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Abstract

Understanding spatially-extended, complex dynamical systems is a vital task in the nat-
ural sciences. From the climate over eco-socio-cultural systems to the human brain,
time-evolving complex systems abound. These systems can exhibit various dynami-
cal phenomena, some of which are only partially understood and can drastically and
disastrously a�ect all areas of life � from climate change over a loss of resilience
of ecosystems to other extreme events like epileptic seizures. Typically exceeding our
ability to comprehend in total due to the their sheer complexity, a powerful tool to
understand these systems is the functional network ansatz. With this ansatz, a system
is reduced to a network of interacting elementary units. Here, network vertices are
associated with sampled units and network edges represent interactions between the
units. In case interactions can not be assessed directly, one resorts to characterizing
properties of interactions from recordings of the units' dynamics employing multivari-
ate time series analysis techniques in a time-resolved manner. Then, the time-evolving
functional networks can be investigated in lieu of the original complex dynamical sys-
tem and assessed with network characteristics from graph theory on di�erent scales
� from the global scale encompassing the whole network to the local scale of single net-
work constituents (vertices and edges). Relationships between the various time-evolving
characteristics and the dynamics of the underlying system � both its emergent global
dynamics as well as the dynamics of its elementary units �, however, are not yet
fully understood. With this thesis, we set out to improve our understanding of such
relationships. We critically assess the functional network ansatz and its assumptions
and identify confounding variables in order to evaluate the approach's suitability for
�eld data analysis. To this end, we investigate paradigmatic model systems with well-
known constraints as well as a complex natural system, the human brain. We provide
novel insights into the rich interplay between structural organization, dynamics and
functional relationships in these systems. Of note, local but not global network charac-
teristics, that describe structural organization, robustly indicated the emergent global
system dynamics, including the generation of extreme events. Regarding the latter,
we developed a non-perturbative, data-driven approach to evaluate a system's stability
against endogenous and exogenous perturbations by aggregating edge characteristics,
thereby providing a proxy for the system's resilience. Notwithstanding these advance-
ments, the problem of bridging various spatial and temporal scales in a time-evolving
functional networks remains. Nevertheless, an improved understanding of complex sys-
tems and their dynamics can be achieved with the functional network approach, whose
full potential is yet to be exhausted.
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I Introduction

�Chaos was the law of nature; order was the dream of man.�
� Henry Adams

A. Motivation

Spatially-extended, complex dynamical
systems account for large parts of nature and
can exhibit various phenomena like synchro-
nization and de-synchronization [PRK01],
chimera states [Sch16], wave propaga-
tion [Mer92], phase transitions [Sch20],
or extreme events [CGUF15]. In current
times of climate change [Wor21], political
turmoil [HT17], a pandemic [SMP+22], and
mass extinction [RRMV22], understanding
such systems is crucially important � espe-
cially when the systems undergo extensive
changes over time. Yet, the sheer complexity
of many systems can make this task highly
di�cult [Pro88, vK99, Wil02, AO04, HSA06,
HDL17, Fie21] and simplifying a system
under investigation becomes necessary.
Assuming that the system under investiga-

tion can be decomposed into delimitable ele-
mentary units, one ansatz is to describe the
system as a network of vertices � represent-
ing the units � and edges � representing cou-
plings and/or interactions between units. The
system's collective dynamics is then thought
to emerge from the interplay as well as the
coupling structure of the units' dynamics, and
analysis of the system's internal structure and
organization can be performed on the network
instead with so-called network characteris-
tics from graph theory [New18]. These char-
acteristics describe various topological and
spectral properties of networks and of their
key constituents (vertices resp. edges). This
ansatz has proven highly successful in provid-
ing deeper insights into structure of and re-
lationships within systems in diverse areas of
science including physics, quantum informa-
tion theory, earth and climate sciences, soci-
ology, quantitative �nance, biology, and the
neurosciences [BLM+06, ADGK+08, BS09,
DZMK09a, AE11, Bar11, BGL11, New12,
BFPS+13, LAB+14, HSP15, GBB16, GV17,
BFDD19]. However, the relationships between

collective and individual dynamics of elemen-
tary units, coupling structure and internal or-
ganization, as well as the system's function
(in the sense of purpose, impact, capability to
act, and operating principles of the system)
are still only partially understood.
If a network is derived from traceable, phys-

ical couplings between units of a system, it
is called a structural network and such net-
works are often interpreted as an accurate
representation of a system's internal struc-
ture. However, access to a system's couplings
is often restricted or impossible without crit-
ically damaging the system through disas-
sembly, (strong) perturbation of a system's
units, or the introduction of a tracer agent.
Examples of structural networks include rep-
resentations of man-made systems such as
road systems [BBG+18] and computer net-
works [KKR+99] or of natural systems sim-
ple and transparent (or dispensable) enough
to allow investigation such as, e.g., a muscle
and nerve cell network of a P. paci�cus nema-
tode [BRRS13].
When deriving a structural network is im-

practical, dangerous, or outright impossible
with current technology and methodology,
functional networks represent an often used
alternative. Instead of the aforementioned
tracing of couplings, functional networks are
based on characterizing interactions between
elementary units derived from (ideally pas-
sive) observations of the units' dynamics in
the form of time series data. Furthermore, and
depending on the actual research question,
functional networks might also present a more
accurate picture of the internal organization
of the systems: e.g., in a tra�c system, even
though two cities are connected by a high-
way (a structural connection), commuter do
not necessarily drive along that road unless
workplace and home align with the two cities
(a functional connection). Deriving a func-
tional network form tra�c (starting and end
points of individual car drives, etc.) might
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provide more accurate information about
congestion and a need for street maintenance
than the corresponding road map (i.e., the
structural network) alone. The ansatz of func-
tional networks has been successfully applied
in the study of diverse systems in nature
such as (functional) brain networks [BS09],
climate networks [DZMK09b, ZGAH15],
protein-protein interactions [UGC+00], gene
interactions [TAWM09], plant-pollinator
interactions [HNL+09, OBD+11], food-
webs [DBB+19], or communication and social
networks [OSH+07, PBV07].
Of special interest, a system might evolve

with time due to, e.g., changing control pa-
rameters or some hidden rule or function.
For example, the use of a transportation net-
work is highly dependent on typical working
hours (including deviations on irregular holi-
days and holiday seasons, etc.), most biologi-
cal systems are dependent on the alternation
of day and night, and stock markets follow
events such as the slow development and con-
solidation of globalization as well as the rapid
onset of global �nancial crises [STZM11]. So
called evolving networks [HS12, BdKP14] ex-
tend the concept of networks to represent such
behavior and allow for the investigation of the
system's time evolution. For this purpose, a
common method is to derive � with a mov-
ing window ansatz � a sequence of functional
snapshot networks as a representation of the
evolving network1. Then, tracking changes be-
tween the snapshot networks along the se-
quence informs on phenomena exhibited by
the system.
Problematic in a technical sense, compar-

ing networks � and, consequently, identifying
signi�cant and meaningful changes between
successive snapshot networks � currently re-
mains an unsolved issue. While tailored met-
rics do exist (see, e.g., [BBK06, AMPL08,
MHVD09, Mém11, DDSA16, MWH20]), they
often place strong constraints on the investi-
gated networks (equal number of vertices or
equal edge density, etc.) or their interpretation

1 Structural networks can and do evolve with time as well � in-
deed, changes in functional networks are thought to represent
changes in structural networks.

is unclear. Alternatively, comparing quanti�-
able network characteristics necessitates ap-
propriate normalization of characteristics for
various circumstances. Furthermore, charac-
teristics can be very speci�c, so that interpre-
tations regarding the networks (and, by ex-
tension, the underlying system) require un-
intuitively summarizing multiple characteris-
tics in unison. Even then, statements often can
only be made relative to compared snapshot
networks (e.g., an evolving network exhibit a
higher clustering coe�cient at one time than
at another time).
In this thesis, we aim to further our un-

derstanding of the interplay between coupling
structure, dynamics, and functional relation-
ships within complex dynamical systems that
undergo changes with time. We trace these
changes by characterizing time-evolving func-
tional networks derived from time series data
of the systems' dynamics. The resulting tem-
poral sequences of characteristics are then
compared to the phenomena encountered in
the collective dynamics of the system � e.g.,
synchronization, extreme events, or changes of
resilience. We address fundamental challenges
of characterizing time-evolving functional net-
works in nature and of their interpretation at
the example of paradigmatic model systems
� oscillator networks with complex coupling
topologies � and one of the most complex sys-
tems in nature � the human brain.

B. Central Concepts

In the following, we present central concepts
essential for the time-evolving functional net-
works approach.

1. Networks

Mathematically, a network is equivalent to
a graph: a set V of discrete objects together
with a set E of relations between the discrete
objects. The objects are typically called ver-
tices (or nodes) and the relations are called
edges (or links). An edge connects two ver-
tices. The terms network and graph are largely
interchangeable and the choice of the term is

5



context driven [BP14] with network being the
term mostly employed for systems in nature
and graph for abstract concepts. For simplic-
ity, in this thesis we typically employ the term
network.
Historically, the negative solution to the

Seven Bridges of Königsberg problem by
Leonard Euler [Eul41] published in 1741 is
considered the �rst use of network theory in
a mathematical proof (see Fig. I.1). Euler
proved the impossibility of crossing each of the
seven bridges exactly once while traversing
Königsberg (now Kaliningrad, Russia) from
an arbitrary starting point. To be more pre-
cise: Euler proved it to be possible to pass each
edge in a network exactly once only for net-
works with exactly zero or two vertices with
an odd number of edges connected to them.
The unfortunate destruction of two of the

seven bridges during World War I modi�ed
the network such that this condition is now
ful�lled and one can now traverse each of the
�ve bridges of Kaliningrad exactly once. This
anecdote also emphasizes an often neglected
aspect of networks: it is possible for a network
to change with time and modify its character-
istics.
Generally, a network can be binary (an edge

either exists between two vertices or not) or
weighted (an edge carries an additional infor-
mation � a weight). A weight can be any prop-
erty relevant to the described network: from
simple (e.g., the physical length of a street be-
tween two places) to abstract (e.g., the prob-
ability of a virus to spread between two popu-
lations of animals or people) to complex (e.g.,
the estimated strength of an interaction be-
tween coupled dynamical elementary units).
Furthermore, we distinguish between directed
networks and undirected networks. In directed
networks, an edge starts at one vertex and
terminates at another � two edges connecting
the same vertices but with opposing direction
are called a bidirectional edge. In undirected
networks, all edges are bidirectional. A net-
work, in which one can reach every vertex via
edges starting at any other vertex is called
connected. We explicitly do not consider un-
connected networks in this thesis � i.e., net-
works that are separated into disconnected

sub-networks. Furthermore, we also exclude
so-called multi-edges � two vertices connected
by more than one edge (cf. the network rep-
resenting Königsberg before World War I in
Fig. I.1).
A binary network of N = |V| vertices can

be represented by an adjacency matrix A ∈
{0, 1}N×N, where Aij = 1 if vertex i and j are
connected by an edge or Ai,j = 0 otherwise2.
A weighted network on the other hand can
be described by a weight matrix W ∈ RN×N

+ ,
where each element Wij equals the weight of
the edge between vertices i and j. In this case,
the absence of an edge is represented byWij =
0. To exclude so-called self-loops, we setAii :=
0 respectivelyWii := 0 ∀ i ∈ V . For undirected
networks, A respectively W are symmetric3.
The topology of a network describes the

manner in which all vertices and edges in the
network are arranged and comprises a num-
ber of properties important for the study of
networks. These topological properties include
the size � number of vertices N as well as
of edges E �, the paths, and the (local) cou-
pling structure among others. Here, paths are
routes through a network described by sets
Pij of edges which have to be traversed while
traveling from one network constituent (ver-
tex or edge) i to another j. The coupling struc-
ture, however, illustrates which vertices are
connected to which other vertices by edges
and what commonalities are shared between
connected vertices4. In weighted networks, the
weights of edges and their distribution can
also be considered part of the topological
properties. For convenience, it is possible to

2 While not a common moniker, it would be more accurate to
call A the vertex adjacency matrix. This indicates the point
of view which is used to describe the network: it is vertices
that are connected by edges. Note, that the inverse point of
view � edges are connected by vertices � is equivalent.

