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Abstract

Learning on graphs, particularly graph classification, requires rich graph representations. A common
paradigm to obtain these is by extracting sets of substructures and representing graphs by such sets.
The obtained graph representations then enable the application of standard machine learning ap-
proaches like support vector machines. Traditionally, graph substructures refer to subgraph patterns
which are embedded by subgraph isomorphisms. Identifying subgraph patterns is however compu-
tationally infeasible due to the NP-completeness of deciding subgraph isomorphism even when the
patterns are restricted to trees. A relaxation of the problem is to consider graph homomorphisms as
the pattern matching operator instead, which can in fact be computed in polynomial time for tree
patterns. However, graph homomorphisms generally result in less suitable graph representations for
classification tasks. A key observation, which has been largely disregarded in the machine learning
community, is that subgraph isomorphisms can be regarded as constrained homomorphisms. In this
dissertation, we utilize this unifying view of these two pattern embedding operators by considering
tractable instances of constrained homomorphisms on tree patterns and design three powerful and
efficiently computable graph kernels.

To bridge the gap between graph homomorphisms and subgraph isomorphisms, we first introduce
the notion of partially injective homomorphisms which require injectivity only for subsets of the pat-
terns’ vertex pairs. Utilizing positive complexity results on deciding homomorphisms from bounded
treewidth graphs, we present an algorithm mining frequent trees w.r.t. partially injective homomor-
phisms in incremental polynomial time. We design a kernel function which measures graph similarity
in terms of such mutually occurring patterns and experimentally demonstrate that by bridging the gap
between graph homomorphism and subgraph isomorphism, our approach offers an attractive trade-off
between efficiency and predictive power.

Subsequently, we turn our attention to the popular Weisfeiler-Lehman method. This label prop-
agation algorithm implicitly constructs tree patterns for which the embedding operator is given by
locally bijective homomorphisms, another kind of constrained homomorphisms. While such patterns
can be very efficiently computed and yield expressive graph representations, comparing graphs in
terms of mutually occurring Weisfeiler-Lehman patterns is an often insufficient similarity measure.
We propose two approaches to overcome this drawback.

Utilizing the concept of graph filtrations, we introduce a graph kernel which compares distributions
of Weisfeiler-Lehman patterns over multiple graph resolutions. This approach offers a fine-grained
graph similarity by comparing existence intervals of patterns, instead of their cardinalities. We show
that this kernel is powerful in terms of distinguishing non-isomorphic graphs and even gives rise to
complete graph kernels in certain scenarios. Moreover, the kernel can be generalized to arbitrary
graph features, enabling an application beyond Weisfeiler-Lehman patterns. We empirically validate
our theoretical findings on the expressive power of our kernel and provide experiments on real-world
benchmark datasets which show a favorable performance of our approach compared to state-of-the-art
graph kernels.

Finally, we propose a graph kernel, which compares graphs using a fine-grained similarity measure
on Weisfeiler-Lehman patterns, effectively replacing the traditionally considered similarity defined by
equality. This is achieved by a specifically designed tree edit distance which provides a semantically
adequate and efficiently computable comparison on Weisfeiler-Lehman tree patterns. The key idea
is to cluster similar patterns w.r.t. this distance measure and define a graph kernel that treats two
patterns as equivalent if they belong to the same cluster. In an experimental section, we systematically
investigate this kernel’s predictive performance and show that it significantly outperforms state-of-
the-art graph kernels on several graph benchmark datasets beyond the typically considered molecular
graphs.
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1

INTRODUCTION

Graphs are one of the most flexible data representation languages in computer science. They
model sets of objects, referred to as nodes, and pairwise relationships between them, called
edges. Their ability to express complex dependencies between objects makes them a highly
flexible data type. In fact, due to their high representational power, graphs are capable
of modeling a majority of common data. For instance, one kind of data that is typically
represented as graphs is molecular compounds, in which atoms correspond to nodes and
chemical bonds to edges. Another example are social interaction networks, which are usually
modeled as graphs consisting of sets of individuals (nodes) and links (edges) between them,
representing, e.g., friendships.

However, the broad applicability of graphs is both a blessing and a curse. While they
provide a high representational power, evaluations on this kind of data often suffer from
complexity problems. Tasks that are simple for less flexible data types, may become a
lot more difficult for graphs. In particular, this drawback associated with graphs directly
impacts the complexity of knowledge extraction. Whereas, for simpler data types, such as, for
example vectors, there exists an obvious correlation between substructures, graphs lack this
straightforward correspondence. This complexity issue severely complicates the comparison
of graphs, making standard machine learning methods harder to apply.

A common approach that enables machine learning on graphs, nonetheless, is by compar-
ing them based on some fixed sets of graph patterns. Typically, graphs are compared in terms
of their substructures. The concept of decomposing graphs into sets of patterns which are
subsequently compared as a means to define graph similarities is the core principle of graph
kernels. Graph kernels are powerful machine learning tools as they enable the application of,
e.g., support vector machines (Boser, Guyon, and Vapnik, 1992). In fact, they have long been
the dominating approach for graph classification tasks (Géartner, Flach, and Wrobel, 2003).
Even with the emergence of neural network approaches, the predictive capabilities of graph
kernel methods remain state-of-the-art. Existing graph kernels primarily differ in the type of
patterns. Such patterns generally correspond to fairly simple graph substructures like walks,
paths, cycles, trees, or small subgraphs. Most of these graph kernels then compute graph
similarities by simply comparing the numbers of co-occurring patterns (see Borgwardt et al.,
2020 for a survey on graph kernels).
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A specifically interesting type of patterns is trees. Trees form a particularly expressive
pattern language in a sense that they serve as powerful graph invariants. That is, repre-
senting graphs as finite (multi-)sets of tree patterns has been shown to suffice for deciding
graph isomorphism in almost all cases (Babai, Erdos, and Selkow, 1980). At the same time,
tree patterns often lead to excellent predictive performances when utilized for graph classi-
fication purposes (Welke, Horvath, and Wrobel, 2017). Finally, an aspect of trees that is of
particular importance to this thesis is the property that many problems which are generally
NP-complete, can in fact be solved efficiently for this kind of graph patterns.

A substantial step of the substructure-based comparison of graphs is the identification
of appropriate pattern sets. The question as to whether a graph pattern is contained in
a target graph is decided by the pattern embedding operator. A very natural choice for the
pattern embedding operator is subgraph isomorphism, which indicates whether or not a target
graph contains a subgraph that is equivalent (i.e. isomorphic) to a graph pattern. Subgraph
isomorphism is the most common definition of embedding operators, such as, for example, in
the literature of classical pattern mining (Jiang, Coenen, and Zito, 2013). However, deciding
subgraph isomorphism is generally an NP-complete problem, which severely limits this type
of pattern embedding operators in practical applications. In fact, the problem remains NP-
complete for simple pattern classes like trees and even paths.

An alternative pattern embedding operator is that of graph homomorphism. Compared to
subgraph isomorphism, it is less restrictive in the sense that it does not require injectivity. A
depiction of the conceptual differences between these two embedding operators is illustrated
in Fig. 1.1. While homomorphisms are commonly used as the standard subsumption operator
for more general finite relational structures (Horvath and Turan, 2001), they are less common
in the context of graphs. Whereas, the problem of deciding graph homomorphism is also NP-
complete in general, its complexity behaves differently from that of subgraph isomorphism
on special graph classes. In particular, homomorphisms can be decided in polynomial time
for a broad range of pattern classes for which subgraph isomorphism remains NP-complete.
For instance, whereas the homomorphism problem from trees into arbitrary target graphs
can be efficiently decided, this is not the case for subgraph isomorphism, even when tress are
restricted to paths. However, using graph homomorphism as the pattern matching operator
for trees suffers from several drawbacks. Patterns generated w.r.t. graph homomorphism
often result in a worse predictive performance in graph classification tasks when compared to
using subgraph isomorphism. Additionally, the set of subgraph patterns embeddable through
homomorphism typically contains redundancies and is generally of unbounded cardinality,
which ultimately complicates the extraction of a suitable set of meaningful patterns.

Despite their drawbacks, subgraph isomorphism and to a lesser degree graph homomor-
phism are the most prevalent pattern embedding operators. In fact, the bulk of previous
research on graph pattern mining is concerned with subgraph isomorphism (Jiang, Coenen,
and Zito, 2013) and occasionally homomorphism (Dries and Nijssen, 2012). Similarly, many
of the most prominent graph kernels are based on patterns embedded by either graph ho-
momorphism, as is the case with walks (Gértner, Flach, and Wrobel, 2003), or subgraph
isomorphism such as paths (Borgwardt and Kriegel, 2005), cycles (Horvath, Gértner, and
Wrobel, 2004) and small subgraphs (Shervashidze et al., 2009). However, a key observation
connecting both embedding operators has largely been disregarded in this research field: In



(a) Subgraph isomorphism. (b) Graph homomorphism. (c) Partially injective homo-
morphism.

Figure 1.1: Conceptual visualization of three pattern embeddings from graph H
into G, which underlie different injectivity constraints. Dashed edges in H indicate
that two vertices need to be mapped onto different vertices in G. Fig. (a) requires
all vertices to be mapped distinctly (subgraph isomorphism), Fig. (b) has no further
injectivity constrains (homomorphism), and Fig. (c) requires only a subset of vertex
pairs to be mapped distinctly (partially injective homomorphism).

fact, subgraph isomorphisms can be regarded as constrained homomorphisms. Indeed, they
are injective homomorphisms.

Despite its algebraic simplicity, this connection between graph homomorphisms and sub-
graph isomorphisms has so far been ignored in the machine learning community. In this thesis,
we utilize this key observation by studying the gap between these two standard embedding
operators and other forms of constrained homomorphisms from the point of view of designing
new graph kernels. In fact, as we show, one can obtain new, semantically meaningful graph
kernels that can be calculated efficiently by considering constrained homomorphisms, i.e.,
homomorphisms which underlie additional local or global mapping restrictions.

To demonstrate the usefulness of this unified view of the pattern embedding operators
used explicitly or implicitly in graph kernels, in this thesis we restrict the pattern language
to trees. This choice is motivated by the above mentioned properties such as their high
expressivity and suitability for classification tasks. Considering the fact that homomorphisms
from trees can efficiently be decided, while subgraph isomorphisms generally cannot, this
choice of pattern class is of particular interest. In this thesis, we demonstrate that constrained
homomorphisms provide an attractive trade-off between the low time complexity of deciding
graph homomorphisms and the good predictive performance achieved by patterns identified
through subgraph isomorphisms. We focus on two efficiently decidable classes of constrained
homomorphisms for tree patterns, by noting that our approach is not limited to the scenarios
below.

1. Partially injective homomorphisms. In our first contribution, we bridge the gap be-
tween graph homomorphisms and subgraph isomorphisms by introducing the concept
of partially injective homomorphisms, which require injectivity only for a subset of the
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Figure 1.2: A rooted tree T', which encodes a Weisfeiler-Lehman label, is embedded
into a graph G by a locally bijective homomorphism ¢. That is, ¢ is a homomor-
phism from T into G s.t. for all non-leaves v in T, there exists a bijection between
the children of v in 7" and the neighbors of ¢(v) in G.

pattern’s vertices. This concept is visualized in Fig. 1.1(c). Using the class of bounded
treewidth graphs (Robertson and Seymour, 1986), we define tree pattern embedding
operators which guarantee a mawximal degree of injectivity (w.r.t. bounded treewidth),
while remaining polynomially decidable. We propose an efficient enumeration algo-
rithm for mining this kind of patterns and use them effectively for graph classification
tasks.

2. Locally bijective homomorphisms. This thesis puts a particular focus on the popular
Weisfeiler-Lehman label propagation scheme (Weisfeiler and Lehman, 1968). While
not commonly perceived as such, the Weisfeiler-Lehman method implicitly employs a
pattern embedding operator that corresponds to locally bijective homomorphism, a par-
ticular kind of constrained homomorphisms. The Weisfeiler-Lehman method produces
vertex labels, each encoding a rooted tree. A graph contains a certain label if the corre-
sponding tree can be embedded into that graph by a locally bijective homomorphism.
In simple terms, a homomorphism is locally bijective if its restriction to the neighbor-
hood of every node is bijective. An example of such a mapping is visualized in Fig.
1.2. Motivated by the excellent predictive performance of this kind of pattern for graph
classification purposes (Shervashidze et al., 2011; Kriege, Giscard, and Wilson, 2016;
Togninalli et al., 2019), we introduce two novel kernel methods comparing graphs based
on Weisfeiler-Lehman patterns.

a. Our first approach enriches the conventional R-convolution concept of the ordinary
Weisfeiler-Lehman subtree kernel (Shervashidze et al., 2011) by considering graph
filtrations: Using meaningful orders on the set of edges, which allow to construct
sequences of nested graphs, we consider a graph at multiple granularities. This
perception provides access to Weisfeiler-Lehman patterns on different levels of reso-
lution. Rather than to simply compare frequencies of patterns in graphs, it allows
for their comparison in terms of when and for how long they exist in such a graph
sequence. Using this insight, we propose a graph kernel that incorporates these
existence intervals of patterns and yields a powerful kernel.



1.1. Contributions

b. The ordinary Weisfeiler-Lehman subtree kernel (Shervashidze et al., 2011) defines
graphs in terms of mutually occurring Weisfeiler-Lehman patterns. This binary val-
ued comparison is, however, arguably too rigid for defining suitable graph kernels.
To overcome this limitation, we propose a generalization of this Weisfeiler-Lehman
subtree kernel which takes into account a more natural and finer grade of similarity
between Weisfeiler-Lehman patterns than equality (i.e., isomorphism). This simi-
larity measure compares the rooted trees, which correspond to Weisfeiler-Lehman
patterns, using a specifically designed and semantically meaningful variant of tree
edit distances.

1.1 Contributions

In this section, we summarize the main contributions of this dissertation as outlined in 1, 2a,
and 2b above.

1.1.1 Graph Kernels Based on Partially Injective Homomorphisms

As one specific notion of constrained homomorphisms, we introduce the concept of partially
injective homomorphisms. Partially injective homomorphisms provide a generalized view of
graph homomorphisms as well as subgraph isomorphisms and bridge the gap between the
two in order to allow for more flexible pattern embedding operators. Informally, a partially
injective homomorphism from a pattern graph H into a target graph G is a homomorphism
which additionally respects a set of injectivity constraints C. Such constraints correspond to
pairs of nodes in H which are required to be mapped onto distinct nodes in G. In other words,
a partially injective homomorphism from H to G respecting constraints C' is a homomorphism
for which the vertices u and v for every pair {u,v} € C are mapped onto distinct vertices in
G. In Fig. 1.1, such constraints have been explicitly visualized in form of dashed edges. The
special cases of ordinary graph homomorphism and subgraph isomorphism are obtained by
requiring no constrains (i.e., C' = ¢J) and constraints between all unconnected vertex pairs
in H, respectively.

When considering trees as the pattern language, a key observation is that the concept of
partially injective homomorphisms not only bridges the gap between graph homomorphisms
and subgraph isomorphisms, but simultaneously forms a transition of decision problems in P
to a generally NP-complete problems. Given this perspective, we introduce a class of pattern
embedding operators that provide a maximal degree of partial injectivity while remaining
efficiently decidable. Thus, such embedding operators provide a trade-off between the suit-
ability of subgraph isomorphism for graph classification tasks and the complexity of deciding
homomorphisms.

The complexity of deciding partially injective homomorphisms is subject to not only the
pattern tree H but also the set of injectivity constraints C. A key observation is that deciding
partially injective homomorphism from a pattern H respecting constraints C' can be reduced
to deciding ordinary homomorphism from the edge extended graph He = (V(H), E(H) v C),
i.e., the graph which results from extending H by edges corresponding to vertex pairs in C.
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Thus, the complexity of deciding partially injective homomorphism is subject to both, the
pattern H and the constraint set C'.

While there exist several graph classes from which ordinary homomorphisms can be effi-
ciently decided, we focus on the class of bounded treewidth graphs (Robertson and Seymour,
1986). That is, we consider tree patterns H together with constraints C such that the edge
extended graphs H¢o have treewidth at most k for some constant k. In such cases, the cor-
responding partially injective homomorphism problems can be decided in polynomial time
(Dalmau, Kolaitis, and Vardi, 2002). The choice of bounded treewidth graphs is optimal in
the sense that homomorphisms can be decided in polynomial time if and only if the pattern
graph has bounded treewidth (Grohe, 2007).1

This kind of embedding operators allows to efficiently identify subtree patterns in graphs.
However, instead of considering the set of all subtrees, a common approach is to compare
graphs based on the set of frequently occurring patterns. These so-called frequent patterns
have been shown on many occasions to serve as powerful graph representations leading to
remarkable predictive performances.

In order to identify the set of frequent patterns, we propose a mining algorithm that enu-
merates the frequent trees w.r.t. partially injective homomorphism. As opposed to ordinary
homomorphism or subgraph isomorphism, partially injective homomorphisms are specific to
the pattern at hand. Since the problem of whether a tree pattern H can be embedded into
a target graph G directly depends on the set of constraints C, the output of the mining
algorithm consists of pairs (H,C).

Following the intention of inducing a mazimal degree of injectivity while guaranteeing
the feasibility of the embedding operator, we consider edge maximal graphs of bounded
treewidth, also known as k-trees. An interesting aspect about k-trees is that they allow for a
very natural algorithmic graph refinement operator, i.e, a method that traverses the pattern
space by gradually constructing increasingly larger pattern graphs. Using this refinement
method, we show that frequent patterns can be efficiently enumerated.

In an empirical evaluation, we analyze the predictive performance of tree patterns mined
w.r.t. partially injective homomorphism by using a simple kernel function that computes
graph similarity in terms of mutually occurring frequent patterns. Furthermore, we compare
the runtimes of the mining algorithm to ordinary enumeration methods based on subgraph
isomorphism. Our empirical results clearly show that the predictive performance obtained
by our approach is very close to that using ordinary frequent subgraphs as the pattern
language. These results could already be achieved for small treewidth values, indicating that
our approach provides an attractive trade-off between complexity and predictive performance.

1.1.2 Weisfeiler-Lehman Filtration Kernels

While the Weisfeiler-Lehman subtree patterns have proven to be excellent features for graph
prediction tasks on many occasions, a drawback of this kind of patterns is their “speci-
ficity”. More precisely, such patterns encode k-hop node neighborhoods which are often
unique and thus unsuitable for graph representations. This specificity problem is attributed
to the Weisfeiler-Lehman method which implicitly utilizes locally bijective homomorphisms as

! Assuming FPT + W([1] which is widely believed to be true.
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the pattern embedding operator. As visualized in Fig. 1.2, such a homomorphism ¢ further-
more requires that for every vertex v in the pattern tree T', there exists a bijection between
the children of v and the set of neighbors of ¢(v) in the target graph G. That is, T is
embeddable into G if and only if for every v in 7', the children of v and the neighbors of
o(v) perfectly match. In order to relax this rigid notion of pattern matching, we propose
considering subsets of edges in the target graph which are selected according to edge weights.

Using the above concept, the key idea is to regard and compare graphs at multiple levels
of resolution. This is realized using the notion of graph filtrations, which define sequences
of nested subgraphs that differ in the sets of edges. Given a graph G, such a sequence has
the form G1,...,G; = G and can be viewed as incremental refinements that construct the
graph G by gradually adding sets of edges. Clearly, with changing sets of edges, the node
neighborhoods and hence the sets of Weisfeiler-Lehman subtree patterns change as well.
Consequently, a pattern occurring at some point in the sequence may disappear at a later
moment. We track such existence intervals of Weisfeiler-Lehman subtree patterns, which
ultimately allows for a comparison not only in terms of pattern frequency, but also by when
and for how long they exist.

This comparison of pattern occurrence distributions is realized using the Wasserstein
distance, for which we show that it yields proper kernel functions on this kind of information.
Using this result, we introduce the Weisfeiler-Lehman filtration kernel, which defines graph
similarities by comparing such pattern occurrence distributions. Concerning the complexity,
we show that our kernel increases the complexity of the ordinary Weisfeiler-Lehman subtree
kernel (Shervashidze et al., 2011) only by a linear factor.

The approach combines several profitable novelties. In particular, it allows to handle
continuous edge attributes. Furthermore, it enables the identification of partial Weisfeiler-
Lehman subtree patterns, i.e., such patterns which appear only in filtration graphs, but
not in the original graph itself. Utilizing these advantages, we show that the Weisfeiler-
Lehman filtration kernel is a complete kernel for certain filtrations. That is, for suitable
choices of filtrations, the kernel is capable of distinguishing all pairs on non-isomorphic graphs.
This property is commonly regarded as one of the main ingredients of ideal graph similarity
functions. We discuss that this result has implications beyond kernel methods such as graph
neural networks.

We note that this definition of graph similarity is not limited to the use of Weisfeiler-
Lehman patterns but in fact works with any type of graph feature that yields finite graph
multiset representations. We therefore generalize the above approach and formally introduce
a family of graph kernels, called graph filtration kernels. For this class of kernels, we show
that they generalize ordinary dot products between graph multiset representations.

In an experimental evaluation, we empirically validate our theoretical findings on the
expressive power of the Weisfeiler-Lehman filtration kernel. By utilizing suitable filtration
functions, we demonstrate that our approach can in fact distinguish more non-isomorphic
graphs than the ordinary Weisfeiler-Lehman subtree kernel. Furthermore, we evaluate the
predictive performance obtained by the Weisfeiler-Lehman filtration kernel and show that it
outperforms other state-of-the-art graph kernels on several real-world benchmark datasets.
Finally, we provide runtimes which clearly support our claim on the efficiency of our method.
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1.1.3 Generalized Weisfeiler-Lehman Kernels

The Weisfeiler-Lehman subtree patterns have most famously been employed in the Weisfeiler-
Lehman subtree kernel (Shervashidze et al., 2011), which ranks among the best performing
graph kernels on most benchmark datasets (Kriege, Johansson, and Morris, 2020). Implicitly,
this kernel defines graph similarity in terms of pairwise comparisons of subtree patterns by
equality. In other words, the (dis-)similarity between two subtree patterns is restricted to
whether they are isomorphic or not, and is hence, unable to quantify more fine-grained
similarities between them. Thus, the limitation of the Weisfeiler-Lehman subtree kernel is
that two subtree patterns which are structurally completely different are treated identically
to two subtree patterns which differ only slightly.

Motivated by this observation, we propose a generalization of the Weisfeiler-Lehman sub-
tree kernel by relaxing the above outlined strict comparison of tree patterns. To achieve this,
we propose a natural (dis-)similarity measure between Weisfeiler-Lehman subtree patterns
that allows to compare them on a much finer scale. This measure is based on a variant
of the tree edit distance, which provides a semantically adequate comparison for the spe-
cific case of Weisfeiler-Lehman subtree patterns. More precisely, we designed a tree edit
distance, which specifically respects essential properties of this kind of patterns w.r.t. the
implicitly induced pattern embedding operator defined by locally bijective homomorphisms.
This distance closely reflects the dissimilarity of node neighborhoods that are represented by
Weisfeiler-Lehman subtrees. We show, that in contrast to more general definitions of tree
edit distances, this kind of tree edit distance is in fact efficiently computable.

Using this result, we introduce a novel graph kernel, which generalizes the Weisfeiler-
Lehman subtree kernel (Shervashidze et al., 2011) by considering the above fine-grained com-
parison between subtree patterns. This is achieved by identifying groups of similar Weisfeiler-
Lehman patterns and clustering them such that elements within the same cluster are treated
as equal. That is, we generalize the ordinary Weisfeiler-Lehman subtree kernel by regard-
ing two subtree patterns as equivalent if they belong to the same cluster, i.e., have a small
distance to each other. We show that the partitioning of subtree patterns can be efficiently
performed using the concept of Wasserstein k-means clustering (Irpino, Verde, and Carvalho,
2014). This choice is motivated by our result that our adaptation of the tree edit distance
between subtree patterns can in fact be reformulated in terms of the Wasserstein distance.

In an extensive empirical evaluation, we show that our generalization of the Weisfeiler-
Lehman subtree kernel significantly outperforms state-of-the-art graph kernels, including the
ordinary Weisfeiler-Lehman subtree kernel, on graph datasets beyond the typically considered
molecular graphs. The results clearly indicate that although our more general approach does
not improve the predictive performance on small molecular graphs, which are sparse and
structurally simple, it considerably outperforms state-of-the-art graph kernels on datasets
containing dense and structurally diverse graphs.

1.2 Outline

The remainder of this thesis is structured as follows. In Chapter 2, we recall all necessary
notions and notations. We cover several basic definitions and concepts as well as algorithms
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and results that are relevant to this thesis. In Chapter 3, we provide background information
on a range of related topics and put or contributions into context. The three subsequent
chapters are dedicated to the main contributions of this dissertation. In particular, Chap-
ter 4 introduces partially injective homomorphisms and discusses cases for which they can
be efficiently decided. It provides an efficient pattern mining algorithm, enabling graph
kernels that compare graphs based on such mutual patterns. In Chapter 5, we utilize the
concept of graph filtrations in order to introduce graph kernels that compare distributions of
Weisfeiler-Lehman patterns over sequences of graphs. We cover the kernel’s expressive power
and demonstrate the practical use of this graph similarity measure. A different approach
comparing graphs based on Weisfeiler-Lehman patterns is presented in Chapter 6. In it, we
introduce a semantically meaningful similarity measure between this kind of patterns and
propose a corresponding clustering method, leading to graph kernels of remarkable predictive
performance. Finally, in Chapter 7, we conclude the dissertation by summarizing the main
contributions and outlining potential future research questions.

1.3 Previously Published Work

The contents of this thesis are based on joint work with Tamés Horvath, Pascal Welke and
Stefan Wrobel. They have been published in the following conferences and journals.

- Till Hendrik Schulz, Tamas Horvéth, Pascal Welke, and Stefan Wrobel (2018). “Mining
Tree Patterns with Partially Injective Homomorphisms”. In: European Conference on
Machine Learning and Knowledge Discovery in Databases (ECML PKDD), pp. 585—
601. por: 10.1007/978-3-030-10928-8_35

- Till Hendrik Schulz, Tamds Horvath, Pascal Welke, and Stefan Wrobel (2022). “A
generalized Weisfeiler-Lehman graph kernel”. In: Machine Learning 111.7, pp. 2601—
2629. DOI: 10.1007/s10994-022-06131-w

- Till Hendrik Schulz, Pascal Welke, and Stefan Wrobel (2022). “Graph Filtration Ker-
nels”. In: AAAI Conference on Artificial Intelligence (AAAI), pp. 8196-8203. DOI:
10.1609/2aai.v3618.20793


https://doi.org/10.1007/978-3-030-10928-8_35
https://doi.org/10.1007/s10994-022-06131-w
https://doi.org/10.1609/aaai.v36i8.20793
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2

PRELIMINARIES

In this chapter, we collect all necessary notions and establish the notation. We provide basic
definitions on sets in Sect. 2.1 and discuss orderings and refinement operators. Subsequently,
Sect. 2.2 covers all concepts and notations on graphs. Sect. 2.3 is concerned with the two
central graph embedding operators: graph homomorphism and subgraph isomorphism. We
proceed by introducing the class of bounded treewidth graphs in Sect. 2.4 and recall a polyno-
mial time algorithm for deciding graph homomorphisms from this kind of graphs. We quickly
cover the concept of frequent pattern mining as well as a corresponding complexity notion in
Sect. 2.5, and discuss graph edit distances in Sect. 2.6. Subsequently, Sect. 2.7 covers one of
the central notions of this dissertation, the Weisfeiler-Lehman vertex relabeling method. We
proceed by recalling kernel functions and principles of support vector machines in Sect. 2.8,
before discussing graph kernels in Sect. 2.9. Finally, we recap the Wasserstein distance in
Sect. 2.10, and provide a detailed description on the datasets considered in this dissertation
in Sect. 2.11. Readers that are familiar with the notions can skip the corresponding sections.

2.1 Sets

A set S is a collection of unique elements. Sets are generalized by multisets, which may
contain multiple occurrences of elements and are denoted using double curly braces, e.g.,
S = {{a,a,b,c}}. We denote the cardinality of S by |S|, and write ¢J for the empty set. A
subset X of S is denoted by X < S and [S]¥ = {X < S : |X| = k}. The power set of S
is the set containing all subsets of S and is denoted by 2°. Analogously, N° denotes the
set of all multisets over S. We write N for the set of natural numbers, and R for the set of
real numbers. The set {1,2,...,n} is denoted by [n]. An n-dimensional vector = € R™ is an
ordered set of n real numbers x1,...,x,. The / norm of x € R™ with integer p > 0 is defined
by [lall, = (S5 Jel?) 7.

We sometimes define (partial) orders on elements of a set S. For a more detailed descrip-
tion on the following definitions, we refer to, e.g., Davey and Priestley (2002).

Definition 2.1 (Preordered Set). A preordered set is a pair (S, <), where S is a set and
< is a binary relation on S such that for all x,y,z€ S:

11
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(i) x < =z, (reflexivity)
(i1) if t <y andy < z then z < z. (transitivity)
A special case of preorders are partial orders which additionally require antisymmetry.

Definition 2.2 (Partially Ordered Set). A preordered set (S,<) is a partially ordered
set, or just poset, if it is also antisymmetric, i.e., if for all x,y,z€ S, x <y and y < x imply
x=y.

Some applications require traversing through a given partially ordered set (S,<). This
can be achieved by refinement operators.

Definition 2.3 (Refinement Operator). Given a preordered set (S,<) and x,y,z € S, the
function p: S — 25 is called a refinement operator if for allz € S : p(z) S {ye S:z < y}.
It is called

locally finite if for all x € S : p(x) is finite and computable,

complete if for all x < y there is a chain x =rg,...,rp =y with r; € p(ri—1),1 € [k],
proper if for allx € S : p(x) € {ye S:z < y}.

We call p ideal if it is locally finite, complete and proper.

For an in-depth discussion on refinement operators, we refer to, e.g., Laag and Nienhuys-
Cheng (1998).

2.2 Graphs

In the following, we collect the necessary notions from graph theory (see, e.g., Diestel, 2012)
and fix the notations.

Directed and Undirected Graphs. A graph is a pair G = (V, E) consisting of a set V'
of wvertices and a set E of edges. G is called a directed graph if its edges have associated
directions, i.e., E € V x V. Analogously, G is called undirected if E € {X < V : | X| = 2}.
For a graph G, we refer to its set of vertices as V(G) and to its set of edges as E(G). We
often denote an edge {u,v} € E(G) simply by uwv € E(G). A rooted graph is a graph with a
distinguished vertex r € V(G), called the root. We sometimes write r(G) for the root of G.
The class of all graphs is denoted by G and the set of all graphs with at most n vertices is
denoted by G,. Within this thesis, we exclusively consider simple graphs, i.e., graphs without
loops or multiple edges. Furthermore, if not explicitly stated otherwise, we assume graphs to
be undirected.

12
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Labeled, Attributed and Weighted Graphs. A labeled graph is a graph G equipped
with a labeling function ¢ : V(G) u E(G) — X assigning a label from ¥ to each vertex and
edge in G. We sometimes assume ¢ to be a global function over a set of graphs. A graph
is commonly called an attributed graph whenever the labeling function assigns real-valued
vectors to vertices and edges, i.e., if ¥ := R? for some d > 0. Similarly, a weighted graph is a
graph G equipped with a weight function w : E(G) — R assigning non-negative weights to
edges. For simplicity, we assume all graphs to be labeled by noting that labeled graphs can
easily be obtained from unlabeled ones by utilizing a trivial labeling function.

Neighborhoods and Degrees. For two vertices u,v of a graph G, u is called a neighbor
of v if there exists an edge {v,u} € E(G). The set of all neighbors of v is denoted by N (v)
and its cardinality is called the degree of v, denoted d(v). The k-hop neighborhood of v is the
set of vertices in G which have shortest-path distance at most k from v in G.

