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A B S T R A C T

In the numerical simulation of components and structures it is necessary to
incorporate the effect of localized damage and its propagation. However, simu-
lating fracture on top of linear elasticity in three space dimensions significantly
increases the computational cost. The need to choose a law to predict the crack
path introduces further modeling decisions that are still an open research topic.
Other approaches such as the phase-field method or peridynamics handle
fracture naturally but are even more expensive to simulate. In this thesis, we
demonstrate how the global-local enrichments method can improve this by
either separating the degrees of freedom required for the resolution of the crack,
or by moving a whole expensive method onto a different, local discretization
whose solution is then used as a basis function on the global problem. To this
end, we use the flat-top partition of unity method (PUM) due to its flexibility in
the application of enrichments.

Specifically, this thesis contributes the following. First, we bring the simulation
of three-dimensional fracture to the PUM. We address the challenges introduced
by complex crack geometries and validate our implementation in numerical
experiments. Second, we adapt the global-local enrichments method, such that
its parallelization opportunity can be exploited efficiently with the flat-top
cover construction in the PUM. We evaluate the accuracy, parallel scaling and
performance of the resulting method in numerical experiments in three space
dimensions. Parallel scaling of the resulting method is excellent and especially
weak scaling is optimal. It further achieves the same accuracy as applying the
degrees of freedom from the local problem directly on the global problem.
The global-local method is thus a viable alternative for direct h-refinement in
the simulation of fracture. Lastly, we generalize the global-local method to a
coupling method that allows the flexible combination of the PUM with different
simulation frameworks. Here, we present numerical results with peridynamics
and the phase-field method on the local problem, which serve as a crack growth
law for the global linear elasticity simulation. The global-local coupling approach
produces similar results as traditional direct coupling along an interface and the
obtained crack paths are in good agreement with real world experimental data.
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1I N T R O D U C T I O N

Numerical analysis of the simple model of linear elasticity is computationally
cheap enough to be a common step in the design process of vehicles and
structures. In this process, it is of further interest to incorporate the effect of
localized damage present in components on their toughness as well as predicting
the propagation of the damage [16]. The industry standard to perform such
simulations is the mesh based finite element method (FEM), where the mesh
serves two purposes: First of all, it represents the geometry and cracks, which
are encoded in it as an actual boundary of the domain. Consequently, the crack
geometry is limited by the resolution of the mesh and the mesh has to be
updated if the crack grows. Second, it defines the incorporated polynomial basis
functions and thus has direct impact on the quality of the computed solution.
In linear elastic fracture mechanics, the area around the crack front is of special
interest since the solution exhibits a singularity there. In order to accurately
predict the crack growth direction, this singularity has to be captured in the
numerical approximation. This introduces a lot of degrees of freedom locally,
which increases the computational cost of the simulation. Furthermore, when
the crack propagates, the mesh has to be adapted to the moving crack front,
which introduces additional refinement and coarsening steps. The number of
required degrees of freedom and remeshing steps are thus challenges in the
application of FEMs to the simulation of fracture propagation in three space
dimensions [71, 133].

Several methods exist that can work around those issues by employing special
basis functions, so-called enrichments. In fracture mechanics, for instance, en-
richments can be used instead of the mesh to model the crack and its singularity,
thereby reducing the number of required degrees of freedom significantly and
further avoiding the need to update the mesh. Examples of such methods are the
element free Galerkin method [7], the reproducing kernel particle method [78]
and hp-clouds [24], all of which are based on ideas of the moving least squares
method. In practice, however, the concept of a partition of unity method [83]
has prevailed to allow for enriched approximations. At the core of this method
is a partition of unity (PU) {ϕi} subordinate to some cover of the computational
domain, which allows to create an ansatz space by multiplying basis functions
to each PU function separately

V =
∑
i

ϕi(Pi + Ei).

By this construction, we can decide locally at each ϕi which basis functions
to use, where the spaces Pi denote polynomial basis functions and the spaces
Ei consist of problem dependent basis functions added to the simulation to
improve accuracy, called enrichments. Popular examples of partition of unity
methods that have widely and successfully been applied to the simulation of
fracture mechanics are the generalized finite element method (GFEM) [22] and
the extended finite element method (XFEM) [86, 134]. However, both methods

1



2 introduction

are finite element and thus mesh based, although cracks can be modeled by the
employed enrichment functions. Besides other consequences, the mesh based
construction affects properties of the underlying PU, especially regarding stabil-
ity of the enriched basis. Adding enrichments as basis functions can introduce
linear dependencies in the resulting ansatz space: either locally with respect to
the polynomial spaces Pi, between different enrichments themselves, or globally
due to the overlap of the PU functions ϕi. The latter can occur in the GFEM/XFEM

since neighboring PU functions overlap completely and thus have no area in
which they are constant one, that is, no so-called flat-top zone. One technique to
improve this has been introduced as the stable GFEM [3, 47, 48]. Here, its inter-
polation in the polynomial part of the basis is subtracted from an enrichment
function. Yet, this only partially addresses the above mentioned issues, as for
example dependencies between different enrichments are not considered and
only individual enrichments are near-orthogonalized with respect to the poly-
nomial basis [45]. In this construction, it is further difficult to decide whether an
enrichment is actually in the span of the polynomial basis on some patch, due
to only evaluating on the mesh nodes. For this reason, we use the meshfree PUM

introduced in [114, 115] in this thesis. Due to construction of the cover of the
computational domain, the PUM has a flat-top partition of unity which allows
to efficiently generate a globally stable and numerically orthogonal basis [117].
The PUM thus allows the flexible use of enrichment functions.

Dramatically reducing the required degrees of freedom by the use of en-
richment functions, however, is only possible if such functions are available
analytically for the given problem. For the singularity arising in fracture sim-
ulations, such functions are known in two and for trivial crack geometries in
three space dimensions, yet unavailable for complex crack geometries in three
space dimensions. Here, adaptive h-refinement towards the crack front is again
necessary to be locally back in the case of a simple straight crack front, where
good enrichment functions are known. So while enrichments still provide some
benefit in reducing the required refinement, the number of degrees of freedom
increases substantially around the crack front. Suitable enrichments, however,
can always be generated by computing them either prior to or during a simu-
lation. In the first case, the goal is to generate functions capturing some local
feature preferably agnostic of, for example, the specific material by solving a
simplified or generalized problem [2]. Then, one could choose from a handbook
of functions for a given simulation, as envisioned in [132]. Fracture simulation,
however, yields complex and a priori unpredictable crack geometries, making
it unlikely to be able to precompute enrichments for them. In these cases, it
is still possible to compute an enrichment on the fly, during a simulation, by
solving a localized version of the global, overall problem. In fracture simulation,
this moves the degrees of freedom resolving the crack front onto a different
discretization, thereby separating scales. This reduces the computational cost
associated with the global discretization for all further global operations.

On the fly computation of enrichments was introduced as the generalized
finite element method using global-local enrichments (GFEMgl) [23] and has
since been successfully applied to a variety of problems, including fracture.
We refer to the method abstracted from the specifics of the GFEM context as
the global-local enrichments method. It builds on the global-local or zooming
methods [27, 70, 88, 136] developed in the FEM context since the 1970s. These are
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global problem

boundary data

enrichment

local problem

Figure 1.1: The global-local enrichments method for partition of unity methods as intro-
duced in [23].

more akin to classical domain decomposition methods without overlap [37], as
the local problem directly constitutes the solution in its domain. In the global-
local enrichments method, however, the final solution is completely given by a
coarse global discretization, with the fine scale feature captured by the computed
enrichment. To achieve this, the global problem is initially solved disregarding
the local feature to provide boundary data for the local problem. The solution of
the local problem now capturing the local feature is used as an enrichment on
the global problem, which then has to be solved again, as depicted in Figure 1.1.
Multiple iterations of this may be required to achieve the full accuracy that is
possible with the invested degrees of freedom, by successively improving the
boundary data on the local problem and thereby the computed enrichment. As
a result, it is possible to have the approximation power provided by the local
ansatz space while only adding one degree of freedom per space dimension
and enriched patch to the global problem. All further global operations such
as linear or nonlinear solvers then benefit from the reduced global problem
size. For sequential simulations, the global-local method works mostly similar
in the meshfree PUM, as we already demonstrated on simple two-dimensional
problems in [9], leading up to the work on this thesis. Besides the rearranging of
degrees of freedom, the global-local method additionally provides an excellent
parallelization opportunity, as local problems are completely independent of
each other. However, due to the construction of the ansatz spaces in the meshfree
PUM, h-refined spaces are not nested in their parents and adaption of the global-
local method is required for it to work efficiently in parallel. In this thesis, we
now propose an efficient parallel global-local method in the meshfree PUM and
evaluate it in numerical experiments in three space dimensions.

Another issue with three-dimensional fracture simulation mentioned in [133]
is the lack of a ‘widely accepted’ crack growth law in linear elastic fracture
mechanics. However, other models exist that handle fracture initiation and
propagation naturally [16]. In this thesis, we focus on two methods that seem
especially promising [21]. First, peridynamics [126], because it includes aspects
of atomistic models not present in linear elasticity and because it has been
successfully applied to the simulation of a wide range of fracture processes [58].
And second, the phase-field method [28], because it is a framework to represent
fracture, with the above-mentioned advantages, that can be formulated with
different material models with different material properties [74]. We expand on
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this in Section 2.1, but in short, the two models differ from linear elasticity in
the following ways: The peridynamic model is given by an integral equation
and not a partial differential equation (PDE), which naturally allows for the
discontinuities across cracks as no derivatives are involved. Furthermore, force
is transferred between material points that are not immediate neighbors, inside
the so-called horizon of a point. Peridynamics is thus a non-local method. In the
phase-field method, a second nonlinear PDE that models the energy dissipation
by the crack is coupled with the original PDE of linear elasticity. In both methods
the crack location is only determined up to the mesh width and accurate results
thus require a fine discretization. Combined with the interaction across the
horizon and the staggered nonlinear iteration respectively, both methods are
computationally very expensive [21] and it is therefore desirable to use them
only locally where needed [16, 58]. On this topic, we want to highlight that the
global-local method depicted in Figure 1.1 also provides an excellent coupling
opportunity as the local problem does not need to be solved with the same
method or even has to discretize the same material model as the global. To be
applicable, a method only needs to accept boundary data from a global PUM

simulation and be able to provide some form of enrichment in return. In this
thesis, we thus generalize global-local enrichments to a coupling method and
present results with peridynamics and the phase-field method used on the local
problem. We want to note, though, that the presented coupling approach is not
limited to those two methods.

Several approaches to couple the non-local peridynamic model to the PDE

model of linear elasticity mostly discretized by finite element based methods
have already been proposed and [18] provides a good overview over them.
However, all these coupling approaches have in common that the final global
solution is given by a combination of the two methods, the peridynamics solution
locally around the crack and the linear elasticity discretization in the remainder
of the computational domain. This introduces an artificial interface, across which
information has to travel from one model to the other, which usually causes
problems such as wave reflection [34]. As it is based on the finite element based
partition of unity method XFEM, we explicitly mention the approach presented
in [35]. In this particular approach, a local peridynamic region is set up around
the crack tip, while the rest of the crack is modeled by the standard enrichment
functions. Yet, here too, an interface to the global XFEM discretization is created.
A coupling method based on global-local enrichments gets rid of this interface
by solving the global solution with the cheap linear elasticity model exclusively,
while still benefitting from the natural crack propagation in the peridynamic
model through the solution of the local problem. During the work on this
thesis, we already presented such a coupling with peridynamics in [8] in joint
work with P. Diehl and R. Lipton. In this thesis, we present selected results of
this publication together with new experiments, where we reproduce physical
experiments with the coupled method for the first time and compare the results.

Several coupling approaches of the phase-field method particularly with the
XFEM have been proposed too [90]. We especially want to highlight the hybrid
XFEM phase-field method (XFIELD) [36], as it is a coupling approach very similar
to the one presented in this thesis. The global-local method has further been
applied to an uncoupled phase-field formulation [31] to improve its runtime
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performance. In this thesis, we present initial results highlighting the possibility
of this combination in the global-local method.

In summary, the contributions of this monograph to the simulation of fracture
in the meshfree PUM and to the application of the global-local method to fracture
simulation thus are the following.

• We bring the simulation of three-dimensional fracture to the meshfree PUM

and address the challenges introduced by complex crack geometries.

• We adapt the global-local enrichments method, such that its parallelization
opportunity can be exploited efficiently with the flat-top cover construction
in the PUM.

• We generalize global-local enrichments to a coupling method, to benefit
from other material and fracture models locally in simulations of linear
elasticity.

The remainder of this thesis is structured as follows.
In Chapter 2, we start with an overview over fracture modeling in both linear

elastic fracture mechanics as well as peridynamics. We then expand on the
former model and detail the singular displacement functions dominating the
linear elasticity solution close to a crack front. Building on them, we explain
the concept of stress intensity factors that are used to predict the rate and
direction of crack growth. To be able to use the stress intensity factors in a
simulation, we present the analysis part of their extraction from a displacement
function. Next, we introduce the PUM at the core of this thesis, which we
use to discretize and solve linear elastic fracture mechanics. Specifically, we
describe the construction of the flat-top partition of unity that enables the stable
transformation, which in turn allows the flexible use of enrichment functions.
We outline the parallelization of the method as well as the construction of
integration cells for the assembly of the linear system, as we need that context
in our parallel implementation of the global-local method.

Chapter 3 then is dedicated to challenges in the simulation of linear elastic
fracture mechanics in the PUM introduced by complex three-dimensional crack
geometries. Here, we especially detail the implementation of fracture simulation
in the Fraunhofer software framework implementing the PUM (PUMA) [112, 120],
which is used for all PUM simulations in this thesis. The implementation is along
the lines of what was presented in the GFEM context [44, 104]. However, handling
of complex three-dimensional fracture had to be realized in PUMA, as prior to
this thesis only two-dimensional cracks were supported. Specifically, we discuss
the geometric representation of cracks chosen in our implementation. This
representation is used to generate integration cells resolving the crack surface
and has to provide efficient queries on the crack geometry for the evaluation
of the crack specific enrichment functions. For those enrichment functions we
present and compare methods to handle the geometric challenge introduced
by kinks in the crack front, where the singularity is unknown. Regarding the
extraction of stress intensity factors, we detail the parallel implementation of the
contour integral method (CIM) and the displacement correlation method (DCM)
and test its soundness in numerical experiments. Lastly, we discuss the update
of the geometry representation during crack growth. We conclude this chapter
with numerical experiments to validate our implementation.
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In Chapter 4 we then present the global-local method and adapt it to the
meshfree PUM. The primary challenge in the adaptation is that it is difficult to
construct nested ansatz spaces in the meshfree PUM, which complicates efficient
evaluation of the computed enrichments compared to the GFEMgl, especially
if local problems overlap. As a consequence, we restrict ourselves to having
non-overlapping local problems, but in contrast to the GFEMgl [66] solve them
in parallel instead of sequentially. Parallel local problems complicate the imple-
mentation, since we now have to exchange the neighbor relationships between
the parallel distributions of different function spaces. In order to exploit the
inherent parallelism of the global-local method, it is further necessary to re-
strict individual local problems to subsets of the overall available processes.
To this end, coordination of different communication units is necessary in the
implementation. As a result of these design choices, we present an efficient and
distributed memory parallel global-local method in the meshfree PUM in this
thesis. We conclude this chapter by evaluating the method and our implementa-
tion in numerical experiments. We assess its accuracy, especially in comparison
to direct, h-refined solutions. Furthermore, we measure the impact of several
techniques to improve the accuracy of the global-local method in the first itera-
tions, such as a bufferzone [49] or Robin boundary conditions [68]. Lastly, we
evaluate the parallel scaling and performance of our adapted implementation in
the PUM.

In Chapter 5 we generalize the global-local method to a coupling method,
where different methods or discretizations can be used on the local problem
easily. While the approach is not limited to those, we present results with
peridynamics and with the phase-field method on the local problem. We address
the following challenges. First of all, we want to note that by combining linear
elastic fracture mechanics with either method, but especially with peridynamics,
we combine two different material models, that can differ in application of load
and the response thereto. Hence, the first step is to verify that under similar
load conditions and in the linear regime of the peridynamic model both models
yield comparable displacements. This is necessary for them to be compatible
along the boundary of the local domain. The second challenge is the lack of
a discrete, sharp boundary in peridynamics, in contrast to the linear elastic
PDE model. In the global-local method, we thus assign boundary conditions on
a layer of peridynamic nodes. Moreover, we do not directly apply the global
conditions on overlapping parts of the local boundary, but instead transmit it
through the global solution. Third, it might not be possible to use the computed
displacement as an enrichment function, since the solution of the different local
peridynamic or phase-field material model may not minimize the global energy.
An alternative is to only extract the crack path from the local solution and to
model it with the standard crack enrichments in the global PUM problem, thereby
using the local model as a crack growth law. We chose the latter approach, as
crack path extraction has to be performed anyways as soon as we move the local
domain with the propagating crack. The initial results in [8] on uncracked and
cracked media look promising and we can further present a so far unpublished
comparison with real world experimental data. We conclude this chapter with
initial results of coupling the PUM with a local phase-field model also discretized
by the PUM. To this end, we run a coupled experiment with automatic crack
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path extraction in two space dimensions and show a simulation in three space
dimensions as an outlook.

To conclude the thesis, we present several practical use cases in Chapter 6,
which can now be simulated with PUMA due to the implementation carried out
for this thesis. Especially notable here is the new possibility of three-dimensional
fracture simulation in PUMA, which enables a variety of new research possibili-
ties. Lastly, we discuss the findings of this thesis in Chapter 7.





2F O U N D AT I O N

In this thesis, we apply global-local enrichments to the simulation of fracture. To
lay the foundation, we first introduce ways of modeling fracture in continuum
mechanics in Section 2.1 and provide more specifics of linear elastic fracture
mechanics in Section 2.2. In Section 2.3, we introduce the partition of unity
method that enables the use of enrichments and thus the global-local method.
Throughout this thesis we use the PUM to discretize the equations of linear
elasticity. Other models of fracture are revisited in Chapter 5, where the global-
local method is used to couple different material and thus fracture models.

2.1 fracture modeling

In this section, we are concerned with the modeling of fracture especially in
linear elasticity. To get a clear overview over the modeling assumptions, we
start with (classical) continuum mechanics and linear elasticity. In continuum
mechanics, physical bodies are assumed to be a continuous mass rather than
interacting particles. Classical continuum mechanics further assumes that only
directly neighboring material points transfer force, hence analysis can be re-
stricted to infinitesimal small regions around points [58, 121]. In the following
we motivate the model of linear elasticity. The presentation in this thesis is based
on [13] and we refer to [129] for more details.

Br(x)

x

x+ v

u(x)

Φ(Br(x))

Φ(x)

Φ(x+ v)

Figure 2.1: Deformation Φ(Br(x)) of a neighborhood Br(x) along the displacement u.

Consider a body Ω that is deformed into Φ(Ω) under some load, where
Φ(x) := x+u(x) is assumed to be a smooth function and u(x) is the displacement
at each point, compare Figure 2.1. To measure the deformation or strain the body
is experiencing, we compare the squared distance of two points x and x+ v with
that of their images Φ(x) and Φ(x+ v). Since we are only interested in points in-
finitesimally close to x, we can approximate Φ(x+ v) −Φ(x) ≈ DΦ(x)v =: F(x)v

using Taylor expansion, where F = I+ Du is the deformation gradient. We can
thus write

‖Φ(x+ v) −Φ(x)‖2 ≈ vT (FTF)(x)v and ‖x+ v− x‖2 = vT Iv. (2.1)

9
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We then use half the difference of these distances to define the strain

E(x) :=
1

2

[
(FTF)(x) − I

]
=
1

2

[
Du+ (Du)T + (Du)TDu

]
. (2.2)

Note that this strain definition is inherently nonlinear due to the quadratic term
on the right hand side, which, from a numerical perspective, is expensive to
simulate and only necessary for large displacements or strains. In this thesis,
we are only interested in infinitesimal strain theory, as opposed to e. g. finite
strain [72] theory, and exclusively use the linear infinitesimal strain tensor

ε(u) =
1

2

[
Du+ (Du)T

]
(2.3)

given by dropping the quadratic term in (2.2). The strain is related to stress by
the linear Hooke’s law [129]

σ(u) = C : ε(u), (2.4)

where Hooke’s tensor C represents material parameters and σ(u) is the mate-
rials stress due to the deformation. In general anisotropic materials, C has 21

independent components. If we restrict ourselves to isotropic materials, however,
Hooke’s tensor is determined by two material constants only [13, 129]: Using
the Lamé parameters λ and G, the stress σ(u) is given by

σ(u) = 2Gε(u) + λ tr(ε(u))I, (2.5)

where G is also referred to as the shear modulus. On a bounded domainΩ ⊂ Rd

requiring balance of external and internal forces, the governing equilibrium
equation is then given by [14]

∇ · σ(u) = b in Ω

u = ū on ΓD ⊂ ∂Ω

σ(u) ·n = t̄ on ΓN = ∂Ω \ ΓD,

(2.6)

where b are volume forces acting on the domain and T(u) := σ(u) · n is the
traction with respect to the outward unit normal n on the boundary ∂Ω. The
boundary data ū and t̄ are the prescribed displacement and traction, respectively.
The model (2.6) is called geometrically linear if a linear strain function is chosen,
and has linear material if a linear stress is chosen. When interested in a dynamic
problem in time and not in the equilibrium solution, the second derivative ü of
the displacement in time t is not zero and the equation of motion reads

ρ(x)ü(x, t) = −∇ · σ(u)(x, t) + b(x, t) in Ω× [0, T ]

u(x, 0) = u0(x) in Ω

u(x, t) = ū(x, t) on ΓD × (0, T ]

T(u)(x, t) = t̄(x, t) on ΓN × (0, T ],

(2.7)

with material density ρ, initial state u0 and boundary conditions ū, t̄ in time.
Fracture is not easily representable in this model. First of all, the displacement

has to be discontinuous across the crack, hence the PDE is not valid there.
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In numerical simulation this is either bypassed by introducing an artificial
boundary into the domain or by the use of specialized basis functions when
solving the weak formulation. This of course requires exact knowledge of the
crack location and thus crack initiation is not possible in this model. Furthermore,
from a physics point of view we know that except for perfectly brittle fracture,
a process zone occurs around the crack tip [99], where the material shows
plastic deformations and the response is highly nonlinear. In the PDE model (2.6)
with (2.5) as constitutive relation and (2.3) as the strain, one can show that a
solution has infinite stress towards the crack tip [129], which does not occur in
practice, though. From the PDE solution one can, however, extract coefficients
KI, KII and KIII, the so-called stress intensity factors, which describe that
singularity close to the crack front [55], see Section 2.2 for details.

The assumption in linear elastic fracture mechanics is that the process zone is
small compared to, for example, the crack length and that the solution inside it
is essentially determined by the stress intensity factors. This is also known as the
K fracture model [41], compare Figure 2.2. Of course, modeling the plastic zone
at the crack tip is possible, but expensive, since such models are nonlinear [64,
65].

crack R
rp

ρ

K dominated

Figure 2.2: Plastic zone inside radius 0 < rp and process zone inside radius ρ < rp.
Between rp and R we have the K dominated zone. Further away from the tip
than R, the singularity does not dominate the elasticity solution and other
components have to be considered as well. Inside the plastic or even the
process zone, the elastic model is not meaningful. However, in the K model,
we assume the material response there to be governed by the stress intensity
factors.

The stress intensity factors determine the modes of crack opening (I), sliding
(II) and tearing (III), sketched in Figure 2.3. That is, they determine the respective
contributions of those modes to the local stress. However, if the crack grows
at all, in which direction and how far is still undefined. To this end, a crack
growth law is required, which in a general form is not available in linear elastic
fracture mechanics [16]. For two classes of crack growth, unstable and fatigue
crack growth, several estimates that fit experimental data to varying degrees
exist however.

Fatigue crack growth happens in the cyclic application of medium loads [109].
In pure mode I loading, it occurs if the stress intensity factor range

∆KI := KI,max −KI,min (2.8)



12 foundation

(a) Mode I. (b) Mode II. (c) Mode III.

Figure 2.3: Crack opening modes in three space dimensions.

in a load cycle is between a material specific threshold value ∆KI,th and a
critical value ∆KI,C. That is, when

∆KI,th < ∆KI < ∆KI,C. (2.9)

In this case, several crack growth equations are available to predict the crack
growth rate, i. e. the crack update in each load cycle. Paris law [101] is probably
the most prominent here. In mixed-mode loading a cyclic equivalent stress
intensity factor ∆Keq(KI,KII,KIII) can be computed and used in the mode I
models. Here, the update direction can be estimated as in unstable crack growth.

Unstable crack growth occurs [109] if KI in mode I loading, or an equiva-
lent stress intensity factor Keq(KI,KII,KIII) in mixed-mode loading, is greater
than the material specific critical fracture toughness KIC, which needs to be
determined experimentally. Here, the crack update length cannot be estimated
and the crack path induced by a static load has to be solved incrementally.
Several criteria to predict the crack growth direction based on the extracted
stress intensity factors exist [109] and we present one in Section 2.2.3.

In summary, crack growth simulation based on the solution of linear elasticity
is possible, but several modeling choices have to be made along the way. Crack
initiation is also out of scope. Of course, different approaches of modeling
fracture have been proposed [16]. In this thesis, we consider the phase-field
method [28] and the peridynamics [126]. Both differ in their crack representation
from linear elastic fracture mechanics in that they do not have a sharp disconti-
nuity across the crack, but rather smear or regularize it across an area. By this,
‘the crack is not realized as a topological discontinuity but rather through its
constitutive behavior’ [16], which avoids the singularity introduced in the PDE

model, but requires fine resolution globally to obtain accurate crack paths.
In phase-field methods [11, 12, 28] for brittle fracture a second field is intro-

duced that models the crack continuously from uncracked to cracked material.
This phase field is the solution of a second nonlinear PDE that models the energy
dissipation by the crack and is coupled to the original PDE of linear elasticity.
As a consequence, cracks initiate and evolve naturally at the cost of a smeared
crack location, different crack opening width compared to a discontinuous
crack representation and high computational cost [36]. We want to note that
the phase-field method is an approach to model fracture and not a specific
material model, i. e. various models with different material properties exist in
that framework, see [74] for a review.
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In peridynamics [126], the force transmission in the material is modeled by an
integral equation. Thereby, the model gets rid of derivatives and the associated
problem of discontinuities across cracks. While peridynamics is a continuum
mechanics model, it differs from classical continuum mechanics in that material
points interact across a radius δ with each other. Such interactions between
non-neighboring particles have been observed in theoretical and experimental
studies [121]. Peridynamics is therefore a non-local model and models slightly
different physics than classical continuum mechanics. However, many formula-
tions recover the linear elastic material model in the limit of vanishing horizon
δ→ 0 under some assumptions, notably the absence of cracks [26, 128]. Note
that we discuss bond-based peridynamics in this thesis only.

In bond-based peridynamics the equation of motion is given by [126]

ρ(x)ü(x, t) =
∫
Bδ(x)

fPD

(
y− x, u(y, t) − u(x, t)

)
dy+ b(x, t), (2.10)

where ρ is the material density, u the displacement, b the external force density
and the pair-wise force density fPD encodes the material model. In this thesis,
we consider the bond-based softening model presented in [75, 76], where the
pair-wise force density

fPD(∆x,∆u) :=
∂SψPD(∆x,∆u)

|∆x|
e∆x (2.11)

is given by the derivative of the pair-wise force potential ψPD with respect to the
bond stretch S and

e∆x :=
y− x

|y− x|
(2.12)

is a unit vector. The bond stretch S between two points x,y is determined by their
difference ∆x = y− x and the difference between their respective displacements
∆u = u(y, t) − u(x, t) by

S(∆x,∆u) :=
∆u

|∆x|
· e∆x =

u(y, t) − u(x, t)
|y− x|

· y− x
|y− x|

. (2.13)

The bond stretch derivative of the pair-wise force potential

∂SψPD(∆x,∆u) = Jδ(|∆x|)
∂SgPD

(
|∆x|S2(∆x,∆u)

)
δµ(Bδ(0))

(2.14)

is defined by the influence function Jδ, which is chosen to be piecewise constant

Jδ(r) :=

{
1 if 0 6 r < δ

0 else
(2.15)

in this thesis, and the double well potential

gPD(r) := C(1− exp[−βr]), (2.16)
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where C and β are material parameters. Note that no derivatives of the displace-
ment u appear in the peridynamic formulation (2.10), which is why discontinu-
ities across cracks pose no challenge.

Given the critical energy release rate Gc, Young’s modulus E and Poisson’s
ration ν, the material parameters are given by

C := π
Gc

4
and β :=

4Eν

C(1− ν)(1− 2ν)
. (2.17)

Note, however, that in bond-based peridynamics Poisson’s ratio is fixed to 1/3 for
plain-strain [69], hence our peridynamics material model is defined by the energy
release rate and Young’s modulus only. Figure 2.4 further shows the derivative
of the double well potential gPD (2.16) as used in the force density (2.11). Here,
the force initially increases almost linearly with the bond stretch and then decays
to zero after some critical bond stretch rc. This implies that no bonds get broken
and cracks will heal upon removing the load, unlike in other peridynamic
models.

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r

g ′PD

Figure 2.4: Derivative of double well potential gPD with parameters C = 2 and β = 8.
Force between points increases until material capacity is reached, where
bonds begin to soften, but never break.

In Chapter 5 we discuss combining the advantages of the phase-field and
peridynamics model with the linear elastic PDE model through the global-local
method, by using the expensive models only locally where required. Until then,
we only consider linear elastic fracture mechanics, on which we provide more
details in the next section.

