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Abstract

This dissertation explores the phenomenon of twisted ambidexterity in equivariant stable
homotopy theory for compact Lie groups, which encompasses, and sheds a new light on,
equivariant Atiyah duality and the Wirthmüller isomorphism.

In Part I, we take a homotopy-theoretic approach, defining twisted ambidexterity in a
general parametrized setup via a form of assembly map 𝑓!(−⊗𝐷 𝑓 ) → 𝑓∗. When applied to
equivariant homotopy theory for a compact Lie group𝐺, we show that parametrized genuine
𝐺-spectra form the universal theory of stable 𝐺-equivariant objects which satisfy twisted
ambidexterity for the orbits𝐺/𝐻. In simple terms, this says that genuine equivariant spectra
differ from naive equivariant spectra only by the existence of Wirthmüller isomorphisms.

In Part II, we take a differential-geometric approach, following ideas from motivic ho-
motopy theory. We introduce for every separated differentiable stack X an ∞-category
SH(X) of genuine sheaves of spectra on X, which for a smooth manifold returns ordinary
sheaves of spectra and for the classifying stack of a compact Lie group returns genuine
equivariant spectra. We prove a form of relative Poincaré duality in this setting: for a
proper representable submersion 𝑓 of separated differentiable stacks, there is an equiva-
lence 𝑓♯ ≃ 𝑓∗(−⊗ 𝑆𝑇 𝑓 ) between its relative homology and a twist of its relative cohomology
by the relative tangent sphere bundle. When specialized to quotient stacks of equivari-
ant smooth manifolds, this recovers both equivariant Atiyah duality and the Wirthmüller
isomorphism in stable equivariant homotopy theory.
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Introduction

The goal of this dissertation is to study the phenomenon of twisted ambidexterity in equiv-
ariant stable homotopy theory, both from a homotopical perspective and as well as from a
differential-geometric perspective.

Twisted ambidexterity

We use the term ‘twisted ambidexterity’ to refer to a general phenomenon in which a certain
homology/colimit functor agrees ‘up to a twist’ with the corresponding cohomology/limit
functor. Several well-known results in algebraic topology and homotopy theory can be
regarded as instances of this phenomenon:

(1) Twisted Poincaré duality: for a compact smooth manifold 𝑋 of dimension 𝑛, there
is an isomorphism between the cohomology groups 𝐻𝑘 (𝑋;Z) of 𝑋 and the (shifted)
homology groups 𝐻𝑛−𝑘 (𝑋;𝑂𝑋) of 𝑋 with local coefficients in the orientation sheaf𝑂𝑋

of 𝑋;

(2) Atiyah duality: for a compact smooth manifold 𝑋 , the Spanier-Whitehead dual of the
suspension spectrum Σ∞+ 𝑋 is equivalent to the Thom spectrum 𝑋−𝑇𝑋 of the stable
normal bundle of 𝑋 , see [Ati61];

(3) Klein’s dualizing spectrum: if 𝑋 is a compact space and 𝐸 ∈ Sp𝑋 is a spectrum
parametrized over 𝑋 , there is an equivalence Nm𝑋 : colim𝑋 (𝐸 ⊗ 𝐷𝑋) ∼−−→ lim𝑋 𝐸 of
spectra, where 𝐷𝑋 ∈ Sp𝑋 is the dualizing spectrum of 𝑋 due to Klein [Kle01];

(4) Tate vanishing: for a finite group𝐺 and a 𝐾 (𝑛)-local spectrum 𝐸 with a𝐺-action, there
is an equivalence Nm: 𝐸ℎ𝐺 ∼−−→ 𝐸 ℎ𝐺 in Sp𝐾 (𝑛) , see [GS96; HS96];

(5) Ambidexterity in chromatic homotopy theory: for a 𝜋-finite space 𝑋 and an 𝑋-indexed
family of 𝐾 (𝑛)-local spectra 𝐸 ∈ Sp𝑋

𝐾 (𝑛) , there is an equivalence Nm𝑋 : colim𝑋 𝐸
∼−−→

lim𝑋 𝐸 , see [HL13];
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(6) An equivariant version of Atiyah duality: for a compact Lie group 𝐺 and a compact
smooth 𝐺-manifold 𝑋 , the dual of the suspension spectrum Σ∞+ 𝑋 in Sp𝐺 is the Thom
spectrum 𝑋−𝑇𝑋 ;

(7) The Wirthmüller isomorphism in stable equivariant homotopy theory: for a compact
Lie group𝐺, a closed subgroup 𝐻 and a genuine 𝐻-spectrum 𝐸 , there is an equivalence
of genuine 𝐺-spectra ind𝐺𝐻 (𝐸 ⊗ 𝑆−𝐿)

∼−−→ coind𝐺𝐻 (𝐸), see [Wir74];

(8) Ambidexterity in motivic homotopy theory: for a proper smooth morphism 𝑓 : 𝑋 → 𝑌

of schemes over some base scheme 𝑆, there is an equivalence 𝑓♯ ≃ 𝑓∗Σ𝑇 𝑓 of functors
SH(𝑋) → SH(𝑌 ), see [Ayo07, Théorème 1.7.17].

Although seemingly unrelated at first, there is a common pattern to these examples. In
each case, one is given a functor 𝑋 ↦→ C(𝑋) which assigns to a certain type of geometric
object 𝑋 a stable∞-category C(𝑋), thought of as a choice of ‘parametrized spectra over 𝑋’.
The map from 𝑋 to the point induces a symmetric monoidal functor C(pt) → C(𝑋) which
admits both a left adjoint 𝐿 as well as a right adjoint 𝑅; we want to think of 𝐿 and 𝑅 as the
‘homology’ and ‘cohomology’ of 𝑋 in the context of C. Each of the above equivalences can
be interpreted as an identification 𝐿 (−⊗𝐷𝑋) ∼−−→ 𝑅(−) of these two functors up to a ‘twist’
by some dualizing object 𝐷𝑋 ∈ C(𝑋). We regard these equivalences as twisted analogues
of the ambidexterity equivalences from examples (4) and (5), which explains our choice of
terminology.

The aforementioned examples of twisted ambidexterity can be divided into two classes,
which one could think of as ‘homotopical twisted ambidexterity’ and ‘geometric twisted
ambidexterity’:

(I) Examples (3)-(5) are of homotopy-theoretic nature: the objects 𝑋 only carry homo-
topical information, and the twisted norm maps are produced using higher categorical
manipulations. This provides these maps with good formal properties, making it easy
to relate them to various categorical duality phenomena. A disadvantage of this ap-
proach is that it does not provide much control over the resulting dualizing objects.

(II) Examples (1)-(2) and (6)-(8) are of differential-geometric nature: the objects 𝑋
come equipped with geometric structure, and the equivalences are implemented
geometrically via a form of Pontryagin-Thom construction. As a result, one obtains
an explicit description of the dualizing object in terms of the tangent bundle of 𝑋 .

The goal of this dissertation is to provide a detailed study of these two approaches to twisted
ambidexterity in the context of stable equivariant homotopy theory. Part I is devoted to a
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study of approach (I), while Part II deals with approach (II). These two parts can be read
independently, up to a few sporadic cross-references: they are written as individual articles
and come with their own abstracts and introductions. Part III provides an outlook for future
research and explores the relationship between approaches (I) and (II).

We shall now provide a broad overview of the contents of these two parts, referring to the
technical summary for more precise statements of the results.

Part I: Twisted ambidexterity in equivariant homotopy theory

In Part I of this dissertation, we introduce a generic formulation of twisted ambidexterity in
terms of parametrized category theory which covers the homotopical examples of twisted
ambidexterity. We will be primarily interested in the context of equivariant stable homotopy
theory for a compact Lie group 𝐺, where one assigns to a 𝐺-space 𝑋 the ∞-category Sp𝑋

𝐺

of genuine 𝐺-spectra parametrized over 𝑋 , in the spirit of May and Sigurdsson [MS06].
The general framework then provides for every morphism 𝑓 : 𝑋→𝑌 of 𝐺-spaces a twisted
norm map

Nm 𝑓 : 𝑓!(− ⊗𝐷 𝑓 ) ∼−−→ 𝑓∗(−)

of functors Sp𝑋
𝐺
→ Sp𝑌

𝐺
, where 𝐷 𝑓 ∈ Sp𝑋

𝐺
is the relative dualizing spectrum of 𝑓 , and 𝑓! and

𝑓∗ denote the left and right adjoint, respectively, to the pullback functor 𝑓 ∗ : Sp𝑌
𝐺
→ Sp𝑋

𝐺
.

It follows from results of [MS06] that the map Nm 𝑓 is an equivalence whenever 𝑓 has
compact fibers. For example, when𝑌 is a point and 𝑋 =𝐺/𝐻 is an orbit associated to some
closed subgroup 𝐻 ⩽ 𝐺, the resulting equivalence is the well-known Wirthmüller isomor-
phism ind𝐺𝐻 (− ⊗ 𝑆−𝐿) ≃ coind𝐺𝐻 , due to [Wir74]. It is known since the work of Blumberg
[Blu06] that the Wirthmüller isomorphisms are in some sense the only difference between
genuine 𝐺-spectra and the so-called ‘naive 𝐺-spectra’, which do not support Wirthmüller
isomorphisms. The main result of Part I of this dissertation is another manifestation of this
philosophy:

The ∞-categories Sp𝑋
𝐺

of parametrized genuine 𝐺-spectra over 𝐺-spaces 𝑋
constitute the universal theory of stable 𝐺-equivariant objects which supports
formal Wirthmüller isomorphisms.

A precise formulation of this result requires the language of parametrized category theory
and will be given in the technical summary below, see Theorem 2.
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Part II: Relative Poincaré duality for differentiable stacks

In Part II of this dissertation, we study a differential-geometric form of twisted ambidexterity
in equivariant homotopy theory, which we refer to as ‘relative Poincaré duality’.

Given a compact Lie group 𝐺, we will introduce for every smooth 𝐺-manifold an ∞-
category SH𝐺 (𝑀) of genuine sheaves of 𝐺-spectra on 𝑀 . When 𝑀 = 𝐺/𝐻 is an orbit
for some closed subgroup 𝐻 ⩽ 𝐺, this ∞-category is equivalent to the ∞-category Sp𝐻
of genuine 𝐻-spectra. When 𝐺 is the trivial group, it is equivalent to the ∞-category
Shv(𝑀;Sp) of ordinary sheaves of spectra on 𝑀 .

The map from 𝑀 to the point induces a symmetric monoidal functor Sp𝐺 = SH𝐺 (pt) →
SH𝐺 (𝑀). The left and right adjoints of this functor assign to a genuine sheaf of 𝐺-spectra
on 𝑀 its genuine equivariant sheaf homology/cohomology. We will prove a version of
equivariant Poincaré duality for these functors: when 𝑀 is compact, these two adjoints
agree up to tensoring with the tangent sphere bundle 𝑆𝑇𝑀 of 𝑀 . More generally, we will
prove a relative version of this result, where the compact𝐺-manifold𝑀 gets replaced by a𝐺-
equivariant proper smooth submersion 𝑓 : 𝑀→ 𝑁 . The pullback functor 𝑓 ∗ : SH𝐺 (𝑁) →
SH𝐺 (𝑀) at the level of genuine sheaves admits both a left adjoint 𝑓♯ as well as a right
adjoint 𝑓∗, thought of as the relative homology and cohomology of 𝑓 . Relative Poincaré
duality is the statement that there is an equivalence of the form 𝑓♯ (−) ≃ 𝑓∗(−⊗ 𝑆𝑇 𝑓 ), where
𝑆𝑇 𝑓 ∈ SH𝐺 (𝑀) is the one-point compactification of the relative tangent bundle of 𝑓 .

By construction, the ∞-category SH𝐺 (𝑀) of genuine sheaves on 𝑀 will only depend on
the quotient stack 𝑀//𝐺 of 𝑀: we will introduce for every separated differentiable stackX
an ∞-category SH(X) of genuine sheaves of spectra on X , which specializes to SH𝐺 (𝑀)
when X is the quotient stack 𝑀//𝐺. Our main result of Part II is the following version of
relative Poincaré duality in this context:

For a proper representable submersion 𝑓 : Y →X of separated differentiable
stacks, there is an equivalence 𝔭 𝑓 : 𝑓♯ (−) ∼−−→ 𝑓∗(−⊗ 𝑆𝑇 𝑓 ) of functors SH(Y) →
SH(X).

The proof of this result is an adaptation of the usual proof of Atiyah duality for compact
smooth manifolds in the context of differentiable stacks. The construction of the∞-category
SH(X) and many of its formal properties are direct analogues of similar constructions in
motivic homotopy theory, and the proof strategy of our main result closely follows that of
Hoyois [Hoy17] in the motivic setting.

4



Technical summary

We will now provide a detailed overview of the results contained in this dissertation.

Part I: Twisted ambidexterity in equivariant homotopy the-
ory

Chapter I.2: Parametrized category theory

In Chapter I.2, we recall the setup of parametrized (higher) category theory over an∞-topos
B and establish some analogues of well-known results in non-parametrized category theory.

We start in Section I.2.1 with recollections, following Martini and Wolf [Mar21; MW21;
MW22]. The central notion is that of a presentably symmetric monoidal B-category,
Definition I.2.15, which is a limit-preserving functor C : Bop→ CAlg(PrL) satisfying the
condition that for all morphisms 𝑓 : 𝐴→ 𝐵 in B the restriction functors 𝑓 ∗ := C( 𝑓 ) :
C(𝐵) → C(𝐴) admit left adjoints 𝑓! : C(𝐴) → C(𝐵) which satisfy base change and the
projection formula. For an object 𝐴 ∈ B, we may form the cotensor C𝐴 of C by 𝐴, given
by C𝐴 (𝐵) := C(𝐴× 𝐵). The main result of Section I.2.2 is the following classification of
C-linear B-functors C𝐴→C𝐵:

Theorem 1 (Theorem I.2.32). For objects 𝐴, 𝐵 ∈ B, there is an equivalence of∞-categories
C(𝐴 × 𝐵) ∼−−→ FunC (C𝐴,C𝐵) which sends an object 𝐷 ∈ C(𝐴 × 𝐵) to the C-linear B-
functor (pr𝐵)!(pr∗

𝐴
(−) ⊗ 𝐷) : C𝐴→ C𝐵, where pr𝐴 : 𝐴× 𝐵→ 𝐴 and pr𝐵 : 𝐴× 𝐵→ 𝐵 are

the projections.

In Section I.2.3 we give two instances in which we can prove the existence of the formal
inversion C[𝑆−1] of a small collection of objects 𝑆 in a presentably symmetric monoidal
B-category C, that is, the presentably symmetric monoidal B-category obtained from C by
universally inverting the objects in 𝑆 with respect to the monoidal structure.
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Chapter I.3: Twisted ambidexterity

In Chapter I.3 we introduce the notion of twisted ambidexterity for a presentably symmetric
monoidalB-categoryC. Given an object 𝐴 ∈ B, the diagonalB-functor 𝐴∗ : C→C𝐴 admits
both a left adjoint 𝐴! : C𝐴→C as well as a right adjoint 𝐴∗ : C𝐴→C. In Section I.3.1, we
construct the dualizing object 𝐷𝐴 ∈ C(𝐴) and the twisted norm map Nm𝐴 : 𝐴!(−⊗𝐷𝐴) →
𝐴∗(−). An object 𝐴 ∈ B is called twisted C-ambidextrous if this map is an equivalence.
We show that Nm𝐴 exhibits 𝐴!(−⊗𝐷𝐴) in a precise sense as the universal C-linear colimit
preserving approximation of 𝐴∗, see Proposition I.3.7 for a precise statement.

In Section I.3.2, we show that our notion of twisted ambidexterity is closely related to the
notion of ambidexterity by Hopkins and Lurie [HL13]: an 𝑛-truncated object 𝐴 ∈ B is C-
ambidextrous in the sense of [HL13] if and only if not only 𝐴 but also all its iterated diagonals
𝐴→ 𝐴𝑆

𝑛 are twisted C-ambidextrous. It then follows inductively that the dualizing object
𝐷𝐴 is equivalent to the monoidal unit of C(𝐴) and the the twisted norm map reduces to the
norm map Nm𝐴 : 𝐴!→ 𝐴∗ of Hopkins and Lurie.

In Section I.3.3, we explain the close connection between twisted ambidexterity and
Costenoble-Waner duality, a form of duality theory in parametrized homotopy theory in-
troduced [CW16] and [MS06]. Most importantly, we show that an object 𝐴 ∈ B is twisted
C-ambidextrous if and only if the monoidal unit 1𝐴 ∈ C(𝐴) = C(1× 𝐴) is left Costenoble-
Waner dualizable, see Proposition I.3.28. In this case, the left dual of 1𝐴 is given by the
dualizing object 𝐷𝐴 ∈ C(𝐴) = C(𝐴×1).

Chapter I.4: Equivariant homotopy theory

Chapter I.4 contains the main result of Part I of this dissertation: a universal property of
the 𝐺-category Sp𝐺 of genuine 𝐺-spectra for a compact Lie group 𝐺 in terms of twisted
ambidexterity. A𝐺-category is by definition an∞-category parametrized over the∞-topos
B = Spc𝐺 of 𝐺-spaces, or equivalently a functor Orbop

𝐺
→ Cat∞. The 𝐺-category Sp𝐺 is

informally given by sending an orbit𝐺/𝐻 to the∞-category Sp𝐻 of genuine 𝐻-spectra, see
Section I.4.1 for a precise construction. In Section I.4.2 we prove the main result of Part I:

Theorem 2 (Theorem I.4.8). For a compact Lie group 𝐺, the 𝐺-category Sp𝐺 is initial
among fiberwise stable presentably symmetric monoidal 𝐺-categories C such that all
compact 𝐺-spaces are twisted C-ambidextrous.

In fact, we show it suffices to have twisted ambidexterity for the orbits 𝐺/𝐻, in which case
the resulting twisted ambidexterity isomorphism specializes to a formal Wirthmüller iso-
morphism of the form Nm𝐺/𝐻 : ind𝐺𝐻 (− ⊗𝐷𝐺/𝐻) ∼−−→ coind𝐺𝐻 (−). In particular, Theorem 2
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may be interpreted as saying that parametrized genuine𝐺-spectra form the universal theory
of stable 𝐺-equivariant objects which admit formal Wirthmüller isomorphisms.

In Section I.4.3 and Section I.4.4, we replace the∞-topos of𝐺-spaces by that of orbispaces
and that of proper 𝐺-spaces, respectively, and extend the above universal property to the
contexts of orbispectra and proper equivariant homotopy theory, respectively.

Part II: Relative Poincaré duality for differentiable stacks

Chapter II.2: Foundations on differentiable stacks

Chapter II.2 consists of preliminary material concerning differentiable stacks: sheaves of
spacesX on the site Diff of smooth manifolds and open covers which admit a representable
atlas 𝑀 ↠ X. In Section II.2.3, we discuss how every Lie groupoid G = (G1⇒ G0) gives
rise to a classifying stack BG, and show how BG can be used to classify both left actions of
G on smooth manifolds as well as principal G-bundles over smooth manifolds. In Section
II.2.4 we discuss local properties of maps of stacks and in Section II.2.5 we recall the notion
of a vector bundle over a stack X.

Chapter II.3: Geometry of differentiable stacks

In Chapter II.3 we discuss various geometrical aspects of differentiable stacks. In Section
II.3.1, we introduce the coarse moduli space |X|mod of a stack X on Diff and show that its
open subspaces are in one-to-one correspondence with the open substacks ofX. This allows
us to construct the open complementX\Z of a closed embeddingZ ↩→X in Section II.3.2.
A geometrically well-behaved class of differentiable stacks, discussed in Section II.3.3, are
the separated differentiable stacks: those whose diagonal is proper. In Section II.3.4 we
introduce the isotropy groups of a differentiable stack, and show that a morphism between
separated differentiable stacks is representable if and only if it induces injections on isotropy
groups. We define the relative tangent bundle 𝑇 𝑓 and normal bundleN 𝑓 of a representable
morphism 𝑓 : Y → X in Section II.3.5 and show in Section II.3.6 that every embedding
𝑖 : S ↩→ X of separated differentiable stacks admits a tubular neighborhood: an open
neighborhood of S in X which is equivalent to an open neighborhood of S inside N𝑖. In
Section II.3.7 we prove that every separated differentiable stack is locally isomorphic to
a quotient stack R𝑛//𝐺 for some smooth linear action of a compact Lie group 𝐺 on a
Euclidean space R𝑛, which lets us reduce various statements about differentiable stacks to
their analogues for equivariant smooth manifolds.
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Chapter II.4: Genuine sheaves on differentiable stacks

In Chapter II.4 we introduce for every separated differentiable stack X the ∞-categories
H(X) and SH(X) of genuine sheaves of spaces/spectra onX. In Section II.4.1, we introduce
the site Sub/X of representable submersions overX, equipped with the open cover topology.
We define the∞-category H(X) in Section II.4.2 as the∞-category of homotopy invariant
sheaves on Sub/X: those sheaves F for which the map F (Y) → F (Y ×R) induced by
the projection Y ×R→Y is an equivalence for every Y ∈ Sub/X . There is a forgetful
functor 𝛾∗ : H(X) → Shv(X) to the ∞-category of ordinary sheaves on X which admits
fully faithful left and right adjoints, see Subsection 4.2.5. The∞-category SH(X) is defined
in Section II.4.3: in caseX =𝑀//𝐺 is a global quotient stack we obtain SH(X) from H(X)∗
by formally inverting the sphere bundle 𝑆E of every vector bundle E ∈ Vect(X), and this
determines the general case by imposing descent along open covers. In Section II.4.4, we
show that genuine sheaves over classifying stacks of compact Lie groups give back classical
equivariant homotopy theory:

Theorem 3 (Theorem II.4.4.16, Proposition II.4.4.17). For a compact Lie group 𝐺, there
are equivalences of∞-categories H(B𝐺) ≃ Spc𝐺 and SH(B𝐺) ≃ Sp𝐺 .

In Section II.4.5, following [DG22], we study universal characterizations of the assignments
X ↦→ H(X) and X ↦→ SH(X) in terms of the notion of a pullback formalism.

Chapter II.5: Localization sequences

In Chapter II.5, we prove the localization theorem for pointed genuine sheaves, closely
following the proof strategy of Khan [Kha19]:

Theorem 4 (Theorem II.5.2.16). Let 𝑖 : Z ↩→X be a closed embedding of differentiable
stacks and let 𝑗 : U ↩→X be its open complement. Then the functor 𝑖∗ : H(Z)∗→ H(X)∗
is fully faithful, and there is a preferred cofiber sequence 𝑗♯ 𝑗∗

counit−−−−→ id
unit−−−→ 𝑖∗𝑖∗.

Here 𝑗∗ : H(X)∗→H(U)∗ and 𝑖∗ : H(X)∗→H(Z)∗ are the pullback functors along 𝑖 and
𝑗 , and 𝑗♯ and 𝑖∗ are their left and right adjoint, respectively. The analogous statement for
the functor 𝑖∗ : SH(Z) → SH(X) also follows, and as a corollary the ∞-category SH(X)
can be exhibited as a recollement of the∞-categories SH(Z) and SH(U).
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Chapter II.6: Relative Poincaré duality for differentiable stacks

Chapter II.6 contains the main result of Part II of this dissertation: a relative version of
Poincaré duality for separated differentiable stacks in the context of genuine sheaves of
spectra. For a representable submersion 𝑓 : Y →X of separated differentiable stacks, we
define a dualizing sheaf 𝜔 𝑓 ∈ SH(Y) as 𝜔 𝑓 := pr1♯Δ∗1Y , where pr1 : Y×XY →Y is the
projection to the first factor and Δ : Y →Y×XY is the diagonal of 𝑓 . A choice of tubular
neighborhood of Δ provides an equivalence 𝜔 𝑓 ≃ 𝑆𝑇 𝑓 between the dualizing sheaf and the
suspension spectrum of the one-point compactification of the relative tangent bundle of 𝑓 .
We further define a Poincaré duality map 𝔭 𝑓 : 𝑓♯→ 𝑓∗(−⊗𝜔 𝑓 ), a natural transformation of
functors SH(Y) → SH(X).

Theorem 5 (Relative Poincaré duality, Theorem II.6.1.7). If 𝑓 : Y →X be a proper rep-
resentable submersion between separated differentiable stacks, the Poincaré duality map
𝔭 𝑓 : 𝑓♯ (−) → 𝑓∗(− ⊗𝜔 𝑓 ) is an equivalence.

The proof is close in spirit to the proof of Atiyah duality for a compact smooth manifold
𝑀 . The main ingredient of the proof is the construction of a Pontryagin-Thom collapse
map associated to a closed embedding, which we will introduce in Section II.6.2. Using the
auxiliary notion of a kernel operator, introduced in Section II.6.3, we give a proof of relative
Poincaré duality in Section II.6.4. Section II.6.5 discusses various important consequences
of relative Poincaré duality, like relative Atiyah duality and proper base change.

Part III: Outlook

In Part III, we indicate potential directions for future research. In Section III.2, we explain
in some detail the expected close relation between twisted ambidexterity from Part I and
relative Poincaré duality from Part II. In Section III.3, we discuss six-functor formalisms
on the site SepStk of separated differentiable stacks and formulate a conjecture concerning
a six-functor formalism of genuine sheaves of spectra. In Section III.4, we propose a notion
of proper genuine sheaves on an arbitrary differentiable stack and deduce relative Poincaré
duality in this context.
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Appendices

This dissertation comes with a large amount of appendices. In Appendix A, we recall
unstraightening techniques from Lurie [Lur17] and Drew and Gallauer [DG22, Appendix A]
involving symmetric monoidal structures. In Appendix B, we provide a condensed proof
of a theorem by Campion [Cam23] which shows that the suspension spectrum functor
Σ∞ : Spc𝐺∗ → Sp𝐺 in CAlg(PrL) is initial among morphisms 𝐹 : Spc𝐺∗ →D in CAlg(PrL)
whose target is stable and which send all compact pointed 𝐺-spaces to dualizable objects.
In Appendix C we collect some basic results on smooth manifolds. Appendix D recalls
background material on Lie groupoids, including a variety of examples, the definition of
Lie groupoid actions and principal bundles, and the notion of Morita equivalence.

In Appendix E we provide an extensive account of foundations on∞-topoi. Their definition
and some of their most relevant properties are recalled in Appendix E.1, and the correspon-
dence between groupoid objects and effective epimorphisms is discussed in Appendix E.2.
In Appendix E.3 we define groupoid actions and principal bundles in ∞-topoi and recall
how they can be classified using the classifying stack of the groupoid. We finish with a
discussion of sheaf topoi in Appendix E.4 and hypercompleteness in Appendix E.5.

In Appendix F, we provide a detailed treatment of Beck-Chevalley transformations, double
Beck-Chevalley transformations and projection formula maps.

Conventions

We will adopt the standard notational conventions from higher category theory, following
[Lur09] and [Lur17]. One notable exception is our terminology for the notion of an ∞-
groupoid: In Part I we use the classical word ‘space’, but in Part II we use the word ‘anima’,
introduced by [CS23, Section 5.1.4], to make a clearer distinction between the geometry
and the homotopy theory in that part. Accordinly we denote the ∞-topos of ∞-groupoids
by Spc in Part I and by An in Part II. Similarly, the∞-topos of 𝐺-spaces for a compact Lie
group 𝐺 will be denoted by Spc𝐺 in Part I and by An𝐺 in Part II, where in the latter case
we refer to its objects as genuine 𝐺-animae.
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Part I

Twisted ambidexterity in equivariant
homotopy theory
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Abstract

We develop the concept of twisted ambidexterity in a parametrized presentably symmetric
monoidal∞-category, which generalizes the notion of ambidexterity by Hopkins and Lurie
and the Wirthmüller isomorphisms in equivariant stable homotopy theory, and is closely
related to Costenoble-Waner duality. Our main result establishes the parametrized ∞-
category of genuine 𝐺-spectra for a compact Lie group 𝐺 as the universal example of a
presentably symmetric monoidal ∞-category parametrized over 𝐺-spaces which is both
stable and satisfies twisted ambidexterity for compact 𝐺-spaces. We further extend this
result to the settings of orbispectra and proper genuine 𝐺-spectra for a Lie group 𝐺 which
is not necessarily compact.
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I.1 Introduction

A well-known phenomenon in representation theory, sometimes referred to as ambidexterity,
is that if 𝐻 is a subgroup of a finite group 𝐺, the restriction functor from 𝐺-representations
to𝐻-representations admits a left adjoint ind𝐺𝐻 and a right adjoint coind𝐺𝐻 which are naturally
equivalent to each other. An analogue of this result in stable equivariant homotopy theory
was established by Wirthmüller [Wir74]: there is an equivalence ind𝐺𝐻 ≃ coind𝐺𝐻 between
the induction and coinduction functors from genuine 𝐻-spectra to genuine 𝐺-spectra.

The situation becomes more interesting when 𝐺 is a non-discrete compact Lie group. For a
closed subgroup 𝐻 ⩽ 𝐺, the induction and coinduction functors are only equivalent up to a
‘twist’: for every genuine 𝐻-spectrum 𝑋 there is a natural equivalence of genuine𝐺-spectra

ind𝐺𝐻 (𝑋 ⊗ 𝑆
−𝐿) ∼−−→ coind𝐺𝐻 (𝑋),

called the Wirthmüller isomorphism, where 𝑆−𝐿 is the inverse of the representation sphere
of the tangent 𝐻-representation 𝐿 = 𝑇𝑒𝐻 (𝐺/𝐻). The construction of the comparison map
in this case is geometric in nature and therefore substantially more involved than in the
case of finite groups, see for example Schwede [Sch18, Section 3.2]. As a result, it is not
immediately clear how to extend it to more general settings, like that of proper equivariant
homotopy theory [Deg+19] or that of orbispectra [Par20], where some of the required
geometric constructions are not available.

In [MS06], May and Sigurdsson approach the Wirthmüller isomorphism using the language
of parametrized homotopy theory. They split up the construction of the isomorphism into
two steps:

(1) The first step is formal: inspired by work of Costenoble and Waner [CW16], May and
Sigurdsson set up a notion of parametrized duality theory called Costenoble-Waner
duality. This theory provides an entirely categorical construction of a genuine 𝐻-
spectrum 𝐷𝐺/𝐻 equipped with a natural transformation

ind𝐺𝐻 (− ⊗𝐷𝐺/𝐻) =⇒ coind𝐺𝐻 (−).

13



This transformation is an equivalence if and only if S𝐻 is Costenoble-Waner dualizable,
in which case its Costenoble-Waner dual is given by 𝐷𝐺/𝐻 .

(2) The second step is geometric: May and Sigurdsson use a parametrized form of the
Pontryagin-Thom construction to produce explicit duality data that exhibit the genuine
𝐻-spectrum 𝑆−𝐿 as Costenoble-Waner dual to S𝐻 . As a consequence, one obtains an
equivalence 𝐷𝐺/𝐻 ≃ 𝑆−𝐿 and the resulting map ind𝐺𝐻 (𝑋 ⊗ 𝑆−𝐿) → coind𝐺𝐻 (𝑋) is an
equivalence.

A key advantage of separating the construction into these two steps is that the first step does
not need any geometric input and works in much greater generality: it is an instance of a
notion we call twisted ambidexterity. This allows for the construction of similar transforma-
tions in a wider range of contexts, including proper equivariant homotopy theory. It further
allows one to formulate the Wirthmüller isomorphisms as a property of a parametrized
homotopy theory, making it possible to talk about the universal example of a parametrized
homotopy theory satisfying this property.

Twisted ambidexterity in parametrized homotopy theory

The concept of twisted ambidexterity comes up in homotopy theory in the setting of local
systems on spaces. For a space 𝐴, let Sp𝐴 denote the functor category Fun(𝐴,Sp), also
known as the ∞-category of local systems of spectra on 𝐴. The constant local system
functor 𝐴∗ : Sp→ Sp𝐴 admits both a left adjoint 𝐴! = colim𝐴 : Sp𝐴→ Sp as well as a right
adjoint 𝐴∗ = lim𝐴 : Sp𝐴→ Sp. Although 𝐴∗ does not preserve colimits in general, it can be
universally approximated from the left by a colimit-preserving functor via a twisted norm
map

Nm𝐴 : 𝐴!(− ⊗𝐷𝐴) =⇒ 𝐴∗(−),

as shown by Nikolaus and Scholze [NS18, Theorem I.4.1(v)]. The parametrized spectrum
𝐷𝐴 ∈ Sp𝐴 is the dualizing spectrum of 𝐴, introduced and studied by John Klein [Kle01].1 In
case 𝐴 is a compact space, the functor 𝐴∗ already preserves colimits, and the twisted norm
map Nm𝐴 is an equivalence. When 𝐴 = 𝑀 is a compact smooth manifold, 𝐷𝑀 = 𝑆−𝑇𝑀 is
the inverse of the one-point-compactification of the tangent bundle of 𝑀 , and the resulting
equivalence between the cohomology of 𝑀 and a shift of the homology of 𝑀 recovers
twisted Poincaré duality.

In this article, we introduce a framework for twisted ambidexterity which generalizes the
above story for local systems of spectra in two ways. As a first generalization, we replace

1Klein considered connected spaces 𝐴 = 𝐵𝐺 for topological groups 𝐺, and wrote 𝐷𝐺 rather than 𝐷𝐵𝐺 .
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the ∞-category of spectra by an arbitrary presentably symmetric monoidal ∞-category C,
in which case the transformation 𝐴!(− ⊗ 𝐷𝐴) : C𝐴→ C is the universal C-linear colimit-
preserving approximation of 𝐴∗ : C𝐴→ C. As a second generalization, following Ando,
Blumberg and Gepner [ABG18], we consider homotopy theories parametrized over an
arbitrary ∞-topos B in place of the ∞-category of spaces, allowing for applications in
equivariant homotopy theory. The role of C is now played by certain limit-preserving
functors C : Bop→ CAlg(PrL) known as presentably symmetric monoidal B-categories,
see Definition 2.15. Given an object 𝐴 ∈ B, one can enhance 𝐴! and 𝐴∗ to parametrized
functors C𝐴→C, and one can again construct an object 𝐷𝐴 ∈ C(𝐴) and a twisted norm map
Nm𝐴 : 𝐴!(− ⊗ 𝐷𝐴) → 𝐴∗ universally approximating 𝐴∗ by a C-linear colimit-preserving
parametrized functor; see Proposition 3.7 for a precise statement. If Nm𝐴 is an equivalence,
we will say that 𝐴 is twisted C-ambidextrous.

The notion of twisted ambidexterity can be regarded as a generalization of the notion of
ambidexterity by Hopkins and Lurie [HL13]: if 𝐴 is an 𝑛-truncated space, then the twisted
norm map reduces to the norm map of [HL13] whenever the latter is defined, and 𝐴 is
C-ambidextrous in the sense of [HL13, Definition 4.3.4] if and only if each of the spaces
𝐴, Ω𝐴, Ω2𝐴, . . . ,Ω𝑛+1𝐴 is twisted C-ambidextrous, see Proposition 3.15.

A relative version of twisted ambidexterity for morphisms 𝑓 : 𝐴→ 𝐵 in B is obtained by
replacing the ∞-topos B by its slice B/𝐵, producing a twisted norm map Nm 𝑓 : 𝑓!(− ⊗
𝐷 𝑓 ) → 𝑓∗(−).

Twisted ambidexterity in equivariant homotopy theory

The Wirthmüller isomorphism in equivariant homotopy theory discussed before may be
understood as a special case of twisted ambidexterity. Given a compact Lie group 𝐺, we
work in the setting of𝐺-categories, defined as∞-categories parametrized over the∞-topos
of 𝐺-spaces. There is a 𝐺-category Sp𝐺 of genuine 𝐺-spectra, which assigns to the orbit
space 𝐺/𝐻 of a closed subgroup 𝐻 ⩽ 𝐺 the ∞-category of genuine 𝐻-spectra. The 𝐺-
category Sp𝐺 is presentably symmetric monoidal and is fiberwise stable, meaning that the
∞-category Sp𝐺 (𝐴) is stable for every 𝐺-space 𝐴. Furthermore, it follows from results of
[MS06] that every compact 𝐺-space is twisted Sp𝐺-ambidextrous in the sense discussed
above. The main result of this article is that Sp𝐺 is in fact universal among 𝐺-categories
satisfying the above properties:

Theorem A (Theorem 4.8). For a compact Lie group 𝐺, the 𝐺-category Sp𝐺 is initial
among fiberwise stable presentably symmetric monoidal 𝐺-categories C such that all
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compact 𝐺-spaces are twisted C-ambidextrous.

In fact, it suffices to require that the orbit 𝐺/𝐻 is twisted ambidextrous for every closed
subgroup 𝐻 ⩽ 𝐺. In this case, the resulting twisted ambidexterity isomorphism specializes
to a formal Wirthmüller isomorphism of the form

Nm𝐺/𝐻 : ind𝐺𝐻 (− ⊗𝐷𝐺/𝐻) ∼−−→ coind𝐺𝐻 (−).

Therefore, Theorem A may be interpreted as saying that genuine equivariant spectra form
the universal theory of stable 𝐺-equivariant objects which admit formal Wirthmüller iso-
morphisms.

For the proof of Theorem A, we relate twisted ambidexterity for compact 𝐺-spaces to
invertibility of representation spheres. If C is a pointed presentably symmetric monoidal
𝐺-category, one can show that the underlying∞-category C(1) of C comes equipped with
a canonical tensoring by pointed 𝐺-spaces, and thus the representation spheres 𝑆𝑉 act on
C(1).

Theorem B (Theorem 4.7). Let 𝐺 be a compact Lie group and let C be a fiberwise stable
presentably symmetric monoidal𝐺-category. Then the following conditions are equivalent:

(1) For any 𝐺-representation 𝑉 , the representation sphere 𝑆𝑉 acts invertibly on C(1);

(2) Every compact 𝐺-space is twisted C-ambidextrous;

(3) For every closed subgroup 𝐻 ⩽ 𝐺, the orbit 𝐺/𝐻 is twisted C-ambidextrous.

Since Sp𝐺 is initial with respect to condition (1), Theorem A is as a direct consequence of
Theorem B. For the proof of Theorem B, we show in Section 3.3 that twisted ambidexterity
can be formulated in terms of Costenoble-Waner duality, a parametrized form of duality
theory. The main ingredient for the implication (1) =⇒ (2) is then a result of May and
Sigurdsson [MS06] about Costenoble-Waner duality in equivariant stable homotopy theory.
The main ingredient for the implication (2) =⇒ (1) is a result of Campion [Cam23],
recalled in Appendix B, which roughly says that dualizability of compact 𝐺-spaces implies
invertibility of the representation spheres.

Our methods directly extend to the contexts of orbispectra and proper genuine 𝐺-spectra.
We refer to Section 4.3 and Section 4.4 for precise definitions of the words appearing in the
following two theorems:

Theorem C (Theorem 4.20). The orbicategory OrbSp of orbispectra is initial among
fiberwise stable presentably symmetric monoidal orbicategories C such that every relatively
compact morphism of orbispaces is twisted C-ambidextrous.
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Theorem D (Theorem 4.29). For a Lie group 𝐺 which is not necessarily compact, the
proper 𝐺-category Sp𝐺 of proper 𝐺-spectra is initial among fiberwise stable presentably
symmetric monoidal proper 𝐺-categories C such that every relatively compact morphisms
of proper 𝐺-spaces is twisted C-ambidextrous.

