖20,F ≤ τ‖e‖21 (2.15)

with τ being independent of e, then Equation (2.14) is satisfied.

The interpolation formula in (2.11) fulfills Equation (2.15) and, thus, Theorem 2.2.

2.4 Remark
To be exact, there is a difference between using pre- or post-smoothing in combination with
coarse-grid correction, cf. Section A.5 in [137]. But we aim at asymptotic convergence
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behavior of a two-level multigrid and in almost all cases pre- and post-smoothing is
used. Thus, the conclusive results of convergence theory for pre- or post-smoothing are
transferable respectively.
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CHAPTER 3

AM-AMG - New AMG Setup
Suitable for Varying Matrix Patterns

In the following chapter, we present a newly developed setup method for AMG: Ag-
gregative Multiscale AMG (AM-AMG). With that, we present an improved aggregation
method, see Section 2.3.4, that is inspired by a geometric solver for reservoir modeling
(cf. [163] and the outline in Section 3.1).

The definition of coarse- and fine-level variables in the setup phase of AMG relies on the
ideas behind aggregation coarsening, i.e., the coarsening aims at constructing compactly
shaped aggregates. In contrast to aggregation coarsening, we introduce specific function
types for the variables inside the aggregate. This allows for defining an interpolation
that is ideal per aggregate. Furthermore, our aggregate construction process generates
aggregates that have an overlapping border to further increase interpolation quality.
We explain the complete setup phase for AM-AMG in Section 3.2.

The idea of working with some form of overlapping aggregates as well as distinguishing
between different variable types for AMG is already followed by the AMGe method
[86, 155, 80, 33]. By additionally using the element stiffness matrix, two (local) measures
for classifying the variable connections, determination of the "smooth" error direction
and defining the interpolation are introduced. This means additional information beside
the linear systems itself, in form of the element stiffness matrix, are necessary. Moreover,
the interpolation calculation drastically differs.

Remembering the geometric idea of the function types for the variables inside the
aggregates, we easily see a wide range of possibilities to vary the aggregate form. This
gives us a very fine-grained control of the coarsening process. Due to this, we can
sensitively react to various linear system structures. These features make AM-AMG
more robust than aggregative AMG. Especially the overlapping aggregate border is
advantageous for solving linear systems arising from Graph Laplacians. Very roughly
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spoken, a Graph Laplacian describes the connectivity of a graph in matrix form [40].
On this account AM-AMG is more robust than aggregative AMG. A more detailed
analysis for various examples is given in Section 3.3. The effects of these fine-grained
splitting control or variation of the interpolation operator are explained in Section 3.5.

The linear systems to which AMG is applied to has continuously been and is increasing
in terms of problem size, as the computational power is increasing. Due to this, the
parallelization of the linear solver is important to be applicable in simulations on
modern compute architectures. The parallelization options of AM-AMG are explained
in Section 3.6. As an outlook, we describe why this approach is promising to transfer
to a massively parallel shared memory system. The interpolation calculation is highly
parallelizable and the splitting can easily be reused in full simulation runs.

3.1 Overview of Algebraic Multiscale
Inspired by the idea of upscaling in reservoir modeling, a new solver approach, Algebraic
Multiscale (AMS), has been introduced [163]. AMS uses the cells from the given
reservoir model, and groups them together to have smaller coarse grids. These groups
are often called wirebaskets, see Figure 3.1. As this process significantly relies on the
selected geometric discretization of the reservoir, we use those names that are related to
the geometric approaches. When we generalize the AMS approach in the next Section
3.2 in the context of AMG, we change the naming to an AMG-related one.

The constructed wirebaskets for AMS are further distinguished by additional classifica-
tion of the grid points as vertices V , edges E and interiors I . These labelings reflect
the "role" of the points in the coarse grid construction: Vertices describe the coarse
grid. Edges then have couplings to the vertices and/or to other wirebaskets and, by
this, are directly interpolated from the vertices. At least ideally, interiors have only
couplings inside their wirebaskets. Because for the setup of the interpolation only the
local wirebaskets are necessary, it is natively parallelizable.

As our generalization of AM-AMG [48] is mainly inspired by the description in [163],
we present the key-facts for AMS along this description. However, we note that there
exist different ways for constructing AMS wirebaskets and prolongation operators. A
broad overview on AMS-related work can be found in [92, 104, 105, 158, 146] and the
references therein. But all of them rely on the same principle that is non-algebraic but
exploits a geometrical discretization.

Later on, especially for the generalization and fully algebraic formulation in Section 3.2,
we show the complete general case. For the moment, as in [163], we describe the AMS
algorithm exemplarily for uniformly structured problems based on a 2D Poisson-like
problem with a five-point stencil discretization. In these cases, the definition of the
wirebaskets is rather intuitive, and, thus, the linear system matrix A in Equation (2.1)
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Figure 3.1: Schematic construction of wirebaskets (yellow and purple) of size nine
with four vertices, four edges and one interior in a rectangular, uniformly
structured grid. The color of the points indicates their point class: vertices
are in red, edges in green and interior in cyan.

is easily reordered as

A =


A[I ,I ] A[I ,E ] A[I ,V ]
A[E ,I ] A[E ,E ] A[E ,V ]
A[V ,I ] A[V ,E ] A[V ,V ]

 (3.1)

with submatrices A[·,·]. These submatrices include the couplings between the variables
that are classified as vertices, edges or interiors. In the algorithmic implementation
itself, the reordering is used implicitly and not explicitly calculated. We show the
matrix reordering only for reasons of readability and clarity.

In the applications under consideration for the initial AMS developments 1, the linear
system (2.1) in combination with the submatrices structure from Equation (3.1) reduces
to the following form

A[I ,I ] A[I ,E ] 0
0 Ã[E ,E ] A[E ,V ]
0 0 1[V ,V ]



u[I ]
u[E ]
u[V ]

 =


0
0

b[V ]

 (3.2)

where Ã[E ,E ] considers the tangential flow that previously was described in the submatrix
A[E ,I ]. The vertices form the coarse level and, with an ideal transfer operation between
coarse and fine level, we have b[V ] = bc. Due to this, the submatrix A[V ,V ] reduces to
the identity 1[V ,V ] for the vertices.

As the reduced linear system in this specific application has a simple structure, it can
easily be solved via submatrix/block elimination, i.e., via a so-called Schur-complement

1assuming a five-point stencil of a flow problem discretization, elimination of the A[E,I ]-submatrix via
tangential flow physically based on boundary conditions, and others, for more information see [163]
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approach. This defines the interpolation operator

PAMS = G ·


A–1
[I ,I ]A[I ,E ]Ã–1

[E ,E ]A[E ,V ]
–Ã–1

[E ,E ]A[E ,V ]
1[V ,V ]

 , (3.3)

with G describing the implicit reordering of the matrix into separate wirebaskets and
point classes.

3.2 Introduction to Aggregative Multiscale AMG
In the previous section, we have seen that the AMS approach uses a Schur-complement-
based construction of the interpolation operator PAMS, considering a uniformly struc-
tured grid and other assumptions based on physical information from the application
field. Thus, it is not working purely algebraically. In the following, we want to overcome
the necessity of geometric discretization information and obtain a purely algebraic setup.

In a first step for a purely algebraic setup of AMS, we redesign the construction process
for aggregates, see Section 2.3.4, to reflect the three function types vertices V , edges E
and interiors I . Second, we can algebraically calculate the interpolation operator by
analyzing the aggregate-local linear system. Finally, we show in Section 3.4 that the
described AMG strategy with the newly defined interpolation operator converges under
certain mild assumptions.

As starting point for the coarsening process, we use classical aggregative AMG. Due to
this, we name the resulting AMG approach, with a new coarsening approach and new
interpolation calculation, as Aggregative Multiscale AMG (AM-AMG).

The aggregation process is based on the matrix adjacency graph. For the graph interpre-
tation of the matrix, a distance measure is necessary. For this purpose, we interpret 1

aij
as the distance between the two variables i and j, if they are coupled. If two variables i
and j are not coupled, the distance is defined as the shortest way over another variable
k that is coupled to the variables i and j, i.e. the distance is defined as min

k

(
1

aik
+ 1

akj

)
.

This definition can be extended if two variables are only reached over a path of more
than one variable.

Each built aggregate should have minimal diameter in the matrix adjacency graph,
as this minimizes the influence of heterogeneities on the interpolation in each single
aggregate. The diameter of an aggregate is defined as the shortest path between those
variables that are most distanced in the matrix adjacency graph.

For the calculation of the path length p (i, j) between two variables i and j, we use the
Floyd-Warshall algorithm [54], see Algorithm 3.1. We modified this algorithm for our
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specific purpose to reduce the number of operations by saving intermediate calculation
steps and save overall runtime. Thus, the calculation loops in Lines 11 and 12 in
Algorithm 3.1 are restricted to the current aggregate sizes instead of the matrix size
n as we are only interested in paths inside an aggregate. Additionally, we introduce
intermediate savings for the calculation in Lines 13 and 14 in Algorithm 3.1, since
the same couplings need to be considered multiple times. We are using this adapted
Floyd-Warshall for the diameter calculations in Line 8 and the path length calculation
in Line 24 in Algorithm 3.2.

Algorithm 3.1: General Floyd-Warshall Algorithm
Input: Af : fine-level matrix ∈ Rn×n

Data: p : matrix of path lengths ∈ Rn×n

1 initialization of path matrix:
2 for i = 1 to n do
3 for j = 1 to n do
4 if i = j then
5 p (i, i) = 0
6 else if j ∈ Ni then
7 p (i, j) = 1

aij

8 else
9 p (i, j) = ∞

10 calculation of path length between all variables:
11 for i = 1 to n do
12 for j = 1 to n do
13 for k = 1 to n do
14 p (i, j) = min (p (i, j) , p (i, k) + p (k, j))

The aggregation process starts with an initial aggregate variable that is not included
in any aggregate. For creating the current aggregate, all variables k that couple into
this aggregate are considered. The diameter dk , if this variable would be part of the
aggregate, is calculated, see Line 8 in Algorithm 3.2. Afterwards, the variable with the
smallest diameter dk is added to the aggregate until the pre-defined maximum aggregate
size is reached. Adding the variable k to the current aggregate has some constraints,
as vertices and edges can be part of more than one aggregate. The following gives an
overview of all conditions for adding the variable k to the aggregate, where on of them
needs to be fulfilled:

• k is not included in another aggregate
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or

• k is already a vertex in another aggregate, and
the maximum number of aggregates in which k is a vertex is not reached, and
the maximum number of vertices for this aggregate is not reached, i.e., aggv < nv

or

• k is already an edge in another aggregate, and
the maximum number of aggregates in which k is an edge is not reached, and
the maximum number of edges for this aggregate is not reached, i.e., agge < ne

with aggv/e the current number of vertices or edges in the constructed aggregate and
nv/e the maximum number of vertices or edges per aggregate. These constraints are
checked in the Function Adding_Next_Point(k) starting in Line 10 in Algorithm
3.2. It is possible that an aggregate is finished before the maximum number of aggregate
variables is reached, when there are no more coupled variables that fulfill the necessary
conditions can be added to the aggregate are available.

Directly after completing one aggregate, the function types vertices, edges and interiors
are assigned. To do so, the shortest variable-to-variable path p (i, j) between two
variables i and j inside an aggregate is calculated. The per-variable distance d (i) then
is the maximum over all variable-to-variable paths inside this aggregate, i.e. d (i) :=
max
i 6=j

p (i, j). All variables of an aggregate with the longest per-variable distance become
a vertex, until a user-defined maximal number of vertices nv is reached. Analogously,
all variables of an aggregate with the smallest per-variable distance become an interior,
until a user-defined maximal number of interiors ni is reached. All remaining variables
are defined as edges. In Figure 3.2, we show the process of function type assignments
in a full aggregate and refer to Lines 26 to 32 in Algorithm 3.2 to complete the pseudo
code description of the setup phase of AM-AMG.

The vertices are the coarse-level variables and define the next coarser level.

This manner of awarding the function types to the variables may appear arbitrary at
first glance. But when the definition of vertices, edges and interiors for a uniformly
structured grid with AMS is analyzed, both perfectly coincide. Moreover, the setting of
function types is only necessary for the setup of the local interpolation per aggregate,
which is a nearly ideal interpolation approximation. This setup of the interpolation
is a localized version of the limit case of direct solver, explained in Section A.2.3. in
[138]. In an ideal world, the interpolation is equivalent to a Schur-complement between
coarse- and fine-level variables. When additionally the smoother is ideal for all fine-level
variables, the overall algorithm yields a direct solver.

Unlike to classical aggregative AMG approaches, it is possible and even necessary for an
adequate coarsening rate to use variables in multiple aggregates. This variable re-usage
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Figure 3.2: Visualization of function types definition for one aggregate in AM-AMG.

Starting point is a finally constructed aggregate. At a first, step the vertices
(red colored points) are defined as these variables with maximal variable-to-
variable path length inside the aggregate. Afterwards, the interior (cyan
colored point) as these variables with minimal variable-to-variable path
length is determined. Finally, all remaining variables in the aggregate are
assigned as edges (green colored points).

in aggregates in combination with the non-constant interpolation inside the aggregates
is the strength of AM-AMG compared to aggregative AMG.

The initialization of the user parameters for the aggregate form (number of vertices,
edges and interiors per aggregate) and overlapping of aggregates (number of aggregates
in which a vertex or edge variable is included) is based on rectangular aggregates on a
uniformly structured grid, see the ideal schematic construction in Figure 3.1. Thus, we
set as default that an aggregate consists of four vertices, eight edges and four interiors.
Additionally, one vertex can be included in up to four aggregates and edges in up to two
per default. Interiors should never be included in more than one aggregate to ensure an
optimized interpolation. We discuss possible generalizations of the coarsening strategy
based on geometric-like interpretations in Section 3.5. We will see in Section 3.3 that
the chosen settings are working well for a huge bandwidth of applications.

For the construction of the interpolation for AM-AMG, we reformulate the linear system
(2.1) localized for each aggregate and sorted for the different function types, as

A[I ,I ] A[I ,E ] A[I ,V ]
A[E ,I ] A[E ,E ] A[E ,V ]
A[V ,I ] A[V ,E ] A[V ,V ]



u[I ]
u[E ]
u[V ]

 =


b[I ]
b[E ]
b[V ].

 . (3.4)

In contrast to the linear system in Equation (3.2) of the initial AMS, which applies several
information based on the application field, we do not apply any such simplifications.

The linear system (3.4), we want to solve with the two-level scheme that we described
in Section 2.2, based on the aggregative splitting explained above. Thus, we solve a
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defect correct equation.

For the construction process of the interpolation, we assume an ideal-per-aggregate pre-
smoothing of the solution of Equation (3.4). Later on, we will see that this assumption is
not necessary when we prove the accuracy of interpolation in Section 3.4. However, this
coincides with the intuition behind AMS. The assumption of ideal pre-smoothing leads
to a zero residual for the interior and edge variables. The solution of the coarse-level
defect correction ec is the solution of the vertex variables e[V ]. By this, we have the
following linear system to be solved for the defect correction on the fine level:

A[I ,I ] A[I ,E ] A[I ,V ]
A[E ,I ] A[E ,E ] A[E ,V ]

0 0 1[V ,V ]



e[I ]
e[E ]
e[V ]

 =


0
0
ec.

 . (3.5)

The equations for the interior defect correction e[I ] and edge defect correction e[E ]
are solved separately. We start with a reformulation of the first row in (3.5), i.e., the
interior defect correction e[I ] depending on the edge defect correction e[E ],

0 = A[I ,I ]e[I ] + A[I ,E ]e[E ] + A[I ,V ]e
c

⇔ e[I ] = –A–1
[I ,I ]A[I ,V ]e

c – A–1
[I ,I ]A[I ,E ]e[E ].

We insert this formulation in the second row in (3.5) to gain the solution for the edge
defect correction e[E ]

0 = –A[E ,I ]A
–1
[I ,I ]A[I ,V ]e

c – A[E ,I ]A
–1
[I ,I ]A[I ,E ]e[E ] + A[E ,E ]e[E ] + A[E ,V ]e

c

⇔ 0 =
(
A[E ,E ] – A[E ,I ]A

–1
[I ,I ]A[I ,E ]

)
e[E ] +

(
A[E ,V ] – A[E ,I ]A

–1
[I ,I ]A[I ,V ]

)
ec

⇔ e[E ] = –Â–1
[E ,E ]

(
A[E ,V ] – A[E ,I ]A

–1
[I ,I ]A[I ,V ]

)
ec,

with Â[E ,E ] = A[E ,E ] – A[E ,I ]A–1
[I ,I ]A[I ,E ]. By this, we have a completely algebraic

formulation for the interpolation of the edges. It is only based on the coarse-level
solution ec and couplings inside this aggregate.

With the same procedure, we calculate the interpolation for the interiors. As a first
step, the second row of (3.5) is interpreted as the defect-correction solution of the edges
e[E ], depending on the defect correction solution of the interior e[I ]. Afterwards, this is
inserted into the first row and resolved for the interior defect correction e[I ] with the
following interpolation formula

e[I ] = –Â–1
[I ,I ]

(
A[I ,V ] – A[I ,E ]A

–1
[E ,E ]A[E ,V ]

)
ec

with Â[I ,I ] = A[I ,I ] – A[I ,E ]A–1
[E ,E ]A[E ,I ].
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In summary, the interpolation operator PAM-AMG for AM-AMG is defined as

PAM-AMG := GN ·


–Â–1

[I ,I ]

(
A[I ,V ] – A[I ,E ]A–1

[E ,E ]A[E ,V ]

)
–Â–1

[E ,E ]

(
A[E ,V ] – A[E ,I ]A–1

[I ,I ]A[I ,V ]

)
1VV

 , (3.6)

with G describing the reordering of the original linear system (2.1) in the function types
and sorted for the single aggregates as in Equation (3.4). Actually, never reordered in
the implementation - just written for easier instruction. N is the normalization of the
interpolation formulas such that a constant vector would be interpolated as constant
vector.

