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Abstract

Computational modeling of neural circuits has successfully explained the observed irregular and
asynchronous activity in the brain as the result of a dynamical balance of excitatory and inhibitory
inputs to individual neurons. In this balanced state, the activity of each neuron is governed by
fluctuations rather than the mean of net input resulting in irregular spiking. The balanced state raises
some questions concerning stability, however: First, the high dimensional and irregular activity seems
to imply chaos, which may be at odds with stably representing information as sequences of spike
times. A second issue arises when synaptic strengths are subject to activity-dependent change called
synaptic plasticity: it is not clear how the stability of synaptic weight patterns, which are believed to
encode memories, are maintained during irregular activity.

We first study the dynamical stability and phase space structure of balanced networks of inhibitory
neurons with external excitatory input. We consider two types of neurons: standard leaky and novel
antileaky integrate-and-fire neurons, which accelerate toward the threshold. We determine the voltage
probability distributions and self-consistent firing rates of networks with both neuron types. Further,
we compute the full spectrum of Lyapunov exponents (LEs) and the covariant Lyapunov vectors
(CLVs). While networks with only leaky integrate-and-fire neurons are dynamically stable, we find
that there is approximately one positive LE for each antileaky integrate-and-fire neuron in a network,
indicating chaos. A simple mean-field approach, which can be justified by properties of the CLVs,
explains this finding. As an application, we propose a spike-based computing scheme where our
networks serve as computational reservoirs, and their different stability properties yield different
computational capabilities.

We then study how strongly interconnected groups of neurons, called assemblies, which may encode
memories, can remain stable during balanced state activity. Hebbian plasticity, which strengthens
the connections of neurons that receive correlated input can reinforce connections within existing
assemblies but is unstable on its own. Previous models of assemblies require additional mechanisms
of fast homeostatic plasticity, often with biologically implausible timescales, to stabilize Hebbian
plasticity. We provide a model of neuronal assembly generation and maintenance purely based on
spike-timing-dependent plasticity (STDP) between excitatory neurons. It uses stochastically spiking
neurons and STDP that depresses connections of uncorrelated neurons. We find that assemblies do
not grow beyond a certain size, because temporally imprecise spike correlations dominate plasticity
in large assemblies. We also demonstrate that assemblies in our model can generate and maintain
prominent and stable overlap structures. Our model can furthermore exhibit representational drift,
where assemblies over a slow timescale exchange neurons with each other. Finally, the model indicates
that assembly size is inversely related to the density of connectivity.
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CHAPTER 1

Introduction

Understanding the brain is a monumental task, given the complexity of its structure and its extensive
repertoire of functions. It will require work on a wide range of scales, from biochemistry and
molecular biology to the scale of entire brain areas. The past century has seen significant progress
in understanding the fundamental functional units of the brain: neurons, specialized cells that
communicate via short electrical pulses called action potentials or spikes through junctions called
synapses.

One of the major areas of ongoing work in neuroscience is to explain how large networks of
interconnected neurons can give rise to the brain’s ability to process sensory information and use it to
make decisions and control behavior. While experiments in systems neuroscience can simultaneously
sample the spiking activity of ever greater numbers of neurons, on the theoretical side, computational
neuroscience serves to describe this data, create models to elucidate the mechanisms generating it,
and provide interpretations for the functional reasons behind these mechanisms. One of the most
important modes of operation in computational neuroscience is the study of mathematical models of
populations of interconnected neurons, which we call neural networks1. Mathematically, they are
dynamical systems that can be described by discrete maps and ordinary differential equations. The
theory of dynamical systems is well-established in physics and mathematics, making computational
neuroscience an interdisciplinary field of research.

A prime example of successful use of the computational modeling approach is the explanation
for the experimentally observed irregularity of activity found, for instance, in neurons in the cortex.
Given that each cortical neuron receives signals from many other neurons, one would expect that
these signals sum to a smooth and steady input resulting in regular periodic instead of irregular output
spiking. The solution to this apparent paradox is the balanced state, in which inputs that excite and
inhibit neurons cancel each other out on average, resulting in a mean input that is not sufficient to drive
spiking by itself [3–5]. Instead, spiking is driven by fluctuations around the mean, resulting in the
observed irregular state. Notably, a simple discrete-time model, in which neurons are represented by
binary units with an on-state (spiking) and an off-state (not spiking), was sufficient to demonstrate this
effect. This highlights how often simple models, which ignore many of the biological intricacies of
real neurons can be powerful enough to represent the dynamical features under consideration. Simple
1 Throughout this thesis, we discuss biological neural networks, which model the activity of brain circuits. These need to

be distinguished from artificial neural networks used in artificial intelligence, which are inspired by but often bear little
resemblance to the former. We always refer to biological neural networks when using the term “neural network”.
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Chapter 1 Introduction

models have the two-fold advantage of making the systems computationally and analytically more
tractable. This helps us to deepen our theoretical understanding of the observed phenomenon.

In this thesis, we set out to advance our understanding of stability in balanced state networks.
We define stability as the ability of a system to maintain or restore its properties in the presence of
perturbing influences. This becomes especially relevant for the balanced state: since it is governed by
fluctuations, perturbations are intrinsic to the system, and properties of importance must be resistant
to them. In the brain, stability is necessary to preserve information. We focus here on two levels of
information: the first level is short-term information encoded in the spiking activity of neurons which
can be used in the present and the second level is long-term information stored in patterns of synaptic
strengths which can be recalled at later times.

In Chapter 3 we address the subject of dynamical stability: irregular activity in high-dimensional
nonlinear dynamical systems such as in balanced state networks is often associated with chaos, a
phenomenon ubiquitous in nature characterized by strong sensitivity of a dynamical trajectory to its
initial conditions [6]. In a chaotic neural network, incoming information is quickly lost since any
intrinsic noise present will have an outsize effect on the network’s state at a later time; the same
input would lead to entirely different outputs, making the network output unreliable and unsuitable
for computation. On the other hand, too much stability may limit a network’s ability to discriminate
between similar inputs, as the network’s response would converge to the same output leading to
stereotyped behavior. To deal with this tradeoff, it is therefore often assumed that networks should
operate at the “edge of chaos” [7]. Previous studies have proven, numerically and analytically, that
networks of pulse-coupled inhibitory leaky integrate-and-fire (LIF) neurons are not sensitive to small
changes in initial conditions despite their irregular spike patterns [8, 9]. Furthermore, introducing
recurrent excitatory interactions to these networks leads to a gradual shift to chaos. In contrast to a
gradual emergence of chaos, in Chapter 3 we introduce a novel type of model neuron that is sufficient
to induce chaos if even one such neuron is present in a network that would otherwise be stable. This
type of neuron, dubbed “XIF”, represents neurons that are dynamically balanced at a level where the
voltage would start accelerating toward the threshold, a feature the standard leaky integrate-and-fire
neuron does not account for. We study mixed networks of both standard LIF and the novel XIF
neurons; with this, we pay tribute to the fact that networks in the brain consist of different neuron types,
inhibitory neurons being particularly diverse. We investigate these mixed networks using Lyapunov
exponents, which quantify sensitivity to initial conditions [10]. To understand how single neuron
properties give rise to chaos, we compare the results of the numerical computation with that of a
mean-field ansatz we developed for our networks. To further understand the relationship of the neuron
types with stable and unstable phase space directions, we investigate the covariant Lyapunov vectors
of the system which indicate the directions with more or less sensitivity to initial conditions. We
then use the insights we gained to develop a scheme for computation with precise spike timings that
harnesses the properties of both neuron types.

In Chapter 4, we study the stability of assemblies encoding long-term memory. To allow accurate
recall years after their creation, long-term memories need to be structurally encoded in brain circuits.
The primary candidate for such a structure is patterns of synaptic strengths. In particular, groups of
neurons can have strengthened interconnections allowing them to coactivate: we call these groups
memory assemblies. The creation of memory assemblies is made possible by synaptic plasticity:
the ability of synapses to undergo lasting change depending on the activity of the neurons they
connect. Since plasticity depends on the activity and the activity is driven by fluctuations, we also
expect fluctuations in the weights. We, therefore, expect some mechanism to stabilize the memories
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against these random fluctuations; otherwise, memories would quickly fade away as random noise in
the connections accumulates over time. Hebbian plasticity, in which the synaptic strength between
correlated neurons increases [11], provides precisely such a mechanism: the correlations induced
by existing memories induce plasticity, reinforcing these memories. Hebbian plasticity alone is
unstable, however: unchecked it causes individual weights to grow beyond bounds on the one hand
and assemblies to expand to more and more neurons on the other hand. Both of these problems lead
to abnormally high firing rates and therefore prevent the formation of stable memories. To address
the first problem, we can assume a physiological upper bound for the strength of individual synapses.
For the second problem, some more or less ad hoc homeostatic plasticity mechanisms have been
introduced to induce competition between weights [12–14]. Homeostatic plasticity with the time
scale needed to prevent pathological growth of assemblies is biologically implausible, however [15].
Here we instead propose a plasticity rule depending on the relative timings of spikes that is by itself
intrinsically stable. Our analysis shows that with our spike-timing-dependent plasticity rule, the typical
scale of time lags between spikes in larger assemblies prevents further growth. We then test if our
model can overcome some other problems and challenges related to assemblies with homeostatic
plasticity. One such problem is the difficulty of having neurons present in multiple assemblies [16–18].
Such overlaps between assemblies may encode associations between different memory items as they
make it more likely for the activation of one memory to trigger another. While memories in the brain
are stable over long timespans, they need not be represented by the same set of neurons over time, but
representations may drift instead [19]. In a hypothesized mechanism, neurons may, on a slow time
scale, lose their connections to an assembly and connect to another, independent of any external signal
[13]. This gradual exchange of neurons may cause an assembly to eventually only share a chance-level
amount of neurons with its original configuration. The process can, however, happen slowly enough
that we can reliably track an assembly’s identity over time – despite the drift in neural representation,
the underlying memory is stable. We show that such representational drift is possible in our assembly
model, facilitated by the irregularity of the balanced state. Finally, the model predicts that when the
number of synaptic connections in the brain decreases, as observed in aging [20, 21], the size of the
neuron ensembles underlying memories increases. This process may render memories in the aging
brain more robust and prominent but also less specific.
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CHAPTER 2

Fundamentals

This chapter introduces fundamental concepts of computational neuroscience, and their basis in
neurobiology, mainly following the textbooks by Dayan and Abbott [22] and Gerstner et al. [23]. In
addition, we introduce some known computational techniques that we employ in the following chapters.
We begin by giving a brief overview of the mechanisms governing biological neurons to motivate and
establish the leaky integrate-and-fire neuron as a model for spiking neurons and the current-based
synapse as a model for interactions between them. Next, we discuss the balanced state in which the
average excitation and inhibition each neuron receives cancel out. It is characterized by asynchronous
and irregular spiking, motivating us to introduce the stochastically spiking Hawkes neuron model. We
then discuss synaptic plasticity, particularly spike-timing-dependent plasticity (STDP), and derive
some basic results of STDP in networks of Hawkes neurons. Finally, we introduce concepts from the
ergodic theory of dynamical systems, namely Lyapunov exponents and covariant Lyapunov vectors,
mostly following the textbook by Pikovsky and Politi [10]. We then present algorithms for their
numerical computation by Benettin et al. [24] and Ginelli et al. [25].

2.1 Biological neuron models

The brain’s constituent cells can be divided into two main classes: neurons and glial cells. The
latter establishes a support system for neurons and play, if at all, only a subordinate role in the actual
computations. The primary information processing units of the brain are then neurons, cells that
are specialized to transmit electrical signals. While there are many types of neurons with different
morphologies across different species, we focus here on the types of neurons found in the mammalian
cortex. These are structured into three parts: axon, soma, and dendrites. Dendrites are branching
filaments that gather incoming signals from other neurons and transmit them to the soma. The soma is
the neuron’s cell body, containing its nucleus and performing the most critical metabolic functions. It
is crucial for generating action potentials from inputs it receives from the dendrites. When the soma
generates an action potential, it travels along the axon, a long fiber that connects via synapses to the
dendrites of other neurons.

Differences in ion concentration of intra- and extracellular fluid induce a characteristic voltage
between the inside and outside of a neuron’s cell membrane. These ion concentrations are controlled
by active and passive ion channels in the cell membrane whose behavior depends on the voltage and
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Chapter 2 Fundamentals

the ion concentrations themselves. While the membrane voltage may not be the same in all of a
neuron’s regions, in order to describe its dynamics, it is often sufficient to model the voltage by a
single variable. Neuron models that neglect the spatial extent in this way are called point neurons,
and we restrict ourselves to these for the remainder of this thesis. Taking each ion concentration
and their respective channels into account, we can describe a point neuron using a set of ordinary
differential equations. This way, we can model the most important aspect of single-neuron dynamics,
the generation of action potentials, or spikes: if the membrane voltage exceeds a specific voltage,
called the threshold, a positive feedback loop is put in motion causing a rapid increase in membrane
voltage followed by a rapid decrease to a level usually below the resting potential. This phenomenon
has a characteristic voltage trajectory independent of the preceding activity. It is, therefore, not the
shape of the spikes themselves that carries information but rather their rate or timing.

A series of spike times of a neuron is called a spike train, which we often express as a sum of Dirac
delta distributions,

𝑆(𝑡) =
∑︁
𝑘

𝛿(𝑡 − 𝑡𝑘), (2.1)

for spike times 𝑡𝑘 . We can think of 𝑆 as a density of spikes for a given neuron in a given trial.
While the term firing rate is ubiquitous in neuroscience, it may refer to one of several different

concepts: the convolution of the spike train 𝑆(𝑡) with a moving time window, the spike count over a
long duration divided by the duration, or the trial or ensemble average of a spike train. In Chapter 3,
we study static networks, for which we compute the long-term average firing rates. On the other hand,
in Chapter 4, the networks themselves are subject to change, and firing rates refer to trial-averaged
rates in that chapter.

2.2 Leaky integrate-and-fire neurons

Because of the stereotyped nature of spikes, a detailed biophysical model of a neuron’s ion channel
dynamics is often not necessary. Instead, it is often sufficient to model a neuron’s membrane as a
leaky capacitor, as shown in Fig. 2.1: the resistor represents ions leaking through passive channels,
which in the absence of external currents restores the voltage 𝑉 in the membrane to its resting value
𝑉0, which is maintained by ion pumps in the membrane. These are represented by a battery connected
to the capacitor. Together, the leak resistance 𝑅 and the capacity 𝐶 of the membrane give rise to a
membrane time constant 𝜏 = 𝑅𝐶. In our convention we set 𝑅 = 1, such that voltages and currents
have the same units. Taken together, the subthreshold dynamics given an external current 𝐼 (𝑡) obeys a
single linear ordinary differential equation,

𝜏 ¤𝑉 (𝑡) = −(𝑉 (𝑡) −𝑉0) + 𝐼 (𝑡). (2.2)

Since the duration of spikes themselves is much shorter than the characteristic time scale of network
dynamics, we model them as instantaneous: We introduce an explicit rule into our model that
instantaneously sets 𝑉 to 𝑉reset whenever it reaches the firing threshold 𝑉thr. This rule, together with
Eq. (2.2) defines the leaky integrate-and-fire neuron (LIF), a simple yet powerful spiking neuron
model. In Chapter 3 we study networks containing a modified version of the LIF neuron in particular
with regard to the dynamical stability of such networks.
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2.3 Synapses

Figure 2.1: Circuit diagram for the subthreshold dynamics of a leaky integrate-and-fire neuron. External current
𝐼ext charges the membrane, shown as a capacitor with capacity 𝐶. Ion pumps slowly, via a leak resistance 𝑅
restore the voltage to the neuron’s resting potential 𝑉0.

2.3 Synapses

Neurons communicate with each other through connecting structures called synapses. The primary
type of synapse in the mammalian brain is the chemical synapse which consists of a presynaptic
terminal and a postsynaptic bouton separated by a gap called the synaptic cleft. A spike of the
presynaptic neuron triggers a release of neurotransmitters into the synaptic cleft that then bind to
receptors of the postsynaptic bouton. These neurotransmitters can activate ion channels and, depending
on their type, induce a positive or negative current into the postsynaptic neuron. In the former case,
the synapse is called excitatory; in the latter case, it is called inhibitory. Neurons typically release the
same kind of neurotransmitters at all their presynaptic terminals and thus act either excitatorily or
inhibitorily on all of their postsynaptic partners, an observation called Dale’s law [26]. Thus we can
classify neurons as excitatory or inhibitory depending on their effect on postsynaptic neurons. The
effect of a synaptic input is proportional to the synapse’s strength which in our models is given by a
single real variable. We can then portray the network structure as a weighted directed graph, fully
described by a square matrix𝑊 , called weight matrix. In our convention, the entry𝑊𝑖 𝑗 denotes the
strength of the connection of neuron 𝑗 to neuron 𝑖.

2.3.1 Current-based synapses

A presynaptic spike causes a rapid change in a postsynaptic neuron’s membrane conductance 𝑔. The
change in 𝑔 induces a current into the neuron resulting in a shift in its membrane potential called
postsynaptic potential (PSP). The current-based synapse is a simplified model in which the effect of a
spike on a postsynaptic neuron does not depend on the neuron’s voltage. We can describe the action
of such a synapse by a time-dependent current 𝐼𝑖 𝑗 into the postsynaptic neuron 𝑖, which we write as

𝜏syn
d𝐼𝑖 𝑗 (𝑡)

d𝑡
= −𝐼𝑖 𝑗 (𝑡) +𝑊𝑖 𝑗𝜏syn𝑆 𝑗 (𝑡), (2.3)

for a synapse of strength𝑊𝑖 𝑗 and a presynaptic spike train 𝑆 𝑗 (𝑡). In Chapter 3 we simplify synaptic
currents by taking the limit 𝜏syn → 0 while keeping the overall induced electric charge constant. In
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Chapter 2 Fundamentals

this limit, the postsynaptic current takes the shape of a delta distribution. With Eq. (2.2) this means
that a presynaptic spike induces a jump in the voltage of the postsynaptic neuron; the synaptic weight
scales the height of the jump.

In Chapter 4, we use synaptic currents analogous to Eq. (2.3). With the Hawkes model we use there,
instead of charging or discharging a postsynaptic neuron’s membrane voltage, the currents temporally
change the neuron’s spiking probability.

2.3.2 Synaptic plasticity

Animals need to be able to adapt to changing environments. Such adaptation includes learning
to recognize previously unknown stimuli, changing the behavioral response to known stimuli, and
learning to generate new behaviors. Consequently, brain circuits need to be able to change their
response patterns to incoming information. A vital feature subject to change, or plasticity, is the
strength of individual synapses. These undergo transient changes on a fast timescale, called short-term
plasticity (STP), and changes on a slower timescale which may last indefinitely, called long-term
potentiation (LTP) and long-term depression (LTD), respectively. Here, we focus on LTP and LTD
and disregard STP.

If plasticity is a response to incoming information, it needs to depend on the neural activity which
encodes the information. The idea of activity-dependent plasticity was first proposed by Hebb, who
famously suggested that if a presynaptic neuron repeatedly plays a causal role in the spiking of a
postsynaptic neuron, the strength of the synapse under consideration will increase [11]. Conversely, if
presynaptic spikes repeatedly fail to elicit spikes in the postsynaptic neuron, the considered synapse
will weaken. Hebb then postulated that such plasticity could elicit the organization of networks into
cell assemblies, groups of neurons that are interconnected in a way that facilitates their collective
reactivation. These assemblies could, when reactivated, perform actions or recall learned percepts
or concepts. To date, the precise nature and functional properties of neuronal assemblies are still a
matter of ongoing debate [27, 28].

Experiments have shown a lasting increase in synaptic strength if presynaptic spiking induces
postsynaptic spiking [29], and, in addition, that the sign and strength of LTD depend on the relative
timing of pre-and postsynaptic spikes [30, 31] leading to the proposal of spike-timing-dependent
plasticity (STDP), in which changes in synaptic strength are a function of the spike times of pre- and
postsynaptic neurons. The most common model of STDP considers only the time differences of pairs
of pre- and postsynaptic spikes. These models capture some key features of plasticity, like receptive
field formation; however, they fail to reproduce the dependence on the frequency of spike pairs [31],
and the results of experiments with spike-triplet protocols [32–34]. These results can be recovered
with higher order STDP rules such as triplet rules [35]. We focus only on pair-based STDP in which
each spike pairing of the pre- and postsynaptic spike trains contributes to the synaptic strength via
a function 𝐹 (Δ𝑡) of the time lag between pre- and postsynaptic spike, called the STDP function or
STDP window. At each spike time, plasticity acts additively on the pre- and postsynaptic weights of
the spiking neuron, with amplitudes given by 𝐹; this update rule can be written as:

d
d𝑡
𝑊𝑖 𝑗 (𝑡) =

∑︁
𝑡𝑘𝑖

,𝑡𝑘 𝑗
≤𝑡

(
𝐹 (𝑡𝑘𝑖 − 𝑡𝑘 𝑗

)𝛿(𝑡 − 𝑡𝑘𝑖 ) + 𝐹 (𝑡𝑘𝑖 − 𝑡𝑘 𝑗
)𝛿(𝑡 − 𝑡𝑘 𝑗

)
)
. (2.4)

Fig. 2.2 shows an experimentally observed symmetric STDP window found in the CA3 region of the
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2.3 Synapses

hippocampus by triggering series of spike pairs with different time lags and observing the change in
EPSP amplitude. In simulations Eq. (2.4) involves evaluating 𝐹 (Δ𝑡) at each spike time of neuron 𝑖

Figure 2.2: Experimentally observed STDP function in CA3 region, showing the relative change of LTP strength
with respect to the time interval of pre- and postsynaptic spikes. Figure adapted from [36].

for all spikes of neuron 𝑗 and vice-versa. This becomes unfeasible for longer simulations of large
networks. We can lift this computational burden if we express the STDP window as a superposition
of decaying exponentials with time constants 𝜏+,𝛼 and 𝜏−,𝛽 and amplitudes 𝐴+,𝛼 and 𝐴−,𝛽 , which is
often a natural choice to fit experimental data. Splitting F into a causal (Δ𝑡 > 0) and an anticausal
(Δ𝑡 < 0) part we write

𝐹 (Δ𝑡) =


∑︁
𝛼

𝐴+,𝛼 e−Δ𝑡/𝜏+,𝛼 , Δ𝑡 > 0∑︁
𝛽

𝐴−,𝛽 eΔ𝑡/𝜏−,𝛽 , Δ𝑡 < 0
. (2.5)

We then introduce auxiliary variables 𝑥𝑖,𝛼 (𝑡) and 𝑦𝑖,𝛽 (𝑡) for the exponentials in 𝐹, such that

𝜏+,𝛼
d𝑥𝑖,𝛼 (𝑡)

d𝑡
= −𝑥𝑖,𝛼 (𝑡) + 𝐴+,𝛼

∑︁
𝑘

𝛿(𝑡 − 𝑡𝑘𝑖 ) (2.6)

𝜏−,𝛽
d𝑦𝑖,𝛽 (𝑡)

d𝑡
= −𝑦𝑖,𝛽 (𝑡) + 𝐴−,𝛽

∑︁
𝑘

𝛿(𝑡 − 𝑡𝑘𝑖 ). (2.7)

We can then write the update to𝑊𝑖 𝑗 as

d
d𝑡
𝑊𝑖 𝑗 (𝑡) =

∑︁
𝛼

𝑥 𝑗 ,𝛼 (𝑡)
∑︁
𝑘

𝛿(𝑡 − 𝑡𝑘𝑖 ) +
∑︁
𝛽

𝑦𝑖,𝛽 (𝑡)
∑︁
𝑘

𝛿(𝑡 − 𝑡𝑘𝑗 ). (2.8)

Thus, at each spike of neuron 𝑖 the coupling 𝑊𝑖 𝑗 is updated according to the sum of the causal
synaptic traces of neuron 𝑗 and at each spike of neuron 𝑗 it is updated with the sum of the anticausal
traces of neuron 𝑖. While these traces may come with biophysical interpretations, such as calcium
entry due to backpropagating action potentials [37], we here treat them as auxiliary variables of a
phenomenological plasticity rule.
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Chapter 2 Fundamentals

2.4 Balanced state

Figure 2.3: Irregular spiking in the balanced state. (a): Upper: irregular spike trains in primary visual and
motor cortices of awake, behaving macaque monkeys. Lower: distributions of interspike intervals in these
areas showing approximately exponential shapes, in agreement with those of Poisson point processes. (b):
Asynchronous and irregular spiking in densely connected simulated network: Two neurons with shared inputs.
Top: activity of excitatory (green) and inhibitory (red) presynatpic populations. Middle: excitatory, inhibitory
and net (black and gray) inputs currents. Bottom: membrane voltages of the two neurons. The balance of
excitation and inhibition decorrelated the shared inputs and leads to asynchronous activity between the two
neurons. Panel (a) adapted from [38], panel (b) adapted from [39].

Neurons in the mammalian cortex typically receive inputs from a large number (in the order of
1000-10000 [40]) of other neurons in the same network. For self-consistency, the output rate of a
neuron should have the same scale as the rates of the incoming ones; it thus seems reasonable to
assume that the strength of each input connection is small, i.e., that it scales with 1/𝐾, with 𝐾 the
typical network indegree of a neuron. Assuming that these inputs are independent, the standard
deviation of the summed inputs then scales with 1/

√
𝐾 while the total input remains constant. For

large 𝐾, this implies that activity is driven by the mean input, leading one to predict that firing in
the cortex is regular and periodic. Experiments, in contrast, have shown that the mammalian cortex
exhibits highly irregular spiking activity: the spikes of a single neuron appear at seemingly random
intervals [38, 41]. Formally, the spike trains resemble a Poisson process in which the time intervals
between spikes are exponentially distributed, with a coefficient of variation close to 1, see Fig. 2.3a.

Intrinsic stochasticity of spike generation in individual neurons cannot account for this irregularity
as neurons respond fairly reliably to the same time-varying input [42–44]. The solution to this apparent
paradox lies in postulating that the inhibitory and excitatory inputs to each neuron are large but
balanced, such that the mean current is not enough to drive the voltage up to the threshold. Spiking
is instead driven by fluctuations around the mean input current which causes the observed irregular
activity [4]. Networks can self-organize to such a balanced state for a wide range of network parameters
if both excitatory and inhibitory weights are strong (∝ 1/

√
𝐾), as shown in [5]. This model consists

of excitatory and inhibitory populations of binary neurons with thresholds Θ𝐸 and Θ𝐼 recurrently
connected to themselves and each other. At each time step the neurons’ activity variable is set to 1
(spiking) if their inputs exceed their threshold or 0 (not spiking) otherwise. Both populations receive
large constant external input

√
𝐾Λ0,𝐸 and

√
𝐾Λ0,𝐼 . Connections between two neurons occur with a
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2.4 Balanced state

probability of 𝐾/𝑁 , with strengths 1/
√
𝐾𝐽𝐴𝐵 where 𝐴, 𝐵 ∈ {𝐸, 𝐼} denoting excitatory and inhibitory

populations respectively. The model admits a mean-field theory that becomes exact in the large 𝑁
limit where neurons receive mean input

𝑢𝐼 =
√
𝐾

(
Λ0,𝐼 + 𝐽𝐼𝐸𝑚𝐸 − 𝐽𝐼 𝐼𝑚𝐼

)
− Θ𝐼

𝑢𝐸 =
√
𝐾

(
Λ0,𝐸 + 𝐽𝐸𝐸𝑚𝐸 − 𝐽𝐸𝐼𝑚𝐼

)
− Θ𝐸 .

(2.9)

Here 𝑚𝐴 is the average firing rate of population 𝐴. In the large 𝐾 limit, if the terms in the brackets
add up to a positive value, neurons will fire at their maximum firing rate, whereas if the terms are
negative, neurons will be quiescent. Such unbalanced solutions can be rendered inconsistent with
appropriate constraints on 𝐽𝐴𝐵. With these constraints, the activity must settle to a state where the
terms in the brackets almost cancel, resulting in mean input that is not sufficient to drive spiking.
Then, fluctuations rather than the mean input drive spiking, and spiking will be irregular. A necessary
condition for the mean-field solution of Eq. (2.9) is that the correlation of a neuron’s activity with its
outgoing connections is small. This holds for random networks with sparse connectivity (𝐾/𝑁 → 0),
as in [5]. As shown in [39] however, it is also possible to achieve an asynchronous and irregular
state in dense networks with 𝐾/𝑁 = const: if inhibition is sufficiently fast and strong, it can cancel
correlations that arise due to shared inputs, see Fig. 2.3b. Whereas both [5] and [39] use the limit
𝑁 →∞, the authors of [45, 46] have shown that this limit is not required to achieve decorrelation: the
presence of inhibitory feedback which is ubiquitous in balanced networks is sufficient to suppress
correlations. The theoretical underpinnings of the balanced state are thus valid also in the biological
realm with 𝐾 ≈ 104 and 𝑁 ≈ 106. After being initially demonstrated in networks of binary networks,
[5], the balanced state has subsequently been studied with leaky integrate-and-fire neurons [47, 48].
Since then, experiments have demonstrated the existence of E-I balance in multiple brain areas, such
as the cortex [49–51] and the hippocampus [52].

