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Abstract

The group of E. Hannezo et al. proposed "A Unifying Theory of Branch-
ing Morphogenesis" in glandular epithelial tissues in 2017, based on a stochas-
tic model related to branching and annihilating random walks. In this
stochastic model, the individual branches of a tree-like structure grow and
branch independently. A hard-coded self-avoiding mechanism makes an an-
alytic treatment of the stochastic model challenging.

In the first part of this PhD thesis, we investigate a related PDE which
describes the evolution of two densities of particles: The so-called active par-
ticles diffuse and branch and become inactive upon collision with a particle of
arbitrary type. The inactive particles do not react and are of low diffusivity.
In the absence of active particles, this system is in a steady state, irrespec-
tively of the inactive particles. The resulting continuum of non-hyperbolic
steady states complicates the analysis of the PDE.

We construct the non-negative traveling waves of the PDE and show
that they share many similarities with those of the classical FKPP-equation.
Among the constructed pulled heteroclinic waves, those with minimal pos-
sible speed – referred to as critical – are of particular relevance. Subject to
compact initial data, simulations of the PDE always show the same behav-
ior: The front of the solution converges to the critical traveling wave.

We then show that the critical traveling waves are asymptoticly stable.
To overcome the problem that the limits of the traveling waves are not hy-
perbolic, we operate in a weighted space where the perturbations can grow
exponentially at the back of the wave, but vanish point-wise, a phenomenon
referred to as convective stability. In order to control the unbounded nonlin-
ear terms of the perturbation equations, we establish a new type of a-priori
estimate, based on a Feynman-Kac formula. Our stability results for the
PDE support the numerical results found for the stochastic model.

In the second part of this thesis, we investigate the growth and the clonal
evolution of prostate adeconarcinoma (PCA). These tumors form branched
self-avoiding structures, we hypothesize that their growth follows the rules
for branching morphogenesis formulated by Hannezo et al. We formulate a
mathematical model for the growth and the stochastic genotypic evolution
of PCA. Via simulations, we explore in detail the possible evolutionary pat-
terns and clonal architectures, and demonstrate that the tumour architecture
represents a major bottleneck for a divergent clonal evolution. As a result,
we hypothesize that strong genomic driver mutations cause the evolution



of the tumors into more aggressive variants, contrasting the idea of a grad-
ual, continuous evolution. We validate the results of our simulations using
multiregional next generation DNA sequencing of the primary tumours from
five patients, and find close similarities between our predictions of clonal
development and real-world data from the patient samples.
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1 Introduction
Biology and mathematics have a long history of interplay, dating back at
least over two centuries [32], but over the last fifty years, the conversion
of biology into a more quantifiable science has increased the payoff for both
fields [80]. On the one hand, biological data can be interpreted and organized
only with the help of the computational sciences, and applied mathematics
can foster new biological theories. On the other hand, the use of mathe-
matical modelling in biology leads to the development of new computational
approaches [57], as well as it gives rise to theoretical problems.

In a self-organized system, the emergence of a macroscopic structure is
determined solely by the behavior of its microscopic components. These
components interact with and react to their local environment, without any
additional global guiding mechanism. Biology abounds with phenomena
that can be explained (at least partially) via self-organization of groups of
individuals: Bacterial populations express pattern formation depending on
their environment [88, 116], ant colonies are able to build nests, the coat
patterns of zebra and giraffe can be explained via the interplay of different
cell types during the growth phase of the animal [27], and corals and sponges
which are built of repeated small units, form complex organisms [82].

Cells have countless ways to communicate and interact with each other.
As such, cellular systems constitute a huge playground for possible self-
organization phenomena and are able to express all different kinds of be-
havior: spontaneous pattern formation, traveling waves, oscillations and
metastable states with fast switching [87, 109, 159]. It is believed that
self-organization is vital for the robustness and the adaptability of cellu-
lar organization and the maintenance of tissues in general, though many of
the underlying mechanisms are still unexplored [74, 159].

Our understanding of cellular systems increases rapidly since the 1990s.
Mathematics plays an important role in this process by formalizing and quan-
tifying the intracellular metabolism and the intercellular interactions, and
by exploring possible outcomes. Mathematical models can bridge the gap
between the different scales and shed light on one of the central questions:
How do instructions that are encoded into the behavior of the individual cells
translate into tissues with complex and heterogeneous shapes and functions?
There exists a large and fast growing body of mathematical literature regard-
ing organ formation, wound healing or tumor growth [37, 46, 74, 83, 99, 106].
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1 Introduction

1.1 Branching Morphogenesis

Branched structures are ubiquitous in biology. Often, they can be observed if
a tubular system needs to maximize its surface per volume, in order to be able
to efficiently exchange substances with its environment. In trees, corals, and
many fungi [34, 82], repeatedly branched structures are visible to the naked
eye. More hidden within the internal anatomy, branched structures are vital
for the functionality of different mammalian organs. Prominent examples
are the lung, the capillary blood vessels, the mammary glandular system
and the kidney. It is a fascinating and unresolved question how the shape
of these structures is encoded into the evolutionary program. Countless
publications identify related genes and molecular signaling pathways that
directly influence the cellular behavior. The critical pathways depend on
the system under investigation. Many known results are gathered by Davies
[38]. However, there is evidence for universal design principles that apply to a
wider class of branched structures, even though their implementation differs
from case to case [34, 74, 98]. This is where mathematical modeling comes
into play: A mechanistic mathematical model can explain a phenomenon if
it operates on the appropriate level of abstraction.

Figure 1.1: Gorgonian coral. Photo by Jesus Cobaleda @ Shutterstock.com.

Regarding branching morphogenesis, many mathematical works focus on
the local decision process of the proliferating cells during the growth phase.
Growth and branching of the cellular tubes can be explained via reaction-
diffusion systems, in which cells consume and secrete different activator and
inhibitor signals [68, 81, 113]. These models can explain different local mor-
phologies (i.e. side-branching vs. branching only at the tips, frequency of
branchings, etc.) via Turing patterns.

Witten and Sander [163] proposed a model named Diffusion limited ag-
gregation (DLA), which resists attempts to be solved analytically since 1981.
In this model, particles are randomly placed in space, and diffuse until they
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1 Introduction

stick to the existing (static) structure upon first contact. This process has
been used successfully to produce fractal branched structures, depending on
the precise formulation and the chosen parameters: Simulations of DLA can
quantitatively reproduce patterns found in river networks, lightning, bacte-
rial colonies, and corals [129], and can give rise to physiologies as in Figure
1.1. It is perplexing that this physical aggregation model also works in bio-
logical contexts, where some sort of reproduction drives growth.

There exists a (heuristic) connection between DLA and viscous fingering
[107], a phenomenon that originally was observed at the border of two fluids
of different viscosity under pressure. Several models related to viscous fluid
mechanics have been proposed that consider tissues as "active fluids": on the
one hand, tissues are subject to physical pressures, on the other hand, they
consist of cells that reproduce, die, consume nutrients and secrete signals
[121, 122]. These models can show branched behavior, for example they can
explain the fingering invasion of tumors into the surrounding healthy tissue
[17]. To our best knowledge, the current understanding of these models is
limited to the arise of certain local patterns that can be observed in simula-
tions.

In 2017, Hannezo et al. proposed A Unifying Theory of Branching Mor-
phogenesis [73]. They modeled the branching morphogenesis of glandular
structures in organs via a stochastic system that is based on branching and
annihilating random walks. The aim of this study was to find a set of coher-
ent microscopic rules that can explain the growth of the branched structure
on the macroscopic scale. The proposed algorithm is based on simple lo-
cal mechanisms, and generates a randomly growing binary tree that is able
to fill a given volume (e.g. open, bounded sets in R2 or R3). A schematic
representation in R2 is shown in Figure 1.2:

A vertex v of the network that is labeled as active can either spawn
a single connected child-vertex u1 ahead (referred to as growth-event), or
spawn two child-vertices u1, u2 (referred to as branch-event), and the ui are
connected to v via edges as depicted. The directions of the new edges are
random variables that depend on the direction of the previous edge, whereas
the length of the edges is uniform. In both cases (growth or branch), the
new edges and vertices must keep a certain minimal distance from all existing
structures. After the new possible coordinates of the ui are drawn randomly,
it is checked if they are admissible: if they are not, the growth- or branch-
event is not executed (termination-event). Not depending on the outcome,
the vertex v becomes irreversibly inactive after an event was triggered, and
the possibly generated vertices ui are labeled as active. To keep the algorithm
as simple as possible, all active vertices act independently and have their own
two random exponential clocks with constant rates rg, rb ≥ 0, that trigger a
growth- and branch-event, respectively.

The numerical results of Hannezo et al. suggest that this stochastic sys-

3



1 Introduction

Figure 1.2: The left picture shows a schematic representation of an annihilating
branching random walk. Starting with a single vertex (black), the active vertices
(red) either grow or branch randomly, and become inactive afterwards. If the space
ahead is already occupied, the vertex becomes also inactive. The right picture shows
the result of a simulation in R2 with 100.000 vertices.

tem generates a spatially homogeneous, space-filling tree-structure; see Fig-
ure 1.2 for an example in R2. They observed the following behavior: The
active vertices form a rather sharp layer at the boundary of the network, and
this boundary invades into the empty space with constant speed. Contrar-
ily, the interior of the network is almost entirely static. It consists mostly
of inactive vertices, which fill the space with a constant density of vertices
(subject to local fluctuations). The density and the geometry of the network
depend on few key parameters, the most important one being the relative
frequency of branchings rb/rg.

The authors of [73] verified that their model reproduces very well the
growth-phase of the mouse mammary gland epithelium – where they had
precise data for different time-points - and also compared their results to the
mouse kidney and the human prostate, which are physiologically related.
The results suggest that annihilating branching random walks are a suitable
framework for formulating the development of branched epithelial tissues as
self-organized processes. The proposed rather simple stochastic mechanism
is robust against smaller errors of its individual components [74].

1.2 The PDE under investigation

Branching and annihilating random walks have been studied mathematically
[23], but adding self-avoiding paths complicates a theoretical analysis, due
to the non-Markovian nature of self-avoiding structures. In order to study
the dynamics in [73] analytically, Hannezo et al. proposed the PDE (1.1)
as a heuristic hydrodynamic limit of the stochastic system. Considering the
one-dimensional case z ∈ R, t ∈ R+

0 , two densities of active and inactive
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particles A(t, z), I(t, z) ≥ 0 follow dynamics

∂

∂t
A =

∂2

∂z2
A+A−A(A+ I),

∂

∂t
I = d

∂2

∂z2
I + rA+A(A+ I),

(1.1)

for some fixed parameters r, d ≥ 0. Given the normalized System (1.1),
the case with general reaction rates and diffusion speeds can be obtained by
rescaling, see the appendix in [92]. For d = 0, the PDE (1.1) encapsulates all
mechanisms of the stochastic branching system in a simplified way: Active,
diffusing particles spawn inactive particles with rate r and branch into two
active particles with rate 1, and become irreversibly inactive upon collision
with a particle of arbitrary type. The inactive particles do not react them-
selves, and keep their position in a strict sense if d = 0. We consider also
the case of low diffusivity 0 < d � 1, which is analytically beneficial since
the PDE is parabolic.

Figure 1.3: Simulation of System (1.1) for r, d = 0. Given an initial heap of active
particles A(z, 0) = 1/2 exp(−z2), and I(z, 0) = 0, two identical traveling fronts
arise, the right one is shown. After the separation of the two fronts away from the
origin, the density of the remaining inactive particles is given by I = 2 and the
front moves asymptotically with speed c = 2.

For the analysis of System (1.1), the behavior of the inactive particles
poses the major difficulty: It gives rise to the continuum of steady states

PI = {A = 0, I = K |K ∈ R}. (1.2)

Without further knowledge, we do not know which of these steady states
are relevant. Additionally, this continuum implies that none of the points
in (1.2) is a hyperbolically stable fixed point of the reaction, which further
complicates the analysis.

If we set I ≡ 0, the remaining equation for A(x, t) simplifies to the well-
known FKPP-Equation (2.1). Despite the additional structure, we will see
that System (1.1) shares many properties with the classical FKPP-equation.
We postpone the discussion to Section 2.1.
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Figure 1.3 depicts the result of a simulation: Given a small initial heap
of active particles, two identical fronts arise, we concentrate on the right-
traveling one. After a small burn-in time, the front of the system admits an
almost fixed shape: The active particles form a traveling pulse, that moves
with linear speed c = 2, and generate a monotone front of inactive particles
which saturates at I = 2. Qualitatively, this reflects the behavior of the
stochastic system very well, where the active vertices form a sharp layer of
growth at the boundary of the network, and where the resulting network has
a constant density of vertices per volume.

The front with fixed shape which can be observed in Figure 1.3, is a
particular traveling wave of the PDE. In this PhD thesis, we construct and
analyze the non-negative traveling wave solutions of System (1.1). Among
all the constructed solutions, which can have different limits in PI (1.2), we
focus on the slowest non-negative wave that invades into the empty space,
which characterizes uniquely the wave which we observe in Figure 1.3. We
show that this wave is stable against small perturbations. Since its limits
are not hyperbolic, we need to extend the existing stability theory to this
degenerate case. It is worth mentioning that some of our results were pre-
dicted numerically and heuristically by Hannezo et al. [73].

The outline of this thesis is given in Section 1.4. Before, we explain how
we got interested in branching morphogenesis in the first place:

1.3 The branched growth of prostate cancer

It was observed by Tolkach et al. that a particular class of prostate adeno
carcinoma (PCA) does form glandular systems, at least as long as they
are classified as low or intermediate aggressive types. A three-dimensional
reconstruction revealed that these glandular systems form a self-avoiding
branched structure, which belongs precisely to the class of objects that can
be generated by the model of Hannezo et al. [146]. As such, the tumor-
cells seem to mimic the behavior of the surrounding healthy tissue: The
normal prostate glandular system is also known to be highly branched [142].
However, Tolkach et al. could analyze only samples taken via prostatectomy,
where the entire prostate or at least substantial parts are removed surgically.
There is no available time series data.

Cancer is seen as a disease that mainly develops via a chain of (stochas-
tic) somatic mutations, emanating from healthy cells with normal behavior.
These mutations lead to cell-lines which on the one hand show increased
proliferation and on the other hand are able to escape the regulatory mech-
anisms of the immune system [31]. It is a clinically important question how
long these evolutionary processes take, and if there are prevalent evolution-
ary patterns, since progression of the tumors into more aggressive variants
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continues after the occurrence of the first malignant cells.
The existing theoretical approaches do not present a coherent picture,

since the statistical evaluation of the data as well as the deduction of any
underlying theory is complex. Most mutations do not seem to affect the
behavior of the cells, but are merely passengers or might even have dele-
terious effects – from the perspective of the cancer [26, 139]. There is an
ongoing debate if the evolution of cancer is a more continuous accumulation
of rather weak mutations, or if it is a consequence of few decisive mutation
events [162].

PCA is a relatively slow growing cancer, typically age-related, and be-
comes aggressive and dangerous only in some cases [164]. Its evolution is
not understood, even its cell-of-origin remains to be determined [110, 157].
Based on the findings of Tolkach et al. [146], we developed a mathematical
model that describes the evolution of well-differentiated PCA via stochas-
tic mutations, and its growth via self-avoiding annihilating random walks
in the sense of Hannezo et al. [73] – note that the latter remains to be an
assumption, though a reasonable one. We focused on the question which im-
plications this special spatial structure could possibly have on the evolution
of the tumor.

As a result, we hypothesize that the spatial structure of prostate cancer
serves as a bottleneck for its evolution [94]: As long as the tumor is restrained
to follow the rules of branching morphogenesis, its cells – being encased in
the glandular network of the tumor – are subject to constant competition.
This competition implies that new, fitter genotypes can spread only if they
either have a high fitness advantage, or if they break up the spatial structure
of the tumor. Concluding, the evolution of well-differentiated PCA is more
likely to be driven by few, strong driver mutations.

We simulated the resulting process, which includes both the growth via
branching and annihilating random walks, and the stochastic emergence of
the new genotypes. Importantly, we only chose the parameters from the
literature and by good reasoning, and did not fit them a-priori. We then
compared our numerical results to biological data (from five cases), and found
a qualitative agreement. Our findings should be seen as preliminary, as this
work is under review at the time of writing of this thesis. The unpublished
preprint [94] can be found in appendix C.

1.4 Outline

The remainder of this thesis is structured as follows. First, we present the
mathematical background of our theoretical work in Chapter 2. In Chapter
3, we construct the traveling wave solutions of System (1.1) in the case
d = 0. In Chapter 4, we then extend this result via continuation techniques
to the case d > 0, and analyze the stability of the resulting waves against
small perturbations. In chapter 5, we summarize our work on growth and

7



1 Introduction

evolution of prostate cancer. We conclude with a summary of our results
in Chapter 6. The Appendices contain the publication, the preprint, and
the unpublished work summarized in Chapter 3, 4 and 5: the publication
[92] can be found in appendix A, the preprint [93] in appendix B, and the
unpublished work [94] in C.

8



2 Mathematical background: stabil-
ity of traveling waves

2.1 Traveling waves of FKPP-systems

Reaction-diffusion systems provide the natural framework for the mathe-
matical analysis of the spatiotemporal patterns that can arise from a set of
local interaction rules, there exists an extensive literature that focuses on
systems with a biological motivation [24, 114, 156]. Two works presumably
constitute the foundation of the field. The first is Turings The Chemical
basis of Morphogenesis [147], describing the arise of complex spatiotemporal
patterns due to the instability of a homogeneous rest state.

The second, which is of importance for the present thesis, is the analysis
of the FKPP-equation in the 1930s by Fisher [50] and Kolmogorov, Petro-
vski and Piscunov [91]. This equation describes the spreading of a fitter
population. In its simplest form and in one spatial dimension z ∈ R, this
equation describes the evolution over time of a density of diffusing particles
A(t, z) ≥ 0 that undergo dampened growth:

∂

∂t
A =

∂2

∂z2
A+ F (A), (2.1)

where F : R→ R is a reaction that satisfies

F (0) = F (1) = 0, F ′(0) > 0, F ′(1) ≤ 0, F ′′(u) < 0 ∀u ∈ (0, 1). (2.2)

The classical example for F is the logistic growth function F (A) = A− A2.
Given the FKPP-Equation (2.1), a (right-) traveling wave with speed c > 0 is
a bounded solution that is constant in the moving frame x = z−ct. We only
consider twice differentiable waves φ(x) : R → R, which solve the resulting
ordinary differential equation

0 =
∂2

∂x2
φ(x) + c

∂

∂x
φ(x) + F

(
φ(x)

)
(2.3)

in a strong sense. The Equation (2.3) has heteroclinic solutions φ(x) that
connect the unstable steady state φ = 0 (at x = +∞) with the stable steady
state φ = 1 (at x = −∞). Non-negative solutions, which are the physically
relevant ones, exist for all speeds

c ≥ cmin := 2
√
F ′(0), (2.4)

where the critical value cmin is determined by the linearization of φ(x) around
the unstable state φ = 0, if the reaction satisfies (2.2) [50, 148]. It can easily
be seen that Condition (2.4) is necessary: Asymptotically as x → +∞,

9



2 Mathematical background: stability of traveling waves

solutions oscillate and thereby become negative if the eigenvalues of the
linearized system,

λ± = − c
2
±
√
c2

4
− F ′(0), (2.5)

are not real-valued, which is true for all c < cmin.

z

t = 0

A

z

t = 2

A

z

t = 10

A

Figure 2.1: Simulation of the FKPP-Equation (2.1) with logistic growth, given
Heaviside initial data A(0, z) = 1z≤0. The front converges to the traveling wave
with speed cmin = 2, which is well-approximated already for t = 10.

The solutions of (2.3) with Reaction (2.2) are referred to as pulled trav-
eling waves, since their wave speed is determined uniquely by the tail of φ(x)
as x→ +∞, corresponding to the asymptotic growth speed. The wave with
speed cmin is referred to as the critical traveling wave; the other waves with
speed c > cmin are called supercritical. As we will see, the critical traveling
wave is the most important one, but also the most intricate to study.

For the FKPP-equation, several proofs show that the traveling waves are
the global attractors of the system. Kolmogorov, Petrovski and Piscunov
proved in 1937 that if the PDE starts in Heaviside initial data, then its front
converges to the critical traveling wave as t→∞ [91], as depicted in Figure
2.1. Extensions of this result to more general initial data and a more precise
description of the speed of the front have been provided by Uchiyama [148],
and in particular by Bramson [22], who proved that the front of the PDE
with Heaviside initial data actually moves slightly slower – with a difference
of order log(t) – then its limiting traveling wave.

Given that the initial data decays fast enough, then it is always the
critical wave which arises in the large time limit. The proofs of Kolmogorov
et al. and Uchiyama rely on a comparison principle and on the fact that if
the initial data is monotone, then the front remains monotone for all t ≥ 0.
Bramson used a Feynman-Kac formula to relate solutions of the FKPP-
equation to branching Brownian motion, which yields very precise estimates
on the speed and decay of the front. Both methods work particularly well
for systems with a single reactant.

FKPP-related systems often show a similar behavior: They form hetero-
clinic fronts that connect an unstable state to a stable one and have a certain
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2 Mathematical background: stability of traveling waves

minimal speed [41, 48]. However, convergence results are sparse for systems
with more than one reactant, and essentially rely on monotonicity and com-
parison techniques. Given that all reactants move with different asymptotic
speeds such that the fronts separate, each front is monotone and satisfies a
comparison principle during its own phase of invasion [41]. Figuratively, the
authors named these consecutive fronts propagating terraces. Under the as-
sumption that the reactants are cooperative and form a monotone front of a
single speed [66], one can construct suitable super- and sub-solutions. More
recently, Bovier and Hartung used a Feynman-Kac formula to derive precise
results on the spreading speeds in a model of two competing species with
mutation [19]. Different applications of the Feynman-Kac formula are suit-
able for analyzing the asymptotic speeds of FKPP-systems, but even given
the invasion speed, it remains challenging to prove convergence of the front
towards a particular traveling wave.

The (right-) traveling waves of System (1.1) are a pair of functions

a : R→ R, i : R→ R, (2.6)

that solve System (1.1) via the ansatz A(z, t) = a(z− ct), I(z, t) = i(z− ct),
for a speed c > 0 to be determined. As such, they are solutions of a system
of coupled ODEs:

0 = a′′ + ca′ + a− a(a+ i),

0 = di′′ + ci′ + a(a+ i+ r).
(2.7)

In this thesis, we construct those solutions of (2.7) where a, i ≥ 0, which
we call non-negative, and prove that they share many similarities with those
of classical FKPP-systems. We call a non-negative solution of (2.7) an in-
vading front, if

lim
x→+∞

a(x) = lim
x→+∞

i(x) = 0. (2.8)

This additional restriction is required due to the continuum of fixed points
(1.2), since there are also solutions that are associated to other fixed points.

The minimal speed cmin = 2 of an invading front turns out to be de-
termined by the asymptotic growth speed of the active particles and not
affected by the inactive particles. The details are given in Chapter 3. The
invading front with minimal speed can be observed in the simulation de-
picted in Figure 1.3: The active particles form a non-monotone pulse and
are accompanied by a monotone front of inactive particles of the very same
speed.

Proving convergence of solutions the PDE (1.1) towards the traveling
waves of the PDE for general classes of initial data is difficult, since the waves
are not monotone. Moreover, the inactive particles accumulate only as a by-
product of the active ones, thus the system is in lack of useful comparison

11



2 Mathematical background: stability of traveling waves

principles. However, all our simulations indicate that under initial data
that decay sufficiently fast, it is always the critical invading front which
arises in the large time limit (as for the classical FKPP-equation). This
critical invading is in the focus of our studies. Its stability against small
perturbations in analyzed in Chapter 4.

2.2 Stability of traveling waves: setting and notation

For systems that lack any comparison principle, one can still analyze the
stability of a traveling front against small perturbations. A classical intro-
duction to the field was written by Sandstede [130], a more recent survey
is due to Ghazaryan et al. [63]. As we will see after a recap of the existing
results, analyzing the stability of the critical traveling waves of System (1.1)
requires for a new approach, which we present in Chapter 4.

In the following, we consider a reaction-diffusion system

∂

∂t
Y (t, z) = D · ∂

2

∂z2
Y +R(Y ), (2.9)

where Y ∈ Rn, z ∈ R, t ≥ 0, D = diag(d1, . . . , dn) with di ≥ 0, and a smooth
reaction R : Rn → Rn. If det(D) > 0, the equation is called parabolic,
otherwise it is called partly parabolic or with degenerate diffusion. For speeds
c > 0, we consider the moving frame x = z − ct, where the system reads

∂

∂t
Y = D · ∂

2

∂x2
Y + c

∂

∂x
Y +R(Y ). (2.10)

A right-traveling wave φ(x) : R → Rn with speed c is a constant solution
of Equation (2.10). In the following, we assume without further mentioning
that φ(x) is a bounded and twice differentiable wave that converges expo-
nentially fast at both ends.

For analyzing the stability of the wave, we write the solution of the PDE
(2.10) as the sum of a (possibly shifted) wave and a perturbation Ỹ :

Y (t, x) = φ
(
x+ γ(t)

)
+ Ỹ (t, x), (2.11)

for a shift γ(t) to be determined. The dynamics of the perturbation are then
decomposed into a linear and nonlinear part

∂

∂t
Ỹ = LỸ +NỸ . (2.12)

We focus on the case without shift, where γ ≡ 0, but want to mention
that most of the following results are not restricted to this case. The shift is
for example analyzed in detail in [14, 63, 132].

12



2 Mathematical background: stability of traveling waves

For γ ≡ 0, the linear part L is obtained by linearizing the equation for
the perturbation Ỹ around to the constant wave φ:

LỸ = D · ∂
2

∂x2
Ỹ + c

∂

∂x
Ỹ + JR(φ) · Ỹ , (2.13)

where JR(φ) is the Jacobian of the reaction R, evaluated at φ. The term
NỸ is the remainder of the reaction and nonlinear in Ỹ .

In order to select for specific types of perturbations, that are for example
spatially localized, we introduce the following notion:
Definition 2.1 (Weight). A smooth function

w : R→ R>0 (2.14)

is called a conservative weight if it is bounded, otherwise it is called degener-
ate. A degenerate weight is called convective if w(x)|x≤0 is unbounded while
w(x)|x≥0 is bounded.

Given a weight w, one writes the Perturbation (2.12) as

Ỹ (t, x) = w(x)u(t, x), (2.15)

and then analyzes the behavior of u(t, x). If the unweighted perturbation
solves ∂

∂t Ỹ = LỸ +N(Ỹ ), the weighted one solves

∂

∂t
u(t, x) = Lu+ 2

w′

w
D · ux +

(
c
w′

w
+
w′′

w

)
u+

1

w
N(wu),

=: Lwu+
1

w
N(wu).

(2.16)

Using weights that grow or decay exponentially, the spectrum of Lw is
typically shifted compared that of L, possibly changing the stability of the
perturbations [64, 118, 130, 132].

Remark: In the literature, the roles of w and w−1 are sometimes in-
terchanged. In the course of this thesis, a weight corresponds to Equation
(2.15) and describes the growth or decay of the perturbation.

We assume that Lw defined by (2.16) is a bounded, closed and densely
defined operator. For Y ∈ Rn, we consider

Lw : Dn → Bn, (2.17)

acting on an n−dimensional vector of perturbations, typically for one of the
classical pairs of Banach spaces

D = BCi(R) ⊂ B = BCi−2(R), i ∈ N≥2,

D = H2(R) ⊂ B = L2(R),
(2.18)
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2 Mathematical background: stability of traveling waves

where H2 is the L2 Sobolev space with derivative up to the second order,
and BCi is the space of functions that are bounded and continuous up to
the i-th derivative, with norm

||u||BCi =

i∑
j=0

||uj ||∞. (2.19)

In both cases, D lies dense in B. The product-structure of H2 allows for
energy based estimates [118, 153]. However, the first results were proven in
BC [132], which seems like a more natural choice. Without further mention-
ing, the operator Lw is defined as above.

The spectrum of a bounded linear operator L is the set of complex num-
bers λ such that L−λ1 has no bounded inverse. It can be decomposed into
the discrete spectrum Σd, where solutions of

(L − λ1)u = 0, u ∈ D, (2.20)

exist. The rest is called the essential spectrum (Σess).
Definition 2.2. The linear operator Lw is called spectrally stable with spec-
tral gap if its spectrum is contained in a sector of type

{λ ∈ C|Reλ ≤ a}, (2.21)

for some a < 0, with the possible exception of an isolated simple eigenvalue
0 ∈ Σd that is associated to φ′. We call Lw marginally spectrally stable if the
same is true for a = 0.

If 0 is a simple discrete eigenvalue of Lw, denote by Y ∈ D the null space
of the Riesz spectral projection onto the span of φ′, otherwise let Y = D.
We say that Lw is linearly stable, if solutions of the linear equation

∂

∂t
u = Lwu, (2.22)

with u(0) ∈ Y obey

lim
t→+∞

u(t) = 0, (2.23)

where the type of convergence is to be specified. If (2.23) holds, we call Lw
exponentially linearly stable if there exist constants C, β > 0 such that

||u(t)||D ≤ Ce−βt||u(0)||D ∀t ≥ 0, u(0) ∈ Y. (2.24)

Lastly, the wave φ is called asymptotically nonlinearly stable, if there
exists a weight w, such that any solution of the PDE (2.10) in the moving
frame x = z − ct with initial data

Y (0, x) = φ(x) + w(x)u(0, x), (2.25)
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2 Mathematical background: stability of traveling waves

where u(0, x) is a sufficiently small perturbation (to be specified), converges
to a shift of φ. This means, there exists a shift γ ∈ R, such that

lim
t→∞

Y (t, x) = φ(x+ γ), (2.26)

again in a sense to be specified. We differentiate between stability with shift
and without shift (if γ = 0), both are sometimes also referred to as orbital
stability.

Remark: For the unweighted perturbation, the equation Lφ′ = 0 holds
in all cases. It is determined solely by the choice of the weight if 0 ∈ Σd(Lw).
If 0 /∈ Σd(Lw), the perturbations under consideration decay faster than the
wave itself, typically resulting in (non-)linear stability without shift. This
setting is used for studying the stability of pulled FKPP-fronts [48, 89, 132]
as in the present case, see Section 2.3. If 0 ∈ Σd, then the wave is typically
stable with shift [14, 63, 132].

Given a wave φ, one tries to find a space and a weight w such that
Lw is spectrally stable, and such that spectral stability implies also linear
stability. The relationship between the spectrum of a linear operator and the
associated semigroup is rather complex. We focus on the case where Lw is
sectorial, see Definitions 2.3. In this case, there exists an efficient connection
between the spectrum of Lw and its generated analytic semigroup via a
Laplace inversion. Note that by Equation (2.16), the operator Lw is affected
only by w′/w and w′′/w. Thereby, weights with exponential asymptotics
essentially result in some additional constants in Lw, but on a theoretical
level do not change the properties of the operator. However, the weight
heavily influences how one can deal with the nonlinearity N(uw)/w.

If w is bounded or even integrable, the nonlinearity can be dealt with in
great generality since O(N(uw)/w) = O(u2w) [14, 63, 132], whereas proving
nonlinear stability is much more difficult if w is unbounded. See [131] for a
motivation to use convective weights, and [64, 118] for rigorous results.

The various approaches for proving nonlinear stability highly depend on
the chosen space and the precise form of the spectrum [47, 63, 124, 130]. In
this thesis we prove stability without shift via a classical Duhamel’s principle:
Denoting as S(t) the semigroup generated by Lw, the solution Ỹ (t) of the
full nonlinear problem (2.16) has a unique weak representation:

u(t) = S(t)u0 +

∫ t

0
S(t− s)

N
(
wu(s)

)
w

ds. (2.27)

Equation (2.27) holds if the nonlinearity is locally Lipschitz, see e.g. Pazy
[117, p. 185 ff.]. The integral can be controlled if the nonlinearity is small
enough [47, 48, 132], which is straightforward if the weight is integrable. We
analyze a case where w is unbounded, but where we can still control the
nonlinearity.
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2.3 The spectrum of the system under investigation

We present a short interlude on the spectrum of Lw for the critical waves
of System (1.1). An in-depth review of the underlying theory and related
techniques was written by Sandstede [130]; the detailed calculations and
results announced in this paragraph can be found in Section B.2.3.

There is no universal approach for evaluating the point spectrum Σd(Lw).
If the considered wave is monotone, comparison techniques can be used to
prove that Σd(Lw) is stable, we cite [48, 132] for FKPP-fronts. Another
possible approach is to use singular perturbation techniques, if the spectrum
of the unperturbed system is known [55]. For System (1.1), a numerical
analysis shows that Σd(Lw) is stable for the critical invading fronts, for a
suitable weight w described in the following. We refer to appendix B.4.2 for
a description of the numerical approach.

Contrarily, the essential spectrum Σess can be computed: Given that
the wave φ converges exponentially fast at both ends, it holds that Σess is
bounded to the right by the two spectra Σ− and Σ+ of the two operators L−
and L+, which are the limits of (2.13) at the steady states. This is a classical
result, see e.g. [130, Thm. 3.2], relying on exponential dichotomies. These
two operators have constant coefficients, and thereby their spectra can be
computed directly.

Pulled FKPP-fronts connect an unstable state to a stable one. The per-
turbation must decay faster than the front itself, otherwise Σ+ cannot be
stable, see [132, Sec. 6]. The critical invading fronts of System (1.1) have
minimal speed c = 2 and decay as fast as x · e−x as x→ +∞, see Theorems
3.1 and 4.1. Consider a weight w(x)|x≥1 = e−α+x. Decisive for the stability
of Σ+ is the set Σν ⊂ Σ+, defined as

Σν(α+) :=
{
λ ∈ C

∣∣Re
(
ν+(λ)

)
= 0 ∨ Re

(
ν−(λ)

)
= 0
}
, (2.28)

for the pair of eigenvalues

ν±(λ, α+) = −1±
√
λ+ α+. (2.29)

In order to stabilize Σ+, the weight must obey w(x)|x≥1 = e−x, which
is the only possible choice. This can easily be seen from (2.29). This phe-
nomenon occurs for all pulled critical FKPP-fronts, consider also the classical
literature [132]. The front of the weighted perturbations is only marginally
spectrally stable in this case, since

Σν(α+ = 1) =
{
λ ∈ C

∣∣Reλ ≤ 0, Imλ = 0
}
⊂ Σ+. (2.30)

The situation is different for supercritical fronts, where a conservative weight
can be found such that Lw is spectrally stable with spectral gap [132].

To further complicate the situation, the limit of the wave as x→ −∞ is
not hyperbolic, due to the continuum of fixed points (1.2). In a space with
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2 Mathematical background: stability of traveling waves

weight e−αx|x≤−1, the spectrum Σ− contains the parabola

P(α−) :=
{
λ ∈ C

∣∣Reλ =
1

d

(
2(1− dα−)2 − 1− |λ+ 1|

)}
. (2.31)

This parabola is marginally stable for α− = 0, touching the origin in a
quadratic fashion. In order to stabilize it, we consider a convective weight:

w(x) =


e−x x ≥ 1,

e−αx x ≤ −1, with fixed α ∈ (0, 1),

1 x = 0

(2.32)

which allows the perturbations to grow exponentially as x→ −∞. Still, Lw
is only marginally stable due to (2.30), as depicted in Figure 2.2.

We continue with a review of the classical results for nonlinear stability.
The phenomenon of convective stability are discussed in Section 2.6.

Re

Im

Σ+

Σ−

Re

Im

Σ+

Σ−

Figure 2.2: Two parts of the essential spectrum of Lw for a critical invading front
of System (1.1). On the left, the essential spectrum is unstable in an unweighted
space (with w ≡ 1). On the right, the essential spectrum is stabilized via the weight
(2.32). The spectrum is contained in the strictly negative half-plane and bounded
away from the origin, except that the half-line {λ ∈ C

∣∣Reλ ≤ 0, Imλ = 0} goes up
to the origin.

2.4 Classical results for nonlinear stability

The concept of local nonlinear stability of a traveling wave is probably due
to Evans, who proved the local stability of a traveling pulse of a FitzHugh-
Nagumo system in 1972; we cite a summary by the same author [45]. In this
series of papers, Evans introduced the so-called Evans function (it got named
so by others), an analytic function whose zeros correspond to the discrete
eigenvalues of the linearized perturbation. The Evans function is the basis for
many proofs of spectral stability, it also allows for a numerical evaluation of
the discrete spectrum [12]. However, Evans’ proof of local nonlinear stability
uses some very specific properties of the system.
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Inspired by Evans, the first generally applicable result was given by Sat-
tinger in 1976 [132]. Sattinger took a more theoretical functional analytic
approach, lying the foundations for many subsequent works [14, 48, 167].
Two key concepts form the basis of his proof:

First, Sattinger introduces conservatively weighted perturbations, see
Definition 2.1. Exponentially decaying weights are necessary if one limit
of the wave is unstable. The weight restricts the perturbations to be of a
specific local type, and can thereby shift the spectrum of Lw into the left
half-plane.

Second, Sattinger considers the situation that the operator Lw is secto-
rial. For parabolic reaction-diffusion systems (2.9), this is true if the wave is
smooth and converges exponentially fast to its limit states – a rather mild
assumption – see e.g. [167, Prop. 7.3]:
Definition 2.3 (Sectorial Linear Operator). Given a Banach space B, we
call a densely defined, closed operator L : D → B sectorial, if there exist
numbers a ∈ R and b > 0, such that the resolvent set of L is contained in
the set

P :=
{
λ ∈ C : Reλ > a+ b |Imλ|

}
, (2.33)

and there exists a constant K, such that within P, the resolvent satisfies the
extimate

||(L − λ)−1u||D ≤
K

|λ− a|
||u||B. (2.34)

If L is sectorial, then the evolution of the linear problem (2.22) can be
described by an inverse Laplace transformation of the pointwise operator.
There are different ways to express this result [76, 130]. Since we need
it in the following, we adopt the notation used in [48]. We introduce the
temporal Green’s function G(t, x, y), the solution kernel of the linear Problem
∂tỸ = LỸ with initial value Ỹ (0, x) ∈ D:

Ỹ (t, x) =

∫
R

G(t, x, y) Ỹ (0, y) dy. (2.35)

Moreover, we denote as Gλ(x, y) the pointwise Green’s function of L, defined
as the negative right-inverse of (L − λ1), meaning that Gλ(x, y) solves

(L − λ1)Gλ(x, y) = −δ(x−y)1. (2.36)

The following proposition establishes a connection between Gλ and G(t), for
a proof see e.g. the appendix in [132]:
Proposition 2.4. Let L be sectorial. Then, the temporal Green’s function
G(t) is given by an inverse Laplace transformation of the pointwise Green’s
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2 Mathematical background: stability of traveling waves

function Gλ along a contour C, that lies within the resolvent set P ⊂ C of L
and tends to infinity along rays in the negative half-plane:

G(t, x, y) =
1

2πi

∫
C
eλtGλ(x, y) dλ. (2.37)

An example is depicted in Figure 2.3, for more details see [132, Lem. 3.4]
or [48, Prop. 4.1].

Re

Im

Re

Im
C

Figure 2.3: The right figure shows an exemplary contour C along which the tem-
poral Green’s function of a linear operator L can be computed if L is sectorial, see
Equation (2.37). The left figure depicts the situation where the null space of L
is one-dimensional. After projecting L into the complement of its null space, see
Definition 2.2, the remaining part of L can be dealt with as in the right picture, see
e.g. [132].

In words, Sattinger’s result for nonlinear stability reads as follows: If a
traveling wave φ of a parabolic reaction-diffusion System (2.9) is sufficiently
smooth and if there exists a conservative weight w such that Lw is spectrally
stable with spectral gap, then the wave is nonlinearly stable. If 0 /∈ Σd, the
wave is nonlinearly stable without shift, and if 0 ∈ Σd, it is stable with shift,
see Theorems 4.1 and 4.3 in [132] for the precise formulation.

The family of shifted waves

Mφ := {φ(x+ γ)| γ ∈ R} (2.38)

is a one-parameter manifold in a suitable function space. Sattinger constructs
a smooth local coordinate system in the neighborhood ofMφ, where one can
split Lw into two orthogonal parts: one part operates on the null space of
Lw, and the other on its orthogonal complement.

For proving the decay of the perturbations orthogonal to the null space
of Lw, Sattinger uses Proposition 2.4 with a contour C as depicted in Fig-
ure 2.3: An exponential decay of the temporal Green’s function of the lin-
earized perturbation can easily be proven via (2.37), choosing C such that
Reλ ≤ −β < 0 for all λ ∈ C, and by bounding Gλ via (2.34). The full
nonlinear problem has a representation similar to (2.27), incorporating also
the shift γ(t) along (2.38). If the weight w is conservative, one can control
the nonlinearity.
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For conservative weights, Bates and Jones analyze the geometry of the
flow in the neighborhood of Mφ in more detail and greater generality [14].
The flow unfolds into three distinct parts acting on a stable, center and
unstable (if the wave is not stable) manifold. The (un-)stable manifold can
be separated clearly from the center manifold if it satisfies an exponential
decay condition. This is crucial, since Gronwall’s lemma is used in almost
every step of the proof.

One important corollary of the Theorems 1-3 in [14] is the following:
If Lw is exponentially linearly stable and has at most a simple eigenvalue
0 ∈ Σd, then φ is nonlinearly stable. The flow along the center manifold cor-
responds to the shift alongMφ, and the perturbations vanish exponentially
fast along the stable manifold. The general formulation of this result, which
essentially only relies on linear exponential stability, allows for several im-
portant extensions. In particular, exponential linear stability was proven for
a class of partly parabolic PDEs (where Lw is not sectorial) by Ghazaryan,
Latushkin and Schecter [62] and Rottmann-Matthes [124].

For critical FKPP-fronts, there is no weight w such that Lw is spectrally
stable with spectral gap, as explained in Section 2.3. The best we can get
is a marginally stable spectrum as depicted in Figure 2.4. The choice of the
weight implies that 0 /∈ Σd, indicating stability without shift, but the stable
manifold cannot be separated clearly from the center manifold.

The first general result was not published until 1994. Gallay [53] proved
the local stability of a critical pulled front of a one-dimensional FKPP-
system with Reaction (2.2). Given the critical traveling wave φ of the one-
dimensional FKPP-equation, Gallay writes the perturbation as

Ỹ (x, t) = φ′(x) · u(t, x). (2.39)

Finding an appropriate weight for the perturbation is quite tricky, since one
has to modify also the sub-exponential terms. For all β ≥ β0, where β0 > 0
is determined by the left-limit of the wave and not of interest here [53],
consider the weight

w[β](x) =

{
(1 + x)−3 x ≥ 0,

e−βx x ≤ 0,
(2.40)

and, for L ≥ 1, define the weighted space BL ⊂ L1(R) ∩ L∞(R) with norm

||g||BL := ess sup
x∈R

|g(x)|
w[βL](x)

+

∫
R

|g(x)

w[βL](x)
| dx. (2.41)

Central for Gallay’s proof is a renormalization group method. For a fixed
L ≥ 1, one single iteration of this renormalization is given by

R(L)

[
g(x)

]
= L3 · u(L2, Lx), (2.42)
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where u(t, x) is the solution of the perturbation equation (2.39) with initial
data u(0, x) = g(x). Given the function

ψ(x) :=
1√
4π

{
e−x

2/4 if x ≥ 0,
1 if x ≤ 0,

(2.43)

Gallay proves that there exists an ε > 0, such that for all initial data subject
to ||g||B1 ≤ ε, there exists a constant A(g) > 0 such that

||R(Ln)g(x)−A · ψ(x)||BLn → 0 as n→∞. (2.44)

See [53, Thm 1.1] for the precise result. The function A · ψ is a fixed point
limit of (2.44), and the analysis of the asymptotics of R(Ln) becomes an
analysis of the stability of the fixed point under the transformation. After
an additional interpolation argument to rectify the discrete limit, and after
undoing the rescaling, Equation (2.44) has two implications. First, it implies
stability of the critical front in the following sense:
Theorem 2.5 (Corollary 1.2 in [53]). Using the previous notation, there
exists an ε > 0, such that for all initial data u(0, x) with ||u(0, x)||B1 ≤ ε, it
holds that the perturbation (φ′u) vanishes as t→∞:

sup
x∈R

(
1 +

e
c
2
x

1 + |x|

)
|φ′(x)u(x, t)| = O(t−3/2). (2.45)

Second, this result yields a precise estimate of the asymptotic behavior
of u. Again, after undoing the rescaling, Equation (2.44) tells us that the
leading term of u is given by

u(x, t) ∼ t−3/2Aψ(xt−1/2) as t→ +∞, (2.46)

which shows that the decay t−3/2 is optimal for perturbations of critical
pulled FKPP-fronts. As far as we know, the proof in [53] has not been
modified to other systems and the technique seems to be restricted to case
of a single reactant.

Results for the stability of critical fronts with more than one reactant are
rare. We want to mention two results by Kan-On and Fang [85], and Gardner
[54] concerning the stability of the traveling waves of a Lotka-Volterra system
that connect two stable fixed points of the reaction.

More recently, Faye and Holzer proved the Asymptotic stability of the
critical pulled front in a Lotka-Volterra competition model [48], where the
front connects indeed an unstable state to a stable one.

2.5 Critical FKPP-fronts: The results of Faye and Holzer

Faye and Holzer deal with a spectrum of Lw which is classical for critical
FKPP-fronts, as depicted in Figure 2.4: The negative half-line that goes up
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2 Mathematical background: stability of traveling waves

to the origin is the critical part of Σ+, and w is chosen such that 0 /∈ Σd(Lw).
Given that Lw is sectorial, it is in principle possible to calculate the time-
dependent Green’s function via a Laplace inversion, see Equation (2.37); but
the contour must cross the imaginary axis in order to keep a small distance
from Σ+. For this reason, a good estimate on the pointwise Green’s function
in the neighborhood of the origin is crucial.

Such an estimate is obtained for a system of two species by the authors
[48]. We can use this result for studying System (1.1), since it depends only
on the shape of the spectrum. A similar analysis of an FKPP-system with a
single reactant was presented two years earlier by the same authors [47]. The
idea is essentially the same, while the notation is simplified considerably due
to the lower dimensionality of the system. In principle, a similar analysis
should be possible also for n ≥ 3 reactants, but the notation becomes quite
tedious.

Re

ImC

Figure 2.4: Representation of a contour C along which the temporal Green’s function
of the linear problem can be computed if the essential spectrum is marginally stable
due to the half-line (2.52), see Lemma 2.7 and Proposition 2.8.

For the rest of this section, we consider a critical pulled traveling wave
of an FKPP-system of a single reactant, that connects an unstable state
φ(+∞) = 0 to a stable state φ(−∞) = 1. With a reaction of type (2.2), the
critical speed is given by c∗ = 2

√
F ′(0), and the critical wave decays like

φ(x) ∼ xe−
c∗
2
x, as x→ +∞. (2.47)

Consider a conservative and integrable weight that fulfills

w(x) =


e−

c∗
2
x x ≥ 1,

eαx x ≤ −1, with fixed α ∈ (0, κ),

1 x = 0,

(2.48)

where κ > 0 is an upper bound that is dictated by Σ−, see [47, p.3], and
where the weight implies 0 /∈ Σd. The following holds:
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Theorem 2.6 (Thm. 1 in [47]). Consider a solution of the one-dimensional
FKPP-equation with initial data Y (0, x) = φ(x) + u(0, x)w(x) satisfying

0 ≤ Y (0, x) ≤ 1, (2.49)

for a critical wave φ, and perturbations with weight given by (2.48). There
exist constants C, ε > 0 such that if the weighted perturbation u(0, x) satisfies

||u(0, x)||∞ + ||(1 + | · |)u(0, x)||L1 < ε, (2.50)

then the wave φ is nonlinearly stable in the sense that

sup
x∈R

∣∣∣ u(t, x)

(1 + |x|

∣∣∣ ≤ C 1

1 + t3/2
∀t ≥ 0. (2.51)

Note that the decay is of order t−3/2, which we know to be optimal (in
case of a single reactant).

For proving Theorem 2.6, Faye and Holzer first express the pointwise
Green’s function (2.36) via fundamental solutions of the eigenvalue prob-
lem Lwu = λu. A pair of fundamental solutions becomes co-linear when
approaching the essential spectrum

Σ+ =
{
λ ∈ C

∣∣Reλ ≤ 0, Imλ = 0
}
⊂ Σess. (2.52)

By providing a precise formulation for this co-linearity, Faye and Holzer
prove the following:
Proposition 2.7 (Lem. 3.2 in [47]). For some ε > 0, there exists a neigh-
borhood of the origin

Ω :=
{
λ ∈ C

∣∣ |λ| ≤ ε, λ /∈ Σ+

}
, (2.53)

such that for all λ ∈ Ω, it holds that

Gλ(x, y) = e−
√
λ|x−y| ·H(

√
λ, x, y), (2.54)

where H is bounded uniformly in (x, y), and is analytic in
√
λ.

Given this estimate on Gλ, the estimate for the temporal Green’s function
follows. There are several regimes for G(t, x, y) to be considered; we present
only the result which covers the critical short-range interaction:
Proposition 2.8 (Prop. 4.1 in [47]). There exist constants C,K, r, κ > 0
such that the Green’s function G(t, x, y) for ∂tu = Lu satisfies the following
estimate:

For all t ≥ 1 and |x− y| ≤ Kt:

|G(t, x, y)| ≤ C 1 + |x− y|
1 + t3/2

e−
|x−y|2
κt + Ce−rt. (2.55)
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Proof. We briefly explain how this estimate can be gained from (2.54), for
the details we refer to the original paper [47]. According to Proposition 2.4,
it holds that

G(t, x, y) =
1

2πi

∫
C
eλtGλ(x, y) dλ, (2.56)

considering a contour C as depicted in Figure 2.4. Its part C1 around the
origin is defined via a parabola, where

√
λ = ρ+ ik, (2.57)

for some ρ > 0 and small k ∈ [−k∗, k∗] such that
√
λ ∈ Ω. Focusing on the

regime |x− y| ≤ Kt, choose

ρ =
|x− y|
Lt

, (2.58)

for L sufficiently large such that the contour lies within Ω. Along this con-
tour, it holds that

dλ = 2i
((x− y)

Lt
+ ik

)
dk, λ =

(x− y)2

L2t2
− k2 + 2

x− y
Lt

ik. (2.59)

We expand the integral into its real and imaginary part. Then, since Gλ
is holomorphic and the contour is symmetric with respect to the real axis,
several of the terms in the contour-integral cancel. We denote as HR and
HI the real and imaginary part of H (see Prop. 2.7). It holds that

1

2πi

∫
C1
eλtGλ(x, y) dλ

=
1

π
eρ

2t−ρ(x−y)

∫ k∗

−k∗
e−k

2t
(
ρHR(x, y, k) + iHI(x, y, k)

)
(ρ+ ik) dk.