In particular, Theorem D shows that for every closed subgroup 𝐻 of a Lie group 𝐺 with
compact orbit space 𝐺/𝐻 there is a formal Wirthmüller isomorphism

Nm𝐺/𝐻 : ind𝐺𝐻 (− ⊗𝐷𝐺/𝐻) =⇒ coind𝐺𝐻 (−).

The methods developed in this article also allow us to give a formal description of the
∞-category of proper genuine 𝐺-spectra of Degrĳse et al. [Deg+19] in case the Lie group
𝐺 has enough bundle representations in the sense of Definition 4.30: it is obtained from
the∞-category of pointed proper𝐺-spaces by inverting the sphere bundles 𝑆𝜉 associated to
finite-dimensional vector bundles 𝜉 over the classifying orbispace B𝐺, see Corollary 4.34.

Organization

In Chapter I.2, we introduce the setting of parametrized higher category theory we will use
in this article. Several foundational definitions and results from [Mar21; MW21; MW22]
are recalled in Section 2.1. In Section 2.2, we provide for every parametrized presentably
symmetric monoidal∞-category C a classification of C-linear functors C𝐴→C𝐵 in terms
of objects of C(𝐴 × 𝐵), where 𝐴 and 𝐵 are objects of the base ∞-topos. Section 2.3
contains a discussion of formally inverting objects in parametrized symmetric monoidal
∞-categories.

In Chapter I.3, we introduce the notion of twisted ambidexterity in a parametrized pre-
sentably symmetric monoidal∞-category C. The twisted norm maps Nm 𝑓 : 𝑓!(−⊗𝐷 𝑓 ) ⇒
𝑓∗(−) for a morphism 𝑓 : 𝐴→ 𝐵 in the base∞-topos are constructed in Section 3.1, where
also their universal property is established. In Section 3.2, we relate twisted ambidexterity
to the notion of ambidexterity by [HL13] and to the notion of parametrized semiadditivity
by [Nar16; CLL23]. In Section 3.3 we discuss the relation between twisted ambidexterity
and Costenoble-Waner duality.

In Chapter I.4, we apply our methods in the context of equivariant homotopy theory.
Section 4.1 introduces the parametrized∞-category of genuine𝐺-spectra for a compact Lie
group𝐺, and Section 4.2 establishes its universal property in terms of twisted ambidexterity.
In Section 4.3 and Section 4.4 we extend this to the contexts of orbispectra and proper
equivariant spectra, respectively.
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Relation to other work

Our treatment of twisted ambidexterity draws on ideas from a wide range of prior work.
The main inspiration is the concept of Costenoble-Waner duality in parametrized homotopy
theory, introduced by Costenoble and Waner [CW16] under the name ‘homological duality’
and further developed by May and Sigurdsson [MS06]. The untwisted notion of ambidex-
terity appeared in the works of Hopkins and Lurie [HL13] and has been further studied by
Harpaz [Har20] and Carmeli, Schlank and Yanovski [CSY22; CSY21]. A treatment in the
context of representation theory was given by Balmer and Dell’Ambrogio [BD20]. In the
case of local systems on spaces, the universal property of the twisted norm map resem-
bles classical assembly maps; see, for example, the discussion following Theorem I.4.1 of
Nikolaus and Scholze [NS18]. The dualizing object in this case is the dualizing spectrum
introduced by Klein [Kle01] and studied by Bauer [Bau04] and Rognes [Rog08]. Our
twisted norm maps are similar to those constructed by Hoyois [Hoy17] and Bachmann and
Hoyois [BH21], which in turn are closely related to the ‘purity equivalences’ of Cisinski and
Déglise [CD19]. Although similar in appearance, our approach is different from the formal
Wirthmüller isomorphisms of Fausk, Hu and May [FHM03] and Balmer, Dell’Ambrogio
and Sanders [BDS16], where no parametrized homotopy theory is involved.

Our characterization of genuine equivariant spectra in terms of fiberwise stability and formal
Wirthmüller isomorphisms is heavily inspired by work of Blumberg [Blu06], who described
the category of genuine𝐺-spectra for a compact Lie group𝐺 in terms of continuous functors
that satisfy excision and have (geometrically defined) Wirthmüller isomorphisms. For finite
groups, a parametrized universal property for genuine 𝐺-spectra in terms of stability and
Wirthmüller equivalences ind𝐺𝐻 (−) ≃ coind𝐺𝐻 (−) was outlined by Nardin [Nar16], and a
similar result in the context of global homotopy theory was proved by Lenz, Linskens and
the author in [CLL23].
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I.2 Parametrized category theory

We start by recalling the setup of parametrized category theory we are working in, and
establishing some analogues of well-known results in non-parametrized category theory.
Our main references are the articles [Mar21], [MW21] and [MW22] of Martini and Wolf; see
in particular [MW22, Section 2.6] for a short overview of the theory. An earlier framework
for parametrized category theory was given by Barwick, Dotto, Glasman, Nardin and Shah
[Bar+16a; Bar+16b; Sha21; Nar16].

Convention 2.1. Since most of the ∞-categories we will be working with are presentable,
we will by convention take all∞-categories to be large unless explicitly specified that they
are small. In particular, Cat∞ denotes the (very large)∞-category of large∞-categories; in
[MW22], this is denoted by Ĉat∞ instead.

2.1 Recollections on parametrized category theory

Throughout this section, we fix an∞-topos B.

Definition 2.2. A B-category is a sheaf of ∞-categories on B, i.e., a limit-preserving
functor Bop → Cat∞. Its underlying ∞-category Γ(C) is the ∞-category C(1), where
1 ∈ B is the terminal object. Given two B-categories C and D, a B-functor is a natural
transformation C → D. We let Cat(B) ⊆ Fun(Bop,Cat∞) denote the (very large) ∞-
category of B-categories and B-functors.

By [Mar21, Proposition 3.5.1], a B-category may equivalently be encoded as a (large)
category internal to B, which is the perspective used in [Mar21; MW21; MW22].

When B is the ∞-topos Spc of spaces (a.k.a. ∞-groupoids or animae), the underlying
category functor provides an equivalence

Γ : Cat(Spc) ≃−−→ Cat∞;
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its inverse sends an∞-category C to the functor Spcop→Cat∞ : 𝐴 ↦→ Fun(𝐴,C). More gen-
erally, when B = PSh(𝑇) is the∞-topos of presheaves on some small∞-category 𝑇 , restric-
tion to the representable objects induces an equivalence Cat(PSh(𝑇)) ∼−−→ Fun(𝑇op,Cat∞),
and the theory of B-categories reduces to that of 𝑇-∞-categories studied by Barwick et al.
[Bar+16b]. Since all the examples of ∞-topoi considered in this article will be presheaf
topoi, the reader uncomfortable with the language of ∞-topoi may replace B by PSh(𝑇)
throughout.

Example 2.3 (B-groupoids). Every object 𝐴 ∈ B can naturally be regarded as a B-category
via the Yoneda embedding B ↩→ FunR(Bop,Spc) ⊆ FunR(Bop,Cat∞). The B-categories of
this form are called B-groupoids.

Example 2.4 (Base change). Any geometric morphism 𝑓 ∗ : A ⇄ B : 𝑓∗ induces an ad-
junction 𝑓 ∗ : Cat(A)⇄ Cat(B) : 𝑓∗, see [Mar21, Section 3.3], [MW21, Section 2.6]. The
right adjoint 𝑓∗ is explicitly given by precomposing a B-category C : Bop → Cat∞ with
𝑓 ∗ : Aop→Bop.

Example 2.5 (Locally constant B-categories). Applying Example 2.4 to the geometric
morphism LConst : Spc⇄ B :Γ, we obtain an adjunction LConst : Cat∞ ⇄ Cat(B) :Γ,
where Γ is the underlying ∞-category functor. The B-categories in the image of LConst
are called locally constant.1

Example 2.6 (Passing to slice topoi). For an object 𝐵 ∈ B, applying Example 2.4 to the
étale geometric morphism −×𝐵 = 𝜋∗

𝐵
: B⇄ B/𝐵 : (𝜋𝐵)∗, we get an adjunction

𝜋∗𝐵 : Cat(B)⇄ Cat(B/𝐵) : (𝜋𝐵)∗.

For C ∈ Cat(B), the B/𝐵-category 𝜋∗
𝐵
C is given by precomposing C with the forgetful

functor B/𝐵→B.

Example 2.7 (Parametrized functor categories). By [Mar21, Proposition 3.2.11], the ∞-
category Cat(B) of B-categories is cartesian closed: for all C,D ∈ Cat(B) there is an
internal hom-object2 FunB (C,D), called the B-category of B-functors from C to D. We
let FunB (C,D) denote the underlying ∞-category of FunB (C,D). Its 2-morphisms are
called B-transformations.

Definition 2.8. A symmetric monoidal B-category is a commutative monoid in the ∞-
category Cat(B), or equivalently a limit-preserving functor C : Bop→ CMon(Cat∞). For

1In [MW21] these are simply called constant.
2Martini [Mar21] denotes FunB (C,D) by [C,D].
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𝐵 ∈ B, we denote the tensor product and monoidal unit of C(𝐵) by − ⊗𝐵 − and 1𝐵,
respectively.

Presentable B-categories

We give a brief overview of the theory of presentable B-categories, developed by Martini
and Wolf [MW22].

Definition 2.9. A B-category C : Bop→ Cat∞ is called fiberwise presentable if it factors
(necessarily uniquely) through the subcategory PrL ⊆ Cat∞ of presentable∞-categories and
colimit preserving functors. We say that C is presentable if it is fiberwise presentable and
additionally satisfies the following two conditions:

(1) (Left adjoints) For every morphism 𝑓 : 𝐴→ 𝐵 inB, the restriction functor 𝑓 ∗ : C(𝐵) →
C(𝐴) has a left adjoint 𝑓! : C(𝐴) → C(𝐵);

(2) (Left base change) For every pullback square

𝐴′ 𝐴

𝐵′ 𝐵

𝛼

𝑓 ′ 𝑓

𝛽

in B, the Beck-Chevalley transformation 𝑓 ′! 𝛼
∗⇒ 𝛽∗ 𝑓! is an equivalence.

If C and D are presentable B-categories, we say that a B-functor 𝐹 : C → D preserves
(parametrized) colimits if the following two properties are satisfied:

(1) For every object 𝐵 ∈ B, the functor 𝐹 (𝐵) : C(𝐵) → D(𝐵) preserves small colimits;

(2) For every morphism 𝑓 : 𝐴→ 𝐵 in B, the Beck-Chevalley transformation 𝑓! ◦𝐹 (𝐴) =⇒
𝐹 (𝐵) ◦ 𝑓! is an equivalence.

By [MW22, Theorem A] and [MW21, Proposition 4.2.3], these definitions agree with the
definitions of Martini and Wolf [MW22].

Remark 2.10. For a presentable B-category, the restriction functor 𝑓 ∗ : C(𝐵) → C(𝐴) is
assumed to admit a right adjoint 𝑓∗ : C(𝐴) → C(𝐵) for every morphism 𝑓 : 𝐴→ 𝐵. By
passing to right adjoints in condition (2) in Definition 2.9, we see that also the other Beck-
Chevalley transformation 𝛽∗ 𝑓 ∗⇒ 𝑓 ′∗𝛼∗ is an equivalence. It follows that any presentable
B-category admits all (parametrized) limits and colimits.
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The next definition introduces the presentableB-categoryΩB , theB-parametrized analogue
of the∞-category of spaces.

Definition 2.11. The target functor 𝑑0 : BΔ1 → B is a cartesian fibration, and by [Lur09,
Theorem 6.1.3.9] is classified by a limit-preserving functor

ΩB : Bop→ PrL, 𝐵 ↦→ B/𝐵, ( 𝑓 : 𝐴→ 𝐵) ↦→ ( 𝑓 ∗ : B/𝐵→B/𝐴).

The pullback functors 𝑓 ∗ : B/𝐵→B/𝐴 have left adjoints 𝑓 ◦− : B/𝐴→B/𝐵 which satisfy the
Beck-Chevalley condition, so ΩB is a presentable B-category. We call ΩB the B-category
of B-groupoids.3

Definition 2.12. Let PrL(B) denote the (non-full) subcategory of Cat(B) spanned by
the presentable B-categories and the colimit preserving B-functors. For presentable B-
categories C and D, we let FunL

B (C,D) denote the subcategory of FunB (C,D) spanned
by those B-functors C →D that preserve colimits.

Recall from [MW21, Definition 2.7.2] that the ∞-categories Cat(B/𝐵) assemble into a
(very large) B-category CatB . The subcategories PrL(B/𝐵) ⊆ Cat(B/𝐵) assemble into a
parametrized subcategory PrL

B ⊆ CatB , see [MW22, Definition 6.4.1].

Proposition 2.13 ([MW21, Proposition 4.5.1], [MW22, Definition 6.4.1, Remark 6.4.2,
Corollary 6.4.11]). The B-categories CatB and PrL

B are complete and cocomplete, and the
inclusion PrL

B ↩→ CatB preserves limits. □

Corollary 2.14. For each 𝐵 ∈ B the adjunction 𝜋∗
𝐵

: Cat(B) ⇄ Cat(B/𝐵) : (𝜋𝐵)∗ from
Example 2.6 restricts to an adjunction 𝜋∗

𝐵
: PrL(B)⇄ PrL(B/𝐵) : (𝜋𝐵)∗. □

Tensor products of presentable B-categories

Given two presentable B-categories C andD, there exists a presentable B-category C ⊗D
called the tensor product of C and D, which is characterized by the property that colimit-
preserving B-functors into a third presentable B-category E correspond to B-functors
C ×D → E which preserve colimits in both variables, see [MW22, Section 8.2]. The
tensor product equips PrL(B) with the structure of a symmetric monoidal ∞-category
PrL(B)⊗ whose monoidal unit is ΩB . In fact, in [MW22, Proposition 8.2.9] it is shown
that a parametrized version of this construction equips the (very large) B-category PrL

B of
presentable B-categories with the structure of a symmetric monoidal B-category.

3It is called the universe for groupoids by [Mar21].
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By [MW22, Proposition 8.2.11], a formula for the tensor product of two presentable
B-categories C and D is given by C ⊗ D ≃ FunR

B (Cop,D), the full sub-B-category of
FunB (Cop,D) spanned by the limit-preserving B-functors Cop → D. For a third pre-
sentable B-category E, there is an equivalence

FunL
B (C ⊗D,E) ≃ FunL

B (C,FunL
B (D,E)),

and it follows in particular that the B-functor C ⊗− : PrL
B→ PrL

B preserves colimits.

Definition 2.15 ([MW22, Definition 8.2.10]). A presentably symmetric monoidal B-
category is a commutative algebra object in the symmetric monoidal∞-category PrL(B)⊗.

As PrL(B)⊗ is a subcategory of Cat(B)×, a symmetric monoidal B-category C is pre-
sentably symmetric monoidal if and only if C is presentable and the tensor product B-
functor −⊗− : C×C → C preserves colimits in both variables. Unwinding definitions, this
boils down to the following two non-parametrized conditions:

(1) (Fiberwise presentably symmetric monoidal) For every 𝐵 ∈ B, the tensor product func-
tor −⊗𝐵 − : C(𝐵) ×C(𝐵) → C(𝐵) of C(𝐵) preserves small colimits in both variables.

(2) (Left projection formula) For every morphism 𝑓 : 𝐴→ 𝐵 in B and all objects 𝑋 ∈ C(𝐵)
and𝑌 ∈ C(𝐴), the exchange morphism 𝑓!( 𝑓 ∗(𝑋) ⊗𝐴𝑌 ) → 𝑋 ⊗𝐵 𝑓!(𝑌 ) is an equivalence.

In particular, the data of a presentably symmetric monoidal B-category is the same as that
of a limit-preserving functor C : Bop→ CAlg(PrL) such that all the symmetric monoidal
restriction functors 𝑓 ∗ : C(𝐵) → C(𝐴) admit left adjoints that satisfy base change and
satisfy the left projection formula. Such structure has also been called a Wirthmüller
context4 [ABG18, Definition 6.7, Proposition 6.8] or a presentable pullback formalism
[DG22, Definition 4.5].

Embedding B-modules into presentable B-categories

The∞-topos B comes equipped with a presentably symmetric monoidal structure given by
cartesian product, and thus we may consider left modules over it in PrL, which we will refer
to as B-modules. It was shown in [MW22, Section 8.3] that the B-modules embed fully
faithfully into presentable B-categories:

4In [ABG18], the Beck-Chevalley conditions and the left projection formula were not taken as part of the
axioms.
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Proposition 2.16 ([MW22, Proposition 8.3.2, Lemma 8.3.3, Proposition 8.3.5, Proposi-
tion 8.3.6]). There is a symmetric monoidal fully faithful functor

−⊗BΩB : ModB (PrL) ↩−−→ PrL(B)

which admits a right adjoint Γlin : PrL(B) → ModB (PrL) whose composition with the
forgetful functor ModB (PrL) → PrL is the global section functor Γ : PrL(B) → PrL. □

Given a B-module D, the presentable B-category D ⊗B ΩB is given at an object 𝐵 ∈ B
by the relative tensor product D ⊗B B/𝐵 in PrL. The functoriality of this expression in 𝐵
is informally described as follows: given a morphism 𝑓 : 𝐴→ 𝐵 in B, one considers the
composition functor 𝑓! : B/𝐴→ B/𝐵 as a B-linear functor in PrL, tensors it with D over
B to get a map D ⊗B B/𝐴→D ⊗B B/𝐵, and then passes to its right adjoint. We refer to
[MW22, Section 8.3] for a precise construction.

It follows directly from Proposition 2.16 that every commutative B-algebra D in PrL gives
rise to a presentably symmetric monoidal B-category D ⊗BΩB:

Corollary 2.17. The adjunction from Proposition 2.16 induces an adjunction

−⊗BΩB : CAlgB (PrL) CAlg(PrL(B)) :Γlin. □

We will also need a C-linear version of this result:

Lemma 2.18. For every presentably symmetric monoidal B-category C, the adjunction
from Proposition 2.16 induces an adjunction

−⊗Γ(C) C : ModΓ(C) (PrL)⇄ModC (PrL(B)) :ΓC .

Furthermore:

(1) the left adjoint −⊗Γ(C) C is fully faithful and symmetric monoidal;

(2) the right adjoint ΓC preserves colimits and satisfies the projection formula: the canon-
ical map

D ⊗Γ(C) ΓC (E) → ΓC ((D ⊗Γ(C) C) ⊗C E)

is an equivalence for every Γ(C)-module D and C-module E.

Proof. The adjunction is obtained as a concatenation of the following two adjunctions:

ModΓ(C) (PrL) ModΓ(C)⊗BΩB (PrL(B)) ModC (PrL(B).
−⊗BΩB

Γlin

−⊗Γ (C)⊗BΩBC

fgt
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The first adjunction is an instance of [Lur17, Example 7.3.2.8] while the second adjunction
is the base change adjunction of the counit map Γ(C) ⊗B ΩB → C. As both left adjoints
are symmetric monoidal, so is their composite −⊗C Γ(C).
To show that the functor ΓC : ModC (PrL(B)) →ModΓ(C) (PrL) preserves colimits, it suffices
to show that the functor Γ : PrL(B) → PrL preserves colimits, as colimits in module cate-
gories are computed underlying. As PrL(B) ≃ (PrR(B))op by [MW22, Proposition 6.4.7],
we may pass to opposite categories and instead show that Γ𝑅 : PrR(B) → PrR preserves
limits. By [MW22, Proposition 6.4.10] the inclusion PrR(B) ↩→ Cat(B) preserves limits,
hence it suffices to show that the evaluation functor Γ = ev1 : Cat(B) → Cat∞ preserves
limits. This is clear, as limits in Cat(B) = FunR(Bop,Cat∞) are computed pointwise.

We next show that the functor ΓC satisfies the projection formula. Recall that this is
automatic whenever D is dualizable in ModΓ(C) (PrL), see for example [FHM03, Propo-
sition 3.12] or [Car+22, Lemma 4.15]. Since we already showed that ΓC commutes with
colimits, it will suffice to show that the∞-category ModΓ(C) (PrL) is generated under colimits
by dualizable objects. Since the free Γ(C)-module functor Γ(C) ⊗− : PrL→ModΓ(C) (PrL)
is symmetric monoidal and its image generates ModΓ(C) (PrL) under colimits, it suffices to
show that PrL is generated under colimits by dualizable objects. This holds by [RS22,
Lemma 7.14].

Finally, we show that the left adjoint − ⊗Γ(C) C is fully faithful, or equivalently that the
unit D → ΓC (D ⊗Γ(C) C) of the adjunction is an equivalence. This is a special case of the
projection formula applied to E = C. □

For general C-modules D and E in PrL(B), it is not clear in general how the parametrized
relative tensor product D ⊗C E looks like. The situation improves when D comes from a
Γ(C)-module in PrL:

Corollary 2.19. Let C ∈ CAlg(PrL(B)), let D,E ∈ ModC (PrL), and assume that D =

D0 ⊗Γ(C) C for some D0 ∈ModΓ(C) (PrL). Then there is for every 𝐴 ∈ B an equivalence of
C(𝐴)-linear∞-categories

D(𝐴) ⊗C(𝐴) E(𝐴) ∼−−→ (D ⊗C E)(𝐴).

Proof. By passing to the slice category B/𝐴, we may assume that 𝐴 is terminal in B. In
this case, Lemma 2.18 provides equivalences of Γ(C)-linear∞-categories

D(1) ⊗C(1)E(1) = ΓC (D)⊗Γ(C) ΓC (E)
∼←−D0⊗Γ(C) ΓC (E)

∼−→ ΓC (D⊗CE) = (D⊗CE)(1).
□
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2.2 Classification of C-linear functors

Given a presentably symmetric monoidal B-category C ∈ CAlg(PrL(B)), one may define
for every object 𝐴 ∈ B a presentable B-category C𝐴 given by C𝐴 (𝐵) = C(𝐴×𝐵). It comes
equipped with a natural tensoring over C in PrL(B). The goal of this section is to give a
classification of C-linear B-functors 𝐹 : C𝐴→ C𝐵 for objects 𝐴, 𝐵 ∈ B: we will show in
Theorem 2.32 below that evaluation at the object Δ!1𝐴 ∈ C(𝐴× 𝐴) = C𝐴 (𝐴) determines an
equivalence

evΔ!1 : FunC (C𝐴,C𝐵)
∼−→ C(𝐴×𝐵),

whose inverse sends an object 𝐷 ∈ C(𝐴×𝐵) to the B-functor (pr𝐵)!(pr∗
𝐴
(−) ⊗𝐷) : C𝐴→

C𝐵.

The B-category of C-linear B-categories

Fix a presentably symmetric monoidal B-category C ∈ CAlg(PrL(B)), and consider the
∞-category ModC (PrL(B)) of left C-modules in PrL(B). We refer to the objects of
ModC (PrL(B)) as C-linear B-categories and to the morphisms as C-linear B-functors. In
particular, C-linear B-functors will always preserve colimits by convention.

For any object 𝐵 ∈ B, we obtain an object 𝜋∗
𝐵
C ∈ CAlg(PrL(B/𝐵)). By [MW22, Defini-

tion 7.2.2], the ∞-categories Mod𝜋∗
𝐵
C (PrL(B/𝐵)) assemble into a B-category ModC (PrL

B).
By [MW22, Proposition 7.2.7], we have:

(1) The B-category ModC (PrL
B) is complete and cocomplete;

(2) The B-functor ModC (PrL
B) → PrL

B preserves limits and colimits;

(3) The relative tensor product−⊗C− : ModC (PrL
B)×ModC (PrL

B) →ModC (PrL
B) preserves

colimits in both variables.

Since PrL(B) is closed symmetric monoidal, so is ModC (PrL(B)): for every pair ofC-linear
B-categoriesD and E, there exists an internal hom object FunC (D,E). We let FunC (D,E)
denote its underlying ∞-category, whose objects are the C-linear B-functors 𝐹 : D → E,
and whose morphisms will be referred to as C-linear natural transformations. Given two
C-linear B-functors 𝐹,𝐹′ : D → E, we let NatC (𝐹,𝐹′) denote the mapping space from 𝐹

to 𝐹′ in FunC (D,E).
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Definition 2.20. A C-linear B-functor 𝐹 : D → E is called an internal left adjoint in
ModC (PrL(B)) if there is a C-linear B-functor 𝐺 : E → D equipped with C-linear trans-
formations 𝜀 : 𝐹𝐺⇒ id and 𝜂 : id⇒ 𝐺𝐹 satisfying the triangle identities.

We have the following characterization of internal left adjoints:

Lemma 2.21. A C-linearB-functor 𝐹 : D→E is an internal left adjoint in ModC (PrL(B))
if and only if its right adjoint 𝐺 : D → E in Cat(B) preserves colimits and satisfies the
projection formula: for every 𝐵 ∈ B, every 𝐶 ∈ C(𝐵) and every 𝐸 ∈ E(𝐵), the canonical
map 𝐶 ⊗𝐵𝐺 (𝐸) → 𝐺 (𝐶 ⊗𝐵 𝐸) is an equivalence in D(𝐵).

Proof. By Proposition A.7, the right adjoint𝐺 of𝐺 is a right adjoint internal to ModC (Cat(B))
if and only if𝐺 satisfies the projection formula. The adjunction lifts further to ModC (PrL(B))
if and only if 𝐺 preserves colimits. □

The property for a C-linear functor 𝐹 to be an internal left adjoint can be checked locally
in B:

Proposition 2.22. Let 𝐹 : D → E be a C-linear B-functor and assume that 𝐵↠ 1 is an
an effective epimorphism in B. Then 𝐹 is an internal left adjoint in ModC (PrL(B)) if and
only if 𝜋∗

𝐵
𝐹 is an internal left adjoint in ModC (PrL(B/𝐵)).

Proof. Let 𝐺 : E →D be the right adjoint of 𝐹. Since PrL
B is a parametrized subcategory

of CatB , 𝐺 preserves colimits if and only if 𝜋∗
𝐵
𝐺 does. By Lemma 2.21, it thus remains to

show that 𝐺 satisfies the projection formula if and only if 𝜋∗
𝐵
𝐺 does. This is true because

checking that for objects 𝐴 ∈ B,𝐶 ∈ C(𝐴) and 𝐸 ∈ E(𝐴) the map𝐶 ⊗𝐵𝐺 (𝐸) →𝐺 (𝐶 ⊗𝐵 𝐸)
is an equivalence in D(𝐴) can be done after pulling back along the effective epimorphism
𝐴×𝐵↠ 𝐴. □

Free and cofree C-linear B-categories

Continue to fix a presentably symmetric monoidal B-category C. We will next associate to
every object 𝐴 ∈ B two C-linear B-categories C[𝐴] and C𝐴, the free and cofree C-linear
B-categories on 𝐴, and prove that they are in fact equivalent, see Corollary 2.29 below.
The arguments are entirely analogous to those of [Car+22, Section 4.1].

Definition 2.23. Let D ∈ModC (PrL(B)) be a C-linear B-category. For an object 𝐴 ∈ B,
we define the C-linear B-categories D[𝐴] and D𝐴 by

D[𝐴] := colim𝐴D and D𝐴 := lim𝐴D,
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the 𝐴-indexed colimit and limit of the constant diagram onD in theB-category ModC (PrL
B).

For a morphism 𝑓 : 𝐴→ 𝐵 in B, we denote by

𝑓! : D[𝐴] → D[𝐵] and 𝑓 ∗ : D𝐵→D𝐴

the induced C-linear B-functors. Their right adjoints in Cat(B) are denoted by

𝑓 ∗ : D[𝐵] → D[𝐴] and 𝑓∗ : D𝐴→D𝐵.

Since the forgetful functors ModC (PrL
B) → PrL

B→ CatB preserve limits by [MW22, Propo-
sition 7.2.7] and [MW22, Proposition 6.4.9], the underlying B-category of D𝐴 is the
B-category (𝜋𝐴)∗𝜋∗𝐴D =D(𝐴×−) : Bop→ Cat∞.

Corollary 2.24. There is a natural equivalence of C-linear B-categories

FunC (C[𝐴],D)
∼−−→D𝐴.

Proof. The internal hom B-functor FunC (−,D) : ModC (PrL
B)op→ModC (PrL

B) turns col-
imits in ModC (PrL

B) into limits and returns D when evaluated at the monoidal unit
C ∈ModC (PrL(B)), hence we have

FunC (C[𝐴],D) = FunC (colim𝐴C,D) ≃ lim𝐴FunC (C,D) ≃ lim𝐴D =D𝐴. □

Lemma 2.25. For objects 𝐴, 𝐵 ∈ B, there is an equivalence

C[𝐴] ⊗CD[𝐵] ≃ D[𝐴×𝐵] .

Proof. Since−⊗C− preserves colimits in both variables and C⊗CD ≃D, this follows from
the observation that colim𝐴 colim𝐵 ≃ colim𝐴×𝐵: both sides are left adjoint to the diagonal
ModC (PrL

B) → FunB (𝐴×𝐵,ModC (PrL
B)). □

Proposition 2.26. Let D be a C-linear B-category.

(1) For every morphism 𝑓 : 𝐴→ 𝐵 in B, the C-linear B-functor 𝑓! : C[𝐴] → C[𝐵] admits
a C-linear right adjoint 𝑓 ∗ : C[𝐵] → C[𝐴];

(2) For every pullback square inB as on the left, the induced square of C-linearB-functors
as on the right is (vertically) right adjointable in ModC (PrL(B)):

𝐴′ 𝐴

𝐵′ 𝐵

𝛼

𝑓 ′ 𝑓

𝛽

C[𝐴′] C[𝐴]

C[𝐵′] C[𝐵];

𝛼!

𝑓 ′! 𝑓!

𝛽!

29



(3) For every morphism 𝑓 : 𝐴→ 𝐵 in B, the C-linear B-functor 𝑓 ∗ : D𝐵→D𝐴 admits a
C-linear left adjoint 𝑓! : D𝐴→D𝐵;

(4) For every pullback square inB as on the left, the induced square of C-linearB-functors
as on the right is (vertically) left adjointable in ModC (PrL(B)):

𝐴′ 𝐴

𝐵′ 𝐵

𝛼

𝑓 ′ 𝑓

𝛽

D𝐴′ D𝐴

D𝐵′ D𝐵;

𝛼∗

𝑓 ′∗ 𝑓 ∗

𝛽∗

(5) For every morphism 𝑓 : 𝐴 → 𝐵 in B, there are naturally commutative squares of
C-linear B-functors

FunC (C[𝐵],D) D𝐵

FunC (C[𝐴],D) D𝐴

−◦ 𝑓!

≃

𝑓 ∗

≃

and
FunC (C[𝐴],D) D𝐴

FunC (C[𝐵],D) D𝐵.

−◦ 𝑓 ∗

≃

𝑓!

≃

Proof. Parts (3) and (4) follow immediately from (1) and (2) because of the natural equiv-
alence FunC (C[𝐴],D) ≃ D𝐴. For (5), the left-hand square is simply naturality in 𝐴 of the
equivalence FunC (C[𝐴],D) ≃D𝐴, and the right-hand square is obtained from this by pass-
ing to internal left adjoints in ModC (PrL(B)). For parts (1) and (2), consider the base change
functor C ⊗ΩB − : PrL

B ≃ModΩB (PrL
B) →ModC (PrL

B). It is a colimit-preserving symmetric
monoidal 2-functor, and thus we have C[𝐴] ≃ C ⊗ΩB ΩB [𝐴]. It thus suffices to show the
claim when C = ΩB . In this case we have an equivalence ΩB [𝐴] ≃ PShΩ(𝐴) by [MW21,
Theorem 6.1.1], and by [MW21, Lemma 6.1.3] the functor 𝑓! : PShΩ(𝐴) → PShΩ(𝐵) is
given by left Kan extension. The right adjoint 𝑓 ∗ : PShΩ(𝐵) → PShΩ(𝐴) of 𝑓! is therefore
just the restriction functor, which is a morphism in PrL(B), proving (1). For part (2), it
suffices to check that for every object 𝐶 ∈ B, evaluating the square at 𝐶 gives a vertically
right adjointable square of∞-categories. In the case at hand, this square looks like

B/𝐴′×𝐶 B/𝐴×𝐶

B/𝐵′×𝐶 B/𝐵×𝐶 ,

(𝛼×1)◦−

( 𝑓 ′×1)◦− ( 𝑓×1)◦−
(𝛽×1)◦−

which is adjointable as B satisfies base change. □

Corollary 2.27. For every object 𝐴 ∈ B, the C-linear pairing

C[𝐴] ⊗C C[𝐴] ≃ C[𝐴× 𝐴]
Δ∗−−→ C[𝐴] 𝐴!−−→ C
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is part of a duality datum in ModC (PrL(B)), exhibiting the C-linear B-category C[𝐴] as
self-dual.

Proof. The coevaluation is given by C 𝐴∗−−→ C[𝐴] Δ!−→ C[𝐴× 𝐴] ≃ C[𝐴] ⊗C C[𝐴]. The first
triangle identity follows from the following commutative diagram:

C[𝐴× 𝐴× 𝐴]

C[𝐴× 𝐴] C[𝐴× 𝐴]

C[𝐴] C[𝐴] C[𝐴],

(Δ×1)∗

Δ∗

(1×Δ)!

(pr2)!pr∗1 Δ!

where the square commutes via the Beck-Chevalley equivalence. The other triangle identity
is analogous. □

Lemma 2.28. Let 𝑓 : 𝐴→ 𝐵 be a morphism in B. Then the following diagrams commute:

C[𝐵] C[𝐴]

C[𝐵]∨ C[𝐴]∨
≃

𝑓 ∗

≃
( 𝑓!)∨

and
C[𝐴] C[𝐵]

C[𝐴]∨ C[𝐵]∨.

≃

𝑓!

≃
( 𝑓 ∗)∨

Proof. We will prove the left diagram. The proof for the right diagram is analogous and is
left to the reader. Expanding the definition of ( 𝑓!)∨ by plugging in the explicit evaluation
and coevaluation maps from Corollary 2.27, we see it is given by the composite

C[𝐵]
(pr𝐵)∗−−−−→ C[𝐵× 𝐴]

(1×( 𝑓 ,1))!−−−−−−−−→ C[𝐵×𝐵× 𝐴]
(Δ×1)∗
−−−−−→ C[𝐵× 𝐴]

(pr𝐴)!−−−−→ C[𝐴] .

Observe that the maps 1× ( 𝑓 ,1) and Δ×1 fit into a pullback square

𝐴 𝐵× 𝐴

𝐵× 𝐴 𝐵×𝐵× 𝐴,

1×( 𝑓 ,1)
Δ×1

( 𝑓 ,1)

( 𝑓 ,1)

and thus it follows from base change that the above composite is homotopic to

C[𝐵]
(pr𝐵)∗−−−−→ C[𝐵× 𝐴]

( 𝑓 ,1)∗
−−−−→ C[𝐴]

( 𝑓 ,1)!−−−−→ C[𝐵× 𝐴]
(pr𝐴)!−−−−→ C[𝐴] .

But this composite is the functor 𝑓 ∗ : C[𝐵] → C[𝐴], as desired. □

Under the equivalence FunC (C[𝐴],C𝐴) ≃ C𝐴 (𝐴) = C(𝐴× 𝐴), the object Δ!1𝐴 corresponds
to a C-linear B-functor C[𝐴] → C𝐴.

31



Corollary 2.29. For every object 𝐴 ∈ B, the B-functor C[𝐴] → C𝐴 is an equivalence of
C-linearB-categories. Furthermore, for every map 𝑓 : 𝐴→ 𝐵 inB, the following diagrams
commute:

C[𝐵] C𝐵

C[𝐴] C𝐴

≃

𝑓 ∗ 𝑓 ∗

≃

and
C[𝐴] C𝐴

C[𝐵] C𝐵.

≃

𝑓! 𝑓!

≃

Proof. By Corollary 2.27, the pairing C[𝐴] ⊗C C[𝐴] → C adjoints over to an equivalence
C[𝐴] ∼−−→ FunC (C[𝐴],C). Composing this with the equivalence FunC (C[𝐴],C) ≃ C𝐴

from Corollary 2.24 gives an equivalence C[𝐴] ∼−→ C𝐴. It remains to show that this is the
B-functor C[𝐴] → C𝐴 classified by Δ!1𝐴 ∈ C𝐴 (𝐴). Adjoining over once more, it suffices
to show that the dual C → C𝐴×𝐴 of the pairing C[𝐴× 𝐴] → C is classified by the object
Δ!1𝐴 ∈ C(𝐴× 𝐴). But by Proposition 2.26(5) and the construction of the pairing, this is
the composite C 𝐴∗−−→ C𝐴 Δ!−→ C𝐴×𝐴. This proves the first claim.

The two commutative diagrams follow from a combination of Lemma 2.28 and Proposi-
tion 2.26(5). □

Classification of C-linear functors

As a result of Corollary 2.29, the C-linear B-category C𝐴 is, in a precise sense, the free
C-linearB-category on 𝐴: any C-linearB-functor C𝐴→D to another C-linearB-category
D is fully determined by where it sends the object Δ!1𝐴 ∈ C(𝐴× 𝐴) = C𝐴 (𝐴).

Corollary 2.30. For an object 𝐴 ∈ B and a C-linear B-category D, the composite

FunC (C
𝐴,D)

(−)𝐴
−−−→ FunC (C

𝐴×𝐴,D𝐴)
evΔ!1𝐴−−−−−→D𝐴

is an equivalence of C-linear B-categories, where the last map denotes evaluation at
Δ!1𝐴 ∈ C(𝐴× 𝐴).

Proof. Let 𝑈 ∈ C[𝐴] (𝐴) denote the object classified by the identity C[𝐴] → C[𝐴] under
the equivalence FunC (C[𝐴],C[𝐴]) ≃ C[𝐴] (𝐴). By Corollary 2.29, it suffices to show the
statement for C[𝐴] instead of C𝐴: the composite

FunC (C[𝐴],D)
(−)𝐴
−−−→ FunC (C[𝐴]

𝐴,D𝐴) ev𝑈−−−→D𝐴

is an equivalence of C-linear B-categories. But it is clear from functoriality in D that this
composite is simply the equivalence FunC (C[𝐴],D)

∼−→D𝐴 from Corollary 2.24. □
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Observation 2.31. Since the functor (−)𝐴 : PrL(B) → PrL(B) is lax symmetric monoidal
(as it is the composite of the symmetric monoidal functor 𝐴∗ : PrL(B) → PrL(B/𝐵) and its
right adjoint 𝐴∗), the B-category D𝐴 is canonically tensored over C𝐴. We claim that the
inverse of the equivalence of Corollary 2.30 is adjoint to the composite D𝐴 ⊗C C𝐴

−⊗𝐴−−−−−→
D𝐴 𝐴!−−→D. To see this, it suffices to show that the composite D𝐴→ FunC (C𝐴,D)

∼−→D𝐴

is equivalent to the identity. Expanding definitions, this composite is given by

D𝐴
pr∗1−−→D𝐴×𝐴 ≃ D𝐴×𝐴 ⊗ C 1⊗Δ!1𝐴−−−−−−→D𝐴×𝐴 ⊗C C𝐴×𝐴

−⊗𝐴×𝐴−−−−−−−→D𝐴×𝐴 pr2!−−−→D𝐴.

