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Abstract

This thesis presents a determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element
magnitude |𝑉𝑐𝑏 | and form-factor parameters of �̄�0 → 𝐷∗+ℓ− āℓ decays, where ℓ = 𝑒, `. We
conduct our analysis using Belle II data collected from 2019 to 2021, corresponding to an integrated
luminosity of

∫
L𝑑𝑡 =189 fb−1. In the Belle II experiment, electrons and positrons collide with a

center of mass energy
√
𝑠 = 10.58 GeV, which corresponds to the Υ(4𝑆) mass. Subsequently,

more than 96% of Υ(4𝑆) mesons decay to 𝐵�̄� [1]. We reconstruct signal �̄�0 → 𝐷∗+ℓ− āℓ decays,
followed by 𝐷∗+ → 𝐷0𝜋+ and 𝐷0 → 𝐾−𝜋+ decays, without the explicit reconstructing the
accompanying 𝐵 meson produced in the Υ(4𝑆) decay.

The theoretical description of the differential decay rate of the �̄�0 → 𝐷∗+ℓ− āℓ channel relies
on kinematic variables that are intimately related to the momentum of the 𝐵 meson. However,
due to the escape of final-state neutrinos from the Belle II detectors, it is challenging to precisely
measure the momentum of the 𝐵 meson. To address this problem, we have developed a novel
approach for inferring the kinematic variables. This approach leverages the angular distribution
of the signal 𝐵 meson as well as particles produced by the accompanying 𝐵 meson. Compared to
previous methods, our novel approach significantly enhances the resolution of the reconstruction,
achieving improvements ranging from 7% to 12%.

The determination of the signal yield in each bin of the kinematic variables includes a two-
dimensional binned fit to the distributions of cos \𝐵𝑌 and Δ𝑀. Here, cos \𝐵𝑌 represents the
cosine of the angle between the 𝐵 candidate and the 𝐷∗ℓ system (denoted as 𝑌 ), while Δ𝑀 is the
mass difference between the 𝐷∗+ and 𝐷0 candidates. Because of the finite detector resolution, the
observed signal yields may deviate from the underlying true yields. To correct for this distortion,
we employ the singular-value-decomposition unfolding method. Subsequently, partial decay rates
in bins of kinematic variables are derived from the unfolded yields and reconstruction efficiencies,
which are estimated using simulated samples.

By summing the partial decay rates of all kinematic variables we obtain the total rate. The average
of the total rates over �̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā` decays is converted to branching
fractions using the 𝐵0 lifetime. We find B(�̄�0 → 𝐷∗+ℓ− āℓ) = (4.922 ± 0.023 ± 0.220)%,
which is compatible with the world average [1]. We fit to the partial decay rates on four
projections simultaneously to determine the values of |𝑉𝑐𝑏 | and form factor parameters in the
Boyd-Grinstein-Lebed and Caprini-Lellouch-Neubert parameterizations, respectively, and find
|𝑉𝑐𝑏 |BGL = (40.57±0.31±0.95±0.58)×10−3 and |𝑉𝑐𝑏 |CLN = (40.13±0.27±0.93±0.58)×10−3,
where the uncertainties are statistical, systematic, and the component due to lattice QCD inputs,
respectively. The leading and subleading systematic uncertainties arise from the slow pion
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tracking efficiency and the ratio of 𝐵+𝐵− pairs and 𝐵0�̄�0 pairs in the Υ(4𝑆) decay, respectively.
In addition, we assess lepton flavor universality by examining three important variables,

including the ratio of branching fractions and differences in lepton angular asymmetry A𝐹𝐵 as
well as the longitudinal𝐷∗+ polarization fraction 𝐹𝐿 between �̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā`
decays. We find the ratio 𝑅𝑒/` = 0.998±0.009±0.020 and differences ΔAFB = (−17±16±16) ×
10−3 and Δ𝐹𝐿 = 0.006 ± 0.007 ± 0.005, where the first and second uncertainties are statistical
and systematic, respectively. All results align with the expectations of lepton flavor universality
within the Standard Model.

This thesis presents the first published determination of |𝑉𝑐𝑏 | through exclusive semileptonic 𝐵
decays at Belle II, and also sheds light on lepton flavor universality. Furthermore, it provides
essential procedures for future measurements.
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CHAPTER 1

Introduction

Particle physics is a subject that explores the fundamental building blocks of matter and their
interactions. It is also known as high energy physics because experiments related to particle
physics involve accelerating particles to velocities close to the speed of light. These particles then
collide at the interaction point, leading to annihilation and the creation of other types of particles.
The term “high energy” in this context refers to the significant kinetic energy carried by these
particles.

Physics at subatomic distance scales is governed by the laws of quantum mechanics. Even though
we collide the same particles every time, the outcome of a collision event is not deterministic.
Experimentally, we reconstruct final-state particles in each event and, furthermore, identify
the mother particle that produced them. We analyze their kinematic information and extract
observables of interest for specific decay modes. These observables typically encode information
about the properties of interactions and can be sensitive to various theoretical frameworks. Thus
far, the Standard Model (SM) of particle physics has proven to be the most successful theoretical
framework in describing the majority of discovered elementary particles and their interactions.

There are four fundamental interactions in nature: the electromagnetic interaction, weak
interaction, strong interaction, and gravitational interaction. They are compared in Table 1.1 in
terms of the coupling constant and mediator. The gravitational interaction between particles is
negligible due to the extremely small masses and is outside the scope of collider physics.

Table 1.1: Comparison of four interactions.

Interactions Coupling constant Mediator

Electromagnetic interaction 𝛼 ≃ 1/137 [1] Photon
Weak interaction 𝛼𝑊 ≃ 10−6 [2] 𝑊± and 𝑍0 bosons
Strong interaction 𝛼𝑠 (𝑚𝑍 ) ≃ 10−1 [1] Gluon
Gravitational interaction 𝐺𝑁 ≃ 6.7 × 10−39 GeV−2 [1] Graviton (undiscovered) [3]
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Chapter 1 Introduction

1.1 Elementary particles in the Standard Model

The SM is a theoretical framework that successfully describes the elementary particles discovered
to date, as depicted in Fig. 1.1, and their interactions. Although numerous extensions to the SM
predict the existence of new particles, such as leptoquarks and charged Higgs bosons, as of today,
no additional fundamental particles have been unquestionably discovered and confirmed through
experiments. Each type of particle has an associated antiparticle with the same mass but opposite
electric charge. Some neutral particles, such as photons, are their own antiparticles.

Standard Model of Elementary Particles
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Figure 1.1: Elementary particles in the SM with information about their masses, charges, and spins [4].

In the SM, there are three generations of quarks and leptons, each with a spin of 1/2, as depicted
in the first three columns of Fig. 1.1. Leptons encompass charge-neutral neutrinos and charged
leptons, which carry one unit of electric charge. In contrast, the electric charges of quarks are not
integers. The up-type quarks have a charge of 2/3 and consist of three flavors: up, charm, and top.
The remaining three flavors constitute the down-type quarks, encompassing down, strange, and
bottom, each with a charge of −1/3.

The existence of quarks was discovered through deep inelastic scattering, an extension of
Rutherford scattering to much higher energies, resulting in a much finer resolution of the
components of nuclei. Unlike Rutherford scattering, deep inelastic scattering shows the absorption
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1.1 Elementary particles in the Standard Model

of kinetic energy by target nuclei, the generation of new hadrons, and even the complete
fragmentation of the target nuclei. These observations provide clear evidence of the internal
point-like constituents, namely quarks, of protons and neutrons.

In contrast to leptons, quarks engage in the strong interaction and are characterized by unique
color charges—specifically, red, green, and blue. Similarly, an antiquark can carry one of three
anticolors. However, due to color confinement, color-charged particles cannot be isolated and
therefore cannot be directly observed. In the quark model, there are two primary ways to form
colorless particles. One involves combining a quark and an antiquark with opposite color charges,
resulting in a particle known as a meson. For example, 𝐵0 mesons consist of a 𝑑-quark and a
�̄�-quark. Additionally, three quarks or antiquarks with entirely different colors can combine to
form a stable particle called a baryon. For instance, the proton is a baryon composed of two
𝑢-quarks and one 𝑑-quark.

Beyond the conventional quark model, the SM allows for the existence of many exotic states,
such as the 𝑞𝑞𝑞𝑞 (tetraquark) and 𝑞𝑞𝑞𝑞𝑞 (pentaquark) systems. The experimental discovery of
these states validates the theory of fundamental particles and enhances physicists’ understanding
of how quarks bind together to form composite particles [5, 6].

Charged leptons consist of the electron, muon, and tau, each with distinct properties primarily
driven by their mass difference. The electron, with a mass of 0.511 MeV/𝑐2, stands out as the
lightest and the only stable charged elementary particle in the SM. Additionally, it is the first
discovered elementary particle. In 1897, J. J. Thomson observed the deflection of cathode rays in
magnetic and electric fields. By analyzing the magnitude of the electrical and magnetic deflection,
the ratio of mass to charge was calculated. This calculation provided clear evidence for the
discovery of the electron, marking a significant milestone in the history of particle physics.

Compared to electrons, muons are approximately 200 times more massive [7]. Their relatively
long lifetime of 2.2 × 10−6 seconds allows them to be observed by particle detectors in collision
experiments. However, measurements of the muon’s magnetic moment at the Brookhaven
laboratory have revealed a puzzling 3.7𝜎 deviation from SM predictions, suggesting gaps in our
understanding of muons’ behavior [8, 9].

The tau lepton, the heaviest among the charged leptons with a mass of 1.777 GeV, plays
a crucial role in conducting precise tests of the flavor sector of the SM and determining its
parameters. Leptonic tau decays shed light on the structure of weak currents and the universality
of the couplings between tau leptons and 𝑊 bosons, i.e., all leptons in the SM have identical
interactions with 𝑊 bosons. Meanwhile, hadronic tau decays provide opportunities to study
low-energy effects of the strong interaction under exceptionally clean conditions. For a more
comprehensive examination of tau-related physics, one can refer to Ref. [10].

In each generation, there is also a charge-neutral lepton known as a neutrino. Many aspects
of neutrinos are still unknown to date because they travel at speeds close to that of light and
rarely interact with other particles. However, this elusive nature makes them valuable tools for
investigating phenomena that cannot be directly observed, such as probing the interior of the
Sun or studying the early universe. Neutrinos are also considered as one of the messengers from
distant astrophysical sources, offering insights into various astrophysical processes [11, 12].

All the particles discussed so far belong to the category of fermions, characterized by their
half-integer spins in quantum physics. In contrast, particles with integer spins are classified as
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Chapter 1 Introduction

bosons. Within the SM, the gauge bosons encompass gluons, photons, 𝑍 bosons, and𝑊 bosons.
These bosons, all with a spin of 1, serve as force carriers responsible for the strong interaction,
electromagnetic interaction, and weak interaction (both 𝑍 and𝑊 bosons), respectively.

The Higgs boson is the only scalar boson in the SM. Its existence was confirmed in 2012
through experiments conducted by ATLAS and CMS experiments at CERN’s Large Hadron
Collider (LHC). This landmark discovery led to the awarding of the 2013 Nobel Prize in Physics
to François Englert and Peter W. Higgs for their theoretical predictions of the Higgs mechanism.
This mechanism fundamentally explains the origin of mass for elementary particles.

1.2 Interactions in the Standard Model

The physical properties of the microscopic world, including atoms and subatomic particles,
differ significantly from the everyday macroscopic world. Quantum mechanics is developed as a
framework to describe these microscopic phenomena, including solutions to challenges like the
black-body radiation problem and the photoelectric effect. A fundamental concept in quantum
mechanics is the wave function, which associates a probability amplitude with each point in
spacetime to describe particles, such as electrons.

However, quantum mechanics alone falls short in describing certain phenomena, particularly
particle annihilation and production, which are commonly observed in experiments of electron-
positron and proton-proton collisions, where particles are accelerated to speeds approaching
that of light. To explain these phenomena, quantum field theory was established based on the
principles of quantum mechanics, classical field theory, and special relativity [13, 14].

In quantum field theory, particles are represented as excited states of their respective underlying
quantum fields. The interactions between particles are described using a mathematical framework
known as the Lagrangian, which is also used by classical field theory, or are illustrated through
Feynman diagrams, which are derived using the principles of perturbation theory in quantum
mechanics.

1.2.1 Electromagnetic interaction

The theory that describes the electromagnetic force at the microscopic scale is known as quantum
electrodynamics (QED). The Lagrangian density for QED is expressed as

L = −1
4
𝐹`a𝐹

`a + 𝑖�̄�𝛾`𝐷`𝜓 − 𝑚�̄�𝜓, (1.1)

where 𝐹`a = 𝜕`𝐴a − 𝜕a𝐴` represents the field strength tensor for the massless spin-1 field 𝐴`,
and 𝐷`𝜓 = 𝜕`𝜓 + 𝑖𝑒𝐴`𝜓 describes the covariant derivative for a particle with electric charge
𝑒 in the presence of the field 𝐴`. Here, 𝜓 and �̄� = 𝜓†𝛾0 denote the Dirac fields associated
with spin-half particles, 𝛾` are Dirac matrices, and 𝑚 is the mass of the spin-half particle. The
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1.2 Interactions in the Standard Model

Lagrangian is invariant under local gauge transformations

𝐴` → 𝐴′
` = 𝐴` + 𝜕`\ (𝑥), (1.2)

𝜓 → 𝜓′ = 𝑒−𝑖𝑒\ (𝑥 )𝜓. (1.3)

Expanding the Lagrangian density as

L = −1
4
𝐹`a𝐹

`a + �̄�
(
𝑖𝛾`𝜕` − 𝑚

)
𝜓 − 𝑒�̄�𝛾`𝜓𝐴`, (1.4)

we identify the interaction term −𝑒�̄�𝛾`𝜓𝐴` for the Dirac and massless spin-1 fields.

1.2.2 Electroweak unification

The transformation described in Eq. (1.3) corresponds to the U(1) group in mathematics. The
invariance of the Lagrangian in Eq. (1.1) under U(1) transformations ensures that when charged
fermions, such as electrons, undergo these gauge transformations, their interaction with the
electromagnetic field remains unaltered. The modification of electromagnetic field effectively
compensates for any changes in their local transformations, resulting in no observable difference in
physical outcomes. This fundamental property of U(1) gauge symmetry underlies the conservation
of electric charge.

Symmetry also plays a fundamental role in understanding the weak interaction. The SU(2)
group is a fundamental element in the description of the weak interaction, as it allows the mixing
of different particle flavors within the same multiplet. This property of SU(2) provides a natural
framework for explaining flavor-changing processes.

We observe that weak gauge bosons, quarks, and charged leptons have mass. However, directly
introducing a mass term into the Lagrangian would result in the breaking of the local SU(2)
symmetry. To overcome this issue, the concept of spontaneous symmetry breaking (SSB) was
introduced. In SSB, the global SU(2)×U(1) symmetry spontaneously breaks down, while the
local SU(2)×U(1) symmetry remains preserved via the Higgs mechanism, which serves as the
foundation of electroweak unification.

The Lagrangian density for the interactions between gauge bosons and the Higgs boson 𝐻 in
electroweak unification is expressed as

L = −1
4
𝐹𝑎`a𝐹

𝑎,`a − 1
4
𝐽`a𝐽

`a + (𝐷`𝐻)†(𝐷`𝐻) + 𝑚2𝐻†𝐻 − _(𝐻†𝐻)2. (1.5)

Here, the covariant derivative is defined as

𝐷` = 𝜕` − 𝑖𝑔𝐴𝑎`𝜏𝑎 −
1
2
𝑖𝑔′𝐵`, (1.6)

where 𝑔 and 𝑔′ are coupling constants associated with the SU(2) and U(1) gauge symmetries,
respectively, and 𝜏𝑎 denotes the three generators of the SU(2) group, which are proportional to
the 2×2 Pauli matrices. In addition, 𝐹𝑎`a and 𝐽`a are the SU(2) and U(1) gauge field tensors,
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Chapter 1 Introduction

respectively, defined as

𝐹𝑎`a = 𝜕`𝐴
𝑎
a − 𝜕a𝐴𝑎` + 𝑔Y𝑎𝑏𝑐𝐴𝑏`𝐴𝑐a , (1.7)

𝐽`a = 𝜕`𝐵a − 𝜕a𝐵`, (1.8)

where Y𝑎𝑏𝑐 represents the Levi-Civita tensor, and 𝐴𝑎` and 𝐵` are gauge boson fields, which we
will discuss in more details later.

In Eq. (1.5), the last two terms correspond to the Higgs potential

𝑉 (𝐻) = −𝑚2 |𝐻 |2 + _ |𝐻 |4, (1.9)

which induces a non-zero vacuum expectation value at

𝐻 |min =
1√
2

(
0
𝜐

)
, with 𝜐 =

𝑚√
_
. (1.10)

The non-zero vacuum expectation of the Higgs field is responsible for the masses of the gauge
bosons. This becomes evident when we expand the covariant derivative acting on the Higgs field

��𝐷`𝐻��2 =

�����
[
𝜕` −

𝑖

2

(
𝑔𝐴3

` + 𝑔′𝐵`
√

2𝑔𝑊+
`√

2𝑔𝑊−
` −𝑔𝐴3

` + 𝑔′𝐵`

)
1√
2

(
0 𝜐

) ] �����
2

(1.11)

=
1
4
𝑔2𝜐2𝑊+

`𝑊
−` + 1

8
𝜐2

(
𝐴3
` 𝐵`

) (
𝑔2 −𝑔𝑔′

−𝑔𝑔′ 𝑔′2

) (
𝐴3
`

𝐵`

)
,

where we have defined

𝑊± =
𝐴1
` ∓ 𝑖𝐴2

`√
2

. (1.12)

In Eq. (1.11), the masses of𝑊± bosons are explicit. To diagonalize the masses for the 𝐵` and
𝐴3
` fields, we rotate them as

{
𝐵` = cos \𝑤𝐴` − sin \𝑤𝑍`,

𝐴3
` = sin \𝑤𝐴` + cos \𝑤𝑍` .

(1.13)

This rotation defines the electroweak mixing angle \𝑤 (also known as Weinberg angle), with its
trigonometric components

sin \𝑤 =
𝑔′√︃

𝑔2 + 𝑔′2
, cos \𝑤 =

𝑔√︃
𝑔2 + 𝑔′2

. (1.14)

With these definitions, Eq. (1.11) can be elegantly expressed as

L =
1
4
𝑔2𝜐2𝑊+

`𝑊
−` + 1

8
𝜐2(𝑔2 + 𝑔′2)𝑍`𝑍` . (1.15)
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1.2 Interactions in the Standard Model

This succinctly captures the essence of the Higgs mechanism, providing a clear explanation for
why the𝑊± and 𝑍 bosons acquire mass, while the photon 𝐴` field remains massless.

In the fermion sector, we have three generations of SU(2) doublet pairs consisting of left-handed
leptons and quarks:

𝐿𝑖 =

(
a𝑒𝐿
𝑒𝐿

)
,

(
a`𝐿
`𝐿

)
,

(
a𝜏𝐿
𝜏𝐿

)
, 𝑄𝑖 =

(
𝑢𝐿
𝑑𝐿

)
,

(
𝑐𝐿
𝑠𝐿

)
,

(
𝑡𝐿
𝑏𝐿

)
. (1.16)

The right-handed fermions are singlets, and they are denoted as follows

𝑢𝑖𝑅 = 𝑢𝑅, 𝑐𝑅, 𝑡𝑅, (1.17)
𝑑𝑖𝑅 = 𝑑𝑅, 𝑠𝑅, 𝑏𝑅, (1.18)
𝑙𝑖𝑅 = 𝑒𝑅, `𝑅, 𝜏𝑅 . (1.19)

The Yukawa coupling describes the interaction between a (pseudo)scalar field and a Dirac
field. It was initially introduced by Hideki Yukawa to explain the nuclear force between nucleons
mediated by pions. Later, it found broader applications in elucidating the origin of fermion masses
within the SM.

The Yukawa Lagrangian density is expressed as

LYukawa = −𝑔𝐿𝑖 �̄�𝑖𝐻𝑒𝑖𝑅 − 𝑔𝑑𝑖 𝑗�̄�𝑖𝐻𝑑 𝑗𝑅 − 𝑔𝑢𝑖 𝑗�̄�𝑖�̃�𝑢 𝑗𝑅 + ℎ.𝑐. , (1.20)

where
�̃� = 𝑖𝜎2𝐻

∗, (1.21)

and ℎ.𝑐. stands for the Hermitian conjugate terms.
After electroweak symmetry breaking, the complex Higgs field can be expressed, without loss

of generality, as

𝐻 (𝑥) = 1√
2

(
0

𝜐 + ℎ(𝑥)
)
, (1.22)

where ℎ(𝑥) is a real scalar filed.
By substituting this expression into Eq. (1.20), the Lagrangian density is expanded as follows

LYukawa = − 𝑔𝐿𝑖√
2

(
ā𝑖𝐿 𝑙𝑖𝐿

) (
0

𝜐 + ℎ
)
𝑙𝑖𝑅 −

𝑔𝑑𝑖 𝑗√
2

(
�̄�𝑖𝐿 𝑑𝑖𝐿

) (
0

𝜐 + ℎ
)
𝑑
𝑗
𝑅 (1.23)

−
𝑔𝑢𝑖 𝑗√

2
(
�̄�𝑖𝐿 𝑑𝑖𝐿

) (
𝜐 + ℎ

0

)
𝑢
𝑗
𝑅 + ℎ.𝑐.

= − 𝑔𝐿𝑖√
2
𝑙𝑖𝐿𝑙

𝑖
𝑅 (𝜐 + ℎ) −

𝑔𝑑𝑖 𝑗√
2
𝑑𝑖𝐿𝑑

𝑗
𝑅 (𝜐 + ℎ) −

𝑔𝑢𝑖 𝑗√
2
�̄�𝑖𝐿𝑢

𝑗
𝑅 (𝜐 + ℎ) + ℎ.𝑐. .

Expanding it further, we obtain additional terms that involve the ℎ field, which represent the
couplings of fermions to the Higgs boson. Additionally, we find terms that include the non-zero
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Chapter 1 Introduction

vacuum expectation value of the Higgs field, which are the origins of quark masses,

Lmass = −𝜐
𝑔𝑑𝑖 𝑗√

2
𝑑𝑖𝐿𝑑

𝑗
𝑅 − 𝜐

𝑔𝑢𝑖 𝑗√
2
�̄�𝑖𝐿𝑢

𝑗
𝑅 + ℎ.𝑐. . (1.24)

Two diagonal matrices 𝑀𝑑 and 𝑀𝑢 play a crucial role in diagonalizing the quark mass matrices.
They are related to the Yukawa coupling matrices, 𝑔𝑑 and 𝑔𝑢, through the following relations

𝑔𝑑 = 𝑈𝑑𝑀𝑑𝐾
†
𝑑 , 𝑔𝑢 = 𝑈𝑢𝑀𝑢𝐾

†
𝑢, (1.25)

with the unitary matrices𝑈𝑑 ,𝑈𝑢, 𝐾𝑑 and 𝐾𝑢.
This implies that by performing a change of basis for the right-handed quarks represented by

𝑑𝑅 → 𝐾𝑑𝑑𝑅 and 𝑢𝑅 → 𝐾𝑢𝑢𝑅, as well as for the left-handed quarks represented by 𝑢𝐿 → 𝑈𝑢𝑢𝐿
and 𝑑𝐿 → 𝑈𝑑𝑑𝐿 , we can observe a simplification in the mass terms, which become

Lmass = −𝑚𝑑𝑗 𝑑 𝑗𝐿𝑑
𝑗
𝑅 − 𝑚𝑢𝑗 �̄� 𝑗𝐿𝑢

𝑗
𝑅 + ℎ.𝑐. , (1.26)

where 𝑚𝑑𝑗 and 𝑚𝑢𝑗 are the diagonal elements of 𝜐√
2
𝑀𝑑 and 𝜐√

2
𝑀𝑢, respectively.

Next, let us delve into the interactions between fermions and gauge bosons, which play an
important role in semileptonic 𝐵 decays. At the leading order, the 𝑏 → 𝑐 transition is primarily
governed by the coupling of 𝑊± bosons, which subsequently decay into charged leptons and
neutrinos. These gauge interactions are expressed as

L = 𝑖 �̄�𝑖 ( /𝜕 − 𝑖𝑔 /𝐴𝑎𝜏𝑎 − 𝑖𝑔′𝑌𝐿 /𝐵)𝐿𝑖 + 𝑖�̄�𝑖 ( /𝜕 − 𝑖𝑔 /𝐴𝑎𝜏𝑎 − 𝑖𝑔′𝑌𝑄 /𝐵)𝑄𝑖 (1.27)

+ 𝑖�̄�𝑖𝑅 ( /𝜕 − 𝑖𝑔′𝑌𝑢 /𝐵)𝑢𝑖𝑅 + 𝑖𝑑𝑖𝑅 ( /𝜕 − 𝑖𝑔′𝑌𝑑 /𝐵)𝑑𝑖𝑅
+ 𝑖𝑙𝑖𝑅 ( /𝜕 − 𝑖𝑔′𝑌𝑒 /𝐵)𝑙𝑖𝑅

where /𝜕 = 𝛾`𝜕`, and the same notation applies to /𝐴 and /𝐵. The symbols 𝑌𝐿 and 𝑌𝑄 represent the
hypercharges for the left-handed fields, while 𝑌𝑢, 𝑌𝑑 , and 𝑌𝑒 denote the right-handed fields.

These hypercharges are determined based on the observed electric charges of leptons and
quarks. For instance, one can isolate the coupling of the neutral gauge bosons 𝐴3

` and 𝐵` to
leptons in Eq. (1.27), and then transform to the physical 𝐴` - 𝑍` basis. In this basis, the interaction
of photons with leptons is described as

L =

(
−1

2
+ 𝑌𝐿

)
𝑒𝑖𝐿 /𝐴𝑒𝑖𝐿 +

(
1
2
+ 𝑌𝐿

)
ā𝑖𝐿 /𝐴a𝑖𝐿 + 𝑌𝑒𝑙𝑖𝑅 /𝐴𝑙𝑖𝑅 . (1.28)

Given the conventional definition of electrons having a charge of -1, we determine that 𝑌𝐿 = −1
2

and 𝑌𝑒 = −1. The former requirement results in neutral neutrinos, which is consistent with
observed phenomena in nature. Similar considerations are applied to quarks, taking into account
that the up quark has a charge of 2

3 and the down quark has a charge of − 1
3 . This leads us to the

values 𝑌𝑄 = 1
6 , 𝑌𝑢 = 2

3 , and 𝑌𝑑 = − 1
3 .

Note that the gauge bosons originally interact with quarks in the flavor basis. In this basis,
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1.2 Interactions in the Standard Model

quarks from different generations are not mixed

Lflavor-basis =
(
�̄�𝐿 𝑑𝐿

) 𝑖 
𝑖 /𝜕 + 𝛾` ©

«
𝑔′

6 𝐵` +
𝑔
2 𝐴

3 𝑔√
2
𝑊+
`

𝑔√
2
𝑊−
`

𝑔′

6 𝐵` −
𝑔
2 𝐴

3
`

ª®
¬

(
𝑢𝐿
𝑑𝐿

) 𝑖
(1.29)

+ �̄�𝑖𝑅 (𝑖 /𝜕 + 𝑔′
2
3
/𝐵)𝑢𝑖𝑅 + 𝑑𝑖𝑅 (𝑖 /𝜕 − 𝑔′

1
3
/𝐵)𝑑𝑖𝑅 .

When we rotate the quark fields to the mass basis, we observe that the couplings of the
right-handed quarks to the 𝐵` field remain unaffected. The same applies to the interactions
between left-handed quarks and both neutral gauge fields 𝐵` and 𝐴3

`, as they do not mix up- and
down-type flavors. It becomes evident that only the coupling to𝑊±

` is sensitive to this rotation. In
the mass basis, the interaction of the𝑊± bosons with quarks reads

L =
𝑒√

2 sin \𝑤

[
𝑊+
`�̄�
𝑖
𝐿𝛾

`𝑉 𝑖 𝑗𝑑
𝑗
𝐿 +𝑊−

` 𝑑
𝑖
𝐿𝛾

` (𝑉†)𝑖 𝑗𝑢 𝑗𝐿
]
, (1.30)

where we have defined the Cabibbo-Kobayashi-Maskawa (CKM) matrix

𝑉 = 𝑈†
𝑢𝑈𝑑 = ©

«
𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏
𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏
𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏

ª®
¬
. (1.31)

These matrix elements are complex numbers, representing mixing angles and phases in the quark
sector.

Moreover, the CKM matrix is unitary, and is typically parameterized using three Euler angles
\12, \23, and \13, along with one CP-violating phase 𝛿13 as follows

𝑉 =
©«
1 0 0
0 cos \23 sin \23
0 − sin \23 cos \23

ª®¬
©«

cos \13 0 sin \13𝑒
𝑖 𝛿

0 1 0
− sin \13 0 cos \13

ª®¬
(1.32)

× ©
«

cos \12 sin \12 0
− sin \12 cos \12 0

0 0 1

ª®
¬

=
©
«

𝑐12𝑐13 𝑠12𝑐13 𝑠13𝑒
−𝑖 𝛿

−𝑠12𝑐23 − 𝑐12𝑠23𝑠13𝑒
𝑖 𝛿 𝑐12𝑐23 − 𝑠12𝑠23𝑠13𝑒

𝑖 𝛿 𝑠23𝑐13
𝑠12𝑠23 − 𝑐12𝑐23𝑠13𝑒

𝑖 𝛿 −𝑐12𝑠23 − 𝑠12𝑐23𝑠13𝑒
𝑖 𝛿 𝑐23𝑐13

ª®®
¬
,

where 𝑐𝑖 𝑗 = cos \𝑖 𝑗 and 𝑠𝑖 𝑗 = sin \𝑖 𝑗 .

The SM does not predict the numerical values of the matrix elements. Experimental
measurements reveal that the values of the mixing angles are relatively small, satisfying
𝑠13 ≪ 𝑠23 ≪ 𝑠12 ≪ 1. To approximate these small values, the Wolfenstein parametriza-
tion is commonly employed. In this parametrization, the CKM matrix can be expressed in terms
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of _ = sin \12 as follows

|𝑉 | ≈
©«
1 − _2

2 _ _3

−_ 1 − _2

2 _2

_3 _2 1

ª®®¬
+ O(_4). (1.33)

The unitarity of the CKM matrix is an essential requirement in the SM due to its construction
for three generations of flavors. The presence of non-SM physics could break the unitarity. For
example, if a fourth generation of quarks were to exist in nature, the CKM matrix is not necessarily
be unitary. Therefore, examining the unitarity of this matrix is a valuable tool in the search for
physics beyond the SM.

Unitarity imposes the requirement that both the rows and columns of the CKM matrix must be
orthonormal. This condition gives rise to a set of equations, including𝑉𝑢𝑑𝑉

∗
𝑢𝑏+𝑉𝑐𝑑𝑉∗

𝑐𝑏+𝑉𝑡𝑑𝑉∗
𝑡𝑏 = 0,

which corresponds to the unitarity triangle illustrated in Fig. 1.2. There are five additional similar
equations, expressed in a general form as

∑
𝑖 𝑉𝑖 𝑗𝑉

∗
𝑖𝑘 = 𝛿 𝑗𝑘 .