2.2 linear elastic fracture mechanics

In linear elasticity, we consider only isotropic material in this thesis. We are thus
interested in solving the PDE model (2.6) with (2.5) as the linear constitutive
relation and (2.3) as the linear strain. However, we usually use Poisson’s ratio ν
and Young’s modulus E to define Hooke’s tensor, i. e. the material properties,
where we have the relations

G =
E

2(1+ ν)
and λ =

Eν

(1+ ν)(1− 2ν)
. (2.18)
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Before we get into the specifics of linear elasticity solutions around cracks, we
introduce the weak formulation of (2.6) for later reference. The weak form of
linear elasticity is the actual problem we are concerned with in the remainder of
the thesis. We state it in H10(Ω) and assume that non-zero Dirichlet boundary
data is treated separately in the discretization, as described in Section 2.3.4.
Multiplying (2.6) by a test function v ∈ H10(Ω) and using Gauss’s theorem we
arrive at the following problem [13]: find u ∈ H10(Ω) such that∫

Ω

σ(u) : ε(v)dx =

∫
ΓN

t̄vds +

∫
Ω

b vdx (2.19)

for all test functions v ∈ H10(Ω). Trial and test functions employed in our PUM

are given in Section 2.3.2. Regarding boundary conditions, we refer to fixing
the displacement u on ΓD as setting Dirichlet boundary conditions. We refer to
setting a traction t̄, i. e. to applying a force on the domainΩ, as setting Neumann
boundary conditions. For problem (2.6) to be well posed, we need ΓD to have
positive (d-1)-dimensional Lebesgue measure. We thus have to set at least some
Dirichlet boundary conditions or exclude rigid body motions separately.

In the following, we focus on the arising singularities around crack fronts in
linear elasticity and definition and extraction of so-called stress intensity factors.
The mathematical analysis here is limited to simple crack geometries in three
space dimensions. We discuss further challenges of complex crack geometries
in Chapter 3.

2.2.1 Crack Singularity

In this section, we are concerned with the shape of solutions of (2.6) around
crack tips in two or crack fronts in three space dimensions. Note that a real
cracked body will have a region of inelastic deformation around the crack tip
due to stress concentration there. Hence, elastic analysis is of practical utility
only if we assume the region of inelastic deformation to be small compared
to other characteristic lengths of the problem at hand. This section closely
follows [137].

Ω

crack

x
r

θ

Γ∗

Figure 2.5: Two-dimensional crack problem with polar coordinate system (r, θ) with
respect to crack tip and sketched extraction path Γ∗.

On a domain Ω ⊂ R2 consider a two-dimensional crack problem in polar
coordinates (r, θ) with respect to the crack tip as sketched in Figure 2.5. The
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crack is parallel to the x1 coordinate and we assume that the crack is traction
free and we ignore rigid body motions. Consider the sequence {λi}i∈N of real
numbers given by

λi =
1

2
,
3

2
, 2,

5

2
, . . . (2.20)

With

Λi :=
λi − 1

λi + 1
and Qi :=

−Λi sin((λi − 1)π)
sin((λi + 1)π)

(2.21)

we define the functions ΨIλi ,Ψ
II
λi

: R 7→ R2 in terms of the angle θ by

ΨIλi(θ) :=

(k−Qi(λi + 1)) cos(λiθ) − λi cos((λi − 2)θ)

(k+Qi(λi + 1)) sin(λiθ) + λi sin((λi − 2)θ)

, (2.22)

where the Kolosov constant k = 3− 4ν is a material parameter depending on
Poisson’s ratio ν and

ΨIIλi(θ) :=

 (k−Qi(λi + 1)) sin(λiθ) − λi sin((λi − 2)θ)

−(k+Qi(λi + 1)) cos(λiθ) − λi cos((λi − 2)θ)

. (2.23)

Sufficiently close to the crack, any solution u∗ of linear elasticity can then be
written [137] as

u∗(r, θ) =
∞∑
i=1

AIi
2G
rλiΨIλi(θ) +

∞∑
i=1

AIIi
2G

rλiΨIIλi(θ), (2.24)

where G = E/2(1+ν) is the shear modulus. Both infinite series converge abso-
lutely for r < r0 for some 0 < r0. Note that the series actually also converge for
−λi and the resulting function u∗ is a valid solution to the crack problem, but
with infinite strain energy. The first series describes mode I, the second mode II
crack opening. The opening modes are visualized in Figure 2.3.

Γ∗

ξ2

ξ1

ξ3

r

θ

x1 x3

x2

Figure 2.6: Three-dimensional crack problem with global coordinates (x1, x2, x3), local
coordinates (ξ1, ξ2, ξ3) at a point on the crack front and corresponding
cylindrical coordinates (r, θ, ξ3). Sketched extraction path Γ∗.

In three dimensions, consider a single through the thickness crack with
straight crack front, as depicted in Figure 2.6. Again, we assume that the crack is
traction free and ignore rigid body motions. For the analysis we further assume
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global (x1, x2, x3) and local coordinates (ξ1, ξ2, ξ3) to coincide, such that the
crack lies in the (x1, x3)-plane. The general case then requires additional coordi-
nate transformations. While we do not have a closed form solution like (2.24) in
three space dimensions, the following statements about the displacement field
u∗ around the crack front are possible [61].

Considering only mode I and II crack opening first, that is u∗1 = u∗1(r, θ),
u∗2 = u∗2(r, θ) and u∗3 = 0, we are essentially back in the two-dimensional case.
The only singular contributions to the displacement field u∗ around the crack
front are

AI1
√
r

2G
ΨIλ1 and

AII1
√
r

2G
ΨIIλ1 (2.25)

extended by zero in the third coordinate.
In the mode III case, with u∗1 = u∗2 = 0 and u∗3 = u∗3(r, θ), the only singular

contribution is given by

u∗3 =
2AIII

√
r

G
sin
(
θ

2

)
. (2.26)

Hence we define

ΨIII1 (θ) :=

(
0 0 sin

(
θ

2

))T
. (2.27)

2.2.2 Stress Intensity Factors

The generalized stress intensity factors AIi , A
II
i and AIII are unknown a priori

and their respective displacement functions

uI :=

√
r

2G
ΨIλ1(θ), uII :=

√
r

2G
ΨIIλ1(θ) and uIII :=

2
√
r

G
ΨIII1 (θ), (2.28)

that depend only on the polar part r, θ of the coordinates around the crack front,
have a singularity in their derivative due to the exponent on the radius. Thus,
in a region close enough to the crack front but still outside the process zone,
compare Figure 2.2, the functions (2.28) capture the material response to the
applied load. In practice we are thus interested in computing the corresponding
coefficients AI1, AII1 and AIII, which are related to the stress intensity factors KI
(mode I), KII (mode II) and KIII (mode III) of linear elastic fracture mechanics
by

KI := A
I
1

√
2π, KII := A

II
1

√
2π and KIII = A

III
√
2π. (2.29)

In the following, we present two methods to extract these factors from a com-
puted numerical solution. Note that extraction here is always at a point on the
crack front, which we still assume to be straight and flat. As already noted
earlier, we discuss challenges of complex crack and crack front geometries in
Chapter 3.

2.2.2.1 Contour Integral Method

One method to extract the coefficients AI1, AII1 and AIII from a displacement
function is the CIM [30, 44, 137]. Here, extraction is performed by integration
on a closed, counterclockwise path Γ∗ in the (ξ1, ξ2)-plane perpendicular to the
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crack fronts tangent ξ3 around a point on the crack front, compare Figure 2.6.
On that path and with functions u, v : R3 7→ R3, the integrals are given by

IΓ∗(u, v) :=
∫
Γ∗

T(u) · vds−
∫
Γ∗

T(v) · uds, (2.30)

where T is the traction vector on Γ∗ in the extraction plane and in normal
direction away from the point on the crack front. Note that the integral IΓ∗ is
independent of the specific path Γ∗. We define the so-called extraction functions
by

vI :=
1

2G
√
r
ΨI−λ1(θ), vII :=

1

2G
√
r
ΨII−λ1(θ)

and vIII :=
2

G
√
r
ΨIII1 (θ),

(2.31)

which in two space dimension correspond to terms of (2.24) with negative
λi. Note that again we implicitly assume both displacement and extraction
functions defined in the context of the two-dimensional analysis to be extended
by zero in the third component. With constants

CI := IΓ∗(uI, vI), CII := IΓ∗(uII, vII)

and CIII := IΓ∗(uIII, vIII)
(2.32)

computed from the functions (2.28) and (2.31), the generalized stress intensity
factors can be extracted from the crack front expansion (2.24) in two space
dimensions by

AI1 = IΓ∗

(
u∗,

1

CI
vI

)
and AII1 = IΓ∗

(
u∗,

1

CII
vII

)
(2.33)

and in three space dimensions we have

AIII = IΓ∗

(
uIII,

1

CIII
vIII

)
. (2.34)

Since the true solution to our problem is unknown, we extract from a computed
numerical approximation uPU by

KI =
√
2π IΓ∗

(
uPU,

1

CI
vI

)
, KII =

√
2π IΓ∗

(
uPU,

1

CII
vII

)
and KIII =

√
2π IΓ∗

(
uPU,

1

CIII
vIII

)
.

(2.35)

Computing the integrals (2.35) numerically via the CIM is discussed in Sec-
tion 3.2.1 in detail.

2.2.2.2 Displacement Correlation Method

A simple alternative to the CIM is the DCM [42, 44, 85], which estimates the
stress intensity factors by the jump in displacement across the crack. While
potentially less accurate than integral based methods when extracting from an
analytic crack displacement function, it is computationally cheap to evaluate
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and more robust to errors in the computed displacement as it does not evaluate
the derivative.

Let u(r, θ, ξ3) be the displacement in cylindrical coordinates around a straight
crack front as in Figure 2.6. We define the jump across the crack in the i-th local
coordinate (ξ1, ξ2, ξ3) by

vui(r)w := ui(r,π, 0) − ui(r,−π, 0). (2.36)

Then the approximation

KI,r :=

√
2π

r

G

k+ 1
vu2(r)w (2.37)

of the real stress intensity factor KI is of order O(r) if we extract directly from
the crack front displacement functions (2.28). Similarly we define

KII,r :=

√
2π

r

G

k+ 1
vu1(r)w (2.38)

and

KIII,r :=

√
2π

r

G

4
vu3(r)w. (2.39)

The approximation can be further improved by using two extraction radii
ra < rb and Richardson extrapolation

K̂i :=
rb

rb − ra

(
Ki,ra −

ra

rb
Ki,rb

)
(2.40)

for i ∈ [I, II, III], making K̂i an order O(r2) approximation of the true stress
intensity factors if we extract from the crack front expansion. Extracting from
a computed displacement introduces additional error not easily captured in
terms of r, though. In practice, we thus use several pairs of extraction radii and
average the results to account for the displacement error.

2.2.3 Crack Growth Criteria

By the application of a crack growth law based on the stress intensity factors,
a decision can be made whether and in which direction a crack grows. Unfor-
tunately, there is not one definitive crack growth law in linear elastic fracture
mechanics, but several exist in the literature. Such a law then estimates two
growth angles, as sketched in Figure 2.7.

The comparison in [109] suggests that Schöllmann’s criterion and the criterion
of Richards are able to capture mixed-mode crack growth effects in three space
dimensions. Based on the decision in [104] we chose Schöllmann’s criterion
introduced in [113]. Therein, it is argued that in a lot of cases, cracks in experi-
ments grow radially from the crack front into the direction that is perpendicular
to the maximum principal stress σ

′
1 given by

σ
′
1 :=

σα + σz
2

+
1

2

√
(σα − σz)

2 + 4w2αz, (2.41)
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α̂

ψ̂

Figure 2.7: Crack growth directions for pure and mixed fracture modes in three space
dimensions. Mode II introduces a deflection angle α̂ and mode III a twisting
angle ψ̂.

with

σα =
KI

4
√
2πr

(
3 cos

(α
2

)
+ cos

(
3α

2

))
−

KII

4
√
2πr

(
3 sin(

α

2
) + 3 sin(

3α

2
)

) (2.42)

and

wαz :=
KI

4
√
2πr

(
sin(

α

2
) + sin(

3α

2
)

)
+

KII

4
√
2πr

(
cos
(α
2

)
+ 3 cos

(
3α

2

))
.

(2.43)

Setting σz = 0 for plane stress condition and assuming that the crack growth
direction is perpendicular to σ

′
1, we can find the crack deflection angle α̂ at

∂σ
′
1

∂α

∣∣∣∣∣
α=α̂

= 0 and
∂2σ

′
1

∂α2

∣∣∣∣∣
α=α̂

< 0. (2.44)

The angle α̂ fulfilling (2.44) can then be found [113] by solving

0 =− 6KI tan
(
α̂

2

)
−KII

(
6− 12 tan2

(
α̂

2

))
+

{[
4KI − 12KII tan

(
α̂

2

)]
·
[
−6KI tan

(
α̂

2

)
−KII

(
6− 12 tan2

(
α̂

2

))]
−32K2III tan

(
α̂

2

)(
1+ tan2

(
α̂

2

))2}

·

{[
4KI − 12KII tan

(
α̂

2

)]2
+ 64K2III

(
1+ tan2

(
α̂

2

))2}−1/2

,

(2.45)

which in practice can be done efficiently by a numerical root finding algorithm,
such as Brent’s method [15], as we know that the angle α̂ is bounded by ±π/2,
or actually ±70.5◦ for pure mode II loading. The twisting angle ψ̂ can then be
calculated as

ψ̂ =
1

2
arctan

(
2wαz(α̂)

σα(α̂) − σz(α̂)

)
, (2.46)
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with
σz(α) =

8ν

4
√
2πr

(
KI cos

(α
2

)
−KII cos

(α
2

))
(2.47)

and the Poisson’s ratio ν. To decide whether a crack grows at all, [113] gives the
following formula

Kv =
1

2
cos
(
α̂

2

)[
KI cos2

(
α̂

2

)
−
3

2
KII sin(α̂)

+

√(
KI cos2

(
α̂

2

)
−
3

2
KII sin(α̂)

)2
+ 4K2III

 (2.48)

to compute a comparative value Kv to compare against the critical material
parameter Kc.

2.3 partition of unity method

Partition of unity methods are discretizations of the Galerkin method for PDEs,
introduced in [83] to overcome limitations in the choice of basis functions in
classical FEMs. The key concept of partition of unity methods is a compactly
supported PU that covers the computational domain Ω. To each PU function local
approximation spaces are attached, the sum over which yields a global, finite-
dimensional approximation space. Thus, and in contrast to FEMs, arbitrary basis
functions can be incorporated where needed. By using only few problem specific
basis functions, partition of unity methods can thereby achieve comparable or
better approximation properties with less degrees of freedom, especially in
problems that involve singularities or discontinuities.

We can distinguish two classes of partition of unity methods: Meshfree meth-
ods, with different ways of defining the underlying PU, and methods based on
finite elements. The latter utilize the fact that classical linear finite element hat
functions already form a compactly supported PU that covers the mesh and
thus the computational domain. They originate from the partition of unity finite
element method by Melenk and Babuška [83] and are widely used today as
either the GFEM or the XFEM, introduced by Duarte, Babuška and Oden in [22] or
in [86] by Moës, Dolbow and Belytschko, respectively. In first meshfree partition
of unity methods, the PU was constructed from point sets based on moving least
squares approaches, as for example done in hp-clouds [24]. This idea evolved
into the particular PUM by Schweitzer introduced in [114, 115], which is used
throughout this thesis. Therein an automatic construction of a PU starting from
a bounding box of the domain Ω is stated that, in contrast to finite element
based partition of unity methods, allows to guarantee global stability of the
basis functions.

For context, we assume to solve the abstract weak formulation of a PDE stated
in V, which is

find u ∈ V : a(u, v) = l(v) ∀v ∈ V. (2.49)
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In the Galerkin method we reduce that equation to a finite dimensional subspace
Vn ⊂ V spanned by basis functions {vi}i6n. With the expansion∑

j6n

ũjvj = u ∈ Vn, (2.50)

we arrive at the equation∑
j6n

ũj a(vj, vi) = l(vi) ∀i 6 n, (2.51)

which can be rewritten as the linear system of equations

Aũ = b with Aij = a(vj, vi) and bi = l(vi), (2.52)

where ũ ∈ Rn is the coefficient vector, A ∈ Rnxn the stiffness matrix and
b ∈ Rn the right hand side vector.

A partition of unity method has two key ingredients: a partition of unity
{ϕi | i 6 N} and local approximation spaces Vi = span

{
ϑni |n 6 ni

}
, with which

the finite dimensional approximation space Vn = VPU is defined by

VPU :=

N∑
i=1

ϕiVi = span
{
ϕiϑ

n
i

∣∣ i 6 N, n 6 ni
}

. (2.53)

In the following, we first state properties of an abstract partition of unity
method more precisely, introduce the PU and local basis functions chosen in this
thesis and present how we can transform them into a stable basis. We further
introduce a way of incorporating essential boundary conditions in this meshfree
discretization and detail the construction of integration cells suitable for the
evaluation of our product basis functions. The latter is necessary for the integrals
that need to be evaluated during the assembly of the linear system (2.52). The
presentation of the PUM is reduced to the level of detail required for this thesis,
with special emphasis on the way it is actually implemented in the software
framework PUMA. We refer more interested readers to [115].

2.3.1 Abstract PUM and Cover

We start with a specialized definition of a partition of unity for this thesis.

Definition 2.1 (Partition of Unity). Let Ω ⊂ Rd be an open set, M < N ∈ N

and C∇ and C∞ be positive constants. Let {ϕi | i 6 N} be Lipschitz functions and a
partition of unity in the usual sense

0 6 ϕi(x) 6 1 and
N∑
i=1

ϕi ≡ 1 on Ω, (2.54)

with an upper bound on the covering index λCΩ . Specifically, we require that for all
x ∈ Ω

λCΩ(x) := card
({
ϕi
∣∣ x ∈ ωi}) 6M� N, (2.55)
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where ωi := supp(ϕi)
◦ are the so-called patches. Further, assume that the patches ωi

are Lipschitz domains and let

‖ϕi‖L∞(Rd) 6 C∞ and ‖∇ϕi‖L∞(Rd) 6
C∇

diam(ωi)
. (2.56)

For this monograph, PU refers to a set of functions {ϕi | i 6 N} with these properties.
The PU is said to be of degree k ∈N0 if

ϕi ∈ Ck
(

Rd
)

and
∥∥∥∇kϕi∥∥∥

L∞(Rd)
6

C∇k

diam(ωi)
(2.57)

for all i 6 N.

Definition 2.2 (Cover). Let {ϕi} be a PU as in Definition 2.1. The set of patches
ωi := supp(ϕi)

◦ is referred to as a cover CΩ := {ωi | i 6 N} of the domain Ω.

Definition 2.3 (PUM-Space). Let Vi = span{ϑni |n 6 ni} ⊂ H1(ωi) be function
spaces of dimension ni subordinate to a PU {ϕi} as in Definition 2.1. Then we define
the PUM-space VPU by

VPU :=

N∑
i=1

ϕiVi =

N∑
i=1

ϕi span
{
ϑni
∣∣n 6 ni

}
= span

{
ϕiϑ

n
i

∣∣ i 6 N, n 6 ni
}

.

(2.58)

Note that the local spaces Vi are completely independent of each other, both in dimension
ni and incorporated functions ϑni . Also, all basis functions are product functions, since
the local basis functions ϑni are multiplied with the PU functions ϕi.

For PUM-spaces as in Definition 2.3 we have have following error estimate [4,
115].

Theorem 2.1 (Approximation Property). Let Ω ⊂ Rd be a Lipschitz domain and
{ϕi} be a PU as in Definition 2.1. We assume the covering index of the cover CΩ to be
uniformly bounded, λCΩ(x) 6M ∈N for all x ∈ Ω. Let u∗ ∈ H1(Ω) and assume we
have approximation spaces Vi = span{ϑni |n 6 ni} ⊂ H1(ωi), such that we can find
functions ui ∈ Vi satisfying

‖u∗ − ui‖L2(Ω∩ωi) 6 ε̂i and ‖∇(u∗ − ui)‖L2(Ω∩ωi) 6 ε̃i (2.59)

for all i = 1, . . . ,N. That is, on each patch Ω ∩ωi we can approximate the target
function u∗. Then the PUM function

uPU :=

N∑
i=1

ϕiui ∈ VPU ⊂ H1(Ω) (2.60)
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approximates u∗ in H1(Ω). Specifically, it satisfies the estimates

‖u∗ − uPU‖L2(Ω) 6
√
MC∞

(
N∑
i=1

ε̂2i

) 1
2

,

‖∇(u∗ − uPU)‖L2(Ω) 6
√
2M

(
N∑
i=1

(
C∇

diam(ωi)

)2
ε̃2i +C

2∞ε̂2i
) 1
2

,

(2.61)

where C∇ and C∞ are the constants from Definition 2.1.

If the covering index λCΩ is independent of N, the estimates (2.61) show
that the global error is of the same order as the local errors. With the cover
construction presented in Section 2.3.5 we always have λCΩ 6 8 for uniformly
refined covers. Note that under the additional assumption of a nonnegative PU,
the
√
M factor can be dropped from the L2-estimate [118].

If we further assume that diam(ωi) ≈ h ∀i 6 N for all patches and that
all local approximation spaces Vi contain polynomials of degree p, then for
u∗ ∈ Hk(Ω) with 1 6 k and p 6 k− 1 we have

‖u∗ − ui‖L2(Ω∩ωi) 6 Ch
p+1‖u∗‖Hk(Ω∩ωi) := ε̂i,

‖∇(u∗ − ui)‖L2(Ω∩ωi) 6 Ch
p‖u∗‖Hk(Ω∩ωi) := ε̃i.

(2.62)

In this case, the estimates (2.61) have the form of errors estimates for classical
finite elements with uniform h-refinement [4]:

‖u∗ − uPU‖L2(Ω) 6
√
MC∞Chp+1‖u∗‖Hk(Ω),

‖∇(u∗ − uPU)‖L2(Ω) 6
√
2M(C∞ +C∇)Ch

p‖u∗‖Hk(Ω).
(2.63)

Note, however, that the estimates do not state that the representation of uPU
is unique in the PUM-space. That is, the shape functions ϕiϑni could be linearly
dependent. For example, in one space dimension, the PU functions

ϕ1(x) := 1− x and ϕ2(x) := x (2.64)

on the domain Ω := (0, 1) with the polynomial basis functions

ϑ1i (x) := 1 and ϑ2i (x) := x (2.65)

generates the PUM-space

VPU = span{(1− x), (1− x)x, x, x2} (2.66)

containing all quadratic polynomials on (0, 1), but with four basis functions
instead of three. Note that (2.64) is the coarsest possible GFEM partition of unity
on (0, 1), where the PU functions fully overlap. To eliminate linear dependencies
we thus require an additional property of the cover.

Definition 2.4 (Flat-Top Property). Let {ϕi} be a PU as in Definition 2.1. We define
the sub-patches

ωFT ,i := {x ∈ Ω
∣∣ϕi(x) = 1} ⊂ ωi. (2.67)
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The PU has the flat-top property, if there exists a positive constant CFT such that

µ(ωi) 6 CFTµ
(
ωFT ,i

)
∀i 6 N, (2.68)

where µ is the Lebesgue-measure. We have C∞ = 1 for a PU satisfying (2.68).

Given linearly independent local approximation spaces Vi, the flat-top prop-
erty is a sufficient condition for linear independence of the global PUM-space
VPU, that is, we have

N∑
i=1

ϕi

dim(Vi)∑
n=1

uni ϑ
n
i ≡ 0⇐⇒

dim(Vi)∑
n=1

uni ϑ
n
i ≡ 0 ∀i 6 N (2.69)

for a PU with the flat-top property. The PUM-space VPU then is the direct sum of
the local approximation spaces Vi

VPU =

N⊕
i=1

ϕiVi. (2.70)

Note that on general geometries, i. e. not axis aligned boxes, we actually require
the strict flat-top property introduced in [149] for guaranteed global linear
independence. There, (2.68) is replaced by

µ(ωi) 6 CFTµ
(
ωFT ,i ∩Ω

)
∀i 6 N (2.71)

to account for the possibly small intersection of a patch with the computational
domain. An improved cover construction to account for this issue is also in-
troduced in [149], but not necessary for this thesis, as we include geometric
difficulties only through crack surfaces in our numerical examples and compute
on otherwise simple domains. For the PUM employed in this thesis, we arrive at
the following definition of an admissible cover.

Definition 2.5 (Admissible Cover). Let Ω ⊂ Rd be an open set. Let ωi ⊂ Rd be
open sets with ωi ∩Ω 6= ∅ for i 6 N. The collection CΩ := {ωi | i 6 N} is called
an admissible cover of Ω and the sets ωi are denoted admissible cover patches if the
following conditions are satisfied:

• Global covering:

Ω ⊂
N⋃
i=1

ωi. (2.72)

• Minimal overlap: There exists a constant 0 < CFT such that

µ(ωi) 6 CFTµ
(
{x ∈ ωi

∣∣ λCΩ(x) = 1}
)

∀i 6 N. (2.73)

• Bounded overlap: There exists 0 < M ∈N such that for all x ∈ Ω we have

λCΩ(x) = card
({
i
∣∣ x ∈ ωi}) 6M� N, (2.74)
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• Sufficient overlap: There exists 0 < CS such that for all x ∈ Ω there exists at
least one cover patch ωi such that x ∈ ωi and

CS diam(ωi) 6 dist(x,∂ωi). (2.75)

• Comparability of neighboring patches: A subset

Ci := {ωj ∈ CΩ |ωj ∩ωi 6= ∅} ⊂ CΩ (2.76)

is called a local neighborhood or local cover of a particular cover patch ωi ∈ CΩ.
There exists a constant 0 < CN 6 1 such that for all intersecting patches
ωi,ωj ∈ CΩ with ωi ∩ωj 6= ∅ we have

diam
(
ωj
)
6 diam(ωi) =⇒ diam(ωi)

diam
(
ωj
) 6 CN. (2.77)

For a given cover with the flat-top property and some overlap, we can of
course often find such constants, as there are only a finite number of patches. We
are thus especially interested in an automatic cover construction that generates
an admissible cover for given constants CFT and CS and for a given domain.
Such a construction is detailed in Section 2.3.5.

2.3.2 PU and Local Basis Functions

An admissible cover can be used to define the PU for our specific PUM using
Shepard functions as follows. Given positive weight functions 0 < Wi(x) per
patch for all x ∈ ωi \ ∂ωi we define

ϕi :=
Wi(x)∑

ωj∈Cj Wj(x)
, (2.78)

where Cj is the neighborhood of the patch ωj as defined in (2.76). The regularity
of the resulting PU is then determined by the smoothness of the employed weight
functions. Note, however, that the construction (2.78) in general yields rational
weight functions in the overlap of patches, which can require high integration
orders.

From this point onwards, we assume patches to be d-dimensional rectangles

ωi =

d⊗
k=1

(cik − ri, cik + ri), (2.79)

with ci the center of the patch and ri its radius. On those patches, we can define
the weight functions as follows. Using affine transformations

Tik : [cik − ri, cik + ri] 7→ [−1, 1] (2.80)
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and a spline function B : [−1, 1] 7→ R, we define the weight function on a patch
ωi by

Wi(x) :=

d∏
k=1

B ◦ Tik(xk). (2.81)

The weight functions are thus tensor products of one dimensional spline func-
tions, whose order can be trivially adjusted to the required regularity. One can
use standard B-splines, but by default, we use so-called flat-top splines in PUMA,
see Figure 2.8. Those have the benefit that the construction (2.78) yields non-
rational weight functions in the overlap of patches on the same discretization
level with the construction detailed in Section 2.3.5.

Lemma 2.2. On an admissible cover as in Definition 2.5 with weight functions (2.81),
the set of functions defined by (2.78) is a valid PU with the flat-top property, i. e. it
satisfies Definition 2.1 and Definition 2.4.

Proof. See [115].

Following [115] we choose local approximation spaces Vi as the combination
of a polynomials space P

pi
i := span{ψsi } of degree up to pi and an enrichment

space Ei := span{ηti } consisting of problem dependent functions, thus

Vi := P
pi
i + Ei = span{ψsi ,ηti }. (2.82)

As with the weight functions, we choose the polynomial functions to be
tensor products of one dimensional polynomials throughout this thesis. Let
Lq : [−1, 1] 7→ R be the Legendre polynomial of degree q, then the polynomial
part of Vi is given by

P
pi
i :=

{
d∏
k=1

Lqk ◦ Tik(xk)
∣∣∣∣ ‖(qk)k=1‖d1 6 pi

}
. (2.83)

Enrichment functions ηti can be added to local spaces individually. Note,
however, that the resulting basis function is ϕiηti on a patch ωi. This has the
following implication. Consider an enrichment function η given globally, that is,
defined on e. g. the whole domain Ω. Then its restriction to a patch ωi is in the
PUM-space VPU only if it is applied to all local spaces in the neighborhood Ci of
that patch. More precisely,

η|ωi ∈ VPU∣∣
ωi

⇔ η|ωi ∈ Vj(ωj)
∣∣
ωi

∀ωj ∈ Ci. (2.84)

Enriching only a single patch may thus not yield the expected result, depending
on the size of the patch relative to the size of the area of influence of the feature
the enrichment is trying to model. Appropriate enrichment radii for crack front
enrichments are discussed in Section 3.1.3. Besides adding enrichments to a local
approximation space, we can further apply an enrichment ηm multiplicatively
to the polynomial part of that space, compare Figure 2.8 such that

Vi = span{ψsi ,ηmψsi ,ηti }, (2.85)

which of course adds more degrees of freedom to that local approximation space.
Using enrichments in either way may result in linear dependencies between
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the polynomial part of the local approximation space and the enrichments, or
between multiple enrichments themselves. In the PUM, however, this is easy to
handle, as the flat-top property from Definition 2.4 allows us to construct a
globally stable basis using only patch local operations.
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Figure 2.8: Flat-top spline, polynomial function and resulting product basis function on
the left. Heaviside enrichment, basis function and their product on the right.
The latter for example allows to have polynomial basis functions respecting
the jump across a crack.