By the projection formula, this is equivalent to the composite

pr2!Δ!(Δ∗ pr∗1(−) ⊗𝐴 1𝐴) : D
𝐴→D𝐴,

which is equivalent to the identity since Δ : 𝐴→ 𝐴× 𝐴 is a section of both projections
pr1,pr2 : 𝐴× 𝐴→ 𝐴.

Specializing to D = C𝐵, we arrive at the main result of this subsection:

Theorem 2.32. For objects 𝐴, 𝐵 ∈ B, evaluation at Δ!1𝐴 ∈ C𝐴 (𝐴) induces an equivalence
of C-linear B-categories

FunC (C
𝐴,C𝐵) ∼−−→ C𝐴×𝐵.

The inverse is adjoint to the composite

C𝐴×𝐵 ⊗ C𝐴
1⊗pr∗

𝐴−−−−→ C𝐴×𝐵 ⊗ C𝐴×𝐵 −⊗𝐴×𝐵−−−−−−−→ C𝐴×𝐵
pr𝐵!−−−→ C𝐵. □

Definition 2.33. Let D ∈ ModC (PrL(B)) be a C-linear B-category and let 𝐹 : C𝐴→D
be a C-linear B-functor. We define 𝐷𝐹 := 𝐹𝐴 (Δ!1𝐴) ∈ D(𝐴). Conversely, for an object
𝐷 ∈ D(𝐴), we let 𝐹𝐷 : C𝐴→D denote the C-linearB-functor 𝐹𝐷 = 𝐴!(−⊗𝐴𝐷) : C𝐴→D.

More informally, Corollary 2.30 says that every C-linearB-functor 𝐹 : C𝐴→D is naturally
equivalent to theB-functor 𝐴!(−⊗𝐴𝐷𝐹). One should be a bit careful with the interpretation
of these symbols “𝐴!” and “⊗𝐴", as they depend on D. For example, in the case of
Theorem 2.32, where D = C𝐵 for some 𝐵 ∈ B, the statement is that every C-linear functor
𝐹 : C𝐴→C𝐵 is equivalent to pr𝐵!(pr∗

𝐴
(−) ⊗𝐴×𝐵𝐷𝐹) for a unique 𝐷𝐹 ∈ C𝐵 (𝐴) = C(𝐴×𝐵).

Corollary 2.34. Let 𝐴 ∈ B, letD be a C-linear B-category and let 𝐹,𝐺 : C𝐴→D be two
C-linear functors. Evaluation at Δ!1𝐴 induces an equivalence of spaces

NatC (𝐹,𝐺) ∼−−→ HomD(𝐴) (𝐷𝐹 , 𝐷𝐺).

Proof. This follows immediately from the fact that evaluation at Δ!1𝐴 is an equivalence
from FunC (C𝐴,D) toD(𝐴) by Corollary 2.30, so that it in particular induces equivalences
on mapping spaces. □
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2.3 Formal inversions

If C is a presentably symmetric monoidal ∞-category and 𝑆 is a small subcategory of C,
there is another presentably symmetric monoidal ∞-category C[𝑆−1] equipped with the
universal morphism C → C[𝑆−1] in CAlg(PrL) out of C which sends all objects in 𝑆 to
invertible objects, see Robalo [Rob15, Section 2.1] and Hoyois [Hoy17, Section 6.1]. The
goal of this subsection is to discuss a parametrized variant of this construction.

Definition 2.35 (Formal inversion). Let C is a presentably symmetric monoidalB-category,
and let 𝑆 ⊆ C be a full subcategory. A morphism 𝑝 : C → C′ in CAlg(PrL(B)) is said to
exhibit C′ as a formal inversion of 𝑆 in C if for every other D ∈ CAlg(PrL(B)) the map of
spaces

HomCAlg(PrL (B)) (C
′,D) → HomCAlg(PrL (B)) (C,D)

given by precomposition with 𝑝 is a monomorphism hitting those path components cor-
responding to B-functors 𝐹 : C → D which invert the objects of 𝑆: for every 𝐴 ∈ B, the
functor 𝐹𝐴 : C(𝐴) → D(𝐴) sends every object 𝑋 ∈ 𝑆(𝐴) to an invertible object in D(𝐴).

If such formal inversion 𝑝 : C → C′ exists, it is uniquely determined by this universal
property and we will denote it by 𝑝 : C → C[𝑆−1]. It is not clear to the author in what
generality parametrized formal inversions can be expected to exist. In this article, we will
contend ourselves with some specific situations in which the formal inversion can be shown
to exist.

A first such situation is when the subcategory 𝑆 is generated by a (non-parametrized) full
subcategory 𝑆0 ⊆ C(1), in the following sense:

Definition 2.36. Let C be a B-category and let 𝑆 ⊆ C be a subcategory. Given a small
subcategory 𝑆0 ⊆ Γ(𝑆) ⊆ Γ(C), we will say that 𝑆 is generated by 𝑆0 if the following
condition is satisfied: for every 𝑋 ∈ 𝑆(𝐵), there exists an effective epimorphism 𝑓 : 𝐴→ 𝐵

in B and an object 𝑌 ∈ 𝑆0 ⊆ C(1) = Γ(C) such that 𝑓 ∗𝑋 ≃ 𝐴∗𝑌 .

Note that in this case, a morphism 𝐹 : C →D in CAlg(PrL(B)) inverts the objects of 𝑆 if
and only if the underlying functor Γ(𝐹) : Γ(C) → Γ(D) inverts the objects of 𝑆0.

Definition 2.37. LetC ∈CAlg(PrL(B)) and let 𝑆 ⊆ C be a symmetric monoidal subcategory
which is generated by a small subcategory 𝑆0 ⊆ Γ(C). Let Γ(C)[𝑆−1

0 ] denote the (non-
parametrized) formal inversion of 𝑆0 in Γ(C). We define the commutativeC-algebraC[𝑆−1

0 ]
in PrL(B) as the image of Γ(C)[𝑆−1

0 ] under the adjunction

−⊗Γ(C) C : CAlgΓ(C) (PrL)⇄ CAlgC (PrL(B)) :ΓC
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from Lemma 2.18.

Proposition 2.38. Let C ∈ CAlg(PrL(B)) and let 𝑆 ⊆ C be a symmetric monoidal sub-
category which is generated by 𝑆0 ⊆ Γ(C). Then the symmetric monoidal left adjoint
C → C[𝑆−1

0 ] is a formal inversion of 𝑆 in C.

Proof. Let 𝐹 : C → D be morphism in CAlg(PrL(B)). By the adjunction between
−⊗Γ(C) C and ΓC , there is a one-to-one correspondence between morphisms C[𝑆−1

0 ] → D
of commutative C-algebras and morphisms Γ(C)[𝑆−1

0 ] → Γ(D) of commutative Γ(C)-
algebras. The claim thus follows from the universal property of the formal inversion
Γ(C) → Γ(C)[𝑆−1

0 ], combined with the fact that the B-functor 𝐹 : C → D inverts the
objects of 𝑆 if and only if the underlying functor Γ(𝐹) : Γ(C) → Γ(D) inverts the objects
of 𝑆0. □

Observation 2.39. In the situation of Definition 2.37, it follows directly from fully faith-
fulness of the functor C⊗Γ(C) : ModΓ(C) (PrL) ↩→ModC (PrL(B)) that the underlying ∞-
category of C[𝑆−1

0 ] is given by the non-parametrized formal inversion Γ(C)[𝑆−1
0 ] of 𝑆0 in

Γ(C). In particular, Proposition 2.38 not only shows that the formal inversion of 𝑆 in C
exists, but also that its underlying morphism in CAlg(PrL) is a non-parametrized formal
inversion.

More generally, evaluating the map C → C[𝑆−1
0 ] at an object 𝐴 ∈ B gives a symmetric

monoidal left adjoint
C(𝐴) → C[𝑆−1

0 ] (𝐴)

which exhibits C[𝑆−1
0 ] (𝐴) as a non-parametrized formal inversion of 𝑆(𝐴) in C(𝐴). Indeed,

this follows immediately by applying the above observation to the slice categoryB/𝐴, where
we use that passing to slices preserves formal inversions by Proposition 2.47 below.

The upshot of Observation 2.39 is that the formal inversion in the above setting can be
obtained as a pointwise formal inversion, in the sense that C[𝑆−1] is given at 𝐵 ∈ B as
the non-parametrized formal inversion C(𝐵) [𝑆(𝐵)−1]. This observation will lead to the
construction of parametrized formal inversions in more general situations. We start by
recalling the functoriality of the formal inversion construction in the non-parametrized
setting.

Definition 2.40. We define Cat∞,aug as the full subcategory of Ar(Cat∞) = Fun(Δ1,Cat∞)
spanned by the morphisms in Cat∞ corresponding to a fully faithful functor 𝜄𝑆 : 𝑆 ↩→ C,
where 𝑆 is a small ∞-category. The functor 𝜄𝑆 : 𝑆 ↩→ C is called an augmentation of the
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∞-category C and the pair (C, 𝜄𝑆) is called an augmented∞-category. We will often abuse
notation and write (C, 𝑆) for (C, 𝜄𝑆), identifying 𝑆 with its image in C.

Note that the forgetful functor Cat∞,aug→ Cat∞, (C, 𝑆) ↦→ C is faithful: for another aug-
mented∞-category (D,𝑇), a morphism (C, 𝑆) → (D,𝑇) in Cat∞,aug may be identified with
a functor C →D which sends the full subcategory 𝑆 ⊆ C into 𝑇 ⊆ D.

Definition 2.41. We define the ∞-category CAlg(PrL)aug of augmented presentably sym-
metric monoidal∞-categories as the pullback

CAlg(PrL)aug Cat∞,aug

CAlg(PrL) Cat∞.

Its objects are pairs (C, 𝑆) of a presentably symmetric monoidal ∞-category C equipped
with an augmentation 𝜄𝑆 : 𝑆 ↩→C.

We define a section (−)inv : CAlg(PrL) → CAlg(PrL)aug of the forgetful functor by equip-
ping a symmetric monoidal C with its collection of invertible objects.

Lemma 2.42. The functor (−)inv : CAlg(PrL) → CAlg(PrL)aug admits a left adjoint

L : CAlg(PrL)aug→ CAlg(PrL)

given on objects by sending a pair (C, 𝑆) to the formal inversion C[𝑆−1].

Proof. It suffices to show that for every pair (C, 𝑆), the formal inversion C[𝑆−1] is a left
adjoint object to (C, 𝑆) under the functor (−)inv : CAlg(PrL) →CAlg(PrL)aug. This follows
from the universal property of C[𝑆−1]: for every D ∈ CAlg(PrL), precomposition with the
functor C → C[𝑆−1] induces an inclusion of path components

HomCAlg(PrL) (C[𝑆
−1],D) ↩→ HomCAlg(PrL) (C,D)

whose image precisely consists of those functors C → D which send all objects of 𝑆 to
invertible objects in D, i.e. the space of maps in CAlg(PrL)aug from (C, 𝑆) to Dinv. □

We will now construct the pointwise formal inversion L(C, 𝑆) in case B = PSh(𝑇) is a
presheaf topos.

Construction 2.43. Let 𝑇 be a small∞-category, let B = PSh(𝑇) and let C be a presentably
symmetric monoidal B-category equipped with a small full subcategory 𝑆 ⊆ C. We let
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(C, 𝑆) : 𝑇op → CAlg(PrL)aug denote the lift of the functor C : 𝑇op → CAlg(PrL) which
equips the∞-category C(𝐵) with the augmentation 𝑆(𝐵) for every 𝐵 ∈ 𝑇 . Composing with
the functor L gives rise to a new functor

L(C, 𝑆) : 𝑇op→ CAlg(PrL),

given on objects by 𝐵 ↦→ C(𝐵) [𝑆(𝐵)−1]. This uniquely extends to a limit-preserving functor
L(C, 𝑆) : Bop→ CAlg(PrL).

We claim that under suitable conditions, L(C, 𝑆) is a presentably symmetric monoidal B-
category modeling the parametrized formal inversion C[𝑆−1]. To this end, we need some
basic properties of (non-parametrized) formal inversions.

Lemma 2.44. Let C ∈ CAlg(PrL) be a presentably symmetric monoidal∞-category and let
𝑆 ⊆ 𝑆′ be two small subcategories of C. Assume that for every 𝐴 ∈ B and 𝑋′ ∈ 𝑆′(𝐴) there
exists objects 𝑋 ∈ 𝑆(𝐴) and 𝑌 ∈ C(𝐴) such that 𝑋 ≃ 𝑋′ ⊗𝑌 . Then any formal inversion
𝑝 : C → C[𝑆−1] of 𝑆 in C also exhibits C[𝑆−1] as a formal inversion of 𝑆′ in C.

Proof. This is immediate from the observation that any symmetric monoidal B-functor
𝐹 : C→D which inverts 𝑆 must also invert 𝑆′: if 𝑋 ≃ 𝑋′⊗𝑌 , we get 𝐹 (𝑋) ≃ 𝐹 (𝑋′) ⊗𝐹 (𝑌 )
and thus if 𝐹 (𝑋) is invertible, so must be 𝐹 (𝑋′) and 𝐹 (𝑌 ). □

Lemma 2.45. Let 𝐹 : C → D be a morphism in CAlg(PrL) and let 𝑆 ⊆ C be a small
subcategory. Then the canonical map

D ⊗C C[𝑆−1] → D[𝐹 (𝑆)−1]

obtained by adjunction from the C-linear functor C[𝑆−1] →D[𝐹 (𝑆)−1] is an equivalence.

Proof. It follows from spelling out the adjunctions and universal properties that both sides
are D-algebras in PrL which admit a (necessarily unique) symmetric monoidal D-linear
map into another D-algebra E if and only if the unit map D → E carries the objects of
𝐹 (𝑆) to invertible objects in E. The claim thus follows from the Yoneda lemma. □

We are now ready to prove that in certain cases the pointwise formal inversion L(C, 𝑆)
represents the parametrized formal inversion C[𝑆−1].

Proposition 2.46. LetB = PSh(𝑇) be the∞-topos of presheaves on some small∞-category
𝑇 . Let C be a presentably symmetric monoidalB-category equipped with a full subcategory
𝑆 ⊆ C. Assume that the following property is satisfied:
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(∗) For every morphism 𝑓 : 𝐴→ 𝐵 in 𝑇 ⊆ B and every object 𝑋 ∈ 𝑆(𝐴), there exists
objects 𝑌 ∈ 𝑆(𝐵) and 𝑍 ∈ C(𝐴) such that 𝑓 ∗𝑌 ≃ 𝑋 ⊗ 𝑍 ∈ C(𝐴).

Then the functor L(C, 𝑆) : Bop → CAlg(PrL) is a presentably symmetric monoidal B-
category and the map C = L(C,∅) → L(C, 𝑆) exhibits L(C, 𝑆) as a formal inversion of 𝑆
in C.

Proof. We first show that L(C, 𝑆) is a presentably symmetric monoidal B-category and
that the map C → L(C, 𝑆) preserves colimits. This may be proved by pulling back C to
the slice topos PSh(𝑇)/𝐵 ≃ PSh(𝑇/𝐵) for every 𝐵 ∈ 𝑇 , hence we may assume that 𝑇 admits
a terminal object 𝐵. In this case, consider the full subcategory 𝑆′ ⊆ C given at 𝐴 ∈ 𝑇 by

𝑆′(𝐴) := { 𝑓 ∗𝑋 ∈ C(𝐴) | 𝑋 ∈ 𝑆(𝐵)},

where 𝑓 : 𝐴→ 𝐵 is the unique map to the terminal object. Note that 𝑆′ ⊆ 𝑆, as 𝑆 is a
parametrized subcategory of C. It is immediate from the definition that 𝑆′ is generated by
𝑆0 := 𝑆(𝐵), in the sense of Definition 2.36, and thus Proposition 2.38 provides a formal
inversion 𝐹 : C → C[𝑆−1

0 ] of 𝑆′ in C. As in the proof of Lemma 2.44, the assumption (∗)
guarantees that 𝐹 even inverts all the objects in 𝑆, and it follows that the map C → C[𝑆−1

0 ]
uniquely extends to a map

L(C, 𝑆) → C[𝑆−1
0 ]

in Fun(𝑇op,CAlg(PrL)). It follows from Observation 2.39 and Lemma 2.44 that this map
is pointwise an equivalence and hence that it is an equivalence of symmetric monoidal B-
categories. Since C[𝑆−1

0 ] is presentably symmetric monoidal, it follows that so is L(C, 𝑆).
Similarly we deduce that the map C → L(C, 𝑆) preserves colimits.

We will now verify that C → L(C, 𝑆) is indeed a formal inversion. Assume that D is
a presentably symmetric monoidal B-category. Because of the adjunction (−)inv ⊣ L,
fiberwise-colimit-preserving symmetric monoidal B-functors 𝐺 : L(C, 𝑆) → D corre-
spond to fiberwise-colimit-preserving symmetric monoidal B-functors 𝐺′ : C →D invert-
ing the objects in 𝑆. It thus remains to show that if𝐺′ preserves all B-colimits, then so does
its extension𝐺. This may be tested after passing to the slice topoi PSh(𝑇)/𝐵 ≃ PSh(𝑇/𝐵) for
𝐵 ∈ 𝑇 , and since the construction of L(C, 𝑆) commutes with passage to slice topoi we may
assume that 𝑇 admits a terminal object. In this case, there is a symmetric monoidal equiva-
lence L(C, 𝑆) ≃ C[𝑆−1

0 ], and since C[𝑆−1
0 ] is a formal inversion of 𝑆 in C it follows that 𝐺′

admits a unique colimit-preserving symmetric monoidal extension to C[𝑆−1
0 ] → D. This

in particular preserves fiberwise colimits, so must agree with 𝐺, finishing the proof. □
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We finish the section by proving that parametrized formal inversions are preserved under
passing to slice topoi.

Proposition 2.47. Let 𝐹 : C → C′ be a morphism in CAlg(PrL(B)) which exhibits C′ as a
formal inversion of a small subcategory 𝑆 in C. Then for every object 𝐵 ∈ B, the induced
B/𝐵-functor 𝜋∗

𝐵
𝐹 : 𝜋∗

𝐵
C → 𝜋∗

𝐵
C′ exhibits 𝜋∗

𝐵
C′ as a formal inversion of 𝜋∗

𝐵
𝑆 in 𝜋∗

𝐵
C.

Proof. Consider D ∈ CAlg(PrL(B/𝐵)). Because of the symmetric monoidal adjunction

𝜋∗𝐵 : PrL(B)⇄ PrL(B/𝐵) : (𝜋𝐵)∗

from Corollary 2.14, a morphism 𝐹 : 𝜋∗
𝐵
C → D in CAlg(PrL(B/𝐵)) is the same as a

morphism 𝐹′ : C → (𝜋𝐵)∗D in CAlg(PrL(B)). Since the unit C → (𝜋𝐵)∗𝜋∗𝐵C and the
counit 𝜋∗

𝐵
(𝜋𝐵)∗D → D are symmetric monoidal, it follows that 𝐹 inverts the objects of

𝜋∗
𝐵
𝑆 if and only if 𝐹′ inverts the objects of 𝑆. Since the map

HomCAlg(PrL (B/𝐵)) (𝜋
∗
𝐵C′,D) → HomCAlg(PrL (B/𝐵)) (𝜋

∗
𝐵C,D)

given by precomposition with 𝜋∗
𝐵
𝐹 corresponds under the adjunction to the map

HomCAlg(PrL (B)) (C
′, (𝜋𝐵)∗D) → HomCAlg(PrL (B)) (C, (𝜋𝐵)∗D)

given by precomposition with 𝐹, we conclude that 𝜋∗
𝐵
𝐹 exhibits 𝜋∗

𝐵
C′ as a formal inversion

of 𝜋∗
𝐵
𝑆 in 𝜋∗

𝐵
C. □
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I.3 Twisted ambidexterity

Fix an ∞-topos B and a presentably symmetric monoidal B-category C. In Section 3.1,
we will associate to every morphism 𝑓 : 𝐴→ 𝐵 in B a relative dualizing object 𝐷 𝑓 ∈ C(𝐴)
together with a twisted norm map Nm 𝑓 : 𝑓!(− ⊗𝐷 𝑓 ) ⇒ 𝑓∗(−), which informally speaking
exhibits 𝑓!(− ⊗ 𝐷 𝑓 ) as the universal parametrized C-linear approximation to 𝑓∗. We will
show in Section 3.2 that when 𝑓 is 𝑛-truncated for some 𝑛, the twisted norm map reduces
to the (untwisted) norm map Nm 𝑓 : 𝑓!⇒ 𝑓∗ from Hopkins and Lurie [HL13] whenever the
latter is defined, and use this to express ambidexterity in terms of twisted ambidexterity. In
Section 3.3 we will explain the close relation between twisted ambidexterity and Costenoble-
Waner duality, a parametrized form of monoidal duality due to [CW16; MS06].

3.1 The twisted norm map

To define the twisted norm map Nm 𝑓 , we will first treat the case where the target 𝐵 of 𝑓 is
the terminal object of B. The case for arbitrary 𝐵 will be obtained by passing to the slice
topos B/𝐵.

Definition 3.1. For an object 𝐴 ∈ B we define the dualizing object 𝐷𝐴 ∈ C(𝐴) of 𝐴 as

𝐷𝐴 := pr1∗Δ!1𝐴 ∈ C(𝐴),

where pr1 : 𝐴× 𝐴→ 𝐴 is the first projection and Δ : 𝐴→ 𝐴× 𝐴 is the diagonal of 𝐴. We
let 𝑐𝐴 : pr∗1𝐷𝐴→ Δ!1𝐴 denote the counit.

Under the equivalence FunC (C𝐴,C) ≃ C(𝐴) of Theorem 2.32, the object 𝐷𝐴 ∈ C(𝐴) corre-
sponds to a C-linear B-functor 𝐴!(− ⊗𝐷𝐴) : C𝐴→C. As a special case of Corollary 2.34
we immediately obtain the following corollary:

Corollary 3.2. For an object 𝐴 ∈ B, evaluation at Δ!1𝐴 induces an equivalence of spaces

NatC (𝐴∗𝐴!(− ⊗𝐴 𝐷𝐴), idC𝐴) ∼−−→ HomC(𝐴×𝐴) (pr∗1𝐷𝐴,Δ!1𝐴). (I.3.1)
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Proof. By naturality in D of the equivalence FunC (C𝐴,D)
∼−−→ D𝐴 from Corollary 2.30,

evaluating 𝐴∗𝐴!(− ⊗𝐴 𝐷𝐴) : C𝐴→ C𝐴 at Δ!1𝐴 gives pr∗1𝐷𝐴. The statement then follows
from Corollary 2.34, since all three functors 𝐴∗, 𝐴! and − ⊗𝐴 𝐷𝐴 are canonically C-
linear. □

Definition 3.3. For 𝐴 ∈ B, we define a C-linear B-transformation

Ñm𝐴 : 𝐴∗𝐴!(− ⊗𝐴 𝐷𝐴) =⇒ idC𝐴

as the C-linear B-transformation corresponding under the equivalence (I.3.1) to the counit
map pr∗1𝐷𝐴 = pr∗1 pr1∗Δ!1𝐴 → Δ!1𝐴. We will refer to Ñm𝐴 as the adjoint twisted norm
map for 𝐴. We define the twisted norm map

Nm𝐴 : 𝐴!(− ⊗𝐴 𝐷𝐴) =⇒ 𝐴∗(−)

as the B-transformation between B-functors C𝐴→C adjoint to Ñm𝐴.

Definition 3.4. An object 𝐴 ∈ B is called twisted C-ambidextrous if the twisted norm map
Nm𝐴 is an equivalence.

A relative version of twisted ambidexterity is obtained by passing to slices of B:

Definition 3.5. For a morphism 𝑓 : 𝐴 → 𝐵 in B, define the relative dualizing object
𝐷 𝑓 ∈ C(𝐴) of 𝑓 as𝐷 𝑓 := pr1∗(Δ 𝑓 )!1𝐴 ∈ C(𝐴), where pr1 : 𝐴×𝐵 𝐴→ 𝐴 is the first projection
and Δ 𝑓 : 𝐴→ 𝐴×𝐵 𝐴 is the diagonal of 𝑓 . We define the twisted norm map

Nm 𝑓 : 𝑓!(− ⊗𝐴 𝐷 𝑓 ) =⇒ 𝑓∗(−)

as the B/𝐵-transformation between B/𝐵-functors (𝜋∗
𝐵
C)𝐴→ 𝜋∗

𝐵
C as in Definition 3.3. We

will say that 𝑓 is twisted C-ambidextrous if the transformation Nm 𝑓 is an equivalence.

We may obtain an explicit formula for the transformation Ñm𝐴 as follows.

Lemma 3.6. For 𝐴 ∈ B, the transformation Ñm𝐴 : 𝐴∗𝐴!(−⊗𝐴𝐷𝐴) ⇒ idC𝐴 is equivalent to
the composite

𝐴∗𝐴!(− ⊗𝐴 𝐷𝐴)
𝑙.𝑏.𝑐.≃ pr2! pr∗1(− ⊗𝐴 𝐷𝐴)
≃ pr2!(pr∗1(−) ⊗𝐴×𝐴 pr∗1𝐷𝐴)
⇒ pr2!(pr∗1(−) ⊗𝐴×𝐴Δ!1𝐴)
𝑙.𝑝. 𝑓 .
≃ pr2!Δ!(Δ∗ pr∗1(−) ⊗𝐴 1𝐴)
≃ idC𝐴 .
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Here 𝑙.𝑏.𝑐. denotes the left base change equivalence, 𝑙.𝑝. 𝑓 . denotes the left projection
formula equivalence, and the non-invertible arrow in the middle is induced by the counit
pr∗1𝐷𝐴 = pr∗1 pr1∗Δ!1𝐴→ Δ!1𝐴.

Proof. By definition, the adjoint twisted norm map Ñm𝐴 is defined to be the map whose
image under the equivalence FunC (C𝐴,C𝐴) ∼−−→ C(𝐴× 𝐴) from Theorem 2.32 is the counit
map pr∗1𝐷𝐴 → Δ!1𝐴. Recall that an inverse to this equivalence is given by sending
𝐷 ∈ C(𝐴× 𝐴) to the C-linear B-functor pr2!(pr∗1(−) ⊗𝐴×𝐴 𝐷) : C

𝐴→ C𝐴. It follows that
morphism Ñm𝐴 in FunC (C𝐴,C𝐴) is equivalent to the map pr2!(pr∗1(−) ⊗𝐴×𝐴 pr∗1𝐷𝐴) →
pr2!(pr∗1(−) ⊗𝐴×𝐴Δ!1)𝐴) induced by the counit. Unwinding definitions, the identifications
of the source and target of these maps happens through the left base change equivalence
and the left projection formula, giving the claim. □

The twisted norm map Nm𝐴 exhibits theB-functor 𝐴!(−⊗𝐷𝐴) : C𝐴→C in a suitable sense
as the universal C-linear approximation of the B-functor 𝐴∗ : C𝐴→C. More precisely, the
dual adjoint norm map Ñm𝐴 exhibits 𝐴!(− ⊗ 𝐷𝐴) as terminal among C-linear B-functor
𝐹 : C𝐴→C equipped with a C-linear transformation 𝐴∗𝐹→ id:

Proposition 3.7 (Universal property twisted norm map). For a C-linear functor 𝐹 : C𝐴→
C, the composite

NatC (𝐹, 𝐴!(− ⊗𝐷𝐴))
𝐴∗◦−−−−−→ NatC (𝐴∗𝐹, 𝐴∗𝐴!(− ⊗𝐷𝐴))

Ñm𝐴◦−−−−−−−→ NatC (𝐴∗𝐹, idC𝐴)

is an equivalence of spaces.

Proof. Observe that the three instances of the equivalence of Corollary 2.34 fit in the
following commutative diagram:

NatC (𝐹, 𝐴!(− ⊗𝐷𝐴)) NatC (𝐴∗ ◦𝐹, 𝐴∗ ◦ 𝐴!(− ⊗𝐷𝐴)) NatC (𝐴∗ ◦𝐹, idC𝐴)

HomC(𝐴) (𝐷𝐹 , 𝐷𝐴) HomC(𝐴×𝐵𝐴) (pr∗1𝐷𝐹 ,pr∗1𝐷𝐴) HomC(𝐴×𝐵𝐴) (pr∗1𝐷𝐹 ,Δ!1𝐴).

evΔ!1𝐴≃

𝐴∗◦− Ñm𝐴◦−

evΔ!1𝐴≃ evΔ!1𝐴≃
pr∗1 𝑐∗pr1

◦−

The left square commutes by naturality of the equivalence FunC (C𝐴,D) ≃ D(𝐴) inD and
the right square commutes because an equivalence of categories preserves composition. It
thus remains to show that the bottom composite in the diagram is an equivalence. But this
is clear since it is given by the adjunction equivalence on hom-spaces for the adjunction
pr∗1 ⊣ pr1∗. □

As a consequence of the universal property of Nm𝐴, we may express twisted ambidexterity
in terms of internal left adjoints in ModC (PrL(B)), in the sense of Definition 2.20:
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Proposition 3.8. The object 𝐴 is twisted C-ambidextrous if and only if the C-linear B-
functor 𝐴∗ : C → C𝐴 is an internal left adjoint in ModC (PrL(B)).

Proof. Note that 𝐴 is twisted C-ambidextrous if and only if the adjoint twisted norm map

Ñm𝐴 : 𝐴∗𝐴!(− ⊗𝐴 𝐷𝐴) =⇒ idC𝐴

exhibits 𝐴!(− ⊗𝐴 𝐷𝐴) as a C-linear right adjoint of 𝐴∗, so that one implication is clear.
Conversely, if 𝐴∗ is an internal left adjoint with C-linear right adjoint 𝐴∗, the C-linear counit
𝐴∗𝐴∗→ id equips 𝐴∗ with the same universal property of 𝐴!(− ⊗𝐷𝐴) of Proposition 3.7:
for every C-linear B-functor 𝐹 : C𝐴→C, the composite

NatC (𝐹, 𝐴∗)
𝐴∗◦−−−−−→ NatC (𝐴∗𝐹, 𝐴∗𝐴∗)

Ñm𝐴◦−−−−−−−→ NatC (𝐴∗𝐹, idC𝐴)

is an equivalence of spaces. It follows that 𝐴!(− ⊗𝐴 𝐷𝐴) and 𝐴∗ are equivalent as C-linear
B-functors C𝐴→C, necessarily via the twisted norm map. □

Remark 3.9. Applying Proposition 3.8 to the slice topos B/𝐵, it follows that a morphism
𝑓 : 𝐴→ 𝐵 inB is twistedC-ambidextrous if and only if theC-linearB/𝐵-functor 𝑓 ∗ : 𝜋∗

𝐵
C→

(𝜋∗
𝐵
C)𝐴 is an internal left adjoint in ModC (PrL(B/𝐵)), i.e. the right adjoint 𝑓∗ preserves

B/𝐵-parametrized colimits and satisfies the projection formula. Applying the criterion
Lemma 2.21 to the slice topos B/𝐵, this can be made explicit in terms of non-parametrized
criteria: 𝑓 is twisted C-ambidextrous if and only if for every pullback diagram

𝐴′′ 𝐴′ 𝐴

𝐵′′ 𝐵′ 𝐵

𝑓 ′′

𝛼

𝑓 ′ 𝑓

𝛽

in B the following three conditions hold:

(1) (Preserving fiberwise colimits) The functor 𝑓 ′∗ : C(𝐴′) → C(𝐵′) preserves colimits;

(2) (Preserving groupoid-indexed colimits) The Beck-Chevalley square

C(𝐴′) C(𝐴′′)

C(𝐵′) C(𝐵′′)

𝑓 ′∗

𝛼∗

𝑓 ′′∗

𝛽∗

is horizontally left adjointable;
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(3) (Right projection formula) For objects 𝑋 ∈ C(𝐴′) and 𝑌 ∈ C(𝐵′), the canonical mor-
phism

𝑓 ′∗ (𝑋) ⊗𝑌 → 𝑓 ′∗ (𝑋 ⊗ 𝑓 ′
∗(𝑌 ))

in C(𝐵′) is an equivalence.

Conditions (1) and (2) correspond to the assumption that the B/𝐵-functor 𝑓∗ preserves
B/𝐵-parametrized colimits, while condition (3) is equivalent to the condition 𝑓∗ is C-linear.

Example 3.10. WhenB = Spc is the∞-topos Spc of spaces and C = Sp is the∞-category of
spectra, the universal property of the twisted norm map appears as [NS18, Theorem I.4.1(v)].
Since every colimit-preserving functor between stable presentable∞-categories is Sp-linear,
the universal property simplifies to the statement that the twisted norm map colim𝐴 (− ⊗
𝐷𝐴) ⇒ lim𝐴 (−) exhibits its source as the universal colimit-preserving aproximation of its
target. The object 𝐷𝐴 ∈ Sp𝐴 is called the dualizing spectrum of 𝐴, and was studied by Klein
[Kle01]. As a functor 𝐴→ Sp, it may be identified with the composite

𝐴
𝑎 ↦→Map𝐴(𝑎,−)−−−−−−−−−−−→ Spc𝐴

Σ∞+−−→ Sp𝐴
lim𝐴−−−→ Sp.

Example 3.11. Let B = Spc be the∞-topos of spaces and let C be a presentably symmetric
monoidal∞-category. By Proposition 3.8, a space 𝐴 is twisted C-ambidextrous if and only
if it is C-adjointable in the terminology of [Car+22, Definition 4.17]. In particular, the
following are examples of twisted C-ambidextrous spaces:

(1) If C is stable, then every compact space is twisted C-ambidextrous, [Car+22, Exam-
ple 4.24].

(2) If C is 𝑚-semiadditive for some 𝑚 ≥ −2, then every 𝑚-finite space is twisted C-
ambidextrous, [Car+22, Example 4.22].

(3) It C is an 𝑛-category (i.e., its mapping spaces are (𝑛− 1)-truncated), then every 𝑛-
connected space is twisted C-ambidextrous, [Car+22, Example 4.23].

(4) Let C = PrL
𝜅 be the ∞-category of 𝜅-presentable ∞-categories for a regular cardinal 𝜅.

Then every space is twisted C-ambidextrous, [Car+22, Example 4.26].

The twisted C-ambidextrous morphisms form a well-behaved class of morphisms in B:

Proposition 3.12. The collection of twisted C-ambidextrous morphisms is
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(1) closed under composition;

(2) closed under arbitrary disjoint unions;

(3) closed under base change;

(4) closed under cartesian products;

(5) a local class of morphisms in B, in the sense of [Lur09, Definition 6.1.3.8].

Proof. (1) For closure under composition, let 𝑓 : 𝐴→ 𝐵 and 𝑔 : 𝐵→ 𝐶 be twisted C-
ambidextrous morphisms. We may write the B/𝐶-functor (𝑔 𝑓 )∗ : [𝐶,C]𝐶 → [𝐴,C]𝐶 as
a composite of 𝑔∗ : [𝐶,C]𝐶 → [𝐵,C]𝐶 and 𝑓 ∗ : [𝐵,C]𝐶 → [𝐴,C]𝐶 . These are both left
adjoints internal to ModC (PrL(B/𝐶)) by Remark 3.9, and thus so is (𝑔 𝑓 )∗. Another
application of Remark 3.9 then shows that 𝑔 𝑓 is twisted C-ambidextrous as well.

(2) Closure under disjoint unions follows directly from Remark 3.9, using the equivalence
C(⊔𝑖 𝐴𝑖) ≃

∏
𝑖 C(𝐴𝑖). (3) Closure under base change is immediate from Remark 3.9. (4)

Closure under cartesian products follows from closure under base change and closure under
composition.

(5) We check that the twisted C-ambidextrous morphisms form a local class in B. Given
closure under disjoint unions, it remains to show that for any pullback square

𝐴′ 𝐴

𝐵′ 𝐵

𝑓 ′

𝛼

𝑓

𝛽

in B such that 𝑓 ′ is twisted C-ambidextrous 𝛽 : 𝐵′↠ 𝐵 is an effective epimorphism, then
also 𝑓 is twisted C-ambidextrous, i.e. the B/𝐵-functor 𝑓 ∗ : 𝜋∗

𝐵
C → (𝜋∗

𝐵
C)𝐴 is an internal

left adjoint in ModC (PrL(B/𝐵)). By Proposition 2.22, it suffices to check this after pulling
𝑓 ∗ back along 𝛽 to the slice B/𝐵′ . But there it becomes the condition that the B/𝐵′-functor
𝑓 ′∗ : 𝜋∗

𝐵′C → (𝜋∗𝐵′C)𝐴
′ is an internal left adjoint in ModC (PrL(B/𝐵′)), which holds by

assumption on 𝑓 ′. □

Corollary 3.13. For B = Spc, the ∞-topos of spaces, a map 𝑓 : 𝐴→ 𝐵 is twisted C-
ambidextrous if and only if each of its fibers are twisted C-ambidextrous. □
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3.2 Relation to ambidexterity and parametrized semiaddi-
tivity

In [HL13, Construction 4.1.8, Remark 4.1.12], Hopkins and Lurie introduce for every ‘Beck-
Chevalley fibration’ 𝑞 : C →B a collection of C-ambidextrous morphisms 𝑓 : 𝐴→ 𝐵 in B,
each of which come equipped with a norm equivalence Nm 𝑓 : 𝑓! ∼−−→ 𝑓∗. In this subsection,
we will compare this notion of ambidexterity with our notion of twisted ambidexterity. As a
consequence, we relate twisted ambidexterity with the notion of parametrized semiadditivity
introduced by Nardin [Nar16] and Lenz, Linskens and the author [CLL23].

Definition 3.14 (Iterated diagonals). Let 𝑓 : 𝐴→ 𝐵 be a morphism in B. The diagonal
Δ( 𝑓 ) of 𝑓 is the map (1,1) : 𝐴→ 𝐴×𝐵 𝐴. The iterated diagonals Δ𝑘 ( 𝑓 ) of 𝑓 are defined
inductively by letting Δ0( 𝑓 ) := 𝑓 and Δ𝑘+1( 𝑓 ) := Δ(Δ𝑘 ( 𝑓 )).

The functor C : Bop→ Cat∞ can be unstraightened to a cartesian fibration C̃ → B. Since
C has parametrized colimits, this is a Beck-Chevalley fibration, in the sense of [HL13,
Definition 4.1.3].

Proposition 3.15. Let 𝑓 : 𝐴→ 𝐵 be a morphism in B and assume that 𝑓 is 𝑛-truncated for
some natural number 𝑛.

(1) The morphism 𝑓 is C-ambidextrous (in the sense of [HL13, Construction 4.1.8] applied
to the Beck-Chevalley fibration C̃ → B) if and only if each of the iterated diagonals
Δ𝑘 ( 𝑓 ) for 𝑘 = 0,1, . . . , 𝑛+1 is twisted C-ambidextrous (in the sense of Definition 3.5).