3 Equivalently, a binary network of E = |E| edges can also
be described by an edge adjacency matrix A(e) ∈ {0, 1}E×E

while a weighted network can be represented by a weighted

edge adjacency matrix W(e) ∈ RE×E
+ . The entries A(e)

lm of
the edge adjacency matrix are either 1 if two edges l and m

share a vertex or 0 otherwise, and the entries W(e)
lm of the

weighted edge adjacency matrix are assigned the average of

the weights of edges l and m. Again, A(e)
ll

:= 0 respectively

W(e)
ll

:= 0, ∀ l ∈ E.
4 Or, conversely, what commonalities are shared between edges
connected to the same vertices.
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FIG. I.1. Depiction of the Seven Bridges of Königsberg problem. Left: map of Königsberg in Leonard Euler's time;
adapted from [Mer50]. It is impossible to cross every bridge (marked by green and turquoise lines) exactly once while
traversing Königsberg. Two of the seven bridges were destroyed (turquoise lines) during World War I and it now possible
to cross every existing bridge exactly once. Upper right: representation of Königsberg's bridges and riversides as a
network. Black lines represent the bridges (edges) and black circles represent the land (vertices) divided by the Pregolya
River. Numbers inside the circle represent the number of edges connected to the respective vertices. Lower right: Same
as upper right but without the two edges representing the bridges destroyed during World War I.

complete
network

regular
network

scale-free 
network

small world 
network

random 
network

FIG. I.2. Schematics of �ve archetypal network topologies. Black dots depict vertices and black lines depict edges. The
examples have N = 8 vertices and varying number of edgesa. From left to right: a complete network, a regular network
in the form of a ring with each vertex being connected to its two nearest neighbors, a scale-free network generated by
preferential attachment [AB02], a small world network based on a ring with two rewired edges (equivalent to a rewiring
probability of pr = 0.25) [WS98], and a random network topology where each pair of vertices is connected with a
probability of pe = 0.3 [ER59].

a Arguably, properties of the described archetypal networks typically hold for N → ∞. However, the networks still represent
reasonable approximations for �nite N of the anyhow idealized archetypes.

de�ne distinct types of topologies, and �ve
archetypal types of topologies (see Fig. I.2)
are:

� complete network: every vertex is con-
nected to every other vertex in the net-
work.

� regular network: vertices are con-
nected in some regular pattern includ-
ing rings, grids, and stars. Regular net-

work topologies are common in man-
made systems (e.g., a typical bus in
computer architecture [NL18] or the in-
famous checkerboard pattern of streets
and junctions in the Untied States of
America [Boe21] or of the city center of
Mannheim, Germany).

� scale-free network: for this type of net-
work, the distribution of the number of
edges connected to each vertex follows a
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power law. This scale-free property in-
dicates self-similarity over di�erent spa-
tial scales and often allows for a descrip-
tion of the network by a core (or hub)
of vertices with a large number of con-
nected edges and a periphery of vertices
with lower numbers of connected edges.
Postulated to be the result of a network
generation mechanism based on prefer-
ential attachment [AB02], many systems
in nature are thought to have a scale-free
topology.

� small world network: a regular struc-
ture (e.g., a ring or a lattice) of ver-
tices and edges is disrupted by edges
connecting (seemingly) random vertices.
Small world networks can be easily gen-
erated with, e.g., the Watts�Strogatz
model [WS98]: starting from a regular
network, each edge is rewired with some
small probability pr by exchanging one
of the vertices connected by the edge
with another randomly chosen vertex.
Small world networks are often inter-
preted as the connecting link between an
arbitrary regular network topology and
a random network topology where the
mixing of the two can be controlled by
the rewiring probability. It has been re-
ported (and doubted) that many sys-
tems in nature have small-world network
topology [BS09, BHL10, PZMB16].

� random network: every vertex is con-
nected to any other vertex with some
probability pe [ER59]. Random network
topologies share a connection with ran-
dom matrix theory [Meh04] and are often
employed as a null model when studying
order (or lack thereof) in networks.

These types of topologies, while not neces-
sary exhaustive, are typically used as refer-
ences for networks found in nature. Problem-
atically, comparisons with such references are
sensitive to the methods used to estimate net-
works from data as well as measurement and
statistical errors [BHL10, HHP12, PZMB16].
Furthermore � and important for this the-

sis �, the concept of networks can also be used
for representing a system with high numbers

of degrees of freedom, for which (at least in
some abstract sense) elementary units can be
determined. In this case, an elementary unit is
represented by a vertex and functional connec-
tions resp. interactions are depicted as edges5.

2. Networked dynamical systems

Before we discuss how to derive networks
from time series data, we brie�y consider dy-
namical systems coupled according to network
topologies. Based on the assumption that cou-
plings act additive on the time evolution of an
elementary unit i of a system, the network de-
composition of dynamical systems reads

ẋi = fi(xi) + h (ϵ,M;xi;x1, . . . ,xN) , (I.1)

where xi represent the unit's state variables.
Boldfaced symbols indicate vector-valued dy-
namical variables resp. functions or (in the
case of M) matrices. The function fi repre-
sents the i-th unit's self-dynamics6 including
all of its control parameters.
The function h (ϵ,M;xi;x1, . . . ,xN) repre-

sents the dynamical coupling structure, which
describes the form and e�ect of the cou-
plings between the various units. It includes
a (global) coupling strength ϵ, the system's
coupling topology in the form of entries of
the adjacency matrix (M = A) or weight
matrix7 (M = W), and the coupling func-
tion g(xi;x1, . . . ,xN). The latter is typical
separated into (yet not necessarily restricted
to) di�usive � or alternatively termed at-
tractive � coupling and repulsive coupling,
which either turn the coupled units' dynam-
ical variables closer together or further apart
with time, respectively. Interestingly, both
types can induce various forms of synchroniza-
tion between the dynamics of the elementary

5 For simplicity, we will use the same index i (as well as j) for
vertices and elementary units, since we assume a one-to-one
relationship between vertices and units: each of the system's
units is represented by exactly one vertex. In this context, N
is also the number of elementary units of a system.

6 E.g., the right-hand-side of a �rst order di�erential equation
corresponding to the equation of motion of a physical oscil-
lator.

7 A weight matrix e�ectively individualizes the coupling
strength of couplings between all (or a selected number of)
pairs of interacting elementary units of the system.
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units [PRK01]. Other forms of coupling (e.g.,
multiplicative couplings or couplings in�uenc-
ing control parameters of the self-dynamics)
are intentionally excluded in this decomposi-
tion and from the deliberations in this thesis.

3. Deriving networks from time series data

There are an almost in�nite number of pos-
sible approaches to derive networks from nat-
ural systems � e.g., labeling all junctions of
an arbitrary city map as vertices and then
adding edges for every street between two
junctions [Boe21] or de�ning di�erent species
in a food web as vertices and add predator-
prey relationships as edges [DBB+19]. How-
ever, in this thesis, we concentrate on net-
works derived from time series data. For this
purpose, vertices are associated with parts
of a system that were sampled by sensors
(when investigating natural systems) or by
dynamical variables of elementary units de-
scribed by equations of motion (when simu-
lating model systems). Edges are associated
with properties of interactions between ele-
mentary units that can be estimated from
time series of recordings from sensors or from
time series of dynamical variables. Networks
constructed by this means are functional net-
works and can di�er drastically from the un-
derlying structural network (sometimes also
called coupling topology) of actually exist-
ing connections between elementary units (see
Chapter II). On the most fundamental level,
estimators for properties of interactions as-
sume that an interaction between two elemen-
tary units change the time evolution of the
trajectory of the units' dynamical variables in
state space. Properties of interactions are:

� the strength of interaction: a numer-
ical value that describes the level of in-
terdependence between two elementary
units8. Estimating the strength of inter-
action requires a quanti�cation of the
impact of the dynamics of interacting

8 Strength of interaction can be interpreted as an estimation of
the coupling strength ϵ (cf. Section IB 2) and ideally changes
monotonically with changes in ϵ.

elementary units on each other � typ-
ically by concentrating on di�erent as-
pects of the dynamics (e.g., amplitude
distribution, phase positions, informa-
tion content, etc.). Most estimators for
the strength of interaction are designed
to be limited to the interval [0, 1]. With
respect to the aspect (or aspects) utilized
by the employed estimator, values close
to 0 indicate independence of the elemen-
tary units, and values close to 1 indicate
the strongest discernible coupling9. This
property is often used as a weight of a
bidirectional edge between the two sub-
systems and we predominantly concen-
trate on networks based on the strength
of interactions in this thesis.

� the direction of interaction: a numer-
ical value indicating which of the two
interacting elementary units is driving
the other. Many estimators for the di-
rection of interaction are based on as-
sumptions about cause and e�ect be-
tween elementary units and on (not nec-
essarily universal) models for the tem-
poral evolution of their dynamics. While
the value of an estimator for the direc-
tion of interaction can indicate the con-
�dence of the estimate, in most cases
only the sign of the value indicates the
direction. Small values of the estimator
can indicate both independence of the
two elementary units or a strong bidi-
rectional interaction [LD15]. The direc-
tion of interaction is sometimes used to
derive directed networks, where weights
of directed edges between two vertices
(i, j; edge i → j) indicate to what de-
gree the elementary unit associated with
the vertex i can be assumed to drive the
one associated with the vertex j. Prob-
lematically, this version of networks does
not inform on the strength of interactions
between elementary units without addi-

9 Given that very high coupling strengths ϵ can produce
overshoot-like e�ects which might seemingly decouple ele-
mentary units (cf. Eq. I.1 for h ≫ fi), the "strongest dis-
cernible coupling" might not be associated with ϵ → ∞ but
with some �nite value of ϵ.
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tional strength-of-interaction-based esti-
mates, yet there are currently no com-
monly accepted methods to combine
strength and direction of interactions.

� the functional form of interaction:
a function dependent on dynamical vari-
ables (or derivatives thereof) describing
how two elementary units react to each
other. Estimating the functional form of
an interaction requires a number of (im-
plicit and often restrictive) assumptions
about the elementary units [SDMS12,
TLI19]. To our knowledge, no networks
were derived from estimates of the func-
tional form of interactions so far and do-
ing so would require a highly abstract,
possibly symbolic assignment of edges
(and edge weights).

The di�erent properties of interactions can
be estimated with various analysis tech-
niques derived from statistics, nonlinear dy-
namics, synchronization theory, statistical
physics, and information theory, among oth-
ers. These techniques are based on (sta-
tistical) correlation [RN88], Kramers�Moyal
theory [RGHLT19, ARZL21], predicitabil-
ity [Gra69, Eic05], information �ow [Sch00,
Liu04], phase synchronization [MLDE00,
RP01, SDMS12], or generalized synchroniza-
tion [AGLE99, QQAG00, ACLM11, ASR12],
to name but a few. Since each technique re-
lies on certain characteristic aspects of the
dynamics � capturing di�erent aspects of an
interaction � and exhibit various sensitivi-
ties [KMA+07], the use of the respective tech-
niques for an investigation of interaction prop-
erties depends on the speci�c problem.
In this work, we predominately10 focus on

weighted networks derived with the phase-

10 In Chapter II, we utilize two other estimators for the strength
of interaction: maximum-lag cross correlation [KMA+07] and
mutual information [TRW+98, KSG04, KMA+07]. For a
brief discussion of these two techniques, see the corresponding
Methods Section ??. Note, that for the speci�c investigation
presented in Chapter II (cf. Section IC 1, Rössler oscillators),
results attained for maximum-lag cross correlation are largely
comparable to those for mean phase coherence.
Furthermore, in Chapter III, we utilize two phase-based esti-
mators for the direcetion of interaction � namely the evolu-

tion map approach [RP01] and its partialized extension, the
partialized triplet approach [KPR14].

synchronization-based estimator mean phase
coherence [MLDE00], which assesses the
strength of interaction [KMA+07]. For the
systems investigated in this thesis (weakly
chaotic oscillators and oscillatory brain dy-
namics), phase-based approaches have proven
successful in the past and are robust un-
der a range of in�uencing factors including
noise [MLDE00, PKL14].
For systems with time-evolving coupling

structures and coupling strengths or changing
sensitivity of elementary units to interactions
(possibly due to changing control parameters
or some hidden rule or function), the genera-
tion of a single, all encompassing network is
impractical or even conceptually misleading.
Instead, evolving networks allow for a bet-
ter description of such systems. By using a
moving window approach, one can generate
a sequence (basically a time series) of snap-
shot networks, where in each window the in-
teraction property of interest is calculated for
each pair of elementary units. The length of
non-overlapping windows, then, can be chosen
according to a balance between the number
of data points necessary for good (statistical)
accuracy of the estimator of the interaction
property and approximate stationarity of the
system.

