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Chapter 1

Introduction

In this thesis, we study the weighted k-Set Packing problem. It is defined as
follows: The input consists of a family S of non-empty sets, each of cardi-
nality at most k. Every set S ∈ S is equipped with a positive weight w(S).
The task is to compute a disjoint subfamily of S, i.e., a family consisting of
pairwise disjoint sets, of maximum total weight. See Fig. 1.1 for an example.

The weighted k-Set Packing problem constitutes a fundamental problem
in combinatorial optimization. In particular, the case k = 2 is equivalent
to the well-studied Maximum Weight Matching problem. Note that this
implies that for k = 1, 2, the weighted k-Set Packing problem can be solved
in polynomial time [22]. In contrast, for k ≥ 3, even the special case where
all sets have a weight of 1, the unweighted k-Set Packing problem, is NP-
hard since it generalizes the 3-Dimensional Matching problem [35]. In the
following chapters, we will study approximation algorithms for the weighted
k-Set Packing problem for constant k ≥ 3.

The remainder of this chapter is organized as follows: In Section 1.1,
we discuss previous works that our results build upon. Next, we provide
an overview of those results in Section 1.2. After that, we review further
related works in Section 1.3. Finally, Section 1.4 provides an outline of the
remainder of the thesis.

1.1 Previous works

Berman and Karpinski [9] have shown that already the unweighted 3-Set
Packing problem is NP-hard to approximate within a factor of less than
98
97 . In addition, Kann [34] has proven that the unweighted 3-Set Packing
problem is APX-hard1. Moreover, Hazan, Safra and Schwartz [32] have
established that unless P = NP, the unweighted k-Set Packing problem
does not admit a polynomial-time o( k

log k )-approximation.

1Note that MAX-SNP-hardness implies APX-hardness, see [36].



2 Chapter 1. Introduction

1

2

4

Figure 1.1: An instance of the weighted 3-Set Packing problem, where
filled circles represent set elements, and frames indicate the sets. The color
and pattern of a frame encodes the weight of the respective set as shown on
the right. An optimum solution is highlighted in gray.

A simple greedy approach that traverses the sets in order of decreasing
weight and selects every set that does not intersect an already chosen one is
known to yield an approximation guarantee of k (see, e.g., [15]). The best
approximation guarantee that is known for the unweighted k-Set Packing
problem is k+1+ε

3 [16, 28], where ε > 0 can be chosen to be arbitrarily small,
but constant. Prior to our work, the state-of-the-art for general weights has
been Berman’s k+1+ε

2 -approximation algorithm [7].

The technique that has proven most successful in designing approxima-
tion algorithms for both the weighted and the unweighted k-Set Packing
problem is local search. The basic idea can be described as follows: Start
with an arbitrary solution, e.g., the empty one. As long as there exists a local
improvement from a certain class, apply it to improve the solution main-
tained by the algorithm. Once no more local improvement can be found,
return the current solution.

In the context of (weighted) k-Set Packing, a local improvement of a
feasible solution A is a disjoint collection X of sets such that

w(X) > w({a ∈ A : ∃x ∈ X : a ∩ x 6= ∅}),

that is, the weight of X exceeds the weight of the collection of sets in A
that are intersected by sets in X (including the sets in A ∩X). Note that
these are exactly those sets that we need to remove from A in order to be
able to add the sets in X and maintain a feasible solution. See Fig. 1.2 for
an illustration. We call |X| the size of the local improvement X. Note that
whenever the current solution A is suboptimal, every optimum solution B
constitutes a local improvement of A. However, if we aim at a polynomial
running time per iteration, it is of course infeasible to check every possible
subset of the set family S. Even more, unless P = NP, for k ≥ 3, we
certainly cannot check for the existence of a (general) local improvement in
polynomial time because if we could, this would imply a polynomial-time
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w ≡ 1

(a) An instance of the unweighted 3-Set
Packing problem. A feasible solution A
is marked in blue.

(b) A local improvement X of A of size
3 is highlighted in green. The sets from
A that sets from X intersect are marked
in red.

Figure 1.2: Example of a local improvement.

algorithm for the NP-hard unweighted k-Set Packing problem. To this end,
observe that for unit weights, any local search algorithm terminates after at
most |S|+ 1 iterations since the cardinality of the solution strictly increases
with each local improvement.

As a consequence, in order to be able to search for a local improve-
ment in polynomial time, several previous works restrict themselves to local
improvements of constant size [4, 5, 7, 10, 15, 33], which can be searched
for via exhaustive enumeration. In addition, the more recent works on the
unweighted k-Set Packing problem also allow certain well-structured local
improvements of up to logarithmic size, which they search for using tech-
niques from fixed-parameter tractability such as path decompositions or
color-coding [16, 28, 48].

We point out that for general weights, in contrast to the unit weight
setting, a polynomial upper bound on the number of local improvement
steps we need to perform is not immediate. In fact, by combining reductions
from [21] and [20], it follows that a weighted version of the 3-Dimensional
Matching problem is tight PLS-complete with respect to certain types of
swaps of constant size. Thus, it appears unlikely that locally optimum
solutions can be computed in polynomial time. Instead, this problem is
usually circumvented by scaling and truncating the weight function, which
allows for a polynomial bound on the number of iterations at the cost of an
arbitrarily small loss in the approximation guarantee [7, 15]. See Section 2.3
for more details.

In the following, we first give an overview of local search based approxi-
mation algorithms for the unweighted k-Set Packing problem, including the
state-of-the-art works on this problem. Then, we discuss previous results on
local search for general weights.
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1.1.1 The unit weight case

In 1989, Hurkens and Schrijver [33] have shown that local improvements of
arbitrarily large, but constant size yield approximation guarantees arbitrar-
ily close to k

2 for the unweighted k-Set Packing problem. In their paper,
they provide exact formulas for the approximation guarantee as a function
of k and the maximum improvement size p, and give matching lower bound
examples. By taking into account local improvements of up to logarithmic
size, at the cost of a quasi-polynomial running time, Halldórsson [31] man-
aged to obtain an improved approximation guarantee of k+2

3 . Still with a
quasi-polynomial runing time, Cygan, Grandoni and Mastrolilli [17] could
improve on this, achieving a guarantee of k+1+ε

3 . The first polynomial-time
improvement over the result of Hurkens and Schrijver [33] was achieved by
Sviridenko and Ward [48]. They observed that in order to obtain an approx-
imation guarantee of k+2

3 , it suffices to search for certain, well-structured
local improvements of up to logarithmic size, which they call canonical,
as well as local improvements of size 1. In addition, Sviridenko and Ward
explain how to apply the color-coding technique in order to search for canon-
ical improvements in polynomial time. By considering local improvements
of bounded pathwidth (in a certain auxiliary graph), Cygan [16] managed
to obtain an approximation guarantee of k+1+ε

3 , where the running time is
polynomial (for any fixed ε > 0), but depends on ε−1 in a doubly exponen-
tial way. The state-of-the-art algorithm for the unweighted k-Set Packing
problem in terms of approximation guarantee and running time is due to
Fürer and Yu [28]. They enhance the notion of canonical improvements
considered in [48] by studying canonical improvements with tail changes. In
doing so, they obtain a polynomial-time k+1+ε

3 -approximation algorithm for
the unweighted k-Set Packing problem, whose running time is singly expo-
nential in ε−2. In addition, Fürer and Yu provide instances with locality
gap k+1

3 for any algorithm considering local improvements of size O(|S|
1
5 ),

i.e., instances for which there exists a feasible solution that does not admit
any local improvement of size O(|S|

1
5 ), but that is by a factor of k+1

3 smaller
than the optimum. Hence, new techniques will be required to get below the
threshold guarantee of k+1

3 for unit weights.

1.1.2 General weights

When it comes to general weights, the situation appears to be even more
challenging. For instance, while in the unit weight case, local improvements
of constant size were sufficient to achieve approximation guarantees arbitrar-
ily close to k

2 [33], Arkin and Hassin [4] have shown that for general weights,
applying local improvements of constant size t in an arbitrary manner un-
til no more exist only results in an approximation guarantee of k − 1 + 1

t .
Contrasting this result, Chandra and Halldórsson [15] have found that if in
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each iteration, among a certain class of local improvements of constant size,
one of maximum payoff factor, the ratio between the total weights of sets
added to and removed from the solution is chosen, then this results in an
approximation guarantee of 2·(k+1)

3 . By scaling and truncating the weight

function, they obtain a polynomial-time 2·(k+1)+ε
3 -approximation algorithm

for the weighted k-Set Packing problem.

Prior to our work, the state-of-the-art for the weighted k-Set Packing
problem has been Berman’s algorithm SquareImp [7]. As the name indicates,
SquareImp performs a misdirected local search in that it does not optimize
the original, but the squared weight w2 of the solution (meaning that the
weight of each set is squared individually). For the case where the size of the
local improvement is bounded by 2, the optimum misdirection (among those
of the form wα) is known [10]. In contrast, the type of local improvement
that SquareImp considers can be of size up to k. In [7], Berman shows
that the weight of a solution that is locally optimum w.r.t. this type of
improvement is by a factor of at most k+1

2 smaller than the optimum, and
that this is tight. In particular, Berman’s result implies a polynomial-time
k+1+ε

2 -approximation for the weighted k-Set Packing problem.

The first improvement over this guarantee, which has been unchallenged
for twenty years, was obtained in the course of my Master’s thesis [39]. By
considering local improvements of size up to O(k2), I managed to obtain a

(slightly) improved approximation guarantee of
k+1− 1

31,850,496·k+ε

2 . After the
completion of the thesis, this result was further refined to obtain an improved
guarantee of k+1+ε

2 − 1
63,700,992 [40]. Very recently and independent of our

work, Thiery and Ward [49] have shown that by taking into account local
improvements of size up to O(k3), one can obtain approximation guarantees
of k+1−τk

2 , where τk ≥ 0.428 and limk→∞ τk = 2
3 . In particular, their result

implies a 1.786-approximation for k = 3.

1.2 Our results

In this thesis, we first refine and simplify the ideas used in [40]. More pre-
cisely, in Chapter 3, we show that it suffices to consider the type of local
improvement of size ≤ k SquareImp searches for, as well as local improve-
ments of size 3, to obtain a polynomial-time

(
k+1

2 −
1

1000

)
-approximation

algorithm for the weighted k-Set Packing problem for k ≥ 3. Even though
in terms of the approximation ratio, this result is now dominated by the
guarantees in [49], we believe that it is still worthwhile to present it as part
of this thesis for the following reasons: First of all, it shows that Berman’s al-
gorithm SquareImp can be improved upon without the (significant) increase
in the size of the improvements considered that is inherent to [39, 40, 49]
and the results in Chapters 4 and 5. Second, the presentation of this com-
parably simple way to obtain an improvement may serve as a warm-up for
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the reader, providing some intuition for the types of arguments that we will
use in our more involved analyses. Finally, in the course of the analysis, we
develop and showcase a structural result that will play a crucial role when
deriving the subsequent two results.

For the first one of these results, we explore the possibilities of local
improvements of up to logarithmic size in the weighted setting. Recall that
even for unit weights, local improvements of constant size cannot result in
a better guarantee than k

2 [33], whereas taking into account local improve-
ments of up to logarithmic size allows to bring the approximation guarantee
for the unweighted k-Set Packing problem down to k+1+ε

3 . Thus, it ap-
pears natural to ask whether a similar behavior can be observed for general
weights. Surprisingly, this turns out not to be the case. More precisely,
in Chapter 4, we show that by considering local improvements of logarith-
mically bounded size with respect to a fixed additive local search objective
(e.g., w2(A) =

∑
S∈Aw

2(S) as in Berman’s algorithm [7]), one cannot obtain

a better guarantee than k
2 . Complementing this negative result, we derive a

suitable notion of a well-structured local improvement of logarithmic size for
the weighted setting, and use it to obtain improved approximation guaran-
tees of k+1−λk

2 , where limk→∞ λk = 1. Note that in light of our lower bound,
these guarantees are asymptotically best possible. The results presented in
Chapter 4 have been published in the form of an extended abstract in the
proceedings of IPCO 2022 [41].2 A full version of the paper has recently
been accepted for publication in Mathematical Programming.

At first sight, the previous results seem to conclude the story of local
search for the weighted k-Set Packing problem, given that well-structured
local improvements of logarithmically bounded size lie on the border of what
is still tractable via enumeration based approaches all of the prior works rely
on. However, it turns out that by employing a black box algorithm for the
unweighted k-Set Packing problem to carefully chosen subinstances, we can
in fact circumvent the logarithmic size bound, and more excitingly, pass the
threshold guarantee of k

2 . We point out that this approach is motivated by
the fact that instances on which Berman’s analysis [7] (which we build upon)
is close to being tight are “close to being unweighted in a certain sense”.
See Chapters 2 and 3 for the details. Formalizing the above ideas results
in a polynomial-time (0.4999 · k + 0.501)-approximation algorithm for the
weighted k-Set Packing problem, which we present in Chapter 5. A version
of this result where we obtain slightly improved constants at the cost of a
(much) more tedious analysis has been published in the proceedings of SODA
2023 [42]. Even though the absolute improvement in the approximation
guarantee we obtain is quite small and only dominates our previous results,
let alone the recent improvements by Thiery and Ward [49] for (very) large

2The lower bound result in [41] is slightly weaker than the one presented in this thesis
in that it only considers local search objectives of the form wα with α ∈ R.
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values of k, we believe that as a proof of concept, our result is exciting
nonetheless.

In this spirit, in Chapter 6, we show that the techniques from Chapter 5
allow us to establish a general link between the approximation ratios for
the weighted and the unweighted k-Set Packing problem. More precisely,
we show that for every σ ∈ (0, 1), there exists a constant τ ∈ (0, 1) with
the property that for every k ≥ 3, a polynomial-time (τ · k)-approximation
algorithm for the unweighted k-Set Packing problem immediately gives rise
to a polynomial-time (σ · k)-approximation algorithm for general weights.
In terms of lower bounds, this result tells us that it cannot happen that for
unit weights, the current lower bound of Ω( k

log k ) can be attained, whereas
for general weights, obtaining an o(k)-approximation is hard. This does
not seem to be clear a priori. Moreover, the lines of argumentation in
Chapters 5 and 6 may serve as a recipe to translate improved guarantees for
the unweighted k-Set Packing problem into improved guarantees for general
weights.

Complementing the rather abstract result in Chapter 6, in Chapter 7,
we study the hereditary 2-3-Set Packing problem, a (very) special case of
weighted 3-Set Packing, and provide a rather simple 4

3 -approximation, im-
proving on the previous best known guarantee of 7

5 [25]. The hereditary
2-3-Set Packing problem arises as a subtask in an approximation algorithm
for the Maximum Leaf Spanning Arborescence problem (MLSA) in acyclic
digraphs (dags) (see Chapter 7) by Fernandes and Lintzmayer [25]. They
show that any polynomial-time α-approximation for the hereditary 2-3-Set
Packing problem gives rise to a polynomial-time max{α, 4

3}-approximation
for the MLSA in dags. In particular, the 4

3 -approximation we provide allows
us to tap the full potential of the approach by Fernandes and Lintzmayer.
In addition, our algorithm and our analysis are arguably simpler than the
7
5 -approximation in [25].

1.3 Further related works

1.3.1 Linear and semidefinite programming relaxations for
weighted Set Packing

The weighted Set Packing problem is defined analogously to the weighted
k-Set Packing problem, but allows sets to be of arbitrary large (positive)
cardinality. Unless P = NP, even the unit weight case cannot be approxi-
mated within a factor of n1−ε for any constant ε > 0, where n denotes the
number of sets contained in the instance. This follows from [50]. In this
section, we review works that investigate the strength of linear and semidef-
inite programming relaxations for the weighted Set Packing problem and
relate them to the sizes of the sets that occur, as well as certain structural
properties of the instances.
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For a set family S, denote the underlying universe by U(S) :=
⋃
S.

Given a collection S of non-empty sets and w : S → R>0, we can model the
weighted Set Packing problem on (S, w) by the following integer program:

max
∑
S∈S

w(S) · xS (Set-Packing-IP(S, w))

subject to
∑
S:u∈S

xS ≤ 1 for all u ∈ U(S) (1.1)

xS ∈ {0, 1} for all S ∈ S (1.2)

If we relax the integrality constraints in (1.2) to xS ∈ [0, 1] for each S ∈ S,
we obtain the standard linear programming relaxation for (S, w):

max
∑
S∈S

w(S) · xS (Set-Packing-LP(S, w))

subject to
∑
S:u∈S

xS ≤ 1 for all u ∈ U(S) (1.3)

xS ∈ [0, 1] for all S ∈ S (1.4)

Denote the optimum value of (Set-Packing-LP(S, w)) by ν∗(S, w). The
Füredi-Kahn-Seymour-Conjecture [26] states that there exists a feasible so-
lution A to (S, w) such that∑

S∈A

(
|S| − 1 +

1

|S|

)
· w(S) ≥ ν∗(S, w). (1.5)

Füredi [27] has verified the conjecture for the special case where all sets in S
have the same cardinality and the same weight. Note that for an instance of
the weighted k-Set Packing problem, we can assume without loss of general-
ity that all sets are of cardinality exactly k. In case S is k-partite, i.e., U(S)
can be partitioned into U1, . . . , Uk such that |S∩Ui| = 1 holds for all S ∈ S,
and again, all sets have the same weight, the coefficient of w(S) in (1.5) can
be decreased to |S| − 1 = k − 1 [27]. In [26], the authors show that the
conjecture holds if one of the following three conditions is satisfied: all sets
in S have the same cardinality, S is intersecting, meaning that each two sets
in S have a non-empty intersection, or w is constant (i.e., each set receives
the same weight). In particular, for instances (S, w) of the weighted k-Set
Packing problem, the integrality gap of (Set-Packing-LP(S, w)) is bounded
by k − 1 + 1

k . For projective planes, this bound is tight, as noted in [26].
For general set families and weight functions, the Füredi-Kahn-Seymour-
Conjecture remains open and has been subject to recent research [3, 6].

For set families in which all sets have the same cardinality k, Chan and
Lau [14] provide an algorithmic proof of (1.5), obtaining an LP-relative
(k − 1 + 1

k )-approximation for the weighted k-Set Packing problem. For k-
partite instances, they even obtain an LP-relative (k − 1)-approximation,
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which, for k = 3, improves upon Berman’s approximation guarantee of
2 + ε (with respect to the value of an optimum solution). Parekh and
Pritchard managed to generalize the aforementioned results from [14] to
the b-matching problem on k-uniform, respectively k-uniform and bipartite
hypergraphs [43].

Chan and Lau [14] further investigate how to strengthen the standard
LP relaxation by adding further constraints, and study the integrality gaps
of the resulting formulations. For a uniform set size of k = 3 and unit
weights, they prove that the Fano LP has an integrality gap of 2. In ad-
dition, for k ≥ 3, Chan and Lau construct families S of sets of cardinal-
ity k, in which the integrality gap of (Set-Packing-LP(S, w)) remains at

least k− 2 for Ω
(
|U(S)|
k3

)
rounds of Sherali-Adams relaxations, even for unit

weights. On the other hand, they show that for constant k, there exists a
polynomial-sized LP relaxation for the unweighted k-Set Packing problem
with integrality gap at most k+1

2 . Finally, they provide a polynomial-sized
semidefinite programming relaxation of the unweighted Set Packing problem
with integrality gap at most maxS∈S |S|+1

2 .
For the unweighted k-Set Packing problem, Singh and Talwar [46] have

shown thatO(k2) rounds of the Chvátal-Gomory-truncation suffice to reduce
the integrality gap of (Set-Packing-LP(S, w)) to k+1

2 .

1.3.2 The Maximum Weight Independent Set problem in
(k + 1)-claw free graphs

Several approximation algorithms for the (weighted) k-Set Packing problem
actually tackle a more general task, the Maximum Weight Independent Set
problem (MWIS) in (k + 1)-claw free graphs. An undirected graph G =
(V,E) is (k + 1)-claw free if for any vertex v ∈ V and any independent
set I ⊆ V , v has at most k neighbors in I. There exists an approximation-
preserving reduction from the weighted k-Set Packing problem to the MWIS
in (k + 1)-claw free graphs. See Chapter 2 for further details. We refer to
the unit weight version of the MWIS as MIS.

The approximation algorithms from [4, 7, 15, 33, 39, 40, 49] and Chap-
ter 3 generalize to the M(W)IS in (k + 1)-claw free graphs (in the sense
that algorithms for the unweighted k-Set Packing problem generalize to
algorithms for the MIS, and the algorithms for general weights can be in-
terpreted in terms of the MWIS). In addition, the arguments in Chapter 6
yield an analogous result for the MWIS in (k + 1)-claw free graphs.

The algorithms in [16, 17, 28, 31, 48] and the ones presented in Chapters 4
and 5, as well as their analyses, generalize to the MWIS in (k+ 1)-claw free
graphs in a straightforward way. In particular, the generalized analyses yield
the same approximation ratios as for the weighted k-Set Packing problem.
However, for the MWIS in (k+ 1)-claw free graphs, only a quasi-polynomial
running time can be guaranteed. (Note that the algorithms in [17] and [31]
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even require a quasi-polynomial running time for the weighted k-Set Packing
problem.)

While the best lower bound on the approximability of the weighted k-
Set Packing problem is Ω( k

log k ) [32], stronger inapproximability results have
been recently obtained for the MWIS in (k + 1)-claw free graphs: Unless

NP = BPP, there is no polynomial-time
(

k
3+2
√

2
− Ω(k)

)
-approximation for

the MWIS in (k + 1)-claw free graphs [37]. When additionally assuming
the Unique Games Conjecture, the inapproximability can be strengthened
to k

4 − Ω(k) [37].

Another very recent paper [13] provides lower bounds concerning the
integrality gap of the clique constrained stable set polytope after an (almost)
linear (w.r.t. the number of vertices) number of rounds of the Sherali-Adams
hierarchy. These lower bounds are stronger than the ones proven in [14] for
the special case of weighted k-Set Packing.

1.4 Organization of the thesis

The remainder of this thesis is organized as follows: In Chapter 2, we first
shed some more light on the relation between the weighted k-Set Pack-
ing problem and the MWIS in (k + 1)-claw free graphs. Then, we discuss
Berman’s algorithm SquareImp and its analysis, which constitutes the start-
ing point for our improvements. In particular, we investigate the structural
properties of instances where Berman’s analysis is tight. These will motivate
the route we take towards better approximation guarantees in the following
chapters.

In Chapter 3, we present a polynomial-time
(
k+1

2 −
1

1000

)
-approximation

algorithm for the MWIS in (k+1)-claw free graphs. The analysis of the algo-
rithm is comparably simple and allows us to introduce one of the main tools
used in the analyses of our more involved algorithms, which are presented
in the following two chapters.

Chapter 4 investigates the power of local improvements of logarithmically
bounded size for weighted k-Set Packing. On the one hand, we present a
polynomial-time k+1−λk

2 -approximation algorithm, where limk→∞ λk = 1.
On the other hand, we show that this result is asymptotically best possible:
We establish a lower bound of k

2 on the approximation guarantees of local
search algorithms that only consider local improvements of logarithmically
bounded size (w.r.t. a fixed additive local search objective).

In Chapter 5, we explain how to breach the k
2 -barrier (at least for large

enough values of k) by employing a black box algorithm for the unweighted
k-Set Packing problem to generate local improvements. Building upon this
approach, we manage to more generally link the approximation guarantees
achievable for the weighted k-Set Packing problem to those that can be
obtained for unit weights in Chapter 6.
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In Chapter 7, we shift our focus to a more concrete problem again and
study a special case of weighted 3-Set Packing, the hereditary 2-3-Set Pack-
ing problem. We provide a simple 4

3 -approximation algorithm for this prob-
lem. Using the connection to the Maximum Leaf Spanning Arborescence
problem in acyclic digraphs established by Fernandes and Lintzmayer [25],
this immediately yields a 4

3 -approximation for the latter problem.
Finally, we conclude the thesis in Chapter 8.



12 Chapter 1. Introduction



Chapter 2

Preliminaries

In this chapter, we formally introduce the weighted k-Set Packing problem
and the Maximum Weight Independent Set problem (MWIS) in (k+1)-claw
free graphs in Section 2.1. We further establish that the MWIS in (k + 1)-
claw free graphs constitutes a (strict) generalization of the weighted k-Set
Packing problem.

In Section 2.2, we then present Berman’s algorithm SquareImp, which
yields a k+1

2 -approximation for the MWIS in (k + 1)-claw free graphs [7].
Prior to our work [40], Berman’s result has been the state-of-the-art for
both the MWIS in (k+ 1)-claw free graphs and the weighted k-Set Packing
problem. Thus, it constitutes a natural starting point for our improvements.

In Section 2.3, we show how to guarantee that SquareImp runs in poly-
nomial time. Following [15], we outline how to scale and truncate the weight
function in order to obtain integral weights and a polynomial bound on the
weight of an optimum solution, while incurring only an arbitrarily small loss
in the approximation guarantee. We will re-employ this result several times
in the running time analyses of our algorithms.

In Section 2.4, we bound the approximation ratio that SquareImp attains
by k+1

2 . The analysis is based on [7] and [40] and phrased in a way that allows
us to reuse certain results when bounding the approximation guarantees
achieved by our (improved) algorithms.

We conclude this chapter in Section 2.5 by discussing an example in-
stance provided by Berman [7] proving his analysis to be best possible. We
observe that this instance features unit weights and argue that in fact, all in-
stances where SquareImp does not perform better than a k+1

2 -approximation
are unweighted (in a certain sense) and highly structured. In particular, all
of them admit local improvements of size 3. This observation will inspire
the algorithm presented in Chapter 3.
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v0

center node

v1 v2 . . . vd−1 vd

set TC consisting of d talons

Figure 2.1: Illustration of a d-claw C.

2.1 The weighted k-Set Packing problem and the
Maximum Weight Independent Set problem
in (k + 1)-claw free graphs

In this section, we lay out the well-known connection between the weighted
k-Set Packing problem and the MWIS in (k + 1)-claw free graphs. We first
provide formal definitions of the two problems. The weighted k-Set Packing
problem is defined as follows:

Definition 2.1 (weighted k-Set Packing problem).

Input: a collection S of non-empty sets, each of cardinality at most k,
positive set weights w : S → R>0

Task: Compute a disjoint subcollection A ⊆ S (meaning that we require
the sets in A to be pairwise disjoint) of maximum total weight.

Next, we introduce the notions of an independent set and a d-claw free
graph.

Definition 2.2 (independent set). Let G = (V,E) be a graph. A vertex set
I ⊆ V is called independent if the vertices in I are pairwise non-adjacent.

Definition 2.3 (d-claw). Let d ∈ Z≥1. A d-claw is a star on d+ 1 vertices,
i.e., a graph of the form C = ({v0, v1, . . . , vd}, {{v0, vi}, i = 1, . . . , d}). We
call v0 the center node and v1, . . . , vd the talons of C, and we denote the set
of talons by TC . See Fig. 2.1 for an illustration.

We remark that for d = 1, either of the two vertices can be regarded as
the center or the unique talon, respectively. In the following, it will always
be clear from the context which vertex is to be considered the center node.
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(a) The blue edges and vertices
form a 3-claw in the displayed graph.

(b) The red edges and vertices do not
form a 3-claw in the displayed graph.
Even more, the graph is 3-claw free.

Figure 2.2: Illustration of Definition 2.4.

Definition 2.4 (d-claw free graph). Let d ∈ Z≥1. We call an induced
subgraph C of G that constitutes a d-claw a d-claw in G. We say that
a graph G is d-claw free if there is no d-claw in G. See Fig. 2.2 for an
illustration.

A graph is 1-claw free if and only if it does not contain any edge. A
2-claw free graph is a disjoint union of complete graphs. We remark that
the notion of d-claw freeness from Definition 2.4 agrees with the definition
that we gave in the introduction.

Proposition 2.5. Let d ∈ Z≥1. A graph G is d-claw free if and only if for
any vertex v ∈ V (G) and any independent set I ⊆ V (G), v has at most d−1
neighbors in I.

Proof. Assume that G is d-claw free, let v ∈ V (G) and let T be the set
of neighbors of v in an independent set I. If T is non-empty, then C :=
G[{v} ∪ T ] constitutes a |T |-claw in G. In particular, |T | ≤ d − 1 because
otherwise, C would contain an induced subgraph that forms a d-claw, a
contradiction. Now, assume that G is not d-claw free. Then G contains a
d-claw C, and its center node has d neighbors in the independent set TC
formed by its talons.

Definition 2.6 (Maximum Weight Independent Set problem (MWIS)).

Input: a graph G = (V,E), w : V → R>0

Task: Find an independent set A ⊆ V such that w(A) is maximum.

The special case where w ≡ 1 is called the Maximum Cardinality Inde-
pendent Set problem (MIS). The M(W)IS in (k + 1)-claw free graphs is the
restriction of the M(W)IS to instances where the input graph G is (k + 1)-
claw free.
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1

2

4
2

2

11 44

Figure 2.3: An instance of weighted 3-Set Packing (left) and the corre-
sponding conflict graph (right), equipped with the respective vertex weights.
An optimum solution is highlighted. Colors and patterns indicate the
weights.

We remark that for both the weighted (or unweighted) k-Set Packing
problem and the M(W)IS in (k+ 1)-claw free graphs, the positive integer k
is part of the problem definition and not of the input. Thus, when discussing
polynomial-time (approximation) algorithms, we will consider k to be a
fixed constant. In particular, a running time of O(nk), where n denotes the
number of sets/vertices will be regarded as polynomial.

To reduce the weighted k-Set Packing problem to the MWIS in (k + 1)-
claw free graphs, we introduce the notion of the conflict graph [7, 15].

Definition 2.7 (conflict graph). Let S be a family of sets. The conflict
graph GS is defined as follows:

• The vertices of GS correspond to the sets in S, i.e., V (GS) = S.

• The edges of GS model non-empty set intersections, i.e.,
E(GS) = {{s1, s2} : s1, s2 ∈ S, s1 6= s2, s1 ∩ s2 6= ∅}.

See Fig. 2.3 for an illustration.

By definition of the conflict graph, A ⊆ S consists of pairwise disjoint sets
if and only if A constitutes an independent set in GS . This yields an approx-
imation factor-preserving polynomial-time reduction from the (weighted)
k-Set Packing problem to the M(W)IS. On its own, this observation is, how-
ever, not particularly helpful since for every constant ε > 0, it is known to be
NP-hard to even approximate the Maximum Cardinality Independent Set
problem within a factor of n1−ε, where n denotes the number of vertices [50].
Fortunately, it turns out that the conflict graphs of instances of the weighted
k-Set Packing problem are (k+1)-claw free, which provides additional struc-
ture that we can exploit towards (much) stronger approximation guarantees
than for the general MWIS.

Proposition 2.8 (see, e.g., [15]). Let k ∈ Z≥1 and let S be a family of sets,
each of cardinality at most k. Then GS is (k + 1)-claw free.
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Figure 2.4: If there is a (k + 1)-claw in GS , then the set corresponding to
the center has to intersect the k + 1 pairwise disjoint sets corresponding to
the talons.

Proof. Assume towards a contradiction that there were a (k + 1)-claw C
in GS . Then the k + 1 sets corresponding to the talons must be pairwise
disjoint, and each of them has to intersect the set that constitutes the center
of the claw. But this contradicts the fact that each set contains at most k
elements. See Fig. 2.4 for an illustration.

We can even show the following, slightly stronger statement:

Proposition 2.9. Let k ∈ Z≥1 and let S be a family of sets, each of cardi-
nality at most k. Let S ∈ S and let U be the neighborhood of S in GS , i.e.,
the collection of sets in S \ {S} that have a non-empty intersection with S.
Then there exist s := |S| set collections U1, . . . , Us such that Ui is a (possibly
empty) clique in GS for every i = 1, . . . , s, and U =

⋃s
i=1 Ui.

Proof. Let S = {a1, . . . , as} and define Ui := {S′ ∈ U : ai ∈ S′}. As every
set in U intersects S, we have U =

⋃s
i=1 Ui. Moreover, Ui constitutes a

clique in GS for every i = 1, . . . , s since all sets in Ui intersect in ai.

We remark that for k ≥ 2, not every (k+1)-claw free graph arises as the
conflict graph of a family of sets that each have a cardinality of at most k.

Proposition 2.10. Let k ≥ 2. There exists a (k+1)-claw free graph G with
the following property: There is no family S consisting of sets of cardinality
at most k such that GS is isomorphic to G.

Proof. Let k ≥ 2 and consider a graph G that consists of a cycle C of length
2k + 1 and a vertex v∗ connected to each vertex of the cycle (see Fig. 2.5).
It is not hard to see that G is (k + 1)-claw free: First of all, there is no
(k + 1)-claw in G centered at v∗ because the maximum cardinality of an
independent set in C is k. Moreover, every vertex of C has 3 ≤ k + 1
neighbors in G, and one of them, v∗, is adjacent to both other neighbors.

However, we cannot cover the neighborhood of v∗ by at most k cliques.
The maximum size of a clique in C is 2, and thus, at most k cliques do not
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v∗

Figure 2.5: A 3-claw free graph that does not arise as the conflict graph
of a set family consisting of sets of cardinality at most 2.

suffice to cover the 2k + 1 vertices of C. Thus, Proposition 2.9 tells us that
G is not isomorphic to the conflict graph of any set family consisting of sets
of cardinality at most k.

Hence, the M(W)IS in (k + 1)-claw free graphs constitutes a strict gen-
eralization of the (weighted) k-Set Packing problem.

2.2 Berman’s algorithm SquareImp

In this section, we discuss Berman’s algorithm SquareImp [7], which has
been the state-of-the-art for both the weighted k-Set Packing problem and
the MWIS in (k + 1)-claw free graphs for twenty years, and constitutes the
starting point for our improvements. SquareImp is a local search algorithm
that starts with the empty solution and iteratively applies local improve-
ments w.r.t. the squared weight function from a certain class until no more
exist. We call the type of local improvement that SquareImp considers claw-
shaped. In order to formally define the notion of a claw-shaped improvement,
we require the following notation, which is based on [7].