(2) Similarly, 𝑓 is weakly C-ambidextrous (in the sense of [HL13, Construction 4.1.8]
applied to the Beck-Chevalley fibration C̃ → B) if and only if each of the iterated
diagonals Δ𝑘 ( 𝑓 ) for 𝑘 = 1, . . . , 𝑛+1 is twisted C-ambidextrous.

(3) If 𝑓 is weakly C-ambidextrous, then there is an equivalence 𝐷 𝑓 ≃ 1𝐴 between the
dualizing object 𝐷 𝑓 and the monoidal unit 1𝐴 ∈ C(𝐴), and the composite

𝑓!(−) ≃ 𝑓!(− ⊗𝐴 𝐷 𝑓 )
Nm 𝑓−−−→ 𝑓∗(−)

is equivalent to the norm map 𝑓!→ 𝑓∗ of [HL13, Remark 4.1.12].

Proof. We prove the three claims by simultaneous induction on 𝑛. For 𝑛 = −2, 𝑓 is an
equivalence and parts (1) and (2) are vacuous as every equivalence is both C-ambidextrous
as well as twisted C-ambidextrous. In this case, 𝑓! and 𝑓∗ are both inverse to 𝑓 ∗ and
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therefore admit a canonical equivalence Nm 𝑓 : 𝑓! ≃ 𝑓∗ of parametrized functors C𝐴→ C,
which agrees with the norm map of Hopkins and Lurie. Evaluating this equivalence at
Δ!1𝐴 ∈ C(𝐴× 𝐴) = C𝐴 (𝐴) gives an equivalence 1𝐴 ≃ 𝐷 𝑓 in C(𝐴), and the last statement
of (3) then holds by construction.

Now assume that 𝑛 ≥ −1. The diagonal Δ( 𝑓 ) of 𝑓 is (𝑛−1)-truncated, so by part (1) of the
induction hypothesis it is C-ambidextrous (that is, 𝑓 is weakly C-ambidextrous) if and only
if all the iterated diagonals Δ𝑘 ( 𝑓 ) for 𝑘 = 1, . . . , 𝑛+1 are twisted C-ambidextrous, proving
part (2). In this case, there is an equivalence

𝐷 𝑓 = pr1∗Δ!1𝐴
NmΔ−−−→
≃

pr1∗Δ∗1𝐴 = 1𝐴 ∈ C(𝐴).

Plugging in (the inverse of) this equivalence in the twisted norm map Nm 𝑓 and using the
description of Nm 𝑓 given in Lemma 3.6 (applied to the slice topos B/𝐵), one sees that the
composite in (3) is adjoint to the following composite:

𝑓 ∗ 𝑓!(−) ≃ pr2! pr∗1(−)
𝑢∗
Δ−−→ pr2!Δ∗Δ

∗ pr∗1(−)
NmΔ←−−−
≃

pr2!Δ!Δ
∗ pr∗1(−) ≃ id◦ id = id .

But this composite is precisely (a parametrized version of) the map 𝜈
(𝑛+1)
𝑓

: 𝑓 ∗ 𝑓! → id
of [HL13, Construction 4.1.8], and its adjoint 𝑓! → 𝑓∗ is the norm map of [HL13, Re-
mark 4.1.12], finishing the proof of (3).

Finally we deduce part (1) from (2) and (3). Given (2), we may assume that 𝑓 is weakly
C-ambidextrous, and we need to show it is twisted C-ambidextrous if and only if it is C-
ambidextrous. In other words, we need to show that the twisted norm map is an equivalence
if and only if the norm map 𝑓! → 𝑓∗ of Hopkins and Lurie is an equivalence. This is
immediate from part (3). □

Specializing the result of Proposition 3.15 to the case where B is the∞-topos of spaces, we
obtain the following corollary:

Corollary 3.16. Let C be a presentably symmetric monoidal ∞-category and let 𝐴 be a
connected 𝑛-truncated space. Then the following conditions are equivalent:

(1) The space 𝐴 is C-ambidextrous in the sense of [HL13, Definition 4.3.4];

(2) Each of the objects 𝐴,Ω𝐴, . . . ,Ω𝑛+1𝐴 is twisted C-ambidextrous in the sense of Defini-
tion 3.4.

Proof. Letting 𝑓 : 𝐴→ pt denote the map from 𝐴 to the point, we observe that each of the
fibers of the iterated diagonal Δ𝑘 𝑓 is given by the 𝑘-fold loop space Ω𝑘𝐴. It follows from
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Corollary 3.13 that Ω𝑘𝐴 is twisted C-ambidextrous if and only if the iterated diagonal Δ𝑘𝐴
of 𝐴 is twisted C-ambidextrous. The claim thus follows from Proposition 3.15. □

As a consequence, we obtain a characterization of higher semiadditivity in terms of twisted
ambidexterity. An advantage of this characterization over the usual definition of ambidex-
terity is that all the twisted norm maps are a priori defined rather than through an inductive
process.

Corollary 3.17. Let C be a presentably symmetric monoidal∞-category and let −2 ≤ 𝑚 ≤
∞. Then C is 𝑚-semiadditive if and only if each 𝑚-finite space is twisted C-ambidextrous.

Proof. This is immediate from Corollary 3.16, as the iterated loop spaces of an 𝑚-finite
space are again 𝑚-finite. □

Corollary 3.18. Let C be a presentably symmetric monoidal B-category, let 𝐴 ∈ B and let
−2 ≤ 𝑚 ≤ ∞. Then the following two conditions are equivalent:

(1) the∞-category C(𝐴) is 𝑚-semiadditive;

(2) the fold map colim𝑋 𝐴→ 𝐴 is twisted C-ambidextrous for every 𝑚-finite space 𝑋 .

Proof. For an object 𝐴 ∈ B, consider the (unique) colimit-preserving functor 𝐿𝐴 : Spc→B
sending the point to 𝐴, given on objects by 𝑋 ↦→ colim𝑋 𝐴. The∞-categoryC(𝐴) is encoded
as a Spc-category by the composite

Spcop 𝐿𝐴−−→ Bop C−→ PrL.

Since 𝐿𝐴 preserves pullbacks, a morphism 𝑓 : 𝑋→𝑌 of spaces is twistedC(𝐴)-ambidextrous
if and only if the map 𝐿𝐴 ( 𝑓 ) : 𝐿𝐴 (𝑋) → 𝐿𝐴 (𝑌 ) is twisted C-ambidextrous. Applying
this to 𝑌 = pt shows that 𝑋 → ∗ is twisted C(𝐴)-ambidextrous if and only if the map
colim𝑋 𝐴 = 𝐿𝐴 (𝑋) → 𝐴 is twisted C-ambidextrous. The claim now follows from Corol-
lary 3.17. □

In [Nar16] and [CLL23], parametrized notions of semiadditivity were introduced. By
Proposition 3.15, these may be expressed in terms of twisted ambidexterity:

Corollary 3.19. Let𝑇 be a small∞-category and let𝑃 ⊆𝑇 be an atomic orbital subcategory,
in the sense of [CLL23, Definition 4.3.1]. Let C be a presentably symmetric monoidal
PSh(𝑇)-category. Then C is 𝑃-semiadditive in the sense of [CLL23, Definition 4.5.1] if
and only if C is fiberwise semiadditive and every morphism 𝑝 : 𝐴→ 𝐵 in 𝑃 is twisted
C-ambidextrous.
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Proof. By [CLL23, Corollary 4.5.5], C is 𝑃-semiadditive if and only if it is fiberwise
semiadditive and the norm map Nm𝑝 : 𝑝! → 𝑝∗ from [CLL23, Construction 4.3.6] is an
equivalence for every morphism 𝑝 : 𝐴→ 𝐵 in 𝑃. By [CLL23, Remark 4.3.7], this norm
map agrees with the norm map Nm𝑝 defined by Hopkins and Lurie, which in turn agrees
with the twisted norm map Nm𝑝 by Proposition 3.15. This finishes the proof. □

Corollary 3.20. Let 𝑇 be an atomic orbital ∞-category, in the sense of [Nar16, Defi-
nition 4.1]. Let C be a presentably symmetric monoidal PSh(𝑇)-category. Then C is
𝑇-semiadditive in the sense of [Nar16, Definition 5.3] if and only if C is fiberwise semiad-
ditive and every morphism 𝑓 : 𝐴→ 𝐵 in 𝑇 is twisted C-ambidextrous.

Proof. This follows immediately from the previous corollary for 𝑃 = 𝑇 , since by [CLL23,
Proposition 4.6.3] the norm map from [CLL23, Construction 4.3.6] is equivalent to the
norm map constructed in [Nar16, Construction 5.2]. □

3.3 Costenoble-Waner duality

There is a close link between twisted ambidexterity and Costenoble-Waner duality, a form of
duality theory in parametrized homotopy theory introduced in the early 2000’s by Costeno-
ble and Waner [CW16] and subsequently developed in more detail by May and Sigurdsson
[MS06]. The goal of this subsection is to introduce a general form of Costenoble-Waner
duality in an arbitrary presentably symmetric monoidal B-category C and explain its rela-
tionship with twisted ambidexterity.

Recall that an object 𝑋 of a symmetric monoidal ∞-category D is called dualizable if
there exists another object 𝑌 ∈ D, called the dual of 𝑋 , together with an evaluation map
𝜀 : 𝑋 ⊗𝑌 → 1 and a coevaluation map 𝜂 : 1→ 𝑌 ⊗ 𝑋 satisfying the triangle identities:

𝑋 ⊗𝑌 ⊗ 𝑋

𝑋 ⊗1 𝑋 1⊗𝑋

𝜀⊗𝑋𝑋⊗𝜂 and
𝑌 ⊗ 𝑋 ⊗𝑌

1⊗𝑌 𝑌 𝑌 ⊗1 .

𝑌⊗𝜀𝜂⊗𝑌

It is not difficult to see that this is equivalent to the D-linear functor 𝑋 ⊗ − : D → D
admitting a D-linear right adjoint, necessarily of the form 𝑌 ⊗− : D →D, with D-linear
unit and counit.

In our approach to Costenoble-Waner duality, we will generalize the above perspective
to the parametrized setting. In place of the correspondence between objects 𝑋 ∈ D and
D-linear functors D → D in the non-parametrized setting, we will use the equivalence
FunC (C𝐴,C𝐵) ≃ C(𝐴 × 𝐵) from Theorem 2.32 in the parametrized setting, where C is

49



a presentably symmetric monoidal B-category. In particular, any object 𝑋 ∈ C(𝐴× 𝐵)
determines a C-linear B-functor 𝐹𝑋 : C𝐴→C𝐵 given by the composite

𝐹𝑋 : C𝐴
pr∗

𝐴−−→ C𝐴×𝐵 −⊗𝐴×𝐵𝑋−−−−−−→ C𝐴×𝐵
pr𝐵!−−−→ C𝐵,

and everyC-linearB-functor 𝐹 : C𝐴→C𝐵 is of this form for a unique object𝐷𝐹 ∈ C(𝐴×𝐵).

Convention 3.21. Whenever we write 𝑋 ∈ C(𝐴×𝐵), we think of 𝑋 as being directed from
𝐴 towards 𝐵. If we wish to think of 𝑋 as being directed from 𝐵 towards 𝐴, we will write
𝑋 ∈ C(𝐵× 𝐴) instead. This also applies when 𝐵 = 1 is the terminal object of B, meaning
that we distinguish between 𝑋 ∈ C(𝐴) = C(𝐴×1) and 𝑋 ∈ C(𝐴) = C(1× 𝐴).

Definition 3.22 (cf. [MS06, Construction 17.1.3, Proposition 17.1.4]). For an object 𝐴 ∈ B,
we define 𝑈𝐴 := Δ!1𝐴 ∈ C(𝐴× 𝐴). For objects 𝐴, 𝐵,𝐶 ∈ B and objects 𝑋 ∈ C(𝐴×𝐵) and
𝑌 ∈ C(𝐵×𝐶), their composition product 𝑌 ⊙ 𝑋 ∈ C(𝐴×𝐶) is defined as

𝑌 ⊙ 𝑋 := (pr𝐴𝐶)!(pr∗𝐴𝐵 𝑋 ⊗ pr∗𝐵𝐶𝑌 ),

where pr𝐴𝐵 : 𝐴× 𝐵×𝐶 → 𝐴× 𝐵 denotes the projection and similarly for pr𝐵𝐶 and pr𝐴𝐶 .
This gives rise to a functor −⊙− : C(𝐵×𝐶) ×C(𝐴×𝐵) → C(𝐴×𝐶).

The following lemma may be regarded as a justification for the definition of the composition
product:

Lemma 3.23. In the above situation, there are natural equivalences

𝐹𝑈𝐴
≃ idC𝐴 ∈ FunC (C𝐴,C𝐴),

𝐹𝑌⊙𝑋 ≃ 𝐹𝑌 ◦𝐹𝑋 ∈ FunC (C𝐴,C𝐶).

Proof. The first equivalence is immediate, as the equivalence FunC (C𝐴,C𝐴) ≃ C(𝐴× 𝐴)
of Theorem 2.32 is given by evaluation at Δ!1𝐴. For the second equivalence, plugging in
the definition of 𝑌 ⊙ 𝑋 and using the projection formula for pr𝐴𝐶 ! shows that 𝐹𝑌⊙𝑋 is given
by the composite

C𝐴
pr∗

𝐴−−→ C𝐴×𝐶
pr∗

𝐴𝐶−−−→ C𝐴×𝐵×𝐶
−⊗pr∗

𝐴𝐵
𝑋⊗pr∗

𝐵𝐶
𝑌

−−−−−−−−−−−−−→ C𝐴×𝐶×𝐵
pr𝐴𝐶 !−−−−→ C𝐴×𝐶

pr𝐶 !−−−→ C𝐶 .

Using symmetric monoidality of the functors pr∗
𝐴𝐵

and pr∗
𝐵𝐶

and using the base change
equivalence pr∗

𝐵
pr𝐵! ≃ pr𝐵𝐶 ! pr∗

𝐴𝐵
, this is equivalent to the composite

C𝐴
pr∗

𝐴−−→ C𝐴×𝐵 −⊗𝑋−−−→ C𝐴×𝐵
pr𝐵!−−−→ C𝐵

pr∗
𝐵−−→ C𝐵×𝐶 −⊗𝑌−−−→ C𝐵×𝐶

pr𝐶 !−−−→ C𝐶 .

But this is simply 𝐹𝑌 ◦𝐹𝑋 , finishing the proof. □

50



We will frequently use Lemma 3.23 to deduce properties of the composition product
which can be somewhat tedious to prove by hand. For example, it follows directly from
Lemma 3.23 that the composition product is associative and unital up to homotopy. The
objects𝑈𝐴 = Δ!1𝐴 ∈ C(𝐴× 𝐴) serve as identities with respect to the composition product:
for an object 𝑋 ∈ C(𝐴×𝐵) there are equivalences

𝑋 ⊙𝑈𝐴 ≃ 𝑋 and 𝑈𝐵 ⊙ 𝑋 ≃ 𝑋.

For brevity, we will mostly suppress the associativity and unitaliy equivalences from the
notation and treat them as identities, just like we do for functors.

We may now introduce a parametrized analogue of monoidal duality, first discovered by
Costenoble and Waner [CW16] in the context of equivariant homotopy theory.

Definition 3.24 (cf. [MS06, Definition 16.4.1, Chapter 18]). An object 𝑋 ∈ C(𝐴× 𝐵) is
called left Costenoble-Waner dualizable if there is another object 𝑌 ∈ C(𝐵× 𝐴), called the
left Costenoble-Waner dual of 𝑋 , together with morphisms

𝜀 : 𝑋 ⊙𝑌 →𝑈𝐵 and 𝜂 : 𝑈𝐴→ 𝑌 ⊙ 𝑋

in C(𝐵×𝐵) resp. C(𝐴× 𝐴) satisfying the triangle identities

𝑋 ⊙𝑌 ⊙ 𝑋

𝑋 ⊙𝑈𝐴 𝑋 𝑈𝐵 ⊙ 𝑋

𝜀⊙𝑋𝑋⊙𝜂 and
𝑌 ⊙ 𝑋 ⊙𝑌

𝑈𝐴 ⊙𝑌 𝑌 𝑌 ⊙𝑈𝐵.

𝑌⊙𝜀𝜂⊙𝑌

Conversely, we call 𝑋 the right Costenoble-Waner dual of 𝑌 . Sometimes we say left dual
and right dual for brevity. Note that 𝑋 ∈ C(𝐴× 𝐵) is left Costenoble-Waner dualizable if
and only if it is right Costenoble-Waner dualizable when treated as an object 𝑋 ∈ C(𝐵× 𝐴).

Warning 3.25. In [MS06], the phrase ‘Costenoble-Waner duality’ is only used when 𝐴 is
the terminal object of B. When 𝐵 is the terminal object, they use the phrase ‘fiberwise
duality’, compare also Lemma 3.33 below.

Due to the translation from Lemma 3.23 between the composition product and and compo-
sition of C-linear B-functors, we can express Costenoble-Waner duality in terms of internal
adjunctions in ModC (PrL(B)), in the sense of Definition 2.20.

Lemma 3.26. An object 𝑋 ∈ C(𝐴× 𝐵) is left Costenoble-Waner dualizable if and only
if the C-linear B-functor 𝐹𝑋 : C𝐴 → C𝐵 associated to 𝑋 is an internal left adjoint in
ModC (PrL(B)). In this case, the C-linear right adjoint of 𝐹𝑋 is given by 𝐹𝑌 : C𝐵→ C𝐴,
where 𝑌 ∈ C(𝐵× 𝐴) is a left1 Costenoble-Waner dual of 𝑋 .

1The fact that left duals correspond to right adjoints is unfortunate but seems to be the standard convention.
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Proof. If 𝑋 is left Costenoble-Waner dualizable with right dual𝑌 , we may use Lemma 3.23
to turn the evaluation and coevaluation 𝜀 and 𝜈 into C-linear counit and unit maps 𝐹𝑋 ◦𝐹𝑌→
idC𝐵 and idC𝐴 → 𝐹𝑌 ◦ 𝐹𝑋 , respectively. The triangle identities for the Costenoble-Waner
duality between 𝑋 and𝑌 translate into the triangle identities of an internal adjunction 𝐹𝑋 ⊣ 𝐹𝑌
in ModC (PrL(B)). Conversely, if 𝐹𝑋 is an internal left adjoint internal to ModC (PrL(B))
with C-linear right adjoint 𝐺 : C𝐵→ C𝐴, then it follows from Theorem 2.32 that 𝐺 is of
the form 𝐹𝑌 for some object 𝑌 ∈ C(𝐵× 𝐴), and by Lemma 3.23 the unit and counit of the
adjunction give rise to the coevaluation and evaluation satisfying the triangle identities, and
thus providing duality data between 𝑋 and 𝑌 . □

Remark 3.27. May and Sigurdsson [MS06, Section 16.4] define Costenoble-Waner duality
as a special case of a notion they call duality in a closed symmetric bicategory, applied to
a certain bicategory E𝑥 of parametrized equivariant spectra [MS06, Construction 17.1.3].
From our perspective, one might think of their bicategory E𝑥 as the full subcategory of
the homotopy 2-category of ModC (PrL(B)) spanned by objects of the form C𝐴 for 𝐴 ∈ B.
Indeed, due to Theorem 2.32 and Lemma 3.23, we obtain the following more explicit
description of this bicategory:

• The objects C𝐴 correspond to objects 𝐴 of B;

• Given 𝐴, 𝐵 ∈ B, the category of morphisms C𝐴 → C𝐵 can be identified with the
homotopy category Ho(C(𝐴×𝐵));

• The identity morphisms are given by𝑈𝐴 ∈ C(𝐴× 𝐴);

• The composition is given by the composition product −⊙− : C(𝐵×𝐶) ×C(𝐴×𝐵) →
C(𝐴×𝐶).

When applied to the ∞-topos Spc𝐺 of 𝐺-spaces for a compact Lie group 𝐺 and to the
𝐺-category Sp𝐺 of genuine 𝐺-spectra, to be defined in Section 4.1 below, this is essentially
the bicategory E𝑥 of May and Sigurdsson.

We get the following reformulation of twisted ambidexterity in terms of Costenoble-Waner
duality:

Proposition 3.28. An object 𝐴 ∈ B is twisted C-ambidextrous if and only if the monoidal
unit 1𝐴 ∈ C(𝐴) = C(1× 𝐴) is left Costenoble-Waner dualizable. In this case, the left dual
of 1𝐴 is given by the dualizing object 𝐷𝐴 ∈ C(𝐴) = C(𝐴×1).
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Proof. The C-linear B-functor 𝐹1𝐴
: C → C𝐴 associated to 1𝐴 is 𝐴∗ : C → C𝐴. It follows

from Lemma 3.26 that 1𝐴 is Costenoble-Waner dualizable if and only if 𝐴∗ : C → C𝐴 is
an internal left adjoint in ModC (PrL(B)), which by Proposition 3.8 is true if and only if 𝐴
is twisted C-ambidextrous. In this case, the right adjoint of 𝐴∗ is classified by the object
𝐷𝐴 ∈ C(𝐴) = C(𝐴×1). □

Characterizations of Costenoble-Waner duality

For later use, we recall various alternative characterizations of Costenoble-Waner duality
from [MS06] and [CW16].

Lemma 3.29 (cf. [MS06, Proposition 16.4.6]). Consider objects 𝑋 ∈ C(𝐴× 𝐵) and 𝑌 ∈
C(𝐵×𝐴) and let 𝜀 : 𝑋 ⊙𝑌→𝑈𝐵 be a morphism in C(𝐵×𝐵). Then the following conditions
are equivalent:

(1) The object 𝑌 is a left Costenoble-Waner dual of 𝑋 with evaluation map 𝜀.

(2) For every 𝐶 ∈ B and objects𝑊 ∈ C(𝐴×𝐶) and 𝑍 ∈ C(𝐵×𝐶), the map

HomC(𝐴×𝐶) (𝑊,𝑍 ⊙ 𝑋)
−⊙𝑌−−−→ HomC(𝐵×𝐶) (𝑊 ⊙𝑌, 𝑍 ⊙ 𝑋 ⊙𝑌 )

𝜀−→ HomC(𝐵×𝐶) (𝑊 ⊙𝑌, 𝑍)

is an equivalence;

(3) Condition (2) holds for 𝐶 = 𝐴,𝑊 =𝑈𝐴, 𝑍 = 𝑋 and for 𝐶 = 𝐵,𝑊 = 𝑌 , 𝑍 =𝑈𝐵.

Proof. Given (1), an inverse to the map in (2) is given by

HomC(𝐵×𝐶) (𝑊 ⊙𝑌, 𝑍)
−⊙𝑋−−−→ HomC(𝐴×𝐶) (𝑊 ⊙𝑌 ⊙ 𝑋, 𝑍 ⊙ 𝑋)

𝜂
−→ HomC(𝐴×𝐶) (𝑊,𝑍 ⊙ 𝑋).

It is clear that (2) implies (3). Given (3), we may take 𝐶 = 𝐴, 𝑊 =𝑈𝐴, 𝑍 = 𝑌 and define
the coevaluation 𝜂 : 𝑈𝐴 → 𝑌 ⊙ 𝑋 to be the inverse image of the identity on 𝑋 under the
equivalence from (2). One of the triangle identities holds by construction. For the other
one, we take 𝐶 = 𝐵, 𝑊 = 𝑌 and 𝑍 = 𝑈𝐵, and observe that both id𝑌 : 𝑌 → 𝑌 as well as
(𝑌 ⊙ 𝜀) ◦ (𝜂 ⊙𝑌 ) : 𝑌 → 𝑌 are sent to the map 𝜀 : 𝑌 ⊙ 𝑋→𝑈𝐴 by the equivalence from (2),
implying that they are homotopic. □

Definition 3.30. If the equivalent conditions of Lemma 3.29 hold, we say that 𝜀 exhibits 𝑌
as a left Costenoble-Waner dual of 𝑋 .

Any object 𝑋 ∈ C(𝐴× 𝐵) admits a weak dual. For simplicity, we will only introduce this
when 𝐴 is the terminal object of B.
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Definition 3.31 (cf. [CW16, Definition 2.9.1]). Let 𝐵 ∈ B and consider an object 𝑋 ∈
C(𝐵) = C(1×𝐵). We define the weak Costenoble-Waner dual of 𝑋 to be

𝐷𝐶𝑊𝐵 (𝑋) := pr2∗Hom
𝐵×𝐵 (pr∗1 𝑋,Δ!1𝐵) ∈ C(𝐵),

where Δ : 𝐵→ 𝐵×𝐵 is the diagonal of 𝐵, and pr1,pr2 : 𝐵×𝐵→ 𝐵 are the two projections.

Note that for any object𝑌 ∈ C(𝐵) = C(𝐵×1), there is a one-to-one correspondence between
morphisms𝑌→𝐷𝐶𝑊

𝐵
(𝑋) inC(𝐵) and morphisms 𝑋 ⊙𝑌 = pr∗1 𝑋 ⊗𝐵×𝐵pr∗2𝑌→Δ!1𝐵 =𝑈𝐵 in

C(𝐵×𝐵). In particular, the identity on𝐷𝐶𝑊
𝐵
(𝑋) gives rise to a map 𝜀0 : 𝑋 ⊙𝐷𝐶𝑊

𝐵
(𝑋) →𝑈𝐵.

Lemma 3.32 (cf. [CW16, Theorem 2.9.5]). An object 𝑋 ∈ C(𝐵) =C(1×𝐵) is left Costenoble-
Waner dualizable if and only if the map 𝜀0 : 𝑋 ⊙𝐷𝐶𝑊

𝐵
(𝑋) →𝑈𝐵 exhibits 𝐷𝐶𝑊

𝐵
(𝑋) as a left

Costenoble-Waner dual of 𝑋 .

Proof. The “if” direction is obvious. For the “only if”, assume that 𝑋 is left Costenoble-
Waner dualizable with left dual𝑌 ∈ C(𝐵×1) and let 𝜀 : 𝑋 ⊙𝑌→𝑈𝐵 and 𝜂 : 𝑈𝐴→𝑌 ⊙ 𝑋 be
evaluation and coevaluation maps exhibiting this duality. The map 𝜀 adjoints over to a map
𝑌 → 𝐷𝐶𝑊

𝐵
(𝑋) and it will suffice to show that this is an equivalence. Indeed, a reasonably

straightforward diagram chase shows that an inverse is given by the composite

𝐷𝐶𝑊𝐵 (𝑋) =𝑈𝐴 ⊙𝐷
𝐶𝑊
𝐵 (𝑋)

𝜂⊙1
−−−→ 𝑌 ⊙ 𝑋 ⊙𝐷𝐶𝑊𝐵 (𝑋)

1⊙𝜀0−−−−→ 𝑌 ⊙𝑈𝐵 = 𝑌 . □

Lemma 3.33 (cf. [MS06, Proposition 18.1.1]). An object 𝑋 ∈ C(𝐴) = C(𝐴 × 1) is left
Costenoble-Waner dualizable if and only if it is dualizable in the symmetric monoidal ∞-
category C(𝐴). Its left Costenoble-Waner dual in C(𝐴) = C(1×𝐴) is given by the monoidal
dual in C(𝐴).

Proof. Consider objects 𝑋 ∈ C(𝐴) = C(𝐴 × 1) and 𝑌 ∈ C(𝐴) = C(1× 𝐴). Unwinding
definitions, we see that 𝑋 ⊙𝑌 ≃ 𝐴!(𝑋 ⊗𝐴𝑌 ) ∈ C(1). It follows that a morphism 𝜀 : 𝑋 ⊙𝑌 𝜀−→
𝑈1 = 1 in C(1) is the same data as a morphism 𝜀′ : 𝑋 ⊗𝐴𝑌 → 𝐴∗1 = 1𝐴 in C(𝐴). We claim
that 𝜀 exhibits 𝑌 as a left Costenoble-Waner dual to 𝑋 if and only if 𝜀′ exhibits 𝑌 as a dual
of 𝑋 in C(𝐴). Using some diagram chasing, this follows from Lemma 3.29. As the proof
is entirely analogous to the proof of [MS06, Proposition 18.1.1], we will omit it. □

Preservation properties of Costenoble-Waner duality

Costenoble-Waner dualizable objects are preserved under a variety of constructions.
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Lemma 3.34. Let 𝐹 : C → D be a symmetric monoidal left adjoint between presentably
symmetric monoidal B-categories. Then 𝐹 preserves left/right Costenoble-Waner dualiz-
able objects.

Proof. It suffices to observe that 𝐹 commutes with the composition products on C and D,
which is immediate from the definition. □

Corollary 3.35. Let 𝐹 : C →D be a symmetric monoidal left adjoint between presentably
symmetric monoidal B-categories. Then any twisted C-ambidextrous object in B is also
twistedD-ambidextrous. Consequently, any twisted C-ambidextrous morphism inB is also
twisted D-ambidextrous.

Proof. Since 𝐹 preserves monoidal units, the first statement is a consequence of Lemma 3.34
and Proposition 3.28. The second statement follows by passing to slice topoi B/𝐵. □

Lemma 3.36. If 𝑋 ∈ C(𝐴× 𝐵) and 𝑋′ ∈ C(𝐵×𝐶) are left Costenoble-Waner dualizable
with left duals 𝑌 and 𝑌 ′, then so is their composition product 𝑋′ ⊙ 𝑋 ∈ C(𝐴×𝐶), with left
dual 𝑌 ⊙𝑌 ′.

Proof. This is immediate from Lemma 3.26, since internal adjunctions compose. □

Lemma 3.37. Let 𝑋 ∈ C(𝐴× 𝐵) be left Costenoble-Waner dualizable with left dual 𝑌 ∈
C(𝐵× 𝐴)

(1) For a map 𝑓 : 𝐴′→ 𝐴, the object ( 𝑓 × 1)∗𝑋 ∈ C(𝐴′ × 𝐵) is left Costenoble-Waner
dualizable, with left dual given by (1× 𝑓 )∗𝑌 .

(2) For a map 𝑔 : 𝐵 → 𝐵′, the object (1× 𝑔)!𝑋 ∈ C(𝐴 × 𝐵′) is left Costenoble-Waner
dualizable, with left dual given by (𝑔×1)!𝑌 .

(3) For a twisted C-ambidextrous map 𝑓 : 𝐴→ 𝐴′, the object ( 𝑓 ×1)!𝑋 ∈ C(𝐴′×𝐵) is left
Costenoble-Waner dualizable, with left dual given by (1× 𝑓 )!𝑌 .

(4) For a twisted C-ambidextrous map 𝑔 : 𝐵′→ 𝐵, the object (1×𝑔)∗𝑋 ∈ C(𝐴×𝐵′) is left
Costenoble-Waner dualizable, with left dual given by (𝑔×1)∗𝑌 .

Proof. In each case, the claim follows from Proposition 2.26(5) and the fact that adjunctions
compose, using that for a morphism 𝑓 : 𝐴→ 𝐵, the B-functor 𝑓! : C𝐴→ C𝐵 is always an
internal left adjoint, while 𝑓 ∗ : C𝐵→ C𝐴 is an internal left adjoint whenever 𝑓 is twisted
C-ambidextrous. □
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Corollary 3.38. Assume that 𝑋 ∈ C(1× 𝐴) is left Costenoble-Waner dualizable with left
dual 𝑌 ∈ C(𝐴×1). Then 𝐴!𝑋 ∈ C(1) is a dualizable object with dual 𝐴!𝑌 . □

Corollary 3.39. Assume 𝐴 ∈ B is twisted C-ambidextrous. Then the object 𝐴!1𝐴 ∈ C(1)
is dualizable, with dual 𝐴!𝐷𝐴.

Proof. Combine the previous corollary with Proposition 3.28. □

Proposition 3.40 (cf. [MS06, Proposition 16.8.1]). For every object every 𝐵 ∈ B, the
collection of left Costenoble-Waner dualizable objects in C(1×𝐵) is closed under retracts.
If C is fiberwise stable, then these objects form a stable (and hence thick) subcategory of
C(1×𝐵).

Proof. By Lemma 3.32 and Lemma 3.29, an object 𝑋 ∈ C(1×𝐵) is left Costenoble-Waner
dualizable if and only if for all 𝐶 ∈ B,𝑊 ∈ C(1×𝐶) and 𝑍 ∈ C(𝐵×𝐶), a certain map

HomC(1×𝐶) (𝑊,𝑍 ⊙ 𝑋) → HomC(𝐵×𝐶) (𝑊 ⊙𝐷𝐶𝑊𝐵 (𝑋), 𝑍)

is an equivalence. Since this map is natural in 𝑋 , it follows that the collection of objects for
which it is an equivalence is closed under retracts.

If C is fiberwise stable, we can lift the above map to a map at the level of mapping spectra.
In that case both sides are exact in 𝑋 , and it follows that the collection of objects for which
it is an equivalence forms a stable subcategory. □

Corollary 3.41. The collection of twisted C-ambidextrous objects of B is closed under
retracts. If C is fiberwise stable, then the collection of twisted C-ambidextrous objects of
B is also closed under finite colimits.

Proof. Consider a retract diagram 𝐴
𝑠−→ 𝐵

𝑟−→ 𝐴 in B, i.e. we have 𝑟𝑠 = id𝐴. Assume that 𝐵 is
twisted C-ambidextrous. It follows from Proposition 3.28 that 1𝐵 ∈ C(𝐵) is left Costenoble-
Waner dualizable, so by Lemma 3.37 also 𝑟!1𝐵 is left Costenoble-Waner dualizable. Since
1𝐴 ∈ C(𝐴) is a retract of 𝑟!1𝐵, it is left Costenoble-Waner dualizable by Proposition 3.40,
and thus 𝐴 is twisted C-ambidextrous by Proposition 3.28.

Now assume that C is fiberwise stable. Since C(∅) = ∗, it follows from pointedness of C
that the initial object ∅ is twisted C-ambidextrous. Consider a pushout diagram in B

𝐴 𝐵

𝐶 𝐷,

𝑓

𝑔

ℎ

𝑘
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and assume that 𝐴, 𝐵 and 𝐶 are twisted C-ambidextrous. We need to show that 𝐷
is twisted C-ambidextrous. By descent, the functors ℎ∗ and 𝑘∗ induce an equivalence
(ℎ∗, 𝑘∗) : C(𝐷) ∼−→ C(𝐵) ×C(𝐴) C(𝐶). It follows that the monoidal unit 1𝐷 ∈ C(𝐷) sits in a
cofiber sequence

(ℎ𝑔)!1𝐴→ ℎ!1𝐵 ⊕𝑘!1𝐶 → 1𝐷 .

By Proposition 3.28, the objects 1𝐴, 1𝐵 and 1𝐶 are left Costenoble-Waner dualizable,
and thus by Lemma 3.37 so are (ℎ𝑔)!1𝐴, ℎ!1𝐵 and 𝑘!1𝐶 . It thus follows from Proposi-
tion 3.40 that 1𝐷 is left Costenoble-Waner dualizable, hence 𝐷 is twisted C-ambidextrous
by Proposition 3.28. This finishes the proof. □
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I.4 Equivariant homotopy theory

The goal of this section is to investigate the notion of twisted ambidexterity in stable
equivariant homotopy theory. Throughout the section, we will use the terminology ‘𝐺-
category’ to refer to a B-category when B is the∞-topos Spc𝐺 of 𝐺-spaces. Since Spc𝐺 is
equivalent to the presheaf category of the orbit ∞-category Orb𝐺 of 𝐺, a 𝐺-category may
equivalently be encoded as a functor C : Orbop

𝐺
→ Cat∞. We let PrL

𝐺
:= PrL(Spc𝐺) denote

the (very large)∞-category of presentable 𝐺-categories.

In Section 4.1, we introduce the 𝐺-category Sp𝐺 of genuine 𝐺-spectra, informally given
by sending an orbit 𝐺/𝐻 to the ∞-category Sp𝐻 of genuine 𝐻-spectra. In Section 4.2 we
prove that Sp𝐺 is the initial stable presentably symmetric monoidal𝐺-category for which all
compact 𝐺-spaces are twisted ambidextrous. In Section 4.3 and Section 4.4, we extend this
result to the contexts of orbispectra and proper equivariant homotopy theory, respectively.
In particular, we will obtain for every (not necessarily compact) Lie group𝐺 and cocompact
subgroup 𝐻 a Wirthmüller isomorphism

ind𝐺𝐻 (− ⊗𝐷𝐺/𝐻) ≃ coind𝐺𝐻 (−)

in the∞-category of proper genuine 𝐺-spectra.

4.1 Parametrized genuine 𝐺-spectra

Let𝐺 be a compact Lie group, fixed throughout this subsection. The goal of this subsection
is to introduce the 𝐺-category Sp𝐺 of genuine 𝐺-spectra and discuss its universal property
in terms of inverting representation spheres.

Definition 4.1. Let {𝑆𝑉 } be a set of representation spheres, where𝑉 runs over a set of repre-
sentatives for the isomorphism classes of finite-dimensional irreducible𝐺-representations.1

1Running over all finite-dimensional 𝐺-representations gives an equivalent∞-category.
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We define the presentably symmetric monoidal ∞-category Sp𝐺 of genuine 𝐺-spectra as
the formal inversion

Sp𝐺 := (Spc𝐺∗ ) [{𝑆𝑉 }−1]

of the representation spheres 𝑆𝑉 in the∞-category Spc𝐺∗ of pointed 𝐺-spaces, see [Rob15,
Definition 2.6] or Section 2.3.

By Gepner and Meier [GM20, Corollary C.7], the ∞-category Sp𝐺 is equivalent to the
∞-category underlying the model category of orthogonal 𝐺-spectra with the stable model
structure constructed in [MM02, Section III.4]. References on equivariant orthogonal
spectra include [HHR16], [Sch20], [Sch18].

The ∞-categories Spc𝐺∗ and Sp𝐺 are presentably symmetric monoidal and come equipped
with a symmetric monoidal left adjoint from Spc𝐺 , making them into commutative Spc𝐺-
algebras in PrL. We may now use the fully faithful functor

−⊗Spc𝐺 ΩSpc𝐺 : CAlgSpc𝐺 (PrL) ↩→ CAlg(PrL
𝐺)

from Corollary 2.17 to regard them as presentably symmetric monoidal 𝐺-categories:

Definition 4.2. We define presentably symmetric monoidal 𝐺-categories Spc𝐺 , Spc𝐺∗ and
Sp𝐺 as

Spc𝐺 := ΩSpc𝐺 , Spc𝐺∗ := Spc𝐺∗ ⊗Spc𝐺 ΩSpc𝐺 , Sp𝐺 := Sp𝐺 ⊗Spc𝐺 ΩSpc𝐺 ,

called the𝐺-categories of𝐺-spaces, pointed𝐺-spaces and genuine𝐺-spectra, respectively.
We let

(−)+ : Spc𝐺 → Spc𝐺∗ and Σ∞+ : Spc𝐺 → Sp𝐺

denote the induced maps, which are the unit maps for the algebra structures of Spc𝐺∗ and
Sp𝐺 in PrL

𝐺
. Unwinding definitions, we see that these 𝐺-categories are given at a 𝐺-space

𝐵 as follows:

• The∞-category Spc𝐺 (𝐵) is the slice Spc𝐺/𝐵 of 𝐺-spaces over 𝐵.

• The ∞-category Spc𝐺∗ (𝐵) is the relative tensor product Spc𝐺/𝐵 ⊗Spc𝐺 Spc𝐺∗ , which by
[Lur17, Example 4.8.1.21] is equivalent to the ∞-category (Spc𝐺/𝐵)∗ of retractive
𝐺-spaces over 𝐵.