4. Characterizing networks

Networks can be characterized with a large
number of characteristics, that re�ect their
speci�c topological and spectral properties.
These characteristics describe either single
network constituents (vertices and edges) on a
local network scale or the network as a whole
on a global network scale11. The largest class of
local network characteristics are so called cen-
tralities based on concepts that re�ect a mul-
titude of di�erent roles a vertex or an edge can

11 Additionally, on a mesoscopic network scale, characteristics
can describe groups of constituents sorted according to spe-
ci�c rules (often based on local characteristics). Often the
grouping itself is considered the characteristic (e.g., in some
social network, a vertex representing a person belongs to one
or multiple cliques of �friend�-vertices that can be identi�ed
with the correct method).
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occupy in a network. We concentrate on ver-
tex centralities12 and present four widely used
centralities showcasing di�erent approaches to
importance of vertices.
The arguably simplest (and most straight-

forward) local network characteristics is the
degree k of a vertex. Predating �rst de�nitions
of centralities � Leonard Euler already used
this characteristic for his solution to the Seven
Bridges of Königsberg problem in 1736 (cf.
Figure I.1) �, the degree is the number of edges
connected to a vertex i: k(i) :=

∑N
j=1 Aij. The

equivalent of the degree in a weighted network
is the strength centrality [BBPSV04, OAS10]:
CS(i) :=

∑N
j=1Wij. Both characteristics de-

scribe to what extent a given vertex can a�ect
(and is a�ected by) other vertices in the net-
work.
The eigenvector centrality CE of a ver-

tex i [Bon87] is de�ned as the i-th entry of
the eigenvector v⃗ corresponding and normal-
ized to the dominant eigenvalue λmax of a ma-
trix M, where M = A for binary networks
or M = W for weighted networks. A vertex
assessed as central with eigenvector centrality
is connected to other central vertices.
Closeness centrality CC utilizes the average

distance of a vertex to all other vertices in
a network [Fre79]. Here, distance is de�ned
as the length d of the shortest path between
two network constituents. In binary networks
this length is the shortest number of edges
needed to be traversed to travel from ver-
tex i to vertex j. In weighted networks, this
length is de�ned as the minimum sum of the
inverse weights of edges along each possible
path [Fre79]. A vertex with a large closeness
centrality has short shortest paths connecting
the vertex to all other constituents of its type.
Therefore, it is an ideal starting point to reach
other vertices and is considered important for
spreading processes in the network.
Betweenness centrality CB of a speci�c

vertex i assesses the amount of shortest

12 In Chapter II, we also evaluate various edge centralities. How-
ever, we do not utilize the related concepts when interpreting
changes in evolving functional networks related to dynamical
phenomena and treat edge centralities as a sideshow in this
thesis. For more information on edge centralities, we refer to
the corresponding Methods Section ?? and references therein.

paths between all vertices traversing the ver-
tex [New01, BBPSV04, WHV08, OAS10]. The
amount is then normalized to the number of
all possible shortest paths between vertices. A
vertex with a large betweenness centrality acts
as a bottleneck or bridge between the other
vertices.
Strength and eigenvector centrality are of-

ten grouped as degree/weight-based (resp.
strength-of-interaction-based) local network
characteristics, while closeness and between-
ness centrality are grouped as based on
the organization of shortest paths in a net-
work. Additionally, the rank order of the
values of a local network characteristics is
used to de�ne importance of network con-
stituents [LMM+17]: the vertex associated
with the largest value of a local network char-
acteristics is typically deemed the most impor-
tant in the network with respect to the con-
cept behind the characteristics.
Four of the most commonly utilized global

network characteristics are global clustering
coe�cient C [WS98], average shortest path
length L [New01], assortativity A [New02b],
and synchronizability S [BP02b]. The �rst
three characteristics � C, L, and A � can be
grouped as sensitive to topological properties
of networks, while synchronizability evaluates
spectral properties that are linked to stabil-
ity and robustness of dynamics of coupled el-
ementary units arranged on the corresponding
network.
The global clustering coe�cient C assesses

the degree to which vertices in a network tend
to cluster together and characterizes the func-
tional segregation of a network. In a binary
network, C assesses the relative amount of all
vertices adjacent to any speci�c vertex that
are also connected with each other [WS98].
In a weighted network, the geometric aver-
age of weights of edges between such mutu-
ally connected triplets of vertices can be con-
sidered [OSKK05]. A large global clustering
coe�cient indicates a highly interconnected
network (at the extreme, a network with com-
plete network topology), while a small global
clustering coe�cient indicates sparsely con-
nected networks (e.g., a network with random
network topology and only a small number of
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edges).
The average shortest path L assesses a net-

work's functional integration and is the aver-
age of the length of all shortest paths between
any pair of vertices in the network. Typically
associated with information �ow in a network,
a small value of L indicates fast transport of
information and a small degree of separation
between all vertices in the network [New01].
The assortativity A of a network describes

the preference of vertices with similar charac-
teristics to be connected by an edge [New02b,
BL13]. A typical choice of the characteristics
in question is the degree of the vertices. In-
terestingly, the dynamics of coupled elemen-
tary units arranged on an assortative network
are reported to be harder to synchronize than
ones on a less assortative or even disassorta-
tive network [MZK06, dBGS07].
The synchronizability S of a network de-

scribes the stability of (and the possibility to
exhibit) a synchronized state of the networked
dynamics [BP02b, ABJ06, vMSK+11], where
each unit is synchronized with each other
unit. Derived from the ratio of the largest
and smallest non-vanishing eigenvalue of the
Laplacian matrix L of a network, a large value
of S indicates an unstable synchronized state
(elements of the Laplacian matrix are de�ned
as Lij =

∑
i Aijδij − Aij for binary networks

resp. Lij =
∑

i Wijδij −Wij for weighted net-
works). Interestingly, a large synchronizabil-
ity can indicate � depending on the dynamics
of the elementary units � that the system in
question can not exhibit a synchronized state
independent of the coupling strength between
the units.
In evolving networks, the network charac-

teristics can change with time. Network con-
stituents may lose or gain placement in one
centrality ranking and may stay at their place-
ment in another. Networks as a whole can be-
come more or less segregated, while their as-
sortativity monotonically decreases with time.
Interpreting these changes can be di�cult, as
there is no established way for comparing net-
works as a whole [ABC99, vWSD10, TITP19].
Tracking network characteristics over a se-
quence of snapshot networks, network charac-
teristics can be calculated for each snapshot

resulting in time series of characteristics that
then can be analyzed further.

5. Interpreting time-evolving network characteristics

t0

t1

FIG. I.3. Example of a network alteration. Vertices are
depicted as black dots, edges as black lines. Top: network
before at time t0. The magenta-framed vertex is a bottle-
neck in the network and exhibits the highest betweenness
centrality in the network at that point in time. The av-
erage shortest path in the network is short thanks to the
magenta-framed vertex acting as a bridge between di�er-
ent groups of vertices. Bottom: network after at time t1
after an alteration. The magenta-framed vertex looses �ve
edges and is no longer the most central vertex according
to betweenness centrality. Shortest paths are rerouted via
a remote vertex, and the average shortest path length of
the network increased.

To gain a comprehensive picture of possible
modi�cations a network undergoes with time,
it is often necessary to interpret changes in a
combination of di�erent local and global net-
work characteristics. For example, if we only
know, that the average shortest path length of
a network gets longer with time, we can con-
clude, that information �ow in the network de-
creases in e�ciency. If we include knowledge
about a simultaneous change in the rank or-
der of betweenness centrality, where the most
�betweenness-central� vertex becomes signi�-
cantly less central, we can make a more re-
�ned interpretation: a bottleneck-like vertex
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got closed o� and the rerouting of a number
of shortest paths through some other vertex
or vertices produce shortest paths of higher
lengths (see �gure I.3).
An important factor when interpreting the

changes an evolving networks undergoes is
statistical validation of results [N+12]. With-
out appropriate models, the signi�cance of a
change in the various properties of a network
can often only be evaluated with bootstrap-
ping methods and Monte-Carlo simulations
� i.e., with surrogate techniques. Such tech-
niques can be applied on various levels of the
chain of analysis under formulation of appro-
priate null hypotheses [Efr04].
Brie�y, an ensemble of surrogate data is cre-

ated by simulating realizations of an appro-
priate null model with Monte Carlo methods.
In these realizations, all important statistical
and dynamical aspects of the original data
are preserved � but not the property which
is tested for. The null hypothesis can then be
rejected � with reasonable con�dence depend-
ing on the number of statistically independent
constrained realizations � if some discriminat-
ing statistics for the original data is outside
the range of values determined for the surro-
gate ensemble.
On the level of time series analysis, surro-

gates can help a�rm con�dence in the ex-
istence of, e.g., non-linearity or interactions.
Non-linearity � or, more correctly, the absence
of non-linearity, � can be tested with so-called
iterative amplitude adjusted Fourier transform
surrogates [SS96, SS00]. By randomizing as-
pects of the dynamics that include all e�ects
of a possible non-linearity13, we can create sur-
rogates that resemble the original time series
with high precision but without its possible
non-linearity. Then, if the value of an indica-
tor for non-linearity exceeds or falls below the
values for the surrogates, we can reject the
null hypothesis of an absence of non-linearity.

13 By combining Parseval's theorem and the Wiener�Khinchin
theorem, one can conclude that all e�ects which can not be
explained by linear dynamics are expressed in the time series'
Fourier phases. Consequently, randomizing the phase posi-
tion of the Fourier transformation resp. of the inverse Fourier
transformation while �xing the amplitude distribution and
the distribution of Fourier coe�cients destroys non-linearity
in time series.

Partially extending from these monovariate
techniques and by randomizing the aspect of
a recorded dynamics on which the estimator
for the property of interaction is based, we can
generate constrained realizations of the mul-
tivariate time series [Sch98, SS00, AKS+03,
Pal07, LIP+18, RCR+20]. If an estimation for
a property of interaction is then outside the
range of estimations for the surrogates, we
then can reject the null hypothesis that a pos-
sible interaction is not related to the aspect of
the dynamics.
As a special consideration, an aspect of a

time series can be a temporally close, upcom-
ing event (e.g., an extreme event). So-called
seizure time surrogates14 [AMK+03] can be
used to test the null hypothesis of the non-
existence of an event-permissive (or even fa-
cilitating) state. Under the assumption that
such a state exists in some interval prior to
the event and that the state can be discrimi-
nated by some statistics from the time inter-
vals where we assume the system to behave
�normal�, a straightforward way to generate a
suitable surrogate is to randomize the points
in time of the events while keeping the distri-
bution of inter-event intervals. This changes
what time intervals are considered prior to an
event resp. what intervals are during normal
behavior. For the original data, a statistically
signi�cant di�erence between the discrimina-
tory statistics from the two types of intervals
can then be considered a �rst indicator for the
existence of precursors. However, if this dif-
ference is equal or greater for the surrogates
than for the original data, the null hypothesis
� i.e., the non-existence of a event-permissive
state � can not be rejected. In that case, the
event might be an abrupt phenomenon with-
out precursors.
On the level of networks, surrogates can

be based on, e.g., preservation of degree
or strength distributions of networks [AL11,
AL12, KDGBT12, ZGC12, RA13, FLPA15,

14 The name refers to the original purpose of this surrogate
concept: the identi�cation of a seizure-permissive state in
data from epileptic human brains. Revealing such a state
can be considered an important step for seizure predic-
tion [KLR+18].
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SMG15, SL17] while randomizing the exis-
tence resp. the weights of edges. A change
in network characteristics can than be consid-
ered signi�cant, if the change puts the charac-
teristic outside the range derived for the sur-
rogate networks, which were generated from
the network before the change.

C. Overview of this thesis

Having addressed central concepts, we con-
tinue with outlining the di�erent systems and
phenomena investigated in this thesis with
the approach of time-evolving functional net-
works. We also introduce new methods impor-
tant to our investigation.

1. Investigated systems and phenomena

In this work, investigated systems can be
largely separated in two groups: simulated sys-
tems for evaluation and testing of methods
and a natural system that we aim to gain a
better understanding of.

a Simulated systems

We employ networks of coupled Rössler oscil-
lators and of coupled FitzHugh-Nagumo os-
cillators to simulate complex dynamics for
preliminary studies regarding the derivation
of networks from time series data and re-
garding the relationship of (local or global)
network properties with di�erent dynamical
phenomena such as synchronization and ex-
treme events. The two types of oscillators sup-
port rich dynamics and act as excitable media
when di�usively coupled while still being com-
parably simple.

Rössler oscillators

The Rössler oscillator was initially designed
to exhibit similar dynamics to the Lorentz
oscillator [Lor63], while being easier to ana-
lyze [R�76]. Anecdotally, the oscillator was in-
spired by the movement of a ta�y puller and
was not explicitly designed to represent phys-
ical systems. Instead, the Rössler oscillator

is often used to illustrate chaotic dynamics
which here arises from a weak non-linearity.
The i-th Rössler oscillator in some set of N

uncoupled oscillators is described by the fol-
lowing 3-dimensional di�erential equation:

ẋi = −ωiyi − zi

ẏi = ωixi − ayi

żi = b+ zi(xi − c).

(I.2)

The parameters a, b, and c control the dy-
namics of the system. Depending on their set-
ting, the system can exhibit convergence to
a �xed point or to a limit circle as well as
chaotic dynamics. Furthermore, we introduce
an eigenfrequency ωi

15 to the original equa-
tion [R�76], which we use to diversify oscil-
lators � a common method to hamper syn-
chronization in networks of coupled oscilla-
tors [BLM+06]. Fig. I.4 shows exemplary time
series of the dynamical variables of a single
Rössler oscillator as well as a portrait of its
state space.
Coupled Rössler oscillators can exhibit

various phenomena like complete (phase
or otherwise) synchronization, chimera
states [DSBI+20, KJ21] or oscillator resp.
amplitude death [KVK13]. For networks of
coupled Rössler oscillators, Eq. I.2 can be
extended to

ẋi = −ωiyi − zi + h̃(xi;x1, . . . , xN)

ẏi = ωixi − ayi

żi = b+ zi(xi − c).