Subgraphs. A graph G’ = (V', F') is called a subgraph of a graph G = (V,E), if V' < V
and E' € E. If G’ is a subgraph of G, and G’ contains all edges uv € F with u,v € V', then
G’ is called an induced subgraph of G. Given a set S < V(G), the subgraph of G induced by
S contains all edges of G whose endpoints are in S and is denoted by G[S].

Walks, Paths, Cycles and Trees. A walk in a graph G is a sequence vg, v, ...,V Of
vertices such that {v;_1,v;} € E(G) for i € [k] and k is called the length of the walk. A path
is a graph consisting of a sequence of distinct nodes with consecutive nodes being connected
by an edge. Similarly, a cycle is a path such that the start and end points are furthermore
connected by an edge. G is called connected if there exists a path between all vertex pairs.
An acylcic graph, i.e., a graph which does not contain any cycles, is called a forest, while a
connected forest is called a tree. A tree T' = (V, E) has exactly |V| — 1 edges and its vertices
of degree 1 are referred to as leaves. For a rooted tree T' and v € V(T'), we denote the subtree
of T rooted in v by T'[v] and we write F'(v) for the set of all subtrees rooted in the children
of v.

Complete Graphs and Cliques. A graph G = (V| E) is called complete if all vertices in
G are pairwise adjacent, i.e., if u,v € V with u # v implies uv € E. A set S € V with n = |5]|
forms an n-clique in G if the induced subgraph G[S] is complete.

2.3 Graph Morphisms

Graph morphisms are mappings between two graphs that retain certain structural proper-
ties. They define relations on graphs which induce notions on equivalence and subsumption.
Graph morphisms are of particular interest in this dissertation, as they correspond to graph
embedding operators. In the following, we discuss the two most common graph morphisms:
graph homomorphisms and subgraph isomorphisms.

Definition 2.4 (Graph Homomorphism). A homomorphism from a graph G = (V, E, /)
into a graph G' = (V' E', V') is a function ¢ : V. — V' preserving all edges and labels, i.e.,

13
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(i) p(u)p(v) € E" for alluv e E,
(ii) L(v) = ' (p(v)) for allv eV, and
(117) L(uv) = '(p(u)p(v)) for all uv € E.
We say G is homomorphic to G’, denoted G <, G', if such a function exists.

Graph homomorphisms are closely related to the more general concept of relational ho-
momorphisms. This notion is commonly regarded as the standard subsumption operator
in inductive logic programming (Nienhuys-Cheng and Wolf, 1997). Graph homomorphisms
play a decisive role in graph theory (Hell and Nesetril, 2004). However, due to the lack
of injectivity, graph homomorphisms are largely disregarded as graph embedding operators.
Instead, subgraph isomorphisms are commonly considered the standard matching operators
on graphs.

Definition 2.5 (Subraph Isomorphism). For graphs G and G’, the mapping ¢ : V(G) —
V(G') is called a subgraph ismorphism if

(i) ¢ is a homomorphism, and
(ii) ¢ is injective.

If such a function exists, we say G is subgraph isomorphic to G’ and denote it by G < G'.

2.3.1 Graph Equivalence

Graph morphisms partition the set of all graphs G into equivalence classes. That is, two
graphs are considered equivalent w.r.t. a graph morphism type if there exist such morphisms
between the graphs in both directions. The most common notion of equivalence on graphs is
defined by graph isomorphism.

Definition 2.6 (Graph Isomorphism). A graph isomorphism from a graph G = (V, E, ()
into a graph G' = (V' E',l') is a bijection ¢ : V — V' preserving all edges and labels in both
directions, i.e.,

(i) weFE < pu)p()eE foraluveV,
(11) L(v) = ' (p(v)) for allveV, and
(iit) L(uv) = V' (p(u)p(v)) for all uv € E.
We say G is isomorphic to G’ if such a function exists, and write G = G'.

In other words, G = G’ if and only if G € G’ and G’ € G. We denote the set of graphs
modulo isomorphism by G/=. Analogously, graph homomorphism defines an equivalence
relation on G.

Definition 2.7 (Graph Homomorphism Equivalence). Two graphs G and G' are ho-
momorphism equivalent, denoted G =, G', if G <, G' and G’ <;, G.

Comparing the two equivalence relations, we find that = is in fact finer than =;,. That
is, the partition of G induced by = is a refinement of that induced by =y,.

14
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2.3.2 Orders on Graphs

Graph morphisms define orders on sets of graphs. As subgraph isomorphism is a reflexive,
transitive and antisymmetric relation, the following holds:

Proposition 2.1. The subgraph isomorphism relation < defines a partial order on G/=.

In the case of homomorphisms, it can be shown that <} is a reflexive and transitive
relation on G/=. However, <y, is not antisymmetric since G <y, G’ and G’ <, G do not imply
that G and G’ are isomorphic. The following proposition is immediate (Hell and Nesetril,
2004).

Proposition 2.2. The graph homomorphism relation <, defines a preorder on G/=.

However, the relation <, may be transformed into a partial order for other graph classes.
For instance, this can be achieved by identifying a unique representative for each class of
homomorphism equivalent graphs. This so called core is defined as the smallest graph of a
homomorphism equivalence class. More formally:

Definition 2.8 (Core). A graph G is called a core if there exists no homomorphism from
G into a proper subgaph of itself. We refer to the core c =5, G as the core of G.

Using that the core of a graph is unique modulo isomorphism, the following proposition
holds (Hell and Nesetril, 2004).

Proposition 2.3. The graph homomorphism relation <y defines a partial order on the set
of all non-isomorphic cores in G.

2.4 Bounded Treewidth Graphs

The treewidth (Robertson and Seymour, 1986) of a graph can intuitively be interpreted as
its tree-likeness. It is defined using the concept of tree-decompositions, which decompose a
graph G into a tree whose vertices correspond to specific induced subgraphs of G.

Definition 2.9 (Tree-Decomposition). A tree-decomposition of a graph G = (V, E) is a
tuple TD(G) = (T, X, r) where T = (I, F) is an unordered tree with root r and X = {B; :i €
1} is a family of subsets of V', called bags, such that:

(i) Uier Bi =V,
(ii) for every uv € E there is an i € I with {u,v} € B;, and

(i1i) for every v €V the set of nodes {ilv € B;} forms a subtree of T

The width of a tree-decomposition is defined by the largest cardinality over all bags minus
one, i.e., max;|B;| — 1.

An example of a tree-decomposition is given in Fig. 2.1(b). Clearly, the tree-decom-
position of a graph is not unique and the trivial tree-decomposition of a graph G consists of
a single bag containing all vertices of G. However, the most relevant tree-decompositions are
such which are minimal w.r.t. the width.
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Figure 2.1: Example of a graph G and its minimal width (nice) tree-decompositions.

Definition 2.10 (Treewidth). The treewidth of a graph G is the smallest width over all
tree-decompositions of G.

The problem of determining the treewidth for an arbitrary graph is, in general, NP-hard
(Arnborg, Corneil, and Proskurowski, 1987). However, for any constant k, there exists a linear
time algorithm capable of recognizing whether a graph has treewidth at most & (Bodlaender
and Kloks, 1996). Furthermore, given a graph G of treewidth (at most) k, the algorithm
outputs a tree-decomposition of width (at most) k in linear time.

A specifically interesting family of graphs are k-trees which are maximal graphs of treewidth
k, in a sense that no edge can be added without increasing the treewidth (Rose, 1974). k-trees
have a simple algorithmic description.

Definition 2.11 (k-Tree). For k € N, a k—tree is recursively defined as follows:
(i) A clique of k + 1 vertices is a k-tree, and

(ii) given a k-tree G with n vertices, a k-tree with n + 1 vertices is obtained from G by
adding a new vertex v to G and connecting v to all vertices of a k-clique of G.

2.4.1 Homomorphisms from Bounded Treewidth Graphs

Deciding whether a homomorphism from a graph H of bounded treewidth into an arbitrary
target graph GG exists can be done in polynomial time using a dynamic programming approach.
The general idea of this algorithm is to utilize the properties of tree-decompositions and
compute a set of partial mappings which are subsequently “stitched together” into a solution.
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For the sake of a simpler algorithmic description, we assume the tree-decomposition to
fulfill a number of further structural properties. Such tree-decompositions are referred to as
nice tree-decompositions. The following description is based on Diaz, Serna, and Thilikos
(2002).

Definition 2.12 (Nice Tree-Decomposition). A nice tree-decomposition of a graph G is
a rooted tree-decomposition TD(G) = (T, X, r) for which every node i in T has at most two
children such that:

(i) if i has exactly one child j, then either |B;\B;| =1 or |B;\B;| =1, and
(it) if i has two children j,1, then B; = Bj = By.

An example of a nice tree-decomposition can be found in Fig. 2.1(c). Finding a nice
tree-decomposition can be done without any significant overhead. In fact, given a tree-
decomposition of a graph G, a nice tree-decomposition can be constructed in time O (|V (G)|)
(Lemma 2.1 in Diaz, Serna, and Thilikos, 2002).

Nice tree-decompositions have the convenient property that each node belongs to one of
four different types. For a nice tree-decomposition (7, X,r), a node i € V(T') is called:

Start node if 7 is a leaf,

Introduce node if i has exactly one child j and |B;| = |B;| + 1,
Forget node if i has exactly one child j and |B;| = |B;| — 1,
Join node if ¢ has two children j, 1.

While, in this thesis, we are merely interested in deciding graph homomorphism from
graphs of bounded treewidth, in the following, we outline an algorithm for counting the
number of homomorphisms, by noting that the algorithm for both problems is nearly identical.
The algorithm utilizes a dynamic programming approach and iterates over the vertices in the
nice tree-decomposition in a bottom-up manner. Roughly speaking, the idea is to compute
homomorphisms from subgraphs induced by bags which align with the homomorphisms of
the bags underneath it.

Alg. 1 describes the procedure for counting homomorphisms from graphs of bounded
treewidth. The input is a nice tree-decomposition (7', X,r) of the pattern graph H and a
target graph G, and returns the number of homomorphisms from H into G. The algorithm
traverses the nodes i € V(T) in a bottom-up manner (line 2) using an ordering on V' (7') which
ensures that a node can only be processed once all its descendants have been processed (line
1). Let M; = hom(H|[B;],G) be the set of all possible homomorphisms from the subgraph
of H induced by the vertices in the bag corresponding to node i (i.e., bag B;). Each node
i € V(T) is associated with a table that stores a counter for each homomorphism ¢ € M;,
denoted #; (). This value #; () holds the number of homomorphisms from the subgraph
induced by the union of all bags underneath i (and including i) which “align” with ¢. More
formally, #;(¢) = [{¢ € hom(H[U ey 1y Bil: G) : ¢[Bi] = ¢}| with V(T'[1]) being the set of
successor nodes of 7 in T (and including ¢ itself) and ¢[S] denoting the function ¢ restricted
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to domain S € V(H). The values #;(¢) are computed depending on the type of node i as
follows.

Start For simplicity, we assume that the bag corresponding to ¢ contains exactly one vertex
v, i.e., B; = {v}. The homomorphisms from H[{v}] into G are then simply all mappings
{(v,2)} with € V(G). For each such homomorphism ¢, the count is set to 1.

Introduce Let j be the child of 7. Bag B; introduces a new vertex v that is not contained in
Bj;. For homomorphisms ¢ € Mj, it is checked whether ¢ can be extended by mappings
{(v,2)} such that ¢ U {(v,x)} is a valid homomorphism from H|[B;]. If this is the case,
we set the count of such ¢ U {(v,2)} equal to the count of ¢.

Forget Let j be the child of i. Bag B; removes a vertex v which is contained in B;. Thus, for a
homomorphism ¢ : B; — V(G), we consider all extended homomorphisms ¢ U {(v,x)} €
M; and add up their counts.

Join Node i has two children j and [. It holds that B; = B; = B;. Recall that for ¢ € M;,
the counts #; () and #; (¢) correspond to the number of homomorphisms from two
different subgraphs of H for which ¢ is a partial mapping. To compute all combinations
of such homomorphisms, the counts are multiplied.

Note that in the above description, we assume graphs to be unlabeled. A generalization
to labeled graphs is straight-forward. For a detailed discussion on Alg. 1, we refer to Diaz,
Serna, and Thilikos (2002).

2.5 Graph Pattern Mining

Frequent pattern mining is concerned with the extraction of valuable insights from graphs.
Its objective is the enumeration of graph patterns for which the occurrence count within a
graph dataset exceeds a predefined threshold. In the following, we provide a general definition
of the frequent pattern mining problem:

FREQUENT PATTERN MINING PROBLEM: Given

(i) a finite set D < G of graphs for some graph class G,
(ii) a graph pattern language P,
(iii) an embedding operator < from patterns in P into graphs in G,

and an integer t > 0, list all P € P such that freq(P, D) > t, where freq(P, D) denotes
the (absolute) frequency of pattern P in D, i.e., freq(P,D) = |{GeD: P < G}|.

The set {G € D : P < G} is called the support set of P. Usually, we define the frequency
threshold t as a relative threshold value w.r.t. the size of D. That is, a pattern is required
to be contained it at least a certain fraction o of the dataset graphs, i.e., t = o|D].

The overwhelming amount of literature concerned with graph pattern mining utilizes
subgraph isomorphism as the pattern embedding operator (Jiang, Coenen, and Zito, 2013).
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Algorithm 1 CouNT HOMOMORPHISMS FROM GRAPHS OF BOUNDED TREEWIDTH

input: Nice tree-decomposition TD(H) = (T, X, r); target graph G
output: Number of homomorphisms from H to G.

1: Let (u1,...,uy) be an ordering on V(T) s.t. u, = r, and for all p,q € [n], if u, is a
descendant of u, then p < g.

2: for node i in order of (uq,...,u,) do

3: if 7 is a Start node then

4: Let {U} = B;.

5: For all z € V(QG), set #; ((v,x)) = 1.

6: if 7 is a Introduce node then

7 Let j be the child of i and let {v} = B;\B;.

8: for all p € M; and x € V(G) do

9: if for all u e N'(v) n Bj : (¢(u),z) € E(G) then

10 Set #i (¢ U {(v,2)}) = #; (¢

11: else

12: Set #; (p U {(v,2)}) =0

13: if ¢ is a Forget node then

14: Let j be the child of i and let {v} = B;\B;.

15: for all p € M; do

16: Set #i (0) = Laev(a) #i (p V {(v,2)})

17: if 7 is a Join node then

18: Let 4,1 be children of .

19: for all ¢ € M; do

20: Set #i (p) = #; (p) - #:1 ()

21: return 3\, #r (¢)

The problem is therefore also commonly known as the frequent subgraph mining problem.
We note, that the pattern class P is almost always restricted to connected graphs. This
restriction is owed to the convenient reduction of elements in P as well as simpler pattern
candidate generation procedures. Therefore, by pattern graphs we always mean connected
graphs.

2.5.1 Complexity Measures for Enumeration Problems

The complexity of the pattern mining problem naturally depends on the size of the output.
In fact, for the general graph mining problem above, the output may even be of infinite size,
depending on the choices for (i) through (iii). Even for more restricted definitions, such as the
standard frequent connected subgraph mining task, where P is the set of all connected graphs
and < corresponds to subgraph isomorphism, the output can be exponential in the size of
D. Thus, it is common to consider a more fine-grained notion of complexity for enumeration
problems (see, e.g., Johnson, Papadimitriou, and Yannakakis, 1988). This notion considers
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the time it takes to generate the output not only relative to the size of the input, but also
with respect to the size of the output.

More formally, for input D and output set O = {P},..., P,}, a listing algorithm enumer-
ates the elements of O with:

polynomial delay if the time before outputting Pj;, the time between outputting P; and
P;44 for all i € [n — 1], and the time after outputting P, is bounded by a polynomial
of the size of D,

incremental polynomial time if P; is outputted with polynomial delay, the time between
outputting P; and P;4 for all i € [n — 1] is bounded by a polynomial of the combined
size of D and the set {P,..., P}, and the time after outputting P, is bounded by a
polynomial of the combined size of D and O,

output polynomial time if O is outputted in time polynomial in the combined size of D
and O.

2.6 Graph Edit Distance

The graph edit distance (GED) is a dissimilarity measure between labeled graphs. Intuitively,
it can be defined as the minimum effort necessary to transform one graph into another by
a sequence of edit operations on the node and edge sets. In its most general definition, the
GED is defined as the minimum cost edit path over all possible edit paths. For a detailed
discussion on the GED, see e.g., Blumenthal (2019).

Definition 2.13 (Graph Edit Distance). Let G, H be two labeled graphs over labels ¥ and
let 1 ¢ % be a special blank symbol. For ¥ =¥ u {L}, we call a function

C:ZLXZLHRzo (2.1)

with ¢(a, ) = 0 for all « € ) an edit cost function which assigns costs to edit operations. An
edit operation (i) deletes, (ii) inserts or (iii) relabels a node or edge. Deleting and inserting
a node or edge with label a has cost c(a, L) and c(L, «), respectively. Relabeling a node or
edge with label a by label B has cost c¢(a, B). Vertices can only be deleted if they are isolated.

An edit path is a sequence of edit operations P = (01,02, ...,0k) that transform G into a
graph isomorphic to H. The cost of an edit path P is defined as the sum of the costs of its
edit operations, i.e., ¢(P) = Zle c(0;). Then, the graph edit distance between G and H is
defined as the cost of a minimum cost edit path, i.e.,

GED(G,H) =  min _c(P) (2.2)

with P(G, H) being the set of all edit paths between G and H.

As there are infinitely many edit paths between two graphs, we generally consider only
such paths which edit each node and edge at most once. These restricted edit paths can
conveniently be expressed through so called node maps.
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Definition 2.14 (Node Map). For graphs G, H, a node map is a relation ™ € V(G)xV (H)
which induces a set of edit paths that transform G into a graph isomorphic to H by specifying
the edit operations for all nodes of G and H as follows:

(i) vertices of G not appearing in 7 are deleted,
(ii) vertices of H not appearing in m are inserted, and
(iii) for all (u,v) € 7, node u is relabeled by the label of node v.

A node map further implies for all edges of G and H whether they are deleted, inserted
or relabeled. Note that the number of node maps between G and H is finite and that an edit
path of minimum cost is always induced by some node map. It is thus sufficient to consider
only edit paths induced by node maps (Blumenthal, 2019).

2.6.1 Complexity of Computing GEDs

Computing the GED between two graphs is intractable in general. In fact, it can be shown
that even in the case of uniform edit costs, the problem remains NP-hard (Blumenthal, 2019).
Furthermore, there exists no a-approximation algorithm for the GED. More specifically, for
graph G, H and o > 0, there is no polynomial time algorithm that returns an edit path
P e P(G, H) with ¢(P) < aGED(G, H) (Blumenthal, 2019).

The difficulties of computing the graph edit distance remain even for the case that the
graph class is restricted to trees. While there exist polynomial time algorithms for ordered
trees (Bille, 2005) or restricted variants such as the one introduced in Chapter 6, computing
the tree edit distance between two unordered trees is a generally NP-hard problem (Zhang,
Statman, and Shasha, 1992).

2.7 The Weisfeiler-Lehman Method

The Weisfeiler-Lehman (WL) method (Weisfeiler and Lehman, 1968) is a node relabeling
method, which iteratively aggregates node neighborhood information by compressing the
labels of each node and its neighbors into new labels. This is done by concatenating a
node’s label and the ordered multiset of its neighbors’ labels. Subsequently this concatenated
string is hashed to a new label by a perfect hash function. Thus, with each iteration, labels
incorporate increasingly larger substructures. The injectivity of the hash function ensures
that different sorted lists of labels cannot be mapped to the same (new) label.

More precisely, let G = (V, E, £y) be a graph with initial vertex label function ¢y : V' — ¥,
where X is the alphabet of the original vertex labels. In case of unlabeled graphs, we assume
all vertices to have the same mutual label. Assuming that there is a total order on alphabet
>; for all ¢ = 0, the Weisfeiler-Lehman algorithm recursively computes the new label of each
v € V in iteration ¢ + 1 by

liv1(v) = fy(li(v), [ti(u) : v e N(v)]) € Zip (2.3)
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(G, 4p): (G, 0): (G, 03):

PR PR R

© o0 O 6 O 60—
Figure 2.2: Visualization of graph G (under initial labeling ¢y) and its first

two Weisfeiler-Lehman relabeled versions (G, ¢1), resp. (G,¥2). Integers denote
Weisfeiler-Lehman labels.

where the list of labels in the second argument of fy is sorted by the total order on ¥;
and fyu : X; x X¥F — Y41 is a perfect (i.e., injective) hash function. An example for the
Weisfeiler-Lehman relabeling scheme is given in Fig. 2.2.

The Weisfeiler-Lehman method was originally designed for deciding isomorphism between
graphs with one-sided error. For that purpose, graphs are first represented as the multisets
of their relabeled node vertices and subsequently compared by equality. More specifically, for
two graphs G and H, if in some iteration ¢ the corresponding multisets {{¢;(v) : v € V(G)}}
and {{¢;(v) : v e V(H)}} are different, then G and H are not isomorphic. Otherwise, if after
n iterations (where n = |V(G)| = |V(H)|) the multisets are identical, G and H may or may
not be isomorphic. However, it can be shown that the test is correct with high probability
(Babai, Erdés, and Selkow, 1980). More precisely, the fraction of all size n graphs that are
not uniquely characterized up to isomorphism by the Weisfeiler-Lehman method converges
to 0 as n tends to infinity (Thm. 3.3 in Kiefer, 2020).

The above concept of the Weisfeiler-Lehman method can be generalized to a k-dimensional
variant which iteratively recolors vertex k-tuples of a given graph (see e.g., Sect. 2.2. of Kiefer
and Neuen, 2019). The ordinary Weisfeiler-Lehman algorithm (Weisfeiler and Lehman, 1968)
is therefore also commonly known as the 1-dimensional Weisfeiler-Lehman method. Through-
out this dissertation, when referring to Weisfeiler-Lehman, we mean the 1-dimensional ver-
sion.

2.7.1 Unfolding Trees

An interesting aspect of the Weisfeiler-Lehman method is that it implicitly constructs rooted
trees, called unfolding trees (Dell, Grohe, and Rattan, 2018). In fact, for v € V(G) the label
4;(v) encodes a rooted tree of depth i which reflects v’s i-hop neighborhood. Formally:

Definition 2.15 (Unfolding Tree). For a graph G, vertex v € V(G), and i € N, the depth-i
unfolding tree (or simply, i-unfolding tree), denoted T;(G,v), is a tree T with root r € V(T)
such that all leaves have depth i, and there exists a homomorphism ¢ : V(T) — V(G) with

(i) ¢(r) =v, and

(i1) for all non-leaves in t € V(T), the homomorphism ¢ induces a bijection between the
children of t in T and the neighbors of p(t) in G.

We refer to such a mapping ¢ as a locally bijective homomorphism. In terms of pattern
matching, locally bijective homomorphisms can be regarded as the pattern embedding oper-
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Figure 2.3: T»(G,v) is the depth-2 unfolding tree of graph G at vertex v. The
corresponding locally bijective homomorphism from T5(G,v) into G is depicted in

gray.

ator on Weisfeiler-Lehman unfolding trees. Figure 2.3 provides an example of an unfolding
tree and the corresponding locally bijective homomorphism.

Note that there is a one-to-one correspondence between the labels in ¥; and the set of
(non-isomorphic) i-unfolding trees. We will, therefore, often use the notions of Weisfeiler-
Lehman labels and unfolding trees interchangeably.

2.8 Kernels and Support Vector Machines

Before discussing graph kernels in Sect. 2.9, we first provide a quick overview of kernel
functions in general. For a more detailed discussion on kernel methods, we refer to, e.g.,
Schélkopf and Smola (2002).

2.8.1 Kernel Functions

A positive semi-definite kernel defines a similarity measure between pairs of objects. For-
mally:

Definition 2.16 ((Positive Semi-definite) Kernel). Let X' be a non-empty set. A sym-
metric function k : X x X — R is called a positive semi-definite kernel if and only if

n n
Z Z CiCjk'(l‘i,l'j) >0 (2.4)
i=1j=1

holds for any n € N, any choice x1,...,2, € X, and c1,...,c, € R.

In this thesis, we often refer to positive semi-definite kernels as proper kernels or just
simply kernels. A most interesting aspect of kernels is that they correspond to dot products
in (potentially unknown) spaces.

Theorem 2.1. For any kernel k on a set X, there exists a Hilbert space H and a mapping
¢ : X — H such that for all x,y € X it holds that

k(z,y) = (¢(x), (y))- (2.5)

where (-, -y denotes the dot product in H.
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We usually refer to ¢(x) as the embedding of x and to H as the embedding space or feature
space. The above theorem also implies that kernels can directly be defined by dot products of
explicit embeddings. That is, an embedding space H and corresponding embedding function
¢ : X — H automatically yield a kernel k(z,y) = {(¢(z), d(y))-

Kernel functions are closed under several operations, which allows to combine kernel
functions into more complex ones. More specifically, for any two kernels k1, ko on the set X
and for all a = 0,

(i) k(x,y) = a-ki(x,y) is a kernel, (scalar multiplication)
(ii) k(z,y) = ki(z,y) + ka2(x,y) is a kernel, and (addition)
(iii) k(x,y) = ki(z,y) - k2(x,y) is a kernel. (multiplication)

A very rudimentary but substantial kernel is the Dirac delta which yields 1 if the inputs
are equal and 0 otherwise, i.e.,

0 otherwise

6(x,y) = {1 Y (2.6)

The Dirac delta function plays a particularly important role in graph kernel design as it often
serves as the comparison operator on graph features.

Positive semi-definite kernels can also be derived from certain distance functions. More
precisely, for a non-empty set X with x,y € X, and parameter v > 0, the kernel

k(z,y) = e 19o) (2.7)

is positive semi-definite if and only if the function d is (conditionally) negative definite
(Schoenberg, 1938).

Definition 2.17 ((Conditionally) Negative Definite Kernel). Let X' be a non-empty
set. A symmetric function k : X x X — R is called a (conditionally) negative definite kernel
if and only if

n n

Z Z CiCjk(:Ci,.%‘j) <0 (28)

i=1j=1

holds for any n > 2, any choice x1,...,2, € X, and c1,...,c, € R with Y ¢; = 0 (Bery,
Christensen, and Ressel, 1984).

We refer to the kind of kernel functions in Eq. 2.7 equipped with (conditionally) negative
definite kernels d as radial basis function kernels.
2.8.2 Support Vector Machines

Support Vector Machines (SVM) (Boser, Guyon, and Vapnik, 1992) are supervised learning
models that are primarily used for classification purposes. Their task is to train a model
based on provided data in order to predict the class label of prior unseen data points. More
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Figure 2.4: SVMs find optimal hyperplanes which maximize the margin between the
two classes. The optimal hyperplane lies halfway between the boundary hyperplanes
H, and H,. The points lying on these boundary hyperplanes are referred to as
support vectors.

specifically, given training data (x;,y;),¢ € [n] with z; € H and corresponding binary valued
classes y; € {—1,1}, the SVM learns a function f : H — {—1,1} which classifies new data
points. The general approach of SVMs is to find a hyperplane in H which “best” separates
the data points w.r.t. to their classes. Subsequently, the class of a novel data point can be
predicted by simply checking on which side of the hyperplane the point lies.

Assuming that the data points are linearly separable, there clearly exist infinitely many
such separating hyperplanes. In order to find the most suitable one, the SVM selects the
hyperplane which maximizes the distance to the nearest data points on either side. This
unique hyperplane corresponds to points z on a line satisfying (w, z) + b = 0, and is referred
to as the optimal hyperplane. The optimal hyperplane lies halfway in between two parallel
boundary hyperplanes which mark the borders of the two classes. The space between these
two boundary hyperplanes is known as the margin and the distance between the two is
2/||lw||y. To ensure that all data points lie on the correct side of the margin, the constraint

yi({w,z;y +b) =1 ,Vie [n] (2.9)
is introduced. A visualization of the concept of SVMs can be found in Fig. 2.4. In order to
find such two boundary hyperplanes which yield a maximum margin, the goal is to minimize

Hw||§, while simultaneously guaranteeing the constraint set of Eq. 2.9. The corresponding
optimization problem can then be formulated as follows:

1
miéliﬂw”g st yi((w,z;) +b) = 1,Vie [n] (2.10)

Eq. 2.10 can be solved using the Lagrange multiplier method. More specifically, a positive
value o, i € [n] is introduced for each constraint of Eq. 2.9. Finally, the above problem can
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be reformulated leading to the dual problem:

n n
1
max i_zlai ~3 Z 0 0YiY T, )

AL,..5On

ij=1
N (2.11)
s.t. Z a;y; =0 and o = 0,1 € [n].
i=1
The resulting hyperplane is then given by
n
w = Z QYT . (2.12)
i=1

For a more detailed description of this reformulation, see, e.g., Scholkopf and Smola (2002).

2.8.3 Soft-margin SVMs

Up until now it was naively assumed that the data is in fact linearly separable. Clearly, this
is not the case for most provided data. In order to handle non-separable cases nonetheless,
the constraints of Eq. 2.9 can be relaxed by introducing slack variables (; > 0, i € [n] yielding
the inequality set

yi(w,z;y +b) =1 —¢ ,Vie [n] (2.13)

The slack variables provide a certain error tolerance when choosing the separating hyper-
plane. That is, data points may now fall into the margin or even onto the wrong side of the
hyperplane. The corresponding optimization problem is formalized as follows:

1 n
m;r%2uw||§+fi_21<i st yilGu,ay +b) > 1— G Vi [n] (2.14)

"y

The value C' is a positive parameter which governs the trade-off between maximizing the
margin and minimizing the sum of distances of misclassified data points to the hyperplane.
The identification of a suitable choice of C' is usually part of the machine learning process.
The dual problem of this relaxed variant is almost identical to that of Eq. 2.11 since the
slack variables and their Lagrange multipliers vanish in this formulation. The only difference
is that the a;s are now upper bounded by C, i.e., it needs to hold that % > a; = 0,i € [n].

2.8.4 The Kernel Trick

While the soft-margin SVM relaxes the rigid assumption that the data must be linearly
separable, it is not a solution to all problems. An alternative approach is to transform the
input data into higher dimensional spaces, in which they become separable.

A most interesting aspect of the dual formulations above is that they compute the optimal
hyperplane using dot products between data points. A dot product (x,y) with z,y € X can
easily be replaced by {¢(x), #(y)), where ¢ : X — H is a function which transforms the input
data points into some other, more suitable feature space. The goal is to find a function ¢ which
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then allows to separate the data in the corresponding feature space H. However, finding such
a function is generally computationally infeasible. Fortunately, there is no need to explicitly
calculate this mapping. Instead, it suffices to compute the kernel k(z,y) = {¢(x), #(y)). This
is known as the kernel trick.

Putting everything together, we obtain the following dual formulation for computing the
optimal separating hyperplane using kernel function k over X.

n 1 n
= (T T
max i_zlal 5 Z ;oYY k(xi, x)

Ql,...,0n ii=1
K (2.15)
L C
s.t. Z;aiyi =0 and . >q; = 0,i€[n].
1=

Finally, the class prediction of a prior unseen data point z is obtained by the function

=1

f(z) = sgn (Z ayik(z, z;) + b) . (2.16)

2.9 Graph Kernels

An interesting aspect about kernel methods is that they allow the application of efficient
learning methods such as support vector machines on graph structured data. That is, in
contrast to other standard learning methods, which generally require real-vectored data,
kernel methods can directly be applied to graphs. For a detailed survey on graph kernels, we
refer to Borgwardt et al. (2020) and Kriege, Johansson, and Morris (2020).

2.9.1 R-convolution Kernels

With Haussler’s work on convolution kernels over discrete structures (Haussler, 1999), kernel
methods became widely applicable to graphs. The concept of R-convolution kernels provides a
general framework, which can be used to construct graph kernels by defining graph similarity
in terms of aggregated substructure similarities.

Definition 2.18 (R-convolution Kernel (simplified)). Let G be a set of graphs, X be a
set of substructures, and R : G — N% be a function that decomposes graphs into multisets of
substructures. Then, for G, H € G, the R-convolution kernel is defined by

KGH)= Y > sx,y) (2.17)
z€R(G) yeR(H)
where kK : X x X — R is a kernel on the substructures.