The existence of the balanced state seems puzzling: it implies that most spikes only serve to
neutralize other spikes. Since each spike comes with a metabolic cost, this seems wasteful, given that
the brain consumes a sizeable proportion of an animal’s available energy. Therefore, the balanced
state likely has some functional advantage that justifies this drawback. One such advantage may
be higher responsiveness: if many neurons’ membrane potentials are balanced at a level close to
spiking, they can be quickly brought to spiking when external inputs change. Furthermore, a balanced
network can have a much wider dynamical range, since an excitation dominated network might quickly
reach saturation firing rates in response to increasing input. Another notable feature of balanced state
networks is the linearity of population activity with respect to the input even if individual neurons are
highly nonlinear. This feature may also contribute to wider dynamical range.

In Chapter 3, we investigate networks of recurrently coupled inhibitory spiking neurons that receive
a constant excitatory current. Such a setup can also generate a balanced state where the mean recurrent
inhibitory input cancels the constant excitatory drive. Then, in Chapter 4, we simply assume that the
system is in the fluctuation-driven balanced state and not explicitly model inhibition. Based on the
balanced state assumption, we model each excitatory neuron’s spiking activity as an inhomogeneous
Poisson process with an intensity dependent on the input it receives from other neurons in the network.
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Chapter 2 Fundamentals

2.5 Hawkes model

If we take the balanced state as given, we can propose a neuron model whose spiking activity is
irregular by design. We model spiking as resulting from a stochastic point process rather than being
deterministically determined by integrating inputs up to a threshold. Consider an inhomogeneous
Poisson process in which the probability to emit a spike in an infinitesimal time interval [𝑡, 𝑡 + d𝑡]
is given by an intensity function 𝜆(𝑡)d𝑡. We choose the intensity function to have a constant finite
baseline value 𝜆0, representing spontaneous background activity due to external inputs. Spiking
input into a neuron has the effect of transiently raising the probability of a spike by a synaptic kernel
function 𝑎(𝑡), scaled by the synaptic weight. We define 𝑎(𝑡) as exponentially decaying, in analogy to
the synaptic currents Eq. (2.3),

𝑎(𝑡) = Θ(𝑡)
𝜏s

e
− 𝑡
𝜏s , (2.10)

where Θ(𝑡) is the Heaviside function, and 𝜏s is a synaptic time constant. The intensity 𝜆𝑖 (𝑡) given
inputs at times 𝑡𝑚𝑘 has the compact expression

𝜆𝑖 (𝑡) = 𝜆
0
𝑖 +

∑︁
𝑘

𝑊𝑖𝑘

∑︁
𝑚

𝑎(𝑡 − 𝑡𝑚𝑘 ). (2.11)

This type of self-exciting stochastic process goes back to Hawkes [53, 54]; outside of neuroscience, it
has seen use in seismology [55], mathematical finance [56] or even the study of gang violence [57].
Inhibitory neurons are not explicitly needed to maintain the irregular spiking activity in networks
of Hawkes neurons. Since they are not otherwise needed, in Chapter 4 we do not include inhibitory
neurons and implicitly assume that their presence is giving rise to the irregularity.

2.5.1 Cross-correlations

We define the cross-correlation function 𝐶𝑖 𝑗 (𝑡, 𝜏) between two neurons as the joint probability of
neuron 𝑖 emitting a spike at time 𝑡 and neuron 𝑗 emitting a spike at time 𝑡 + 𝜏. In our notation, we can
write this as

𝐶𝑖 𝑗 (𝑡, 𝜏) = ⟨𝑆𝑖 (𝑡 + 𝜏)𝑆 𝑗 (𝑡)⟩. (2.12)

The angular brackets here denote averages over the statistical ensemble; since the spike trains 𝑆𝑖 (𝑡)
result from inhomogeneous Poisson processes, their ensemble average is given by their intensity

⟨𝑆𝑖 (𝑡)⟩ = 𝜆𝑖 (𝑡). (2.13)

If neurons 𝑖 and 𝑗 spike as uncorrelated homogeneous Poisson processes, the joint spiking probability
is simply the product of the individual probabilities, i.e., the intensities:

𝐶𝑖 𝑗 (𝑡, 𝜏) = ⟨𝑆𝑖 (𝑡 + 𝜏)⟩⟨𝑆 𝑗 (𝑡)⟩ = 𝜆𝑖𝜆 𝑗 . (2.14)

If neurons 𝑖 and 𝑗 are Hawkes neurons, and there is a (static) synapse from neuron 𝑗 to neuron 𝑖 with
strength 𝑤, then the effect of a spike of neuron 𝑗 on neuron 𝑖 will appear as a conditional probability,

⟨𝑆𝑖 (𝑡 + 𝜏) |𝑆 𝑗 (𝑡)⟩ = 𝜆
0
𝑖 + 𝑤𝑎(𝜏), (2.15)
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and the cross-correlation (assuming no other interactions) becomes [58]

𝐶𝑖 𝑗 (𝑡, 𝜏) = ⟨𝑆𝑖 (𝑡 + 𝜏), 𝑆 𝑗 (𝑡)⟩ (2.16)

= ⟨𝑆𝑖 (𝑡 + 𝜏) |𝑆 𝑗 (𝑡)⟩ ⟨𝑆 𝑗 (𝑡)⟩ (2.17)

= 𝜆
0
𝑖𝜆

0
𝑗 + 𝑤𝑎(𝜏)𝜆

0
𝑗 . (2.18)

For an interconnected network of neurons, the conditional probabilities will not just include direct
interactions between pairs of neurons but also more complex interactions involving other neurons.
If the weight matrix𝑊 of such a network is static, we can write the cross-correlations in frequency
space as [53]

�̃� (𝜔) = 2𝜋𝛿(𝜔)𝒓𝒓𝑇 +
(
1 − �̃�(𝜔)𝑊

)−1
𝐷

(
1 − �̃�(−𝜔)𝑊𝑇

)−1
. (2.19)

Here 𝑟 is the vector of static time-averaged firing rates, that results from the network dynamics, and
we use the non-unitary definition of the Fourier transform, �̃�(𝜔) =

∫ ∞
−∞ d𝑡 e−𝑖𝜔𝑡

𝑔(𝑡) .

2.6 Dynamical stability

In this section, we discuss measures that characterize the stability of a dynamical system. In practice,
these measures provide information about the behavior of a dynamical trajectory in the presence of
small perturbations. To make statements about stability regardless of the chosen trajectory, we need
the dynamical system to be ergodic. In physical terms, ergodicity states that the statistical properties of
a trajectory over long durations are equivalent to the statistical properties of an ensemble of trajectories
at one point in time. It implies that time averages of functions of a sample trajectory are independent
of the choice of initial conditions and interchangeable with the ensemble average.

2.6.1 Lyapunov exponents

We start with an intuitive explanation of the largest Lyapunov exponent, which measures the average
rate of convergence or divergence of two neighboring trajectories that differ only by an infinitesimal
displacement. We use a discrete-time dynamical system1 defined by states 𝑼(𝑡) ∈ R𝑁 , a map
𝐹 : R𝑁 → R𝑁 , and the relation

𝑼(𝑡 + 1) = 𝑭(𝑼(𝑡)). (2.20)

The linearized evolution of a small perturbation 𝒖(𝑡) of a trajectory 𝑼(𝑡) obeys

𝒖(𝑡 + 1) = d𝑭
d𝑼
(𝑼(𝑡))𝒖(𝑡) =: 𝐽 (𝑡)𝒖(𝑡), (2.21)

where 𝐽 (𝑡) is called the Jacobian of the map at time 𝑡. We are interested in the long-term evolution of
perturbations. Given an initial perturbation 𝑢(0) at 𝑡 = 0 we write

𝒖(𝑡) =
𝑡−1∏
𝑘=0

𝐽 (𝑘)𝒖(0) =: 𝐻 (𝑡)𝒖(0). (2.22)

1 As will be shown in the second chapter, the networks of integrate-and-fire neurons with instantaneous synaptic currents
can be formulated as a discrete map. Nevertheless, what follows also applies similarly to continuous systems.
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The distance between the original and the perturbed trajectory is given by the norm of the perturbation,
which, using Eq. (2.22), evolves as

∥𝒖∥2 (𝑡) = 𝒖(0)⊺𝐻⊺ (𝑡)𝐻 (𝑡)𝒖(0) =: 𝒖(0)⊺𝑀 (𝑡)𝒖(0). (2.23)

The leading Lyapunov exponent is the time-averaged growth rate of the logarithm of this perturbation,

𝜆1 = lim
𝑡→∞

1
𝑡

ln



𝐻 (𝑡)𝒖(0)



𝒖(0)

 . (2.24)

In other words, if the limit in Eq. (2.24) exists, a generic perturbation will expand or contract
exponentially with the inverse time constant given by the first Lyapunov exponent 𝜆1. The existence
of the limit follows from Oseledets’ multiplicative ergodic theorem [59] if the dynamical system is
ergodic. More generally, the theorem guarantees the existence of the limit

lim
𝑡→∞

𝑀 (𝑡)
1
2𝑡 = 𝑃 (2.25)

where 𝑃 has positive eigenvalues 𝜇1 ≥ 𝜇2 ≥ · · · ≥ 𝜇𝑁 . This allows us to generalize the notion of the
leading Lyapunov exponent by defining the spectrum of Lyapunov exponents as

𝜆𝑖 = log 𝜇𝑖 . (2.26)

We can see that this definition matches the one in Eq. (2.24) for the first LE. The other LEs extend the
idea of perturbation growth to the growth of volumes in tangent space: the first 𝑘 Lyapunov exponents
describe the time-averaged rate of expansion or contraction of the volume 𝑉𝑘 (𝑡) of a parallelopiped
spanned by 𝑘 perturbation vectors:

lim
𝑡→∞

1
𝑡

𝑉𝑘 (𝑡)
𝑉𝑘 (0)

=

𝑘∏
𝑖=1

e𝜆𝑖 𝑡𝑉𝑘 (0). (2.27)

The LEs also describe the growth of perturbations depending on their direction: A perturbation grows
with the smallest LE, 𝜆𝑁 , if it is part of a one-dimensional subspace of the phase space, D𝑁 . It
grows with 𝜆𝑁−1 if it is part of D𝑁−1 \ D𝑁 where D𝑁−1 is a two-dimensional subspace containing
D𝑁 . The phase space is then structured with subsequent orders of D𝑖 such that D𝑖+1 ⊂ D𝑖 and
dim(D𝑖) = 𝑁 + 1 − 𝑖, where D1 is the full phase space. Perturbations in D𝑖 \D𝑖+1 will grow according
to 𝜆𝑖 .

We finally note that the LEs are independent of initial conditions and invariant under coordinate
transformations, which is often helpful in their computation.

2.6.2 Numerical computation of Lyapunov exponents

The matrix 𝑃 in Eq. (2.25) becomes ill-conditioned for large 𝑡, since its eigenvalues cover a range
that grows exponentially with 𝑡. It is therefore not suitable for the numerical computation of the
LEs. Instead, to compute the Lyapunov spectrum, we employ the relationship of the LEs with the
time-averaged expansion of volumes, Eq. (2.27), using the algorithm by Benettin et al. [24]. The idea
is to split the computation into small steps where in each step we evolve an orthonormal tangent basis
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with the Jacobian, obtain the volume expansions and contractions, and reorthogonalize.

Starting with 𝑚 orthogonal vectors, which we express as columns of an 𝑁 × 𝑚 matrix 𝑄, we apply
the Jacobian 𝐽 (𝑡) to obtain the linearized evolution of 𝑄 which we call �̃�.

�̃�(𝑡 + 1) = 𝐽 (𝑡)𝑄(𝑡). (2.28)

�̃� admits a unique decomposition into the product of an 𝑁 ×𝑚 orthogonal matrix which we take to be
𝑄(𝑡 + 1) and an upper-triangular matrix 𝑅 with positive diagonal elements, called QR decomposition:

�̃�(𝑡) = 𝑄(𝑡)𝑅(𝑡) (2.29)

The volume expansion is encoded in the determinant of 𝑅, given by the product of its diagonal
elements. Since the expansion rate is given by the product of the exponentials of the LEs, we can
write:

1
𝑡

∑︁
𝑖

log 𝑅𝑖𝑖 =
∑︁
𝑖

𝜆𝑖 , (2.30)

for sufficiently large 𝑡. If we consider the upper-left (𝑁 − 1) × (𝑁 − 1) block of 𝑅 and the orthogonal
𝑁 × (𝑁 − 1) matrix consisting of the first 𝑁 − 1 columns of 𝑄, we obtain the QR-decomposition of the
first 𝑁 − 1 columns of �̃�. Its volume transform which is given by the first 𝑁 − 1 Lyapunov exponents
differs from the volume transform of the 𝑁-dimensional volume by the factor 𝑅𝑁𝑁 – hence we have
1
𝑡

log 𝑅𝑁𝑁 = 𝜆𝑁 . We repeat this argument for each dimension to arrive at

log 𝑅𝑖𝑖 = 𝜆𝑖 . (2.31)

We can split this computation into smaller parts. We generalize the long-term Jacobians 𝐻 (𝑡) in
Eq. (2.22) to cover the tangent evolution between two specific points in time:

𝐻 (𝑡 𝑗 , 𝑡𝑖) =
𝑡 𝑗∏
𝑡=𝑡𝑖

𝐽 (𝑡), (2.32)

such that 𝐻 (𝑡, 𝑡0) = 𝐻 (𝑡, 𝑡1)𝐻 (𝑡1, 𝑡0). Then, on the one hand we have

𝐻 (𝑡, 𝑡0)𝑄(𝑡0) = �̃�(𝑡, 𝑡0) = 𝑄(𝑡, 𝑡0)𝑅(𝑡, 𝑡0), (2.33)

and on the other hand

𝐻 (𝑡, 𝑡0)𝑄(𝑡0) = 𝐻 (𝑡, 𝑡1)𝐻 (𝑡1, 𝑡0)𝑄(𝑡0)
= 𝐻 (𝑡, 𝑡1)�̃�(𝑡1, 𝑡0)
= 𝐻 (𝑡, 𝑡1)𝑄(𝑡1, 𝑡0)𝑅(𝑡1, 𝑡0)
= �̃�(𝑡, 𝑡1)𝑅(𝑡1, 𝑡0)
= 𝑄(𝑡, 𝑡1)𝑅(𝑡, 𝑡1)𝑅(𝑡1, 𝑡0). (2.34)

Because the product of upper-triangular matrices is upper-triangular, Eq. (2.34) also has the form of a
QR decomposition. Since the QR decomposition is unique we can identify 𝑄(𝑡, 𝑡0) in Eq. (2.33) with
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𝑄(𝑡, 𝑡1) in Eq. (2.34) and we obtain

𝑅(𝑡, 𝑡0) = 𝑅(𝑡, 𝑡1)𝑅(𝑡1, 𝑡0). (2.35)

We can therefore split the computation into small steps such that

𝜆𝑖 =
1
𝑡

∑︁
𝑘

log 𝑅𝑖𝑖 (𝑡𝑘 , 𝑡𝑘−1). (2.36)

We provide a pseudocode for the full Lyapunov spectrum in Algorithm 1.

Algorithm 1 Algorithm for Lyapunov spectrum (Benettin)
𝑼 ← 𝑼0
𝑄 ← 𝑄0
for 𝑡 = 1 to 𝑇 do

𝐽 ← d𝑭/d𝑼
𝑄 ← 𝐽 · 𝑄
𝑼 ← 𝑭(𝑼)
𝑄, 𝑅 ← QR(𝑄)
for 𝑖 = 1 to 𝑁 do

𝜆𝑖 ← 𝜆𝑖 + log 𝑅𝑖𝑖
end for

end for
for 𝑖 = 1 to 𝑁 do

𝜆𝑖 ← 𝜆𝑖/𝑇
end for

2.6.3 Covariant Lyapunov vectors

Assuming a nondegenerate Lyapunov spectrum, we can span the tangent space at each point with a set
of 𝑁 vectors 𝒗𝑖 that are covariant with the tangent dynamics,

𝐽 (𝑡)𝒗𝑖 (𝑡) ∝ 𝒗𝑖 (𝑡 + 1), (2.37)

and grow or contract according to their corresponding LEs:��𝒗𝑖 (±𝑡)�� = e±𝑡𝜆𝑖𝒗𝑖 (0), (2.38)

for large 𝑡. They are called covariant Lyapunov vectors (CLVs), and their existence also follows from
Oseledets’ theorem. Eqs. (2.37) and (2.38) admit an analogy to eigenvectors and eigenvalues: An
eigenvector is mapped to a vector proportional to itself with a proportionality constant given by its
corresponding eigenvalue. This is not possible for the Jacobians of a dynamical system, since they
map between different tangent spaces and thus there is no notion of a vector being mapped to itself.
Instead, a CLV covaries with 𝐽 and grows or contracts on average according to a fixed LE.

From Eqs. (2.37) and (2.38) it follows that any perturbation, expressed as a linear combination of a
set of CLVs, {𝒗𝑖}, will asympotically align with the CLV corresponding to the largest LE, called the
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forward most expanding direction:

lim
𝑡→∞

𝐻 (𝑡)
∑︁
{𝑖}
𝑎𝑖𝒗𝑖 (0) ∝ 𝒗argmax

𝑖∈{𝑖}
𝜆𝑖
(𝑡). (2.39)

Analogously a perturbation that is evolved backward in time will align with the backward most
expanding direction, i.e., the CLV corresponding to the smallest LE. The map 𝐹 need not be invertible
for this. It is sufficient to trace an already computed trajectory back in time, and consider the backward
tangent dynamics of that trajectory. We can then understand the subspaces D𝑖 from Section 2.6.1 as
those subspaces spanned by the CLVs with LE less or equal to 𝜆𝑖 . The CLVs, thus, provide us with a
structure of the local phase space given by stable and unstable directions.

2.6.4 Numerical Computation of CLVs

The authors of [25] have described an efficient numerical algorithm to compute the CLVs of a
dynamical system that makes use of the CLVs’ backward and forward alignment properties, see
Eq. (2.39). The algorithm starts by evolving a system of orthonormal vectors forward in time and
reorthogonalizing it after each step, such that the 𝑖th vector aligns with the subspace of the first 𝑖 CLVs.
Then the vectors are evolved backward in time while still restricted to their respective subspaces such
that they align with the backward most expanding direction in that subspace, i.e. the 𝑖th CLV.

As with the LEs, we begin with a set of 𝑁 random orthogonal basis vectors 𝒒𝑖 , which are arranged
column-wise as a matrix Q. By successively applying the Jacobian and performing QR-decompositions
this basis, after sufficient time, converges to the Gram-Schmidt (GS) basis 𝐺 (𝑡) =

(
𝒈1(𝑡), . . . , 𝒈𝑁 (𝑡)

)
,

which only depends on the phase space point 𝑼(𝑡). The first GS basis vector, having evolved
unrestricted, will be aligned with 𝒗1 and the second one, which has the constraint of being orthogonal
to the first one, will be in the subspace spanned by 𝒗1 and 𝒗2, and so on. In other words, we can write

𝒈𝑖 =
𝑖∑︁
𝑗

𝑑 𝑗𝒗 𝑗 . (2.40)

We next evolve the system for a sufficiently long time up until 𝑡 = 𝑇2 while at each step computing
and saving both the GS matrices and the upper triangular matrices 𝑅(𝑡) that result from the QR
decompositions. We then take a set of random vectors 𝑤 = (𝒘1, . . . , 𝒘𝑁 ) at 𝑡 = 𝑇2 with 𝒘𝑖 in the
subspace spanned by the first 𝑖 GS basis vectors. We express them in the GS basis as

𝒘𝑖 =

𝑖∑︁
𝑘

𝐶𝑘𝑖 𝒈𝑘 , (2.41)

or in matrix form as
𝑊 = 𝐺𝐶. (2.42)

Our goal is then to evolve the vectors 𝒘𝑖 backward in time along the trajectory 𝑈 has taken in the
forward evolution. This will cause them to align with the backward most expanding direction in their
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respective subspaces, i.e. 𝒗𝑖 , cf. Eq. (2.40). For the backward evolution, we use

𝑊 (𝑡 + 1) = 𝐽 (𝑡)𝑊 (𝑡)
= 𝐽 (𝑡)𝐺 (𝑡)𝐶 (𝑡)
= 𝐺 (𝑡 + 1)𝑅(𝑡 + 1)𝐶 (𝑡)

=⇒ 𝐺 (𝑡 + 1)𝐶 (𝑡 + 1) = 𝐺 (𝑡 + 1)𝑅(𝑡 + 1)𝐶 (𝑡)
=⇒ 𝐶 (𝑡 + 1) = 𝑅(𝑡 + 1)𝐶 (𝑡)
=⇒ 𝐶 (𝑡 − 1) = 𝑅−1(𝑡)𝐶 (𝑡) (2.43)

We can then use the GS basis saved at 𝑡 = 𝑡1 to recover the CLVs from 𝐶 using the basis transform
Eq. (2.42). Pseudocode is shown in Algorithm 2.

Algorithm 2 Algorithm for CLVs (Ginelli)
𝑼 ← 𝑼0
𝑄 ← 1𝑁

for 𝑡 = 1 to 𝑇1 do
𝐽 ← d𝑭/d𝑼
𝑄 ← 𝐽 · 𝑄
𝑼 ← 𝑭(𝑼)
𝑄, ← QR(𝑄)

end for
𝐺 (0) ← 𝑄

for 𝑡 = 1 to 𝑇2 do
𝐽 ← d𝑭/d𝑼
𝐺 (𝑡) ← 𝐽 · 𝐺 (𝑡 − 1)
𝑼 ← 𝑭(𝑼)
𝐺 (𝑡), 𝑅(𝑡) ← QR(𝐺 (𝑡))

end for
𝐶 (𝑇2) ← random_upper_triangular(𝑁, 𝑁)
for 𝑡 = 𝑇2 to 2 do

𝐶 (𝑡 − 1) ← 𝑅
−1(𝑡)𝐶 (𝑡)

normalize(𝐶 (𝑡 − 1))
end for
for 𝑡 = 1 to 𝑇3 do

𝑣𝑖, 𝑗 (𝑡) ←
∑

𝑘 𝐺 (𝑡)
⊺
𝑖𝑘
𝐶 (𝑡)𝑘 𝑗

end for
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CHAPTER 3

Dynamics and computation in mixed networks
containing neurons that accelerate towards
spiking

Contribution statement

This chapter is based on the following article published in Physical Review E:

[1] P. Manz, S. Goedeke, and R.-M. Memmesheimer
Dynamics and computation in mixed networks containing neurons that accelerate towards
spiking
Phys. Rev. E 100 (2019) 042404
© 2019 American Physical Society

In this article, we study the dynamical properties of recurrent spiking networks that contain two
types of inhibitory integrate-and-fire neurons: the standard LIF neuron discussed in Section 2.2 and a
novel type, called XIF, with negative leak current. These neuron types differ significantly in their
subthreshold dynamics; however, they can both collectively give rise to a balanced state with irregular
and asynchronous spiking, regardless of the proportions of each neuron type in the network. We
investigate the influence of the two neuron types on the network dynamics, phase space structure, and
computational capabilities. Notably, we find that already a single XIF neuron can qualitatively change
the network dynamics and that mixed networks may combine the computational capabilities of ones
with only one type of neuron.

In Section 3.2 we describe the neuron models, particularly introducing the anti-leaky XIF neuron.
We assume fully inhibitory networks with constant external excitatory drive. With this, we describe
and compare the subthreshold dynamical properties of both neuron types, defining their free firing
rate in the absence of recurrent inhibition. We show how networks with LIF and XIF neurons can
give rise to a balanced state with characteristically irregular and asynchronous spike patterns if the
synapses of the XIF neurons are endowed with a simple voltage dependence. My contribution to this
section was devising the voltage dependence of the XIF neurons, performing the simulations, creating
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the figures, and writing large parts of the text.
Section 3.3 contains a self-consistent approximation of the network firing rate of networks with LIF

and XIF neurons. We have built upon the shot-noise approach by Richardson [60] where Poisson-like
input spikes causing finite-size jumps are assumed and adopted it to our neuron models. In particular,
we needed to modify the approach to accommodate for the voltage dependence of the synapses of XIF
neurons. For this section, I took part in deriving the analytical expressions, performed all numerical
computations and analyses, created the figure, Fig. 3.3, and wrote parts of the text.

Section 3.4 begins with a mean-field approach for the computation of the Lyapunov exponents (LEs),
see Section 2.6.1, of networks of LIF and XIF neurons using the firing rates obtained in Section 3.3.
This mean-field Lyapunov spectrum provides a good approximation to the numerically computed LEs
and exactly matches its sum. We find that there is approximately one positive LE for each XIF neuron.
In particular, while a network containing only LIF neurons is stable [8], adding only a single XIF
neuron is sufficient to render the network dynamics chaotic. My contributions were deriving and
computing the mean-field Lyapunov spectrum, proving the exactness of the sum of the mean-field
exponents, numerically computing the Lyapunov spectrum, creating all figures, and writing large parts
of the text.

In Section 3.5 we study the stable and unstable directions of mixed networks via the covariant
Lyapunov vectors (CLVs), see Section 2.6.3, with particular regard to the neuron types. We find that
stable and unstable directions correspond in good approximation to the directions of LIF and XIF
neurons, confirming our assumptions made for the mean-field Lyapunov spectrum. My contributions
to this section were performing all simulations and numerical computations and analyses, creating all
figures, and writing large parts of the text.

Section 3.6 applies the insights from the preceding sections on computations with precisely timed
spikes [61] where our mixed networks serve as dynamical reservoirs. The section discusses two
computational tasks: In the first, a network solves a temporal XOR or AND task depending on context.
In the second task, a network needs to either be sensitive or insensitive to small differences in input
timings, depending on the input. Notably, the second task requires knowledge of the network’s CLVs.
My contribution to this section was preparing the network state and computation of the CLVs for the
second task, and writing parts of the section’s text.

Appendix 3.8.A contains further analysis concerning the dependence of the results in Section 3.3 on
network size and indegree. I performed the simulations, created the figure, and wrote large parts of the
text. Appendices 3.8.B and 3.8.D contain the derivations of the mean-field approach for the Lyapunov
spectrum and its sum, which are described in Section 3.4 and which I performed. Appendix 3.8.E
discusses the dependence of the Lyapunov spectrum on indegree and network size, for which I did all
simulations, created the figure, and wrote large parts of the text.

The article is presented here with minor editorial changes and the formatting adapted to match this
thesis.

Code availability

The code required to reproduce the results of this chapter has been make publicly available at
https://github.com/axionmonodromy/lyap-xif-lif.
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3.1 Introduction

3.1 Introduction

Biological neural networks consist of a large variety of interconnected neurons, which communicate
via short stereotypical electrical pulses called action potentials or spikes. After a neuron has generated
a spike, this travels along the axon and is transmitted to other neurons at synaptic contacts. The
electrical membrane potential of the receiving neuron is then changed by an excitatory or inhibitory
current pulse. Sufficiently many excitatory inputs in turn lead to spike generation in a receiving neuron.
Many biological neural networks generate irregular and asynchronous spiking. This is likely caused
by a dynamically balanced network state, in which the average inhibitory and excitatory input current
to each neuron sum to a value that is insufficient for frequent spike generation [3–5, 62]. Spikes are
caused by fluctuations in the inputs and the resulting spiking dynamics appear random and irregular.

Irregular dynamics are often chaotic, implying that the dynamics are sensitive to perturbations:
initially small ones can strongly grow with time, which results in ultimately large quantitative
differences between perturbed and unperturbed trajectories. A powerful tool to quantify this sensitivity
and therewith the local phase space structure are the Lyapunov exponents (LEs) and associated with
them the covariant Lyapunov vectors (CLVs) [10, 63]. The sign of the largest LE indicates whether
the system is chaotic and its magnitude equals the long-term average growth or decay rate of generic
infinitesimal perturbations. The spectrum of LEs describes the long-term average evolution of volumes
spanned by tangent vectors and the change of infinitesimal perturbations in non-generic directions,
which are specified by the CLVs. To each LE, there is a CLV. The size of a perturbation in the CLV’s
direction changes with an average rate of plus or minus the corresponding LE for long-term forward or
backward time evolution, respectively. The CLVs thereby indicate the directions of the unstable and
stable manifolds along a trajectory. Furthermore, the spectrum of LEs can be used to derive dynamical
quantities such as the Kaplan-Yorke fractal dimension of a chaotic attractor [64].