1

���𝑉𝑢𝑑𝑉∗
𝑢𝑏

𝑉𝑐𝑑𝑉
∗
𝑐𝑏

���
��� 𝑉𝑡𝑑𝑉∗

𝑡𝑏

𝑉𝑐𝑑𝑉
∗
𝑐𝑏

���

𝛾

𝛼

𝛽

Figure 1.2: Illustration of the unitarity triangle in the complex plane, where the angles 𝛼, 𝛽, and 𝛾 are
opposite to the sides 1,

���𝑉𝑢𝑑𝑉∗
𝑢𝑏

𝑉𝑐𝑑𝑉
∗
𝑐𝑏

��� and
��� 𝑉𝑡𝑑𝑉∗

𝑡𝑏

𝑉𝑐𝑑𝑉
∗
𝑐𝑏

���, respectively.

With the Lagrangian density described in Eq. (1.29) and Eq. (1.30), we find the Feynman rules
governing the interactions between fermions and gauge bosons. These rules are presented in
Fig. 1.3 and Fig. 1.4 along with their corresponding Feynman diagrams.

1.2.3 Strong interaction

Quantum Chromodynamics (QCD) is a SU(3) gauge field theory for describing the strong
interactions among quarks and gluons. The Lagrangian governing QCD is

LQCD =
∑︁
𝑞

�̄�𝑞,𝑎 (𝑖/𝛾𝛿𝑎𝑏 − 𝑔𝑠𝛾`𝑡𝐶𝑎𝑏A𝐶
` − 𝑚𝑞𝛿𝑎𝑏)𝜓𝑞,𝑏 −

1
4
𝐹𝐴`a𝐹

𝐴`a , (1.34)
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𝑢𝑖

𝑑𝑖

𝑊−

𝑖
𝑔

2
√

2
𝑉∗
𝑖 𝑗𝛾

` (1 − 𝛾5)

a𝑖

𝑙𝑖

𝑊−

𝑖
𝑔

2
√

2
𝛾` (1 − 𝛾5)

Figure 1.3: Feynman diagram and Feynman rules for the interactions between fermions and𝑊± bosons,
where 𝑢𝑖 , 𝑑𝑖 , and 𝑙𝑖 represent up-type quarks, down-type quarks, and charged leptons, respectively.

𝑙𝑖

𝑙𝑖

𝑍0

𝑖
𝑔

4 cos \ 𝛾
` [−(1 − 4 sin2 \) + 𝛾5]

a𝑖

a𝑖

𝑍0

𝑖
𝑔

4 cos \ 𝛾
` (1 − 𝛾5)

𝑢𝑖

𝑢𝑖

𝑍0

𝑖
𝑔

4 cos \ 𝛾
`

[(
1 − 8

3 sin2 \
)
− 𝛾5

]

𝑑𝑖

𝑑𝑖

𝑍0

𝑖
𝑔

4 cos \ 𝛾
`

[
−

(
1 − 4

3 sin2 \
)
+ 𝛾5

]

𝑓

𝑓

𝛾

𝑖𝑄𝛾`

Figure 1.4: Feynman diagram and Feynman rules for the interactions betwwen fermions and charge-neutral
bosons, where 𝑢𝑖 , 𝑑𝑖 , and 𝑙𝑖 represent up-type quarks, down-type quarks, and charged leptons, respectively,
and 𝑓 denotes charged fermions.
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𝑞

𝑞

𝑔

𝑔

𝑔

𝑔

𝑔

𝑔

𝑔

𝑔

Figure 1.5: Feynman diagram representing the interaction in QCD.

where 𝛿𝑎𝑏, 𝑡𝐶𝑎𝑏, and 𝑔𝑠 correspond to the Kronecker delta symbol, Gell-Mann matrices, and strong
coupling constant, respectively. The quark field spinors are represented by 𝜓𝑞,𝑎 with the flavor
index denoted as 𝑞 and the color index as 𝑎, ranging from one to three. The gluon fields, A𝐶 , are
associated with eight possible colors, labeled by 𝐶, ranging from one to eight. The gluon-gluon
interactions are encoded in the field tensor 𝐹𝐴`a , defined as

𝐹𝐴`a = 𝜕`A𝐴
a − 𝜕aA𝐴

` − 𝑔𝑠 𝑓𝐴𝐵𝐶A𝐵
`A𝐶

a . (1.35)

Additionally, the Gell-Mann matrices, 𝑡𝐴, obey the commutation relations

[𝑡𝐴, 𝑡𝐵] = 𝑖 𝑓𝐴𝐵𝐶 𝑡𝐶 . (1.36)

Here, the 𝑓𝐴𝐵𝐶 represents the structure constants of the SU(3) group, characterizing the algebraic
properties of the color charge.

This comprehensive framework serves as the foundation for our understanding of the strong
force within the domain of QCD. The interaction vertices in QCD are visually represented by
Feynman diagrams, as depicted in Fig. 1.5.

1.3 Open questions in particle physics

Undoubtedly, the SM is a powerful framework that successfully explains the majority of phenomena
observed in collision experiments. However, it is not omnipotent, because there are still several
questions related to experimental observations unaddressed. In this section, we will highlight
some of the lingering questions in the field of particle physics.

• In the SM, there are a total of 19 parameters, such as the masses of fermions and the
Higgs boson, the strengths of fundamental forces, and several mixing angles that govern
interactions between different types of particles. However, the SM does not provide any
predictions or explanations regarding the specific values of these parameters; they can only
be determined through experimental observations.
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• Neutrinos present a famous phenomenon known as neutrino oscillation, where a neutrino
initially generated in a specific flavor state can later be observed in a different flavor state.
This phenomenon provides compelling evidence that neutrinos are not massless particles,
which further raises a fundamental question: what mechanism is responsible for neutrino
masses?

Another compelling question concerning neutrinos is whether they are Majorana fermions,
particles that are their own antiparticles, or Dirac fermions, which are distinct from their
antiparticles. This question probes the fundamental nature of neutrinos and has significant
implications for our understanding of particle physics.

• The prevailing understanding of the early universe, particularly the Big Bang theory,
suggests that matter and antimatter should have been produced in equal quantities during
the initial stages. However, a puzzling mystery arises when we observe the present-day
universe: from tiny life forms on Earth to vast celestial bodies, nearly all what we observe
are made up of ordinary matter, and there is a conspicuous absence of antimatter.

Although the CKM mechanism introduces a source of charge-parity (CP) violation, it
is unable to account for the magnitude of the matter-antimatter asymmetry observed in
the universe. The primary reason for this significant asymmetry, known as the “baryon
asymmetry problem”, still remains an open question in particle physics and cosmology.

• The measured motions of stars in galaxies suggest the presence of additional matter, known
as dark matter, which exerts gravitational forces. Dark matter does not interact with
electromagnetic radiation, making it challenging to detect. Weakly interacting massive
particles (WIMPs) are hypothetical particles that are one of the proposed candidates for
dark matter [15, 16]. Experimental efforts to detect WIMPs include the search for products
resulting from WIMPs annihilation, such as gamma rays, neutrinos, and cosmic rays in
nearby galaxies and galaxy clusters. Direct detection experiments designed to measure the
collision of WIMPs with nuclei in the laboratory, as well as attempts to directly produce
WIMPs in colliders, such as the LHC.

• In the 1990s, astronomers observed that distant galaxies were moving away from Earth
at an accelerating rate, indicating an expansion of the universe. Initially, due to the
gravitational pull of matter, this expansion was expected to slow down. To account for
the observed acceleration, scientists proposed a mysterious energy known as dark energy,
which permeates all of space. However, our understanding of this energy remains limited.

These pieces of evidence strongly suggest that the SM is not the ultimate explanation for all
phenomena in the universe. Consequently, it is crucial to thoroughly investigate any anomalies
observed in experiments, rule out the possibility of experimental errors, and validate signals
pointing towards physics beyond the SM. This approach forms the cornerstone of further
advancements in theoretical frameworks.

13



Chapter 1 Introduction

1.4 Anomalies related to �̄�0
→ 𝑫∗+ℓ−�̄�ℓ decays

There exist two important anomalies related to �̄�0 → 𝐷∗+ℓ− āℓ decays that we will investigate
in this thesis. One is the discrepancy in the measured |𝑉𝑐𝑏 | value using inclusive and exclusive
semileptonic 𝐵 decays. The other concerns a potential violation of lepton flavor universality.
These anomalies will be discussed further in the remaining section.

1.4.1 Tension of |𝑽𝒄𝒃 | value between exclusive and inclusive determinations

The |𝑉𝑐𝑏 | value can be determined through two distinct approaches. Exclusive determinations
involve extracting |𝑉𝑐𝑏 | from specific decay channels, such as �̄�0 → 𝐷∗+ℓ− āℓ , �̄�

0 → 𝐷+ℓ− āℓ ,
and 𝐵𝑠 → 𝐷 (∗)

𝑠 `a decays. In contrast, inclusive determinations are based on all relevant decay
modes. For example, the determination of |𝑉𝑐𝑏 | inclusively using 𝐵 → 𝑋𝑐ℓāℓ processes, where
𝑋𝑐 represents a hadronic system containing a charm quark.

It is important to note that inclusive measurements cover a wide range of decay channels,
including decays like the 𝐵 → 𝐷∗∗ℓāℓ process that are not used in exclusive |𝑉𝑐𝑏 | determinations.
As such, the inclusive determination cannot be considered as a combination of all exclusively
measured channels.

The tension between the obtained values of |𝑉𝑐𝑏 | and |𝑉𝑢𝑏 | (collectively referred to as |𝑉𝑥𝑏 |)
from exclusive and inclusive determinations has been a long-standing puzzle. As shown in Fig. 1.6,
Ref. [17] averages exclusive |𝑉𝑥𝑏 | measurements, including the result of |𝑉𝑢𝑏/𝑉𝑐𝑏 | provided by
the LHCb collaboration, and compare the averages with the values obtained from inclusive modes.
A significant discrepancy at the 3𝜎 level is evident.

The observed tension between exclusive and inclusive determinations of |𝑉𝑐𝑏 | can be attributed
to several factors. Firstly, it is worth noting that both methods rely on theoretical inputs. Exclusive
determinations are based on theoretical models, and different model choices can yield different
values for |𝑉𝑐𝑏 |. Moreover, in exclusive determinations, theoretical inputs are required to
disentangle the form factors normalization from |𝑉𝑐𝑏 |. In contrast, inclusive decays involve the
operator product expansion, heavy quark expansion, and the expansion of the strong coupling
constant 𝛼𝑠, which can introduce their own theoretical uncertainties.

Secondly, statistical fluctuations and systematic uncertainties, including factors like detector
calibration, acceptance, and background modeling, can impact the precision of experimental
measurements and contribute to the observed tension.

To address this tension, a collaborative effort from both the theoretical and experimental
communities is crucial. Researchers need to work together to refine theoretical models, reduce
uncertainties, and improve the precision of experimental measurements. This collaborative
approach is essential for resolving the tension and obtaining more accurate values for |𝑉𝑐𝑏 |.
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Figure 1.6: Comparison of the resulting |𝑉𝑥𝑏 | values from exclusive and inclusive determinations (taken
from Ref. [17]). The data point with an error bar represents the value extracted from the inclusive modes,
exhibiting a significant deviation from the averages of the exclusive determinations, as indicated by the red
shaded area.

1.4.2 Possible violation of lepton flavor universality

In the SM, the electroweak coupling of the gauge bosons 𝑍 and 𝑊 to leptons 𝑒, `, and 𝜏 is
expected to be independent of the lepton flavor, a principle known as lepton flavor universality. To
search for possible violations of this universality, experiments often measure ratios or differences
of observables involving different lepton flavors. For instance, the ratio

𝑅(𝐷 (∗) ) = B(𝐵 → 𝐷 (∗)𝜏a)
B(𝐵 → 𝐷 (∗)ℓa)

, with ℓ = 𝑒, `, (1.37)

provides a sensitive probe for physics beyond the SM in the context of 𝑏 → 𝑐ℓa and 𝑏 → 𝑐𝜏a
transitions. When these experimental measurements are averaged, they show a discrepancy of
around 3𝜎 from the SM predictions, as illustrated in Fig. 1.7. The deviations of 𝑅(𝐷 (∗) ) from
unity are mainly attributed to the fact that the tau lepton mass is significantly greater than the
masses of electrons and muons.

In response to the observed tension in 𝑅(𝐷 (∗) ), various extensions to the SM have been
proposed. These extensions include supersymmetry (SUSY) [18, 19], two-Higgs-doublet models
(2HDM) [20, 21], and the proposal of leptoquarks [22]. These theoretical frameworks introduce
new particles, interactions, and parameters that can potentially explain the deviations from SM
predictions in lepton flavor universality observables.

In addition, uncertainties in the form factors that describe the hadronic structure of particles
involved in these decays, as well as statistical fluctuations and experimental systematics, can
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Figure 1.7: Comparison of the experimentally measured 𝑅(𝐷 (∗) ) with the SM prediction (represented by
the black data point with an error bar). The plot is sourced from Ref. [17].

contribute to the 𝑅(𝐷 (∗) ) puzzle.
Anomalies are not limited to the comparison between the 𝜏 lepton and lighter leptons. A recent

investigation of lepton flavor universality within the light lepton flavors 𝑒 and ` has been conducted
in the context of semileptonic �̄�0 → 𝐷∗+ℓ− āℓ decays. This analysis re-examines the published
Belle experimental data [23], where the lepton angular asymmetry AFB is computed (see Sec. 2.4
and Sec. 9.2), along with the difference between the 𝑒 and ` channels: ΔAFB = A`

FB − A𝑒
FB.

Strikingly, the result reveals a 4𝜎 deviation of ΔAFB from the SM prediction [24], as depicted in
Fig. 1.8.

These observations pose a significant challenge to the SM, potentially signifying the presence
of new physics. It is of utmost importance to rigorously scrutinize the experimental setup and
investigate whether non-SM contributions might be influencing the outcomes of semileptonic 𝐵
decays.
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Figure 1.8: Illustration of ∼ 4𝜎 deviations observed in the re-interpretation of the Belle data compared to
the SM prediction for the ΔAFB observable. Data source: Ref. [24].
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CHAPTER 2

Theory of �̄�0
→ 𝑫∗+ℓ−�̄�ℓ decays

2.1 Form factors in �̄�0
→ 𝑫∗+ℓ−�̄�ℓ decays

The semileptonic 𝐵 meson decay amplitude is described by the matrix element of the weak
interaction,

M =
𝐺𝐹√

2
𝑉𝑐𝑏⟨𝐷∗(𝑝𝐷∗) |𝑐𝛾` (1 − 𝛾5)𝑏 |�̄�(𝑝𝐵)⟩

[
�̄�(𝑝ℓ)𝛾` (1 − 𝛾5)a(𝑝aℓ )

]
, (2.1)

where �̄�(𝑝ℓ) and a(𝑝aℓ ) are Dirac spinors related to the charged lepton and neutrino, respectively,
𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3, and 𝐺𝐹 = 1.1663787 × 10−5 GeV−2(ℏ𝑐)3 is the Fermi constant.

While the leptonic matrix element is straightforward to calculate, the hadronic matrix element
includes nonperturbative QCD effects and cannot be computed from first principles. However, it
is possible to express the matrix element most generally in terms of tensor products of external
momenta, polarizations, and spins, multiplied by a set of Lorentz invariant amplitudes known as
form factors. These form factors effectively account for the nonperturbative QCD processes.

The hadronic matrix element of �̄�0 → 𝐷∗+ℓ− āℓ decays includes the vector and axial vector

b c

ν̄ℓ

ℓ

d̄ d̄

W−

B̄0 D∗+

Figure 2.1: The tree-level Feynman diagram for the �̄�0 → 𝐷∗+ℓ− āℓ decay.
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currents between the 𝐵 and 𝐷∗ states,

⟨𝐷∗(𝑝𝐷∗) |𝑐𝛾`𝑏 |�̄�(𝑝𝐵)⟩√
𝑚𝐵𝑚𝐷∗

= ℎ𝑉 Y
`a𝛼𝛽 𝜖∗a 𝑣

′
𝛼 𝑣𝛽 , (2.2)

⟨𝐷∗(𝑝𝐷∗) |𝑐𝛾`𝛾5𝑏 |�̄�(𝑝𝐵)⟩√
𝑚𝐵𝑚𝐷∗

= − 𝑖 ℎ𝐴1
(𝑤 + 1)𝜖∗` + 𝑖 ℎ𝐴2

(𝜖∗ · 𝑣)𝑣` (2.3)

+ 𝑖 ℎ𝐴3
(𝜖∗ · 𝑣)𝑣′`,

where 𝑣 = 𝑝𝐵/𝑚𝐵 and 𝑣′ = 𝑝𝐷∗/𝑚𝐷∗ are the four-velocities of 𝐵 and 𝐷∗ mesons, respectively,
with 𝑝𝐵 and 𝑝𝐷∗ denoting momenta of 𝐵 and 𝐷∗ mesons, and 𝑚𝐵 = 5.279 GeV/𝑐2 and
𝑚𝐷∗ = 2.010 GeV/𝑐2 denoting masses of 𝐵 and 𝐷∗ mesons, respectively. Further, 𝜖∗ and Y`a𝛼𝛽

represent the polarization of the 𝐷∗ meson and the Levi-Civita tensor, respectively.

The four form factors ℎ𝐴1
, ℎ𝐴2

, ℎ𝐴3
and ℎ𝑉 are functions of the squared four-momentum

transfer from the 𝐵 meson to the 𝐷∗ meson, written as 𝑞2 = (𝑝𝐵 − 𝑝𝐷∗)2. Alternatively, they can
also be expressed in terms of the variable 𝑤, which is the dot product of the four-velocities of 𝐵
and 𝐷∗ mesons and is related to 𝑞2 by the equation

𝑤 = 𝑣 · 𝑣′ = 𝑚2
𝐵 + 𝑚2

𝐷∗ − 𝑞2

2𝑚𝐵𝑚𝐷∗
. (2.4)

At 𝑤min = 1, which corresponds to 𝑞2
max = (𝑚2

𝐵 −𝑚2
𝐷∗)2, we reach the zero recoil point, where

the produced 𝐷∗ meson is at rest in the 𝐵 meson frame. In contrast, when 𝑞2 = 𝑚2
ℓ , it maximizes

the value of 𝑤:

𝑤max =
𝑚2
𝐵 + 𝑚2

𝐷∗

2𝑚𝐵𝑚𝐷∗
≈ 1.504. (2.5)

In the case of light leptons ℓ = 𝑒, `, the hadronic matrix element can be simplified to include
only the ℎ𝐴1

form factor along with two ratios,

𝑅1 =
ℎ𝑉
ℎ𝐴1

, 𝑅2 =
ℎ𝐴3

+ 𝑟∗ ℎ𝐴2

ℎ𝐴1

. (2.6)

The differential decay rates dΓ(�̄�0 → 𝐷∗+ℓ− āℓ)/d𝑤 in terms of these form factors are

dΓ(�̄�0 → 𝐷∗+ℓ− āℓ)
d𝑤

=
𝐺2
𝐹 |𝑉𝑐𝑏 |2 [2

EW 𝑚5
𝐵

48𝜋3 (𝑤2 − 1)1/2 (𝑤 + 1)2 𝑟∗3(1 − 𝑟∗)2

×
[
1 + 4𝑤

𝑤 + 1
1 − 2𝑤𝑟∗ + 𝑟∗2

(1 − 𝑟∗)2

]
F (𝑤)2 , (2.7)
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with 𝑟∗ = 𝑚𝐷∗/𝑚𝐵, [EW ≃ 1.0066 [25], denoting a small electroweak correction, and

F (𝑤)2 = ℎ2
𝐴1

{
2(1 − 2𝑤𝑟∗ + 𝑟∗2)

(
1 + 𝑅2

1
𝑤 − 1
𝑤 + 1

)

+ [(1 − 𝑟∗) + (𝑤 − 1) (1 − 𝑅2
) ]2

}

×
[
(1 − 𝑟∗)2 + 4𝑤

𝑤 + 1
(
1 − 2𝑤𝑟∗ + 𝑟∗2) ]−1

. (2.8)

The form factor ℎ𝐴1
holds particular importance because, unlike 𝑅1 or 𝑅2, it plays a dual

role in Eq. (2.8). Not only does it influence the shape of the differential decay rates dΓ(�̄�0 →
𝐷∗+ℓ− āℓ)/d𝑤, but it also contributes to the overall normalization of the decay process, including
at 𝑤 = 1.

2.2 Heavy quark effective theory

The properties of hadrons composed of light 𝑢, 𝑑, and 𝑠 quarks can be predicted using chiral
effective theory [26, 27], which is developed based on the 𝑚𝑞 → 0 (𝑞 = 𝑢, 𝑑, 𝑠) limit of QCD.
However, for hadrons containing a 𝑐-quark or 𝑏-quark, it is a suitable approximation to consider
the 𝑚𝑄 → ∞ (𝑄 = 𝑐, 𝑏) limit of QCD, as the heavy quark masses 𝑚𝑄 are significantly larger
compared to the scale of nonperturbative strong dynamics ΛQCD ≈ 200 MeV. This concept leads
to the development of heavy quark effective theory (HQET), which holds particular significance
for �̄�0 → 𝐷∗+ℓ− āℓ decays, given that both 𝐵 and 𝐷∗ mesons are heavy-light quark systems. In
this section, we will briefly introduce heavy quark effective theory.

The most important deduction of the 𝑚𝑄 → ∞ limit is the spin-flavor heavy quark symmetry,
which is helpful for understanding properties of hadrons containing a single heavy quark. In such
a system, the typical momentum transfer due to nonperturbative QCD between heavy and light
quarks is of the order of ΛQCD. Consequently, the velocity 𝑣 of the heavy quark remains unchanged
(Δ𝑣 = Δ𝑝/𝑚𝑄 ≈ 0) in the 𝑚𝑄 → ∞ limit. In this physical picture, the heavy quark behaves
like a static external source, transforming as a color triplet. This color source is independent of
the masses of the 𝑐- and 𝑏-quarks. This concept leads us to heavy quark flavor symmetry: the
dynamics remain the same under the interchange of heavy quark flavors. Consideration of finite
and distinct 𝑚𝑄 values for 𝑐- and 𝑏-quarks introduces leading-order flavor symmetry-breaking
effects proportional to (1/𝑚𝑄𝑖

− 1/𝑚𝑄 𝑗
), where𝑄𝑖 and𝑄 𝑗 represent any two heavy quark flavors.

The strong interaction of a heavy quark exclusively occurs with gluons, given that there is no
direct quark-quark interaction in the QCD Lagrangian. In the 𝑚𝑄 → ∞ limit, this interaction
becomes spin-independent, as the static heavy quarks interact solely with gluons through their
chromoelectric charges. This phenomenon gives rise to heavy quark spin symmetry: the dynamics
remain unchanged regardless of any spin transformations of heavy quarks. However, this spin
symmetry is broken when considering finite masses for heavy quarks, as they are no longer static.
The spin-dependent interactions are induced by the chromomagnetic moment and are proportional
to 1/𝑚𝑄.
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The spin-flavor symmetry within the framework of heavy quark effective theory provides
valuable insights into the relationships between the form factors ℎ𝑉 and ℎ𝐴1−3

in �̄�0 → 𝐷∗+ℓ− āℓ
decays. To confirm this, we can examine the typical momentum transfer between the light degrees
of freedom (referred to as brown muck in Ref. [28]). The momenta of the light systems in the
initial and final state mesons are on the order of ΛQCD𝑣 and ΛQCD𝑣

′, respectively, considering
their velocities are the same as the heavy quark velocity in the initial and final states. Consequently,
the momentum transfer can be approximated as

𝑞2
light ∼ (ΛQCD𝑣 − ΛQCD𝑣

′)2 = 2Λ2
QCD(1 − 𝑤). (2.9)

Given that 𝑤 ∼ 1, we find
2Λ2

QCD(1 − 𝑤) ≪ 𝑚2
𝑏,𝑐 . (2.10)

Hence, heavy quark symmetry is applicable for investigating the form factors of �̄�0 → 𝐷∗+ℓ− āℓ
decays.

The currents in HQET at the leading order that match Eq. (2.2) and Eq. (2.3) are expressed as
follows:

𝑐𝛾`𝑏 = 𝑐𝑣′𝛾`𝑏𝑣 , (2.11)
𝑐𝛾`𝛾5𝑏 = 𝑐𝑣′𝛾`𝛾5𝑏𝑣 , (2.12)

where 𝑐𝑣′ and 𝑏𝑣 represent the 𝑐- and 𝑏-quark fields in HQET, respectively. Operators 𝑐𝑣′Γ𝑏𝑣
remain invariant under heavy quark spin transformations if Γ → 𝐷𝑐 (𝑅)Γ𝐷−1

𝑏 (𝑅), where 𝐷 (𝑅)𝑄
is the usual Dirac four-component spinor representation of rotations. For 𝐵 → 𝐷∗ matrix elements,
we need to represent the currents 𝑐𝑣′Γ𝑏𝑣 in terms of 𝐵 and 𝐷∗ fields, which are constructed to
transform similarly to the quark operator. This leads to

𝑐𝑣′Γ𝑏𝑣 = Tr
(
�̄� (𝑐)
𝑣′

Γ𝐻 (𝑏)
𝑣 𝑋

)
, (2.13)

where the field 𝐻 (𝑄)
𝑣 represents a meson containing a heavy 𝑄-quark, and transforms under heavy

quark spin rotation as
𝐻 (𝑄)
𝑣 → 𝐷 (𝑅)𝑄𝐻 (𝑄)

𝑣 . (2.14)

Additionally, 𝑋 is a general matrix expressed in terms of 𝑣, 𝑣′, the gamma matrices, and the
identity matrix:

𝑋 = 𝑋0 + 𝑋1/𝑣 + 𝑋2/𝑣′ + 𝑋3/𝑣/𝑣′. (2.15)

Considering the properties of heavy-light meson fields, where /𝑣𝐻 (𝑏)
𝑣 = 𝐻 (𝑏)

𝑣 and 𝐻 (𝑐)
𝑣′ /𝑣′ = −𝐻 (𝑐)

𝑣′
,

we can equivalently write
𝑋 = −Z (𝑤), (2.16)

where Z (𝑤) is known as the Isgur-Wise function. Comparing this to Eq. (2.2) and Eq. (2.3),
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2.3 Parameterization of the form factors and their ratios

relationships between the form factors can be established [29]:

ℎ𝑉 (𝑤) = ℎ𝐴1
(𝑤) = ℎ𝐴3

(𝑤) = Z (𝑤), (2.17)

ℎ𝐴2
(𝑤) = 0. (2.18)

It is essential to emphasize that this relationship only holds in the heavy quark limit, where the
quark mass approaches infinity (𝑚𝑄 → ∞).

2.3 Parameterization of the form factors and their ratios

Note that the form factor ℎ𝐴1
(𝑤) and two ratios 𝑅1(𝑤) and 𝑅2(𝑤) depend only on the recoil

parameter 𝑤, and they can be expanded in various ways. In Sec. 2.3.1, we will introduce
the CLN parameterization, which was commonly employed in earlier measurements. Further-
more, in Sec. 2.3.2, we will discuss a more model-independent expansion known as the BGL
parameterization.

2.3.1 CLN parameterization

Reference [30] uses dispersive bounds and quark-model input to reduce the number of parameters
required to describe the form factors. The form-factor ℎ𝐴1

is expanded with a conformal parameter,

𝑧 =

√
𝑤 + 1 −

√
2√

𝑤 + 1 +
√

2
, (2.19)

and a slope parameter 𝜌2, as

ℎ𝐴1
(𝑧) = ℎ𝐴1

(𝑤 = 1)
(
1 − 8𝜌2𝑧 + (53𝜌2 − 15)𝑧2 − (231𝜌2 − 91)𝑧3

)
. (2.20)

The ratios 𝑅1 and 𝑅2 are parametrized as follows

𝑅1(𝑤) = 𝑅1(1) − 0.12(𝑤 − 1) + 0.05(𝑤 − 1)2, (2.21)

𝑅2(𝑤) = 𝑅2(1) + 0.11(𝑤 − 1) − 0.06(𝑤 − 1)2. (2.22)

Hence, the form factors are fully characterized by four key parameters ℎ𝐴1
(1), 𝜌2, 𝑅1(1), and

𝑅2(1). Among these, ℎ𝐴1
(1) plays an important role in determining the normalization of the

differential decay rate, requiring constraint through theoretical inputs.

2.3.2 BGL parameterization

The BGL parameterization is associated with the form factors in the helicity basis, represented as
𝑔, 𝑓 , and F1. They are linked to the form factors in the heavy quark basis, namely ℎ𝐴1

, 𝑅1, and
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Chapter 2 Theory of �̄�0 → 𝐷∗+ℓ− āℓ decays

𝑅2, through the following expressions

𝑓 = 𝑚𝐵
√︁
𝑟∗(𝑤 + 1) ℎ𝐴1

, 𝑔 =
1

𝑚𝐵
√
𝑟∗
𝑅1 ℎ𝐴1

, (2.23)

F1 = 𝑚2
𝐵

√︁
𝑟∗(𝑤 + 1) (

𝑤 − 𝑟∗ − (𝑤 − 1)𝑅2
)
ℎ𝐴1

(2.24)

References [31, 32] (BGL) utilize dispersive bounds and expand the helicity-basis form factors
with the conformal parameter 𝑧 defined in Eq. (2.19),

𝑔(𝑧) = 1
𝑃𝑔 (𝑧)𝜙𝑔 (𝑧)

𝑁∑︁
𝑛=0

𝑎𝑛𝑧
𝑛,

𝑓 (𝑧) = 1
𝑃 𝑓 (𝑧)𝜙 𝑓 (𝑧)

𝑁∑︁
𝑛=0

𝑏𝑛𝑧
𝑛,

F1(𝑧) =
1

𝑃F1
(𝑧)𝜙F1

(𝑧)
𝑁∑︁
𝑛=0

𝑐𝑛𝑧
𝑛,

(2.25)

Here, 𝑏0 and 𝑐0 are not independent parameters; they are related by the equation

𝑐0 =
(𝑚𝐵 − 𝑚𝐷∗)𝜙F1

(0)
𝜙 𝑓 (0)

𝑏0. (2.26)

The Blaschke factors 𝑃(𝑧) serve to eliminate poles associated with on-shell production of 𝐵∗
𝑐

bound states for 𝑞2 < (𝑚𝐵 + 𝑚𝐷∗)2

𝑝𝑔 (𝑧) =
4∏
𝑖

𝑧 − 𝑧𝑃𝑖
1 − 𝑧𝑧𝑃𝑖

, 𝑃 𝑓 (𝑧) = 𝑃F1 (𝑧) =
4∏
𝑖

𝑧 − 𝑧𝑃𝑖
1 − 𝑧𝑧𝑃𝑖

, (2.27)

where

𝑧𝑃 =

√︃
(𝑚𝐵 + 𝑚𝐷∗)2 − 𝑚2

𝑃 −
√︃
(𝑚𝐵 + 𝑚𝐷∗)2 − (𝑚𝐵 − 𝑚𝐷∗)2

√︃
(𝑚𝐵 + 𝑚𝐷∗)2 − 𝑚2

𝑃 +
√︃
(𝑚𝐵 + 𝑚𝐷∗)2 − (𝑚𝐵 − 𝑚𝐷∗)2

, (2.28)

with 𝑚𝑃 denoting the masses of the 𝐵∗
𝑐 mesons. For the form factor 𝑔, the index 𝑖 ranges over the

4 vector 𝐵∗
𝑐 mesons, while for the 𝑓 and F1 form factors, it ranges over the 4 axial-vector states.

The masses of the 𝐵∗
𝑐 mesons are summarized in Table 2.1.

Table 2.1: Numerical values of 𝐵∗
𝑐 masses used in this analysis.