In many graph kernels, the kernel x of Eq. 2.17 is simply the Dirac delta function, which
amounts to 1 if the substructures x and y are equivalent and 0 otherwise. Thus, R-convolution
kernels essentially measure graph similarity by counting pairs of equivalent substructures.
Such kernels can alternatively be reformulated as substructure frequency products. We refer
to this type of kernel as histogram kernel.
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Definition 2.19 (Histogram Kernel). Let G be a set of graphs and X be a set of substruc-
tures. Then, for G, H € G, the histogram kernel over X is defined by

K(G H) = ) ¢a(G) co(H) (2.18)

reX

where ¢, (G) indicates the occurrence count of substructure x € X in graph G.

2.9.2 Graph Kernel Expressivity

In the context of graph kernels, the expressive power measures the ability of graph repre-
sentations to distinguish non-isomorphic graphs. Formally, for graph embedding functions
¢1: G — Hi and ¢o : G — Ha, the function ¢; is said to be “more expressive” than ¢q if
for any two graphs G, H € G it holds that ¢1(G) = ¢1(H) = ¢2(G) = ¢2(H) and there exist
non-isomorphic graphs G’, H' € G such that ¢1(G’) # ¢1(H') and ¢2(G') = ¢pa(H').

The expressive power of graph kernels was first addressed by Gértner, Flach, and Wrobel
(2003). The authors refer to graph kernels, which are capable of distinguishing all pairs of
non-isomorphic graphs, as complete. More formally:

Definition 2.20 (Complete Graph Kernel). A kernel k(-,-) is called complete if its
embedding function ¢ with k(G,H) = {¢(G),p(H)) satisfies ¢(G) = ¢(H) if and only if
G, H are isomorphic, for all G,H € G.

As there is no known polynomial algorithm for deciding graph isomorphism, complete
graph kernels are generally infeasible in practice.

2.10 The Wasserstein Distance

The Wasserstein distance (Kantorovich, 1960) is a distance function between probability
distributions based on the concept of optimal mass transportation. Intuitively, the Wasser-
stein distance can be viewed as the minimum cost necessary to transform one pile of earth
into another. It is, therefore, also known as the earth movers distance or optimal transport
distance.

While Wasserstein distances are sometimes defined more generally, we specifically consider
the 1-Wasserstein distance for discrete distributions. More precisely, we restrict our attention
to the case that distributions correspond to histograms and the ground cost is equal to a
distance. We refer to it as simply the Wasserstein distance. For more general definitions see,
e.g., Peyré and Cuturi (2019).

Definition 2.21 (Wasserstein Distance). Given two vectors x € R" and y € R™ with
llzll; = llyll; and a cost matriz C' € R™™™ containing pairwise distances between entries of x
and y, the Wasserstein distance is defined by

We (‘Ta y) = TE?%}Ely)<T7 C> (219)

with T (x,y) € R™™ and T1,, = =, T 1,, = y for all T € T (z,y), where (-,-) is the Frobenius
inner product, and 1,, is the one-vector of length n.
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Matrix T' € T (z,y) is called transport matriz and a minimizer of Eq. 2.19 is called an
optimal transport matrix. The costs C between entries of x and y can alternatively be
provided in form of a distance function d. We refer to this function as the ground distance
and write Wy instead of W¢. If the ground distance is a metric, then the Wasserstein distance
is a metric (Peyré and Cuturi, 2019, Sect. 2.4).

In general, the above Wasserstein distance can be computed in time cubic in the size of
the vectors using, e.g., the Hungarian method (Kuhn, 1955). However, in case the ground
distance is given by the distance on the real line, the resulting Wasserstein distance can
be calculated in linear time. More precisely, let z,y € R™ and let Z; € R denote the i-th
entry of x. Furthermore, let there be a sequence of non-negative, increasing (or alternatively
decreasing) values wy, ws, . .., wy, on which d'(w;, w;) = |w; — w;| with i, j € [n] defines the
ground distance. Then, the Wasserstein distance equipped with ground distance d' has the
following closed form:

i

It can be shown that the distance function of Eq. 2.20 on histograms is a (conditionally)
negative definite kernel. In fact, this even holds when the ground distance is defined by the
shortest-path metric on a tree (Le et al., 2019).

Finally, we can define centers for sets of vectors w.r.t. the Wasserstein distance (Agueh
and Carlier, 2011). That is:

n—1

War(z,y) = Y. |wips — w]

=1

(2.20)

Definition 2.22 (Wasserstein Barycenter). For a set of vectors x1, ...,z € R™ and cost
matriz C € R™"™, we define the barycenter as

argmmEWc X, Q). (2.21)
acR"™ i=1

In other words, the barycenter minimizes the sum of Wasserstein distances to the elements
in a set of histograms.

2.11 Datasets

The experimental evaluations in this thesis are conducted on a mutual set of real-world
benchmark datasets. The datasets range from molecular datasets to large network datasets
and are selected with regard to several purposes. For one, they are chosen as a representative
sample of well-established benchmark datasets. Furthermore, they contain graphs of varying
structural properties. That is, the number of graphs, their average size and the connectivity
significantly differs for different datasets. It is noteworthy that for a multitude of commonly
used datasets (see, e.g., Morris et al., 2020), very rudimentary methods suffice to be on par
with the overall best methods. We therefore selected those datasets which are most suitable
for proper graph classification benchmarking purposes.

Molecular graphs represent chemical compounds where node labels correspond to the
atom type and edges represent bonds. Due to chemical properties, molecular graphs are of
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fairly simple structure. That is, for instance, atoms have small bounded degrees and common

subgraphs correspond to functional groups. Additionally, molecular graphs tend to exhibit

a tree-like structure, with very few cycles present. In contrast, the large network dataset

graphs are more diverse and exhibit a larger degree of noise. They are extracted from densely

connected (social) networks and generally have an edge-to-node ratio significantly above 1 : 1.
In the following, we briefly outline the datasets considered in this dissertation:

DHFR (Sutherland, O’Brien, and Weaver, 2003) is a molecular dataset containing 756
graphs which represent inhibitors of dihydrofolate reductase, a process that converts
dihydrofolate to tetrahydrofolate. Each compound is labeled by a binary value accord-
ing to its inhibitory potential.

MUTAG (Debnath et al., 1991) contains 188 compounds with molecules labeled according
to their mutagenic behavior towards the bacteria salmonella typhimurium.

NCI1 (Wale and Karypis, 2006) contains 4110 molecular compounds which are classified by
whether or not they inhibit non-small cell lung cancer cell line growth.

PTC-MR (Helma et al., 2001) consists of a total of 344 molecular graphs, each labeled by
whether or not the compound causes cancer in rats or mice.

IMDB-BINARY (Yanardag and Vishwanathan, 2015) contains 1000 graphs extracted from
movie collaboration networks. Each graph represents an ego-network with nodes cor-
responding to actors and edges indicating that two actors appeared in the same movie.
An ego-network is labeled by whether it was extracted from an action or romance genre
collaboration network.

EGO-X are four different real-world benchmark datasets introduced by the author of this
thesis. They are extracted from the social networks Buzznet, Digg, Flickr, and Live-
Journal. An EGO-X dataset consists of 200 ego-network graphs sampled from the four
social networks. Ego-networks are subgraphs induced by a central vertex’s neighbors.
Each graph is annotated against the social network it was extracted from such that
the learning task is to assign an ego-network to the network it belongs to. Graphs
within each dataset were randomly chosen from the set of all ego-networks but underlie
size- and density-specific constraints to ensure that the graph classification task is non-
trivial. The EGO-X datasets contain increasingly larger and more dense ego networks
with growing index X.

A detailed summarization of all graph datasets and their structural properties can be
found in Table 2.1. All datasets except for EGO-X were provided by Morris et al. (2020).
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2.11.
Dataset Dl |C| oV o|E| ol A |3
DHFR 756 2 42.43 +9.06  44.54 + 9.25 1.05 4 9
MUTAG 188 2 17.93+4.58  19.79 +5.68 1.09 4 7
NCI1 4110 2 29.87 £ 13.56 32.3 +14.93 1.08 4 37
PTC_MR 344 2 1429+9.02  14.69 £ 10.05 099 4 18
IMDB-BINARY 1000 2 19.77 +10.06 96.53 + 105.6 444 135 —
EGO-1 200 4  138.96+5.92 593.53+147.88 427 140 —
EGO-2 200 4 178.55 £ 5.92  1444.86 + 204.65 8.09 180 —
EGO-3 200 4 220.0 £6.35  2613.49 +275.51 11.88 203 —
EGO-4 200 4 259.77+ 6.04 4135.8 + 302.15 1593 237 -—

Table 2.1: Structural information of graph datasets providing the dataset size |D],
the number of classes |C|, average vertex number |V|, average edge number |E|,
maximum vertex degree A, and amount of distinct vertex labels |3|.
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3

RELATED WORK

This section explores a body of literature that is relevant to this dissertation. We particu-
larly cover the essential research fields which are connected through this thesis and put our
contributions into context. We furthermore discuss state-of-the-art methods which our ap-
proaches are compared to and address some orthogonal research topics. Given the abundance
of research in each field, the following sections are not intended to be exhaustive.

As one of the central notions of this thesis, we cover the essential literature concerned
with constrained homomorphisms in Sect. 3.1. We explore the most common types of con-
strained homomorphisms and briefly address how partially injective homomorphisms and
locally bijective homomorphisms fit in. Given the utilization of an explicit pattern mining
algorithm in Chapter 4, we review principles of frequent subgraph mining in Sect. 3.2. We
provide some background information to this extensively studied research field and discuss
special instances of the problem. Particularly, we cover frequent subtree mining and address
literature that is concerned with employing homomorphism as the pattern matching opera-
tor. Sect. 3.3 establishes a connection between several central notions of this thesis. While
the discussed literature is not of immediate relevance to our contributions, we argue that
it nonetheless offers a most interesting tangent. Next, Sect. 3.4 provides a brief overview
of graph kernel methods. We particularly summarize a range of well-established as well as
closely related graph kernels, with an emphasis on graph kernel methods utilizing Weisfeiler-
Lehman features. Finally, we briefly discuss graph neural networks in Sect. 3.5 due to their
close relationship to the Weisfeiler-Lehman method as well as their relevance to the results
presented in Chapter 5.

3.1 Constrained Homomorphisms

Graph homomorphisms are a fundamental and well-studied topic in graph theory (Hell and
Nesetril, 2004). They are most famously applied in graph colorings. More precisely, the
problem of deciding whether a map can be colored with n colors such that no two adjacent
regions share the same color can effectively be formulated as a graph homomorphism problem
(see, e.g., Lewis, 2016).

A particularly relevant aspect of graph homomorphisms is that they can be regarded as the
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most general structure-preserving mappings between graphs, in a sense that other common
graph relations can be expressed as constrained variants of them. These so called constraint
graph homomorphisms are homomorphisms which additionally impose further restrictions on
the mappings. Constrained homomorphisms have been extensively studied (see Fiala and
Kratochvil, 2008 for a survey) and remain an active research topic to this day. While there
exists an abundance of different definitions of constrained homomorphisms, they are often
divided into global and local ones (Long, 2014).

3.1.1 Globally Constrained Homomorphisms

Globally constrained homomorphisms are homomorphisms which satisfy additional condi-
tions that may apply to any pairs on nodes. One example that becomes particularly relevant
in Chapter 4 is that of injective homomorphisms, which corresponds to the concept of sub-
graph isomorphisms. Another common notion is that of graph isomorphisms which are simply
bijective homomorphisms that preserve edges and labels in both directions. Subgraph isomor-
phism and graph isomorphism are arguably the most established notions of subgraph relation
respectively graph equivalence. While surjective homomorphisms have gained comparably
less attention, they are nonetheless focus of ongoing research (see e.g., Focke, Goldberg, and
Zivny, 2019).

Most (constrained) homomorphisms are notoriously hard (i.e., NP-complete) to decide,
but become efficiently decidable for certain restrictions on the pattern and target graphs. For
instance, even deciding ordinary homomorphism is an NP-complete problem. However, a key
result which we utilize in Chapter 4 is that homomorphism from a pattern H into a target
graph G is polynomial-time decidable for arbitrary graphs G if H has bounded treewidth
(Dalmau, Kolaitis, and Vardi, 2002). In fact, Grohe (2007) showed an even stronger result
by proving that homomorphisms can be efficiently decided if and only if H has bounded
treewidth.

The problem of deciding subgraph isomorphism is a generally even more complex prob-
lem. For instance, subgraph isomorphism cannot even be efficiently decided for the case
that the pattern graphs are restricted to trees. In fact, due to the NP-completeness of the
Hamiltonian path problem, this even holds for paths. However, the subgraph isomorphism
problem becomes P-time solvable if H and G are both trees (Matula, 1978). A comprehensive
summary covering the complexity of subgraph isomorphisms for multiple graph classes for H
and G can be found in Marx and Pilipczuk (2014).

Finally, deciding graph isomorphism belongs to one of the few problems which are neither
known to lie in P nor known to be NP-complete (Garey and Johnson, 1979). Nonetheless,
Babai (2016) has shown in groundbreaking work that the problem is in fact solvable in quasi-
polynomial time.

In Chapter 4, we introduce the notion of partially injective homomorphisms, which can
be classified as relaxed globally constrained homomorphisms. Roth (2021) introduces this
notion independently, focusing on the complexity of counting constrained homomorphisms.
Equivalently to our definition, Roth (2021) defines partially injective homomorphism as a
homomorphism ¢ : V(H) — V(G) which additionally respects a set of vertex pair inequalities
I. More precisely for every wv € I, it is required that ¢(u) # ¢(v).
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3.1.2 Locally Constrained Homomorphisms

Locally constrained homomorphisms are homomorphisms that additionally uphold conditions
that are restricted to direct node neighborhoods. Specifically, a homomorphism ¢ : V(H) —
V(QG) is locally injective, surjective, or bijective if for all v € V(H), the restriction of ¢ to
the neighborhood of v is locally injective, surjective, resp. bijective. Locally constrained
homomorphisms are an extensively studied field in graph theory. We refer to the survey
article by Fiala and Kratochvil (2008) for a comprehensive discussion on this kind of pattern
matching operator. We note that, in this dissertation, locally bijective homomorphisms
play an important role, as they correspond to the matching operator of Weisfeiler-Lehman
unfolding trees (see Sect. 2.7.1).

Deciding locally injective, surjective, and bijective homomorphisms are generally all NP-
complete problems. That is, for arbitrary graphs H and G, there exists no P-time algorithm
for deciding this kind of constrained homomorphisms. However, when H is a tree, all three
problems become decidable in polynomial time (Chaplick et al., 2015). It was furthermore
shown that locally injective, surjective, and bijective homomorphisms become polynomial-
time solvable if the pattern graph H has bounded treewidth and H or G have bounded
maximum degree (Chaplick et al., 2015).

3.2 Frequent Subgraph Mining

Frequent subgraph mining (FSM) is a fundamental task in the field of data mining, which
has gained significant attention over the last 30 years. Its task is to enumerate a set of
pattern graphs which are subgraph isomorphic to at least a predefined number of dataset
graphs. FSM is widely used in various domains such as bioinformatics (Mrzic et al., 2018),
chemical compound analysis (Nijssen and Kok, 2004), and web mining (see e.g., Getoor and
Diehl, 2005). FSM is generally restricted to enumerating connected pattern graphs and is
therefore also often referred to as the frequent connected subgraph mining problem. For a
comprehensive survey on FSM, we refer to Jiang, Coenen, and Zito (2013).

The general concept of FSM is to generate potential patterns using an enumeration
method and determine if these patterns are frequent within a given dataset. Most practical
approaches for frequent subgraph mining therefore primarily focus on suitable enumeration
methods which reduce redundancy in the output and on minimizing the number of occurrence
counting operations. These two aspects are mainly addressed through different techniques
for traversing the pattern search space and generating new pattern candidates.

Methods for traversing the pattern search space follow either a breath-first search (see,
e.g., Kuramochi and Karypis, 2004) or a depth-first search (see, e.g., Yan and Han, 2002)
approach. Both variants iteratively extend frequent pattern graphs by either a single edge or
a vertex-edge pair using a refinement operator. Let p be such a refinement operator.

The breath-first search, also referred to as levelwise search, enumerates all frequent pat-
terns of size ¢ before continuing with size ¢+ 1 patterns. This allows to make use of the Apriori
principle (Agrawal and Srikant, 1994), which was originally designed for the enumeration of
frequent itemsets. The Apriori principle states that a pattern can only be frequent if all of its
subpatterns are frequent as well. Therefore a candidate pattern H only needs to be tested for
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frequency if all its immediate subgraphs {H' : p(H') = H} have been evaluated and shown
to be frequent.

A depth-first search pattern enumeration algorithm iterates over the pattern space by
recursively computing the set of refinement graphs p(H) of a frequent pattern H and con-
tinuing with a refinement H' € p(H) if it has not yet been seen. To avoid duplicates, a set C
containing visited patterns may be maintained such that candidate patterns are dismissed if
they have already been considered. However, checking whether H € C for a pattern H essen-
tially requires solving graph isomorphism instances. While there exist practical isomorphism
testing variants such as nauty (McKay and Piperno, 2014), most approaches address the
problem by sophisticated pattern generation strategies. A common method is to design re-
finement operators which avoid duplicates in the pattern enumeration process. For instance,
Nijssen and Kok (2005) define an order, in which new vertices or edges can be added, leading
to a pattern candidate generation process which (ideally) allows each pattern to be generated
only through a unique sequence of iterative refinement operations.

3.2.1 Frequent Subtree Mining

A commonly considered special case of general frequent subgraph mining is the restriction of
the pattern class to trees. This task is referred to as frequent subtree mining. Unfortunately,
this restriction to the pattern class does not significantly relax the complexity of the mining
task as subtree isomorphism remains an NP-complete problem. Furthermore, the number of
potential pattern graphs may still grow exponentially. However, due to the tree isomorphism
problem being efficiently solvable, the redundancy issue of the output set can be properly
addressed. Often times, a duplicate free enumeration is achieved using canonical tree repre-
sentations (see, e.g., Chi, Yang, and Muntz, 2003). By utilizing canonical representations,
duplicate subtrees can be efficiently eliminated, improving the overall efficiency of frequent
subtree mining.

In an effort to overcome the inefficiency of the subtree isomorphism test, several subtree
miners have emerged which restrict the class of target graphs to forests (see, e.g., Chi, Yang,
and Muntz, 2003). In fact, subtree isomorphism in forests can be decided in polynomial time
(Matula, 1968). As an approximation to frequent subtree mining in arbitrary target graphs,
Welke, Horvéth, and Wrobel (2017) make use of this result and effectively replace graphs by
random spanning trees, leading to an incomplete, but efficient subtree enumeration method.

While subgraph isomorphism is the most commonly used pattern matching operator in
graph mining, there has been some isolated research that explores the use of homomorphism
as the pattern matching operator. One example is the work by Dries and Nijssen (2012),
which focuses on enumerating frequent trees using homomorphism. The advantage of using
homomorphism is that it is polynomial-time decidable from trees, allowing for an efficient
pattern enumeration. However, the use of homomorphism has certain semantic challenges.
Dries and Nijssen (2012) identify two essential issues in their mining algorithm which we
also encounter in Chapter 4. Firstly, two different (i.e., non-isomorphic) pattern trees may
nonetheless be homomorphism equivalent, effectively leading to duplicates in the output set.
Secondly, patterns of even unbounded size can be frequent, causing the output set to be of
potentially infinite size. To address these issues, the authors propose a specifically designed
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pattern refinement method and discuss certain restrictions to the size and labels of patterns.

3.3 Homomorphisms and Weisfeiler-Lehman

In this section, we briefly digress from literature directly related to this dissertation and ex-
plore a tangent topic discussed in Dell, Grohe, and Rattan (2018). This article shows that
graph homomorphisms and the Weisfeiler-Lehman method are closely related concepts. Even
more so, the article merges several central notions of this dissertation such as Weisfeiler-
Lehman graph representations, their expressivity, homomorphism counts, and graphs of
bounded treewidth.

In his seminal work, Lovész (1967) proves that a graph can be characterized up to isomor-
phism using homomorphism counts. More precisely, two graphs G and G’ are isomorphic if
and only if for all graphs H, the number #HoM(H, G) of homomorphisms from H to G and
the number #HoM(H, G’) of homomorphisms from H to G’ are identical. Considering that
counting graph homomorphisms is NP-complete in general, Dell, Grohe, and Rattan (2018)
focus on tractable subproblems. By restricting the set of pattern graphs to trees, they show
that the corresponding characterization of graphs is equivalent to that of the 1-dimensional
Weisfeiler-Lehman scheme. More specifically, it is shown that two graphs G and G’ cannot
be distinguished by the 1-dimensional Weisfeiler-Lehman method if and only if for all trees
T, it holds that #HoMm(T, G) = #HoM(T, G"). Consequently, the problem of whether or not
there exists a tree T' with #HoM(T, G) # #HoM(T, G’) can be efficiently decided using the
Weisfeiler-Lehman test of isomorphism.

Dell, Grohe, and Rattan (2018) furthermore generalize this result to the class of bounded
treewidth graphs by relating it to the k-dimensional Weisfeiler-Lehman test of isomorphism.
The k-dimensional Weisfeiler-Lehman method is a generalization of the original variant by
Weisfeiler and Lehman (1968) which iteratively recolors vertex k-tuples of a given graph
(see, e.g., Sect. 2.2. in Kiefer and Neuen, 2019). It is shown that this k-dimensional variant
can distinguish two graphs G and G’ if and only if for all graphs H of treewidth at most
k, it holds that #HoM(H, G) = #HoMm(H,G’). Recall that homomorphisms into arbitrary
target graphs can be efficiently decided if and only if the source graph has bounded treewidth
(Grohe, 2007). Thus, the homomorphism vectors restricted to the class of tractable graph
homomorphism problems can directly be linked to the concept of isomorphism tests using
vertex recoloring schemes defined by the (k-dimensional) Weisfeiler-Lehman method.

3.4 Graph Kernels

Graph kernels have been the most established approach for graph classification tasks and
have gained significant attention during the last 20 years. They have proven to be powerful
methods for comparing graphs in terms of their structural similarities. The concept of graph
kernels is rooted in the idea of transforming graphs into high-dimensional vector spaces,
enabling the application of standard machine learning methods such as support vector ma-
chines. Graph kernels are applied in domains such as bioinformatics, chemoinformatics and
social network analysis.
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With Haussler’s seminal work (Haussler, 1999) on convolution kernels over discrete struc-
tures, kernel methods became widely applicable to graph structured data. Using this frame-
work for kernel functions, graph kernels can be designed by decomposing graphs into sets of
substructures which are subsequently compared. A majority of popular graph kernels is in
fact based in this kind of concept. The kernels in this category mainly differ in the kind of
substructures which they consider. Thus, the bulk of the R-convolution-based graph kernel
design is primarily concerned with feature engineering. Clearly, the type of feature, i.e., the
kind of substructure, essentially governs the structural similarity which the kernel measures.

Graph kernels are often distinguished into explicitly and implicitly computable kernels.
Let k : GxG — R be a kernel. Then, in the explicit case, the corresponding mapping ¢ is finite
and known. Consequently, for two graphs G, G’ € G, the kernel value k(G, G’) can simply be
computed by (¢(G), d(G’)). If, otherwise, the mapping ¢ is infinite or unknown, the kernel
is called implicit and needs to be computed through the function k. However, according to
Kriege et al. (2019), the explicit variant is to be preferred in terms of computation speed and
memory consumption.

Gartner, Flach, and Wrobel (2003) introduced the notion of complete graph kernels as
a measure of expressiveness. A complete graph kernel k has a corresponding embedding
function ¢ which characterizes a graph up to isomorphism. However, computing complete
graph kernels is at least as hard as solving graph isomorphism. Since the isomorphism problem
is not known to be solvable in polynomial time, complete graph kernels are generally of no
practical relevance. Nevertheless, it is a desirable property of graph kernels to distinguish as
many pairs of non-isomorphic graphs as possible.

For a comprehensive overview of graph kernels, we refer to the survey by Kriege, Johans-
son, and Morris (2020) or the book by Borgwardt et al. (2020). Both works provide excellent
insights into the theoretical aspects and empirical evaluations of a large body of graph kernel
literature.

In the following, we provide a brief review of various graph kernels that are relevant to
this dissertation. Due to the rich literature of this line of research, the collection is not meant
to be exhaustive. Instead, we discuss a choice of well-established as well as conceptually
related graph kernels. We start by introducing a very rudimentary kernel and continue with
approaches based on comparing walks, paths and small subgraphs. Subsequently, we cover
graph kernels based on tree patterns, with a specific focus on approaches that utilize the
Weisfeiler-Lehman labels.

The Label Histogram Kernel The label histogram kernel is unique among all consid-
ered graph kernels, as it deliberately disregards all structural information when comparing
graphs. This specific kernel variant is primarily meant as a baseline function, which indicates
whether more sophisticated graph kernels are of any benefit. It corresponds to the simple
R-convolution kernel, where the substructures are nodes and edges. More precisely, for two
graphs G, G’ € G, we define the label histogram kernel as follows:

= > > ae YD b(Le), L) (3.1)

veV (G) v'eV(G") eeE(G) e’'eE(G")
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where £(v) and £(e) denote the label of node v and edge e, respectively. Surprisingly, this and
similar types of structure agnostic baseline kernels achieve excellent accuracies on a large set
of benchmark datasets (see, e..g., Kriege, Johansson, and Morris, 2020).

The Random Walk Kernel In their pioneer work, Gartner, Flach, and Wrobel (2003) in-
troduce a graph kernel that defines similarity in terms of mutually occurring walks. Walks are
represented as sequences of node and edge labels, and the kernel’s feature space is essentially
spanned by such sequences. In order to compute the set of mutual walks occurring in two
graphs G, G’ € G, the authors compute a product graph, denoted G«. The task of counting
mutual walks may then be reduced to counting walks in G«. The number of mutual length-k
walks corresponds to the sum of all entries in A(G)* where A(G) denotes the adjacency
matrix of G. Then, for graphs G, G’ and their product graph G, the random walk kernel is
defined by

V(G| T oo
KG,G) = ) [Z Ak.A(GX)k] (3.2)
ij

t,j=1 Lk=0

for a suitable non-negative weight sequence Ag, A1, ... such that the limit of Eq. 3.2 exists.
Whenever this limit exists, there is a closed-form expression of Eq. 3.2 such that it can be
efficiently computed. The authors state a runtime of O(n®) for the random walk kernel, which
can however be significantly reduced (Vishwanathan et al., 2010). Next to the above kernel,
which is often referred to as the geometric random walk kernel, Gértner, Flach, and Wrobel
(2003) furthermore propose an additional variant, called the exponential random walk kernel.

The Shortest-Path Kernel The shortest-path kernel (Borgwardt and Kriegel, 2005) com-
pares two graphs in terms of the similarities between all pairs of shortest paths. While the
similarity between two paths may be any kernel function, the authors suggest comparing the
endpoints as well as the lengths. More precisely, for graphs G, G’, the shortest-path kernel is
defined by

k(G, G/) = Z Z knode(plapll) klength(pap/) knode(p27p/2) (33)
peP(G) p'eP(G)

where P(G) is the set of all shortest paths in G and p1, p2 are the endpoints of path p € P(G).
Furthermore, kyode is a kernel on the node labels kiepgtn is a kernel on the path lengths. In
Borgwardt and Kriegel (2005), kpode corresponds to the simple Dirac delta function. For
Klengtn, the authors propose the Brownian bridge kernel. The overall runtime of the shortest-
path kernel is reported to be in O(n?).

The Graphlet (Sampling) Kernel The idea of graphlet kernels is to define graph similar-
ity by comparing occurrence counts of small subgraphs. The so-called graphlets are fixed-size
induced subgraphs and the kernel function is simply computed by the dot product between
feature vectors, in which each entry corresponds to the occurrence count of a specific graphlet.
More precisely, for graphs G, G’ € G and predefined graphlet sizes S € N, the graphlet kernel
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can be defined by
K(G,G) = > ) ¢4(G)ey(G) (3.4)

keS geGy

where G, denotes the set of all size-k graphlets, and c4(G) is the number of graphlet g
occurences in GG. While enumerating all size-k graphlets for fixed values k can be done in
polynomial time, it is nonetheless often computationally infeasible. Therefore Shervashidze et
al. (2009) propose a method which estimates the true graphlet distributions using a sampling
technique. They furthermore show that for graphs of bounded degree d, the exact number of
size-k graphlets can be computed in time O(nd*~1).

Tree-Based Kernels Tree-based kernels form a class of graph kernels that define similarity
in terms of matching subtrees. While the first variants of tree-based kernels have been
restricted to tree datasets (Vishwanathan and Smola, 2002), Martino, Navarin, and Sperduti
(2012) propose an approach which generalizes this type of kernel to arbitrary graphs. The
idea is to first decompose a graph into a set of directed acyclic graphs (DAG). More precisely,
for every node v € GG, a DAG is generated using a BFS on G starting in v. The set of all
such DAGs of G is denoted by ODD(G). Using a partial order on vertices in each DAG,
Martino, Navarin, and Sperduti (2012) effectively replace DAGs by subtrees in order to apply
traditional tree-based kernels. This kernel is formally defined by

KG.G) = ) Y, H(ITW),Tw)), (3.5)
DeODD(G) wveV(D)
D’eODD(G’) v'eV(D’)

where T'(v) is a tree generated by visiting nodes in the corresponding DAG starting in v, and
k is a kernel between trees. Employing the tree kernel x as defined in Vishwanathan and
Smola (2002), results in a overall runtime complexity O(n3log(n)).

The Weisfeiler-Lehman Kernel Shervashidze et al. (2011) employed the Weisfeiler-
Lehman method (see Sect. 2.7) to define a family of kernels measuring the similarity be-
tween graphs based on their relabeled versions. While the authors introduce a general kernel
framework, we restrict our focus to the subtree kernel. Its idea is to iteratively assign each
vertex v € G a new label ¢;(v) in iteration i using the Weisfeiler-Lehman vertex relabel-
ing scheme, and compare graphs in terms of such mutually occurring labels. Formally, the
Weisfeiler-Lehman subtree kernel for two graphs G, G’ and h iterations is defined by

kG, G') = Z oD e () (3.6)

=0 veV(G) v'eV(G)
where 0 is the Dirac delta function. In other words, the kernel counts the pairs of matching

labels over h Weisfeiler-Lehman iterations. With complexity O(hm), where m is the number
of edges, the Weisfeiler-Lehman subtree kernel is highly efficient.
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The Weisfeiler-Lehman Optimal Assignment Kernel Next to graph kernels based
on the R-convolution framework which compare all pairs of substructures, graph kernels can
alternatively be defined using optimal assignments between the substructure sets. Kriege,
Giscard, and Wilson (2016) introduce a family of functions that compute optimal matchings
between sets of elements X and Y and show that these functions are positive semi-definite us-
ing certain ground kernels that compare the elements of X and Y. They apply this approach
to define the Weisfeiler-Lehman optimal assignment kernel, which for two graphs, computes
an optimal bijection between the sets of their vertices, using the Weisfeiler-Lehman label hier-
archy as similarity measure on vertex labels. More precisely, for graphs G, G’ and parameter
h, the kernel is defined by

h
K(G,G) =max > > 6(4i(v), 4(1)) (3.7)
BeB (e i=0

where B is the set of all bijections between V(G) and V(G’). Note that whenever V(G) and
V(G') are of unequal size, a padding by dummy nodes is necessary. Using a reduction to
the histogram intersection kernel, the Weisfeiler-Lehman optimal assignment kernel can be
computed in time O(hm), where m is the number of edges.

