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Summary
The overarching objective of this doctoral thesis is the development of a rigorous paradigm for
molecular simulation based on non-reversible Markov-chain Monte Carlo (MCMC) algorithms. The
numerical exploration of the thermodynamic equilibrium of complex molecular systems, such as
proteins in water, is of enormous importance to numerous fields including physics, chemistry, biology,
and engineering. Based on the atomic hypothesis that all matter consists of atoms, molecular-mechanics
models describe complex molecular systems by classical atomic sites that interact through empirical
potential-energy functions. This enables efficient computer simulations of large-scale molecular
systems. As a benchmark for different computational methods, dipolar water models are of particular
interest because they appear in many molecular simulations as an explicit aqueous solution and because
they typically contain the performance-limiting long-range interactions.

This doctoral thesis discusses theoretical foundations of non-reversible Markov chains in the
context of the event-chain Monte Carlo (ECMC) algorithm for an ultimate application to molecular
simulation. Non-reversible direction sweeps in an analytically tractable simplified model of a dipole
profoundly modify the Markov-chain trajectory and introduce persistent rotations in both directions.
The comparison of mixing times indicates that introducing direction sweeps into ECMC can yield faster
rotation dynamics of the dipole. For a collection of dipoles, the rotation dynamics are characterized
through the integrated autocorrelation time of the polarization. A large-scale numerical benchmark
considers thousands of parameter sets for different ECMC variants and reveals remarkable speed
differences among them. Escape times from almost locally stable hard-disk configurations are proposed
as a model for the analysis of local MCMC algorithms. A scaling theory for the escape times of
various ECMC variants separates them into two entirely different classes. The significant speedup of
some ECMC variants is rooted in their lack of an intrinsic scale and their event-driven nature.

Motivated by the previous systematic evaluations of the manifold of ECMC variants, this doctoral
thesis generalizes the Newtonian ECMC variant to molecular systems. This generalization preserves
the fundamental properties of ECMC which enable rigorous molecular simulations in the canonical
ensemble. The Boltzmann distribution is strictly sampled by realizing a non-equilibrium system
with steady-state probability flows. Long-range interactions are treated without approximations.
This doctoral thesis is accompanied by an implementation of generalized Newtonian ECMC in the
JeLLyFysh application. Simulations of 𝑁 long-range-interacting water molecules confirm the expected
O(𝑁 log 𝑁) computational complexity. This matches the complexity of state-of-the-art molecular
simulation with the widely-used molecular-dynamics (MD) method. However, MD treats long-range
interactions inaccurately. JeLLyFysh reaches a break-even point with respect to a long-developed
standard MD code below machine precision. This proves the competitive efficiency of ECMC or,
more generally, of non-reversible MCMC algorithms in a rigorous paradigm for molecular simulation
that is free of approximations and unphysical artifacts. It thus promises to become a gold standard for
critical applications.
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CHAPTER 1

Introduction

As much as this doctoral thesis is a documentation of novel scientific insights and conclusions, it is
also a documentation of a scientific methodology. It provides an example of systematically breaking
down a difficult scientific problem into a series of smaller problems. An uncertain solution on a long
time scale is approached by a series of solutions on shorter time scales. Even though the secondary
problems often turn out to be interesting on their own, one always keeps the primary problem in mind.
Any new scientific insight is fed back into an evolving solution of the overarching objective. This
doctoral thesis also bears witness to the fact that problems which appear to have an obvious solution
sometimes (or maybe even often) turn out to be much more difficult than expected. This should be
understood as an opportunity because it paves the way to new scientific knowledge.

The overarching objective of this doctoral thesis is the development of a new rigorous paradigm for
molecular simulations. These are of great importance to many physical sciences and can be motivated
by the atomic hypothesis that all matter consists of atoms, which was described as the greatest insight
of science by Nobel Laureate R. P. Feynman (see Section 1.1). Especially for simulations of molecular
systems with long-range Coulomb interactions such as water, the prevalent computational method
of choice is molecular dynamics. It numerically integrates the classical equations of motion of
the atoms in discretized time steps. Over the last decades, powerful molecular-dynamics software
packages have been developed, yet it was understood that its approximations and unphysical artifacts
have to be controlled algorithmically (see Section 1.2). Molecular dynamics is the natural choice
to obtain dynamical properties. However, it is frequently only employed as a means of sampling
from the Boltzmann distribution of the canonical ensemble by coupling the system to a thermostat
that mimics the effect of a thermal reservoir. Markov-chain Monte Carlo algorithms are designed
from the beginning to rigorously sample a target probability distribution and, hence, can explore the
thermodynamic equilibrium without thermostats. In order to achieve that purpose in the most efficient
way, they are furthermore not artificially restricted to mirror the real microscopic dynamical behavior
of the atoms (see Section 1.3). This makes the Markov-chain Monte Carlo sampling technique,
in principle, a promising alternative to the thermostatted molecular-dynamics approach to obtain
thermodynamic averages in molecular simulations.
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Chapter 1 Introduction

Unfortunately, designing general and efficient Markov-chain Monte Carlo algorithms is a complex
endeavor, especially in molecular systems. Historically, most developments focused on local
reversible Markov-chain Monte Carlo algorithms whose behavior is inspired by the microscopic
time-reversibility of a system in thermodynamic equilibrium. Their slow diffusive dynamics and
their subpar computational complexity in long-range-interacting systems were not competitive, which
resulted in a dominance of molecular dynamics in molecular simulation (see Section 1.3.1). Nowadays,
systematic non-reversible Markov-chain Monte Carlo algorithms are available and show the potential to
overcome the drawbacks of their traditional reversible counterparts. The ballistic dynamics of the local
non-reversible event-chain Monte Carlo algorithm, in particular, led to spectacular speedups in the
hard-disk system of statistical physics. Moreover, it was theoretically proven that it can treat long-range
interactions in molecular systems rigorously exact with a computational complexity that is on par with
molecular dynamics. This motivated the implementation of the first version of the general-purpose
open-source event-chain Monte Carlo application JeLLyFysh by the author and collaborators shortly
before the studies for this doctoral thesis begun. Alas, large-scale simulations of long-range-interacting
water systems in JeLLyFysh-Version1.0 as a first practical benchmark revealed that the individual
molecules remained dynamically arrested for prohibitively long times (see Section 1.3.2).

At the beginning of the studies for this doctoral thesis, the straight event-chain Monte Carlo
variant that was implemented in JeLLyFysh-Version1.0 clearly appeared as the foundation of a
novel paradigm for molecular simulation that is rigorously free of approximations, artifacts, and
thermostats, but yet remains efficient. However, because of its prohibitively slow dynamics in the
water system, the establishment of such a paradigm turned out to be much more difficult than expected.
Eventually enabling a competitive non-reversible Markov-chain Monte Carlo approach to molecular
simulation thus became the overarching objective that inspired the first three publications of this
doctoral thesis [P1, P2, P3]. They emphasize that event-chain Monte Carlo should be fundamentally
understood as an entire family of local non-reversible Markov-chain Monte Carlo algorithms where
each variant may have widely different behaviors in different applications. By using both analytical and
numerical approaches, they systematically evaluate the manifold of possible event-chain Monte Carlo
variants that were proposed over the years by different research groups. More generally, irrespective
of their initial motivation, they also advocate specific models for the analysis and benchmarking
of any local Markov-chain Monte Carlo algorithm, and reveal the fundamental changes that are
introduced by non-reversibility. As the evolving solution to the overarching objective, one particular
variant of event-chain Monte Carlo emerged as the most promising candidate for molecular simulation
(see Section 1.4). This doctoral thesis thus culminates in the fourth research paper [P4] which first
generalizes that particular variant from the peculiar hard-sphere system, for which it was initially
proposed, to the general interaction potentials of molecular systems. The development of a major
update of JeLLyFysh allows to show that event-chain Monte Carlo is finally competitive to a long-
developed molecular-dynamics application at high precision in a long-range-interacting water system
(see Section 1.4). This lays the foundation of a paradigm for molecular simulation that is based on
general non-reversible Markov-chain Monte Carlo algorithms. Since it is free of approximations
and artifacts, it promises to grow into a gold standard for critical applications. As the extent of
non-reversible Markov-chain Monte Carlo methods remains largely unexplored in their young scientific
history, the novel paradigm provides great potential for further improvement in the future.
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1.1 Molecular Simulation—From Feynman to Molecular Mechanics

1.1 Molecular Simulation—From Feynman to Molecular Mechanics

It is rather fortunate for posterity that the 1961–1963 introductory physics lectures at the California
Institute of Technology by R. P. Feynman were tape-recorded. The edited transcript—which “required
the close attention of a professional physicist for from ten to twenty hours per lecture” [1, Foreword]—
resulted in the timeless three-volume textbook The Feynman Lectures on Physics by R. P. Feynman
and fellow physicists R. B. Leighton and M. L. Sand [1–3] that presents Feynman’s physics about
“simplicity, beauty, unity and analogy” with “enthusiasm and insight” [4, p. 30].

It is rather fortunate for this doctoral thesis that The Feynman Lectures on Physics lays the foundation
for molecular simulation in the very first lecture titled “Atoms in Motion” [1, Section 1-2]:

If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one
sentence passed on to the next generations of creatures, what statement would contain
the most information in the fewest words? I believe it is the atomic hypothesis (or the
atomic fact, or whatever you wish to call it) that all things are made of atoms—little
particles that move around in perpetual motion, attracting each other when they are a
little distance apart, but repelling upon being squeezed into one another. In that one
sentence, you will see, there is an enormous amount of information about the world, if
just a little imagination and thinking are applied.

—R. P. Feynman, R. B. Leighton, and M. L. Sands.1

The atomic hypothesis that all matter consists of fundamental constituents was already contemplated
by philosophers in ancient Greek and India [5]. In the early nineteenth century, the atomic theory of
chemist J. Dalton grew beyond the older empiricism and formulated fixed rules according to which
chemical compounds are composed of discrete units of weights called atoms (derived from the Greek
word ἄτομος (atomos) meaning “uncuttable”) [6]. We know today that Dalton’s atoms like hydrogen
and oxygen are, in fact, “cuttable” into the subatomic elementary particles of the standard model of
particle physics (see, e.g., Ref. [7]). However, as assessed by Nobel Laureate P. W. Anderson, the
reductionist hypothesis that everything can be reduced to this (almost) fundamental theory does by no
means imply a constructionist hypothesis, that is, the ability to reconstruct all sciences, from physics
to chemistry to biology to psychology, by applying these fundamental laws [8]. In that sense, we
can envisage atoms as the elementary entities, and understand properties and behaviors of chemical
compounds with the help of just-as-fundamental laws for the atoms.

Feynman applies his “little imagination and thinking” to atoms that attract each other at little
distances but repel when they become too close, and that can form chemical (covalent) bonds as, for
example, in a water molecule where an oxygen has two hydrogens tied to it. Heat is represented as
the jiggling motion of the atoms that increases with temperature. These statements alone allow one
to understand why a drop of water does not fall apart at standard conditions—because the attraction
between the molecules wins—but why the water molecules do fly apart upon heating—because the
1 At the time of writing, it is not yet possible to include audio in the printed version of this doctoral thesis, and an audiobook

version is currently not in planning. Thus, if the reader would like to hear R. P. Feynman himself say the words that
led to the quoted paragraph, we refer to the tape recordings of his 1961–1963 introductory physics lectures available at
https://www.feynmanlectures.caltech.edu/flptapes.html. The relevant part starts at 9′12′′ of recording #1.
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jiggling motion wins. These statements also lead to a kinematic definition of the pressure and a
crystalline structure of solids [1, Section 1-2]. Ultimately, one may even understand atomic processes
such as salt dissolving in water [1, Section 1-3] and chemical reactions [1, Section 1-4].

Consequently following the line of thought of interacting, jiggling atoms from The Feynman Lectures
of Physics leads to the realm of classical molecular simulation, whose ongoing importance to numerous
fields, ranging from physics to chemistry to biology to engineering, cannot be overemphasized (see,
e.g., Refs [9–15]). To name but a few examples, molecular simulations predict protein-folding
reactions [16] and elucidate the atomic-level behavior during such a conformational change [17]. They
are also an essential part of modern-day drug discovery by illuminating the processes of drug–target
recognition and binding [18, 19]. They rely on molecular-mechanics models that approximate a
molecular system with a fixed covalent structure (ranging from small chemical systems to large
biomolecules) as an assemblage of classical point-like sites which interact through an empirical
potential-energy function 𝑈 [20, 21]. The physical behavior of the interaction sites, which do not
have to correspond to physical atoms (see, e.g., Ref. [14, Section 2.5]), may then be treated efficiently
with computational methods, where the two corner stones are the molecular-dynamics method and the
Markov-chain Monte Carlo sampling technique (see Sections 1.2 and 1.3).

The functional form of the potential energy in a molecular-mechanics model is usually motivated
by physical intuition and insight. For instance, the London dispersion interaction between two charge-
neutral atoms with a symmetric electron distribution leads to an attraction at little distances, while the
Pauli exclusion principle leads to a strong repulsion when the atoms get too close. Both effects may be
well approximated by a Lennard-Jones potential between two interaction sites in a molecular-mechanics
model [21, 22]. As another example, the vibration of the length of a covalent bond between two atoms
around an equilibrium length is usually considered in a harmonic approximation. Such approximations
in a molecular-mechanics model generally result in an overall potential-energy function 𝑈 =

∑
𝑀 𝑈𝑀

that is a sum of factor potentials 𝑈𝑀 of factors 𝑀 which only depend on a small number of interaction
sites. The factor potentials usually depend on constant parameters like the equilibrium length of
the harmonic-bond potential, or the depth and location of the potential well in the Lennard-Jones
potential. These are empirically chosen by comparing the predicted values of physical observables
in the molecular-mechanics model with experimental data, detailed ab initio quantum-mechanical
calculations, or both [20, 21]. Naturally, this approach assumes that the empirical parameters are
transferable from relatively simple systems, in which they were fine-tuned, to more complex systems,
in which they are eventually used to make predictions. As it turns out, this assumption is usually valid
and when it is not, the discrepancy may actually give an opportunity to improve the understanding of
the problematic system [21].

A molecule of particular interest to molecular simulation is water because of its ubiquity in our
environment. Many molecular simulations, especially of biological systems, include explicit water
molecules to model an aqueous solution. Since the seminal proposal for a classical model of water by
J. D. Bernal and R. H. Fowler in 1933 [23], numerous water models with widely varying complexities
attempt to reproduce the experimentally well-studied bulk properties of water with varying success
(see, e.g., Refs [24–27]). The most simple models of a water molecule use three interaction sites
which makes them computationally feasible and thus widely used. The flexible simple point-charge
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intramolecular
interactions

intermolecular
interactions

harmonic bending potentials

Lennard-Jones potential

SPC/Fw water molecules

harmonic bond potentials

Coulomb potentials

Figure 1.1: The SPC/Fw molecular-mechanics model of water uses three charged interaction sites that are
centered on the red oxygen (O) and white hydrogen (H) nuclei [28]. Harmonic bond and bending potentials,
indicated as white and black springs, allow for fluctuations of the O H bond lengths and H O H opening
angles around empirical equilibrium values. Lennard-Jones and Coulomb potentials, indicated as black and
gray lines, yield long-range interactions between different water molecules. Every potential only depends on a
small number of interaction sites.

water model SPC/Fw [28] centers three interaction sites on the atomic oxygen (O) and hydrogen
(H) nuclei. Each water molecule has three internal degrees of freedom, two O H bond lengths and
one H O H opening angle, that may fluctuate around their equilibrium value in intramolecular
harmonic potentials. The intermolecular interactions between two water molecules consist of a
Lennard-Jones interaction that is centered on the two oxygen sites, and Coulomb potentials that
consider the electrostatic interactions between all pairs of charged interaction sites (see Fig. 1.1). In
comparison to three-site water models that use rigid O H bonds and H O H opening angles (such
as the TIP3P [29] and SPC/E [30] models), the SPC/Fw water model reflects, e.g., dielectric properties
of bulk water better [28].

1.2 Molecular Dynamics and Its Problems

While a molecular-mechanics model heavily reduces the complexity of the treatment of a molecular
system by replacing a quantum-mechanical description by a much more simple, but approximate,
classical one, an analytical treatment is generally impossible (with one notable exception given
by works of F. H. Westheimer from the 1940s [31, 32]). As a product of today’s computer age,
molecular simulations use computational methods to numerically explore the structure, dynamics, and
thermodynamic equilibrium of complex molecular systems. The transition from quantum-mechanical
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ab initio computations to classical ones allows for order-of-magnitudes faster and larger simulations.
Furthermore, as a more philosophical advantage, classical models are conceptually easier and provide
us, as humans, the opportunity to understand molecular systems in the same way as the physical
objects of our everyday life [20, 21]. (It must be noted, however, that classical molecular simulation
can clearly not be used for processes where electronic effects such as breaking of covalent bonds are
involved.)

Especially for long-range-interacting molecular systems that contain electrostatic interactions
between charged interaction sites (as in the SPC/Fw water model), the most common computational
method of choice is molecular dynamics (MD). Here, the interaction sites follow the familiar laws of
classical, Newtonian mechanics. The negative gradients of the (time-independent) potential-energy
function 𝑈 of the molecular-mechanics model yield the forces at the positions of the interaction sites
(which is why the potential-energy function is often called a force field). Newton’s equations of motion
are numerically integrated in discrete time steps. This approach mimics the dynamical evolution of
the simulated system in physical time. It gives access to dynamical properties and, for systems that
obey the ergodic hypothesis, it samples the microcanonical (𝑁𝑉𝐸) ensemble [9–12]. A wide range of
thermostats and barostats may be introduced in MD simulations. They aim to control the temperature
or pressure and thus sample the canonical (𝑁𝑉𝑇) or isothermal–isobaric (𝑁𝑃𝑇) ensembles instead
(see, e.g., Refs [9–12, 33, 34]).

Formally, widely-used symplectic numerical integrators with a small-enough choice of the finite
time step can guarantee long-time stability of an MD simulation which makes it a well-behaved
computational method. In the microcanonical ensemble, for instance, the total energy, which should
be exactly conserved under Newton’s equations of motion, can be shown to fluctuate within a narrow
band around the true value with an exponentially small energy drift over an exponentially long period
of time (see Refs [35–37] for the original explicit proofs; see Refs [38, Chapter 5] and [39, Chapter 5]
for extensive reviews). These results technically consider an infinite precision in the force computation.
In many practical MD simulations of molecular systems, however, the strict mathematical results
break down because simplifications in the force computation become too inaccurate. This can then
introduce a systematic drift of the total energy (and even unphysical artifacts, as discussed below) [38,
Chapter 11].

For long-range interacting molecular systems as the SPC/Fw water model under the usual periodic
boundary conditions, such inaccurate simplifications typically regard the long-range intermolecular
interactions to reduce computational cost. Systematic drift of the total energy can be introduced
because the quickly decaying Lennard-Jones potential is cut off in a non-analytic way [40–43], or
because the cutoff is practically implemented with infrequent neighbor-list updates so that interactions
are occasionally missed [43, 44]. The slowly decaying Coulomb potential (which should not be simply
cut off [45, 46]) is usually treated by an Ewald summation which divides it into two short-range
contributions in real and reciprocal space [12, 47, 48]. The two involved cutoffs and an additional
discretization of reciprocal space in fast mesh-based Ewald methods [49–51] lead to a limited accuracy
of the force computation that is typically selected to be much worse than allowed by machine precision
because the computational cost grows with increasing accuracy. This can also lead to a systematic
drift in the total energy [43, 49, 51–53]. As a concrete example of these effects, an MD simulation
of 𝑁 = 1000 SPC/Fw water molecules at a standard density of 𝜌 ≈ 1 g cm−3 in the microcanonical
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ensemble with the Lammps software [54, 55] that treats the long-range intermolecular interactions
with these inaccurate (but computationally fast) simplifications shows a non-negligible systematic
drift of the total energy (see Fig. 1.2a and b).

Most MD simulations are not carried out in the microcanonical ensemble because most common
experimental setups are not isolated from their surroundings and, hence, the condition of a constant
total energy is not valid. Simulations in other statistical ensembles are necessary for different
thermodynamic control parameters. One very important example is the canonical ensemble that
controls the temperature instead of the total energy. In MD, this is achieved by including a thermostat
which perturbs the trajectories and mimics the effect of a coupled thermal reservoir. At the same time,
the thermostat can “bleed out” any extra energy resulting from inaccurate force computations, which
would have shown up as a systematic energy drift in the microcanonical ensemble. This can create a
steady-state system with a constant temperature that, however, does not necessarily obey the desired
canonical distribution [44, 57]. Another MD simulation of 𝑁 = 1000 SPC/Fw water molecules at
standard density with exactly the same treatment of long-range intermolecular interactions as the
microcanonical simulation with a noticeable systematic drift of total energy (see Fig. 1.2a and b again),
but now also including a thermostat to achieve a canonical simulation at room temperature 𝑇 ≈ 300 K,
shows that the inaccuracy of the simulation is masked by the thermostat as both the total energy and
temperature show much larger fluctuations (see Fig. 1.2c and d).

A certain small amount of inaccuracy in MD simulations of molecular systems is usually accepted
(see, e.g., Ref. [53, Section III C 2] for a short discussion about simulations of water models). This
does not lessen its power and effectiveness for molecular simulation, which was proven time and time
again in a great range of successful applications (see, e.g., Refs [9–19] again). Moreover, systematic
analyses and tests for the accuracy of MD simulations are available [40, 44, 53, 57]. Still, there are
many examples of unphysical artifacts in MD simulations that had to be understood and overcome in a
voluminous literature over the last decades (see, e.g., Ref. [46] for a review). One severe example is
the observation of a unidirectional flow of water through a carbon nanotube without any supplied
energy [46, Section 2]. This violates the second law of thermodynamics which physicists are generally
not fond of.2 Indeed, the unidirectional flow vanished as soon as the parameters and protocols of the
MD simulation were properly chosen. Explicit examples for reasons of unphysical artifacts (that, in
this case, go beyond a systematic drift of a conserved quantity) include, again, non-careful truncations
of long-range interactions [45, 46, 59], discretization of reciprocal space in fast mesh-based Ewald
methods that may lead to force aliasing [49], and too infrequent updates of neighbor lists [46, 60].
Thermostats—which were called “necessary evils” in Ref. [46] and of which some do not even
correctly reproduce the canonical ensemble [61, 62]—were another big source of unphysical artifacts
as the “flying ice cube effect” [63] and the “hot solvent–cold solute problem” [64, 65].

In MD, the underlying microscopic equations of motion of the system are numerically integrated.
This can be viewed as a strength because it allows to access dynamical properties. However, it also
introduces a time-scale problem [15, 66]. For a well-behaved simulation with long-time stability, the
time step has to be chosen small enough to ensure that the fastest motion is integrated accurately. For
instance, vibrations of the O H bond lengths or the H O H opening angle in the SPC/Fw water

2 To put it in Homer Simpson’s words [58]: “In this house we obey the laws of thermodynamics.”
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Figure 1.2: MD simulations of 𝑁 = 1000 SPC/Fw water molecules show a non-negligible drift of the total
energy 𝐸 in the microcanonical ensemble that is masked by the thermostat in the canonical ensemble. All
plots show a linear fit (solid and dashed lines) to the instantaneous fluctuations (light background) of the
quantity of interest. The plots (a), (b), and (c) are shifted by the negative fitted intercept. (a): The fitted
drift of the total energy in the microcanonical ensemble increases from Δ𝐸 = (0.579 ± 0.003) kcal mol−1 ns−1

for the time step Δ𝑡 = 1 fs to Δ𝐸 = (1.071 ± 0.001) kcal mol−1 ns−1 for Δ𝑡 = 0.5 fs which shows that an
inaccurate force computation is responsible for the drift [34]. (b): The drift of the total energy quickly becomes
non-negligible compared to the fluctuations 𝜎(𝐸kin) ≈ 30 kcal mol−1 of the kinetic energy 𝐸kin around its
average ⟨𝐸kin⟩ ≈ 2 670 kcal mol−1. (c): Any drift of the total energy is masked by the fluctuations that are
introduced by the thermostat in the canonical ensemble. (d): The time-average of the instantaneous temperature
𝑇inst that follows from the instantaneous kinetic energy quickly approaches the thermostat’s target temperature 𝑇
despite the inaccurate force computation.
All simulations were carried out with the Lammps software [54, 55]. They started from the same initial
velocities, and from the same initial configuration with total energy 𝐸 ≈ −7 521 kcal mol−1. This configuration
was obtained by equilibrating a configuration from the software package Playmol [56] in an MD simulation of
Lammps in the isothermal–isobaric ensemble at target temperature 𝑇 = 298.16 K and pressure 𝑃 = 1 atm with
time step Δ𝑡 = 1 fs for a total time 𝑡 = 1 ns. This resulted in a configuration at standard density 𝜌 ≈ 1 g cm−3

(using the hydrogen mass 𝑚H = 1.0079 Da and the oxygen mass 𝑚O = 15.9994001 Da) in a periodic cubic box
of side length 𝐿 ≈ 31 Å. The Coulomb potential was treated by a fast mesh-based Ewald method with a target
accuracy of 10−5 while the Lennard-Jones potential was cut off beyond 9.8 Å.
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1.3 Markov-Chain Monte Carlo

model occur over time scales of a few femtoseconds. In contrast, conformational changes of molecules
or proteins in an aqueous solution may occur on macroscopic time scales from milliseconds to hours.
Sampling the conformations in thermodynamic equilibrium and accessing the transition dynamics in a
reasonable amount of computation time is then impossible. One possible approach to the time-scale
problem introduces a systematic bias into the simulation in order to enforce certain motions such as
conformational changes (see, e.g., Refs [67, 68]). Such enhanced-sampling techniques (which are not
restricted to MD but can also enhance Markov-chain Monte Carlo simulations) cannot fully replace
unbiased molecular simulations because of their requirement for a priori information. Instead, they
can complement the unbiased molecular simulations that are considered in this doctoral thesis. Other
approaches to the time-scale problem consist of constraining bond lengths and opening angles to fixed
values, or to rely on multiple time-scale integration algorithms [15]. Both approaches can lead to
inaccuracies and unphysical artifacts on their own, and hence motivated the development of more
advanced algorithmic controls (see, e.g., Refs [69, 70]).

MD is nowadays the prevalent computational method of choice in molecular simulation, especially
if long-range interactions like the Coulomb interaction are present (for reasons that are clarified in
the next Section 1.3). This is always the correct approach if dynamical properties are of interest
because its numerical integration of the equations of motion provides a window into the microscopical
behavior of the individual interaction sites in the molecular-mechanics model. However, as soon as,
for instance, a thermostat attempts to mimic the effect of a thermal reservoir in the simulation, the
trajectories are perturbed and thus also any dynamical properties. Although it was empirically found
that some thermostats only have little effect on particular dynamical properties [71], it is generally
preferable to sample a set of configurations from the thermodynamic equilibrium with the thermostat
turned on, and use these as initial conditions for dynamical trajectories with the thermostat turned off
to infer dynamical properties (see, e.g., Refs [12, 34]). Here it becomes evident that MD simulations
entangle two objectives: first, generating dynamical trajectories—for which it was designed—and
second, sampling from statistical ensembles and determining equilibrium properties—for which it was
not designed but is still used to a large extent. The great effort to find and understand artifacts and
approximations in MD, as well as to develop algorithmic controls for them, will always be necessary
for the first objective. In contrast, computational methods that are based on modern non-reversible
Markov-chain Monte algorithms can be specifically designed for the second objective and allow for
a rigorously exact and efficient approach without any thermostats. The establishment of such an
alternative paradigm for molecular simulation is the overarching objective of this doctoral thesis.

1.3 Markov-Chain Monte Carlo

The alternative paradigm to the thermostatted MD approach for molecular systems in thermodynamic
equilibrium is based on the Markov-chain Monte Carlo (MCMC) sampling technique. Since its
introduction in 1953 in statistical physics [72], it has become an active research topic in mathematics
(see, e.g., Refs [73, 74]) and has been used in an astonishing array of disciplines across all natural
sciences and beyond (see, e.g., Refs [75–77]). MCMC is designed from the beginning to rigorously
sample a given probability distribution. This doctoral thesis is in particular concerned with the
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Boltzmann probability distribution 𝜋 of the canonical ensemble (see, e.g., Refs [74, 78] in addition to
the general Refs [9–12] on molecular simulation):

𝜋(x) = 1
𝑍

e−𝛽𝑈 (x) . (1.1)

Here, 𝛽 = 1/(𝑘B𝑇) is the thermodynamic beta that depends on the Boltzmann constant 𝑘B and
temperature 𝑇 of the canonical ensemble, 𝑍 is the generally unknown canonical partition function that
normalizes 𝜋, and 𝑈 is the empirical potential-energy function of the molecular-mechanics model that
depends on the positions x = (x1, x2, . . . , x𝑁 ) of the 𝑁 interaction sites.

MD starts from an initial configuration and simulates a dynamical trajectory in physical time.
MCMC simulates a memoryless stochastic process instead. It constructs a Markov chain, that is, a
sequence of random variables (𝑋0, 𝑋1, 𝑋2, . . .) on Ω where for all discrete Monte Carlo times 𝑡 ∈ N0
only the current state of 𝑋𝑡 determines how the next state 𝑋𝑡+1 is sampled. The previous states are
unimportant because the Markov chain “lost its memory.” Consider, for ease of notation, a finite
configuration space Ω with configurations 𝑥 ∈ Ω. Although the configuration space of the interaction-
site positions x = (x1, x2, . . . , x𝑁 ) in molecular systems is typically continuous (i.e., uncountably
infinite), finite Markov chains already exhibit the essential features [73, Section 3.4].3 (One may even
argue that, on a computer with a finite amount of memory, every continuous configuration space
becomes finite in its floating-point representation.) The characteristic memoryless behavior of a
Markov chain is encoded in its time-independent transition matrix 𝑃 whose entries 𝑃(𝑥, 𝑦) give the
conditional probability to move from the configuration 𝑥 to the configuration 𝑦. The current state
𝑋𝑡 = 𝑥𝑡 of the Markov chain thus determines the row 𝑃(𝑥𝑡 , ·) that stores the set of probabilities for all
configurations 𝑦 ∈ Ω to become the next state of the random variable 𝑋𝑡+1. MCMC algorithms then
sample the next state 𝑋𝑡+1 = 𝑥𝑡+1 according to its probability in a Monte Carlo move. This is possible
without ever storing the entire transition matrix which makes the algorithms practicable in the first
place.

The desired property of a Markov chain for molecular simulation is that the asymptotic proportion of
time that it spends in any configuration 𝑥 ∈ Ω is determined by the Boltzmann distribution 𝜋(𝑥). The
time average over the sequence of states of the simulation can then be used to estimate thermodynamic
averages. This can only be achieved if the transition matrix 𝑃 satisfies the necessary global-balance
condition that connects its entries to 𝜋 [74]:

𝜋(𝑦) =
∑︁
𝑥∈Ω

𝜋(𝑥) 𝑃(𝑥, 𝑦) for all 𝑦 ∈ Ω. (1.2)

Additional conditions of irreducibility and aperiodicity on the Markov chain [73, 74] are properly
introduced in Section 2.1 but can usually be established beyond doubt in practical applications [80].
Such a Markov chain exhibits four constructive properties [73, 74, 81]: First, the Markov chain
converges to the target distribution 𝜋 from any initial configuration. Second, the distribution 𝜋

3 This approach complies with the common paraphrase of a quotation of Nobel Laureate A. Einstein [79]: “Everything
should be made as simple as possible, but not simpler.” With this, note that the (almost) obligatory A. Einstein quote in a
doctoral thesis in physics was successfully included.
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remains stationary from then on. Third, the time average over the Markov chain converges to the
thermodynamic average. Fourth, the time average becomes normally distributed in a similar manner
as the sample average in the classical central limit theorem. The fourth point is essential to understand
the errors that arise from a Monte Carlo estimation in the third point.

Two important figures of merit of an MCMC algorithm are its mixing time and its integrated
autocorrelation time (see Section 2.2 for their precise definitions). The former determines the time
after which it can be guaranteed that the Markov chain samples the target distribution 𝜋. The latter
gives a measure on the correlation between subsequent states in the Markov chain once 𝜋 is reached,
and determines the time after which an effectively independent sample is obtained. The art of
designing MCMC algorithms lies in finding the transition matrix that minimizes the mixing and
integrated autocorrelation times. In contrast to MD which is strictly restricted to physical Newtonian
dynamics and is subject to the inherent time-scale problem, the only restriction for MCMC algorithms
is the global-balance condition in Eq. (1.2). In principle, this offers the great opportunity to find
non-physical dynamics that mix and decorrelate much more efficient than MD.

1.3.1 Reversible Markov-Chain Monte Carlo and Its Problems

The first MCMC algorithm was the Metropolis algorithm from 1953 [72]. It is successfully used in
a wide variety of settings until today based on its beautifully simple though flexible mathematical
recipe (explaining why it is ranked among the top ten algorithms of the twentieth century [82, 83]). Its
transition matrix does indeed satisfy the necessary global-balance condition in Eq. (1.2) but it does so
by satisfying the more restrictive detailed-balance condition:

𝜋(𝑥) 𝑃(𝑥, 𝑦) = 𝜋(𝑦) 𝑃(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ Ω. (1.3)

By using that the transition matrix has to be a stochastic matrix because of the interpretation of its
entries as conditional probabilities (i.e.,

∑
𝑦∈Ω 𝑃(𝑥, 𝑦) = 1), one can directly show that any 𝑃 that

satisfies the sufficient Eq. (1.3) also satisfies the necessary Eq. (1.2). The Metropolis algorithm
is furthermore of the acceptance–rejection type in which a Monte Carlo move, given the current
configuration 𝑋𝑡 = 𝑥𝑡 , consists of two steps. First, a proposed configuration 𝑥′

𝑡+1 is sampled from the
corresponding row of a symmetric proposal distribution 𝑔(𝑥𝑡 , ·), where 𝑔(𝑥, 𝑦) gives the conditional a
priori probability to propose the configuration 𝑦 if the current state of the Markov chain is 𝑥. Second,
the proposed configuration 𝑥′

𝑡+1 is either accepted in which case 𝑋𝑡+1 = 𝑥′
𝑡+1, or it is rejected in which

case 𝑋𝑡+1 = 𝑥𝑡 . The acceptance probability is given by the Metropolis filter

𝑝Met(𝑥𝑡 , 𝑥′𝑡+1) = min
[
1,

𝜋(𝑥′
𝑡+1)

𝜋(𝑥𝑡 )

]
= min

[
1, e−𝛽[𝑈 (𝑥′

𝑡+1 )−𝑈 (𝑥𝑡 )]
]
. (1.4)

A rather important point about the Metropolis algorithm, and about MCMC algorithms in general, is
that it only ever depends on relative probabilities of different configurations: The Metropolis filter
solely contains the ratio 𝜋(𝑥′

𝑡+1)/𝜋(𝑥𝑡 ). Consequently, the canonical partition function 𝑍 in Eq. (1.1)
need not be known in order to sample the Boltzmann distribution (and if it is known, a numerical
treatment is not necessary anyway). Instead, only the difference in potential energy is important. If the
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proposed configuration reduces the potential energy, it is always accepted in the Monte Carlo move; if
it increases the potential energy, the acceptance probability decreases exponentially. The entries of the
transition matrix 𝑃Met of the Metropolis algorithm are given by

𝑃Met(𝑥, 𝑦) =
{
𝑔(𝑥, 𝑦) 𝑝Met(𝑥, 𝑦) if 𝑥 ≠ 𝑦,
1 − ∑

𝑧∈Ω,𝑧≠𝑥 𝑔(𝑥, 𝑧) 𝑝Met(𝑥, 𝑧) if 𝑥 = 𝑦.
(1.5)

It is clearly a stochastic matrix and one can show that it satisfies the detailed-balance condition in
Eq. (1.3) by distinguishing the cases 𝑥 ≠ 𝑦 or 𝑥 = 𝑦, and 𝜋(𝑥) > 𝜋(𝑦) or 𝜋(𝑥) ≤ 𝜋(𝑦).

Any MCMC algorithm that satisfies the detailed-balance condition in Eq. (1.3) is called reversible.
It demands that every probability flow F (𝑥, 𝑦) = 𝜋(𝑥) 𝑃(𝑥, 𝑦) from the configuration 𝑥 to the
configuration 𝑦 is equal to the reverse probability flow F (𝑦, 𝑥). The net probability flow vanishes
between all configurations 𝑥, 𝑦 ∈ Ω: F (𝑥, 𝑦) − F (𝑦, 𝑥) = 0. This is inspired by the behavior of a
physical system in thermodynamic equilibrium where every elementary process is in equilibrium with
the reverse process because of the time-reversibility of the microscopic equations of motion (as first
noted by L. Boltzmann in his work on the 𝐻-theorem; see, e.g., Ref. [84, Chapter VI]). Ever since
the introduction of the reversible Metropolis algorithm in 1953, most MCMC algorithms remained
reversible because the detailed-balance condition only considers pairs of configurations and is thus
much easier to satisfy when a transition matrix is systematically designed. Two important examples
are the reversible Metropolis–Hastings algorithm that modifies the Metropolis filter in Eq. (1.4) to
allow for non-symmetric proposal distributions 𝑔(𝑥, 𝑦) ≠ 𝑔(𝑦, 𝑥) [85], and the reversible heat-bath
algorithm [86–88]. The global-balance condition, in contrast, considers global probability flows
into any configuration from the full set of configurations which makes a systematic treatment more
complex.

The widely-used reversible Metropolis–Hastings algorithm becomes especially powerful when the a
priori choice of the proposal distribution for the Monte Carlo moves can be systematically customized
for the current configuration. In the best case, this allows to accept large, global changes of the
configuration in a single Monte Carlo move and the configuration space is explored rapidly. The most
famous examples for this are non-local cluster moves in the Swendsen–Wang [89] and Wolff [90]
algorithms for spin systems. However, such insightful global Monte Carlo moves are not available for
most problems and they are, in particular, missing for molecular systems. Alternatively, one then relies
on local moves that, e.g., displace one of the interaction sites. Small sizes of the displacement ensure
that the potential-energy change remains small and that, therefore, the acceptance probability of the
local move remains reasonable. Such local Monte Carlo moves, however, lead to large correlations
between subsequent configurations in the Markov chain because they are mostly the same. Coupled
with the detailed-balance condition, this results in time-reversible diffusive dynamics [80, 91, 92]
that explore the configuration space slowly. Although the Boltzmann distribution 𝜋 is still rigorously
sampled after the mixing time, a lot of Monte Carlo moves are required to converge and to obtain
effectively independent samples.

The slow diffusive dynamics of local reversible MCMC algorithms is the first reason why MD is
often preferred for molecular simulations, even when just the thermodynamic equilibrium is of interest.
Although local Monte Carlo moves can be optimized beyond displacing a single interaction site for
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the specific molecular system at hand (for example, by proposing explicit rotations of SPC/Fw water
molecules), and although such optimized Monte Carlo move sets can, in certain cases, allow to cross
potential-energy barriers between minima that would trap MD simulations on prohibitively long time
scales [93], gradient-based techniques as MD are generally assumed to be “vastly superior” [94] for an
efficient exploration of configuration space. Furthermore, choosing an appropriate set of Monte Carlo
moves in practice may be challenging and requires a great amount of knowledge and experience in the
specific molecular system. The Newtonian dynamics of MD, on the other hand, are automatically
determined by the force field of the molecular-mechanics model.

Another reason for the dominance of MD over local reversible MCMC algorithms in molecular
simulations is their respective treatment of long-range interactions between 𝑁 interaction sites. In
both cases, a naïve implementation would require O(𝑁2) operations to modify all 𝑁 positions. In
MD, an Ewald summation can reduce the computational complexity to O(𝑁3/2) [12, 47, 48]. Fast
mesh-based Ewald methods even achieve O(𝑁 log 𝑁) [49–51] and have thus become the prevalent
methods of choice. Albeit the complexity of the fast multipole method [95] just grows as O(𝑁), its
prohibitive prefactor currently makes it dominant only at rather large 𝑁 [96, 97]. These complexities
can be achieved in MD because a single force computation modifies the positions of all interaction
sites. In contrast, local reversible MCMC algorithms have to compute the potential-energy change to
attempt a move of a single or very few interaction sites. This prevents an efficient integration of the
fast mesh-based Ewald methods and leaves an Ewald summation that can only achieve an O(𝑁3/2)
complexity for a full sweep of 𝑁 attempted Monte Carlo moves [98]. Only very recently, a variant of
the fast multipole method accomplished an O(𝑁 log 𝑁) scaling [99] but a direct comparison to MD is
missing.

Given the extensive discussion on the inaccurate treatment of long-range interactions in MD in
Section 1.2, it should be further noted that local reversible MCMC algorithms are by no means better
in that respect. The computation of the potential-energy change in a Monte Carlo move is a global
computation that is again simplified to reduce computational cost. The Lennard-Jones potential is cut
off and the Coulomb potential is treated by an Ewald summation with two cutoffs in real and reciprocal
space. This leads to a limited accuracy that is typically orders-or-magnitude worse than allowed by the
available machine precision because the proportionality constant of the O(𝑁3/2) complexity grows
with increasing accuracy. Such an inaccurate treatment of long-range interactions certainly leads to a
systematic error (see, e.g., Ref. [100]). However, in contrast to MD, the simulation still remains stable.
In order to further emphasize the stability: MCMC algorithms that only consider potential-energy
changes do not have to rely on carefully designed initial configurations. In MD, initial configurations
from packing optimizations prevent excessive forces that would, in turn, necessitate prohibitively
small time steps for a stable simulation [38, 101]. Local reversible MCMC, on the other hand, does
not know about forces and could, in principle, relax any configuration (which could, however, require
a very long time). Moreover, constraints on bond lengths or opening angles can be easily considered
in the set of Monte Carlo moves.

Even though local reversible MCMC removes most reasons for unphysical artifacts and approximations,
and even though it can be shown to sample the Boltzmann distribution in the infinite-time limit, MD is
nowadays the most common choice to simulate the thermodynamic equilibrium of classical molecular

13



Chapter 1 Introduction

systems, especially when long-range interactions are present. A recent review that considered, among
other things, best practices for MD simulations even called MCMC the “often-forgotten relative” [102].
As discussed, this is rooted in two problems: First, slow diffusive dynamics of local reversible MCMC
algorithms may only be overcome in certain systems by a challenging choice of an appropriate Monte
Carlo move set. Second, the computational complexity of the treatment of long-range interactions
was historically much more favorable in MD. This resulted in a broad range of powerful computer
packages for classical molecular simulation based on MD (see, e.g., Refs [54, 103–106]). They were
developed and optimized for decades, and are therefore fast, reliant, and easily accessible (which
was already relevant for this doctoral thesis because the MD simulations for Fig. 1.2 could be done
efficiently in Lammps [54, 55] without programming anything). In a self-amplifying effect, a great deal
of research was centered on improving the efficiency, accuracy, and stability of MD which resulted
in state-of-the-art applications which in turn attracted more research on MD. In contrast, software
packages for MCMC are sparse and tend to be developed by small groups [94] (see, e.g., Refs [107,
108] for examples of software that is available). However, although MD evolved into an efficient and
widely-distributed computational approach for molecular simulation, only MCMC can serve as a gold
standard in general because it can guarantee an unbiased sampling of the Boltzmann distribution.
MCMC simulations can thus identify any artifacts and approximations that are still hidden in MD and
which are not yet controlled algorithmically. To achieve this, the slow diffusive dynamics, and the
inefficient and inaccurate treatment of long-range interactions in local reversible MCMC algorithms
have to be overcome.

1.3.2 Non-Reversible Markov-Chain Monte Carlo to the Rescue (or not?)

The slow diffusive dynamics of local reversible MCMC algorithms follows from the detailed-balance
condition in Eq. (1.3) that mirrors the behavior of a physical system in thermodynamic equilibrium.
However, there is no reason why equilibrium dynamics should be the most efficient strategy for fast
decorrelation and mixing in Markov-chain sampling. In fact, everyday experience tells us that this
is definitely not the case as a simple experiment inspired by Ref. [109] shows: The writing of this
doctoral thesis involved many cups of coffee. Although they did not contain any sugar in general, two
of them did for the sake of science (and this experiment). The process of mixing sugar in a cup of
coffee can be compared to a Markov chain. The configuration space of the sugar is the entire cup of
coffee, the stationary target distribution is a uniform sugar concentration, and the initial distribution of
sugar is usually concentrated at the bottom of the cup. In the first cup, equilibrium detailed-balance
dynamics (that is, simply waiting) were used to mix the sugar into the coffee. The diffusive dynamics
resulted in an enormous mixing time and, hence, in a coffee that was not only sugary but also cold. In
the second cup, a non-equilibrium external flow was introduced into the system by stirring the coffee
with a spoon. Amazingly, the mixing time was significantly reduced and the uniform-sugary coffee
could be “enjoyed” while still hot.4

The detailed-balance condition and its diffusive dynamics in local reversible Markov chains are not
necessary. Non-reversible Markov chains break the detailed-balance condition and only satisfy the
4 The reader is invited to replicate this experiment in order to verify its results. Alternatively, accelerating mixing fluids by

stirring is an active research topic that supports the results (see, e.g., Ref. [110] and references therein).
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necessary global-balance condition in Eq. (1.2). Under the additional conditions of irreducibility and
aperiodicity that are usually valid in practical applications (see Section 2.1), they converge to the target
distribution 𝜋 but may include non-vanishing net probability flows F (𝑥, 𝑦) − F (𝑦, 𝑥) between any
configurations 𝑥, 𝑦 ∈ Ω. After convergence, they further sample the distribution 𝜋 in a non-equilibrium
random process. Because they are harder to conceptualize, systematic non-reversible Markov-chain
schemes remained unavailable until the lifting framework [111, 112] was introduced around the turn
of the millennium (see Section 2.3 for a theoretical introduction). It starts from a reversible Markov
chain and enlarges its configuration space Ω to a lifted configuration space Ω̂ so that it contains some
or all of the Monte Carlo moves and explicit transition probabilities between them in a lifted transition
matrix 𝑃 [80, 113]. A non-reversible lifting may then result, in the best case, in a diffusive-to-ballistic
speedup compared to the original (collapsed) reversible Markov chain [80, 112].

For a motivating example of the lifting framework, consider the reversible nearest-neighbor random
walk on a one-dimensional lattice of length 𝑛 ≥ 2, Ω = {1, 2, . . . , 𝑛}. One possible extended lifted
configuration space Ω̂ = Ω×D contains the set of possible directions D = {+1,−1} of the movement
of the random walker as lifting variables. Given a lifted configuration (𝑥, 𝑑) ∈ Ω̂ (where 𝑥 ∈ Ω is
not at one of the ends of the lattice), the entries of 𝑃 are chosen so that the random walker moves to
(𝑥 + 𝑑, 𝑑) with probability 1−1/𝑛, or to (𝑥 + 𝑑,−𝑑) with probability 1/𝑛. This implies that the random
walker moves deterministically from 𝑥 to 𝑥 + 𝑑, just the change of the lifting variable is stochastic (see
Fig. 1.3 for a visual representation of the transfer matrices of the reversible nearest-neighbor random
walk and its non-reversible lifted version that also illustrates what should happen at the ends of Ω).
The reversible random walk takes O(𝑛2) Monte Carlo moves to converge to a uniform distribution on
Ω because it takes O(𝑘2) Monte Carlo moves to travel a distance of O(𝑘) with its diffusive motion. In
contrast, it can be shown that the non-reversible lifted random walk only takes O(𝑛) Monte Carlo
moves to converge to a uniform stationary distribution on Ω̂ (and thus also on Ω) [111]. Such a
diffusive-to-ballistic speedup where the the mixing time of the original reversible Markov chain is
reduced to its square root in the non-reversible lifted Markov chain is, in fact, the largest possible
improvement that can be reached within the lifting framework [80, 111, 112]. Rigorous results in
tractable test problems (either mathematically proven or obtained numerically) highlight that there
are many inequivalent liftings to a lifted configuration space Ω̂ and many inequivalent choices for
the lifted transition matrix 𝑃 on Ω̂. Finding the correct choices is essential but then often allows to
come close to the optimal diffusive-to-ballistic speedup (see Ref. [80, Sections 3 and 4] and references
therein; see also Ref. [114] for a very recent result from this year).

Systematic schemes that use the lifting framework to generate non-reversible Markov chains with
considerable speedups in applications of practical relevance are nowadays available [80, 109, 113,
115–117]. (The lifting framework is, however, not the only possibility to generate non-reversible
Markov chains with one alternative approach being introduced in Ref. [118].) As most recent examples
from only last year, lifted directed-worm algorithms [119] and lifted self-avoiding walks [120] were
shown to be much more efficient than their underlying reversible algorithms. This doctoral thesis
is in particular concerned with the local event-chain Monte Carlo (ECMC) algorithm [80, 115,
121]. This is a non-reversible lifted MCMC algorithm for continuous configuration spaces that
implements a rejection-free continuous-time Markov chain in an event-driven manner. Different
variants of ECMC have been advantageously applied to, e.g., soft disks [122], hard spheres [123,
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Figure 1.3: In the nearest-neighbor random walk a one-dimensional lattice Ω = {1, 2, 3, . . . , 𝑛 − 1, 𝑛}, the
random walker starts on a random lattice point and the target distribution is uniform on Ω. (a): The transition
matrix of the reversible random walk, whose non-zero entries are indicated as edges of the path graph, connects
neighbored lattice sites. (b): The lifting framework introduces two copies “+1” and “−1” of every configuration
to create a lifted configuration space Ω̂ = Ω × {+1,−1}. The non-zero entries of the lifted transition matrix
of the non-reversible lifted random walk are indicated as edges of the path graph and depend on 1/𝑛. The
non-reversible lifted Markov chain converges to a stationary uniform distribution on Ω̂ [111].

124], continuous spin systems [125–128], dense soft-matter systems such as polymers [129–132],
field-theoretical models [133], polyhedral particles [134], and, in a kinetic Monte Carlo adaption, to
active matter [135].5 ECMC can also be interpreted as piecewise-deterministic Markov processes [136,
137] that attract much attention in applied probability, statistics, and machine learning because of their
superior mixing and correlation times (see, e.g., Refs [138–141]).

The very first proof for a spectacular speedup of the ECMC algorithm compared to local reversible
MCMC algorithms was obtained in the hard-disk model [142, 143], which subsequently stimulated
the broad range of successful applications mentioned in the previous paragraph. The hard-disk model
is the simplest of all particle models in statistical physics and was among the first applications of the
Metropolis algorithm [72] and (event-driven) MD [144]. The latter simulations led to the surprising
insight that, although the hard-disk model lacks any attractive interactions that pulls the disks together,
it shows a phase transition from a disordered fluid to a solid. The precise melting scenario, however,
remained controversial for another fifty years until the superior mixing and correlation times of ECMC
allowed to finally settle the debate in 2011 [142]. In Ref. [P5], we discuss a series of historic hard-disk
simulations and argue that the phase-transition controversy resulted from the limited predictive power
of simulations below the mixing-time scale. Only beyond the mixing time, which depends on the
sampling method, the initial configuration is forgotten and the target distribution is sampled with
well-understood statistical errors (see Section 2.2). Historically, ECMC was the first sampling method
to reach the regime beyond the mixing time in a reasonable amount of computation time, which
allowed for the first definite statements about the phase transition (that were afterwards confirmed

5 In this list, the results of this doctoral thesis are left out in order maintain narrative tension.
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by a massively-parallel Metropolis algorithm on 1536 cores, and ∼ 7-times longer event-driven MD
simulations [143]).

Most of the essential ideas of ECMC are already apparent in the hard-disk model. The potential
energy 𝑈 (x) of a hard-disk configuration x = (x1, x2, . . . , x𝑁 ) of 𝑁 two-dimensional hard disks of
radius 𝜎 in a periodic box is given by

𝑈 (x) =
𝑁∑︁
𝑖=1

𝑖−1∑︁
𝑗=1

𝑈disk
𝑖 𝑗 ( |r𝑖 𝑗 |), (1.6)

where r𝑖 𝑗 = x 𝑗 − x𝑖 is the shortest separation vector from disk 𝑖 to disk 𝑗 that is possibly corrected for
periodic boundary conditions, and 𝑈disk

𝑖 𝑗
is the repulsive distance-dependent pair potential between

them:

𝑈disk
𝑖 𝑗 (𝑟) =

{
0 if 𝑟 ≥ 2𝜎,
∞ if 𝑟 < 2𝜎.

(1.7)

The hard-disk pair potential in Eq. (1.7) is infinite when the disks overlap or zero otherwise. In
consequence, the Boltzmann probability 𝜋(x) has the same finite value for every configuration
x that does not contain any overlaps and vanishes otherwise. The most efficient straight ECMC
variant for the hard-disk system extends its configuration space Ω to the lifted configuration space
Ω̂ = Ω ×V ×N , where N = {1, 2, . . . , 𝑁} is the set of disk indices, and V = {(1, 0)𝑇 , (0, 1)𝑇 } is a
set of velocities. Given a lifted configuration (x, v𝑎, 𝑖) ∈ Ω̂, the “active” disk 𝑖 moves in continuous
Monte Carlo time with velocity v𝑎 until it collides with another target disk 𝑗 in an event at time 𝑡ev
and configuration x′ = (x1, . . . , x𝑖 + 𝑡evv𝑎, . . . , x𝑁 ). The event time 𝑡ev is the minimum of the set of
(possibly infinite) collision times of the active disk 𝑖 with all other disks 𝑘 (and can, in practice, be
efficiently computed with cell-occupancy systems by only considering a local neighborhood of disk 𝑖).
At 𝑡ev, a continued movement of 𝑖 with v𝑎 would introduce an overlap into the configuration and must
be rejected. This rejection is replaced by a lifting move that changes the lifted configuration from
(x′, v𝑎, 𝑖) to (x′, v𝑎, 𝑗) so that the target disk 𝑗 continuous to move with exactly the same velocity (see
Fig. 1.4). With resamplings of the velocity v𝑎 ∈ V in periodic intervals of the chain time 𝜏chain, these
non-equilibrium dynamics sample the equal-weight Boltzmann distribution of the hard-disk model. In
between resamplings of the velocity v𝑎, it remains fixed so that a chain of disks moves in the same
direction. The “velocity” does not have a kinematic meaning as in MD.