Type Mass [GeV/𝑐2]
vector 6.337, 6.899, 7.012, 7.280

axial vector 6.7370, 6.736, 7.135, 7.142
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2.4 Fully differential decay rate

The outer functions 𝜙 are defined as

𝜙𝑔 (𝑧) =
√︄

256𝑛𝐼
3𝜋𝜒𝑇 (+𝑢)

𝑟∗2(1 + 𝑧)2(1 − 𝑧)−1/2

[(1 + 𝑟∗) (1 − 𝑧) + 2
√
𝑟∗(1 + 𝑧)]4

,

𝜙 𝑓 (𝑧) =
1
𝑚2
𝐵

√︄
16𝑛𝐼

3𝜋𝜒𝑇 (−𝑢)
𝑟∗(1 + 𝑧) (1 − 𝑧)3/2

[(1 + 𝑟∗) (1 − 𝑧) + 2
√
𝑟∗(1 + 𝑧)]4

,

𝜙F1
(𝑧) = 1

𝑚3
𝐵

√︄
8𝑛𝐼

3𝜋𝜒𝑇 (−𝑢)
𝑟∗(1 + 𝑧) (1 − 𝑧)5/2

[(1 + 𝑟∗) (1 − 𝑧) + 2
√
𝑟∗(1 + 𝑧)]5

,

(2.29)

where the effective number of light quarks 𝑛𝐼 = 2.6, the value of the parameter 𝑢 = 𝑚𝑐/𝑚𝑏 used
in subsequent calculations is 0.33, and 𝜒𝑇 (±𝑢) is related to a perturbative calculation at 𝑞2 = 0.
The specific numerical values

𝜒𝑇 (+0.33) = 5.28 × 10−4GeV−2, 𝜒𝑇 (−0.33) = 3.07 × 10−4GeV−2 (2.30)

are employed in the pole mass scheme, with negligible contributions from condensates.

2.4 Fully differential decay rate

The �̄�0 → 𝐷∗+ℓ− āℓ decay rate is completely characterized by the recoil parameter 𝑤 and three
decay angles \ℓ , \𝑉 , and 𝜒 (see also Fig. 2.2). These angles are defined as follows.

- The angle \ℓ is defined by the direction of the charged lepton and the direction opposite to
the 𝐵 meson in the virtual𝑊 boson rest frame.

- The angle \𝑉 is defined by the direction of the 𝐷 meson and the direction opposite to the 𝐵
meson in the 𝐷∗ meson rest frame.

- The angle 𝜒 is the azimuthal angle between the two decay planes spanned by the𝑊 boson
and 𝐷∗ meson decay products, and defined in the rest frame of the 𝐵 meson.

Figure 2.2: Illustration of the helicity angles \ℓ , \𝑉 , and 𝜒 that characterize the �̄�0 → 𝐷∗+ℓ− āℓ decay.

25



Chapter 2 Theory of �̄�0 → 𝐷∗+ℓ− āℓ decays

The fully differential decay rate in terms of those kinematic variables is expressed as

dΓ(�̄�0 → 𝐷∗+ℓ− āℓ)
d𝑤d cos \ℓd cos \𝑉d𝜒

=
3𝑚𝐵𝑚

2
𝐷∗

4(4𝜋)4 [2
ew𝐺

2
𝐹 |𝑉𝑐𝑏 |2

√︁
𝑤2 − 1(1 − 2𝑤𝑟∗ + 𝑟∗2)×

[
(1 − cos \ℓ)2 sin2 \𝑉𝐻

2
+(𝑤) + (1 + cos \ℓ)2 sin2 \𝑉𝐻

2
− (𝑤)

+ 4 sin2 \ℓ cos2 \𝑉𝐻
2
0 (𝑤) − 2 sin2 \ℓ sin2 \𝑉 cos 2𝜒𝐻+(𝑤)𝐻− (𝑤)

− 4 sin \ℓ (1 − cos \ℓ) sin \𝑉 cos \𝑉 cos 𝜒𝐻+(𝑤)𝐻0(𝑤))

+ 4 sin \ℓ (1 + cos \ℓ) sin \𝑉 cos \𝑉 cos 𝜒𝐻− (𝑤)𝐻0(𝑤)
]
.

(2.31)

where the helicity amplitudes 𝐻0(𝑤) and 𝐻±(𝑤) are related to the form factors in the helicity
basis through the following equations

𝐻0 = F1/
√︃
𝑞2, (2.32)

𝐻+ = 𝑓 − 𝑚𝐵 | ®𝑝𝐷∗ |𝑔, (2.33)
𝐻− = 𝑓 + 𝑚𝐵 | ®𝑝𝐷∗ |𝑔. (2.34)

The helicity amplitudes 𝐻0(𝑞2) and 𝐻±(𝑞2) can be expanded in terms of form factors in the heavy
quark basis as

𝐻0 =
1

2𝑚𝐷∗

√︃
𝑞2

(
(𝑚2

𝐵 − 𝑚2
𝐷∗ − 𝑞2) (𝑚𝐵 + 𝑚𝐷∗)𝐴1(𝑞2) − 4𝑚2

𝐵 | ®𝑝𝐷∗ |2
𝑚𝐵 + 𝑚𝐷∗

𝐴2(𝑞2)
)
, (2.35)

𝐻± = (𝑚𝐵 + 𝑚𝐷∗)𝐴1(𝑞2) ∓ 2𝑚𝐵
𝑚𝐵 + 𝑚𝐷∗

| ®𝑝𝐷∗ |𝑉 (𝑞2) (2.36)

where

𝐴1(𝑞2) = 𝑤 + 1
2

𝑟 ′ℎ𝐴1
(𝑞2), (2.37)

𝐴2(𝑞2) = 𝑅2(𝑤)
𝑟 ′

ℎ𝐴1
(𝑞2), (2.38)

𝑉 (𝑞2) = 𝑅1(𝑤)
𝑟 ′

ℎ𝐴1
(𝑞2), (2.39)

with 𝑟 ′ = 2√𝑚𝐵𝑚𝐷∗/(𝑚𝐵 + 𝑚𝐷∗).
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CHAPTER 3

Belle II experiment

The Belle II experiment, operated by the High Energy Accelerator Research Organization in
Tsukuba, Japan, is the successor to the Belle experiment. Its primary objectives are to search for
new physics at the precision frontier and to measure the parameters of the SM with increased
accuracy. In the experiment, electrons and positrons collide at an energy of 10.58 GeV in the
center-of-mass frame, corresponding to the mass of the Υ(4𝑆) resonance. These Υ(4𝑆) particles
predominantly decay into 𝐵�̄� pairs. As a result, the Belle II experiment is often referred to as a B
factory. The Belle II experimental configuration offers numerous advantages for physics analyses,
and some of them are discussed below [33].

• The Υ(4𝑆) resonance provides a clean sample of 𝐵�̄� pairs, and a low-background envi-
ronment allows for the reconstruction of particles that subsequently decay into photons,
such as 𝜋0, 𝜌±, [, [′, etc. Additionally, the reconstruction of 𝐾0

𝐿 mesons is achieved with
relatively high efficiency.

• Since the initial state is known, “missing mass” analyses can be performed to infer the
existence of new particles via energy and momentum conservation rather than reconstructing
their final states.

• The asymmetric beam energies for electrons and positrons enable the measurements of
lifetimes, mixing parameters, and time-dependent CP violation. This is because the beam
asymmetry results in a significant Lorentz boost, allowing the produced 𝐵 mesons and
subsequent 𝐷 mesons to travel a significant distance before decaying.

• A large number of 𝜏 leptons are also produced in collisions. This opens up numerous possi-
bilities for studying rare 𝜏 decays, as well as investigating lepton flavor and lepton number
conservation within the context of 𝜏 decays, all within a low-background environment.

In the remainder of this chapter, we will provide more details about the Belle II experiment. The
introduction to the hardware can be found in Sec. 3.1 and Sec. 3.2 for the SuperKEKB accelerator
and Belle II detector, respectively. Section 3.4 and Sec. 3.5 will discuss the collected collision
data and simulated Monte Carlo (MC) samples, respectively.
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Chapter 3 Belle II experiment

3.1 SuperKEKB collider

The SuperKEKB collider is an asymmetric-energy and double-ring collider that was constructed
through the upgrade of KEKB. A schematic representation of the SuperKEKB collider is depicted
in Fig. 3.2. Electrons are initially generated in a triode-type thermionic electron gun at the
beginning of the electron-positron injector linear accelerator (linac). After the acceleration to 7
GeV, they are used as the injection beam.

Figure 3.1: Schematic view of the SuperKEKB collider. Source: Ref. [34].

Additionally, electrons produced in the same pre-injector are accelerated up to 4 GeV to
irradiate a tungsten target for positron generation [35]. However, positrons generated in this
manner possess a significantly larger emittance compared to the electron beam, and their intensity
is limited by the acceptance of the capture section.

To address these issues, the acceptance is expanded by introducing L-band accelerating
structures in the capture section. Furthermore, a 1.1 GeV damping ring (DR) is installed as a
collector ring, designed to accommodate a beam with a substantial energy spread and significant
transverse emittance. Positrons, characterized by low emittance and a narrow energy spread after
undergoing damping in the DR, are subsequently reinjected into the linac and accelerated to 4.0
GeV.

The SuperKEKB accelerator system stores electrons with an energy of 7 GeV in the high-energy
electron ring (HER) and positrons with an energy of 4 GeV in the low-energy ring (LER). In
contrast to a head-on collision scheme, the two beams intersect only at specific short and narrow
sections near the interaction point (IP).

The SuperKEKB adopts the nano-beam collision scheme, initially proposed for the Super 𝐵
factory in Italy [36]. A key characteristic of this approach is the significant horizontal crossing
angle between the electron and positron beams, denoted as \𝑥 ≈ 83 mrad [37]. Additionally,
the bunch length is much longer than the beta function at the IP 𝜎𝑧 ≈ 6 mm ≫ 𝛽∗𝑦 [37]. This
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configuration allows for the vertical beam sizes at the IP to be compressed to a range of 48 to 62
nm.

Utilizing the nano-beam collision technique, the SuperKEKB collider is poised to achieve
an astounding instantaneous luminosity of 6 × 1035 cm−2s−1[38] — a remarkable 40-fold
increase compared to what KEKB achieved. A new world record for peak luminosity, reaching
3.1 × 1034 cm−2s−1 [39], was established on June 22, 2021, bringing us closer to realizing our
ambitious goals.

3.2 Belle II detector

Belle II comprises several concentric sub-detectors positioned around the 1-cm radius beryllium
beam pipe enclosing the IP. As illustrated in Fig. 3.2, the closest sub-detector to the IP is the
two-layer pixel detector (PXD). The first PXD layer (L1) features 16 modules, while the second
layer (L2) is equipped with 4 modules, all of which have been successfully installed. As part of
the plan during the long shutdown 1 (commencing in July 2022), a new, fully assembled two-layer
PXD is currently being installed to enhance performance and increase tolerance for hit occupancy
stemming from background interactions [40].

Figure 3.2: Schematic view of the Belle II detector. Source: Ref. [41]

Subsequent to the PXD, the next four layers (L3-L6) constitute the double-sided silicon
strip vertex detector (SVD). Both the PXD and the SVD belong to vertex detectors, which are
specifically designed to pinpoint the precise location where particle tracks intersect, allowing for
the reconstruction of primary and secondary vertices in high-energy physics experiments.

Surrounding these vertex detectors is the central drift chamber (CDC), whose task is to
accurately reconstruct the trajectories of charged particles. Outside the CDC, other two sub-
detectors: the time-of-propagation (TOP) and the aerogel ring imaging Cherenkov counters
(ARICH) are installed. These sub-detectors play a crucial role in identifying charged particles.

29



Chapter 3 Belle II experiment

An electromagnetic calorimeter (ECL) is integrated to detect photons. In addition, it contributes
to distinguishing electrons from hadrons, particularly pions.

All of the aforementioned subsystems are immersed within a uniform 1.5 T magnetic field.
This magnetic field, generated by a superconducting solenoid located exterior to the calorimeter,
is nearly aligned with the electron beam. In the laboratory frame, the 𝑧-axis is defined as the
central axis of the solenoid, with the positive direction pointing in the direction of the electron
beam. The polar angle \ as well as the longitudinal and transverse directions are defined with
respect to this 𝑧-axis.

The 𝐾0
𝐿 and muon (KLM) detector serves as the outermost detector. As its name suggests, the

KLM is designed for the detection of muons and 𝐾0
𝐿 particles. The latter particle hardly interacts

with any other sub-detectors, except for very rare interactions with the ECL [42].
Further details regarding these sub-detectors will be elaborated on in the following sections.

For information on the planned near-term and potential longer-term upgrades of the Belle II
detector, one can refer to Ref. [40]

3.2.1 Pixel detector

The pixel sensor employed in the Belle II experiment leverages DEPleted p-channel Field
Effect Transistor (DEPFET) technology [43, 44]. This advanced sensor is constructed from
semiconductor materials, featuring a sensitive layer depleted of charge carriers and equipped with
transistors for signal amplification and readout.

As charged particles traverse the DEPFET sensor, they interact with the silicon material,
initiating the creation of electron-hole pairs. These electron-hole pairs are collected by the
electrodes within each pixel of the DEPFET sensor. This collection process leads to a modification
in the voltage of the transistor situated in every pixel, generating an electrical signal that is directly
proportional to the energy deposited by the passing particle.

The precise position of the particle is determined by analyzing the distribution of these electrical
signals across the pixel array. Thanks to the small pixel size, typically ranging from 50×55 µm2

to 50×85 µm2 [45], the DEPFET sensor enhances accurate measurements of charged particle
trajectories.

The PXD is designed with two layers positioned at radii of 14 mm and 22 mm. The inner layer
comprises 8 planar sensors, while the outer layer has 12 planar sensors. Together, these layers
cover an angular acceptance range of \ ∈ [17°, 150°]. For the most up-to-date status update on
the PXD, one can consult the report in Ref. [46].

3.2.2 Silicon vertex detector

The SVD comprises four layers of double-sided silicon strip sensors. One of its primary function
is to extrapolate particle tracks to the inner PXD, enabling the identification of hits within
the PXD associated with these tracks. The combination of PXD and SVD is used for the
precise determination of the positions of charged particle tracks and the reconstruction of both
primary and secondary vertices. Moreover, the SVD provides standalone tracking capabilities
for low-momentum tracks, enhancing the efficiency of reconstructing pions generated in 𝐷∗
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meson decays. Additionally, its measurements of ionization energy loss can be used for particle
identification. [47, 48].

For a more in-depth understanding of the PXD’s operation and performance, as well as a novel
approach to computing the time of collision based on SVD hit time information, one can refer to
Ref. [49].

3.2.3 Central drift chamber

The CDC is filled with a gas mixture comprising 50% helium (He) and 50% ethane (C2H6).
These components enable the CDC to record the trajectories of charged particles and make
precise measurements of their momenta. Furthermore, within the CDC volume, the energy loss
of charged particles is used for particle identification within the low momentum range, as well as
providing essential level-1 trigger information for charged particles [50]. These functions are
achieved through the measurement of specific ionization in the chamber gas, denoted as 𝑑𝐸/𝑑𝑥.

Comprising a total of 56 layers and 14,336 wires arranged in cylindrical layers (ranging from
160 to 384 wires per layer), the CDC spans a length of 2.3 meters and has a diameter of 2.2
meters [51]. Its coverage extends across a polar angle range of 17° < \ < 150°. When charged
particles traverse the CDC’s gas-filled volume, they induce ionization of the gas atoms, generating
positive ions and electrons. The electrons subsequently drift toward the positively charged wires,
guided by the electric fields established between the wire electrodes. The signals induced by these
electron drifts are recorded and utilized for the reconstruction of particle trajectories [52, 53].

3.2.4 Time-of-propagation detector

The TOP detector is installed in the barrel region, covering a polar angle 32.2° < \ < 128.7°, as
an important component within Belle II’s particle identification system, particularly for low-energy
particles that may not generate sufficient ionization in the tracking detectors. Comprising a
scintillation material, the TOP detector has a rapid response and a high photon yield associated
with Cherenkov radiation. This phenomenon occurs when charged particles traverse the material
at velocities exceeding the speed of light within it.

As these charged particles move through the scintillation material, they emit Cherenkov radiation
photons determined by their velocities. An array of photon detectors captures these emitted
photons, converting them into electrical signals. Time-measuring electronics then collect these
signals, enabling precise measurements of photon arrival times. By considering the known path
length in the detector, particle velocity and Cherenkov angle is determined through time-of-flight
measurements.

Each type of particle possesses a unique mass-to-charge ratio, which establishes the relationship
between velocities and Cherenkov angles. Consequently, particle identification becomes possible
by comparing the measured Cherenkov angle with the anticipated angles associated with different
particle species. The recent operation and performance of the TOP detector are summarized in
Refs. [54, 55].
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3.2.5 Aerogel ring imaging Cherenkov detector

The ARICH detector is positioned in the forward end-cap region, covering a range of polar angles
within \ ∈ [12.4°, 31.4°]. Much like the TOP detector, the ARICH system is designed to capture
the Cherenkov light emitted by charged particles as they traverse the aerogel radiator at velocities
exceeding that of light in the aerogel material. This emission of Cherenkov photons results in the
formation of distinctive ring-like patterns within the detector plane, with the ring’s radius directly
correlating with the particle’s velocity.

Aside from the contribution to the measurement particle velocity, the ARICH detector is also
helpful for identifying various charged particle species, including pions, kaons, and others. Each
particle type generates a unique and recognizable pattern of Cherenkov rings, facilitating particle
identification [56].

3.2.6 Electromagnetic calorimeter

The ECL is installed in the barrel and forward end-cap regions and extends to the backward
end-cap region. This latter region covers polar angles within the range of \ ∈ [130.7°, 155.1°].
The ECL is used to study electromagnetic particles, including photons and electrons. Its core
construction features CsI(Tl) crystals. When photons interact with the scintillation material,
they directly deposit their energy, whereas electrons generate photons through processes like
bremsstrahlung and pair production. The released energy is converted into scintillation light,
which is subsequently captured, amplified, and analyzed to reconstruct the energy.

Ongoing advancements include the integration of a convolutional neural network (CNN) for
the identification of light leptons and pions within the ECL [57, 58].

3.2.7 𝑲𝑳 and 𝝁 Detector

In the Belle experiment, 𝐾0
𝐿 and muon subsystems was developed using the resistive plate

chambers (RPC) [59, 60]. For its successor the Belle II experiment is expected to face higher
background rates, primarily stemming from neutrons produced in electromagnetic showers
resulting from background reactions. To resolve this problem, the endcap RPCs have been
replaced with scintillators [35].

To reach the KLM, particles must possess a minimum momentum of | ®𝑝 | ≈ 600 MeV/𝑐. Since
the KLM is located outside the superconducting solenoid, muons and charged hadrons follow a
linear trajectory through the KLM until they either exit the system or undergo energy loss due to
electromagnetic interactions.

It is important to point out that the KLM cluster is capable of providing only directions of 𝐾0
𝐿

candidates. Given the substantial variability in the development of showers during 𝐾0
𝐿-nuclear

collisions, the number of hits within a cluster associated with a 𝐾0
𝐿 meson serves as an inadequate

measure of the incident energy. Consequently, it is not feasible to reconstruct the energies of 𝐾𝐿
particles [35].
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3.3 Reconstruction and identification of final-state particles

The reconstruction of final state particles, such as electron, muons, pions, and kaons is carried
out using the Belle II analysis software framework (basf2) [61, 62]. The reconstruction
and identification of charged particles are detailed in Sec. 3.3.1 and Sec. 3.3.2, respectively.
Additionally, in Sec. 3.3.3, we will provide an overview of reconstruction of neutral particles.

3.3.1 Reconstruction of charged particles

The reconstruction of charged particles primarily includes two key steps: track reconstruction
and the subsequent determination of momentum based on the track’s curvature in the magnetic
field. Track reconstruction encompasses two main phases: track finding and track fitting. During
the first phase, the software collects detector hits and generates initial track candidates. In the
subsequent track fitting step, precise track trajectories are established for these initial candidates.

Various tracking algorithms have been developed to address the unique characteristics of the
tracking detectors, namely the PXD, SVD, and CDC. The reconstruction process progresses from
the CDC towards the inner vertex detectors.

Within the CDC, recorded signals are filtered and reconstructed via two different approaches: a
global algorithm based on the Legendre transformation [63] and a local method relying on cellular
automatons [64, 65]. These methods operate independently, but their outcomes are combined
and refined using a deterministic annealing filter (DAF) [66]. Furthermore, the CDC tracks
receive enrichment through a combinatorial Kalman filter (CKF) [67, 68], which extrapolates hits
detected in the SVD. The resulting tracks originating from the CDC and SVD are then seamlessly
integrated and refined with the aid of another DAF and subsequently extrapolated to the PXD
using a second CKF.

Simultaneously, a standalone SVD track finder has been devised, leveraging a sector map
technique [69] in conjunction with cellular automatons. This allows for the reconstruction of
high-curvature tracks that may not have yielded sufficient hits in the CDC.

The track fitting process relies on a DAF provided by the GENFIT2 package [66]. To accurately
account for energy loss and material effects, it is essential to employ a specific particle hypothesis.
The available hypotheses in the Belle II experiment include electrons, muons, pions, kaons, and
protons. Once trajectory information is established, the tracks are extrapolated to the point of
closest approach (POCA) to the origin, where their helix parameters are extracted. A more
comprehensive summary of the track reconstruction procedures can be found in Refs. [33, 70].

3.3.2 Identification of charged particles

Accurate and efficient particle identification (PID) is essential for the Belle II physics program.
The PID system, which includes the TOP counter in the barrel region and the ARICH detector in
the forward endcap region, combines information on charged particles across the entire kinematic
spectrum. Data from these detectors are analyzed with specific ionization (𝑑𝐸/𝑑𝑥) measurements
obtained from the CDC. The SVD also offers independent 𝑑𝐸/𝑑𝑥 measurements, although these
are not currently integrated into the Belle II data processing as of the time of writing. For the
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identification of charged leptons, the ECL and KLM detectors play important roles in electron
and muon identification, respectively.

Identification of charged particle at Belle II employs likelihood-based selectors. Information
from each PID system is independently analyzed to compute a likelihood score for each charged
particle hypothesis. These PID likelihoods from each detector are aggregated to form a composite
PID likelihood for each of the six long-lived charged particle hypotheses, which include electron,
muon, pion, kaon, proton, and deuteron. For a given particle denoted as 𝛼, the PID quantity is
defined as

PID(𝛼) = L𝛼

L𝑒 + L` + L𝜋 + L𝐾 + L𝑝 + L𝑑
, (3.1)

where L𝛼 represents the likelihood score for the particle hypothesis 𝛼. The specific details of
likelihood construction for individual particle hypotheses and sub-detectors are elaborated in
Ref. [33]. The performance of charged particle identification is discussed in Ref. [55].

3.3.3 Reconstruction of neutral particles

When photons interact with calorimeters, clusters are identified by clustering individual cells.
With high backgrounds, it becomes challenging to discern the energy from a signal photon
incidents amid the multitude of energy deposits originating from beam-induced backgrounds. To
overcome this challenge, a specialized clustering algorithm has been developed [33].

The crystals with energy deposits are categorized into two distinct regions: connected and
unconnected, based on specified energy criteria. The connected regions are isolated from each
other, with the possibility of multiple clusters within a single connected region. These clusters are
discerned by requiring that each cluster possesses only one local maximum. A local maximum is
defined as a crystal with energy higher than its eight neighboring crystals.

The centroid position of a cluster is determined by computing the weighted sum of crystal
positions, with each crystal’s weight 𝑤𝑖 calculated as 4+ log(𝐸𝑖/𝐸sum), where 𝐸sum represents the
total energy of the cluster. Cluster energy undergoes a calibration process to account for various
factors, including energy loss beyond the calorimeter boundaries, losses within inactive materials,
and the omission of energy deposits that do not meet specific criteria. The latter introduces a
bias due to the trade-off between incorporating more photon energy and potentially including
additional electronic noise and beam-related background.

Additionally, the cluster time, denoted as 𝑡cluster, signifies the time of the highest energy crystal
within a cluster relative to the collision time. This parameter is carefully studied to mitigate the
impact of out-of-time beam backgrounds.

Notably, the recent work discussed in Ref. [71] explores the implementation of advanced
graph neural networks (GNN) to enhance photon reconstruction efficiency. Overall, GNN-based
reconstruction has demonstrated the potential to improve energy resolution, reduce tail artifacts in
the reconstructed energy distribution.

The reconstruction of 𝜋0 mesons relies on the combination of two photon candidates. For 𝜋0

energies below approximately 2.5 GeV, it is reconstructed from two distinct photon candidates in
the ECL, utilizing their respective photon 4-momenta. However, when dealing with 𝜋0 energies
exceeding about 2.5 GeV, the two photon induced showers frequently no longer exhibit separate
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local maxima. In such cases, the energy is inferred from the shower’s second moment shape
variable [33].

The reconstruction of 𝐾0
𝐿 mesons utilizes information gathered from the KLM and ECL

detectors. Multivariate classifiers, developed based on boosted decision trees, are applied
separately to the KLM and ECL clusters to provide estimates of the probability that a given cluster
originates from a 𝐾0

𝐿 meson. These classifiers significantly outperform the previous Belle 𝐾0
𝐿

identification method, achieving an improvement by a factor of ≈ 2 [33].

3.4 Collision data

The data collection for the Belle II experiment commenced in 2019, with the ultimate goal of
achieving a target integrated luminosity of 50 ab−1. By the time of the long shutdown 1, 424 fb−1

of integrated luminosity had been accumulated. For the analysis presented in this thesis, a subset
of this data collected until 2021 is considered.

The on-resonance data sets are acquired at a center-of-mass (CM) energy of
√
𝑠 = 10.58 GeV,

corresponding to the mass of the Υ(4𝑆), and amounting to a total integrated luminosity of 189
fb−1. Additionally, 18 fb−1 of off-resonance data sets are recorded at a CM energy of

√
𝑠 = 10.52

GeV, which is slightly below the Υ(4𝑆) mass, preventing the production of 𝐵 mesons. These
non-𝐵�̄� events are commonly referred to as “continuum”. The continuum component contains a
variety of processes, including 𝑒+𝑒− → `+`− , 𝑒+𝑒− → 𝜏+𝜏− , and 𝑒+𝑒− → 𝑞𝑞 processes, where
𝑞 represents the 𝑢, 𝑑, 𝑠, 𝑐 quarks. Notably, the cross-section magnitudes for these processes are
comparable to that of the 𝑒+𝑒− → Υ(4𝑆) → 𝐵�̄� process.

The off-resonance data sets are utilized to determine the number of 𝐵�̄� pairs within the data
sets through the following equation,

𝑁𝐵�̄� =
𝑁on-res.

had. − 𝑁off-res.
had. 𝑅lumi.𝑘

𝜖𝐵�̄�
, (3.2)

where 𝑁on-res.
had. and 𝑁off-res.

had. are the numbers of selected hadronic events in the on-resonance and
off-resonance data sets, respectively. In addition,

𝑅lumi. =
Lon-res.

Loff-res. , (3.3)

is the ratio of integrated luminosities between the on-resonance and off-resonance data sets. The
efficiencies and cross sections for the non-𝐵�̄� events exhibit variations dependent on the beam
energy. These variations are corrected using the factor 𝑘 , which is expressed as

𝑘 =

∑
𝑖 𝜖𝑖𝜎𝑖∑
𝑖 𝜖

′
𝑖𝜎

′
𝑖

, (3.4)

where 𝜖𝑖 and 𝜎𝑖 represent the selection efficiencies and cross sections of continuum events at the
on-resonance energy respectively, while the primed quantities, i.e., 𝜖 ′𝑖 and 𝜎′

𝑖 , denote those at
the off-resonance energy. The 𝐵-counting study is conducted by the performance group. They
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determine the number of 𝐵�̄�-pairs in the 189 fb−1 data set to be

𝑁𝐵�̄� = (198 ± 3) × 106. (3.5)

In addition to the 𝐵-counting study, the off-resonance data sets are employed to validate the
Monte Carlo (MC) simulation of continuum events. More details can be found in Appendix A.

3.5 Simulated samples

In the Belle II experiment, all simulation processes begin with at least one event generator
responsible for simulating the primary physics processes. This is followed by a detector
simulation. In certain studies, the impact of beam background is also considered, and it is
simulated separately in specialized background simulations before being incorporated into the
physics event simulation.

Simulated MC samples of �̄�0 → 𝐷∗+ℓ− āℓ signal events, with the subsequent decays 𝐷∗+ →
𝐷0𝜋+ and 𝐷0 → 𝐾−𝜋+, are used to obtain the template shapes for the signal extraction, determine
reconstruction efficiencies and the signal kinematic distributions. These events are generated
using the EvtGen package [72] with the other 𝐵 meson in the event decays generically. EvtGen
is controlled by means of a fairly complete decay table (DECAY.DEC), which provides a detailed
listing of all potential decay processes, their associated branching ratios, and the utilized model
(amplitude) for their decay. Samples of MC simulated background events are used to model
the kinematic distributions of background processes. These include a sample of 𝑒+𝑒− → 𝐵𝐵
events with generic 𝐵 meson decays, generated with EvtGen, which correspond to an integrated
luminosity of 1 ab−1.

A sample of continuum 𝑒+𝑒− → 𝑞𝑞 (𝑞 = 𝑢, 𝑑, 𝑠, 𝑐) events is simulated with the KKMC
generator [73] interfaced with PYTHIA 8 [74]. Further, 𝑒+𝑒− → 𝜏+𝜏− events are simulated with
KKMC, and interfaced with TAUOLA [75].

Interactions of detectors and particles are simulated by GEANT4 [76]. All recorded data and
simulated samples are processed and analyzed using the basf2.
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CHAPTER 4

Event reconstruction, selection, and
correction

4.1 Event reconstruction

We focus on reconstructing the signal �̄�0 → 𝐷∗+ℓ− āℓ decays with ℓ = 𝑒, `, while not explicitly
reconstructing the decay of the other 𝐵 meson in the same event. This is categorized as untagged
reconstruction. In contrast, the tagged approach includes the reconstruction of hadronic or
semileptonic decays of the accompanying 𝐵 meson. At Belle II, the 𝐵-tagging process is
facilitated by the full event interpretation algorithm [77], which utilizes boost decision trees [78].

Tagged reconstruction significantly improves the purity of the selected candidates and provides
valuable kinematic information of the signal 𝐵 meson. This is especially advantageous for
analyses of semileptonic 𝐵 decays, where the presence of neutrinos in the final state makes it
challenging to infer the momentum of the 𝐵 meson at Belle II. However, this improved purity
comes at the cost of reduced efficiency. Consequently, compared to untagged measurements,
tagged measurements from the same dataset always exhibit a larger statistical uncertainty.

Figure 4.1 illustrates a typical collision event containing the signal �̄�0 → 𝐷∗+ℓ− āℓ decay.
The reconstruction of the charge-conjugated mode is included without specific declaration. As
shown in Fig. 4.1, a 𝐷0 meson is reconstructed from a kaon and a pion with opposite charges,
and then combined with a low-energy charged pion to form a 𝐷∗+ meson. Subsequently, we
reconstruct a 𝐷∗+ℓ− system. The final-state neutrino cannot be detected by the Belle II detectors
and is, therefore, represented by a dashed line. The remaining unused particles are considered to
originate from the accompanying 𝐵 meson and are referred to as the rest of the event (ROE).
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Υ(4𝑆)

𝑒−

𝑒+𝐵0

�̄�0

ROE

𝐷∗+ ℓ− āℓ

𝐷0 𝜋+𝑠

𝐾−
𝜋+

Figure 4.1: Illustration of a typical event containing the signal �̄�0 → 𝐷∗+ℓ− āℓ decay.