2.3.3 Stable Basis

As we saw in (2.69), the flat-top property guarantees global linear independence
of basis functions given local linear independence on each patch ωi. Here,
we face two issues. First, a set of functions that is linear independent on the
whole patch ωi might be linear dependent on its intersection with the domain,
especially if ωi ∩Ω is small. Second, enrichments can either be linear dependent
to the polynomials employed on a patch, especially if we enrich a larger area
around a singularity as suggested by (3.6), or be linear dependent themselves, if
multiple enrichments are used on a patch. The latter may especially happen as
enrichments are usually defined globally, where they might be linear indepen-
dent, while still being linear dependent on a single patch. Selecting only linear
independent enrichments a priori is impractical and if the enrichments them-
selves are results of previous simulations, as in the global-local method, even
impossible. Furthermore, note that we are not only concerned with strict mathe-
matical linear independence but with numerical independence and conditioning
of the resulting linear system as well. To circumvent this limitation Schweitzer
proposed [117] a transformation using patch local operations only to transform
the original global set of generating functions {ϑni } into a stable basis {ϑ̃ni }. A
similar technique for producing local stability has later been reintroduced [79]
for the GFEM, while of course global stability cannot be guaranteed without the
flat-top property.

The transformation is built as follows. Using the basis span{ϑni } = Vi of the
local approximation spaces we assemble the local mass matrices

(Mi)n,m :=

∫
ωi∩Ω

ϑmi ϑ
n
i dx Mi ∈ Rdi×di (2.86)
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where di = dim(Vi) and compute their eigenvalue decomposition

Mi = Q
T
i DiQi Qi,Di ∈ Rdi×di . (2.87)

Here, Di is diagonal with λs := (Di)s,s the s = 1, . . . ,di eigenvalues and Qi
is orthogonal with rows of eigenvectors of Mi. We further assume that the
eigenvalues in Di are ordered with λ1 being the largest eigenvalue. Again, we
create a block-partitioning by

Qi =

(
Q̃i

Ki

)
and Di =

(
D̃i 0

0 Ki

)
, (2.88)

where Ki contains {λs | λs 6 ελ1} all small eigenvalues with respect to some
user defined ε� 1. As 0 < ελ1 < (D̃i)n,n we define the projection

Si := D̃
−1/2
i Q̃i (2.89)

which removes the near-null space of Mi, as we have

SiMiS
T
i = D̃

−1/2
i Q̃iMiQ̃

T
i D̃

−1/2
i = I

d̃i
(2.90)

with d̃i := card
({
λs
∣∣ λs > ελ1}) the dimension of the transformed space Q̃iVi.

The map
Si : Vi = span{ϑni } 7→ span{ϑ̃ni } ≈ Vi (2.91)

thus transforms the generating set {ϑni } into the stable basis {ϑ̃ni }. From the local
transformation we can define the block-diagonal operator S with blocks

Si,j :=

Si if i = j

0 else.
(2.92)

Using this operator we can assemble the stiffness matrix Aϑ and right hand side
f̂ϑ in the original basis {ϑni } and transform it into the stable basis {ϑ̃ni } by

A
ϑ̃
:= SAϑS

T and f̂
ϑ̃
:= Sf̂ϑ (2.93)

and solve there. Should we need the original coefficient vector, for example for
visualization, we can recover it by ûϑ = ST û

ϑ̃
.

The proposed algorithm requires local operations only and is thus easy to
parallelize. In practice, the bilinear form in (2.86) can be replaced by the H1

inner product or the bilinear form of the weak form of the PDE to be solved.
While theoretically this has no effect in producing a stable basis, numerically it
can make a difference. Also the cutoff parameter ε has to be chosen, which can
affect stability and alter the generated approximation space.

Due to the lack of the flat-top property, the described stable transformation
is not available in finite element based partition of unity methods such as the
GFEM or XFEM. Consequently, other methods to improve the condition number
of the linear system were proposed in that context, such as perturbation of the
assembled stiffness matrix [47], application of a specialized preconditioner [5]
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or localization of enrichments by means of a cutoff function [17]. A slightly
more general technique is subtracting its polynomial approximation from an
enrichment function as introduced in the context of the stable GFEM in [3, 47,
48]. This approach is less generic than the above transformation in that it does
not account for dependencies between enrichments, especially for computed
enrichments [81] where no a priori information about them is available. In
contrast to our stable transformation, it should further be difficult to assess if an
enrichment is actually spanned by the polynomial basis on some patch in the
stable GFEM. There, the enrichment is only evaluated on the mesh nodes during
the interpolation and no information about the interior of a cell is taken into
account.

2.3.4 Treatment of Essential Boundary Conditions

The basis functions employed in the PUM are in general neither interpolatory on
the domain boundary ∂Ω nor do they vanish on it. Therefore, it is more difficult
to impose Dirichlet boundary values in the PUM than in e. g. finite element based
methods. Nitsche’s variational approach [56] is a common way to workaround
this by including the boundary treatment in the PDE. From our perspective it
has two downsides, though. First, it depends on a parameter, whose optimal
value has to be guessed. Too low values yield suboptimal accuracy or even
singular systems and too high values deteriorate the condition number of the
resulting linear system. Second, the variational formulation has to be derived
by hand from a given PDE, impacting the usability of a software framework. To
overcome these limitations Schweitzer introduced [116] a conforming treatment
of essential boundary conditions in the PUM detailed in the following. Essentially,
it reconstructs what finite elements do: disjointly splitting the degrees of freedom
into one set to approximate the PDE and one set to enforce the boundary
conditions. Here, the key with respect to performance in the PUM is to achieve
that by local transformations only. To this end, we construct direct splittings

Vi = Vi,K ⊕ Vi,I (2.94)

of the local approximation spaces Vi. We approximate the essential boundary
data with Vi,I on patches ωi ∩ ΓD 6= ∅ that intersect the Dirichlet boundary
ΓD ⊂ ∂Ω and solve the PDE using Vi,K. This local splitting naturally induces a
splitting of the global degrees of freedom

VPU =

N∑
i=1

ϕiVi =

N∑
i=1

ϕiVi,K ⊕
N∑
i=1

ϕiVi,I = VPU
K ⊕VPU

I . (2.95)

Assume we apply Dirichlet boundary conditions on parts of the boundary,
that is we want to set u = ū on ΓD ⊂ ∂Ω. In this case, consider the bilinear bi
and linear gi forms of the L2-projection

bi(ui, vi) :=
∫
ωi∩ΓD

uivi ds and gi(vi) :=

∫
ωi∩ΓD

ūvi ds (2.96)
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on patches ωi ∩ ΓD 6= ∅ intersecting the Dirichlet boundary. Using the basis
span{ϑni } = Vi of the local approximation space we assemble the local boundary
mass matrices

(Bi)n,m := bi(ϑ
m
i , ϑni ) Bi ∈ Rdi×di (2.97)

and the local right hand side vectors

(ĝi)n := gi(ϑ
n
i ) ĝi ∈ Rdi , (2.98)

where di = dim(Vi). We then split the local approximation spaces Vi into Vi,K
and Vi,I based on the eigenvalues of Bi. Let

Bi = Q
T
i DiQi Qi,Di ∈ Rdi×di (2.99)

be an eigenvalue decomposition of Bi, i. e. Di is diagonal with λs := (Di)s,s the
s = 1, . . . ,di eigenvalues and Qi is orthogonal with rows of eigenvectors of Bi.
We further assume that the eigenvalues in Di are ordered with λ1 being the
largest eigenvalue. By choosing ε� 1 we then create a block-partitioning

Qi =

(
Qi,I

Qi,K

)
and Di =

(
Di,I 0

0 Di,K

)
(2.100)

with Di,K containing all small eigenvalues λs 6 ελ1. Therefore the rows of Qi,K
represent the numerical kernel of bi(·, ·). The local approximation spaces Vi,K
and Vi,I used to approximate the PDE solution and the boundary conditions,
respectively, can now be defined by

Vi,K := Qi,K(Vi) and Vi,I := Qi,I(Vi). (2.101)

Moreover, we can define a global, block-diagonal basis transformation T by

Ti,j :=


Idi if i = j and ωi ∩ ΓD = ∅

Qi if i = j and ωi ∩ ΓD 6= ∅

0 if i 6= j

(2.102)

that transforms assembled global matrices in the original basis {ϑni } to the
separated basis {ϑ̄ni } by

Aϑ̄ = TAϑT
T . (2.103)

Operators TK and TI that transform into Vi,K and Vi,I can be obtained by
replacing Qi with Qi,K or Qi,I in (2.102).

Now, consider the linear system Aû = f̂ assembled in the original basis {ϕiϑni }
and probably with the stable transformation described in the last section already
applied. In the system, we want to incorporate the boundary conditions u = ū

on ΓD. To this end, we split the coefficient vector û into

ûK := TKû and ûI := TIû (2.104)

while also transforming it into the basis {ϑ̄ni }. Here, ûK now contains all interior
degrees of freedom for solving the PDE and ûI all boundary degrees of freedom
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used to approximate the boundary conditions. The latter is given as the solution
of the local L2-projection

Qi,IBiQ
T
i,IûI = Qi,Iĝi (2.105)

on patches ωi ∩ ΓD 6= ∅ intersecting the Dirichlet boundary, compare (2.97)
and (2.98). Note that solving for the boundary conditions requires patch local
operations only and thus is easy to parallelize. With AK,K := TKAT

T
K , f̂K := TKf̂

and AK,I := TKAT
T
I the interior solution ûK is then given by

AK,KûK = f̂K −AK,IûI. (2.106)

The solution in the original basis is then given by

û = TT

(
ûK

ûI

)
. (2.107)

2.3.5 Cover and Integration Cell Construction

We introduced the abstract notion of an admissible cover for our PUM in Defi-
nition 2.5. In this section, we are now interested in an automatic construction
of such a cover for a given domain and with reasonable constants CFT and CS.
We detail a simplified version of the construction given in [114, 115]. Further
discussion, especially of the implications on stability and accuracy, can be found
in [149].

Level zero of the cover C0, the so-called tree root, is the bounding box of the
domain Ω. Though not necessary, we usually start with a cubic bounding box,
which guarantees uniform scaling of the tensor product polynomials defined on
the patches. For level l of the cover Cl, we refine the root box 2l times uniformly,
such that they have radius diam(Ω)/2l. Note that we drop all tree leafs from the
cover that do not intersect the computational domain Ω. Figure 2.9 shows an
example of a cover tree construction.

l = 0

l = 1

l = 2

l = 3
∂Ω

Figure 2.9: Construction of a cover with non-uniform refinements up to level three.
Dotted line (right) shows ordering of patches along Hilbert curve. Local
patch domains are shown, which are then stretched to define the overlapping
patches.



2.3 partition of unity method 33

The resulting boxes, which we refer to as the patch local domains, are then
stretched by a stretch factor 1 < α < 2, such that the patches overlap. The cover
on level l is thus given by the collection Cl = {ωl,i} of patches

ωl,i =

d∏
k=1

(
(cl,i)k −

hl
2

, (cl,i)k +
hl
2

)
, (2.108)

where hl :=
αdiam(Ω)

2l
and cl,i are the patch centers. In parallel simulations,

patches and thus rows of the resulting stiffness matrix are distributed along
a space-filling curve through the tree leafs, see Figure 2.10b, where a Hilbert
curve [111] is used by default in PUMA.

(a) Stretched cover patches. (b) Patch distribution.

Figure 2.10: Patch local domains (dashed) and stretched patches (a). Patch distribution
along a Hilbert curve in a parallel simulation with four processes (b).

This construction results in an admissible cover as in Definition 2.5 for uni-
form refinements, i. e. if we refine all leafs on a given level. If we allow adaptive
refinement, the stretch factor may generate patches on lower levels that com-
pletely overlap patches on finer levels, as can be deduced from Figure 2.10a.
This can be circumvented by capping the maximum level difference between
neighboring patches. In PUMA a maximal level difference of one is enforced by
default. Note that we further want to drop all patches whose flat-top does not
intersect the domain, as discussed in [149]. This prevents linear dependence of
the resulting basis. To allow for boundary conditions, neighboring patches do
have to be stretched a little more in that case.

Creating integration cells from the cover Cl then is the three step process
sketched in Figure 2.11. First, we compute boxes such that all patch boundaries
are resolved. Second, we split those boxes along hyperplanes across which the
PU functions or other basis functions are discontinuous in some derivative. For
example, a standard linear spline does not have a continuous first derivative
in the patch center, whereas the so-called linear flat-top spline has two such
points, compare Figure 2.12. Those two points, however, can be aligned with
the boundaries of neighboring patches for uniform refinement, in which case
the second step can be skipped. As we only employ tensor products of one
dimensional splines, finding those split points is trivial. Third, we account for
the boundary ΓΩ of the domain Ω. All boxes intersecting ΓΩ are discarded and
cells respecting the domain boundary are generated inside them instead. For
simple geometries this can be achieved using triangles or tetrahedrons. Curved
geometries can either be approximated or represented using curved integration
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cells, see [149]. The whole process can easily be parallelized on a per patch basis.
On the resulting cells numerical integration is performed using tensor product
Gauß-Legendre quadrature rules on box cells, quadrature rules by Xiao and
Gimbutas on triangles [143] and by Jaśkowiec and Sukumar on tetrahedrons [57].

∂Ω

(a) Tree cells.

∂Ω

(b) Basis function splits.

∂Ω

(c) Boundary treatment.

Figure 2.11: Three step process to generate integration cells starting from the cover tree
cells of three overlapping patches.

0

1

0 1

(a) Linear spline.

0 1

(b) Linear flat-top spline.

Figure 2.12: Additional split points required in the generation of integration cells for
different types of weight functions.
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Simulating fracture and crack growth in linear elastic fracture mechanics comes
with additional challenges, especially when complicated crack geometries in
three space dimensions are considered. We discussed fracture simulation from
a modeling perspective in Chapter 2. In this chapter, we are concerned with
fracture simulation in the PUM and especially its implementation in PUMA [112,
120], the software framework used for this thesis. To this end, we present
how cracks are modeled by enrichment functions in the PUM in Section 3.1
and detail the underlying crack representation allowing their evaluation. In
Section 3.2 we discuss the extraction of stress intensity factors from a computed
PUM displacement and the prediction and implementation of crack growth. We
conclude this chapter with numerical experiments in Section 3.3.

3.1 fracture modeling in the pum

In fracture simulation, discretizations of linear elasticity must be able to rep-
resent the discontinuous displacement across the crack as well as to capture
the arising singularity at the crack front. Classical finite elements, for exam-
ple, duplicate nodes at the crack, thereby change the computational domain,
and apply heavy h-refinement at the crack front to achieve this. This in turn
couples the crack geometry to the discretization mesh, forcing remeshing in
crack growth. In partition of unity based methods, however, it is possible and
common to model the crack by special enrichment functions. On patches inter-
secting the crack but not the crack front, a Heaviside function is used to model
the discontinuity across the crack. Around the crack front, we apply so-called
Westergaard functions that capture the front singularity, while also modeling
the discontinuity. We introduce those functions in Section 3.1.2 and Section 3.1.3
in detail. This allows the discretization to be unchanged during crack growth,
except for moving enrichments around, which of course changes the ansatz
space.

For those enrichments, we further need a representation of the crack geometry
for three purposes. First, we need to know which patches to enrich with the front
and Heaviside enrichment functions. To this end, we need to be able to query
if a patch intersects the crack and if it intersects the crack front. Second, the
enrichments are defined relative to the crack geometry and the representation is
thus needed for their evaluation. For the front enrichments, we have to be able
to query the distance to the crack front and the relevant crack front basis for a
given integration point. For the Heaviside enrichment, we have to know whether
a point or cell is above or below the crack. To not introduce integration errors
with respect to the latter, it is vital that the final generated integration cells, on
which we assemble the linear system, resolve the crack geometry. Otherwise we
make an integration error with respect to the sign of the displacement. Thus,
third, the crack representation is used to split integration cells.

35
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In the remainder of this section, we introduce the crack representation im-
plemented in PUMA, the specific enrichment functions used to model the crack
discontinuity and singularity, and discuss challenges of complex crack geome-
tries on the latter.

3.1.1 Crack Representation and Integration Cells

In general, there exist two approaches to crack representation: explicit and
implicit. In the former, we explicitly handle the crack geometry, whereas in
the latter, the crack is modeled by the level set of one or more functions. For
example in [39, 87, 130, 134], the crack geometry is characterized by the level
sets of two mesh functions, which also provide the necessary information for
the evaluation of the crack enrichments. During crack growth, Hamilton-Jacobi
equations have to be solved in a subdomain around the crack, in order to update
the crack description [39], which adds computational cost. In [110], explicit
and implicit representation is combined. According to the authors, the major
issue with an implicit, level-set-based representation is erroneous creation of
crack artifacts away from the actual crack surface. The major challenges with
an explicit representation are contact of cracks and growth of cracks with non-
convex crack fronts. The latter can be solved by applying the face offsetting
method [60] to track the evolution of the explicit surface, as was done in [104].
Explicit representations further have advantages in crack geometries with sharp
turns and allow for branching cracks, i. e. non-manifold crack surfaces.

Since the domain geometry representation in the PUM is already decoupled
from the discretization and we eventually have to resolve the crack geometry
in the integration cells anyway, we chose an explicit crack representation in
PUMA. Another benefit of this approach is the ability to easily load external
crack geometries into PUMA for further simulation. The level set approach can
of course also be implemented in the PUM, although differences in runtime
performance and accuracy would have to be studied.

implementation in puma Prior to this thesis only support for cracks in
two space dimensions was in place: Here, the crack is modeled by a line string,
i. e. consecutive linear segments, where the first and last points on the line are the
crack tips. During the generation of integration cells, the segments are resolved
in the axis aligned cover cells using a constrained Delaunay triangulation,
compare Figure 3.1.

Figure 3.1: Polyline crack through cover patches. Crack does not need to be aligned with
the cover, but greyed rectangle cover integration cells require triangulation to
resolve the crack during numerical integration.
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Similar to [103], we model three-dimensional crack surfaces by a simple
triangle mesh. While e. g. CGAL [139] provides mesh data structures that allow
traversing neighboring triangles, we do not need that and simply store a list
of points and index triples. To ease access to the crack front, however, we
additionally store the crack front segments and the indices of corresponding
triangles separately. Note that not all boundary segments of the surface mesh
have to be part of the crack front, as some might be contained in the domain
boundary or even be outside the computational domain.

Resolving the crack surface in the integration cells is then done as follows.
Before creating the cells for a patch, we query if the patch intersects the crack.
All intersection queries on the crack surface are sped up using axis-aligned
bounding box search trees. Assuming that the crack intersects the patch, we next
create the axis aligned box integration cells for the patch, compare Figure 2.11.
Integration cells resolving the crack surface are then created as sketched in
Figure 3.2 in two space dimensions. For each cell we clip the crack surface
mesh into the cells geometry. If the resulting mesh is empty, we use the original
cell. Else, we add the corners of the cell to the list of the clipped mesh points
and pass that to a constrained delaunay tetrahedralizer. A tetrahedralizer then
generates delaunay tetrahedrons that mesh the volume of the convex hull of the
points we provide. It further guarantees that all provided triangles are present
as faces in the resulting tetrahedrons, i. e. that the crack surface is resolved
in the resulting integration cells. For all numerical experiments in this thesis,
we use TetGen [125] as a tetrahedralizer. On the tetrahedrons we then use the
quadrature rules by Jaśkowiec and Sukumar [57] for numerical integration.

(a) Rectangular crack intersecting
integration cell.

(b) Clipped crack path
and vertices.

(c) Crack resolving in-
tegration cells.

Figure 3.2: Generation of integration cells resolving the crack surface sketched in two
space dimensions for a polyline crack. This works similarly in three space
dimensions, although tetrahedralization (c) is more involved.

Note that multiple cracks inside an integration cell are in principal supported
as long as the constraints are manageable by the tetrahedralizer. However, the
crack enrichments are of no value in this scenario, aside from the special case
of branching cracks. While we assume every crack to be an orientable surface,
i. e. every mesh edge has to have two adjacent triangles at most, we support
branching cracks through touching meshes. Here, crack meshes must touch in
exact matching points and edges, which has to be ensured by the user, though.
On patches at the intersection of two cracks, the branch enrichment (3.2) is used
to model the arising discontinuities. This was implemented to support the T- or
H-shaped cracks in laminated composites, see Figure 6.1.



38 geometric challenges in fracture simulation

3.1.2 Discontinuity

On all patches intersecting the crack but not the crack front, we use the Heaviside
function

H(x) :=

1 if x on or above crack,

−1 if x below crack,
(3.1)

as multiplicative enrichment (2.85) to introduce a polynomial basis part in which
the crack can open. Note that for this to work successfully, it is important that
the crack is resolved in the integration cells such that the jump is accurately
captured during numerical integration.

Branching cracks require special treatment here. We model those by having
two cracks, where the second originates from the first as shown in Figure 3.3.
As before, Heaviside functions H1,H2 are applied to the two cracks, but we
exclude patches also intersecting the first crack from the second Heaviside. On
those patches, i. e. ones that intersect both cracks but no crack front, we use the
branch enrichment

B(x) :=

0 if 0 < H1

H2 else
(3.2)

multiplicatively, which overall results in local approximation spaces allowing
the necessary separation across the cracks.

H1 = 1

H1 = −1

H2 = 1H2 = −1

B = 0

B = −1 B = 1

Figure 3.3: Heaviside (3.1) H1 and H2 and branch enrichment B (3.2) functions relative
to a branching crack, modeled as a second crack (dashed) originating from
the first.

The Heaviside function (3.1) encodes whether we are above or below the
crack. As we can assume that only patches intersecting the crack and not the
crack front are enriched with it, this is relatively easy to compute. For each
integration point, we simply search the closest triangle in the crack surface mesh
and determine the points’ location relative to the hyperplane it defines. The
search again is sped up using an axis aligned bounding box search tree. Note,
however, that due to the crack surface being resolved in the integration cells,
the Heaviside function is actually constant on every cell. To exploit this, we
implemented an observer pattern such that enrichments can be informed every
time a new cell is started during integration, and can cache their evaluation
accordingly. The branch enrichment (3.2) is implemented as the combination of
two Heaviside functions and thus shares the same implementation.
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3.1.3 Singularity

In this section, we introduce the enrichment functions used to capture the front
singularity in two or three space dimensions, but under the assumption of
a straight crack front. We cover cracks in a single linear elastic and isotropic
material, as well as interface cracks between two such materials. After that, we
discuss the area around a crack front in which these functions should be used
in order to capture the full singularity and to recover the optimal convergence
rates. Finally, we discuss the effects of kinks in the crack front in three space
dimensions on accuracy and implementation.

The crack singularity in patches that intersect the crack front or are close to it
is modeled by the following set of functions. Around a crack front segment we
set up cylindrical coordinates (r, θ, ξ3), compare Figure 2.6, and define the four
tip enrichment functions

ηtip,1 :=
√
r sin

(
θ

2

)
, ηtip,2 :=

√
r cos

(
θ

2

)
,

ηtip,3 :=
√
r sin

(
θ

2

)
sin(θ), ηtip,4 :=

√
r cos

(
θ

2

)
sin(θ).

(3.3)

Applied in each space dimension, they span all three tip displacement functions
uI, uII and uIII and thus successfully capture the crack front singularity [6].
This applies in two and three space dimensions for linear elastic and isotropic
materials along straight crack fronts. Directly applying the displacement func-
tions as vector valued enrichments is of course also possible. This trades accuracy
for fewer degrees of freedom and, at least in the GFEM, improves the condition
number of the linear system [45], making it popular there. While not studied in
detail in this thesis, we too found them to be less accurate, but also slower to
evaluate during integration, since additional basis transformations of the result
vector and its gradient are required. Because of that, we default to the scalar
functions in (3.3). Furthermore, the effect of different enrichment formulations
for the same singularity on the condition number of the stiffness matrix is less of
a concern in the PUM due to the stable transformation outlined in Section 2.3.3.

Cracks at the interface of two linear elastic and isotropic materials, i. e. areas
of delamination between material layers, require a different set of crack tip
enrichment functions due to the different material properties. Suppose we have
materials with Young’s modulus and Poisson’s ratio E1,ν1 and E2,ν2 above and
below the crack, with corresponding shear moduli Gi and Kolosov constants ki.
The oscillation index or bimaterial constant ε is then given by

ε :=
1

2π
log
(
G2k1 +G1
G1k2 +G2

)
. (3.4)

For bimaterial crack problems, Sukumar et al. first proposed [135] a set of twelve
enrichment functions. However, these do not take all effects of the different
material properties into account. Wang and Waisman then introduced a set
of eight crack tip enrichment functions [140], which improve accuracy and
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condition number of the resulting stiffness matrix. In cylindrical coordinates
(r, θ, ξ3), they are given by

ηbi,1 :=

√
r

G
cos(ε log(r))

[
eε(Π−θ) + ke−ε(Π−θ)

]
sin
(
θ

2

)
,

ηbi,2 :=

√
r

G
cos(ε log(r))

[
eε(Π−θ) − ke−ε(Π−θ)

]
cos
(
θ

2

)
,

ηbi,3 :=

√
r

G
cos(ε log(r))

[
e−ε(Π−θ)

]
sin(θ) sin

(
θ

2

)
,

ηbi,4 :=

√
r

G
cos(ε log(r))

[
e−ε(Π−θ)

]
sin(θ) cos

(
θ

2

)
,

ηbi,5 :=

√
r

G
sin(ε log(r))

[
eε(Π−θ) + ke−ε(Π−θ)

]
sin
(
θ

2

)
,

ηbi,6 :=

√
r

G
sin(ε log(r))

[
eε(Π−θ) − ke−ε(Π−θ)

]
cos
(
θ

2

)
,

ηbi,7 :=

√
r

G
sin(ε log(r))

[
e−ε(Π−θ)

]
sin(θ) sin

(
θ

2

)
,

ηbi,8 :=

√
r

G
sin(ε log(r))

[
e−ε(Π−θ)

]
sin(θ) cos

(
θ

2

)
,

(3.5)

where Π = π,G = G1, k = k1 above the crack and Π = −π,G = G2, k = k2
below. Figure 3.4 plots the magnitude of the gradients of the second single and
bimaterial enrichment functions to visualize the effect of the change in material
parameters.

(a) Single material enrichment ηtip,2. (b) Bimaterial enrichment ηbi,2.

Figure 3.4: Gradient magnitude of a second single (a) and a bimaterial (b) front enrich-
ment function. The crack tip is located in the center of the domain. In the
bimaterial case, the Young’s modulus in the upper half is twice as large as in
the lower half.

enrichment zone size In the application of the crack front enrichments,
one traditionally chooses between topological or geometrical enrichment [5].
In the former, we enrich all patches intersecting the crack tip, such that the
enriched area shrinks when we h-refine our cover. In the latter, we enrich all
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patches in a fixed area around the crack tip. Consequently, the enriched area
stays constant across discretization levels. Since the singularity dominates the
solution in some radius around the crack front, geometrical enrichment has
been found to produce more accurate results [5, 46, 117].

In [46], an estimate on the minimally required enrichment radius r around a
crack tip in two or three space dimensions has been proven, based on the order
1/
√
r of the singularity. Let h be the mesh size, or in our case, half the size of a

cover patch, and p be the order of the polynomials in P
pi
i around the crack tip.

Then
Ch

1
2p 6 r (3.6)

is a lower bound on the enrichment radius required to achieve the optimal
convergence rates. While the exact size is unfortunately hidden in the constant
C, we can observe that higher levels allow for a smaller enrichment radius, while
higher polynomial degrees have the opposite effect. Stability issues introduced
by increased enrichment radii can be eliminated in the PUM by applying the
stable transformation described in Section 2.3.3

curved crack fronts and implementation Complex crack front
geometries in three space dimensions pose additional challenges. In two space
dimensions, we know the exact expansion (2.24) of a solution around a simple
straight crack and hence we assume that the corresponding enrichments (3.3)
are perfect in an area around the crack tip where the crack is straight. For
a simple extruded crack geometry this still works in three space dimensions;
however, in complex crack geometries the crack front is not a straight line and
it is therefore unclear what its singularity looks like. General crack geometries
thus require heavy h-refinement towards the crack front as well as using the
front enrichments only close or directly at the crack front. As a consequence,
the number and size of patches with kinks in the crack (front) is reduced and
more degrees of freedom are present to adapt the front enrichments to the crack
geometry. This local increase in degrees of freedom is further the reason why
we introduce the global-local method as an approach to separate them onto
another discretization in the next chapter.

However, some steps to reduce the required refinement can be taken in the
evaluation of the enrichments around kinks in the crack front. There are multiple
approaches to implement the evaluation of the crack front enrichments relative
to the crack front. Probably the simplest way is to locate the closest point on the
crack front for each integration point and evaluate with respect to the local crack
coordinate system at that closest point, as sketched in Figure 3.5a. This results
in one global enrichment for the whole crack that, however, is discontinuous at
kinks in the crack front. A second approach, sketched in Figure 3.5c, is to use
separate enrichments per enriched patch along the crack front, each with respect
to a single front segment, for example the one closest to the patch. In this case
we have a continuously differentiable enrichment on each patch, modulo the
jump across the crack, while neighboring patches use different approximations
of the crack front. In consequence, approximation spaces of neighboring patches
do not model the same singularity, which can lead to the interaction of their
enrichments not minimizing the global energy in their overlap. In general,
having different and disagreeing enrichment functions for neighboring patches
may yield suboptimal results due to (2.84).
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Both approaches can potentially be improved by further smoothing the crack
front coordinate systems at kinks in the crack front, as shown in Figure 3.5b and
Figure 3.5d, which tries to improve the crack front approximation. In [102], the
authors tried a version similar to our second approach, compare Figure 3.5d,
as well as an approach using a quadratic approximation of the crack front and
consequently, smooth, curved enrichment. While the latter approach is harder
to implement and computationally more expensive, both performed about the
same, with overall accuracy again being solely dependent on the degree of local
h-refinement. This was investigated on round cracks, which are perfectly suited
for such a smoothing approach, we do not expect much improvements to be
possible in the implementation of crack front enrichments for more varying
front geometries.

(a) Closest segment per point. (b) Smoothed closest segment per
point.

(c) Closest segment per patch center. (d) Smoothed closest segment per
patch.