In our study, we consider purely inhibitory networks of current-based, oscillating integrate-and-fire
type neurons with post-synaptic currents of infinitesimally short duration and instantaneous reset. It
has been shown numerically [65, 66] and analytically [8, 9] that if such networks contain only leaky
integrate-and-fire (LIF) neurons, the networks’ irregular balanced state dynamics are stable against
infinitesimal and small finite size perturbations and are thus not chaotic but a realization of stable
chaos [67, 68]. The dynamics ultimately converge to a periodic orbit; the durations of the preceding
irregular transients, however, grow exponentially with system size. The stability of the network
dynamics is robust against introducing excitatory connections and considering synaptic currents of
finite temporal extent [9, 66] and there is a smooth transition to chaos upon increasing the number of
excitatory connections and the duration of synaptic currents. The computational abilities of the stable
precise spiking dynamics have not yet been explored, even though the specific structure of the phase
space, which is composed of “flux tubes”, may be beneficial and exploitable [69].

LIF neurons incorporate a leak current as found in biological neurons [22]. This increases linearly
with increasing membrane potential and leads to dissipation (contraction of phase space volume) in
the subthreshold dynamics. When driven by a constant depolarizing input current, the membrane
potential therefore has negative second derivative; the neuron has a purely concave so-called rise
function. In the considered class of networks, this implies the stability of the microscopic dynamics if
only LIF neurons are present [8, 9]. In biological neurons as well as in neuron models that explicitly
model spike generation, such as the quadratic and the exponential integrate-and-fire neuron [23], the
membrane potential accelerates towards a spike for larger membrane potentials. The rise function thus
has a convex part. Ref. [70] showed that networks of quadratic integrate-and-fire neurons that are
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otherwise similar to those considered in refs. [8, 9, 66] exhibit chaos. Furthermore, ref. [70] computed
the spectrum of LEs and quantities that are derivable from them, as well as the statistics of the first
CLV, which points into the directions to which a generic perturbation vector aligns in the long term.

Motivated by the above results and by the fact that there are many different types of cortical
inhibitory interneurons [71], in the present study we investigate the impact of inserting a different type
of neuron, with non-concave rise function, into inhibitory networks of LIF neurons. To be specific, we
insert “anti-leaky” integrate-and-fire (XIF) neurons with purely convex rise function. We choose the
letter “X” in the abbreviation to highlight this convexity and the expansion of phase space volume
by the flow of the subthreshold dynamics. XIF neurons may be interpreted as a model for a class of
biological neurons whose membrane potential lingers in a region where it accelerates towards spiking.
Simultaneously, these neurons maintain similar analytical tractability as their leaky counterparts
because of their mostly linear subthreshold dynamics. We describe our neuron and network models in
detail in the next section. Thereafter, self-consistent firing rates and membrane potential probability
distributions for both types of neurons are analytically derived, assuming Poisson input with finite size
spike impacts. We then consider the dynamical stability properties and local phase space structures of
the network dynamics, computing the entire spectra of LEs both numerically and analytically in a
mean-field approximation. We also compute their CLVs to investigate how the stable and unstable
directions are related to the different neuron types within the network.

Finally, we consider computations in pure and mixed networks of the considered types and show
how the richer phase space structure in mixed ones can be exploited. For this, we propose a
reservoir computer based entirely on precisely timed spikes. Reservoir computing has been introduced
several times at different levels of elaborateness and in different flavors, in machine learning and in
neuroscience [72–75]. A reservoir computer consists of a high dimensional, nonlinear dynamical
system, the reservoir or liquid, and a comparably simple readout. The reservoir “echoes” the input
in a complicated, nonlinear way; it acts like a random filter bank with finite memory as each of its
units generates a nonlinearly filtered version of the current input and its recent past while forgetting
more remote inputs [72, 74–76]. The simple, often linear readout can then be trained to extract the
desired results, while the reservoir is static. In our scheme, the output neuron is spiking and thus
nonlinear, the desired outputs are trains of precisely timed spikes. The learning thus requires different
approaches than learning of conventional continuous targets; gradient-descent based methods [77] fail
due to the discontinuity at the threshold as well as methods that require errors to be small but finite
[78]. A number of algorithms have been suggested to learn precisely timed spikes [61, 79–85], mostly
using heuristic approaches. For our readout neuron, we can use the Finite Precision Learning scheme
[61]. It has been shown to generically converge if the input-output relation is realizable at all, which
explains its numerically found superior learning abilities [83].

3.2 Mixed networks of neurons with concave and convex rise
function

We consider a recurrent network with 𝑁 neurons. The 𝑘th spike of neuron 𝑗 , which is sent at time 𝑡 𝑗𝑘 ,

generates a postsynaptic current pulse ℎ𝑖 (𝑉
−
𝑖 )𝑊𝑖 𝑗𝛿

(
𝑡 − 𝑡 𝑗𝑘

)
in neuron 𝑖. Here𝑊𝑖 𝑗 ≤ 0 is the weight

of the inhibitory connection and ℎ𝑖 (𝑉
−
𝑖 ) is a possible voltage-dependent modulation, which depends

on the membrane potential of neuron 𝑖 just before input arrival, given by the left-hand side limit
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𝑉
−
𝑖 = 𝑉𝑖 (𝑡

−) = lim𝜀↘0𝑉𝑖 (𝑡 − 𝜀). We assume that all excitatory inputs to neuron 𝑖 can be gathered
into a constant excitatory external input current 𝐼ext

𝑖 > 0 and that the remaining explicitly modeled
recurrent inhibition is fast [8, 69, 86]. We further assume that there is a leak term with prefactor
𝛾𝑖 ≠ 0. Taken together, we model the subthreshold membrane potential dynamics of neuron 𝑖 by

¤𝑉𝑖 = −𝛾𝑖𝑉𝑖 + 𝐼
ext
𝑖 + ℎ𝑖 (𝑉

−
𝑖 )

𝑁∑︁
𝑗=1
𝑊𝑖 𝑗

∑︁
𝑘

𝛿

(
𝑡 − 𝑡 𝑗𝑘

)
. (3.1)

When 𝑉𝑖 reaches the spike threshold at time 𝑡, 𝑉𝑖
−
= 𝑉th > 0, it is reset, 𝑉 (𝑡) = 𝑉re = 0, and a spike is

emitted. This, in turn, generates in a postsynaptic neuron 𝑙 a current pulse as introduced above, which
causes 𝑉𝑙 to decrease in jump-like manner from 𝑉

−
𝑙 to 𝑉−𝑙 + ℎ𝑙 (𝑉

−
𝑙 )𝑊𝑙𝑖. The rise function, i.e., the

membrane potential dynamics with 𝑉𝑖 (0) = 0 in absence of recurrent inhibitory input [87, 88], reads

𝑉𝑖 (𝑡) =
𝐼

ext
𝑖

𝛾𝑖

[
1 − exp(−𝛾𝑖𝑡)

]
. (3.2)

It is concave for 𝛾𝑖 > 0 and convex for 𝛾𝑖 < 0. There are two types of neurons in our networks: LIF
neurons with dissipation and concave rise function, which obey Eq. (3.1) with 𝛾𝑖 > 0, and anti-leaky
XIF neurons with convex rise function, which obey Eq. (3.1) with 𝛾𝑖 < 0, see Fig. 3.1. The membrane
potential dynamics of an LIF neuron has a globally attracting fixed point at 𝑉∞,𝑖 = 𝐼

ext
𝑖 /𝛾𝑖, if there

is no threshold for spike generation and no inhibitory input. We assume 𝑉∞,𝑖 > 𝑉th, so neurons
without inhibitory input periodically spike and reset. For our study it is sufficient to endow the LIF
neurons with a simple, current-based synapse model, setting ℎ𝑖 (𝑉

−
𝑖 ) = 1. A coarse approximation

of the membrane potential dynamics without threshold and neglecting input fluctuations yields
¤̄𝑉𝑖 = −𝛾𝑖�̄�𝑖 + 𝐼

ext
𝑖 + 𝐼

inh
𝑖 , where 𝐼 inh

𝑖 is the average inhibitory input current. In the balanced state,
its attractor at �̄�∞,𝑖 =

(
𝐼

ext
𝑖 + 𝐼

inh
𝑖

)
/𝛾𝑖 is below or close to the spike threshold, such that spikes are

always or typically generated by input fluctuations, more specifically by periods of less than average
inhibition.

In the absence of inhibitory input XIF neurons have an unstable, repelling fixed point at 𝑉−∞,𝑖 =
𝐼

ext
𝑖 /𝛾𝑖 < 0. If the membrane potential starts above this separatrix, it increases exponentially towards

the threshold. When it reaches there, the neuron spikes, its membrane potential resets to zero,
increases towards the threshold again and so forth: XIF neurons oscillate and spike periodically for
any 𝐼ext

𝑖 > 0 , if there is no inhibitory input. If the membrane potential starts below the separatrix, it
decreases exponentially to −∞. Also in the presence of recurrent inhibitory inputs an XIF neuron
is unrecoverably switched off once its membrane potential falls below 𝐼

ext
𝑖 /𝛾𝑖, since the inputs only

decrease the membrane potential further. Averaging over the inhibitory inputs as before yields an
effective separatrix at �̄�−∞,𝑖 =

(
𝐼

ext
𝑖 + 𝐼

inh
𝑖

)
/𝛾𝑖 . Membrane potentials falling below it have a tendency

to further decrease, causing the neuron to effectively switch off. This can be also seen from the
phase response curve of XIF neurons, which gets steeper for negative phases, in contrast to that
of LIF neurons which becomes flatter, see Fig. 3.1c. In other words, in XIF neurons an incoming
inhibitory input at a low potential still above the separatrix (and thus at a low phase) has a larger effect
in the sense that it delays the next spiking more than the same input arriving at a higher potential.
As a consequence, we observe in networks containing XIF neurons with purely current-based input
[ℎ(𝑉𝑖) = 1] that many of these neurons are first effectively and then unrecoverably switched off, if the
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Figure 3.1: LIF and XIF neuron dynamics with constant input. Blue and red indicate LIF and XIF neurons,
respectively. Solid curves in (a-d) indicate excitatory constant input only, dashed lines inclusion of an average
inhibitory input current 𝐼 inh (the cutoff for XIF inputs is neglected). (a,c) Potential function 𝑈 (𝑉) of the
membrane potential (voltage)𝑉 ;𝑉 follows the negative gradient of𝑈, ¤𝑉 (𝑡) = −𝑈′ (𝑉 (𝑡)), if there is no threshold.
(a) 𝑈 for an LIF neuron is an upward parabola; 𝑉 tends to the stable fixed point at 𝑈’s minimum (at 𝑉∞ or
�̄�∞), if there is no threshold. (c) 𝑈 for an XIF neuron is a downward parabola; 𝑉 tends to −∞ or +∞ when
starting left or right of 𝑈’s maximum (at 𝑉−∞ or �̄�−∞), if there is no threshold. A monotonically decreasing
potential function𝑈 between reset potential and threshold (left and right vertical dashed lines) indicates mean
driven periodic spiking (solid curves in (a,c)). In the balanced state the spiking is fluctuation driven with (a)
𝑈’s minimum below threshold for LIF neurons and (c) 𝑈’s maximum above reset for XIF neurons (dashed
curves). (b,d) Example trajectories for LIF and XIF dynamics including threshold and reset. Without inhibition,
𝑉 is periodically driven over the threshold and reset. Once averaged inhibition is included, the LIF voltage (b)
converges to the subthreshold fixed point at �̄�∞, while the XIF voltage (d) is repelled from �̄�−∞. (e) Infinitesimal
phase response curves [89–91]. Inputs to LIF (XIF) neurons have a smaller (larger) spike delaying effect, the
lower 𝑉 is. (f) Rates of free LIF and XIF neurons at different strengths of the normalized external drive. Neuron
parameters and (if applicable) values for excitatory drive and average inhibitory input are as in our network
simulations.
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network dynamics are irregular and the inhibitory inputs are therefore strongly fluctuating. In order to
prevent this biologically implausible phenomenon, we introduce a voltage dependence

ℎ(𝑉−𝑖 ) = Θ
(
𝑉
−
𝑖 −𝑉cutoff

)
(3.3)

of the input coupling strength, where Θ is the Heaviside theta function. Inhibitory inputs arriving at a
membrane potential lower than 𝑉cutoff then do not induce a further decrease. This provides a simple
conductance-based model for the synapses, where the driving force of the current vanishes below
𝑉𝑖 = 𝑉cutoff and is constant above. We assume 𝑉−∞,𝑖 < 𝑉cutoff +𝑊𝑖 𝑗 for all 𝑗 to exclude unrecoverable
switching off and 𝑉cutoff ≤ 𝑉re. We exemplarily checked that the overall network dynamics and their
stability properties remain qualitatively unchanged, if we also endow the LIF neurons with these
synapses.

For simplicity, we choose the parameters of all LIF and of all XIF neurons identical, i.e., 𝛾𝑖 = 𝛾LIF,

𝐼𝑖 = 𝐼LIF, etc., if neuron 𝑖 is an LIF neuron, and 𝛾𝑖 = 𝛾XIF, 𝐼𝑖 = 𝐼XIF, etc., if neuron 𝑖 is an XIF
neuron. The spike threshold and reset potentials are 𝑉th = 1 and 𝑉re = 0, independent of the neuron
type. We set 𝑉cutoff = 𝑉re to avoid any effective switching off of XIF neurons. Coupling strengths are
homogeneous,𝑊𝑖 𝑗 = 𝑊 if the coupling is present. To keep the number of relevant parameters small,
we further choose 𝐼ext

LIF/𝛾LIF = 𝑉∞,LIF = −𝑉−∞,XIF = −𝐼ext
XIF/𝛾XIF. The additional choice 𝛾XIF = −𝛾LIF

leads already in absence of recurrent inhibition to a higher spike rate 𝜌free,XIF in XIF neurons, since

𝜌free,XIF =
−𝛾XIF

ln
( −𝑉−∞,XIF+𝑉th
−𝑉−∞,XIF

) , (3.4)

whereas in LIF neurons,
𝜌free,LIF =

𝛾LIF

ln
(

𝑉∞,LIF
𝑉∞,LIF−𝑉th

) . (3.5)

As a consequence, we observe that in a mixed network the XIF suppress the LIF neurons, which
become quiescent. Using the analytical results of the next section, we therefore rescale 𝛾LIF such that
the spike rates in both populations are identical. Further, we fix the neurons’ indegree to the same
number 𝐾 , implying that

∑
𝑗𝑊𝑖 𝑗 is identical for each neuron 𝑖. This reduces quenched noise [92] and

avoids strong differences in average spike rates and switched off neurons.
With the described network model setup, we observe balanced states of asynchronous irregular

spiking activity for any ratio of neurons with concave and convex rise function, see Fig. 3.2 for an
illustration.

3.3 Network firing rate and membrane potential distributions

Mean-field theories have been developed in statistical physics [93] and are frequently used in
computational neuroscience, see, for example, refs. [48, 92, 94, 95]. The basic idea is to average
the interactions in a high-dimensional system to obtain for each element an effective action, which
is not influenced by this element anymore. One can thereby reduce a high-dimensional problem
to low-dimensional ones. In this section we analytically determine the steady-state firing rate and
the voltage probability densities for LIF and XIF neurons in mixed networks using a mean-field
approximation. We use the results to obtain neuron parameters that lead to the same average firing
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(a) (b)

Figure 3.2: Mixed networks of LIF neurons with concave rise function and of XIF neurons with convex rise
function can exhibit a balanced state with asynchronous irregular activity in both types of neurons. (a,b) Spiking
activity for a subset of the LIF (a) and the XIF (b) neurons in a network with 75 LIF and 25 XIF neurons
(𝑁 = 100). (c-e) Distribution of coefficients of variation of inter-spike intervals for all neurons (c) and for LIF
(d) and XIF (e) neurons separately. (f-h) Distribution of the average spike rates of all neurons (f) and of LIF
(g) and XIF (h) neurons separately. The analytically derived rate 𝜌 ≈ 26.1 s−1 (Eqs. (3.18),(3.19)) is indicated
by a black dashed vertical line. We use 𝛾XIF = −0.1 ms−1, 𝛾LIF = 0.169 ms−1, 𝑉∞,LIF = −𝑉−∞,XIF = 2 and a
randomly connected network with fixed indegrees 𝐾 = 50 and non-zero synaptic strength𝑊𝑖 𝑗 = 𝑊 = −0.2.
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3.3 Network firing rate and membrane potential distributions

rates for both neuron types and thus to homogeneous firing rates in the entire network. In addition we
employ the firing rates to analytically approximate the Lyapunov spectrum of the network dynamics
using a mean-field approach in Section 3.4.1.

We approximate the superposed input spike trains to a neuron by a Poisson spike train with a given
rate, i.e. we assume that all input spikes are sent independently of each other. A common approach is
to additionally consider the limit of a large number of small inputs. The neuron dynamics can then be
approximated by a diffusion process, which allows to compute firing rates and membrane potential
distributions [96, 97]. This diffusion approximation assumes that the inputs have (infinitesimally)
small amplitude and arrive at (infinitely) high rate. Here we use a shot noise approach, which accounts
for the finite input rate and size of individual inputs [96, 97], in the recent formulation of refs. [60,
86]. This allows to more accurately obtain the firing rates and membrane potential distributions. In
particular, the fact that in our networks the voltage probability density does not go to zero at threshold
is reflected. We shortly review the approach for LIF neurons [60, 86, 98] and then extend it to XIF
neurons with the voltage-dependent coupling Eq. (3.3).

The shot-noise approach (like the diffusion approximation) is based on the continuity equation for
the voltage probability density 𝑝(𝑉, 𝑡). For our neuron models it reads

𝜕𝑝

𝜕𝑡
+ 𝜕 𝑗
𝜕𝑉

= 𝜎inh + 𝜎reset, (3.6)

where 𝑗 (𝑉, 𝑡) = ¤𝑉 (𝑉)𝑝(𝑉, 𝑡) is the drift probability current with velocity ¤𝑉 (𝑉) = −𝛾𝑉+𝐼ext. 𝜎inh(𝑉, 𝑡)
and 𝜎reset(𝑉, 𝑡) are source terms incorporating the effects of inputs and resets of the neuron’s membrane
potential 𝑉 .

For the LIF neuron without the voltage-dependent input, inhibitory input spikes arriving when the
considered neuron is at a voltage 𝑉 give rise to a sink at 𝑉 , whereas spikes arriving when the neuron is
at a voltage 𝑉 −𝑊 > 𝑉 give rise to a source at 𝑉 . We therefore have a first source term

𝜎inh(𝑉, 𝑡) = 𝑟 (𝑡)
[
𝑝(𝑉 −𝑊, 𝑡) − 𝑝(𝑉, 𝑡)

]
(3.7)

with the rate 𝑟 (𝑡) of input spikes. We note that refs. [60, 86, 98] include this term in the probability
current. The second source term is due to the spike and reset mechanism of the neuron model. Its
threshold and reset act as Dirac delta sink and source at the corresponding discrete voltages,

𝜎reset(𝑉, 𝑡) = 𝜌(𝑡)
[
𝛿(𝑉 −𝑉re) − 𝛿(𝑉 −𝑉th)

]
. (3.8)

This term is proportional to the instantaneous firing rate 𝜌(𝑡) of the stochastic neuron dynamics or, in
other words, to the probability current through the threshold [𝜌(𝑡) = 𝑗 (𝑉th, 𝑡) ≥ 0].

We investigate stationary network dynamics, which are described by constant 𝑟 and 𝜌 and
time-independent 𝑝(𝑉). For these Eq. (3.6) reduces to the linear delay differential equation (or
differential-difference equation)

𝑑

𝑑𝑉
𝑝(𝑉)

(
−𝛾𝑉 + 𝐼ext

)
= 𝑟

[
𝑝(𝑉 −𝑊) − 𝑝(𝑉)

]
+ 𝜌

[
𝛿(𝑉 −𝑉re) − 𝛿(𝑉 −𝑉th)

]
. (3.9)

Dividing Eq. (3.9) by 𝜌 > 0 yields an equation for the rescaled density 𝑞(𝑉) = 𝑝(𝑉)/𝜌, which is
independent of the unknown steady-state firing rate 𝜌. This equation can be integrated for example
with the method of steps [99]. The integration starts with the “initial conditions” 𝑞(𝑉) = 0 for

27



Chapter 3 Dynamics and computation in mixed networks containing neurons that accelerate towards
spiking

𝑉 > 𝑉th and thus 𝑞(𝑉th) = 1/
(
−𝛾𝑉th + 𝐼

ext
)

slightly below 𝑉th. The normalization of 𝑝(𝑉) allows us
to compute 𝜌 via

1
𝜌
=

∫ ∞

−∞
𝑞(𝑉)𝑑𝑉. (3.10)

To obtain an analytic expression for 𝜌, one applies a bilateral Laplace transform 𝑓 (𝑠) =∫ ∞
−∞ 𝑓 (𝑉)𝑒

𝑠𝑉
𝑑𝑉 . We can focus on 𝑠 ≥ 0; 𝑞(0) yields 𝜌−1. The Laplace transform of the rescaled

Eq. (3.9) results in a linear first-order ordinary differential equation for 𝑞(𝑠),

𝑑

𝑑𝑠
𝑞(𝑠) =


𝐼
ext

𝛾
+
𝑟

(
e𝑊𝑠 − 1

)
𝛾𝑠

 𝑞(𝑠) +
e𝑉re𝑠 − e𝑉th𝑠

𝛾𝑠
. (3.11)

It can be solved by variation of constants. The solution of the homogeneous equation is

𝑍0(𝑠) = 𝐴eΨ(𝑠) (3.12)

with an arbitrary constant 𝐴 and

Ψ(𝑠) = 𝐼
ext

𝛾
𝑠 + 𝑟

𝛾

∫ 𝑠

0

e𝑊𝑢 − 1
𝑢

𝑑𝑢

=
𝐼
ext

𝛾
𝑠 + 𝑟

𝛾

[
Ei(𝑊𝑠) − log(−𝑊𝑠) − Γ

]
. (3.13)

Here, Ei(𝑥) is the exponential integral Ei(𝑥) = −
∫ ∞
−𝑥

e−𝑡
𝑡
𝑑𝑥 and Γ is the Euler-Mascheroni constant.

The solution of the full equation then reads

𝑞(𝑠) = eΨ(𝑠)
[
𝑞(0) −

∫ 𝑠

0
e−Ψ(𝑢)

e𝑉th𝑢 − e𝑉re𝑢

𝛾𝑢
𝑑𝑢

]
. (3.14)

Since the support of 𝑞(𝑉) is bounded from above by 𝑉th, 𝑞(𝑠) =
∫ ∞
−∞ 𝑞(𝑉)e

𝑉𝑠
𝑑𝑉 ≤ e𝑉th𝑠/𝜌0. To

balance the faster exponential growth ∼ exp(𝐼ext
𝑠/𝛾) of its prefactor exp

[
Ψ(𝑠)

]
, the bracket on the

right hand side of Eq. (3.14) needs to vanish for large 𝑠. We thus have

𝑞(0) =
∫ ∞

0
e−Ψ(𝑢)

e𝑉th𝑢 − e𝑉re𝑢

𝛾𝑢
𝑑𝑢 =

1
𝜌
. (3.15)

For an XIF neuron without voltage-dependent synapses there is no stationary membrane potential
probability density 𝑝(𝑉). This is because for any time 𝑡 > 0 there is a finite probability that the
membrane potential of a neuron jumps below 𝐼

ext/𝛾 and thereafter tends to minus infinity. In contrast,
for an XIF neuron with the voltage dependence Eq. (3.3), 𝑝(𝑉) exists and we may use the same
approach as for the LIF neuron to determine it together with the firing rate. Since membrane potentials
do not drop below 𝑉cutoff +𝑊 , we focus on the interval [𝑉cutoff +𝑊,𝑉th], where 𝑝(𝑉) can be nonzero.
The couplings’ voltage dependence enters the source term 𝜎inh in Eq. (3.6): If 𝑉 is below 𝑉cutoff,
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3.4 Growth of dynamical perturbations

incoming spikes have no effect and the sink term due to them vanishes. Eq. (3.7) therefore changes to

𝜎inh(𝑉, 𝑡) = 𝑟 (𝑡)
[
𝑝(𝑉 −𝑊, 𝑡) − ℎ(𝑉)𝑝(𝑉, 𝑡)

]
, (3.16)

where we used that 𝑉 −𝑊 ≥ 𝑉cutoff in the relevant voltage range such that a modification of the source
term is unnecessary. The stationary continuity equation becomes

𝑑

𝑑𝑉
𝑝(𝑉)

(
−𝛾𝑉 + 𝐼ext

)
= 𝑟

[
𝑝(𝑉 −𝑊) − ℎ(𝑉)𝑝(𝑉)

]
+ 𝜌

[
𝛿(𝑉 −𝑉re) − 𝛿(𝑉 −𝑉th)

]
, (3.17)

which can be rescaled and integrated using the method of steps to obtain 𝑞(𝑉), 𝜌 and 𝑝(𝑉) as before.
The nonlinear prefactor ℎ(𝑉), however, impedes the derivation of 𝜌 via Laplace transform.

We apply the above results to find mixed networks in which LIF and XIF neurons have similar
firing rates. Eq. (3.15) provides a map 𝐺LIF from the input to the output rate, 𝐺LIF(𝑟) = 𝜌. Eq. (3.17)
implicitly defines such a map 𝐺XIF for XIF neurons. The firing rate 𝜌 of the LIF and XIF neurons in
the desired mixed network needs to solve both self-consistency Eqs.

𝐺LIF(𝐾𝜌) = 𝜌, (3.18)
𝐺XIF(𝐾𝜌) = 𝜌, (3.19)

with the neurons’ indegree 𝐾 . We employ Eq. (3.19) to compute 𝜌 for XIF neurons. Thereafter, we
adapt the parameters of Eq. (3.18) such that the same 𝜌 becomes a solution. Specifically, we solve for
𝛾LIF, keeping the other parameters fixed.

Fig. 3.3 compares the voltage densities 𝑝(𝑉) and rates 𝜌 obtained from the shot noise approach
with those of an LIF and an XIF neuron that receive input spike trains as they are generated in the
recurrent network of Fig. 3.2. There is a pronounced discrepancy between the densities and rates
for an LIF neuron for 𝐾 = 50 and small 𝑁 , because both the individual (see Fig. 3.2a-e) and the
superposed input spike trains in these dense networks are more regular than Poisson spike trains.
Removing spatial correlations for example by increasing 𝑁 reduces the discrepancy, see Fig. 3.3b-d
and Appendix 3.8.A for further analysis. Such input spike trains reduce the variance of the voltage and
generate a 𝑝(𝑉) that is more concentrated around the value

(
𝐼

ext
𝑖 + 𝐼

inh
𝑖

)
/𝛾𝑖 , where 𝐼 inh

𝑖 is the average
inhibitory input current as discussed in Section 3.2. For the XIF neuron, the input spike train statistics
has less impact on 𝑝(𝑉). Presumably, this is because voltage excursions due to input fluctuations are
anyways suppressed by the voltage dependence of the input strength (for potentials near 𝑉cutoff) and
by the drive towards threshold (for larger potentials). We note that the assumption of Poisson input
spike trains is the only approximation in the chosen approach, such that sampled membrane potential
distributions of neurons with Poisson input match the analytical ones up to the sampling noise as
shown in Appendix 3.8.A.

3.4 Growth of dynamical perturbations

3.4.1 Mean-field approach

After obtaining the spike rates and membrane potential distributions using a statistical mean-field
theory, we investigate the mixed network dynamics from a dynamical systems perspective. We first
analytically determine the Lyapunov spectrum using again a mean-field approach. It focuses on the
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LIF analytical
LIF simulated
XIF analytical
XIF simulated

(a) (b)

(c) (d)

Figure 3.3: Analytically and numerically estimated voltage probability densities and spike rates of LIF and XIF
neurons. (a,b) Voltage probability densities for networks of (a) 𝑁 = 100 and (b) 𝑁 = 10000 neurons. The dark
blue and dark red curves show the analytical results Eqs. (3.9) and (3.17) of 𝑝(𝑉) for LIF and XIF neurons,
where 𝜌 is obtained self-consistently from Eqs. (3.18) and (3.19). The light blue and light red curves show
representative numerically sampled voltage densities of an LIF and an XIF neuron, where the input spike trains
are superpositions of simultaneous output spike trains of 𝐾 neurons in the recurrent network. (c,d) Spike rates of
neurons in networks of (c) different size 𝑁 and indegree 𝐾 = 50 and (d) size 𝑁 = 10000 and different indegree
𝐾. In (d) the presynaptic weights are scaled with 1/𝐾 such that their sum is independent of 𝐾. Numerically
measured average spike rates of LIF and XIF neurons in the different networks are shown by blue and red dots.
Error bars display the standard deviations of the rate distributions. Analytical results obtained from Eqs. (3.18)
and (3.19) are displayed by dashed black lines. Remaining parameters are as in Fig. 3.2.
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3.4 Growth of dynamical perturbations

evolution of perturbations to a single neuron and treats the input from other neurons as external.
Specifically, we disregard perturbations of the rest of the network including those generated by the
considered neuron’s changed spiking. Inputs thus arrive at the same times in the perturbed and in the
unperturbed system and do not change the neuron’s perturbation. Fig. 3.4 illustrates this and compares
the resulting evolution of a perturbation of an XIF neuron and of an LIF neuron: The perturbation of
the XIF neuron gradually increases as long as it is not spiking, while that of the LIF neuron decreases.
Conversely, in the XIF neuron spiking and resetting reduces perturbations, while it increases them
in the LIF neuron; compare the values of the (finite size) distance

��𝛿𝑉 (𝑡)�� = |�̃� (𝑡) − 𝑉 (𝑡) | between
two neighboring trajectories �̃� (𝑡) and 𝑉 (𝑡) in Fig. 3.4a,b before and after a spike event has taken
place in both the perturbed and the unperturbed dynamics. To assess the influence of these two
processes, we first note that in a freely oscillating neuron they need to cancel each other such that
perturbations persist on average and the LE is zero. We then note that the inhibitory inputs do not affect
perturbations but prolong the subthreshold evolution between spikes. Its impact therefore dominates,
and perturbations in XIF neurons grow over time, while they shrink in LIF neurons. This does not
depend on the specifics of the LIF and XIF dynamics but is a consequence of the curvature of the rise
function and the inhibitory inputs.