(2.60)

As HR is bounded, the first part of the integral can easily be bounded:∣∣∣ 1
π
eρ

2t−ρ(x−y)

∫ k∗

−k∗
e−k

2tρHR(x, y, k) dk
∣∣∣ ≤ C ρ

t1/2
e−ρ

2t−ρ(x−y). (2.61)

Now HI is odd in k, so it can be written as HI(x, y, k) = kH̃I(x, y, k), where
H̃I(x, y, k) is again bounded. These estimates imply∣∣∣ 1

π
eρ

2t−ρ(x−y)

∫ k∗

−k∗
e−k

2tk2HI(x, y, k) dk
∣∣∣ ≤ C ρ

t3/2
e−ρ

2t−ρ(x−y). (2.62)

Inserting ρ = |x−y|
Lt , we arrive at the first part of (2.55). The remainder of

the contour C lies in the strict negative half-plane, so exponential decay of
G(t) along this part of C follows since L is sectorial (2.34).
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2 Mathematical background: stability of traveling waves

Given the bound of (2.55) for an integrable weight w, nonlinear stability
follows by a Duhamel’s principle (2.27), since one can integrate over the
nonlinearity of order O(wu2). The weighted perturbation decays pointwise
like t−3/2. Note that due to the additional weighting 1/(1 + |x|), this result
does not imply decay in L∞. Check Theorem 2.6 for the precise formulation
in the scalar case, and [48, Thm. 1] for the case of two reactants.

2.6 Convective stability

Physicists distinguish between absolute instability and convective instability,
which are very natural concepts for analyzing wave propagation in fluids:

"Briefly, an instability is called convective if it is advected downstream
so that at any fixed location in the laboratory frame a perturbation decays
asymptotically to zero. In contrast when the instability is absolute it grows
at every point in the laboratory frame. Heuristically, absolute instability re-
quires that the growth rate of the instability be faster than the advection rate,
and consequently we expect a transition with increasing driving from convec-
tive to absolute instability." — Tobias, Proctor, Knobloch [143]

Remark: The terms convective instability and convective stability are
both used in the literature, describing the same phenomenon. We use the
latter one, since it emphasizes the pointwise stability of the wave, as also
mentioned by Ghazaryan et al. [63].

A good introduction to the topic was written by Sandstede and Scheel
[131], with an emphasis on numerical examples for convective stability, and
an analysis of the spectrum of Lw in different bounded and unbounded do-
mains.

Proving convective stability is difficult since it requires the use of a de-
generate weight. A first rigorous treatment is due to Pego and Weinstein
[118], who proved convective stability of solitary traveling waves – locally
concentrated waves in fluids that can pass each other without interaction –
of the Korteweg-de Vries equation

∂

∂t
Y + Y · ∂

∂z
Y +

∂3

∂z3
Y = 0. (2.63)

There exists a family of (right-)traveling wave solitons φc(x), continuous in
their speed c > 0, that solve (2.63) via Y (t, z) = φc(z− ct+γ), where γ ∈ R
is an arbitrary shift. Given such a wave φc, a perturbation results in the
arise of several small amplitude waves, that either are slower than φc or even
travel to the left, and an additional correction within the family φc(· + γ).
In [118], it is proven that the family of waves

Mφ,c,γ = {φc(·+ γ), γ ∈ R, c > 0}, (2.64)
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is a convectively stable manifold, in a space with weight

wα(x) = e−αx, (2.65)

for some well-chosen α > 0 [118].

Figure 2.5: Schematic representation of a convectively stable solitary wave, similar
to Figure 1 in [118]. The perturbed wave moves to the right, the perturbations either
move slower than the wave or move to the left. In both cases, they vanish in the
weighted norm.

Controlling the nonlinearity in a space with degenerate weight requires
some detours, typically involving and intertwining estimates on both the
weighted perturbations, and the evolution of the unweighted full PDE. There
are typically three steps involved: First, find a suitable open set of functions
E ⊂ B such that we can control the nonlinearity as long as Ỹ ∈ E, and choose
initial data under which Ỹ (t) ∈ E, for some positive time t ∈ [0, T ∗), where
T ∗ is the first exit time of E. Second, prove that the weighted perturbation
u(t) = Ỹ (t)/w decays while Ỹ (t) ∈ E. Third, use the decay of u(t) to prove
that T ∗ = +∞, i.e. we can control the nonlinearity Ỹ ∈ E for all t ≥ 0.

Pego and Weinstein control the weighted nonlinearity, which is of order
O(u2w), via

||u2e−αx||H1 ≤ ||e−αxu||H1 · ||u||H1 = ||Ỹ ||H1 · ||u||H1 . (2.66)

In words: The weighted quadratic term u2w can be treated like a linear
one as long as the unweighted perturbation uw = Ỹ remains bounded. The
term ||Ỹ ||H1 is controlled via energy methods that are tailored precisely to
the PDE (2.63). As a result, two stability statements sustain each other: If
the initial perturbations are sufficiently small in both the weighted and the
unweighted sense, that is

||u(0, x)||H1 + ||Ỹ (0, x)||H1 < ε, (2.67)

for some ε > 0, then the unweighted perturbations Ỹ remain bounded, while
the weighted perturbations u decay. The wave is convectively stable with
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shift, see [118, Thm. 1] for the precise formulation.

In 2009, Ghazaryan proved convective stability of a traveling wave of a
reaction-diffusion system whose structure is quite similar to that of System
(1.1). This PDE is a model for a combustion front without heat-loss [61], in
one spatial dimension it reads

∂

∂t
Y1 =

∂2

∂z2
Y1 + Y2f(Y1),

∂

∂t
Y2 = ε

∂2

∂z2
Y2 − κY2f(Y1),

(2.68)

where Y1(t, z) ≥ 0 is the (rescaled) temperature and Y2(t, z) ≥ 0 is the
concentration of a viscous fuel, with burning reaction

f(Y1) = e−1/Y11{Y1≥0}, (2.69)

for 0 < ε� 1, κ > 0. This model has a right-traveling wave solution φ(z−ct)
that invades into the region with fuel, and burns it all while reaching a
limiting temperature ζ, thereby connecting the two steady states

(φ1, φ2) = (ζ, 0) at x = −∞, and (φ1, φ2) = (0, 1) at x = +∞. (2.70)

The left limit of the wave is a non-hyperbolic equilibrium (there is no reaction
in absence of fuel). This implies that the linearized perturbation is only
spectrally stable with spectral gap if one uses a convective weight – the
situation is the same as for the present System (1.1), see the spectral analysis
in Section 2.3 for the details. The following holds:
Theorem 2.9 (Thm. 1.3.1 in [61]). For some values of κ > 0, there ex-
ists a traveling wave φ with speed c > 0 of System (2.68), whose linearized
perturbation Lw with exponential weight

w(x) = e−αx, (2.71)

is spectrally stable with spectral gap (as an operator H3 ⊗H3 → H1 ⊗H1),
for some positive α > 0, except that 0 ∈ Σd is a single eigenvalue that
corresponds to φ′.

This wave φ is convectively stable with shift. There exist constants ε0 >
0,K > 0, β > 0 such that the following is true: If both the weighted and
unweighted perturbation are initially small,

||Ỹ (0, ·)||H1 + || Ỹ (0, ·)
w(·)

||H1 ≤ ε ≤ ε0, (2.72)

then the solution of Equation (2.68) with initial data Y (0, x) = φ(x)+Ỹ (0, x)
exists for all t ≥ 0, and can be expressed as

Y (t, x) = φ
(
x+ γ(t)

)
+ Ỹ (t, x), (2.73)
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for a shift |γ(t)| ≤ Kε with finite limit γ+ ∈ R. It holds that

|| Ỹ (t, ·)
w(·)

||H1 + |γ(t)− γ+| ≤ Kεe−βt ∀t ≥ 0. (2.74)

For the unweighted perturbations, it holds that

||Ỹ2(0, ·)||H1 ≤ Kεe−βt,
||Ỹ1(0, ·)||H1 ≤ Kε ∀t ≥ 0.

(2.75)

If, in addition to (2.72), it holds that Ỹ (0, ·) ∈ L1, then

||Ỹ1(t, ·)||∞ ≤ K
1

t1/2
∀t > 0. (2.76)

We want to highlight the control of the unweighted perturbations (2.75):
The perturbation Ỹ2 of the fuel vanishes, whereas the perturbation Ỹ1 of
the temperature remains only bounded. However, Ỹ1 decays algebraically,
naturally like a heat kernel, under an additional integrability assumption.

In fact, the boundedness of Ỹ1 stems from an a-priori estimate, which
is again needed to control the nonlinearity under a degenerate weight. The
idea is motivated by the estimate of Pego and Weinstein (2.66). In view
of the Reaction (2.69), again ignoring the shift γ(t), the crucial part in the
remaining nonlinearity is

N(t, x) = u2(t, x) exp

(
− 1

u1(t, x)e−αx + φ1(x)

)
= u2(t, x) exp

(
− 1

Y1

)
.

(2.77)

Using the explicit structure of the reaction-diffusion PDE (2.68), Ghazaryan
is able to get an a-priori bound on the temperature: ||Y1||BC1 ≤ M . Then,
the nonlinear term (2.77) can be estimated by

||u2 exp
(
− 1

Y1

)
||H1 ≤ L · ||u2||H1 . (2.78)

Again, the nonlinearity can be treated like a linearity in u2, as long as the
a-priori estimate (2.78) holds. The detailed construction is more difficult
and involves several Gronwall estimates, using the Lipschitz-continuity of
the nonlinearity and the fact that the linear operator is sectorial, see [61,
Sec. 3].

Under additional assumptions, it can be shown that Ỹ1 decays alge-
braically, as it is smoothened by a diffusion [61]. A reader-friendly discussion
of these results is given in [63], in particular the authors present a result for
more general reaction terms, under the assumption of a "defect" structure
similar to Equation (2.68). Moreover, the authors generalize their findings to
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partly parabolic systems [62, 63] that exhibit exponential spectral stability.

Using the linear estimates by Faye and Holzer (see Proposition 2.8), we
prove convective stability of the critical invading fronts of System (1.1). The
energy based Estimate (2.66) or the C1-Estimate (2.78) are not compatible
with the pointwise decay presented in Proposition 2.8. However, we see from
(2.78) that it is possible to exploit the explicit nonlinearity: For the defect
nonlinearity of System (1.1), which depends only on the A-component as
long as the I-component remains bounded, we develop a new type of a-priori
estimate via a Feynman-Kac formula.
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3 The traveling waves of the system
with degenerate diffusion

In this chapter, we introduce and summarize the content of the paper
"Traveling waves of an FKPP-type model for self-organized growth",
which was published in the Journal of Mathematical Biology, 84(6):42,
2022, https://doi.org/10.1007/s00285-022-01753-z by the author of
this thesis, with help and supervision of Anton Bovier and Muhittin
Mungan.

3.1 Short summary

We begin with the analysis of the PDE (1.1). For d = 0, we explicitly con-
struct all non-negative traveling wave solutions of the system and describe
their shape. The paper ends with a short heuristic discussion regarding the
stability of the traveling waves.

Notation: For consistency within this thesis, the notation in this chapter
deviates from that in [92]. We refer to z ∈ R as the spatial variable of the
PDE, and to z − ct = x ∈ R as the phase of the wave. In the original
publication, their roles are vice versa.

3.2 Results

We construct the traveling waves of the partly parabolic system

∂

∂t
A =

∂2

∂z2
A+A−A(A+ I),

∂

∂t
I = rA+A(A+ I), r ≥ 0.

(3.1)

A right-traveling wave of System (3.1) is a pair of bounded functions

a : R→ R, i : R→ R, (3.2)

that solve (3.1) via the ansatz A(z, t) = a(z − ct), I(z, t) = i(z − ct), with
c > 0 being the speed of the wave. Thus, a traveling wave of (3.1) solves the
system of coupled ODEs

0 = a′′ + ca′ + a− a(a+ i),

0 = ci′ + a(a+ i+ r),
(3.3)

where we denote by a prime the differentiation w.r.t. the phase-variable
x = z − ct. We give necessary and sufficient conditions for the existence of
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smooth non-negative traveling wave solutions, and analyze the shape of the
wave form. Our main result characterizes a family of pulled traveling waves:
Theorem 3.1 (Thm. 1.1 in [92]). Let r ≥ 0, c > 0 and define

ic := max{0, 1− c2/4}. (3.4)

For each pair i−∞, i+∞ ∈ R+
0 such that

i+∞ ∈ [ic, 1), i−∞ = 2− i+∞, (3.5)

there exists a unique non-negative traveling wave a, i ∈ C∞(R,R2) that solves
Equation (3.3), such that

lim
x→±∞

a(x) = 0, lim
x→±∞

i(x) = i±∞. (3.6)

The function i(x) is decreasing, whereas a(x) has a unique local and global
maximum. If c2

4 + i+∞ − 1 = 0, then the wave converges as fast as x · e−
c
2
x

as x → +∞. If c2

4 + i+∞ − 1 > 0, then convergence as x → +∞ is purely
exponential. Convergence as x→ −∞ is purely exponential in all cases. The
rates of convergence are given by

µ−∞ = − c
2

+

√
c2

4
+ i±∞ − 1 > 0,

µ+∞ =
c

2
−
√
c2

4
+ i±∞ − 1 > 0.

(3.7)

Moreover, these are all bounded, non-negative, non-constant and twice dif-
ferentiable solutions of Equation (3.3).

x

i

a
x

i

a

Figure 3.1: Two different traveling waves with speed c = 2. The limits of the left
wave are given by i−∞ = 2 and i+∞ = 0. The limits of the right wave are given by
i−∞ = 1.8 and i+∞ = 0.2.

Notice that this result is independent of the reproduction rate r, which
affects the shape of the wave, but neither the limits nor the minimal speed of
a positive solution. All non-negative and bounded traveling waves resemble
the ones depicted in Figure 3.1, consisting of a pulse of active particles which
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is accompanied by a monotone wave of inactive particles. We refer to the
non-negative waves that fulfill

lim
x→+∞

a(x) = lim
x→+∞

i(x) = 0, (3.8)

as invading fronts. In view of Equation (3.5), the invading fronts have mini-
mal speed c = 2, and in this case converge as fast as xe−x as x→ +∞. This
coincides with the behavior of the associated FKPP-equation in the absence
of inactive particles [22, 50, 91].

In the following, we present the main steps of the proof of Theorem 3.1.

3.3 Analysis of the asymptotics

We reformulate the System (3.3) for a traveling wave as an equivalent system
of first-order ODEs. We introduce the auxiliary variable a′ = b, so that (3.3)
becomes

a′ = b,

b′ = a(a+ i)− a− cb,

i′ = −1

c
a (a+ i+ r) ,

(3.9)

with c > 0, r ≥ 0. This equation has a continuum of non-negative fixed
points, similar to that of the PDE, see Equation (1.2):

a = b = 0, i ∈ R+. (3.10)

The continuum of fixed points (3.10) implies that many of the classical
approaches – that are topologically motivated and search for certain unique
trajectories in the space of waves – can not be applied to the present case,
for an introduction see [138, Ch. 22]. Instead, the proof of Theorem 3.1 is
mainly based on a detailed analysis of the phase-space of Equation (3.9). We
explicitly construct the traveling waves and as a bonus, this approach leads
to the conclusion that we have indeed found all bounded and non-negative
traveling waves.

In the first place, we need to find out which of the fixed points (3.10)
can be considered as limits of right-traveling waves. Any bounded and non-
negative solution of System (3.9) can not be periodic and must converge
since ci′ = −a(a + i + r) ≤ 0. It is now evident that the limits at x = ±∞
must be fixed points, thus we denote them as (a, b, i) = (0, 0, i±∞). Under
mild assumptions regarding integrability, we can interrelate any two different
points on a given traveling wave via an integral equation, where we make
use of the logistic nature of the growth process, see [92, Sec. 3]. Most
importantly, this leads to the correspondence of the limits

i+∞ + i−∞ = 2. (3.11)
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3 The traveling waves of the system with degenerate diffusion

0 0.5 1

0

1

2

i

a
Figure 3.2: Two-dimensional representation of the family of traveling waves pre-
sented in Theorem 3.1, for parameters c = 2 and r = 0. A unique trajectory
emerges from each point where i−∞ > 1, and converges to a limit where i+∞ < 1,
where i−∞ + i+∞ = 2. For i−∞ > 2, the trajectory eventually becomes negative
(even though it still seems to converge).

In view of this, monotonicity of i implies that i−∞ ∈ (1, 2] and i+∞ ∈ [0, 1).
A short computations reveals that at a fixed point (a, b, i) = (0, 0,K) of

the ODE System (3.9), the eigenvalues of its Jacobian are given by

λ0 = 0, λ± = − c
2
±
√
c2

4
+K − 1. (3.12)

This is due to the fact that the fixed points form the Continuum (3.10),
therefore the Jacobian at the fixed points must be degenerate. As such, we
can not apply the classical theory of Grobmann-Hartmann to linearize the
asymptotic behavior. We apply center manifold theory [30, 90] to work out
the higher moments of the approximation, see [92, Sec. 4]. Our analysis
reveals a suitable unstable set

S−∞ :=
{

(0, 0, i)
∣∣ i > 1

}
, (3.13)

and a suitable stable set

S+∞ :=
{

(0, 0, i)
∣∣ i ∈ [0, 1)

}
. (3.14)

Each point (0, 0, i−∞) ∈ S−∞ has an unstable manifold of dimension one.
Its restriction to a ≥ 0 is the only possible candidate for the tail of a non-
negative traveling wave as x → −∞, we need to find out under which cir-
cumstances these trajectories converge and stay non-negative. Each point
(0, 0, i+∞) ∈ S+∞ is Lyapunov stable, as depicted in Figure 3.2.

The analysis of the asymptotic behavior also yields a necessary condition
on the speed of a non-negative wave. A traveling wave can only be non-
negative if a(x) does not spiral while converging to 0. Therefore, the two
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3 The traveling waves of the system with degenerate diffusion

eigenvalues λ± at the limiting fixed point must be real-valued. In view of
(3.12), for a fixed point (0, 0,K), this is given if

c2

4
+K − 1 ≥ 0. (3.15)

Thus, if the stable fixed point (0, 0, i+∞) is the limit of a non-negative trav-
eling wave, where i+∞ ∈ [0, 1), it is necessary by (3.15) that

c2

4
+ i+∞ − 1 ≥ 0 ⇒ i+∞ ≥ ic = max{0, 1− c2

4
}, (3.16)

which is precisely the condition in Theorem 3.1.

3.4 Construction of the traveling waves

For finding a suitable attractor of S+∞, we first analyze solutions that start
in points of type (a, b, i) = (a0, 0, i0). We start with an analsis of the two-
dimensional subsystem in coordinates (a, b), that results from the full System
(3.9) by imposing a fixed value of i. In [92, Sec. 5], we construct a trap-
ping region, wherein a converges and stays non-negative: the triangle Tc(i),
depicted in Figure 3.3.

b

a

i = 0.5, c = 2 i = 0.2, c = 2 i = 0.2, c = 1

Figure 3.3: The phase plot of the two-dimensional system with coordinates (a, b),
that results from the full System (3.9) by imposing a fixed value of i. The only two
fixed points are (a, b) = (0, 0) and (a, b) = (1− i, 0). For i ∈ [ic, 1), check Definition
(3.4), the orange triangles Tc(i) are invariant regions, wherein a ↘ 0. The region
Tc(i) increases in −i: The point (1− i, 0) moves to the right and the two highlighted
internal angles increase. In the third case, i < ic implies that the system spirals
around (0, 0). The detailed statements are presented in [92, Sec. 5].

The already mentioned monotonicity of i(x) allows us to lift this result
to the full system. Here, the continuum of fixed points comes at help. Still
analyzing solutions that start in points of type (a, b, i) = (a0, 0, i0), we first
prove the existence of almost constant solutions that stay non-negative and
converge monotonously, subject to the conditions

∀x ≥ 0 : 0 ≤ a(x) ≤ a0 � 1,

ic ≤ i(x) ∼ i0,
a′(x), i′(x) ≤ 0.

(3.17)
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3 The traveling waves of the system with degenerate diffusion

We continuously deform these solutions along their limit: The Lyapunov-
stability of the points in S+∞ implies continuity of the entire trajectory
up to x = +∞ in initial data. We use this to derive sharp conditions
regarding (a0, 0, i0) such that the trajectory stays non-negative and converges
as x→ +∞, resulting in [92, Thm. 6.10].

We then construct the claimed traveling waves. Therefore, we consider a
fixed point (0, 0, i−∞) ∈ S−∞, where i−∞ ∈ (1, 2− ic], and follow the unique
trajectory that leaves the fixed point in positive direction of a. We prove that
there exists a finite phase-time x0 such that b(x0) = 0: The trajectory reaches
a first local (and in fact global) maximum of active particles (ax0 , 0, ix0), see
the phase-plot in Figure 3.2. We show that (ax0 , 0, ix0) lies in the previously
constructed non-negative attractor of S+∞, see [92, Prop. 7.6], and thereby
have constructed a non-negative wave.
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4 Convective stability of the critical
traveling waves

In this chapter, we introduce and summarize the content of the
preprint "Convective stability of the critical waves of an FKPP growth
process", which was uploaded to arxiv.org by the author of this the-
sis in May 2023 [93]. This work was supervised by Anton Bovier,
moreover the author wants to thank Juan Velázquez for vital input.

4.1 Short summary

This work continues the analysis of the PDE (1.1). We prove the existence
of traveling waves of the system for d > 0 that are similar to those in the
case d = 0. Now that both densities of particles undergo a diffusion, we are
able to analyze the stability of the critical invading fronts – the non-negative
waves with minimal possible speed that vanish at one end – against small
perturbations. In order to stabilize the essential spectrum of the linearized
perturbation equation, we operate in a space where the perturbations can
grow exponentially at the back of the wave. We present a new approach for
dealing with the unbounded non-linear terms. The novelty is that we use a
Feynman-Kac formula to get an exponential a-priori estimate for the left tail
of the PDE, in the regime where the weight is unbounded. This new type of
a-priori estimate is compatible with the pointwise decay that we prove.

4.2 Results

For d > 0, the (right-)traveling waves with speed c > 0 of the PDE (1.1)
solve the system of couples ODEs

0 = a′′ + ca′ + a− a(a+ i),

0 = di′′ + ci′ + a(a+ i+ r).
(4.1)

We use the main result in [92] (see Theorem 3.1), which describes the
traveling waves for d = 0, to construct the traveling waves for d > 0. Via
perturbation techniques, we prove the existence of a family of traveling wave
solutions similar to those of the system for d = 0, see [93, Thm. 3.18] for
the full statement. Concentrating on the invading fronts, those non-negative
waves that vanish at one end, the result reads as follows:
Theorem 4.1 (Thm. 1.1 in [93]). For r ≥ 0, c > 0, consider the Wave
System (4.1) with

0 < d < min
{

1,
3c

2
,

c2

2(r + 1)

}
. (4.2)
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4 Convective stability of the critical traveling waves

If and only if c ≥ 2, there exists an invading front. The function i(x) is
decreasing, and a(x) has a unique local and global maximum. As x → −∞,
the front converges exponentially fast to a fixed point (a, i) = (0, i−∞), where

1 < 2− d · 2(r + 1)

c
< i−∞ < 2. (4.3)

The rate of convergence is a function of i−∞, given by

µ−∞ = − c
2

+

√
c2

4
+ i−∞ − 1 > 0. (4.4)

As x → +∞, both a(x) and i(x) vanish. There are two possibilities for the
speed of convergence. In the critical case c = 2, the front behaves as x · e−x.
If c > 2, convergence is purely exponential, with rate

µ+∞ =
c

2
−
√
c2

4
− 1 > 0. (4.5)

We refer to the invading fronts with minimal possible speed c = 2 as
critical. Their behavior as x → +∞ again reproduces the behavior of the
critical waves of an FKPP-equation with a single type of branching particles
[22, 91].

This fact is crucial when analyzing the stability of the critical invading
front, as explained in detail in Section 2.2. In the moving frame x = z − 2t,
we write a solution of the full PDE (1.1) as the sum of the front a(x), i(x)
and the perturbations Ã(t, x), Ĩ(t, x):

A(t, x) = a(x) + Ã(t, x), I(t, x) = i(x) + Ĩ(t, x). (4.6)

The system is not attracted towards a particular limit, as none of the
steady states (1.2) of the PDE is hyperbolically stable. To overcome this, we
operate in a space where we allow the perturbations to grow exponentially
as x → −∞. To stabilize the front as x → +∞, perturbations must vanish
exponentially fast, which is typical for FKPP-fronts [130, 132]. Given a
smooth weight w(x) > 0, subject to

w(x) =


e−x x ≥ 1,

e−αx x ≤ −1, with fixed α ∈ (0, 1),

1 x = 0,

(4.7)

we prove that if the weighted perturbations

Ã(t, x)

w(x)
,

Ĩ(t, x)

w(x)
(4.8)
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4 Convective stability of the critical traveling waves

are initially small, they vanish pointwise with algebraic decay t−3/2. We use
the result for the linear operator published in [48], and adapt the result-
ing semi-group estimates for the full nonlinear problem to a space with the
unbounded Weight (4.7).

We have to assume that the discrete spectrum of the linearized perturba-
tion equation contains no elements with non-negative real-part, check Section
4.4. Since we could not prove this analytically, we verified this condition nu-
merically, via the library STABLAB [13, 12], which computes contours of
the Evans-function, see appendix B in [93].
Theorem 4.2 (Thm. 1.2 in [93]). For a pair d > 0, r ≥ 0 as in Theorem 4.1,
consider the critical invading front with speed c = 2. If we assume that the
discrete spectrum of the weighted linearized perturbation equation contains no
elements with non-negative real-part (see (4.26)), then the critical invading
front is locally stable in a space with weight w as above (4.7):

Fix a pair of constants C, µ0 > 0. For all ε > 0, there exists a δ > 0,
such that if the unweighted perturbations fulfill

(i) ∀x ≤ 0 : |Ã(0, x)| ≤ Ceµ0x, |Ĩ(0, x)| ≤ δ, (4.9)

and if the weighted perturbations Ã(0, x)/w(x), Ĩ(0, x)/w(x) are elements of
H2(R), and

(ii)

∫
R

(1 + |x|)
[∣∣Ã(0, x)

w(x)

∣∣+
∣∣ Ĩ(0, x)

w(x)

∣∣] dx ≤ δ, (4.10)

(iii)
∣∣∣∣Ã(0, x)

w(x)

∣∣∣∣
∞ +

∣∣∣∣ Ĩ(0, x)

w(x)

∣∣∣∣
∞ ≤ δ, (4.11)

then the weighted perturbations decay pointwise with algebraic speed t−3/2:

sup
t≥0

sup
x∈R

(1 + t)3/2

w(x)(1 + |x|)

(
|Ã(t, x)|+ |Ĩ(t, x)|

)
≤ ε. (4.12)

In the following, we briefly explain the construction of the traveling
waves, see Section 4.3. Their asymptotic behavior is identical to those in
the case d = 0, we omit the discussion here. The stability of the critical
invading fronts is analyzed in Section 4.4.

4.3 Construction of the traveling waves

For passing continuously from d = 0 to d ∼ 0, the theory of geometric
singular perturbations due to Fénichel [49, 84] provides a suitable framework.
We introduce two auxiliary variables, b = a′ and j = i′ and reformulate the
Wave-System (4.1) as an equivalent system of four first-order ODEs:

d

dx


a
b
i
j

 =


b

a(a+ i)− a− cb
j

−1
d

[
cj + ra+ a(a+ i)

]
 . (4.13)
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4 Convective stability of the critical traveling waves

This system features a singularity: As d → 0, a separation of time-scales
occurs. Intuitively speaking, the drift j′ = −1

d [cj + ra + a(a + i)] becomes
so strong that the system remains close to the smooth manifoldM0, where
j′ = 0, which is given by

M0 :=
{

(a, b, i, j) ∈ R4
∣∣∣ j = −a(a+ i+ r)

c

}
. (4.14)

Since ∂
∂j

∂
∂xj = − c

d , the manifoldM0 is indeed stable against perturbations
in j. After the fast variable j is quickly pushed towards its equilibrium, the
system continues to evolve alongM0. However, the restriction of the System
(4.13) to the manifoldM0 simply reduces to the three-dimensional system

d

dx

ab
i

 =

 b
a(a+ i)− a− cb
−a(a+i+r)

c

 , (4.15)

which is precisely the Wave-System for d = 0, see Equation (4.15).
The theory of geometric singular perturbations [49, 84] makes this rea-

soning rigorous. One can prove that for d 6= 0, d ∼ 0, there exists an invariant
manifoldMd of the System (4.13), which is of distance O(d) to the manifold
M0 on any bounded subset of R4. The details are explained in appendix C
in [93].

We analyze the flow along this manifoldMd and prove the existence of
traveling waves withinMd – non-negative and bounded solutions of Equation
(4.13). By regular perturbation techniques, that allow to vary the parameter
d � 0 and continuously track the solutions of Equation (4.13), we extend
this result to non-asymptotic values of d, up to Bound (4.2). The details can
be found in [93, Sect. 3.3 and 3.4]. We prove the existence of a family of
traveling wave solutions, that are similar to those of the system for d = 0,
see [93, Thm. 3.18]. This result only yields an estimated correspondence of
the limits of the waves, which we can roughly summarize as

i−∞ + i+∞ = 2 +O(d). (4.16)

This estimate is explained in detail in [93, Sec 3.4]. In order to prove the
existence of an invading front, where i+∞ = 0, we use an intermediate value
approach: Via a continuity argument, we show that among the constructed
waves, there also must exist an invading front. This is proven in [93, Sec.
3.5].

4.4 Stability of the critical invading fronts

We analyze the long-time behavior of the weighted perturbations u, v, defined
via (4.8). If the weight w is twice differentiable with derivatives w′, w′′, they
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4 Convective stability of the critical traveling waves

solve

∂

∂t
u =

∂2

∂x2
u+

∂

∂x
u ·
(
c+ 2

w′

w

)
+ u ·

(
c
w′

w
+
w′′

w

)
+ u(1− 2a− i)− va− wu(u+ v),

∂

∂t
v = d

∂2

∂x2
v +

∂

∂x
v ·
(
c+ 2d

w′

w

)
+ v ·

(
c
w′

w
+ d

w′′

w

)
+ u(2a+ i+ r) + va+ wu(u+ v).

(4.17)

We summarize this as

∂

∂t
(u, v) = Lw(u, v) +N(u, v), (4.18)

with the linear part

Lwu :=
∂2

∂x2
u+

∂

∂x
u ·
(
c+ 2

w′

w

)
+ u ·

(
c
w′

w
+
w′′

w

)
+ u(1− 2a− i)− va,

Lwv := d
∂2

∂x2
v +

∂

∂x
v ·
(
c+ 2d

w′

w

)
+ v ·

(
c
w′

w
+ d

w′′

w

)
(4.19)

+ u(2a+ i+ r) + va,

and the nonlinear part

Nu := −wu(u+ v), Nv := wu(u+ v). (4.20)

The choice of the weight w was explained in Section 2.3:

w(x) :=


e−x x ≥ 1,

e−α−x x ≤ −1, α− ∈ (0, 1),

1 x = 0.

(4.21)

The effect of w on the essential spectrum of Lw is explained in the introduc-
tory Section 2.3 and depicted in Figure 2.2:
Proposition 4.3 (Prop. 2.2 in [93]). For d ∈ (0, 1) and exponents

α− ∈ (0, 1), α+ = 1, (4.22)

consider a convective weight w as in (4.21). Then, for a critical invading
front as in Theorem 4.1, the essential spectrum of the linear operator Lw:

Lw : H2(R)×H2(R)→ L2(R)× L2(R), (4.23)

defined by (4.19), is bounded to the right by the union of three parabolas that
lie in the strict negative half-plane, with the exception of the negative half-line

Σν =
{
λ ∈ C

∣∣Reλ ≤ 0, Imλ = 0
}
. (4.24)
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4 Convective stability of the critical traveling waves

This type of essential spectrum is considered in [48], and we can use
their estimates regarding the long-time behavior of solutions of ut = Lwu.
We make the following

Assumption on the discrete spectrum: In the Setting of the above
Proposition 4.3, let Σd be the discrete spectrum of Lw. Assume that there
exist δ0, δ1 > 0, such that for the region

Ω :=
{
λ ∈ C

∣∣Reλ ≥ −δ0 − δ1 · |Imλ|
}

(4.25)

it holds that

Ω ∩ Σd = ∅. (4.26)

We verify this assumption numerically, see appendix B.4.2. Note that we
assume that 0 /∈ Σd. For an invading front a(x), i(x), it is easy to see that
the symbolic equation L(a′, i′) = 0 holds. However, the critical front behaves
like xe−x as x → +∞, so its derivative is not an element of the considered
weighted space. We expect that this implies 0 /∈ Σd, which can be proven in
some cases, see e.g. [48, App. B].

For compactness of notation, we introduce the vectorial notation

p(t, x) :=

(
u(t, x)
v(t, x)

)
, N(p)(t, x) := w(x)u(t, x) ·

(
−u(t, x)− v(t, x)
u(t, x) + v(t, x)

)
,

(4.27)

and write |p(x, t)| = |u(x, t)|+ |v(x, t)|. We define as G(t, x, y) the Kernel of
Lw:

G(t, x, y) :=

(
G11(t, x, y) G12(t, x, y)
G21(t, x, y) G22(t, x, y)

)
. (4.28)

In this compact notation, we want to estimate the long-time behavior of
p(t, x) with a Duhamel principle:

p(t, x) =

∫
R

G(t, x, y)p(0, y) dy +

∫ t

0
ds

∫
R

G(t− s, x, y)N(p)(s, y) dy.

(4.29)

We can use a result of Fayé and Holzer [48] to estimate the long-time
behavior of G(t, x, y). Roughly, this result states that for all x ∈ R and for
large t: ∫

R

∣∣G(t, x, y) · p(y)
∣∣ dy ≤ C · 1 + |x|

(1 + t)3/2

∫
R

|p(y)| dy, (4.30)
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4 Convective stability of the critical traveling waves

the precise statement is given in [48, Prop. 4.1, Lem. 5.1]. For estimating
the evolution of the full nonlinear system via (4.29), we need to control the
nonlinear integral ∫

R

w(x)u(t, x) ·
(
u(t, x) + v(t, x)

)
dx. (4.31)

We treat the cases x ≤ 0 and x ≥ 0 separately. Assuming that w(x) van-
ishes exponentially fast as z → +∞, the front satisfies the classical estimate∣∣∣ ∫ ∞

0
w(x)u(t, x) ·

(
u(t, x) + v(t, x)

)
dx
∣∣∣

≤ sup
x≥0

{(
|u(t, x)|+ |v(t, x)|

)2} · ∫ ∞
0

w(x) dx

≤ C · sup
x≥0

{
|p(t, x)|2

}
.

(4.32)

Since w(x) grows exponentially as x→ −∞, we take a different approach
for x ≤ 0. We use the following a-priori estimate:
Proposition 4.4 (Prop. 2.1. in [93]). Let A(t, x), I(t, x) be a non-negative
solution of the PDE (1.1) in the moving frame x = z− ct, for a speed c > 0.
Assume that there exist constants K, δ, µ0 > 0, such that the initial data
fulfill

I(0, x) ≥ 1 + δ ∀x ≤ 0,

A(0, x) ≤ Keµ0x ∀x ≤ 0, (4.33)
A(0, x) + I(0, x) ≤ K ∀x ∈ R.

Moreover, assume that for some time t ∈ (0,∞], it holds that

I(s, x = 0) ≥ 1 + δ ∀s ∈ [0, t). (4.34)

Then, there exist C, ζ > 0 that are independent of t, such that:

∀s ∈ [0, t), x ≤ 0 : i) I(s, x) ≥ 1 + δ, (4.35)

ii) A(s, x) ≤ Ceζx. (4.36)

The proof is given in [93, App. A]. It relies on the fact that the inactive
particles do not degrade, and that in the regime I(x, t) ≥ 1 + δ, the solution
of the PDE

St = Sxx + cSx − δS (4.37)

is a super-solution for A(t, x), which can be seen to decay exponentially
fast. The tail of (4.37) is controlled via a Feynman-Kac formula driven by
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4 Convective stability of the critical traveling waves

a Brownian motion with shift equal to the speed c = 2 of the critical wave,
for the mathematical background we refer to [86, Ch. 4.4].

For an invading front, it holds that limx→−∞ i(x) > 1, where i(x) is
monotone. We first shift the front such that i(0) = 1 + 2δ for a fixed δ > 0.
It suffices to choose initial data such that

|Ĩ(0, x)| ≤ δ ∀x ≤ 0, (4.38)

and to control the perturbation over time:

|Ĩ(t, x = 0)| ≤ δ ∀t ≥ 0, (4.39)

then, it holds that I(t, x = 0) ≥ 1 + δ, and in view of Proposition 4.4, there
exist constants C, ζ > 0 such that

|Ã(t, x)| ≤ A(t, x) ≤ Ceζx ∀x ≤ 0, t ≥ 0, (4.40)

since A ≥ 0. We re-substitute wu = Ã to estimate∣∣∣ ∫ 0

−∞
w(x)u(t, x) ·

(
u(t, x) + v(t, x)

)∣∣∣ dx
≤
∫ 0

−∞
|Ã(t, x)| · |u(t, x) + v(t, x)| dx

≤ sup
x≤0

{
|u(t, x)|+ |v(t, x)|

}
·
∫ 0

−∞
|Ã(t, x)| dx

≤ C · sup
x≤0

{
|p(t, x)|

}
.

(4.41)

Given both Estimates (4.32) and (4.41), we can control the nonlinear
Evolution (4.29). This is carried out in [93, Sec. 2.4]. Briefly, after intro-
ducing

Θ(t) := sup
s≤t

sup
x∈R

(1 + s)3/2

1 + |x|
|p(s, x)|. (4.42)

we prove that for all ε > 0, we can find suitable conditions regarding the
initial data p(0, x) such that

Θ(t) < ε (4.43)

holds as long as (4.39) is valid for some fixed δ > 0. Notice that (4.43) is
equivalent to the pointwise decay claimed in Theorem 4.2. However, if we
choose ε ≤ δ for δ as in (4.39), then the above Estimate (4.43) also implies
that

|Ĩ(t, 0)| ≤ Θ(t) < δ, (4.44)

and we can prove that both (4.39) and (4.43) are jointly valid for all t ≥ 0,
given sufficiently small initial data.
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5 Tumour architecture and emer-
gence of strong genetic alterations
are bottlenecks for clonal evolution
in primary prostate cancer

In this chapter, we summarize the content of the work "Tumour ar-
chitecture and emergence of strong genetic alterations are bottlenecks
for clonal evolution in primary prostate cancer", authored by Nima
Abedpour, Anton Bovier, Reinhard Büttner, Christian Harder, Axel
Hillmer, Florian Kreten, Martin Peifer and Yuri Tolkach [94]. This
work is under review at the time of writing. In agreement with all
authors, the unpublished preprint can be found in appendix C.

5.1 Background

Cancer is seen as a disease that develops via a chain of (stochastic) somatic
mutations, emanating from healthy cells with normal behavior. These mu-
tations lead to cell-lines which on the one hand show increased proliferation,
and on the other hand are able to escape the regulatory mechanisms of
the immune system [31]. It is a clinically important question how long these
evolutionary processes take, and if there are prevalent evolutionary patterns,
since progression of the tumors into more aggressive variants continues after
the occurrence of the first malignant cells. Prostate adeno carcinoma (PCA)
is a relatively slow growing cancer, typically age-related, and becomes ag-
gressive and dangerous only in some cases [164]. However, PCA reveals
high levels of intratumoural heterogeneity, which is a major obstacle for the
selection of individualized therapies for patients [69, 95, 152].

PCA does form glandular structures, at least as long as it is classified as
low or intermediate aggressive, as depicted in Figure 5.1. Recently, a three-
dimensional reconstruction by Tolkach et al. revealed that these glandular
systems form a self-avoiding branched structure, which belongs precisely to
the class of objects that can be generated by the model of Hannezo et al.
[146]. As such, the tumor-cells seem to mimic the surrounding healthy cells
[142]. Based on these findings, we make the assumption that branched PCA
follow the rules of branching morphogenesis proposed by Hannezo et al. [73],
and develop a mathematical model to study the growth and the genetic
evolution of PCA from the time of the formation of the first malignant cell
up to its evolution into a full-size PCA.
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Figure 5.1: A two dimensional section of prostatic tissue. The cancer cells form a
glandular system. Picture used with permission by Yuri Tolkach.

5.2 Model

We model PCA as a network with binary tree structure. Every node of the
network represents a transversal section of a hollow channel of cells at a fixed
position inR3. The cells of a node are assumed to have the same genotype, as
such the nodes are the base entities of our model. In this way, we reduce the
cellular movements by one dimension and simplify the hollow nature of the
tumour channels-glands (the reconstruction of channels as hollow structures
with interactions of the cells on the luminal surface is extremely complex).
This simplification preserves the biological sense of the cell interactions: Any
significant propagation of a fitter clone within the channels must occur in
the axial direction, along the edges of the network (Figure 5.2).

Up to small modifications, the growth dynamics follow the model by Han-
nezo et al. [73]. Regarding the clonal dynamics, we concentrate on driver
mutations and ignore neutral or deleterious mutations. We refer to a muta-
tion as any type of genetic alteration that brings fitness advantage to a cell
by increasing its rate of cell division. Moreover, we assume that mutations
are unique, ignoring the possibility of parallel evolution of independent sub-
populations. A genotype has a unique combination of consecutive mutations.

Growth and evolution of the system are formulated as a time-continuous
stochastic jump process [44] that can be simulated using a Gillespie algorithm
[65]. At each node, we differentiate four types of possible events: growth,
branching, mutation and competition (Figure 5.2). Each event is triggered
at exponential rates denoted as Rg, Rb, Rµ, Rc. The first occurring event is
executed, then the rates are adjusted to the new situation. All the rates
depend on the rate of cell division, which effectively acts as fitness in this
model and as such is denoted as f(v, t), the fitness of the genotype present
at node v at time t. The details are given in [94].

At a vertex v, a fitter genotype with fitness fnew = (1 + ∆)fold occurs
with rate of mutation Rµ. This new genotype then is in competition with
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Figure 5.2: A schematic representation of the proposed model for the growth and
the evolution of PCA. The growth of the network follows the rules of branching
morphogenesis described by Hannezo et al. [73]. Each node of the network hosts
a certain genotype (here, the different genotypes are depicted via different colors).
Fitter genotypes spread along the edges of the network and replace their unfit neigh-
bors. With a rate of mutation Rµ that depends on the fitness of the genotype at a
node, new genotypes can occur anywhere within the network.

its neighboring genotypes, a relabeling process along the edges of the net-
work follows, where the fitter genotype replaces its unfitter neighbors. This
relabeling process is of speed O(∆) along the edges of the network and thus
slow for small ∆ > 0 (see Section C.5.7).

5.3 Results

The parameters that we chose for the simulations are discussed in detail in
[94], but we want to emphasize that qualitatively, our theoretical predictions
are a result of the structure of the model. We explore the possible evolu-
tionary patterns and demonstrate that the tumour architecture represents a
major bottleneck for a divergent gradual clonal evolution: The rather strong
competition negates any significant spreading of new genotypes that have
only a small fitness advantage over their locally resident ancestor – in the
literature, typical estimates for the fitness advante of driver mutations in
more well-mixed cancers are values of ∆ between 1 and 4% [21, 139]. As a
result, we hypothesize that strong genomic driver alterations drive the evo-
lution of PCA, and that the spatial structure of PCA impedes its evolution
into more aggressive variants. This hypothesis is strongly supported by the
fact that the spatial structure of PCA is clearly correlated with its aggres-
siveness: For clinicians, the different architectural patterns (the so-called
Gleason patterns) of PCA are one of the most important indicators for esti-
mating its malignancy, and the clear branched structure is lost in aggressive
tumors [42, 126]. Its prevalently slow growth and the fact that PCA can
be indolent for decades, are both well reproduced by our model: For large
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times t ≥ 0, the number of nodes in the network is of order O(t3), opposing
many models that result in exponential growth. Moreover, even mutations
with large ∆ must arrive rather early, otherwise they can never take over
a significant fraction of the network. While the network is still small, the
time of arrival as well as the amount of occurring mutations is much more
stochastic than in the later phases. This leads to the hypothesis that in
PCA, it is decided in the early stages of the tumor if the disease will turn
harmful to the patient, however the aftermath of this evolution is will be
observed only in later stages.

Figure 5.3: An exemplary result of a simulation, indicating different genotypes in
different colors, and a biopsy consisting of five cores.

Next, we sought to analyse the spatial relationships between clonal popu-
lations (genotypes that can be found in at least 5% of the tumors) within syn-
thetic tumours in a clinically relevant context. Approximately 10–12 biopsy
cores are usually acquired during systematic multifocal prostate biopsy in
patients with PCA suspicion, with (according to our estimation) on average
five cores containing a tumour. We set up a comparable virtual biopsy, con-
taining five cores (Figure 5.3), and selected a 5% volume threshold for the
detection of genotypes in the biopsy. In clinical practice, 5% is often con-
sidered a threshold for reliable detection using next-generation sequencing.
Evaluating the results of 150 simulated cases, we saw that it is extremely
relevant to have biopsies from different regions of the tumor, in order not to
miss any of the relevant advanced genotypes, which can be spatially localized
(the detailed evaluations are given in Section C.2.5). Even in the case of such
an extensive biopsy, there is a certain chance (depending on the parameters
up to ∼ 20%) to miss one or more of the important clonal populations.

In the last step, we performed deep whole-exome multiregional next gen-
eration DNA sequencing (WES) of the primary tumours from five patients
to validate our theoretical predictions. WES was performed from at least 5
large, neighboring areas of each tumour with a coverage of up to 400x. Copy
number alterations were assessed for all tumour samples, then the somatic
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point mutations were clustered according to resulting cancer cell fractions
(CCFs). The clonal hierarchies of the tumors were reconstructed by using the
CCFs, which yield a particularly detailed picture for clones that are present
in several samples (due to the different distributions in the different sam-
ples). We found a qualitative agreement between real-world data and the
results of the simulations (Section C.2.6): The reconstructed phylogenetic
trees of the cancers showed clearly distinct generations with at most four
evolutionary steps after the initiation of the tumor, and all cases expressed
spatially localized, genetically divergent populations.

The code for the simulations, written in Python3, as well as a visual
demonstration are available under https://github.com/floriankreten/P
rostate_Cancer_Publication.git. They will be made publicly available
upon publication.
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6 Summary of the thesis
In the first parts of this PhD thesis, we studied the traveling wave solutions
the Reaction-Diffusion System (6.1), motivated by the question why a cer-
tain stochastic branching system exhibits the property to self-organize. We
analyzed the shape of the traveling waves, and found the traveling waves re-
flect the behavior of the stochastic system. After constructing the waves and
anylyzing theis shape analytically, we could verify that these traveling waves
are stable against perturbations. Our findings strengthen the observation
that the stochastic system which was proposed by Hannezo et al. [73] gen-
erates a particular class of branched structures in a self-organized fashion,
and that this process is robust against small errors. In the second part of
this thesis, we studied a model of the branched growth and the possible evo-
lution of prostate cancer, and found that its evolution is likely to be driven
by strong driver mutations, contrasting the idea of a slow, gradual evolution
of the tumor.

The introductory Chapter 1 of this thesis contains examples of self-
organized systems in biology. One problem that has long fascinated both
biologists and modelers is the morphogenesis of branched structures, that
can be found for example in corals, fungi, and different mammalian tis-
sues. We gave a first overview over different existing mathematical models,
that explain the differentiation of the branches via Turing-patterns [68], or
use diffusion-limited aggregation to simulate branched structures in general
[129], and then focussed on a particular approach. Hannezo et al. proposed
a stochastic system based on branching and annihilating random walks as
a model for A Unifying Theory of Branching Morphogenesis [73]. In their
publications, the authors illustrate why this process can be considered as a
good model for the growth of several different branched tissues [73, 74] – the
mammary glandular system or the kidney, to mention some.

This stochastic system is difficult to study, since it is not Markovian:
The diffusing particles represent the tips of paths that must strictly avoid
each other. In this thesis, we studied the heuristic hydrodynamic limit of
the stochastic dynamics:

∂

∂t
A =

∂2

∂z2
A+A−A(A+ I),

∂

∂t
I = d

∂2

∂z2
I + rA+A(A+ I), r, d ≥ 0,

(6.1)

which describes the evolution of two densities A(t, z), I(t, z) ≥ 0 of particles
on the line z ∈ R. This equation is related to the well-known FKPP-equation
[22, 50, 91], which is also regained upon substituting I ≡ 0.

In Chapter 2, we presented the mathematical background of this the-
sis. FKPP-related systems and their traveling waves have been an active
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field of research since the initial works of Fisher [50] and Kolmogorov et al.
[91] in the 1930s. In the case of a single reactant, the convergence of the
front of the PDE towards the traveling wave solutions is well-understood
[22]. For two or more reactants, only local stability results can be obtained
in most cases [130], that show that the traveling waves are robust against
small perturbations. The stability of the critical traveling waves, those non-
negative solutions with minimal possible speed cmin, is particularly difficult
to study [48, 53], since the spectrum of the linearized perturbations is only
marginally stable. At the end of the introductory Chapter 2, we reviewed
the phenomenon of convective stability, where perturbations vanish point-
wise relative to the traveling wave, in the moving frame x = z − ct, but
may grow when they are convected away from the front as x → −∞. This
concept originates from the physics of waves in fluids [118], but is now also
considered more and more for studying traveling wave solutions of reaction-
diffusion systems [63, 131].

We proceeded with a summary of the results of this thesis, which are con-
tained in two papers. The first has been published, the second has appeared
as a preprint on arxiv.org and has not been peer-reviewed yet:

1. [92] Traveling waves of an FKPP-type model for self-organized growth;

2. [93] Convective stability of the critical waves of an FKPP growth pro-
cess.

Review of [92]
In the publication [92], summarized in Chapter 3, we constructed the

non-negative traveling wave solutions of System (6.1) in the case d = 0. One
major difficulty when studying System (6.1) is the continuum of steady state
solutions

PI = {A = 0, I = K |K ∈ R}, (6.2)

which reflects the fact the the inactive particles do not react. Using the
logistic nature of the growth-terms of System (6.1), we could prove via cer-
tain integral equations that any bounded and non-negative traveling wave
a(x), i(x) of System (6.1) with d = 0 must obey the equality

lim
x→−∞

i(x) + lim
x→+∞

i(x) = 2. (6.3)

Given the Identity (6.3), the continuum of fixed points turned out to
be advantageous: We could first construct almost constant non-negative
traveling wave solutions, where a � 1 and i(x) ∼ 1, and then continuously
deformed these waves along their Limits (6.2). This resulted in a continuous
family of traveling wave solutions.
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We used center manifold theory for analyzing the asymptotic behavior
of the traveling waves around their limits, and thereby identified the non-
negative trajectories. The minimal speed of a non-negative wave where both
the active and inactive particles vanish as x→ +∞, is given by cmin = 2, as
in the case of the classical FKPP-equation [22].