Figure 3.5: Four versions of applying the front enrichments relative to the non-straight
crack front of a crack surface in three space dimensions. We view from the
top and arrows indicate the front normal for each segment, i. e. the coordinate
system relative to which we evaluate the enrichment. In the top row the
enrichment is discontinuous on patches with kinks in the crack front, but
constant across patch overlaps if the kink is in the flat-top region. In the
bottom row the enrichment is continuous on each patch, but neighboring
patches see different crack fronts in their overlap, and we add another level
of approximation to the front representation.

In PUMA, we implemented all four versions of Figure 3.5 and present a
numerical experiment to assess their respective accuracy in Section 3.3.3. If
not indicated otherwise, we use the global enrichment without smoothing, i. e.
the version shown in Figure 3.5a. Regarding the implementation, we have the
following remarks.

With a global enrichment we locate the closest point on the crack front for
each integration point, which again is sped up using a search tree. If the closest
front point is in the interior of a front segment, we evaluate relative to the
coordinate system of this segment. If it is a front node, i. e. end or start point of
segments, we can interpolate between the coordinate systems of the neighboring
segments. With individual enrichments per patch, we initially find the closest
front segment to the center of each enriched patch. Evaluation on each patch is
then performed relative to this segment’s coordinate system, without needing
to search segments again.
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3.2 fracture propagation

In this section we provide practical and implementation details on extracting
stress intensity factors and updating the crack representation during crack
growth, while the underlying math is presented in Section 2.2. We are only
concerned with three space dimensions here, since extraction via the CIM and the
J-integral method were already implemented in PUMA in two space dimensions
prior to this thesis. Additional extraction methods, such as the interaction
integral method [1, 144], can easily be implemented using the generic expression
compiler for PUMA (GECO) form language, since integration cells for volume
based extraction are already available in two space dimensions.

3.2.1 Extraction of Stress Intensity Factors

For this thesis, we implemented the CIM and the DCM in PUMA, which we
introduced in Section 2.2.2. While the latter is rather easy to implement, since
it requires only point evaluations, for the former automatic generation of line
integration cells in three space dimensions that also work in parallel had to be
added. Moreover, support for the necessary coordinate transformations in the
extraction integrals was improved. Another option for the extraction of stress
intensity factors in a partition of unity method is the cutoff function method.
However, it is the computationally most expensive and hardest to implement
of the three methods due to its reliance on volume integrals, while providing
only little, if any, benefit in accuracy [44]. It further requires relatively large
extraction radii, making it less suitable for non-planar, arbitrary crack surfaces.
We therefore refrained from implementing it for this thesis. Regardless of the
specific extraction method, we need to discuss the extraction locations and
limitations on the extraction radii first.

extraction location In two space dimensions, we extract close to the
crack tip, whereas in three space dimensions, we have the discrete crack front
given by a one dimensional polyline around the crack surface and extract relative
to user defined points on that polyline. While having several extraction locations
can be useful for long front segments, we usually extract either at the midpoints
of the front segments or at the front nodes, i. e. the endpoints of the front
segments. The latter is useful if the discrete crack representation approximates
a smooth surface and the front nodes are placed exactly on the true crack front,
resulting in minimal geometry approximation error. The former is a sensible
default in all other situations, since the crack front singularity should be best
captured the farthest away from kinks in the crack font, i. e. in the center of
each segment. We denote the extraction location for a segment k by s̄k. At each
location s̄k, all methods then require a coordinate system (ξ1, ξ2, ξ3) local to
the crack front position, compare Figure 3.6. For extraction at the front segment
midpoints, we naturally choose ξ3 as the direction of the front segment, ξ2 as
the normal of the triangle at the segment and ξ1 perpendicular to the former
two and pointing away from the crack. At the front nodes we use the mean of
the coordinate systems of the adjacent segments.
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1: Compute mid points s̄k for all n front segments.
2: h-refine such that ∀ i : card

({
k
∣∣ s̄k ∈ ωi}) 6 1.

3: Find mid points on local processor domain.
4: Compute minimal distances rk to patch boundary for all patches{

ωi
∣∣ s̄k ∈ ωi}.

5: Communicate global minimum rex := mink rk of distances rk.
6: Use rex as global extraction radius.

Algorithm 1: Computation of a safe radius rex for the extraction of stress intensity factors
at front segment midpoints in parallel and for arbitrary crack geometries
especially in crack growth.

extraction radius In the simulation of three-dimensional fracture, we
can have upper limits on the possible extraction radii. First of all, the front
enrichments, as well as all extraction methods, assume the crack surface to be
flat inside the enrichment and extraction regions. In the PUM, extraction of the
stress intensity factors is also most accurate close to the crack front, inside the
region enriched with the crack front enrichments [117]. Non-flat crack surfaces
thus limit the enrichment and the extraction radius, and their evolution in crack
growth is unknown a priori. In parallel simulations, we further have the choice
of distributing extraction around each location individually or only distributing
extraction locations. For this thesis, we implemented the latter approach, where
we have to guarantee, however, that we extract inside the region local to each
process. In the following, we thus describe how to arrive at safe extraction radii
for each location based on the above requirements, compare Algorithm 1 for a
summary. All required functionality is of course available in PUMA.

The approach is based on assumptions on the h-refinement towards the crack
front: We have to refine the discretization such that at least front intersecting
patches contain as few kinks of the crack surface as possible. Of course, this is im-
possible to prevent fully in patches that intersect front nodes with kinks between
adjacent triangles. Here, a reasonable approach is to refine the discretization
until each patch contains at most one node of the current and last crack front. In
consequence, enrichments can be applied on all patches intersecting the crack
front and extraction can be performed inside them. We thus need a function
to determine radii such that extraction happens inside the patch containing
each extraction location s̄k. This also guarantees that we extract inside the local
process region owning that patch. To this end, we determine the patch which
contains an extraction location by testing if the location is contained in the patch
local domain. This yields a unique patch for all but the points on the local
domain’s boundary, in which case we simply gather all the intersecting patches
owned by the current process. In a second step, we compute the distance rk of
the extraction location s̄k to the boundary of that patch or patch set. This dis-
tance rk at that extraction location, or their rex minimum across all of them, can
then be used as a safe extraction radius. In numerical experiments investigating
the influence of the extraction radius we further multiply the computed radius
by a factor fex. Of course, other user defined radii are possible, too, in case one
knows that larger radii are applicable based on the crack geometry and parallel
distribution.
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contour integral method For the CIM, we have to numerically evaluate
the integrals in (2.30). For example, the mode I factor is given by

KI =
√
2π

∫
Γ∗

T(uPU) ·
1

CI
vI ds−

∫
Γ∗

1

CI
T(vI) · uPU ds. (3.7)

Hence, we have to evaluate the computed displacement uPU and the analytically
given function vI on the closed path Γ∗ around the crack front. The extraction
path Γ∗ has to be contained in the (ξ1ξ2)-plane through the extraction location
s̄, which is perpendicular to the front tangent ξ3, compare Figure 3.6.

Γ∗

rex

ξ2

ξ1
ξ3s̄

Figure 3.6: Rectangular extraction path Γ∗ with radius rex around extraction location s̄.
Further, the front local coordinate system ξ1, ξ2, ξ3 at that point.

Therefore, we have to create integration cells for such a path. If we extract
from an analytical solution around a crack front or tip, the value of the integral
is independent of the specific path, as we validate numerically in Section 3.3.1.
In consequence, we can choose a simple rectangular path around the crack
front, which is easy to implement. Extracted stress intensity factors from a
numerical solution, however, will likely vary with the local accuracy of the
computed displacement. To this end, extracting inside the front enriched patches
is beneficial, as was also confirmed numerically in [44].

In the following, we detail the generation of integration cells for extraction
via the CIM in the case of extraction at the crack front mid points. Extraction
at front nodes, i. e. segment end points works analogously. As a preparatory
step, we apply sufficient refinement towards the crack front, as discussed before,
and determine an extraction radius rex based on Algorithm 1. Around the mid
point s̄k of each crack front segment, we create a square shaped polyline path
of radius rex in the plane perpendicular to the crack front tangent, compare
Figure 3.6. We further split the parts of the generated polyline based on a user
provided factor, in a way that all resulting parts are of equal length. This way,
we can adjust integration quality of the extraction integrals independent of the
function space resolution. These segments then are the integration cells.

Note that we ideally would also resolve the function spaces patch boundaries
in the generated integration cells to account for discontinuities in the basis
functions, but this has not been implemented yet. Tests with increasingly refined
extraction cells indicate that this is not a practical issue, though, as the generated
integration cells are rather small compared to the function space patches. On
the resulting segments, intersecting patches are precomputed to speed up
later evaluation of basis functions. In a parallel simulation, each process only
generates paths and extracts around segment mid points s̄k that are contained
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in the local domains of the patches it owns. Local results are then communicated
after extraction.

Note that unlike in FEM based methods, our extraction paths do not line up
with patches in any way. The dependence of the extracted stress intensity factors’
accuracy on the extraction radius is studied in Section 3.3. While not further
described here, we found that for accurate results we have to assign rather
high polynomial degrees to the extraction functions (2.31), i. e. we have to apply
quadrature rules of relatively high degree on the generated extraction cells.

displacement correlation method The DCM introduced in Section 2.2.2
has the advantage of only requiring point evaluations of the numerical solution.
Consequently, it is both easier to implement than the CIM and more runtime
efficient. As the results in Section 3.3 show, it is more robust with respect to the
extraction radius and provides better results in most cases.

Again, we describe the algorithm for extraction at the crack front segment
mid points, yet extraction at the crack front nodes works analogously. For each
mid point and a pair of extraction radii, we compute K̂ from (2.40) for each crack
opening mode as follows. On each process, we loop over all extraction points
that are contained in the local domains of patches owned by the current process.
For these, we compute the extraction radius rex as detailed in Algorithm 1.
We then compute K̂ at equidistant points slightly above and below the crack,
compare Figure 3.7.

rex

rmin

ξ1

ξ2

s̄

Figure 3.7: Sketch of extraction points of the DCM in (ξ1, ξ2)-plane at an extraction
location s̄.

These points are positioned in negative ξ1 direction behind the extraction
location on the crack front, at a distance between rex and rmin := rexcm, where
cm is a user defined constant. In this thesis, unless stated otherwise, we use
cm = 1/10 as the factor for the minimal extraction radius. Pairs of results of
neighboring radii are combined via Richardson extrapolation, as discussed in
Section 2.2.2 and the final stress intensity factors are taken as the average of
those values. Finally, we gather all remote results such that each process has
the full and identical list of extracted values. Experiments suggest that a wider
extraction range yields better results, while around 10 extraction points suffice.

3.2.2 Crack Geometry Update

Based on the extracted stress intensity factors, the direction of crack growth can
be estimated. For this purpose, several models are available in the literature,
and we have chosen Schöllmann’s criterion in Section 2.2.3, which estimates two
crack growth angles in front local coordinates for each extraction point. Based
on these angles, we can compute an update direction for each extraction location
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in global coordinates, which we use to define update vectors for each crack
front node. Note that the crack growth increment, i. e. the length of each update
vector, is user defined in a simulation. Based on the relative comparative stress
values (2.48), relative update lengths for each node can be determined, though.
There are currently three algorithms implemented in PUMA for applying the
estimated growth direction to a given crack geometry, see Figure 3.8, originally
presented in [104]. For in-plane crack growth, the current front nodes are shifted
in the update direction and no new triangles are added, compare Figure 3.8b.
If the crack grows out of the plane containing the triangles connected to the
current crack front, we add new front nodes and triangles accordingly, compare
Figure 3.8c. If in that case the length of the new front segments exceeds some
user defined threshold, we further refine some of the new triangles by adding
points along the crack front, compare Figure 3.8d.

(a) Initial geometry with
update vectors.

(b) Propagate and
smooth (PAS).

(c) Propagate and ex-
trude (PAE).

(d) Propagate and ex-
trude with refine-
ment (PAER).

Figure 3.8: Schemes to propagate the crack front in fracture simulations as introduced
in [104] and now implemented in PUMA.

While this works for appropriate update vectors, one further issue needs
to be addressed in future work: the surface description should never be self-
intersecting. One simple example which illustrates this issue is a flat crack with
concave crack front that grows inside its plane, as sketched in Figure 3.9. Here,
new triangles of the opposing faces in the intruding part could easily overlap.
An algorithm to address this based on the face offsetting method is presented
in e. g. [104] but still needs to be implemented in PUMA. Therefore, our current
implementation is only valid for crack surfaces with convex crack front.
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Figure 3.9: Possible self intersections in the update of concave meshes, depending on
the update directions and increment. Algorithms to circumvent this issue are
available in the literature and have to be implemented.

3.3 numerical results

We conclude this chapter with numerical experiments testing the adaptation of
fracture simulation in three space dimensions in the PUM. First, we test whether
our implementation of the CIM is indeed path independent when extracting
from an analytic function, and if that property also holds in the extraction from
a computed displacement. Second, we validate our whole implementation on an
inclined elliptical crack example, for which the reference stress intensity factors
around the crack front are known analytically. This example is reported in other
publications, hence our results can be compared to that of other methods. Third,
we investigate the effect of different techniques to improve the front enrichment
around kinks in the crack front on the same example. Lastly, we run a crack
growth simulation of an initially penny shaped crack and check the obtained
crack path.

3.3.1 Path Independence

As mentioned in Section 2.2, extraction of the stress intensity factors via the
CIM is independent of the chosen extraction path as long it is closed around the
crack tip. This of course only applies when extracting from an analytic near tip
function. When extracting from a numerical approximation, we expect spatial
differences in approximation quality to hinder path independence. To test this,
we simulate an extruded square domain with a through the thickness crack from
the left side to the center of the domain, compare Figure 3.10. On the boundary,
we apply Dirichlet conditions such that the solution of the problem is given by

u∗ := uI + uIII (3.8)

the superposition of the first terms of pure mode I and mode III crack opening
given in (2.28). To test path independence, we extract on several square shaped
paths around the mid point of the domain and crack front with varying extrac-
tion radius, as described in Section 3.2.1. We further compare extraction from
the analytic function u∗ and a numerical approximation uPU of it. To this end,
we solve the problem on a level five discretization with the front enrichments
(3.3) added to all patches on the domain to further improve accuracy.

Results are shown in Figure 3.11. While we present relative errors for mode I
and III, we show the absolute error for mode II, as the reference is zero here.
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x: 24

z: 24

y: 12

Γ∗

Figure 3.10: Cracked domain to study path independence of extraction of stress intensity
factors via the CIM. Extraction paths Γ∗ with different radii around the center
of the crack front are indicated. The crack front itself is along the x, z center
of the domain. Boundary conditions are applied such that we know the
analytic solution of this problem.

We can clearly observe that extraction from the analytic function is indeed path
independent with an error in the order of machine precision, validating our im-
plementation of the three-dimensional CIM in PUMA. While the error in extracted
stress intensity factors from the numerical approximation is overall low, the
values vary with the extraction radius, probably due to varying approximation
quality in the domain or relative position of the extraction path to flat-top or
overlap regions. Regarding the latter, note that a patch in this example has
diameter 24/25=0.75 and the crack front is right in the middle of the central
patch overlap. Extraction further away from the crack front seems to perform
better in this example, but is unfortunately not possible in more complex crack
geometries.
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Figure 3.11: Errors in extracted stress intensity factors (SIF) from the analytic u∗ and
from a numerical solution uPU on varying extraction radii. Extraction from
the analytic solution via the CIM is path independent, extracting from a
numerical solution clearly is not, due to the approximation error.
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3.3.2 Inclined Elliptical Crack

With this example, we validate our adoption of the CIM and DCM in the PUM

on a mixed mode problem with non trivial crack geometry. Thereby, we fur-
ther validate our whole implementation of fracture simulation, from geometry
representation over integration cells to the front enrichments. To this end, we
reproduce example 4.2 in [44], an inclined elliptical crack in cubic domain.
Analytic reference stress intensity factors for this crack geometry and loading
are available in [51], although the analytic crack problem is studied in an infinite
domain there. As we run this example in parallel due to number of degrees of
freedom required for the resolution of the crack front, we further test that aspect
of the implementation, too.

The crack ellipse is centered in the coordinate system and has semi-major
and semi-minor axes a = 0.10 and b = 0.05 respectively. It is further inclined by
ζ = π/4 with respect to the global x-axis, compare Figure 3.12. To reduce effects
of the finite computational domain, the cube is set up with a radius of 1.0. We
again simulate an isotropic and linear elastic material with Young’s modulus
E = 1000 and Poisson’s ratio ν = 0.3 and apply unite tensile traction σ = 1.0 in
normal direction on the top and bottom in y-direction of the domain.

x1

x2

x3

Figure 3.12: Mesh of the inclined ellipse crack for the validation of stress intensity factor
extraction.

With k
′
:= b/a and k :=

√
1− k

′2, the reference stress intensity factors for this
problem in an angle γ ∈ [0, 2π] around the elliptic crack are given by [51]:

K∗I =
σ sin2(ζ)

√
πb

E(k)

(
sin2(γ) +

(
b

a

)2
cos2(γ)

)1/4
,

K∗II =
−σ sin(ζ) cos(ζ)k2

√
πb(

sin2(γ) +
(
b
a

)2
cos2(γ)

)1/4
(
k
′

B
cos(

π

2
) cos(γ) +

1

C
sin(

π

2
) sin(γ)

)
,

K∗III =
σ sin(ζ) cos(ζ)k2(1− ν)

√
πb(

sin2(γ) +
(
b
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)2
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(
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cos(
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2
) sin(γ) −
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′

C
sin(

π

2
) cos(γ)

)
.

(3.9)
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Here, the constants B and C are given by

B := (k2 − ν)E(k) + νk
′
K(k),

C := (k2 + νk
′2)E(k) − νk

′2K(k),
(3.10)

where K(k) and E(k) are the elliptic integrals of first and second kind:

K(k) :=

∫π/2
0

1√
1− k2 sin2(φ)

dφ,

E(k) :=

∫π/2
0

√
1− k2 sin2(φ)dφ.

(3.11)

Figure 3.13 shows the raw extracted values at the crack front vertices around
the ellipse together with the reference values.
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Figure 3.13: Stress intensity factors around (γ) inclined ellipse, analytic reference and
raw extracted values in PUMA. We use the computed extraction radius rex
multiplied by a factor of fex = 1 in the CIM and fex = 3 in the DCM.

Regarding the experimental setup, we discretize the cubic domain on level
five and then apply local h-refinement around the crack and towards the crack
front such that we end up with the finest patches on level ten. That is, at the
crack front we have h = diam(Ω)/210+1 ≈ 1×10−3. We employ an iterative solver,
a simple CG with block Jacobi preconditioner. We approximate the crack front
by eighty segments, compare Figure 3.12 and extract at the front vertices, as
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these are located exactly on the ellipse. The minimal extraction radius computed
by Algorithm 1 is rex = 2.96×10−4, so approximately a third of the patch radius
at the crack front. In [44], a moving least squares interpolation of the extracted
stress intensity factors is adopted to smooth oscillations, since in this example
the factors form a smooth curve around the ellipse. Following their example,
we smooth the raw extracted values with a simple centered moving average
of length three for comparison. However, in future work more sophisticated
algorithms might be tried as well.

To quantify the accuracy of the extracted stress intensity factors, we compute
the relative error e(Ki) between the extracted values Ki and the references K∗i
by

e(Ki) :=
‖ei‖l2
‖K∗i‖l2

=

√∑M
j=1

(
K
(j)
i −K

∗(j)
i

)2
√∑M

j=1

(
K
∗(j)
i

)2 (3.12)

per crack opening mode i ∈ [I, II, III] over all M extraction locations around the
crack front. Table 3.1 shows the errors in smoothed extracted stress intensity
factors of the inclined ellipse crack problem simulated by PUMA in comparison
to results obtained in the GFEM [44]. Concerning discretization parameters, [44]
reports h to be between 1.60×10

−3 and 2.90×10
−3 along the crack front, and

the application of quadratic polynomials as basis functions. We use linear
polynomials but slightly smaller h ≈ 1×10−3 at the crack front. Results are
quite similar, which validates our implementation.

Table 3.1: Error in extracted and smoothed stress intensity factors in comparison to
results obtained in [44] with the GFEM. Extraction in PUMA with the computed
radius rex multiplied by a factor of fex = 1 in the CIM and fex = 3 in the DCM.

e(KI) e(KII) e(KIII)

PUMA CIM 0.007 0.009 0.036

DCM 0.017 0.005 0.023

GFEM CIM 0.020 0.016 0.066

DCM 0.020 0.010 0.026

For further comparison, Figure 3.14 shows the errors for a range of extraction
radii, as done in [44], yet only for the CIM and DCM. Overall shape of the
curves matches with their reported results, i. e. both too small and too large
extraction radii yield suboptimal results. While the optimal range of radii is
problem-specific and unknown a priori, we can observe that extraction quality
deteriorates once the factor fex is bigger than four, which is approximately when
we start evaluating outside the patches that intersect the crack front, in this
example. Besides being much faster, the main benefit of the DCM is that it is less
dependent on the extraction radius than the CIM. Essentially, underestimation
of the required extraction radius produces robust results. Interestingly, the
extraction accuracy does not differ that much between opening modes in our
implementation, except that mode III is a little more radius dependent. Also,
the DCM works way better with small extraction radii in our implementation.
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Figure 3.14: Errors in stress intensity factors (SIF) for different extraction radii fex · rex
with a computed extraction radius of rex = 2.96×10−4. Dashed lines indicate
a centered moving average of length three of the extracted values. Dashed
horizontal line indicates error of 2.50 percent.

While further techniques to improve the quality of the extracted stress inten-
sity factors, such as MLS based smoothing, could be implemented, we conclude
that our adaption of fracture simulation algorithms in the PUM works as in-
tended and thus opens several new research possibilities with PUMA. To arrive
at this accuracy in this simple example with a single crack, we had to invest over
a million degrees of freedom and about 8000 patches were enriched with the
crack front enrichment. We believe, that this further highlights the need for scale
separation in linear elastic fracture mechanics, which we introduce by means of
the global-local method in the next chapter.

3.3.3 Front Enrichment Study

In Section 3.1, we presented four options to implement the evaluation of the
crack front enrichments around kinks in the crack front. As shown in Figure 3.5,
we either have a global (for the whole front) enrichment and evaluate it with
respect to the closest segment (a) and (b) or have individual enrichments per
patch with respect to the closest front segment (c) and (d). In the first case
(a/b), the enrichment is discontinuous between segments, in the second (c/d),
enrichments of neighboring patches are different. The two further options (b/d)
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per case are created by optionally applying some smoothing of the crack front
between segments for the enrichment evaluation.

To study the effects of the different enrichments, we revisit the problem from
the previous Section 3.3.2, but now with a fixed extraction radius of 3.93×10

−3

for all extraction locations, which is equal to half the radius in which we use the
front enrichments around the crack front. We also only extract via the DCM and
again report the errors (3.12). Compared to the previous setup, we additionally
report results with one patch refinement less around the crack, to further study
the effect of reduced accuracy in the numerical solution we extract from.
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Figure 3.15: Errors of stress intensity factors (SIF) around an inclined penny shaped
crack, extracted from numerical solutions computed with different versions
of evaluating the front enrichment functions. Versions are defined in the text
and visualized in Figure 3.5. Linear convergence rate is indicated by the grey
dashed line.

Figure 3.15 shows the results for all three crack opening modes. First of all,
trying to smooth the evaluation of the front enrichment functions between front
segments only has a negligible effect. This might be due to the already fine
resolution around the crack that could be hiding the issue, but we did not see
effects with coarser discretizations either. More likely, the difference in the local
coordinate systems between adjacent front segments is too small to be an issue
here and we would require less smooth crack geometries to observe effects. In
contrast, having a global enrichment with discontinuous evaluation for the whole
crack versus individual enrichments per patch makes a difference, especially
with a finer discretization. As we expected in Section 3.1.3, having different
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enrichments in neighboring patches that model different crack fronts, and thus
singularities, in their overlap yields worse results than a global discontinuous
enrichment. One might further argue that the discontinuity in the enrichment
of the first approach is hidden by inexact numerical integration anyway. Hence,
in this example the naive approach of simply evaluating relative to the closest
front segment for each integration point produces the most accurate results
and was thus employed in all other experiments in this thesis. Note that our
findings are in line with [102], where the authors tried even more elaborate
approaches to smooth the enrichment functions around the crack front, but
found that essentially only the overall discretization level around the crack
mattered. Regarding the runtime of the individual enrichment schemes, we
found the naive version, where we search the closest point on the crack front for
each integration point, to actually perform consistently better than the seemingly
cheaper approach of constant enrichments per patch. Most likely, this version is
faster, since only one enrichment has to be evaluated versus around a thousand
in the other version.

3.3.4 Crack Growth

In this example, we use the extracted stress intensity factors to guide the growth
of an inclined penny shaped crack under uniaxial load, reproducing experiment
5.4 in [104]. We expect two qualities of that growth process: First, the symmetric
crack together with symmetric loading should result in symmetric growth.
Second, the crack should grow such that mode I is the dominant opening mode,
i. e. the result should be a flat crack for these boundary conditions.

2L

2L

Figure 3.16: Front view (xy) of computational domain Ω with inclined penny shaped
crack (left). Approximate crack growth direction is indicated by dashed lines.
Discretization of penny shaped crack in initial configuration (right).

We simulate a cracked, cubic domain with radius L = 1, see Figure 3.16,
which is expanded after some crack growth steps to keep enough distance
between the crack and the domain boundary. The round crack with radius
a = 0.1 centered at the origin is inclined by ζ = π/4 with respect to the global
x-axis, compare Figure 3.16. The round crack front is discretized by 40 segments.
Unit load σ = 1 is applied at the boundaries above and below the crack in
normal direction. We discretize the domain on level four and apply three further
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adaptive h-refinements towards the crack front. Additional h-refinements are
applied on top such that no two vertices of the current and last crack front are
contained in a single patch during crack growth. This ensures that the crack is
planar inside the patches at the crack front, which is required for the crack front
enrichments. For extraction, we employ the DCM with a radius factor of 1×10

−1.
For simplicity, we apply a fixed increment of 6×10

−1 times the current front
segment length to update the crack at each step. The kink and twisting angles
α̂ and ψ̂ for the crack update are then computed using Schöllmanns criterion
by (2.45) and (2.46).

Figure 3.17: Penny shaped crack after eight growth steps.

Figure 3.17 shows the crack configuration after eight growth steps. As ex-
pected, crack growth is smooth and symmetric. The reference stress intensity
factors for the initial penny shaped crack are given by [51, 104]

K∗I =
2σ
√
πa

π
sin2(ζ),

K∗II =
4σ
√
πa

π(2− ν)
sin(ζ) cos(ζ) cos(γ),

K∗III =
4σ
√
πa

π(2− ν)
sin(ζ) cos(ζ) sin(γ),

(3.13)

for an angle γ around the crack. In Figure 3.18 we plot the extracted values in
the initial and in the final configuration and add the reference values (3.13) in
the former. While we slightly underestimate the initial stress intensity factors
due to the coarse discretization, mode II and III contributions clearly vanish
as the crack grows, as expected. Figure 3.19 further illustrates that the crack is
almost planar in the final growth step.

We conclude that the simulation of mixed-mode crack growth in isotropic,
linear media works as expected in the PUM, opening up new research possibilities
with PUMA. We present three potential topics in Chapter 6.
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Figure 3.18: Stress intensity factors around (γ) inclined round crack. Dashed line in left
plot indicate the analytic reference values for this problem. Crack grows to
be mode I dominant.

Figure 3.19: Crack growth steps 32 (top) and 41 (bottom) of the inclined penny shaped
crack.





4G L O B A L - L O C A L E N R I C H M E N T S

Let ΩG be the global domain with a very localized feature of interest, like a
crack, a hole, an inclusion or a sharp laser heat source, for which we do not have
an analytic or precomputed enrichment available. Using heavy h-refinement
around the feature increases the number of degrees of freedom, such that
solving the global system may become unreasonably expensive. A two-scale
approach to this problem is to separate the involved scales and solve for the
smooth global problem and the localized feature separately. This approach has
been researched and used since the 1970s as the so-called global-local finite
element analysis (FEMGL) [88, 94], the zooming technique [27, 136] or the micro-
macro strategy [70]. In the FEMGL, the global problem is solved disregarding the
localized feature around which a local problem is set up. The two problems are
combined using some interface condition and the resulting method is similar to
non-overlapping Schwarz domain decomposition method [37]. This splits the
number of degrees of freedom into two separate problems while retaining local
resolution.

Resolving the localized feature can significantly change the global energy
minimum we are solving for. In the global-local enrichments method, the local
solution is thus used as an enrichment in the global problem, which is then
solved again to incorporate the new information, compare Figure 4.1. This
concludes one global-local cycle, which may be iterated to further improve the
computed enrichment.

global problem

boundary data

enrichment

local problem

Figure 4.1: The original global-local enrichments cycle: The solution of the local problem
computed with boundary data from the global problem is used to compute
another enriched global solution. Updating the global solution is beneficial
since the resolution of the local feature can change the global energy mini-
mum.

Using multiple iterations to account for the global effect of the improved
resolution of the local feature has already been successfully tried in the initial
global-local version without enrichments [141], where a Newton-Raphson itera-
tion was employed to equilibrate the solutions on the global and local meshes.
The global-local enrichments method was introduced as the GFEMgl in 2007 by

59
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Duarte and Babuška [23] for the GFEM, which is a finite element based partition
of unity method. Since then, it has been applied to a variety of problems with
different local features: sharp thermal gradients [96, 97], linear [63, 68] and
cohesive [62] fracture, localized [64] and thermo-plasticity [107], simulation of
spot welds [73], as well as local material heterogenities [106]. From now on, we
refer to the global-local enrichments method depicted in Figure 4.1 as just the
global-local method or global-local enrichments.

4.1 properties of the global-local method

In this section, we first discuss accuracy and runtime performance of the global-
local method. We then detail the local equation and boundary conditions for
the case of a global linear elasticity problem and end with a comparison of two
ideas on what constitutes a local problem in a simulation.

accuracy In [49], Gupta et al. derived an error estimate for the global-local
method for smooth and simple PDEs based on Caccioppoli’s inequality. The
setting, sketched in Figure 4.2, is a local domain ΩL with a smooth boundary
and a smaller domain ΩτL ⊂ ΩL inside it, also with a smooth boundary. In the
global-local method, we apply the boundary data uGPU from the global problem
on ∂ΩL but enrich only global patches inside ΩτL with the computed local
solution. We refer to the area between ∂ΩL and ∂ΩτL as a bufferzone with size
τ := dist

(
∂ΩL,∂ΩτL

)
.