4.2 Event selection

The selected events must firstly activate a hadronic high level trigger (HLT) [79], which conducts
a full event reconstruction, excluding hits from the PXD, and filters out non-hadronic events using
the Belle II analysis software framework (basf2) [61, 80]. In addition, charged tracks must satisfy
certain criteria, including a requirement that their distance of closest approach to the interaction
point is less than 4.0 cm along the 𝑧 direction and less than 2.0 cm in the transverse 𝑟 − 𝜙 plane.
Further, all tracks must fall within the angular acceptance of the CDC.

Momenta of both electron and muon candidates in the CM frame are required to be larger
than 1.2 GeV/𝑐 and smaller than 2.4 GeV/𝑐. Electron candidates are selected using particle
identification likelihoods based on CDC, ARICH, ECL and KLM information. To identify muon
candidates, information from the TOP detector is also considered, in addition to information from
the CDC, ARICH, ECL, and KLM detectors. The efficiencies to identify electrons and muons are
88% and 91%, respectively. The misidentifiation rates for hadrons, including pions and kaons, as
electrons and muons are 0.2% and 3%, respectively.

Neutral 𝐷 candidates are reconstructed from charged kaon and pion candidates, and their
invariant masses are required to be within a range of 15 MeV/𝑐2 from the known 𝐷0 mass, which
corresponds to approximately ±3.4 units of mass resolution. To reconstruct 𝐷∗+ candidates, we
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combine the 𝐷0 candidates with low-momentum pion candidates (referred to as slow pions)
selected from the remaining charged particles with momenta below 0.4 GeV/𝑐. To enhance the
purity of the reconstructed 𝐷∗+ candidates, we impose a requirement on the mass difference
between 𝐷∗+ and 𝐷0 candidates, denoted as Δ𝑀 = 𝑀 (𝐾𝜋𝜋) − 𝑀 (𝐾𝜋). This requirement
stipulates that Δ𝑀 must be within the range of [0.141, 0.156] GeV/𝑐2. Correctly reconstructed
𝐷∗+ candidates exhibit a peak at a value of 𝑚𝐷∗+ = 2.010 GeV/𝑐2, with a resolution of 5 MeV/𝑐2.

To suppress continuum backgrounds, such as 𝑒+𝑒− → 𝑞𝑞 with 𝑞 = 𝑢, 𝑑, 𝑠, 𝑐 or 𝑒+𝑒− → 𝜏+𝜏−

processes, we employ the requirement that the ratio between the second- and the zeroth-order
Fox-Wolfram moments [81] be less than 0.3. Additionally, we set an upper limit on the momentum
of 𝐷∗+ in the CM frame, restricting it to 𝑝CM

𝐷∗+ < 2.5 GeV/𝑐, which effectively rejects 𝐷∗+

candidates originating from 𝑒+𝑒− → 𝑐𝑐 events. To enhance the separation from continuum
background, we impose a requirement that the sum of reconstructed energy in the CM frame
exceeds 4 GeV.

The signal 𝐵-meson energy and magnitude of the momentum in the CM frame is inferred from
the beam energy 𝐸CM

Beam =
√
𝑠/2,

𝐸CM
𝐵 = 𝐸CM

Beam, | ®𝑝 CM
𝐵 | =

√︃
(𝐸CM

Beam)2 − 𝑚2
𝐵𝑐

4/𝑐 . (4.1)

Here 𝑚𝐵 = 5.279 GeV/𝑐2 is the 𝐵-meson mass. With this information, we reconstruct the cosine
of the angle between the 𝐵 meson and the 𝐷∗ℓ system (denoted by 𝑌 ) via

cos \𝐵𝑌 =
2𝐸CM

𝐵 𝐸CM
𝑌 − 𝑚2

𝐵𝑐
4 − 𝑚2

𝑌 𝑐
4

2| ®𝑝 CM
𝐵 | | ®𝑝 CM

𝑌 |𝑐2 , (4.2)

where 𝐸CM
𝑌 , | ®𝑝 CM

𝑌 |, and𝑚𝑌 are the energy, magnitude of momentum, and mass of the reconstructed
𝐷∗ℓ system, respectively. If a 𝐷∗ℓ pair does not originate from a �̄�0 → 𝐷∗+ℓ− āℓ decay, | cos \𝐵𝑌 |
can exceed unity. We keep all candidates in the range cos \𝐵𝑌 ∈ [−4, 2] to separate signal decays
and background processes.

Combining all of these selection criteria, we achieve efficiencies of 22.0% and 23.5% for the
�̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā` decays, respectively. With an average of 1.06 candidates
per event, our observed candidate multiplicity closely aligns with the multiplicity of candidates
in simulated samples. We retain all candidates per event [82]. Importantly, our event selection
strategy was optimized and tested using simulated samples, and no bias was observed on the
selection efficiency.

All selection criteria discussed above are summarized in Table 4.1.
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Table 4.1: Selection criteria employed in the analysis of the �̄�0 → 𝐷∗+ℓ− āℓ decay.

Variable Selection criterion

Final-state particles

𝑑𝑟 < 2 cm
|𝑑𝑧 | < 4 cm
polar angle \ ∈ [17°, 150°]
𝑒-ID (or `-ID) > 0.9
𝑝CM
ℓ ∈ [1.2, 2.4] GeV/𝑐
𝑝CM
𝜋+𝑠

< 0.4 GeV/𝑐

Intermediate particles
|𝑀 (𝐾𝜋) − 𝑀PDG

𝐷0 | < 15 MeV/𝑐2

Δ𝑀 ∈ [0.141, 0.156] GeV/𝑐2

Continuum suppression
𝑝∗
𝐷∗+ < 2.5 GeV/𝑐
𝑅2 < 0.3

Other selections
cos \𝐵𝑌 ∈ [−4, 2]
𝐸CM > 4 GeV
High level trigger hadronic events

4.3 Corrections for simulated samples

The efficiencies and fake rates of lepton identification, as well as the reconstruction efficiency
of slow pions, can vary between collision data and simulated samples. These discrepancies are
kinematics-dependent and affect not only the normalization but also the shape of the distributions.
The latter plays a significant role in the signal extraction, as we will discuss later. Therefore, for
precise measurements of |𝑉𝑐𝑏 | and form factor parameters, it is essential to carefully calibrate the
simulated samples.

In the following sections, we will discuss the corrections for lepton ID efficiency and fake
rate in Sec. 4.3.1, as well as the correction for slow pion reconstruction efficiency in Sec. 4.3.2.
Additionally, Sec. 4.3.3 will cover the correction for background shapes.

4.3.1 Lepton ID efficiency and fake rate

The efficiencies and fake rates for electron and muon identification exhibit discrepancies between
collision data and simulated samples. To address these differences, the lepton ID performance
group conducts investigations using processes including 𝐽/𝜓 → ℓ+ℓ−, 𝑒+𝑒− → ℓ+ℓ− (𝛾), and
𝑒+𝑒− → 𝑒+𝑒−ℓ+ℓ−, where ℓ = 𝑒, `.

For pion fake rates, correction factors are derived from decays including 𝐾0
𝑆 → 𝜋+𝜋−,

𝐷∗+ → 𝐷0(→ 𝐾−𝜋+)𝜋+, and 𝑒+𝑒− → 𝜏+(1-prong)𝜏− (3-prong) processes. Additionally, the
kaon fake rate is determined through the study of the 𝐷∗+ → 𝐷0(→ 𝐾−𝜋+)𝜋+ process.

The correction is assessed within the polar angle acceptance regions of the ECL for electrons
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Figure 4.2: Heatmaps of the true electrons (left) and positrons (right). Brighter colors indicate a higher
density of particles. The white grid areas represent the | ®𝑝lab |-\ phase spaces available for efficiency
correction.

(0.22 to 2.71 rad) and of the KLM for muons (0.40 to 2.60 rad). The comprehensive set of
probe channels is combined to span a lab-frame momentum range of 0.4 GeV/𝑐 to 7.0 GeV/𝑐 for
electrons and 0.4 GeV/𝑐 to 6.5 GeV/𝑐 for muons. In this study, correction factors are determined
separately for positive and negative charges, and are binned based on the lepton polar angle \ and
momentum in the lab frame | ®𝑝 |.

If lepton candidates are correctly identified, they are assigned central correction values as
weights according to the corresponding efficiency table. If they are reconstructed from pions or
kaons, corrections are applied using the relevant fake rate table.

Figure 4.2 shows two-dimensional heatmaps illustrating correctly identified electrons, while
Fig. 4.3 shows those that are identified incorrectly. The coverage of the respective correction
tables is represented by the white grid.

Two types of candidates remain uncorrected due to insufficient studies on their efficiencies and
fake rates:

• Particles, excluding pions and kaons, such as protons, that are misidentified as leptons, and
beam background hits that are mistakenly interpreted as lepton tracks. They make up only
0.6% of the total reconstructed samples.

• Correctly identified leptons that fall outside the phase space of the efficiency study, and
misidentified pions or kaons that are outside the phase space of the fake rate study. Together,
they constitute only 0.5% of the total reconstructed samples.

Considering that these two types of events constitute a small fraction of the total events, we
anticipate that they have a negligible impact on our analysis. We assign a weight of one to them,
indicating that no correction for their efficiencies or fake rates is applied.

Both statistical and systematic uncertainties are estimated for efficiency and fake rate correction
factors. In order to effectively assess uncertainties and correlations, we generate 400 variation
weights 𝑤′

𝑘 for each event in bin 𝑘 , following a multivariate Gaussian distribution.

𝑤′
𝑘 = 𝑤𝑘 + G(0, 𝜎𝑇stat𝜌stat𝜎stat + 𝜎𝑇sys𝜌sys𝜎sys)𝑘 , (4.3)
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Figure 4.3: Heatmaps of pions (top) and kaons (bottom) that are misidentified as electrons (left) or positrons
(right). The area in a brighter color implies a higher density of fake particles. Brighter colors indicate a
higher density of particles. The white grid areas represent the | ®𝑝lab |-\ phase spaces available for fake rate
correction.

where 𝑤𝑘 represents the correction weight for bin 𝑘 , and G(0, 𝜎𝑇 𝜌𝜎)𝑘 refers to a sample generator
that simulates statistical or systematic fluctuations for bin 𝑘 following a multivariate Gaussian
distribution with 0 means and a covariance matrix 𝜎𝑇 𝜌𝜎. Here, 𝜌stat is diagonal, indicating that
statistical uncertainties between different bins are uncorrelated. In contrast, 𝜌sys is a matrix with
all elements equal to one, implying that systematic uncertainties are fully correlated across all
bins. Additionally, 𝜎 corresponds to the standard deviations provided by the correction tables.

Regarding the candidates falling outside the phase space covered by the correction table, their
variation weights are generated using the formula

𝑤′ = 1 + G(0, 𝜎average), (4.4)

where the 𝜎average is determined by

𝜎2
average = 𝜎

2
stat+sys + 1 − 𝑤2

. (4.5)

Here, 𝜎stat+sys represents the average of full uncertainties across the entire table, while 1 − 𝑤 is
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the average of the differences between one and the correction factors across the entire table. The
assignment of the correction weights and the generation of variation weights are carried out using
the PIDvar package [83].

Due to the absence of performance studies, we are not able to assign uncertainties for the
misidentified lepton candidates other than kaons and pions.

4.3.2 Slow pion reconstruction efficiency

The investigation of the slow pion reconstruction efficiency is an important part of my PhD
research. This efficiency correction plays a critical role in measurements of semileptonic 𝐵 decays
involving 𝐷∗+ mesons and typically contributes the leading-order uncertainty in measurements
of �̄�0 → 𝐷∗+ℓ− āℓ decays. Detailed information on how the correction factors for slow pion
reconstruction efficiency are determined can be found in Appendix B. The resulting momentum-
dependent correction factors for slow pions are summarized in Table 4.2. It’s worth noting that no
correction is applied to pions with momenta exceeding 0.20 GeV/𝑐.

Table 4.2: Correction factors for the slow pion reconstruction efficiency, where the first uncertainty is
uncorrelated between different momentum bins, while the second is correlated.

Momentum region Correction factor
0.05-0.12 GeV/𝑐 0.909 ± 0.032 ± 0.020
0.12-0.16 GeV/𝑐 1.033 ± 0.026 ± 0.022
0.16-0.20 GeV/𝑐 0.971 ± 0.027 ± 0.021
> 0.20 GeV/𝑐 1

Similar to the lepton ID correction, we assign corresponding correction factors as weights
for slow pion candidates according to their momenta. To properly estimate uncertainties and
correlations, we adopt the same method as for lepton identification. We generate 400 variation
weights for each candidate by

𝑤′
slow = 𝑤 + G(0, 𝜎uncorr) + G(0, 𝜎corr), (4.6)

where 𝑤 is the correction factor, and G(0, 𝜎uncorr) and G(0, 𝜎corr) denote sample generators that
produce random numbers following Gaussian distributions with uncorrelated and correlated
uncertainties, respectively. Particularly, we use the same seeds for generating correlated random
numbers across different bins for both �̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā` decays. This strategy,
implemented using the NumPy package [84], ensures full correlation of slow pions within the
same momentum window between the electron and muon channels.

4.3.3 Background shape correction

The cos \𝐵𝑌 distribution holds significant importance as it is utilized for determining signal yields.
Nevertheless, a discrepancy is observed between the reconstructed candidates and the simulated
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samples in the region where cos \𝐵𝑌 > 2, fully populated by background events. To address this
issue, we decide to exclude the problematic cos \𝐵𝑌 > 2 region from our analysis.

Moreover, we conduct an additional examination of background events with cos \𝐵𝑌 < 2. This
involves the reconstruction of reference data and samples by pairing 𝐷∗ and lepton candidates with
the same charge. The reconstructed samples are then categorized into two distinct groups: the
true 𝐷∗ component, where 𝐷∗ mesons are accurately reconstructed, and the fake 𝐷∗ component,
where they are not.

Subsequently, we calculate a bin-by-bin correction for the fake 𝐷∗ component in the cos \𝐵𝑌
spectrum by computing the ratios between data and MC samples originating from the sideband
region Δ𝑀 > 0.152 GeV/𝑐2. We then apply this correction to the fake 𝐷∗ candidates in the Δ𝑀
< 0.152 GeV/𝑐2 region of the same-sign samples and subtract this component from experimental
data. Further, we determine the ratios of correctly reconstructed 𝐷∗ candidates between reference
data and samples in bins of the cos \𝐵𝑌 distribution, which are used as correction factors for the
true 𝐷∗ component.

The background samples with this correction applied will be utilized in the subsequent analysis.
To maintain a conservative approach, the discrepancy in results when the correction is omitted is
considered as the uncertainty arising from the background shape.

4.4 Comparison of collision data and simulated samples

After implementing the corrections that are described in this section, we present the distributions
of the cos \𝐵𝑌 and Δ𝑀 variables in Fig. 4.4 for both �̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā`
channels. In the figure, the simulated samples are categorized as follows

• Signal: the entire decay chain is reconstructed correctly.

• “True 𝐷∗” background: the 𝐷∗ candidate is reconstructed correctly, but the 𝐷∗ℓ system is
wrongly reconstructed due to the misidentification of the lepton candidate or the wrong
combination of 𝐷∗ and ℓ candidates. This arises from continuum, 𝐵-meson background, or
signal processes.

• “Fake 𝐷∗” background: the 𝐷∗ candidate is misreconstructed, arising from continuum,
𝐵-meson background, or signal processes.

In general, we observe a good agreement between the experimental data and the simulated
samples. There is a slight deficit of the simulated samples in the high cos \𝐵𝑌 region, while the
samples overshoot the data in the highest bin of the Δ𝑀 spectrum.
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Figure 4.4: Distributions of reconstructed cos \𝐵𝑌 and Δ𝑀 for �̄�0 → 𝐷∗+𝑒− ā𝑒 (left) and �̄�0 → 𝐷∗+`− ā`
(right) candidates in data with expectations from simulation overlaid. The simulated samples are weighed
based on integrated luminosities. The hatched area represents the uncertainty due to the finite size of the
simulated sample, and the uncertainties arising from the lepton identification, slow-pion reconstruction,
and tracking efficiency of 𝐾 , 𝜋, and ℓ.
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CHAPTER 5

Reconstruction of kinematic variables

To reconstruct the recoil parameter 𝑤 and three decay angles \ℓ , \𝑉 , and 𝜒, we must first determine
momenta of 𝐵 mesons. As previously mentioned in Chapter 4.2, we can estimate the energy
and magnitude of the three-momentum of the 𝐵 meson from the beam energy using Eq. (4.1).
However, the next crucial question is how to ascertain the direction of the 𝐵 meson’s momentum.

We recognize that the cos \𝐵𝑌 variable indicates the angle between the 𝐵 meson and the
reconstructed 𝐷∗ℓ system. Consequently, the momentum of the 𝐵 meson must lie on the lateral
surface of a right circular cone, where the cone’s axis aligns with the momentum of the 𝐷∗ℓ
system, and the opening angle of the cone is defined as 2\𝐵𝑌 . It’s worth noting that there is
no deterministic information available to definitively determine which direction on the cone
corresponds to the actual 𝐵 meson’s orientation.

5.1 Reconstruction using 𝑩 angular distribution

The “diamond frame” method was originally developed by the BaBar experiment [85, 86]. Its
foundation lies in the fact that the electron and positron beams are effectively massless and
completely polarized along the beam axis. Consequently, the resulting spin-1 Υ(4𝑆) meson
should have its spin aligned with the axis. This meson further decays into two spinless 𝐵 mesons,
and the distribution of their angle with respect to the beam axis, denoted as \𝐵, follows a sin2 \𝐵
distribution. Therefore, we can deduce the probability distribution of the 𝐵 meson’s polar angle.

In this approach, we begin with randomly selecting the first direction on the cone, and then we
determine the other nine directions with equal spacing around the cone’s lateral surface. Next, we
calculate four kinematic variables for each of these ten directions. The weighted average of these
ten samples is calculated, with the weight for the 𝑖-th sample written as

𝜔𝑖 = sin2 \𝐵 𝑖, (5.1)

with \𝐵 𝑖 denoting the polar angle of the 𝑖-th sampled 𝐵 direction.
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5.2 Reconstruction utilizing rest of event

This method was previously employed by the Belle experiment. In an untagged �̄�0 → 𝐷∗+ℓ− āℓ
measurement, the tracks and clusters that are not associated with the 𝐷∗ℓ system are regarded as
originating from the companion 𝐵 meson. Consequently, exploring the characteristics of the ROE
proves valuable in reconstructing the kinematics of the partner 𝐵 meson. With the known beam
information, we can then deduce the kinematics of the signal 𝐵 meson.

In this method, we aggregate all remaining tracks and clusters in the event to directly calculate
the momentum of the ROE in the CM frame, denoted as ®𝑝 ∗

ROE. This approximates the three-
momentum vector of the partner 𝐵 meson. Furthermore, in the CM frame, the two 𝐵 mesons are
emitted in opposite directions, and thus the opposite direction of the ROE momentum in the CM
frame, denoted as − ®𝑝 ∗

ROE, points in the direction of the signal 𝐵 meson if all particles in the ROE
are reconstructed and assigned perfectly.

With this assumption in mind, we select the direction on the cone that is closest to the − ®𝑝 ∗
ROE

momentum, as illustrated in Fig. 5.1, and four kinematic variables are determined based on the
chosen direction.

Figure 5.1: Illustration of how we choose the direction on the cone based on the ROE momentum.

5.3 Combination of two methods

Both of the approaches discussed above have their own disadvantages. For instance, in the first
approach, while it’s possible that the true 𝐵 meson direction may be randomly selected as one of
the ten samples, it will still be combined with the other nine incorrect directions when calculating
the weighted average. This will lead to an inaccurate final estimate.

As for the second method, factors such as missing particles (like neutrinos and 𝐾0
𝐿 mesons)

and the limitations of detector resolution and acceptance impact the determination of the ROE
direction. Consequently, the chosen direction on the cone may deviate from the actual 𝐵 meson
direction.

Inspired by these methods, we have developed a novel approach that leverages both the 𝐵
angular distribution and ROE information. In this approach, we continue to select ten directions
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on the cone, and calculate the weighted average of these ten samples, similar to the diamond
frame method. However, the weight is now given by

�̃�𝑖 = (1 − 𝑝ROE · 𝑝𝐵𝑖
) sin2 \𝐵𝑖

(5.2)

where 𝑝ROE and 𝑝𝐵𝑖
represent the unit vectors of the ROE momentum and the 𝑖-th sampled 𝐵

meson momentum on the cone, respectively.
It is worth noting that, in comparison to the diamond frame method, the inclusion of the factor

(1 − 𝑝ROE · 𝑝𝐵𝑖
) ensures that the direction on the cone closer to the vector −𝑝ROE will receive a

larger weight, while those further away are suppressed.
Additionally, we confirm that selecting ten directions on the cone is adequate. There is no

significant improvement observed by increasing the number of sampling.

5.4 Performance of three methods

In this section, we will compare the resolution and investigate migration properties of the three
methods using simulated signal decays. Our objective is to identify the method that exhibits the
best performance, and subsequently, this method will be used in the presented analysis.

We reconstruct the kinematic variables for the simulated samples with three methods, respec-
tively. For each correctly reconstructed signal decay, we compute the difference, also referred to
as the residual, between the reconstructed values and the values used to generate these events.
The resulting distributions of these differences are shown in Fig. 5.2 for the kinematic variables
𝑤, cos \ℓ , cos \𝑉 , and 𝜒.

Generally, we observe that the ROE method produces distributions with the best core resolution.
This phenomenon is as expected because, when there are no missing particles in the ROE and
when tracks and clusters are accurately reconstructed, the ROE method provides a more precise
estimation of the 𝐵 direction compared to the other two methods.

On the other hand, we also note that the ROE method consistently yields distributions with the
longest tails. This can be attributed to situations where the ROE reconstruction is influenced by
missing particles and detector acceptance, leading to a substantial deviation between the chosen
direction and the true 𝐵 direction. As a result, the determination of kinematic variables based on
this inaccurate direction becomes less precise when compared to the weighted average of the ten
directions on the cone.

The distributions in Fig. 5.2 are not standard Gaussian distributions. To be resistant to skewness,
we calculate and summarize medians as well as the 15.865% and 84.135% percentiles of the
residuals in Table 5.1 and Table 5.2, respectively. While the medians from different methods
exhibit minimal variation, the new combined method results in a narrower spread around the
median, with 68.27% of events falling within this range, compared to the other two methods.

In addition to comparing medians and percentiles, we also assess the migration properties. In
this context, elements of migration matrices are defined as conditional probabilities of events
being reconstructed in a specific bin 𝑖 of the recoil parameter or decay angle, given that the true
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Figure 5.2: Distributions of residuals for kinematic variables 𝑤, cos \ℓ , cos \𝑉 , and 𝜒 reconstructed using
the diamond frame, ROE, and combined methods (including both �̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā`
decays)
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Table 5.1: Medians of residuals (in units of 10−3) for kinematic variables 𝑤, cos \ℓ , cos \𝑉 , and 𝜒
reconstructed using the diamond frame, ROE, and combined methods.

Variables Diamond frame ROE Combined
𝑤 0.8 1.1 1.0

cos \ℓ −4.9 −5.8 −5.2
cos \𝑉 4.0 3.9 4.0
𝜒 0.8 1.1 1.0

Table 5.2: Summary of 15.865% and 84.135% percentiles of the residuals, presented as the first and second
numbers in brackets, respectively, with their differences provided as the third number outside the brackets.

Variables Diamond frame ROE Combined
𝑤 [-0.024, 0.025], 0.049 [-0.021, 0.026], 0.047 [-0.020, 0.022], 0.043

cos \ℓ [-0.065, 0.051], 0.116 [-0.068, 0.045], 0.112 [-0.060, 0.044], 0.104
cos \𝑉 [-0.061, 0.069], 0.130 [-0.064, 0.073], 0.137 [-0.059, 0.068], 0.127
𝜒 [-0.300, 0.301], 0.602 [-0.286, 0.287], 0.573 [-0.281, 0.282], 0.563

value falls within bin 𝑗 ,

M𝑖 𝑗 = 𝑃(reconstructed value in bin 𝑖 |true value in bin 𝑗) . (5.3)

The binning for kinematic variables 𝑤, cos \ℓ , cos \𝑉 , and 𝜒 is summarized in Table 5.3.
These bins are equidistant, except for the last bin of 𝑤, which extends slightly beyond 1.5, and the
first bin of cos \ℓ , which is made broader to increase the efficiency for signal decays. Furthermore,
the bin widths are defined such that they are larger than the widths of the residuals, as summarized
in Table 5.2. This ensures a relatively small migration across bins. In Chapter 6, we will measure
partial decay rates using the same binning.

Table 5.3: Binning of kinematic variables 𝑤, cos \ℓ , cos \𝑉 and 𝜒 for partial decay rate measurement.

Variable Bin edge
𝑤 [1.00, 1.05, 1.10, 1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 1.504]

cos \ℓ [−1.0, −0.4, −0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
cos \𝑉 [−1.0, −0.8, −0.6, −0.4, −0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
𝜒 [0, 𝜋/5, 2𝜋/5, 3𝜋/5, 4𝜋/5, 𝜋, 6𝜋/5, 7𝜋/5, 8𝜋/5, 9𝜋/5, 2𝜋]

The migration matrices for the �̄�0 → 𝐷∗+𝑒− ā𝑒 decay are shown in Fig. 5.3, Fig. 5.4, and
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Figure 5.3: Migration matrices of kinematic variables 𝑤, cos \ℓ , cos \𝑉 , and 𝜒 reconstructed using the
diamond frame method for the �̄�0 → 𝐷∗+𝑒− ā𝑒 decay.

Fig. 5.5 corresponding to the diamond frame, ROE, and combined method, respectively. The
�̄�0 → 𝐷∗+`− ā` decay shows a similar migration pattern, which can be found in Appendix C.

For the 𝜒 angle, 0 rad and 2𝜋 rad represent the same angle. This explains the relatively large
migration between the bin [0, 𝜋/5] and bin [9𝜋/5, 2𝜋] observed in Fig. 5.4. However, in the
weighted average approaches (the diamond frame method and the novel combined method),
10 uniform directions are used in the calculation, which breaks this identity as no significant
migration is observed between those two bins. Due to this, we reconstruct the 𝜒 angle using the
ROE method. For the other observables, we use the novel combined method, which improves the
resolutions.

The distributions of the reconstructed kinematic variables 𝑤, cos \ℓ , cos \𝑉 , and 𝜒 of the
analyzed Belle II data are shown in Fig. 5.6, with expectations from simulation overlaid, for both
�̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā` decays. We observe that nearly all data points fluctuate
within the prediction of the simulated samples. A small discrepancy shows around the low 𝑤
region, where backgrounds are dominant. They can be constrained with the two-dimensional fits
to the cos \𝐵𝑌 and Δ𝑀 distributions.
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Figure 5.4: Migration matrices of kinematic variables 𝑤, cos \ℓ , cos \𝑉 , and 𝜒 reconstructed using the
ROE method for the �̄�0 → 𝐷∗+𝑒− ā𝑒 decay.
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Figure 5.5: Migration matrices of kinematic variables 𝑤, cos \ℓ , cos \𝑉 , and 𝜒 reconstructed using the
combined method for the �̄�0 → 𝐷∗+𝑒− ā𝑒 decay.
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Figure 5.6: Distributions of observed kinematic variables for �̄�0 → 𝐷∗+𝑒− ā𝑒 (left) and �̄�0 → 𝐷∗+`− ā`
(right) candidates reconstructed in data with expected distributions from simulation overlaid. In all panels,
simulated samples are shown separately for signal, true 𝐷∗ background, and fake 𝐷∗ background and
weighted according to luminosities. The hatched area represents uncertainties due to the finite size of the
simulated samples, lepton identification, slow pion reconstruction, and tracking efficiency of 𝐾 , 𝜋, and ℓ.
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CHAPTER 6

Measurement of partial decay rates

Presently, obtaining a measurement of the four-dimensional differential decay rate, as expressed
in Eq. (2.31), is challenging. Consequently, we perform measurements of the differential decay
rate in one dimension, integrated across different regions

∫ 𝑋max

𝑋min

𝑑Γ
𝑑𝑋

∝ |𝑉𝑐𝑏 |2 ×
��𝐹 (𝑤, cos \ℓ , cos \𝑉 , 𝜒)

��2 , (6.1)

where 𝑋 = 𝑤, cos \ℓ , cos \𝑉 , and 𝜒. For 𝑋max and 𝑋min, we use the binning outlined in Table 5.3.
The prediction of these partial decay rates depends on |𝑉𝑐𝑏 | and form factor parameters. In

Chapter 8, We will establish a 𝜒2 fit to determine their values that best describe the observed
partial decay rates.

6.1 Signal extraction

To experimentally measure the partial decay rates, we firstly need to determine the signal yield
within each bin. This is achieved through two-dimensional binned maximum likelihood fits to
cos \𝐵𝑌 and Δ𝑀 distributions.

As depicted in Fig. 6.1, most signal events are confined within the range cos \𝐵𝑌 ∈ [−1, 1],
although some extend beyond this range due to the detector resolution and photon radiation (final
state radiation or Bremsstrahlung), which affect the determination of the momentum and energy
of the 𝐷∗ℓ system. The background component, which contains correctly reconstructed 𝐷∗

candidates, is well-constrained in the Δ𝑀 variable but spans the entire cos \𝐵𝑌 space. In the case
of fake 𝐷∗ candidates, their momenta can be wrongly estimated due to the mis-reconstruction or
wrong assignment. As a result, we observe them across the full ranges of the cos \𝐵𝑌 and Δ𝑀
variables, and no peak in the Δ𝑀 distribution.

The difference in density within the two-dimensional distributions serve as a prerequisite for
the likelihood fits that we will introduce later. They lead to varying probabilities of finding events
from different components, making them distinguishable. The Δ𝑀 variable effectively separates
the fake 𝐷∗ events from signals and backgrounds with correctly reconstructed 𝐷∗ mesons, which
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Figure 6.1: Scatter plots illustrate the signal (top), true𝐷∗ background (bottom left), and fake𝐷∗ background
(bottom right) components on the coordinate plane defined by the cos \𝐵𝑌 and Δ𝑀 variables. Each point
represents a reconstructed candidate.

peak near Δ𝑀 = 0.145 GeV/𝑐2. Additionally, the cos \𝐵𝑌 variable distinguishes signal events
from the true 𝐷∗ backgrounds.

For each fit, we adopt the following bin granularity, consisting of a total of 16 bins across two
dimensions:

• Four bins in cos \𝐵𝑌 spanning [−4.0,−2.5, −1.0, 1.0, 2.0].
• Four equidistant Δ𝑀 bins spanning 0.141 GeV/𝑐2 to 0.156 GeV/𝑐2.

This coarse binning strategy mitigates the sensitivity to the exact modeling of the simulated
detector response and resolution.

The histogram fits rely on simulated samples, where the expected number of events in bin 𝑖 of
cos \𝐵𝑌 and Δ𝑀 is represented as

a
exp
𝑖 (a𝑘 , 𝜽) =

∑︁
𝑘

a𝑘 𝑓
MC
𝑖𝑘 (𝜽) , (6.2)

where a𝑘 represents the yield for the event category 𝑘 that we aim to determine. These event
categories include the signal, true 𝐷∗ background, and fake 𝐷∗ background. Additionally, 𝑓MC

𝑖𝑘
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6.1 Signal extraction

indicates the fraction of 𝑘-type events in bin 𝑖, and is expressed as

𝑓MC
𝑖𝑘 (𝜽) = 𝑝MC

𝑖𝑘 (1 + 𝜖𝑖𝑘\𝑖𝑘)∑
𝑗 𝑝

MC
𝑗𝑘 (1 + 𝜖 𝑗𝑘\ 𝑗𝑘)

. (6.3)

Here, 𝑝MC
𝑖𝑘 is the probability of finding an event of category 𝑘 in bin 𝑖, and it is determined based

on simulations. The shapes of templates can vary based on the nuisance parameter \𝑖𝑘 and the
1𝜎 deviation 𝜖𝑖𝑘 , whose magnitude is dominated by the uncertainty due to the limited size of the
simulated samples.