The Wasserstein Weisfeiler-Lehman Kernel Togninalli et al. (2019) propose a graph
kernel which can be considered a “soft” matching variant between vertex sets. It compares
two graphs G, G’ by computing the Wasserstein distance between their depth-h Weisfeiler-
Lehman label vectors ¢(G) and ¢(G’). The applied ground distance between two depth-h
Weisfeiler-Lehman labels is essentially defined in terms of their shortest-path distance in the
Weisfeiler-Lehman hierarchy tree. It is shown that this kind of Wasserstein distance yields
proper kernel functions. That is, for graphs G, G’ and parameter v > 0, the function

kZ(G, G/) — e—’YWd(¢(G)a¢(G/)) (38)

is positive semi-definite. The authors report a worst-case complexity of O(n3log(n)), but
argue that this can be significantly reduced using approximation variants. We note that the
particular Wasserstein distance above can even be solved exactly in linear time using results
by Le et al. (2019).

Gradual Weisfeiler-Lehman Kernels In recent work, Bause and Kriege (2022) propose
graph kernels comparing node features obtained by effectively slowing down the Weisfeiler-
Lehman vertex relabeling method. Similarly to our contribution presented in Chapter 6,
they identify the main drawback of the Weisfeiler-Lehman subtree kernel to be its too coarse
similarity measure. In an effort to address this issue, Bause and Kriege (2022) replace the
injective relabeling function of the Weisfeiler-Lehman method by more general ones. Such
functions allow that two vertices with the same label in iteration ¢ and different neighborhood
multisets can still be mapped onto the same label in iteration ¢ + 1. This deceleration of the
vertex refinement method is effectively achieved by clustering similar vertex neighborhood
multisets in each refinement step. Finally, the obtained gradual labels are utilized to define
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a finer similarity measure employing either the ordinary kernel method of Eq. 3.6 or the
optimal assignment kernel of Eq. 3.7. It needs to be noted, that the proposed method by
Bause and Kriege is in fact very similar to the GWL* variant presented in Chapter 4, which
also effectively slows down the vertex refinement process by performing a hard clustering on
labels after every refinement iteration.

Filtration Curves for Graph Classification Similarly to our contribution presented in
Chapter 5, O’Bray, Rieck, and Borgwardt (2021) propose an approach which applies the
notion of graph filtrations for graph classification tasks. Graph filtrations are sequences
of nested subgraphs which describe graphs on various levels of resolution (see Sect. 5.1.1).
O’Bray, Rieck, and Borgwardt propose a general framework transforming graphs into so-
called filtration curves, which are then used as graph descriptors. The generation process
of such curves requires an edge weight function inducing filtrations and a graph descriptor
function which extracts graph attributes within each filtration graph. For the edge weight
function, several functions such as, for example, variants utilizing the maximum node degree,
the Ricci curvature, or the Heat kernel signature are proposed. Concerning the descriptor
function, the authors suggest either utilizing numbers of node labels or counting connected
components. The resulting filtration curves represent graph attribute distributions over fil-
trations and can be used as graph representations for learning tasks on graphs. While the
authors utilize random forests as the classification method in their experimental evaluations,
they mention that filtration curves can also be used for graph kernels. We note that the
proposed notion of discrete filtration curves essentially corresponds to that of filtration his-
tograms introduced in Chapter 5. However, there are several distinguishing aspects between
our approach and that of O’Bray, Rieck, and Borgwardt (2021). For one, we propose a
fine-grained kernel function comparing filtration histograms using the Wasserstein distance.
Furthermore, we focus on the case that the features correspond to Weisfeiler-Lehman labels
and show that the resulting graph kernels have high expressive power.

3.5 Graph Neural Networks

Graph neural networks (GNN) have emerged as a powerful tool for learning from graph-
structured data. GNNs operate by iteratively updating node representations through message
passing along the edges, enabling them to capture essential structural information within
graphs. This process allows GNNs to be applied to a wide range of graph learning tasks such
as node and graph classification, or link prediction.

When compared to traditional methods like graph kernels, a distinguishing property of
GNNss is that they work in an end-to-end manner, not requiring an explicit feature extraction
step. Instead, GNNs directly learn suitable node representations. While GNNs have proven to
be successful learning methods, their expressive power is nonetheless limited by the message
passing scheme.

A majority of graph neural networks follows a simple neighborhood aggregation strategy.
Much like the vertex relabeling of the Weisfeiler-Lehman method, GNNs update node repre-
sentations by combining the current node representation with an aggregate of its neighbors’
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representations. More precisely, given node representations r;(v),v € V(G) at iteration 7, a
GNN layer computes a new representation of v in iteration i4+1 by

ri+1(v) = COMBINE(r;(v), AGGREGATE({{r;(u) : u e N'(v)}})) (3.9)

where functions UPDATE and AGGREGATE essentially define the GNN architecture. By using
k such layers, a GNN effectively captures the k-hop neighborhood in the computations of
node representations. In order to perform graph classification tasks, an additional function
is required which combines the set of final node representations over all nodes. For a graph
G, this function returns a graph representation

r(G) = READOUT({ri(v),v e V(G)}}) (3.10)

that aggregates all node representations of G obtained after k& GNN layers.

In seminal work, Xu et al. (2019) show that such graph neural networks can be at most as
expressive as the Weisfeiler-Lehman test of isomorphism. In fact, it is proven that there exist
GNNs that exhibit the same expressiveness as the 1-dimensional Weisfeiler-Lehman method.
More precisely, for injective functions COMBINE, AGGREGATE, and READOUT, there exist
GNNs that map any two graphs G, G’ € G, which are distinguished by the Weisfeiler-Lehman
method, to different embeddings r(G) # r(G’).

Recently, there has been a multitude of work concerned with further increasing the ex-
pressive power of GNNs and overcoming the above mentioned limitations of the Weisfeiler-
Lehman test of isomorphism. For instance, Morris et al. (2019) achieve this by designing a
higher-order message passing scheme based on the k-dimensional Weisfeiler-Lehman method,
effectively generalizing ordinary GNNs. Another common approach is to enrich nodes with
subgraph information (see, e.g., Barceld et al., 2021). Alternatively, the expressive power of
GNNs can be improved by restricting the message passing to sets of subgraphs. This can,
for instance, be achieved by removing single nodes (Papp et al., 2021; Cotta, Morris, and
Ribeiro, 2021) or by restricting the message passing for each node to the subgraph induced
by its k-hop neighborhood (Zhang and Li, 2021). In Corollary 5.2 of Chapter 5, we argue
that the proposed concept of graph filtrations may also directly be applied to yield more
expressive graph neural networks.
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GRAPH KERNELS BASED ON PARTIALLY
INJECTIVE HOMOMORPHISMS

In Chapter 1, we outlined the need for efficient pattern embedding operators that allow
for rich graph representations. Ordinarily, this embedding operator is defined by subgraph
isomorphism. However, deciding subgraph isomorphism is an NP-complete problem and is
thus often not a suitable choice for practical purposes. Motivated by this limitation, in this
chapter, we propose a novel type of graph pattern embedding operator which can in fact be
decided in polynomial time. We show that there exists a mining algorithm that enumerates
tree patterns with polynomial delay and empirically demonstrate that the generated pattern
sets are a suitable choice for graph classification purposes.

In order to define this embedding operator, we consider the relationship between the two
standard graph embedding operators graph homomorphism and subgraph isomorphism. Uti-
lizing the key observation that subgraph isomorphisms are simply injective homomorphisms,
we introduce a unifying embedding operator which relaxes the notion of injectivity, lead-
ing to the concept of partially injective homomorphisms. More specifically, while subgraph
isomorphisms require all node pairs of a pattern graph to be mapped onto distinct vertices
in the target graph, our proposed relaxation defines partial injectivity by requiring only a
subset of all node pairs to be mapped distinctly. By using this idea of partially injective
homomorphisms, we relax the rigid conception of having the binary choice between graph
homomorphism and subgraph isomorphism, allowing to dynamically choose the degree of
injectivity in the pattern matching operator.

The goal in this chapter is to extract a set of suitable tree patterns for graph classification
tasks. A common practice for this purpose is to consider sets of frequent subgraph patterns,
i.e., patterns which are contained in at least a certain fraction of the target graphs. However,
this approach is generally not computationally feasible due to the NP-completeness of the
subgraph isomorphism problem, even when the pattern graphs are trees. Graph homomor-
phisms, on the other hand, can in fact be decided in polynomial time for tree patterns. It,
however, generally produces less suitable frequent pattern sets for graph classification tasks.
This drawback of employing graph homomorphisms as the pattern embedding operator for
mining frequent trees becomes particularly apparent when considering the unlabeled case,
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where every tree pattern can be embedded into any target graph which contains at least
one edge. As a trade-off between expressiveness and complexity, we employ the concept of
partially injective homomorphism to preserve from the rigidity of subgraph isomorphism as
much as possible, while utilizing the efficiency of homomorphisms for tree patterns.

From an algorithmic point of view, partially injective homomorphisms are realized by
extending pattern graphs by special edges that correspond to injectivity constraints. We
show that partially injective homomorphisms are efficiently decidable if and only if ordinary
homomorphism from the edge-extended pattern graph can be decided in polynomial time.
In order to maximize the number of injectivity constraints while guaranteeing efficiency,
we utilize the class of bounded treewidth graphs (Robertson and Seymour, 1986). More
precisely, we extend patterns by a maximal set of injectivity constraint edges such that
the resulting graphs have bounded treewidth. While there exist several graph classes from
which ordinary homomorphism can be decided efficiently, bounded treewidth graphs are of
particular interest for our purpose. In fact, Grohe (2007) proves that homomorphisms can
be decided in polynomial time if and only if the pattern graph has bounded treewidth. Using
this result, partially injective homomorphisms guarantee a mazimal degree of injectivity while
remaining efficiently decidable.

In order to extract suitable pattern sets for graph classification purposes, we propose a
mining algorithm that enumerates frequent patterns w.r.t. partially injective homomorphism.
As the set of injectivity constraints depends on the particular pattern at hand, the output of
the mining algorithm contains not only the tree patterns, but also the injectivity constraints.
A complete enumeration of all frequent patterns together with the corresponding constraint
set is, however, practically infeasible. For one thing, this issue is overcome by requiring edge-
extended pattern graphs to be k-trees (Rose, 1974), i.e., edge maximal graphs of treewidth
at most k. Utilizing the algorithmic definition of k-trees, we arrive at a natural refinement
operator for the corresponding pattern mining problem, allowing for an efficient frequent
pattern enumeration.

In our experimental evaluation, we asses the predictive performance of the patterns ob-
tained. We measure the accuracy achieved using kernel functions which define graph simi-
larity in terms of co-occurring pattern graphs. Our experimental results yield two significant
observations. Firstly, it can be observed that the degree of partial injectivity is directly
correlated to the predictive performance. The results show that as the degree of partial injec-
tivity increases, the predictive performance gradually approaches that achieved by ordinary
subgraphs. Secondly, we found that relatively low degrees of partial injectivity suffice to ob-
tain results close to that of ordinary subgraphs. Hence, our approach provides an attractive
trade-off between complexity and predictive performance.

4.1 Partially Injective Homomorphisms
In this section, we formally define partially injective homomorphism, the central notion for this
chapter, and discuss some of its properties. As outlined above, partially injective homomor-

phisms provide a natural transition from graph homomorphisms to subgraph isomorphisms.
We obtain this transition by considering partial injectivity, i.e., by requiring the injectivity
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H: G:
vy vg
TRANSFORM TRANSFORM
_ o
v3 vyg
(a) Pattern H with constraints C = {vavs}. (b) Target graph G.

Figure 4.1: Transformation of pattern graph H with constraint set C = {vqv3} and
target graph G using the reduction steps as described in Sect. 4.1.1.

constraint not for all vertex pairs in the pattern graph, but only for subsets. This can be
formalized as follows:

Definition 4.1 (Partially Injective Homomorphism). For graphs H,G € G, and con-
straints C < [V(H)]?, a partially injective homomorphism from H into G satisfying the
injectivity constraints in C is a homomorphism ¢ from H into G such that o(u) # p(v) for
all wv € C. We write HS,G if such a partially injective homomorphism exists.

We refer to the corresponding decision problem as PIHOM problem and denote it by
PIHoM(H, G,C). Notice that the set of constraints C is specific to the pattern graph H at
hand. Hence, we consider the pairs (H,C) and call it a PIHOM pattern. Due to loop-freeness
it suffices to consider the injectivity constraints only for unconnected vertex pairs in the
pattern graph H (i.e., we can assume w.l.o.g. that C n E(H) = ).

4.1.1 Reduction to Ordinary Homomorphisms

Partially injective homomorphisms can be polynomially reduced to ordinary homomorphisms
by performing a sequence of transformation steps on the pattern and target graphs. This is
achieved by adding auxiliary edges (referred to as red edges) to both graphs in the following
way: For H, G, and C above we transform H and G into edge colored graphs by the following
steps:

1. Color all (original) edges of H and G in blue,
2. for all wv e E(H) u C, connect u and v by a red edge, and
3. for all u,v € V(G) with u # v, connect v and v by a red edge.

Let the graphs obtained be denoted by H{(C) and G{T). A visualization of this transformation
is depicted in Fig. 4.1. Since there is a one-to-one correspondence between pairs (H,C) and
graphs H{C), we sometimes don’t distinguish between the two notions. Note that for reasons
of clarity, in the following, we will only visualize the red edges in the pattern graphs.

As homomorphisms between colored graphs preserve also the edge colors, the proof of the
claim below is immediate from the definitions.

Proposition 4.1. For H,G,C and H{(C),G{(T) above, it holds that HS,G if and only if
H{C) <, G(T).
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Figure 4.2: Examples for partially injective homomorphisms from H into G w.r.t.
constraint sets C1,Cs and C3 . Solid lines represent blue edges whereas dashed ones
represent red edges.

Fig. 4.2 visualizes three partially injective homomorphisms from H into G for different
choices of C. The constraints are explicitly visualized as dashed lines. Fig. 4.2(a) corre-
sponds to H Q)G, i.e., to ordinary homomorphism. Due to the lack of additional injectivity
constraints between vertices in H, the vertices {va,v3,v4} may be arbitrarily mapped onto
neighbors of ¢; in G. Fig. 4.2(b) depicts a partially injective homomorphism with a single
additional injectivity constraint. The constraint set C = {vou3} enforces that vy and vz are
mapped to distinct vertices in G. The final case depicted in Fig. 4.2(c) shows a partially injec-
tive homomorphism with a maximal constraint set C = {vavs, vovy, v3va} = [V (H)]*\E(H).
The mapping enforces partial injectivity between all vertex pairs in H and, thus, corresponds
to subgraph isomorphism.

4.1.2 The Lattice of PIHoM Problems

For H and G above, each set C < [V]?\E(H) defines a distinct PIHoM(H, G, C) problem and
the set of all PIHOM patterns over H form a (complete) lattice (L, <) with

Ly ={(H,C):C< [V(H)\E(H)} (4.1)
and with partial order < defined as follows:
For all C1,Co < [V(H)2\E(H), (H,C,) < (H,Co) iff C; < Co.

The least element (H, ) of Ly corresponds to ordinary homomorphism from H. Similarly,
the greatest element (H,[V]*\E(H)) matches the case of subgraph isomorphism. For any
target graph G, (L, <) is closed downwards in the sense that H %G and C; < C; implies
H%,G.

In this chapter, we consider lattices of PIHOM tree patterns, i.e., when the first component
in the PIHOM pattern (H,C) is a tree. When H is a tree with n vertices, the cardinality
of the corresponding PIHOM pattern lattice L is 20("2), i.e., exponential in the size of H.
Fig. 4.3 illustrates such a lattice (Lp, <) for a labeled path H of length 3. Each depicted
graph corresponds to a PIHOM tree pattern with a specific set of injectivity constraints.

4.2 Pattern Mining

In this section, we discuss the main ingredients concerned with the task of generating fre-
quent trees w.r.t. partially injective homomorphism. We start by defining the problem of
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€ YIPIMOSI],

T UIPIMoaL],

T U3PLaoaL],

Figure 4.3: Visualization of the lattice (L, <) for a labeled path H.

enumerating frequent mazimally constrained PIHOM tree patterns and introduce a corre-
sponding refinement operator. Next, we show that there exists no locally finite and complete
refinement operator for a natural representative set of this kind of patterns if we want to
avoid redundancy. We therefore relax the problem definition and propose an efficient pattern
mining algorithm tolerating certain redundancies in the output.

4.2.1 Efficiently Decidable PIHOM Problems

Our key idea is to consider such PIHOM problems that can polynomially be reduced to effi-
ctently decidable ordinary homomorphism problems. For the efficiency, we consider PIHOM
patterns of bounded treewidth, utilizing positive complexity results on deciding homomor-
phisms from this graph class (Dalmau, Kolaitis, and Vardi, 2002). The restriction of patterns
to trees (i.e., H in (H,C) is a tree) is motivated by a very natural refinement operator as well
as by the remarkable predictive performance, which is achieved by using frequent subtrees
w.r.t. subgraph isomorphism (Welke, Horvath, and Wrobel, 2017).

In general, given a tree H and target graph G, PIHOM(H, G,C) can be decided in poly-
nomial time if C = ¢J (i.e., for ordinary homomorphism), but is NP-complete whenever
C = [V(H)]*\E(H) (i.e., for subgraph isomorphism). We bridge this complexity gap by
considering a distinguished subset of Ly for which the corresponding PIHOM problems are
decidable in polynomial time for any target graph G. To ensure this property, we utilize the
notion of treewidth (Robertson and Seymour, 1986). More precisely, for a tree H and some
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constant k > 0, we consider the pattern set
LY — {(H,C) e Ly : H(C) has treewidth at most k}. (4.2)

The following proposition is immediate from the reduction of PIHOM problems to ordinary
homomorphism (Proposition 4.1), together with the positive complexity result on deciding
homomorphisms from graphs of bounded treewidth (Dalmau, Kolaitis, and Vardi, 2002).

Proposition 4.2. For all (H,C) € E’}{ and for all target graphs G, PIHOM(H,G,C) can be
decided in polynomial time.

Our experiments (cf. Sect. 4.4) clearly demonstrate that, besides the structural gap
between homomorphisms and subgraph isomorphisms discussed earlier, there is a large gap
between the predictive performances obtained when utilizing them as pattern embedding
operators for graph classification purposes. Furthermore, this gap vanishes as the number of
injectivity constraints increases. Motivated by this empirical observation and the negative
result formulated in Section 4.2.2 below, we will pay special attention to the mazimal elements
of £k, The intuition is to consider such constraint sets C for which PIHoM(H,G,C) can be
efficiently decided while retaining as much partial injectivity as possible. More precisely:

MAXIMAL ELEMENTS OF L%: A pattern (H,C) € L%, is mazimally constrained if

(i) H(C) is a complete graph whenever |V(H)| < k + 1, and
(ii) H{C) is a k-tree whenever |V (H)| > k + 1.

In fact, the set of maximally constrained PIHOM patterns form a positive border on (Ek , <)
w.r.t. the following interestingness predicate: (H,C) € Ly is interesting if H{C) has treewidth
at most k. We denote this border by Bd; (H).

Fig. 4.3 depicts the complete lattice (Lp, <) for a particular pattern H. The least element
in it corresponds to the PIHOM pattern (H, ). It is the only element having treewidth 1 and,
hence, trivially forms the border Bd for this tree pattern. While there exist a total of six
distinct PIHOM patterns of treewidth 2, only the ones containing two injectivity constraints
are in fact maximally constrained w.r.t. treewidth k¥ = 2. Adding any further constraint
would increase their treewidth to 3.

4.2.2 PIHowMm Core Patterns: A Negative Result

In the following, we address a central issue of enumerating PIHOM patterns. Using the
concepts introduced above, in this section we consider the pattern language £F defined by
the union of the E’}{s over all trees H. We show that a duplicate free enumeration of elements
in £ is not possible when using standard frequent pattern mining methods.

Our goal is to generate a subset S of £* on the basis of a graph database D for graph
classification purposes. For this purpose, it is desirable to avoid “redundancies” among the
patterns in S. Clearly, there are various ways of defining redundancies. Perhaps the most
natural one is to consider two patterns equivalent if they are contained in the exact same
subset of graphs in D. We refer to two such patterns as model equivalent. More specifically:
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MoDEL EQUIVALENCE (=,): Two pattern graphs (Hy,Cy), (He,Co) € LF are model equiva-
lent, denoted (Hy,C1) =y (H2,C2), if the equivalence H,°,G < H,%,G holds for
all graphs G € D.

While this notion of redundancy is arguably the most desirable one, it raises severe algo-
rithmic issues. In fact, such issues even exist for the weaker definition of pattern equivalence
defined by homomorphism equivalence. More precisely, consider the order < on £F defined
as follows: For all (Hl,Cl), (HQ, 02) € ﬁk, (Hl,Cl) <h (HQ,CQ) iff H1<Cl> <h H2<02>. One
can easily see that <y, is a preorder on £F. Using this definition, a set S < £F is regarded as
non-redundant if it contains no two homomorphism equivalent patterns, defined as follows.

HOMOMORPHISM EQUIVALENCE (=y): Two pattern graphs (Hi,C1), (Ha,C2) € LF are ho-
momorphism equivalent, denoted (H1,C1) =y (Ha,Ca), iff (H1,C1) <y, (H2,C32) and
(Ha,C2) <y, (H1,Ch).

Clearly, =, and =y, are both equivalence relations and =y, is finer than =, i.e., the partition
of £F induced by =y, is a refinement of that induced by =p,. Thus, model equivalent patterns
are not necessarily homomorphism equivalent, implying that =}, may allow a certain amount
of redundancies w.r.t. =p,.

A central issue of employing homomorphism as a pattern matching operator is that the
equivalence classes in £¥/=y, may contain infinitely many patterns, due to the fact that <y,
is not anti-symmetric. In order to avoid duplicates, it is therefore desirable to identify at
most one element from each equivalence class in £¥/=y,. For each such C e £F/=y, one
can consider the core of C', a canonical representative element, defined as follows: Select
an arbitrary pattern (H,C) € C and take the smallest subgraph H'(C") of H{(C) such that
(H,C) =, (H',C'). It holds that H'{C") can be computed by a greedy algorithm removing
the redundant edges one by one. The properties of treewidth together with the results of
Chandra and Merlin (1977) and Dalmau, Kolaitis, and Vardi (2002) imply that (H’,C’) is a
core of C, it always exists and is unique modulo isomorphism independently of the choice of
(H,C), and can be calculated in time polynomial in the size of (H,C). We denote the set of
cores in LF by LF.

While subgraph isomorphism as the pattern matching operator allows for a very natural
refinement operator on the pattern language, this is typically not the case for homomorphism,
caused also by the difference in the anti-symmetry. Indeed, in case of subgraph isomorphism,
the pattern language along with the partial order defined by subgraph isomorphism can
directly be translated into an ideal refinement operator (assuming that all patterns are con-
nected); just extend the pattern at hand in every possible way either by a single edge or
by a single vertex connected to one of the existing vertices. In contrast, the preorder on
LF defined by <;, does not impose such an algebraic structure that could be turned into a
(natural) algorithmic definition of a refinement operator on E’g. In fact, L’g may contain cores
having infinitely many “direct” refinements, implying the following negative result:

Theorem 4.1. For k > 1, there exists no finite and complete refinement operator for the
preordered set (LF,<3).
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Proof. We show the claim for £ = 1, by noting that a similar argument can be used for all
k > 1. Consider the case that the vertices of H are labeled by the elements of ¥ = {a, b, c}
for all (H,C) € L£F and suppose for contradiction that there exists a finite and complete
refinement operator p for (£¥, <y,). Then, for all (H,C) € LF, there exists an N € N such that
|p((H,C))| < N. Let P = vjvavs be a path such that its vertices vy, ve, v3 are labeled by a, b, b,
respectively. We denote P by the string abb. Clearly, P{Z) is a core. Thus, (P, ) € LF.
One can see in a similar way that (P, &) € £F for all £ € N, where Py is the path abbb’c.
Furthermore, for all £ € N it holds that there is no (H,C) € LF such that P{(Z) <}, H{C) and
H{C) <y, P{). By finiteness, |p((P,))| = n for some n € N. But then at least one of the
elements of {(P;, &) : £ =0,1,...,n} is not in p((P, &¥)), contradicting p’s completeness. []

The negative result formulated in Theorem 4.1 does not imply that PIHOM core patterns
cannot be enumerated efficiently. However, it indicates that traditional pattern generation
paradigms based on refinement operators are not applicable to (Elg’ ,<pn). In the next section
we therefore relax our problem setting and tolerate further redundancies in the output pattern

set.

4.2.3 The Problem Definition

Theorem 4.1 implies that we have to consider a different pattern language in place of £F if we
want to generate the output patterns by using some algorithmically appropriate refinement
operator. To achieve this goal, we revert to considering the set of mazimally constrained

patterns £F < £F. More formally, we consider the patterns

k
L max

:={(H,C) € Bd}(H) : H is a tree}. (4.3)

The corresponding partially injective homomorphisms obtained in this way are as close
as possible to subgraph isomorphism subject to bounded treewidth, resulting in a pattern set
of higher predictive performance, as shown empirically in Section 4.4. While this choice of
pattern language does not lead to a redundancy free mining algorithm w.r.t. homomorphism
equivalence, it allows for outputting such patterns with incremental polynomial delay. Using
this definition, we consider the following pattern enumeration problem:

FREQUENT MAXIMALLY CONSTRAINED TREE MINING (FMCTM) PROBLEM: Given a fi-
nite set D of graphs and integers ¢, h, k > 0, list all (H,C) € L% . such that |V (H)| < h

and freq((H,C),D) = t, where freq((H,C), D) denotes the (absolute) frequency of the
PIHOM tree pattern (H,C) in D, i.e., freq((H,C),D) = {G e D: HEGY| .

PIHOM tree patterns satisfying the frequency constraint in the definition above will be
referred to as frequent PIHOM patterns, or simply frequent patterns. As mentioned earlier,
one of the most important distinguishing features of the problem setting above is that the
pattern matching operator is not static (i.e., fixed in advance), but dynamic, in contrast to all
traditional frequent graph mining algorithms. Clearly, whether a tree pattern is frequent or
not directly depends on the underlying set of constraints applied in the embedding operator.
It is therefore necessary to output a frequent tree along with the injectivity constraints
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Algorithm 2 LISTING FREQUENT MAXIMALLY CONSTRAINED PATTERNS

input: graph dataset D, integers t,k,h > 0

output: all t-frequent patterns of £¥__ with size at least 1 and at most h

ENUMERATE((H,C)):
1: R := REFINEMENTS((H,C), k)
2: for all (H',C') € R do

3: if |V(H)|<hna(H',C')¢O Afreq((H',C'),D) >t then
4: print (H’,C’) and add it to O
5: ENUMERATE((H',C"))
MAIN:
1: O:=¢g
2: ENUMERATE((L, &)) // L denotes the empty graph

defining the (dynamic) pattern matching operator, i.e., the output is always a pair (H,C),
instead of H only.

The parameter h in the problem definition provides an upper bound on the size of the
output patterns. It ensures that the algorithm solving the FMCTM problem will always
terminate. It is noteworthy that without h, the output of the FMCTM problem would
generally contain infinitely many frequent patterns. We also note that the output O of
the FMCTM problem may contain frequent patterns that are homomorphism equivalent.
Furthermore, the elements of O are not necessarily cores. In case the output is required to be
a non-redundant subset of £¥, after the computation of O, one can first remove all patterns
from it that are redundant w.r.t. homomorphism equivalence and then calculate the core for
each pattern remaining in . Since all patterns in O have bounded treewidth, both steps
can be performed in time polynomial in the size of O.

4.2.4 The Mining Algorithm

In this section, we present our algorithm solving the FMCTM problem and prove that it is
correct and enumerates the output patterns in incremental polynomial time.

We guarantee efficiency, i.e., incremental polynomial time (c.f. Sect 2.5.1), by considering
the partial order € on LF . instead of the preorder <y, where C is defined as follows: For all
(H,C),(H',C") e Lk, ., (H,C) < (H',C') if and only if there exists a subgraph isomorphism
from H(C) into H'{C"). Clearly, freq((H,C),D) = freq((H',C’), D) whenever H(C) < H'{C"),
i.e., frequency is anti-monotonic on the poset (L., <). Thus, maximal PIHOM tree patterns
are closed downwards w.r.t. frequency. While the poset (L. <) allows for an efficient
pattern enumeration, the output may contain patterns that are homomorphism equivalent.
That is, the price we have to pay for the positive complexity result is that the output may
contain some redundant patterns.

Algorithm 2 is based on the recursive function ENUMERATE generating the output patterns

in a DFS manner. Its input consists of the same parameters D, ¢, h, and constant k as the

53



Chapter 4. Graph Kernels Based on Partially Injective Homomorphisms

FMCTM problem. The output patterns already generated are stored in the global variable O.
The algorithm calls ENUMERATE with the empty pattern (L, ¢f), where L denotes the empty
graph (line 2 of MAIN). As a first step (line 1 of ENUMERATE), function REFINEMENTS
generates the set of refinements for the input pattern (H,C); the process governing how
new candidate patterns are generated is determined by the refinement operator described
below. If a newly generated candidate pattern (H’,C’) (i) fulfills the size constraint (i.e,
|[V(H")| < h), (ii) has not been generated before (i.e., (H',C") ¢ O), and (iii) is t-frequent
(i.e., freq((H',C"),D) = t), we print it, store it in O, and call ENUMERATE recursively for
this new frequent pattern (lines 3-5).

Refinement Operator Function REFINEMENTS in Algorithm 2 returns the set R of re-
finements for a pattern (H,C) € £F . and k > 0. All patterns (H',C’) € R are required to
satisfy the following conditions:

X

(i) H' is a supertree of H obtained by extending H with a new vertex and edge,
(i) C <, and
(iil) (H',C') e Lk

max, 1., it is maximal w.r.t. treewidth &.

That is, trees of size n are extended into trees of size n + 1 by condition (i). Furthermore,
condition (iii) implies that H'(C’) is a k-tree if |V (H')| > k + 1; otherwise it is a complete
graph.

The algorithmic characterization of k-trees (cf. Def. 2.11 in Sect. 2.4) gives rise to the
following natural refinement operator on £F_ : A pattern (H’,C’) of size n + 1 is among the
refinements of a pattern (H,C) € LF_  of size n iff (H',C’) can be obtained from (H,C) in
the following way: If n = 0 (i.e., (H,C) = (L, &¥)), we define the refinements of (H,C) by the
set of graphs consisting of a single vertex (and no edges, as we consider loop-free graphs).

Otherwise, i.e., for n > 0, we proceed as follows:
(i) Introduce a new vertex u.

(ii) If n < k, then connect u to a vertex v € V(H) and add an injectivity constraint uv’ to
C for every v' € V(H)\{v}; otherwise select a k-clique C' in H{C), connect u to a vertex
v of C'in H, and add an injectivity constraint uv’ to C for every v' € V(C)\{v}.

An example of such a refinement step is given in Fig. 4.4. The correctness of the refinement
step is stated in the following lemma.

Lemma 4.1. Let (H,C) € LF . and let (H',C") be a pattern obtained from (H,C) using the

refinement process as defined above. Then (H',C') € LF

max-

Proof. The proof that H' is a tree is straightforward. Regarding the maximality w.r.t.
treewidth k, the graph H'(C’) of size n + 1 which corresponds to the refined pattern (H',C’)
is always a complete graph of treewidth at most k for the case n < k. For n > k, it is
always a k-tree by the algorithmic characterization of k-trees. Thus, (H',C’) € LF . follows
as claimed. O
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Figure 4.4: PIHOM pattern (H,C) and one of its refinements for the case k = 2.
(H',C’) is constructed by selecting the clique {va, v3}, connecting the new vertex vs
to vs by a blue edge and to v9 by a red edge.

Due to the algorithmic description of the refinement operator, it is easy to see that the
number of refinements is polynomially bounded. More precisely:

Lemma 4.2. For any (H,C) € LF ., the number of refinements of (H,C) is bounded by a
polynomial of the size of H and the cardinality of the node label alphabet X.