(I.3)

where h̃(xi;x1, . . . , xN) is the coupling term.
For di�usive coupling as used in this thesis,

h̃(xi;x1, . . . , xN) =
ϵ

k

N∑
j=1

Aij(xj − xi) (I.4)

with coupling strength ϵ and degree k. All in-
formation about the network's topology is en-
coded in the entries Aij of the adjacency ma-
trix. Time series of the dynamical variables
of a network of coupled Rössler oscillators are

15 The eigenfrequency is not the actual frequency of the weakly
non-linear oscillator, but nonetheless directly in�uences the
oscillator's speed of revolution around its center.

14



FIG. I.4. Exemplary time series of dynamical variables x (top), y (middle), and z (bottom) of a Rössler oscillator (left;
cf. Eq. I.2) and a 3-dimensional depiction of its corresponding state space (right). Parameter were set to a = 0.1, b = 0.1,
c = 18, ω = 1, and initial conditions for x, y, and z were randomly chosen from the interval [0, 1] resulting in chaotic
dynamics of the oscillator. We here dropped indices i for readability. To generate the time series, Eq. I.2 was integrated
with the Dormand�Prince method [DP80] and with a step size of 0.01 for 200 time units after initial transients of 200
time units were discarded.

depicted in Fig. I.5.
Analogously to Arnold tongues [PRK01] in

the case of two coupled oscillators, synchro-
nization in networks of coupled Rössler oscil-
lators is a�ected by the diversity of the oscilla-
tors � the variety in eigenfrequencies ωi � and
by the coupling strength ϵ. However the rela-
tionship between the set of {ωi, ϵ} and the sys-
tem's global dynamics is typically less straight
forward compared to Arnold tongues in the
two-oscillator case. While phase synchroniza-
tion16 usually increases with an increase of
coupling strength and a decrease of inhomo-
geneity of the eigefrequencies (e.g., a decrease
of the range or variance of the distribution
of eigenfrequencies), this behavior is not nec-
essarily monotonic (see Chapter II). Interest-
ingly, changes in the coupling topology can
a�ect the global dynamics of the networked
dynamical system akin to changes in coupling
strength [ALF16]. An increase in the rewiring
probability of a small-world coupling topology
(increasing the randomness of which vertices

16 The global phase synchronization of a network of oscilla-
tors is quanti�able with, e.g., the Kuramoto order param-
eter [Kur84] or as an average over phase-based strength of
interaction estimates of time series from pairs of oscillators.

and associated oscillators are coupled), e.g.,
can a�ect the dynamics similar to an increase
in coupling strength.
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FIG. I.5. Exemplary dynamics of a network of 100 coupled Rössler oscillators. (a) 10 randomly selected time series of
dynamical variables xi (top), yi (middle), and zi (bottom) of the oscillators. For visibility, time series are plotted with an
o�set. (b) Symmetric adjacency matrix representing the bidirectional couplings between the Rössler oscillators. White
(black) colored pixel indicate an existing (an absent) coupling between two oscillators. The network has with random
coupling topology and two oscillators are coupled with a probability of p = 0.1. (c) Time series of the averaged dynamical
variables ⟨x⟩ (top), ⟨y⟩ (middle), and ⟨z⟩ (bottom). (d) 3-dimensional projection of ⟨x⟩, ⟨y⟩, and ⟨y⟩. While ⟨x⟩ and ⟨y⟩
evolve in an oscillatory pattern, ⟨z⟩ evolves seemingly erratically. Control parameters of the Rössler oscillators were set to
a = 0.1, b = 0.1, and c = 18. Eigenfrequencies ωi were drawn from a normal distribution N (1, 0.05) and initial conditions
for all xi, yi, and zi were randomly chosen from the interval [0, 1]. To generate the time series, Eq. I.2 was integrated
with the Dormand�Prince method [DP80] and with a step size of 0.01 for 200 time units after initial transients of 200
time units were discarded.

FitzHugh-Nagumo oscillators

The FitzHugh-Nagumo oscillators was ini-
tially designed as a simpli�cation of the
Hodgkin-Huxley model for the initiation and
propagation of action potentials in squid giant
axons [Fit61] but variations of this oscillator
found diverse use in model studies in a large
number of �elds like cardiology [Rap22], so-

cial sciences [PV22], or material sciences resp.
simulated electronics [BG22] to name but a
few. We use a modi�ed version of this weakly
non-linear oscillator:

ẋi = xi(ι− xi)(xi − 1)− yi

ẏi = νixi + γyi.
(I.5)

xi is known as the excitatory variable of the i-
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th oscillator, while yi is the inhibitory variable
and ι, νi, and γ are control parameters. In lieu
of an eigenfrequency, we diversify FitzHugh�
Nagaumo oscillators via the control parameter
νi that regulates how strongly the inhibitory
variable reacts to the excitatory one. Lower
values of νi facilitate excitation and short re-
fractory periods. Figure I.6 shows exemplary
time series of the dynamical variables of a
FitzHugh�Nagumo oscillaor and a state space
representation of the system.
When coupled, FitzHugh�Nagumo oscilla-

tors can be considered an excitable medium
and, as such, are sometimes used to sim-
ulate phenomena like wave propagation
and excitation on complex coupling topolo-
gies [AKLF13, ALF16, Ans16]. For net-
works of coupled FitzHugh�Nagumo oscilla-
tors, Eq. I.5 can be extended to

ẋi = xi(ι− xi)(xi − 1)− yi + h̃(xi;x1, . . . , xN)

ẏi = νixi + γyi.
(I.6)

Here, h̃ again represents di�usive coupling (cf.
equation I.4).
In such systems, excitation is marked by

a high-amplitude oscillation17 of an oscillator
induced by a weak input via a coupling. Fig-
ure I.7 shows exemplary time series of the dy-
namical variables of 100 FitzHugh�Nagumo
oscillators coupled onto a random coupling
topology. Interestingly � and for the correct
range of control parameter settings � the di�u-
sive couplings between the oscillators dampen
the amplitude most of the time (cf. Figs. I.6
and I.7) with oscillations whose amplitudes
compare to the case of an uncoupled oscilla-
tor at seemingly random times. These rare, re-
curring high-amplitude oscillations coinciden-
tally executed by all (or almost all) oscillators
can be considered extreme events [AKLF13].
While individual oscillators frequently exhibit
such high-amplitude oscillations in a form of
proto-events, the dynamics only evolve into a
full extreme event if a su�cient number of

17 A high-amplitude oscillation is distinguished from other (low-
amplitude) oscillation by a maximum value of the dynamical
variable xi during an oscillation that exceeds the maximum
values during other oscillations many times over.

oscillator are excited during a proto-event at
the same time. In this case, the rest of the
oscillators are recruited to join in generating
the extreme event. In Chapter IV, we discuss
which and why oscillators are prone proto-
events with respect to control parameter set-
tings and local aspects of coupling topologies.

b Natural system

Next, we introduce the natural system, we aim
to gain a better understanding of.
Perhaps the most complex system in nature

known to men, the human brain is a conglom-
erate of about 86.1× 1010 neurons and about
as many other cells (glia, epithelial and en-
dothelial cells as well as pericytes) [ACG+09].
Depending on type and anatomical location,
each neuron is connected to other neurons by
between 1 and approximately 200000 synapses
(e�ectively, receivers for incoming electrical
activity). Axons (parts of neurons that act as
organic cabling between cells) vary in length
between approximately 10−6m and 1m and
their total length is estimated to exceed the
average distance between Earth and Moon.
From the point of view of spatial orga-

nization, networks in the brain are highly
interconnected and neither random nor en-
tirely regular, span multiple spatial scales,
from individual cells and synapses via cor-
tical columns to (sub)cortical areas. Besides
this structural complexity, the brain also sup-
ports a enormous number of cognitive and
behavioral functions [HY00, EFS01, SS01,
VLRM01, MDOD04, BM10, FA11, BAK12,
Fre12, RFV12, SDE12]. Typically, these func-
tions are shared among all humans even
though di�erences in morphology and in con-
nection structure are prevalent. Additionally,
in the case of brain pathologies, normal and
abnormal functions and structures can coex-
ist [SG05, US06, SNV14].
Historically, our knowledge of brain func-

tions originates from observations of subjects
with disrupted functions like, e.g., loss of mo-
tor control after an injury of the motor cor-
tex or loss of sight due to a damaged visual
cortex [Lur62]. A treatise on trauma dated
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FIG. I.6. Exemplary time series of dynamical variables x (top) and y (bottom) of a FitzHugh�Nagumo oscillator (left)
and a 2-dimensional depiction of its corresponding state space (right). Parameter were exemplarily set to ι = −0.027,
ν = 0.006, and γ = 0.02, and initial conditions for x and y were randomly chosen from the interval [0, 1]. We dropped
indices i for readability. To generate the time series, Eq. I.5 was integrated with the Dormand�Prince method [DP80]
and with a step size of 0.1 for 2000 time units after initial transients of 2000 time units were discarded.

to circa 1600BCE18 [All05], the so-called Ed-
win Smith Papyrus, already describes paraly-
sis due to brain injury as well as a connection
between the position of a cranial injury and
the a�ected side of the body [ZV61, SB07]. In
more recent history, head injuries during the
Russo-Japanese War, World War I, and World
War II expanded our understanding of brain
(dis-)function drastically (e.g., the functional
partitioning of visual processes in the occip-
ital cortex [Lan09]) at the cost of a colossal
loss of lives.
Fortunately, nowadays, the development

of non-invasive (or, at least, weakly in-
vasive) techniques to assess brain dynam-
ics allows for the study of brain function
and dynamics in healthy subjects19. While
there is a small number of theses tech-
niques (e.g., functional magnetic resonance
tomography [HSM04], magnetoencephalogra-
phy [HHI+93], or positron emission tomog-
raphy [BMTV05]), we concentrate on elec-
troencephalography (EEG) in this work as it
is the only techniques capable of long term
(days to weeks) continuous recordings [Lop93,
WDHK+19, VDHG+21].

18 Terminology and grammar indicate this papyrus to be a copy
of an even older text, possibly from the Old Kingdom (circa
3000�2500 BCE) [Bre30].

19 Research into the human brain falls under human experi-
mentation and is as such subject to supervision by research
ethics committees and to accordance to the declaration of
Helsinki [Wor13]. Use of data from research subjects requires
informed consent.

Electroencephalography measures the ag-
gregated electrical activity20 of the surfaces
layer of the brain as electrical potential dif-
ferences between sensors placed along the
scalp of a subject [TT09, FQ12, SC13]. The
placement of sensors is internationally stan-
dardized in the so-called 10�20 system (see
Fig. I.8). Problematically, EEG is a mea-
surement of electrical potentials without a
well de�ned ground due to safety concerns.
While the choice of reference is matter of
ongoing debate with various schemes pro-
viding di�erent advantages and disadvan-
tages [FRBM88, NSW+97, HNT01, GVN+05,
Sch05, YWO+05, ZDS06, GL17b], an EEG
sensor can be chosen as reference (unless oth-
erwise noted, the interhemispheric sensor Cz
was chosen in this work as to not amplify
signals from one hemisphere). Furthermore,
movement of facial muscles can signi�cantly
interfere with EEG recordings and can pro-
duce severe artifacts especially in recordings
from pre-frontal brain regions21.
The �rst human EEG was recorded by Hans

Berger in 1924 [Haa03]. The German psychi-

20 Notably, it is unclear how exactly an EEG signal arises from
the electrophysiologic activity of brain tissue [NL05], as it
is an inverse problem. Furthermore, important electromag-
netic characteristics (e.g., permittivity and permeability) of
biological matter are currently impossible to measure, sub-
ject speci�c, and/or generally unknown in vivo [GGC96,
FVDMDMH99, AMB+10, LE19].

21 Sensors sampling these regions are placed atop the forehead
and voltage di�erences are consequentially strongly a�ected
by the electrical activity of the occipitofrontalis muscle.
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FIG. I.7. Exemplary dynamics of a network of 100 coupled FitzHugh�Nagumo oscillators. (a) Cutouts of time series
of dynamical variables xi (top) and yi (bottom) of FitzHugh�Nagumo oscillators. For visibility, time series are plotted
with an o�set and each consecutive pair of ticks along the y-axis frames 20 time series. (b) Symmetric adjacency matrix
representing the bidirectional couplings between the FitzHugh�Nagumo oscillators. White (black) colored pixel indicate
an existing (an absent) coupling between two oscillators. The network has random coupling topology and two oscillators
are coupled with a probability of p = 0.1. (c) Cutouts of time series of the averaged dynamical variables ⟨x⟩ (top)
and ⟨y⟩ (bottom). (d) 2-dimensional projection of ⟨x⟩ and ⟨y⟩ as an approximation of the system's state space derived
from the whole length of the time series. Parameter were set to ι = −0.027, νi = 0.006 + i · 0.00008, and γ = 0.02,
and initial conditions for xi and yi were randomly chosen from the interval [0, 1]. To generate the time series, Eq. I.5
was integrated with the Dormand�Prince method [DP80] and with a step size of 0.1 for 20000 time units after initial
transients of 2000 time units were discarded. The cutouts of length of 2000 time units are selected to show a rare and
recurring high-amplitude event at t ≈ 800, that is interpreted as an extreme event and of which 17 occurred over the
whole observation period.

atrist was also the �rst to describe the al-
pha rhythm22 and thereby had a formative
in�uence on the popular (and sometimes con-
tested) interpretation of EEG signals as signs
of brain waves.

