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Abstract

The quantum Rabi model (QRM) stands as perhaps the most fundamental framework
describing qubit-light interaction. While observations of many experiments can already be
described within the Jaynes-Cummings model, which represents the limit of the quantum
Rabi model in the weak coupling regime, establishing experimental investigations for high
coupling strengths, where the full Hamiltonian has to be considered, remains a challenge.
This is most prominent for the case of deep strong coupling, where the coupling strength
between the qubit and the light field is the dominating energy in the system, giving rise to
counter-intuitive effects such as creating excitations out of the vacuum.
In this work, experiments realizing a quantum simulation of the periodic quantum Rabi
model (pQRM), which is a generalization of the original quantum Rabi model applicable
to cold atoms in a periodic lattice potential, are reported. A bosonic field mode is realized
by the harmonic trapping potential of an optical dipole trap for ultra-cold rubidium atoms,
and a qubit two-level system is encoded in the Bloch band structure of a superimposed
optical lattice potential. Overlaying these two potentials onto a rubidium Bose-Einstein
condensate induces a coupling strength equivalent to 6.5 times the characteristic energies
within the system. The mapping between the two systems becomes evident through the
introduction of the Bloch ansatz, where the experimentally simulated system within the
first Brillouin zone fully reflects the dynamics of the quantum Rabi model. However,
stepping beyond this range gives rise to a quantum simulation of a periodic variant of the
quantum Rabi model (pQRM), which constitutes the central focus of this thesis. At long
interaction times, collapse and revival of the excitation number, as well as a revival of the
initial state are experimentally observed.
The reported quantum simulation of the periodic quantum Rabi model demonstrates the
phase-coherence of Schrödinger cat-like states far in the deep strong coupling regime. In-
terestingly, the realized Hamiltonian maps onto superconducting fluxonium qubit systems.
Further prospects of this work include applications in atom-based quantum information
processing.
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Introduction

The first description of matter-field interaction was introduced as the semi-classical Rabi
model by Isidor Isaac Rabi in the year 1936 [1, 2], where the interaction between a rapidly
varying weak magnetic field and the orientation of an atom possessing a nuclear spin was
described. Four years later, the so called Bloch-Siegert shift [3], named after Felix Bloch
and Arnold Siegert, was introduced for an alternating field shifting the resonance of the
two-level system.
A full quantum mechanical picture, where both the two-level system and the field mode
are quantized, was put forward in the year 1963 by Edwin Thompson Jaynes and Fred
Cummings [4], where in addition to the phenomena of so-called Rabi oscillations [5],
which can be explained using the semi-classical approach, pure quantum mechanical
effects such as the collapse and revival of the qubit’s eigenstate are explained [6, 7]. The
Jaynes-Cummings model (JCM), which in fact is a special case describing the so called
strong coupling regime (SC) of the more general quantum Rabi model (QRM), is valid
when the coupling strength between atoms and the electromagnetic field is larger than
the decoherence rate, predicting the emergence of hybrid matter-light eigenstates [8–14].
Other than the Jaynes-Cummings model, the more general quantum Rabi model is valid
for all coupling regimes. When the coupling strength becomes comparable or even exceeds
the driving field frequency, the rotating wave approximation (RWA) breaks down and
additionally to the co-rotating terms also the counter-rotating terms (CRT) have to be
included. It is here, where despite its simplicity, the analytical solution of the full quantum
Rabi model was not discovered for a long time [15], which includes counter-intuitive
effects such as an excitation creation out of the vacuum. Taking into account the parity
symmetry of the system, an analytical solution for the quantum Rabi model was achieved
in 2011 by Daniel Braak [16]. The resulting coupling regimes are typically classified based
on the relative coupling strength, which is obtained by dividing the coupling strength by
the harmonic field frequency.
With increasing coupling between the field mode and the two-level system, one moves
beyond the strong coupling regime and enters the ultrastrong coupling regime (USC),
where various experimental realizations show the counter-rotating term’s influence on to
the system dynamics [17–21]. If the coupling strength is further increased to dominate
all energies within the system, the so called deep strong coupling regime (DSC), which
is known and characterized by the prominent role of counter-rotating terms in driving
the system’s dynamics [13, 22]. Experimentalists are just starting to explore this extreme
parameter regime, where the drastic rise of excitation numbers in prepared vacuum states
[23–26] is predicted. Recent experimental work in our group, reports coupling strengths
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which encompass 6.5 times the driving field mode, marking the highest experimentally
realized perturbative deep strong coupling regime (pDSC), where among other observables,
collapse and revival patterns of initially prepared vacuum states have been demonstrated
[27, 28].

Quantum Simulation Using Quantum Systems
"Nature isn’t classical, dammit, and if youwant to make a simulation of nature, you’d better
make it quantum mechanical, and by golly, it’s a wonderful problem, because it doesn’t
look so easy." - being a quote from Richard Feynman in the year of 1981 [29], lays the main
idea behind quantum simulation using a system which operates based on the principles
of quantum mechanics itself. In the currently researched field of quantum physics, this
idea finds representation through a plethora of quantum systems. These systems span
a wide spectrum, encompassing trapped ion systems [30–33], superconducting qubits
[34–38], quantum dots [39–43], photonic Bose-Einstein condensates (pBEC) [44], and
neutral atoms in optical lattices [45–48].
Among these, neutral atoms in optical lattices, which are used in this work as a platform
for quantum simulation, stand out as a powerful tool due to their experimental controlla-
bility and versatile applications. In this approach, the atoms are cooled to a degenerate
quantum state and loaded into periodic potentials. Such systems offer the capability to
simulate a wide array of quantum phenomena, ranging from condensed matter systems
[49] to phenomena like superfluidity and the Mott insulator transition [50], as well as
non-equilibrium quantum dynamics [51].
In this work, the motion of ultra-cold rubidium atoms is examined under the influence of
a combined harmonic and periodic potential. This setup serves as a quantum simulation
of Rabi dynamics, operating well within the deep strong coupling regime, where the cou-
pling strength encompasses 6.5 times the driving field mode. The experimental approach
involves the harmonic potential of an employed optical dipole trap simulating the driving
fieldmode. Additionally, an optical four-photon lattice [52] is utilized, where its dispersion
relation contributes to the formation of a qubit within the two lowest bands. Using this
configuration, it becomes feasible to achieve an analog realization of the quantum Rabi
model, where the optical dipole trap’s far-off-resonance laser frequency is utilized to create
a deep potential with minimal scattering effects and the optical lattice potential’s tunability
spans across five orders of magnitude. A distinction must be made here regarding the ob-
served time in quantum simulation. When the dynamics are confined within the so-called
first Brillouin zone, a good agreement with the predicted model can be found [27]. Exiting
this limit leads to the emergence of a periodic variant of the quantum Rabi model [28].
Previous work concerning short interaction times, where both models coincide, has been
realized within the framework of J. Koch’s doctoral thesis [53], while the present study
focuses on long interaction times beyond the range of the first Brillouin zone, where the
periodic quantum Rabi model (pQRM) applies.
Analyzing the atom trajectories enables the extraction of various observables, such as
expectation values of the mean position, mean momentum and the resulting bosonic exci-
tation number, which are now also conducted for longer interaction times. Furthermore,
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by surpassing sub-cycle temporal dynamics and achieving coupling strengths realized in
our analog setup, a measurement of collapse and revival patterns in an initially prepared
vacuum state in quantum Rabi dynamics is demonstrated for the first time.

Structure of the Thesis
In this doctoral thesis, following this introductory chapter, a theoretical description of the
basic principles of Bose-Einstein condensation is given. Subsequently, magneto-optical
trapping and forced evaporation cooling in optical dipole traps is introduced as experimen-
tal methods to reach quantum degeneracy. Lastly, theoretical foundations for ultra-cold
neutral atoms in optical lattice potentials are introduced, where the dispersion relation of
multi-photon lattices is derived.
In the second theoretical chapter, the quantum Rabi Hamiltonian is introduced, includ-
ing a spectral classification of the model, which reveals different regimes of the system.
Subsequently, the quantum Rabi Hamiltonian is derived from the experimental system
Hamiltonian using the Bloch ansatz. Is is at this point, where restricting the temporal
dynamics in the experiment to the first Brillouin zone, successfully describes the (usual)
quantum Rabi model, while on the other hand, when this limitation is lifted and longer in-
teraction times are observed, the systems dynamics are described by the periodic quantum
Rabi model, exceeding the first Brillouin zone. To illustrate similarities and differences
between these two models, numerical simulations are used to showcase various observ-
ables, including the bosonic excitation number. At last, a digression into superconducting
qubit systems is performed, where it is shown, that the system Hamiltonian can be directly
mapped onto a fluxonium system.
After introducing the theoretical framework of this thesis, an overview of the experimental
apparatus is provided. This includes a detailed presentation of the experimental setup,
encompassing the ultra-high vacuum chamber, the magneto-optical trap, the single fo-
cused optical dipole trap, and the optical lattice setup. The section concludes by presenting
the experimental cycle employed for the creation and manipulation of a rubidium Bose-
Einstein condensate.
The last chapter, encompassing the experimental results of the quantum simulation, is
divided into two sections. The first section involves characterization measurements of
the optical dipole trap’s oscillation frequency and the Bloch oscillations between mo-
mentum states, which resemble the qubit frequency of the two-level system. Given the
extended interaction times observed, coherence characteristics are examined using a gen-
eralized scheme of a Ramsey-Bordé interferometer. By incorporating these preparatory
measurements the characteristic expectation values of the quantum Rabi dynamics be-
come observable. Notably, the emergence of collapse and revival patterns for an initially
prepared vacuum state, superimposed with varying strengths of the qubit splitting, is
considered as evidence for the presence of deep strong coupling.
Finally a summary along with an outlook concludes this thesis.





CHAPTER 1
Ultra-cold Atoms in Optical Lattice Potentials

This chapter contains theoretical principles relevant for the generation of an atomic Bose-
Einstein condensate (BEC). Following the approach of many textbooks on statistical me-
chanics [54], first the phase transition of a non-interacting dilute atomic gas is described,
and then extended to a model with weak atom-atom interactions by introducing the Gross-
Pitaevskii equation and the Thomas-Fermi approximation [55, 56]. Subsequently, the
theoretical principles for the experimental methods, such as implemented magneto optical
trapping and evaporative cooling to reach the critical parameters will be presented. As a
concluding part of the chapter, a brief overview of the generation of two- and four-photon
lattices is given.

1.1 Principles of Bose-Einstein Condensation
In nature the distinction between fermions, which have half-integer values of spin, obeying
the Pauli exclusion principle, where no two fermions can occupy the same quantum state
simultaneously and bosons, which have integer values of spin and exhibit collective behavior
at low temperatures has important implications for many physical quantum phenomena.
Bose-Einstein condensation occurs when the macroscopic occupation of the ground state
reaches a critical phase space density [57, 58]. While for a low dimensional photonic gas
this can be achieved by increasing the number of light particles in the system [44], for
atomic ensembles the transition is usually achieved by reaching the critical temperature,
upon which the lowest state is then macroscopically populated.

1.1.1 The Non-interacting Bose Gas
In the following the equilibrium properties of a trapped non-interacting Bose gas will
be discussed based on the concepts and insights in [56]. For this the mean occupation
number of a single-particle state 𝜈 is described by the Bose distribution function:

⟨𝑛(𝜀𝜈)⟩ =
1

𝑒𝛽(𝜀𝜈−𝜇) − 1
=

1

𝜁−1𝑒𝛽𝜀𝜈 − 1
(1.1)

Here, 𝛽 = 1/𝑘𝐵𝑇 is the inverse thermal energy including the Boltzmann constant 𝑘𝐵 and
the temperature 𝑇 , 𝜀𝜈 denotes the energy of the single-particle state and 𝜇 the chemical
potential. Rewriting equation (1.1) in terms of the fugacity 𝜁 = 𝑒𝛽𝜇 enables the characteri-
zation of different regimes of the distribution. The non-physical case of ⟨𝑛(𝜀𝜈)⟩ < 0 leads
to a lower limit for the ground state energy 𝜀0 > 𝜇, hence implying 𝜁 > 0 for all energies
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6 Chapter 1 Ultra-cold Atoms in Optical Lattice Potentials

𝜀𝜈 . Considering the case for high temperatures, meaning 𝜁 → 0, equation (1.1) transforms
to the classical Boltzmann distribution:

⟨𝑛(𝜀𝜈)⟩ ≃ 𝑒−𝛽𝜀𝜈 (1.2)

The opposite case for low temperatures, where 𝜁 → 1, the Bose-Einstein distribution
transforms into ⟨𝑛0⟩ = 1/(𝜁−1−1). In the following, quantities for a non-interacting BEC
consisting of particles trapped in a non-isotropic harmonic potential

𝑈(r) =
1

2
𝑚(𝜔2

𝑥𝑥
2 + 𝜔2

𝑦𝑦
2 + 𝜔2

𝑧𝑧
2) (1.3)

will be presented, where𝑚 depicts the particles mass and 𝜔𝑥, 𝜔𝑦, 𝜔𝑧 represent respective
trap frequency components. The corresponding energy spectrum of the harmonic oscillator

𝜀𝜈 = 𝜀𝑛𝑥,𝑛𝑦 ,𝑛𝑧 = ℏ(𝑛𝑥𝜔𝑥 + 𝑛𝑦𝜔𝑦 + 𝑛𝑧𝜔𝑧) + 𝜀0, (1.4)

where 𝜀0 = 1/2ℏ(𝜔𝑥 + 𝜔𝑦 + 𝜔𝑧) denotes the ground state energy, can be deployed into
equation (1.1) and gives rise to the total atom number 𝑁 =

∑︀
𝜈⟨𝑛(𝜀𝜈)⟩ consisting of the

ground state population 𝑁0 and the thermal population in the excited states 𝑁th

𝑁 = 𝑁0 +𝑁th = ⟨𝑁0⟩+
∑︁

𝑛𝑥,𝑛𝑦 ,𝑛𝑧 ̸=0

1

𝑒𝛽𝜀𝑛𝑥,𝑛𝑦,𝑛𝑧 − 1
. (1.5)

If ℏ�̄� ≪ 𝑘𝐵𝑇 , an integral can be used for the equation above, yielding

𝑁th = 𝜁(3)

(︂
𝑘𝐵𝑇

ℏ�̄�

)︂3

(1.6)

where 𝜁(3) ≈ 1.2 is the Riemann 𝜁 function and �̄� = (𝜔𝑥𝜔𝑦𝜔𝑧)
1/3 depicts the harmonic

oscillator frequency. For the case that 𝑁 = 𝑁th the critical temperature 𝑇 0
𝑐 (visualization

in Figure 1.1) can be calculated to

𝑇 0
𝑐 =

ℏ
𝑘𝐵
�̄�

(︂
𝑁

𝜁(3)

)︂1/3

= 0.94
ℏ
𝑘𝐵
�̄�𝑁1/3. (1.7)

Another quantity, which can be derived from equation (1.6) is the condensate fraction
𝜂 = 𝑁0/𝑁 = (𝑁−𝑁th)/𝑁

𝜂 = 1−
(︂
𝑇

𝑇 0
𝑐

)︂3

, (1.8)

which from an experimentalists perspective is particularly interesting, since combining the
measurement of 𝜂 and the atom number 𝑁 directly yields the temperature from equation
(1.7).
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(a) (b)

Figure 1.1: Schematic occupation distribution of a Bose-gas in a harmonic potential with the
energy splitting depicted as gray planes. For the case of 𝑇 > 𝑇𝐶 (a) the majority of atoms
occupy higher energetic states, where for reaching the threshold of 𝑇 < 𝑇𝐶 (b) a macroscopic
occupation of the ground state occurs.

1.1.2 Introducing the Role of Interactions

After using the single particle picture to describe the critical temperature and condensate
fraction for a non-interacting gas, the systems dynamics is expanded by introducing
interactions between a pair of bosons at position r and r’. The following many-body
Hamiltonian in second quantization [55] writes as

�̂�BB =

�
𝑑rΨ̂†(r,𝑡)

(︂
− ℏ2

2𝑚
Δ+ 𝑈(r)

)︂
Ψ̂(r,𝑡)

+
1

2

� �
𝑑r𝑑r′Ψ̂†(r,𝑡)Ψ̂†(r′,𝑡)𝑉int(r− r′)Ψ̂(r,𝑡)Ψ̂(r′,𝑡),

(1.9)

where, Ψ̂†(r,𝑡) and Ψ̂(r,𝑡) are creation and annihilation field operators and 𝑉int(r − r′)
denotes the interaction potential of a pair of bosons. The Heisenberg equation yields the
time evolution of the field operators

𝑖ℏ
𝜕

𝜕𝑡
Ψ̂(r,𝑡) =

[︁
Ψ̂(r,𝑡),�̂�BB

]︁
. (1.10)

Using a mean field approach as introduced in [59], enables the analytical calculation of the
ground state properties to describe the superfluidity of a weakly interacting BEC, where
the field operator is decomposed into energy modes 𝜈

Ψ̂(r,𝑡) =
∑︁
𝜈

𝜓𝜈(r,𝑡)�̂�𝜈 (1.11)

with �̂�𝜈 being the annihilation operator for a particle in the mode 𝜈 and the single particle
wave function 𝜓𝜈(r,𝑡). When the ground state is populated, the creation- and annihilation
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operators �̂�0 and �̂�†
0 can be well approximated by the ground state occupation number

𝑁0 as �̂�†
0 = �̂�0 =

√
𝑁0. With this, equation (1.11) transforms into Ψ̂(r,𝑡) =

√
𝑁0𝜓0(r,𝑡) +∑︀

𝜈 ̸=0 𝜓𝜈(r,𝑡)�̂�𝜈 , where the ground- and excited state’s wave functions are separated into
two terms.

1.1.3 The Gross-Pitaevskii Equation

Moving on further characterization of the dynamics of the BEC, based on [55, 60, 61] the
Gross-Pitaevskii equation will be presented. Decomposing the field operator Ψ̂(r,𝑡) into
a complex function, which denotes the condensate wave function with the condensate
density equation 𝑛0(r,𝑡) = |Φ(r,𝑡)|2 yields

Ψ̂(r,𝑡) = Φ(r,𝑡) + Ψ̂′, (1.12)

where Ψ̂′ is a perturbation term describing the condensates excitation. For low temper-
atures this term can be neglected and equation (1.9) can be simplified to a nonlinear
Schrödinger equation [55]

𝑖ℏ
𝜕

𝜕𝑡
Φ(r,𝑡) =

(︂
− ℏ2

2𝑚
Δ+ 𝑈(r) +

�
𝑉int(r− r′)|Φ(r′,𝑡)|2)

)︂
Φ(r,𝑡). (1.13)

Applying the 𝑠-wave limit [62], which simplifies the interaction potential 𝑉int = 𝑔𝛿(r− r′)
to the mean-field shift 𝑔|Φ(r,𝑡)|2, the Gross-Pitaevskii equation (GPE) can be written as

𝑖ℏ
𝜕

𝜕𝑡
Φ(r,𝑡) =

(︂
− ℏ2

2𝑚
Δ+ 𝑈(r) + 𝑔|Φ(r,𝑡)|2

)︂
Φ(r,𝑡). (1.14)

Separating the mean field Φ(r,𝑡) = 𝜑(r)𝑒−𝑖𝜇𝑡/ℏ, where 𝜑(r) is the ground state wave func-
tion, normalized to the condensate particle number 𝑁0 =

�
𝑑r|𝜑(r)|2 and the exponential

term denotes the time evolution with the ground state energy 𝜇, the GPE transforms into
its time-independent form(︂

− ℏ2

2𝑚
Δ+ 𝑈(r) + 𝑔|𝜑(r)|2

)︂
𝜑(r) = 𝜇𝜑(r) (1.15)

Due to the nonlinear nature of 𝑔|𝜑(r,𝑡)|2, in general, the solution of this equation is done
numerically. As a final step the ground state wave function can be rewritten in terms of
the condensate’s density distribution 𝑛0(r) = |𝜑(r)|2, yielding a comprehensive form of
the GPE

𝐸(𝑛0) = 𝜇 =

�
𝑑r

(︂
− ℏ2

2𝑚
Δ𝑛0(r) + 𝑈(r)𝑛0(r) +

𝑔

2
𝑛0(r)

2

)︂
= 𝐸kin + 𝐸pot + 𝐸int.

(1.16)

Here, the first term describes the kinetic energy, also referred to as quantum pressure, while
the second and third term denote the potential- and interaction energy in the system.
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1.1.4 Large Condensates: The Thomas-Fermi Approximation
Increasing the atom number or the interaction strength decreases the influence of the
kinetic energy 𝐸kin. In this limit, when the kinetic energy is neglected, the Thomas-Fermi
approximation applies [55].

𝐸int

𝐸kin
∝ 𝑁0|𝑎|

𝑎ho
≫ 1. (1.17)

Here, 𝑎 denotes the scattering length (attractive: 𝑎 < 0, repulsive: 𝑎 > 0) and 𝑎ho =
√︀

ℏ/𝑚�̄�

describes the radius of a non-interacting wave packet in the ground state of the harmonic
oscillator potential. An analytical expression in terms of the condensate density distribution
can be written as [55]:

𝑛0(r) =

{︂ 1
𝑔 (𝜇− 𝑈(r)) where 𝜇− 𝑈(r) ≥ 0

0 else
. (1.18)

Considering the normalization condition 𝑁0 =
�
𝑑r𝑛0(r) the chemical potential writes as

𝜇 =
ℏ�̄�
2

(︂
15
𝑁𝑎

𝑎ho

)︂2/5

(1.19)

where the external potential 𝑈(r) = 𝜇 equals the chemical potential.
The Thomas-Fermi radii are defined as

𝑅𝑖 =

√︃
2𝜇

𝑚𝜔2
𝑗

, (1.20)

which scales with increasing particle number 𝑁0. It is important to note, that only within
the edges of the BEC, this approximation is true, since at these areas the kinetic energy
𝐸kin can not be neglected any longer.
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1.2 Experimental Realization of Bose-Einstein Condensates

After providing a brief overview of the theoretical background of Bose-Einstein conden-
sation, this section describes its experimental realization and the methods employed to
reach the critical temperature for the condensation threshold. While conventional cooling
techniques, such as dilution cooling in dilution refrigerators [63], can effectively lower
temperatures to the millikelvin range, they fall short of reaching the lower nanokelvin
temperatures essential for the occurrence of the desired phase transition. For this purpose,
a combination of laser cooling and magnetic trapping is employed to create a magneto-
optical trap (MOT), pre-cooling the atoms to a few hundred millikelvin. Subsequently, the
atomic sample, having reached a sufficiently low temperature, is loaded into a conservative
optical dipole trap to undergo further forced evaporative cooling. This approach, widely
employed in numerous experiments, enables the attainment of sufficiently low tempera-
tures, and with significant effort, even reaching the picokelvin regimes [64, 65]. The whole
experimental scheme is realized in an ultra-high vacuum chamber, ensuring low collision
rates with background gas, which would otherwise cause large atom losses. The following
subsections will present the properties of each mentioned cooling mechanism.

1.2.1 Pre-cooling Atoms in a MOT
A magneto-optical trap combines the Doppler cooling mechanism, first time proposed
by T. Hänsch and A. L. Schawlow in 1975 [66], later experimentally realized in a three
dimensional setup by Chu et al. in 1985 [67], andmagnetic trapping of atoms, which allows
for efficient confinement of the cooled atoms in a localized region. Considering a simplified
two-level atom, consisting of a ground state energy 𝐸𝑔 and an excited state energy 𝐸𝑒, and
exposed to a laser beam slightly detuned from the atomic transition 𝐸ph < Δ𝐸 = 𝐸𝑒 −𝐸𝑔,
a momentum gain p = ℏk occurs as a result of absorbing the photon’s energy 𝐸ph = ℏ𝜔ph,
causing the atomic excitation. Here the absolute value of the wave vector is |k| = 𝑘 = ℏ𝜔ph/𝑐,
with 𝑐 as the speed of light. While this absorption of a photon is a directed process, the
relaxation of the atom to its ground state takes place in a random direction via spontaneous
emission, as seen in Figure 1.2 (C). The isotropic nature of this mechanism results in,
on average, a directed momentum transfer occurring due to numerous absorption and
re-emission cycles. In addition, a red shift is implemented onto the laser beam, causing
only atoms which are moving towards the photons to be addressed by the cooling process.
In a usual setup, three counter-propagating pair of beams are used to slow down atoms
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Figure 1.2: Basic principle of Doppler cooling simplified to a one dimensional case for a
two level atom. Atoms moving with a velocity of v towards a red detuned laser light can be
excited to the upper state by absorbing a photon (red sphere) with a momentum p = ℏk (A to
B). While the absorption of the photon is directed, the emission is isotropic leading to a net
momentum transfer from one direction (C).

in the intersection region, reducing their kinetic energy, nevertheless failing to trap the
cooled atoms in a localized region.
In order to confine the atoms to the cooling region, a magnetic trapping potential is added,
for which the laser beams of the Doppler cooling mechanism are circularly polarized in
order to drive different𝑚𝐹 transitions. A pair of anti-Helmholtz coils is commonly used
to generate a quadrupole field creating a magnetic gradient which is zero in the center of
the trap (as seen in Figure 1.3(a)). When atoms leave the center of the trap, the atomic
state degeneracy is lifted asymmetrically for respective absolute values of the magnetic
field. Figure 1.3(b) shows the basic principle in one dimension for a simplified example
of a two level system with an 𝐹 ′ = 1 excited state, which in presence of a magnetic field,
splits into three Zeeman states (𝑚𝐹 = 0;±1). Moving to the positive side of the magnetic
field (𝐵 > 0) lowers the𝑚𝐹 = −1 state, where due to the 𝜎− polarization the Δ𝑚𝐹 = −1
transition becomes resonant. The opposite happens for atomsmoving in the other direction,
where 𝜎+ polarization and the Δ𝑚𝐹 = +1 transition is utilized, consequently ensuring an
effective force pushing atoms back to the cooling region.
As mentioned earlier, the rubidium atoms used in the experiment exhibit a more complex
level scheme than the two-level systemdescribed above. Figure 1.4 illustrates the transitions
used for atom cooling, revealing the need for two laser frequencies. Ideally, the cooling
transition is a closed transition, meaning that after excitation only relaxation into the
original state is possible, allowing for a large amount of excitation-relaxation cycles. In
this case, the transition from |52𝑆1/2, 𝐹 = 2⟩ to |52𝑃3/2, 𝐹

′ = 3⟩ is utilized. However, off-
resonant excitation to the |52𝑃3/2, 𝐹

′ = 2⟩ state and subsequent relaxation to the state
|52𝑆1/2, 𝐹 = 1⟩, results in the loss of atoms for the cooling process. Therefore, an additional
repumping frequency is required to transport the atoms back to the cooling process, by
addressing the |52𝑆1/2, 𝐹 = 1⟩ to |52𝑃3/2, 𝐹

′ = 2⟩ transition. One limitation for reachable
temperatures in a magneto-optical trap is given by the natural linewidth Γ of the used
cooling transition. The so called Doppler temperature 𝑇D = ℏΓ/2𝑘B for the 87Rb rubidium
atoms in the experiment is calculated to be 𝑇D = 145.57µK [69] and although methods
such as Sisyphus- and polarization gradient cooling enables sub-Doppler regimes down
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(a)

(b)

Figure 1.3: (a) Schematic setup of a magneto optical trap using two anti-Helmholtz coils and
six counter-propagating laser beams with respective circular polarization 𝜎±. While the optical
force of the laser beams slows the atoms (shown in Figure 1.2) the magnetic field, which is
zero in the center, generates a positional dependent force, pushing atoms back to the crossing
section of the cooling area. (b) Simplified level scheme of a two-level atom, where due to the
Zeeman shift the |𝐹 ′ = 1,𝑚𝐹 = 1⟩ state degeneracy is lifted in a respective manner depending
on the magnetic field presented in one dimension below. For atoms moving to the right (left),
the magnetic field is positive (negative), and the 𝜎+-polarized (𝜎−) laser beams drive the
respective Δ𝑚𝐹 = +1 (Δ𝑚𝐹 = −1) transition, hence pushing the atoms back to the trap
center.