As the interpolation is constructed independently for each aggregate, we have some
conflicts for the interpolation at edges: these can be part of more than one aggregate.
In such cases, the edge is referred to one primary aggregate for interpolation calculation.
In all other aggregates, no interpolation formula is set up for this edge. When we
would use the interpolation of the edges from all aggregates, the Galerkin operator
for this variable would rely on much more variables and, thus, the matrix complexity
would drastically increase. Additionally, the parallelization of the interpolation for
these variables would be more difficult, as we have to be careful when writing the
interpolation operator in a distributed manner.

Vertices can also be included in several aggregates, but their interpolation formula is
simply the identity, as they span the coarse level and, thus, this causes no problems.

During the entire process, construction of the aggregates and interpolation calculation,
no distinction between strong and weak couplings is necessary. This property carries
over from the initial idea of AMS. Indirectly, the coupling strength is encapsulated in
the aggregate construction. The aggregate construction is based on the interpretation of
1

aij
as distance measure between two coupled variables i and j in the matrix adjacency

graph. When a coupling is strong, the distance for this coupling is seen as small and,
by this, preferably chosen as new addable aggregate point in Line 10 in Algorithm 3.2.
This indirect usage of coupling strength is especially advantageous, when the coupling
strength is not symmetric: all couplings, irrelevant whether they are strong or weak,
are considered for the setup of the interpolation operator.

Furthermore, we can apply the AM-AMG approach also to solve a system with different
kinds of unknowns, the unknown-wise approach from Section 2.3.5. This is, for instance,
useful for linear systems from petroleum reservoir simulations, as they include different
physical unknowns. The inspiration for AM-AMG has been developed for this kind of
simulations. For linear systems with different unknowns, the construction process for
aggregates is divided to work for each unknown separately. As a consequence, each
constructed aggregate only contains variables of one unknown. No further changes
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are necessary afterwards, because the interpolation is constructed separately for each
aggregate. In the Section 3.3.2, we give a short example for the application of AM-AMG
for a simple petroleum reservoir simulation. Further examples can be found in [48].

Before we show two-level convergence for AM-AMG in Section 3.4, we give some results
of AM-AMG compared to other well-known setup approaches of AMG in the following
section.
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Algorithm 3.2: Coarsening Process of the Setup Phase of AM-AMG
Input: Af : fine-level matrix ∈ Rn×n

nvar/v/e/i : number of variables/vertices/edge/interiors per aggregate

Data: aggvar/v/e/i : current number of variables/vertices/edges/interiors
in constructed aggregate

1 for i = 1 to n do
2 if i is part of an aggregate then
3 return
4 add i to aggregate, aggvar = 1
5 aggv = 0, agge = 0, aggi = 0
6 while aggvar < nagg do
7 for each coupled variable k to this aggregate do
8 calculate diameter dk if k would be part of this aggregate
9 select k with minimal dk

10 Function Adding_Next_Point(k):
11 if k is not part of another aggregate then
12 add k to this aggregate
13 aggvar = aggvar + 1
14 else if k is part of another aggregate then
15 if k is available as vertex and aggv < nv then
16 add k as vertex to this aggregate
17 aggvar = aggvar + 1, aggv = aggv + 1
18 else if k is available as edge and agge < ne then
19 add k as edge to this aggregate
20 aggvar = aggvar + 1, agge = agge + 1

21 else if another variable as in Line 8 exists then
22 set k to the variable with the next smallest dk
23 Adding_Next_Point(k)

24 calculate variable-to-variable paths p (i, j) inside this aggregate
25 calculate per-variable distance d (i)
26 while aggv < nv do
27 set variable with the longest variable-to-variable path as vertex
28 aggv = aggv + 1
29 while aggi < ni do
30 set variable with the smallest variable-to-variable path as interior
31 aggi = aggi + 1
32 set all remaining variables as edges
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3.3 Numerical Examples and Results for AM-AMG
We present three examples: the standard Poisson problem in Section 3.3.1, a Black-Oil
problem from petroleum reservoir simulation in Section 3.3.2, and some graph network
problems from the huge field of data science problems in Section 3.3.3.

As setup approaches, we chose Ruge-Stüben coarsening with standard interpolation
(see Section 2.3.2), aggregative coarsening with piecewise-constant interpolation (see
Section 2.3.4) and the previously introduced AM-AMG coarsening with locally optimal
interpolation. Ruge-Stüben coarsening is chosen as it is a very well-known standard
method and works very good as default setting in many cases. The newly developed
method AM-AMG is an improvement to aggregative coarsening and, thus, we want to
compare these two methods for various applications.

All benchmarks have been performed on a node with Intel Xeon Gold 6130F dual
16-core CPU and 192 GB RAM.

3.3.1 Poisson Problem
Poisson’s equation –∆u = f is a very classical elliptic PDE. The discretization of this
PDE on a two-dimensional unit square with different mesh resolutions is a well-known
benchmark example for the evaluation of AMG approaches. The difficulty to solve
Poisson’s equation can be increased by using inhomogeneous coefficients, realized by a
cell-wise random diagonal tensor K included in Poisson’s equation, which then reads as
–∇K∇u = f . This variation is chosen as the basic idea of AM-AMG, namely AMS, is
constructed in an petroleum-reservoir-related context and, thus, problems with various
inhomogeneities occur. By construction of AM-AMG, in the examples with growing
inhomogeneities, the convergence of AM-AMG is much better than for aggregative
AMG. The interpolation is optimal per aggregate and, by this, the inhomogeneities
are represented in the interpolation. This is not possible for the piecewise-constant
interpolation in the aggregation approach.

In Figure 3.3, the number of iterations until convergence (relative residual lower than
10–8) are plotted for the three different coarsening strategies. As expected, Ruge-Stüben
has the best convergence performance and the lowest sensitivity on the increasing
discretization mesh size. The convergence rate of aggregation coarsening and AM-
AMG is influenced by the discretization mesh size. They both have a more aggressive
coarsening, i.e., less matrix hierarchy levels are constructed. Therefore, they have a
higher necessity of approximation in the interpolation. Especially for higher mesh
sizes, AM-AMG has a better convergence rate, as this approach profits from the locally
optimal interpolation per aggregate, in contrast to the piecewise-constant interpolation
for aggregation.

Figure 3.4 shows the convergence history for one specific mesh size. As the previous
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Figure 3.3: Numbers of iterations for different coarsening strategies and various mesh
sizes for a 2D homogeneous Poisson problem discretization with a five-point
stencil on the unit square.

figure already implies, the Ruge-Stüben coarsening has a continuous convergence history.
In contrast, aggregation coarsening and AM-AMG converge much slower. But AM-AMG
then has the better residual reduction for already small residuals as the locally optimal
interpolation can better handle the eigenfrequencies.

The convergence results for a Poisson problem with a high inhomogeneity rate as
in Figure 3.5 are quite similar to the normal Poisson problem. But particularly the
convergence difference between aggregation coarsening and AM-AMG for growing
discretization mesh sizes grows. AM-AMG shows less sensitivity on the growing mesh
size in combination with the more aggressive coarsening, due the locally optimal
interpolation setup. This reduced sensitivity regarding inhomogeneities is advantageous
in real applications, as we will see for petroleum reservoir simulation in the following.
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Figure 3.4: Convergence history for different coarsening strategies and a mesh size of
2048x2048 for a 2D homogeneous Poisson problem discretization with a
five-point stencil on the unit square.
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Figure 3.5: Numbers of iterations for different coarsening strategies and various mesh
sizes for a 2D Poisson problem discretization and inhomogeneity between
10–8 and 108 with a five-point stencil on the unit square.

38



3.3 Numerical Examples and Results for AM-AMG

3.3.2 Petroleum Reservoir Simulation
The original, but geometric, idea behind AM-AMG arises from solving simulations of
petroleum reservoirs. To demonstrate the application of AM-AMG also in this field,
we consider a basic Black-Oil case. For this purpose, we chose a representative linear
system from a SPE10 simulation [39].

For solving this problem and others arising from petroleum reservoir simulations, we use
the System-AMG approach for coupled systems from fully implicit (FIM) simulations
[59, 60]. In this linear solver framework, the construction of the matrix hierarchy is
automatically restricted to those physical unknowns, mainly pressure and temperature,
that actually need it. Additionally, an incomplete factorization smoother (ILU) on
the finest level for the solution phase of AMG is activated to update those physical
unknowns that are not considered for the matrix hierarchy construction in the setup
phase of AMG. By all of this, matrix properties for the setup phase of AMG are secured
to safely apply the coarsening approaches. We refer to [59, 60] for further details.

Similar to the Poisson problem, we see in Figure 3.6a the good quality of Ruge-Stüben
coarsening. But additionally, we see the drastic difference between aggregation and
AM-AMG. AM-AMG needs roughly 20% less iterations than aggregation. This fact is
mainly depending on the improved quality of the interpolation as this is now working
locally ideal.

Another improvement regarding aggregation, we can see in Figure 3.6b, where we plot
the number of variables in the full constructed matrix hierarchy. At the beginning,
aggregation has the best coarsening, i.e., the first matrix hierarchy levels are the
smallest. But at some point saturation occurs and no further valid coarsening is
achieved. AM-AMG has a similar coarsening rate during the entire coarsening process
and constructs the lowest number of matrix hierarchy levels. AM-AMG here profits
from the overlapping aggregate construction with shared vertices and edges. This
construction stabilizes the coarsening rate.

For more examples arising from reservoir simulations and further explanations and
analysis, see [48].
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Figure 3.6: Results for the reference Black-Oil problem SPE10

3.3.3 Graph Network Problems
In this section, we analyze our coarsening method for graph network problems. Ex-
emplarily, we chose three example graphs, namely as-Caida, soc-Slashdot0811 and
email-EuAll from the SNAP Dataset [90] with a slightly different data origin:

• as-Caida (26475 nodes, 106762 edges) [88, 90]
This graph analyzes the relationship structure in the internet between customers
and providers. Our graph represents these relationships on November, 5th 2007.

• soc-Slashdot0811 (77360 nodes, 905468 edges) [91, 90]
This graph represents a social network from a technology-related news website
generated in November 2008. This graph contains the connectivity between the
users of this website.

• email-EuAll (265214 nodes, 420045 edges) [89, 90]
This graph is an email communication graph from a large European research
institution. The data includes some non-existing or spam mail addresses that are
not connected to the main part of the graph. In our benchmarks, we only use the
main component of the graph.

These graphs are analyzed in the Megaman software [98, 99]. Megaman is a python
software that has various scalable manifold learning algorithms implemented. It gives
the opportunity to handle data with million of points and hundreds of dimension. For
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Figure 3.7: Occurrences of stencil sizes for the data science graphs as-Caida, soc-
Slashdot0811 and email-EuAll (main component)

analyzing purposes, the graph data is transferred to a matrix as Graph Laplacian.
As most algorithms work better for positive definite matrices, the diagonal is slightly
increased already in the Megaman software. Graph Laplacians per definition are only
positive semi-definite.

All of these graph matrices are more inhomogeneous than the previous Poisson-related
problems. Additionally, the sparsity pattern of these matrix kinds is virtually random:
there exist a few variables with less couplings and a few variables with much more
couplings. In Figure 3.7, we show the frequency with which different stencil sizes
in the Graph Laplacians occur for our three chosen graphs. This sparsity pattern
inhomogeneity makes classical coarsening like Ruge-Stüben or aggregative difficult at
some points, as the methods’ idea is based on small discretization stencils.

Due to high inhomogeneities in the number of couplings between variables, AM-AMG
is better suited for this kind of problems. The idea of vertices for AM-AMG is ideally
suited for these problem cases, as they allow to handle more than one aggregate by one
variable, see Figure 3.12. Initially inspired by the geometric idea, one vertex can only be
included in up to four aggregates. But this number can be varied by a user parameter
or by a heuristic based on the matrix connectivity itself, see Section 3.5.3. Due to this
variation, the handling of variables with high numbers of couplings is much easier, as
they become vertices and, thus, are part of many aggregates. Hence, a representation
of the highly coupled variables on coarser matrix hierarchy levels is ensured.

In contrast to AM-AMG, Ruge-Stüben coarsening struggles in all of our chosen example
cases to create a useful matrix hierarchy with a reasonable amount of memory, visualized
via matrix complexity in Figure 3.8, and in an adequate setup time, see Figure 3.9a.

Aggregation coarsening partly fails completely to construct a matrix hierarchy, as
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no reasonable coarse grid size to apply a direct solver is reached. For the examples
email-EuAll and as-Caida no matrix hierarchy with a suitable coarse grid size for a
direct solver is constructed. Thus, in both Figures 3.8 and 3.9, only the results for
soc-Slashdot can be presented. While, for this example, aggregation shows the best
results in setup time and matrix complexity, it is not generally applicable to other
examples from the large network dataset collection [90] as it often fails to create a
usable matrix hierarchy. The difficulty for aggregation coarsening is the varying stencil
size and the non-adequate handling of variables with many couplings. These variables
are, by construction, only part of one single aggregate. This fact completely neglects
the importance of such variables for the graph structure.

AM-AMG has no problem to construct a matrix hierarchy with a reasonable coarse
grid size and an acceptable amount of memory. Opposed to aggregation coarsening,
the inhomogeneity in the matrix stencils are now transferred to the coarser matrix
hierarchy levels. Such variables with many couplings to other variables are preferred set
as vertices. By this, they can be included in more aggregates. As the interpolation is
locally ideal per aggregate, the interpolations for the coupled variables are more specific
calculated than with the constant interpolation for aggregation coarsening.

To finalize our evaluation, we now look at the solution phase for all examples with
the tested coarsening approaches. In all three examples it holds that when a matrix
hierarchy is successfully constructed, the quality of this is similar for the different setup
approaches in terms of the convergence rate. To compare the convergence behavior, we
consider the main key facts (number of iterations and total residual reduction) about
this in Table 3.1. For the two examples soc-Slashdot0811 and as-Caida, these are in
the same range over all coarsening approaches. For email-EuAll, the convergence for
Ruge-Stüben is much better. But this comes at the cost of a drastically higher setup
time, see Figure 3.9a, and memory consumption. In Figure 3.9b, we see that AM-AMG
for all three cases has the fastest overall time, which includes setup and solution time.
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Figure 3.8: Results of the matrix complexity for the data science graphs as-Caida,
soc-Slashdot0811, email-EuAll (main component).
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Figure 3.9: Plot of the setup and overall time for the data science graphs as-Caida,
soc-Slashdot0811 and email-EuAll (main component).
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setup approach iterations final residual reduction
as Ruge-Stüben 9 0.248 · 10–8

aggregation fail fail
AM-AMG(16/4) 18 0.757 · 10–8
AM-AMG(25/9) 18 0.962 · 10–8

soc Ruge-Stüben 6 0.159 · 10–8
aggregation 8 0.105 · 10–8
AM-AMG(16/4) 8 0.105 · 10–8
AM-AMG(25/9) 7 0.432 · 10–8

email Ruge-Stüben 15 0.581 · 10–8
aggregation fail fail
AM-AMG(16/4) 132 0.950 · 10–8
AM-AMG(25/9) 127 0.858 · 10–8

Table 3.1: Main information about convergence behavior for the data science graphs
as-Caida, soc-Slashdot0811 and email-EuAll (main component).

3.4 Two-Level Convergence for AM-AMG

Now we show how AM-AMG can be embedded in the theoretical framework summarized
in Chapter 2. We especially focus on the accuracy of interpolation, cf. Section 2.4.3,
to prove the convergence of a two-level AMG method with post-smoothing that uses
AM-AMG as coarsening and interpolation strategy.

We evaluate the convergence theory for a two-level AMG-hierarchy with a symmetric and
positive defined M-matrix A. As shortly outlined in Section 2.4.3, to show convergence
for an AMG method we have to prove the prerequisites of Theorem 2.3. For easy
readability and traceability of the proof, we introduce some additional notations.

When the coarsening process is finished, we analyze the incurred aggregates and set
f as the maximum number of fine-level variables (edges and interiors) per aggregate,
c as the maximum number of coarse-level variables (vertices) per aggregate and p as
the maximum number of aggregates that include the same variable. For each fine-level
variable i, we define the set Ci of coarse-level variables, i.e., vertices that span the
aggregate that include variable i, i.e.,

Ci := {coarse-level variables of the aggregate that include i} for i ∈ F .

That is, the variable i is interpolated from Ci . The set Ci can be further divided into
variables with direct couplings to the variable i

Ni :=
{
j ∈ Ci |aij 6= 0

}
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and the variables without a direct coupling

N 0
i :=

{
j ∈ Ci |aij = 0

}
and, thus, Ci = Ni ∪ N 0

i . Contrary to the definition in Section 2.3.1, Ni and N 0
i are

restricted to the neighborhood in one aggregate here.

For the interpolation operator, in addition to the derived formula (3.6), we use the
following two notations

PAM-AMG := GN ·


–Â–1

II
(
AIV – AIEA–1

EEAEV
)

–Â–1
EE

(
AEV – AEIA–1

II AIV
)

IdVV

 =
(
IFC
ICC

)
=
(
wij
)

i,j (3.7)

where ÂII = AII – AIEA–1
EEAEI and ÂEE = AEE – AEIA–1

II AIE are defined as in
Section 3.2, G denotes the matrix that provides the implicit reordering, and N is the
normalization.

It follows that 0 ≤ wij ≤ 1 for all variables i and j and
∑
j
wij =

∑
j∈Ci

wij = 1 for all

variables i, as A is an M-matrix and i is only interpolated from one specific aggregate.
Even when the variable i belongs to more aggregates (as it is possible for edges).

With these notations, we are now able to derive an estimate for the accuracy of
interpolation.