Notation 2.11. Let U ⊆ V be sets and let w : V → R>0. We write
w2(U) :=

∑
u∈U w

2(u).

In particular, we have w2(U) 6= (w(U))2 in general.

Definition 2.12 (neighborhood [7]). Let G = (V,E) be a graph and let
U,W ⊆ V . We call N(U,W ) := {w ∈ W : ∃u ∈ U : u = w ∨ {u,w} ∈ E}
the neighborhood of U in W . For v ∈ V , we write N(v,W ) := N({v},W ).
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× v

. . . . . .

N(X,A)

X

w2(�) > w2(�)

Figure 2.6: A claw-shaped improvement consists of a single vertex without
any neighbor in A, or of the set of talons of a claw centered at a vertex in
A.

Algorithm 1: Berman’s algorithm SquareImp [7]

Input: a (k + 1)-claw free graph G = (V,E), w : V → R>0

Output: an independent set A ⊆ V
1 A← ∅
2 while there exists a claw-shaped improvement X of A do
3 A← (A \N(X,A)) ∪X
4 end
5 return A

Note that Definition 2.12 differs from the more standard definition of
the neighborhood in that we include all vertices from U that are contained
in W , treating them as “adjacent to themselves”.

Definition 2.13 (claw-shaped improvement). Let G = (V,E) be a graph,
w : V → R>0 and let A and X be independent sets in G. We say that X is
a local improvement of A (w.r.t. w2) if w2(X) > w2(N(X,A)), and we call
|X| the size of the local improvement X.

We further call a local improvement X claw-shaped if |X| = 1 and
N(X,A) = ∅ or if there is v ∈ A such that {v} ∪ X induces a |X|-claw
in G centered at v. We say that no claw improves A to state that there is
no claw-shaped improvement of A. See Fig. 2.6 for an illustration.

Observe that if G is (k + 1)-claw free, then a claw-shaped improvement
is of size at most k. Using Definition 2.13, we can formulate SquareImp as
shown in Algorithm 1. One iteration of SquareImp can be implemented to
run in time O(|V |k ·(|V |+|E|)) by enumerating all subsets of V of cardinality
at most k and, for each such subset X, checking in linear time whether it
constitutes a claw-shaped improvement. As w2(A) strictly increases in each
iteration, it is also clear that SquareImp terminates. However, for general
weights, it is not clear how to obtain a polynomial bound on the number of
iterations that SquareImp performs. This issue is resolved by pre-processing
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the instance in such a way that the weights become integral and the weight
of an optimum solution can be polynomially bounded, while incurring only
an arbitrarily small increase in the approximation ratio [7, 15]. We provide
the details in Section 2.3.

2.3 A polynomial running time

In this section, we explain how to achieve a polynomial running time at
the cost of an arbitrarily small loss in the approximation guarantee. To
this end, following [7], we first observe that in case the weight function w
is integral and OPT(G,w), the maximum weight of an independent set in
(G,w), is polynomially bounded in the number of vertices, then the number
of iterations of SquareImp is polynomially bounded. Indeed, if the weights
are integral, then w2(A) increases by at least 1 in each iteration. As

0 ≤ w2(A) ≤ (w(A))2 ≤ (OPT(G,w))2,

the number of iterations is at most (OPT(G,w))2, which is polynomially
bounded. We have already discussed in the previous section how to perform
one iteration of SquareImp in polynomial time.

Hence, it remains to pre-process the instance in an appropriate way to
obtain integral weights and a polynomial bound on the maximum weight
of an independent set, while only incurring a small error in terms of the
approximation guarantee. This is taken care of by the following lemma:

Lemma 2.14. Let N ∈ Z≥2 and let (G = (V,E), w) be an instance of
the MWIS in (k + 1)-claw free graphs. Then we can, in polynomial time,
compute U ⊆ V and a weight function w′ : U → Z>0 with the following
properties:

(i) Let ρ ≥ 1 and let A ⊆ U be a ρ-approximate solution to the MWIS
in (G[U ], w′). Then A constitutes an N

N−1 · ρ-approximate solution to
the MWIS in (G,w).

(ii) OPT(G[U ], w′) ≤ k ·N · |V |.

We remark that as an induced subgraph of G, G[U ] is (k + 1)-claw free
again, and in particular, we can apply SquareImp to (G[U ], w′). Moreover,
if G = GS is the conflict graph of a set family S, then G[U ] = GU is the
conflict graph of the subfamily U ⊆ V (G) = S. The proof of Lemma 2.14 is
based on [7] and [15].

Proof of Lemma 2.14. If V = ∅, there is nothing to show, so assume that
V 6= ∅. We obtain U and w′ as follows:
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1. Apply the greedy algorithm to compute a k-approximate solution A0

to the MWIS in (G,w) (see, e.g., [15]). Note that w(A0) > 0 since all
weights are strictly positive and V 6= ∅.

2. Define a scaled weight function ws by ws(v) := N ·|V |
w(A0) · w(v) for all

v ∈ V .

3. Let U := {v ∈ V : bws(v)c > 0} and set w′(u) := bws(u)c for all u ∈ U .

To prove (i), let B be an optimum solution to (G,w). Then B ∩ U is a
feasible solution to (G[U ], w′) of value at least

w′(B ∩ U) = bwsc(B) ≥ ws(B)− |V | = N · |V |
w(A0)

·
(
w(B)− w(A0)

N

)
≥ N · |V |

w(A0)
· N − 1

N
· w(B).

Let further A be a ρ-approximate solution to (G[U ], w′). Then

ρ · w(A) = ρ · w(A0)

N · |V |
· ws(A) ≥ w(A0)

N · |V |
· ρ · w′(A)

≥ w(A0)

N · |V |
· w′(B ∩ U) ≥ N − 1

N
· w(B).

Hence, A constitutes a N
N−1 ·ρ-approximate solution to the MWIS in (G,w).

For (ii), let B′ be an optimum solution to (G[U ], w′). Then

w′(B′) ≤ ws(B′) = N · |V | · w(B′)

w(A0)
≤ k ·N · |V |

by our choice of A0. This concludes the proof.

2.4 Analysis of SquareImp

In this section, we show that SquareImp achieves an approximation guaran-
tee of k+1

2 for the MWIS in (k+1)-claw free graphs. The analysis we present
is based on [7], but rephrased in a way that allows us to reuse certain results
in the following chapters.

Theorem 2.15 ([7]). Let k ∈ Z≥1, let (G,w) be an instance of the MWIS
in (k + 1)-claw free graphs, let B be an independent set in G and let A be
an independent set in G with the property that no claw improves A. Then
w(B) ≤ k+1

2 · w(A).

Applying Theorem 2.15 in the situation where A denotes the solution
returned by SquareImp and B is an optimum solution yields the desired
approximation guarantee.
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For the remainder of this section, fix k ∈ Z≥1 and an instance (G,w) of
the MWIS in (k + 1)-claw free graphs. In addition, let B be an optimum
solution to (G,w) and let A be a feasible solution to (G,w) such that no
claw improves A.

The main idea of Berman’s analysis [7] is to charge the vertices in A
for preventing adjacent vertices in B from being included into A. (Observe
that by positivity of the weight function, A is an inclusion-wise maximal
independent set.) More precisely, Berman shows how to spread the weight
of the vertices in B among their neighbors in A in such a way that no vertex
in A receives more than k+1

2 times its own weight. The suggested weight
distribution proceeds in two steps:

• First, each vertex u ∈ B invokes costs of w(v)
2 at each v ∈ N(u,A).

• In the second step, each vertex u ∈ B sends the remaining amount of
w(u)− 1

2 · w(N(u,A)) to a heaviest neighbor it possesses in A, which
is captured by the following definition of charges.

Definition 2.16 (charges [7]). For each u ∈ B, pick a vertex v ∈ N(u,A)
of maximum weight and call it n(u). Define a map charge : B ×A→ R via

charge(u, v) :=

{
w(u)− 1

2 · w(N(u,A)) , if v = n(u)

0 , otherwise
.

The suggested weight distribution provides the following bound on w(B).

w(B) ≤
∑
v∈A


|N(v,B)|

2
· w(v)︸ ︷︷ ︸

paid in step 1

+
∑

u∈B:v=n(u)

charge(u, v)

︸ ︷︷ ︸
paid in step 2

 (2.1)

To bound the amount a vertex v ∈ A has to pay in the first step, we employ
Proposition 2.17.

Proposition 2.17 ([7]). Let k ∈ Z≥1, let G = (V,E) be (k + 1)-claw free,
let v ∈ V and let Z ⊆ V be independent. Then |N(v, Z)| ≤ k.

Proof. If v ∈ Z, then N(v, Z) = {v} since Z is independent. Otherwise,
Proposition 2.5 yields the desired statement.

In particular, the total amount a vertex v ∈ A has to pay in the first
step is bounded by k

2 ·w(v). Together with (2.1), this results in the following
lemma, which we explicitly state here for better reusability.

Lemma 2.18 ([7]). w(B) ≤ k
2 · w(A) +

∑
u∈B charge(u, n(u))
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v

. . . u

N(u,A \ {v})

Figure 2.7: Motivation of Definition 2.19.

In order to bound the total charges a vertex from A has to pay in the
second step, we need to exploit the fact that when the algorithm terminates,
there is no claw-shaped improvement. To this end, let v ∈ A. Our goal is to
construct an improving claw C centered at v with TC ⊆ B. Consider adding
a vertex u ∈ N(v,B) to the set of talons TC . On the bright side, this of
course increases w2(TC) by w2(u). On the negative side, w2(N(TC , A)) may
also increase by up to w2(N(u,A)\{v}). (If we want our claw to be centered
at v, we will have to pay w2(v) anyway.) Thus, if w2(u) > w2(N(u,A)\{v}),
we certainly want to add u to TC , whereas in case w2(u) ≤ w2(N(u,A)\{v}),
we may choose not to. This is captured by the notion of the contribution
(Definition 2.19). It measures how much adding (or not adding) a vertex
u to the set of talons of a claw centered at v contributes (at least) towards
making that claw improving. See Fig. 2.7 for an illustration.

Definition 2.19. For u ∈ V and v ∈ A, define

contr(u, v) :=

{
max

{
0, w

2(u)−w2(N(u,A)\{v})
w(v)

}
, if v ∈ N(u,A)

0 , else
.

The main reason that we divide by w(v) is to normalize the contribution
to make it comparable to the notion of charges (cf. Corollary 2.22).

The fact that there is no claw-shaped improvement yields an upper
bound on the total contribution to a vertex v ∈ A (see Proposition 2.20).
Corollary 2.22 further bounds the charges a vertex v ∈ A has to pay to a
vertex u ∈ B in terms of the contribution of u to v. This allows us to bound
the total charges v has to pay in the second step of the weight distribution.

Proposition 2.20 ([7]). For each v ∈ A, we have
∑

u∈B contr(u, v) ≤ w(v).

Proof. If v ∈ B, the statement is true because N(v,B) = N(v,A) = {v}
and contr(v, v) = w(v) in this case. So let v ∈ A \B and assume towards a
contradiction that ∑

u∈B
contr(u, v) > w(v).

Define T := {u ∈ N(v,B) : contr(u, v) > 0}. Then for u ∈ T , we have

contr(u, v) =
w2(u)− w2(N(u,A) \ {v})

w(v)
.
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By non-negativity of the contribution, this yields∑
u∈T

w2(u)− w2(N(u,A) \ {v})
w(v)

=
∑
u∈T

contr(u, v) =
∑
u∈B

contr(u, v) > w(v).

Multiplying by w(v) > 0 allows us to conclude that

w2(T ) =
∑
u∈T

w2(u) > w2(v) +
∑
u∈T

w2(N(u,A) \ {v}) ≥ w2(N(T,A)).

As B is independent, T constitutes the set of talons of a claw centered at v,
and, hence, a claw-shaped improvement. This contradicts our assumptions
on A and concludes the proof.

The following lemma provides a lower bound on the difference between
contribution and charges that will be useful in the following chapter. More-
over, it will allow us to derive Corollary 2.22.

Lemma 2.21 ([7]). Let u ∈ B and v ∈ N(u,A). Then

(contr(u, v)− 2 · charge(u, n(u))) · w(v)

≥ (w(u)− w(v))2 +
∑

x∈N(u,A)

(w(v)− w(x)) · w(x).

Proof. Using contr(u, v)·w(v) ≥ w2(u)−w2(N(u,A)\{v}) by Definition 2.19
and 2·charge(u, n(u)) = 2·w(u)−w(N(u,A)) by Definition 2.16, we calculate

(contr(u, v)− 2 · charge(u, n(u))) · w(v)

≥ w2(u)− w2(N(u,A) \ {v})− (2 · w(u)− w(N(u,A))) · w(v)

= w2(u)− 2 · w(u) · w(v) + w2(v) + w(N(u,A)) · w(v)− w2(N(u,A))

= (w(u)− w(v))2 +
∑

x∈N(u,A)

(w(v)− w(x)) · w(x).

Corollary 2.22 ([7]). Let u ∈ B and v ∈ A. Then

2 · charge(u, v) ≤ contr(u, v).

Proof. If v 6= n(u), then 2 · charge(u, v) = 0 ≤ contr(u, v). Thus, we may
assume that v = n(u). In particular,

v = n(u) ∈ argmax{w(x) : x ∈ N(u,A)}. (2.2)
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By Lemma 2.21, this yields

(contr(u, v)− 2 · charge(u, v)) · w(v)

≥ (w(u)− w(v))2 +
∑

x∈N(u,A)

(w(v)− w(x)) · w(x) ≥ 0 (2.3)

since real squares are non-negative, w(v)−w(x) ≥ 0 for all x ∈ N(u,A) and
w(x) > 0 for all x ∈ N(u,A).

Combining Proposition 2.17, Proposition 2.20 and Corollary 2.22 results
in Theorem 2.23, which, in particular, implies Theorem 2.15. For better
reusability, we explicitly restate our set of assumptions here.

Theorem 2.23 ([7]). Let k ∈ Z≥1 and let (G,w) be an instance of the
MWIS in (k + 1)-claw free graphs. Let further B be an independent set in
G and let A be independent in G with the property that no claw improves
A. Then

w(B) ≤ k + 1

2
· w(A)− 1

2
·
∑
v∈A

(k − |N(v,B)|) · w(v)

− 1

2
·
∑
u∈B

(∑
v∈A

contr(u, v)− 2 · charge(u, n(u))

)

≤ k + 1

2
· w(A).

Proof. We would like to apply (2.1). To this end, we rewrite

∑
v∈A

|N(v,B)|
2

· w(v) =
k

2
· w(A)− 1

2
·
∑
v∈A

(k − |N(v,B)|) · w(v). (2.4)

In addition, using Proposition 2.20, we bound∑
v∈A

∑
u∈B:v=n(u)

charge(u, v)

=
1

2
·
∑
v∈A

∑
u∈B

contr(u, v)− 1

2
·
∑
u∈B

(∑
v∈A

contr(u, v)− 2 · charge(u, n(u))

)

≤ w(A)

2
− 1

2
·
∑
u∈B

(∑
v∈A

contr(u, v)− 2 · charge(u, n(u))

)
. (2.5)
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1

2 3

{1}

{2} {3}

{1, 2}

{2, 3}

{3, 1}

Figure 2.8: The tight example provided by Berman for k = 3.
A = {1, 2, 3} is depicted in red, B = {{1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}} is
drawn in blue.

Plugging (2.4) and (2.5) into (2.1) results in

w(B) ≤ k + 1

2
· w(A)− 1

2
·
∑
v∈A

(k − |N(v,B)|) · w(v)

− 1

2
·
∑
u∈B

(∑
v∈A

contr(u, v)− 2 · charge(u, n(u))

)

≤ k + 1

2
· w(A), (2.6)

where the last inequality follows from Proposition 2.17, Corollary 2.22 and
the fact that the contribution is non-negative.

2.5 A tight example

For every k ≥ 1, Berman [7] provides an instance G of the MIS (i.e., all
weights are equal to 1) in (k + 1)-claw free graphs for which his analysis is
tight. The vertex set of G can be partitioned into a locally optimum solution
A := {1, . . . , k} and an optimum solution B :=

(
A
1

)
∪
(
A
2

)
. Two vertices v ∈ A

and u ∈ B share an edge if and only if v ∈ u. See Fig. 2.8 for an example.
We remark that G is isomorphic to the conflict graph of the k-Set Packing
instance that we obtain from V (G) by replacing each vertex by its set of
incident edges. Note that the degree of each vertex in G is bounded by k.

By construction, both A and B constitute independent sets in G, and
moreover,

w(B) = |B| =
(
k

1

)
+

(
k

2

)
=
k · (k + 1)

2
=
k + 1

2
· |A| = k + 1

2
· w(A).
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1 2 3 . . . k

{1} {1, 2} {1, 3} . . . {1, k}

Figure 2.9: There is no improving claw centered at 1.

i j

{i} {i, j} {j} X = {{i}, {i, j}, {j}}

N(X,A) = {i, j}

Figure 2.10: For 1 ≤ i < j ≤ k, X = {{i}, {i, j}, {j}} constitutes a local
improvement of size 3.

We further observe that no claw improves A. First of all, A constitutes a
maximal independent set. Due to the symmetry of the construction, it suf-
fices to see that there is no claw centered at 1 ∈ A that improves A. This fol-
lows from the fact that for each u ∈ N(1, B) = {{1}, {1, 2}, {1, 3}, . . . , {1, k}},
(maxu)∈ A is a neighbor of u and the vertices (maxu), u ∈ N(1, B) are
pairwise distinct. Thus, w2(N(T,A)) = |N(T,A)| ≥ |T | = w2(T ) for every
T ⊆ N(1, B). See Fig. 2.9 for an illustration.

However, as Berman’s instance features unit weights, the result by Hur-
kens and Schrijver [33] implies that for k ≥ 3, local improvements of constant
size must exist1. Indeed, these local improvements are not hard to find: In
fact, for every 1 ≤ i < j ≤ k, {{i}, {i, j}, {j}} constitutes a local improve-
ment of size 3 (see Fig. 2.10).

This is not a coincidence. In fact, we will see in the remainder of this
section that every instance where Berman’s analysis is tight bears the same
local structure as the example we have just discussed, and, in particular,
allows for a local improvement of size 3. Extending this result to instances
where Berman’s analysis is only close to tight, i.e., where w(B) ≥ k+1−ε

2 ·
w(A) for some small, but constant ε > 0 will yield our first improvement
over Berman’s result in the next chapter.

For the remainder of this section, fix again k ∈ Z≥1 and an instance
(G,w) of the MWIS in (k + 1)-claw free graphs. In addition, let B be an

1Recall that Hurkens and Schrijver have shown in [33] that in the unit weight case, local
improvements of constant size are sufficient to obtain approximation guarantees arbitrarily
close to k

2
for k ≥ 3.
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part of A

|N(v,B)| = k

v

Figure 2.11: Local structure of tight instances.

optimum solution to (G,w) and let A be a feasible solution to (G,w) such
that no claw improves A, and assume that w(B) = k+1

2 · w(A).

We start by proving that every tight instance is (essentially) unweighted.

Lemma 2.24. Let u ∈ B. For every v ∈ N(u,A), we have w(u) = w(v). In
particular, weights are equal in each connected component of G[A ∪B].

Proof. If Theorem 2.23 is tight, then in particular, the inequality in (2.6)
is tight, which in turn implies that Corollary 2.22 must be tight for u and
n(u). This tells us that

(w(u)− w(n(u)))2 +
∑

x∈N(u,A)

(w(n(u))− w(x)) · w(x) = 0

(cf. (2.3)). As all weights are positive and n(u) is of maximum weight in
N(u,A), this allows us to conclude that both

(w(u)− w(n(u)))2 = 0 and
∑

x∈N(u,A)

(w(n(u))− w(x)) · w(x) = 0.

The first equation yields w(u) = w(n(u)). The second one, by positivity of
weights, implies that w(x) = w(n(u)) for all x ∈ N(u,A).

Note that the fact that no claw improves A implies that for every con-
nected component C of G[A ∪ B], no claw in C improves A ∩ V (C). In
particular,

w(B ∩ V (C)) ≤ k + 1

2
· w(A ∩ V (C)),

and the fact that w(B) = k+1
2 ·w(A) implies that we must have equality for

every connected component. By Lemma 2.24, this tells us that |B∩V (C)| =
k+1

2 · |A ∩ V (C)| for every connected component C of G[A ∪B].

Lemma 2.25. Let v ∈ A. ThenN(v,B) = {u0, u1, . . . , uk−1} withN(u0, A) =
{v} and |N(ui, A)| = 2 for i = 1, . . . , k − 1.

See Fig. 2.11 for an illustration.
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v

u1 u2

(a) No v ∈ A can have two neighbors in
B1.

v1

u1

v2

u2u

(b) Tight instances feature local im-
provements of size 3.

Figure 2.12: Forbidden situations and local improvements in tight in-
stances.

Proof. We can assume without loss of generality that G[A∪B] is connected;
if not, we consider one connected component instead. As no claw improves
A, we know that N(u,A) 6= ∅ for every u ∈ B. Partition B into the sets B1,
B2 and B≥3 consisting of all vertices u ∈ B with |N(u,A)| = 1, |N(u,A)| = 2
and |N(u,A)| ≥ 3, respectively. By Proposition 2.17, we know that

k · |A| ≥ |B1|+ 2 · |B2|+ 3 · |B≥3|, (2.7)

and if this is tight, then |N(v,B)| = k for every v ∈ A. Moreover, for ev-
ery v ∈ A, there can be at most one u ∈ B with N(u,A) = {v} because
if there were two such vertices u1 and u2, then w(u1) = w(u2) = w(v) by
Lemma 2.24 would imply that {u1, u2} constitutes a claw-shaped improve-
ment (see Fig. 2.12a). As a consequence,

|A| ≥ |B1| (2.8)

and this is tight if and only if for every v ∈ A, there is exactly one u ∈ B
with N(u,A) = {v}. Adding (2.7) and (2.8) yields

(k + 1) · |A| ≥ (k + 1) · |A| − |B≥3| ≥ 2 · (|B1|+ |B2|+ |B≥3|) = 2 · |B|.

Hence, k+1
2 ·|A| = |B| implies that B≥3 = ∅ and that (2.7) and (2.8) are tight.

By the previous considerations, this yields the statement of the lemma.

Corollary 2.26. If k ≥ 2 and B 6= ∅, there exists a local improvement
X ⊆ B of size 3.

Proof. B 6= ∅ implies A 6= ∅ by positivity of weights. Hence, let v1 ∈ A.
By Lemma 2.25, there is u ∈ N(v1, B) with |N(u,A)| = 2. Let N(u,A) =
{v1, v2}. Again by Lemma 2.25, there are u1, u2 ∈ B with N(ui, A) = {vi}
for i = 1, 2. By Lemma 2.24, {u1, u, u2} constitutes a local improvement of
size 3 (see Fig. 2.12b).
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Chapter 3

Simple improvement

In this chapter, we leverage our observations regarding the structure of tight
instances for SquareImp (cf. Section 2.5) towards a first improvement over
the approximation guarantee of k+1

2 . We study the algorithm SimpleImp
(Algorithm 2) that iteratively searches for claw-shaped local improvements
and local improvements of size 3 until no more exist. As in the previous chap-
ter, local improvements are defined with respect to the squared weight func-
tion (see Definition 2.13). Our main result for this chapter is Theorem 3.1,
which tells us that SimpleImp yields a better-than-k+1

2 -approximation for
the MWIS in (k + 1)-claw free graphs for k ≥ 3. Note that for k ≤ 2, there
exists a polynomial-time exact algorithm, see [38].

Theorem 3.1. Let k ∈ Z≥3 and let (G,w) be an instance of the MWIS in
(k + 1)-claw free graphs. Let further B be an independent set in G and let
A be an independent set with the property that no claw improves A and
there is no local improvement of A of size 3 (w.r.t. w2).

Then w(B) ≤
(
k+1

2 − 0.00123
)
· w(A).

Recall that we have already seen in the previous chapter that we can
search for a claw-shaped improvement in polynomial time. By simply iter-
ating over

(
V
3

)
, we can further check whether there is a local improvement

of size 3 in polynomial time. Together with Lemma 2.14, this yields the
following corollary:

Corollary 3.2. Let k ∈ Z≥3. There exists a polynomial-time
(
k+1

2 −
1

1000

)
-

approximation algorithm for the MWIS in (k + 1)-claw free graphs.

Let ε be a constant satisfying the following inequalities that will pop up
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Algorithm 2: SimpleImp

Input: a (k + 1)-claw free graph G = (V,E), w : V → R>0

Output: an independent set A ⊆ V
1 A← ∅
2 while ∃ local improvement X s.t. X is claw-shaped or |X| = 3 do
3 A← (A \N(X,A)) ∪X
4 end
5 return A

during our analysis:

0 < ε <
1

4
(3.1)

ε2

(1 + ε) · (2 + ε2)
≤ ε2

2
≤ 1− 3ε− ε2 − ε3 (3.2)

2 + (3ε+ ε2 + ε3)2 + 2ε2 < 3 · (1− ε)2 (3.3)

1 + 2ε2 < 2 · (1− ε)2 (3.4)

We remark that (3.1) and (3.3) imply (3.4).

Proposition 3.3. Let ε ∈ (0, 0.138]. Then ε satisfies (3.1)-(3.4).

Proof. The inequalities in (3.1) and the first inequality in (3.2) are clear.
For all other inequalities, we observe that the right-hand side minus the
left-hand side is a monotonically decreasing function in ε ∈ (0, 1), and for
ε = 0.138, all inequalities hold.

For the analysis of SimpleImp, we set the constant to ε := 0.138, but in
the following two chapters, we will choose smaller values of ε. We use ε as
a threshold to decide whether the neighborhood N(v,B) of a vertex v ∈ A
closely aligns with the structure that we have derived for tight instances in
Section 2.5 (see Fig. 2.11). If this is the case, we refer to v as a regular
vertex, otherwise, we call v irregular. The precise definitions are introduced
in Section 3.1. Next, in Section 3.2, we show that the irregular vertices
must make up a large fraction of w(A) because otherwise, we can find a
local improvement of size 3, similar as in Fig. 2.12b. Finally, in Section 3.3,
we discuss how irregular vertices keep Berman’s analysis from being tight.
More precisely, we observe that each irregular vertex improves the bound
w(B) ≤ k+1

2 ·w(A) by a constant fraction of its weight. Combining this with
the results from Section 3.2 allows us to derive Theorem 3.1.

For the remainder of this chapter, fix k ∈ Z≥3 and an instance (G,w) of
the MWIS in (k+ 1)-claw free graphs, and write G = (V,E). In accordance
with Theorem 3.1, let B be an independent set in G and let A be an inde-
pendent set with the property that no claw improves A and there is no local
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u

(1− ε) · w(v) ≤ w(u) ≤ (1 + ε) · w(v)

v N(u,A) \ {v}

w(N(u,A)) ≤ (1 + ε) · w(v)

Figure 3.1: u is a single neighbor of v = n(u).

improvement of A of size 3 w.r.t. w2. In addition, we fix a map n : V → A
mapping u ∈ V to a vertex in N(u,A) of maximum weight. Recall that
N(u,A) 6= ∅ for all u ∈ V since the fact that no claw improves A implies
that A constitutes a maximal independent set. Moreover, note that n � B
complies with the requirements of Definition 2.16. We further fix a map
n2 : {u ∈ V : |N(u,A)| ≥ 2} → A mapping u to a vertex in N(u,A)\{n(u)}
of maximum weight.

3.1 Regular and irregular vertices

In this section, we introduce the notion of a regular vertex. Regular vertices
can be thought of as vertices from A with the property that their neighbor-
hood in B (almost) obeys the structure outlined in Lemma 2.25. To specify
what we mean by this, we introduce the notions of single and double vertices
in B. They play the role of vertices from B1 and B2 in a tight instance (cf.
proof of Lemma 2.25).

Definition 3.4 (single vertex). We call a vertex u ∈ V single if

(1− ε) · w(n(u)) ≤ w(u) ≤ (1 + ε) · w(n(u)) and (3.5)

w(N(u,A)) ≤ (1 + ε) · w(n(u)). (3.6)

See Fig. 3.1 for an illustration.

Definition 3.5 (double vertex). We call a vertex u ∈ V with |N(u,A)| ≥ 2
double if

(1− ε) · w(n(u)) ≤ w(n2(u)) ≤ w(n(u)), (3.7)

(1− ε) · w(n(u)) ≤ w(u) ≤ (1 + ε) · w(n(u)), and (3.8)

w(N(u,A)) ≤ (2 + ε2) · w(u). (3.9)

See Fig. 3.2 for an illustration.
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u

(1− ε) · w(v1) ≤ w(u) ≤ (1 + ε) · w(v1)

v1 v2

(1− ε) · w(v1) ≤ w(v2) ≤ w(v1)

N(u,A) \ {v1, v2}

w(N(u,A)) ≤ (2 + ε2) · w(u)

Figure 3.2: u is a double neighbor of v1 = n(u) and v2 = n2(u).

We point out that Definition 3.4 implies that for a single vertex u, we
have w(N(u,A) \ {n(u)}) = O(ε) · w(u). Moreover, Definition 3.5 yields
w(N(u,A) \ {n(u), n2(u)}) = O(ε) · w(u) for a double vertex u.

We further remark that the notions of being single or double mutually
exclude each other.

Proposition 3.6. No u ∈ V is both single and double.

Proof. Assume that u ∈ V were both single and double. Then

(1− ε) · w(n(u))
(3.7)

≤ w(n2(u)) ≤ w(N(u,A) \ {n(u)})
(3.6)

≤ ε · w(n(u)),

a contradiction to w(n(u)) > 0 and (3.1).

We would like to consider a single vertex u′ as only being adjacent to
n(u′) in A, and to view n(u′′) and n2(u′′) as the only neighbors a double
vertex u′′ features in A. This idea is captured by the following definition.

Definition 3.7 (regular/irregular neighbors). Let v ∈ A and u ∈ N(v, V ).
We say that u and v are regular neighbors if u is single and v = n(u), or if u
is double and v ∈ {n(u), n2(u)}. Otherwise, we say that they are irregular
neighbors.

For v ∈ A, denote the set of regular neighbors that v has in B by regB(v),
and let irregB(v) := N(v,B) \ regB(v) be the set of irregular neighbors of v
in B.

Analogously, for u ∈ V , let regA(u) (irregA(u)) denote the set of regular
(irregular) neighbors of u in A.

We remark that for x, y ∈ A with y ∈ N(x, V ), independence of A
implies x = y. In particular, the notion of x and y being regular/irregular
neighbors is well-defined in the sense that it does not depend on the way we
choose v among x and y since they are equal.
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The previous definitions now allow for a natural generalization of the
structural property described in Lemma 2.25. Namely, we replace the con-
dition that v ∈ A features one neighbor in B with degree 1 to A and k − 1
neighbors in B with degree 2 to A by the requirement that v has one regular
single neighbor and k − 1 regular double neighbors in B. Observe that by
Proposition 2.17, these neighbors already make up all of N(v,B).

Definition 3.8 (regular/irregular vertices). We call a vertex v ∈ A regular
if N(v,B) consists of one regular neighbor that is single, and k − 1 regular
neighbors that are double. Otherwise, we call v irregular. We denote the
set of irregular vertices by I.

We observe that no vertex in A can feature two (or more) regular single
neighbors in B because this immediately implies a local improvement.

Lemma 3.9. Let v ∈ A and assume that u1, u2 ∈ N(v,B) are two distinct
regular single neighbors of v. Then X = {u1, u2} constitutes a claw-shaped
improvement.

Proof. As N(v,B) contains two distinct vertices, we must have v ∈ A \ B.
In particular, X constitutes the set of talons of a claw centered at v. Thus,
it remains to see that w2(N(X,A)) < w2(X). We calculate

w2(N(X,A)) ≤ w2(v) + w2(N(u1, A) \ {v}) + w2(N(u2, A) \ {v})
≤ w2(v) + (w(N(u1, A) \ {v}))2 + (w(N(u2, A) \ {v}))2

(3.6)

≤ (1 + 2 · ε2) · w2(v)

(3.4)
< 2 · (1− ε)2 · w2(v)

(3.5)

≤ w2(u1) + w2(u2) = w2(X).

3.2 There are many irregular vertices

Our main result for this section is Lemma 3.10, which tells us that the
irregular vertices constitute a constant fraction of A in terms of weight.

Lemma 3.10. We have

w(I) ≥ (1− ε)2 · (k − 1)

(1− ε)2 · (k − 1) + (1 + ε) · k
· w(A).

The proof of Lemma 3.10 proceeds in two steps. First, we show that
there is no double vertex u ∈ B with the property that both n(u) and
n2(u) are regular (cf. Lemma 3.11). To this end, we observe that if for a
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v1 v2N(u,A) \ {v1, v2}
small weight

N(u1, A) \ {v1}
small weight

N(u2, A) \ {v2}
small weight

u1 u u2

X

A

B

Figure 3.3: A double vertex u ∈ B such that v1 := n(u) and v2 := n2(u)
are regular implies a local improvement of size 3.

double vertex u ∈ B, both v1 := n(u) and v2 := n2(u) are regular, then
X := {u, u1, u2} constitutes a local improvement of size 3, where ui denotes
the regular single neighbor of vi in B for i = 1, 2. Intuitively, this follows
from the facts that the weights of v1, v2, u1, u2 and u are roughly the same
and moreover, if ε is small enough, the total weight of N(ui, A) \ {vi} for
i = 1, 2 and of N(u,A) \ {v1, v2} is almost negligible. See Fig. 3.3 for an
illustration. As a consequence of Lemma 3.11, we can obtain a bipartite
graph H with bipartitions I and A \ I by adding an edge {n(u), n2(u)} for
each double vertex u ∈ B with {n(u), n2(u)}∩(A\I) 6= ∅. By Definition 3.8,
each vertex in A \ I has degree k− 1 in H, whereas Proposition 2.17 implies
that every vertex in I has degree at most k. Moreover, (3.7) tells us that
the weights of adjacent vertices are roughly the same. This allows us to
derive Lemma 3.10. The remainder of this section provides formal proofs of
Lemma 3.11 and Lemma 3.10.