Figure 1.4: Rubidium-87 D2 transition (obtained from [68]), where the cooling laser tran-
sition |52𝑆1/2, 𝐹 = 2⟩ to |52𝑃3/2, 𝐹

′ = 3⟩ is marked in green and the repumping transition
|52𝑆1/2, 𝐹 = 1⟩ to |52𝑃3/2, 𝐹

′ = 2⟩ is marked in yellow.

to the recoil temperature 𝑇R = ℏ2𝑘2/𝑚Rb𝑘B = 362 nK [70, 71], with 𝑚Rb as the mass of
the rubidium atom, the critical temperature for Bose-Einstein condensation is far out of
reach. For this further cooling methods in form of forced evaporative cooling have to
be implemented using conservative traps realized by a single focused optical dipole trap
introduced in the next section.
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1.2.2 Optical Dipole Trap

To overcome the mentioned temperature limitations and reach the condensation threshold,
a conservative trap in the form of a far-off resonance optical dipole trap (FORT) is here
utilized. In a magneto-optical trap, the Doppler cooling of atoms is achieved through a
dissipative force generated by an absorption and spontaneous re-emission cycle. However,
conservative traps for neutral atoms operate differently by creating a potential minimum
that allows for the trapping of atoms.
There are essentially two types of traps that can be used for this purpose. This section
presents the general functioning of a far-off resonance optical dipole trap, which, alongside
magnetic traps, represents a conventional method for creating a Bose-Einstein condensate
(BEC) with pre-cooled atomic ensembles. While magnetic traps utilize the magnetic dipole
moment of neutral atoms, in the case of an optical dipole trap, the interaction between
laser light and the atom induces an optical dipole moment resulting in the so-called AC
Stark shift [72–74]. As described by Grimm et al. [75], a simple semi-classical approach for
a two-level atom interacting with a classical light field can be used to describe the dipole
force Fdip = −∇𝑈dip, where 𝑈dip is the resulting dipole potential with a depth of a few
millikelvin. In order to account for the multilevel structure of the used alkali atoms a
quantum mechanical dressed state ansatz will be presented, where both the atom and the
light field are quantized.

Semi-classical Approach

During the interaction of atoms with highly detuned laser light, the mentioned dipole force
arises due to the gradient field of the latter and the atomic dipole moment. The oscillating
electric field of the laser light induces a dipole moment, which in turn re-interacts with the
laser light. The electric field E(r,𝑡) including the unit vector ê indicating the polarization
direction, writes as

E(r,𝑡) = ê�̃�(r)𝑒−𝑖𝜔𝑡 + 𝑐.𝑐., (1.21)

with the corresponding dipole moment

p(r,𝑡) = ê𝑝(r)𝑒−𝑖𝜔𝑡 + 𝑐.𝑐.. (1.22)

The amplitudes �̃� and 𝑝 are related with the complex polarizability 𝛼(𝜔)

𝑝 = 𝛼(𝜔)�̃�, (1.23)

which is specific to the atom species and dependent on the driving frequency 𝜔. For an
isotropic medium, 𝛼 can be described as a complex scalar (see [76] for validity in 87Rb
atoms). Using equation (1.23), the dipole potential 𝑈dip can be calculated as a product of
the dipole moment p and the electric field vector E

𝑈dip = −1

2
⟨pE⟩𝑡 = −1

2
⟨𝛼(𝜔)𝐸2⟩ = − 1

2𝜀0𝑐
Re(𝛼(𝜔))𝐼(r). (1.24)
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The factor −1
2 stems from the presence of an induced dipole moment [75], while 𝜀0 is

the electric field constant and with the speed of light 𝑐 describes the field intensity 𝐼 =
2𝜀0𝑐|E|2. The parentheses represent the temporal averaging over the rapidly oscillating
terms. The dipole potential 𝑈dip is proportional to the light intensity 𝐼 and the real part of
the complex polarizability 𝛼(𝜔). This describes the in-phase oscillating component of the
dipole oscillation and is responsible for the dispersive interaction between the light field
and the atomic dipole moment [75]. As a conservative potential, the dipole force can be
written as

Fdip(r) = −∇𝑈dip(r) =
1

2𝜀0𝑐
Re(𝛼(𝜔))∇𝐼(r), (1.25)

while considering the fraction of the dipole moment, which is oscillating out of phase
results in the absorbed power

𝑃abs = ⟨ṗE⟩𝑡 = 2𝜔Im(𝑝𝐸*) =
𝜔

𝜀0𝑐
Im(𝛼)𝐼. (1.26)

The corresponding scattering rate Γsc, which can be understood as a cycle of absorbing a
photon with the energy ℏ𝜔 and spontaneously re-emitting via dipole radiation is then

Γsc =
𝑃abs

ℏ𝜔
=

1

ℏ𝜀0𝑐
Im(𝛼)𝐼(r). (1.27)

The geometric shape and photon scattering rate can be described by equations (1.25) and
(1.27). These equations provide information about the potential shape and heating rate of
the optical dipole trap and are connected, on the one hand, by the respective components
of the complex polarizability 𝛼(𝜔) and, on the other hand, by the spatially distributed field
intensity of the laser beam 𝐼(r).
This classical approach, grounded in the oscillator model proposed by H. Lorentz [77],
describes the atom’s electron, with a charge of 𝑒 and a mass of𝑚𝑒, as elastically connected
to its core, where the eigenfrequency 𝜔0 corresponds to the atomic transition frequency.
The electrons equation of motion can be written as a second order differential equation

�̈�+ Γ𝜔�̇�+ 𝜔2
0𝑥 = − 𝑒

𝑚𝑒
𝐸(𝑡) (1.28)

where due to the emission of energy by a circularly accelerated charge the system is damped
[78]. Incorporating the Larmor-formula [79] the classical damping rate can be calculated
to

Γ𝜔 =
𝑒2𝜔2

6𝜋𝜀0𝑚𝑒𝑐3
(1.29)
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and with equation (1.23) the complex polarizability writes as

𝛼 =
𝑒2

𝑚𝑒

1

𝜔0
2 − 𝜔2 − 𝑖𝜔Γ𝜔

= 6𝜋𝜀0𝑐
3 Γ/𝜔0

2

𝜔0
2 − 𝜔2 − 𝑖(𝜔3/𝜔0

2)Γ
. (1.30)

Here, the on-resonance damping rate Γ = (𝜔0/𝜔)2 Γ𝜔 has been introduced. With the above
expression for the polarizability, the dipole potential 𝑈dip (equation (1.24)) and scattering
rate Γsc (equation (1.27)) can be calculated, where under the assumption that Γ𝜔 ≪ 𝜔0

the terms proportional to (Γ/𝜔0)
2 are neglected and lead to

𝑈dip(r) = −3𝜋𝑐2

2𝜔0
3

(︂
Γ

𝜔0 − 𝜔
+

Γ

𝜔0 + 𝜔

)︂
𝐼(r) (1.31)

and

Γsc(r) =
3𝜋𝑐2

2ℏ𝜔0
3

(︂
𝜔

𝜔0

)︂3(︂ Γ

𝜔0 − 𝜔
+

Γ

𝜔0 + 𝜔

)︂2

𝐼(r). (1.32)

Each equation above show two resonances, where besides the usual case for 𝜔 = 𝜔0, the
case 𝜔 = −𝜔0 also is present. As shown in [80], the latter is suppressed with assumption
that the detuning Δ = |𝜔 − 𝜔0| ≪ 𝜔0 is a lot smaller than the driving frequency 𝜔0. For
the case that 𝜔/𝜔0 ≈ 1 equations (1.31) and (1.32) can be further simplified to

𝑈dip(r) =
3𝜋𝑐2

2𝜔0
3

Γ

Δ
𝐼(r) (1.33)

and

Γsc(r) =
3𝜋𝑐2

2ℏ𝜔0
3

(︂
Γ

Δ

)︂2

𝐼(r). (1.34)

The scattering rateΓsc and the optical dipole potential𝑈dip can be relatedwith the following
equation

ℏΓsc =
Γ

Δ
𝑈dip (1.35)

providing two important insights into optical dipole traps. On the one hand, the sign of the
detuning Δ plays a crucial role in determining the behavior of the system. Depending on
whether the system is on the red-detuned side (Δ < 0) or the blue-detuned side (Δ > 0)
of resonance, a dipole interaction based on the overlap between potential minimum and
intensity distribution arises. Figure 1.5(a) shows the case of a negative detuning (red-
detuned, Δ < 0), where the potential minimum aligns with the intensity maximum,
creating favorable trapping conditions. Conversely, with a positive detuning (blue-detuned,
Δ > 0), the opposite behavior shows, where atoms can be trapped in the intensityminimum
(as seen in Figure 1.5(b)).
On the one hand, considering equations (1.33) and (1.34), it is observed that the dipole
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(a) (b)

Figure 1.5: (a) Visual representation of an optical potential, where the trapping laser frequency
is red detuned (Δ < 0) and the potential minimum overlaps with the intensity maximum.
(b) The opposite case of a blue detuned (Δ > 0) trap, for example realized with a so called
Mexican hat potential, where the atoms (white spheres) are trapped at areas of low intensity.
The color gradient represents the trapping region (brown).

trapping potential 𝑈dip, which should ideally be maximized, is proportional to 𝐼/Δ. On
the other hand, the scattering rate Γsc, which should be minimized, is proportional to 𝐼/Δ2.
Experimentally, low scattering rates with deep potentials are realized by implementing
high laser powers with large detunings.
It should be emphasized that the atoms used in the experiment do not represent two-level
systems but rather exhibit fine and hyperfine structures. However, if the detuning Δ is far
enough from the fine and hyperfine level splittings (Δ ≫ ΔFS/HFS), these substructures
are not resolved, and the two-level system approximation holds true. Nevertheless in the
following the effects of fine- and hyperfine substructures will be included in a quantum
mechanical dressed state system, showing ground-state light shifts for multi-level alkali
atoms.
Dressed State Approach
The quantum mechanical dynamics of a multilevel atom in a far detuned optical light
field can be described by second order time-independent perturbation theory acting on
the interaction Hamiltonian 𝐻int = −�̂�E, with �̂� = −𝑒r as the dipole operator and E the
electric field. The resulting energy shiftsΔ𝐸𝑖 write as

Δ𝐸𝑖 =
∑︁
𝑖 ̸=𝑗

|⟨𝑗|𝐻int|𝑖⟩|2
E𝑖 − E𝑗

, (1.36)

where 𝑖 denotes the number of energy levels in a multi-level atom and E𝑖,𝑗 represents the
unperturbed energies in the system [81]. Other than in the given semi-classical approach
above, now the sub-systems consisting of the atom and the light field are combined (dressed)
to one quantum system, where in the ground state the atoms internal energy is zero and the
field energy is 𝑛ℏ𝜔, with 𝑛 as the number of photons and E𝑖 = 𝑛ℏ𝜔 depicts the total energy
for the unperturbed state. It is easy to see, that upon absorbing a photon with the energy
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ℏ𝜔0 the sum of atomic energy and field energy results E𝑗 = ℏ𝜔0+(𝑛−1)ℏ𝜔 = −ℏΔ𝑖𝑗+𝑛ℏ𝜔,
where the energy difference between the two states is E𝑖 − E𝑗 = ℏΔ𝑖𝑗 . Considering the
two-level atom interaction Hamiltonian 𝐻1 = 𝜇𝐸, equation (1.36) simplifies to

Δ𝐸 = ±|⟨𝑒|𝜇|𝑔⟩|2
Δ

|𝐸|2 = ±3𝜋𝑐2

2𝜔0
3

Γ

Δ
𝐼, (1.37)

where 𝐼 = 2𝜀0𝑐|�̃�|2 and Γ = 𝜔0
3/3𝜋𝜀0ℏ𝑐3|⟨𝑒|𝜇|𝑔⟩|2 [75]. The positive and negative sign

represent the two respective states of the atom, where the first shift, being the ground
state energy, yields the dipole potential 𝑈dip from equation (1.33), derived with the semi-
classical approach. This optically induced shift is also called the AC Stark shift, and for the
case of low saturation, offers a potential minimum for the motion of the atoms (as seen in
Figure 1.6).

Figure 1.6: Visualization of the occurring AC stark shift. The dipolar interaction between atom
and light induces a shift of the energetic levels proportional to the light fields intensity. For
red detuning, the ground state of the atom is then lowered while the excited state is elevated.
This visualization is taken and modified from [75].

Taking different weighting coefficients of dipole transitions and their respective detunings
Δ𝑖𝑗 , contributing to the shift of the ground level, an analogous calculation for a more
complex multi-level atom can be performed. The resulting dynamic Stark shift is obtained
as the sum of the respective contributions Δ𝐸𝑗 from the different excitations of energy
levels E𝑗 [75]. In the case of 87Rb rubidium atoms, with a nuclear spin of 𝐼 = 3/2, the
resulting 𝑆 → 𝑃 transition is a D-line doublet (as can be seen in Figure 1.4) including the
fine structure splitting ℏΔFS [82]. Since large detunings (Δ ≫ ΔFS) are chosen for the
use in optical dipole traps, the effect of the much smaller hyperfine substructure can be
usually neglected and the dipole potential for a multi-level atom writes as

𝑈dip(r) =
3𝜋𝑐2

2𝜔0
3

Γ

Δ

(︂
1 +

1

3
P𝑔𝐹𝑚𝐹

ΔFS

Δ

)︂
𝐼(r), (1.38)
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with the 𝑔-factor 𝑔𝐹 , the magnetic quantum number 𝑚𝐹 and P as the laser lights po-
larization for 𝜋-(P = 0) and 𝜎±-polarization (P = ±1), respectively. Here, the zeroth
order is identical to the two-level atom approximation, while the first order term depicts
a much smaller dependency on the sub-level structures. In the experiment performed
in this work, a linearly polarized (P = 0) laser with 𝜆CO2 = 10.6µm (ΔFS/Δ ≈ 0.2) is
used, causing the correction factors to be negligible, hence making it valid to assume the
two-level approximation for the dipole trapping potential.

1.2.3 Forced Evaporative Cooling

Figure 1.7: Exemplary representation of a Boltzmann distribution showing the probability
density 𝛿(𝑣) against the velocity 𝑣 for descending temperatures (from left to right 𝑇1 > 𝑇2 >
𝑇3 > 𝑇4). During evaporation of trapped atoms, the high energy tail of the thermal distribution
gets ’cut off’, when high-energetic atoms leave the trap, lowering the average velocity 𝑣 after
each re-thermalization process.

After discussing the main quantities involved in an optical dipole trap, the final step
towards achieving a quantum degenerate state will be discussed here. The fundamental
principle underlying evaporative cooling is the removal of high energetic atoms from the
optical dipole trap, followed by the subsequent re-thermalization of the remaining atoms,
first time realized in magnetic traps in 1987 [83] later demonstrated in crossed optical
traps in 1997 [84].
This process effectively reduces the overall thermal velocity by truncating the high-energy
tail of the Boltzmann distribution, as seen in Figure 1.7. This is clearly associated with
significant atomic losses, which makes it essential to start the evaporation process with a
high number of atoms in the dipole trap. In the case of magnetic traps, the excitation of
atoms to non-confined Zeeman levels can be used to remove the highest energetic atoms.
However, in the case of optical dipole traps, this is achieved by simply reducing the depth
of the trapping potential. The process of forced evaporation occurs when the intensity of
the beam is lowered, effectively flattening the geometry of the trap.
Preparing the atoms in the lowest energetic state suppresses inelastic collisions during the
evaporation process [75]. In our case, this is achieved by preparing the rubidium atoms in
the |52𝑆1/2, 𝐹 = 1⟩ state, which is explained in more detail in chapter 3. However, there
is a natural limit where tightly confined traps allow for high atomic densities but result
in limited trapping volumes, which restricts the number of particles that can be loaded
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into the trap. Conversely, decreasing the focus of the beam increases the area of the dipole
trapping potential but at the cost of particle density and, therefore, elastic collision rates,
which are needed for re-thermalization. In section 3.3, this challenge is overcome by an
experimental method that increases the trapping region through spatial modulation of the
dipole trapping laser beam.

1.3 Neutral Atoms in Optical Lattices
Optical lattices, formed by interfering laser beams, provide a versatile platform for studying
a wide range of quantum phenomena. Specifically, periodic structures with regions of
high and low intensity are created, trapping atoms and exhibiting behavior analogous to
electrons in crystalline structures.
To begin with, the simplest case of a one-dimensional two-photon (standing wave) lattice is
presented with a classical approach. This configuration involves two counter-propagating
beams with the same linear polarization, forming a standing wave, which is utilized for
Bragg-pulse preparation of different momentum states during the experimental cycle.
Conversely, for generating a two-level system suitable for quantum Rabi simulations, a
multi-photon lattice consisting of a four-photon process, is implemented resulting in a
higher periodicity compared to a standing wave. Incorporating Bloch’s theorem [85] the
dispersion relations of each lattice will be presented, where the resulting band model
shows an analogy to solid-state physics [86].

1.3.1 Two-photon Lattice Potential
Two counter-propagating, linear polarized beams with the same frequency 𝑓 = 𝜔/2𝜋 and
respective propagation directions ±𝑧 form a standing wave, which for the red detuned
case localize atoms in the intensity maximum (as can be seen in section 1.2.2) [87]. In this
case, each beam can be described by a plane wave

E1(𝑧,𝑡) = 𝐸1ê1 cos(𝜔𝑡+ 𝑘𝑧 + 𝜙1) (1.39)

E2(𝑧,𝑡) = 𝐸2ê2 cos(𝜔𝑡− 𝑘𝑧 + 𝜙2). (1.40)

Here, the phases 𝜙1 and 𝜙2 correspond to the respective beam and 𝑘 = 2𝜋/𝜆 is the wave
vector including the laser lights wavelength 𝜆 = 2𝜋𝑐/𝜔. Averaging over time results in the
total intensity

𝐼(𝑧) = 𝑐𝜀0
⟨︀
E2

tot

⟩︀
𝑡
= 𝑐𝜀0

⟨︀
(E1 +E2)

2
⟩︀
𝑡

= 𝑐𝜀0
⟨︀
E2

1 +E2
2 + 2E1E2

⟩︀
𝑡

= 𝐼1 + 𝐼2 + 𝐼int(𝑧),

(1.41)

where 𝐼1/2 = 1/2𝑐𝜀0𝐸1/2 corresponds to each beams intensity and the interference term
𝐼int(𝑧) includes the orientation of the polarization vectors ê1/2 with the angle 𝛼

𝐼int = 2
√︀
𝐼1𝐼2 cos(2𝑘𝑧 + 𝜙) · cos(𝛼), (1.42)
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(a)

(b)

Figure 1.8: (a) Level scheme of a two-photon lattice where the atom is transferred to the
excited state |𝑒⟩ by absorbing a photon with the frequency 𝜔 and followed up by a stimulated
emission into the ground state |𝑔⟩ for a full cycle. (b) Exemplary time of flight absorption
image of a BEC superimposed to a two-photon lattice potential. The resulting picture contains
atoms which are separated by a momentum difference of Δ𝑝 = ±2ℏ𝑘 implying the presence
of a 𝜆/2 periodicity.

where cos(𝛼) = ê1 · ê2 and the phase difference 𝜙 = 𝜙1 − 𝜙2.
In the experiment, parallel polarization between the two beams is used to maximize the
interference term 𝐼int, where the resulting lattice potential with periodicity 𝜆/2 writes as

𝑉2ph(𝑧) =
𝑉2
2

cos(2𝑘𝑧 + 𝜙) + const. (1.43)

Changing 𝜙 moves the lattice, while 𝑉2 ∝ √
𝐼1𝐼2 and is commonly measured in recoil

energy 𝐸𝑅 = ℏ2𝑘2/2𝑚 [88], with𝑚 as the atomic mass.
The lattice at hand, which possesses a periodicity of 𝜆/2, can also be described in terms
of virtual processes within the quantum-mechanical framework. In this description, the
lattice potential is created when an atom absorbs a photon from a laser beam in one
direction and subsequently emits it in a stimulated manner into the laser beam from the
other direction, as depicted in Figure 1.8(a). This effective two-photon process leads to the
atoms localization in a lattice structure, where each site is separated by ±2ℏ𝑘 in respective
direction, in momentum space (as seen in Figure 1.8(b)).
1.3.2 Four-photon Lattice Potential
After discussing the simple case of a two-photon lattice, where the emerging periodicity
𝜆/2 is directly correlated to the wavelength 𝜆 of the laser light [89], larger periodicity 𝜆/2𝑛
can also be realized by incorporating the same wavelength of the laser, but with higher
order processes of 2𝑛 photons transferring momenta of 2𝑛ℏ𝑘 to the atoms [52].
Figure 1.9(a) shows the four-photon lattice scheme employed in the experiment with a
corresponding time of flight distribution of atoms with a momentum separation of 4ℏ𝑘
(Figure 1.9(b)). To suppress lower order processes, multiple frequencies with different
polarizations are utilized. In conventional two-level schemes, four-photon processes are
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(a)
(b)

Figure 1.9: (a) Level scheme of a four-photon lattice containing two ground states |𝑔1⟩ and
|𝑔2⟩ and two excited states |𝑒2⟩ and |𝑒3⟩. Two sets of counter-propagating laser frequencies
𝜔 from one side and 𝜔 ±Δ𝜔 from the opposite side are used to generate a closed loop four-
photon transition cycle, formed by two absorption- and the stimulated emission processes,
respectively. Increasing the two-level detuning 𝛿 suppresses undesired two-photon processes.
(b) Exemplary time of flight absorption image of a BEC superimposed to a four-photon lattice
potential. The resulting picture contains atoms which are separated by a momentum difference
of Δ𝑝 = ±4ℏ𝑘 resulting in a 𝜆/4 spatial periodicity.

highly unlikely due to the rapid relaxation into the initial ground state following the
preceding excitation, occurring faster than a second excitation can take place. To address
this issue, a double ground state system comprising of |𝑔1⟩ and |𝑔2⟩ is introduced, which
is experimentally realized using the𝑚𝐹 manifold of the |52𝑆1/2, 𝐹 = 1⟩ hyperfine state of
87Rb rubidium atoms. With this scheme, it is possible to realize two subsequent absorption
and re-emission cycles, where a total momentum of 4ℏ𝑘 is transferred to the atom, leading
to a spatial lattice periodicity of 𝜆/4. As shown in earlier works on the experiment during
the PhD thesis of G. Ritt [90], the four-photon lattice dynamics can be described by the
time-dependent perturbation theory

𝑖ℏ𝜕𝑡 |Ψ(𝑧,𝑡)⟩ =
[︁
�̂�0 + Î(𝑧,𝑡)

]︁
|Ψ(𝑧,𝑡)⟩ (1.44)

where the non-perturbed Hamiltonian �̂�0 writes as

�̂�0 = ℏ

⎛⎜⎜⎝
0 0 0 0
0 Δ𝜔 − 𝛿 0 0
0 0 𝜔 +Δ 0
0 0 0 𝜔 +Δ

⎞⎟⎟⎠ , (1.45)

with 𝜔 as the frequency of the lattice beam, Δ𝜔 the added (or subtracted) amount for
the used four-photon process, Δ the single-photon detuning of the optical transition to
the excited states |𝑒1⟩ and |𝑒2⟩ and 𝛿 the two-photon detuning to the the second ground
state |𝑔2⟩. It is easy to see, that the eigenbasis of this Hamiltonian is given by the non-
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perturbed ground- and excited states {|𝑔1⟩ , |𝑔2⟩ , |𝑒1⟩ , |𝑒2⟩}, where the energy scaling
𝛿 < Δ𝜔 ≪ Δ ≪ 𝜔 allows for the approximation of 𝐻4,4 = 𝜔 +Δ+Δ𝜔 − 𝛿 ≈ 𝜔 +Δ.
The interaction operator Î(𝑧,𝑡) in equation (1.44), representing the time-dependent pertur-
bation caused by the interaction of the atomic dipole moment pin with the electric field of
the lattice beams, can be written as

I𝑖,𝑗 = ⟨𝑔𝑖|pinE(𝑧,𝑡) |𝑎𝑗⟩ =
I1,3 = ℏΩ𝜋 cos(𝜔𝑡+ 𝑘𝑧) = I*3,1

I1,4 = ℏΩ𝜎+ cos((𝜔 +Δ𝜔)𝑡− 𝑘𝑧) = I*3,1

I2,3 = ℏΩ𝜎− cos((𝜔 +Δ𝜔)𝑡+ 𝑘𝑧) = I*3,2

I2,4 = ℏΩ𝜋 cos(𝜔𝑡+ 𝑘𝑧) = I*4,2,

(1.46)

where the respective 𝜋- and 𝜎±- transitions are represented by the Rabi-frequencies Ω𝜎±

and Ω𝜋. Equation (1.44) is solved with the following ansatz

|Ψ(𝑧,𝑡)⟩ =

⎛⎜⎜⎝
𝑐1(𝑧,𝑡)

𝑒−𝑖(Δ𝜔−𝛿)𝑡 · 𝑐2(𝑧,𝑡)
𝑒−𝑖(𝜔+𝛿)𝑡 · 𝑐3(𝑧,𝑡)
𝑒−𝑖(𝜔+𝛿)𝑡 · 𝑐4(𝑧,𝑡),

⎞⎟⎟⎠ (1.47)

where, after applying the rotating wave approximation (RWA), the resulting coefficients 𝑐𝑖
are presented as four coupled differential equations

�̇�1 = − 𝑖

2

(︁
Ω𝜋𝑒

−𝑖Δ𝑡+𝑖𝑘𝑧 · 𝑐3 +Ω𝜎+𝑒−𝑖Δ𝑡−𝑖𝑘𝑧 · 𝑐4
)︁

(1.48)

�̇�2 = − 𝑖

2

(︁
Ω𝜎−𝑒−𝑖(Δ+𝛿)𝑡−𝑖𝑘𝑧 · 𝑐3 +Ω𝜋𝑒

−𝑖(Δ+𝛿)𝑡+𝑖𝑘𝑧 · 𝑐4
)︁

(1.49)

�̇�3 = − 𝑖

2

(︁
Ω*
𝜋𝑒

𝑖Δ𝑡−𝑖𝑘𝑧 · 𝑐1 +Ω*
𝜎−𝑒

𝑖(Δ+𝛿)𝑡+𝑖𝑘𝑧 · 𝑐2
)︁

(1.50)

�̇�4 = − 𝑖

2

(︁
Ω*
𝜎+𝑒

𝑖Δ𝑡+𝑖𝑘𝑧 · 𝑐1 +Ω*
𝜋𝑒

𝑖(Δ+𝛿)𝑡+𝑖𝑘𝑧 · 𝑐2
)︁
. (1.51)

Assuming slow varying ground state populations 𝑐1 and 𝑐2, allows for integrating over
equations (1.50) and (1.51) yielding coefficients 𝑐3 and 𝑐4, which in turn can be substituted
in equations (1.48) and (1.49), and with Ωeff,± = Ω𝜎±Ω*

𝜋/2Δ resulting in an effective two-
level system

�̇�1 =
𝑖

2

[︂ |Ω𝜋|2 + |Ω𝜎+ |2
2Δ

𝑐1 + 𝑒𝑖𝛿𝑡
(︁
Ω*
eff,−𝑒

𝑖2𝑘𝑧 +Ωeff,+𝑒
−𝑖2𝑘𝑧

)︁
𝑐2

]︂
(1.52)
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�̇�2 =
𝑖

2

[︂
𝑒−𝑖𝛿𝑡

(︁
Ωeff,−𝑒

−𝑖2𝑘𝑧 +Ω*
eff,+𝑒

𝑖2𝑘𝑧
)︁
𝑐1 +

|Ω𝜋|2 + |Ω𝜎− |2
2Δ

𝑐2

]︂
(1.53)

The final formalism for �̇�1 can be derived, by assuming that the initial preparation takes
place in the |𝑔1⟩ state, where with a large enough two-photon detuning 𝛿 and 𝑐2 ≪ 𝑐1, the
population coefficient can be described by a single equation

�̇�1 = 𝑖

[︂ |Ω𝜋|2 + |Ω𝜎+ |2
4Δ

− |Ωeff,+|2 + |Ωeff,−|2
4𝛿

− |Ωeff,+Ωeff,−|
4𝛿

cos(4𝑘𝑧 + 𝜙𝜆/4)

]︂
𝑐1.