Simulations indicate that it is always the wave with speed cmin = 2 that
arises in the large-time limit of the PDE (6.1) under compact initial data.
Therefore, we wanted to study their stability. We could not prove a stabil-
ity result, since the operator that corresponds to the linearized perturbation
equation is only marginally stable, see Section 2.3, and additionally is not
sectorial for d = 0.

Review of [93]
We overcame these problems in the preprint [93], summarized in Chapter

4. First, we introduced a diffusion to the inactive particles, and constructed
the non-negative traveling wave solutions of System (6.1) for d 6= 0. Second,
we analyzed the local stability of the waves with minimal possible speed and
found that they are convectively stable. We relied on a numerical evaluation
of the point spectrum of the linearized equation.

Given the traveling waves of System (6.1) with d = 0 as a starting point,
we applied geometric singular perturbation theory by Fénichel [49, 84] to
prove the existence of similar traveling waves for d ∼ 0. We then could again
use the continuum of fixed points, together with regular perturbation theory,
to improve this result and construct non-negative traveling waves of System
(6.1) up to d ∼ 1. In particular, we could prove that qualitatively, the
behavior of the constructed traveling waves is not affected by the diffusion
of the inactive particles.

For the fully parabolic system, we could then analyze the stability of the
critical invading fronts, since the operator that corresponds to the linearized
perturbation equation is now sectorial, as opposed to the case d = 0. Since
the limits of the traveling waves are non-hyperbolic fixed points, we had to
operate in a weighted space where there perturbations can grow exponen-
tially as they are shifted towards the back of the wave. This stabilizes one
part of the essential spectrum, see Section 2.3.

The resulting linearized equation falls into a category which was already
analyzed by Faye and Holzer [48]. Their result yields linear stability of
the critical invading fronts, proving a pointwise decay of solutions of the
linearized perturbation equation. However, since our chosen weight is un-
bounded to the left, we needed an additional a-priori estimate in order to
control the full nonlinear problem. To our best knowledge, no such a-priori
estimate did exist yet, that is compatible with a pointwise control of the
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linear problem. The a-priori bounds which are proven for related cases use
energy-based estimates in H1 [61, 118].

We therefore developed a new approach, tailored to the pointwise es-
timate that we have for the Green’s function of the linear problem. A
Feynman-Kac formula driven by a shifted Brownian motion which is stopped
at the origin yields a suitable representation of a linear super-solution of
A(t, x) at the back of the wave. The central ideas are presented in Section
4.4. The result is an estimate of type A(t, x) ≤ C exp(ζx) as x → −∞,
for some ζ > 0. Using the explicit form of the nonlinear terms, inspired by
the works of Ghazaryan [61], this estimate turned out to be sufficient for
controlling the full non-linear evolution of the weighted perturbations. We
use this to prove a decay of the weighted perturbation: Given that the initial
perturbations are sufficiently small, they decay pointwise like t−3/2.

Review of [94]
In Chapter 5, we investigated the possible effect of the branched struc-

ture of prostate cancer (PCA) on its clonal evolution. The unpublished work
[94] is based on the findings of Tolkach et al. [146], who did a reconstruc-
tion of the three-dimensional glandular structure of PCA. We developed a
mathematical model where the growth of well-differentiated PCA obeys the
rules for branching morphogenesis proposed by Hannezo et al. [73], and where
stochastic mutations and a competition between the different genotypes drive
its evolution.

We simulated the resulting stochastic growth and evolutionary process,
and explored the possible evolutionary patterns. We hypothesize that the
spatial structure of PCA is a bottleneck for its clonal evolution: As along as
the tumor follows the rules of branching morphogenesis, its cells are subject
to constant local competition, being encased in the glandular network of the
tumor. This competition implies that new genotypes can spread significantly
only if they either have a high fitness advantage (or if they break up the
spatial structure of the tumor, which we do indeed observe in more aggressive
PCA). Concluding, the evolution of well-differentiated PCA is more likely to
be driven by few, strong driver mutations.

We then performed biopsies of the simulated tumors. As the spatial
structure of the cancer implies that cells of different genotypes are not well-
mixed over the tumor, but rather can be spatially localized, there is indeed
a significant chance to miss one or more relevant driver mutations, even
under an extensive biopsy. In the last step, we performed deep whole-exome
multiregional next generation DNA sequencing of the primary tumours from
five patients to validate our theoretical predictions, and found a qualitative
agreement between real-world data and the results of the simulations.
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Appendices

A Publication:
Traveling waves of an FKPP-type
model for self-organized growth

This appendix reproduces exactly the content of the paper "Travel-
ing waves of an FKPP-type model for self-organized growth", pub-
lished by the author of this thesis in Journal of Mathematical Bi-
ology, 84(6):42, 2022, https://doi.org/10.1007/s00285-022-01753-z.
This publication was summarized in Chapter 3.

A.1 Motivation and result

The mechanics of tissue-growth have drawn the attention of the scientific
community. A central question is, how the cells are organized, how they react
to and communicate with their environment on the microscopic level, and
how their behavior during the growth phase gives rise to distinct macroscopic
structures. Mathematical models can help to understand these processes and
works regarding organoids, wound healing or tumor growth are abundant
[111, 106, 46, 37, 83]. However, for most of these models, our numerical
skills far predominate the possibility to analyze them rigorously. Hence, for
understanding the basic mechanics of the underlying biological processes,
the need for simplified models arises.

Especially when studying spatiotemporal effects and macroscopic pattern
formation, reaction-diffusion systems and their traveling waves have proven
insightful. One of the oldest and most studied models is the FKPP-equation
[50, 91], describing the advance of an advantageous population. The arise
of more complex spatial patterns due to the instability of a homogeneous
state was first described in Turings groundbreaking paper The Chemical ba-
sis of Morphogenesis [147]. More recently, systems of Keller-Segel type have
been studied extensively, where growth, movement and self-organization of
a population are driven by chemotactic guidance [88, 120, 116]. Broad intro-
ductions to mathematical modeling of pattern formation in developmental
biology have been written by Painter [116] and Othmer et al. [114], among
others.

The group of Hannezo et al. proposed A Unifying Theory of Branching
Morphogenesis in epithelial tissues [73]. They introduced a stochastic model,
related to branching and annihilating random walks [29]. In this model, a
branched structure is represented by a network. This network undergoes
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stochastic growth dynamics, where each branch of the network grows inde-
pendently from the others and follows a set of simple, local rules. At its
tip, each branch elongates or splits up at certain rates and these tips are
called active. When an active tip comes too close to a different branch, it
irreversibly ceases any activity and becomes inactive. The numerical results
of Hannezo et al. reveal that this stochastic growth process self-organizes:
the active tips concentrate at the boundary of the network and form a rather
sharp layer of growth. The center of the network is static and – rather sur-
prisingly – exhibits a homogenous geometry, in particular a constant density
of branches. Remarkably, as mentioned by the authors, this model self-
organizes without any signaling gradients. Even a directional bias of the
branches can be achieved, as the result of an appropriate spatial boundary.
Moreover, the authors observed that their simulations were in good agree-
ment with biological data from mammary glands, kidneys and the human
prostate [73].
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Figure A.1: Simulation of the Reaction-Diffusion System (A.1) for r = 0. Given a
small initial heap of active particles A(x, 0) = 1/2 exp(−x2) and I(x, 0) = 0, two
identical traveling fronts arise, the right one is shown. After the separation of the
two fronts away from the origin, the density of the remaining inactive particles is
given by I = 2 and the front moves asymptotically with speed c = 2.

To study their model analytically, Hannezo et al. proposed the following
system, which corresponds to the diffusive limit of the above stochastic dy-
namics. We restrict ourselves to the one-dimensional case. Due to a simple
linear rescaling (Appendix A.10.3), we only need to consider the normalized
reaction-diffusion system

At = Axx +A−A(A+ I),

It = A(A+ I) + rA.
(A.1)

Here, A, I : R×R+ → R+ are the densities of active particles and inactive
particles.

The System (A.1) can be interpreted as a twofold degenerate Keller-Segel
system [88, 6]: the active particles are not guided by a chemotactic gradient,
but explore the space solely diffusively, and the inactive particles do not
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diffuse at all. Still, simulations of System (A.1) show that general solutions
of (A.1) self-organize, a phenomenon which is typical for many different
Keller-Segel systems [116]. The invading front of the system converges to a
fixed shape: a pulse of active particles, that represents a layer of growth, is
accompanied by a monotone wave of inactive particles, the resulting static
tissue, as demonstrated in Figure A.1. This self-organization of the Reaction-
Diffusion System (A.1) resembles that of the stochastic dynamics.

For a wave speed c > 0, a right-traveling wave solves Eq. (A.1) via the
Ansatz A(x, t) = a(x − ct), I(x, t) = i(x − ct). We substitute z = x − ct,
such that any traveling wave must be a solution of

0 = azz + caz + a− a(a+ i),

0 = ciz + a(a+ i) + ra.
(A.2)

The occurrence of these seemingly stable traveling waves is quite surpris-
ing, since the System (A.1) features a continuum of steady state solutions:

A = 0, I = K, K ∈ R+, (A.3)

which is due to the fact that the inactive particles do not degrade. This
continuum of steady states represents the difficulty when studying the sys-
tem: we first need to find out which limiting states are chosen by the growth
process.

Hannezo et al. presented a rich discussion of the Wave-Equation (A.2)
along with numerics and several heuristics that show a deep connection with
the original FKPP-equation, and predicted some of the following results.
The goal of this paper is to give necessary and sufficient conditions for the
existence of such traveling wave solutions and to analyze the shape of the
wave form. Our main result characterizes a family of pulled traveling waves:
Theorem A.1. Let r ≥ 0, c > 0 and consider the System (A.1) and its
traveling wave solutions given by (A.2). Set ic := max{0, 1 − c2/4}. For
each pair i−∞, i+∞ ∈ R+ such that

i+∞ ∈ [ic, 1), i−∞ = 2− i+∞, (A.4)

there exists a unique bounded and positive traveling wave a, i ∈ C∞(R,R2)
with speed c such that

lim
x→±∞

a(z) = 0, lim
x→±∞

i(z) = i±∞. (A.5)

The function i(z) is decreasing, whereas a(z) has a unique local and global
maximum. If c2

4 + i+∞ − 1 = 0, then convergence as z → +∞ is sub-
exponentially fast and of order z ·e−

c
2
z. If c

2

4 +i+∞−1 > 0, then convergence
as z → +∞ is exponentially fast. Convergence as z → −∞ is exponentially
fast in all cases. The corresponding rates are

µ±∞ = − c
2

+

√
c2

4
+ i±∞ − 1. (A.6)
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Moreover, these are all bounded, non-negative, non-constant and twice dif-
ferentiable solutions of Eq. (A.2).

x

i

a
x

i

a

Figure A.2: Two different traveling waves with speed c = 2. The limits of the left
wave are given by i−∞ = 2 and i+∞ = 0. The limits of the right wave are given by
i−∞ = 1.8 and i+∞ = 0.2.

Notice that this result is independent of the reproduction rate r, which
affects the shape of the wave, but neither its limits nor the minimal speed
of a positive solution. Hence, all non-negative and bounded traveling waves
resemble the ones depicted in Figure A.2, consisting of a pulse of active
particles and a monotone wave of inactive particles. These traveling wave
solutions share many similarities with classical FKPP-waves of a single type
of particles. Among other mathematical aspects, this will be discussed at
the end of the paper, in Section A.9. Notably, Theorem A.1 analytically
connects two continua of fixed points via a continuum of traveling waves.
Our constructive approach is a novelty: we first prove the existence of almost
constant solutions and then continuously deform these solution along the
continuum of possible limits.

Figure A.1 shows a simulation of the System (A.1), starting with a small
initial amount of active particles. After a short transition phase, we observe
a front with fixed shape. Asymptotically, it equals the unique traveling
wave with limits i−∞ = 2, i+∞ = 0 and speed c = 2, which is the minimal
possible wave speed for this pair of limits. We observed this behavior for
all compact initial data that we chose. Moreover, this wave seems to be
stable against perturbations, as briefly discussed in the concluding Section
A.9. Even though it is only a first step into this direction, this paper sheds
light at the ability of the Growth-Process (A.1) to self-organize and at the
robustness of this mechanism, e.g. against errors of individual particles. Our
theoretical analysis fortifies the numerical and biological findings of Hannezo
et al., where a simple set of local rules organizes the growth of a complex
epithelial structure. The underlying assumption of a logistic growth is quite
natural, so similar rules might drive and regulate other growth processes as
well, without the need for guiding gradients.
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A.2 Outline of the paper

A sketch of the central ideas and techniques is presented in Section A.2. The
identity i−∞ + i+∞ = 2 is proved in Section A.3. The asymptotic behavior
around the stable and unstable set of the traveling waves is analyzed in Sec-
tion A.4. A non-negative trapping region of a lower-dimensional sub-system
is analyzed in Section A.5. We use our knowledge about the sub-system to
construct a suitable attractor of the full system in Section A.6. Then, we
connect the unstable manifold of the unstable set with this attractor, see
Section A.7. We complete the proof of Theorem A.1 in Section A.8. In Sec-
tion A.9, we highlight the similarity of the traveling waves with those of the
original FKPP-equation and give a short outlook at their stability.

A.2.1 Identifying the correct limits

We reformulate the System (A.2) for a traveling wave as an equivalent system
of first-order ODEs. Denoting differention with respect to z by a prime, we
introduce the auxiliary variable a′ = b, so that (A.2) becomes

a′ = b,

b′ = a(a+ i)− a− cb, (A.7)

i′ = −1

c
a (a+ i+ r) ,

with c > 0, r ≥ 0. We call a solution of Eq. (A.7) non-negative if a, i ≥ 0. If
a solution is in C1(R,R3), then it is also in C∞ by a simple induction. This
equation has a continuum of non-negative fixed points, similar to that of the
PDE, cf. (A.3):

a = b = 0, i ∈ R+. (A.8)

Thus, in the first place, we need to find out which of these fixed points
can be considered as limits of right-traveling waves. Any bounded and non-
negative solution of System (A.7) can not be periodic and must converge
since ci′ = −a(a+i+r) ≤ 0. It is now evident that the limits at z = ±∞must
be fixed points of Eq. (A.7), thus we denote them as (a, b, i) = (0, 0, i±∞).
Under mild assumptions regarding integrability, we can interrelate two dif-
ferent points on a given traveling wave, see Section A.3. Most importantly,
this leads to the correspondence of the limits

i+∞ + i−∞ = 2. (A.9)

In view of this, monotonicity of i implies that i−∞ ∈ (1, 2] and i+∞ ∈ [0, 1).
The fixed points of the ODE System (A.7) are not isolated, hence its

Jacobian D is degenerate there. It is easily verified that D is given by

D(a,b,i) =

 0 1 0
2a+ i− 1 −c a

−1
c (2a+ i+ r) 0 −a

c

 . (A.10)
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At a fixed point (a, b, i) = (0, 0,K), the eigenvalues of D(0,0,K) are

λ0 = 0, λ± = − c
2
±
√
c2

4
+K − 1. (A.11)

Hence, we can not apply the classical Theorem of Grobmann-Hartmann to
linearize the asymptotic behavior around the fixed points. We apply cen-
ter manifold theory to work out the higher moments of the approximation,
see Section A.4. The center manifold coincides with the continuum of fixed
points. This implies that asymptotically, there is no flow along the direction
of the eigenvector (a, b, i) = (0, 0, 1) with zero eigenvalue. Hence, the asymp-
totic flow around any fixed point is two-dimensional and the stability of the
fixed point (0, 0,K) is dictated by the two eigenvalues λ±. When K > 1,
the fixed point is unstable, while for K < 1, it is stable.

At the same time, the analysis of the asymptotic behavior also yields
a necessary condition on the speed c of a non-negative wave. A traveling
wave can only be non-negative if a(x) does not spiral while converging to
0. Therefore, the two eigenvalues λ± at the limiting fixed point must be
real-valued. In view of (A.11), for a fixed point (0, 0,K), this is given if

c2

4
+K − 1 ≥ 0. (A.12)

Thus, if the stable fixed point (0, 0, i+∞) is the limit of a non-negative trav-
eling wave, where i+∞ ∈ [0, 1), it must by (A.12) further hold that

c2

4
+ i+∞ − 1 ≥ 0 ⇔ i+∞ ≥ ic = max{0, 1− c2

4
}, (A.13)

as in Theorem A.1. In other words, ic is the minimal limiting density of in-
active particles that is necessary for the existence of a non-negative traveling
wave with speed c.

A.2.2 Construction of a traveling wave

We will explicitly construct a non-negative traveling wave such that the two
necessary conditions i+∞ ≥ ic and i+∞ + i−∞ = 2 are fulfilled. Two key
features of the model make it tractable: first, the monotonicity of i(z) allows
us to investigate the convergence of the sub-system that arises for a fixed
value of i, and then lift our result to almost constant solutions of the full
system. Second, for extending this result to non-small solutions, we lean
on an integral equation that allows us to interrelate two points on a given
trajectory. However, the central Proposition A.3 depends essentially on the
logistic growth of the active particles. Apart from this, our general approach
seems to be applicable to a broader class of systems.
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Regarding the ODE System (A.7), our analysis of the flow around the
fixed points in Section A.4 reveals a suitable unstable set

S−∞ :=
{

(0, 0, i) : i ∈ (1, 2]
}
, (A.14)

and a suitable stable set

S+∞ :=
{

(0, 0, i) : i ∈ [0, 1)
}
. (A.15)

Each point (0, 0, i−∞) ∈ S−∞ has an unstable manifold of dimension one.
Its restriction to a ≥ 0 is the only possible candidate for the tail of a non-
negative traveling wave as x → −∞. Each point (0, 0, i+∞) ∈ S+∞ is Lya-
punov stable, which can also be seen in Figure A.3.

0 0.5 1

0

1

2

i

a
Figure A.3: Two-dimensional phase portrait of (a, i) of traveling waves (A.7) for
c = 2 and r = 0, omitting the coordinate b = a′. A unique trajectory emerges from
each point in S−∞ (where i−∞ > 1) in positive direction of a and converges to S+∞
(where i+∞ < 1). Notice the correspondence i−∞ + i+∞ = 2 of the limits.

To begin with, we let (0, 0, i−∞) ∈ S−∞, where i−∞ ∈ (1, 2 − ic], and
follow its unstable manifold in positive direction of a. We prove that there
exists a finite phase-time x0 such that b(x0) = 0: the trajectory reaches a
local maximum of active particles, again see Figure A.3. We denote it as
(ax0 , 0, ix0). This is carried out in Section A.7.

Thus, for finding a suitable attractor of S+∞, we analyze solutions that
start in points of type (a, b, i) = (a0, 0, i0). We first analyze the lower-
dimensional subsystem in coordinates (a, b), imposing a fixed value of i,
which is done Section A.5. We construct a trapping region, wherein a con-
verges and stays non-negative. The monotonicity of i(z) allows us to lift
this result to the full system, see Section A.6. Here, the continuum of fixed
points comes at help: we first prove the existence of almost constant solu-
tions, where a � 1 and i ∼ i0, that stay non-negative and converge. Then,
we continuously deform these solutions: the Lyapunov-stability of the limits
in S+∞ implies continuity of the entire trajectory up to z = +∞ in initial
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data. We use this to derive sharp conditions regarding (a0, 0, i0) such that
the trajectory stays non-negative and converges.

We show that the first local maximum (ax0 , 0, ix0) along the instable
manifold of (0, 0, i−∞) does fulfill these conditions, see again Section A.7.
The technique is the same as for proving the identity i+∞+ i−∞ = 2, which
is the starting point of our analysis and presented in the next section. The
proof of Theorem A.1 is completed in Section A.8, where we bring together all
the different pieces. The resulting continuous family of solutions is sketched
in Figure A.3.

A.3 The mapping of the limits i−∞ + i+∞ = 2

We first verify global integrability of a non-negative solution:
Lemma A.2. Let a(x), b(x), i(x) be a smooth, bounded and non-negative
traveling wave that solves the ODE System (A.7). Then, as x → ±∞, a(x)
vanishes and i(x) converges, and a, b, b′, i′ ∈ L1(R). Moreover, i(x) is de-
creasing and a(x) has a unique global and local maximum.

Proof. Let a(x), b(x), i(x) be a smooth, bounded and non-negative solution
of Eq. (A.7). Since ci′ = −a(a+ i+ r) ≤ 0, it holds that i(x) is decreasing
and by boundedness must converge as x → ±∞, so i′ ∈ L1(R). The two
limits must be fixed points and given by some (a, b, i) = (0, 0, i−∞) and
(0, 0, i+∞). Equality is only given if a(x) ≡ 0. If not a(x) ≡ 0, then there is
at least one local maximum of active particles, which we denote as (a0, 0, i0).

At this point, a′′ = b′ = a0(a0 + i0 − 1) ≤ 0, so either a0 = 0 and the
wave is constant, or a0 + i0 ≤ 1. In the second case case, assume that there
is also a local minimum of a(x), denoted as (am, 0, im). Since a(x) vanishes
as x → ±∞, we may assume that this be the first local minimum after
passing through (a0, 0, i0). As before, (am, 0, im) is already a fixed point or
am + im ≥ 1. Since i(x) is decreasing, a(x) must have been increasing, a
contradiction to the assumption that this is the first local minimum after
the maximum (a0, 0, i0). Thus, there is only one local maximum of active
particles, which is also the global one. Further, this implies a′ = b ∈ L1(R).
By ci′ = −a(a+ i+ r) ≤ 0, we know that a(a+ i+ r) is also in L1(R). We
integrate b′ + cb + a = a(a + i) over the finite interval [−M,M ], then send
the boundaries to ±∞:∫ M

−M
b′(x) + cb(x) + a(x) dx =

∫ M

−M
a(x) ·

[
a(x) + i(x)

]
dx. (A.16)

We know that the right-hand is integrable since i′ ∈ L1(R), and that both
a(±M) and b(±M) vanish as M → +∞. This implies∫
R

a(x) dx = lim
M→+∞

[
b(M)− b(−M) + c ·

[
a(M)− a(−M)

]
+

∫ M

−M
a(x) dx

]
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=

∫
R

a(x) ·
[
a(x) + i(x)

]
dx. (A.17)

Hence also a ∈ L1(R), since a ≥ 0. Finally, as a sum of integrable terms,
also b′ ∈ L1(R).

The following Proposition A.3 will be used several times to interrelate
two points (a1, 0, i1), (a2, 0, i2) on a traveling wave, where bi = 0. By the
previous Lemma, the necessary conditions regarding integrability are always
verified for non-negative and bounded solutions.
Proposition A.3. Let a(x), b(x), i(x) be a smooth and bounded solution of
the ODE System (A.7) on some interval [z1, z2], where −∞ ≤ z1 ≤ z2 ≤
+∞. Assume that b(z1) = b(z2) = 0. Further, assume that a, b, b′, i′ are
integrable and define A (t) :=

∫ t
z1
a(x) dx. The following three identities

hold:∫ z2

zi

a(z)
[
a(z) + i(z)] dz = A (z2) + c ·

[
a(z2)− a(z1)

]
, (A.18)

i(z1)− i(z2) =
1 + r

c
A (z2), (A.19)∫ z2

zi

a(z)
[
a(z) + i(z)] =

[
i(z2) + a(z2)

]
·A (z2),

+
1 + r

2c
A(z2)2 +

a(z1)2 − a(z2)2

2c
. (A.20)

Proof. Any solution of the ODE System (A.7) also fulfills the original Wave
Equations (A.2). We integrate these over [z1, z2], substitute a′ = b and
use that b(zi) = 0. This directly proves (A.18) and (A.19). Regarding Eq.
(A.20), note that by integration by parts:∫ z2

z1

a(x) ·
[
a(x) + i(x)

]
dx =

∣∣∣z2
z1

A · (a+ i)

−
∫ z2

z1

A (x) ·
[
b(x) + i′(x)

]
dx

=
[
i(z2) + a(z2)

]
·A (z2) +

∫ z2

z1

A (x) · 1

c

[
(1 + r)a(x) + b′(x)

]
dx

=
[
i(z2) + a(z2)

]
·A (z2) +

1 + r

2c

∣∣∣z2
z1

A 2 +
1

c

∫ z2

z1

A (x)b′(x) dx

=
[
i(z2) + a(z2)

]
·A (z2) +

1 + r

2c
A (z2)2 +

a(z1)2 − a(z2)2

2c
.

(A.21)

Remark : Equations (A.18) and (A.19) encode a mass transfer from the
active to the inactive particles and are not specific for the chosen reactions.
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It is the quadratic Eq. (A.20) that relies on a logistic saturation mechanism,
we do not see a (direct) way to generalize this result.

Given Proposition, the identity i−∞ + i+∞ = 2 is a mere
Corollary A.4 (Limits of traveling waves). Let a(x), b(x), i(x) be a non-
negative and bounded traveling wave that solves the ODE System (A.7), and
denote its limits as (a, b, i) = (0, 0, i±∞). Either

∫
R
a(z) dz = 0 implies

i+∞ = i−∞, or the following identity holds:

i−∞ + i+∞ = 2. (A.22)

Proof. We apply Proposition (A.3). Since a(±∞) = 0, the Equations (A.18),
(A.19) and (A.20) can be simplified to

A (+∞) = i+∞ ·A (+∞) +
1 + r

2c
A (+∞)2, (A.23)

(1 + r)

c
A (+∞) = i−∞ − i+∞. (A.24)

Either A (+∞) = 0 implies i+∞ = i−∞, or we divide the first equation by
A (+∞) and solve the resulting linear system, which proves the claim.

A.4 Asymptotics around the fixed points

Let us recall that the Jacobian D(0,0,K) of the ODE System (A.7) at a fixed
point (0, 0,K) has eigenvalues

λ0 = 0, λ± = − c
2
±
√
c2

4
+K − 1. (A.25)

The existence of λ0 implies the existence of a center manifold. In the present
case, it locally coincides with the set of fixed points a = b = 0. This
implies that there is no flow along the center manifold, so the asymptotics
are fully described by the remaining two linear terms. The calculations are
standard and presented in Appendix A.10.1, along with a short review of
the underlying theory. We only state the results here. First, regarding the
unstable set S−∞, as defined in (A.14):
Theorem A.5 (Unstable set). For i−∞ > 1, the point (a, b, i) = (0, 0, i−∞)
is an unstable fixed point of Dynamics (A.7). Locally, there exists a smooth
unstable manifold of dimension one. Its restriction to {a ≥ 0} is the unique
trajectory that emerges from the fixed point such that a(x), i(x) > 0 as x →
−∞. It has the following properties:

• lim
x→−∞

a(x) = 0,

• lim
x→−∞

i(x) = i−∞,

• b(x) > 0, b′(x) > 0, i′(x) < 0 as x→ −∞.

(A.26)
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Proof. By choice of i−∞ > 1, the eigenvalue λ+ is positive, whereas λ− is
negative. Denote by u, v, w the coordinates in the system of eigenvectors
e0, e+, e− of the Jacobian at the fixed, where the fixed point is shifted to the
origin. This transformation is done explicitly in Lemma A.44. By Theorem
A.45, the dynamics in an open neighborhood around the fixed point are
equivalent to

u′ = 0,

v′ = λ+ v,

w′ = λ−w.

(A.27)

Hence, there is a stable and an unstable manifold, each of dimension one. The
eigenvector e+ describes the asymptotic direction of the unstable manifold,
in coordinates a, b, i it is given by

e+ =

 −λ−
i−∞ − 1

1
c (r + i−∞) · λ−λ+

 . (A.28)

Since λ− < 0 and λ+ > 0, asymptotically along the branch of the unstable
manifold in direction e+, where a > 0 and b > 0, it also holds that b′ =
λ+ (i−∞ − 1) > 0 and that ci′ = λ− (r + i−∞) < 0.

Next, we prove Lyapunov-stability of the points in S+∞, defined in
(A.15). Figure A.4 shows how the phase lines converge to (0, 0) in the (a, b)-
plane. For technical reasons, we require that λ+ 6= λ−. Later, we deal with
this degenerate case via a continuity argument.

-0.1 0 0.1

-0.1

0

0.1

b

a

i ≡ 0, c = 1

-0.1 0 0.1

-0.1

0

0.1

i ≡ 0, c = 2

-0.1 0 0.1

-0.1

0

0.1

i ≡ 0, c = 3

Figure A.4: Phase portrait of (a, b) of the Wave Eq. (A.7) if we impose a fixed value
of i(x) = 0, see also Section A.5. The choices of c change the type of convergence
towards the origin: spiraling for c = 1, one stable manifold with with eigenvalue
−c/2, which has algebraic multiplicity 2 and geometric multiplicity 1 for c = 2, two
stable manifolds for c = 3.

Theorem A.6 (Stable set). For all c > 0 and i+∞ ∈ [ic, 1), such that i+∞ >
c2/4− 1, the point (a, b, i) = (0, 0, i+∞) is Lyapunov stable under Dynamics
(A.7). In a neighborhood of the fixed point, (a, b)→ (0, 0) exponentially fast.
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Proof. By choices of c and i+∞, both non-zero eigenvalues (A.25) of the
Jacobian are real-valued and negative and it holds that λ+ 6= λ−. As before,
denote by u, v, w the coordinates in the system of eigenvectors e0, e+, e−
of the Jacobian at the fixed point, see Lemma A.44. By Theorem A.45,
the dynamics of the system in a neighborhood around the fixed point are
equivalent to

u′ = 0,

v′ = λ+ v,

w′ = λ−w.

(A.29)

Take some small enough initial data (εu, εv, εw): in view of Eq. (A.29), εu
does not vanish, but also does not propagate, whereas v and w converge to
zero exponentially fast. Since a and b are represented in terms of v and w,
see (A.104), they vanish exponentially fast.

Proposition A.7. Let c > 0 and i+∞ < ic. There is no non-negative
and non-constant traveling wave that converges to (a, b, i) = (0, 0, i+∞) as
x→ +∞.

Proof. As in the previous Theorem, the asymptotic behavior of Eq. (A.7)
around the limiting fixed point (a, b, i) = (0, 0, i+∞) is described by the linear
System (A.29). But now, since i+∞ < ic = max{0, 1− c2/4}, either i+∞ < 0
or both eigenvalues λ± have a non-vanishing imaginary part and thus, v and
w spiral. Since a and b are represented in terms of v and w, see (A.104),
any trajectory that converges to (0, 0, i+∞) can not stay non-negative in its
a-component.

A.5 Attractor of a sub-system

A.5.1 Construction and result

We begin our search for a non-negative attractor of S+∞ in an easier setting:
we fix i(x) = i = const. and investigate the two-dimensional sub-system in
the remaining coordinates. To separate it from the full system, we write it
as ā(x), b̄(x). For this system, we prove the existence of a suitable attractor.
This set will be denoted as Tc(i), to emphasize that it depends on the chosen
value of i, which will be constant only in this section. The flow of the sub-
system and the region Tc(i) are drawn in Figure A.5.
Definition A.8 (Two-dimensional sub-system). For c > 0 and i ∈ [ic, 1),
denote by ā(x), b̄(x) the two-dimensional flow defined by

ā′ = b̄,

b̄′ = ā(ā+ i− 1)− cb̄,
(A.30)

which results from the Wave System (A.7) by fixing i(z) = i.
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There are only two fixed points of (A.30), (ā, b̄) = (0, 0) and (ā, b̄) =
(1 − i, 0). We denote the eigenvalues and eigenvectors of the Jacobian at
(0, 0) as

λ±(i) := − c
2
±
√
c2

4
+ i− 1, l±(i) :=

(
λ∓

1− i

)
. (A.31)

It holds that λ−(i) ≤ λ+(i) < 0, we see that (0, 0) is a stable fixed point.
Moreover, for i > ic, it holds that λ−(i) 6= λ+(i). Note that λ± are identical
to the non-zero eigenvalues of the full system around the fixed point (0, 0, i),
see (A.25). The eigenvectors l± are the projections of the corresponding
three-dimensional eigenvectors into the (a, b)-plane.

The Jacobian at (1− i, 0) has eigenvalues and eigenvectors

β±(i) := − c
2
±
√
c2

4
+ 1− i, r±(i) :=

(
−β∓
1− i

)
, (A.32)

and it holds that β−(i) < 0 < β+(i). These have no direct correspondence
to the three-dimensional system.

We now define the region Tc(i). It is a triangle, spanned by the two fixed
points (0, 0) and (1− i, 0) and two adjacent eigenvectors:

b̄

ā

i = 0.5, c = 2 i = 0.2, c = 2 i = 0.2, c = 1

Figure A.5: The phase plot of (ā, b̄) following Eq. (A.30), displayed for several
values of i and c. The only two fixed points are (0, 0) and (1− i, 0). For i ≥ ic, the
orange triangles Tc(i) are invariant regions of Dynamics (A.30), see Prop. A.10.
They increase in −i: the point (1 − i, 0) moves to the right and the two internal
angles γl(i) and γr(i) increase. In the third case, i < ic implies that the system
spirals around (0, 0) while converging.

Definition A.9 (The triangle Tc(i)). For c > 0 and i ∈ [ic, 1), let Tc(i) be
the convex hull of the three points (0, 0), (1− i, 0) and C(i). Here, the point
C(i) is the unique intersection of the two half-lines{(0

0

)
− p · l+(i)

∣∣∣ p ≥ 0
}

and
{(1− i

0

)
− q · r+(i)

∣∣∣ q ≥ 0
}
, (A.33)

with l+(i) and r+(i) defined in (A.31) and (A.32). We denote the internal
angles of Tc(i) at (0, 0) and (1− i, 0) as γl(i) and γr(i), respectively.

67



A Publication: Traveling waves of an FKPP-type model for self-organized growth

Visually, it can easily be seen in Figure A.5 that the set Tc(i) is invariant
under Dynamics (A.30): the flow at the boundary of Tc(i) points inwards.
Proposition A.10 (Invariant region of the reduced system). The set Tc(i)
is an invariant region of Dynamics (A.30). If (ā0, b̄0) ∈ Tc(i), then

ā(x), b̄(x) ∈ Tc(i) ∀x ≥ 0. (A.34)

It holds that ā ≥ 0 and b̄ ≤ 0 within Tc(i). Hence, if (ā0, b̄0) 6= (1 − i, 0),
then ā(z) converges to 0 monotonically as z → +∞.

For any non-negative solution of the full Wave System (A.7), it holds
that i′ ≤ 0. Thus, we are interested in how Tc(i) changes when i decreases:
Proposition A.11 (Nested invariant regions). For a fixed c > 0, the set
Tc(i) is increasing in −i, i ∈ [ic, 1). Thus, Tc(i) ⊆ Tc(ic) for all i ∈ [ic, 1).

This proposition holds due to an easy geometric argument, again take a
look at Figure A.5: when i decreases, the point (1− i, 0) moves to the right
and the two internal angles γl(i) and γr(i) increase. The computations for
both propositions are performed in the following Section A.5.2. The reader
might skip those and proceed with Section A.6, where we investigate the full
system.

A.5.2 Invariance and monotonicity of Tc(i)

We analyze the (ā, b̄)-system and the set Tc(i) in detail. We prove that the
Flow (A.30) at the boundary of Tc(i) points inwards, and that the sets Tc(i)
are increasing in −i. We formalize what is sketched Figure A.5, and begin
by examining the eigenvector l+(i) at the fixed point (ā, b̄) = (0, 0):
Lemma A.12. Let 1 > i > ic, and let l+(i) = (λ−(i), 1 − i) be defined
as in (A.31). The quotient of the absolute values of the b̄-component and
ā-component of l+(i) is increasing in −i.

Proof. The claim is equivalent to

d

di

|λ−(i)|
1− i

> 0. (A.35)

Recall that α−(i) = −c/2−
√
c2/4 + i− 1 < 0. A computation reveals that

d

di

|λ−(i)|
1− i

= − d
di

λ−(i)

1− i

=

1−i
2
√
c2/4+i−1

+ c
2 +

√
c2/4 + i− 1

(1− i)2

=
1− i+ c

√
c2/4 + i− 1 + 2( c

2

4 + i− 1)

2(1− i)2
√
c2/4 + i− 1

> 0,

(A.36)

the last inequality holds since ic < i implies i > 1− c2/4.
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Now, since γl(i) is the angle between the two vectors (1, 0) and −l+(i),
the previous Lemma directly implies
Corollary A.13. Let c > 0 and ic ≤ i1 < i2 < 1. It holds that γl(i1) >
γl(i2), the angle γl(i) is increasing in −i.

For the invariance of Tc(i), we need
Lemma A.14. For any p > 0, the Flow (A.30) at the point (ā, b̄) = −p·l+(i)
points inwards Tc(i).

Proof. Let Linw :=
(
1− i,−λ−(i)

)
be orthogonal to l+(i) and point inwards

Tc(i). The claim of the Lemma is now equivalent to〈(ā′
b̄′

)
, Linw

〉
> 0. (A.37)

Let (ā, b̄) = −p · l+(i). First compute the Flow (A.30):(
ā′

b̄′

)
=

(
−p(1− i)

−pλ−(−pλ− + i− 1)− c
(
− p(1− i)

))
= p

(
−(1− i)

pλ2
− + (1− i)(λ− + c)

)
.

(A.38)

Its part in direction Linw is given by〈(ā′
b̄′

)
, Linw

〉
= −p

[
(1− i)

(
1− i+ λ−(λ− + c)

)
+ pλ3

−

]
= −p

[
(1− i)

(
1− i+ i− 1

)
+ pλ3

−

]
= −p2λ3

− > 0.

(A.39)

For the fixed point (ā, b̄) = (1 − i, 0), we get similar results concerning
its unstable eigenvector r+(i):
Lemma A.15. Let 1 > i > ic, and let r+(i) = (−β−(i), 1 − i) be defined
as in (A.32). The quotient of the absolute values of the b̄-component and
ā-component of r+(i) is increasing in −i:

d

di

1− i
|β−(i)|

< 0. (A.40)

Proof. Recall that β−(i) = −c/2 −
√
c2/4 + 1− i. A computation reveals

that

d

di

1− i
|β−(i)|

= − d
di

1− i
β−(i)

= −
−β− + 1−i

2
√
c2/4+1−i

β2
−

< 0 (A.41)
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Now, since γr(i) is the angle between the two vectors (−1, 0) and −r+(i),
the previous Lemma implies
Corollary A.16. Let c > 0 and ic ≤ i1 < i2 < 1. It holds that γr(i1) >
γr(i2), the angle γl(i) is increasing in −i.

For the invariance of Tc(i), we need
Lemma A.17. For any p > 0, the Flow (A.30) at the point (ā, b̄) = (1 −
i, 0)− p · r+(i) points inwards Tc(i).

Proof. Let Rinw :=
(
i−1,−β−(i)

)
be orthogonal to r+(i) and point inwards

Tc(i). The claim of the Lemma is now equivalent to〈(ā′
b̄′

)
, Rinw

〉
> 0. (A.42)

Let p > 0. We compute the Flow (A.30) at(
ā
b̄

)
=

(
1− 0

0

)
− p · r+(i) =

(
1− i+ pβ−
p(i− 1)

)
:(

ā′

b̄′

)
=

(
p(i− 1)

(1− i+ pβ−)(1− i+ pβ− + i− 1)− cp(i− 1)

)
= p

(
i− 1

β−(1− i+ pβ−)− c(i− 1)

)
.

(A.43)

Its part in direction Rinw is given by〈(ā′
b̄′

)
, Rinw

〉
= p
[
(i− 1)2 − β−

[
β−(1− i) + pβ2

− − c(i− 1)
]]
. (A.44)

Since β− < 0, it follows that −p2β3
− > 0. Since p > 0, the proof is complete

if we can show that

(1− i)2 − β−
[
β−(1− i) + c(1− i)

]
≥ 0. (A.45)

After dividing by (1− i) > 0 and rearranging, this is equivalent to

1− i− cβ− ≥ β2
−. (A.46)

This is in fact an equality, since β−(i) = −c/2 +
√
c2/4 + 1− i.

Considering the invariance of Tc(i), we conclude the

Proof of Proposition A.10. We need to show that the Flow (A.30) at the
boundary of Tc(i) points inwards. The Lemmas A.14 and A.17 treat the left
and right edge of Tc(i), see again Figure A.5. For the third edge, we consider
points of type (ā, 0), where 0 < ā < 1 − i. The derivative at (ā, 0) is given
by
(
0, ā · (ā + i − 1)

)
. Its b̄-component is negative, hence it points inwards

Tc(i). The only points on the boundary of Tc(i) where the flow does not
point strictly inwards are the two fixed points (0, 0) and (1− i, 0).
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Considering the monotonicity of Tc(i), we conclude the

Proof of Proposition A.11. Let c > 0. The point (0, 1− i) moves to the
right as i decreases. Further, we have shown that the two internal angles
γl(i), γr(i) increase in −i, and so does Tc(i).

A.6 Attractor of the full system

We now analyze solutions of the full Wave System (A.7) under initial condi-
tion (a, b, i) = (a0, 0, i0), such that (a0, 0) ∈ Tc(i0) as defined in the previous
Section. In Section A.6.1, we apply the results about the two-dimensional
subsystem to the full system. Theorem A.18 states that as long as i(x) ≥ ic,
the (a, b)-components of the full system stay within the triangle Tc(ic). Thus,
it suffices to control i(x) ≥ ic, which we do in two steps.

In Section A.6.2, we prove via some rough bounds that i(x) ≥ ic for
sufficiently small initial values 0 ≤ a0 � 1. This result is refined in Section
A.6.3: the Lyapunov-stability of the limiting point at x = +∞ implies that
the entire trajectory including its limit is continuous in initial data. Care-
fully increasing a0, we increase the known attractor of the stable set S+∞,
resulting in Theorem A.27. This procedure is sketched in Figure A.6.

Assumption: If not explicitly stated otherwise, we will use the following
setup over the entire Section A.6: For c > 0, let i0 ∈ [ic, 1) and a0 ∈ [0, 1−i0],
which implies that (a0, 0) ∈ Tc(i0). Let a(x), b(x), i(x)|z≥0 be the solution of
the Wave Eq. (A.7) under initial values (a0, 0, i0).

A.6.1 Invariant region of the full system

Theorem A.18 (Invariant region of the full system). Assume that i(x) ≥
ic for all x ∈ [0,∞). We then can control the two remaining coordinates
a(z), b(z) of the wave. It holds that

a(x), b(x) ∈ Tc(ic) ∀x ∈ [0,∞). (A.47)

Within Tc(ic), a ≥ 0 and b ≤ 0. Notice that while a, i ≥ 0, it holds that
ci′ = −a(a+ i+ r) ≤ 0. This directly implies the following
Corollary A.19. Under the assumption that i(x) ≥ ic for all x ∈ [0,∞),
the trajectory stays non-negative and converges as x→ +∞:

a(x)→ 0,

b(x)→ 0,

i(x)→ i+∞ ∈ [ic, 1).

(A.48)
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Proof of Theorem A.18. In the full System (A.7) with coordinates (a, b, i),
neither b nor b′ depend on i′, but only on a and i. Thus, we can easily
compare the full system to the two-dimensional System (A.30) in coordinates
ā, b̄. At a phase-time x, the two vector fields (a′, b′) and (ā′, b̄′) for fixed value
i = i(x) are equal, compare (A.7) and (A.30).

By Proposition A.11, this implies that (a′, b′) points strictly inwards
Tc
(
i(x)

)
. There are two irrelevant exceptions: for (a, b) = (0, 0), the sys-

tem has already reached its limiting state. The point (a, b) = (1 − i0, 0) is
a fixed point of the reduced, but not of the full system. In this case, since
b = 0, b′ = a(a + i − 1) = 0, b′′ = ai′ < 0 and ci′ < 0, a Taylor-expansion
reveals that for small times ε > 0: i(ε) changes much faster than a(ε) and
a(ε) ∈ Tc

(
i(ε)
)
.

Importantly, the set Tc
(
i(x)

)
is not decreasing as a function of x. Hence,

at each phase-time x ≥ 0, the two components a(x), b(x) can not escape
Tc
(
i(x)

)
. In fact, since i′ ≤ 0 and Tc(i) is increasing in −i, the set Tc

(
i(x)

)
is increasing in x, at most up to Tc(ic). Thus, a(x), b(x) remain within Tc(ic)
for all x ≥ 0.

With a similar argument, we can determine the rate of convergence:
Proposition A.20. Assume that i(z) ≥ ic for all z ∈ [0,∞), such that
(a, b, i)→ (0, 0, i+∞) as z → +∞ for some i+∞ ∈ [ic, 1). If i+∞ > c2/4− 1,
then convergence is exponentially fast with rate

µ+∞ = − c
2

+

√
c2

4
+ i+∞ − 1 < 0. (A.49)

Further, if i+∞ = c2/4 − 1, which can only happen if i+∞ = ic, then the
system converges sub-exponentially fast. As z → +∞, the distance to the
limit is of order z · e−

c
2
z.

Proof. In the case i+∞ ∈ (ic, 1), all eigenvalues of the limit are simple, we
refer to Section A.4. The system converges exponentially fast, as shown
in Theorem A.6. It remains to determine the rate of convergence. The
two candidates are λ± = − c

2 ±
√

c2

4 + i+∞ − 1. Corresponding to λ±, the
projections of the eigenvectors into the (a, b)-plane are given by

l± :=

(
λ∓

1− i+∞

)
. (A.50)

We know that a(z), b(z) ∈ Tc(i+∞) for all z ≥ 0. At (0, 0), the triangle
Tc(i+∞) is bounded by the line −l+, see Definition A.9 and Figure A.5.
Since 0 > λ+ > λ−, the direction of l− is steeper than that of l+, such
that the line {q · l− | q ∈ R} lies outside Tc(i+∞) for all q 6= 0. Thus, the
two components a(z), b(z) cannot converge towards (0, 0) along −l−. But
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since they converge exponentially fast, the only possible remaining rate of
convergence is λ+.

We do not have a complete description of the asymptotics around the
fixed point for the degenerate case λ+ = λ− = −c/2. However, under the
assumption that the system stays non-negative and converges, the relation
(a, b, i)′ = − c

2 · (a, b, i) + o(|(a, b, i)|2) holds asymptotically. This will be
proven in Theorem A.27 (which does not rely on the type of convergence).
The eigenvalue −c/2 has algebraic multiplicity 2, but geometric multiplic-
ity 1. It is well-known that this results in sub-exponential convergence, cf.
Chapter 9 in [20].

A.6.2 A small attractor

In view of the previous paragraph, convergence and non-negativeness follow
if we can show that i(z) ≥ ic for all z ≥ 0. If we choose a0 small enough,
some rough bounds do the trick. We control the total mass of active particles
via
Lemma A.21. Fix c > 0, i0 ∈ (ic, 1) and let a0 ∈ [0, (1 − i0)/2]. Under
the assumption that i(s) ≥ ic is true for all s ∈ [0, x], there exists a finite
constant L(c, i0) ≥ 0, such that the following bound holds for all s ∈ [0, x]:∫ s

0
a(t) dt ≤ ca0 − b(x)

1− (i0 + a0)
≤ L · a0. (A.51)

Proof. With the help of Theorem A.18, we can use that a(s), b(s) ∈ Tc(ic)
for all s ∈ [0, x]. We integrate a(s) ·

[
1− i(s)

]
= a2(s)− b′(s)− cb(s) and use

that b(0) = 0:∫ x

0
a(s) ·

[
1− i(s)

]
ds = ca0 − ca(x)− b(x) +

∫ x

0
a2(s) ds. (A.52)

By monotonicity: 1− i0 ≤ 1− i(s) and 0 ≤ a(s) ≤ a0. It follows that

(1− i0 − a0)

∫ x

0
a(s) ds ≤ ca0 − ca(z)− b(z)

≤ ca0 − b(z),

⇔
∫ x

0
a(s) ds ≤ ca0 − b(x)

1− (i0 + a0)
,

(A.53)

where we need a0 + i0 < 1 to avoid a blow-up, which is true by our choice of
a0. It remains to bound −b(x). Take a look at the flow in the (a, b)-plane in
Figure A.5. It holds that a(x), b(x) stay within Tc(ic). Within the triangle
Tc(ic), it holds for the left inner angle γl(ic) that

tan
(
γl(ic)

)
≥ |b|
|a|
. (A.54)

Thus, also −b(x) ≤ tan
(
γl(ic)

)
· a(z) ≤ L1 · a0.
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Since we can bound the total mass of active particles, we can also bound
the change of i(z):
Proposition A.22 (Small attractor of S+∞). Fix c > 0 and i0 ∈ (ic, 1).
There exists a constant M(c, i0, r), 0 < M � 1, such that for all 0 ≤ a0 ≤
M :

i(x) ≥ ic ∀x ≥ 0. (A.55)

Hence, also a(x), b(x) ∈ Tc(ic) for all z ≥ 0. The trajectory is non-negative
and converges to S+∞ as x→ +∞.

Proof. As long as i(x) ≥ ic, it must be that a(x), b(x) ∈ Tc(ic) by Theorem
A.18. Assume there exists finite phase-time τ := infz≥0{i(z) < ic}:

i(τ) = i0 +

∫ τ

0
i′(z) dz = i0 −

1

c

∫ τ

0
a(s)

[
a(s) + i(s) + r

]
ds

≥ i0 −
1

c

∫ τ

0
a(s)

[
1 + r

]
ds,

(A.56)

where we used a(s) + i(s) ≤ 1. For z ≤ τ and a0 sufficiently small, we can
apply Lemma A.21. This implies that there is a finite constant L, which
does not depend on a0, such that

i(τ) ≥ i0 −
L

c
(1 + r) · a0. (A.57)

The right-hand side is strictly larger than ic for sufficiently small a0, say
a0 ≤M , and the bound is independent of the phase-time. Thus, there is no
such τ for a0 ≤M .

A.6.3 Extending the attractor

The previous section ended with a condition of type a0 � 1, under which
the system stays non-negative and converges. However, given a0 and i0 and
under the assumption that the system converges, we can explicitly calculate
its limit i+∞. Then, for fixed i0, we continuously deform the trajectory while
increasing a0 up to some upper bound a∗(i0), as sketched in Figure A.6. This
results in Theorem A.27.

We apply Proposition A.3 to interrelate the limit (0, 0, i+∞) of the tra-
jectory to its initial data (a0, 0, i0):
Lemma A.23. If i(z) ≥ ic, such that the system stays non-negative and
converges to (0, 0, i+∞) as x→ +∞, then i+∞ can be written as a function
of a0 and i0:

i+∞(a0, i0) = 1−
√

(i0 + a0 − 1)2 +
1 + r

c2
(a2

0 + 2c2a0). (A.58)

The function i+∞(a0, i0) is decreasing in a0, for a0 ∈ [0, 1− i0].
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i

i+∞ = ic = 0
a

a0 = 0.05 a0 = a∗(i0) ≈ 0.42

Figure A.6: Trajectories of a(x), i(x) of the Wave System (A.7) for c = 2, r = 0.
Initial values are b(0) = 0, i0 = 0.5, and a0 such that a0 ∈ [0, a∗(i0) ≈ 0.42]. The
upper bound a∗ is given in Definition A.25. Trajectories with such initial data
converge and stay non-negative, since i(z) ≥ ic.