After the straight ECMC variant proved its power in the hard-disk system, it was generalized to smooth
interaction potentials so that it can be used for sampling the canonical ensemble of three-dimensional
molecular systems with their molecular-mechanics potential-energy functions 𝑈 =

∑
𝑀 𝑈𝑀 [121, 145,

146]. The generalization exploits the translational invariance of the factor potentials 𝑈𝑀 , and every
factor 𝑀 may depend on an arbitrary number of interaction sites. Similar to the hard-disk system with
periodic boundary conditions, the lifted configuration space is given by Ω̂ = Ω ×V ×N where the
velocity set V now contains three velocities that are aligned with the coordinate axes, respectively. As
before, given the lifted configuration (x, v𝑎, 𝑖) ∈ Ω̂, the active interaction site moves with its velocity
v𝑎 in a deterministic straight-line trajectory until it is interrupted in an event at time 𝑡ev. Here, a
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Figure 1.4: The straight ECMC algorithm for the hard-disk system continuously moves the highlighted active
disk with constant velocity until it collides with another target disk in an event. Afterwards, the target disk
continues to move with exactly the same velocity. At the chain time 𝜏chain, the currently active disk stops and
ends the event chain. With velocity resamplings after each event chain, this non-equilibrium dynamics exactly
samples the thermodynamic equilibrium distribution.

key ingredient for the generalized computation of 𝑡ev is expressing the Boltzmann weight exp(−𝛽𝑈)
as a factorized product

∏
𝑀 exp(−𝛽𝑈𝑀 ) of statistically independent factors 𝑀. Every factor 𝑀

stochastically generates a candidate event time when it would interrupt the movement of the active
interaction site. The factor 𝑀ev with the minimum time actually triggers an event. This generalizes the
comparison of the deterministic collision times of the hard-disk pair-potential factors. At the computed
event time 𝑡ev, the previously active interaction stops and another interaction site of 𝑀ev becomes
active with the same velocity instead. The events of the non-reversible piecewise-deterministic
Markov process can be computed, as before, in an event-driven manner without discretizing time (see
Chapter 2.4 for a theoretical introduction of ECMC).

Because of the factorization of the Boltzmann distribution and the statistical independence of the
factors, ECMC never evaluates the total potential energy 𝑈 but it still allows to sample the stationary
Boltzmann distribution. Furthermore, the factorization fundamentally changes the treatment of
long-range interactions. In MD, the force on every interaction site depends on the position of all other
interaction sites. The computational cost of the tedious force-computation is reduced by introducing
cutoffs and discretizing reciprocal space in fast mesh-based Ewald methods so that the result is only
correct up to a limited accuracy that is typically much worse than allowed by machine precision.
(Moreover, for convenience, MD computer packages such as Lammps usually allow to specify a
target accuracy instead of the intrinsic parameters of the fast mesh-based Ewald methods such as the
cutoffs and discretization size. The intrinsic parameters are then derived from the target accuracy
with analytic error estimates for homogeneously-random charge distributions that should rather be
carefully supplemented by additional force-accuracy tests in strongly inhomogeneous systems [96,
147].) Likewise, the computation of the potential-energy change under a local move of an interaction
site in local reversible MCMC algorithms is an inaccurate global computation that considers the
positions of all interaction sites. In ECMC, in contrast, every statistically independent factor only
considers the long-range interactions between a small number of interaction sites that stays constant
with increasing system size. For the SPC/Fw water model, for instance, there could be one factor for
every Lennard-Jones potential between any two oxygens, and one molecular factor for the Coulomb
potentials between any two molecules (as in the visual representation of the intermolecular interactions
in Fig. 1.1). The long-range interaction between this small number of interaction sites can be computed
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with small computational cost without any approximations in a high-accuracy Ewald summation
(where the intrinsic parameters can be tuned to reach machine precision without any assumptions on
the global charge distribution) [146].

Although the number of interaction sites in the factors remains constant with increasing system
size, the number of factors does certainly not. If a single interaction site moves in a system of 𝑁
SPC/Fw water molecules, O(𝑁) intermolecular factors [and O(1) intramolecular ones] are changing
in time and should stochastically generate candidate event times. The cell-veto algorithm [148] allows
to bundle O(𝑁) long-range factors together and generates a single candidate event time for its set
of factors. If that candidate event becomes a real event because it is the minimum of all candidate
event times, the cell-veto algorithm further samples a single event-triggering factor among its bundled
set of factors. All of this can be achieved with a constant computational complexity O(1) that is
independent of the system size. If the Coulomb and Lennard-Jones interactions in the SPC/Fw water
model are each treated with the cell-veto algorithm, every event can be processed in constant computer
time while the long-range interactions are considered without any approximations (and this is, in fact,
numerically confirmed for large 𝑁 in the last research paper of this doctoral thesis; see Chapter 6 and
Ref. [P4]). Additionally, theory predicts that the mean-free path between events of the molecular
Coulomb factors decreases as O(1/log 𝑁), while it remains constant for the Lennard-Jones and
intramolecular factors [146]. Therefore, every interaction site is advanced by a constant O(1) distance
with a computational complexity of O(𝑁 log 𝑁). This matches the complexity of fast mesh-based
Ewald methods in MD and the recent variant of the fast multipole method in the reversible Metropolis
algorithm. ECMC, however, relies on a high-accuracy Ewald summation from the beginning and
comes without a slowdown as the accuracy is increased.

Apparently, non-reversible ECMC algorithms (or more general, non-reversible piecewise-deterministic
Markov processes) are optimal candidates to become the gold standard of molecular simulations in
thermodynamic equilibrium. As MCMC algorithms, they allow to rigorously sample the Boltzmann
distribution without thermostats. Moreover, they may solve both problems of local reversible MCMC
algorithms in long-range-interacting molecular systems. The slow diffusive dynamics is, in the best
case, replaced by fast ballistic dynamics, and the inefficient and inaccurate treatment of long-range
interactions is replaced by an efficient and exact treatment. This motivated the first version of
general-purpose open-source ECMC application JeLLyFysh, which we implemented shortly before
the work for this doctoral thesis begun [P6]. The first project of this doctoral thesis was then
supposed to consider the SPC/Fw water model as a proof of concept. Water molecules appear in
many biomolecular simulations as an explicit aqueous solution and already contain the long-range
interactions whose treatment is the limiting factor in molecular simulations with any computational
method. Simulating large-scale water systems in JeLLyFysh is therefore an essential first step for
its establishment for molecular simulations. Specifically, we chose the integrated autocorrelation
time of the electric polarization [48] (or total electric dipole moment) as a benchmark. It is coupled
to the rotation dynamics of the individual water molecules and determines the dielectric properties
of the system. Because the straight ECMC variant moves all interaction sites in the same direction
in between resamplings of the velocity, the mode of the polarization is expected equilibrate slowly.
Unfortunately, it did indeed equilibrate slowly but much slower than expected. In the straight ECMC
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variant of JeLLyFysh-Version1.0, the simulated water molecules resisted rotation and the polarization
remained dynamically arrested for prohibitively long computation times (see Ref. [149, Chapter 6] for
a doctoral thesis of a past collaborator that contains these unfortunate results). The study of large
systems was not possible and defeat had to be accepted.

1.4 Evolving Solution of this Doctoral Thesis

The four research papers of this doctoral thesis [P1, P2, P3, P4] document how we developed a
solution for the problem of the dynamical arrest in straight ECMC simulations of the thermodynamic
equilibrium of long-range-interacting SPC/Fw water molecules in a periodic cubic box. JeLLyFysh-
Version1.0 always aligned the three-dimensional velocity of the active interaction site with the positive
coordinate axes, that is, it chose the finite velocity space V = {(1, 0, 0)𝑇 , (0, 1, 0)𝑇 , (0, 0, 1)𝑇 }. The
analogous choice is superior in the periodic two-dimensional hard-disk system [115, 142]. (In Fig. 1.4,
such an ECMC simulation only considers event chains going right and up. Chains going left and down
are not necessary in periodic boundary conditions.) The finite velocity space V was also essential
for an efficient treatment of the long-range interactions because, at that time, the cell-veto algorithm
was only formulated for finite V (see Section 2.4.6). As a side effect, the alignment of the velocities
with the coordinate axes reflects basic symmetry axes of the cubic simulation box which allowed for a
much easier, and thus more performant, implementation in JeLLyFysh-Version1.0.

In order to analyze and overcome the dynamical arrest of the rotation dynamics of straight ECMC,
we considered simpler models instead of the complex SPC/Fw water model in the first three research
papers of this doctoral thesis. On the one hand, this allowed for analytical approaches. On the
other hand, this largely reduced the required implementation efforts and computing requirements.
Concerning the overarching objective of this doctoral thesis—the introduction of a competitive,
rigorous paradigm for molecular simulation that is based on exact non-reversible MCMC algorithms—
the following insights evolved: First, analyzing a single, analytically tractable tethered hard-disk
dipole, which serves as a simplified two-dimensional model of an extended dipole with flexible bond
length that resembles the SPC/Fw water molecule, suggested that the particular straight ECMC variant
of JeLLyFysh-Version1.0 was particularly ill-suited for rotating the dipole (that is, for decorrelating
the polarization). Larger finite velocity spaces V, or even a continuous velocity space, are preferable
(see Chapter 3 and Ref. [P1]).

Second, even though the precise choice of the proposal distribution for a Monte Carlo move of
a single interaction site does typically not influence the performance of local reversible MCMC
algorithms by a lot, the analogous case is not true for non-reversible MCMC algorithms. For an
increasing number of tethered hard-disk dipoles at increasing densities, we considered the decorrelation
of the polarization, which again characterizes the rotation dynamics of the individual dipoles, in the
original straight ECMC variant and in reflective [115], forward [150], and Newtonian ECMC [124],
which each change both the active interaction site and the velocity in an event (see Fig. 1.5). All
ECMC variants similarly move a single interaction site with a constant velocity between events. Dipole
rotations are thus pieced together from subsequent displacements of single disks. Currently, there is no
insight on how explicit continuous-time rotations of dipoles or molecules could be generally included
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Figure 1.5: Events of ECMC in the two-dimensional hard-disk system correspond to collisions of the active
disk with another target disk. They interrupt the motion of the incoming active disk (“in”) and the outgoing
target disk starts to move instead (“out”). (a): In straight ECMC [115], the outgoing target disk starts to move
with exactly the same velocity as the incoming active disk. (b): Reflective ECMC [115] reflects the incoming
velocity by the line connecting the active and target disk to obtain the velocity of the outgoing target disk. (c):
The outgoing velocity of forward ECMC [150] is located, in comparison to reflective ECMC, in the same
quadrant of the coordinate system based on axes parallel and orthogonal to the line connecting the active and
target disk. Forward ECMC introduces an event-based randomness where the orthogonal component of the
outgoing velocity is randomly sampled while the parallel component is chosen to keep the absolute value of the
velocity constant. (d): Newtonian ECMC [124] assigns a hypothetical velocity to every disk in the system but
only one of them actually moves at any time. An event changes both velocities of the active and target disks
according to an elastic Newtonian collision between two disks of equal mass, and the target disk continuous to
move with its outgoing velocity.

in the framework of ECMC, especially in the presence of long-range interactions in the ultimate
application to molecular systems. Adding reversible rotation moves based on the Metropolis algorithm
is, in principle, possible [134] but would require an inefficient and inaccurate computation of the
potential-energy change in molecular systems which is thus also not an option for the overarching
objective of this doctoral thesis. Fortunately, the comparison between the different ECMC variants
reveal an up to an order-of-magnitude spread in performance between the worst variant, straight
ECMC, and by far the best one, Newtonian ECMC (see Chapter 4 and Ref. [P2]). Even though
Newtonian ECMC only relies on straight-line motions of individual interaction sites exactly as straight
ECMC, it appears to allow for much faster rotation dynamics.

The dependence of the performance of ECMC on details of the algorithm was even more extreme in
escape times from tightly confined hard-disk configurations (see Chapter 5 and Ref. [P3]). A scaling
theory suggests, as the third insight, that finding the optimal choice of an intrinsic scale in straight
ECMC (by fixing the chain time 𝜏chain after which the velocity is resampled; see Fig. 1.4) does not
only require laborious fine-tuning. The optimal choice may also strongly differ in different parts of
the configuration space. For the rotation dynamics of hard-disk dipoles and the escape dynamics
from tightly confined hard-disk configurations, reflective, forward, and Newtonian ECMC become
optimal when an intrinsic scale is missing (i.e., 𝜏chain → ∞). All of the first three research papers of
this doctoral thesis also led to scientific results that go beyond the overarching objective. These are
highlighted in more detail in the respective prologue of the chapters.

The first three research papers of this doctoral thesis systematically evaluated the manifold of
possible choices within the framework of ECMC, which was previously not fully acknowledged for
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molecular simulations. Newtonian ECMC, in particular, emerged as the most promising ECMC variant
for molecular simulation because of its superior performance for the decorrelation of the polarization
in a dense system of tethered hard-disk dipoles, and because it becomes most effective without any
intrinsic parameter that needs to be fine-tuned. The fourth research paper of this doctoral thesis first
generalizes the Newtonian ECMC variant from the peculiar hard-sphere system, for which it was
proposed [124], to the general interaction potentials that appear in molecular simulations. It also lifts
the restriction of the cell-veto algorithm to finite velocity spaces V so that it can be used for generalized
Newtonian ECMC with its continuous velocity space V. It is complemented by a majorly updated
JeLLyFysh-Version2.0 that implements these theoretical ideas [P9]. We used JeLLyFysh-Version2.0
for large-scale simulations of the long-range-interacting SPC/Fw water model. Finally, the electric
polarization was not dynamically arrested anymore and its integrated autocorrelation times could
be determined. Here, the computationally demanding long-range Coulomb interaction is treated by
the cell-veto algorithm which results in an observed constant computer time for every event. At the
same time, it is treated without any approximations and the Boltzmann distribution is rigorously
sampled. The performance of MD decreases as the desired accuracy for the Coulomb interaction is
increased. At some desired accuracy, JeLLyFysh-Version2.0 can thus reach a break-even point with
MD. By comparing it to the long-developed MD software Lammps, we were ultimately able to show
that JeLLyFysh-Version2.0 reaches this break-even point for the long-range-interacting water system
already well below machine precision (see Chapter 6 and Ref. [P4]). For such an exact treatment of
the long-range interactions, one should thus, in fact, already now prefer JeLLyFysh-Version2.0.

The fact that generalized Newtonian ECMC in JeLLyFysh-Version2.0 becomes competitive to MD
in Lammps at high precision in a long-range-interacting water system lays the foundation for a rigorous
paradigm for molecular simulations that is based on general non-reversible MCMC algorithms. In
that paradigm, the Boltzmann distribution is rigorously sampled without approximations, unphysical
artifacts, and thermostats. Therefore, it can serve as a gold standard in critical applications where it
identifies artifacts and approximations of MD that are not yet controlled algorithmically. Moreover,
with its great potential for improvements, this paradigm may even become faster than MD in exploring
the thermodynamic equilibrium of molecular systems (see Chapter 7).

Before the four research papers of this doctoral thesis are reproduced in Chapters 3–6 and an overall
conclusion is drawn in Chapter 7, it is essential to introduce the theoretical foundations underlying
non-reversible Markov chains in the context of ECMC in Chapter 2.

22



CHAPTER 2

Theoretical Foundations of Non-Reversible
Markov Chains

This chapter lays the theoretical foundation of non-reversible Markov chains in the context of the
event-chain Monte Carlo algorithm that is necessary for the reproduced research papers in the following
Chapters 3–6. It starts with a short introduction into general Markov-chain theory in Section 2.1.
Afterwards, Section 2.2 establishes the most important figures of merits to measure the performance
of Markov-chain Monte Carlo algorithms and also discusses necessary error-analysis techniques.
Section 2.3 introduces lifted Markov chains before Section 2.4 presents the theory underlying the
event-chain Monte Carlo algorithm.

2.1 Primer on Markov Chains

Consider, for concreteness, a finite configuration space Ω with a finite number of configurations |Ω|
(a comment on Markov-chain theory in general configuration spaces that yields virtually unchanged
results is given in Section 2.1.9). Markov-chain Monte Carlo (MCMC) algorithms are formulated for
a target probability distribution 𝜋 on Ω such as the Boltzmann distribution of the canonical ensemble
[see Eq. (1.1)]. The aim of MCMC simulations is to generate a Markov chain in order to estimate
expectations E𝜋 (A) of bounded real-valued functions A on Ω:

E𝜋 (A) =
∑︁
𝑥∈Ω

A(𝑥) 𝜋(𝑥). (2.1)

Here, A(𝑥) yields the physical observable of interest in the configuration 𝑥 ∈ Ω as, for instance,
the energy, and A should be bounded so that E𝜋 (A) < ∞ remains finite. If 𝜋 is the Boltzmann
distribution, Eq. (2.1) yields thermodynamic averages. Naturally, MCMC algorithms are only relevant
when the configuration space is too large to carry out the summation in Eq. (2.1) directly (as, e.g.,
in the famous Ising model of statistical physics where the configuration space grows exponentially
fast as 2𝐿 with the number of spins 𝐿). In continuous problems, the sum in Eq. (2.1) is replaced
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Chapter 2 Theoretical Foundations of Non-Reversible Markov Chains

by an integral over the continuous configuration space. For molecular systems, one obtains a very
complicated high-dimensional integral whose direct integration (either analytic or numerical) is
infeasible. Therefore, computational methods as, e.g., molecular dynamics or, in the case of this
doctoral thesis, MCMC becomes necessary. Before one can understand how MCMC algorithms can
be used to estimate the expectations E𝜋 (A) for a given target distribution 𝜋, Markov chains and their
properties have to be properly introduced.

2.1.1 Markov Property

A discrete-time (and time-homogeneous) Markov chain on Ω is a sequence of random variables
(𝑋0, 𝑋1, 𝑋2, . . . ) where the probability P(𝑋0 = 𝑥0, 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋𝑡 = 𝑥𝑡 ) of any specific
realized of configurations {𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑡 } for any time 𝑡 ∈ N0 can be expressed as [74]

P(𝑋0 = 𝑥0, 𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋𝑡 = 𝑥𝑡 ) = 𝜋{0} (𝑥0) 𝑃(𝑥0, 𝑥1) 𝑃(𝑥1, 𝑥2) . . . 𝑃(𝑥𝑡−1, 𝑥𝑡 ). (2.2)

Here, 𝜋{0} is the probability distribution of the initial configuration as a row vector of size 1 × |Ω|
(which could, e.g., just contain a single non-zero entry equal to one if a specific initial configuration
𝑥0 ∈ Ω is of interest), and 𝑃 is a time-independent transition matrix 𝑃 of size |Ω| × |Ω| whose
non-negative entries 𝑃(𝑥, 𝑦) give the conditional probability of moving from any configuration 𝑥 ∈ Ω

to any 𝑦 ∈ Ω in the next step of the random process. This interpretation of the transition motivates an
equivalent expression of Eq. (2.2),

P(𝑋𝑡+1 = 𝑥𝑡+1 |𝑋𝑡 = 𝑥𝑡 , . . . , 𝑋0 = 𝑥0) = 𝑃(𝑥𝑡 , 𝑥𝑡+1), (2.3)

that relates the entries of the transition matrix with the conditional probability of observing the
configuration 𝑋𝑡+1 = 𝑥𝑡+1 ∈ Ω under the condition of a specific realization of previous configurations.
Equation (2.3) is often called the Markov property and incorporates the “loss of memory” of Markov
chains [74]. Because of the interpretation of its entries as conditional probabilities, the transition
matrix 𝑃 has to be stochastic, that is, 𝑃(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ Ω and [74]∑︁

𝑦∈Ω
𝑃(𝑥, 𝑦) = 1 for all 𝑥 ∈ Ω. (2.4)

2.1.2 Stationary Distribution and Global-Balance Condition

The transition matrix does not only connect two specific configurations but also the probability
distributions 𝜋{𝑡 } and 𝜋{𝑡+1} of configurations at succeeding time steps as 𝜋{𝑡+1} = 𝜋{𝑡 }𝑃 (where a
matrix product is used). For any initial distribution 𝜋{0} , this yields 𝜋{𝑡 } = 𝜋{0}𝑃𝑡 . A stationary
distribution 𝜋 of the Markov chain is a fixed point satisfying 𝜋 = 𝜋𝑃 which is often expressed element
wise as [74]

𝜋(𝑦) =
∑︁
𝑥∈Ω

𝜋(𝑥) 𝑃(𝑥, 𝑦) for all 𝑦 ∈ Ω. (2.5)

In MCMC algorithms, the transition matrix is chosen so that the given target distribution 𝜋 coincides
with the stationary distribution of the Markov chain. Equation (2.5), which reproduces Eq. (1.2) in the
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2.1 Primer on Markov Chains

introduction, is then known as the global-balance condition for the transition matrix 𝑃. As already
mentioned in Section 1.3.1 of the introduction, reversible Markov chains satisfy the more restrictive
detailed-balance condition

𝜋(𝑥) 𝑃(𝑥, 𝑦) = 𝜋(𝑦) 𝑃(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ Ω, (2.6)

which implies that the global-balance condition is satisfied [74]. Non-reversible Markov chains break
the detailed-balance condition and only satisfy Eq. (2.5).

Since the initial distribution 𝜋{0} is almost certainly not equal to the stationary distribution 𝜋

(because this would require another way to sample 𝜋), one has to mathematically ensure that for a
given Markov chain on Ω with transfer matrix 𝑃 and initial distribution 𝜋{0} , first, a unique 𝜋 even
exists and, second, that 𝜋{0} converges to 𝜋. This imposes further conditions on the Markov chain.

2.1.3 Irreducibility, Aperiodicity, and Positive Recurrence

A Markov chain is irreducible if, for any two configurations 𝑥, 𝑦 ∈ Ω, there exists a time 𝑡 such that
𝑃𝑡 (𝑥, 𝑦) > 0 (where 𝑡 may depend on 𝑥 and 𝑦) [74]. This expresses the possibility to get from any
configuration 𝑥 to any other configuration 𝑦 in the random process.

The period of a configuration 𝑥 ∈ Ω is the greatest common divisor of the set T (𝑥) = {𝑡 ≥ 1 :
𝑃𝑡 (𝑥, 𝑥) > 0}, that is, the set of times 𝑡 at which it is possible for the chain to return to the starting
configuration 𝑥 [74]. In an irreducible Markov chain, all configurations share the same period [74,
Lemma 1.6] and the chain is called aperiodic if their period is one. Aperiodicity prevents that the
configuration space Ω can be partitioned into several classes [74, Exercise 1.6]. Consider, as an
example of such a partitioning, the simple random walk on a discrete circle with an even number 𝑛 of
sites. The configuration space is given by Ω = {1, 2, 3, . . . , 𝑛 − 1, 𝑛}. The Markov chain considers
a random walker that starts on one site and follows a transition matrix defined by the procedure
that, at each time step, the walker moves either to the left or the right with probability 1/2 (where
sites 1 and 𝑛 are connected by periodic boundary conditions). This chain has a period of 2 and the
configuration space can be divided into two distinct classes of even and odd sites. The Markov chain
only makes transitions between configurations in complementary classes but never within a class.
Such a partitioning of the configuration space clearly prevents a general convergence to a stationary
distribution 𝜋 (although it can still exist and even be reached if, for example, the Markov chain already
starts with 𝜋{0} = 𝜋).

Suppose a Markov chain starts at 𝑋0 = 𝑥 ∈ Ω (that is, 𝜋{0} (𝑦) = 𝛿𝑥,𝑦 for all 𝑦 ∈ Ω). The first
return time is defined as 𝜏+𝑥 = min{𝑡 ≥ 1 : 𝑋𝑡 = 𝑥}, i.e., the first time at which the chain revisits the
configuration 𝑥 after 𝑋0 = 𝑥. A configuration 𝑥 ∈ Ω is positive recurrent if the expectation of the
return time remains finite: E(𝜏+𝑥 ) < ∞ [74]. If a single configuration of an irreducible Markov chain
is positive recurrent, all configurations are positive recurrent and, hence, the entire chain is classified
as such [74, Propositions 21.11]. Any irreducible Markov chain on a finite configuration space Ω is
positive recurrent [74, Lemma 1.13]. This property is of importance for (countably and uncountably)
infinite configuration spaces (see Section 2.1.9).
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Chapter 2 Theoretical Foundations of Non-Reversible Markov Chains

2.1.4 Existence of a Unique Stationary Distribution and Convergence

For finite configuration spaces Ω, it can be shown that a unique stationary distribution 𝜋 exists for
irreducible Markov chains [74, Corollary 1.17]. In order for the Markov chain to converge to 𝜋, it
must also be aperiodic [74, Theorem 4.9]. Here, the total variation distance is one possible distance
measure between the evolving distribution 𝜋{𝑡 } = 𝜋{0}𝑃𝑡 of the Markov chain and the stationary
distribution 𝜋. For any two probability distributions 𝜇 and 𝜈 on Ω, it is defined as [74]

| |𝜇 − 𝜈 | |TVD ≔ max
𝐴⊆Ω

|𝜇(𝐴) − 𝜈(𝐴) | , (2.7)

where the probability of an event 𝐴 ⊆ Ω under the given probability distribution is given by

𝜇(𝐴) ≔
∑︁
𝑥∈𝐴

𝜇(𝑥). (2.8)

Equation (2.7) uses an intuitive probabilistic definition of the distance between two probability
distributions by considering the single event to which they assign the most different probability. The
total variation distance can be shown to reduce to [74, Proposition 4.2]

| |𝜇 − 𝜈 | |TVD =
1
2

∑︁
𝑥∈Ω

|𝜇(𝑥) − 𝜈(𝑥) | . (2.9)

Since Eq. (2.9) only considers a sum over the configuration space Ω and, compared to Eq. (2.7), not
the full power set of Ω (which grows exponentially fast as 2 |Ω |), it becomes more approachable. This
enables a numerical computation in the first research paper of this doctoral thesis for a comparably
small (discretized version of a continuous) configuration space (see Chapter 3).

The definition of the total variation distance allows us to formulate a convergence theorem. Let P
denote the collection of all probability distributions on Ω. For an irreducible and aperiodic Markov
chain with transition matrix 𝑃, there exist finite constants 𝐶 > 0 and 𝛼 ∈ (0, 1) such that [74,
Theorem 4.9 and Exercise 4.1]

sup
𝜋{0}∈P

| |𝜋{0}𝑃𝑡 − 𝜋 | |TVD ≤ 𝐶𝛼𝑡 . (2.10)

This expresses that the total variation distance between the evolving distribution 𝜋{𝑡 } of the Markov
chain and its stationary distribution 𝜋 remains below an exponential bound for any initial distribution
𝜋{0} . Consequently, the distance between 𝜋{𝑡 } and 𝜋 becomes negligible at some point in time t (see
Section 2.2). In practice, most Markov chains start from a specific configuration 𝑋0 = 𝑥 ∈ Ω. This
implies 𝜋{0} (𝑦) = 𝛿𝑥,𝑦 for all 𝑦 ∈ Ω and thus 𝜋{𝑡 } = 𝑃𝑡 (𝑥, ·) where 𝑃𝑡 (𝑥, ·) is the 𝑥-th row of 𝑃.
It can be shown that only these particular initial probability distributions are of importance in the
convergence theorem because the left-hand side of Eq. (2.11) can be rewritten to only consider all
initial configurations 𝑋0 = 𝑥 ∈ Ω [74, Exercise 4.1] which yields

max
𝑥∈Ω

| |𝑃𝑡 (𝑥, ·) − 𝜋 | |TVD ≤ 𝐶𝛼𝑡 . (2.11)
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This is important in the first research paper of this doctoral thesis because Eq. (2.11) is, again, more
approachable from a numerical point of view than Eq. (2.10) (see Chapter 3).

2.1.5 Ergodic Theorem

The ergodic theorem allows to replace the configuration-space average in Eq. (2.1) by a time average
over the Markov chain (𝑋0, 𝑋1, . . . , 𝑋𝑡 ) of length 𝑛 = 𝑡 + 1 ∈ N that is introduced as

A𝑛 ≔
1
𝑛

𝑛−1∑︁
𝑠=0

A(𝑋𝑠). (2.12)

For an irreducible Markov chain with stationary distribution 𝜋 starting from any initial distribution
𝜋{0} , one can deduce from the strong law of large numbers that the time average A𝑛 converges almost
surely to the space average E𝜋 (A) with increasing 𝑛 [74, Theorem C.1]:

P
(

lim
𝑛→∞

A𝑛 = E𝜋 (A)
)
= 1. (2.13)

Equation (2.13) is the ergodic theorem (or strong law of large numbers) for Markov chains. An
equivalent statement is that the asymptotic proportion of time that the Markov chain spends in the
configuration 𝑥 is 𝜋(𝑥). This allows to estimate intractable configuration-space averages with an
MCMC simulation.

2.1.6 Central Limit Theorem

The central limit theorem for Markov chains is an even stronger statement than the ergodic theorem
and is reminiscent of the classic central limit theorem for independent and identically distributed
random variables. Consider an irreducible Markov chain (𝑋0, 𝑋1, . . . 𝑋𝑡 ) of length 𝑛 = 𝑡 + 1 ∈ N that
starts from its stationary distribution 𝜋{0} = 𝜋 (for example, because it is also aperiodic and already
converged to 𝜋 beforehand). In stationarity, one knows that all 𝑋𝑡 are identically distributed according
to 𝜋{𝑡 } = 𝜋. Thus, E𝜋{𝑡} [A(𝑋𝑡 )] = E𝜋 (A) and the expectation of the time average over the Markov
chain is just the configuration-space average:

E𝜋 (A𝑛) =
1
𝑛

𝑛−1∑︁
𝑠=0
E𝜋 [A(𝑋𝑠)] = E𝜋 (A). (2.14)

Here, the linearity of the expectation E𝜋 was used. The ergodic theorem is, of course, a much stronger
property than Eq. (2.14) because it does not rely on a stationary initial distribution and because it
ensures that A𝑛 itself converges to E𝜋 (A).

The variance of the time average 𝜎2
𝜋 (A𝑛) contains correlation terms because the random variables

𝑋𝑡 of the Markov chain are not independent. Therefore, the covariance is introduced as

cov𝜋 [A(𝑋𝑠),A(𝑋𝑟 )] ≔ E𝜋 [(A(𝑋𝑠) − E𝜋 [A(𝑋𝑠)]) (A(𝑋𝑟 ) − E𝜋 [A(𝑋𝑟 )])]
= E𝜋 [A(𝑋𝑠) A(𝑋𝑟 )] − E𝜋 [A(𝑋𝑠)] E𝜋 [A(𝑋𝑟 )] .

(2.15)
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Because of stationarity, cov𝜋 [A(𝑋𝑠),A(𝑋𝑠+𝑘)] does not depend on 𝑠 but only on the time difference
𝑘 . Hence, one introduces 𝛾𝜋,𝑘 (A) ≔ cov𝜋 [A(𝑋𝑠),A(𝑋𝑠+𝑘)]. This allows to compute the variance
of the time average A𝑛 multiplied by

√
𝑛 [151]:

𝜎2
𝜋 (
√
𝑛A𝑛) = 𝑛 𝜎2

𝜋 (A𝑛)

= 𝑛E𝜋 (A
2
𝑛) − 𝑛

[
E𝜋 (A𝑛)

]2

=
1
𝑛

𝑛−1∑︁
𝑠=0

𝑛−1∑︁
𝑟=0

cov𝜋 [A(𝑋𝑠),A(𝑋𝑟 )]

= 𝛾𝜋,0(A) + 2
𝑛−1∑︁
𝑘=1

𝑛 − 𝑘

𝑛
𝛾𝜋,𝑘 (A).

(2.16)

Equations (2.14) and (2.16) essentially compute the first and second moments of the distribution of
A𝑛. The central limit theorem makes a statement for the entire distribution.

For an irreducible Markov chain starting from its stationary distribution so that 𝜋{0} = 𝜋, the central
limit theorem for Markov chains shows that the fluctuations of the time average A𝑛 around its limit
E𝜋 (A) when multiplied by

√
𝑛 converge to a normal distribution N[0, 𝜎2

𝜋,CLT(A)] with mean 0 and
variance 𝜎2

𝜋,CLT(A) [81, Theorem 23 and Remark after Proposition 30]:

√
𝑛

(
A𝑛 − E𝜋 (A)

)
=

1
√
𝑛

𝑛−1∑︁
𝑠=0

[A(𝑋𝑠) − E𝜋 (A)] 𝑑−→ N[0, 𝜎2
𝜋,CLT(A)] for 𝑛 → ∞. (2.17)

This result is similar to the one of the classical central limit theorem that assumes that the random
variables are independent and identically distributed. In a stationary Markov chain, they are only
identically distributed but the Markov property still allows to derive Eq. (2.17). For large enough
𝑛, the distribution of A𝑛 still converges to a normal distribution with mean E𝜋 (A) and variance
𝜎2
𝜋,CLT(A)/𝑛. This implies that the standard error of the estimate A𝑛 decreases as 1/

√
𝑛. The

variance 𝜎2
𝜋,CLT(A) of the asymptotic normal distribution N[0, 𝜎2

𝜋,CLT(A)] is given by the limit of
𝜎2
𝜋 (
√
𝑛A𝑛) in Eq. (2.16) [151]:

𝜎2
𝜋,CLT(A) = lim

𝑛→∞
𝜎2
𝜋 (
√
𝑛A𝑛) = 𝛾𝜋,0(A) + 2

∞∑︁
𝑘=1

𝛾𝜋,𝑘 (A). (2.18)

For the preceding discussion of the central limit theorem for irreducible Markov chains, it was assumed
that it already starts from its stationary distribution 𝜋{0} = 𝜋 to connect the variance of the asymptotic
normal distribution in Eq. (2.18) to the limit of the variance of the time average over the stationary
Markov chain in Eq. (2.16). However, initial stationarity is not necessary and one can show that
the asymptotic convergence in distribution of the central limit theorem (as the ergodic theorem in
Section 2.1.5) holds for any initial distribution 𝜋{0} because it becomes irrelevant in the 𝑛 → ∞
limit [81, Proposition 29].
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2.1.7 Necessity of Aperiodicity

The existence of a unique stationary distribution 𝜋 and, based on this, the ergodic and central limit
theorems for Markov chains only require their irreducibility. The convergence theorem, in contrast,
also requires aperiodicity because a periodic Markov chain partitions the configuration space into
distinct classes (see Section 2.1.3). In this case, a general statement about its rate of convergence to
stationarity as in the convergence theorem is not possible because the evolving distribution 𝜋{𝑡 } may
actually never converge to 𝜋. For the asymptotic results of the ergodic and central limit theorems,
in contrast, one can, informally speaking, average over the distinct partitions of configuration space
in the 𝑛 → ∞ limit [81, Corollary 6]. If one is only interested in estimating configuration-space
averages by time averages over the Markov chain, aperiodicity is therefore not important (see also
Ref. [75, Section 4.3]). Because aperiodicity is easy to establish in most practical applications [80],
this doctoral thesis nevertheless considers irreducible and aperiodic MCMC algorithms so that the
convergence theorem is valid.

2.1.8 Continuous-Time Markov Chains

A discrete-time Markov chain on configuration space Ω with transition matrix 𝑃 and initial distribution
𝜋{0} considers a sequence of random variables (𝑋0, 𝑋1, 𝑋2, . . . , 𝑋𝑡 ) at times 𝑡 ∈ N0. Continuous-time
Markov chains use times 𝑡 ∈ R≥0 instead. One may construct a continuous-time Markov chain from a
discrete-time transfer matrix 𝑃 by making transitions at a constant rate, or in other words, at time
intervals that are independent and identically distributed exponential variables [74, Chapter 20].
The number of transition times per unit time is then a Poisson-distributed random variable which
is why the transition times are also said to follow a Poisson process. The stationary distribution of
an embedded irreducible discrete-time Markov chain can be connected to the stationary distribution
of an irreducible continuous-time version by considering the average time between transitions [152,
Theorem 4.29]. It can further be shown that the irreducible continuous-time Markov chain converges
to its stationary distribution, and that a time-average over the Markov chain, practically implemented
by taking samples in periodic time intervals, yields the corresponding configuration-space average in
an ergodic theorem [152, Section 4.4.3]. This doctoral thesis considers the non-reversible event-chain
Monte Carlo algorithm which generates piecewise-deterministic Markov processes in continuous time
but they are constructed from an infinitesimal limit of a discrete-time Markov chain.

2.1.9 General Configuration Spaces

Previously, Markov chains on finite configuration spaces Ω were considered. For countably infinite
configuration spaces Ω, one can still think of 𝑃 as a transition matrix and of the evolving distributions
𝜋{𝑡 } for any time 𝑡 ∈ N0 as a row vector. Both 𝑃 and 𝜋{𝑡 } now contain countably many entries. The
definitions of irreducibility, aperiodicity, and positive recurrence are unchanged (see Section 2.1.3)
but irreducibility does not imply positive recurrence anymore (e.g., the unbiased random walk on Z
starting at 0 is irreducible but not positive recurrent because the expectation value of the return time is
infinite [74, Example 21.10]). A Markov chain now has to be irreducible and positive recurrent in
order show the existence of a unique stationary distribution 𝜋 [74, Theorem 21.13]. The reverse is
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also true, that is, if there exists a unique stationary distribution 𝜋 of an irreducible Markov chain, then
it is also positive recurrent. Since positive recurrence can be difficult to prove and MCMC algorithms
are designed so that the target distribution becomes the known stationary distribution, the existence of
a unique stationary distribution 𝜋 is often understood as another prerequisite instead [73, 75, 81]. The
general formulation of Markov chains that applies to continuous, uncountably infinite configuration
spaces is based on measure theory (see, e.g., Refs [73] or [75, Chapter 4]). The definitions of
irreducibility and aperiodicity have to be properly generalized, and positive recurrence is replaced by
an even stronger Harris recurrence [73].

The ergodic theorem (or strong law of large numbers) in Eq. (2.13) can be shown for irreducible and
Harris recurrent Markov chains with stationary distribution 𝜋 for any real-valued functions A such that
E𝜋 ( |A|) exists and is finite [75, Theorem 4.3 and Section 4.4]. Furthermore, any irreducible, Harris
recurrent, and aperiodic Markov chain with stationary distribution 𝜋 converges [75, Theorem 4.4 and
Section 4.4]:

lim
𝑡→∞

| |𝑃𝑡 (𝑥, ·) − 𝜋 | |TVD = 0 for all 𝑥 ∈ Ω. (2.19)

This equation does not make any statement about about the rate of convergence as the convergence
theorem for finite Markov chains in Eq. (2.11). General irreducible, aperiodic, and positive Harris
recurrent Markov chains with stationary distribution 𝜋 may, but do not have to, satisfy Eq. (2.11)
and if they do, so they are called uniformly ergodic [75, Definition 4.6]. A weaker bound on the
convergence rate appears in geometrically ergodic Markov chains [75, Definition 4.5]. These stronger
conditions are necessary for a generalized central limit theorem for Markov chains. Equation (2.17)
holds for uniformly ergodic Markov chains with stationary distribution 𝜋 for real-valued functions A
such that E𝜋 (A2) < ∞ which is required so that 𝜎2

𝜋,𝐶𝐿𝑇
(A) < ∞ [75, Theorem 4.6]. It also holds for

geometrically ergodic Markov chains with stationary distribution 𝜋 if E𝜋 ( |A|2+𝜀) for some 𝜀 > 0 [75,
Theorem 4.6]. Here, as in the finite case, the condition on aperiodicity (that is hidden in the uniformly
or geometrically ergodicity) is not strictly necessary [81, Proposition 30]. Actually proving that a given
MCMC algorithm is geometrically or even uniformly ergodic can be quite difficult [75, Section 4.5].
For the non-reversible piecewise-deterministic Markov processes of this doctoral thesis, proofs under
certain conditions on the target distribution are available [153–156]. In practice, one generally assumes
that the central limit theorem holds which is justified by the good performance that one observes in
the simulations. Alternatively, one may consider the easier-to-satisfy irreducibility and aperiodicity
conditions of finite Markov chains on a discretized version of the continuous configuration space.

2.2 Figures of Merits of Markov-Chain Monte Carlo Algorithms

Two important figures of merits of MCMC algorithms with the stationary target distribution 𝜋 that
satisfy the conditions for the convergence, ergodic, and central limit theorems are the mixing time and
the integrated autocorrelation time. The former determines the time after which the generated Markov
chain is sufficiently close to the stationary distribution 𝜋 (see Section 2.2.1). The latter determines
how many Monte-Carlo steps are required to get an effectively independent sample in the Markov
chain once it samples the stationary distribution 𝜋 which paves the way to a rigorous error analysis
(see Section 2.2.2). Both quantities appear repeatedly throughout this doctoral thesis.
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2.2.1 Mixing Time

The mixing time 𝑡mix measures the time that is required until the Markov chain can be guaranteed to
be close to its stationary distribution 𝜋, independent of the initial distribution 𝜋{0} . Let 𝑑 (𝑡) denote
the total variation distance between the evolving distribution 𝜋{𝑡 } from the most unfavorable initial
distribution 𝜋{0} and 𝜋 [74, Section 4.4]:

𝑑 (𝑡) ≔ sup
𝜋{0}∈P

| |𝜋{0}𝑃𝑡 − 𝜋 | |TVD = max
𝑥∈Ω

| |𝑃𝑡 (𝑥, ·) − 𝜋 | |TVD. (2.20)

This regards, again, a finite configuration space Ω and, as in the the rewriting of the convergence
theorem in Eqs (2.10) and (2.11), the second equality only considers specific configurations 𝑋0 = 𝑥 ∈ Ω

as the initial distribution of the Markov chain [74, Exercise 4.1]. The mixing time is defined as [74,
Section 4.5]

𝑡mix(𝜀) ≔ min {𝑡 : 𝑑 (𝑡) ≤ 𝜀} (2.21)

and
𝑡mix ≔ 𝑡mix(1/4). (2.22)

The chosen value 𝜀 = 1/4 is arbitrary but should satisfy 0 < 𝜀 < 1/2 to ensure that the entire
configuration space is explored [80, Section 2.1.2]. Beyond the mixing time 𝑡mix, one can show
that the distance 𝑑 (𝑡) is bounded by an exponential decay, that is, 𝑑 (ℓ𝑡mix) ≤ 2−ℓ where ℓ ∈ N [74,
Eq. (4.33)]. Therefore, the mixing time determines the point in time when a first sample from the
stationary distribution 𝜋 can be safely extracted from a Markov chain even when it was started from
the most unfavorable initial configuration.

Upper bounds on the mixing time are necessary to be confident that a practical MCMC simulation
yields rigorous results because they can only run for a finite number 𝑛 of time steps. The ergodic
and central limit theorems in principle require the unpractical 𝑛 → ∞ limit. If one knows, however,
that the simulated number of time steps 𝑛 is well above the mixing time, one can be sure that the
time average over the Markov chain yields a well-behaved estimate of the configuration-space average
with an O(1/

√
𝑛) standard error (by using the techniques of the next Section 2.2.2). The O(1/𝑛) bias

from the initial part of the trajectory where the Markov chain was not yet in equilibrium, in contrast,
becomes insignificant or is, in practice, considered to be a “burn-in” part of the simulation and thus
not used for any time averages [76, 157].

Rigorous results for mixing times are only available for tractable test problems (see, e.g., the
discussion about mixing times of lifted Markov chains in Section 1.3.2). In the first research
paper of this doctoral thesis, we consider a small enough (discretized version of a continuous)
configuration space so that we can numerically compute 𝑑 (𝑡) in Eq. (2.20) by considering all
possible initial configurations which then yields the mixing time 𝑡mix (see Chapter 3). In the
third research paper of this doctoral thesis, we propose an especially bad initial configuration
for the hard-disk system from which it takes local MCMC algorithms long times to converge to
their stationary distribution. This initial configuration may be used to bound mixing times and
to reflect the relative merits of the sampling algorithms (see Chapter 5). In the more complex
systems of the second and fourth research papers of this doctoral thesis (see Chapters 4 and 6),
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we make no attempt on estimating the mixing time and assume that the initial configuration is
already a representative sample of the stationary distribution. The first part of any simulation
is still considered to be a “burn-in” period where no data is collected and this period is cho-
sen much larger than the estimated integrated autocorrelation times. In Ref. [P5], we consider
two initial configurations of the hard-disk system that widely differ in an observable that is sup-
posed to decorrelate most slowly. We then assume that the simulations reach stationarity once
their estimated observables coalesce. In a different approach, we suppose that the simulation
reaches the mixing-time scale once the slowest observable explored a wide part of its possible
range.

2.2.2 Integrated Autocorrelation Time and Error Analysis

Once the Markov chain is stationary, it yields identically distributed but correlated random variables.
For uncorrelated (that is, independent and identically distributed) random variables, the covariance
at different times would vanish so that 𝛾𝜋,𝑘 (A) = 0 for all 𝑘 > 0. This would imply that the
variance of the asymptotic normal distribution in the central limit theorem for Markov chains in
Eq. (2.18) becomes 𝜎2

𝜋,CLT = 𝛾𝜋,0(A). This recovers the classic central limit theorem because
𝛾𝜋,0 is just the variance 𝜎2

𝜋 [A(𝑋𝑖)] of the uncorrelated random variables. The correlation in
the random variables of a Markov chain leads to the fact that variance 𝜎2

𝜋,CLT(A) differs from
𝛾𝜋,0. The integrated autocorrelation time 𝜏int(A) is thus introduced as (see, e.g., Refs [81, 151,
157])

𝜏int(A) ≔
𝜎2
𝜋,CLT(A)
𝛾𝜋,0(A) = 1 + 2

∞∑︁
𝑘=1

𝛾𝜋,𝑘 (A)
𝛾𝜋,0(A) . (2.23)

By comparison with the classic central limit theorem for uncorrelated random variables, one may say
that the number of “effectively independent samples” in 𝑛 correlated samples is roughly 𝑛/𝜏int(A) [157].
This implies that 𝜏int(A) is a direct measure on how quickly the algorithm can decorrelate the function
A once it samples the stationary distribution 𝜋. The definition of the integrated autocorrelation
time based on the covariances 𝛾𝜋,𝑘 (A) on the right-hand side of Eq. (2.23) applies to any set
of correlated data of a stationary process (that may have also been, for instance, generated from
a molecular-dynamics simulation in thermodynamic equilibrium) [158, Section 5.3]. It is then
still connected to the standard error of the sample mean but it does make no assumptions of the
asymptotic distribution of A𝑛 as the central limit theorem for Markov chains. (It can be shown,
however, that A𝑛 approaches a normal distribution in typical sufficiently “well-behaved” cases [158,
Section 5.3.5].)

In order to assess the accuracy of the time average A𝑛 over a Markov chain with the help of the
central limit theorem, one has to estimate 𝜎2

𝜋,CLT(A). In the following, different estimation techniques,
which are used in the research papers of this doctoral thesis, are presented. Since 𝜎2

𝜋,CLT(A) is closely
connected to 𝜏int(A), the same techniques may be used to estimate the integrated autocorrelation
time, and thus to measure the efficiency of an MCMC algorithm once it samples its target stationary
distribution.
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2.2.2.1 Window Estimators

Given the definition of 𝛾𝜋,𝑘 (A) in terms of the covariance, a first idea may be to estimate 𝛾𝜋,𝑘 (A)
from the Markov chain (𝑋0, 𝑋1, 𝑋2, . . . , 𝑋𝑡 ) of length 𝑛 = 𝑡 + 1 ∈ N by [157, 158]

𝛾𝑛,𝑘 ≔
1

𝑛 − 𝑘

𝑛−𝑘−1∑︁
𝑠=0

[
A(𝑋𝑠) − A𝑛

] [
A(𝑋𝑠+𝑘) − A𝑛

]
for 𝑘 ∈ {0, 1, . . . , 𝑛 − 1}. (2.24)

This estimator is biased because E𝜋 (𝛾𝑛,𝑘) ≠ 𝛾𝜋,𝑘 (A), however, the bias is only O(1/𝑛) [158,
Section 5.3.3]. Very often, the divisor 𝑛 − 𝑘 is replaced by 𝑛 which increases the bias but also leads to
advantages if one sums the estimates 𝛾𝑛,𝑘 over 𝑘 to obtain an estimate for 𝜎2

𝜋,CLT(A) or 𝜏int(A) [75,
151, 158]. However, independent of the choice of divisor, these estimators are inconsistent because
they have a variance that does not go to zero as 𝑛 → ∞. This problem can be solved by using a
window estimator instead, that is, for the example of estimating 𝜎2

𝜋,CLT(A) [75, 151, 157]:

𝜎2
𝑛,CLT ≔ 𝛾𝑛,0 + 2

𝑚∑︁
𝑘=1

𝛾𝑛,𝑘 . (2.25)

Here, 𝑚 ≪ 𝑛 is a cutoff that introduces an additional bias but decreases the variance. Good empirical
choices that balance the trade-off between bias and variance are known and the window-estimator
appears to work well if a sufficient amount of data is available, say, 𝑛 ≳ 1000 𝜏𝑛,int where 𝜏𝑛,int
is the estimate of the integrated autocorrelation time [157]. This window-estimator procedure is
implemented in a general manner in the Python emcee package [159] and is used in the second
research paper of this doctoral thesis to obtain integrated autocorrelation times (see Chapter 4).

2.2.2.2 Blocking Method

The window-estimator procedure relies on biased estimators and it cannot make statements about the
errors of its estimates [157]. The blocking method yields rigorous estimates by a renormalization-group
technique and also gives information about the quality of its estimates [160]. It relies on the fact that
correlated samples in a Markov chain at large time differences are, in fact, uncorrelated. Therefore, if a
sufficient number 𝑏 of consecutive correlated samples are bunched into a single bunch average, the set
of bunch averages is uncorrelated if 𝑏 was chosen large enough. Because of this, their standard error
can now be rigorously estimated without any bias. Since the bunching procedure does not change the
standard error, this also yields an estimate for the initial correlated samples.

The blocking method systematically adapts the bunch sizes. It starts by (wrongly) assuming that
all correlated samples are independent and estimates the resulting apparent variance 𝜎2

𝑛,CLT/𝑛 of
A𝑛 by estimating 𝜎2

𝑛,CLT = 𝛾𝑛,0 (where the biased estimator in Eq. (2.24) can be made unbiased
for 𝑘 = 0 under the assumption of uncorrelated samples by replacing the divisor 𝑛 by 𝑛 − 1 [78,
Section 1.3.4]). Then, the set of samples is cut in half by substituting two adjacent samples with
their average. The apparent variance is again estimated under the assumption that the reduced set
of samples is uncorrelated. This procedure is repeated until the set of samples was reduced to two
entries. The series of apparent variances approaches a constant value within fluctuations because
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the sets of samples become increasingly uncorrelated, and this constant value is the final estimate
on the real variance 𝜎2

𝑛,CLT/𝑛 of A𝑛. Dividing the estimate of 𝜎2
𝑛,CLT by the estimate 𝛾𝑛,0 also

yields an estimate on the integrated autocorrelation time [see Eq. (2.23)]. In the blocking method,
the set of apparent variances have a known error and if they do not reach a constant value within
fluctuations, one knows that the original number of correlated samples 𝑛 was not large enough. A
general automated procedure for extracting the approached constant value of the apparent variances is,
unfortunately, difficult to implement. However, because the blocking method is more rigorous and
fail-safe than the window-estimator procedure, we check that the two methods give similar results in
the second research paper of this doctoral thesis (see Chapter 4).

2.2.2.3 Exponential Autocorrelation Time

Often, 𝛾𝜋,𝑘 (A) has a simple exponential decay, i.e., 𝛾𝜋,𝑘 (A) = 𝛾𝜋,0(A) exp(−𝑘/𝜏0) with 𝜏0 ≫ 1.
The exponential autocorrelation time 𝜏0 is connected to the integrated autocorrelation time 𝜏int(A) by
using a geometric series and a series expansion:

𝜏int(A) = 1 + 2
∞∑︁
𝑘=1

e−𝑘/𝜏0 = 1 + 2
exp(1/𝜏0) − 1

= coth
(

1
2𝜏0

)
= 2𝜏0 + O

(
1
𝜏0

)
. (2.26)

In practice, an exponential function is fitted to the estimates 𝛾𝑛,𝑘 in Eq. (2.24) to obtain 𝜏0 and 𝜏int if
an exponential decay is indeed observed. This approach is considered in the fourth research paper
of this doctoral thesis (see Section 6). Note that, more generally, the correlations of any function A
decay exponentially at large times 𝑡 → ∞. For reversible Markov chains, this decay can be related to
spectral measures of its transition matrix [74, 80].

2.2.2.4 Bootstrapping

Up to now, elaborate estimates for the standard error on the time average A𝑛 of correlated data were
considered. For uncorrelated data, the classic central limit theorem yields a simpler estimate on
the standard error based on the variance of the data. However, even for uncorrelated data, different
approaches are necessary to estimate the standard errors and confidence intervals of other statistics than
the average. For that purpose, bootstrapping is a powerful and automatic resampling technique [161].
It repeatedly resamples the single uncorrelated data set to create many bootstrap data sets and then
carries out a rigorous error analysis on them. Adaptions of bootstrapping are also available for
correlated data (see, e.g., Ref. [162] and references therein). In the third and fourth research papers of
this doctoral thesis, we use bootstrapping to estimate the standard error of a median of uncorrelated
data (see Chapters 5 and 6).