τ
ΩτL

∂ΩτL

∂ΩL

Figure 4.2: Domains of the local error estimate with the bufferzone fτ.

For the analysis we consider the model problem

divA∇u = 0 on ΩL
u = g on ∂ΩL

(4.1)

on ΩL, with smooth coefficient A(x) and Dirichlet boundary conditions with
varying boundary data. Let u∗ be the solution of (4.1) with the true global
solution as the boundary data, g = u∗G. Let ugl be the solution of (4.1) with
the inaccurate boundary data g = uGPU, for example from the global numerical
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solution, and let uglPU be its discretization. Then the error of the computed
enrichment uglPU in the energy norm is bounded by∥∥∥u∗ − uglPU

∥∥∥
E(ΩτL)

6C1 inf
v∈VPU(ΩL)

∥∥∥ugl − v∥∥∥
E(ΩL)

+
C2
τ

∥∥∥u∗ − ugl∥∥∥
L2(ΩL)

,
(4.2)

where we have the discretization error of the local problem and the L2-error
induced by the inexact boundary data divided by the bufferzone size τ on the
right hand side. To improve accuracy of the global-local method, we thus have
to balance local approximation power with the error in the boundary data. The
latter heavily depends on the global solution, hence overall accuracy of the
global-local method can actually be limited by the global discretization. Up to
that point, accuracy can be improved by two techniques, though. First, one can
apply multiple global-local iterations [49, 96, 141], thereby recomputing better
enriched global solutions and thus improved local boundary data, but at a high
runtime cost. Second, the term dependent on the boundary data can be reduced
by increasing τ and thus the size of the bufferzone.

The use of a bufferzone was introduced in [49] for the global-local method,
but similar approaches have been widely used in other methods, such as the
Multiscale FEM [52] and prior GFEM research on computed basis functions [131].
Observe that in the setting of estimate (4.2) the position of the boundary of the
local domain is fixed and we reduce the area where the computed enrichment
is applied. In the global-local method, however, we would usually fix the area
of application and increase the local domains size, thereby moving the position
of its boundary, which changes the boundary data. In practice, we expect
this to have even more benefits, since by applying a bufferzone we evaluate
the global solution further away from e. g. a singularity, where it should be
more accurate. Increasing the bufferzone, or reducing the area in which the
computed enrichment is applied, has of course limits. The minimum size of
the enriched area is one patch and may further be bounded from below by the
enrichment radius required to resolve the local feature, as is the case for crack
singularities (3.6). Conversely, heavily increasing the size of the local domain
defeats the purpose of the global-local method.

A third technique to improve the quality of the computed enrichment based
on the same inaccurate boundary data is the application of a different kind of
boundary condition. In [9, 68], Robin boundary conditions were found to be
an improvement over Dirichlet boundary conditions under some conditions.
Specifically, Robin conditions depend on a parameter κ which has to be esti-
mated correctly for optimal results. In Section 4.3.2, we investigate the effects of
a bufferzone, multiple global-local iterations and different types of boundary
conditions on accuracy in numerical experiments.

performance considerations Performance-wise, global-local enrich-
ments are only preferable if no analytic or precomputed enrichments are avail-
able for a problem. Given such a problem, let us first consider the case of a
sequential simulation or a single local problem and thus ignore the paralleliza-
tion opportunity in the global-local method for the moment. Compared to using
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h-refinement on the global domain, the global-local method trades a reduced
number of global degrees of freedom for additional solution and numerical
integration steps at the same or comparable global accuracy. For the global-local
method to have a performance advantage, the reduced number of global degrees
of freedom should therefore result in enough speedup of the employed global
solver, to make up for the additional assembly and solution steps.

After the initial, potentially cheap global solution step, every iteration has four
runtime dominating tasks: the global and local assembly of the linear system
and their corresponding solution steps. When running multiple global-local
iterations, some work may be saved, though. As the local approximation space
does not change, only the boundary conditions have to be re-assembled on the
local problem. If we use a direct solver, or an incomplete LU decomposition as
preconditioner, on the local problem, we can cache also the factorized matrix.
Consequently, we obtain multiple local solutions for virtually no additional cost.
Unfortunately, we cannot avoid traversing the local integration cells once every
global-local iteration when assembling the newly enriched global system, since
the global-local enrichment changed. However, all entries not affected by the
enrichment can be kept, which, depending on the relative sizes of global and
local problems, may save some time. When using iterative solvers, we can at least
use the last global solution as an initial guess. In this case, and if the last solution
is the initial, unenriched solution, we have to pad the coefficient vector with
zeroes for the enrichment coefficients. In [67], it was further proposed to build a
preconditioner that combines the factorized initial unenriched stiffness matrix
and the factorized matrix of enriched patches, while ignoring the interaction
part.

Runtime measurements of the global-local method and a comparison with
direct h-refinement can be found in Section 4.3. However, we provide a rough
runtime estimate in the following. Let dofg be the number of initial global de-
grees of freedom and let us assume there are 1 6 n equally sized local problems
with dofl degrees of freedom each. We further assume that 1 6 i global-local
iterations are run and, for simplicity, that the enriched global problem again has
dofg degrees of freedom. For convenience, we neglect linear contributions like
the assembly of the linear systems; however, the resulting estimate is almost the
same if they were indeed modeled. Assuming a quadratically scaling solver, we
can model the order of the runtime Ogl of the global-local method as

Ogl = (1+ i)dof2g+i ·n · dof2l . (4.3)

For simplicity, we assume that the directly h-refined global problem has the
same number of degrees of freedom as the combined global and local problems
and thus has runtime complexity

Odirect = (dofg+n · dofl)
2. (4.4)

In this simplified model, and by further assuming that we have less global-local
iterations than local problems, i. e. i 6 n, we arrive at the implication

dofg 6
2n

i
dofl =⇒ Ogl 6 Odirect. (4.5)
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Besides reminding us that multiple global-local iterations are expensive, this
estimate states that the number of degrees of freedom required to resolve the
local features must be comparable to the number of remaining global degrees of
freedom, in order for the global-local method to pay off. Changing the underly-
ing complexity assumptions of (4.5) of course changes the estimate. For example,
more expensive solvers, such as a Newton solver for nonlinear problems, benefit
more from the reduced amount of global degrees of freedom in the global-local
method [64, 65, 95]. In consequence, the global-local method could be preferable
for less relative local degrees of freedom. Another upside of the global-local
method, however, is enabling simulations on constrained hardware in the first
place by reducing the size of the largest occurring linear system. In this case, we
may not even be interested in the asymptotical complexity of the method.

This said, the most important feature of the global-local method with respect
to runtime is the parallelization opportunity it provides when multiple local
problems are used in a simulation. Here, multiple local problems can be solved
completely independent of each other and communication is only necessary in
the evaluation of the global solution for the boundary data and in the assembly of
the global enriched linear system. As a result, it should be possible to introduce
equally sized local features to a simulation, together with a constant number
of processes for each, without increasing the total runtime. Put differently, the
global-local method should show excellent weak scaling behavior with local
features, which we verify numerically later in this chapter.

4.1.1 Local Boundary Conditions

On parts ∂ΩL ∩ ∂ΩG of the boundary of the local domain ΩL that intersect the
global boundary ∂ΩG = ΓD∪̇ΓN, we use the global boundary conditions on the
local problem. On the remaining parts of the local boundary ΓL := ∂ΩL \∂Ω, we
use the global solution uG as boundary data to apply either Neumann, Dirichlet
or Robin boundary conditions, the latter interpolating between the first two.

Assume we solve the weak formulation (2.19) of linear elasticity on the global
domain, with Neumann boundary data t̄ and Dirichlet boundary data ū. With
Dirichlet boundary conditions on ΓL the local weak form is then given by:

Find uL ∈ VPU
L such that∫
ΩL

σ(uL) : ε(vL)dx =

∫
ΓN∩∂ΩL

t̄vL ds +

∫
ΩL

b vL dx (4.6)

for all test functions vL ∈ VPU
L . The Dirichlet boundary conditions on ΓL and

ΓD with data uG and ū respectively are treated as described in Section 2.3.4.
Based on a parameter 0 6 κ, Robin boundary conditions interpolate between

Neumann and Dirichlet boundary conditions. For κ = 0 we obtain Neumann
boundary conditions, while κ→∞ yields Dirichlet boundary conditions, similar
to a penalty method. Robin conditions are given by

T(uL) + κuL = T(uG) + κuG on ΓL. (4.7)

where T(u) = σ(u) ·n is the prescribed traction. The corresponding weak form
then reads:
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Find uL ∈ VPU
L such that∫

ΩL

σ(uL) : ε(vL)dx + κ

∫
ΓL

uLvL ds

=

∫
ΓN∩∂ΩL

t̄vL ds +

∫
ΓL

(
T(uG) + κuG

)
vL ds +

∫
ΩL

b vL dx.
(4.8)

for all test functions vL ∈ VPU
L .

Research on global-local enrichments in the GFEM context [68] finds that
Robin boundary conditions perform the best for a reasonably wide range of
the parameter κ. Furthermore, studies on non-overlapping Schwarz methods,
e. g. [29], suggest that Robin conditions can improve accuracy, especially with
no or only small buffer zones. All this depends on finding the right parameter
κ, though. To this end, Kim et al. [68] propose estimating

κ ≈ E
h

(4.9)

by Young’s modulus E divided by the characteristic length of a global finite
element h along the local boundary. In this case, κ scales with the material
parameters and the global-level, yet ignores other features of the problem at
hand, such as the local stress.

In [9], we argued instead that in the linear system assembled from (4.8), the
right hand side vector contributions from T(uG)vL and κuGvL should be of
comparable size. This way we aim to be around halfway between Neumann and
Dirichlet boundary conditions. Hence, we assemble the vectors

T̂ =

 ∫
ΓL

T(uG)ϕiϑ
n
i ds


i,n

and K̂ =

 ∫
ΓL

uGϕiϑ
n
i ds


i,n

(4.10)

for all basis functions that span VPU
L and set κ to be the fraction of their discrete

l2-norms

κ :=
‖T̂‖l2
‖K̂‖l2

. (4.11)

In this scheme, κ scales with the material parameters and with features of the
gradient of the solution we are seeking, but not with the global discretization
level. In Section 4.3.2 we study the effect of different kinds of boundary condi-
tions and evaluate the above scheme (4.11) to compute κ numerically, now in
three space dimensions. While not tested yet, the above scheme could also be
used to compute a separate value of κ for each patch at the local boundary, which
would further adapt the boundary condition to the local stress distribution.

4.1.2 Local Problem Domain

The smallest entity we can enrich in a partition of unity method is a single patch.
Any local problem thus has to cover all global patches on which its solution
is used as an enrichment. For a given feature on the global domain, we can
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thus either create a single local domain covering the whole feature or multiple
overlapping local problems, with a maximum of one per global patch affected
by the feature, compare Figure 4.3.

(a) Local problem per feature. (b) Local problem per enriched
patch (LPP).

Figure 4.3: Three crack-intersecting global patches with either a single local problem cov-
ering all patches (a) or one local problem for each (b). In the latter case, local
boundaries overlap with the crack, but more local problems are generated,
which are also better adapted to the geometry of the local feature.

Both approaches have their tradeoffs, especially with respect to accuracy and
performance, as well as implications for the parallelization of their implemen-
tation. Also note that the difference between the approaches depends on the
global discretization, i. e. the number of global patches at a feature: The coarser
the global discretization with respect to the size of the feature of interest, the
less difference there is between the two approaches. Now, large simulations
can easily be limited in their global patch width while still benefitting from
the resolution of small scale features. This is demonstrated for example in [97],
where a localized heat source smaller than a global patch constitutes a local
problem. The approach of one local problem per enriched global patch (LPP)
illustrated in Figure 4.3b has been implemented and studied in the GFEMgl [23, 49,
66]. However, in this thesis, we decided to implement the single local problem
per feature version shown in Figure 4.3a due to the reasons outlined in the
following.

Estimate (4.2) shows that the accuracy of the global-local method is deter-
mined by the local discretization and the quality of the boundary data on the
local problem. If we spend the same number of degrees of freedom on a local
problem as we would using adaptive h-refinement directly, we expect a compa-
rable resolution of the local feature at least after some number of global-local
iterations. Multiple smaller local problems suffer from the fact that their bound-
aries are closer to the initially unresolved feature or might even overlap with
it, as can be observed in Figure 4.3b. For example, the singularity at a crack
front has an effect within some radius around the front (3.6), as proven in [46],
inside which a coarse global solution and thus the local boundary data cannot
be accurate. Therefore, for multiple overlapping local problems, the boundary
data provided by the global solution is worse, and we expect more global-local
iterations to be required until we reach the same accuracy as with a single,
larger local problem. In Section 4.3.1, we confirm this in a numerical experiment.
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More global-local iterations then also imply higher runtime for the same ap-
proximation quality. On the other hand, solving multiple small problems might
be cheaper than solving one large local problem due to the smaller sizes of the
involved linear systems. Note, however, that due to the overlap of local problems
in LPP, this approach uses more degrees of freedom overall to resolve the local
feature than does a single local problem. Decisions in that regard likely have to
be made on a per simulation basis, based on numerical experience, especially
since the two approaches further have different parallelization characteristics.

Multiple local problems, for one or several features in the domain, provide
an excellent parallelization opportunity, as they can be solved completely inde-
pendent of each other. Synchronization is only required in the evaluation of the
global boundary data and in the assembly of the global enriched linear system.
In the GFEMgl, a parallelization strategy of the global-local method is presented
in [66] where local problems are solved parallel to each other, but each on a
single thread. Since one local problem for every global, enriched patch is created
there, they are small and thus cheap to solve even sequentially. Furthermore, in
most examples presented in the GFEMgl context, the global discretization is fine
enough to generate enough parallel work, while coarser global discretizations
would severely limit the parallelization opportunity. In contrast, having a single
local problem per feature lends itself to the parallel solution of each problem,
while of course problems for different features should still be solved simultane-
ously. Another difference between our and the implementation presented in [66]
is that we chose to implement the global-local method in distributed memory
using the message passing interface (MPI). While the GFEMgl implementation can
of course be extended to support local problems on different threads for each
global process region, additional communication will be needed for overlap-
ping local problems on different global processes. In Section 4.2 we present a
distributed memory parallel implementation of the global-local method with
non-overlapping local problems that also exploits the inherent parallelism of
the method. This implementation shows excellent scaling characteristics, as we
demonstrate in numerical experiments in Section 4.3.3.

Another difficulty in the implementation of overlapping local problems in our
specific meshfree PUM arises from the numerical integration of the computed
enrichment for the enriched global linear system. Here, integration cells have to
be used that at least resolve the patches of the local spaces in order to integrate
their basis functions accurately. To this end, and to exploit the parallelism of
the local problems, it is useful to directly use the integration cells of the local
problems, as was also proposed in [66]. The interaction of which integration cells
are used and the parallelism of the resulting method is explained in more detail
in Section 4.2. To be able to use the local problems’ cells efficiently, it is beneficial
to have the local cells nested in the global ones. Nested cells automatically
resolve the global patches and simplify the generation of exactly matching cells
in the overlap of local problems. In the GFEM [66], the latter is achieved by
a third intermediate mesh layer common to all local problems which defines
their elements. However, while constructing nested integration cells is very
easy in FEM and mesh based methods, compare Figure 4.8a, it is very difficult
in our meshfree, flat-top PUM, at least with the cover construction detailed in
Section 2.3.5, compare Figure 4.8b. Finding a different construction of a flat-top
cover with the property of nested refinements might be possible of course, but
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it is likely to have other downsides. Hence, solving overlapping local problems
is currently not possible in an efficient manner in a parallel setting in PUMA.

implementation in puma The smallest entity we can enrich in the PUM is
a single patch. We therefore have to guarantee that a constructed local domain
in the global-local method contains all global patches we want to enrich with
the computed enrichment. In PUMA we base the construction on the Feature class,
whose derived classes represent features of the geometry, such as a crack or only
the crack front, or a whole box for e. g. topological enrichment across refinement
levels. Feature objects are then used to automatically construct local domains and
their respective boundary parts, and subsequently to mark all overlapped global
patches for enrichment with the computed solution. Specifically, for the setup of
the local domain, we query the function space for all patches whose stretched
domains intersect the feature. The bounding box of those patches then is the
local domain. In parallel simulations, we further have to find and communicate
the maximal bounding box across all involved processes, since a function space
always knows about its local patches only. This construction comes with the
disadvantage that the local domain potentially covers global patches that are not
going to be enriched, compare Figure 4.4. As a result, the computational costs
to compute the enrichment are increased, which could be avoided if the local
geometry was given by the union of the enriched, global patches. Effects on
runtime and accuracy of such a domain construction would have to be studied.

crack

Enriched Patches

Local Domain Boundary

Local Domain Boundary
with Bufferzone

Figure 4.4: Local domain with and without bufferzone around crack. Only global patches
intersecting the crack are enriched, i. e. we use geometric enrichment in this
example.

One technique to improve accuracy of the global-local method is applying
a bufferzone to the local domain, which means enlarging the domain we are
computing on while keeping the enriched area constant. To this end, the user can
provide a buffer factor 0 < τ to increase the size of the local domain by 100 · fτ
percent. Here, a stretch based on the smallest dimension of the local domain’s
bounding box is applied, thereby making a rectangular domain more square
shaped, for the following reason. As described in Section 2.3.2, our standard
polynomial basis functions are tensor products of one dimensional polynomials.
If patches are not quadratic, the derivative of those polynomials is therefore
of different magnitude depending on the direction, which deteriorates the
condition of the stiffness matrix. Thus, by default, we base cover construction
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in PUMA on a quadratic version of the domain’s bounding box, leading to
potentially fewer patches in thinner directions of the domain, though, which
might not be desirable either. Applying a buffer factor based on the smallest
domain dimension mitigates these issues. It further ensures that we move
the local domain’s boundary away uniformly from, for example, the crack
singularity. This is also more similar to the approach used in the FEM based
GFEMgl, where layers of elements are simply added to the local domain [49].
However, applying a bufferzone as described above in PUMA comes with the
side effect of coarsening the local discretization if the local domain level is kept
constant, because we increase the size of the local domain. To keep the local
resolution constant, we therefore had to set the local domain’s bounding box
size manually in experiments comparing the effects of different bufferzone sizes,
see Section 4.3.2. Moreover, we actually always have to apply at least a small
bufferzone in the PUM. Otherwise, would evaluate our global solution on patch
boundaries, where the derivative of our weight functions and thus of our basis
functions is ill-defined. By default we apply a factor of fτ = 0.01 in PUMA.

As geometry and domain features in the PUM are not encoded in a mesh
and thus have to be stored separately, effort was made to not duplicate the
information while implementing the global-local method in PUMA in order to
improve usability and reduce resource usage. This was the case for the Domain
class, which stores subdomains, such as cracks, and makes references to parts of
the geometries boundary, as well as for the Geometry class, which represents the
geometry. In both instances wrappers were implemented for the local domain
and geometry that simply pass most queries to the global domain and geometry.
The DomainWrapper stores the local geometry wrapper, for bounding box queries
or access to the geometry and holds a reference to the global domain to which it
passes all functions related to subdomains. Subdomains, such as cracks, added
to the global domain are therefore visible on the local domain both instantly
and under the same name, which makes applying boundary conditions and
writing GECO forms easier. The GeometryLocalDomain stores the local geometry,
which is always an axis aligned box, and a reference to the global geometry. All
queries on the local geometry are then first restricted to the local domain’s box
and further passed to the global geometry.

4.2 parallelization and integration

The global-local method is inherently parallel, since local problems can be solved
completely independent of each other. As explained in the beginning of this
chapter, we chose to solve each local problem in parallel using MPI. Hence, we
have to restrict local problems to subsets of all available processes in order
to exploit the parallelism of the global-local method. In MPI language, we use
MPI_Comm_split to split the global world communicator MPI_COMM_WORLD
into several communicators, so that each then contains a subset of the total
processes. Such a split communicator is identified by a so-called color. For the
implementation this poses the additional challenge, that we have to communicate
between different subsets of the overall available processes. In the following, we
first explain the necessary parts of the parallelization in PUMA as implemented
prior to this thesis and continue with the changes we made to support local
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problems on split communicators. Though intertwined with the parallelization
strategy, we present details concerning the integration cells thereafter.

In PUMA, parallelization is achieved by distributing patches. All n patches
on a given level are ordered along a space-filling curve, see Section 2.3.5, and
each of the p processes receives its batch of n/p patches. This way, the stiffness
matrix is automatically distributed by rows, with each matrix entry being a
block corresponding to the interaction of the local basis functions ϑni and ϑmj
of two patches ωi and ωj. Note that the computational load associated with
each patch during assembly of the linear system depends on the number of
integration cells and points associated with it. That is, the load of each patch
depends on the number, complexity and required integration resolutions of the
polynomial basis functions and enrichments applied on it and its neighbors.
Moreover, adaptive h-refinement can increase the computational cost of coarser
neighboring patches, as more integration cells are generated in the overlap. In
such a case, higher integration resolutions might also be required due to the
shape of the PU functions in the overlap of differently sized patches Enrichments,
unsurprisingly, can significantly increase the relative computational cost of
individual patches and also that of their neighbors. Currently, these effects are
not accounted for in PUMA, which affects certain decisions and also results of
our numerical experiments in Section 4.3. However, space-filling curves are well
suited for this kind of load balancing problem [40] by adapting the count of each
patch along the curve based on a load estimate. Achieving good load balancing
should thus be possible in this approach, but is left for future work, as it was
not the focus of this thesis.

As patches overlap and the stiffness matrix contains blocks corresponding to
the interaction of neighboring patches, a process needs to be aware of neigh-
boring patches managed by other processes, in order to evaluate their basis
functions during assembly of the linear system. We call those remote patches, a
term always relative to the current process. Note that the neighbor relations of
patches needs to be computed only once per given set of function spaces on a
constant discretization level per simulation and is negligible in runtime. Regard-
ing the integration cells, we have two options during assembly of the stiffness
matrix: either every process has all integration cells required for its patches, the
default in PUMA, or integration cells of different processes are disjoint, called
disjoint integration in PUMA. In the former case, we communicate integration
cells before, in the latter, we communicate matrix entries after assembly.

When using enrichments computed by PUMA, the global function space has to
evaluate the basis of the local function space during the assembly of the global
enriched linear system. The local function space, in turn, has to evaluate the
basis of the global space when applying the global boundary data. In parallel,
both directions are complicated by the fact that overlapping regions of the global
and local domain must not belong to the same process in parallel. We hence
need to inform the incorporated function spaces about their new process as well
as remote patch neighbors. This operation was already implemented in PUMA

prior to this thesis, but it had to be adapted to allow local problems on split
communicators. We outline the respective algorithm in the following.

Computing neighboring processes between two covers is based on the notion
of a minimal cover. Essentially, we keep the stretched domains of the tree leaves,
but merge those where all siblings belong to the same process, compare Fig-
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(a) Patches on some process. (b) Corresponding miminal cover.

Figure 4.5: Sketch of minimal cover for local patches on one MPI process. Dotted lines
indicate the size of the parent patches for the refined ones.

ure 4.5. In effect, for each process we save the smallest possible set of cover boxes
such that all children belong to the process, but account for the diminishing
effect of the applied stretch factor on higher discretization levels. Intersections
of the minimal covers then determine the neighbor relations between different
covers. To allow evaluation of remote patches during integration without com-
munication, patches marked as remote neighbors are then sent to the current
process along with the corresponding matrix and vector blocks, see Figure 4.6
for an example. After this setup step, every process can evaluate all required
patches of the global and local function space on its integration cells without
communication.

(a) Global and local patches on
process zero.

(b) Remote global patches on pro-
cess zero (dashed).

Figure 4.6: (a): Global cover with one patch on process zero and local cover with two
patches on process zero. (b): Global patches sent to process zero (dashed) due
to remote neighborship relations with itself and the local cover.

split parallel puma Since only the communicator changes, only solving
the local problem without the global boundary data on a split communicator
was essentially possible prior to this thesis. While certain pieces of code had
to be adapted to not assume the world communicator, most of PUMA already
just passed on the used communicator. Constructing the local domain and
having the involved function spaces communicate for the boundary data and for



4.2 parallelization and integration 71

evaluating the computed enrichment on the global space required some changes,
though. To illustrate this, Figure 4.7 sketches one possible scenario with two
local problems on two processes each, while the global problem is solved with
sixteen processes. For simplicity, we just sketched the process regions, not the
cover patches. Note that for example process zero now is a neighbor of process
eight, which was not the case on the global problem alone.

0 1 14 15
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5 6
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4 7
8

0 1
11

5 6 9 10

Figure 4.7: Sketch of level two patch distribution across sixteen processes, with two local
problems solved on two processes each. Processes numbered with respect to
global communicator. Split parallel solution of local problems introduces new
process neighborhood relations on both the global and local cover.

Exchanging the remote neighbors between two covers on different commu-
nicators requires an additional communication step, which is implemented in
PUMA under the assumption that at least one cover is distributed on the world
communicator. This assumption implies that the global problem is always solved
with all available processes. It further excludes overlapping local problems, a
scenario, where assembly of the global linear system is difficult to implement
efficiently in the meshfree PUM anyway, as we discuss shortly. Before we are
able to compute intersections of minimal covers, the first step is to index the
local minimal covers relative to the world communicator. In MPI, processes are
index relative to a communicator, where the index is referred to as the rank of
the process. The same process can thus have different ranks in the world and in
a split communicator. Mapping ranks of the split communicators into the world
communicator is done using the MPI translate_ranks function, which operates on
the process group of a communicator. Hence, after translating the local minimal
covers into the world ranks, we perform one global communication, gathering all
local contributions into a global minimal cover. From here, everything works as
before, that is, remote neighbors are computed and remote neighboring patches
of each cover are gathered on the current process together with corresponding
matrix and vector blocks. Note that this step has to be performed only once in
the setup phase of a simulation.

Another implementation difficulty that arises is that a global patch on a
particular process may now have an enrichment whose communicator, however,
does not contain that process. Figure 4.7 shows an example where process eight
is enriched with a solution computed on process zero and one. This has several
implications: For one, we can no longer integrate the computed enrichment
on the global integration cells. As described in the next subsection, we solve
this issue by integrating on the cells of the local function spaces. Moreover, we
have to inform the enriched processes at least about the number of degrees
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of freedom added by the enrichment, so that blocks of the linear system have
the correct size. In addition, the construction of the local domain has to be
adapted. For this, we perform the algorithm described in Section 4.1.2 on the
world communicator for every feature we want to enrich and then let each color
construct only its own local domain. Finally, the implementation of input and
output, for instance for visualization, becomes more complicated, as data has to
be coordinated between subsets of the overall processes.

Despite the implementation challenges, the proposed parallel implementation
of the global-local method should show excellent scaling behavior, which we
confirm numerically in Section 4.3.3.

gl integration In the following, we are concerned with the numerical in-
tegration of the enriched global problem in the global-local method. Specifically,
the issue here is the evaluation and integration of the computed enrichment
that is defined on another PUM-space with its own parallel distribution. We lay
out the challenges during this step, especially when implemented in a meshfree,
flat-top partition of unity method, and describe their solution as implemented
in PUMA for the thesis at hand.

When several function spaces are involved during the assembly of a linear
system, it is crucial to resolve patch boundaries and so-called split points of
all function spaces in the integration cells in order to improve integration
accuracy. The latter are points along which integration cells are split in all two
or three dimensions, to resolve discontinuities of incorporated basis functions,
compare Figure 2.11. Achieving this is trivial in FEM based partition of unity
methods, because refined cells can easily be nested inside coarser cells. In the
PUM, however, patch boundaries on finer discretization levels do not coincide
with patch boundaries on coarser levels at all, as can be seen in Figure 4.8b.
Thus, patches of different function spaces have to be resolved explicitly during
the generation of integration cells.

global patch

local patches

(a) Refined patches in GFEMgl.

global patches

local patches

(b) Refined patches in PUM.

Figure 4.8: Global and local patches around a crack tip in FEM based (a) and our flat-top
partition of unity method (b). Nesting refined patches in the latter would be
difficult, which has implications for the numerical integration in the global-
local method.

By integrating the computed enrichment on the global cells with resolved
local patches, we evaluate the enrichment only with the global processes that
overlap the local domain. That is, in worst case, all local integration cells are
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evaluated by a single process, compare Figure 4.9a. The solution to this issue is
using the local integration cells and thus the local process distribution also in
the global assembly step, as depicted in Figure 4.9b.

(a) Integration on global
cells.

(b) Integration on local
cells.

(c) Split integration on local
cells.

Figure 4.9: Simplified sketch of global and local level one covers distributed across four
processes, with the following cells used as global integration cells. Global
cells with resolved local patch domains (a), local cells with resolved global
patch domains distributed across all processes (b) and distributed only across
subsets of the total number of processes, using split communicators (c). The
latter allows parallel solution of local problems.

To this end, we implemented the IntegrationcellHandlerMultiCover for this thesis,
which takes one global integration cell handler and a list of local integration cell
handlers, and automatically manages everything else in all functions that accept
an integration cell handler in PUMA. The constructor further takes a list of Feature
objects specifying the global patches to be handled by each local integration cell
handler. We skip all cells for enriched global patches in the global integration
cell handler and all local cells outside the enriched patches on the local handlers,
such that they are disjoint and the union of all integration cells is the global
computational domain, compare Figure 4.10c.

(a) Global patches and local
problem.

global cells

enriched patch

local boundary

local cells

cell splits due to
global patches

(c) Integration cells of global
problem using local cells.

Figure 4.10: Using local cells during numerical integration of the global linear system. In
this sketch, the local problem is discretized on level one and additional cells
are introduced to resolve the global patches in the local integration cells.