Proof. We apply Proposition A.3, and solve the resulting system for i+∞.
In the present case, since a0 6= 0, this results in a quadratic equation with
two possible solutions. Since i(x) is decreasing, it must be that i+∞ <
1, which uniquely determines (A.58). A short computations proves that
∂
∂a0

i+∞(a0, i0) ≤ 0.

We look for values of a0 that ensure i+∞ ≥ ic. Thus, we rearrange (A.58)
for a0, set i+∞ = ic, and choose the only possible positive solution of the
resulting quadratic equation:
Lemma A.24. Given i0 and under the assumption that i+∞ = ic, the value
of a0 is uniquely determined by

α(i0) :=
c2

1 + c2 + r

{
− (i0 + r)

+

√
(i0 + r)2 +

c2 + 1 + r

c2

(
(1− ic)2 − (1− i0)2

)}
.

(A.59)

Equation (A.59) can be restated as i+∞
(
α(i0), i0

)
= ic, but keep in mind

that still have to prove convergence. It can easily be seen that α(ic) = 0.
Since we require that a0 ∈ [0, 1− i0], such that a0 ∈ Tc(i0), this leads to our
Definition A.25 (Upper bound for a0). For fixed c > 0 and, we define

a∗(i0) := min
{
α(i0), 1− i0

}
, for i0 ∈ [ic, 1). (A.60)

This will hold as sharp upper bound for a0, such that the trajectory stays
non-negative and converges. Before we state the corresponding theorem, we
perform a last check that we are in the correct setup:
Lemma A.26. Let i0 ∈ [ic, 1) and a0 ∈ [0, a∗(i0)]. If the system stays
non-negative and converges to (0, 0, i+∞), then

i+∞(a0, i0) ∈ [ic, i0], (A.61)

75



A Publication: Traveling waves of an FKPP-type model for self-organized growth

where i+∞(a0, i0) is given as in Lemma A.23.

Proof. It holds that i+∞(0, i0) = i0. The claim follows since i+∞(a0, i0) is
decreasing in a0 and since a∗(i0) ≤ α(i0), where i+∞

(
α(i0), i0

)
= ic.

After all these preparations, we are now ready to prove that the system
converges and stays non-negative. We state
Theorem A.27 (Attractor of S+∞). For r ≥ 0, c > 0, let i0 ∈ [ic, 1) and
a0 ∈

[
0, a∗(i0)

]
. Let a(x), b(x), i(x) be the solution of Eq. (A.7) with initial

data (a0, 0, i0).
It holds that a(x), i(x) ≥ 0 and i′(x), b(x) ≤ 0 for all x ≥ 0. As x→ +∞,

a(x) and b(x) converge to 0, and i(x) converges to

i+∞(a0, i0) = 1−
√

(i0 + a0 − 1)2 +
1 + r

c2
(a2

0 + 2c2a0) ∈ [ic, 1). (A.62)

The type of convergence depends on i+∞ and is given in Proposition A.20.

Proof. Notation: We fix i0 ∈ (ic, 1) and change only a0. If i0 = ic, we must
choose a0 = 0. For a compact notation, Φx(x) is the state of the system at
phase-time x, starting in x = (a, b, i). If the limit of a trajectory exists, we
denote

Φ+∞(a0, 0, i0) := lim
x→+∞

Φx(a0, 0, i0) = (0, 0, i+∞). (A.63)

Step 1: starting interval
For a0 positive but small enough, Proposition A.22 grants that for all x ≥ 0:

i(x) ≥ ic and a(x), b(x) ∈ Tc(ic), (A.64)

where Tc(ic) is a bounded invariant region that contains only points such
that a ≥ 0, b ≤ 0. Thus, a(x), i(x) → (0, i+∞) monotone. With the help of
Lemma A.23, we can explicitly calculate i+∞ as stated in Eq. A.62, and our
claim holds on some small non-empty interval a0 ∈ [0, au).

Step 2: neighborhood of existing trajectories
Pick some a0 < a∗(i0) for which the statement is already proven. By choice
of a0, it holds that i+∞ > ic. Thus, the limit Φ+∞(a0, 0, i0) is Lyapunov
stable by our previous analysis of the asymptotics, see Theorem A.6: for
every ε∞ > 0, there exists a δ∞ > 0, such that

||x− Φ+∞(a0, 0, i0)|| < δ∞ ⇒ ||Φx(x)− Φ+∞(a0, 0, i0)|| < ε∞ (A.65)

for all x ∈ [0,∞). Choose ε∞ ≤ i+∞(a0, i0) − ic and assure that 0 < δ∞ ≤
ε∞. This grants i(x) ≥ ic after entering the δ∞-neighborhood. Within this
attractor, also a(x) ≥ 0 in view of Theorem A.18, since i(x) ≥ ic.
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Starting in (a0, 0, i0), we follow the trajectory up to some finite time τ ,
where it has entered the δ∞-neighborhood:

||Φτ (a0, 0, i0)− Φ+∞(a0, 0, i0)|| ≤ δ∞
2
. (A.66)

The derivative of the system is locally Lipschitz and all trajectories are within
a bounded domain. Thus, the trajectories Φx(x0) are uniformly continuous in
initial data x0 on any finite time interval [0, T ], with respect to the maximum
norm ||.||[0,T ]. This is a classic result and can easily be proven via a Grön-
wall’s inequality, we refer to Chapter 2 of the textbook of Hsieh and Yasutaka
[79]. There exists some δ0 > 0, s.t. for all x ∈ R3 with ||x− (a0, 0, i0)|| < δ0:

||Φx(x)− Φx(a0, 0, i0)||[0,τ ] <
δ∞
2
. (A.67)

This implies for all such trajectories Φx:

1) ||Φτ (x)− Φ+∞(a0, 0, i0)|| < δ∞, and (A.68)
2) i(x) ≥ ic ∀x ∈ [0, τ ]. (A.69)

In particular, Φτ (x) lies within the δ∞-neighborhood, so ultimately

3) i(x) ≥ ic ∀x ≥ 0. (A.70)

Again, Theorem A.18 implies a(x), i(x) ∈ Tc(ic) for all x ≥ 0. As before,
the system is integrable and converges as x → +∞, so we can explicitly
calculate i+∞(a0, i0). Thus, our claim holds for all starting points a small
open neighborhood of (a0, 0, i0).

Step 3: limits of trajectories
Assume that the claim holds for all a0 ∈ [0, au). For all trajectories starting
in (a0, 0, i0), where a0 ∈ [0, au), it holds that i(x) is monotone and bounded
from below by ic, such that a(x), b(x) stay within Tc(ic). Fix any finite
time-horizon [0, T ]. As mentioned before, the trajectories Φx(a0, 0, i0) are
uniformly continuous in initial data on finite time-intervals, and thus form a
Cauchy-sequence on ||.||[0,T ] as a0 → au. Since T can be chosen arbitrarily
large and since the limits Φ+∞(a0, 0, i0) are also continuous in a0, our claim
holds for the trajectory that starts in au.

Step 4: conclusion
By step 1, the claim holds for a0 in some small interval [0, au). By step
3, it then also holds for a0 = au. If now au < a∗, the claim holds for
a0 ∈ [0, au + ε) by step 2 for some ε > 0. Iterating these two steps, the
claim ultimately holds for all a0 ∈

[
0, a∗(i0)

]
. In particular, we have proven

that the trajectories Φz(a0, 0, i0) are uniformly continuous with respect to
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initial data on z ∈ [0,+∞]. This continuity allows us to finish the proof
of Proposition A.20. In the non-critical cases where c2/4 + i+∞ − 1 > 0,
the trajectories converge along a stable manifold with rate of convergence
−c/2 +

√
c2/4 + i+∞ − 1. As c2/4 + i+∞ − 1 → 0, the critical trajectory

must converge along the limit of these manifolds.

A.7 The complete trajectory

We track the non-negative branch of the unstable manifold of S−∞, see
(A.14), and show that it stays positive and enters the attractor of S+∞ from
the previous section, cf. Theorem A.27.

Assumption: We will use the following setup over the entire Section
A.7: Let i−∞ > 1 and let a(z), b(z), i(z) be the unique solution of the ODE-
System (A.7) that emerges from (0, 0, i−∞) as z → −∞ and where a(x) > 0
asymptotically as x→ −∞.

For all i−∞ > 1, existence and uniqueness of these trajectories have been
proven in Section A.4. Moreover, we know their asymptotic behavior:
Lemma A.28. The following holds as x→ −∞:

a(x) > 0, b(x) > 0, (a+ i)′ < 0. (A.71)

Proof. The first two inequalities are given by Theorem A.5, which also yields
b′(x) > 0 asymptotically. Noticing that c(a + i)′ = −a(1 + r) − b′ < 0
completes the proof.

A.7.1 The maximum of active particles

For connecting these trajectories with the attractor of S+∞, we will prove
Proposition A.29 (The maximum of active particles). There exists a finite
phase-time z0, such that b(z0) = 0 for the first time.

We will prove that the sum a(z) + i(z) decreases below 1. Given this,
the term cb(z) + b′(z) = a(z) · [a(z) + i(z)− 1] becomes negative, so b must
eventually reach 0.
Lemma A.30. As long as b(s) > 0 for all s ∈ (−∞, z], it holds that

b(x) + i′(x) < 0. (A.72)

Proof. In view of the asymptotic behavior of the trajectory, described in
Lemma A.28, assume that there exists a finite time x∗, such that for the
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first time b(x∗) + i′(x∗) = 0, but still b(x∗) > 0. The wave-equations 0 =
b′ + cb+ a− a(a+ i) and 0 = ci′ + a(a+ i) + ra imply that

0 = cb(x∗) + ci′(x∗) (A.73)
= −a(x∗) · (1 + r)− b′(x∗) (A.74)
= c · b(x∗)− a(x∗) ·

[
a(x∗) + i(x∗) + r

]
. (A.75)

Rearranging the third line yields cb(x∗) = a(x∗) ·
[
a(x∗)+ i(x∗)+r

]
. As long

as x < x∗, it holds that b(x) + i′(x) < 0, hence also

cb(x) < a(x) ·
[
a(x) + i(x) + r

]
. (A.76)

However, equality at x = x∗ implies that

d

dx
cb(x)

∣∣∣
x∗
≥ d

dx
a(x) ·

[
a(x) + i(x) + r

]∣∣∣
x∗
, (A.77)

which we can rewrite, using both (A.74) and (A.75) :

c · b′(x∗) ≥ b(x∗) ·
[
a(x∗) + i(x∗) + r

]
+ a(x∗) ·

[
b(x∗) + i′(x∗)

]
=
a(x∗)

c
·
[
a(x∗) + i(x∗) + r

]2
+ 0 ≥ 0.

(A.78)

But a(x∗) > 0, so Eq. (A.74) implies that b′(x∗) = −(1 + r)a(x∗) < 0. This
contradicts (A.78).

Lemma A.31. As long as b(s) > 0 for all s ∈ (−∞, z], it can not happen
that a(x) + i(x) converges to some finite L > 0.

Proof. By the previous lemma: (a + i)′ < 0 while b > 0. Assume that
a(x) + i(x) converges to a finite value L > 0 from above, which we denote as
a(x)+ i(x) ↘ L. This implies that also b+ i′ ↗ 0. By the Wave Equations
(A.2), these two expressions are equivalent to

−a(1 + r)− b′ ↗ 0 and (A.79)
cb− a(a+ i+ r) ↗ 0. (A.80)

The first convergence indicates that b′ ≤ δ < 0 after some time xδ, since a is
strictly increasing and hence positive. The second statement is equivalent to
cb− a · (L+ r) ↗ 0. Thus, also b is increasing. But b′(x) < 0 for all x ≥ xδ
and while b > 0, a contradiction.

We can now show that there exists a finite phase-time x0 such that
b(x0) = 0, finishing the
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Proof of Proposition A.29. By the previous lemma, a(x)+i(x) decreases
below every positive value as long as b(x) > 0. In particular, for some ε > 0:
a(τ) + i(τ) ≤ 1− ε after some phase-time τ . Then for all x ≥ τ , since a > 0:

cb(x) + b′(x) = a(x) ·
[
a(x) + i(x)− 1

]
≤ a(x) · (1− ε− 1) = −a(x)ε < 0.

(A.81)

Either cb(x) < 0 and the system has already passed a first local maximum of
a(x), or we may assume that b′(x) ≤ −a(τ)ε = −δ < 0. If now b′(x) ≤ −δ,
then b(x) reaches zero after a finite time z0, which can not be larger than
τ + b(τ)

δ .

A.7.2 Reaching the attractor of S+∞

We now prove that (ax0 , 0, ix0) lies in the attractor of the stable set S+∞.
Therefore, we show that ax0 ≤ a∗(ix0), then Theorem A.27 ensures non-
negativity and convergence as z → +∞. We again use Proposition A.3, now
to interrelate (0, 0, i−∞) and (az0 , 0, iz0):
Lemma A.32. The following holds at phase-time x0:

ax0 > 0, ax0 + ix0 ≤ 1, (A.82)

ax0 =
c2

c2 + 1 + r

{
− (ix0 + r)

+

√
(ix0 + r)2 +

c2 + 1 + r

c2

(
(i−∞ − 1)2 − (1− ix0)2

)}
. (A.83)

In the case i−∞ ∈ (1, 2− ic], then additionally

ix0 ∈ (ic, 1), ax0 ∈ (0, 1), (A.84)

and the trajectory is non-negative on the interval (−∞, x0].

Proof. As x → −∞, all a(x), b(x), b′(x), i′(x) have exponential and hence
integrable tails, cf. Theorem A.5. We thus can apply Proposition A.3 on
the interval (−∞, x0], for finite x0. This results in Eq. (A.83), we omit the
intermediate steps. It holds that ax0 > 0 because b(x) > 0 for all x < x0.

In particular, ax0 > 0 implies that the second summand under the root
in (A.83) must be strictly positive, which yields (i−∞ − 1)2 > (1 − ix0)2.
Since b(x0) = 0 for the first time, it must hold that b′(x0) ≤ 0. Given this,
we use b′(x0) + cb(x0) = ax0(ax0 + ix0 − 1) to bound 0 ≥ ax0(ax0 + ix0 − 1).
Since ax0 > 0, this shows that ix0 ≤ 1− ax0 < 1.

If we assume additionally that i−∞ ∈ (1, 2 − ic], then (i−∞ − 1)2 >
(1− ix0)2 implies that ix0 > 2− i−∞ ≥ ic. Up to x0, a(z)+ i(z) is decreasing,
which was proven in Lemma A.30. Since a(z) is strictly increasing up to
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x0, i(z) must be strictly decreasing, but not below i(z0) > 0. Hence, the
trajectory stays positive. The inequality az0 + iz0 ≤ 1 implies that az0 <
1.

This allows us to connect the unstable manifold of (0, 0, i−∞) with the
attractor of S+∞:
Proposition A.33 (Reaching the attractor of S+∞). Let i−∞ ∈ (1, 2− ic].
The non-negative branch of the unstable manifold of (0, 0, i−∞) reaches the
point (ax0 , 0, ix0), where ax0 ∈ (0, 1) and ix0 ∈ (ic, 1). It then holds that

0 < ax0 ≤ a∗(ix0), (A.85)

for a∗ like in Definition A.25. In view of Theorem A.27, the trajectory that
starts/continues in such a point (ax0 , 0, ix0) converges to S+∞ and stays non-
negative.

Proof. We have just shown that ix0 , ax0 > 0 and that ax0 + ix0 ≤ 1. Recall
Definition A.25: a∗(i0) = min{α(i0), 1− i0}, where α(i0) is given by

α(i0) =
c2

1 + c2 + r

{
− (i0 + r)

+

√
(i0 + r)2 +

c2 + 1 + r

c2

(
(1− ic)2 − (1− i0)2

)}
.

(A.86)

We have already verified that ax0 ≤ 1− ix0 , so proving ax0 ≤ α(ix0) suffices
for proving ax0 ≤ a∗(ix0). By (A.83), we know that

ax0 =
c2

c2 + 1 + r

{
− (ix0 + r)

+

√
(ix0 + r)2 +

c2 + 1 + r

c2

(
(i−∞ − 1)2 − (1− ix0)2

)}
.

(A.87)

The two expressions (A.86) and (A.87) are very similar. After some elemen-
tary steps, the claim ax0 ≤ α(ix0) is equivalent to

(i−∞ − 1)2 ≤ (1− ic)2. (A.88)

This is equivalent to i−∞ ≤ 2 − ic, since i−∞ > 1 and ic ≤ 1. But that is
just how we have chosen i−∞.
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A.8 Concluding the proof of the main result

With the results from the previous sections, we complete the

Proof of Theorem A.1. Consider the ODE System (A.7) in coordinates
a, b, i and let i−∞ ∈ (1, 2 − ic]. The unstable manifold of the fixed point
(a, b, i) = (0, 0, i−∞) has dimension one. Its two branches are the only tra-
jectories that leave the fixed point, which is stated in Theorem A.5. There is
one branch of the unstable manifold such that a(x) > 0 as x→ −∞, we fol-
low this trajectory in positive direction of x. There is a finite phase-time x0,
such that for the first time b(x0) = 0, see Proposition A.29. For all z < x0,
it holds that a(x), b(x), i(x) > 0. Denote the state of the system at x0 as
(ax0 , 0, ix0). Lemma A.32 states that ix0 ∈ (ic, 1), Proposition A.33 states
that ax0 ∈ (0, a∗(ix0)], for a∗ as in Definition A.25. By Theorem A.27, we
then know that (ax0 , 0, ix0) lies in a non-negative attractor of the set S+∞.
Thus, a(x), b(x), i(x) → (0, 0, i+∞) as x → +∞, where i+∞ ∈ [ic, 1), and
ultimately a(x), i(x) ≥ 0 for all x ∈ R.

For any non-negative and bounded solution, the identity i−∞+ i+∞ = 2
holds by Proposition A.4. For c > 0 and i−∞ ∈ (1, 2 − ic], the previous
paragraph proves existence and uniqueness of the claimed wave. For i−∞ =
1, the constant solution can be the only non-negative and bounded one.

We then consider an arbitrary non-constant, bounded and non-negative
solution. By monotonicity of i(z), it must converge as z → ±∞. If we
assume that i−∞ ∈ (1, 2− ic], it is one of the above solutions. If we assume
that i−∞ > 2 − ic, then i+∞ < ic. In this case, the trajectory can not stay
non-negative as z → +∞, which is stated by Proposition A.7, contradicting
the assumption.

A.9 Discussion and outlook at stability

A.9.1 FKPP-waves

We have given a description of all bounded and non-negative traveling waves
of the Reaction-Diffusion System (A.1). For the most related systems, the
FKPP-equation [91, 50], the FitzHugh-Nagumo-equation [51, 112] and com-
bustion equations [15], no such continuum of traveling waves has yet been
constructed.

Still, the non-negative traveling waves of System (A.1) are closely related
to pulled FKPP-waves with only a single type of particles [50, 91]. The
equation for such a wave w(z) reads 0 = cw′+w′′+F (w). For the purpose of a
simple comparison, we let F (w) = gw−w2, where g > 0 is the initial growth
rate of the particles. In this case, Theorem A.1 states that the convergence
of System (A.1) as z → +∞ is identical to that of w, if g = 1− i+∞, see e.g.
[148]. In words, the asymptotic growth speed of traveling waves of System
(A.1) coincides with that of simple FKPP-waves in presence of a constant
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density i+∞ of inhibiting particles. Moreover, Theorem A.1 implies that
ic = 0 for all c ≥ 2. Thus, the minimal speed of an invasive front, where
i+∞ = 0, is given by cmin = 2. Again, this coincides with the minimal
wave speed of the associated FKPP-equation, i.e. in the absence of inactive
particles. It is this critical front which can be interpreted as the most natural
one, our simulations indicate that it always arises under compact initial data.
If we assume convergence, a technique of Berestycki, Brunet & Derrida [16]
yields an upper bound for the speed of the traveling front, just by ignoring
the dampening influence of the inactive particles. For compact initial data,
the system always chooses the smallest possible wave speed, as suggested.

The emergence of traveling fronts is known for many reaction-diffusion
systems. We suggest the literature [24, 156, 114] for more examples with a
biological motivation. Rigorous proofs of these phenomena are rare. Often,
only the form of the traveling waves is analyzed analytically. The FKPP-
equation is one of the cases, where the convergence of the front of the PDE
towards a traveling wave solution can be proved. The first rigorous proof
was done by Kolmogorov, Petrovski & Piscunov in 1937 [91]. Extensions
of this result to more general initial data and a more precise description
of the speed of the front have been provided by Uchiyama [148] and M.
Bramson [22]. The approach of Kolmogorov et al. and Uchiyama seems to
be restricted to systems with only a single type of particles, as it relies on a
maximum principle and monotonicity of the front. The approach of Bramson
relies on a relationship between the FKPP-equation and branched Brownian
motion, which can not be applied in the present case since the inactive
particles do not diffuse. A singular perturbation of System (A.1), which
again introduces a small diffusion to the inactive particles will be subject to
future investigations. Despite the fact that this system would be biologically
interesting, since no tissue or population is entirely static, this would also
rule out some difficulties when analyzing the stability of the traveling waves
against perturbations.

A.9.2 Stability of the traveling waves

We give a brief introduction to the stability of traveling waves against small
perturbations, in the spirit of the introduction in [63]. A good overview,
where the following concepts are presented in greater depth, has been written
by Sandstede [130].

Consider a reaction-diffusion system

Yt = D · Yxx +R(Y ), (A.89)

where Y ∈ Rn, x ∈ R, t ≥ 0, D = diag(d1, . . . , dn) with di ≥ 0, and R a
smooth reaction. In the moving frame z = x− ct, the System reads

Yt = D · Yzz + cYz +R(Y ). (A.90)
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A traveling wave w(z) with speed c is a constant solution of Eq. (A.90).
The wave w is called nonlinearly stable in a space X , if any solution of the
PDE (A.90) which starts in Y0 = w + Ỹ , where Ỹ ∈ X is a sufficiently
small perturbation, converges to a shift of w. This type of stability is often
encoded in the spectrum of the operator L, that is obtained by linearizing
the equation for the perturbation Ỹ in (A.90) around to the constant part
w:

Ỹt = D · Ỹzz + cỸz + JR(w) · Ỹ := LỸ , (A.91)

where JR is the Jacobian of the reaction R. Let L : X → X be the operator
given by Ỹ → LỸ . We say that the wave w is spectrally stable in X if
the spectrum of L is contained in the half-plane Re(γ) < 0, except maybe a
simple a simple eigenvalue at 0 (that corresponds to the traveling wave itself,
if w′ ∈ X ). For diffusive systems, where det(D) > 0, a quite general theory
has been developed. If X is appropriately chosen, spectral stability implies
nonlinear stability, we refer to the literature [130, 63]. Classical results are
e.g. given for subspaces of X = H1, the L2-Sobolev space.

As explained in the next paragraphs, we are not aware of any rigorous
framework for studying the nonlinear stability of System (A.1). Several
technical problems arise, that so far have been treated only separately [63,
89].

Most importantly, the traveling waves of System (A.1) can not be stable
against perturbations in the classical sense, since the inactive particles nei-
ther react nor diffuse. Any initial deviation remains for all times, as shown
in Figure A.1. However, the actual front of the system does converge to
a traveling wave. For capturing this idea, we introduce the weighted space
X = H1

α with norm ||f ||H1
α

= ||f ·eαz||H1 for some α > 0. Nonlinear stability
in Hα

1 is referred to as convective stability. Convergence of the PDE in the
moving frame (A.90) in H1

α means that the front of the system approaches
the traveling wave, whereas any initial finite and local deviation is convected
towards z = −∞ and vanishes due to the weighting. A first rigorous result
regarding convective stability was obtained by Ghazaryan et al. [63]. They
could show that in some cases, spectral stability in H1

α implies convective
stability against small perturbations in H1

α ∩ H1. For their approach, the
authors require that the weight α can be chosen such that all eigenvalues γ
of L except zero fulfill Re(γ) ≤ ν < 0 and such that the derivative w′ ∈ H1

α

of the traveling wave is an eigenfunction that corresponds to a simple eigen-
value at zero. Unfortunately, this setting is not suited for studying pulled
FKPP-fronts: the assumption w′ ∈ H1

α implies that the continuous spectrum
of L touches the origin, see e.g. Chapter 6 in the work of Sattinger [132].

Another difficulty arises when studying critical pulled fronts (with min-
imal possible speed) whose tail as z → +∞ converges sub-exponentially, as
in Theorem A.1. In this case, the requirement w′ ∈ H1

α is only fulfilled for
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rather small values of α, which do not suffice for shifting the continuous spec-
trum of L to the left half-plane. For diffusive systems, nonlinear stability of
this more delicate case was first treated rigorously by Kirchgässner [89], a
recent overview is given in [47]. After introducing a small diffusion to the
inactive particles, we could apply this theory to the critical front.

For the most natural traveling wave solution, the critical one with speed
c = 2 and i+∞ = ic = 0, we performed a numerical analysis that strongly
indicates that this wave is spectrally stable in H1

α, when we choose α =
−µ+∞ = c/2. The details are presented in Appendix A.10.2. Thus, based
on the work of Ghazaryan et al. regarding convective stability [63] and the
work of Kirchgässner regarding critical fronts [89], we dare to make an edu-
cated guess: we expect that this traveling wave is convectively stable against
small perturbations in H1

c/2 ∩H
1.
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A.10 Appendices of this publication

A.10.1 Center manifold calculations

A.10.1.1 Review of center manifold theory

Definition A.34 (Normal form). Given a dynamical system dx/dt = f(x), x ∈
Rn around its fixed point 0 ∈ Rn, write x = (y, z) where y ∈ Rk, z ∈ Rl and
k + l = n, such that dx/dt = f(x) is equivalent to:

dy

dt
= A · y + g(y, z),

dz

dt
= B · z + h(y, z).

(A.92)

We require that the eigenvalues of A ∈ Rk×k have zero real parts and those of
B ∈ Rl×l have nonzero real parts. Further, both functions g : Rn → Rk and
h : Rn → Rl are smooth and vanish together with their first-order partial
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derivatives at the origin. Then, System (A.92) is called the normal form of
the system.

Proposition A.35. Let f : Rn → Rn be smooth. Let a dynamical system
dx/dt = f(x), x ∈ Rn have a fixed point x0 ∈ Rn, such that the eigenvectors
of the Jacobian Df(x0) span the entire Rn. The system can be written in
normal form as in Definition A.34.

The proof includes a change of coordinates into the system of eigenvectors
of the Jacobian Df(x0). This will be done explicitly in Section A.10.1.2. For
the underlying theory and the more general case, we refer to the monograph
of U. Kirchgraber & K.J. Palmer [90].
Definition A.36 (Center manifold). Consider a dynamical system in nor-
mal form (A.92). Let φ : Rk → Rl be a smooth function such that φ(0) = 0
and also its derivative Dφ(0) = 0. Assume that the set

CM =
{
y ∈ Rk, z ∈ Rl : z = φ(y)

}
(A.93)

is invariant under Dynamics (A.92). The set CM is called a center manifold
of the fixed point (due to its vanishing derivative at 0).

We will use a local version of the center manifold, which can be shown
to exist in a neighborhood of the fixed point:
Theorem A.37 (Local center manifold, cf. Theorem 4.1. in [90]). Consider
a smooth dynamical system in normal-form (A.92), where dim(y) = k ≥ 1,
such that the Jacobian at the fixed point has k eigenvalues with zero real part.
Let c1 + c2 = dim(z), where the matrix B has c1 eigenvalues with positive
real part and c2 eigenvalues with negative real part. Then locally, there ex-
ist a unique center manifold of dimension k, a unique unstable manifold of
dimension c1 and a unique stable manifold of dimension c2.

The center manifold can be written as
{

(y, z) : z = φ(y)
}
like in (A.93).

There exists a homeomorphism defined in an open neighborhood of the origin
which takes solutions of dx/dt = f(x) onto solutions of

dy

dt
= A · y + g

(
y, φ(y)

)
,

dz

dt
= B · z.

(A.94)

Definition A.38 (Error of approximation of the center manifold). Consider
a smooth dynamical system in normal-form (A.92). For a smooth function
T : Rk → Rl define the error of approximation of the normal form by

(HT )(y) := DT (y) ·
[
Ay + g

(
y, T (y)

)]
−B · T (y)− h

(
y, T (y)

)
. (A.95)
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Theorem A.39 (Approximating the center manifold, cf. Theorem 3 in [30]).
Consider a smooth dynamical system in normal form (A.92) with local center
manifold {(y, z) : z = φ(y)} as in (A.93). Let T : Rk → Rl be smooth with
T (0) = 0 and DT (0) = 0. Suppose that as y → 0, for some q > 1:

(HT )(y) = O(|y|q). (A.96)

Then, as y → 0, also

|T (y)− φ(y)| = O(|y|q). (A.97)

A.10.1.2 Calculating the normal form and the center manifold

We analyze the flow of the ODE System (A.7) around its fixed points by
applying the theory from the previous section. We therefore write the system
into normal form, see Def. A.34. For a fixed point (a, b, i) = (0, 0,K), we
begin with the affine transformation

j = i−K, (A.98)

and then decompose the resulting system into a linear part M and a non-
linear part G. To be concise with the notation from the previous section,
which is adopted from the existing literature, we use a vectorial notation
in coordinates (j, a, b), such that the center manifold can be written as{

(j, a, b) : (a, b) = φ(j)
}
.

Definition A.40. Given c > 0,K ∈ R, introduce the matrix M as

M :=

0 −K+r
c 0

0 0 1
0 K − 1 −c

 . (A.99)

Further, define the nonlinear functions g(j, a) := a2 + aj and G : R3 → R3:

G

ja
b

 := g(j, a) ·

−1
c

0
1

 . (A.100)

Lemma A.41 (Linear and nonlinear part). For c > 0,K ∈ R, the ODE
System (A.7) can be decomposed in its linear and nonlinear part. In coordi-
nates (j, a, b), where j = i−K, and using Def. A.40, this reads asj′a′

b′

 = M ·

ja
b

+G

ja
b

 . (A.101)
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Definition A.42. For given c > 0,K ∈ R, we define the discriminant

∆ :=

√
c2

4
+K − 1. (A.102)

The eigenvalues and eigenvectors of M are then given by (cf. (A.11))

λ0 = 0, λ± = − c
2
±∆, (A.103)

e0 =

1
0
0

 , e± =

K+r
c ·

λ∓
λ±

−λ∓
K − 1

 . (A.104)

Technical difficulties arise when the eigenvectors no longer span the entire
R3. We require K 6= 1 in view of (A.104), which also eliminates the case
λ+ = 0. For similar reasons, we also exclude the case that λ+ = λ−, so we
require that ∆ 6= 0. This is given if K 6= 1− c2/4.
Lemma A.43. Let c > 0 and K /∈ {1, 1 − c2/4}. The matrix M can be
written in diagonal form, such that M = EDE−1. The matrices D,E,E−1

are given by:

D = diag(λ0, λ+, λ−), (A.105)

E =

e0 e+ e−

 =

1 K+r
c ·

λ−
λ+

K+r
c ·

λ+
λ−

0 −λ− −λ+

0 K − 1 K − 1

 , (A.106)

E−1 =

1 − K+r
(1−K) − K+r

c(1−K)

0 1
2∆ − λ+

2∆(1−K)

0 − 1
2∆

λ−
2∆(1−K)

 . (A.107)

Lemma A.44 (Dynamics in normal form). Let c > 0 and K /∈ {1, 1 −
c2/4}. The eigenvectors e0, e+, e− of M form a basis of R3. We introduce
the coordinates (u, v, w), such that any x ∈ R3 can be written as x = u · e0 +
v · e+ + w · e−. The System (A.7) in coordinates (u, v, w) follows dynamicsu′v′

w′

 =

 0
λ+ v
λ−w

+ P (u, v, w) ·

−
1
c (1 + K+r

1−K )

− λ+
2∆(1−K)
λ−

2∆(1−K)

 , (A.108)

where P is a polynomial such that P (u, 0, 0) = 0:

P (u, v, w) := −
(
λ− v + λ+w

)
·
(
− λ− v − λ+w + u+

K + r

c

[λ−
λ+

v +
λ+

λ−
w
])
. (A.109)
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Proof. We change coordinates from u, v, w to j, a, b and back:u′v′
w′

 =

 0
λ+ v
λ−w

+ E−1 ·G(E ·

uv
w

). (A.110)

Now recall the functions G and g, see (A.100). Explicitely calculating the
nonlinear part E−1GE results in

E−1 ·G(E ·

uv
w

) = E−1 ·

−1
c

0
1

 · g(E ·

uv
w

)

=

−
1
c (1 + K+r

1−K )

− λ+
2∆(1−K)
λ−

2∆(1−K)

 · g
u+ K+r

c (λ−λ+ v + λ+
λ−
w)

−λ− v − λ+w
b
(
u, v, w

)


= P (u, v, w) ·

−
1
c (1 + K+r

1−K )

− λ+
2∆(1−K)
λ−

2∆(1−K)

 . (A.111)

Luckily, for evaluating g(j, a), we do not have to calculate the coordinate
b(u, v, w).

Now we have all ingredients for computing the center manifold. We use
the approximation argument from Theorem A.39:
Theorem A.45 (Asymptotic behavior). Let c > 0 and K /∈ {1, 1 − c2/4},
and let (a, b, i) = (0, 0,K) be a fixed point of the System (A.7). Locally
around (0, 0,K), the center manifold of the fixed point coincides with the set

{a = b = 0}. (A.112)

In a non-empty open neighborhood around (0, 0,K), the flow of the System
(A.7) is equivalent to u′v′

w′

 =

 0
λ+ v
λ−w

 , (A.113)

where u, v, w are the coordinates in the system of eigenvectors e0, e+, e− of
the matrix M , see (A.104).

Proof. In the normal form from Lemma A.44, the center manifold can be
calculated as a function φ(u) : R → R2. As u → 0, φ(u) ∈ O(u2), and
φ(u) can be approximated to any degree by some polynomial without linear
and constant parts. For some arbitrary approximation T : R → R2 with
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components Tv, Tw, we can estimate the error of the approximation (HT )(u)
by Theorem A.39. Inserting the normal form from Lemma A.44 results in

(HT )(u) =−DT (u) · P
(
u, T (u)

)
· 1

c
(1 +

K − r
1−K

)−
(
λ+ · Tv(u)
λ− · Tw(u)

)
− P

(
u, T (u)

)
·

(
− λ+

2∆(1−K)
λ−

2∆(1−K)

)
.

(A.114)

For the center manifold, (Hφ)(u) = 0. From Eq. (A.114), we can extract the
coefficients of the Taylor Expansion of φ(u) around the fixed point iteratively,
by choosing better and better approximating polynomials Tn. For the start,
take some polynomial T2(u) : R→ R2 of order 2. Let α, β ∈ R and define

T2(u) := (αu2, βu2). (A.115)

Note that P
(
u, T2(u)

)
= O(u3), for P as defined in (A.109). Thus

(HT2)(u) = O(u3)−
(
λ+ αu

2

λ− βu
2

)
. (A.116)

We see that for any approximation of type T2(u) = (αu2, βu2), the leading
error term is of order O(u3) if and only if T2(u) ≡ (0, 0). We conclude that
the second order approximation of φ is given by T2(u) ≡ (0, 0). By an easy
induction, it follows that Tn(u) = (0, 0) for all n ≥ 2, and so the local center
manifold is given by φ(u) = (0, 0). In the original system, this corresponds
to {a = b = 0}, which are the fixed points of the ODE (A.7). We can now
calculate the asymptotic flow in the normal form, given by (A.94). This
results in the claimed asymptotics (A.113), when we use that the nonlinear
part vanishes: P

(
u, φ(u)

)
= P (u, 0, 0) = 0.

A.10.2 Numerical evaluation of the spectrum of L

As announced in our discussion in Section A.9, we analyze the spectral sta-
bilty of the critical traveling wave. The theoretical background is presented
in [130, 63], the details about the computational approach are presented by
Barker et al. [12].

Here and from now on, c = 2 and we denote as a(z), i(z) the critical
traveling wave with speed c = 2 and i+∞ = 0. We denote the exponent
of the weight-function as α > 0 and analyze the spectral stability of the
critical traveling wave in the weighted L2-Sobolev space H1

α, with norm
||f ||H1

α
= ||f · eαz||H1 .

We linearize the PDE around a(z), i(z) and analyze the non-negative
spectrum of the resulting linear operator L, as defined in (A.91). For System
(A.1), this operator L : H2

α(R) ×H1
α(R) → H2

α(R) ×H1
α(R) acts on a pair
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of functions u ∈ H2
α, v ∈ H1

α, which correspond to perturbations of a and i,
respectively:

u 7→ u′′ + cu′ + u(1− (2a+ i))− va,
v 7→ cv′ + u(2a+ i+ r) + va.

(A.117)

The operator L is equivalent to a first-order operator L̃ : H1
α(R3)→ H1

α(R3),
when we introduce an auxiliary variable for u′. We will omit the tilde.

As will see in a moment, we only need to consider the point-spectrum of
L. Thus, for γ ∈ C with Re(γ) ≥ 0, we look for a function U ∈ H1

α that
solves LU = γ ·U . Now, γ ∈ C lies in the point spectrum of L if and only if
there exists a function U : R→ C3, U ∈ H1

α, which solves

d

dz
U = M(z, γ) · U, M(z, γ) :=

 0 1 0
γ + 2a(z) + i(z)− 1 −c a(z)

−2a(z)+i(z)+r
c 0 γ−a(z)

c

 .

(A.118)

It can easily be seen that the matrix M(+∞, γ) has eigenvalues

β1 =
γ

c
, β2 = − c

2
+
√
γ, β3 = − c

2
−√γ, (A.119)

whereas the matrix M(−∞, γ) has eigenvalues

β1 =
γ

c
, β2 = − c

2
+
√

2 + γ, β3 = − c
2
−
√

2 + γ. (A.120)

If U ∈ H1
α, then W (z) := U(z) · eαz is bounded and vanishes. The

function W (z) fulfills

W ′(z) =
(
M(z, γ) + α · 1

)
·W (z). (A.121)

Remark that the matrix M + α1 has the same eigenvectors as M , and that
its eigenvalues are shifted by α when compared to M . If M(±∞) + α1
has no eigenvalues with zero real-part, the theory of exponential dichotomies
implies that any bounded solution W (z) must vanish exponentially fast as
z → ±∞, and that it asymptotically approaches the unstable (resp. stable)
manifold of the constant matrix M(−∞, γ) as z → −∞ (resp. M(+∞, γ)
as z → +∞) [130]. Therefore, a bounded solution exists if and only if the
trajectories that emerge from these manifolds intersect. This allows us to
compute the Evans-function: it is a determinant that evaluates to zero if
and only if the solutions that decay at −∞ and those that decay at +∞ are
somehow linearly dependent.

We investigate the case α = c
2 , which is equal to the rate of convergence

of the wave as z → +∞, up to a sub-exponential term, see Theorem A.1. For
α = c

2 , then within the region {Re(γ) ≥ 0, γ 6= 0} the following holds: the
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dimension of the unstable space of M(−∞, γ) + c
2 ·1 is given by k− = 2, and

the dimension of the stable space ofM(+∞, γ)+ c
2 ·1 is given by k+ = 1. This

can easily be deduced from the corresponding Eigenvalues (A.119), (A.120),
which do not cross the imaginary axis. The values k− and k+ add up to the
dimension of the ODE (A.118). We say that {Re(γ) ≥ 0, γ 6= 0} is contained
in the region of consistent splitting of the operator L. This implies that the
non-negative part of the spectrum of L is contained in the point spectrum
of the operator, which is a standard result [130, 132]. Within the region of
consistent splitting, we can define the Evans-function E(γ).

Given γ with Re(γ) ≥ 0, γ 6= 0, we let X(z) be the unique (up to a
shift) solution of Eq. (A.121) that vanishes at z = +∞, and let Y1(z), Y2(z)
span the two-dimensional space of solutions of Eq. (A.121) that vanish at
z = −∞. The Evans-function is defined as

E(γ) := det
(
Y1(z)

∣∣Y2(z)
∣∣X(z)

)∣∣∣
z=0

. (A.122)

Re
(
(Ev(γ)

)

I
m
( Ev(

γ
))

Figure A.7: Numerical evaluation of the Evans-function (A.122) Ev(γ) for r = 0
and γ on the boundary of the Domain S, defined in (A.123). The Evans-function
for r = 1 is very similar. The origin is marked with a small red cross. The graph
does not enclose the origin and it can visually be seen that its winding number is
equal to zero. We conclude that the Region S contains no zeros of Ev(γ).

The Evans-function is not unique, but it holds that E(γ) = 0 if and only
if γ lies in the point spectrum of L. Moreover, E(γ) is analytic if X,Y1, Y2

are chosen such that they are analytic in γ [130]. Thus it suffices to calcu-
late E(γ) along the boundary of a domain: the winding number along this
contour then corresponds to the number of zeros inside the domain.

We use this to verify that there are no zeros of E(γ) within the set

S :=
{
γ ∈ C

∣∣∣Re(γ) ≥ 0, 10−3 ≤ |γ| ≤ 1000
}
, (A.123)
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where we keep a small distance from the origin to prevent that the eigenvalues
of the matrices M(±∞, γ) + c

2 · 1 touch the imaginary axis, and hope that
there are no unexpectedly large eigenvalues. We want to remark that for
systems with a degenerate diffusion, no general a-priori upper bound for the
size of the eigenvalues with non-negative real-part has been found yet, which
would allow for a numerical proof of spectral stability. It may be possible to
generalize the approach in [97]. Simple energy estimates exist for traveling
waves of diffusive systems, see e.g. Chapter 6 in [115].

The various numerical challenges that arise when computing the Evans-
function, as well as their solutions, are described in detail by Barker et al.
[12], who also suggest using their library STABLAB [13]. We gratefully
followed this suggestion, and computed the left-adjoint Evans-function, a
slight modification which is numerically advantageous in the present setting
[12]. The result is presented in Figure A.7 and yields a strong evidence that
the critical wave is spectrally stable in H1

c/2.

A.10.3 Rescaling the general system

Let rS , rA, D > 0 and rI ≥ 0, and consider the reaction-diffusion system

At = D ·Axx + rAA− rSA(A+ I),

It = rIA+ rSA(A+ I),
(A.124)

which is the general form of System (A.1). There exists a linear one-to-
one correspondence to the normalized form. Therefore, we rescale time and
space, s := rA · t, y :=

√
D/rA · x, and the densities of the particles, Ā :=

A · rS/rA, Ī := I · rS/rA. The rescaled dynamics of System (A.124) follow

Ās = Āyy + Ā− Ā(Ā+ Ī),

Īs =
rI
rA
Ī + Ā(Ā+ Ī),

(A.125)

which is equivalent to System (A.1) with r = rI
rA

. In view of this, we can
formulate a parameter-dependent version of Theorem A.1:
Theorem A.46. Let rS , rA, D > 0 and rI ≥ 0, and consider the System
(A.124) and a wave-speed c > 0. Set

ic := max
{

0,
1

rS

(
rA −

c2

4D

)}
. (A.126)

For each pair i−∞, i+∞ ∈ R+ such that

i+∞ ∈ [ic,
rA
rS

), i−∞ =
2 · rA
rS
− i+∞, (A.127)
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there exists a unique bounded and positive traveling wave a, i with speed c
such that

lim
x→±∞

a(z) = 0, lim
x→±∞

i(z) = i±∞. (A.128)

If c2

4D + rS · i+∞ − rA = 0, convergence as z → +∞ is sub-exponentially fast
and of order z · e−

c
2D
z. If c2

4D + rS · i+∞ − rA > 0, convergence as z → +∞
is exponentially fast. Convergence as z → −∞ is exponentially fast in all
cases. The corresponding rates are

µ±∞ = − c

2D
+

√
c2

4D2
+
rS · i±∞ − rA

D
. (A.129)

In particular, for any invading front, where i(z) → 0 as z → +∞, the
remaining density of particles at the back of the wave is given by i−∞ = 2· rArS .
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B Preprint:
Convective stability of the critical
waves of an FKPP growth process

This appendix reproduces exactly the content of the paper [93] with
the title "Convective stability of the critical waves of an FKPP growth
process", written by the author of this thesis. The preprint is publicly
available under https://arxiv.org/abs/2305.10228, [math.AP], 2023,
it has not been peer-reviewed yet. This preprint was summarized in
Chapter 4.

B.1 Introduction and results

We analyze an FKPP-system [50, 91] that models a self-organized growth
process. Considering the one-dimensional case z ∈ R, t ∈ R+

0 , the densities
A(t, z), I(t, z) ≥ 0 of active and inactive particles follow dynamics

∂

∂t
A =

∂2

∂z2
A+A−A(A+ I),

∂

∂t
I = d

∂2

∂z2
I + rA+A(A+ I), r, d ≥ 0.

(B.1)

This system was introduced by Hannezo et al. in the context of branching
morphogenesis [73]. The authors used a stochastic branching particle sys-
tem to model the morphogenesis of branched glandular structures. The PDE
(B.1) for d = 0 is the heuristic hydrodynamic limit of their stochastic system.
Existence and uniqueness of non-negative solutions of (B.1) follow by clas-
sical fixed-point theory, see e.g. Chapter 14 in [138]. Given the normalized
System (B.1), the general case can be obtained by rescaling [92].

We construct the traveling waves of System (B.1) and prove that for
d > 0, those with minimal speed are locally stable against perturbations.
The difficulty when analyzing this system is that the inactive particles I
do not react, only the active particles A branch and become inactive upon
collision. Thus, the system features a continuum of steady states

PI = {A = 0, I = K |K ∈ R}, (B.2)

and a-priori, we do not know which of these steady states are relevant.
Simulations show that the system forms traveling wave solutions, which

select for particular steady states among all possible ones, see Figure B.1.
FKPP-systems are well-known to form heteroclinic traveling wave solutions,
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Figure B.1: Simulation of System (B.1) for r, d = 0. Given an initial heap of
active particles A(z, 0) = 1/2 exp(−z2), and I(z, 0) = 0, two identical traveling
fronts arise, the right one is shown. After the separation of the two fronts away
from the origin, the density of the remaining inactive particles is given by I = 2
and the front moves asymptotically with speed c = 2.

that connect two different steady states [22, 50, 91, 48, 41]. A (right-) travel-
ing wave solution is constant in the moving frame x = z−ct, for a wave-speed
c > 0. Thereby, we refer to a traveling wave as a non-constant and bounded
solution of the system of ODEs

0 = c
∂

∂x
a+

∂2

∂x2
a+ a− a(a+ i),

0 = c
∂

∂x
i+ d

∂2

∂x2
i+ ra+ a(a+ i).

(B.3)

We call a solution of System (B.3) non-negative if a, i ≥ 0. Moreover, an
invading front is a non-negative traveling wave where both a(x) and i(x)
vanish as x→ +∞.

For the case d = 0, we constructed the traveling waves of the system, but
could not analyze their stability [92]. Since the inactive particles neither react
nor diffuse, any deviation from the traveling wave remains in the system for
all times (see Fig. B.1). Therefore, we introduce the diffusion to the inactive
particles. The present article is divided into two parts:

1) In Section B.3, given the traveling waves for d = 0 as our starting
point, we apply perturbation techniques to construct the traveling waves for
d 6= 0. These waves are continuous in d ≥ 0, so we recover the original
dynamics as d→ 0. We prove the existence of a continuum of traveling wave
solutions, that correspond to the continuum of steady states (B.2), check
Theorems 3.1 and B.24. For this introduction, we restrict to the invading
fronts. In particular, there exists an invading front with minimal possible
speed c = 2, referred to as critical front :
Theorem B.1. For r ≥ 0, c > 0, consider the Wave System (B.3) with

0 < d < min
{

1,
3c

2
,

c2

2(r + 1)

}
. (B.4)
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If and only if c ≥ 2, there exists an invading front. The function i(x) is
decreasing, and a(x) has a unique local and global maximum. As x → −∞,
the front converges exponentially fast to a fixed point (a, i) = (0, i−∞), where

1 < 2− d · 2(r + 1)

c
< i−∞ < 2. (B.5)

The rate of convergence is a function of i−∞, given by

µ−∞ = − c
2

+

√
c2

4
+ i−∞ − 1 > 0. (B.6)

There are two possibilities for the speed of convergence as x → +∞. In the
critical case c = 2, the front behaves as x · e−x. If c > 2, convergence is
purely exponential, with rate

µ+∞ =
c

2
−
√
c2

4
− 1 > 0. (B.7)

Such an invading front arises in the simulation depicted in Figure B.1:
a pulse of active particles is accompanied by a monotone wave of inactive
particles.

2) In Section B.2, we analyze the stability of the critical invading front.
In the moving frame x = z− 2t, we write a solution of the PDE (B.1) as the
sum of the front a(x), i(x) and the perturbations Ã(t, x), Ĩ(t, x):

A(t, x) = a(x) + Ã(t, x), I(t, x) = i(x) + Ĩ(t, x). (B.8)

The system is not attracted towards a particular limit, as none of the
Steady States (B.2) is stable in the classical sense. To overcome this, we
operate in a space where we allow the perturbations to grow exponentially
as x→ −∞. This type of stability is referred to as convective stability [63],
since we more or less ignore what happens to perturbations that are con-
vected to the back of the invading front. To stabilize the front as x→ +∞,
perturbations must vanish exponentially fast, which is typical for FKPP-
fronts [132, 130]. Given a smooth weight w(x) > 0, subject to

w(x) =


e−x x ≥ 1,

e−αx x ≤ −1, with fixed α ∈ (0, 1),

1 x = 0,

(B.9)

we prove that if the weighted perturbations

Ã(t, x)

w(x)
,

Ĩ(t, x)

w(x)
(B.10)
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are initially small, they vanish pointwise with algebraic decay t−3/2. In order
to deal with the unbounded weight, we need some a-priori control of the left
tail of the PDE. The novelty of the present work is that we use a Feynman-
Kac formula to prove exponential decay of the left tail of the perturbations,
under the assumption that also the unweighted perturbations are initially
small.