2.3 Lifted Markov Chains

The appendix of the first research paper of this doctoral thesis contains a collection of basic notions
about lifted Markov chains [80, 111, 112] (see Appendix 3.A.1). Since the introduction of the
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theoretical background of the event-chain Monte Carlo algorithm in the next section relies on the
lifting framework, that collection is briefly summarized for convenience in the following.

As in Section 2.1, consider a finite configuration space Ω. A lifted Markov chain consists of a
lifted configuration space Ω̂, lifted stationary distribution 𝜋̂, and lifted transition matrix 𝑃. Suppose
that Ω̂ = Ω × L, that is, every configuration 𝑥 ∈ Ω is lifted into |L| copies in Ω̂ that are written as
(𝑥, 𝑖) ∈ Ω̂ where 𝑖 ∈ L. The necessary global-balance condition for the lifted Markov chain becomes

𝜋̂(𝑦, 𝑗) =
∑︁

(𝑥,𝑖) ∈Ω̂

𝜋̂(𝑥, 𝑖) 𝑃[(𝑥, 𝑖), (𝑦, 𝑗)] for all (𝑦, 𝑗) ∈ Ω̂. (2.27)

The aim is to use a lifted Markov chain in place of a connected collapsed Markov chain that is typically
reversible. As motivated in Section 1.3.2, this may, in the best case, lead to a diffusive-to-ballistic
speedup if a non-reversible lifting is used. Let 𝜋 be the stationary distribution of the irreducible
collapsed Markov chain and 𝑃 its transition matrix. The connection between the lifted and collapsed
Markov chains is enforced by the two conditions

𝜋(𝑥) =
∑︁
𝑖∈L

𝜋̂(𝑥, 𝑖) for all 𝑥 ∈ Ω, (2.28)

and
𝜋(𝑥) 𝑃(𝑥, 𝑦) =

∑︁
𝑖, 𝑗∈L

𝜋̂(𝑥, 𝑖) 𝑃[(𝑥, 𝑖), (𝑦, 𝑗)] for all 𝑥, 𝑦 ∈ Ω. (2.29)

The first condition enforces that the combined probabilities of all lifted copies of 𝑥 ∈ Ω is equal to its
desired stationary probability. The second condition ensures that the probability flows between all lifted
copies of two configurations 𝑥, 𝑦 ∈ Ω is the same as the probability flow between them in the collapsed
Markov chain. With these conditions, one can sample the collapsed stationary distribution 𝜋 with
a lifted MCMC algorithm on Ω̂ that can be constructed to be non-reversible in a systematic manner.

As discussed in Section 1.3.2, the lifting framework allows for a systematic construction of a
non-reversible Markov chain from an underlying reversible one. A non-reversible lifting of a reversible
Markov chain can reduce the mixing time of the collapsed chain to at most its square root in a
diffusive-to-ballistic speedup (as, for example, in the nearest-neighbor random walk in Fig. 1.3) [111,
112]. The possible improvement of a non-reversible lifted Markov chain depends on the details of
the target distribution on the configuration space Ω. Remarkably, there is always a single bottleneck
that partitions Ω into two pieces (say, a high potential-energy barrier that separates distinct regions
of Ω with comparable potential-energy minima) [74, Section 7.2]. The probability flow across that
bottleneck, the conductance, is left unchanged by a lifting and bounds the mixing time from below and
above [80, Section 2.1.3]. The lower “ballistic” bound results from the necessity to cross the bottleneck
and it differs from the upper “diffusive” bound by a square-root operation. The diffusive-to-ballistic
speedup can only be reaped if the reversible collapsed Markov chain is close to the upper bound. If the
collapsed chain is, in contrast, limited by the crossings of the bottleneck and not by the exploration of
the respective configuration-space partitions, the non-reversible lifted Markov chain will be similarly
restricted by the conductance (see, e.g., the example in Ref. [80, Section 3.2.1]).

35



Chapter 2 Theoretical Foundations of Non-Reversible Markov Chains

2.4 Foundations of Non-Reversible Event-Chain Monte Carlo

All research papers of this doctoral thesis consider the non-reversible event-chain Monte Carlo
(ECMC) algorithm that samples the canonical (𝑁𝑉𝑇) ensemble of continuous configuration spaces
in a rejection-free continuous-time Markov chain in an event-driven manner. It expresses the
Boltzmann weight exp(−𝛽𝑈) as a factorized product

∏
𝑀 exp(−𝛽𝑈𝑀 ) over statistically independent

factors 𝑀. Here, for the example of molecular systems such as 𝑁 SPC/Fw water molecules, the
factor potentials 𝑈𝑀 construct the molecular-mechanics potential-energy function 𝑈 =

∑
𝑀 𝑈𝑀 (see

Section 2.4.1). The factorization enables a rigorously exact treatment of long-range interactions
without any approximations because a tedious interaction between all interaction sites is replaced
by a set of manageable interactions between a small number of interaction sites. ECMC is a
systematic non-reversible lifting of the reversible factorized Metropolis algorithm (see Section 2.4.2).
A piecewise-deterministic motion of a single interaction site is interrupted by an event which results
from a competition between stochastic inhomogeneous Poisson processes for every factor 𝑀 that
each generate a candidate event time (see Section 2.4.3). The winning factor that realizes the event
determines the initial conditions for the next deterministic piece in the non-reversible dynamics in
a lifting move. Periodic resamplings of its lifting variables, allow ECMC to become irreducible
and to sample the thermodynamic equilibrium in its trajectory (see Section 2.4.4). Thinning (see
Section 2.4.5) is an essential ingredient for the cell-veto algorithm (see Section 2.4.6) that bundles the
competition between O(𝑁) inhomogeneous Poisson processes in long-range-interacting systems such
as 𝑁 SPC/Fw water molecules into a single candidate event time that can be generated in constant
computational time. This paves the way to a treatment of long-range interactions that is exact without
any approximation yet remains efficient. The open-source application JeLLyFysh implements these
essential ideas of ECMC in a general manner [P6]. It may also move rigid molecules instead of
single interaction sites. This is generally possible in ECMC [P6] although the following theoretical
introduction only considers the case of a single moving interaction site for concreteness.

ECMC is an entire family of non-reversible local MCMC algorithms. This encompasses, on the
one hand, the choice of different factor sets for the factorization of the Boltzmann distribution (see
Section 2.4.1). On the other hand, this doctoral thesis highlights that, even for a given set of factors,
the different straight [115], reflective [115], forward [150], and Newtonian ECMC [124] variants that
consider different lifting moves in their events may have widely different behaviors (see Fig. 1.5).
Before this doctoral thesis, only the straight ECMC variant [115] was considered for molecular
systems [P6, 146]. The original reason for this is that straight ECMC was found to be superior
in the hard-disk system [115]. The subsequent generalization to arbitrary factor potentials [121,
145] and the introduction of the cell-veto algorithm [148] therefore only concentrated on straight
ECMC, and so did the first applications to molecular systems. Reference [146] gives an extensive
introduction into the straight ECMC variant for general factor potentials. Except for the introduction
of the cell-veto algorithm that (for now, see below) only considers straight ECMC (see Section 2.4.6),
the following theoretical introduction attempts to be more general and considers both straight and
reflective ECMC. This is in particular interesting for the discussion of the lifting moves for general
translationally invariant factor potentials that may depend on an arbitrary number of interaction sites
(see Section 2.4.7). To the author’s knowledge, these general lifting moves were only formulated
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for straight ECMC before and this doctoral thesis therefore provides the first explicit treatment of
reflective ECMC.

Forward and Newtonian ECMC are not considered in the following theoretical introduction of
ECMC. In this doctoral thesis, forward ECMC, although introduced more generally [150], is only
applied to the hard-disk system and closely related hard-disk dipoles where it can be established
more straightforward (see the second and third research papers in Chapters 4 and 5, and Fig. 1.5).
Newtonian ECMC, which was initially proposed in the hard-sphere system [124], is generalized to
smooth factor potentials that depend on an arbitrary number of interaction sites in the fourth research
paper of this doctoral thesis (see Chapter 6). The same research paper also introduces how the cell-veto
algorithm can be used for general ECMC variants. These generalizations are essential for a competitive
performance of (Newtonian) ECMC in molecular systems and are thus part of JeLLyFysh-Version2.0
that we implemented for the fourth research paper of this doctoral thesis (see Chapter 6) [P6, P9].

2.4.1 Factorization of the SPC/Fw Water Model

The potential energy𝑈 of a molecular-mechanics model can be typically expressed as a sum over factor
potentials 𝑈𝑀 , i.e., 𝑈 (x) = ∑

𝑀 𝑈𝑀 (x𝑀 ) (see Section 1.1). Here, x = (x1, x2, . . . , x𝑁𝑖
) contains all

positions of 𝑁𝑖 three-dimensional interaction sites in a periodic simulation box, whereas the factor
configuration x𝑀 only contains a small subset of interaction-site positions x𝑖 . The introduction of the
factor potentials 𝑈𝑀 leads to a factorization of the Boltzmann distribution:

𝜋(x) = 1
𝑍

e−𝛽𝑈 (x) =
∏
𝑀

1
𝑍𝑀

e−𝛽𝑈 (x𝑀 ) =
∏
𝑀

𝜋𝑀 (x𝑀 ). (2.30)

ECMC relies on the factorized Metropolis filter that treats every of the factor distributions 𝜋𝑀 (x𝑀 )
statistically independent (see Section 2.4.2). As usual in MCMC algorithms, this is possible without
knowing their normalization factor 𝑍𝑀 .

Consider, for an example of the factorization of a molecular system, the SPC/Fw water model with
𝑁 = 𝑁𝑖/3 water molecules in a periodic cubic box of side length 𝐿 [28]. For simplicity, denote the
positions of the two hydrogens in the 𝑖th molecule by x𝑖H,1 and x𝑖H,2, and the position of the oxygen by
x𝑖O. The potential energy is given by (see Fig. 1.1)

𝑈 (x) =
𝑁∑︁
𝑖=1

[
𝑈

𝑖,1
bond

(
x𝑖H,1, x

𝑖
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)
+𝑈
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𝑖
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[
𝑈

𝑖 𝑗
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𝑗
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)
+𝑈
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C
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𝑖
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𝑖
H,2, x

𝑗

H,1, x
𝑗

O, x
𝑗

H,2

)]
.

(2.31)

All of the factor potentials are translationally invariant because they only depend on the separations
between the interaction sites of their factor configuration. Let r(x𝑖 , x 𝑗) = x 𝑗 − x𝑖 denote the shortest
separation vector from x𝑖 to x 𝑗 that is possibly corrected for periodic boundary conditions. The
2𝑁 intramolecular bond factor potentials yield fluctuations of the O H bond lengths around their

37



Chapter 2 Theoretical Foundations of Non-Reversible Markov Chains

equilibrium length 𝑟0
OH and are given by

𝑈
𝑖,𝑘

bond

(
x𝑖H,𝑘 , x

𝑖
O

)
≔

𝑘𝑏

2

[���r (
x𝑖H,𝑘 , x

𝑖
O

)��� − 𝑟0
OH

]2
for 𝑘 ∈ {1, 2}. (2.32)

With 𝜃 (x𝑖 , x 𝑗) as the angle between the vectors x𝑖 and x 𝑗 , the 𝑁 intramolecular bending factor
potentials lead to fluctuations of the H O H opening angles around the equilibrium angle 𝜃0

∠HOH
and are given by

𝑈𝑖
bend

(
x𝑖H,1, x

𝑖
O, x

𝑖
H,2

)
≔

𝑘𝑎

2

{
𝜃

[
r
(
x𝑖O, x

𝑖
H,1

)
, r

(
x𝑖O, x

𝑖
H,2

)]
− 𝜃0
∠HOH

}2
. (2.33)

The intermolecular factors also have to consider the periodic boundary conditions. Every interaction
site 𝑖 at position x𝑖 does not only interact with the closest periodic image of the interaction site 𝑗 at
position x 𝑗 = x𝑖 + r(x𝑖 , x 𝑗) but with every periodic image of 𝑗 at positions x𝑖 + r(x𝑖 , x 𝑗) + m𝐿, where
m ∈ Z3. The 𝑁 (𝑁 − 1)/2 Lennard-Jones factor potentials are thus given by the infinite sum

𝑈
𝑖 𝑗

LJ

(
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)
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O
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��� ª®®¬
6 . (2.34)

The 𝑁 (𝑁 −1)/2 intermolecular Coulomb factor potentials are themselves a sum of two-body Coulomb
potentials between any two interaction sites in different water molecules:

𝑈
𝑖 𝑗

C

(
x𝑖H,1, x

𝑖
O, x

𝑖
H,2, x

𝑗
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𝑗

O, x
𝑗

H,2

)
≔
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𝑎𝑖

∑︁
𝑎 𝑗

𝑈C

[
r
(
x𝑖𝑎𝑖 , x

𝑗
𝑎 𝑗

)
, 𝑞𝑎𝑖 , 𝑞𝑎 𝑗

]
, (2.35)

where 𝑎𝑖 , 𝑎 𝑗 ∈ {(H, 1), (O), (H, 2)} sum over the possible types of interaction sites in the two water
molecules and 𝑞𝑎𝑖 are their charges in the molecular-mechanics model. The two-body Coulomb
potentials again contain an infinite sum over periodic images

𝑈C
(
r𝑖 𝑗 , 𝑞𝑖 , 𝑞 𝑗

)
≔

∑︁
m∈Z3

𝑘𝑒
𝑞𝑖𝑞 𝑗��r𝑖 𝑗 + m𝐿

�� , (2.36)

with the Coulomb constant 𝑘𝑒. In practice, the infinite sums in Eqs (2.34) and (2.36) are either cut off
or treated by an Ewald summation (see, e.g., Ref. [12, Appendix B]). The various parameters 𝑘𝑏, 𝑟0

OH,
𝑘𝑎, 𝜃0

∠HOH, 𝜀LJ, 𝜎LJ, 𝑞H,1 = 𝑞H,2, and 𝑞O of the SPC/Fw water model are chosen empirically and can
be found in Ref. [28].

The factor potentials of the SPC/Fw water model in Eqs (2.32), (2.33), (2.34), and (2.35) are one
possible choice. One could also, for instance, treat every of the nine two-body Coulomb potentials
in Eq. (2.35) as their own factor potential. The correct choice of factors is essential and influences
the dynamics and computational complexity of ECMC. For 𝑁 SPC/Fw water molecules, only the
specified choice of factors in this section yields an optimal O(𝑁 log 𝑁) scaling to displace every
interaction site by a constant distance [146].

38



2.4 Foundations of Non-Reversible Event-Chain Monte Carlo

2.4.2 Factorized Metropolis Filter

The Metropolis filter gives the acceptance probability of a proposed move from x to x′ in the Metropolis
algorithm as [72]

𝑝Met
𝜋 (x, x′) ≔ min

[
1,

𝜋(x′)
𝜋(x)

]
= min

[
1, e−𝛽 [𝑈 (x′ )−𝑈 (x) ]

]
= min

[
1,

∏
𝑀

e−𝛽[𝑈𝑀 (x′
𝑀
)−𝑈 (x𝑀 )]

]
.

(2.37)

As discussed in Section 1.3.1, it appears in the transition matrix of the Metropolis algorithm in
Eq. (1.5) that can be shown to satisfy the detailed-balance condition. In a similar manner, it can be
shown that the Metropolis filter already satisfies the detailed-balance condition:

𝜋(x) 𝑝Met
𝜋 (x, x′) = 𝜋(x′) 𝑝Met

𝜋 (x′, x). (2.38)

The Metropolis filter may be understood as drawing a Boolean random variable that yields either
an acceptance or a rejection of the proposed configuration x′. This acceptance–rejection decision
requires a global computation of the change of all factor potentials

∑
𝑀 [𝑈𝑀 (x′

𝑀
) −𝑈𝑀 (x𝑀 )]. The

factorized Metropolis filter instead considers a consensus between independent Metropolis decisions
for every factor [146]. Here, every factor either accepts or rejects the proposed factor configuration
x′
𝑀

based on the change of the factor potential 𝑈𝑀 (x′
𝑀
) −𝑈𝑀 (x𝑀 ). Only when all factors agree in

the consensus, the proposed configuration x′ is accepted. The acceptance probability of the factorized
Metropolis filter is thus given by [121]

𝑝Fact
𝜋 (x, x′) ≔

∏
𝑀

𝑝Met
𝜋𝑀

(x𝑀 , x′𝑀 ) =
∏
𝑀

min
[
1,

𝜋𝑀 (x′
𝑀
)

𝜋𝑀 (x𝑀 )

]
=

∏
𝑀

min
[
1, e−𝛽 [𝑈𝑀 (x′

𝑀
)−𝑈𝑀 (x𝑀 ) ]

] (2.39)

Because of its close connection to the original Metropolis filter, the factorized Metropolis filter also
satisfies the detailed-balance condition:

𝜋(x) 𝑝Fact
𝜋 (x, x′) =

∏
𝑀

𝜋𝑀 (x𝑀 ) 𝑝Met
𝜋𝑀

(x𝑀 , x′𝑀 )

=
∏
𝑀

𝜋𝑀 (x′𝑀 ) 𝑝Met
𝜋𝑀

(x′𝑀 , x𝑀 ) = 𝜋(x′) 𝑝Fact
𝜋 (x′, x)

(2.40)

Therefore, one can simply use the factorized Metropolis filter in the Metropolis algorithm which
would, however, give smaller acceptance probabilities because changes in factor potentials cannot
compensate each other. At the same time, sampling the outcome of the consensus process between
the factors under a local move has a lower computational complexity than sampling the outcome
of the original Metropolis decision in long-range-interacting systems (using similar ideas that were
developed beforehand in the context of ECMC and are presented in the following) [163]. Moreover, the
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factorization allows for an exact treatment of long-range interactions in ECMC. For instance, instead
of considering the Coulomb potential between all water molecules at once with limited accuracy (as
in molecular dynamics or the Metropolis algorithm), ECMC only explicitly considers the Coulomb
factor potential between two water molecules in Eq. (2.35) that can be efficiently computed to machine
precision with constant computational complexity with an Ewald summation.

2.4.3 Competing Inhomogeneous Poisson Processes

ECMC is a non-reversible lifting of the factorized Metropolis algorithm in the continuous-time limit
and can also be interpreted as a piecewise-deterministic Markov process [136, 137]. For periodic
three-dimensional molecular systems, straight and reflective ECMC consider the lifted configuration
space Ω̂ = Ω × V × N , where N = {1, 2, . . . , 𝑁𝑖} is the set of interaction-site indices and V is a
(finite or infinite) set of three-dimensional velocities of absolute value 1 (other choices of the absolute
value lead to trivial rescalings of the continuous Monte Carlo time). Reflective ECMC uses the unit
two-sphereV = 𝑆2 as its continuous velocity space. Straight ECMC may also considerV = 𝑆2 but also
allows for finite velocity sets V. For instance, it may choose V = {(1, 0, 0)𝑇 , (0, 1, 0)𝑇 , (0, 0, 1)𝑇 },
which is inspired by the powerful application to the hard-disk system that similarly aligned the velocity
with all coordinate axes [115, 142]. In any case, the lifted Markov chain targets the lifted stationary
distribution 𝜋̂(x, v, 𝑖) = 𝜋(x) × 𝜇V (v) × 𝜇N (𝑖) that separates into the Boltzmann distribution 𝜋(x),
and the uniform distributions 𝜇V (v) on V and 𝜇N (𝑖) on N . Hence, the two conditions in Eqs (2.28)
and (2.29) that connect the lifted ECMC algorithm to the collapsed factorized Metropolis algorithm
are trivially satisfied.

Given a lifted configuration (x, v𝑎, 𝑖) ∈ Ω̂ at time 𝑡 = 𝑡0, the active interaction site moves with its
velocity v𝑎 in a deterministic straight-line trajectory which leads to the time-dependent configuration
x(𝑡) = (x1, . . . , x𝑖+(𝑡−𝑡0)v𝑎, . . . , x𝑁𝑖

). At every continuous Monte-Carlo time 𝑡 > 𝑡0, the infinitesimal
change of position is accepted or rejected by the consensus of the factorized Metropolis filter. An
infinitesimal change of the position implies an infinitesimal change of the factor potentials. In this
limit, the rejection probability 1 − 𝑝fact becomes a time-dependent event rate 𝜆(𝑡) ≥ 0 that can be
interpreted as a (unnormalized) probability density in time to interrupt the piecewise-deterministic
motion of the active interaction site [121, 137, 146]:

𝜆(𝑡) =
∑︁
𝑀

𝜆𝑀 (𝑡) =
∑︁
𝑀

𝛽 max
[
0,∇x𝑖𝑈𝑀 [x𝑀 (𝑡)] · v𝑎

]
. (2.41)

The factor event rates 𝜆𝑀 (𝑡) can only be non-zero for factors 𝑀 that contain the active interaction site
𝑖, and for times 𝑡 where the motion increases the factor potential 𝑈𝑀 . This results from the factorized
Metropolis filter where a factor 𝑀 always accepts changes of the the factor configuration that do not
increase the factor potential. If it does increase, the acceptance probability decreases with the change
of the factor potential. This translates into the dependence of the factor event rate 𝜆𝑀 (𝑡) on the rate of
change ∇x𝑖𝑈𝑀 [x𝑀 (𝑡)] · v𝑖 of the factor potential under the motion of the active interaction site.

The factorized Metropolis filter was viewed as a consensus decision between factor-based acceptance–
rejection decisions. Similarly, one can understand Eq. (2.41) as a competition of the factor event rates
𝜆𝑀 (𝑡) that each attempt to interrupt the straight-line trajectory of the active interaction site. Instead of
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advancing the time in discrete time steps [which would involve an approximation because Eq. (2.41)
only becomes exact in the limit of infinitesimal time steps], the competition between the event rates
can be treated rigorously exact in an event-driven manner [116, 121]. Every factor 𝑀 generates a
candidate event time 𝑡ev,𝑀 in an inhomogeneous Poisson process based on its factor event rate 𝜆𝑀 (𝑡)
(see, e.g., Ref. [164, Chapter VI]). Let 𝑇ev,M be the random variable for the candidate event time of
the factor 𝑀 and let P𝑀 (𝑇ev,𝑀 > 𝑡) be the probability that 𝑇ev, M is larger than 𝑡 ≥ 𝑡0, that is, the
probability that there is no candidate event up to time 𝑡. By definition, the probability for a candidate
event of the factor 𝑀 in the infinitesimal time interval [𝑡, 𝑡 + d𝑡] is given by 𝜆𝑀 (𝑡) d𝑡. Thus,

P𝑀 (𝑇ev,𝑀 > 𝑡 + d𝑡) = P𝑀 (𝑇ev,𝑀 > 𝑡) [1 − 𝜆𝑀 (𝑡) d𝑡] . (2.42)

With P𝑀 (𝑇ev,𝑀 > 𝑡 + d𝑡) − P𝑀 (𝑇ev,𝑀 > 𝑡) = dP𝑀 (𝑇ev,𝑀 > 𝑡), one gets

dP𝑀 (𝑇ev,𝑀 > 𝑡)
d𝑡

= −𝜆𝑀 (𝑡) P𝑀 (𝑇ev,𝑀 > 𝑡). (2.43)

This yields

P𝑀 (𝑇ev,𝑀 > 𝑡) = exp
[
−

∫ 𝑡

𝑡0

𝜆𝑀 (𝑡) d𝑡
]
. (2.44)

The cumulative distribution function 𝐹ev,𝑀 (𝑡) of the random variable 𝑇ev,𝑀 is given by the probability
P𝑀 (𝑇ev,𝑀 ≤ 𝑡) that there is a candidate event up to time 𝑡. Using Eq. (2.44), it is therefore given
by 𝐹𝑇ev, M (𝑡) = P𝑀 (𝑇ev,𝑀 ≤ 𝑡) = 1 − P𝑀 (𝑇ev,𝑀 > 𝑡). With that, one can use inverse transform
sampling for the random variable 𝑇ev,𝑀 in order to obtain a candidate event time 𝑡ev,𝑀 with the correct
probability distribution (see, e.g., Ref. [164, Section II.2]):

ran𝑀 (0, 1) = exp
[
−

∫ 𝑡ev,𝑀

𝑡0

𝜆𝑀 (𝑡) d𝑡
]
, (2.45)

where ran𝑀 (0, 1) is a uniformly distributed random number between 0 and 1. At the candidate event
time 𝑡ev,𝑀 , an exponentially distributed random number with mean 1/𝛽 is equal to the cumulative
increments of the factor potential 𝑈𝑀 under the motion of the active interaction site since it started
moving at time 𝑡0.

Given the lifted configuration (x(𝑡0), v𝑎, 𝑖) ∈ Ω̂, every factor 𝑀 containing the active interaction site
𝑖 yields an independent candidate event time 𝑡ev,𝑀 ≥ 𝑡0 via Eq. (2.45). This is the point in time where
the factor 𝑀 would break consensus and reject a continued movement of the active interaction site.
(For the hard-disk system, this is the point in time of a collision.) The set of candidate event times that
were obtained by independent inhomogeneous Poisson processes compete against one another and the
active interaction site can only move up to the unique minimum candidate event time 𝑡ev = min𝑀 𝑡ev,𝑀 .
At the realized event time 𝑡ev, the active interaction site stops at the configuration x(𝑡ev) and a
lifting move of the event-triggering factor 𝑀 = arg min𝑀 𝑡ev,𝑀 changes the lifted configuration from
(x(𝑡ev), v𝑎, 𝑖) ∈ Ω̂ to (x(𝑡ev), v′𝑎, 𝑗) ∈ Ω̂ (see Section 2.4.7). This determines the initial conditions
for the next leg of the piecewise-deterministic Markov process starting at 𝑡0 = 𝑡ev. Lifting moves in
non-reversible ECMC replace rejections of the underlying factorized Metropolis algorithm.
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2.4.4 Resampling of Lifting Variables and Sampling

Events of the straight ECMC variant transfer the velocity v𝑎 of the previously active interaction site 𝑖 to
another interaction site 𝑗 of the event-triggering factor 𝑀 (see Section 2.4.7.1). In order to generate an
irreducible Markov chain, it thus has to resample the lifting variables (i.e., the velocity and the active
interaction site) from their respective uniform distributions 𝜇(V) and 𝜇(N) in periodic intervals of
the chain time 𝜏chain. Moreover, a possible finite set of velocities V should contain at least three linear
independent velocities in periodic three-dimensional simulation boxes. Although reflective ECMC
changes both the active interaction site and the velocity in an event (see Section 2.4.7.2), it can still fail
to be irreducible in simple systems if the lifting variables are not resampled after the chain time 𝜏chain
(see, e.g., the second research paper of this doctoral thesis in Chapter 4). This was, in fact, one of the
motivations of the introduction of forward ECMC that randomizes the velocity update in an event [150].
The chain time 𝜏chain is an intrinsic parameter of straight and reflective ECMC that has to be tuned to
minimize mixing and autocorrelation times. As the second and third research papers of this doctoral
thesis show, straight ECMC is the only variant that requires a non-trivial choice (see Chapters 4 and 5).

Since ECMC generates a continuous-time Markov chain, one could, in principle, consider the time
average of the function A along the entire trajectory to estimate its thermodynamic average via the
ergodic theorem (see, e.g., Refs [139, 140]). This results in a series of integrals over the function
values of A along the piecewise-deterministic legs between events which, in principle, just requires to
store the event times 𝑡ev together with the configurations x(𝑡ev) during the simulation. In the hard-disk
system, for example, this allows to estimate the pressure without any extrapolations as we highlighted
in Ref. [P5]. However, since these integrals are typically intractable in other systems, one may instead
just discretize the continuous-time trajectory in fixed time intervals and then compute the average of
the function A over this set of configurations [which is similar to the time average over a discrete-time
Markov chain in Eq. (2.12)]. This can also heavily reduce the amount of generated data if long ECMC
simulations are necessary by choosing a large sampling time interval.

2.4.5 Thinning

In order to determine the next event time 𝑡ev = min𝑀 𝑡ev,𝑀 that interrupts the motion of the active inter-
action site 𝑖 with velocity v𝑎, every factor 𝑀 has to compute its candidate event time 𝑡ev,𝑀 by solving
Eq. (2.45). This requires the knowledge of the minima and maxima of the factor potential along the
path of the active interaction site. In the SPC/Fw water model, for example, the bond factor potentials
in Eq. (2.32) and cut-off Lennard-Jones factor potentials in Eq. (2.34) that only need to consider the
m = (0, 0, 0) term can be treated in this way. The bending and Coulomb factor potentials in Eqs (2.33)
and (2.36), however, require a different procedure. Thinning replaces the event rate 𝜆𝑀 (𝑡) in Eq. (2.45)
by an upper bound 𝜆̃+

𝑀
(𝑡) that satisfies 𝜆̃+

𝑀
(𝑡) ≥ 𝜆𝑀 (𝑡) for all 𝑡 [165] and can be understood as resulting

from a bounding potential instead of the original factor potential [P6]. Naturally, 𝜆̃+
𝑀
(𝑡) should be cho-

sen so that the inversion-problem becomes solvable. The simplest option would be to choose a constant
bound 𝜆̃+

𝑀
(𝑡). Increasing the real event rate 𝜆𝑀 (𝑡) to 𝜆̃+

𝑀
(𝑡) “fattens” the inhomogeneous Poisson

process and yields, on average, more candidate event times 𝑡ev,𝑀 for the factor 𝑀 . When the candidate
event time 𝑡ev, M of the factor 𝑀 = arg min𝑀′ 𝑡ev,𝑀′ becomes an actual event, superfluous events from
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the fattened Poisson process have to be thinned out. This is done by accepting the event with probability
𝜆𝑀 (𝑡ev,𝑀 )/𝜆̃+

𝑀
(𝑡ev,𝑀 ) ≤ 1. Only if the event is accepted, the lifting move in the factor 𝑀 is carried out.

Otherwise, the interaction site 𝑖 continues its motion. In this case, only the factor 𝑀 has to compute
a new candidate event time 𝑡ev,𝑀 with the event rate bound 𝜆̃+

𝑀
(𝑡). All candidate event times of other

factors 𝑀 ′ involving 𝑖 remain unchanged. This is implemented in JeLLyFysh-Version2.0 for the fourth
research paper of this doctoral thesis (see Chapter 6) [P6, P9]. JeLLyFysh-Version2.0 considers various
thinning procedures that, for example, automatically obtain a good short-time estimate on a constant
event rate bound 𝜆̃+

𝑀
(which corresponds to adaptive thinning; see, e.g., Ref. [140, Section 2.3.2]).

2.4.6 Cell-Veto Algorithm

If a single interaction site moves among 𝑁 long-range-interacting SPC/Fw water molecules, O(1)
intramolecular factors are changing in time whose candidate event times can be computed in O(1)
computational complexity. For the intermolecular factors, in contrast, O(𝑁) candidate event times
have to be computed and sorted to obtain the realized event time. The cell-veto algorithm allows to
bundle the intermolecular factors together and, hence, to obtain an event with an O(1) computational
complexity [148]. Since the overall event rate in the SPC/Fw water model that is factorized as in
Section 2.4.1 increases as O(log 𝑁), the cell-veto algorithm then allows to achieve an O(𝑁 log 𝑁)
scaling to displace every interaction site by a constant distance [146]. This matches the scaling of fast
mesh-based Ewald methods in molecular dynamics. The combination of ECMC and the cell-veto
algorithm, however, treats the long-range interactions rigorously exact. The cell-veto algorithm was
initially formulated for a finite velocity space V and could thus only be used in the straight ECMC
variant (see, e.g., Refs [P6, 146]). This formulation is presented in the current section. The fourth
research paper of this doctoral thesis shows how the cell-veto algorithm can be used for continuous
velocity spaces as they appear in other ECMC variants (see Section 6).

Consider, for instance, the Coulomb factors between two water molecules in Eq. (2.36). A cell-
occupancy system maps the centers of the water molecules to a discrete set of cells {D𝑖} and vice
versa. For every pair of cells D𝑎 and D𝑏, one then assumes that there is a single molecule present in
them with interaction-site positions x𝑎HOH = (x𝑎H,1, x

𝑎
O, x

𝑎
H,2) ∈ D𝑎 and x𝑏HOH = (x𝑏H,1, x

𝑏
O, x

𝑏
H,2) ∈ D𝑏,

respectively. Here, with a little abuse of notation, x𝑎HOH ∈ D𝑎 means that the center position of the set
(x𝑎H,1, x

𝑎
O, x

𝑎
H,2) is part of D𝑎. The factor event rate of the corresponding Coulomb factor 𝑀 = C𝑎𝑏

can then be bounded by a cell bound 𝜆̃+
C𝑎𝑏 (x𝑎, v𝑎) for every possible active interaction site 𝑎 in the

first water molecule, x𝑎 ∈ x𝑎HOH, and every possible velocity v𝑎 ∈ V. The cell bound is computed
before the simulation starts by formally considering

𝜆̃+C𝑎𝑏 (x𝑎, v𝑎) ≥ max
x𝑎HOH∈D𝑎 ,x𝑏HOH∈D𝑏

𝛽max
[
0,∇x𝑎𝑈

𝑎𝑏
C (x𝑎HOH, x

𝑏
HOH) · v𝑎

]
. (2.46)

In practice, it is not necessary to consider every possible interaction-site configuration of a water
molecule that would lead its center falling into the corresponding cell. For example, O H bond
lengths that span the entire cell never appear in an ECMC simulation that runs for a finite simulation
time. One could instead vary the center positions and orientations of the two water molecules with
“reasonable” bond lengths and opening angles in their cells to obtain the cell bound. Also, nearby cells
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are usually excluded from the cell-veto algorithm because their estimated cell bounds would either be
very large or even diverge (which could, in principle, be fixed in a more complex estimation procedure
that does not consider problematic configurations).

During the actual simulation, given the active interaction site 𝑎 at position x𝑎 ∈ x𝑎HOH ∈ D𝑎 and
its velocity v𝑎, the cell-veto algorithm considers the entire set of Coulomb factors C𝑎 that contains all
Coulomb factors C𝑎𝑏 with hypothetical water molecules in all non-excluded cells D𝑏 at once. Similar
to the thinning procedure, it fattens the inhomogeneous Poisson process and computes a candidate
event time 𝑡ev,C𝑎 with the precomputed total cell-event rate 𝜆̃+C𝑎 (x𝑎, v𝑎) =

∑
𝑏 𝜆̃

+
C𝑎𝑏 (x𝑎, v𝑎). If the

candidate event time becomes an actual event time because C𝑎 = arg min𝑀 𝑡ev,𝑀 , three confirmation
steps are necessary. First, if the event time would move the interaction site 𝑎 outside of its cell D𝑎,
it is only placed on the boundary to the next cell and a new candidate event time is computed based
on the cell bounds of that next cell (in the JeLLyFysh application, this is solved by cell-boundary
pseudo factors that yield candidate event times whenever the active interaction site crosses a cell
boundary [P6]). Second, Walker’s algorithm [166] samples a factor C𝑎𝑏 from the set of factors C𝑎

with probability ∝ 𝜆̃+
C𝑎𝑏 (x𝑎, v𝑎) which is then deemed responsible for the candidate event time. This

sampling from a discrete probability distribution only requires constant computational complexity.
Second, the event is accepted in a thinning procedure by comparing the event-rate bound 𝜆̃+

C𝑎𝑏 (x𝑎, v𝑎)
to the actual event rate of the molecular C𝑎𝑏 factor (see Section 2.4.5). Only then, the actual positions
of the water molecules in the cells D𝑎 and D𝑏 are considered and only then, the Coulomb event rate has
to be computed with a high-accuracy Ewald summation. This thinning procedure makes the treatment
of the long-range interactions in the cell-veto algorithm rigorously exact although the cell bounds are
used most of the time. If the cell D𝑏 does not contain any water molecule, the event is trivially rejected.

The cell-veto algorithm treats all intermolecular Coulomb factors C𝑎𝑏 between molecules in
non-excluded cells D𝑎 and D𝑏 rigorously exact at once. With the help of precomputed cell bounds, it
achieves an O(1) computational complexity, despite the O(𝑁) increase of the number of involved
factors. Coulomb factors between the water molecule containing the active interaction site, on the
one hand, and water molecules in nearby excluded cells or surplus water molecules of cells with
multiple occupants, on the other hand, are treated directly by a thinning procedure. Since the number
of excluded and surplus Coulomb factors stays constant with increasing 𝑁 [P4], one obtains an overall
O(1) computational complexity to compute the next event of the long-range Coulomb interaction. The
cell-veto algorithm can be applied to any long-range interaction by changing the estimation procedure
for the precomputed cell bounds. In the SPC/Fw water model, it can also be used for the Lennard-Jones
factors (with or without a cutoff). The actual number of cell bounds that have to be precomputed
can be heavily reduced by explicitly considering periodic boundary conditions and the translational
invariance of the factor potentials [P4, P6, 146]. JeLLyFysh-Version2.0 implements the cell-veto
algorithm in a general manner and provides various estimation procedures for cell bounds [P6, P9]. It
is thus well equipped for efficient and exact molecular simulations.

2.4.7 Lifting Moves

Lifting moves replace rejections of the collapsed factorized Metropolis algorithm in the lifted ECMC
algorithm. They are necessary so that the necessary global-balance condition for the lifted Markov
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chain in Eq. (2.27) is satisfied. Let F [(x′, v′𝑎, 𝑗), (x, v𝑎, 𝑖)] ≔ 𝜋̂(x′, v′𝑎, 𝑗) 𝑃[(x′, v′𝑎, 𝑗), (x, v𝑎, 𝑖)] be
the probability flow from the lifted configuration (x′, v′𝑎, 𝑗) ∈ Ω̂ into (x, v𝑎, 𝑖) ∈ Ω̂. The global-balance
condition demands that the total probability flow F (x, v𝑎, 𝑖) into any configuration (x, v𝑎, 𝑖) ∈ Ω is
equal to its probability 𝜋̂(x, v𝑎, 𝑖):

𝜋̂(x, v𝑎, 𝑖) = F (x, v𝑎, 𝑖) ≔
∑︁

(x′ ,v′𝑎 , 𝑗 ) ∈Ω̂

F [(x′, v′𝑎, 𝑗), (x, v𝑎, 𝑖)], (2.47)

where it is again assumed that all spaces in Ω̂ = Ω × V × N are finite. If the continuous velocity
space V = 𝑆2 is considered instead, the corresponding sum has to replaced by an integral. Given the
introduction of the piecewise-deterministic Markov process in the ECMC algorithm in Section 2.4.3,
F (x, v𝑎, 𝑖) consists of two parts:

F (x, v𝑎, 𝑖) = F phys(x, v𝑎, 𝑖) + F lift(x, v𝑎, 𝑖). (2.48)

The physical flow F phys(x, v𝑎, 𝑖) originates from the motion of the active interaction site 𝑖 that
was not interrupted by an event. It results from the unique lifted configuration (x′, v𝑎, 𝑖) where
x′ = (x1, . . . , x𝑖 − v𝑎 d𝑡, . . . , x𝑁𝑖

). The probability that the infinitesimal time step d𝑡 was accepted is
given by the infinitesimal limit of the factorized Metropolis filter that is connected to the event rate in
Eq. (2.41) (which gave the rejection probability in the infinitesimal limit):

F phys(x, v𝑎, 𝑖) = 𝜋̂(x′, v𝑎, 𝑖)
{

1 −
∑︁
𝑀

𝛽 max
[
0,∇x′

𝑖
𝑈𝑀 (x′𝑀 ) · v𝑎

]}
= 𝜋̂(x, v𝑎, 𝑖)

{
1 −

∑︁
𝑀

𝛽 max
[
0,−∇x𝑖𝑈𝑀 (x𝑀 ) · v𝑎

]}
≕ 𝜋̂(x, v𝑎, 𝑖) +

∑︁
𝑀

F phys
𝑀

(x, v𝑎, 𝑖).

(2.49)

The second line used the detailed-balance property of the factorized Metropolis filter that holds in its
infinitesimal limit [see Eq. (2.40)]. The lifting flow F lift(x, v𝑎, 𝑖) results from lifted configurations
(x, v′𝑎, 𝑗) where the motion of the active interaction site 𝑗 was interrupted by the factor 𝑀 and a lifting
move changed the lifted configuration to (x, v𝑎, 𝑖) with probability 𝑝𝑀 [(v′𝑎, 𝑗), (v𝑎, 𝑖)]. Therefore,

F lift(x, v𝑎, 𝑖) =
∑︁
𝑀

∑︁
v′𝑎∈V

∑︁
𝑗∈N

𝜋̂(x, v′𝑎, 𝑗) 𝛽 max
[
0,∇x 𝑗

𝑈𝑀 (x𝑀 ) · v′𝑎
]
𝑝𝑀 [(v′𝑎, 𝑗), (v𝑎, 𝑖)]

≕
∑︁
𝑀

F lift
𝑀 (x, v𝑎, 𝑖).

(2.50)

In order to satisfy the lifted global-balance condition, one requires∑︁
𝑀

F phys
𝑀

(x, v𝑎, 𝑖) = −
∑︁
𝑀

F lift
𝑀 (x, v𝑎, 𝑖). (2.51)
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In ECMC, this is solved by demanding

F phys
𝑀

(x, v𝑎, 𝑖) = −F lift
𝑀 (x, v𝑎, 𝑖), (2.52)

which, by using the uniform distributions of v𝑎 on V and 𝑖 on N , becomes

max
[
0,−∇x𝑖𝑈𝑀 (x𝑀 ) · v𝑎

]
=

∑︁
v′𝑎∈V

∑︁
𝑗∈N

max
[
0,∇x 𝑗

𝑈𝑀 (x𝑀 ) · v′𝑎
]
𝑝𝑀 [(v′𝑎, 𝑗), (v𝑎, 𝑖)] . (2.53)

Consider now the continuous velocity space on the unit two-sphere V = 𝑆2. A trivial solution of
Eq. (2.53) would be to simply invert the velocity of the active interaction site 𝑗 in an event, that is,
𝑝inv
𝑀
[(v′𝑎, 𝑗), (v𝑎, 𝑖)] = 𝛿𝑖, 𝑗 𝛿

(3) (v𝑎+v′𝑎) (which is also possible in a finite velocity space V containing
both v𝑎 and −v𝑎). Another solution reflects the velocity with respect to the equipotential surface with
normal vector ∇x 𝑗

𝑈𝑀 (x𝑀 ):

𝑝ref
𝑀 [(v′𝑎, 𝑗), (v𝑎, 𝑖)] = 𝛿𝑖, 𝑗 𝛿

(3)

(
v𝑎 − v′𝑎 + 2

∇x 𝑗
𝑈𝑀 (x𝑀 ) · v′𝑎

|∇x 𝑗
𝑈𝑀 (x𝑀 ) |2

∇x 𝑗
𝑈𝑀 (x𝑀 )

)
= 𝛿𝑖, 𝑗 𝛿

(3)

(
v′𝑎 − v𝑎 + 2

∇x 𝑗
𝑈𝑀 (x𝑀 ) · v𝑎

|∇x 𝑗
𝑈𝑀 (x𝑀 ) |2

∇x 𝑗
𝑈𝑀 (x𝑀 )

)
.

(2.54)

Here, it was used that applying the reflection twice yields the original velocity. Both of these solutions
are typically inefficient in a molecular system because they keep the same interaction site active but
may be necessary, e.g., for potentials that depend on a single interaction site as confining potentials or
hard walls [132]. Different ECMC variants consider more elaborate lifting moves to satisfy Eq. (2.53)
while also changing the active interaction site. In the following, general lifting moves for the straight
and reflective ECMC variants are presented.

2.4.7.1 Straight Event-Chain Monte Carlo

The straight ECMC variant can consider a finite or infinite set of velocities. It is valid for events
from factors 𝑀 with translationally invariant factor potentials 𝑈𝑀 as they appear, for instance, in the
SPC/Fw water model (see Section 2.4.1). It was one of the first ECMC variants and initially developed
for the hard-disk system [115]. Afterwards, it was first generalized to smooth factor potentials that
may depend on the separation between two interaction sites [121], and then to translationally invariant
factor potentials that may depend on an arbitrary number of interaction sites [145]. In an event of
the factor 𝑀, it just transfers the velocity v′𝑎 of the previously active interaction site 𝑗 to another
interaction site 𝑖 of 𝑀 . Considering a finite velocity space V, the lifting-move probabilities are given
by

𝑝
straight
𝑀

[(v′𝑎, 𝑗), (v𝑎, 𝑖)] = 𝛿v𝑎 ,v′𝑎
max[0,−∇x𝑖𝑈𝑀 (x𝑀 ) · v𝑎]∑
𝑘∈N max[0,∇x𝑘𝑈𝑀 (x𝑀 ) · v𝑎]

, (2.55)
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which trivially satisfy the necessary Eq. (2.53) for the lifted global-balance condition. They are also
properly normalized:∑︁

v𝑎∈V

∑︁
𝑖∈N

𝑝
straight
𝑀

[(v′𝑎, 𝑗), (v𝑎, 𝑖)] =
∑

𝑖∈N max[0,−∇x𝑖𝑈𝑀 (x𝑀 ) · v′𝑎]∑
𝑘∈N max[0,∇x𝑘𝑈𝑀 (x𝑀 ) · v′𝑎]

= 1. (2.56)

Here, it was used that the translational invariance of the factor potential𝑈𝑀 implies
∑

𝑖∈N ∇x𝑖𝑈𝑀 (x𝑀 ) =
0 and thus ∑︁

𝑖∈N
∇x𝑖𝑈𝑀 (x𝑀 ) · v𝑎 = 0 for all v𝑎 ∈ V. (2.57)

Collecting positive and negative terms yields∑︁
𝑖∈N

max[0,∇x𝑖𝑈𝑀 (x𝑀 ) · v𝑎] =
∑︁
𝑖∈N

max[0,−∇x𝑖𝑈𝑀 (x𝑀 ) · v𝑎] for all v𝑎 ∈ V. (2.58)

In Eq. (2.55), the probability of the interaction site 𝑖 becoming active in an event by the factor 𝑀 is
proportional to the negative rate of change max[0,−∇x𝑖𝑈𝑀 (x𝑀 ) · v𝑎] that its motion would induce.
The active interaction site always changes in an event. For factors that depend on more than three
interaction sites, other lifting schemes are available where the probability of 𝑖 becoming active depends
on the previously active interaction site 𝑗 [146]. For the Coulomb factor between two SPC/Fw water
molecules in Eq. (2.35), for instance, an “inside-first” lifting scheme keeps the active interaction site
preferentially within the same water molecule, while an “outside-first” lifting scheme preferentially
changes to an active interaction site in the other molecule.

2.4.7.2 Reflective Event-Chain Monte Carlo

The reflective ECMC variant considers the continuous set of velocities on the unit two-sphere V = 𝑆2.
It was proposed together with the straight ECMC variant for the hard-disk system where it was found
to show an inferior performance to decorrelate the global orientational order parameter [115]. As
this doctoral thesis shows, however, reflective ECMC yields favorable rotation dynamics in hard-disk
dipoles (see Chapter 4) and entirely different escape dynamics from relaxed hard-disk packings (see
Chapter 5). As straight ECMC, reflective ECMC is valid for events from factors 𝑀 with translationally
invariant factor potentials 𝑈𝑀 . Consider an event of the factor 𝑀 where the interaction site 𝑗 was
previously active with velocity v′𝑎. Reflective ECMC obtains a new velocity v𝑎 by first reflecting
v′𝑎 with respect to the equipotential surface with normal vector ∇x 𝑗

𝑈𝑀 (x𝑀 ), and then inverting the
reflected vector (see Fig. 1.5 for the example of the hard-disk system):

v𝑎 = −v′𝑎 + 2
∇x 𝑗

𝑈𝑀 (x𝑀 ) · v′𝑎
|∇x 𝑗

𝑈𝑀 (x𝑀 ) |2
∇x 𝑗

𝑈𝑀 (x𝑀 ). (2.59)

Since the factor 𝑀 interrupted the motion of the previously active interaction site 𝑗 , the corresponding
event rate has to be greater than zero which implies∇x 𝑗

𝑈𝑀 (x𝑀 )·v′𝑎 > 0. Because of the inversion of the
reflected velocity, the new velocity leaves the event rate invariant as∇x 𝑗

𝑈𝑀 (x𝑀 )·v𝑎 = ∇x 𝑗
𝑈𝑀 (x𝑀 )·v′𝑎.
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The lifting-move probabilities are given by

𝑝reflective
𝑀 [(v′𝑎, 𝑗), (v𝑎, 𝑖)] = 𝛿 (3)

(
v𝑎 + v′𝑎 − 2

∇x 𝑗
𝑈𝑀 (x𝑀 ) · v′𝑎

|∇x 𝑗
𝑈𝑀 (x𝑀 ) |2

∇x 𝑗
𝑈𝑀 (x𝑀 )

)
×

max[0,−∇x𝑖𝑈𝑀 (x𝑀 ) · v𝑎]∑
𝑘∈N max[0,−∇x𝑘𝑈𝑀 (x𝑀 ) · v𝑎]

,

= 𝛿 (3)

(
v′𝑎 + v𝑎 − 2

∇x 𝑗
𝑈𝑀 (x𝑀 ) · v𝑎

|∇x 𝑗
𝑈𝑀 (x𝑀 ) |2

∇x 𝑗
𝑈𝑀 (x𝑀 )

)
×

max[0,−∇x𝑖𝑈𝑀 (x𝑀 ) · v𝑎]∑
𝑘∈N max[0,−∇x𝑘𝑈𝑀 (x𝑀 ) · v𝑎]

,

(2.60)

where one uses that applying the reflection in Eq. (2.59) twice yields the original velocity. The
lifting-move probabilities are properly normalized∑︁

𝑖∈N

∫
V

d3v𝑎 𝑝reflective
𝑀 [(v′𝑎, 𝑗), (v𝑎, 𝑖)] =

∑
𝑖∈N max[0,−∇x𝑖𝑈𝑀 (x𝑀 ) · v𝑎 (v′𝑎)]∑
𝑘∈N max[0,−∇x𝑘𝑈𝑀 (x𝑀 ) · v𝑎 (v′𝑎)]

= 1, (2.61)

where v𝑎 (v′𝑎) is short for the right-hand side of Eq. (2.59) that only depends on v′𝑎. By using Eq. (2.58)
for the translationally invariant factor potential 𝑈𝑀 , one can show that the necessary Eq. (2.53) for the
lifted global-balance condition is also satisfied:∑︁

𝑗∈N

∫
V

d3v′𝑎 max
[
0,∇x 𝑗

𝑈𝑀 (x𝑀 ) · v′𝑎
]
𝑝reflective
𝑀 [(v′𝑎, 𝑗), (v𝑎, 𝑖)]

=

∑
𝑗∈N max[0,∇x 𝑗

𝑈𝑀 (x𝑀 ) · v𝑎]∑
𝑘∈N max[0,−∇x𝑘𝑈𝑀 (x𝑀 ) · v𝑎]

max[0,−∇x𝑖𝑈𝑀 (x𝑀 ) · v𝑎]

= max[0,−∇x𝑖𝑈𝑀 (x𝑀 ) · v𝑎] .

(2.62)

In an event of the factor 𝑀 , reflective ECMC reflects the velocity from v′𝑎 to v𝑎 by using Eq. (2.59).
As in straight ECMC, the probability of the interaction site 𝑖 becoming active is then proportional
to the negative rate of change max[0,−∇x𝑖𝑈𝑀 (x𝑀 ) · v𝑎] that its motion would induce. The active
interaction site always changes in an event.
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CHAPTER 3

Research Paper 1—Direction-Sweep Markov
Chains

This chapter considers the publication

[P1] Liang Qin, Philipp Höllmer, and Werner Krauth,
Direction-sweep Markov chains,
Journal of Physics A: Mathematical and Theoretical 55 (2022) 105003,
url: https://doi.org/10.1088/1751-8121/ac508a.

Section 3.0 provides a summary of the publication and contextualizes it within this doctoral thesis.
Furthermore, the author’s contributions are clearly indicated. The remaining part of this chapter
reproduces the accepted manuscript of the publication itself. All co-authors of the publication agree
with its use for this doctoral thesis and with the identification of the author’s contributions.

3.0 Prologue

For sampling the canonical (𝑁𝑉𝑇) ensemble of three-dimensional molecular systems in a periodic cubic
box, JeLLyFysh-Version1.0 implemented the straight event-chain Monte Carlo (ECMC) variant that
always aligns the tree-dimensional velocity of the active interaction site with the positive coordinate axes
(see Section 1.4). The finite velocity space is therefore given by V = {(1, 0, 0)𝑇 , (0, 1, 0)𝑇 , (0, 0, 1)𝑇 }
which, in a three-dimensional cubic box, contains the necessary three linear independent velocities to
ensure an irreducible algorithm (see Section 2.4.4). The velocity v𝑎 ∈ V remains constant in an event
chain, i.e., in between random resamplings from V in periodic time intervals of the chain time 𝜏chain.
Only the active interaction site changes (see Fig. 1.4).

Although individual SPC/Fw water molecules resist rotation in large-scale simulations and, hence,
the electric polarization remained dynamically arrested for prohibitively long computation times
(see Section 1.3.2), small numbers of SPC/Fw water molecules do rotate within straight ECMC as
implemented in JeLLyFysh-Version1.0 [P6, 146]. The choice of a new velocity v𝑎 from the finite
velocity space V after each event chain need not be random in straight ECMC. In fact, choosing
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a periodic cyclic sequence of the three possible velocities rotates a single SPC/Fw water molecule
faster than a random sequence [146]. This idea is generalized to direction sweeps in the reproduced
publication in this chapter. The direction of a local Monte Carlo move is understood as a lifting variable
in the lifting framework (see Section 2.3) and can thus be applied to various local Markov-chain
Monte Carlo (MCMC) algorithms such as the Metropolis or ECMC algorithms. For the example of
straight ECMC in a two-dimensional system, a direction sweep deterministically rotates the velocity
by an angle increment Δ𝜙 after each event chain. Similarly, the Metropolis algorithm deterministically
rotates the direction of its Monte Carlo moves that propose a new position of a random interaction site
along the current direction in a symmetric distribution about the original position.