Earlier we mentioned the two strategies of either sending cells or matrix
entries during parallel assembly, which are called default and disjoint integration
in PUMA. Note that when using the integration cells of the local spaces, it is
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no longer desirable to send cells. When considering a local problem on a
split communicator, it is even impossible without complicated communication
across different communicators. Hence, disjoint integration has to be used in
our implementation of the global-local method. To illustrate this, consider a
local problem completely contained inside the region of process zero. If the
local problem is parallelized using the world communicator, we would lose
the improved patch and cell distribution of the local problem as we send all
local patches to process zero. If further the local problem is defined on a split
communicator that does not contain process zero, we cannot even send the cells
using the local communicator. The split scenario is also visualized in Figure 4.7,
but with process eight instead of zero.

4.3 numerical results

In some sense, the global-local method is only a more complicated version of
adaptive h-refinement on a separate discretization. Compared to the latter, it
potentially trades some accuracy, due to imperfect boundary data, for perfor-
mance, due to the reduced size of the global problem and the parallelization
opportunity. The aim of this section is thus to investigate this tradeoff numeri-
cally. Specifically, we conduct the following experiments. First, we examine if
the global-local method achieves comparable accuracy to a direct solution. Here,
we consider problems where we know the solution analytically. Second, we
investigate the effectiveness of multiple iterations, of a bufferzone, and of Robin
boundary conditions in improving the boundary data of the local problem and
thus the computed enrichment. Third, we turn to the global-local method’s
inherent parallelization opportunity, and measure parallel scaling with multiple
local problems, specifically testing our proposed distribution of problems across
split communicators. Lastly, we compare the achieved runtime performance to
a directly h-refined simulation and thereby evaluate our runtime estimate (4.5).

We assess the accuracy of the global-local method in two examples in which
we have a reference given analytically. For the first example, we use the method
of manufactured solutions and define the following problem.

Example 4.1 (Validation Problem). We study a cracked extruded square domain with
a simple flat crack geometry, see Figure 4.11a. The domain is made of a linear elastic
and isotropic material with Poisson’s ratio ν = 1/3, while we vary Young’s modulus per
experiment and report it there.

We prescribe Dirichlet boundary conditions on all surfaces except the crack, so that
the solution u∗ = uI + uIII is the sum of the first terms of the mode I and mode III
displacement fields (2.28) with respect to cylindrical coordinates around the crack front,
compare Section 2.2. As a result, we can compute errors with respect to the true solution
and know the exact stress intensity factors for this problem, which are KI =

√
2π2G,

KII = 0 and KIII =
√
2πG/2. We further define a small box Ωtip with radius 0.5

around the crack front for local error measurement. The global and local problem are
discretized on level four and five respectively, resulting in the local problem being two
levels finer around the crack. Basis functions consist of linear polynomials and the
crack enrichments described in Section 3.1, with the crack front enrichments applied on
patches in a radius of one around the crack front.
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x: 24

z: 24

y: 8

(12, 0, 12)

(a) Geometry of validation problem.

ΩL

Ωtip

(b) Side view of local and error
extraction domains.

Figure 4.11: Cracked extruded square domain for validation purposes with local domain
ΩL around the whole crack. Furthermore, an error extraction domain Ωtip
is used to measure the error locally at the crack front.

We compute the errors on subsets Ω∗ ⊂ Ω of the computational domain and
use either the L2-norm

‖u‖L2(Ω∗) =

 ∫
Ω∗

|u|2 dx


1
2

, (4.12)

or the H1-seminorm, for simplicity referred to as just the H1-norm,

|u|H1(Ω∗) =

∑
|β|=1

∫
Ω∗

|Dβu|2 dx


1
2

, (4.13)

where β is a multi-index, and Dβu the β-partial derivative of u. If not stated
otherwise, we report the relative error

e(Ω∗) :=
‖u∗ − uPU‖Ω∗
‖u∗‖Ω∗

(4.14)

of the computed approximation uPU with respect to the true solution u∗.
As a second example, with more complex crack geometry, we revisit the

inclined elliptic crack example introduced in Section 3.3.2. In this example, the
stress intensity factors around the crack front are available analytically and we
can compute the error (3.12) relative to them.

4.3.1 Accuracy

In this section, we validate the global-local method by investigating if it achieves
comparable accuracy to a direct, h-refined solution. To this end, we study the
validation Example 4.1 with Young’s modulus E = 1, such that all three stress
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intensity factors are of the same order of magnitude. To compare the accuracy of
the global-local method against a direct solution, we solve the problem once on
the global domain only and once with a local problem set up around the whole
crack, compare Figure 4.11b. In the first case, we use the crack enrichments
directly on the global problem and in the latter, on the local problem only. Thus,
the crack is not modeled in the initial solution step of the global-local method.
We apply adaptive h-refinement around the crack in the direct solution, to
obtain the same number of degrees of freedom for approximation as in the local
problem, compare Table 4.1.

Table 4.1: Degrees of freedom (DOF) and final H1-errors for the validation problem for a
global-local (GL) and a direct solution.

DOFg DOFl e(Ω) e(ΩL) e(Ωtip)

GL 1.23×10
4

6.24×10
4

8.16×10
−2

8.71×10
−2

2.56×10
−2

Direct 7.72×10
4

8.15×10
−2

8.55×10
−2

1.93×10
−2

To assess the quality of the computed solutions, we compare norms integrated
on various subdomains of Ω. In Figure 4.12 we show relative H1-and L2-errors
on the full domain Ω, on the area of the local domain ΩL and in the box Ωtip
around the crack front. We plot both the error of the global-local method in
each iteration as well as the error of the direct simulation, the latter indicated
by a dashed, horizontal line. The first thing to note here is that the global-local
solution seems to converge to an error level determined by the approximation
power of the global and local ansatz spaces. Also, it does not oscillate over
iterations. The error of the initial unenriched global solution is rather large as
the crack is not yet modeled. After about four iterations, however, the global-
local solution reaches about the same accuracy as the direct solution. The
direct solution has more global degrees of freedom around the crack front to
adjust coefficients for the enrichment, which explains why we see slightly better
accuracy around the crack front in this case. The fact that we need four iterations
to achieve comparable accuracy motivates the next section, where we study
methods to improve the approximation in the first iterations.

It is interesting to note, though, that both approaches have higher relative L2-
error close to the crack front than in the rest of the domain, whereas the opposite
is true in the H1-error. This can be explained as follows: In the application of the
enrichment basis function, the linear solver adjusts their coefficients such that
the global PDE-energy is minimized. The H1-seminorm is closer to that energy as
it too is derivative based. Small variations in the coefficient of the enrichment to
adjust the impact in energy norm can have bigger impacts in L2-norm, however.
Higher L2-errors then usually occur along the boundary between the enriched
and unenriched parts of the domain, as also happens in adaptive h-refinement
along jumps of the applied refinement levels. This effect vanishes if we apply
the enrichments globally on all patches.

Next, we further investigate the accuracy of the global-local method in ex-
tracted stress intensity factors in the validation Example 4.1. Figure 4.13 and
Table 4.2 show the relative errors of the extracted stress intensity factors per
global-local iteration. Again, we add results from a direct solution for compar-
ison. We extract in a radius of 2.50×10

−1 around the center of the crack front.
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Figure 4.12: Global errors of validation example on different parts of the domain, per
global-local iteration. Results of a direct global solution are indicated by
dashed lines.
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Figure 4.13: Relative error of extracted stress intensity factors per iteration. As the analytic
mode II factor is zero, we report the absolute error here. Extraction from
either the local solution, i. e. the computed enrichment (left) or the enriched
global solution (right) when using the global-local method. Results obtained
from a direct solution (dashed) for comparison.

As expected, we get comparable values from the global-local solution and the
direct solution, at least after some iterations. We further compare extraction from
the global solution as well as from the local solution, both in the global-local
method. Here, extracting directly from the local solution, i. e. the computed
enrichment, yields the same levels of accuracy. We can also observe that the
imperfect boundary data can also erroneously lead to small errors in stress
intensity factors, as happens in mode I in the fourth iteration when extracted
from the local solution. While we do not expect this in volume measures such as
the H1- and L2-norm, a single crack opening mode can be predicted well even
from wrong boundary data.

We conclude that moving the vast majority of degrees of freedom onto the
local problem produces comparable results as using them directly on the global
problem, both in the computed displacement as well as in the extracted stress
intensity factors. In the validation example, the global problem then has only
sixteen percent the degrees of freedom as the direct solution, compare Table 4.1.
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Table 4.2: Errors of stress intensity factors in the validation problem in the sixth global-
local (GL) iteration, extracted either from the local solution (uL) or the enriched
global solution (uG). Results of a direct solution for comparison.

KI KII KIII

GL (uL) 7.77×10
−3

2.88×10
−4

2.93×10
−3

GL (uG) 5.78×10
−3

2.64×10
−4

1.84×10
−3

Direct 1.14×10
−2

9.24×10
−5

3.76×10
−3

However, due to imperfect boundary data on the local problem, we need several
global-local iterations to achieve that accuracy. When interested only in the
stress intensity factors, our results further suggest that it is possible to eliminate
the final global solution step by extracting directly from the local solution, thus
removing the cost of one global-local iteration. Also important to note here is
that the global-local solution seems to converge after some iterations and does
not oscillate, although no prove of this exists yet.

inclined elliptical crack Next, investigate the accuracy of the global-
local method on a problem with a more complex crack geometry. To this end,
we revisit the inclined elliptic crack introduced in Section 3.3.2. In this example,
the stress intensity factors around the crack front are available analytically. We
extract them at each crack front node via the DCM from three different numerical
solutions. Again, we compare a direct solution to a global-local solution with
one local problem around the entire crack. We apply h-refinement such that
both solutions have a comparable number of degrees of freedom and thus a
comparable discretization around the crack front, compare Table 4.3.

As discussed in Section 4.1.2, in the GFEMgl-context a local problem is set up
for every enriched global problem, which leads to more as well as overlapping
local problems. While this emphasizes the parallelization opportunity of the
global-local method, it also has implications for the accuracy of the method.
The local boundaries overlap the crack discontinuities and singularities, thereby
deteriorating the quality of the global boundary data. On that account, we
additionally report the results of a second global-local solution, where we define
one local problem for each of the eight global, crack-intersecting patches. We
refer to this setting as ‘local per patch’ (LPP) while the single local problem
version is referred to as the global-local (GL) solution.

Regarding simulation parameters, we discretize the global problem on level
four and start the single local problem (GL) on level three. As we have exactly
eight global, enriched patches, we match this resolution by starting with local
level two in the LPP case and refine patches in the local region twice in the
direct simulation. From there, we first refine all local patches intersecting the
crack front thrice and all resulting local patches once more in all three cases.
As a result, the finest patches in all three simulations are of the size of a global
level ten discretization. Since the crack is rather close to the boundaries of
those eight enriched patches, we apply a bufferzone of ten percent, fτ = 0.1,
on all local problems. In consequence, we obtain roughly the same refinement
around the crack in all three simulations. Only the direct global discretization
has a slightly higher resolution around the crack front due to the stretch of
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the local domains caused by the application of the bufferzone. As usual, we
enrich all patches intersecting the crack but not the front with the Heaviside
enrichment (3.1) and all patches within a radius around the crack front with
the front enrichments (3.3). Geometrical front enrichment is possible in this
case as the crack is flat and we choose twice the minimal length of the crack
front segments as radius, which is 8×10

−3. The resulting degrees of freedom
and number of enriched patches are presented in Table 4.3. Note, however, that
the numbers in the LPP case appear higher as the local problems overlap. We
also allowed a level difference of two between neighboring patches in the direct
solution to limit the spread refinement.

Table 4.3: Number of degrees of freedom (DOF) and enriched patches with either the
front enrichment or the Heaviside enrichment for the inclined elliptical crack
example. In the case of one local problem per global enriched patch (LPP), the
sum over all eight local problems is presented.

DOF Front Patches Heaviside Patches

Direct 504816 7968 2424

GL 49152 + 409068 5924 2208

LPP 49152 + 670032 9092 3784

All local problems have the global boundary data applied as Dirichlet bound-
ary conditions. Regarding the extraction radius, we choose optimal values for
each method and multiply the radius rex computed by Algorithm 1 by a factor
of fex = 0.2 in the global-local cases and fex = 4 in the direct simulation. The
actual extraction radii are comparable as the computed radius rex is based on
the global discretization level.

Figure 4.14 shows the error (3.12) in the stress intensity factors for the three
numerical solutions over the first six global-local iterations. First of all, we can
observe that with enough iterations, both global-local approaches reach the
accuracy of the direct solution, even though the latter has more patches at the
crack front in this example. Hence, by investing the same number of degrees
of freedom, albeit on a different discretization, we get similar solutions even
for fine scale features such as the stress intensity factors around the elliptic
crack front. Note, however, that the number of degrees of freedom on the global
problem for both global-local approaches compared to the direct solution. As
expected, the LPP approach requires more iterations to reach the same accuracy
as the single local problem due to the poorer boundary data close to the crack.
In the GL case, the final approximation quality is already reached in the second
iteration and the initial solution is already quite accurate, too. This is all the
more impressive given that in the initial global problem the crack is not modeled
at all.

Overall, we therefore conclude that the global-local method provides the
same accuracy as a direct solution, at least after a few iterations, when the
same refinement around the local feature is used. Hence, it is a valid alternative
to adaptive h-refinement. For a given simulation, the remaining question is
only whether the reduced number of global degrees of freedom outweighs the
required additional work in overall runtime performance. In Section 4.3.4 we
present a numerical experiment investigating that tradeoff.
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Figure 4.14: Errors in stress intensity factors (SIF) for the inclined elliptic crack extracted
with the DCM over several global-local iterations. Comparing errors of a
direct solution to having one local problem around whole crack (GL) and
having one local problem per crack intersecting global patch (LPP).

4.3.2 Boundary Effects

Due to inaccuracy in the boundary data provided by the initial unenriched
global solution, the first computed enrichment in the global-local method does
not have optimal approximation properties. This improves in each iteration, as
we observed in the last examples, but computing the iterations is expensive.
We would rather improve the first or first few iterations. For this reason, we
test two methods to improve the computed enrichment. First, we measure
the effect of applying the global boundary data through Neumann, Dirichlet
or Robin boundary conditions on the local problem. Second, we additionally
evaluate the global solution further away from the enriched area by applying
a bufferzone. To this end, we again study the validation Example 4.1 and the
inclined elliptical crack example from Section 3.3.2. In the latter, we set up the
local problem on the bounding box of all eight global patches intersecting the
crack and discretize it on level four. We further increase the refinement by one
level around the crack and additional three levels at the crack front. In both
examples, we increase Young’s modulus to E = 1000 to better illustrate the effect
of the Robin parameter κ.
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robin parameter Before we compare the three types of boundary condi-
tions, we first study the choice of the parameter κ in Robin boundary conditions.
In (4.11), we defined a scheme for estimating the optimal value of κ based on the
global solution. Figure 4.15 shows the obtained accuracy in the first global-local
iteration for varying parameter κ in the validation example. The dashed vertical
line further indicates the value estimated by the scheme (4.11), while the vertical
line shows the result obtained from Dirichlet boundary conditions.
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Figure 4.15: Global-local error in first iteration with Robin boundary conditions and
varying parameter κ. Kappa computed in first iteration is 304 and 252

respectively, while the safe but suboptimal heuristic (4.9) estimates 1333 in
this simulation.

First of all, our estimate for κ is more or less equal to the optimal value in
this example, both in H1- and L2-norm, especially when concerned with the
error close to the crack front. Note that the estimate of κ proposed in [68] is
always greater than Young’s modulus E for reasonable meshes and thus yields
suboptimal results in this example. Worst and best results are separated by
almost an order of magnitude in H1- and even more in L2-norm. Furthermore,
we can observe that Robin boundary conditions indeed converge to Dirichlet
boundary conditions in the κ→∞ limit. As Robin boundary conditions inter-
polate between Neumann boundary conditions, κ = 0, and Dirichlet boundary
conditions, κ→∞, we can already conclude that Robin boundary conditions
with approximately optimal κ should perform better than the other two in this
example, at least in the first iteration. Figure 4.17 confirms this.

However, looking at the error in extracted stress intensity factors around
an elliptic inclined crack as in Section 3.3.2, the picture changes somewhat.
Figure 4.16 shows the error (3.12) for all three crack opening modes and varying
values of the parameter κ in Robin boundary conditions in the first global-
local iteration. We show results of extraction with the CIM and with the DCM

for comparison. Dashed lines indicate the result using Dirichlet boundary
conditions. Here, the effect varies across the crack opening modes and also
between extraction methods. In mode I and II, we more or less see the expected
results with both extraction methods: Values of κ that are too small yield
worse results than Dirichlet boundary conditions, to which Robin boundary
conditions converge for large κ. In between, we have a small window where
Robin boundary conditions outperform Dirichlet boundary conditions. In mode
III, however, both extraction methods approach Dirichlet results from above.



82 global-local enrichments

100 101 102 103 104 105 106

3

3.5

4

4.5

·10−2

κ

e
(K
I
)

Mode I

Robin-DCM
Dirichlet-DCM
Robin-CIM
Dirichlet-CIM

100 101 102 103 104 105 106

1

2

3

4

5

·10−2

κ

e
(K
I
I
)

Mode II

Robin-DCM
Dirichlet-DCM
Robin-CIM
Dirichlet-CIM

100 101 102 103 104 105 106

1

2

3

4

5

6

·10−2

κ

e
(K
I
I
I
)

Mode III

Robin-DCM
Dirichlet-DCM
Robin-CIM
Dirichlet-CIM

Figure 4.16: Errors of extracted stress intensity factors around an inclined elliptical crack
in the first global-local iteration. We applied Robin boundary conditions
with varying parameter κ. Dashed lines indicate the computed parameter κ
at 4.46×10

3, whereas the heuristic (4.9) estimates 8.50×10
3.

Interestingly, extraction with the CIM seems to work better with near Neumann
boundary conditions than extraction with the DCM, likely because the latter
considers function values only and ignores the derivative of the displacement,
whereas the CIM considers both. Figure 4.16 also shows that our scheme (4.11)
for estimating the optimal value of κ produces decent results in configurations
with an actual optimal parameter, but cannot account for the variability in
results between crack opening modes. The heuristic (4.9) estimates a parameter
of comparable magnitude in this example.

When interested in the stress intensity factors, the choice of boundary condi-
tions and parameter κ seems to depend on the considered crack opening mode
and the extraction method. Especially in extraction with the DCM, Dirichlet
boundary conditions clearly seem to be preferable overall. We conclude that es-
timating an optimal value of κ may be difficult or impossible in some examples,
at least for such detailed features of the solution.

boundary conditions and bufferzone Next, we compare Robin bound-
ary conditions with the estimated optimal parameter κ to Neumann and Dirich-
let boundary conditions over multiple global-local iterations. We additionally
include the effect of a bufferzone by increasing the local domain size by 10,
30 and 60 percent with the stretch factors fτ ∈ {0.1, 0.3, 0.6}. Note that for this



4.3 numerical results 83

comparison to work, we had to slightly adjust the setup of the local domain. By
default, applying a bufferzone results in bigger local patches, i. e. larger local
h, as the domain size and consequently the size of the initial bounding box for
the cover construction increases. For the experiment at hand, we thus fix the
size of that initial bounding box across all bufferzone sizes and thereby keep the
resolution around the crack front constant. In the validation example, we report
the error in the H1-seminorm only as it dominates the overall error. We also
only show errors on the full domain Ω and around the tip Ωtip as the error
on the local domain ΩL behaves as on the full domain. Again, we repeat the
same study using the inclined elliptical crack example. For the comparison of
bufferzone sizes, this example is especially interesting, since the local domain
is smaller here and its boundary is closer to the crack. In both examples, we
extract the stress intensity factors with the DCM.

1 2 3 4 5

10−1

100

iterations

re
la

ti
ve
H
1

-e
rr

or

Error on Ω

Neumann
Dirichlet fτ = 0.01
Dirichlet fτ = 0.1
Dirichlet fτ = 0.3
Dirichlet fτ = 0.6
Robin fτ = 0.01 κ = 304

Robin fτ = 0.1 κ = 292

Robin fτ = 0.3 κ = 268

Robin fτ = 0.6 κ = 247

1 2 3 4 5

10−1

100

iterations

re
la

ti
ve
H
1

-e
rr

or
Error on Ωtip

Figure 4.17: Global-local H1-error over iterations with Dirichlet and Robin boundary
conditions for varying bufferzone size. Bufferzone computed with factor fτ.
Error evaluated on full domain (left) and around tip (right). Solution with
true solution as boundary data and no bufferzone for comparison. Robin
boundary conditions with parameter κ computed in first iteration.

Figure 4.17 shows the results for the validation Example 4.1. The dashed line
shows the error obtained from Dirichlet boundary conditions with the true
solution u∗ as boundary data, indicating what would be possible with perfect
boundary data. Neumann boundary conditions clearly perform the poorest,
which is why we drop them from additional analysis. As expected, Robin
boundary conditions produce best results in the first iteration throughout all
cases and almost halve the error of the Dirichlet solution. Both types of boundary
conditions eventually reach the accuracy provided by perfect boundary data,
which further validates the global-local method. Interestingly, we obtain more
accurate results close to the crack front with Dirichlet boundary conditions in
and after the third iteration than with Robin conditions. This might be due to
not recomputing the Robin parameter κ after the first iteration. Yet, doing so
would imply re-assembling the local stiffness matrix, or caching three system
matrices in memory, which is not ideal either. Looking at the bufferzone, their
addition improves accuracy through all iterations as the error estimate (4.2)
suggests, although the effects are negligible with Robin boundary conditions.
With Dirichlet boundary conditions, however, a fairly large bufferzone closes
the gap to Robin boundary conditions around the tip by the second iteration.
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Figure 4.18: Errors of extracted stress intensity factors around an inclined elliptical crack
over multiple global-local iterations. Extraction is performed with the DCM.
We compare Dirichlet and Robin boundary conditions in combination with
increasing bufferzone sizes. Robin conditions use the computed parameter κ
by scheme (4.11).

Figure 4.18 shows that we see more effects from the boundary condition types
and the bufferzone size in extracted stress intensity factors around the inclined
elliptical crack. For one, applying a bufferzone reduces the error in the first itera-
tion in almost all cases. The mode III error with Dirichlet boundary conditions is
the only exception here. As we already have seen in Figure 4.16, Robin boundary
conditions improve accuracy in the first global-local iteration only in mode I
compared to Dirichlet conditions. The bufferzone size has different effects on
the boundary condition types after the first iteration: With Dirichlet conditions
we observe a slight decrease in accuracy, with Robin conditions a significant
increase. We expect the latter because of the error estimate (4.2). However, we
also mentioned in the discussion of the estimate that it might not be directly
applicable in the global-local context, since we move the local boundary with
the application of a bufferzone. Therefore, the slight reduction in accuracy in
Dirichlet boundary conditions with a bufferzone might be explained by a slight
spatial variation in global accuracy. In this regard, note that Dirichlet conditions
we evaluate the displacement only, whereas Robin conditions additionally take
its derivative into account. As a result, we achieve the same accuracy with both
boundary conditions types after the first iteration with a bufferzone factor of
fτ = 0.6.
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conclusion Based on the experiments described above, we conclude that
both Robin boundary conditions and a bufferzone show great potential to reduce
the error especially in the first iteration. The choice essentially comes down
to confidence in the estimate of the Robin parameter κ for a given simulation,
where we saw that some examples might not even have one optimal value
for all features of the solution. If guessed correctly, though, one single global-
local iteration with Robin boundary conditions is probably the best choice if
runtime is critical. On the other hand, Dirichlet boundary conditions with some
bufferzone and two to three iterations are a robust choice and recommended,
especially if accuracy is more important than runtime.

4.3.3 Parallel Scaling

In the following example, we investigate the runtime performance of the global-
local method. We first assess the parallel scaling of the parallelization approach
introduced in Section 4.2 and then continue to compare the runtime of a direct
global solution to global-local enrichments. To this end, we study a cube of size
32 with up to a hundred penny shaped cracks, compare Figure 4.19 for a sketch
with 24 cracks. The cube is comprised of an isotropic, linear elastic material with
Young’s modulus E = 1.00×103 and Poisson’s ration ν = 0.33. For boundary
conditions, we prescribe a displacement of 0.025 · 32 in normal direction at the
top and bottom (z-direction) of the domain. Cracks are positioned in a way that
each crack intersects exactly eight global patches on global level three. These
patches define a single local problem for each crack.

x : 32

z : 32

Figure 4.19: A cube with 24 penny shaped cracks in total (right). Slice through domain
with sketched local domains per crack (left).

In a first experiment, we study the efficiency of the parallelization scheme for
the global-local method described in Section 4.2. Here, we measure the runtime
of the solution step of the local problems and of the assembly of the global,
enriched linear system, which uses the parallelism of the local integration cells.
We pick ten crack locations in our multi-cracked cube example and run the
same simulation with up to 40 processes on a single compute node with four
sockets of twelve cores each. Consequently, the simulations range from 10 local
problems on a single process to solving each local problem on four processes in
parallel. Note that for these scaling measurements we do not apply any crack
enrichments nor did we resolve the cracks in the integration cells, as this would
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create further load balancing issues outside the scope of this study. Both global
and local problems are discretized on level four, resulting in 4.94×10

4 and a
total of 4.92×10

5 degrees of freedom, respectively.
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Figure 4.20: Speedup and parallel efficiency of the global-local method on a problem
with 10 separate cracks. Local problems are solved in parallel on split
communicators. Both global and local problems are discretized on level
four, with 4.94×10

4 and 4.92×10
5 degrees of freedom, respectively, where

we summed over the local problems. For the local problems, we show results
with an iterative (CG with block Jacobi) and a direct linear solver. Optimal
speedup is indicated by the dashed line.

Figure 4.20 shows speedup and parallel efficiency of our implementation of
the global-local method in PUMA. One aspect immediately noticeable in the plots
is a stair-like structure, since the required time is limited by the slowest local
problem. That is, while the total number of involved processes increases, the
runtime only decreases each time all local problems receive one extra process,
hence every ten processes. That is, while increasing the number of total involved
processes, the time to solution only drops every time all local problems receive
one process extra, i. e. every ten added processes. If we limit the analysis to
process counts that are multiples of ten, our parallel implementation shows
excellent parallel efficiency, especially for higher process counts: Both the local
solution as well as the global assembly step have an efficiency above 0.8. This
is reinforced by the fact that we solve each local problem with only up to four
processes, which helps to ensure that all local routines have excellent efficiency
as well. We can observe the effect of this by comparing the local timing results
with a direct solver and an iterative solver. The former does not scale well by
design, which is why the global-local algorithm with an iterative local solver
shows better overall parallel performance for higher process counts. In contrast
to the results obtained in [66], where local problems too are solved in parallel
to each other but each only sequentially, our approach seems to utilize more
processes more efficiently: Their reported efficiency begins to drop rapidly after
20 processes, although they have 983 local problems for eight crack locations in
one example. This issue would be amplified on coarse global discretization, as
the number of local problems is tied to the number of enriched global patches.

The highlight of the global-local method in terms of parallelism, however,
should be its excellent weak scaling with local features due to their independence.
To test this, we increase the number of local problems in the same model problem
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up to a hundred, further changing their position and size so that each coincides
geometrically with one global patch. In order to have more work available we
also increase the local level to five and perform benchmarks with an increasing
number of local problems, each distributed on four processes. Figure 4.21 shows
the runtimes of the local solution step and the global assembly, measured on up
to fifty nodes with two sockets of eight cores each. Compared to the previous
example on a single compute node, this increases the cost of communication
between processes. We can nonetheless observe that weak scaling is excellent,
since the runtime is constant in the assembly step and only a negligible slow
down occurs in the local solution step. In this regard, it should be mentioned
that the global problem is still only discretized on level four in all runs. Hence,
the ratio of local processes interacting with global processes deteriorates with
an increasing number of local problems. Especially in the local solution step,
all processes on the local problem have to evaluate the global solution for the
boundary conditions, while each process only owns around ten global patches
with 400 processes .

50 100 150 200 250 300 350 400

25

30

35

40

45

50

55

number of processes ∼ features

ti
m

e

Runtime with np/4 features

local solution
global assemble

Figure 4.21: Weak scaling of the global-local method with respect to an increasing number
of local features (up to a hundred), while the degrees of freedom on the
global problem are kept constant.

We conclude that our implementation has the property of embarrassingly
parallel local problems and its weak scaling thus is excellent. This suggests
that the global-local method can also be used to improve parallel efficiency in
the presence of multiple cracks or similar features, in addition to condensing
the required global degrees of freedom. For best performance, the number
of processes should be a multiple of the number of local problems, though.
While not a direct comparison on the same problem and hardware used in [66],
our experiments suggest that our decision to create fewer local problems but
solve them in parallel does not limit the parallel efficiency of the global-local
method. Moreover, it promises better performance on coarser global discretiza-
tions. While only an implementation detail, our distributed memory parallel
implementation can utilize more processes on common HPC clusters compared
to a thread-parallel implementation, even though thread-parallel local problems
on a distributed global problem are a straight forward extension of the approach
presented in [66]. In strong scaling, the parallel efficiency of the linear solver
employed on the local problems affects the overall parallel performance of
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the global-local method. Regarding the runtime of the method with multiple
iterations, this introduces a tradeoff between solvers that scale well but are not
reusable and solvers that scale worse but produce a factorization that can be
cached. This tradeoff has to be investigated further.

4.3.4 Runtime Performance

The global-local method reduces the number of global degrees of freedom by
introducing additional assembly and solution steps. This is even more true when
running several iterations, which may be necessary to reach a desirable accuracy
if we start with an unenriched global problem. In this section, we try to answer
if and under what circumstances the additional work still pays off in terms
of computation time. While e. g. nonlinear problems where a Newton solver
benefits from the reduced number of global degrees of freedom promise more
speedup by the application of the global-local method, we use a simple linear
elastic problem in this section. If we see some speedup here, we are confident
that this should also translate to more difficult problems.