• The ∞-category Sp𝐺 (𝐵) is the relative tensor product Spc𝐺/𝐵 ⊗Spc𝐺 Sp𝐺 . As Sp𝐺 is
pointed, this is equivalent to the relative tensor product (Spc𝐺/𝐵)∗ ⊗Spc𝐺∗

Sp𝐺 , which
by Lemma 2.45 is in turn equivalent to (Spc𝐺/𝐵)∗ [{𝑆

𝑉
𝐵
}−1], the formal inversion of the

trivial sphere bundles 𝑆𝑉
𝐵

:= 𝑆𝑉 ×𝐵→ 𝐵 in (Spc𝐺/𝐵)∗.
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When 𝐵 = 𝐺/𝐻 is an orbit for some subgroup 𝐻 ⩽ 𝐺, there are equivalences

Spc𝐺 (𝐺/𝐻) ≃ Spc𝐻 , Spc𝐺∗ (𝐺/𝐻) ≃ Spc𝐻∗ , and Sp𝐺 (𝐺/𝐻) ≃ Sp𝐻 .

Indeed, the slice of Spc𝐺 over 𝐺/𝐻 is equivalent to Spc𝐻 by taking the fiber over 𝑒𝐻,
giving the first two equivalences. For the third equivalence, we observe that by Lemma 2.44
the ∞-category of genuine 𝐻-spectra can be obtained from the ∞-category of pointed
𝐻-spaces by just inverting the restricted representation spheres res𝐺

𝐻
(𝑆𝑉 ) for irreducible

𝐺-representations 𝑉 , as every irreducible 𝐻-representation is a direct summand of the
restriction to 𝐻 of an irreducible 𝐺-representation, see Bröcker and tom Dieck [BD95,
Theorem 4.5].

The 𝐺-categories Spc𝐺 , Spc𝐺∗ and Sp𝐺 admit the following universal properties:

Proposition 4.3. Let C be a presentably symmetric monoidal 𝐺-category.

(1) There exists a unique symmetric monoidal left adjoint 𝐺-functor 𝐹 : Spc𝐺 →C;

(2) The 𝐺-functor 𝐹 from (1) extends to a symmetric monoidal left adjoint 𝐹′ : Spc𝐺∗ →C
if and only if C(1) is pointed, in which case the extension 𝐹′ is unique.

(3) IfC(1) is pointed, the𝐺-functor 𝐹′ from (2) extends to a symmetric monoidal left adjoint
𝐹′′ : Sp𝐺→C if and only if the functor 𝐹′(1) : Spc𝐺∗ →C(1) inverts the representation
spheres 𝑆𝑉 , in which case the extension 𝐹′′ is unique.

Proof. Part (1) is immediate as Spc𝐺 is the monoidal unit of PrL
𝐺

. Parts (2) and (3) follow
by combining the adjunction from Corollary 2.17 with the analogous universal properties
of Spc𝐺∗ ≃ Spc𝐺 ⊗ Spc∗ and Sp𝐺 = Spc𝐺∗ [{𝑆𝑉 }−1] in PrL. □

For a𝐺-space 𝐵, the functor 𝐹𝐵 : Spc𝐺/𝐵→C(𝐵) from part (1) sends a morphism 𝑓 : 𝐴→ 𝐵

to the object 𝑓!1𝐴 ∈ C(𝐵). The functor 𝐹′
𝐵

: (Spc𝐺/𝐵)∗→C(𝐵) sends a morphism 𝑓 : 𝐴→ 𝐵

with section 𝑠 : 𝐵→ 𝐴 to the cofiber of 1𝐵 ≃ 𝑓!𝑠!𝑠
∗1𝐴→ 𝑓!1𝐴 in C(𝐵).

4.2 Twisted ambidexterity for genuine 𝐺-spectra

We continue to fix a compact Lie group 𝐺. The presentably symmetric monoidal 𝐺-
category Sp𝐺 of genuine 𝐺-spectra is fiberwise stable, meaning that it takes values in the
subcategory PrL

st ⊆ PrL of stable presentable ∞-categories. Moreover, one can show that
Sp𝐺 satisfies twisted ambidexterity for all compact 𝐺-spaces. The goal of this section is to
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show that Sp𝐺 is in a precise sense universal with these two properties, see Theorem 4.8
below.

We start by recalling a result of May and Sigurdsson [MS06] on Costenoble-Waner duality
for 𝐺-spaces, based on ideas of Costenoble and Waner [CW16].

Construction 4.4 (cf. [Sch18, Construction 3.2.7]). Let 𝐻 ⩽ 𝐺 be a closed subgroup of
the compact Lie group 𝐺, and let 𝐿 = 𝑇𝑒𝐻 (𝐺/𝐻) denote the tangent 𝐻-representation of
𝐺/𝐻. Choose an embedding 𝑖 : 𝐺/𝐻 ↩→ 𝑉 of 𝐺/𝐻 into a finite-dimensional orthogonal
𝐺-representation 𝑉 , and let 𝑊 := 𝑉 − (𝑑𝑖)𝑒𝐻 (𝐿) denote the orthogonal complement of the
image of 𝐿 in 𝑉 . By scaling, we may assume that the map 𝑗 : 𝐺 ×𝐻 𝐷 (𝑊) → 𝑉 given by
[𝑔,𝑤] ↦→ 𝑔 · (𝑣0+𝑤) is an embedding, where 𝐷 (𝑊) is the unit disc of𝑊 ; see [Bre72, Ch.0,
Thm. 5.2, Ch. II, Cor. 5.2] for proofs that these choices are possible. The map 𝑗 gives
rise to a𝐺-equivariant collapse map 𝑐 : 𝑆𝑉 →𝐺+∧𝐻 𝑆𝑊 . Passing to genuine𝐺-spectra and
smashing with 𝑆−𝑉 then gives a map of genuine 𝐺-spectra

𝜂 : S𝐺 → 𝐺+∧𝐻 (𝑆−𝑉 ∧ 𝑆𝑊 ) ≃ 𝐺+∧𝐻 𝑆−𝐿 ≃ 𝑆−𝐿 ⊙ S𝐻 .

Theorem 4.5 ([MS06, Theorem 18.6.5]). Let 𝐻 ⩽ 𝐺 be a closed subgroup of a compact
Lie group 𝐺. Then the map 𝜂 : S𝐺 → 𝑆−𝐿 ⊙ S𝐻 from Construction 4.4 exhibits 𝑆−𝐿 ∈ Sp𝐻

as left Costenoble-Waner dual to S𝐻 ∈ Sp𝐻 . □

Warning 4.6. May and Sigurdsson use different foundations on parametrized stable ho-
motopy theory than we do, based on orthogonal spectrum objects in retractive topological
spaces over 𝐵. For this reason, we need to be careful when citing results from [MS06].
Although one cannot strictly speaking cite [MS06, Theorem 18.6.5] in the case of Theo-
rem 4.5, one observes that their proof carries through verbatim in our setting: May and
Sigurdsson construct the relevant duality data already at the level of topological 𝐺-spaces
using a notion of𝑉-duality, see [MS06, Section 18.6], and the same commutative diagrams
prove Theorem 4.5.

We can now prove our main result.

Theorem 4.7. Let 𝐺 be a compact Lie group and let C be a fiberwise stable presentably
symmetric monoidal 𝐺-category. Let 𝐹′ : Spc𝐺∗ → C be the unique symmetric monoidal
left adjoint provided by Proposition 4.3(2). Then the following conditions are equivalent:

(1) The functor 𝐹′(1) : Spc𝐺∗ → C(1) inverts th representation sphere 𝑆𝑉 for every 𝐺-
representation 𝑉;
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(2) The 𝐺-functor 𝐹′ extends2 to a symmetric monoidal left adjoint 𝐹′′ : Sp𝐺 →C;

(3) For every pair of closed subgroups 𝐾 ⩽ 𝐻 ⩽ 𝐺, the map of 𝐺-spaces 𝐺/𝐾→ 𝐺/𝐻 is
twisted C-ambidextrous;

(4) For every closed subgroup 𝐻 ⩽ 𝐺, the orbit 𝐺/𝐻 is twisted C-ambidextrous;

(5) Every compact 𝐺-space is twisted C-ambidextrous;

(6) The functor 𝐹′(1) : Spc𝐺∗ → C(1) sends compact pointed 𝐺-spaces to dualizable ob-
jects.

If the group 𝐺 is finite, these conditions are moreover equivalent to:

(7) The 𝐺-category C is 𝐺-semiadditive, in the sense of [Nar16, Definition 5.3];

(8) The 𝐺-category C is 𝐺-stable, in the sense of [Nar16, Definition 7.1].

Proof. The implication (1) =⇒ (2) was treated in Proposition 4.3. For the implication (2)
=⇒ (3), it suffices by Corollary 3.35 to show that the morphism 𝐺/𝐾 → 𝐺/𝐻 is twisted
Sp𝐺-ambidextrous. Identifying the slice Spc𝐺/(𝐺/𝐻) with the ∞-category of 𝐻-spaces, the
morphism 𝐺/𝐾 → 𝐺/𝐻 corresponds to the 𝐻-space 𝐻/𝐾 , and thus we need to show that
𝐻/𝐾 is twisted ambidextrous for the 𝐻-category 𝜋∗

𝐻
Sp𝐺 ≃ Sp𝐻 . This is an instance of

Theorem 4.5, applied to 𝐾 ⩽ 𝐻. The fact that (3) implies (4) is clear. The implication
(4) =⇒ (5) follows from Corollary 3.41, since every compact 𝐺-space is a retract of a
finite 𝐺-CW-complex, and finite 𝐺-CW-complexes are built from the orbits 𝐺/𝐻 using
finite colimits. The implication (5) =⇒ (6) holds by Corollary 3.39, as 𝐹′(1) (𝐵) is the
cofiber of the map 1→ 𝐵!1𝐵 and dualizable objects in C(1) are closed under cofibers.
The implication (6) =⇒ (1) holds by Theorem B.1. This shows that conditions (1)-(6) are
equivalent.

If 𝐺 is a finite group, conditions (7) and (8) are equivalent since C is already assumed
to be fiberwise stable. Since C is in particular fiberwise semiadditive, it follows from
Corollary 3.20 that conditions (3) and (7) are equivalent. This finishes the proof. □

Theorem 4.8. Let 𝐺 be a compact Lie group. Then the 𝐺-category Sp𝐺 is initial among
fiberwise stable presentably symmetric monoidal 𝐺-categories C such that all compact
𝐺-spaces are twisted C-ambidextrous.

Proof. This is immediate from the equivalence between (2) and (5) in Theorem 4.7. □

2If an extension exists, it is necessarily unique.
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Theorem 4.9. Let 𝐺 be a finite group. Then the 𝐺-category Sp𝐺 is the initial presentably
symmetric monoidal 𝐺-category which is 𝐺-stable in the sense of [Nar16].

Proof. This is immediate from the equivalence between (2) and (8) in Theorem 4.7. □

4.3 Orbispectra

In this subsection, we will study a global analogue of the results established in the previous
subsection: instead of working only with subgroups of a fixed compact Lie group 𝐺, we
work with an indexing category Orb containing all compact Lie groups and injective group
homomorphisms.

The global orbit category

We start by recalling the definition of the global orbit category Orb.

Definition 4.10. Let TopGrpd1 denote the ordinary category of topological groupoids. It
is naturally enriched over itself via the internal mapping objects. Using the finite product
preserving geometric realization functor

|−| : TopGrpd1 ↩→ sTop
|−|
−−→ Top,

we obtain a topological enrichment on TopGrpd1. Explicitly, the geometric realization |G|
of a topological groupoid G is given by the coend

|G| =
∫ [𝑛]∈Δ

Δ𝑛×G𝑛 ∈ Top,

where Δ𝑛 denotes the topological 𝑛-simplex and where G𝑛 = G1×G0 G1×G0 · · · ×G0 G1. We
let TopGrpd denote the homotopy coherent nerve of the topologically enriched category
TopGrpd1.

Definition 4.11 (Global indexing category). Given a topological group𝐺, we letB𝐺 denote
the associated one-object topological groupoid. We define the ∞-category Glo as the full
subcategory of TopGrpd spanned by the topological groupoids B𝐺 for compact Lie groups
𝐺. We call Glo the global indexing category.

Given compact Lie groups 𝐻 and 𝐺, the mapping space HomGlo(B𝐻,B𝐺) is the homotopy
type of the geometric realization of the topological groupoidHom(B𝐻,B𝐺). This topolog-
ical groupoid is equivalent to the action groupoid of the topological𝐺-space HomLie(𝐻,𝐺)
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of continuous group homomorphisms from 𝐻 to 𝐺, with 𝐺-action given by conjugation.
As a consequence, we get an identification

HomGlo(B𝐻,B𝐺) ≃ HomLie(𝐻,𝐺)ℎ𝐺 ∈ Spc.

Definition 4.12 (Global orbit category). We let Orb ⊆ Glo denote the wide subcategory,
whose morphism spaces

HomOrb(B𝐻,B𝐺) ⊆ HomGlo(B𝐻,B𝐺)

consist of those components corresponding to injective group homomorphisms 𝐻 ↩→ 𝐺.
We call Orb the global orbit category. We denote the presheaf category PSh(Orb) by
OrbSpc and refer to this as the ∞-category of orbispaces. We refer to OrbSpc-categories
as orbicategories.

Remark 4.13. Our definitions of Glo and Orb agree with those of [Rez14, p. 2.2] and
[LNP22, Definition 6.1]. A close analogue of the definition was originally given by Gepner
and Henriques [GH07, Section 4.1] for arbitrary topological groups, where both Glo and
Orb were denoted as Orb. A slight difference with the definition of [GH07] is that they
use the fat realization | |−| | : TopGrpd→ Top as opposed to the usual (‘thin’) geometric
realization. As | |−| | does not preserve finite products on the nose, defining composition is
slightly subtle, but when taking sufficient care the resulting∞-categories will be equivalent;
see [Kör18, Remark 3.10] for a more detailed discussion.

Crucial for the comparision with equivariant homotopy theory for a compact Lie group𝐺 is
the statement that the slice of Orb overB𝐺 is equivalent to the orbit category Orb𝐺 of𝐺. This
was proved at the level of simplicially enriched categories by [GM20, Proposition 2.15], and
at the level of∞-categories by [LNP22, Lemma 6.13]. It follows that there is an equivalence
of∞-categories

Spc𝐺 ≃ OrbSpc/B𝐺

between the ∞-category of 𝐺-spaces and the ∞-category of orbispaces over B𝐺. Given a
𝐺-space 𝐴, we denote its associated orbispace by 𝐴//𝐺, so that ∗//𝐺 = B𝐺. By restricting
along the functor−//𝐺 : Spc𝐺→OrbSpc, any orbicategoryC has an underlying𝐺-category
which we will denote by 𝜋∗

𝐺
C.

The orbicategory of orbispectra

We will now define the orbicategory of orbispectra, informally given by the assignment
B𝐺 ↦→ Sp𝐺 , and prove its universal property in terms of twisted ambidexterity.
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Definition 4.14. Define the presentably symmetric monoidal orbicategories OrbSpc and
OrbSpc∗ of orbispaces resp. pointed orbispaces as

OrbSpc := ΩOrbSpc, OrbSpc∗ := OrbSpc∗ ⊗OrbSpc ΩOrbSpc,

using the fully faithful embedding − ⊗OrbSpc ΩOrbSpc : CAlgOrbSpc(PrL) ↩→ CAlg(PrL
Orb)

from Proposition 2.16. Explicitly, they are given at an orbispace 𝐵 by

OrbSpc(𝐵) = OrbSpc/𝐵, OrbSpc∗(𝐵) = (OrbSpc/𝐵)∗.

Definition 4.15. We let 𝑆 ⊆ OrbSpc∗ denote the subcategory spanned by those objects 𝑋 ∈
(OrbSpc/𝐵)∗ whose restriction along any map B𝐺→ 𝐵 corresponds to a 𝐺-representation
sphere in (OrbSpc/B𝐺)∗ ≃ Spc𝐺∗ . We define the presentably symmetric monoidal orbicate-
gory OrbSp of orbispectra as

OrbSp := L(OrbSpc∗, 𝑆) ∈ CAlg(PrL
Orb),

using Construction 2.43. We define the orbifunctor Σ∞ : OrbSpc∗→ OrbSp as

Σ∞ : OrbSpc∗ = L(OrbSpc∗,∅) → L(OrbSpc∗, 𝑆) = OrbSp.

We let OrbSp denote the underlying ∞-category of OrbSp, referred to as the ∞-category
of orbispectra. For an orbispace 𝐵, we also write OrbSp(𝐵) for OrbSp(𝐵) and call it the
∞-category of orbispectra parametrized over 𝐵.

Pardon [Par20] has previously defined a notion of orbispectra in the setting of topolog-
ical stacks. Although his definition seems close in spirit to our definition, the precise
mathematical connection is not known to the author.

Proposition 4.16. The orbicategory OrbSp is presentably symmetric monoidal and the
orbifunctor Σ∞ : OrbSpc∗→OrbSp exhibits it as the formal inversion of the representation
spheres in OrbSpc∗.

Proof. This is an instance of Proposition 2.46. The condition (∗) of that proposition is
satisfied: for a closed subgroup 𝐻 ⩽ 𝐺, every irreducible 𝐻-representation is a direct
summand of the restriction to 𝐻 of an irreducible 𝐺-representation, see Bröcker and tom
Dieck [BD95, Theorem 4.5]. □

The orbicategory OrbSp recovers the 𝐺-category Sp𝐺 of genuine 𝐺-spectra for every
compact Lie group 𝐺:
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Lemma 4.17. For every compact Lie group 𝐺, the 𝐺-category 𝜋∗
𝐺

OrbSp underlying the
orbicategory OrbSp of orbispectra is equivalent to the 𝐺-category Sp𝐺 of genuine 𝐺-
spectra.

Proof. Both come equipped with a symmetric monoidal left adjoint from Spc𝐺∗ exhibiting
them as formal inversions of the 𝐺-representation spheres. For Sp𝐺 this is by Proposi-
tion 2.38, while for 𝜋∗

𝐺
OrbSp this is by Proposition 2.47. □

Remark 4.18. The functor OrbSp : Orbop→CAlg(PrL) is the restriction along Orb ↩→Glo
of the functor Sp• : Gloop → CAlg(PrL) constructed by [LNP22, Section 10]. Indeed,
they construct a natural transformation Σ∞• : S•,∗→ Sp•, where the functor S•,∗ : Gloop→
Cat∞ constructed in [LNP22, Construction 6.16] restricts to the functor OrbSpc∗ using
the natural equivalence PSh(Orb/−) ≃ PSh(Orb)/−. Furthermore, it is shown in [LNP22,
Proposition 10.5] that this transformation Σ∞• is pointwise given by the standard suspension
spectrum functor Spc𝐺∗ → Sp𝐺 , so that it exhibits its target as a pointwise formal inversion
of its source.

From the results of Section 4.2 we may deduce a universal property of OrbSp in terms
of twisted ambidexterity. To this end, recall that a morphism 𝑓 : 𝐴→ 𝐵 in an ∞-topos is
called relatively compact if for every compact object 𝐾 in B and every morphism 𝐾→ 𝐵,
the pullback 𝐴×𝐵 𝐾 → 𝐾 is a compact object in the slice B/𝐾 (or equivalently in B by
[GHK22, Lemma 3.1.5]). If B = PSh(𝑇) is a presheaf topos, it suffices to check this when
𝐾 is a representable object. In particular, a morphism of orbispaces 𝑓 : 𝐴→ 𝐵 is relatively
compact if and only if for every compact Lie group𝐺 and every mapB𝐺→ 𝐵 of orbispaces,
the pullback 𝐴×𝐵B𝐺 corresponds to a compact 𝐺-space.

Proposition 4.19. LetC be a fiberwise stable presentably symmetric monoidal orbicategory.
Then the following conditions are equivalent:

(1) The unique symmetric monoidal left adjoint𝐹′ : OrbSpc∗→C inverts the representation
spheres;

(2) The functor 𝐹′ : OrbSpc∗→C extends (necessarily uniquely) to a symmetric monoidal
left adjoint 𝐹′ : OrbSp→C;

(3) For every compact Lie group 𝐺 and every compact 𝐺-space 𝐴, the map 𝐴//𝐺 →
∗//𝐺 = B𝐺 of orbispaces is twisted C-ambidextrous;

(4) Every relatively compact morphism 𝑓 : 𝐴→ 𝐵 of orbispaces is twisted C-ambidextrous.
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Proof. The equivalence between (1) and (2) is immediate from the universal property
of OrbSp. Note that condition (1) is satisfied if and only if each of the 𝐺-functors
𝜋∗
𝐺
𝐹′ : 𝜋∗

𝐺
OrbSpc∗ → 𝜋∗

𝐺
C satisfies condition (1) of Theorem 4.7, while (3) is satisfied

if and only if the 𝐺-category 𝜋∗
𝐺

satisfies condition (5) of Theorem 4.7, so the equivalence
between (1) and (3) holds by applying Theorem 4.7 to the𝐺-category 𝜋∗

𝐺
C for every𝐺. The

equivalence between (3) and (4) holds by Proposition 3.12(5) and the above characterization
of relatively compact morphisms in OrbSpc. □

Theorem 4.20. The orbicategory OrbSp is initial among fiberwise stable presentably
symmetric monoidal orbicategories C such that every relatively compact morphism of
orbispaces is twisted C-ambidextrous.

Proof. This is immediate from the equivalence between (2) and (4) in the previous propo-
sition. □

4.4 Proper equivariant stable homotopy theory

For a Lie group 𝐺, not assumed to be compact, Degrĳse et al. [Deg+19] introduced an
∞-category Sp𝐺 of proper genuine 𝐺-spectra. In this subsection, we will see that this ∞-
category can be identified with the ∞-category of orbispectra parametrized over a certain
orbispace B𝐺. As an application, we show that when𝐺 has enough bundle representations,
the ∞-category Sp𝐺 may be obtained from the ∞-category of pointed proper 𝐺-spaces by
inverting the sphere bundles 𝑆𝜉 associated to finite-dimensional vector bundles 𝜉 over B𝐺,
see Proposition 4.33.

Definition 4.21. For a Lie group 𝐺, we define its proper orbit category as the full subcat-
egory Orbpr

𝐺
⊆ Orb𝐺 spanned by the orbits 𝐺/𝐾 for compact subgroups 𝐾 ⩽ 𝐺. We define

the ∞-category Spc𝐺pr of proper 𝐺-spaces as the presheaf category PSh(Orbpr
𝐺
). A proper

𝐺-category is a Spc𝐺pr-category, equivalently encoded by a functor (Orbpr
𝐺
)op→ Cat∞.

We start by identifying the ∞-category of proper 𝐺-spaces with a slice of the ∞-category
of orbispaces.

Definition 4.22 (Classifying orbispace of a Lie group). In analogy with Orb ⊆ TopGrpd,
we define the∞-category Orb′ ⊆ TopGrpd as the (non-full) subcategory whose objects are
the one-point topological groupoids B𝐺 for (not necessarily compact) Lie groups 𝐺, and
whose mapping spaces

HomOrb′ (B𝐻,B𝐺) ⊆ HomTopGrpd(B𝐻,B𝐺) ≃ HomLie(𝐻,𝐺)ℎ𝐺
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consist of those path components corresponding to injective continuous group homomor-
phisms 𝐻→𝐺. It is immediate that Orb′ contains Orb. Given a Lie group 𝐺, we define its
classifying orbispace B𝐺 as the composite

B𝐺 : Orbop ↩→ (Orb′)op HomOrb′ (−,B𝐺)−−−−−−−−−−−−→ Spc.

Note that when 𝐺 is compact, this is just the representable presheaf on B𝐺 ∈ Orb.

Construction 4.23. For a Lie group 𝐺, let Orb/B𝐺 denote the full subcategory of Orb′/B𝐺
spanned by the morphisms of the form B𝐾 → B𝐺 for compact subgroups 𝐾 ⩽ 𝐺. At
the level of topological categories, one can define a topologically enriched functor from
Orb𝐺 to Orb′ by sending an orbit 𝐺/𝐻 to B𝐻, which induces a functor of ∞-categories
between their homotopy coherent nerves. As Orb𝐺 admits a terminal object 𝐺/𝐺, this
canonically gives rise to a functor Orb𝐺 → Orb′/B𝐺, which is easily seen to restrict to a
functor Orbpr

𝐺
→ Orb/B𝐺 .

Lemma 4.24. For a Lie group 𝐺, the above functor Orbpr
𝐺
→ Orb/B𝐺 is an equivalence.

Proof. We will argue just like [LNP22, Lemma 6.13]. The functor is essentially surjective
by definition, so we must show it is fully faithful. Consider two objects 𝐺/𝐻 and 𝐺/𝐾
in Orbpr

𝐺
, where we (non-canonically) choose representatives 𝐻,𝐾 ⊆ 𝐺 of the conjugacy

classes [𝐻] and [𝐾] of subgroups of 𝐺. We have to show that the square

(𝐺/𝐻)𝐾 HomTopGrpd(B𝐾,B𝐻) Hom(𝐻,𝐾)ℎ𝐾

∗ HomTopGrpd(B𝐾,B𝐺) HomLie(𝐻,𝐺)ℎ𝐺

≃

≃

is homotopy cartesian. The argument for this is identical to that of [LNP22, Lemma 6.13],
so we will not repeat it here. Note that the quotient map 𝐺→ 𝐺/𝐶 (𝐻) used in that proof
is still a fibration, as it is a locally trivial fiber bundle by [Pal61, Corollary 4.1]. □

Corollary 4.25. For every Lie group𝐺, there is an equivalence OrbSpc/B𝐺 ≃ Spc𝐺pr between
the∞-category of orbispaces over B𝐺 and the∞-category of proper 𝐺-spaces.

Proof. By Lemma 4.24, there is an equivalence Spc𝐺pr = PSh(Orbpr
𝐺
) ≃ PSh(Orb/B𝐺). The

∞-category Orb/B𝐺 is equivalent to the subcategory of OrbSpc/B𝐺 spanned by the maps
B𝐾→ B𝐺 for compact Lie groups 𝐾 , since both embed fully faithfully into PSh(Orb′)/B𝐺
with the same image. It follows that there is an equivalence PSh(Orb/B𝐺) ≃ OrbSpc/B𝐺 ,
finishing the proof. □
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Definition 4.26. Let 𝐺 be a Lie group. By restricting along the forgetful functor Spc𝐺pr ≃

OrbSpc/B𝐺
fgt
−−→ OrbSpc, any orbicategory C gives rise to a proper 𝐺-category 𝜋∗

𝐺
. We

define the proper 𝐺-category of proper genuine 𝐺-spectra Sp𝐺 as

Sp𝐺 := 𝜋∗𝐺OrbSp,

the underlying proper 𝐺-category of the orbicategory of orbispectra. When 𝐺 is compact
this agrees with the 𝐺-∞-category of genuine 𝐺-spectra Sp𝐺 by Lemma 4.17.

Proposition 4.27 (Linskens-Nardin-Pol [LNP22, Theorem 12.11]). For every Lie group𝐺,
the underlying ∞-category of the proper 𝐺-category Sp𝐺 is equivalent to the ∞-category
Sp𝐺 of proper genuine 𝐺-spectra defiend by [Deg+19].

Proof. By definition, the underlying∞-category of Sp𝐺 is given as the limit of the functor
Sp𝐺 : (Orbpr

𝐺
)op→ Cat∞. By Remark 4.18, this functor is equivalent to the composite

(Orbpr
𝐺
)op ≃ Orbop

/B𝐺 → Orbop ↩→ Gloop Sp•−−→ Cat∞.

The limit of this diagram was shown by [LNP22, Theorem 12.11] to be equivalent to Sp𝐺 ,
finishing the proof. □

Corollary 4.28. The proper𝐺-category Sp𝐺 satisfies twisted ambidexterity for all relatively
compact morphisms of proper 𝐺-spaces. In particular, if 𝐻 ⩽ 𝐺 is a cocompact subgroup,
meaning that 𝐺/𝐻 is a compact topological space, then there is a formal Wirthmüller
isomorphism

ind𝐺𝐻 (− ⊗𝐷𝐺/𝐻) ≃ coind𝐺𝐻 (−) : Sp𝐻→ Sp𝐺 .

Proof. The first statement is immediate as Sp𝐺 is the restriction of the orbicategory OrbSp
to the slice Orb/B𝐺 and OrbSp satisfies twisted ambidexterity for all relatively compact
morphisms of orbispaces. The second statement follows from the observation that the map
of orbispaces B𝐻→ B𝐺 is relatively compact, by compactness of 𝐺/𝐻. □

Theorem 4.29. The proper 𝐺-category Sp𝐺 is the initial fiberwise stable presentably
symmetric monoidal proper 𝐺-category satisfying twisted ambidexterity for all relatively
compact morphisms of proper 𝐺-spaces.

Proof. Just like in Proposition 4.19, one deduces from Theorem 4.7 that twisted ambidexter-
ity for relatively compact morphisms of proper 𝐺-spaces is equivalent to the invertibility of
representation spheres. The claim follows, since Sp𝐺 is a formal inversion of representation
spheres in Spc𝐺∗ by Proposition 2.47. □
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Enough bundle representations

Our results on formal inversions allow us to prove that in certain cases the ∞-category of
proper genuine𝐺-spectra may be obtained from the∞-category of pointed proper𝐺-spaces
by inverting the sphere bundles of vector bundles over B𝐺.

Definition 4.30. Let Rep: Orbop→Cat∞ denote the functor which sendsB𝐺 to the ordinary
category of finite-dimensional 𝐺-representations. We may limit-extend this to a functor

Vect : OrbSpcop→ Cat∞,

and we refer to Vect(𝐵) as the category of vector bundles over 𝐵. We say that an orbispace 𝐵
has enough bundle representations if for any compact Lie group 𝐺, any map of orbispaces
B𝐺→ 𝐵 and any𝐺-representation𝑉 , there exists a vector bundle 𝜉 ∈ Vect(𝐵) such that the
restriction 𝜉 |B𝐺 ∈ Vect(B𝐺) = Rep(𝐺) contains 𝑉 as a direct summand.

Example 4.31. For every compact Lie group 𝐺, B𝐺 has enough bundle representations by
Bröcker and tom Dieck [BD95, Theorem 4.5].

Example 4.32. Let𝐺 be a discrete group and assume that B𝐺 is a finite orbispace, that is, it
lies in the subcategory of OrbSpc generated under finite colimits by the B𝐾 for compact Lie
groups 𝐾 . Then B𝐺 has enough bundle representations. Indeed, under the identification
OrbSpc/B𝐺 ≃ Spc𝐺pr, the orbispaceB𝐺 corresponds to the universal proper𝐺-space 𝐸𝐺, and
by the assumption this is a finite proper 𝐺-CW-complex. Given a finite subgroup 𝐾 ⩽ 𝐺,
the unique map 𝜑 : 𝐺/𝐾→ 𝐸𝐺 is a map of finite proper 𝐺-CW-complexes, hence by Lück
and Oliver [LO01, Lemma 3.7] any 𝐾-representation is a direct summand of the restriction
along 𝜑 of a 𝐺-vector bundle𝑉 over 𝐸𝐺. Since𝑉 in particular gives rise to a vector bundle
over the orbispace B𝐺, this finishes the proof.

Proposition 4.33. Assume the orbispace 𝐵 has enough bundle representations. Then the∞-
category OrbSp(𝐵) of orbispectra parametrized over 𝐵 is equivalent to the formal inversion
of sphere bundles {𝑆𝜉 | 𝜉 ∈ Vect(𝐵)} in the∞-category (OrbSpc/𝐵)∗ of retractive orbispces
over 𝐵:

OrbSp(𝐵) ≃ (OrbSpc/𝐵)∗ [{𝑆𝜉}−1] . □

Proof. Let B = OrbSpc/𝐵 be the ∞-topos of orbispaces over 𝐵. By Proposition 2.47,
the B-functor 𝜋∗

𝐵
OrbSpc∗→ 𝜋∗

𝐵
OrbSp is a formal inversion of the representation spheres

𝑆𝑉 ∈ Spc𝐺∗ ≃ 𝜋∗𝐵OrbSpc∗(B𝐺) for every compact Lie group 𝐺 and a map of orbispaces
B𝐺→ 𝐵. By the assumption that 𝐵 has enough bundle representations, the parametrized
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subcategory of representation spheres is generated (in the sense of Definition 2.36) by the
objects 𝑆𝜉 ∈ Spc𝐵∗ for all vector bundles 𝜉 ∈ Vect(𝐵). It thus follows from Observation 2.39
that the underlying functor (OrbSpc/𝐵)∗→OrbSp(𝐵) of thisB-functor is a formal inversion
of the objects 𝑆𝜉 , finishing the proof. □

Corollary 4.34. Assume that 𝐺 is a Lie group which has enough bundle representa-
tions. Then the ∞-category of proper genuine 𝐺-spectra is the formal inversion of the
∞-category proper pointed 𝐺-spaces by inverting the sphere bundles 𝑆𝜉 associated to all
finite-dimensional vector bundles 𝜉 over B𝐺:

Sp𝐺 ≃ (Spc𝐺∗ ) [{𝑆𝜉}−1] .
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Part II

Relative Poincaré duality for
differentiable stacks
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Abstract

Following ideas from motivic homotopy theory, we introduce for every separated differ-
entiable stack X an ∞-category SH(X) of genuine sheaves of spectra on X, which for
manifolds is given by ordinary sheaves of spectra while on the classifying stack of a com-
pact Lie group is given by genuine 𝐺-spectra. We prove a form of relative Poincaré duality
in this setting: for a proper representable submersion 𝑓 of separated differentiable stacks,
there is an equivalence 𝑓♯ ≃ 𝑓∗(−⊗ 𝑆𝑇 𝑓 ) between its relative homology and a twist of its rel-
ative cohomology by the relative tangent sphere bundle of 𝑓 . When specialized to quotient
stacks of equivariant smooth manifolds, this recovers both equivariant Atiyah duality and
the Wirthmüller isomorphism in stable equivariant homotopy theory.
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II.1 Introduction

The goal of this article is to establish a version of relative Poincaré duality for separated
differentiable stacks, following ideas from Hoyois [Hoy17] in the setting of equivariant
motivic homotopy theory.

Relative Poincaré duality for smooth manifolds

Poincaré duality is an important result relating the homology and cohomology of manifolds:
if 𝑀 is a compact orientable 𝑛-dimensional manifold, then forming the cap product with
the fundamental class [𝑀] ∈ 𝐻𝑛 (𝑀) induces an isomorphism of graded abelian groups

−∩ [𝑀] : 𝐻𝑛−∗(𝑀;Z) �−→ 𝐻∗(𝑀;Z).

The orientability condition on 𝑀 can be dropped if one replaces the left-hand side by
the cohomology of the orientation sheaf O𝑀 ∈ Shv(𝑀;Ab); the resulting isomorphism
𝐻𝑛−∗(𝑀;O𝑀)

�−→ 𝐻∗(𝑀) is known as twisted Poincaré duality.

There is a more general version of Poincaré duality for families of manifolds, known as
relative Poincaré duality. Consider a proper smooth submersion 𝑓 : 𝑀→ 𝑁 , thought of as
an 𝑁-indexed family of compact smooth manifolds 𝑀𝑥 = 𝑓 −1(𝑥) for 𝑥 ∈ 𝑁 . The pullback
functor on sheaves of spectra 𝑓 ∗ : Shv(𝑁;Sp) → Shv(𝑀;Sp) admits both a left adjoint 𝑓♯
and a right adjoint 𝑓∗, which we think of as the relative sheaf homology/cohomology of
𝑓 , respectively. Indeed, given a sheaf of spectra F on 𝑀 , one can show that the stalks of
the sheaves 𝑓♯ (F ) and 𝑓∗(F ) on 𝑁 are given by the sheaf homology/cohomology of the
restriction of F to each of the fibers of 𝑓 . Relative Poincaré duality states that these two
functors 𝑓♯ and 𝑓∗ agree up to a ‘twist’ by the tangent sphere bundle 𝑆𝑇 𝑓 ∈ Shv(𝑀;Sp), the
suspension spectrum of the one-point compactification of the relative tangent bundle of 𝑓 :

Proposition (Relative Poincaré duality, Volpe [Vol21, Proposition 6.18, Theorem 7.11]).
Let 𝑓 : 𝑀 → 𝑁 be a proper smooth submersion between smooth manifolds. Then there is
for every sheaf F ∈ Shv(𝑀;Sp) a natural equivalence 𝑓♯ (F ) ≃ 𝑓∗(F ⊗ 𝑆𝑇 𝑓 ) of sheaves of
spectra on 𝑁 .
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Relative Poincaré duality for differentiable stacks

The goal of this article is to generalize the above result to the setting of (separated1)
differentiable stacks. We may think of a differentiable stack as a generalization of a smooth
manifold which is allowed to have singularities: instead of being locally isomorphic to a
Euclidean space R𝑛, it will locally be isomorphic to the quotient of R𝑛 by a linear action
of a compact Lie group 𝐺. While the geometric behavior of differentiable stacks closely
parallels that of smooth manifolds, the allowed singularities make it possible to capture
equivariant phenomena.

For every differentiable stack X, we will define a stable ∞-category SH(X) of genuine
sheaves of spectra on X. When X = 𝑀 is a smooth manifold, this reduces to the ∞-
category Shv(𝑀;Sp) of ordinary sheaves of spectra on 𝑀 , while for a classifying stack
B𝐺 of a compact Lie group 𝐺 it recovers the ∞-category Sp𝐺 of genuine 𝐺-spectra. The
construction of SH(X) follows the definition of the stable motivic homotopy category
in motivic homotopy theory: First one forms the ∞-category H(X) = Shvhtp(Sub/X) of
homotopy invariant sheaves on the site of representable submersions overX (equipped with
the open cover topology). Then, at least locally in X, one defines SH(X) by inverting
all sphere bundles of vector bundles over X, which determines SH(X) for an arbitrary
differentiable stack by asking the assignment X ↦→ SH(X) to satisfy descent with respect
to open covers.

Consider a proper representable submersion 𝑓 : Y →X of differentiable stacks, which we
want to think of as an X-indexed family of compact smooth manifolds. This map admits a
relative tangent bundle 𝑇 𝑓 over Y, producing a tangent sphere bundle 𝑆𝑇 𝑓 ∈ SH(Y). The
map 𝑓 defines a symmetric monoidal pullback functor 𝑓 ∗ : SH(X) → SH(Y), which admits
both a left adjoint 𝑓♯ as well as a right adjoint 𝑓∗, thought of as the relative homology and
cohomology of 𝑓 . The following is our main result:

Theorem A (Relative Poincaré duality for genuine sheaves, Theorem 6.1.7). Let 𝑓 : Y→X
be a proper representable submersion between separated differentiable stacks. Then there
is for every F ∈ SH(Y) a natural equivalence 𝑓♯ (F ) ≃ 𝑓∗(F ⊗ 𝑆𝑇 𝑓 ) in SH(X).

As a consequence we will deduce relative Atiyah duality for differentiable stacks, and
we will prove proper base change, smooth-proper base change and the proper projection
formula for the pushforward functors 𝑝∗ : SH(Y) → SH(X) of proper maps 𝑝 : Y →X.