We study direction sweeps for a single tethered hard-disk dipole that serves as a simplified two-
dimensional model of an extended dipole with flexible bond length and resembles the complex SPC/Fw
water molecule. For a certain reversible MCMC algorithm (that is a limit of the local Metropolis
and ECMC algorithms), we show analytically that slow non-reversible direction sweeps with angle
increments Δ𝜙 → 0 profoundly change the rotation dynamics of the tethered hard-disk dipole (see
Fig. 3.3). Specifically, we show that the dipole balances between persistent rotations in both directions
instead of showing a diffusive motion in its rotation dynamics. The persistent rotations of the dipole
are closely connected to the dynamics of an impact parameter that, depending of the direction of the
rotation, is described by a Langevin equation [167] or a non-linear differential equation.

For this simple system, we also numerically compute the mixing time (see Section 2.2.1). This
reveals that picking the directions only along the coordinate axes as in JeLLyFysh-Version1.0, be it
periodically or randomly, leads by far to the largest mixing time. A slow direction sweep, or even
a completely random choice of the direction, much decreases mixing times and rotates the tethered
hard-disk dipole considerably faster. In the context of the overarching objective of this doctoral
thesis—the introduction of a competitive, rigorous paradigm for molecular simulations that is based
on non-reversible MCMC algorithms—this is a first hint that the particular straight ECMC variant of
JeLLyFysh-Version1.0 was particularly ill-suited for decorrelating the polarization of SPC/Fw water
molecules. In order to overcome the observed dynamical arrest of the polarization, one should thus
refrain from restricting the velocity of the interaction site to a small number of possible velocities.

In a more general context, the direction sweeps are reminiscent of the sequential sweeps in the Monte
Carlo moves of, for instance, the local Metropolis algorithm: Instead of proposing a move for a random
“active” interaction site of the system at each Monte Carlo time step, a move is attempted for each site in
succession. Once the active site is fixed, its move is sampled with the reversible Metropolis algorithm.
Such sequential schemes are in wide use because they are somewhat faster [168–172] and were, in fact,
already used in the seminal introduction of the Metropolis algorithm in 1953 [72]. Yet, they are clearly
non-reversible because a sequential sweep in the reverse order never occurs [173]. In other words, they
apparently introduce a memory (or analogously a time-dependency) into the Markov chain because it
remembers the direction of the sweep. This would break the defining property of a Markov chain and
render its rigorous theoretical foundation useless. The lifting framework resolves that issue. It is used
in the appendix of the reproduced publication in this chapter to prove the correctness of site-sweep
versions of local reversible MCMC algorithms as long as the site-sweep version is still irreducible
(see Appendix 3.A.2; another proof without the lifting framework can be found in Ref. [173]).
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Direction sweeps are just as general as sequential site sweeps. From an application point-of-view,
the necessary optimization of the angle increment Δ𝜙 is a downside of the method. Also, as the
dimension of the system is increased, even more intrinsic parameter would emerge. Still, the essential
lesson of avoiding small sets of possible directions (as in JeLLyFysh-V1.0) is a valuable insight. Also,
in comparison to a completely random choice of the direction, any value of Δ𝜙 that leads to a large set
of possible directions already shows slightly reduced mixing times (see Fig. 3.6). Moreover, from the
perspective of a theorist, the simple tethered hard-disk dipole model allows for an analytical proof
that non-reversibility profoundly changes basic properties of local MCMC algorithms, and for an
implementation of a numerical protocol for the computation of mixing times which, even though they
are the primary characteristic of a Markov chain, is impossible in most practical applications.
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Abstract We discuss a non-reversible, lifted Markov-chain Monte Carlo (MCMC) algorithm
for particle systems in which the direction of proposed displacements is changed deterministically.
This algorithm sweeps through directions analogously to the popular MCMC sweep methods for
particle or spin indices. Direction-sweep MCMC can be applied to a wide range of reversible or
non-reversible Markov chains, such as the Metropolis algorithm or the event-chain Monte Carlo
algorithm. For a single two-dimensional tethered hard-disk dipole, we consider direction-sweep
MCMC in the limit where restricted equilibrium is reached among the accessible configurations
for a fixed direction before incrementing it. We show rigorously that direction-sweep MCMC
leaves the stationary probability distribution unchanged and that it profoundly modifies the
Markov-chain trajectory. Long excursions, with persistent rotation in one direction, alternate with
long sequences of rapid zigzags resulting in persistent rotation in the opposite direction in the
limit of small direction increments. The mapping to a Langevin equation then yields the exact
scaling of excursions while the zigzags are described through a non-linear differential equation
that is solved exactly. We show that the direction-sweep algorithm can have shorter mixing times
than the algorithms with random updates of directions. We point out possible applications of
direction-sweep MCMC in polymer physics and in molecular simulation.

3.1 Introduction

Since its introduction in 1953, the Markov-chain Monte Carlo (MCMC) method [72] has developed into
an essential tool in science and engineering, and into a prominent mathematical research discipline [74].
MCMC is concerned with the sampling of a probability distribution 𝜋, for example a Boltzmann
distribution in equilibrium statistical physics. MCMC’s trademark properties are randomness and
absence of memory: Samples 𝑗 at Monte-Carlo time step 𝑡 +1 are produced from samples 𝑖 at time step
𝑡 with independent probabilities contained in a transition matrix 𝑃 = (𝑃𝑖, 𝑗). The stationary distribution
𝜋 is reached in the limit 𝑡 → ∞. It satisfies the global-balance condition

∑
𝑖 𝜋𝑖𝑃𝑖, 𝑗 = 𝜋 𝑗 . Most

MCMC algorithms are reversible. They satisfy the detailed-balance condition 𝜋𝑖𝑃𝑖, 𝑗 = 𝜋 𝑗𝑃 𝑗 ,𝑖 that
implies the less restrictive global balance by summing over 𝑖. In physical terms, a reversible Markov
chain implements an equilibrium dynamics that approaches the Boltzmann distribution, with the
detailed-balance condition expressing the vanishing of all flows. In contrast, a non-reversible Markov
chain implements out-of-equilibrium dynamics with a steady state (imposed by the global-balance
condition) that again coincides with the Boltzmann distribution 𝜋.
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3.1 Introduction

Under the necessary conditions of irreducibility and aperiodicity [74], MCMC algorithms often
allow for sequential variants that seemingly introduce memory effects to the move (the move at time
𝑡 + 1 may depend on the move at time 𝑡). For systems of 𝑁 particles, one such variant was pioneered
in the original 1953 reference: Instead of attempting at time 𝑡 a move of a randomly chosen particle
“. . . we move each of the particles in succession . . . ” [72, p. 22], that is, attempt a move of particle
𝑖 + 1 (modulo 𝑁) at time 𝑡 + 1 after an attempt of 𝑖 at time 𝑡. In particle systems with central potentials,
this non-reversible particle-sweep Monte Carlo algorithm is somewhat faster (apparently by a constant
factor) than the reversible random-choice variant [169–172]. In the Ising model and related systems,
sequential updates of spin 𝑖 + 1 after spin 𝑖, etc., (“spin sweeps”) also break detailed balance yet satisfy
global balance. Spin-sweep algorithms are again faster, by a constant factor, than the detailed-balance
MCMC that flip spins in random order [168].

Lifting [111] allows one to formulate such a partly deterministic algorithm as a Markov chain
with a time-independent transition matrix, and to expose its close connection with the “collapsed”
Markov chain in which moves are proposed randomly. The lifted transition matrix acts on lifted
(extended) samples. In the above example of particle-sweep or spin-sweep algorithms, the so-called
“lifted sample” comprises the active-particle index in addition to all the particle coordinates. The
particle- and spin-sweep algorithms are precursors of non-reversible Markov chains that have been
much studied in the recent past [109, 118, 175–177]. One powerful non-reversible MCMC method is
the event-chain Monte Carlo (ECMC) algorithm [80, 115, 121].

In more than one dimension, naturally, particles must move into different spatial directions. Rather
than to sample the direction of the proposed move at time 𝑡 randomly, one may define it as a lifting
variable, and modify it deterministically without influencing the stationary distribution. In the same
way in which, in a particle-sweep algorithm, particles 𝑖, 𝑖 + 1, and then 𝑖 + 2, etc., move in succession,
we can force all moves to go forward or backward in direction 𝜙, and then (for a two-dimensional case)
in direction 𝜙+Δ𝜙, then 𝜙+2Δ𝜙, etc. This “direction sweep” appears at first sight as deterministic, but
the lifting framework again allows it to be formulated as a memory-less Markov process by combining
the configuration and the direction of proposed moves into a lifted sample.

In the family of ECMC algorithms, direction lifting can be applied to straight ECMC that uses the
same direction for every move in an event chain (in contrast to, e.g., reflective [115], Newtonian [124]
and forward ECMC [150] that change the direction at each event). Very slow changes of the direction
after each event chain were studied for straight ECMC simulations of hard-sphere systems, where they
were not found to improve the convergence properties [178].

In the present paper, we discuss direction-sweep MCMC for a tethered hard-disk dipole as a simplified
two-dimensional model of an extended flexible dipole consisting of two atoms, that resembles a flexible
water molecule in the context of molecular simulation (see Refs [P6, 146]). The variable dipole length
allows the entire dipole to rotate through local MCMC moves of both atoms along slowly changing
directions. We obtain exact results for direction sweeps in the limit where a given direction remains
fixed until “restricted equilibrium” is reached among the accessible configurations by the application
of any local MCMC algorithm (whose moves can be constructed with finite acceptance probability
from a sequence of infinitesimal moves). Here, restricted equilibrium is understood as the stationary
conditional probability density on the line of accessible configurations which is induced by the full
equilibrium distribution 𝜋. We show analytically that slow direction sweeps (that is, small direction-
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angle increments) yield long-lived rotations of the dipole by a cumulative (“rolled-out”) mean rotation
angle that diverges as the inverse angle increment in the limit of infinitely slow sweeps. This motion is
relayed by a counter-rotation that proceeds in a fast sequence of steps. Both motions exactly balance,
and the expectation of the net rotation vanishes. Numerically, we show that direction sweeps can lower
mixing times compared to MCMC with random choice of the direction. We find that only picking
directions among the 𝑥- and 𝑦-axes is by far the most unfavorable case, although it was previously
used in applications of straight ECMC to dipolar systems [P6, 146]. Our results, for dipoles, differ
from those for hard-sphere systems and probably, more generally, from those for simple liquids [178].

Our simple dipole model serves as an analytically tractable test bed for molecules such as the
simple-point-charge-with-flexible-water (SPC/Fw) water model [28]. The model is also very closely
related to the flexible polymer models that are being intensely studied using ECMC [131, 132].
Direction lifting is insensitive to the dipole’s structure and interactions. It remains valid for 𝑁-particle
systems, even though in that case the dynamics can no longer be analyzed analytically [P2].

The paper is organized as follows: Section 3.2 introduces the dipole model. In Section 3.3, we
introduce direction-sweep MCMC that reaches restricted equilibrium in a single step, and prove that
it converges towards the stationary distribution 𝜋. Section 3.4 studies the trajectory of the dipole
orientation. Mixing times are determined and compared in Section 3.5. Section 3.6 provides a
summary of our main results. Appendix 3.A provides additional context on lifted Markov chains and
particle-sweep algorithms.

3.2 Dipole Model

We study a two-dimensional flexible dipole consisting of two atoms 1 and 2 with an interaction that
only enforces a minimum length 𝑟 and a maximum length 𝑅. Specifically, the two atoms are at
positions x1 and x2 in a two-dimensional homogeneous domain. The flat interaction

𝑈 (𝜌) =
{

0 if 𝜌 ∈ [𝑟, 𝑅],
∞ otherwise,

(3.1)

only depends on the dipole length 𝜌 = |x2 − x1 |. The two-dimensional dipole thus consists of two
tethered hard disks with a contact distance 𝑟 and tether length 𝑅. The model can be generalized
to three spatial dimensions, and also made more realistic, for example through the SPC/Fw water
model [28]. The single dipole of Eq. (3.1) is to be envisaged as part of a more complex many-dipole
system with hard-sphere atomic pair interactions (see Fig. 3.1a) that is studied elsewhere [P2].

Any local MCMC move proposes a displacement of x1 or x2 from its present position along
a line l of angle 𝜙 with the 𝑥-axis. If the reached configuration has a dipole length with infinite
𝑈, the move is rejected. Such single-atom moves induce translations and rotations of the entire
dipole. We do not consider explicit global MCMC translations or global rotations because, in the
application to ECMC that we have in mind, they are difficult to implement. Because of homogeneity,
uniform translations of the dipole decouple from its rotations. We may thus set x1 = (0, 0) and
consider the relative position in polar coordinates: x = x2 − x1 = (𝜌, 𝜃), with the dipole angle 𝜃. In
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Figure 3.1: Two-dimensional dipole of length 𝜌 ∈ [𝑟, 𝑅]. (a): Local MCMC move of a dipole atom at position
x2 along the line l. (b): The same move in the ring representation x2 − x1 = (𝜌, 𝜃) ∈ Ω, with the dipole angle
𝜃 and the sample space Ω. The line l has angle 𝜙 with the 𝑥-axis and distance 𝜆𝑟 to the origin. For impact
parameters |𝜆 | < 1, the line l forms two segments S− ,S+ ⊂ l ∩Ω in the sample space.

equilibrium, x is uniformly distributed on the sample space Ω from which translations have been
factored out, namely the two-dimensional ring of inner radius 𝑟 and outer radius 𝑅 centered at (0, 0)
(see Fig. 3.1b). The uniform Euclidean distribution on Ω translates into a dipole-length distribution
𝜋(𝜌) = 2𝜌/[𝑟2(𝜂2 − 1)] for 𝜌 ∈ [𝑟, 𝑅] with the tether ratio 𝜂 = 𝑅/𝑟, and a dipole-angle distribution
for 𝜃 that is uniform in (−𝜋, 𝜋].

The sampling of the dipole (x1, x2) may be tracked in the ring representation (for x ∈ Ω), because
any move of x2 corresponds to the identical move for x, and any move of x1 yields an inverse move
for x. In both cases, the move is on a line l ∋ x of angle 𝜙 with the 𝑥-axis. We thus parameterize a
direction of a local MCMC move by 𝜙. The trajectory of the dipole angle under slow direction sweeps
is closely connected to the trajectory of the impact parameter

𝜆 =
sin(𝜃 − 𝜙)𝜌

𝑟
, (3.2)

which denotes the signed distance (in units of 𝑟) of l to the origin in a local MCMC move. In the
reference frame where 𝜙 = 0, i.e., where l runs parallel to the 𝑥-axis, 𝜆 is positive for x in the upper
half plane and negative in the lower half plane. If |𝜆 | > 1, l∩Ω forms a single segment S that contains
all accessible configurations. If |𝜆 | < 1, l ∩ Ω forms two such segments, namely S− (to the left for
𝜙 = 0) and S+ (to the right) (see Fig. 3.1b again). In realistic applications like, e.g., dense dipole
systems, accepted local MCMC moves with |𝜆 | < 1 that jump from S− to S+ are highly unlikely. We
thus only consider local MCMC moves that remain within their respective segment (S, S− or S+) or,
in other words, local MCMC moves that can be constructed from infinitesimal legal moves.

3.3 Direction-Sweep MCMC

Repeated local MCMC moves along one direction 𝜙, using, e.g., ECMC or the Metropolis algorithm
with small step sizes, tend towards a restricted equilibrium among the accessible configurations
in S, S− or S+. In other words, the distribution of the position on the segment approaches the
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Figure 3.2: Direction-sweep MCMC with subsequent directions 𝜙𝑡+1 − 𝜙𝑡 differing by the angle increment Δ𝜙.
(a): The position x𝑡+1 is a direct uniform sample on the line l𝑡 that contains the previous x𝑡 and has angle 𝜙𝑡
with the x-axis. The line l𝑡+1 of the subsequent move and l𝑡 intersect at x𝑡+1. (b): A large impact parameter
(|𝜆𝑡 | > 𝜆+cut) always leads to |𝜆𝑡+1 | > 1 ∀x𝑡+1 ∈ l𝑡 . Likewise, a small impact parameter (|𝜆𝑡 | < 𝜆−

cut) leads to
|𝜆𝑡+1 | < 1 ∀x𝑡+1 ∈ l𝑡 . Otherwise, if 𝜆−

cut < |𝜆𝑡 | < 𝜆+cut, the value of x𝑡+1 determines whether |𝜆𝑡+1 | > 1 or
|𝜆𝑡+1 | < 1.

stationary conditional probability density that is induced by the equilibrium distribution 𝜋. (The
segment is to be produced in the limit of successively narrower strips in order to properly define
the conditional probability density [179, Chapter 15].) For the single two-dimensional dipole, the
stationary distribution on the segment is uniform, and the restricted-equilibrium limit can be reached
in a single step by sampling the final position of the dipole in the segment that contains the starting
position x. This allows us to focus on the effects introduced by the choice of directions. In the
following, one unit of MCMC time corresponds to one fixed direction. We therefore obtain the next
position x𝑡+1 as a direct uniform sample [78] in S for |𝜆𝑡 | > 1, and in S− or in S+ (depending on the
starting position x𝑡 ) for |𝜆𝑡 | < 1. The direction is incremented by a constant value after each time step,
and the line l𝑡+1 thus goes through x𝑡+1 with the new angle 𝜙𝑡+1 = 𝜙𝑡 + Δ𝜙 with the angle increment
Δ𝜙 (for concreteness, we suppose Δ𝜙 > 0) (see Fig. 3.2a).

Because of the 𝜋-periodicity of the directions, a given value of the angle increment Δ𝜙 and the
starting direction 𝜙0 imply a set of directions D = {𝜙𝑡 } that contains all possible directions of a
simulation. We only consider finite direction sets D for simplicity. Direction-sweep MCMC is a non-
reversible lifting of reversible local MCMC with a lifted sample space Ω̂ = Ω×D. The lifted stationary
distribution 𝜋̂ (x,𝜙) incorporates the lifting variable 𝜙 with

∑
𝜙 𝜋̂ (x,𝜙) = 𝜋x (see Appendix 3.A.1 for

definitions of lifted Markov chains). We will show below that 𝜋̂ (x,𝜙) is proportional to 𝜋x. In order to
converge towards the stationary distribution 𝜋, the direction-sweep MCMC algorithm must satisfy the
global-balance condition:

𝜋̂ (x𝑡+1,𝜙𝑡+1 ) =
∑︁
x𝑡 ,𝜙𝑡

𝜋̂ (x𝑡 ,𝜙𝑡 )𝑃(x𝑡 ,𝜙𝑡 ) , (x𝑡+1,𝜙𝑡+1 ) , (3.3)

where 𝑃(x,𝜙) , (x′ ,𝜙′ ) denotes the conditional transition probability to the lifted sample (x′, 𝜙′), given
that the lifted Markov chain is already at (x, 𝜙) with, in our case, 𝜙′ = 𝜙 + Δ𝜙. For the collapsed
Markov chain, 𝜙′ is a random element in D.

As explained, any move from 𝑡 to 𝑡 + 1 is composed of two parts, that we describe by two
lifted transition matrices, namely 𝑃 (1) (that takes a half step from 𝑡 to 𝑡 + 1/2) and 𝑃 (2) (half step
from 𝑡 + 1/2 to 𝑡 + 1). They combine as 𝑃 = 𝑃 (1)𝑃 (2) . In the first half step, the lifting variable
is fixed (𝜙𝑡+1/2 = 𝜙𝑡 = 𝜙) while a new position x𝑡+1/2 is directly sampled among the accessible
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configurations given x𝑡 and 𝜙𝑡 . This restricted MCMC algorithm satisfies global balance for the given
direction 𝜙 by construction, that is, 𝜋̂ (x

𝑡+1/2,𝜙)
=

∑
x𝑡 𝜋̂ (x𝑡 ,𝜙)

𝑃
(1)
(x𝑡 ,𝜙) , (x𝑡+1/2,𝜙)

. This yields specifically
𝜋̂ (x𝑡+1/2,𝜙) = 𝜋̂ (x𝑡 ,𝜙) for the simple dipole model with its uniform 𝜋. In the second half step, the
position x remains fixed and only the direction is incremented by Δ𝜙:

𝜋̂ (x,𝜙𝑡+1 ) =
∑︁
𝜙𝑡+1/2

𝜋̂ (x,𝜙𝑡+1/2 )
𝑃
(2)
(x,𝜙𝑡+1/2 ) , (x,𝜙𝑡+1 ) = 𝜋̂ (x,𝜙𝑡+1−Δ𝜙) . (3.4)

For a finite direction set, and taking into account the periodicity of directions, this establishes that
the lifted stationary distribution 𝜋̂ (x,𝜙) is independent of 𝜙. The two half steps together establish
the validity of the global-balance condition in Eq. (3.3). For the two-dimensional dipole model,
direction-sweep MCMC is aperiodic and irreducible (that is, ergodic) for any choice of two or more
directions. The irreducibility of the lifted Markov chain in the lifted sample space Ω̂ follows from the
fact that any two positions x and x′ in the ring Ω can be joined by lines with the angles available in
the set D. Moreover, x and x′ may coincide for a given move, so that for any given sample x ∈ Ω,
all the corresponding lifted samples (x, 𝜙) ∈ Ω̂ can be realized. Aperiodicity follows again from
the possible coincidence of x and x′ in a direction-sweep MCMC move. The irreducibility in the
lifted sample space is sometimes more difficult to verify [P2]. The independence of the stationary
distribution 𝜋̂ (x,𝜙) with respect to the lifting variable is a general property of lifted MCMC [80] (see
also Appendix 3.A.2 for the simple example of particle-sweep algorithms).

For small angle increments Δ𝜙, direction-sweep MCMC features two cutoff impact parameters 𝜆+cut
and 𝜆−

cut:

𝜆±cut = cos(Δ𝜙) ±
√︃
(𝜂2 − 1) sin2(Δ𝜙). (3.5)

Here, 𝜆+cut exists for cos(Δ𝜙) > 1/𝜂, and 𝜆−
cut for cos(Δ𝜙) > (𝜂2 − 2)/𝜂2. For a fixed value of 𝜂, 𝜆±cut

both exist in the limit Δ𝜙 → 1 and approach 1 as 𝜆±cut → 1±. The interval [𝜆−
cut, 𝜆

+
cut] is a separation

layer for the impact parameter 𝜆 because |𝜆𝑡 | > 𝜆+cut implies |𝜆𝑡+1 | > 1, whereas |𝜆𝑡 | < 𝜆−
cut implies

|𝜆𝑡+1 | < 1 (see Fig. 3.2b).

3.4 Equilibrium Properties

For small angle increments Δ𝜙 > 0, direction-sweep MCMC simulations of the single two-dimensional
dipole yield trajectories of 𝜃𝑡 , the rolled-out dipole angle (not wrapped back into a 2𝜋 interval), with
alternating positive and negative rotations. The positive rotations fluctuate around their average of Δ𝜙
per time step, so that the trajectory of (𝜃𝑡 − 𝜃0)Δ𝜙 vs. (𝜙𝑡 − 𝜙0)Δ𝜙 has an average unit slope (𝜙𝑡 is the
rolled-out direction: 𝜙𝑡 − 𝜙0 = 𝑡Δ𝜙). The negative rotations exhibit, in contrast, intermittent sharp
decreasing steps and constant plateaus (see Fig. 3.3).

We will show that the trajectory of the rolled-out dipole angle 𝜃𝑡 depends on that of the impact
parameter 𝜆𝑡 (see Sections 3.4.1 and 3.4.2). Therefore, we first treat the trajectory of 𝜆𝑡 that may be
described through drift and diffusion terms. The current value of the impact parameter 𝜆𝑡 is a function
of the position x𝑡 and direction 𝜙𝑡 (for fixed system parameters). Direction-sweep MCMC algorithm
then uniformly samples x𝑡+1 on the segment that also contains x𝑡 . The subsequent increment of the
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Figure 3.3: Direction-sweep MCMC trajectories of the rescaled rolled-out dipole angle (𝜃𝑡 − 𝜃0)Δ𝜙 (blue, upper)
and of the impact parameter |𝜆𝑡 | (yellow, lower) vs. the rescaled change of the rolled-out direction (𝜙𝑡 − 𝜙0)Δ𝜙
for the tether ratio 𝜂 = 2. (a): Angle increment Δ𝜙 = 𝜋/1800. The inset shows the initial trajectories. (b):
Δ𝜙 = 𝜋/180. (c): Initial trajectories for Δ𝜙 = 𝜋/180. Points 𝐴 picture the trajectory during an “excursion” (see
Section 3.4.1). During a “zigzag”, the trajectory leads from point 𝐵 over 𝐶 to 𝐷 in the reference frame with
fixed direction 𝜙𝑡 = 0 (see Section 3.4.2). After a zigzag, the trajectory either jumps from 𝐷 to 𝐸 into a new
zigzag or switches over to an excursion (see Section 3.4.3).
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direction by Δ𝜙 linearly maps x𝑡+1 onto the impact parameter 𝜆𝑡+1. The position x𝑡+1, given x𝑡 , is a
random variable, and so is 𝜆𝑡+1. Its conditional expectation is

E (𝜆𝑡+1 |𝜆𝑡 ) =
{
𝜆𝑡 cosΔ𝜙 ∓ 𝐴𝑡 sinΔ𝜙 if |𝜆𝑡 | < 1; x𝑡 ∈ S±,
𝜆𝑡 cosΔ𝜙 if |𝜆𝑡 | > 1,

(3.6)

where 𝐴𝑡 = (𝐵𝑡 + 𝐶𝑡 )/2 with 𝐵𝑡 =

√︃
𝜂2 − 𝜆2

𝑡 and 𝐶𝑡 =

√︃
1 − 𝜆2

𝑡 . The variance of 𝜆𝑡+1 is

𝜎2 (𝜆𝑡+1 |𝜆𝑡 ) =
{

1
12 sin2 (Δ𝜙) (𝐵𝑡 − 𝐶𝑡 )2 if |𝜆𝑡 | < 1,
1
3 sin2 (Δ𝜙) 𝐵2

𝑡 if |𝜆𝑡 | > 1.
(3.7)

Equations (3.6) and (3.7) are the expectation and variance of a uniform distribution of 𝜆𝑡+1.
For small angle increments Δ𝜙 > 0, the trajectories of the impact parameter of direction-sweep

MCMC are exactly equivalent to those of a Gaussian process:

𝜆𝑡+1 = 𝜆𝑡 + [E (𝜆𝑡+1 |𝜆𝑡 ) − 𝜆𝑡 ] +
√︁
𝜎2 (𝜆𝑡+1 |𝜆𝑡 ) 𝑤𝑡 , (3.8)

where 𝑤𝑡 samples a standard normal distribution. For small Δ𝜙, the fluctuation term
√︁
𝜎2(𝜆𝑡+1 |𝜆𝑡 ) is

proportional to Δ𝜙. The drift E(𝜆𝑡+1 |𝜆𝑡 ) − 𝜆𝑡 is proportional to (Δ𝜙)2 for |𝜆 | > 1 and proportional to
Δ𝜙 for |𝜆 | < 1. This leads to distinctive dynamics for |𝜆 | > 1 and for |𝜆 | < 1,

3.4.1 Excursions (|𝝀| > 1)

For impact parameters |𝜆𝑡 | > 1, Eq. (3.8) becomes

𝜆𝑡+1 = 𝜆𝑡 −
𝜆𝑡

2
(Δ𝜙)2 +

√︂
1
3
𝐵2
𝑡 (Δ𝜙)2 𝑤𝑡 (3.9)

in the limit of small angle increments Δ𝜙. This equation agrees with the discrete-time Langevin
equation

𝜆𝑡+1 = 𝜆𝑡 + 𝐷 (1) (𝜆𝑡 , 𝑡𝑡 ) 𝜏 +
√︃

2𝐷 (2) (𝜆𝑡 , 𝑡𝑡 ) 𝜏 𝑤𝑡 , (3.10)

where the discrete times 𝑡𝑡 are separated by the time step 𝜏, and 𝐷 (1) and 𝐷 (2) are the Kramers–Moyal
expansion coefficients of the time-dependent probability distribution of 𝜆 that correspond to drift
and diffusion, respectively (see [167, eq. (3.138)]). As long as |𝜆𝑡 | > 1, the impact parameter thus
performs an “excursion,” a random walk in the quantity 𝜏 = (Δ𝜙)2. Such an excursion corresponds to
a total number of time steps that scales as ∼ const/(Δ𝜙)2. As each time step increases the direction
by Δ𝜙, this increases the rolled-out direction 𝜙𝑡 during the excursion by an amount that diverges as
∼ const/Δ𝜙. The excursions with |𝜆𝑡 | > 1 for different small angle increments Δ𝜙 therefore become
similar if the trajectory 𝜆𝑡 of the impact parameter is recorded as a function of (𝜙𝑡 − 𝜙0)Δ𝜙 (see
Fig. 3.3a and b).

During the excursion, the position x𝑡 follows on average the rotation of the direction in steps of the
angle increment Δ𝜙 (see points 𝐴 in Fig. 3.3c). Thus, the difference in the rolled-out dipole angle 𝜃𝑡
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during an excursion diverges as ∼ const/Δ𝜙. For Δ𝜙 > 0, this is evidenced by the unit slope of the
increasing parts of the trajectories of (𝜃𝑡 − 𝜃0)Δ𝜙 as a function of (𝜙𝑡 − 𝜙0)Δ𝜙 (see Fig. 3.3a and b,
again).

3.4.2 Zigzags (|𝝀| < 1)

For impact parameters |𝜆𝑡 | < 1 and small angle incrementsΔ𝜙, the fluctuations of the impact parameter
in Eq. (3.7) are negligible in comparison to the drift in Eq. (3.6). The Gaussian process of Eq. (3.8)
then approaches its deterministic limit:

Δ𝜆 = 𝜆𝑡+1 − 𝜆𝑡 = ∓

√︃
𝜂2 − 𝜆2

𝑡 +
√︃

1 − 𝜆2
𝑡

2
Δ𝜙, (3.11)

where the negative sign on the right-hand side is for x𝑡 ∈ S+, and the positive sign for x𝑡 ∈ S−.
For small Δ𝜙, this becomes a non-linear differential equation whose solution (up to an integration
constant) is

𝜙(𝜆) = ±arcsin(𝜆) − 𝜂2 arcsin(𝜆/𝜂) + 𝜆[𝐶 (𝜆) − 𝐵(𝜆)]
𝜂2 − 1

, (3.12)

where 𝐵(𝜆) =
√︁
𝜂2 − 𝜆2 and 𝐶 (𝜆) =

√
1 − 𝜆2. The numerical trajectories (for |𝜆 | < 1) reproduce the

exact solution of Eq. (3.12) (see green curve in Fig. 3.3c).
For small angle increments Δ𝜙 > 0, if x enters the segment S+ with unit impact parameter 𝜆 = 1, 𝜆

will decrease at every step until 𝜆 = −1. In S− , the impact parameter likewise increases from 𝜆 = −1
to 𝜆 = 1. This trapped deterministic motion creates one “zigzag” in the trajectory of |𝜆 |. The total
change of the rolled-out direction Δ𝜙ZZ during such a zigzag is given by

Δ𝜙ZZ =
2𝜂2arccsc(𝜂) + 2

√︁
𝜂2 − 1 − 𝜋

𝜂2 − 1
, (3.13)

and is always smaller than 𝜋. In a reference frame with fixed direction 𝜙𝑡 = 0 (which is rotated by
−Δ𝜙 at every time step), the position x𝑡 performs a negative rotation (see the trajectory from point
𝐵 over 𝐶 to 𝐷 in Fig. 3.3c), and thus follows the rotation of the system. Therefore, the rolled-out
dipole angle 𝜃𝑡 remains roughly constant, leading to a plateau in the non-rotating reference frame. For
𝜆𝑡 = 0, the dipole angle 𝜃𝑡 is independent of the precise position x𝑡 on its segment. At the center of
each plateau, the fluctuations of 𝜃𝑡 thus vanish even at finite Δ𝜙 (see point 𝐶 in Fig. 3.3c).

Since the total change of the rolled-out direction Δ𝜙ZZ in Eq. (3.13) is independent of Δ𝜙, the
zigzags in the trajectories of |𝜆𝑡 | for different (small) values of Δ𝜙 are similar if plotted as a function
of 𝜙𝑡 − 𝜙0, but ever steeper as a function of (𝜙𝑡 − 𝜙0)Δ𝜙 (see Fig. 3.3a and b).

3.4.3 Interplay of Excursions and Zigzags

After one rapid motion from 𝜆 = 1 to 𝜆 = −1 or vice versa, the trajectory may switch segments
to continue at |𝜆 | < 1 (see the jump from point 𝐷 to 𝐸 in Fig. 3.3c), adding one more leg to the
negative-rotation zigzag of 𝜆𝑡 (or two legs to the zigzag of |𝜆𝑡 | in Fig. 3.3c). The trajectory may also
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Figure 3.4: Distributions 𝜋(𝜃𝑡+𝑁𝑡
− 𝜃𝑡 ) of the change of the rolled-out dipole angle 𝜃 in 𝑁𝑡 steps of direction-

sweep MCMC for the tether ratio 𝜂 = 1.1 and angle increment Δ𝜙 = 𝜋/180. The mean of the distributions
always vanishes. (a): Symmetric distribution for 𝑁𝑡 = 1. (b): Highly asymmetric distributions for moderate 𝑁𝑡 .
(c): Rescaled large-𝑁𝑡 distributions compared to a symmetric Gaussian distribution.

switch to an excursion with |𝜆 | > 1, that is, to a positive rotation of the rolled-out dipole angle 𝜃.
The time (number of steps) of an excursion scales as ∼ const/(Δ𝜙)2 whereas the time of one zigzag
is shorter by factor of Δ𝜙 as it scales as ∼ const/Δ𝜙. Nevertheless, positive and negative rotations
balance, and the expectations E(𝜃𝑡+𝑁𝑡

− 𝜃𝑡 ) are zero for all numbers of steps 𝑁𝑡 . This holds for a
single move (𝑁𝑡 = 1) because 𝜋(𝜃𝑡+1 − 𝜃𝑡 ) is symmetric in consequence of the detailed balance of the
move from 𝑡 to 𝑡 + 1 (see Fig. 3.4a). For 𝑁𝑡 > 1, 𝜃𝑡+𝑁𝑡

− 𝜃𝑡 = 𝜃𝑡+𝑁𝑡
− 𝜃𝑡+𝑁𝑡−1 + · · · + 𝜃𝑡+1 − 𝜃𝑡 yields

E
(
𝜃𝑡+𝑁𝑡

− 𝜃𝑡
)
= E

(
𝜃𝑡+𝑁𝑡

− 𝜃𝑡+𝑁𝑡−1
)
+ . . . + E

(
𝜃𝑡+2 − 𝜃𝑡+1

)
+ E

(
𝜃𝑡+1 − 𝜃𝑡

)
= 0, (3.14)

because the expectation of a sum of (possibly dependent) random variables equals the sum of
expectations. The distribution 𝜋(𝜃𝑡+𝑁𝑡

− 𝜃𝑡 ) of the change of the rolled-out dipole angle in 𝑁𝑡 steps,
although it is of zero expectation, can be highly asymmetric (see Fig. 3.4b). For a moderate number of
steps 𝑁𝑡 ≲ const/(Δ𝜙)2, the distribution peaks for large 𝜃 that corresponds to trajectories that remain
on long excursions. For 𝑁𝑡 ≫ const/(Δ𝜙)2, the distribution approaches a Gaussian and becomes
again symmetric because the large number of steps allows excursions and zigzags to compensate in
a single trajectory (see Fig. 3.4c). The vanishing of E(𝜃𝑡+𝑁𝑡

− 𝜃𝑡 ) implies that there are O(1/Δ𝜙)
zigzags for each excursion. Microscopically, this can be understood through the existence of the
cutoff value 𝜆+cut [see Eq. (3.5) and Fig. 3.2b]. If |𝜆𝑡 | > 𝜆+cut, the next value of the impact parameter
|𝜆𝑡+1 | > 1; in contrast, a current value of the impact parameter 1 < |𝜆𝑡 | < 𝜆+cut may either produce
|𝜆𝑡+1 | > 1 or |𝜆𝑡+1 | < 1. In the latter case, x gets trapped in its corresponding segment.
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3.5 Approach to Equilibrium

The trajectory of the dipole in its sample space Ω = {(𝜌, 𝜃)} is characterized by persistent negative
and positive rotations. In order to quantify the approach to equilibrium of direction-sweep MCMC,
we consider mixing times [74, 180]

𝑡mix(𝜀) = min{𝑡 : 𝑑 (𝑡) ≤ 𝜀}, (3.15)

where 𝑑 (𝑡) is the total variation distance (TVD) between the stationary distribution 𝜋 and the
probability distribution 𝑃𝑡 (x0, ·) at time 𝑡 obtained by starting from the most unfavorable lifted initial
configuration x0:

𝑑 (𝑡) = max
x0

| |𝑃𝑡 (x0, ·) − 𝜋 | |TVD (3.16)

= max
x0

1
2

∫
|𝑃𝑡 (x0, x) − 𝜋(x) | dx. (3.17)

The time 𝑡mix = 𝑡mix(1/4) is defined as the mixing time. For 𝜀 < 1/4, 𝑡mix(𝜀) is bounded through 𝑡mix,

𝑡mix(𝜀) ≤ ⌈log2 𝜀
−1⌉ 𝑡mix, (3.18)

showing that the mixing process is exponential [74]. In this section, we study mixing times rather than
the more common equilibrium autocorrelation times because they are better adapted to the highly
correlated trajectories discussed in Section 3.4. In addition, the tethered dipole model is sufficiently
simple to allow for this more rigorous analysis.

We checked numerically for the dipole that the same x0 maximizes the TVD for 𝜀 in the neighborhood
of 1/4 and determine 𝑡mix via the time 𝑡mix(x0):

𝑡mix(x0) = min
{
𝑡 : | |𝑃𝑡

𝜃 (x0, ·) − 𝜋𝜃 | |TVD ≤ 1/4
}
. (3.19)

The maximum of 𝑡mix(x0) over the initial configurations x0 then yields 𝑡mix [by doing so, we effectively
interchanged the “min” in Eq. (3.15) with the “max” in Eq. (3.17)]. Due to the rotational invariance of
the ring system, 𝑡mix(x0) only depends on the angle difference 𝜃0 − 𝜙0. We thus set the initial direction
𝜙0 = 0 and consider 𝑡mix(𝜌0, 𝜃0), which we determine numerically by running 100 000 simulations that
all start from x0 = (𝜌0, 𝜃0). At each time step 𝑡, we use these simulations to determine 𝑃𝑡

𝜃
(x0, ·) and

its TVD with 𝜋. The evaluation of the TVD requires in our case the evaluation of a two-dimensional
integral over Ω. However, since the dipole length 𝜌 relaxes very quickly, we approximate it by the
one-dimensional integral over the dipole angle 𝜃.

3.5.1 Identifying Unfavorable Initial Configurations

For small angle increments Δ𝜙 > 0, two unfavorable initial configurations stand out. First, trajectories
with an initial impact parameter 𝜆0 = 1 and x0 ∈ S+ (or 𝜆0 = −1 and x0 ∈ S−) always start with a
deterministic zigzag until 𝜆𝑡 = −1 (or 𝜆𝑡 = 1). At the time 𝑡 after this first zigzag, the probability
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distribution 𝑃𝑡
𝜃
(x0, ·) is therefore strongly peaked, because every simulation had a similar zigzag-

trajectory, and produces a large TVD in Eq. (3.17). Thereafter, different trajectories either continue
with more zigzags or else with an excursion, which then flattens 𝑃𝑡

𝜃
(x0, ·). Second, a trajectory from

the maximum |𝜆0 | = 𝜂 starts with an excursion and 𝑃𝑡
𝜃
(x0, ·) thus peaks at 𝜃𝑡 = 𝑡Δ𝜙 because all

simulations advance the dipole angle on average by Δ𝜙 per time step. Only once the random walk
in |𝜆𝑡 | reaches the cutoff impact parameter 𝜆+cut, different simulations may either continue on the
excursion or change into a zigzag, and the distribution 𝑃𝑡

𝜃
(x0, ·) starts to flatten. The most unfavorable

initial configuration among these two depends on the tether ratio 𝜂. For 𝜂 → 1, we find that starting
the trajectory with a zigzag is the most unfavorable initial state (see Fig. 3.5a, the yellow regions
correspond to 𝜆0 ≈ ±1), whereas starting the trajectory with an excursion is most unfavorable for
larger 𝜂 (see Fig. 3.5b, the yellow regions correspond to 𝜆0 ≈ ±𝜂). This can be understood by the fact
that the number of time steps in a zigzag increases as 𝜂 → 1 [see Eq. (3.13)], whereas the difference
𝜂 − 𝜆+cut that the impact parameter has to overcome in the initial excursion decreases [see Eq. (3.5)].

For large angle increments Δ𝜙, the random walk of 𝜆𝑡 is no longer described in terms of excursions
and zigzags, and the initial configuration does not strongly influence 𝑡mix(x0), except for values of
Δ𝜙 that correspond to small direction sets D. Then 𝑡mix(𝜌0, 𝜃0) is roughly periodic in 𝜃0 (see the
periodic stripes in Fig. 3.5c and d). For Δ𝜙 = 𝜋/2, that is, directions 𝜙𝑡 drawn from the direction set
D = {0, 𝜋/2}, this may be due to the fact that with an initial dipole angle 𝜃0 ∈ {−𝜋/2, 0, 𝜋/2, 𝜋} one
of the two alternating directions hardly modifies 𝜃𝑡 during the initial part of the trajectory.

3.5.2 Mixing Time

We now systematically study 𝑡mix for direction-sweep MCMC as a function of the direction set D. We
compare it with the reversible version that samples 𝜙𝑡+1 randomly from D (random discrete MCMC),
and also with reversible MCMC with continuous directions Δ𝜙 = ran(0, 𝜋) (random continuous
MCMC). Both versions satisfy detailed balance.

Several properties stand out (see Fig. 3.6a). First, the mixing time is very sensitive to the size of D
regardless of whether its elements are accessed sequentially or randomly. For a thin ring (tether ratio
𝜂 → 1), the mixing time 𝑡mix shows characteristic peaks for small direction sets D. The height of
these peaks (for not too large set sizes |D|) is proportional to 1/|D|. This yields a particularly large
mixing time for Δ𝜙 = 𝜋/2 where |D| = 2.

Second, we find that sweeping through the elements of D is generically better than randomly
sampling the direction from D, except for Δ𝜙 → 0 where the sweeps are too slow and the mixing
time diverges. For small |D|, this benefit of direction-sweep MCMC is easily understood by the
non-vanishing probability of repeated (redundant) moves in the same direction that only appear in
random discrete MCMC.

For all considered values of the tether ratio 𝜂, we find that direction-sweep MCMC with an
appropriate angle increment Δ𝜙 is faster than random continuous MCMC and, in particular, as
direction-sweep MCMC with Δ𝜙 = 𝜋/2 (see Fig. 3.6b). The speedup compared to the choice
Δ𝜙 = 𝜋/2 is large, and it appears to diverge as 𝜂 → 1. This may render the non-reversible scheme
especially promising for dipolar particles in ECMC where up to now Δ𝜙 = 𝜋/2 was always chosen.
We confirm that the smallest mixing time in direction-sweep MCMC is indeed reached for small Δ𝜙,
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Figure 3.5: Mixing times 𝑡mix (x0 = (𝜌0, 𝜃0)) with the initial direction 𝜙0 = 0 for different values of the tether
ratio 𝜂 and the angle increment Δ𝜙. (a) and (b): The most unfavorable initial configuration x0 depends on 𝜂 for
small Δ𝜙. (c) and (d): Values of Δ𝜙 with small direction sets D lead to periodic patterns in 𝜃0.
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Figure 3.6: Mixing times 𝑡mix of direction-sweep MCMC for different angle increments Δ𝜙. (a): 𝑡mix for the
tether ratio 𝜂 = 1.005 compared to mixing times of random discrete and continuous MCMC. (b): Optimal
speedup with respect to Δ𝜙 = 𝜋/2 and to random continuous MCMC. (c): Mixing time 𝑡mix of direction-sweep
MCMC compared to that of random continuous MCMC for small tether ratios 𝜂 ≳ 1. The line labeling is the
same as in (a).
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Figure 3.7: Direction-sweep MCMC trajectories of the rescaled rolled-out dipole angle (𝜃𝑡 − 𝜃0)Δ𝜙 (blue,
upper) and of the impact parameter |𝜆𝑡 | (yellow, lower) vs. the rescaled change of the rolled-out direction
(𝜙𝑡 − 𝜙0)Δ𝜙 for the tether ratio 𝜂 = 1.01 and large angle increment Δ𝜙 = 85 𝜋/180.

that is, for the peculiar trajectories discussed in Section 3.4. This, in our model, can of course only be
observed for 𝜂 → 1 because the speedup for small Δ𝜙 is cut off by the divergence of 𝑡mix for Δ𝜙 → 0.

Finally, we find that direction-sweep MCMC is usually faster than the random continuous MCMC
even for large values of Δ𝜙, except when |D| is very small (see Fig. 3.6c, large angles Δ𝜙 give small
direction sets only if Δ𝜙/(2𝜋) is a simple fraction). The trajectories remain very regular for generic
Δ𝜙. They feature intriguing patterns for the impact parameter 𝜆𝑡 and the rolled-out dipole angle 𝜃𝑡 ,
that require further study (see Fig. 3.7).

3.6 Conclusion

We have discussed a non-reversible MCMC algorithm for particle systems that sweeps through the
direction of motion, rather than to sample directions randomly. For a single two-dimensional tethered
hard-disk dipole, we proved in a local-equilibrium limit that direction-sweep MCMC induces persistent
dipole rotations with a total rolled-out angle that diverges as the direction sweep becomes slower.
Persistent rotation takes place in both senses, and the two exactly compensate to zero net rotation.

Direction-lifted MCMC (of which direction-sweep MCMC is a special case) remains valid for
general 𝑁-body problems. It preserves the independence of the lifted stationary distribution from the
lifting variable [80] even if the thermalization condition at fixed lifting variable is dropped. Real-world
direction-lifted MCMC may go to much smaller values of angle increments Δ𝜙 than the single dipole,
simply because mixing times will be much larger in applications. The additional parameter Δ𝜙 would
have to be optimized in applications, a feature that presents a downside of the method. Nevertheless,
we think that the lessons of using small values of the angle increment and of avoiding small direction
sets can be carried over. Although the full analytic control of the dynamics can certainly not be
preserved in the 𝑁-body case, qualitatively similar performance differences in autocorrelation times
were observed for direction-lifted ECMC in a model with 𝑁 tethered hard-disk dipoles [P2]. It
will be fascinating to understand the usefulness of direction lifting for applications such as polymer
physics, and also in systems of long-range interacting extended molecules at the core of the JeLLyFysh
project [P6]. More generally, our model illustrates that non-reversibility profoundly changes the basic
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properties of local MCMC algorithms, in the same way as out-of-equilibrium statistical physics is
fundamentally different from its equilibrium counterpart.
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3.A Lifted Markov Chains and Particle-Sweep Monte Carlo

In this appendix, we collect basic notions about lifted Markov chains [111, 112], using the notations
of [80]. The lifting framework allows for the systematic construction of non-reversible Markov chains,
by integrating some or all of the moves into a lifted sample space. We also discuss the particle-sweep
Markov-chain algorithms mentioned in the introduction (see Section 3.1) as particle-liftings of
reversible Markov chain, and show their correctness.

3.A.1 Basic Concepts in Lifted Markov Chains

For concreteness, we consider a finite irreducible Markov chain Π with a sample space Ω = {x}, a
stationary distribution 𝜋, and a transition matrix 𝑃 (see [74]). The element 𝑃x,x′ ≥ 0 of the transition
matrix gives the conditional probability to move to the sample x′ (at time 𝑡 + 1) given that the Markov
chain is at sample x (at time 𝑡). The transition matrix is a stochastic matrix, i.e.,

∑
x′∈Ω 𝑃x,x′ = 1, which

encodes that the transition probability from the sample x to all other samples must be 1. The stationary
distribution 𝜋 and the transition matrix 𝑃 satisfy the global-balance condition 𝜋x =

∑
x′∈Ω 𝜋x′𝑃x′ ,x.

As mentioned in Section 3.1, reversible Markov chains are those that satisfy the more restrictive
detailed-balance condition 𝜋x𝑃x,x′ = 𝜋x′𝑃x′ ,x.

A lifting (or a “lifted Markov chain”) Π̂ consists in another lifted sample space Ω̂, lifted stationary
distribution 𝜋̂, and lifted transition matrix 𝑃. Any sample in the “collapsed” sample space Ω is
connected to one or more samples in the lifted sample space Ω̂. We consider the special case that Ω̂
can be written as Ω̂ = Ω × L, where L is a set of lifting variables. Any sample in Ω is then “lifted”
into |L| lifted samples in Ω̂ that are specified by tuples (x, 𝑖) with x ∈ Ω and 𝑖 ∈ L. Examples of L
are the set of particle indices or, as in the main part of this paper, the set of directions. In the lifted
sample space, the global-balance condition becomes for every (x, 𝑖) ∈ Ω̂:

𝜋̂ (x,𝑖) =
∑︁

(x′ , 𝑗 ) ∈Ω̂

𝜋̂ (x′ , 𝑗 )𝑃(x′ , 𝑗 ) , (x,𝑖) . (3.A.1)

The Markov chain Π̂ is a lifting of Π (conversely, Π is referred to as a “collapsing” [112] of Π̂), if for
every x ∈ Ω

𝜋x =
∑︁
𝑖∈L

𝜋̂ (x,𝑖) , (3.A.2)
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and for every pair x, x′ ∈ Ω

𝜋x𝑃x,x′ =
∑︁
𝑖, 𝑗∈L

𝜋̂ (x,𝑖)𝑃(x,𝑖) , (x′ , 𝑗 ) . (3.A.3)

Equation (3.A.2) expresses that the combined stationary weights of all lifted copies of a sample x ∈ Ω

must be the same as the stationary weight of x, while Eq. (3.A.3) ensures that the probability flow
between any two collapsed samples is equal to the total flow between the corresponding lifted samples.
These properties make it possible to sample the collapsed probability distribution 𝜋 using the lifted
Markov chain Ω̂. There are many choices for the lifted transition matrix given a set L of lifting
variables, and these choices greatly influence the performance of the lifted Markov-chain Monte
Carlo algorithms [80]. Although a lifting does not modify the basic conductance of the graph, it can
allow for a considerable speedup. The mixing time of a lifted Markov chain, that is, the time that
describes the approach towards equilibrium from a most unfavorable initial sample (see Section 3.5),
is at least the square root of the mixing time of the collapsed Markov chain. This corresponds to
replacing the diffusive motion that is usually associated to Markov-chain Monte Carlo with a ballistic
motion. It is well understood that in order to realize any significant speed-up, the lifting must be
non-reversible [112].

3.A.2 Particle-Sweep Liftings of Reversible Markov Chains

As discussed in Section 3.1, the earliest non-reversible Markov chains—introduced in the original
1953 paper [72]—are “particle-sweep” versions of the reversible Metropolis algorithm for 𝑁 particles.
Sweep algorithms can be interpreted as lifted Markov chains with the set L = {1, . . . , 𝑁} of lifting
variables equal to the set of particle indices. The samples x = (x1, . . . , x𝑁 ) ∈ Ω contain all particle
positions.

For concreteness, we consider an arbitrary local reversible Markov-chain algorithm that, at each
time step, attempts a move of a randomly chosen particle 𝑖. The non-vanishing elements 𝑃x,x′ of the
collapsed transition matrix 𝑃 thus correspond to moves of a single particle 𝑖. To simplify notation,
we write these elements as 𝑃x

𝑖
,x′

𝑖
rather than as 𝑃(x1,...,x𝑖 ,...,x𝑁 ) , (x1,...,x′𝑖 ,...,x𝑁 ) . Instead of choosing

a random particle, the particle-sweep version always attempts a move of particle 𝑖 + 1 after a move
of 𝑖 (with periodic boundary conditions in the particle indices). The lifted Markov chain performs
the same moves as the collapsed one, but only for the particle 𝑖 that is specified through the lifting
variable. The possibly non-zero elements of the lifted transition matrix 𝑃 are

𝑃(x
𝑖
,𝑖) , (x′

𝑖
,𝑖+1) = 𝑁𝑃x

𝑖
,x′

𝑖
, if x ≠ x′, (3.A.4)

and, in addition, because 𝑃 is a stochastic matrix,

𝑃(x′
𝑖
,𝑖) , (x′

𝑖
,𝑖+1) = 1 −

∑︁
x∈Ω,x≠x′

𝑃(x′
𝑖
,𝑖) , (x𝑖 ,𝑖+1) . (3.A.5)

The factor 𝑁 in Eq. (3.A.4) stems from the fact that, in the collapsed Markov chain, a move of particle
𝑖 is attempted with probability 1/𝑁 , so that 𝑃x

𝑖
,x′

𝑖
∼ 1/𝑁 for x′ ≠ x while in the lifted Markov chain,

starting from a lifted sample (x, 𝑖), the same move of particle 𝑖 is attempted with probability 1. With
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the ansatz
𝜋̂ (x,𝑖) =

1
𝑁
𝜋x ∀𝑖 ∈ L, (3.A.6)

which implies the condition for a lifted Markov chain in Eq. (3.A.2), it follows from Eqs (3.A.4)
and (3.A.6) that for x ≠ x′

𝜋̂ (x,𝑖)𝑃(x
𝑖
,𝑖) , (x′

𝑖
,𝑖+1) = 𝜋x𝑃x

𝑖
,x′

𝑖

= 𝜋x′𝑃x′
𝑖
,x

𝑖

= 𝜋̂ (x′ ,𝑖+1)𝑃(x′
𝑖
,𝑖) , (x

𝑖
,𝑖+1) , (3.A.7)

where we used that the reversible collapsed Markov chain satisfies the detailed-balance condition.
Equation (3.A.7) can be understood as a skew detailed balance [109, 181]. We now compute, using
Eqs (3.A.5) and (3.A.7), the probability flow into the lifted sample (x′, 𝑖 + 1):∑︁

x∈Ω
𝜋̂ (x,𝑖) 𝑃(x

𝑖
,𝑖) , (x′

𝑖
,𝑖+1) =

∑︁
x∈Ω,x≠x′

𝜋̂ (x,𝑖) 𝑃(x
𝑖
,𝑖) , (x′

𝑖
,𝑖+1) + 𝜋̂ (x′ ,𝑖+1)𝑃(x′

𝑖
,𝑖) , (x′

𝑖
,𝑖+1) (3.A.8)

= 𝜋̂ (x′ ,𝑖+1)

[ ∑︁
x∈Ω,x≠x′

𝑃(x′
𝑖
,𝑖) , (x

𝑖
,𝑖+1) + 𝑃(x′

𝑖
,𝑖) , (x′

𝑖
,𝑖+1)

]
(3.A.9)

= 𝜋̂ (x′ ,𝑖+1) . (3.A.10)

This is the global-balance condition for the lifted probability distribution of Eq. (3.A.6) and, because
an irreducible Markov chain has a unique stationary distribution, it verifies the above ansatz. The
reversibility condition that was used in Eq. (3.A.7) is necessary: there are examples of non-reversible
collapsed Markov chains that do not allow for a sweep-style lifting [80, Section 4.2.1].