In Appendix 3.8.B, we make the gained intuitive understanding precise by quantifying the growth
of perturbations and the resulting LE. For this, we describe the dynamics by a sequence of discrete
maps from the state at a time (infinitesimally) shortly after generation of a spike to the state at a time
shortly after generation of the next spike. The discrete time dynamics of small perturbations are then
given by the “single spike Jacobians” [69, 70] 𝐽 (𝑘). For the effective single neuron dynamics here,
they reduce to scalar factors

𝐽 (𝑘) =
𝜕𝑉 (𝑡+𝑘+1)
𝜕𝑉 (𝑡+𝑘)

= exp
(
𝛾

𝜌free
− 𝛾(𝑡𝑘+1 − 𝑡𝑘)

)
(3.20)

with the free firing rate 𝜌free (Eq. (3.4) or (3.5)) of the neuron.
The growth rate of perturbations and thus the mean-field LE are given by the long-term average of

Eq. (3.20),

𝜆mf = lim
𝐿→∞

1
𝑡𝐿

𝐿−1∑︁
𝑘=0

ln
��𝐽mf(𝑘)

��
= −𝛾

(
1 − 𝜌

𝜌free

)
. (3.21)

This expression confirms the intuitive understanding that without perturbed inputs the growth rate
depends (i) on the growth rate during subthreshold evolution and (ii) on the prevalence of subthreshold
evolution (𝜌 < 𝜌free) or spike sending (𝜌 > 𝜌free) relative to the free neuron case. In particular, without
input we have 𝜆mf = 0 and if the neuron is silenced 𝜆mf = −𝛾. In our inhibitory networks we have
𝜌 < 𝜌free such that 𝜆mf > 0 for XIF and 𝜆mf < 0 for LIF neurons. In networks in the balanced state,
the actual spike rate is much smaller than the spike rate of a neuron if only excitation is present. Since
in our networks the latter equals the spike rate of the freely oscillating neuron, we have 𝜌/𝜌free ≪ 1.
Thus the mean-field approach indicates that the growth rate of perturbations is mainly given by the
subthreshold growth. The mean-field approach further indicates that a single XIF neuron renders the
entire network dynamics unstable and that the number of unstable directions equals the number of

31



Chapter 3 Dynamics and computation in mixed networks containing neurons that accelerate towards
spiking

(a)

(b)

Figure 3.4: Evolution of perturbations during subthreshold evolution and spiking in (a) an LIF and (b) an XIF
neuron. During subthreshold evolution the distance (perturbation)

��𝛿𝑉 (𝑡)�� between two neighboring trajectories
shrinks for LIF and grows for XIF neurons, while spike generation partially resets it. Due to the receiving of
inhibitory spikes, the intervals between spike generations are generally longer than for freely oscillating neurons.
The impact of the subthreshold dynamics therefore dominates and overall the perturbation in the LIF neuron
decays while that in the XIF neuron grows. Here we use 𝑉∞,LIF = 1.33, 𝑉−∞,XIF = −1, 𝛾LIF = 0.5 ms−1, and
𝛾XIF = −0.3 ms−1 for better illustration of the mechanism.
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Figure 3.5: Lyapunov spectra of mixed networks. The numbers of LIF and XIF neurons in the networks are
(a) 𝑁LIF = 100 and 𝑁XIF = 0, (b) 𝑁LIF = 99 and 𝑁XIF = 1, (c) 𝑁LIF = 75 and 𝑁XIF = 25, (d) 𝑁LIF = 50 and
𝑁XIF = 50, (e) 𝑁LIF = 75 and 𝑁XIF = 25, (f) 𝑁LIF = 0 and 𝑁XIF = 100. Blue circles display the numerically
computed Lyapunov spectra using Eq. (3.22). Red diamonds display the mean-field result Eq. (3.21) with
numerically measured neuron rates and black lines display the mean-field result Eq. (3.21) using the analytically
obtained rates Eqs. (3.18) and (3.19). Insets show closeups of the positive and/or negative parts of the spectra.

XIF neurons in the network, while the number of stable directions equals the number of LIF neurons.
This, however, does not give rise to a zero LE, which occurs in the full autonomous network due
to time-translation symmetry. The mean-field spectrum and the rule for the number of stable and
unstable directions can thus only be an approximation to the exact results.

Eq. (3.21) together with the analytical results Eqs. (3.18),(3.19) for 𝜌 give a fully analytical estimate
of the Lyapunov spectrum. Since all LIF or XIF neurons have the same analytical rate estimates and
leak strengths, the spectrum consists of 𝑁LIF identical negative and 𝑁XIF identical positive exponents,
see Fig. 3.5. Due to quenched noise from random coupling, the rates in the actual network are
distributed. We can account for this by inserting the numerically measured rates into Eq. (3.21), see
Fig. 3.5.

3.4.2 Network single spike Jacobian

To derive exact Lyapunov spectra we need to take into account the spreading of perturbations in the
network. For this, we compute the full single spike Jacobian 𝐽 (𝑘), which is a map from tangent vectors
at the point 𝑽 (𝑡+𝑘) in phase space to tangent vectors at 𝑽 (𝑡+𝑘+1), where 𝑽 (𝑡) =

(
𝑉1(𝑡), . . . , 𝑉𝑁 (𝑡)

)𝑇 is
the state of the system at time 𝑡. The resulting components of 𝐽 (𝑘) read
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𝐽𝑖 𝑗 (𝑘) =
𝜕𝑉𝑖 (𝑡

+
𝑘+1)

𝜕𝑉 𝑗 (𝑡
+
𝑘)

= 𝛿𝑖 𝑗e
−𝛾𝑖 (𝑡𝑘+1−𝑡𝑘 ) + 𝛿 𝑗𝑙

𝛾𝑖

𝛾𝑙

𝛿𝑖𝑙𝑉th −𝑊𝑖𝑙ℎ𝑖 (𝑉𝑖 (𝑡
−
𝑘+1))

𝐼
ext
𝑙

𝛾𝑙
−𝑉𝑙 (𝑡

+
𝑘)

, (3.22)

for an LIF or an XIF neuron 𝑖, where 𝑙 is the index of the neuron sending the (𝑘 + 1)th spike, see
Appendix. 3.8.C for details. We note that the mean-field theory accounts for the diagonal terms of this
Jacobian.

3.4.3 Volume contraction

Owing to the simple form of the single spike Jacobians we can find an analytical expression for the
full network dynamics’ expansion rate of infinitesimal phase space volumes or, equivalently, for the
sum of the LEs. The result in terms of the neuronal spike rates in the network is exact. It allows to
analytically compute the Lyapunov spectra for two neuron systems and offers a test for the accuracy of
their numerical estimates in larger networks.

The volume expansion and the sum of LEs are given by the time averaged logarithms of the
determinants of the Jacobians [10]. We thus have

𝑁∑︁
𝑖=1

𝜆𝑖 = lim
𝐿→∞

1
𝑡𝐿

𝐿−1∑︁
𝑘=0

ln
��det 𝐽 (𝑘)

�� (3.23)

in terms of single spike Jacobians [69]. In Appendix 3.8.D we exploit the specific form of 𝐽 (𝑘) to
compute det 𝐽 (𝑘) with the matrix determinant lemma. The subsequent time averaging yields

𝑁∑︁
𝑖=1

𝜆𝑖 = −
𝑁∑︁
𝑗=1
𝛾 𝑗

(
1 −

𝜌 𝑗

𝜌free, 𝑗

)
. (3.24)

Notably, this shows that our mean-field theory yields an exact expression for the volume contraction
rate and the sum of LEs: the estimate

∑𝑁
𝑙=1 𝜆mf,𝑙 with Eq. (3.21) agrees with the exact expression

Eq. (3.24).

3.4.4 Numerical computation of the Lyapunov spectrum

The single spike Jacobians (3.22) allow us to iteratively compute the largest LE and the full Lyapunov
spectrum [10, 70, 100], see also Appendix 3.8.F. In short, for the largest LE, one iterates an initial
random perturbation vector by the single spike Jacobians, stores its growth every few steps and
thereafter renormalizes it to its initial magnitude. The long-term average of the growth rate equals
𝜆1. For the full spectrum, one iterates a system of 𝑁 orthogonal perturbation vectors with the single
spike Jacobians. Every few steps, one records the growth of the different vectors. Thereafter one
reorthogonalizes, always in the same order, and finally renormalizes the vectors. The long-term
average growth rate of the first vector then equals 𝜆1, that of the second equals 𝜆2 etc. Ref. [100]
suggested an efficient method to compute the Lyapunov spectrum and applied it to large networks; we
use some of the ideas in our implementation.

For networks consisting only of LIF neurons we find in agreement with previous work [8, 9, 65, 66]
and our mean-field theory that the largest nontrivial LE is negative, see Fig. 3.5a. However, we also

34



3.5 Stable and unstable directions

Figure 3.6: Tracking the growth or shrinkage of finite perturbations. We consider the same network as in
Figs. 3.2 and 3.5c and explicitly perturb it in different directions. The semilogarithmic plots display the time
evolution of distances between original and perturbed trajectories (blue) and compare them to exponential
functions with growth rates equal to the relevant LEs (yellow, red). Transient large perturbations due to different
event times in the two systems (cf. Fig. 3.4) are excluded. We perturb in (a) in a generic direction, in (b) in the
direction of the unstable CLV 𝒗25 corresponding to LE 𝜆25 (closest to the trivial one), in (c) in the direction of
the trivial CLV 𝒗26 (in the direction of the trajectory) and in (d) in the direction of the stable CLV 𝒗90. In (a)
after a short equilibration time we have growth with the largest LE. In (b),(c) and (d) the perturbation grows
initially with the LE of the CLV. The small numerical error of the CLVs grows exponentially with the largest LE
and eventually dominates the evolution.

find that already the presence of a single XIF neuron renders the largest LE positive, see Fig. 3.5b,
indicating chaos in agreement with the mean-field theory. The computations also confirm that the
destabilization of a network by a single XIF neuron is a special case of a general rule, namely that each
XIF neuron introduces about one positive LE. This holds independently of 𝑁 and 𝐾 , see Fig. 3.5 and
Appendix 3.8.E. The trivial (zero) exponent is an exception to the rule. Our numerical results indicate
that it replaces a negative exponent if there are more LIF than XIF neurons in the network and a
positive exponent otherwise. There is also good quantitative agreement with the mean-field spectrum,
in particular the exponents are close to 𝛾LIF and 𝛾XIF. However, also when inserting the measured
spike rates into Eq. (3.21) some discrepancy remains, showing that the spread of perturbations in the
network and their transfer between neurons has a pronounced effect on their growth.

3.5 Stable and unstable directions

3.5.1 Lyapunov vectors and perturbation growth

To further elucidate the local phase space structure, we numerically investigate the characteristics
of the perturbations that grow according to the individual LEs, i.e. how they are distributed across
neurons and how they change during evolution. This will, in particular, allow us to understand why
the mean-field theory works well. The directions of the perturbations are given by the CLVs or, in
other words, by the stable and unstable manifolds along the trajectory [10, 63].

The 𝑖th CLV 𝒗𝑖 (𝑽0) at a point 𝑽0 in phase space is a normalized tangent vector that grows with
long-term average rates 𝜆𝑖 and −𝜆𝑖 when evolved forward and backward in time. We call it a stable
CLV if 𝜆𝑖 < 0 and an unstable one if 𝜆𝑖 > 0. We assume for simplicity that all LEs are different; the
vector is then unique up to its orientation. Consider a trajectory 𝑽 (𝑡) that reaches shortly after the
spike time 𝑡0 the state 𝑽 (𝑡+0 ) = 𝑽0. Using the single spike Jacobians 𝐽 (𝑘), 𝒗𝑖 (𝑽0) may be defined as
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the tangent vector satisfying ��� 𝐿∏
𝑘=0

𝐽 (𝑘) 𝒗𝑖 (𝑽0)
��� ∼ e𝜆𝑖 𝑡𝐿 , (3.25)

��� −1∏
𝑘=−𝑀

𝐽
−1(𝑘) 𝒗𝑖 (𝑽0)

��� ∼ e𝜆𝑖 𝑡−𝑀 , (3.26)

where 𝐿 and 𝑀 are chosen sufficiently large. The definition can be straightforwardly extended to
states between spiking events. Both of its parts are important: The first part alone does not uniquely
define the direction of 𝒗𝑖 (𝑽0), since adding any vector with growth rate less than 𝜆𝑖 yields the same
asymptotics. The second part excludes such an addition, since its shrinkage rate is slower than −𝜆𝑖 and
thus yields a different dominant asymptotics of backward evolution. As anticipated by the notation, the
vector depends only on the state but not on the time when 𝑽 (𝑡) reaches it. Furthermore, the definition
ensures covariance, that is the evolution of infinitesimal perturbations (the tangent flow) maps CLVs
to CLVs. At subsequent spike times we thus have

𝐽 (𝑘)𝒗𝑖 (𝑽 (𝑡
+
𝑘)) ∝ 𝒗𝑖 (𝑽 (𝑡

+
𝑘+1)). (3.27)

The extension to states between spike times is again straightforward: the covariance implies that we
can obtain CLVs 𝒗𝑖 (𝑽 (𝑡)) at a state between spike times 𝑡𝑘 and 𝑡𝑘+1 by propagating 𝒗𝑖 (𝑽 (𝑡

+
𝑘)) forward

with the Jacobian 𝐽𝑖 𝑗 (𝑡 − 𝑡𝑘) = 𝛿𝑖 𝑗 exp(−𝛾𝑖
(
𝑡 − 𝑡𝑘

)
) of subthreshold evolution.

We compute the CLVs in a dynamical manner by forward and restricted backward propagating
sets of vectors, following refs. [10, 25]. Appendix 3.8.F provides a short description of the method.
We note that the dynamics of our system are not invertible: given a state there is no unique way of
propagating it back in time. This is because an ambiguity can arise at states where one neuron is at
the reset potential; we generally cannot tell whether it was reset or crossed the reset potential from
below (unless some postsynaptic neuron is too near to threshold to be able to have just received a
spike). It is, however, still possible to compute the Lyapunov vectors by backward propagating along
the trajectory that was previously taken for the forward propagation [25].

3.5.2 Stable and unstable directions in mixed networks

The CLVs yield the directions in which small but finite perturbations evolve according to the different
LEs as shown in Fig. 3.6. We find that they generally contain perturbations to a variety of neurons
and that they strongly change their direction during evolution. More specifically, we observe that
the stable and unstable CLVs stay approximately confined to the subspaces of (strictly speaking:
perturbations to) LIF and XIF neurons, respectively. Fig. 3.7a-d illustrates this by displaying the
lengths

√︃∑𝑁LIF
𝑗=1 𝑣

2
𝑖, 𝑗 (𝑽 (𝑡)) and

√︃∑𝑁
𝑗=𝑁LIF+1 𝑣

2
𝑖, 𝑗 (𝑽 (𝑡)) of the projections of different CLVs 𝒗𝑖 onto

the subspaces of LIF and XIF neurons. Here and in the following we assume that the LIF and XIF
neurons have the indices 1, ..., 𝑁LIF and 𝑁LIF+1, ..., 𝑁 , respectively. Fig. 3.7e,f further illustrates the
confinement and shows the large temporal variability of single CLV components 𝑣𝑖, 𝑗 that are not close
to zero. The confinement does not hold exactly since perturbations of LIF neurons usually also give
rise to perturbations of XIF neurons and vice versa. In networks with inhomogeneous spike rates,
we observe that single neurons that are strongly suppressed by inhibition have CLVs more aligned to
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3.5 Stable and unstable directions

Figure 3.7: Stable and unstable CLVs are mostly confined to the subspaces of (perturbations to) LIF or XIF
neurons, respectively. (a-d) show the time evolution of the lengths of the projections of different CLVs onto the
subspaces of LIF (blue) and XIF (red) neurons: (a) unstable CLV 𝒗6, (b) stable CLV 𝒗88, (c) unstable CLV 𝒗25
(corresponding to the LE closest to the trivial one) and (d) trivial CLV 𝒗26. (e,f) show the time evolutions of the
projections of different CLVs onto the subspace of a single LIF neuron (neuron index 𝑛 = 5, blue) and a single
XIF neuron (𝑛 = 95, red): (e) unstable vector (𝒗15), (f) stable vector (𝒗85). Values are plotted at event times
𝑡 = 𝑡𝑘 . (g) shows the participation ratios 𝑃𝑖 of the unstable (purple), trivial (black) and stable (yellow) CLVs
averaged over 10000 events. The network is the same as in Figs. 3.2, 3.5c and 3.6. (h) displays the median �̃� of
the participation ratios of the stable (yellow) and unstable (purple) CLVs, in networks as in (a-g) with 𝑁 = 100
neurons but with different fractions of LIF and XIF neurons. Bars indicate the first and third quartiles of the
distribution.

them, because their perturbation spreads less in the network due to their lack of spiking.
We further quantify the localization of the CLVs using an inverse participation ratio (number) [25,

101], which we define for the 𝑖th CLV as

𝑃
−1
𝑖 =

〈
𝑁∑︁
𝑗=1
𝑣

4
𝑖, 𝑗 (𝑽 (𝑡𝑘))

〉
𝑘

. (3.28)

Here, ⟨.⟩𝑘 is an average over sufficiently many events and we use that the CLVs are normalized,∑𝑁
𝑗=1 𝑣

2
𝑖, 𝑗 (𝑽 (𝑡𝑘)) = 1. The participation ratio 𝑃𝑖 measures how many components contribute to a

vector. If, for example, the vector 𝒗𝑖 (𝑽 (𝑡𝑘)) always has only one nonzero component, 𝑃𝑖 = 1. If there
are always 𝑚 nonzero components of equal size, 𝑃𝑖 = 𝑚. We observe that the participation ratio of
unstable CLVs increases approximately linearly with the number of XIF neurons starting with 𝑃𝑖 ≈ 1
at 𝑁XIF = 1, consistent with a delocalization of these CLVs between the present XIF neurons, see
Fig. 3.7g,h. 𝑃𝑖 for stable CLVs increases likewise with the number of LIF neurons. The trivial CLV
has a participation ratio close to 𝑁 , because the components of the tangential vector 𝑑𝑉 𝑗 (𝑡

+)/𝑑𝑡 and
thus the components of the CLV have roughly similar size.
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Our mean-field approach uses the assumption that each LE is independently generated by the growth
or shrinkage of a single neuron perturbation, with negligible influence of the perturbation’s spread and
backreaction in the network. Its suitability can now be understood as follows: The approximately
𝑁LIF stable CLVs are confined to the 𝑁LIF-dimensional subspace of perturbations to LIF neurons.
The stable CLVs thus form a basis of the subspace of perturbations to LIF neurons. Likewise the
unstable CLVs form a basis of the subspace of perturbations to XIF neurons. At each time point, a
perturbation to a single LIF neuron can therefore be expressed as a linear combination of stable CLVs,
while a perturbation to an XIF neuron can be expressed as a linear combination of unstable CLVs. The
stable CLVs have similar decay rates (negative LEs) and the unstable CLVs have similar growth rates
(positive LEs), see Fig. 3.5. Any linear combination of only stable or only unstable CLVs inherits this
decay or growth rate. This holds in particular for the perturbation of a single neuron. At each time
point the perturbation to a single LIF or XIF neuron thus grows according to the negative or according
to the positive LEs, respectively. The mean-field approach therefore yields good results.

3.6 Computations with precisely timed spikes

3.6.1 Network architecture and task design

In the following, we employ our networks for computations. In particular, we investigate how
their different phase space structures and CLVs may be exploited in specific tasks. This requires a
computational scheme based on precise spiking, which is affected by the phase space structure. We
design a setup where one of our recurrent neural networks acts as a kind of computational reservoir
[69, 74, 75], in the sense that it randomly nonlinearly filters its inputs. An output neuron receives the
generated spikes and learns to generate desired outputs, see Fig. 3.8a.

Inspired by experimental and computational neuroscience paradigms [102, 103], we assume that the
networks receive inputs from context neurons, whose spiking defines the computation to be executed
in the specific trial, and from input neurons. Their synaptic weights as well as the recurrent ones are
static; only the output weights are learned. At the beginning of each trial, all membrane potentials are
reset to zero. The recurrent network dynamics are therefore identical in trials with the same context
and input neuron spikes. To keep the computational scheme consistent, we specify trains of precisely
timed spikes as desired outputs.

The output neuron is an LIF neuron as used in the recurrent network. The subthreshold dynamics
of its membrane potential 𝑉out(𝑡) are thus given by

𝑉out(𝑡) =
𝑁∑︁
𝑗=1
𝑤 𝑗

∑︁
𝑘:𝑡 𝑗𝑘<𝑡

e−𝛾LIF (𝑡−𝑡 𝑗𝑘 )

+𝑉th,out
©­­«−

∑︁
𝑡sp<𝑡

e−𝛾LIF (𝑡−𝑡sp )
ª®®¬

+𝑉∞,out

(
1 − e−𝛾LIF𝑡

)
, (3.29)

where 𝑤 𝑗 are the output weights, 𝑉th,out is the threshold, 𝑡sp the output spikes, 𝑉∞,out the asymptotic
potential and 𝑁 the number of spiking neurons in the recurrent network. Initially 𝑉th,out = 𝑉th,
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𝑉∞,out = 𝑉∞,LIF and the 𝑤 𝑗 are are drawn randomly from the uniform distribution over [2𝑊, 0]. We
use Finite Precision Learning [61] to learn the input-output tasks. The shapes of the post-synaptic
potentials in our single neuron dynamics are different from those in ref. [61] and there is an additional
constant driving term. The learning rule can be readily adapted to this: We consider 𝑉out(𝑡) −𝑉th,out
and cast it into the form 𝑉out(𝑡) −𝑉th,out =

∑𝑁+2
𝑘=1 𝑤𝑘𝑥𝑘 (𝑡). Spikes are generated when 𝑉out(𝑡) −𝑉th,out

reaches zero. At each time 𝑡, we thus have a kind of perceptron classification task, where 𝑤 𝑗 , 𝑉th,out
and 𝑉∞,out are the “weights” to be learned. The “inputs” belonging to these weights are

𝑥 𝑗 (𝑡) =
∑︁
𝑡 𝑗<𝑡

e−𝛾LIF (𝑡−𝑡 𝑗 ) , (3.30)

𝑥𝑁+1(𝑡) = −
∑︁
𝑡sp<𝑡

e−𝛾LIF (𝑡−𝑡sp ) − 1, (3.31)

𝑥𝑁+2(𝑡) = 1 − e−𝛾LIF𝑡 . (3.32)

Following ref. [61], we assume a tolerance window of size 𝜀 around each desired spike (we use
𝜀 = 1 ms throughout). There are now two kinds of errors: (i) undesired spikes, i.e. spikes out of a
tolerance window or second spikes within a tolerance window (Err = 1, the error time 𝑡Err is the spike
time) and (ii) missing spikes within a tolerance window (Err = −1, 𝑡Err is the end of the tolerance
window). The dynamics are stopped at the first error and 𝑤 𝑗 , 𝑉th,out and 𝑉∞,out are corrected according
to the perceptron rule,

Δ𝑤 𝑗 = −𝜂Err
∑︁

𝑘:𝑡 𝑗𝑘<𝑡Err

e−𝛾LIF (𝑡Err−𝑡 𝑗𝑘 ) , (3.33)

Δ𝑉th,out = 𝜂Err
©­­«

∑︁
𝑡sp<𝑡Err

e−𝛾LIF (𝑡Err−𝑡sp ) + 1
ª®®¬ , (3.34)

Δ𝑉∞,out = −𝜂Err
(
1 − e−𝛾LIF𝑡Err

)
, (3.35)

with learning rate 𝜂 (we use 𝜂 = 0.01). To focus on networks with inhibitory neurons throughout the
article, we restrict the output weights to be inhibitory by clamping them at zero when they would
become excitatory during learning. We note that a missed spike generates increases in 𝑤 𝑗 and 𝑉∞,out
as well as a decrease in 𝑉th,out to foster spiking. If an undesired spike occurs, the signs are reversed.

3.6.2 Switchable temporal XOR/AND

We exemplarily consider two tasks. In the first, the network of Fig. 3.8a learns to execute in context 1
a temporal XOR and in context 2 a temporal AND computation, see Fig. 3.8b-d. The weights from
context and input neurons to the recurrent network are drawn randomly from the uniform distribution
over [2𝑊, 0]. At the beginning of a trial, at 𝑡 = 0 ms, context neuron 1 or 2 sends a spike, specifying
the context. Thereafter each input neuron sends a spike, either at time 𝑡in,+ = 5 ms (“+”-input) or at
𝑡in,- = 10 ms (“−”-input). The desired output spike is at 𝑡out,+ = 15 ms (“+”-output) or at 𝑡out,- = 20 ms
(“−”-output), depending on the context and the input spike times.

The considered networks learn the task easily, whether the reservoir consists of LIF or XIF neurons
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Figure 3.8: Network for precise spike-based computations and solution of the XOR/AND task. (a) Network
architecture. The recurrent network (middle, blue and red for LIF and XIF neurons) receives input spikes from
context (top, black) and from input neurons (gray). The output neuron (bottom) changes its plastic weights
(red) according to Finite Precision Learning to learn the task. (b) Spiking of the context and input neurons
(top), voltage traces of recurrent neurons (middle, LIF neurons 1-7, XIF neurons 76-78, spikes highlighted
by vertical lines) and voltage traces of the output neuron (bottom) after learning the XOR/AND task. Dashed
lines indicate the times of possible context (𝑡ctxt) and input neuron (𝑡in,+, 𝑡in,-) spiking as well as the possible
desired output spike times (𝑡out,+, 𝑡out,-). The output neuron sends its spike in the tolerance window around the
desired time of the specific trial (gray rectangle). (c) Output weights 𝑤𝑖 from LIF (blue) and XIF neurons
(red), 𝑉th (black line) and 𝑉∞,LIF (gray dashed line), before (left) and after (right) learning. The weights have
overall decreased during learning, while 𝑉th (black line) and 𝑉∞,LIF have increased. The specific weight pattern
after learning is crucial for executing the task, random weight shuffling leads to erroneous output spiking. (d)
Overview of the eight spike patterns of the task after learning. In context 1, the system generates a temporal
XOR computation, in context 2 a temporal AND computation. The output spikes are in the desired tolerance
windows (gray rectangles) for all patterns.
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Figure 3.9: Network trained to detect or ignore input time differences, after learning. (a) Overview of the
four spike patterns of the task. In context 1, the network ignores the small time difference in the input (right
subpanels: closeups around input times), in context 2 it detects and highlights it by generating different numbers
and timings of output spikes. After learning, the output spikes are in the desired tolerance windows (gray
rectangles, appearing as lines at the displayed timescale) for all patterns. (b, top) The spiking dynamics in the
recurrent reservoir (green and yellow dots) are in context 1 similar for both input times, due to the chosen
context and input weights. This generally fosters and here enables learning of the same output. (middle) The
temporal differences 𝛿𝑡 between reservoir spikes display the typical pattern of first shrinkage then growth,
of perturbations along stable CLVs, cf. Fig. 3.6d. (bottom) The different spiking dynamics in the recurrent
reservoir for different input times in context 2 allow the generation of different output.

or of a mixture of both. The example with a mixed network displayed in Fig. 3.8 (same network as in
Figs. 3.2, 3.5c, 3.6 and 3.7) required 53 learning cycles, where in each cycle the four input-desired
output patterns of both contexts were presented. The networks cannot learn the task, if the recurrent
network dynamics at the desired output times are too similar for different contexts and input conditions.
This happens for recurrent LIF networks, if the context or input neurons have coupling strengths that
are so weak that the perturbations due to different input timing are small. The states are then within
the same flux tube and the perturbation decays up to a time shift. In XIF and mixed networks, the
recurrent dynamics are too similar if there is insufficient time for the perturbation to grow and spread
before the first desired output.