(1.54)

For this, equation (1.53) is integrated, as a result adiabatically eliminating the second
ground state |𝑔2⟩. Taking a closer look at equation (1.54) reveals three terms, where the
first one represents an energy shift due to two-photon processes, while the second and
third one show higher order effects in form of four-photon processes. The periodicity of
𝜆/4 is depicted in the last term, yielding the effective potential

𝑉𝜆/4(𝑧) =
𝑉4
2

cos(4𝑘𝑧 + 𝜙𝜆/4) + const, (1.55)

where the phase 𝜙𝜆/4 is defined with Ωeff,+Ωeff,− = |Ωeff,+Ωeff,−|𝑒𝑖𝜙𝜆/4 and the potential
depth scales as 𝑉4 ∝ 𝐼𝜋𝐼𝜎/𝛿. Increasing the two-photon detuning, suppresses two-photon
processes, while also decreasing the potential depth of the four-photon lattice (as will be
demonstrated in chapter 3.4). Variation of the phase 𝜙𝜆/4 can be used to spatially move the
lattice.
The presented scheme to generate a multi-photon lattice potential enables the creation of a
four-photon lattice with a spatial periodicity of 𝜆/4. This scheme realizes an experimental
tool that can be used to create both standing wave two- and four-photon potentials using
an optical setup realized with a single laser source [52].

1.3.3 Bloch Formalism and Dispersion Relations

In the following, the dynamics of a system composed of a Bose-Einstein condensate su-
perimposed to an optical lattice potential will be discussed, where the atomic dispersion
relation will be derived out of the Gross-Pitaevskii equation (GPE) (1.14). Experimentally
a short expansion phase for the atoms can be used to ensure that the atomic interaction
can be neglected. The equation of motion can then be written as

𝑖ℏ
𝜕

𝜕𝑡
Ψ(𝑧,𝑡) =

(︂
𝑝2

2𝑚
+ 𝑉 (𝑧)

)︂
Ψ(𝑧,𝑡), (1.56)

where 𝑝 = −𝑖ℏ𝜕𝑧 represents the momentum operator, 𝑚 the atomic mass and 𝑉 (𝑧) the
external potential introduced with equation (1.43). Due to the periodic nature of the
system, it is convenient to solve equation (1.56) with the Bloch ansatz Ψ(𝑧) = 𝑒−𝑖𝑞𝑧/ℏ𝑢𝑞(𝑧)
[85], consisting of a plane wave in propagation direction 𝑧 and a periodic function 𝑢𝑞(𝑧)
with the same periodicity as the external lattice potential 𝑉 (𝑧), hence introducing the
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motion of a free particle with the quasimomentum 𝑞. Experimentally, the external potential
𝑉 (𝑧) is the summation of both the two-photon- and four-photon potentials 𝑉𝜆/2 and 𝑉𝜆/4

(equations (1.43) and (1.55))

𝑉 (𝑧) =
𝑉2
4

(︁
𝑒𝑖2𝑘𝑧 + 𝑒−𝑖2𝑘𝑧

)︁
+
𝑉4
4

(︁
𝑒𝑖(4𝑘𝑧+𝜙) + 𝑒−𝑖(4𝑘𝑧+𝜙)

)︁
, (1.57)

where the periodicity 𝑉 (𝑧) = 𝑉 (𝑧+𝐿)with 𝐿 = 𝜆/2 is also represented in the Bloch ansatz
𝑢𝑞(𝑧,𝑡) = 𝑢𝑞(𝑧 + 𝐿,𝑡). With this, equation (1.56) writes as

𝑖ℏ
𝜕

𝜕𝑡
𝑢𝑞(𝑧,𝑡) =

(︃
(𝑝+ 𝑞)2

2𝑚
+ 𝑉 (𝑧)

)︃
𝑢𝑞(𝑧,𝑡), (1.58)

where 𝑢𝑞(𝑧,𝑡) =
∑︀

𝑙 𝑐𝑞,𝑙(𝑡)𝑒
𝑖2𝑙𝑘𝑧 is a discrete Fourier sum with 𝑙 ∈ Z. Substituting the

external potential 𝑉 (𝑧) from equation (1.57) results in a coupled differential equation for
the coefficients 𝑐𝑞,𝑙(𝑡)

𝑖ℏ�̇�𝑞,𝑙 =
(2𝑙ℏ𝑘 + 𝑞)2

2𝑚
𝑐𝑞,𝑙 +

𝑉2
4

(𝑐𝑞,𝑙−1 + 𝑐𝑞,𝑙+1) +
𝑉4
4

(︀
𝑒𝑖𝜙𝑐𝑞,𝑙−2 + 𝑒−𝑖𝜙𝑐𝑞,𝑙+2

)︀
, (1.59)

which can be rewritten into a Schrödinger equation 𝑖ℏ𝜕𝑡 |Ψ⟩ = 𝐻 |Ψ⟩with |Ψ⟩ =∑︀𝑙 𝑐𝑞,𝑙 |2𝑙ℏ𝑘 + 𝑞⟩ =
(...,𝑐𝑞,𝑙−1,𝑐𝑞,𝑙,,𝑐𝑞,𝑙+1...)

𝑇 . The Hamilton operator can be described with

𝐻 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐸−𝑙 𝑉2/4 𝑉4/4 0 0 0 0 0 0

𝑉2/4
. . . 𝑉2/4 𝑉4/4 0 0 0 0 0

𝑉4/4 𝑉2/4 𝐸−2 𝑉2/4 𝑉4/4 0 0 0 0
0 𝑉4/4 𝑉2/4 𝐸−1 𝑉2/4 𝑉4/4 0 0 0
0 0 𝑉4/4 𝑉2/4 𝐸0 𝑉2/4 𝑉4/4 0 0
0 0 0 𝑉4/4 𝑉2/4 𝐸1 𝑉2/4 𝑉4/4 0
0 0 0 0 𝑉4/4 𝑉2/4 𝐸2 𝑉2/4 𝑉4/4

0 0 0 0 0 0 𝑉2/4
. . . 𝑉2/4

0 0 0 0 0 0 0 𝑉4/4 𝐸+𝑙,

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.60)

where the diagonal elements are represented by the kinetic energy 𝐸kin(𝑙) for each 𝑙 ∈ Z

𝐻𝑙𝑙 = 𝐸kin(𝑙) =
(2𝑙ℏ𝑘 + 𝑞)2

2𝑚
(1.61)

and the off-diagonal elements 𝐻𝑙,𝑙+1 = 𝐻*
𝑙+1,𝑙 = 𝑉2/4 and 𝐻𝑙,𝑙+2 = 𝐻*

𝑙+2,𝑙 = 𝑉4/4𝑒𝑖𝜙 depict
induced coupling by the respective two- and four-photon lattice potentials.
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Figure 1.10: (a) Resulting dispersion relation of a two-photon lattice for a large range of the
quasimomentum 𝑞. The energy on the 𝑦-axis is given in units of the recoil energy 𝐸𝑅. (b) The
first Brillouin zone of the two-photon lattice is expressed in the interval of 𝑞 ∈ (−ℏ𝑘,+ℏ𝑘].
The dashed lines represent the free particle parabolas (bare states) for the case of vanishing
optical light fields. Increasing the lattice laser beam intensity results in avoided crossing at the
quasimomentum 𝑞 = ±ℏ𝑘.

−10 −5 0 5 10
Quasimomentum q [h̄k]

0

2

4

6

8

10

E
n

er
gy
E

(q
)[
E
R

]

(a)

−2 −1 0 1 2
Quasimomentum q [h̄k]

0

2

4

6

8

10

E
n

er
gy
E

(q
)[
E
R

]

(b)

Figure 1.11: (a) Resulting dispersion relation of a four-photon lattice for a large range of
the quasimomentum 𝑞. The energy on the 𝑦-axis is again given in units of the recoil energy
𝐸𝑅. (b) The first Brillouin zone of the four-photon lattice is now expressed in the interval
of 𝑞 ∈ (−2ℏ𝑘, 2ℏ𝑘] due to higher order terms. The dashed lines represent the free particle
parabolas (bare states) for the case of vanishing optical light fields. Increasing the lattice laser
beam intensity results in avoided crossing at the quasimomentum 𝑞 = 0ℏ𝑘.

The solution for a two-photon lattice can be expressed as a dispersion relation shown
in Figure 1.10 where the energy scale is given in recoil energy 𝐸𝑅 = (ℏ𝑘)2/2𝑚. The usual
presentation of these energy spectra is shown in the so-called Brillouin zone (as seen in
Figure 1.10(b) and 1.11(b)), which, motivated by solid-state physics, is a reduced band
structure visualization (𝑞 ∈ (−ℏ𝑘,+ℏ𝑘]) representing the range of possible momenta for
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electrons in a crystal.
In the absence of the optical potential, the atomic dynamics can be well described by
parabolas representing unperturbed particles with respective momentum 𝑝 = ±2ℏ𝑘 (bare
states), shown in dashed lines in Figure 1.10. In the presence of an optical light field (blue
line), the degeneracy at the intersection points is lifted, where the avoided crossing results
in a band gap at the quasimomentum 𝑞 = ±ℏ𝑘. For the case of a four-photon lattice, as
expected, the avoided crossing takes place at the intersection points of higher order bands,
resulting in a band gap at the quasimomentum 𝑞 = 0ℏ𝑘 (as seen in Figure 1.11).
In the experiment, the energy gap of the effective two-level system is simulated using the
dispersion relation shown in Figure 1.11. At quasimomentum 𝑞 = 0ℏ𝑘, the oscillation
frequency of the qubit, denoted as 𝜔q, is directly proportional to the four-photon lattice
potential 𝑉4. This relationship implies that by increasing the optical laser power, the
band gap can be enlarged. To prepare the atoms at this band gap, a two-photon lattice
Bragg pulse is employed, transferring a real momentum of 𝑝 = ±2ℏ𝑘 onto the atoms.
Superimposing the harmonic potential of the optical dipole trap onto this effective qubit
enables the quantum simulation of the periodic quantum Rabi model at deep strong
coupling, a topic that will be further elaborated upon in the upcoming chapter.



CHAPTER 2
Quantum Simulation of the Periodic Quantum Rabi Model

In the following, a brief theoretical introduction to quantum Rabi physics is given, where
different regimes emerge for varying the coupling strength between the two-level system
and the bosonic mode. Three distinct domains of strong-, ultra-strong- and deep strong
coupling regimes emerge, in which the latter encompasses the main topic of this dissertation.
As will be seen later, the experimental system Hamiltonian describing the motion of ultra-
cold atoms, superimposed onto the combined potentials of the optical dipole trap and the
four-photon lattice, resembles a generalization of the usual quantum Rabi model – the
periodic quantum Rabi model (pQRM). For sub-cycle temporal evolution, both models
show the same dynamics, where previous work has been conducted to simulate the usual
quantum Rabi model in the deep strong coupling regime [53].
In this work, the focus is to investigate the periodic quantum Rabi model which emerges
when observing longer interaction times when the first Brillouin zone (as can be seen in
Figure 1.11(b)) is crossed. Here, the periodic nature becomes apparent, where collapse and
revival of bosonic excitation number and initially prepared vacuum states are predicted.
In final remarks of this chapter, a digression into superconducting qubits is presented,
due to an existing analogy between the single particle Hamiltonian with superconducting
Fluxonium systems [91].

2.1 The Quantum Rabi Model (QRM)
As previously mentioned, the most fundamental interaction between a bosonic mode and
a two-level system can be well described by the quantum Rabi model. Inspired by [92],
the Hamiltonian

�̂�QRM = �̂�Field + �̂�Qubit + �̂�Interaction, (2.1)

consisting of the sub-system of the bosonic field �̂�Field, the qubit �̂�Qubit and the interaction
term �̂�Interaction, will be derived in the following.
Relatively straight forward, the contribution of the bosonic field can be described by

�̂�Field = ℏ𝜔�̂�†�̂�, (2.2)

where �̂�† and �̂� depict the creation- and annihilation operators of the bosonic field with
the frequency 𝜔.

27
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An intuitive approach is used to describe the two-level sub-system �̂�Qubit

�̂�Qubit =
1

2
ℏ𝜔q�̂�𝑧, (2.3)

where the factor 1/2 arises from the energy gap Δ𝐸q = ℏ𝜔q between ground- and excited
state driven by the inversion operator �̂�𝑧 = |↑⟩ ⟨↑| − |↓⟩ ⟨↓|.
The interaction term can be expressed as the dipole operator 𝑑 = 𝑑(�̂�+ + �̂�−), where the
Pauli matrices 𝜎+ = |↑⟩ ⟨↓| and 𝜎− = |↓⟩ ⟨↑| correspond to respective ladder operators of
the two-level system, acting on the electric field Ê of the bosonic mode

�̂�Interaction = −d̂ · Ê

= d̂ · ê⏟ ⏞ 
= 𝑑

(︂
− ℏ𝜔
𝜀0𝑉

)︂1/2

sin(𝑘𝑧)⏟  ⏞  
= 𝜉

(�̂�+ �̂�†) = 𝑑𝜉(�̂�+ �̂�†)

= ℏ𝑔(�̂�+ + �̂�−)(�̂�+ �̂�†).

(2.4)

Here, ê represents the polarization direction, 𝜔 the mode frequency, 𝑉 the effective Volume
of the resonator and 𝑘 the wave vector. The factor 𝑔 = 𝑑𝜉/ℏ is introduced as the coupling
strength and will prove to be a decisive parameter to distinguish between different regimes
of the quantum Rabi model.
Introducing �̂�𝑥 = (�̂�+ + �̂�−) the full quantum Rabi Hamiltonian can be written as

�̂�QRM = �̂�Field + �̂�Qubit + �̂�Interaction

= ℏ𝜔�̂�†�̂�+
1

2
ℏ𝜔q�̂�𝑧 + ℏ𝑔�̂�𝑥(�̂�+ �̂�†).

(2.5)

The temporal evolution of the operators �̂�±(𝑡), �̂�(𝑡) and �̂�†(𝑡), give rise to four different
combinations of energy exchange between bosonic field and two-level system:

�̂�+�̂� ∝ 𝑒𝑖(𝜔q−𝜔)𝑡

�̂�−�̂�
† ∝ 𝑒−𝑖(𝜔q−𝜔)𝑡

�̂�+�̂�
† ∝ 𝑒𝑖(𝜔q+𝜔)𝑡

�̂�−�̂� ∝ 𝑒−𝑖(𝜔q+𝜔)𝑡.

(2.6)

At this point, a subdivision can be made into fast and slowly varying terms. For relatively
weak coupling strength between the two-level system and the bosonic field the counter-
rotating terms �̂�−�̂� and �̂�+�̂�† can be neglected and only the slowly varying fractions of
equation (2.6) give rise to the well-known Jaynes-Cummings model (JCM) formulated in
1963 as a special case of the full quantum Rabi model [4]

�̂�JCM = ℏ𝜔�̂�†�̂�+
ℏ𝜔q

2
�̂�𝑧 + ℏ𝑔

(︀
�̂�+�̂�+ �̂�−�̂�

†)︀ . (2.7)
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To understand it in a slightly more physical sense, by considering the absorption of a
photon from the bosonic field, the atom is transferred to the excited state and vice versa
(�̂�+�̂� and �̂�−�̂�†), hence only energy-conserving (co-rotating) terms are used to describe
dynamics in the Jaynes-Cummings system.
While a plethora of experiments demonstrating the strong coupling regime of the JCM
have been thoroughly investigated in cavity quantum electrodynamics [93–95], atomic
physics [96], quantum dots [97], circuit quantum electrodynamics [98, 99] and trapped
ions [100–103], this thesis presents the case for a large coupling strength 𝑔 ≫ 𝜔, which
dominates over all other energy scales in the system. In this extreme parameter regime,
characterized by the inclusion of both the co-rotating and counter-rotating terms in the
complete quantum Rabi Hamiltonian, finding a solution for the system was challenging
for a long time [104]. An exact solution was first found by D. Braak in 2011 using the parity
symmetry (Z2-symmetry) of the system leading to so called G-functionswhose zeros yield
the exact eigenvalues of the Rabi Hamiltonian [15]. The dynamics of an initial state which
is prepared in eigenstates of the two-level system (meaning |↑⟩ or |↓⟩) can be described by
so called parity chains due to the Z2-symmetry of the quantum Rabi model. By showing
that [�̂�,Π̂] = 0, where �̂� is the quantum Rabi Hamiltonian and Π̂ is the parity operator,
the Hilbert space can be described by the dynamics of two subsystem Hamiltonians 𝐻+

and 𝐻−, corresponding to respective parity chains Π+ and Π− visualized in Figure 2.1.
The Π− chain in Figure 2.1(a) represents the dynamics coupled by the co-rotating terms,
while the Π+ chain shows the dynamics driven by the counter-rotating terms, which is
usually neglected for the strong coupling regime of the JCM.

Spectral Classification of the QRM

As mentioned before, different dynamics emerge, when the coupling strength between
bosonic mode and qubit is varied. If decoherence effects due to loss processes occur faster
than energetic exchange between the subsystems, the weak coupling regime is present.
When the coupling strength is larger than decoherence effects, the strong-coupling regime
(SC regime: 𝑔/𝜔 ≪ 1) emerges, and the general quantum Rabi Hamiltonian (2.5) can be
simplified to the Jaynes-Cummings Model (2.7), describing coherent exchange of bosonic
excitations between the subsystems [106]. This approximation becomes invalid for larger
coupling strengths (𝑔/𝜔 ≳ 0.1), as the counter-rotating terms become increasingly dominant
in the regime known as the ultra-strong coupling (USC) regime. The transition from the
SC regime to the USC regime occurs continuously [106], allowing for perturbation theory
to be applied at the early stage of the transition. Thus, the beginning of the USC regime,
which can be described by the Bloch-Siegert Hamiltonian, is referred to as the perturbative
USC regime [21, 22]. The so called Juddian points depicted in Figure 2.2 (directly taken
from [22]) separate the perturbative USC regime from the usual USC regime, revealing
not only the effect of the ratio 𝑔/𝜔 but also the energy (𝑦-axis) that the system can access.
The final domain of the quantum Rabi model concludes the deep-strong coupling regime
(DSC), where the coupling strength is larger than all other significant energy scales (𝑔/𝜔 ≳
1). Here, the nature of the strongly entangled ground-state dynamics of the subsystems
is reflected by the emergence of counter-intuitive physical behavior, such as the creation
and annihilation of bosonic excitations out of the vacuum and the collapse and revival of
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(a) (b)

Figure 2.1: Parity chains of the quantum Rabi model subdivided into two classes of Π− (a)
and Π+ (b). The underlying dynamics which are shaped by the Z2 symmetry of the QRM
Hamiltonian can be fully described by the combination of the parity operator Π̂, where the co-
and counter-rotating terms couple the sub-dynamics of respective Π− and Π+ chain.

initially prepared states devoid of excitations. In contrast to the perturbative USC regime,
where the coupling strength is introduced as perturbation, the perturbative DSC regime
(pDSC) is a consequence of the two-level system’s energy splitting acting as a perturbation
onto the coupling strength. This means that the non-perturbative DSC regime directly
follows after the non-perturbative USC regime.
The experiment operates at a relative coupling strength 𝑔/𝜔 ∈ [4; 6.5], which is far in the
pDSC regime. The ability to vary the two-level splitting by changing the intensity of the
optical lattice laser beam allows for the exploration of the so-called dispersive DSC regime
(𝜔q ≳ 𝑔,while 𝑔 ≫ 𝜔), where the dynamics are governed by the dominant energy of the
two-level system.
In the following, numerical simulations of the temporal evolution of the bosonic excitation
number �̂� for two cases of relative coupling strengths are presented: 𝑔/𝜔 = 0.1 (in the SC
regime) and 𝑔/𝜔 = 6.4 (in the pDSC regime). To maintain simplicity, the qubit frequency
is set at a similar scale to the bosonic mode frequency (𝜔q ≃ 𝜔), while the 𝑥-axis is shown
in units of 𝜔𝑡/2𝜋. When initializing the system in the vacuummode of the bosonic field and
the ground state of the two-level system (|𝑁 = 0, ↓⟩), only vacuum Rabi oscillations occur
in the strong coupling regime, depicted as a green line in the inset plot of Figure 2.3(a). In
contrast, in the pDSC regime, which is the focus of this thesis, a rise up to �̂�DSC,max ≈ 160
is observed, shown as a solid yellow line in the simulations. The same parameters are again
utilized for the excited state preparation (|𝑁 = 0, ↑⟩) and are illustrated in Figure 2.3(b).
To emphasize the difference between the two regimes, which are separated by a quantum
phase transition (QPT) [107], an inset plot is utilized again to provide a close-up view of
the strong-coupling temporal dynamics (green solid line). Here the maximum bosonic
excitation is now �̂�JCM,max = 1, while the behavior for the pDSC regime is unaffected for
the chosen qubit frequency 𝜔q ≃ 𝜔. Subsequent sections will demonstrate that further
increasing the qubit frequency results in a transition into the dispersiveDSC regime, notably
observed when examining the temporal dynamics of the bosonic excitation number as the
qubit frequency approaches the coupling strength 𝜔q → 𝑔.
The origin of the displayed temporal evolution of the oscillating excitation number in the
perturbative deep strong coupling regime lies in the occupation probabilities of the number
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Figure 2.2: Coupling regimes of the quantum Rabi model depending on the relative coupling
strength 𝑔/𝜔 and the mean energy that the system can access (directly taken from [105]). The
first Juddian points (first dotted line) mark the area of the perturbative ultra strong coupling
regime (pUSC) followed up by an intermediate region where the non-perturbative ultra- and
deep strong coupling regime coexist (npUSC-npDSC). The final regime, which is simulated in
this thesis, concludes the perturbative deep strong coupling regime (pDSC) for larger coupling
strengths introduced with the second Juddian points (second dotted line).

states (Fock states) of the field mode. This oscillatory nature leads to a rapid collapse of the
initially prepared ground state |𝑁 = 0, ↓⟩, while after a full period, the initial state revives.
Figure 2.4(a) shows a visualization of the temporal evolution of the excitation number
wavepackets for a full oscillation period and a vanishing qubit frequency 𝜔q → 0. On the
right side (Figure 2.4(b)), a numerical simulation of the resulting collapse and revival of
an initially prepared state |𝑁 = 0, ↓⟩ is shown for the qubit frequency 𝜔q → 0 (yellow)
and 𝜔q/𝜔 ≈ 2 (green dashed). Visible partial revivals and collapses in the simulation are
attributed to the self-interference of photon number wavepackets, resulting in a distorted
pattern and will be verified with experimental data in the later chapter [108].
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(a) (b)

Figure 2.3: (a) Temporal evolution of the bosonic excitation ⟨𝑁⟩ for an initial vacuum state
preparation in the ground state of the qubit |𝑁 = 0, ↓⟩. In the strong coupling regime (𝑔/𝜔 = 0.1,
green) the dynamics are governed by vacuumRabi oscillations (inset plot). For larger coupling
strengths in the DSC regime (𝑔/𝜔 = 6.4, yellow) a large number of �̂�DSC,max ≈ 160 is reached
(yellow). (b) Preparation in the excited state of the qubit does not change the dynamics for
the DSC regime, but now shows a rise up to �̂�JCM,max = 1 (inset plot, green solid line).
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Figure 2.4: (a) Temporal evolution of the Fock states occupation probability for a full oscillation
period (𝑡 = 0 → 𝑡 = 2𝜋/𝜔) and initial preparation in |𝑁 = 0, ↓⟩, a relative coupling strength
𝑔/𝜔 = 6.4 and a vanishing qubit frequency 𝜔q → 0. The visualization shows typical emergence
of photon number wavepackets oscillating in time. (b) Numerical simulation of resulting
collapse and revival patterns for a vanishing qubit frequency 𝜔q → 0 (yellow solid line) and a
larger splitting 𝜔q/𝜔 ≈ 2 (green dashed line), where partial revivals are observed, which are
understood as interference of photon number wavepackets.
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2.2 Similarities and Differences between pQRM and QRM
The following section describes the analogy between the quantum Rabi model and the
system simulated in the experiment, which is called the periodic quantum Rabi model
(pQRM). A separation is made for the case of small interaction time, limiting the dynamics
to the first Brillouin zone, where both the experimentally simulated system and the QRM
exhibit the same dynamics. Since these sub-cycle time scales have already been observed
in the context of J. Koch’s PhD thesis [53, 27], only a brief presentation of the analogy
between the models will be provided here. The main focus of this thesis is the long-time
interaction of the periodic version of the quantum Rabi model, which is presented in the
regime where the first Brillouin zone is crossed and deviations from the usual quantum
Rabi model arise. Interestingly, a similar system represented by fluxonium qubits can be
well described by the experimental system Hamiltonian, showing potential applicability
for superconducting qubit platforms.