It is important to note that the uncertainties arising from lepton ID efficiency and tracking
efficiencies for final state particles, including leptons, slow pions, and other hadrons, are nearly
fully correlated across all bins. Therefore, they tend to have a negligible impact on the template’s
shape.

The free parameters of the fit are the yields for three distinct categories (signal, true 𝐷∗

background, and fake 𝐷∗ background), and the bin-wise nuisance parameters \𝑖𝑘 associated with
each template.

The likelihood function for a specific bin of the recoil parameter or decay angle is expressed as
follows,

−2 lnL(𝝂, 𝜽) = −2 ln
∏
𝑖

P(𝑛reco.
𝑖 , a

exp
𝑖 ) + 𝜽𝑇𝐶−1

\ 𝜽 , (6.4)

where 𝑛reco.
𝑖 represents the number of reconstructed events in data within a given bin 𝑖, 𝝂 and 𝜽

are the yields for three categories and nuisance parameters in the vector format, respectively, and
P denotes the Poisson distribution. In addition, 𝐶\ is the correlation matrix of the systematic
nuisance parameters. The fit procedure is implemented with the Binfit package [87], which
numerically minimizes the likelihood function using the iminuit package [88, 89].

Before conducting the fit on experimental data, we generate toy samples to perform a check for
potential biases and to validate the accuracy of uncertainty estimates. More extensive information
can be found in Appendix D. We observe no bias in the signal extraction and uncertainty estimation.

The signal yields obtained in bins of kinematic variables 𝑤, cos \ℓ , cos \𝑉 , and 𝜒, along
with their associated statistical uncertainties, are summarized in Table 6.1. Post-fit comparisons
between the collision data and simulated samples can be found in Appendix E.
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Chapter 6 Measurement of partial decay rates

Table 6.1: Observed signal yields with their associated statistical uncertainties in bins of kinematic variables.

Variables Bin �̄�0 → 𝐷∗+𝑒− ā𝑒 �̄�0 → 𝐷∗+`− ā`

𝑤

[1.00, 1.05) 2 004 ± 84 2 055 ± 85
[1.05, 1.10) 4 519 ± 120 4 927 ± 122
[1.10, 1.15) 6 252 ± 126 6 807 ± 126
[1.15, 1.20) 7 433 ± 127 7 806 ± 129
[1.20, 1.25) 7 636 ± 125 8 180 ± 128
[1.25, 1.30) 7 326 ± 121 7 686 ± 123
[1.30, 1.35) 6 531 ± 112 7 016 ± 118
[1.35, 1.40) 5 615 ± 106 6 091 ± 110
[1.40, 1.45) 4 699 ± 100 4 924 ± 109
[1.45, 1.51) 3 352 ± 99 3 626 ± 110

cos \ℓ

[−1.00,−0.40) 1 811 ± 82 1 990 ± 87
[−0.40,−0.20) 2 136 ± 81 2 368 ± 85
[−0.20, 0.00) 5 085 ± 120 5 214 ± 127
[0.00, 0.20) 8 901 ± 154 9 679 ± 159
[0.20, 0.40) 10 163 ± 145 10 056 ± 146
[0.40, 0.60) 10 020 ± 140 10 728 ± 141
[0.60, 0.80) 9 286 ± 132 10 312 ± 139
[0.80, 1.00) 8 018 ± 121 8 872 ± 129

cos \𝑉

[−1.00,−0.80) 7 930 ± 126 8 802 ± 131
[−0.80,−0.60) 6 963 ± 122 7 217 ± 126
[−0.60,−0.40) 6 209 ± 117 6 481 ± 121
[−0.40,−0.20) 5 297 ± 113 5 762 ± 117
[−0.20, 0.00) 5 025 ± 112 5 321 ± 114
[0.00, 0.20) 4 887 ± 110 5 194 ± 112
[0.20, 0.40) 4 720 ± 108 5 235 ± 110
[0.40, 0.60) 4 921 ± 106 5 234 ± 109
[0.60, 0.80) 4 800 ± 103 4 935 ± 107
[0.80, 1.00) 4 650 ± 98 5 038 ± 104

𝜒

[0.00, 0.63) 4 660 ± 107 4 992 ± 112
[0.63, 1.26) 5 458 ± 115 6 033 ± 117
[1.26, 1.88) 6 542 ± 117 6 741 ± 119
[1.88, 2.51) 5 885 ± 114 6 358 ± 118
[2.51, 3.14) 5 063 ± 107 5 362 ± 113
[3.14, 3.77) 5 222 ± 109 5 516 ± 112
[3.77, 4.40) 5 815 ± 112 6 188 ± 116
[4.40, 5.03) 6 361 ± 117 6 930 ± 120
[5.03, 5.65) 5 653 ± 112 6 240 ± 116
[5.65, 6.28) 4 726 ± 106 4 831 ± 110
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6.2 Unfolding

6.2 Unfolding

Due to the detector resolution, as well as limitations in detector acceptance and other contributing
factors, the measured kinematic values in each event exhibit deviations from their true values.
Consequently, the resulting distributions are subject to smearing and distortions. The signal
yields, as summarized in Table 6.1, are determined based on the reconstructed observables. To
estimate the underlying true spectra, we rely on simulated samples to establish the connection
between observed distributions and their non-distorted counterparts. This restorative process is
commonly referred to as “unfolding”.

Various unfolding methods exist, including bin-by-bin unfolding [90], iterative Bayesian
approaches [91, 92], and other techniques. In this study, we compare two widely-used methods:
matrix inversion and singular value decomposition (SVD) [93]. Both approaches aim to correct
the measurements using migration matrices, which were discussed in detail in Sec. 5.4.

In the matrix inversion method, it is important to note that the reconstructed values exhibit a
linear relationship with the underlying true values, as expressed by the equation,

𝑥reco. = M𝑦true, (6.5)

whereM is the migration matrix, and 𝑥reco. and 𝑦true represent reconstructed spectra and underlying
true spectra, respectively. Consequently, we can straightforwardly obtain the true distribution by
simply inverting the migration matrix

𝑦true = M−1𝑥reco.. (6.6)

The SVD unfolding introduces a regularization parameter, denoted as 𝑘 , to mitigate statistical
fluctuations. It is important to fine-tune this parameter appropriately, considering the specific
number of bins and the size of the sample through the use of MC samples: If 𝑘 is set too small,
the unfolded results become overly reliant on the input MC shape. Conversely, an excessively
large 𝑘 introduces heightened statistical fluctuations, resulting in larger uncertainties and (anti-
)correlations between adjacent bins. The optimization of the parameter 𝑘 will be discussed in
detail in Section 6.2.1. For unfolding processes, we employ the PyRooUnfold package [94],
which serves as a Python wrapper for RooUnfold [95, 96]. This toolkit also facilitates bias tests
and toy studies, as we will detail later.

The signal yields from each projection will undergo separate unfolding procedures. In these
procedures, we use a diagonal covariance matrix for error propagation, implying that statistical
and systematic uncertainties on the signal yields are uncorrelated. This choice is supported by the
following reasons. First, in terms of statistical uncertainties, the signal extraction is performed
bin-by-bin independently, and there is no statistical overlap between bins within a given kinematic
variable. Second, systematic uncertainties arise from variations in the template shapes due to
finite statistics. These uncertainties are also uncorrelated across different bins.
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Chapter 6 Measurement of partial decay rates

6.2.1 Optimization of parameter 𝒌 in SVD

The simulation of the signal decay relies on a model with form factor parameters obtained in
previous measurements. However, the precision of these parameter values might be limited or
biased, leading to discrepancies between the simulation and the actual physics process. These
discrepancies can introduce biases in the unfolding procedure as the determination of migration
matrices relies on the simulated signal decay.

To investigate potential biases, a benchmark test is conducted using reweighted signal decay
simulations. We utilize the form factor values and uncertainties from Ref. [97]. In this analysis,
we intentionally inflate the uncertainties of the form factor parameters by a factor of 10 to assess
bias under an extreme scenario. We calculate the eigenvalues _𝑖 and eigenvectors ®𝑒𝑖 of the
covariance matrix and determine the eigen-variations of the form factor parameters as follows,

®𝑥±var,𝑖 = ®𝑥 ±
√︁
_𝑖 ®𝑒𝑖 , (6.7)

where ®𝑥 represents the central values of the form factor parameters as obtained in Ref. [97].
Using these orthogonal variations, we reweight the simulated signal decay along one of

eigen-directions. Candidate-wise weights are computed based on the kinematic variables at the
generator level, as expressed in the equation,

𝑤FF(𝑤, cos \ℓ , cos \𝑉 , 𝜒) =
Γcen

Γ±
𝑖

×

d4Γ±
𝑖

d𝑤d cos \ℓd cos \𝑉d𝜒
d4Γcen

d𝑤d cos \ℓd cos \𝑉d𝜒

, (6.8)

where Γcen represents the integrated decay rate with the central values of form factor parameters,
and Γ±

𝑖 represents the integrated decay rate with the orthogonal variations of the form factor
parameters. The ratio between two integrated decay rates ensures that the total rate remains the
same after reweighting. In the second fraction, the numerator and denominator correspond to
the differential decay rates calculated with the central values of form factor parameters and their
orthogonal variations, respectively. This reweighting procedure is implemented using the eFFORT
package [98].

We generate ten thousand toy spectra using Gaussian distributions, where the mean corresponds
to the number of events in each bin after reweighting, and the standard deviation corresponds to
the input uncertainty for unfolding. Subsequently, we perform the unfolding process on these
toy samples using the SVD method with various values of the regularization parameter 𝑘 , and
the matrix inversion method. In this step, we use the nominal migration matrix, which remains
unchanged across all toy spectra. We calculate the mean and root-mean-square deviation of the
post-unfolding results and compare them, as illustrated in Fig. 6.2.

Our observations reveal significant deviations from the true spectrum when using a small 𝑘
value, such as 𝑘 = 2 or 3. In these cases, the non-closures cannot be adequately accounted for
by the uncertainties. This behavior can be attributed to the strong dependence on the simulated
spectrum. As we progressively decrease the level of regularization applied in the SVD method, the
observed bias reduces. Furthermore, the unfolded distributions approach closer to the unfolded
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Figure 6.2: Comparison of SVD unfolding with various 𝑘 values and matrix inversion methods. The data
points represent the means of unfolded toy spectra, and the lengths of the error bars correspond to the
root-mean-square deviations. The data points in a bin, from left to right, correspond to increasing values of
𝑘 . The post-unfolding uncertainties with the matrix inversion method are depicted as orange boxes.

spectra derived from the matrix inversion method.
An optimal unfolding method must result in minimal biases and not overestimated uncertainties.

To determine which unfolding method is ideal, we evaluate various figure-of-merits listed in
Table 6.2. We perform unfolding on reweighted signal distributions using the nominal migration
matrices and assess both biases and the resulting post-unfolding covariance matrices. The results
for 𝑤, cos \ℓ , cos \𝑉 , and 𝜒 are presented in Table 6.3 to Table 6.6, respectively.

In comparison to the matrix inversion method, the SVD method leads to larger total biases
when 𝑘 values are less than 5, with the largest biases consistently observed when using 𝑘 = 2.
However, as the regularization is reduced, the total biases can decrease to values smaller than
those obtained with the matrix inversion method. Simultaneously, the sum of elements in the
post-unfolding covariance matrix increases with respect to the increasing 𝑘 value.

We opt for the SVD method with 𝑘 values of 7, 6, 6, and 7 for 𝑤, cos \ℓ , cos \𝑉 , and 𝜒,
respectively. These choices ensure that the total bias remains smaller than the one obtained
through the inversion of the migration matrices. Furthermore, with these selected 𝑘 values, the
ratios of bias to unfolding uncertainty are relatively low and stable.

We conduct a validation of the unfolding procedure on toy samples for both the matrix inversion
method and SVD method with the chosen regularization parameters. Further details can be found
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Chapter 6 Measurement of partial decay rates

Table 6.2: Summary of the metrics used to evaluate unfolding algorithms and parameters.

Figure of merit Description∑
𝑖 |𝑏𝑖 | The sum of absolute biases, with 𝑏𝑖 = 𝑁

unfoled
𝑖 − 𝑁 true

𝑖 (𝑖 is the bin index).√︃∑
𝑖, 𝑗 𝐶𝑜𝑣𝑖, 𝑗 The square root of the sum of all covariances.∑
𝑖 |𝑏𝑖 |√︃∑

𝑖, 𝑗 𝐶𝑜𝑣𝑖, 𝑗

The ratio between the sum of absolute biases and the sum of covariances.
This is used to assess whether the total bias resulting from the unfolding
can be accommodated by the uncertainties across the entire distribution.

∑
𝑖

|𝑏𝑖 |√︁
𝐶𝑜𝑣𝑖,𝑖

The sum of ratios between bin-wise absolute biases and post-unfolding
uncertainties.

Table 6.3: Resulting metrics values for the unfolded 𝑤 spectrum using the matrix inversion method, and
the SVD method with various 𝑘 parameters.

∑
𝑖 |𝑏𝑖 |

√︃∑
𝑖, 𝑗 𝐶𝑜𝑣𝑖, 𝑗

∑
𝑖 |𝑏𝑖 |√︃∑

𝑖, 𝑗 𝐶𝑜𝑣𝑖, 𝑗

∑
𝑖

|𝑏𝑖 |√︁
𝐶𝑜𝑣𝑖,𝑖

Matrix inversion 132 913 0.1 0.5
SVD (𝑘 = 2) 1015 162 6.3 24.3
SVD (𝑘 = 3) 340 216 1.6 5.6
SVD (𝑘 = 4) 234 263 0.9 3.0
SVD (𝑘 = 5) 164 315 0.5 1.7
SVD (𝑘 = 6) 131 373 0.3 1.1
SVD (𝑘 = 7) 116 442 0.3 0.9
SVD (𝑘 = 8) 103 516 0.2 0.7
SVD (𝑘 = 9) 97 555 0.2 0.6
SVD (𝑘 = 10) 104 671 0.2 0.5

in Appendix F.
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6.2 Unfolding

Table 6.4: Resulting metrics values for the unfolded cos \ℓ spectrum using the matrix inversion method,
and the SVD method with various 𝑘 parameters.

∑
𝑖 |𝑏𝑖 |

√︃∑
𝑖, 𝑗 𝐶𝑜𝑣𝑖, 𝑗

∑
𝑖 |𝑏𝑖 |√︃∑

𝑖, 𝑗 𝐶𝑜𝑣𝑖, 𝑗

∑
𝑖

|𝑏𝑖 |√︁
𝐶𝑜𝑣𝑖,𝑖

Matrix inversion 141 606 0.2 0.8
SVD (𝑘 = 2) 864 184 4.7 17.5
SVD (𝑘 = 3) 433 241 1.8 5.6
SVD (𝑘 = 4) 168 294 0.6 1.6
SVD (𝑘 = 5) 136 352 0.4 1.2
SVD (𝑘 = 6) 121 410 0.3 1.0
SVD (𝑘 = 7) 118 448 0.3 1.0
SVD (𝑘 = 8) 123 488 0.3 0.9

Table 6.5: Resulting metrics values for the unfolded cos \𝑉 spectrum using the matrix inversion method,
and the SVD method with various 𝑘 parameters.

∑
𝑖 |𝑏𝑖 |

√︃∑
𝑖, 𝑗 𝐶𝑜𝑣𝑖, 𝑗

∑
𝑖 |𝑏𝑖 |√︃∑

𝑖, 𝑗 𝐶𝑜𝑣𝑖, 𝑗

∑
𝑖

|𝑏𝑖 |√︁
𝐶𝑜𝑣𝑖,𝑖

Matrix inversion 142 725 0.2 0.6
SVD (𝑘 = 2) 1318 159 8.3 28.8
SVD (𝑘 = 3) 662 213 3.1 10.6
SVD (𝑘 = 4) 204 257 0.8 2.5
SVD (𝑘 = 5) 106 301 0.4 1.2
SVD (𝑘 = 6) 87 351 0.2 0.9
SVD (𝑘 = 7) 101 399 0.3 0.9
SVD (𝑘 = 8) 109 452 0.2 0.8
SVD (𝑘 = 9) 116 511 0.2 0.7
SVD (𝑘 = 10) 121 568 0.2 0.7
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Chapter 6 Measurement of partial decay rates

Table 6.6: Resulting metrics values for the unfolded 𝜒 spectrum using the matrix inversion method, and the
SVD method with various 𝑘 parameters.

∑
𝑖 |𝑏𝑖 |

√︃∑
𝑖, 𝑗 𝐶𝑜𝑣𝑖, 𝑗

∑
𝑖 |𝑏𝑖 |√︃∑

𝑖, 𝑗 𝐶𝑜𝑣𝑖, 𝑗

∑
𝑖

|𝑏𝑖 |√︁
𝐶𝑜𝑣𝑖,𝑖

Matrix inversion 240 850 0.3 0.9
SVD (𝑘 = 2) 719 162 4.4 14.5
SVD (𝑘 = 3) 678 227 3.0 9.9
SVD (𝑘 = 4) 485 285 1.7 5.5
SVD (𝑘 = 5) 280 332 0.8 2.7
SVD (𝑘 = 6) 90 416 0.2 0.6
SVD (𝑘 = 7) 116 467 0.2 0.8
SVD (𝑘 = 8) 161 567 0.3 0.9
SVD (𝑘 = 9) 166 580 0.3 0.9
SVD (𝑘 = 10) 191 641 0.3 0.9
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6.3 Determination of partial decay rates

6.3 Determination of partial decay rates

The partial decay rate in bin 𝑥 is determined based on the unfolded yield aunfolded
𝑥 using the

equation,

ΔΓ𝑥 =
aunfolded
𝑥

𝜖𝑥𝜏𝐵0𝑁𝐵0B(𝐷∗+ → 𝐷0𝜋+)B(𝐷0 → 𝐾−𝜋+)
, (6.9)

with 𝜏
𝐵0 = 1.519 ± 0.004 ps [1] denoting the 𝐵0 meson lifetime, and 𝑁

𝐵0 denoting the number of
𝐵0 mesons in the analyzed data set, which will be further discussed in Sec. 7.6. The branching
fractions B(𝐷∗+ → 𝐷0𝜋+) and B(𝐷0 → 𝐾−𝜋+) will be discussed in Sec. 7.7. Additionally, 𝜖𝑥
represents the reconstruction efficiency in bin 𝑥. These efficiencies are studied using simulated
signal events and are calculated as the ratios between the numbers of reconstructed events in
bin 𝑥 that meet the selection criteria and the generated events that fall into bin 𝑥. The resulting
values are summarized in Table 6.7 and Table 6.8 for �̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā` decays,
respectively.

Table 6.7: Reconstruction efficiencies, along with their statistical uncertainties (expressed in %) for the
�̄�0 → 𝐷∗+𝑒− ā𝑒 decay within each bin of kinematic variables.

𝑤 cos \ℓ cos \𝑉 𝜒

1st bin 12.1 ± 0.1 4.32 ± 0.04 23.8 ± 0.1 22.3 ± 0.1
2nd bin 18.4 ± 0.1 9.5 ± 0.1 25.0 ± 0.1 21.7 ± 0.1
3rd bin 21.7 ± 0.1 18.2 ± 0.1 26.1 ± 0.1 21.5 ± 0.1
4th bin 24.1 ± 0.1 29.4 ± 0.1 26.7 ± 0.2 21.8 ± 0.1
5th bin 25.1 ± 0.1 31.0 ± 0.1 27.1 ± 0.2 22.4 ± 0.1
6th bin 25.1 ± 0.1 30.8 ± 0.1 25.7 ± 0.2 22.5 ± 0.1
7th bin 24.4 ± 0.1 30.0 ± 0.1 23.1 ± 0.1 22.0 ± 0.1
8th bin 22.9 ± 0.1 29.4 ± 0.1 20.0 ± 0.1 21.5 ± 0.1
9th bin 20.9 ± 0.1 16.6 ± 0.1 21.9 ± 0.1
10th bin 17.6 ± 0.1 13.0 ± 0.1 22.4 ± 0.1

Inserting all numerical values and obtaining the corresponding partial decay rates is a
straightforward process. The results, along with their uncertainties, are summarized in Table 6.9.
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Chapter 6 Measurement of partial decay rates

Table 6.8: Reconstruction efficiencies, along with their statistical uncertainties (expressed in %) for the
�̄�0 → 𝐷∗+`− ā` decay within each bin of kinematic variables.

𝑤 cos \ℓ cos \𝑉 𝜒

1st bin 35.2 ± 0.1 4.01 ± 0.04 25.4 ± 0.1 22.9 ± 0.1
2nd bin 24.7 ± 0.1 9.7 ± 0.1 26.7 ± 0.1 22.9 ± 0.1
3rd bin 22.9 ± 0.1 19.6 ± 0.1 27.8 ± 0.1 23.1 ± 0.1
4th bin 19.5 ± 0.1 31.2 ± 0.1 29.1 ± 0.2 24.0 ± 0.1
5th bin 16.2 ± 0.1 32.3 ± 0.1 28.9 ± 0.2 24.7 ± 0.1
6th bin 16.5 ± 0.1 32.9 ± 0.1 27.3 ± 0.2 24.8 ± 0.1
7th bin 20.8 ± 0.1 33.2 ± 0.1 24.6 ± 0.2 23.7 ± 0.1
8th bin 24.6 ± 0.1 32.6 ± 0.1 21.5 ± 0.1 23.2 ± 0.1
9th bin 25.3 ± 0.1 17.8 ± 0.1 23.1 ± 0.1
10th bin 23.3 ± 0.1 13.8 ± 0.1 22.7 ± 0.1
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6.3 Determination of partial decay rates

Table 6.9: Measured partial decay rates ΔΓ (in units of 10−15 GeV) and average of normalized partial
decay rates ΔΓ/Γ over �̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā` decays in bins of kinematic variables. The
normalized partial decay rate in the last bin of each projection is excluded in the |𝑉𝑐𝑏 | determination to
subtract the redundant degrees of freedom. The full (statistical and systematic) uncertainties are provided.

Variable Bin
ΔΓ ΔΓ/Γ average (in %)

�̄�0 → 𝐷∗+𝑒− ā𝑒 �̄�0 → 𝐷∗+`− ā` �̄�0 → 𝐷∗+ℓ− āℓ

𝑤

[1.00, 1.05) 1.34 ± 0.10 1.30 ± 0.09 6.19 ± 0.21
[1.05, 1.10) 2.08 ± 0.12 2.11 ± 0.12 9.86 ± 0.22
[1.10, 1.15) 2.40 ± 0.13 2.45 ± 0.13 11.39 ± 0.20
[1.15, 1.20) 2.61 ± 0.14 2.60 ± 0.14 12.18 ± 0.19
[1.20, 1.25) 2.60 ± 0.13 2.60 ± 0.13 12.16 ± 0.17
[1.25, 1.30) 2.49 ± 0.12 2.43 ± 0.12 11.50 ± 0.17
[1.30, 1.35) 2.30 ± 0.11 2.29 ± 0.11 10.72 ± 0.17
[1.35, 1.40) 2.07 ± 0.10 2.07 ± 0.10 9.67 ± 0.18
[1.40, 1.45) 1.83 ± 0.09 1.80 ± 0.09 8.47 ± 0.17
[1.45, 1.51) 1.67 ± 0.09 1.70 ± 0.10

cos \ℓ

[−1.00,−0.40) 3.89 ± 0.33 4.10 ± 0.39 18.94 ± 0.79
[−0.40,−0.20) 2.00 ± 0.14 2.07 ± 0.16 9.60 ± 0.27
[−0.20, 0.00) 2.28 ± 0.12 2.26 ± 0.14 10.63 ± 0.19
[0.00, 0.20) 2.51 ± 0.12 2.56 ± 0.14 11.86 ± 0.24
[0.20, 0.40) 2.73 ± 0.13 2.63 ± 0.13 12.54 ± 0.25
[0.40, 0.60) 2.70 ± 0.13 2.70 ± 0.13 12.68 ± 0.24
[0.60, 0.80) 2.54 ± 0.12 2.57 ± 0.12 12.01 ± 0.24
[0.80, 1.00) 2.52 ± 0.12 2.49 ± 0.12

cos \𝑉

[−1.00,−0.80) 2.89 ± 0.13 3.02 ± 0.14 13.86 ± 0.27
[−0.80,−0.60) 2.38 ± 0.10 2.32 ± 0.11 11.00 ± 0.18
[−0.60,−0.40) 1.98 ± 0.09 1.93 ± 0.09 9.14 ± 0.13
[−0.40,−0.20) 1.67 ± 0.08 1.65 ± 0.08 7.75 ± 0.11
[−0.20, 0.00) 1.54 ± 0.08 1.53 ± 0.08 7.18 ± 0.10
[0.00, 0.20) 1.56 ± 0.08 1.58 ± 0.09 7.37 ± 0.11
[0.20, 0.40) 1.73 ± 0.09 1.77 ± 0.10 8.20 ± 0.12
[0.40, 0.60) 2.05 ± 0.11 2.04 ± 0.11 9.59 ± 0.14
[0.60, 0.80) 2.48 ± 0.13 2.42 ± 0.14 11.48 ± 0.17
[0.80, 1.00) 3.07 ± 0.17 3.09 ± 0.18

𝜒

[0.00, 0.63) 1.82 ± 0.11 1.85 ± 0.11 8.59 ± 0.21
[0.63, 1.26) 2.20 ± 0.11 2.24 ± 0.12 10.42 ± 0.16
[1.26, 1.88) 2.55 ± 0.13 2.50 ± 0.13 11.82 ± 0.18
[1.88, 2.51) 2.24 ± 0.11 2.24 ± 0.11 10.51 ± 0.16
[2.51, 3.14) 1.85 ± 0.09 1.83 ± 0.10 8.62 ± 0.15
[3.14, 3.77) 1.89 ± 0.10 1.85 ± 0.10 8.75 ± 0.14
[3.77, 4.40) 2.19 ± 0.11 2.21 ± 0.11 10.31 ± 0.16
[4.40, 5.03) 2.47 ± 0.12 2.56 ± 0.13 11.82 ± 0.17
[5.03, 5.65) 2.24 ± 0.11 2.30 ± 0.12 10.67 ± 0.15
[5.65, 6.28) 1.88 ± 0.11 1.75 ± 0.10
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Chapter 6 Measurement of partial decay rates

6.4 Statistical correlations

Statistical correlations between bins within the same kinematic variable are derived from the
post-unfolding covariance matrix. To fit all four spectra simultaneously, we also require statistical
correlations between bins of different variables. These cross-variable correlations are assessed
using a bootstrapping approach.

Ten thousand replicas are generated by resampling collision data with replacement. In each
replica, the total number of events is allowed to fluctuate according to the statistical uncertainty of
the entire data set. For each replica, the signal extraction and unfolding are repeated using the
nominal templates (with the nuisance parameters fixed at their values from the nominal fits) and
nominal migration matrices.

Pearson correlation coefficients are derived from the unfolded yields of the replicas. The
resulting statistical correlations among the partial decay rates are shown in Fig. 6.3 and Fig. 6.4
for �̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā` decays, respectively.
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Chapter 6 Measurement of partial decay rates
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CHAPTER 7

Systematic uncertainties

7.1 Background subtraction

As outlined in Sec. 4.3.3, a background shape correction is introduced due to the discrepancies
between simulated samples and collision data, observed in the region where cos \𝐵𝑌 > 2, which is
populated by background events. To account for this effect in a conservative manner, we introduce
an uncertainty associated with the background shape. This is achieved by extracting signal yields
twice: once using templates that incorporate the background shape correction, and once without it.
The signal yields obtained with the corrected templates are considered as the nominal results, and
the difference between the two sets of yields is treated as the uncertainty, which is subsequently
propagated to the partial decay rates.

7.2 Size of simulated samples

We propagate the statistical uncertainty resulting from the limited size of the simulated sample
into various aspects, including the signal and background shapes, migration matrices, and signal
efficiencies. To account for the statistical uncertainties in the signal and background shapes, we
introduce nuisance parameters that allow the template shapes in cos \𝐵𝑌 and Δ𝑀 to vary within
their respective statistical uncertainties. Note that these uncertainties arising from the finite size
of the simulated samples are treated as uncorrelated before unfolding, as they are determined
independently bin-by-bin.

7.3 Mid to high momentum tracking efficiency

The efficiency of track reconstruction are determined through analyses conducted by the perfor-
mance group using 𝑒+𝑒− → 𝜏+𝜏− events. In these events, one of the 𝜏 leptons decays leptonically,
𝜏± → ℓ±aℓ ā𝜏 , while the other 𝜏 lepton decays hadronically, producing three charged pions,
𝜏± → 3𝜋±(𝑛𝜋0)a𝜏 . These decay modes are commonly referred to as 1-prong and 3-prong 𝜏
decays, respectively.
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Chapter 7 Systematic uncertainties

The momenta of 𝜏-pairs span a wide range, from 200 MeV/𝑐 to approximately 3.5 GeV/𝑐. To
evaluate the tracking efficiency, the tag-and-probe method which was initially developed by the
BaBar experiment [99] is used. In this approach, three high-quality tracks are selected, with a
combined charge of ±1, to tag the 𝜏 pair events. The presence of an additional track in the event,
referred to as the probe track, can be deduced from the charge conservation principle. It can be
verified whether the probe track is successfully reconstructed or not, and express the tracking
efficiency 𝜖track as follows

𝜖track · 𝐴 =
𝑁4

𝑁4 + 𝑁3
. (7.1)

Here, 𝐴 is the geometric acceptance of the Belle II detector, 𝑁4 represents the number of events
in which all four tracks are detected, while 𝑁3 corresponds to the number of events where only
the 3-prong decay is found, without any 1-prong decay.

A calibration study has been conducted on the simulated samples to establish a relationship
between the measured inefficiency Δmeas and the underlying true inefficiency Δ∗. Initially, known
per-track inefficiencies are introduced into the signal MC, specifically, Δ∗ = 0.025, 0.05, 0.075,
and 0.1. The efficiency can be estimated using the formula

𝜖meas =
𝑁4

𝑁4 + 𝑁3

= 𝜖∗(1 − Δmeas),
(7.2)

where 𝜖∗ is the true efficiency for simulated samples. This relationship leads to the expression of
Δmeas in terms of 𝜖meas and 𝜖∗,

Δmeas = 1 − 𝜖meas

𝜖∗
. (7.3)

The resulting Δmeas demonstrates a linear relationship with the generated inefficiency Δ∗ across
the entire kinematic range under investigation. Therefore, Δmeas and Δ∗ are related with a scaling
factor 𝑘

Δmeas = 𝑘 · Δ∗. (7.4)

It is noteworthy that the obtained values of 𝑘 are consistent regardless of the lepton flavors and
charges.

Regardless of the respective efficiencies in collision data and simulated samples, the discrepancy
between them is of greater significance for physics analyses. This discrepancy is used to estimate
the corresponding systematic uncertainty for physics measurements and is defined as

𝛿 = 1 − 𝜖Data
track

𝜖MC
track

= 1 − 𝜖Data
track · 𝐴
𝜖MC

track · 𝐴
= 1 −

(
𝑁Data

4

𝑁Data
4 + 𝑁Data

3

)
·
(
𝑁MC

4 + 𝑁MC
3

𝑁MC
4

)
.

(7.5)
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7.4 Slow pion tracking efficiency

The calibrated discrepancy is expressed as

𝛿∗ = 1 − 𝜖∗Data
𝜖∗MC

=
1
𝑘

(
1 − 𝜖meas

Data
𝜖meas

MC

)
. (7.6)

A value of
𝛿∗ =

(
0.217 ± 0.037stat. ± 0.167syst.