The direction-lifted Markov chains of the main text perform sweeps in the space of directions,
rather than in the space of particle indices. These non-reversible algorithms likewise satisfy the
global-balance condition as the collapsed Markov chain is reversible.
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CHAPTER 4

Research Paper 2—Hard-Disk Dipoles and
Non-Reversible Markov Chains

This chapter considers the publication

[P2] Philipp Höllmer, Anthony C. Maggs, and Werner Krauth,
Hard-disk dipoles and non-reversible Markov chains,
The Journal of Chemical Physics 156 (2022) 084108,
url: https://doi.org/10.1063/5.0080101.

Section 4.0 provides a summary of the publication and contextualizes it within this doctoral thesis.
Furthermore, the author’s contributions are clearly indicated. The remaining part of this chapter
reproduces the published version of the publication itself. All co-authors of the publication agree with
its use for this doctoral thesis and with the identification of the author’s contributions.

4.0 Prologue

The first research paper of this doctoral thesis introduced a two-dimensional tethered hard-disk dipole
model that caricatures the SPC/Fw water model (see Chapter 3 and Ref. [P1]). The simplified
model retains the polar nature which allows us to study its rotation dynamics and, in the end, to gain
insights on how rotations can be enhanced in the framework of event-chain Monte Carlo (ECMC),
even for the computationally more complex SPC/Fw water model. Since ECMC does currently
not allow for continuous-time rotations of dipoles that appear especially difficult to implement in
long-range-interacting molecular systems, rotations of tethered hard-disk dipoles are pieced together
from subsequent straight-line motions of the active disks. Combining ECMC with reversible Monte
Carlo moves that explicitly rotate dipoles is possible [134]. This would, however, not be adequate
in the ultimate application to molecular systems in the overarching objective of this doctoral thesis
because this would require an inefficient and inaccurate computation of the global potential-energy
change.
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Only considering a single tethered hard-disk dipole in the first research paper of this doctoral thesis
enabled an analytical analysis and a numerical computation of the mixing time. While mixing times
are the primary characteristic of any Markov-chain Monte Carlo (MCMC) algorithm, it is impossible
to obtain them in most practical applications and one relies on alternative cues to ensure that the
algorithm reached the desired stationary equilibrium distribution (see Section 2.2.1). Assuming that
the MCMC simulation reached stationarity, one usually considers the easier-to-evaluate integrated
autocorrelation time as a performance characteristic instead (see Section 2.2.2). This approach is
followed in the reproduced publication in this chapter. We consider an extensive numerical benchmark
of an increasing number of tethered hard-disk dipoles at increasing densities in a periodic cubic box.
The length of the tether that connects two hard disks to a dipole is chosen so that it shows a similar
amount of flexibility as the O H bond lengths in the SPC/Fw water model at room temperature.

We consider the reversible Metropolis algorithm with different proposal distributions and compare
it to a large number of non-reversible ECMC variants. First, the “periodic” straight ECMC variant
periodically aligns the velocities with the coordinate axes after each event chain as in the first version
of JeLLyFysh-Version1.0. Second, the “random” straight ECMC variant chooses the two-dimensional
direction of the velocity randomly on a unit circle. Third, “sequential” straight ECMC variants
carry out a direction sweep with various values of the angle increment Δ𝜙 that, similar to the chain
time 𝜏chain of an event chain, acts as another intrinsic parameter that must be fine-tuned. Against
the background of the ultimate application to molecular systems, an important point of this paper is
that it also considers ECMC variants that differ from straight ECMC in their lifting moves in events.
Reflective [115], forward [150], and Newtonian ECMC [124] do not simply transfer the velocity of
the previously active disk to its collision partner in an event. Instead, both the active disk and the
velocity are changed in an event (see Figs 1.5 and 4.2). Even though the velocity continuously changes
during an event chain, one may still consider resampling it in periodic time intervals of the chain time
𝜏chain (and this might even be necessary in certain cases, see below). The chain time 𝜏chain acts as
an intrinsic parameter that influences the autocorrelation times in every ECMC variant. All in all,
thousands of parameter sets for different ECMC variants are considered and benchmarked against the
reversible local Metropolis algorithm (see, e.g., Fig. 4.5).

Once fine-tuned to an optimal acceptance rate of their Monte Carlo moves, the local reversible
Metropolis algorithms with the different proposal distributions become equally fast at high densities
of the tethered hard-disk dipoles (see Fig. 4.6). This is expected as the precise choice of the proposal
distribution typically does not influence the performance of local reversible algorithms very much.
Sequential straight ECMC with fine-tuned 𝜏chain and Δ𝜙 is indeed the fastest straight ECMC variant,
as hoped for after the results of the first research paper of this doctoral thesis, but only by a relatively
small margin. Also, similar to the different Metropolis algorithms, all straight ECMC variants, as well
as reflective and forward ECMC show a similar performance at high densities (see Fig. 4.7). Here,
reflective and forward ECMC are fastest in the 𝜏chain → ∞ limit which removes any need for fine-tuning
their intrinsic parameter. Straight, reflective, and forward ECMC give an order-of-magnitude speedup
compared to the Metropolis algorithm which was also expected from replacing a reversible by a
non-reversible algorithm. What comes as a surprise, however, is that Newtonian ECMC, again in
the 𝜏chain → ∞ limit, is consistently faster than the other ECMC variants by a considerable factor at
all densities. We observe an up to an order-of-magnitude spread between the worst periodic straight
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ECMC variant and Newtonian ECMC. At high density, optimal Newtonian ECMC demonstrates
a 60-fold speedup compared to the reversible Metropolis algorithm (see Fig. 4.7 again). For the
overarching objective of this doctoral thesis—the ultimate application to molecular systems such as
the SPC/Fw water model—we conclude that non-straight ECMC variants require no fine-tuning and
that the performance of non-reversible MCMC can show an extreme dependence on details in its
algorithm. Especially Newtonian ECMC appears promising for decorrelating the polarization by
rotating dipoles or molecules.

In a more general context, we also discuss the problem of ensuring irreducibility in different ECMC
variants. Sequential straight ECMC necessarily requires velocity changes in periodic time intervals of
the chain time 𝜏chain. We show for a single tethered hard-disk dipole that this velocity change must be
connected to a random choice of the initially active disk in the event chain to ensure irreducibility (see
Fig. 4.3). Similarly, although reflective and Newtonian ECMC change the velocity of the active disk
in every event, they strictly require random resamplings of the velocity and active disk in periodic time
intervals 𝜏chain (see also Ref. [140, Fig. 3]). Only forward ECMC with its event-based randomness
is irreducible without any resamplings. These irreducibility problems of reflective and Newtonian
ECMC can only be observed for a single dipole (or a set of effectively independent dipoles). At high
densities, static observables agree with or without resamplings and it appears safe to omit them in
practical simulations. Still, for reflective and Newtonian ECMC that become fastest in the 𝜏chain → ∞
limit, it appears safer to choose a large finite value 𝜏chain → ∞, just in case.

Contributions of the Author

The author contributed in an essential manner to the entire research project underlying this research
paper. In particular, he was the sole contributor to the implementation of the Go software for an
efficient simulation of tethered hard-disk dipoles with an O(1) complexity per event with different
ECMC variants, the data collection for the ECMC algorithms, and the creation of the figures. The
author also made essential contributions to the proofs of the different irreducibility problems, and
the writing of the research paper itself. Following the Contributor Role Taxonomy (CRediT) [174],
the author contributions are as follows:

• Conceptualization (ideas; formulation or evolution of overarching research goals and aims).

• Methodology (development or design of methodology; creation of models).

• Software (programming, software development; designing computer programs; implementation
of the computer code and supporting algorithms; testing of existing code components).

• Validation (verification, whether as a part of the activity or separate, of the overall replica-
tion/reproducibility of results/experiments and other research outputs).

• Formal analysis (application of statistical, mathematical, computational, or other formal
techniques to analyze or synthesize study data).

• Investigation (conducting a research and investigation process, specifically performing the
experiments, or data/evidence collection).
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• Writing—Original Draft [preparation, creation and/or presentation of the published work,
specifically writing the initial draft (including substantive translation)].

• Writing—Review & Editing (preparation, creation and/or presentation of the published work by
those from the original research group, specifically critical review, commentary or revision—
including pre- or post-publication stages).

• Visualization (preparation, creation and/or presentation of the published work, specifically
visualization/data presentation).
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4.1 Introduction

Hard-Disk Dipoles and Non-Reversible Markov Chains

This reproduces an article which appeared in The Journal of Chemical Physics and may be found
at https://doi.org/10.1063/5.0080101. It may be downloaded for personal use only. Any
other use requires prior permission of the author and AIP Publishing. Reproduced from P. Höllmer,
A. C. Maggs, and W. Krauth, Hard-disk dipoles and non-reversible Markov chains, The Journal of
Chemical Physics 156 (2022) 084108, with the permission of AIP Publishing (see Ref. [P2]).

Abstract We benchmark event-chain Monte Carlo (ECMC) algorithms for tethered hard-disk
dipoles in two dimensions in view of application of ECMC to water models in molecular simulation.
We characterize the rotation dynamics of dipoles through the integrated autocorrelation times
of the polarization. The non-reversible straight, reflective, forward, and Newtonian ECMC
algorithms are all event-driven and only move a single hard disk at any time. They differ only in
their update rules at event times. We show that they realize considerable speedups with respect to
the local reversible Metropolis algorithm with single-disk moves. We also find significant speed
differences among the ECMC variants. Newtonian ECMC appears particularly well-suited for
overcoming the dynamical arrest that has plagued straight ECMC for three-dimensional dipolar
models with Coulomb interactions.

4.1 Introduction

Markov-chain Monte Carlo [72] (MCMC) is a computational method for sampling high-dimensional
probability distributions 𝜋 including the Boltzmann distribution of statistical physics. In MCMC, an
initial sample 𝑥, at a time 𝑡 = 0, is drawn from a distribution 𝜋{0} rather than from the “equilibrium”
distribution 𝜋. The sample 𝑥, at time 𝑡, moves to the sample 𝑦, at time 𝑡 + 1, with a conditional
probability 𝑃𝑥𝑦 , element of a time-independent transition matrix 𝑃. The probability distribution
𝜋{𝑡 } then evolves to 𝜋{𝑡+1} = 𝜋{𝑡 }𝑃. The intermediate probability distributions 𝜋{𝑡 } are usually not
known explicitly for 𝑡 > 0, but the transition matrix is designed for 𝜋{𝑡 } to converge to 𝜋 in the limit
of infinite times. To do so, 𝑃 must satisfy a balance condition that expresses the stationarity of 𝜋.
In addition, 𝑃 must be irreducible and aperiodic [74] (that is, eventually reach any sample 𝑦 from
any other sample 𝑥 and be free of cycles). Reversible transition matrices satisfy the detailed-balance
condition 𝜋𝑥𝑃𝑥𝑦 = 𝜋𝑦𝑃𝑦𝑥 for all 𝑥 and 𝑦. Detailed balance is equivalent to the statement that the
equilibrium flow F𝑥𝑦 = 𝜋𝑥𝑃𝑥𝑦 from 𝑥 to 𝑦 equals the reverse flow from 𝑦 to 𝑥. Non-reversible MCMC
algorithms satisfy a weaker global-balance condition 𝜋𝑥 =

∑
𝑦 𝜋𝑦𝑃𝑦𝑥 for all 𝑥. Under conditions of

irreducibility and aperiodicity, they converge to the equilibrium distribution 𝜋 with non-zero net flows
F𝑥𝑦 − F𝑦𝑥 . Paradoxically, samples are then drawn from the equilibrium distribution 𝜋 for 𝑡 → ∞ by a
non-equilibrium random process with non-vanishing net flows.

In past decades, research and applications have focused almost exclusively on reversible Markov
chains (and some close relatives, such as sequential schemes [168, 182]). Reversible Markov chains
are straightforward to set up for arbitrary probability distributions 𝜋 and are easy to conceptualize,
in particular because of the real-valued eigenvalue spectrum of their transition matrices. Popular
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reversible Markov chains include the Metropolis- [72] and the heat-bath [86–88] algorithms. Interest
in non-reversible Markov chains has increased in recent years, ever since it was understood [111, 112]
that such algorithms often approach equilibrium faster than reversible Markov chains. Systematic
non-reversible Markov-chain schemes are becoming available [109, 115].

Event-chain Monte Carlo [80, 115, 121] (ECMC) is a family of non-reversible local Markov chains
that have been applied to, e.g., particle [142] and spin systems [125–127], polymers [131, 132], and
field-theoretical models [133]. ECMC algorithms are defined in continuous time, and they can be
interpreted as piecewise deterministic Markov processes [136]. They have found applications in
Bayesian statistics [140, 141]. A number of features set ECMC algorithms apart from reversible
Markov chains. First, they may reach the equilibrium distribution 𝜋 on fast ballistic time scales rather
than on the diffusive time scales that are typically associated with local reversibility. Considerable
speedups were demonstrated in analytically solvable test cases [111, 112, 171] and recovered in
applications of practical relevance [80, 132, 133, 142]. Second, for a given model (probability
distribution 𝜋), ECMC encompasses a variety of local MCMC algorithms that can behave quite
differently. On the one hand, different ECMC algorithms may adopt different factor sets for the
breakup of the Boltzmann distribution. As an example, a Hamiltonian describing interacting dipoles
might be broken up into factors of pairs of atoms or else into factors of pairs of dipoles [146]. On a
finer scale, even for a given set of factors, different variants may have widely different behaviors, as
we will discuss in the present paper. Third, ECMC need not evaluate the ratio 𝜋𝑦/𝜋𝑥 to move from a
sample 𝑥 to a sample 𝑦 (in other words, need not evaluate the change in energy) because the factors
are statistically independent [121, 146]. For 𝑁-particle systems made up of charge-neutral dipolar
molecules with long-range Coulomb interactions implemented as dipole factors, to give an example,
all interactions between pairs of dipoles are treated by time-independent bounds. For the next event, a
single dipole factor is then identified through advanced sampling methods [148], and the Coulomb
interaction is considered to machine precision only for this factor. This eliminates all statistical bias,
and the sampling method is without any approximation (although the total energy remains unknown)
and of complexity O(1) per event. Since the mean-free path decreases as O(1/log 𝑁), the overall
complexity is O(𝑁 log 𝑁) to advance every particle by O(1) [146].

The sampling of the Boltzmann distribution without evaluating the energy has been implemented
in the general-purpose open-source ECMC application “JeLLyFysh” [P6] that is aimed at classical
molecular simulation in Coulomb systems. In these systems, the evaluation of the long-range energy
represents the computational bottleneck for other methods such as the molecular-dynamics-based
approach [10], while it renders the use of local reversible Monte Carlo algorithms [98] totally hopeless.
In the test case of three-dimensional water with the simple-point-charge-flexible-water (SPC/Fw)
potential [28] and the “periodic” variant of straight ECMC that only moves along the coordinate axes
(see Section 4.3.2 for a definition), the simulated water molecules, however, resisted rotation and the
polarization remained dynamically arrested for long times [149]. The present paper studies many
variants of ECMC for a simpler model of polar molecules and suggests that the straight periodic
variant is ill-suited to these systems.

In a generic Markov chain, the sample space Ω is distinct from the moves Δ. The latter are then
part of a move set and lead from samples 𝑥 ∈ Ω to samples 𝑦 ∈ Ω. In the local reversible Metropolis
algorithm for particle systems, for example, Δ = (𝛿, 𝑖) consists in a small random displacement 𝛿 of a
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random particle 𝑖. ECMC, in contrast, belongs to the class of lifted Markov chains [111, 112], in which
parts of the move set are integrated into a lifted sample space Ω̂. In the above example, the proposed
move Δ′ = (𝛿′, 𝑖′) at time 𝑡 + 1, after a move Δ at time 𝑡, is then no longer independently proposed,
but it rather depends, in the lifted transition matrix, on the lifted configuration and, in particular,
on Δ. In a sequential MCMC scheme, for example, 𝑖′ could be forced to equal 𝑖 + 1 (with periodic
boundary conditions) by suitable terms in the lifted transition matrix. The probability distribution
lives itself in the lifted sample space Ω̂. Nevertheless, for Markov chains with lifting variables, the
stationary probability distribution in Ω̂ factorizes into the original distribution 𝜋 and a distribution for
the lifting variables, while the lifted transition matrix non-trivially couples the two sectors. In the
ECMC algorithms that we consider, the time 𝑡 is generally continuous.

In this paper, we caricature the SPC/Fw water model as tethered hard-disk dipoles. This replaces a
three-dimensional model by a two-dimensional one and lumps the vibrational, bending, Lennard-Jones,
and Coulomb interactions into a hard-disk potential. The simplified dipole model retains the polar
nature of molecules, and it can be simulated within ECMC orders of magnitude faster than the system
of flexible Coulomb dipoles, although the computational complexity of ECMC [O(1) per event both
for hard disks and for Coulomb-interacting systems] is comparable. The different algorithms are also
much simpler to implement for the hard-disk dipoles than for the Coulomb system. This allows us to
scan straight [P1, 115], reflective [115], forward [150], and Newtonian [124] ECMC with thousands
of parameter sets. We benchmark the ECMC algorithms, which continuously move a single hard disk
at any time, against the local Metropolis algorithms with different displacement sets for single disks.
We characterize the speed of algorithms via the autocorrelation of the polarization, the mode that with
ECMC equilibrates slowly in the SPC/Fw water model [149].

For hard-disk dipoles with model parameters that roughly correspond to those of SPC/Fw water, we
find a 50-fold speedup for the fastest non-reversible ECMC algorithm with respect to the optimized
local reversible Metropolis algorithm. We also find a more than order-of-magnitude speed difference
among the different ECMC variants. The different versions of straight ECMC, while faster than the
local Metropolis algorithm, are clearly the slowest ones at low density, while they are comparable with
forward and reflective ECMC at high densities. Newtonian ECMC is by far the fastest. We suggest
that this may be rooted in its absence of intrinsic parameters.

The content of this paper is as follows: In Section 4.2, we define the two-dimensional tethered
hard-disk dipole model and motivate its parameters with respect to physical systems of the SPC/Fw
model in three dimensions. We also discuss the polarization, which tracks the ability of dipoles to
rotate. In Section 4.3, we discuss the reversible and non-reversible MCMC algorithms that we have
implemented and illustrate their behavior for the case of a single dipole. We also discuss subtle
aspects concerning the irreducibility of the Markov chains. In Section 4.4, we benchmark the different
variants of ECMC against the local reversible Metropolis algorithm for a range of densities and system
sizes, and we evidence the superiority of the non-reversible ECMC algorithms. In Section 4.5, we
project how our conclusions can be extended to the more complex water models.
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Figure 4.1: Tethered hard-disk dipole model. (a): Dipoles with two hard disks of radius 𝜎, minimum extension
𝑟 = 2𝜎, and tether length 𝑅. (b): Probability distribution of the oxygen–hydrogen (OH) and hydrogen–hydrogen
(HH) bond lengths for a single SPC/Fw water molecule at room temperature from a straight ECMC simulation
using the open-source application JeLLyFysh [P6]. (c): Five dipoles with polarization p𝑖 . (d): Total polarization
p of (c), together with its probability distribution.

4.2 Hard-Disk Dipole Model

We consider tethered dipoles in a two-dimensional square box of sides 𝐿 with periodic boundary
conditions. Each dipole consists of two hard disks of radius 𝜎, with a flat inner-dipole interaction that
constrains its extension 𝜌 (the separation of the disk centers) between the contact distance 𝑟 = 2𝜎 and
the tether length 𝑅 (see Fig. 4.1a). Dipole configurations without overlapping disks and with all dipole
extensions between 𝑟 and 𝑅 all have the same Boltzmann weight, whereas all other configurations
have zero statistical weight. As the minimum dipole extension at contact equals 2𝜎 (see Fig. 4.1a),
each dipole configuration is also a configuration of hard disks. Any dipole system is parameterized by
the number of dipoles 𝑁 , the tether ratio 𝜂 = 𝑅/𝑟 , and the hard-disk density 𝐷 = 2𝑁𝜋𝜎2/𝐿2.

In a single three-dimensional water molecule at room temperature (as, for example, described in the
SPC/Fw model), the oxygen–hydrogen distance fluctuates by ∼ 2.3 % and the hydrogen–hydrogen
distance fluctuates by ∼ 3.4 %, as we observed through a simulation of a single SPC/Fw water molecule
using the implementation of straight ECMC in the open-source application JeLLyFysh [P6] (see
Fig. 4.1b). In the hard-disk dipole model, we thus adopt a tether ratio 𝜂 = 1.1, for which the ∼ 2.75 %
fluctuations of the extension are quite similar. The tether length 𝑅 is thus only 10 % larger than the
contact distance between two disks so that two dipoles cannot lock into a crossed state that would be
difficult to disentangle in two dimensions. Our results for the dynamics of two-dimensional models
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may well extend to three dimensions.
We measure dynamical information through the integrated autocorrelation functions of components

𝑝𝑥 , 𝑝𝑦 of the total polarization p,

p = (𝑝𝑥 , 𝑝𝑦) =
𝑁∑︁
𝑖=1

p𝑖 , (4.1)

where p𝑖 is the oriented separation vector between the two disks in the 𝑖th dipole, possibly corrected
for periodic boundary conditions (see Fig. 4.1c and d). For the disordered system studied here, 𝑝𝑥 and
𝑝𝑦 average to zero, and their fluctuations scale as 𝜎 ∼

√
𝑁 . For a long simulation with 𝑛 correlated

samples, the variance of the time average of 𝑝𝑥 or 𝑝𝑦 equals 𝜎2𝜏int/𝑛. We thus evaluate the quality of
the MCMC algorithms through their value of 𝜏int. This integrated autocorrelation time 𝜏int is related
to the characteristic time of fluctuations in the system,

𝜏int =

∫ ∞

−∞

𝐶 (𝜏)
𝐶 (0) d𝜏, (4.2)

with the connected autocorrelation function 𝐶 (𝜏) = ⟨𝑝𝑖 (𝑡)𝑝𝑖 (𝑡 + 𝜏)⟩𝑐, where 𝑖 ∈ {𝑥, 𝑦} and ⟨. . .⟩𝑐
indicates that the product of the estimated mean values are subtracted. In this convention, if 𝐶 (𝜏)
has simple exponential decay, 𝐶 (𝜏) = 𝐶 (0) exp(−|𝜏 |/𝜏0), 𝜏int corresponds to 2𝜏0. For a reversible
transition matrix, the exponential autocorrelation time 𝜏0 corresponds to the inverse gap between the
two eigenvalues of the largest absolute value. Non-reversible transition matrices are not necessarily
diagonalizable [80], but the correlation decay is still exponential at large times [74]. We estimate
the integrated autocorrelation time 𝜏int using the formulation in terms of a time integral [157], and
checked that using the variance of the mean signal calculated within blocks [160] yields a similar
outcome. We express 𝜏int in units of a single trial (for the Metropolis algorithm) or on the order of a
single event (for the ECMC algorithms) with, in each case, a computational effort of O(1) per unit on
a serial central processing unit (CPU).

For 𝑁 = 1, analytic results are available for the dynamics of some of the algorithms discussed
here [P1]. The center-of-mass motion of the single dipole then factors out, and the sample space
Ω simply corresponds to the possible values of the polarization vector, in other words to the two-
dimensional ring with inner radius 𝑟 and outer radius 𝑅 (see Ref. [P1]). The single-dipole polarization
p is then uniformly distributed in this ring.

4.3 Reversible and Non-Reversible MCMC

In the present section, we introduce MCMC algorithms that will be used in Section 4.4. We also
illustrate them for a single dipole (𝑁 = 1) and review some of their fundamental properties. We only
consider algorithms where at each moment a single disk moves, as this can also be realized within
ECMC in the presence of long-range Coulomb interactions [P6, 146]. Dipole rotations—that relax
the polarization—are thus pieced together from subsequent displacements of single disks. This has
already proven efficient in ECMC for polymer models and for elongated hard needles [131, 132].
Explicit continuous-time dipole rotations, in the presence of periodic boundary conditions, have not
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been successfully implemented for ECMC and appear difficult to be set up for long-range Coulomb
interactions. It is for this reason that we do not take them into consideration for the hard-disk dipole
model.

The local MCMC moves discussed here feature small single-disk displacements at each time step
(for the Metropolis algorithm) or continuous moves of a single disk with piecewise constant velocities
as a function of continuous time (for the ECMC algorithms). Again, this is motivated by the future
applications to more complicated systems such as water, for which non-local moves including cluster
updates [183, 184] appear out of reach. Although we thus restrict our attention to a subclass of MCMC
algorithms with very similar design principles, we will show in Section 4.4 that their properties differ
substantially.

In the ECMC algorithms, a single active disk at time 𝑡𝑎 and position x𝑎 moves in a given direction
with a constant velocity v𝑎 as a function of the continuous time 𝑡 underlying the Markov process. This
constant velocity results in a straight-line trajectory of the active disk, and it terminates in an event
at time 𝑡𝑡 and position x𝑎 + (𝑡𝑡 − 𝑡𝑎)v𝑎, which corresponds either to a hard-disk collision or to the
dipole extension reaching the tether length. In both cases, a unique target disk is responsible for the
violation of a constraint in the hard-disk dipole model that would occur if the active disk continued
to move. Instead, after the event, the disk that was moving stops and the target disk becomes active,
again with a velocity v𝑡 that stays constant up to the next event. In addition, resamplings may take
place at predefined times 𝑡res, which are usually separated by a chain time 𝜏chain, that is, at times
𝑡res = 𝜏chain, 2𝜏chain, . . . . Resamplings also interrupt the straight-line trajectory of the currently active
disk and, for example, draw a new velocity and a new active disk.

4.3.1 Reversible Local Metropolis Algorithms

The local Metropolis algorithm [72], for the dipole model, selects a random disk 𝑖 at each time step
𝑡 = 1, 2, . . . . For the cross-shaped displacement set, the proposed move for 𝑖 is sampled uniformly
between−𝛿 and 𝛿, randomly in the 𝑥- or 𝑦-direction. We refer to 𝛿 as the “range.” For the square-shaped
displacement set, the proposed move is uniformly sampled from a square of sides 2𝛿 centered at
zero, with both the 𝑥- and the 𝑦-components of the displacement sampled independently between −𝛿
and 𝛿. In both cases, the move is accepted if it violates no constraints. If the move is rejected, the
configurations at times 𝑡 and 𝑡 +1 are the same. The Metropolis algorithm, with the given displacement
sets, satisfies the detailed-balance condition. For 𝑁 = 1, the polarization p performs a random walk in
the sample space Ω, that is, the ring with inner radius 𝑟 and outer radius 𝑅. The algorithm can be
considered irreducible for all 𝑁 , although some blocked configurations [185] may pose problems [P3].

4.3.2 Straight ECMC

In straight ECMC [115], the velocity v𝑎 of the active disk is maintained until a constraint is violated
in an event (where it drops to zero), at which moment the target disk starts to move with the same
velocity v𝑡 = v𝑎. The direction of the velocity does not change at collision events or when the tether
length is reached but only at resamplings at the end of an event chain. The absolute value |v𝑎 | of the
velocity is kept constant in resamplings. We analyze several variants for updating the direction angle

80



4.3 Reversible and Non-Reversible MCMC

Figure 4.2: Sample trajectories for a single tethered dipole. The polarization p is the oriented vector between the
two disk centers and evolves along the blue lines. (a): Sequential variant of straight ECMC [P1]. During any
event chain between two resamplings, p changes on a straight line. At each resampling, the direction angle 𝜙 of
this line with respect to the 𝑥-axis is incremented by the angle increment Δ𝜙 for the next chain. (b): In reflective
ECMC [115], the effective velocity of p is reflected off the inner and outer ring in an event. (c): In forward
ECMC [150], the outgoing reflection angle is non-deterministic in an event. (d): In Newtonian ECMC [124],
every event considers the velocity labels of both hard disks.

𝜙 with respect to the 𝑥-axis that describes the velocity in two dimensions: v𝑎 = |v𝑎 | (cos 𝜙, sin 𝜙). In
the “periodic” variant, the direction angle alternates between 𝜙 = 0 and 𝜙 = 𝜋/2 at each resampling.
In arbitrary space dimensions, this would be generalized by the velocity cycling through the vectors of
a constant absolute value aligned with the positive coordinate axes. The periodic variant of straight
ECMC, used in most previous studies, is implemented in the JeLLyFysh application [P6]. In the
present paper, we also analyze the “random” variant where 𝜙 is uniformly sampled in the interval
[0, 2𝜋) and, finally, the “sequential” variant [P1], where the direction angle 𝜙 is incremented by a
constant angle increment Δ𝜙 at each resampling. The polarization trajectory between resamplings of
straight ECMC is a straight line because every disk position is only altered with the same velocity
vector in the same direction. In the periodic variant, subsequent straight-line trajectories are at right
angles. They are at an angle Δ𝜙 in the sequential variant (see Fig. 4.2a for an example in 𝑁 = 1). The
described variants have very different time evolutions. The polarization trajectories of the sequential
variant, for example, persistently rotate for 𝑁 = 1, with a total rotation angle of the dipole that diverges
as Δ𝜙 goes to zero [P1].

At a resampling of straight ECMC at time 𝑡res (usually a multiple of 𝜏chain), the direction angle 𝜙

is updated, but the active disk must also be chosen randomly in order to satisfy global balance. To
motivate this, we show for 𝑁 = 1 that the two disks 1 and 2 must be active with the same probability
at time 𝑡res. Up until the next resampling, all polarizations p(𝑡) lie on a line segment of the ring Ω
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Figure 4.3: Global balance and irreducibility for straight sequential ECMC. (a): Flow into polarization p(𝑡)
from p(𝑡res) and p′ (𝑡res) on a line segment of Ω as in Fig. 4.2a. The events take place at the boundaries of the
segment, and the active disk changes. (b): Single-dipole distribution 𝜋(p/𝜎) for straight sequential ECMC with
small angle increment Δ𝜙 using the random or snake mode for the choice of the active disk after a resampling.
The snake-mode distribution is incorrect, and the probability 𝑝1 that disk 1 is active right after a resampling
is smaller than 𝑝2. (c): Same as (b) but for a different initial configuration and chain time. The snake-mode
distribution is incorrect although both disks are equally likely to be active after a resampling (𝑝1 = 𝑝2).

determined by p(𝑡res) and the current direction angle 𝜙, and each of the two directions of motion on
that segment corresponds to one of the two disks being active (see Fig. 4.3a). Global balance requires
the flows into p(𝑡) to be independent of its position. It can be reached from two polarizations p(𝑡res)
and p′(𝑡res). Depending on the value of p(𝑡), the corresponding polarizations p(𝑡res) and p′(𝑡res)
either both correspond to disk 1 being active at 𝑡res, or both to disk 2, or one to 1 and one to 2 (see
Fig. 4.3a). Disks 1 and 2 must thus be equally likely (𝑝1 = 𝑝2) to be active right after the resampling,
a “random”-mode condition that is precisely implemented by the resampling of the active disk at 𝑡res.

To illustrate the relevance of the random-mode requirement, we test for 𝑁 = 1 the case when the
active disk is the same before and after the resampling while the direction angle 𝜙 is incremented
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by a small Δ𝜙 in the sequential variant of straight ECMC (“snake” mode). Clearly, snake mode is
incorrect, as it samples Ω non-uniformly (𝑝1 ≠ 𝑝2, see Fig. 4.3b). It seems to be incorrect even when
both disks happen to be initially active with practically the same probability (𝑝1 = 𝑝2, see Fig. 4.3c).
In both cases, the snake-mode trajectory is repetitive, and the lack of irreducibility in the lifted sample
space Ω̂ = Ω× {𝜙} induces a non-uniform distribution in Ω. For 𝑁 > 1 at very low density, sequential
ECMC in the snake mode might not be irreducible because a single dipole deterministically rotates on
a closed trajectory. However, no difference between the snake mode and random mode is detected for
𝑁 > 1 at the higher densities considered in Section 4.4.

4.3.3 Reflective ECMC

Reflective ECMC [115] differs from the straight ECMC only in its handling of events so that the
velocity vector is no longer constant. At an event, the velocity v𝑎 of the incoming active disk is
reflected by the line connecting the active and the target disks, and it becomes the velocity v𝑡 of
the target disk. This target disk is thus active after the event, while the disk that was active before
the event stands still. The absolute value of the velocity is preserved in the reflection. For 𝑁 = 1,
the polarization follows straight lines that are symmetrically reflected off the inner and outer ring
boundaries, with a single reflection angle 𝛼 (see Fig. 4.2b).

Reflective ECMC satisfies global balance for any number of dipoles. For 𝑁 = 1, and for an initial
velocity that is nearly perpendicular to the separation between the two disks, the polarization may
follow a “whispering-gallery-mode” trajectory that never visits small separations 𝜌 ≳ 𝑟 (compare with
Ref. [140, Fig. 3]), showing that uniform resamplings of the active disk and of the direction angle
𝜙 of the velocity with respect to the 𝑥-axis (keeping the absolute value of the velocity constant) are
required for irreducibility. For all initial velocities at 𝑁 = 1, even for those that visit all of sample
space Ω (as in Fig. 4.2b), the probability distribution in the lifted sample space Ω̂ does not separate
into independent distributions, and the sampled stationary distribution in Ω is non-uniform, and thus
incorrect. With periodic resamplings in intervals of the chain time 𝜏chain, the stationary distribution is
uniform in Ω̂ and therefore also in Ω. For 𝑁 > 1 dipoles, in a large enough box, reflective ECMC
fails to be irreducible without resamplings, as the dynamics is then deterministic and a single dipole
may effectively rotate in a stationary closed trajectory. Nevertheless, at high enough density, we have
not observed any difference in static observables with or without resamplings. It thus appears safe to
omit them in practical simulations. As we will see in Section 4.4, resamplings do not improve the
decorrelation because they only increase the integrated autocorrelation times. Without resamplings,
reflective ECMC has no intrinsic parameters and is somewhat easier to set up. Computational overhead
is avoided.

In previous work on hard disks [115] (rather than hard-disk dipoles), reflective ECMC was
benchmarked against straight ECMC and found to be considerably slower. In contrast, in the dipole
model studied here, reflective ECMC will prove more powerful than straight ECMC, even when the
latter runs with optimized intrinsic parameters.
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4.3.4 Forward ECMC

Forward ECMC [150] resembles reflective ECMC in that, after an event, the target-disk velocities v𝑡
of both algorithms are located in the same quadrant of the coordinate system with axes parallel and
orthogonal to the line connecting the disks at the event. The velocity is of constant absolute value,
|v𝑡 | = |v𝑎 | = 1, but forward ECMC incorporates a random element into each event. More precisely,
the component orthogonal to the line connecting the disks at contact is uniformly sampled between 0
and 1 (while reflecting the orthogonal orientation). Its parallel component is determined so that the
velocity is of unit norm. For a single dipole, the polarization describes straight lines that are reflected
off the inner and outer ring boundaries. However, the outgoing reflection angle is non-deterministic
(see Fig. 4.2c). In contrast to straight and reflective ECMC, forward ECMC is irreducible even for
𝑁 = 1, and it requires no resamplings. Also, as we will show in Section 4.4, uniform resamplings of
the direction angle 𝜙 of the velocity with the 𝑥-axis and the active disk every chain time 𝜏chain do not
speed up the algorithm.

4.3.5 Newtonian ECMC

Newtonian ECMC [124] mimics event-driven molecular dynamics [186]. All disks have velocity
labels in addition to their positions. The label v𝑎 of the active disk indicates the time derivative of its
position, that is, its displacement in time. All other disks are stationary despite their velocity labels.
Events (including those where the maximum dipole separation is reached) take place as in molecular
dynamics, with all velocity labels treated on an equal footing, and with equal masses for all disks.
The identities of the active and the target disks are interchanged in the event like in the other ECMC
variants, and the target disk continues to move with its velocity label v𝑡 . During the simulation, the
absolute value of the active-disk velocity varies. The equilibrium distribution of all velocity labels is
uniform on a 2𝑁-dimensional sphere, and the root-mean-square velocity 𝑣rms is conserved. The event
rate per unit distance of the Newtonian ECMC equals the one of the other variants, but the event rate
per unit time is smaller by

√
𝜋/2 because of the difference between 𝑣rms and the mean absolute value

for the two-dimensional Gaussian distribution of velocities. In Newtonian ECMC, all the velocity
labels are used as lifting variables. At a possible resampling every chain time 𝜏chain, these labels must
be sampled from the exact equilibrium distribution (the rescaled Maxwell–Boltzmann distribution for
all disks) together with the active disk. Without resampling, the choice of the initial velocity labels is
arbitrary.

For 𝑁 = 1, the polarization trajectory of Newtonian ECMC reflects off the inner and outer ring
boundaries but considers both velocity labels at each event (see Fig. 4.2d). Without resamplings,
Newtonian ECMC breaks irreducibility in the lifted sample space Ω̂ for this single dipole, and it
samples an incorrect stationary probability distribution, even if the full sample space Ω is visited. For
𝑁 ≥ 2, we find no influence on observable means of the resampling rate, so that the irreducibility
problem is probably again due to the high symmetry of the ring geometry of the polarization for a
single dipole. In the larger-𝑁 dipole systems in Section 4.4, we furthermore notice that the algorithm
becomes faster in the limit of infinite resampling time.
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Figure 4.4: Correlation time per dipole 𝜏int/𝑁 of the Metropolis algorithm with cross- and square-shaped
displacement sets for 𝑁 = 81 dipoles at density 𝐷 = 0.70. (a): 𝜏int/𝑁 vs. the rescaled range 𝛿/𝜎. (b): 𝜏int/𝑁
vs. acceptance rate. The minimum of 𝜏int/𝑁 provides the reference for the ECMC benchmarks in Fig. 4.5.

4.4 Autocorrelations for 𝑵 Dipoles

In the present section, we characterize the local MCMC algorithms of Section 4.3 via the autocorrelation
dynamics of the polarization. The integrated autocorrelation times 𝜏int are separately computed for
the components 𝑝𝑥 and 𝑝𝑦 of the polarization, with a unit of time corresponding to a single trial move
for the Metropolis algorithm and to the mean event time for ECMC. As the computational effort per
move or per event is O(1), we make no effort to compare the (implementation-dependent) CPU times.
Statistical errors are estimated from the difference between the integrated autocorrelation times of 𝑝𝑥

and 𝑝𝑦 , which, by symmetry, must be the same. For ECMC, we also take into account the uncertainty
in the mean event time. Single MCMC-run times, for each parameter set, are at least three orders of
magnitude longer than 𝜏int.

4.4.1 Intrinsic Parameters of Metropolis and ECMC

The correlation time of the local Metropolis algorithm depends on its intrinsic parameters, namely,
the range 𝛿 and the choice of the displacement set (see Fig. 4.4a). Similarly, the acceptance rate of a
move in the Metropolis algorithm depends on the displacement set and the range 𝛿. The correlation
time can thus be expressed as a function of the acceptance rate. As in many comparable models, the
“one-half” rule [78] is roughly respected, and the Metropolis algorithm converges best for a rejection
rate on the order of 50 %. For 𝑁 = 81 dipoles at density 𝐷 = 0.70, we observe a broad optimum
between 20 % and 40 % for the square-shaped displacement set and an optimum close to 50 % for the
cross-shaped displacement set (see Fig. 4.4b).

All ECMC variants allow for resamplings in intervals of the chain time 𝜏chain so that their correlation
times depend on the intrinsic parameter 𝜏chain. The performance of the sequential variant of straight
ECMC also depends on the angle increment Δ𝜙. Without resamplings, straight ECMC is not
irreducible and its correlation time is infinite. The optimum 𝜏int is thus at a finite 𝜏chain to be obtained
by fine-tuning (see the upper curves in Fig. 4.5). In its sequential variant, the cases Δ𝜙 = 𝜋/2 and
Δ𝜙 = 𝜋/3 make the velocity cycle through a few values only. For these cases, we notice that 𝜏int
has two local minima, both of which are rather large. In the absence of a heuristic for the choice of
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Figure 4.5: Correlation times per dipole 𝜏int/𝑁 of ECMC variants for different intrinsic parameters (rescaled
chain time 𝜏chain 𝑣rms/𝜎, angle increment Δ𝜙) for 𝑁 = 81 dipoles at density 𝐷 = 0.70. The optimal values of
𝜏int/𝑁 are highlighted on the right 𝑦-axis. For reflective, forward, and Newtonian ECMC, they agree with those
for 𝜏chain → ∞. The optimal performance of the Metropolis algorithm is indicated as the benchmark reference
(see Fig. 4.4). The inset illustrates the evolution of 𝜏int/𝑁 for large 𝜏chain 𝑣rms/𝜎 for Newtonian ECMC.

intrinsic parameters, straight ECMC requires explicit fine-tuning, which increases its computational
complexity.

As discussed in Section 4.3, reflective, forward and Newtonian ECMC appear irreducible for
𝑁 > 1 even without resamplings. They are also fastest in this limit 𝜏chain → ∞ (see the lower
curves in Fig. 4.5). This was also observed, e.g., for reflective ECMC in two-dimensional hard-disk
systems [115], and for Newtonian ECMC in three-dimensional hard spheres [124]. For moderate
values of 𝜏chain, Newtonian ECMC is comparable to other variants. However, for much larger 𝜏chain,
its correlation times again decrease strongly (see the inset of Fig. 4.5). For 𝑁 = 81 dipoles at density
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Figure 4.6: Performance of the Metropolis algorithm for 𝑁 = 81 dipoles (optimized intrinsic parameters).
(a): Correlation time per dipole 𝜏int/𝑁 vs. density 𝐷 for the cross- and square-shaped displacement sets. (b):
Speedup for the square-shaped displacement set compared to the cross-shaped displacement set.

𝐷 = 0.70, the variants without intrinsic parameters that thus require no fine-tuning perform best.
Newtonian ECMC without resampling accelerates with respect to the local Metropolis algorithm by a
surprising factor of 50 at density 0.70, which seems to further increase at even higher density (see
Section 4.4.2).

4.4.2 Density and Size Dependence of Speedups

For both versions of the Metropolis algorithms, the autocorrelation time 𝜏int naturally increases at
higher densities and climbs steeply for densities 𝐷 ≳ 0.70, around the liquid–hexatic phase-transition
density of the hard-disk system without the tether constraint (see Fig. 4.6a, again for 𝑁 = 81 dipoles).
The square-shaped displacement set is somewhat preferable over the cross-shaped displacement set for
small densities, but the two become equally fast at large densities (see Fig. 4.6b). This illustrates that,
while step-size control is a key feature in reversible MCMC, the details of a local reversible algorithm
do not really depend on the displacement sets. For simplicity, we chose the optimal acceptance rates
for 𝐷 = 0.70 for these runs at other densities (see Fig. 4.4b).

To identify the optimal correlation times of the straight ECMC variants, we perform systematic
scans in the chain time 𝜏chain and the angle increment Δ𝜙, as in Section 4.4.1, for each density at
𝑁 = 81. For forward, reflective, and Newtonian ECMC, we use 𝜏chain = ∞ without any fine-tuning.
For all ECMC variants, 𝜏int increases with density (see Fig. 4.7a). The periodic variant of straight
ECMC, which is the fastest for two-dimensional hard disks, is the slowest ECMC variant for hard-disk
dipoles. The random and sequential variants are somewhat faster. Reflective and forward ECMC
resemble each other in performance at all densities 𝐷. While they are considerably faster than the
straight variants at low 𝐷, this gap vanishes at 𝐷 = 0.72. Newtonian ECMC is the fastest algorithm
for all densities, and as mentioned, it requires no fine-tuning. All ECMC algorithms outperform the
Metropolis algorithm with optimized intrinsic parameters by a considerable margin. For the latter, the
square-shaped displacement set is somewhat faster than the cross-shaped one (see Fig. 4.7b). With
increasing density, the speedup of reflective and forward ECMC drops from roughly 30 to 15, while
the speedup of the straight ECMC variants increases with density until they become comparable.
These trends were similarly observed near the liquid–hexatic transition of two-dimensional hard disks
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Figure 4.7: Performance of ECMC variants and of the Metropolis algorithm with a square-shaped displacement
set (where applicable: with optimized intrinsic parameters). (a): Correlation time per dipole 𝜏int/𝑁 for 𝑁 = 81
dipoles vs. density 𝐷. (b): Speedup of ECMC with respect to the Metropolis algorithm. (c): Correlation time
per dipole 𝜏int/𝑁 at density 𝐷 = 0.70 vs. number of dipoles 𝑁 .

for periodic and reflective ECMC [115] (where the straight periodic variant, however, was considerably
faster than reflective ECMC at high densities). The speedup realized by Newtonian ECMC with
respect to the Metropolis algorithm with an optimized range and displacement set improves slightly
from low to high densities, as was likewise found for three-dimensional hard spheres [124]. We
observe the highest speedup of roughly a factor of 60 at the highest density 𝐷 = 0.72 that we studied.

We finally study the dependence of the correlation time 𝜏int of the number of dipoles 𝑁 at the density
𝐷 = 0.70. For the reflective, forward, and Newtonian ECMC variants, we simply set 𝜏chain = ∞,
given our findings at 𝑁 = 81. For periodic, random, and sequential ECMC, we infer the optimal
𝜏chain and Δ𝜙 from the 𝑁 = 81 case (performing occasional sweeps through intrinsic parameters as

88



4.5 Conclusions and Outlook

cross-checks). For the Metropolis algorithm, we used the optimal square-shaped displacement set
and the acceptance rate of the 𝑁 = 81 system. We observe that the autocorrelation time 𝜏int increases
linearly with 𝑁 for all algorithms so that 𝜏int/𝑁 is essentially independent of 𝑁 (see Fig. 4.7c). The
considerable speedups realized by ECMC with respect to the Metropolis algorithm thus seem to be
preserved for large system sizes.

4.5 Conclusions and Outlook

In this paper, we have systematically studied local MCMC algorithms for complex molecules that we
caricatured as hard-disk dipoles with parameters inspired by the SPC/Fw water system. Moving from
three to two spatial dimensions and from a liquid of charged molecules to a model of hard-disk dipoles
has greatly simplified the algorithm development and its implementation. This allowed us to scan
thousands of parameter sets for different ECMC variants and to benchmark them against the reversible
local Metropolis algorithm. At this exploratory stage, this would have required prohibitive computing
resources for the original three-dimensional model [149]. The broad spread of the performance of
different ECMC versions came as a surprise. We found that algorithms with intrinsic parameters
perform considerably less well than others and demonstrated a 60-fold speedup of Newtonian ECMC
with respect to the Metropolis algorithm. This speedup can be achieved without any fine-tuning. It is
unclear why straight ECMC performs worse for hard-disk dipoles than the reflective, forward, and
Newtonian variants, while for simple hard disks straight ECMC is clearly the most efficient. Our
study has also brought out subtleties of ECMC, which are hidden in simple liquids. For the case of a
single dipole, we thus discovered strict requirements for resampling in order to ensure irreducibility
of straight, reflective, and Newtonian ECMC. However, these requirements did not seem to play a
role for denser systems of dipoles. Event-based randomness as in forward ECMC (or as in all ECMC
simulations of soft interactions) strictly ensures irreducibility.

We expect our observations to carry over from the caricature two-dimensional dipoles to the
three-dimensional SPC/Fw systems and related models. There are two reasons why we have not yet
studied this system directly. One is, as mentioned, the scale of the computing requirements for a
full-fledged three-dimensional scan. The other is that further algorithm development is still required.
The cell-veto algorithm [148] [which reduces the computational complexity of the Coulomb problem
to O(𝑁 log 𝑁) per sweep of events, without evaluating the Coulomb energy] is in the present version
of our open-source project only implemented for the periodic variant of straight ECMC. However, we
expect it to generalize to all ECMC variants for flexible water molecules with an explicit Coulomb
interaction. The benchmark against Metropolis MCMC will then be even more favorable, as the
change in the Coulomb energy can there only be computed in O(𝑁3/2) per sweep of moves [98].
The key question will be whether the dynamic arrest of straight ECMC for the three-dimensional
water system can be overcome as in the two-dimensional hard-disk dipole model studied here. The
extreme dependence of the performance of non-reversible MCMC on details of the algorithm was
also evidenced in the escape times from a tightly confined initial configuration [P3], which might be
relevant for overcoming dynamic arrest.
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CHAPTER 5

Research Paper 3—Sparse Hard-Disk Packings
and Local Markov Chains

This chapter considers the publication

[P3] Philipp Höllmer, Nicolas Noirault, Botao Li, Anthony C. Maggs, and Werner Krauth,
Sparse Hard-Disk Packings and Local Markov Chains,
Journal of Statistical Physics 187 (2022) 31,
url: https://doi.org/10.1007/s10955-022-02908-4.

Section 5.0 provides a summary of the publication and contextualizes it within this doctoral thesis.
Furthermore, the author’s contributions are clearly indicated. The remaining part of this chapter
reproduces the published version of the publication itself. All co-authors of the publication agree with
its use for this doctoral thesis and with the identification of the author’s contributions.

5.0 Prologue

Thematically, the reproduced publication in this chapter is the furthest away from the overarching
objective of this doctoral thesis, that is, the introduction of a competitive, rigorous paradigm for
molecular simulations that is based on non-reversible Markov-chain Monte Carlo (MCMC) algorithms
and that overcomes, in a first step, the dynamical arrest of the polarization of SPC/Fw water molecules
of straight event-chain Monte Carlo (ECMC) as implemented in JeLLyFysh-Version1.0. In that
context, it shows again that different ECMC variants can show widely different behaviors as already
observed in the second research paper of this doctoral thesis (see Chapter 4 and Ref. [P2]).

We consider locally stable packings of 𝑁 hard disks in a two-dimensional periodic box that were
originally introduced by K. Böröczky in 1964 [185]. Böröczky packings are sparse because their
density vanishes in the limit 𝑁 → ∞, yet they are locally stable because no single disk can move
infinitesimally as it is blocked in any direction by a neighbored disk (see Fig. 5.1). By slightly reducing
all disk radii by a factor (1 − 𝜀) with a small relaxation parameter 𝜀 ≳ 0, we obtain tightly confined
𝜀-relaxed Böröczky configurations that can be used to analyze and benchmark local MCMC algorithms.
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Specifically, we study how the straight, reflective, forward, and Newtonian ECMC variants escape
from 𝜀-relaxed Böröczky configurations. We also consider the Metropolis algorithm with Monte Carlo
moves that are chosen small enough so that disks cannot simply jump out of their confinement. (Such
jumps may be prevented by the presence of other disks when the 𝜀-relaxed Böröczky configuration is
the backbone of a much denser hard-disk configuration.)

A scaling theory for the escape times predicts two entirely different classes of the algorithms. For
straight ECMC and the Metropolis algorithm, the escape time diverges algebraically as 𝜀 → 0. For
reflective, forward, and Newtonian ECMC, in contrast, it diverges logarithmically (see Fig. 5.6). The
logarithmic divergence is tested up to 𝜀 = 10−29 in numerical simulations by using an arbitrary-
precision implementation of ECMC. Our scaling theory suggests that this power-law-to-logarithm
speedup of reflective, forward, and Newtonian ECMC with respect to straight ECMC is a combination
of their missing intrinsic scale and their event-driven nature. Straight ECMC moves all hard disks
in the same direction in an event chain between changes of the velocity in periodic time intervals
of the chain time 𝜏chain. This results in a rigidity problem where all moves in an overly long event
chain effectively cancel each other out. One thus has to choose an optimal chain time 𝜏chain that
minimizes the escape time (see Fig. 5.4). This choice balances between two limiting cases. First,
small 𝜏chain are favored by the requirement for short event chains in the tightly confined 𝜀-relaxed
Böröczky configuration that do not cancel each other out. Second, large 𝜏chain are favored by the
requirement to move disks by a given distance to actually escape. Similarly, the Metropolis algorithm
has to choose an optimal proposal distribution for its Monte Carlo moves. Reflective, forward, and
Newtonian ECMC change the direction in every event (see Fig. 1.5) so that they are not subject to the
rigidity problem of straight ECMC and may escape from 𝜀-relaxed Böröczky configurations without
resamplings of the velocity in the 𝜏chain → ∞ limit. The average distance that the active disk travels
between events grows as the configuration is gradually escaped (see Fig. 5.5). At the same time, the
computational cost for every event remains constant in the event-driven implementation.