We consider a problem where the local problems together have at least a
comparable size as the global problem, else we would not want to use the
global-local method. We compare the global-local method to a direct simulation
of the same problem with h-refinement and enrichments applied directly on
the global problem, such that both solutions have the same local resolution and
thus comparable accuracy after some iterations. The global-local method has the
following runtime contributions: The initial unenriched global solution is rather
cheap due to the small number of degrees of freedom and cheap assembly. Since
the local approximation space does not change over global-local iterations, we
have to assemble the local stiffness matrix only once and only need to reassemble
the changing boundary data. Depending on the employed local linear solver,
we can even keep the factorized local stiffness matrix. In each iteration, we
then have to solve the enriched global problem, which is significantly smaller
than the global problem in the direct simulation, but still requires to traverse
the same number of integration cells in assembly since the local enrichment
has to be evaluated. We thus expect the global-local method to improve overall
performance if the ratio of global to local degrees of freedom is small.

To verify this numerically, we solve a linear fracture mechanics problem
in a three-dimensional cube with up to 24 penny shaped cracks, compare
Figure 4.19, using 48 processes. In this experiment, we model the cracks in both
the global-local and the direct simulation, since we are not interested in the
scaling of the abstract method, but in a performance comparison on a more
realistic example. Patches intersecting the crack front are thus enriched with
the front enrichments (3.3) and all other patches intersecting the crack use the
Heaviside enrichment (3.1). In the direct global solution, adaptive refinement
is applied such that the resolution around the crack is identical to that of the
global-local solution and we can therefore assume accuracy to be comparable
after some iterations. As discussed in Section 4.2, load balancing of adaptive
refinement is not optimal in PUMA at the time of writing this thesis, although
it should be relatively easy to improve this. We thus try to limit the effect of
the load balancing issue on the runtime of the direct simulation in two ways.
First, we increase the maximal level difference between neighboring patches to
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two. Thereby, we generate less patches in total and especially less patches with
neighbors on a different level. Second, we significantly reduce the order of the
quadrature rules applied in the overlap of patches on different levels, where
the PU functions (2.78) are rational. Specifically, we applied exact quadrature
rules for polynomials of only one degree higher than required for the weak
formulation in those overlaps. This reduces the computational load associated
with integration cells in the overlap of differently sized patches and thus balances
the load distribution. Based on the previous results shown in Figure 4.20, we
solve all global problems with an iterative solver, namely CG preconditioned
with block Jacobi, and employ a direct solver on the local problems, as they are
solved by only two processes for many cracks anyway. Note that a multilevel
solver showed no improvements for these problem sizes, but we expect this to
change for larger problems. The global-local method is parallelized using split
communicators for the local problems as discussed in Section 4.2, such that each
local problem is distributed across two processes when all 24 cracks are present.

Overall, as the number of cracks increases we expect the global-local method
to be faster than the direct solution. The estimate (4.5) proposes that the per-
formance advantage of the global-local method depends on the ratio of overall
local to global degrees of freedom. To test this, we run the experiment once
with both global and local problems discretized on level four and increased the
global level to five for a second run. The cracks are positioned such that exactly
four global patches define one local problem with global level four. In the direct
simulation, we thus apply three additional levels of refinement on those patches.
With global level five, we keep the local resolution and thus the size of the local
problems constant. Therefore, eight times more global patches are enriched in
the global-local case and we apply only two additional local refinement levels
in the direct simulation. The respective results are shown in Figure 4.22. But
before we summarize them, we want to explain the probably unexpected effects
from increasing the global discretization level observable in the direct solution.
Between the area around the cracks and the rest of the discretization, we have
a level difference of three with global level four and of two with global level
five. Together with the applied maximal level difference of two, we generate
additional patches around the refined crack areas with global level four, but
not with level five. In consequence, we only have marginally more degrees
of freedom in the direct simulation with level five and the solution step does
not get significantly more expensive. Additionally, and although we limited its
effects in this example, the current load balancing of adaptive refinement in
PUMA leads to the assembly step being actually faster with level five than with
level four. Also, with level five, we can observe less fluctuation in the runtime
of this step with different numbers of local cracks in the simulation. Hence,
comparing the two direct solutions in the columns of Figure 4.22 might be
perplexing, but the comparison with the respective global-local solution in two
different distributions of global and local degrees of freedom is what we wanted
to investigate here. To summarize, providing simulation parameters for a fair
performance comparison of a direct and a global-local simulation in parallel is
not trivial. Yet, we believe that our choices favor the direct one in runtime and
that the global-local solution is slightly more accurate here.

Returning to the results, Figure 4.22 clearly shows that the direct solution
scales worse with the introduction of additional cracks than the global-local
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method. It also shows that the cost is driven by the linear solver as we modeled
in our runtime estimate (4.5). Concerning the global-local simulation, the time
spent in the global linear solver is almost constant with respect to the number
of cracks as we only add one degree of freedom per space dimension to each
enriched global patch. Furthermore, the overall time, the global assembly time
and the time required for the local solutions show the characteristic kinks
introduced by the parallelization strategy: These times are determined by the
smallest number of processes available for a local problem. We can observe that
for global level four, the global operations in the global-local method are cheap
and thus global-local iterations are cheap. Therefore, starting from around ten
cracks even the third global-local iteration finishes before the direct solution
is completed. This changes when we increase the global level to five, where
global operations suddenly become noticeably more expensive. Here, the first
global-local iteration is still cheaper than the direct simulation by a wide margin,
but the second iteration only if we have twenty cracks or more. For the third
iteration, it seems that we would have to add a few more cracks to the simulation
for the global-local method to be faster.

Our performance estimate (4.5), however, seems to be off by about a factor of
two, i. e. replacing it by

dofg 6
n · dofl
i

=⇒ Ogl 6 Odirect (4.15)

would fit the results of this experiment better. This estimate would predict the
global-local method to have a performance advantage starting from one, two
and three cracks with global level four and eight, 16 and 24 cracks with global
level five in the first, second and third iteration, respectively. While still slightly
optimistic, it better catches the trend in this experiment.

We conclude that the global-local method can improve the performance of
even simple simulations of linear elasticity, conditional on the relative number of
degrees of freedom required for the global problem and the resolution of local
features. Compared to directly applying adaptive h-refinement, it especially
provides an excellent parallelization opportunity, allowing perfect scaling of
simulations with local features by adding only a constant number of processes
per feature.
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Figure 4.22: Time measurements and degrees of freedom (DOF) for a direct and for
global-local (GL) solution on a problem with increasing number of cracks.
All simulations are run in parallel with 48 processes in total, resulting in a
minimum of two processes for each local problem.
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In the global-local method, the local problem does not have to simulate the
same material model or use the same discretization as the global problem. In
principle, any method that accepts boundary data from the global problem
and generates some form of enrichment in return is applicable. This presents
an excellent coupling opportunity, which to our knowledge has not been ex-
ploited in the literature yet. In the context of fracture simulation with a global
computationally cheap simulation of linear elasticity, two methods in particular
appear to be complementary, as we discussed in Section 2.1: peridynamics [126]
and the phase-field method [28]. Opposed to linear elastic fracture mechan-
ics, both methods handle fracture initiation and propagation naturally, but are
computationally very expensive in return [21].

Applying the local solution directly as an enrichment on the global PUM

problem may face one challenge, though: The solution of the different model on
the local problem does not necessarily minimize the global linear elastic energy.
This can be circumvented by not using the local solution directly, but instead
extracting the crack path from it. The updated crack path can then be modeled
by the usual crack enrichments in the global PUM problem. This way, the local
model is still used to predict the crack propagation and the global problem
is also cheaper in consequence. Crack path extraction is further necessary in
any method that localizes peridynamics or the phase-field method once the
local region moves with the propagating crack, at least if we want to keep
the local region small. We therefore generalize the global-local method to a
coupling method by interpreting the extracted crack path as the computed
enrichment, compare Figure 5.1. We already proposed this approach in the
context of coupling with peridynamics in [8].

solve

boundary

conditions

global problem – PUM LM – local problem

local

solve

extract

crack path

crack

enrichments

Figure 5.1: Generalized global-local coupling method. Crack growth happens in the local
model (LM) and the updated crack path is incorporated back into the global
PUM problem using standard crack enrichments. Of course, this procedure
can be iterated if necessary.
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We want to highlight one particularly notable feature of coupling via global-
local enrichments: The two involved models and discretizations do not interact
directly at any point. The local problem is independent and only happens to
receive boundary data from another method. On the global problem, we only
update the crack geometry. This has the following advantages compared to
tight coupling of methods. Usually, in the coupling of two methods an artificial
interface is introduced between them, where the exact interaction of the two
models or discretizations has to be defined. There is no clear answer on how
to do this and the interface may cause problems such as wave reflections as we
discuss shortly. Second, local regions can be added, relocated and discarded
trivially during a running simulation to adapt the resolution locally. Lastly, it can
be implemented non-intrusively, for example for fast prototyping or connecting
to commercial codes. This is possible because the global and local problem can
be solved independently and information between the two involved codes can
be easily transferred using standard file formats.

Due to their complementing nature, multiple methods have been proposed to
combine peridynamics or the phase-field method with, most of the time, finite
element based discretizations of classical continuum mechanics models and
are still actively researched. With regards to phase-field methods, we want to
highlight two publications here. In [31], the global-local method is applied to
a phase-field formulation; however, the proposed approach simply computes
two separate enrichments for the global elasticity and phase-field problems and
thus no actual coupling via the global-local method is performed. In [36], the
XFIELD is proposed as a means to couple the XFEM with the phase-field method,
which is similar to the approach presented in this thesis. In contrast to what we
present here, though, the authors apply additional boundary conditions on the
phase-field problem. We believe that the latter is not necessary, which is also
confirmed by our numerical experiments.

Regarding peridynamics, the review article [18] classifies and compares nine
different approaches of local to non-local coupling of continuum models. These
are either energy-based or force-based and can further be categorized by how
they treat the transition zone between the two models. Moreover, at least six
further methods are mentioned in [18] that tackle the coupling problem at
the discrete level. The global-local coupling presented in this thesis falls into
this latter category. In this category, the publication also lists the coupling
approach between peridynamics and the FEM based partition of unity method
XFEM presented in [35], where the peridynamics region is restricted to the area
around the crack tips, while the rest of the crack is modeled using a Heaviside
enrichment. In this method, however, the solution around the crack tip is given
by the peridynamic solution exclusively and no enrichment is used to capture
its response. Common to all coupling approaches mentioned in [18] is the issue
of wave reflections at the interface in dynamic simulations, which is explained
and investigated in more detail in [34]. Here, waves reflect at the interface
instead of transmitting to the other model, leading to simulation artifacts in
the PDE model and overheating in the peridynamics model as energy cannot
leave the peridynamic region. To the best of our knowledge, a definitive solution
to this problem does not exist yet, and circumventing it requires fine-tuning
of discretization parameters and, in particular, prohibits strong differences in
refinement between the coupled methods. Yet, having a much finer discretization
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of peridynamics than of the PDE is partly the aim of their coupling. The approach
envisioned in this thesis, however, should not exhibit wave reflections due to
the loose coupling via the enrichment function from the separate local problem:
We do not transfer energy or couple function values between the models, but
rather compute a consistent global solution based on the extraction of geometric
features from the independent local solution.

Regarding the actual extraction of the crack path, we found three approaches
in the literature. The probably simplest to implement is recovering the crack path
based on intersections of the damage field with mesh cells, as presented in [90].
However, extending this approach to three space dimensions seems to be more
involved since more corner cases are possible. Another approach detailed in [33]
but also used in the XFIELD is computing a discrete gradient of the damage
field, whose minimum should be the crack tip. The most promising approach,
also according to [36], seems to be the θ-simplified medial axis algorithm [10],
though, which was applied to crack path extraction in [138]. Essentially, it
recovers the centerline of extracted iso-lines from the damage or phase-field and
does so robustly [105]. It is further independent of the discretization width and
can easily be extended to three space dimensions. In the PUM we can efficiently
extract iso-lines of the damage field by using the marching cubes algorithm [80]
on the integration cells.

The remainder of this chapter is structured as follows: In the next section, we
present the PUM-peridynamics coupling using the global-local method developed
in joint work with P. Diehl and R. Lipton and published in [8]. We then present
selected numerical results of [8] together with so far unpublished comparisons
against real world experimental data. We conclude the numerical examples with
initial results of coupling the PUM with a local phase-field model, using the same
approach.

5.1 coupling with peridynamics

In [8], we already used the global-local coupling algorithm presented in Fig-
ure 5.1 to combine the PUM with peridynamics. Coupling with peridynamics
presents three additional challenges in the global-local method, which we dis-
cuss in the following.

To begin with, we have so far sketched the coupling algorithm without taking
into account time. That is, we assumed that we solve the equilibrium PDE in the
PUM and the local problem quasi-statically. However, as the name suggests, the
peridynamic model is usually stated in time, and quasi-static solutions of it are
computationally even more expensive. Yet, solving both methods dynamically
introduces new challenges both on the PUM side and in the interaction of the
methods. In the PUM, crack growth changes the set of basis functions as the crack
enrichments move with the growing crack. As a result, solutions of different
time steps exist on different function spaces, which has to be handled during
time integration. Stable time integration schemes that account for this issue are
available in the literature [25, 38]. Large crack updates can further introduce
shock waves in the linear elasticity solution. Regarding the interaction in time of
the two methods, the questions arise about how often we exchange information
and whether peridynamics requires a smaller time step size than the PUM.
For the proposed method, this is left for future work. However, different time
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step sizes and integrators in an uncoupled global-local setting have already
successfully been applied in [50]. Instead, we focus on the compatibility of the
two methods in this thesis and if successful transmission of information between
them is possible. To this end, we solve the equilibrium equation (2.6) in the PUM

problems of our numerical experiments, disregarding time. In peridynamics,
we approximate an equilibrium solution by slowly increasing the prescribed
displacement up to the value provided by the PUM solution, since a quasi-static
peridynamic solution is too expensive. While not presented in this thesis, we
further verified that for most model problems discussed in Section 5.3, dynamic
and quasi-static PUM solutions actually coincide, due to the undynamic nature
of the examples.

The second challenge in coupling non-local peridynamics with the linear
elastic PDE model side is the difference in the underlying material models. We
expect good agreement in the material responses as long as we are in the linear
regime of the peridynamic material model (2.16). This assumption is tested
numerically in Section 5.3. In the presence of softening bonds on the other hand,
we expect the material responses to be quite different. In consequence, we have
to make sure that the local problems’ boundary is far enough away from any
arising discontinuities in the PDE model when coupling with peridynamics.

Global Problem

Local Problem

ug t̄ ΓNΓD

Figure 5.2: Boundary condition layers on local peridynamics problem. While global
Dirichlet boundary data ū on ΓD is best applied through the global solution
ug, global Neumann data t̄ on ΓN can be applied as in (5.2).

The third challenge is that we do not have the same notion of a boundary
in peridynamics as in the PDE model. Rather, boundary conditions are usually
applied in a layer of nodes of at least horizon size. On a local peridynamics
problem in the global-local method, we have three scenarios, see Figure 5.2 for
a visualization of the setting. First, for parts of the local boundary layer away
from the global one, we use the global solution ug as Dirichlet boundary data.
Here, the global solution can easily be applied on a layer of peridynamic nodes
by simply evaluating it in the respective points. Second, on parts that overlap
the global Dirichlet boundary ΓD, it is probably best to use the global solution
ug too, instead of the the actual data ū. The global solution should already
conform to the global boundary conditions and can be applied to a layer of
nodes more easily. Third, on parts overlapping the global Neumann boundary
ΓN, the applied force can be distributed across a layer of peridynamic nodes as
described in (5.2). In this layer of nodes, however, we should not additionally
apply the global solution as Dirichlet boundary conditions, compare Figure 5.2.
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5.2 peridynamics discretization

We discretize the equation of motion (2.10) in space using a collocation approach,
the EMU nodal discretization [19, 127]. Here, discrete peridynamic nodes xi are
distributed along a grid of width h in the reference configuration Ω. To each
node we associate a surrounding volume Vi, such that the volumes are non-
overlapping Vi ∩ Vj = ∅ for i 6= j and the sum of the volumes approximates the
size of the domain

∑n
i=1 |Vi| ≈ |Ω|. On each volume, the peridynamic solution

is constant, i. e. we only associate values with nodes. Discretization in time is
done via a simple central difference scheme. The discrete version of (2.10) thus
reads

u(xi, tk+1) = 2u(xi, tk) − u(xi, tk−1)+

∆t2

ρ(xi)

b(x, tk) +
∑

xj∈Bδ(xi)
fPD

(
xj − xi, u(xj, tk) − u(xi, tk)

).
(5.1)

For details on the convergence order of this scheme, we refer to [59]. Neverthe-
less, note that convergence requires the discretization width h to decrease faster
than the horizon size δ, which further increases the computational cost of the
peridynamics discretization. The density of the resulting system matrix, due
to the non-local interactions across the horizon, makes direct solutions of the
peridynamic problem impractical.

boundary conditions In the non-local peridynamics model, we do not
have a sharp boundary as in the PDE model. For all experiments in this thesis,
differences in boundary condition treatment between the two methods are
addressed as follows. When applying Dirichlet boundary conditions in the PDE

model, we prescribe a fixed displacement on all peridynamics nodes in a layer
of one horizon size at the actual geometry boundary. For Neumann boundary
conditions, we transform the applied force to an external force density b by

b(xi, t) =
F

V
, (5.2)

where F is the applied traction force in Newton and V is the sum of all volumes
Vi associated to nodes xi in the layer of horizon-size δ. The force density b is
then applied on a layer of peridynamic nodes, as illustrated in Figure 5.3.

damage field No bonds are broken in the above peridynamic model and
we assume fracture based on the damage function

dmg(xi) :=
maxxj∈Bδ(xi)(ri,j)

rc
, (5.3)

evaluated at discrete points xi. Here,

rc =
√
1/β (5.4)
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b(t, x)Fb(t, x)

(a) PDE model.

Fb(t, x)F

δ

(b) Non-local peridy-
namics.

Figure 5.3: (a) Traction condition in the PDE model on the lower boundary. (b) Application
of the non-local traction conditions in peridynamics in a layer of horizon size
δ. In the δ→ 0 limit, both boundary conditions coincide [77].

is the critical value where the material model transitions from linear behavior to
softening, i. e. the inflection point of gPD, and

ri,j := |xi − xj|S
2
(
xi − xj, fPD

(
xj − xi, u(xj, tk) − u(xi, tk)

))
(5.5)

is the stretch between two discrete peridynamic points as passed to the derivative
of the double well potential (2.16) in the material model (2.11).

Figure 5.4: Peridynamic damage function dmg of two fracture simulations on coarse
meshes to highlight fuzziness of crack location.

From the perspective of our coupling method this implicit crack represen-
tation has the disadvantage that the crack location in peridynamics is only
determined up to the discretization width h and might be even fuzzier if mul-
tiple neighboring nodes experience high damage, as for example shown in
Figure 5.4. In the PUM, however, we expect a sharp and precise crack and thus
inevitably introduce some geometry approximation error when extracting the
crack path from the peridynamic solution. Conversely, if we want to apply an
initial crack configuration in a peridynamics simulation, we have to arrange
nodes symmetrically around the crack geometry for best results, if possible.
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Regarding the actual extraction of the crack path we have not yet implemented
any automatic algorithm. Instead, crack paths are currently extracted by hand
from visualizations of the damage field, which was enough for the purposes of
the first publication and this thesis.

5.3 numerical results

In this section, we first present selected results of the coupling of the PUM with
peridynamics via the global-local method already published in [8]. The goal of
these experiments is to verify the soundness of the proposed coupling approach
numerically, while not yet tackling real world simulations. We conclude the
section with results of so far unpublished experiments on the peridynamics
coupling that are part of the ongoing collaboration. In these examples, we try to
reproduce physical experiments with the global-local coupling method for the
first time. Since we neglect time and extract the crack path by hand in rather
coarse intervals, we do not expect perfect results at this point. Rather, we hope
to obtain reasonable results that demonstrate the feasibility of the proposed
approach and motivate more studies of it in the future.

For the combination of the two different material models to be feasible, it is
essential that they predict comparable material responses from the same load,
at least in regions of linear elastic deformation away from any discontinuities.
In the first experiment, we thus apply increasing loads to an uncracked bar and
compare the computed displacements. In the second experiment we introduce
a crack, but apply a load that produces an equilibrium solution without crack
growth in both methods. Hence, we still expect similar material responses. In
this experiment, we further solve a local peridynamic problem around the crack
tip with boundary data from the global PUM solution and check that the solution
is interchangeable with a local PUM solution. In other words, we test the transfer
of information to the peridynamic model. In the third example, we solve a
simple but coupled crack growth example by passing the updated peridynamics
crack path back to the PUM and iterating. We continue by comparing results of
the coupled method to reference data of a physical three point bending test,
which concludes the experiments with a local peridynamic problem. Since the
presented coupling approach is not limited to peridynamics, we additionally
present initial results with a local phase-field method. In the respective exper-
iment, we also test automatic crack path extraction for a first time. We finish
with a phase-field simulation in three space dimensions as an outlook.

Unless stated otherwise, we use the following material parameters in all
experiments involving peridynamics: material density ρ = 1.20×103kgm−3,
Young’s modulus E = 3.25GPa, bulk modulus K = 2.16GPa, a Poisson ratio
ν = 1/3 and a critical energy release rate Gc = 500Jm−2. Note that we run all
coupled simulations in a quasi-static manner by increasing the applied load over
multiple steps. We thus solve the equilibrium equation (2.6) in the PUM. We also
scale all mentioned forces or displacements applied on peridynamics problems
in time: We start the dynamic simulation with a load or prescribed displacement
of zero and increase it linearly until the last time step. By this, we approximate
a quasi-static peridynamic solution on the local problems and ensure that we do
not lose nodes at the boundary due to excessive load. Discretization parameters
are stated for each experiment, though we discretize all PUM simulations on
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level six and use linear polynomials. Heaviside and crack front enrichments
are applied whenever cracks are present and we use a direct linear solver in
the PUM. All peridynamic simulations were done with the NLMech/PeriHPX
code [20], all PUM simulations with PUMA [112, 120]. For comparison of the
computed displacements, we define the maximal magnitude of the computed
displacement by

Umax = max
i=1,...,n

(|u(t, xi)|) (5.6)

evaluated on all VTK nodes used for visualization.

5.3.1 Uncracked Bar – Material Models

In this first example, we investigate the compatibility of the peridynamics and
the linear elastic PDE model for low loads and test the softening that is built into
the peridynamics model (2.16). To this end, we stretch a two-dimensional bar by
applying increasing levels of force on both ends, compare Figure 5.5.

−F F

1m

1×10
−1m

Figure 5.5: Two-dimensional bar for comparing the peridynamics material model to
linear elasticity. The bar is stretched by a force F applied on both sides, going
from a linear response to softening in the peridynamics model for increased
load.

We discretize the problem on level six in the PUM which results in a patch
radius of hPUM = 7.81×10−3m. The peridynamics discretization, on the other
hand, has a node spacing of hPD = 5×10−4m and a horizon size of δ = 4hPD.
The peridynamics simulation is run up to time T = 1×10−3s with a time step
size of ts = 2×10−8s. While we only show results for the quasi-static PUM

solution, an explicit dynamic simulation computes the exact same material
response for this slow and simple load scenario.

We expect the two material models to coincide as long as the peridynamics
model is in the linear regime of the double well potential (2.16), after which it
softens and thus should predict larger displacements. To test this, we apply a
base load of 9×10

5 Newton and increase it by up to a factor of twelve. Note
that in the peridynamics model we scale the applied load up to that level over
time and apply it as an external force density computed by (5.2), which adds to
the differences between the two simulation models. Table 5.1 lists all resulting
maximal displacements and the corresponding maximal damage.

We can observe that the material responses indeed seem to correspond for low
loads. Moreover, the peridynamics material model softens for increased load,
as is also indicated by the increasing damage, with values above one implying
nodes with softening bonds. From the perspective of the global-local method,
we are thus confident that a local peridynamic problem computes displacements
of comparable magnitude when loaded with boundary data from the global
PUM problem.
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Table 5.1: The maximal displacement magnitude Umax obtained by the PUM and by the
peridynamic (PD) simulation of the two-dimensional bar example sketched
in Figure 5.5. While the material responses agree initially, we can observe the
softening of the peridynamic model for increased load.

Load [N] Umax–PUM Umax–PD Damagemax

9×10
5

1.24×10
−4

1.20×10
−4

7×10
−2

4 · 9×10
5

4.94×10
−4

4.89×10
−4

3.00×10
−1

8 · 9×10
5

9.88×10
−4

1.02×10
−3

6.30×10
−1

12 · 9×10
5

1.48×10
−3

1.68×10
−3

1.06

5.3.2 Mode I Boundary Data Transfer

In our next example, we examine the transfer of information from PUM to
peridynamics on a pure mode I crack opening problem. This problem further
studies the compatibility of the material models in the presence of a crack.
Specifically, we run the first half of the global-local method by applying a global
PUM solution as boundary data on a local peridynamics problem. The respective
computational domains are sketched in Figure 5.6a.

1×10
−1

1×10
−1

1×10
−2

2×10
−2

2×10
−2

−F F

u = 0

(a) Mode I geometry in meters. (b) Mode I local peridynamic solution.

Figure 5.6: Global and local problem domain for investigating the PUM to peridynamics
boundary data transfer. The local domain contains half of the crack.

Compared to the last example, the compatibility of the underlying material
models is further tested by the presence of a crack. We apply a tangential
force of F = 1×103N on the left and right of the crack, which is low enough
to not produce crack growth so that the PUM and peridynamics simulations
can agree on an equilibrium solution. The top of the global domain is fixed
via Dirichlet boundary conditions. On the local domain, we apply the global
boundary data as a prescribed displacement on a layer of peridynamic nodes
of one horizon size. We again discretize the PUM problem on level six, which
yields hPUM = 7.81×10−4m on this geometry, and have a node spacing of
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hPD = 5×10−4m and a horizon of δ = 4hPD = 2×10−3m in the peridynamics
discretization. The latter is run until time T = 1×10−3s with a time step size of
ts = 2×10−8s.

For the global-local method to work, local solutions by the PUM and peridy-
namics should be more or less interchangeable. To confirm this, we solve the
global PUM problem and prescribe the computed displacement on both a local
PUM and a local peridynamic problem and compare the results. Figure 5.6b
shows the local peridynamics solution, whereas Figure 5.7 shows the global and
local solution as computed by the PUM. Despite the presence of the crack, both
solutions look similar qualitatively and agree in their maximal displacement.

Figure 5.7: Global and local PUM solution of the mode I crack problem.

Moreover, we can use this example to highlight the differences in runtime
between the two methods. To this end, we solve the global problem dynamically
and quasi-statically with the PUM and with peridynamics for comparison. We
further report the peridynamics runtime of the local problem. The results in
Table 5.2 clearly show the expected runtime improvements when applying
peridynamics only locally as it reduces the computational cost by a factor of
eight. In this example, the dynamic global PUM simulation is even faster than the
local peridynamic simulation, while having almost five times as much degrees
of freedom. When factoring in that the PUM simulations were run on four cores
whereas 40 where used for the peridynamic solutions, it is also evident why
there is so much interest in combining peridynamics with computational more
efficient methods.

5.3.3 Coupled Crack Growth

In this example, we apply the coupled global-local method to a simple crack
growth problem. On a square with an initial crack through half of the domain,
compare Figure 5.8, we pull on the top and bottom boundaries so that the crack
grows through the domain. The local peridynamics domain contains the crack
tip throughout the simulation. Moreover, we prescribe the global displacement
on the top and bottom of the local problem only.

The material parameters are Young’s modulus E = 2×1011 and Poisson’s
ratio ν = 1/3. We apply a maximal displacement of ū = ±(0, 6.50×10−6) at the
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Table 5.2: Runtime and degrees of freedom (DOF) for simulations of the mode I problem.
On the global problem, we measure the runtime of quasi-static and dynamic
PUM, and peridynamic (PD) simulations. On the local problem, we report the
runtime of the peridynamic simulation only to indicate the potential speed-up
of the coupled method. Note that peridynamics solutions were computed using
40 cores, whereas the PUM simulations were run with only four.

Method Time [s] DOF

PUM quasi-static 1.00 2.51×10
4

PUM dynamic 1.38×10
2

2.51×10
4

Global PD 4.39×10
3

6.42×10
5

Local PD 5.22×10
2

4.36×10
3

PD

6

10

4 10

5

Figure 5.8: Geometry of the simple PUM with peridynamics (PD) coupling example in
meters.

top and bottom of the global PUM problem, but scale it linearly over several
load steps. In the local peridynamics problem, the crack starts growing with 86

percent of the final displacement applied. From the peridynamic solution, we
extract the new crack path and pass it to the global PUM problem, which is rerun
with two percentage points higher prescribed displacement at the boundaries.
We iterate this and thus simulate with full data exchange between the two
models. In fast dynamic processes, we expect to have more frequent interactions
between the methods, but we can still conclude that the proposed global-local
coupling method works as intended. The analysis of the interaction frequency
between the two models and codes is a topic for future research.

We further use this example to measure the effect of different discretization
widths on the local peridynamics problem. To this end, we choose three different
node spacings hiPD with corresponding horizons δi on the local peridynamic
problem while keeping the global discretization level constant. Figure 5.9 shows
the respective node spacings and horizon sizes as well as the extracted crack
paths from the three coupled simulations.
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(a) δ1 = 1/2 and h1PD = δ1/2
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(b) δ2 = 1/4 and h2PD = δ2/4
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(c) δ3 = 1/8 and h3PD = δ3/8

Figure 5.9: Extracted crack path from the coupled global-local simulation for three differ-
ent peridynamic discretization width. Results from a coarse peridynamic (PD)
mesh are shown in (a), from a refined mesh in (b) and from a twice refined
mesh in (c).

In the following, we compare the extracted crack tip positions as well as the
corresponding global displacements, using the finest peridynamic solution as
reference. Specifically, we compute the differences in crack tip positions

etip(δi, t) =
∣∣∣∣crack_pos(δi, t) − crack_pos(δ3, t)

crack_pos(δ3, t)

∣∣∣∣ i ∈ {1, 2} (5.7)

and the corresponding differences between PUM solutions

eu(δi, t) :=

√√√√∑j(u3(pj) − ui(pj))2(
u3(pj)

)2 i ∈ {1, 2} (5.8)

on points pj of the visualization mesh at four time steps.