)
% (7.7)

is found.
Based on this study, we assign a track selection uncertainty of 0.3% per track on kaon, pion,

and lepton tracks. This uncertainty is fully correlated across all bins of all kinematic variables.

7.4 Slow pion tracking efficiency

The details of calibration of the slow pion tracking efficiency are provided in Appendix B.
The tracking efficiency of slow pions has a dual impact, affecting both the reconstruction of
signal decays and migration matrices. To study these effects, we utilize 400 candidate-wise
variation weights, generated as described in Sec. 4.3.2. With each set of these weights, we
update the corresponding migration matrices and reconstruction efficiencies. Subsequently, we
perform an unfolding of the nominal signal yields using the modified migration matrices and
calculate the partial decay rates based on the new reconstruction efficiencies. In the end, we
extract Pearson correlation coefficients from the resulting 400 partial decay rates for each bin of
kinematic variables. We observe strong correlations across all bins, with the smallest correlation
approximately equal to 0.7.

7.5 Lepton ID efficiency and fake rate

The uncertainty associated with lepton ID is treated in a manner similar to that of the slow pion
tracking efficiency, using the variation weights generated based on the lepton ID uncertainties,
which is described in Sec. 4.3.1. Note that the identifications of electrons and muons are entirely
uncorrelated.

7.6 Number of 𝑩0 in the data set

The determination of the number of 𝐵�̄� pairs was described in Sec. 3.4. The number of neutral 𝐵
mesons in the data set is given by

𝑁
𝐵0 = 2𝑁𝐵�̄� (1 + 𝑓+0)−1, (7.8)

with 𝑓+0 = B(Υ(4𝑆) → 𝐵+𝐵−)/B(Υ(4𝑆) → 𝐵0�̄�
0) = 1.065 ± 0.052 [100]. The uncertainties

from both 𝑁𝐵𝐵 and 𝑓+0 are propagated into the measured partial decay rates, and they are fully
correlated across all bins.
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7.7 External inputs

In Eq. (6.9), the values of B(𝐷∗+ → 𝐷0𝜋+) = (67.7 ± 0.5)%, B(𝐷0 → 𝐾−𝜋+) = (3.947 ±
0.030)%, and the 𝐵0 lifetime 𝜏

𝐵0 = (1.519 ± 0.004) ps are taken from Ref. [1]. The uncertainties
from each source across bins of kinematic variables are treated as fully correlated.

7.8 Dependence of signal model

The simulation of the signal �̄�0 → 𝐷∗+ℓ− āℓ decay is used to determine the migration matrices
and efficiencies. However, this simulation relies on a specific model and its associated parameters,
introducing a residual dependence on the assumed model into the results.

To assess the magnitude of this uncertainty, we utilize the form factor parameters and their
corresponding 3𝜎 uncertainties from Ref. [97]. We reweight the simulated samples using Eq. (6.8)
and examine the resulting variations in partial decay rates. We find that the size of this uncertainty
is generally smaller than the experimental uncertainties and, in most bins, does not exceed
1%. However, in the cos \ℓ bin of [−1.0,−0.4], it reaches 4%, which is comparable to other
uncertainties. This sizable uncertainty is primarily attributed to the low reconstruction efficiency
in this region of phase space.

In Table 7.1 and Table 7.2, we summarize the fractional uncertainties from various sources, along
with the statistical uncertainty in each bin of 𝑤, cos \ℓ , cos \𝑉 , and 𝜒 for the �̄�0 → 𝐷∗+𝑒− ā𝑒
and �̄�0 → 𝐷∗+`− ā` decays, respectively. The full (statistical + systematic) correlations of the
partial decay rates for the �̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā` decays are provided in Fig. 7.1
and Fig. 7.2, respectively.
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Table 7.1: Fractional uncertainties (in %) of the partial decay rate in each bin for the 𝐵0 → 𝐷∗+𝑒− ā𝑒 decay.

Variable Bin Statistical Simulated
sample size

Signal
modeling

Background
substraction

Lepton ID
efficiency

Slow-pion
efficiency

Tracking of
𝐾 , 𝜋, ℓ 𝑁𝐵𝐵 𝑓+0 B(𝐷∗ → 𝐷𝜋) B(𝐷0 → 𝐾𝜋) 𝐵0

lifetime

𝑤

[1.00, 1.05) 3.56 1.48 0.57 2.53 0.65 4.24 0.90 1.52 2.52 0.74 0.76 0.26
[1.05, 1.10) 2.25 0.96 0.26 1.72 0.53 3.72 0.90 1.52 2.52 0.74 0.76 0.26
[1.10, 1.15) 1.94 0.82 0.55 1.27 0.51 3.34 0.90 1.52 2.52 0.74 0.76 0.26
[1.15, 1.20) 1.74 0.74 0.87 1.07 0.45 3.17 0.90 1.52 2.52 0.74 0.76 0.26
[1.20, 1.25) 1.72 0.70 0.80 0.98 0.44 2.88 0.90 1.52 2.52 0.74 0.76 0.26
[1.25, 1.30) 1.75 0.73 0.70 0.87 0.46 2.73 0.90 1.52 2.52 0.74 0.76 0.26
[1.30, 1.35) 1.81 0.84 0.94 0.85 0.45 2.54 0.90 1.52 2.52 0.74 0.76 0.26
[1.35, 1.40) 1.94 0.78 1.05 0.83 0.46 2.27 0.90 1.52 2.52 0.74 0.76 0.26
[1.40, 1.45) 2.02 0.85 0.92 0.80 0.47 2.10 0.90 1.52 2.52 0.74 0.76 0.26
[1.45, 1.51) 2.97 1.36 1.27 0.24 0.51 1.93 0.90 1.52 2.52 0.74 0.76 0.26

cos \ℓ

[−1.00,−0.40) 3.58 1.40 3.96 1.99 0.53 3.57 0.90 1.52 2.52 0.74 0.76 0.26
[−0.40,−0.20) 2.50 1.02 3.08 1.44 0.62 3.27 0.90 1.52 2.52 0.74 0.76 0.26
[−0.20, 0.00) 1.95 0.80 1.23 1.18 0.58 2.88 0.90 1.52 2.52 0.74 0.76 0.26
[0.00, 0.20) 1.56 0.62 0.66 0.97 0.56 2.59 0.90 1.52 2.52 0.74 0.76 0.26
[0.20, 0.40) 1.37 0.61 0.66 0.91 0.62 2.62 0.90 1.52 2.52 0.74 0.76 0.26
[0.40, 0.60) 1.37 0.54 0.59 0.93 0.64 2.67 0.90 1.52 2.52 0.74 0.76 0.26
[0.60, 0.80) 1.41 0.58 0.76 0.95 0.46 2.73 0.90 1.52 2.52 0.74 0.76 0.26
[0.80, 1.00) 1.54 0.68 0.81 1.10 0.30 2.79 0.90 1.52 2.52 0.74 0.76 0.26

cos \𝑉

[−1.00,−0.80) 1.53 0.70 0.47 0.89 0.53 2.07 0.90 1.52 2.52 0.74 0.76 0.26
[−0.80,−0.60) 1.36 0.58 0.42 0.86 0.52 2.27 0.90 1.52 2.52 0.74 0.76 0.26
[−0.60,−0.40) 1.49 0.66 0.64 1.01 0.50 2.54 0.90 1.52 2.52 0.74 0.76 0.26
[−0.40,−0.20) 1.60 0.68 0.91 1.04 0.47 2.65 0.90 1.52 2.52 0.74 0.76 0.26
[−0.20, 0.00) 1.66 0.72 1.24 0.98 0.45 2.85 0.90 1.52 2.52 0.74 0.76 0.26
[0.00, 0.20) 1.67 0.71 1.44 0.87 0.45 3.07 0.90 1.52 2.52 0.74 0.76 0.26
[0.20, 0.40) 1.66 0.72 1.46 0.77 0.44 3.17 0.90 1.52 2.52 0.74 0.76 0.26
[0.40, 0.60) 1.61 0.67 1.38 0.66 0.46 3.40 0.90 1.52 2.52 0.74 0.76 0.26
[0.60, 0.80) 1.51 0.63 1.24 0.54 0.45 3.55 0.90 1.52 2.52 0.74 0.76 0.26
[0.80, 1.00) 1.98 0.86 1.18 0.12 0.49 3.65 0.90 1.52 2.52 0.74 0.76 0.26

𝜒

[0.00, 0.63) 3.02 1.31 1.02 1.87 0.46 3.05 0.90 1.52 2.52 0.74 0.76 0.26
[0.63, 1.26) 1.96 0.82 0.87 1.29 0.46 2.89 0.90 1.52 2.52 0.74 0.76 0.26
[1.26, 1.88) 1.87 0.81 0.76 1.20 0.46 2.73 0.90 1.52 2.52 0.74 0.76 0.26
[1.88, 2.51) 1.96 0.83 0.86 1.22 0.51 2.62 0.90 1.52 2.52 0.74 0.76 0.26
[2.51, 3.14) 2.06 0.91 1.10 1.19 0.49 2.44 0.90 1.52 2.52 0.74 0.76 0.26
[3.14, 3.77) 2.03 0.85 1.06 1.02 0.51 2.55 0.90 1.52 2.52 0.74 0.76 0.26
[3.77, 4.40) 1.98 0.87 0.88 0.88 0.51 2.62 0.90 1.52 2.52 0.74 0.76 0.26
[4.40, 5.03) 1.92 0.78 0.67 0.76 0.51 2.77 0.90 1.52 2.52 0.74 0.76 0.26
[5.03, 5.65) 1.89 0.80 0.72 0.63 0.46 2.93 0.90 1.52 2.52 0.74 0.76 0.26
[5.65, 6.28) 2.89 1.20 1.04 0.51 0.43 2.94 0.90 1.52 2.52 0.74 0.76 0.2675
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Table 7.2: Fractional uncertainties (in %) of the partial decay rate in each bin for the 𝐵0 → 𝐷∗+`− ā` decay.

Variable Bin Statistical Simulated
sample size

Signal
modeling

Background
subtraction

Lepton ID
efficiency

Slow-pion
efficiency

Tracking of
𝐾 , 𝜋, ℓ 𝑁𝐵𝐵 𝑓+0 B(𝐷∗ → 𝐷𝜋) B(𝐷0 → 𝐾𝜋) 𝐵0

lifetime

𝑤

[1.00, 1.05) 3.35 1.32 0.49 1.46 2.00 4.28 0.90 1.52 2.52 0.74 0.76 0.26
[1.05, 1.10) 2.04 0.79 0.30 0.97 1.91 3.73 0.90 1.52 2.52 0.74 0.76 0.26
[1.10, 1.15) 1.74 0.70 0.69 0.78 1.69 3.33 0.90 1.52 2.52 0.74 0.76 0.26
[1.15, 1.20) 1.64 0.72 0.87 0.67 1.62 3.08 0.90 1.52 2.52 0.74 0.76 0.26
[1.20, 1.25) 1.61 0.67 0.80 0.61 1.58 2.87 0.90 1.52 2.52 0.74 0.76 0.26
[1.25, 1.30) 1.67 0.70 0.84 0.63 1.53 2.64 0.90 1.52 2.52 0.74 0.76 0.26
[1.30, 1.35) 1.72 0.68 0.96 0.62 1.57 2.50 0.90 1.52 2.52 0.74 0.76 0.26
[1.35, 1.40) 1.85 0.70 1.04 0.59 1.63 2.24 0.90 1.52 2.52 0.74 0.76 0.26
[1.40, 1.45) 1.99 0.78 1.00 0.66 1.72 2.06 0.90 1.52 2.52 0.74 0.76 0.26
[1.45, 1.51) 2.96 1.15 1.55 0.16 1.81 1.86 0.90 1.52 2.52 0.74 0.76 0.26

cos \ℓ

[−1.00,−0.40) 3.36 1.28 4.20 1.85 3.56 3.76 0.90 1.52 2.52 0.74 0.76 0.26
[−0.40,−0.20) 2.37 0.95 2.99 1.35 3.42 3.14 0.90 1.52 2.52 0.74 0.76 0.26
[−0.20, 0.00) 1.88 0.74 1.11 1.11 3.42 2.89 0.90 1.52 2.52 0.74 0.76 0.26
[0.00, 0.20) 1.45 0.61 0.59 0.90 2.95 2.59 0.90 1.52 2.52 0.74 0.76 0.26
[0.20, 0.40) 1.34 0.52 0.64 0.89 2.02 2.56 0.90 1.52 2.52 0.74 0.76 0.26
[0.40, 0.60) 1.27 0.55 0.53 0.88 1.14 2.65 0.90 1.52 2.52 0.74 0.76 0.26
[0.60, 0.80) 1.29 0.56 0.68 0.87 0.42 2.67 0.90 1.52 2.52 0.74 0.76 0.26
[0.80, 1.00) 1.47 0.59 0.70 1.04 0.15 2.75 0.90 1.52 2.52 0.74 0.76 0.26

cos \𝑉

[−1.00,−0.80) 1.43 0.64 0.50 0.43 2.04 2.04 0.90 1.52 2.52 0.74 0.76 0.26
[−0.80,−0.60) 1.35 0.55 0.45 0.58 1.77 2.21 0.90 1.52 2.52 0.74 0.76 0.26
[−0.60,−0.40) 1.48 0.62 0.66 0.68 1.56 2.46 0.90 1.52 2.52 0.74 0.76 0.26
[−0.40,−0.20) 1.55 0.64 0.95 0.68 1.46 2.69 0.90 1.52 2.52 0.74 0.76 0.26
[−0.20, 0.00) 1.60 0.68 1.23 0.67 1.32 2.89 0.90 1.52 2.52 0.74 0.76 0.26
[0.00, 0.20) 1.58 0.66 1.44 0.63 1.34 3.07 0.90 1.52 2.52 0.74 0.76 0.26
[0.20, 0.40) 1.56 0.66 1.46 0.57 1.38 3.14 0.90 1.52 2.52 0.74 0.76 0.26
[0.40, 0.60) 1.56 0.63 1.40 0.52 1.56 3.30 0.90 1.52 2.52 0.74 0.76 0.26
[0.60, 0.80) 1.50 0.61 1.27 0.46 1.82 3.46 0.90 1.52 2.52 0.74 0.76 0.26
[0.80, 1.00) 1.94 0.81 1.21 0.07 2.03 3.60 0.90 1.52 2.52 0.74 0.76 0.26

𝜒

[0.00, 0.63) 2.88 1.20 1.15 1.02 1.57 2.90 0.90 1.52 2.52 0.74 0.76 0.26
[0.63, 1.26) 1.83 0.74 0.82 0.77 1.74 2.91 0.90 1.52 2.52 0.74 0.76 0.26
[1.26, 1.88) 1.79 0.77 0.68 0.80 1.78 2.77 0.90 1.52 2.52 0.74 0.76 0.26
[1.88, 2.51) 1.84 0.75 0.89 0.77 1.63 2.60 0.90 1.52 2.52 0.74 0.76 0.26
[2.51, 3.14) 1.98 0.84 1.11 0.79 1.60 2.50 0.90 1.52 2.52 0.74 0.76 0.26
[3.14, 3.77) 1.95 0.79 1.10 0.74 1.56 2.46 0.90 1.52 2.52 0.74 0.76 0.26
[3.77, 4.40) 1.86 0.80 0.89 0.65 1.69 2.58 0.90 1.52 2.52 0.74 0.76 0.26
[4.40, 5.03) 1.75 0.69 0.74 0.52 1.68 2.73 0.90 1.52 2.52 0.74 0.76 0.26
[5.03, 5.65) 1.78 0.72 0.81 0.54 1.70 2.83 0.90 1.52 2.52 0.74 0.76 0.26
[5.65, 6.28) 3.00 1.18 0.93 0.32 1.59 2.98 0.90 1.52 2.52 0.74 0.76 0.26
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Figure 7.1: Full experimental (statistical and systematic) correlations (in %) of the partial decay rates for the 𝐵0 → 𝐷∗+𝑒− ā𝑒 decay.77
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Figure 7.2: Full experimental (statistical and systematic) correlations (in %) of the partial decay rates for the 𝐵0 → 𝐷∗+`− ā` decays.
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CHAPTER 8

Determination of form factors and |𝑽𝒄𝒃 |

8.1 Fit setup

As we investigate partial decay rates of the same data set, the measured total decay rate is
highly correlated on four projections. These are redundant degrees of freedom in the measured
partial decay rates within electrons and muons. They are removed before analyzing the observed
distributions: we calculate normalized partial decay rates ΔΓ/Γ and exclude the last bin of
each kinematic variable in the determination of form factors and |𝑉𝑐𝑏 |. The total decay rate is
determined as the average over four projections

Γ =

( 10∑︁
𝑖=1

ΔΓ𝑤𝑖 +
8∑︁
𝑖=1

ΔΓcos \ℓ
𝑖 +

10∑︁
𝑖=1

ΔΓ
cos \𝑉
𝑖 +

10∑︁
𝑖=1

ΔΓ𝜒𝑖

)
/4, (8.1)

where ΔΓ𝑋𝑖 represents the partial decay rate in bin 𝑖 of variable 𝑋 . Furthermore, we average
the normalized partial decay rates over the �̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā` decays, as
summarized in Table 6.9. The correlations between these averages are visualized in Fig. 8.1.

The extraction of |𝑉𝑐𝑏 | and form factor parameters involves the construction of a 𝜒2 function,
defined as

𝜒2 =
34∑︁
𝑖, 𝑗

(
ΔΓobs

𝑖

Γobs − ΔΓpre
𝑖

Γpre

)
𝐶−1
𝑖 𝑗

(
ΔΓobs

𝑗

Γobs −
ΔΓpre

𝑗

Γpre

)
+ (Γobs − Γpre)2

𝜎2
Γ

. (8.2)

In this equation, 𝑖 and 𝑗 denote the indices of the bins in the observables 𝑤, cos \ℓ , cos \𝑉 , and 𝜒,
and ΔΓpre

𝑖 /Γpre and Γpre are the predicted values expressed as functions of the form-factor
parameters and |𝑉𝑐𝑏 | [30–32]. Further, 𝐶 is the covariance matrix on the normalized rates, and
𝜎Γ is the uncertainty on the total rate.
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Figure 8.1: Full experimental (statistical and systematic) correlations (in %) for the average of the normalized partial decay rates. The last bin of each
projection is excluded in the determination of |𝑉𝑐𝑏 | value, thus it is not shown. 80
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8.2 Results of BGL parametrization

The form factors 𝑔(𝑧), 𝑓 (𝑧), and F1(𝑧) in the BGL parametrization are expanded in terms of
the 𝑧 parameter, as discussed in Eq. (2.25). The expansion can be of infinite order, and must
be truncated carefully. In this work, the truncation is specifically investigated using a nested
hypothesis test (NHT) method initially proposed in Ref. [101]. Further details on this truncation
analysis will be provided in Section 8.2.1. The results of the fit, based on the selected truncation,
will be presented in Section 8.2.2.

8.2.1 Truncation of BGL expansion

We initiate the fitting process with the expansion of 𝑔(𝑧), 𝑓 (𝑧), and F1(𝑧), each with only one
degree of freedom. Subsequently, we extend the expansion to the next order for each of 𝑔(𝑧),
𝑓 (𝑧), and F1(𝑧) and repeat the |𝑉𝑐𝑏 | fit. To accept an extension, we require that the minimum 𝜒2

value decreases by one unit or more when adding one more degree of freedom to the form factors.
Any extension that does not lead to such improvement is rejected.

Moreover, as strong correlations between the form factor parameters suggest reduced indepen-
dence among them, we reject expansions that result in correlations exceeding 0.95. This process
iterates until all attempted extensions in the next generation prove to be dead ends.

The search processes are illustrated in Fig. 8.2. In addition, Table 8.1 summarizes the
corresponding |𝑉𝑐𝑏 | value, the largest off-diagonal correlation coefficient, the minimized 𝜒2 value,
the degree of freedom in the fit, and the 𝑝-value of the fit for each configuration of the expansion.
Following the rules of acceptance and rejection, we choose (1, 2, 2) as the optimal pattern.

(1, 1, 2)

(2, 1, 2)
𝜌max > 0.95 ✘

(1, 1, 3)
𝜌max > 0.95 ✘

(1, 2, 2)
accepted ✔

(1, 3, 2)
𝜌max > 0.95 ✘

(2, 2, 2)
𝜌max > 0.95 ✘

(1, 2, 3)
𝜌max > 0.95 ✘

Figure 8.2: Search process in a nested hypothesis test. The numbers (𝑛𝑎, 𝑛𝑏, 𝑛𝑐) represent the expansion
orders of the form factors 𝑔(𝑧), 𝑓 (𝑧) and F1 (𝑧) introduced in Eq. (2.25).
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Chapter 8 Determination of form factors and |𝑉𝑐𝑏 |

Table 8.1: Summary of the nested hypothesis test without LQCD input. The 𝜌max column records the largest
off-diagonal correlation coefficients. The optimal expansion order is highlighted with a gray background.

(𝑛𝑎, 𝑛𝑏, 𝑛𝑐) |𝑉𝑐𝑏 | × 103 𝜌max 𝜒2 Ndf 𝑝-value
(1, 1, 2) 40.2 ± 1.1 0.43 40 32 16%
(2, 1, 2) 40.1 ± 1.1 0.97 38.6 31 16%
(1, 2, 2) 40.6 ± 1.2 0.57 38.9 31 16%
(1, 1, 3) 40.1 ± 1.1 0.96 39.5 31 14%
(2, 2, 2) 40.3 ± 1.3 0.99 38.6 30 13%
(1, 3, 2) 40.0 ± 1.3 0.98 38 30 15%
(1, 2, 3) 40.5 ± 1.2 0.96 38.8 30 13%

Table 8.2: Results of the determination of the BGL expansion coefficients and their correlations.

Value Correlation 𝜒2/ndf
�̃�0 × 103 0.88 ± 0.05 1.00 0.26 −0.28 0.19

39/31
�̃�0 × 103 0.54 ± 0.01 0.26 1.00 −0.37 −0.43
�̃�1 × 103 −0.31 ± 0.30 −0.28 −0.37 1.00 0.57
𝑐1 × 103 −0.04 ± 0.03 0.19 −0.43 0.57 1.00

8.2.2 Fit result

In the fits, we incorporate |𝑉𝑐𝑏 | into the expansion coefficients 𝑥𝑖 as follows

𝑥𝑖 = |𝑉𝑐𝑏 | [EW 𝑥𝑖 . (8.3)

The resulting values and correlations are summarized in Table 8.2, and |𝑉𝑐𝑏 | is further determined
using the relationship:

|𝑉𝑐𝑏 |[EWF (1) = 1√
𝑚𝐵𝑚𝐷∗

(
|�̃�0 |

𝑃 𝑓 (0)𝜙 𝑓 (0)

)
. (8.4)

Using F (1) = 0.906 ± 0.013 [102] and [EW = 1.0066 [25], we determine

|𝑉𝑐𝑏 |BGL = (40.57 ± 0.31 ± 0.95 ± 0.58) × 10−3, (8.5)

where the first, second, and third contributions to the uncertainty are statistical, systematic, and
from the prediction of F (1), respectively. We find a 𝑝-value of 15% for the fit.

To decompose the uncertainties from different sources, we generate 3000 normalized decay
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8.3 Results of CLN parametrization

rates and total rates based on multivariate Gaussian distributions, where the input covariance
matrix is constructed for each individual source, respectively. We fit these toy samples and study
the deviations of the fitted values. The relative uncertainties of various sources are summarized
in Table 8.3. The largest uncertainty on |𝑉𝑐𝑏 | stems from the knowledge of the slow pion
reconstruction efficiency, followed by the uncertainty in the external input 𝑓+0, which is used to
convert the number of counted 𝐵-meson pairs into the number of 𝐵0 mesons.

Table 8.3: Fractional contributions to the uncertainties of the BGL form factors from a fit of the
�̄�0 → 𝐷∗+ℓ− āℓ decay. Because of the absorption of |𝑉𝑐𝑏 | into the coefficients (see Eq. (8.3)), the fitted
parameters 𝑥𝑖 are affected by the uncertainties that only have an impact on the overall normalization.

�̃�0 �̃�0 �̃�1 𝑐1

Statistical 3.7 0.8 65.1 50.8
Background subtraction 2.1 0.4 31.3 21.8
Size of simulated samples 1.5 0.3 26.4 20.5
Lepton ID efficiency 1.6 0.3 3.4 2.8
Tracking of 𝐾 , 𝜋, ℓ 0.4 0.4 0.5 0.4
Slow-pion efficiency 1.6 1.5 23.8 24.7
𝑁𝐵𝐵 0.8 0.8 0.8 0.8
𝑓+0 1.3 1.3 1.3 1.2
B(𝐷∗+ → 𝐷0𝜋+) 0.4 0.4 0.4 0.4
B(𝐷0 → 𝐾−𝜋+) 0.4 0.4 0.4 0.4
𝐵0 lifetime 0.1 0.1 0.1 0.1
Signal modeling 2.3 0.5 52.1 35.0
Total 5.8 2.5 96.0 73.0

Additionally, we conduct an examination of the D’Agostini-type bias, and our findings indicate
that our results are unbiased. Further information can be found in Appendix G.

8.3 Results of CLN parametrization

We also minimize Eq. (8.2) with ΔΓpre and Γpre expressed in the CLN parametrization. We find

|𝑉𝑐𝑏 |CLN = (40.13 ± 0.27 ± 0.93 ± 0.58) × 10−3, (8.6)

with a 𝑝-value of 16%. The resulting values of |𝑉𝑐𝑏 | and form factor parameters, along with their
correlations, are summarized in Table 8.4. Furthermore, we break down the uncertainties on
the fitted values using the same approach as for the BGL parametrization. The obtained relative
uncertainties are provided in Table 8.5.
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Table 8.4: Results of the determination of the CLN parameters, |𝑉𝑐𝑏 | and their correlations.

Value Correlation 𝜒2/ndf
𝜌2 1.22 ± 0.05 1.00 0.36 -0.81 0.29

39/31
𝑅1(1) 1.14 ± 0.07 0.36 1.00 -0.60 -0.10
𝑅2(1) 0.89 ± 0.03 -0.81 -0.60 1.00 -0.08

|𝑉𝑐𝑏 | × 103 40.1 ± 1.1 0.29 -0.10 -0.08 1.00

Table 8.5: Fractional contributions to the uncertainties of the CLN form factors from a fit of the
�̄�0 → 𝐷∗+ℓ− āℓ decay. The uncertainties originating from tracking efficiency, the number of 𝐵0 mesons,
the 𝐵0 lifetime, and the charm branching fractions only affect the overall normalization but do not contribute
to the parameters related to the shape.

𝜌2 𝑅1(1) 𝑅2(1) |𝑉𝑐𝑏 |
Statistical 3.0 4.1 2.8 0.7
Background subtraction 1.4 2.2 1.2 0.3
Size of simulated samples 1.2 1.7 1.1 0.3
Lepton ID efficiency 0.2 1.6 0.1 0.3
Slow pion efficiency 1.0 0.9 0.8 1.5
Tracking of 𝐾 , 𝜋, ℓ 0.4
𝑁𝐵𝐵 0.8
𝑓+0 1.3
B(𝐷∗+ → 𝐷0𝜋+) 0.4
B(𝐷0 → 𝐾−𝜋+) 0.4
𝐵0 lifetime 0.1
Signal modeling 2.6 2.6 2.0 0.5
Total 4.5 5.9 3.9 2.4

We plot the partial decay rates with the fitted values and 1𝜎 deviation in both BGL and CLN
parametrizations. They predict nearly identical differential decay rates. Meanwhile, they describe
the measured four spectra very well.

In addition to the results obtained through the SVD method, we also implement the matrix
inversion method to unfold the signal yields and extract values for |𝑉𝑐𝑏 | and form factor parameters.
The results in these two cases are compatible with each other. More details are provided in
Appendix H.
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Figure 8.3: Comparison of the fitted partial decay rates with 1𝜎 uncertainties in the BGL and CLN
parametrizations to the unfolded experimental data (shown as points with error bars). Note that the BGL
(hatched) band almost completely overlays the CLN (solid) band.

8.4 Sensitivity to FNAL/MILC lattice results at nonzero recoil

In Ref. [103], the Fermilab Lattice and MILC (FNAL/MILC) Collaborations reported predictions
for the �̄�0 → 𝐷∗+ℓ− āℓ form factors at nonzero recoil. We compare our data with these predictions
using two scenarios:

• Inclusion of predictions beyond zero recoil for ℎ𝐴1
(𝑤) at 𝑤 = [1.03, 1.10, 1.17]. This

scenario allows a comparison with the zero-recoil result when information on the 𝑤
dependence of ℎ𝐴1

is included.

• Inclusion of predictions beyond zero recoil for ℎ𝐴1
(𝑤), 𝑅1(𝑤), and 𝑅2(𝑤) at𝑤 = [1.03, 1.10, 1.17].

This scenario includes the full LQCD information.

To include beyond zero recoil information, we add to Eq. (8.2) a term of the form

𝜒2
LQCD =

∑︁
𝑖 𝑗

(𝐹LQCD
𝑖 − 𝐹pre

𝑖 )𝐶−1
𝑖 𝑗 (𝐹LQCD

𝑗 − 𝐹pre
𝑗 ) . (8.7)

Here, 𝐹LQCD
𝑖 denotes the lattice data on ℎ𝐴1

(𝑤) or on ℎ𝐴1
(𝑤), 𝑅1(𝑤), 𝑅2(𝑤). The parameter
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Chapter 8 Determination of form factors and |𝑉𝑐𝑏 |

𝐹
pre
𝑖 represents the corresponding value expressed in terms of form-factor parameters. As we now

explicitly include normalization information on the form factors into the fit, we directly fit for the
BGL coefficients without absorbing |𝑉𝑐𝑏 | and [EW.

The fitted results in BGL and CLN parametrizations are summarized in Tables 8.6 and 8.7,
respectively. The inclusion of beyond-zero-recoil information for ℎ𝐴1

results in a small decrease
on the central value for |𝑉𝑐𝑏 | if we use the BGL form-factor expansion. The CLN fits show a
small increase. The inclusion of the full beyond-zero-recoil information shifts |𝑉𝑐𝑏 | significantly
and the resulting fit shapes in ℎ𝐴1

, 𝑅1, and 𝑅2 show disagreements with the FNAL/MILC lattice
predictions with a poor 𝑝-value of 0.04%. This is consistent with the results of Ref. [104]. The
BGL fits of both scenarios are shown in Fig. 8.4 with the nonzero recoil FNAL/MILC predictions
of Ref. [103]. The agreement can be improved if more BGL expansion parameters are included:
in Appendix I we repeat the nested hypothesis test to determine the appropriate truncation order
when full lattice information is included and find 𝑛𝑎 = 3, 𝑛𝑏 = 1, 𝑛𝑐 = 3. With 6 expansion
coefficients we find a 𝑝-value of 16%.

Table 8.6: Values of BGL form factors and |𝑉𝑐𝑏 | resulting from a fit that includes nonzero recoil lattice
information.

Constraints on
ℎ𝐴1

(𝑤)
Constraints on

ℎ𝐴1
(𝑤), 𝑅1(𝑤), 𝑅2(𝑤)

𝑎0 × 103 21.7 ± 1.3 25.6 ± 0.8
𝑏0 × 103 13.19 ± 0.24 13.61 ± 0.23
𝑏1 × 103 −6 ± 6 2 ± 6
𝑐1 × 103 −0.9 ± 0.7 0.0 ± 0.7
|𝑉𝑐𝑏 | × 103 40.3 ± 1.2 38.3 ± 1.1
𝜒2/ndf 39/33 75/39
𝑝-value 21% 0.04%
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Table 8.7: Values of CLN form factors and |𝑉𝑐𝑏 | resulting from a fit that includes nonzero recoil lattice
information.