1In this introduction, all differentiable stacks are assumed separated.
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Organization

In Chapter II.2 we recall standard material on differentiable stacks, including their relation
to Lie groupoids, local properties of maps of stacks and the notion of vector bundles over
stacks. In Chapter II.3 we discuss various geometrical aspects of differentiable stacks,
including the coarse moduli space of a stack (Section 3.1), open complements of closed
substacks (Section 3.2), the isotropy groups of a stack (Section 3.4) and the notions of
relative tangent bundles and normal bundles (Section 3.5). A geometrically well-behaved
class of differentiable stacks, discussed in Section 3.3, are the separated differentiable
stacks: those whose diagonal is proper. In Section 3.6 we show that every embedding of
separated differentiable stacks admits a tubular neighborhood and in Section 3.7 we prove
that every separated differentiable stack is locally isomorphic to a quotient stack R𝑛//𝐺 for
some smooth linear action of a compact Lie group 𝐺 on a Euclidean space R𝑛.

In Chapter II.4 we introduce for every separated differentiable stack X the ∞-categories
H(X) and SH(X) of genuine sheaves of animae/spectra on X, show that ordinary sheaves
are both a localization and a colocalization of genuine sheaves, and prove basic properties for
genuine sheaves like smooth base change and the smooth projection formula. In Section 4.4,
we show that genuine sheaves over classifying stacks of compact Lie groups give back
classical equivariant homotopy theory:

Theorem B (Theorem 4.4.16, Proposition 4.4.17). For a compact Lie group 𝐺, there are
equivalences of∞-categories H(B𝐺) ≃ An𝐺 and SH(B𝐺) ≃ Sp𝐺 .

In Section 4.5 we show that the assignments X ↦→ H(X) and X ↦→ SH(X) admit universal
characterizations, phrased in the language of pullback formalisms introduced by [DG22].

In Chapter II.5, we prove the localization theorem for pointed genuine sheaves:

Theorem C (Theorem II.5.2.16). Let 𝑖 : Z ↩→X be a closed embedding of differentiable
stacks and let 𝑗 : U ↩→X be its open complement. Then the functor 𝑖∗ : H(Z)∗→ H(X)∗
is fully faithful, and there is a preferred cofiber sequence 𝑗♯ 𝑗∗

counit−−−−→ id
unit−−−→ 𝑖∗𝑖∗.

In Chapter II.6 we give a proof of our main result, Theorem A stated above. We give a
precise formulation in Section 6.1. The proof, which will be given in Section 6.4, is close
in spirit to the proof of Atiyah duality for a compact smooth manifold 𝑀 , using a version
of Pontryagin-Thom collapse map constructed in Section 6.2. In Section 6.3 we introduce
the auxiliary notion of a kernel operator. In Section 6.5 we discuss various important
consequences of relative Poincaré duality, like relative Atiyah duality, proper base change
and smooth-proper base change.
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Conventions

In contrast to most sources on differentiable stacks, we will fully work in the homotopy-
theoretic setting of ∞-categories, and adopt the standard notations and terminology from
this setting. One notable exception, following [CS23, Section 5.1.4], is that we use the word
‘anima’ rather than ‘space’ to refer to the notion of an ∞-groupoid, and accordingly write
An for the∞-topos of animae/∞-groupoids. Similarly we write An𝐺 for the∞-category of
𝐺-spaces for a compact Lie group 𝐺 and refer to its objects as ‘genuine 𝐺-animae’.
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II.2 Foundations on differentiable stacks

In this chapter, we will recall some of the foundations on differentiable stacks: sheaves
of groupoids on the site of differentiable manifolds and open coverings which admit a
representable atlas. All of the material in this chapter is well-known and sources on this
topic are plentiful; a selection is [Pro96; BX11; Met03; Ler10; Hoy13]. Our treatment
differs somewhat from these sources in that we will work in the homotopy-theoretic setting
of sheaves of animae/∞-groupoids, sometimes called ∞-sheaves, rather than sheaves of
groupoids; a recollection of the theory of sheaf ∞-topoi is provided in Appendix E.4. We
will see in Corollary 2.3.24 below that the objects of interest, the differentiable stacks, are
in fact sheaves of groupoids, making our approach equivalent to the classical approach.

2.1 Representable morphisms of stacks

We start by introducing stacks on the site of smooth manifolds and discussing the notion of
representable morphisms between stacks.

Definition 2.1.1. Let Diff denote the ordinary category of smooth manifolds1 and smooth
maps. We turn it into a site by equipping it with the open cover topology and let Shv(Diff)
denote the associated ∞-topos of sheaves of animae on Diff. We refer to an object X ∈
Shv(Diff) as a stack on Diff, or as a stack for short.

Note that the site (Diff,open) is subcanonical: for every smooth manifold 𝑀 ∈ Diff, the
representable functor HomDiff (−, 𝑀) : Diff → Set ↩→ An is a sheaf. In other words, the
Yoneda embedding Diff ↩→ PSh(Diff) factors through the subcategory of sheaves:

𝑦 : Diff ↩→ Shv(Diff).

1All smooth manifolds are assumed to be Hausdorff. They are allowed to be impure: different path
components may have different dimensions.
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We will often abuse notation by identifying smooth manifolds 𝑀 with their associated
sheaves 𝑦(𝑀); accordingly, we say that a stack X on Diff is a smooth manifold if it lies
in the essential image of the Yoneda embedding. The Yoneda embedding 𝑦 preserves all
limits, and furthermore preserves arbitrary coproducts due to the sheaf condition.

Recall from Appendix E.2 the notion of an effective epimorphism in an ∞-topos. In the
case of Shv(Diff), the effective epimorphisms can be characterized as those maps admitting
local sections:

Definition 2.1.2. Let 𝑀 be a smooth manifold and let 𝑓 : X→ 𝑀 be a map of sheaves. We
say that 𝑓 admits local sections if there exists an open cover {𝑈𝑖}𝑖∈𝐼 of 𝑀 such that the map
𝑈𝑖 ↩→ 𝑀 factors through 𝑓 for each 𝑖 ∈ 𝐼.

Proposition 2.1.3. If 𝑀 is a smooth manifold, then a map 𝑓 : X → 𝑀 in Shv(Diff) is an
effective epimorphism if and only if it admits local sections.

Proof. This is a special case of Lemma E.38. □

Since the site Diff does not admit all pullbacks, there is a subtlety in the definition of repre-
sentable morphisms between stacks on Diff. However, pullbacks along smooth submersions
always exist in Diff, see for example Proposition C.9. This leads to the following two-step
definition of representability, which guarantees that every smooth map between smooth
manifolds is representable when considered as a morphism of stacks:

Definition 2.1.4 (Representable morphisms, [EG11, Definition 2.1]). Let 𝑓 : X →Y be a
morphism of stacks on Diff.

(1) We call 𝑓 a representable submersion if for any smooth manifold 𝑀 and any morphism
𝑀→Y, the fiber product𝑀×YX is a smooth manifold and the induced map𝑀×YX→
𝑀 is a submersion. If the map 𝑀 ×Y X → 𝑀 is surjective for every 𝑀 , we say that 𝑓
is a representable surjective submersion.

(2) We say 𝑓 representable if for any representable submersion 𝑀 →Y from a smooth
manifold 𝑀 , the pullback 𝑀 ×Y X is a smooth manifold.

It is clear from the definition that every representable submersion is a representable mor-
phism. Furthermore, every smooth map 𝑓 : 𝑀 → 𝑁 of smooth manifolds is representable
when considered as a morphism of stacks, and it is a representable submersion of stacks if
and only if it is a smooth submersion of smooth manifolds.
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Warning 2.1.5. We warn the reader that representability behaves reasonably only when
there is a sufficiently large supply of representable submersions into Y. For instance, if
there are no representable submersions from smooth manifolds to Y, then every morphism
X →Y is representable according to the above definition.

Remark 2.1.6. A smooth submersion between smooth manifolds has local sections if and
only if it is surjective, see e.g. Lemma C.10. It follows from Proposition 2.1.3 that a repre-
sentable submersion 𝑓 : X→Y of stacks is in fact a representable surjective submersion if
and only if it is an effective epimorphism.

Definition 2.1.7 (Open substack). Let 𝑗 : U→X be a representable submersion of stacks
on Diff. We say that 𝑗 exhibits U as an open substack of X if for every smooth manifold
𝑀 and any morphism 𝑀→X, the induced map of smooth manifolds 𝑀 ×XU→ 𝑀 is an
open embedding.

As we will establish next, representability of a stack is a local condition:

Lemma 2.1.8. Let X be a stack on Diff and assume that there exists a collection of
open substacks { 𝑗𝛼 : 𝑈𝛼 ↩→X}𝛼∈𝐼 of X such that the map

∐
𝛼∈𝐼𝑈𝛼 →X is an effective

epimorphism.2 If each𝑈𝛼 is a smooth manifold, then so is X.

Proof. By the definition of effective epimorphisms, recalled in Definition E.12, X is the
colimit of the Čech nerve of the map

∐
𝛼∈𝐼𝑈𝛼→X. Since each of the maps 𝑓𝛼 : 𝑈𝛼 ↩→X

is assumed to be a representable submersion, the iterated pullbacks 𝑈𝛼1 ×X · · · ×X𝑈𝛼𝑛 are
all smooth manifolds again, hence the Čech nerve defines a simplicial diagram in Diff. We
define a topological space 𝑀 as the colimit of this simplicial diagram, regarded as a diagram
in the ordinary category Top of topological spaces. More explicitly:

𝑀 = coeq

(⊔
𝛼≠𝛽

𝑈𝛼 ×X𝑈𝛽⇒
⊔
𝛼

𝑈𝛼

)
.

Each of the maps 𝑈𝛼 → 𝑀 is an open embedding, so 𝑀 admits an open cover by the
smooth manifolds 𝑈𝛼. As the smooth structures are compatible on their intersections, 𝑀
itself obtains the structure of a smooth manifold. It follows that 𝑀 is the colimit in Diff of
the simplicial diagram, and consequently also the colimit in Shv(Diff) due to descent with
respect to open covers. It follows that 𝑀 is equivalent to X, proving the claim. □

2Such a collection of open substacks is called an ‘open cover’, see Definition 4.1.2.
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Corollary 2.1.9. Let X → 𝑀 be a morphism of stacks on Diff and assume that 𝑀 admits
an open cover {𝑉𝛼} such that each of the pullback stacks 𝑉𝛼 ×𝑀 X is a smooth manifold.
Then X is a smooth manifold.

Proof. The maps 𝑉𝛼 ×𝑀 X →X are pullbacks of the open embeddings 𝑉𝛼 ↩→X and thus
are open substacks of X. As the map

⊔
𝛼∈𝐼𝑉𝛼 → 𝑀 is an effective epimorphism, so is

their base chane
⊔
𝛼∈𝐼𝑉𝛼 ×𝑀 X →X along the map X → 𝑀 . The claim thus follows from

Lemma 2.1.8. □

Proposition 2.1.10. Consider a pullback diagram

X′ X

Y′ Y

𝑓 ′ 𝑓

𝑔

of stacks on Diff.

(1) If 𝑓 is a representable submersion, then 𝑓 ′ is a representable submersion.

(2) If 𝑔 is a representable submersion and 𝑓 is representable, then 𝑓 ′ is representable.

(3) If 𝑔 is an effective epimorphism and 𝑓 ′ is a representable submersion, then 𝑓 is a
representable submersion.

(4) If 𝑔 is a representable surjective submersion and 𝑓 ′ is representable, then 𝑓 is repre-
sentable.

Proof. Parts (1) and (2) are immediate from the definitions. For part (3), assume that 𝑔 is an
effective epimorphism and let 𝑀→Y be a morphism from a smooth manifold. It follows
from Proposition 2.1.3 that the map 𝑀→Y locally factors through 𝑔 : Y′↠Y. Since the
condition we are proving may be checked locally in 𝑀 by Corollary 2.1.9, we may assume
that already the map 𝑀→Y factors through Y′ via some map 𝑠 : 𝑀→Y′. Now consider
the following pullback diagram:

𝑁 X′ X

𝑀 Y′ Y.

𝑓 ′′ 𝑓 ′ 𝑓

𝑠 𝑔

By assumption, 𝑓 ′ is a representable submersion, and it follows that the pullback 𝑁 =

𝑀 ×Y′ X′ � 𝑀 ×Y X is a smooth manifold and that the map 𝑓 ′′ : 𝑁 → 𝑀 is a submersion.
This proves that 𝑓 is a representable submersion, finishing the proof of (3).
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For part (4), let 𝑀→Y be a representable submersion from some smooth manifold 𝑀 . We
have to show that the pullback 𝑀 ×Y X is again a smooth manifold. By pulling back the
whole situation along 𝑀→Y, we may assume that Y = 𝑀 is a smooth manifold. We are
then in the situation of a pullback square

𝑁 X

𝑀′ 𝑀

𝑓 ′

𝑔′

𝑓

𝑔

in Shv(Diff), where the stacks 𝑀 , 𝑀′ and 𝑁 are all smooth manifolds and 𝑔 is a surjective
submersion. We have to show that X is a smooth manifold as well.

As 𝑔 is a surjective smooth submersion, it follows from Lemma C.10 that 𝑔 admits local
sections: there exists an open cover {𝑈𝑖}𝑖∈𝐼 of 𝑀 such that for every 𝑖 ∈ 𝐼 there is a smooth
map 𝑠𝑖 : 𝑈𝑖→𝑀′ such that the composite 𝑔◦ 𝑠𝑖 : 𝑈𝑖→𝑀 is equal to the inclusion of𝑈𝑖 into
𝑀 . By Corollary 2.1.9, it suffices to show that each of the pullback stacks X𝑖 :=X×𝑀𝑈𝑖 is
a smooth manifold. By base changing the whole situation along the map𝑈𝑖 ↩→ 𝑀 , we may
thus assume that the map 𝑔 : 𝑀′↠ 𝑀 admits a section 𝑠 : 𝑀→ 𝑀′.

We may now define a map 𝑡 = (𝑠 ◦ 𝑓 , id) : X → 𝑁 = 𝑀′×𝑀 X. Since it is a section of the
map 𝑔′ : 𝑁→X, it follows that the stack X is a retract in Shv(Diff) of the smooth manifold
𝑁 . It follows from idempotent completeness of Diff, Corollary C.5, thatX is itself a smooth
manifold, finishing the proof. □

Corollary 2.1.11. Representable submersions and representable morphisms of stacks are
closed under compositions.

Proof. The statement about representable submersions is clear from the definition, since
smooth submersions of smooth manifolds are closed under composition. The statement
about representable morphisms follows the definition, using part (1) of Proposition 2.1.10.

□

Lemma 2.1.12. Let 𝑓1 : X1 → Y1 and 𝑓2 : X2 → Y2 be two representable submersions
of stacks on Diff. Then their cartesian product 𝑓1 × 𝑓2 : X1 ×X2 → Y1 ×Y2 is again a
representable submersion.

Proof. Let 𝑔 = (𝑔1, 𝑔2) : 𝑀→Y1×Y2 be a map from a smooth manifold. By assumption,
the pullbacks 𝑁1 := 𝑀 ×Y1 X1 and 𝑁2 := 𝑀 ×Y2 X2 are smooth manifolds, and the maps
𝑁1 → 𝑀 and 𝑁2 → 𝑀 are smooth submersions. Now consider the following pullback
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diagram:
𝑁 𝑁1×𝑁2 X1×X2

𝑀 𝑀 ×𝑀 Y1×Y2.

𝑓1× 𝑓2
Δ 𝑔1×𝑔2

Since the vertical map 𝑁1 ×𝑁2→ 𝑀 ×𝑀 is a submersion, the left pullback exists in the
category Diff, and it follows that 𝑁 is a smooth manifold. Since the bottom composite is
the map 𝑔 = (𝑔1, 𝑔2), this finishes the proof. □

Lemma 2.1.13. LetX andY be stacks on Diff. Then any representable morphism 𝑓 : X→
Y is 0-truncated.

Proof. A map 𝑓 in a sheaf topos is 0-truncated if and only if its base change along any map
𝑀→Y from a representable object 𝑀 is 0-truncated. As 𝑓 is representable, the pullback
𝑁 :=𝑀×YX is a smooth manifold. It follows that the base change 𝑁→𝑀 of 𝑓 is a smooth
map between smooth manifolds, and in particular 0-truncated, finishing the proof. □

2.2 Differentiable stacks

In this section, we introduce a special class of stacks on Diff called differentiable stacks,
whose geometric behavior closely parallels that of smooth manifolds. These objects will
play a central role throughout the entire remainder of this article.

Definition 2.2.1 (Differentiable stack). Let X be a stack on Diff. A representable atlas for
X is a smooth manifold 𝑀 together with a representable surjective submersion 𝑝 : 𝑀↠X.
A stack which admits a representable atlas is called a differentiable stack. We let

DiffStk ⊆ Shv(Diff)

denote the full subcategory spanned by the differentiable stacks.

Differentiable stacks are closed under a variety of constructions.

Lemma 2.2.2. If X and Y are differentiable stacks with atlases 𝑀 ↠ X and 𝑁 ↠Y, then
the cartesian product X×Y is a differentiable stack with atlas 𝑀 ×𝑁 ↠ X×Y.

Proof. The product map is an effective epimorphism whose source is a smooth manifold.
By Lemma 2.1.12, it is also a representable submersion, finishing the proof. □
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Lemma 2.2.3. Let 𝑓 : X →Y be a representable morphism, and assume that 𝑀 ↠Y is a
representable atlas forY. Then the pullback 𝑁 := 𝑀 ×𝑌 X→X is a representable atlas for
X.

Proof. The map 𝑁→X is a representable submersion and an effective epimorphism since
it is a base change of the map𝑀↠Y. Furthermore, the assumption that 𝑓 is a representable
submersion guarantees that 𝑁 is a smooth manifold. □

Lemma 2.2.4. Let 𝑓 : X →Y be a representable morphism of stacks.

(1) If Y is a differentiable stack, then also X is a differentiable stack;

(2) If 𝑓 is a representable surjective submersion and X is a differentiable stack, then also
Y is a differentiable stack.

Proof. Part (1) is immediate from Lemma 2.2.3. For part (2), note that any representable
atlas 𝑀 ↠ X of X gives a representable atlas for Y by postcomposing with 𝑓 . □

As a consequence, we see that differentiable stacks are closed under pullbacks along repre-
sentable submersions on Shv(Diff):

Corollary 2.2.5. Consider a pullback square

X′ X

Y′ Y

𝑓 ′

𝑔′

𝑓

𝑔

of stacks on Diff. Assume that X, Y and Y′ are differentiable stacks and that 𝑓 is a
representable submersion. Then X′ is also a differentiable stack.

Proof. By Proposition 2.1.10, the morphism 𝑓 ′ is a representable submersion, hence the
claim follows from Lemma 2.2.4. □

Lemma 2.2.6. Let X be a differentiable stack with representable atlas 𝑀 ↠ X. Then a
morphism 𝑓 : Y → X is representable if and only if the pullback 𝑀 ×X Y is a smooth
manifold. Furthermore, 𝑓 is a representable submersion if and only if its base change
𝑀 ×XY → 𝑀 of 𝑓 is a smooth submersion of smooth manifolds.

Proof. This is immediate from Proposition 2.1.10, using that any morphism between smooth
manifolds is representable. □
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Corollary 2.2.7. Let Y be a differentiable stack. Then the diagonal Δ : Y → Y ×Y is
representable.

Proof. Let 𝑀 ↠ Y be a representable atlas for Y. By Lemma 2.2.2, the product map
𝑀 ×𝑀 ↠ Y×Y is again a representable atlas. By Lemma 2.2.6, it thus suffices to show
that the differentiable stack (𝑀 ×𝑀) ×Y×Y Y � 𝑀 ×Y 𝑀 is a smooth manifold. This is
immediate since the map 𝑀 ↠Y is a representable submersion. □

Corollary 2.2.8. LetX be a differentiable stack. Then any morphism 𝑁→X from a smooth
manifold 𝑁 is representable.

Proof. Let 𝑀 ↠Y be a representable atlas for X. By Lemma 2.2.6 it suffices to show that
the pullback 𝑀 ×X 𝑁 is a smooth manifold. This is immediate from the fact that the map
𝑀 ↠ X is a representable submersion. □

2.3 Classifying stacks of Lie groupoids

A rich supply of differentiable stacks is provided by the classifying stacks of Lie groupoids.
In fact, we will show in Corollary 2.3.8 below that every differentiable stack is (non-
canonically) equivalent to the classifying stack BG of some Lie groupoid G.

We refer to Appendix D for background material on Lie groupoids. We will also make
use of some foundational results on the relation between groupoid objects and effective
epimorphisms in an∞-topos, recalled in Appendix E.2.

Definition 2.3.1 (Nerve of a Lie groupoid). The nerve 𝑁G of a Lie groupoidG = (G1⇒G0)
is the simplicial manifold 𝑁G : Δop→ Diff whose 𝑛-simplices are given by the manifold

G𝑛 := G1×𝑠,G0,𝑡 · · · ×𝑠,G0,𝑡 G1,

given as the 𝑛-fold iterated fiber product of G1 over G0 in Diff. The face maps of 𝑁G are
obtained from source, target and multiplication maps of G, while the degeneracy maps of
𝑁G are obtained from the unit map of G.

Definition 2.3.2 (Classifying stack). Let G = (G1⇒ G0) be a Lie groupoid. We define its
classifying stack BG ∈ Shv(Diff) as the geometric realization of its nerve in Shv(Diff):

BG := |𝑁G| = colim
(
· · · G2 G1 G0

)
∈ Shv(Diff).

The classifying stack BG of a Lie groupoid is indeed a differentiable stack:
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Lemma 2.3.3. LetG be a Lie groupoid. Then the canonical mapG0↠BG is a representable
atlas for BG. In particular, BG is a differentiable stack.

Proof. As groupoid objects in ∞-topoi are effective, the map G0 ↠ BG is an effective
epimorphism, see e.g. Corollary E.15. Since G0 is a smooth manifold, it remains to show
that the map G0↠ BG is a representable submersion. By Proposition 2.1.10, it suffices to
show that this is the case after pulling it back along an effective epimorphism, for example
along G0↠ BG itself. But this base change pr1 : G0×BG G0→G0 is equivalent to the map
source map 𝑠 : G1→G0, which by assumption on G is a submersion of smooth manifolds
and hence a representable submersion in Shv(Diff). □

Example 2.3.4 (Classifying stack of Lie group). Every Lie group 𝐺 can be regarded as a
one-object Lie groupoid 𝐺 ⇒ pt and thus gives rise to a differentiable stack B𝐺 called the
classifying stack of 𝐺.

Example 2.3.5 (Global quotient stack). Let 𝑀 be a smooth manifold and let 𝐺 be a Lie
group acting smoothly on 𝑀 . We obtain a Lie groupoid 𝐺 ⋉𝑀 = (𝐺 ×𝑀 ⇒ 𝑀), called the
action groupoid. The associated differentiable stack B(𝐺 ⋉𝑀) is denoted by 𝑀//𝐺 and is
called the quotient stack of 𝑀 by 𝐺. Since the action groupoid 𝐺 ⋉𝑀 is functorial in 𝑀 ,
we obtain a functor

−//𝐺 : Diff𝐺 → DiffStk,

where Diff𝐺 denotes the category of smooth 𝐺-manifolds. Note that the quotient stack
pt//𝐺 of the point is precisely the classifying stack B𝐺 of 𝐺.

A differentiable stackX is called a global quotient stack if it is equivalent to a quotient stack
𝑀//𝐺 for some compact Lie group𝐺 and some smooth𝐺-manifold. We let QtStk ⊆DiffStk
denote the full subcategory of global quotient stacks.

By Lemma 2.3.3, every Lie groupoid gives rise to a differentiable stack. We will now show
that, conversely, every differentiable stack X can be presented by a Lie groupoid G, in the
sense that there exists an equivalence X ≃ BG of stacks. In fact, we will see that there is a
one-to-one correspondence between choices of an atlas for X and choices of a presentation
of X by a Lie groupoid.

Definition 2.3.6. We denote by Atlrep(Shv(Diff)) ⊆ Fun( [1],Shv(Diff)) the full subcate-
gory of the arrow category of Shv(Diff) spanned by the representable atlases 𝑀↠X in the
sense of Definition 2.2.1.

Proposition 2.3.7. Sending a Lie groupoid G to the representable atlas G0↠ BG defines
an equivalence of∞-categories LieGrpd ∼−−→ Atlrep(Shv(Diff)).
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Proof. Recall from Proposition E.13 the equivalence

Grpd(Shv(Diff)) ∼−−→ Atl(Shv(Diff))

between the ∞-category of groupoid objects in Shv(Diff) and the ∞-category of atlases
(i.e. effective epimorphisms) in Shv(Diff). This equivalence is given by sending a groupoid
object G to the effective epimorphism G0↠ BG, and its inverse sends an effective epimor-
phism to its Čech nerve. We claim that this equivalence restricts to the desired equivalence
LieGrpd ∼−−→ Atlrep(Shv(Diff)) of full subcategories. By Lemma 2.3.3, the map G0↠ BG
is indeed a representable atlas if G is a Lie groupoid. Conversely, if 𝑝 : 𝑀 ↠ X is a
representable atlas, its Čech nerve �̌� (𝑝) is given at level [𝑛] ∈ Δ by the 𝑛-fold fiber product

�̌� (𝑝)𝑛 ≃ 𝑀 ×X 𝑀 ×X · · · ×X 𝑀,

which is a smooth manifold by the assumptions that 𝑀 is a manifold and that the map
𝑝 is a representable submersion. It follows that �̌� (𝑝) is the nerve of a Lie groupoid
G = (𝑀 ×X 𝑀 ⇒ 𝑀), finishing the proof. □

Corollary 2.3.8. Every differentiable stack X is equivalent to the classifying stack BG of
some Lie groupoid G.

Proof. Let 𝑀 ↠ X be a representable atlas for X. By Proposition 2.3.7, there exists a Lie
groupoid G with 𝑀 � G0 and X ≃ BG. This finishes the proof. □

Warning 2.3.9. Although we may think of Lie groupoids as presentations of differentiable
stacks, it is not true that a morphism of Lie groupoidsH → G contains the same data as a
morphism BH → BG of stacks. Indeed, as made precise by Proposition 2.3.7, morphisms
of stacks BH → BG comes from a morphism of Lie groupoids H → G precisely if it is
compatible with the preferred atlasesH0↠ BH and G0↠ BG.

2.3.1 Differentiable stacks are Lie groupoids up to Morita equivalence

We will now recall the well-known fact that two Lie groupoids H and G have equivalent
classifying stacks if and only if they are Morita equivalent, in the sense of Definition D.18.

We start by characterizing when a morphism of Lie groupoids 𝑓 : H → G induces an
equivalence of differentiable stacks B 𝑓 : BH ∼−−→ BG. For this, we need to recall the
notions of fully faithfulness and essential surjectivity of morphisms of Lie groupoids.

Definition 2.3.10 ([HF19, Section 6.1]). Let 𝑓 : H →G be a morphism of Lie groupoids.
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(1) The morphism 𝑓 is called fully faithful if the square

H1 G1

H0×H0 G0×G0

(𝑠,𝑡)

𝑓1

(𝑠,𝑡)
𝑓0× 𝑓0

is a pullback square.

(2) The morphism 𝑓 is called essentially surjective if the composite map

G1×G0H0
pr1−−→ G1

𝑡−→ G0

is a surjective submersion;

(3) The morphism 𝑓 is called a Morita map if it is both fully faithful and essentially
surjective.

(4) The morphism 𝑓 is called strongly surjective if the smooth map 𝑓0 : H0 → G0 is a
surjective submersion.

(5) The morphism 𝑓 is called a Morita fibration if it is both fully faithful and strongly
surjective.

Warning 2.3.11. The conventions on the terminology of Morita maps are not very consistent
in the literature: the notion we call ‘Morita map’ appears in the literature under the names
‘equivalence’ [Moe02, Definition 2.4], ‘weak equivalence’ [Pro96, Definition 12], ‘essential
equivalence’ [Met03, Definition 58] and ‘Morita equivalence’ [Car11, Definition I.2.20].
Morita fibrations also appear under the names ‘Morita morphisms’ [BX11, Definition 2.24]
and ‘elementary Morita equivalences’ [Noo05, Section 8]. Our convention follows [HF19,
Section 6.1].

Remark 2.3.12 (Morita fibrations are Morita maps). Every strongly surjective morphism
𝑓 of Lie groupoids is essentially surjective, and thus every Morita fibration is a Morita
map. Indeed, the condition in (4) that the map 𝑓0 is a surjective submersion implies that
the projection map pr1 : G1×G0H0→G1 is a surjective submersion, as it is a base change
of 𝑓0. Since the target map 𝑡 : G1→ G0 is always a surjective submersion, it follows that
𝑡 ◦pr1 is also a surjective submersion, which is condition (2).

The following result characterizes the properties of fully faithfulness and essential sur-
jectivity of a morphism of Lie groupoids in terms of its underlying map of differentiable
stacks.
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Lemma 2.3.13 ([Met03, Proposition 60], [Car11, Proposition I.2.5]). Let 𝑓 : H → G be a
morphism of Lie groupoids, and consider the induced mapB 𝑓 : BH →BG on differentiable
stacks.

(1) The map B 𝑓 is a monomorphism if and only if 𝑓 is fully faithful;

(2) The map B 𝑓 is an representable surjective submersion if and only if 𝑓 is essentially
surjective;

(3) The map B 𝑓 is an equivalence if and only if 𝑓 is a Morita map.

Proof. For part (1), consider the following diagram:

H1 G1

BH BG

H0×H0 G0×G0

BH ×BH BG×BG.

Δ

B 𝑓×B 𝑓

(𝑠,𝑡)

𝑓0× 𝑓0

(𝑠,𝑡)

𝑓1

Δ

B 𝑓

The map B 𝑓 : BH → BG is a monomorphism if and only if the front square of the diagram
is a pullback square. Since the mapH0↠ BH is an effective epimorphism and the left and
right faces of the cube are pullback squares, it follows from the pasting lemma for pullback
squares that the front square is a pullback square if and only if the back square is. As the
back square defines fully faithfulness of 𝑓 , this finishes the proof of (1)

For part (2), consider the following pullback diagram:

G1×G0H0 G1 G0

H0 G0 BG.

pr1

pr2 𝑠

𝑡

𝑓0

The bottom compositeH0→G0→ BG is equivalent to the compositeH0↠ BH
B 𝑓
−−→ BG.

As the map H0 ↠ BH is a representable surjective submersion, it follows from part (4)
of Lemma C.7 that the map B 𝑓 is a representable surjective submersion if and only if the
bottom compositeH0→BG is. Since this may be checked after pulling back along the atlas
G0↠BG, this is equivalent to the condition that the top composite 𝑡 ◦pr1 : G1×G0H0→G0
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is a surjective submersion. Since this is the definition of fully faithfulness of 𝑓 , this finishes
the proof of (2).

Part (3) is a direct consequence of (1) and (2) since a morphism of stacks is an equivalence
if and only if it is both a monomorphism and a representable surjective submersion. □

We deduce that two Lie groupoids have equivalent classifying stacks if and only if they are
Morita equivalent:

Proposition 2.3.14 (cf. [Pro96], [BX11, Theorem 2.26], [Met03]). Given two Lie groupoids
H and G, the following conditions are equivalent:

(1) The classifying stacks BH and BG are equivalent;

(2) The Lie groupoidsH and G are Morita equivalent, in the sense of Definition D.18;

(3) There exists a third Lie groupoidK along with Morita fibrationsK →H andK →G;

(4) There exists a third Lie groupoid K along with Morita maps K →H and K → G.

Proof. To prove that (1) implies (2), assume that an equivalence of stacks BH ≃ BG has
been given. It follows that the compositeH0↠ BH ≃ BG is a representable atlas for BG.
We define a smooth manifold 𝑃 as the following pullback:

𝑃 H0

G0 BG.

𝛼

𝛽

Observe that the map 𝛼 : 𝑃↠ G0 is a principalH -bundle, in the sense of Definition D.15,
as it is a base change of the principalH -bundleH0↠ BG. Similarly the map 𝛽 : 𝑃↠H0

is a principal G-bundle. It is immediate that the actions of G and H commute as they act
on two separate components of 𝑃 = G0×BGH0, and thus the triple (𝑃,𝛼, 𝛽) forms a Morita
equivalence between G andH .

To prove that (2) implies (3), assume given a Morita equivalence (𝑃,𝛼, 𝛽) between G and
H , in the sense of Definition D.18. We start by defining a Lie groupoidK. SetK0 = 𝑃 and
define K1 via the following pullback diagram:

K1 G1×H1

𝑃 G0×H0.

𝑠

(𝛼1,𝛽1)

𝑠×𝑠
(𝛼,𝛽)
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The commuting actions of G andH on 𝑃 define an action map 𝑡 : K1→ 𝑃 and one checks
that the maps 𝑠, 𝑡 : K1→ 𝑃 =K0 are part of a Lie groupoid structure K = (K1

𝑠

𝑡
K0).

The Lie groupoid K comes equipped with morphisms of Lie groupoids (𝛼1, 𝛼) : K → G
and (𝛽1, 𝛽) : K →H . We claim that these are Morita fibrations, thus finishing the proof of
(3). By symmetry, it suffices to check this for (𝛼1, 𝛼). Strong surjectivity is clear, as the
map 𝛼 : K0 = 𝑃→G0 is a surjective submersion by assumption. For fully faithfulness, we
must show that the map

K1→G1×G0×G0 (𝑃×𝑃)

is a diffeomorphism. To provide an inverse, consider the shear map shear : H1 ×H0 𝑃→
𝑃×G0 𝑃, which is a diffeomorphism as 𝛼 : 𝑃→G0 is a principal H -bundle. An inverse to
the above map is then given by

G1×G0×G0 (𝑃×𝑃) → K1 = (G1×H1) ×G0×H0 𝑃, (𝑔, 𝑝, 𝑝′) ↦→ (𝑔, shear−1(𝑝, 𝑝′)),

giving the desired claim.

It is immediate from Remark 2.3.12 that (3) implies (4).

Finally, to see that (4) implies (1), observe that the Morita mapsK→G andK→H induce
equivalences of stacks

BH ∼←−− BK ∼−−→ BG

by Lemma 2.3.13. It follows that BH and BG are equivalent, as desired. □

As shown above, the classifying stack functor B : LieGrpd→ DiffStk sends Morita maps
to equivalences. A well-known result in the theory of differentiable stacks says that this
functor is in fact universal with this property. For completeness we will state the precise
result, although we shall not make use of it.

Theorem 2.3.15 ([Pro96, Section 3.4, Section 4]). The functor B : LieGrpd→ DiffStk
exhibits the (2,1)-category3 DiffStk as the (2,1)-categorical Dwyer-Kan localization of
the category LieGrpd at the Morita maps: for any other (2,1)-categoryD, precomposition
with B induces a fully faithful functor

Fun(DiffStk,D) ↩→ Fun(LieGrpd,D)

whose essential image consists of those functors LieGrpd→D which send Morita maps to
equivalences.

Remark 2.3.16. One can prove that the functor B : LieGrpd→ DiffStk is in fact an ∞-
categorical Dwyer-Kan localization, see [Nui16].

3See Corollary 2.3.24 below.
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2.3.2 Classification of Lie groupoid actions on smooth manifolds

Given a Lie groupoid G, recall from Definition D.14 the notion of a left action of G on a
smooth manifold: given a smooth submersion 𝑀 → G0, a left G-action on 𝑀 consists of
an associative and unital action 𝑎 : G1×𝑠,G0 𝑀→ 𝑀 over G0. A smooth manifold equipped
with a left G-action is called a smooth G-manifold. In this subsection, we show that such
left actions are classified by representable maps of stacks to the classifying stack BG. More
precisely, we show that the category DiffG of smooth G-manifolds is equivalent to the
subcategory of DiffStk/BG spanned by the representable submersions into BG, where the
equivalence sends 𝑀 to the map 𝑀//G → pt//G = BG.

Definition 2.3.17. Given a smooth G-manifold 𝑀 , we obtain a Lie groupoid

G ⋉𝑀 =

(
G1×G0 𝑀 𝑀

pr2

𝑎

)
called the action groupoid of 𝑀 . We define the quotient stack 𝑀//G ∈ Shv(Diff) as the
classifying stack B(G⋉𝑀). The Lie groupoid G⋉𝑀 comes equipped with a morphism of
Lie groupoids to G:

G1×G0 𝑀 𝑀

G1 G0.

pr1

pr2

𝑎

𝑠

𝑡

The notion of left actions of Lie groupoids on smooth manifolds may be phrased in terms of
groupoid actions in the ∞-topos Shv(Diff) of stacks on Diff. Recall from Definition E.17
that a left action of a groupoid object G in an ∞-topos B consists of another groupoid
object H in B equipped with a cartesian morphism 𝑐 : H → G of simplicial objects in
B, meaning that all the naturality squares of 𝑐 are pullback squares. In the case at hand,
observe that the map G ⋉𝑀 → G of Lie groupoids from Definition 2.3.17 is a cartesian
morphism of groupoid objects in Shv(Diff), thus producing a functor

G ⋉− : DiffG→ ActG (Shv(Diff))

from the category of smooth G-manifolds to the ∞-category of stacks on Diff equipped
with a G-action.

Lemma 2.3.18. For a Lie groupoid G, the functor G ⋉− : DiffG → ActG (Shv(Diff)) is
fully faithful. An object 𝑐 : H → G of ActG (Shv(Diff)) lies inside the essential image of
this functor if and only ifH0 ∈ Shv(Diff) is a smooth manifold and the mapH0→G0 is a
smooth submersion.
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Proof. Notice that a morphism 𝜑 : 𝑀 → 𝑀′ of smooth G-manifolds determines and is
determined by the induced morphism G⋉𝑀→G⋉𝑀′ of Lie groupoids over G, so that this
functor is fully faithful. Furthermore, if 𝑐 : H → G is a cartesian morphism of groupoid
objects of Shv(Diff) such thatH0 is a smooth manifold, then it follows thatH𝑛 ≃H0×G0 G𝑛
is a smooth manifold for all 𝑛 ≥ 0, so that H is in fact a Lie groupoid. Defining 𝑀 :=H0,
the map 𝑑1 : G1×G0 𝑀 ≃H1→H0 = 𝑀 determines an action of G on 𝑀 and one observes
that H is equivalent to the action groupoid G ⋉𝑀 , showing that H lies in the essential
image. □

Corollary 2.3.19. Let G be a Lie groupoid. Sending a smooth G-manifold 𝑀 to the map
𝑀//G → BG defines a fully faithful functor

DiffG ↩→ DiffStk/BG

whose essential image consists of the representable submersions X → BG.