We have to assume that the discrete spectrum of the linearized perturba-
tion equation contains no elements with non-negative real-part, check Section
B.2.3 for the precise statement. We verify this numerically, the technique is
presented in Appendix B.4.2, an analytic proof remains an open problem.
Theorem B.2. For a pair d > 0, r ≥ 0 as in Theorem B.1, consider the
critical invading front with speed c = 2. If we assume that the discrete spec-
trum of the weighted linearized perturbation equation contains no elements
with non-negative real-part (see (B.44)), then the critical invading front is
locally stable in a space with weight w(x) as above (B.9):

Fix a pair of constants C, µ0 > 0. For all ε > 0, there exists a δ > 0,
such that if the unweighted perturbations fulfill

(i) ∀x ≤ 0 : |Ã(0, x)| ≤ Ceµ0x, |Ĩ(0, x)| ≤ δ, (B.11)

and if the weighted perturbations Ã(0, x)/w(x), Ĩ(0, x)/w(x) are elements of
H2(R), and

(ii)

∫
R

(1 + |x|)
[∣∣Ã(0, x)

w(x)

∣∣+
∣∣ Ĩ(0, x)

w(x)

∣∣] dx ≤ δ, (B.12)

(iii)
∣∣∣∣Ã(0, x)

w(x)

∣∣∣∣
∞ +

∣∣∣∣ Ĩ(0, x)

w(x)

∣∣∣∣
∞ ≤ δ, (B.13)

then the weighted perturbations decay pointwise with algebraic speed t−3/2:

sup
t≥0

sup
x∈R

(1 + t)3/2

w(x)(1 + |x|)

(
|Ã(t, x)|+ |Ĩ(t, x)|

)
≤ ε. (B.14)

B.1.1 Background

One of the central questions regarding tissue growth is how individual cells
react to their microscopic environment, and how this gives rise to distinct
macroscopic structures. Mathematical models help to understand these pro-
cesses, there exists a huge literature of works regarding organ formation,
wound healing or tumor growth [37, 46, 83, 99, 106]. While most of the
clinically relevant results are numerical, simplified reaction-diffusion systems
provide a framework for rigorously analyzing the arising spatiotemporal pat-
terns. The first study of this kind was the seminal analysis of the FKPP-
equation in the 1930s [50, 91], describing the spreading of a fitter population,

98



B Preprint: Convective stability of the critical waves of an FKPP growth process

or "The Wave of Advance of Advantageous Genes" [50]. Given System (B.1),
one obtains the original FKPP-equation when substituting I ≡ 0.

Hannezo et al. modeled the branching morphogenesi of glandular struc-
tures in organs via a stochastic system that is based on branching and an-
nihilating random walks [73, 29]. Their numerical results suggest that this
system self-organizes into spatially homogeneous structures, despite the fact
that it is based on local mechanisms alone (i.e. there are no global guiding
gradients). The authors also suggested the PDE (B.1) with d = 0 to study
the mean-field behavior of the stochastic system. Since all mechanisms in
System (B.1) are purely local, it can be seen as a degenerate Keller-Segel
system [88, 116, 120]. For such systems, various organization phenomena are
known, and can be proven in some cases [6].

Simulations indicate that System (B.1) forms traveling solutions for a
wide range of initial data, an example is depicted in Figure A.1. However,
a global convergence result seems difficult to prove since the active parti-
cles form a non-monotone pulse, being accompanied by a monotone front
of inactive particles of the very same speed. Thereby, the system evades
any classical comparison principles. For a Lokta-Volterra system where each
consecutive species spreads with a different speed, Ducrot et al. [41] could
prove a global convergence result: since the fronts separate, each single one
satisfies a comparison principle.

For systems without a comparison principle, typically only the stability
against small perturbations can be proven. For noncritical fronts (those
with a spectral gap of the linearized perturbation) and for bounded weights,
Sattinger [132] proved a general result in 1976. More recently, Ghazaryan et
al. [63] proved several general results in the case of unbounded weights, even
for mixed ODE-PDE models, but also under the assumption of a spectral
gap. They also prefer the notion of convective stability [63], to emphasize
the pointwise stability (whereas some physicists or biologists prefer to call
the same phenomenon convective instability, emphasizing the fact that the
overall perturbation does not vanish or might even increase [136]). For an a-
priori control of the unbounded nonlinearity, Ghazaryan et al. use an energy
estimate in H2, which is not compatible with our pointwise result [61].

The critical case – where the essential spectrum is only marginally stable
– requires a different approach. Only for the case of a single reactant, the
stability of critical FKPP-fronts has been proven for quite general reaction-
terms, by Gallay in 1994 [53]. The author proved that the algebraic speed of
decay t−3/2 is indeed optimal, we expect this also to be true in the present
case. For more than one reactant, rigorous proofs are sparse.

Fayé and Holzer [48] could prove the local stability of the critical waves
of a Lokta-Volterra system of two species. They generalize a technique for
dealing with marginally stable spectra, which they introduced in 2018 for
a system with a single reactant [47], to systems of two reactants. The un-
derlying technique goes back to Zumbrun and Howard [167], in principle it

99



B Preprint: Convective stability of the critical waves of an FKPP growth process

should be possible to generalize this result to systems of n > 2 reactants, but
the notation becomes quite tedious. The computations are quite demanding:
a precise analysis of the Evans-function in the neighborhood of the essen-
tial spectrum is required, making use of the Gap Lemma that goes back to
Gardner and Zumbrun [56] – involving several changes of coordinates while
keeping track of the resulting error terms. We are in the lucky situation that
the linearized perturbation falls into the marginally stable category analyzed
in [48], at least if we use an unbounded weight as in Theorem B.2. I want
to thank the authors for remarking that their proof is largely independent
of the actual weight, which initiated the idea for this project.

We adapt the resulting semi-group estimates to the case where the weight
is not integrable. This is why we need an a-priori bound on the tail of the
PDE (B.1) in the moving frame. We can then estimate the decay of a linear
super-solution via a Feynman-Kac formula, where we can stop the driving
Brownian motion at an arbitrarily chosen point, e.g. x = 0. As long as the
perturbation at this specific point remains small, the super-solution decays
exponentially. Our approach of dealing with the unbounded weight can be
adapted to other systems with non-negative solutions, given that they are
asymptotically monotone and that the nonlinearity essentially depends on a
single reactant (which is the reason why we need the unbounded weight at
all), check the introduction to Section B.2.

B.1.2 Structure of the paper

In Section B.2, we prove the local stability of the critical invading front. After
introducing the necessary objects in Section B.2.1, we present the central
steps of the proof in Section B.2.2. The technical details are then given in
Section B.2.3 and Section B.2.4. The Feynman-Kac formula, which controls
the left tail of the PDE, is proven in Appendix B.4.1. In Appendix B.4.2,
we present a numerical evaluation of the non-negative discrete spectrum of
the linearized perturbation.

In Section B.3, we construct the traveling waves. Given the traveling
waves for d = 0 (see Theorem 3.1), we apply perturbation techniques to
track any finite segment of the waves for d 6= 0, see Section B.3.2. The
singular perturbation (for passing continuously from d = 0 to d ∼ 0) is
explained in Appendix B.4.3. In Section B.3.3, we analyze the phase space
of the non-negative waves. We then extend the previous perturbation result
and prove that a traveling wave persists locally under perturbation in d, up
to its limit as x→ +∞. Given any traveling wave, we prove an estimate of
type i−∞ + i+∞ = 2 +O(d) regarding the limits in Section B.3.4. We then
prove the existence of non-negative traveling waves and invading fronts up
to d ∼ 1, in Section B.3.5.
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B.2 The stability of the critical invading front

B.2.1 Notation

In the following, we assume without further mentioning that a(x), i(x) is a
non-negative critical invading front as in Theorem B.1. To begin with, we
decompose any solution of the PDE (B.1) in the moving frame x = z − ct
into

A(t, x) = a(x) + Ã(t, x), I(t, x) = i(x) + Ĩ(t, x). (B.15)

Then, the perturbations Ã(t, x) and Ĩ(t, x) follow

∂

∂t
Ã =

∂2

∂x2
Ã+ c

∂

∂x
Ã+ Ã(1− 2a− i)− Ĩa− Ã(Ã+ Ĩ),

∂

∂t
Ĩ = d

∂2

∂x2
Ĩ + c

∂

∂x
Ĩ + Ã(2a+ i+ r) + Ĩa+ Ã(Ã+ Ĩ).

(B.16)

For Ã, Ĩ that solve the perturbation Eq. (B.16) and given a strictly
positive weight w(x), we define the weighted perturbations u := Ã/w, v :=
Ĩ/w. If w is twice differentiable with derivatives w′, w′′, they solve

∂

∂t
u =

∂2

∂x2
u+

∂

∂x
u ·
(
c+ 2

w′

w

)
+ u ·

(
c
w′

w
+
w′′

w

)
+ u(1− 2a− i)− va− wu(u+ v),

∂

∂t
v = d

∂2

∂x2
v +

∂

∂x
v ·
(
c+ 2d

w′

w

)
+ v ·

(
c
w′

w
+ d

w′′

w

)
+ u(2a+ i+ r) + va+ wu(u+ v).

(B.17)

We summarize this as

∂

∂t
(u, v) = L(u, v) +N(u, v), (B.18)

with the linear part

Lu :=
∂2

∂x2
u+

∂

∂x
u ·
(
c+ 2

w′

w

)
+ u ·

(
c
w′

w
+
w′′

w

)
+ u(1− 2a− i)− va,

Lv := d
∂2

∂x2
v +

∂

∂x
v ·
(
c+ 2d

w′

w

)
+ v ·

(
c
w′

w
+ d

w′′

w

)
(B.19)

+ u(2a+ i+ r) + va,

and the nonlinear part

Nu := −wu(u+ v), Nv := wu(u+ v). (B.20)
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For compactness of presentation, we introduce the vectorial notation

p(t, x) :=

(
u(t, x)
v(t, x)

)
, N(p)(t, x) := w(x)u(t, x) ·

(
−u(t, x)− v(t, x)
u(t, x) + v(t, x)

)
.

(B.21)

Lastly, we define as G(t, x, y) the Kernel of the linear Eq. (B.19):

G(t, x, y) :=

(
G11(t, x, y) G12(t, x, y)
G21(t, x, y) G22(t, x, y)

)
, (B.22)

acting on a space to be defined later. In this compact notation, we will esti-
mate the evolution of the weighted perturbations with a Duhamel principle:

p(t, x) =

∫
R

G(t, x, y)p(0, y) dy +

∫ t

0
ds

∫
R

G(t− s, x, y)N(p)(s, y) dy.

(B.23)

Eq. (B.23) holds if the nonlinearity is locally Lipschitz, see e.g. Pazy p. 185
ff [117].

B.2.2 Central steps

For d > 0 and in a function space where the weight grows exponentially as
x → −∞, the operator L is sectorial [76, 3, 56], see Section B.2.3 for an
analysis of its spectrum: the spectrum is contained in the strictly negative
half-plane, with the exception of a single half-line that touches the origin.
In this setting, we can use a result of Fayé and Holzer [48] to estimate the
long-time behavior of G, check Section B.2.4. Roughly, this result states that
G decays like t−3/2 for large t. Then, for estimating the evolution of the full
nonlinear system via Eq. (B.23), it is crucial to control the nonlinear integral∫

R

w(x)u(t, x) ·
(
u(t, x) + v(t, x)

)
dx. (B.24)

We treat the cases x ≤ 0 and x ≥ 0 separately. Assuming that w(x) van-
ishes exponentially fast as z → +∞, the front satisfies the classical estimate∣∣∣ ∫ ∞

0
w(x)u(t, x) ·

(
u(t, x) + v(t, x)

)
dx
∣∣∣

≤ sup
x≥0

{(
|u(t, x)|+ |v(t, x)|

)2} · ∫ ∞
0

w(x) dx

≤ C · sup
x≥0

{
||p(t, x)||21

}
.

(B.25)

Since w(x) grows exponentially as x→ −∞, we take a different approach
for x ≤ 0. This is where we need the a-priori estimate:
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Proposition B.3. Let A(t, x), I(t, x) be a non-negative solution of the PDE
(B.1) in the moving frame x = z − ct, for a speed c > 0. Assume that there
exist constants K, δ, µ0 > 0, such that the initial data fulfill

I(0, x) ≥ 1 + δ ∀x ≤ 0,

A(0, x) ≤ Keµ0x ∀x ≤ 0, (B.26)
A(0, x) + I(0, x) ≤ K ∀x ∈ R.

Moreover, assume that for some time t ∈ (0,∞], it holds that

I(s, x = 0) ≥ 1 + δ > 1 ∀s ∈ [0, t). (B.27)

Then, there exist C, ζ > 0 that are independent of t, such that:

∀s ∈ [0, t), x ≤ 0 : i) I(s, x) ≥ 1 + δ, (B.28)

ii) A(s, x) ≤ Ceζx. (B.29)

The proof and the used Feynman-Kac formula are standard, given in
Appendix B.4.1. The way we apply this result for controlling the perturba-
tions is new. For the wave it holds that limx→−∞ i(x) > 1, where i(x) is
monotone. We first shift the wave such that i(0) = 1 + 2δ > 1. Then, it
suffices to control

|Ĩ(t, x = 0)| ≤ δ ∀t ≥ 0, (B.30)

and in view of Proposition B.3, there exist constants C, ζ > 0 such that

|Ã(t, x)| ≤ A(t, x) ≤ Ceζx ∀x ≤ 0, t ≥ 0, (B.31)

since A ≥ 0. We re-substitute wu = Ã to estimate∣∣∣ ∫ 0

−∞
w(x)u(t, x) ·

(
u(t, x) + v(t, x)

)∣∣∣ dx
≤
∫ 0

−∞
|Ã(t, x)| · |u(t, x) + v(t, x)| dx

≤ sup
x≤0

{
|u(t, x)|+ |v(t, x)|

}
·
∫ 0

−∞
|Ã(t, x)| dx

≤ C · sup
x≤0

{
||p(t, x)||1

}
.

(B.32)

Given both Estimates (B.25) and (B.32), the resulting semi-group esti-
mates are quite standard, though a bit lengthy due to the different cases
that need to be dealt with, presented in Section B.2.4.
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B.2.3 An appropriate function space

Here and in the following, let L (B.19) be a densely defined operator

L : H2(R)×H2(R)→ L2(R)× L2(R), (B.33)

where H2 is the L2 Sobolev space. For λ ∈ C, consider the Eigenvalue
problem λ · (u, v) = L(u, v). With the help of the auxiliary variables

U :=


u
u′

v
v′

 , (B.34)

the equation λ · (u, v) = L(u, v) can be rewritten as an equivalent linear
system of ODEs:

U ′ = M(x, λ) · U, (B.35)

for a matrix M(x, λ) given by

M(x, λ) :=


0 1 0 0

λ+ ξu(x) −(c+ 2w
′(x)
w(x) ) a(x) 0

0 0 0 1

−2a(x)+i(x)+r
d 0 λ+ξv(x)

d −
c+2d

w′(x)
w(x)

d

 ,

(B.36)

ξu(x) := 2a(x) + i(x)− 1− cw
′(x)

w
− w′′(x)

w(x)
, (B.37)

ξv(x) := −a(x)− cw
′(x)

w(x)
− dw

′′(x)

w(x)
. (B.38)

Given a pair of exponents α± > 0, we fix a smooth weight w(x) > 0,
subject to the conditions

w(x) :=


e−α+x x ≥ 1,

e−α−x x ≤ −1,

1 x = 0.

(B.39)

Note that this weight is bounded for x ≥ 0, and unbounded for x ≤ 0.
Proposition B.4. For d ∈ (0, 1) and exponents

α− ∈ (0, 1), α+ = 1, (B.40)

consider an exponential weight w(x) as in (B.39). Then, for a critical in-
vading front, the essential spectrum of the linear operator L (B.35),

L : H2(R)×H2(R)→ L2(R)× L2(R), (B.41)
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Re

Im

Σν

Σψ

Re

Im

Σν

Σψ

Figure B.2: The two critical parts of the essential spectrum of L as in Proposition
B.4, defined in (B.49) and (B.57). On the left, the essential spectrum is unstable
in an unweighted space. On the right, the essential spectrum is stabilized via an
exponential weight, with Exponents (B.40).

is bounded to the right by the union of three parabolas (B.53), (B.57) and
(B.58), that lie in the strict negative half-plane, except for the half-line

Σν =
{
λ ∈ C

∣∣Reλ ≤ 0, Imλ = 0
}
. (B.42)

The proof of Proposition B.4 will be given below. The parabola which
we need to stabilize with an appropriate weight and the set Ση are depicted
in Figure B.2. Precisely this type of essential spectrum is considered in [48],
and we can use their estimates regarding the long-time behavior of L. So
far, we could not analyze the discrete spectrum of L analytically, and need
to make the following critical

Assumption on the discrete spectrum: In the Setting of the above
Proposition B.4, let Σd be the discrete spectrum of L. Assume that there
exist δ0, δ1 > 0, such that for the region

Ω :=
{
λ ∈ C

∣∣Reλ ≥ −δ0 − δ1 · |Imλ|
}

(B.43)

it holds that

Ω ∩ Σd = ∅. (B.44)

We verify this assumption numerically, presented in Appendix B.4.2. Note
that we require 0 /∈ Σd. For an invading front a(x), i(x), it is easy to see
that the symbolic equation L(a′, i′) = 0 holds. However, the critical front
behaves like xe−x as x → +∞, so its derivative is not an element of the
considered weighted space.

Proof of Proposition B.4. For any non-negative traveling wave, a(x) van-
ishes as x → ±∞, and i(x) converges. Moreover, both converge exponen-
tially fast at both ends. The same applies to the matricesM(x, λ), which we
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call exponentially localized. In this setting it is a well-known result [130, 56]
that the essential spectrum of L : H2 → L2 is bounded to the right by the
spectrum of the limit matrices M(±∞, λ): those values of λ ∈ C, for which
one of M(±∞, λ) is defect. Denoting as E(M) the Eigenvalues of a matrix
M , the essential spectrum of L is thus bounded by the set

MEss =
{
λ ∈ C

∣∣∣ ∃µ ∈ E(M(+∞, λ)
)

: Re(µ) = 0
}

∪
{
λ ∈ C

∣∣∣ ∃µ ∈ E(M(−∞, λ)
)

: Re(µ) = 0
}
.

(B.45)

The region to the right of this set is referred to as region of consistent split-
ting, since the dimension of the unstable spectrum of M(−∞, λ) and the
dimension of the stable spectrum of M(+∞, λ) add up to the full dimension
of the system. In the following, we focus on the critical invading fronts,
but in principle, technique and result can be applied to the other critical
traveling waves of the system (with minimal speed depending on the chosen
limits).

For d ∈ (0, 1), consider now an invading front a(x), i(x) with speed c = 2.
We first analyze the matrixM(+∞, λ). Given that i+∞ = 0 and with Weight
(B.39), the limit of M(x, λ) (B.36) at x = +∞ is given by

0 1 0 0
λ− 1 + 2α+ − α2

+ −2 + 2α+ 0 0
0 0 0 1

− r
d 0

λ+2α+−dα2
+

d −2−2dα+

d

 . (B.46)

This matrix has two pairs of Eigenvalues:

ν±(λ, α+) = −1±
√
i+∞ + λ+ α+, (B.47)

η±(λ, α+) =
1

d

(
− 1±

√
dλ+ 1

)
+ α+. (B.48)

We define the set

Σν :=
{
λ ∈ C

∣∣Re
(
ν+(λ)

)
= 0
}
. (B.49)

For w ≡ 1 (if α+ = 0), the set Σν is a parabola that goes into the right
half-plane, as depicted in Figure B.2. In order to stabilize it, we need to
operate in a space with weight

w(x) = e−
c
2
x = e−x, ∀x ≥ 1. (B.50)

This is the only possible choice for stabilizing the front of a critical FKPP-
wave, a classical result, check [132, 47]. For α+ = 1, the Eigenvalues of
M(+∞, λ) are then given by

ν±(λ, 1) = ±
√
λ, η±(λ, 1) =

1

d

(
d− 1±

√
dλ+ 1

)
. (B.51)
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The pair ν± creates an essential spectrum that lies on the negative real axis
and goes up to the origin:

Σν =
{
λ ∈ C

∣∣Reλ ≤ 0, Imλ = 0
}
. (B.52)

Since d ∈ (0, 1), the Eigenvalue η−(λ) does not touch the imaginary axis,
only the Eigenvalue η+(λ) crosses the imaginary axis along a parabola that
lies in the strict negative half-plane:

Ση =
{
λ ∈ C

∣∣Reλ =
1

d

(
2(1− d)2 − 1− |dλ+ 1|2

)}
. (B.53)

We now consider the other limit, M(−∞, λ), given by
0 1 0 0

λ+ i−∞ − 1 + 2α− − α2
− −2 + 2α− 0 0

0 0 0 1

− r+i−∞
d 0

λ+2α−−dα2
−

d −2−2dα−
d

 , (B.54)

for some i−∞ ∈ (1, 2), and Eigenvalues

σ±(λ, α−) = −1±
√
i−∞ + λ+ α−, (B.55)

ψ±(λ, α−) =
1

d

(
− 1±

√
dλ+ 1

)
+ α−. (B.56)

In order to stabilize ψ+ away from the origin, we can pick any α− > 0,
leading to the parabola

Σψ :=
{
λ ∈ C

∣∣Reλ =
1

d

(
2(1− dα−)2 − 1− |λ+ 1|

)}
. (B.57)

As long as α− < 2/d, the Eigenvalue ψ− does not touch the imaginary axis.
The Eigenvalue σ+ crosses the imaginary axis along a parabola that lies in
the strict negative half-plane:

Σσ :=
{
λ ∈ C

∣∣Reλ = −i−∞ − 2(1− α−)2 − |i−∞ + λ|
}
. (B.58)

Lastly, we check that we do not overstabilize σ−. It holds that

Re
(
σ−(λ)

)
= 0 ⇔ α− − 1 = Re

(
+
√
i−∞ + λ

)
. (B.59)

The set {Re
(
σ−(λ)

)
= 0} is obviously empty as long as

α− < 1. (B.60)
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B.2.4 Estimating the long-time behavior

We prove the stability of the critical invading front using estimates by Fayé
and Holzer [48]. By controlling the behavior of the Evans function (and
thereby of the pointwise Green’s function) in the neighborhood of the es-
sential spectrum, they prove the following decay of the temporal Green’s
function:
Theorem B.5 (cf. Prop. 4.1 and Lemma 5.1 in [48]). For L with essen-
tial spectrum as in Proposition B.4, and given that the discrete spectrum
of L fulfills Assumption (B.44), the temporal Green’s function G(t, x, y) for
∂t(u, v) = L(u, v) satisfies the following estimates: there exists constants
C, κ > 0, such that for all pairs of indices i, j ∈ {1, 2} and for all x, y ∈ R:∣∣Gij(t, x, y)

∣∣ ≤ C 1

t1/2
e−
|x−y|2
κt ∀t < 1, (B.61)∫

R

∣∣Gij(t, x, y)
∣∣ · |h(y)| dy ≤ C · ||h||∞ ∀t < 1. (B.62)

Moreover, for all t ≥ 1 and x ∈ R:∫
R

∣∣Gi,j(t, x, y)
∣∣ · |h(y)| dy ≤ C · 1 + |x|

(1 + t)3/2

∫
R

(1 + |y|) · |h(y)| dy. (B.63)

In [48], the authors prove a local stability result for the critical traveling
waves of a Lotka-Volterra model with two species. They consider an inte-
grable weight w(x) and follow the reasoning behind Inequality (B.25). We
extend their proof by using the a-priori bounds that we have for the left tail
of the system, see (B.32). The following Lemma gives control of the resulting
integrals over time:
Lemma B.6 (Lemma 2.3 in [166]). Let α, β, γ, t > 0 with α ≤ β + γ − 1.
If either α ≤ β, γ 6= 1, or α < β, γ = 1, then there exists a constant C such
that ∫ t

2

0

1

(1 + t− s)β
1

(1 + s)γ
ds ≤ C 1

(1 + t)α
. (B.64)

Similarly, if either α ≤ γ, β 6= 1, or α < γ, β = 1, then∫ t

t
2

1

(1 + t− s)β
1

(1 + s)γ
ds ≤ C 1

(1 + t)α
. (B.65)

We can now prove the stability of the critical front:

Proof of Theorem B.2. We adopt the notation introduced in Section B.2.1.
That is, we consider the vector p = (u, v), and write |p(t, x)| = ||p(t, x)||1.
Note that since |wu| = |Ã| ≤ 1, all reaction-terms of the perturbation System
(B.17) are at most linear in |p|. Thus, by a standard Gronwall estimate and
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a fixed-point argument, a unique smooth solution (that can grow at most
exponentially over time) of System (B.17) exists for arbitrarily long times,
check e.g. [138, Ch. 14], and [135, Thm. 46.4 ff.].

We will prove that

Θ(t) := sup
s≤t

sup
x∈R

(1 + s)3/2

1 + |x|
|p(s, x)| (B.66)

is bounded uniformly in t ≥ 0, if the initial data is small enough. We intro-
duce a border B ≤ 0 to be specified later, and split the Duhamel Formula
(B.23):

|p(t, x)| ≤
∣∣∣ ∫
R

G(t, x, y)p(0, y) dy
∣∣∣ (B.67)

+
∣∣∣ ∫ t

0
ds

∫ B

−∞
G(t− s, x, y)N(p)(s, y) dy

∣∣∣ (B.68)

+
∣∣∣ ∫ t

0
ds

∫ +∞

B
G(t− s, x, y)N

(
p)(s, y) dy

∣∣∣. (B.69)

For y ≥ B, we use the exponential decay of w(y), whereas for y ≤ B, we use
the exponential decay of A(t, y), see (B.32). Theorem B.5 yields different
results for G for t ≤ 1 and t ≥ 1, thus we also differentiate the above terms
for t−s ≤ 1 and t−s ≥ 1. In the following, we let C be a universal constant
that does not depend on B, whereas CB will be a universal constant that
does.

We shift the given traveling wave a(x), i(x), such that there exists a
δI > 0 with

i(x) ≥ 1 + 2δI ∀x ≤ 0. (B.70)

We assume that ||Ĩ(0, x)||∞ ≤ δI , then

I(0, x) = i(x) + Ĩ(0, x) ≥ 1 + δI ∀x ≤ 0. (B.71)

For the moment, we also assume that

|Ĩ(t, x = 0)| = |v(t, x = 0)| ≤ δI ∀t ≥ 0, (B.72)

which in particular implies that

I(t, x = 0) ≥ 1 + δI ∀t ≥ 0. (B.73)

We will verify (B.72) a posteriori, by proving that the perturbations stay
small. Given (B.71) and (B.72), we can apply Proposition B.3, the Feynman-
Kac formula. As a result, there exists an exponent ζ > 0, such that

|N(p)(t, x)| =
∣∣w(x)u(t, x) ·

(
u(t, x) + v(t, x)

)∣∣
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≤ A(t, x) ·
∣∣p(t, x)

∣∣ (B.74)

≤ Ceζx ·
∣∣p(t, x)

∣∣ ∀x ≤ B ≤ 0.

In contrast, for x ≥ B, we will use the general bound

|N(p)(s, x)| ≤ w(x) · |p(t, x)|2 ∀x ∈ R. (B.75)

Now choose any ε ≤ δI . We estimate (B.67), (B.68) and (B.69) sepa-
rately, starting with

1) The long-time case t ≥ 1
By Estimate (B.63) of Theorem B.5, the linear Part (B.67) is bounded by∣∣∣ ∫

R

G(t, x, y)p(0, y)dy
∣∣∣ ≤ C 1 + |x|

(1 + t)3/2

∫
R

(1 + |y|) · |p(0, y)|dy. (B.76)

For the moment, we only require that

P (0) := ||p(0, x) · (1 + |x|)||L1(R) ≤ 1, (B.77)

then the above expression is of order (1 + |x|)/(1 + t)3/2.
Regarding the nonlinear part, we first consider the case t−s ≤ 1. For the

back of the wave, we use the exponential Decay (B.75) and Estimate (B.62)
of Theorem B.5:∫ t

t−1
ds

∫ B

−∞

∣∣G(t− s, x, y)
∣∣ · |N(p)(s, y)|dy

≤ C
∫ t

t−1
ds

∫ B

−∞

∣∣G(t− s, x, y)
∣∣ · eζy|p(t, y)| dy

≤ C
∫ t

t−1
ds

∫ B

−∞

∣∣G(t− s, x, y)
∣∣ · eζyΘ(s)

1 + |y|
(1 + s)3/2

dy (B.78)

≤ CΘ(t)
1

(1 + t)3/2

∫ B

−∞

∣∣G(t− s, x, y)
∣∣ · eζy(1 + |y|) dy

≤ CΘ(t)
1

(1 + t)3/2
· sup
y≤B

{
eζy(1 + |y|)

}
.

Note that by choosing B ≤ 0 sufficiently small, the supremum in the last
term can be made arbitrarily small.

For x ≥ B, we use the fact w(x) · (1 + |x|)2 is bounded in ||.||∞. We
apply Estimate (B.62) of Theorem B.5:∫ t

t−1
ds

∫ ∞
B

∣∣G(t− s, x, y)
∣∣ · |N(p)(s, y)| dy

≤
∫ t

t−1
ds

∫ ∞
B

∣∣G(t− s, x, y)
∣∣ ·Θ(s)2 (1 + |y|)2

(1 + s)3
w(y) dy
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≤ CΘ(t)2 1

(1 + t)3

∫ t

t−1
ds

∫ ∞
B

∣∣G(t− s, x, y)
∣∣ · (1 + |y|)2w(y) dy (B.79)

≤ CBΘ(t)2 1

(1 + t)3
.

Now consider t − s ≥ 1. Regarding y ≤ B, we again use Bound (B.75),
and Estimate (B.63) of Theorem B.5:∫ t−1

0
ds

∫ B

−∞

∣∣G(t− s, x, y)
∣∣ · |N(p)(s, y)| dy

≤ C
∫ t−1

0
ds

∫ B

−∞

∣∣G(t− s, x, y)
∣∣ · eζy|p(t, y)| dy

≤ C
∫ t−1

0
ds

∫ B

−∞

∣∣G(t− s, x, y)
∣∣ · eζyΘ(s)

1 + |y|
(1 + s)3/2

dy (B.80)

≤ CΘ(t) · (1 + |x|)
∫ t

0

1

(1 + t− s)3/2

1

(1 + s)3/2
ds

∫ B

−∞
eζy(1 + |y|)2 dy

We apply Lemma B.6 to bound the integral over time:

≤ CΘ(t)
1 + |x|

(1 + t)3/2

∫ B

−∞
eζy(1 + |y|)2 dy. (B.81)

Again, note that we can make the last integral as small as we want if we
shift B appropriately.

Regarding y ≥ B, by Estimate (B.63) of Theorem B.5:∫ t−1

0
ds

∫ +∞

B

∣∣G(t− s, x, y)
∣∣ · |N(p)(s, y)| dy

≤
∫ t−1

0
ds

∫ ∞
B

∣∣G(t− s, x, y)
∣∣ ·Θ(s)2 (1 + |y|)2

(1 + s)3
w(y) dy

≤ CΘ(t)2(1 + |x|)
∫ t

0

1

(1 + t− s)3/2

1

(1 + s)3
ds

∫ ∞
B

(1 + |y|)3w(y) dy

≤ CBΘ(t)2(1 + |x|)
∫ t

0

1

(1 + t− s)3/2

1

(1 + s)3
ds (B.82)

We apply Lemma B.6 to bound the integral over time, yielding

≤ CBΘ(t)2 1 + |x|
(1 + t)3/2

. (B.83)

Now, for all t ≥ 1, combining our estimates (B.76), (B.79), (B.80), (B.81),
(B.83) results in

|p(t, x)| ≤ CP (0)
1 + |x|

(1 + t)3/2
(B.84)
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+ CΘ(t)
1

(1 + t)3/2
· sup
y≤B

{
eζy(1 + |y|)

}
(B.85)

+ CBΘ(t)2 1

(1 + t)3/2
(B.86)

+ CΘ(t)
1 + |x|

(1 + t)3/2

∫ B

−∞
eζy(1 + |y|)2 dy (B.87)

+ CBΘ(t)2 1 + |x|
(1 + t)3/2

. (B.88)

Next, choose B sufficiently small such that the constants in (B.85) and
(B.87), the terms that are linear in Θ, are both bounded by 1/8. Then,
we can simplify the above to

|p(t, x)| ≤ CP (0)
1 + |x|

(1 + t)3/2
+

1

4
Θ(t)

1 + |x|
(1 + t)3/2

+ CBΘ(t)2 1 + |x|
(1 + t)3/2

.

(B.89)

Inserting our definition of Θ, see (B.66), we get

Θ(t) ≤ CP (0) +
1

4
Θ(t) + CBΘ(t)2 ∀t ≥ 1. (B.90)

2) The short-time case t < 1
Estimate (B.62) of Theorem B.5 yields the following bound for the linear
Part (B.67): ∫

R

∣∣G(t, x, y)
∣∣ · |p(0, y)| dy ≤ C · ||p(0, x)||∞. (B.91)

For the nonlinear part, we again split the expression into two parts. This
time, we use the pointwise Estimate (B.61) of Theorem B.5, valid for short
times:

∫ t−1

0
ds

∫ B

−∞

∣∣G(t− s, x, y)
∣∣ · |N(p)(s, y)| dy

≤
∫ t−1

0
ds

∫ B

−∞

∣∣G(t− s, x, y)
∣∣ · eζy|p(t, y)| dy

≤ Θ(t)
1

(1 + t)3/2
·
∫ t−1

0
ds

∫ B

−∞

∣∣G(t− s, x, y)
∣∣ · eζy(1 + |y|) dy (B.92)

≤ CΘ(t)

∫ t−1

0
ds

∫ B

−∞

1

t1/2
e−
|x−y|2
κt eζy(1 + |y|) dy.

The last integral is a short-time heat kernel applied to the exponentially
decaying function eζx(1 + |x|). We choose B appropriately such that the
entire above expression is bounded by

≤ 1

16
Θ(t). (B.93)
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Considering y ≥ B:

∫ t−1

0
ds

∫ +∞

B

∣∣G(t− s, x, y)
∣∣ · |N(p)(s, y)| dy

≤
∫ t−1

0
ds

∫ +∞

B

∣∣G(t− s, x, y)
∣∣ ·Θ(s)2 (1 + |y|)2

(1 + s)3
dy

≤ CΘ(t)2

∫ t−1

0
ds

∫ +∞

B

1

t1/2
e−
|x−y|2
κt (1 + |y|)2 dy (B.94)

≤ CBΘ(t)2.

In view of (B.91), (B.93), (B.94), we see that for all t < 1:

|p(t, x)| ≤ C ||p(0, x)||L∞(R) +
1

16
Θ(t) + CBΘ(t)2. (B.95)

This implies that for small times, by the Definition of Θ (B.66):

Θ(t) ≤ C ||p(0, x)||L∞(R) +
1

4
Θ(t) + CBΘ(t)2 ∀t < 1. (B.96)

3) Convergence given small initial data
To control both the short-time Bound (B.96) and the large-time Bound
(B.90), we will consider initial data where

Q(0) := ||p(0, x)||L∞(R) + ||p(0, x) · (1 + |x|)||L1(R) (B.97)

is sufficiently small. Regarding both the long-time and the short-time case,
we first choose a border B ∈ R such that both (B.96) and (B.90) are valid,
resulting in

Θ(t) ≤ CQ(0) +
1

4
Θ(t) + CBΘ(t)2 ∀t ≥ 0. (B.98)

Without loss of generality, we may assume that C ≥ 1. Consider initial data
that are small enough to fulfill

2CQ(0) < ε and 4CCBQ(0) <
1

2
, (B.99)

where ε ≤ δI , with δI chosen in (B.70). Then, at t = 0:

Θ(0) = sup
x∈R

|p(0, x)|
1 + |x|

≤ Q(0) < 2CQ(0) < ε. (B.100)

For such initial data, our critical Assumption (B.72) holds for small times
t > 0, since Θ(t) is continuous in t. Now suppose that there exists a first
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time T ∈ (0,∞) such that Θ(T ) = 2CQ(0) for the first time. But then, by
(B.98):

Θ(t) ≤ CQ(0) +
1

4
Θ(t) + CBΘ(t)2

≤ CQ(0) +
1

4
2CQ(0) + CB4C2Q(0)2

≤ CQ(0) +
1

2
CQ(0) + CQ(0)

[
4CCBQ(0)

]
(B.101)

< 2CQ(0),

a contradiction to our assumption. As a result, it holds that

Θ(t) < 2CQ(0) < ε ∀t ≥ 0, (B.102)

which not only proves that the perturbation decays, but also shows that the
necessary Bound (B.72) holds for all t ≥ 0.

B.3 Construction of the traveling waves

B.3.1 Overview and notation

In the following, we refer to the Wave System (B.3) as S0 if d = 0, and to
Sd for d > 0. We cite the result for the traveling waves of S0, which was the
subject of a previous study:
Theorem B.7 (Thm. 1.1 in [92]). For d = 0 and r ≥ 0, c > 0, consider
System S0 (B.3). Set ic := max{0, 1− c2/4}. For each pair i−∞, i+∞ ∈ R+

0

such that

i+∞ ∈ [ic, 1), i−∞ = 2− i+∞, (B.103)

there exists a unique non-negative traveling wave a, i ∈ C∞(R,R2) such that

lim
x→±∞

a(x) = 0, lim
x→±∞

i(x) = i±∞. (B.104)

The function i(x) is decreasing, whereas a(x) has a unique local and global
maximum. If c2

4 + i+∞ − 1 = 0, then the distance of the front to its limit
behaves like x · e−

c
2
x asymptotically as x → +∞. If c2

4 + i+∞ − 1 > 0, then
convergence as x → +∞ is purely exponential. Convergence as x → −∞ is
purely exponential in all cases. The rates of convergence are

µ−∞ = − c
2

+

√
c2

4
+ i±∞ − 1 > 0,

µ+∞ =
c

2
−
√
c2

4
+ i±∞ − 1 > 0.

(B.105)

Moreover, these are all bounded, non-negative, non-constant and twice dif-
ferentiable solutions of Eq. (B.3) for d = 0.
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Figure B.3: Two-dimensional representation of the family of traveling waves of S0

for c = 2 and r = 0. A unique trajectory emerges from each point where i−∞ > 1,
and converges to a limit where i+∞ < 1, where i−∞ + i+∞ = 2. For i−∞ > 2, the
trajectory eventually becomes negative (even though it still seems to converge).

The bound i+∞ ≥ 1 − c2/4 is classical for FKPP-fronts. If it is not
fulfilled, the solutions spiral around their limit as x → +∞, see Section
B.3.2.1. Thus, they become negative and are physically irrelevant.

For the entire Section B.3, keep the phase-plot of S0 in Figure B.3 in
mind. Qualitatively, we prove that this portrait remains valid for Sd: there
exists a family of solutions, that continuously vary along the limits i±∞. The
only change is a perturbation estimate of type

i−∞ + i+∞ = 2 +O(d), (B.106)

which replaces the precise Statement (B.103) for d = 0. Since we focus on
the invading fronts, we consider only the case c ≥ 2, the result is given in
Theorem B.24.

We transform the wave Eq. (B.3) into an equivalent System of ODEs.
We denote differentiation w.r.t. x by a prime, and introduce two auxiliary
variables b = a′ and j = i′. For d 6= 0, this system in coordinates (a, b, i, j) ∈
R4 reads

d

dx


a
b
i
j

 =


b

a(a+ i)− a− cb
j

−1
d [cj + ra+ a(a+ i)]

 . (B.107)

By abuse of notation, we will denote a′ = b and i′ = j, since introducing two
auxiliary variables only obfuscates the system.

Section B.3 is organized as follows: for d > 0 and K > 1, we analyze
the unstable manifold of the fixed point (a, a′, i, i′) = (0, 0,K, 0). It is one-
dimensional and has one branch that is asymptotically non-negative, which
we call M−d (K). In Section B.3.2, we will prove that any finite segment
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of M−d (K) is continuous both in d and K. For d > 0, this will follow from
standard perturbation theory for dynamical systems. For passing from d = 0
to d ∼ 0, we use geometric singular perturbation theory due to Fénichel [84].
In Section B.3.3, we prove that a traveling waveM−d (K) persists under small
perturbations in d, up to its limit as z → +∞. The estimate i−∞ + i+∞ =
2 + O(d) is proven in Section B.3.4. We use all previous results to prove
the existence of a family of non-negative traveling wave solutions in Section
B.3.5. Given the existence of these non-negative traveling waves, we conclude
that there also must be an invading front among those.

B.3.2 Dynamics around the fixed points

B.3.2.1 A degenerate linearization

At a fixed point (a, a′, i, i′) = (0, 0,K, 0), the Jacobian of the system has
Eigenvalues

λ1 = 0, λ2 = − c
d
,

λ3 = − c
2
−
√
c2

4
+K − 1, λ4 = − c

2
+

√
c2

4
+K − 1.

(B.108)

The Eigenvalue λ2 is new compared to the unperturbed system, all other
Eigenvalues remain the same. The associated eigenvectors are given by

e1 =


0
0
1
0

 , e2 =


0
0

−d
c

1

 ,

e3 =


−cλ3 − d · λ2

3

−c · λ2
3 − d · λ3

3

K + r
λ3(K + r)

 , e4 =


−cλ4 − d · λ2

4

−c · λ2
4 − d · λ3

4

K + r
λ4(K + r)

 .

(B.109)

For K ∈ [0, 1), corresponding to a possible limit as x→ +∞, the Eigen-
values are real-valued if K ≥ 1 − c2/4. For K = 0, which is the limit of an
invading front, we require that c ≥ 2, otherwise converging trajectories can
not stay non-negative: the a-component spirals around its limit 0 if λ3 and
λ4 have an imaginary part.

For fixed d > 0, we first analyze the behavior around a fixed point
(a, a′, i, i′) = (0, 0,K, 0) locally. The Jacobian of the system at the fixed
point is degenerate due to the continuum of fixed points, we apply center
manifold theory to work out the higher moments of the approximation. A
practical introduction to this topic has been written by J. Carr [30]. If we
ensure that all Eigenvectors (B.109) are distinct, they span the entire R4. In
this case, the Jacobian can be diagonalized and the calculations are standard:

116



B Preprint: Convective stability of the critical waves of an FKPP growth process

no bifurcaction, neither in d norK, occurs as long as all the Eigenvalues λ2,3,4

remain real-valued and unequal zero.
If K = 1, then λ4 = 0, and if K = 1 − c2/4, then λ3 = λ4 and their

eigenspaces become colinear. If we exclude these two cases, the result is as
intuitive as it is comfortable: the center manifold locally coincides with the
set of fixed points, a defect linearization with three hyperbolic directions
and one constant direction is the result, see Proposition B.8. For the case
d = 0, we present the rather standard calculations and the necessary changes
of coordinates into the system of Eigenvectors in detail [92]. The following
result is completely analogue:
Proposition B.8. For d > 0, c > 0 and K ∈ R subject to the conditions

K 6= 1, K 6= 1− c2/4, (B.110)

consider the fixed point (0, 0,K, 0) of Sd. Then, in a neighborhood of the
fixed point, the center manifold of the fixed point coincides with the set of
points

{a = a′ = i′ = 0, i ∈ R}. (B.111)

Moreover, in this neighborhood, the flow Sd is homeomorphic to
p′

u′

v′

w′

 =


0

λ2 · u
λ3 · v
λ4 · w

 , (B.112)

where p, u, v, w are the coordinates in the system of Eigenvectors (B.109).
Proposition B.8 has two important implications. First, regarding the

asymptotics as x→ +∞, we can use Equation (B.112) to deduce

Corollary B.9. For c > 0, d > 0 and K ∈ (1 − c2

4 , 1), the fixed point
(0, 0,K, 0) of Sd is Lyapunov-stable, and trajectories asymptotically converge
along e2,3,4 (B.109).

Proof. Holds by (B.112), since λ2, λ3, λ4 are real-valued and strictly negative.

B.3.2.2 Continuity with respect to the parameters

Regarding the asymptotics as x→ −∞, we get
Corollary B.10. For d > 0, c > 0,K > 1, the fixed point (0, 0,K, 0) of Sd
has a fast unstable manifold of dimension one, associated to the Eigenvalue

λ4 = − c
2

+

√
c2

4
+K − 1 > 0. (B.113)

117



B Preprint: Convective stability of the critical waves of an FKPP growth process

This manifold has one branch such that a, i > 0 asymptotically, which we
denote as M−d (K). Outgoing from the fixed point, the asymptotic direction
of the unstable manifold in coordinates (a, a′, i, i′) is given by

cλ4 + d · λ2
4

c · λ2
4 + d · λ3

4

−(K + r)
−λ4(K + r)

 . (B.114)

Locally, the manifold M−d (K) is continuous in K.
The local continuity of M−d (K) w.r.t K can be extended to arbitrarily

finite segments:
Corollary B.11. Let d > 0,K0 > 1, c > 0 and choose any finite time-
horizon T ∈ R. Assume that the manifold M−d (K0, x)|x∈(−∞,T ] exists, is
smooth and bounded. Then, for K sufficiently close to K0, each of the man-
ifolds M−d (K,x)|x∈(−∞,T ] is smooth and bounded, and they have a represen-
tation that is continuous in K.

Proof. The proof is a standard gluing argument: Fix some K0 > 1 and a
finite time-horizon T ∈ R. Assume that the manifold M−d (K0, x)|x∈(−∞,T ]

exists, is smooth and bounded. Consider a small ball Bδ of radius δ > 0
around the fixed point (0, 0,K0, 0), such that within Bδ, the flow is equivalent
to the linearized Flow (B.112). Define the exit time

xδ := sup
x∈R

{
∀s ≤ x : M−d (K0, s) ∈ Bδ

}
, x∗ :=

xδ
2
. (B.115)

As K → K0, the trajectories M−d (K,x)|x∈(−∞,x∗] are continuous in K, due
to the local statement B.11. In particular, the points M−d (K,x∗) converge
to M−d (K0, x

∗). We can now treat the rest of the trajectories

M−d (K,x)|x∈[x∗,T ] (B.116)

as initial value problems with converging initial data. Since [x∗, T ] is a finite
time-interval, this follows from a Gronwall estimate for locally Lipschitz sys-
tems, check for example Theorem II-1-2 and Remark II-1-3 in the textbook
of Hsieh and Yasutaka [79].

Similarly, continuity of M−d (K0, x)|x∈(−∞,T ] w.r.t. d holds. The result
for d � 0 is standard: local continuity follows from center manifold theory,
see e.g. Section 1.5 in the monograph of J. Carr [30]. Is is one of the funda-
mental tools for analyzing bifurcations, as explained by J. Guckenheimer and
P. Holmes, see Sections 3.2 and 3.4 in [67]. The assumptions that the Eigen-
vectors (B.108) are distinct and that the Eigenvalues λ2,3,4 are real-valued
and non-zero are again crucial: they imply that locally in K and d, no bifur-
cation occurs. The local statement can easily be extended to arbitrary finite
segments as before:
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Proposition B.12. Let K > 1, d0 > 0, c > 0. For a finite time-horizeon
T ∈ R, assume that the manifoldM−d0(K,x)|x∈(−∞,T ] is smooth and bounded.
There exists an open interval I ⊂ R+

0 , d0 ∈ I, such that for all d ∈ I, each
of the manifolds M−d (K,x)|x∈(−∞,T ] is smooth and bounded, and they have
a representation that is continuous in d.

For passing from d = 0 to d ∼ 0, we use geometric singular pertur-
bation theory. The ODE-system with d = 0 is three-dimensional, as it is
independent of i′, but can be embedded into the R4, and then be perturbed
smoothly when introducing a small diffusion d > 0. The resulting statement
is analogue to Proposition B.12, the proof is presented in Appendix B.4.3:
Corollary B.13. Let K > 1, c > 0, r ≥ 0. First consider the fixed point
(ā, ā′, ī) = (0, 0,K) of S0, together with its one-dimensional unstable man-
ifold M−0 (K). Fix any semi-open interval x ∈ (−∞, T ], where T is finite,
and assume that M−0 (K,x)|x∈(−∞,T ] is smooth and bounded. Lift it naturally
into R4 via the fourth coordinate i′ = −a(a+ i+ r)/c.

Now consider the perturbed system Sd. There exist some d∗ > 0 such that
for all d ∈ (0, d∗): the fixed point (a, a′, i, i′) = (0, 0,K, 0) has an adjacent
one-dimensional unstable manifold M−d (K,x)|x∈(−∞,T ], that is continuous in
d and converges to M−0 (K,x)|x∈(−∞,T ] as d→ 0.

B.3.3 Persistence of traveling waves under perturbation

We will not only prove the existence of non-negative traveling waves of Sd,
but also that they all share certain monotonicity properties. We consider
only the case c ≥ 2, since this is regime in which an invading front can exist.

Properties of traveling waves that are not invading fronts (TW):
Let K > 1, d ≥ 0, c > 0. Consider the manifold M−d (K), and denote rep-
resenting functions a(x), a′(x), i(x), i′(x)|x∈R. We say that M−d (K) admits
the traveling wave properties (TW) if the following holds:

1. i′(x) < 0 ∀x ∈ R,

2. a(x) > 0 ∀x ∈ R,

3. i(x) ≥ i+∞ > 0 ∀x ∈ R,

4. The function a(x) has a unique local maximum, which is also the global
one. At the phase-time of the maximum, it holds that a+ i ≤ 1.

5. The trajectory converges monotonously to its limit as x→ +∞. There
exists a finite phase-time x∗, such that for all x ≥ x∗:

a′(x) < 0, i′′(x) > 0. (B.117)
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An invading front fulfills the same properties, with the exception that
limx→+∞ i(x) = 0. However, the assumption i(x) ≥ γ > 0 allows us to
perturb the trajectory in such a way that the perturbed solutions stay non-
negative. The properties TW have been proven for the non-negative travel-
ing waves of S0, as part of the proof of Theorem 3.1, see [92]. We prove that
a given traveling wave persists under small perturbations in d:
Proposition B.14. For c ≥ 2, d0 ∈ [0, 3c/2) and K ∈ (1, 2], assume that
the manifold M−d0(K) admits the wave-properties TW. Then, there exists an
open interval I ⊂ R+

0 , d0 ∈ I, such that for all d ∈ I: the manifold M−d (K)
also admits TW.

The rest of Section B.3.3 is devoted to the proof of Proposition B.14.
The required phase-space analysis is not relevant for the rest of the paper
and can be skipped at first reading, we recommend to continue with Section
B.3.4.

B.3.3.1 Monotonicity, non-negativeness, and an attractor

Our analysis begins with the fact that i(x) must be monotone as long as the
trajectory is non-negative:
Lemma B.15. Let K > 1, c > 0 and d > 0. Along the manifold M−d (K,x),
the inequality

i′(x) < 0 (B.118)

holds as long as a(x) > 0, i(x) ≥ 0.

Proof. By Corollary B.11: i′(x) < 0 as x → −∞. We assume that there
exists a finite phase-time x∗ such that i′(x∗) = 0 for the first time. This
implies that i(x∗)′′ ≥ 0, since i′(x) < 0 for all x < x∗. However, it also holds
that di′′ = −ci′ − ra − a(a + i), which implies that i′′(x∗) < 0 if i(x∗) ≥ 0
and a(x∗) > 0. Thus, there can not be such a finite time x∗.