Constraints on
ℎ𝐴1

(𝑤)
Constraints on

ℎ𝐴1
(𝑤), 𝑅1(𝑤), 𝑅2(𝑤)

ℎ𝐴1
(1) 0.91 ± 0.02 0.94 ± 0.02
𝜌2 1.22 ± 0.05 1.21 ± 0.04

𝑅1(1) 1.14 ± 0.07 1.26 ± 0.04
𝑅2(1) 0.88 ± 0.03 0.88 ± 0.03

|𝑉𝑐𝑏 | × 103 40.3 ± 1.2 38.7 ± 1.1
𝜒2/ndf 39/33 70/39
𝑝-value 23% 0.2%
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Figure 8.4: Comparison of the fitted ℎ𝐴1
(𝑤), 𝑅1 (𝑤) and 𝑅2 (𝑤) for the BGL fits.
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CHAPTER 9

Lepton flavour universality tests

9.1 Ratio of branching fractions

By summing the partial decay rates of all kinematic variables we obtain the total rate. The total
decay rates averaged over 𝑤, cos \ℓ , cos \𝑉 , and 𝜒 are converted to branching fractions using
the 𝐵0 lifetime. We find

B(�̄�0 → 𝐷∗+𝑒− ā𝑒) = (4.92 ± 0.03 ± 0.22)% , (9.1)

B(�̄�0 → 𝐷∗+`− ā`) = (4.93 ± 0.03 ± 0.24)% , (9.2)

where the first and second uncertainties are statistical and systematic, respectively. The average is
calculated as

B(�̄�0 → 𝐷∗+ℓ− āℓ) = (4.922 ± 0.023 ± 0.220)% , (9.3)

which is compatible with the current world average: (4.97 ± 0.12)% [1].
In addition, we report a value for the ratio of the �̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā` branching

fractions
𝑅𝑒/` = 0.998 ± 0.009 ± 0.020, (9.4)

where the first contribution to the uncertainty is statistical and the second systematic. The ratio is
compatible with the predictions of Refs. [24, 105] (see Table 9.1 for a summary) assuming LFU
and with previous measurements [23, 106]. The fully correlated systematic uncertainties, e.g.,
the tracking efficiency, the number of 𝐵0 mesons, and the branching fractions of the 𝐷∗+ and 𝐷0

decays cancel in the ratio.
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Chapter 9 Lepton flavour universality tests

Table 9.1: Summary of the SM predictions taken from Refs. [24, 105] for the observables regarding the
lepton flavor universality tests. Note that the 𝐹𝐿 in Ref. [105] is only reported with 𝑚ℓ = 0 for the light
leptons ℓ = 𝑒, `.

Ref. [105] Ref. [24]
𝑅𝑒/` 1.0041 ± 0.0001 1.0026 ± 0.0001
A𝑒

FB 0.244 ± 0.004 0.204 ± 0.012
A`

FB 0.239 ± 0.004 0.198 ± 0.012
ΔAFB × 103 −5.7 ± 0.1 −5.33 ± 0.24

𝐹𝑒𝐿 0.516 ± 0.003 0.541 ± 0.011
𝐹
`
𝐿 0.516 ± 0.003 0.542 ± 0.012

Δ𝐹𝐿 × 104 1.2 ± 0.1 5.43 ± 0.36

9.2 Angular asymmetry

The angular asymmetry A𝐹𝐵 is defined as the difference of partial decay rate in the forward and
backward regions in the cos \ℓ spectrum normalized by the total decay rate:

AFB =

∫ 1
0 d cos \ℓdΓ/d cos \ℓ −

∫ 0
−1 d cos \ℓdΓ/d cos \ℓ∫ 1

0 d cos \ℓdΓ/d cos \ℓ +
∫ 0
−1 d cos \ℓdΓ/d cos \ℓ

. (9.5)

With AFB, we test LFU using the difference

ΔAFB = A`
FB − A𝑒

FB . (9.6)

We find

A𝑒
FB = 0.228 ± 0.012 ± 0.017 , (9.7)

A`
FB = 0.211 ± 0.011 ± 0.021 ,

and
ΔAFB = (−17 ± 16 ± 16) × 10−3 . (9.8)

The correlated uncertainties between the �̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā` decays, e.g., the
number of 𝐵0 mesons, the 𝐵0 lifetime, and others cancel in ΔAFB. Note that due to the selection
requirement on the lepton momentum in the c.m. system, the unfolded yields in the negative
cos \ℓ region receive a large correction based on the SM assumption. Consequently, the measured
value of ΔAFB would change in the presence of non-SM physics, and should only be used to
check for consistency with the SM expectation.

To minimize the extrapolation, we also measure AFB in the phase space of 𝑝𝐵ℓ > 1.2 GeV/𝑐,
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9.3 Longitudinal 𝐷∗+ polarization

with 𝑝𝐵ℓ denoting the lepton momentum in the 𝐵 meson rest frame. We find

A𝑒
FB(𝑝𝐵ℓ > 1.2 GeV/𝑐) = 0.611 ± 0.006 ± 0.005 , (9.9)

A`
FB(𝑝𝐵ℓ > 1.2 GeV/𝑐) = 0.604 ± 0.006 ± 0.008 , (9.10)

ΔAFB(𝑝𝐵ℓ > 1.2 GeV/𝑐) = (−7 ± 9 ± 9) × 10−3 . (9.11)

9.3 Longitudinal 𝑫∗+ polarization

From the observed cos \𝑉 distribution, we determine the longitudinal 𝐷∗ polarization fraction 𝐹𝐿
via

1
Γ

dΓ
d cos \𝑉

=
3
2

(
𝐹𝐿 cos2 \𝑉 + 1 − 𝐹𝐿

2
sin2 \𝑉

)
, (9.12)

and find

𝐹𝑒𝐿 = 0.520 ± 0.005 ± 0.005 , (9.13)
𝐹
`
𝐿 = 0.527 ± 0.005 ± 0.005 , (9.14)

and
Δ𝐹𝐿 = 0.006 ± 0.007 ± 0.005 , (9.15)

with Δ𝐹𝐿 = 𝐹
`
𝐿 − 𝐹𝑒𝐿 . The correlated uncertainties between the �̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 →

𝐷∗+`− ā` decays cancel in Δ𝐹𝐿 .
The resulting angular asymmetry and longitudinal polarization for �̄�0 → 𝐷∗+𝑒− ā𝑒 and

�̄�0 → 𝐷∗+`− ā` decays and their difference between the 𝑒 channel and ` channel agree with the
SM predictions of Refs. [24, 105], which are summarized in Table 9.1. Note that AFB in Ref. [24]
is determined from a slightly reduced phase space corresponding to 1.0 < 𝑤 < 1.5. However, the
impact of this restriction on the SM expectations is at order 10−4 [105].

Our values are compatible with the determination of ΔAFB and Δ𝐹𝐿 of Refs. [23, 24] within
2.3 and 1.2 standard deviations, respectively. Recently Ref. [104] also determined these quantities
and we observe good agreement for AFB and 𝐹𝐿 for electron and muon final states and their
differences.
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CHAPTER 10

Summary and outlook

This thesis presents a measurement of exclusive �̄�0 → 𝐷∗+ℓ− āℓ decays using collision data
corresponding to a luminosity of 189 fb−1 collected by the Belle II experiment. We develop a
novel method to reconstruct the kinematic variables 𝑤, cos \ℓ , cos \𝑉 , and 𝜒 that describe the
differential decay rate of �̄�0 → 𝐷∗+ℓ− āℓ processes. The signal yields in these bins of kinematic
variables are determined by binned likelihood fits to two-dimensional distributions in cos \𝐵𝑌
and Δ𝑀 , and are further unfolded to correct for migration across bins.

After unfolding the yields in each bin of kinematic variables, we calculate the corresponding
partial decay rates and average them over �̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā` decays. These
results are then used to determine the values of |𝑉𝑐𝑏 | and the form factor parameters for
�̄�0 → 𝐷∗+ℓ− āℓ decays. We find

|𝑉𝑐𝑏 |BGL = (40.57 ± 0.31 ± 0.95 ± 0.58) × 10−3, (10.1)

within the BGL parametrization, which is in good agreement with the world average of the exclusive
approach and the inclusive determination of Refs. [107, 108]. Using the CLN parametrization
results in a similar, but lower value,

|𝑉𝑐𝑏 |CLN = (40.13 ± 0.27 ± 0.93 ± 0.58) × 10−3 . (10.2)

The obtained |𝑉𝑐𝑏 | values of BGL and CLN parametrizations agree with the recent Belle
measurement [104].

We also test the impact of including FNAL/MILC lattice predictions at nonzero recoil from
Ref. [103] with the same order of BGL expansion in two scenarios: when nonzero recoil
information for ℎ𝐴1

is included, the resulting value of |𝑉𝑐𝑏 | decreases slightly. With the full
information on all form factors included, the resulting functional dependence on ℎ𝐴1

, 𝑅1 and 𝑅2
is in tension with the FNAL/MILC lattice predictions, and the BGL fit results in a poor 𝑝-value
of 0.04% if one uses the same number of BGL expansion parameters as for the data only fit.
Repeating the fits with more parameters can provide better agreement, but the predicted functional
dependence of 𝑅2(𝑤) is in tension with the FNAL/MILC LQCD predictions.
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We test the electron-muon LFU by determining the ratio of branching fractions. The result

𝑅𝑒/` = 0.998 ± 0.009 ± 0.020, (10.3)

is in good agreement with unity. To further test LFU, we also measure the forward-backward
asymmetry and the 𝐷∗+ polarization, and find

ΔAFB = (−17 ± 16 ± 16) × 10−3 (10.4)

and
Δ𝐹𝐿 = 0.006 ± 0.007 ± 0.005 (10.5)

in good agreement with the SM expectations.
As the Belle II experiment is still in its early stages, the amount of collision data collected is

less than that accumulated in the Belle experiment. Therefore, the uncertainty on |𝑉𝑐𝑏 | in the
current measurement is slightly larger than that in a similar analysis carried out by the Belle
experiment [23]. However, with a rapid increase in integrated luminosity, the Belle II experiment
is poised to improve its precision and surpass previous measurements.

For future untagged measurements of �̄�0 → 𝐷∗+ℓ− āℓ decays, it would be advantageous
to improve the identification of low-momentum leptons. In our current analysis, we require
𝑝CM
ℓ > 1.2 GeV/𝑐 to effectively reject the imperfect description of collision data, where

misidentified leptons are primarily found. This selection criterion, however, leads to a lower
efficiency in the first two bins of the cos \ℓ distribution, as indicated in Table6.7 and Table 6.8.
It introduces a dependence on the signal model, which is considered in our uncertainties.
Furthermore, it has a notable impact on the precision of determining AFB and ΔAFB, as
these values are calculated based on the cos \ℓ spectrum. Hence, the enhancement of lepton
identification is beneficial for improving the precision of angular asymmetry measurements.

In addition to the measurements of |𝑉𝑐𝑏 | from the partial decay rates discussed in this thesis,
it is worth noting that the four-dimensional differential decay rate can be expressed in terms
of 12 angular coefficients denoted as 𝐽𝑖 (𝑤). These coefficients can be measured in bins of
𝑤 and offer an avenue for extracting form factors and |𝑉𝑐𝑏 |. The feasibility of this approach
has been demonstrated in a prior, not yet published Belle study. This method is considered as
an alternative means to cross-verify the value of |𝑉𝑐𝑏 | obtained from one-dimensional partial
rates. In comparison to one-dimensional partial rates, these angular coefficients capture a more
comprehensive set of angular information related to �̄�0 → 𝐷∗+ℓ− āℓ decays. It is anticipated that
these angular coefficients will be measured using Belle II data in the near future.
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APPENDIX A

Validation of simulated continuum events

The simulated 𝑒+𝑒− → 𝑞𝑞 and 𝑒+𝑒− → 𝜏+𝜏− events are significant components of the back-
grounds. We reconstruct the signal decay chain using collected 18 fb−1 of off-resonance data
recorded at a CM energy of

√
𝑠 = 10.52 GeV, applying the same criteria outlined in Table 4.1 for

the candidate selection. We then compare the distributions of cos \𝐵𝑌 , Δ𝑀, 𝑤, cos \ℓ , cos \𝑉 ,
and 𝜒 with the corresponding distributions from simulated samples. The results are presented in
Fig. A.1 and Fig. A.2 for the �̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā` decays, respectively. Most
data points from the two channels fluctuate within the predicted statistical uncertainties of the
simulated samples.

exhibit excellent agreement between the collected data and simulated samples.
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Figure A.1: Distributions of cos \𝐵𝑌 , Δ𝑀, 𝑤, cos \ℓ , cos \𝑉 , and 𝜒 for the �̄�0 → 𝐷∗+𝑒− ā𝑒 decay
reconstructed using off-resonance experimental data and simulated 𝑒+𝑒− → 𝑞𝑞 and 𝑒+𝑒− → 𝜏+𝜏− events.
The simulated samples are normalized to match the number of events in the data. The hashed area
represents the statistical uncertainty.
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Figure A.2: Distributions of cos \𝐵𝑌 , Δ𝑀, 𝑤, cos \ℓ , cos \𝑉 , and 𝜒 for the �̄�0 → 𝐷∗+`− ā` decay
reconstructed using off-resonance experimental data and simulated 𝑒+𝑒− → 𝑞𝑞 and 𝑒+𝑒− → 𝜏+𝜏− events.
The simulated samples are normalized to match the number of events in the data. The hashed area
represents the statistical uncertainty.
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APPENDIX B

Slow pion tracking efficiency

In this study, our focus is on pions with momenta below 200 MeV/𝑐. This is because the
reconstruction of particles with low momenta is challenging. Such particles are significantly
influenced by multiple Coulomb scattering and energy loss in the material, making their trajectories
difficult to reconstruct accurately. Additionally, most of these tracks are recorded by only four
layers of the SVD, while within the CDC volume, these particles curve multiple times, generating
hundreds of hits. Calibration of their tracking efficiencies is important for the physics analyses of
�̄�0 → 𝐷∗+ℓ− āℓ decays and is part of my PhD research.
𝐷∗+ mesons produced in 𝑒+𝑒− → 𝑐𝑐 events are more energetic than those in 𝐵�̄� events, as are

their daughter pions. To focus exclusively on pions with similar momentum, We reconstruct the
�̄�0 → 𝐷∗+𝜋− decay, where the 𝐷∗+ meson subsequently decay to the 𝐷0 meson and the slow
pion 𝜋+𝑠 . Further, 𝐷0 candidates are reconstructed from the 𝐾−𝜋+, 𝐾−𝜋+𝜋+𝜋− , and 𝐾0

𝑆𝜋
+𝜋− final

states.
To ensure the purity of the reconstructed events, we apply the selection criteria outlined in

Table B.1. All tracks corresponding to kaons and pions must have a distance of closest approach
to the interaction point of less than 4.0 cm along the 𝑧 direction (𝑑𝑧) and less than 2.0 cm in the
transverse 𝑟 − 𝜙 plane (𝑑𝑟 ). Additionally, the binary likelihood ratio for kaon (pion) identification,
L𝐾/𝜋 (L𝜋/𝐾 ), must exceed 0.4.

To minimize the fraction of incorrectly reconstructed 𝐷0 and 𝐷∗+ meson candidates, we require
the invariant mass of the 𝐾−𝜋+ system to fall within a window of ±40 MeV/𝑐2 from the known
𝐷0 mass. Furthermore, the mass difference between 𝐷∗+ and 𝐷0 candidates, Δ𝑀 , must lie within
the range of [0.143, 0.147] GeV/𝑐2.

Since the 𝑒+𝑒− → 𝑐𝑐 process significantly contributes to the reconstructed events, we suppress
these contributions by imposing restrictions: the momentum of 𝐷∗+ candidates in the CM frame
must be less than 2.5 GeV/𝑐, and the ratio of the second and the zeroth order Fox-Wolfram
moments, 𝑅2, must be below 0.3.

In addition, two beam energy related variables are calculated for each event:

𝑀𝑏𝑐 =
√︃
𝐸2

beam − ®𝑝2
𝐵, (B.1)
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Appendix B Slow pion tracking efficiency

and
Δ𝐸 = 𝐸𝐵 − 𝐸beam, (B.2)

with 𝐸beam =
√
𝑠/2, and ®𝑝2

𝐵 and 𝐸𝐵 denoting the 3-momenta and energies of 𝐵 candidates,
respectively. Events with values of 𝑀𝑏𝑐 outside the range [5.27, 5.29] GeV/𝑐2, or absolute values
of Δ𝐸 greater than 0.2 GeV/𝑐, are excluded from the subsequent analysis.

Moreover, it is observed that some final-state kaons and pions originating from the 𝐷0 →
𝐾−𝜋+𝜋+𝜋− decay have momenta below 200 MeV/𝑐. To guarantee the presence of, at most, only
one “slow” track per event, events containing such particles are excluded from the analysis.

Table B.1: Selection criteria employed in the study of slow pion tracking efficiency.

Variable Range

𝑑𝑟 < 2 cm
|𝑑𝑧 | < 4 cm
L𝐾/𝜋 (for 𝐾) > 0.4
L𝜋/𝐾 (for 𝜋) > 0.4
|𝑀𝐾 𝜋 − 𝑀PDG

𝐷0 | < 0.04 GeV/𝑐2

Δ𝑀 ∈ [0.143, 0.147] GeV/𝑐2

𝑝∗
𝐷∗+ < 2.5 GeV/𝑐
𝑅2 < 0.3
𝑀𝑏𝑐 ∈ [5.27, 5.29] GeV/𝑐2

|Δ𝐸 | < 0.2 GeV/𝑐

The simulated samples are then categorized into the signal, 𝐵�̄� background, and continuum
background as follows

• Signal: the entire decay chain is reconstructed correctly.

• 𝐵�̄� background: reconstructed events correspond to the simulated 𝑒+𝑒− → Υ(4𝑆) → 𝐵�̄�
processes; however, the signal decay chain is not completely reconstructed correctly.

• Continuum background: reconstructed events correspond to the simulated continuum
processes.

The simulated samples are compared to the experimental data concerning the distributions of
Δ𝐸 and slow pion momentum in the lab frame, as depicted in Fig. B.1. The pull in each bin is
defined as

Pull =
𝑁Data − 𝑁MC√︁
𝜎Data + 𝜎MC

, (B.3)

where 𝑁Data and 𝑁MC represent the numbers of events in collision data and simulated sam-
ples, respectively, and 𝜎Data and 𝜎MC denote the uncertainties of data and simulated samples,
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respectively.

The simulated distributions agree well with the experimental data in terms of their shapes.
However, a noticeable deficit in the data is observed around the signal-enriched region in the Δ𝐸
distribution across all three reconstructed decay channels. This discrepancy implies a reduced
efficiency in signal reconstruction when compared to the simulated results.

We divide the slow pion momentum into four bins spanning [0.05, 0.12, 0.16, 0.2, 0.32] GeV/𝑐 to
assess efficiency differences across these momentum ranges. The agreement between experimental
data and simulated samples in the last momentum bin serves as a reference point for deriving the
relative efficiency in the low momentum range.

The expected values of the simulation are derived directly from the luminosity ratio

𝑁
exp
MC = 𝑁sig

MC
Ldata
LMC

, (B.4)

where 𝑁sig
MC denotes the number of selected signal events. The signal yield in each bin for

experimental data is independently determined through a binned likelihood fit of the Δ𝐸 spectrum
similarly to the fit described in Sec. 6.1. In this fit, the signal component peaks near zero, while
the other two components have a broader span. The post-fit plots for the four bins are shown in
Fig. B.2.

The expected number of signal events in simulated samples and the fitted yields for experimental
data are summarized in Table B.2. The reconstruction efficiency of slow pions is defined as the
ratio of the reconstructed tracks (𝑁 reco.) and all the slow pion tracks (𝑁all) in the data set,

𝜖 =
𝑁 reco.

𝑁all . (B.5)

The ratio of efficiencies between data and MC can be approximated as

𝑟 =
𝜖data
𝜖MC

=
𝑁 reco.

data

𝑁all
data

𝑁all
MC

𝑁
exp
MC

≃ 𝑁 reco.
data

𝑁
exp
MC

, (B.6)

where the total number of slow pion tracks in experimental data does not significantly differ from
the simulation with the same luminosity. The ratio 𝑁fit

data/𝑁exp
MC is thus calculated for each bin.

The mid to high momentum tracking efficiency has been extensively studied independently
using a tag-and-probe method with 𝜏-pair events (see Sec. 7.3). In these events, the kinematics
of the 𝜏 leptons cover a wide track momentum range from 200 MeV/𝑐 up to 3.5 GeV/𝑐. The
analysis reveals that the ratio of reconstruction efficiencies between calibrated experimental data
and simulation is consistent with unity. Therefore, the deviation of the ratio 𝑁fit

data/𝑁exp
MC from unity

in the momentum bin of [0.2, 0.32] GeV/𝑐 is attributed to differences in particle identification
efficiencies and 𝐾0

𝑆 reconstruction. Assuming these differences are uncorrelated with the slow
pion track momentum, a relative efficiency ratio ( 𝑓 ) is calculated by normalizing the 𝑁fit

data/𝑁exp
MC

ratios in the first three bins to the last bin. The uncertainties of 𝑓 that are uncorrelated and
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Figure B.1: Distributions of Δ𝐸 (left) and slow pion momentum 𝑝lab
𝜋𝑠

(right) for the 𝐷0 → 𝐾−𝜋+,
𝐷0 → 𝐾−𝜋+𝜋+𝜋− , and 𝐷0 → 𝐾0

𝑆𝜋
+𝜋− decays, arranged from top to bottom, respectively. The simulated

samples are weighted according to integrated luminosity. The error bars represent the statistical uncertainties
for data, while the hashed areas represent the corresponding uncertainties for simulated samples.
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Figure B.2: Post-fit plots of the Δ𝐸 distribution for the determination of signal yields in bins of the slow
pion momentum.

103



Appendix B Slow pion tracking efficiency

Table B.2: Summary of expected numbers of signal events in the simulated samples and the fitted yields for
the experimental data. The uncertainties associated with the expectations for MC are purely statistical, while
the uncertainties on the fitted yields encompass both statistical and systematic uncertainties originating
from the finite MC samples. Furthermore, the relative efficiency 𝑓 in the low momentum range, along with
its uncorrelated (𝜎uncor

𝑓 ) and correlated (𝜎cor
𝑓 ) uncertainties, is provided.

Momentum bin (in GeV) [0.05, 0.12] [0.12, 0.16] [0.16, 0.20] [0.20, 0.32]
𝑁

exp
MC 2 551 ± 51 4 486 ± 67 3 886 ± 62 6 047 ± 78

𝑁fit
data 1 914 ± 55 3 824 ± 76 3 115 ± 72 4 989 ± 87

𝑟 = 𝑁fit
data/𝑁exp

MC 0.750 ± 0.026 0.852 ± 0.021 0.802 ± 0.022 0.825 ± 0.018
𝑓 0.909 1.033 0.971 1

𝜎uncor
𝑓 0.032 0.026 0.027
𝜎cor
𝑓 0.020 0.022 0.021

correlated between different momentum ranges are derived using the following equations,

𝜎uncor
𝑓𝑖

=
1
𝑟4
𝜎𝑟𝑖 , (B.7)

and
𝜎cor
𝑓𝑖

=
𝑟𝑖

𝑟2
4
𝜎𝑟4 , (B.8)

where 𝜎𝑟𝑖 represents the uncertainty of the ratio 𝑁fit
data/𝑁exp

MC in the 𝑖-th bin. The obtained values
are summarized in Table B.2.

The simulated reconstruction efficiencies of tracks in the momentum ranges of [0.12, 0.16] and
[0.16, 0.20] GeV/𝑐 align with the experimental data within their uncertainties. However, in the
first momentum bin, the simulated efficiency is approximately 10% higher than the experimental
data. These results are utilized to correct for slow pions produced in �̄�0 → 𝐷∗+ℓ− āℓ decays.
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APPENDIX C

Migration matrices

The migration matrices for the �̄�0 → 𝐷∗+`− ā` decay with the 𝑤, cos \ℓ , cos \𝑉 , and 𝜒 are
reconstructed using the diamond frame, ROE, and combined methods are shown in Fig. C.1,
Fig. C.2, and Fig. C.3, respectively.
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Figure C.1: The migration matrices of kinematic variables 𝑤, cos \ℓ , cos \𝑉 , and 𝜒 reconstructed by the
diamond frame method for the �̄�0 → 𝐷∗+`− ā` decay.
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Figure C.2: The migration matrices of kinematic variables 𝑤, cos \ℓ , cos \𝑉 , and 𝜒 reconstructed by the
ROE approach for the �̄�0 → 𝐷∗+`− ā` decay.
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Figure C.3: The migration matrices of kinematic variables 𝑤, cos \ℓ , cos \𝑉 , and 𝜒 reconstructed by the
combined approach for the �̄�0 → 𝐷∗+`− ā` decay.
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APPENDIX D

Robustness of signal extraction

D.1 Linearity check

In this test, we apply 20 distinct weights ranging from 0.5 to 2.0 with uniform intervals to the
reconstructed signal decays, keeping the backgrounds unchanged. Subsequently, we perform
fits on the resulting toy distributions using the original, non-weighted signal and background
templates. To validate the correctness of the fitted yields, we examine the relationship between the
applied weights and the ratios 𝑁fit/𝑁sel, where 𝑁fit represents the fitted yields, and 𝑁sel represents
the count of selected signal decays before any reweighting.

In addition, we explore an alternative scenario where the reconstructed background events are
weighted with values ranging from 0.5 to 2.0. We then fit to resulting distributions using the
original, non-weighted signal and background templates, and crosscheck the consistency between
these applied weights and the ratios of the fitted signal yield to the input signal events 𝑁fit/𝑁sel.

We present the results corresponding to those two scenarios in Fig. D.1. In the first scenario, the
relationship between the reweighing factor and the ratio 𝑁fit/𝑁sel can be represented by a straight
line with a slope 𝑚 = 1 and an offset 𝑏 = 0, indicating that the fitted yields remain consistent with
respect to the weights. It is observed that, in the second case, the fitted yields show no variation
in response to changes in backgrounds.

This test has also been conducted separately for each bin of kinematic variables, although the
detailed plots are not included here due to space constraints. In summary, the linear relationship
holds consistently across all these scenarios, aligning with our expectations.
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Appendix D Robustness of signal extraction

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Scaled Nsel

signal in fraction

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
N

fit si
gn

al
 in

 fr
ac

tio
n

linearity check (a)
m = 1.0000 ± 0.0000, b = 0.0000 ± 0.0000
Asimov fit result

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Scaled Nbackground in fraction

0.900

0.925

0.950

0.975

1.000

1.025

1.050

1.075

1.100

N
fit si

gn
al

/N
se

l
si

gn
al

linearity check (b)
m = 0.0000 ± 0.0000, b = 1.0000 ± 0.0000
Asimov fit result

Figure D.1: Linearity check for fits. The left plot illustrates the variations in ratios 𝑁fit
signal/𝑁sel

signal
corresponding to the weights applied on the signal template. Conversely, the right plot demonstrates how
ratios 𝑁fit

signal/𝑁sel
signal vary concerning the weights applied on the background template.

D.2 Toy study

The toy fits are conducted to ensure the unbiasedness of the signal extraction and the accurate
estimation of uncertainties. In this test, we generate 10000 pseudo-distributions by assigning
random candidate-wise weights drawn from a Poisson distribution with _ = 1. Importantly, we
guarantee that multiple candidates within the same event share identical weights, establishing full
correlation among these candidates.

We apply random weights to the simulated samples and fit the resulting cos \𝐵𝑌 and Δ𝑀
distributions using the three templates, with the nuisance parameters fixed at zero. This procedure
is carried out separately for samples within each bin of kinematic variables. The pull value is
computed using the formula:

Pull =
𝑁 toy − 𝑁Asimov

𝜎stat. . (D.1)

In this equation, 𝑁 toy and 𝑁Asimov represent the fitted yields in the toy data set and Asimov data
set, respectively. Here, 𝜎stat. represents the statistical uncertainty associated with the fitted yields.

The normalized pull distributions for 𝑤, cos \ℓ , cos \𝑉 , and 𝜒 are depicted in Fig. D.2 to
Fig. D.5 respectively. These distributions are fitted using Gaussian functions, and the resulting
means and standard deviations are provided above the respective plots. In the absence of bias,
we anticipate the peak of each distribution to be centered at zero. If the uncertainties are neither
overestimated nor underestimated, we expect to observe a standard deviation of 𝜎 = 1. Overall,
our observations indicate that the fitted values align with our expectations.
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D.2 Toy study
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Figure D.2: Pull distributions that validate fits for signal extraction in 𝑤 bins, and Gaussian parameters that
describe the distributions are provided.
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Figure D.3: Pull distributions that validate fits for signal extraction in cos \ℓ bins, and Gaussian parameters
that describe the distributions are provided.
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Figure D.4: Pull distributions that validate fits for signal extraction in cos \𝑉 bins, and Gaussian parameters
that describe the distributions are provided.
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Figure D.5: Pull distributions that validate fits for signal extraction in 𝜒 bins, and Gaussian parameters that
describe the distributions are provided.
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APPENDIX E

Post-fit plots of cos 𝜽𝑩𝒀 and 𝚫𝑴

In this section, we present post-fit plots of cos \𝐵𝑌 and Δ𝑀 distributions, depicted in Figs. E.2
to E.9 for the �̄�0 → 𝐷∗+𝑒− ā𝑒 decay, and Figs. E.10 to E.17 for the �̄�0 → 𝐷∗+`− ā` decay,
respectively. In these plots, the fractions of the simulated components in each bin have been
adjusted based on binned likelihood fits described in Eq. (6.4). Note that we determine the
cos \𝐵𝑌 and Δ𝑀 plots on projection of the two-dimensional fit templates Additionally, 𝜒2/ndf
values for two-dimensional fits, along with their corresponding 𝑝-values, are provided to assess
the goodness of the fits. These 𝑝-values are summarized in a distribution shown in Fig. E.1,
demonstrating compatibility with the expected uniform behavior.
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Figure E.1: Distribution of the 𝑝-values derived from a total of 76 fits conducted across 2 decay channels
and 38 kinematic regions. This distribution conforms to the anticipated uniformity of a𝑈 (0, 1) distribution,
as evidenced by the calculated probability of uniformity.
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Appendix E Post-fit plots of cos \𝐵𝑌 and Δ𝑀
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Figure E.2: Post-fit plots of cos \𝐵𝑌 (first 2 rows) and Δ𝑀 (last 2 rows) distributions for the first 5 𝑤 bins
of the �̄�0 → 𝐷∗+𝑒− ā𝑒 decay.
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Figure E.3: Post-fit plots of cos \𝐵𝑌 (first 2 rows) and Δ𝑀 (last 2 rows) distributions for the last 5 𝑤 bins of
the �̄�0 → 𝐷∗+𝑒− ā𝑒 decay.
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Figure E.4: Post-fit plots of cos \𝐵𝑌 (first 2 rows) and Δ𝑀 (last 2 rows) distributions for the first 4 cos \ℓ
bins of the �̄�0 → 𝐷∗+𝑒− ā𝑒 decay.
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Figure E.5: Post-fit plots of cos \𝐵𝑌 (first 2 rows) and Δ𝑀 (last 2 rows) distributions for the last 4 cos \ℓ
bins of the �̄�0 → 𝐷∗+𝑒− ā𝑒 decay.
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Figure E.6: Post-fit plots of cos \𝐵𝑌 (first 2 rows) and Δ𝑀 (last 2 rows) distributions for the first 5 cos \𝑉
bins of the �̄�0 → 𝐷∗+𝑒− ā𝑒 decay.
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Figure E.7: Post-fit plots of cos \𝐵𝑌 (first 2 rows) and Δ𝑀 (last 2 rows) distributions for the last 5 cos \𝑉
bins of the �̄�0 → 𝐷∗+𝑒− ā𝑒 decay.
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Figure E.8: Post-fit plots of cos \𝐵𝑌 (first 2 rows) and Δ𝑀 (last 2 rows) distributions for the first 5 𝜒 bins
of the �̄�0 → 𝐷∗+𝑒− ā𝑒 decay.
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Figure E.9: Post-fit plots of cos \𝐵𝑌 (first 2 rows) and Δ𝑀 (last 2 rows) distributions for the last 5 𝜒 bins of
the �̄�0 → 𝐷∗+𝑒− ā𝑒 decay.
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Figure E.10: Post-fit plots of cos \𝐵𝑌 (first 2 rows) and Δ𝑀 (last 2 rows) distributions for the first 5 𝑤 bins
of the �̄�0 → 𝐷∗+`− ā` decay.
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Figure E.11: Post-fit plots of cos \𝐵𝑌 (first 2 rows) and Δ𝑀 (last 2 rows) distributions for the last 5 𝑤 bins
of the �̄�0 → 𝐷∗+`− ā` decay.