Lemma 3.11. There is no double vertex u ∈ B such that both n(u) and
n2(u) are regular vertices.

Proof. Assume towards a contradiction that u ∈ B were a double vertex
such that v1 := n(u) and v2 := n2(u) are regular. By Definition 3.8, let
ui ∈ N(vi, B) be the regular single neighbor of vi in B for i = 1, 2. Note
that n(ui) = vi for i = 1, 2 implies u1 6= u2. Moreover, Proposition 3.6
tells us that u 6∈ {u1, u2}. Let X := {u1, u, u2}. Then |X| = 3. We
claim that X is a local improvement. To verify this, we need to show that
w2(X) > w2(N(X,A)). We first note that (3.6) tells us that

w2(N(ui, A)\{vi}) ≤ (w(N(ui, A)\{vi}))2 ≤ (ε·w(vi))
2 = ε2 ·w2(vi) (3.10)

for i = 1, 2. Moreover, we compute

w2(N(u,A) \ {v1, v2}) ≤ (w(N(u,A) \ {v1, v2}))2

(3.9)

≤ ((2 + ε2) · w(u)− w(v1)− w(v2))2
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(3.7)

≤
(3.8)

((2 + ε2) · (1 + ε) · w(v1)− w(v1)− (1− ε) · w(v1))2

= (3ε+ ε2 + ε3)2 · w2(v1). (3.11)

Thus, we obtain

w2(N(X,A))

≤ w2(v1) + w2(v2) + w2(N(u,A) \ {v1, v2})
+ w2(N(u1, A) \ {v1}) + w2(N(u2, A) \ {v2})

(3.10)

≤
(3.11)

(
1 + (3ε+ ε2 + ε3)2 + ε2

)
· w2(v1) + (1 + ε2) · w2(v2). (3.12)

Moreover, we get

w2(X) = w2(u1) + w2(u) + w2(u2)

(3.5)

≥
(3.8)

2 · (1− ε)2 · w2(v1) + (1− ε)2 · w2(v2). (3.13)

Combining (3.12) and (3.13) yields

w2(X)− w2(N(X,A))

≥ 2 · (1− ε)2 · w2(v1) + (1− ε)2 · w2(v2)

−
(
1 + (3ε+ ε2 + ε3)2 + ε2

)
· w2(v1)− (1 + ε2) · w2(v2)

=
(
2 · (1− ε)2 −

(
1 + (3ε+ ε2 + ε3)2 + ε2

))
· w2(v1)

−
(
(1 + ε2)− (1− ε)2

)
· w2(v2)

(3.7)

≥
(
3 · (1− ε)2 −

(
2 + (3ε+ ε2 + ε3)2 + 2ε2

))
· w2(v1)

(3.3)
> 0.

This concludes the proof.

Proof of Lemma 3.10. Let Y be the set of double vertices u ∈ B such that
n(u) or n2(u) is a regular vertex (i.e., contained in A \ I). We provide
two estimates for w(Y ). By Definition 3.8 and Proposition 3.6, for every
v ∈ A \ I, we have |N(v, Y )| = k − 1, and moreover, every u ∈ N(v, Y ) is a
regular double neighbor of v. In particular, every u ∈ N(v, Y ) satisfies

w(u)
(3.8)

≥ (1−ε)·w(n(u))
(3.7)
= (1−ε)·max{w(n(u)), w(n2(u))} ≥ (1−ε)·w(v),

where the last inequality follows from Definition 3.7. Hence, we obtain

w(N(v, Y )) ≥ (1− ε) · (k − 1) · w(v) for every v ∈ A \ I. (3.14)
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Lemma 3.11 further tells us that the sets N(v, Y ), v ∈ A \ I are pairwise
disjoint. This implies

w(Y ) =
∑
v∈A\I

w(N(v, Y ))
(3.14)

≥ (1− ε) · (k − 1) · w(A \ I)

= (1− ε) · (k − 1) · (w(A)− w(I)). (3.15)

On the other hand, Lemma 3.11 tells us that for every u ∈ Y , at least one
of n(u) and n2(u) is contained in I and as further {n(u), n2(u)}∩A \ I 6= ∅,
exactly one of them is. In addition, for u ∈ Y and v ∈ {n(u), n2(u)}, we
have

w(u)
(3.8)

≤ (1 + ε) · w(n(u))
(3.7)

≤ 1 + ε

1− ε
·min{w(n(u)), w(n2(u))}

≤ 1 + ε

1− ε
· w(v). (3.16)

This yields

w(Y ) =
∑
v∈I

∑
u∈Y :

v∈{n(u),n2(u)}

w(u)

(3.16)

≤
∑
v∈I

∑
u∈Y :

v∈{n(u),n2(u)}

1 + ε

1− ε
· w(v)

≤
∑
v∈I
|N(v, Y )| · 1 + ε

1− ε
· w(v)

≤ 1 + ε

1− ε
· k · w(I), (3.17)

where the last inequality follows from Proposition 2.17. Combining (3.15)
and (3.17) implies

(1− ε)2 · (k − 1) · (w(A)− w(I)) ≤ (1− ε) · w(Y ) ≤ (1 + ε) · k · w(I),

which results in

w(I) ≥ (1− ε)2 · (k − 1)

(1− ε)2 · (k − 1) + (1 + ε) · k
· w(A).

3.3 Proof of the approximation guarantee

In this section, we conclude the proof of Theorem 3.1. For this purpose, we
show that each irregular vertex improves the bound w(B) ≤ k+1

2 ·w(A) that
we get from Berman’s analysis of SquareImp [7] by a constant fraction of its
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weight. To obtain this result, we distinguish two types of irregular vertices,
which we handle differently. Namely, we let D denote the set of irregular
vertices v ∈ I with the property that N(v,B) consists of k regular double
neighbors of v, and consider D and I \ D separately. We observe that in
contrast to the vertices in D, every vertex in I \D has at most k−1 regular
neighbors in B.

Proposition 3.12. Let v ∈ I \D. Then |regB(v)| ≤ k − 1.

Proof. Assume towards a contradiction that v ∈ I \D with |regB(v)| ≥ k.
Then Proposition 2.17 tells us that |regB(v)| = k and regB(v) = N(v,B).
As v 6∈ D, regB(v) cannot exclusively consist of double vertices, so at least
one of the vertices is single. As v is irregular, at least two of the vertices in
regB(v) have to be single. But this is impossible by Lemma 3.9.

The remainder of this section is organized as follows: In Section 3.3.1, we
prove Lemma 3.13, which improves our bound on w(B) by a constant frac-
tion of w(D). In contrast, Lemma 3.15, which we establish in Section 3.3.2,
yields an improvement proportional to w(I \ D). Finally, we balance the
two bounds in Section 3.3.3 and prove Theorem 3.1.

3.3.1 Vertices in D improve the analysis

Lemma 3.13. We have

w(B) ≤ k + 1

2
· w(A)− 1− ε

4− 2ε
· w(D).

The key ingredient towards Lemma 3.13 is Lemma 3.14, which tells us
that for a double vertex from B, its total contribution amounts to almost
four times the charges it invokes. A similar result also appears in [40]. Note
that for general vertices from B, Corollary 2.22 only guarantees a factor of 2,
and for a single vertex u ∈ B with w(u) = w(n(u)) and N(u,A) = {n(u)},
this is also best possible.

As the charges that vertices in D have to pay are invoked by double
vertices exclusively, we can count these charges almost four times instead
of just twice when establishing a lower bound on the total contribution∑

u∈B
∑

v∈A contr(u, v), which is in turn upper bounded by w(A) (cf. Propo-
sition 2.20). As a consequence, if the total charges paid by D amount to
the maximum possible value of 1

2 · w(D), we gain almost the same amount
in our bound on the total charges paid by A. On the other hand, if the
the vertices in D pay zero charges, we can upper bound the total charges
invoked by 1

2 ·w(A\D). The proof of Lemma 3.13 essentially balances these
two extreme cases.
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Lemma 3.14. Let u ∈ B be double. Then

contr(u, n(u)) + contr(u, n2(u)) ≥ 2 · (2− ε) · charge(u, n(u)).

Before diving into the proof, we provide some intuition why Lemma 3.14
holds. Observe that in case w(n(u)) = w(n2(u)), it is completely arbitrary
which one of the two vertices we define to be n(u). In particular, we have
contr(u, n2(u)) = contr(u, n(u)) in this case, which even yields

contr(u, n(u)) + contr(u, n2(u)) ≥ 4 · charge(u, n(u))

by Corollary 2.22. If w(n2(u)) < w(n(u)), then contr(u, n2(u)) can become
smaller than contr(u, n(u)). However, we can use the “slack terms” on the
right-hand side of Lemma 2.21 to counterbalance this effect.

After having outlined the intuition behind Lemma 3.14, we provide a
formal proof. Then, we conclude this section with the proof of Lemma 3.13.

Proof of Lemma 3.14. By (3.1), we have 2 · (2 − ε) > 0. Thus, in case
charge(u, n(u)) ≤ 0, the statement of the lemma follows by non-negativity
of the contribution. Hence, we may assume that

charge(u, n(u)) > 0. (3.18)

Let v1 := n(u) and v2 := n2(u). Then Lemma 2.21 tells us that for i = 1, 2,
we have

contr(u, vi) · w(vi)− 2 · charge(u, v1) · w(vi)

≥ (w(u)− w(vi))
2 + (w(vi)− w(v3−i)) · w(v3−i)

+
∑

x∈N(u,A)\{v1,v2}

(w(vi)− w(x)) · w(x)

≥ (w(u)− w(vi))
2 + (w(vi)− w(v3−i)) · w(v3−i), (3.19)

where the last inequality follows by definition of n(u) = v1 and n2(u) = v2.
We distinguish two cases:

Case 1: w(v1) ≥ w(u). Then Definition 2.16 implies

2 · charge(u, v1)

= 2 · w(u)− w(N(u,A)) ≤ 2 · w(v1)− w(N(u,A))

≤ 2 · w(v1)− w(v1)− w(v2) = w(v1)− w(v2). (3.20)
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Applying (3.19) for i = 1 yields

contr(u, v1) · w(v1)− 2 · charge(u, v1) · w(v1)

≥ (w(u)− w(v1))2 + (w(v1)− w(v2)) · w(v2)

≥ (w(v1)− w(v2)) · w(v2)

(3.7)

≥ (1− ε) · (w(v1)− w(v2)) · w(v1)

(3.20)

≥ (1− ε) · 2 · charge(u, v1) · w(v1).

Rearranging the inequality and dividing by w(v1) > 0 results in

contr(u, v1) ≥ (2− ε) · 2 · charge(u, v1).

Using contr(u, v2) ≥ 0 by Definition 2.19 completes the proof.

Case 2: w(v1) < w(u). By (3.7) and positivity of weights, we obtain
0 < w(v2) ≤ w(v1) < w(u), and, thus,

(w(u)− w(v2))2 > (w(v1)− w(v2))2. (3.21)

Now, (3.19) yields

contr(u, v1) · w(v1)− 2 · charge(u, v1) · w(v1)

+ contr(u, v2) · w(v2)− 2 · charge(u, v1) · w(v2)

≥ (w(u)− w(v1))2 + (w(v1)− w(v2)) · w(v2)

+ (w(u)− w(v2))2 + (w(v2)− w(v1)) · w(v1)

= (w(u)− w(v1))2 + (w(u)− w(v2))2 − (w(v1)− w(v2))2

(3.21)
> 0.

By non-negativity of the contribution and since charge(u, v1) > 0 by (3.18),
we obtain

(contr(u, v1) + contr(u, v2)) · w(v1)

(3.7)

≥ contr(u, v1) · w(v1) + contr(u, v2) · w(v2)

≥ 2 · charge(u, v1) · (w(v1) + w(v2))

(3.7)

≥ (2− ε) · 2 · charge(u, v1) · w(v1).

Division by w(v1) > 0 completes the proof.

Proof of Lemma 3.13. By Lemma 2.18, it suffices to show that∑
u∈B

charge(u, n(u)) ≤ 1

2
· w(A)− 1− ε

4− 2ε
· w(D).
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To this end, using Proposition 2.20, Corollary 2.22, Lemma 3.14 and non-
negativity of the contribution, we calculate∑
u∈B

2 · charge(u, n(u)) + (1− ε) ·
∑
v∈D

∑
u∈B:
n(u)=v

2 · charge(u, n(u))

=
∑

v∈A\D

∑
u∈B:
n(u)=v

2 · charge(u, n(u)) +
∑
v∈D

∑
u∈B:
n(u)=v

(2− ε) · 2 · charge(u, n(u))

≤
∑

v∈A\D

∑
u∈B:
n(u)=v

contr(u, n(u)) +
∑
v∈D

∑
u∈B:
n(u)=v

(
contr(u, n(u)) + contr(u, n2(u))

)
≤
∑
u∈B

∑
v∈A

contr(u, v) ≤ w(A).

This yields∑
u∈B

2·charge(u, n(u)) ≤ w(A)−(1−ε)·
∑
v∈D

∑
u∈B:
n(u)=v

2·charge(u, n(u)). (3.22)

On the other hand, using again Proposition 2.20, Corollary 2.22 and non-
negativity of the contribution, we compute∑

u∈B
2 · charge(u, n(u))

=
∑

v∈A\D

∑
u∈B:
n(u)=v

2 · charge(u, n(u)) +
∑
v∈D

∑
u∈B:
n(u)=v

2 · charge(u, n(u))

≤ w(A \D) +
∑
v∈D

∑
u∈B:
n(u)=v

2 · charge(u, n(u)). (3.23)

Adding (3.22) and (1− ε) · (3.23) results in

(4− 2ε) ·
∑
u∈B

charge(u, n(u)) ≤ (2− ε) · w(A)− (1− ε) · w(D),

and division by 4− 2ε > 0 yields the claim.

3.3.2 Vertices in I \D improve the analysis

In this section, we prove Lemma 3.15, which tells us that we can improve
upon the bound of w(B) ≤ k+1

2 · w(A) by a constant fraction of w(I \D).

Lemma 3.15. We have

w(B) ≤ k + 1

2
· w(A)− ε2

2 · (1 + ε) · (2 + ε2)
· w(I \D).
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The main idea for the proof of Lemma 3.15 can be described as follows:
By Proposition 3.12, we know that every vertex v ∈ I \D has at most k− 1
regular neighbors in B. In case v has at most k − 1 neighbors in B, i.e.,
|N(v,B)| ≤ k− 1, Theorem 2.23 tells us that we gain 1

2 ·w(v) in our bound
on w(B). On the other hand, if |N(v,B)| = k, then v needs to have at least
one irregular neighbor u ∈ B. We show that this neighbor u can reimburse
v, and, in fact, each one of its irregular neighbors in A, by a constant fraction
of its weight by distributing the slack in the inequality∑

ṽ∈A
contr(u, ṽ) ≥ 2 · charge(u, n(u))

among them (cf. Theorem 2.23). Definition 3.16 and Lemma 3.17 formalize
this idea.

Definition 3.16 (slack). For u ∈ B, we define

slack(u) :=
∑
v∈A

contr(u, v)− 2 · charge(u, n(u)).

Note that non-negativity of the contribution implies

slack(u) ≥ contr(u, n(u))− 2 · charge(u, n(u)). (3.24)

Lemma 3.17. Let u ∈ B. Then

slack(u) ≥ ε2

(1 + ε) · (2 + ε2)
· w(irregA(u)).

The intuition behind Lemma 3.17 is that each irregular neighbor of u
makes the inequality

∑
v∈A contr(u, v) ≥ 2 · charge(u, n(u)) less tight.

For better readability, we split the proof of Lemma 3.17 into two parts.
Lemma 3.18 takes care of the cases where u is single or double, respectively.
Lemma 3.19 deals with the remaining vertices that are neither single nor
double.

Finally, we conclude the section with the proof of Lemma 3.15.

Lemma 3.18. Let u ∈ B be single or double. Then

slack(u) ≥ (1−3ε−ε2−ε3) ·w(irregA(u)) ≥ ε2

(1 + ε) · (2 + ε2)
·w(irregA(u)).
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Proof. By Lemma 2.21 and (3.24), we obtain

slack(u) · w(n(u))

≥ (w(u)− w(n(u)))2 +
∑

x∈N(u,A)

(w(n(u))− w(x)) · w(x)

≥
∑

x∈irregA(u)

(w(n(u))− w(x)) · w(x)

≥ (w(n(u))− w(irregA(u))) · w(irregA(u)). (3.25)

Here, the second inequality follows from the fact that n(u) is of maxi-
mum weight in N(u,A) ⊇ irregA(u). The last inequality is implied by
w(x) ≤ w(irregA(u)) for all x ∈ irregA(u).

If u is single, then irregA(u) = N(u,A) \ {n(u)} and we compute

w(n(u))− w(irregA(u)) = 2 · w(n(u))− w(N(u,A))

(3.6)

≥ (1− ε) · w(n(u)) ≥ (1− 3ε− ε2 − ε3) · w(n(u)). (3.26)

If u is double, we obtain irregA(u) = N(u,A) \ {n(u), n2(u)}. Hence,

w(n(u))− w(irregA(u)) = 2 · w(n(u)) + w(n2(u))− w(N(u,A))

(3.7)

≥
(3.9)

2 · w(n(u)) + (1− ε) · w(n(u))− (2 + ε2) · w(u)

(3.8)

≥ (3− ε) · w(n(u))− (2 + ε2) · (1 + ε) · w(n(u))

= (1− 3ε− ε2 − ε3) · w(n(u)). (3.27)

Plugging (3.26) or (3.27), respectively, into (3.25) and dividing by the pos-
itive value w(n(u)) yields the first inequality. The second one follows by
positivity of weights and (3.2).

Lemma 3.19. Let u ∈ B be neither single nor double. Then

slack(u) ≥ ε2

(1 + ε) · (2 + ε2)
· w(irregA(u)).

Proof. We first observe that irregA(u) = N(u,A). In case we have

w(N(u,A)) > (2 + ε2) · w(u),

(3.24) and non-negativity of the contribution tell us that

slack(u) ≥ −2 · charge(u, n(u)) = w(N(u,A))− 2 · w(u)

>

(
1− 2

2 + ε2

)
· w(N(u,A))

=
ε2

2 + ε2
· w(N(u,A)).



3.3. Proof of the approximation guarantee 45

Thus, we may assume that

w(N(u,A)) ≤ (2 + ε2) · w(u) (3.28)

in the following. By (3.24), Lemma 2.21 and since n(u) is of maximum
weight in N(u,A), we can infer that

slack(u) · w(n(u)) ≥ (w(u)− w(n(u)))2 and (3.29)

slack(u) · w(n(u)) ≥
∑

x∈N(u,A)\{n(u)}

(w(n(u))− w(x)) · w(x). (3.30)

We distinguish two cases:

Case 1: |w(u)− w(n(u))| > ε · w(n(u)). Then

max{w(n(u)), w(u)}
min{w(n(u)), w(u)}

> 1 + ε. (3.31)

Thus,

slack(u) · w(n(u))
(3.29)

≥ (w(u)− w(n(u))2

= (max{w(u), w(n(u))} −min{w(u), w(n(u))})2

(3.31)

≥
(

1− 1

1 + ε

)
·max{w(u), w(n(u))} · (1 + ε− 1) ·min{w(u), w(n(u))}

=

(
1− 1

1 + ε

)
· (1 + ε− 1) · w(u) · w(n(u))

=
ε2

1 + ε
· w(u) · w(n(u))

(3.28)

≥ ε2

(1 + ε) · (2 + ε2)
· w(N(u,A)) · w(n(u)).

Division by w(n(u)) > 0 yields the desired statement.

Case 2: |w(u)− w(n(u))| ≤ ε · w(n(u)). (3.32)

Then the fact that u is not single implies

w(N(u,A) \ {n(u)}) > ε · w(n(u)). (3.33)

In particular, N(u,A)\{n(u)} 6= ∅, and, thus, |N(u,A)| ≥ 2. By (3.32) and
(3.28), the fact that u is not double yields

w(n2(u)) < (1− ε) · w(n(u)). (3.34)
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But as n2(u) is a vertex of maximum weight in N(u,A)\{n(u)}, this allows
us to conclude that

slack(u) · w(n(u))
(3.30)

≥
∑

x∈N(u,A)\{n(u)}

(w(n(u))− w(x)) · w(x)

≥
∑

x∈N(u,A)\{n(u)}

(w(n(u))− w(n2(u))) · w(x)

= (w(n(u))− w(n2(u))) · w(N(u,A) \ {n(u)})
(3.33)
>

(3.34)
ε2 · w2(n(u))

(3.32)

≥ ε2

1 + ε
· w(u) · w(n(u))

(3.28)

≥ ε2

(1 + ε) · (2 + ε2)
· w(N(u,A)) · w(n(u)).

Division by w(n(u)) > 0 concludes the proof.

From this, we may derive the following bound.

Lemma 3.20. We have

w(B) ≤ k + 1

2
· w(A)− 1

2
· ε2

(1 + ε) · (2 + ε2)
·
∑
v∈A

(k − |regB(v)|) · w(v).

Proof. By Theorem 2.23, it suffices to show that

∑
v∈A

(k − |N(v,B)|) · w(v) +
∑
u∈B

(∑
v∈A

contr(u, v)− 2 · charge(u, n(u))

)

≥ ε2

(1 + ε) · (2 + ε2)
·
∑
v∈A

(k − |regB(v)|) · w(v). (3.35)

We have ∑
v∈A

(k − |N(v,B)|) · w(v)

(3.1)

≥ ε2

(1 + ε) · (2 + ε2)
·
∑
v∈A

(k − |N(v,B)|) · w(v). (3.36)
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Moreover, Definition 3.16 and Lemma 3.17 yield∑
u∈B

(∑
v∈A

contr(u, v)− 2 · charge(u, n(u))

)
(3.37)

=
∑
u∈B

slack(u)

≥ ε2

(1 + ε) · (2 + ε2)
·
∑
u∈B

w(irregA(u))

=
ε2

(1 + ε) · (2 + ε2)
·
∑
v∈A
|irregB(v)| · w(v). (3.38)

Combining (3.36) and (3.38) and using |regB(v)| = |N(v,B)| − |irregB(v)|
by Definition 3.7 results in (3.35).

Now, we have accumulated all ingredients that we need in order to prove
Lemma 3.15.

Proof of Lemma 3.15. By Proposition 3.12 and Proposition 2.17, we know
that

∑
v∈A(k − |regB(v)|) · w(v) ≥ w(I \ D). Now, Lemma 3.20 concludes

the proof.

3.3.3 Balancing the bounds

Now, we combine Lemma 3.13 and Lemma 3.15 to obtain Theorem 3.21.

Theorem 3.21.

w(B) ≤ k + 1

2
· w(A)− βγ

β + γ
· α · w(A),

where

α :=
(1− ε)2 · (k − 1)

(1− ε)2 · (k − 1) + (1 + ε) · k
, β :=

1− ε
4− 2ε

and

γ :=
ε2

2 · (1 + ε) · (2 + ε2)
.

Proof. First, note that (3.1) implies α, β, γ ∈ (0, 1). By Lemma 3.10, we
know that w(I) ≥ α ·w(A). In case w(D) ≥ γ

β+γ ·w(I), we use Lemma 3.13
to conclude that

w(B) ≤ k + 1

2
· w(A)− β · w(D) ≤ k + 1

2
− βγ

β + γ
· α · w(A).

Otherwise, we have

w(I \D) >
β

β + γ
· w(I),
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and Lemma 3.15 yields

w(B) ≤ k + 1

2
− γ · w(I \D) <

k + 1

2
− βγ

β + γ
· α · w(A)

as desired.

Finally, we prove Theorem 3.1.

Proof of Theorem 3.1. We observe that

α =
(1− ε)2 · (k − 1)

(1− ε)2 · (k − 1) + (1 + ε) · k
=

(1− ε)2

(1− ε)2 + k
k−1 · (1 + ε)

≥ (1− ε)2

(1− ε)2 + 3
2 · (1 + ε)

.

Plugging this bound and our choice of ε = 0.138 into Theorem 3.21 yields
the desired statement.



Chapter 4

Local improvements of
logarithmic size

In the previous chapter, we have seen how to obtain a first improvement
over Berman’s algorithm SquareImp by not only considering claw-shaped
improvements, but also local improvements of size 3. This of course raises
the question whether taking into account an even broader class of local im-
provements allows us to further decrease the approximation guarantee we
obtain, and if yes, by how much. One natural idea would be to consider even
larger improvements of constant size. In fact, a recent paper by Thiery and
Ward [49] shows that local improvements of size O(k3) suffice to achieve ap-
proximation guarantees of k+1−τk

2 for the MWIS in (k+ 1)-claw free graphs,
where τk ≥ 0.428 for k ≥ 3 and limk→∞ τk = 2

3 .

However, the lower bound result by Hurkens and Schrijver [33] also tells
us that even for the unweighted k-Set Packing problem, local improvements
of constant size cannot yield an approximation guarantee below k

2 . In con-
trast, recall that searching for well-structured local improvements of up
to logarithmic size can decrease the approximation guarantee for the un-
weighted k-Set packing problem by a factor of almost 2

3 to k+1+ε
3 [16, 28].

This motivates the question whether considering an appropriate class of
local improvements of logarithmically bounded size can also give rise to
(significant) improvements for the weighted k-Set Packing problem. Note
that structured local improvements of logarithmically bounded size lie on
the border of what can be searched for via enumeration/dynamic program-
ming based approaches (e.g., using the color-coding technique as in [28]).
This makes it even more interesting to determine the limits of local search,
restricted to improvements of logarithmically bounded size, in the weighted
setting.

In this chapter, we provide an asymptotically tight answer. On the
algorithmic side, we manage to transfer the notion of local improvement
that lies at the core of the results in [28] and [48] to the weighted setting.
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In doing so, we obtain improved approximation guarantees for the weighted
k-Set Packing problem, which get arbitrarily close to k

2 as k tends to infinity:

Theorem 4.1. There exists a polynomial-time k+1−λk
2 -approximation algo-

rithm for the weighted k-Set Packing problem, where limk→∞ λk = 1.

At the cost of a quasi-polynomial running time, this result generalizes
to the MWIS in (k + 1)-claw free graphs.

In terms of lower bounds, we can show that the approximation ratios we
obtain in Theorem 4.1 are asymptotically best possible if we limit ourselves
to local improvements of logarithmically bounded size, with respect to a
fixed additive local search objective (see Definition 4.2 and Theorem 4.3).
In particular, there is an asymptotic multiplicative gap of 3

2 compared to the
(matching) guarantees and lower bounds established in [28] for unit weights.

Definition 4.2. Let f : R>0 → R>0 and let k ∈ Z≥3. Let further (S, w)
be an instance of the weighted k-Set Packing problem and let A ⊆ S be a
feasible solution. We call a disjoint subcollection X ⊆ S a local improvement
of A with respect to f ◦ w if

(f ◦ w)(X) :=
∑
x∈X

f(w(x)) >
∑
a∈A

f(w(a)) =: (f ◦ w)(A).

We call |X| the size of the local improvement X.

Theorem 4.3. Let k ∈ Z≥3, f : R>0 → R>0, ε ∈ (0, 1) and C > 0. Then
there exist

• an instance (S, w) of the weighted k-Set Packing problem and

• a feasible solution A ⊆ S

with the following properties:

• There is no local improvement of A with respect to f ◦ w of size at
most C · log(|S|).

•
(
k
2 − ε

)
· w(A) ≤ OPT(S, w), where OPT(S, w) denotes the value of

an optimum solution to (S, w).

Observe that in the setting of Theorem 4.3, a local search algorithm that
searches for local improvements w.r.t. f ◦ w of size bounded by C · log(|S|)
until no more exist may just pick the locally optimum solution A set by set
and then terminate. In particular, we can reach A via local improvements of
infinite payoff factor1. This shows that a similar approach as in [15] cannot
be used to obtain approximation ratios below k

2 .

1Recall that in [15], the payoff factor of a local improvement is defined as the ratio
between the total weight of the sets added to and the total weight of the sets removed
from the current solution.
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The remainder of this chapter is organized as follows: In Section 4.1,
following [48], we explain how to obtain an approximation guarantee of
k+2+ε

3 for the unweighted k-Set Packing problem to showcase the way local
improvements of logarithmically bounded size are used in the unweighted
setting. In Section 4.2, we discuss how to generalize ideas from the un-
weighted to the weighted case. In doing so, we develop a new type of local
improvement, which we call circular improvement. Section 4.3 presents a
criterion that allows us to derive the existence of a circular improvement.
This criterion will guide the analysis of our new algorithm LogImp, which we
introduce and study in Section 4.4. In particular, we prove Theorem 4.1 in
this section. Finally, we conclude this chapter with a proof of Theorem 4.3
in Section 4.5.

The algorithms in Sections 4.1 and 4.4, as well as the analyses of their
approximation guarantees, easily generalize to the M(W)IS in (k + 1)-claw
free graphs. The only point where we actually need the underlying structure
of an instance of the k-Set Packing problem is to get down to a polynomial
(instead of quasi-polynomial) running time. Thus, we will phrase (most of)
the following results in terms of the more general M(W)IS in (k + 1)-claw
free graphs. This is also more convenient notation-wise.

4.1 A k+2+ε
3

-approximation for unweighted
k-Set Packing

In this section, we explain how to obtain a quasi-polynomial-time k+2+ε
3 -

approximation algorithm for the MIS in (k + 1)-claw free graphs via local
improvements of logarithmically bounded size. For conflict graphs of in-
stances of the unweighted k-Set Packing problem, a polynomial running
time can be achieved [48]. The algorithm and the analysis we present are
based on the work by Sviridenko and Ward [48]2.

To provide some intuition about where we are heading, first assume that
we are given a (k + 1)-claw free graph G and a maximal independent set
A. We would like to compare |A| to the size of a maximum independent
set B. For this purpose, we partition B into the three sets B1, B2 and
B≥3 containing those vertices u ∈ B with |N(u,A)| = 1, |N(u,A)| = 2
and |N(u,A)| ≥ 3, respectively. As A is maximal, there is no u ∈ B with
N(u,A) = ∅. By double-counting adjacencies between A and B, i.e., ordered
pairs (u, v) ∈ B ×A with u ∈ N(v,B) resp. v ∈ N(u,A), we obtain

|B1|+ 2|B2|+ 3|B≥3| ≤
∑
u∈B
|N(u,A)| =

∑
v∈A
|N(v,B)| ≤ k · |A|, (4.1)

2For simplicity, we omit one step from the analysis in [48] that would allow us to drop
the ε-term in the approximation guarantee.
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(a) two cycles joined in
a single node (a path of
length 0)

(b) two cycles joined by a
path of positive length

(c) two nodes joined by
three paths

Figure 4.1: The structure of a minimal binocular.

where the last inequality follows from Proposition 2.17. In particular, we
can observe that if B were to solely contain vertices from B≥3, we would
even obtain a guarantee of k3 . In contrast, if B consists exclusively of vertices

from B1 ∪B2, the best we can hope for is a guarantee of k
2 , which is larger

than what we are aiming for (at least for k ≥ 5). Thus, we need to establish
a bound on |B1| + |B2|. This is where local search comes into play: The
strategy in [48] is to encode vertices from B1 ∪ B2 as edges in an auxiliary
graph GA on the vertex set A, and to observe that there is a one-to-one
correspondence between subgraphs ofGA featuring more edges than vertices,
and local improvements X ⊆ B1 ∪B2. One can show that in case

|B1|+ |B2| = |E(GA)| ≥ (1 + ε) · |V (GA)| = |A|

for some ε > 0, there exists such a subgraph of size O(ε · log(|A|)) [8, 48].
This subgraph gives rise to a well-structured local improvement which we
can search for in polynomial time, provided the input graph is the conflict
graph of an instance of the unweighted k-Set Packing problem [48].

To formalize this idea, we require the following definition:

Definition 4.4 (binocular [8]). A binocular is a (multi)graph with more
edges than vertices, where we allow parallel edges and loops. The size of a
binocular is its number of edges.

A minimal binocular is a binocular J such that no proper subgraph of
J constitutes a binocular.

One can show that a minimal binocular always consists of two edge-
disjoint cycles connected by a path (which may have length zero), or of three
edge- and internally vertex-disjoint paths between a pair of vertices (see, e.g.,
[48]). This structural result explains the choice of the name “binocular”. See
Fig. 4.1 for an illustration.

Berman and Fürer [8] have shown that sufficiently dense graphs contain
binoculars of logarithmically bounded size.
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V \A

A

(a) The graph G, with vertices from A drawn in the top, and vertices from V \ A
drawn in the bottom row. A binocular improvement X ⊆ V \ A is depicted in
green, N(X,A) is marked in red.

(b) The auxiliary graph H. The edges corresponding to the binocular improvement
X are drawn in green, N(X,A) is again marked in red.

Figure 4.2: Illustration of the auxiliary graph H and Definition 4.7.

Lemma 4.5 ([8]). Let s ∈ N and letG = (V,E) be a non-empty (multi)graph
(where we allow parallel edges and loops) such that |E| ≥ s+1

s · |V |. Then G
contains a binocular of size at most 2 · s · (2 · blog(|V |)c+ 1).3

In the spirit of the above outline, we would now ideally like to consider an
algorithm that, in each iteration, first greedily extends the current solution
A to a maximal independent set, and then, if exists, applies a local improve-
ment corresponding to the edge set of a binocular in GA of logarithmically
bounded size. The issue with this approach is of course that the optimum
solution B, and, thus, the graph GA, is unknown to us. Instead, we need
to consider a larger4 auxiliary graph H, where every vertex u ∈ V \A with
|N(u,A)| ≤ 2 induces a loop on its neighbor in A (if |N(u,A)| = 1) or an
edge connecting its neighbors in A (if |N(u,A)| = 2). We will use eu to
denote the loop/edge corresponding to u.

Other than for GA, not every binocular J in H will correspond to a local
improvement, but only those with the property that E(J) corresponds to an
independent set. Searching for such a binocular (of logarithmically bounded
size) in polynomial time is possible for conflict graphs of k-Set Packing
instances by employing the color-coding technique (coloring the underlying

3We remark that in [8], a bound of 4 · s · log(|V |) is claimed, but this is not entirely
correct, e.g., for |V | = 1. We provide a proof of the corrected statement in Section 4.3.