The problem of the choice of an intrinsic scale in straight ECMC is somewhat reminiscent of the
choice of a particular time step in molecular dynamics (MD). Rare configurations with excessive
forces between unusually close interaction sites would require a smaller time step than necessary in
the more well-behaved configurations of the greatest part of the simulation. (This motivates variable
time step integrators in MD that are, however, not symplectic; see, e.g., Ref. [43] and references
therein.) More generally, the time step has to be chosen small enough for an accurate integration of
the fastest motion although slower motions could, in principle, use larger time steps (which motivates
multiple time-scale integration algorithms [15]). In contrast to MD, straight ECMC does not have any
problem with stability. Still, choosing a particular value of the chain time 𝜏chain does not only require
a laborious fine-tuning, but the best choice may actually change during a simulation.

In the context of the overarching objective of this doctoral thesis, we conclude that it is essential to
find the most appropriate non-reversible MCMC algorithm for molecular simulations because their
performance may widely differ. Also, the explicit choice of an intrinsic scale in straight ECMC could
be one reason for its dynamically-arrested simulations of the complex SPC/Fw water model.

In a more general context, we conjecture that Böröczky packings exist for any hard-disk density (up
to the densest possible packing) for a large enough number 𝑁 of hard disks. This conjecture relies
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on their flexible construction (see Section 5.2.1). Here, they can also appear as backbones in dense
hard-disk configurations where the majority of disks is not confined in the packing. This makes it
important to consider their implications on general local MCMC simulations of hard-disk systems.

The considered local MCMC algorithms, ECMC and the Metropolis algorithm with small enough
Monte Carlo moves, can never escape from a locally stable Böröczky packing. In the definition of the
mixing time, locally stable packings could thus serve as the most unfavorable initial configuration which
would yield an infinite mixing time (see Section 2.2.1). However, because the packing contains direct
contacts between hard disks, they make up only a set of measure zero in the hard-disk configuration
space and may thus be deemed irrelevant. Still, even when locally stable packings are excluded from
the configuration space, there is no general proof that any local MCMC algorithm is irreducible in
the hard-disk system in a (periodic) box. We discuss how the undoubted usefulness of MCMC can
be remedied in the canonical (𝑁𝑉𝑇) ensemble and more rigorous in the isothermal–isobaric (𝑁𝑃𝑇)
ensemble (see Section 5.4.2).

In contrast to Böröczky packings, 𝜀-relaxed Böröczky configurations (and equivalent “rattled”
configurations where every disk is at a random position within its tight confinement) make up a finite
portion in the configuration space. Because of the divergent escape times as 𝜀 → 0, there always
exists such a finite portion that is practically excluded in simulations of local MCMC algorithms. The
simulations cannot escape from this excluded portion in a given upper limit of computation time, and
they can probably not even access it. Since Markov chains and their mixing times can be characterized
by a single bottleneck that partitions the configuration space into two pieces (see Section 2.3), we
argue that escape times 𝜀-relaxed Böröczky configurations may well model the probability flow across
such a bottleneck (see Section 5.4.1.2). Therefore, comparing escape times may reflect relative merits
of local MCMC algorithm as it already did for the different ECMC variants.

ECMC is a non-reversible lifting of the reversible factorized Metropolis algorithm that is equivalent
to the original Metropolis algorithm for the hard-disk system (see Sections 2.4.2 and 2.4.3). As such,
it can reduce the mixing time by, at most, a square-root factor (see Section 1.3.2). For the escape times
from 𝜀-relaxed Böröczky configurations, we observe, however, a power-law-to-logarithm speedup in
the escape time for some of the ECMC variants (see Fig. 5.6 again). Here, it is important to note that
the escape time is measured in events for the ECMC algorithms because they have the same O(1)
complexity as a Monte Carlo move in the Metropolis algorithm. The average continuous Monte Carlo
time between events grows as the 𝜀-relaxed Böröczky configurations is gradually escaped. If the
escape times are directly related to mixing times, and if one would measure all escape times in terms
of Monte Carlo times, one would most probably observe a reduction of the mixing time that conforms
to the mathematical bounds. This emphasizes, however, that the event-driven nature of ECMC can
lead to larger speedups than one would expect from the theory of lifted Markov chains when measured
in computation time.

Since we propose to use the escape times from 𝜀-relaxed Böröczky configurations to analyze and
benchmark general local MCMC algorithms, the reproduced publication of this chapter is accompanied
by the open-source, arbitrary-precision software package BigBoro [P8]. It provides an easy access
to the construction of Böröczky packings in a periodic box. Furthermore, it can compute collective
escape modes from Böröczky packings that infinitesimally displace all disks at once (which shows that
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the packing is only locally but not collectively stable). Finally, it also includes an arbitrary-precision
implementation of straight, reflective, forward, and Newtonian ECMC that can start from 𝜀-relaxed
Böröczky configurations with arbitrary relaxation parameters 𝜀 ≳ 0. Besides allowing to reproduce
our data, this allows to diagnose and study gridlocks where, even though the configuration was initially
relaxed, the ECMC simulation gets trapped in a subset of the configuration in which disks are in direct
contact and the event rate diverges (see Section 5.3.2.4). Such gridlocks appear most frequently in
Newtonian ECMC. An understanding of this effect may thus give a deeper insight into the nature of its
dynamics.

Contributions of the Author

The author contributed in an essential manner to the entire research project underlying this research
paper. This includes, in particular, essential contributions to the implementation of the open-source,
arbitrary-precision software package BigBoro and the data collection, the creation of the figures, and
the writing of the research paper itself. Following the Contributor Role Taxonomy (CRediT) [174],
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of the computer code and supporting algorithms; testing of existing code components).

• Validation (verification, whether as a part of the activity or separate, of the overall replica-
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experiments, or data/evidence collection).

• Writing—Original Draft [preparation, creation and/or presentation of the published work,
specifically writing the initial draft (including substantive translation)].

• Writing—Review & Editing (preparation, creation and/or presentation of the published work by
those from the original research group, specifically critical review, commentary or revision—
including pre- or post-publication stages).

• Visualization (preparation, creation and/or presentation of the published work, specifically
visualization/data presentation).
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Sparse Hard-Disk Packings and Local Markov Chains

This reproduces P. Höllmer, N. Noirault, B. Li, A. C. Maggs, and W. Krauth, Sparse Hard-
Disk Packings and Local Markov Chains, Journal of Statistical Physics 187 (2022) 31, which is
licensed under the Creative Commons Attribution 4.0 International License and may be found at
https://doi.org/10.1007/s10955-022-02908-4 (see Ref. [P3]).

Abstract We propose locally stable sparse hard-disk packings, as introduced by Böröczky, as a
model for the analysis and benchmarking of Markov-chain Monte Carlo (MCMC) algorithms.
We first generate such Böröczky packings in a square box with periodic boundary conditions and
analyze their properties. We then study how local MCMC algorithms, namely the Metropolis
algorithm and several versions of event-chain Monte Carlo (ECMC), escape from configurations
that are obtained from the packings by slightly reducing all disk radii by a relaxation parameter.
We obtain two classes of ECMC, one in which the escape time varies algebraically with the
relaxation parameter (as for the local Metropolis algorithm) and another in which the escape time
scales as the logarithm of the relaxation parameter. A scaling analysis is confirmed by simulation
results. We discuss the connectivity of the hard-disk sample space, the ergodicity of local MCMC
algorithms, as well as the meaning of packings in the context of the 𝑁𝑃𝑇 ensemble. Our work is
accompanied by open-source, arbitrary-precision software for Böröczky packings (in Python)
and for straight, reflective, forward, and Newtonian ECMC (in Go).

5.1 Introduction

The hard-disk system is a fundamental statistical-physics model that has been intensely studied since
1953. Numerical simulations, notably Markov-chain Monte Carlo [72] (MCMC) and event-driven
molecular dynamics [186], have played a particular role in its study. The existence of hard-disk phase
transitions [144] was asserted as early as 1962. The recent identification of the actual transition
scenario [142] required the use of a modern event-chain Monte Carlo (ECMC) algorithm [80, 115].

The hard-disk model has been much studied in mathematics. Even today, the existence of a phase
transition has not been proven [189, 190]. A fundamental rigorous result is that the densest packing of
𝑁 equal hard disks (for 𝑁 → ∞) arranges them in a hexagonal lattice [191]. This densest packing is
locally stable, which means that no single disk can move infinitesimally in the two-dimensional plane.
The densest packing is furthermore collectively stable, which means that no subset of disks can move
at once, except if the collective infinitesimal move corresponds to symmetries, as for example uniform
translations in the presence of periodic boundary conditions [192–194]. In 1964, Böröczky [185]
constructed two-dimensional disk packings that are sparse, that is, have vanishing density in the limit
𝑁 → ∞. The properties of these Böröczky packings are very different from those of the densest
hexagonal lattice. Infinitesimal motion of just a single disk remains impossible, so that Böröczky
packings are locally stable. However, coherent infinitesimal motion of more than one disk does allow
escape from Böröczky packings so that they are not collectively stable.

In this work, we construct finite-𝑁 Böröczky packings in a fixed periodic box and use them to
build initial configurations for local Markov-chain Monte Carlo (MCMC) algorithms, namely the
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reversible Metropolis algorithm [72, 78] and several variants [115, 124, 150] of non-reversible ECMC.
In the Metropolis algorithm, single disks are moved one by one within a given range 𝛿. A Böröczky
packing traps the local Metropolis algorithm if 𝛿 is small enough, because all single-disk moves are
rejected. ECMC is by definition local. It features individual infinitesimal displacements of single
disks, and it also cannot escape from a Böröczky packing. We thus consider 𝜀-relaxed Böröczky
configurations that have the same disk positions as the Böröczky packings but with disk radii reduced
by a factor (1 − 𝜀). Here, 𝜀 ≳ 0 is the relaxation parameter. Our scaling theory for the escape times
from 𝜀-relaxed Böröczky configurations predicts the existence of two classes of local Markov-chain
algorithms. In one class, escape times grow as a power of the relaxation parameter 𝜀, whereas the
other class features only logarithmic growth. Numerical simulations confirm our scaling theory,
whose power-law exponents we conjecture to be exact. The 𝜀-relaxed Böröczky configurations are
representative of a finite portion of sample space. For a fixed number of disks, the growth of the escape
times thus leads to the existence of a small but finite fraction of sample space that cannot be escaped
from or even accessed by local MCMC in a given upper limit of CPU time. More generally, we discuss
the apparent paradox that the lacking proof for the connectedness of the hard-disk sample space, on the
one hand, might render local MCMC non-irreducible (that is, “non-ergodic”) but, on the other hand,
does not invalidate their practical use. We resolve this paradox by considering the 𝑁𝑃𝑇 ensemble
(where the pressure is conserved instead of the volume). We moreover advocate the usefulness of
𝜀-relaxed Böröczky configurations for modeling bottlenecks in MCMC and consider the comparison
of escape times from these configurations as an interesting benchmark. We provide open-source
arbitrary-precision software for Böröczky packings and for ECMC. Several of the ECMC algorithms
can evolve towards numerical gridlock, that can be diagnosed and studied using our arbitrary-precision
software.

This work is organized as follows. In Section 5.2, we construct Böröczky packings following
the original proposal [185] and a variant due to Kahle [195], and we analyze their properties. In
Section 5.3, we discuss local MCMC algorithms and present analytical and numerical results for the
escape times from the 𝜀-relaxed Böröczky configurations. In Section 5.4, we analyze algorithms and
their escape times and discuss fundamental aspects, among them irreducibility, statistical ensembles,
as well as the question of bottlenecks, and the difference between local and non-local MCMC methods.
In the conclusion (Section 5.5), we point to several extensions and place our findings into the wider
context of equilibrium statistical mechanics, the physics of glasses and the mechanics of granular
materials. In Appendix 5.A, we present further numerical analysis and, in Appendix 5.B, we introduce
our open-source arbitrary-precision software package BigBoro for Böröczky packings and for ECMC.

5.2 Böröczky Packings

In the present section, we discuss Böröczky packings of 𝑁 disks of radius 𝜎 = 1 in a periodic square
box of sides 𝐿. The density 𝜂 is the ratio of the disk areas to that of the box:

𝜂 = 𝑁𝜋𝜎2/𝐿2. (5.1)
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For concreteness, the central simulation box ranges from −𝐿/2 to 𝐿/2 in both the 𝑥 and the 𝑦 direction.
The periodic boundary conditions map the central simulation box onto an infinite hard-disk system
with periodically repeated boxes or, equivalently, onto a torus. A Böröczky packing is locally stable,
and each of its 𝑁 disks is blocked—at a distance 2𝜎—by at least three other disks (taking into account
periodic boundary conditions), with the contacts not all in the same half-plane. The opening angle
of a disk 𝑖, the largest angle formed by the contacts to its neighbors, is then always smaller than 𝜋.
The maximum opening angle is the largest of the 𝑁 opening angle of all disks. Clearly, a locally
stable packing cannot be escaped from through the infinitesimal single-disk moves of ECMC or, in
Metropolis MCMC, through steps of small enough range. Only collective infinitesimal moves of all
disks may escape from the packing.

In a nutshell, Böröczky packings (see Section 5.2.1 for their construction) consist in cores and
branches (as visible in Fig. 5.1). The original Ref. [185] mainly focused on Böröczky packings in
an infinite plane, but also sketched how to generalize the packings to the periodic case. Böröczky
packings can exist for different cores, and they depend on a bounding curve (more precisely: a convex
polygonal chain) which encloses the branches, and which can be chosen more or less freely (see
Section 5.2.2 for the properties of Böröczky packings, including the collective infinitesimal escape
modes from them).

5.2.1 Construction of Böröczky Packings

In the central simulation box, a finite-𝑁 Böröczky packing is built on a central core placed around
(0, 0) (see Section 5.2.1.1 for a discussion of cores). This core connects to four periodic copies of
the core centered at (𝐿, 0), (0, 𝐿), (−𝐿, 0), and (0,−𝐿) by branches that have 𝑘 separate layers (see
Sections 5.2.1.2 and 5.2.1.3 for a detailed discussion of branches). A Böröczky packing shares the
symmetries of the central simulation box. Cores with different shapes, as for example that of a triangle,
yield Böröczky packings in other geometries (see Refs [185, 195] and Ref. [196, Section 9.3]).

5.2.1.1 Böröczky Core, Kahle Core

We consider Böröczky packings with two different cores, either the Böröczky core or the Kahle
core. Both options are implemented in the BigBoro software package (see Appendix 5.B). The
Böröczky core [185] consists of 20 disks (see Fig. 5.1a). Using reflection symmetry about coordinate
axes and diagonals, this core can be constructed from four disks at coordinates (

√
2, 0), (2 +

√
2, 0),

(2 +
√

6/2 + 1/
√

2,
√

6/2 + 1/
√

2), and (2 +
√

6/2 + 1/
√

2, 2 +
√

6/2 + 1/
√

2) (see highlighted disks in
Fig. 5.1a). The Kahle core [195], with a total of 8 disks, is constructed from two disks at coordinates
(1, 1), and (1 +

√
3, 0), using the same symmetries (see highlighted disks in Fig. 5.1b). The Böröczky

core for 𝑘 = 0, that is without the branches included in Fig. 5.1a, is only locally stable if repeated
periodically in a central simulation box that fully encloses the core disks, with 𝐿/2 = 3+

√
6/2+ 1/

√
2.

The Kahle core, again without branches, can be embedded in two non-equivalent ways into a periodic
structure. When the outer-disk centers are placed on the cell boundaries, with 𝐿/2 = 1 +

√
3, it forms

a collectively stable packing with no remaining degrees of freedom other than uniform translations.
Alternatively, it only forms a locally stable packing, with the possibility of non-trivial collective
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Figure 5.1: Hard-disk Böröczky packings, composed of a core and of four branches with 𝑘 = 5 layers, with
contact graphs and highlighted opening angles. (a): Packing with the Böröczky core [185]. (b): Packing with
the Kahle core [195]. (c): Detail of a branch. (d): Convex polygonal chain A, and horizontal lines 𝑔<2 , 𝑔2, and
𝑔3. Two different classes of polygonal chains, called Ageo and Acirc, are considered in this work

.

deformations, if the outer disks are enclosed in a larger simulation cell, with 𝐿/2 = 2 +
√

3. These two
cores are the seeds from which larger and less dense Böröczky packings are now constructed and
studied.

5.2.1.2 Branches—Infinite-Layer Case (Infinite 𝑵)

Following Ref. [185], we first construct infinite branches (𝑘 = ∞) that correspond to the 𝑁 → ∞ and
𝜂 → 0 limits, without periodic boundary conditions. One such branch is attached to each of the four
sides of the central core so that all disks are locally stable. The horizontal branch that extends from the
central core in the positive 𝑥-direction is symmetric about the 𝑥-axis. The half branch for 𝑦 ≥ 0 uses
three sets of disks {𝐴1, 𝐴2, . . .}, {𝐵1, 𝐵2, . . .}, and {𝐶1, 𝐶2, . . .}, where 𝑖 = 1, 2, . . . is the layer index.

For the branch that is symmetric about the 𝑥-axis, the construction relies on four horizontal
lines [185]:

horizontal line 𝑔 𝑔1 𝑔2 𝑔3

𝑦-value 0
√

3 2
√

3
√

3 + 2
. (5.2)

The disks 𝐴1 and 𝐵1 are aligned in 𝑥 at heights 𝑔3 and 𝑔1, respectively. All 𝐴 disks lie on a given
convex polygonal chain A between 𝑔2 and 𝑔3. The chain segments on A are of length 2 so that
subsequent disks 𝐴𝑖 and 𝐴𝑖+1 block each other, and the position of 𝐴1 fixes all other 𝐴 disks. All 𝐶
disks lie on 𝑔, and 𝐶𝑖 blocks 𝐵𝑖 from the right (in particular, 𝐶1 is placed after 𝐵1). The disk 𝐵𝑖, for
𝑖 > 1, lies between 𝑔 and 𝑔1 and it blocks disks 𝐴𝑖 and 𝐶𝑖−1 from the right. With the position of 𝑔2,
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the branch approaches a hexagonal packing for 𝑖 → ∞. After reflection about the 𝑥-axis, all disks
except 𝐴1 and 𝐵1 are locally stable in the infinite branch.

The Böröczky packing is completed by attaching the four branches along the four coordinate axes
to a core. For the Böröczky core, both 𝐴1 and 𝐵1 are blocked by core disks (see Fig. 5.1a). For the
Kahle core, 𝐵1 is blocked by a core disk, and 𝐴1 is locally stable as it also belongs to another branch
(see Fig. 5.1b).

5.2.1.3 Branches—Finite-Layer Case (Finite 𝑵), Periodic Boundary Conditions

Branches can also be constructed for periodic simulation boxes, with a finite number 𝑘 of layers and
finite 𝑁 (see Ref. [185]). The branch that connects the central core placed around (0, 0) with its
periodic image around (𝐿, 0) is then again symmetric about the 𝑥-axis but, in addition, also about the
boundary of the central simulation box at 𝑥 = 𝐿/2. We describe the construction of the half-branch
(for 𝑦 ≥ 0) up to this boundary (see Fig. 5.1).

For half-branches with a finite number of layers 𝑘 and a finite number of disks {𝐴1, . . . , 𝐴𝑘},
{𝐵1, . . . , 𝐵𝑘}, and {𝐶1, . . . , 𝐶𝑘−1} (with their corresponding mirror images), the convex polygonal
chain A lies between 𝑔<2 and 𝑔3 where 𝑔<2 is an auxiliary horizontal line placed slightly below 𝑔2. The
horizontal lines 𝑔 and 𝑔1 and the algorithm for placing the disks are as in Section 5.2.1.2 (see Fig. 5.1c
and d). By varying the distance between 𝑔2 and 𝑔<2 , one can make disk 𝐵𝑘 satisfy the additional
requirement 𝑥𝐵𝑘

= 𝑥𝐴𝑘
+ 1 that allows for periodic boundary conditions. The position of 𝐵𝑘 then fixes

the boundary of the square box (𝑥𝐵𝑘
= 𝐿/2) and 𝐵𝑘 blocks 𝐴𝑘 as well as the mirror image 𝐴𝑘+1 of 𝐴𝑘

(see Fig. 5.1c again).

5.2.2 Properties of Böröczky Packings

The local stability of Böröczky packings only relies on the fact that all 𝐴 disks lie on a largely
arbitrary convex polygonal chain A [185]. The choice of A influences the qualitative properties of
the packing. The BigBoro software package (see Appendix 5.B) implements two different classes
of convex polygonal chains that we discuss in Section 5.2.2.1. Another computer program in the
package explicitly determines the space of collective escape modes from a Böröczky packing, which
we discuss in Section 5.2.2.2.

5.2.2.1 Convex Polygonal Chains (Geometric, Circular)

In the convex geometric chain Ageo (which is for instance used in Fig. 5.1), the disks 𝐴𝑖 approach the
line 𝑔<2 exponentially in 𝑖. In contrast, in the convex circular chain Acirc, all 𝐴 disks lie on a circle
(including their mirror images after reflection about 𝑥 = 𝐿/2) so that their opening angles are all the
same.

For the convex geometric chain Ageo, the distance between 𝐴𝑖 and 𝑔<2 follows a geometric
progression:

dist
(
𝐴𝑖+1, 𝑔

<
2
)
= 𝜙 dist

(
𝐴𝑖 , 𝑔

<
2
)
, 𝜙 ∈ (0, 1), (5.3)
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Table 5.1: Parameters of Böröczky packings for different numbers 𝑘 of layers with 𝑁 ∼ 20𝑘 given by Eq. (5.4).
Second and third columns: Density window for the Böröczky and Kahle cores with Ageo, obtained from 𝜙

between 0.0001 and 0.9. Fourth and fifth columns: Deficit angle with respect to 180◦ of the maximum opening
angle (in degrees, same for both cores) for Acirc and for Ageo with attenuation parameter 𝜙 = 0.8.

Layers 𝑘 Density 𝜂Bör Density 𝜂Kahle Def. anglecirc Def. anglegeo

5 0.3957 ± 3.1 × 10−4 0.4660 ± 4.3 × 10−4 8.3 × 10−1 3.8 × 10−1

6 0.3625 ± 2.9 × 10−4 0.4204 ± 3.9 × 10−4 5.3 × 10−1 2.5 × 10−1

7 0.3338 ± 2.6 × 10−4 0.3820 ± 3.3 × 10−4 3.8 × 10−1 1.8 × 10−1

8 0.3089 ± 2.2 × 10−4 0.3496 ± 2.8 × 10−4 2.8 × 10−1 1.3 × 10−1

9 0.2873 ± 1.9 × 10−4 0.3219 ± 2.4 × 10−4 2.2 × 10−1 9.9 × 10−2

10 0.2683 ± 1.7 × 10−4 0.2982 ± 2.1 × 10−4 1.7 × 10−1 7.6 × 10−2

15 0.2010 ± 9.5 × 10−5 0.2171 ± 1.1 × 10−4 7.3 × 10−2 2.2 × 10−2

20 0.1604 ± 6.0 × 10−5 0.1704 ± 6.7 × 10−5 4.1 × 10−2 7.0 × 10−3

30 0.1141 ± 3.0 × 10−5 0.1190 ± 3.2 × 10−5 1.8 × 10−2 7.4 × 10−4

50 0.0722 ± 1.2 × 10−5 0.0741 ± 1.2 × 10−5 6.3 × 10−3 8.5 × 10−6

100 0.0376 ± 3.1 × 10−6 0.0381 ± 3.2 × 10−6 1.6 × 10−3 1.2 × 10−10

1000 0.0039 ± 3.3 × 10−8 0.0039 ± 3.3 × 10−8 1.5 × 10−5 7.4 × 10−98

with the attenuation parameter 𝜙. (For a horizontal branch, the distances in Eq. (5.3) are simply the
difference between 𝑦-values.) The densities 𝜂Bör and 𝜂Kahle of the Böröczky packings that either use
the Böröczky or the Kahle core vary with 𝜙, and they decrease as ∼ 1/𝑘 for large 𝑘 (see Table 5.1). The
geometric sequence for 𝐴𝑖 induces that the maximum opening angle, usually the one between 𝐴𝑘−1, 𝐴𝑘 ,
and 𝐴𝑘+1, approaches the angle 𝜋 as 𝜃𝑘 = 𝜙𝑘−2(1 − 𝜙) (𝑔3 − 𝑔<2 )/2 ∼ 𝜙𝑘 , that is, exponentially in 𝑘

and in 𝐿. This implies that the Böröczky packing with the convex geometric chain Ageo is for large
number of layers 𝑘 exponentially close to losing its local stability (see fifth column of Table 5.1).

The convex circular chain Acirc improves the local stability of the Böröczky packing, as the
maximum opening angle on A approaches the critical angle 𝜋 only algebraically with the number of
layers 𝑘 . Here, all 𝐴 disks lie on a circle of radius 𝑅. This includes 𝐴1, which by construction lies on
𝑔3 (see Section 5.2.1.2). The circle is tangent to 𝑔<2 at 𝑥 = 𝐿/2. The center of the circle lies on the
vertical line at 𝑥 = 𝐿/2. It follows from elementary trigonometry that for large 𝑘 , the radius of the
circle 𝑅 scales as ∼ 𝑘2 and that the maximum opening angle approaches the angle 𝜋 as ∼ 𝑘−2 (see
fourth column of Table 5.1).

5.2.2.2 Contact Graphs: Local and Collective Stability

The contact graph of a Böröczky packing connects any two disks whose pair distance equals 2
(including periodic boundary conditions, see Fig. 5.1). In a Böröczky packing with 𝑘 ≥ 1 layers, the
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number 𝑁 of disks and the number 𝑁contact of contacts are:

𝑁 𝑁contact

Böröczky core 20𝑘 + 12 32𝑘 + 20
Kahle core 20𝑘 − 4 32𝑘 + 4

. (5.4)

For all values of 𝑘 ≥ 1, the number of contacts is smaller than 2𝑁 − 2. This implies that collective
infinitesimal two-dimensional displacements, with 2𝑁 − 2 degrees of freedom (the values of the
displacements in 𝑥 and in 𝑦 for each disk avoiding trivial translations), can escape from a Böröczky
packing, which is thus not collectively stable [195].

When all disks 𝑖, at positions x𝑖, are moved to x𝑖 + 𝚫𝑖 with 𝚫𝑖 = (Δ𝑥
𝑖
,Δ

𝑦

𝑖
), the squared separation

between two touching disks from the contact graph 𝑖 and 𝑗 changes from |x𝑖 − x 𝑗 |2 to

|x𝑖 + 𝚫𝑖 − (x 𝑗 + 𝚫 𝑗) |2 = |x𝑖 − x 𝑗 |2 + 2(x𝑖 − x 𝑗) · (𝚫𝑖 − 𝚫 𝑗)︸                      ︷︷                      ︸
first-order variation

+ |𝚫𝑖 − 𝚫 𝑗 |2. (5.5)

If the first-order term in Eq. (5.5) vanishes for all contacts 𝑖 and 𝑗 , the separation between touching
disks cannot decrease. It then increases to second order in the displacements, if 𝚫𝑖 ≠ 𝚫 𝑗 , so that
contact is lost. Distances between disks that are not in contact need not be considered because
the displacements 𝚫𝑖 are infinitesimal. The first-order variation in Eq. (5.5) can be written as a
product of twice an “escape matrix” Mesc of dimensions 𝑁contacts × 2𝑁 with a 2𝑁-dimensional vector
𝚫 = (Δ𝑥

1 ,Δ
𝑦

1 ,Δ
𝑥
2 ,Δ

𝑦

2 , . . .). The row 𝑟 of Mesc corresponding to the contact between 𝑖 and 𝑗 has four
non-zero entries

Mesc
𝑟 ,2𝑖−1 = 𝑥𝑖 − 𝑥 𝑗 ,

Mesc
𝑟 ,2𝑖 = 𝑦𝑖 − 𝑦 𝑗 ,

Mesc
𝑟 ,2 𝑗−1 = −(𝑥𝑖 − 𝑥 𝑗),

Mesc
𝑟 ,2 𝑗 = −(𝑦𝑖 − 𝑦 𝑗).

(5.6)

The BigBoro software package (see Appendix 5.B) solves for

Mesc𝚫 = 0 (5.7)

using singular-value decomposition. The solutions of Eq. (5.7) are the directions of the small
displacements that break the contacts but do not introduce overlapping disks. For the 𝑘 = 5 Böröczky
packing with the Kahle core, we find 28 vanishing singular values. It follows from Eq. (5.4) that,
because of 28 = 2𝑁 − 𝑁contact, all contacts are linearly independent. We classify the 28 modes by
studying the following cost function on the contact graph:

𝐿 =
∑︁
𝑖, 𝑗

(𝚫𝑖 − 𝚫 𝑗)2, (5.8)

where the sum is over all contact pairs 𝑖 and 𝑗 . This function, acting on the 2𝑁 displacements 𝚫,
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Figure 5.2: Two orthogonal modes (represented as red arrows) out of the 28-dimensional space of all collective
escape modes 𝚫 for the 𝑘 = 5 Böröczky packing with the Kahle core and the convex geometric chain Ageo with
attenuation parameter 𝜙 = 0.7. Lines are drawn between pairs of disks which are in contact.

measures the non-uniformity of a deformation. It acts as a quadratic form within the 28-dimensional
space of vanishing singular values, and can be diagonalized within this space. The resulting two
lowest eigenmodes (with zero eigenvalue) of Eq. (5.8) describe rigid translation of the packing in the
plane. Other low-lying eigenmodes give smooth large-scale deformations which collectively escape
the contact constraints (see Fig. 5.2).

For 𝑘 ≥ 1, the number of contacts in Eq. (5.4) is larger than 𝑁 − 1. Böröczky packings are thus
collectively stable for displacements that are constrained to a single direction, as for example the 𝑥 or
𝑦 direction. This strongly constrains the dynamics of MCMC algorithms that for a certain time have
only one degree of freedom per disk.

5.2.2.3 Dimension of the Space of Böröczky Packings

As discussed in Section 5.2.2.2, each Böröczky packing has a contact graph. Conversely, a given
contact graph describes Böröczky packings for a continuous range of densities 𝜂. As an example,
changing the attenuation parameter 𝜙 of the convex polygonal chain Ageo in Eq. (5.3) continuously
moves all branch disks, and in particular disk 𝐵𝑘 and, therefore, the value of 𝐿 and the density 𝜂 (see
Table 5.1 for density windows that can be obtained in this way). We conjecture that locally stable
packings exist for any density at large enough 𝑁 . Sparse locally stable packings can also be part of
dense hard-disk configurations where the majority of disks are free to move.

Moreover, the space B of locally stable packings of 𝑁 disks of radius 𝜎 in a given central simulation
box is of lower dimension than the sample space Ω: For each contact graph, each independent edge de-
creases the dimensionality by one. In addition there is only a finite number of contact graphs for a given
𝑁 . The low dimension of B also checks with the fact that any packing, and more generally, any configu-
ration with contacts, has effectively infinite pressure (see the detailed discussion in Section 5.4.2.2). As
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the ensemble-averaged pressure is finite (except for the densest packing), the packings (and the configu-
rations containing packings) must be of lower dimension. As the dimension of B, for large 𝑁 , is much
lower than that of Ω, we conjecture Ω \ B to be connected for a given 𝜂 below the densest packing at
large enough 𝑁 although, in our understanding, this is proven only for 𝜂 ∼ 1/

√
𝑁 (see Refs [197, 198]).

5.3 MCMC Algorithms and 𝜺-Relaxed Böröczky Configurations

In this section, we first introduce to a number of local MCMC algorithms (see Section 5.3.1). In
Section 5.3.2, we then determine the escape times (in the number of trials or events) after which these
algorithms escape from 𝜀-relaxed Böröczky configurations, that is, from Böröczky packings with disk
radii multiplied by a factor (1 − 𝜀) (see Fig. 5.3a and b). A scaling theory establishes the existence
of two classes of MCMC algorithms, one in which the escape time from an 𝜀-relaxed Böröczky
configuration scales algebraically with 𝜀, with exponents that are predicted exactly, and the other in
which the scaling is logarithmic. Numerical simulations confirm the theory.

5.3.1 Local Hard-Disk MCMC Algorithms

We define the reversible Metropolis algorithm with two displacement sets, from which the trial moves
are uniformly sampled (see Section 5.3.1.1). We also consider variants of the non-reversible ECMC
algorithm that only differ in their treatment of events, that is, of disk collisions (see Section 5.3.1.2).
An arbitrary-precision implementation of the discussed ECMC algorithms (in the Go programming
language) is contained in the BigBoro software package (see Appendix 5.B).

5.3.1.1 Local Metropolis Algorithm: Displacement Sets

The 𝑁 disks are at positions x = (x1, . . . , x𝑁 ). In the local Metropolis algorithm [72], at each time
𝑡 = 1, 2, . . . , a trial move is proposed for a randomly chosen disk 𝑖, from its position x𝑖 to x𝑖 + Δx𝑖 . If
the trial produces an overlap, disk 𝑖 stays put and x remains unchanged. We study two sets for the trial
moves. For the cross-shaped displacement set, the trial moves are uniformly sampled within a range 𝛿

along the coordinate axes, that is, either along the 𝑥-axis [Δx𝑖 = (ran(−𝛿, 𝛿), 0)] or along the 𝑦-axis
[Δx𝑖 = (0, ran(−𝛿, 𝛿))]. Alternatively, for the square-shaped displacement set, the trial moves are
uniformly sampled as Δx𝑖 = (ran(−𝛿, 𝛿), ran(−𝛿, 𝛿)). A Böröczky packing traps the local Metropolis
algorithm if the range 𝛿 is smaller than a critical range 𝛿𝑐. This range is closely related to the maximum
opening angle (see the discussion in Section 5.2.2.1 and Fig. 5.3c). For these packings, the critical
range vanishes for 𝑁 → ∞ independently of the specific core or of the convex polygonal chain, simply
because the maximum opening angle approaches 𝜋 in that limit. On the other hand, for large range 𝛿,
the algorithm can readily escape from the stable configuration. For 𝛿 = 𝐿/2, the Metropolis algorithm
with a square-shaped displacement set proposes a random placement of the disk 𝑖 inside the central
simulation box. This displacement set leads to a very inefficient algorithm at the densities of physical
interest, but it mixes very quickly at small finite densities (see Section 5.4.2.1). For the scaling theory
of the escape of the Metropolis algorithm from 𝜀-relaxed Böröczky configurations, we consider ranges
𝛿 smaller than the critical range 𝛿𝑐.
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Figure 5.3: Contact graphs, constraint graphs and minimal escape range. (a): Contact graph for a packing
consisting solely of the Böröczky core. (b): Constraint graph in 𝑥-direction for an 𝜀-relaxed Böröczky
configuration derived from the same packing with 𝜀 = 0.25. The edges indicate all possible collisions of straight
ECMC in 𝑥-direction. (c): Escape move 𝜹 and minimal escape range 𝛿𝑐 of the Metropolis algorithm with a
square-shaped displacement set.

5.3.1.2 Hard-Disk ECMC: Straight, Reflective, Forward, Newtonian

Straight ECMC [115] is one of the two original variants of event-chain Monte Carlo. This Markov chain
evolves in (real-valued) continuous Monte-Carlo time 𝑡MCMC, but its implementation is event-driven.
The algorithm is organized in a sequence of “chains”, each with a chain time 𝜏chain, its intrinsic
parameter. In each chain, with Monte-Carlo time between 𝑡MCMC and 𝑡MCMC + 𝜏chain, disks move with
unit velocity in one given direction (alternatively in +𝑥 or in +𝑦). A randomly sampled initial disk thus
moves either until the chain time 𝜏chain is used up, or until, at a collision event, it collides with another
disk, which then moves in its turn, etc. This algorithm is highly efficient in some applications [115,
142, 143]. During each chain (in between changes of direction), any disk can collide only with three
other disks or fewer [199, 200]. A constraint graph with directed edges may encode these relations.
This constraint graph (defined for hard-disk configurations) takes on the role of the contact graph (that
is defined for packings) (see Fig. 5.3a and b). As the moves in a chain are all in the same direction,
straight ECMC has only 𝑁 − 1 degrees of freedom, fewer than there are edges in the constraint graph.
It is for this reason that it may encounter the rigidity problems evoked in Section 5.2.2.2.

In reflective ECMC [115], in between events, disks move in straight lines with unit velocity just
as in straight ECMC. At a collision event, the target disk does not continue in the same direction as
the active disk. Rather, the target-disk direction is the original active-disk direction reflected from
the line connecting the two disk centers at contact (see Ref. [115]). As all ECMC variants, reflective
ECMC satisfies the global-balance condition. Irreducibility (for connected sample spaces) requires
in principle resamplings of the active disk and its velocity in intervals of the chain time 𝜏chain [P2,
140, 150]. However, this seems not always necessary [P2, 150]. Numerical experiments indicate
that reflective ECMC requires no resamplings in our case as well. It is also faster without them (see
Appendix 5.A.2). A variant of reflective ECMC, obtuse ECMC [124], has shown interesting behavior.

Forward ECMC [150] updates the normalized target-disk direction as follows after an event. The
component orthogonal to the line connecting the disks at contact is uniformly sampled between
0 and 1 (reflecting the orthogonal orientation). Its parallel component is determined so that the
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direction vector (which is also the velocity vector) is of unit norm. The parallel orientation remains
unchanged. In contrast to reflective ECMC, the event-based randomness renders forward ECMC
practically irreducible for the considered two-dimensional hard-disk systems even without resamplings.
Resamplings in intervals of the chain time 𝜏chain can still be considered but slow the algorithm down
(see Appendix 5.A.2). We thus consider forward ECMC without resampling.

Newtonian ECMC [124] mimics molecular dynamics in order to determine the velocity of the target
disk in an event. It initially samples disk velocities from the two-dimensional Maxwell distribution
with unit root-mean-square velocity. However, at each moment, only a single disk is actually moving
with its constant velocity. At a collision event, the velocities of the colliding disks are updated
according to Newton’s law of elastic collisions for hard disks of equal masses, but only the target disks
actually moves after the event. In this algorithm, the velocity (which indexes the Monte-Carlo time)
generally differs from unity. Similar to reflective ECMC, we tested that resamplings appear not to be
required in our case (and again yield a slower performance, see Appendix 5.A.2), although Newtonian
ECMC manifestly violates irreducibility in highly symmetric models [P2]. As in earlier studies
for three-dimensional hard-sphere systems [124] and for two-dimensional dipoles [P2], Newtonian
ECMC is typically very fast for 𝜀-relaxed Böröczky configurations. However, it suffers from frequent
gridlocks (see Section 5.3.2.4).

5.3.2 Escape Times from 𝜺-Relaxed Böröczky Configurations

The principal figure of merit for a Markov chain is its mixing time [74], the number of steps it
takes from the worst-case initial condition to approach the stationary probability distribution to some
precision level. Böröczky packings trap the local Metropolis dynamics (of sufficiently small range) as
well as ECMC dynamics, so that the mixing time is, strictly speaking, infinite. Although they cannot
be escaped from, the packings make up only a set of measure zero in sample space, and might thus be
judged irrelevant.

However, as we will discuss in the present subsection, the situation is more complex. For every
Böröczky packing, an associated 𝜀-relaxed Böröczky configuration keeps the central simulation box
and the disk positions, but reduces the disk radii from 1 to 1− 𝜀. An 𝜀-relaxed Böröczky configuration
effectively defines a finite portion of the sample space (the spheres of radius 𝜀 around each disk position
of the packing). All MCMC algorithms considered in this work escape from these configurations in an
escape time that diverges as 𝜀 → 0 (see Section 5.3.2.1 for a definition of escape times). Numerical
results and a scaling theory for the escape times are discussed in Sections 5.3.2.2 and 5.3.2.3, and
a synopsis of our results is contained in Section 5.3.2.4. The divergent escape times as 𝜀 → 0 are
specific to the 𝑁𝑉𝑇 ensemble (as we will discuss in Section 5.4.2.2).

5.3.2.1 Nearest-Neighbor Distances and Escape Times

In a Böröczky packing, disks are locally stable, and they all have a nearest-neighbor distance of 2. The
packings are sparse, and the nearest-neighbor distance is thus smaller than its ∼ 1/√𝜂 equilibrium
value. To track the escape from an 𝜀-relaxed Böröczky configuration, we monitor the maximum
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nearest-neighbor distance:

𝑑 (𝑡) = max
𝑖

[
min
𝑗 (≠𝑖)

|x𝑖 𝑗 (𝑡) |
]
, (5.9)

where |x𝑖 𝑗 (𝑡) | = |x 𝑗 (𝑡) − x𝑖 (𝑡) | is the distance between disks 𝑖 and 𝑗 (possibly corrected for periodic
boundary conditions). The maximum nearest-neighbor distance signals when a single disk breaks
loose from what corresponds to its contacts. In the further time evolution, the configuration then
falls apart. For the Metropolis algorithm, we compute 𝑑 (𝑡) once every 𝑁 trials, and 𝑡 denotes the
integer-valued number of individual trial moves. For ECMC, we sample 𝑑 (𝑡) and the number of events
in intervals of the sampling Monte-Carlo time. In Eq. (5.9), 𝑡 then denotes the integer-valued number
of events. Both discrete times 𝑡 increment by one with a computational effort O(1), corresponding to
one trial in the Metropolis algorithm and to one event in ECMC. Starting from an 𝜀-relaxed Böröczky
configuration, 𝑑 (𝑡) typically remains at 𝑑 (𝑡) ∼ 2 + O(𝜀) for a long time until it approaches the
equilibrium value in a way that depends on the algorithm. We define the escape time 𝑡esc, an integer,
as the time 𝑡 at which 𝑑 (𝑡) has increased by ten percent:

𝑡esc = min {𝑡 : 𝑑 (𝑡) > 2(1 + 𝛾)} , (5.10)

with 𝛾 = 0.1. All our results for the scaling of the escape time with the relaxation parameter 𝜀 in
the following subsections were reproduced for 𝛾 = 0.025 (see Appendix 5.A.1). The definition of
the escape time based on the maximum nearest-neighbor distance 𝑑 (𝑡) is certainly not the only one
to monitor the stability of 𝜀-relaxed Böröczky configurations. It may not be equally well-suited for
all considered algorithms. Still, our scaling theory suggests that the algorithms with an intrinsic
parameter show a distinctly different behavior than the algorithms without them, which appears to be
independent of the precise definition of the escape time.

5.3.2.2 Escape-Time Scaling for Metropolis and Straight ECMC

The local Metropolis algorithm and straight ECMC both have an intrinsic parameter, namely the
range 𝛿 of the displacement set or the chain time 𝜏chain. These two parameters play a similar role.
We numerically measure the escape time 𝑡esc of these algorithms for a wide range of their intrinsic
parameters and for small relaxation parameters 𝜀 (see Fig. 5.4, for the escape times from 𝜀-relaxed
Böröczky configurations with 𝑘 = 5 layers and the Kahle core). The escape time diverges for
𝛿, 𝜏chain → 0. For straight ECMC and small 𝜀, 𝑡esc also diverges for 𝜏chain → ∞ so that the function is
“𝑉”-shaped with an optimal chain time 𝜏min

chain. For the Metropolis algorithm, 𝑡esc increases until around
the critical range 𝛿𝑐 so that there is an optimal range 𝛿min < 𝛿𝑐.

Two limiting cases can be analyzed in terms of the intrinsic parameter 𝛿 < 𝛿𝑐 or 𝜏chain, and the
internal length scales 𝜀, and 𝜎. For the Metropolis algorithm at small 𝛿, a trajectory spanning a constant
distance is required to escape from an 𝜀-relaxed Böröczky configuration. This constant distance can
be thought of as the escape distance 𝛿𝑐 in Fig. 5.3, which is on a scale 𝜎 and independent of 𝜀 for
small 𝜀. As the Monte-Carlo dynamics is diffusive, this constant distance satisfies const = 𝛿

√
𝑡esc. For

straight ECMC with small chain times 𝜏chain, the effective dynamics (after subtraction of the uniform
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Figure 5.4: Median escape times from the 𝑘 = 5 𝜀-relaxed Böröczky configurations (Kahle core and convex
geometric chain Ageo with attenuation parameter 𝜙 = 0.7, 𝑁 = 96 disks) for different 𝜀. (a): 𝑡esc (in trials)
vs. range 𝛿 for the Metropolis algorithm with the cross-shaped displacement set. (b): 𝑡esc (in events) vs. chain
time 𝜏chain for straight ECMC. Asymptotes are from Eqs (5.11) and (5.12). Error bars are smaller than the
marker sizes.

displacement), is again diffusive. This leads to:

𝑡esc ∼
{

const/𝛿2 (Metropolis),
const/𝜏2

chain (straight ECMC),
(for small 𝛿 < 𝛿𝑐, 𝜏chain). (5.11)

The independence of 𝑡esc of the relaxation parameter 𝜀 for small intrinsic parameters is clearly brought
out in the numerical simulations (see Fig. 5.4).

On the other hand, even for large 𝛿 < 𝛿𝑐 or 𝜏chain, the Markov chain must make a certain number
of moves on a length scale 𝜀 in order to escape from the 𝜀-relaxed Böröczky configuration. In the
Metropolis algorithm, the probability for a trial on this scale is 𝜀/𝛿 for the cross-shaped displacement
set and 𝜀2/𝛿2 for the square-shaped displacement set. For the straight ECMC with large 𝜏chain, all
displacements beyond a time ∼ 𝜀 (or, possibly, ∼ 𝑁𝜀) effectively cancel each other, because the
constraint graph is rigid. This leads to:

𝑡esc ∼


𝛿2/𝜀2 (Metropolis—square),
𝛿/𝜀 (Metropolis—cross),
𝜏chain/𝜀 (straight ECMC),

(for large 𝛿 < 𝛿𝑐, 𝜏chain). (5.12)

The scaling of 𝑡esc as ∼ 1/𝜀 or ∼ 1/𝜀2 for large intrinsic parameters is confirmed in the numerical
simulations for small relaxation parameters 𝜀 (see Fig. 5.4). For large 𝜀, the critical range 𝛿𝑐 of the
Metropolis algorithm (that slightly decreases with 𝜀) falls below the region of large 𝛿. For large 𝜀, the
constraint graph of straight ECMC loses its rigidity, and 𝜏chain no longer appears as a relevant intrinsic
parameter. The scaling theory no longer applies.

The two asymptotes of Eqs (5.11) and (5.12) form a “𝑉” with a base 𝛿min (or 𝜏min
chain) that is obtained

by equating the two expressions for 𝑡esc(𝛿) (or 𝑡esc(𝜏chain)). This yields 𝛿min ∼ 3√𝜀 for the Metropolis

107



Chapter 5 Research Paper 3—Sparse Hard-Disk Packings and Local Markov Chains

algorithm with a cross-shaped displacement set, and likewise 𝜏min
chain ∼ 3√𝜀 for straight ECMC. For the

Metropolis algorithm with a square-shaped move set, one obtains 𝛿min ∼
√
𝜀. The resulting optimum,

the minimal escape time with respect to 𝜀, is

𝑡esc ∼


𝜀−1 (Metropolis—square),
𝜀−2/3 (Metropolis—cross),
𝜀−2/3 (straight ECMC),

(for optimal 𝛿min, 𝜏min
chain). (5.13)

These scalings balance two requirements: to move by a constant distance (which favors large 𝛿 or
𝜏chain) and to move on the scale 𝜀 (which favors small 𝛿 or 𝜏chain).

5.3.2.3 Time Dependence of Free Path—Reflective, Forward, and Newtonian ECMC

The forward, reflective, and Newtonian variants of ECMC move in any direction, even in the absence
of resamplings, so that their displacement sets are 2𝑁-dimensional. This avoids the rigidity problem
of straight ECMC (the fact that the number of constraints can be larger than the number of degrees
of freedom). We consider these algorithms without resamplings, that is, for 𝜏chain = ∞. Finite chain
times yield larger escape times that approach the value at 𝜏chain = ∞ (see Appendix 5.A.2). Without
an intrinsic parameter, the effective free path between events may thus adapt as the configuration
gradually escapes from the 𝜀-relaxed Böröczky configuration. The free path is initially on the scale 𝜀,
but then grows on average by a constant factor at each event, reaching a scale 𝜀′ > 𝜀 after a time (that
is, after a number of events) that scales as ∼ ln(𝜀′/𝜀). The scale 𝜀′ at which the algorithms break free
is independent of the initial scale 𝜀, and we expect a logarithmic scaling of the escape time (measured
in events):

𝑡esc ∼ ln(1/𝜀) (reflective, forward, and Newtonian ECMC). (5.14)

The absence of an imposed scale for displacements manifests itself in the logarithmic growth with
time of the average free path, that is, the averaged displacement between events over many simulations
starting from the same 𝜀-relaxed Böröczky configuration (see Fig. 5.5 for the example of the escape
of forward ECMC from 𝜀-relaxed Böröczky configurations with 𝑘 = 5 layers and the Kahle core).
Individual evolutions as a function of time 𝑡 for small relaxation parameters 𝜀 and 𝜀′ overlap when
shifted by their escape times. Starting from an 𝜀-relaxed Böröczky configuration with 𝜀 = 10−30,
as an example, the same time is on average required to move from an average free path of ∼ 10−30

to 10−25, as from an average free path ∼ 10−25 to 10−20. The time 𝑡 in this discussion refers to the
number of events and not to the Monte-Carlo time 𝑡MCMC. As discussed, the velocity in reflective and
forward ECMC, and the root-mean-square velocity in Newtonian ECMC, have unit value. The free
path between subsequent events—which, as discussed, grows exponentially with 𝑡—then equals the
difference of Monte-Carlo times 𝑡MCMC(𝑡 + 1) − 𝑡MCMC(𝑡). The Monte-Carlo time 𝑡MCMC thus grows
as a geometric series and depends exponentially on the number of events 𝑡. This emphasizes that the
escape from an 𝜀-relaxed Böröczky configuration is a non-equilibrium phenomenon.
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Figure 5.5: Free path (equivalently: Monte-Carlo time between events) for the forward ECMC algorithm
started from three 𝑘 = 5 𝜀-relaxed Böröczky configurations (Kahle core and convex geometric chain Ageo with
attenuation parameter 𝜙 = 0.7, 𝑁 = 96 disks) with 𝜀 = 10−30, 10−25 and 10−20. Integer time 𝑡 (lower 𝑥-axis)
counts events, while 𝑡MCMC (upper 𝑥-axis) is the real-valued continuous Monte-Carlo time. Event times are
shifted. Expanded light curves show single simulations for each 𝜀, dark lines average over 10 000 simulations.

5.3.2.4 Escape Times: Synopsis of Numerical Results and Scaling Theory

Overall, escape times 𝑡esc(𝜀) (with intrinsic parameters optimized through a systematic scan for the
Metropolis algorithm and for straight ECMC) validate the algebraic scalings of Eq. (5.13), on the one
hand, and the logarithmic scaling of Eq. (5.14), on the other (see Fig. 5.6 for the escape times from
𝜀-relaxed Böröczky configurations with 𝑘 = 5 layers with either the Kahle core or the Böröczky core).
Our arbitrary-precision implementation of reflective, forward, and Newtonian ECMC confirms their
logarithmic scaling down to 𝜀 = 10−29. Newtonian ECMC appears a priori as the fastest variant of
ECMC. However, it frequently gets gridlocked, i.e., trapped in circles of repeatedly active disks with a
diverging event rate. Gridlocks also rarely appear in straight and reflective ECMC. In runs that end up
in gridlock, escape times are very large, possibly diverging. (In Figs 5.4 and 5.6, median escape times
rather than the means are therefore displayed for all algorithms. Mean and median escape times are
similar for the Metropolis algorithm and forward ECMC where gridlocks play no role.) The gridlock
rate increases with 1/𝜀. For the Kahle core, this effect is negligible for all 𝜀. For the Böröczky
core, the gridlock rate of Newtonian ECMC is ∼ 30% for 𝜀 = 10−29 (see Fig. 5.6b, the logarithmic
scaling is distorted even for the median). We observe no clear dependence of the gridlock rate on the
floating-point precision of our arbitrary-precision ECMC implementation, and it thus appears unlikely
that gridlocks are merely numerical artifacts (see Appendix 5.A.3).

Gridlock is the very essence of ECMC dynamics from a locally stable Böröczky packing, but it can
also appear as a final state from an 𝜀-relaxed Böröczky configuration. We observe gridlocks in all
hard-disk ECMC variants that feature deterministic collision rules. They were previously observed for
straight ECMC from tightly packed initial configurations [178, Section 4.2.3]. Only forward ECMC
with its event-based randomness is free of them. In a gridlock, the event rate diverges at a given
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Figure 5.6: Median escape time 𝑡esc from 𝑘 = 5 𝜀-relaxed Böröczky configurations with different cores (with
convex geometric chain Ageo and attenuation parameter 𝜙 = 0.7) for local MCMC algorithms (where applicable:
with optimized intrinsic parameters). (a): 𝑡esc for the Kahle core (𝑁 = 96 disks). The Metropolis algorithm and
straight ECMC show an algebraic scaling. Inset: log–lin plots suggesting logarithmic scaling for the forward,
reflective, and Newtonian ECMC. (b): 𝑡esc for the Böröczky core (𝑁 = 112 disks). Newtonian ECMC has frequent
gridlocks for small 𝜀 so that its logarithmic scaling is distorted. Error bars are smaller than the marker sizes.

Monte-Carlo time, which then seems to stand still so that no finite amount of Monte-Carlo time is
spent in a configuration with contacts. Because of the divergence of the event rate, gridlocks cannot
be cured through resamplings at fixed Monte-Carlo-time intervals. To overcome them in Newtonian
ECMC, which appears a priori as the fastest of our ECMC variants, one can probably introduce
event-based randomness as is done in forward ECMC. Nevertheless, gridlocks play no role in large
systems at reasonable densities. Also, ECMC algorithms for soft potentials introduce randomness at
each event so that gridlocks should not appear.