2.2.1 Short Time Interaction

Figure 2.5: Visualization of the harmonic potential (left) with the bosonic mode frequency 𝜔
and the four-photon lattice (middle) with the qubit splitting 𝜔q, which are combined to the
total potential illustrated on the right.

The simulation of the quantumRabi model requires a bosonic field, which is realized by the
oscillation of ultra-cold rubidium atoms in an optical dipole trapping potential created by
a far-off resonance CO2 laser beam (see Figure 2.5 for visualization). Superimposing these
atoms to a four-photon potential leads to the band structure depicted in Figure 1.11(b),
which acts as an effective two-level system with the qubit energy gap Δ𝐸qubit = ℏ𝜔q with
the oscillation frequency 𝜔q.
The system Hamiltonian including the kinetic energy of the atoms and the harmonic trap,
and a periodic potential then writes as

�̂�exp =
𝑚𝜔2

2
�̂�2⏟  ⏞  

�̂�harmonic

+
𝑝2

2𝑚
+
𝑉

2
cos(4𝑘�̂�)⏟  ⏞  

�̂�periodic

, (2.8)

where, 𝑝 = −𝑖ℏ𝜕/𝜕𝑥 denotes the atoms momentum and 𝑘 = 2𝜋/𝜆 is the wave vector, with
𝜆 being the wavelength of the lattice laser beam. Furthermore, 𝑉 represents the optical
lattice potential depth,𝑚 the atoms mass and 𝜔 the bosonic mode frequency, meaning the
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radial oscillation frequency in the optical dipole trap.
Due to the periodic nature of the optical lattice potential, it is convenient to use the Bloch
basis function ⟨�̂�|𝜑𝑛(𝑞)⟩ = 𝑒𝑖𝑞𝑥/ℏ𝑒−𝑖2𝑘𝑥𝑒𝑖4𝑛𝑘𝑥 where 𝑛 ∈ Z and 𝑞 ∈ (−2ℏ𝑘,2ℏ𝑘] resembles
the first Brillouin zone. The momentum operator is diagonal in the Bloch basis, while the
periodic potential introduces a coupling between adjacent bands

�̂�periodic =
𝑝2

2𝑚
+
𝑉

2
cos(4𝑘�̂�) |𝑞,𝑛⟩

=
1

2𝑚
[𝑞 + (2𝑛− 1)2ℏ𝑘]2 |𝑞,𝑛⟩+ 𝑉

4
(|𝑞,𝑛+ 1⟩+ |𝑞,𝑛− 1⟩).

(2.9)

By restricting the dynamics to the two lowest bands 𝑛 = [0,1], the periodic part �̂�periodic of
the full Hamiltonian can be written as

�̂�periodic =
𝑞2

2𝑚
+

2ℏ𝑘
𝑚

𝜎𝑧𝑞 +
𝑉

4
𝜎𝑥, (2.10)

where 𝜎𝑥 = |𝑛 = 0⟩ ⟨𝑛 = 0| − |𝑛 = 1⟩ ⟨𝑛 = 1| and 𝜎𝑧 = |𝑛 = 1⟩ ⟨𝑛 = 0| + |𝑛 = 0⟩ ⟨𝑛 = 1|
was used. Focusing on the harmonic part �̂�harmonic of equation (2.8), we can write

⟨︀
𝑞,�̃�|�̂�2|𝑞,𝑛

⟩︀
=

� +∞

−∞
𝑑𝑥𝑥2𝑒𝑖[4(𝑛−�̃�)𝑘+(𝑞−𝑞)/ℏ]𝑥. (2.11)

Considering diagonal elements in the qubit Hilbert space (�̃� = 𝑛), results in

⟨︀
𝑞,𝑛|�̂�2|𝑞,𝑛

⟩︀
=

� +∞

−∞
𝑑𝑥𝑥2𝑒𝑖(𝑞−𝑞)𝑥/ℏ = −ℏ2 ⟨𝑞,𝑛| 𝜕

2

𝜕𝑞2
|𝑞,𝑛⟩ . (2.12)

It is easy to see that the harmonic term introduces an operator that is diagonal in the
Hilbert space and can be expressed as �̂� = −𝑖ℏ 𝜕

𝜕𝑞 using the Bloch basis. This results in
the quasimomentum operator 𝑞 and the position operator �̂� satisfying the commutation
relation [�̂�,𝑞] = 𝑖ℏ.
Analyzing the exponent in equation (2.12) shows that the integral for 𝑛 ̸= �̃� is only non-
zero if 4ℏ(𝑛− �̃�)𝑘 = 𝑞−𝑞. By choosing a quasimomentum difference of 𝛿𝑞 = 𝑞−𝑞 = 4ℏ𝑘, a
coupling is induced between neighboring bands (|2ℏ𝑘,𝑛⟩ ⟨−2ℏ𝑘,𝑛+ 1|+H.c.), emphasizing
the importance of a four-photon lattice in the experiment.
The position operator �̂�2 can be expressed as

�̂�2 = −ℏ2
𝜕2

𝜕𝑞2

(︂
1 0
0 1

)︂
+ 𝜁(|2ℏ𝑘,𝑛⟩ ⟨−2ℏ𝑘,𝑛+ 1|+ |−2ℏ𝑘,𝑛+ 1⟩ ⟨2ℏ𝑘,𝑛|), (2.13)

with 𝜁 = ⟨−2ℏ𝑘, 1| �̂�2 |2ℏ𝑘,0⟩ describing an Umklapp-process which is enabled upon reach-
ing the edge of the first Brillouin zone. Combining equation (2.10) and (2.13) and intro-
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ducing the creation and annihilation operators as

�̂�† =

√︂
𝑚𝜔

2ℏ

(︂
�̂�− 𝑖

𝑚𝜔
𝑞

)︂
(2.14)

and

�̂� =

√︂
𝑚𝜔

2ℏ

(︂
�̂�+

𝑖

𝑚𝜔
𝑞

)︂
(2.15)

results in

�̂� = ℏ𝜔�̂�†�̂�12 +
𝑉

4
ℏ
(︂
0 1
1 0

)︂
+ 𝑖2ℏ𝑘

√︂
ℏ𝜔
2𝑚

(︀
�̂�† − �̂�

)︀(︂1 0
0 −1

)︂
. (2.16)

By substituting 𝜔q = 𝑉
2 as the qubit frequency and using

𝑔 = 2𝑘

√︂
ℏ𝜔
2𝑚

(2.17)

as the coupling strength, a unitary transformation represented by the matrix:

𝑈 =
1√
2

(︂
1 −1
1 1

)︂
(2.18)

results in the Hamiltonian

�̂�QRM = ℏ𝜔�̂�†�̂�+
ℏ𝜔q

2
�̂�𝑧 + 𝑖ℏ𝑔�̂�𝑥

(︀
�̂�† − �̂�

)︀
, (2.19)

which is similar to equation (2.5), except for a global phase shift caused by the unitary
transformation, which does not affect the observable dynamics in the system [109].
Considering an initial preparation Ψ0 at the band gap, corresponding to 𝑞 = 0 (see Figure
1.11(b)), the analogy of equations (2.8) and (2.19) is ensured when the Umklapp term 𝜁
vanishes. The maximum time of interaction, which in essence is restricted by the dynamics
to the first Brillouin zone 𝑞 ∈ (−2ℏ𝑘,+ 2ℏ𝑘] can be calculated with ⟨Ψ0| 𝑞 |Ψ0⟩ = 0 to

𝑡max =
𝜋

2𝜔
. (2.20)

After showing the analogy between the quantum Rabi model (QRM) and the periodic
quantum Rabi model (pQRM) in the boundaries of the first Brillouin zone, an approxima-
tion for the maximum achievable bosonic excitation number 𝑁max can be derived for the
case of a vanishing qubit frequency. When applying the slow qubit approximation (𝜔q → 0),
this leads to the modification of the quantum Rabi Hamiltonian
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Figure 2.6: Displacement dynamics of an initial state prepared in |𝑁 = 0, ↓⟩ for a large relative
coupling strength 𝑔/𝜔 = 5 far in the perturbative deep strong coupling regime (left panel) and
a ratio 𝑔/𝜔 = 0.1 describing the perturbative ultra strong coupling regime (right panel). The
wavepackets displacement over the wavepackets size gives direct proof of the pDSC regime.

�̂�𝜔q=0 = ℏ𝜔�̂�†�̂�+ ℏ𝑔�̂�𝑥(�̂�+ �̂�†)

= ℏ𝜔
(︂
�̂�† +

𝑔�̂�𝑥
𝜔

)︂(︂
�̂�+

𝑔�̂�𝑥
𝜔

)︂
+ ℏ

(︂
𝜔

2
− 𝑔2

𝜔

)︂
,

(2.21)

which can be easily diagonalized by a displacement operator �̂�(𝛼) = 𝑒𝛼𝑎
†−𝛼*𝑎. The time

evolution of a vacuum state |𝑁 = 0⟩ = |0⟩with the displaced Hamiltonian �̂�(𝛼) results in

𝑒𝑖�̂�(𝛼)𝑡/ℏ |0⟩ = �̂�(−𝛼)𝑒𝑖�̂�(0)𝑡/ℏ�̂�(𝛼) |0⟩

= 𝑒
𝑖𝜔𝑡
2 𝑒

𝑖𝑔2𝑡
𝜔 �̂� |𝑒−𝑖𝜔𝑡𝛼⟩

= 𝑒
𝑖𝜔𝑡
2 𝑒

𝑖𝑔2𝑡
𝜔 𝑒Im(|𝛼|2)𝑒𝑖𝜔𝑡

�̂�
(︀
𝛼
(︀
𝑒−𝑖𝜔𝑡−1

)︀)︀
|0⟩ ,

(2.22)

and the bosonic excitation number ⟨𝑁⟩ can be calculated to

⟨�̂�⟩ = |𝛼(𝑡)|2 = 4|𝛼|2 sin2
(︂
𝜔𝑡

2

)︂
. (2.23)

The maximum bosonic excitation number 𝑁max can be calculated to

𝑁max = 4|𝛼|2 = 4𝑔2

𝜔2
, (2.24)

where 𝛼 = 𝑔/𝜔 was used. Although the case for 𝜔q → 0 is a trivial one, it nevertheless gives
insight into equation (2.24), showing that the temporal evolution of the bosonic excitation
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Figure 2.7: Numerical simulations of the temporal evolution of the bosonic excitation number
⟨𝑁⟩ for the QRM Hamiltonian (2.5) (dashed lines) and the pQRM Hamiltonian (2.8) (solid
lines) for ascending values of the ratio between the qubit frequency and bosonic mode 𝜔q/𝜔
(from left to right) and fixed value for the coupling strength 𝑔/𝜔 = 6.4. The dynamics of both
models overlap in the first Brillouin zone. The periodic nature of the pQRM becomes apparent
due to the Umklapp process taking place at 𝜔𝑡max/2𝜋 = 0.25, marked as a gray vertical line. For
stronger qubit frequencies, the discrepancy between both models becomes increases.

number is solely depended on the relative coupling strength and not on the preparation of
the initial state.
Another realization which can be gained in the limit of the slow qubit approximation, takes
into account that the ratio between the coupling strength 𝑔 and the harmonic oscillation
frequency 𝜔 can be described as

𝑔

𝜔
=

𝑥0
𝑥ho

, (2.25)

where 𝑥0 = 2ℏ𝑘
𝑚𝜔 is the amplitude of the classical oscillation for a vanishing lattice potential

(𝜔q → 0) and 𝑥ho =
√︀

2ℏ/𝑚𝜔 depicts the atom specific size of the harmonic oscillator
ground state wavepacket. Hence, only in the perturbative deep strong coupling regime,
where 𝑔/𝜔 ≫ 1, the wavepackets displacement dynamics can exceed the wavepackets size.
This behavior is illustrated in Figure 2.6, where the displacement dynamics of an initially
prepared state |𝑁 = 0, ↓⟩ is compared between the perturbative deep strong coupling
regime with a relative coupling strength of 𝑔/𝜔 = 5 (left panel) and the perturbative ultra
strong coupling regime with the ratio 𝑔/𝜔 = 0.1 (right panel). As expected, the numerical
simulation for the pDSC regime shows clear oscillations, where the wavepacket expansion
exceeds the initial wavepacket size, in contrast to the pUSC regime, where no significant
displacement dynamics can be observed. From an experimentalists point of view, this
is intriguing since measuring the displaced atoms in the harmonic trap, while the qubit
splitting is negligible, directly provides the coupling strength under consideration [27].
Moving on, the case of longer interaction times (𝑡 > 𝑡max) (see equation (2.20)) resulting
in the emergence of a periodic version of the quantum Rabi model will be discussed. In
this thesis, the boundaries of the first Brillouin zone are crossed resulting in the emergence
of a periodic version of the system (pQRM). The difference between the pQRM and QRM
becomes evident when observing numerical simulations of the temporal evolution of
the bosonic excitation number ⟨𝑁⟩ in Figure 2.7. Starting from the left to the right, the
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(a) (b)

Figure 2.8: (a) Numerical simulations of the temporal evolution of the mean position ⟨𝑥⟩ for
the QRM Hamiltonian (2.5) (dashed lines) and the pQRM Hamiltonian (2.8) (solid lines) for
ascending values of the ratio between the qubit frequency and bosonic mode 𝜔q/𝜔 encoded in
the color gradient from yellow (𝜔q/𝜔 → 0) to green (𝜔q/𝜔 ≈ 5) and fixed value for the coupling
strength 𝑔/𝜔 = 6.4. Again the similarity of both models can be observed until the edge of the
first Brillouin zone (gray vertical line) is reached and discrepancies arise upon this restriction
is crossed. (b) Numerical simulations of the temporal evolution of the mean quasimomentum
⟨𝑞⟩ with the same parameters as in (a), where the Umklapp process can be seen as a shift
occurring as soon as the edge of the first Brillouin zone is reached (𝑞 = −2ℏ𝑘) and the system
re-enters from the other side of the dispersion relation in Figure 1.11(b) at 𝑞 = +2ℏ𝑘.

ratio between qubit frequency and bosonic mode 𝜔q/𝜔 is increased from 1 to 3.7, while the
relative coupling strength 𝑔/𝜔 = 6.4 is kept constant far in the perturbative DSC regime.
It is easy to see, that as mentioned before, both models show similar dynamics up to the
point where the first Brillouin zone is reached, marked in the panels as a gray vertical line
at 𝜔𝑡max/2𝜋 = 0.25. From this point on, a clear difference in the dynamics of both models
takes place, where the Umklapp process manifests itself as ’reflection’ at the edge of the
first Brillouin zone (Umklapp scattering). Intuitively speaking, at this point, one departs
from the dispersion relation (see Figure 1.11(b)) at 𝑞 = +2ℏ𝑘 only to subsequently re-enter
again on the opposite side at 𝑞 = −2ℏ𝑘, which translates into skipping the second quadrant
in the phase diagram during time evolution (for visualization see PhD thesis of J. Koch
[53]). Comparing the panels with ascending qubit splittings 𝜔q the discrepancy between
the models becomes larger, when 𝜔q/𝜔 is increased.
Moving on to further observables, the numerical simulations for the mean position ⟨𝑥⟩
and mean quasimomentum ⟨𝑞⟩ are also presented for the same parameter set as in Figure
2.7. Figure 2.8 shows the resulting temporal evolution, for which the increasing qubit
frequency is encoded in the color gradient from yellow (𝜔q/𝜔 → 0) to green (𝜔q/𝜔 ≈ 5).
Again for 𝑡 < 𝑡max the dynamics in both models overlap, while for the case of the mean
position ⟨𝑥⟩ (Figure 2.8(a)), the divergence starts at later times 𝜔𝑡/2𝜋 ≈ 0.5 due to real
space numerical simulation. Figure 2.8(b) shows the effect of the Umklapp process onto
the mean quasimomentum ⟨𝑞⟩, where upon reaching the edge of the first Brillouin zone a
jump to the opposite mean quasimomentum takes place, and the dynamics are shifted
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(a) (b)

Figure 2.9: (a) Numerical simulations of the temporal evolution of the mean band occupation
number ⟨𝜎𝑥⟩ for the QRM Hamiltonian (2.5) (dashed lines) and the pQRM Hamiltonian (2.8)
(solid lines) for the same qubit frequencies as in Figure 2.8 and fixed value for the coupling
strength 𝑔/𝜔 = 6.4. (b) Close-up for a smaller time interval, showing the Umklapp process in
detail.

upwards. This observed behavior for the mean quasi momentum ⟨𝑞⟩ directly translates
to the dynamics of the mean band occupation number ⟨𝜎𝑥⟩, which can be expressed in
the basis of the band eigenstate 𝜎𝑥 = |𝑛 = 0⟩ ⟨𝑛 = 1| − |𝑛 = 1⟩ ⟨𝑛 = 1|, with 𝑛 = [0,1] for
𝑝 = 𝑞 − 2ℏ𝑘 and 𝑝 = 𝑞 + 2ℏ𝑘 respectively. Approaching the edge of the Brillouin zone
leads to the remapping of bands, leading to the dynamics depicted in Figure 2.9. Again
larger qubit splittings amplify the discrepancy between the two models.
The dynamics of the periodic quantum Rabi model (pQRM) are significantly influenced
by the Umklapp process occurring at the edge of the first Brillouin zone, particularly when
considering larger values of the qubit splitting 𝜔q. The theoretical foundation for this
phenomenon is rooted in the mentioned derivation and the accompanying introduction
of the Bloch basis. As shown, the QRM Hamiltonian in equation (2.5) is derived from
the experimental Hamiltonian introduced in equation (2.8). The presented numerical
differences in Figures 2.7, 2.8 and 2.9 are, therefore, a result of the respective mathematical
models, among other factors.
While not significantly represented in the upcoming measurements, another approach for
numerical calculation is illustrated in Figure 2.10, in order to improve the understanding
of similarities and differences between the experimental and theoretical model. In this
case, unlike previous numerical calculations, the Bloch basis is not integrated into the
theoretical model, and there is no mapping onto the quasimomentum. Consequently,
the experimental Hamiltonian is straightforwardly computed by solving the Schrödinger
equation. The relative coupling strength is set far within the perturbative deep strong
coupling regime (𝑔/𝜔 = 5). In line with the experiment, the initial state is prepared with
a momentum transfer of 𝑝 = −2ℏ𝑘 onto the atoms at the center of the harmonic trap.
For the standard quantum Rabi model, this state corresponds to a superposition of the
qubit eigenstates |→⟩ = 1/

√
2 (|↑⟩+ |↓⟩) prepared in the vacuum mode of the bosonic field
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Figure 2.10: Numerical simulation of the temporal evolution of the wavepacket’s probability
distribution for experimental Hamiltonian in equation (2.8) (A, B and C) and the standard
QRM in equation (2.5) (D, E and F). The relative coupling strength is far in the perturbative
deep strong coupling regime (𝑔/𝜔 = 5), while the ratio between qubit frequency and bosonic
mode is increased from left to right ranging from 𝜔q/𝜔 = 1.4 to 𝜔q/𝜔 = 14.

|𝑁 = 0,→⟩. The calculations are done in temporal units of the bosonic mode frequency
𝜔𝑡/2𝜋.
Results for the experimental model are displayed in the upper panels A, B, and C of Figure
2.10, illustrating the temporal evolution of the wavepacket’s probability distribution as
two-dimensional density plots. The ratios between the qubit splitting and the harmonic
oscillation frequency are varied from left to right (ranging from 𝜔q/𝜔 = 1.4 to 𝜔q/𝜔 = 14).
Similar results for the standard quantum Rabi model (as per equation (2.5)) are presented
in the lower panelsD, E, and F, using the same parameters for the relative coupling strength
and qubit frequency as in the panels above.
A qualitative comparison between both models reveals similarity for small values of 𝜔q/𝜔
(A and D), where the dynamics resemble those of a harmonic oscillation, with minor
contributions of Rabi oscillations (RO) between the respective momentum states ±2ℏ𝑘.
As the qubit frequency increases, the Rabi oscillations between the momentum states
become more pronounced, resulting in the formation of an ’eight-shaped’ silhouette in the
probability distribution presented in panel B and E.
The final two panels C and F depict the scenario where the qubit frequency dominates
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over all energies in the system (𝜔q/𝜔 ≃ 14 and 𝜔q/𝑔 ≃ 3). In this scenario, the high qubit
frequency leads to a probability distribution that equally combines the features of Rabi-
and harmonic oscillations.
In all panels, the deviation of the experimental model from the quantum Rabi model
becomes apparent after extended temporal evolution (𝜔𝑡/2𝜋 > 0.25), and this deviation
amplifies with increasing ratios of 𝜔q/𝜔. While the case of a moderate qubit frequency
still shows qualitative similarities in panels A and D, the case of an extremely large qubit
frequency (𝜔q/𝜔 ≃ 14) implies vastly different dynamics when comparing panel C to panel
F. In this regime, even for short interaction times, the wavepacket’s probability distribution
shown in panel C displays a unique appearance, with a greater sense of ’localization’
in specific lattice sites. One possible explanation for this behavior can be derived by
comparing the available energies. Here, the ratio between the two-photon recoil energy
𝐸2ph and the band gap energy 𝐸Qubit = ℏ𝜔q given by the four-photon lattice potential
𝑉 = 2𝜔q can be expressed as:

𝐸2ph

ℏ𝜔q
=

2ℏ2𝑘2
𝑚

ℏ𝜔q
. (2.26)

Substituting 𝑘 = 𝑚𝑔2/2ℏ𝜔 from equation (2.17) leads to the relation

𝐸2ph

ℏ𝜔q
=

𝑔2

𝜔q𝜔
=
(︁ 𝑔
𝜔

)︁2 (︁𝜔q

𝜔

)︁−1
(2.27)

Interestingly, the first term in equation (2.27) represents the squared relative coupling
strength, denoted as 𝑔/𝜔 = 5 far in the pDSC regime, while the second term represents the
ratio between the bosonic mode frequency 𝜔 and the qubit frequency 𝜔q. In simpler terms,
increasing the qubit’s frequency, as depicted in Figure 2.10, reduces the ratio 𝐸2ph/ℏ𝜔q.
From a more physical perspective, a constraint arises when the depth of the four-photon
potential, which determines the qubit’s frequency, reaches a threshold at which the atomic
wave packet no longer extends beyond it. This condition (𝑉 ≫ 𝐸2ph) leads to a stronger in-
fluence of tunneling effects, which is a possible explanation for the localization phenomena
presented in panel C. A natural limitation in the experimental model becomes apparent
here. As a brief outlook for the use of very strong four-photon lattice potentials, it may
be more suitable to consider localized Wannier states rather than the Bloch basis, as is
discussed more thoroughly in [110]. This is an important insight that is worth keeping in
mind, especially since the quantum simulation presented here is conducted for larger than
full-cycle temporal dynamics (𝜔𝑡/2𝜋 > 1). Due to this extended interaction time, the local-
ization effects described above, hence the discrepancy between the system Hamiltonian
and the quantum Rabi Hamiltonian, become more pronounced for large qubit frequencies.
Consequently, besides the experimental limitation of heating the atomic BEC through
near-infrared photon scattering from strong lattice potentials during prolonged interaction
times, there is also a physical reason not to use excessively strong lattice potentials during
the time evolution of the quantum simulation, as this may lead to potential limitations of
the Bloch basis.
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2.3 Analogy to Superconducting Fluxonium Systems

Moving on to the final section of the theoretical background a digression into supercon-
ducting (SC) qubit systems will be presented. The reason for this is an intriguing analogy
between the single-particle Hamiltonian in equation (2.8) and the one describing a flux-
onium qubit system [91], which could potentially serve as a foundation for simulating
superconducting qubit systems through the experiment presented here. SC qubits offer a
promising platform for building powerful quantum computers. They are designed using a
cooled LC circuit, serving as an artificial two level atom, in which the superconducting
condensate emulates the quantum behavior of electrons within atoms.
The LC circuit consists of two main components: an inductance (𝐿) and a capacitor (𝐶).
The inductance carries a current 𝐼 that simulates the oscillation velocity of electrons in
their orbits, while the voltage across the capacitor 𝐶 corresponds to the force F acting on
the ’electron’. To achieve quantum behavior, these superconducting circuits are cooled to
extremely low temperatures. Despite their microscopic nature, they can bemacroscopically
scaled up to sizes on the order of millimeters. This scalability is a remarkable feature,
as it allows for the design and manipulation of quantum states at a macroscopic level.
For instance, the size of a typical superconducting qubit may be on the order of 1mm,
making it approximately seven orders of magnitude larger than an actual hydrogen atom
(∼ 0.1 nm).