4Technically speaking, H is not always a super-graph of GA because we lose loops that
vertices from A∩B induce on themselves. However, these vertices do not have any further
incident edges and can be ignored when searching for local improvements.
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Algorithm 3: k+2+ε
3 -approximation for the MIS in (k + 1)-claw

free graphs based on [48]

Input: a (k + 1)-claw free graph G = (V,E), a parameter ε > 0
Output: an independent set A ⊆ V

1 A← ∅
2 τ ← 2 · d2ε−1e · (2 · blog(|V |)c+ 1)
3 improvement found← true

4 while improvement found do
5 if ∃ local improvement X with |X| = 1 then
6 A← A ∪X // N(X,A) = ∅ in this case

7 else if ∃ binocular improvement X with |X| ≤ τ then
8 A← (A \N(X,A)) ∪X
9 else

10 improvement found← false

11 end

12 end
13 return A

universe) [48]. All in all, we arrive at the notion of a binocular improvement
(Definition 4.7). It corresponds to the notion of a canonical improvement
in [48]. To formally define it, we employ the following notation:

Notation 4.6 (multiset of edges). Let V be a non-empty finite set, let I
be a finite index set and let (Si)i∈I be a sequence of subsets of V , each of
cardinality 1 or 2. We write {ei = Si : i ∈ I} to denote the multiset of edges
that contains one copy of the edge Si for each i ∈ I. If |Si| = 1, this edge is
a loop, if |Si| = 2, it constitutes a two-vertex edge.

Definition 4.7. Let G = (V,E) be a graph and let A ⊆ V be independent.
We call an independent set X ⊆ {u ∈ V \A : 1 ≤ |N(u,A)| ≤ 2} a binocular
improvement of A if the multigraph

HX := (N(X,A), {eu = N(u,A) : u ∈ X})

constitutes a binocular. We call |X| the size of the binocular improvement
X. See Fig. 4.2 for an illustration.

Using Definition 4.7, the algorithm that we would like to analyze can be
formulated as in Algorithm 3. It is almost identical to the algorithm stud-
ied in [48]. We observe that Algorithm 3 terminates after at most |V | + 1
iterations because the cardinality of A increases in each iteration except for
the last one. Moreover, considering ε > 0 to be a fixed constant, each itera-
tion can be implemented to run in quasi-polynomial, and, for conflict graphs
of instances of the unweighted k-Set Packing problem, even in polynomial
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time, see [48]. For the analysis of the approximation guarantee, we denote
the solution returned by Algorithm 3 by A and pick an optimum solution
B. Then A is a maximal independent set and in particular, we know that
(4.1) holds. In addition, we observe that every binocular of size at most τ
in GA yields a binocular improvement because B is independent and after
removing connected components consisting of an isolated vertex and one in-
cident loop that correspond to vertices in A∩B, GA becomes a subgraph of
H. By the termination criterion of our algorithm, we may, hence, conclude
that GA contains no binocular of size at most τ . By Lemma 4.5, we can
infer that

|B1|+ |B2| = |E(GA)| ≤
(

1 +
ε

2

)
· |V (GA)| =

(
1 +

ε

2

)
· |A|. (4.2)

Adding 2 · (4.2) to (4.1) yields

3 · |B| ≤ 3|B1|+ 4|B2|+ 3|B≥3| ≤ (k + 2 + ε) · |A|,

and, thus,

|B| ≤ k + 2 + ε

3
· |A|

as desired.

4.2 Extending the notion of binocular improve-
ments: circular improvements

The construction of the auxiliary graph H reminds us of the notions of sin-
gle and double vertices (Definitions 3.4 and 3.5) that we have introduced
in the previous chapter. Thus, it appears natural to define a similar auxil-
iary graph in which a single vertex induces a loop on its regular neighbor,
and a double vertex corresponds to an edge connecting its regular neigh-
bors. For simplicity, we again denote the resulting graph by H. Recall
that Lemma 3.20 tells us that if

∑
v∈Aw(v) · degH(v), the weighted sum of

degrees in H, is smaller than, say k
2 · w(A), we obtain an improvement of

Ω(k) ·w(A) in our approximation guarantee. This is more than sufficient to
prove Theorem 4.1.

However, for the above approach to be successful, we still need to take
care of the following two points: First of all, in the spirit of Definition 4.7,
we have to come up with the notion of a certain type of subgraph of H that
gives rise to a local improvement of logarithmically bounded size (and can
be searched for efficiently). Second, we have to make sure that in case the
weighted sum of degrees in H is large (think for example of k

2 ·w(A)), then
one of said subgraphs has to exist. In this section, we deal with the first
point. The second one is handled in Section 4.3.
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Binoculars do not suffice in the weighted case

Given our construction of the auxiliary graph H, the first idea one might
have is to again look at independent sets X ⊆ V \ A that induce the edges
of a binocular in H. Unfortunately, these sets do not necessarily correspond
to local improvements. To see this, consider a scenario where A ∩ B = ∅
and all vertices in A feature a weight of 1 + ε, whereas vertices in V \ A
only have a weight of 1. Now, if we want X ⊆ V \ A to constitute a local
improvement (w.r.t. w2), we need |X| to be by a constant factor of (more
than) (1+ε)2 larger than |N(X,A)|, and not just by an additive constant of
1. However, we will see in Section 4.5 that even if every vertex in H assumes
its maximum possible degree of k, there does not need to be such a set X
of logarithmically bounded size.

Contributions to the rescue

One might argue that in the above example where the weights of the vertices
in A are by a factor of 1+ε larger than the weights of the vertices in B, we do
not need to worry about whether or not we can find a local improvement after
all because we have already achieved the desired approximation guarantee.
However, we can modify the example and, instead, look at a scenario where
again A ∩B = ∅, H is bipartite with bipartitions A+ and A− of equal size,
and where vertices in A± feature a weight of 1 ± ε, whereas vertices from
V \A ⊇ B once more receive a weight of 1. Now, the average weight is the
same in A and B, respectively. Nonetheless, the squared weight of a double
vertex from B remains by a constant factor smaller than the average squared
weight of its neighbors in A, which amounts to 1

2 ·((1−ε)
2+(1+ε)2) = 1+ε2.

As a consequence, we run into the same problem as before. Also, note that
Lemma 3.20 crucially relies on the fact that we conduct local search with
respect to the squared weight function, so getting rid of this assumption
does not appear to be a viable solution.

Instead, our idea is to augment candidate improvements X ⊆ B we get
from H by adding further vertices from B with a positive contribution to
the vertices in NH(X,A). To this end, for v ∈ A, let

Tv := {u ∈ B : n(u) = v and contr(u, v) > 0}.

Note that as Tv ⊆ {u ∈ B : n(u) = v}, the sets Tv, v ∈ A are pairwise
disjoint. Moreover, we define

A′ :=

{
v ∈ A :

∑
u∈Tv

contr(u, v) >
1− λk

2
· w(v)

}
,

where k+1−λk
2 is the approximation guarantee we are targeting. Now, we
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make the following observations: First, Corollary 2.22 tells us that∑
u∈B

charge(u, v) ≤ 1− λk
4
· w(v) for all v ∈ A \A′.

Second, we may assume that w(A′) ≥ 1−λk
2 holds: Otherwise, Corollary 2.22

and Proposition 2.20 yield∑
u∈B

charge(u, n(u)) =
∑
v∈A

∑
u∈B

charge(u, v)

=
∑
v∈A′

∑
u∈B

charge(u, v) +
∑

v∈A\A′

∑
u∈B

charge(u, v)

≤ w(A′)

2
+

1− λk
4
· w(A \A′)

≤ 1− λk
4
· w(A) +

1− λk
4
· w(A) =

1− λk
2
· w(A),

and Lemma 2.18 allows us to derive the desired approximation guarantee.
We would like to make sure that for every candidate improvement X ⊆ B

we get from H, NH(X,A) contains many vertices from A′ since for these,
we can add the vertices in Tv to augment X. Thus, we simply restrict H
to contain only edges with at least one endpoint in A′. Note that as w(A′)
makes up a constant fraction of w(A), we can still employ Lemma 3.20 to
conclude that either we have reached the desired approximation guarantee,
or the weighted sum of degrees in H amounts to Ω(k)·w(A). Now, instead of
a binocular, we consider a cycle C in H of logarithmically bounded size. For
a vertex u ∈ V \ A that induces an edge eu = {n(u), n2(u)}, we use w2(u)
and half of the contributions from the sets Tv with v ∈ {n(u), n2(u)} ∩ A′
to cover for 1

2 ·w
2({n(u), n2(u)}) (the other half will be taken care of by the

other incident edges in the cycle) as well as w2(N(u,A\{n(u), n2(u)})). See
Fig. 4.3 for an illustration.

In principle, for this argument to work, it suffices to choose the threshold
ε = εk (see Definitions 3.4 and 3.5) small enough compared to 1 − λk.
However, note that we have to be a bit careful because the vertex u might be
contained in one of the sets Tv with v ∈ {n(u), n2(u)}. Luckily, if u is double,
then its contribution will be negligible compared to the total contribution
from Tv. While it is indeed necessary to exclude cycles consisting of only
one loop corresponding to a single vertex for the above reason, this does not
harm our bound on the weighted sum of degrees because no vertex from A
can have more than one regular single neighbor in B (cf. Lemma 3.9).

Circular improvements

The previous considerations finally lead us to the notion of a circular im-
provement.
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v

u

ṽ. . .

. . .

. . .

Tv

N(u,A) \ {n(u), n2(u)}
N(Tv, A) \ {v}

w2(u) + 1
2 ·
∑
z∈Tv

w2(z)− w2(N(z,A) \ {v})︸ ︷︷ ︸
=contr(z,v)·w(v)

> 1
2 · w

2({n(u), n2(u)}) + w2(N(u,A) \ {n(u), n2(u)})

Figure 4.3: The double vertex u induces an edge eu = {n(u), n2(u)} =:

{v, ṽ}, where v ∈ A′. We use w2(u) and half of the contributions from Tv to v
to pay for half of w2({n(u), n2(u)}), as well as w2(N(u,A) \ {n(u), n2(u)}).

Definition 4.8 (circular improvement). Let k ∈ Z≥3, let G = (V,E) be a
(k + 1)-claw free graph, let w : V → R>0 and let A ⊆ V be independent.

Let further two maps

• n : {u ∈ V : |N(u,A)| ≥ 1} → A mapping u to an element of N(u,A)
of maximum weight, and

• n2 : {u ∈ V : |N(u,A)| ≥ 2} → A mapping u to an element of
N(u,A) \ {n(u)} of maximum weight be given.

We call an independent set X ⊆ {u ∈ V \ A : |N(u,A)| ≥ 1} a circular
improvement of A of length ` if there is U ⊆ X with the following properties:

(4.8.1) |N(u,A)| ≥ 2 for each u ∈ U and

C :=

(⋃
u∈U
{n(u), n2(u)}, {eu = {n(u), n2(u)} : u ∈ U}

)
is a cycle of length |U | = |E(C)| = `.

(4.8.2) If we let Yv := {x ∈ X \ U : n(x) = v}, then X = U ∪
⋃
v∈V (C) Yv.

(4.8.3) For every u ∈ U , we have

w2(u) +
1

2
·

∑
v∈{n(u),n2(u)}

∑
z∈Yv

w2(z)− w2(N(z,A) \ {v})

>
w2(n(u)) + w2(n2(u))

2
+ w2(N(u,A) \ {n(u), n2(u)}).



4.2. Circular improvements 59

(a) The cycle C.
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N(X,A)

X

(b) A circular improvement.

Figure 4.4: Illustration of a circular improvement. Vertices from U are
indicated by big green circles, vertices from

⋃
v∈V (C) Yv are drawn as small

cyan circles. Big circles drawn in orange represent the vertices in V (C), and
red dots indicate vertices from N(X,A) \ V (C).

See Fig. 4.4 for an illustration.

We remark that the sets Yv play the role of the sets Tv (minus the vertices
from U appearing in them). We first establish the following bound on the
size of a circular improvement.

Proposition 4.9. If X is a circular improvement and C and (Yv)v∈V (C) are
as in Definition 4.8, then we have |Yv| ≤ k for all v ∈ V (C). In particular,
we obtain |X| ≤ (k + 1) · |E(C)|.

Proof. Let further U be as in Definition 4.8. As X is independent and
Yv ⊆ N(v,X) by definition of Yv and the map n, Proposition 2.17 tells us
that |Yv| ≤ k for all v ∈ V (C). In particular, we obtain

|X| = |U |+
∑

v∈V (C)

|Yv| ≤ |U |+ k · |V (C)| = (k + 1) · |E(C)|,

where |U | = |V (C)| follows by definition of C.

We further observe that a circular improvement indeed constitutes a
local improvement.

Proposition 4.10. Let X be a circular improvement of an independent set
A. Then X constitutes a local improvement of A (w.r.t. w2).
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Proof. Let X be a circular improvement of A and let U , C and (Yv)v∈V (C)

be as in Definition 4.8. As X is independent, it remains to check that we
have w2(X) > w2(N(X,A)). We compute

w2(X) = w2(U) +
∑

v∈V (C)

w2(Yv)

(∗)
=
∑
u∈U

w2(u) +
1

2
·

∑
v∈{n(u),n2(u)}

∑
z∈Yv

w2(z)


(4.8.3)
>

∑
u∈U

[
w2(n(u)) + w2(n2(u))

2
+ w2(N(u,A) \ {n(u), n2(u)})

+
1

2
·

∑
v∈{n(u),n2(u)}

∑
z∈Yv

w2(N(z,A) \ {v})
]

(∗)
=

∑
v∈V (C)

[
w2(v) +

∑
z∈Yv

w2(N(z,A) \ {v})

]

+
∑
u∈U

w2(N(u,A) \ {n(u), n2(u)}))

≥ w2(V (C)) +
∑

v∈V (C)

w2(N(Yv, A) \ V (C)) +
∑
u∈U

w2(N(u,A) \ V (C))

≥ w2(N(X,A)).

The equations labeled (∗) follow from the fact that

C =

(⋃
u∈U
{n(u), n2(u)}, {eu = {n(u), n2(u)} : u ∈ U}

)

forms a cycle, meaning that each v ∈ V (C) occurs exactly twice among all
of the sets {n(u), n2(u)}, u ∈ U .

4.3 Existence of circular improvements

In this section, we prove Lemma 4.11. Applying it to the auxiliary graph H
from the previous section will allow us to derive the existence of a circular
improvement, provided that the weighted sum of degrees of vertices in A′ is
sufficiently large. Note that by construction of H and (3.7), we may choose
α = (1− ε)−1.

Lemma 4.11. LetG = (V,E) be a non-empty (multi)graph (where we allow
parallel edges and loops) equipped with positive vertex weights w : V → R>0.

Let further α ≥ 1 such that for every edge {u, v} ∈ E, we have

α−1 · w(u) ≤ w(v) ≤ α · w(u),
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and let s ∈ N such that∑
v∈V

w(v) · | degG(v)| ≥ s+ 1

s
· 2 · α ·

∑
v∈V

w(v),

where degG(v) denotes the degree of v in G. Then G contains a cycle of
length at most s · (2 · blog(|V |)c+ 1).

Our strategy to prove Lemma 4.11 is to show that G contains a subgraph
G′ with |E(G′)| ≥ s+1

s ·|V (G′)|, and to then apply Lemma 4.12, which follows
from the proof of Lemma 4.5 presented in [8].

Lemma 4.12 ([8]). Let s ∈ N>0 and let G = (V,E) be a non-empty
(multi)graph (where we allow parallel edges and loops) with |E| ≥ s+1

s · |V |.
Then G contains a cycle of size at most s · (2 · blog(|V |)c+ 1).

Note that Lemma 4.12 is the special case of Lemma 4.11 where w ≡ 1
and α = 1.

In the following, we first prove two technical lemmata that allow us to
convert weighted into unweighted sums, and vice versa. We need one of
them to derive the existence of the subgraph G′ mentioned above; the other
one will be used in the next chapter. However, as the statements and proofs
are rather similar, we prefer to present the two lemmata together.

Next, we show how to derive Lemma 4.11 from Lemma 4.12 using one
of the two technical lemmata.

Finally, we prove Lemma 4.12 and Lemma 4.5.

4.3.1 Two technical lemmata

Lemma 4.13. Let S be a finite set, ϕ : S → R≥0, µ : S → R≥0 and η > 0
such that ∑

s∈S
ϕ(s) · µ(s) > η · ϕ(S).

Let further λ > 0. Then there exists x ∈ R>0 such that∑
s∈S:λ·ϕ(s)≥x

µ(s) > λ · η · |{s ∈ S : ϕ(s) ≥ x}|.

Proof. Assume towards a contradiction that there was no x ∈ R>0 with the
desired property. We get

∑
s∈S

ϕ(s) · µ(s) =
∑
s∈S

λ−1 · λ · ϕ(s) · µ(s) =
∑
s∈S

λ−1 ·
∫ λ·ϕ(s)

0
µ(s) dx

=
∑
s∈S

λ−1 ·
∫ ∞

0
µ(s) · 1λ·ϕ(s)≥x dx = λ−1 ·

∫ ∞
0

∑
s∈S

µ(s) · 1λ·ϕ(s)≥x dx
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= λ−1 ·
∫ ∞

0

∑
s∈S:λ·ϕ(s)≥x

µ(s) dx ≤ λ−1 ·
∫ ∞

0
λ · η · |{s ∈ S : ϕ(s) ≥ x}| dx

= η ·
∫ ∞

0
|{s ∈ S : ϕ(s) ≥ x}| dx = η ·

∫ ∞
0

∑
s∈S

1ϕ(s)≥x dx

= η ·
∑
s∈S

∫ ∞
0

1ϕ(s)≥x dx = η ·
∑
s∈S

∫ ϕ(s)

0
1 dx

= η · ϕ(S) <
∑
s∈S

ϕ(s) · µ(s),

a contradiction. Hence, there is x ∈ R>0 such that∑
s∈S:λ·ϕ(s)≥x

µ(s) > λ · η · |{s ∈ S : ϕ(s) ≥ x}|.

Lemma 4.14. Let S1 and S2 be finite sets, ϕ : S1 ∪ S2 → R>0 and η > 0
such that

|S1| > η · |S2|.

Let further λ > 0. Then there exists x ∈ R>0 such that∑
s∈S1:ϕ(s)≤x

ϕ(s) > λ · η ·
∑

s∈S2:ϕ(s)≤λ−1·x

ϕ(s).

We remark that we can generalize the statement of the lemma by con-
sidering two different maps ϕ1 and ϕ2 for S1 and S2, respectively. In this
setting, by rescaling ϕ2, we can further assume without loss of generality
that λ = 1. However, we decided to formulate the lemma in a way that is
closest possible to the way it is applied in Chapter 5.

Proof. Let Φ := {ϕ(s) : s ∈ S1}∪{λ ·ϕ(s) : s ∈ S2}. As S1 and S2 are finite
and S1 6= ∅ (since |S1| > η · |S2| ≥ 0), Φ is a finite, non-empty set. Let

x0 := min{x ∈ Φ : |{s ∈ S1 : ϕ(s) ≤ x}| > η ·|{s ∈ S2 : ϕ(s) ≤ λ−1 ·x}|} > 0.

Note that we take the minimum over a non-empty set of values since for
x = max Φ, the sets we obtain are S1 and S2, respectively, which satisfy
|S1| > η · |S2|. To simplify notation, let

S′1 := {s ∈ S1 : ϕ(s) ≤ x0} and S′2 := {s ∈ S2 : ϕ(s) ≤ λ−1 · x0}.

By definition, we have |S′1| > η · |S′2|. Further observe that the two sets
{s ∈ S1 : ϕ(s) ≤ x} and {s ∈ S2 : ϕ(s) ≤ λ−1 · x} are empty if x < min Φ,
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and only depend on max{y ∈ Φ : y ≤ x} otherwise. Thus, for 0 < x < x0,
we have

|{s ∈ S′1 : ϕ(s) ≤ x}| = |{s ∈ S1 : ϕ(s) ≤ x}| ≤ η · |{s ∈ S2 : ϕ(s) ≤ λ−1 · x}|
= η · |{s ∈ S′2 : ϕ(s) ≤ λ−1 · x}| (4.3)

by minimality of x0. We compute

x0 · |S′1| =
∑
s∈S′1

ϕ(s) + x0 − ϕ(s) = ϕ(S′1) +
∑
s∈S′1

x0 − ϕ(s)

= ϕ(S′1) +
∑
s∈S′1

∫ x0

ϕ(s)
1 dx = ϕ(S′1) +

∑
s∈S′1

∫ x0

0
1x≥ϕ(s) dx

= ϕ(S′1) +

∫ x0

0

∑
s∈S′1

1x≥ϕ(s) dx

= ϕ(S′1) +

∫ x0

0
|{s ∈ S′1 : ϕ(s) ≤ x}| dx

(4.3)

≤ ϕ(S′1) + η ·
∫ x0

0
|{s ∈ S′2 : ϕ(s) ≤ λ−1 · x}| dx

= ϕ(S′1) + η ·
∫ x0

0

∑
s∈S′2

1ϕ(s)≤λ−1·x dx

= ϕ(S′1) + η ·
∑
s∈S′2

∫ x0

0
1ϕ(s)≤λ−1·x dx

= ϕ(S′1) + η ·
∑
s∈S′2

∫ x0

0
1λ·ϕ(s)≤x dx

= ϕ(S′1) + η ·
∑
s∈S′2

∫ x0

λ·ϕ(s)
1 dx = ϕ(S′1) + η ·

∑
s∈S′2

x0 − λ · ϕ(s)

= ϕ(S′1) + x0 · η · |S′2| − λ · η · ϕ(S′2).

This results in

ϕ(S′1) ≥ λ · η · ϕ(S′2) + x0 · (|S′1| − η · |S′2|) > λ · η · ϕ(S′2),

where the last inequality follows since |S′1| > η ·|S′2| and x0 > 0. This finishes
the proof.

4.3.2 Proving Lemma 4.11

Proof of Lemma 4.11, assuming Lemma 4.12. If G contains a loop, we are
done, so assume that this is not the case. By Lemma 4.12, it suffices to show
that G contains a non-empty subgraph G′ with |E(G′)| ≥ s+1

s ·|V (G′)|. As G
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has only finitely many subgraphs, it suffices to prove that for each ε ∈ (0, 1),
there is a non-empty subgraph G′ with |E(G′)| ≥ s+1

s · (1− ε) · |V (G′)|. Fix
ε ∈ (0, 1). As G is non-empty and w > 0, we have∑

v∈V
w(v) · |degG(v)| > s+ 1

s
· 2 · α · (1− ε) ·

∑
v∈V

w(v).

We apply Lemma 4.13 with S := V , ϕ := w, µ := degG, λ := α−1 and
η := s+1

s · 2 · α · (1− ε) to obtain x ∈ R>0 with∑
v∈V :

w(v)≥α·x

degG(v) >
s+ 1

s
· 2 · (1− ε) · |{v ∈ V : w(v) ≥ x}|. (4.4)

Let V ′ := {v ∈ V : w(v) ≥ x} ⊇ {v ∈ V : w(v) ≥ α · x} 6= ∅ and
define G′ := G[V ′]. By our assumption that the weights of neighboring
vertices differ by a factor of at most α, we know that for every v ∈ V with
w(v) ≥ α · x ≥ x, all neighbors of v are contained in V ′. In particular, (4.4)
allows us to conclude that

|E(G′)| ≥ 1

2
·
∑
v∈V :

w(v)≥α·x

degG(v) >
s+ 1

s
· (1−ε) · |V ′| = s+ 1

s
· (1−ε) · |V (G′)|.

4.3.3 Proving Lemma 4.12 and Lemma 4.5

The following proof is based on [8].

Proof. For this proof, we count loops twice towards the degree of a vertex,
i.e., the degree of a vertex equals twice its number of incident loops plus its
number of incident two-vertex edges. Fix s ∈ N>0 and let G = (V,E) be a
(multi)graph with |E| ≥ s+1

s · |V | and V 6= ∅. In particular, |E| > |V |. We
show that G contains a cycle of length at most s · (2blog(|V |)c + 1) and a
binocular of size at most 2 ·s ·(2blog(|V |)c+1). To this end, we first perform
the following two reduction steps, until none of them applies anymore:

(i) If there is a vertex of degree at most 1, delete it and its incident edge,
if exists.

(ii) If there is a walk P in G that contains at least s + 1 edges and such
that all inner vertices of P have degree 2 in G, delete the edges of P
and all inner vertices of P from G.

First of all, as each reduction step reduces the number of vertices, this
process terminates. Next, we observe that both (i) and (ii) preserve the
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inequality |E| ≥ s+1
s · |V | since the number of edges we remove is by a factor

of at most s+1
s larger than the number of vertices we delete. Moreover,

both (i) and (ii) preserve the property that V 6= ∅. For (ii), this is clear
since the endpoint(s) of P survive. For (i), we note that |E| − |V | may only
increase. Thus, if we have V 6= ∅ before (i), then |E| ≥ s+1

s · |V | implies that
|E| − |V | > 0 holds before (i). Hence, E 6= ∅, and, thus, also V 6= ∅, holds
after (i).

After the reduction steps, G = (V,E) has the following properties:

(a) |E| ≥ s+1
s · |V | and V 6= ∅.

(b) Every vertex in G has degree at least 2.

(c) Every walk in G on which all inner vertices have degree 2 in G has
length at most s.

We may further assume that G is connected since we can just pick a con-
nected component C of G with |E(C)| ≥ s+1

s · |V (C)| otherwise. Under this
assumption, no vertex of degree 2 in G can have an incident loop because
then connectivity would imply that G consists of exactly one vertex and one
edge, contradicting (a). Let P be the family of maximal walks P in G with
the property that all inner vertices of P have degree exactly 2 in G.

Claim 4.15. For every P ∈ P, the endpoint(s) of P have degree at least 3
in G.

Proof. Let P ∈ P and let v be an endpoint of P . By (b), v has degree at
least 2 in G. Assume towards a contradiction that the degree of v is exactly
2. Then v does not have an incident loop. Moreover, if both incident edges
of v were contained in P , then P would constitute a cycle and a connected
component of G. Again, this contradicts (a), combined with our assumption
that G is connected. Thus, one of the incident edges of v is not contained
in P . But this contradicts the maximality of P .

Claim 4.16. The walks in P are internally vertex- and pairwise edge-
disjoint.

Proof. By Claim 4.15, for a vertex v that appears as an inner vertex of a
walk P ∈ P, we can recover P by traversing G from v until we hit vertices of
degree 3. This shows that the walks in P are internally vertex-disjoint. In
particular, no edge incident to a vertex of degree 2 in G can appear on more
than one walk. But for each edge e both endpoints of which have degree ≥ 3
in G, the only walk from P containing e is the walk that does not contain
any edge other than e. By (b), this concludes the proof.
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For each P ∈ P consisting of more than one edge, we delete all edges and
inner vertices of P and add a new edge between the endpoints of P . In case
P is a closed walk, this edge will be a loop. Call the resulting graph G′ =
(V ′, E′). Then |E′| − |V ′| = |E| − |V | > 0. In particular, G′ is non-empty.
Moreover, every vertex in G′ has degree at least 3 (where again, we count
loops twice towards the degree). Finally, by (c), each cycle/binocular H ′ in
G′ corresponds to a cycle/binocular H in G with |E(H)| ≤ s·|E(H ′)|. Thus,
it suffices to see that G′ contains a cycle of length at most 2 · blog(|V ′|)c+ 1
and a binocular of length at most 2 · (2 · blog(|V ′|)c + 1). In case |V ′| = 1,
the unique vertex must have at least 2 incident loops and we are done. To
deal with the case |V ′| ≥ 2, we show the following claim:

Claim 4.17 ([8]). Let Γ be a connected (multi)graph with |E(Γ)| ≥ |V (Γ)|,
and let r ∈ V (Γ) such that every vertex in V (Γ) \ {r} has degree at least 3.
Then Γ contains a connected subgraph J with the properties that r ∈ V (J),
|E(J)| ≥ |V (J)| and |E(J)| ≤ 2 · blog(|V (Γ)|)c+ 1.

Proof. If |V (Γ)| = 1, then r must have an incident loop and we are done.
Next, assume |V (Γ)| ≥ 2. Pick a BFS-tree T for Γ rooted in r. Let Vi be
the set of vertices at distance i from r in T . Let m := blog(|V (Γ)|)c. If
there is v ∈

⋃m
i=1 Vi such that v has an incident loop or two parallel incident

edges, then together with the r-v-path in T , we obtain the desired subgraph.
Hence, we may assume that no v ∈

⋃m
i=1 Vi is incident to a loop or to two

parallel edges. We distinguish two cases:

Case 1: r has exactly one child in T . Denote this child by s. If every
v ∈ Vi has at least two children in T for i = 1, . . . ,m, then we obtain

|V (T )| ≥
∣∣∣∣{r} ∪̇ ⋃̇m+1

i=1
Vi

∣∣∣∣ ≥ 1 +

m+1∑
i=1

2i−1 = 2m+1 > |V (Γ)|,

a contradiction. Thus, pick 1 ≤ i ≤ m and v ∈ Vi such that v has at most
one child in T . As v has degree at least 3 in Γ, v is adjacent (in Γ) to a
vertex w ∈

⋃i+1
`=0 V` that is neither the parent nor a child of v. Then the

subgraph J consisting of the r-v-path T [r, v] in T , the r-w-path T [r, w] in
T , and the edge {v, w} has the desired properties since T [r, v] is of length at
most blog(|V (Γ)|)c, T [r, w] is of length at most blog(|V (Γ)|)c+1, and T [r, v]
and T [r, w] share at least one edge, namely {r, s}.

Case 2: r has at least two children in T . If there exist i ∈ {1, . . . ,m−1} and
v ∈ Vi with the property that v has at most one child in T , then again, the
fact that v has degree at least 3 in Γ implies that there is w ∈

⋃i+1
`=1 V` that

is neither the parent nor a child of v, but adjacent to v in Γ. Then the sub-
graph consisting of the r-v-path in T , the r-w-path in T , and the edge {v, w}
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has the desired properties. Next, assume that for every i = 1, . . . ,m − 1,
every v ∈ Vi has at least two children in T . Then

|V (T )| ≥
∣∣∣∣{r} ∪̇ ⋃̇m

i=1
Vi

∣∣∣∣ ≥ 1 +
m∑
i=1

2i = 2m+1 − 1 ≥ |V (Γ)|,

so V (Γ) = {r} ∪
⋃m
i=1 Vi. Let v ∈ Vm. As v has degree at least 3 in Γ, v has

a neighbor w in Γ that is not the parent of v. Then the subgraph consisting
of the r-v-path in T , the r-w-path in T and the edge {v, w} has the desired
properties.

We pick r ∈ V ′ arbitrarily and apply the claim to obtain a connected
subgraph J with r ∈ V (J), |E(J)| ≤ 2 · blog(|V ′|)c+ 1 and |E(J)| ≥ |V (J)|.
In particular, J contains a cycle, which concludes the proof of Lemma 4.12.
If further |E(J)| > |V (J)|, then J even yields the desired binocular. Oth-
erwise, we contract J (where contracting a loop means removing it). We
define the vertex resulting from the contraction of V (J) 3 r to be the new
r. All vertices in V (Γ) \ V (J) keep a degree of at least 3. Moreover, as
|V (J)| = |E(J)|, the contraction reduces |E′| − |V ′| only by one, and thus,
after the contraction, we still have |E′| ≥ |V ′|. Hence, we may apply the
claim again to obtain another subgraph J2. Glueing together J and J2 yields
a binocular.

4.4 Our algorithm LogImp

We have now accumulated all of the ingredients that we need to introduce
our algorithm LogImp, which we will show to yield the guarantees promised
in Theorem 4.1. As before, we will phrase both the algorithm and its analysis
in terms of the more general MWIS in (k + 1)-claw free graphs, and only
exploit the structure of the underlying Set Packing instance to obtain a
polynomial (instead of quasi-polynomial) running time. Like SquareImp
(Algorithm 1) and SimpleImp (Algorithm 2), LogImp (Algorithm 4) is a
local search algorithm that iteratively applies local improvement w.r.t. the
squared weight function until no more exist. The types of local improvement
it considers are local improvements of size 3, claw-shaped improvements
and circular ones. We can easily observe that LogImp terminates after a
finite number of iterations because w2(A) strictly increases in each iteration
(except for the last one), so no solution A ⊆ V can be attained twice. A
polynomial number of iterations can be achieved at the cost of an arbitrary
small loss in the approximation guarantee by applying Lemma 2.14. By
simple enumeration, each single iteration can be implemented to run in
quasi-polynomial time by Proposition 4.9, assuming κ to be a fixed constant.
Finally, the definition of a local improvement implies that LogImp is correct
in the sense that it returns an independent set.
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Algorithm 4: LogImp

Input: a (k + 1)-claw free graph G = (V,E), w : V → R>0,
a parameter κ ∈ N>0

Output: an independent set A ⊆ V
1 τ ← κ · (2 · blog(|V |)c+ 1)
2 A← ∅
3 improvement found← true

4 while improvement found do
5 if ∃ local improvement X of size 3 then
6 A← (A \N(X,A)) ∪X
7 end
8 else if ∃ claw-shaped improvement X then
9 A← (A \N(X,A)) ∪X

10 end
11 else if ∃ circular improvement X of length at most τ then
12 A← (A \N(X,A)) ∪X
13 end
14 else
15 improvement found← false

16 end

17 end
18 return A

The remainder of this section is organized as follows: In Section 4.4.1, we
analyze the approximation ratio that LogImp attains. Then, in Section 4.4.2,
we show how to implement a single iteration of LogImp in polynomial time,
provided the input graph constitutes the conflict graph of an instance of the
weighted k-Set Packing problem. In Section 4.4.3, we combine these two
results with Lemma 2.14 to obtain Theorem 4.1.