22 Oscillatory EEG signals in the range of 8�12Hz, that can pre-
dominantly be recorded from the occipital lobe during wake-
ful relaxation with closed eyes. Amplitudes of alpha waves
are reduced when eyes are open or during sleep [MP20].

Besides basic research, EEG is used for med-
ical diagnosis of neurological diseases such
as stroke, epilepsy, dementia or brain tu-
mors [LFB+16]. EEG is also auxiliary used
to assess the depth of anesthesia during
surgery [Pic12, AKRA13].

Intracranial EEG (iEEG) is a decidedly in-
vasive technique to more directly measure
electrophysiological brain activity. By im-
planting sensors within the skull, iEEG cir-
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FIG. I.8. Exemplary time series of EEG recordings (left) of a subject su�ering from epilepsy and schematic of the
location of sensors of the international 10�20 system (right). Time series from di�erent sensors were plotted with an
o�set for visibility and are 15 sec cutouts from longer recordings acquired during the medical evaluation of the subject's
epilepsy. An epileptic seizure begins approximately at the 10 sec mark and continues beyond the length of the cutout.

cumvents some of the problems encountered
with scalp sensors (muscle artifacts, skin ef-
fect, etc.) increasing signal-to-noise ratios by a
factor of ≈ 100 [BKM+09] at the cost of intro-
ducing foreign matter to a system as sensitive
and essential as the human brain. Typically,
the iEEG sensors are either placed directly
on top of the cerebral cortex with so-called
strip and grid electrodes23 or within subjacent
brain regions with depth electrodes24. Due to
the inherent risks of intracranially implanting
sensors, iEEG is typically only used as a diag-
nostic tool for, e.g., pre-surgical evaluation for
epilepsy surgery [RL01]. Accordingly, number
and anatomical location of intracranial sen-
sors are solely adapted to the individual sub-
ject's needs and are highly non-uniform.

2. New methods

Next, we brie�y introduce new and uncon-
ventional methods for investigating aspects of
time-evolving functional networks.

23 Frames with 4, 8, 8× 4, or 8× 8 sensors with an inter-sensor
distance of 10mm.

24 Typically, poles with 8 or 10 cylindrical sensors with an inter-
sensor distance of 4mm.

a Identifying dynamical regimes

To classify the dynamics of spatially-
extended, complex systems, we do not
identify dynamics via measuring informa-
tion content [Sha48], spectral energy densi-
ties [Boa92], attractor geometry [KS03], or
other commonly employed pattern identify-
ing schemes. Instead, we utilize the dynami-
cal coupling structure (cf. Sec. I B 2 and func-
tion h (ϵ,M;xi;x1, . . . ,xN) in Eq. I.1), which
we probe in a time-resolved manner with an
estimator for the strength of interactions be-
tween each pair of time series data. Following
Münnix et al. [MSS+12], we then check for re-
currences of this structure in time. We identify
recurring patterns of the dynamical coupling
structure as dynamical regimes of the system.
Contrariwise, we consider the self-dynamics
of the elementary units themselves to be sta-
tionary and interactions (and their underlying
couplings) to change with time.
Technically, this can be achieved by iden-

tifying recurrences of snapshot networks in a
sequence of functional networks either with a
recurrence plot and an appropriate recurrence
threshold [EOR87] or by clustering the weight
matrices representing the snapshot networks
with a cluster algorithm (e.g., k-means algo-
rithm [Mac67]). Problematically, the number
of recurrent patterns � i.e., the number of dy-
namical regimes in the system � is typically
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a priori unknown and might not be uncov-
ered even by a thorough preliminary investi-
gation. In such cases, a hierarchical clustering
algorithm might at least provide a range of
numbers of dynamical regimes, for which the
classi�cation method procures comparable re-
sults. Finally, each dynamical regime can be
described by an average weight matrix (i.e.,
the centroid of its cluster representation).
Dynamical regimes derived from time series

of stock returns have been shown to relate to
emerging �nancial crises [MSS+12] and those
derived from iEEG time series to emerging
epileptic seizures and to other brain activities
like sleep (Chapter VI). Generally, the exis-
tence of identi�able dynamical regimes in the
dynamics of a system indicates a recurrence of
the dynamical coupling structures and inter-
nal strengths of interaction � i.e., elementary
units of the system react to each other in var-
ious but recurring ways.

b Estimating dynamical resistance as a proxy for re-

silience

Resilience is a notoriously ill-de�ned catch-all
term for all properties of a system that al-
lows the system to maintain its current func-
tions and operations under any endogenous
or exogenous stress. Probably most broadly
de�ned as �the capacity of a system to ab-
sorb disturbance and reorganize while un-
dergoing change so as to still retain essen-
tially the same function, structure, identity,
and feedbacks� [WHCK04] (see also [Hol73]),
methods to characterize resilience of a sys-
tem utilize various approaches from bifur-
cation theory [Sey09], stability and per-
turbation theory [Lya92, Nay11], statistical
physics [Tab19], non-linear time series analy-
sis [KS03, LLM15], ecology [Wis84, SF21], or
economics [QR65, Tay15] among others. How-
ever, methods are usually dependent on inti-
mate knowledge of the system's equations of
motion or of its responses to perturbation.
If the system's equations of motion are un-

known and perturbation experiments are ei-
ther impractical, dangerous, or unethical (e.g.,
a power network at risk of a blackout or a hu-
man brain at risk of death), the number of
available methods drastically declines.

To the best of the author's knowledge, there
are currently two methods available to eval-
uate resilience of a system from time series
data that are either based on changes in the
variance of time series due to critical slowing
down [DSvN+08, SBB+09] or on changes in
the dynamical coupling structure as exploited
by dynamical resistance (Chapter VI).
Conceptionally, critical slowing down is a

property of a saddle-node bifurcation (see,
e.g. [Cra91, Wis84, SBB+09, BH13, DCvS15,
MS16, DJ10, HWS+21]). Brie�y, in the case
of such a bifurcation, a potential wall separat-
ing two equilibrium states (one preferred, one
adverse) decreases with the change of some
control parameter, which in turn weakens the
restoring force a�ecting a system in the pre-
ferred state under some weak perturbation. As
a consequence, the rate of recovery of the pre-
ferred state decreases. Before the critical tran-
sition between the preferred and the adverse
state, then, the variance of the related state
variable increases, which is interpreted as a
loss of resilience25 [Kub66]. However, for many
real world systems, this ansatz has proven to
be too simplistic. Careful analyses of some
real world systems for which loss of resilience
is postulated has indicated no or even oppo-
site phenomena to critical slowing down (i.e.,
critical speeding up) [WRL19, RCR17]. Espe-
cially, resilience in multi-stable systems with
various states representing normal function-
ing with innocuous transitions can not be de-
scribed by critical slowing down alone.
For dynamical resistance, we return to

Eq. I.1 and reinterpret the equation from a
di�erent point of view:

ẋi = fi(xi) + h (ϵ,M;xi;x1, . . . ,xN) .

Instead of reading the dynamical coupling
structure h (ϵ,M;xi;x1, . . . ,xN) as the inter-

25 Other markers for a loss of resilience concomitant with crit-
ical slowing down are an increase in the integrated power
spectrum of the state variable resp. a larger zero-crossing
time of the state variable's autocorrelation function. However,
changes in the variance of a variable are related to changes
in the variable's Fourier spectrum by Parseval's theorem and
the spectrum, then, are related to the variable's autocorrela-
tion function by the Wiener-Khinchin theorem. Accordingly,
the three typically proposed markers of critical slowing down
are highly correlated.
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action between the system's elementary units,
we now interpret h as a perturbation act-
ing upon the self-dynamics fi(xi) of the units.
However, at the same time, we neglect the
self-dynamics and concentrated on di�erences
in the relative strength of perturbation over
time as a proxy for the system's resilience.
In practice, we sort the dynamics from some
time span of intermediate length to di�erent
dynamical regimes as described above. The
Euclidean distances between regimes' aver-
age weight matrices, then, is proportional to
the strength of perturbation, which the sys-
tem can absorb by switching between regimes
representing the system's normal (preferred)
states. A large distance indicates a high capa-
bility of the system to absorb disturbance and
reorganize, i.e., a large resilience.

D. Structure of this thesis

In Chapter II, we investigate if and to what
extend the structural organization of a cou-
pling topology � here connecting Rössler os-
cillators � can be revealed from strength-of-
interaction estimates from time series of the
system's dynamics.
Subsequently, in Chapter III, we explore the

relative merit of partialization techniques to
weaken the e�ect of indirect couplings resp.
transitivity. We do this at the example of a
pairwise and a partialized phase-based estima-
tor for the direction of interaction in systems
of directionally coupled Rössler oscillators and
in the human brain.
Chapter IV, then, illustrates how topologi-

cal properties of vertices can a�ect the dynam-
ics of the corresponding elementary units and
of the system as a whole. Speci�cally, we show
the in�uence of the degrees of vertices on the
generation and spreading of extreme events in
a system of coupled FitzHugh�Nagumo oscil-
lators.
In following Chapter V, we provide evi-

dence that changes in local network charac-
teristics of evolving networks are entwined
with changes in the collective dynamics of the
underlying system � in this case the human
brain. We identify precursor states of epilep-
tic seizures as an elementary step to under-

stand and eventually predict the genesis of
these harmful events.
Finally, in Chapter VI, we introduce a novel

measure for the evaluation of resilience of
complex extended dynamical systems � dy-
namical resistance � and provide evidence for
the utility of the measures again at the exam-
ple of the human brain.
This thesis is closed with a short summery of

the conducted research, an outlook, and con-
cluding remarks.
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characterization of interactions in complex

systems: possibilities and limitations"

Thorsten Rings, Timo Bröhl, and Klaus Lehnertz

Scienti�c Reports 12, 11742 (2022).
DOI: https://doi.org/10.1038/s41598-022-14397-2

The functional network approach � reduc-
ing a spatially-extended, complex system
to vertices (representing the system's el-
ementary units) and edges (interactions
between units) via the data-driven estima-
tion of properties of interactions � has been
recognized as a useful tool in the investi-
gation of various systems in nature. This
approach has been successfully employed in,
e.g., the study of the human brain [BS09],
climate systems [DZMK09a, ZGAH15],
protein-protein interactions [UGC+00], gene
interactions [TAWM09], plant-pollinator
interactions [HNL+09, OBD+11], food-
webs [DBB+19], or communication and social
networks [OSH+07, PBV07].

Often, a functional network is assumed to be
a proxy of the underlying coupling structure
of a system when this coupling structure (or
structural network) can not be su�ciently ac-
cessed, e.g., without damaging the system or
due the system's scale. Then, the functional
network � instead of the structural one � is
investigated with methods from graph the-
ory designed to reveal information about as-
pects of the system's internal organization by
means of characterizing the network's topo-
logical and spectral properties or key con-
stituents. However, revealing the structural
network � the system's coupling topology �
from a functional network is an inverse prob-
lem and might not have a unique solution.
A large number of previous studies investi-
gated the limits of identifying a structural
network's edges from a corresponding func-
tional network [MZL17, Tim07, LP11, ST11,
WLGY11, PDG12, CLL13, LP14, TC14,
CLL15, Pik16, WLG16, CNHT17a, Lai17,
NCT17, Pei18, Pik18, ST�+18, LLT�19,

PCL+19, Pei19, AdCEG20, FRCM20, CP+21,
RMBM+14, TSEBM15, BMRAB16, LMK16,
LKT17, MHM+17, CMT18, HD19, LMM+19,
GMCR20, FOTMP21] and reported a good �
but not perfect � performance. However, since
failure to correctly identify even a single edge
can drastically alter the appearance of a struc-
tural network (topologically, the di�erence be-
tween, e.g., a line and a ring of coupled units
is just one edge), it is still an unsolved issue if
and to what extend properties of functional
networks match those of the corresponding
structural networks.