Proof. By Proposition E.20, there is an equivalence of∞-categories

ActG (Shv(Diff)) ∼−−→ Shv(Diff)/BG

given by sending a cartesian morphism 𝜑 : H →G of groupoid objects in Shv(Diff) to the
map B𝜑 : BH → BG. Since there is a cartesian square

H0 BG

G0 BG,

𝜑0 B𝜑

it follows from Proposition 2.1.10 that the map 𝜑0 is a representable submersion if and only
if B𝜑 is a representable submersion. It follows from Lemma 2.3.18 that the subcategory
DiffG of ActG (Shv(Diff)) corresponds to the full subcategory of Shv(Diff)/BG spanned by
the representable submersions. As the source of every representable submersion X → BG
is a differentiable stack by Lemma 2.2.4, the claim follows. □

Corollary 2.3.20. Let 𝐺 be a Lie group. The assignment 𝑀 ↦→ (𝑀//𝐺→ B𝐺) defines a
fully faithful functor

−//𝐺 : Diff𝐺 ↩→ DiffStk/B𝐺 ,

whose essential image consists of the representable morphisms X → B𝐺.

Proof. Given Corollary 2.3.19, it remains to show that a morphism 𝑓 : X → B𝐺 of differ-
entiable stacks is representable if and only if it is a representable submersion. One direction
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is immediate, so assume that X → B𝐺 is representable. Consider the following pullback
square:

𝑀 X

pt B𝐺.

𝑓

As the map pt↠ B𝐺 is a representable submersion, it follows that the pullback 𝑀 is a
smooth manifold. In particular, the map 𝑀→ pt is a smooth submersion. By Lemma 2.2.6,
it follows that also 𝑓 : X → B𝐺 is a representable submersion, finishing the proof. □

Corollary 2.3.21. A differentiable stack X is a global quotient stack in the sense of Exam-
ple 2.3.5 if and only if it admits a representable submersionX→ B𝐺 for some compact Lie
group 𝐺. □

2.3.3 Classification of principal bundles on smooth manifolds

Let G be a Lie groupoid and let 𝑁 be a smooth manifold. Recall from Definition D.15 the
notion of a smooth principal G-bundle on 𝑁: a surjective smooth submersion 𝑝 : 𝑃↠ 𝑁

equipped with a left G-action 𝑎 : G1 ×G0 𝑃→ 𝑃 living over 𝑁 for which the shear map
(𝑎,pr2) : G1 ×G0 𝑃→ 𝑃×𝑁 𝑃 is a diffeomorphism. The goal of this subsection is to give
a classification of smooth principal G-bundles on 𝑁 in terms of morphisms 𝑁 → BG of
differentiable stacks: there is an equivalence of∞-groupoids

HomDiffStk(𝑁,B𝐺) ≃ {Smooth principal G-bundles on 𝑁}.

Since the right-hand side is simply a 1-groupoid, it follows in particular that the stack BG
is a 1-stack, making our definition of differentiable stacks compatible with the standard
literature.

We start by comparing the explicit definition of smooth principal bundles for Lie groupoids
to the general topos-theoretic notion of principal bundles, recalled in Appendix E.3.

Proposition 2.3.22. Let G be a Lie groupoid en let 𝑁 be a smooth manifold. Then there is
an equivalence

PrnBdlG (𝑁) ∼−−→ PrnBdlG (Shv(Diff))𝑁

between the category of smooth principal G-bundles over 𝑁 , as defined in Definition D.15,
and the ∞-category of principal G-bundles over 𝑁 internal to the ∞-topos Shv(Diff), as
defined in Definition E.24.
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Proof. For a smooth principal G-bundle 𝑝 : 𝑃 → 𝑁 , the action groupoid G ⋉ 𝑃 is by
assumption (2) of Definition D.15 a groupoid object in the slice Diff/𝑁 . The groupoid
map G ⋉𝑃→G lifts by adjunction to a groupoid map G ⋉𝑃→G×𝑁 in the slice Diff/𝑁 .
This map is still a cartesian natural transformation, so forms an object of ActG (Diff/𝑁 ) ⊆
ActG (Shv(Diff)/𝑁 ). This produces a functor

PrnBdlG (𝑁) → ActG (Shv(Diff)/𝑁 ).

Since a map 𝑃→ 𝑃′ of smooth principal G-bundles over 𝑁 is equivalently specified by a
map G⋉𝑃→G⋉𝑃′ commuting with the maps to 𝑁 and to G, this is a fully faithful functor.

We claim that this inclusion factors through the full subcategory PrnBdlG (Shv(Diff))𝑁 of
principal G-bundles over 𝑁 internal to Shv(Diff). Notice that the map (𝑎,pr2) : G1×G0 𝑃 −→
𝑃×𝑁 𝑃 in condition (3) of Definition D.15 is precisely the shear map (internal to Diff/𝑁 )
from Definition E.21, so that the map 𝑃→ 𝑁 is a formally principalG-bundle in the sense of
Definition E.24. Furthermore, the condition (1) from Definition D.15 that the map 𝑃→ 𝑁

is a surjective smooth submersion is by Remark 2.1.6 equivalent to the condition that the
map 𝑃→ 𝑁 is an effective epimorphism in Shv(Diff), so that 𝑃→ 𝑁 is in fact a principal
G-bundle internal to Shv(Diff). We have therefore produced a fully faithful embedding

PrnBdlG (𝑁) ↩→ PrnBdlG (Shv(Diff))𝑁 .

It remains to prove that this inclusion is essentially surjective. Let P ↠ 𝑁 be a map in
Shv(Diff) equipped with the structure of a principal G-bundle. By Theorem E.28, there is
a classifying map 𝑐 : 𝑁→ BG and a pullback square

P G0

𝑁 BG.

𝑝

𝑐

Since the mapG0↠BG is a surjective representable submersion by Lemma 2.3.3, it follows
that also the map P ↠ 𝑁 is a surjective smooth submersion. In particular the stack P is a
smooth manifold, which we will henceforth denote as 𝑃. Just as in Lemma 2.3.18 it follows
that 𝑃 is equipped with a left G-action, and since the action groupoid G ⋉𝑃→ 𝑃 lives in
Diff/𝑁 it satisfies condition (2) of Definition D.15. As before, condition (3) is equivalent
to the condition that the map 𝑃→ 𝑁 is a formally principal G-bundle and condition (1) is
equivalent to the condition that 𝑃→ 𝑁 is an effective epimorphism in Shv(Diff). It follows
that the map 𝑃→ 𝑁 is indeed a smooth principal G-bundle as desired. □

As a corollary, we obtain that the classifying stack BG of a Lie groupoid G is a 1-stack:
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Proposition 2.3.23. Let G be a Lie groupoid. For every smooth manifold 𝑁 , there is a
natural equivalence of∞-groupoids

BG(𝑁) ≃ PrnBdlG (𝑁).

In particular, BG(𝑁) is an ordinary groupoid for every 𝑁 .

Proof. By Theorem E.28, there is an equivalence of∞-groupoids

BG(𝑁) = HomShv(Diff) (𝑁,BG) ≃ PrnBdlG (Shv(Diff))𝑁 .

By Proposition 2.3.22, the right-hand side is equivalent to the ordinary groupoid PrnBdlG (𝑁)
of smooth principal G-bundles over 𝑁 , finishing the proof. □

Combining this corollary with Corollary 2.3.8, we obtain:

Corollary 2.3.24 (Differentiable stacks are 1-stacks). Every differentiable stack X is a
1-stack, in the sense that it factors through the subcategory Grpd ⊆ An of groupoids. In
particular, the∞-category DiffStk is a (2,1)-category. □

2.4 Local properties of maps of stacks

Various properties of smooth maps between smooth manifolds have immediate generaliza-
tions to the context of maps between differentiable stacks.

Definition 2.4.1 (Local property for smooth manifolds). Let 𝑃 be a property of smooth
maps of smooth manifolds. We say that 𝑃 is a local property if for every pullback diagram

𝑀′ 𝑀

𝑁′ 𝑁

𝑓 ′

𝑔′

𝑓

𝑔

in Diff in which 𝑔 is a submersion, we have:

(1) If 𝑓 has property 𝑃, then also 𝑓 ′ has property 𝑃.

(2) If 𝑔 is surjective and 𝑓 ′ has property 𝑃, then also 𝑓 has property 𝑃.

Definition 2.4.2 (Local property for stacks). Let 𝑓 : X →Y be a representable morphism
between stacks on Diff, and let 𝑃 be a local property of smooth maps of smooth manifolds.
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Then we say that has property 𝑃 if for every representable submersion 𝑔 : 𝑁′→Y and
every pullback diagram

𝑀′ X

𝑁′ Y

𝑓 ′

𝑔′

𝑓

𝑔

the smooth map 𝑓 ′ : 𝑀′→ 𝑁′ of smooth manifolds has property 𝑃.

It is immediate from the definition that if 𝑓 : 𝑀→ 𝑁 is a smooth map of smooth manifolds,
then 𝑓 has property 𝑃 as a map of smooth manifolds if and only if it has property 𝑃 when
regarded as a morphism of stacks.

Before giving examples of local properties, let us address a potential point of confusion.
In Definition 2.1.4, we defined the notion of a representable submersion. Now, since the
property for a map between smooth manifolds to be a smooth submersion is a local property,
Definition 2.4.2 gives an a priori different definition for what it means for a representable
morphism of stacks to be a smooth submersion. The following lemma shows that these two
notions agree in the case its source and target are differentiable stacks:

Lemma 2.4.3. Let X and Y be differentiable stacks. Then a morphism 𝑓 : X → Y is
a representable submersion, in the sense of Definition 2.1.4, if and only if it is both
representable and a smooth submersion in the sense of Definition 2.4.2.

Proof. It is clear that a representable submersion is both representable and a smooth sub-
mersion, so we will prove the converse. Let 𝑀 ↠ Y be a representable atlas for Y. By
part (3) of Proposition 2.1.10, the morphism 𝑓 is a representable submersion if and only
if its base change 𝑀 ×Y X → 𝑀 is a representable submersion. Since 𝑀 ↠ Y is a rep-
resentable submersion and 𝑓 is representable, the pullback 𝑀 ×Y X is a smooth manifold.
Furthermore, by assumption on 𝑓 , the base change 𝑀 ×Y X → 𝑀 is a smooth submersion
between smooth manifolds. It follows in particular that the morphism 𝑀 ×Y X → 𝑀 is a
representable submersion, which finishes the proof. □

Lemma 2.4.4 (Open substacks). A morphism U ↩→X of differentiable stacks is an open
substack, in the sense of Definition 2.1.7, if and only if it is both representable and an open
embedding, in the sense of Definition 2.4.2.

Proof. The proof is completely analogous to that of Lemma 2.4.3 and will be omitted. □

In analogy with Lemma 2.4.4 we get the following more general definition of embeddings
of stacks.
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Definition 2.4.5 (Embeddings of stacks). A smooth map 𝑁 → 𝑀 of smooth manifolds is
called an embedding if it is a smooth immersion which induces a homeomorphism onto its
image in 𝑀 . It is called a closed (resp. open) embedding if the image in 𝑀 is closed (resp.
open).

Specializing Definition 2.4.2, we obtain the notions of embedded, closed embedding and
open embedding.

Example 2.4.6. Other examples of properties 𝑃 of smooth maps 𝑓 : 𝑀 → 𝑁 of smooth
manifolds are the following:

• 𝑓 is injective, 𝑓 is surjective;

• 𝑓 is a submersion, 𝑓 is a surjective submersion;

• 𝑓 is an open map;

• 𝑓 is étale, or a local diffeomorphism, meaning that for every 𝑥 ∈ 𝑀 there exists an
open neighborhood 𝑥 ∈𝑈 ⊆ 𝑀 such that 𝑓 |𝑈 : 𝑈→ 𝑁 is an open embedding;

• 𝑓 is proper, meaning that for every compact subspace 𝐾 ⊆ 𝑁 the preimage 𝑓 −1(𝐾) ⊆
𝑀 is also compact;

• 𝑓 admits local sections, in the sense of Definition 2.1.2;

• 𝑓 is a finite covering space, meaning that there is an open cover {𝑈𝑖 ⊆ 𝑁}𝑖∈𝐼 such that
every restriction 𝑓 |𝑈𝑖

: 𝑓 −1(𝑈𝑖) → 𝑈𝑖 is isomorphic to 𝑈⊔𝑛𝑖
𝑖
→ 𝑈𝑖 for some integer

𝑛𝑖 ≥ 0.

The main feature of local properties of maps of stacks is that they can be tested after pulling
back along a representable surjective submersion.

Lemma 2.4.7 (Local properties are local). Let 𝑃 be a local property, and consider a
pullback diagram

X′ X

Y′ Y

𝑓 ′ 𝑓

𝑔

of stacks on Diff such that 𝑔 is an representable submersion and such that 𝑓 and 𝑓 ′ are
representable.

(1) If 𝑓 has property 𝑃, then so does 𝑓 ′.

99



(2) If 𝑔 is a representable surjective submersion and 𝑓 ′ has property 𝑃, then so does 𝑓 .

Proof. Part (1) is immediate from the definitions. For part (2), let𝑀→Y be a representable
submersion from some smooth manifold 𝑀 . By base changing the whole situation along
this map, we may assume that Y = 𝑀 is a smooth manifold. Since all four maps are
representable, it follows that also X, Y′ and Y are smooth manifolds. Since 𝑃 is a local
property of maps between smooth manifolds, it follows that 𝑓 has property 𝑃. □

In practice, we use Lemma 2.4.7 mostly in the situation where Y′ is a representable atlas
for Y:

Corollary 2.4.8. Let Y be a differentiable stack with representable atlas 𝑀 ↠ Y and let
𝑓 : X →Y be a representable morphism of stacks. Let 𝑃 be a local property of maps of
smooth manifolds. Then 𝑓 has property 𝑃 if and only if the map 𝑀 ×YX→𝑀 has property
𝑃. □

It follows from Corollary 2.4.8 that representable morphisms between differentiable stacks
behave very similar to smooth maps between smooth manifolds. We collect some results in
this direction.

Lemma 2.4.9. Let 𝑓 : Y→X be a representable submersion between differentiable stacks.
Then there exists an essentially unique factorization

Y↠U ↩→X

of 𝑓 into a surjective representable submersion Y↠U and an open embeddingU ↩→X.

We will also write 𝑓 (Y) ↩→X for the essentially unique open substack of X determined by
the lemma, and refer to it as the image of 𝑓 .

Proof. We may factor 𝑓 as an effective epimorphismY↠U followed by a monomorphism
U ↩→X. It remains to show that the map Y↠U is a surjective representable submersion
and the mapU ↩→X is an open embedding. By Corollary 2.4.8, this may be checked after
pulling back the situation along an atlas𝑀↠X, and since pulling back preserves the unique
factorization we may assume that 𝑓 : 𝑁 → 𝑀 is a smooth submersion between smooth
manifolds. In that case, the factorization is given as the factorization 𝑁 ↠ 𝑓 (𝑁) ↩→ 𝑀 of
𝑓 through its (open) image in 𝑀 . As the map 𝑁→ 𝑓 (𝑁) is a surjective submersion and the
inclusion 𝑓 (𝑁) ↩→ 𝑁 is an open embedding, this proves the claim. □
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Lemma 2.4.10. Consider a commutative triangle of differentiable stacks:

X

Y Z.

𝑓 𝑔 𝑓

𝑔

(1) If both 𝑔 𝑓 and 𝑔 are representable, then so is 𝑓 ;

(2) If 𝑔 𝑓 is an embedding and 𝑔 is representable, then 𝑓 is an embedding;

(3) If 𝑔 𝑓 is proper and 𝑔 is representable, then 𝑓 is proper;

(4) If 𝑔 𝑓 is a closed embedding and 𝑔 is representable, then 𝑓 is a closed embedding.

Proof. Let 𝑂 ↠ Z be a representable atlas for Z and consider the following pullback
diagram:

𝑀 X

𝑁 Y

𝑂 Z.

𝑓 ′ 𝑓

𝑔′ 𝑔

By Lemma 2.2.3, the map 𝑁 ↠ Y is a representable atlas for Y, and thus by Proposi-
tion 2.1.10 and Lemma 2.4.7, it suffices to prove that 𝑓 ′ is representable (resp. an em-
bedding / proper / a closed embedding). Part (1) is now immediate, as 𝑓 ′ is a morphism
between smooth manifolds and thus representable. Parts (2), (3) and (4) follow immediately
from the analogous cancellation property for smooth maps between smooth manifolds, see
Lemma C.7. □

2.5 Vector bundles over stacks

The notion of a vector bundle over a smooth manifold admits a natural extension to the
setting of stacks on Diff.

Definition 2.5.1 (Vector bundle). Let X be a stack on Diff. For 𝑛 ≥ 0, we define an 𝑛-
dimensional vector bundle 𝜋 on X to be a morphism of stacks 𝜋 : X → BGL(𝑛). The total
space E𝜋 of the bundle 𝜋 is defined as the following pullback of stacks:

E𝜋 R𝑛//GL(𝑛)

X BGL(𝑛).𝜋
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We will often abuse notation and refer to a map E → X as a vector bundle, leaving the
classifying map 𝜋 : 𝑋 → BGL(𝑛) implicit in the notation. We denote the groupoid of
𝑛-dimensional vector bundles over X by

Vect≃𝑛 (X) := HomShv(Diff) (X,BGL(𝑛)).

We also define

Vect≃(X) := HomShv(Diff) (X,
∞⊔
𝑛=0
BGL(𝑛)).

This determines a limit-preserving functor Vect≃ : Shv(Diff)op→ Grpd.

Definition 2.5.2 (Associated sphere bundle). Given a vector bundle E → X classified by
𝜋 : X → BGL(𝑛), we define its associated sphere bundle 𝑆E →X as the pullback

𝑆E 𝑆𝑛//GL(𝑛)

X BGL(𝑛).𝜋

The groupoid Vect≃(X) is the core of a category Vect(X) of vector bundles:

Definition 2.5.3 (Category of vector bundles). Consider the functor Vect : Diffop→ Cat
which sends a smooth manifold 𝑀 to the abelian category of vector bundles over 𝑀 . This
functor satisfies the sheaf condition with respect to the open cover topology, and thus extends
uniquely to a limit-preserving functor

Vect : Shv(Diff)op→ Cat.

For a stack X on Diff, we refer to the rsulting abelian category Vect(X) as the category of
vector bundles over X.

Since the functor (−)≃ : Cat→Grpd which assigns to an ordinary category C its underlying
groupoid C≃ is a right adjoint and thus preserves limits, we see that there is a natural
equivalence of groupoids

Vect(X)≃ ≃ Vect≃(X).

Morphisms of vector bundles can be made explicit as follows: given two vector bundles
E1,E1 over a stackX, a morphism of vector bundles from E1 to E2 is a commutative diagram

E1 E2

X
such that for every point 𝑥 : pt→X the induced map (E1)𝑥 → (E2)𝑥 on fibers is a linear
map between vector spaces.

102



2.5.1 Homotopy invariance of vector bundles

The category of vector bundles Vect(X) is a homotopy invariant of the stack X:

Lemma 2.5.4. For every stack X on Diff, pulling back along the projection X×R→X
induces an equivalence of categories

Vect(X) ∼−−→ Vect(X ×R).

For every 𝑟 ∈ R, an inverse is given by pulling back along the inclusion 𝑖𝑟 : X =X×{𝑟} ↩→
X×R. In particular, for every 𝑠,𝑟 ∈ R there is an equivalence 𝑖∗𝑟 ≃ 𝑖∗𝑠 .

Proof. Regarding both sides as functors Shv(Diff)op→ Cat∞ in the variable X, they both
preserve limits, and hence it suffices to prove the claim when X = 𝑀 is a smooth manifold.
This is well-known; see for instance [Hus93, Corollary 4.4.4] □

Definition 2.5.5. Let 𝑓 , 𝑔 : X →Y be morphisms of stacks on Diff. A homotopy between
𝑓 and 𝑔 is a map of stacks 𝐻 : X×R→Y satisfying 𝐻0 ≃ 𝑓 and 𝐻1 ≃ 𝑔, where 𝐻𝑟 : X→Y
denotes the composite

X
𝑖𝑟
↩−→X×R 𝐻−→Y.

Corollary 2.5.6. Let E →Y be a vector bundle and let 𝐻 : X×R→Y be a homotopy of
morphisms X → Y. Then there is an isomorphism 𝐻∗0E ≃ 𝐻

∗
1E of vector bundles on X,

natural in E.

Proof. Using Lemma 2.5.4, we obtain an equivalence 𝑓 ∗0 E = 𝑖∗0 𝑓
∗E ≃ 𝑖∗1 𝑓

∗E = 𝑓 ∗1 E. □

Corollary 2.5.7. Let 𝜋 : E → X be a vector bundle. Then the functor 𝜋∗ : Vect(X) →
Vect(E) is an equivalence of categories. An inverse is given by 𝑠∗0 : Vect(E) → Vect(X),
where 𝑠0 : X → E is the zero-section of 𝜋.

Proof. Since 𝑠0𝜋 = idX , it remains to show that 𝜋∗𝑠∗0 ≃ id. Let 𝐻 : E ×R→ E be the
homotopy given by (𝑒,𝑟) ↦→ 𝑟𝑒, so that 𝐻0 = 𝑠0 ◦𝜋 while 𝐻1 = idE . The claim then follows
from Corollary 2.5.6. □

Corollary 2.5.8. Let 𝜋 : E →X and 𝜋′ : E′→E be two vector bundles. Then the composite
𝜋′ ◦ 𝜋 : E′→X is a vector bundle which is isomorphic to the direct sum E ⊕ 𝑠∗0E

′ of the
vector bundle E and the base change of E′ along the zero-section 𝑠0 : X → E.

Proof. It follows from Corollary 2.5.7 that E′ is isomorphic to the vector bundle 𝑝∗𝑠∗0E
′.

It follows that the composite E′→ E → X is isomorphic to the fiber product E ×X 𝑠∗0E
′,

which is indeed a vector bundle over X isomorphic to the direct sum of E and 𝑠∗0E
′. □
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2.5.2 VB-groupoids

We will now discuss the notion of a VB-groupoid, which is the analogue of a vector bundle
in the setting of Lie groupoids.

Definition 2.5.9 (VB-groupoid, [GM17]). Given a Lie groupoidG, a VB-groupoid overG is
a morphism 𝜋 : E →G of Lie groupoids such that the maps 𝜋0 : E0→G0 and 𝜋1 : E1→G1

are vector bundles and the structure maps of E are morphisms of vector bundles.

In terms of differentiable stacks, VB-groupoids correspond to what are known as 2-vector
bundles, see for example [HO20] for a discussion. In order to get an actual vector bundle
of differentiable stacks, one needs to assume that the VB-groupoid E → G is cartesian, in
the following sense:

Definition 2.5.10 (Cartesian morphism of Lie groupoids). A morphism 𝑓 : H →G of Lie
groupoids is called cartesian if the commutative squares

H1 H0

G1 G0

𝑓1

𝑠

𝑓0

𝑠

and
H1 H0

G1 G0

𝑓1

𝑡

𝑓0

𝑡

are pullback squares.4

Lemma 2.5.11. Let 𝜋 : E →G be a VB-groupoid, and assume that the morphism 𝜋 is carte-
sian. Then the induced map B𝜋 : BE → BG is naturally a vector bundle of differentiable
stacks.

Proof. By passing to nerves, the groupoid map 𝜋 : E →G induces a morphism 𝑁𝜋 : 𝑁E →
𝑁G of simplicial manifolds. As 𝜋 is cartesian, 𝑁𝜋 is a cartesian natural transformation of
functors Δop→ Diff. It follows that 𝑁𝜋 defines a section of the functor Δ→ Cat, [𝑛] ↦→
Vect(G𝑛), and thus defines an object of the limit lim[𝑛]∈ΔVect(G𝑛). Since the assignment
X ↦→ Vect(X) satisfies descent, we see that this limit is Vect(BG), giving a vector bundle
over BG. Since the forgetful functors Vect(X) → Sub/X are compatible with pullback, it
follows that the underlying submersion of this vector bundle is the mapBE →BG, finishing
the proof. □

4It suffices to check this for just one of the squares.
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II.3 Geometry of differentiable stacks

In this chapter, we will have a closer look at the geometrical aspects of differentiable stacks.
In Section 3.1, we introduce the coarse moduli space |X|mod of a stack X on Diff and show
that the open subsets of |X|mod are in one-to-one correspondence with the open substacks
of X. This allows us to construct the open complement X \Z of a closed embedding
Z ↩→X in Section 3.2. In Section 3.3, we introduce the notion of a separated differentiable
stack, which in terms of Lie groupoids corresponds to that of a proper Lie groupoid.
The geometry of separated differentiable stacks is better behaved than that of arbitrary
differentiable stacks, and hence separated differentiable stacks will play an important role
throughout this article. In Section 3.4 we show that a morphism of separated separated
differentiable stack is representable if and only if it induces injections on isotropy groups.
In Section 3.5 we introduce the notions of relative tangent bundles and normal bundles
for representable morphisms of differentiable stacks, and we will show in Section 3.6 that
every embedding of separated differentiable stacks admits a tubular neighborhood. Finally,
we will show in Section 3.7 that all separated differentiable stacks are locally isomorphic
to a quotient stack R𝑛//𝐺 for some smooth linear action of a compact Lie group 𝐺 on a
Euclidean space R𝑛, which leads to several important structure theorems for morphisms
between separated differentiable stacks.

3.1 The coarse moduli space of a differentiable stack

We start by defining the coarse moduli space |X|mod of a stack X on Diff.

Definition 3.1.1. As the category Top of topological spaces admits colimits, the inclusion
Diff ↩→ Top uniquely extends to a colimit-preserving functor PSh(Diff) → Top. Since an
open cover

⊔
𝛼𝑈𝛼 ↠ 𝑀 of a smooth manifold 𝑀 is an effective epimorphism in Top, this

descends to a functor
|−|mod : Shv(Diff) → Top.
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We call |X|mod the coarse moduli space of the stack X. The functor |−|mod admits a right
adjoint NDiff : Top→ Shv(Diff) given by

NDiff (𝑋) (𝑀) := HomTop(𝑀, 𝑋),

which equips a topological space 𝑋 with its continuous diffeology.

Remark 3.1.2. The stack NDiff (𝑋) is in fact diffeological space, that is, a concrete sheaf of
sets on the site Diff. We shall not make use of this fact.

Example 3.1.3. For a smooth manifold 𝑀 , we have |𝑀 |mod = 𝑀 .

Example 3.1.4. For a Lie groupoid G, the coarse moduli space of its classifying stack BG
is its given by the quotient space of G:

|BG|mod � coeq(G1
𝑠

𝑡
G0).

In particular, given the action of a Lie group 𝐺 on a smooth manifold 𝑀 , the coarse moduli
space of the quotient stack 𝑀//𝐺 is its strict quotient 𝑀/𝐺:

|𝑀//𝐺 |mod � 𝑀/𝐺.

Given a stack X on Diff, there is an explicit construction of the topological space |X|mod.
We follow the treatment of Noohi [Noo05, Section 4.3], who discusses this construction in
the context of topological stacks.

Construction 3.1.5. Given a stack X on Diff, we will define a topological space Xmod.
The underlying set of Xmod is the set of path components of the anima of global sections
Γ(X) = HomShv(Diff) (pt,X) of X:

Xmod := 𝜋0(Γ(X)).

We define a topology on Xmod as follows: a subset of Xmod is open precisely if it is of the
form 𝜋0(Γ(U)) ⊆ 𝜋0(Γ(X)) for some open substack U ↩→X; this inclusion makes sense
as the map Γ(U) ↩→ Γ(X) is an inclusion of path components. To see that this defines a
topology, observe first that arbitrary unions and finite intersections of open substacks are
again open substacks: given a morphism 𝑀→X from a smooth manifold 𝑀 , the pullback
functor Shv(Diff)/X → Shv(Diff)/𝑀 preserves limits and colimits, and unions and finite
intersections of open subsets of 𝑀 are again open subsets. Since all morphisms of animae
involved are inclusions of path components, applying 𝜋0 commutes with finite intersections
and arbitrary unions, showing that the topology on Xmod is well-defined.
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If 𝑓 : X →Y is a map of stacks, then any open substack U ↩→Y pulls back to an open
substack 𝑓 −1(U) ↩→X, so the map 𝑓mod : Xmod→Ymod induced by Γ( 𝑓 ) : Γ(X) → Γ(Y)
is continuous. It follows that the formation of Xmod gives rise to a functor

(−)mod : Shv(Diff) → Top.

If X = 𝑀 ∈ Diff is a smooth manifold, its anima of global sections Γ(𝑀) = HomDiff (pt, 𝑀)
is already a set, and is in canonical bĳection with the underlying set of 𝑀 . Since the open
substacks U ↩→ 𝑀 of 𝑀 , regarded as a stack, are in one-to-one correspondence with the
open subsets 𝑈 ⊆ 𝑀 , the induced topology on the set HomDiff (pt, 𝑀) is just the topology
on 𝑀 . We will henceforth identify 𝑀mod with 𝑀 .

Lemma 3.1.6. The functorX ↦→Xmod is left adjoint to the functor NDiff : Top→ Shv(Diff).
In particular, there is a natural equivalence Xmod ≃ |X|mod.

Proof. We start by constructing the unit map 𝜂 : X→NDiff (Xmod) of stacks for every stack
X ∈ Shv(Diff). For 𝑀 ∈ Diff, the map X(𝑀) → NDiff (Xmod) (𝑀) = HomTop(𝑀,Xmod)
sends a map 𝑓 : 𝑀 →X of stacks to the map 𝑀 = 𝑀mod

𝑓mod−−−→Xmod of topological spaces.
Since (−)mod is a functor, it follows that this defines a map of stacks 𝜂 : X → NDiff (Xmod)
which is natural in X ∈ Shv(Diff).
We next construct the counit map 𝜀 : NDiff (𝑇)mod→ 𝑇 for every topological space 𝑇 . Note
that as a set we have NDiff (𝑇)mod = 𝜋0 HomTop(pt,𝑇) = 𝑇 . Furthermore, if𝑈 ⊆ 𝑇 is an open
subspace, then 𝑓 −1(𝑈) ⊆ 𝑀 is an open submanifold for every continuous map 𝑓 : 𝑀→ 𝑇 ,
and it follows that NDiff (𝑈) ↩→NDiff (𝑇) is an open substack. Evaluating this map at pt ∈Diff
gives the inclusion𝑈 ⊆ 𝑇 . This shows that the topology on NDiff (𝑇)mod is finer than that of
𝑇 , giving a continuous map 𝜀 : NDiff (𝑇)mod→ 𝑇 .

Now we show that the maps 𝜂 : X → NDiff (Xmod) and 𝜀 : NDiff (𝑇)mod → 𝑇 satisfy the
triangle identities:

NDiff (NDiff (𝑇)mod)

NDiff (𝑇) NDiff (𝑇)

𝜀𝜂 and
NDiff (Xmod)mod

Xmod Xmod.

𝜀𝜂

For the left triangle, we may check this after mapping in from a smooth manifold𝑀 , where it
is clear. The right triangle is also clear, as the second map is the identity map on underlying
sets. □

Corollary 3.1.7. For a stack X, the underlying set of the topological space |X|mod is the
set of path components of the anima of global sections of X:

|X|mod � 𝜋0(Γ(X)) = 𝜋0 HomShv(Diff) (pt,X). □
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Corollary 3.1.8. LetU ↩→X be an open substack. Then the induced map |U|mod ↩→ |X|mod

is an open subspace. □

Our next goal is to show that the above assignment U ↦→ |U|mod defines a 1-to-1 corre-
spondence between open substacks of X and open subspaces of its coarse moduli space
|X|mod.

Lemma 3.1.9 (cf. [Noo05, Lemma 4.16]). Let X′ ↩→X be an embedded substack. Assume
the induced map X′mod→Xmod is a bĳection of sets, or equivalently, the induced monomor-
phism Γ(X′) ↩→ Γ(X) of animae is in fact an equivalence. Then the map X′→X is an
equivalence.

Proof. We follow the proof of [Noo05, Lemma 4.16] in the topological context. We have
to show that for every smooth manifold 𝑀 , the inclusion X′(𝑀) ↩→X(𝑀) of animae is in
fact an equivalence, i.e., is a surjection on path components. If this is not the case, we can
find a smooth manifold 𝑀 and a map 𝑓 : 𝑀→X which does not lift alongX′ ↩→X. Define
the subspace 𝑀′ ⊆ 𝑀 by the pullback diagram

𝑀′ 𝑀

X′ X.

𝑓

It follows that the embedding 𝑀′ ⊆ 𝑀 does not have a section, and so we conclude that
there is a point 𝑤 : pt→ 𝑀 which is not contained in 𝑀′. But this means that the point
𝑓 (𝑤) : pt→X does not lift to X′, which is in contradiction with the assumption that the
map 𝜋0(Γ(X′)) → 𝜋0(Γ(X)) is a bĳection. □

Warning 3.1.10. Although the counit map NDiff (𝑇)mod→ 𝑇 is the identity on underlying
sets, it is not in general a homeomorphism. For example, if 𝑇 = Q is the set of rational
numbers equipped with the subspace topology fromR, then NDiff (𝑇)mod is the setQ equipped
with the discrete topology. Topological spaces 𝑇 for which the counit map NDiff (𝑇)mod→𝑇

is a homeomorphism are known as Δ-generated topological spaces, and it follows that the
functor NDiff : Top→ Shv(Diff) becomes fully faithful when restricted to the Δ-generated
topological spaces.

Corollary 3.1.11. For an open substackU ↩→X, the naturality square

U X

NDiff (Umod) NDiff (Xmod)

𝜂 𝜂
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of the unit transformation 𝜂 is a pullback square.

Proof. We have to prove that the mapU→X×NDiff (Xmod)N
Diff (Umod) induced by the square

is an equivalence. Note that this map is an open embedding, since the map U ↩→X is an
open embedding by assumption, the projection X×NDiff (Xmod) N

Diff (Umod) → X is an open
embedding by Corollary 3.1.8, and the class of open embeddings of stacks is closed under
left cancellation. By Lemma 3.1.9 it thus suffices to show this map induces an equivalence
on global sections. Note that Γ(NDiff (Umod)) = 𝜋0(Γ(U)) and Γ(NDiff (Xmod)) = 𝜋0(Γ(X)),
and since the global section functor Γ preserves pullbacks we need to show that the following
square of animae is a pullback square:

Γ(U) Γ(X)

𝜋0(Γ(U)) 𝜋0(Γ(X)).

But this is clear since Γ(U) ↩→ Γ(X) is an inclusion of path components. □

For a stack X, let Open(X) ⊆ Shv(Diff)/X denote the full subcategory spanned by the open
substacks U ↩→ X. Similarly, for a topological space 𝑋 , let Open(𝑋) ⊆ Top/X denote
the full subcategory spanned by the open subspaces 𝑈 ↩→ 𝑋 . Since open embeddings are
monomorphisms, it follows that both of these subcategories are in fact posets.

Corollary 3.1.12 (cf. [Noo05, Proposition 4.17]). Pullback along the map X → |X|mod

defines an equivalence of posets

Open( |X|mod) ∼−−→ Open(X),

with inverse given byU ↦→ |U|mod.

Proof. Corollary 3.1.11 shows that every open substack U of X is naturally equivalent to
the inverse image of the open subspace |U|mod ⊆ |X|mod. Conversely, if 𝑈 ⊆ Xmod is an
open subspace andU ↩→X is its preimage in X, it is easy to see that𝑈 =Umod. □

Observation 3.1.13. Let 𝑓 : X↠Y be an effective epimorphism. Then the induced map
𝑓mod : Xmod→Ymod is surjective.

Proof. We need to prove that any map 𝑥 : pt→Y lifts toX. In other words, we need to prove
that the effective epimorphism 𝑓 −1(pt)↠ pt admits a section. But this follows immediately
from the fact that effective epimorphisms have local sections, Proposition 2.1.3, and the
fact that the only open cover of the point is given by the point. □

109



3.2 Open complements

In this section, we define the open complement X \Z of a closed embeddingZ ↩→X.

Proposition 3.2.1. Let 𝑖 : Z ↩→X be a closed embedding of differentiable stacks. Then the
induced map of topological spaces

|𝑖 |mod : |Z|mod→ |X|mod

is the inclusion of a closed subspace.

Proof. Let 𝑀 ↠ X be a representable atlas for X. Form the pullback square

𝑁 𝑀

Z X,𝑖

providing a representable atlas 𝑁 ↠Z for Z, see Lemma 2.2.3. Let 𝑅 ⊆ 𝑀 ×𝑀 denote
the image of the map 𝑀 ×X 𝑀→ 𝑀 ×𝑀 . This is an equivalence relation defining |X|mod:
we have

|X|mod = 𝑀/𝑅.

Similarly we have |Z|mod = 𝑁/𝑆, where 𝑆 is the image of 𝑁 ×Z 𝑁 → 𝑁 ×𝑁 . We claim
that that 𝑆 is the intersection of 𝑅 and 𝑁 ×𝑁 inside 𝑀 ×𝑀 . Indeed, this follows from the
pullback square

𝑁 ×Z 𝑁 𝑀 ×X 𝑀

𝑁 ×𝑁 𝑀 ×𝑀.
The fact that this square is a pullback square in turn follows from the pasting law of pullback
squares, applied to the following squares:

𝑁 ×Z 𝑁 Z X 𝑀 ×X 𝑀

𝑁 ×𝑁 Z×Z X×X 𝑀 ×𝑀,

Δ Δ

where the middle square is a pullback square as 𝑖 : Z ↩→ X is a monomorphism. It
follows that the closed subspace 𝑁 ⊆ 𝑀 is preserved under the equivalence relation 𝑅,
and in particular its image |Z|mod in |X|mod is again a closed subspace. This finishes the
proof. □
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Definition 3.2.2 (Open complement). Let 𝑖 : Z ↩→X be a closed embedding of differen-
tiable stacks. We say an open embedding 𝑗 : U ↩→X exhibits U as the open complement
ofZ in X if at the level of coarse moduli spaces we have

|U|mod = |X|mod \ |Z|mod.

By Corollary 3.1.12 and Proposition 3.2.1, such open complement exists and is unique, and
we will denote it byU =X\Z. More explicitly, given a smooth manifold 𝑀 , the subspace

U(𝑀) ⊆ X(𝑀) = HomShv(Diff) (𝑀,X)

is given by the collection of path components corresponding to those maps 𝑓 : 𝑀→X such

that the underlying map of topological spaces 𝑀 = |𝑀 |mod
| 𝑓 |mod−−−−→ |X|mod factors through the

open complement |X|mod \ |Z|mod.

As a consequence, we observe that every open substack of Z must be of the form U∩Z
for some open substackU of X:

Corollary 3.2.3. Let 𝑖 : Z ↩→X be a closed embedding of differentiable stacks. LetV ↩→Z
be an open embedding. Then there exists an open embeddingU ↩→X whose pullback along
𝑖 : Z ↩→X isV ↩→Z.

Proof. By Corollary 3.1.12, the open substack V of Z corresponds to an open subspace
|V|mod of |Z|mod. Since |Z|mod ⊆ |X|mod carries the subspace topology by Proposi-
tion 3.2.1, there exists an open subspace 𝑈 ⊆ |X|mod such that 𝑈 ∩ |Z|mod = |V|mod. The
desired substack is then given byU =𝑈 ×|X|mod X ⊆ X. □

3.3 Separated differentiable stacks

A well-behaved class of differentiable stacks are the separated differentiable stacks.