4.4.1 Analysis

Our main result for this section is the following theorem:

Theorem 4.18. Let k ∈ Z≥3. Setting κ := 10, LogImp achieves an ap-
proximation guarantee of k+1−θk

2 for the MWIS in (k+ 1)-claw free graphs,
where

θk :=


0.00246, k = 3, 4
k−3.358

14.48k+462 , 5 ≤ k ≤ 7999
k−3.316

k+48.77·k
2
3
, k ≥ 8000

.

First, we observe that limk→∞ θk = 1. In addition, we remark that the
cases k = 3 and k = 4 follow directly from Theorem 3.1.
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Next, we point out that our choice of the value of κ is, ultimately, arbi-
trary. As we will see in the proof of Theorem 4.18, larger values of κ result
in (slightly) improved approximation guarantees due to a factor of κ+1

κ that
appears in the calculations of the constants. However, the running time
of our algorithm depends exponentially on κ (see Section 4.4.2). Thus, we
decided for a “moderate” choice of κ for which the approximation guarantee
we achieve is quite close to the limit for κ→∞, and that gives the desired
asymptotic behavior we are interested in.

Finally, we remark that we deliberately use θk instead of λk (as in Theo-
rem 4.1) here because in order to guarantee a polynomial running time, we
will lose another factor of N

N−1 (with N arbitrarily large, but constant) in
the approximation ratio.

Fix k ∈ Z≥5, a (k+1)-claw free graph G = (V,E), and a weight function
w : V → R>0. Let A be the solution returned by LogImp with input (G,w)
and let B be an optimum solution to the MWIS in (G,w). Moreover, fix two
maps n and n2 as in Definition 4.8. Note that A is a maximal independent
set, so the domain of n is V .

Our goal is to show that

w(B) ≤ k + 1− θk
2

· w(A).

To prove this, we would like to re-use some of the results from Chapter 3
(mainly the notion of regular neighbors, as well as Lemma 3.20). To do so,
let ε be a constant subject to (3.1)-(3.4). Moreover, let δ ∈ (0, 1) satisfy

1− (1− ε)2 + ((2 + ε2) · (1 + ε)− (2− ε))2 ≤ 1

2
· (δ − 8ε) · (1− ε)2. (4.5)

In the proof of Theorem 4.18, we will pick the constants ε and δ depending
on k, and verify that they meet the respective constraints. The constant δ
can be thought of as a threshold for the total contribution to a vertex in A
to be large. We use it to define the set A′ that was introduced in Section 4.2.

Definition 4.19 (Tv and A′). For v ∈ A, we let

Tv := {u ∈ B : n(u) = v and contr(u, v) > 0}.

We further define

A′ :=

{
v ∈ A :

∑
u∈Tv

contr(u, v) > δ · w(v)

}
.

As outlined in Section 4.2, we introduce an auxiliary graph H, and show
that cycles in H of logarithmically bounded size give rise to circular im-
provements (see Lemma 4.21). From this, we derive an upper bound on the
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weighted sum of the numbers of regular neighbors the vertices in A′ feature
(Corollary 4.23). In case w(A′) makes up a large enough fraction of w(A),
this allows us to improve our bound w(B) ≤ k+1

2 · w(A) (cf. Lemma 4.24).
On the other hand, if w(A′) is significantly smaller than w(A), then we ob-
tain an improved guarantee due to the fact that the total charges a vertex
v ∈ A\A′ receives can be bounded by δ

2 ·w(v) instead of just 1
2 ·w(v), which

is the bound used in the Berman analysis. This observation is captured by
Lemma 4.25. Combining Lemma 4.24 and Lemma 4.25 allows us to prove
Theorem 4.18.

Definition 4.20 (H). The multigraph H on the vertex set V (H) := A is
given as follows: Every double vertex u ∈ B induces an edge between its
two regular neighbors, provided at least one of them is contained in A′, i.e.,

E(H) := {eu := regA(u) : u ∈ B is double and regA(u) ∩A′ 6= ∅}.

Recall that for a double vertex u ∈ B, we have regA(u) = {n(u), n2(u)},
so eu corresponds to the edge that u would induce in a circular improvement.

Lemma 4.21. Assume that H contains a cycle C. Then there exists a
circular improvement of A of length |E(C)|.

Proof. Let C be a cycle in H. To obtain a circular improvement, denote the
set of vertices from B that induce the edges of C by U , and define

X := U ∪
⋃

v∈V (C)∩A′
Tv.

Our goal is to show that X constitutes a circular improvement. First of all,
X is independent as a subset of B.

Claim 4.22. X ⊆ V \A.

Proof. Note that V (C) ⊆ A \B since vertices in A∩B are only adjacent to
themselves in B, and, hence, isolated in H. As every vertex in X is adjacent
to V (C) ⊆ A \ B, we can conclude that X ∩ A ∩ B = ∅ because no vertex
in A ∩ B can be adjacent to A \ B by independence of A. Consequently,
X ⊆ B \A ⊆ V \A.

By maximality of A, we obtain X ⊆ {u ∈ V \ A : |N(u,A)| ≥ 1}. It
remains to check that (4.8.1)-(4.8.3) from Definition 4.8 are satisfied. (4.8.1)
follows from our choice of U . For (4.8.2), we observe that

Yv =

{
Tv \ U, v ∈ V (C) ∩A′

∅, v ∈ V (C) \A′
.
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It remains to check (4.8.3). Let u ∈ U and let {v, z} := regA(u) such that
v ∈ A′ (and we do not make any assumptions on whether or not z ∈ A′).
This is possible by construction of H. We observe that∑

x∈Yz

w2(x)− w2(N(x,A) \ {z}) ≥ 0,

which is clear if z 6∈ A′, and follows from Definition 2.19 and Definition 4.19
if z ∈ A′. As a consequence, to verify (4.8.3), it is enough to prove (4.6).

1

2
·

 ∑
x∈Tv\U

w2(x)− w2(N(x,A) \ {v})


>
w2(regA(u))

2
− w2(u) + w2(N(u,A) \ regA(u)). (4.6)

We first derive a lower bound on the left-hand side: Definition 2.19 and
Definition 4.19 yield∑

x∈Tv

w2(x)− w2(N(x,A) \ {v}) > δ · w2(v). (4.7)

In order to obtain an upper bound on∑
x∈Tv∩U

w2(x)− w2(N(x,A) \ {v}),

we notice that every vertex x ∈ Tv ∩U satisfies n(x) = v by Definition 4.19,
and induces the edge ex = regA(x) 3 n(x) = v in E(C), which is incident
to v. As v has exactly two incident edges in C, |Tv ∩ U | ≤ 2. Finally, every
x ∈ Tv ∩ U is a regular double neighbor of v = n(x), which yields

w2(x)− w2(N(x,A) \ {v}) ≤ w2(x)− w2(n2(x))

(3.7)

≤
(3.8)

(
(1 + ε)2 − (1− ε)2

)
· w2(v) = 4ε · w2(v).

Together with (4.7), this implies∑
x∈Tv\U

w2(x)− w2(N(x,A) \ {v})

> (δ − 8ε) · w2(v)

(3.7)

≥ (δ − 8ε) · (1− ε)2 · w2(n(u)) (4.8)
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since v ∈ regA(u) = {n(u), n2(u)}. Next, we prove an upper bound on the
right-hand side of (4.6). As u is a double vertex, we obtain

|w(N(u,A))− w(regA(u))| = |w(N(u,A))− w(n(u))− w(n2(u))|
= w(N(u,A))− w(n(u))− w(n2(u))

(3.9)

≤ (2 + ε2) · w(u)− w(n(u))− w(n2(u))

(3.7)

≤
(3.8)

(
(2 + ε2) · (1 + ε)− (2− ε)

)
· w(n(u)). (4.9)

Hence, we get

w2(regA(u))

2
− w2(u) + w2(N(u,A) \ regA(u))

(3.7)

≤
(3.8)

w2(n(u))− (1− ε)2 · w2(n(u)) + w2(N(u,A) \ regA(u))

≤ w2(n(u))− (1− ε)2 · w2(n(u)) + (w(N(u,A))− w(regA(u)))2

(4.9)

≤
(
1− (1− ε)2 + ((2 + ε2) · (1 + ε)− (2− ε))2

)
· w2(n(u)). (4.10)

Combining (4.8), (4.10) and (4.5) completes the proof.

We remark that a (slightly) weaker version of (4.5) would be sufficient if
we, for example, did not use both the lower and the upper bound on w(n2(u))
and w(u) provided by (3.7) and (3.8), respectively, in our estimates, but, in-
stead, viewed our bounds as a function in w(n2(u)) and w(u) and calculated
where they become tightest. However, as this increases the complexity of
the calculations without providing further insights or changing the order of
magnitude of our improvements, we decided in favor of the simpler version.

Next, we exploit that there is no circular improvement of length at most
κ · (2 · blog(|V |)c+ 1) to derive an upper bound on

∑
v∈A′ w(v) · |regB(v)|.

Corollary 4.23. We have∑
v∈A′

w(v) · (|regB(v)| − 1) ≤ 2

1− ε
· κ+ 1

κ
· w(A).

Proof. Assume towards a contradiction that∑
v∈A′

w(v) · (|regB(v)| − 1) >
2

1− ε
· κ+ 1

κ
· w(A).

By the termination criterion of LogImp, it suffices to show that there is a
circular improvement of length at most κ ·(2 ·blog(|V |)c+1). By Lemma 3.9,
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every vertex in A can have at most one regular single neighbor in B. Thus,
every v ∈ A′ has at least |regB(v)| − 1 many regular double neighbors in B.
This yields∑
v∈A

w(v)·degH(v) ≥
∑
v∈A′

w(v)·(|regB(v)| − 1) >
2

1− ε
·κ+ 1

κ
·w(A). (4.11)

We further observe that by (3.7), the weights of adjacent vertices in H
differ by a factor of at most (1− ε)−1 multiplicatively. Thus, we can apply
Lemma 4.11 and Lemma 4.21 to derive the desired contradiction.

We remark that we could obtain a slightly stronger statement using the
following observations:

1. For vertices v ∈ A′ that do not feature a regular single neighbor in
B, we can omit the −1 on the left-hand side. In particular, we obtain
an improved bound unless they only make up a very small fraction of
w(A′). In this case, the weighted sum over their degrees in H is also
small by Proposition 2.17.

2. By the same argument as in the proof of Lemma 3.11, we may observe
that no two vertices in A′ with a regular single neighbor in B can
share an edge in H. In particular, whenever v ∈ A′ has a regular
single neighbor in B, all of its incident edges in H go to vertices from
A′ without a regular single neighbor in B, or to A \ A′. By (3.7) and
the first observation, we can assume that a large fraction of the sum∑

v∈A′ w(v) · degH(v) comes from edges of the second type.

3. Currently, for edges connecting A′ to A\A′, in (4.11), we only account
for the endpoint from A′, even though (3.7) tells us that the second
endpoint contributes a term almost as large.

However, the improvement we can obtain by formally carrying out these
arguments is limited to, at best, getting rid of the −1 on the left-hand
side, and unnecessarily increases the proof complexity without changing the
qualitative statement we aim at. Thus, we omit the details.

Now, we prove bounds on the approximation guarantee of LogImp for
the cases where w(A′) is “large” (Lemma 4.24) or “small” (Lemma 4.25),
respectively.

Lemma 4.24. Let µ ∈ [0, 1]. If w(A′) ≥ µ · w(A), then

w(B) ≤ k + 1

2
· w(A)

− 1

2
· ε2

(1 + ε) · (2 + ε2)
·
(

(k − 1) · µ− 2

1− ε
· κ+ 1

κ

)
· w(A).
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Observe that this only results in an improved guarantee if we have
µ > 1

k−1 ·
2

1−ε ·
κ+1
κ .

Proof. Using Proposition 2.17 and Corollary 4.23, we calculate∑
v∈A

(k − |regB(v)|) · w(v) ≥
∑
v∈A′

(k − |regB(v)|) · w(v)

= (k − 1) · w(A′)−
∑
v∈A′

(|regB(v)| − 1) · w(v)

≥ (k − 1) · w(A′)− 2

1− ε
· κ+ 1

κ
· w(A)

≥
(

(k − 1) · µ− 2

1− ε
· κ+ 1

κ

)
· w(A).

Now, Lemma 3.20 yields the desired bound.

Lemma 4.25. Let µ ∈ [0, 1]. If w(A′) ≤ µ · w(A), then

w(B) ≤ k + 1

2
· w(A)− (1− δ) · (1− µ)

2
· w(A).

Proof. We first observe that by Corollary 2.22, we get∑
u∈B:
n(u)=v

charge(u, v) ≤ δ

2
· w(v) for all v ∈ A \A′.

Thus, we may apply Lemma 2.18, Proposition 2.20 and Corollary 2.22 to
obtain

w(B) ≤ k

2
· w(A) +

∑
u∈B

charge(u, n(u))

≤ k

2
· w(A) +

∑
v∈A′

∑
u∈B:
n(u)=v

charge(u, v) +
∑

v∈A\A′

∑
u∈B:
n(u)=v

charge(u, v)

≤ k

2
· w(A) +

1

2
· w(A′) +

δ

2
· w(A \A′)

=
k + 1

2
· w(A)− 1− δ

2
· w(A \A′)

≤ k + 1

2
· w(A)− (1− δ) · (1− µ)

2
· w(A).

Now, we are ready to prove Theorem 4.18.



4.4. Our algorithm LogImp 75

Proof of Theorem 4.18. The cases k = 3 and k = 4 are a direct consequence
of Theorem 3.1. To deal with the case k ≥ 5, we define

µ∗ :=
1− δ + ε2

(1+ε)·(2+ε2)
· 2

1−ε ·
κ+1
κ

1− δ + ε2

(1+ε)·(2+ε2)
· (k − 1)

.

Note that µ∗ ∈ [0, 1] because δ ∈ (0, 1) and

2

1− ε
· κ+ 1

κ

(3.1)
<

κ=10

2

0.75
· 1.1 < 3 < k − 1.

Moreover, µ∗ balances the bounds from Lemma 4.24 and Lemma 4.25 in
that both yield a guarantee of

w(B) ≤

(
k + 1

2
− 1

2
·
k − 1− 2

1−ε ·
κ+1
κ

k−1
1−δ + (1+ε)·(2+ε2)

ε2

)
· w(A). (4.12)

Indeed, we calculate

ε2

(1 + ε) · (2 + ε2)
·
(

(k − 1) · µ∗ − 2

1− ε
· κ+ 1

κ

)
=

(
ε2

(1 + ε) · (2 + ε2)
· (k − 1) + (1− δ)

)
· µ∗ − (1− δ) · µ∗

− ε2

(1 + ε) · (2 + ε2)
· 2

1− ε
· κ+ 1

κ

= 1− δ +
ε2

(1 + ε) · (2 + ε2)
· 2

1− ε
· κ+ 1

κ
− (1− δ) · µ∗

− ε2

(1 + ε) · (2 + ε2)
· 2

1− ε
· κ+ 1

κ

= (1− δ) · (1− µ∗)

and

(1− δ) · (1− µ∗)

= (1− δ) ·
ε2

(1+ε)·(2+ε2)
· (k − 1)− ε2

(1+ε)·(2+ε2)
· 2

1−ε ·
κ+1
κ

1− δ + ε2

(1+ε)·(2+ε2)
· (k − 1)

= (1− δ) · ε2

(1 + ε) · (2 + ε2)
·

k − 1− 2
1−ε ·

κ+1
κ

1− δ + ε2

(1+ε)·(2+ε2)
· (k − 1)

=
k − 1− 2

1−ε ·
κ+1
κ

k−1
1−δ + (1+ε)·(2+ε2)

ε2

.

Now, to prove the bound for 5 ≤ k ≤ 7999, we pick ε := 0.067 and
δ := 0.9309. Proposition 3.3 tells us that ε meets (3.1)-(3.4) and one can
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easily verify (4.5) by plugging in the two values. Moreover, plugging these
constants and κ = 10 into (4.12) yields the desired bound.

Finally, for k ≥ 8000 = 203, we pick ε := k−
1
3 and δ := 14ε. Then Propo-

sition 3.3 tells us that ε satisfies (3.1)-(3.4). As far as (4.5) is concerned, we
calculate

1− (1− ε)2 + ((2 + ε2) · (1 + ε)− (2− ε))2 ≤ 1

2
· (14ε− 8ε) · (1− ε)2

⇔ 1− (1− ε)2 + ((2 + ε2) · (1 + ε)− (2− ε))2 ≤ 3ε · (1− ε)2

⇔ 14ε2 + 3ε3 + 7ε4 + 2ε5 + ε6 ≤ ε | ε > 0

⇔ 14ε+ 3ε2 + 7ε3 + 2ε4 + ε5 ≤ 1.

The last inequality is true since ε ≤ 1
20 . Using ε = k−

1
3 ≤ 1

20 and δ = 14ε,
we first calculate

1

1− δ
= 1 +

δ

1− δ
≤ 1 +

δ

1− 14 · 1
20

= 1 +
10

3
· δ = 1 +

140

3
· ε. (4.13)

Further using κ = 10, we obtain

k − 1− 2
1−ε ·

κ+1
κ

k−1
1−δ + (1+ε)·(2+ε2)

ε2

>
k − 1− 2

1−ε ·
κ+1
κ

k
1−δ + (1+ε)·(2+ε2)

ε2

(4.13)

≥
k − 1− 2

1− 1
20

· 11
10

k · (1 + 140
3 · ε) +

(1+ 1
20

)·(2+ 1
202

)

ε2

=
k − 1− 2

1− 1
20

· 11
10

k · (1 + 140
3 · k

− 1
3 ) +

(1+ 1
20

)·(2+ 1
202

)

k−
2
3

=
k − 63

19

k + 1170463
24000 · k

2
3

≥ k − 3.316

k + 48.77 · k
2
3

.

Hence, (4.12) yields

w(B) ≤
(
k + 1

2
− 1

2
· k − 3.316

k + 48.77 · k
2
3

)
· w(A)

as desired.

We point out that the constants for the case 5 ≤ k ≤ 7999 are chosen
to (approximately) optimize the guarantee we obtain for k = 5, whereas the
constants for k ≥ 8000 are chosen to highlight the asymptotic behavior of
the approximation guarantees.
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We further remark that the same arguments we use for k ≥ 5 would also
work for k = 4, but result in a worse constant than the simpler analysis from
Chapter 3. For k = 3, we would require a stronger version of Corollary 4.23.
Note that for k = 3, Corollary 4.23 actually follows from Proposition 2.17.
While we have already discussed how such a stronger version could be ob-
tained, we omit this here because we are more interested in the asymptotic
behavior of the approximation guarantees.

4.4.2 Running time

Let κ ∈ N be a fixed constant. Our main result for this section is given by
the following theorem:

Theorem 4.26. Let k ∈ Z≥3 be a fixed constant. Let (S, w) be an in-
stance of the weighted k-Set Packing problem and let G := (V,E) := GS .
Let further A ⊆ V be a maximal independent set. We can, in polyno-
mial time, either return a circular improvement X of A of length at most
κ · (2 · blog(|V |)c+ 1), or decide that none exists.

Fix k ∈ Z≥3 and an instance (S, w) of the weighted k-Set Packing prob-
lem and let G := (V,E) := GS . Let A ⊆ V be a maximal independent set.
In accordance with Definition 4.8, we compute two maps

• n : {u ∈ V : |N(u,A)| ≥ 1} → A mapping u to an element of N(u,A)
of maximum weight, and

• n2 : {u ∈ V : |N(u,A)| ≥ 2} → A mapping u to an element of
N(u,A) \ {n(u)} of maximum weight.

These maps can easily be computed in polynomial time. As A is maximal,
the domain of n is V . We define an auxiliary multigraph H as follows:

Definition 4.27. The vertices of H are pairs (v, Y ), where

(4.27.1) v ∈ A and

(4.27.2) Y ⊆ {u ∈ V \A : n(u) = v} is an independent set.

The multiset E(H) consists of the edges e(u, Y1, Y2) := {(n(u), Y1), (n2(u), Y2)},
where

(4.27.3) u ∈ V \A with |N(u,A)| ≥ 2 and (n(u), Y1), (n2(u), Y2) ∈ V (H),

(4.27.4) {u}, Y1 and Y2 are pairwise disjoint, and
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(4.27.5) We have

w2(u) +
1

2
·
( ∑
x∈Y1

w2(x)− w2(N(x,A) \ {n(u)})

+
∑
x∈Y2

w2(x)− w2(N(x,A) \ {n2(u)})
)

>
w2(n(u)) + w2(n2(u))

2
+ w2(N(u,A) \ {n(u), n2(u)}).

We say that the edge e(u, Y1, Y2) is induced by u and define µ : E(H)→ V \A,
e(u, Y1, Y2) 7→ u.

Proposition 4.28. For every (v, Y ) ∈ V (H), we have |Y | ≤ k.

Proof. G = GS is (k+ 1)-claw free by Proposition 2.8 and Y constitutes the
set of talons of a claw centered at v, provided it is non-empty.

Proposition 4.29. H can be constructed in polynomial time.

Proof. We first consider the set of vertices. By Proposition 4.28, for each
v ∈ A, there are at most

k∑
i=0

|V |i =
|V |k+1 − 1

|V | − 1
∈ O(|V |k)

many possible choices for Y , and we can check in polynomial time whether
one of them meets (4.27.2).

As far as the edges are concerned, there are at most |V | many possible
choices for u and O(|V |k) possibilities to choose each of Y1 and Y2. For
given choices of u, Y1 and Y2, we can check (4.27.3)-(4.27.5) in polynomial
time.

We claim that there is a one-to-one correspondence between circular
improvements and certain cycles C̄ in H, which we call proper.

Definition 4.30. We call a cycle C̄ in H proper if the following conditions
hold:

(4.30.1) For every v ∈ A, there is at most one set Y with (v, Y ) ∈ V (C̄).

(4.30.2) X(C̄) := {µ(e), e ∈ E(C̄)}∪
⋃

(v,Y )∈V (C̄) Y constitutes an independent
set and the union is disjoint.

We remark that requirement that the union is disjoint can be omitted
since it follows from (4.30.1), (4.27.2) and (4.27.4). However, adding this
requirement shortens the subsequent arguments.
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Proposition 4.31. A set X ⊆ V constitutes a circular improvement of
length ` if and only if there is a proper cycle C̄ in H of length ` such that
X = X(C̄).

Proof. Let X constitute a circular improvement of length `. Let U , C and
(Yv)v∈V (C) be as in Definition 4.8. By definition of the sets (Yv)v∈V (C) and
(4.8.3), we have

ēu := e(u, Yn(u), Yn2(u)) = {(n(u), Yn(u)), (n2(u), Yn2(u))} ∈ E(H)

for every u ∈ U , and µ(ēu) = u. In particular,

C̄ := ({(v, Yv), v ∈ V (C)}, {ēu, u ∈ U})

yields a cycle in H of length ` by (4.8.1). (4.30.2) follows since X is circular
and by definition of the sets Yv, (4.30.1) follows by construction.

Now, let C̄ be a proper cycle of length `. By (4.30.2), (4.27.2) and
(4.27.3), X = X(C̄) ⊆ V \A constitutes an independent set.

Define U := {µ(e) : e ∈ E(C̄)}. Then (4.30.1) tells us that for ev-
ery u ∈ U and every v ∈ {n(u), n2(u)}, there is at most one set Y with
(v, Y ) ∈ V (C̄). In particular, u induces at most one edge of C̄. Hence,
|U | = |E(C̄)| = `. Additionally,

C :=

(⋃
u∈U
{n(u), n2(u)}, {eu = {n(u), n2(u)}, u ∈ U}

)

is a closed edge sequence because it arises from C̄ by projecting every vertex
(v, Y ) ∈ V (C̄) to its first component. By (4.30.1), C is a cycle. Thus, (4.8.1)
holds. We further observe that (4.27.2), (4.30.1) and (4.30.2) imply Yv = Y
for every (v, Y ) ∈ V (C̄), where Yv is defined according to (4.8.2). Now,
(4.8.2) and (4.8.3) follow from (4.30.2) and (4.27.5).

It remains to see how to, in polynomial time, find a proper cycle in H
of length at most κ · (2 · blog(|V |)c+ 1), or decide that none exists.

To this end, we apply the color-coding technique and introduce the fol-
lowing terminology:

Definition 4.32 (t-perfect family of hash functions, [2]). For t,m ∈ N with
t ≤ m, a family F ⊆ {1,...,m}{1, . . . , t} of functions mapping {1, . . . ,m} to
{1, . . . , t} is called a t-perfect family of hash functions if for all I ⊆ {1, . . . ,m}
of size at most t, there is f ∈ F with f � I injective.

Theorem 4.33 (stated in [2] referring to [44]). For t,m ∈ N with t ≤ m,
a t-perfect family F of hash functions of cardinality 2O(t) · (log(m))2, where
each function is encoded using O(t)+2 log logm many bits, can be explicitly
constructed such that the query time is constant.
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In order to find a proper cycle C̄ in H meeting the desired size bound,
we color our current solution A, as well as the underlying universe

⋃
S of

our k-Set Packing instance. Then, we strengthen our requirements on C̄ by
demanding that the vertices v with (v, Y ) ∈ V (C̄) receive pairwise distinct
colors, and that moreover, the sets of colors corresponding to the elements
of X(C̄) (when interpreted as sets in S) are pairwise disjoint. This leads to
the notion of a colorful cycle (see Definition 4.35).

In the following, we first show that we can pick our colorings from appro-
priately chosen families of perfect hash functions (of polynomial size) in such
a way that for each proper cycle C̄ in H of length at most κ·(2·blog(|V |)c+1),
there exist colorings from our families for which C̄ is colorful. The families
we consider only require a logarithmic number of different colors.

Next, we explain how to, for fixed colorings from our families, use dy-
namic programming to check for the existence of a colorful cycle in polyno-
mial time.

In particular, by looping over all colorings from our families and checking
for a colorful cycle, we will find a circular improvement, if one exists.

By Theorem 4.33, let F be a t1 := κ · (2 · blog(|V |)c+ 1)-perfect family
of hash functions with domain A ⊆ V of size

2O(log(|V |)) · (log(|V |))2 = |V |O(1).

In addition, we pick a t2 := (k+1) ·k ·κ ·(2 ·blog(|V |)c+1)-perfect family
of hash functions G with domain

⋃
S, the underlying universe of the k-Set

Packing instance. Clearly, |
⋃
S| ≤ k · |S| = k · |V |. Thus, by Theorem 4.33,

we can choose G to be of size

2O(k2·log(|V |)) · (log(k · |V |))2 = |V |O(k2),

which is polynomial.
We explain how we use the hash functions to color the vertices and edges

of H. In doing so, we employ the term “k-set” to refer to elements of S,
whereas the term “set” may also refer to a set of vertices, for example.

Definition 4.34 (colors). Let f ∈ F and g ∈ G.
For every v = (z, Y ) ∈ V (H), we set colf (v) := f(z), meaning that we

color v with the color assigned to z ∈ A by f . Additionally, we define

colg(v) := g
(⋃

Y
)

= {g(x) : ∃u ∈ Y : x ∈ u},

i.e., we color v with all of the colors occurring among the elements of the
k-sets represented by the vertices in Y .

Finally, we assign to an edge e = {(v1, Y1), (v2, Y2)} ∈ E(H) the set of
colors

colg(e) := g(µ(e)) = {g(x), x ∈ µ(e)},

where we interpret µ(e) as the corresponding k-set.
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Definition 4.35 (colorful path/cycle). Let f ∈ F and g ∈ G. We call a
path or cycle P in H colorful for f and g if the following conditions are
satisfied:

(4.35.1) The colors colf (v), v ∈ V (P ) are pairwise distinct.

(4.35.2) The color sets colg(e), e ∈ E(P ) and colg(v), v ∈ V (P ) are pairwise
disjoint.

Lemma 4.36. Let C̄ be a cycle inH of length at most κ · (2 · blog(|V |)c+ 1).
Then the following are equivalent:

• There exist f ∈ F and g ∈ G for which C̄ is colorful.

• C̄ is a proper cycle.

Proof. Let C̄ be colorful for f and g. (4.35.1) implies (4.30.1). By (4.35.2),
the (unions of) k-sets in the list (

⋃
Y )(v,Y )∈V (C̄), µ(e)e∈E(C̄) are pairwise

disjoint. In particular, the union in (4.30.2) is disjoint since all sets in S are
non-empty. Moreover, (4.27.2) ensures that for each (v, Y ) ∈ V (H), the k-
sets in Y are pairwise disjoint. Thus, X(C̄) constitutes a disjoint collection
of k-sets, or, equivalently, an independent set in G. Hence, (4.30.2) holds.

Now, let C̄ be a proper cycle of length ≤ κ · (2 · blog(|V |)c+ 1) = t1. By
(4.30.1), there is f ∈ F that assigns a different color to each one of the ver-
tices in V (C̄). By (4.30.2), the k-sets contained in the sets Y, (v, Y ) ∈ V (H)
and the k-sets µ(e), e ∈ E(C̄) are pairwise distinct and pairwise disjoint. In
addition, as |Y | ≤ k for every (v, Y ) ∈ V (H) by Proposition 4.28, the total
number of elements from

⋃
S contained in⋃

(v,Y )∈V (C̄)

(
⋃
Y ) ∪

⋃
e∈E(C̄)

µ(e)

can be bounded by

k2 · |V (C̄)|+ k · |E(C̄)| ≤ (k + 1) · k · κ · (2 · blog(|V |)c+ 1) = t2.

Hence, there exists g ∈ G assigning distinct colors to all of these elements.
Thus, C̄ is colorful for f and g.

As the sizes of F and G are polynomially bounded, Lemma 4.37 concludes
the proof of Theorem 4.26.

Lemma 4.37. Let f ∈ F and g ∈ G. We can, in polynomial time, either
find a cycle C̄ of length at most κ · (2 · blog(|V |)c+ 1) in H that is colorful
for f and g, or decide that none exists.
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Proof. There is a colorful cycle C̄ of length at most κ · (2 · blog(|V |)c+ 1)
if and only if there exist an edge e0 = {s, t} ∈ E(H) and a colorful s-t-
path P of length at most κ · (2 · blog(|V |)c + 1) − 1 such that colg(e0) and⋃
e∈E(P ) colg(e) ∪

⋃
v∈V (P ) colg(v) are disjoint. Note that e0 cannot appear

on the s-t-path P since the k-set µ(e0) and, thus, the color set colg(e0) is
non-empty. For

• s, t ∈ V (H),

• Cf ⊆ {1, . . . , t1},

• Cg ⊆ {1, . . . , t2}, and

• i ∈ {0, . . . , κ · (2 · blog(|V |)c+ 1)− 1},

we define the Boolean value Path(s, t, Cf , Cg, i) to be true if and only if
there exists a colorful s-t-path P of length i with

{colf (v), v ∈ V (P )} = Cf and
⋃

e∈E(P )

colg(e) ∪
⋃

v∈V (P )

colg(v) = Cg.

We apply dynamic programming to compute these values in order of non-
decreasing i, and we use backlinks to be able to retrace a corresponding
path for each value that is set to true. The total number of values we have
to compute is bounded by

|V (H)|2 · 2t1 · 2t2 · κ · (2 · blog(|V |)c+ 1)

= |V |O(k) · |V |O(1) · |V |O(k2) · log(|V |) = |V |O(k2),

which is polynomially bounded. Hence, it suffices to show how to, in
polynomial time, determine Path(s, t, Cf , Cg, i), provided that all of the
values Path(s′, t′, Cf,

′
, Cg,

′
, i′) with i′ < i are already known to us. We

have Path(s, t, Cf , Cg, 0) = true if and only if s = t, Cf = {colf (s)} and
Cg = colg(s). For i ≥ 1, we observe that Path(s, t, Cf , Cg, i) = true if and
only if colf (s) ∈ Cf and there exists an edge e = {s, v} ∈ E(H) such that

• colg(s) ∩ colg(e) = ∅,

• colg(s) ∪ colg(e) ⊆ Cg and

• Path(v, t, Cf \ {colf (s)}, Cg \ (colg(s) ∪ colg(e)), i− 1) = true.

We can check this in polynomial time. Observe that we indeed compute a
path (as opposed to an edge sequence, potentially visiting vertices multiple
times) since every vertex receives a color via f and in particular, we cannot
encounter a vertex twice.

We remark that similar arguments are used in [28] and [48] to obtain a
polynomial running time.
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(a) A 4-regular graph H with girth 3. (b) The graph G with vertex set V (G) =
V (H) ∪ E(H) arises by connecting each
e ∈ E(H) (blue) to its endpoints in H
(red).

Figure 4.5: Illustration of the construction of the graph G.

4.4.3 Proof of Theorem 4.1

For k = 1, 2, we can solve the weighted k-Set Packing problem exactly
in polynomial time [22]. Next, fix k ∈ Z≥3 and consider the following
algorithm: Given an instance (S, w) of the weighted k-Set Packing prob-
lem, we first apply Lemma 2.14 with N = (k + 1) · k + 1 to obtain a new
instance (S ′, w′) with S ′ ⊆ S. Then, we run LogImp on (GS′ , w

′). By
Lemma 2.14 (ii), we have

w′ 2(A) ≤ (w′(A))2 ≤ (k ·N · |S|)2 ∈ O(k6 · |S|2)

for any feasible solution A to (GS′ , w
′). As w′ is integral, LogImp termi-

nates on (GS′ , w
′) after O(k6 · |S|2) iterations. Moreover, by Theorem 4.26,

each iteration can be implemented to run in polynomial time. Finally, The-
orem 4.18 and Lemma 2.14 (i) allow us to conclude that our algorithm
achieves an approximation guarantee of

N

N − 1
· k + 1− θk

2
≤
k + 1 + 1

k − θk
2

=
k + 1− λk

2
,

where λk := θk − 1
k . Now, limk→∞ θk = 1 implies limk→∞ λk = 1, which

concludes the proof.

4.5 Lower bound

In this section, we show that Theorem 4.1 is asymptotically best possible in
the sense of Theorem 4.3. We first establish the following auxiliary state-
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ment.

Lemma 4.38. Let f : R>0 → R>0. Then one of the following holds:

(i) f is constant.