Proof. Let n = |V(H)|. For n < k, the new vertex u can connect to each of the n vertices
by a blue edge. Taking into account the degree of freedom for the vertex label of u and the
edge label of the newly introduced blue edge, the set of refinements of (H,C) is bounded by
n|X|?. For the case n > k, the new vertex u can be connected by a blue edge to each of the
k vertices of each k-clique of H(C). As H{C) is a k-tree, it has exactly nk — k? + 1 < nk
k-cliques (Kloks, 1994). Thus, the number of refinements is bounded by nk?|X|2. O

Finally, we are ready to formalize our main result which states that frequent PIHoMm
patterns can be efficiently enumerated:

Theorem 4.2. For any D, t, k, and h, Algorithm 2 is correct and generates the output
patterns in incremental polynomial time.

Proof. Regarding the correctness, the soundness is immediate from Lemma 4.1 together with
lines 2-3 of Alg. 2 and the completeness follows by induction on the pattern size from the
algorithmic characterization of k-trees and from the anti-monotonicity of frequency.
Regarding the enumeration complexity, the number of refinements of a pattern (H,C) is
bounded by a polynomial of the combined size of H and ¥ (Lemma 4.2), which, in turn,
is bounded by the size of D. As the patterns are generated in a DF'S manner, the number
of patterns for which the condition in line 3 has to be tested after the output of the last
frequent pattern until the next one or termination is thus bounded by a polynomial of D
and h. Regarding the complexity of the conditions of line 3, we note that the condition on
the pattern size can be checked in time linear in the size of H’. Testing the membership
condition (H',C’) € O can be done in time polynomial in the combined size of H' and O,
as isomorphism between k-trees can be decided in linear time (Arvind et al., 2012). Finally,
deciding whether (H’,C’") € £F . is frequent in D can be decided in time polynomial in the
combined size of H' and D, as for all graphs G € D it can be decided in time polynomial
in the combined size of H' and G whether there exists a homomorphism from H’(C’) into
G(T) (cf. Proposition 4.2). Thus, as the pattern size is bounded by h, the conditions in
line 3 can be checked in time poly(h, size(D), size(O)), i.e., in incremental polynomial time
as stated. O
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4.2.5 The Number of PIHoOM Patterns

The last section has introduced an efficient mining algorithm that enumerates frequent
PIHoM patterns with incremental polynomial delay. In other words, the time it takes to
output two consecutive elements is bounded by a polynomial in the combined size of the
input as well as previously outputted patterns. This notion commonly serves as a complexity
measure for enumeration algorithms (see Sect. 2.5.1) and is particularly relevant in cases
where the output set may be be of exponential or even infinite size.

Despite the bounded delay, we, nonetheless, require the amount of frequent patterns to
be manageable in order to solve the FMCTM problem in practice. The output size may (to
some degree) be influenced by the choices for the frequency threshold ¢ and maximum pattern
size h. However, while the output size of pattern mining algorithms is a general concern of
subgraph mining problems, it is specifically problematic when considering partially injective
homomorphism. More precisely, it holds that if a pattern tree H is subgraph isomorphic to
a target graph G, then HS,G holds for any injectivity constraint set C. In fact, for every
such H, the number of frequent maximally constrained patterns (H,C) € £E .. may even be
exponential in the size of H. This observation on the output size of the FMCTM problem
suggests that while the pattern enumeration can be done efficiently, the burden of complexity
is somewhat shifted onto an exploding number of frequent PTHOM patterns.

In order to tackle this problem, in our experimental evaluation (see Sect. 4.4), we consider
a practically more feasible variant of Algorithm 2 by giving up the completeness. More
precisely, we require the output to contain no two patterns (Hy,Cy) and (Hg,Cy) with Hy =
H>. In other words, a tree pattern may be outputted at most once. This is achieved by
altering line 1 in Alg. 2 such that function REFINEMENTS returns a single random pattern
from the set of all possible refinements. Furthermore, instead storing PIHOM patterns in
O, it suffices to store only tree patterns in it. A consequence of this alteration is that some
tree patterns which are contained in the complete output of Alg. 2 may not be outputted
anymore. However, if a tree is a frequent subgraph (w.r.t. subgraph isomorphism), then it is
also contained in the output of the altered version of Algorithm 2. Finally, we note that the
incompleteness of the output does not compromise the soundness or the polynomial delay of
Algorithm 2.

4.2.6 Pattern Embedding Computation

In this section, we briefly describe how we computed the embeddings of PIHOM patterns into
target graphs. We avoid an in-depth discussion on a general algorithm for deciding partially
injective homomorphisms from arbitrary PIHOM patterns and instead focus on the case that
patterns are generated as described in Algorithm 2.

Recall from Sect. 2.4.1 that deciding homomorphisms from graphs of treewidth k involves
two essential steps. The first step consists of computing a tree-decomposition of width k. A
tree-decomposition decomposes a graph G into a tree whose vertices correspond to specific
induced subgraphs of G. Subsequently, this tree-decomposition is utilized to solve the de-
cision problem (and even homomorphism counting problem) using a dynamic programming
approach. In the following, we provide an outline of these two steps for the case that the
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graphs are PIHOM patterns enumerated by Algorithm 2.

While, for a constant &, finding a tree-decomposition of width k for a graph with treewidth
at most k can be done in linear time, the known algorithms tend to be practically infeasible
for k > 3 (Bodlaender, 1993). Fortunately, we can avoid the costly tree-decomposition
computations for PIHOM patterns. This follows from the algorithmic description of the
pattern refinement operator (see Sect. 4.2.4), which can be used to directly derive tree-
decompositions of patterns.

Recall, that a refinement step connects the newly introduced vertex v to a set .S of vertices
in a given pattern H(C). If n < k, then S = V(H{(C)), otherwise S is a k-clique of H{C).
Let H'{C') be such a refinement of H(C) and assume the tree-decomposition TD(H{C)) =
(T, X,r) to be known. Then, a tree-decomposition of H'(C") is obtained as follows:

(i) Select a bag B; € X with S € B;,
(ii) create a new bag B,» = S U {v}, and
(iii) connect the corresponding new node ' to node ¢ in 7.

The resulting tree-decomposition of H'(C’) is given by (77, X U B,/,r") where T" is the tree
that is obtained by connecting r’ to T'. Trivially, the tree-decomposition of a singleton pattern
consists of a single bag containing only one node. Thus, using the above procedure, tree-
decompositions of PIHOM patterns can easily be acquired during the pattern refinement step
described in Sect. 4.2.4.

The second step for deciding (resp. counting) homomorphisms from PIHOM patterns
directly utilizes the tree-decompositions. Given a pattern H{C) and its tree-decomposition,
we can decide (and even count) partially injective homomorphisms from H{C) using a dy-
namic programming approach. The corresponding algorithm makes use of the observation
that TD(H{C)) = (T, X,r) decomposes the pattern H(C) into a set of subgraphs induced by
the bags in X. The key idea is to iterate over the nodes in 7' in a bottom up manner (w.r.t.
root r € V(T)) and compute sets of partially injective homomorphisms from increasingly
large subgraphs of H{C) into the target graph G. For this purpose, every node j € v(T) is
associated with an embedding count table, denoted #;, which tracks the amounts of partially
injective homomorphisms from the subgraph induced by bag B;. Finally, whether there exists
a partially injective homomorphism H S,G is determined by the embedding count table #,
computed for the root r of T. For a more detailed description on counting homomorphisms
from graphs of bounded treewidth, we refer to Sect. 2.4.1.

While this homomorphism counting algorithm has polynomial time complexity, it is
nonetheless quite often practically inefficient. This practical inefficiency is mainly rooted
in the overwhelming amount of mappings from induced subgraphs of H{C), which need to be
checked for whether they are partially injective homomorphisms or not. Fortunately, much of
this computational effort can be avoided in our pattern mining scenario. This is achieved by
reusing prior embedding information instead of naively applying the counting algorithm to
every pattern from scratch. More precisely, let H(C) be a pattern with TD(H{C)) = (T, X, r)
for which the partially injective homomorphism counting algorithm into some target graph G
has already been invoked and all corresponding count tables #;,j € V(T') have been stored.
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TD(H(C)): TD(H'(C'):
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Figure 4.5: Consider a refinement H'(C’) of pattern H{C) introducing a new vertex
vs which connects to vertices vo and vz (e.g, as displayed in Fig. 4.4). The tree-
decomposition of H'(C") can simply be obtained by connecting a new bag B, to an
existing bag B; in the tree-decomposition of H{C) which contains vertices v, vs.

Let H'{C") with TD(H'{C")) = (T", X’,r’) be a refinement of H{C) introducing a new bag
B,s. We now copy the count tables #;,j € V(T') of TD(H{C)) into TD(H'{C’)). This can be
done since we know that V(T') = V(T")\{r'}. Next, we set the corresponding node 7’ as the
root of T”. It is then sufficient to merely update the counts in #; for all nodes j € V(T")\{r'}
of TD(H'{C’")). This can be done by simple joins without the need to check for whether
embeddings are homomorphisms or not. Finally, only for the root ' € V(T”), new partially
injective homomorphisms need to be computed.

An illustration of a PIHOM pattern’s tree-decomposition refinement can be found in Fig.
4.5. For the newly introduced vertex vs which connects to vo and v3 by either a blue or red
edge, a new bag B, = {vy,v3,v5} is added to the tree-decomposition. The corresponding
node 7’ is connected to a node i with B; containing vy and v3. Finally, 7’ becomes the root
of TD(H'{C")) = (T",X’,7’). In order to compute the embeddings from the refined graph
H'{C") into some target graph G, it suffices to reevaluate the entries in the embedding count
tables in bottom-up manner for all nodes in 7" up to node i. Since the embedding count
table #; now contains all possible mappings for vo, vs, it only needs to be checked for what
mappings of vz this can be extended.

4.3 The Kernel Function

Frequent tree patterns have proven to be a powerful graph feature in terms of their predictive
capabilities (Welke, Horvath, and Wrobel, 2017). To evaluate the predictive performance of
our PIHOM patterns, we now define a general kernel method which compares graphs based
on the set of mutual frequent patterns.

Using the above concepts, we can embed graphs into the binary feature space spanned
by frequent PIHOM patterns and define a graph similarity by the simple dot product in that
space. More formally, let O be a set of PIHOM patterns outputted by Alg. 2. Then for
G,G € G, the frequent pattern kernel is defined by

k(G,G") = |{(H,C)e O: HS.G A HSG'}. (4.4)

Hence, the kernel defines graph similarity in terms of the number of mutually occurring
frequent PIHOM patterns.
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4.4 Experimental Evaluation

This section is concerned with the empirical evaluation of the kernel method described in
Sect. 4.3. In particular, we evaluate the predictive performance of frequent maximally con-
strained PIHOM tree patterns and the runtime of the algorithm as outlined in Sect. 4.2.5. In
the experiments below, we investigate the following three research questions:

(i) We compare the predictive performance of the patterns generated by our algorithm
with that of ordinary frequent subtrees on different benchmark datasets. We found
that the predictive performance achieved by PIHOM patterns for moderate amounts
of injectivity constraints already compares favorably to that of obtained by utilizing
ordinary frequent subtrees.

(ii) We, furthermore, analyze how the degree of injectivity in PTHOM patterns impacts the
resulting predictive performance of the kernel method. To answer this question, we fix
a set of tree patterns and consider partially injective homomorphisms with increasing
degrees of injectivity, ranging from ordinary homomorphism to subgraph isomorphism.
Our results clearly indicate a strong correlation between degree of injectivity and pre-
dictive performance.

(iii) Finally, we provide runtime measures comparing our algorithm to the graph miners
GASTON (Nijssen and Kok, 2005) and FSG (Deshpande et al., 2005). We show that
while these algorithms are practical only for very restricted graph types, our approach
performs well on arbitrary graph datasets. In particular, while our implementation was
generally slower on the considered molecular benchmark datasets, it clearly outperforms
GASTON and FSG on artificial datasets containing only slightly more complex graph
structures beyond molecular graphs.

To evaluate the predictive performance, we restrict the discussion to the molecular real-
world benchmark datasets DHFR, MUTAG, NCI1, and PTC-MR. This choice is mainly of
practical nature. In particular, the graphs considered are of a fairly simple structure (Horvath
and Ramon, 2010), allowing for the application of state-of-the-art frequent subgraph min-
ing systems that are generally very efficient on molecular graph data, but quickly become
practically infeasible for slightly more complex graphs. Thus, the use of molecular datasets
allows for a proper comparison of the predictive performance of our PIHOM patterns to “gold-
standard” results achieved by ordinary frequent subgraphs (obtained by utilizing subgraph
isomorphism).

For all frequent pattern generation methods, we chose a frequency threshold value of 5%,
which has proven to be a suitable choice in prior experiments. Furthermore, prior experiments
have shown that patterns of fairly low sizes achieve the overall best predictive performances.
We therefore limit the size of patterns to at most 8 vertices. In fact, in many cases the results
even decrease for larger patterns.

The predictive performances are reported in terms of accuracy obtained by support vector
machines (SVM) using a 5-fold cross-validation. The SVM parameter C' is selected from the
value set 2 : i € {—12,-8,—5,-3,—1,1,3,5,8,12}. We report the mean and standard
deviation over 10 such cross-validation repetitions.
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Figure 4.6: Prediction measures for different treewidth choices k£ in contrast to
frequent subgraphs and subtrees (s.g.i.: subgraph isomorphism, p.i.h.: partially
injective homomorphism).

DHFR MUTAG NCI1 PTC-MR

p.ih. trees (k=1) 36975 6852 17659 13956
p.ih. trees (k =2) 25465 3551 10043 7573
p.i.h. trees (k =3) 17521 2109 5969 3142
p.ih. trees (k =4) 10615 1160 3666 1701
s.i. trees 4009 421 1360 484
s.i. graphs 4061 432 1411 470

Table 4.1: Numbers of frequent patterns for each pattern type in the respective
datasets.

4.4.1 Predictive Performance

In order to evaluate the predictive performance of the frequent maximally constrained PIHOM
patterns generated by our algorithm, we compare their predictive power to that achieved by
the set of (ordinary) frequent subtrees as well as frequent subgraphs for which the embedding
operator is subgraph isomorphism. For all pattern sets, we provide the accuracy values
obtained by the frequent pattern kernel (see Sect. 4.3).

Fig. 4.6 shows the predictive performance for different degrees of injectivity governed by
the treewidth parameter k. Apart from the dataset PTC-MR, it is apparent that increasing
values of k lead to overall better accuracy values. The results on MUTAG and NCI1 specif-
ically show that patterns mined w.r.t. homomorphism (i.e., £ = 1) result in comparatively
poor predictive performances. However, already for treewidth values as low as k = 3, the
results are very close to those obtained by subgraphs (“s.g.i. graphs”) and ordinary fre-
quent subtrees (“s.g.i. trees”). Hence, our approach offers an attractive trade-off between
complexity of the pattern embedding operator (depending on k) and predictive power.
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Figure 4.7: Predictive performances for different degrees of injectivity governed by
treewidth k. k = T corresponds to ordinary subgraph isomorphism.

The amounts of frequent PIHOM patterns returned by our algorithm as well as those of
ordinary frequent subtrees and subgraphs up to size 8 can be found in Tab. 4.1. Since utilizing
partially injective homomorphism for lower treewidth values k leads to less restrictive pattern
embedding operators, the numbers of frequent PIHOM patterns decrease with increasing
values of k. We note that the sets of frequent PIHOM patterns for k € {2, 3,4} are subject to
some degree of randomness caused by the enumeration algorithm variant described in Sect.
4.2.5. However, prior experiments showed that the numbers did not significantly differ for
repeated invocations of the mining algorithm.

4.4.2 Degree of Injectivity vs. Predictive Performance

We now specifically analyze the influence of the degree of injectivity in PIHOM tree patterns
on the predictive performance. To exclude possible side-effects caused by different pattern
sets, we first fix a set S of tree patterns for all datasets in our experiments by selecting some
random subset of the frequent trees generated w.r.t. subgraph isomorphism. Then, for each
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tree pattern H € S, we consider a PTHOM tree pattern Hp = (H,Cy) that is maximally
constrained w.r.t. treewidth k. Since H is a tree, C1 = & and hence Hy is the least element
in the lattice (Lp, <), corresponding to ordinary homomorphism from H. Analogously, Ht
contains all possible injectivity constraints and is therefore the greatest element of (Ly, <),
corresponding to ordinary subgraph isomorphism from H. In this way, we can simulate
monotonically increasing degrees of injectivity in the pattern matching operator for a tree
pattern H, leading from ordinary homomorphisms to subgraph isomorphisms. The degree
of injectivity in the pattern matching operator is directly governed by k. For each k €
{1,...,4,T} we consider the feature set S, = {Hy : H € S} and evaluate the predictive
performance.

Figure 4.7 shows the predictive performances achieved for different degrees of injectivity
governed by k on several tree pattern sets S. With PTC-MR being an exception, all other
datasets show a significant difference between employing homomorphism (k = 1) and sub-
graph isomorphism (k = T) as the pattern matching operators. Concerning PTC-MR, this
correlation can only vaguely be observed due to the large standard deviations. The datasets
DHFR, MUTAG, and NCI1, however, show a close correlation between the degree of injec-
tivity and predictive performance. Increasing values of k£ in most cases yield an improvement
in predictive performance. Notice that the gap between & = 2 and k = 3 is substantial
for the datasets MUTAG and NCI1. For MUTAG a choice of treewidth 3 even leads to
the overall best predictive performance. In summary, it can be observed that already fairly
low degrees of injectivity suffice to considerably outperform the predictive power of ordinary
homomorphism and approximate that of subgraph isomorphism.

4.4.3 Runtime Analysis

We measured the runtimes of our algorithm and compared them to those achieved with
the graph miners GASTON (Nijssen and Kok, 2005) and FSG (Deshpande et al., 2005).
GASTON is a depth-first search frequent pattern enumerator that operates by first generating
paths, which are subsequently extended into trees and finally into cyclic graphs. We employed
GASTON to mine the set of frequent tree patterns which can be done using a command line
option. There are two variants of the tool that differ by whether or not the embedding lists are
explicitly stored in memory. Thus, the embedding lists (EL) and the recomputed embeddings
(RE) methods are essentially trade-offs between runtime and memory requirement. The
FSG algorithm enumerates frequent patterns in a breath-first search manner. It needs to be
noted, that FSG outputs all frequent subgraphs, and not only frequent subtrees as in all other
approaches considered in this chapter.

Since frequent subgraph mining systems like GASTON (Nijssen and Kok, 2005) seem to
be specifically designed to cope with graphs of simple structure (such as molecular graphs),
runtime comparisons on only chemical graph datasets are not expressive enough. We therefore
consider also artificial graph datasets generated according to the Erdos-Rényi random graph
model. We consider several such datasets consisting of 50 graphs with an average of 25
vertices, similar to the chemical datasets. For each dataset, we consider different node-
to-edge ratios to investigate the behavior of the mining algorithms on graphs of various
structural complexity. Note that only connected graphs are considered in our experiments.

62



4.5. Summary and Concluding Remarks

DHFR MUTAG NCI1 PTC-MR

GASTON (EL) 0.8 0.1 2.5 0.1
GASTON (RE) 3.5 0.3 8.5 0.1
FSG 32.2 0.7 30.5 0.4

PIH Miner (k = 3)  202.2 5.1 229.1 7.7

Table 4.2: Runtimes (in seconds) of our algorithm in comparison to GASTON and
FSG on molecular datasets for mining all patterns up to size 10.

Unlabeled Labeled
Node-to-edge ratio | 1:1 1:1.5 1:2 1:3 1:1 1:1.5 1:2 1:3
GASTON (EL) 2.8 54.6 - - 1.8 20.1 1168.9 56464.6
GASTON (RE) 5.0 39.5 1163.0 31061.4 | 5.7 449 1120.2 24778.0
FSG 194.2 10584.9 10888.4 10852.5 | 19.9 82.8 2375.7 58816.2
PIH Miner (k=3) | 1.1 2.7 8.4 23.2 6.8 20.8 160.8 568.9

Table 4.3: Runtimes (in seconds) of our algorithm in comparison to GASTON and
FSG on Erdés-Rényi random graphs for mining all patterns up to size 10. Exper-
iments were conducted for unlabeled as well as labeled graphs where nodes were
randomly assigned one of two colors. Cases that did not finish due to insufficient
memory are marked by “-”.

While molecules have roughly as many vertices as edges (i.e., ratio 1:1), we consider ratios
of up to 1:3 in the artificial datasets. All experiments were performed on an Intel i7-4770
processor (4 cores) with 16GB of memory.

Table 4.2 and 4.3 show the running times for each algorithm and respective dataset.
As expected, GASTON and FSG perform very well on molecular graphs, compared to our
algorithm. However, for slightly more complex structures, i.e. Erdés-Rényi with node-to-
edge ration 1:2, the two traditional graph miners become quickly infeasible. Our approach
(referred to as PIH Miner) clearly outperforms FSG and GASTON on both artificial datasets
for node-to-edge ratios above 1:1.5.

4.5 Summary and Concluding Remarks

As a unifying view of ordinary graph homomorphisms and subgraph isomorphisms, we pro-
posed the concept of partially injective homomorphisms, a new kind of parameterized pattern
matching operator. We defined a class of efficiently decidable partially injective homomor-
phisms by extending tree patterns into bounded treewidth graphs and proposed an efficient
mining algorithm enumerating frequent constrained PITHOM patterns that are maximal w.r.t.
bounded treewidth. The experimental results showed that the predictive performance ob-
tained using this kind of patterns is close to that of ordinary frequent subtrees (and hence,
to that of subgraphs as well) on a range of real-world datasets. Furthermore, it could be ob-
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served that there is a direct correlation between partial injectivity in the pattern embedding
process and predictive performance of the obtained patterns, thus making partially injective
homomorphism an attractive choice for an efficiently decidable pattern embedding operator.

While we utilized trees as the choice of pattern class (i.e., the element H in (H,C) is a tree),
we note that this is not a necessary restriction. In fact, our proposed method is applicable
to any type of graph H as long as ordinary homomorphisms from the edge extended graph
H{C) can be efficiently decided.

An interesting research question is concerned with the extension of our approach to more
general relational structures. As graphs can be considered very simple relational structures,
it is an open question what implications our results have to inductive logic programming
(Nienhuys-Cheng and Wolf, 1997). More precisely, PIHoM(H, G, C) problems can polynomi-
ally be reduced to f-subsumptions between DATALOG goal clauses (or equivalently, boolean
conjunctive queries). From this reduction and our empirical results it is immediate that
the predictive performance of DATALOG goal clauses as patterns may also be improved by
adding injectivity constraints (i.e., literals of a distinguished binary predicate) to their bodies.

Finally, we note that our approach suffers from two drawbacks. Omne central issue lies
within the fact that although Algorithm 2 enumerates patterns with incremental polynomial
delay, it, nonetheless, generally has an exponential total runtime due to the exponential
number of potentially frequent patterns. We, however, note that the algorithm may be
terminated any time and is therefore capable of providing a non-empty output in feasible
time. Furthermore, it needs to be noted that the algorithm for deciding homomorphism from
graphs of bounded treewidth is often practically infeasible despite its theoretical polynomial
runtime. In order to address both issues, in the next chapters, we consider a pattern extraction
process which avoids both disadvantages using a conceptually different kind of constrained
homomorphism as the pattern embedding operator.
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WEISFEILER-LEHMAN FILTRATION KERNELS

The previous chapter introduced a method that utilized a tree pattern embedding operator
based on a specific kind of constrained homomorphism. While we showed that such partially
injective homomorphisms can be decided in polynomial time for a certain class of patterns,
there remain some disadvantages associated with this approach. As previously stated, the
main concerns that stem from this method include the lack of practical efficiency of the
decision algorithm as well as the uncontrollable amount of frequent patterns.

In an effort to address these issues, in this chapter, we make use of the popular Weisfeiler-
Lehman method (Weisfeiler and Lehman, 1968). The Weisfeiler-Lehman vertex relabeling
scheme was originally designed as a means to decide graph isomorphism with one-sided error.
It follows a label propagation approach that iteratively compresses the label of a vertex and
that of its neighbors into a new vertex label (see Sect. 2.7). These Weisfeiler-Lehman labels
have become a popular node descriptor due to the efficiency of the extraction method as
well as the remarkable predictive performance of this kind of pattern language (Shervashidze
et al., 2011).

A most interesting aspect of the Weisfeiler-Lehman method is that the generated vertex
labels correspond to rooted trees, known as unfolding trees. The Weisfeiler-Lehman vertex
relabeling process implicitly constructs such unfolding trees and furthermore induces a pat-
tern embedding operator on this kind of trees. Specifically, unfolding trees are embedded into
target graphs by locally bijective homomorphisms, which are certain types of constrained ho-
momorphisms (see Sect. 2.7.1). The determining advantage of the Weisfeiler-Lehman method
is that the identification of labels, or equivalently unfolding tree patterns, can be done very
efficiently. In fact, unlike the approach presented in Chapter 4, the extraction of Weisfeiler-
Lehman patterns requires neither explicit computations of the embedding operator nor costly
explorations of the pattern space.

A drawback of the Weisfeiler-Lehman method, however, is that it generates overly spe-
cific features. More precisely, Weisfeiler-Lehman vertex labels are often unique within a set
of graphs and are thus unsuitable for graph comparisons in terms of mutually occurring fea-
tures. The specificity stems from the fact that the Weisfeiler-Lehman labels (or equivalently,
unfolding trees) encode k-hop neighborhoods of vertices which are embedded via locally bi-
jective homomorphisms. Specifically, a certain unfolding tree T' can be embedded into a given
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target graph G by a locally bijective homomorphism only if G contains a vertex v such that
T precisely encodes the k-hop neighborhood of v.

As this kind of pattern matching of unfolding trees is arguably too restrictive, we propose
an approach which relaxes this strict pattern embedding process. This is effectively achieved
by considering only subsets of edges in the target graphs. The key idea is that an unfolding
tree T' which cannot be embedded into a graph G = (V| F) may nonetheless be embedded
into a graph G’ = (V,E' < FE). Fig. 5.1 shows an example of this concept. While the
simple depth-1 Weisfeiler-Lehman label corresponding to a vertex with a single neighbor is
not contained in G, it can nonetheless be embedded into its subgraphs Go, G3 and Gy4.

In this chapter, we construct several such subgraphs using concepts from computational
topology (Edelsbrunner and Harer, 2010). By using meaningful orders on the edges, we
replace a graph by a sequence of nested subgraphs, called filtration. More precisely, a filtration
of a graph G = (V, F) is a sequence of graphs Gi,...,G = G with evolving sets of edges
over the same set of vertices, i.e., Gy = (V, E;) with E; € E and E; < E; whenever i < j for
i,7 € [k]. The graphs in such a sequence can be interpreted as multiple levels of resolution and
describe how G is incrementally constructed by adding sets of edges. Clearly, with changing
sets of edges, the node neighborhoods and thus the Weisfeiler-Lehman labels change as well.
By extracting Weisfeiler-Lehman patterns over graph filtrations, we define powerful graph
representations. When compared to the ordinary set of Weisfeiler-Lehman labels in a graph
G, the advantages of considering graph filtrations of G are twofold: For one, considering
filtration graphs G;,i € [k] allows for the extraction of patterns that are not necessarily
present in the original graph G. Secondly, instead of simply representing a graph by the
set of its Weisfeiler-Lehman patterns, we can now represent it using existence intervals of
patterns over filtrations.

Using the above concept, we present a novel graph kernel that defines graph similarity
by comparing existence intervals of Weisfeiler-Lehman labels. This comparison is realized
using a Wasserstein distance on histograms representing aggregated existence intervals. As
one of the central contributions of this chapter, we show that this specific kind of distance
measure in fact yields proper graph kernel functions, the Weisfeiler-Lehman filtration kernels.
This type of kernel has several interesting properties. For one, we prove that it generalizes
the ordinary Weisfeiler-Lehman subtree kernel (Shervashidze et al., 2011) while increasing
its computational complexity only by a factor corresponding to the length of the filtration
sequence. Furthermore, we show that for certain choices of filtrations, the kernel is in fact a
complete graph kernel, i.e., it is capable of distinguishing all non-isomorphic graphs.

While our focus lies on considering Weisfeiler-Lehman labels as graph features, we show
that our approach can just as well be applied using any other kind of graph feature. We there-
fore introduce two types of graph filtration kernels and prove that they generalize standard
graph kernel frameworks.

In an experimental evaluation, we empirically demonstrate the favorable performance of
the Weisfeiler-Lehman filtration kernel on real-world datasets compared to state-of-the-art
graph kernels. We furthermore validate our theoretical results on the kernel’s ability to
distinguish non-isomorphic graphs, and finally report runtimes.

66



5.1. From Filtrations to Distances

5.1 From Filtrations to Distances

In this section, we formally define graph filtrations and show how occurences of graph fea-
tures are tracked over such sequences of graphs. Subsequently, we define a distance measure
between graphs using this kind of information. While we primarily focus on the case that the
graph features are Weisfeiler-Lehman labels, we introduce the following concepts in a general
fashion allowing our approach to be applied to any kind of graph feature (see Sect. 5.3).

5.1.1 Feature Persistence

The idea of tracking feature occurences over filtrations originates from persistent homology,
which refers to a method in computational topology that aims at measuring topological
features at various resolution levels (Edelsbrunner and Harer, 2010). Persistent homology is
applied in a wide range of topological data analysis tasks and has recently become a popular
tool for analyzing topological properties in graphs (Aktas, Akbas, and Fatmaoui, 2019). In
the following, we adopt some of its basic concepts and specifically fit them to describe the
idea of feature persistence.

Intuitively speaking, feature persistence tracks the lifespans of graph features in evolving
graphs. That is, it records the intervals during which occurrences of a specific feature appear
in sequentially constructed graphs. Such a graph sequence is defined by a graph filtration
which is essentially an ordered graph refinement that constructs a graph by gradually adding
sets of edges. More precisely, given a graph G = (V, E), a graph filtration F(G) is a sequence
of graphs

GicGac...cG,=G, (5.1)

where € denotes the subgraph relation and G; = (V, E; € E),i € [k] is called a filtration
graph of GG. Hence, filtration graphs differ only in the sets of edges and describe a sequence
in which the last element is the graph G itself. Without loss of generality, we assume G to
be edge-weighted by a function w : E(G) — Ry such that the filtration F(G) is implicated
by a sequence of decreasing real values

ar>ay>...>a,=0, (5.2)
where GG; contains the set of edges with weights greater or equal «;. In other words,
Gi=V,{ee E: w(e)=aw;}) . (5.3)

Thus, function F is determined by a threshold sequence F, = {a1,...,ar}. Clearly, given
some filtration function F and isomorphic graphs G, G’ (considering edge weights as well), it
holds that the graphs in F(G) and F(G’) must be pairwise isomorphic, i.e., G; = G, for all
i€ k]

While traditional persistent homology tracks lifespans of topological features such as con-
nected components and cycles, our notion of feature persistence is concerned with arbitrary
graph features. For the specific case of Weisfeiler-Lehman labels, feature persistence describes
the set of occurrence intervals of a certain Weisfeiler-Lehman label £ over the sequence F(G).
This concept can very intuitively be depicted using (discrete) persistence barcodes, as shown

67



Chapter 5. Weisfeiler-Lehman Filtration Kernels

G12 GQZ

UlO Ovz U1 2 V2 | U1 V2 'Ul
UsO 0114 CR) OU4§U3 U4 US U4 U3

!
V4 °
(C) V3 L —
V2 e—

1 2 3 4 5

Figure 5.1: Consider the simple depth-1 Weisfeiler-Lehman label ¢ corresponding to
a vertex having exactly one neighbor. Each vertex with this label ¢ is individually
marked in the filtration graphs F(G) shown in (b). The barcode in (c) depicts the
existence intervals of ¢ for each vertex in G. This information is then aggregated
into a filtration histogram ¢7 (@) in (d).

in Fig. 5.1. Each bar in the barcode diagram corresponds to the lifespan of an occurrence of
the very simple depth-1 Weisfeiler-Lehman label ¢ corresponding to a vertex having exactly
one neighbor. Clearly, there are several vertices which obtain this specific label during the
filtration. Consequently there exists a bar for each such vertex vo, v3 and vy.