Since we do not change the equation for a(x) in Eq. (B.3), the following
result – that traps a(x) within a non-negative region – can be taken over
from the unperturbed system. This statement relies on an analysis of the
subsystem for a(x) for fixed i(x) = K, and on the fact that i(x) is monotone.
We consider only wave-speeds c ≥ 2, to simplify the representation:
Proposition B.16 (c.f. Thm. 6.1 and Prop. 6.4 in [92]). For c ≥ 2, r ≥ 0
and d ≥ 0, consider a solution of the Wave-Eq. (B.107), that at time x = 0
is subject to the conditions

a(0) > 0, (B.119)
a′(0) = 0, (B.120)

a(0) + i(0) ≤ 1. (B.121)
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Assume further that there exists some T ∈ (0,+∞] such that

i(x) ≥ 0, i′(x) ≤ 0 ∀x ∈ [0, T ). (B.122)

Then, a(x) is trapped in a non-negative attractor. It holds that

a(x) > 0 and a′(x) < 0 ∀x ∈ (0, T ). (B.123)

Moreover, if for some κ ∈ (0, 1) and xκ ∈ (0, T ), it holds that

a(xκ) + i(xκ) = 1− κ, (B.124)

then there exists a finite constant Lκ ≥ 0, that depends only on κ, such that∫ s2

s1

a(x) dx ≤ Lκ · a(s1) ∀ 0 ≤ s1 ≤ s2 ≤ T. (B.125)

Lemma B.15 and Proposition B.16 imply that along M−d (K,x), we only
have prove that a(x) reaches a local maximum, and that i(x) ≥ 0 for all
x ∈ R, then convergence and non-negativeness follow. As i′(x) essentially
depends on a(x), Inequality (B.125) will be handy for proving that i′(x)→ 0.
For S0, we did this in Sections 6.3 and 6.4 of [92]. For Sd, the new term di′′

needs to be dealt with, see the following Section B.3.3.2. Before, we conclude
this section with another simple phase space argument:
Lemma B.17. Let K > 1, c > 0, r ≥ 0 and d > 0. Consider the manifold
M−d (K,x). If there exists some T ∈ R such that

i(x) ≥ 0 ∀x ∈ (−∞, T ], (B.126)

then a(x) has at most one local maximum, say at some phase-time x0 ∈
(−∞, T ]. There, it holds that a(x0) + i(x0) ≤ 1. Moreover:

a(x) > 0, i′(x) < 0 ∀x ∈ (−∞, T ]. (B.127)

If T = +∞, then both a(x) and i(x) converge and stay non-negative.

Proof. The manifold M−d (K) leaves the fixed point in positive direction of a
and negative direction of i. We have already proven that i′(s) < 0 as long as
a > 0, i ≥ 0. Assume that a(s) has a first local maximum at some x0 ∈ R.
There, it holds that

0 ≥ a′′(x0) = a(x0) ·
(
a(x0) + i(x0)− 1

)
, (B.128)

which implies that a(x0) + i(x0) ≤ 1, since a(x0) > 0. But since i(s) ≥ 0 for
all s ∈ (−∞, x], we can apply Proposition B.16 to trap a(s)|x∈(x0,x]: along
this part of the trajectory, it holds that a(x) > 0 and a′(x) < 0.

121



B Preprint: Convective stability of the critical waves of an FKPP growth process

B.3.3.2 The tail of a perturbed trajectory

For the entire Section B.3.3.2, we work under the assumption that a reference
trajectory M−d0(K) exists for some d0 ≥ 0, which we perturb when changing
d ∼ d0:

Assumption: Let K > 1, c ≥ 2, r ≥ 0 and d0 ≥ 0. Assume that
the manifold M−d0(K) admits properties TW, and choose four representing
functions

ā(x), ā′(x), ī(x), ī′(x), x ∈ R. (B.129)

Given M−d0(K), we vary the parameter d and track the perturbed tra-
jectories. Therefore, we denote the representing functions of the manifolds
M−d (K) as

ad(x), a′d(x), id(x), i′d(x), x ∈ R, (B.130)

to emphasize their dependency on d.
The results of Proposition B.12 and Corollary B.13 are structurally sim-

ilar: they yield continuity of arbitrarily large, but finite time-horizons of
M−d (K), when varying d ≥ 0, resulting in the following Proposition B.18. It
remains to control the tail as x → +∞ (for the result, see Prop. B.14: the
wave proverties TW persist for d close to d0).
Proposition B.18. Let the manifold M−d0(K) be as above and choose a
finite time-horizon T ∈ R. For all ε > 0, there exists an open interval
I ⊂ R+

0 , d0 ∈ I, such that for all d ∈ I: the manifold M−d (K,x)|x∈(−∞,T ] is
of distance at most ε to M−d0(K,x)|x∈(−∞,T ] and is strictly non-negative.

Proof. For the reference trajectory, note that there exists a γ > 0 such that

ī(x) ≥ γ ∀x ∈ (−∞, T ]. (B.131)

If d0 = 0, apply Corollary B.13, if d0 > 0 apply Proposition B.12, both yield
continuity in d: for all ε > 0, there exists an open interval I ⊂ R+

0 , d0 ∈ I
such that for all d ∈ I:∣∣∣∣M−d (K,x)−M−d0(K,x)

∣∣∣∣
∞ ≤ ε ∀x ∈ (−∞, T ]. (B.132)

In particular, for ε ≤ γ/2:

id(x) ≥ ī(x)− ε ≥ γ − γ/2 > 0 ∀x ∈ (−∞, T ]. (B.133)

By Lemma B.17, this implies also positiveness of ad(x)|x∈(−∞,T ].

We trap M−d (K) in the attractor from Proposition B.16:
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Lemma B.19. Let M−d0(K) as before. There exists a constant κ ∈ (0, 1),
an open interval I0 ⊂ R+

0 , d0 ∈ I0, and a finite phase-time xκ, such that for
all d ∈ I0:

1. the unstable manifold M−d (K,x)|x∈(−∞,xκ] is strictly positive and has
a unique first local maximum of active particles at a finite phase-time
x̃0(d) ∈ (−∞, xκ].

2. It holds that

a′d(xκ) < 0, ad(xκ) + id(xκ) ≤ 1− κ.

Proof. On M−d0(K,x), there exists a unique sharp global maximum of ā(x),
say at some phase-time x0. Choose a phase-time xκ > x̃ so large, such that

ā(xκ) + ī(xκ) ≤ 1− 2κ, for some κ ∈ (0, 1), (B.134)
ā′(xκ) ≤ 2δ < 0, for some δ > 0, (B.135)

which must exist since M−d0(K,x) admits TW.
Apply the previous Proposition B.18 over the interval (−∞, xκ], such

that we can control M−d (K,x)|x∈(−∞,xκ] for d in some open interval I ⊂ R+
0 .

We choose |d− d0| sufficiently small such that

id(x) > 0 ∀x ∈ (−∞, xκ], (B.136)
ad(xκ) + id(xκ) ≤ 1− κ, (B.137)

a′d(xκ) ≤ δ < 0. (B.138)

By Corollary B.11: a′d(x) > 0 as x → −∞. Hence, also ad(x) must have
a local maximum before xκ. It is unique since id(x)|x∈(−∞,xκ] > 0 and by
Lemma B.17.

In view of Proposition B.16, we now have trapped M−d in a non-negative
monotone attractor, as long as we can control id ≥ 0. We first prove mono-
tonicity of the tail as x→ +∞:
Lemma B.20. ConsiderM−d0(K), I0 and x0 as in Lemma B.19. There exists
a phase-time xtail ≥ xκ, such that for all x∗ ∈ (xtail,∞):

There exists an open interval I1 ⊂ I0, d0 ∈ I1, such that for all d ∈ I1:

ad(x
∗), id(x

∗) > 0,

a′d(x
∗), i′d(x

∗) < 0, (B.139)
i′′d(x

∗) > 0.

Moreover, given the existence of such an x∗, it holds for all x ≥ x∗, and as
long as id(x) ≥ 0:

i′′d(x) > 0, (B.140)

and thus all ad, a′d, id, i
′
d converge monotonously to zero.
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Proof. The Inequalities (B.139) are true on the tail ofM−d0 , say for all x ≥ x1,
where we let x1 ≥ xκ without loss of generality. Now pick some x2 > x1.
There exists an open interval I1 ⊂ I0, d0 ∈ I1, such that for all d ∈ I1:

The manifold M−d (K,x)|x∈(−∞,x2] exists, is non-negative and converges
to M−0 (K,x)|x∈(−∞,x2] as d → d0. By continuity: for |d − d0| sufficiently
small and for all x ∈ [x1, x2]:

ad(x), id(x) > 0, a′d(x) < 0, i′d(x) < 0. (B.141)

On [x1, x2]: ī′′(x) > 0, so ī′(x1) < ī′(x2). Since i′d → ī′, there must also
be some x∗d ∈ [x1, x2], such that i′′d(x

∗
d) > 0, for all d such that |d − d0| is

sufficiently small.
We assume that there exists a finite time x3 ≥ x∗d such that i′′d(x3) = 0

for the first time after x∗. This implies that i′′′d (x3) ≤ 0. On the other hand,
deriving the equation for i in (B.3) once yields

d · i′′′ = −(ci′ + ra+ a(a+ i))′

= −
(
ci′′ + ra′ + a′(a+ i) + a(a′ + i′)

)
= −ra′ − a′(a+ i)− a(a′ + i′).

(B.142)

As long as id ≥ 0, we can apply Lemmas B.17 and B.15. Then, all three terms
in the last line are strictly positive, resulting in i′′′d (x3) > 0, contradicting
our assumption. This allows to fix xtail = x2, independent of d.

Remark : Note that we can choose x∗ from Lemma B.20 as large as we
want, the price is a stronger restriction regarding d ∼ d0. This will be helpful
if we assume that M−d0(K) converges: also the perturbed trajectories get as
close to the limit as we need.

Given monotonicity of the tail, we can control id(x) for x ∈ [x∗,∞):
Corollary B.21. Consider M−d0(K) and I1, x

∗ as in Lemma B.20. There
exists a finite constant J ≥ 0, such that for all d ∈ I1 and all phase-times
x2 ≥ x1 ≥ x∗, the bound

c ·
∣∣(id(x1)− id(x2)

)∣∣ ≤ d · |i′d(x1)|+ J · ad(x1) (B.143)

holds as long as id(x) ≥ 0 for all x ∈ (−∞, x2].

Proof. Choose x∗ as in the previous Lemma B.20. For x2 ≥ x1 ≥ x∗,
integrate 0 = di′′d + ci′d + ad(ad + id + r):

c ·
∣∣id(x2)− id(x1)

∣∣ =
∣∣d · (i′d(x2)− i′d(x1)

)
+

∫ x2

x1

ad(ad + id + r) ds
∣∣.

(B.144)
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As long as id ≥ 0, Proposition B.16 and the previous Lemmas B.17, B.15 and
B.20 imply ad ≥ 0, a′d ≤ 0, i′d ≤ 0 and i′′d ≤ 0. Thus, since ad+ id+ r ≤ 1 + r:

c ·
∣∣id(x2)− id(x1)

∣∣ ≤ d · ∣∣i′d(x1)
∣∣+ (1 + r) ·

∫ x2

x1

ad(x) dx. (B.145)

By our bound ad(xκ) + id(xκ) ≤ 1− κ, for some xκ ≤ x∗, Proposition B.16
implies that there exists a constant Lκ ≥ 0 such that∫ x2

x1

a(s) ds ≤ Lκ · ad(x1) ∀x2 ≥ x1 ≥ x0, (B.146)

as long as id(x) ≥ 0 for all x ∈ (−∞, x2].

We now prove the existence of a non-negative traveling wave for d ∼ d0,
all that is left to be done is to prove convergence as x→ +∞:

Proof of Proposition B.14. Consider a manifoldM−d0(K) that fulfillsTW.
Then, there exists a constant γ > 0, such that ī(x) ≥ γ for all x ∈ R. We
prove that for all d sufficiently close to d0:

|id(x)− ī(x)| ≤ γ

2
∀x ∈ R. (B.147)

This implies that id(x) ≥ γ
2 > 0, and Lemma B.15 yields positiveness and

convergence of M−d (K). The rest of the wave properties TW then follows
by Lemma B.15.

Let x∗ as in Corollary B.21: there exists an open interval I1 ⊂ R+
0 such

that for all d ∈ I1: the trajectory M−d (K,x)|x∈(−∞,x∗] is non-negative, and
there exists some J ≥ 0 such that for all x2 ≥ x1 ≥ x∗:

id(x2) ≥ id(x1)− d

c
|i′d(x1)| − J

c
· ad(x1), (B.148)

as long as id ≥ 0. Now, choose x1 ≥ x∗ large enough such that both

J

c
· ā(x1) ≤ δ :=

γ

7
, (B.149)

|ā(x1)|+ |ā′(x1)|+ |̄i′(x1)|+ |̄i(x1)− γ| ≤ δ :=
γ

7
, (B.150)

which is possible since M−d0(K) converges. Then choose an even smaller
open interval I2 ⊂ I1, d0 ∈ I2, such that by continuity: for all d ∈ I2,
M−d (K,x)|x∈(−∞,x1] is non-negative and of distance at most

ε =
γ

7(1 + J
C )

(B.151)

to M−d0(K,x)|x∈(−∞,x1]. Then, in view of Eq. (B.149) and (B.150), also

J

c
· ad(x1) ≤ 2γ

7
= 2δ, (B.152)
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|ad(x1)|+ |a′d(x1)|+ |i′d(x1)| ≤ 2γ

7
= 2δ. (B.153)

This implies that for all d ∈ I2 and x2 ≥ x1, and by Eq. (B.148):

id(x2) ≥ id(x1)− d

c

∣∣∣i′d(x1)
∣∣∣− J

c
· ad(x1)

≥ ī(x1)− ε− d

c

∣∣∣̄i′(x1) + ε
∣∣∣− 2δ

≥ γ − γ

7
− d

c
·
∣∣∣γ
7

+
γ

7

∣∣∣− 2
γ

7

≥ 4γ

7
− d

c
· 2γ

7
.

(B.154)

The last line is strictly positive for d < 3c/2. Thus, id(x2) ≥ 0 for all
x2 ≥ x1, and the trajectory stays non-negative and converges monotonously
to its limit, as claimed.

B.3.4 The mapping of the limits

In view of the previous Section, the wave properties TW persist under small
perturbations in d as long as i+∞ > 0. However, we can relate the limits of
any bounded and non-negative solution up to a term of order O(d):
Proposition B.22. For d > 0, the two limits i−∞ and i+∞ of any smooth,
bounded and non-negative traveling wave (where a 6≡ 0) fulfill

2− d · 2(r + 1)

c2
< i−∞ + i+∞ < 2. (B.155)

For the proof, we first verify integrability of any non-negative traveling
wave:
Lemma B.23. For d > 0, let a(x), a′(x), i(x), i′(x)|x∈R be a smooth, bounded
and non-negative solution of System (B.107), where a 6≡ 0. Then, as x →
±∞, a(x) vanishes and i(x) converges, and a, a′, a′′, i′, i′′ ∈ L1(R). More-
over, i(x) is not constant and i′ ≤ 0. The function a(x) has a unique global
and local maximum, and a(x) > 0 for all x ∈ R.

Proof. Let a(x), b(x), i(x), i′(x) as above. If i(x) does not converge at either
x → +∞ or x → −∞, it must oscillate: in this setting, we can use the
reasoning in the proof of Lemma B.15 to provoke a contradiction. Thus,
i(x) is either increasing or decreasing. If i′(x) ≥ 0 for all x ∈ R, then

−d · i′′ ≥ i′ + a(a+ i+ r) ≥ 0. (B.156)

As a consequence, the trajectory can not be bounded, since i′(x) can not
vanish at both x → ±∞, or i(x) must be constant. However, if i(x) was
constant, then

0 ≡ di′′ + ci′ = −a(a+ i+ r), (B.157)
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which can not hold since we assumed that a 6≡ 0. It follows that i(x) is
decreasing and by boundedness must converge as x → ±∞, so i′ ∈ L1(R).
The two limits must be fixed points, we denote them as (0, 0, i−∞, 0) and
(0, 0, i+∞, 0).

Assume that at some finite phase-time x∗: a(x∗) = 0. Since we as-
sumed that a ≥ 0, this must be a local minimum, so a′(x∗) = 0. Then also
−a′′(x∗) = ca′(x∗) + a(x∗) − a(x∗)(a(x∗) + i(x∗)) = 0, and by induction:
a(n)(x∗) = 0 for all n ∈ N. But this contradicts the assumption a 6≡ 0.

For a(x) 6≡ 0, there is at least one local maximum of active particles,
since the trajectory converges at both ends. We denote this maximum as
(a0, 0, i0, i

′
0). At this point, a′′ = a0(a0 + i0 − 1) ≤ 0, so a0 + i0 ≤ 1, since

a0 > 0. Assume that there is also a local minimum of a(x), denoted as
(am, 0, im, i

′
m). Since a(x) vanishes at both ends, we may assume without

loss of generality that this be the first local minimum after passing through
(a0, 0, i0, i

′
0).

Now, since am(am+ im−1−1) = a′′m ≥ 0, it must hold that am+ im ≥ 1.
But i(x) is decreasing, so a(x) must have been increasing, a contradiction
to the assumption that this is the first local minimum after the maximum
(a0, 0, i0, i

′
0). As a consequence, there is only one local maximum of active

particles, which is also the global one. Further, this implies a′ ∈ L1(R).
Given that i′ ∈ L1(R), we know that the expression∫

R

d · i(x)′′ + a(x)
[
a(x) + i(x) + r

]
dx = c(i−∞ − i+∞) (B.158)

is finite, however the left side might only exist in a Riemannian sense. Inte-
grating the left-hand side over a finite interval [−M,M ], it also holds that∫ M

−M
d · i(x)′′ + a(x)

[
a(x) + i(x) + r

]
dx

= d
[
i′(M)− i′(−M)

]
+

∫ M

−M
a(x)

[
a(x) + i(x) + r

]
dx.

(B.159)

By monotonicity of i(x), it holds that i′(x) → 0 as x → ±∞. By (B.158)
and (B.159):

c(i−∞ − i+∞) =

∫
R

a(x)
[
a(x) + i(x) + r

]
dx, (B.160)

and the right-hand side is integrable, since all terms are non-negative. In
view of (B.159), also i′′(x) is integrable, as a sum of integrable terms. We
proceed in a similar fashion with the equation a′′ + ca′ + a = a(a + i). We
integrate it over the finite interval [−M,M ]:∫ M

−M
a′′(x) + ca′(x) + a(x) dx =

∫ M

−M
a(x) ·

[
a(x) + i(x)

]
dx. (B.161)
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We already know that the right-hand is integrable, and that both a(±M)
and a′(±M) vanish as M → +∞. This implies∫

R

a(x)dx

= lim
M→+∞

[
a′(M)− a′(−M) + c

[
a(M)− a(−M)

]
+

∫ M

−M
a(x)dx

]
=

∫
R

a(x) ·
[
a(x) + i(x)

]
dx.

(B.162)

Hence also a(x) is integrable, since it is non-negative. Finally, as a sum of
integrable terms, also a′′(x) is integrable.

Proof of Proposition B.22. Given integrability a non-negative traveling
wave, we define

A(x) :=

∫ x

−∞
a(s), A := A(+∞). (B.163)

Then, integrating the equation for a(x) in (B.3), it must hold that

A =

∫
R

a(x)
[
a(x) + i(x)

]
dx > 0,

c ·
(
i−∞ − i+∞

)
= r · A+

∫
R

a(x)
[
a(x) + i(x)

]
dx.

(B.164)

Moreover, by integration by parts:∫
R

a(x)
[
a(x) + i(x)

]
dx

= A · i+∞ −
∫
R

A(x)
[
a′(x) + i′(x)

]
dx

= A · i+∞ +
1

c

∫
R

A(x)
[
(1 + r)a(x) + di′′(x) + a′′(x)

]
dx

= A · i+∞ +
1 + r

2c
A2 +

1

c

∫
R

A(x) · a′′(x) dx+
d

c

∫
R

A(x) · i′′(x) dx

= A · i+∞ +
1 + r

2c
A2 − d

c

∫
R

a(x) · i′(x) dx.

(B.165)

Using this and Eq. (B.164), it follows that

A =
c

1 + r
· (i−∞ − i+∞), (B.166)

A = A · i+∞ +
1 + r

2c
A2 − d

c
·
∫
R

a(x) · i′(x) dx. (B.167)
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We know that
∫
R
a · i′ < 0. We drop this term in Eq. (B.167), divide by

A > 0 and then eliminate the variable A via (B.166), leading to

1 > i+∞ +
1

2
(i−∞ − i+∞). (B.168)

The first part of the claim follows: 2 > i+∞ + i−∞.
At the local maximum of a(x), it holds that a < a+ i ≤ 1, see the proof

of Lemma B.17. Thus −i′ ≥ −ai′ ≥ 0, and we can bound (using (B.166)):

−d
c

∫
R

a(x) · i′(x) dx <
d

c
· (i−∞ − i+∞) =

d

c
· 1 + r

c
A. (B.169)

As before, we apply this bound to (B.167), divide by A and eliminate A via
(B.166), which leads to

2 < i−∞ + i+∞ + 2
d(1 + r)

c2
. (B.170)

Remark : These estimates seem to be sharp only asymptotically for d ∼ 0,
see the numerical Table B.4 in Appendix B.4.2.

B.3.5 Existence of the traveling waves

The existence of an invading front is proven in two steps: we first prove
that for d > 0, there exists a traveling wave that is non-negative, but not
necessarily a traveling front, as long as we can control the limits via the O(d)-
Estimate (B.155). Afterwards, we show that for fixed d ≥ 0, the existence
of an arbitrary non-negative traveling wave also implies the existence of an
invading front, by using the continuum of possible limits.

B.3.5.1 Arbitrary bounded non-negative solutions

Theorem B.24 (Existence of a traveling wave solution). Let r ≥ 0, c ≥ 2
and i−∞ ∈ (1, 2). Then, for all d > 0 that fulfill

d <
3c

2
, (B.171)

d
2(r + 1)

c2
≤ 2− i−∞, (B.172)

there exists a non-negative traveling wave with limits

lim
x→±∞

a(x) = 0, (B.173)

lim
x→−∞

i(x) = i−∞, (B.174)
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lim
x→+∞

i(x) > 2− i−∞ − d
2(r + 1)

c2
≥ 0. (B.175)

All these waves admit the wave properties TW. Moreover, for d ∈ (0, 1), the
waves converge exponentially fast. The rates of convergence depend on i±∞
and are given by (B.105), as in the case d = 0.

Proof. Fix i−∞ ∈ (1, 2), and consider the manifold M−d (i−∞) as before. We
prove TW for all d as claimed. For d = 0, this statement is part of the
proof of Theorem 3.1. We will use continuity in d, see Proposition B.14,
for which we need Bound (B.171). The second Bound (B.172) is the one
from Proposition B.22, it will ensure that limx→+∞ i(x) > 0. The rates of
convergence will be discussed when finishing the proof of Theorem B.1, at
the end of Section B.3.5.2.

Since TW is true for d = 0, it is also true for d ∈ [0, d1), for some d1 > 0,
by Proposition B.14. Let

d∗ = sup
d1≥0

{
∀d ∈ [0, d1) : TW holds for M−d (i−∞)

}
> 0. (B.176)

Assume that d∗ does violate neither (B.171) nor (B.172). The manifold
M−d∗(i−∞) exists locally around the fixed point (a, a′, i, i′) = (0, 0, i−∞, 0)
due to Corollary B.10. Let R > 0. Since the System Sd∗ is a smooth vector
field, also the continuation

M−d∗(i−∞) ∩ {x ∈ R4 : ||x||∞ < R} (B.177)

is a smooth and bounded manifold. If it is non-negative, we proceed with
the next paragraph. If not, choose a representation

M−d∗(i−∞, x)|x∈(−∞,T ]

for some finite T ∈ R, such that the manifold has become strictly negative at
time T . By Proposition B.12, there exists an open interval I ⊂ R+

0 , d
∗ ∈ I,

such that for all d ∈ I: the manifolds M−d (i−∞, x)|x∈(−∞,T ] exists and are
continuous in d. However, for all d < d∗, these manifolds are also non-
negative, by choice of d∗. Thus, also M−d∗(i−∞, x)|x∈(−∞,T ] must be non-
negative.

Since R > 0 was arbitrary, the entire manifold M−d∗(i−∞) must be non-
negative. Since it is not constant, it fulfills the conditions of Proposition
B.22, so

lim
x→+∞

id∗(x) > 2− i−∞ − d∗
2(r + 1)

c2
≥ 0, (B.178)

in view of Condition (B.172), which was not violated. Now, Lemma B.23
yields some structural results: it holds that i′d∗(x) < 0, ad∗(x) > 0, and

130



B Preprint: Convective stability of the critical waves of an FKPP growth process

ad∗(x) has a unique local and global maximum. Since ad∗(x), id∗(x) con-
verge as x → +∞, there exists some x∗ as claimed in Lemma B.20, which
yields monotonicity of the tail. Thus, we have verified TW also for d∗, and
can again apply Proposition B.14 to M−d∗ . This proves TW in a local neigh-
borhood of d∗. Insofar, d∗ can not have been chosen as claimed, and either
(B.171) or (B.172) must be violated for d∗.

By choosing i−∞ arbitrarily close to 1, Theorem B.24 has a simple
Corollary B.25. Let r ≥ 0, c ≥ 2. Then, for all d ≥ 0 such that

d < min
{3c

2
,

c2

2(r + 1)

}
, (B.179)

there exists some i−∞ ∈ (1, 2) such that the manifold M−d (i−∞) is a non-
negative traveling wave.

B.3.5.2 The invading front

It remains to show that there exists a wave where i+∞ = 0, despite the
O(d)-estimate regarding the limits (B.175). We begin with the simple
Lemma B.26. For all d > 0, c > 0, r ≥ 0, the manifold

M−d (2) (B.180)

is not non-negative.

Proof. Asymptotically as x → −∞: a(x) > 0 by Corollary B.10. Assume
that a(x), i(x) ≥ 0 for all x ∈ R. Then, denoting the other limit of the wave
as i+∞ = limx→+∞ i(x) ≥ 0, Proposition B.22 implies

2 + i+∞ < 2, (B.181)

a contradiction.

Given a non-negative and converging trajectory M−d (K0), the following
lemma yields continuity and non-negativeness of M−d (K) with respect to K
in a neighborhood of K0:
Lemma B.27. Let c ≥ 2, d > 0, r ≥ 0 and K0 ∈ (1, 2). Assume that the
manifold M−d (K0) is a non-negative traveling wave, and thus converges as
x→ +∞, where

lim
x→+∞

i(x) = i+∞ ∈ (0, 1). (B.182)

Then, there exists an open interval I ⊂ (1, 2),K0 ∈ I such that for all K ∈ I:
the entire manifold M−d (K)|x∈R is continuous in K, and moreover is also a
non-negative traveling wave.
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Proof. Consider M−d (K0) as proposed, and denote its limit as i∗+∞. We use
Corollary B.11 to control M−d (K,x)|x∈(−∞,T ] for some T ∈ R. By Corollary
B.9, the fixed point (0, 0, i∗+∞, 0) is Lyapunov stable, and we can control also
the tail as x→ +∞.

Choose some

ρ ∈ (0, i∗+∞). (B.183)

There exists ε > 0, such that for all trajectories a(x), a′(x), i(x), i′(x) that
start with in range of ε to (0, 0, i∗+∞, 0):∣∣∣(a(x), a′(x), i(x), i′(x)

)
−
(
0, 0, i∗+∞, 0

)∣∣∣ ≤ ρ, for all x ≥ 0, (B.184)

since the fixed point is Lyapunov-stable. Wlog let ε ≤ ρ. There exists a
finite phase-time T , such that∣∣∣M−d (K0, T )−

(
0, 0, i+∞, 0

)∣∣∣ ≤ ε

2
. (B.185)

We now use the continuity of M−d (K,x)|x∈(−∞,T ] with respect to K, see
Corollary B.11: there exists a δ > 0 with K0 − δ > 1, and such that for all
K ∈ [K0−δ,K0 +δ]: the manifoldM−d (K,x)|x∈(−∞,T ] is of distance at most
ε/2 to M−d (K0, x)|x∈(−∞,T ].

Then, for all K ∈ [K0 − δ,K0 + δ], the manifold M−d (K0, x)|x∈(−∞,T ] is
also strictly non-negative, since i(x) ≥ i∗+∞ −

ρ
2 > 0 for all x ∈ (−∞, T ], by

Lemmas B.15 and B.17. Moreover, at time T , any such manifold has entered
the ρ-neighborhood of (0, 0, i∗+∞, 0). Thus, i(x) ≥ 0 for all x ∈ R and we can
apply Lemma B.17 to conclude that also a(x) ≥ 0 for all x ∈ R. Moreover,
all such trajectories have at most distance ε ≤ ρ from M−d (K0). Since we
can choose ρ as small as we want, this also proves continuity of the entire
manifold M−d (K,x)|x∈R in K.

Continuity of the traveling waves w.r.t. K implies the existence of an
invading front:
Theorem B.28. Let c ≥ 2, r ≥ 0, d > 0 and K0 ∈ (1, 2) such that M−d (K0)
is a non-negative traveling wave. Then, there exists also some K1 ∈ [K0, 2),
such that M−d (K1) is an invading front.

Proof. We proof a sort of intermediate value theorem, increasing K as much
as possible. For a manifold M−d (K) that is non-negative and converges, we
denote i+∞(K) := limx→+∞ i(x) ≥ 0.

We are done if i+∞(K0) = 0, so we assume i+∞(K0) > 0 in the following.
Then, the manifold K−d (K0) fulfills the conditions of Lemma B.27. It follows
that there exists a neighborhood I ⊂ R with K0 ∈ I, such that the entire
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manifold M−d (K) is continuous w.r.t. K ∈ I, including its limit i+∞(K).
We extend this to a non-local statement by defining

K1 := sup
L≥K0

{
∀K ∈ [K0, L)

∣∣∣M−d (K) is non-negative and converges
}
.

(B.186)

Recall that for K = 2, the manifold M−d (2) eventually becomes negative by
Lemma B.26, so it must hold that K0 < K1 < 2. For all K ∈ [K0,K1), the
manifold M−d (K) is non-negative and converges, by the definition of K1. By
Corollary B.10, the manifold M−d (K1) exists locally around the fixed point.
Since Sd is a smooth vector field, also the continuation

M−d (K1)|R := M−d (K1) ∩
{
x ∈ R5 : ||x||∞ < R

}
(B.187)

exists and is a smooth manifold, for any R > 0. Now, since M−d (K) is
non-negative and converges for all K ∈ [K0,K1), also M−d (K1)|R must be
non-negative, by a continuity argument completely analogue to that in the
proof of Theorem B.24. Since R can be chosen arbitrarily large, the entire
manifold M−d (K1) is non-negative, and thus also converges.

We are done if i+∞(K1) = 0. So let us assume that i+∞(K1) > 0. In this
case, we again apply Lemma B.27 to M−d (K1), resulting in the existence of
non-negative and converging solutions for in an open neighborhood of K1, a
contradiction.

We finish the

Proof of Theorem B.1. For d as claimed, Corollary B.25 and Theorem
B.28 imply the existence of an invading front. It remains to determine its
asymptotic behavior, therefore we consider only d ∈ (0, 1).

As x→ −∞, the rate of convergence along the instable manifold is given
in Corollary B.10 (depending on i−∞). Regarding the behavior as x→ +∞,
we take a look at the linear Representation (B.112) and the Eigenvalues
(B.109). For d ∈ (0, 1) and i+∞ ∈ [1 − c2

4 , 1), we can order the purely
real-valued Eigenvalues of the limit:

0 > λ4 ≥ λ3 > λ2, (B.188)

where the inequalities are strict if i+∞ > 1 − c2

4 . This ordering is crucial:
even though we do not have a complete description of the asymptotics, we
can determine the rate of convergence, as some components of the system
converge with speed λ4: we apply the same trapping argument as for S0,
see Proposition 6.3 in [92]. As long as λ4 ≥ λ3, we know by an analysis
of the phase space that the two components a(x), a′(x) converge along the
Eigenvector e4 (B.109), associated to λ4. We now must differentiate between
the critical and the noncritical case.
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For the noncritical case, where i+∞ 6= 1−c2/4, the asymptotics are equiv-
alent to the linear System (B.112). This implies that the system approaches
its limit exponentially with rate λ4.

The critical case i+∞ = 1 − c2/4 is a bifurcation point of the system:
solutions that converge to i+∞ < 1− c2 spiral, since the Eigenvalues λ3 and
λ4 have an imaginary part (B.109), they do not spiral and converge expo-
nentially fast if the limit fulfills i+∞ > 1 − c2/4. Luckily, we do not have
to find a complete representation for the behavior around the bifurcation
point: we only need to determine the dynamics of a trajectory that con-
verges to the specific limit i+∞ = 1 − c2/4. In this case, we still know that
the center manifold of the fixed point (a, a′, i, i′) = (0, 0, i+∞, 0) has dimen-
sion one, and thereby must coincide with the adjacent line of fixed points.
Thus, any trajectory that converges to i+∞ = 1− c2/4 must be contained in
the remaining three-dimensional strictly hyperbolic subsystem. The Eigen-
value λ3 = λ4 has algebraic multiplicity 2, but geometric multiplicity 1, see
the Eigenvectors (B.109). Along the corresponding manifold, trajectories
converge as fast as x · exp(−xλ4), cf. Chapter 9 in Boyce et al. [20].

B.4 Appendices of this preprint

B.4.1 A-priori estimates for the left tail of the PDE

We provide the a-priori bounds in the regime x → −∞ via a Feynman-
Kac formula for shifted Brownian motion, which we stop at the origin. The
following Lemma B.29 is standard, check e.g. Chapter 4.4 in [86] for more
examples and a profound theoretical treatment. For linear problems (e.g.
super-solutions in certain regimes of a PDE), this allows for easy estimates:
Lemma B.29. For c, L,M ∈ R, let u(t, x) : R+

0 ×R→ R be a solution of

ut =
1

2
∆xu(t, x) + cux(t, x) + Lu(t, x) +M, (B.189)

twice differentiable in space and once differentiable in time. For fixed x0 < 0,
let Wt = Bt + ct + x0 be a shifted Brownian motion starting in x0. Denote
the hitting time T0 := inf{t ≥ 0 : Wt = 0}. Assume that for some t > 0:

sup
x≤0
|u(t = 0, x)| <∞ and sup

s∈[0,t]
|u(s, x = 0)| <∞. (B.190)

It then holds that

u(t, x0) = Ex0

[
eL·t · u

(
0,Wt

)
; T0 > t

]
+ Ex0

[
eL·T0 · u

(
t− T0, 0

)
; T0 ≤ t

]
+
M

L
· Ex0

[
eL(t∧T0)

]
.

(B.191)
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Proof. The proof is standard: fix x0 and t and apply Itos formula to the
stochastic process

Xs := eL·s · u(t− s,Ws), s ∈ [0, t]. (B.192)

It follows that

dXs = LeL·su(t− s,Ws)ds

+ eL·s ·
[
− usds+ ux dBs+ uxc ds+

1

2
uxx ds

]
(B.193)

= eLs
[
ux dBs−Mds].

The last expression consists of a local martingale and a drift, thus

u(t, x0) = X0 = Ex0 [X0] = Ex0 [Xt∧T0 ] +M · Ex0
[ ∫ t∧T0

0
eLs ds

]
, (B.194)

since ||u||∞ can grow at most exponentially in time. The claim follows by
splitting the cases t < T0 and t ≥ T0.

We will need the distribution of the hitting time T0 as in Lemma B.29.
It can be shown (by a Girsanov transformation and the reflection principle),
that for x0 < 0, the distribution of T0 has density

Px0 [T0 = dt] =
−x0√
2πt3

· e−
(−x0−ct)

2

2t · 1t>0 dt. (B.195)

For any speed c > 0, this defines a probability density, so the hitting time is
almost surely finite.

We can now estimate the decay of A(t, x) at the back of the wave. In an
analogue fashion, we could also prove that I(t, x) grows at most exponentially
in x, given that A(t, x) ≤ 1, but we do not need this result (and in fact hope
that we can also prove boundedness of I in the future).
Proposition B.30. Let A(t, x), I(t, x) be a non-negative solution of the
PDE (B.1) in the moving frame x = z − ct, for a speed c > 0. Assume
that there exist constants K, δ, µ0 > 0, such that the initial data fulfill

I(0, x) ≥ 1 + δ ∀x ≤ 0,

A(0, x) ≤ Keµ0x ∀x ≤ 0, (B.196)
A(0, x) + I(0, x) ≤ K ∀x ∈ R.

Moreover, assume that for some time t ∈ (0,∞], it holds that

I(s, x = 0) ≥ 1 + δ > 1 ∀s ∈ [0, t). (B.197)

Then, there exist C, ζ > 0 that are independent of t, such that:

∀s ∈ [0, t), x ≤ 0 : i) I(s, x) ≥ 1 + δ, (B.198)

ii) A(s, x) ≤ Ceζx. (B.199)
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Proof. Without loss of generality let K ≥ 1. By boundedness of the initial
data, a solution exists for all times. Since K ≥ 1, it holds that A(t, x) ≤ K
for all t ≥ 0.

For the first Bound (B.198), note that the solution H(t, x) of

Ht = d ·Hxx + c ·Hz, H(0, x) = I(0, x), (B.200)

is a sub-solution for I(t, x), which is not affected by any negative reaction-
term. We rescale space, introducing x = 1√

2d
y, such that H fulfills Ht =

1
2Hyy + c√

2d
Hy. We can now apply Lemma B.29 with L = M = 0. For all

y0 ≤ 0 and t ≥ 0, it holds that

H(t, y0) = Ey0 [H(0,Wt); T0 > t] + Ey0 [H(t− T0, 0); T0 ≤ t] ≥ 1 + δ,
(B.201)

which is nothing but a maximum principle for a diffusion subject to a moving
boundary condition.

Now, given that I(t, x) ≥ 1 + δ for all x ≤ 0, the solution of

Jt = Jxx + c · Jx − δJ (B.202)

is a super-solution for A. Again, we rescale x = 1√
2
y, such that J fulfills

Jt =
1

2
Jyy +

c√
2
Jy − δJ. (B.203)

We write c̃ = c/
√

2. It holds that for all y0 ≤ 0:

J(t, y0) = Ey0

[
e−δt · J

(
0,Wt

)
; T0 > t

]
(B.204)

+ Ey0

[
e−δT0 · J

(
t− T0, 0

)
; T0 ≤ t

]
. (B.205)

We first estimate (B.204). Therefore, we fix y0 ≤ 0 and differentiate between
small and large times. To begin with, we assume that

(2c̃+ µ0)t ≥ −y0. (B.206)

Since A ≤ K, the term (B.204) is bounded by

Ke−δt ≤ Ke
δ

2c̃+µ0
y0 . (B.207)

Next, we consider small times (2c̃ + µ0)t ≤ −y0. The term (B.204) can be
bounded by

Ey0
[
J(0,Wt);T0 > t

]
≤ Ey0

[
J(0,Wt)

]
≤ Ey0

[
K · eµ0Wt

]
= K exp

(
µ0(y0 + c̃t)

)
· E0[exp(µ0Bt)], (B.208)
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where Bt is a standard Brownian motion. Using the moment generating
function of Bt and inserting our small time estimate, we get

= K exp
(
µ0[y0 + c̃t+

tµ0

2
]
)
≤ K exp(

µ0

2
y0). (B.209)

We continue with (B.205). For this, we use the distribution of the hitting
time T0, see (B.195). In the following, let C be a universal constant. We
estimate

Ey0

[
e−δT0 · J

(
t− T0, 0

)
; T0 ≤ t

]
≤ CEy0 [e−δT0 ]

=
−y0√

2π

∫ ∞
0

exp(−δs) · s−3/2 · exp
(
− 1

2s
(−y0 − c̃s)2

)
ds.

(B.210)

Again, we differentiate between small and large times. First, consider

−y0√
2π

∫ ∞
−y0
2c̃

exp(−δs) · s−3/2 · exp
(
− 1

2s
(−y0 − c̃s)2

)
ds

≤ −Cy0 ·
( |y0|

2c̃

)−3/2
∫ ∞
−y0
2c̃

exp(−δs) ds. (B.211)

For y0 ≤ −1, this can be bounded by

≤ C exp
( δ

2c̃
y0

)
. (B.212)

We continue with the small time estimate:

−y0√
2π

∫ −y0
2c̃

0
exp(−δs) · s−3/2 · exp

(
− 1

2s
(−y0 − c̃s)2

)
ds

≤ −Cy0

∫ −y0
2c̃

0
s−3/2 · exp

(
− y2

0

4s

)
ds

≤ −Cy0
4

y2
0

∫ −y0
2c̃

0

√
s · y

2
0

4s2
exp

(
− y2

0

4s

)
ds (B.213)

≤ −C
y0

√
−y0

2c̃
·
∣∣∣−y02c̃

0
exp

(
− y2

0

4s

)
ds

For y0 ≤ −1, this can be bounded by

≤ C exp
( c̃

2
y0

)
(B.214)

Lastly, remark that for y ≥ −1, the trivial bound J(t, y) ≤ K holds, since
A ≤ K. Considering the Inequalities (B.207), (B.209), (B.212), (B.214), and
re-substituting c̃ = c/

√
2, the upper Bound (B.199) for A(t, x) follows.
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B.4.2 Numerical evaluation of the discrete spectrum

We verify Assumption B.44 numerically. That is, we need to find δ0, δ1 > 0
such that the region

Ω =
{
λ ∈ C

∣∣Reλ ≥ −δ0 − δ1 · |Imλ|
}
, (B.215)

contains no elements of the discrete spectrum of L as in Proposition B.4. In
the following, we analyze only the non-negative part of the discrete spectrum.

Given that the non-negative discrete spectrum is empty, a set as above
can easily be constructed as follows. For L as in Prop. B.4 and for a fixed
set of type (B.215), it is well-known that there exists a constant K > 0 such
that

∀λ ∈ Ω ∩ Σd : |λ| ≤ K. (B.216)

This can be proven by rescaling the Eigenvalue-ODE (B.35) for large λ, see
e.g. Prop. 2.2 in [3], or Section 2.2 in [56]. Since the Evans function (see
Section B.4.2.2) is menomorphic over Ω away from the continuous spectrum
(Prop. 4.7 in [167]), the bounded set

Ω−K := Ω ∩ {λ ∈ C
∣∣Reλ < 0, |λ| ≤ K} (B.217)

can contain at most finitely many elements of the discrete spectrum. Thus, if
the non-negative part of Ω contains no element of the discrete spectrum, one
finds a set of type (B.215) as claimed by eventually choosing δ0, δ1 smaller.

Now, for the numerical analysis of the discrete spectrum, we consider
only a single type of weight, namely

w(x) = e−x. (B.218)

This choice allows for an explicit and rather efficient energy based estimate
regarding the maximal possible size of an Eigenvalue with non-negative real-
part, presented in Section B.4.2.1. This estimate is much better than the
asymptotic Bound (B.216), where an explicit calculation of the constant K
is a rather tedious task. However, this approach is restricted to fully diffusive
systems. In the subsequent Section B.4.2.2, we briefly review the theory of
the Evans function and how it can be used to analyze the discrete spectrum.
For the numerical evaluation, we use STABLAB, a tool by Barker et al.
[13]. These computations show that L with the Weight (B.218) is indeed
spectrally stable in H2.

If the non-negative discrete spectrum for the Weight (B.218) is empty,
then the same is obviously also true for all

w(x)|x≤−1 = e−α−x, α− < 1. (B.219)
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B.4.2.1 An energy bound

The below idea is probably due to J. Humpherys, who also presents a refined
version in [75]. A similar bound is found by F. Varas and J. Vega [153], but
their calculation turns out to be wrong due to a sign error. Consider the
linear problem

λ · ui(x) = Di · u′′i (x) + ci · u′i(x) +
n∑
j=1

fi,j(x) · uj(x), i = 1, . . . , n,

(B.220)

for λ ∈ C, constants Di ≥ 0, ci ≥ 0, and functions fi,j ∈ L∞(R).
Now assume that there exists an Eigenvalue λ ∈ C with Reγ ≥ 0, and

associated eigenfunctions ui ∈ H2(R). The product structure of H2 induces
an energy estimate on |λ|:
Theorem B.31 (An a-priori bound for the positive discrete spectrum). Let
λ ∈ C with Reλ ≥ 0 and functions

(
ui ∈ H2(R)

)
i=1...n

be a solution of the
Eigenvalue-problem (B.220). For i = 1, . . . , n, define

Mi :=
n∑
j=1

||fi,j ||∞. (B.221)

Then, the real-part of λ is bounded:

Reλ ≤ max
i
{Mi}. (B.222)

Moreover, if Di > 0 for all i = 1, . . . , n, such that the system is with non-
degenerate diffusion, it holds that

|Imλ| ≤ max
i

{
ci ·
√
Mi

Di
+Mi

}
. (B.223)

Proof. In the following, the norm ||.||2 will be the L2-norm with correspond-
ing scalar product 〈 . 〉. Before proving the above statement, let us note that
for any function u ∈ H2(R), the product 〈u′, ū〉 has no real-part, since

Re

∫
R

u′(x) · ū(x) dx =
1

2

(∫
R

u′(x) · ū(x) + ū′ · u(x) dz
)

=
1

2

∫
R

|u(x)2|′ dx = 0.

(B.224)

Moreover, it holds by integration by parts that

〈u′′, ū〉 = −||u′||22 ≤ 0. (B.225)
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Now, assume that there exists an Eigenvalue λ ∈ C with Reλ ≥ 0 and
associated eigenfunctions

(
ui ∈ H2(R)

)
i=1...n

that solve (B.220). For for
each i ∈ 1 . . . n, multiply (B.220) by ūi:

λ · ||ui||22 = Di · 〈u′′i , ūi〉+ ci · 〈u′i, ūi〉+

n∑
j=1

〈fi,j · uj , ūi〉

= −Di||u′i||22 + ci · 〈u′i, ūi〉+

n∑
j=1

〈fi,j · uj , ūi〉. (B.226)

Choose k ∈ 1 . . . n such that ||uk||2 = maxi ||ui||2. By Eq. (B.226), and since
〈u′i, ūi〉 has no real-part:

0 ≤ Reλ · ||uk||22 = −Dk · ||u′k||22 +
n∑
j=1

Re〈fk,j · uj , ūk〉

≤ ||uk||22 ·
n∑
j=1

||fk,j ||∞.
(B.227)

The claimed bound for Reλ follows. We proceed similarly for the imaginary
part of Eq. (B.226):

Imλ · ||ui||22 = ci · 〈u′i, ūi〉+

n∑
j=1

Im〈fi,j · uj , ūi〉. (B.228)

Again, for ||uk||2 = maxi ||ui||2:

|Imλ| · ||uk||22 ≤ ck · |〈u′k, ūk〉|+
n∑
j=1

||fk,j ||∞ · ||uk||22. (B.229)

We are done if we can find a suitable bound for ||u′k||2. This is where we
require that Di > 0 for all i ∈ 1 . . . n. Again take the real-part in Eq.
(B.226). The inequality Reλ ≥ 0 implies that for all i = 1, . . . , n:

Di · ||u′i||22 ≤
n∑
j=1

||fi,j ||∞ · ||ui||2 · ||uj ||2, (B.230)

and thus for k chosen as above: ||u′k||2 ≤
√

Mk
Dk
· ||uk||2. We use this in Eq.

(B.229) to bound

|Imλ| ≤ c ·
√
Mk

Dk
+Mk. (B.231)
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We apply Theorem B.31 to the Operator (B.19) that already encodes the
transformation into the weighted space. For a traveling wave a(x), i(x) with
speed c = 2 and the weight w(x) = e−x, L reduces to

Lu :=
∂2

∂x2
u− u(2a+ i)− va,

Lv := d
∂2

∂x2
v + (2− 2d)

∂

∂x
v + v · (a+ d− 2) + u(2a+ i+ r).

(B.232)

Here, it is essential that w′/w = −1 is constant, such that we are in the
setting of Theorem B.31.
Proposition B.32. For d ∈ (0, 1), consider L (B.232) as an operator

H2(R)×H2(R)→ L2(R)× L2(R). (B.233)

For all λ ∈ C in the discrete spectrum of L with Reλ ≥ 0, it holds that

|λ| ≤
√

2
[
(2− 2d)

√
5 + r

d
+ 5 + r

]
. (B.234)

Proof. This is a direct consequence of Theorem B.31. We can estimate the
two constants Ma and Mi, see Eq. (B.221), via the simple bounds |i| ≤
2, |a| ≤ 1:

Ma = |2a− i|∞ + |a|∞ ≤ 3, (B.235)
Mi = |a+ d− 2|∞ + |2a+ i+ r|∞ ≤ 5 + r. (B.236)

B.4.2.2 The Evans function

The discrete spectrum within the region of consistent splitting of an operator
can be evaluated numerically with the help of the Evans function. The
following concepts are presented in much more detail by B. Sandstede, who
wrote a great overview of the topic [130], a more practical introduction and
the numerical tool STABLAB [13] have been written by B. Barker et al. [12].

Recall that for L as in Proposition B.4, if λ ∈ Σd, this is equivalent to
saying that there exists a bounded solution of a linear ODE of type

U ′ = M(x, λ) · U, x ∈ R, (B.237)

compare (B.35). The matrix M(x, λ) is given by (B.36) and encodes the
shift of the equation into the weighted space. It is now essential that we
consider only λ ∈ C such that the matrices M(x, λ) are analytic in (λ, x) up
to x = ±∞, with strictly hyperbolic limits M(±∞, λ).
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Since the limiting matrices M(±∞, λ) are hyperbolic, the theory of ex-
ponential dichotomies implies that any bounded solution U(x) must vanish
exponentially fast as x→ ±∞. Moreover, it asymptotically approaches the
unstable manifold of the constant matrix M(−∞, λ) as x → −∞, and the
stable manifold of M(+∞, λ) as x → +∞. Therefore, a bounded solution
exists if and only if the trajectories that emerge from these manifolds inter-
sect. This allows us to compute the Evans function: it is a determinant that
evaluates to zero if and only if the solutions that decay at −∞ and those that
decay at +∞ intersect, and are linearly dependent. The details are given in
Section 4.1 in [130].
Definition B.33 (Evans function). Consider the ODE (B.237), with λ ∈ C
such that the matrices M(x, λ) are analytic in (λ, x) up to x = ±∞, with
hyperbolic limits M(±∞, λ).

Let

X1(x, λ), . . . , Xk1(x, λ) (B.238)

be k1 linearly independent representatives of those solutions that decay ex-
ponentially as x→ −∞, and let

Y1(x, λ), . . . , Yk2(x, λ) (B.239)

be k2 linearly independent representatives of those solutions that decay ex-
ponentially as x→ +∞, with k1, k2 > 0 and k1+k2 = n. The Evans function
E(λ) is defined as

E(λ) := det
(
X1(x, λ)

∣∣ . . . ∣∣Xk1(x, λ)
∣∣Y1(x, λ)

∣∣ . . . Yk2,λ)∣∣∣
x=0

. (B.240)

Remark : The Evans function is not unique, since the representatives
Xi, Yi are not unique. However, it holds that E(λ) = 0 if and only if System
(B.237) has a bounded solution. Moreover, E(λ) is analytic if the Xi, Yi
are chosen analytically in λ, which can be achieved, see Section 4.1 in [130].
Then, it suffices to calculate E(λ) along the boundary of a domain P ⊂ C:
the winding number of E(λ) along ∂P corresponds to the number of zeros
inside the domain.