3.1 Theorem
For a C/F-splitting and interpolation as described in Section 3.2, Equation (2.15), i.e.,

‖eF – IFC eC‖20,F ≤ τ̂‖e‖21, (3.8)

with τ̂ depending on τ := max
i∈F
k∈Ni

aii
|aik |

, c, f and p, is fulfilled.

Proof:
We start with the evaluation of the Inequality (2.15) for the AM-AMG interpolation
and use the fact that the rowsum of the interpolation operator is normalized to 1. Then
we have

‖eF – IFC eC‖20,F =
∑
i∈F

aii

∑
k∈Ci

wik (ei – ek)


2

. (3.9)

In the next step, we use the Cauchy-Schwarz-inequality |〈u, v〉|2 ≤ ‖u‖2‖v‖2 for the
standard Euclidean scalar product. In our use case, we choose u =

(√wik
)

k and
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v =
(√wik (ei – ek)

)
k . Thus, the Equality (3.9) can be estimated as

‖eF – IFC eC‖20,F ≤
∑
i∈F

aii
∑
k∈Ci

wik (ei – ek)2 . (3.10)

Due to normalization of the rowsum, all entries of the interpolation operator satisfy
wij ≤ 1 and, as A is a M-Matrix, wij ≥ 0.

Furthermore, we now distinguish between the sum over non-zero and zero off-diagonal
couplings. We note that, despite aij = 0, wij can be non-zero and recall that Ci =
Ni ∪ N 0

i . The sum over the non-zero off-diagonal couplings, can be (directly) estimated
by the norm ‖.‖1, see Section 2.4.1. Formally, this reads as (Formula (A.4.12) in [137]):

‖e‖21 ≥
∑
i∈F

∑
k∈Ni

(–aik) (ei – ek)2 + sie2i

 (3.11)

≥
∑
i∈F

∑
k∈Ni

(–aik) (ei – ek)2 (3.12)

with the row sum si =
∑
j
aij ≥ 0. Thus, we have the inequalities

‖eF – IFC eC‖20,F ≤
∑
i∈F
k∈Ci

aii (ei – ek)2 =
∑
i∈F
k∈Ni

aii (ei – ek)2 +
∑
i∈F

k∈N 0
i

aii (ei – ek)2 (3.13)

≤τ
∑
i∈F
k∈Ni

(–aik) (ei – ek)2 +
∑
i∈F

k∈N 0
i

aii (ei – ek)2 (3.14)

≤τ‖e‖21 +
∑
i∈F

k∈N 0
i

aii (ei – ek)2 (3.15)

=τ‖e‖21 +
∑
i∈F

k∈N 0
i

aii
(
ei – ej + ej – ek

)2 . (3.16)

As the variables i and k belong to the same aggregate, there exists at least one coupling
variable j between them inside this aggregate, i.e., aij 6= 0 6= ajk . Moreover, there holds
aii ≤ τ |aij | = τ |aji | ≤ τajj ≤ τ2|ajk |, which allows to estimate

‖eF – IFC eC‖20,F ≤

τ‖e‖21 + 2
∑
i∈F

k∈N 0
i

(
τ
(
–aij

) (
ei – ej

)2 + τ2
(
–ajk

) (
ej(k) – ek

)2) . (3.17)
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Finally, we have to resolve the two remaining sums in terms of the energy norm and,
to do so, consider the occurrence of such indirect couplings in one aggregate. For a
"triangle coupling" i – j – k, the coupling j – k can occur for each fine-level variable in
one aggregate and for each aggregate that includes j – k. Thus, in total f · p times.
The coupling i – j can occur for each coarse-level variable in one aggregate and for
each aggregate that includes i – j. Thus, in total c · p times. As with the sub-sum of
Inequality (3.14) regarding Ni , the sums can be estimated with the norm ‖.‖1, compare
to [124, 137]. Overall, we now have the inequality

‖eF – IFC eC‖20,F ≤τ‖e‖
2
1 + 2τcp‖e‖21 + 2τ2fp‖e‖21. (3.18)

=
(
τ + 2τcp + 2τ2fp

)
‖e‖21 =: τ̂‖e‖21. (3.19)

It is possible to extent the estimation for indirect couplings up to the length of the
aggregate size. However, involving a larger constant τ̂ , which then also only depends
on τ , c, f , p and some binomial coefficients to take all possible paths in the adjacency
graph into account. �

With this theorem, Theorem 2.3 is fulfilled stating that the convergence condition in
Theorem 2.2 for a two-level method with post-smoothing is fulfilled. Overall, we have
shown that AM-AMG yields convergence as a two-level post-smoothed AMG method for
a symmetric positive definite M-matrix A. The previously presented results carry over
to a two-level AMG-method that uses pre- and post-smoothing as already explained in
Remark 2.4.

The presented proof shows that the convergence of AM-AMG depends on various matrix
and coarsening related parameters.

The depending parameter τ indicates two properties. On the one hand, the matrix
condition number has an influence on the expected convergence rate. On the other
hand, indirectly, the coupling strength of the adjacency graph is taken into account.
Hence, no explicit distinction between strong and weak couplings, as for Ruge-Stüben
coarsening, see Section 2.3.2, is necessary.

The aggregation process itself is represented by the two parameters f and c in the
convergence estimation. Finally, the parameter p takes the density of the constructed
interpolation into account.

For an M-matrix, we know that τ is limited. Additionally, we have f , c and p fixed
for a chosen AM-AMG setup. Therefore, the expected convergence rate as

√
1 – σ

τ̂ , see
Theorem 2.2 and the detailed explanations in [124, 137], is bounded away from 1 and,
hence, we expect good convergence.
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Figure 3.10: Visualization for varying aggregate sizes by increasing number of edges
(green points) between two vertices (red points). The number of vertices per
aggregate is fixed to four and the number of included interiors (cyan points)
grows dynamically with growing number of edges. For easier visibility we
chose a rectangular aggregate to demonstrate the effect.

3.5 Control Options of AM-AMG
For the coarsening process described in Section 3.2, various variations are possible. In
most cases of our benchmarks, we use the setting with aggregates of size 16 along with
four vertices, eight edges and four interiors. They have shown to be ideal in the sense
of providing a good balance between coarsening rate and convergence behavior. These
settings are interpreted as upper limits and do not need to be fulfilled for each aggregate
in the coarsening process. In an overall view, these settings are a good working basis
for a wide range of application examples with the best compromise between sufficiently
fast coarsening and robust interpolation. With the following presented modifications,
we have some fine-grained possible adjustments for AM-AMG to further support this
compromise.

3.5.1 Size of Aggregates
The easiest parameter to vary is the aggregate size. The total number of aggregate
elements is varied by a variation of the number of edges between two vertices and,
therefore, a growing set of interior variables, see Figure 3.10 for a visualization of this
process. This allows for a more aggressive coarsening rate. As a consequence, less
levels are created and less memory is used. But this can affect the robustness of the
interpolation, cf. the parameters f and c in the convergence proof in Theorem 3.1.
With this variation, the aggregates are stretched or shrinked.

Table 3.2 shows the results of the variation of aggregate size evaluated by the matrix
complexity, setup runtime and number of iterations. As expected, the matrix complexity
is reduced, when the aggregate size grows: The rate between vertices, which define
the coarse level variables of the new matrix hierarchy level, and edges and interiors is
getting lower. For all aggregate sizes, the number of iterations till convergence is quite
similar. In the setup runtime, we observe a different effect. For the soc-Slashdot0811
example, the setup runtime is becoming smaller with growing aggregate size, as there
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number of
(allowed) edges

matrix
complexity

setup
runtime iterations overall

runtime
soc 1 12.59 16.16 7 16.45

2 6.26 4.95 7 5.14
3 4.49 3.08 8 3.23
4 3.42 2.73 8 2.88

email 1 2.00 1.52 126 4.68
2 1.58 1.52 127 4.38
3 1.44 2.68 132 5.57
4 1.37 6.02 128 8.84

as 1 4.98 0.44 19 0.54
2 3.26 0.34 18 0.39
3 2.67 0.38 18 0.43
4 2.20 0.72 18 0.78

Table 3.2: Results for the data science graphs as-Caida, soc-Slashdot0811 and email-
EuAll (main component) for a variation of the size of the aggregates by
changing the number of (allowed) edges. The number of vertices is set to 4.

are less new aggregates with a searching process for suitable variables necessary. In
contrast, we observe that for the email-EuAll at some aggregate size the setup runtime
is growing again: The underlying graph structure is not well suited for that size of
aggregates then. Various experiments have shown that choosing two edges between
two vertices is the best balance between matrix complexity and setup runtime. For a
rectangular aggregate form in mind this means eight edges and four interiors.

3.5.2 Number of Vertices per Aggregate
As another parameter, the maximum number of vertices per aggregate can be changed.
We have chosen the geometric 2D interpretation of AMS on a uniformly structured grid
as starting point and, thus, have a square with four vertices in mind. But it is possible
to change this to three (triangle in a geometric interpretation) or five (pentagons in a
geometric interpretation) vertices per aggregate and also to higher numbers. Figure 3.11
gives a geometric visualization of the different shape forms for a better understanding.
This parameter change gives a more fine-grained control of the coarsening rate, which
is especially important for linear systems with bigger matrix stencils, e.g., in problems
from data science.

Table 3.3 shows the result of varying the number of vertices per aggregate for three
different data matrices. As evaluation criterion, the matrix complexity, as an indicator for
memory consumption, the setup time and the total number of iterations, as convergence
criterion, are used.
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Figure 3.11: Visualization of different shapes of aggregates, which are defined via the
number of vertices (red points) per aggregate. For easier visibility, we
chose a uniform distribution of the points. The number of edges (green
points) and interiors (cyan points) is adapted to the geometrically inspired
shape.

The results are quite similar in all cases, but there are slight differences. As expected,
the matrix complexity for triangles is the lowest: The rate of aggregates that contain the
maximum requested number of variables is the highest. For squares and pentagons in
the coarsening strategy, the advantage of lower matrix complexity is not clearly visible
for these examples. When using pentagons, the rate of vertex variables is theoretically
decreasing. But as the aggregate size is growing, there exist more aggregates that are
not filled up to the maximum requested size. Thus, the matrix complexity requires a
careful trade-off. The number of iterations and the setup runtime is in a similar range
in all our example cases. On average, using the idea of rectangular aggregates, i.e., four
vertices per aggregate, is the best parameter setting.
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number of vertices
per aggregate

matrix
complexity

setup
runtime iterations overall

runtime
as 3 2.70 0.44 19 0.54

4 3.26 0.34 18 0.41
5 3.14 0.66 18 0.73

soc 3 5.35 3.96 7 4.13
4 6.26 4.95 7 5.12
5 5.94 5.31 8 5.50

email 3 1.42 1.31 132 4.43
4 1.58 1.52 127 4.54
5 1.70 4.69 126 7.74

Table 3.3: Results for the data science graphs as-Caida, soc-Slashdot0811 and email-
EuAll (main component) for different shapes of aggregates, which are defined
via the number of vertices per aggregate (triangle (3), square (4) and pentagon
(5)). The number of edges between two vertices is set to 2 for each shape.

3.5.3 Number of Aggregates per Vertex
To better handle inhomogeneties in the matrix stencils, the number of included aggre-
gates per vertex is variable in addition. By this, it is possible to strengthen variables
that are starting points of many couplings, e.g., as in network graphs, and to enhance
the influence of these variables on coarser levels. Figure 3.12 visualizes one vertex
variable to be included in more aggregates and having more couplings to edges and
interiors.

Table 3.4 shows the results for varying the number of aggregates that can include
the same point as vertex. In contrast to the variation of the number of vertices per
aggregate, as in Section 3.5.2, for the usage of vertex in aggregates a clear tendency is
observed. As all these data matrices have some points with huge matrix stencils, an
increase of the number of aggregates per vertex reduces the matrix complexity and setup
runtime. As we can conclude from the stable number of iterations per chosen example,
the quality of the constructed matrix hierarchy is similar in all cases. The automatic
detection of the "ideal" number of aggregates per vertex for the current example results
in a good to medium value of the matrix complexity, but comes at some setup runtime
overhead, as the number of couplings for the full matrix has to be reconsidered.
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number of
aggregates
per vertex

matrix
complexity

setup
runtime iterations overall

runtime

as automatic 2.77 0.34 18 0.41
4 3.26 0.32 18 0.40
10 2.66 0.34 18 0.40
20 2.54 0.34 18 0.40
50 2.30 0.36 18 0.43
100 2.12 0.40 18 0.45

soc automatic 3.67 4.35 8 4.49
4 6.26 4.97 7 5.15
10 4.41 3.64 8 3.79
20 3.54 3.06 7 3.18
50 2.90 2.82 8 3.00
100 2.66 2.92 8 3.05

email automatic 1.45 1.60 128 4.49
4 1.58 1.52 127 4.44
10 1.44 1.71 125 4.57
20 1.37 1.75 127 4.61
50 1.33 1.80 123 4.65
100 1.30 2.09 121 4.86

Table 3.4: Results for the data science graphs as-Caida, soc-Slashdot0811 and email-
EuAll (main component) for a variation of the number of aggregates that
can include the same vertex. The standard number is 4. "automatic" means
that the average number of couplings per matrix row is considered. The
aggregates have our standard size of 16 with four vertices, eight edges and
four interiors.
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Figure 3.12: One vertex variable (red colored point) is origin to multiple aggregates
(yellow, purple, brown, green, gray and pink) with shared edge variables
(green colored points) and unique interior variables (cyan colored points).

3.5.4 Variation of Interpolation Weights
Supplementary to an adjustment of the coarsening, adaptations for the interpolation
operator are possible. When we look at the interpolation formulas in Equation (3.6), in
the formulas for edges and interiors we have two summands. One summand describes the
coupling interaction between edges and interiors and the other one between edge/interior
and vertex. Sometimes, it turns out to be useful to neglect these mixed interactions, or
to give them less weights.

Another thinkable modification is the handling of the mixed couplings in the setup of
ÂEE and ÂII . The idea to (optionally) consider variations for these interpolation factors
is inspired by the AMS idea in [163]: There are some couplings between edges and
interiors that have been neglected during the setup process due to physical backgrounds
knowledge. Adding some control factors in the interpolation formulas in Equation (3.6)
gives the following interpolation operator

PAM-AMG = GN ·


–Â–1

II
(
AIV – γI

(
AIEA–1

EEAEV
))

–Â–1
EE

(
AEV – γE

(
AEIA–1

II AIV
))

IdVV

 , (3.20)

with the individual parameters γI and γE to define the coefficients weights for the
edge or interior interpolation, and ÂII = (AII + δEIAEI + δIEAIE ) – AIEA–1

EEAEI
and ÂEE = (AEE + δEIAEI + δIEAIE ) – AEIA–1

II AIE with the individual parameters
δEI and δIE to define the effect of the couplings between interiors and edges in both
coupling directions.
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We evaluated the effect of these four parameters by a machine learning analysis [61] to
improve the performance for the email-EuAll example. By this, the number of iterations
with one setting for all four parameters can be reduced to 129 for aggregates with three
variables per edge (previously 132, see Table 3.2) and to 126 for aggregates with two
variables per edge (previously 127, see Table 3.2).

3.6 Parallelization of AM-AMG
As the AM-AMG includes two parts, the coarsening process and the calculation of the
interpolation operator, we consider both parts separately for parallelization. We focus
on moderate shared-memory parallelization in the scope of this work because we are
mainly interested in the numerical applicability of a parallelized AM-AMG. We use a
row-wise separation of the linear system (2.1) in partitions. Hence, a parallelization
with distributed memory is possible in the same manner.

As the coarsening process is based on an extension of aggregative AMG, the paral-
lelization essentially boils down to parallelization of aggregative AMG [149] - with
some adaptions due to using function types in combination with aggregates. To ensure
(eligible) determinism during the coarsening process, we consider two parallelization
strategies: one simple but slightly approximate and one that is mathematically accurate,
at the expense of some sequential part.

The easiest way of parallelization is to split the linear system into different row-wise
partitions and to separately and independently build aggregates within these partitions.
To ensure determinism on the partitions, a "first come, first serve" mechanism is im-
plemented for the variables that belong to more than one aggregate and, thus, could
be involved in different partitions. A wide range of benchmarks show that this gives
a remarkably robust parallelized aggregation structure and, therefore, serves as our
default.

The mathematically accurate method starts with the same partitions as the simple
parallelization. But the variables included in these partitions are ordered internally, such
that variables with couplings to other partitions are at the beginning. Those variables
that couple to other partitions are then aggregated in a serial manner. Afterwards, the
remaining variables are aggregated in parallel. By this, the coarsening result is closer
to the sequential process presented in Section 3.2. However, this comes at the expense
of some sequential part. This is typically growing with an increasing hierarchy level, as
in most cases the coarser level matrices are denser.

To decrease the sequential part and to increase the parallel performance of the setup, the
size of the aggregates can be increased. By this increment, the relation between multiply
used variables and only single-used variables in the aggregation process is reduced.
Thus, we limit the serial part of the coarsening algorithm on partition borders. But we
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have to remind that the aggregates are constructed by a diameter minimization idea
that includes the Floyd-Warshall algorithm (see Section 3.2 or Algorithm 3.1), whose
runtime is cubically related to the aggregate size. Therefore, an unlimited increase of
the aggregate size for parallelization reasons is not possible. Moreover, an increase of
the aggregate size would also have a negative impact on the robustness of the coarsening
approach.

After the coarsening process is parallelized, the interpolation is natively parallelized
due to the localized formulation. Each aggregate has a strictly local calculation of the
interpolation, so that a distribution of the aggregates already realizes the parallelization.
As in the serial case, the edges are interpolated via their primary aggregate.

We evaluate the setup parallelization for a three-dimensional elasticity problem in
Figure 3.13. Each bar shows the complete setup time in sum. By using dark and light
colors, we split the setup into both relevant parts - coarsening and interpolation.