3.6.3 Detect or ignore input time differences

In the second task, the system has to ignore a difference in input timing in context 1 and to detect
it in context 2. The network setup is as in Fig. 3.8a, except that there is only one input neuron.
This sends a spike at 𝑡in,+ = 𝑡1 − Δ𝑡 or at 𝑡in,− = 𝑡1 + Δ𝑡 (𝑡1 = 1 ms, Δ𝑡 = 0.1 ms). The output
neuron shall generate in context 1 for both input conditions the same output, a burst of four spikes
at 𝑡 = 105 ms, 110 ms, 115 ms, 120 ms. In context 2 it shall detect the difference and highlight it by
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sending one spike at 𝑡 = 100 ms (input at 𝑡in,+) or two spikes at 𝑡 = 130 ms, 135 ms (input at 𝑡in,−). For
this task, for simplicity we assume that the impacts of input neurons do not depend on the membrane
potential, i.e. for them ℎ𝑖 (𝑉

−
𝑖 ) = 1. Further, we allow context and input weights to be excitatory and

inhibitory.

We find that networks with the previously chosen random parameters of external weights drawn
from [2𝑊, 0] usually cannot solve the task (criterion: no convergence within 50000 cycles). The
reason is different for pure LIF reservoirs and for reservoirs containing XIF neurons: In a pure LIF
reservoir, the small difference in input times leads to state perturbations that are usually in the same
flux tube. These decay to a temporal shift until the time of the desired outputs. The readout neuron
thus cannot learn to generate two different output patterns as required in context 2. In presence of XIF
neurons, the dynamics are locally unstable. The small input difference is amplified in both contexts
and the reservoir spiking is different for all four patterns at the times of the desired output. The
network therefore has to learn four input-output relations with eleven output spikes and silence periods
in between, without being able to take advantage of the fact that two of the four output patterns are
identical. This typically exceeds its learning capacity. We also observe for our parameters that the
dynamics of the pure LIF reservoir can leave its flux tube due to the perturbation. If this happens only
for context 2, the system can often learn the task.

To solve the problem, we design the network such that, reliably, in context 1 but not in context 2 the
input differences leave the reservoir spiking at the time of the desired outputs largely unaffected. This
can be achieved by choosing the context and input couplings such that the input difference generates a
state perturbation along a stable CLV of the reservoir dynamics in context 1. In contrast, for context
2 the state perturbation should have a component in the direction of an unstable CLV such that it is
quickly amplified. The setup requires mixed networks with both types of CLVs. We note that an
alternative approach might exploit the dichotomy of large and small perturbations, which do and do
not leave the flux tubes of pure LIF networks.

To derive appropriate weights, we compute the state perturbations in the reservoir assuming that in
the “unperturbed” system the input arrives at 𝑡1. We there have

𝑉 𝑗 (𝑡
+
1 ) = 𝑉 𝑗 (𝑡

−
1 ) +𝑊

in
𝑗 , (3.36)

where𝑊 in
𝑗 is the coupling strength from the input neuron to neuron 𝑗 . In the “perturbed” system, the

input arrives shifted by 𝛿𝑡 (here: 𝛿𝑡 = ±Δ𝑡), such that we have in linear approximation

�̃� 𝑗 (𝑡1 + 𝛿𝑡
+) = 𝑉 𝑗 (𝑡

−
1 ) + ¤𝑉 𝑗 (𝑡

−
1 )𝛿𝑡 +𝑊

in
𝑗 . (3.37)

To compute a perturbation in the 𝑉 𝑗 (𝑡
+
1 ) that corresponds to the perturbation due to the temporal shift

of input, we propagate the perturbed potential in linear approximation from 𝑡1 + 𝛿𝑡
+ to 𝑡+1 ,

𝛿𝑉 𝑗 (𝑡
+) ≈ �̃� 𝑗 (𝑡1 + 𝛿𝑡

+) − ¤̃𝑉 𝑗 (𝑡1 + 𝛿𝑡
+)𝛿𝑡 −𝑉 𝑗 (𝑡

+
1 )

≈ ¤𝑉 𝑗 (𝑡
−
1 )𝛿𝑡 −

[
(−𝛾 𝑗)

(
𝑉 𝑗 (𝑡

−
1 ) +𝑊

in
𝑗

)
+ 𝐼ext

𝑗

]
𝛿𝑡

= 𝛾 𝑗𝑊
in
𝑗 𝛿𝑡. (3.38)

A temporal input difference that should be ignored should be proportional to a stable CLV 𝒗𝑖 at the
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state 𝑽 (𝑡+1 ), i.e.
𝛾 𝑗𝑊

in
𝑗 ∝ 𝑣𝑖, 𝑗 (𝑽 (𝑡

+
1 )). (3.39)

We choose the same recurrent network as in Figs. 3.2, 3.5c, 3.6 and 3.7 and the same CLV as in
Fig. 3.6d at 𝑡 = 0 ms, i.e. 𝑖 = 90 and

𝑽 (𝑡+1 ) = 𝑽0, (3.40)

where 𝑽0 is the state at which the vector was recorded. Context input 1 determines the state at 𝑡−1 by
fixing the initial conditions of the dynamics. We choose as context input weights

𝑊
ctxt,1
𝑗

= 𝑉 𝑗 (0
+)

= 𝑒
𝛾 𝑗 𝑡1

(
𝑉0, 𝑗 −𝑊

in
𝑗

)
+𝑉∞

(
1 − 𝑒𝛾 𝑗 𝑡1

)
, (3.41)

which lead to Eq. (3.40) after free propagation until 𝑡1 and receiving of the input𝑊 in
𝑗 . To ensure that

the perturbation in context 2 has a component in the direction of an unstable CLV, it suffices to choose
a random context weight vector, such that 𝑽 (𝑡+1 ) ≠ 𝑽0 and 𝒗𝑖 (𝑽0) is typically not a stable CLV or a
linear combination of stable CLVs at the state 𝑽 (𝑡+1 ). We randomly permute the entries of 𝑾ctxt,1 to
obtain 𝑾ctxt,2.

We find that the network constructed in this way can reliably learn the task. The example displayed
in Fig. 3.9 uses a proportionality factor of 0.01 in Eq. (3.39); the output weights converged after 146
cycles.

3.7 Discussion

In the present article we investigate the spiking and membrane potential statistics, the stability
properties and the phase space structure of mixed networks containing conventional LIF neurons and
XIF neurons with convex rise function. The recurrent connections are inhibitory and the synaptic
currents have infinitesimal temporal extent. We employ two analytical mean-field approaches, one for
the statistics and one for the dynamical stability properties; numerical simulations yield additional
features of the dynamics and a better understanding of the analytical approximations. Finally, we
apply the networks for computation with spikes, exploiting our insights into the dynamics.

We investigate networks in the balanced state. To establish it in our networks, we introduce a voltage
dependence in the XIF neuron inputs: below a certain potential, further input has no impact. This
simple model of a conductance-based synapse prevents XIF neurons from switching off and provides
a good-natured nonlinearity, which leaves the dynamics analytically tractable.

The balanced state is typically investigated using spiking network models with an excitatory and an
inhibitory neuron population or with a single population of hybrid excitatory-inhibitory or inhibitory
neurons [5, 48, 62, 70, 104]. While detailed models of small circuits with specific abilities such as
central pattern generators commonly consider multiple neuron types [105], studies on the impact
of mixed populations of multiple neuron types on the collective dynamics of larger networks are
rare. Ref. [106] simulated networks with excitatory and inhibitory populations containing resonator
and integrator type neurons. These mixed networks both persistently generated activity and quickly
changed their overall rate in response to inputs, thereby combining abilities of their pure counterparts.
Refs. [107] and [108] considered models for working memory and visual processing with different
types of interneurons that were grouped into distinct populations with different connectivities.
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We characterize the balanced dynamics of inhibitory mixed LIF and XIF networks first from a
statistical perspective, adopting a shot noise approach, which accounts for the finite input rate and
finite size of individual inputs [60, 86, 96, 97]. We extend this approach to XIF neurons and derive
their steady-state firing rate and voltage probability density. In contrast to the case of LIF neurons, the
final continuity equation needs to be integrated numerically, due to the nonlinearity in the XIF input.
We apply the results to obtain neuron parameters that lead to homogeneous firing rates for our further
considered networks. We insert these rates into the mean-field expressions of the Lyapunov exponents
(LEs) and thus analytically determine the dynamical stability properties of the network.

While networks of LIF neurons have stable dynamics [8, 9, 65, 66, 69], we find that already one
XIF neuron gives rise to a positive largest LE indicating chaos, in contrast to the robustness against
introducing excitatory connections [9, 66]. We give an analytical argument for this and expand it to a
mean-field estimate of the entire Lyapunov spectrum. Simply put, the destabilizing effect of excitatory
inputs will be compensated by receiving inhibitory ones, if the latter dominate and the period of
spiking is overall increased compared to the free neurons. If one introduces an XIF neuron there is
nothing which could counteract the increase of its perturbation through inhibitory input other than
an unlikely network backreaction triggered by its perturbed output spikes. We note that in the phase
representation of LIF neurons used in ref. [9], in contrast to our voltage representation an excitatory
input explicitly increases a perturbation, while an inhibitory input decreases it, unless the excitatory
input is suprathreshold [109, 110].

While computing the largest LE is a standard procedure, few studies have so far obtained a large part
or the entire spectrum of balanced spiking dynamics. They considered a single homogeneous or an
excitatory and an inhibitory neuron population [69, 70, 100, 111–113]. We analytically and numerically
obtain the full spectrum for mixed networks of inhibitory LIF and XIF neurons. Interestingly, we find
that it separates into two parts, in contrast to the ones reported previously including those of networks
with separate excitatory and inhibitory populations. Furthermore, we compute the covariant Lyapunov
vectors (CLVs) of the dynamics [10, 63]. They provide us with further insight into the phase space
structure and the approximations underlying the mean-field analysis of LEs. The stable (unstable)
CLVs are approximately aligned to the subspace of perturbations to LIF (XIF) neurons.

Our mean-field analysis predicts that the number of negative (positive) LEs is equal to the number
of LIF (XIF) neurons. Since the underlying arguments do not depend on the neurons’ specifics, we
expect this to hold for any types of neurons with purely concave and convex rise functions. The
mean-field analysis further indicates that the size of the LEs is approximately given by the strength of
the leak and the quotient of free and actual spike frequency. The LEs are thus largely independent of
the collective dynamics but rather reflect properties of individual neurons. This implies in particular
that the typical perturbation growth rate does not change with network size. It further implies that in
the balanced state, where the ratio of actual and free spike rate is low, the LEs are mainly determined
by the single neuron leak strengths, see ref. [69] for a similar finding in large networks of LIF neurons
with high indegree. The result is a consequence of the linear subthreshold dynamics of the neurons,
which imply that the increase or decrease of a perturbation is independent of the state of the neuron
when receiving a spike. We note that ref. [114] defined the Lyapunov spectrum as consisting of
mean-field LEs in a numerical study on LIF neuron networks.

Our numerical computations of the Lyapunov spectrum show that the mean-field result is a good
approximation. We explain this by analyzing the CLVs. Furthermore, we derive an exact expression
for the change of phase space volume, which agrees with the mean-field result.

The presence of discrete events and the possibly large impact of changing their order could in
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principle render the transfer of insights on infinitesimal perturbations to finite ones difficult. Refs. [8,
9] studied the evolution of finite size perturbations in the pure LIF network model with stable dynamics
and showed that finite size perturbations decay exponentially fast, while the minimal perturbation
leading to a change of event order decreases only algebraically. Thus, for sufficiently small initial finite
size perturbations the probability of a change of event order goes to zero and no difficulties occur. For
unstable dynamics, we may expect generic interchanges of event order to be an additional source of
deviations between trajectories so that small finite size perturbations grow as fast and larger ones at
least as fast as their infinitesimal counterparts. We therefore focus mostly on linear stability analysis in
the present article. Our numerical simulations employ finite size perturbations and confirm the results.

To illustrate the usefulness of our findings we apply the considered networks to neural computations.
We propose a computing scheme based on precisely timed spikes where details of the phase space
structure matter. In particular, our solution of the second task exploits details of the network’s
state space, the stability or instability of the spiking dynamics against perturbations in the direction
of different CLVs. This may be especially relevant for neuromorphic computing, where precise
spike-based schemes receive increasing interest [84, 85, 115–117]. In our setup, the inputs are fed
into a random recurrent network, whose neurons generate precisely timed spike trains, which depend
nonlinearly on the input. In this sense, the recurrent network acts like a random filter bank and
computational reservoir. The spike trains are read out by a spiking neuron. In contrast to previous
spiking reservoir computers [75, 118–121], we use trains of precisely timed spikes as targets. To
train the readout neuron, we use Finite Precision Learning [61]. It was introduced for neurons with
temporally extended input currents of either sign. In our study we adapt it to a neuron with inhibitory,
infinitesimally short input currents and constant external drive. We note that the general phase
space structure implies that the considered networks do not lend themselves to conventional reservoir
computing: there is no global fixed point, which could be reached by the spiking dynamics such that
sufficiently long past input is forgotten. In other words, our networks do not have the so-called echo
state property [122]. We therefore introduce a forgetting mechanism by resetting the network at the
beginning of a trial.

Our findings show that by choosing appropriate numbers of LIF and XIF neurons, one can
straightforwardly construct spiking networks with a desired number of stable and unstable directions.
The obtained CLVs allow to exploit them for computation: one can choose the input weights such
that meaningless inputs and input perturbations happen along stable directions while meaningful
ones have a component in an unstable direction; the former ones are suppressed while the latter ones
are amplified. Our mixed networks thus combine the computational capabilities of purely stable
and purely unstable networks. It is tempting to speculate that also in the brain the combination of
different neuron types might globally change the phase space structure and lead to combinations of
computational capabilities that can be selected with different input vectors. While we have chosen the
input weights by hand, plasticity rules for spiking networks in the brain as well as future artificial ones
may allow to find them by learning.

3.8 Appendices

3.8.A Voltage probability distribution of LIF neurons

In the following, we further discuss the discrepancy between the voltage probability density of an
LIF neuron obtained by the shot noise approach and the one observed if the inputs are spike trains
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Comparison of different numerically sampled and analytical voltage probability densities 𝑝(𝑉) of
LIF neurons. (a) Analytical density from Eqs. (3.9) and (3.18) (red) and numerically sampled 𝑝(𝑉) of three
neurons receiving different sets of 𝐾 = 50 spike trains from the network of Fig. 3.2 (different shades of blue).
(b) Analytical estimate (red, mostly covered) and numerically sampled 𝑝(𝑉) of an LIF neuron receiving Poisson
input with the same rate (gray). (c) Similar plot as in (a) with a single numerically sampled distribution of
an LIF neuron receiving 𝐾 = 50 spike trains from a larger network of 𝑁 = 10000 neurons (dark green) and
an additional analytically estimated 𝑝(𝑉) using Eqs. (3.9) and (3.15) with input rate 𝑟 set to the rate of the
superposed network spike trains (light red). (d) 𝑝(𝑉) of an LIF neuron receiving 𝐾 = 50 time-shifted spike
trains from the network of Fig. 3.2 (light green), analytical estimate with the same input rate (brown) and
analytical estimate as in (a) (red). (e) 𝑝(𝑉) of LIF neurons receiving 𝐾 = 50 spike trains from the network of
Fig. 3.2 (blue), Gamma process input with the same rate and CV (orange) and Poisson input with the same rate
(brown). (f) 𝑝(𝑉) of LIF neurons receiving shifted spike trains as in (d) (light green) and Gamma process input
with the same rate and CV (purple).
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recorded in the network of Fig. 3.2, cf. Figs. 3.3a and 3.10a. The analytical density obtained by the
shot-noise approach, Eq. (3.9) with rate given by Eq. (3.18), matches that of an LIF neuron receiving
a Poisson spike train with the same rate and spike impact strength, see Fig. 3.10b. Hence, we can
attribute the observed discrepancy for LIF neurons with network spike train input to deviations of the
spike trains’ rate and the assumed Poisson statistics.

We expect that the discrepancy is mainly caused by spatial correlations that arise in a rather
dense network of 𝑁 = 100 neurons with an indegree of 𝐾 = 50. To substantiate this we reduce
the correlations in two ways: First, we use spike trains from a sparse network with 𝑁 = 10000 and
𝐾 = 50 to generate the neuron input. Secondly, we randomly shift the individual spike trains of the
original 𝑁 = 100 network in time before superposing them to generate the input; this eliminates spatial
correlations while keeping the temporal correlations of the individual spike trains intact. Fig. 3.10c,d
shows that both manipulations strongly reduce the discrepancy to the analytical density. Some of
the remaining discrepancy is due to the difference between the network spike rate and the result of
Eq. (3.18), see Fig. 3.10d.

Finally we explore the impact of the reduced variability of the inter-spike intervals. For this, we use
Poisson and Gamma process input spike trains. The latter are completely characterized by their rate
and the coefficient of variation of the inter-spike-interval distribution, which we match to those of
the superposed spike trains of the network of Fig. 3.2. The quality of approximation increases when
taking into account the reduced variability, see Fig. 3.10e. Also if the input is a superposition of
shifted spike trains, accounting for it still slightly improves the similarity between the resulting 𝑝(𝑉),
compare Fig. 3.10f and Fig. 3.10d (which matches the result for Poisson input).

3.8.B Mean-field Lyapunov exponents

In the following we compute the mean-field LEs. For this, we describe the dynamics by a sequence of
discrete maps from the state at a time (strictly speaking: infinitesimally) shortly after generation of
a spike to the state at a time shortly after generation of the next spike. We take a stroboscopic map
approach, i.e. the times remain unchanged if a small perturbation is applied to the dynamics. The
dynamics of small perturbations are encoded in the Jacobian matrices at each time point. Specifically,
for our discrete description we need the single spike Jacobians [69, 70] 𝐽 (𝑘). They generally describe
the linear evolution of infinitesimal perturbations from time 𝑡+𝑘 = 𝑡𝑘 + 𝜀 (with 𝜀 > 0 arbitrarily small)
shortly after the 𝑘th spike event in a network to time 𝑡+𝑘+1 shortly after the next spike. For our effective
single neuron dynamics, they reduce to scalar factors

𝐽 (𝑘) =
𝜕𝑉 (𝑡+𝑘+1)
𝜕𝑉 (𝑡+𝑘)

, (3.42)

where the relevant events are the spike generations of the considered neuron. To compute 𝐽 (𝑘), we
first recall that the free evolution between spikes until time 𝑡−𝑘+1 = 𝑡𝑘+1 − 𝜀 yields

𝑉 (𝑡−𝑘+1) = 𝑉 (𝑡
+
𝑘)e
−𝛾 (𝑡𝑘+1−𝑡𝑘 ) + 𝐼

ext

𝛾

[
1 − e−𝛾 (𝑡𝑘+1−𝑡𝑘 )

]
, (3.43)

see Eq. (3.1). At 𝑡𝑘+1 the neuron is reset,

𝑉 (𝑡+𝑘+1) = 𝑉 (𝑡
−
𝑘+1) −𝑉th, (3.44)
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and 𝑉 (𝑡−𝑘+1) = 𝑉th implies an implicit dependence of 𝑡𝑘+1 on 𝑉 (𝑡+𝑘) via

𝑉th = 𝑉 (𝑡+𝑘)e
−𝛾 (𝑡𝑘+1−𝑡𝑘 ) + 𝐼

ext

𝛾

[
1 − e−𝛾 (𝑡𝑘+1−𝑡𝑘 )

]
. (3.45)

We now consider the evolution of an infinitesimal perturbation of the membrane potential. According
to Eqs. (3.43), (3.44), the perturbation 𝛿𝑉 (𝑡+𝑘) changes until 𝑡−𝑘+1 by a factor e−𝛾 (𝑡𝑘+1−𝑡𝑘 ) . Further,
it generates a perturbation 𝛿𝑡𝑘+1 =

(
𝜕𝑡𝑘+1/𝜕𝑉 (𝑡

+
𝑘)

)
𝛿𝑉 (𝑡+𝑘) of 𝑡𝑘+1. The different evaluation time

before the spike event results in an additional membrane potential change ¤𝑉 (𝑡−𝑘+1)𝛿𝑡𝑘+1, which lets the
neuron reach the threshold at

(
𝑡𝑘+1 + 𝛿𝑡𝑘+1

)−. Since we have a stroboscopic description, we need to
compensate the time shift to obtain the state at 𝑡+𝑘+1. This is achieved by subtracting − ¤𝑉 (𝑡+𝑘+1)𝛿𝑡𝑘+1. A
perturbation 𝛿𝑉 (𝑡+𝑘) of the state at 𝑡+𝑘 thus generates at time 𝑡+𝑘+1 a perturbation

𝛿𝑉 (𝑡+𝑘+1) = e−𝛾 (𝑡𝑘+1−𝑡𝑘 )𝛿𝑉 (𝑡+𝑘) +
[ ¤𝑉 (𝑡−𝑘+1) − ¤𝑉 (𝑡+𝑘+1)] × 𝜕𝑡𝑘+1

𝜕𝑉 (𝑡+𝑘)
𝛿𝑉 (𝑡+𝑘) (3.46)

and the resulting mean-field Jacobian reads

𝐽mf(𝑘) = e−𝛾 (𝑡𝑘+1−𝑡𝑘 ) +
[ ¤𝑉 (𝑡−𝑘+1) − ¤𝑉 (𝑡+𝑘+1)] 𝜕𝑡𝑘+1

𝜕𝑉 (𝑡+𝑘)
. (3.47)

Application of the implicit function theorem,

𝜕𝑡𝑘+1
𝜕𝑉 (𝑡+𝑘)

= − 1
¤𝑉 (𝑡−𝑘+1)

𝜕𝑉 (𝑡−𝑘+1)
𝜕𝑉 (𝑡+𝑘)

, (3.48)

and inserting Eqs. (3.1), (3.43), (3.44), (3.45), (3.4) or (3.5) results in

𝐽mf(𝑘) =
¤𝑉 (𝑡+𝑘+1)
¤𝑉 (𝑡−𝑘+1)

e−𝛾 (𝑡𝑘+1−𝑡𝑘 ) = exp
(
𝛾

𝜌free
− 𝛾(𝑡𝑘+1 − 𝑡𝑘)

)
. (3.49)

We note that another, equivalent derivation of 𝐽 (𝑘) first computes the voltages at a fixed time 𝑡′

between 𝑡𝑘+1 and 𝑡𝑘+2 in terms of the voltages at another fixed time 𝑡 between 𝑡𝑘 and 𝑡𝑘+1. Taking
derivatives leads to the Jacobian for the dynamical evolution from 𝑡 to 𝑡′. The limits 𝑡 ↘ 𝑡𝑘 and
𝑡
′ ↘ 𝑡𝑘+1 then yield 𝐽 (𝑘).

The growth rate of perturbations and thus the mean-field LE are given by the long-term average of
Eq. (3.49),

𝜆mf = lim
𝐿→∞

1
𝑡𝐿

𝐿−1∑︁
𝑘=0

ln
��𝐽mf(𝑘)

��
= lim

𝐿→∞

1
𝑡𝐿

𝐿−1∑︁
𝑘=0

𝛾

𝜌free
− 𝛾

= −𝛾
(
1 − 𝜌

𝜌free

)
. (3.50)
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3.8.C Network single spike Jacobian

The components of the single spike Jacobian 𝐽 (𝑘) are given by

𝐽𝑖 𝑗 (𝑘) =
𝜕𝑉𝑖 (𝑡

+
𝑘+1)

𝜕𝑉 𝑗 (𝑡
+
𝑘)
. (3.51)

To compute them, as in our mean-field approach we need to take into account the decay of perturbations
between spikes as well as the reset of the neuron sending the (𝑘+1)th spike, say neuron 𝑙. 𝑉𝑙 (𝑡

−
𝑘+1) = 𝑉th

implies an implicit dependence of the spike time 𝑡𝑘+1 on 𝑉𝑙 (𝑡
+
𝑘) as in Eq. (3.45). Additionally, we now

have to include the jump-like potential change by𝑊𝑖𝑙ℎ𝑖 (𝑉𝑖 (𝑡
−
𝑘+1)) that the spike induces in neuron 𝑖,

such that

𝑉𝑖 (𝑡
+
𝑘+1) = 𝑉𝑖 (𝑡

+
𝑘)e
−𝛾𝑖 (𝑡𝑘+1−𝑡𝑘 ) +

𝐼
ext
𝑖

𝛾𝑖

[
1 − e−𝛾𝑖 (𝑡𝑘+1−𝑡𝑘 )

]
+𝑊𝑖𝑙ℎ𝑖 (𝑉𝑖 (𝑡

−
𝑘+1)) − 𝛿𝑖𝑙𝑉th. (3.52)

The stroboscopic description yields a dependence

𝛿𝑉𝑖 (𝑡
+
𝑘+1) = e−𝛾𝑖 (𝑡𝑘+1−𝑡𝑘 )𝛿𝑉𝑖 (𝑡

+
𝑘) +

[ ¤𝑉𝑖 (𝑡−𝑘+1) − ¤𝑉𝑖 (𝑡+𝑘+1)] 𝜕𝑡𝑘+1
𝜕𝑉𝑙 (𝑡

+
𝑘)
𝛿𝑉𝑙 (𝑡

+
𝑘) (3.53)

of the perturbation 𝛿𝑉𝑖 (𝑡
+
𝑘+1) on the perturbations at the state at 𝑡+𝑘 . This is analogous to Eq. (3.46),

with the difference that the neuron that sends the spike and determines the shift in 𝑡𝑘+1 (neuron 𝑙) may
be different from neuron 𝑖. The Jacobian thus reads

𝐽𝑖 𝑗 (𝑘) = 𝛿𝑖 𝑗e
−𝛾𝑖 (𝑡𝑘+1−𝑡𝑘 ) + 𝛿 𝑗𝑙

[ ¤𝑉𝑖 (𝑡−𝑘+1) − ¤𝑉𝑖 (𝑡+𝑘+1)] 𝜕𝑡𝑘+1
𝜕𝑉𝑙 (𝑡

+
𝑘)
. (3.54)

Application of the implicit function theorem and inserting Eqs. (3.1), (3.52), (3.45) results in

𝐽𝑖 𝑗 (𝑘) = 𝛿𝑖 𝑗e
−𝛾𝑖 (𝑡𝑘+1−𝑡𝑘 ) + 𝛿 𝑗𝑙

𝛾𝑖

𝛾𝑙

𝛿𝑖𝑙𝑉th −𝑊𝑖𝑙ℎ𝑖 (𝑉𝑖 (𝑡
−
𝑘+1))

𝐼
ext
𝑙

𝛾𝑙
−𝑉𝑙 (𝑡

+
𝑘)

, (3.55)

for an LIF or an XIF neuron 𝑖.

3.8.D Volume contraction

The volume expansion and the sum of LEs are given by the time averaged logarithms of the determinants
of the Jacobians [10]. We thus have

𝑁∑︁
𝑖=1

𝜆𝑖 = lim
𝐿→∞

1
𝑡𝐿

𝐿−1∑︁
𝑘=0

ln
��det 𝐽 (𝑘)

�� (3.56)

in terms of single spike Jacobians [69]. The specific form of our 𝐽 (𝑘) allows to split it into a diagonal
matrix 𝐽 (𝑘) covering the perturbation change during subthreshold evolution and a rank one correction,

𝐽 (𝑘) = 𝐽 (𝑘) + 𝒖(𝑘)𝒗(𝑘)T, (3.57)
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where

𝐽𝑖 𝑗 (𝑘) = 𝛿𝑖 𝑗e
−𝛾𝑖 (𝑡𝑘+1−𝑡𝑘) , (3.58)

𝑣 𝑗 (𝑘) = 𝛿 𝑗𝑙, (3.59)

𝑢𝑖 (𝑘) =
𝛾𝑖

𝛾𝑙


𝛿𝑖𝑙𝑉th −𝑊𝑖𝑙ℎ𝑖 (𝑉𝑖 (𝑡

−
𝑘+1))

𝐼
ext
𝑙

𝛾𝑙
−𝑉𝑙 (𝑡

+
𝑘)

 . (3.60)

The matrix determinant lemma now allows to compute det 𝐽 (𝑘) via

det 𝐽 (𝑘) =
[
1 + 𝒗(𝑘)T𝐽 (𝑘)−1𝒖(𝑘)

]
det 𝐽 (𝑘). (3.61)

Eq. (3.45) and the relation 1 +𝑉th/(𝐼
ext
𝑙 /𝛾𝑙 −𝑉th) = exp(𝛾𝑙/𝜌free,𝑙) for the free spike frequency 𝜌free,𝑙

of neuron 𝑙 (see Eqs. (3.4), (3.5)) lead to

det 𝐽 (𝑘) = exp
©­­«
𝛾𝑙

𝜌free,𝑙
− ©­«

𝑁∑︁
𝑖=1

𝛾𝑖
ª®¬ (𝑡𝑘+1 − 𝑡𝑘)

ª®®¬ . (3.62)

Time averaging yields

𝑁∑︁
𝑖=1

𝜆𝑖 = lim
𝐿→∞

1
𝑡𝐿

𝐿−1∑︁
𝑘=0

ln det 𝐽𝑘

= lim
𝐿→∞

1
𝑡𝐿

𝐿−1∑︁
𝑘=0

𝛾𝑙 (𝑘 )
𝜌free,𝑙 (𝑘 )

−
𝑁∑︁
𝑗=1
𝛾 𝑗

= −
𝑁∑︁
𝑗=1
𝛾 𝑗

(
1 −

𝜌 𝑗

𝜌free, 𝑗

)
, (3.63)

where the index 𝑙 (𝑘) denotes the neuron that spikes at time 𝑡𝑘 and 𝜌 𝑗 is the spike rate of neuron 𝑗 in
the network.