(ii) For every δ ∈ (0, 1), there exist x, y ∈ R>0 such that x > (1 − δ) · y
and f(x) < f(y).

Proof. Assume that (ii) does not hold. Then there exists δ ∈ (0, 1) with the
following property:

For every y ∈ R>0 and every x > (1− δ) · y, we have f(x) ≥ f(y). (4.14)

Claim 4.39. Let α ∈ R>0. Then f is constant on the interval ((1−δ) ·α, α).

Proof. Let r, z ∈ ((1−δ)·α, α) with r ≤ z. We need to show that f(r) = f(z).
Then (4.14) with y = r and x = z yields f(z) ≥ f(r). On the other hand,
we have

r > (1− δ) · α > (1− δ) · z,

so we can also apply (4.14) with y = z and x = r to conclude f(r) ≥ f(z).
Hence, f(r) = f(z).

Claim 4.40. Let n ∈ N. Then f is constant on the interval(
(1− δ)

n
2 , (1− δ)−

n
2

)
.

Proof. Induction on n. The base case n = 1 follows from Claim 4.39 with
α = (1 − δ)−

1
2 . Now, assume that the statement of the claim is true

for n. Applying Claim 4.39 tells us that f is constant on the intervals(
(1− δ)

n+1
2 , (1− δ)

n−1
2

)
and

(
(1− δ)−

n−1
2 , (1− δ)−

n+1
2

)
, which both have

a non-empty intersection with the interval
(

(1− δ)
n
2 , (1− δ)−

n
2

)
. Hence, f

is also constant on the interval(
(1− δ)

n+1
2 , (1− δ)−

n+1
2

)
=
(

(1− δ)
n+1
2 , (1− δ)

n−1
2

)
∪
(

(1− δ)
n
2 , (1− δ)−

n
2

)
∪
(

(1− δ)−
n−1
2 , (1− δ)−

n+1
2

)
.

Claim 4.41. (i) holds.

Proof. Let x, y ∈ R>0. We need to show that f(x) = f(y). Pick n ∈ N such

that x, y ∈
(

(1− δ)
n
2 , (1− δ)−

n
2

)
. Claim 4.40 yields the desired statement.
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Now, we are ready to prove Theorem 4.3.

Proof of Theorem 4.3. Let k ∈ Z≥3, f : R>0 → R>0, ε ∈ (0, 1) and C > 0.
We distinguish two cases, depending on which one of the statements (i) or
(ii) from Lemma 4.38 holds. We first deal with the easier case where f is
constant.

Case 1: f is constant. Let S := {{1, 2}, {1, 3}} and define w({1, 2}) := 1
and w({1, 3}) := k

2 . Finally, let A := {{1, 2}}. Then there is no lo-
cal improvement of A w.r.t. f ◦ w because {1, 2} and {1, 3} intersect and
f(w({1, 2})) = f(w({1, 3})) since f is constant. On the other hand, we have

OPT(S, w) = w({1, 3}) =
k

2
>

(
k

2
− ε
)
· w({1, 2}) =

(
k

2
− ε
)
· w(A).

This concludes the proof for the case where f is constant. Next, we deal
with the more interesting case where (ii) from Lemma 4.38 holds true.

Case 2: (ii) holds. We apply (ii) with δ := ε
k to obtain x, y ∈ R>0 with

the following property:

x >
(

1− ε

k

)
· y and f(x) < f(y). (4.15)

Let s ∈ N such that
s+ 1

s
· f(x) < f(y). (4.16)

Pick n0 ∈ N such that for all n ∈ N≥n0 , we have

s ·
(

2 ·
⌊

log

(
C · log

(
k + 2

2
· n
))⌋

+ 1

)
<

log(n)

log(k − 1)
− 1. (4.17)

This is possible since the left-hand side grows asymptotically slower than
the right-hand side.

Now, we employ a result by Erdős and Sachs [23] telling us that there
exists a k-regular graph H on |V (H)| ≥ n0 vertices such that

girth(H) ≥ log(|V (H)|)
log(k − 1)

− 1, (4.18)

where girth(H) denotes the girth of H, i.e., the minimum length of a cycle
in H. Consider the graph G with vertex set V (G) := V (H) ∪ E(H) and
edge set E(G) := {{v, e} : v ∈ e ∈ E(H)}, i.e., each edge of H is connected
via edges in G to both of its endpoints. See Fig. 4.5 for an illustration.
We define S := {δG(x), x ∈ V (G)}, where δG(x) is the set of incident edges
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of x in G. By k-regularity of H, |δG(v)| = k ≥ 3 for v ∈ V (H), and
|δG(e)| = 2 for e ∈ E(H), so each element of S has cardinality at most k.
By definition, G is simple, so no two vertices share more than one edge. As
all degrees are at least two, the sets δG(x), x ∈ V (G) are pairwise distinct.
Finally, V (H) and E(H) constitute independent sets in G, implying that
A := {δG(v), v ∈ V (H)} andB := {δG(e), e ∈ E(H)} each consist of pairwise
disjoint sets. We define positive weights on S by setting w(a) := y for a ∈ A
and w(b) := x for b ∈ B. By k-regularity of H, we have

|B| = |E(H)| = k

2
· |V (H)| = k

2
· |A|. (4.19)

Hence, we obtain

OPT(S, w) ≥ w(B) = x · |B| (4.19)
= x · k

2
· |A|

(4.15)
>

(
1− ε

k

)
· k

2
· y · |A|

=
k − ε

2
· w(A).

It remains to see that there is no local improvement X of A w.r.t. f ◦ w of
size

|X| ≤ C · log(|S|) = C · log(|V (G)|) (4.19)
= C · log

(
k + 2

2
· |V (H)|

)
. (4.20)

As X constitutes a local improvement of A w.r.t. f ◦w if and only if X \A
does, we may restrict ourselves to the case where X ⊆ S \ A = B. Assume
towards a contradiction that X ⊆ B is a local improvement of A w.r.t. f ◦w
meeting the size bound in (4.20). Then our choice of weights implies

f(x) · |X| = (f ◦ w)(X) > (f ◦ w)({a ∈ A : ∃b ∈ X : a ∩ b 6= ∅})
= f(y) · |{a ∈ A : ∃b ∈ X : a ∩ b 6= ∅}|.

In particular, (4.16) implies

|X| > s+ 1

s
· |{a ∈ A : ∃b ∈ X : a ∩ b 6= ∅}|. (4.21)

But the sets from A that X intersects are precisely the sets δG(v) for those
vertices v ∈ V (H) that are endpoints of edges e ∈ E(H) with δG(e) ∈ X.
Let J be the subgraph of H containing precisely the edges e with δG(e) ∈ X
and their endpoints. Then

C · log

(
k + 2

2
· |V (H)|

)
(4.20)

≥ |X| = |E(J)|
(4.21)
>

s+ 1

s
· |V (J)|.

By Lemma 4.12, this implies the existence of a cycle in H of length at most

s ·
(

2 ·
⌊

log

(
C · log

(
k + 2

2
· |V (H)|

))⌋
+ 1

)
.
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But by (4.17) and since we chose H with |V (H)| ≥ n0, this contradicts
our lower bound on the girth of H from (4.18). Hence, there is no local
improvement X of A wr.t. f ◦ w meeting the size bound in (4.20).

We remark that a similar construction was also used by Bafna, Narayanan
and Ravi [5] to show that local improvements of constant size do not yield
an approximation guarantee better than k

2 for the MIS in (k + 1)-claw free
graphs. We further point out that Theorem 4.3 easily generalizes to all func-
tions f : R>0 → R: If there is x ∈ R>0 with f(x) ≤ 0, we may consider the
instance given by S = {{1}} and w({1}) = x. Then ∅ is locally optimum
w.r.t. f ◦ w, but has a total weight of 0, whereas the optimum solution S
features a positive weight of x.
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Chapter 5

A better-than-k/2-
approximation

In the previous chapter, we have seen that if we restrict ourselves to local
improvements of logarithmically bounded size (w.r.t. a fixed additive lo-
cal search objective), we cannot get better than a k

2 -approximation for the
weighted k-Set Packing problem (cf. Theorem 4.3). Moreover, for k → ∞,
we can asymptotically meet these lower bound guarantees (Theorem 4.1).
At first sight, this seems to conclude the story of local search for the weighted
k-Set Packing problem, given that well-structured local improvements of log-
arithmically bounded size lie on the border of what we can still search for via
enumeration/dynamic programming based approaches. Note that the previ-
ous works studying polynomial-time local search algorithms for (weighted)
k-Set Packing rely on these paradigms [7, 15, 16, 17, 28, 31, 33, 48]. As a
consequence, new ideas are required in order to breach the barrier of k

2 in
the weighted case.

In this chapter, we present a polynomial-time local search algorithm for
the weighted k-Set Packing problem that beats the approximation threshold
of k

2 , at least for sufficiently large values of k. Once more, we conduct local
search with respect to the squared weight function and base our analysis on
Lemma 3.20, telling us that either “most of” our instance is “close to be-
ing unweighted”, or we obtain an Ω(k)-improvement in the approximation
guarantee. However, in contrast to the previous two chapters, we do not
deal with the first scenario by trying to generalize techniques from the un-
weighted setting, limiting ourselves to local improvements of logarithmically
bounded size. Instead, we directly apply a black box algorithm for the un-
weighted k-Set Packing problem to carefully chosen subinstances in order to
generate candidate improvements. In doing so, we are able to also consider
potential improvements of super-logarithmic size. This allows us to escape
the local optima from the lower bound instances constructed in the proof of
Theorem 4.3.
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Our main result for this chapter is given by the following theorem:

Theorem 5.1. Let k ∈ Z≥3.

There is a polynomial-time min{0.5 · k + 0.499, 0.4999 · k + 0.501}-approx-
imation algorithm for the weighted k-Set Packing problem.

For k ≤ 20, the first term attains the minimum, for k ≥ 20, the second
term does. For k ≥ 5011, we obtain a guarantee below k

2 .

We remark that by conducting a more involved analysis, including a
stronger (but much more tedious to prove) version of Lemma 3.20, and
using circular improvements to boost the approximation ratio, we can in
fact obtain an asymptotically slightly better guarantee of 0.4986 ·k+0.5194,
see [42] for the details.

We further point out that, at the cost of a quasi-polynomial running
time, Theorem 5.1 generalizes to the MWIS in (k + 1)-claw free graphs.1

In particular, we will, once more, phrase our algorithm and our analysis in
terms of the more general MWIS in (k + 1)-claw free graphs, which we also
consider to be more convenient notation-wise. The additional structure an
instance of the weighted k-Set Packing problem provides is only needed in
order to obtain a polynomial running time: We exploit it to make sure that
the subroutine we use to approximate the MIS can be implemented to run
in polynomial time. Note that this is the case for induced subgraphs of the
conflict graph of a k-Set Packing instance because they correspond to k-Set
Packing subinstances.

The remainder of this chapter is organized as follows: In Section 5.1,
we provide some intuition on how running a black box algorithm for the
unweighted k-Set Packing problem/the MIS in (k+ 1)-claw free graphs may
help us to generate local improvements and obtain an approximation guar-
antee below k

2 for the weighted case. This will motivate the algorithm that
we introduce and analyze in Section 5.2. In particular, we prove Theorem 5.1
in this section.

5.1 Motivation

In order to obtain a (quasi-polynomial-time) better-than-k2 -approximation
for the MWIS in (k + 1)-claw free graphs (for sufficiently large k), we once
more rely on Lemma 3.20. It tells us that either we obtain an approximation
guarantee of k+1

2 −Ω(k) (which is sufficient for our purposes), or the instance
at hand is highly structured in that a large fraction (in terms of weight) of
the vertices in the solution we find feature many regular neighbors in an
optimum solution. In order to be able to apply Lemma 3.20, we again

1Note that the state-of-the-art k+1+ε
3

-approximation for the unweighted k-Set Pack-
ing problem by Fürer and Yu [28] also, at the cost of a quasi-polynomial running time,
generalizes to the MIS in (k + 1)-claw free graphs.
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study an algorithm that iteratively searches for certain local improvements
w.r.t. the squared weight function, including improvements of size 3 and
claw-shaped ones (Definition 2.13). Denote the solution that our algorithm
returns by A, and let B be an optimum solution. Let further ε be a constant
subject to (3.1)-(3.4), which is used to define the notions of single and double
vertices and regular neighbors (Definitions 3.4, 3.5 and 3.7). Lemma 3.20
tells us that either, say,∑

v∈A
w(v) · |regB(v)| ≥ 0.99 · k · w(A), (5.1)

meaning that “on average” (in a weighted sense), every v ∈ A has at least
0.99·k many regular neighbors inB, or we obtain an improved approximation
guarantee of

w(B) ≤
(
k + 1

2
− ε2

(1 + ε) · (2 + ε2)
· k

200

)
· w(A).

Note that for k sufficiently large, this yields a guarantee below k
2 . Hence,

we may focus on the case where (5.1) holds true. We consider an auxiliary
graph H∗ whose vertex set is the disjoint union of A and the set of vertices
from B that are single or double. Moreover, v ∈ A and u ∈ B are connected
if and only if they are regular neighbors. There are no edges in H∗ within
A or B.

H∗ is “locally unweighted” in the sense that the weights of adjacent ver-
tices can only differ by a factor of 1±O(ε) (cf. Definitions 3.4, 3.5 and 3.7).
Thus, H∗ can be thought of as an “unweighted approximation” of our in-
stance. This approximation has the nice property that it almost preserves
the notion of a local improvement: For a single or double vertex u ∈ B,
the total weight of its irregular neighbors only amounts to an O(ε)-fraction
of w(u). As a consequence, we can infer that a set X ⊆ V (H∗) ∩ B with
w2(NH∗(X,A)) < (1−O(ε2)) ·w2(X) constitutes a local improvement of A.

Finally, (5.1) tells us that the average weighted degree that vertices from
A have in H∗ amounts to 0.99 · k, whereas each vertex from B can have a
degree of at most 2 in H∗ since it can have at most two regular neighbors
in A. Using the fact that the weights of neighboring vertices only differ by
a factor of 1±O(ε), we can apply Lemma 4.13 to obtain a weight threshold
L with the property that if we consider the induced subgraph H∗≥L of H∗

featuring only vertices of weight at least L, then the average degree in A
amounts to at least (1−O(ε)) · 0.99 · k. In particular,

|V (H∗≥L) ∩B|
|V (H∗≥L) ∩A|

≥ (1−O(ε)) · 0.99 · k
2
.

Hence, applying the (quasi-polynomial-time) k+1+ε
3 -approximation algorithm
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weight

A

X

(a) Even though the cardinality of X is larger than the cardinality of A, w2(A) is
larger than w2(X) because most vertices in A have a large weight, whereas most
vertices in X feature a small weight.

weight

A

X

X≤U

⊇ NH∗(X
≤U , A)

(b) For a sufficiently small weight threshold U , X≤U constitutes a local improve-
ment of A w.r.t. w2. This is because by local similarity of weights, all neighbors of
X in A have a weight of at most (1 +O(ε)) · U , and there are few such vertices.

Figure 5.1: The figure displays weight distributions for A and X in which
X has a larger cardinality, but A has a larger (squared) weight. The weights
are drawn along the horizontal axis and, in addition, indicated by colors (left,
blue = small weight, right, red = large weight). The weight distribution for
A is displayed on top, the weight distribution for X is shown at the bottom.
The height of the respective triangle at a given coordinate indicates the
number of vertices of the respective weight.

for the MIS in (k + 1)-claw free graphs from [28] to H∗≥L yields X with

|X| ≥ 3

k + 1 + ε
· |B ∩ V (H∗≥L)| ' 3

2
· |A ∩ V (H∗≥L)|.

We would like to use local similarity of weights to turn X into a local im-
provement of A. Unfortunately, X itself does not need to constitute a local
improvement of A w.r.t. w2 because it could happen that all of the cardinal-
ity of X is accumulated at small weights, whereas most of the vertices in A
feature a large weight. However, for this particular weight distribution, tak-
ing only the vertices in X that have a small weight does the trick since their
neighbors in A will be among those vertices in A that have a small weight as
well, of which there are few. See Fig. 5.1 for an illustration. In general, we
can use Lemma 4.14 to show that there is a weight threshold U such that
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Algorithm 5: Better-than-k/2-approximation

Input: a (k + 1)-claw free graph G = (V,E), w : V → R>0

Output: an independent set A ⊆ V
1 A← ∅
2 continue←true
3 while continue do
4 continue← RunIteration(G,A,w) // see Algorithm 6

5 end
6 return A

the set X≤U := {x ∈ X : w(x) ≤ U} constitutes a local improvement of A.

The above ideas give rise to an improved (quasi-polynomial-time) ap-
proximation algorithm for the MWIS in (k + 1)-claw free graphs (that can
be implemented to run in polynomial-time for conflict graphs of k-Set Pack-
ing instances), except for the problem that we of course do not know the
optimum solution B, and, thus, cannot construct the graph H∗ as outlined
above. However, this issue can be fixed rather easily by looking at a graph
where we include all single and double vertices from V \ A and all edges
between them, as well as all edges from vertices in A to their regular neigh-
bors.

5.2 Algorithm and analysis

Let ε := 0.01 and let ρ := k+1+ε
3 . Denote the quasi-polynomial-time ρ-

approximation algorithm for the MIS in (k + 1)-claw free graphs from [28]
by MIS.2 Moreover, let MIS(I) be the solution that MIS returns when we
apply it to the instance I. Recall that MIS can be implemented to run in
polynomial-time for conflict graphs of k-Set Packing instances.

We further let ε := 0.06984. By Proposition 3.3, our choice of ε satisfies
(3.1)-(3.4), and, thus, allows us to reuse the results from Chapter 3. In par-
ticular, we employ the notions of single and double vertices (Definitions 3.4
and 3.5), as well as the notion of regular neighbors (Definition 3.7), and we
make use of Lemma 3.20. Implementing the ideas outlined in the previous
section, we arrive at Algorithm 5. Our main result for this section is given
by Theorem 5.2.

Theorem 5.2. Algorithm 5 is a min{0.5 · k+ 0.49877, 0.49985 · k+ 0.501}-
approximation for the MWIS in (k + 1)-claw free graphs for k ∈ Z≥3.

2Our choice of ε is, to some extent, arbitrary because we can choose ε > 0 as small as
we like and the smaller it is, the better our approximation guarantee becomes. However,
the improvements we could obtain by choosing an even smaller value of ε are subsumed
in the rounding of the constants in our approximation guarantee.
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Algorithm 6: RunIteration(G,A,w)

Input: a (k + 1)-claw free graph G = (V,E), an independent set
A ⊆ V , w : V → R>0

Output: true if a local improvement was found, false otherwise
1 if ∃ local improvement X such that |X| = 3 then
2 A← (A \N(X,A)) ∪X
3 return true

4 end
5 if ∃ claw-shaped improvement X then
6 A← (A \N(X,A)) ∪X
7 return true

8 end
9 Vreg ← {u ∈ V \A : u is single or double}

10 for L ∈ {w(v) : v ∈ V } do
11 A≥L ← {v ∈ A : w(v) ≥ L}
12 V≥L ← A≥L ∪ {u ∈ Vreg : w(u) ≥ L and regA(u) ⊆ A≥L}
13 Y ← MIS(G[V≥L]), X ← Y \A
14 for U ∈ {w(v) : v ∈ V } do
15 X≤U ← {x ∈ X : w(x) ≤ U}
16 if w2(X≤U ) > w2(N(X≤U , A)) then
17 A← (A \N(X≤U , A)) ∪X≤U
18 return true

19 end

20 end

21 end
22 return false

We point out that Theorem 5.2 implies Theorem 5.1.

Proof of Theorem 5.1, assuming Theorem 5.2. Fix k ∈ Z≥3 and pick N ∈ N
such that

N

N − 1
·min{0.5 · k + 0.49877, 0.49985 · k + 0.501}

≤min{0.5 · k + 0.499, 0.4999 · k + 0.501}. (5.2)

We consider the following algorithm: Given a (k + 1)-claw free graph G =
(V,E) and w : V → R>0, we apply Lemma 2.14 to, in polynomial time,
compute U ⊆ V and w′ : U → Z>0 subject to Lemma 2.14 (i) and (ii).
Then, we apply Algorithm 5 to (G[U ], w′). By Theorem 5.2, (5.2) and (i),
this algorithm yields the desired approximation guarantee. Moreover, (ii)
tells us that Algorithm 5 terminates on (G[U ], w′) after a polynomial number
of iterations.
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As far as a single iteration is concerned, we can search for a local im-
provement of size 3, as well as for a claw-shaped local improvement, in
polynomial time via brute-force enumeration. Moreover, the two for-loops
over the weights in our instance only need a polynomial number of iterations,
and except for line 13, each of the lines 9-22 of Algorithm 6 can be executed
in polynomial time. The call to MIS in line 13 can be performed in quasi-
polynomial time since as an induced subgraph of the input graph, G[V≥L]
is (k + 1)-claw free. Moreover, if G is the conflict graph of a k-Set Packing
instance, then G[V≥L] is the conflict graph of the k-Set Packing subinstance
given by the sets in V≥L. In particular, MIS can be implemented to run in
polynomial time in this case. This concludes the proof of Theorem 5.1.

The remainder of this chapter is dedicated to the proof of Theorem 5.2.
To this end, fix k ∈ Z≥3, a (k + 1)-claw free graph G = (V,E) and a weight
function w : V → R>0. Let A be the solution returned by Algorithm 5 when
applied to (G,w) and denote an optimum solution to the MWIS in (G,w)
by B. As in Chapter 3, we fix a map n : V → A that maps each u ∈ V to
an element of N(u,A) of maximum weight. Note that we have N(u,A) 6= ∅
for every u ∈ V because no claw improves A. In addition, we fix a map
n2 : {u ∈ V : |N(u,A)| ≥ 2} → A that maps a vertex u in its domain to an
element of N(u,A) \ {n(u)} of maximum weight.

In order to prove Theorem 5.2, we first show Lemma 5.3, which yields an
upper bound on the weighted sum over the number of regular neighbors a
vertex in A features in B. Then, we plug this upper bound into Lemma 3.20
to obtain the desired guarantee.

Lemma 5.3. We have∑
v∈A
|regB(v)| · w(v) ≤ 2ρ · (1− ε)−3

1− (ε2 + 3ε
1+ε)

2
· w(A).

Note that 1− (ε2 + 3ε
1+ε)

2 > 0 by (3.1).

5.2.1 Proof of Lemma 5.3

To prove Lemma 5.3, we assume towards a contradiction that∑
v∈A
|regB(v)| · w(v) >

2ρ · (1− ε)−3

1− (ε2 + 3ε
1+ε)

2
· w(A) (5.3)

holds. By the termination criterion of Algorithm 5, A is not modified in the
last call to RunIteration (Algorithm 6). In particular, (5.3) holds in the
beginning of the last call to RunIteration. We will derive a contradiction
by showing that (5.3) guarantees that we find a local improvement in said
call. To this end, we may, first of all, assume that we do not find a local
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improvement of size 3 in line 1, or a claw-shaped improvement in line 5
because we would be done otherwise. In particular, lines 9-16 are executed.

Compliant with Algorithm 6, we employ the following notation:

• We let Vreg := {u ∈ V \A : u is single or double}. Vreg equals the set
of vertices from V \A that serve as regular neighbors of vertices in A
(see Definition 3.7).

• For x ∈ R>0, we let A≥x = {v ∈ A : w(v) ≥ x} consist of all vertices
in A of weight at least x and define

V≥x := A≥x ∪ {u ∈ Vreg : w(u) ≥ x and regA(u) ⊆ A≥x}

to contain all vertices from Vreg with the property that these and all
of their regular neighbors in A are of weight at least x. The intuition
behind this definition is that we want to make sure that for every ver-
tex u ∈ V≥x \A that might appear in our candidate local improvement
X, G[V≥x] captures enough information about N(u,A) in that it con-
tains all of u’s neighbors in A that make up a significant fraction of
w(N(u,A)). These are precisely the regular neighbors of u.

Proposition 5.4. Let x > 0 and u ∈ V≥x. Then regA(u) ⊆ A≥x.

Proof. For u ∈ V \ A, this follows from the definition of V≥x. In case we
have u ∈ V≥x ∩ A = A≥x, we obtain regA(u) ⊆ N(u,A) = {u} ⊆ A≥x since
A is independent. Actually, we even have regA(u) = N(u,A) = {u} in this
case, but this stronger statement is not needed here.

The proof of Lemma 5.3 consists of two main parts. First, Lemma 5.5 shows
that there exists a weight L with the property that |B ∩ V≥L| is sufficiently
large compared to |A≥L|. This ensures that MIS, when applied to G[V≥L],
outputs a set Y the cardinality of which is by some constant factor larger
than the cardinality of A≥L. This factor is chosen in a way that it cuts us
enough slack to cover for the following two facts: First, the weights of the
vertices in X := Y \A might be by a factor of 1−ε smaller than the weights
of their neighbors in A≥L. Second, there might be some further neighbors
in A \ A≥L, the total (squared) weight of which is, however, bounded by
O(ε2) · w2(X). Lemma 5.6 tells us that one of the sets X≤U we consider
constitutes a local improvement of A.

Lemma 5.5. Assume that∑
v∈A
|regB(v)| · w(v) >

2ρ · (1− ε)−3

1− (ε2 + 3ε
1+ε)

2
· w(A).

Then there is L ∈ {w(v) : v ∈ V } such that

|B ∩ V≥L| >
ρ · (1− ε)−2

1− (ε2 + 3ε
1+ε)

2
· |A≥L|.
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In particular, MIS, when applied to G[V≥L], returns an independent set Y
of cardinality

|Y | > (1− ε)−2

1− (ε2 + 3ε
1+ε)

2
· |A≥L|.

Lemma 5.6. Let L ∈ {w(v) : v ∈ V } and let Y ⊆ V≥L be an independent
set such that

|Y | > (1− ε)−2

1− (ε2 + 3ε
1+ε)

2
· |A≥L|.

Then there exists U ∈ {w(v) : v ∈ V } such that the set X≤U := {x ∈ Y \A :
w(x) ≤ U} constitutes a local improvement of A (w.r.t. w2).

Proof of Lemma 5.5. We first prove the following auxiliary statement.

Claim 5.7. Let x > 0. For v ∈ A with (1 − ε)−1 · x ≤ w(v), we have
regB(v) ⊆ V≥x.

Proof. If u ∈ regB(v) ∩ A, then u ∈ N(v,A) and, thus, u = v since A
is independent. In particular, u = v ∈ A≥x ⊆ V≥x. Next, assume that
u ∈ regB(v) \A. Then u ∈ V \A and u is single or double, so u ∈ Vreg. By
Definition 3.4 and Definition 3.5, we know that one of the following applies:

• regA(u) = {n(u)} = {v} and x ≤ (1− ε) · w(v) ≤ w(u).

• regA(u) = {n(u), n2(u)} 3 v and
x ≤ (1− ε) ·w(v) ≤ (1− ε) ·w(n(u)) ≤ min{w(u), w(n2(u)), w(n(u))}.

In either case, u and all of the vertices in regA(u) bear a weight of at least
x. This implies that u ∈ V≥x.

Next, we prove the existence of L with the property that the sum of
regular neighbors the vertices in A≥L have in V≥L is large compared to the
cardinality of A≥L.

Claim 5.8. There is L ∈ {w(v) : v ∈ V } such that

∑
v∈A≥L

|regB(v) ∩ V≥L| >
2ρ · (1− ε)−2

1− (ε2 + 3ε
1+ε)

2
· |A≥L|.

Proof. We want to apply Lemma 4.13. To this end, set S := A, µ(v) :=

|regB(v)|, ϕ(v) := w(v), λ := 1− ε and η := 2ρ·(1−ε)−3

1−(ε2+ 3ε
1+ε

)2
. Then Lemma 4.13
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tells us that there is L ∈ R>0 such that∑
v∈A≥L

|regB(v) ∩ V≥L|
Claim 5.7
≥

∑
v∈A≥(1−ε)−1·L

|regB(v)|

Lem. 4.13
> (1− ε) · 2ρ · (1− ε)−3

1− (ε2 + 3ε
1+ε)

2
· |A≥L|

=
2ρ · (1− ε)−2

1− (ε2 + 3ε
1+ε)

2
· |A≥L|.

The strict inequality tells us that A≥L 6= ∅ (otherwise, the sum on the
left-hand side would be empty). As a consequence, we can increase L to
min{w(v) : v ∈ V,w(v) ≥ L} without changing A≥L or V≥L. Thus, we may
assume L ∈ {w(v) : v ∈ V }.

Pick L as in Claim 5.8. We calculate

2 · |B ∩ V≥L| ≥
∑

u∈B∩V≥L

|regA(u)| =
∑

v∈A≥L

|regB(v) ∩ V≥L|

>
2ρ · (1− ε)−2

1− (ε2 + 3ε
1+ε)

2
· |A≥L|.

Here, the first inequality follows since |regA(u)| ≤ 2 for all u ∈ B by def-
inition. The next equation is implied by Proposition 5.4, regB(v) ⊆ B for
v ∈ A, and v ∈ regA(u)⇔ u ∈ regB(v) for u ∈ B and v ∈ A. Division by 2
yields

|B ∩ V≥L| >
ρ · (1− ε)−2

1− (ε2 + 3ε
1+ε)

2
· |A≥L|.

As B ∩ V≥L is independent in G, we can conclude that the algorithm MIS,
applied to G[V≥L], finds an independent set Y of size at least

|Y | ≥ ρ−1 · |B ∩ V≥L| >
(1− ε)−2

1− (ε2 + 3ε
1+ε)

2
· |A≥L|.

Observe that as G[V≥L] is an induced subgraph of G, Y is independent in
G as well.

For the proof of Lemma 5.6, we require the following auxiliary statement:

Proposition 5.9. Let u ∈ Vreg. Then

w(N(u,A) \ regA(u)) ≤
(
ε2 +

3ε

1 + ε

)
· w(u) < w(u).
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Proof. By definition of Vreg, we know that u is single or double. If u is
single, we calculate

w(N(u,A) \ regA(u)) = w(N(u,A))− w(n(u))
(3.6)

≤ ε · w(n(u))

(3.5)

≤ ε

1− ε
· w(u)

(3.1)
<

3ε

1 + ε
· w(u) <

(
ε2 +

3ε

1 + ε

)
· w(u).

In case u is double, we obtain

w(N(u,A) \ regA(u)) = w(N(u,A))− w(n(u))− w(n2(u))

(3.9)

≤ (2 + ε2) · w(u)− w(n(u))− w(n2(u))

(3.7)

≤ (2 + ε2) · w(u)− (2− ε) · w(n(u))

(3.8)

≤
(

2 + ε2 − 2− ε
1 + ε

)
· w(u)

=

(
ε2 +

3ε

1 + ε

)
· w(u).

This proves the first inequality. The second one follows from (3.1) and
w(u) > 0.

Proof of Lemma 5.6. Define X := Y \A and let X≤x := {u ∈ X : w(u) ≤ x}
for x > 0. We point out that it suffices to prove the existence of any U > 0
such that X≤U constitutes a local improvement because this property will
ensure that X≤U 6= ∅ and, hence, decreasing U to the maximum weight in
X≤U will preserve the set X≤U , and ensure that U ∈ {w(v) : v ∈ V }.

Our goal is to apply Lemma 4.14. For this purpose, we have to derive a
lower bound on the cardinality of X. As Y ∩A ⊆ V≥L ∩A = A≥L, we get

|X| > (1− ε)−2

1− (ε2 + 3ε
1+ε)

2
· |A≥L| − |Y ∩A≥L| ≥

(1− ε)−2

1− (ε2 + 3ε
1+ε)

2
· |A≥L \ Y |,

where the last inequality follows from the fact that (1−ε)−2

1−(ε2+ 3ε
1+ε

)2
> 1. More-

over, as Y is independent in G, no vertex in X is adjacent to a vertex in
A≥L ∩ Y , implying that N(X,A≥L) ⊆ A≥L \ Y . Hence, we obtain

|X| > (1− ε)−2

1− (ε2 + 3ε
1+ε)

2
· |N(X,A≥L)|.

Claim 5.10. There is U ∈ R>0 such that

w2(X≤U ) >
1

1− (ε2 + 3ε
1+ε)

2
· w2(N(X≤U , A≥L)).
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Proof. We apply Lemma 4.14 with S1 := X, S2 := N(X,A≥L), ϕ(s) :=

w2(s) > 0 for s ∈ S1∪S2, η := (1−ε)−2

1−(ε2+ 3ε
1+ε

)2
and λ := (1−ε)2. In this setting,

Lemma 4.14 tells us that there is U ∈ R>0 such that

w2(X≤U )

= w2({u ∈ X : w2(u) ≤ U2})

>
1

1− (ε2 + 3ε
1+ε)

2
· w2({v ∈ N(X,A≥L) : w2(v) ≤ (1− ε)−2 · U2}).

By definition of V≥L, we know that for u ∈ X ⊆ V≥L \ A ⊆ Vreg, any
vertex in N(u,A) is of weight at most (1 − ε)−1 · w(u): This holds for the
vertices in regA(u) by (3.5), (3.7) and (3.8), and moreover, the total weight
of N(u,A) \ regA(u) is bounded by w(u) by Proposition 5.9.

In particular, for u ∈ X≤U and v ∈ N(u,A), we have

w2(v) ≤ (1− ε)−2 · w2(u) ≤ (1− ε)−2 · U2.

Thus, we obtain

w2(X≤U )

>
1

1− (ε2 + 3ε
1+ε)

2
· w2({v ∈ N(X,A≥L) : w2(v) ≤ (1− ε)−2 · U2})

≥ 1

1− (ε2 + 3ε
1+ε)

2
· w2(N(X≤U , A≥L)).