123



Appendix E Post-fit plots of cos \𝐵𝑌 and Δ𝑀

0

1000

2000

3000

4000

5000

6000

En
tri

es

Belle II cos  [-1.00, -0.40]
signal
bkg with true D*
bkg with fake D*
MC Uncertainty
Data

4 3 2 1 0 1 2
cos BY

5

0

5

Pu
ll

0

1000

2000

3000

4000

5000

En
tri

es

Belle II cos  [-0.40, -0.20]

4 3 2 1 0 1 2
cos BY

5

0

5

Pu
ll

0

2000

4000

6000

8000

10000

En
tri

es

Belle II cos  [-0.20, 0.00]

4 3 2 1 0 1 2
cos BY

5

0

5

Pu
ll

0

2000

4000

6000

8000

10000

12000

14000

16000

En
tri

es

Belle II cos  [0.00, 0.20]

4 3 2 1 0 1 2
cos BY

5

0

5

Pu
ll

0

1000

2000

3000

4000

En
tri

es

2/ndf=12.6/13
p-value=0.48

Belle II cos  [-1.00, -0.40]

0.142 0.144 0.146 0.148 0.150 0.152 0.154 0.156
M

5

0

5

Pu
ll

0

500

1000

1500

2000

2500

3000

3500

4000

En
tri

es

2/ndf=8.4/13
p-value=0.82

Belle II cos  [-0.40, -0.20]

0.142 0.144 0.146 0.148 0.150 0.152 0.154 0.156
M

5

0

5

Pu
ll

0

1000

2000

3000

4000

5000

6000

7000

8000

En
tri

es

2/ndf=16.7/13
p-value=0.22

Belle II cos  [-0.20, 0.00]

0.142 0.144 0.146 0.148 0.150 0.152 0.154 0.156
M

5

0

5

Pu
ll

0

2000

4000

6000

8000

10000

12000

En
tri

es

2/ndf=14.1/13
p-value=0.37

Belle II cos  [0.00, 0.20]

0.142 0.144 0.146 0.148 0.150 0.152 0.154 0.156
M

5

0

5

Pu
ll

Figure E.12: Post-fit plots of cos \𝐵𝑌 (first 2 rows) and Δ𝑀 (last 2 rows) distributions for the first 4 cos \ℓ
bins of the �̄�0 → 𝐷∗+`− ā` decay.
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Figure E.13: Post-fit plots of cos \𝐵𝑌 (first 2 rows) and Δ𝑀 (last 2 rows) distributions for the last 4 cos \ℓ
bins of the �̄�0 → 𝐷∗+`− ā` decay.
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Figure E.14: Post-fit plots of cos \𝐵𝑌 (first 2 rows) and Δ𝑀 (last 2 rows) distributions for the first 5 cos \𝑉
bins of the �̄�0 → 𝐷∗+`− ā` decay.
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Figure E.15: Post-fit plots of cos \𝐵𝑌 (first 2 rows) and Δ𝑀 (last 2 rows) distributions for the last 5 cos \𝑉
bins of the �̄�0 → 𝐷∗+`− ā` decay.
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Figure E.16: Post-fit plots of cos \𝐵𝑌 (first 2 rows) and Δ𝑀 (last 2 rows) distributions for the first 5 𝜒 bins
of the �̄�0 → 𝐷∗+`− ā` decay.
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Figure E.17: Post-fit plots of cos \𝐵𝑌 (first 2 rows) and Δ𝑀 (last 2 rows) distributions for the last 5 𝜒 bins
of the �̄�0 → 𝐷∗+`− ā` decay.
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APPENDIX F

Validation of unfolding

To validate the unfolding procedure, 50000 pseudo signal yields are generated for each kinematic
bin using multivariate Gaussian distributions, where the means correspond to the nominal fitted
yields, and the covariance matrix on these yields is applied. These sampled yields are then
unfolded using the nominal migration matrices. For each bin and each sample, we calculate the
pull using the formula:

Pull =
𝑁 toy − 𝑁nominal

𝜎
, (F.1)

where 𝑁 toy and 𝑁nominal represent the unfolded yields in the toy sample and the nominal procedure,
respectively, and 𝜎 denotes the nominal post-unfolding uncertainty. The validation is conducted
for both matrix inversion and SVD unfolding methods.

The normalized pull distributions in each bin of kinematic variables are illustrated in Figs. F.1
to F.8. These distributions are fitted with Gaussian functions, and the resulting values of mean
and standard deviation are provided with the plots. If the fits are unbiased and the post-unfolding
uncertainties are estimated accurately, we expect the peak of the distribution to be centered at
zero with a standard deviation of 𝜎 = 1. Overall, our observations indicate a good agreement
between the fitted values and the expected outcomes.
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Figure F.1: Pull distributions of unfolded pseudo signal yields in 𝑤 bins, derived using the matrix inversion
method. The corresponding Gaussian parameters describing the distributions are provided.
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Figure F.2: Pull distributions of unfolded pseudo signal yields in 𝑤 bins, derived using the SVD method.
The corresponding Gaussian parameters describing the distributions are provided.
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Figure F.3: Pull distributions of unfolded pseudo signal yields in cos \ℓ bins, derived using the matrix
inversion method. The corresponding Gaussian parameters describing the distributions are provided.
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Figure F.4: Pull distributions of unfolded pseudo signal yields in cos \ℓ bins, derived using the SVD
method. The corresponding Gaussian parameters describing the distributions are provided.
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Figure F.5: Pull distributions of unfolded pseudo signal yields in cos \𝑉 bins, derived using the matrix
inversion method. The corresponding Gaussian parameters describing the distributions are provided.
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Figure F.6: Pull distributions of unfolded pseudo signal yields in cos \𝑉 bins, derived using the SVD
method. The corresponding Gaussian parameters describing the distributions are provided.
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Figure F.7: Pull distributions of unfolded pseudo signal yields in 𝜒 bins, derived using the matrix inversion
method. The corresponding Gaussian parameters describing the distributions are provided.
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Figure F.8: Pull distributions of unfolded pseudo signal yields in 𝜒 bins, derived using the SVD method.
The corresponding Gaussian parameters describing the distributions are provided.
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APPENDIX G

Examination of D’Agostini type bias

Reference [109] demonstrates a potential bias in a 𝜒2 fit when there exists a large normalization
uncertainty affecting all data points. The size of this bias varies based on the fitted function, the
magnitude of the overall uncertainty, and the number of data points. It has been demonstrated
that this bias arises from the linearization applied in usual error propagation methods.

In this measurement, the leading order uncertainty originates from the slow pion tracking
efficiency, which exhibits strong correlations across all kinematic bins and primarily affects the
normalization. The secondary uncertainty arises from the determination of the number of 𝐵0

mesons, which is fully correlated across all bins of kinematic variables. These uncertainties have
the potential to introduce bias, as discussed in Ref. [109]. Therefore, we examine our results and
rule out any D’Agostini type bias.

In this test, we begin by weighting the covariance matrix of normalized decay rates. The weight
applied to the systematic component of the matrix element 𝐶𝑖 𝑗 , is expressed as:

𝑤𝑖 𝑗 =
ΔΓtheo.

𝑖

ΔΓobs.
𝑖

×
ΔΓtheo.

𝑗

ΔΓobs.
𝑗

. (G.1)

Here, ΔΓtheo.
𝑖 represents the partial decay rate calculated using fitted |𝑉𝑐𝑏 | and form factor

parameters for bin 𝑖, and ΔΓobs.
𝑖 denotes the experimentally observed partial decay rate in bin 𝑖.

Then, we substitute the nominal covariance matrix with the weighted matrix in the 𝜒2 fit, and
re-extract values of |𝑉𝑐𝑏 | and form factor parameters. We find the resulting values and their
correlations remain unchanged compared to those in Table 8.2, and thus no D’Agostini type bias
is observed.
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APPENDIX H

Results with matrix inversion unfolding

In addition to unfolding signal yields using the SVD method with the chosen 𝑘 values, we also
employ the matrix inversion unfolding method, where no regularization is applied. The results
are presented and compared with those obtained from the SVD approach in this section.

The signal yields summarized in Table 6.1 are unfolded using the matrix inversion method and
then converted into partial decay rates through Eq. (6.9). The resulting values in bins of kinematic
variables, are provided in Table H.1.

The statistical correlations of partial decay rates are determined using the bootstrapping method,
as detailed in Sec. 6.4. The obtained correlation matrices are illustrated in Fig. H.1 and Fig. H.2
for �̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā` decays, respectively. Since no regularization is applied
to dampen statistical fluctuations in the unfolded distributions, neighboring bins present a negative
correlation pattern, which is distinct from the SVD method. Additionally, we observe larger
statistical uncertainties resulted from the matrix inversion method.

The partial decay rates measured for �̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā` decays are
normalized, and further averaged over two decay channels. The full (statistical and systematic)
correlations of these normalized decays rates are illustrated in Fig. H.3.

Utilizing the normalized decay rates and total rate obtained from the matrix inversion unfolding
method, we determine the values of |𝑉𝑐𝑏 | and form factor parameters through a 𝜒2 fit outlined
in Eq. (8.2). The resulting 𝑝-values are 14% and 13% for the BGL and CLN parametrizations,
respectively, and the fitted values, along with their correlations, are summarized in Table H.2
and Table H.3. The results do not show significant deviation from those obtained with the SVD
unfolding approach.

Using the fitted values and their corresponding 1𝜎 uncertainties, we plot one-dimensional
differential decay rates with respect to individual kinematic variables 𝑤, cos \ℓ , cos \𝑉 , and 𝜒
in Fig. H.4. We observe a strong consistency between the plotted spectra and the measured data
points.

Similarly, we observe a disagreement with low 𝑝-values of 0.2% and 0.4% when incorporating
the FNAL/MILC predictions on ℎ𝐴1

(𝑤), 𝑅1(𝑤), 𝑅2(𝑤) in the fits. The corresponding results are
summarized in Table H.4 and Table H.5 for the BGL and CLN parametrizations, respectively.
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Appendix H Results with matrix inversion unfolding

Table H.1: Measured partial decay rates ΔΓ (in units of 10−15 GeV) and average of normalized partial
decay rates ΔΓ/Γ over �̄�0 → 𝐷∗+𝑒− ā𝑒 and �̄�0 → 𝐷∗+`− ā` decays in bins of kinematic variables. The
normalized partial decay rate in the last bin of each projection is excluded in the |𝑉𝑐𝑏 | determination to
subtract the redundant degrees of freedom. The full (statistical and systematic) uncertainties are provided.

Variable Bin
ΔΓ ΔΓ/Γ average (in %)

�̄�0 → 𝐷∗+𝑒− ā𝑒 �̄�0 → 𝐷∗+`− ā` �̄�0 → 𝐷∗+ℓ− āℓ

𝑤

[1.00, 1.05) 1.42 ± 0.12 1.32 ± 0.11 6.37 ± 0.30
[1.05, 1.10) 2.02 ± 0.14 2.09 ± 0.14 9.66 ± 0.32
[1.10, 1.15) 2.40 ± 0.15 2.46 ± 0.15 11.41 ± 0.30
[1.15, 1.20) 2.63 ± 0.16 2.57 ± 0.15 12.16 ± 0.31
[1.20, 1.25) 2.57 ± 0.16 2.65 ± 0.16 12.24 ± 0.33
[1.25, 1.30) 2.51 ± 0.16 2.38 ± 0.15 11.37 ± 0.36
[1.30, 1.35) 2.29 ± 0.16 2.30 ± 0.15 10.74 ± 0.40
[1.35, 1.40) 2.07 ± 0.16 2.12 ± 0.15 9.79 ± 0.41
[1.40, 1.45) 1.83 ± 0.14 1.71 ± 0.14 8.28 ± 0.38
[1.45, 1.51) 1.67 ± 0.10 1.76 ± 0.11

cos \ℓ

[−1.00,−0.40) 4.00 ± 0.41 4.19 ± 0.45 19.23 ± 1.03
[−0.40,−0.20) 1.93 ± 0.16 2.09 ± 0.17 9.44 ± 0.37
[−0.20, 0.00) 2.31 ± 0.14 2.19 ± 0.15 10.48 ± 0.30
[0.00, 0.20) 2.47 ± 0.13 2.62 ± 0.15 11.94 ± 0.30
[0.20, 0.40) 2.76 ± 0.14 2.57 ± 0.14 12.43 ± 0.30
[0.40, 0.60) 2.73 ± 0.14 2.77 ± 0.14 12.89 ± 0.32
[0.60, 0.80) 2.47 ± 0.14 2.51 ± 0.13 11.70 ± 0.33
[0.80, 1.00) 2.55 ± 0.14 2.51 ± 0.14

cos \𝑉

[−1.00,−0.80) 2.88 ± 0.13 3.06 ± 0.15 13.92 ± 0.31
[−0.80,−0.60) 2.38 ± 0.12 2.24 ± 0.12 10.74 ± 0.27
[−0.60,−0.40) 2.03 ± 0.12 2.01 ± 0.11 9.45 ± 0.26
[−0.40,−0.20) 1.61 ± 0.11 1.62 ± 0.11 7.56 ± 0.26
[−0.20, 0.00) 1.55 ± 0.12 1.51 ± 0.11 7.18 ± 0.27
[0.00, 0.20) 1.59 ± 0.12 1.59 ± 0.12 7.46 ± 0.28
[0.20, 0.40) 1.67 ± 0.12 1.78 ± 0.12 8.11 ± 0.29
[0.40, 0.60) 2.12 ± 0.14 2.11 ± 0.14 9.91 ± 0.31
[0.60, 0.80) 2.44 ± 0.16 2.28 ± 0.15 11.06 ± 0.32
[0.80, 1.00) 3.07 ± 0.18 3.17 ± 0.20

𝜒

[0.00, 0.63) 1.86 ± 0.14 1.88 ± 0.13 8.76 ± 0.32
[0.63, 1.26) 2.11 ± 0.15 2.23 ± 0.14 10.24 ± 0.35
[1.26, 1.88) 2.64 ± 0.16 2.49 ± 0.15 11.96 ± 0.33
[1.88, 2.51) 2.20 ± 0.15 2.27 ± 0.14 10.50 ± 0.32
[2.51, 3.14) 1.81 ± 0.13 1.77 ± 0.12 8.39 ± 0.32
[3.14, 3.77) 2.00 ± 0.13 1.93 ± 0.13 9.21 ± 0.31
[3.77, 4.40) 2.08 ± 0.13 2.12 ± 0.13 9.86 ± 0.29
[4.40, 5.03) 2.53 ± 0.15 2.59 ± 0.15 12.02 ± 0.29
[5.03, 5.65) 2.21 ± 0.13 2.35 ± 0.14 10.72 ± 0.29
[5.65, 6.28) 1.88 ± 0.13 1.68 ± 0.12
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Appendix H Results with matrix inversion unfolding
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Appendix H Results with matrix inversion unfolding

Table H.2: Results of the determination of the BGL expansion coefficients and their correlations.

Value Correlation 𝜒2/ndf
�̃�0 × 103 0.86 ± 0.06 1.00 0.17 −0.15 0.07

39/31
�̃�0 × 103 0.54 ± 0.01 0.17 1.00 −0.35 −0.39
�̃�1 × 103 −0.18 ± 0.32 −0.15 −0.35 1.00 0.42
𝑐1 × 103 −0.04 ± 0.03 0.07 −0.39 0.42 1.00

Table H.3: Results of the determination of the CLN parameters, |𝑉𝑐𝑏 | and their correlations.

Value Correlation 𝜒2/ndf
𝜌2 1.19 ± 0.06 1.00 0.24 −0.83 0.28

40/31
𝑅1(1) 1.11 ± 0.08 0.24 1.00 −0.33 −0.12
𝑅2(1) 0.90 ± 0.04 −0.83 −0.33 1.00 −0.09

|𝑉𝑐𝑏 | × 103 40.1 ± 1.1 0.28 −0.12 −0.09 1.00

Table H.4: Values of BGL form factors and |𝑉𝑐𝑏 | resulting from a fit that includes nonzero recoil lattice
information.

Constraints on
ℎ𝐴1

(𝑤)
Constraints on

ℎ𝐴1
(𝑤), 𝑅1(𝑤), 𝑅2(𝑤)

𝑎0 × 103 21.2 ± 1.6 26.1 ± 0.9
𝑏0 × 103 13.18 ± 0.24 13.50 ± 0.23
𝑏1 × 103 −3 ± 6 6 ± 6
𝑐1 × 103 −0.9 ± 0.7 −0.6 ± 0.7
|𝑉𝑐𝑏 | × 103 40.3 ± 1.2 38.6 ± 1.1
𝜒2/ndf 40/33 69/39
𝑝-value 20% 0.2%
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Figure H.4: Comparison of the fitted partial decay rates with 1𝜎 uncertainties in the BGL and CLN
parametrizations to the unfolded experimental data (shown as points with error bars). Note that the BGL
(hatched) band almost completely overlays the CLN (solid) band.

Table H.5: Values of CLN form factors and |𝑉𝑐𝑏 | resulting from a fit that includes nonzero recoil lattice
information.

Constraints on
ℎ𝐴1

(𝑤)
Constraints on

ℎ𝐴1
(𝑤), 𝑅1(𝑤), 𝑅2(𝑤)

ℎ𝐴1
(1) 0.91 ± 0.02 0.93 ± 0.02
𝜌2 1.20 ± 0.05 1.17 ± 0.05

𝑅1(1) 1.11 ± 0.08 1.29 ± 0.04
𝑅2(1) 0.90 ± 0.04 0.92 ± 0.03

|𝑉𝑐𝑏 | × 103 40.2 ± 1.2 38.9 ± 1.1
𝜒2/ndf 40/33 67/39
𝑝-value 19% 0.4%
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APPENDIX I

Nested hypothesis tests with LQCD inputs

I.1 Test with LQCD constraints on 𝒉𝑨1

In this scenario, we fit experimental data and the FNAL/MILC predictions on ℎ𝐴1
(𝑤) at

𝑤 = [1.03, 1.10, 1.17] simultaneously. The obtained |𝑉𝑐𝑏 | values, minima of the 𝜒2, and numbers
of degrees of freedom corresponding to various truncations are summarized in Table I.1. 𝑛𝑎 = 1,
𝑛𝑏 = 1, and 𝑛𝑐 = 2 is determined as the optimal expansion order. The fitted parameters and their
correlations are summarized in Table I.2.

Table I.1: Summary of the nested hypothesis test when FNAL/MILC predictions on ℎ𝐴1
(𝑤) are taken into

account. The chosen expansion is highlighted in a gray background.

(𝑛𝑎, 𝑛𝑏, 𝑛𝑐) |𝑉𝑐𝑏 | × 103 𝜌max 𝜒2 Ndf 𝑝-value
(1, 1, 2) 40.0 ± 1.2 0.62 40.1 34 22%
(2, 1, 2) 40.0 ± 1.2 0.97 38.6 33 23%
(1, 2, 2) 40.3 ± 1.2 0.59 39.2 33 21%
(1, 1, 3) 40.0 ± 1.2 0.96 39.5 33 20%
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Table I.2: Fitted parameters and their correlations using the optimal BGL expansion determined with
FNAL/MILC constraints on ℎ𝐴1

(𝑤).

Value Correlation
|𝑉𝑐𝑏 | × 103 40.0 ± 1.2 1.00 −0.36 −0.62 −0.19
𝑎0 × 103 21.5 ± 1.3 −0.36 1.00 0.31 0.51
𝑏0 × 103 13.2 ± 0.2 −0.62 0.31 1.00 −0.02
𝑐1 × 103 −0.5 ± 0.6 −0.19 0.51 −0.02 1.00

I.2 Test with LQCD constraints on 𝒉𝑨1
, 𝑹1, and 𝑹2

In this test, we fit experimental data and the FNAL/MILC predictions on ℎ𝐴1
(𝑤), 𝑅1(𝑤), and

𝑅2(𝑤) at 𝑤 = [1.03, 1.10, 1.17] simultaneously. The obtained |𝑉𝑐𝑏 | values, minima of the 𝜒2,
and numbers of degrees of freedom with various truncations are summarized in Table I.3. 𝑛𝑎 = 1,
𝑛𝑏 = 3, and 𝑛𝑐 = 2 is determined as the optimal expansion order. The corresponding fitted
parameters and their correlations are summarized in Table I.4.

By comparing the results in three scenarios, we find the inclusion of FNAL/MILC lattice results
requires more BGL form-factor parameters to reach an acceptable 𝜒2 value. Using the fitted
parameters and 1𝜎 deviation summarized in Table I.2 and Table I.4, we plot the ℎ𝐴1

(𝑤), 𝑅1(𝑤)
and 𝑅2(𝑤) spectra in Fig. I.1. The re-optimized truncation results in a better description of lattice
data, while the shapes of partial decay rates remain unchanged.
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I.2 Test with LQCD constraints on ℎ𝐴1
, 𝑅1, and 𝑅2

Table I.3: Summary of the nested hypothesis test when FNAL/MILC predictions on ℎ𝐴1
(𝑤), 𝑅1 (𝑤), and

𝑅2 (𝑤) are taken into account. The chosen expansion is highlighted in a gray background.

(𝑛𝑎, 𝑛𝑏, 𝑛𝑐) |𝑉𝑐𝑏 | × 103 𝜌max 𝜒2 Ndf 𝑝-value
(1, 1, 2) 38.3 ± 1.1 0.57 75.3 40 0.1%
(2, 1, 2) 39.2 ± 1.1 0.59 52.4 39 7%
(1, 2, 2) 38.3 ± 1.1 0.61 75.2 39 0.1%
(1, 1, 3) 38.5 ± 1.1 0.92 73.6 39 0.1%
(3, 1, 2) 39.5 ± 1.1 0.85 48.7 38 11%
(2, 2, 2) 39.2 ± 1.1 0.59 52.3 38 6%
(2, 1, 3) 39.4 ± 1.1 0.92 50.2 38 9%
(4, 1, 2) 39.4 ± 1.1 0.98 48.4 37 10%
(3, 2, 2) 39.3 ± 1.1 0.87 47.5 37 12%
(3, 1, 3) 39.7 ± 1.1 0.92 45.4 37 16%
(4, 2, 2) 39.2 ± 1.1 0.98 46.8 36 11%
(3, 3, 2) 39.3 ± 1.1 0.87 46.4 36 11%
(3, 2, 3) 39.6 ± 1.2 0.91 45.2 36 14%
(4, 3, 2) 39.3 ± 1.1 0.98 46 35 10%
(3, 4, 2) 39.3 ± 1.1 0.86 46.2 35 10%
(3, 3, 3) 39.6 ± 1.2 0.93 45 35 12%
(4, 1, 3) 39.7 ± 1.1 0.98 44.1 36 17%
(3, 1, 4) 39.7 ± 1.1 0.91 45.3 36 14%
(2, 2, 3) 39.5 ± 1.2 0.91 50.1 37 7%
(2, 1, 4) 39.4 ± 1.1 0.91 50.1 37 7%
(1, 2, 3) 38.5 ± 1.1 0.91 73.6 38 0.1%
(1, 1, 4) 38.5 ± 1.1 0.91 73.4 38 0.1%
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Appendix I Nested hypothesis tests with LQCD inputs

Table I.4: Fitted parameters and their correlations using the optimal BGL expansion determined with
FNAL/MILC constraints on ℎ𝐴1

(𝑤), 𝑅1 (𝑤), and 𝑅2 (𝑤).

Value Correlation
|𝑉𝑐𝑏 | × 103 39.7 ± 1.1 1.00 −0.16 0.03 −0.11 −0.61 −0.16 0.11
𝑎0 × 103 28.1 ± 1.0 −0.16 1.00 −0.10 −0.19 0.17 0.12 −0.03
𝑎1 × 103 −44.2 ± 65.8 0.03 −0.10 1.00 −0.85 −0.04 −0.08 0.11
𝑎2 −5.1 ± 2.4 −0.11 −0.19 −0.85 1.00 0.11 0.12 −0.12

𝑏0 × 103 13.3 ± 0.2 −0.61 0.17 −0.04 0.11 1.00 0.10 −0.12
𝑐1 × 103 −2.7 ± 1.3 −0.16 0.12 −0.08 0.12 0.10 1.00 −0.92
𝑐2 × 103 50.8 ± 27.7 0.11 −0.03 0.11 −0.12 −0.12 −0.92 1.00
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Figure I.1: Comparison of the ℎ𝐴1
(𝑤), 𝑅1 (𝑤) and 𝑅2 (𝑤) spectra with the parameters determined in the

nested hypothesis tests when FNAL/MILC lattice predictions are taken into account.
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last 5 cos \𝑉 bins of the �̄�0 → 𝐷∗+`− ā` decay. . . . . . . . . . . . . . . . . . 127

E.16 Post-fit plots of cos \𝐵𝑌 (first 2 rows) and Δ𝑀 (last 2 rows) distributions for the
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bins of kinematic variables. The normalized partial decay rate in the last bin of
each projection is excluded in the |𝑉𝑐𝑏 | determination to subtract the redundant
degrees of freedom. The full (statistical and systematic) uncertainties are provided.144

H.2 Results of the determination of the BGL expansion coefficients and their correla-
tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

H.3 Results of the determination of the CLN parameters, |𝑉𝑐𝑏 | and their correlations. 148
H.4 Values of BGL form factors and |𝑉𝑐𝑏 | resulting from a fit that includes nonzero

recoil lattice information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
H.5 Values of CLN form factors and |𝑉𝑐𝑏 | resulting from a fit that includes nonzero

recoil lattice information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

I.1 Summary of the nested hypothesis test when FNAL/MILC predictions on ℎ𝐴1
(𝑤)

are taken into account. The chosen expansion is highlighted in a gray background. 151
I.2 Fitted parameters and their correlations using the optimal BGL expansion deter-

mined with FNAL/MILC constraints on ℎ𝐴1
(𝑤). . . . . . . . . . . . . . . . . 152

I.3 Summary of the nested hypothesis test when FNAL/MILC predictions on ℎ𝐴1
(𝑤),

𝑅1(𝑤), and 𝑅2(𝑤) are taken into account. The chosen expansion is highlighted
in a gray background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

I.4 Fitted parameters and their correlations using the optimal BGL expansion deter-
mined with FNAL/MILC constraints on ℎ𝐴1

(𝑤), 𝑅1(𝑤), and 𝑅2(𝑤). . . . . . 154

171


	1 Introduction
	1.1 Elementary particles in the Standard Model
	1.2 Interactions in the Standard Model
	1.2.1 Electromagnetic interaction
	1.2.2 Electroweak unification
	1.2.3 Strong interaction

	1.3 Open questions in particle physics
	1.4 Anomalies related to siunitxunit-deprecatedࡡ爀戀愀爀戀愀爀䈀　䐀⨀⬡ጀⴀ猀椀甀渀椀琀砀甀渀椀琀ⴀ搀攀瀀爀攀挀愀琀攀搈慲barbarνℓ decays
	1.4.1 Tension of |Vcb| value between exclusive and inclusive determinations
	1.4.2 Possible violation of lepton flavor universality


	2 Theory of siunitxunit-deprecatedࡡ爀戀愀爀戀愀爀䈀　䐀⨀⬡ጀⴀ猀椀甀渀椀琀砀甀渀椀琀ⴀ搀攀瀀爀攀挀愀琀攀搈慲barbarνℓ decays
	2.1 Form factors in siunitxunit-deprecatedࡡ爀戀愀爀戀愀爀䈀　䐀⨀⬡ጀⴀ猀椀甀渀椀琀砀甀渀椀琀ⴀ搀攀瀀爀攀挀愀琀攀搈慲barbarνℓ decays
	2.2 Heavy quark effective theory
	2.3 Parameterization of the form factors and their ratios
	2.3.1 CLN parameterization
	2.3.2 BGL parameterization

	2.4 Fully differential decay rate

	3 Belle II experiment
	3.1 SuperKEKB collider
	3.2 Belle II detector
	3.2.1 Pixel detector
	3.2.2 Silicon vertex detector
	3.2.3 Central drift chamber
	3.2.4 Time-of-propagation detector
	3.2.5 Aerogel ring imaging Cherenkov detector
	3.2.6 Electromagnetic calorimeter
	3.2.7 KL and µ Detector

	3.3 Reconstruction and identification of final-state particles
	3.3.1 Reconstruction of charged particles
	3.3.2 Identification of charged particles
	3.3.3 Reconstruction of neutral particles

	3.4 Collision data
	3.5 Simulated samples

	4 Event reconstruction, selection, and correction
	4.1 Event reconstruction
	4.2 Event selection
	4.3 Corrections for simulated samples
	4.3.1 Lepton ID efficiency and fake rate
	4.3.2 Slow pion reconstruction efficiency
	4.3.3 Background shape correction

	4.4 Comparison of collision data and simulated samples

	5 Reconstruction of kinematic variables
	5.1 Reconstruction using B angular distribution
	5.2 Reconstruction utilizing rest of event
	5.3 Combination of two methods
	5.4 Performance of three methods

	6 Measurement of partial decay rates
	6.1 Signal extraction
	6.2 Unfolding
	6.2.1 Optimization of parameter k in SVD

	6.3 Determination of partial decay rates
	6.4 Statistical correlations

	7 Systematic uncertainties
	7.1 Background subtraction
	7.2 Size of simulated samples
	7.3 Mid to high momentum tracking efficiency
	7.4 Slow pion tracking efficiency
	7.5 Lepton ID efficiency and fake rate
	7.6 Number of B0 in the data set
	7.7 External inputs
	7.8 Dependence of signal model

	8 Determination of form factors and |Vcb|
	8.1 Fit setup
	8.2 Results of BGL parametrization
	8.2.1 Truncation of BGL expansion
	8.2.2 Fit result

	8.3 Results of CLN parametrization
	8.4 Sensitivity to FNAL/MILC lattice results at nonzero recoil

	9 Lepton flavour universality tests
	9.1 Ratio of branching fractions
	9.2 Angular asymmetry
	9.3 Longitudinal D*+ polarization

	10 Summary and outlook
	A Validation of simulated continuum events
	B Slow pion tracking efficiency
	C Migration matrices
	D Robustness of signal extraction
	D.1 Linearity check
	D.2 Toy study

	E Post-fit plots of θBY and ΔM
	F Validation of unfolding
	G Examination of D’Agostini type bias
	H Results with matrix inversion unfolding
	I Nested hypothesis tests with LQCD inputs
	I.1 Test with LQCD constraints on hA1
	I.2 Test with LQCD constraints on hA1, R1, and R2

	Bibliography
	List of Figures
	List of Tables