3.8.E Dependence of the Lyapunov spectrum on indegree and network size

The rule that the number of negative (positive) LEs approximately equals the number of LIF (XIF)
neurons holds independent of 𝑁 and 𝐾, see Fig. 3.11. Fig. 3.11a-c indicates that for large 𝑁 and
sufficiently large fixed indegree the Lyapunov spectrum assumes a fixed shape, which differs from
the result of our mean field approach. This is because the mean field approach neglects the nonzero
off-diagonal entries of the single-spike Jacobians, whose strength and average number 𝐾 do not
depend on 𝑁 , see Appendix 3.8.C. The shape of the Lyapunov spectrum varies with the indegree of
the network. For larger ratios 𝐾/𝑁 the positive and negative parts of the Lyapunov spectrum become
flatter, cf. Fig. 3.11d. We note, however, that also the spiking becomes more regular. We observe
for very sparse but still strongly connected networks that the Lyapunov spectrum is no longer well
approximated by our mean field theory, cf. Fig. 3.11d.
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Figure 3.11: Lyapunov spectra of networks with different sizes and indegrees. (a) Lyapunov spectra for different
network sizes 𝑁 and constant indegree 𝐾 = 50 (numerical results: color coded dots; result of the mean field
theory: horizontal black lines). (b,c) Closeups of the positive and negative parts of the spectra in (a). (d)
Lyapunov spectra for different indegrees 𝐾 and size 𝑁 = 500 (numerical results: color coded dots; results of the
mean field theory: color coded dashed lines). Remaining network parameters are as in Fig. 3.2.

51



Chapter 3 Dynamics and computation in mixed networks containing neurons that accelerate towards
spiking

3.8.F Computing covariant Lyapunov vectors

We compute the CLVs in a dynamical manner [10, 25]. In short, if we want to compute them at
𝑡 = 0, we start sufficiently long before with an arbitrary set of 𝑁 orthonormal vectors 𝒒𝑖 (𝑡0), which
forms a basis of the tangent space. We evolve this basis forward until zero and further to a sufficiently
long time 𝑡 𝑓 , using the single spike Jacobians. Every few steps, we reorthonormalize the basis. The
orthogonalizations leave the first vector 𝒒1(𝑡) unchanged. It thus evolves freely (up to normalization)
until it has aligned with the first covariant Lyapunov vector at 𝑡 = 0 and thus also at 𝑡 = 𝑡 𝑓 . The
second vector, 𝒒2(𝑡), is kept orthogonal to 𝒒1(𝑡). Since it otherwise evolves freely, 𝒒2(0) will lie
in the subspace of the first and the second CLV at 𝑡 = 0, which are in general not orthogonal; the
same holds for 𝒒2(𝑡 𝑓 ) at 𝑡 = 𝑡 𝑓 . Analogously 𝒒3(0) will be in the subspace of 𝒗1(0), 𝒗2(0), and
𝒗3(0), and so on. As noted in Section 3.4.4, the growth rates of the vectors already yield the LEs. In
order to find the CLVs one uses the time reversal property: we evolve the vectors 𝒒𝑖 (𝑡 𝑓 ) along the
previously taken forward trajectory back in time until 𝑡 = 0. During this, we keep them restricted to
their respective subspaces, which are known from the forward propagation. The vectors will then align
with the least expanding directions of their subspaces, so the backpropagated 𝒒2(𝑡 𝑓 ) will align with 𝒗2,
the backpropagated 𝒒3(𝑡 𝑓 ) with 𝒗3, and so on. We concretely implemented the simple and efficient
algorithm derived in ref. [25], which performs the backpropagation by representing and mapping the
vectors in terms of their components in the bases 𝒒𝑖 (𝑡). After obtaining the CLVs at 𝑡 = 0, those in the
not too distant future can be obtained using Eq. (3.27).
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CHAPTER 4

Purely STDP-based assembly dynamics:
stability, learning, overlaps, drift and aging

Contribution statement

This chapter is based on an early version of the following publication:
[2] P. Manz and R.-M. Memmesheimer

Purely STDP-based assembly dynamics: stability, learning, overlaps, drift and aging
PLOS CB 19 (2023) e1011006

In this chapter, we study the stability of long-term memory in the balanced state and how to achieve it
in a biologically plausible manner. Memories may be encoded in the brain via strongly interconnected
groups of neurons, called assemblies. The concept of Hebbian plasticity suggests that these assemblies
are generated through synaptic plasticity, strengthening the recurrent connections within select groups
of neurons that receive correlated stimulation. To remain stable in the absence of such stimulation, the
assemblies need to be self-reinforcing under the plasticity rule. Previous models of such assembly
maintenance require additional mechanisms of fast homeostatic plasticity that induce competition
between synaptic strengths [12–14, 123–126]. However, these mechanisms often have biologically
implausible timescales [15, 127–130].

Here we provide a model of neuronal assembly generation and maintenance purely based on
spike-timing-dependent plasticity (STDP) between excitatory neurons. Our model, as described in
Section 4.2 consists of populations of excitatory Hawkes model neurons whose connection strengths
undergo spike-timing-dependent plasticity with a symmetric STDP window that crucially has a
negative integral. In Section 4.3.1 we demonstrate that our model is capable of showing spontaneous
formation of assemblies from random initial connectivity. More specifically, we show that with our
model assembly structures form spontaneously from initially random connectivity with characteristic
assembly sizes that match our theory. To explain the formation of stable finite size assemblies in the
absence of homeostatic plasticity in Section 4.3.2 we analyze the time-averaged weight dynamics of
homogeneously connected assemblies of varying sizes. Using previous results for the correlation
structure of Hawkes networks, see Section 2.5, we obtain exact expressions for the time-averaged
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weight changes, assuming a separation of synaptic and plasticity time scales. These results indicate
that assemblies do not grow beyond a certain size because of negative contributions to weight change
that increase with larger assembly size: these contributions are caused by the uncorrelated part of
each neuron’s firing rate, and by cascades of activity within larger assemblies, which spread out the
distribution of time lags between spikes. For both reasons, temporally imprecise spike correlations
dominate the plasticity in large assemblies and thus set a limit to assembly growth.

We then show via simulations further capabilities of networks with our plasticity rule: In Section 4.3.3
we show that our networks can store new assemblies in weakly connected networks through correlated
feedforward input. We, therefore, demonstrate that learning new long-term memory items through
experience is possible with our model. We then show in Section 4.3.4 that given appropriate
background firing rates, assemblies in our model can establish overlaps, i.e., neurons can stably be
part of more than one assembly. We demonstrate the stability of a network in which all neurons are
part of two assemblies, a necessary step towards memory networks that store information compactly.
In Section 4.3.5, we show that our networks can exhibit representational drift for appropriate learning
rates, a result the authors of [13] previously showed with strong synaptic competition. We also develop
and demonstrate a novel mechanism of drifting assemblies through changes in background firing rates,
which involves insights gained from studying the spontaneous formation of overlaps in Section 4.3.4.
Finally, in Section 4.3.6 we study how assemblies are affected by increased network sparsity which we
use as a model for aging-related decreases in connectivity. Our results indicate that assemblies grow
in the aging brain, in agreement with some experimental findings. I performed the largest parts of the
simulations and analytical derivations, created the figures, and wrote large parts of the text for this
paper. The article is presented with minor editorial changes and the formatting adapted to match this
thesis.

Code availability

The code required to reproduce the results of this chapter is publicly available at PLOS Computational
Biology, see [2].

4.1 Introduction

A widely used model of long-term memory posits that items are stored in the brain by strongly
interconnected neuronal assemblies [23, 28, 131]. A memory item is represented by a group of neurons
that coactivate upon memory recall. The assembly structure allows for associative recall from an
incomplete input: due to the strong interconnections, activation of a part of the neurons in an assembly
can trigger reactivation of the entire assembly and thus a recall of the full memory. The assemblies may
each be created through experience-dependent plasticity or they may already form during development
[132]. In the latter case, memories may form by connecting the pre-existing assemblies to appropriate
input and output neurons [13]. The theory of the formation and maintenance of neuronal assemblies
has been studied in much detail in previous works. The creation of new memories is commonly
modeled using Hebbian plasticity [12, 14, 123–126, 133, 134]: if a set of neurons is co-activated,
Hebbian plasticity increases the strength of their mutual connections leading to the formation of what
is called a Hebbian assembly. However, memory networks in the brain also show ongoing spontaneous
and irregular activity. If plasticity still takes place during this activity, it should not interfere with the
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existing memory assemblies – otherwise memories would have implausibly short lifespans. Hebbian
assemblies can be self-reinforcing under plasticity since their interconnectedness leads to higher
correlations in the activities, which in turn leads to potentiation of the intra-assembly weights. Models
of assembly maintenance, however, found that fast homeostatic plasticity was needed in addition to
Hebbian learning. This introduces competition between synapses and prevents pathological growth of
assemblies and exploding activity [12–14, 123–126]. Homeostatic plasticity has been observed in
experiments, but it is much slower than Hebbian plasticity and does therefore not suffice to prevent
runaway potentiation [15, 127–130] (see, however, [135] for a different view and [134, 136] for a
small timescale implementation of homeostasis via inhibitory STDP).

Experiments indicate that distinct memory assemblies have a fraction of shared neurons, i.e. neurons
that are part of both assemblies [16–18]; the size of these overlaps appears to correspond to the
strength of the associations between the concepts encoded by the assemblies. Previous models of
assemblies stabilized by recurrent synaptic plasticity and fast homeostatic normalization usually do
not show prominent overlaps [12–14, 123, 124]. An example of a network with weight plasticity,
structural plasticity, multiple synapses per connection and short-term depression that can store two
strongly overlapping assemblies was given in [137]. We will explore whether our purely STDP-based
model can maintain overlaps.

Another topic of interest in the study of memory networks is whether they can generate the
representational drift observed in recent experiments [19]. Such drift has recently been modeled by
drifting assemblies, which spontaneously exchange neurons with each other, leading to a gradual
resorting of the whole network [13]. The network model incorporated fast homeostatic normalization
to stabilize the assemblies. We will explore whether also our purely STDP-based model can exhibit
drifting assemblies.

Finally, many conditions, such as aging are associated with a decrease in overall connectivity [20,
21]. We will therefore explore how the assemblies in our networks adapt to such a decrease.

The paper is structured as follows: We initially introduce the model of spiking neurons and STDP
and describe existing analytical approximations for the time-averaged weight dynamics. As a first
result, we show spontaneous assembly formation. We then obtain an analytical approximation of the
weight growth in different assembly sizes to obtain an understanding of the numerically observed
assembly formation. Next we study whether assemblies can be learned by correlated external input.
The subsequent section shows that our networks can stably maintain overlapping assemblies. We then
examine whether our model can be set up to exhibit representational drift. Finally, we investigate the
dependence of assembly sizes on network sparsity and relate our results to effects of aging on the
brain.

4.2 Materials and methods

4.2.1 Poisson neurons

Neural networks in the mammalian brain typically generate irregular and apparently largely stochastic
spiking. To guarantee that our model networks generate similar spiking activity, we consider networks
of stochastic linear Poisson (or “Hawkes”) model neurons [12, 58, 138, 139]. Such networks are
additionally analytically well tractable. We explicitly model excitatory neurons. Since the irregular
activity in biological neural networks is likely due to a balanced state, where excitatory and inhibitory
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Figure 4.1: Network, neuron and plasticity model. (a): A network consists of recurrently connected excitatory
neurons, which generate irregular, stochastic spiking. It may be interpreted as the excitatory population of a
neural network where excitatory and inhibitory neurons generate a balanced state [5] of irregular spiking. Thus,
an inhibitory neuron population is implicitly contained in our model. (b): Poisson model of stochastic single
neuron spiking: each neuron is characterized by its instantaneous rate 𝜆(𝑡) (upper subpanel), which depends on
incoming spikes and determines the probability of emitting a spike (lower subpanel). (c): Strength of STDP
updates as a function of the time difference between pre- and postsynaptic spikes for 𝜇 = 1.

inputs to each neuron balance [1, 3–5, 8, 62], our model implicitly incorporates inhibitory neurons,
see Fig. 4.1.

The spiking activity of each neuron 𝑖 is an inhomogeneous Poisson process whose time-dependent
instantaneous spike rate (intensity) 𝜆𝑖 (𝑡) = ⟨𝑆𝑖 (𝑡)⟩ given input spike trains 𝑆𝑘 (𝑡

′) = ∑
𝑚 𝛿(𝑡

′ − 𝑡𝑚𝑘 ) up
to time 𝑡 and weights𝑊𝑖𝑘 is

𝜆𝑖 (𝑡) = 𝜆
0
𝑖 +

∑︁
𝑘

𝑊𝑖𝑘

∑︁
𝑚

𝑎(𝑡 − 𝑡𝑚𝑘 ). (4.1)

The angular brackets here denote trial-averaging with fixed input spike trains and weights to neuron 𝑖.
We use an exponentially decaying synaptic kernel

𝑎(𝑡) = Θ(𝑡)
𝜏s

e
− 𝑡
𝜏s , (4.2)

where Θ(𝑡) is the Heaviside distribution, and a constant external drive 𝜆0.

It is now useful to introduce quantities that are trial-averaged over the entire spiking network
dynamics. The trial-averaged instantaneous rate (intensity) of neuron 𝑖 is 𝑟𝑖 (𝑡) = ⟨𝜆𝑖 (𝑡)⟩, where
angular brackets now denote the trial-averaging over the network dynamics. For static𝑊 with spectral
radius less than 1, the trial-averaged rate dynamics relax to a fixed point where the vector 𝑟 (𝑡) is
constant,

𝑟 = (1 −𝑊)−1
𝜆

0
, (4.3)

see [12, 53, 54, 138]. In addition, one can analytically compute the corresponding stationary
cross-correlation functions 𝐶𝑖 𝑗 (𝜏) = ⟨𝑆𝑖 (𝑡 + 𝜏)𝑆 𝑗 (𝑡)⟩ of pairs of neurons 𝑖, 𝑗 at arbitrary 𝑡; in the
frequency domain they read

�̃� (𝜔) = 2𝜋𝛿(𝜔)𝑟𝑟𝑇 +
(
1 − �̃�(𝜔)𝑊

)−1
𝐷

(
1 − �̃�(−𝜔)𝑊𝑇

)−1
, (4.4)
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where we used matrix notation and 𝐷𝑖 𝑗 = 𝛿𝑖 𝑗𝑟𝑖 [12, 53, 138]. The Fourier transform of a function
𝑔(𝑡) is defined as �̃�(𝜔) =

∫ ∞
−∞ d𝑡e−𝑖𝜔𝑡

𝑔(𝑡). If the scale of the STDP updates is sufficiently small, one
can assume that the weight dynamics are quasistationary with respect to neuronal dynamics. Then
Eqs. 4.3,4.4 still approximately hold true despite𝑊 changing over time due to plasticity.

4.2.2 Spike-timing-dependent plasticity

We consider networks of spiking neurons with pair-based STDP, i.e. the change of synaptic strength
depends on the time lags of pairs of pre- and postsynaptic spikes. The characteristics of the plasticity
function crucially determine how synaptic strengths evolve in a network. Networks with symmetric
plasticity functions can establish a structure of neuronal assemblies whereas plasticity functions with
a large antisymmetric part tend to establish feedforward chains of connectivity; see, however, [134,
136] for networks with asymmetric STDP maintaining assemblies and [124] for a triplet STDP rule
that forms assemblies despite an asymmetric two-spike interaction part. In the present work, we
consider symmetric plasticity functions because of their simplicity and analytical tractability, building
on previous theoretical work that has employed them [12, 13]. Symmetric STDP has been found
in the CA3 region of the rodent hippocampus [36], i.e. in a region that is assumed to serve as an
associative memory network and to store assemblies [28]. Recently, near-symmetric STDP has also
been observed in the primary motor cortex of primates [140].

The change induced by a spike pair with time lag 𝑡 is given by the STDP function 𝐹,

𝐹 (𝑡) = 𝜇
(
𝐴pe

− |𝑡 |
𝜏𝑝 + 𝐴de−

|𝑡 |
𝜏𝑑

)
, (4.5)

where the scaling factor 𝜇 is the learning rate, 𝐴p > 0, 𝐴d < 0,
���𝐴p

��� > ��𝐴d
�� and 𝜏p < 𝜏d, see Fig. 4.1c.

For the analytical treatment of our plasticity rule we set 𝜇 = 1. In all our simulations the parameters
are chosen such that the integral

∫ ∞
−∞ d𝑡 𝐹 (𝑡) over 𝐹 is negative.

At each spike time, plasticity acts additively on the pre- and postsynaptic weights of the spiking
neuron, with amplitudes given by 𝐹. Specifically, at a spike time 𝑡𝑘𝑖 of the postsynaptic neuron there
is a jump-like change in 𝑊𝑖 𝑗 of

∑
𝑡𝑘 𝑗
≤𝑡𝑘𝑖

𝐹 (𝑡𝑘𝑖 − 𝑡𝑘 𝑗
). At a spike time 𝑡 𝑗𝑘 of the presynaptic neuron

𝑊𝑖 𝑗 jumps by
∑

𝑡𝑘𝑖
≤𝑡𝑘 𝑗

𝐹 (𝑡𝑘𝑖 − 𝑡𝑘 𝑗
). This can be compactly written as

d
d𝑡
𝑊𝑖 𝑗 (𝑡) =

∑︁
𝑡𝑘𝑖

,𝑡𝑘 𝑗
≤𝑡

(
𝐹 (𝑡𝑘𝑖 − 𝑡𝑘 𝑗

)𝛿(𝑡 − 𝑡𝑘𝑖 ) + 𝐹 (𝑡𝑘𝑖 − 𝑡𝑘 𝑗
)𝛿(𝑡 − 𝑡𝑘 𝑗

)
)
. (4.6)

Here and henceforth we assume 𝑖 ≠ 𝑗 ; there is no self-interaction in our networks,𝑊𝑖𝑖 = 0. We further
stipulate that no weight can become negative or exceed a maximum value �̂� due to STDP: if a synapse
would be depressed below 0 it will be set to 0 instead and if a synapse would be potentiated to a value
beyond �̂� it will be set to �̂�.

In the regime of quasistationary weight dynamics the time-averaged drift in synaptic efficacy, Δ𝑊𝑖 𝑗 ,
can be approximated by

Δ𝑊𝑖 𝑗 :=
1
𝑇

∫ 𝑡+𝑇

𝑡

d𝑡′
d

d𝑡′
𝑊𝑖 𝑗 (𝑡

′) =
∫ ∞

−∞
d𝜏 𝐶𝑖 𝑗 (𝜏)𝐹 (𝜏), (4.7)
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where 𝐶𝑖 𝑗 (𝜏) are again the correlations of the spike trains of neurons 𝑖 and 𝑗 [58]. Plancherel’s
theorem then yields

Δ𝑊𝑖 𝑗 =
1

2𝜋

∫ ∞

−∞
d𝜔 �̃�𝑖 𝑗 (𝜔)�̃� (−𝜔), (4.8)

with the Fourier transforms of the correlation function and of the STDP window. Inserting the
correlation function �̃�𝑖 𝑗 (𝜔) of Eq. (4.4) gives

Δ𝑊𝑖 𝑗 = 𝑓0𝑟𝑖𝑟 𝑗

+ 1
2𝜋

∫ ∞

−∞
d𝜔

∑︁
𝑘

[
(1 − �̃�(𝜔)𝑊)−1

]
𝑖𝑘
𝑟𝑘

[
(1 − �̃�(−𝜔)𝑊𝑇 )−1

]
𝑘 𝑗

× �̃� (−𝜔), (4.9)

see [12], where

𝑓0 = �̃� (0) =
∫ ∞

−∞
d𝑡 𝐹 (𝑡) = 2

(
𝐴p𝜏p + 𝐴d𝜏d

)
. (4.10)

It is often useful to expand Eq. (4.4) into a power series with respect to𝑊 [138]. Inserting the series
into the right hand side of Eq. (4.8) (or directly expanding Eq. (4.9)) results in a series expansion for
Δ𝑊𝑖 𝑗 , [12]:

Δ𝑊𝑖 𝑗 = 𝑓0𝑟𝑖𝑟 𝑗 +
∑︁
𝛼,𝛽

𝑓𝛼𝛽

∑︁
𝑚

𝑟𝑚(𝑊
𝛼)𝑖𝑚(𝑊

𝛽) 𝑗𝑚. (4.11)

The terms of the sum encode contributions from motifs in which a source neuron affects post- and
presynaptic neurons via a chain of 𝛼 and 𝛽 connections, respectively (the same connection may be
counted more than once). If 𝛼 = 0 (𝛽 = 0) the post(pre)synaptic neuron itself is the source. The
coefficients 𝑓𝛼𝛽 contain integrals over the Fourier transform of the STDP window and powers of the
Fourier transform of the synaptic kernel function,

𝑓𝛼𝛽 =
1

2𝜋

∫ ∞

−∞
d𝜔 �̃� (−𝜔)�̃�(𝜔)𝛼�̃�(−𝜔)𝛽 . (4.12)

4.3 Results

4.3.1 Spontaneous assembly formation

We first simulate the model described above with initially unstructured weight matrix and without
structured external stimulation, in order to test its capability of spontaneous assembly formation and
subsequent maintenance. We find that for appropriately chosen parameters in the plasticity function
the network weights indeed converge towards a structure with segregated assemblies of a characteristic
size.

The mechanism underlying the increase of weights between assembly neurons is well known:
Initially basically randomly coincident spiking leads to strengthening of some weights. These weights
induce more near-simultaneous spiking, which further strengthens them. The positive feedback
loop leads to weights that increase until they reach �̂� [22]. It has been shown that if the summed
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weight strength to and from a neuron are additionally normalized by fast homeostasis, there can
be spontaneous emergence of assemblies [12, 13, 124, 125]. The reason is that the homeostatic
normalization lets synapses compete, such that more slowly growing ones are suppressed. Once
an imbalance of connectivity and thus first assembly-like structures occur, the weight increase of
intra-assembly synapses prior to normalization is stronger, due to the stronger co-spiking of the
connected neurons. The normalization then suppresses the inter-assembly connections and the
assembly structure consolidates.

In our networks, there is no fast homeostatic normalization that could introduce competition between
synapses. Then, why do not all weights tend to �̂�? In other words: why does the network not turn into
one big assembly?

Figure 4.2: Spontaneous assembly formation. Several assemblies (strongly interconnected ensembles of neurons)
emerge in a network with initially random connectivity, due to spontaneous activity.

4.3.2 Plasticity in homogeneously connected assemblies

In this section, we will argue that the assembly growth is in our model limited because of the depression
dominance of the learning rule. For this we consider the special case of an isolated assembly of 𝑁
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neurons that is homogeneously connected with synaptic strengths �̂�. We compute Δ𝑊𝑖 𝑗 for weights
within this type of assembly, disregarding the clipping at �̂�. This indicates whether and how vigorously
weights that fall below �̂� are restored towards it. Further, it indicates how successfully further neurons
are recruited, as recruitment relies on increasing the weights to new neurons once they are randomly
increased. We expect that the assembly size is limited by values of 𝑁 above which Δ𝑊𝑖 𝑗 (𝑁) is
negative: Larger assemblies will lose neurons due to the depression of weights, to other, smaller
assemblies that tend to potentiate their connections with these neurons. This yields as an estimate
for the size 𝑁 of assemblies the solution of Δ𝑊𝑖 𝑗 (𝑁) = 0. The assumption that an assembly loses
neurons already if another assembly can potentiate its connections to them more yields as preferred
assembly size the 𝑁 that maximizes Δ𝑊𝑖 𝑗 (𝑁).

To analytically obtain Δ𝑊𝑖 𝑗 as a function of the assembly size, we first compute from Eq. (4.3) the
average rate of an assembly neuron

𝑟 = 𝜆0

∞∑︁
𝑚=0
((𝑁 − 1)�̂�)𝑚 =

𝜆0
1 − (𝑁 − 1)�̂� =

𝜆0
1 − 𝜌 , (4.13)

where 𝜌 = (𝑁 − 1)�̂� is the branching parameter, which gives the average number of spikes that are
directly induced by a single spike in the assembly. A stable network requires 𝜌 < 1 [139, 141, 142].
Eqs. 4.4, 4.13 and 4.8 yield

Δ𝑊𝑖 𝑗 (𝑁) =
2𝜆2

0(𝐴p𝜏p + 𝐴d𝜏d)
(1 − (𝑁 − 1)�̂�)2

+

+
𝜆0𝐴p𝜏p�̂�

[
(2 − (𝑁 − 2)�̂�)𝜏p + (2 − (𝑁 − 2)�̂� − (𝑁 − 1)�̂�2)𝜏s

]
(1 + �̂�) (1 − (𝑁 − 1)�̂�)2(𝜏s + (1 + �̂�)𝜏p) (𝜏s + (1 − (𝑁 − 1)�̂�)𝜏p)

+

+
𝜆0𝐴d𝜏d�̂�

[
(2 − (𝑁 − 2)�̂�)𝜏d + (2 − (𝑁 − 2)�̂� − (𝑁 − 1)�̂�2)𝜏s

]
(1 + �̂�) (1 − (𝑁 − 1)�̂�)2(𝜏s + (1 + �̂�)𝜏d) (𝜏s + (1 − (𝑁 − 1)�̂�)𝜏d)

,

(4.14)

see SI S.1 for details. Assuming that 𝑁 ≫ 1, we can neglect 𝑁’s discrete nature and consider the limit
where it approaches 1 + 1

�̂�
. In this limit, the firing rates diverge and Eq. (4.14) gives

lim
𝑁→1+ 1

�̂�

Δ𝑊𝑖 𝑗 (𝑁)
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= lim
𝑁→1+ 1
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2
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+

𝜆0�̂�

2𝜏s(1 + �̂�) (1 − (𝑁 − 1)�̂�)2

)
, (4.16)

where we used Eq. (4.10) to obtain the last line. It implies

lim
𝑁→1+ 1

�̂�

Δ𝑊𝑖 𝑗 (𝑁) = −∞ if 𝑓0 < 0, (4.17)
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since the summands in the large bracket are positive. Thus, if 𝑓0 < 0 and there is an 𝑁 for which
Δ𝑊𝑖 𝑗 (𝑁) is positive, Δ𝑊𝑖 𝑗 (𝑁) will have a maximum; we therefore expect limited assembly growth
and assume 𝑓0 < 0 throughout the article. Indeed, if 𝑓0 > 0, Δ𝑊𝑖 𝑗 (𝑁) diverges to positive values for
𝑁 where also the firing rate diverges, indicating that sufficiently large assemblies continue to grow
until the network generates pathological activity.

The first term in the bracket of Eq. (4.16) covers the impact of uncorrelated pre- and postsynaptic
spiking with rates 𝑟 𝑗 and 𝑟𝑖 on the synaptic strengths (𝐶𝑖 𝑗 (𝜏) = 𝑟𝑖𝑟 𝑗 for uncorrelated spiking). As the
firing rates increase with 𝑁 , the contribution of the STDP rule due to uncorrelated spiking tends to
increasingly negative values, since 𝑓0 < 0. The fact that the second term, which encodes the effects
of connectivity motifs on STDP, see Eq. (4.11), also becomes negative for sufficiently large 𝑁 is
due to contributions from higher order motifs. We can see this by reconsidering Eq. (4.11): For
homogeneously connected assemblies, it simplifies to

Δ𝑊𝑖 𝑗 = 𝑓0𝑟
2 + 𝑟

𝑁

∑︁
𝛼+𝛽>0

𝑓𝛼𝛽

(
(𝑁 − 1)𝛼+𝛽 − (−1)𝛼+𝛽

)
�̂�

𝛼+𝛽 (4.18)

= 𝑓0𝑟
2 + 𝑟

𝑁

∞∑︁
𝑘=1

𝑓𝑘

(
(𝑁 − 1)𝑘 − (−1)𝑘

)
�̂�

𝑘
, (4.19)

where
𝑓𝑘 :=

∑︁
𝛼+𝛽=𝑘

𝑓𝛼𝛽, (4.20)

see SI S.2. Since 𝑓𝛼𝛽 (cf. Eq. (4.12)) and thus 𝑓𝑘 are independent of 𝑁 , higher order terms in 𝑘 grow
in Eq. (4.19) faster with 𝑁 than lower order ones. Therefore higher order motifs become more relevant
for the weight change the larger 𝑁 is. We find for high orders that

lim
𝑘→∞

𝑓𝑘 =
𝑓0

2𝜏s
, (4.21)

see SI S.2; therefore high order motifs induce synaptic depression.
Importantly, the relation Eq. (4.21) holds generally, for any plasticity window 𝐹, not only for the

considered symmetric one. We explain it as follows: A term with specific exponents 𝛼 and 𝛽 in
Eqs. 4.11, 4.18 covers the contribution of a specific connectivity motif to the spike correlation. This
motif consists of a common presynaptic neuron that is separated from neurons 𝑗 and 𝑖 by a chain of 𝛽
and 𝛼 connections, respectively [12], see Fig. 4.3b for an illustration. Higher orders of 𝑘 = 𝛼 + 𝛽
thus encode the effects of long cascades of spiking activity in an assembly. The longer these cascades
get, the more spread-out and Gaussian the temporal distribution of their impacts becomes, due to the
summation of inter-spike-intervals and their jitters. (We note that since the considered model is linear,
one can indeed attribute the generation of each spike to a precursor spike or to the external drive.)
Eq. (4.20) homogeneously sums over motifs with different connection chain lengths to the pre- and
the postsynaptic neuron. For sufficiently large 𝑘 the evoked spike time differences are thus equidistant,
broad, overlapping Gaussians over the STDP window, which leads to the dependence on the integral
of the STDP function 𝑓0, as for uncorrelated pre- and postsynaptic spiking.