In the present article, consequently, the au-
thors investigate the extend of this match
of properties � an unusual approach to the
intricate task of comparing networks (for
other methods see, e.g., [BBK06, AMPL08,
MHVD09, Mém11, DDSA16, MWH20]) � on
two di�erent scales: the global scale encom-
passing the whole network and the local scale
of single network constituents (vertices as well
as edges). For this purpose, Thorsten Rings
simulated � as ground truth �the dynamics
of complex networks of bidirectionally cou-
pled Rössler oscillators [R�76, RL12]. These
oscillators are a weakly nonlinear and, as a
simpli�ed model of the Lorenz attractor, are
used to model a large variety of systems in-
cluding lasers and electrical circuits, to name
just a few. In addition, Thorsten Rings cou-
pled the aforementioned oscillators onto an
empirical network, namely the fully identi-
�ed neuron network of the nematode P. paci-
�cus [BRRS13]. For these networks, he gener-
ated time series of the dynamics of the oscilla-
tors and derived functional networks employ-
ing di�erent time series analysis techniques
(an amplitude-based one and a more general
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one based on entropy). For a number of factors
that modify the oscillators' dynamics, he in-
vestigated the degree of concurrence between
global properties as well as local vertex prop-
erties of structural and functional networks.
Timo Broehl did the same for local edge prop-
erties [BL19].
Surprisingly, the authors of the present ar-

ticle observe that especially key constituents
of functional networks coincide with ground
truth. Both, concurrence between the rank or-
der of constituents from structural and func-
tional networks as well as the concurrence be-
tween their most central constituents (largest
centrality values) clearly exceed chance levels
� at least for weak to intermediate coupling
strengths; too weak or too strong coupling
strengths lead to either independently oscil-
lating or indistinguishable dynamics, which do
not allow for conclusions to be drawn about
the structural makeup of the system. Global
network characteristics of functional networks
on the other hand clearly deviate from ground
truth independent of factors impacting the dy-
namics.
The authors conjecture that an exten-

sion of the employed pairwise ansatz to
characterize properties of interactions (e.g.,
based on partialization methods [Dah00,
BS01, EDS03, CRFD04, SWE+06, PKKD13,
KPR14, PKL14, MHD16]; see next chapter)
together with Monte-Carlo-based techniques
to minimize faulty concurrences [AL11, AL12,
KDGBT12, ZGC12, RA13, FLPA15, SMG15,
SL17] could help to enhance the detection of
correspondences between structural and func-
tional networks. Finally, the authors imagine
that characterizing properties of networks on
a mesoscopic scale [Alo07, KGH+10, GSH12,
FZB15, EA16, FH16, BL19] and the tracing
of time-dependent changes of networks [HS12,
DDSRC+13, BBC+14] will add to understand-
ing the relationship between structure, func-
tion, and dynamics of complex systems.
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Transitivity is a problematic e�ect often en-
countered in the study of spatially-extended,
complex dynamical systems [AHD18]. It de-
scribes the indirect in�uence an elementary
unit of a system can have on another unit,
which is not coupled to it. This in�uence is
thought to be mediated by another, unob-
served unit assumed to be coupled to both
the �rst and the second one. When utilizing
time series analysis techniques� e.g., to derive
functional networks from recordings of system
dynamics �, such indirect in�uences can lead
to an overestimation of various properties of
interaction, which in turn can lead to misinter-
pretations regarding the internal organization
of the investigated system. Especially sensi-
tive to this e�ect is the notoriously intricate
estimation of the direction of an interaction.

Various methods to handle transitiv-
ity based on partialization analysis have
been proposed in the past [Dah00, BS01,
EDS03, CRFD04, SWD+06, SWE+06, FP07,
SB09, VKM09, NRT+10, ZRT+11, RHPK12,
SWPM12, BDBTS13, Kug13a, Kug13b,
LPD+13, PKKD13, REI+13, ESTS15,
FKN+15, MMT+15, Run15] with the central
idea of conditioning the estimators for prop-
erties of interactions between two units on
a third, possibly interaction-mediating unit.
More recent to the publication of the present
article, Kralemann et al. [KPR14] proposed
a novel phase-based time series analysis
technique to estimate direction of interaction
� called partial triplet approach (PTA) �
as an extension to a previously introduced
estimator [RP01] � called evolution map

approach (EMA) � by incorporating the par-
tializaiton method. While the PTA already
showed promising results [KPR14, STMS15]
in small networks of phase oscillators, it
remains unclear to what degree this approach
also quali�es for a data-driven analysis of
larger networks with hundreds of vertices or
more.

To investigate suitability of the partialized
approach in large networks, Thorsten Rings
simulated � as ground truth � the dynam-
ics of complex networks of bidirectionally cou-
pled Rössler oscillators [R�76, RL12]. For these
networks, he generated time series of the
dynamics of the oscillators, and from these
time series, he derived weighted, directed net-
works with both the EMA and the PTA. He,
then, investigated the relative merit of the
PTA over the EMA for several factors that
modify the oscillators' dynamics � especially,
network size as well as additive and mul-
tiplicative noise contaminations. To also as-
sess the two approaches' suitability in an em-
pirical example, he furthermore derived di-
rected, weighted functional network from a
multichannel, multiday intracranial electroen-
cephalographic recording of human electrical
brain activity,

For the simulated systems, Thorsten Rings
compared the derived functional networks
with the ground truth of existing or non-
existing directional couplings with a threshold
approach. For the empirical system, he eval-
uated the two approaches with directionality
indices and identi�ed the amount of congruent
indications of the same direction from both
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approaches. The latter evaluation was based
on the assumption that a complex system like
the human brain should � at least to some de-
gree � exhibit indirect interactions. If the PTA
indeed improves the EMA when handling in-
direct interactions, the �ndings achieved with
the PTA should provide an improved charac-
terization of the system's directed couplings
by deviating from the �ndings achieved with
the EMA � otherwise, there is no relative ad-
vantage of the partialized approach over the
pairwise one when investigating the directions
of interactions in the human brain.
The authors observe that coupling strength

as well as network size in�uence to what
degree directed couplings can be identi�ed
from the weighted and directed functional net-
works. Too weak coupling strengths lead to
independently oscillating dynamics for which
direction is basically randomly assigned, while
too strong coupling strength lead to basically
indistinguishable dynamics. Since estimators
of direction of interaction, however, exploit
di�erences in the time evolution of elementary
units, both cases results in no reliable indi-
cation of direction. A larger network size, on
the other hand, drastically impairs the abil-
ity to identify directed couplings and only in
small networks (number of vertices ≤ 10),
the PTA performs better than the EMA by
a small margin. For larger systems, the pair-
wise approach even overtakes the performance
of the PTA. However, both approaches dimin-
ish in performance due to an increased num-
ber of couplings per elementary unit. For the
PTA, this e�ect is more severe, since the un-
certainty about which third unit the estima-
tor should be conditioned on increases with
the number of units. Interestingly, both types
of noise a�ects both estimators' performance
roughly the same way and, for the sensitive
intermediate range of coupling strengths, the
estimators are resistant against noise contam-
inations up to noise-to-signal ratios of 0.1.
For the empirical system human brain, the

EMA and the PTA predominantly indicate
the same directions in spite of the high physio-
logical variability that is to be expected when
observing brain activity over longer periods.
This indicates an inability of the PTA to con-

sistently handle the expected transitivity in
this system.
The authors conclude that partialization

methods do not improve the performance
of time series analysis techniques to es-
timate properties of interactions in larger
(number of elementary units > 10) sys-
tems and point to similar �ndings with
other techniques extended with partialization
methods [MFL+08, JK11, ZFLH14, REI+13,
Kug13a, HKKN11, RMBM+14]. The authors
also note that while the inverse relation-
ship between estimator performance and num-
ber of elementary units can, in principle,
be balanced by increasing the length of the
time series [SB09, RMBM+14], this often in-
vites other adverse e�ects due to, e.g., non-
stationarity. Finally, the authors project that
methods [PR13, SWF+14, ZMD15, TB16] ex-
ploiting the sparseness of couplings of many
real world systems might prove helpful for dis-
tinguishing direct and indirect couplings in
the future.
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Extreme events are well-known phenomena in
various natural and man-made systems, whose
exact mechanisms are often beyond current
understanding. De�ned as a rare, recurrent,
but drastic deviation of a system's dynamics
from its otherwise typical behavior [CGUF15],
extreme events commonly have strong and
harmful consequences for the systems in which
they occur and can be a strain on human se-
curity and interests. Examples include earth-
quakes, tsunamis, extreme weather events,
wars, market crashes, large-scale blackouts in
power-supply networks, and epileptic seizures
in the human brain (see, e.g., [Hob94, BKS02,
Sor03, AJK06, GYH+11, WMGT+13]). Cap-
turing early warning signs of � or even control-
ling � these events in many scenarios is a cur-
rently unsolved problem whose solution might
strongly depend on an improved understand-
ing of the generation mechanisms of extreme
events.

A growing interest into whether and how
the coupling structure of a spatially-extended,
complex system in�uences the emergence of
extreme events in such a system (see, e.g.,
[KSA11, RL11, KSA12, AKLF13, KSS13,
BBB+14, CHL14, LGB+14, Xia14, HMSK15,
ALF16]) motivated the authors of the cur-
rent article to extend this line of inquiry
and to investigate the in�uence of local net-
work properties on the generation of ex-
treme events. For this purpose, Thorsten
Rings simulated networked dynamics of cou-
pled FitzHugh�Nagumo oscillators [AKLF13,
KAFL14, ALF16], thereby mimicking ex-
citable media with di�usion-like transport
processes between adjacent oscillators. Here,
excitation is characterized by a high ampli-
tude oscillation which is followed by a re-

fractory period that suppresses the excita-
tion. The oscillators' control parameters were
chosen such that the collective dynamics ex-
hibited rare, recurring high-amplitude oscil-
lations, i.e., extreme events. Oscillators had
a refractory period of di�erent duration and
were coupled onto a scale-free network [AB02].
This topology is characterized by a small num-
ber of strongly interconnected vertices (the
core) surrounded by low-degree vertices (the
network's periphery). The core mostly con-
sists of hubs, i.e., vertices with high degree,
here representing oscillators with many cou-
plings. The scale-free topology is also thought
to be commonly encountered in nature and
is often associated with phenomena such as
growth, structural resilience, and extreme
events [AB02, Cal07, Bar09, KSA11, ZL13,
LKLK15].
For various numbers of elementary units

and with the guidance of Gerrit Ansmann,
Thorsten Rings generated time series of the
oscillators' dynamics and identi�ed their as-
sociated vertex degrees. As a next step, he
singled out the extreme events in the time evo-
lution of the (explicitly stationary) oscillator
dynamics and, with high temporal resolution,
traced the excitation of the single oscillators
during such events.
In a joint e�ort, the authors observe that

both the control parameters and the vertex
degree of an elementary unit provide informa-
tion about the role the unit plays in generating
extreme events. The authors also observe that
especially the units associated with low-degree
vertices are responsible for the initiation of the
extreme events. This result is notably surpris-
ing considering that scale-free networks are
renowned for the small amount of strongly in-
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terconnected, high-degree vertices (the hubs,
which are typically deemed important for as-
sociated dynamics). The latter, according to
the authors observations, only act as facilita-
tors of the spreading of excitation that results
in an extreme event. They are, however, never
involved in the initial generation of the events.
The authors conclude that warning signs of

upcoming extreme events might be more likely
to be encountered in a wide-scale observa-
tion of a system's less strongly interconnected
elementary units. This is in stark contrast
to the often-employed approach of observing
only the dynamics of the hubs to gather infor-
mation about the system's collective dynam-
ics. Control of a system, then, might include a
minimal perturbation [KSS13, CHL14] of pe-
ripheral units or a pinning of states of such
peripheral units.

28



V Synopsis of "Precursors of seizures due to

speci�c spatial-temporal modi�cations of

evolving large-scale epileptic brain

networks"

Thorsten Rings, Randi von Wrede, and Klaus Lehnertz

Scienti�c Reports 9, 10623 (2019).
DOI: https://doi.org/10.1038/s41598-019-47092-w

Epilepsy is one of the most common neurolog-
ical disorders a�ecting approximately 65 mil-
lion people worldwide. It is intractable with
anti-epileptic drugs in roughly one third of
people su�ering from epilepsy [KSB11] and
has a highly negative impact on the quality
of live of the a�ected people. A severe fac-
tor of the burden of epilepsy is the apparent
unpredictability of epileptic seizures � sudden
surges of abnormal and excessive electrical ac-
tivity in the brain that can a�ect motor and
cognitive functions. Consequently, the �eld of
seizure prediction aims to predict the onset
of seizures ahead of time to improve qual-
ity of life for people su�ering from epilepsy
� e.g., by enabling them to take countermea-
sures before an upcoming seizure � and to im-
prove treatment options with methods that
anticipate an upcoming seizure to deliver on-
time treatments. In addition to the immediate
value of identifying precursors of seizures, un-
derstanding the underlying mechanism that
allows the seizure to occur, or at least iden-
tifying changes in the dynamics of elemen-
tary units � i.e., brain regions � associated
with that mechanism, have value on their own
and might lead to new treatment options for
epilepsy [LDP+16].