5.1.2 The Wasserstein Distance on Filtration Histograms

The majority of traditional graph kernels, including the Weisfeiler-Lehman subtree kernel
(Shervashidze et al., 2011), defines similarity measures in terms of the number of mutual
substructures. This comes down to simply comparing frequencies of features. Using the
concept of feature persistence, we are able to define much finer similarity measures on graphs.
We achieve this by defining a distance function on histograms which aggregate lifespans of
feature occurrences. This distance measure compares graphs in terms of when and for how
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long a certain feature appears in the filtration. The underlying intuition is that features
occurring close to each other in the filtration sequence indicate a higher similarity than those
lying farther apart. A natural choice for this distance function is the Wasserstein distance, as
the aggregated feature occurrence lifespans directly translate into 1-dimensional distributions.

To define a distance measure w.r.t. a single feature ¢ on graphs G,G’, we first aggregate
the feature persistence information of G and G’ into histograms. This aggregation is visualized
in Fig. 5.1(d) for a graph and a feature ¢. Such histograms accumulate all feature lifespans of
a particular feature ¢ and reflect the number of feature occurrences in each filtration graph.

Definition 5.1 (Filtration Histogram). For a graph G € G, length-k filtration function
F, and a feature £, the function @f : G — R¥ maps G to its filtration histogram which counts
the number of £ in each filtration graph of F(G).

We acknowledge, that aggregating all feature occurrence intervals into a single histogram
clearly loses information on the distribution of the individual lifespans. However, while a
pairwise comparison of persistence intervals has been shown to lead to valid kernels in the
context of persistent homology (Reininghaus et al., 2015), our approach relies on a single
histogram representation, which we show leads to very powerful kernel functions, nonetheless.

In the following, we sometimes omit the filtration function F in the notations if it is either
irrelevant or clear from the context. That is, we simply write ¢, instead of ¢f . Filtration
histograms allow for the application of natural distance measures such as the Wasserstein
distance. Intuitively speaking, the Wasserstein distance between such histograms describes
the cost of shifting (accumulated) feature lifespans into another.

Definition 5.2 (Filtration Histogram Distance). Given graphs G,G’ € G, a filtration
histogram mapping gb{ : G — RF together with a distance function d : Fo x Fo — R on
associated values Fo = {au,...,ai}, the filtration histogram distance is given by

Wald7 (G), 07 (G)) . (5.4)

Here W, is the Wasserstein distance equipped with ground distance d (see Sect. 2.10).
The ground distance d defines how feature occurrences at different points in the filtrations
are being compared to each other. Since the values in F, can be viewed as points on the
timeline [a1, o], a natural choice for this distance is the Euclidean distance in R, i.e.,

d' (i, ) = | — ] (5.5)

for all o, aj € F,. While the Wasserstein distance has cubic time complexity in the length
of filtrations in general, this reduces to a linear time complexity when employing d' on the
real line as ground distance (Peyré and Cuturi, 2019, Rem. 2.30). Plugging d' into Eq. 5.4
yields the filtration histogram distance used throughout this chapter.

5.2 The Weisfeiler-Lehman Filtration Kernel

In this section, we define the Weisfeiler-Lehman filtration kernel which generalizes the ordi-
nary Weisfeiler-Lehman subtree kernel (Shervashidze et al., 2011). We start by defining a
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base kernel function which defines graph similarity w.r.t. a specific Weisfeiler-Lehman label
and describe how such kernels are combined to form the Weisfeiler-Lehman filtration kernel.
Subsequently, we show that our kernel’s runtime complexity increases that of the ordinary
Weisfeiler-Lehman subtree kernel only by a linear factor. Finally, we discuss its expressive
power and show that our kernel function is complete when choosing suitable filtrations.

Results in optimal transport theory give rise to proper kernel functions using the above
filtration histogram distances when equipped with a suitable ground distance function (Le
et al., 2019). In fact, it can be shown that utilizing the Euclidean ground distance d' yields
positive semi-definite kernels. These kernels serve as building blocks for our Weisfeiler-Lehman
filtration kernel. More precisely, we construct graph kernels by combining multiple base
kernels xy over the set of Weisfeiler-Lehman labels ¢ € Lj;, where L£; denotes set of all
Weisfeiler-Lehman labels up to depth h. Each such base kernel is concerned with a single
label and defines a similarity between graphs G and G’ w.r.t. this particular label /.

In general, Wasserstein distances require that the histograms are of equal mass. We
therefore mass-normalize each histogram by dividing all of its entries by its original mass,
and denote such mass-normalized filtration histograms using function qggf . More formally:

va _ 1 F

The base kernel on graphs G,G’ w.r.t. label ¢ and value v € R, is then defined over
normalized histograms by

k7 (G,G') = e Mar @7 (@) () (5.7)

This base kernel essentially “transforms” the histogram distance (Eq. 5.4) with d; as the
ground distance into a proper kernel. It utilizes the result that the term e~79(®¥) is positive
semi-definite for certain choices of function g (see Sect. 2.8). For a proof of the base kernel’s
positive semi-definiteness, we refer to Sect. 5.3.

The Weisfeiler-Lehman filtration kernel is defined as a linear combination of base kernels.
That is, it is a sum of kernels f@{ over features £ € L;,. Note that the mass-normalization of
filtration histograms results in a loss of information on the number of label occurrences. This
frequency information is often quite crucial. By introducing weights corresponding to the
original histogram masses, this information loss can be in part reverted. That is, we weigh
each base kernel (G, G’) using the original histogram masses of ¢7 (G) and ¢/ (G'), i.e.,
qug:(G)Hl resp. Hgbf(G’)Hl. We can now define the kernel:

Definition 5.3 (Weisfeiler-Lehman Filtration Kernel). Given graphs G,G’ € G, a fil-
tration function F, and depth parameter h, the Weisfeiler-Lehman filtration kernel s given

by

k2 (GG = > w7 (GG |lof (@), |lef (&), - (5.8)
leLly,

A notable aspect of the Weisfeiler-Lehman filtration Kernel is that it reduces to the
ordinary Weisfeiler-Lehman subtree kernel (Shervashidze et al., 2011) for the case k = 1,
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i.e., when the filtration has length one. A proof of this statement as well as a proof for the
positive semi-definiteness of the kernel can be found below in Sect. 5.3.

Recall that filtrations define an order in which edges are successively added until the
final graph is obtained. During this sequence, neighborhoods of vertices evolve and with
them their Weisfeiler-Lehman labels change. By also considering labels appearing only in
filtration graphs, such labels allow to consider partial neighborhoods which contribute to a
finer similarity measure. Fig. 5.1 depicts an example of a filtration where appearances of a
specific Weisfeiler-Lehman label are being tracked. While the graph G does not contain this
particular label, there are several occurrences of it in the filtration sequence.

The Weisfeiler-Lehman filtration kernel can be efficiently computed. In fact, it increases
the complexity of the ordinary Weisfeiler-Lehman subtree kernel merely by the factor k, i.e.,
the length of the filtration.

Theorem 5.1. The Weisfeiler-Lehman filtration kernel kfh(G,G’) on graphs G, G’ can be
computed in time O(hkm + hkn), where h is the Weisfeiler-Lehman depth parameter, k is
the length of filtration F, and m,n denote the number of edges, resp nodes.

Proof. The Weisfeiler-Lehman algorithm has complexity O(hm). This algorithm needs to
be computed for each of the k filtration graphs, leading to a total runtime of O(hkm). For
graphs G, G, let L = L}, be the set of mutual Weisfeiler-Lehman labels appearing in both
F(G) and F(G"). Notice that the cardinality of £ is bounded by hkn. Thus, for H € {G, G'},
setting up all histograms ¢¢(H ), ¢ € L can be done in time O(hkm + hkn). To compute the
kernel of Eq. 5.8, we need to calculate r¢(G, G’) and thus Wy (¢¢(Q), ¢¢(G')) for all £ € L.
For each label £ € £, the distance W (¢¢(G), ¢¢(G')) can be calculated in time linear in the
number of non-zero entries of both histograms ¢,(G) and ¢y(G’) (see Sect. 2.10). Let the
number of non-zero entries in ¢¢(G) be denoted by ¢,(G). Consequently, Wi (¢¢(G), de(G'))
can be computed in time O(¢y(G) + ¢¢(G')). For H € {G,G"}, it holds that the sum of non-
zero entries over all ¢ € £ is bounded by hkn, i.e., > ., ce(H) < hkn. Therefore, it must
hold that the set of Wasserstein distances Wy (¢¢(G), d¢(G')) for all £ € £ can be calculated
in total time . O(ce(G) + ¢¢(G')) = O(hkn). In summary, all steps for computing the
kernel of Eq. 5.8 can be done in a total runtime of O(hkm + hkn).

O

5.2.1 On the Expressive Power

We now show that tracking Weisfeiler-Lehman features over filtrations yields powerful meth-
ods in terms of expressiveness. Recall that the expressive power (see Sect. 2.9.2) of a method
describes its ability to distinguish non-isomorphic graphs, i.e., method A is said to be “more
expressive” or “more powerful” than method B if A(G) = A(G’) = B(G) = B(G’) and there
exist non-isomorphic graphs G, G’ such that A(G) # A(G’) and B(G) = B(G'). Furthermore,
recall that the (1-dimensional) Weisfeiler-Lehman test for isomorphism is known to be inex-
act even after n iterations (Cai, Fiirer, and Immerman, 1992). That is, there exist pairs of
non-isomorphic graphs which cannot be distinguished by the Weisfeiler-Lehman isomorphism
test. However, we can show that considering Weisfeiler-Lehman labels over certain filtrations
strictly increases the expressive power.
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Figure 5.2: Graphs G and G’ are assigned edge weights by a canonicalization process.
Using these weights, the filtration graphs Gg = (V(G), {e € E(G) : w(e) = 9}) and
6= (V(G),{e€ E(G) : w(e) = 9}) can be distinguished using Weisfeiler-Lehman
labels since Gy has an edge and G§ does not. Thus, graphs G and G’ cannot be

isomorphic.

Theorem 5.2. For any h > 1, there exists a filtration function F such that qﬁf(G) = qﬁf(G’)
for all £ € Ly, if and only if G and G’ are isomorphic.

Proof. The proof of this theorem is based on the fact that isomorphism between graphs
and canonicalization of graphs are closely related concepts. A canonical form for a class of
graphs G is a function ¢ : G — G that maps each G € G to a unique representative ¢(G) of
its isomorphism equivalence class. Correspondingly, a canonical ordering o. of G € G assigns
the vertices of G the index of their images in ¢(G). Hence, a check for isomorphism between
G and G’ can be done by simply comparing ¢(G) and ¢(G’) for equality using the canonical
vertex orderings.

Canonical vertex orderings can be obtained by defining canonical forms on adjacency
matrices.! In the following, we obtain canonical vertex orderings by utilizing the lexicographic
order over the flattened upper triangle of adjacency matrices. For graphs without vertex
labels, the standard definition of adjacency matrices as binary matrices can be used. For
simple labeled graphs, we can define an adjacency matrix in this context as the n x n matrix
A that — for a given ordering vy, vy, ..., v, of vertices of G — contains the label of v; at A;; and
aone at A;; and A;; if and only if {v;,v;} € E(G). We now show that canonical orderings
can be used to define filtrations which allow to solve the graph isomorphism problem using
depth-h Weisfeiler-Lehman labels alone, for any depth h > 1.

Let G be a class of graphs and let ¢ be a function assigning graphs G € G to their
canonical form. For G € G, we define an edge weight function w : E(G) — N using the
canonical ordering o, of G as follows: Let A(c(G)) be the flattened upper triangle of the
adjacency matrix of ¢(G). Then, for e = {u,v} € E(G), we set w(e) to the index of edge
{oc(u),00(v)} in A(e(G)). This weight function maps each edge to an integer weight greater
than zero (see Fig. 5.2).

Now, if G and G’ have different numbers of vertices, then the sets of Weisfeiler-Lehman
labels of G and G’ have different cardinalities and the above claim is trivial. Otherwise, for

!One folklore example of an algorithm that computes a canonical form is to fix some total order on the
adjacency matrices of graphs in G and map each G € G to the smallest permutation of its adjacency matrix
with respect to that total order.
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two graphs G, G’ with n vertices and edge weights defined as above, we can use the natural
numbers as cutoff values, resulting in filtrations F(G), F(G’) of length (5) + n. That is, the
filtration F(G) contains a filtration graph G; for each index i € [(3) + n] of the flattened
upper triangular matrix A(c(G)). G; contains only such edges with weights greater or equal
i. If G and G’ are isomorphic, then for each i € [(}) + n] we have that the filtration graphs
G, and G are isomorphic. Hence, the sets of Weisfeiler-Lehman labels of G; and G will be
identical for every Weisfeiler-Lehman iteration.

Now consider the case that G and G’ are not isomorphic. Then it must be the case that
their canonical forms are not equal, i.e., ¢(G) # ¢(G’). As a result, the adjacency matrices of
¢(@) and ¢(G") are not equal and there must be a largest index = where the entries of A(c¢(G))
and A(c(G")) differ. Hence, G, and G/, are not isomorphic, as they have different numbers of
edges. It is easy to see that the Weisfeiler-Lehman isomorphism test distinguishes two graphs
with different numbers of edges, for any depth h > 1. This directly follows from the fact that
in such a case, the two graphs have different sets of vertex degrees. As a result, the sets of
depth-1 Weisfeiler-Lehman labels of G, and G/, differ, which concludes the proof. O

Note that the construction in the proof of Theorem 5.2 shows how to obtain a filtration
function from a canonical form. While such a filtration is not known to be efficiently com-
putable, it shows that Weisfeiler-Lehman labels on top of filtrations F(G), F(G’) are strictly
more powerful than Weisfeiler-Lehman labels on the original graphs G,G’. In particular, it
shows that filtrations and Weisfeiler-Lehman labels are “compatible” in the sense that the
information provided by a graph filtration may be used beneficially by the Weisfeiler-Lehman
algorithm. Together with several efficiently computable filtrations (such as the canonical form
for bounded treewidth graphs (Wagner, 2011)), this supports the claim that our approach
can be beneficial in practice.

As a first implication, the Weisfeiler-Lehman filtration kernel is — given a suitable filtration
— strictly more expressive than the ordinary Weisfeiler-Lehman subtree kernel (Shervashidze
et al., 2011) on the original graphs.

Corollary 5.1. For any h = 1, and n = 1, there exists a filtration function F such that the
kernel k‘fh(G, G') on graphs G,G' € G,, is complete.

Proof. In the following, we will use the edge weight functions and filtrations from the proof
of Thm. 5.2. In order to prove that the kernel

k2, (GG = > K1 (G.G) |67 (@], le7 (@] (5.9)
LeLly,

is complete (Gértner, Flach, and Wrobel, 2003), we need to prove that its corresponding
embedding function gpfh with kfh (G,G") = <<p]£h(G), cpfh (G")) satisfies

@fh(G) = gofh(G') < (3, G'are isomorphic. (5.10)
To prove the claim in Eq. 5.10, we first consider the case that G and G’ are isomorphic.

Then, the filtration graphs in F(G) and F(G’) must be pairwise isomorphic as well. More
precisely, for a length-k filtration F, it holds that G; = G/, for all i € [k] where G; and G/, are
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filtrations graphs in F(G), resp. F(G'). It immediately follows that the kernel embeddings
of G and G’ must be equivalent as well, i.e., gofh(G) = cpfh(G').

We prove the other direction in Eq. 5.10 by contradiction. Suppose that G and G’ are not
isomorphic. Then, by Theorem 5.2, there exists a Weisfeiler-Lehman label ¢/ € £}, such that
(JS; (G) # qﬁf (G"). Note that the embedding space of k:fh corresponds to the concatenation
of the embedding spaces of the weighted base kernels

K (G,G') =] (G.G) |6l (@), |67 (@], (5.11)

for all £ € Lp,. This follows from the fact that kf is a sum of such kernels k: e Ly. Let cpe

be the embedding function corresponding to kf , and let <p]: denote the embedding function
corresponding to ﬁf . Then

K (GG = & (GG H@ @], o7 (@],
= @@, @) |67 @), lo7 (@],
57 Q) ||o7 ()|, @7 (&) ||o7 ()], -

Thus, for all H € G,
vl (H) =& (H)||o7 (H)||, - (5.12)
In order to prove that gofh(G) # wfh(G’), it suffices to show that ¢y (G) # ¢}, (G') for
the distinguishing label #. Recall that for a graph H and label ¢ it holds that ¢z,r (H) =
<Z>£F/(H) Hqﬁg}—(H)Hl We distinguish two cases:

Case 1 7@, = F(@)];

In this case, it holds that the normalized filtration histograms must be unequal for the
distinguishing label ¢, i.e., ¢7, (G) # ¢7 (G'). Tt follows that Wy (7 (G), ¢7 (G')) > 0 while
Wy ((Zszf(G), dAJgf(G)) =Wa (dgf(G’), ngSf,(G’)) =0, as Wy is a metric on normalized filtration
histograms. Hence, the base kernel embeddings 37, (G) and &}, (G’) cannot be identical, since

/ig;— is a function and
k(G G) =k (G, Q") =1 > Kk} (G, G . (5.13)

As a direct consequence of this and Eq. 5.12, we have ¢y, (G) # ¢} (G').

Case 2 ||¢//(G)||, # [|#7 (&)
First, note that the base kernel embedding &gf, (H) has unit length for every graph H € G due
to the fact that Wy is a metric. That is:

HW/ )Hz - \/<905/ ), &1 (H))
= ’%Z’(H7H)

= AfemWa @R un)
= VeV =1.
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Thus, using Eq. 5.12, the following holds for label ¢':

ler (@), = (180 |67 ()], ],
= @@, ez (@],
= i@,
# lon (@,
(

HC,DZ- G/)Hz :

Since the two vectors ¢y (G) and ¢y (G) have different lengths, they cannot be identical,
which concludes our proof. O

While filtrations yielding complete kernels are not known to be efficiently computable,
there are efficiently computable filtrations that result in strictly more expressive (but incom-
plete) Weisfeiler-Lehman filtration kernels when compared to the ordinary Weisfeiler-Lehman
subtree kernel. As an example of such an efficiently computable filtration, consider the func-
tion that annotates edges by the number of triangles they belong to. Figure 5.3 shows two
graphs which cannot be distinguished by the 1-dimensional Weisfeiler-Lehman test of isomor-
phism, but become distinguishable using this kind of filtration.? This concept can be extended
to larger (or multiple) subgraphs, which allows for more expressive filtrations, similar to the
approach of Barceld et al. (2021).

Orthogonal to the contribution of this chapter, there exists a large body of work that
relates the expressive power of certain graph neural networks (GNN, see Sect. 3.5) to that of
the Weisfeiler-Lehman isomorphism test (Xu et al., 2019; Morris et al., 2019). In this regard,
Theorem 5.2 implies that a (neural) ensemble of graph neural networks over a suitably chosen
filtration is strictly more powerful than a graph neural network on the original graph(s) alone:

Corollary 5.2. There exist a filtration function F and GNN (Xu et al., 2019) N such that
N can distinguish any two non-isomorphic graphs when provided with the filtration graphs
corresponding to F.

Proof. This result directly follows from Theorem 3 in Xu et al. (2019). Let AN/ be a GNN
with injective aggregator and update functions, as well as an injective graph level readout
function as stated by Xu et al. (2019). For graph G, we first pass all its filtration graphs
F(G) through N’. We then construct N by adding another injective readout layer over the
set of the resulting graph level readouts of the filtration graphs. Using Theorem 5.2, for two
non-isomorphic graphs G, G’, there exist filtration graphs G, G/, that can be distinguished by
their Weisfeiler-Lehman labels. Following Xu et al. (2019), N’ maps G, and G, to different
embeddings. Hence, an injective readout layer over these embeddings must map G and G’ to
different embeddings. O

2Tt is obvious that using the proposed weights as edge labels allows the Weisfeiler-Lehman isomorphism
test to distinguish these two edge labeled graphs. However, it can be shown that it suffices to consider the
Weisfeiler-Lehman labels on the unlabeled filtration graphs.
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Figure 5.3: Consider the unlabeled graphs G, G’ which cannot be distinguished using
the Weisfeiler-Lehman isomorphism test. Adding edge weights corresponding to the
number of triangles that each edge is part of yields filtration graphs G, G, which
can now be distinguished by the Weisfeiler-Lehman isomorphism test. Note that
the same filtration is generated using the edge weight function w? (see Sect. 5.4.1).

5.3 Filtration Kernels for Arbitrary Graph Features

Although the utilization of Weisfeiler-Lehman labels results in a particularly interesting fil-
tration kernel, it is worth noting that filtration kernels are not exclusively restricted to this
feature type. In fact, the concept can be applied to any kind of graph feature which yields
finite graph representations. In this section, we briefly generalize the above approach and
introduce the family of graph filtration kernels.

Instead of tracking and comparing the lifespans of Weisfeiler-Lehman labels, we may just
as well consider any set X of graph features. In order to define suitable kernel functions,
it merely needs to hold that for each graph G € G and filtration F, the number of features
X € X contained in each filtration graph of F(G) is finite.

To properly define graph filtration kernels, we now quickly recap the definition of base
kernels and prove their positive semi-definiteness. Recall that the filtration histogram distance
Wy (&f (G), qggf (G")) compares the (mass-normalized) feature ¢ distributions of graphs G and
G’. A base kernel utilizes this distance function and “transforms” it into a similarity measure.
More precisely:

Definition 5.4 (Base Kernel). Given graphs G,G’' € G, a filtration function F, and a
feature £ € X, the base kernel is defined by

k] (G,G) = e Mar @7 (G).9F (G"). (5.14)
where qgf(G) is the mass-normalized filtration histogram of ¢ (G).

Theorem 5.3. The base kernel /if is positive semi-definite.

Proof. The proof follows directly from results by Le et al. (2019) who show that that the
Wasserstein distance W (-,-) using the 1-dimensional ground distance d' is (condition-
ally) negative definite (CND, see Def. 2.17). According to Schoenberg (1938), it holds that
k(z,y) = e 79@Y) is positive semi-definite (PSD) for all v € R, if g is CND. This implies
that the base kernel is PSD. O
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In the following, we introduce two graph filtration kernel variants, which differ in the way
they aggregate the base kernels. We show some of their properties and prove their positive
semi-definiteness.

5.3.1 Linear Combination Kernel

Filtration kernels can be constructed in form of linear combinations of base kernels. More
precisely, we define them as sums of kernels /{"f over features £ € X.

Definition 5.5 (Filtration Kernel). Given graphs G,G' € G, a filtration function F, and
a set of features X, the filtration kernel is given by

k2 (GG = Y k1 (G, Q) |67 (@], [lo7 (&), (5.15)
leX

where Hgb{(G)Hl is the total mass of the filtration histogram ¢7 (G).

Notice the special case that a feature ¢ does not appear in the filtration sequence of G.
Then, the corresponding histogram (lgg(G) has zero mass and the Wasserstein distance to some
non-zero mass histogram (%g(G’ ) is not properly defined. Formally, this issue can simply be
resolved by setting the value at the first histogram index of QBZ(G) to 1 whenever ¢ does not
appear in F(G). We note that the resulting Wasserstein distance Wy (¢¢(G), de(G')) over
such altered histograms is not necessarily meaningful. However, since £ does not appear in G,
we have [|¢¢(G)||; = 0, and thus, the similarity x,(G,G") is effectively disregarded. In fact,
therefore, k¢(G,G’) does not need to be computed to begin with. Thus, only such features
in X' contribute to the similarity k% (G, G’) which appear in both F(G) and F(G'). More
formally:

Lemma 5.1. For graphs G,G’, a set of features X and a feature ¢ ¢ X, it holds that
k5 (G,G") = k% ,(G,G") if ' does not appear in F(G) or F(G').

We can now prove that the filtration kernel in Eq. 5.15 is a proper kernel function.
Theorem 5.4. The filtration kernel k§ s positive semi-definite.

Proof. For any given feature ¢ € X and graphs G, G, the term ||¢¢(G)||; [|¢e(G’)||;, which
corresponds to the simple feature frequency product, is trivially PSD. Furthermore, by The-
orem 5.3, nf(G, G') is PSD. Following, e.g., Scholkopf and Smola (2002), kernels are closed
under (finite) addition and multiplication. Since the set of features that appear in both G
and G’ is finite, it follows that l<:§ is well defined and PSD. O

The graph filtration kernel defines a general framework which generalizes a wide range
of existing graph kernel methods. In the following, we outline a standard paradigm that has
been used for graph kernel construction.

A majority of graph kernels essentially measure graph similarity by counting pairs of
equivalent features. Examples include the Weisfeiler-Lehman subtree kernel (Shervashidze et
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al., 2011) and the cyclic pattern kernel (Horvath, Gartner, and Wrobel, 2004). Such kernels
can be computed by the inner product of explicit feature vectors

p(G) = [c(tr(G)), c(a(G)), - ], (5.16)

where ¢(¢;(G)) indicates the count of feature ¢; € X in G over some fixed feature domain
X. We refer to this kind of kernels as histogram kernels. Note that histogram kernels can
equivalently be expressed as sums of feature frequency products, i.e.,

kx(G,G) = ). c(U(G)) e(t(G)). (5.17)

leXxX

Notice the resemblance of the histogram kernels to our graph filtration kernels. In fact,
it can be shown that the histogram kernel is a special case of graph filtration kernels.

Proposition 5.1. For filtrations of length k = 1, the filtration kernel kj? reduces to the
histogram kernel ky .

Proof. If there exists only a single filtration graph (i.e., k = 1), then x¢(G,G’") = 1 for all
features ¢ which appear in both G and G’. (Recall that features which do not appear in both
graphs can be disregarded as they do not actively contribute to k:)];) We know that for k = 1
it holds that ¢(¢(G)) = ||¢¢(G)||;. Thus, the filtration kernel reduces to

k(GG = D e @y oG], = D, e(t(@))e(t(@) = kx (G, G).
leX leXx

O]

As the ordinary Weisfeiler-Lehman subtree kernel (Shervashidze et al., 2011) is an example
of a histogram kernel, it directly follows that our Weisfeiler-Lehman filtration kernel (see
Sect. 5.2) is a direct generalization of it.

5.3.2 Product Kernel

Filtration kernels can alternatively be defined as products over base kernels. Analogously to
the (linear combination based) kernel presented in Sect. 5.3.1, each base kernel is individually
weighted to make up for the loss of information due to the mass-normalization of histograms.
For the product variant, this weighting is realized by a radial basis function term measuring
the similarity between original histogram masses.

Definition 5.6 (Filtration (Product) Kernel). Given graphs G,G’, a filtration function
F, a set of features X, and a parameter 5 € R, the filtration (product) kernel is given by

kx (@, G = H’W (G, G B (o7 (@llhi—lle7 (GM)1)? (5.18)
leX

where H¢€f(G)H1 denotes the total mass of the filtration histogram ngf(G).
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We note that, this kernel is introduced only for purposes of demonstrating the universality
of the filtration kernel concept and should be regarded as a theoretical contribution that is
independent of the kernel introduced in Sect. 5.3.1.

Theorem 5.5. The kernel k)]; 1$ positive semi-definite.

Proof. The proof is to a large extend analog to that of Theorem 5.4. Theorem 5.3 shows that
the base kernel k7 is positive semi-definite (PSD). Furthermore, the RBF term e Bllz—yll”
with z,y7 € R and 8 > 0 is known to be PSD. One difference, however, is that whereas the
linear combination kernel k‘f((G, ') depends only on features ¢ € X which appear in both
F(G) and F(G"), the product kernel lc%f\:(G, G’) is affected by features ¢ € X which appear in
at least one of F(G),F(G"). Thus, the key difference between the two variants is the case
where F(G) contains a feature ¢ which does not appear in F(G’). Nonetheless, the number
of features that appear in F(G) or F(G’) remains finite. Furthermore, the kernel value is not

changed by any feature ¢ which is contained in neither of the filtrations since in this case
Kk}, (G,G') =1and e? (I6e (@I =l6e (@)I)* — 1. Tt follows that kZ(G,G’) is PSD. O

Similarly to Sect. 5.3.1, the filtration product kernel has a particularly theoretic value as
it generalizes the radial basis function kernel. More precisely:

Proposition 5.2. For filtrations F of length k = 1, the kernel l::i(G, G') reduces to the RBF

kernel e_fBHS"(G)_SD(G/)”Q, where o(G) and p(G") denote the feature vectors of G, resp. G' (see
Eq. 5.16), and ||o(G) — o(G')||? denotes the squared Euclidean distance.

Proof. For k = 1, there exists only a single entry in the filtration histograms. Recall from
Sect. 5.3.1 that we set the value at the first histogram index of ¢;(G) to 1 whenever ¢ does
not appear in F(G). As a direct consequence, all mass-normalized filtration histograms are
trivially equivalent. It follows that Kf[ (G,G") =1 for all £ € X and G,G’" € G. Thus, the
kernel reduces to the following:

(G0 = [[e? Uoe@l-lod@in?
leX

- [[e* (e(E(G))—e(U(G")))?
leX

_ B rex (e(U(G))—e(t(G)))?
e Ble(@—e(@)IP

5.4 Experimental Evaluation

In this section, we experimentally evaluate the predictive performance of our Weisfeiler-
Lehman filtration kernel introduced above and compare it to several state-of-the-art graph
kernels. In order to generate meaningful graph filtrations, we consider two functions that
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provide edge weights for originally unweighted graphs. The results of this section can be
summarized as follows:

(i) The Weisfeiler-Lehman filtration kernel significantly outperforms its competitor kernels
on several real-world benchmark datasets.

(ii) We investigated the influence of the filtration length k& on the predictive performance
and found that it suffices to consider values as low as k = 3. This result highlights that
the Weisfeiler-Lehman filtration kernel improves over the ordinary Weisfeiler-Lehman
subtree kernel at the cost of very little computational overhead.

(iii) Using synthetic benchmark graph datasets, we practically demonstrate the ezpressive
power of the Weisfeiler-Lehman filtration kernel, i.e., its capability to distinguish non-
isomorphic graphs.

In all experiments, we provide the accuracies obtained by support vector machines (SVM)
using a 10-fold stratified cross-validation. A grid search over sets of kernel specific parameters
is used for optimal training. We perform 10 such cross-validations and report the mean and
standard deviation.

For all applied methods, we used the implementation as provided by Siglidis et al. (2020)
or that of the respective authors and ran grid searches using the following kernel specific
parameters. For approaches employing the Weisfeiler-Lehman subtree features, we chose
he{l,...,5}. In case of the graphlet sampling (GS) kernel, the parameters ¢ = 0.1, § = 0.1
and k € {3,4,5} were applied.

5.4.1 Filtration Variants

A unique parameter of our kernels is the graph filtration. If such a filtration is not provided
through expert knowledge, one can be generated using edge weights. For now, assume that
we are provided with an edge weight function w : E(G) — Rx( on graphs G € G. Recall that
a filtration is induced by the value sequence a; > ... > ay, (c.f. Eq. 5.2). While there exist
infinitely many such sequences, we generate the o;s for a given set of graphs D and parameter
k € N as follows.

1. Apply the edge weight function w : E(G) — Rx¢ to all edges of graphs G € D.

2. Extract and sort the set of all edge weights {w(e) € E(G) : G € D} in a descending
order.

3. Partition the ordered sequence of values w1, ..., w, into k consecutive subsequences.

4. Generate a length-k threshold sequence aq, . . ., ag by setting «; as the minimum element
within the i-th subsequence.

The threshold sequence aj,...,ax then induces a graph filtration F for graphs in D.
Accordingly, for a graph G = (V, E), the i-th filtration graph G; contains edges with edge
weight at least «;, i.e., G; = (V. {e€ E: w(e) = a;}) (see Sect. 5.1.1).
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Since graphs are generally not explicitly equipped with edge weights, we consider two
exemplary edge weight functions wy and w;} that each assign weights to edges according to
the edges’ structural relevance w.r.t. a specific property.

wg The function wy assigns each edge e = {u,v} a weight that is equal to the maximum
degree of its incident vertices, i.e., wq(e) = max(d(u),d(v)). Thus, edges with at least
one incident vertex of high degree appear early in the graph filtrations.

w) The function w;} considers the total number of walks of length at most A between

adjacent vertices. That is, for edge e = {u, v}, w) (e) is the number of walks of length
at most A between u and v.