Fig. 4.3a shows Δ𝑊𝑖 𝑗 (𝑁) as in Eq. (4.14) for different values of �̂�: Δ𝑊𝑖 𝑗 (𝑁) is maximal for a
particular assembly size and becomes negative for large assembly sizes. We confirmed these results
using simulations of homogeneous assemblies, in which the weight updates that would occur due to
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STDP without clipping are tracked but not applied and then averaged over time. We observe that the
typical size 𝑁 of spontaneously formed assemblies corresponds to the zero crossing Δ𝑊𝑖 𝑗 (𝑁) = 0 if
corrected for gaps in the assemblies.

We note that in our simulations we also find sparser assemblies where some internal connections are
weak or basically missing. For these we expect the maximum of Δ𝑊𝑖 𝑗 to be at larger sizes compared
to our estimates with fully connected ones. Consistent with this, we observe that sparser assemblies in
our simulations tend to be larger.

Figure 4.3: Explanation of assembly formation. (a): Time-averaged weight change (tracked, not applied;
arbitrary units) for a synapse in an assembly (fully connected, no other connections, all weights fixed at �̂�)
as a function of its size 𝑁 , for different values of �̂�. Solid lines: theoretical prediction. (b): Illustration of
zeroth, first and second order contributions to the time-averaged weight change for a given rate and weight
configuration.

4.3.3 Storing new assemblies

Next we show how assemblies can be learned via correlated feedforward input. Neurons recruited for
a new assembly may previously have only weak connections, i.e. they may belong to a background of
neurons in front of which assemblies exist. Alternatively recruited neurons may already be part of other
assemblies. In our simulations, during the learning phase, each neuron that is to be recruited receives
Poisson spike input from the same source. This stimulates the neurons to spike near-simultaneously,
such that the weights between them grow. Fig. 4.4 displays the resulting weight and spiking dynamics
in a network which prior to stimulation hosts one assembly in front of a background of weakly
coupled neurons. Before time 𝑡 = 0s, the single assembly is stably stored in the network, despite
the ongoing plasticity. At 𝑡 = 0 s a group of background neurons receives correlated stimulation
for 𝑇stim = 180 s. This leads to the formation of a rudimentary assembly. After the stimulation has
ended, its synapses grow over a longer period of time until a fully connected assembly is reached,
where all interconnections have synaptic strength close to �̂�. The remaining background neurons,
which do not receive correlated stimulation in the beginning, do not form assemblies. The stimulation
furthermore does not affect the already existing assembly and neither does this assembly interfere with
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the formation of the new assembly. Fig. 4.11 shows another example of assembly learning; here again
mostly background neurons are recruited, but also one neuron that is already part of two pre-existing
assemblies.

Figure 4.4: Learning a new assembly in a network starting with a single assembly and otherwise weak random
connectivity. Initially, correlated external input stimulates the neurons of the new assembly, which leads to
an increase of their interconnecting weights and thereby to the formation of a rudimentary assembly. The
stimulation is then turned off and the network evolves on its own; the new assembly becomes fully connected.

4.3.4 Overlapping Assemblies

Experiments indicate that neurons can code for more than one memory item [16–18]. For assembly
models of memory this implies that neurons can be part of more than one assembly, see Fig. 4.5a, i.e.
assemblies have overlaps [143]. Such overlaps may encode associations between memories.

We find that for appropriate parameters, our networks can stably store assemblies with some overlaps,
see Fig. 4.5b for an example weight matrix. However, we also observe that overlapping assemblies
present a challenge for our models: overlapping assemblies either tend to merge or overlapping neurons
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tend to disconnect from one of the assemblies they are a part of, dissolving the overlap. The first case
occurred especially when the sizes of the overlapping assemblies were significantly smaller than the
sizes that would maximize Δ𝑊𝑖 𝑗 . We hypothesize that in this case a feedback loop emerges: overlaps
induce correlations between the assemblies, which facilitates the formation of additional overlaps until
the assemblies have completely fused. The other case occurred when the sizes of the two assemblies
were close to maximizing Δ𝑊𝑖 𝑗 . We hypothesize that here the higher firing rate of an overlap neuron
and the resulting increased negative contribution (from, for example, the first term in Eq. (4.14)) imply
that overlaps become more likely to disappear due to fluctuations in the weight dynamics.

Figure 4.5: Overlapping assemblies. (a): Illustration of overlaps. (b): Weight matrix of a network with
overlapping assemblies. The base assemblies (diagonal blocks) are each 20 neurons in size.

The hypotheses about the mechanism underlying the problems with overlap suggest two solutions
how networks may solve them: First, if the synaptic long-term depression that occurs at high rates
limits the connectivity of neurons, a neuron with a significantly lower spontaneous rate may be able
to connect to multiple assemblies at the same time. In Fig. 4.6 we show how neurons with lower
spontaneous firing rate join a second assembly. In Fig. 4.6a a neuron with lowered spontaneous
rate is already partially connected to another assembly. This partial connection then causes enough
correlation with the second assembly to induce the completion of the connections. In this case both
the initial partial connection and the lower 𝜆0 were necessary to create this overlap. For an even
lower 𝜆0, an overlap emerged spontaneously, with a randomly selected assembly, through the inherent
stochasticity of the dynamics, as shown in Fig. 4.6b.

A second way of sustaining overlaps, is by having most, or all neurons be part of more than one
assembly. In this case fusion of two assemblies appears less likely, because all assemblies and neurons
are similarly saturated. Indeed, in the brain, we expect most or all neurons to be part of more than
one assembly [16, 143]. To test whether our networks are capable of sustaining similarly prominent
overlap structures, we consider a network of intertwined assemblies in which each neuron is part
of exactly two assemblies. We choose equally sized assemblies of size 𝑛A and the overlap structure
such that for any given assembly each of its neurons is shared with a different assembly. In other
words, the overlap between any two assemblies consists of one neuron or a fraction of 1/𝑛A of the
population. This implies that there are in total 𝑛A + 1 assemblies and that the setup requires a network
with 𝑁 = 𝑛A(𝑛A + 1)/2 neurons. Notably, a network with the same number and size of assemblies,
where each neuron is only part of one assembly (no overlap), would require twice as many, (𝑛A + 1)𝑛A,
neurons. Fig. 4.7 shows that this structure is stable under the STDP rule over long timescales. The
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Figure 4.6: Creation of overlaps. (a): A partial overlap self-completes over time due to plasticity. (b): An
overlap emerges for a neuron with lower spontaneous firing rate.

assemblies have size 𝑛A = 19; the typical overlap between two assemblies is thus 1/𝑛A = 1/19 ≈ 5.3%.
Random correlations cause additional, extra-assembly connections to appear (more precisely: to
strengthen) and intra-assembly connections to disappear (to weaken). To demonstrate that these
deviations of individual weights are transient, we have tracked in Fig. 4.7b and c the strengthening
of extra-assembly weights and the weakening of intra-assembly weights, respectively. The upper
panel of Fig. 4.7b displays the sum of the extra-assembly weights over time, indicating that there is no
positive drift, i.e. no overall increase of weights that do not belong to the stored assembly structure
over time. The lower panel displays the Pearson correlations of the extra-assembly weights over time
with the extra-assembly weights observed at five reference time points. With increasing distance to
the reference time point, the correlations decay to chance level showing that no persistent pattern of
strengthened extra-assembly weights emerges. Fig. 4.7c analogously displays the differences between
the maximal (optimal) and the actual intra-assembly weights. The upper panel shows that there is no
overall increase of this difference, i.e. no overall decay of the assembly structure. The lower panel
shows that the patterns of weakened intra-assembly weights are transient.

4.3.5 Drifting assemblies

Experiments have shown that memory representations need not consist of the same neurons over time
but can in fact exchange neurons without affecting behavior [19], a phenomenon called representational
drift. It may occur because memory assemblies drift, by gradually exchanging neurons between
each other [13]. The gradual exchange implies that at each point in time, each assembly is present
and unambiguously identifiable by following the course of its evolution from the beginning. In the
following, we show that our model networks can give rise to drifting assemblies. The drift happens due
to two alternative mechanisms: (i) Neuron exchange between assemblies due to high weight plasticity
noise, as in [13] and (ii) formation of temporal overlaps due to modulations in the spontaneous spike
rate. Whether drift occurs due to mechanism (i) is chiefly determined by the learning rate 𝜇: Fig. 4.8a
displays the assembly dynamics in two networks with different values of 𝜇 while all other parameters
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Figure 4.7: Intertwined assembly network. (a): Initial weight matrix (left hand side) and weight matrix after
simulation over 106 s (right hand side). (b, upper): Sum of the extra-assembly weights, that is of those weights
that are zero initially and when the assembly structure is optimally realized. The sum is given as a fraction
of the total initial weights. (b, lower): Correlations of the extra-assembly weights with those at six different
reference points in time. (c,upper): Sum of the absent intra-assembly weights, that is, the sum of distances of
intra-assembly weights from their initial and optimal value �̂�. The sum is given as a fraction of the total initial
weights. (c,lower): As in (b,lower) for absent intra-assembly weights.

are kept the same. The network with smaller 𝜇 has stationary assemblies. In contrast, the network with
larger 𝜇 exhibits drifting assemblies. Specifically, in this network the ensemble of neurons forming
an assembly completely changes over time (Fig. 4.12a). Simultaneously, one can track the identity
of an assembly by comparing its constituent neurons over short time intervals; the neurons forming
it at one time can be unambiguously matched to the neurons forming it shortly thereafter, since the
difference between those two ensembles is still small (Fig. 4.12b). We can explain the occurrence
of this type of drift as an effect of fluctuations in the weight dynamics. The time-averaged weight
dynamics as described by Δ𝑊𝑖 𝑗 reinforce connections between neurons in the same assembly while
suppressing connections between neurons of different assemblies. However, large enough fluctuations
in the weight dynamics may nevertheless cause neurons to lose connections within their assembly and
form connections to other assemblies. The size of these fluctuations is governed by 𝜇, and if they are
sufficiently large there is a finite probability that a neuron switches assemblies, see [13] for a detailed
discussion. If 𝜇 is too large, the strong fluctuations prevent assemblies from forming at all.

In the second mechanism switching of assemblies by neurons is a two-step process. In the first step
a neuron with a sufficiently low 𝜆0 spontaneously forms a connection to an additional assembly, as in
Fig. 4.6b. Then, when 𝜆0 increases again this neuron loses its connections to one of the assemblies.
The neuron can thereby leave either of the assemblies it is connected to – if it loses its connections to
the assembly that it was originally connected to, it has switched assemblies. If this happens sufficiently
often for many neurons in the network, this also causes overall drift on a slow timescale, as shown in
Fig. 4.6b.

4.3.6 Aging

We finally apply our assembly model to networks that undergo changes in their synaptic connectivity
due to processes related to aging. Anatomical studies have shown that the aging cortex is characterized
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Figure 4.8: Drifting assemblies. (a): Drift through noisy spiking activity and resulting weight fluctuations.
Assembly dynamics for lower (𝜇 = 0.1, upper part) and higher (𝜇 = 0.145, lower part) learning rate. The panel
shows connection matrices𝑊 at different point in time. Initially, the weight matrices are random (left). After
𝑡 = 8 × 105 s assemblies have spontaneously emerged (middle). The neuron indices are sorted to reveal them
(cf. Fig. 4.2). The simulation is thereafter continued, which shows that for lower learning rate the assemblies
are static. In contrast, for higher learning rate the assemblies drift. Since the assemblies exchange neurons,
the coupling matrix appears increasingly unstructured. Reordering of the indices, however, reveals that the
assemblies are maintained at each point in time. (b): Drift through transient changes in intrinsic neuron
properties and resulting transient overlaps. The spontaneous firing rates of neurons change on a slow timescale.
This leads to the transient appearance of overlaps, cf. Fig. 4.6b. When an overlap vanishes, the neuron randomly
decides for one of the assemblies, which leads to drifting assemblies.

by a decrease in the number of synaptic spines [20] and presynaptic terminals [21]. These changes may
be interpreted as an increase in sparsity of connections between neurons and/or as an overall weakening
of synaptic strengths (since connections between neurons often consist of multiple synapses). We can
model the former by permanently setting a fraction of entries of the weight matrix, chosen at random,
to zero. We can model the latter by decreasing �̂�. Fig. 4.3a shows the effect of decreasing �̂�: it shifts
the potentiation maximum and thus the typical assembly size towards larger 𝑁 . Increased sparsity
similarly lowers the branching parameter for an assembly of a given size and thus also shifts the
potentiation maximum and the characteristic assembly size towards larger 𝑁 , see Fig. 4.9a. As a result,
spontaneously forming assemblies are larger in networks with higher sparsity, see Fig. 4.9c. In addition
Fig. 4.9c suggests that smaller learning rates further increase the tendency to form larger assemblies.
We observe that if the assembly sizes in a network are significantly smaller than the characteristic
size predicted by Figs. 4.3a and 4.9a, assemblies will merge to form larger ones, see Fig. 4.9b. This
represents a loss in memory capacity. Assuming that in the brain assemblies representing closely
related memories merge (due to existing overlaps), during this process the overall memory content
becomes less detailed and differentiated. At the same time the neuronal activity during recall increases
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due to larger assembly sizes indicating a less efficient use of neural resources.

Figure 4.9: Effects of increasing network sparsity. (a): Time-averaged weight change like in Fig. 4.3a, of an
assembly with intra-assembly connection probability 𝑝, as a function of its size for different values of 𝑝. Lower
values of 𝑝 lead to a shift of the optimal assembly size to larger 𝑁 . Simulations with low Δ𝑊𝑖 𝑗 converge
slowly, which is reflected by large error bars. (b): An assembly structure becomes coarser (fewer, larger
assemblies) as the connectivity sparsity increases. The panel shows the weight matrices of the same network
when the probability 𝑝 that a connection between neurons exists is decreased from 𝑝 = 1.0 (upper subpanel,
after spontaneous assembly emergence) to 𝑝 = 0.7 (lower subpanel, after re-equilibration). (c): Dependence of
the size of a typical assembly on the network connection probability 𝑝 and the learning rate 𝜇. The panel shows
the median size of spontaneously forming assemblies in networks with random initial connectivity. White areas
denote parameter regions for which activity becomes pathological, that is, firing rates diverge.

4.4 Discussion

We have studied assemblies in networks with plasticity that is purely spike-timing-dependent. We find
that the networks stably store assemblies, which may spontaneously emerge or be learned. Further,
the assemblies can have overlaps, spontaneously drift and adapt to changing network properties.

In biological spiking neural networks the change of synaptic efficacies depends to a large extent on
STDP, where depression and potentiation are a function of the time lags between pre- and postsynaptic
spikes [144–146]. Assemblies may be kept up by the co-spiking of their member neurons, which
strengthens their interconnections. If the total input to a neuron is not constrained, large assemblies
generate large inputs to each member neuron and thereby highly reliably co-activate them. Furthermore,
larger assemblies generate stronger input to other neurons and thereby tend to recruit them, such
that the assembly grows. This generates a positive feedback loop, which can without restraining
mechanisms lead to excessive assembly growth. Previous work on assembly networks therefore
usually added additional homeostatic plasticity that limits the total input strength to a neuron by
fast normalization [12–14, 123–126]. This curtails the resulting excessive assembly growth. The
homeostatic plasticity observed in neurobiological experiments is, however, much slower than that
required to prevent runaway assembly growth [15, 127–130].

In the present work, we therefore studied assemblies in networks with purely STDP-based plasticity.
We find that our depression-dominated STDP-rule (the integral of the STDP window is negative)
restricts the growth of assemblies by two mechanisms: On the one hand, the spike rate of the neurons
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in an assembly grows with the assembly size, which increases the depressing effect of the rate-based
term of the time-averaged weight change. On the other hand, the contributions of the higher-order
connectivity motifs to the time-averaged weight change become more significant the larger the
assemblies are, because longer cascades of spikes become more likely. Further for sufficiently high
order the appropriately summed contributions of the motifs are approximately proportional to the
integral of the STDP window and thus negative. The contributions of the purely firing rate-based
and the higher-order motifs therefore reduce or even invert the tendency of weights to grow in large
assemblies. As a consequence, neurons are more prone to leave a larger assembly and for example
join another, smaller one, which induces larger growth of the interconnecting weights. A mechanism
similar to the purely firing rate-based effect that we have described has been shown to stabilize the
output spike rate of a single neuron receiving feedforward input, since a strong dominance of the
rate-based term ultimately leads to the reversal of the sign of plasticity [147]. Another related work,
[134], demonstrated the learning of static, non-overlapping assemblies in networks with STDP in the
recurrent excitatory and the inhibitory-to-excitatory connections. These assemblies are maintained at
least over several hours. The excitatory STDP is thereby balanced (the integral over the STDP window
is about zero) such that the inhibitory STDP is effectively much faster. This yields rate homeostasis in
the excitatory neurons. In our models the integral over the excitatory STDP curve is negative. Like rate
homeostasis, this restricts the maximal average excitatory spike rates. In contrast to rate homeostasis,
it also allows for smaller weights, for example in our networks with assembly and background neurons.
We note that the fast weight homeostasis in [12] is implemented such that it also only constrains the
maximal summed input and output weight of a neuron. We further note that highly diverse average
spike rates are observed in biology [148].

Our model networks generate irregular, probabilistic spiking activity. This is in agreement with
experimentally observed irregular spiking in the cortex. In our models the irregularity of spiking
is guaranteed by the usage of a Poisson spiking neuron model. In biological neural networks, it is
usually assumed to result from the input fluctuation-driven spiking dynamics of individual neurons,
which occur when there is an overall balance of excitatory and inhibitory input. When the excitatory
synaptic weights are plastic, as in our model, this balance might be maintained by inhibitory plasticity
[14, 123, 133, 134].

We observe that our networks are able to maintain prominent overlap structures, where each neuron
belongs to more than one assembly. The assembly structure is saturated and remains stable. In
particular, additionally increased connections are sparse and transient. Previous related works have not
shown similarly prominent overlap structures [12–14, 123, 124, 134, 137], perhaps because the mostly
assumed fast homeostatic normalization induces a stronger competition between the assemblies. This
may force neurons to decide for one assembly. Networks with overlaps allow a more economic use of
neural resources, in the sense that more assemblies of a specific size can be stored, in our example
network twice as many as without overlaps. The overlap between assemblies in our simulations is
about 5%. This agrees with the overlap estimated for assemblies representing associated concepts in
the brain [143]. The overlap of randomly chosen assemblies is smaller, about 1%.

Our model networks can stably maintain assemblies in front of a background of neurons that are
not part of any assembly. Such a scenario might be particularly relevant for early development when
not many memories have been stored yet. Previous related works usually assume that the entire
space is tiled by assemblies [12–14, 123, 124, 134]. The reason may be similar as for the prominent
overlap structures, namely that fast homeostatic plasticity has a strong tendency to force neurons into
assemblies. Ref. [137] shows assemblies in front of a background of weakly connected neurons in
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networks with structural plasticity and multiple synapses per connection between neurons.
The assemblies in our networks can drift. Such assembly drift may explain the experimentally

observed drift of memory representations in the brain [19]. In our model, assemblies drift by
exchanging neurons. This exchange can on the one hand originate from sufficiently large synaptic
weight fluctuations, as in [13]. These fluctuations occur in our models for sufficiently large learning
rates due to the noisy spiking. On the other hand, our models also show a novel neuron exchange
(and thus drift) mechanism: For high spontaneous rate, each neuron belongs to one assembly. If the
spontaneous rate of a neuron in the network then transiently drops, the synaptic weights with another
assembly increase, such that the neuron belongs to two assemblies. When the intrinsic rate recovers,
the synaptic weights with one of the assemblies weaken. This may eliminate the strong weights with
the assembly that the neuron originally belonged to and thus induce a switch to the other assembly.
The observation suggests a new general mechanism for representational drift in the brain: Transient
(or persistent) changes in single neuron properties may lead to changes in the synaptic weights. These
in turn induce a change in the features represented by the neuron. The changes in the synaptic weights
and the representation may thereby be much longer lasting than the changes in the intrinsic neuronal
properties.

Since in the aging brain the overall connectivity decreases [20, 21], we have explored the impact of
a such a decrease on the assemblies in our model networks. We observe that the size of assemblies is
inversely related to the connection probability in the network. We expect that a similar relation can be
observed rather generally, for example also in model networks where the assemblies are stabilized
by fast homeostasis. In particular, sparser networks should, all other parameters being equal, lead to
larger assemblies that are activated during recall. This is consistent with the observation that neural
activity for the same task is stronger in aged individuals [149], where the neural networks are more
sparsely connected. An increased assembly size and the resulting stronger activity during reactivation
might also explain why episodic memories are experienced more vividly in elderly subjects [150].
In our model networks, we observe that assemblies merge to larger ones when networks become
increasingly sparse. Such mergers might explain why episodic memories become less detailed in the
aging brain [150, 151].

4.5 Appendices

4.5.A Time-averaged weight change in fully connected assemblies

The correlation function of our Poisson model neurons reads in frequency space

�̃� (𝜔) = �̃�0(𝜔) + �̃�1(𝜔) = 2𝜋𝛿(𝜔)𝑟𝑟𝑇 +
(
1 − �̃�(𝜔)𝑊

)−1
𝐷

(
1 − �̃�(−𝜔)𝑊𝑇

)−1
, . (4.22)

For a homogeneously coupled assembly of 𝑁 neurons with recurrent weights �̂� and identical
spontaneous rates 𝜆0, all rates 𝑟𝑖 are the same,

𝑟𝑖 =: 𝑟 =
𝜆0

1 − (𝑁 − 1)�̂� , . (4.23)
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This fixes the first right hand side term of Eq. (4.22) and 𝐷 = 𝑟1. 𝑊 has zeros on the diagonal and
otherwise entries �̂�. The second right hand side term of Eq. (4.22) can thus be written as

�̃�
1(𝜔) =

(
1 − �̃�(𝜔)𝑊

)−1
𝐷

(
1 − �̃�(−𝜔)𝑊𝑇

)−1

= 𝑟
(
𝛼+1 + 𝛽+𝐽𝑁

)−1 (
𝛼−1 − 𝛽+𝐽𝑁

)−1
, (4.24)

where 𝐽𝑁 is the 𝑁 ×𝑁 matrix of ones, 𝛼± = 1+ �̂��̃�(±𝜔), and 𝛽± = −�̂��̃�(±𝜔). We obtain the inverses
of the matrices by assuming that they have the same general structure, that is using the ansatz

(𝛼±1 + 𝛽±𝐽𝑁 )
−1

= 𝛾±1 + 𝛿±𝐽𝑁 . (4.25)

This yields

𝛾± =
1
𝛼±

=
1

1 + �̂��̃�(±𝜔) , (4.26)

𝛿± =
−𝛽±

𝛼±(𝛼± + 𝑁𝛽±)
=

�̂��̃�(±𝜔)
(1 + �̂��̃�(±𝜔)) (1 − �̂��̃�(±𝜔) (𝑁 − 1)) . (4.27)

In terms of 𝛾± and 𝛿±, 𝐶
1(𝜔) reads

�̃�
1(𝜔) = 𝑟

(
𝛾+1 + 𝛿+𝐽𝑁

) (
𝛾−1 + 𝛿−𝐽𝑁

)
= 𝑟

(
𝛾+𝛾−1 + 𝛾+𝛿−𝐽𝑁 + 𝛾−𝛿+𝐽𝑁 + 𝑁𝛿+𝛿−𝐽𝑁

)
. (4.28)

Since there are no autapses in the network, we are only interested in the off-diagonal elements,

�̃�
1
𝑖≠ 𝑗 (𝜔) = 𝑟

(
𝛾+𝛿− + 𝛾−𝛿+ + 𝑁𝛿+𝛿−

)
. (4.29)

The Fourier transform of the synaptic kernel, Eq. (4.2), is

�̃�(𝜔) = 1
1 + 𝑖𝜔𝜏s

, (4.30)

such that

�̃�
1
𝑖≠ 𝑗 (𝜔) = 𝑟

(
�̂�(1 + 𝑖𝜔𝜏s) (1 − 𝑖𝜔𝜏s)

(1 + 𝑖𝜔𝜏s + �̂�) (1 − 𝑖𝜔𝜏s + �̂�) (1 − 𝑖𝜔𝜏s − (𝑁 − 1)�̂�) +

+
�̂�(1 − 𝑖𝜔𝜏s) (1 + 𝑖𝜔𝜏s)

(1 − 𝑖𝜔𝜏s + �̂�) (1 + 𝑖𝜔𝜏s + �̂�) (1 + 𝑖𝜔𝜏s − (𝑁 − 1)�̂�) +

+
𝑁�̂�

2(1 + 𝑖𝜔𝜏s) (1 − 𝑖𝜔𝜏s)
(1 + 𝑖𝜔𝜏s + �̂�) (1 + 𝑖𝜔𝜏s − (𝑁 − 1)�̂�) (1 − 𝑖𝜔𝜏s + �̂�) (1 − 𝑖𝜔𝜏s − (𝑁 − 1)�̂�)

)
.

(4.31)

For the Fourier transform of the plasticity window, Eq. (4.5), we have

�̃� (𝜔) =
2𝐴p𝜏p

(1 + 𝑖𝜏p𝜔) (1 − 𝑖𝜏p𝜔)
+

2𝐴d𝜏d
(1 + 𝑖𝜏d𝜔) (1 − 𝑖𝜏d𝜔)

= �̃� (−𝜔). (4.32)
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Inserting Eqs. 4.22 and 4.23 into Eq. (4.8) gives

Δ𝑊𝑖 𝑗 (𝑁) =
1

2𝜋

∫ ∞

−∞
d𝜔 �̃�𝑖 𝑗 (𝜔)�̃� (−𝜔)

=
𝑓0𝜆

2
0

(1 − (𝑁 − 1)�̂�)2
+ 1

2𝜋

∫ ∞

−∞
d𝜔 �̃�1

𝑖 𝑗 (𝜔)�̃� (−𝜔). (4.33)

Inserting Eqs. 4.23, 4.31 and 4.32 into Eq. (4.33) results in

1
2𝜋

∫ ∞

−∞
d𝜔 �̃�1

𝑖 𝑗 (𝜔)�̃� (−𝜔) =
1

2𝜋

∫ ∞

−∞
d𝜔

(
2𝜋

�̂�(1 + 𝑖𝜔𝜏s) (1 − 𝑖𝜔𝜏s)
(1 + 𝑖𝜔𝜏s + �̂�) (1 − 𝑖𝜔𝜏s + �̂�) (1 − 𝑖𝜔𝜏s − (𝑁 − 1)�̂�) +

+
�̂�(1 − 𝑖𝜔𝜏s) (1 + 𝑖𝜔𝜏s)

(1 − 𝑖𝜔𝜏s + �̂�) (1 + 𝑖𝜔𝜏s + �̂�) (1 + 𝑖𝜔𝜏s − (𝑁 − 1)�̂�) +

+
𝑁�̂�

2(1 + 𝑖𝜔𝜏s) (1 − 𝑖𝜔𝜏s)
(1 + 𝑖𝜔𝜏s + �̂�) (1 + 𝑖𝜔𝜏s − (𝑁 − 1)�̂�) (1 − 𝑖𝜔𝜏s + �̂�) (1 − 𝑖𝜔𝜏s − (𝑁 − 1)�̂�)

)
×

×
(

2𝐴p𝜏p

(1 + 𝑖𝜏p𝜔) (1 − 𝑖𝜏p𝜔)
+

2𝐴d𝜏d
(1 + 𝑖𝜏d𝜔) (1 − 𝑖𝜏d𝜔)

)
𝜆0

1 − (𝑁 − 1)�̂� .