As in Section 3.3, for comparison we use partition-local Ruge-Stüben coarsening and the
aggregation approach. The aggregate size for the aggregation coarsening is specifically
chosen such that the constructed matrix hierarchy has a coarse-level size in the same
order as for AM-AMG. The convergence rate for aggregation and AM-AMG is similar
(roughly 30 iterations until convergence is reached). As expected and previously seen,
Ruge-Stüben is quite better in this case (roughly 8 iterations until convergence is
reached).

The performance behavior for AM-AMG is similar to Ruge-Stüben and aggregation
coarsening for two and four OpenMP threads. The parallel performance gain for 8
OpenMP threads is worse than for the both other strategies, as the search effort at
partition borders with the function types (vertex, edge and interior) has a strong
influence in this case.

We split the normalized setup time in Figure 3.13 to illustrate the difference of the
parallelization potential of the two setup parts of AM-AMG. This discrepancy, as the
interpolation parallelization is quite more efficient, can be turned to an advantage.
As the interpolation is easily parallelly recalculable, it is possible to reuse only the
coarsening. If AMG technology is used as a linear solver in a full simulation run, e.g., a
time-evaluation with a fixed discretization mesh, the linear systems only has in many
cases a slight coefficient changes compared to the previous ones and the overall structure
remains. The separation of the coarsening and the calculation of the interpolation
operators between the different hierarchy levels can be done separately with AM-AMG.
Thus, the expensively computed matrix hierarchy can efficiently be reused in consecutive
similar linear solver calls, as the accuracy of the solution process is ensured by a frequent
re-calculation of the interpolation operator.

This is especially interesting for transferring AMG technology to graphic processing
units (GPUs): The main disadvantage of AMG algorithms for GPU usage is the se-
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Figure 3.13: Normalized setup time for different amounts of parallelism for the three-
dimensional elasticity problem on a discretized cube with 100 discretization
nodes per side.

quential and memory intense coarsening process. To have a high reusability of the
coarsening reduces the impact of this algorithmic part for the overall runtime. By a
highly parallelized interpolation, this is enhanced further.
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CHAPTER 4

EP-AMG - New Generic AMG
Solution Approach for Eigenproblems

In this chapter, we are going to discuss the iterative solution of generalized eigenproblems
with AMG (EP-AMG). Contrarily to the problems from the previous chapter, these are
non-linear problems. In the most general case, these have the form

Avk = λkMvk for k = 1, . . . , n (4.1)

with the matrices A,M ∈ Cn×n and the eigenvectors vk ∈ Cn corresponding to the
eigenvalues λk ∈ C. In principle, a direct solution of this problem is not possible due
to the non-linearity of the problem. Depending on the requirement in the application
field where the generalized eigenproblem occurs, all eigensolutions, or only a few
smallest/largest eigenvalues in terms of the absolute value, or only a few eigenvectors
corresponding to the smallest/largest eigenvalues in terms of the absolute value are to
be computed.

As there is a wide range of what exactly to solve for, there already exist various iterative
eigensolvers in the literature. The simplest eigensolution solvers are the power iteration
and the inverse iteration to calculate only one single eigensolution, corresponding to the
largest or smallest eigenvalue in terms of the absolute value [6, 126]. In these iterative
methods the matrix A or its inverse A–1, if it exists, is successively applied to a random
start vector. An extension to these methods is the usage of a preconditioner to speed
up the convergence [109, 76, 77, 78, 79].

Another very common eigensolver algorithm is the so-called Krylov-Schur method, as
this has been shown to be very robust regarding various matrix properties [143, 144,
69, 121]. It combines a Krylov method for approximating the eigensolutions with a
Schur decomposition to orthogonalize the eigensolutions. In Section 4.1.3, we give a
more detailed overview on generalized iterative eigenproblem solvers.
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In this work, we will integrate AMG without any pre-requisites as a preconditioner
to eigensolver strategies. Thus, we can exploit the AMG efficiency for a vast range of
applications. As a general case, we consider a generalized eigenproblem

Avk = λkMvk for k = 1, . . . , n (4.2)

with the matrices A =
(
aij
)

i,j=1,...,n ∈ Rn×n and M =
(
mij

)
i,j=1,...,n ∈ Rn×n to

be sparse, symmetric, positive definite and M-matrices and the eigenvectors vk =(
vk,i

)
i=1,...,n ∈ Rn and the corresponding eigenvalues λk ∈ R for k = 1, . . . ,n. When

M equals the identity 1 ∈ Rn×n , the generalized eigenproblem reduces to a so-called
plain eigenproblem.

In some applications, for instance with Graph Laplacians, the matrix A is only positive
semi-definite. This is then difficult for using AMG, as the theory is only valid for
positive definite matrices. But by slightly increasing the diagonal of A, we overcome
this issue without any effects for the calculated eigenvectors and the diagonal increase
is easily revertible for the eigenvalues by subtraction.

In most established eigensolver algorithms the calculation of the smallest eigenvalue(s)
is based on the inverse of A, see Section 4.1 for detailed information. A calculation
of the inverse matrix, however, is not exactly possible with reasonable efforts in most
cases. Hence, an iterative solution is the best approximation. Where the matrices A
and M of the generalized eigenproblem fulfill the application criteria of AMG, it is a
good option for solving the sparse linear systems that occur during the linearization of
the eigensolution calculation. This is the case in Equation (4.2). However, AMG can
not be applied for the matrices A and M independently, but the eigenproblem has to
be represented by the same matrix hierarchy. As we want to exploit benefits of the
AMG technology to the full eigenproblem and not only invert the matrix A.

Thus, we are starting with the calculation of an initial guess of approximate eigensolu-
tions by exploiting the AMG hierarchy in Section 4.2. With this initial guess, we apply
an inverse iteration that uses AMG inside in Section 4.3. The further approximated
eigensolutions are finally iterated with a Krylov-Schur method that extensively exploits
setup re-usage of AMG by only applying the AMG solution phase in Section 4.4. By
integration and consecutively executing of these three algorithms using AMG, a robust
and effective eigensolver method is achieved.

These three algorithms and their fine tuning options are evaluated on the Poisson
eigenproblem as reference model problem that is introduced in Section 4.1.4. Finally,
we apply our algorithms to various real-world examples in Section 4.5.

We assume a symmetric (generalized) eigenproblem as in Equation (4.2). This ensures
that we have real-valued eigensolutions and no complex-valued ones. Theoretically, the
presented algorithms are also suitable for complex-valued eigensolution. We only restrict
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ourselves to real-valued for implementational reasons and we only will be concerned
with such in the example Section 4.5.

4.1 Brief Overview of Eigenproblems

4.1.1 Industrial Application Examples of Eigensolutions
Eigenvalues and -vectors are useful and necessary in many application fields. As we
are considering the eigensolution calculation with AMG technology, we elaborate two
relevant usage modes in this thesis in more details:

• internal application of eigensolutions:
For very ill-conditioned matrices, it is quite difficult to construct a matrix hi-
erarchy during the setup phase. For such cases, there exist algorithms, e.g.,
the so-called smoothed aggregation [152, 153, 151], that can improve the matrix
hierarchy construction. The quality of these approaches can be improved by using
eigenvectors [97].

Due to increasing computation power the scalability of smoother should be im-
proved. This can be reached by an eigenvalue estimation [1, 8, 31].

• external application of eigensolutions:
There are many methods that rely on the knowledge of the smallest eigensolution(s).
Very well-known application fields are machine learning [65, 16, 57, 47, 2, 38] but
also modal analysis in structural engineering and electrodynamics [66].

We are starting with the improvement of the AMG solver for ill-conditioned problems by
using approximate eigensolutions. In such cases it is promising to use so-called smooth
vectors to enrich the setup process with additional information. The best-suited smooth
vectors correspond to the eigenvectors with the smallest eigenvalues. During matrix
hierarchy construction via aggregation methods, the hierarchy itself is improved by using
these smooth vectors. These are used to transfer the near-kernel vectors on the coarser
matrix hierarchy levels and, thus, to be considered in the coarsest level solver [153, 145].
Roughly speaking, the most challenging parts of the problem are shifted to the most
robust solution part, the direct coarse-level solver. To use smoothed aggregation with
eigenvectors, the eigensolutions are (roughly) approximated by an easily applicable
matrix hierarchy construction and the eigenproblem solution algorithms that we present
in the following three Sections 4.2 to 4.4. More information about smooth aggregation
and results from real-industrial problems are given in Section 4.5.1.

Eigensolutions are also very common to be used in various machine learning algorithms
for Big Data Analysis [65, 16, 57, 47, 2, 38]. Depending on the exact problem formulation,
these algorithms need to know just a few or many of the smallest or largest eigenvalues
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and/or eigenvectors. The aim of machine learning, sometimes also called artifical
intelligence or statistical learning, can, e.g., be to find clusters inside the data or to
define a lower dimensional representation of the data for easier handling. In both cases,
a significant amount of data has to be processed. This is quite often done by analyzing
the eigensolutions or doing a projection on the eigenspaces.

The approaches we develop are excellently suited for such algorithms that need only
a few of the smallest eigensolutions, where the underlying linear systems fulfill the
requirements to use AMG-like methods. This is precisely the case for spectral clustering
of Graph Laplacians. Spectral clustering is a method that summarizes the data based on
the (smallest) eigensolutions of the matrix representation. It aims to identify patterns
or clusters of data points that share similar characteristics or properties. An overview of
spectral clustering and various Graph Laplacian definitions is given in [156, 42]. These
ideas rely on the basic idea of graph partitioning based on eigenvectors [45] that reduces
the dimensionality of the graph by projection onto the smallest eigenspaces. Thus, we
apply our eigensolver to various Graph Laplacians in Section 4.5.2. Another evaluation
option for data is kernel PCA [65, 129, 130]. This method is a variation of PCA that
needs the smallest eigenvalues for further analysis.

In the following, we shortly mention some more use cases that request the knowledge
of eigensolutions. An exhaustive evaluation of these fields is beyond the scope of this
work. But they are really promising, as we will see.

Another outlook on perspective applications of AMG-based eigensolvers concerns internal
parallelization improvements. Originally, AMG is a serial linear solver approach, but
due to increasing computational power over the last decade(s), more and more parallel
computing gains attention. Due to this highly parallel smoothers are necessary. The
performance and quality of these can be improved when a good approximation of the
eigenvalues is known [1, 8, 31]. Perspectively, with growing difficulty of the linear solver
problems and further increase of the parallelization requirements, an implementation
that can approximately calculate the eigensolutions to improve the final solution phase
will be required.

Last but not least, a final outlook will be given for Dynamic Mode Decomposition
(DMD), which is a dimension reduction method to be applicable on time series of
data [132, 131]. DMD enables the detection and extraction of significant patterns that
have a serious impact for the measured time series. There exist various possibilities to
calculate a DMD - some of them include eigenvectors. A broad overview of DMD and
its application is given in [84]. In [75], this method is used in the context of reservoir
simulation. There, eigenproblems need to be solved. Thus, a combination of EP-AMG
with System-AMG for reservoir simulation [59, 60] could be a promising field of further
research.

60



4.1 Brief Overview of Eigenproblems

4.1.2 Theoretical Background for Iterative Eigensolvers

Usually, the Rayleigh-Quotient plays an important role for the theoretical and practical
treatments of generalized eigenproblems as in Equation (4.2) [126, 94, 72]. The Rayleigh-
Quotient µ (w) for an arbitrary vector w ∈ Rn is defined as

µ (w) := 〈Aw,w〉
〈Mw,w〉 . (4.3)

This precisely maps each eigenvector onto the corresponding eigenvalue.

As the matrices are symmetric in our generalized eigenproblems in Equation (4.2),
the eigenvalues are real-valued and, thus, can be ordered in a consecutive way, i.e.,
λ1 ≤ λ2 ≤ . . . ≤ λn . For such an ordering, the eigengap ni,j between two eigenvalues i
and j with 1 ≤ i < j ≤ n is defined as

ni,j :=
λj
λi

. (4.4)

In [13, 12, 46] the eigengap is used to expand the number of wanted eigensolutions
during the iterative solution process to speed up the convergence. In this context, we
explain the effect and the relevance of the eigengap in Section 4.3.2.

In the Sections 4.2 to 4.4, we present three iterative eigensolution algorithms that
involve AMG. In all of these algorithms, we use the norm ‖resk‖2 of the residual vector

resk = Aṽk – λ̃kMṽk for k = 1, . . . , n (4.5)

as convergence criterion for approximate eigensolutions
(
λ̃k , ṽk

)
. The fact that this is a

valid criterion goes back to the Bauer-Fike theorem [14].

As the matrix M in Equation (4.2) is symmetric and positive definite, there exists
a Cholesky factorization L with M = LLT and L ∈ Rn×n . Using this Cholesky
factorization, the generalized eigenproblem in (4.2) can be reformulated as

L–1AL–Tuk = λkuk for k = 1, . . . , n (4.6)

with uk = LT vk . The matrix L–1AL–T is symmetric and real-valued and, thus,
especially hermitian. By this, all preliminaries for Corollary 3.3 in [126] are fulfilled.
This corollary states:

4.1 Corollary (Corollary 3.3, [126])
Let λ̃, ũ be an approximate eigenpair of a Hermitian matrix A, with ‖ũ‖2 = 1 and let r
be the corresponding residual vector. Then, there exists an eigenvalue λ of A such that

|λ – λ̃| ≤ ‖r‖2. (4.7)
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As for the transformation between the generalized eigenproblem to a plain eigenproblem,
the eigenvalue λk remains the same with the normalization of uk . Thus, the norm of
the residual vector actually even is a good error bound for the approximated eigenvalue
λ̃k .

Furthermore, it is possible to give a bound for the angle between the exact and the
approximate eigenvector for plain eigenproblems as Theorem 3.9 in [126] proves. As we
look at generalized eigenproblems, we have to take the eigenvector shift uk = LT vk into
account. The main statement that the angle is bounded by the norm of the residual
vector and some other fixed values remains, tough. For more details see the explanations
and proofs in [142], especially Theorem 3.2 therein.

4.1.3 Overview on Iterative Eigensolvers
The simplest way to calculate the largest eigensolution, i.e., the eigenvector to the
largest eigenvalue in terms of the absolute value, for a plain eigenproblem is the power
iteration [6, 102]. The power iteration starts with a normalized random vector w̃0 ∈ Rn

with ‖w̃0‖ = 1. The next iteration step is w̃j+1 = Aw̃j
‖Aw̃j‖ . The Rayleigh-Quotient µ

(
w̃j
)

then converges to the largest eigenvalue λn in terms of the absolute value and the vector
w̃k to the corresponding eigenvector vn .

For a plain eigenproblem and A being non-singular, we have the relation

Avk = λkvk ⇔ 1
λk

vk = A–1vk for k = 1, . . . , n. (4.8)

As a result, the smallest eigenvalue in terms of the absolute value for the matrix A is
the largest eigenvalue in terms of the absolute value of the inverse matrix A–1. Hence,
the inverse iteration calculates the smallest eigensolution (λ1, v1) as a power iteration
using A–1 [6, 161].

In both cases, power iteration and inverse iteration, basically only one eigensolution is
calculated. This can be extended similarly for both algorithms. One option is to shift
the matrices in the iteration process, i.e. by using the matrices A – γ1 or (A – γ1)–1.
With this shift, the largest/smallest eigensolution near to γ is calculated. Other options
are summarized as deflation techniques [126] where the rank of the original matrix A is
reduced by the unwanted eigensolutions.

When calculating more eigensolutions, an orthogonalization of the approximate eigen-
vectors will become necessary, as the eigenspaces are orthogonal to each other. The
simplest algorithm to achieve this is Gram-Schmidt orthogonalization [17, 73]. But
Gram-Schmidt is numerically unstable, as it is quite sensitive to round-off errors. Hence,
it leads to a loss of orthogonality [73]. As the loss of orthogonality often occurs only for
higher eigenspaces, only calculation a very low number of eigensolutions is possible. The
modified Gram-Schmidt orthogonalization overcomes partly this instability problem
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[73].

As in most cases more than one eigensolution is necessary, more efficient algorithms
than power iteration or inverse iteration are needed. One well-known algorithm is the
Arnoldi iteration [4]. Essentially, the Arnoldi iteration is based on a modified Gram-
Schmidt algorithm and computes normalized orthogonal base vectors q1, . . . , qm ∈ Rn

of the Krylov space Km (A,w) := span
(
w,Aw, . . . ,Am–1w

)
for an initial vector w ∈ Rn .

During this computation, a so-called Hessenberg matrix Hm ∈ Rm×m is constructed.
In the Krylov-Schur method [69, 121, 143, 144, 82], this Hessenberg matrix is used to
solve a smaller eigenproblem based on Hm . That eigenproblem is much smaller than
the original one and efficiently treatable by a direct solver. Based on this results of
the so-called Ritz problem, the approximate eigensolutions are updated. By using the
Krylov space Km

(
A–1,w

)
for the Krylov-Schur algorithm, the smallest eigensolutions

can be calculated instead of the largest one.

As a direct inversion of matrices in most cases is computational inefficient, an iterative
linear solver can be used instead. For sparse matrices, AMG is a suitable choice,
when the necessary requirements, cf. Section 2.4, are fulfilled. For the generalized
eigenproblems as formulated in Equation (4.2), the requirements for AMG are satisfied.
We present the combination of using AMG with inverse iteration in Section 4.3 and
with Krylov-Schur in Section 4.4.

In [123, 27, 20], AMG is directly used to solve for the smallest eigensolutions of a
sparse linear system, but with a different, much more complex, setup phase of AMG
than we use in this thesis. More precisely, the different setup phase approaches for
AMG are necessary as AMG is used for different algorithmic parts of the eigensolution
approximation.