(a) (b)

Figure 2.11: (a) Simple LC circuit scheme with an inductance 𝐿, capacitor𝐶 and the charge±𝑞.
The flux 𝜑 can be understood as the positional coordinate in the system. The resulting energy
spectrum with the corresponding energy spacing ℏ𝜔𝐿𝐶 = ℏ/

√
𝐿𝐶 is depicted on the right. (b)

The dissipation in the system is added with a resistor 𝑅 which results in the broadening of the
energy levels depicted on the right.

The schematic of a simple LC circuit is presented in Figure 2.11(a), where the flux 𝜑 = 𝐿𝐼
can be understood as the position of the particle and 𝑞 = 𝐶𝑉 depicts the charge. Essen-
tially, the resulting energy spectrum is that of an harmonic oscillator with the commutator
relation [𝜑,𝑞] = 𝑖ℏ and the energy splitting ℏ𝜔𝐿𝐶 = ℏ/

√
𝐿𝐶 (as shown in the right panel). In

order to account for dissipation, the resistor 𝑅 is introduced, which leads to a broadening
of the energy levels

𝐸𝑛 = ℏ𝜔𝐿𝐶

[︂
𝑛

(︂
1 +

𝑖

2Q

)︂
+

1

2

]︂
, (2.28)

where Q = 𝑅𝐶𝜔𝐿𝐶 is the quality factor with 𝑛 ∈ N as the number of the respective energy
level, resulting in a lifetime decrease (as seen in Figure 2.11(b)).
The coupling between natural atoms in a vacuum is quite small compared to the coupling
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(a) (b)

Figure 2.12: (a) Introducing a non-linearity with a different potential shape as shown on the
right, results in different energy splittings for the lower energy levels. The two lowest energy
levels |0⟩ and |1⟩with the transition frequency 𝜔01 can be used as an effective two-level system.
(b) Emission spectrum of the non-linear energy level scheme where the width Q corresponds
to the quality factor and the distance between two frequency peaks 𝛼 = |𝜔01−𝜔12|/𝜔01 is the
non-linearity ratio.

between two circuits, which can be connected either with a capacitor (capacitive coupling)
or an inductance (inductive coupling). However the linearity of the equidistant energy
spacings ℏ𝜔𝐿𝐶 only allows for driving the system in the ground state, hence a non-linearity
has to be introduced to generate an effective two-level system.
Figure 2.12(a) shows the effect of such a potential, where in contrast to the left panel,
with equidistant energy levels, now different frequencies 𝜔01 ̸= 𝜔12 between subsequent
levels arise. Restricting the dynamics to the two lowest energy levels |0⟩ and |1⟩ allows
the realization of an effective two-level system, hence a qubit. The distance between two
frequencies (see also in Figure 2.12(b)) is defined as the non-linearity ratio 𝛼

𝛼 =
|𝜔01 − 𝜔12|

𝜔01
(2.29)

and is desired to be as large as possible. In superconducting qubit experiments the product
Q · 𝛼 has to be optimized in order to realize large enough coherence times where the
different transition frequencies are as far separated as possible. These requirements are
well fulfilled with a so called Josephson tunnel junction, for which Figure 2.13(a) displays
the basic schematic, where in essence two superconductors are separated by a thin barrier.
The current 𝐼 flowing through a Josephson junction can be described as

𝐼 = 𝐼0 sin(𝜑/𝜑0), (2.30)

where 𝜑0 = ℏ/2𝑒 is the flux quantum. The Josephson inductance is defined as 𝐿𝐽 = 𝜑/𝐼0,
where for small flux values, the dashed line in the left panel of Figure 2.13(b) shows a
linear inductance scaling with 𝐼 = 𝜑/𝐿𝐽 . Observing the bare Josephson potential

𝑈 = −𝐸𝐽 cos(𝜑/𝜑0), (2.31)

which is depicted in the right panel of Figure 2.13(b), shows the deviation from the parabola
of a harmonic potential, emphasizing the non-linear nature necessary for the creation of
the qubit. With this, a simple tool kit consisting of a capacitor and two inductances can be
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(a) (b)

Figure 2.13: (a) Schematic of a Josephson circuit. (b) The Josephson current 𝐼 (left panel)
and the Josephson potential 𝑈 (right panel) versus the flux 𝜑. For small flux values (𝜑 < 𝜑0)
an inductive behavior can be observed (red dashed line) for the current 𝐼 = 𝜑/𝐿𝐽 , while for
larger flux values an oscillation occurs. The bare Josephson potential shows the deviation from
a harmonic potential, making it suitable for the creation of the non-linear energy level spacing
for the creation of an effective two-level system.

used to create a superconducting circuit simulating an artificial atom. The characteristic
energies for the capacitor (𝐸𝐶), the inductance (𝐸𝐿) and the Josephson junction (𝐸𝐽) can
be written as

𝐸𝐶 =
𝑒2

2𝐶
𝐸𝐿 =

ℏ2

4𝑒2𝐿
𝐸𝐽 =

ℏ2

4𝑒2𝐿𝐽
. (2.32)

Changing the ratios 𝐸𝐽/𝐸𝐶 and 𝐸𝐿/𝐸𝐽 creates a plethora of potential landscapes which can
be used to engineer different atoms. In the following the derivation of a Hamiltonian for a
so called fluxonium qubit will be presented, which then later on, presents an interesting
analogy to the system Hamiltonian in equation (2.8).

LJCJ L

Figure 2.14: Schematic of a fluxonium qubit, where 𝜑 is the phase across the Josephson junction,
𝐶𝐽 is the capacitance,𝐿𝐽 and𝐿 the corresponding inductances and𝜑ext is the externalmagnetic
flux.

A fluxonium qubit is a superconducting circuit consisting of a capacitance, an inductance
and a Josephson junction, where the energies are ordered in 𝐸𝐽 > 𝐸𝐶 > 𝐸𝐿 (schematic
depicted in Figure 2.14). The flux through an active node can be described by

𝐶𝜑 = −𝜑
𝐿

− 𝜉 sin

(︂
2𝜋 (𝜑+ 𝜑ext)

𝜑0

)︂
, (2.33)

where 𝜑 is the phase across the Josephson junction, acting as the dynamical variable repre-
senting the qubit state, 𝐿 is the inductance of the Josephson junction, 𝜉 is a dimensionless
parameter representing the coupling strength between superconducting islands, 𝜑ext is the
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external magnetic flux threading the qubit loop and 𝜑0 = ℏ/2𝑒 is the reduced flux quantum.
The corresponding scheme is depicted in Figure 2.14. From this, the Lagrangian of the
system can be written as

L =
𝐶

2
�̇�2 − 𝜑2

2𝐿
+
𝜉𝜑0
2𝜋

cos

(︂
2𝜋 (𝜑+ 𝜑ext)

𝜑0

)︂
. (2.34)

The canonical charge 𝑞 = 𝜕L/𝜕�̇� = 𝐶�̇� is used to obtain the Hamiltonian by the Legendre
transformation

�̂� = 𝑞�̇�− L

= 𝑞
(︁ 𝑞
𝐶

)︁
−
[︂
𝐶

2

(︁ 𝑞
𝐶

)︁2
− 𝜑2

2𝐿
+
𝜉𝜑0
2𝜋

cos

(︂
2𝜋(𝜑+ 𝜑ext)

𝜑0

)︂]︂
=

𝑞2

2𝐶
+
𝜑2

2𝐿
− 𝜉𝜑0

2𝜋
cos

(︂
2𝜋(𝜑+ 𝜑ext)

𝜑0

)︂
.

(2.35)

Introducing the number of excess Cooper pairs on the capacitive electrodes 𝑛 = 𝑞/2𝑒 [111],
𝐸𝐶 = 2𝑒/8𝐶, 𝐸𝐿 = 1/𝐿 and 𝐸𝐽 = 𝜉𝜑0/2𝜋, results in the fluxonium Hamiltonian [36]

�̂� = 4𝐸𝐶 �̂�
2 +

1

2
𝐸𝐿𝜑

2 − 𝐸𝐽 cos

(︃
2𝜋(𝜑+ 𝜑ext)

𝜑0

)︃
, (2.36)

which can be further simplified into a reduced form [91]

�̂� = 4𝐸𝐶

(︂
𝑞

2𝑒

)︂2

+
1

2
𝐸𝐿𝜑

2 − 𝐸𝐽 cos
(︁
𝜑+ 𝜑ext

)︁
⏟  ⏞  

𝑉 (𝜑)

. (2.37)

The equation above describes a particle with a mass inversely proportional to 𝐸𝐶 in the
potential 𝑉 (𝜑). The tunability of this potential allows for creation of different potentials,
leading to significantly different systems depicted in Figure 2.15. It is easy to see, that a
connection to the combined potential in Figure 2.5 can be drawn from earlier sections.
In the following, a fixed external magnetic flux 𝜑ext = 𝜋 is chosen to show the similarity
between the superconducting circuit model (equation (2.37)) and the periodic quantum
Rabi Hamiltonian �̂�exp

�̂�exp =
𝑚𝜔2

2
�̂�2 +

𝑝2

2𝑚
+
𝑉

2
cos(4𝑘�̂�). (2.38)

For the fluxonium system the charge 𝑞 and flux 𝜑 commute with

[𝜑,
𝑞

2𝑒
ℏ]⏟  ⏞  

Fluxonium

= 𝑖ℏ = [�̂�,𝑝]⏟ ⏞ 
Experiment

, (2.39)
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Figure 2.15: Numerical simulations of the scaled effective potential 𝑉 (𝜑) for different ratios of
the external magnetic flux and the reduced flux quantum 𝜑ext/𝜑0 and different values for the
ratio of the Josephson energy and the capacitance energy 𝐸𝐽/𝐸𝐶 . The simple case where both
are zero describes a harmonic potential (black dotted line), while increasing the Josephson
energy 𝐸𝐽 shows faster oscillations superimposed to the harmonic potential (green dashed
line). The effect of the external flux 𝜑ext is visible as a shift along the 𝑥 axis (yellow solid line).

where in case of the experiment’s system Hamiltonian the position �̂� and momentum 𝑝
fulfill the commutation relation. The second and third term can be mapped fairly easy, by
rescaling the positional parameter 𝜑 !

= 4𝑘�̂�, resulting in the harmonic potential

𝑚𝜔2�̂�2

2
=

𝜑=4𝑘�̂�

𝑚𝜔2

2

(︃
𝜑

4𝑘

)︃2
!
=
𝐸𝐿

2
𝜑2, (2.40)

yielding the inductance energy

𝐸𝐿 =
𝑚𝜔2

16𝑘2
. (2.41)

Using the same scaling factor shows the similarity between the third terms of each Hamil-
tonians, where a simple formalism between the potential depth 𝑉 in equation (2.38) and
the Josephson energy 𝐸𝐽 in equation (2.37) can be found

𝐸𝐽 =
𝑉

2
. (2.42)

Substituting �̂� = 𝜑/4𝑘 and using equation (2.39) results in

𝑖ℏ =

[︃
𝜑

4𝑘
, 𝑝

]︃
=

𝜑

4𝑘
𝑝− 𝑝

𝜑

4𝑘
=

[︂
𝜑,

𝑝

4𝑘

]︂
!
=

[︂
𝜑,

𝑞

2𝑒
ℏ
]︂
, (2.43)
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Experiment Experiment Experiment Experiment

Figure 2.16: Numerical simulations of the scaled effective potential 𝑉 (𝜑), where 𝜑 = 4𝑘�̂� was
used, for different external flux values 𝜑ext. The derived energies 𝐸𝐶 , 𝐸𝐿 and 𝐸𝐽 are used
resulting in similar shape of the effective potential for the experiment’s system Hamiltonian
(yellow solid line) and fluxonium system (green solid line).

which leads to 𝑝 = 2ℏ𝑘
𝑒 𝑞.

With this, the kinetic energy term 𝐸kin = 𝑝2/2𝑚 of equation (2.8) writes as
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, (2.44)

resulting in the capacitor’s energy 𝐸𝐶

𝐸𝐶 =
2ℏ2𝑘2

𝑚
, (2.45)

which resembles the two-photon recoil energy 𝐸2ph.
Incorporating the resulting energy terms𝐸𝐶 ,𝐸𝐿, and𝐸𝐽 into equations (2.45), (2.41), and
(2.42) produces Figure 2.16, which illustrates the similarity between both systems. The
numerical simulations utilize the rescaled positional term 𝜑 = 4𝑘�̂� and includes various
values for the external flux (ranging from 𝜑ext = 0 to 𝜑ext = 𝜋 from left to right), thereby
demonstrating the comparability of the two systems. Once again, changing the external
flux 𝜑ext causes shifts in the scaled effective potentials 𝑉 (𝜑) along the 𝑥-axis, with an
observable overlap occurring in the case of 𝜑ext = 𝜋. For arbitrary flux values 𝜑ext, it
can be demonstrated (as shown in the Appendix) that a unitary basis transformation
maps the fluxonium Hamiltonian onto the aforementioned system Hamiltonian in the
quasimomentum basis (2.38), further reinforcing the resemblance between these two
systems.
In order to derive the resulting coupling strength 𝑔 in such a superconducting fluxonium
setup, the product

𝐸𝐿 · 𝐸𝐶
(2.45)
=

(2.41)
𝑚𝜔2
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𝑚
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8
→ ℏ𝜔 =

√︀
8𝐸𝐿𝐸𝐶 (2.46)
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is taken, and with
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the resulting normalized coupling strength is calculated to
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≃ 1.93, (2.48)

describing a superconducting fluxonium system.

Table 2.1: Comparison of the resulting energies 𝐸𝐽 , 𝐸𝐶 and 𝐸𝐿 between the system Hamilto-
nian and the fluxonium model, where experimental parameters are used in equation (2.42),
(2.45) and (2.41). Representative energy values for the superconducting fluxonium setup are
taken from [91].

Energy comparison between the systems
Energy [1/ℏ] 𝐸𝐽 𝐸𝐶 𝐸𝐿

Experiment 0− 5.5 kHz 15 kHz 44 kHz− 80 kHz
Fluxonium [91] 4.76GHz 0.065GHz 7.07GHz

With the above introduction and the demonstrated analogy between the two systems, it
is potentially conceivable to simulate a superconducting qubit system using the present
experiment. What is particularly interesting in this context is that the coupling strength
at which this analog quantum simulation would occur would also be in the deep strong
coupling regime. This could potentially reveal intriguing phenomena within the realm of
superconducting qubit platforms, offering a powerful tool for quantum computation.



CHAPTER 3
Experimental Setup

In this chapter, a brief discussion of the experimental apparatus will be presented. Firstly,
the vacuum system will be presented, followed up by the setup of the magneto-optical
trap, which is used for pre-cooling the atoms in order to subsequently load them into an
optical dipole trap. After a large enough number of atoms is loaded into the optical dipole
trap, forced evaporation cooling takes place resulting in the creation of a Bose-Einstein
condensate. Lastly, the optical lattice laser setup is presented, which is used to prepare
and manipulate the ultra-cold atoms, also serving as the periodic potential for the creation
of an effective two-level system.
For more detailed descriptions of each presented system, the reader is kindly referred to
previous works conducted on the experiment [53, 112–114].

3.1 Vacuum System
In order to maintain low collision rates and achieve low temperatures for the atomic
ensemble, all experiments are conducted within an ultra-high vacuum apparatus. The
main chamber, depicted in Figure 3.1, includes dipole trapping optics (Zn-Se lenses) inside
the chamber to ensure tight trapping confinement in propagation direction, which can
be mechanically adjusted by manipulators and optical access points. A cylindrical fore
chamber houses vacuum pumps and an ionization vacuum gauge. Combining an ion getter
pump (Meca2000 VTS 25l/s) and a titanium sublimation pump (Riber TSP2) in conjunction
with a mechanical turbo-molecular pump facilitates the achievement and maintenance of
ultra-high vacuum, which is typically at a pressure of 3 · 10−10mbar. During experimental
operation, only the ion getter pump is used to maintain this pressure level and is being
monitored using an ionization vacuum gauge (Leybold Thermovac TR 211). Wear and tear
effects of the ion getter pump lead to the release of gaseous molecules, which then have to
be captured by applying a new titanium getter layer every few months. A multitude of
flanges are connected to the spherical main chamber to ensure optical access for absorption
imaging (CF DN63) and laser-cooling (CF DN40, CF DN16) and one, which is used
to hold the three rubidium dispensers and the horizontal axis for guiding the dipole
trapping laser beam (CF DN40). Heating the dispenser to approximately 550 ∘C can be
done by applying a current of about 4.2A, which then leads to reduction of the chemical
trapping agent (Rb2CrO4) in the dispensers, hence releasing atomic rubidium into the
vacuum chamber. Modulating this current during the experimental cycle allows for precise

49



50 Chapter 3 Experimental Setup

g

i

j

Front view

Back viewCross-section

a

d

e

f

f

b

b

a

h

c

Figure 3.1: Cross-section of the main experimental vacuum chamber (left) with front- and
back view depicted as smaller images on the right. Alphabetical letters correspond to the
following devices: Coil pairs of the magneto-optical trap (MOT) (a) and gravity compensation
coils (b), main optical axes for the MOT (c), lattice laser (d) and optical dipole trap (ewith
focusing lenses (f) located within the chamber). The rubidium dispensers (g) are located in
the top right corner of the image, while on the mirrored left side, the microwave antenna (h)
can be seen. The not sliced front- and back view images show the optical access for absorption
imaging (i) and the port connecting main chamber to the fore chamber (j).

dosing of rubidium into the background gas, while the trapping agent helps to prevent
contamination of the chamber by the release of unwanted gases.

3.2 Magneto-optical Trap

The released 87Rb isotopes, present in the heated sample with a 27.835% abundance [115],
are cooled and trapped in the center of the spherical chamber by a magneto-optical trap.
Although this specific isotope technically decays into 87Sr [68] the long half life of ≃ 50
billion years allows for the assumption of a stable isotope [116].
The used transition addressed by the cooling laser is presented in Figure 3.3(a), where the
line width between the two states |5𝑆1/2, 𝐹 = 2⟩ and |5𝑃3/2, 𝐹 = 3⟩ is Γ𝑐 = 6.0666(18)MHz.
Non-resonant scattering of light leads to atoms decaying into the |5𝑆1/2, 𝐹 = 1⟩ lower
hyperfine state. This acts as a dark state, when only the cooling laser is on, which results
in atoms being effectively lost for the cooling process. For this, a repumping laser is used to
drive the transition between |5𝑆1/2, 𝐹 = 1⟩ and |5𝑃3/2, 𝐹 = 2⟩ (Figure 3.2(a)), recovering
atoms for the cooling process.
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3.2.1 Laser Cooling

Repumping Laser

A self built interference filter laser (IFL) [117] with a maximum output power of around
50mW at a diode current of 𝐼𝑑 = 100mA is used to return atoms from the dark state to
the cooling process. The frequency stabilization of the repumping laser, which also serves
as a frequency offset stabilization for the cooling laser is depicted in Figure 3.2(b), where
right after passing the optical Faraday isolator, which reduces back reflection to the laser
diode, a beam path is separated for frequency stabilization. This, in essence, consists
of the modulation of the diode current 𝐼𝑑 with 25MHz, leading to the creation of side
band signals used for frequency stabilization [118]. For a more detailed description of
the implemented scheme, the reader is kindly referred to earlier works conducted on the
experiment [119]. Another beam path is separated from themain path, in order to generate
a beating signal used to reference the frequency offset between repumping- and cooling
laser, where the detailed mechanism will be presented in the subsequent section for the
cooling laser setup. A combination of a mechanical shutter (Melles Griot SafeClose) placed
in the focal plane of a 1:1 telescope, subsequently followed by an acousto-optical modulator
(AOM Isomet 1205C-1) ensures the suppression of stray light, while still allowing quick
shutdown- and rise times on a nanosecond scale. In order to have a homogeneous beam
intensity along the propagation axis, a pinhole with a diameter of 50µm is used in the
focal plane of an enlarging telescope, optimizing transversal mode selection.
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(a) (b)

Figure 3.2: (a) Rubidium-87 D2 transition (obtained from [68]), where the repumping tran-
sition from |5𝑆1/2, 𝐹 = 1⟩ to |5𝑃3/2, 𝐹 = 2⟩ is marked in green. (b) Experimental setup for
frequency stabilization and mode selection used for the repumping laser (RL). After passing
an optical Faraday isolator (FI), the main beam is split at a polarizing beam splitter (PBS) and
guided to the beating signal generation. Another PBS is used to take a small fraction for the
frequency modulation spectroscopy setup including a photo-diode (PD) and a beam dump
(BD). The main beam passes a mechanical shutter (MS) and an acousto-optical modulator
(AOM) where the zeroth order is blocked by a beam blocker (BB). Finally a pinhole (PH) in
the focus of an enlarging telescope is used for mode selection. The repumping laser light is
overlapped with the cooling laser light and guided to the vacuum setup.

Cooling Laser

The laser system used to drive the cooling transition is a combination of a grating-stabilized
diode laser equipped with a trapezoidal diode (Toptica DLX 110). Applying diode currents
of around 1.4A generates a maximum output power of around 350mW at a wavelength
of 𝜆 = 780 nm. The setup used in the experiment is depicted in Figure 3.3(b). Again, an
optical Faraday isolator and the combination of a mechanical shutter with an AOM is used
for similar reasons as shown before, however this time, the shown spectroscopy setup only
serves as a rough monitoring tool. As mentioned before, the actual frequency stabilization
of the cooling laser is realized by creating a beating signal between the two lasers. Here,
both beams are guided together into a single mode optical fiber and detected by a fast photo
diode (Alphalas UPD-50-SP) with a bandwidth of 7GHz. The resulting beating signal
between the two lasers at 6.568GHz is then down-converted (Rohde & Schwarz SMT06) and
again used as a control signal for frequency stabilization realized by a frequency-to-voltage
converter. By implementing this scheme, a significantly wider tunable frequency range can
be achieved compared to a fixed stabilization protocol. To provide a more comprehensive
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(a) (b)

Figure 3.3: (a) Rubidium-87 D2 transition (obtained from [68]), where the cooling laser
transition from |5𝑆1/2, 𝐹 = 2⟩ to |5𝑃3/2,𝐹 = 3⟩ is marked in yellow. (b) The structure for the
cooling laser (CL) is fundamentally similar to the one depicted in Figure 3.2(b), with the
exception that a single-mode fiber (SM fiber) is used in this case for mode selection of the
cooling laser light. Just like the repumping laser, partial beams are utilized for spectroscopy
purposes and for generating the beating signal by superimposing the light from both lasers
on a polarizing beam splitter. The combined light is then directed onto a fast photo diode
(PD) through a single-mode fiber. Another partial beam is extracted for absorption imaging
purposes.

and detailed explanation of the creation and properties of the beating signal, please refer
to the work of G. Ritt in his PhD dissertation [119]. This scheme enhances the cooling
laser’s versatility, as the frequency can be easily adjusted to resonance at the end of each
experimental cycle, allowing for absorption imaging without the need for an additional
detection laser. To achieve this, a polarization beam splitter (PBS) is utilized to direct a
small portion of the reflected light into a single mode fiber for imaging, while the majority
of the transmitted light is directed into another single mode fiber for mode selection. Before
entering the vacuum chamber, a widening telescope is used to increase the beam diameter
of the cooling laser, such that it can be overlapped with the repumping laser. Subsequently,
the two beams are split into six counter-propagating beam pairs and directed into the
vacuum chamber, passing through 𝜆/4-plates to ensure correct circular polarization. The
full experimental setup for laser cooling is depicted in Figure 3.4.

3.2.2 Magnetic Trapping
After discussing the laser cooling setup, a pair of anti-helmholtz coils is attached to the
flanges of the MOT’s main axis on the vacuum chamber as shown in Figure 3.1 in order
to create a positional dependent gradient field for atom trapping. While a more detailed
explanation of its functionality can be found in the PhD dissertation of M. Leder [113]
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Figure 3.4: Combination of the setups of both laser systems, where the cooling laser system is
depicted in forest green, the repumping laser system in orange, and the common region for
generating the beating signal in light green.

and the Master thesis of L. Sitta [120], some essential properties are also presented in the
following. Each coil is made up of 28 annealed copper tubing windings (RS Pro 846-503),
which can generate high power dissipation values of up to 3 kW during the experimental
cycle due to peak current values of 200A. To ensure safe operation, the copper tubing,
which has a diameter of 4mm, is actively water-cooled and monitored by temperature
sensors (Maxim Integrated DS18S20) and water flow sensors (B.I.O.-TECH e.K. FCH-midi-
POM). These sensors can detect emergency situations caused by high temperatures or
low water flow and shut down the power supply (Keysight 6691A) if necessary. To
prevent ground loops caused by the large distance between the power supply and the
experimental apparatus, differential signaling is utilized, which involves transmitting two
complementary signals with equal magnitude and opposite polarity over two separate
wires to reduce electromagnetic interference and noise. This ensures consistent current
values are applied to the coils.
Typical experimental parameters during a cycle involve coil currents of 80A (MOT-Phase),
generating a magnetic field gradient of approximately 13.3Gs/cm at the center of the
chamber. By adding another identical pair of coils (gravity coils, see Fig. 3.1), the resulting
quadrupole field can be used to levitate the spin-polarized BEC. To achieve even finer
control over the electromagnetic potentials near the atoms, so called offset coils in Helmholtz
configuration are used and placed around the vacuum chamber in all three dimensions.
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3.3 Optical Dipole Trap

The used CO2 laser (Coherent GEM-50S) with an output power of 50W and a wavelength
𝜆CO2 = 10.6µm generates a conservative trapping potential produced by a single focused
laser beam. This trapping potential allows for effective evaporative cooling, which is
necessary for creating the BEC. During this thesis, other high-power laser systems, such as
Nd:YAG lasers in a crossed configuration were successfully used to evaporate the trapped
atoms into a Bose-Einstein condensate. However, due to the higher scattering rate with
near-infrared photons from the Nd:YAG laser beam, they fell short when it came to ramp-
ing up the optical power again to provide a harmonic potential for simulating the bosonic
mode of the periodic quantum Rabi model. In contrast, the larger wavelength of the CO2

laser provides two advantages for the experimental realization. Firstly, the high detuning
compared to Nd:YAG lasers leads to very low scattering rates, around 0.006 s−1 for power
values of 30W typically at the start of the evaporation sequence. Secondly, due to the
reciprocal scaling of Rayleigh length with wavelength 𝑧R ∝ 1/𝜆CO2

, only a single focused
laser beam is required to generate a sufficient confinement in the beams propagation
direction.
Figure 3.5 shows the optical setup, where the laser beam is split into three beams by two
ZnSe beam splitters, one of which is used to monitor the laser’s single mode operation by
the use of a Fabry-Pérot interferometer (FPI) and the other to stabilize the laser power. For
this, the second beam is focused onto a photo detector (Vigo System PC-10.6) to measure the
laser power. Due to the noise of the photo detector, a lock-in amplifier is used to improve
the signal-to-noise ratio. The laser cavity is slowly modulated (23Hz) by an integrated
piezoelectric actuator to enable the stabilization of the laser output power by minimizing
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Figure 3.5: Experimental setup of the single focused optical dipole trap, in which, due to
the non-standard wavelength of the CO2 laser (bottom right), almost exclusively ZnSe optics
are used. Two partial beams are split of from the main beam using two thin-film polarizers
(TFP). One sub-beam is used for resonator stabilization through a lock-in amplifier and PI
controller, while the other is directed towards a Fabry-Pérot interferometer (FPI). The main
beam passes through an acousto-optic modulator (AOM), where the zeroth order is directed
into a beam dump (BD). After the beam is expanded using a telescope, it is guided into the
vacuum chamber and then focused onto the atoms using another telescope within the chamber.
Outgoing laser light is blocked by another beam dump at the chamber’s exit window.

the output signal of the lock-in amplifier. The DC offset voltage of the piezoelectric actuator
is controlled by a PI controller. A more in depth description can be found in the Master
thesis of S. Z. Hassan [121].
Moving on from the monitoring and stabilization setup, the main beam path is guided
through a water cooled acousto-optical modulator (IntraAction AGM-406B1). While mod-
ulation of RF-signal amplitude varies the beam intensity in the first order, the frequency
modulation allows for rapid spatial manipulation in the trapping region. Doing this,
effectively expands the area of the trapping potential and improves the loading efficiency
from the magneto-optical trap to the dipole trap as can be seen in Figure 3.6.