Pick U as provided by Claim 5.10. To finally see that X≤U constitutes a
local improvement of A w.r.t. w2, it remains to bound w2(N(X≤U , A\A≥L)).
As X≤U ⊆ V≥L \ A ⊆ Vreg, we have regA(u) ⊆ A≥L for every u ∈ X. By
Proposition 5.9, we can infer that

w(N(u,A \A≥L)) ≤ w(N(u,A) \ regA(u)) ≤
(
ε2 +

3ε

1 + ε

)
· w(u),

and, hence,

w2(N(u,A \A≥L)) ≤ (w(N(u,A \A≥L)))2 ≤
(
ε2 +

3ε

1 + ε

)2

· w2(u)

for u ∈ X≤U . Consequently, we obtain

w2(N(X≤U , A \A≥L)) ≤
∑

u∈X≤U
w2(N(u,A \A≥L))

≤
(
ε2 +

3ε

1 + ε

)2

· w2(X≤U ).
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Combining this with Claim 5.10 finally yields

w2(X≤U ) =

(
1−

(
ε2 +

3ε

1 + ε

)2
)
· w2(X≤U ) +

(
ε2 +

3ε

1 + ε

)2

· w2(X≤U )

> w2(N(X≤U , A≥L)) + w2(N(X≤U , A \A≥L))

= w2(N(X≤U , A)).

As X≤U ⊆ Y is independent, it constitutes a local improvement of A.

Combining Lemma 5.5 and Lemma 5.6 yields the desired contradiction
to the termination criterion of our algorithm, which proves Lemma 5.3.

5.2.2 Proof of Theorem 5.2

We conclude this chapter by proving Theorem 5.2.

Proof of Theorem 5.2. The inequality

w(B) ≤ (0.5 · (k + 1)− 0.00123) · w(A) = (0.5 · k + 0.49877) · w(A)

follows from Theorem 3.1.
Combining the bound on

∑
v∈A |regB(v)| · w(v) provided by Lemma 5.3

with Lemma 3.20 yields

w(B) ≤ k + 1

2
· w(A)− 1

2
· ε2

(1 + ε) · (2 + ε2)
·

(
k − 2ρ · (1− ε)−3

1− (ε2 + 3ε
1+ε)

2

)
· w(A)

=

(
k + 1− ε2

(1 + ε) · (2 + ε2)
·

(
k − 2 · (k + 1 + ε) · (1− ε)−3

3 · (1− (ε2 + 3ε
1+ε)

2)

))
· w(A)

2

=
1

2
·

((
1− ε2

(1 + ε) · (2 + ε2)
·

(
1− 2 · (1− ε)−3

3 · (1− (ε2 + 3ε
1+ε)

2)

))
· k

+

(
1 +

ε2

(1 + ε) · (2 + ε2)
· 2 · (1 + ε) · (1− ε)−3

3 · (1− (ε2 + 3ε
1+ε)

2)

))
· w(A).

Plugging in our choices of constants ε = 0.01 and ε = 0.06984 results in
w(B) ≤ (0.49985 · k + 0.501) · w(A).

We remark that our choice of ε, up to rounding, minimizes the coeffi-
cient of k in the approximation guarantee, leading to the best asymptotic
behavior. However, especially for small values of k, a different choice of ε
may result in a better guarantee.
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Chapter 6

From weighted to
unweighted k-Set Packing

In this chapter, we would like to shed some light on the more general relation
between approximation guarantees for the weighted and the unweighted k-
Set Packing problem. Our main result for this chapter is given by the
following theorem.

Theorem 6.1. For any constant σ ∈ (0, 1), there is a constant τ ∈ (0, 1)
with the following property: Let k ∈ Z≥3 and assume that there exists a
polynomial-time (τ · k)-approximation algorithm for the unweighted k-Set
Packing problem (the MIS in (k + 1)-claw free graphs). Then there exists
a polynomial-time (σ · k)-approximation algorithm for the weighted k-Set
Packing problem (the MWIS in (k + 1)-claw free graphs).

We point out that Theorem 6.1 is not a direct consequence of the analysis
presented in the previous chapter. To see this, recall that the analysis in
Chapter 5 relies on Lemma 3.20, which in turn requires ε < 0.14 by (3.3). In

particular, Lemma 3.20 cannot yield a better guarantee than k+1
2 −

0.142·k
4 ,

which is not sufficient for our purposes.

Instead, we basically repeat a coarse version of the previous analysis
and do the following: First we relax the notion of regular neighbors enough
to obtain a sufficiently strong version of Lemma 3.20. Then, we calculate
how small τ needs to be, compared to σ, such that applying a (τ · k)-
approximation algorithm for the unweighted problem results in a local im-
provement, provided a large fraction of the sets/vertices in the solution found
by our algorithm feature many regular neighbors.

A (very) similar version of this result has been published in [42]. For
the presentation in this thesis, we have adjusted the notation to align with
the previous chapters. In addition, we have reformulated Theorem 6.1 in a
(slightly) more concise way and we have simplified some of the subsequent
arguments.
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The remainder of this chapter is dedicated to the proof of Theorem 6.1.
We first observe that we may assume P 6= NP. To this end, we note that
if P = NP, then there exist polynomial-time algorithms for the decision
versions of the weighted k-Set Packing problem and the MWIS in (k + 1)-
claw free graphs. Standard techniques further yield polynomial-time exact
algorithms for the optimization versions. In particular, setting τ = σ meets
the requirements of Theorem 6.1 in this case. Thus, we will assume P 6= NP
for the remainder of this chapter. In particular, we can make use of the
following result by Berman and Karpinski [9].

Proposition 6.2 ([9]). Assume P 6= NP and let k ∈ Z≥3. Then there is
a constant C > 1 such that there is no polynomial-time C-approximation
algorithm for the unweighted k-Set Packing problem.

Proof. For k ≥ 3, the unweighted k-Set Packing problem generalizes the
Maximum 3-Dimensional Matching problem. It is shown in [9] that for
ε ∈ (0, 1

97), there is no polynomial-time (98
97 − ε)-approximation algorithm

for the Maximum 3-Dimensional Matching problem unless P = NP. Thus,
we may choose C = 98

97 −
1

2·97 = 195
194 , for example.

Pick C according to Proposition 6.2. Fix σ ∈ (0, 1) and let

σ̃ :=
C − 1

C
· σ and τ :=

(
1− σ̃

4

)
· σ̃9

2 · 48 ·
⌈

43

σ̃3

⌉ ∈ (0, 1). (6.1)

We show that τ meets the requirements of Theorem 6.1 (for both the
weighted k-Set Packing problem and the MWIS in (k+1)-claw free graphs).
Fix k ∈ Z≥3 and let A be a polynomial-time (τ ·k)-approximation algorithm
for the unweighted k-Set Packing problem or the MIS in (k + 1)-claw free
graphs, respectively. We consider a local search algorithm that is very simi-
lar to Algorithm 5. We start with the empty solution and iteratively search
for a local improvement of one of the following two types: a claw-shaped
improvement or an improvement that we obtain via an application of A to
certain subinstances. We will denote the solution that A returns when being
applied to the instance I by A(I).

To formally define the algorithm we would like to analyze, we need to
introduce some notation. As in the previous chapters, we employ the termi-
nology from the more general MWIS. We first introduce the notion of the
“i-th largest neighbor in a given vertex set”.

Definition 6.3. Let G = (V,E) be a graph, let A ⊆ V , and let w : V → R>0.
Let further � be a total ordering of V by non-decreasing weight, meaning
that for u, v ∈ V , we have u � v ⇒ w(u) ≤ w(v). For i ∈ {1, . . . , |A|}, define

ni : {u ∈ V : |N(u,A)| ≥ i} → A

u 7→ the i-th largest element of N(u,A) w.r.t. �
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Note that n1 is a valid choice for the map n considered in the previous
chapters. The definition of n2 is compatible with the way it was defined in
the previous chapters.

Next, we redefine the notion of regular neighbors. To this end, we need
to introduce three constants δ ∈

(
0, 1

4

)
, α > 1 and m ∈ N. We choose them

to be

δ :=
σ̃

4
∈
(

0,
1

4

)
(6.2)

α := δ−2 and (6.3)

m := dδ−3e. (6.4)

Observe that (6.1) implies

τ =
(1− δ) · σ̃
2 ·m · α4

. (6.5)

The constant α serves as a threshold on the proximity of weights: We will
consider the weights of two vertices similar if they differ by a factor of
at most α multiplicatively. The constant δ has two purposes: First, we
use δ as a threshold to determine whether the weight of the non-regular
neighbors is small enough, similar to the constants ε and ε2 in (3.6) and
(3.9), respectively. In addition, the term 1

2 − δ plays the role of the constant
ε2

2·(1+ε)·(2+ε2)
in our previous analyses (cf. Lemma 3.20).

The natural number m tells us how many regular neighbors we can allow
a vertex u ∈ V to have. On the one hand, even if w(N(u,A)) ≤ 2 · w(u),
N(u,A) may still contain 2 · α vertices that are within a weight range of
[α−1 ·w(u), α ·w(u)] and we would like u to be a regular neighbor of as many
of these as possible in order to be able to guarantee a sizeable reimbursement
for the remaining, irregular neighbors in the spirit of Lemma 3.17. On the
other hand, we would like to conduct a similar argument as in the proof
of Lemma 5.5 during the subsequent analysis. For this purpose, we require
an upper bound on the number of regular neighbors vertices can feature in
A: It allows us to translate a lower bound on the sum over the numbers of
regular neighbors vertices in A have in an optimum solution B into a lower
bound on the cardinality of B. Our choice of m provides a trade-off between
these two conflicting goals.

Using the above constants, we redefine the notion of regular neighbors
(see Definition 6.4). The construction can be described as follows: Given
a vertex u ∈ V , we consider the maximal final segment of N(u,A) w.r.t.
� that only contains vertices within the weight range [α−1 ·w(u), α ·w(u)].
Then, we truncate this final segment at a maximum length of m vertices.
Call the resulting set of vertices R. In case w2(N(u,A) \R) ≤ δ ·w2(u), we
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declare R to be the set of regular neighbors of u in A. Otherwise, we say
that u does not have any regular neighbors in A.

Definition 6.4 (regular neighbor). Let G be a (k + 1)-claw free graph,
w : V → R>0 and A ⊆ V independent. Let further � be a total ordering of
V by non-decreasing weight (see Definition 6.3).

For u ∈ V , we define

iu0 := min{i ∈ {1, . . . , |N(u,A)|} : w(ni(u)) 6∈ [α−1 · w(u), α · w(u)]},

where min ∅ :=∞, and set

iuend := min{|N(u,A)|+ 1,m+ 1, iu0}.

We define the set of regular neighbors of u in A to be

regA(u) :=

{
{ni(u) : 1 ≤ i < iuend} ,

∑|N(u,A)|
i=iuend

w2(ni(u)) ≤ δ · w2(u)

∅ , otherwise
.

We further let irregA(u) := N(u,A) \ regA(u).

Now, we are ready to introduce our algorithm BlackBoxImp (Algo-
rithm 7). While BlackBoxImp is phrased in terms of the MWIS in (k + 1)-
claw free graphs, as in the previous chapters, we can cast it as an algorithm
for the weighted k-Set Packing problem by restricting the input to conflict
graphs of instances of weighted k-Set Packing. If the input to BlackBoxImp
is the (weighted) conflict graph (GS , w) of an instance (S, w) of the weighted
k-Set Packing problem, then each graph we apply A to is an induced sub-
graph of GS (cf. line 13). Note that for S ′ ⊆ V (GS) = S, GS [S ′] equals the
conflict graph GS′ of S ′. In particular, approximating the MIS in GS [S ′] is
equivalent to approximating the unweighted k-Set Packing problem on S ′.

We further point out that by our choice of A, each iteration of (the
while-loop of) BlackBoxImp can be implemented to run in polynomial time.
Moreover, w2(A) strictly increases in each iteration.

The remainder of this chapter is dedicated to the proof of Lemma 6.5,
which tells us that BlackBoxImp attains an approximation guarantee of
1 + σ̃

2 · k. By Corollary 6.6, this is sufficient to conclude the proof of Theo-
rem 6.1.

Lemma 6.5. Let G = (V,E) be a (k+ 1)-claw free graph, let w : V → R>0,
let B be an optimum solution to the MWIS in (G,w) and let A be the
solution returned by BlackBoxImp. Then

w(B) ≤ 1 + σ̃ · k
2

· w(A).
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Algorithm 7: BlackBoxImp

Input: a (k + 1)-claw free graph G = (V,E), w : V → R>0

Output: an independent set A ⊆ V
1 Sort V by non-decreasing weight to obtain a total ordering �

according to Definitions 6.3 and 6.4.
2 A← ∅
3 improvement found← true

4 while improvement found do
5 if ∃ claw-shaped improvement X then
6 A← (A \N(X,A)) ∪X
7 goto line 4

8 end
9 Vreg ← {u ∈ V \A : regA(u) 6= ∅}

10 for L ∈ {w(v) : v ∈ V } do
11 A≥L ← {v ∈ A : w(v) ≥ L}
12 V≥L ← A≥L ∪ {u ∈ Vreg : w(u) ≥ L and regA(u) ⊆ A≥L}
13 Y ← A(G[V≥L]), X ← Y \A
14 for U ∈ {w(v) : v ∈ V } do
15 X≤U ← {x ∈ X : w(x) ≤ U}
16 if w2(X≤U ) > w2(N(X≤U , A)) then
17 A← (A \N(X≤U , A)) ∪X≤U
18 goto line 4

19 end

20 end

21 end
22 improvement found← false

23 end
24 return A

Corollary 6.6. There exists a polynomial-time (σ · k)-approximation algo-
rithm for the weighted k-Set Packing problem/the MWIS in (k + 1)-claw
free graphs, respectively.

Proof. Combining Lemma 6.5 with Lemma 2.14 yields the existence of a
polynomial-time (1 + σ̃ · k)-approximation algorithm for the weighted k-
Set Packing problem/the MWIS in (k + 1)-claw free graphs when choosing
N := 2. By our choice of the constant C according to Proposition 6.2 and
since both the weighted k-Set Packing problem and the MWIS in (k+1)-claw
free graphs generalize the unweighted k-Set Packing problem, we get

C < 1 + σ̃ · k (6.1)
= 1 +

C − 1

C
· σ · k and, thus, 1 <

σ · k
C

.
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From this, using again (6.1), we compute

1 + σ̃ · k < σ · k
C

+
C − 1

C
· σ · k = σ · k.

In particular, the polynomial-time (1 + σ̃ · k)-approximation algorithm we
have devised also constitutes a (σ·k)-approximation algorithm for the weight-
ed k-Set Packing problem or the MWIS in (k + 1)-claw free graphs, respec-
tively.

Hence, it remains to prove Lemma 6.5. To this end, pick G = (V,E),
w, A and B as in the statement of the lemma. By the termination criterion
of BlackBoxImp, A is not modified anymore in the last iteration. Hence,
no claw improves A, which further implies that A constitutes a maximal
independent set. In particular, the domain of n1 (Definition 6.3) is V .
Moreover, we may reuse results from the analysis of SquareImp [7] that
we presented in Chapter 2. In particular, we will re-employ the notion of
charges and the notion of the contribution (Definitions 2.16 and 2.19).

Following the arguments in Chapter 3, our first goal is to obtain a state-
ment similar to Lemma 3.20. To this end, we define a (slightly) weaker
notion of the slack (Definition 3.16) in Definition 6.7. Then, in analogy to
Lemma 3.17, we prove Lemma 6.8.

Definition 6.7 (slack). Let u ∈ B. We define

slack(u) := contr(u, n1(u))− 2 · charge(u, n1(u)).

Note that Corollary 2.22 implies slack(u) ≥ 0 for all u ∈ B.

Lemma 6.8. For u ∈ B, we have

slack(u) ≥ (1− 2δ) · w(irregA(u)).

.

We first show the following auxiliary statement:

Lemma 6.9. Let u ∈ B such that w(N(u,A)) ≥ δ−1 · w(u). Then

slack(u) ≥ (1− 2δ) · w(irregA(u)).
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Proof. By non-negativity of the contribution, we obtain

slack(u) = contr(u, n1(u))− 2 · charge(u, n1(u))

≥ −2 · charge(u, n1(u))

= w(N(u,A))− 2 · w(u)

=

(
1− 2 · w(u)

w(N(u,A))

)
· w(N(u,A))

≥ (1− 2δ) · w(N(u,A))

≥ (1− 2δ) · w(irregA(u))

since 1− 2δ > 0 by (6.2) and irregA(u) ⊆ N(u,A) by Definition 6.4.

Proof of Lemma 6.8. We distinguish 4 cases.

Case 1: w(n1(u)) > α · w(u). Then δ ∈ (0, 1) by (6.2) implies

w(N(u,A)) ≥ w(n1(u)) > α · w(u)
(6.3)
= δ−2 · w(u) > δ−1 · w(u).

Thus, Lemma 6.9 yields the claim.

Case 2: w(n1(u)) < α−0.5 ·w(u). As α > 1 by (6.3), this implies u ∈ B \A
since N(u,A) = {u} and n1(u) = u otherwise. The fact that there is no
claw-shaped improvement of A and, in particular, {u} cannot constitute
one, yields

w2(u) ≤ w2(N(u,A)) ≤ w(n1(u)) · w(N(u,A)) < α−0.5 · w(u) · w(N(u,A)),

where for the second inequality, we used that n1(u) is of maximum weight
in N(u,A) by Definition 6.3. Division by α−0.5 · w(u) > 0 results in

w(N(u,A)) > α0.5 · w(u)
(6.3)
= δ−1 · w(u).

Again, we can apply Lemma 6.9 to conclude the desired statement.

Case 3: α−0.5 · w(u) ≤ w(n1(u)) ≤ α · w(u) and there exists an index
j ∈ {2, . . . ,min{|N(u,A)|,m}} for which we have w(nj(u)) < α−1 · w(u).
Pick j minimum with this property. Then for all i ∈ {1, . . . , j − 1}, we have
w(ni(u)) ∈ [α−1 · w(u), α · w(u)].

Case 3.1:
∑|N(u,A)|

i=j w2(ni(u)) ≤ δ · w2(u).
Then Definition 6.4 yields

regA(u) = {ni(u) : 1 ≤ i < j} and irregA(u) = {ni(u) : j ≤ i ≤ |N(u,A)|}.
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Thus, we calculate

slack(u) · w(n1(u))

= contr(u, n1(u)) · w(n1(u))− 2 · charge(u, n1(u)) · w(n1(u))

≥ (w(u)− w(n1(u)))2 +

|N(u,A)|∑
i=1

(w(n1(u))− w(ni(u))) · w(ni(u))

≥
|N(u,A)|∑
i=j

(w(n1(u))− w(ni(u))) · w(ni(u))

>

|N(u,A)|∑
i=j

(w(n1(u))− α−1 · w(u)) · w(ni(u))

≥
|N(u,A)|∑
i=j

(1− α−0.5) · w(n1(u)) · w(ni(u))

(6.3)
= (1− δ) · w(n1(u)) · w({ni(u) : j ≤ i ≤ |N(u,A)|})
= (1− δ) · w(n1(u)) · w(irregA(u))

≥ (1− 2δ) · w(n1(u)) · w(irregA(u)).

The first inequality follows from Lemma 2.21, the second one is implied by
the fact that all weights are positive and n1(u) is of maximum weight in
N(u,A). For the third inequality, we used that

w(ni(u)) ≤ w(nj(u)) < α−1 · w(u) for all j ≤ i ≤ |N(u,A)|.

Our case assumption α−0.5 · w(u) ≤ w(n1(u)) implies the fourth inequality.
Division by w(n1(u)) > 0 yields the claim.

Case 3.2:
∑|N(u,A)|

i=j w2(ni(u)) > δ · w2(u).

As α−1 · w(u) > w(ni(u)) for all j ≤ i ≤ |N(u,A)|, we compute

α−1 · w(u) · w({ni(u) : j ≤ i ≤ |N(u,A)|})
> w2({ni(u) : j ≤ i ≤ |N(u,A)|})
> δ · w2(u).

Division by α−1 · w(u) > 0 leads to

w(N(u,A)) ≥ w({ni(u) : j ≤ i ≤ |N(u,A)|}) > α · δ · w(u)
(6.3)
= δ−1 · w(u).

Once more, we can apply Lemma 6.9 to conclude the claim.

Case 4: α−0.5 · w(u) ≤ w(n1(u)) ≤ α · w(u) and w(nj(u)) ≥ α−1 · w(u)
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holds for all j ∈ {2, . . . ,min{|N(u,A)|,m}}.
If |N(u,A)| ≤ m, this implies regA(u) = N(u,A) and irregA(u) = ∅. In
particular, Corollary 2.22 yields the desired statement.

In case m < |N(u,A)|, we obtain

w(N(u,A)) ≥
m∑
i=1

w(ni(u)) ≥ m · α−1 · w(u)
(6.3)

≥
(6.4)

δ−1 · w(u).

Applying Lemma 6.9 concludes the proof.

Next, we prove a statement similar to Lemma 3.20. To this end, we
require the following addition to Definition 6.4.

Definition 6.10 (regular neighbors in B). For v ∈ A, define

regB(v) := {u ∈ B : v ∈ regA(u)}.

Lemma 6.11.

w(B) ≤ k + 1

2
· w(A)−

(
1

2
− δ
)
·
∑
v∈A

(k − |regB(v)|) · w(v).

Proof. By Theorem 2.23, we know that

w(B) ≤ k + 1

2
· w(A)− 1

2
·
∑
v∈A

(k − |N(v,B)|) · w(v)

− 1

2
·
∑
u∈B

(∑
v∈A

contr(u, v)− 2 · charge(u, n1(u))

)

≤ k + 1

2
· w(A)− 1

2
·
∑
v∈A

(k − |N(v,B)|) · w(v)

− 1

2
·
∑
u∈B

slack(u), (6.6)

where the last inequality follows from Definition 6.7 and the non-negativity
of the contribution. Using Lemma 6.8, we calculate∑

u∈B
slack(u) ≥

∑
u∈B

(1− 2δ) · w(irregA(u))

= (1− 2δ) ·
∑
v∈A
|{u ∈ B : v ∈ irregA(u)}| · w(v)

= (1− 2δ) ·
∑
v∈A

(|N(v,B)| − |regB(v)|) · w(v).
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Plugging this into (6.6) and using δ > 0 and |N(v,B)| ≤ k for all v ∈ A by
Proposition 2.17, we obtain

w(B) ≤ k + 1

2
· w(A)− 1

2
·
∑
v∈A

(k − |N(v,B)|) · w(v)

−
(

1

2
− δ
)
·
∑
v∈A

(|N(v,B)| − |regB(v)|) · w(v)

≤ k + 1

2
· w(A)−

(
1

2
− δ
)
·
∑
v∈A

(k − |regB(v)|) · w(v).

To conclude the proof of Lemma 6.5, we need to establish an upper
bound on

∑
v∈A |regB(v)| · w(v). This is taken care of by Lemma 6.12.

Lemma 6.12. ∑
v∈A
|regB(v)| · w(v) ≤ σ̃

2
· k · w(A)

The proof of Lemma 6.12 proceeds analogously to the proof of Lemma 5.3
from the previous chapter. We assume that∑

v∈A
|regB(v)| · w(v) >

σ̃

2
· k · w(A) (6.7)

holds and show that this implies that BlackBoxImp finds a local improve-
ment in the last iteration, a contradiction to its termination criterion. To
prove the latter statement, we may assume that BlackBoxImp does not find
a claw-shaped improvement in the last iteration since we are done otherwise.
In particular, lines 9-16 are executed.

In accordance with BlackBoxImp, we employ the following notation:

• We let Vreg := {u ∈ V \A : regA(u) 6= ∅}.

• For x ∈ R>0, we let A≥x = {v ∈ A : w(v) ≥ x} consist of all vertices
in A of weight at least x and define

V≥x := A≥x ∪ {u ∈ Vreg : w(u) ≥ x and regA(u) ⊆ A≥x}

to contain the vertices from A≥x and all vertices from Vreg with the
property that these and all of their regular neighbors in A are of weight
at least x.

Proposition 6.13. Let x > 0 and u ∈ V≥x. Then regA(u) ⊆ A≥x.
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Proof. For u ∈ V \A, this follows from the definition of V≥x. If u ∈ V≥x∩A =
A≥x, then Definition 6.4 implies regA(u) ⊆ N(u,A) = {u} ⊆ A≥x since A is
independent. We can even show regA(u) = {u} in this case, but that is not
needed here.

Like the proof of Lemma 5.3, the proof of Lemma 6.12 consists of two main
parts. Lemma 6.14 tells us that if (6.7) holds, then there exists a lower
weight threshold L with the property that |B ∩ V≥L| is large compared
to |A≥L|. In particular, applying A to G[V≥L] produces an independent
set Y the cardinality of which is by a constant factor larger than |A≥L|.
Lemma 6.15 tells us that for this set Y , one of the sets X≤U defined in
line 15 yields a local improvement.

Lemma 6.14. If we have
∑

v∈A |regB(v)| · w(v) > σ̃
2 · k · w(A), then there

is L ∈ {w(v) : v ∈ V } such that

|B ∩ V≥L| >
σ̃ · k

2 ·m · α2
· |A≥L|.

In particular, A, when applied to G[V≥L], returns an independent set Y of
cardinality

|Y | > σ̃

2 · τ ·m · α2
· |A≥L|.

Lemma 6.15. Let L ∈ {w(v) : v ∈ V } and let Y ⊆ V≥L be an independent
set with

|Y | > σ̃

2 · τ ·m · α2
· |A≥L|.

Then there exists U ∈ {w(v) : v ∈ V } such that the set X≤U := {x ∈ Y \A :
w(x) ≤ U} constitutes a local improvement of A (w.r.t. w2).

Proof of Lemma 6.14. The proof is analogous to the proof of Lemma 5.5:

Claim 6.16. Let x > 0 and v ∈ A with α2 ·x ≤ w(v). Then regB(v) ⊆ V≥x.

Proof. If u ∈ regB(v)∩A, then u ∈ N(v,A), implying u = v by independence
of A. In particular, u = v ∈ A≥x ⊆ V≥x. Now, let u ∈ regB(v) \ A. Then
v ∈ regA(u) 6= ∅ by Definition 6.10, so u ∈ Vreg. Definition 6.4 yields
w(u) ≥ α−1 · w(v) ≥ α · x > x. Moreover, again by Definition 6.4, every
z ∈ regA(u) satisfies w(z) ≥ α−1 ·w(u) ≥ x, so regA(u) ⊆ A≥x. This implies
that u ∈ V≥x.

Our next goal is to show the following statement:

Claim 6.17. There is L ∈ {w(v) : v ∈ V } such that∑
v∈A≥L

|regB(v) ∩ V≥L| >
σ̃ · k
2 · α2

· |A≥L|.
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Proof. We want to apply Lemma 4.13. To this end, set S := A, µ(v) :=
|regB(v)|, ϕ(v) := w(v), λ := α−2 and η := σ̃·k

2 . Then Lemma 4.13 tells us
that there is L ∈ R>0 such that∑

v∈A≥L

|regB(v) ∩ V≥L|
Claim 6.16
≥

∑
v∈A≥α2·L

|regB(v)|

Lem. 4.13
>

σ̃ · k
2 · α2

· |A≥L|.

In particular, the strict inequality implies that A≥L 6= ∅, and by increasing
L to min{w(v) : v ∈ V,w(v) ≥ L}, we may assume L ∈ {w(v) : v ∈ V }.

Pick L as implied by the claim. By Definition 6.4, we have |regA(u)| ≤ m
for every u ∈ V . Thus,

m · |B ∩ V≥L| ≥
∑

u∈B∩V≥L

|regA(u)| (∗)
=
∑

v∈A≥L

|regB(v) ∩ V≥L| >
σ̃ · k
2 · α2

· |A≥L|.

The equation marked (∗) is implied by Proposition 6.13, regB(v) ⊆ B for
v ∈ A, and u ∈ regB(v) ⇔ v ∈ regA(u) for u ∈ B and v ∈ A. Division by
m yields the first part of the desired statement. Moreover, as B ∩ V≥L is an
independent set in G[V≥L], we know that A, applied to G[V≥L], outputs an
independent set Y of cardinality

|Y | ≥ |B ∩ V≥L|
k · τ

>
σ̃

2 · τ ·m · α2
· |A≥L|.

For the proof of Lemma 6.15, we first show the following auxiliary state-
ment.

Proposition 6.18. Let u ∈ Vreg. Then

(i) w(v) ≤ α · w(u) for every v ∈ N(u,A).

(ii) w2(N(u,A) \ regA(u)) ≤ δ · w2(u).

Proof. Let u ∈ Vreg. Then regA(u) 6= ∅, which, by Definition 6.4, implies
(ii), as well as

w(v) ≤ α · w(u) for all v ∈ regA(u). (6.8)

(ii) further yields

w(v) ≤
√
δ · w(u)

(6.2)
<

(6.3)
α · w(u) for all v ∈ N(u,A) \ regA(u). (6.9)

Combining (6.8) and (6.9) gives (i).

The proof of Lemma 6.15 is analogous to the proof of Lemma 5.6.
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Proof of Lemma 6.15. Define X := Y \A. In addition, for x > 0, let X≤x :=
{u ∈ X : w(u) ≤ x}. As Y ∩A ⊆ V≥L ∩A = A≥L, we get

|X| > σ̃

2 · τ ·m · α2
· |A≥L| − |Y ∩A| ≥

σ̃

2 · τ ·m · α2
· |A≥L \ Y |,

where the last inequality follows from the fact that σ̃
2·τ ·m·α2 = α2

1−δ > 1 by
(6.5), (6.2) and (6.3). As Y is independent in G[V≥L], no vertex in X = Y \A
is adjacent to a vertex in Y ∩ A≥L, implying that N(X,A≥L) ⊆ A≥L \ Y .
Hence, we obtain

|X| > σ̃

2 · τ ·m · α2
· |N(X,A≥L)|.

Claim 6.19. There is U ∈ {w(v) : v ∈ V } such that

w2(X≤U ) >
σ̃

2 · τ ·m · α4
· w2(N(X≤U , A≥L)).

Proof. We want to apply Lemma 4.14. Let S1 := X, S2 := N(X,A≥L),
ϕ(s) := w2(s) > 0 for s ∈ S1 ∪ S2, η := σ̃

2·τ ·m·α2 and λ := α−2. In this
setting, Lemma 4.14 tells us that there is U > 0 such that

w2(X≤U ) >
σ̃

2 · τ ·m · α4
· w2({v ∈ N(X,A≥L) : w2(v) ≤ α2 · U2}).

As X ⊆ V≥L \A ⊆ Vreg, Proposition 6.18 (i) further implies

N(X≤U , A≥L) ⊆ {v ∈ N(X,A≥L) : w2(v) ≤ α2 · U2}.

Hence,

w2(X≤U ) >
σ̃

2 · τ ·m · α4
· w2(N(X≤U , A≥L)).

In particular, the strict inequality tells us that X≤U 6= ∅. By decreasing U
to the maximum weight among the vertices in X≤U , we can thus achieve
U ∈ {w(v) : v ∈ V }.

Let U as implied by the claim. To verify that X≤U constitutes a local
improvement, we have to bound w2(N(X≤U , A \A≥L)).

As X≤U ⊆ V≥L \ A, we know that regA(u) ⊆ A≥L for every u ∈ X≤U .
Using V≥L \A ⊆ Vreg, Proposition 6.18 (ii) allows us to conclude that

w2(N(X≤U , A\A≥L)) ≤
∑

u∈X≤U
w2(N(u,A)\ regA(u)) ≤ δ ·w2(X≤U ). (6.10)
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Combining Claim 6.19 and (6.10) gives

w2(N(X≤U , A)) = w2(N(X≤U , A≥L)) + w2(N(X≤U , A \A≥L))

<

(
2 · τ ·m · α4

σ̃
+ δ

)
· w2(X≤U )

(6.5)
= w2(X≤U ).

As X≤U ⊆ Y is independent, it constitutes a local improvement of A.

Combining Lemma 6.14 and Lemma 6.15 proves Lemma 6.12. We have
finally assembled all ingredients we need for the proof of Lemma 6.5, which
concludes this chapter.

Proof of Lemma 6.5. By combining Lemma 6.11 and Lemma 6.12 and using
δ ∈ (0, 1

2) by (6.2), we get

w(B) ≤ k + 1

2
· w(A)−

(
1

2
− δ
)
·
∑
v∈A

(k − |regB(v)|) · w(v)

=
k + 1

2
· w(A)−

(
1

2
− δ
)
· k · w(A) +

(
1

2
− δ
)
·
∑
v∈A
|regB(v)| · w(v)

≤
(

1

2
+ δ · k

)
· w(A) +

(
1

2
− δ
)
· σ̃

2
· k · w(A)

(6.2)
=

(
1

2
+
σ̃

4
· k
)
· w(A) +

(
1

2
− δ
)
· σ̃

2
· k · w(A)

<

(
1

2
+
σ̃

4
· k +

σ̃

4
· k
)
· w(A)

=
1 + σ̃ · k

2
· w(A).



Chapter 7

A 4/3-approximation for the
Maximum Leaf Spanning
Arborescence problem in
acyclic digraphs

In this chapter, we study the hereditary 2-3-Set Packing problem (Def-
inition 7.1), a special case of weighted 3-Set Packing, which arises as a
subtask in the state-of-the-art approximation algorithm for the Maximum
Leaf Spanning Arborescence problem (MLSA) in acyclic digraphs (dags) by
Fernandes and Lintzmayer [25]. They showed that a polynomial-time α-
approximation algorithm for the hereditary 2-3-Set Packing problem gives
rise to a polynomial-time max{4

3 , α}-approximation algorithm for the MLSA
in dags (see Theorem 7.2). Via this approach, Fernandes and Lintzmayer [25]
obtained 7

5 -approximations for both problems, which have been unchal-
lenged so far. In this chapter, we improve upon their result and provide a
polynomial-time 4

3 -approximation algorithm for the hereditary 2-3-Set Pack-
ing problem. By [25], this implies the same approximation guarantee for the
MLSA in dags. Moreover, an approximation ratio of 4

3 is the best we can
achieve via Theorem 7.2.