From a physics point of view, epileptic
seizures ful�ll the criteria for extreme events:
they are a rare and recurrent deviation
of the system's dynamics from its average
behavior. The brain region whose dynam-
ics shows the �rst such strong deviation
is typically deemed the seizure onset zone
(SOZ), which was long thought to be an
initiator of a seizure. However, a number

of previous studies on the predictability of
seizures with an identi�able SOZ reported
time evolution of interactions between brain
regions distant to the SOZ to carry relevant,
predictive information [LDP+16, MKR+05,
DVE+05, KVS+05, LSN+05, BMJB09,
KFL+10, FSS+11, BSM+12, PDG13, LD15].
These results led to the concept of an epilep-
tic brain network [BZM+98, Spe02, Ric10,
KC12, Lau12, LAB+14] responsible for the
generation of seizures.

Employing this concept, the authors of the
present article conceived a research project
to investigate possible precursors of epilep-
tic seizures in the time evolution of lo-
cal network characteristics � vertex centrali-
ties � of time-evolving functional brain net-
works. Randi von Wrede provided guidance
in clinical research, while Klaus Lehnertz su-
pervised the research. Employing a moving
window approach, Thorsten Rings derived
the functional networks from multichannel,
multiday intracranial electroencephalographic
recordings of human electrical brain activity
from a large number of people su�ering from
epilepsy. In each time window, he estimated
the strength of interaction between the dy-
namics of each pair of brain regions to de-
rive weighted functional networks and calcu-
lated their local characteristics (strength cen-
trality and betweenness centrality) for each
vertex (i.e., the sampled brain region). Next,
Thorsten Rings separated data from the re-
sulting sequences of the local characteristics
for each vertex into two distributions: data
from a 4 h period preceding seizure activity
during which precursors are assumed to oc-
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cur (pre-ictal time span), and data from time
spans temporally distant from seizure activ-
ity during which brain activity is assumed
unrelated to seizure activity (inter-ictal time
span).
Using advanced statistical techniques (non-

parametric tests and Monte-Carlo methods),
the authors of the present article observe that
prior to the majority of seizures the pre-
ictal local network characteristics of some few
vertices clearly deviate from the inter-ictal
ones. These vertices are exclusively associated
with brain regions outside of the clinically de-
�ned seizure onset zone. The authors also ob-
serve that precursor-carrying vertices are typ-
ically connected by edges whose weight alter-
ations also carry predictive information as al-
ready reported on earlier [LDP+16]. Together,
the �ndings indicate a redistribution of edge
weights, which reveals a backbone-like struc-
ture in the investigated functional brain net-
works. This structure, which consists of only
a few vertices and associated edges, appears
resistant against pre-ictal changes of the net-
work as these changes modify the rest of the
network and shift associated shortest paths
toward a few backbone-associated brain re-
gions distant from the SOZ. There these paths
form bottlenecks.
Based on their �ndings and together

with previous research [MAEL07, KLR+18,
GLMG16], the authors of the present article
propose a model for the generation of seizures
in epileptic brain networks, which interprets
the observed pre-ictal changes of functional
brain networks as possible components of a
mechanism of seizure generation. Changes of
the functional brain networks appear to be-
gin hours before the seizure but not at ver-
tices associated with the seizure onset zone,
with e�ects on electrical brain activity near
the SOZ becoming more pronounced as the
seizure onset approaches. The proposed model
puts into perspective the role of SOZ in seizure
generation in an epileptic brain network � the
SOZ appears like a weak spot that breaks �rst
when the rest of the brain is putting it under
increasing strain. The authors subsequently
hypothesise that control techniques that aim
at the spatial and temporal emergence of

seizure precursors [HCHB08, NAK+18] com-
bined with novel approaches to track changes
in resilience of evolving epileptic networks (see
next chapter) represent promising avenues for
further research.
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Thorsten Rings, Mahmood Mazarei, Amin Akhshi, Chris-
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Scienti�c Reports 9, 1744 (2019).
DOI: https://doi.org/10.1038/s41598-018-38372-y

Extreme events are rare, (apparently) unpre-
dictable strong deviations from the average
behavior of complex systems. They can crit-
ically determine the evolution and charac-
ter of a vulnerable man-made or natural sys-
tem [BKS02, Sor03, AJK06, FBS+12, Hel13,
Buz17] and can have disastrous consequences
for such systems. Well-known examples in-
clude heat waves, �oods, earthquakes, epilep-
tic seizures in the human brain [Leh06], melt-
down of nuclear power plants [CFA+11], and
large-scale blackouts in power supply net-
works [AAN04, BPP+10].

Together with progress in the iden-
ti�cation of precursors of extreme
events [MSS+09, SBB+09, SCL+12, BH13,
KZG15, KVADR+15, LCAC15, JREM17,
LHCZ17, KLR+18] (see also chapter V), a
current research focus is the development of
strategies for adaption, mitigating, and avoid-
ance of such events. For such strategies to be
e�ective, however, knowledge about possible
time-dependent alterations of stability and
resilience of a system is indispensable. How-
ever, the continuous, data-driven monitoring
of such system properties remains a problem
for which there currently are no satisfactory
solutions.

Motivated by this issue, the authors pro-
posed a novel, data-driven approach allow-
ing to measure the so-called dynamical resis-
tance � a proxy for resilience. Thorsten Rings,
Reza Rahimi Tabar, and Klaus Lehnertz de-
veloped the underlying theoretical concepts
with support of Mahmood Mazarei and Amin
Akshi. Thorsten Rings with support of Chris-
tian Geier implemented the approach and car-
ried out all investigations.

For dynamical resistance, interactions are

assumed to be endogenous perturbations
upon the dynamics of a system's elementary
units. Thus, the authors concentrated on dif-
ferences in the relative strength of perturba-
tions over time as a proxy for the system's
resilience thereby neglecting the units' self-
dynamics. A system's current state, then, is
de�ned by its current strength-of-interaction-
based, weighted functional network (i.e., its
snapshot network), and the time-evolution of
the system's state is encoded in its sequence
of snapshot networks (i.e., the system's time-
evolving functional network). Hence, system
states are identi�ed employing a hierarchical
clustering scheme, which sorts the snapshot
networks to one of several so-called dynamical
regimes � the number of dynamical regimes is
assumed to be system dependent. Finally, dy-
namical resistance is de�ned as the smallest
Euclidean distances between the matrix repre-
sentations of the di�erent dynamical regimes
and acts as a worst-case estimate of the sys-
tem's resilience.

To illustrate the approach, Thorsten Rings
investigated whether resilience of the hu-
man epileptic brain changes prior to epilep-
tic seizures. Intuitively, one would expect a
weakening of resilience in order to facilitate
the generation of a seizure. Employing a mov-
ing window approach, he derived sequences
of functional networks from multichannel,
multiday intracranial electroencephalographic
recording of electric brain activity from a large
number of people su�ering from epilepsy. In
each time window, he estimated the strength
of interaction between each pair of brain re-
gions to derive weighted functional networks.
From the sequences of functional brain net-
works, he derived sequences of dynamical re-
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sistance for each subject.
The authors observe an in�uence of day

and night (possibly related to the circadian
rhythm) on dynamical resistance with it be-
ing higher during the night, as expected.
Using advanced statistical techniques (non-
parametric tests and Monte-Carlo methods),
the authors also identify changes in dynamical
resistance prior to seizures, that might serve
as seizure precursors. These changes, however,
appear counterintuitive at �rst glance. Prior
to the majority of investigated seizures, the
authors observe dynamical resistance to in-
crease.
The authors explain this �nding as a pos-

sible consequence of the investigated types of
epilepsy � subjects su�ered from seizures that
could not be controlled su�ciently with anti-
epileptic drugs � and they speculate that the
relative (in-)e�ectiveness of treatments might
be related to this increase. They further hy-
pothesize that control schemes for epileptic
seizures or other extreme events may bene�t
from estimations of a system's resilience and
stability to determine how and when to ap-
ply control to a system. The authors also note
limits of the proposed approach � e.g., a com-
parably high demand on the number of data
points or the typically a-priori-unknown num-
ber of dynamical regimes. Finally, the authors
point out that the only other technique that is
thought to estimate resilience in a data-driven
way, namely the time-resolved analysis of vari-
ance exploiting the concept of critical slowing
down [DSvN+08, SBB+09], is only suitable for
low-dimensional systems with simple critical
transitions.
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VII Summary, Outlook, and Concluding Remarks

Various spatially-extended, complex dy-
namical systems in nature exhibit phenomena
that drastically a�ect and shape our world.
Examples include synchronization in diverse
systems from clocks over cardiac pacemaker
cells to applauding audiences [PRK01], ex-
treme events like epileptic seizures in the
human brain [LGRS17] or extreme weather
conditions in the climate system [AJK06],
and spreading of diseases in social sys-
tems [New02b]. Understanding these systems
and their phenomena, however, is often an
arduous task due to the systems' epony-
mous complexity [Pro88, vK99, Wil02, AO04,
HSA06, HDL17, Fie21]. In particular, the rich
interplay between a system's structural orga-
nization, its functional relationships, and the
individual as well as collective dynamics of its
elementary units is only partially understood
� especially if these aspects change with time.

In this thesis, we assessed the time-evolving
functional network approach devised to facil-
itate the understanding of such complex sys-
tems, and we evaluated the approach's suit-
ability for �eld data analysis. To this end,
we explored changes of time-evolving network
characteristics accompanying various dynam-
ical phenomena of interest exhibited by sys-
tem dynamics including transitivity [AHD18],
extreme events [CGUF15], and changes in re-
silience [SCF+01]. Speci�cally, we investigated
paradigmatic model systems with well-known
constraints such as coupling strengths, cou-
pling topologies, number of elementary units,
and several noise contaminations. Further-
more, we investigated a natural complex sys-
tem which exhibits rich dynamics and sup-
ports a large variety of functions and dysfunc-
tions: the human epileptic brain. We provided
novel insights into the aforementioned inter-
play between a system's structural organiza-
tion, its functional relationships, and the in-
dividual as well as collective dynamics of its
elementary units. We furthermore developed
a non-perturbative, data-driven approach to
evaluate a system's stability against endoge-
nous and exogenous perturbation based on

pooled characteristics of edges (i.e., strengths
of interactions between elementary units).

In the following we recite key results of this
thesis.
Interpreting a functional network is mostly

based on the assumption that properties of
interactions re�ect the coupling structure of
the system from which the network is de-
rived. However, retrieving the coupling struc-
ture from observations of the dynamics of
units can be regarded an inverse problem.
Consequently, as a preliminary investigation,
we checked if and to what extent at least the
organization of a coupling structure can be
revealed from properties of interactions esti-
mated from time series of the system's dynam-
ics.
Advantageously, especially local network

characteristics (rank orders of centralities and
most central constituents) of functional net-
works indeed re�ected those of the underlying
coupling structures to a large extent. On the
other hand, most global network characteris-
tics of functional networks di�ered substan-
tially from ground truth.
Nevertheless, global network characteris-

tics have been successfully employed to
describe and characterize climate [TR04,
DZMK09a, ZFLH14], geo-physical [PSH15,
AS06, HSP15, CIK+19], and economical sys-
tems [HH18] among others. These character-
istics have also been extensively employed in
the neurosciences (see, e.g., [BS09, BFPS+13,
LGRS17]), and they are capable of track-
ing changes in the organization of inter-
actions within a system induced by per-
turbations [RVWB+21, HRB+22, vWRS+21,
vWBR+22]. These characteristics resp. their
changes, however, can currently not be di-
rectly mapped to the underlying coupling
structures of the systems.
Explaining some of the di�erence between

functional networks and coupling structures,
transitivity is one of the prominent di�cul-
ties encountered when estimating properties
of interactions. Often, it is problematic to dis-
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tinguish a direct interaction between a sys-
tem's elementary units (unit i is coupled with
unit j) from an indirect one (unit i is not cou-
pled with unit j, however, both are coupled to
a third unit k, which mediates interactions).
This typically leads to an overestimation of
properties of interactions between units, and
the concept of partialization is often consid-
ered an answer to this issue. By e�ectively
conditioning an estimator for a property of
interaction between two units on a possible
third, mediating unit, partialized estimators
are considered to be more robust against tran-
sitivity.
However, at the example of estimators

for the direction of interaction � the evo-
lution map approach [RP01] and its par-
tialized extension [KPR14] � used to iden-
tify the direction of couplings in directed
networks of coupled oscillators, we observed
that the partialized approach only outper-
forms the non-partialized one for small sys-
tems (number of elementary units N ≤ 10).
In larger systems (here, 20 or 100 units), this
small improvement vanishes. Furthermore, in
an exemplary natural system (dynamics of the
brain of a subject su�ering from epilepsy), es-
timates of the direction of interaction between
units (here, sampled brain regions) did not
di�er substantially when using either the par-
tialized or the non-partialized estimator.
Similar �ndings have been reported with