5.4 Discussion

In the present section, we discuss our results for the escape times (Section 5.4.1), as well as a number
of more fundamental aspects of Böröczky packings in the context of MCMC (Section 5.4.2). We
in particular clarify why a packing effectively realizes an infinite-pressure configuration that in a
constant-pressure Monte-Carlo simulation is instantly relaxed through a volume increase.

5.4.1 Escape Times: Speedups, Bottlenecks

ECMC is a continuous-time MCMC method, and its continuous Monte-Carlo time 𝑡MCMC takes the
place of the usual count of discrete-time Monte-Carlo trials. However, ECMC is event-driven. The
time 𝑡, and especially the escape time 𝑡esc, are integers, and they count events. The computational effort
in hard-disk ECMC is O(1) per event, using a cell-occupancy system that is also implemented in the
BigBoro software package. In several of our algorithms, the times 𝑡 and 𝑡MCMC are not proportional
to each other, because the free path (roughly equivalent to the Monte-Carlo time between events)
evolves during each individual run.
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5.4.1.1 Range of Speedups

The speedup realized by lifted Markov chains, of which ECMC is a representative, corresponds to the
transition from diffusive to ballistic transport [80, 111, 112]. This speedup refers to what we call the
“Monte-Carlo time” 𝑡MCMC, that is the underlying time of the Markov process, and not to the time 𝑡

that is measured in events. For Markov chains in a finite sample space Ω, the Monte-Carlo time for
mixing of the lifted Markov chain cannot be smaller than the square root of the mixing time for the
original (collapsed) chain. The remarkable power-law-to-logarithm speedup in 𝜀 realized by some of
the ECMC algorithms concerns escape times which measure the number of events. The Monte-Carlo
escape times probably conform to the mathematical bounds, although it is unclear how to approximate
hard-disk MCMC for 𝜀 → 0 through a finite Markov chain. Mathematical results for the Monte-Carlo
escape times from locally blocked configurations would be extremely interesting, even for models
with a restricted number of disks.

5.4.1.2 Space of 𝜺-Relaxed Böröczky Configurations

The definition of an 𝜀-relaxed Böröczky configuration can be generalized. Equivalent legal hard-disk
configurations are obtained by reducing the disk radii and choosing random disk positions in a circle
of radius 𝜀 around the original disk positions in the Böröczky packing. These configurations also
feature the escape-time scalings given in Eqs (5.13) and (5.14). Any 𝜀-relaxed Böröczky configuration
is thus merely a sample in a space B𝜀 of volume ∼ 𝜀2𝑁 . For a given upper limit 𝑡cpu of CPU time
at fixed 𝑁 , this corresponds to a volume of B𝜀 (that cannot be escaped from in 𝑡cpu) scaling with
the computer-time budget as ∼ 𝑡−3𝑁

cpu for the straight ECMC and scaling as ∼ exp(−2𝑁𝑡cpu) for the
forward ECMC. We expect B𝜀 to have a double role, as a space of configurations that the Monte-Carlo
dynamics cannot practically escape from, but maybe also a space that it cannot even access. The
volume of B𝜀 (with 𝜀 chosen such that it cannot be escaped from in a reasonable CPU time) as well
as the corresponding changes in the free energy per disk are probably unmeasurably small except,
possibly, at very small 𝑁 . The existence of a finite fraction of sample space that cannot be escaped
from in any reasonable CPU time at finite 𝑁 is however remarkable. In many MCMC algorithms
for physical systems, as for example the Ising model, parts of sample space are practically excluded
because of their low Boltzmann weight, but they feature diverging escape times only in the limit
𝑁 → ∞.

In this context, we note that Markov chains can be interpreted in terms of a single bottleneck
partitioning the sample space into two pieces [74, Sect. 7.2]. The algorithmic stationary probability
flow across the bottleneck sets the conductance of an algorithm, which again bounds mixing and
correlation times. Ideally, MCMC algorithms would be benchmarked through their conductances. In
the hard-disk model, the bottleneck has not been identified, so that the benchmarking and the analysis
of MCMC algorithms must rely on empirical criteria. However, Böröczky packings and the related
𝜀-relaxed Böröczky configurations may well model a bottleneck, from which the Markov chain has to
escape in order to cross from one piece of the sample space into its complement. The benchmarks
obtained by comparing escape times from an 𝜀-relaxed Böröczky configuration may thus reflect the
relative merits of sampling algorithms.
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5.4.2 Böröczky Packings and Local MCMC: Fundamental Aspects

We now discuss fundamental aspects of the present work, namely the question of the irreducibility
of local hard-sphere Markov chains and the connection with non-local MCMC algorithms (see
Section 5.4.2.1), as well as regularization of Böröczky packings and 𝜀-relaxed Böröczky configurations
in the 𝑁𝑃𝑇 ensemble (see Section 5.4.2.2).

5.4.2.1 Irreducibility of Local and Non-Local Hard-Disk MCMC

Strictly speaking, ECMC can be irreducible only if Ω \ B is connected, where B is a suitably defined
space of locally stable configurations. Packings in B (a space of low dimension) are certainly invariant
under any version of the ECMC algorithm, so that they cannot evolve towards other samples in
Ω. Connectivity in Ω \ B would at least assure that this space can be sampled. In addition it
appears necessary to guarantee that a well-behaved initial configuration cannot evolve towards an
𝜀-environment around B (e.g., the space B𝜀 of 𝜀-relaxed Böröczky configurations that makes up a
finite portion of Ω) or to gridlocks with diverging event rates. These properties appear not clearly
established for finite densities 𝜂 and for large 𝑁 . In other models, for example the Ising model of
statistical physics, irreducibility can be proven for any 𝑁 .

These unresolved mathematical questions concerning irreducibility do not shed doubt on the
practical usefulness of MCMC for particle systems. First, the concept of local stability is restricted
to hard disks and hard spheres (that is, to potentials that are either zero or infinite). The phase
diagram of soft-disk models can be continuously connected to the hard-disk case [122]. For soft disks,
irreducibility is trivial, but the sampling speed of algorithms remains crucial. Second, in applications,
one may change the thermodynamic ensemble. In the 𝑁𝑃𝑇 ensemble, the central simulation box
fluctuates in size and can become arbitrarily large. In this ensemble, irreducibility follows from the
fact that large enough simulation boxes are free of steric constraints. Again, the question of mixing
and correlation time scales is primordial. Third, practical simulations that require some degree of
irreducibility are always performed under conditions where the simulation box houses a number of
effectively independent copies of the system. This excludes the crystalline or solid phases. Monte
Carlo simulations of such phases are more empirical in nature. They require a careful choice of
initial states, and are then not expected to visit the entire sample space during their time evolution.
Fundamental quantitative results can nevertheless be obtained [201].

In this work, we concentrate on local MCMC algorithms, because global-move algorithms, as
the cluster algorithms in spin systems, rely on a priori probabilities for many-particle moves that
appear too complicated. Also, global single-particle moves are related to the single-particle insertion
probabilities, in other words to fugacities (the exponential of the negative chemical potential) that are
prohibitively small. At lower (finite) densities, however, placing at each time step a randomly chosen
disk at a random position inside the box corresponds to the Metropolis algorithm of Section 5.3.1.1
with a square-shaped displacement set and a range 𝛿 = 𝐿/2. This non-local algorithm easily escapes
from a Böröczky packing. Moreover, it is proven to mix in O(𝑁 log 𝑁) steps at densities 𝜂 < 1/6 [190,
202] (see also Ref. [203]), a result that implies that the liquid phase in the hard-disk system extends at
least to the density 𝜂 = 1/6 [190]. The density bound for the algorithm (which yields a bound for the
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stability of the liquid phase) is much smaller than the empirical density bound for the liquid phase, at
𝜂 ≃ 0.70. At this higher density, the global-move Metropolis algorithm and the more general hard-disk
cluster algorithm [183] are almost totally stuck. For applications, we imagine structures resembling
𝜀-relaxed Böröczky configurations to be backbones of configurations at high density, where global
moves cannot be used.

5.4.2.2 Böröczky Packings and the 𝑵𝑷𝑻 Ensemble

The concepts of packings and of local and collective stability make sense only in the 𝑁𝑉𝑇 ensemble,
that is, for a constant number of particles and for a simulation box with fixed shape and volume (the
temperature 𝑇 = 1/𝛽 that appears in 𝑁𝑉𝑇 plays no role in hard-disk systems [78]). In the 𝑁𝑃𝑇

ensemble, the pressure 𝑃 is constant, and the size of the simulation box may vary. The equivalence of
the two ensembles is proven [204] for large 𝑁 , so that the choice of ensemble is more a question of
convenience than of necessity. As we will see, in the 𝑁𝑃𝑇 ensemble, tiny relaxation parameters (as
𝜀 = 10−29 in Fig. 5.6) are instantly relaxed to 𝜀 ∼ 10−3 for normal pressures and system sizes.

To change the volume at constant pressure, one may, among others, proceed to “rift volume changes”
(see Ref. [121, Sect. VI]) or else to homothetic transformations of the central simulation box. We
discuss this second approach (see Ref. [78, Sect. 2.3.4]), where the disk positions (but not the radii)
are rescaled by the box size 𝐿 as:

x = (x1, . . . , x𝑁 ) → 𝜶 = (𝜶1, . . . ,𝜶𝑁 ) with 𝜶𝑖 = x𝑖/𝐿. (5.15)

Each configuration is then specified by an 𝜶 vector in the 2𝑁-dimensional periodic unit square and
an associated volume 𝑉 = 𝐿2, which must satisfy 𝑉 ≥ 𝑉cut(𝜶). A classic MCMC algorithm [205]
directly samples the volume at fixed 𝜶 from a gamma distribution above 𝑉cut(𝜶), below which (𝜶, 𝑉)
ceases to represent a valid hard-disk configuration [78, Eq. (2.19)]. Typical sample volumes are
characterized by 𝛽𝑃(𝑉 −𝑉cut) ∼ 1, and with 𝑉 = (𝐿cut + Δ𝐿)2, it follows that

Δ𝐿

𝐿
∼ 𝜀 ∼ 1

𝛽𝑃𝑉cut
(at fixed 𝜶). (5.16)

This equation illustrates that a packing, with 𝜀 → 0, is realized as a typical configuration only in
the limit 𝛽𝑃 → ∞. For the Böröczky packings of Fig. 5.1, we have 𝐿 ≃ 20, and a typical value
for the pressure for hard-disk systems is 𝛽𝑃 ∼ 1, which results in 𝜀 ∼ 10−3. In the 𝑁𝑃𝑇 ensemble,
as a consequence, escape times from a packing naturally correspond to a relaxation parameter
𝜀 ∼ 1/(𝛽𝑃𝑉), in our example to 𝑡esc(𝜀 ∼ 10−3), which is O(1).

The above 𝑁𝑃𝑇 algorithm combines constant-volume 𝑁𝑉𝑇-type moves of 𝜶 with the mentioned
direct-sampling moves of 𝑉 at fixed 𝜶. In practice, however, 𝑁𝑃𝑇 calculations are rarely performed
in hard-disk systems [206, 207]. This is because, as discussed in Eq. (5.16), the expected single-move
displacement in volume at fixed 𝜶 is Δ𝑉 ∼ 1/(𝛽𝑃), so that Δ𝑉/𝑉 ∼ 1/𝑁 (because 𝑁 ∼ 𝑉 and 𝛽𝑃 ∼ 1).
The fluctuations of the equilibrium volume 𝑉eq (averaged over 𝜶) scale as

√
𝑉eq, which implies

Δ𝑉eq/𝑉eq ∼ 1/
√
𝑁 . The volume-sampling algorithm requires ∼ 𝑁 single updates of the volume to go

from the 1/𝑁 scale of volume fluctuations at fixed 𝜶 to the 1/
√
𝑁 scale of the fluctuations of 𝑉eq at
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equilibrium. This multiplies with the number of steps to decorrelate at a given volume. In practice,
it has proven more successful to perform single 𝑁𝑉𝑇 simulations, but to restrict them to physical
parameters where the central simulation box houses a finite number of effectively independent systems
mimicking constant-pressure configurations.

5.5 Conclusion

Building on an early breakthrough by Böröczky, we have studied in this work locally stable hard-disk
packings. Böröczky packings are sparse, with arbitrarily small densities for large numbers 𝑁 of disks.
We constructed different types of these packings to arbitrary precision for finite 𝑁 , namely Böröczky
packings with the original Böröczky core [185] and those with the Kahle core [195]. In addition to
the core and the number 𝑘 of layers, Böröczky packings are defined by the convex polygonal chain
which bounds their branches. We constructed Böröczky packings in a continuous range of densities,
and made our software implementation of the construction openly accessible. Böröczky packings are
locally, but not collectively stable. Using singular-value decomposition (in an implementation that
is included in our open-source software) we explicitly exposed the unstable collective modes. We
furthermore reduced the radius of Böröczky packings slightly, and determined the escape times from
𝜀-relaxed Böröczky configurations as a function of the parameter 𝜀 for a number of local MCMC
algorithms, including several variants of ECMC, arbitrary-precision implementations of which are
also made openly available. Although the algorithms depart from each other in seemingly insignificant
details only, we witnessed widely different escape times, ranging from 1/𝜀 to log(1/𝜀). Our theory
suggested that the significant speedup of some of the algorithms is rooted in their event-driven
nature coupled to their lack of an intrinsic scale. We noted that the space of 𝜀-relaxed Böröczky
configurations is a finite portion of the sample space, and that a given computer-time budget implies
such a finite fraction of sample space that is practically excluded in local MCMC at finite 𝑁 . Here, the
excluded volume only vanishes in the limit of infinite CPU time. More generally, connectedness of
the hard-disk sample space is not proven. We pointed to the importance of statistical ensembles to
reconcile the possible loss of irreducibility with the proven practical usefulness of local hard-disk
MCMC algorithms. Although Böröczky packings or 𝜀-relaxed Böröczky configurations are sparse,
they could form the locally stable (or almost locally stable) backbones of hard-disk configurations at
the much higher density which are of practical interest.

We expect the observed differences in escape times to carry over to real-world ECMC implementa-
tions. Qualitatively similar performance differences were already observed in autocorrelation times
of hard-disk dipoles [P2]. In statistical mechanics, bottlenecks and escape times possibly play an
important role in polymer physics and complex molecular systems and some of the algorithms studied
here may find useful applications. Escape times may also play an important role in the study of
glasses and in granular matter, where the high or even infinite pressures favor local configurations that
resemble the mutually blocked disks in the 𝜀-relaxed Böröczky configurations. We finally point out
that the very concept of locally stable packings naturally extends to higher dimensions.
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5.A Escape Times, Resamplings and Gridlocks

In this appendix we collect a number of numerical results that support statements made in the main
text.

5.A.1 Critical Maximum Nearest-Neighbor Distance

In the escape time 𝑡esc of Eq. (5.10), the parameter 𝛾 sets the critical maximum nearest-neighbor
distance 𝑑 (𝑡) for the escape from an 𝜀-relaxed Böröczky configuration. In Section 5.3.2, we use 𝛾 = 0.1
which corresponds to a 10 %-increase of the initial value 𝑑 (𝑡 = 0) = 2. Using the alternative value
𝛾 = 0.025, we find that the escape time of straight ECMC again varies algebraically as 𝑡esc ∼ 𝜀−2/3

and, for forward, reflective, and Newtonian ECMC we again find 𝑡esc ∼ ln(1/𝜀) (see Fig. 5.7). Our
conclusions thus appear robust with respect to the value of 𝛾.

5.A.2 Escape Times with Resamplings

The reflective, forward and Newtonian variants of ECMC, at a difference of straight ECMC, appear
to not always require resampling. In the main text, we therefore use 𝜏chain = ∞, which, given our
discussion in Section 5.3.1, is appropriate. Moreover, resamplings after chain times 𝜏chain considerably
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Figure 5.7: Median escape times 𝑡esc from 𝑘 = 5 𝜀-relaxed Böröczky configurations (Kahle core and convex
geometric chain Ageo with attenuation parameter 𝜙 = 0.7, 𝑁 = 96 disks) for ECMC algorithms. Solid curves
use 𝛾 = 0.1 for the definition of 𝑡esc (as in Section 5.3.2), dashed curves use 𝛾 = 0.025 [see Eq. (5.10)]. For both
values of 𝛾, straight ECMC with optimized chain time 𝜏chain shows algebraic scaling with identical exponents,
whereas forward, reflective, and Newtonian ECMC scale logarithmically. Error bars are smaller than the marker
sizes.

Figure 5.8: Median escape times 𝑡esc from 𝑘 = 5 𝜀-relaxed Böröczky configurations (Kahle core and convex
geometric chain Ageo with attenuation parameter 𝜙 = 0.7, 𝑁 = 96 disks) for forward, reflective, and Newtonian
ECMC vs. chain time 𝜏chain for two different relaxation parameters 𝜀. Horizontal lines indicate the escape times
without any resamplings. Error bars are smaller than the marker sizes.

deteriorate the escape time for all three variants (see Fig. 5.8). This again illustrates the power of
lifted Markov chains, in which the proposed moves are correlated over long Monte-Carlo times.

5.A.3 Gridlock Rates with Different Numerical Precisions

The straight, reflective, and Newtonian variants of ECMC feature deterministic collision rules, and
they may run into gridlocks if started from 𝜀-relaxed Böröczky configurations for very small 𝜀 (see
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Figure 5.9: Gridlock rate of Newtonian ECMC simulations with different numerical precisions starting from a
𝑘 = 5 𝜀-relaxed Böröczky configuration (Böröczky core and convex geometric chain Ageo with attenuation
parameter 𝜙 = 0.7, 𝑁 = 112 disks). The inset shows the gridlock rate as a function of 1/𝜀 for the Newtonian
ECMC simulations with 200 mantissa bits that were used to measure the escape times in Fig. 5.6b.

Section 5.3.2.4). In a gridlock, the active-disk label loops through a subset of the 𝑁 disks which are in
contact. The event rate diverges, and so does the CPU time spent in the gridlock. The Monte-Carlo
time, however, stands still. Newtonian ECMC starting from 𝑘 = 5 𝜀-relaxed Böröczky configurations
with the Böröczky core appears particularly prone to gridlocks.

It remains an open question whether gridlocks are a numerical artifact related to the finite-precision
computer arithmetic. In our arbitrary-precision BigBoro software, the number of mantissa bits (in
base 2) can be set freely. We have studied the gridlock rate of Newtonian ECMC (the fraction of
simulations that run into gridlock) for the problematic 𝑘 = 5 𝜀-relaxed Böröczky configurations (using
the convex geometric chain Ageo with attenuation parameter 𝜙 = 0.7) with the Böröczky core, and
observed no clear influence of the numerical precision. It thus appears unlikely that gridlocks are a
precision issue (see Fig. 5.9).

5.B BigBoro Software Package: Outline, License, Access

The BigBoro software package is published as an open-source project under the GNU GPLv3 license.
It is available on GitHub as part of the JeLLyFysh organization.1 The software package consists
of three parts: First, the arbitrary-precision Python script construct_packing.py constructs
finite-𝑁 Böröczky packings of hard disks in a periodic square box. Second, the Python script
collective_escape_modes.py computes collective infinitesimal displacements of hard disks in
a packing that result in an escape. Third, the arbitrary-precision Go application go-hard-disks
performs hard-disk ECMC simulations that may start from 𝜀-relaxed Böröczky configurations derived
from Böröczky packings.

1 The url of repository is https://github.com/jellyfysh/BigBoro.
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5.B.1 Python Script construct_packing.py

The arbitrary-precision Python script construct_packing.py implements the construction of
Böröczky packings. It allows for the Böröczky or Kahle cores (see Section 5.2.1.1), and connects them
to branches with a finite number of layers (see Section 5.2.1.3). The convex geometric chain Ageo

with different attenuation parameters 𝜙, and the convex circular chain Acirc are implemented (see
Section 5.2.2.1). The core, the number of layers, and the convex polygonal chain are specified using
command-line arguments. The construction of the Böröczky packings uses arbitrary-precision decimal
floating-point arithmetic. Two additional command-line options specify the number of decimal digits,
and the precision of the bisection search for the value 𝑔<2 that renders the Böröczky packing compatible
with periodic boundary conditions (see Section 5.2.1.3). The final configuration and its parameters
(as for example the system length) are stored in a human-readable format in a specified output file.

The example_packings directory of BigBoro contains several Böröczky packings in correspond-
ing subdirectories (as for example kahle_geometric_5). The headers of these files contain the values
of the command-line arguments for construct_packing.py. A plot of each example configuration
is provided. The different packings in kahle_geometric_5 and boro_geometric_5 (see Fig. 5.1)
were used in this work. Although the bisection search for the construction of the Böröczky packing
usually requires an increased precision, the high-precision packings with small enough number of
layers may be used as input for standard double-precision applications. For simplicity and improved
readability, we provide packing_double.txt files that store the configurations in double precision,
where applicable.

5.B.2 Python Script collective_escape_modes.py

The double-precision Python script collective_escape_modes.py identifies the orthonormal basis
vectors of the escape matrix Mesc from a packing x [see Eq. (5.6)] that have zero singular values.
Afterwards, these modes are classified using the cost function in Eq. (5.8). The resulting basis vectors
𝚫𝑎 form the solution space for 2𝑁-dimensional displacements 𝚫 = (Δ𝑥

1 ,Δ
𝑦

1 ,Δ
𝑥
2 ,Δ

𝑦

2 , . . .) that have a
vanishing first-order term in Eq. (5.5) and thus for collective infinitesimal displacements 𝚫 of all disks
that escape from the packing. The basis vectors 𝚫𝑎 are stored in a human-readable output file, and
optionally represented as in Fig. 5.2. The input filename of the packing, and the output filename for
the collective escape modes are specified in command-line arguments. Further optional arguments
specify the filename for the plots of the escape modes, and the system length of the central simulation
box (that is unnecessary for packings generated by the Python script construct_packing.py in
which case the system length is parsed from the packing file).

5.B.3 Go Application go-hard-disks

The Go application go-hard-disks relies on a cell-occupancy system for the efficient simulations of
large-𝑁 hard-disk systems using several variants of the ECMC algorithm. Straight, reflective, forward,
and Newtonian ECMC are implemented. After each sampling interval, it samples the maximum
nearest-neighbor distance 𝑑 (𝑡) [see Eq. (5.9)]. All computations use a fixed number of mantissa
bits (in base 2) that may exceed the usual 24 or 53 bits for single- or double-precision floating-point
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values. The ECMC variant, its parameters (as for example the sampling time or chain time), and
further specifications (the number of mantissa bits, the cell specifications, the filename for the initial
configuration, etc.) are again set using command-line arguments.
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CHAPTER 6

Research Paper 4—Molecular Simulation from
Modern Statistics: Continuous-Time,
Continuous-Space, Exact

This chapter considers the preprint

[P4] Philipp Höllmer, Anthony C. Maggs, and Werner Krauth,
Molecular simulation from modern statistics: Continuous-time, continuous-space, exact,
arXiv:2305.02979v2 [physics.chem-ph] (2023),
url: https://doi.org/10.48550/arXiv.2305.02979.

For convenience, this manuscript, which is currently submitted for publication, is reproduced in the
present chapter. However, since the manuscript is at this point in time only a preprint and not a
peer-reviewed publication (as in Chapters 3–5), Section 6.0 rephrases its entire main part for the context
of this doctoral thesis. Sections 6.1–6.5 then reproduce the preprint version. Because the author of
this doctoral thesis was the sole creator of the figures in the preprint, they are still explicitly referenced
in the independent contextualization in Section 6.0 to avoid unnecessary duplication. Likewise, the
supplementary materials, which are reproduced in Sections 6.A and 6.B, were single-handedly written
by the author of this doctoral thesis (with review and editing by the co-authors). They are therefore
not explicitly rephrased but referenced where necessary. At the end of Section 6.0, the author’s
contributions to the preprint are clearly indicated and confirm the responsibility statements on the
figures and supplementary materials. All co-authors of the preprint agree with its inclusion in this
doctoral thesis and with the identification of the author’s contributions.

6.0 Prologue

The final research paper of this doctoral thesis, which is included in this chapter and contextualized
within this thesis in the following, achieves the overarching objective by introducing, at long last, the
competitive, rigorous paradigm for molecular simulations in the thermodynamic equilibrium. It is
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based on non-reversible Markov-chain Monte Carlo (MCMC) algorithms and rigorously exact from
the beginning. By construction, the Boltzmann distribution of the canonical (𝑁𝑉𝑇) is strictly sampled
in a non-reversible Markov chain. Long-range-interactions in molecular systems like the Coulomb or
Lennard-Jones interactions are treated without any approximations, yet with competitive efficiency as
shown in this chapter.

As a specific example of the introduced paradigm, we consider the non-reversible event-chain
Monte Carlo (ECMC) algorithm. Its general event-driven approach is implemented in the open-source
JeLLyFysh application whose second version was developed and released together with this research
paper (see Fig. 6.1) [P6, P9]. The potential energy 𝑈 =

∑
𝑀 𝑈𝑀 in molecular systems is a sum

over factor potentials 𝑈𝑀 . The Boltzmann distribution factorizes into a product of distributions of
factors 𝑀 that are treated statistically independent in ECMC (see Section 2.4.1). At every point in
time, a single active interaction site 𝑖 moves in a straight-line trajectory with constant velocity v𝑎.
The positions and velocities of the interaction sites define the global state of the physical system.
In JeLLyFysh-Version2.0, the global state is only accessed by the central mediator which imposes
coherency of the physical system [208]. The piecewise-deterministic motion of the active interaction
site is interrupted by an event that results from a competition between stochastic inhomogeneous
Poisson processes for every factor 𝑀 (see Section 2.4.3). The corresponding candidate event times of
every factor 𝑀 are computed by event handlers. A scheduler determines the winning, event-triggering
factor 𝑀ev with the minimum candidate event time. The next active interaction site 𝑗 ∈ 𝑀ev and its
new velocity v′𝑎 follow from a lifting move of 𝑀ev (see Section 2.4.7). Every factor potential only
depends on a small number of interaction sites and can be accurately treated up to machine precision
(see Section 2.4.2). At the same time, the cell-veto algorithm heavily reduces the required number of
these small computations (see Section 2.4.6).

In order to prove the competitiveness of the introduced paradigm, we consider large-scale systems
of SPC/Fw water molecules in JeLLyFysh-Version2.0. The SPC/Fw water model already contains
the computationally intensive Coulomb interactions and appears in many molecular simulations as
an explicit aqueous solution (see Fig. 1.1). The benchmark is the integrated autocorrelation time
(see Section 2.2.2) of the electric polarization (or total electric dipole moment) that characterizes
the rotation dynamics of the water molecules. In ECMC, the polarization is expected to decorrelate
especially slowly because the rotation of individual water molecules has to be pieced together from
straight-line motions of single interaction sites in between events (see Section 1.3.2).

In the three previous research papers of this doctoral thesis, Newtonian ECMC emerged as the most
promising ECMC variant for the required rotations of SPC/Fw water molecules (see Chapters 3–5 and
Refs [P1, P2, P3]). In these cases, we only considered hard-disk systems or close equivalents for which
Newtonian ECMC was originally proposed [124]. The peculiar factor potentials 𝑈𝑀 contain infinite
steps and consider two interaction sites. In contrast, the factor potentials 𝑈𝑀 in molecular systems are
smooth and may depend on an arbitrary number of interaction sites (as the bending potential between
three interaction sites or the molecular Coulomb potential between six interaction sites in Fig. 1.1; see
also Section 2.4.1).

We introduce generalized Newtonian ECMC in the supplementary materials of this research paper
(see Section 6.B.1). As in the original Newtonian ECMC algorithm, every interaction site has its
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own hypothetical velocity where the velocities are initially drawn from the Maxwell–Boltzmann
distribution. At any time of the simulation, only one of the interaction sites actually moves with its
velocity. An event in the hard-disk system changes the velocities of both colliding disks according
to an elastic Newtonian collision. The previously active disk stops moving and its collision partner
starts to move instead with its velocity (see Fig. 1.5). An event of generalized Newtonian ECMC in
the factor 𝑀ev generalizes the Newtonian collision to a “force kick.” Here, the hypothetical velocity
of every interaction site 𝑘 ∈ 𝑀ev is updated in the direction of the gradient of the factor potential
∇x𝑘𝑈𝑀ev at the position x𝑘 of 𝑘 . Such a force kick is, however, not applied in every event. Instead,
generalized Newtonian ECMC decides stochastically whether the force kick changes all hypothetical
velocities of the interaction sites 𝑘 ∈ 𝑀ev and which interaction site 𝑗 ∈ 𝑀ev actually becomes active
with its (possibly unmodified) velocity. As in molecular dynamics, one can introduce a general mass
matrix for the interaction sites in this generalized scheme. In contrast to straight, reflective, and
forward ECMC, one does not require translationally invariant factor potentials anymore to prove that
the necessary global-balance condition is satisfied (see Section 2.4.7). The original Newtonian ECMC
algorithm for the hard-disk system can be recovered in the limit of equal masses and translationally
invariant factor potentials.

In the supplementary materials, this research paper also generalizes the cell-veto algorithm from
a finite number of possible velocities v𝑎 of the active interaction site 𝑖, as it appears in the straight
ECMC variant (see Section 2.4.6), to the continuous space of possible velocities, as it appears, e.g., in
generalized Newtonian ECMC (see Section 6.B.3). This is achieved by discretizing the continuous
velocity space into Voronoi cells of a finite number of Fibonacci vectors (see Fig. 6.2). The cell bounds
in the original cell-veto algorithm are then computed for the finite set of Fibonacci vectors. During the
simulation, the deviation between the actual velocities of the active interaction sites and the Fibonacci
vectors were already considered in the estimation of the cell bounds. This ensures that the cell-veto
algorithm still treats long-range interactions rigorously exact. Generalized Newtonian ECMC and
the generalized cell-veto algorithm are implemented in JeLLyFysh-Version2.0 that accompanies the
research paper in this chapter [P9].

For the factorization of the SPC/Fw water model in Section 2.4.1 that, in particular, combines the set of
Coulomb interactions between two water molecules into a single factor (as depicted in Fig. 1.1), theory
predicts that the number of events per unit distance grows as O(log 𝑁) with an increasing number 𝑁
of water molecules [146]. The cell-veto algorithm should further yield a constant computer time per
event. Both of these results are confirmed in JeLLyFysh-Version2.0 for large 𝑁 (see Fig. 6.3). This
numerically confirms a computational complexity of O(𝑁 log 𝑁) to move every interaction site by a
constant distance, which matches the computational complexity of fast mesh-based Ewald methods in
molecular dynamics [50].

As a first measure of the efficiency in the dynamics of different simulation methods, we considered
the characteristic distance which the interaction sites of any water molecule have to travel to decorrelate
the polarization (see Section 6.A.6 in the supplementary material for details). Straight ECMC, for
which we could only consider small numbers of water molecules, is only slightly faster than the
reversible Metropolis algorithm with local Monte Carlo moves of single interaction sites. Here, we use
the DL_MONTE software package for the simulations of the Metropolis algorithm [108]. (Reflective
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ECMC yields very comparable results to straight ECMC which is, however, not shown in the research
paper.) Generalized Newtonian ECMC, in contrast, is an order-of-magnitude faster which resolves
the dynamical arrest of straight ECMC. Its local dynamics even comes close to the fastest collective
dynamics of molecular dynamics (MD; see Fig. 6.3). This may be related to the fact that generalized
Newtonian ECMC injects ideas of MD into its events. Because of the factorization of the Boltzmann
distribution, event rates between different factors cannot compensate each other. However, as the
favorable results for generalized Newtonian ECMC show, this does not penalize the dynamics.

Generalized Newtonian ECMC, as implemented in JeLLyFysh-Version2.0, treats the long-range
Coulomb interaction exact up to machine precision. MD, as implemented in Lammps [54], sets a target
accuracy instead and its computational cost per discrete time step increases with increasing accuracy.
We show that JeLLyFysh-Version2.0 reaches a break-even point with Lammps at a high target accuracy
which is well below machine precision (see Fig. 6.4). This is the first proof of concept that the
proposed rigorous paradigm for molecular simulations based on non-reversible Markov chains is
competitive. This is particularly highlighted by the fact that JeLLyFysh-Version2.0 is a demonstration
software that is developed by a very small number of people and runs with a just-in-time compiler
of Python called PyPy. Lammps, in contrast, is a long-developed software package with hundreds
of contributors that is implemented in C++. Hence, already re-engineering JeLLyFysh-Version2.0
and, in particular, optimizing the parameters of the cell-veto algorithm may push down the break-even
point with Lammps considerably. The general, far-reaching implications of this first proof for the
competitive efficiency of the rigorous paradigm for molecular simulations based on non-reversible
Markov chains are discussed in the conclusion of this doctoral thesis (see Section 7.1).

Contributions of the Author

The author contributed in an essential manner to the entire research project underlying this research
paper. In particular, he was the sole contributor to the entire update of the open-source JeLLyFysh
software to JeLLyFysh-Version2.0, the generalization of Newtonian ECMC, the data collection in
JeLLyFysh-Version2.0 and DL_MONTE, and the creation of the figures. He single-handedly wrote
the supplementary materials (with review and editing by the co-authors). The author also made
essential contributions to the generalization of the cell-veto algorithm and the writing of the research
paper itself. Following the Contributor Role Taxonomy (CRediT) [174], the author contributions are
as follows:

• Conceptualization (ideas; formulation or evolution of overarching research goals and aims).

• Methodology (development or design of methodology; creation of models).

• Software (programming, software development; designing computer programs; implementation
of the computer code and supporting algorithms; testing of existing code components).

• Validation (verification, whether as a part of the activity or separate, of the overall replica-
tion/reproducibility of results/experiments and other research outputs).

• Formal analysis (application of statistical, mathematical, computational, or other formal
techniques to analyze or synthesize study data).
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• Investigation (conducting a research and investigation process, specifically performing the
experiments, or data/evidence collection).

• Writing—Original Draft [preparation, creation and/or presentation of the published work,
specifically writing the initial draft (including substantive translation)].

• Writing—Review & Editing (preparation, creation and/or presentation of the published work by
those from the original research group, specifically critical review, commentary or revision—
including pre- or post-publication stages).

• Visualization (preparation, creation and/or presentation of the published work, specifically
visualization/data presentation).
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Molecular Simulation from Modern Statistics: Continuous-Time,
Continuous-Space, Exact

This reproduces P. Höllmer, A. C. Maggs, and W. Krauth, Molecular simulation from modern statistics:
Continuous-time, continuous-space, exact, arXiv:2305.02979 [physics.chem-ph] (2023), which is
licensed under the Creative Commons Attribution 4.0 International License and may be found at
https://doi.org/10.48550/arXiv.2305.02979 (see Ref. [P4]). Note that the entire main part
of this research paper in Sections 6.1–6.5 was rephrased for the context of this doctoral thesis in
Section 6.0. The supplementary materials in Sections 6.A and 6.B were single-handedly written by
the author of this doctoral thesis (with review and editing by the co-authors). The author was also the
sole creator of all figures.

Abstract In a world made of atoms, the computer simulation of molecular systems, such
as proteins in water, plays an enormous role in science. Software packages that perform
these computations have been developed for decades. In molecular simulation, Newton’s
equations of motion are discretized and long-range potentials are treated through cutoffs or
spacial discretization, which all introduce approximations and artifacts that must be controlled
algorithmically. Here, we introduce a paradigm for molecular simulation that is based on modern
concepts in statistics and is rigorously free of discretizations, approximations, and cutoffs. Our
demonstration software reaches a break-even point with traditional molecular simulation at high
precision. We stress the promise of our paradigm as a gold standard for critical applications and
as a future competitive approach to molecular simulation.

One-sentence summary A rigorous paradigm for exact non-reversible Markov processes is
benchmarked for classical long-range-interacting water.

6.1 Introduction

The fact that all matter consists of atoms has been described as the greatest insight of science [1].
The consequence that matter can be modeled on a computer by following the motion of its atoms
leads to the founding paradigm of molecular simulation. It tracks the dynamics and explores the
thermodynamic equilibrium of complex molecular systems, for example, a peptide in an explicit water
solution with tens of thousands of atoms, all interacting through classical empirical potentials [17].
Molecular simulation is of enormous importance to numerous fields ranging from biology and physics
to engineering [11, 13]. Powerful computer packages have been developed over decades [54, 103–106].
They compute the forces on all atoms at discretized time steps and then update the atomic positions
and velocities to integrate the classical equations of motion of molecular dynamics. A voluminous
literature is dedicated to the analysis and control of time-discretization errors (see, e.g., Ref. [44]).
Thermostats, understood as “necessary evils” [46], mimic the effect of a coupled thermal reservoir
and, in a symptomatic but non-curative treatment, hide the accumulated errors. The limiting factor in
molecular dynamics is the computation of forces. The Lennard-Jones interaction is typically cut off
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beyond a certain distance so that only a few neighbors exert a force on any given atom. The long-range
nature of the Coulomb potential, which must be preserved, is usually treated through fast mesh-based
Ewald methods [49–51, 96, 97] that solve the Poisson equation in discretized space. Thermostats and
cutoffs as well as the discretizations inherent in long-range interactions introduce approximations and
artifacts [46, 209] that complex algorithms aim to keep under control.

We present here an alternative paradigm for molecular simulation that is based on modern concepts
in statistics. It is rigorously exact from the start and, by construction, strictly simulates the canonical
ensemble without thermostats. Straight-line trajectories of atoms in continuous Monte-Carlo time
are interrupted by events. This non-reversible piecewise-deterministic Markov process [136] violates
the detailed-balance condition normally associated with thermal equilibrium, but still samples the
Boltzmann distribution. Its use has led to spectacular speedups of local Markov chains in statistical
physics [142]. Short- and long-range potentials are handled without any cutoffs or discretizations and,
as we show in this paper, with competitive efficiency. The Boltzmann weight 𝜋 = exp(−𝛽𝑈) (with 𝛽

the inverse temperature and𝑈 the potential) is expressed as a factorized product 𝜋 =
∏

𝑀 exp(−𝛽𝑈𝑀 )
of statistically independent factors 𝑀 with factor potentials 𝑈𝑀 with

∑
𝑀 𝑈𝑀 = 𝑈 that each depend

only on a small subensemble of atoms [121]. Every factor stochastically generates a time when the
piecewise-deterministic motion must be interrupted. The minimum of these times triggers an event,
and determines the initial conditions for the next piece. The total potential 𝑈 and the corresponding
forces never need be evaluated, yet the stationary state is rigorously the Boltzmann distribution.

We implement the event-driven paradigm in demonstration software for 𝑁 flexible SPC/Fw water
molecules [28] that interact with the long-range Coulomb potential. As a benchmark, we concentrate
on the electric polarization [48] (in other words, the total electric dipole moment) that measures
the capacity of individual water molecules to rotate and determines the dielectric properties of
water. We find that a particular non-reversible Markov process greatly reduces autocorrelation
times and overcomes the slow diffusive dynamics of reversible Monte Carlo algorithms, while the
factorization does not penalize the dynamics in comparison to molecular dynamics. The polarization
decorrelates in a computer time that scales as 𝑁 log 𝑁 , similar to mesh-based Ewald methods in
molecular dynamics [50] but without their diverging precision-dependent prefactor. Our code reaches
a break-even point with respect to a standard molecular-dynamics code much below machine precision,
and we point out its great potential for improvement.

6.2 Modern-Statistics Paradigm for SPC/Fw Water

In a molecular system with long-range interactions, the force on an atom depends on the position of
all other atoms, rendering its evaluation tedious unless one introduces cutoffs or discretizes space. In
contrast, we implement a piecewise-deterministic Markov process through the event-chain Monte Carlo
algorithm, where a single atom moves at any given moment [80, 115, 121]. The deterministic motion
of this atom is interrupted by an event that stops it and sets off a similar motion of a new atom. Factors
𝑀 in the SPC/Fw water model describe O H bonds, the bending of H O H opening angles, O O
intermolecular Lennard-Jones interactions, and the Coulomb interaction between two water molecules.
Each factor proposes an independent candidate event time. The minimum over all the candidate event
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times then realizes the next event, and motion is transferred to another atom contributing to 𝑈𝑀 . This
succession of events, in which rejections are replaced by transfers, distinguishes our formulation from
the usual Metropolis Monte Carlo algorithm [72].

Positions and velocities of atoms define the global state of the physical system. To impose coherency
of the physical system, the global state is accessed only through a central mediator [208] that dispatches
physically independent computations of candidate events to event handlers. A scheduler weeds through
candidate events and identifies the unique event that provides the subsequent transfer of motion, leading
to an update of the global state (see Fig. 6.1). The event handlers within the mediator architecture mirror
the statistical independence of the factors composing the physical system. This allows us to compose
complex interactions in a transparent and independent manner. A number of inequivalent options have
been constructed for the update of active particles within event-chain Monte Carlo [145, 146]. Similar
flexibility is possible in the updating of velocities [P2, 115, 124, 150], as well as in parallelizing [P6,
200] it. In this paper, we replace the original straight variant by the substantially more efficient
Newtonian event-chain Monte Carlo [P2, 124]. It requires no fine-tuning and again exactly samples
the canonical Boltzmann distribution. Modern statistics offers an even wider choice of options for
the management of events, the choice of factors, and the piecewise-deterministic trajectories, that may
well apply to molecular simulation in the approximation-free non-reversible Markov-chain framework.

6.3 Implementation for SPC/Fw Water: Cell-Veto—Fibonacci Sphere

In the event-driven implementation of our method (see Fig. 6.1), a single atom moves among the other
atoms and molecules, so that O(𝑁) factors are changing with time and in principle yield independent
events that would require sorting and managing. Modern statistics allows one to bundle most of these
factors and, in the SPC/Fw water model, the mediator interacts with only ∼ 50 event handlers that
propose candidate event times to the scheduler (see Fig. 6.2a). The bundling allows the processing of
each event in constant computer time (for large 𝑁) while treating the long-range interactions without
approximations.

In the cell-veto algorithm [148], which we use for the bundling, event rates for pairs of molecules
interacting with the Coulomb potential are upper-bounded by precomputed, time-independent bounds
for these molecules somewhere within a pair of cells (see Fig. 6.2b). The full set of these cell bounds
corresponds to the set of bundled factors of the long-range interaction. Walker’s method of aliases [166]
conserves the cell bounds in a Walker table. We build separate such tables for multiple directions of
the velocity of the moving atom corresponding to Fibonacci vectors on the unit sphere (see Fig. 6.2c).
During the simulation, the actual velocity of the moving atom is mapped to the closest Fibonacci
vector. The set of cell bounds in the corresponding table provides a single candidate event time for the
entire set of bundled factors, and Walker’s method samples an associated single cell bound—and thus
a single associated factor—with constant algorithmic complexity. The overestimation of the event
rate by the cell bound is corrected in a procedure akin to the thinning of non-homogeneous Poisson
processes [165] by confirming the transfer of motion in the event (see Fig. 6.2d). This thinning is
performed with the actual positions of the atoms, leading to an exact treatment of the long-range
interaction that is independent of the set of cell bounds and the discretization of space.
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Figure 6.1: JeLLyFysh implementation of our Markov-chain paradigm. The mediator splits the global state into
statistically independent factors. Factors communicate independent candidate event times, the earliest of which
defines the next event. Factors for long-range interactions are bundled, so that the number of event handlers
remains limited. Candidate event times are collected by the mediator and then treated in the scheduler. The
factor triggering the event then updates the global state, again via the mediator.

6.4 Benchmarking for SPC/Fw Water

For our benchmark, we use JeLLyFysh [P6] to sample configurations of SPC/Fw water molecules in
a periodic box at standard density and temperature. We implement long-range molecular Coulomb
factors with Walker tables that we also adopt for the Lennard-Jones interaction. We find that Newtonian
event-chain Monte Carlo, for large 𝑁 , requires a computer time per event that remains constant (see
Fig. 6.3a). A large number of unconfirmed events stems from the overestimated cell bounds which, e.g.,
do not account for the relative orientation of molecules. While the computer time per event is constant,
the number of events per Ångström (that is, per unit Monte-Carlo time) increases logarithmically
for the Coulomb factors (see Fig. 6.3b), as predicted by theory [146]. In summary, our approach
requires a computer time scaling as 𝑁 log 𝑁 to advance 𝑁 water molecules by a constant distance.
This matches the complexity of mesh-based Ewald methods [50], but without their slowdown as the
precision is increased.
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Figure 6.2: Long-range interactions with constant computer time per event. (a): The number of candidate events
(event handlers) is constant for increasing system sizes. (b): Walker table from which a target cell is sampled
according to its cell bound with respect to the active cell containing the moving atom. (c): Different Walker
tables for Fibonacci vectors on the unit sphere. The active atom obtains cell bounds from the nearest vector. (d):
The thinning procedure confirms (✓) or rejects (✕) the event using the actual event rate of the molecules in the
active and target cell. Figure adapted to the layout of this thesis from Fig. 2 in Ref. [P4] that is licensed under
the Creative Commons Attribution 4.0 International License.
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Figure 6.3: Event rates and decorrelation in the SPC/Fw water model. (a): Computer time per event in
JeLLyFysh. Inset: Number of unconfirmed events per event for different factor types. (b): Event rate in
JeLLyFysh for different factor types. (c): Distance to decorrelate the polarization for different sampling
algorithms (for molecular dynamics: sum over the average displacements of all atoms per time step). Figure
adapted to the layout of this thesis from Fig. 3 in Ref. [P4] that is licensed under the Creative Commons
Attribution 4.0 International License.

For concreteness, we compare the decorrelation of the polarization within JeLLyFysh to the
Lammps software on a single processor with default parameters and a 1 fs time step. To decorrelate
this local quantity, both Lammps and JeLLyFysh must move the atoms of any water molecule by a
characteristic distance, providing a first measure of efficiency (see Fig. 6.3c). Different variants of
our method vary in their efficiency, and the recently developed Newtonian event-chain Monte Carlo
is an order of magnitude faster than the straight variant. The reversible Metropolis algorithm with
single-atom moves (that also reaches an 𝑁 log 𝑁 scaling [99] by using a recent variant of the fast
multipole method [95]), as implemented in the DL_MONTE software package [108], is clearly inferior
to our non-reversible methods.

The mesh-based Ewald method implemented in Lammps comes with a target accuracy that is based
on analytic error estimates obtained from a specific charge distribution [96, 147, 210]. The charges
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Figure 6.4: Lammps–JeLLyFysh benchmark for the SPC/Fw water model. (a): Computer time per step of
Lammps for different target accuracies of its particle–particle particle–mesh solver. (b): Computer time used by
Lammps to decorrelate the polarization depends on the target accuracy and the number of water molecules 𝑁 .
JeLLyFysh is exact up to machine precision. The break-even precision is indicated. Figure adapted to the layout
of this thesis from Fig. 4 in Ref. [P4] that is licensed under the Creative Commons Attribution 4.0 International
License.

of atoms (which live in continuous space) are mapped onto the grid using an interpolation scheme.
Finer grids and higher interpolation orders yield higher target accuracies. We estimate the necessary
computer times by changing the grid spacing, using the Lammps defaults (see Fig. 6.4a). JeLLyFysh
uses the two-atom Coulomb interaction calculated with the historic Ewald summation in continuous
space. We tune it to machine precision without any assumptions on the global charge distribution.
JeLLyFysh reaches the break-even point to Lammps well below machine precision (see Fig. 6.4b),
although it has only the status of demonstration software.

6.5 Discussion

In this paper, we benchmarked an implementation of a modern-statistics paradigm for molecular
simulations in the standard SPC/Fw water model. The time dependence of the corresponding Markov
process differs from the physical dynamics yet it exactly approaches thermal equilibrium on time
scales that are potentially faster than in nature. Its remarkable efficiency (that we expressed as a
𝑁 log 𝑁 computer time to decorrelate a local observable, the polarization) is rooted in three paradoxes.
First, the Markov process is non-reversible (that is, effectively out-of-equilibrium), yet its steady state
coincides with the equilibrium Boltzmann distribution. In contrast to standard Monte Carlo algorithms
that satisfy the detailed-balance condition and only move diffusively, it features finite probability flows,
making it capable of moving ballistically. This has already led to considerable speedups in a variety
of fields ranging from physics to statistics and machine learning (see, e.g., Refs [80, 138, 139, 211]).
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6.5 Discussion

It remains to be seen whether non-local observables, for example large-scale hydrodynamic modes,
macroscopic conformations, and order parameters, can similarly benefit from non-reversibility in
chemical physics. The second paradox is that in our approach, the Boltzmann distribution exp(−𝛽𝑈) is
sampled without any approximation yet with great efficiency because the potential𝑈 (or its derivatives,
the forces) are never evaluated. This sidesteps all the problems with limited-precision calculations of
energies and forces. The third paradox is the bundling of O(𝑁) independent decisions to interrupt
the straight-line trajectory into an expression that can be evaluated in constant time. The Walker
tables channel long-range Coulomb factors into a single candidate event, which allows us to handle a
complex decision (a conjunction of O(𝑁) factor-wise decisions of independent factor potentials 𝑈𝑀 )
in a few operations, even in the 𝑁 → ∞ limit.

Our demonstration software is openly available and fully functional. As discussed, it becomes
competitive with a traditional molecular-dynamics code at high intrinsic precision. Our method is
exact from the very beginning, and future research will be able to concentrate on the most efficient
ones among a large choice of cell bounds, factorizations, Fibonacci vectors and variants of the
piecewise-deterministic Markov processes. Clearly, more interdisciplinary research from statistics to
computational chemistry will clarify whether this provides a sufficiently strong basis for an alternative
approach for practical molecular simulation.

With its guarantee for the unbiased sampling of the Boltzmann distributions, our paradigm may
serve as a gold standard for molecular simulation in general, capable of identifying artifacts and
approximations that may not have been totally eliminated through the symptomatic algorithmic
approach to molecular dynamics. Furthermore, given the greater algorithmic freedom for the Markov-
chain approach than for molecular dynamics, it may actually become faster than molecular dynamics.
Several orders of magnitude in algorithmic speed can certainly be gained by re-engineering our
software, which would then be able to tackle the peptide-in-water benchmark problem [17] that has
had a major influence over the last decade. The great simplicity of our approach and its present
implementation in the JeLLyFysh software may well facilitate further developments.
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6.A Supplementary Materials—Materials and Methods

In this section, we describe the SPC/Fw water model that we studied in this paper. We further specify
the simulation protocols for the different sampling algorithms. Finally, we report on our analysis
procedure of the time series of the electric polarization.

6.A.1 SPC/Fw Water Model

The atomistic flexible simple point-charge water model SPC/Fw defines a water molecule by three
charged interaction sites that represent the oxygen and hydrogen atoms [28]. We treat the canonical
ensemble in a cubic box with periodic boundary conditions, i.e., 𝑁 water molecules with 𝑁𝑎 = 3𝑁
atoms in a periodically repeated cubic box of side length 𝐿 at a given temperature 𝑇 ∼ 300 K. Within
any water molecule 𝑖 ∈ {1, . . . , 𝑁}, the intramolecular interactions of the SPC/Fw model consist of
two harmonic bond potentials 𝑈𝑖,1

bond and 𝑈
𝑖,2
bond that lead to fluctuations of the O H bond lengths

around their equilibrium length. Likewise, a harmonic bending potential 𝑈𝑖
bend yields a fluctuation of

the H O H opening angle around an equilibrium value. The intermolecular interactions between
two different water molecules 𝑖 and 𝑗 consist of a Lennard-Jones potential𝑈𝑖 𝑗

LJ between the two oxygen
atoms, and a Coulomb potential 𝑈𝑖 𝑗

C between all nine pairs of charged atoms. The intermolecular
potentials explicitly include the interactions between all periodic images of the two involved water
molecules. The total potential 𝑈 of an all-atom configuration x is a sum of these factor potentials:

𝑈 (x) =
𝑁∑︁
𝑖=1

[
𝑈

𝑖,1
bond(x) +𝑈

𝑖,2
bond(x) +𝑈𝑖

bend(x)
]
+

𝑁∑︁
𝑖=1

𝑖−1∑︁
𝑗=1

[
𝑈

𝑖 𝑗

LJ(x) +𝑈
𝑖 𝑗

C (x)
]
. (6.A.1)

The bond and Lennard-Jones factor potentials depend on two atomic positions; the bending and
Coulomb factor potentials depend on three and six atomic positions, respectively (see also Ref. [146,
Section V A]). The empirical parameters of the different potentials of the SPC/Fw water model are as
in Ref. [28].

6.A.2 Simulation Protocols—Molecular Dynamics

We use the feature release from February 8, 2023, of Lammps [54, 55] for the molecular-dynamics
simulations of the SPC/Fw water model in this paper. We use a spherical cut-off for the Lennard-Jones
potential. The Coulomb potential is treated by a particle–particle particle–mesh solver [49]. Unless
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explicitly specified otherwise (as, e.g., in Fig. 6.4b), the solver uses a target accuracy of 10−6. Coulomb
interactions are partly treated in discretized reciprocal space, whereby the grid size is chosen to meet the
target accuracy based on analytic error estimates obtained from a specific global charge distribution [96,
147, 210]. Thermostatting is achieved by integrating Nosé–Hoover-chain equations of motion for the
canonical ensemble [212] with a time-reversible measure-preserving Verlet integrator [213]. The time
step is 1 fs, and the temperature is relaxed in a timespan of roughly 300 time steps. This simulation
protocol for molecular dynamics in Lammps is validated by comparing numerical results for 𝑁 = 2
SPC/Fw water molecules of all sampling methods of this paper (see Fig. 6.5).