Table 5.3: The absolute difference of the crack tip positions, see Equation (5.7), with
respect to the finest peridynamic discretization with δ3 = 0.125. And relative
difference (5.8) between PUM solutions with the different peridynamic crack
paths.

Time step etip(δ1, t) etip(δ2, t) eu(δ1, t) eu(δ2, t)

43000 7.40×10
−2

8×10
−3

44000 1.50×10
−1

2.40×10
−2

1.20×10
−1

2.10×10
−2

45000 2.00×10
−1

1.60×10
−2

46000 4×10
−1

1.50×10
−2

2.50×10
−1

2.20×10
−2

Looking at the results in Table 5.3, we can see that the coarsest peridynamic
solution fails to capture the crack growth process as it computes much smaller
crack increments. This can also be observed in Figure 5.9. As expected, big
differences in crack tip positions produce big differences in the computed
displacement. We therefore conclude that a sufficiently small mesh width is
important in peridynamics, not only to predict accurate crack paths but also to
allow for sufficiently fast crack growth.
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5.3.4 Three Point Bending

As a first validation of the proposed coupling method against real world experi-
mental data, we reproduce the three point bending experiments in [54]. These
are frequently used to validate numerical methods, for example peridynamics
in [93, 124], the phase-field model in [32, 84, 89, 142] and the GFEM in [91]. In
the experiments, a plexiglass sheet supported at two points has its top center
displaced downwards and features an initial crack offset to the left, compare
Figure 5.10. The actual experiment was conducted with a three-dimensional
specimen, but many of the above-mentioned references reproduce it with a two-
dimensional simulation, as do we. This simplification yields sufficiently accurate
results, because the thickness of the sheet at half an inch is only five percent
of its length and the applied load induces no effects in the third dimension.
The experiment further consists of several separate cases in which the initial
crack position is varied and three holes are introduced into the geometry. We
reproduce one case without and two cases with the presence of holes, compare
Figure 5.10.

ū

8

1.25

2

2

a

1 1b

10 10

Case a (in) b (in)

1 1 6

2 1 6

3 1.5 5

Figure 5.10: Geometry of the three point bending experiment, all lengths in inches. Crack
length and position varies across the three cases with the given parameters.
Note that the three holes are not present in the first case.

The plexiglass sheet is modeled with linear elastic and isotropic material with
Young’s modulus E = 2.40×109GPa and Poisson’s ratio ν = 1/3. Regarding
boundary conditions, we apply a maximal displacement of 2×10

−3m at the last
load step in the top center of the domain. This is modeled as a point Dirichlet
condition in the PUM simulation. We apply Dirichlet boundary conditions at two
more points of the domain, where the specimen is supported: At the left bottom
point, one inch away from the left boundary, we fix both x and y displacement to
zero. At the right bottom point, one inch away from the right boundary, we only
fix the y component to zero and thus allow horizontal movement of the domain
here. We discretize the global PUM problem on level six with linear polynomials,
but add one additional level around the crack and the holes. Along the crack,
we apply a Heaviside enrichment and use the tip enrichments (3.3) on patches
in a radius around the tip bounded by the distance to the next kink as the crack
is grows. During crack growth, we thus apply further refinements near the tip,
such that the patches there are smaller than the distance to the first kink in the
crack path. We set up the local peridynamics problem in a region around the
crack tip and move it with the propagating crack. The size of the local problem is
roughly two by two inches. However, we increase the size for each case and load
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step separately to ensure that holes are always fully contained inside the local
domain if they intersect it. Throughout all cases and local domain sizes, we use
a mesh width of hPD = 5×10−4m, a horizon size of δ = 4×10−3m and a time
step size of ts = 2×10−8s. Boundary data from the PUM is applied on a layer of
two horizons along the local boundary. Again, we do not simulate the coupled
method in time yet, but solve quasi-static crack growth. That is, we compute
global PUM solutions with increasing load and approximate a local peridynamics
equilibrium solution by slowly increasing the applied boundary data up to its
maximum. We apply rather coarse load increments at five percent steps of the
maximal load. For each load step, we extract the crack path from the local
peridynamics solution. We then use the updated crack geometry for the next
global PUM solution and also apply it as initial crack on the next local problem.
Once the crack grows, the peridynamics damage reaches up to approximately
200 in the simulation and we consider only damage above 20 for the extraction
of the crack path to be sure that the bond is actually ‘broken’ and not only
softened. This moves the enforced sharp crack path a little behind the process
zone and gives the peridynamics solution more room to model the crack. The
actual necessity and influence of such an approach will have to be examined in
future research. We presume that it also depends on the frequency at which we
exchange information between the methods. Note that at the moment, we are
not yet interested in the speed of the crack propagation but are only interested
in the crack path.

In all three experiments, the crack grows successfully and the results are
displayed in Figure 5.11. Next to the results of our coupling approach, we
present the crack paths obtained in the physical experiments in [54]. For further
comparison, we add the results produced by [93], which were computed using
a FEM-peridynamics coupling method. In this method, both models are coupled
across a transition region, and locally, the overall solution is given by the
peridynamics solution exclusively. Additionally, and different to our approach,
the peridynamic region spans the whole area in which the crack grows and is
not moved. The mesh width of h = 6.35×10−4m in their peridynamics region is
comparable to ours, though.

Both coupling approaches qualitatively capture the correct crack path: We
obtain the same crack growth direction and the crack grows into the same hole
as in the physical experiment. Looking at the details, though, we do have slight
differences in accuracy between the three cases. The first case is the least difficult
as no holes are present in the domain. There, our coupling method predicts
more or less the reference crack path in the first half of the growth process. In
the second half, we end up slightly right of the reference. Unfortunately, we
cannot present results from [93] for this case, as we extracted the paths from the
images presented in the paper: Due to the missing holes in this case, we had not
enough reference locations in the picture to extract the crack path. In case two,
which introduces the holes, our crack path is again slightly right of the reference
but still fairly close. The crack path from the FEM coupling is slightly left of the
reference, but predicts the entry point in the second hole more accurately. Such
small differences can easily be the result of small errors during extraction of the
crack path, since we also prescribe the extracted path as initial crack in the next
load step. Once we add automatic crack path extraction to our implementation,
we will have to revisit this issue and see if we can improve upon the presented
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Figure 5.11: Crack paths in the three cases of the three point bending example. The
reference is taken from physical experiments [54]. Dashed lines indicate the
results of the global-local coupling of the PUM with peridynamics (PUM-PD).
Dotted lines indicate the crack paths obtained by the FEM with peridynamics
coupling (FEM-PD) in [93].

results. The last case is the most difficult of the three, since the initial crack
is located closer to the holes, which influence the crack path. Both coupling
approaches seem to underestimate the influence of the first hole because the
crack paths are not pulled as far to the right as in the physical experiment.
Consequently, the simulated crack paths reach the second hole to the left of the
correct entry point. The overall shape of the paths still resembles the reference,
though. We therefore still consider it a success that our global-local coupling
predicts the same crack path as the direct coupling approach. Even more so
as our peridynamics region is around a quarter the size of their region and
moves with the propagating crack. In the FEM coupling, in contrast, both holes
are contained in the peridynamics region during the whole simulation.

We started all three simulations at 75 percent of the final load and, as men-
tioned before, added five percent points every load step. The crack reached the
hole at 100 and 95 percent of the final load in case two and three, respectively.
However, in case one, several more steps at the final load were necessary to
approach the desired length of the crack. This may be due to the mesh being
too coarse here, as we already observed in Section 5.3.3. In general, we can
conclude that the interaction frequency of the two methods, in applied load or
in time steps, must be sufficiently high in order for the global-local coupling to
work: Since the prescribed displacement on the boundary of the local problem is
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constant for each load step, the crack propagation of the local model is limited.
In a coupled simulation in time, however, the possibility to easily have multi-rate
time integration is an advantage of the global-local coupling approach.

In summary, we believe that these experiments demonstrate the validity of the
presented global-local coupling method, especially with peridynamics. To arrive
at a fully applicable method, further research should investigate the coupling in
time of the two models as well as identify a robust implementation of automatic
crack path extraction.

5.3.5 Phase-Field Coupling

Since coupling via the global-local method is not limited to local peridynamic
problems, we present initial results of coupling a global linear elasticity problem
with a local phase-field model, both discretized by the PUM and simulated in
PUMA. We simulate classical linear elasticity on the global problem and adopt
the phase-field model from [90] on the local problem, which models brittle
fracture. That is, on the local problem we iteratively solve a nonlinear equation
for the phase-field and a linear elasticity PDE that has the phase-field solution
incorporated to alter the material response.

The specific problem is taken from [146] and features a hundred by sixty
rectangle that is initially cracked from the left to the center, similar to the
problem in Section 5.3.3. The material has Young’s modulus E = 2.31×105,
Poisson’s ratio ν = 4.29×10−1 and critical energy release rate Gc = 2.70. The
length parameter in the phase-field model characterizing the width of the crack
is set to l = 5×10−3. We solve the global problem on level five and the local on
level seven, as the phase-field model requires a finer resolution to produce a
narrow crack path. In an outer loop, we apply increasing displacements on the
top and bottom of the domain with an initial displacement of 3.20×10

−1 and
decreasing increments down to 1×10

−2, which cracks the geometry completely
after twelve steps. In each load step, we solve two global-local iterations and
at most four staggered iterations, unless the change in the displacement and
phase-field solutions is less than 1×10

−2. We employ an LU-factorization as
linear solver both on the global and local linear elasticity problems and in the
Newton solver of the local phase-field problem. To allow the phase-field model
to handle the crack tip zone, we model the crack on the local problem by a
Heaviside function only, but use both enrichments on the global problem.

Figure 5.12 shows the global and local solutions warped by their displace-
ments in time steps four, nine, eleven and twelve, where the crack reaches the
right boundary. We can observe that damage is only high ahead of the crack
tip, as the already fully cracked part is modeled by the Heaviside function.
Furthermore, the damaged area ahead of the crack is wider than it would be
in linear elastic fracture mechanics because the phase-field solution models the
entire area in which the material exhibits stress, instead of limiting it to the
crack tip. We want to highlight here that the crack branches close to the right
boundary with the phase-field model, which is impossible to predict in linear
elastic fracture mechanics. However, this behavior vanishes once we apply the
Heaviside enrichment too close to the front of the damaged area. The interac-
tion of the crack enrichments with the phase-field model should therefore be
investigated further to propose a suitable enrichment scheme for the coupled
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method. For example, with a small local problem around the crack tip, it may
be desirable to update the crack path only when the local region moves.

Figure 5.12: Local phase-field solution with global and local problem warped by their
respective displacements for simulation steps 4, 9, 11 and 12. The phase field
ranges from zero to one.

Coming back to our results, updates of the crack path are performed au-
tomatically based on the 0.98 isoline of the phase-field solution. To visualize
this, Figure 5.13 plots the extracted 0.8, 0.9 and 0.98 isolines and the phase-field
close to the crack tip for the same four load steps as in Figure 5.12. As can be
observed there, we update the crack tip to the x-coordinate where the damage
field starts to widen, which we assume to coincide with a kind of process zone.
Whether this is the correct and physical approach, still has to be verified, though.
In general, several edge cases have to be understood and implemented for the
robust automatic extraction of crack paths for the coupling method. One topic
here is branching and coalescence of cracks, which was demonstrated to be
feasible in [90]. Small bubbles of high damage that appear disconnected from
the overall crack path constitute another possible challenge, as can be noticed in
Figure 5.13.

To finish this section, we simulate the growth process of the penny shaped
crack introduced in Section 3.3.4 with the phase-field method discretized by
the PUM in three space dimensions. We apply the same phase-field model as
before and discretize it on level six with two additional refinements towards the
crack front. On the linear elasticity problem, the initial crack configuration is
modeled by a Heaviside function and crack growth is exclusively handled by
the phase-field solution. Boundary conditions are slightly different here, because
instead of a load, we apply an increasing displacement on the top and bottom
of the domain. The domain is further downsized to a box with radius 0.3 to
reduce the computational cost, since a fine resolution is required to arrive at a
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Figure 5.13: Iso-lines 0.8, 0.9 and 0.98 around local phase-field solutions for simulation
steps 4, 9, 11 and 12. Compared to Figure 5.12, we applied appropriate zoom
levels to each step individually to highlight the process zone.

reasonable width of the damage distribution. We set no boundary conditions on
the phase-field problem. Figure 5.14 shows the 0.95-contour of the phase field
in load step eleven and eighteen, together with a slice through the domain that
is warped by the computed displacement. The predicted crack path looks fine
though slightly different than what we computed in Section 3.3.4 due to the
different boundary conditions. Applying the global-local method to this and
similar three-dimensional fracture problems should be straight forward, but is
left for future work.

We conclude that combining the PUM with the phase-field method through
global-local coupling is also possible. This allows to use the variety of phase-field
material models [74] to predict crack growth in a cheap global simulation of
linear elasticity. For the extension to three space dimension, only investigating
the robust extraction of the crack geometry should be necessary.
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Figure 5.14: Phase-field solution of the three-dimensional penny shaped crack problem
of Section 3.3.4 visualized on a slice through the domain. The phase field
ranges from zero to one and we show its 0.95-contour to depict the crack
geometry.
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Before concluding this thesis, we want to take the opportunity to highlight new
research topics in the PUM and with PUMA, that are enabled by the presented
work in this thesis. Most notably this includes the new possibility to simulate
fracture in three space dimensions. Additionally, other localized features than
fracture that can also benefit from the application of the global-local method. It
should be noted, that we present only first results but no in-depth study of the
presented topics.

laminated composites

Failure analysis of laminated composites is of high interest for example in the
aerospace industry, where damage might be present due to manufacturing
defects or occur through repeated loading [53], at bolted joints [82] or through
impact [98, 147]. Damage propagation here includes areas with matrix cracks
and delamination zones between material layers. The global-local method stud-
ied in this thesis could be used to speed up numerical simulation of such
delamination processes, by condensing degrees of freedom in localized crack
clusters. Furthermore, the implementation work done in PUMA during this thesis
lays the foundation for future work in this area, as now simulation of complex
crack geometries in three space dimensions is possible.

Figure 6.1: Triple h-cracked coupon warped by computed displacement and colored by
displacement magnitude (left) and von Mises stress (right).

For example, Figure 6.1 shows a cluster of matrix cracks through a material
layer with beginning delamination above and below, and Figure 6.2 shows a
cluster of penny shaped delamination zones between material layers. These are
simplified examples with layers of linear elastic material, where we used the
bimaterial enrichment functions (3.5) at crack fronts between layers. Further-
more, atypical loading for this application is applied: In the presented examples,
we stretch the material, while in practice bending or compression are of more
interest. To this end, however, only contact between the crack surfaces would
have to be implemented.
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Figure 6.2: Delaminating penny cracks with alternating hard and soft linear elastic mate-
rial layers. Warped by computed displacement and colored by displacement
magnitude (left) and material layers (right).

pressure driven crack growth

Throughout this thesis, we studied fracture propagation caused by the appli-
cation of external loads on the cracked domain. However, crack growth can
also be driven by internal pressure from inside the crack. In the numerical
simulation of this process, a second PDE or model has to be solved inside the
crack and interacts with the outer simulation through the boundary given by
the crack surface. As we implemented three-dimensional crack surface handling
and crack growth for this thesis, this would be a natural extension of the current
capabilities of the software framework PUMA.

After implementing this, the following processes could be simulated with
PUMA. While freezing, water in fractured rock expands and applies frost-heaving
pressure to the surrounding material. This process has, for example, already
been successfully simulated with the XFEM [148]. In hydraulic fracturing artificial
cracks or perforations are created along a wellbore through which a viscous
fluid is pumped to drive crack growth through the pressure. Simulations of
this system of coupled PDEs are of interest to understand the effects of varying
relative crack locations and fluid viscosities and the GFEM has already been
successfully applied to this class of problems [92, 122, 123]. Furthermore, peri-
dynamics has also been successfully applied to the simulation of hydraulic
fracturing [100], such that the coupling with peridynamics, presented in the last
chapter, could be applied to this problem, too. A similar process is the extraction
of geothermal energy from the ground. In fact, a hydraulic fracturing model
has already been applied in this context [145], to study the effects of fracture
morphology on heat extraction numerically.

As an example, we present a crack growth simulation with an initial crack
configuration taken from [92], where fracture propagation in hydraulic fractur-
ing is studied with the XFEM. We did not implement solving the fluid equation
in arbitrary three-dimensional crack geometries for this thesis, but we show
preliminary results with a single equation of linear elasticity and rather atypical
loading for this application, as we stretch the domain. That is, we essentially
repeat the example shown in Section 3.3.4 with three penny shaped cracks
next to each other. As sketched in Figure 6.3, we simulate three vertical penny
shaped cracks in a box with radius L = 1 of isotropic linear elastic material with
Young’s modulus E = 1.00×103 and Poisson’s ratio ν = 1/3. After some crack
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growth steps we increase the domain radius to minimize finite domain effects.
The cracks all have an initial radius of 1×10

−1 and are placed with a distance of
1×10

−1 next to each other. On the sides of the box we pull with unit stress σ = 1

to force crack growth.

2L

2L

wellbore (not simulated)

3 cracks

Figure 6.3: Side view of unit cube with three penny shaped cracks around a wellbore as
in hydraulic fracturing. Wellbore and fluid are not simulated and boundary
conditions are applied to force crack growth.

Figure 6.4 shows the initial crack configuration and discretization. We dis-
cretize on level four and apply three levels of h-refinement towards the crack
fronts as well as further h-refinement to ensure that every patch contains at most
one crack front vertex. For the cracks, we use the crack enrichments described
in Section 3.1 and employ a direct solver as the resulting linear system is small
enough. We extract stress intensity factors using the DCM, see Section 2.2.2 and
update the crack geometries based on Schöllmanns criterion, see Section 2.2.3.

Figure 6.4: Initial crack configuration of the hydraulic fracture example.

Figure 6.5 shows the crack configuration after 22 growth steps. As expected,
the middle crack stays flat while the other two bend away from it. Results with
crack growth driven by fluid pressure and isotropic remote stress in this crack
configuration show similar results, compare [92]. While time did not permit to
further explore this application, the simulations should be possible once the
following two features are implemented: Simulation of the fluid pressure inside
the crack geometry and the possibility to apply boundary conditions on the
crack surface to use that pressure in the simulation of the materials.
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Figure 6.5: Crack configuration of the hydraulic fracture example after 22 growth steps.

laser heat sources

While we focused on cracks as the defining features for local problems in this
thesis, another common problem are localized heat sources such as lasers. In [97]
for example, the global-local method is applied to problems in which a linear
elastic material is thermally loaded by a sharp gaussian laser source. Figure 6.6
shows a reproduction of one of the examples.

Figure 6.6: Temperature distribution induced by a laser heat source (top) and material
displacement resulting from the thermal stress (bottom).

As with fracture, the degrees of freedom required to resolve the sharp thermal
gradient are moved to the local problem, which allows the global problem to be
discretized with h larger than the laser width. Similar to fracture propagation,
movement of the laser source would require remeshing in direct solutions, which
again is circumvented by simply moving the local problem and computing a new
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enrichment. Localized laser heat sources are for example present in the process of
additive manufacturing [108], where a laser melts a layer of metal powder which
then iteratively builds the structure on solidification. Numerical simulation
can help to understand and optimize this process. In such a simulation, we
expect further runtime improvements from the application of the global-local
method, since the involved material model is nonlinear. Thus, the solver is more
expensive and we have more opportunity to benefit from the reduced number
of global degrees of freedom. Furthermore, several lasers can be used to build a
single structure introducing an opportunity to parallelize across several local
problems.

cracked shell coupling

Thin geometries, where one physical dimension is much smaller than the other
two, such as metal sheets, can be more efficiently simulated with reduced
two-dimensional models, which incorporate assumptions on the through-the-
thickness behavior of the deformation. Those assumptions, however, may not
hold in certain situations, for example in the vicinity of a crack tip. In such a
case, we may combine two- and three-dimensional models for different regions
of the material, as shown in Figure 6.7.

Figure 6.7: Solution of a simple two to three dimensions coupling example with a crack.

Here, we combine the two-dimensional Kirchhoff-Love plate model with three-
dimensional linear elasticity in a subdomain including the crack tip. We couple
the two displacement fields with Nitsche’s method [43]. The crack is represented
by the usual crack enrichments in both models and crosses the interface. In
the three-dimensional subdomain, crack growth out of the plane perpendicular
to the plate is then possible. One could either study this as a technique to
accelerate the simulation of three-dimensional crack growth, by modeling parts
of the domain only in two space dimensions, or as the opportunity to introduce
fracture with complex crack geometries to the simulation of shells.
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In this thesis, we demonstrated that the global-local enrichments method in a
flat-top partition of unity method can improve linear elastic fracture simulation
in two ways: Either by offloading the degrees of freedom necessary for the
resolution of cracks in linear elastic fracture mechanics on separate problems
or by enabling the use of expensive models with natural crack initiation and
propagation only locally. We achieved this in three steps. First, we adopted the
simulation of complex three-dimensional fracture and fracture propagation in
the PUM in Chapter 3 and implemented it in the software framework PUMA.
Second, we adapted the global-local method from the finite element and thus
mesh based GFEMgl setting into the flat-top PUM in Chapter 4. And finally, we
generalized global-local enrichments to allow a different model on the local
problem and presented results using peridynamics or a phase-field model locally
in Chapter 5. Specifically, we introduced and implemented the following.

To enable the simulation of crack surfaces in three space dimensions in
PUMA, we first of all implemented a representation of the crack geometry by
triangular meshes. This is used to generate integration cells that respect the
crack geometry. The generation builds on the fact that in a first pass rectangular
integration cells resolving the patch boundaries are created efficiently and locally
to each processor based on the construction of the underlying cover. Thus,
tetrahedrons resolving the crack geometry can then be created locally for each
crack intersecting rectangular cell, using a constrained delaunay construction.
The representation further serves the evaluation of the enrichment functions
which model the crack in the simulation. Here, we made sure to implement
all necessary queries on the crack geometry efficiently, since they are called
for each integration point or cell in the evaluation of the front enrichments
or Heaviside type functions, respectively. Regarding the implementation of
the front enrichments, a question is whether and how to adapt to kinks in
the crack front, as the type of the singularity is not known analytically there.
To this end, we implemented and benchmarked four approaches to handle
those kinks in the evaluation of the front enrichments. Yet, our experiments in
Section 3.3.3 confirm the findings in [102] that accuracy is above all determined
by the local resolution in terms of h-refinement of the domain discretization and
not by additional interpolation along the crack front. Another feature required
especially for crack growth in linear elastic fracture mechanics was the extraction
of stress intensity factors around the crack front. To this end, we implemented
the CIM and DCM and demonstrated their ability to accurately extract the stress
intensity factors in three space dimensions in the PUM. Of course, both methods
were implemented to work in parallel by distributing crack front segments
according to their position in the overall cover patch distribution. Here, special
care had to be taken to evaluate inside the current processes patches. For the
CIM we further implemented integration cells for a one dimensional path around
crack front segments and demonstrated the path independence of extraction
in numerical experiments. To predict the crack growth direction based on the
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extracted stress intensity factors, we implemented Schöllmann’s criterion and
added algorithms to update the mesh representing the crack geometry during
crack growth simulations.

In order to speed up fracture simulation by moving the degrees of freedom re-
quired to resolve the crack singularity onto a separate problem, we adapted the
global-local enrichments method first introduced in the context of the GFEMgl [23]
to our flat-top and meshfree PUM. The central challenge here was that in the PUM

h-refinement generates non-nested ansatz space due to the construction of the
underlying cover. This prevents efficient numerical integration of overlapping
computed enrichment in parallel the way it was proposed in the GFEMgl. To
overcome this limitation, we presented an efficient parallel implementation of
the global-local method in the meshfree, flat-top PUM, based on the following
decisions. Compared to the implementation in the GFEMgl we restricted ourselves
to non-overlapping local problems and we thus have only one local problem
per feature. We, however, solve each local problem in parallel and exploit the
parallelism inherent in the global-local method by solving each local problem
on only a subset of the overall available processes. In consequence, several par-
allel local problems can be solved simultaneously. To this end, several changes
were necessary in PUMA. We implemented the search of neighbor relationships
between function spaces on different communicators. Moreover, we added an
integration cell handler that allows to use the local problems' integration cells in
order to take advantage of their parallel distribution. In the global cells, a whole
local problem could be contained inside the region of a single process. Lastly,
we implemented the automatic setup and distribution of local problems based
on the global cover in parallel. The parallel efficiency of the resulting method is
excellent, especially its weak scaling, as we demonstrated in numerical experi-
ments. When adding local features to a simulation, it achieves constant runtime
by adding only a flat number of processes for each. We want to emphasize
here that our implementation not only allows the performant application of the
global-local method in the PUM, but also addresses the challenges introduced
by a distributed memory parallel implementation on top of the shared memory
parallel implementation presented in the GFEMgl [66]. Regarding the accuracy of
the global-local method, we confirmed that after sufficient global-local iterations
to improve the boundary data on the local problem, it achieves comparable
accuracy to applying the local degrees of freedom directly on the global problem
by h-refinement. As such, it is a viable alternative to directly refined simulations,
with runtime tradeoffs favoring the global-local method given enough local
features, as suggested by our runtime estimates and experiments. We further
analyzed the effect of a bufferzone and Robin boundary conditions on the
quality of the boundary data and confirmed that both can reduce the number
of required iterations for a targeted accuracy. With regard to Robin boundary
conditions, we were further able to confirm the optimality of our scheme (4.11)
to compute the parameter κ, which we first introduced in [9] and now applied
in three space dimensions, at least on simple problems. Here, the underlying
assumption is that the parameter is more sensitive to the energy in the global so-
lution along the local boundary than on the discretization level, as was assumed
in [68]. However, we also discovered an example that does not have a single
optimal value of κ depending on the feature of the solution we are interested in.
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As a third contribution of this thesis, we investigated the coupling opportunity
in the global-local method where the local problem does not have to use the
same model or discretization as the global, but merely has to accept boundary
data from it and be able to provide some form of enrichment in return. We thus
proposed the global-local as a coupling method and presented first results of
coupling the PUM with peridynamics and a phase-field model. Both offer natural
crack initiation, growth and branching, which is not possible in linear elastic
fracture mechanics. As it is unclear whether the local solutions minimize the
global linear elastic energy due to the different underlying material models,
we proposed to only use the extracted crack path as enrichment, which then
is modeled by the standard crack enrichments on the global problem. Crack
path extraction has to be performed anyways once the local problem moves
with the crack tip or front. The fundamental issue here is that in peridynamics
and phase-field models the crack geometry is given only implicitly and at most
up to around the discretization width. Hence, it is fuzzy and not sharp. While
several algorithms for automatic crack path extraction from peridynamics and
phase-field models exist in the literature [33, 90, 138], their robustness has to be
investigated in future research. We want to note that the proposed global-local
coupling method is similar in nature to the XFIELD [36], which combines the
XFEM with a local phase-field model, except that they apply additional boundary
conditions on the phase field.

We presented initial results of combining global linear elasticity with a local
phase-field model, both discretized by the PUM, and automatic crack path extrac-
tion based on isolines of the phase field. Primarily, however, we presented results
from the ongoing collaboration with P. Diehl and R. Lipton on coupling the PUM

with peridynamics. In addition to a summary of results of our first publication
on that subject [8], we presented new, so far unpublished experiments validat-
ing the proposed method against real world experimental data. The primary
difficulty introduced by coupling linear elasticity with peridynamics are the
different material models. To this end, we demonstrated the compatibility of
both models sufficiently far away from the crack in numerical experiments. A
second challenge, for the application of boundary conditions, is the non-locality
of the peridynamics model, which made minor modifications of the global-local
method necessary. In numerical experiments of increasing difficulty, we then
demonstrated that exchanging information, i. e. boundary data and crack path,
between the two methods is possible and produces the desired results. In one
example, we also confirmed that our approach realizes the expected runtime
improvements from localizing peridynamics. Especially the last comparison
against real world experiments demonstrates the validity and potential of the
proposed coupling method, but several challenges have to be addressed in
future research. First of all, coupling the dynamic formulations of the two mod-
els in time has to be investigated. In particular, reasonable time step sizes for
each method as well as the synchronization frequency have to be determined.
Second, full coupling of the simulation codes, especially in parallel, needs to
be implemented to speed up future research. To this end, a robust automatic
algorithm for crack path extraction from the peridynamic damage field has to be
determined and implemented. Currently, the most promising candidate seems
to be the θ-simplified medial axis algorithm [10]. Third, constructing shape
functions from the peridynamics solution that model the discontinuity across
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the crack could be investigated as an alternative to crack path extraction, as was
suggested in [119]. Lastly, on the PUM side, we have to determine a reasonable
crack update length and implement a stable time integrator for the evolving
ansatz space in crack growth. Otherwise, shock waves can be introduced due
to a sudden increase in crack length. Overall, and based on the promising
results presented in this thesis, we believe that further developing global-local
enrichments as a coupling method provides an excellent research opportunity.

Regarding further future research, we first of all want to highlight the new
possibilities enabled by the support of three-dimensional fracture now imple-
mented in PUMA. In Chapter 6, we already listed several problems to be looked
at in the future, which can also benefit in runtime by the application of the
global-local method. Within the global-local method, it could be worthwhile to
look into linear solvers that take advantage of the update structure of the global
linear system over global-local iterations, as presented in [67]. Furthermore,
constructing the local domain as the union of the global, enriched patches could
be investigated to better adapt the shape of the local problem to the feature
it tries to resolve. Another topic is using the global-local method as means to
improve enrichments in a simulation. For example, precomputed enrichments
from the approach presented in [2] may need to be adapted to the specifics of the
current simulation, such as material parameters, and could thus be improved
by the application of global-local iterations. A second source of suboptimal
enrichments could be functions proposed by machine learning algorithms for a
given simulation. From the perspective of the global-local method these would
improve the quality of the boundary data in the first iteration.
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