other partialized estimators (e.g., partial cor-
relation [MFL+08, JK11, ZFLH14], renormal-
ized partial directed coherence [REI+13], par-
tial transfer entropy, and conditional Granger
causality index [Kug13a]). We hypothesize
that the predominant di�culty with partial-
ization is the question on which third unit in
a larger system estimations should be condi-
tioned. When a system is composed of many
elementary units, a potential third unit is
much harder to correctly identify compared to
the case of a system of only few units. Conse-
quently, in large systems, it is more probable
to condition an estimator on an uninvolved
unit, impairing the characterization of prop-
erties of interactions instead of improving it.
Next, we showed that local network char-

acteristics are indeed related to the role of

elementary units in the emergence of global
system dynamics in networks with complex
coupling topologies. Speci�cally, we investi-
gated the generation and spreading of extreme
events � rare and recurrent abnormally large
amplitude values � in scale-free networks of
coupled FitzHugh�Nagumo oscillators.
In these systems, we were able to show

that extreme events originate from vertices
with low vertex degree26. High-degree vertices
(in various contexts also called hubs), on the
other hand, act as a facilitator for the spread-
ing of an extreme event, while their large num-
ber of di�usive couplings dampen their ability
to initiate an event themselves. The larger the
vertex degree, the stronger the trend of the
associated unit's dynamics to an e�ectively
averaged (and typically non-extreme) dynam-
ics of the units coupled to it. In this sense,
low-degree vertices have more leeway to devi-
ate and, possibly, to exhibit extreme motion.
Then, if enough low-degree vertices do exhibit
such an extreme motion, the high-degree ver-
tices follow and spread the extreme event to
the remaining vertices.
Similar indications of the importance of low-

degree vertices have been reported for dy-
namical robustness with respect to node re-
moval [TMA12], noise [BGP+13], or signal
generation and transmission in recurrent net-
works [JMT14] as well as for dynamical im-
pact on long-term time evolution [QAS13].
More recently, Ray et al. [RBM+22] ob-
served similar �ndings for extreme events
in oscillator networks with repulsive cou-
plings. Ironically, these observations indicates
that controlling vertices with low vertex de-
gree � which are often deemed less impor-
tant [LMM+17] � might be more suitable for
the prevention of extreme events than control-
ling hubs.
Contrasting these �ndings from static net-

works, in brain networks derived from iEEG
time series of subjects su�ering from epilepsy,

26 More precisely: the event originates from the elementary units
associated with the low-degree vertices, but linguistics details
become tedious in this context. We hope that the one-to-one
association of vertices and elementary units is clear at this
point.
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we observed that the networks underwent
signi�cant reorganization of their coupling
structure prior to epileptic seizures. Specif-
ically, the organization of shortest paths in
the epileptic brain networks underwent signi�-
cant restructuring in pre-seizure periods when
compared to the remaining seizure-free time
periods.
Brain regions usually deemed una�ected by

focal epileptic processes [RL01, LNN+06] ap-
pear more akin to bottlenecks during pre-
seizure periods, bridging remote brain areas.
On average, the interactions between brain re-
gions that make up the shortest paths increase
in strength, while the remaining edges vary
only little between pre-seizure and seizure-
free periods. These observations were vali-
dated and re�ned by Fruengel et al. [FBRL20]
with additional vertex centrality concepts. In
total, we hypothesize, that the emergence of
a backbone-like sub-structure in the brain
networks leads to the generation of epileptic
seizures in a not yet understood fashion.
Current research into the role of edges

with so-called edge centralities [Gra73, GN02,
CRS+10, BL19, BL20, BL22] might further
improve our understanding of seizure gener-
ation and pre-seizure dynamics in the fore-
seeable future. Otherwise and while the ap-
proach to characterize � in a time resolved
manner � the role of network constituents to
improve our understanding of dynamical phe-
nomena is �exible and well-suited for mul-
tivariate �eld data analysis, studies utilizing
this approach are comparably rare. Diverse
examples, however, include the exploration of
phenomena like grooming of ants in response
to pathogens [AUF+21], the development of
interdisciplinary research by reference to cita-
tion networks [LS08], and solar activity during
stages of the solar cycle [MF22].
Building onto the discriminatory properties

of time-evolving networks for dynamics (pre-
seizure periods vs. the remaining seizure-free
periods) and recurrence patterns in functional
networks [MSS+12], we then described dy-
namical regimes (e�ectively states of global
system dynamics) by representations of the
associated snapshot networks. We hypothe-
sized and found some evidence that abstract

properties of the dynamical regimes are in-
dicative of the resilience of systems as de�ned
by Holling [Hol73], and we derived the so-
called dynamical resistance.
Dynamical resistance could successfully

trace the change in brain dynamics due to
sleep � an increased resilience of the system
at night. Unexpectedly, however, we observed
an increase of dynamical resistance prior to
seizures in approximately 2/3 of the inves-
tigated seizures, which might be a conse-
quence of the brain's ability to defy control
based on its inherent plasticity and adaptive-
ness [Sch02, HCHB08].
In general, the relationship between brain

dynamics as recorded by EEG or iEEG and
the brain's resilience appear to be more com-
plex than a simple pitchfork-like bifurcation
as assumed by the ansatz of critical slow-
ing down [DSvN+08, SBB+09] � a point
of view which was validated by other re-
cent studies [DJ10, DHW15, MS16, RCR17,
JF19, WRL19]. More recently, Fischer et
al. [FRRRTL22] a�rmed our hypothesis by
providing a versatile test bed for resilience and
assaying dynamical resistance, which hope-
fully will facilitate the data-driven analysis of
resilience in diverse areas of science.

While we hope that the advances docu-
mented in this thesis prove valuable, they
are by no means exhaustive. Further improve-
ments of our understanding of complex sys-
tems and their dynamics via the ansatz of
time-evolving functional networks might be
achieved with further research into the follow-
ing open topics.
For a large number of complex systems,

interacting elementary units operate on dif-
ferent temporal and spatial scales. Tempo-
ral scales of, e.g., the human organism eas-
ily span from microseconds (e.g., neuron ac-
tivity) over hours (e.g, digestion) to years
(e.g., growth circles) with numerous scales
in between [Hil91]. Already characteristics
of EEG signals and of EEG-derived time-
evolving functional networks on their own
exhibit various ultra-, circa-, and infradian
rhythms [LRB21]. Other examples include
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changes in the climate system spanning vari-
ous time scales from hours to millennia [Cla85,
Ben02], transport networks where decade-
spanning infrastructure projects amalgamate
with traveler's short-term needs [Roc17], or
even the way our mesoscopic world arises
from interacting microscopic system [Suc19].
Bridging such scales, however, is a cur-
rently unsolved problem of great impor-
tance not only in network science but in
physics in general [Cal11, Suc19, LBR20]. At-
tempts to solve this issue are currently cen-
tered around coarse-grained modeling � espe-
cially in molecular chemistry [PSK08, Noi13,
ILU+14, KGK+16] � or (non-generalizable)
temporal normalization27, which circumvent
the need to actually understand the processes
involved in connecting various scales.
As a direct extension of the research pre-

sented in this thesis, evaluating the impor-
tance of edges resp. interaction with so-called
edge centralities may further improve our
understanding of changes in networks. Re-
cent interest in the development and use of
these measures [DMFFR12, PR12, QLZ+17,
WTL18, BL19, BL22, vRB+22] already pro-
vided novel insights in studies of various man-
made and natural systems including com-
muter networks, social networks, and brain
networks among others. Given that the func-
tional network ansatz assumes system dy-
namics to emerge from interacting elementary
units and that edges represent these inter-
actions, we conjecture that edge centralities
will signi�cantly improve our understanding
of the relationship between interactions and
local resp. global dynamics of complex sys-
tems.
Next, information regarding an arbitrary

system is not necessarily limited to the global
scale of the network as a whole and the local
scale of single network constituents. Arguably,
investigating mesoscopic network scales of
groups of constituents has the potential to
generate transparency in the research of cur-
rently opaque phenomena. We conjecture that

27 So-called fast-slow systems represent a mathematical frame-
work for this class of modeling; see, e.g., [Kue15] for an
overview

by identifying and describing groups of con-
stituents utilizing concepts such as network
decompositions based on local network char-
acteristics [KGH+10, BL19] as well as by char-
acterizing the structure of inter-group cou-
plings [LAS08], further insights into the com-
plex interplay of structure, function, and dy-
namics of complex systems can be gained. Es-
pecially, tracking changes in the composition
of these groups might prove enlightening.
From a descriptive perspective � and

abreast of macroscopic aspects �, so-called
networks of networks provide the means to
more intuitively describe complex systems
composed of large, interconnected compo-
nents which can exhibit di�erent functions
and modes of operation [DS14]. With this
approach, these components are described as
(sub-)networks that are connected with each
other with some inter-network coupling topol-
ogy28. Various terminologies describing net-
works of networks already exist (e.g., multi-
plex or multi-layer networks) and are used to
describe organizational structures in nature
(see, e.g., [DS14, BNL14, BBC+14, AM19]).
Examples for which the description of com-
plex systems as a networks of networks al-
ready proved useful include describing the
human organism as a whole [IB14], global
trade [MD15], seismic activity [LDR18], and
the spreading of epidemics [DHS12]. However,
how alterations of networks of networks af-
fect (local or global) system dynamics is even
less understood than for classical networks29.
Particularly, recent discoveries regarding an
asymmetric impact of within sub-network and
between sub-network couplings on the dynam-
ics of coupled oscillators [RGSA+18] hint at
mechanisms underlying the emergence of sev-
eral yet-to-be-understood dynamics.
Another topical extension of the network

ansatz is called hyper graphs [Ber84]. By al-
lowing single edges to connect more than two

28 In a transport network, sub-networks could describe train
tracks, streets, and air-lanes with airports and train stations
connecting the sub-networks.

29 Multiplex networks, e.g., interpret time as a direction in a
network � a vertex from one point in time is connected by an
edge with the same vertex at a di�erent point in time. This
can easily obfuscate what a network characteristic actually
characterizes.
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vertices, hyper graphs are designed to cap-
ture couplings with structures of higher di-
mensional simplices (dimension > 2), that
are otherwise excluded from the network
ansatz. Besides conceptual deliberations, cur-
rent methodological and technical improve-
ments allow for the estimation of prop-
erties of higher-order interactions30 (see,
e.g., [BAB+21] for an overview). In principle,
this then also allows for deriving time-evolving
functional hyper graphs from time series data.
However, advantages of hyper graphs over
classical networks have yet to be shown in
practice. Also, it is currently unclear how to
model and simulate higher-order interactions
consistently31.
On the topic of simulations, studies regard-

ing the impact of non-uniform (local) cou-
pling strengths on the dynamics of elementary
units are curiously underrepresented in cur-
rent research aside from the odd investigation
of so-called Bellerophon states32 [BHB+16].
Considering that most functional network rep-
resentations of natural systems derived with
strength-of-interaction estimates show highly
non-uniform strengths, this direction of re-
search might prove important in the interme-
diate future.
Finally, fundamental assumptions of the de-

scription of complex dynamical systems with
the network ansatz might be inaccurate or
incomplete. Unlike the fundamentally addi-
tive network decomposition, it is possible that
the dynamical coupling structure is multi-
plicatively connected to a unit's self-dynamics
or that the coupling topology itself is de-

30 Higher-order interactions are mutual interactions between
three or more elementary units of a system that can not be
separated into several pairwise interactions and which are ex-
plicitly not transitive.

31 While it appears that any combination of three or more dy-
namical variables in a coupling term can be interpreted as an
higher-order interaction, the argued scienti�c hypothesis de-
mands that their impact on the dynamics can not be modeled
by groups of pairwise interactions. This can only achieved by
non-linear coupling terms, which typically increases a model's
complexity excessively.

32 Bellerophon states describes systems, whose non-transient
dynamics exhibit partial phase synchrony, where (seemingly
quantized) groups of oscillators exhibit coherent phases on av-
erage over time. However, single oscillators repeatedly break
from the coherent groups to perform oscillations of higher (or
lower) frequency until they return to the coherent group for
a intermediate time span.

pendent on the units' state variables. While
such situations have little impact on deriv-
ing functional networks from observations of
systems in nature33, our interpretation of re-
sults from the network ansatz would be sig-
ni�cantly a�ected. First simulations of sys-
tems with systems with state-dependent cou-
pling topologies have already displayed rich
dynamics [Sca10, YFX+21, FRRRTL22] and
might bring observations of complex systems
and current models closer together in the fu-
ture.

To summarize, the approach of time-
evolving functional networks is a powerful
tool for improving our understanding of com-
plex dynamical systems. In this thesis, we ex-
plored advantages and disadvantages of the
approach, and we provided novel insights into
the rich interplay between structural organi-
zation, dynamics and functional relationships
in complex systems. Overall, we rate the ap-
proach suitable for �eld data analysis. How-
ever, the approach's full potential is yet to
be exhausted, and additional re�nement of
the approach as well as exploration of the
above-mentioned topics can be expected to
further advance our understanding of the nat-
ural world.

33 We are currently unable to reliable separate eigendynamics
and dynamical coupling structure anyway. However, advances
in, e.g., Kramers�Moyal analysis of multidimensional systems
might change that in the future [RGHLT19, ARZL21].
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