The remainder of this chapter is organized as follows: In Section 7.1,
we formally introduce the MLSA and provide a short overview of previ-
ous works. In particular, we define the hereditary 2-3-Set Packing problem
(Definition 7.1) and state the result from [25] (Theorem 7.2) that allows
us to translate approximation algorithms for the latter problem into ap-
proximation algorithms for the MLSA in dags. In Section 7.2, we present
our algorithm for the hereditary 2-3-Set Packing problem and show that it
attains an approximation ratio of 4

3 (Theorem 7.7).
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7.1 Introduction

The Maximum Leaf Spanning Arborescence problem (MLSA) is defined as
follows: The input consists of a directed graph G and a root r ∈ V (G) such
that every vertex of G is reachable from r via a directed path. The task
is to find a spanning r-arborescence with the maximum number of leaves
possible.

The MLSA plays an important role in the context of broadcasting [25]:
Given a network consisting of a set of nodes containing one distinguished
source, and a set of available arcs, a message needs to be transferred from
the source to all other nodes along a subset of the arcs, which forms (the
edge set of) an arborescence rooted at the source. As internal nodes do not
only need to be able to receive, but also to re-distribute messages, they are
more expensive. Hence, it is desirable to have as few of them as possible,
or equivalently, to maximize the number of leaves (nodes with out-degree
zero).

Already the special case where every arc may be used in both directions,
the Maximum Leaves Spanning Tree problem, is known to be NP-hard, even
if the input graph is 4-regular or planar with maximum degree at most 4
(see [30], problem ND2). It has further been shown to be APX-hard [29]1,
even when restricted to cubic graphs [12]. The best that is known for the
Maximum Leaves Spanning Tree problem is an approximation guarantee
of 2 [47].

In contrast, for general digraphs, the state-of-the-art is a min{
√

OPT, 92}-
approximation [18, 19]. Moreover, there is a line of research focusing on
FPT-algorithms for the MLSA [1, 11, 18].

The special case where the graph G is assumed to be a dag (directed
acyclic graph) has been proven to be APX-hard by Schwartges, Spoerhase
and Wolff [45]. They further provided a 2-approximation, which was then
improved to 3

2 by Fernandes and Lintzmayer [24]. Recently, they managed
to enhance their approach to obtain a 7

5 -approximation [25], which consti-
tutes the current state-of-the-art. In this thesis, following the approach by
Fernandes and Lintzmayer, we improve on the result in [25] and obtain a
4
3 -approximation for the MLSA in dags.

Fernandes and Lintzmayer [25] tackle the MLSA in dags by reducing it,
up to an approximation guarantee of 4

3 , to a special case of the weighted 3-
Set Packing problem, which we call the hereditary 2-3-Set Packing problem
(Definition 7.1). Fernandes and Lintzmayer [25] prove it to be NP-hard via
a reduction from 3-Dimensional Matching [35].

Definition 7.1 (hereditary 2-3-Set Packing). An instance of the hereditary
2-3-Set Packing problem is an instance (S, w) of the weighted 3-Set Packing
problem, where

1Note that MAX-SNP-hardness implies APX-hardness, see [36].
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• w(s) = |s| − 1 for all s ∈ S, and

• for every s ∈ S with |s| = 3, all two-element subsets of s are contained
in S.

Note that by the assumption that weights are strictly positive, an in-
stance (S, w) of the hereditary 2-3-Set Packing problem features only sets
of cardinality 2 or 3.

Theorem 7.2 ([25]). Let α ≥ 1 and assume that there is a polynomial-
time α-approximation algorithm for the hereditary 2-3-Set Packing prob-
lem. Then there exists a polynomial-time max{α, 4

3}-approximation for the
MLSA in dags.

Theorem 7.3 ([25]). There exists a polynomial-time 7
5 -approximation al-

gorithm for the hereditary 2-3-Set Packing problem.

Note that the guarantee of 7
5 in Theorem 7.3 is better than the state-of-

the-art guarantee of 1.786 [49] for general weighted 3-Set Packing.

In order to prove Theorem 7.3, Fernandes and Lintzmayer [25] consider
a modified version of Berman’s algorithm SquareImp [7] (see Section 2.2),
which they call Square+Imp. It differs from SquareImp in the following
two aspects:

• Instead of squaring the original weights, Square+Imp conducts local
search with respect to the weight function v 7→ (w(v) + 1)2.

• In addition to claw-shaped improvements, Square+Imp also incorpo-
rates another, more involved class of local improvements that are re-
lated to alternating paths in a certain auxiliary graph. This makes the
analysis more complicated because in addition to charging arguments
similar to ours, more intricate considerations regarding the structure
of the auxiliary graph are required.

The local search algorithm that we study in the following section considers
local improvements consisting of up to 10 sets with respect to the following
objective: We lexicographically first maximize the weight of the current
solution, and second the number of sets of weight 2 that are contained in
it. We show that this algorithm yields a polynomial-time 4

3 -approximation
for the hereditary 2-3-Set Packing problem. In particular, this results in a
polynomial-time 4

3 -approximation algorithm for the MLSA in dags, tapping
the full potential of Theorem 7.2. Our analysis is based on a two-stage
charging argument.
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7.2 Algorithm and analysis

In this section, we present a polynomial-time 4
3 -approximation for the hered-

itary 2-3-Set Packing problem. In order to define it, we formally introduce
the notion of local improvement that we consider. It aims at lexicograph-
ically maximizing first the weight of the solution we find, and second the
number of sets of weight 2 contained in it.

To simplify notation, we first define the neighborhood N(U,W ) of a fam-
ily of sets U in another set family W . It corresponds to the neighborhood
of U in W in the conflict graph of U ∪W (see Definition 2.7).

Definition 7.4 (neighborhood). Let U and W be two set families. We
define the neighborhood of U in W to be

N(U,W ) := {w ∈W : ∃u ∈ U : u ∩ w 6= ∅}.

Moreover, for a single set u, we write N(u,W ) := N({u},W ).

Definition 7.5 (local improvement). Let (S, w) be an instance of the hered-
itary 2-3-Set Packing problem and let A be a feasible solution. We call a
disjoint set collection X ⊆ S a local improvement of A of size |X| if

• w(X) > w(N(X,A)) or

• w(X) = w(N(X,A)) and X contains more sets of weight 2 than
N(X,A).

We analyze Algorithm 8, which starts with the empty solution and it-
eratively searches for a local improvement of size at most 10 (and performs
the respective swap) until no more exists. We first observe that it runs in
polynomial time.

Proposition 7.6. Algorithm 8 can be implemented to run in polynomial
time.

Proof. A single iteration can be performed in polynomial time via brute-
force enumeration. Thus, it remains to bound the number of iterations. By
our definition of a local improvement, w(A) can never decrease throughout
the algorithm. Initially, we have w(A) = 0, and moreover, w(A) ≤ w(S) ≤
2 · |S| holds throughout. As all weights are integral, we can infer that there
are at most 2 · |S| iterations in which w(A) strictly increases. In between
two consecutive such iterations, there can be at most |S| iterations in which
w(A) remains constant since the number of sets of weight 2 in A strictly
increases in each such iteration. All in all, we can bound the total number
of iterations by O(|S|2).

The remainder of this section is dedicated to the proof of Theorem 7.7,
which implies that Algorithm 8 constitutes a 4

3 -approximation for the hered-
itary 2-3-Set Packing problem.



7.2. Algorithm and analysis 121

Algorithm 8: 4/3-approximation for the hereditary 2-3-Set Packing
problem

Input: an instance (S, w) of the hereditary 2-3-Set Packing
problem

Output: a disjoint subcollection of S
1 A← ∅
2 while ∃ local improvement X of A of size at most 10 do
3 A← (A \N(X,A)) ∪X
4 end
5 Return A

Theorem 7.7. Let (S, w) be an instance of the hereditary 2-3-Set Packing
problem and let A ⊆ S be a feasible solution such that there is no local
improvement of A of size at most 10. Let further B ⊆ S be an optimum
solution. Then w(B) ≤ 4

3 · w(A).

Let S, w, A and B be as in the statement of the theorem. Our goal is
to distribute the weights of the sets in B among the sets in A they intersect
in such a way that no set in A receives more than 4

3 times its own weight.
We remark that each set in B must intersect at least one set in A because
otherwise, it would constitute a local improvement of size 1.

In order to present our weight distribution, we introduce a multigraph
version of the conflict graph, which allows us to phrase our analysis using
graph terminology. This new notion is very similar to Definition 2.7, but
differs from it in the following two aspects:

• The vertex set of the conflict graph is now the disjoint union of the
set families A and B. In particular, sets in A ∩ B will correspond to
two vertices, whereas sets from S \ (A ∪B) do not appear anymore.

• We connect two intersecting sets a and b by |a∩b| parallel edges instead
of one single edge.

A similar construction is used in [25].

Definition 7.8 (conflict graph). The conflict graph G is defined as follows:
Its vertex set is the disjoint union of A and B, i.e., V (G) = A∪̇B. Its edge
set is obtained by adding, for each pair (a, b) ∈ A×B, |a∩ b| parallel edges
connecting a to b. See Fig. 7.1 for an illustration.

We remark that for X ⊆ B, N(X,A) as defined in Definition 7.4 agrees
with the (graph) neighborhood of X in the bipartite graph G (see Defini-
tion 2.12). In the following, we will simultaneously interpret sets from A∪̇B
as sets from S and as the corresponding vertices in G. In particular, we will
talk about their degrees, their incident edges and their neighbors. We make
the following observation.
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A

B

(a) The figure displays two collec-
tions A (red) and B (blue) consisting
of pairwise disjoint sets of cardinal-
ity 2 or 3. Black dots represent set
elements.

A

B

(b) The figure shows the conflict
graph of A and B. Vertices from A
are drawn in red, vertices from B are
drawn in blue.

Figure 7.1: Construction of the conflict graph.

Proposition 7.9. Let v ∈ V (G) correspond to the set s ∈ A ∪ B. Then v
has at most |s| incident edges in G.

Proof. As A and B both consist of pairwise disjoint sets, each element of s
can induce at most one incident edge of s.

7.2.1 Step 1 of the weight distribution

Our weight distribution proceeds in two steps. The first step works as fol-
lows:

Definition 7.10 (Step 1 of the weight distribution). Let B1 consist of all
sets u ∈ B with exactly one neighbor in A. Each u ∈ B1 sends its full weight
to its unique neighbor in A.

Let further B2 consist of those u ∈ B with w(u) = 2 and exactly two
incident edges, with the additional property that they connect to two distinct
vertices from A. Each u ∈ B2 sends half of its weight (i.e., 1) along each of
its edges to the respective endpoint in A. See Fig. 7.2 for an illustration.

Observe that in the first stage, v ∈ A receives weight precisely from the
sets in N(v,B1 ∪B2).

We first prove Lemma 7.11, which tells us that we can represent the total
amount of weight a collection W ⊆ A receives in the first step as the weight
of a set collection X with N(X,A) ⊆ W . We obtain X by first adding all
sets from B1 ∪ B2 that send their whole weight to W . Second, for each set
u ∈ B2 that sends only one unit of weight to W , we remove the element in
which it intersects its neighboring set in A\W , and add the resulting subset
of cardinality 2 to X. See Fig. 7.3 for an illustration. This construction will
allow us to combine X with subcollections of B \ (B1 ∪ B2) to obtain local
improvements.

Lemma 7.11. Let W ⊆ A. There is X ⊆ S with the following properties:
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1 2

A

B

1 2

(a) Every set from B1 sends its whole
weight to its unique neighbor in A (to
which it may be connected via multi-
ple edges).

2

A

B

1 1

(b) Every set from B2 sends one unit
of weight to each of its neighbors in
A.

Figure 7.2: The first step of the weight distribution. Vertices from A are
drawn in red, vertices from B are drawn in blue. A number inscribed within
a vertex indicates its weight, a number next to an edge denotes the amount
of weight that is sent along the edge to its endpoint in A. Dashed lines
indicate edges that can, but need not exist.

(7.11.1) N(X,A) ⊆W .

(7.11.2) w(X) equals the total amount of weight that W receives in the first
step.

(7.11.3) There is a bijection N(W,B1∪B2)↔ X mapping u ∈ B1∪B2 to itself
or to one of its two-element subsets.

Proof. We obtain X as follows: First, we add those sets in N(W,B1 ∪ B2)
to X that send all of their weight to W (i.e., whose neighborhood in A is
contained in W ). This includes all sets in N(W,B1). Second, for each set
u ∈ B2 that has one incident edge to a set v ∈ W and one incident edge
to a set r ∈ A \W , we add its two-element subset u \ r to X. Note that
B2 consists of three-element sets only by Definition 7.10. By construction,
(7.11.1)-(7.11.3) hold.

Corollary 7.12. No set in A receives more than its own weight in the first
step.

Proof. Assume towards a contradiction that v ∈ A receives more than w(v)
in the first step. Apply Lemma 7.11 with W = {v} to obtain a collection
X ⊆ S subject to (7.11.1)-(7.11.3). Then w(X) > w(v) ≥ w(N(X,A)) by
(7.11.1) and (7.11.2). In addition, (7.11.3) and Proposition 7.9 imply that
X is a disjoint set family with |X| ≤ |v| ≤ 3. Thus, X constitutes a local
improvement of size at most 3, a contradiction.
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A

B

(a) The left blue set is contained in B1 and sends its whole weight to the unique
set from A it intersects. The two triangular blue sets are contained in B2. The left
one only intersects sets in A that are contained in W , whereas the right one also
intersects a set in A \W .

2 2 1

1 2 2

1 1 1 1 1

(b) Part of the conflict graph and the weight distribution corresponding to the set
configuration in Fig. 7.3a.

A

B

(c) The set collection X (blue) we construct in the proof of Lemma 7.11 contains
the left and the middle blue set because they send all of their weight to W . For the
right triangular set, we remove the element in which it intersects a set from A \W .
Then, we add the resulting set of cardinality 2 to X.

Figure 7.3: Illustration of the construction in the proof of Lemma 7.11.
Fig. 7.3a shows a collection W ⊆ A of sets (red, filled, horizontal), the
collection N(W,B1 ∪B2) (blue) of sets the sets in W receive weight from in
the first step, and further sets from A (red, not filled, horizontal) the sets
in N(W,B1 ∪B2) send weight to. Fig. 7.3b displays the weight distribution
from N(W,B1 ∪ B2) to A. Fig. 7.3c illustrates the construction of the set
collection X.
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7.2.2 Removing “covered” sets

Definition 7.13. Let C consist of those sets from A that receive exactly
their own weight in the first step.

The intuitive idea behind our analysis is that the sets in C are “covered”
by the sets sending weight to them in the sense of Lemma 7.11. Hence,
we can “remove” the sets in C from our current solution A and the sets in
B1 ∪ B2 from our optimum solution B: If we can find a local improvement
in the remaining instance, we will use Lemma 7.11 to transform it into a
local improvement in the original instance, leading to a contradiction. See
Lemma 7.14 for an example how to apply this reasoning. But under the
assumption that no local improvement in the remaining instance exists, we
can design the second step of the weight distribution in such a way that
overall, no set in A receives more than 4

3 times its own weight.

7.2.3 Step 2 of the weight distribution

In order to define the second step of the weight distribution, we make the
following observations:

Lemma 7.14. There is no u ∈ B \ (B1 ∪B2) with w(N(u,A \C)) < w(u).

Proof. Assume towards a contradiction that there is u ∈ B \ (B1 ∪B2) with
w(N(u,A \ C)) < w(u). Apply Lemma 7.11 to W := N(u,C) to obtain
X subject to (7.11.1)-(7.11.3). By (7.11.3), X∪̇{u} consists of pairwise
disjoint sets. Proposition 7.9 further yields |W | = |N(u,C)| ≤ |u| ≤ 3.
Thus, another application of Proposition 7.9 results in

|X| (7.11.3)
= |N(W,B1 ∪B2)| ≤

∑
v∈W
|v| ≤ 3 · |W | ≤ 9.

Finally, we have w(X) = w(N(u,C)) by (7.11.2) and Definition 7.13. Hence,
using our assumption w(N(u,A \ C)) < w(u), we obtain

w(X ∪ {u}) = w(X) + w(u) > w(N(u,C)) + w(N(u,A \ C))

(7.11.1)
= w(N(X ∪ {u}, A)).

SoX∪{u} is a local improvement of A of size at most 10, a contradiction.

Proposition 7.15. Let u ∈ B \ (B1 ∪B2). Then:

(i) u has at least one neighbor in A \ C.

(ii) If w(u) = 1, then u has exactly two neighbors in A.

(iii) If w(u) = 2, then u has three incident edges.
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Proof. (i) follows from Lemma 7.14. For (ii) and (iii), we remind ourselves
that each u ∈ B \ (B1 ∪ B2) has at most |u| neighbors in A/incident edges
by Proposition 7.9, but at least 1 neighbor in A by (i). In particular, (ii)
holds since u ∈ B1 otherwise. For (iii), we observe that in case u has at most
2 incident edges, then either u has only one neighbor in A, or two distinct
neighbors to which it is connected by a single edge each. In either case, we
have u ∈ B1 ∪B2.

Definition 7.16 (second step of the weight distribution).
Let u ∈ B \ (B1 ∪B2) with w(u) = 1.

(a) If u has a neighbor in C, then this neighbor receives 1
3 and the neighbor

in A \ C receives 2
3 .

(b) Otherwise, both neighbors in A \ C receive 1
2 .

Now, let u ∈ B \ (B1 ∪B2) with w(u) = 2.

(c) If u has degree 1 to A \C, then u sends 1
3 along each edge to C and 4

3
to the neighbor in A \C. Note that this neighbor must have a weight
of 2 by Lemma 7.14.

(d) If u has degree 2 to A \ C, u sends 1 along each edge to a vertex in
A \C of weight 2, 2

3 along each edge to a vertex in A \C of weight 1,
and the remaining amount to the neighbor in C.

(e) If all three incident edges of u connect to A \C, then u sends 2
3 along

each of these edges.

We denote the set of vertices to which case ` with ` ∈ {a, b, c, d, e} applies
by B`. See Fig. 7.4 for an illustration.

7.2.4 No set in C receives more than 4/3 times its weight

Lemma 7.17. Let u ∈ Bd and let v ∈ N(u,C) be the unique neighbor of
u in C. If v receives more than 1

3 from u, then w(v) = 2 and v has at most
one incident edge to B \ (B1 ∪B2).

Proof. Denote the (other) endpoints of the edges connecting u to A \ C by
v1 and v2. Assume v receives more than 1

3 from u. Then w(v1) = w(v2) = 1.
In particular, v1 and v2 are distinct by Lemma 7.14. Apply Lemma 7.11
to W := {v} to obtain X subject to (7.11.1)-(7.11.3). Then by (7.11.3),
Y := X∪̇{u} is a disjoint collection of sets. Moreover, Proposition 7.9 yields

|X| (7.11.3)
= |N(v,B1 ∪B2)| ≤ |v| ≤ 3.
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Figure 7.4: Illustration of the second step of the weight distribution. Red
circles in the top row indicate sets from A, if they are dashed, the corre-
sponding set is contained in C. Blue circles in the bottom row indicate sets
from B \ (B1 ∪B2). The number within a circle indicates the weight of the
corresponding set in case it is relevant. Even though drawn as individual
circles, the endpoints in A of the incident edges of a set u ∈ B \ (B1 ∪ B2)
need not be distinct. For example, in (e), two of the sets represented by the
red circles may agree, in which case the corresponding set receives 4

3 .
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Hence, |Y | ≤ 4. By (7.11.2) and as v ∈ C, we get w(v) = w(X). Thus,
w(v1) + w(v2) = 1 + 1 = 2 = w(u) results in

w(N(Y,A))
(7.11.1)

= w(v) + w(v1) + w(v2) = w(X) + w(u) = w(Y ).

As Y does not constitute a local improvement, N(Y,A) = {v1, v2, v} contains
at least as many vertices of weight 2 as Y . As w(v1) = w(v2) = 1, but
w(u) = 2, this implies that w(v) = 2 and that all elements of X have a
weight of 1. By (7.11.2) and since w(v) = 2, this yields |X| = 2, and by
(7.11.3), v has degree at least 2 to B1 ∪B2. Hence, v can have at most one
incident edge to B \ (B1 ∪B2) by Proposition 7.9.

Lemma 7.18. Each set in C receives at most 4
3 times its own weight during

our weight distribution.

Proof. First, let v ∈ C with w(v) = 1. Then v receives 1 in the first step
and has at most one incident edge to B \ (B1 ∪B2) by Proposition 7.9. By
Lemma 7.17, v receives at most 1

3 via this edge.

Next, let v ∈ C with w(v) = 2. Then v receives 2 in the first step and v
has at most two incident edges to B \ (B1 ∪B2) by Proposition 7.9. If v has
two incident edges to B \ (B1 ∪ B2), then Lemma 7.17 implies that v can
receive at most 1

3 via each of the edges to B \ (B1 ∪B2). Thus, v receives at
most 8

3 = 4
3 ·w(v) in total. If v has one incident edge to B \ (B1 ∪B2), then

the maximum amount v can receive via this edge is 2
3 . Again, v receives at

most 8
3 in total.

7.2.5 No set in A \C receives more than 4/3 times its weight

In order to make sure that no vertex from A \C receives more than 4
3 times

its weight, we need Lemma 7.19, which essentially states the following:

• If a vertex v ∈ A\C with w(v) = 2 receives 4
3 from a vertex in Bc, then

it does not receive weight from any further vertex in B1∪B2∪Bc∪Bd.

• A vertex v ∈ A \ C with w(v) = 2 may, in total, receive at most 2
units of weight from vertices in B1 ∪B2 ∪Bd.

Lemma 7.19. Let v ∈ A \ C with w(v) = 2. Denote the set of vertices
u ∈ Bd that are connected to v by one/two parallel edges by D1 and D2,
respectively.

Then |N(v,B1 ∪B2)|+ 2|N(v,Bc)|+ |D1|+ 2|D2| ≤ 2.

Proof. Assume towards a contradiction that

|N(v,B1 ∪B2)|+ 2|N(v,Bc)|+ |D1|+ 2|D2| ≥ 3.
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Note that |N(v,B1 ∪ B2)| ≤ 1 because v 6∈ C and v receives at least one
unit of weight per neighbor in B1 ∪ B2. Pick an inclusion-wise minimal set
Ȳ ⊆ N(v,Bc ∪Bd) such that

|N(v,B1 ∪B2)|+ 2|Ȳ ∩Bc|+ |Ȳ ∩D1|+ 2|Ȳ ∩D2| ≥ 3. (7.1)

Then

|N(v,B1 ∪B2)|+ 2|Ȳ ∩Bc|+ |Ȳ ∩D1|+ 2|Ȳ ∩D2| = 3, or (7.2)

Ȳ ∩D1 = ∅ and |N(v,B1 ∪B2)|+ 2|Ȳ ∩Bc|+ 2|Ȳ ∩D2| = 4. (7.3)

We construct a set collection Y as follows: First, we add all sets contained
in Ȳ ∩ (Bc ∪ D2) to Y . Note that for a set u ∈ Ȳ ∩ (Bc ∪ D2), we have
N(u,A \C) = {v} (see Fig. 7.4). Second, for each u ∈ Ȳ ∩D1, let u′ be the
set of cardinality 2 containing the element in which u intersects a set from
C, and the element in which u intersects v. Add u′ to Y . Then Y has the
following properties:

N(Y,A) ⊆ C ∪ {v} (7.4)

|Y | = |Ȳ ∩Bc|+ |Ȳ ∩D1|+ |Ȳ ∩D2| (7.5)

w(Y ) = 2|Ȳ ∩Bc|+ |Ȳ ∩D1|+ 2|Ȳ ∩D2|
(7.1)

≥ 3− |N(v,B1 ∪B2)| (7.6)

|N(Y,C)| ≤ 2|Ȳ ∩Bc|+ |Ȳ ∩D1|+ |Ȳ ∩D2|. (7.7)

See Fig. 7.4 for (7.7). Let W := N(Y,C)∪{v}. Apply Lemma 7.11 to obtain
X subject to (7.11.1)-(7.11.3). Then

w(X) ≥ w(N(Y,C)) + |N(v,B1 ∪B2)| (7.8)

because each set inN(Y,C) receives its weight in the first step, and v receives
at least one per neighbor in B1 ∪ B2. By (7.11.3) and since the sets in Y
constitute disjoint subsets of sets in B \ (B1 ∪ B2), X∪̇Y is a family of
pairwise disjoint sets. We would like to show that X ∪ Y yields a local
improvement of size at most 10. By (7.8) and (7.6), we obtain

w(X ∪ Y ) = w(X) + w(Y ) ≥ 3 + w(N(Y,C))

> w(v) + w(N(Y,C)) ≥ w(N(X ∪ Y,A)),

where N(X ∪ Y,A) ⊆ N(Y,C) ∪ {v} follows from (7.11.1) and (7.4). Thus,
it remains to show that |X ∪ Y | ≤ 10. By (7.11.3), we have

|X| = |N(W,B1 ∪B2)| ≤ |N(v,B1 ∪B2)|+ |N(N(Y,C), B1 ∪B2)|
≤ |N(v,B1 ∪B2)|+ 2|N(Y,C)|. (7.9)
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For the last inequality, we used Proposition 7.9, which tells us that each set
z ∈ N(Y,C) has degree at most 3 in G. In addition, z must intersect at
least one set from Y , and thus, from Ȳ . In particular, z has at least one
incident edge to B \ (B1 ∪ B2) ⊇ Ȳ , and, thus, at most two incident edges
to B1 ∪B2. Hence, we obtain

|Y |+ |X|
(7.9)

≤ |Y |+ |N(v,B1 ∪B2)|+ 2|N(Y,C)|
(7.5)

≤
(7.7)
|N(v,B1 ∪B2)|+ 5|Ȳ ∩Bc|+ 3|Ȳ ∩D1|+ 3|Ȳ ∩D2|︸ ︷︷ ︸

=:(∗)

.

If (7.2) holds, we can bound (∗) by 3 times the left-hand side of (7.2) and
deduce an upper bound of 9. In case (7.3) is satisfied, we can bound (∗) by
5
2 times the left-hand side of (7.3) and obtain an upper bound of 10. Thus,
we have found a local improvement of size at most 10, a contradiction.

Lemma 7.20. Each set v ∈ A \ C receives at most 4
3 times its own weight

during our weight distribution.

Proof. If w(v) = 1, then v cannot receive any weight in the first step because
otherwise, it would receive at least 1 and be contained in C. Moreover, v
has at most two incident edges and receives at most 2

3 via either of them in
the second step.

Next, consider the case where w(v) = 2. If v receives 4
3 from a vertex in

Bc, then by Lemma 7.19, there is no further vertex in B1∪B2∪Bc∪Bd from
which v receives weight. As v receives at most 2

3 per edge in all remaining
cases, v receives at most 4

3 + 2 · 2
3 = 8

3 = 4
3 · w(v).

Next, assume that N(v,Bc) = ∅. In the first step, v can receive at most
1 in total (otherwise, v ∈ C) and this can only happen if v has a neighbor in
B1∪B2. The maximum amount v can receive through one edge in the second
step is 1, and this can only happen in situation (d). By Lemma 7.19, there
are at most 2 edges via which v receives 1 (taking both steps into account).
Moreover, v can receive at most 2

3 via the remaining edges. Again, we obtain
an upper bound of 1 + 1 + 2

3 = 8
3 on the total weight received.

Combining Lemma 7.18 and Lemma 7.20 proves Theorem 7.7. Together
with Proposition 7.6 and Theorem 7.2, we obtain Corollary 7.21.

Corollary 7.21. There is a polynomial-time 4
3 -approximation algorithm for

the MLSA in dags.
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Conclusion

In this thesis, we have studied local search based approximation algorithms
for the weighted k-Set Packing problem and managed to improve on Berman’s
k+1+ε

2 -approximation algorithm SquareImp [7]. Berman’s result [7] has
been the state-of-the-art for twenty years. Our improvements are based
on a deeper understanding of the structural properties of instances where
Berman’s analysis [7] is close to being tight: We have shown that such in-
stances are “close to unweighted” in a certain sense, which allowed us to
port techniques used in the unweighted setting to general weights.

In Chapter 3, we have seen that enhancing SquareImp by further consid-
ering local improvements of size 3 yields an improved approximation guar-
antee of k+1

2 − 1
1000 . In particular, this result shows that the significant

blow-up in the improvement size that is inherent to the algorithms in [40]
and [49]1, is not needed to obtain an approximation guarantee below k+1

2 .
This raises the question how far one can push the approximation guarantee
of local search algorithms when limiting the size of the local improvements
considered to θ(k), the size of improvements searched for by SquareImp.
The answer to this question may also be interesting in terms of applicabil-
ity. Note that misdirected local search with a constant improvement size of
t that is independent of k has been studied exemplarily for t = 2 in [10].

On the upper end of the size range, we have shown in Chapter 4 that
even if we allow local improvements of up to logarithmic size (with respect
to a fixed additive local search objective), we cannot obtain a better guar-
antee than k

2 . With our algorithm LogImp, we manage to meet this lower

bound asymptotically: LogImp obtains approximation ratios of k+1−λk
2 with

limk→∞ λk = 1 (cf. Theorem 4.1). As a topic for future research, it would be
interesting to see whether it is possible to get arbitrarily close to a guarantee
of k

2 for every k ≥ 3, and not just in the limit for k →∞. We remark that
for k = 3, this goal cannot be achieved via local search with respect to the

1These algorithms consider improvements of size θ(k2) and θ(k3), respectively, whereas
the claw-shaped improvements SquareImp searches for are of size θ(k).
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squared weight function because this approach implies a lower bound of
√

3
(
√
k in general), see for example [49].
We further point out that for general weights, it is still open whether

local improvements of constant size suffice to obtain guarantees arbitrarily
close to k

2 : In the unweighted setting, this is true [33], and the lower bound
for general weights from [4] only applies to local search with respect to
the original weight function. An affirmative answer to the above question
would be particularly interesting if the result generalizes to the MWIS in
(k + 1)-claw free graphs. Recall that all previous works employing local
improvements of logarithmic size [16, 17, 28, 31, 41, 42, 48] could only extend
their algorithms to the MWIS in (k + 1)-claw free graphs at the cost of a
quasi-polynomial running time.

The lower bound result from Chapter 4 limits the scope of approximation
ratios that we can hope for via an approach using enumeration or dynamic
programming based local search. Note that all previous works on local
search for the weighted k-Set Packing problem obey this paradigm [7, 15,
16, 17, 28, 31, 33, 48]. Surprisingly, in Chapter 5, we have seen that by using
a black box algorithm for the unweighted k-Set Packing problem in order
to generate candidate improvements, we can pass the threshold guarantee
of k

2 established in Chapter 4, at least for large enough values of k. Once
more, it would be interesting to see whether a more refined analysis, e.g.,
using techniques from [49], can result in more significant improvements also
for small values of k.

In Chapter 6, we employ the ideas from Chapter 5 to establish a gen-
eral link between the approximation guarantees for the weighted and the
unweighted k-Set Packing problem (see Theorem 6.1). This result has two
main consequences: As far as lower bounds are concerned, it tells us that an
o(k)-approximation hardness for the weighted k-Set Packing problem would
translate to the unit weight case. Given the current gap between the o( k

log k )-
approximation hardness for the unweighted k-Set Packing problem [32] and
the state-of-the-art guarantees in the order of θ(k) for both the unweighted
and the weighted setting [16, 28, 42, 49], Theorem 6.1 could provide an angle
for improvements in terms of lower bounds.

On the algorithmic side, the analyses in Chapters 5 and 6 provide a recipe
to translate improved approximation ratios for the unweighted k-Set Packing
problem (the MIS in (k + 1)-claw free graphs) into better guarantees for
general weights. Thus, our results provide further motivation to study the
unit weight case. However, as the lower bound instances in [28] show, new
ideas will be required to improve upon the state-of-the-art of k+1+ε

3 [16, 28].
Another, potentially more accessible direction for future research is poin-

ted out in Chapter 7. There, we studied the hereditary 2-3-Set Packing prob-
lem, a special case of weighted 3-Set Packing, which appears as a subprob-
lem in an algorithm for the Maximum Leaf Spanning Arborescence problem
(MLSA) in acyclic digraphs (dags) [25]. Via local improvements of constant
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size and a simple two-stage charging argument, we managed to obtain a 4
3

approximation for both the hereditary 2-3-Set Packing problem, and, using
the reduction from [25], the MLSA in dags. In doing so, we improve on the
previous state-of-the-art guarantee of 7

5 for both problems [25]. Following
up on this result, it would be interesting to identify further special classes of
weight functions that arise naturally from other combinatorial optimization
problems and bear enough structure to allow for improved approximation
guarantees, compared to general weights.
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[26] Z. Füredi, J. Kahn, and P. D. Seymour. On the fractional matching
polytope of a hypergraph. Combinatorica, 13:167–180, 1993. doi:

10.1007/BF01303202.
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[28] Martin Fürer and Huiwen Yu. Approximating the k-Set Packing Prob-
lem by Local Improvements. In Combinatorial Optimization (ISCO
2014), volume 8596 of Lecture Notes in Computer Science, pages 408–
420. Springer, 2014. doi:10.1007/978-3-319-09174-7\_35.

[29] G. Galbiati, F. Maffioli, and A. Morzenti. A short note on the approx-
imability of the maximum leaves spanning tree problem. Information
Processing Letters, 52(1):45–49, 1994. doi:10.1016/0020-0190(94)

90139-2.

https://doi.org/10.1145/1798596.1798599
https://doi.org/10.1016/j.tcs.2012.10.044
https://doi.org/10.1109/HICSS.2009.317
https://doi.org/10.6028/jres.069b.013
https://doi.org/10.1016/j.dam.2021.06.018
https://doi.org/10.1016/j.jcss.2023.02.006
https://doi.org/10.1016/j.jcss.2023.02.006
https://doi.org/10.1007/BF01303202
https://doi.org/10.1007/BF01303202
https://doi.org/10.1007/BF02579271
https://doi.org/10.1007/BF02579271
https://doi.org/10.1007/978-3-319-09174-7_35
https://doi.org/10.1016/0020-0190(94)90139-2
https://doi.org/10.1016/0020-0190(94)90139-2


138 Bibliography

[30] Michael R. Garey and David S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
USA, 1990.
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