6.A.3 Simulation Protocols—Metropolis Algorithm

We use version 2.07 of the DL_MONTE software package [108, 214, 215] to sample the canonical
ensemble of the SPC/Fw water model with the reversible Metropolis algorithm [72], and minimally
amended the software to output the electric polarization. We use a spherical cut-off for the Lennard-
Jones potential. The Coulomb interaction is treated by an Ewald summation [47] with a target-accuracy
tolerance of 10−6. The simulations with the event-chain Monte Carlo algorithm in this paper move a
single atom at a time. In order to directly compare the dynamics of the reversible Metropolis algorithm
with the non-reversible event-chain Monte Carlo algorithm (see Fig. 6.3c), each trial proposes a new
position of a single random atom in a proposal cube around its original position. The new position is
accepted with the usual Metropolis criterion based on the change of energy. The size of the proposal
cube is separately adapted for the hydrogen and oxygen atoms during the simulation to obtain a target
acceptance rate of 37 %. This simulation protocol for the Metropolis algorithm in DL_MONTE is
validated by comparing numerical results for 𝑁 = 2 SPC/Fw water molecules of all sampling methods
of this paper (see Fig. 6.5).

6.A.4 Simulation Protocols—Event-Chain Monte Carlo

We develop version 2.0 of JeLLyFysh [P6, P9] for the event-chain Monte Carlo simulations of the
SPC/Fw water model in this paper. In addition to the straight variant implemented in versions < 2.0,
version 2.0 implements the generalized Newtonian event-chain Monte Carlo variant (see Section 6.B.1,
for details). We use the factorization in Eq. (6.A.1). In particular, we group all the charge–charge
Coulomb interactions between two water molecules into a single factor. Theory then predicts an
optimal logarithmic increase of the number of events from these molecular Coulomb factors [146]
(that is numerically confirmed in Fig. 6.3b).

Straight event-chain Monte Carlo (used in Fig. 6.3c) periodically aligns the unit velocity |v𝑎 | = 1 of
the active atom with the coordinate axes. We change the velocity after a chain time of 𝜏chain = 0.2𝑁 [149].
In an event triggered by a factor 𝑀, the velocity is transferred to another atom which belongs to 𝑀.
For factors with more than two atoms, the next active atom is chosen according to the ratio lifting
scheme [145, 146].

Newtonian event-chain Monte Carlo assigns a velocity label to every atom, but only moves a single
one at any time. The velocities are initialized so that the average speed of the active atom during the
simulation is approximately one: ⟨|v𝑎 |⟩ ≈ 1 (see Section 6.B.1 for details). This is possible because the
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velocities have no kinematic meaning as they have in molecular dynamics. The physical temperature
only rescales the event rates [see Eq. (6.B.5) in Section 6.B.1]. The velocities are resampled in large
time intervals of 𝜏chain = 10 000 𝑁 . This is because Newtonian event-chain Monte Carlo rotates
dipoles most efficiently in the limit 𝜏chain → ∞, while a finite value of 𝜏chain ensures irreducibility [P2,
P3]. Although our generalized Newtonian event-chain Monte Carlo can consider a general mass
matrix of the atoms in its events, we set the masses of all atoms to be equal. Then, the events of factors
𝑀 of two atoms can be treated in a deterministic way in which the two involved velocities and the
active atom always change. For factors 𝑀 of more than two atoms, we apply a stochastic scheme that
corresponds to a generalized ratio lifting scheme (see the Newtonian-pair and Newtonian-general
schemes in Section 6.B.1).

The events of the bond factors are computed exactly [see Eq. (6.B.6) in Section 6.B.1], while the
bending factors are treated with a piecewise-linear bounding potential followed by a Poisson thinning
procedure (see Ref. [P6, Section 4.4.5]). The cell-veto algorithm [148] bundles most molecular
Coulomb factors and relies on a cell-occupancy system that tracks the molecular barycenters (we
generally adapt the setup described in Ref. [P6, Section 5.3.4]). Very close molecule pairs or surplus
molecules in the cell-occupancy system are separately treated with a piecewise-linear bounding
potential. The cell bounds for 10 different Fibonacci vectors (see Section 6.B.3 for details) are
estimated by varying the position of an atom in one cell, and the position of a dipole in the other cell.
Here, the dipole is aligned with the direction of the gradient of the charge–dipole Coulomb interaction.
The maximum event rate multiplied by an empirical prefactor yields the cell bound. During the
simulation, the cell bounds in the Walker table are rescaled to the actual speed and charge of the
active atom. Events from the cell-veto algorithm are confirmed with a Poisson thinning procedure that
compares the actual event rate of the Coulomb interaction between two molecules with the sampled
cell bound. To compute the real event rate, we compute the gradients of the Coulomb potential between
the nine pairs of charged atoms [see also Eq. (6.B.5) in Section 6.B.1] with an Ewald summation [47]
that is tuned to machine precision without any assumption on the global charge distribution. We also
use the cell-veto algorithm to treat most Lennard-Jones factors, although we cut off the interaction
beyond the closest images for consistency with the other sampling algorithms. We carefully checked
that an alternative spherical cut-off does not change the results of this paper. The cell-veto algorithm
for the Lennard-Jones interaction relies on a cell-occupancy system that tracks the oxygens. Very
close or surplus oxygen pairs are treated directly [see Eq. (6.B.6) in Section 6.B.1]. The cell bounds
for 10 different Fibonacci vectors are estimated by varying the oxygen positions evenly in the two
cells, and again including an empirical prefactor. The parameters of the cell-occupancy systems, as
the cell sizes and the number of nearby cells that are excluded from the cell-veto algorithm, are tuned
to minimize computer time. As a rule of thumb, the largest possible cells that do not yield any surplus
water molecules, and two excluded layers are found to be a good choice.

These simulation protocols for straight and Newtonian event-chain Monte Carlo in JeLLyFysh are
validated by comparing numerical results for 𝑁 = 2 SPC/Fw water molecules of all sampling methods
of this paper (see Fig. 6.5).
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Figure 6.5: Validation for the SPC/Fw water model. Cumulative distribution function of the absolute value
of the electric polarization of 𝑁 = 2 SPC/Fw water molecules in a cubic box of side length 𝐿 = 20 Å. The
simulation protocols of the different sampling methods are described in Section 6.A.

6.A.5 Simulation Protocols—Creation of Initial Configurations

We create initial configurations in the range from 𝑁 = 64 to 𝑁 = 2744 SPC/Fw water molecules
with hydrogen mass 𝑚𝐻 = 1.0079 Da and oxygen mass 𝑚𝑂 = 15.9994001 Da at a density of
𝜌 = 0.97 g cm−3 using the software package Playmol [56] (commit 67eb56c from 26 November
2019). Initial configurations are equilibrated using a molecular-dynamics simulation of Lammps
in the isothermal–isobaric ensemble at pressure 𝑃 = 1 atm. Similar to thermostatting, barostatting
is achieved by integrating the appropriate Nosé–Hoover-chain equations of motion with a Verlet
integrator [212, 213] with a time step of 1 fs. This results in initial configurations for the simulations
in the canonical ensemble with the different sampling algorithms at slightly different densities for
different 𝑁 . We confirmed that these small density variations do not influence the results of this paper.

6.A.6 Analysis of the Electric Polarization

We sample the electric polarization P (or the total electric dipole moment P =
∑𝑁

𝑖=1 p𝑖 , where p𝑖 is the
molecular dipole moment of the water molecule 𝑖) of the SPC/Fw water system with the different
sampling algorithms. The generated “time”-series P(𝑡) (where the “time” 𝑡 only has a a physical
meaning in molecular dynamics) yields the normalized autocorrelation function

ΦP(𝜏) =
⟨P(𝑡) · P(𝑡 + 𝜏)⟩𝑡
⟨P(𝑡) · P(𝑡)⟩𝑡

, (6.A.2)

where we explicitly assume that ⟨P⟩ = 0 for 𝑡 → ∞. The first part of each trajectory in the canonical
ensemble is not considered in the equilibrium average. We observe an exponential decay in all
sampling algorithms and fit an exponential ∼ exp(−𝜏/𝜏Φ) to extract the time constant 𝜏Φ and its
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standard error (see also Ref. [28]). We naïvely parallelize the Metropolis and event-chain Monte Carlo
algorithms by running 20 to 50 independent simulations (where the number of runs grows with 𝑁).
For every 𝜏, we then compute the median autocorrelation function ΦP(𝜏) and estimate its error with
the bootstrap method. These errors are then considered in the least-squares fit.

The units of the autocorrelation time 𝜏Φ for the different sampling algorithms are physical time for
molecular dynamics, Monte-Carlo trials for the Metropolis algorithm, and continuous Monte-Carlo
time for the event-chain Monte Carlo algorithms. As a first measure of efficiency of the different
dynamics, we compare the autocorrelation distances 𝑑Φ (see Fig. 6.3c). It gives the average cumulative
distance moved by the atoms in each of the sampling schemes. Since only a single atom moves in our
implementation of the event-chain Monte Carlo algorithm, it follows that 𝑑ECMC

Φ
= ⟨|v𝑎 |⟩ECMC 𝜏ECMC

Φ
,

where ⟨|v𝑎 |⟩ECMC is the average speed of the active atom during the simulation. For molecular
dynamics, we can compute the average speed of the hydrogen and oxygen atoms 𝑡 ∈ {H,O} with the
Maxwell–Boltzmann distribution:

⟨|v𝑡 |⟩MD =

√︄
8𝑘B𝑇

𝜋𝑚𝑡

, (6.A.3)

which yields 𝑑MD
Φ

= 𝑁 (2⟨|vH |⟩MD + ⟨|vO |⟩MD) 𝜏MD
Φ

. In the Metropolis algorithm, each trial samples a
random displacement vector d𝑡 = [ran(−𝛿𝑡 , 𝛿𝑡 ), ran(−𝛿𝑡 , 𝛿𝑡 ), ran(−𝛿𝑡 , 𝛿𝑡 )]𝑇 for a random atom, where
𝛿𝑡 is tuned independently for the oxygen and hydrogen atoms 𝑡 ∈ {H,O} to accept the displacement
with probability 𝑝 ≈ 0.37. We can compute the average length ⟨|d𝑡 |⟩Met of the sampled displacement
vector as

⟨|d𝑡 |⟩Met =
1

8𝛿3
𝑡

∫ 𝛿𝑡

−𝛿𝑡

d𝑥
∫ 𝛿𝑡

−𝛿𝑡

d𝑦
∫ 𝛿𝑡

−𝛿𝑡

d𝑧
√︃
𝑥2 + 𝑦2 + 𝑧2 ≈ 0.961 𝛿𝑡 . (6.A.4)

Neglecting correlations between rejection probability and the displacement for this first measure of
efficiency, we get 𝑑Met

Φ
= 𝑝 (2⟨|dH |⟩Met/3 + ⟨|dO |⟩Met/3) 𝜏Met

Φ
.

Finally, the computer autocorrelation time of our generalized Newtonian event-chain Monte Carlo
algorithm (see Fig. 6.4b) is obtained by combining the autocorrelation distance (see Fig. 6.3c), the
event rates (see Fig. 6.3b), and the computer time per event in JeLLyFysh (see Fig. 6.3a). Similarly,
we measure the computer time per time step of molecular dynamics in Lammps for different target
accuracies of its particle–particle particle–mesh solver (see Fig. 6.4a). This is then combined with the
autocorrelation time in the number of time steps.

6.B Supplementary Materials—Supplementary Text

In this supplementary text, we generalize Newtonian event-chain Monte Carlo to smooth factor
potentials depending on an arbitrary number of atoms. We further prove that this algorithm satisfies
the necessary global-balance condition. Finally, we report on our generation of Fibonacci vectors on
the unit sphere.
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6.B.1 Generalized Newtonian Event-Chain Monte Carlo

Newtonian event-chain Monte Carlo was originally formulated for the hard-sphere model that contains
peculiar stepwise-changing two-body factor potentials [124]. Among various event-chain Monte Carlo
variants, it was shown to escape faster from sparse hard-disk packings [P3] and to produce favorable
rotation dynamics in tethered hard-disk dipoles [P2]. Its superiority is confirmed for the rotation
dynamics of SPC/Fw water molecules in this paper, but requires its generalization to smooth factor
potentials that depend on an arbitrary number of atom positions.

We follow the initial introduction of non-reversible event-chain Monte Carlo as a lifted continuous-
time Markov process [121] (see also the formulation as a piecewise-deterministic Markov process
in Ref. [137]). For Newtonian event-chain Monte Carlo for 𝑁𝑎 three-dimensional atoms, the lifting
framework [111, 112] (see also Refs [80] and [P1, Appendix A]) extends the physical all-atom
configuration x to (x, v, 𝑖), with auxiliary lifting variables that represent an all-atom velocity v
and an activity label 𝑖, respectively. The physical sample space x ∈ Ω is thus extended to the
lifted sample space (x, v, 𝑖) ∈ Ω̂ = Ω × V3𝑁𝑎 (𝐸kin) × N , where N = {1 . . . 𝑁𝑎} the set of atom
indices, and V3𝑁𝑎 (𝐸kin) = {v ∈ R3𝑁𝑎 : v𝑇 · M · v = 2𝐸kin} with a positive-definite symmetric mass
matrix M and total kinetic energy 𝐸kin. The Markov process targets the lifted stationary distribution
𝜋̂(x, v, 𝑖) = 𝜋(x) × 𝜇V (v) × 𝜇N (𝑖) that separates into the factorized Boltzmann distribution 𝜋(x) ∝
exp[−𝛽𝑈 (x)] = ∏

𝑀 exp[−𝛽𝑈𝑀 (x)], and the uniform distributions 𝜇V (v) onV3𝑁𝑎 , and 𝜇N (𝑖) onN .
Given a lifted configuration (x(𝑡0), v(𝑡0), 𝑖) at time 𝑡0, Newtonian event-chain Monte Carlo

continuously moves the single active atom 𝑖 starting from its position x𝑖 (𝑡0) with its constant velocity
v𝑖 = v𝑖 (𝑡0) up to an event at time 𝑡ev > 𝑡0, which interrupts the motion: x𝑖 (𝑡) = x𝑖 (𝑡0) + v𝑖 (𝑡 − 𝑡0) for
𝑡0 <= 𝑡 < 𝑡ev. The velocities v 𝑗 of all other atoms 𝑗 ≠ 𝑖 in the all-atom velocity v are, at this point,
hypothetical, that is, mere labels. The time-dependent event rate 𝜆(𝑡), that is, the probability density
to interrupt the piecewise-deterministic motion of the active atom 𝑖, is given by a sum of factor event
rates 𝜆𝑀 (𝑡):

𝜆(𝑡) =
∑︁
𝑀

𝜆𝑀 (𝑡) =
∑︁
𝑀

𝛽max
[
0,∇x𝑖𝑈𝑀 (x(𝑡)) · v𝑖

]
. (6.B.5)

Every factor 𝑀 can be considered as statistically independent. Each of them stochastically generates
a candidate event time 𝑡ev,𝑀 in an inhomogeneous Poisson process based on its factor event rate
𝜆𝑀 (𝑡) ≥ 0 (that is only nonzero for factor potentials 𝑈𝑀 that are actually changed by the motion of
the active atom):

ran𝑀 (0, 1) = exp
[
−

∫ 𝑡ev,𝑀

𝑡0

𝜆𝑀 (𝑡) d𝑡
]
. (6.B.6)

Here, ran𝑀 (0, 1) is a uniformly distributed random number between 0 and 1 that is drawn separately
for each factor 𝑀. In Eq. (6.B.6), the cumulative increments of the factor potential 𝑈𝑀 under the
motion of the active atom with its velocity v𝑖 since 𝑡0 are equal to an exponentially distributed random
number with mean 1/𝛽 at the time 𝑡ev,𝑀 . If the computation of 𝑡ev,𝑀 from Eq. (6.B.6) is tedious or
even impossible, a Poisson thinning procedure may yield candidate event times [165].

At the event time 𝑡ev = min𝑀 𝑡ev,𝑀 , the motion of the active atom 𝑖 is interrupted at the lifted
configuration (x = x(𝑡ev), v, 𝑖). An event changes the lifting variables and sets the initial lifted
configuration (x, v′, 𝑗) for the next piece in the piecewise-deterministic Markov process. The event is
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realized by a unique event-factor 𝑀ev = arg min𝑀 𝑡ev,𝑀 . Generalized Newtonian event-chain Monte
Carlo proposes an update of the all-atom velocity v → v′ at time 𝑡ev with a force kick in the direction
of the gradient of the event-factor potential:

v′ = v − 2
v𝑇 · ∇x𝑈𝑀ev

(∇x𝑈𝑀ev)𝑇 · M−1 · ∇x𝑈𝑀ev

M−1 · ∇x𝑈𝑀ev . (6.B.7)

This force kick leaves the kinetic energy 2𝐸kin = v𝑇 · M · v invariant and applying it twice yields the
original v [116]. The event-factor potential only acts on a small subensemble 𝑘 ∈ 𝑀ev of atoms, and
thus only the velocities v𝑘 of these contributing atoms are possibly modified. For the simple choice of
an identity mass matrix M = I, Eq. (6.B.7) may be written as

v′𝑘 = v𝑘 − 2
∑

𝑗∈𝑀ev v𝑇
𝑗
· ∇x 𝑗

𝑈𝑀ev∑
𝑗∈𝑀ev

��∇x 𝑗
𝑈𝑀ev

��2 ∇x𝑘𝑈𝑀ev . (6.B.8)

In Newtonian event-chain Monte Carlo, only a single active atom moves with its velocity at any
time. At an event, it must choose the next active atom 𝑘 ∈ 𝑀ev from the event factor. It also chooses
to either change the velocity v → v′ of all contributing atoms according to Eq. (6.B.7), or to keep
the all-atom velocity constant v → v. Generalized Newtonian event-chain Monte Carlo offers two
schemes to treat events. The Newtonian-general scheme applies to general mass matrices M and
factors that depend on an arbitrary number of atoms. The Newtonian-pair scheme only applies to
distance-dependent pair potentials and identity mass matrix M = I.

In the Newtonian-general scheme, the probability for each possible choice (𝑘, v′) or (𝑘, v) of the
lifting variables is given by max[0,−∇x𝑘𝑈𝑀ev · v′

𝑘
]/𝐶 or max[0,−∇x𝑘𝑈𝑀ev · v𝑘]/𝐶, respectively.

Here, 𝐶 is a common normalization factor. If the force kick is not applied and v stays constant, the
active atom always changes because the factor event rate was positive at the time of the event [see
Eqs (6.B.5) and (6.B.6)]. Likewise, if the event-factor potential only depends on a single atom (as for
external potentials), the force kick is always applied.

In the Newtonian-pair scheme for distance-dependent pair potentials between two atoms 𝑎 and
𝑏, 𝑈𝑀ev = 𝑈𝑀ev ( |x𝑎 − x𝑏 |) and an identity mass matrix M = I, we alternatively exploit the inherent
translational invariance to treat the event deterministically. We always apply the force kick in
Eq. (6.B.8) to modify both v𝑎 and v𝑏, and always change the active atom within the event factor. In
this case, Eq. (6.B.8) is equivalent to an elastic Newtonian collision between two particles of equal
mass, and this alternative scheme recovers the original formulation of Newtonian event-chain Monte
Carlo for the hard-sphere model [124].

Samples of all-atom configurations x that can be used to compute observables are taken at periodic
time intervals [124]. Furthermore, Newtonian event-chain Monte Carlo requires resamplings of the
all-atom velocity v and the active atom 𝑖 in periodic time intervals 𝜏chain to become irreducible [P2].
We sample v and 𝑖 from their respective stationary distributions 𝜇V (v) and 𝜇N (𝑖). For v, this is
equivalent to sampling a multivariate Gaussian distribution with mean 𝝁 = 0 and covariance matrix
𝚺 = M−1, followed by corrections of the total velocity 1𝑇 · v → 0 and v𝑇 ·M · v → 2𝐸kin. The activity
label 𝑖 is sampled uniformly from the the set N = {1 . . . 𝑁𝑎}.
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6.B.2 Proof of Correctness of Generalized Newtonian Event-Chain Monte Carlo

In order to prove the correctness of the Newtonian event-chain Monte Carlo algorithm for general
smooth interactions, we must show that the global balance condition is satisfied. The total probability
flow into any lifted configuration (x, v, 𝑖) ∈ Ω̂ consists of a physical flow F phys(x, v, 𝑖) and a lifting
flow F lift(x, v, 𝑖) and must equal its statistical weight 𝜋̂(x, v, 𝑖):

𝜋̂(x, v, 𝑖) = F phys(x, v, 𝑖) + F lift(x, v, 𝑖). (6.B.9)

The physical flow into (x, v, 𝑖) stems from the continuous movement of the active atom 𝑖 that was not
interrupted by an event with the event rate given in Eq. (6.B.5). With x′ = (x1, . . . , x𝑖 −v𝑖d𝑡, . . . , x𝑁𝑎

),
we get

F phys(x, v, 𝑖) = 𝜋̂(x′, v, 𝑖)
{

1 − 𝛽
∑︁
𝑀

max
[
0,∇x′

𝑖
𝑈𝑀 · v𝑖

]}
= 𝜋̂(x, v, 𝑖)

{
1 − 𝛽

∑︁
𝑀

max
[
0,−∇x𝑖𝑈𝑀 · v𝑖

]}
C 𝜋̂(x, v, 𝑖) +

∑︁
𝑀

F phys
𝑀

(x, v, 𝑖),

(6.B.10)

where the second line uses the detailed-balance property of the factorized Metropolis filter that yields
the event rates in Eq. (6.B.5) and allows to treat all factors as statistically independent [121]. The
lifting flow into (x, v, 𝑖) stems from interrupted motions of lifted configurations (x, v′, 𝑗) with different
lifting variables v′ and 𝑗 but the same configuration x:

F lift(x, v, 𝑖) = 𝛽
∑︁
𝑀

∑︁
𝑗∈N

∫
V3𝑁𝑎 (𝐸kin )

d3𝑁𝑎v′ 𝜋̂(x, v′, 𝑗) max
[
0,∇x 𝑗

𝑈𝑀 · v′𝑗
]
𝑝𝑀
(v′ , 𝑗 ) , (v,𝑖)

C
∑︁
𝑀

F lift
𝑀 (x, v, 𝑖).

(6.B.11)

Here, 𝑝 (v′ , 𝑗 ) , (v,𝑖) is the probability to change the lifting variables (v′, 𝑗) to (v, 𝑖). For every factor
𝑀, the lifting flow F lift

𝑀
(x, v, 𝑖) in Eq. (6.B.11) exactly cancels the physical flow F phys

𝑀
(x, v, 𝑖) in

Eq. (6.B.10) so that the global-balance condition in Eq. (6.B.9) is satisfied. A trivial (inefficient)
solution would be to simply invert the velocity of the active atom 𝑖 in an event while keeping it active:
𝑝𝑀
(v′ , 𝑗 ) , (v,𝑖) = 𝛿𝑖 𝑗 𝛿

(3) (v𝑖 − v′
𝑖
).

We presented two schemes for the update of the lifting variables in an event of generalized Newtonian
event-chain Monte Carlo. The first stochastic Newtonian-general scheme applies for a general number
of atoms on the event factor. The second deterministic Newtonian-pair scheme exploits the translational
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invariance of distance-dependent pair potentials. For the Newtonian-general scheme, we get

𝑝𝑀
(v′ , 𝑗 ) , (v,𝑖) =

max
[
0,−∇x𝑖𝑈𝑀 · v𝑖

]
𝐶

[
𝛿 (3𝑁𝑎 )

(
v − v′ + 2

(v′)𝑇 · ∇x𝑈𝑀

(∇x𝑈𝑀 )𝑇 · M−1 · ∇x𝑈𝑀

M−1 · ∇x𝑈𝑀

)
+ 𝛿 (3𝑁𝑎 ) (v − v′)

]
=

max
[
0,−∇x𝑖𝑈𝑀 · v𝑖

]
𝐶

[
𝛿 (3𝑁𝑎 )

(
v′ − v + 2

v𝑇 · ∇x𝑈𝑀

(∇x𝑈𝑀 )𝑇 · M−1 · ∇x𝑈𝑀

M−1 · ∇x𝑈𝑀

)
+ 𝛿 (3𝑁𝑎 ) (v′ − v)

]
,

(6.B.12)

where the first term applies the force kick, while the second does not. From the necessary condition

1 =
∑︁
𝑘∈N

∫
V3𝑁𝑎 (𝐸kin )

d3𝑁𝑎v 𝑝𝑀
(v′ , 𝑗 ) , (v,𝑘 ) , (6.B.13)

it follows that

𝐶 =
∑︁
𝑘∈N

{
max

[
0,−∇x𝑘𝑈𝑀 ·

(
v′𝑘 − 2

(v′)𝑇 · ∇x𝑈𝑀

(∇x𝑈𝑀 )𝑇 · M−1 · ∇x𝑈𝑀

(
M−1 · ∇x𝑈𝑀

)
𝑘

)]
+ max

[
0,−∇x𝑘𝑈𝑀 · v′𝑘

] }
=

∑︁
𝑘∈N

{
max

[
0,∇x𝑘𝑈𝑀 ·

(
v′𝑘 − 2

(v′)𝑇 · ∇x𝑈𝑀

(∇x𝑈𝑀 )𝑇 · M−1 · ∇x𝑈𝑀

(
M−1 · ∇x𝑈𝑀

)
𝑘

)]
+ max

[
0,∇x𝑘𝑈𝑀 · v′𝑘

] }
.

(6.B.14)

Here, the second rewriting follows from expressing the trivial equality

v𝑇 · ∇x𝑈𝑀 +
(
v − 2

v𝑇 · ∇x𝑈𝑀

(∇x𝑈𝑀 )𝑇 · M−1 · ∇x𝑈𝑀

M−1 · ∇x𝑈𝑀

)𝑇
· ∇x𝑈𝑀 = 0 (6.B.15)

as a sum over 𝑘 ∈ N and from grouping the positive and negative terms separately. The normalization
factor𝐶 in 𝑝𝑀

(v′ , 𝑗 ) , (v,𝑖) is the same for every possible next active atom 𝑖. Because of the 𝛿 (3𝑁𝑎 ) -functions
in Eq. (6.B.12), the normalization factor 𝐶 can also be written in terms of the velocity v after the force
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kick by replacing v′ → v in Eq. (6.B.14). This yields

F lift
𝑀 (x, v, 𝑖) = 𝛽 𝜋̂(x, v, 𝑖) max

[
0,−∇x𝑖𝑈𝑀 · v𝑖

] 1
𝐶

∑︁
𝑗∈N

{
max

[
0,∇x 𝑗

𝑈𝑀 ·
(
v 𝑗 − 2

v𝑇 · ∇x𝑈𝑀

(∇x𝑈𝑀 )𝑇 · M−1 · ∇x𝑈𝑀

(
M−1 · ∇x𝑈𝑀

)
𝑗

)]
+ max

[
0,∇x 𝑗

𝑈𝑀 · v 𝑗

] }
= 𝛽 𝜋̂(x, v, 𝑖) max

[
0,−∇x𝑖𝑈𝑀 · v𝑖

]
= −F phys

𝑀
(x, v, 𝑖),

(6.B.16)

where we used that the velocity v and activity label 𝑖 are uniformly distributed over their sample
spaces V3𝑁𝑎 (𝐸kin) and N , respectively. Equation (6.B.16) concludes the proof that the presented
Newtonian-general scheme for the update of the lifting variables in an event by a general factor
potential satisfies the global-balance condition of Eq. (6.B.9). The reflective [115] and forward [150]
event-chain Monte Carlo variants can likewise be generalized to factor potentials depending on an
arbitrary number of atoms.

For the Newtonian-pair scheme for distance-dependent pair potentials and identity mass matrix
M = I, we get

𝑝𝑀
(v′ , 𝑗 ) , (v,𝑖) =


𝛿 (3𝑁𝑎 )

(
v − v′ + 2 (v′ )𝑇 ·∇x𝑈𝑀

(∇x𝑈𝑀 )𝑇 ·∇x𝑈𝑀
∇x𝑈𝑀

)
if 𝑖, 𝑗 ∈ 𝑀 and 𝑖 ≠ 𝑗 ,

0 otherwise,

=


𝛿 (3𝑁𝑎 )

(
v′ − v + 2 v𝑇 ·∇x𝑈𝑀

(∇x𝑈𝑀 )𝑇 ·∇x𝑈𝑀
∇x𝑈𝑀

)
if 𝑖, 𝑗 ∈ 𝑀 and 𝑖 ≠ 𝑗 ,

0 otherwise.

(6.B.17)

With 𝑖, 𝑗 ∈ 𝑀 and 𝑖 ≠ 𝑗 , this yields

F lift
𝑀 (x, v, 𝑖) = 𝛽 𝜋̂(x, v, 𝑖) max

[
0,∇x 𝑗

𝑈𝑀 ·
(
v 𝑗 − 2

v𝑇 · ∇x𝑈𝑀

(∇x𝑈𝑀 )𝑇 · ∇x𝑈𝑀

∇x 𝑗
𝑈𝑀

)]
= 𝛽 𝜋̂(x, v, 𝑖) max

[
0,∇x 𝑗

𝑈𝑀 · v 𝑗 − 2
v𝑇
𝑖
· ∇x𝑖𝑈𝑀 + v𝑇

𝑗
· ∇x 𝑗

𝑈𝑀��∇x𝑖𝑈𝑀

��2 + ��∇x 𝑗
𝑈𝑀

��2 ��∇x 𝑗
𝑈𝑀

��2]
= 𝛽 𝜋̂(x, v, 𝑖) max

[
0,−∇x𝑖𝑈𝑀 · v𝑖

]
= −F phys

𝑀
(x, v, 𝑖).

(6.B.18)

Here, we again used the uniform distributions of v and 𝑖 and the translational invariance ∇x𝑖𝑈𝑀 =

−∇x 𝑗
𝑈𝑀 . Thus, also the Newtonian-pair scheme satisfies the global-balance condition of Eq. (6.B.9).

We note that it always applies the force kick.
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6.B.3 Fibonacci Vectors

The cell-veto algorithm was previously only used for the straight variant of event-chain Monte
Carlo [P6, 146, 148]. Its finite set of possible velocities D of the single active atom 𝑎 allows to set
up a Walker table for every velocity v𝑎 ∈ D. For instance, for factor pair potentials between the
active atom 𝑎 and another atom 𝑏 at positions x𝑎 and x𝑏, 𝑈𝑀 (x) = 𝑈𝑀 (x𝑎, x𝑏), every cell bound
𝑞cell
𝑀

(C𝑎, C𝑏, v𝑎) for the pair of cells C𝑎 and C𝑏 in the Walker table may be written as

𝑞cell
𝑀 (C𝑎, C𝑏, v𝑎) = max

x𝑎∈C𝑎 ,x𝑏∈C𝑏
𝛽max

[
0,∇x𝑎𝑈𝑀 (x𝑎, x𝑏) · v𝑎

]
. (6.B.19)

In principle, a Walker table must be precomputed for every velocity v𝑎 ∈ D and for every possible
cell C𝑎 of the active atom. Symmetries, such as a translational invariance of the factor potential, may
heavily reduce the necessary number of Walker tables [146]. During the straight event-chain Monte
Carlo simulation, the relevant Walker table is determined by the cell of the currently active atom
and its velocity. The generalization of Eq. (6.B.19) to more complex factors is straightforward. For
example, in order to treat the Coulomb interaction between two water molecules in the SPC/Fw water
model, the position and orientation of the water molecule containing the active atom may be varied in
C𝑎, while the position and orientation of the other molecule is varied in C𝑏. From a practical point of
view, the cell bounds 𝑞cell

𝑀
(C𝑎, C𝑏) are usually not computed exactly but rather approximated, e.g., by

considering a finite set of positions x𝑎 ∈ C𝑎 and x𝑏 ∈ C𝑏, and including a corrective multiplicative
prefactor [P6]. As long as the approximated cell bound satisfies 𝑞cell

𝑀
(C𝑎, C𝑏, v𝑎) ≥ 𝑞cell

𝑀
(C𝑎, C𝑏, v𝑎), a

Poisson thinning procedure [165] corrects any overestimate. The quality of 𝑞cell
𝑀

(C𝑎, C𝑏, v𝑎), however,
does influence the performance because higher cell bounds in the cell-veto algorithm yield more
events per unit distance that have to be confirmed by computing the actual event rate.

The inherent discretization of continuous space in Eq. (6.B.19) can be translated to a continuous
velocity space, as it appears, e.g., in Newtonian event-chain Monte Carlo. Consider a finite number of
unit vectors v̂𝑑 on the two-dimensional unit sphere, and let V𝑑 be the associated Voronoi cells under
some distance function. We can then formally compute the cell bounds for every Voronoi cell as

𝑞cell
𝑀 (C𝑎, C𝑏,V𝑎) = max

x𝑎∈C𝑎 ,x𝑏∈C𝑏 ,v𝑎∈V𝑎

𝛽max
[
0,∇x𝑎𝑈𝑀 (x𝑎, x𝑏) · v𝑎

]
. (6.B.20)

The results are used to precompute Walker tables for every Voronoi cell V𝑎 and for every cell C𝑎,
where symmetries may again heavily reduce the number of actually necessary tables. During the
Newtonian event-chain Monte Carlo simulation, the relevant Walker table is determined by finding
the cell of the currently active atom and the Voronoi cell of its normalized velocity v𝑎/|v𝑎 |. We can
then correct all cell bounds in the relevant Walker table to the actual speed of the active atom by
multiplying them with |v𝑎 |.

In this paper, as proof of concept, we map a generalized Fibonacci lattice onto a two-dimensional
unit sphere by the Lambert cylindrical equal-area projection to generate 𝐷 unit vectors v̂fib

𝑑
:

v̂fib
𝑑 = (cos 𝜙𝑑 sin 𝜃𝑑 , sin 𝜙𝑑 sin 𝜃𝑑 , cos 𝜃𝑑)𝑇 , (6.B.21)
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where 0 ≤ 𝑑 < 𝐷 and

𝜙𝑑 =
2𝜋𝑑
𝜑

,

𝜃𝑑 = arccos
(
1 − 2(𝑑 + 𝜀)

𝐷 − 1 + 2𝜀

)
,

(6.B.22)

with the golden ratio 𝜑 = (1 +
√

5)/2 [216–218]. The empirical choice of the parameter 𝜀 = 0.36
optimizes the average nearest-neighbor distance of the Fibonacci vectors v̂𝑑 . As a distance function
to construct the Voronoi cells V𝑑 , we use the quick-to-evaluate cosine distance. Equations (6.B.21)
and (6.B.22) efficiently generate an arbitrary number of Fibonacci vectors with a nearly uniform
distribution. However, there is no efficient inverse mapping from a general velocity v𝑎 to the closest
Fibonacci vector v̂𝑑 . This is not a problem in this paper because we choose 𝐷 = 10 small. Then,
v̂𝑑 can be found by brute force. If considerably larger values of 𝐷 become necessary, other point
configurations on the two-dimensional unit sphere may be considered [218, 219]. For the uniform
SPC/Fw water systems in this paper, the Walker tables do not strongly depend on the respective
Fibonacci vector. The proper discretization of velocity space will, however, impact the performance
of Newtonian event-chain Monte Carlo in nonuniform systems.
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CHAPTER 7

Conclusion

The four research papers of this doctoral thesis are clearly connected in one way or another. On the
one hand, they all considered theoretical foundations of non-reversible Markov-chain Monte Carlo
(MCMC) algorithms. On the other hand, they all pursued the overarching objective of this doctoral
thesis—the introduction of a competitive, rigorous paradigm for molecular simulation that is based on
non-reversible Markov chains.

For the moment, let us recapitulate the novel scientific insights resulting from this doctoral thesis
focusing on the theoretical point of view. Chapter 3 (see Ref. [P1]) introduced non-reversible direction
sweeps. These are reminiscent of the widely-used sequential sweeps in the reversible Metropolis
algorithm that propose a local Monte Carlo move for every interaction site in succession. In a direction
sweep, the local move is proposed along a direction that is drawn from a given direction set in
succession. For a single tethered hard-disk dipole, it was shown analytically that the introduction of a
non-reversible direction sweep into a local reversible MCMC algorithm fundamentally changes its
dynamics. This is equivalent to the elementary difference between equilibrium and non-equilibrium
statistical physics. Numerical computations of mixing times showed that small direction sets should
be avoided. In comparison to a completely random choice of the direction, a direction sweep over
large direction sets somewhat reduced mixing times, which is similar to the slight speedup that can be
typically obtained with sequential proposal sweeps. Chapter 4 (see Ref. [P2]) considered large systems
of the hard-disk dipoles. For the non-reversible straight event-chain Monte Carlo (ECMC) algorithm,
we found that a direction sweep is indeed slightly faster for decorrelating the polarization (i.e., for
rotating the individual dipoles) than choosing the direction at random. It would be interesting to see in
the future whether direction sweeps over large direction sets could also maintain that advantage in
practical applications of the Metropolis algorithm.

From a theoretical point of view, Chapter 4 (see Ref. [P2]) also studied subtleties concerning
the irreducibility of different ECMC variants for a single tethered hard-disk dipole. Reflective and
Newtonian ECMC change the velocity of the active disk in every event. Still, it was shown that they
strictly require random resamplings of the active disk and its velocity after the end of an event chain
in periodic time intervals. Straight ECMC transfers the velocity between disks in an event. It may
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consider deterministic changes of the velocity after each event chain, for instance, by using a direction
sweep, but it strictly requires a random resampling of the active disk. Although no differences in static
observables were observed with or without resamplings in large systems of the hard-disk dipoles,
simply including the appropriate resamplings appears more rigorous. Event-based randomness as in
forward ECMC can resolve these issues more generally and does not require any resamplings.

Chapter 5 (see Ref. [P3]) examined tightly confined 𝜀-relaxed Böröczky configurations of hard
disks in a periodic box that are constructed from locally stable sparse Böröczky packings. Escape
times from 𝜀-relaxed Böröczky configurations were proposed for the analysis and benchmarking of
local MCMC algorithms. They may well model the probability flow across a bottleneck in the Markov
chains. Within the family of ECMC algorithms, a scaling theory resulted in widely different scalings
of the escape times in the relaxation parameter 𝜀. The significant power-law-to-logarithm speedup of
reflective, forward, and Newtonian ECMC with respect to straight ECMC is rooted in their lack of an
intrinsic scale and their event-driven implementation. Locally stable sparse Böröczky packings were
constructed for continuous ranges of densities and may appear as backbones in hard-disk systems at
higher densities. The space of the derived 𝜀-relaxed Böröczky configurations is thus a finite portion of
the configuration space that is practically excluded from any local MCMC simulation of the hard-disk
system. Since, more generally, one cannot prove the irreducibility of local MCMC algorithms in
the hard-disk system in a (periodic) box, the question of how to remedy the undoubted usefulness of
MCMC simulations was discussed. The open-source software package BigBoro provides an easy
access to the construction of Böröczky packings that, as advocated, can be subsequently used to
benchmark local MCMC algorithms. For example, they can be directly used to analyze ECMC with
the arbitrary-precision implementations of various ECMC variants that are also included in BigBoro.

Again only considering theoretical aspects of non-reversible MCMC algorithms, Chapter 6 (see
Ref. [P4]) generalized Newtonian ECMC from the stepwise-changing translationally-invariant pair
interactions of the hard-disk system to the smooth interactions between an arbitrary number of
interaction sites of molecular systems. In every event, generalized Newtonian ECMC decides
stochastically about the application of a force kick that may further consider general mass matrices of
the interaction sites. Naturally, it was proven that generalized Newtonian ECMC satisfies the necessary
global-balance condition. In addition, it was shown that the cell-veto algorithm can be used for a
continuous space of possible velocities of the active interaction site in ECMC. This was achieved by
discretizing the continuous velocity space into Voronoi cells of a finite number of Fibonacci vectors for
the estimation of the cell bounds in the cell-veto algorithm. This generalization still treats long-range
interactions rigorously exact with an O(1) computational complexity per event.

This doctoral thesis ultimately fulfills its overarching objective of the introduction of a competitive,
rigorous paradigm for molecular simulation. The framework of non-reversible ECMC or, more
generally, the framework of piecewise-deterministic Markov processes, rigorously samples the
canonical ensemble of molecular systems. The Boltzmann distribution is expressed as a product
of statistically independent factor distributions that each depend on their own factor potential.
Independently of the system size, a factor potential only involves the interactions between a small
number of interaction sites. Every long-range-interacting factor potential between such a small
number of interaction sites can be efficiently treated with constant computational cost and without
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approximations. The cell-veto algorithm further bundles the long-range-interacting factors together.
Instead of treating every factor individually, a discrete probability distribution is sampled with constant
computational complexity. This provides the only factor from the bundled set whose potential is treated
with the actual positions of its interaction sites. In order to advance 𝑁 long-range-interacting sites by
a constant distance, the non-reversible MCMC approach to molecular simulation only requires an
O(𝑁 log 𝑁) computational complexity. The open-source JeLLyFysh application implements ECMC
as a specific example of the introduced paradigm for molecular simulation based on non-reversible
Markov chains. The simulation of the thermodynamic equilibrium of long-range-interacting SPC/Fw
water molecules in a periodic cubic box with straight ECMC in JeLLyFysh-Version1.0, however,
showed an unfavorable dynamical arrest of the polarization. Hence, the competitiveness of the novel
paradigm for molecular simulation could not be proven. Gaining an understanding and finding a
solution for this problem was an essential motive underlying a great part of this doctoral thesis.

Now, let us recapitulate the novel scientific insights resulting from this doctoral thesis in terms of
the search for a proof that the rigorous paradigm for molecular simulation based on non-reversible
Markov chain is competitive. Chapter 3 (see Ref. [P1]) considered the mixing time of a single tethered
hard-disk dipole and found that the small number of possible velocities in the straight ECMC variant
of JeLLyFysh-Version1.0 was particularly ill-suited for inducing rotations of dipoles or molecules. In
large systems of tethered hard-disk dipoles, Chapter 4 (see Ref. [P2]) found that straight, reflective, and
forward ECMC show similar performances for the decorrelation of the polarization at high densities.
Newtonian ECMC, however, stood out and gave a considerable speedup with respect to straight ECMC.
Chapter 5 (see Ref. [P3]) witnessed widely different behaviors of different ECMC variants in their
escape times from tightly confined 𝜀-relaxed Böröczky configurations. Here, straight ECMC suffers
from the explicit choice of an intrinsic scale by choosing the length of its event chains. Reflective,
forward, and Newtonian ECMC become fastest in the limit of infinitely long event chains. This was
also found for the decorrelation of the polarization in the tethered hard-disk dipole system in Chapter 4
which, from a practical point of view, conveniently removes the need for fine-tuning the chain time.
After this systematic evaluation of the manifold of ECMC variants, it was clear that the straight ECMC
variant in JeLLyFysh-Version1.0 was the wrong choice for competitive simulations of the SPC/Fw
water model.

Chapter 6 reconsidered the problem of sampling the canonical ensemble of long-range-interacting
SPC/Fw water molecules in a periodic cubic box. Now, JeLLyFysh-Version2.0 that implements
generalized Newtonian ECMC was used. The culmination of this doctoral thesis showed that
generalized Newtonian ECMC yields an order-of-magnitude speedup over straight ECMC in the
characteristic distance that every interaction site has to travel to decorrelate the polarization. Hence,
JeLLyFysh-Version2.0 solves the problem of the dynamical arrest of the polarization in JeLLyFysh-
Version1.0 and allows to consider much larger system sizes. Furthermore, a direct comparison to
molecular dynamics (MD) was carried out. MD is nowadays the prevalent method of choice in
long-range-interacting molecular systems. The computational complexity of MD to advance 𝑁

long-range-interacting sites by a constant distance when using widespread fast mesh-based Ewald
methods is O(𝑁 log 𝑁), as in ECMC. In contrast to ECMC, however, MD only computes the long-range
interactions up to a given target accuracy. Increasing the desired accuracy also increases the prefactor
of the O(𝑁 log 𝑁) scaling. Therefore, it was numerically shown that generalized Newtonian ECMC
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in JeLLyFysh-Version2.0, whose treatment of long-range interactions is tuned to machine precision,
reaches a break-even point with MD in Lammps at a high precision that is below machine precision.
This concluded the first practical proof of the competitiveness of the novel rigorous paradigm for
molecular simulation based on non-reversible Markov chains in this doctoral thesis.

7.1 Discussion

The two corner stones of molecular simulation have always been MD and MCMC. MCMC algorithms
are designed from the beginning to sample a given probability distribution such as the Boltzmann
distribution of the canonical ensemble (see Section 1.3). By introducing thermostats that mimic
the effects of a thermal reservoir, it was also understood that MD can achieve the same goal (see
Section 1.2). Historically, MCMC algorithms for molecular simulations were for a long time restricted
to local reversible MCMC algorithms with slow diffusive dynamics and an inefficient treatment of
long-range interactions (see Section 1.3.1). This resulted in the dominance of MD in the field of
molecular simulations that one observes today, especially when long-range interactions are present.

Non-reversible MCMC algorithms such as ECMC are fundamentally different from their reversible
counterparts (see Section 1.3.2). First, their non-reversibility makes them capable of moving ballistically
instead of diffusively. Even when they reached their stationary distribution, finite probability flows
effectively induce non-equilibrium dynamics. Second, the factorization of the Boltzmann distribution
removes global computations of the potential-energy change (or, analogously, the force in MD) that
depend on the entire configuration. Instead, factor potentials that only depend on a limited number
of interaction sites are evaluated. This enables a simple and exact treatment of long-range interactions
in their respective factors and sidesteps the necessity for limited-precision computations of potential
energies (or forces). Third, the cell-veto algorithm allows to achieve a competitive computationally
complexity by treating the large set of long-range interacting factor potentials at once.

The rigorous paradigm for molecular simulations of the thermodynamic equilibrium based on
non-reversible MCMC algorithms has to compete with the thermostatted MD approach. MD controls
its approximations and unphysical artifacts algorithmically (see Section 1.2). Here, the choice of
the accuracy of an MD simulation, which, for instance, follows from the size of the discrete time
steps or an inaccurate treatment of long-range interactions, attempts a balancing act between reducing
computational cost and avoiding unphysical results. In critical applications that have to strictly
distinguish between unphysical results arising from artifacts and approximations of MD, on the one
hand, and between predictions of real physical phenomena from the underlying model, on the other
hand, the rigorous paradigm of this doctoral thesis may act as a gold standard. Because it is exact from
the beginning, it is capable of filtering out the unwanted unphysical results. Here, one should note that,
naturally, every molecular-mechanics model is an approximation of the physical reality in itself. The
choice of a particular model depends on the specific research question. Therefore, any numerical result
from a molecular simulation of the model will not perfectly agree with experiments. Still, the predictions
of any model should be fixed once its parameterization is established. They should, in particular,
not change when different computational methods are used. Rigorous molecular simulation based
on non-reversible MCMC algorithms may yield definite results for any molecular-mechanics model.
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The rigorous approach as implemented in JeLLyFysh-Version2.0 reaches a break-even point with a
long-developed MD software at high precision. Still, simulations of JeLLyFysh require considerably
more time than practical MD simulations that are never carried out at such high precisions. In contrast
to JeLLyFysh, however, MD is not designed for an exact treatment of long-range interactions from the
very beginning. JeLLyFysh should be viewed as a first demonstration software. If the same amount of
sheer work force that optimized MD software packages over decades would be used for JeLLyFysh, a
large reduction of the break-even point is certainly possible. Furthermore, the break point was defined
based on the decorrelation of a local observable, the polarization. In statistical physics, the largest
speedups by introducing non-reversibility were obtained for non-local observables (as, e.g., in the
hard-disk system [142]). Whether the dynamics of large-scale hydrodynamic modes, macroscopic
conformational changes, and order parameters in molecular simulations may similarly benefit, remains
to be seen.

More generally, generalized Newtonian ECMC as implemented in JeLLyFysh-Version2.0 is only a
first step from an algorithmic point of view. The introduced paradigm includes the entire framework of
ECMC or, more generally, piecewise-deterministic Markov processes, which is far from fully explored.
As this doctoral thesis showed, different ECMC variants can show widely different behaviors in
different scenarios. This underlines one of the greatest strengths of MCMC algorithms in contrast
to MD: They are not restricted to real physical dynamics but may instead choose from a wide range
of different dynamics to sample the Boltzmann distribution of the canonical ensemble in the most
efficient way. The degrees of freedom in choosing the most appropriate dynamics are even further
increased by a transition from traditional reversible to non-reversible Markov chains that removes the
reliance on the detailed-balance condition.

As shown by the dynamical arrest of the polarization in the SPC/Fw water model in straight ECMC,
the huge amount of possibilities in non-reversible MCMC algorithms also results in the risk of finding
a particularly bad choice for the molecular system at hand. Generalized Newtonian ECMC moves
closer to MD in its treatment of events and leads to comparable dynamics as MD. It therefore appears
as a first default choice for rigorous molecular simulation with well-working dynamics. In the next
step, however, it is essential to find non-reversible rejection-free MCMC algorithms that grow beyond
the real physical dynamics of MD. This is a fundamental difference to Hybrid (or Hamiltonian)
Monte Carlo that uses short MD simulations to propose global moves in the Metropolis–Hastings
algorithm [220, 221]. Hybrid Monte Carlo is successfully used for molecular simulations [11, 12, 222].
However, while this procedure removes the need for thermostats, it is subject to the dynamics of MD
for the exploration of configuration space. In the context of Bayesian statistics, it was already shown
that non-reversible rejection-free MCMC algorithms outperform Hybrid Monte Carlo in different
scenarios (see, e.g., Refs [138, 140, 150]). From a practical point of view, these favorable results also
require a much smaller amount of fine tuning than necessary in Hybrid Monte Carlo which has to
optimize its acceptance rate. Finally, as for the local reversible MCMC algorithms, the computation of
the acceptance probability of the proposed global move in Hybrid Monte Carlo involves inaccurate
global computations of long-range interactions. This conflicts with the fundamental motivation of the
paradigm of this doctoral thesis that treats molecular systems rigorously exact.

In order to grow beyond the real physical dynamics of MD, one may, first, choose different
factorizations of the Boltzmann distribution. Second, one may find the optimal non-reversible MCMC
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algorithm for the specific problem at hand. Here, the possible range of non-reversible schemes
remains largely unexplored. For instance, although explicit continuous-time rotations of molecules
are currently not possible and appear hard to implement under the presence of long-range interactions
in periodic boundary conditions, it was recently understood that it is possible to move the interaction
sites on curved paths instead of straight-line trajectories between events [211, 223]. This may well
enhance rotation dynamics in molecular systems. Third, it is possible to change the algorithm within a
molecular simulation. For example, one could periodically switch between generalized Newtonian
ECMC and straight ECMC that may each speedup the decorrelation of different observables. Fourth,
one may switch between motions of single interaction sites to motions of whole molecules (or any
other subset of interaction sites) during the simulation [P6]. Fifth, as this doctoral thesis showed
(see Chapter 6), the factorization of the Boltzmann distribution does not penalize the dynamics of
generalized Newtonian ECMC for the case of the SPC/Fw water model. If the event rates of ECMC
become too high in other systems because factors cannot compensate each other, factor fields may be
a unique solution [80]. They add an invariant potential-energy term whose subsequent breakup into
factors allows to decrease event rates. Also, they can profoundly modify the non-reversible dynamics.
In the fluid phase of the hard-disk system, they reduced the dynamical scaling exponent to the optimal
value for local dynamics which is, in particular, superior to MD [92].

Eventually, the rigorous paradigm for molecular simulation based on non-reversible MCMC
algorithms also needs to be systematically parallelized. In MD, the most time-consuming step, the
calculation of the forces, is inherently parallel by splitting both loops over all interaction sites and
over their interaction partners. This is even possible for the long-range Coulomb potential. If it is
treated by a mesh-based Ewald method, the short-range contribution in real space can be treated in a
domain decomposition and the discretized grid in reciprocal space can also be distributed over several
processors. Such a highly parallel computation then advances all interaction sites at once [224]. First
of all, the non-reversible MCMC algorithms are, as every MCMC algorithm, “embarrassingly parallel”
because one can always consider a set of entirely different simulations on separate processors. Moreover,
one can treat the statistically independent factors in parallel [P6]. However, when only a single
interaction site moves as, for instance, in generalized Newtonian ECMC in JeLLyFysh-Version2.0, the
number of factors stays constant as the system size is increased. That degree of parallelization does
not allow to reach larger system sizes. This problem could be resolved by moving several interaction
sites at once and, at best, by treating every moving interaction site and the corresponding factors in
parallel. For the hard-disk system with its short-range interactions, this approach has been successfully
implemented [200]. Other approaches considered the natural domain decomposition in short-range
interacting systems [130, 199]. A systemic formulation for the parallelization of the non-reversible
MCMC algorithms in the rigorous paradigm for long-range-interacting molecular systems is, however,
a long-term project in its own and may well be part of another doctoral thesis.

This doctoral thesis introduced an approach to molecular simulation that rigorously samples the
canonical ensemble without thermostats, without approximating long-range interactions, without
discretizing time nor (reciprocal) space, and without unphysical artifacts. It showed that such a
rigorous paradigm can become competitive with MD. The great potential for improvements of the
novel approach in the future is exciting. The realization of these improvements would, however,
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require a massive amount of interdisciplinary research ranging from statistics to physics to chemistry
to computational science. MD has the huge advantage that such an astonishing amount of research has
already been invested over the last decades. Despite its approximations and artifacts, this effort shaped
it into a very efficient, powerful, and widely-used computational method. In order to convince the
research community to switch away from the long-developed MD software packages and start anew,
the most persuasive argument would be a demanding molecular simulation where state-of-the-art
MD fails and only non-reversible MCMC perseveres. In that possible future, a wide range of
exact non-reversible MCMC methods computes thermodynamic averages and generates independent
configurations, whereas the undoubted power of MD yields dynamical properties. The future will
show, however, whether the results of this doctoral thesis provide a sufficiently strong basis that this
path will be followed by an increasing number of researchers in a self-amplifying effect. Independent
of the outcome, on a final personal note, the author will be glad that he, together with his collaborators,
tried to establish a new perspective on molecular simulation.
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