We first need a numerical solution of a wave-profile, which goes hand in
hand with finding the correct value of i−∞ such that the the other limit of the
traveling wave fulfills i+∞ = 0. Given some i−∞ > 1, we solve the forward
ODE (B.107) under initial data that approximate the unstable manifold of
a fixed point (a, a′, i, i′) = (0, 0, i−∞, 0), its asymptotic direction is given
in Corollary B.10. The limit as x → +∞ of this trajectory is Lyapunov-
stable, such that the numerical forward solution converges if the initial data
are sufficiently close to the unstable manifold of (0, 0, i−∞, 0). We then
change i−∞ until i+∞ = 0. This differs from the approach suggested in
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[12]: the continuum of fixed points makes the proposed projective boundary
value approach invalid. However, since the trajectory converges along the
correct stable manifold as x → +∞, our forward approach is reasonable.
This is a consequence of the trapping argument in Proposition B.16, see also
Proposition 6.3 in [92]. The numerical evaluation suggests that the value
i+∞ is a monotone function of i−∞, such that any root-finding algorithm
converges quickly to the (presumably) unique value of i+∞ such that i−∞ =
0. The results are depicted in Figure B.4.

d = 0.001 d = 0.01 d = 0.1 d = 0.2 d = 0.3 d = 0.4

r = 0 1.99985 1.99848 1.98489 1.96999 1.95532 1.94091

r = 1 1.99984 1.99842 1.98430 1.96897 1.95403 1.93948

Figure B.4: The value of limx→−∞ i(x) of the invading fronts (where i+∞ = 0), for
different values of r, d and for speed c = 2. The numerical values suggest that the
effect of d is negligible, and that our bound in Lemma B.22 is not sharp. The root
finding was performed with Wolfram Mathematica.

Figure B.5: The Evans function for the weight w(x) = e−x, for c = 2.0, d = 0.3 and
r = 1, evaluated along the boundary of the domain P, see (B.241). The boundary
consists of three parts: a semisircle with radius δ = 10−3 around the origin, two
lines along the imaginary axis, and a semi-circle with radius R, see Proposition
B.32. The winding number is equal to zero, as a consequence there are no elements
of the discrete spectrum of L within P. The simulations for all other parameters
result in similar pictures.

The various numerical challenges that arise when computing the Evans
function, as well as their solutions, are described in detail by Barker et al.
[12], who also suggest using their library STABLAB [13]. Given a numerical
solution of the traveling front on an interval x ∈ [−L,+L] (we choose L =
50), centered such that a′(0) = 0, STABLAB performs three main steps:
first, the unstable and stable spaces of System (B.237) are approximated
by the unstable and stable eigenspaces of the constant matrices M(±∞, λ).
Second, bases of these eigenspaces that are analytic in λ are chosen. Third,
the resulting ODEs are solved (forwards on [−L, 0] and backwards on [0, L]),
in an exponentially weighted space to reduce computation time and increase
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numerical stability. We evaluate the Evans function along ∂P, the boundary
of the domain

P := {γ ∈ C
∣∣Reγ ≥ 0, δ ≤ |γ| ≤ R}, (B.241)

where the radius R is the upper bound for any element of the discrete spec-
trum with non-negative real-part from Proposition B.32, and a small distance
δ = 10−3, since the essential spectrum touches the origin. Note that analyt-
ically, the Evans function can be extended up to the origin, see e.g. [48], due
to the lack of a discrete eigenvalue zero.

As d → 0, the computation of the Evans function gets numerically un-
stable. We get reliable results for d ≥ 0.1, and found no points of the
non-negative discrete spectrum for all choices of r, d as in Table B.4. One of
the resulting contours is depicted in Figure B.5, all others were very similar.

B.4.3 Geometric singular perturbation theory

For passing continuously from d = 0 to d � 1 in System (B.3), we apply
geometric singular perturbation theory for smooth systems, based on work
by Fénichel [49, 84]. We present the underlying theory and its application to
the present case (briefly, since it is rather standard). Given two C∞ functions
f and g, consider the following smooth field:

d

dt
z = f(z, y, d),

d

dt
y = εg(z, y, d), ε ∼ 0.

(B.242)

The variable z is called the fast variable, the variable y is called the slow vari-
able. Geometric singular perturbation theory leads to a result that describes
trajectories that are continuous in ε in a neighborhood of ε = 0. Introduced
by Fénichel in the 70s [49], this approach has been classical for dealing with
singularly perturbed systems, check [84]. The central assumption is given as
follows, it ensures that the fast variables indeed move along fast stable and
unstable manifolds:
Definition B.34. For z ∈ Rn, y ∈ Rl, consider a fixed point P ∈ Rn+l of
a dynamical system as in (B.242). It is called a normally hyperbolic critical
point, if the linearization of the system around P has exactly l Eigenvalues
that lie on the imaginary axis.

For ε = 0, the l Eigenvalues with zero real-part of the Jacobian at a
normally hyperbolic point must correspond to the slow (constant for ε = 0)
variables. Only the movement in the fast direction remains. In this setting,
a separation of time-scales occurs for ε 6= 0 sufficiently small, and one can
treat the fast and slow variables separately. The following theorem is a
combination of Theorems 1-3 in the monograph of C. Jones [84], this compact
form is due to Rottschäfer [125]:
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Theorem B.35. Given a system of type (B.242), such that when ε = 0, the
system of equations has a compact, normally hyperbolic manifold of critical
points,M0, where we assume thatM0 is given as the graph of a C∞ function
h0(y). Then for every p ≥ 1, there exists an ε0 > 0 such that for all ε ∈
[0, ε0), there exists a ManifoldMε:

1. Mε is locally invariant under the flow defined by (B.242).

2. Mε = {(z, y)|z = hε(y)}, for a function hε which is Cp in both ε and
y, and for y in some compact set S.

3. There are locally stable manifoldsW s(Mε) and unstable onesW u(Mε),
that lie within O(ε) of and are diffeomorphic toW s(M0) andW u(M0),
respectively. Here, W s(M0) and W u(M0) are the (fast) stable and un-
stable manifolds of the unperturbed manifoldM0.

We follow the examples in [84, 125], and analyze the present system for
d ∼ 0. We bring System (B.107) into slow-fast form as in Eq. (B.242), and
change the phase-time to the fast phase-time t := x/d:

d

dt
i′ = −[ci′ + ra+ a(a+ i)] =: f(a, a′, i, i′),

d

dt

aa′
i

 = d ·

 a′

a(a+ i)− a− ca′
i′

 =: d · g(a, a′, i, i′).
(B.243)

Here (a, a′, i) are the slow variables and i′ is the fast variable. For d = 0,
there exists a three-dimensional smooth manifold of critical points

M0 =
{

(a, a′, i, i′) ∈ R4
∣∣∣ i′ = h0(a, a′, i) := −a(a+ i+ r)

c

}
. (B.244)

We check normal hyperbolicity ofM0. For d = 0, we calculate the Jacobian
of the system:

J(a,a′,i,i′)|M0
=


0 0 0 0
0 0 0 0
0 0 0 0

r + 2a+ i 0 a −c

 , (B.245)

which has a single non-zero Eigenvalue λ = −c, with fast direction i′. Thus,
all points inM0 have a fast stable manifold of dimension one and no unstable
manifold (in fact,M0 is even a global attractor). In order to apply Theorem
B.35, we now choose an arbitrarily large, but bounded subset ofM0. Then,
for d > 0 sufficiently small, there exists a manifold Md, that is of distance
O(d) to M0, together with a local unstable manifold W s(Md) that is of
distance O(d) to W s(M0).
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For d 6= 0, we can undo our transformation and change back to x = d · t.
Then, we get that onMd, the perturbed system is close unperturbed system,
in the sense that

d

dx

aa′
i

 =

 a′

a(a+ i)− a− ca′
i′

 (B.246)

with i′ = hd(a, a′, i), subject to the condition

ci′ = −a(a+ i+ r) +O(d), (B.247)

which is an O(d)-perturbation of (B.244). Equation (B.247) implies that the
restriction of Sd toMd is O(d)-close to the unperturbed system S0. Thus,
along Md, the System Sd can be viewed as a regular perturbation of S0,
which we obtain as a (regular) limit as d→ 0:

d

dx

aa′
i

 =

 a′

a(a+ i)− a− ca′

−a(a+i+r)
c

 . (B.248)

We summarize this in
Corollary B.36. Fix p ≥ 1 and choose any smooth bounded set M̄0 ⊂M0,
for M0 as defined in (B.244). There exists some d∗ > 0, such that for all
d ∈ (0, d∗), the System (B.243) has a three-dimensional Cp-manifold M̄d,
invariant under Sd and O(d)-close to M̄0. The flow on this manifold is
an O(d)-perturbation of (B.248). Moreover, M̄d has no unstable manifold,
but only a fast stable manifold W s(M̄d) that is locally diffeomorphic to and
within range of O(d) to W s(M̄0).

Now let K > 1 and consider d > 0 sufficiently small. The fixed point
(a, a′, i, i′) = (0, 0,K, 0) has an unstable manifold of dimension one (presum-
ably a traveling wave). With the help Corollary B.36, we can track any finite
segment of this manifold:
Corollary B.37 (c.f. Corollary B.13). Let K > 1, c > 0, r ≥ 0. First
consider the fixed point (ā, ā′, ī) = (0, 0,K) of S0, together with its one-
dimensional unstable manifold M−0 (K). Fix any semi-open interval x ∈
(−∞, T ], where T is finite, and assume that M−0 (K,x)|x∈(−∞,T ] is smooth
and bounded. Lift it into R4 via (B.244).

Now consider the perturbed system Sd. There exist some d∗ > 0 such that
for all d ∈ (0, d∗): the fixed point (a, a′, i, i′) = (0, 0,K, 0) has an adjacent
one-dimensional unstable manifold M−d (K,x)|x∈(−∞,T ], that is continuous in
d and converges to M−0 (K,x)|x∈(−∞,T ] as d→ 0.

Proof. Fix a finite time-horizon T ∈ R such that M−0 (K,x)|x∈(−∞,T ] is
smooth and bounded. Embed it into R4 by setting i′ = h0(a, a′, i), see
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(B.244). Let M̄0 be a smooth bounded subset of M0, sufficiently large such
that

M−0 (K,x)|x∈(−∞,T ] ⊂ M̄0. (B.249)

There exists an d∗ > 0, such that for all d ∈ [0, d∗): there exists a Cp

manifold M̄d that is invariant under Sd, and the restriction of Sd to Md is a
perturbation of S0 (B.248).

Since (a, a′, i, i′) = (0, 0,K, 0) is a fixed point, it can not lie on W s(M̄d),
and therefore must lie within M̄d itself. Similarly, its unstable manifold,
given in Corollary B.10, must lie within M̄d. However, along M̄d, the flow
Sd is a regular perturbation of the unperturbed flow S0, with a perturbation
of order O(d). Thus, the finite segment M−0 (K,x)|x∈(−∞,T ] is continuous in
d, for d ∈ (0, d1), with d1 possibly smaller than d∗, by a regular perturbation
analogue to Proposition B.12.

Numerical analysis: The numerical analysis of the spectrum was per-
formed via STABLAB [13]. The simulations of the Reaction-Diffusion Sys-
tem (B.1) were done with Wolfram Mathematica. The code can be accessed
upon request.
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Tumour architecture and emergence
of strong genetic alterations are
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primary prostate cancer

This appendix reproduces exactly the content of the unpublished work
"Tumour architecture and emergence of strong genetic alterations
are bottlenecks for clonal evolution in primary prostate cancer", au-
thored by Nima Abedpour, Anton Bovier, Reinhard Büttner, Chris-
tian Harder, Axel Hillmer, Florian Kreten, Martin Peifer and Yuri
Tolkach [94]. At the time of writing, this work is under review, it was
summarised in Chapter 5.

C.1 Introduction

Prostate cancer (PCA) is the most prevalent malignant epithelial tumour in
male patients [137]. Some of the PCAs are indolent and do not need to be
treated, but many tumours are aggressive and need to be diagnosed when
the disease is still curable. In these cases, non-diagnosis at an early stage
will lead to a metastatic disease, many rounds of therapy, and ultimately, to
the patient’s death.

PCA, as many other cancers, emerges from accumulation of genomic
damage [28]. This means that the consecutive occurrence of genetic alter-
ations in benign epithelial cells in the prostate gland leads to their transfor-
mation into a malignant tumour. Depending on how this primary tumour
evolves further, it will be either indolent or aggressive [9, 52].

Several major studies provided comprehensive insights into the genetic
alterations occurring in primary PCA [2, 5, 18, 52, 158]. More aggressive
tumours have a clear tendency to accumulate more genetic alterations [126].
Primary PCAs are highly heterogeneous, both morphologically (appearance
under a microscope) and genetically [72, 145]. The former means that dif-
ferent parts of one tumour often show different architectural patterns (the
so-called Gleason patterns) that are becoming more complex in aggressive
tumours and are related to genomic evolution [42, 126]. The latter means
that different parts of a tumour acquire different genetic alterations. There is
considerable tumour heterogeneity between individual patients (interpatient
heterogeneity) and between tumour foci in the case of multifocal PCA in one
patient [5, 18, 28, 95, 104, 158]. Importantly, there is also substantial hetero-
geneity within single tumour foci (intratumoural heterogeneity) as a result of
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clonal evolution through the whole course of the disease [9, 18, 43, 52, 101].
To date, interpatient heterogeneity can be seen as offering a possibility for
tailoring therapy to the individual constellation of genetic changes in PCA in
single patients. Intratumoural heterogeneity (related to clonality), however,
is seen as a complex problem. Finding the most relevant tumour clone (e.g.
aggressive, metastatic or lethal) within a tumour focus, in order to select
the right therapy for a patient, is a very difficult task that has no adequate
solution to date [69, 95, 152].

All studies on intratumoural heterogeneity published to date show high
levels of intratumoural molecular genetic heterogeneity in primary PCA but
seem to touch the problem rather superficially (see Suppl. Table 1 for a
review). The studies aimed to provide further relevant insights into intra-
tumoural heterogeneity will warrant systematic investigation of large num-
bers of spatially separated samples from single tumours (probably > 50–100
samples per tumour are necessary) in large number of cases, using next-
generation sequencing approaches. This entails huge financial costs and an
enormous amount of bioinformatical and human resources.

In this study, we address the problem of intratumoural heterogeneity and
clonal evolution of primary, therapy-naive PCAs from a different perspective.
Based on the evidence from recent studies on PCA architecture, biology and
evolution, we develop a mathematical model of PCA growth from the time
of the formation of the first malignant cell up to its evolution into a full-
size PCA, with superimposed genetic evolution and clonal interactions. We
characterize in detail the evolutionary processes, resulting clonal architec-
tures, and patterns of spatial interactions between clones. We validate the
results of mathematical simulation using deep whole-exome multiregional
next generation DNA sequencing of the primary tumours from five patients
and demonstrate very close similarities between our predictions of clonal de-
velopment and real-world data from patient samples.

We fully open-source our model to stimulate further research studies in
this area. The code for the simulations, written in Python3, as well as an
easy-to-use visual demonstration of the dynamics are available under https:
//github.com/floriankreten/Prostate_Cancer_Publication.git.

C.2 Results

C.2.1 Model development

Three processes are being modelled simultaneously in our virtual PCA mod-
els: tumour growth in 3D-space, genetic evolution (acquisition of molecular-
genetic alterations), and the competition of arising clones.

Principles of growth of PCA were reconstructed from patient samples
earlier and depicted in Figure C.1A. Shortly, prostate cancer grows in hol-
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low “channels” lined by epithelial tumour cells (seen as glands in 2D). These
channels exhibit a tight spatial intermixing of different branches that are
not interconnected, a phenomenon that can be mathematically reproduced
using self-avoidance mechanisms. The growth/branching rates and maximal
tumour size (number of tumour cells in a clinically relevant PCA is on aver-
age 300 mln) were derived from morphometric analysis of patients’ tumour
samples.

Tumour clone competition stems from the systematic acquisition of driver
genetic alterations and occurs on the surface of the “channels” (Figure C.1B).
The driver mutations bring fitness advantage – basically changing tumour
cell birth/death ratio in a positive way, increasing their viability.

To reduce the computational complexity of the model we introduce a
model cell (node) which represents a cross-section of the channel (on average
15 tumour cells) and model only driver mutation acquisition while preserv-
ing all other relevant principles described above (Figure C.1C). As we are
interested in the clonal evolution, we need to define the size of a clinically
significant tumour clone that should be at least recognizable morphologi-
cally. We estimate this morphometrically (Figure C.1D). A further detailed
description of the model, parameters, and biological/morphometric evidence
and considerations underlying the parameters and principles is outlined in
Sections C.5 and C.7. For simplicity, in the following we call any type of
genetic alteration (including copy-number alterations and any other chromo-
somal events) a “mutation”.

C.2.2 Tumour architecture: a bottleneck for clonal evolution
through the gradual acquisition of driver genetic alterations

We initially aimed to study clonal evolution in our model in the case of
gradual acquisition of mutations, selecting 0.04 (4%) found earlier by others
[21, 139] to be a reasonable upper bound of the fitness advantage for single
mutations. We calculate the effective rate of such mutations that survive the
early fluctuations to be 6 · 10−6 (see Section C.5.5) per cell division. Twenty
synthetic tumours were grown to a size of 20 mln nodes (Figure C.2A–D),
corresponding to 300 mln real tumour cells. The clonal dynamics were sim-
ilar in all the tumours (Figure C.2A–D) with 21 independent clones per
tumour (clone = > 10.000 model cells in this experiment, s. Figure C.1D)
on average (range 14–34), an average fittest-clone fitness of 1.44 (1.32–1.54)
and an average maximal number of consecutive mutations in the fittest clone
of 9 (7–11). No substantial divergent evolution (formation of subclonal pop-
ulations with branches) was evident (Figure C.10). The maximal size of the
largest clone among all the tumours was only 3.7% (range 0.3–3.7%), with
the remaining tumour volume filled with ancestral clone cells and multiple
less fit small populations. As for the temporal dynamics (Figure C.2B,C),
the substantial fluctuation concerning the time of initial clone emergence
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and the maximal number of consecutive mutations shifted to very similar
evolutionary trends after the size of eight million cells.

Thus, the gradual acquisition of driver mutations with small fitness ad-
vantages does not result in any awaited forms of divergent clonal evolution.
The branching tumour architecture with predestined spread vectors and a
specific nature of inter-clonal competitive interactions in PCA makes small
fitness advantages of little sense for the selection of tumour clones, offering
at best only a local advantage.

C.2.3 Single strong mutations: a possibility for clonal expansion
depending on the time of appearance and emergence place

In models with gradual acquisition of ‘weak’ mutations with small fitness
advantages, substantial clonal divergence can be achieved only through sub-
stantial rises in the mutation rate, which is unrealistic for most tumours.
PCA, however, is known for its recurrent genetic alterations in potent genes,
which can provide a greater fitness advantage with one hit (e.g. PTEN,
TP53, MYC family, copy-number alterations, larger chromosomal events
such as chromoplexy/chromotrypsis or whole genome duplication). The
functional impact (fitness advantage) of such ‘strong’ mutations cannot be
reliably predicted and may be very different for different genes and in differ-
ent conditions. The same is true for the mutation rate of strong mutations.
We empirically consider a fitness advantage of 0.5 for a single strong muta-
tion to be reasonable and investigate three different “strong” mutation rates
based on our initial estimates from available genomic data: 5 · 10−10 (X10
virtual tumours), 2.5 · 10−9 (X50 virtual tumours), 5 · 10−9 (X100 virtual
tumours).

To study the influence of architecture on clone development, we simplified
the model and placed only one strong mutation in a tumour without other
clones (background fitness 1.0) at different fixed tumour sizes, disabling fur-
ther mutations (Figure C.3). A strong mutation should emerge as early as
at 1–3 mln nodes (ca. 10% of the final size) to provide some extent of size
dominance in a full-grown tumour. The most advantageous place of emer-
gence is the tumour initiation centre (the root of the tree), allowing quick
spread in all directions even with later appearance, but the probability of
such an event in the stochastic system is low.

C.2.4 Early consecutive acquisition of strong mutations: a proxy
for the formation of aggressive tumours

Next, we performed simulations in full models embracing both types of mu-
tations weak and strong) with three different mutation rates for strong mu-
tations, 50 simulations for each group (X10, X50, X100). Using our previous
definition of a clone (hierarchy branch > 10.000 nodes) resulted in substantial
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increase of number of clones/tumour (Figure C.4A). Therefore, we revised
our clone definition to one that holds greater clinical relevance, classifying it
as a branch with a size exceeding 5% of the entire tumour. This choice aligns
with the convention cut-off of 5% utilized to identify the tumour portion that
could significantly impact the patient’s prognosis, commonly known as the
tertiary Gleason grade.

Divergent evolution was evident in all the three groups with at least
local clonal sweeps (elimination of precursor clones) differing in effect size.
In most of the X100 tumours, an ancestor clone was eliminated by clonal
sweeps (Figure C.4A). There were several typical patterns of clonal evolution
(Figure C.4B, C.5A–B; clonal hierarchies for single tumours in Figures C.11,
C.12, C.13). Importantly, even in the case of a high strong mutation rate
(X50 and X100), one third of the tumours presented only one dominant
clonal branch, compared to 66% of the tumours in group X10 (Figure C.5;
Figure C.4B). Branching evolution with both early and late divergence was
more typical for groups X50 and X100 (p < 0.001). The median numbers of
dominant clones (highest fitness) were 1, 2 and 2 in the tumours from groups
X10, X50 and X100, respectively (ranges 1–3, 1–4 and 1–5). Importantly,
even with a very high strong mutation rate (X100), there was no tendency
to formation of a large number of clonal branches (Figure C.5B). At the
end of the simulation, X10, X50 and X100, the most advanced clones, had
medians of 1, 2 and 3 consecutive strong mutations (ranges 0–3, 1–3 and 1–5),
respectively (Figures C.11, C.12, C.13). Most of the tumours (especially X50
and X100) had additional (1–5%) small populations, some of them with a
fitness level comparable to that of the dominant clone (Figures C.15, C.16,
C.17).

We sought to determine which factors are responsible for certain ways
of clonal evolution. Late-arising clonal divergence is mostly influenced by
stochastic processes and the local composition of clones, when a new strong
mutation emerges. However, early divergence may be influenced by some
high-level parameters, such as the timing of the first strong mutations. Sta-
tistically, neither the timing of the first nor the second consecutive strong
mutation was significantly associated with the number of dominant clones
or early versus late clonal divergence patterns (all p > 0.05 for pairwise
comparison within X-groups, Mann–Whitney U test), leaving the stochastic
nature of the clonal interactions and the locations of the emerging mutations
primarily responsible for the patterns of clonal divergence.

The clonal-evolution pattern had no influence on the maximal fitness of
the dominant clone (p < 0.05 in all the X-groups). However, the maximal
fitness of the dominant clone(s) at the end of the simulation was clearly
correlated with the emergence time of the first and especially the second
consecutive mutation, which seems to be a proxy for the development of
more aggressive tumours (Figure C.14).
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C.2.5 Biopsy extent: crucial for the adequate sampling of rele-
vant clones

Next, we sought to analyse the spatial relationships between clonal popu-
lations within synthetic tumours in a clinically relevant context. Approxi-
mately 10–12 biopsy cores are usually acquired during systematic multifocal
prostate biopsy in patients with PCA suspicion, with (according to our es-
timation) on average five cores containing a tumour. We set up a virtual
biopsy in X10, X50 and X100 tumours with five cores, one taken more cen-
trally and four taken from the peripheral regions (Figure C.6A, C.19), with
the penetration depth into the tumour selected randomly for each core. The
number of nodes in each core was approximately 30.000-35.000 (see Section
C.7.6). We selected a 5% volume threshold for the detection of clones in the
biopsy (in clinical practice, 5% is often considered a threshold for reliable
detection using next-generation sequencing). In 3/50, 11/50 and 10/50 of
the X10, X50 and X100 tumours, respectively, one or more dominant clones
were missed by virtual biopsy (total number of missed clones: 3, 14 and 14,
respectively) (Figure C.6B). The median sizes of the missed clones were 5.4,
6.1 and 6.6% of the whole tumour size, respectively (range for all the groups
5.2–17.5%). Among the detected dominant clones in groups X10, X50 and
X100, 11/62, 27/87 and 27/89 were present in only one biopsy core, im-
plying that they can be missed if the cores are not equidistant or contain
less cells (Figure C.6C). In a substantial number of cases in all the groups,
there was more than one dominant clone in a single biopsy core (due to
prominent spatial intermixing) (Figure C.6D). Larger clones were detected
in a higher number of cores, with a higher fraction in single cores (Pearson’s
correlation > 0.63 in all the groups; p < 0.0001) (Figure C.6C). Multiple
dominant clones in one core and sampled small populations can make the
reconstruction of the clonal architecture from a single core or multiple cores
very difficult. A detailed example of such complexity for one tumour is shown
in Figures C.7, C.20 and C.21.

C.2.6 Validation of findings: ultra-deep whole-exome sequencing
of human tumour samples

In order to validate our theoretic predictions, we performed multi-regional
ultra-deep next-generation (NGS) whole-exome sequencing (WES) to study
molecular genetic alterations of five primary prostate cancers (Figure C.8,
s. Section C.5.8 for a detailed description) with a regional spectrum of mor-
phologies between Gleason scores 3+3 and 4+3 (tumours with branching
being a main growth mechanism – therefore following our model’s assump-
tions). WES was performed from at least 5 large, neighboring areas of each
tumour with a coverage of up to 400x. Copy number alterations (CNA) were
assessed for all tumour samples (Figure C.8B). The somatic point mutations
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identified by WES were clustered according to cancer cell fractions (CCF;
Figure C.8C). Finally, clonal hierarchies for five tumours were reconstructed
based on the results of can analysis and somatic mutation CCFs considering
for clonal/subclonal nature of alterations, especially in case of single clone
presence in several samples due to intermixing (Figure C.9A).

Among the tumours, we had a clear pre-dominance of larger tumours
(otherwise, multiregional sampling with sufficient sample size was not pos-
sible). This is mirrored by the substantial number of (stronger) alterations
identified than it might be awaited in indolent Gleason Score 3+3 and smaller
tumours. As expected, most relevant alterations stem from CNA (Figure
C.8B). However, most of the CNAs represent heterozygous alterations, im-
plying that the sampled tumours originate from the intermediate/lower ag-
gressivity spectrum, which aligns with our study’s intended focus.

The results of the NGS study and reconstruction of clonal hierarchies
(Figure C.9A) validate several important findings from our mathematical
simulation. Firstly, we see clear evidence for early, late, and mixed diver-
gence of the clonal branches (Figure C.9A). PCA2 case showed whole-genome
duplication as a very early event with other tumours presenting with alter-
ations effecting such genes as TP53, PTEN, RB1, BRCA2, NKX3.1 in their
trunks. Secondly, in most tumour leading branch alterations at divergent
points embrace known genes which can be considered as strong alterations
driving clonal branch formation. Thirdly, the overall number of branches is
very similar to our mathematical models with strong mutations, emphasiz-
ing their role in PCA development. Fourthly, when we reproduced virtually
the samples (number of tumour cells, location and form) taken in patient
cases in our virtual tumours, roughly the same number of discernable sub-
clonal populations could be found (Figure C.9B,C; Section C.7.6) implying
realistic clonal evolution/intermixing processes derived from mathematical
modelling.

In two tumours (PCA4 and PCA5) immediately adjacent to the larger
tumour we found a second, genetically completely independent smaller tu-
mour with restricted number of the genetic alterations identified which might
imply that growth and development of these tumours was limited due to the
presence of more advanced tumours in the neighborhood.

C.3 Discussion

In this study, we addressed the problem of intratumoural heterogeneity in
primary PCA. A number of studies (see the detailed review in Suppl. Table
1) have investigated intratumoural heterogeneity in patient samples. These
studies showed an enormous extent of heterogeneity with a large number of
clonal populations within a tumour. Most of the studies investigated only
one sample or a few samples of single tumours. Their results show that the
number of samples needed to fully decipher the clonal hierarchy of a single
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tumour might be very large (50–100). This implies very high sequencing
costs, human resources, and extensive bioinformatical analyses. Our study
utilised an in-silico approach, which could model PCA development and
inform further patient sample studies. Using biological evidence of PCA
growth and architecture [146, 150] as well as principles of genetic evolution
and clonal competition [71, 144] within a tumour, we created a realistic
mathematical model embracing all these processes.

The consecutive acquisition of mutations with small fitness advantages,
found to be sufficient in other tumour types and models [21], did not al-
low for divergent evolution in our PCA models. We attribute this result
to the architecture bottleneck and the competitive nature of the process,
preventing the formation of clones with relevant sizes or fitness levels, as
well as hindering clonal sweeps that lead to the emergence of a dominant
clone (Figure C.2). Importantly, the PCA architecture, being a bottleneck
and pre-determining the directions of clonal spread, warrants ‘strong’ genetic
events with large fitness advantages to stimulate divergent evolution and for-
mation of aggressive tumours. Such events are presumably known for PCA,
such as PTEN and TP53 deletion/mutation (or other CNAs), indirectly al-
terations of BRCA1/2 and other DNA-repair-related genes (known to have
special evolutionary trajectories to advanced cancer), as well as alterations
in the MYC gene family and such events as chromoplexy, chromotrypsis, and
whole-genome duplication [9, 28, 52, 52, 158].

Importantly, the probability of such strong events is not easy to deci-
pher. A unified rate of ‘strong’ alterations does presumably not exist, due
to the patients different conditions and backgrounds. In our opinion, the
groups that we investigated in detail in our study (only weak mutations and
weak and strong mutations with strong mutation rates: X10, X50 and X100
virtual tumours) represent a continuum of possible evolutionary processes
within PCAs. Thus, indolent tumours (Gleason score 3+3) are probably
those mirroring a model setup with only weak mutations. Gleason score 3+4
tumours may be tumours with very low strong mutation rates (or emerging
late), and aggressive tumours with higher Gleason scores may follow the evo-
lutionary ways outlined by X50 and X100 groups. Importantly, the results
of this study show that tumours with early emergence of a first strong event
and rapid consecutive occurrences of further strong events reveal paramount
aggressiveness. The first strong event may need to occur as early as at a size
of 10–15% of the final average tumour volume at clinical diagnosis or even
at a smaller size to fuel the development of an aggressive tumour (Figures
C.3, C.4, C.14).

The results of our study concerning the evolutionary trajectories and
hierarchies of PCA tumours (Figures C.4, C.5) appear to be even more valu-
able because they match the results of many studies using patient samples
(21 relevant studies summarised in Suppl. Table 1) and our own valida-
tion study utilizing multiregional WES of five tumours (Figures C.8, C.9).
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Thus, most of these studies showed a small number of clonal branches and
patterns of early and late divergence, similar to our results (mathematical
modelling and NGS study on patient samples). Moreover, strong alterations
are necessary for initiating divergent development with clonal branches in
our mathematical study which we could confirm in our NGS study on real
patient samples.

Among the studies with a detailed reconstruction of clonal hierarchies,
the most prominent, that of Wilkinson et al. [161], showed in 37 patients
with a high-risk disease the same patterns of clonal hierarchy we received
for the synthetic tumours in our study, including a number of tumours with
only one leading clonal branch (see Figure C.18 for the detailed analysis of
[161], and Figures C.4, C.5). The disadvantage of this study is that it was
performed using biopsy material (limited amount of tissue analyzed).

According to our study, the PCA architecture serves as a bottleneck for
the development and fixation of multiple branches and multiple divergent
clones. Another landmark study by Espiritu et al. [43] with 293 patients
(one tumour sample per patient) showed that 59% of the single-tumour sam-
ples in the study contained more than one tumour clone (46% biclonal, 12%
triclonal). Espiritu et al., however, did not provide the estimation of dom-
inance of such sampled clones, and the results of our biopsy experiments
referred only to the dominant clones with leading fitness levels. However,
the monoclonality and biclonality in 66 and 6–16% of the biopsies in this
study, respectively, are very close to the results obtained by Espiritu et al.
[43] based on the analysis of the patient samples. These and our results
imply tight spatial intermixing of different branches and divergent clones
in PCA tumours, which is also supported by a number of other studies
[4, 33, 40, 78, 152, 164].

Another important finding of our study is that the acquisition of few
consecutive strong genetic alterations (appr. 1–5 after the formation of the
first malignant clone) is enough for the development of an aggressive tu-
mour. This result is difficult to compare with that of previous studies on
patient samples. Normally, dozens of genetic rearrangements (single nu-
cleotide variations, copy number variations) are being identified during tu-
mour exome/genome sequencing [5, 28, 52, 158]. However, it is very difficult
to predict the functional impact (driver character) of many of these, espe-
cially that of copy number variations (typical for PCA), where many genes
are affected simultaneously. However, there is strong evidence (also in other
tumour types) that the number of consecutive ‘real’ driver events that can
fuel an aggressive tumour is small. Attempts should be made to identify this
kind of driver event for PCA, and to filter out the kinds of events that have
no functional significance [123].

Further studies on intratumoural heterogeneity are very important as
they will have consequences for therapy selection, prognosis and prediction
of such events as metastasis formation and therapy response [36, 52, 95, 100,
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152]. These clinical decisions are possible only when the most advanced
clone can be reliably identified using prostate biopsy. The evidence from
patient-sample-based studies is still scarce. Our study provides a realistic
mathematical model based on biological evidence of growth and clonal evo-
lution in PCA. The model that we developed is flexible, and new emergent
data of tumour biology and concepts of evolution can be easily integrated in
it and tested (e.g. special situations such as DNA-repair-deficient tumours)
[52]. It can be applied in further studies using patient samples to avoid large
costs linked to extensive multiregional next-generation sequencing. The full
code for the model implementation is released with the publication.

Of course, our mathematical model is not devoid of limitations. It is
simplified and does not account for issues such as microenvironment influ-
ences, spatial growth effects due to the presence of benign tissue and the
effects of metabolic and hormonal factors. Tumour growth is restricted to
the active growing tips, according to the principles of branching morphogen-
esis [73]. It also does not consider the nature of the genetic alterations, the
pathways in which they arise, their interactions, and the epigenetic mecha-
nisms. The same mutations can bring different effects in different contexts.
Some other mutations (e.g. BRCA1/2) might influence baseline mutational
processes (mutation rate and type of emergent genetic alterations) rather
than directly fitness and require a special model parameter setting to test
their effects. Importantly, we did not simulate tumour formation and start
with the first ancestor malignant cell and its escape from the host’s immune
system (already having several genetic alterations necessary for malignant
transformation, which can potentially affect evolutionary trajectories). We
also chose to fix the branching pattern in all our models. Otherwise, an
increasing proportion of branching rate Cb/Cg, for instance, would be nec-
essary, imitating Gleason pattern 4 and 5 tumours with higher branching
rates. Therefore, the presented results are applicable to the most frequent
type of PCA tumours that are well and moderately differentiated.

C.4 Conclusion

Our simulations provided reasonable predictions of PCA genetic evolution
close to the current state of evidence from patient samples. Importantly, we
showed that the number of evolutionary trajectories and dominant clones
is finite. We outlined different ways of genetic evolution and showed that
the formation of an aggressive tumour is possible only in the case of the
consecutive and early acquisition of ‘strong’ genetic alterations. Dominant
clones are intermixed in PCA tumours and in biopsy cores, which should be
accounted for during molecular genetic characterisation and clinical decision
making. Our mathematical model can provide guidance for further targeted
clinical research in this area and is flexible for the integration of emerging
clinical and experiment data.
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C.5 Methods

In this study, we model tumour growth and genetic evolution of PCA starting
with the formation of the first invasive malignant cell. We describe the
underlying biological processes and their mathematical implementation.

C.5.1 Tumour architecture

PCA is a tumour with a very complicated architecture predictive of tumour
aggressiveness. It is measured using the so-called Gleason grading [42]. Ac-
cording to several recent studies that endeavoured to decipher the three-
dimensional (3D) architecture and principles of growth in PCA [146, 150],
many well and moderately differentiated tumours grow in the form of hol-
low channels, appearing as glands at the two-dimensional sections. Such
PCA tumours form a tree with branches arising through tip bifurcations of
single channels–glands (Figure C.1A). These branches are spatially tightly
intermixed but not repeatedly interconnected (Figure C.1A). This mirrors a
well-studied embryonic branching morphogenesis program typical for many
organs [73, 140].

The detailed morphological evaluation from our previous reconstructions
[146] showed that: 1) branching always occurs through bifurcation, 2) in
tumours that are well and moderately differentiated, bifurcations occur rel-
atively systematically at similar distances. Morphological measurements as
bases for the mathematical implementation of growth are provided in Figure
C.1C. Tumour size estimates (number of cells) were derived morphologi-
cally in ten prostatectomy cases (Figure C.1D, Section C.7.1) with clinically
relevant PCA tumours containing on average 300 million (mln) cells. For
simplicity, we model PCA tumours that are well and moderately differenti-
ated and that grow by branching (as a subset of the most aggressive tumours
show very irregular or no branching patterns).

C.5.2 Mathematical model

We model PCA tumour as a network consisting of nodes (or vertices) that are
connected to each other through edges. Every node of the network represents
a transversal section (Figure C.1C) of a hollow channel of 15 cells at a fixed
position in R3. The 15 cells of a node are assumed to have the same genotype
and are the base entities of our model. In this way, we reduce the cellular
movements by one dimension and simplify the hollow nature of the tumour
channels–glands (the reconstruction of channels as hollow structures with
interactions of the cells on the luminal surface is extremely complex). This
simplification preserves the biological sense of cell interactions: any clonal
propagation within the channels must occur in the axial direction, along the
edges of the network (Figure C.1B,C).
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We make the assumption that the aforementioned network is static away
from its active growth tips. The growth dynamics can be summarised as
a self-avoiding branching process. Up to small modifications, we adopt an
existing model that was used by Hannezo et al. to study the growth of
mammary glands [73]. Together with the clonal dynamics, the evolution
of the system is formulated as a time-continuous stochastic jump process
[44] that can be simulated using a Gillespie algorithm [65]. At each node,
we differentiate four types of possible events: growth, branching, mutation
and competition (Figure C.1C). Each event is triggered at exponential rates
denoted as Rg, RB, Rµ, Rc. The first occurring event is executed, then the
rates are adjusted to the new situation. All the rates depend on the rate
of cell division, which effectively acts as fitness in this model and as such is
denoted as f(v, t), the fitness of the genotype present at node v at current
time t.

We concentrate on driver mutations and ignore neutral or deleterious
(yielding a disadvantage in fitness) mutations. In the following, we refer
to a mutation as any type of genetic alteration that brings fitness advan-
tage to a cell by increasing its rate of cell division. Moreover, we assume
that mutations are unique, ignoring the possibility of parallel evolution of
independent subpopulations. A genotype has a unique combination of con-
secutive mutations. Over the entire tumour, such mutations occur with a
certain probability Pµ per cell division. The resulting fitter genotype spreads
along the edges of the network at competition speed depending on its local
fitness advantage. The parameters that we chose for the simulations are
discussed in Section C.7, but we want to emphasize that qualitatively, our
theoretical predictions are a result of the structure of the model.

Remarks on the implementation: Since the process is a stochastic
jump process with finite rates, it can be simulated by a Gillespie-algorithm
[65]. Each step of the presented algorithm can be computed in O(1), in-
dependent of the current size of the system. This is possible since on the
one hand all rates depend only on some local information and on the other
hand each event effects the system only locally. The implementation is done
in Python 3 and as such is not optimal computation-wise but user-friendly,
its different modules can easily be modified independently. Fishplots were
made using the corresponding R-package [108].

C.5.3 Growth dynamics

Each growing branch acts independently of the others. At its foremost node
(vertex) v, either a growth or a branching event occurs randomly, with ex-
ponential rates Rg(v, t) = f(v, t) ·Cg and Rb(v, t) = f(v, t) ·Cb, respectively.

During a growth event, a new random coordinate in front of v is checked,
the chosen direction can slightly deviate from the previous one. If the sam-
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pled position is not too close to the other branches of the network (Section
C.7.1), a new node w is placed there and is connected to v via an edge. If
the chosen coordinate is blocked, a new one is sampled independently. After
Ng = 5 unsuccessful trials, the growth event is considered to have failed
due to spatial restrictions. A similar mechanism is used during a branching
event, where the two new branches point at opposing directions and have
a fixed degree of β = 60◦ to the previous growth direction (Section C.7.1).
Both the growth and branching events can occur only once; as such, growth
ultimately stops in dense regions.

The two constants Cg = 0.08 and Cb = 0.02 are defined via the two
equations Cg + Cb = 0.1 and Cb/Gg = 0.25. The former equation regulates
the total speed of growth at a single active tip: after the time that it takes a
single cell to divide ten times, an active tip grows or branches out (Section
C.7.1). The latter equation regulates the resulting architecture.

Without the spatial restrictions, the process would be a well-understood,
time-continuous Galton–Watson process [7]. Branching annihilating systems
(where particles are removed upon collision) are well-studied [8, 23, 29],
but self-avoiding mechanics are intricate to study [105, 149]. We refer to
[73] for both an in-depth introduction to the model, different mathematical
approaches and applications in biology are also presented by Lang et al.
[96]. The simulations show that growth is asymptotically of cubic order
as the graph takes the form of a ball whose radius grows with constant
speed, whereas exponential growth is assumed in most cancer models. This
assumption has already been verified for several types of carcinoma and also
for PCA [103]. However, it was also shown that spatial pressure of the
surrounding tissue can play a crucial role in the growth of PCA [102]. The
tumours that we model are well and moderately differentiated and mimic the
morphological aspects of healthy tissue, and grow in cell dense regions. The
exponential growth reported for aggressive PCA thereby does not contradict
our model. We model the influence of the surrounding tissue indirectly by
adjusting the growth rates (Section C.7.1).

C.5.4 Cell of origin

The development of PCA involves the systematic acquisition of genetic alter-
ations (chromosomal aberrations more important than somatic point muta-
tions) by the cells within a tumour, which are primarily related to advantages
in terms of the birth-death ratio of tumour cells [59]. No studies definitively
clarify the presence and location of cancer stem cells with regard to PCA.
All the cells within the tumour seem to have stem cell properties to some
extent, or at least the higher-potency stem cells are dispersed over the entire
tumour [128]. PCA cells can also conditionally modulate their functionality
and cell division rate [128]. In view of this, we assume that mutations can
occur at any cell within the tumour. However, even if mutations should be
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restricted to stem cells only, they would be supposed to occur in all nodes,
as one node in our simulations represents 15 real tumour cells and solid tu-
mours have on average a fraction of cells with stemness properties of up to
5–10% [155]. Therefore, under the assumption of a well-mixed population,
roughly every node contains at least one stem cell.

C.5.5 Weak driver mutations

We model two different types of driver mutations. Weak mutations (somatic
mutations and copy number alterations) yield a more conservative fitness
advantage of ∆f = 4%. We set the probability for a weak mutation to per
cell division, the same order of magnitude estimated by Bozic et al. [21] and
Sun et al. [139]. Under these assumptions, the divergent genetic evolution in
tumours through gradual mutation could be shown [21, 139]. This might well
represent the processes of evolution in less aggressive PCA tumours (with
Gleason scores 3+3 = 6 and 3+4 = 7), which are indolent and slow growing
and virtually never metastasise. As one node represents 15 tumour cells, the
mutation rate for weak mutations is given by

Rµ(v, t) = 1.5 · 10−4 · f(v, t) (C.1)

per node. We do not model genetic drift processes and investigate only
mutations that survive the early fluctuations and become fixated in the pop-
ulation. This results in an effective rate of weak driver mutations of

Rµ,eff (v, t) = Rµ ·∆f = 1.5 · 10−4 · f(v, t) ·∆f , (C.2)

see e.g. Méléard et al. [11], details in Section C.7.2.

C.5.6 Strong driver mutations

We hypothesise (see Section C.2.2) the necessary existence of strong drivers
in PCA. Alterations in potent genes such as PTEN, TP53, RB1 or genes
of the MYC family and complex driver events of chomotrypsis/chromoplexy
(believed to substantially increase the tumour aggressiveness with one hit)
are typical for PCA, especially in aggressive tumours [9, 28].

We propose an increase in fitness of ∆s
f = 50% and initially define their

rate of occurrence as

Rsµ,eff (v, t) = 5 · 10−11 · f(v, t), (C.3)

on the basis of our estimation of potentially strong events in primary PCA
at or close to the clinically significant stage (Section C.7.4) [28, 52]. The
proposed estimate, however, seems to be low as we obviously consider only
a limited number of known strong alterations. In further simulations, we
increase the corresponding rate to

Rsµ,eff (v, t) = 5 · 10−9 · f(v, t), (C.4)
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a hundredfold increase of our original estimate but still far below the rate
of weak driver mutations. As the increased rates might result in extremely
high fitness values at the time of evaluation, we set a saturation mechanism
using an upper bound of fmax = 10.0 (Section C.7.5). Given a mutation
with either ∆ = ∆f or ∆ = ∆s

f , the new genotype had fitness

fnew(v, t) := fold(v, t) ·
[
1 + ∆ ·

(
1− fold(v, t)

fmax

)]
, (C.5)

where all the simulations start with a single node with f(v0, t0) = 1.0.

C.5.7 Tumour cell interactions/clonal competition

Given the architecture of PCA, the interactions between the tumour cells
and the clonal competition follow different principles compared to tumours
with more well-mixed cell populations. The PCA cells in most tumours are
arranged in one cell layer on the luminal surface of tumour channels–glands
(Figure C.1B), where clonal competition occurs mainly in two dimensions
(with similarities to the competition processes on the surfaces of colonic mu-
cosa/adenomas). The channel–gland tree-like architecture of PCA tumours
makes the nature and direction of clonal sweeps deterministic to some ex-
tent as these should follow the pre-formed tumour branches, otherwise the
regular spatial structure would loosen up. Evidence for competition on the
surface of the glands is well documented pathologically [71, 144].

Under the assumption of a static interior of the tumour concerning its ar-
chitecture, each cell division must induce a local competition process. Similar
to the effective rate of mutation, we model only the effective competition. We
take into account the extinction of a new genotype due to early fluctuations
by resorting to the effective rate of mutation. In the case of a mutation, we
assume that the fitter genotype at node v spreads to its neighbour w (along
the edge of the network that connects the two) with speed Rc(v, w, t) (Figure
C.1B,C). The resulting competition process is a contact process, resulting in
a relabelling of the nodes. The growth behaviour is affected only if a fitter
genotype reaches an active node. The rate of competition is defined as

Rc(v, w, t) =
f(v, t)− f(w, t)

N(v, t)
, (C.6)

where N(v, t) is the number of edges adjacent to v. Only the advance of the
fitter genotype is represented. On a cellular level, this corresponds to the
idea that when a cell divides (with either rate f(v, t) = k + ∆ or f(w, t) =
k), a neighbouring site is chosen, and the resident cell is replaced (Section
C.7.3). If node v has only two adjacent edges, the resulting advance of the
fitter genotype occurs with speed Rc(v, w, t) = ∆/2. This slow replacement
process dictates the rules for evolution.
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C.5.8 Next generation sequencing and reconstruction of clonal
hierarchies

Fresh frozen tumour samples from five patient cases were cut and stained
with Hematoxylin&Eosin to identify tumour tissue. Ten consecutive 14 μm
tissue sections were made and tumour tissue areas and benign tissue areas
were macrodissected. DNA extraction was performed using Qiagen QIAamp
Fast DNA kit (Qiagen, Venlo, The Netherlands) according to manufacturer
instructions with a target of at least 250 ng of DNA. All samples passed
DNA quality check. Library preparation was performed using Twist Human
Core + RefSeq + Mitochondrial Panel (Twist Bioscience, San Francisco,
CA, USA). Next generation whole exome sequencing was performed using
NovaSeq6000 (2x100 bp; Illumina, San Diego, CA, USA) with a target out-
put of 60 Gb for tumour and 30 Gb for benign tissue samples (sequencing
depth 400x/200x, correspondingly). Demultiplexing of sequenced reads was
performed using Illumina bcl2fastq (2.20). Adapter trimming was performed
using Skewer (0.2.2).

The raw sequencing data were processed as previously described [35, 58,
77, 119]. Sequencing reads were aligned to the human reference genome
GRCh37/hg19. Read-pairs with similar coordinates were assumed to be po-
tential PCR duplicates and were subsequently masked out from the read
statistics. Aligned Sequencing reads statistics were used to estimate tumour
purity, tumour ploidy, and call somatic mutations and copy number alter-
ations [58, 119]. In brief, to determine somatic mutations, variant counts
were assessed in tumour and matching normal samples and corrected for se-
quencing noise and compared to a database of 300 whole exome sequenced
normal samples to thus call the somatic mutations [119]. Variants at low al-
lelic fractions are often prone to be resulted from sequencing artifacts, which
occur as a consequence of sequencing noise due to low coverage WES or due
to fragmented DNA as part of FFPE material. We implemented a filtering
criterion for mutations which occur at low allelic fractions of less than 0.2.
These mutations were filtered out if 1) the forward-reverse bias ratio was
below a threshold (default value 0.2), and 2) if the allelic fraction of the mu-
tation times the minimal coverage of the normal or matching tumour sample
at the position in consideration did not exceed a (read count) threshold (de-
fault value 10). Thus, the mutations at relatively low allelic fractions and
low sequencing coverage are filtered out as potential sequencing noise and
false-positive mutation calls. The tumour clones and tumour phylogenies are
identified based on somatic mutation calls [35, 77] and assessment of copy-
number alterations. In multi-sample studies, a sub-clonal mutation at very
low allele fractions in one tumour can be more abundant at another tumour.
In this case, a mutation at a low allelic fraction which were filtered out in
one sample, were re-introduced as a somatic mutation, if the same mutation
passed all filtering criteria in another matched tumour sample.

164



C Unpublished: Tumour architecture and emergence of strong genetic alterations are
bottlenecks for clonal evolution in primary prostate cancer

To identify individual clones from tumour sequencing data, an expected
allelic fraction was assigned to each mutation based on a model that consid-
ers the tumour purity, average tumour ploidy, the copy number state, and
the number of mutation copies at the respective genomic coordinate of the
mutation, under the assumption of clonality [35, 119]. Relative observed al-
lelic fraction to the expected allelic fraction estimates a Cancer Cell Fraction
(CCF) for each mutation. By a subsequent clustering of the mutation CCFs,
we identify cell clones represented by subsets of individual mutations [35].
The average CCFs of the mutations in each associated clone in a given tu-
mour represent the clonal fractions of the clones and thus define the overall
clonal composition of the tumour at the time point of sampling. Our method
is benchmarked in pan-cancer studies [39, 60].