To be correct, an eigenproblem is a nonlinear problem and, hence, a Full Approxima-
tion Scheme (FAS) [28, 26, 67] for AMG can be used to calculate the eigensolution.
FAS respects the non-linearity of the problem in the setup phase - in contrast to the
description in Section 2.4. But instead of applying the computationally complex FAS,
our approach allows to shield the AMG application from the non-linearity. This allows
for a simpler, more efficient application of AMG.

We take over the idea of using a Ritz projection for orthogonalization. But adapt it by
controlling in which iterations to apply it in. In particular this is not in each iteration as
in the references, cf. Section 4.3.1. During the setup phase of AMG, we use a different
approach for constructing the Galerkin operators.

Another option for using AMG is the Exact Interpolation Scheme (EIS) [28, 83, 154].
In this case, the interpolation is adapted in every iteration step, such that the current
eigenvector approximation is exactly interpolated. This has the advantage that no cor-
rection scheme is necessary in the solution phase of AMG. But it comes with additional
computational costs, as in every iteration step the interpolation is recalculated. Thus,
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no distinction between setup and solution phase is possible.

In this thesis, we use the separation in setup and solution phase to save computational
costs by avoiding to recalculate AMG’s setup in each step of the presented eigensolution
algorithms.

4.1.4 Reference Model Problem: Poisson Eigenproblem
In the following sections, we explain and evaluate inverse iteration, see Section 4.3, and
Krylov-Schur method, see Section 4.4, along with some algorithmic fine tuning options.
We evaluate the effect of both algorithms and the fine tuning options on the solution
process of (generalized) eigenproblems with the Poisson eigenproblem. The Poisson
eigenproblem is really grateful for this purpose, as the size of the matrix can easily be
scaled and the solutions of the eigenproblem are known analytically, see Table 4.1.

We chose the vibration analysis of a rectangular membrane as a prototypical example.
The solution of this physical problem is a basic benchmark problem for eigenproblems
and commonly used. The discretization of the rectangle is realized with a uniformly
structured rectangular grid. A full mathematical and physical description of this
vibration analysis can be found in [43]. In the following, we briefly summarize the
necessary information for the following benchmark examples.

The differential equation for the vibration analysis on a rectangular membrane [0, a]×
[0, b] is ∆u = utt . To solve this differential equation, a splitting approach with
u (x , y, t) = v((x , y))g (t) is chosen. Further evaluation of the differential equations
leads to the eigenproblem ∆v = –λv. To ensure a unique solution Dirichlet boundary
conditions are defined. Then the eigenvalues are given by λn,m = π2

(
n2

a2 + m2

b2

)
with the corresponding discrete eigenfunctions vn,m (x , y) = cos

(nπx
a
)
cos

(mπy
b
)
for

n,m = 1, 2, . . . .

For reasons of simplicity, we take the unit square for our benchmarks, i.e., [0, 1]× [0, 1].
Due to the symmetry of the problem, this eigenproblem then inherits the difficulty
of multi-dimensional eigenspaces, e.g., λ1,2 = λ2,1. In the following benchmarks, we
want to calculate the first 9 eigensolutions, as this request combines many difficulties.
In Table 4.1, we present the first 13 exact eigenvalues to see the difficulties occurring
when only calculating the first 9 eigensolutions. We directly see that the eigenvalues 9
and 10 are identical, thus, we split this eigenspace with our request for 9 eigensolutions.
Furthermore, the following eigengaps are really small and, thus, slow convergence could
be expected.

We will see that our eigensolver approach can cope with these difficulties.
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number of eigenvalue (n,m) eigenvalue eigengap
1 (1,1) 19.7392...
2 (1,2) 49.3480... 2.5
3 (2,1) 49.3480... 1
4 (2,2) 78.9568... 1.6
5 (1,3) 98.6960... 1.25
6 (3,1) 98.6960... 1
7 (2,3) 128.3049... 1.3
8 (3,2) 128.3049... 1
9 (4,1) 167.7833... 1.31
10 (1,4) 167.7833... 1
11 (3,3) 177.6529... 1.06
12 (4,2) 197.3921... 1.11
13 (2,4) 197.3921... 1

Table 4.1: The first 13 smallest eigenvalues for the vibration analysis on the unit square
with belonging eigengap.

4.2 Initial Guess for the Eigensolutions Using the AMG
Hierarchy

The inverse iteration, see Section 4.3, and Krylov-Schur method, see Section 4.4, need
to have some approximate eigensolutions to start with. The more accurate these approx-
imate eigensolutions are, the better the algorithms will converge. We want to exploit
the matrix hierarchy to calculate such an initial guess of eigensolutions. That is, we
only use the setup phase of AMG, cf. Section 2.3. In this setup phase, we neglect the
fact that originally we have a non-linear problem to solve. The setup phase interprets
A as a linear system to solve. We describe the extension of the setup phase to include
A and M , as we mainly look at generalized eigenproblems in Section 4.2.1.

Our initial guess algorithm starts on the coarsest level of the matrix hierarchy, similar
to [123, 27]. Its full pseudo code is depicted in Algorithm 4.1. We use the small size of
the coarsest matrix hierarchy level to apply a direct solver for the coarsest (generalized)
eigenproblem. The way how we formulate the generalized eigenproblem on the coarsest
level, based on A and M , will be discussed in Section 4.2.1. For the moment, we take it
as given.

For the approximation on the next finer level we start with the interpolation of the
eigenvectors (Line 4 in Algorithm 4.1), followed by Gram-Schmidt orthogonalization and
normalization (Lines 5 and 6 in Algorithm 4.1). With this result, the Rayleigh-Quotient
as an eigenvalue approximation is calculated (Line 7 in Algorithm 4.1) and, based on
this, the residuum (Line 8 in Algorithm 4.1). As it is computationally expensive, but
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especially regarding orthogonalization, ends in a better approximation, an optional Ritz
projection is done adaptively. We will further discuss the optional Ritz projection in
Section 4.3.1.

Afterwards, the approximated eigensolution that has been gained on the current level
is further relaxed to improve its quality (Lines 10 to 20 in Algorithm 4.1). This process
is iteratively repeated until the finest level is reached.

On every level i we check if the user-defined stopping/convergence criterion C
(
λ̃i

j , ṽi
j
)

is reached. This criterion depends on the current approximate eigensolutions
(
λ̃i

j , ṽi
j
)

for j = 1, . . . , nev and could be a maximum number of iterations or a requested residual
reduction.

The process of successively using the matrix hierarchy is visualized in Figure 4.1, starting
on the coarsest matrix hierarchy level. It has the form of a "growing" V-cycle or the
second half of an F-cycle [160]. The growing form is transferring the eigensolutions
to the next finer matrix hierarchy level, as in Line 4 in Algorithm 4.1. The V-form
is resulting from using parts of the matrix hierarchy to solve the defect correction in
Line 13 in Algorithm 4.1.

The strength of this procedure is that the initial guess of the eigensolutions
(
λ̃i , ṽi

)
for the inverse iteration algorithm, cf. Algorithm 4.2, or the Krylov-Schur algorithm,
cf. Algorithm 4.4, is essentially based on a direct solution that is processed with the
robust AMG interpolation. Thus, we efficiently provide a rather accurate initial guess,
depending on the quality of the interpolation and restriction operators.

We need to discuss the handling of smallest eigenvalues, when they have no representa-
tion on the coarsest level. A possible solution approach is to use a rough iterative first
approximation on each matrix hierarchy level of the eigenvalues and to compare this
with the approximation gained on the coarser level. But this comes with computational
overhead costs. However, since we use an AMG hierarchy, we can simply avoid this
overhead: AMG constructs its hierarchy such that low error frequencies are represented
properly on the coarse levels [23, 137]. These low error frequencies correspond to small
eigenvalues of A. Thus, as long as the coarsest level problem size is significantly larger
than the number of eigensolutions to be computed, we can safely avoid the overhead.

The initial guess is requested to calculate the first nev approximate eigensolutions. In
Line 9 in Algorithm 4.1, we increase this value to ngap. It is known that the conver-
gence can be improved by calculation more eigensolutions than requested [13, 12, 46].
Especially, the orthogonalization process benefits from this fact. The specific criteria
how the eigengap ngap in relation to nev and a user parameter is defined is explained in
Section 4.3.2.

In Line 11 in Algorithm 4.1, we set the variable nstart that we use to further control
the relaxation of our approximate eigensolution on the current matrix hierarchy level.
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Algorithm 4.1: Pseudo Code Initial Guess using AMG hierarchy
Input: A,M : fine-level matrices

(if M not explicitly is given, it’s the identity)
nev: number of requested eigenvalues
C
(
λ̃i

j , ṽi
j
)
: stopping/convergence criterion
depending on current approximations

(
λ̃i

j , ṽi
j
)
1,...,nev

Data: levmax: number of created levels
ngap: maximum number of calculated eigenvalues (nev ≤ ngap)
I i
i+1: Interpolation operator from level i + 1 to i
Ai ,Mi : Galerkin product of matrices A,M on level i = 2, . . . , levmax
λ̃i

j : eigenvalue approximation on level i for eigensolution j
ṽi
j : eigenvector approximation on level i for eigensolution j
resij : residuum vector on level i for eigensolution j

1 for i = levmax, ..., 1 do
2 if i 6= levmax then
3 for j = 1, . . . , ngap do
4 ṽi

j = I i
i+1ṽ

i+1
j

5 Gram-Schmidt orthogonalization of ṽi
j

6 normalization of ṽi
j

7 Rayleigh-Quotient λ̃i
j = 〈Ai ṽi

j ,ṽi
j 〉

〈Mi ṽi
j ,ṽi

j 〉
8 calculate residuum resij = Ai ṽi

j – λ̃i
jMi ṽi

j

9 set ngap (eigengap evaluation)
10 while not C

(
λ̃i

j , ṽi
j
)
do

11 set nstart (convergence already reached and/or too small eigengap)
12 for j = nstart, . . . , ngap do
13 solve Aix = resij
14 ṽi

j = ṽi
j + x

15 Gram-Schmidt orthogonalization of ṽi
j

16 normalization of ṽi
j

17 Rayleigh-Quotient λ̃i
j = 〈Ai ṽi

j ,ṽi
j 〉

〈Mi ṽi
j ,ṽi

j 〉
18 calculate residuum resij = Ai ṽi

j – λ̃i
jMi ṽi

j

19 if do_Ritz then
20 Ritz-Projection

21 else
22 direct solver for Alevmax ṽ

levmax
j = λ̃levmax

j Mlevmax ṽ
levmax
j for

j = 1, . . . , ngap
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Akmax ṽ
kmax
i = λ̃i ṽkmax

i

· · ·

ṽ2i = I 23 ṽ3i

· · ·

A2x2i = resi
· · ·

ṽ2i = ṽ2i + x2i

ṽ1i = I 12 ṽ2i

· · ·

A1x1i = resi

· · ·

ṽ1i = ṽ1i + x1i

Figure 4.1: Sketch of initial guess algorithm

When eigensolutions already reached the convergence criteria, there is no necessity to
further relax them. By neglecting them in the following relaxation process, we can
save computational resources. A special focus has to be given to such eigensolutions
with a very small eigengap or multiple eigenspaces. Then all of these cases have to be
recognized in the following relaxation, as this is completed with the orthogonalization
process. We observe that the orthogonalization process is error-prone when the eigenso-
lutions are quite close or span a multidimensional eigenspace.

Within our hierarchical approach, the Rayleigh-Quotient for the eigenvalue approxima-
tion is a good choice, as it is invariant when interpolating the eigenvector approximation
from a coarse matrix hierarchy level to the next finer matrix hierarchy level. The
Rayleigh-Quotient for an interpolated eigenvector approximation ṽi

j = I i
i+1ṽ

i+1
j on

matrix hierarchy level i for the j-th eigensolution approximation reads as

λ̃i
j =

〈Ai ṽi
j , ṽi

j 〉
〈Mi ṽi

j , ṽi
j 〉

=
〈AiI i

i+1ṽ
i+1
j , I i

i+1ṽ
i+1
j 〉

〈MiI i
i+1ṽ

i+1
j , I i

i+1ṽ
i+1
j 〉

=
〈I i

i+1,tAiI i
i+1ṽ

i+1
j , ṽi+1

j 〉
〈I i

i+1,tMiI i
i+1ṽ

i+1
j , ṽi+1

j 〉

=
〈I i+1

i AiI i
i+1ṽ

i+1
j , ṽi+1

j 〉
〈I i+1

i MiI i
i+1ṽ

i+1
j , ṽi+1

j 〉

=
〈Ai+1ṽi+1

j , ṽi+1
j 〉

〈Mi+1ṽi+1
j , ṽi+1

j 〉
= λ̃i+1

j (4.9)

and, thus, is equal to the Rayleigh-Quotient for the eigenvector approximation on
matrix hierarchy level i +1. To have the correct relation between the Rayleigh-Quotient
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approximation of the eigenvalues on different matrix hierarchy levels, we always have
to include the right-hand side matrix. This further emphasizes the previously discussed
necessity to use the right-hand side matrix in all eigenproblem cases - plain and
generalized. The relation between restriction and interpolation then is also reflected in
the denominator of the Rayleigh-Quotient.

The interrelation between the fine- and the coarse-level matrix eigenvector approximation
depends on the quality of the matrix hierarchy construction, especially depending on
the interpolation I i

i+1 and restriction I i+1
i operators. The finer eigenproblem equation

on level i with the j-th eigensolution approximation is related to the coarse-level
eigenproblem on level i + 1 in the following way:

Ai ṽi
j = λ̃i

jMi ṽi
j⇔AiI i

i+1ṽi+1
j = λ̃i

jMi ṽi
j⇒⇒⇒I i+1

i AiI i
i+1ṽi+1

j = λ̃i
jI i+1

i Mi ṽi
j (4.10)⇔Ai+1ṽi+1

j = λ̃i
jI i+1

i Mi ṽi
j⇔Ai+1ṽi+1

j = λ̃i
jI i+1

i MiI i
i+1ṽi+1

j⇔Ai+1ṽi+1
j = λ̃i+1

j Mi+1ṽi+1
j . (4.11)

The suitability of the eigenvectors from the coarser eigenproblem to the finer eigen-
problem is related to the quality of the interpolation and restriction operators. As
the left-scaling with I i+1

i in Equation (4.10) is not an equivalent transformation, the
reversibility/"equivalence" of the relation between the eigenvalue problem on different
matrix hierarchy levels depends on the quality of the interpolation and restriction
operator, especially on the reversibility of them, i.e., how well do I i+1

i I i
i+1 ∈ Rni+1×ni+1

and I i
i+1I

i+1
i ∈ Rni×ni approximate the identity. The last equivalent transformation

for Equation (4.11) uses the invariance of the Rayleigh-Quotient for matrix hierarchy
levels, as proven in Equation (4.9).

Figure 4.2 shows the effects of Equation (4.11) for a 2D Poisson problem as prototypical
eigenproblem. In Section 4.1.4, we have introduced the Poisson eigenproblem and its
analytical solutions. Additionally, the Poisson eigenproblem fulfills all requirements
for setting up an optimal AMG hierarchy. Thus, the solution of the coarser level
eigenproblem(s) is quite well related to the fine-level eigenproblem and the analytical
solution. In Figure 4.2, we see the relative error between the eigenvalue on the matrix
hierarchy levels and the analytical eigenvalue. As expected, the error is decreasing for
finer matrix hierarchy levels, as the error in setting up the hierarchical eigenproblems
decreases.

69



Chapter 4 EP-AMG - New Generic AMG Solution Approach for Eigenproblems

8 7 6 5 4 3 2 1
0

0.5

1

1.5

2

2.5

3

3.5 ·10
–2

approximation of eigenvalue
on matrix hierarchy level

re
la
tiv

e
er
ro
r

to
an

al
yt
ic
al

ei
ge
nv

al
ue

1st ev
2nd ev
9th ev

Figure 4.2: Relative error of the eigenvalue approximation to the analytical solution for
the complete matrix hierarchy for a 2D homogeneous Poisson eigenproblem
discretization with a five-point stencil on the unit square with a mesh size
of 2048x2048.
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4.2.1 Extension of AMG Hierarchy for Generalized Eigenproblems

It is more common to solve a generalized eigenproblem as in Equation (4.2). Thus, we
have to modify the setup of the AMG hierarchy, as it normally is only constructed for
a single matrix A.

In our first approximation algorithm we set up a generalized eigenproblem on each
matrix hierarchy level. The matrix hierarchy and the interpolation and restriction
operators are still calculated based on the matrix A. Additionally, with the same
operators, the Galerkin product for the right-hand side matrix M is calculated to obtain
the generalized eigenproblem on the full matrix hierarchy. This means, for a two-level
scheme, the coarse-level operator is defined as Mc := I c

f MI f
c . Because then, when v

fulfills Equation (4.2), vc = I f
c v fulfills Equation (4.2) left-scaled with I c

f , and Ac can
remain a classical Galerkin product, so that classical AMG ideas carry over.

For plain eigenproblems, different experiments have shown that using the Galerkin
operators of the identity on coarser matrix hierarchy levels improves the first approxima-
tion of the eigensolutions. This coincides with our above considerations for generalized
eigenproblems. Due to this fact, in all presented algorithms, we use the generalized
eigenproblem formulation and set the right-hand side matrix M to identity 1, where no
right-hand side matrix is explicitly given.

The matrix structure for the matrices A and M may be quite different. Thus, building
the matrix hierarchy for AMG only on the matrix A may appear questionable: Im-
portant aspects from matrix M for the generalized eigenproblem formulation may be
lost on coarser matrix hierarchy levels. But for generalized eigenproblems arising from
physical applications, e.g., vibrations, the matrix structure of A and M typically is
closely related. In addition, the coarse-level transfer of the eigenproblem is algebraically
correct in either case. The question is only whether the AMG hierarchy could be
enriched by information from matrix M . The aspects of constructing a matrix hierarchy
based on both matrices is an aspect of future research. In plain eigenproblems from
data analysis this do not matter.