In the following, the Weisfeiler-Lehman filtration kernel applied on dataset graphs with
edge weights calculated according to wy is referred to as FWL-D. Analogously, FWL-W
denotes the kernel based on weights computed according to w;}. The filtration length value
k is treated as a parameter of the kernel methods. We choose k € {1,...,10}.

5.4.2 Real-World Benchmarks

Figure 5.4 compares the predictive performance of the Weisfeiler-Lehman filtration kernel
to various state-of-the-art graph kernels on a range of real-world benchmark datasets. On
datasets DHFR, MUTAG, NCI1, PTC-MR and IMDB-BINARY, there are only small dis-
crepancies between our method and the best performing competitor kernels. In fact, with
PTC-MR being an exception, the results of all kernels using Weisfeiler-Lehman subtree fea-
tures are virtually indistinguishable. This changes for the EGO datasets. While on EGO-1,
our FWL-D variant is second only to the shortest-path kernel (Borgwardt and Kriegel, 2005),
it significantly outperforms all tested kernels on EGO-2, EGO-3 and EGO-4, amounting to a
roughly 10% accuracy increase for the case of the latter dataset. It becomes apparent from
the results of the FWL-W variant that our approach is particularly reliant on the provided
edge weights, or equivalently, the filtration function. However, the results of FWL-D suggest
that in case the data at hand is not equipped with meaningful edge weights, very simple edge
weight functions may already suffice to significantly increase the predictive performance over
state-of-the-art graph kernels.

A conceptually similar approach to the contribution proposed in this chapter was intro-
duced in parallel research by O’Bray, Rieck, and Borgwardt (2021). We refer to Sect. 3.4
for a discussion on this graph classification method. Due to the resemblance between the
two methods in obtaining filtrations, we did not include the results obtained by O’Bray,
Rieck, and Borgwardt (2021) in Fig. 5.4, by noting that the accuracies are nearly identical
to those obtained by our kernel. Nonetheless, their approach once more highlights the power
of filtrations for graph classification purposes.

5.4.3 The Influence of the Filtration Length k

As a central aspect of our approach, the filtration clearly plays a critical role in practical
applications. In order to investigate the influence of filtrations, we provide experiments for
varying choices of k, i.e., the filtration length. Figure 5.5 shows results on the EGO datasets
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Figure 5.4: Classification accuracies and standard deviations on real-world bench-
mark datasets. We compare our approach to the Label Histogram (VE-Hist) kernel
(see Sect. 3.4), the graphlet sampling (GS) kernel (Shervashidze et al., 2009), the
shortest-path (SP) kernel (Borgwardt and Kriegel, 2005), the ordinary Weisfeiler-
Lehman (WL) subtree kernel (Shervashidze et al., 2011), the Weisfeiler-Lehman op-
timal assignment (WL-OA) kernel (Kriege, Giscard, and Wilson, 2016), the Wasser-
stein Weisfeiler-Lehman (W-WL) kernel (Togninalli et al., 2019), the persistent
Weisfeiler-Lehman (P-WL) method (Rieck, Bock, and Borgwardt, 2019), and the
core variant of the Weisfeiler-Lehman (Core-WL) kernel (Nikolentzos et al., 2018).
We employ our Weisfeiler-Lehman filtration kernel (FWL-D and FWL-W) using
two different edge weight functions (see Sect. 5.4.1).
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Figure 5.5: Classification accuracies and standard deviations of the FWL-D variant
for different filtration lengths k.

for k € {1,...,10} using the FWL-D variant. We omit the FWL-W method in this analysis
since the accuracies did not significantly differ for different choices for k. Recall that the case
k = 1is equivalent to the ordinary Weisfeiler-Lehman approach. Note that already for k& = 2,
the predictive performance significantly improves over k = 1 in all cases and that all datasets
reach their accuracy peak at only £ = 2 or K = 3. Since the kernel’s complexity grows
linearly with k (see Theorem 5.1), our approach improves upon the predictive performance
of the ordinary Weisfeiler-Lehman subtree kernel (Shervashidze et al., 2011) at only a small
additional computational cost.

5.4.4 Investigation of the Expressive Power

In this section, we investigate the discriminative power of graph filtration kernels. In par-
ticular, we consider a benchmark setup as discussed in Murphy et al. (2019), which classifies
circular skip link (CSL) graphs. A CSL graph G, s with n >4 and 1 < s < § is a 4-regular
graph where the n nodes form a cycle of length n and all pairs of nodes with path distance s
on that cycle are furthermore connected by an edge. Examples for CSL graphs are depicted in
Fig. 5.6(a). Following Murphy et al. (2019), for n = 41 and s € {2,3,4,5,6,9,11,12,13, 16},
graphs are pairwise non-isomorphic. We construct a dataset containing 10 permuted copies
of each graph. The classification task is then to assign graphs to their skip link value s. This
setup is a commonly considered benchmark for measuring a model’s capability to distin-
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(a) Circular skip link graphs. (b) Accuracies of FWL-W on CSL graphs.

Figure 5.6: Circular skip link graphs are regular graphs which the ordinary
Weisfeiler-Lehman isomorphism test cannot distinguish. Two such exemplary
graphs are shown in (a). When provided with filtrations induced by edge weights ob-
tained by function wy), the Weisfeiler-Lehman filtration kernel can distinguish more
and more pairs of graphs with increasing values A\. The corresponding accuracies
are provided in (b).

guish non-isomorphic graphs. It is particularly interesting since the 1-dimensional Weisfeiler-
Lehman isomorphism test is not capable of distinguishing graphs in such a dataset.

In this experiment, we omit the FWL-D variant since the edge weights computed by
wq did not result in increased expressive powers. Instead, we consider the FWL-W variant
and do mot limit the number of filtrations k, but allow as many filtrations as there are
distinct edge weights in the dataset graphs. Thus, the number of filtration graphs is directly
governed by A, i.e., the parameter of w; which corresponds to the maximal walk length.
For example, when setting A = 4, there exist a total of seven distinct edge weights within
the CSL graph dataset. We, thus, generate k& = 7 filtration graphs, one for each edge
weight. Fig. 5.6(b) shows the predictive performances for different choices of A\ (and thus
k). The case A = 1 implies & = 1 and therefore corresponds to the ordinary Weisfeiler-
Lehman kernel. Since the Weisfeiler-Lehman method falls short of distinguishing regular
graphs, the predictive performance corresponds to that of a random classifier. However, for
increasing values of A\, the number of filtrations k grows as well, which results in the kernel’s
ability to distinguish more and more CSL graphs. Finally, for the case A = 7, all non-
isomorphic graphs can be distinguished. It is noteworthy, that these results are not entirely
surprising as the considered edge weights provide the filtration kernel with increasing degrees
of cyclic information. Nonetheless, the experiments highlight the power of filtration kernels
and practically support Corollary 5.1.

5.4.5 Runtime Analysis

Fig. 5.7 provides the runtimes to compute the kernel matrix of our FWL-D variant. More
specifically, we measured the runtime after the data has been loaded into memory. The
datasets DHFR, MUTAG, NCI1, and PTC-MR contain only graphs with maximum node
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Figure 5.7: Runtime measures of the FWL-D variant for different filtration length
values k.

degree 3, thus, limiting the range of the value k to 3 as well. We note that these results
were obtained using an non-optimized version of our kernel and are hence not necessarily
representative for its potential real-world performance. However, it is evident from the results
that the runtime linearly increases with growing filtration length values k. This is consistent
with our theoretical results on the runtime complexity of the kernel. To put the above
numbers into context, Tab. 5.1 provides the runtime measures for all tested competitor
kernels. The GS kernel was run using parameter k = 5. For all kernels based on the Weisfeiler-
Lehman method, we picked depth parameter h = 5. All experiments were performed on an
AMD 3900X processor (12 cores) with 64GB of memory.

5.5 Summary and Concluding Remarks

In this chapter, we introduced the Weisfeiler-Lehman filtration kernel, a novel kernel method
that compares graphs at different levels of resolution. This was achieved utilizing the concept
of graph filtrations, which define sequences of nested subgraphs. Tracking existence intervals
of Weisfeiler-Lehman label occurences within such sequences allows for a comparison not only
in terms of feature frequency, but also by when and for how long features appear in filtrations.

By using partial Weisfeiler-Lehman labels, i.e., labels which appear in filtration graphs
only, our approach defines a finer similarity measure than the ordinary Weisfeiler-Lehman
subtree kernel. Furthermore, the kernel allows for a meaningful consideration of edge weights,
which is a widely disregarded aspect in the Weisfeiler-Lehman paradigm. Empirically, we have
demonstrated that our proposed kernel significantly outperforms other state-of-the-art kernel
methods on several real-world benchmark datasets.

We showed that the Weisfeiler-Lehman filtration kernel generalizes the ordinary Weisfeiler-
Lehman subtree kernel, and for suitable choices of filtrations, it yields strictly more powerful
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GS SP WL WL-OA W-WL P-WL Core-WL

DHFR  77.17 434 0.41 12.39  290.32 4.27 1.28
MUTAG  20.07 0.20 0.05 0.35 9.61 0.41 0.52
NCI1 434.32 1279 216 1624.24 6457.34  27.78 7.92
PTC-MR  38.64 0.30 0.08 1.65 32.49 0.68 0.21
IMDB-B. 135.89 2.39 0.51 1753  297.06 12.55 6.65
EGO-1  21.62 15.96 0.50 4.16 103.46  18.48 5.08
EGO-2  23.38 33.27 0.92 6.14 173.11  55.65 17.18
EGO-3  24.44 60.01 1.47 7.93  260.58 119.40 40.26
EGO-4  26.58 97.18 2.16 9.85 353.57 212.05 78.98

Table 5.1: Runtime measures of competitor kernels (in seconds).

and even complete kernel functions. Finally, we proposed a general graph kernel framework
which generalizes our approach to arbitrary types of graph features.

An interesting further research question is concerned with suitable choices for graph filtra-
tions whenever they are not provided through expert knowledge or in form of edge weights.
While we showed that it can already suffice to consider easily computable filtrations, we
acknowledge that such filtrations may not exist for arbitrary graph datasets.

Finally, a particularly relevant research question is concerned with the utilization of our
results to graph neural networks. Due to the close relationship of the Weisfeiler-Lehman test
of isomorphism to the expressive capabilities of graph neural networks, the concept of graph
filtrations can directly be used to increase the expressive power of GNNs.
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6

(GENERALIZED WEISFEILER-LEHMAN KERNELS

In the previous chapter, we considered the popular Weisfeiler-Lehman method and introduced
a graph kernel which compares graphs in terms of Weisfeiler-Lehman label distributions over
sequences of subgraphs utilizing the concept of graph filtrations. Although we showed that
this kernel is powerful in terms of expressivity and leads to remarkable predictive perfor-
mances in practice for suitable choices of graph filtrations, its determining parameter (i.e.,
the graph filtration) needs to be explicitly provided. If a suitable filtration is not known in
advance or cannot otherwise be induced, the Weisfeiler-Lehman filtration kernel effectively
reduces to the ordinary Weisfeiler-Lehman subtree kernel (see Prop. 5.1) (Shervashidze et al.,
2011).

In this chapter, we propose a different approach which addresses the drawback of the
Weisfeiler-Lehman subtree kernel discussed in Chapter 5. Recall that this drawback is rooted
in the “specificity” of the Weisfeiler-Lehman labels. More precisely, Weisfeiler-Lehman labels
encode vertex neighborhoods which are often unique within a set of graphs. Consequently,
since the Weisfeiler-Lehman subtree kernel defines similarity in terms of mutually occurring
labels, this sparsity of labels may limit the effectiveness of the kernel. In other words, the
kernel’s primary drawback is that it is conceptually limited to comparing Weisfeiler-Lehman
vertex labels w.r.t. equality. While this comparison is extremely well-suited for deciding
graph isomorphism, which was the original problem considered by Weisfeiler and Lehman
(1968), it is arguably too restrictive for defining similarities, in particular, graph kernels.

In this chapter, we generalize the Weisfeiler-Lehman subtree graph kernel by relazing
the strict comparison of labels. In particular, instead of distinguishing between Weisfeiler-
Lehman labels by the binary valued equality relation, we propose a natural similarity measure
to compare them on a much finer scale. To this end, recall that Weisfeiler-Lehman labels
correspond to rooted trees, called unfolding trees (see Sect. 2.7.1). The embedding operator
for this kind of pattern trees is implicitly induced by the Weisfeiler-Lehman method and
corresponds to locally bijective homomorphism. The key idea in this chapter is to meaning-
fully compare Weisfeiler-Lehman labels by proposing a specifically designed distance measure
between the respective unfolding trees, which provides a semantically adequate comparison
for this kind of trees. For unfolding trees T = T(G,v) and T = T(G’',v"), this distance
between T' and T” reflects how “close” the unfolding tree T is to being embeddable into G’
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Figure 6.1: (a) contains initially unlabeled graphs which are annotated by their
first two Weisfeiler-Lehman labels, indicated by integers. These Weisfeiler-Lehman
labels directly correspond to unfolding trees. In (b), we depict depth-2 unfolding
trees, where label 7 corresponds to tree T;. Consider unfolding trees Ty, 75 and Tg.
The tree Ty visibly differs from 7% by only a single vertex while it differs from Ty
by significantly more. To quantify this similarity difference between unfolding trees,
we utilize the concept of tree edit distances and cluster unfolding trees w.r.t. this
distance measure.

at v’ by a locally bijective homomorphism. To achieve this, we propose a modified variant
of the tree edit distance, which respects the essential properties of unfolding trees w.r.t. the
pattern embedding operator defined by locally bijective homomorphism. Next to its semantic
meaningfulness, we show that in contrast to more general tree edit distances, this distance
can in fact be efficiently calculated.

An example motivating the approach of this chapter is depicted in Fig. 6.1(b). While
unfolding tree Ty visibly resembles T5 much more than Ty, the ordinary Weisfeiler-Lehman
subtree kernel simply treats them all as unequal and is thus unable to quantify the apparent
difference among the pairwise similarities between these three unfolding trees. Specifically,
the unfolding tree T requires only a single node addition such that it becomes equivalent
(i.e., isomorphic) to Ty, while it needs five node additions to be equivalent to T3.

Using the above distance measure on unfolding trees, we are able to identify groups
of similar Weisfeiler-Lehman labels by clustering (visualized in Fig. 6.1(c)). The elements
within a cluster are then treated as equallabels. That is, we generalize the ordinary Weisfeiler-
Lehman subtree kernel by regarding two unfolding trees as equivalent if they belong to the
same cluster, i.e., have a small distance to each other. In this way, the ordinary Weisfeiler-
Lehman subtree kernel becomes the special case, in which labels are considered equivalent if
and only if they have distance zero. For partitioning the Weisfeiler-Lehman labels, we use
Wasserstein k-means clustering (Irpino, Verde, and Carvalho, 2014). This choice is motivated
by our result that the proposed adaptation of tree edit distances between unfolding trees can
in fact be reformulated in terms of the Wasserstein distance.
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We have empirically evaluated the predictive performance of our generalization of the
Weisfeiler-Lehman subtree kernel on various real-world and synthetic datasets. The ex-
perimental results clearly show that while our more general approach does not result in
an improvement on small molecular graphs, which are sparse and structurally simple, it
considerably outperforms state-of-the-art graph kernels, and most importantly the ordi-
nary Weisfeiler-Lehman subtree kernel, on datasets containing dense and structurally diverse
graphs.

6.1 The Weisfeiler-Lehman Tree Edit Distance

In this section, we define a semantically meaningful distance on Weisfeiler-Lehman labels,
give an algorithm computing this distance, and prove that it runs in polynomial time.

6.1.1 The Structure and Depth Preserving Tree Edit Distance

While the strict comparison of labels, or equivalently, that of unfolding trees, is advantageous
for the original intention of the Weisfeiler-Lehman method, it poses a severe drawback for
the Weisfeiler-Lehman subtree kernel. The reason is that comparing unfolding trees with
each other by equality (i.e., isomorphism), is arguably too restrictive for kernel design, as
in case of kernels, we are interested in defining similarities. Our typical observation is that
the depth-k unfolding trees (or, equivalently, Weisfeiler-Lehman labels at iteration k) of
most vertices are unique for very small values of k. In other words, the limitation of the
Weisfeiler-Lehman subtree kernels is that two structurally completely different unfolding
trees are treated identically to two unfolding trees which differ by only very little.

To overcome this drawback, we propose a finer label comparison by defining a new (dis-)
stmilarity measure between unfolding trees that employs a specialized form of the well-known
tree edit distance. On an abstract level, the tree edit distance measures the minimum amount
of edit operations necessary to turn one tree into another. Calculating this distance is NP-
hard in general (see, e.g., Bille, 2005). However, for our purpose it suffices to consider a
restricted type of tree edit distance. We argue that this particular distance preserves essential
properties of unfolding trees. Furthermore we show that, in contrast to the general case, this
variant can be calculated efficiently.

Recall from Sect. 2.7.1 that depth-k unfolding trees are rooted trees that reflect the k-hop
neighborhoods of vertices. For a graph G and vertex v € V(G), the depth-k unfolding tree
Tr(G,v) is implicitly constructed by the Weisfeiler-Lehman relabeling algorithm for node
v. This unfolding tree T' = T (G, v) with root r is embedded into G by a locally bijective
homomorphism. More precisely, there exists a homomorphism ¢ : V(T') — V(G) that maps
r onto v, and for all non-leaves in ¢t € V(T') the homomorphism ¢ induces a bijection between
the children of ¢ in T" and the neighbors of ¢(t) in G (Dell, Grohe, and Rattan, 2018).

Considering the nature of unfolding trees, we propose a specifically designed distance
measure on such trees. Intuitively speaking, the distance between depth-k£ unfolding trees
T = Ty(G,v) and T" = T(G’,v’) is measured in terms of the costs that are necessary for
altering T such that it can be embedded into G’ at v’ by a locally bijective homomorphism.
We achieve this by defining a tree edit distance variant which upholds essential properties
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of these trees’ semantics and their embedding operator. Recall that tree edit distances can
be expressed through the concept of node maps (see Sect. 2.6). A node map from T into 7"
essentially defines a partial mapping f : V(T') — V(T”). To match some of the characteristics
of locally bijective homomorphisms, we require this partial mapping f to be subject to the
following two constraints:

1. f maps the root r of T onto the root r' of T".

2. If f maps anode t € V(T) onto t' € V(T"), then f can map the children of ¢ only onto
children of ¢'.

These requirements on comparing unfolding trees lead to the following definition of con-
strained node maps.

Definition 6.1 (Structure and Depth Preserving Mapping). A structure and depth
preserving mapping (SDM) between two rooted trees T and T' is a triple (n,T,T') with
7 V(T) x V(T') satisfying

(i) V(v1,v]), (v2,vh) € T 101 =vg <= v =, (definite)
(i1) (r(T),r(T")) € w, and (root preserving)
(i1i) ¥(v,v") € w: (par(v),par(v’)) e (structure preserving)

where par(v) with v e V(T') denotes the parent of node v in T. The set of all structure and
depth preserving mappings between T and T' is denoted by SDM(T,T").

SDMs represent sequences of edit operations subject to the above constraints that trans-
form trees into trees. More precisely, for an SDM (7, T,7T") let T = Ty, T4,...,T be a
sequence of trees such that 7;, 7 is obtained from T; by applying one of the following atomic
transformations:

relabel: If (v,v') € 7, then replace the label of v in T; by that of v'.
delete: If v is a leaf in T; and it does not occur in a pair of 7, then remove v from T;.

insert: If v/ is a vertex in 7" which does not occur in a pair of 7 and for which the
corresponding parent u already exists in T}, then add a child to u with the label of v’.

The proof of the following claim is straightforward.

Proposition 6.1. Let (7,T,T") be an SDM and T = Ty, Th,..., T be a sequence of trees
obtained by the above atomic transformations such that every v € T and v' € T has been
considered in ezactly one transformation. Then Ty, = T".

We stress that SDMs uphold essential properties of unfolding trees. In particular, they
ensure that sibling relationships are preserved. That is, for any SDM (7, T, T"), nodes v} and
vh are siblings in 7" whenever (vy, v}), (v2, v5) € m and vy, vy are siblings in 7. Furthermore,
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Figure 6.2: Visualization of a structure and depth preserving mapping (m,T,T")
that transforms 7T into T”. Gray lines correspond to pairs contained in the mapping
7. Furthermore, the figure provides a corresponding edit sequence where deleted,
inserted, resp. relabeled nodes are marked in gray.

vertices can only be mapped onto vertices of the same depth. Recall, that our goal is to
measure similarities between neighborhoods of vertices. It is therefore essential that roots
are being preserved. This is guaranteed by the second constraint in Def. 6.1. Furthermore,
from Def. 6.1 it follows that m maps a connected subtree of T" onto a connected subtree of
T'. That is, the first (resp. second) components of the pairs in 7 form a connected subtree
of T (resp. T").

Figure 6.2 demonstrates the motivation of SDMs. The displayed mapping is a structure
and depth preserving mapping from 7' into 7" which visibly preserves the depth as well as
the pairwise sibling relationships for all mapped vertices. Notice that nodes in T" which are
part of the mapping are relabeled. Except for one node, these relabelings are trivial, i.e.,
node labels are not altered. Furthermore note that, the two nodes in T" which are not part of
the mapping are deleted, while the node in 7", which is not mapped upon, is being inserted.

Using the notions above, we are ready to define the distance between unfolding trees.

Definition 6.2 (Structure and Depth Preserving Tree Edit Distance). Let T, T’ be
unfolding trees over a vertex label alphabet ¥ and v : ¥ x ¥ — R a cost function (i.e.,

metric), where | = {¥ u L} with L being the special blank symbol. Then the cost for an
SpM (7, T,T") is given by

y(m) = D) )W) + D (), L) + Y (L)) (6.1)

(v')er veN v'eN’

where N (resp. N') are the vertices of T (resp. T') that do not occur in any pair of w. The
structure and depth preserving tree edit distance from T into T, denoted SDTED(T,T"), is
then defined by

SpTED(T,T") = min{y(r) : (x,T,T") € SDM(T,T")}. (6.2)

In other words, the cost of an SDM (7, T,T") is defined by the sum of the individual costs
of relabeling, insertion, and deletion operations over all vertices of T" and T”, where the cost
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for insertion (resp. deletion) of a vertex v is given by v(¢(v), L) (resp. (L, ¥¢(v))). Finally,
the structure and depth preserving tree edit distance between trees T and T is simply the
minimal cost over all possible mappings.

6.1.2 Computing Distances between Unfolding Trees

We now show that for any pair of unfolding trees T,T" of the same depth, the distance
SDTED(T,T") can be efficiently calculated in a recursive manner. The algorithm makes use
of the fact that for a depth-k unfolding tree T" in graph G, the subtrees below the root of T'
are (k — 1)-unfolding trees of G. More precisely, let v be a child of the root r(7"). Then, the
tree T'[v] (i.e., the subtree of T' induced by v and its descendants) with root v is a (k — 1)-
unfolding tree appearing in G. We denote the set of all such trees below the root of T' by
F(r(T)).

Recall that an SDM between T and T” requires r(T") to be mapped onto r(T”). Further-
more, from the properties of Definition 6.1 it follows that subtrees of T" are mapped onto
subtrees of T”. Thus, computing an optimal SDM from T into 7" requires finding the set of
optimal SDMs turning the trees below the root of T' into the trees below the root of T7”. In
other words, we require the distances between (k — 1)-unfolding trees in order to compute
the distances between k-unfolding trees. These distances can be computed in a recursive
manner by noting that 0-unfolding trees correspond to single vertices for which the costs for
relabeling, insertion and deletion is given by function ~.

Alg. 3 implements this idea of computing the SDTED(T,T") between unfolding trees T
and 7”. In order to allow for insertions and deletions, we pad the sets F' = F(r(T)) and
F' = F(r(T")) by a sufficient number of empty trees (line 2). To find the set of optimal
SDMs between F and F’, we require the pairwise distances SDTED(T; T]’ ), with T; € F' and
T} € F', as well as the costs for deleting and inserting trees T, resp. 7. The computation of
these costs is done in line 3 of Alg. 3. The first case recursively calculates the SDTED(T5, T7)
for all pairs of non-empty trees in F' and F’. The second case considers the instance where
the root of some subtree T; is not part of a mapping, which implies that all vertices in T;
are deleted. A similar argument follows for the insertion of trees T]/ (third case of line 3).
Then, finding an optimal SDM between T' and T’ can be reduced to the minimum cost perfect
bipartite matching problem between elements in F' and F’ with distances as defined above
(line 4). Finally, the SDTED(T,T") is the cumulative cost of the distance between the roots
of T and T" and the minimal cost perfect bipartite matching between the trees below these
roots (line 5). The above considerations imply the following result:

Theorem 6.1. Given unfolding trees T, T’ of the same depth with labels from ¥ and a cost
function v : %) x X — R, Alg. 3 returns SDTED(T,T").

As an example, consider the SDTED between unfolding trees T and 7" of Fig. 6.3(a).
We assume that each insertion, deletion, and relabeling operation has cost 1. Following Def.
6.1, the root of T' is mapped onto the root of 7”. As both vertices have the same label, the
respective cost is zero (i.e. y(¢(v1),£(v])) = 0). Due to the structure preserving property of
SDMs, calculating the edit costs for the remaining vertices beneath the roots comes down
to matching (resp. inserting and deleting) the highlighted subtrees. It can easily be checked
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Algorithm 3 ComPUTE SDTED

input: Trees T, 7", cost function v : ¥ | x ¥} - R
output: Structure and depth preserving tree edit distance between T' and T’

SpTED(T,T"):
1. F:=F(r(T)), F':=F(r(T))
2: Pad F and F’ with empty trees T'| such that |F| = |F'| = §(r(T)) + d(r(T"))
3: for all Ty e I, T] € F' do

(SDTED(T3,T))  if T, € F(r(T)) and T} € F(r(T"))

’7)

> (), L) ifT;e F(r(T)) and Tj = T\

5” _ ’UEV(TL')

Yo > (L) if T; =Ty and T) € F(r(T"))
VeV (T))
0 o/w .

4: Let S € F x F’ be a minimum cost perfect bipartite matching w.r.t. distances 0
5. return y(4(r(T)),L(r(T"))) + Z(Ti,T]’,)eS dij

that matching T'[ve] with T[v}] (which has cost 2) and thus deleting T'[v3] (which has cost 2)
has minimal cost over all possible matchings. The individual edit operations corresponding
to this case are depicted in Fig. 6.2.

By the construction of unfolding trees, vertices closer to v in G begin to appear at smaller
depths in Ti(G,v). In fact, the number of occurrences in T (G, v) of a node u € V(G) grows
exponentially with k£ once it has appeared for the first time. This indirectly assigns higher
weights to vertices closer to v in the calculation of the structure and depth preserving tree
edit distance.

Notice that Algorithm 3 describes a naive implementation which in general requires an
exponential number of recursion calls. However, this can be avoided using a lookup table
which stores the SDTEDs between previously considered pairs of unfolding trees. Let T =
Te(G,v) and T" = Ti(G',v') be two depth-k unfolding trees. Clearly, for any i € N, the
number of i-unfolding trees in G and G’ is bounded by their sizes n = |V(G)|, resp. n' =
|[V(G")|. Thus, to compute SDTED(T,T"), we need to invoke Alg. 3 at most nn’ times for
every depth i € [k]. Once a SDTED between two i-unfolding trees has been calculated, it can
be stored in a lookup table. With such a lookup table, we require at most nn’'k invocations
of the minimum cost perfect bipartite matching algorithm, each of complexity O(d®log(d)),
where d is the maximum degree in G, G’. In summary, computing the SDTED between T" and
T’ can be done in polynomial time.
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T: T M,|a b ¢ L M, |T[vs] T[vs] T[vh] L
/

Ul Ul a |01 11 T[vz]| O 2 2 3

b |1 011 Tlvs]| 2 0 3 2
/

OO () cl1 101 T 2 3 0 4
@@ @ WO L1110 L3 2 4 0
(a) Unfolding trees with child (b) Distance matrix on el- (c) Matrix containing SDTEDs
trees below roots marked gray. ements in X . between child trees.

Figure 6.3: The structure and depth preserving distance between T and T’ can
be formulated in terms of Wasserstein distances. Following the order on ¥ as
in M, of Fig. (b), resp. the order on child trees as in M, of Fig. (c), the
unfolding tree vectors of 7" and T have the form V,(T) = [1,0,0,0], V.(T) =
[1,1,0,4] and V,.(7") = [1,0,0,0], V.(7") = [0,0,1,5]. One can check that
Wi, (Vo (T), V. (T")) = 0 and Wy, (Ve(T), Vo (T")) = 4, resulting in SDTED(T,T") =
WMT(VT<T)7VT(T,)) + WMC(VC(T) \Y (T,>) 4.

6.2 The Generalized Weisfeiler-Lehman Kernel

Using the definitions and results of Sect. 6.1, we now introduce the generalized Weisfeiler-
Lehman subtree kernel and show that it is in fact a generalization of the original Weisfeiler-
Lehman subtree kernel (Shervashidze et al., 2011). Its key idea is to relaz the rigid comparison
of unfolding trees by equality (i.e., isomorphism) used in the original Weisfeiler-Lehman
subtree kernel by considering the structure and depth preserving distances between unfolding
trees. Using SDTED, we identify groups of similar trees by means of hard clustering. This
ensures that similar unfolding trees are assigned to the same clusters, while dissimilar to
different ones. T'wo unfolding trees are then regarded equivalent by the generalized Weisfeiler-
Lehman subtree kernel iff they belong to the same cluster.

More precisely, for a set D of graphs, let ©; be a set of hard clusterings (i.e., partitionings)
of the set of depth-i unfolding trees 7() appearing in the graphs in D. We regard each element
of ©; as a function p : T — [k], where k is the number of clusters defined by p. Then,
for any graphs G, G’ € D and depth parameter h, the generalized Weisfeiler-Lehman subtree
kernel is defined by

h
(@G =Y S S S (TG0 pTE ), (63)

1=0 pe®; veV(GQ)v'e V(G")
where § is the Dirac delta.

Theorem 6.2. The generalized Weisfeiler-Lehman subtree kernel kgWL 1S positive semi-
definite.

Proof. Since § is trivially positive semi-definite and kernels are closed under addition (see
Sect. 2.8), kgWL is positive semi-definite and thus a proper kernel. O

Notice that kgWL is equivalent to the original Weisfeiler-Lehman subtree kernel for the
case that ©; = {p;} with p; defined as follows: For all T,T" € T, p;(T) = p;(T") iff T and
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T" are isomorphic (or equivalently, SDTED(T,T") = 0). Thus, our definition generalizes the
ordinary Weisfeiler-Lehman subtree kernel in two ways: First, while the ordinary Weisfeiler-
Lehman subtree kernel regards two unfolding trees T, T" to be equivalent iff SDTED(T,T") =
0, our definition allows SDTED(T,T") = 0 as well. Second, our definition enables more than
one partitioning (or hard clustering) function.

We employ the concept of Wasserstein k-means clustering (Irpino, Verde, and Carvalho,
2014) as a method to partition the set of unfolding trees. This choice is motivated by several
arguments. As mentioned above, the purpose of clustering is to group similar unfolding trees
w.r.t. SDTED. We therefore require the clusters to be conver such that unfolding trees of
a cluster ideally have pairwise small distance. Another requirement is to be able to control
the number of clusters in order to govern the degree of relaxation. In the following, we
show that the SDTED can in fact be calculated using the discrete Wasserstein distance (see
Sect. 2.10). The Wasserstein distance has been the focus of comprehensive research leading
to fast approximation methods for distance and center computations (Cuturi, 2013).