C.5.9 Analysis of clonal architecture from multi-regional tumour
samples

In order to study tumour evolution from multi-regional samples of a given
patient, we used a 2-dimensional clustering approach to analyze the clonal
dynamics in pairs of samples of the same patient [77]. As the first step, we
performed adjustments to the mutation calls and copy number state calls
assessed individually for each tumour sample, considering all samples of a
given patient simultaneously. For this purpose, a unified copy number seg-
mentation for all samples of a patient is generated and the copy numbers
were re-called for these unified segments. This step is critical for the com-
parison of the allele-specific copy number calls and the mutation CCFs across
the samples of the same patient. We also created a unified list of somatic
single nucleotide mutations (SNMs) for all samples of each patient, and re-
called the somatic mutation of the unified list in all samples with relaxed
filter criteria. This allowed us to detect the high-confidence mutation calls
from one sample with lower allelic fractions in other patient-matched sam-
ples. Subsequently, the 2-dimensional clustering analyses were performed
on the recalculated CCFs of the re-called set of mutations for each sample
pairs. Moreover, we set a minimum threshold of four mutations per clus-
ter. Considering the CCF of the cluster center as the representative CCF
of the corresponding cell clone, we considered the infinite sites hypothesis,
assuming that mutations appear just once in the evolutionary history of a
tumour, and the CCF sum rule [134, 141] to infer the phylogenetic tree and
the clonal composition per sample. In the rare event in which these assump-
tions allowed for multiple tumour phylogenies, we considered the maximum
parsimony assumption and preferred linear evolution over branched evolu-
tion. Since the copy number segments with poly-ploidy allow for ambiguous
solutions for the absolute numbers of mutated copies, in the case that mu-
tation clusters conflicted with phylogenetic rules, we re-assess the mutation
copy values of the somatic mutations for an alternative possible solution
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that resolves the phylogenetic rule conflicts. All copy-number alterations
were evaluated with regard to the affected genes and were considered during
phylogenetic reconstruction of clonal hierarchy in single tumours together
with analysis of somatic point mutations.
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C.6 Figures

Figure C.1: Principles of prostate cancer growth, clonal development and
their implementation in the developed mathematical model. A. Most
prostate cancer (PCA) tumours that are well and moderately differentiated grow
in tree-forming branches according to the rules of branching morphogenesis. These
branches are highly intermixed spatially and represent hollow structures (i.e. chan-
nels) in three dimensions, lined by tumour epithelial cells. In the regular pathological
sections, the channels look like glands. B. Competition between clonal populations
in PCA presumably occurs on the luminal surface of glands, with the propagation
of the ‘stronger’ clone along the pre-formed branches. An example of competition
between two populations (steps 1–6) is provided. C. During our simultaneous im-
plementation of 1) tumour growth and 2) genetic/clonal evolution, we reduced one
dimension of the architecture (the hollow nature of channels). Every model cell
represents a cross-section of such channel, with a natural length of one cell but in-
corporating on average 15 real tumour cells lining the lumen. The branching occurs
only through bifurcations and only at active growth tips within a distance calcu-
lated from morphological analysis. Branch termination occurs if there is no space
for further growth. D. A typical prostate adenocarcinoma is presented with glands
corresponding to channels in three dimensions. Morphological estimation of the
number of cells, and of the corresponding tumour volume and morphological visi-
bility was performed, which is important for the definition of the clinically relevant
clonal population (definition of clone to be used later). The estimation is made in
thousands (k) of tumour cells for a cube of a given size.
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Figure C.2: Evaluation of clonality in 20 synthetic tumours (W1–W20)
from a model with only a ‘weak’ type of genetic alteration. ‘Weak’ genetic
alterations (different types of alteration called mutation) provide small fitness in-
crements for the birth–death ratio (0.04). The clone definition was set as a branch
in the clonal hierarchy with size > 10.000 model cells (> 150.000 real tumour cells;
being readily distinguishable morphologically, Figure C.1 D). A. Example of the de-
velopment of tumour W4 from a size of 1 mln up to the end size of the simulation
corresponding to the average size of a clinically relevant prostate cancer tumour (20
mln model cells). B. Dynamics of the number of consecutive mutations in the most
advanced clone according to the course of tumour development. Some stochastic
variations in the early stages of development (up to the size of 8 mln model cells)
are evident, with similar trends shown later. C. Dynamics in the number of clones
in the course of tumour development. D. Spatial orientation of clones, clonal hi-
erarchy (larger coloured circles: clones according to the definition; smaller green
circles: prominent daughter populations not reaching a clone size of 10.000 model
cells) and metrics for the first ten tumours (W1–W10). Importantly, due to the
prominent spatial intermixing of populations, the volume on the spatial maps seems
larger than that measured as number of cells (provided in % of the whole tumour).
The tumour architecture is a major bottleneck in the case of only ‘weak’ mutations.
It precludes the development of clonal sweeps with dominant clones of substantial
sizes and divergent/branching evolution evident from previous studies using patient
samples.
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Figure C.3: Investigation of the clonal sweeps resulting from the isolated
placement of one ‘strong’ mutation at different tumour sizes. Ten simu-
lations for every placement at tumour sizes of 1, 2, 3, 4, 5, 7, 10 and 14 mln model
cells: eight with randomly positioned mutations and two with fixed positions (at the
actively growing tip and in the tumour initiation centre). Fitness of background
cells in the tumour: 1.0. Fitness increment for strong mutation: 0.5. Importantly,
due to the prominent spatial intermixing of populations, the volume on the spatial
maps seems larger than that measured as number of cells (provided in % of the whole
tumour). A. A substantial clone/sweep size can be achieved only by the very early
emergence of strong mutation (1–3 mln model cells, approximately corresponding to
10% of the final, clinically detectable tumour size). The tumour architecture is a
major bottleneck for effective clonal spread even in the case of strong mutations. B.
Ten simulations with placement at different tumour sizes with the resulting clone
fraction (% of the whole tumour) at the end of the simulation (20 mln model cells).
The most beneficial emergence position is in the tumour initiation centre (yellow).
The most disadvantageous position is at the active tip (red).

170



C Unpublished: Tumour architecture and emergence of strong genetic alterations are
bottlenecks for clonal evolution in primary prostate cancer

A Metrics of clonal evolution 
(Tumor size: 20 million model cells)
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Figure C.4: Metrics of clonal development and patterns of clonal evolu-
tion in synthetic tumours with two types of mutation (weak and strong)
and three different levels of strong mutation rate (X10). Synthetic tumour
groups X10, X50 and X100 represent three different strong mutation rates, with
the weak mutation rate the same as that initially. A. Overall number of strong
mutations in single tumours, mean fitness of the most advanced clone, number of
clones in the tumour (using the initial definition of a clone as a branch > 10.000
cells) and % of ancestral clone alive (as a metric of intensity of the clonal-sweep
processes in the tumour). B. Five patterns of clonal evolution evident in the X10
synthetic tumours. The definition of clone was changed to a clinically relevant one:
a branch in the clonal hierarchy with a size > 5% of the final tumour size. The
green circles represent clones and the yellow circle represents an ancestral clone
(see Figure Legends). Only dominant clones with leading fitness levels were used in
the classification of patterns. In all the tumours, there was an evidence of multiple
small populations (shown as small grey branches).
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Figure C.5: Patterns of clonal evolution in synthetic tumours with two
types of mutation (weak and strong) and different levels of strong muta-
tion rate: A. X50 group. B. X100 group. A finite number of clonal-evolution
patterns was evident in the synthetic tumours from groups X50 and X100, classified
as (1) no relevant divergence, (2) early divergence, (3) late divergence or (4) early
and late divergence. Importantly, even with a high strong mutation rate (X100),
there was a limited number of divergent clonal-hierarchy branches (up to five; most
of the tumours had one to three dominant branches). In both groups X50 and X100,
approximately one third of the tumours showed only one dominant clone, without
relevant divergence.
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Figure C.6: Results of the biopsy experiments. A. Three representative exam-
ples of the synthetic-tumour biopsy setup. Five cores were used, each sampling ap-
proximately 30.000-35.000 model cells (corresponding to real clinical prostate biop-
sies). One core was placed centrally and four cores were situated equidistant at the
periphery. The penetration depth was selected randomly. Biopsies were performed
in all the X10, X50 and X100 tumours at the final size of 20 mln model cells. B.
Results of the biopsy experiments: numbers of caught and missed dominant clones
in each tumour (groups X10, X50 and X100). C. All the dominant clones were
identified in zero (missed) to five biopsy cores. The plots demonstrate the dominant
clone size (% of the whole tumour; diameter of the circles) and the median fraction
of this clone in single biopsy cores (y-axis) depending on in how many of the five
biopsy cores the clone was found (x-axis). D. Number of sampled dominant clones
in the single biopsy cores (groups X10, X50 and X100). A substantial number of
cores in all the groups contained two or more dominant clones.
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Figure C.7: Biopsy results of the synthetic tumour X100-14. A. Spatial
map of the distribution of four dominant clones with evidence of typical clonal
intermixing in prostate cancer (the colours correspond to the colours of the tumours
in B and D, respectively). Importantly, due to the prominent spatial intermixing and
growth in the small outrunner branches, the volume on the spatial maps seems larger
than that measured as number of cells (provided in % of the whole tumour in C). B.
Five-core biopsy of the tumour with delineation of core content concerning sampled
clones. C. Clonal hierarchy of the tumour with the four dominant clones DC1–DC4.
D. Detailed distribution of dominant clones in five biopsy cores. ‘Other’ refers to
the cells from other populations with low fitness or with comparable fitness but whose
population size does not meet the clone criteria (> 5% of the whole tumour). For
further information regarding the frequency of single mutations, small populations
in the biopsy cores, and temporal dynamics of clonal evolution in Tumour X100-14
see Figures C.20, C.21.
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Figure C.8: Design of the next-generation sequencing validation study and
results of multiregional sequencing of five prostate cancer. A. Five prosta-
tectomy specimens from patients with low- and intermediate risk prostate cancers
were processed (local variations of Gleason score for five tumours 3+3 to 4+3). At
least five different tumour regions (S1, S2, etc.) and one benign sample / specimen
under control of frozen sections were harvested for DNA extraction. Deep whole
exome sequencing with coverage of up to 400x was performed on each sample. So-
matic point alterations and copy number alterations were used for the reconstruction
of clonal hierarchy and studies of tumour development processes. B. Copy-number
alterations for multiregional samples of five prostate cancers (PCA1-PCA5). Blue
– areas of deletion, red – areas of amplification, gray – areas with limited coverage
/ low quality of calls. PCA2 and PCA3 cancers show clonal (PCA2) and subclonal
(PCA3) whole-genome duplication event. C. Somatic point mutations calls for
PCA1-PCA5 tumours (per sample analyzed). Different shades of green represent
differences in cancer-cell fractions (see Legend).
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Figure C.9: Clonal hierarchies of the PCA1-PCA5 tumours reconstructed
from somatic point mutation and copy number alterations data and anal-
ysis of number of discernible subclonal populations per sample. A. Re-
construction of clonal hierarchies of five tumours (PCA1-5). The information to
genetic alterations evident at trunk and branches is provided. When the genes with
clearly established role for development of prostate cancer could be identified, they
are provided as well: red – amplification, blue – deletion of the gene. At some
amplifications and deletion no genes with clearly established functional role could
be identified. Patterns of clonal divergence are summarized per tumour. In Cases
PCA4 and PCA5 branch in different colour represents a genetically completely in-
depdent second tumour focus identified immediately adjacent to the main tumour
focus. Abbreviations: SNV – somatic nucleotide variant, del – deletion, amp –
amplification, * - NGS calls with low quality. B. Number of discernible subclonal
populations in single tumour samples based on cancer cell frequencies from Figure
8C. C. Principle of sampling of virtual tumours that exactly reproduces the sam-
ples of human tumours concerning location, form, and number of tumour cells is
shown above. Below provided a summary of the number of discernible subclonal
populations per sample, tightly resembling those of human samples (B).
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Figure C.10: Clonal hierarchies of 20 synthetic tumours modelled with a combined
implementation of weak and strong mutations (named WS group). An initial strong
mutation rate of 5.0·10−11 was used for strong mutations. Initial definition of clone
(larger coloured circles): a branch in the clonal hierarchy with number of cells >
10.000. The smaller green circles represent prominent daughter populations not
reaching the threshold of 10.000 cells for clone definition. Most of the strong mu-
tations appeared too late to generate even local clonal sweeps due to architecture
bottlenecks and the presence of many counteracting populations with multiple con-
secutive weak mutations and comparable fitness levels. Among the 20 synthetic
tumours in this setting, only five (tumours 5, 6, 7, 12 and 13) demonstrated di-
vergent/branching evolution to some extent (those where strong mutations appeared
earlier).
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Figure C.11: Clonal hierarchies for the synthetic tumours in group X10 (strong
mutation rate 5.0 · 10−10, n = 50. Adjusted, the clinically relevant definition of
clone was used: a branch in the hierarchy with a size > 5% of the whole tumour
volume.
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Figure C.12: Clonal hierarchies for the synthetic tumours in group X50 (strong
mutation rate 2.5 ·10−9, n = 50. Adjusted, the clinically relevant definition of clone
was used: a branch in the hierarchy with a size > 5% of the whole tumour volume.
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Figure C.13: Clonal hierarchies for the synthetic tumours in group X100 (strong
mutation rate 5 · 10−9, n = 50. Adjusted, the clinically relevant definition of clone
was used: a branch in the hierarchy with a size > 5% of the whole tumour volume.
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Figure C.14: Dependence of the final fitness of the most advanced clone in the tu-
mour on the time of emergence of the first (A) and second consecutive (B) strong
mutations in synthetic tumour groups X10, X50 and X100, respectively. Time mea-
sured in cell cycles (cell divisions). A clear positive correlation was found between
time of emergence of the first and second consecutive strong mutations and higher
fitness of the dominant clone at the end of the simulation.
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Figure C.15: Clonal hierarchies for the synthetic tumours in group X10 (strong
mutation rate 5.0 ·10−10, n = 50. Multiple small populations are evident, often with
a fitness level comparable to that of the dominant clone(s) when the clone definition
is relaxed to hierarchy branch size > 1% at the end of the simulation. The clinical
relevance of such small clonal populations is unclear.
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X50_41 X50_42 X50_43 X50_44 X50_45 X50_46 X50_47 X50_48 X50_49 X50_50

>10% 1-10% <1% extinct Strong mutation

Figure C.16: Clonal hierarchies for the synthetic tumours in group X50 (strong
mutation rate 2.5 · 10−9, n = 50. Multiple small populations are evident, often with
a fitness level comparable to that of the dominant clone(s) when the clone definition
is relaxed to hierarchy branch size > 1% at the end of the simulation. Clinical
relevance of such small clonal populations is unclear.
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X100

X100_1 X100_2 X100_3 X100_4 X100_5 X100_6 X100_7 X100_8 X100_9 X100_10

X100_11 X100_12 X100_13 X100_14 X100_15 X100_16 X100_17 X100_18 X100_19 X100_20

X100_21 X100_22 X100_23 X100_24 X100_25 X100_26 X100_27 X100_28 X100_29 X100_30

X100_31 X100_32 X100_33 X100_34 X100_35 X100_36 X100_37 X100_38 X100_39 X100_40

X100_41 X100_42 X100_43 X100_44 X100_45 X100_46 X100_47 X100_48 X100_49 X100_50

>10% 1-10% <1% extinct Strong mutation

Figure C.17: Clonal hierarchies for the synthetic tumours in group X100 (strong
mutation rate 5.0 · 10−9, n = 50. Multiple small populations are evident, often with
a fitness level comparable to that of the dominant clone(s) when the clone definition
is relaxed to hierarchy branch size > 1% at the end of the simulation. The clinical
relevance of such small clonal populations is unclear.

Patterns of clonal evolution in high-risk prostate cancers, n=37
(summarized from Suppl. Figure 7 of Wilkinson et al. 2020)

6/37 9/37 7/37 1/37 11/37 3/37

16% 24% 19% 3% 30% 8%

Figure C.18: Patterns of clonal evolution in high-risk prostate cancers, n = 37
(summarised from Suppl. Figure 7 of Wilkinson et al. [161]). Wilkinson et al.’s
study is one of the largest studies on intratumoural heterogeneity based on multire-
gional analysis, with available reconstructions of clonal hierarchies for 37 patients
(high-risk patients only). The patterns of clonal evolution are highly similar to our
findings (Figures C.4B, C.5A,B).
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Figure C.19: Virtual biopsy core dimensions and principle of virtual biopsy.
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Dominant clone 1 (DC1)

Dominant clone 2 (DC2)

Dominant clone 3 (DC3)

Dominant clone 4 (DC4)

Other / non-dominant
Other / leading fitness, but size < 5%

Cell populations Cell populations

Affiliation of cell populations

Tumor X100_14

Figure C.20: Detailed information about frequency of single genetic alterations (mu-
tations) and cellular populations with a unique genotype in five biopsy cores of the
X100-14 synthetic tumour (refer to Figure 7). A. Frequency of unique mutations
in single cores (% of the cells). On the left side of the plots, from cores 1 to 5, the
spikes correspond to trunk mutations (100%). The other high spikes correspond to
the founder mutations of dominant clones. A large number of other unique muta-
tions with low frequency is evident. B. Cell populations with unique genotypes in
cores 1–5. Some of them (affiliated with dominant clones) are daughter subpopu-
lations developing on the basis of dominant clones. The grey bars correspond to
other populations not affiliated with the dominant clones. Some of them stem from
populations or clones with non-dominant and non-relevant fitness. However, there
are also cell fractions stemming from clonal populations with dominant fitness, but
with a size < 5% (not fulfilling the clone criteria). The clinical relevance of such
cell populations (especially with a size of 1–5% of the whole tumour) is unclear.
Some of the other cell populations are of a substantial size (several thousands of
cells) and can therefore interfere with the correct, next-generation sequencing-based
evaluation of the genetic formula of the dominant clone for clinical decision making.
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Figure C.21: A. Clonal hierarchy scheme from case study C.7. B. Corresponding
fishplot of temporal dynamics of clonal evolution (Tumour X100-14). Timeline
corresponds to cell division cycles.
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Supplementary: Detailed review of published studies on intratu-
moural heterogeneity in prostate cancer.

Nr
Study Number of

patients
Technique Sampling

Type
Main results

1 [4] 11
(9 tumor
samples)

SNS, low-
pass DNAseq
(only CNV
analysis)

Biopsy, 2-8
tumor sam-
ples/patient

1) In 3/6 cases multiple clones in
single Bx cores
2) Clonal hierarchy reconstruction
in 6 cases (cell-level): one to
three clonal branches (no informa-
tion about their genetics)

2 [9] 57 WGS Prostatectomy,
1 sample /
patient

1) Chromoplexy as a "strong"
genetic event leading to punctuated
evolution rather than gradual
acquisition of genetic alterations.
2) Several major alterations
(PTEN, CDKN2B, CHD1; also,
chromoplexy) are subclonal.
3) No case level reconstructions of
clonal hierarchy

3 [18] 5 WGS Prostatectomy,
In total 23
distinct re-
gions from 5
pts, 2-9 sam-
ples/tumor

1) Substantial intratumoral hetero-
geneity
2) Some important driver alter-
ations, including therapy-relevant,
are subclonal (TP53, BRCA,
CHD1, BRCA1, PIK3CA)
3) No reconstructions of clonal
hierarchy.

4 [25] 5
All ag-
gressive,
high-stage
cancers
(e.g. 3/5
GS 4+5,
2/5 ter-
tiary
GP5)

Illumina Hu-
manMethy-
lation450
BeadChip
array (only
CNV analy-
sis)

Prostatectomy,
up to 10 sam-
ples / tumor

1) Detailed reconstruction of hier-
archy: two or three main clonal
branches with early and late diver-
gence.
2) No estimates of aggressivity /
functional impact of identified sub-
clones. Some of them maybe not
relevant.
3) No saturation with used number
of samples (all single samples from
one tumor contain different clones).

5 [33] 3 WGS Prostatectomy,
in total 12
tumor sam-
ples from
3 pts (3 of
them from
low-grade
secondary
cancer fo-
cus), 3-5
samples /
patient

1) Significant inter-sample hetero-
geneity.
2) Alterations counted, but not
named. Although alterations of un-
known or no significance (passen-
gers).
3) Detailed reconstruction of hi-
erarchy: one, three, and three
main branches (including low-grade
clones lacking clinical significance),
early and late divergence patterns.
4) No saturation with used number
of samples (all single samples from
one tumor contain different clones).
5) Large number of alterations in
benign tissue.

6 [40] 2 WES Prostatectomy
1 tumor sam-
ple / patient

1) Every sample contains more than
one clone (spatial coexistence / in-
termixing of clones).
2) PTEN and TP53 alterations are
subclonal.
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7 [59] 8
highly
selected
popu-
lation
of early
onset
cancers

WGS Prostatectomy,
number of
samples
/ tumor
not clearly
specified

1) Detailed reconstruction of clonal
hierarchy, however, reconstructions
not linked to samples (Bayesian
mixture model).
2) Estimation of aggressivity of ev-
ery identified clone (probabilistic
modeling)
3) In all cases short trunk and two
main clonal branches with late di-
vergence.
4) Late divergence in many cases
with a number of clones without rel-
evant genetic alterations and with
low estimated aggressivity.
5) In 2 cases TP53 as clonal event,
in 4 cases subclonal. RB1, PTEN,
BRCA1, BRCA2 alterations are of-
ten subclonal.
6) TP53 alterations are very infre-
quent in primary PCA, here in 6/8.
Also 6/8 RB1 alterations. Highly
selected population.

8 [70] 1 Targeted
DNAseq

Prostatectomy,
9 samples
from primary
tumor

PTEN and TP53 as subclonal
events (identified in 1/9 tumor sam-
ples)

9 [78] 4 WGS, tar-
geted re-
sequencing

1, 1, 2, and
6 primary tu-
mor samples
/ case

1) Of four patients two with MSH2
and BRCA2 (probably, special tra-
jectories for clonal evolution). Two
patients additional with POLE mu-
tation. Highly selected population.
2) Reconstruction of clonal hierar-
chy unreliable in 3/4 patients due to
low number of primary tumor sam-
ples.
3) In one patient with MSH2 muta-
tion probably one dominant branch.
4) p53 often subclonal and impor-
tant for metastatic process.

10 [95] 11 Panel
DNAseq
(289 genes)

Multifocal
tumors, 2-
3 samples
/ patient
(prostatec-
tomy); 1-3
preop core
biopsies /
patient

1) Only one sample pro focus
of multifocal tumor; also, non-
dominant foci sampled. Almost all
cases with GS 7.
2) Prominent interfocal heterogene-
ity (intratumoral heterogeneity is
not estimated due to sampling of 1
sample / tumor)
3) High levels of under-sampling
of relevant genetic rearrangements
when only biopsies analyzed.

11 [100] 25
clinically
high-risk
tumors
(ca. 50%
with M1
disease)

WGS/WES Biopsy sam-
ples, 2-4 tu-
mor samples
/ patient

1) Prominent levels of intratumoral
heterogeneity (more on the CNV
level).
2) Naturally, no control for spatial
localization of samples.
3) No phylogenetic reconstructions.

12 [101] 1
high-
stage,
high-grade

Low-pass
WGS, break-
point analy-
sis

Prostatectomy,
25 tumor
areas, laser-
capture
microdissec-
tion

1) Detailed reconstruction of clonal
hierarchy in 1 case based on CNV
breakpoints.
2) Three main clonal branches
with early and late divergence (no
analysis of relevance of identified
branches or subclones; some of
them might be of no relevance).
3) No saturation reached with used
number of samples (all single sam-
ples from one tumor contain differ-
ent clones).

13 [104] 23
(with 2
samples
from one
focus)

WES 1) Main focus of study is interfocal
heterogeneity in multifocal prostate
cancer.
2) 23 patients with only 2 samples
/ focus, which showed substantial
heterogeneity.
3) No detailed phylogenetic recon-
structions.
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14 [43],
[52]

293
(97%
clinically
inter-
mediate
tumors)

WGS 1 sample
/ patient:
prostatec-
tomy sample
or Bx core
from patients
for radiation
therapy

1) All analyses 1 sample / patient.
2) 119 (41%) monoclonal, 135
(46%) biclonal, 35 (12%) tri-clonal
in one sample: prominent spatial
mixing of clones.
3) Sampling bias (1 sample/tumor;
sample size not reported). Low se-
quencing coverage (bias).
4) Many tumors classified as high
prognostic risk based on subclonal
alterations (clinical relevance).

15 [52] 11
(5 BRCA2
carriers, 6
sporadic)

WGS 2 samples /
tumor (one –
invasive, one
– intraductal
carcinoma)

1) Selection bias: high-stage, high-
grade cancers with intraductal car-
cinoma.
2) No systematic multi-region sam-
pling of tumors.
3) BRCA2 tumors have distinct
evolutionary trajectories due to
large number of driver alterations
early in course.
4) No significant information about
intratumoral heterogeneity: inva-
sive carcinoma and intraductal car-
cinoma of common origin.

16 [151] 4 WES Prostatectomy,
2-3 samples
/ case (prob-
ably multiple
foci also)

1) Substantial divergence and het-
erogeneity
2) Early divergence (maybe multi-
focal tumors). Also, late divergence
in 2 tumors.
3) No detailed analysis of single mu-
tations or relevance of subclones.
No analysis of CNA.

17 [152] 10 WES, low-
pass WGS

Prostatectomy,
5-9 samples /
tumor (index
lesion)

1) Selection bias for higher grade /
higher stage tumors.
2) High levels of intratumoral het-
erogeneity.
3) No saturation reached with used
number of samples (all single sam-
ples from one tumor contain genet-
ically different sub-clones). 4) Both
early and late divergence evolution-
ary patterns.
5) Two or three main clonal
branches. No analysis of relevance
of single sub-clones. In three cases
evidence of rather one dominant
branch with late divergence.
6) Evidence for prominent and com-
plex spatial intermixing of diver-
gent clones.
7) BRCA1, BRCA2 both clonal and
subclonal, ATM subclonal. TP53,
RB1 both clonal and subclonal.
PTEN often subclonal.
8) CNVs are often subclonal (espe-
cially gains).

18 [165] 16
(6 pts
with M1,
bias for
higher-
stage,
higher-
grade
disease)

WES Biopsy, 1-4
cores / index
lesion

1) High levels of intratumoral het-
erogeneity at different levels.
2) Naturally, no control for spatial
localization of samples.
3) Evidence for early and late diver-
gence.
4) Two to five main branches, but
no analysis of branch or clonal rel-
evance, only number of SNVs (not
CNVs). Probably some branches
are of no relevance (not dominant).

19 [160] 4
(bias
for higher
stage/grade
disease)

WES Biopsy, 3
cores from
index lesion,
up to 4 cores
from smaller
lesions

1) High levels of intratumoral
heterogeneity.
2) Clinical significance of branch
mutations unclear.
3) Phylogenetic trees generated
based on somatic mutations.
Mainly 2 branches with late di-
vergence in sub-clones of unclear
relevance.
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20 [164] 10
(lethal
metastatic
disease)

WGS,
targeted
DNAseq

Autopsy
samples,
in total 33
samples from
prostate, 1-8
samples /
patient

1) Only 4 patients with prostatec-
tomy before autopsy, all other sam-
ples – heavily pretreated, harvested
at time of prostatectomy.
2) Detailed phylogenetic recon-
structions based on targeted se-
quencing (higher coverage, but only
selected alterations identified previ-
ously using WGS).
3) High levels of intratumoral het-
erogeneity in the prostate.
4) Prominent spatial intermixing of
subclones in the prostate, also dur-
ing spread to local organs.
5) Intraprostatic clonal evolution:
one or two main branches with late
divergence in 2 tumors.
6) Monoclonal or biclonal (mostly
from one intraprostatic branch)
seeding of metastasis.
7) Conclusion: "It is likely that
metastatic trigger events are rare
and arise stochastically, which
means it will be difficult to pre-
dict the lineage that will eventually
metastasize."

21 [161] 37
(intermediate/high
clini-
cal risk
disease)

WES Biopsy sam-
ples (MRI:
48 foci), mi-
crodissected,
median 4
Foci/patient

1) Possible sampling bias (biopsy
from foci identified by MRI).
2) Detailed reconstruction of clonal
hierarchy trees in all patients.
3) Two patterns of clonal evolution:
linear and branching.
4) Branching in 86% of poor respon-
ders to neoadjuvant therapy, and
in 73% of exceptional responders to
this therapy.
5) Evidence for early and late diver-
gence.
See Figure C.18 for a detailed anal-
ysis of clonal evolution patterns

Abbreviations used in the table:

ADT androgen deprivation therapy
CNV copy-number variation
GP Gleason pattern
GS Gleason Score
MRI magnet-resonance investigation
SNS single nucleus sequencing
SNV single-nucleotide variants
WES whole-exome sequencing
WGS whole-genome sequencing
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C.7 Supplementary mathematical methods

C.7.1 Tumour geometry and growth

Essentially, the following stochastic self-avoiding branching process was in-
troduced and discussed in detail by Hannezo et al. [73, 74], as a model for
the branching morphogenesis of several healthy tissues: the authors compare
their numerical results with biological data from the mouse mammary gland,
kidney, and the human prostate. We earlier reported the same self-avoiding
structures in PCA [146], and only slightly modify the dynamics in [73] to the
present case. As explained in the following, we increase the capability of the
process to grow in spatially densely packed regions, reflecting the malignant
nature of the tumor.

To begin with, the length of an edge in the network represents the diam-
eter of a single cell, normed to l(e) ≡ 1. Each node of the network represents
a cross-section of 15 cells of the tubular tumour-structure (Fig. C.1). The
radial thickness of the structure is set to drad = 4, representing 15 round
cells which form the boundary of a squeezed tube. Each node v has a spe-
cific three-dimensional coordinate x(v) ∈ R3 and is represented by a ball of
radius r = drad/2 = 2 with center x(v). The self-avoidance is implemented
such that it depends only on the nodes (Fig. C.22), which have to respect
a minimal distance of 2r if their network-distance (shortest path via edges)
is more than dnet = 1 + 3r (rounded down to the next integer if necessary).
This way, two branches can separate after a branch-event and nodes on the
same branch do not impede their neighbours. With the chosen parameters,
this node-avoidance provides a sufficient approximation of non-intersecting
round tubes while being fast to compute. This approximation is necessary
if we consider networks consisting of 107 nodes.

Figure C.22: Self-avoidance based on the radial size r of the vertices. Vertices with
a network-distance of more than d = 1 + 3r have to respect the resulting minimal
distance of 2r. All edges have length l(e) = 1. With the chosen radius r = 2 this
gives a sufficient approximation of a round tube (for better visualization, the figure
shows the case for r = 0.7).

The growth-rate Rg(v, t) and the branch-rate Rb(v, t) at node v at time
t are only positive if the node is active, indicated by its growth- and branch-
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activity Ag(v, t) and Ab(v, t). Both indicators can independently be either
zero or one. We set

Rg(v, t) = Ag(v, t) · f(v, t) · Cg,
Rb(v, t) = Ab(v, t) · f(v, t) · Cb.

(C.7)

The constants Cg, Cb ≥ 0 represent the number of cell-divisions that
result in a longitudinal growth or a branching of the tubule. We used physi-
ological data from a previous study (Fig. C.1), translating into a fixed ratio
of branching compared to normal growth-events: Cg/Cb = 1/4. The result-
ing total growth-constant is set to Cg+Cb = 1/10, reflecting the slow growth
of low-grade PCA. The total growth-constant Cg +Cb should be clearly less
than one, as the spatial pressure exerted by the surrounding healthy and
cancerous tissue impedes growth, as well as does their consumption of nutri-
ents. We are aware of the fact that we can not validate the effective speed of
growth numerically, but we refer to the end of this subsection for an estimate
on the time it takes a tumor to grow to full size.

At a growth event, a new coordinate in front of v is drawn randomly,
then it is verified if this potential position for a new vertex respects the
prescribed distance rules. Therefore, a random growth direction is chosen
uniformly from a cone around the previous growth direction (Figure C.23).
The maximal possible deviation from the previous direction is set to α = 60◦,
which allows the growing branch to evade possible obstacles without perturb-
ing the growth direction too much (on average) and fits the morphological
analysis in [146]. If the newly sampled position is not too close to any other
existing nodes, a new node w is placed there and connected to v via an edge.
The new node w is set as fully active, meaning that both Ag(w, t) = 1 and
Ab(w, t) = 1. If the chosen coordinate is blocked, a new one is sampled
i.i.d. to the previous one. After Ng unsuccessful trials, we irreversibly set
Ag(v, t) = 0, the growth-event is considered to have failed due to spatial re-
strictions. We allow for a possible branching event afterwards, not changing
Ab(w, t) after a failed growth event, and vice versa.

Figure C.23: At a growth event, the direction is drawn uniformly from the pink set,
which is a cone around the current direction.

At a branching event, two new coordinates in front of v are drawn ran-
domly, then it is verified if both respect the prescribed distant rules. There-
fore, two opposing random growth directions are chosen uniformly under the
following restrictions: they have an angle of β = 60◦ to the mean growth
direction and an angle of 2β towards each other, (Figure C.24). If both re-
sulting new positions are unoccupied, two new nodes are placed and each is
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connected to v via an edge, both new nodes are set as fully active. Other-
wise, two new coordinates are sampled. After Nb unsuccessful trials, we set
Ab(v, t) = 0. In this case, since we think of branching as excessive growth, a
growth event follows if Ag(v, t) = 1.

Figure C.24: At a branching event, the new direction is drawn uniformly from the
pink set, which is a circle in a plane rectangular to the current direction. The new
branches point in opposing directions.

The allowed number of growth-trials is set to Ng = 5 (differing from [73],
where Ng = 1). This proved to be a good value for creating the effect of
dense regions in the simulations, where no more growth is possible, but still
allowed growing branches to evade other branches. For a branching event, we
simply set Nb = N2

g , even though the two proposed coordinates are clearly
not independent.

As a self-avoiding process, all growing branches of the tree can get trapped,
then growth stops. For the tested branching rates, the empirical probability
of such an event was negligible, further this extinction occured only in the
initial steps. We ignored such rare cases and simply restarted the simulation.

We estimated the number of tumour cells at the time of diagnosis from
ten prostatectomy cases with small, intermediate and large tumours. This
was done by calculating the amount of tumour cells in the tumour focus
in one histological slide (Using QuPath software [10]), given the thickness
of a standard tumour piece in a block of 4mm, with median tumour cell
size of 20 μm, and typical number of blocks with tumour tissue in radical
prostatectomy specimens. At that, we received an average number of cells 70
mln, 300 mln, and 800 mln for small, intermediate, and very large tumours,
corresponding to the number of cells derived from tumour volume estimates
from Salomon et al. [127]. We stopped our simulations at a size of 20 mln
model nodes, corresponding to tumours with intermediate size of 300 mln
real cells.

In the present model and with the above parameters, this size was reached
after a time corresponding to 6000-8500 cell cycles of cells with fitness 1.0
(varying with the appearance of strong driver mutations). The average
length of a cell-cycle is given by the inverse of the rate of cell-division
f(v, t)−1. Assumed that tumour cell divisions happen in a time range of
2-7 days dependent on tumour aggressivity [133], this translates the above
6000-8500 cell cycles into a real-time estimate of the order of 33-46 years
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or 115-160 years, respectively. Prostate cancer is known to grow very slow
in comparison to other malignant tumours, see for example Schmid et al.
[133]. We are aware of the fact that this reasoning provides merely an esti-
mate as we do not account for several factors (e.g. tumour interaction with
microenvironment).

C.7.2 Mutations

In order to reduce the computational costs, we reformulate the entire process
of mutation and competition in terms of an effective rate of mutation and
effective rate of competition. Some published models take into account drift
effects of clonal evolution, for example [139]. However, for computing such
models, that additionally incorporate also the spatial structure of the tumor,
cells are structured into deems, locally well-mixed populations consisting of
several hundreds or thousands of cells, interacting with each other only on
the higher level of deems. These deems typically lay on a grid. We adopt this
idea, but do compute the internal cellular composition of the deems. The
PCAs under investigation form a self-avoiding branched tubular structure.
Therefore, we estimated the number of mutations that survive the early
fluctuations, and studied their spreading over the tubular network. The
smallest unit in our simulations (which reflects the idea of a deem) is a
single node of the network. The rate for mutations resulting in a fitness
advantage for tumours has long been and still is a subject for investigations
and discussions. We adopt the estimate also used in [139, 21] and set the
probability for such an event to be equal to Pµ = 10−5 per cell division.
Since every node in our model hosts 15 cells, we set the rate of (weaker)
driver mutations to Rµ(v, t) = 1.5 · 10−4 · f(v, t). We simulate only such
mutations that survive the early fluctuations. Hence, we need to estimate
the resulting rate of effective mutations. In a large well-mixed population
which is in equilibrium, a new trait with small fitness advantage ∆ > 0 (in
this setting equal to the effective growth rate during the initial growth phase)
survives the early fluctuations and fixates with probability

Pfix ≈ 1−
(1

2

2 + ∆

1 + ∆

)
+

√(1

2

2 + ∆

1 + ∆

)2
− 1

1 + ∆
≈ ∆. (C.8)

The second approximation is good for small , the presented formula yields the
survival probability of a supercritical branching process (e.g. [11]). Hence,
we define the effective rate of (weaker) driver mutations as

Rµ,eff (v, t) = Rµ ·∆ = 1.5 · 10−4 · f(v, t) ·∆. (C.9)

We use this rate for all simulations. The fitness advantage of such a mutation
was chosen quite large: ∆f = 4% is to be interpreted as an upper bound,
for existing literature see [21, 139]. This upper bound yields certainty when
stating that weak drivers cannot be the important evolutionary mechanism.
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C.7.3 Competition

Under the assumption of a static interior of the tumour with fixed popu-
lation size, each cell division must induce a local competition process. If
two neighbouring nodes w and v host genotypes with fitness f(w) = k > 0
and f(v) = k + ∆ > k, respectively, the genotype at v has a fitness advan-
tage. Figure C.25 shows two possibilities to model this. In the microscopic
approach where each cell is tracked, a cell divides with either rate f = k
and f = k + ∆, respectively. Under the assumption of a fixed population
size, a local competition process must take place. This can be modeled by
choosing a neighbouring site of the cell that just divided and by replacing the
resident cell. Simulating each cell-division would be time-consuming, so we
only simulate the resulting advance of the fitter genotype. We already took
into account the extinction of the fitter genotype due to early fluctuations
by resorting to the effective rate of mutations. Then, in our approach of
modeling the effective advance of the fitter genotype, the fitter genotype at
v spreads over to its neighbour w with rate

Rc(v, w, t) =
f(v, t)f(w, t)

N(v, t)
, (C.10)

where N(v, t) is the number of edges adjacent to v. In the example shown
in Figure C.25, the effective speed of advance in this direction is given by
Rc(v, w, t) = ∆/2.

Figure C.25: Competition as a contact process. Cell-divisions occur with fitness
f = 1.0 and f = 1.0 + ∆, respectively, and result in a replacement of the genotype
in one of the neighbouring cells. We model the resulting competition, an advance of
the fitter genotype with speed ∆/2.

C.7.4 Strong driver mutations

For simplicity and reproducibility of the results we implement only two differ-
ent types of mutations with fixed fitness advantages ∆f = 4% and ∆f = 50%.
The latter value was chosen empirically so that these mutations can spread
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with sufficient speed. Such strong mutations have already been reported,
for example by Vermeulen et al. [154], even though they investigate the fit-
ness of the first cancer stem cells in intestinal carcinoma. In this study, the
authors also conclude that due to a competition process, a gradual clonal
development might be not efficient in terms of clonal evolution.

We initially estimated the rate of strong mutations using the incidence
of events involving "potent" genes. Their incidence was extracted from pub-
lished large-scale molecular genetic characterization studies for tumours still
growing via branching (i.e. tumours with Gleason-Score < 4 + 4): PTEN
deletion/mutation (26.8%), TP53 mutation (6%) or deletion (26%) [28], and
chromotrypsis (20%) by tumours from 3+3 up to 4+3 [52].

We considered the overall occurrence rate for any of such strong genetic
alterations to be about 50% in mid-size tumours of 10 mln vertices that have
the branching architecture we modeled. Of those tumours, approximately
20% of tumours show 2 or more of such strong mutation events. For reach-
ing a detectable size, those mutation-events must have occurred at some
timepoint before the molecular genetic evaluation of the tumour.

To translate these findings into the model, we assume that rare mutations
have a small, fixed probability per cell-division P sµ, which we can estimate.
Under this assumption, rare mutations follow the dynamics of a Poisson point
process, with rate depending on the fitness of the present cells. Assuming
that cells have constant fitness f(v, t) = 1.0 before the first driver mutations
occurs, the rate of a driver mutation per vertex is given by Rsµ,eff (v, t) =
P sµf(v, t) = const. By the above literature, the probability for finding no
strong mutation in a tumour is roughly given by 1/2 = Pλ(0) = e−λ, where
λ is the accumulated effective rate of rare mutations up to the chosen time-
point. We consider the time when the network reaches the size of 10mln
model nodes, thus

λ =

∫ T10mln

0

[ ∑
v∈V (t)

Rsµ,eff (v, t)
]
dt. (C.11)

By performing several simulations, we estimated the above integral numeri-
cally. The result is a first estimate for the effective rate of strong mutations:
Rsµ,eff (v, t) ≈ 5 · 10−11f(v, t).

However, simulations with this rate of strong driver mutations do not
show any significant divergent clonal evolution since the clones arrive far
too late (Section C.2; Fig. C.3, C.4). Hence, in our experiments we tested
an increased rate of strong mutations, using values up to Rsµ,eff (v, t) ≈
5 · 10−9f(v, t): of up to the hundredfold of our original estimate, but still far
below the rate of weaker driver mutations.
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C.7.5 Saturation of fitness

As a final adjustment, we included a saturation effect into our fitness land-
scape. Typically, a fitness-advantage ∆ induced by a mutation is understood
to be multiplicative, meaning fnew = (1+∆)fold. As discussed so far, a large
fitness advantage is needed for drivers to be able to spread. On top of that
they have to arrive early for having any impact, so the effective rate of strong
mutations needs to be rather high. The problem is that this led to very large
maximal fitness values of order f = 1.58 ≈ 25.6 – even though those values
were reached only by subpopulations occupying 1-5% of the tumour. To
address this, we introduce a saturation effect into the fitness-landscape and
define

fnew(v, t) := fold(v, t) ·
[
1 + ∆ ·

(
1− fold(v, t)

fmax

)]
. (C.12)

We set fmax = 10. We compared the results of this saturation mechanism
to the increase of KI-67 in prostate carcinoma, which is an indicator for cell
proliferation. Aaltoma et al. [1] found an increase of KI-67 by a factor of
three when comparing different patient groups, categorized by survival. Our
simulations resulted in a final mean-fitness of fmean = 1.33, with rate of
strong drivers set to Rsmy,eff (v, t) = 5 · 10−10f(v, t) (X10) and fmean = 2.18

when setting the rate of strong drivers to Rsmy,eff (v, t) = 5 · 10−9f(v, t)
(X100). Here, the first node always started with a reference-value of f = 1.
For the maximal fitness, the simulations resulted in a mean of fmax = 2.80
(X10) and fmax = 5.04 (X100) respectively, the latter caused by typically
at most 5 consecutive hits. As we model tumours with a range of Gleason
scores from 3+3 to 4+3, this seems to be a reasonable range for different
fitness values, roughly aligning with the findings of Aaltoma et al. [1].

C.7.6 Evaluation

C.7.6.1 Biopsies

To calculate the dimensions of the virtual biopsy and number of tumour
cells in it we have summarized the information from 30 typical prostate
biopsies from the archive of the pathological institute of the University Hos-
pital Cologne. Those contain 8-22 cores and a complete range of Gleason
Scores. The median number of positive cores is approximately 4.3 (range 1-
13). For single cases: the median cumulative tumour length over all positive
biopsies per case was 4.2 mm (range 0.75-10 mm). The maximal tumour
length per biopsy in single cases was 7.0 mm (range 1-22 mm). Accounting
for fixation shrinkage artifacts we select a reference tumour tissue length in
a core of 5 mm for modelling. According to these estimations and that the
median core diameter was measured to be 0.8 mm, we calculate the number
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of tumour cells in a core to be approximately 450.000-525.000 tumour cells,
corresponding to approximately 30.000-35.000 model nodes.

Based on this we define a virtual core of the biopsy to be a cylinder, with
ratio of length and diameter 8:1, containing roughly 32.000 nodes per core
(range 30.000-35.000). A biopsy contains a total of five cores. Their hori-
zontal position is chosen using a fixed pattern (Figure C.19), their vertical
distance from the boundary of the tumour is chosen randomly.

C.7.6.2 Clusters

For visualizing the clonal hierarchy in a tumour, we derive a phylogenetic tree
for every synthetic tumour (see Fig. C.4, C.5, C.7, C.9), and then perform
a rather simple clustering. At that, we order the different mutations in
resulting genotypical clusters as follows. Given the full tree, first we ignore
all mutations with relative frequency below a chosen threshold Cmin. Then,
we follow the leaves up to the first junction of the reduced ancestral tree.
The last trait below this junction is defined as a genotypical cluster (if this
trait has not been split up into clusters before).

This procedure has several advantages. We are interested in the more
advanced genotypes. Those are represented, at the cost that some possibly
larger, but less advanced parts of the tumour do not show up (since the
corresponding genotypes lie above a branching that is used for defining a
cluster). This approach allows to ignore all mutations present in only few
cells. Again, those account for a large part of the tumour, but are not inter-
esting in terms of effective clonal structure. Further, this type of clustering
does not dependent on any artificial weighting as we have knowledge of the
complete phylogenetic tree. Increasing Cmin reduces the number of different
clusters. The two extreme cases are: 1) Cmin = 1: in this case, all leaves
of the original ancestral graph are denoted as clusters. 2) Cmin = |V |, the
number of nodes of the tumour network: in this case, the entire tumour is
registered as a single cluster. We choose Cmin = 0.05 · |V |. Thereby we
ignore any mutations with a relative frequency of less than of 5%, this cut-
off is for example also used when evaluating the Gleason Score of a radical
prostatectomy specimen. Here, morphologically more advanced parts of the
tumour that make less than 5% of the tumour volume are ignored in final
classification (tertiary pattern). We further used fishplots [108] to outline
temporal dynamics in selected tumours.

C.7.7 Modes and growth of evolution

In this section we are going to discuss that the concrete choices of the
growth rate and of the fitness landscape do not impact the main result:
only few strong drivers can spread and eventually have an impact on the
overall growth of the tumour.
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C.7.7.1 Possibility of clonal sweeps

In the simulations, an early phase where clonal sweeps are possible is followed
by a phase of a more multiclonal evolution. If the speed of competition for
a new mutation is of order Rc, which is smaller than the current speed of
growth at the tips, so Rg + Rb ≥ Rc, this new mutation has a very small
chance to reach the growing boundary, except when occurring close to or
at the growing tip. The fitness at the tips is thereby a-priori bounded by
Rg + Rb ≤ Compmax, where Compmax is the maximal possible speed of
competition between two neighbouring genotypes. Typically, two neighbours
differ only in at most one strong mutation (and maybe one or two neglectable
smaller ones). Assume now that we have two neighbouring nodes v and w,
where w hosts the stronger genotype with one additional strong mutation
with increment ∆s

f compared to v. The speed of competition between those
two is regulated via the difference in fitness and given by

Rc =
f(w)− f(v)

2
=

∆s
f

2

(
f(v)− f(v)2

fmax

)
. (C.13)

This expression has a maximum at fmax/2, which is given by Compmax =
∆s
f ·fmax

8 . With the chosen parameters ∆s
f = 0.5 and fmax = 10, this gives

an upper bound for the maximal possible growth-speed of Compmax = 5/8.
When this speed is reached, no more clonal sweeps can occur. Given speed of
growth (Cb+Cg) ·f(v, t), this maximum is reached when (Cb+Cg) ·f(v, t) =
Compmax. As we set Cg + Cb = 0.1, the change formally occurs when the
tips reach a fitness f = 6.25. However, a more multiclonal development
took place in almost all simulations in the cohorts X10, X50 and X100, at
most one total clonal sweep occurred, See Fig. C.4, C.5. The presented
upper bound is more of theoretical interest. Most driver hits occur too late
for resulting in total clonal sweeps, these are also prevented from multiple
rivaling fitter clones.

C.7.7.2 Qualitative results and choice of fitness landscape

We present two alternative settings for the overall growth rate and the in-
duced fitness advantages. For the total growth as a sum of branching and
growth rate, we previously chose (Cg+Cb) ·f(v, t) = 0.1 ·f(v, t), call it linear
growth in the following. The alternative would be a more additive growth,
written as a function of the fitness: (Cg+Cb)(f) = f−0.9. For the reference
value f = 1, both approaches lead to an effective initial total growth-speed
of 0.1. In the additive setting, an increased fitness leads to bigger increase
of the total growth speed. Let us call the fitness landscape with saturation-
effect and fmax = 10.0 saturated fitness. Without this saturation-effect, it
holds that fnew = (1 + ∆) · fold, let us denote this as multiplicative fitness.

To understand the different settings, take a look at the table in Fiture
C.26. It displays the scenario that a single genotype with one additional
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strong driver arises within the tumour and spreads along the edges of the
network, with speed of competition roughly given by Rc(v, w, t) = fnew−fold

2 .
The genealogical ancestor (that lacks this mutation) occupies the rest of
the network and dictates the speed of growth. Each table shows the fitness
of a fitter mutant after n consecutive driver hits (from 1-5), the resulting
competition-speed in an environment that has only n− 1 driver-mutations,
and the current growth-speed generated by the less fit type. In both scenarios
with additive growth, only one sweep is possible at all, possibly an argument
against this scenario. In the scenario with saturated fitness and linear growth
(which we chose), competition is theoretically faster than growth given not
more than 5 consecutive driver mutations. However, in the simulations,
time of appearance and additional rivaling clones prevented total sweeps
and instead led to a number of several co-existing fitter clones. At the end of
the simulations in our three settings X10, X50, and X100, the most advanced
clones had a median of 1, 2, and 3 consecutive strong mutations (range 0-3,
1-3, and 1-5), respectively (Fig. C.11, C.12, C.13). In the scenario with
multiplicative fitness advantages and linear growth, the difference between
competition speed and growth speed after the first few mutations is not
much larger than in the scenario with saturated fitness, leading to a similar
behavior in terms of clonal evolution.

Figure C.26: Scenarios with different fitness landscapes and growth terms. A geno-
type with one additional strong driver arises deep within the tumour and spreads.
The genealogical ancestor (that lacks this mutation) occupies the rest of the network
and dictates the current speed of growth. Each table shows the fitness of a fitter
mutant after n consecutive driver hits (from 1-5), the resulting competition-speed
in an environment that has only n-1 driver-mutations, and the growth speed that
stems from the less fit type. When the growth speed exceeds the competition speed,
it has reached its (effective) maximum.
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