The potentially different non-zero patterns of A and M need to be considered in the
implementation of the Galerkin product. Our implementation is aware of this fact and
still exploits synergies in data structures.

4.2.2 Using Eigenvalue Shift for Coarse-Level Operators

In the literature of eigenproblem solvers, it is well known that the calculation range of
eigenvalues can be adapted by shifting the matrix [6]. The previously described first
approximation works the best for near-zero eigenvalues. Additionally, this holds for the
algorithms described in Sections 4.3 and 4.4. The eigenproblem (A,M ) in Equation
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(4.2) can be reformulated as follows:

Âvk := (A – ωM ) vk = (λk – ω)Mvk =: λ̂Mvk . (4.12)

The eigenproblem
(
Â,M

)
has the same eigenvectors vk as the original eigenproblem (4.2),

but with the shifted eigenvalues λ̂ = λ–ω. The first approximation for this eigenproblem
also works the best for near-zero eigenvalues. But these near-zero eigenvalues are now
related to eigenvalues λ near ω of the original eigenproblem (A,M ). When applying
AMG to Â, the shift ω has to be chosen careful, as the matrix Â can become singular if
ω equals an eigenvalue λk of the matrix A.
It is well possible that we can fasten up our eigensolution calculation when we do
such an eigenvalue shift for higher eigenvalues. We can extend the eigenvalue shift
to all matrix hierarchy levels, instead of using it only at the finest one. Just not on
the coarsest one, as we use a direct solver there. During the loop over all calculated
not-converged eigensolutions (Lines 12 to 18 in Algorithm 4.1), we have the opportunity
to shift the matrix by the current eigenvalue approximation. But,we have to remind
that we are also using the matrix for a linear solution inside the approximation process
(Line 13 in Algorithm 4.1). Hence, by this shift, the matrix on the current matrix
hierarchy level can become near-singular. Thus, the induced linear system may be hard
to solve.
The objective of this algorithmic switch is a trade-off between convergence speed and
solution time per iteration: A matrix shift, i.e., Ai ⇒ Ai – λkMi , on each matrix
hierarchy level i for each calculated eigenvalue k increases the computational time. But
it is expected to lead to a better convergence.
When testing various formulations of the Poisson eigenproblem (discretization size,
number of requested eigensolutions), we observe a very low influence on improving
the eigenvalue convergence, but a drastic solution time increase due to the additional
matrix operations. Thus, we decided to neglect this algorithmic improvement in the
following.
By comparing the solution time of the eigenproblem with shifted and unshifted matrix
operators, we should have in mind that the implementation for the shifting and re-
shifting of the various matrices on the constructed levels may exploit better synergies.
But as we do not observe a significant improvement in the number of iterations, an
efficient implementation would not change the decision to neglect this algorithmic
variation.
To improve the overhead costs by the eigenvalue shift, it is considerable not to apply
the eigenvalue shift for every eigenvalue itself, but for a "significant" eigenvalue of higher
order. Maybe it is useful to combine such a decision criterion on which eigenvalue
should be used to shift the matrix with the evaluation of eigengaps, see Section 4.3.2.
This variation is not further followed in this work, but may be investigated additionally
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in the context of more ill-conditioned problems.

Currently, our algorithms (including inverse iteration in Section 4.3 and Krylov-Schur
method in Section 4.4) are only possible to calculate eigensolutions in increasing order
away from 0. By a general matrix shift before the AMG hierachy is constructed, i.e. the
setup-phase of AMG is done for Â := A – ωM , all of the EP-AMG algorithms presented
in this thesis can be used to calculate eigensolutions with eigenvalues λ near ω in terms
of the absolute value. The implementation of this algorithmic feature is beyond the
scope of this work.

4.3 Inverse Iteration Using AMG as Preconditioner
As shortly explained in Section 4.1, the inverse iteration is the simplest iterative
eigensolver for the smallest eigensolution. The eigenproblem in Equation 4.2 fulfills all
requirements to use AMG instead of a direct inversion of A. Additionally, we enrich
the inverse iteration with the concept of defect correction on a given matrix hierarchy.
Contrary to the basic inverse iteration, we want to calculate more than one smallest
eigensolution.

Additionally, we add some modifications to standard inverse iteration for a better
performance.

• As Gram-Schmidt orthogonalization is numerically unstable regarding orthog-
onalization. We extend the inverse iteration by a Ritz projection to provide
stabilization, cf. Line 12 in Algorithm 4.2. We further explain the Ritz-projection
in Section 4.3.1.

• For improving the overall convergence behavior, an eigengap turns out to be
useful, cf. Line 1 in Algorithm 4.2. In Section 4.3.2, we explain the criterion for
calculating this eigengap.

The effect of both modifications is evaluated using the previously introduced Poisson
eigenproblem as reference model problem, see Section 4.1.4.

In the following, we give an overview over our inverse iteration using AMG in com-
bination with an additional preconditioner and defect correction, shortly described
in Algorithm 4.2. We starts with the eigensolutions by our initial guess algorithm,
described in the previous Section 4.2.

During inverse iteration, we want to calculate nev eigensolutions, whereby the termina-
tion criteria are the required residuum for each eigenpair and the maximum number
of iterations. The number nev of required eigenpairs can be increased to nev ≤ ngap
to have better computational performance by using a better suitable eigengap, see
Section 4.3.2 for more details. The inverse iteration is executed until a user-defined
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stopping/convergence criterion C
(
λ̃j , ṽj

)
is reached. This criterion depends on the

current approximate eigensolution
(
λ̃j , ṽj

)
for j = 1, . . . , nev and could be a maximum

number of iterations or a requested residual reduction.

Instead of simply using AMG to exchange the inverse of A in the inverse iteration
algorithm, we want to fully benefit from the AMG hierarchy with smoothing different
error components on various matrix hierarchy levels. Thus, we use a defect correction
regarding the current residual of eigensolution j in the main part of the method, cf.
Lines 5 and 6 in Algorithm 4.2. This is similar to the idea of defect correction in Section
2.4. The correction linear system Ax = resj for a fixed eigenpair j is solved via GMRES
[127] and uses AMG as a preconditioner inside, cf. Lines 5 and 6 in Algorithm 4.2. We
choose GMRES as it is a robust method for solving linear systems. Of course, other
methods such as Bi-CG [52, 85], CG [71] or GCR [49, 157] can be used analogously.
With the solution x , the previous approximation of the eigenvector ṽj is corrected.

Afterwards, the updated eigenvector approximation ṽj is orthogonalized and normalized.
Then, an updated eigenvalue approximation λ̃j via Rayleigh-Quotient is calculated,
cf. Lines 7 to 9 in Algorithm 4.2. This allows for the merely linear application of
AMG, as we have seen in Section 4.2. When all eigenvectors are updated, optionally a
Ritz-Projection is done to have a full orthogonalization of the required eigenspace, cf.
Lines 11 and 12 in Algorithm 4.2. We explain the Ritz-Projection in detail and why
this is optional, respectively only done every few iteration steps, in Section 4.3.1.

The variable nstart in Line 3 of Algorithm 4.2 is introduced to save computational time,
similar as for the first approximation in Section 4.2. When an eigensolution is converged,
the iteration starts with the next unconverged solution. An already converged eigenso-
lution is only taken into account when the eigengap to the unconverged eigensolution
is too small. Because then, the orthogonalization in the multidimensional eigenspace
is stabilized. Already converged eigensolutions are only slightly improved by further
iterations, in contrast to the drastically higher solution time this accuracy gain needs.

4.3.1 Using a Parameter Controlled Ritz Projection
The Ritz projection is one of the most computationally expensive parts of Algorithm 4.2.
But it ensures good orthogonalization results for the complete eigenspace. The complete
mathematical background and explanations can, for instance, be found in [159] or
[126]. In [27, 123], Ritz projection already is used for the eigenspace orthogonalization
in an AMG algorithm. But they only use it at the finest level due to the expensive
costs of a Ritz projection. As we introduce a parameter controlled Ritz projection,
the execution of a Ritz projection on every matrix hierarchy level is possible without
enormous computational costs. Simply because the execution frequency is controllable.

To save computational costs in the overall algorithm, it is possible to not apply the Ritz
projection in every iteration step. The effect of the Ritz projection is to enable faster
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Algorithm 4.2: Pseudo Code Inverse Iteration
Input: A,M : fine-level matrices

(if M not explicitly is given, it’s the identity)
nev: number of requested eigenvalues
C
(
λ̃j , ṽj

)
: stopping/convergence criterion
depending on current approximations

(
λ̃j , ṽj

)
1,...,nev

Data: ngap: maximum number of calculated eigenvalues (nev ≤ ngap)
λ̃j : eigenvalue approximation for eigensolution j
ṽj : eigenvector approximation for eigensolution j
(
(
λ̃j , ṽj

)
initial guess using the AMG hierarchy as in Section 4.2)

resj : residuum vector for eigensolution j

1 set ngap (possible eigengap evaluation, see Section 4.3.2)
2 while not C

(
λ̃1j , ṽ1j

)
do

3 set nstart (convergence already reached and/or too small eigengap)
4 for j = nstart, . . . , ngap do
5 solving Ax = resj with GMRES and AMG as preconditioner
6 ṽj = ṽj + x
7 Gram-Schmidt orthogonalization of ṽj
8 Normalization of ṽj

9 Rayleigh-Quotient λ̃j = 〈Aṽj ,ṽj〉
〈Mṽj ,ṽj〉

10 calculate residuum resi = Aṽj – λ̃jMṽj

11 if do_Ritz then
12 Ritz projection

75



Chapter 4 EP-AMG - New Generic AMG Solution Approach for Eigenproblems

convergence and improved orthogonalization of the eigenvectors that would not be
achieved by the simpler Gram-Schmidt orthogonalization. Furthermore, Ritz projection
is not as sensitive for round-off errors with ill-conditioned problems as Gram-Schmidt
orthogonalization is. The key-objective is to find a balance between convergence
improvement and computational costs. Hence, the Ritz projection is not necessary in
every iteration, but cannot be suspended in too many iterations.

Another potential for algorithmic variation is the consideration of eigenvectors for the
Ritz projection. Three scenarios are possible:

• all eigenpairs are included in and updated by the Ritz projection,

or

• all eigenpairs are included in, but only the non-converged eigenpairs are updated
by the Ritz projection,

or

• only the non-converged eigenpairs are included in and updated by the Ritz
projection.

We tested all three possible execution scenarios for the Ritz projection. We have found
the best balance between solution time and convergence rate for the second scenario.
Thus, we use only this implementation for further testing of the influence of the Ritz
projection interval in the following and the extended practical example tests in Section
4.5.

In the following, we evaluate the effect for the convergence rate and the overall runtime
when varying the number of iterations after which the Ritz projection is performed.
As evaluation example we chose the Poisson eigenproblem as reference model problem,
see Section 4.1.4. But we should have in mind that the Poisson eigenproblem is a
well-conditioned problem. Thus, it is not heavily, but still observably, affected by
round-off effects during the orthogonalization process. For this reason, the necessity of
doing a Ritz projection will increase further with more ill-conditioned problems. For
the results of practical examples in Section 4.5, we use an appropriate frequency of Ritz
projection in relation to the condition of the eigenproblem.

Now we explain the results for the Poisson eigenproblem and why choosing a Ritz
projection interval of every five iterations is a good default value. In Figure 4.3, we
show the impact of the application interval of the Ritz projection for the total number
of iterations for the whole initial guess algorithm. We evaluate the total number of
iterations for the first 9 eigensolutions. The number of iterations per matrix hierarchy
level is restricted to 500. Convergence for an eigensolution is assumed when the
residual gains eight orders of magnitude. We observe that a smaller Ritz projection
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interval is better for the convergence rate. This effect is growing for higher eigenvalues,
as the orthogonalization space for these is getting smaller. To counteract the small
orthogonalization space for higher eigensolutions is possible by using an eigengap. This
will increase the numerical calculation space, see Section 4.3.2 for a detailed explanation.
When the Ritz projection interval is chosen too high, also the convergence rate of
smaller eigensolutions decreases, as seen for the Ritz projection interval of 50.

In Figure 4.4, we show the number of iterations in the inverse iteration for a varying
Ritz projection interval. For the very first eigensolutions, in this case for the first
three, we observe no difference in the convergence behavior. For the eigensolution later
on, we observe worse convergence. Especially for higher eigensolutions, e.g., the 9th
eigensolution is most sensitive to a growing Ritz projection interval. This is explainable,
as the 9th eigensolution should be orthogonal to all previous eigenspaces. But is only
rarely orthogonalized to all eigenspaces, as for higher eigensolution the Gram-Schmidt
orthogonalization is really error-prone.

As the Ritz projection every time includes the solution of a small eigenproblem, it is
computational expensive. Thus, we have to find the balance between a good convergence
rate, which we depict in Figures 4.3 and 4.4, and an efficient computational time. Based
on the runtime results in Table 4.2, we figured out that doing a Ritz projection every
5 iterations is a reasonable compromise between convergence rate and computational
time.

When evaluating a Ritz projection interval of more than 10 iterations, we observed that
the probability of wrong eigenpairs is significantly growing when the Ritz projection
interval is greater than the number of iterations for the initial guess. Thus, we need to
ensure that during the initial guess computation a Ritz projection is done on each level
of the matrix hierarchy, before interpolating the results to the next level. This ensures
that the eigenspaces are orthogonalized in any case.
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Algorithm 4.3: Pseudo Code Ritz Projection
Input: A,M : fine-level matrices

(if M not explicitly is given, it’s the identity)
λ̃j : eigenvalue approximation for eigensolution j
λ̃ =

(
λ̃j
)
: vector of eigenvalue approximations

ṽj : eigenvector approximation for eigensolution j
ṽ =

(
ṽj
)
: matrix of eigenvector approximations

Data: ngap: maximum number of calculated eigenvalues (n ≤ ngap)

1 for i = 1, . . . , ngap do
2 for j = 1, . . . , ngap do
3 calculate Aproj (i, j) = 〈ṽi ,Aṽj〉
4 calculate Bproj (i, j) = 〈ṽi ,Bṽj〉

5 solve Aprojvproj = λprojBprojvproj
6 λ̃ = λproj
7 v = v · vproj

Ritz projection interval runtime [sec]
1 1098,52
2 711,02
3 589,47
5 492,27
10 657,33

Table 4.2: Complete runtime for the inverse iteration, including an initial guess over the
matrix hierarchy with 10 iteration steps per level, with various Ritz projection
intervals. The eigenproblem is a 2D homogeneous Poisson eigenproblem
discretization with a five-point stencil on the unit square with a mesh size of
2048x2048.
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Figure 4.3: Total number of iterations in the entire initial guess algorithm including
the iterations on every matrix hierarchy level for different intervals of Ritz
projection with a maximum iteration number of 200 for the initial guess
on every matrix hierarchy level. The eigenproblem is a 2D homogeneous
Poisson eigenproblem discretization with a five-point stencil on the unit
square with a mesh size of 2048x2048.
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Figure 4.4: Total number of iterations in the entire inverse iteration without the iter-
ations for the initial guess for different intervals of Ritz projection with a
maximum iteration number of 5000 for the inverse iteration and 10 iterations
for the initial guess on every matrix hierarchy level. The eigenproblem is
a 2D homogeneous Poisson eigenproblem discretization with a five-point
stencil on the unit square with a mesh size of 2048x2048. For the conver-
gence of the first three eigensolution, we see no difference depending on
the Ritz projection interval. The first eigensolution is already converged
after the initial guess. The eigenspace spanned by the second and third
eigensolutions is converged after one step of inverse iteration.
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4.3.2 Using an Eigengap to Improve the Convergence Behavior
The eigengap analyzes the relative difference between two neighbored eigensolutions1,
see the definition in Section 4.1.2. By calculation up to a significant eigengap ngap,
which is greater than the required number of eigenpairs nev, i.e., nev < ngap, the
runtime can be fastened up. The eigensolution algorithms then run for all eigenpairs up
to the eigengap ngap. But the convergence is only checked for the requested number of
eigenpairs nev. In the following, we will see that the effect of using a greater eigenspace
is especially noticeable during the orthogonalization process, as this is stabilized.

In [13, 12], already first impacts of choosing higher subspace dimension than requested
eigenvalues are mentioned. Further analysis of the influence on computational costs
and runtime, beside other factors, can be found for subspace iterations in [46].

During the initial guess algorithm, the eigengap has to be recalculated on each matrix
hierarchy level, as the relation of the eigenvalues may be changed by the interpolation
and scaling effects on the eigenproblem solutions. The eigenvalue approximations via
Rayleigh-Quotient, see Section 4.1.2, is not similar on every matrix hierarchy level, as
the eigenvector approximations do change. The value of the eigengap ngap may slightly
change on each level of the matrix hierarchy. But on the coarsest matrix hierarchy level,
already a first hint for a reliable eigengap can be seen. To be on the safe side, we can
save the entire requested eigenspace solutions - including the eigengaps - on all matrix
hierarchy levels. And then recheck the position of the eigengap on each matrix hierarchy
level individually. Thus, we can benefit from the runtime optimization on every matrix
hierarchy level. This especially holds when we have many matrix hierarchy levels. But
this comes at the price of more memory, as more full eigensolution approximations are
saved. Furthermore, on each matrix hierarchy level, the initial guess for the complete
requested eigenspace is calculated. Until a decision for the setting of the eigengap on
the finest matrix hierarchy level is defined.