Figure 3.6: Absorption images of pre-cooled atoms loaded into the optical dipole trap with and
without spatial modulation of the trapping beam. The modulated trap (right panel) yields a
significant increase in loading efficiency.

Here it is crucial to chose a large enough modulation frequency of 50 kHz, such that the
effective trapping potential corresponds to the time-averaged modulated potential for the
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atoms. Previous works can be referred to for a more detailed description of this scheme
[122], which typically increases the amount of atoms loaded into the dipole trap by a factor
of five. Once the beam passes through the acousto-optical modulator, the zeroth order is
directed into a designated beam dump, while the first diffracted order is expanded using a
widening telescope. The beam is finally guided into the chamber, where another telescope
consisting of two ZnSe lenses focuses the beam to a waist size of 𝑤0 = 21µm. The trap
geometry can be finely adjusted by a mechanical access from the outside, yielding a trap
depth of 𝑈dip = 3.3mK for a maximum beam power in the chamber of 𝑃CO2 = 32W.

3.4 Optical Lattice Potential

3.4.1 Optical setup
This section discusses the experimental setup for preparing and manipulating the atomic
Bose-Einstein condensate and the creation of multi-photon lattices. A one-dimensional
optical lattice is generated by a trapezoidal diode laser (Toptica DLX 110), which has been
already introduced in section 3.2.1. The main laser beam is split into two parts and enters
the vacuum chamber from opposite sides (top and bottom).
Figure 3.7 illustrates the experimental setup. After passing through a Faraday isolator, a
small portion of the beam is used to monitor frequency characteristics with a Fabry-Pérot
interferometer (FPI) and a single mode fiber connected to a wavemeter. As the laser
used in the experiment is several nanometer detuned from the resonance frequency of
the 87Rb D2-line, with a wavelength of 𝜆lat = 783.5 nm, the laser diode does not require
active stabilization, apart from the standard temperature stabilization provided by the laser
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Figure 3.7: Experimental setup of the optics required to generate the lattice potential. After
the main beam of the laser (top right) passes through a Faraday isolator (FI), sub-beams are
split off to be directed to a Fabry-Pérot interferometer (FPI) and a wavemeter. The main beam
passes through amechanical shutter (MS) and is spectrally filtered using a holographic grating.
A telescope optimizes the beam size to match the active aperture of the two acousto-optic
modulators. At a polarizing beam splitter (PBS), the main beam is divided into both arms
of the optical lattice and coupled into their respective fibers (top, bottom). The fiber outputs
are positioned above and below the vacuum chamber and guide the coupled light in opposite
directions through the chamber. Lenses at each output focus the laser light at the center of the
chamber, while the wave-plates and polarizing beam splitters prevent the counter-propagating
laser light from re-entering and direct it into respective beam blockers (BD).

controller. However, spontaneous emission in the edge regions of the trapezoidal diode can
cause undesired heating of the atoms. To address this issue, a spectral filtering of the laser
beam is carried out using a holographic reflection grating (Ondax PLR808-92.5-12-17.5-1.5),
which is adjusted at an angle for maximum emission at 783.5 nm and passed twice by
the laser beam. The beam diameter is subsequently reduced using a telescope to fit the
active aperture of the following acousto-optical modulators. After the main beam is split
into two sub-beams, each of them is guided to an AOM (Crystal Technology 3200-121) and
fed into polarization-maintaining single-mode fibers. The couplers (Schäfter & Kirchhoff
60FC-4-M8-10) of the respective outgoing beams, which are located above and below
the vacuum chamber, include micro-lenses (Schäfter & Kirchhoff 5M-S150-08-S) that focus
the outgoing light to a beam diameter of 170µm with 50mW in each beam path. This
allows for high intensity at the location of the atoms to generate the deepest possible lattice
potentials. For the generated four-photon lattice potential 𝜋-, 𝜎+-, and 𝜎−-polarization is
needed. By using perpendicular polarization of the counter-propagating lattice beams
and applying a magnetic offset field that does not point in the direction of the propagation
axis, the quantization axis of the atoms can be chosen such that components of 𝜎+-, 𝜎−-
and 𝜋-polarization are present [113, 123].
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3.4.2 Radio-frequency Setup
The main interface between experimental control and optical properties of the respective
lattice pulses is the modulation of the center frequency of the acousto-optic modulators. To
achieve this, an arbitrary waveform generator with high memory depth (Keysight 33612A)
is used to synthesize the signals used for modulation. In the past, groundwork on Fourier
synthesizing of these signals has been completed, such as frequency modulating the upper
lattice beam in a way that makes the lattice appear at rest in the atomic reference frame
[114]. Using a linear frequency modulation

𝑓mod = 𝑓𝑐 −
2𝑔

𝜆lat
𝑡 (3.1)

where 𝑓𝑐 denotes the center frequency of the AOM, the gravitational acceleration 𝑔 and 𝜆lat
is the lasers wavelength, preparatory measurements performed to characterize the optical
lattice potential on falling atoms will be presented in the next chapter. Other applications
in the experiment can be employed by the same laser beam, to address different classes of
atoms or to generate moving lattices.
The pulses used to manipulate atoms are modulated onto the laser beam coming from
the bottom of the chamber, while the top beam only undergoes frequency ramps. The
signals are synthesized at a center frequency of 47MHz and then shifted to the required
frequency using a double-balancedmixer and an oscillator signal of 154MHz. The resulting
modulated radio frequency signals are filtered, switched, and amplified before reaching
the acousto-optic modulators. The RF switch allows for jitter reduction in situations where
RF signals need to be combined with other control signals of the real-time system. For a
more detailed description of the parts and models in this setup including an experimental
scheme of the radio-frequency setup, the reader is kindly referred to the previous works
conducted on the experiment [53, 113, 114].

3.5 Absorption Imaging
To image the atomic BEC after each experimental cycle, a resonant sub-beam of the cooling
laser is employed (see subsection 3.2.1). However, since the atoms reside in the low-energy
state |5𝑆1/2, 𝐹 = 1⟩ after the dark MOT phase, they are transparent to the cooling laser
transition. Therefore, two methods , which are presented in the following, are utilized in
the experimental setup to transfer the atoms back to the |5𝑆1/2, 𝐹 = 2⟩ state, which can be
readdressed by the cooling laser transition.
The commonly used method which is employed in most measurements consists of a short
light pulse (𝜏R = 300µs) of the repumping laser to transfer the atoms back to the desired
state. To investigate the periodic quantum Rabi model, measurements with up to a few
millisecond-long evolution times are required, for which only a small number of a few
hundred atoms is utilized, minimizing undesired interatomic collisions (further investi-
gated in following sections). However, obtaining clear images of such small ensembles
using the repumping light is challenging due to increased noise caused by off-resonant
scattering during the re-transfer process. Therefore, to obtain clearer real space images of
small numbers of atoms, a different method is employed, where a short microwave pulse
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(𝜏MW = 100µs) is utilized, taking advantage of the hyperfine splitting of the |5𝑆1/2⟩ state.
A significant improvement in imaging performance, especially for spatial imaging, was
made in the context of the dissertation work of J. Koch [53]. Limited by the distance of
the atoms to the central optical access and the size of the used window, the improvement
in imaging performance involved the installation of a doublet lens with a diameter of
𝑑 ≈ 50.8mm (Thorlabs AC508-080-B) and a new calibration of the distance to the camera of
approximately 86.7mm to avoid limiting the pixel size of the sCMOS camera (Andor Zyla
5.5 sCMOS).

3.6 Experimental Cycle
This section provides an overview of the experimental procedure. In general, the entire
cycle can be divided into three areas: the generation of a Bose-Einstein condensate, the
quantum simulation of the periodic quantum Rabi model (pQRM), and the subsequent
detection of atomic trajectories in position or momentum space. The entire process is
controlled by a real-time control system (Jäger Computergesteuerte Messtechnik GmbH ADwin-
Pro I), which serves as an interface between in-house developed control software and
experimental hardware. The communication between the software and the real-time
control unit is programmed using VISA interfaces and can address the devices present in
the experiment using both digital TTL signals and analog output channels with a voltage
range of −10V to 10V and a time resolution of 4µs. The following subsections provide an
overview of the different stages comprising the entire experimental cycle.
3.6.1 Creation of a Spin Polarized Bose-Einstein Condensate
The basic principle of generating a rubidium Bose-Einstein condensate involves cooling a
large ensemble of pre-cooled atoms in an optical dipole trap through evaporative cooling.
To accomplish this, a current of approximately 4A is applied onto the dispensers, which
allows rubidium vapor to enter the chamber. By employing optical cooling, where the
detuning of the cooling laser is approximately three linewidths, and magnetic trapping,
where the coils are flowed with a current of 80A, a magneto-optical trap containing
approximately 1 · 109 atoms can be created. Loading a magneto-optical trap (MOT)
directly from the background gas simplifies the experimental setup by eliminating the
need for a combination of aMOT and a Zeeman slower. However, the total cycle time in this
experiment increases because a minimum time of approximately 25 s must be maintained
to fully load the MOT.
The optical dipole trap is activated two seconds before the end of theMOT phase, collecting
pre-cooled atoms at its focus. During this process, the full power of approximately 30W is
irradiated into the chamber, while the RF signal of the AOM is modulated with a frequency
of 50 kHz, causing spatial expansion of the trapping region. Simultaneously with this
phase, a 120ms long dark MOT phase takes place, where the cooling laser frequency is
detuned by approximately 150MHz relative to the cooling transition. This compensates for
the AC Stark shift caused by the dipole force and reduces the overall photon scattering rate,
enhancing the loading efficiency into the dipole trap as it further decreases the ensemble
temperature. After turning off the cooling and repumping laser light, only atoms remaining
in the optical dipole trap are left.
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Figure 3.8: Illustration of the experimental cycle for the creation of the atomic Bose-Einstein
condensate. The light green area represents the phase of magneto-optical trapping the atoms
(MOT phase) with the subsequent evaporation phase depicted in light yellow. The relatively
short dark MOT phase of 200ms is highlighted within dashed lines.

As in the subsequent step of forced evaporative cooling, the majority of the excessively
high energetic atoms are released from the optical dipole trap, since a high number of
trapped atoms [124] at the start of the process is crucial. In the experiment, approximately
5 · 106 atoms prove to be more than sufficient for further evaporation with a starting trap
depth of 𝑈dip = 3.3mK. The entire evaporation process consists of three linear ramps
that use the RF power of the AOM to regulate the light intensity and, thus, the trapping
depth of the dipole trap. During the first ramp, 96% of the RF power is reduced within a
short time of 0.5 s, causing the highest energetic atoms to leave the trap. Subsequently, a
much slower evaporation ramp takes place to further decrease the trapping potential and,
thereby, achieve a Bose-Einstein condensate. Afterwards, the final power is maintained at
approximately 1h of the initial power to allow for a steady state to be established. The
entire process takes approximately 6 seconds, during which the spatial expansion of the
dipole trapping beam is adiabatically ramped down to minimize mechanical heating of
the produced Bose-Einstein condensate.
In order to simulate the quantum Rabi model, Raman transitions are utilized to create an
optical lattice. Additionally, the ability to levitate atoms against gravity necessitates the
presence of spin polarization in the generated Bose-Einstein condensate (BEC). For these
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two reasons, a magnetic field is applied to selectively facilitate evaporation into a specific
Zeeman level (𝑚𝐹 = −1). The presence of the spin-polarized BEC is confirmed through
techniques such as microwave imaging and the combination of a Stern-Gerlach field with
time-of-flight far field imaging. The preceding procedures lead to the production of a
spin-polarized BEC comprising approximately 40 000 atoms. However, it is discovered
in the subsequent results chapter that high atom numbers in long temporal evolution
measurements give rise to undesired heating effects due to atom-atom interaction. To
address this issue, the atom number is limited to below 1000 by employing evaporation in
even shallower traps. Notably, the current experiment features the unique simulation of
the bosonic mode of the quantum Rabi model using an optical dipole trap, which, to the
best of our knowledge, is only possible with such a far-off resonance trap realized with
the CO2 laser in our setup. Following the utilization of the optical dipole trap for BEC
generation, the final power can be adiabatically increased to simulate the bosonic mode of
the quantum Rabi model, which is also directly linked to the coupling strength 𝑔 (as can be
seen in equation (2.17)). A lower threshold of 𝜔min/2𝜋 ≳ 250Hz for the increased power
emerges naturally to ensure the trap’s depth is sufficient for harmonic oscillation, while an
upper threshold of 𝜔max/2𝜋 ≲ 750Hz is set to prevent undesired heating processes from
destroying the atomic BEC.

3.6.2 Quantum Simulation of the pQRM
The here performed quantum simulation of the periodic Quantum Rabi Model (pQRM)
consists of a preparation-, time evolution-, and an analysis phase. As will be seen later,
the results presented here are divided into quantum states prepared in the eigenbasis
of �̂�𝑥- and �̂�𝑧- operators. For �̂�𝑥, atomic wave packets are prepared using a single Bragg
pulse to imprint a momentum transfer of ±2ℏ𝑘 at the band gap of the four-photon lattice’s
dispersion relation. On the other hand, the preparation in the eigenbasis of �̂�𝑧 is realized by
employing two counter-propagating Bragg pulses, which create a 50:50 superposition state
of the+2ℏ𝑘 and−2ℏ𝑘momentumpicture states. Here, the relative phase between thewave
packets gives insight into the quantum state being in the upper- (|↑⟩) or lower eigenstate
(|↓⟩) of �̂�𝑧 . The preparation process takes place in the optical dipole trap and needs to be
completed as quickly as possible to avoid interfering with the Rabi dynamics evolving
in the trap. A suitable compromise is achieved with preparation times of approximately
𝜏prep ≈ 40µs, which is sufficiently long to ensure good frequency resolution.
To carry out the time evolution measurements of the quantum simulation described in
the previous chapter 2, the quasi-harmonic potential of the dipole trap and the periodic
potential of the four-photon lattice need to be combined both temporally and spatially.
After preparing the system and setting the optical dipole trap to the appropriate trapping
frequency, the lattice potential of suitable intensity is also applied. The atoms are then
exposed to the combined potentials, allowing the observed dynamics to be detected
gradually over time. This exposure duration corresponds to the duration of the time
evolution of the pQRM Hamiltonian. By subjecting the system to different lengths of
exposure to these potentials before analysis and detection, it becomes possible to measure
the temporal evolution of various observables.
Following each experimental cycle for determining the time evolution, an analysis phase
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Figure 3.9: Illustration of the experimental cycle for the simulation of the periodic quantum
Rabi model. After the creation of an atomic BEC, the CO2 laser power is adiabatically ramped
until a steady state potential for the atoms is reached at the desired trapping frequency.
Subsequent qubit state preparation with the lattice laser is performed followed up by a variable
experimental time 𝑡exp and an analysis pulse. Depending on observation in real- or momentum
space, the time of flight duration is chosen between 10µs and 8ms.

is conducted where the analysis method is adjusted based on the prepared initial state
and the desired observation in either position- or momentum space. In the case of the
simplest preparation in the eigenstate of �̂�𝑥, the analysis involves straightforwardly turning
off all optical potentials and performing detection either in position space, 10µs after
turning off the potentials, or in momentum space after a time-of-flight duration of 8ms. To
analyze quantum states prepared in the �̂�𝑧 basis, a phase-selective measurement method is
required, as the relevant information is encoded in the relative phase between the twowave
packets. Simply turning off the optical potentials would lead to undesired relaxation into
individual bare states, which are eigenstates of �̂�𝑥. Therefore, an interferometric 𝜋/2 pulse
is applied during the measurement of �̂�𝑧 eigenstates, which maps the current quantum
state back, depending on the relative phase between the wave packets, enabling a phase
sensitive readout analysis. Again, as for the preparation pulse, the chosen pulse duration
is short enough to avoid interference with the pQRM dynamics (𝜏read = 30µs), while still
providing sufficient frequency resolution.

3.6.3 Detection
To observe the temporal evolution of the atomic BEC, absorption imaging is employed
at the end of the experimental cycle using a cooling laser and an sCMOS camera. As
mentioned before, a distinction is made between capturing images in position space and
momentum space. In position space imaging, a microwave pulse is used to repump the
atoms to the |5𝑆1/2, 𝐹 = 2⟩ state, while a repumping laser pulse is utilized for momentum
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Figure 3.10: Illustration of the experimental cycle describing the absorption imaging protocol.
The sCMOS camera is triggered three times, where during the first two pictures a foregoing
repumping pulse is used to reveal the atomic ensemble for the cooling laser transition. The
last picture is used for background correction.

space imaging. Three images separated by 80ms are subsequently captured.
The first image creates a shadow of the atoms on the camera chip by absorbing resonant
photons from the cooling laser. This process induces heating and destroys the quantum
system. As a result, the second cooling laser pulse is not absorbed by atoms, and the
image on the camera chip includes all the laser light. By subtracting the two images, the
absorption of the atomic ensemble is revealed. The third and final image is taken with no
laser light present, serving as a reference for background correction.



CHAPTER 4
Experimental Results

The following chapter presents the observed results for various experimental parameters.
Firstly, a characterization of the achievable optical lattice- and trap frequencies will be
provided as monitoring measurements, which serve as an experimental tool.
In the context of the periodic quantum Rabi model, various observables in two different
states of preparation will be presented. Beginning with measurements in the qubit super-
position state (in the �̂�𝑥-basis), the temporal evolution of expectation values for position
⟨𝑥⟩, mean quasimomentum ⟨𝑞⟩, mean band occupation ⟨𝜎𝑥⟩, and the bosonic excitation
number ⟨𝑁⟩ will be showcased.
When considering the initial state prepared in a qubit eigenstate (in the �̂�𝑧-basis), it enables
the observation of collapse and revival characteristics by incorporating a phase-sensitive
analysis scheme. Concluding the results chapter, measurements of the temporal evolution
of the bosonic excitation number will be discussed, this time with the system prepared
in the qubit eigenstate. An intriguing difference is revealed between the chosen state of
preparation, particularly for large qubit frequencies.

4.1 Experimental Characteristics and Preparatory Measurements
4.1.1 Optical Lattice Potential
To create a periodic potential in the experimental setup, the qubit frequency 𝜔q can be
determined by measuring the Rabi oscillations of atoms in a four-photon lattice potential.
The process starts by preparing the atoms in the −2ℏ𝑘 momentum state using a Bragg
𝜋-pulse. Next, the four-photon lattice potential is applied, allowing transitions between
the momentum states −2ℏ𝑘 and +2ℏ𝑘.
The temporal evolution of this prepared state is shown in Figure 4.1(a), which depicts
the relative population of atoms in the momentum states ±2ℏ𝑘 and 0ℏ𝑘. The presence of
a two-photon lattice is indicated by the here visible oscillation between the zeroth and
second orders, and can be suppressed by increasing the two-photon detuning 𝛿. This
is particularly important for long-time interaction, which is the main objective of this
thesis, as collisions with residual atoms in the zeroth order increase undesired heating
in the system. Figure 4.1(b) displays the expected behavior for higher detuning values 𝛿,
leading to a rapid decrease in the number of atoms in the 0ℏ𝑘 momentum state, implying
fewer two-photon processes, as seen on the right vertical axis. However, this comes at
the expense of reducing the optical four-photon lattice potential depth, as can be seen in
equation (1.54), and hence the maximum Rabi frequency (as indicated on the left vertical
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(a) (b)

Figure 4.1: (a) Occupation of atoms in the −2ℏ𝑘- (orange triangles), 0ℏ𝑘- (blue circles) and
+2ℏ𝑘-momentum states (pink squares) versus time, indicating the observation of Rabi oscilla-
tions. Atoms are initially prepared in −2ℏ𝑘 momentum state and subsequently observed in
momentum space during a time of flight measurement. The upper and lower panel show the
temporal evolution of all momentum states occupation number with the two-photon detuning
of 𝛿/2𝜋 = 100 kHz and 𝛿/2𝜋 = 210 kHz, respectively. It is clearly visible that for the lower detun-
ing value, undesired occupation in the 0ℏ𝑘 momentum state is observed. (b) The measured
Rabi frequency 𝜔q/2𝜋 (black triangles) for different detuning values 𝛿/2𝜋 can be described by
a hyperbolic function (dashed black line). To optimize clean oscillation between +2ℏ𝑘 and
−2ℏ𝑘 the atoms population in 0ℏ𝑘 is also measured (orange circles).

axis). In practice, a good compromise is achieved with 𝛿/2𝜋 = 210 kHz, resulting in a
maximum oscillation frequency of approximately 𝜔q/2𝜋 ≃ 5 kHz and sufficient suppression
of undesired two-photon processes.
Continuing with the characterization, the dependence of the Rabi frequency on the RF-
power is investigated to reveal the full range of the tunable qubit frequency 𝜔q. To perform
this, atoms are prepared at a momentum state of −2ℏ𝑘, and their oscillation is observed
after turning off the optical dipole trap so that they are solely superimposed to the optical
lattice potential.
Since the atoms are accelerated by gravity relative to the potential created by the lattice
laser beams, the laser beam from below is detuned using the AOM according to equation
(3.1), which takes into account the acceleration due to gravity 𝑔 = 9.81m/s2, and the
wavelength of the lattice laser beam 𝜆lat = 783.5 nm.
An exemplary measurement for the case of an RF-power of 0 dBm (blue) is depicted in
Figure 4.2(a). The fitting curve is a damped harmonic oscillation and implies that for
lower power values of −14 dBm (orange) longer evolution times are needed to extract the
Rabi frequency out of a full oscillation period. Here, an experimental limit arises where,
with longer pulses, the amount of addressable atoms decreases due to finite velocity
distribution, as shown in Figure 4.2(a). In other words, not all atoms participate to the
oscillation, ultimately reducing the observed amplitude. To characterize the full RF-power
range, an indirect measurement is implemented by measuring the optical power of each
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Figure 4.2: (a) Exemplary measurement of the relative population of atoms in the −2ℏ𝑘
momentum state, resulting in the Rabi frequency for a RF-power of 0 dBm (blue triangles) and
−14 dBm (orange circles), where for the ladder, a longer measurement time is needed in order
to observe a full oscillation period, resulting in an experimental limitation for low RF-power
values. (b) Rabi Frequency of the four-photon lattice against RF-power used to address the
AOM. The direct measurement of atoms oscillating in the lattice potential (blue circles) is
only possible for larger power values, due to damped oscillation. Using a fast photodiode
to measure the optical power of each lattice beam, covers the experimentally non accessible
region of the frequency range (orange triangles).

lattice beamwith a fast photo-diode (Thorlabs DET10A). Short pulses of 500µs are chosen to
minimize thermal drifts of the AOM. By using nonlinear regression analysis and combining
both measurements, it is possible to cover the full RF-power range using the following
equation for the obtained photo-diode signals 𝑈PD,1, and 𝑈PD,2, where 𝑎 and 𝑏 are fitting
parameters:

𝜔q(𝑃RF) = (𝑎 · 𝑈PD,1 + 𝑏 · 𝑈PD,2) (4.1)

Figure 4.2(b) shows the obtained Rabi frequency 𝜔q/2𝜋 by directly measuring atomic
oscillations depicted in Figure 4.2(a) (blue circles) and indirect measurement of the optical
power using equation (4.1)(orange triangles). The datasets show good compatibility in
the overlapping region, reaffirming the used procedure and revealing the full tunable
qubit frequency range for the experiment.