(4.34)

This integral can be straightforwardly computed using the residue theorem. Together with the zeroth-
order term given by Eq. (4.33) we obtain the following closed-form expression for the time-averaged
weight change:

Δ𝑊𝑖 𝑗 (𝑁) =
2𝜆2

0(𝐴p𝜏p + 𝐴d𝜏d)
(1 − (𝑁 − 1)�̂�)2

+

+
𝜆0𝐴p𝜏p�̂�

[
(2 + (2 − 𝑁)�̂�)𝜏p + (2 − (𝑁 − 2)�̂� − (𝑁 − 1)�̂�2)𝜏s

]
(1 + �̂�) (1 − (𝑁 − 1)�̂�)2(𝜏s + (1 + �̂�)𝜏p) (𝜏s + (1 − (𝑁 − 1)�̂�)𝜏p)

+

+
𝜆0𝐴d𝜏d�̂�

[
(2 + (2 − 𝑁)�̂�)𝜏d + (2 − (𝑁 − 2)�̂� − (𝑁 − 1)�̂�2)𝜏s

]
(1 + �̂�) (1 − (𝑁 − 1)�̂�)2(𝜏s + (1 + �̂�)𝜏d) (𝜏s + (1 − (𝑁 − 1)�̂�)𝜏d)

.

(4.35)

72



4.5 Appendices

4.5.B Asymptotic behavior of motif contributions to time-averaged plasticity

We first show that the series expansion Eq. (4.11) of the time-averaged weight change in a homoge-
neously connected assembly simplifies to

Δ𝑊𝑖 𝑗 = 𝑓0𝑟𝑖𝑟 𝑗 +
∑︁
𝛼,𝛽

𝑓𝛼𝛽

∑︁
𝑚

𝑟𝑚(𝑊
𝛼)𝑖𝑚(𝑊

𝛽) 𝑗𝑚

= 𝑓0𝑟
2 + 𝑟

𝑁

∞∑︁
𝑘=1

𝑓𝑘

(
(𝑁 − 1)𝑘 − (−1)𝑘

)
�̂�

𝑘
, (4.36)

where
𝑓𝑘 :=

∑︁
𝛼+𝛽=𝑘

𝑓𝛼𝛽 . (4.37)

In homogeneous assemblies we have 𝑟𝑖 = 𝑟 and𝑊 = �̂�(𝐽𝑁 − 1). Eq. (4.8) thus yields

Δ𝑊𝑖 𝑗 = 𝑓0𝑟
2 + 𝑟

∑︁
𝛼,𝛽

𝑓𝛼𝛽
(
𝐽𝑁 − 1

)𝛼+𝛽
𝑖 𝑗

�̂�
𝛼+𝛽

= 𝑓0𝑟
2 + 𝑟

∞∑︁
𝑘=1

𝑓𝑘
(
𝐽𝑁 − 1

) 𝑘
𝑖 𝑗
�̂�

𝑘
. (4.38)

We observe that 𝐽𝑚𝑁 = 𝑁
𝑚−1

𝐽𝑁 for 𝑚 ≥ 1 while 𝐽0
𝑁 = 1. With this the binomial in Eq. (4.38) can be

expanded to

(
𝐽𝑁 − 1

) 𝑘
=

𝑘∑︁
𝑙=0

(
𝑘

𝑙

)
𝐽
𝑙
𝑁 (−1)

𝑘−𝑙

=

𝑘∑︁
𝑙=0

(
𝑘

𝑙

)
𝑁

𝑙−1
𝐽𝑁 (−1)𝑘−𝑙 − (−1)𝑘

𝑁
𝐽𝑁 + (−1)

𝑘
. (4.39)

We are again interested only in off-diagonal elements:

(
𝐽𝑁 − 1

) 𝑘
𝑖≠ 𝑗

=

𝑘∑︁
𝑙=0

(
𝑘

𝑙

)
𝑁

𝑙−1(−1)𝑘−𝑙 − (−1)𝑘

𝑁

=
(𝑁 − 1)𝑘 − (−1)𝑘

𝑁
. (4.40)

Inserting this into Eq. (4.38) gives Eq. (4.36).
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We now show that
lim
𝑘→∞

∑︁
𝛼+𝛽=𝑘

𝑓𝛼𝛽 =
𝑓0

2𝜏s
. (4.41)

We start by using Eq. (4.12), to write∑︁
𝛼+𝛽=𝑘

𝑓𝛼𝛽 =
1

2𝜋

∫ ∞

−∞
d𝜔 �̃� (−𝜔)

∑︁
𝛼+𝛽=𝑘

�̃�(𝜔)𝛼�̃�(−𝜔)𝛽 . (4.42)

The sum in the integrand can be rewritten using Eq. (4.30),∑︁
𝛼+𝛽=𝑘

�̃�(𝜔)𝛼�̃�(−𝜔)𝛽 =

𝑘∑︁
𝛼=0

�̃�(𝜔)𝛼�̃�(−𝜔)𝑘−𝛼

=

𝑘∑︁
𝛼=0

(
1

1 + 𝑖𝜔𝜏s

)𝛼 (
1

1 − 𝑖𝜔𝜏s

) 𝑘−𝛼
=

𝑘∑︁
𝛼=0

(
1 − 𝑖𝜔𝜏s
1 + 𝑖𝜔𝜏s

)𝛼 (
1

1 − 𝑖𝜔𝜏s

) 𝑘
=

1 −
(

1−𝑖𝜔𝜏s
1+𝑖𝜔𝜏s

) 𝑘+1
1 −

(
1−𝑖𝜔𝜏s
1+𝑖𝜔𝜏s

) (
1

1 − 𝑖𝜔𝜏s

) 𝑘
=
𝜔𝜏s − 𝑖
2𝜔𝜏s

(
1

1 − 𝑖𝜔𝜏s

) 𝑘
+
𝜔𝜏s + 𝑖
2𝜔𝜏s

(
1

1 + 𝑖𝜔𝜏s

) 𝑘
. (4.43)

We substitute 𝜔′ := 𝜔𝜏s and insert Eq. (4.43) into Eq. (4.42):∑︁
𝛼+𝛽=𝑘

𝑓𝛼𝛽 =
1

2𝜋𝜏s

∫ ∞

−∞
d𝜔′ �̃� (−𝜔′/𝜏s)

(
𝜔
′ − 𝑖

2𝜔′

(
1

1 − 𝑖𝜔′
) 𝑘
+ 𝜔

′ + 𝑖
2𝜔′

(
1

1 + 𝑖𝜔′
) 𝑘)

=
1

2𝜋𝜏s

∫ ∞

−∞
d𝜔′

∫ ∞

−∞
d𝑡 e

𝑖𝜔
′
𝑡

𝜏s 𝐹 (𝑡)
(
𝜔
′ − 𝑖

2𝜔′

(
1

1 − 𝑖𝜔′
) 𝑘
+ 𝜔

′ + 𝑖
2𝜔′

(
1

1 + 𝑖𝜔′
) 𝑘)

=
1

2𝜋𝜏s

∫ ∞

−∞
d𝑡 𝐹 (𝑡)

∫ ∞

−∞
d𝜔′ e

𝑖𝜔
′
𝑡

𝜏s

(
𝜔
′ − 𝑖

2𝜔′

(
1

1 − 𝑖𝜔′
) 𝑘
+ 𝜔

′ + 𝑖
2𝜔′

(
1

1 + 𝑖𝜔′
) 𝑘)

. (4.44)

In the second line we employed the definition of the Fourier transform to substitute �̃� (−𝜔/𝜏s).
(Alternatively, one could use Plancherel’s theorem and the inverse Fourier transform of 4.43 to obtain
the third line.) The integrand of the inner integral of Eq. (4.44) has poles at 𝜔′ = ±𝑖 (the singularity at
𝜔
′
= 0 is removable). For 𝑡 > 0 (𝑡 < 0) we can compute the integral using a contour over the upper
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(lower) half complex plane. The residue theorem then yields

1
2𝜋𝜏s

∫ ∞

−∞
d𝑡 𝐹 (𝑡)

∫ ∞

−∞
d𝜔′ e

𝑖𝜔
′
𝑡

𝜏s

(
𝜔
′ − 𝑖

2𝜔′

(
1

1 − 𝑖𝜔′
) 𝑘
+ 𝜔

′ + 𝑖
2𝜔′

(
1

1 + 𝑖𝜔′
) 𝑘)

= − 𝑖
𝜏s

∫ 0

−∞
d𝑡 𝐹 (𝑡) Res

(
e
𝑖𝜔
′
𝑡

𝜏s
𝜔
′ − 𝑖

2𝜔′

(
1

1 − 𝑖𝜔′
) 𝑘
,−𝑖

)
+ 𝑖

𝜏s

∫ ∞

0
d𝑡 𝐹 (𝑡) Res

(
e
𝑖𝜔
′
𝑡

𝜏s
𝜔
′ + 𝑖

2𝜔′

(
1

1 + 𝑖𝜔′
) 𝑘
, 𝑖

)
(4.45)

We use that

Res(𝑔, 𝑐) = 1
(𝑘 − 1)! lim

𝑧→𝑐

d𝑘−1

d𝑧𝑘−1 ((𝑧 − 𝑐)
𝑘
𝑔(𝑧)) (4.46)

if 𝑔(𝑧) has a kth order pole at 𝑧 = 𝑐. For 𝛼 + 𝛽 = 𝑘 + 1 the residue at 𝜔′ = +𝑖 in Eq. (4.45) thus
becomes

Res

(
e
𝑖𝜔
′
𝑡

𝜏s
𝜔
′ + 𝑖

2𝜔′

(
1

1 + 𝑖𝜔′
) 𝑘+1

, 𝑖

)
=

1
𝑘!

lim
𝜔
′→𝑖

d𝑘

d𝜔′𝑘

((
𝜔
′ − 𝑖

) 𝑘+1 (
1

1 + 𝑖𝜔′
) 𝑘+1 (

1
2
+ 𝑖

2𝜔′

)
e
𝑖𝜔
′
𝑡

𝜏s

)
=

1
𝑖
𝑘+1
𝑘!

lim
𝜔
′→𝑖

d𝑘

d𝜔′𝑘

((
1
2
+ 𝑖

2𝜔′

)
e
𝑖𝜔
′
𝑡
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Similarly for the residue at 𝜔′ = −𝑖 we obtain
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Inserting Eq. (4.47) and Eq. (4.48) into Eq. (4.45) gives
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We then take the limit 𝑘 →∞:
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The first limit vanishes as long as 𝐹 (𝑡) goes to zero polynomially or faster for large |𝑡 |. This is
guaranteed if 𝐹 (𝑡) is integrable over (−∞,∞), which we already implicitly assume for example to do
the Fourier transform. The limit of the power series in the second term is the exponential function.
(Limit and integral are there interchangeable due to the dominated convergence theorem.) From
Eq. (4.51) we thus obtain the final result:
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To develop an intuition about this result, we observe that the inner integral of Eq. (4.44) is up to a
constant factor the inverse Fourier transformation of

∑
𝛼+𝛽=𝑘 �̃�(𝜔)

𝛼
�̃�(−𝜔)𝛽. Using its linearity we

may apply the inverse Fourier transform to each summand individually. This yields 𝑎(𝑡) convolved
𝛼 times with itself and with 𝑎(−𝑡) convolved 𝛽 times with itself. Due to Eq. (4.2) this equals the
probability distribution of a sum of 𝛼 exponentially distributed independent stochastic variables with
mean 𝜏𝑠 minus the sum of 𝛽 stochastic variables of the same type. In other words, we have the
probability distribution of a spike time occurring at the end of a cascade of 𝛼 spikes with exponentially
distributed inter-spike intervals minus the time of a spike occurring at the end of a similar cascade
of 𝛽 spikes. This reflects the fact that the term 𝑓𝛼𝛽 covers the impact of the motif where a neuron
evokes a spike in the pre- and postsynaptic neurons after spike cascades of length 𝛽 and 𝛼. The
probability distribution has mean (𝛼 − 𝛽)𝜏𝑠 and standard deviation

√
𝑘𝜏𝑠. The standard deviations

of all distributions are thus identical and neighboring distributions have distance 2𝜏𝑠. According to
the central limit theorem, for large 𝑘 the distributions approximate normal distributions. For 𝛼 and 𝛽
adding to the same 𝑘 , these are equidistantly shifted but otherwise identical. With increasing 𝑘 they
broaden, such that their superposition forms a plateau. The increase in overlap thereby compensates
the decrease in the distribution heights. The number of distributions increases with increasing 𝑘 . The
added distributions, however, do not lead to a non-compensatory increase of the superposition in the
relevant center where it overlaps with 𝐹. This is because the added distributions initially do not reach
the center, as their mean scales with 𝑘 while their width scales only with

√
𝑘 .
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4.5.C Parameters
𝑁 �̂� 𝜏s 𝐴p 𝐴d 𝜏p 𝜏d 𝜇 𝜆0

Fig. 4.2 120 0.04 0.01 s 0.08 -0.0533 0.025 s 0.05 s 0.07 0.15 Hz
Fig. 4.3a 0.01 s 0.08 -0.0533 0.025 s 0.05 s 0.15 Hz
Fig. 4.4 80 0.026 0.01 s 0.08 -0.066 0.035 s 0.05 s 0.07 0.15 Hz
Fig. 4.5 120 0.017 0.01 s 0.08 -0.044 0.022 s 0.055 s 0.02 0.15 Hz
Fig. 4.6a 60 0.0158 0.01 s 0.08 -0.044 0.022 s 0.055 s 0.021 0.15 Hz
Fig. 4.6b 60 0.024 0.01 s 0.08 -0.0533 0.025 s 0.05 s 0.045 0.15 Hz
Fig. 4.7 190 0.018 0.01 s 0.08 - 0.042 0.026 s 0.065 s 0.017 0.15 Hz
Fig. 4.8a 72 0.056 0.01 s 0.08 -0.0533 0.025 s 0.05 s 0.2 Hz
Fig. 4.8b 120 0.024 0.01 s 0.08 -0.0533 0.025 s 0.05 s 0.05 0.15 Hz
Fig. 4.9a 0.01 s 0.08 -0.0533 0.025 s 0.05 s 0.15 Hz
Fig. 4.9b 120 0.058 0.01 s 0.08 -0.0533 0.025 s 0.05 s 0.07 0.15 Hz
Fig. 4.9c 150 0.01 s 0.08 -0.0533 0.025 s 0.05 s 0.2 Hz
Fig. 4.10 80 0.024 0.01 s 0.08 -0.0533 0.025 s 0.05 s 0.055 0.15 Hz
Fig. 4.11 0.08 -0.0533 0.025 s 0.05 s
Fig. 4.12 72 0.056 0.01 s 0.08 -0.0533 0.025 s 0.05 s 0.2 Hz

Fig. 4.2: The networks starts with an initially random connectivity where each weight is independently
and uniformly drawn from [0, 0.25�̂�].
Fig. 4.4: The initial weight matrix has an assembly of neurons 1-20 interconnected with𝑊𝑖 𝑗 = �̂� and
background connectivity as in Fig. 4.2. During the stimulation period neurons 21-40 are given input
from a single source of Poisson spiking with 𝜆 = 4.18 Hz and input weights 𝑤in = 10�̂�.
Fig. 4.6a: The neuron with index 10 has spontaneous rate 𝜆0 = 0.08 Hz.
Fig. 4.6b: The neuron with index 10 has spontaneous rate 𝜆0 = 0.01 Hz.
Fig. 4.8a: The initial weight matrix is as in Fig. 4.2 but with weights drawn from [0, 0.15�̂�].
Fig. 4.8b: Every 3 × 105 s a neuron changes its spontaneous rates with probability 𝑝 = 0.03 to
𝜆
′
0 = 0.03 Hz for 3 × 105 s. For the last 3 × 105 s of the simulation all spontaneous rates are kept at
𝜆0 = 0.15 Hz.
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4.5.D Additional figures

Figure 4.10: Asymptotic behavior of sums 𝑓𝑘 of motif contributions. (a) Convergence of 𝑓𝑘 to 𝑓0
2𝜏s

for high
orders of 𝑘 . (b) Sums of convolutions of the synaptic current functions 𝐴𝑘 (𝑡) (see Eq. (4.50)), for different
values of 𝑘 . As discussed in section S.2, these curves can be interpreted as resulting from the superposition of
distributions of time-lags for spike cascades of total length 𝑘 affecting pre- and postsynaptic neurons (see (c)).
For high orders, 𝐴𝑘 (𝑡) becomes a plateau of height 1

2 . The learning window (blue, a.u.), is shown to illustrate
the time-scales. (c) Probability distributions of the time lags Δ𝑡 between the last spikes of two spike-cascades
of different lengths 𝛽 and 𝛼. The total cascade length 𝑘 = 𝛼 + 𝛽 equals 5 spikes (upper subpanel) or 20
spikes (lower subpanel). For larger 𝑘 the distributions have larger variance and are more spread out. Their
superpositions therefore assume the widening plateau shapes displayed in (b).
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Figure 4.11: A network with preexisting assemblies, background neurons and a neuron that is part of two
assemblies, learns a new assembly. The figure displays the weight matrices of the initial network configuration
(left hand side), after stimulation (middle) and after a longer time (right hand side). The stimulation of neurons
1-20 lasts for 300 s with the same stimulation protocol as in Fig. 4. The initially strong connections of the
“overlap neuron” (neuron 10) with two other assemblies experience depression after the neuron is recruited to
the new assembly (middle). Subsequently it loses its connections to one of the assemblies it previously belonged
to (right hand side).

Figure 4.12: Drifting assembly dynamics. (a) The network with drifting assemblies of Fig. 4.8a is simulated
over a longer time. We choose at five time points (𝑡 = 1.0× 106 s, 1.4× 106 s, 1.8× 106 s, 2.2× 106 s, 2.6× 106 s)
an assembly as a reference and note the neurons forming it. Thereafter, we track the sum of weights between
these neurons in the present, future and past weight matrices. For sufficiently long temporal distances this sum
approximately reaches chance level (dashed black line, for an average size assembly), which we define as the
average of the sum of interconnections in groups of randomly chosen neurons. We can therefore conclude that
assemblies indeed completely drift, that is, there is no constant “stable core” set of neurons in an assembly. (b)
Tracking of a single drifting assembly over time. At 𝑡0 = 1× 106 s we choose assembly 1 (of the four assemblies)
and set 𝑡 = 𝑡0. We then compute the sum of the weights at time 𝑡 + Δ𝑡 (Δ𝑡 = 2 s) between the neurons that
formed assembly 1 at time 𝑡, to see if they are still strongly connected. We repeat the procedure using the actual
assembly 1 at the new time 𝑡 = 𝑡0 + Δ𝑡 (which may have exchanged individual neurons compared to the one at
𝑡0). In particular, we again compute the weights between its neurons at 𝑡 + Δ𝑡 and so on. We find that the sum
of weights stays at a consistently high level. In other words, neurons that form assembly 1 at a time 𝑡 are still
strongly connected at 𝑡 + Δ𝑡. The change of the assembly is therefore gradual; most neurons that are part of the
assembly at 𝑡 are still part of it at 𝑡 + Δ𝑡. This implies that the assembly can be tracked over time, despite the
complete drift.
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CHAPTER 5

Summary and outlook

In this thesis, we have dealt with different aspects of stability in balanced state networks in which
neurons fire irregularly and asynchronously. In Chapter 3 we addressed the subject of dynamical
stability, which studies the response of dynamical systems to small perturbations. Previous studies
have proven, numerically and analytically, that networks of pulse-coupled inhibitory LIF neurons
exhibit a negative leading Lyapunov exponent and that introducing recurrent excitatory interactions
leads to a gradual shift to chaos [8, 9]. These studies further show that the stability of these networks
is due to the concave shape of the rise function of LIF neurons. In biological neurons, however, the
membrane potential accelerates toward the firing threshold at a certain level. We have studied the
opposite case of completely convex rise functions, introducing the XIF neuron. These provide a
mathematically tractable model of neurons whose membrane potential is balanced at the level where
it accelerates toward spiking. We have achieved this by reversing the sign of the leak current of
LIF neurons and by introducing a simple voltage dependence of the synapse. We have obtained the
membrane potential distributions and firing rates of both LIF and XIF neurons by employing and
adapting a mean-field theoretical approach that assumes Poissonian inputs and takes into account
the finite size of the instantaneous postsynaptic potentials [60, 86, 96, 97]. We applied the results to
obtain neuron parameters that lead to homogeneous firing rates; using these parameters, we created
mixed networks of inhibitory LIF and XIF neurons with constant external drive that exhibit the
characteristic irregular spiking of the balanced state. We have then developed another mean-field
approach to estimate the Lyapunov exponents from first principles using only the firing rates and
the neuron parameters. Our mean field estimate is in good agreement with the Lyapunov spectrum
obtained from numerical simulation. We find that, setting aside the zero Lyapunov exponent, for each
XIF neuron in the network there is one positive Lyapunov exponent. This means that already one
XIF neuron is enough to render an otherwise stable network chaotic, in contrast to the introduction
of recurrent excitatory connections, which only leads to a gradual transition to chaos. This sudden
transition to chaos is a consequence of the fully convex rise function of the XIF neuron, for which
nothing can realistically counteract the growth of perturbations. The mean field estimate of the
Lyapunov exponents depends only on the additional time between a neuron’s spikes caused by the
recurrent inhibition and the signs and magnitudes of the leak currents. The LEs are, therefore, largely
independent of the collective dynamics but rather reflect the properties of individual neurons. This
implies, in particular, that the typical perturbation growth rate does not change with network size. Due
to the linear subthreshold dynamics, the mean-field prediction of the Lyapunov exponents does not
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depend on the statistics of the incoming spike trains. Therefore, the result should also apply to LIF/XIF
networks that are not in the balanced state. Furthermore, we have established the leak time constants
as the respective upper and lower bounds for the Lyapunov exponents in our model. While we have
only studied linear subthreshold dynamics, we expect that for general networks with purely concave
and convex rise functions, the rule of one positive Lyapunov exponent per convex neuron still holds.
Our analysis of the Lyapunov exponents has proven that the neuron type composition of a network can
have dramatic effects on its phase space structure. In addition, our model provides a simple recipe for
a dynamical system of arbitrary dimension and with an arbitrary degree of hyperchaos.

We have, furthermore, computed and analyzed the covariant Lyapunov vectors of our networks,
confirming our intuitions used in the mean-field approach. The CLVs additionally have allowed us
to apply the properties of mixed networks to computations with precise spike times. For this we
have used a mixed network as a dynamical reservoir and trained its outgoing weights using Finite
Precision Learning [61] to produce desired spike patterns, depending on input and context. Notably,
our approach does not treat the reservoir as monolithic, as reservoir computing usually does, but
explicitly makes use of stable and unstable phase space directions, facilitated by the presence of
the two different neuron types. This scheme allows for computations that ignore input variations in
irrelevant directions while magnifying relevant ones. While stable and unstable directions, in general,
depend on the state of the system, in our model, they are always mostly aligned to the corresponding
neuron populations. Precise computation of the CLV, which requires knowledge of future and past
trajectories, may therefore not be necessary to take advantage of the different sensitivities. It would be
interesting to see if the brain, too, can distinguish between relevant and irrelevant input directions this
way. In addition to a possible implementation in the brain, our computational scheme may also be
interesting for computations with spikes on neuromorphic hardware.

In Chapter 4, we investigated the stability of memory assemblies in balanced state networks. In
contrast to Chapter 3, here we take into account that network dynamics cause changes to the network’s
structure. We have introduced an STDP rule that supports the emergence, learning, maintenance,
drift, and growth of assemblies without the need for implausible homeostatic mechanisms. It is
characterized by a negative integral of the STDP window, which means that a synapse connecting two
neurons with uncorrelated spiking will, on average, experience depression. We have analyzed the
effects of this plasticity rule on networks of Hawkes neurons and identified why assembly growth
ceases past a certain assembly size. This is due to two effects, both related to the negative integral of
the STDP window: The first effect is increased firing rates in larger assemblies leading to an increase
in uncorrelated spiking. The second effect is longer cascades of spikes within larger assemblies,
spreading out the distribution of time gaps of spike pairs within these assemblies.

With our STDP model, networks can self-organize into a structure of assemblies from initially
unstructured connectivity, which to our knowledge, has not been achieved before without fast
homeostatic plasticity. The formation of assemblies not triggered by external input may occur early in
brain development, as evidenced by observations in the optic tectum of larval zebrafish.

We have further demonstrated the creation of assemblies within networks of weakly connected
neurons through correlated external input. In our model, weakly connected neurons are, thus, a
suitable substrate for learning new memories. Notably, unaffected neurons stay weakly connected,
which would not be possible if homeostasis caused summed weights of neurons to be normalized to a
fixed value.

Our model can overcome the difficulty of creating and maintaining stable overlaps between
assemblies. In doing so, we have contributed to the relatively unexplored relationship of STDP
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with memory associations. Previous theoretical work has studied overlapping assemblies and their
relationship with associative memory [143]; it has established the minimum overlap needed for an
assembly activation to trigger activation of an associated assembly and the maximum overlap, that still
allows for the distinction between two assemblies. We have demonstrated mechanisms that stabilize
associated assemblies by preventing plasticity during background firing from causing overlaps to fade
away or completely merge: something that seems to occur in models where assemblies are stabilized
by strong homeostatic competition between weights.

We have further proven that the drifting of assemblies as proposed in [13] is not reliant on strict
competition between weights. Representations in [13] drift because of synaptic changes unrelated
to STDP [146] and due to weight fluctuations caused by the irregular dynamics at sufficiently high
learning rates. We demonstrate drift with the latter mechanism and, using the insights gained in
our study of overlapping assemblies, propose a novel drift mechanism that relies on changes in the
intrinsic firing rates of neurons, causing the generation of temporary overlaps.

Furthermore, we have studied our model’s dependence on the overall sparsity of connections. Our
results suggest that when the number of synaptic connections in the brain decreases, as observed
during aging [20, 21], the size of the neuron assemblies underlying memories increases. The larger
assembly sizes may render memories in the aging brain more robust and prominent but also less
specific.

For simplicity and following previous work, we have used a symmetric pairwise STDP rule.
Symmetric STDP has been discovered in the CA3 region of the hippocampus [36] or the motor cortex
[140]. Since the negative integral of our STDP rule is the primary reason for assembly stability, we
are confident that one can obtain similar results with asymmetric or triplet STDP. Likewise, while
we focused on excitatory neurons in this part, we expect our results to also hold if we explicitly
include inhibitory neurons. In fact, inhibitory plasticity may be needed to some degree to maintain
the balanced state. While we have used the linear Hawkes model, which is especially suited to study
the effects of STDP analytically, we expect that our results should qualitatively also hold for general
neuron models as long as the balanced state is maintained.

Our work in Chapter 4 makes several predictions for future experiments: First, we predict that
homeostatic plasticity and heterosynaptic plasticity suitable to stabilize assemblies will not be
experimentally found in networks generating assemblies. Second, impairment of the experimentally
found slow homeostatic plasticity and fast heterosynaptic interactions need not abolish the ability of
networks to store assemblies. Third, assemblies representing memories may, especially in ontogenesis,
exist in front of a background of non-assembly neurons. Finally, we predict that assemblies in the
brains of older individuals will be larger on average compared to younger ones.

In both parts of this thesis, we have studied neural networks in the balanced state with particular
attention given to stability and the tradeoffs and limitations that come with it. While the brain needs to
be able to stably represent information in order to process or store it, this stability may often come
at the cost of sensitivity and plasticity. Maneuvering these dilemmas is a nontrivial task; indeed,
stability-plasticity dilemmas are an ongoing challenge for the study of both biological [152, 153] and
artificial [154–156] neural networks. The balanced state adds an additional layer of difficulty to this.
On the one hand, it seems difficult to encode information via precise spike times if spiking activity is
seemingly random, on the other hand, the irregular activity interacts with synaptic plasticity.

In Chapter 3 we examined the dilemma of the brain needing to be sensitive to variations in incoming
information while at the same time being stable to random noise. For this, we have studied the
dynamical stability and phase space structure of mixed networks with two dynamically distinct neurons.
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We have shown a caveat to the previously made observation that inhibitory networks of LIF neurons
tend to be stable, that is, nonchaotic: this stability can be broken by just one neuron with purely convex
subthreshold dynamics. On the other hand, we found that a mixed neural network is able to spatially
compartmentalize stability and sensitivity, such that it is sensitive to some inputs while generalizing
others.

In contrast to the spiking patterns we studied in Chapter 3, in Chapter 4 we investigated the stability
of synaptic weight configurations. Here we face a different sensitivity-stability dilemma: on the one
hand, plasticity is needed to encode new memories, on the other hand, it needs to stably maintain old
ones, even in the presence of irregular background activity. We have demonstrated a solution to this
dilemma that does not rely on unrealistically fast homeostatic plasticity mechanisms. Furthermore, we
have demonstrated the stability of overlaps between assemblies; here again, great care is needed, since
the same forces that maintain stable overlaps between two assemblies can also cause these assemblies
to merge completely.

With these works, we hope to have provided some valuable new perspectives on both dynamical and
memory stability in networks of spiking neurons in the balanced state and stimulated future research.
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