Before the inverse iteration starts, the eigengap is calculated based on the results of the
initial guess approximations. The eigengap calculation includes two parts - a relative
and an absolute part. The upper bound for the eigengap is given as a user parameter
and defines the upper number ns for searching such an eigengap. As default, we have
set ns = nev + 10. We check whether the quotient of two neighbored eigenvalues λi
and λi+1 is greater than 1.10, i.e., λi+1

λi
> 1.10 for nev ≤ i < ns. When this eigenvalue

relation is fulfilled, the eigengap is set to i + 1, i.e., nev ≤ ngap = i + 1 ≤ ns. And the
inverse iteration is done up to the eigenvalue ngap. As it is possible that a difference of
10% between two neighbored eigenpairs is not reached, we add an additional relative
check. For the relative check, the eigengap is set to the index of the eigenvalue that has
the largest eigenquotient, i.e., ngap = argmaxnev<i≤ns

λi
λi–1

.

1For real-valued eigensolutions, just a consecutive ordering of the eigenvalues. For complex-valued
eigensolutions, it would use the absolute value.
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For testing purposes, we chose the calculation of 9 eigenpairs of a discretized Poisson
eigenproblem, see Section 4.1.4, as we then have all relevant effects included:

• We split an eigenspace, as the eigenvalues 9 and 10 are equal.

• For the following eigenvalues, we hit the absolute eigenvalue gap between the
eigenvalues 11 and 12.

For having a complete benchmark, we also include higher eigengap requests. We will
see that these fall back to 12. In Table 4.3, we see the computation time for reaching 9
converged eigensolutions with different eigengaps. As intended, it pays off to calculate
more eigenvalues. The orthogonalization process then is more stable and efficient.

To set the requested eigengap ns drastically higher than necessary is better than even
slightly too small. This is due to a reset of the used eigengap ngap with the previously
described criterion. By this, the only overhead in runtime is the higher eigenspace
for the initial guess algorithm. Thus, it is better to choose the number of requested
eigensolutions higher in most cases, as the convergence improvements overcome the
runtime losses. This also holds with general cases, as we always apply the bounds for
ngap.

For the Poisson eigenproblem we already see the necessity that the requested eigengap
ns is not too small. To fully profit from the automatic detection of the eigengap ngap
the evaluation interval between requested eigensolutions nev and eigengap ns should be
sufficient. If not other stated the default is ns = nev + 10 but can be changed as a user
parameter.

In the particular case for the Poisson eigenproblem, requesting 10 eigensolutions is even
worse than the minimal number of 9: The iteration number per eigensolution is equal or
lower for higher eigensolutions than for the first ones, as Figure 4.5 shows. For the first
four eigenpairs, we see no difference in the convergence behavior, i.e., in the necessary
number of iterations until the requested residuum is reached. For the convergence of
the 9th eigenpair, we observe the most significant effect of using an eigengap. For a
higher eigengap (11 or higher in this case), we have the best convergence behavior. This
coincides best with the eigengap and no computational overhead is done. Thus, the
orthogonalization process is very effective.
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requested eigengap ns calculated eigengap ngap runtime [sec]
9 9 462,297
10 10 543,031
11 11 352,125
12 11 403,812
14 11 409,422
19 11 438,844

Table 4.3: Complete runtime for the inverse iteration, including an initial guess over
the matrix hierarchy, with various requested eigengaps ns to calculate 9
eigenpairs using a Ritz projection every 5 iterations. The eigenproblem is a
2D homogeneous Poisson eigenproblem discretization with a five-point stencil
on the unit square with a mesh size of 2048x2048.
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Figure 4.5: Total number of iterations in the entire inverse iteration without the itera-
tions for the initial guess with a Ritz projection every 5 iterations and various
requested eigengaps ns and 10 iterations for the initial guess algorithm on
every matrix hierarchy level. The eigenproblem is a 2D homogeneous Pois-
son eigenproblem discretization with a five-point stencil on the unit square
with a mesh size of 2048x2048.
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4.4 Krylov-Schur Method Using AMG as
Preconditioner

For more challenging situations, the previously presented initial guess algorithm along
with the inverse iteration are not sufficient. Such cases are higher eigensolutions or
eigensolutions in a nearly-related range. But this also holds for ill-conditioned matri-
ces in the (generalized) eigenproblems. Therefore, we implemented the Krylov-Schur
method in combination with AMG. The Krylov-Schur method is used as final iterative
algorithm stage for the current state of work, as it is the most computational expensive
algorithm of all presented algorithms in this thesis.
The Krylov-Schur Algorithm 4.4 is used to iterate the approximation gained from
the initial guess algorithm in Section 4.2 or from the inverse iteration described in
Section 4.3, up to the requested accuracy. The idea behind this can be found in
[69, 121, 143, 144, 82]. The Krylov-Schur method itself works independently of the
previously described initial guess and inverse iteration. But the overall convergence
can be fastened up by a more accurate start approximation. Additionally, we reuse the
efficient AMG setup a third time for the solution of recurring linear systems inside the
Krylov-Schur algorithm.
A sophisticated saving and evaluation inside our Krylov-Schur implementation increases
the recycling potential of the constructed Krylov space, especially for higher approx-
imated eigensolutions by the initial guess or inverse iteration. Thus, a reduction of
the number of iterations and solution time is possible. The ability of the reusability
of the results of the initial guess and the simultaneous calculation of more than one
eigensolution in the same setup of the Krylov space has further optimization potential.
For non-generalized eigenproblems, this approach is working quite well. For generalized
eigenproblems, the convergence behavior can be stabilized, especially when calculating
higher eigensolutions. As a good starting point for further improvements and stabiliza-
tion we see the interplay of the matrices A and M , particularly for the matrix hierarchy
construction.
The Krylov-Schur algorithm calculates one eigensolution per iteration step. As a by-
product, also higher eigensolutions can be further iterated. But this should not be relied
on. It is rather a beneficial side effect to an unpredictable extent. The algorithm does
not rely on this, though. But it checks for this effect to avoid doubled computation.
The Krylov-Schur algorithm is executed until a user-defined stopping/convergence
criterion C

(
λ̃j , ṽj

)
is reached. This criterion depends on the current approximate

eigensolution
(
λ̃j , ṽj

)
for j = 1, . . . , nev and could be a maximum number of iterations

or a requested residual reduction.
The algorithm starts with a Arnoldi decomposition, cf. Line 3 in Algorithm 4.4. This
decomposition takes the previously calculated eigenspace approximation into account:
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Whenever a new Krylov space for an eigensolution is set up, we start with the pre-
viously calculated approximation. Additionally, the linear system inside the Arnoldi
decomposition is solved via one GMRES iteration with AMG as a preconditioner, where
we reuse our constructed matrix hierarchy.

Already during the Arnoldi decomposition, the following Ritz problem is set up. As
this is a really small-sized eigenproblem (subspace dimension of the Krylov space), we
use the direct solver hseqr from LAPACK [3], cf. Line 14. Based on the Ritz problem
results, the currently calculated eigenspace is updated and the marker nstart is set to
the next eigenspace or recalculated if convergence is not fulfilled.

Based on the results from the eigengap modification, as described in Section 4.3.2, we
modify the subspace dimension of our Krylov-Schur implementation. This is especially
relevant for the matrix dimensioning, by an adaptation of the subspace dimension in
relation to a significant eigengap.

The best eigengap is detected similarly to the description in Section 4.3.2. The subspace
dimension then is greater than the significant eigengap plus one, i.e. k = ngap + 1.
This is reasonable, as the starting eigenvector for the subspace setup is the current
valid approximation of the eigenvector. Then, the subspace is filled with all upcoming
eigenvector approximations. It is thinkable to introduce a user parameter x to control
the subspace dimension, i.e., k = ngap + x. The effect of the calculation up to the
eigengap, as explained in Section 4.3.2, is so significant that we will not neglect this.
But a greater subspace can be useful when the eigenproblems are very ill-conditioned.
The benefit is then similar to Krylov-spaces in preconditioners.

Finally, the current eigenvalue approximation ṽnstart is updated, cf. Line 15 in Algo-
rithm 4.4. This function can be extended to include multi-dimensional eigenspaces and
the next higher eigensolutions. For a multi-dimensional eigenspace, which is measured
by the eigengaps, we only update the entire eigenspace. This prevents switching the
order of the calculated eigenvectors inside such multi-dimensional eigenspaces. Then
we also check for convergence in the complete multi-dimensional eigenspace. For the
next higher eigensolutions, the current eigensolution approximation can be calculated
and temporarily saved. When this approximation is an improvement to the currently
used eigensolution approximation, that one is updated.

For evaluation of the Krylov-Schur algorithm, we consider the same Poisson eigen-
problem as previously, see Section 4.1.4. To increase the difficulty of solving this
eigenproblem, we again want to calculate 9 eigenpairs. We choose 10 initial guess
iteration steps on every matrix hierarchy level and an interval of 5 Ritz projections
inside, as the previous benchmarks had shown this to be the most efficient parameter
combination. We use no inverse iteration, as we intend to completely concentrate on
the effects of the Krylov-Schur method. For these parameters, we evaluate the influence
of the eigengap, which is correlated to the used subspace dimension.
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Algorithm 4.4: Pseudo Code Krylov-Schur Method
Input: nev: number of requested eigenvalues

A,M : fine-level matrices
(if M not explicitly is given, it’s the identity)

C
(
λ̃j , ṽj

)
: stopping/convergence criterion
depending on current approximations

(
λ̃j , ṽj

)
1,...,nev

Data: ngap: maximum number of calculated eigenvalues (nev ≤ ngap)
nstart: current calculated eigensolution
k(nev, ngap): subspace dimension
H ,U ∈ Rk×k : dense matrix
V ∈ Rnf×k : dense matrix
λ̃j : eigenvalue approximation for eigensolution j
ṽj : eigenvector approximation for eigensolution j
(
(
λ̃j , ṽj

)
initial guess using the AMG hierarchy as in Section 4.2)

resj : residuum vector for eigensolution j

1 nstart = 1; V (:, 1) = ṽ1
2 while not C

(
λ̃j , ṽj

)
do

3 Function Arnoldi():
4 H = 0.0
5 for i = nstart, . . . , k – 1 do
6 V (:, i + 1) = V (:, i)/λ̃nstart
7 solve AV (:, i + 1) = MV (:, i) using GMRES and AMG
8 for j = 1, ..., i do
9 H (j, i) =< V (:, i + 1),MV (:, j) >

10 V (:, i + 1) = V (:, i + 1) – H (j, i)V (:, i)

11 H (i + 1, i) =
√
< V (:, i + 1),MV (:, i + 1) >

12 V (:, i + 1) = V (:,i+1)
H (i+1,i)

13 Function Ritz problem():
14 solve HU = θU using with a direct solver
15 Function Update V():
16 λ̃nstart = 1

θ(nstart)
17 V = VU
18 V (:, nstart) = V (:,nstart)

‖V (:,nstart)‖
19 ṽnstart = V (:, nstart)
20 calculate residuum resnstart = Aṽnstart – λ̃nstartMṽnstart
21 if C

(
λ̃nstart , ṽnstart

)
then

22 nstart = nstart + 1
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Figure 4.6: Total number of iterations without the iterations for the initial guess in
the entire Krylov-Schur algorithm with various requested eigengaps ns and
10 iterations and every 5 iterations a Ritz projection for the initial guess
on every matrix hierarchy level. The eigenproblem is a 2D homogeneous
Poisson eigenproblem discretization with a five-point stencil on the unit
square with a mesh size of 2048x2048.
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requested
eigengap ns

calculated
eigengap ngap

used subspace
dimension runtime [sec]

9 9 10 837.578
10 10 10 436.715
11 11 11 466.473
12 11 12 488.77
14 11 12 446.406
19 11 12 499.941

Table 4.4: Complete runtime for the Krylov-Schur algorithm, including an initial guess
over the matrix hierarchy, with various requested eigengaps to calculate 9
eigenpairs using a Ritz projection every 5 iterations during the initial guess.
The eigenproblem is a 2D homogeneous Poisson eigenproblem discretization
with a five-point stencil on the unit square with a mesh size of 2048x2048.

In Table 4.4, we compare the requested eigengap with the automatically chosen subspace
dimension and the runtime for full convergence of the first 9 eigenpairs. For requested
eigengaps greater or equal to 12, we observe a stagnation in the runtime. The downsiz-
ing of the used subspace dimension has the effect to ensure the best balance between
runtime and iteration count. But for the well-conditioned Poisson eigenproblem the
Krylov-Schur algorithm is too expensive. Only the setting of an requested eigengap of
11, i.e., ns = 11, is faster than the similar setting for inverse iteration. As a consequence
we can conclude that the utilization of the Krylov-Schur method is only necessary when
higher eigensolutions are requested or a more ill-conditioned problem should be solved.

The numbers of iterations, separated for every eigenpair, and the different requested
eigengaps are presented in Figure 4.6. Therein, we see no difference in the iteration
counts for eigengaps greater or equal than 12.

4.5 Numerical Examples and Results for Eigenvalue
Calculation

In the following section, we explain some real-world applications for an eigenproblem
solution using AMG.

An important application field for eigenproblem solutions is the internal usage for AMG
itself by using so-called smooth vectors. The convergence rate of AMG can be improved
by using smooth vectors to add additional information for the setup phase of AMG. One
possibility is the usage of the smallest eigenvectors, as outlined in Section 4.1.1. These
correlate to the low-frequency errors and should be appropriate handled on coarser
matrix level to ensure a reduction of the correlated error componentes on the finest level.
In Section 4.5.1, we show results for linear systems that occur for energy conservation
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in structural mechanics. We will also shortly explain the functionality of AMG with
these so-called smooth vectors based on eigenvector approximations.

Further application fields are the approximation of the smallest eigensolution for Graph
Laplacians that occur in machine learning algorithms or for analyzing cryptocurrency
transactions, see Section 4.5.2, or tomographic reconstruction in combination with
pattern recognition.

All benchmarks have been performed on a node with Intel Xeon Gold 6130F dual
16-core CPU and 192 GB RAM.

4.5.1 Energy Conservation in Structural Mechanics
During the smoothed aggregation process it is possible to ensure the exact interpolation
of given vectors, called smooth vectors [152, 153, 151]. By default, AMG only ensure
to exactly interpolate constant vectors. This is perfectly sufficient for a method in most
AMG applications. In ill-conditioned cases, as they arise in the wide field of elasticity
problems, however, it can be beneficial to exactly interpolate more vectors where the
smoother would be out-of-effect for. Such smoother vectors correspond to eigenvectors
with the smallest eigenvalues [97].

By this, a doubled setup and solution process of AMG is established. In a first
step, the eigenvectors are roughly approximated with a "classical" coarsening strategy.
Afterwards, a new matrix hierarchy is constructed that uses smoothed aggregation
with these approximated eigenvectors. This should give a better suitable coarse matrix
representation and, thus, ensure better convergence rates. As this twiced setup process
comes with much computational overhead, it is only relevant for ill-conditioned problems.
The approximate nature of the eigenvectors does not matter then, they still improve
the setup. Other solver methods often enough completely fail in such cases.

This use case of eigenvector calculation with AMG for improvements of the AMG
strategy is evaluated on linear systems that result from elliptic energy conservation
conditions. This problem is discretized with Finite Elements and, thus, in principle
is suited for AMG technology. But the discretization scheme includes high aspect
ratios and huge contrasts in stencil sizes. This leads to very high condition numbers
and standard techniques are not suited anymore. The convergence rate of these ill-
conditioned problems can be drastically improved by the twiced AMG solution process.
A general application of smoothed aggregation for structural mechanical problems is
described in [36].

For this kind of problems, the so-called alternating Schwarz approach is a useful
supplement to AMG methods. The Schwarz approach was first described in [133]. The
general convergence proof for elliptic boundary values is presented in [100] and a wider
description can be found in [101]. The alternating Schwarz approach is a subclass of
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Figure 4.7: Schematic visualization of alternating Schwarz approach with overlap. The
green and blue rectangles visualize the subproblems that are defined on the
to solving linear system. These subproblems are solved independently. The
black rectangle is the overlapping part of the subproblems. This overlap is
updated accordingly after each subproblem iteration.

the so-called domain decomposition methods. A wide explanation of these methods can
be found in the books [120, 135] and the references therein.
The idea of the alternating Schwarz approach is to divide the problem in two subproblems
with an overlapping part. Then, alternatingly the subproblems are solved: The solution
of one subproblem is used for the overlap of the other subproblem and vice versa. A
schematic visualization of this is given in Figure 4.7.
We use this idea to eliminate those parts of the given system that are difficult to handle
for AMG. These are handled in a separate block by a direct solver or an iterative
method. The remaining part of the system is solved by an AMG approach. As this is
currently the best solution approach for the given problems, we compare this with our
improved smoothed aggregation by using fitted eigenvectors to this problem.
In the following, we present the results for two user test case matrices. These are
quite difficult to solve, as the condition number for the first test is in the order of
109 and the second one of 1014. We compare three AMG solution approaches for
these industrial use cases. As a first approach, standard AMG, i.e., Ruge-Stüben
coarsening with standard interpolation, is used. The second approach is the Schwarz
approach or domain decomposition. Finally, we compare this to smoothed aggregation,
where the previously calculated eigenvectors are used to improve the convergence rate.
For smoothed aggregation, we present two results, as we want to emphasize that the
calculated eigenvector approximation do not need to be that exact. Thus, we compare
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iterations residual solution time [sec]
user case 1
Standard 327 2.27 · 10–8 60.1
Schwarz 301 2.27 · 10–8 91.9
Smoothed aggregation
10–10 eigensolution accuracy

72 2.00 · 10–8 380.4

Smoothed aggregation
10–5 eigensolution accuracy

104 2.17 · 10–8 555.9

user case 2
Standard 10000 2.72 · 10–4 2088.9
Schwarz 10000 5.63 · 10–4 4171.9
Smoothed aggregation
10–4 eigensolution accuracy

10000 8.34 · 10–5 77785.3

Smoothed aggregation
10–2 eigensolution accuracy

10000 8.40 · 10–4 84391.4

Table 4.5: Results for two user test cases with a standard AMG-approach, i.e., Ruge-
Stüben coarsening, a Schwarz elimination and smoothed aggregation with two
accuracies for the eigensolutions. We compare the result with the iterations,
the final residual and the solution time.

eigensolution approximations that are gained only with an initial guess and eigensolution
approximations that are gained using inverse iteration and Krylov iteration. As both
user test cases have quite different condition numbers, the gained residual for the
eigensolution approximations is different and added to the result table. In Table 4.5, we
see the three main key facts to evaluate the solution approaches. For a better evaluation
of the convergence, we plot the relative residual of the calculated solution after the
iteration steps until convergence is reached for the first user test case in Figure 4.8. For
the second, more ill-conditioned user test case, we plot until 2000 iterations. The plot
shows that Ruge-Stüben has difficulties to reduce the relative residual and is oscillating.
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Figure 4.8: We plot the convergence history for two user test cases with a standard AMG-
approach, i.e., Ruge-Stüben coarsening, a Schwarz elimination and smoothed
aggregation with two accuracies for the eigensolutions. The convergence
rate for the first user test case is plotted until a residual reduction of eight
order of magnitude is reached. For the second user test case we plot the
convergence behavior of the first 2000 iterations.