4.1.2 Harmonic Trapping Potential
Moving on, the harmonic trapping potential will be characterized to determine the attain-
able trapping frequencies needed to simulate the bosonic mode 𝜔 of the periodic quantum
Rabi model. A Gaussian trapping potential is provided for the pre-cooled atoms by a single
focused CO2 laser beam. The deviation from a harmonic potential is negligible, at only
0.22%, as calculated by comparing the recoil energy of the atoms induced by the lattice
pulses 𝐸Rb,max = 2𝐸R with the energy of the dipole trapping potential 𝑈dip = 31𝐸R [53].
Direct measurement of the trap frequency 𝜔 involves the application of a Bragg 𝜋-pulse
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Figure 4.3: The observed variation of mean position of initially prepared atoms in the −2ℏ𝑘
momentum state versus time shows the expected oscillatory behavior in the optical dipole
trapping potential. Using nonlinear regression to fit a harmonic oscillation (green dashed line)
onto the experimental data (green circles) shows good agreement and a resulting harmonic
frequency of 𝜔/2𝜋 = 343(2)Hz.

to transfer the atoms in the −2ℏ𝑘 state, followed by the observation of atomic oscillation
in the harmonic trapping potential using far field time of flight images. An exemplary
measurement for an oscillation frequency of 𝜔/2𝜋 = 383(2)Hz is shown in Figure 4.3, where
nonlinear regression analysis is used to calculate the mean position of the atomic cloud,
shown as green circles. The experimental data is well described by a harmonic oscillation
curve, providing further evidence for the harmonic nature of the trapping potential.
In order to change the trap frequency experimentally, the control parameter 𝑝, which
regulates the RF-power for the used AOM, is varied. Figure 4.4(a) displays the measured
trap frequencies for different values of 𝑝. The obtained data, shown as green circles, follows
the expected theoretical solid line, revealing the experimental parameter range for tuning
the optical dipole trap frequency 𝜔/2𝜋. As shown by equation 2.17, 𝑔(𝜔) is inherently
dependent on 𝜔, therefore, the measured trap frequencies in Figure 4.4(a) can be utilized
to calculate the resulting relative coupling strength, revealing an experimental limitation
for 𝑔/𝜔 when the maximum trap frequency is reached.
The two limiting ranges for achievable trapping frequencies are, on one hand, constrained
from below by the need for a sufficiently deep trap to retain the atoms in a harmonic
trap, and on the other hand, limited from above by strong atom-atom interactions and
three-body losses when the trapping potential is too deep. Figure 4.4(b) illustrates this
behavior, where the maximum trap frequency 𝜔/2𝜋 = 769(4)Hz is marked as a vertical
dashed line. It is evident that due to restrictions in the trapping frequency range, the
experiment presented here solely operates far in the perturbative deep strong coupling
regime (𝑔/𝜔 ≫ 1).

4.1.3 Coherence Characteristics
In order to investigate the long time interaction dynamics in the periodic quantum Rabi
model, it is crucial to ensure the long time quantum coherence of the entire system. There-
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Figure 4.4: (a) Experimental variation of the control parameter 𝑝 and resulting trap frequency
𝜔/2𝜋 (green circles). The solid line corresponds to theoretical calculation including multiple
experimental parameters such as optical laser power 𝑃CO2 = 32W, beam waist 𝑤 = 21µm
and wave length of the CO2 laser beam 𝜆CO2 = 10.6µm. (b) Using the obtained data in Figure
4.4(a) to calculate the relative coupling strength 𝑔(𝜔)/𝜔 from equation (2.17). With increasing
trap frequency, the relative coupling strength decreases, resulting in an experimental limit for
the achieved coupling strength and restricting the experiment far in the deep strong coupling
regime (highlighted in green). The horizontal arrows indicate an estimate for the achievable
coupling strengths in the experiment, while the relative coupling strength of 𝑔/𝜔 = 1, which
indicates the emergence of the DSC regime, is marked as a yellow horizontal line.

fore, several preparatory measurements were conducted and are presented in this section.
Using a Ramsey-Bordé interferometer first the coherence time of the atomic BEC will
be discussed. This scheme will be expanded by combining the atomic dynamics in the
harmonic trap with the lattice beams to perform the interferometric pulses, giving insights
on the effect of atom number and coherence time in the system.

Coherence of the Atomic BEC

In Section 4.1.2, it was shown that the harmonic trap frequency 𝜔 can be adjusted within a
range of 𝜔/2𝜋 = 275(2)Hz to 𝜔/2𝜋 = 769(2)Hz, resulting in minimum required coherence
times of a few milliseconds. To assess this solely for the atomic Bose-Einstein condensate,
a Ramsey-Bordé interferometer is utilized, whose scheme is shown in Figure 4.5(a). For
this, a Bragg 𝜋/2-pulse prepares the atomic momentum state Ψini =

1√
2
(|0ℏ𝑘⟩ + |2ℏ𝑘⟩),

which is a superposition state between the 0ℏ𝑘 and+2ℏ𝑘 momentum state, followed up by
a separation time of 𝜏 = 𝑇/2 and a subsequent application of a Bragg 𝜋-pulse, after which
another separation time of 𝜏 is implemented along with an additional 𝜋/2-pulse. Varying
the imprinted relative phase between the two Bragg beams during preparation, a phase
dependent transfer between the momentum states is expected, attributed to preserved
coherence. Figure 4.5(b) displays the resulting data, where the relative population in the
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(a)
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Figure 4.5: (a) Ramsey-Bordé interferometer for the free falling atomic BEC after evaporation.
After an initial Bragg 𝜋/2-pulse and a subsequent separation time of 𝜏 = 𝑇/2 a Bragg 𝜋-pulse
is applied. An additional separation duration and another 𝜋/2-pulse allows for readout and
detection of the phase. (b) Measurement of the relative population in the 0ℏ𝑘 and +2ℏ𝑘
momentum state depending on the imprinted phase at preparation for different separation
times 𝜏 = 1.5ms and 𝜏 = 3ms.

(a) (b)

Figure 4.6: (a)Measuring the phaseshift that occurs when the separation time 𝜏 is increased, by
fitting a harmonic function onto the data shown in Figure 4.5(b) and calculating the difference
in phase for increasing time 𝜏 . (b) The observed decrease in contrast for longer separation
times, which is extracted from the amplitude of the fitted data. Even for the highest values of
𝜏 , which corresponds to a combined coherence time 2𝜏 = 6ms, the contrast does not drop to
zero, demonstrating phase coherence of the atoms.

two momentum states 0ℏ𝑘 and +2ℏ𝑘 demonstrates a clear dependence on the imprinted
phase for a separation time of 𝜏 = 1.5ms (upper panel). Even further increase to a
maximum separation duration of 𝜏 = 3ms (lower panel), a non-vanishing contrast is
observed, confirming the expected long-term coherence of an atomic BEC. Fitting the
data with harmonic oscillation functions, allows the extraction of amplitude and phase
information for each separation time, resulting in the demonstrated behavior presented
in Figure 4.6(a) and 4.6(b). Here, the occurring phase-shift and decrease in contrast for
increasing separation time 𝜏 are observed. As expected, the coherence time of the atomic
BEC exceeds the required time of evolution and should not be a limiting factor during the
quantum simulation experiment.
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Combined Coherence of Atoms in the Superimposed Potential
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Figure 4.7: Experimental scheme for analyzing the coherence time in the system using a
generalized version of a Ramsey-Bordé interferometer. (a) In order to analyze the combined
system of atoms and optical dipole trap, the used 𝜋/2- and 𝜋-pulse have to be timed accordingly
to the traps oscillation period. Atomswith an initial momentum transfer of+2ℏ𝑘 are oscillating
in the trapping potential, while atoms with 0ℏ𝑘 momentum remain at the center of the trap.
Due to lack of phase control at 𝜔𝑡 = 𝜋, it is only possible to measure absolute values with no
phase relation. This scheme is hence used to observe the relation between contrast and atom
number. (b) Doubling the evolution time enables relative phase control at 𝜔𝑡 = 2𝜋, hence
making it possible to observe phase detection between atomic wavepackets.

Moving forward, the coherence of the system is demonstrated in a combined configuration
of atoms and the harmonic trap. Essentially, the same interferometer scheme presented
in the previous section is employed, but with the difference that atoms now oscillate in
the optical dipole trap. This 2𝜋-interferometer scheme is shown in Figure 4.7(a), where the
Bragg 𝜋/2- and 𝜋-pulses occur at the start (𝜔𝑡 = 0), middle (𝜔𝑡 = 𝜋), and end (𝜔𝑡 = 2𝜋) of
the oscillation period (orange line), where 𝜔 represents the oscillation frequency of the
optical dipole trap. As before, the relative population of atoms in the momentum states
0ℏ𝑘 and +2ℏ𝑘 is measured by varying the imprinted phase during the first pulse and the
optical dipole trap frequency is set to 𝜔/2𝜋 ≃ 500Hz.
Figure 4.8 (bottom panels), shows the results of this approach, characterized by random-
ness of the data. Here, phase fluctuations arising from mechanical vibrations of the lattice
beams relative to the dipole trapping beam impede the experimental access to periods of
half of the oscillation time at 𝜔𝑡 = 𝜋. Nevertheless using this scheme to investigate the
effect of atom numbers on the absolute value of the reached population difference gives
insight on the effect of atom-atom interaction in the system. The bottom panel of Figure 4.8
displays three data sets in which the atom number was increased from left to right. In the
upper panel, the same data is shown in radial plots for a more visual representation. For a
relatively large atom number of≃ 7000 atoms, the absolute value of the relative population
drops significantly compared to the case of ≃ 1000 atoms, as attributed to more heating
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and a higher likelihood of three-body losses. Although, varying the imprinted phase for
the 2𝜋-interferometer fails to perform the desired correlation with the readout pulse, there
is still merit in examining the effect of atom number on the absolute contrast in relative
population. As a takeaway, an atom number of 1000 should not be exceeded during long
temporal evolution.

Figure 4.8: Results of the applied scheme in Figure 4.7(a) where a generalized version of a
Ramsey-Bordé interferometer is used to analyze the phase dependency on an initially prepared
momentum state in Ψini =

1√
2
(|0ℏ𝑘⟩+ |2ℏ𝑘⟩). Bottom panels depict the relative population of

0ℏ𝑘 and 2ℏ𝑘 and show no visible fringe signal, as attributed to lack of absolute phase control.
However, looking at the maximum values, it is still possible to extract information that for
increasing atom numbers the observed contrast is strongly damped. The same data is also
presented in the above shown radial diagrams in a more visual representation. At each phase
value 20 data points were taken.

Expanding the 2𝜋-interferometer to a 4𝜋-interferometer scheme allows for the Bragg 𝜋-pulse
to be applied at 𝜔𝑡 = 2𝜋 and the readout pulse at 𝜔𝑡 = 4𝜋. With this approach, the
relative phase becomes relevant for the readout process, which, in turn, is experimentally
accessible. Figure 4.7(b) displays the scheme used for this experimental implementation.
The bottom panels of Figure 4.9 exhibit four plots, from left to right, where the time
between the Bragg 𝜋/2-pulses is increased from 𝜏 = 1ms up to 𝜏 = 2ms leading to a
total observed coherence time of 4ms (right panel). This scheme is constrained by the
oscillation frequencies reachable in the optical dipole trap. While the left panel corresponds
to a maximum trap oscillation frequency of 𝜔/2𝜋 = 1002(12)Hz, the right panel where the
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Figure 4.9: Results of the the scheme presented in Figure 4.7(b), where the 𝜋/2-pulses where
applied at 𝜔𝑡 = 0 and 𝜔𝑡 = 4𝜋, hence achieving relative phase control at 𝜔𝑡 = 2𝜋. With this
scheme coherence time of the system can be measured by decreasing the oscillation frequency
in the optical dipole trap (from left to right), hence increasing the observed total coherence
time (from left to right: 2ms, 2.5ms, 3ms and 4ms). The bottom panels show the relative
population of atoms in 0ℏ𝑘 and 2ℏ𝑘, where, as opposed to Figure 4.8, a clear phase dependence
is observed and is damped for longer time evolution. The same data is presented in the above
shown panel for visual representation in the radial diagrams. The dashed lines are results of
nonlinear regression fits and show good agreement with the data.

trap oscillation frequency is the lowest corresponds to 𝜔/2𝜋 = 498(3)Hz. Since the timing
of the used Bragg 𝜋/2-pulses is linked to the start and finish of the oscillation period,
the observed coherence times are naturally limited. Experimental results validate this
approach, showing clear phase dependence, which decreases for longer separation times
𝜏 . A rotation of the axis between the two circles is attributed to a small asymmetry in the
combined potentials.
It becomes apparent that, in order to maximize the readout of phase-sensitive data later in
the main experimental work, temporal evolution of system parameters should be kept as
short as possible and not exceed 3ms, as suggested by the data.

4.2 Quantum Simulation of the Periodic Quantum Rabi Model
In this section the main experimental results of the quantum simulation of the periodic
quantum Rabi model are presented. In all measurements the prepared initial state is void
of excitations |𝑁 = 0⟩, while the qubit splitting 𝜔q was varied over a large frequency range.
A subdivision of the measurement results is performed in the prepared states of the bases
of the �̂�𝑥 and �̂�𝑧 operators, whereas the former, referred to as the bare state preparation,
consists of a superposition state of the qubit eigenstates |±2ℏ𝑘⟩ = 1/

√
2 (|↑⟩ ± |↓⟩), and the

latter, also designated as the dressed state in the following, represents the preparation in
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qubit eigenstates |↑⟩ = 1/
√
2 (|−2ℏ𝑘⟩ − |+2ℏ𝑘⟩) and |↓⟩ = 1/

√
2 (|−2ℏ𝑘⟩+ |+2ℏ𝑘⟩).

Since the coupling strength depends on the frequency of the bosonic mode (see equation
(2.17)), this parameter was mostly maintained at 𝑔/𝜔 ≃ 6.5, with the exception of the
collapse and revival measurements, which were conducted at a slightly lower relative
coupling strength of 𝑔/𝜔 ≃ 4.8.

4.2.1 Bare States Dynamics
For the bare states, absorption imaging in real- and momentum space, reveals atomic
dynamics in mean position ⟨𝑥⟩ and mean momentum ⟨𝑝⟩, which then maps to the Bloch
models quasimomentum ⟨𝑞⟩ (see previous chapter 2). Particularly, the observed mean
band occupation number ⟨𝜎𝑥⟩ and the expectation values for the bosonic excitation number
⟨𝑁⟩ reveal counter-intuitive dynamics in the deep strong coupling regime.

Mean Position ⟨𝑥⟩

Figure 4.10: Observed temporal evolution of the mean position ⟨𝑥⟩ of the atomic wavepacket
prepared in the −2ℏ𝑘 momentum state. The harmonic trap frequency is 𝜔/2𝜋 = 346(8)Hz
resulting in a relative coupling strength of 𝑔/𝜔 ≃ 6.53. Different values of the qubit frequency
𝜔q/2𝜋 = 500(12)Hz up to 𝜔q/2𝜋 = 1750(25)Hz affect the depicted oscillation characteristics.
While for a small ratio 𝜔q/𝜔 ≃ 1.4 (yellow diamonds) the oscillation is nearly harmonic, in-
creasing the qubit spacing up to 𝜔q/𝜔 ≃ 2.9 (green circles) and 𝜔q/𝜔 ≃ 5.0 (green triangles)
demonstrates the emergence of the dispersive deep strong coupling regime, where the oscil-
lation amplitude is damped and the dynamics become anharmonic. Theory lines represent
numerical calculations of the mean positional dynamics in the (usual) quantum Rabi model
(dashed lines) and periodic quantum Rabi model (solid lines).

In order to experimentally prepare the initial momentum state |−2ℏ𝑘⟩ = 1√
2
(|↑⟩ − |↓⟩) and

to analyze the temporal evolution of

⟨𝑥⟩ =
√︃

ℏ
2𝑚Rb𝜔

(�̂�+ �̂�†), (4.2)

a Bragg 𝜋-pulse is applied, to transfer the atoms in the −2ℏ𝑘 momentum state. Subse-
quently, the atomic wavepacket is subjected to the combined potential of the harmonic trap
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and the periodic four-photon lattice potential. Due to limited imaging resolution (≃ 6µm),
real space absorption images are deconvolved using the Richardson-Lucy algorithm, where
the point-spread function (PSF) yields a density 𝑝𝑖, which can be used to calculate the
positional expectation value ⟨𝑥⟩, by summation over a vertical cut through the atomic
ensemble

⟨𝑥⟩ ≃
∑︀𝑁

𝑖=0 𝑝𝑖𝑥𝑖∑︀𝑁
𝑖=0 𝑝𝑖

. (4.3)

Here, 𝑥𝑖 corresponds to the position, acquired by deconvolution calibration. For more
details on this technique, the reader is kindly referred to the PhD thesis of J. Koch [53]. To
reduce the impact of background noise, a background correction of the images was carried
out prior to analysis. On top of Figure 4.10, exemplary real space images for a small qubit
splitting of the atomic cloud are depicted, where each subsequent slice is 100µs apart.
Using the position of the first atomic cloud as a reference value, the temporal dynamics for
different ratios of 𝜔q/𝜔 are presented. Here the trap frequency is 𝜔/2𝜋 = 346(8)Hz, yielding
a relative coupling strength of 𝑔/𝜔 ≃ 6.53. The time axis is depicted in values of 𝜔𝑡/2𝜋, where
𝜔𝑡/2𝜋 = 1 represents a full oscillation in the harmonic potential. While for a small qubit
spacing 𝜔q/𝜔 ≃ 1.4 (yellow diamonds) a harmonic behavior is observed, increasing the
ratio 𝜔q/𝜔 from 1.4 up to 5.0, damps the oscillation amplitude and increases anharmonicity
in the shown data (green triangles). This effect is understood as the emergence of the
dispersive deep strong coupling regime, where the system dynamics are highly influenced
by the dominating qubit energy. From another perspective the introduced localization
phenomena in Section 2.2, Figure 2.10, is also a candidate for a possible explanation of
the depicted dynamics. It is only due to the effect of the deep strong coupling regime,
that it is possible at all to observe oscillatory dynamics, exceeding the expansion of the
qubit. In other words, the macroscopic oscillation of the prepared qubit, demonstrates the
strong interaction between harmonic oscillator and two level system, which was already
introduced in chapter 2, Figure 2.6.

Mean Quasimomentum ⟨𝑞⟩

Using the same initial state preparation and frequency values for 𝜔/2𝜋 and 𝜔q/2𝜋 as in the
previous subsection, the temporal dynamics of the mean quasimomentum

⟨𝑞⟩ = −𝑖
√︂
𝑚Rb𝜔

2𝑘
(�̂�− �̂�†) (4.4)

is also observed inmomentum space. For this, after the evolution time in the superimposed
potential, the atoms are free falling for a duration of 8ms, after the optical dipole trap
potential is shut off.
Due to better separation of the atomic wavepacket in momentum space, no deconvolution
of the image data is needed for this type of far field observation and the expectation
value for the mean quasimomentum, which can be extracted out of the real momentum 𝑝
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Figure 4.11: Temporal evolution of the mean quasimomentum ⟨𝑞⟩ of the atomic wavepacket
prepared in the −2ℏ𝑘 momentum state. The same set of parameters was chosen for the qubit
splitting 𝜔q/2𝜋 and harmonic trap frequency 𝜔/2𝜋 as in Figure 4.10. The periodic character
becomes apparent when observing the ’jump’ of the mean quasimomentum at the edge of
the first Brillouin zone. The magnitude of the dynamics decreases for larger values of 𝜔q.
Theory lines represent numerical calculations of the mean momentum dynamics in the (usual)
quantum Rabi model (dashed lines) and mean quasimomentum dynamics in the periodic
quantum Rabi model (solid lines).

(𝑝 = 𝑞 ± 2ℏ𝑘), can be calculated with a vertical cut through the atomic ensemble

⟨𝑞⟩ ≃
∑︀𝑁

𝑖=0 𝑝(𝑖)𝑞𝑖∑︀𝑁
𝑖=0 𝑝(𝑖)

. (4.5)

Again, the upper panel in Figure 4.11 shows exemplary absorption images, where each
slice is again 100µs apart in the superimposed potential. The oscillation of the atomic
wavepacket starts at the real momentum 𝑝 = −2ℏ𝑘 (top right), which maps onto the
quasimomentum 𝑞 = 0ℏ𝑘 (top left). Again, the temporal evolution of 𝑞 was measured
for the same parameter set of 𝜔q/2𝜋 as before. Here, the periodic character of the model
becomes apparent, especially when comparing the theory lines in the shown data of the
periodic QRM (solid lines) and the (usual) quantum Rabi model (dashed lines), for upon
reaching the edge of the first Brillouin zone, the quasimomentum 𝑞 jumps from −2ℏ𝑘
to +2ℏ𝑘. The Umklapp process of the quantum simulation is attributed to exiting the
first Brillouin zone on one side and re-entering on the opposite side. Increasing the qubit
spacing 𝜔q/2𝜋 again damps the magnitude of the observed dynamics, which increases
the band gap energy binding the oscillatory dynamics of the system to the center of the
dispersion relation at 𝑞 = 0.
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Figure 4.12: Temporal evolution of the mean band occupation ⟨𝜎𝑥⟩ for different values of the
qubit splitting 𝜔q/2𝜋 ranging from 0 (left panel), 1280(21)Hz (middle) and up to 1750(25)Hz
(right panel). Again, the harmonic trap frequency is 𝜔/2𝜋 = 346(8)Hz, resulting in a relative
coupling strength of 𝑔/𝜔 ≃ 6.53. As the ratio between the qubit splitting and the harmonic trap
frequency 𝜔q/𝜔 increases, an oscillatory behavior can be observed between the two momentum
states ±2ℏ𝑘, which are highlighted via inset plots in the interesting regions. Theory lines
are again numerical simulations for the (usual) quantum Rabi model (dashed lines) and the
periodic quantum Rabi model (solid lines).

Mean Band Occupation ⟨𝜎𝑥⟩
Moving on, the temporal dynamics of the mean band occupation ⟨𝜎𝑥⟩will be discussed by
analyzing time of flight data in momentum space. Preparing the initial state as a bare state
−2ℏ𝑘 is in fact an eigenstate of the �̂�𝑥 operator, which can be extracted by mapping the
real measured momentum 𝑝 onto the Bloch band index 𝑛 as:

𝑝 = 𝑞 + 𝑛 · 2ℏ𝑘 (4.6)

where, 𝑛 = ±1 is restricted to the two lowest bands (see. Figure 4.11 top left).
Figure 4.12 shows the temporal evolution of the mean band occupation for different values
of the qubit splitting 𝜔q/2𝜋. The harmonic trap frequency is, as in the subsections before,
𝜔/2𝜋 = 346(8)Hz, resulting in a normalized coupling strength of 𝑔/𝜔 ≃ 6.53. At low
lattice depths, for the small qubit approximation 𝜔q → 0, the band index expectation
value remains constant until the Brillouin zone’s edge is reached, and band remapping
occurs. However, at higher lattice depths, there is a significant reduction in the absolute
value of the ⟨𝜎𝑥⟩ operator, leading to the emergence of the dispersive deep strong coupling
regime characterized by oscillations between themomentum states. This behavior has been
attributed to Rabi oscillations between the momentum states ±2ℏ𝑘, and their most visible
occurrence is at times 𝜔𝑡 = 0 and 𝜔𝑡/2𝜋 = 1, which, for a more visual representation, are
highlighted as inset plots. The oscillatory amplitude is significantly reduced at lower values
of 𝜔q, where the coupling term, which is proportional to 𝜎𝑥 [125], becomes dominant over
all other energy scales. The appearance of these oscillations is restricted to larger values of
the qubit splitting, at which point the system enters the dispersive deep strong coupling
regime. The data qualitatively corresponds well to the theory lines of the periodic quantum
Rabi model (solid lines), especially in the areas of occurring Rabi oscillations (𝜔𝑡 = 0 and
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𝜔𝑡/2𝜋 = 1). In other areas, such as the edges of the Brillouin zone (𝜔𝑡/2𝜋 ≃ 0.25; 0.75; 1.25),
a difference between theory and experimental data is observed, which is attributed to
the readout process. The finite size of the atomic wavepacket, which is not included in
the pQRM simulations, comes into play when the middle horizontal line in the upper
panel of Figure 4.11 is reached. For vanishing qubit frequencies 𝜔q → 0 (left panel), the
sharp Umklapp process is damped. This occurs because in this case, the Bose-Einstein
condensate does not instantaneously cross the boundary; instead, due to its finite size,
there is a broadening of the transition. For larger qubit frequencies, the consequences are
not trivial, and the behavior becomes more complex. Small changes in the wavepackets
shape, which can occur due to strong lattice potentials, lead to significant deviations from
the theoretical predictions, when the BEC is at the crossing region between bands.

Number of Bosonic Excitations ⟨𝑁⟩
After observation of temporal dynamics in position and momentum space, a key feature of
the deep strong coupling regime, namely the counter-intuitive rise of the bosonic excitation
number ⟨𝑁⟩

ℏ𝜔
(︂
⟨𝑁⟩+ 1

2

)︂
=
𝑚𝜔2

2
⟨𝑥2⟩+ 1

2𝑚
⟨𝑞2⟩ (4.7)

will be presented, where 1
2 denotes the vacuum excitation in the system. Clearly ⟨𝑁⟩

consists of a positional term ⟨𝑁𝑥⟩

⟨𝑁𝑥⟩ ≃
𝑚𝜔

2ℏ

∑︀𝑁
𝑖=0 𝑝𝑥,𝑖𝑥

2
𝑖∑︀𝑁

𝑖=0 𝑝𝑥,𝑖
(4.8)

and a (quasi-) momentum term ⟨𝑁𝑞⟩

⟨𝑁𝑞⟩ ≃
1

2ℏ𝑚𝜔

∑︀𝑁
𝑖=0 𝑝𝑞,𝑖𝑞

2
𝑖∑︀𝑁

𝑖=0 𝑝𝑞,𝑖
, (4.9)

which we can experimentally reveal by observing the system in real- and momentum
space as shown in the previous measurements. Here 𝑝𝑥,𝑖 and 𝑝𝑞,𝑖 correspond to respective
densities in real- and momentum space.
Previous work in our group has been conducted in the analysis of this observable for
sub-cycle evolution time. Longer interaction times show predicted collapse and revival
patterns of these excitations, which are presented in Figure 4.13. Here, as in the subsections
before, a relative coupling strength of 𝑔/𝜔 ≃ 6.53 and different values for the qubit splitting
𝜔q/2𝜋 ranging from 0 up to 1280(21)Hzwere applied (from left to right). Again, numerical
simulations for the quantum Rabi model (dashed lines) and the periodic quantum Rabi
model (solid lines) show theoretical predictions far in the deep strong coupling regime.
Starting from the most left panel, the result for the case of the limit when the slow qubit
approximation (𝜔q/2𝜋 → 0) applies is shown, for a time period of 1.5 full oscillation cycles,
meaning for a harmonic trap frequency of 𝜔/2𝜋 ≃ 350Hz a measurement duration of
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Figure 4.13: Temporal evolution of the number of excitation ⟨𝑁⟩ for a qubit splitting (from
left to right) 𝜔q/2𝜋 → 0, 𝜔q/2𝜋 = 500(12)Hz, 𝜔q/2𝜋 = 800(14)Hz and 𝜔q/2𝜋 = 1280(21)Hz and a
harmonic trap frequency 𝜔/2𝜋 = 346(8)Hz, again, resulting in a normalized coupling strength
of 𝑔/𝜔 ≃ 6.53. Initially, atoms are prepared in a momentum state −2ℏ𝑘 and the theory lines are
numerical simulations of the (usual) quantum Rabi model (dashed lines) and the periodic
quantum Rabi model (solid lines).