Below we address the most important ingredients of Wasserstein k-means needed for
our purpose. In particular, we first discuss how unfolding trees can be represented by real-
valued vectors. Subsequently, we state that the Wasserstein distance between such vectors
corresponds to the SDTED of the respective unfolding trees. This representation further-
more allows for the calculation of center points using Wasserstein barycenters, enabling the
application of Wasserstein k-means clustering approaches.

6.2.1 Unfolding Tree Vectors

In order to effectively apply Wasserstein k-means, we represent i-unfolding trees by (sparse)
real-valued vectors. Recall that the structure and depth preserving tree edit distance is
calculated as the sum of

(i) the distance between the root nodes, and

(ii) the minimum cost of the perfect bipartite matching between child trees below these
roots,

as described in Alg. 3. We accordingly represent an i-unfolding tree T' as a pair of vectors
V(T) = (V,.(T),V.(T)), where

(i) V,.(T') encodes the root node’s label ¢(r(T)), and
(ii) V.(T) encodes the set of (i — 1)-unfolding child trees F'(r(T)) below the root r(T).

We define V,.(T') as a one-hot vector with entry 1 at the index corresponding to the root
node’s label ¢(r(T")) and 0 everywhere else. The vector V.(T') corresponds to a histogram
that counts isomorphic (i — 1)-unfolding child trees below the root. Both vectors V,.(T") and
V(T') furthermore contain an entry which allows for insertions and deletions of nodes and
subtrees.

More precisely, let ¥ = (I1,...,lp, L) be the ordered set of all original vertex labels
appearing in the graph dataset D and blank symbol 1. Then, the root node label of an
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unfolding tree T is represented by the vector V,.(T) = (z1,...,zp,x1), where

1 if je[p] and £(r(T)) = I;

x; =
! 0 o/w.

Furthermore, let 70-1) = (17, ... ,Ty) be the ordered set of all pairwise non-isomorphic

(i — 1)-unfolding trees in D. Then, the set of child trees F(r(T")) below the root of T' is

represented by the vector V.(T') = (x1, ..., xq, Tq1+1) With

z :{{TIEF(T(T”‘T'EE}I if j € [q]
T 2d = 0(r+(T)) o/w

where d is the maximum vertex degree in graphs of D.
We give an example of these vector representations in the description of Fig. 6.3.

6.2.2 Wasserstein Distance on Unfolding Tree Vectors

Utilizing the vector representations of unfolding trees above, we are able to reformulate
the computation of the structure and depth preserving tree edit distance in terms of the
Wasserstein distance. We show that the SDTED(T, ") for i-unfolding trees T" and 7" can in
fact be calculated as the sum of (i) the Wasserstein distance between the root node vectors
Vo (T),V,(T") and (ii) the Wasserstein distance between the child tree histogram vectors
Ve(T), Vo (T"). This reformulation requires the distance matrix M, which represents the cost
function v on X, as well as the distance matrix M. which defines the pairwise distances
between (i — 1)-unfolding trees. These matrices are constructed as follows.

For the ordered set ¥, = (I,...,l,, L) as above, let M, € RPTD*(P+1) be the pairwise
distance matrix between labels and blank symbol | = [, according to v : ¥ x ¥ — R,
ie.

MT = (mij)i7j€[p+1] with mij = ’}/(ll,lj) (64)

Analogously, for the ordered set 70~V = (Ty,...,T,) as above, let M, e R(¢+1)*(@+1) he the
pairwise distance matrix between (i — 1)-unfolding trees and the empty graph T'| = Ty41,
ie.,

M, = (mij)i7j€[q+1] with mi; = SDTED(E,’T]) (65)

It can be shown that for two depth-i unfolding trees 7" and 7", the distance between
their root nodes is equal to the Wasserstein distance Wy, (V,.(T'), V,.(T")). Furthermore, the
calculation of the minimum cost perfect bipartite matching between the sets of child trees
below these roots can be reduced to computing the Wasserstein distance between V.(T') and
Ve(T"), ice., War, (Ve(T'), Vo (T7)). To prove this, we utilize the following lemma which follows
from the integral flow theorem.

Lemma 6.1. For z,2' € N¢ and cost matrizc C € R¥?, there exists a transport matriz
T e T (z,2") with T € N such that (T,C = Wc(z,2').
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We refer to Sect. 2.10 for definitions on the Wasserstein distance. Lemma 6.1 implies that
the minimum cost perfect bipartite matching between the sets of child trees below r(T") and
r(T") is equivalent to Wiy, (V.(T'), V.(T")). Putting all together we have:

SDTED(T,T") = W, (Vi (T), V. (T")) + War, (Ve(T), V(T)) . (6.6)
An example demonstrating the reformulation of the SDTED in terms of the Wasserstein
distance is given in Fig. 6.3.
6.2.3 Unfolding Tree Barycenters

The above reformulation enables the calculation of barycenters on sets of unfolding trees to
perform Wasserstein k-means (Irpino, Verde, and Carvalho, 2014). A barycenter of a set S
of unfolding trees is a point which minimizes the sum of distances to unfolding tree vectors
corresponding to S. Similarly to unfolding tree vectors, this barycenter is a pair of real-valued
vectors (i, pic), where p, is the center of the V,.s and u. of the V.s. Formally, the barycenter
of S is a pair (i, ue) € (RPT1 RI*1) defined by:

argmin Y Wiz, (Vo (T), i) + War (Ve(T), pre). (6.7)
Hrobe  Tes

While a barycenter, in general, does not correspond to an existing unfolding tree, the
Wasserstein distance between an unfolding tree vector V(7T') = (V,.(T), V(7)) and a center
vector = (i, fte) can be computed nonetheless by:

Wi, (Vi (), i) + Wit (Ve(T), pae)- (6.8)

6.2.4 The Wasserstein k-Means Algorithm for Unfolding Trees

Using the above concepts, the Wasserstein k-means clustering algorithm can be stated in
form of Lloyd’s algorithm (Lloyd, 1982). For a set T of depth-i unfolding trees, we perform
the following steps:

(i) Randomly select k unfolding trees of 7() and assign them as initial centers.
(ii) Assign each T'e T to its nearest center point (using Eq. 6.8).
(iii) Recalculate the centers of all clusters (using Eq. 6.7).

Steps (ii) and (iii) are repeated until clusters do not change anymore, i.e., the algorithm
converges, or a predefined number of iterations has been reached.

6.3 A Faster Kernel Variant

For many graph datasets, the number of distinct Weisfeiler-Lehman labels, or equivalently
unfolding trees, grows rapidly with increasing Weisfeiler-Lehman iterations. Although this
number is bounded by the total amount of vertices, dealing with large amounts of unfolding
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Figure 6.4: Visualization of a clustering over unfolding trees 11, ...,7T5 and respec-
tive cluster centers p, p’. Instead of computing the SDTED for all pairs of unfolding
trees, the kernel variant kéWL* approximates their distances by the distance be-
tween their centers. For instance, SDTED(T},T3) is approximated by the distance

between p = (fr, pic) and p' = (7., )

trees in the Wasserstein k-means step can become computationally expensive. We therefore
propose a more practical variant of our kernel that addresses this issue by approximating
distances between unfolding trees using their cluster centers. The basic concept of this
approach is depicted in Fig. 6.4.

Consider the calculation of pairwise distances between unfolding trees as described in
Sect. 6.1.2. That is, the distances of 0-unfolding trees are defined by the metric v and the
SDTEDs for all pairs of (i + 1)-unfolding trees are computed using distances of i-unfolding
trees. To reduce the number of distinct i-unfolding trees 7 (or equivalently labels ¥;), we
first perform a clustering Ci, ..., Cj of T with centers p1, ..., i as in Sect. 6.2.4. We then
approximate the distance between i-unfolding trees T'e€ C and T’ € C’ by the distance
between their cluster centers. More precisely, we approximate SDTED(T,T") by

Wi, (b ) + War, (ptc, 1ic.)

where T' and T” have been assigned to clusters with centers p = (ur, o) and g’ = (u., pl),
respectively. Subsequently, these distances are used in iteration ¢ 4+ 1, greatly reducing the
number of distance calculations. That is, in contrast to the computation of k%WL(G, G'), our
approximation variant, denoted kgWL*(G, G'), considers only k labels instead of |7 | labels
in iteration %.

The concept of clustering unfolding trees after each Weisfeiler-Lehman iteration and then
continuing the process with representatives of clusters, can be considered slowing down
the Weisfeiler-Lehman relabeling process. It ensures that vertices are split into different
Weisfeiler-Lehman label classes at a later iteration when compared to the ordinary Weisfeiler-
Lehman method.

6.4 Experimental Evaluation

In this section, we experimentally evaluate the predictive performance of our approach on a
set of real-world as well as synthetic datasets. We note that in the following, we limit the
evaluation to the approximation kernel GWL* defined in Sect. 6.3. This choice was made
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due to the fact that while the original variant is well applicable to sparse graphs such as,
for example, molecules, an explicit consideration of all unfolding trees may become compu-
tationally too expensive on structurally more complex graphs. Moreover, prior experiments
have shown that the predictive performances of the two kernel variants were closely aligned.

To put the performance of our kernel into perspective, we compare it to several state-of-
the art graph kernels. We refer to Sect. 3.4 for short descriptions on these kernels. For the
sake of clarity, we omit some of the Weisfeiler-Lehman-based kernels that were previously
considered in Chapter 5, by noting that their performance is indistinguishable from that
achieved by other methods. The empirical results can be summarized as follows:

(i) While our approach does not improve upon existing methods on molecular datasets, it
significantly outperforms all considered competitor kernels (except the FWL-D kernel
variant of Chapter 5) on the ego-network datasets containing structurally more diverse
and noisy graphs. The results strongly confirm the assessment that our generalization
of the ordinary Weisfeiler-Lehman subtree kernel is beneficial on graphs that exceed
graphs of simple and uniform structure.

(ii) We systematically evaluate the predictive performance of our kernel by analyzing its
behavior on synthetic datasets containing graphs of different structural complexities.
The results show that our approach is more robust to (structural) noise than competing
kernels and makes up for the shortcomings of the ordinary Weisfeiler-Lehman subtree
kernel.

We measure the prediction performance in terms of accuracy obtained by support vector
machines (SVM) using a 10-fold cross-validation. If not explicitly chosen otherwise by the
authors of the individual implementations, the SVM parameter C' is selected from the value
set 20 :ie {—12,—-8,—5,—3,—1,1,3,5,8,12}. In each fold, a grid search is used to identify the
optimal kernel parameters. We report the mean and standard deviation over 10 such cross-
validation repetitions. For all applied kernels, we used the implementation as provided by
Siglidis et al. (2020) or that of the respective authors and ran grid searches using the following
kernel specific parameters. For approaches employing the Weisfeiler-Lehman subtree features
we chose h € {1,...,5}. In case of the graphlet sampling (GS) kernel, the parameters ¢ = 0.1,
d =0.1 and k € {3,4,5} were applied. For the Weisfeiler-Lehman filtration (FWL-D) kernel,
we chose k € {1,...,10}. Throughout this section, we usually refer to all considered kernel
methods using the abbreviations as mentioned below Fig. 6.5.

For our generalized Weisfeiler-Lehman kernel GWL* (as described in Sect. 6.3), we use
depth parameter h up to 4. Concerning the costs for relabeling, deletion and insertion
operations, we chose unit costs. We perform a total of 3 clusterings (i.e. |©;| = 3) to make
up for the randomness caused by the k-means initialization step. We set the number of
clusters to k = 4/|3;|. This choice for k selects the number of clusters relative to the amount
of Weisfeiler-Lehman labels in each iteration and significantly reduces the computational
complexity of the GWL* kernel.
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Number of node labels

Dataset |D| |C| @|V] I E]| @% A Sl [B1] 0 [ |Es]
DHFR 756 2 424 44.5 1.1 4 9 71 630 2478
MUTAG 188 2 179 19.8 1.1 4 7 33 174 572
NCI1 4110 2 299 32.3 1.1 4 37 292 4058 23k
PTC.MR 344 2 143 14.7 1.0 4 18 130 780 1987
IMDB-B. 1000 2 198 96.5 44 135 1 65 2931 3595
EGO-1 200 4 139.0 5935 4.3 140 1 113 21k 25k
EGO-2 200 4 178.6 14449 8.1 180 1 141 33k 35k
EGO-3 200 4 2200 26135 11.9 203 1 170 42k 43k
EGO-4 200 4 259.8 4135.8 159 237 1 209 bHlk 52k

Table 6.1: Structural information of graph benchmark datasets. |D|, |C|, and A,
denote the number of graphs, number of classes, and maximum degree in a dataset,
respectively. || is the number of distinct vertex labels. |X4], |22, |23 are the
amounts of distinct Weisfeiler-Lehman labels for depth h = 1,2, 3, respectively.

6.4.1 Real-world Benchmarks

Figure 6.5 lists the classification accuracies for real-world benchmark datasets. The respec-
tive runtimes are provided in Table 6.2. On the set of molecular datasets, i.e., on DHFR,
MUTAG, NCI and PTC-MR, our approach is in close range to the best performing com-
petitor kernels. Only for NCI1, there is a noticeable performance gap. The overall results
suggest that a relaxation of the Weisfeiler-Lehman kernel is not advantageous when applied
to these simple molecular graphs. This may be explained by the assumption that structurally
similar unfolding trees can have completely opposing chemical properties. Clustering might
thus even be disadvantageous for this kind of data.

Moving on to more complex graphs, we observe a different picture. While there are
no large discrepancies between our method and the best performing comparison kernels on
datasets IMDB and EGO-1 (which both have an average node-to-edge ratio up to roughly
1:4), the GWL* kernel considerably outperforms all other kernels (except our FWL-D kernel
variant) on the three remaining EGO datasets. The performance gap between the GWL*
kernel and the ordinary Weisfeiler-Lehman subtree kernel becomes increasingly larger with
growing density and number of distinct Weisfeiler-Lehman labels in the dataset graphs, lead-
ing to a roughly 20% accuracy difference. It is noteworthy that in case of the EGO datasets,
already for depth h = 2 nearly all unfolding trees (i.e. depth-2 unfolding trees) appear only
once in the respective dataset (see Tab. 6.1). Thus, the ordinary Weisfeiler-Lehman subtree
kernel is not able to profit from any structural information exceeding node degrees, as graphs
share almost no ¢-unfolding trees for ¢ > 2. In contrast, our approach clearly improves upon
this limitation by relaxing the strict comparison of unfolding trees. Given these two high
level experimental results, we conjecture that identifying similar unfolding trees instead of
identical unfolding trees becomes more advantageous as the dataset graphs become more
complex and diverse.
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Figure 6.5: Classification accuracies and standard deviations on real-world bench-
mark datasets. We compare our approach to the Label Histogram (VE-Hist) kernel
(see Sect. 3.4), the graphlet sampling (GS) kernel (Shervashidze et al., 2009), the
shortest-path (SP) kernel (Borgwardt and Kriegel, 2005), the ordinary Weisfeiler-
Lehman (WL) subtree kernel (Shervashidze et al., 2011), the Wasserstein Weisfeiler-
Lehman (W-WL) kernel (Togninalli et al., 2019), the ordered decomposition DAG
(ODD-STh) kernel (Martino, Navarin, and Sperduti, 2012), and the Weisfeiler-
Lehman filtration (FWL-D) kernel (see Chapter 5). The approximate generalized
Weisfeiler-Lehman kernel (see Sect. 6.3) is denoted by GWL*.
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GS SP WL W-WL ODD-STh FWL-D GWL*

DHFR  77.17 434 0.41  290.32 4.52 6.26 1.58
MUTAG  20.07 0.20 0.05 9.61 0.29 0.53 0.87
NCI1 434.32 12.79 2.16 6457.34 147.53 63.84 19.60
PTC-MR  38.64 0.30 0.08 32.49 0.71 0.91 2.01
IMDB-B. 135.89 2.39 0.51 297.06 4.12 5.21 7.91
EGO-1  21.62 1596 0.50 103.46 56.29 736 339.85
EGO-2  23.38 33.27 0.92 173.11 145.39 14.54 1256.58
EGO-3 2444 60.01 1.47  260.58 298.77 23.18 2449.26
EGO-4  26.58 97.18 2.16  353.57 555.43 34.90 3834.94

Table 6.2: Runtimes of kernels (in seconds) measuring the time for computing the
kernel matrix. All experiments were performed on an AMD 3900X processor (12
cores) with 64GB of memory.

Following the idea of our generalized Weisfeiler-Lehman kernel, Bause and Kriege (2022)
propose a conceptually similar approach. They suggest slowing down the Weisfeiler-Lehman
vertex relabeling scheme using a method which closely resembles our approach outlined in
Sect. 6.3, with the key distinction being the type of clustering function. We refer to Sect. 3.4
for a brief discussion on this method. Due to the resemblance between the two kernels, we
do not include the results obtained by Bause and Kriege (2022) in Fig. 6.5, by noting that
the obtained predictive performances are nearly identical.

6.4.2 Investigating Noise and Structural Deviation

To systematically evaluate the predictive performance of our kernel on graphs with varying
structural complexity, we consider graph datasets generated by the stochastic block model
(Wang and Wong, 1987). In the following, we describe their generation process and the corre-
sponding classification task. Subsequently, we discuss the results obtained by the generalized
Weisfeiler-Lehman kernel and a selected subset of competitor kernels on this kind of graphs.

Block Model Graphs Let T be some random tree of a predefined size. Create two non-
isomorphic graphs G and G by adding a new edge to 7. ! The graphs G| and G5 represent
the underlying structure of the block model graphs. A block model graph for G € {G1, G2}
is generated in the following fashion: Let ¢, m, € N and p € [0, 1].

(i) For each v € V(G), create a set of ¢ vertices C,, = {u1, ..., u}.

(ii) For all u € Cy, v € Cyy, connect u and v’ by an edge with probability p if {v,v'} € E(G)
orv="1v.

(iii) Connect a number of m, prior unconnected random vertex pairs {u,u'} by an edge.

To ensure that the classification task is non-trivial, we furthermore require that GG; and G2 have the same
multiset of vertex degrees.
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Figure 6.6: Graphs generated by slightly different underlying structures (depicted
in gray). Each block in the underlying structure contains 3 vertices (i.e., ¢ = 3).
Two vertices are connected by an edge with probability p if they belong to the same
block or their blocks are connected in the underlying structure. Furthermore, both
graphs contain m, = 4 additional noise edges (depicted by dashed lines).

We generate a number of block model graphs for both graphs G7 and Gs. The classification
task is then to predict whether a block model graph was generated w.r.t. G; or Gy. Fig. 6.6
depicts an example of two such generated graphs.

All datasets considered in the following evaluations were created starting with a random
tree of size 16 which was extended by a single random edge resulting in graphs G1,Gs. For
each classification task, we generated 200 random graphs for each G € {G1, G2}. The number
of vertices ¢ contained in a block was set to 8 in all experiments. The remaining parameters
were selected as stated in Fig. 6.7. For each set of parameter choices, we generated 5 datasets
and provide the mean accuracy.

Evaluation We now investigate the effect of noise and structural deviation in block model
graphs on the predictive performance of our kernel. To this end, we vary the values of the
parameters m, and p. The parameter p governs the probabilities of edges within and between
vertex blocks while m, indicates the number of randomly added noise edges. Hence, they
directly influence the noise and structural deviation of graphs within a class. Note that we
limit our discussion to the competitor kernels SP, WL, P-WL and ODD-STh by noting that
all previously considered graph kernels underperformed or were indistinguishable from of one
of these methods.

Figure 6.7(a) investigates the methods’ robustness to noise. Higher values of m, increase
the deviation of graphs within the same class. In this experiment, we fixed the edge prob-
ability to p = 1.0. For m, = 0, all graphs in the database have 128 nodes and 2048 edges,
and graphs of the same underlying structure are pairwise isomorphic. Thus, all kernels per-
fectly classify the graphs. While our method achieves 100% accuracy for all choices of my,
the remaining kernels gradually and significantly decrease in predictive performance with
increasing values for m,. It is noteworthy that for the case of 100 noise edges, no competitor
kernel but P-WL performs significantly better than random.
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Figure 6.7: Classification accuracies for synthetic dataset evaluations. Fig. (a)
analyzes the influence of different amounts of noise edges m, (with p = 1.0 fixed)
and Fig. (b) shows results obtained for different values of the edge probability
parameter p (with m, = 0 fixed). Block size ¢ has been set to 8 for all cases.

Figure 6.7(b) analyzes the methods’ ability to identifying the underlying structure using
different values of the edge probability parameter p. In this experiment, we fixed the number
of additional noise edges to m, = 0. The lower the value p, the more the dataset graphs
within a class deviate from each other, and the less of the underlying structure is being
reflected. While in the trivial case p = 1.0 (where graphs belonging to the same class are
pairwise isomorphic) all methods achieve 100% accuracy, we observe a rapid performance
decline for the WL and P-WL methods for smaller values of p. In particular, WL does not
perform better than random other than for the trivial case. While ODD-STh underperformed
in all previous experiments, it seems that it is well suited for this kind of structural deviation.

In summary, it is apparent that kernels based on the comparison of Weisfeiler-Lehman
labels by equality are less suited when structural noise distorts the graphs or when the graphs
in a class structurally deviate significantly. Our method mitigates this drawback: Its ability
to identify similar vertex neighborhoods leads to major increases in predictive performance
on datasets containing noisy and structurally diverse graphs.

6.5 Summary and Concluding Remarks

We experimentally demonstrated a drawback of the original Weisfeiler-Lehman subtree ker-
nel (Shervashidze et al., 2011) caused by the rigid comparison of Weisfeiler-Lehman labels
w.r.t. equality. To overcome this limitation, we introduced a generalization of this kernel,
which allows for a finer similarity measure between Weisfeiler-Lehman labels. The experimen-
tal results clearly show that the proposed generalization outperforms other state-of-the-art
kernels on several real-world datasets. Specifically, we demonstrated the advantage of our ap-
proach on graphs of structural complexity beyond the typically considered molecular graphs
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of small pharmacological compounds.

For simplicity, we limited the discussion to the Weisfeiler-Lehman subtree kernel (Sher-
vashidze et al., 2011) which is arguably the most established member of the Weisfeiler-Lehman
graph kernel family. However, we note that our approach can be applied to all graph kernels
relying on the Weisfeiler-Lehman label propagation algorithm.

Our results raise several interesting questions for further research. One research question
is to investigate the kernel parameter concerned with the number of clusters. Clearly, this
value governs the degree to which the ordinary Weisfeiler-Lehman subtree kernel is being
relaxed. We note that choosing appropriate values for k is a general problem of k-means
approaches. In the experimental evaluation, k was chosen relative to the total number of
unfolding trees. While this choice led to very impressive predictive performances on the
EGO datasets, our results showed that it may also be disadvantages on datasets such as
NCI1. Since our kernel variant allows for several clusterings, a possible solution is to simply
consider several values for k.

Another particularly relevant question is whether the tree edit distance can directly be
used as a ground distance in vertex matching kernels (see e.g., Kriege, Giscard, and Wilson,
2016 and Togninalli et al., 2019). Employing such matching kernels would eliminate the
need for a hard partitioning of unfolding trees. Unfortunately, straightforward approaches
such as replacing the ground distance in the Wasserstein Weisfeiler-Lehman kernel (Togni-
nalli et al., 2019) by the tree edit distance does not yield a positive semi-definite kernel in
general. However, there has been comprehensive research addressing the problem of dealing
with indefinite kernels. For instance, indefinite kernel matrices may be converted to positive
definite ones using spectrum transformation approaches, which, e.g., aim at flipping all neg-
ative eigenvalues to zero (Wu, Chang, and Zhang, 2005) or alter the matrix’s diagonal by
adding a positive term (Roth et al., 2003). We stress that our distance function SDTED is not
restricted to be applied in the context of graph kernels. In fact, using SDTED as Wasserstein
ground distance for computing distances between graphs, directly allows the application of
other (dis-)similarity-based classifiers such as k-nearest-neighbor approaches.

Finally, it would be interesting to study other meaningful similarities between Weisfeiler-
Lehman labels that allow for a faster calculation of minimum cost perfect bipartite matchings
(or Wasserstein distances). As the cost function « on the original vertex labels can be defined
by an arbitrary metric, the application of our approach to attributed graphs is another natural
research question.
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7

CONCLUSION

In this chapter, we first briefly summarize the thesis and discuss some implications of our
contributions. We then conclude by pointing out some directions for possible future research.

7.1 Summary and Discussion

In this thesis, we designed efficient graph kernels based on tree patterns that are identi-
fied by constrained homomorphisms. The notion of constrained homomorphisms served as
the pattern embedding operator and was motivated by the conceptual relationship between
graph homomorphisms and subgraph isomorphisms as well as the apparent complexity gap
between them when considering tree patterns. One of the goals of this thesis was to utilize
tractable instances of constrained homomorphisms to efficiently extract suitable pattern sets,
leading to rich graph representations and enabling powerful similarity measures on graphs.
We achieved this goal by considering two particular kinds of constrained homomorphisms:
partially injective and locally bijective homomorphisms.

Although we restricted our attention to these two notions, the results of this thesis clearly
demonstrate the suitability of this kind of pattern embedding operator for graph classification
purposes. In particular, the positive correlation between increasingly constrained homomor-
phisms and improved predictive performances, as observed in Chapter 4, experimentally
confirmed the significance of injectivity constraints. This insight ultimately motivated the
utilization of locally bijective homomorphisms in form of the Weisfeiler-Lehman method,
leading to sophisticated graph similarity measures.

The notion of partially injective homomorphism was introduced to effectively bridge the
gap between graph homomorphisms and subgraph isomorphisms. In order to preserve much
of the advantageous properties of subgraph isomorphisms for graph classification purposes
while remaining efficiently decidable, the goal was to retain as much injectivity in the pat-
tern matching operator as possible. This was achieved by utilizing positive complexity results
on deciding homomorphisms from graphs of bounded treewidth. Considering the results by
Grohe (2007), we can infer that this graph class offers a tight positive border on efficiently
decidable partially injective homomorphisms. Although the concept of partially injective
homomorphisms has implications beyond the contributions of this thesis, we focused on de-
veloping a mining algorithm using this kind of pattern embedding operator in order to obtain
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powerful graph representations. In our experimental evaluation, it was shown that this ap-
proach offers an attractive trade-off between efficiency and predictive performance.

Subsequently, we turned our attention towards approaches that utilize locally bijective
homomorphisms as the pattern embedding operator. While this kind of constrained homo-
morphisms is known to be efficiently decidable for tree patterns (Chaplick et al., 2015) and
therefore directly enables pattern mining-based approaches as outlined in the previous para-
graph, in this thesis we focused on a specific case by restricting the class of tree patterns. In
particular, we considered rooted trees with all leaves having the same depth. Deciding locally
bijective homomorphisms on this kind of trees can be done efficiently using the Weisfeiler-
Lehman method. In comparison to the previous approach, this method offers a distinguishing
advantage: its vertex relabeling scheme directly generates tree patterns (or, more precisely,
encodings thereof), without the necessity for a costly mining process. However, in this thesis,
we identified the drawback of this method to the “specificity” of the outputted patterns, lead-
ing to sparse graph representations and overly coarse graph similarity measures. To address
this limitation, this thesis introduced two approaches to improve upon this drawback.

The first approach borrowed concepts from persistent homology which allow to view
graphs at different resolution levels. We utilized this concept to extract Weisfeiler-Lehman
patterns from sequences of evolving graphs, leading to fine-grained graph similarity mea-
sures. A noteworthy property that distinguishes this kind of kernels from most other graph
kernels is its capability to meaningfully utilize edge weights. Although the main emphasis
was on Weisfeiler-Lehman patterns, we stress that our approach can be applied to any kind
of graph feature. Nonetheless, we showed that Weisfeiler-Lehman patterns are a particularly
interesting choice of graph patterns as they yield specifically powerful graph kernels.

For the second approach, we proposed a relaxation of the ordinary Weisfeiler-Lehman
subtree kernel (Shervashidze et al., 2011) by applying a fine-grained comparison between
Weisfeiler-Lehman patterns. This (dis-)similarity measure was defined by a particularly fit-
ted tree edit distance which provides a semantically meaningful and efficiently computable
distance on such patterns. Reformulating this distance measure in terms of the Wasserstein
distance allowed for a k-means clustering approach on Weisfeiler-Lehman patterns. Using
these results, we defined a graph kernel which generalizes the ordinary Weisfeiler-Lehman
kernel by clustering similar patterns. While our use of the proposed distance measure was
limited to clustering, we argue that it is furthermore relevant to other applications such as,
for example, node classification.

In an experimental assessments of these Weisfeiler-Lehman-based kernels, it became ap-
parent that our approaches significantly outperformed competitor kernels on several datasets
containing graphs that exceed the typically considered molecular graphs. This result is par-
ticularly noteworthy considering the fact that a majority of previously proposed graph kernels
focuses on molecular datasets, on which almost all graph kernels perform nearly identically.

7.2 Outlook

The contents presented in this dissertation raise a number of interesting future research ques-
tions. While we already discussed open questions and directions in each chapter’s conclusion,
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we now turn to potential research questions that conclude from this thesis.

Although constrained homomorphisms have been a central notion of this thesis, our in-
tention was not to conduct an extensive study on this class of pattern matching operators.
Instead, we restricted our attention to two particular instances with the intention of de-
signing suitable and efficient graph kernels. Naturally, there is an abundance of constrained
homomorphisms that may serve as candidates for this purpose. Regarding locally constrained
homomorphisms, it was noted that apart from the examined locally bijective homomorphisms,
both locally surjective and locally injective homomorphisms can also be computed in poly-
nomial time when the pattern class is restricted to trees (Chaplick et al., 2015). Recall that
Chapter 4 points out the advantages of injectivity in pattern matching operators. Further-
more, Chapters 5 and 6 identify the drawback of the Weisfeiler-Lehman method to be the
pattern graphs’ “
embedding operator. Consequently, we conjecture that locally injective homomorphisms are
a particularly promising pattern matching candidate on tree patterns for future research. An
alternate strategy for devising constrained homomorphisms involves partially injective homo-
morphisms while considering other tractable graph classes instead of (edge-maximal) bounded
treewidth graphs as considered in Chapter 4. Due to the result of Grohe (2007), it needs to be
noted that all such graph classes are necessarily subclasses of bounded treewidth graphs (see
Bodlaender, 1993 for a list of such classes). Nonetheless, in light of the practical inefficiency
of deciding homomorphism from graphs of bounded treewidth using the standard dynamic
programming approach (see Sect. 2.4.1), a natural research direction is to explore alternative
graph classes for which there exist more practically feasible decision algorithms. An exam-
ple are outerplanar graphs which have treewidth at most 2 and from which homomorphisms
can hence be decided in polynomial time. Consequently, an interesting research question is
whether partially injective homomorphisms w.r.t. outerplanar graphs can be decided fast in
practice and whether the obtained patterns lead to adequate predictive performances.

Another research direction is the application of this thesis’s results and concepts to graph
neural network approaches. One major direction that stands out is motivated by the close
relationship of the Weisfeiler-Lehman method and the message passing scheme of GNNs (see
Sect. 3.5 for a brief discussion). Particularly, Corollary 5.2 in Chapter 5 shows that our
results on the Weisfeiler-Lehman filtration kernels can directly be utilized to improve the
expressive powers of GNNs. In fact, the generality of graph filtrations allows for arbitrarily
powerful GNNs. A natural research question emerging from this corollary is whether filtration
functions can be learned by a neural network instead having to be provided in advance. Thus,
the concept of graph filtrations could be directly integrated into an end-to-end graph neural
network approach. A conceptually different paradigm to increase the expressive power of
GNNs is to enrich graphs with subgraph information. This is achieved by incorporating the
embedding information of a fixed set of patterns P into the node representations of graphs.
Several approaches have been proposed that consider, e.g., subgraph isomorphism counts
(Bouritsas et al., 2023) or homomorphism counts (Barcel6 et al., 2021) from the patterns
in P. A natural research direction is the application of this concept to partially injective
homomorphisms. More precisely, it would be interesting to study how the expressive power of
subgraph-enhanced GNNs is effected when considering different degrees of partial injectivity
in the embedding operator.

specificity” which is ultimately caused by the local surjectiveness of the
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