4.5.2 Graph Network Problems

Graph Laplacians in matrix form describe the connectivity between their nodes and
edges [40]. The definition is based on the idea of a discrete version of the Laplace
operator in finite element theory. Due to this construction, using AMG is a canonical
idea. But, per definition, Graph Laplacians are only positive semi-definite, whereas
AMG requires positive definiteness. Our examples, Megaman and bitcoin, use a very
slight increase in the diagonal to ensure positive definiteness.

As described, Graph Laplacians do not directly fulfill the requirements for the application
of AMG. In [19], the classical AMG theory, as we shortly introduced in Chapter 2, is
extended to Graph Laplacians. The suitability of AMG for Graph Laplacians is strictly
related to the coarsening and interpolation methods. For classical AMG theory, these
define the success of the linear solver, as they have to fulfill special requirements to
ensure convergence of the linear solver, e.g., see Theorem 3.1. Furthermore, in [30],
the usage of aggregation based coarsening strategies for Graph Laplacians and the
resulting convergence rate is analyzed. Using aggregation AMG for Graph Laplacians
is also described in [107, 108]. Another approach for Graph Laplacians is a Lean AMG,
which is introduced in [55, 56]. This is directly applicable to the semi-definite Graph
Laplacians. Due to the way the matrices are generated in our application, this is not
necessary here, though.
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Megaman

Manifold learning, e.g. spectral embedding [156, 110], local linear embedding [122, 128]
or isomap [147, 15], is used to calculate a non-linear smaller representation of high-
dimensional data. By this lower-dimensional representation, for instance, a visualization
in the Euclidean space is then possible or clustering into significant features of the data.
All of these mentioned methods need an approximation of the smallest eigensolutions.

The very shortened ideas of the mentioned algorithms are:

• Spectral embedding [156, 110] exploits spectral properties of the similarity graph
of the data.

• Local linear embedding [122, 128] defines in a first step a neighborhood graph of
the data. Afterwards the embedding into a lower-dimensional space is optimized
such that the reconstruction error of this process is minimal.

• Dimension reduction by isomapping [147, 15] aims at preserving the distances
between the data points. The relation between the data points are summarized
in a neighborhood graph. For this graph then an optimized low-dimensional
representation is calculated.

All three algorithms have in common to define a neighborhood or similarity graph. A
very common way to do so is by calculating a Graph Laplacian.

For our benchmark tests we use the Megaman software. The target application field of
the Megaman software is molecular dynamic, chemistry and astronomy with graphs up
to millions of data points [98, 99]. In this python package the previously mentioned
dimension reduction algorithms and variants of Graph Laplacians are already imple-
mented. Additionally, a link to Stanford’ large network dataset collection [90] is given
and, thus, a wide variation of applications is available. Since most algorithms perform
better with positive definite matrices, the Megaman software already applies a slight
increase to the diagonal as most Graph Laplacians, by definition, are only positive
semi-definite.

At the moment, a before-hand defined number of eigensolutions is calculated in the
Megaman software. But less are actually used in the algorithms later on. Thus, ex-
changing the hard limit of calculate eigensolutions by a case dependent eigengap for the
estimation of necessary calculable eigensolutions is of interest. But currently, it is not
clear if the requirements for the eigengap inside the Megaman algorithms are similar to
the ones that we defined in Section 4.3.2.

In Table 4.6, we show the results for various Graph Laplacians from the Megaman
project. Two of the three example graphs we already introduced in Section 3.3.3.
The additional example "Oregon" is a communication graph between routers in the
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number of eigensolutions 1 2 3 4 5 6 7 8
as-Caida 0 8 9 9 9 9 9 9
Oregon 0 17 29 33 63 75 111 111
soc-Slashdot0811 13 35 57 57 195 310 310 407

Table 4.6: Number of inverse iterations of eigensolution approximations limited to 1000
iterations, and a first approximation with maximal 10 iterations on every
matrix hierarchy level for various Graph Laplacians from the Megaman
project.

US-state Oregon [88]. As we already have seen in Section 3.3.3, using AM-AMG as
setup approach, for these examples is a necessary condition for the applicability of
AMG.

In EP-AMG we use the inverse iteration with a maximum iteration number of 1000
and 10 iterations during the first approximation for every matrix hierarchy level. Due
to the uncertain requirements for the limit of calculable eigensolutions, we do not use
an eigengap and set the requested number of eigensolutions to 20. As the eigenvalues
are quite close to each other, Ritz projection is necessary after every iteration step to
ensure good orthogonalization results.

Transaction Graphs for Bitcoins

Transaction graphs are a useful analysis method for transactions of digital cryptocur-
rencies as explained in [51, 103, 134, 58]. To analyze these transactions and to identify
transaction clusters eigensolutions are used. The main problem in this application field
is the inhomogeneity of the transactions that ends in inhomogeneous graph stencils.

The used transaction graphs are following the definition in [37]. The nodes of the trans-
action graph are either addresses or transactions themselves. A directed edge between
an address and a transaction exists if the address inits the transaction. Alternatively, a
directed edge between a transaction and an address exists if the transaction has this
address as an outcome. In one transaction, multiple addresses are concluded.

The most heavily traded cryptocurrency is bitcoin. Thus, we have selected this for
analysis purpose. We analyze our eigenvalue algorithm for two transaction graphs, one
based on a transaction day in 2011 and one in 2020 [114]. During this time period, the
transactions per day have drastically increased and, thus, the direct solver is not able
to solve the eigenproblem for the later example. For the graph from 2011, we can use a
direct solver and, thus, can compare the result (accuracy and solution time) with our
implemented eigenvalue algorithm. The transaction graph from 2011 has 19882 nodes
and 65030 graph connections. The graph from 2020 has 1361684 nodes and 4516090
graph connections.
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2011
direct

2011
AMG

2020
direct

2020
AMG

simulation time [sec] 65893 2065 fail 137567
eigensolution 1
eigenvalue 1.0 1.0 / 1.0
residual 0.12 · 10–14 0.14 · 10–15 0.22 · 10–5
eigensolution 2
eigenvalue 1.0 1.0 / 1.0001
residual 0.70 · 10–15 0.14 · 10–15 0.15 · 10–3
eigensolution 3
eigenvalue 1.0 1.0 / 1.0002
residual 0.36 · 10–15 0.45 · 10–15 0.81 · 10–5
eigensolution 4
eigenvalue 1.0 1.0 / 1.006
residual 0.11 · 10–15 0.55 · 10–11 0.12 · 10–3
eigensolution 5
eigenvalue 1.0 1.0016 / 1.006
residual 0.11 · 10–15 0.20 · 10–9 0.11 · 10–4
eigensolution 6
eigenvalue 1.0 1.0017 / 1.008
residual 0.36 · 10–15 0.91 · 10–9 0.18 · 10–3

Table 4.7: Evaluation of the two bitcoin transaction graphs with a direct solver and
our presented eigensolution algorithm. We compare the simulation time and
present the first six eigenvalues and the residual of the eigensolution

Our eigenvalue algorithm has the aim to calculate 6 eigensolutions with 100 first ap-
proximation iterations, 10000 inverse iterations and 100 Krylov Schur iterations. The
eigengap search space is set to 16. It actually uses 16, as there is no further significant
eigengap.

In Table 4.7, we compare the main keyfacts about the approximated eigensolutions. As
expected, we see that the direct solver for the transaction analysis from 2020 fails due
to the size of the transaction graph. With our AMG-based algorithm, however, it is
perfectly possible to calculate the smallest eigensolutions in this case.

4.5.3 Tomography
A more further outlook for using the combination of AM-AMG and EP-AMG is the
application of AMG in the field of tomography. The herein described methods are
based on information in the context of tomography for reservoir analysis. For an
unknown domain/image systematically X-rays are applied. Based on these results, the
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domain/image should be reconstructed. Therefore, the domain can be a reservoir or
the image of human body parts in the medicine.

Solving tomographic reconstruction problems [53] (inverse problems) leads to a least
square problem that is noise-sensitive. Currently, direct solvers and a smoothing
regularization, e.g., with Kaczmarz, is used to solve this. The problem is set up by
rays/projections through the domain/image. This leads to a sparse rectangular coeffi-
cient matrix A ∈ Rm×n . When testing the reconstruction algorithms the description of
the image/domain x ∈ Rn is well known. Thus, the tomographic result is b = Ax ∈ Rm .
As real measurements are not correct, some noise ε ∈ Rm is added to the "measured"
image/domain.

To reconstruct the image, the least-square problem

min‖Ax̄ – b̄‖ (4.13)

with b̄ = b + ε has to be solved. Following [117], we define the linear system

Ā :=
(

1 A
AT –ω21

)(
x1
x2

)
=
(
b̄
0

)
(4.14)

with ω ∈ R and Â ∈ R(m+n)×(m+n). For ω → 0 the solution vector
(
x1
x2

)
converges

towards
(
res
x̄

)
. We chose the so-called damping parameter ω such that AMG is

applicable to Ā.

To show the proof-of-concept for this wide application field, we use the Matlab simulation
AIR tools II [64]. We extract the sparse linear system Ā that can be formulated
equivalently to the least-squares problem, as we have motivated previously, and solve
it by AMG. Afterwards, we reread the solution vector to Matlab to visualize the
reconstructed image. As default method in AIR tools II the tomographic method ART
(algebraic reconstruction technique) with Kaczmarz is used [64].

As examples, we choose Shepp-Logan as a medical example for computer tomography
and simulated grains in a crystalline medium [64] for reservoir domain analyzing
purposes. Shepp-Logan is a commonly used example for tomographic reconstruction.
The grain examples arises from the initial application field during reservoir simulation
projects.

The arising linear system Ā is solvable with Ruge-Stüben AMG, but even better
with AM-AMG. With aggregation coarsening the problem is not solvable as no valid
matrix hierarchy is constructed. As the matrix arises from discrete beams during the
tomography process, the density of the matrix in the "beams’ direction" is higher. The
AM-AMG coarsening approach can handle this quite well and, thus, ends up in the
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simulation
time [sec]

setup
time [sec]

coarse
level size iterations residual

reduction
Shepp-Logan
Ruge-Stüben 900.9 841.3 40000 5 0.141 · 10–9
AM-AMG 45.2 38.6 936 68 0.951 · 10–8
grains
Ruge-Stüben 895.6 835.6 40000 5 0.104 · 10–9
AM-AMG 51.3 44.9 936 64 0.813 · 10–8

Table 4.8: Results for the two reformulated least square problems arising from tomo-
graphic reconstruction. We exemplarily chose the Shepp-Logan example that
is based on a medical CT and a standard test problem and the grain exam-
ple, which is a random constructed image with Voronoi cell in a crystalline
medium and occurs in reservoir simulation process.

drastically faster setup as the results in Table 4.8 show. The coarsening process with
Ruge-Stüben has troubles to construct a reasonable coarse-level size for both examples
and, thus, the runtime increases drastically.

When looking at only one setup approach, we see that the number of matrix hierarchy
levels and coarse-level size is similar for both examples. This holds for Ruge-Stüben
coarsening and AM-AMG separately. This emphasizes that these kind of problems
would dramatically improve with a setup recycling, as the tomographic process results
in a similar matrix structure for subsequent systems. Just the measured values that
correlate to the matrix entries are differing.

We should note that the objective here is not a perfect image reconstruction. We rather
aim at reconstructing all significant image structures in an efficient manner. As outlined,
AMG here is the more advantageous the higher the resolutions are. In full sample
sets rather than simple examples moreover, setup re-usage further improves AMG’s
efficiency.

In Figure 4.9, we present the test case Shepp-Logan and in Figure 4.10 the grains. In
both cases we plot the original raw data in part (a) of the figures. Based on this raw
data, the tomography is executed and 2% relative noise are added. In the pictures we
compare the default method ART with Kaczmarz of the Air Tool II suite implemented
in Matlab with our AMG-based solution. As we can see, the solutions are quite similar
- besides some scaling that results in different gray shades in the pictures. However, all
details can be clearly seen in both cases.

As a perspective, the rays of tomography are most often fixed, e.g., X-ray CT problems.
By this, a setup reuse of the coarsening with recalculated interpolation and restriction
seems to be a promising approach, as the sparsity structure doesn’t change.
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(a) original (b) ART with Kaczmarz (c) AMG

Figure 4.9: In Figure 4.9a, we see the original picture of the Shepp-Logan medical
phantom. On this picture the tomography is executed and some additional
noise added. Subsequently these generated data are reconstructed with ART
using Kaczmarz method in Figure 4.9b and with AMG for the reformulated
least-square problem in Figure 4.9c

(a) original (b) ART with Kaczmarz (c) AMG

Figure 4.10: In Figure 4.10a, we see the original picture of the simulated grains. On
this picture the tomography is executed and some additional noise added.
Subsequently these generated data are reconstructed with ART using
Kaczmarz method in Figure 4.10b and with AMG for the reformulated
least-square problem in Figure 4.10c
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The reconstructed images should be analyzed in most cases as tomography is used
for imaging of unknown samples/domains. For this purpose, a feature recognition of
the reconstructed images is an option. In section 4.5.2, we have seen that EP-AMG
is working very well for the eigensolution calculation of such graph problems. As we
needed our newly developed AM-AMG approach for the tomographic reconstruction ,
we expect that this is also relevant when solving the respective eigenproblems.
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CHAPTER 5

Conclusion and Outlook

In this thesis, we presented a strategy to exploit AMG in eigenproblems from data
science and beyond in a generic way. On the one hand, we introduced a new setup
procedure for AMG, AM-AMG, that is well-applicable also for highly varying matrix
patterns. On the other hand, we presented ways to exploit AMG in the eigensolution
procedure, EP-AMG, in a very generic way. Moreover, with the combination of algo-
rithms, we exploited synergies.

We started with introducing AM-AMG. AM-AMG is a setup approach that can handle
strong heterogeneities in the sparsity pattern of matrices. This setup is an extension
of the well-known aggregative coarsening, but enriched with overlapping aggregates.
Additionally, the aggregate construction process introduces three function types for the
variables. By this, we are able to construct a locally ideal interpolation per aggregate.
Additionally, we have the possibility to fine-tune the aggregation process by various
parameters. Thus, we are easily able to adapt the algorithm to matrices occurring from
network problems. Benchmarks have shown that this form of coarsening is necessary to
be able to construct a valid setup of AMG, even under memory restrictions.

Currently, this setup approach is parallelized with shared memory. An extension to
distributed memory, however, is rather straight-forward to implement, as the paralleliza-
tion algorithm is directly transferable. Further investigation is promising regarding the
potential of using AM-AMG on a GPU. The setup phase of AM-AMG is also splitted
into two parts. One part is constructing the coarsening, while the other calculates
the interpolation afterwards. The one-time splitting is slightly expensive, but the
interpolation calculations are inherently parallel. Thus, the potential of an efficient
AMG algorithm for GPU results from the interpolation calculation in every simulation
time step that can really benefit from the GPU acceleration.

As we target at the application of AMG for Big Data problems, not only mere linear
systems are of relevance, but the calculation of a few (smallest) eigensolutions. To use
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AMG for eigensolution calculations, a few adaptions are necessary as we have seen
when describing EP-AMG. We presented three algorithms with whom we can efficiently
exploit the matrix hierarchy of AMG. A starting point was the exploitation of the
matrix hierarchy to construct an initial guess for the eigensolutions. Afterwards, we are
continuing with this initial guess and the inverse iteration and Krylov-Schur method.
While these are well-known algorithms to approximate a few eigensolutions, we needed
to adapt them at different points to be able to benefit from AMG.

In various examples, e.g., network graph or bitcoin transactions, we have demonstrated
that EP-AMG is working properly. Furthermore, we extend the usage of calculated
eigensolutions to an internal improvement of AMG hierarchy for very ill-conditioned
problems. In a real-world problem, we have seen that by this approach, for a first time
it is possible to reach the relevant residual reduction.

In the example section, we have also pointed out even further optimization potential.
For the Krylov-Schur algorithm, the simultaneous calculation of eigensolution when
setting up the Arnoldi decomposition could be of interest. With this feature, the
efficiency of the algorithm for more smallest eigensolutions would be increased further.

As we are talking about growing matrix data and increasing computational power, the
eigensolution algorithms need to be parallelized. As we use the SAMG implementation
for AMG that already is well parallelized, we only have to think about the eigensolution
algorithm itself. The eigensolution algorithms are quite difficult to parallelize as they
depend on an orthogonalization to the previous approximated eigensolutions. A first
idea would be to use a wavefront parallelization. This means that a slightly shifted
start of the eigensolution approximation on the parallel partitions. An alternative could
be the orthogonalization regarding previous iterations of the eigensolution are accepted
at some point.
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