𝑡meas ≃ 4.3ms. In contrast to the well known Jaynes-Cummings regime, where the number
of excitation ⟨𝑁⟩JC is a conserved quantity (as can be seen Figure 2.3), a strong rise up
to ≃ 80 excitations is observed in the experiment, representing excitation creation out of
the vacuum. This is attributed as a direct consequence of the extremely strong coupled
nature in this parameter regime, also confirming the discussed upper limit for the systems
excitation in the previous chapter 2. Moving on, from left to right, the qubit splitting was
increased up to values of 𝜔q/2𝜋 = 500(12)Hz, 𝜔q/2𝜋 = 800(14)Hz and 𝜔q/2𝜋 = 1280(21)Hz.
Although it is technically possible to further increase the qubit splitting up to (𝜔q/2𝜋)max ≃
5.5 kHz, undesired heating processes, due to scattering of near resonant laser light with
the oscillating atoms in the trap, limit the applied four-photon potential during the long
temporal evolution in this measurement. Nevertheless, the achieved observation time, is
sufficiently long enough to demonstrate the predicted collapse and revival patterns for
the bosonic excitation in the deep strong coupling regime, adding complementary results
for longer interaction times to the already observed sub-cycle rise of ⟨𝑁⟩ in earlier works
[53]. Here, the periodicity of the presented model is laid bare, by oscillation patterns with
half temporal period of the harmonic potential 𝑇 = 2𝜋/𝜔 (solid lines). Again, due to the
remapping at the edge of the first Brillouin zone, the (usual) quantum Rabi model, shows
oscillations with the full temporal period 𝑇 . In each panel, the experimental data shows
three peaks, representing the maximum achieved number of bosonic excitation ⟨𝑁⟩max

which confirms the predicted behavior for the simulated periodic quantum Rabi model,
where for increasing qubit splitting 𝜔q/2𝜋 the observed magnitude of each peak drops. The
periodic nature is once again apparent, and this observation is examined in greater detail
presented in Figure 4.14.
The peak values are subjected to further analysis with respect to both time and qubit
splitting 𝜔q/2𝜋. Subfigure 4.14(a) (bottom panel) shows the temporal evolution of the first
three maximum peak values ⟨𝑁⟩max for different values of the qubit splitting 𝜔q/2𝜋 (black
data points), while the lines correspond to theoretical calculations. Experimental data
qualitatively follows the predicted simulation for the periodic quantum Rabi model (solid
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(a) (b)

Figure 4.14: (a) Maximum value of excitation number ⟨𝑁⟩max against time for different
values of the qubit splitting. Three peaks of Figure 4.13 for each qubit splitting 𝜔q/2𝜋 = 0 to
𝜔q/2𝜋 = 1750(25)Hz are shown along with numerical simulations for longer timescales of the
periodic quantum Rabi model (lower panel, solid lines) and the (usual) quantum Rabi model
(upper panel, dashed lines). The simulated data includes also larger qubit splittings up to
𝜔q/2𝜋 = 30 kHz. (b) ⟨𝑁⟩max versus different qubit splittings 𝜔q/2𝜋, where now the behavior for
each peak value is shown as a color gradient. Again theory lines show the behavior for further
peak data with the numerical simulation in the periodic quantum Rabi model (solid line) and
the (usual) quantum Rabi model (upper panel, dashed line). The first three peaks which can
be observed in the experiment are highlighted as an inset plot with respective theory lines
from the periodic quantum Rabi model.

lines), with further calculations up to 30 kHz, which are shown as a color gradient. This
frequency range is currently not accessible in the experiment, nevertheless serving as a
prospective illustration of system dynamics for extremely large qubit splittings. The upper
panel in Figure 4.14(a) shows numerical simulations for the original quantum Rabi model,
where the absolute values of ⟨𝑁⟩max are doubled, and the damping is smaller, which is
attributed to the absence of the Umklapp process.
Figure 4.14(b) shows the individual behavior of each peak for different values of 𝜔q/2𝜋
in double logarithmic scale. Now, the color gradient is chosen to depict the number of
each peak ascending from green (first peak) to brown (20th peak). Again, in order to
predict longer evolution times, up to 20 peaks are numerically simulated. The first three
peaks, which are experimentally accessible and shown in Figure 4.13, are highlighted
as an inset plot with linear axis, showing qualitative agreement with theory. The strong
damping occurs when the qubit splitting 𝜔q reaches themagnitude of the coupling strength
𝑔, introducing the emergence of the dispersive deep strong coupling regime [27].
In summary, the results show that there is a weak dependence of the maximal achieved
excitation numbers ⟨𝑁⟩ on the energy gap for 𝜔q ≪ 𝑔, but a significant reduction occurs
for energies that approach the coupling strength. Prospective numerical simulations
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suggest a possible similarity to a known quantum phase transition and further theoretical
investigations are needed to fully understand this effect [107, 126, 127].
4.2.2 Dressed State Dynamics
Having discussed several temporal dynamics of the initial state prepared in the bare states
of the qubit, which are eigenstates of the �̂�𝑥 operator, this section presents experimental
results for eigenstates of the �̂�𝑧 operator. Preparing such a state can be done by using a
superposition of two bare states ±2ℏ𝑘, resulting in initially prepared dressed states:

𝜓↑ = |𝑁 = 0, ↑⟩ = |𝑁 = 0⟩ ⊗ 1√
2
(|−2ℏ𝑘⟩ − |+2ℏ𝑘⟩) upper band (4.10)

𝜓↓ = |𝑁 = 0, ↓⟩ = |𝑁 = 0⟩ ⊗ 1√
2
(|−2ℏ𝑘⟩+ |+2ℏ𝑘⟩) lower band (4.11)

Again the number of prepared excitation is 𝑁 = 0 as in the previous section. There are
two aspects of interest in this context. Firstly, the states |𝑁 = 0, ↑⟩ and |𝑁 = 0, ↓⟩ that have
been set up, are representative of the Jaynes-Cummings model, enabling better comparison
of the results with those of established systems. Secondly, in contrast to the earlier consid-
ered states, these states have a distinct parity which is an essential property of the model
because of the Z2 symmetry of the quantum Rabi Hamiltonian (as seen in Figure 2.1).
Collapse and revival of an initially prepared eigenstate in the �̂�𝑧 basis devoid of excitations
(|𝑁 = 0⟩) will be presented in this section, demonstrating quantum coherence for longer
time interactions in the deep strong coupling regime of the periodic quantum Rabi model.
Another observed phenomenon in the following section is the dependence of the periodic
quantum Rabi evolution on the qubit eigenstate of preparation, showing phase dependent
temporal dynamics of the bosonic excitation number �̂� for the initial state prepared in the
upper- and lower band described by equations (4.10) and (4.11), respectively.

Qubit Eigenstate Readout
In order to prepare an eigenstate of �̂�𝑧 , which are superposition states of the momentum
picture eigenstates, atoms are simultaneously irradiated by two Bragg pulses of counter
propagating momentum transfer. Figure 4.15 shows the preparation of such a state, where
the amplitude of each Bragg beam is increased from −17 dBm to −11 dBm such that the
population in 0ℏ𝑘 is transferred equally to the +2ℏ𝑘 and −2ℏ𝑘 momentum states. Due to
the finite velocity distribution of atoms during preparation, a minor fraction (less than 5%)
remains in the 0ℏ𝑘 momentum state within the trap center. Consequently, these residual
atoms have the potential to collide with oscillating atoms during the temporal evolution,
which may subsequently reduce the observed contrast in the experiment. The right panel
shows time of flight absorption images, representing the preparation of the initial state.
Depending on the relative phase between the atomic wavepackets in +2ℏ𝑘 and −2ℏ𝑘, the
prepared initial qubit state changes from |𝑁 = 0, ↓⟩ to |𝑁 = 0, ↑⟩. This can be adjusted
by changing the relative phase between the counter propagating Bragg pulses. Since the
imaging resolution of≃ 6µm does not allow for observation of fringe patterns in real space,
an alternative route of extracting the state information using a 𝜋/2 four-photon Raman
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Figure 4.15: Preparation of the initial state using two counter propagating Bragg pulses with
opposing momenta. The left panel shows the preparation by increasing the RF-power applied
onto bothAOM’s used to control the Bragg beam intensities. Atoms from 0ℏ𝑘 (green circles) are
transferred to the neighboring +2ℏ𝑘 (yellow squares) and −2ℏ𝑘 (green triangles) momentum
states via the respective Bragg beam. The right panel shows absorption time of flight images
for the corresponding data.

pulse, which gives insight into the eigenstate of �̂�𝑧 , has been experimentally implemented
in the context of this work.
In order to demonstrate this, after preparing an initial state where the relative phase
between the Bragg beams is 𝜙prep = 0∘ a Raman readout pulse with a relative phase of
𝜙readout = 90∘ (𝜋/2-pulse) is applied. This Raman pulse is tuned to drive transfer between
the momentum states −2ℏ𝑘 and +2ℏ𝑘, generating a maximum contrast in population
difference for the case ofΔ𝜙 = 𝜙readout −𝜙prep = 90∘. Varying the preparation phase, now
results in an oscillatory behavior of atomic population in the momentum states, which is
depicted in Figure 4.16. Here, the readout phase is kept constant, while the preparation
phase is changed from 0 to 360∘. The upper panel shows time of flight absorption images
matching to the 𝑥-axis of the data below. Fitting sinusoidal functions to the data, shows
also a small oscillation in the 0ℏ𝑘 momentum state, suggesting the presence of two photon
processes, which can be suppressed by further increase of the two-photon detuning 𝛿.
It appears, that these oscillations are in phase with the +2ℏ𝑘 momentum state, hinting
at a slight asymmetry introduced into the system during the preparation phase. This
assumed asymmetry effect is already observed during the coherence characteristics in
earlier measurements shown in Figure 4.9. For this reason, it is chosen to increase the two
photon detuning from 𝛿/2𝜋 = 160 kHz to 𝛿/2𝜋 = 210 kHz at the expense of the four-photon
lattice potential (as introduced in section 4.1.1, Figure 4.1(b)). This results in further
suppression of the 0ℏ𝑘 momentum state population depicted in the right panel of Figure
4.17(a). To ensure low inter-atomic collisions with residual atoms in the 0ℏ𝑘 momentum
state, a high detuning value of 𝛿/2𝜋 = 210 kHz is crucial for the readout process and the
application of the four photon lattice potential during temporal evolution measurements.
This is necessary, as these collisions can cause undesired heating, which becomes more
pronounced over extended duration of light-matter interaction.
Moving on, the same readout pulse is applied after a full time oscillation of the initially
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Figure 4.16: Analyzing the initial state by applying a 𝜋/2 four-photon Raman pulse with a
fixed phase 𝜙readout and changing the relative preparation phase 𝜙prep between the used Bragg
pulses. A clear expected oscillatory behavior is observed, where dependent on the prepared
phase, different number of atoms are populating the momentum states 0ℏ𝑘 (green circles),
−2ℏ𝑘 (yellow squares) and +2ℏ𝑘 (green triangles). The fitted curves are sinusoidal functions
describing the process and the panel above shows corresponding absorption time of flight
images.

prepared atoms in the harmonic trap potential. Figure 4.17(b) shows the results of such
a measurement for a trap frequency of 𝜔/2𝜋 = 656(22)Hz. Here an expected revival at
𝑡2𝜋 ≃ 1500ms can be probed, by again varying the preparation phase at a fixed time 𝑡2𝜋.
Despite the reduction in contrast of the data when compared to the left panels, there
are still evident signs of phase dependence, indicating that the phase coherence has been
preserved. This is particularly important in accurately measuring the eigenstate population
of the qubit, as it allows for the observation of collapse and revival of an initially prepared
eigenstate of �̂�𝑧 .
Collapse and Revival of the Qubit Eigenstate
After implementing the phase-dependent readout scheme for upcoming measurements,
temporal dynamics for different qubit splittings (𝜔q/2𝜋) of a state initially prepared in the
eigenstate of �̂�𝑧 are presented. As previously mentioned, the atoms are initially prepared
in the qubit eigenstate |𝑁 = 0, ↓⟩ described by equation (4.11), which is a superposition of
the momentum states ±2ℏ𝑘 with a relative phase between the two wavepackets 𝜙prep = 0∘.
After an evolution time 𝑡, where atoms are evolving in the superimposed lattice- and
harmonic trapping potential, applying a four-photon readout pulse with 𝜙readout = 90∘, a
population difference 𝑛𝑝<0 = (𝑁𝑝<0 −𝑁𝑝>0)/(𝑁𝑝<0 +𝑁𝑝>0) between the two momentum
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(a) (b)

Figure 4.17: (a) Preparation of the initial state (at time 𝑡 = 0) with a two photon detuning
𝛿/2𝜋 = 160 kHz and 𝛿/2𝜋 = 210 kHz showing better suppression of two photon processes,
evident in fewer atoms populating the 0ℏ𝑘 momentum state for higher values of 𝛿/2𝜋. (b)
The same initial preparation and readout pulse as in Figure 4.17(a) (right panel) is applied
after a full oscillation of atoms (𝑡2𝜋 ≃ 1500ms) in the harmonic trap with the frequency
𝜔/2𝜋 = 656(22)Hz. The data shows reduced contrast for the population difference of atoms
in +2ℏ𝑘 (yellow squares) and −2ℏ𝑘 (green triangles) when comparing it to the left data,
nevertheless a clear oscillatory behavior is visible, proving phase coherence at full period of
oscillation.

states is induced, where 𝑁𝑝<0 and 𝑁𝑝>0 depict atom numbers detected with momentum
𝑝 < 0 and 𝑝 > 0, respectively. During the analysis, these atoms are counted as depicted in
the absorption images in the upper panel of Figure 4.18. Counting errors arise due to the
finite size of the BEC at oscillation times of 𝜔𝑡/2𝜋 = 0.25, when the atomic wavepackets are
not distinguishable due to overlapping momentum states oscillating after a quarter period
in the harmonic trap. To compensate for this, a background correction is implemented,
where for each time step, an additional image is observed without the readout pulse
and subsequently compared to the absorption image of the initial state. This provides
a correlation factor that can be used for statistical weighting during the image analysis
process. An exemplary result is depicted in the lower left plot of Figure 4.18, where the
green and gray lines represent data with and without correction, respectively. Generally,
both data sets show the same behavior, especially for the oscillation times when the atomic
wavepackets are well distinguishable. However, a slight correction is applied at the edge
of the counting region between 𝑁𝑝<0 and 𝑁𝑝>0.
After introducing the experimental tools of phase extraction and background correction,
The bottom right panel in Figure 4.18 presents the experimental data of the temporal
evolution for different qubit splittings 𝜔q/2𝜋 ∈ [0; 1280(21)Hz]. Considering the coherence
times observed in the section 4.1.3, a higher harmonic trap frequency of 𝜔/2𝜋 = 656(22)Hz
is selected to reduce the time required for observing a full oscillation period, resulting in a
normalized coupling strength 𝑔/𝜔 ≃ 4.8.
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Figure 4.18: Upper panel: Exemplary absorption images taken for a qubit splitting of 𝜔q/2𝜋 → 0
to illustrate the counting process (upper panel). Atoms above (below) the 0ℏ𝑘 line are counted
as 𝑁𝑝<0 (𝑁𝑝>0) resulting in large counting errors when the overlapping wavepackets are not
distinguishable near zero line. The panel below on the left, shows results of the background
corrected data (green) in comparison to no correction (gray). Lower right panel: Temporal
evolution of the relative number of atoms 𝑛𝑝<0 = (𝑁𝑝<0 −𝑁𝑝>0)/(𝑁𝑝<0 +𝑁𝑝>0) (left vertical
scale) for a harmonic trap frequency of 𝜔/2𝜋 = 650(21)Hz and different qubit splittings 𝜔q/2𝜋 →
0 (top), 𝜔q/2𝜋 = 800(14)Hz (middle) and 𝜔q/2𝜋 = 1280(21)Hz (bottom) show collapse and
revival of an initially prepared state in the eigenbasis of �̂�𝑧 . Dashed and solid lines represent
the theory of the (usual) quantum Rabi model and the periodic variant, respectively, while
the corresponding vertical scale is on the right side. The shaded area indicates experimentally
inaccessible regions due to instrumental phase fluctuations.

After a variable interaction time in the combined potential, the 𝜋/2 four-photon Raman pulse
is applied. When the initial state is fully revived, a transfer of atoms to the momentum
state −2ℏ𝑘 occurs and 𝜎𝑧 = 1. The left vertical scale shows the experimental data for
the relative population 𝑛𝑝<0, where the absolute contrast is reduced due to the finite
momentum distribution of the atoms. The upper panel, representing the case for vanishing
qubit splitting 𝜔q → 0, demonstrates a rapid collapse of the initial state and a revival at
full oscillation time 𝜔𝑡/2𝜋 = 1, indicating a proof of principle and phase control of the
experimental apparatus for such long interaction times. Increasing the qubit splitting
up to 𝜔q/2𝜋 = 800(14)Hz (middle panel) and 𝜔q/2𝜋 = 1280(21)Hz (lowest panel) reveals
visible substructures in the observed revival of the qubit state, where predicted partial
revivals emerge in a more broadened area representing the interference of photon number
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wavepackets [109]. The collapse of the shown initial state verifies the predicted behavior
for ⟨𝜎𝑧⟩, extracted with a phase-sensitive analysis method, demonstrating the presence of
the perturbative deep strong coupling regime. The strongly coupled oscillatory modes
promote the dominance of energy exchange between the qubit and harmonic potential,
causing the collapse of the initial state within a small amount of time (𝑡 ≃ 90µs).
The shaded region, shown approximately at half the revival time, is characterized by
significant phase fluctuations as mentioned in previous Sections 4.1.3. These are attributed
to mechanical vibrations of the lattice beams relative to the dipole trapping beam and are
considered inaccessible to the experiment. However, when the atoms return to the starting
position after 𝜔𝑡/2𝜋 = 1, the relative phase becomes relevant, enabling the extraction of
phase information.
The experimental data qualitatively agrees with predictions of the periodic quantum Rabi
model (solid lines), for which the right vertical axis shows the numerically simulated
overlap with the initial state ⟨Ψini(𝑡 = 0)|Ψ(𝑡)⟩. The dashed line shows the predictions of
the (usual) quantum Rabi model, where it is noticeable that no revival at half the period
of the oscillation time is predicted. The observation of collapse and revival of an initially
prepared vacuum state prepared in the qubits eigenstate expands the observed temporal
dynamics further than the edge of the first Brillouin zone, adding complementary results
to previous works in our group [53].

Number of Bosonic Excitations for Dressed State Preparations

Moving on, final measurements regarding the bosonic excitation number ⟨𝑁⟩, where this
time the preparation is performed in both qubit eigenstates described by equations (4.10)
and (4.11), will be presented. The same image analysis method is used as in the prior
Section 4.2.1, this time utilizing the relative phase between the two Bragg pulses to prepare
the initial states |𝑁 = 0, ↑⟩ (𝜙prep = 90∘) and |𝑁 = 0, ↓⟩ (𝜙prep = 0∘), respectively. The
temporal evolution of both initial preparations are observed for different values of the
qubit splitting 𝜔q/2𝜋 ∈ [0,1280(21)]Hz and a fixed value of the harmonic trap frequency
𝜔/2𝜋 = 346(8)Hz, resulting in a normalized coupling of 𝑔/𝜔 ≃ 6.53.
The inset plot in the upper panel of Figure 4.19(a) shows numerical simulations for the
temporal evolution of a state prepared in |𝑁 = 0, ↓⟩ (dashed) and |𝑁 = 0, ↑⟩ (solid) for
the periodic quantum Rabi model with a qubit splitting of 𝜔q/2𝜋 = 1280(21)Hz. An
interesting behavior can be observed, when taking the difference between the reached
bosonic excitation numbers, shown in the upper panel of Figure 4.19(a), where the left
vertical axis corresponds to obtained data, showing the differenceΔ𝑁 = 𝑁↑−𝑁↓ measured
in the experiment. The solid line, which changes the color according to the positive (green)
or negative (yellow) sign of Δ𝑁 , is the difference obtained by numerical simulations and
has a corresponding vertical axis on the right side. As is attributed to collision and heating
of atoms in the trap, especially for longer oscillation times, the observed magnitude, when
comparing both vertical axes, is strongly reduced. This effect still remains, even when
using low atom numbers, as explored in Section 4.1.3, Figure 4.8. Another reason, which
makes this measurement challenging is the limited resolution of the image in real space,
presenting a greater challenge in this scenario compared to the measurements described
in Section 4.2.1. The two initially prepared wave packets move separately, cutting the
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(a) (b)

Figure 4.19: (a) Temporal evolution of the bosonic excitations for an initially prepared state
|𝑁 = 0, ↓⟩ (dashed line in the inset plot, upper panel) and |𝑁 = 0, ↑⟩ (solid line in the inset plot,
upper panel) for a qubit splitting 𝜔q/2𝜋 = 1280(21)Hz and trap frequency 𝜔/2𝜋 = 346(8)Hz.
The upper panel shows the difference Δ𝑁 = 𝑁↑ − 𝑁↓ measured in the experiment (left
vertical scale) along with theoretical prediction (right vertical axis). The lower panel shows
the temporal evolution for various qubit splitting 𝜔q/2𝜋 ∈ [0,1280(21)]Hz with the difference
Δ𝑁 depicted as a gradient from yellow (negative values) to green (positive values). (b)
Comparison of the interpolated data from (a) (lower panel) with numerical simulations in
the periodic quantum Rabi model (upper panel).

resolution in half, leading to uncertainty that results in an overestimation of the initial
excitations and a reduction in themeasured contrast between the two sets of measurements.
Nevertheless the data qualitatively agrees with theory and further qubit splitting ranging
from 0 up to the just discussed 𝜔q/2𝜋 = 1280(21)Hz are investigated in the lower panel
of Figure 4.19(a). Here, the color gradient depicts the difference of excitations Δ𝑁 as
a temporal evolution for different values of the qubit splitting. An interesting pattern
arises, when crossing a qubit splitting of 𝜔q/𝜔 ≃ 700Hz, where the created difference in
number of excitations is strongly dependent on the initial state of preparation, which
introduces a transition region in which due to the emerging dominance of the qubit energy,
the dispersive deep strong coupling regime is approached. This phenomenon of phase
dependent creation of bosonic excitation has already been documented in earlier works of
J. Koch [53], but due to limited sub-cycle observation times, the oscillatory nature of this
dependencywas not observed. In this work, the corresponding effects are observed beyond
the first Brillouin, where the periodic quantum Rabi model applies. Since experimental
cycle times limit the long-term stability, only a finite amount of qubit splittings and course
time steps (150µs) are used to complete the full diagram. Using Gaussian interpolation
between the data points allows for better comparison of the experimental data (lower
panel) with numerical simulations (upper panel), presented in Figure 4.19(b), again
showing qualitatively good agreement with reduced magnitude.





CHAPTER 5
Conclusions

In the frame of this dissertation, an analog quantum simulation utilizing ultra-cold ru-
bidium atoms has been employed to observe the deep strong coupling regime of the
periodic quantum Rabi model. After performing preparatory measurements describing
the accessible parameter range for the characteristic frequencies and verifying the system
coherence preservation with interferometric measurements, the characteristics of the ex-
tremely strong coupled system is explored by observing the temporal dynamics in position
and momentum space. A distinction was made in terms of initial state preparation, which
are performed either in the qubit’s superposition- Ψini = |±2ℏ𝑘⟩ or in the qubit’s eigen-
state preparation Ψini = |↑⟩ , |↓⟩. Previous results for short time interaction consisting of
measurements of the bosonic excitation number �̂� and the mean band occupation number
�̂�𝑥 have first been verified, and then extended to longer interaction times beyond the range
of the first Brillouin zone, where in addition to the previously mentioned observables, now
the collapse and revival of an initial vacuum state prepared in the �̂�𝑧 basis is reported.
When the temporal limitations within the first Brillouin zone are removed and the broad
tunability range of qubit splitting comes into play, the previously reported difference in
attained excitation count, Δ𝑁 = 𝑁↑ −𝑁↓, displays oscillatory patterns. This is in contrast
to the earlier presumed settled dynamics, contributing to an enhanced understanding of
this phenomenon, which still poses a challenge to full comprehension.
In summary, the aforementionedmeasurement results could also be verified in the periodic
quantum Rabi model. Further, with the ability to realize longer interaction times, the obser-
vation of the collapse and revival of an initially prepared vacuum state has been conducted.
This stands as a direct proof of the perturbative deep strong coupling in the periodic
quantum Rabi model, and while it being a periodic variant of the usual quantum Rabi
model, an observed similarity in theoretical simulations shows a significant connection
between the two models [109].

In the future, a quantum phase transition predicted in the quantum Rabi model [107,
126, 127], as can be achieved by the relative coupling strength within the system and
addressed through qubit splitting, could serve as intriguing options for exploration. While
the achievement of the former has been demonstrated in a trapped ion setup [128], apply-
ing the latter pathway to the present system holds significant promise for this experimental
configuration, due to its highly tunable qubit splitting range and larger possible relative
coupling strength. Another interesting choice of exploration could be using Feshbach
resonances to tune the interaction when using the Rubidium 85 isotope (or Kalium 39
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isotopes), introducing variable interactions onto the system. Further, as already described
in the main text, a striking similarity of the relevant Hamiltonian to superconducting qubit
systems could be further explored in the future as an interesting platform for simulating
quantum information processing applications [36, 129].



A Further Calculations on Superconducting Qubits

A.1 Derivation of the Fluxonium Hamiltonian for Arbitrary Phase Values
Consider the Schrödinger equation
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We can then separate a solution of the Schrödinger equation, into rapidly varying and
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where the oscillatory terms are neglected. Substituting the coordinate operator 𝜙 = 𝑖 𝜕
𝜕𝑝 ,

we obtain the Hamiltonian in the 𝑝 representation,
Or in more compact form
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we arrive at the following Schrodinger equation
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Hence we see that the phase does not play a role, i.e. it can be eliminated by the gauge

transformation (A.3).
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With a simple comparison of the Eq. (A.1) and Eq. (1) introduced in [109] one obtains
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