Definition 3.3.1 (Separated morphism). A morphism 𝑓 : X→Y of stacks on Diff is called
separated if its diagonal Δ 𝑓 : X →X×Y X is a proper map of stacks. We say that a stack
X is separated if the morphism X → pt is separated. We denote by

SepStk ⊆ DiffStk

the full subcategory of separated differentiable stacks.
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Example 3.3.2 (Proper Lie groupoids). For a Lie groupoid G, the classifying stack BG is
separated if and only if G is a proper Lie groupoid (that is, the map (𝑠, 𝑡) : G1→ G0×G0

is a proper map, Definition D.13). Indeed, this follows from Corollary 2.4.8, using the
observation that the base change of the diagonal BG → BG×BG along the representable
atlas G0×G0↠ BG×BG is the map (𝑠, 𝑡) : G1→G0×G0.

In particular, for a Lie group 𝐺 the stack B𝐺 is separated if and only if 𝐺 is compact.
Similarly, the quotient stack 𝑀//𝐺 of a smooth 𝐺-manifold 𝑀 is separated if and only if
𝐺 acts properly on 𝑀 .

Lemma 3.3.3. Let X and Y be differentiable stacks. Then any representable morphism
𝑓 : X →Y is separated.

Proof. Let 𝑓 : X→Y be a representable morphism of differentiable stacks. Let 𝑀↠Y be
a representable atlas for Y and let 𝑁 := 𝑀 ×Y X↠ X denote the associated representable
atlas for X. Consider the diagram

𝑁 X

𝑁 ×𝑀 𝑁 X×Y X

𝑁 X.

Δ Δ

pr1 pr1

As the outer and bottom squares are pullbacks, so is the top square by the pasting law. The
map 𝑁×𝑀 𝑁→X×YX is representable and an effective epimorphism, since it is a pullback
of 𝑁↠X. As 𝑁 and 𝑀 are Hausdorff, the diagonalΔ : 𝑁→ 𝑁×𝑀 𝑁 is a closed embedding
and hence proper. Since properness is a local property, it follows that X →X×Y X is also
proper, showing that 𝑓 is separated. □

Definition 3.3.4 (Orbifold, cf. [Met03, Proposition 75, Definition 76]). A differentiable
stack X is called an étale stack if it admits an étale atlas, i.e. there is a representable atlas
𝑝 : 𝑀 ↠ X which is a local diffeomorphism, in the sense of Definition 2.4.2. We say that
X is an orbifold or a differentiable Deligne-Mumford stack if it is a separated étale stack.

Example 3.3.5. Let G be a proper étale Lie groupoid, meaning that the source and target
maps 𝑠, 𝑡 : G1 → G0 are étale maps. Then the classifying stack BG is a differentiable
Deligne-Mumford stack. Conversely, every differentiable Deligne-Mumford stack X is of
this form BG for some proper étale Lie groupoid G: take the Čech groupoid of any étale
atlas 𝑀 ↠ X.
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3.4 Isotropy groups

In this section, we introduce the isotropy groups of a differentiable stack X, and show that
a separated map X →Y of differentiable stacks is representable if and only if it induces
injections at the level of isotropy groups. In particular, a separated differentiable stack is a
smooth manifold if and only if its isotropy groups are trivial.

Definition 3.4.1 (Isotropy group). Let X be a differentiable stack. A point of X is a map
𝑥 : pt→X in DiffStk; we will sometimes write 𝑥 ∈ X for short. The isotropy group 𝐺𝑥 of
𝑥 in X is defined as the pullback

𝐺𝑥 pt

pt X.

𝑥

𝑥

As 𝐺𝑥 = Ω𝑥 (X) is the loop object of X, it is automatically a group object in Shv(Diff).
Note that, as a stack, 𝐺𝑥 is equivalent to the fiber of the diagonal Δ : X→X×X over (𝑥, 𝑥).

Lemma 3.4.2. For every point 𝑥 : pt→X of a differentiable stack X, the isotropy group
𝐺𝑥 is a Lie group.

Proof. Let 𝑀 ↠ X be a representable atlas for X. Since this atlas is surjective, the point
𝑥 : pt→X may be lifted to a map 𝑥 : pt→ 𝑀 . By forming the Čech nerve of the map
𝑀 →X, we may present X as the classifying stack of a Lie groupoid G, where G0 = 𝑀

and G1 = 𝑀 ×X 𝑀 . We claim that 𝐺𝑥 is isomorphic to the isotropy group of G at 𝑥 ∈ 𝑀 .
Indeed, this follows from the following pullback diagram:

𝐺𝑥 𝑡−1(𝑥) pt

𝑠−1(𝑥) G1 𝑀

pt 𝑀 X.

𝑥

𝑠

𝑡

𝑥

Since the isotropy groups of a Lie groupoid are Lie groups, see for example Proposition D.11,
this finishes the proof. □

Lemma 3.4.3. Let X be a separated differentiable stack. Then the isotropy group 𝐺𝑥 is
compact for every point 𝑥 : pt→X.
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Proof. By Corollary 2.3.8, we may assumeX =BG is the classifying stack of a Lie groupoid
G. By Example 3.3.2, X is separated if and only if the morphism (𝑠, 𝑡) : G1→ G0 ×G0

is a proper map of manifolds. In particular, the fiber of this map over the point (𝑥, 𝑥) is a
compact subspace of G1. Since this fiber is isomorphic to the isotropy group𝐺𝑥 , this proves
the claim. □

Proposition 3.4.4 (Crainic and Moerdĳk [CM01, Theorem 1]). A differentiable stack X is
an étale stack, in the sense of Definition 3.3.4, if and only if for every point 𝑥 : pt→X the
isotropy group 𝐺𝑥 is a discrete group. □

A Lie groupoid whose isotropy groups are discrete are called foliation groupoids. By
Proposition 2.3.14, the previous proposition is equivalent to the statement that every foliation
groupoid is Morita equivalent to an étale Lie groupoid, which is the way the result is stated
in [CM01].

For a separated differentiable stack X, the isotropy groups can detect whether it is a smooth
manifold:

Proposition 3.4.5 (cf. [Met03, Proposition 74]). A separated differentiable stack X is a
smooth manifold if and only if all its isotropy groups are trivial.

Proof. If X = 𝑀 is a smooth manifold, it is clear that all isotropy groups are trivial as the
pullbacks defining them may be taken in Diff.

Conversely, let X be a separated differentiable stack with trivial isotropy groups, and let
𝑀 ↠ X be a representable atlas for X. Define the smooth manifold 𝑅 := 𝑀 ×X 𝑀 , and
consider the canonical map

𝑅→ 𝑀 ×𝑀.

Since this map is a base change of the diagonal Δ : X → X×X and X is separated, the
map 𝑅→ 𝑀 ×𝑀 is proper. We claim that it is also injective. Indeed, the fiber over a pair
(𝑥, 𝑦) ∈ 𝑀 ×𝑀 is only non-empty if 𝑥 and 𝑦 are identified in X, and in that case the fiber
is isomorphic to the isotropy group 𝐺𝑥 , which is assumed to be trivial. Since any proper
injective map of smooth manifolds is a closed embedding, it follows that 𝑅 ↩→ 𝑀 ×𝑀
determines a closed equivalence relation on 𝑀 .

Define 𝑁 as the quotient space 𝑀/𝑅, i.e. the topological space obtained from 𝑀 by
quotienting out the equivalence relation 𝑅. By Proposition C.6, this is again a smooth
manifold, and the quotient map 𝑀 → 𝑁 is a surjective smooth submersion. The universal
property of the stack quotient X ≃ 𝑀//𝑅 provides a canonical map X → 𝑁 making the
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following diagram commute:
𝑀 𝑀

X 𝑁.

We claim that this mapX→ 𝑁 is an equivalence, finishing the proof. Since the map𝑀→ 𝑁

is an effective epimorphism by Remark 2.1.6, it will suffice to show that the induced map
�̌� (𝑀 ↠ X) → �̌� (𝑀 ↠ 𝑁) on Čech nerves is an equivalence. But this is clear: since the
inclusion Diff ↩→ Shv(Diff) preserves finite limits, the Čech nerve of 𝑀 → 𝑁 is given by
the Lie groupoid (𝑅 ⇒ 𝑀), which by definition of 𝑅 is also the Čech nerve of the map
𝑀 ↠ X. □

Corollary 3.4.6. Let 𝑓 : X → Y be a separated morphism in DiffStk. The following
conditions are equivalent:

(1) The morphism 𝑓 is representable;

(2) For every point 𝑥 ∈ X, the induced map on isotropy groups 𝐺𝑥→ 𝐺 𝑓 (𝑥) is injective.

Proof. Assume first that 𝑓 is representable. Arguing as in Lemma 3.3.3, we see that the
diagonal Δ 𝑓 : X →X×Y X of 𝑓 is a closed embedding, so in particular a monomorphism.
But the following diagram shows that the map 𝐺𝑥 → 𝐺 𝑓 (𝑥) is a pullback of Δ 𝑓 , and thus
also a monomorphism:

𝐺𝑥 X

𝐺 𝑓 (𝑥) X×Y X Y

pt X×X Y×Y.

Δ 𝑓

ΔY

(𝑥,𝑥) 𝑓× 𝑓

Conversely, assume that 𝑓 is injective on isotropy groups. We show that 𝑓 is representable.
Letting 𝑀 ↠ Y be a representable atlas for Y, it will suffice to show that the pullback
N := 𝑀 ×YX is a smooth manifold. The isotropy groups ofN are given by the pullback of
the isotropy groups of 𝑀 , X and Y. But since 𝑀 has trivial isotropy groups and the map
X → Y induces injections on isotropy groups, it follows that N also has trivial isotropy
groups. Since the map N → 𝑀 is separated, being a base change of 𝑓 , we see that N is a
separated differentiable stack, and thus it is a smooth manifold by Proposition 3.4.5. □

Lemma 3.4.7. Let 𝑓 : X ↩→Y be a monomorphism of differentiable stacks. Then for every
point 𝑥 ∈ X, the induced map of Lie groups 𝐺𝑥→ 𝐺 𝑓 (𝑥) is an isomorphism.
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Proof. Since 𝑓 is a monomorphism, its diagonal X →X×Y X is an equivalence, and thus
we have the following pullback square of differentiable stacks:

X Y

X×X Y×Y.
Δ

𝑓

Δ

𝑓× 𝑓

In particular, 𝑓 induces isomorphisms between the fibers of the two vertical maps. Since
the induced map on fibers is the map 𝐺𝑥→ 𝐺 𝑓 (𝑥) , this finishes the proof. □

3.5 Relative tangent bundles and normal bundles

In this section, we introduce the notions of relative tangent bundle and normal bundle for
morphisms of differentiable stacks. We start by defining the tangent groupoid of a Lie
groupoid G.

Definition 3.5.1 (Tangent groupoid). Let G be a Lie groupoid. We define its tangent
groupoid 𝑇G as the Lie groupoid

𝑇G :=
(
𝑇G1

𝑑𝑠

𝑑𝑡
𝑇G0

)
,

whose structure maps are the derivatives of the structure maps of G. It comes with a natural
map of Lie groupoids 𝜋 : 𝑇G → G.

The morphism 𝜋 : 𝑇G → G is naturally a VB-groupoid, in the sense of Definition 2.5.9.
However, it is not a cartesian morphism in general, in the sense of Definition 2.5.10, and
so does not necessarily define a vector bundle over BG. This problem goes away when
looking at relative versions of the construction: the relative tangent bundles, discussed in
Subsection 3.5.1, and the normal bundles, discussed in Subsection 3.5.2.

3.5.1 Relative tangent bundles

Given a smooth map 𝑓 : 𝑀 → 𝑁 between smooth manifolds, its relative tangent bundle is
defined as the kernel of the derivative of 𝑓 :

𝑇 𝑓 := ker(𝑑𝑓 : 𝑇𝑀→ 𝑓 ∗𝑇𝑁) ∈ Vect(𝑀).

This has a direct generalization to the setting of Lie groupoids:
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Definition 3.5.2 (Relative tangent groupoid). Let 𝑓 : H → G be a morphism of Lie
groupoids. Passing to tangent groupoids gives a groupoid morphism 𝑑𝑓 : 𝑇H → 𝑇G which
is fiberwise linear. As it lives over 𝑓 , it corresponds to a morphism 𝑑𝑓 : 𝑇H → 𝑓 ∗𝑇G of
VB-groupoids overH . We define the relative tangent groupoid 𝑇 𝑓 as the fiberwise kernel
of this map:

𝑇 𝑓 := ker(𝑑𝑓 : 𝑇H → 𝑓 ∗𝑇G).

More explicitly,𝑇 𝑓0 is the relative tangent bundle of the map 𝑓0 : H0→G0,𝑇 𝑓1 is the relative
tangent bundle of 𝑓1 : H1→ G1, and the structure maps of 𝑇 𝑓 are obtained by restricting
those from 𝑇H . The bundle projections 𝑇 𝑓0→H0 and 𝑇 𝑓1→H1 define a morphism of
Lie groupoids 𝑇 𝑓 →H , which is a VB-groupoid in the sense of Definition 2.5.9.

Lemma 3.5.3. Let 𝑓 : H → G be a cartesian morphism of Lie groupoids, in the sense of
Definition 2.5.10. Then the VB-groupoid 𝑇 𝑓 →H is also cartesian.

Proof. We have to show that the commutative squares

𝑇 𝑓1 𝑇 𝑓0

H1 H0

𝑠

𝑠

and
𝑇 𝑓1 𝑇 𝑓0

H1 H0

𝑡

𝑡

are pullback squares, which is a special case of Corollary C.13. □

Combining the previous lemma with Lemma 2.5.11 we see that the relative tangent groupoid
defines a vector bundle B(𝑇 𝑓 ) → BH . We will now show that this vector bundle is Morita-
invariant, in the sense that it only depends on the underlying map B 𝑓 : BH → BG of
differentiable stacks.

Proposition 3.5.4. Consider a pullback diagram of Lie groupoids

H ′ H

G′ G,

𝑓 ′

ℎ

𝑓

𝑔

(II.3.1)

and assume that 𝑔 and ℎ are Morita fibrations, in the sense of Definition 2.3.10. Then the
induced map 𝑑ℎ : 𝑇 𝑓 ′→ 𝑇 𝑓 is again a Morita fibration.

Proof. As the map 𝑇 𝑓 ′0 →H
′
0 is the base change of 𝑇 𝑓0→H0 along the surjective sub-

mersion ℎ0 : H ′0→H0, the map 𝑇 𝑓 ′0→ 𝑇 𝑓0 is also a surjective submersion and thus 𝑑ℎ is
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strongly surjective. To see that 𝑑ℎ is also fully faithful, consider the following commutative
diagram:

𝑇 𝑓 ′1 𝑇 𝑓0×𝑇 𝑓 ′0

H ′1 H ′0×H
′
0

𝑇 𝑓1 𝑇 𝑓0×𝑇 𝑓0

H1 H0×H0

ℎ0×ℎ0

(𝑠,𝑡)

ℎ1

As ℎ : H ′→H is fully faithful, the front square is a pullback square in Diff. Since the given
square of Lie groupoids is a pullback square, it follows from Corollary C.13 that also the
left and right squares are pullback squares in Diff. By the pasting law for pullback squares,
it follows that the back square is a pullback square in Diff. This finishes the proof. □

Morita-invariance allows us to define the relative tangent bundle of a morphism of differ-
entiable stacks:

Definition 3.5.5 (Relative tangent bundle). Let 𝑓 : Y→X be a representable morphism of
differentiable stacks. We define its relative tangent bundle 𝑇 𝑓 →Y as follows:

• Choose a representable atlas 𝑝 : 𝑀↠X and let G denote the associated Lie groupoid
given as the Čech nerve of 𝑝. We obtain an equivalence X ≃ BG.

• Define an atlas 𝑞 : 𝑁 ↠Y for Y as in Lemma 2.2.3 by pulling back 𝑝 along 𝑓 :

𝑁 𝑀

Y X.

𝑞

𝑓0

𝑝

𝑓

LetH denote the Čech nerve of 𝑞, so that Y ≃ BH .

• There is a canonical morphism of Lie groupoids 𝑓• : H → G, which is cartesian by
Lemma E.16. We let 𝑇 𝑓 be the classifying stack of the relative tangent groupoid 𝑇 𝑓•:

𝑇 𝑓 := B𝑇 ( 𝑓•).

• The structure map 𝑇 𝑓• → H induces a morphism of stacks 𝑇 𝑓 → Y, which by
Lemma 3.5.3 and Lemma 2.5.11 admits a canonical structure of a vector bundle.
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Lemma 3.5.6. Up to equivalence, the definition of the vector bundle𝑇 𝑓 →Y is independent
of the choice of atlas 𝑀 ↠ X.

Proof. Let 𝑀 ↠ X and 𝑀′↠ X be two representable atlases of X. Going through the
above construction gives two vector bundles B(𝑇 𝑓•) → Y and B(𝑇 𝑓 ′•) → Y, which we
need to show are isomorphic.

Define 𝑀′′ := 𝑀 ×X 𝑀′, so that the map 𝑀′′↠X is another representable atlas. Letting G,
G′ and G′ denote the Čech nerves of the maps 𝑀 ↠ X, 𝑀′↠ X and 𝑀′′↠ X, we obtain
morphisms of Lie groupoids

G ← G′′→G′

which by Proposition 2.3.14 are Morita fibrations. Applying the above construction we
obtain three relative tangent Lie groupoids 𝑇 𝑓•, 𝑇 𝑓 ′• and 𝑇 𝑓 ′′• . They are connected via
morphisms of Lie groupoids

𝑇 𝑓•← 𝑇 𝑓 ′′• → 𝑇 𝑓 ′•,

which by Proposition 3.5.4 are Morita fibrations and thus induce equivalences on differen-
tiable stacks. It follows that B(𝑇 𝑓•) ≃ B(𝑇 𝑓 ′•) finishing the proof. □

Remark 3.5.7. The construction of the relative tangent bundle 𝑇 𝑓 we have provided is
somewhat unsatisfactory, as it is not defined intrinsically in terms of the differentiable
stacks but requires a (non-coherent) choice of atlas. A more satisfactory definition would
start by giving a fully functorial description of the relative tangent bundle construction
at the level of smooth manifolds, and then use descent to extend this construction to all
representable morphisms of stacks on Diff. We will not spell out the details of such a
construction.

3.5.2 Normal bundles

We will now move to the construction of the normal bundle of a morphism of stacks, which
is to a large extent analogous to that of the relative tangent bundle. Recall that the normal
bundle 𝑁 𝑓 of a smooth map 𝑓 : 𝑀→ 𝑁 is defined as the cokernel of the derivative of 𝑓 :

𝑁 𝑓 := coker(𝑑𝑓 : 𝑇𝑀→ 𝑓 ∗𝑇𝑁) ∈ Vect(𝑀).

This admits a direct generalization to the setting of Lie groupoids:

Definition 3.5.8 (Normal groupoid). Let 𝑓 : H →G be a morphism of Lie groupoids, and
consider its derivative 𝑑𝑓 : 𝑇H →𝑇G on tangent groupoids, which as before we may regard
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as a morphism of VB-groupoids 𝑇H → 𝑓 ∗𝑇G overH . We define the normal groupoid 𝑁 𝑓
of 𝑓 as the fiberwise cokernel of this map:

𝑁 𝑓 := coker(𝑑𝑓 : 𝑇H → 𝑓 ∗𝑇G).

This means that 𝑁 𝑓0 is the normal bundle of the map 𝑓0 : H0 → G0, 𝑁 𝑓1 is the normal
bundle of the map 𝑓1 : H1→G1, and the structure maps of 𝑁 𝑓 are obtained as a quotient
of the structure maps of 𝑓 ∗𝑇G. The structure maps of the normal bundles determine a
VB-groupoid 𝑁 𝑓 →H .

Lemma 3.5.9. If 𝑓 : H → G is a cartesian morphism of Lie groupoids, then also the
VB-groupoid 𝑁 𝑓 →H is cartesian.

Proof. Just like in Lemma 3.5.3, this follows from Corollary C.13. □

Remark 3.5.10 (Linearization of a Lie groupoid). Let G be a Lie groupoid and let 𝑆 ⊆ G0

be a saturated submanifold, in the sense that 𝑆 is closed under the G-action, Definition D.12.
Define the Lie groupoid G𝑆 over 𝑆 as the restriction of G to 𝑆:

(G𝑆)1 = {𝑔 ∈ G1 | 𝑠(𝑔), 𝑡 (𝑔) ∈ 𝑆} = 𝑠−1(𝑆) = 𝑡−1(𝑆),

where the last two equalities use the fact that 𝑆 is saturated. There is an inclusion of
Lie groupoids 𝑖 : G𝑆 ↩→ G, and the fact that 𝑆 is saturated guarantees that 𝑖 is a cartesian
morphism. In this case, the normal groupoid 𝑁𝑖 of 𝑖 is known in the literature as the
linearization ofG at 𝑆 and is denoted 𝑁𝑆G. Its space of objects is 𝑁𝑆 = coker(𝑇𝑆→𝑇G0 |𝑆),
the normal bundle of 𝑆 inside G0.

Example 3.5.11. Assume that 𝑥 ∈ G0 is a fixed point of G, and let 𝑆 = {𝑥}. Then N𝑆G is
the action groupoid 𝐺𝑥 ⋉𝑇𝑥G0 of the isotropy group action on the tangent space of G0 at 𝑥.

Example 3.5.12. Assume that G = 𝐺 ⋉𝑀 is the action groupoid for some Lie group 𝐺
and some smooth 𝐺-manifold 𝑀 . Let 𝑆 = O𝑥 denote the orbit of a point 𝑥 ∈ 𝑀 and let
𝑁𝑥 := 𝑇𝑥𝑀/𝑇𝑥𝑆. Then N𝑆G is isomorphic to the action groupoid 𝐺 ⋉ (𝐺 ×𝐺𝑥

𝑁𝑥).

Morita equivalent Lie groupoids have Morita equivalent linearizations:

Proposition 3.5.13 ([HF19, Proposition 6.4.1]). Consider a pullback of Lie groupoids as
in (II.3.1) and assume that 𝑔 and ℎ are Morita fibrations. Then the induced morphism of
Lie groupoids 𝑁 𝑓 ′→ 𝑁 𝑓 is a Morita fibration.

Proof. The proof is entirely analogous to that of Proposition 3.5.4 and we will leave it to
the reader. □
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Definition 3.5.14 (Normal bundle). Let 𝑖 : S ↩→X be an embedding of differentiable stacks.
We define a normal bundle N𝑖→S as follows:

• Choose a representable atlas 𝑝 : 𝑀↠X and let G denote the associated Lie groupoid
given as the Čech nerve of 𝑝. We obtain an equivalence X ≃ BG.

• Define the submanifold 𝑆 ⊆ 𝑀 via the pullback square

𝑆 𝑀

S X.

𝑝𝑆 𝑝

𝑖

This determines a Lie groupoidH = G𝑆
𝑖•
↩−→ G presenting S.

• We define the differentiable stack N𝑖 as the classifying stack of the normal groupoid
𝑁𝑖• = N𝑆G. The structure map N𝑆G → G𝑆 is cartesian by Lemma 3.5.9 and thus
induces a vector bundle of differentiable stacks N𝑖→S by Lemma 2.5.11.

Lemma 3.5.15. Up to equivalence, the definition of N𝑖 →S is independent of the choice
of atlas.

Proof. This follows from Proposition 3.5.13. The proof is entirely analogous to that of
Lemma 3.5.6 and will be omitted. □

3.5.3 Compatibilities

We record various compatibilities between normal bundles and relative tangent bundles.

Lemma 3.5.16 (Normal bundle of composite embedding). Given embeddings 𝑖 : Z ↩→X
and 𝑗 : X ↩→Y, there is a canonical short exact sequence of vector bundles overZ:

N𝑖→N𝑗𝑖→ 𝑖∗N𝑗 .

Proof. When Z, X and Y are smooth manifolds, this is immediate from the definitions
using the second isomorphism theorem for groups. This directly implies the analogous
statement for cartesian morphisms of Lie groupoids, which then gives the desired result by
picking an atlas for Y and choosing the atlases forZ and X via pullback. □
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Lemma 3.5.17 (Normal bundle of pullback). Consider a pullback diagram of differentiable
stacks

Z′ Z

X′ X,
𝑖′

𝑔

𝑖

𝑓

where 𝑖 and 𝑖′ are embeddings. Then there is a preferred isomorphismN𝑖′ � 𝑔∗N𝑖 of vector
bundles overZ′.

Proof. If all four of the stacks are smooth manifolds, this is Corollary C.13. By choosing
a representable atlas for X and choosing the atlases for the other three stacks via pullback,
this directly implies the general claim. □

Lemma 3.5.18 (Normal bundle of isotopic maps). Let 𝑖 : Z×R→X be a map of stacks
such that the map (𝑖, id) : Z×R→X×R is an embedding. Then there is an isomorphism
of vector bundles

N𝑖0 � N𝑖1 ∈ Vect(Z).

Proof. Let N(𝑖,id) →Z×R denote the normal bundle of (𝑖, id). As the embeddings maps
𝑖0, 𝑖1 : Z ↩→X are base changes of the map (𝑖, id) along the inclusions X× {0} ↩→X×R
and X×{1} ↩→X×R, Lemma 3.5.17 provides isomorphisms of vector bundles

N𝑖0 � N(𝑖,id) |0 and N𝑖1 � N(𝑖,id) |1.

But by Lemma 2.5.4, the vector bundle N(𝑖,id) over Z×R is isomorphic to E ×R for some
vector bundle E overZ, and thus N𝑖0 � E � N𝑖1 . □

Proposition 3.5.19. Let 𝑓 : Y→X be a representable submersion of differentiable stacks.
Then there is an isomorphism 𝑇 𝑓 � 𝑁Δ 𝑓

of vector bundles overY, where Δ 𝑓 : Y→Y×XY
is the diagonal of 𝑓 .

Proof. We prove the lemma at progressing levels of generality.

Step 1: We first prove the claim when X is a point, so thatY = 𝑀 is a smooth manifold and
𝑇 𝑓 =𝑇𝑀 is the tangent bundle of 𝑀 . By Lemma C.12, the derivatives of the two projections
pr1,pr2 : 𝑀 ×𝑀 → 𝑀 induce an isomorphism of vector bundles 𝑇 (𝑀 ×𝑀) � 𝑇𝑀 ×𝑇𝑀
over 𝑀×𝑀 . Under this isomorphism, the differential 𝑑Δ𝑀 : 𝑇𝑀→𝑇 (𝑀×𝑀) corresponds
to the diagonal Δ𝑇𝑀 : 𝑇𝑀 → 𝑇𝑀 ×𝑇𝑀 . Regarding this as a map of vector bundles over
𝑀 given fiberwise by the diagonal Δ𝑇𝑥𝑀 : 𝑇𝑥𝑀 → 𝑇𝑥𝑀 ×𝑇𝑥𝑀 , its cokernel in Vect(𝑀)
admits an explicit isomorphism to 𝑇𝑀 given by the composite 𝑇𝑀

(1,−1)
−−−−−→ 𝑇𝑀 ×𝑇𝑀 ↠

coker(𝑑Δ𝑀). Since this cokernel is 𝑁Δ𝑀
, this finishes the proof.
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Step 2: Next we show the claim when X = 𝑁 is a smooth manifold, so that 𝑓 : 𝑀→ 𝑁 is a
smooth submersion between smooth manifolds. Observe that the isomorphisms from Step
1 give rise to a commutative square of vector bundles over 𝑀:

𝑇𝑀 𝑓 ∗𝑇𝑁

𝑁Δ𝑀
𝑓 ∗𝑁Δ𝑁

.

� �

Since 𝑇 𝑓 is defined as the fiber of the top map, it suffices to show that 𝑁Δ 𝑓
is the fiber of the

bottom map. To this end, consider the following diagram:

𝑀 𝑀 ×𝑁 𝑀 𝑁

𝑀 ×𝑀 𝑁 ×𝑁,

Δ 𝑓

Δ𝑀
𝑖

𝑔

Δ𝑁

𝑓× 𝑓

where 𝑖 is the inclusion. By Lemma 3.5.16, there is the following short exact sequence of
vector bundles over 𝑀:

𝑁Δ 𝑓
→ 𝑁Δ𝑀

→ Δ∗𝑓 𝑁𝑖 .

But by Lemma 3.5.17, the vector bundel 𝑁𝑖 is isomorphic to 𝑔∗𝑁Δ𝑁
, and since 𝑓 = 𝑔 ◦Δ 𝑓

it follows that Δ∗
𝑓
𝑁𝑖 � 𝑓

∗𝑁Δ𝑁
. This finishes the proof of Step 2.

Step 3: We now show the general statement. By choosing an atlas for X, we may assume
that X = BG is the classifying stack of a Lie groupoid. By pulling back this atlas to Y
we may similarly assume that Y = BH and that 𝑓 is induced by a cartesian morphism
𝑓 : H →G of Lie groupoids. It will thus suffice to show that the relative tangent groupoid
of 𝑓 is isomorphic to the normal groupoid of its diagonal. This follows from Step 2. □

Lemma 3.5.20. Consider a commutative diagram of differentiable stacks

S Y

X,

𝑖

𝑔
𝑓

where 𝑓 and 𝑔 are representable submersions and 𝑖 is an embedding. Then there is a short
exact sequence of vector bundles

𝑇𝑔→ 𝑖∗𝑇 𝑓 →N𝑖 .

Proof. As in the previous proofs, we may reduce to the case where the three stacks are
smooth manifolds, say 𝑆, 𝑌 and 𝑋 . In this case the statement follows from the fact that
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forming vertical kernels commutes with forming horizontal cokernels in the following
diagram of vector bundles over 𝑆:

𝑇𝑔 𝑖∗𝑇 𝑓 𝑁𝑖

𝑇𝑆 𝑖∗𝑇𝑌 𝑁𝑖

𝑔∗𝑇𝑋 𝑖∗ 𝑓 ∗𝑇𝑋 0.

□

3.6 Tubular neighborhoods

In this section, we introduce the notion of a tubular neighborhood of an embedding of
differentiable stacks. We further show that under separatedness assumptions such tubular
neighborhoods always exist.

Definition 3.6.1 (Tubular neighborhood). Let 𝑖 : Z ↩→X be an embedding of differentiable
stacks. A tubular neighborhood ofZ in X consists of the data of a commutative diagram

Z

X U N𝑖

𝑠0𝑖

𝑗 𝑗 ′

where the maps 𝑗 and 𝑗 ′ are open embeddings of differentiable stacks, and where 𝑠0 is the
zero section of the bundle projection N𝑖→Z of the normal bundle of 𝑖.

We might sometimes refer to the data of a tubular neighborhood by just mentioning the
open substackU of X, leaving the rest of the data implicit.

The main input for the existence of tubular neighborhoods is the linearization theorem for
proper Lie groupoids, due to Zung [Zun06] and Weinstein [Wei02] and later refined and
clarified by [CS13; PPT14; HF18].

Definition 3.6.2. Let G be a Lie groupoid and let 𝑆 ⊆ 𝑀 a saturated submanifold. We say
that G is linearizable around 𝑆 if there exist open sets 𝑆 ⊆ 𝑈 ⊆ 𝑀 and 𝑆 ⊆ 𝑉 ⊆ N𝑆 and an
isomorphism of Lie groupoids

G|𝑈 � N𝑆 (G)|𝑉

which is the identity on G𝑆. We say that G is linearizable if it is linearizable around any
saturated submanifold.
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The notation G|𝑈 in this definition stands for the restriction of the Lie groupoid to the open
subspace𝑈, see Example D.7.

Theorem 3.6.3 (Linearization theorem for proper Lie groupoids, [Wei02; Zun06; CS13;
PPT14], [HF18, Corollary 5.3.3]). Proper Lie groupoids are linearizable.

We will use the linearization theorem to show the existence of tubular neighborhoods. We
need to following auxiliary lemma:

Lemma 3.6.4. Let G = (G1⇒ 𝑀) be a Lie groupoid, let 𝑈 ⊆ 𝑀 be an open subspace and
let G|𝑈 be the restriction of G to 𝑈, as in Example D.7. Then the inclusion G|𝑈 ↩→ G of
Lie groupoids induces an open embedding

B(G|𝑈) ↩→ BG

at the level of classifying stacks.

Proof. Let 𝑈′ := G ·𝑈 ⊆ 𝑀 be the G-saturation of 𝑈, that is, the union of all orbits of G
intersecting 𝑈 non-trivially. Then 𝑈′ defines an open subspace of the coarse moduli space
|BG|mod = coeq(G1⇒ 𝑀) of BG, and hence defines an open substackU ⊆ BG, fitting in a
pullback square as follows:

𝑈′ 𝑀

U BG.

We claim that the composite𝑈 ↩→𝑈′↠U is a representable atlas forU. By Lemma 2.2.6
it suffices to check this after pulling back along the atlas 𝑈′↠U, where this follows from
the fact that every 𝑥 ∈ 𝑈′ is of the form 𝑔𝑢 for some 𝑔 ∈ G1 and 𝑢 ∈ 𝑈. We conclude that
U is equivalent to the classifying stack of the Čech nerve of the map 𝑈 ↠U, which is
precisely the restricted Lie groupoid G|𝑈 . As the resulting open embedding B(G|𝑈) ↩→BG
agrees with the map induced by the inclusion G|𝑈 ↩→G of Lie groupoids, this finishes the
proof. □

Corollary 3.6.5 (Existence of tubular neighborhoods). Let 𝑖 : Z ↩→X be an embedding of
separated stacks. Then 𝑖 admits a tubular neighborhood.

Proof. By choosing a representable atlas for X, we may assume that X = BG is the classi-
fying stack of a Lie groupoid G. As X is separated, G is proper, see Example 3.3.2. The
embedding 𝑖 determines a saturated embedded submanifold 𝑆 ⊆ G0. By the linearization
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theorem 3.6.3 there exist open neighborhoods 𝑆 ⊆𝑈 ⊆ G0 and 𝑆 ⊆ 𝑉 ⊆ N𝑆 together with an
an isomorphism of Lie groupoids G|𝑈 � N𝑆 (G)|𝑉 . We define

U := B(G|𝑈) ↩→ BG = X and V := B(N𝑆 (G)|𝑉 ) ↩→ BN𝑆 (G) =N𝑖 .

By Lemma 3.6.4 these are open neighborhoods of Z = BG𝑆. There is an equivalence
U ≃V which is the identity onZ. This finishes the proof. □

We record two useful corollaries of the existence of tubular neighborhoods.

Corollary 3.6.6. Every embedding 𝑖 : Z ↩→X of separated differentiable stacks factors as
a composite

Z 𝑖′
↩−→U

𝑗
−→X

of a closed embedding 𝑖′ followed by an open embedding 𝑗 , where the map 𝑖′ admits a
retraction 𝑓 : U→Z. □

Corollary 3.6.7 (Extension of representable submersions). Let 𝑖 : Z ↩→X be an embedding
of separated differentiable stacks. For every representable submersionY→Z, there exists
a pullback square

Y Y′

Z X

𝑓 𝑓 ′

𝑖

where 𝑓 ′ is also a representable submersion.

Proof. Choosing a factorization of 𝑖 as in Corollary 3.6.6, we may define Y′ :=U×ZY,

and define 𝑓 ′ as the compositeU×ZY
prU−−−→U

𝑗
↩−→X. □

Remark 3.6.8 (Linearization of representable submersions). It is possible to prove the
following variant of Corollary 3.6.5: for every pullback diagram

Z′ X′

Z X

𝑓 |Z′

𝑖′

𝑓

𝑖

where 𝑖 and 𝑖′ are embeddings and 𝑓 is a representable submersion, one may choose tubular
neighbhorhoods Z ⊆ U ⊆ X, Z ⊆ V ⊆ N𝑖 and Z′ ⊆ U′ ⊆ X′, Z′ ⊆ V′ ⊆ N𝑖′ fitting in a
commutative diagram as follows:

N𝑖′ V′ U′ X′

N𝑖 V U X.

𝑑𝑓

≃

𝑓

≃
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Just as in the proof of Corollary 3.6.5, this can be deduced from the analogous lineariza-
tion result for proper Lie groupoids, which was proved by Hoyo and Fernandes [HF19,
Theorem 4.2.3].

3.6.1 Relative tubular neighborhoods

The notion of tubular neighborhood admits a relative version, in which the embedding
𝑖 : Z ↩→X lives over some base stack S.

Definition 3.6.9 (Relative tubular neighborhood). Consider a commutative diagram of
differentiable stacks

Z X

S,

𝑖

𝑔 𝑓

where the morphisms 𝑔Z and 𝑔X are representable submersions and the morphism 𝑖 is an
embedding. A tubular neighborhood ofZ in X relative to S is a commutative diagram

Z

X U N𝑖

S,

𝑠0𝑖

𝑗

𝑓

𝑗 ′

𝑔′

where the maps 𝑗 and 𝑗 ′ are open embeddings of differentiable stacks, and 𝑔′ is the composite
of the bundle projection N𝑖→Z followed by the map 𝑔 : Z→S.

Relative tubular neighborhoods always exist if the stackX is separated: as in Corollary 3.6.5,
one may reduce to the analogous statement in the context of Lie groupoids, where the proof
strategy of [HF18, Corollary 5.3.3] applies. In the case thatS,Z andX are smooth manifold,
this has been proved by [Mat12]. Unfortunately, we were unable to find a reference for
the general relative statement for differentiable stacks. We will not give a complete proof
either, but we will give a detailed proof sketch indicating the main ingredients of a proof.
We thank Shachar Carmeli, Florian Naef and Maarten Mol for useful discussions.

Proposition 3.6.10 (Existence of relative tubular neighborhoods). Let 𝑖 : Z ↩→ X be an
embedding of differentiable stacks over some base stack S, as in Definition 3.6.9, and
assume that X is separated. Then 𝑖 admits a tubular neighborhood relative to S.
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Detailed proof sketch. Broadly speaking, the proof proceeds just like the ordinary proof of
the existence of tubular neighborhoods for differentiable manifolds: one chooses a Rieman-
nian metric and shows that the resulting exponential map restricts to a diffeomorphism on
a small open neighborhood inside the normal bundle of the embedding. The subtlety lies
in making precise the notions of ‘Riemannian metric’ and ‘exponential map’ in the context
of differentiable stacks X relative to some base stack S. We will indicate one possible
approach, which follows the usual two-step procedure of reducing to the setting of smooth
manifolds.

Step 1: One first considers the case where the base stack S is a smooth manifold 𝑆, so that
alsoZ = 𝑍 andX = 𝑋 are smooth manifolds. By Lemma 3.5.20, the normal bundle of 𝑖 fits
in a short exact sequence of vector bundles

𝑇𝑔 ↩→ 𝑖∗𝑇 𝑓 → 𝑁𝑖

over 𝑍 . Observe that the Lie bracket on 𝑇𝑋 restricts to 𝑇 𝑓 by naturality of the Lie bracket,
so that 𝑇 𝑓 becomes a Lie algebroid over 𝑋 with the inclusion 𝑇 𝑓 ↩→ 𝑇𝑋 serving as the
anchor map. If we choose a Riemannian metric on 𝑋 , we may restrict it to the relative
tangent bundle 𝑇 𝑓 , thus turning 𝑇 𝑓 into a Riemannian Lie algebroid. Generalizing the
usual notion of connections on smooth manifolds, there is a notion of a connection on a Lie
algebroid, and one can show that every Riemannian Lie algebroid admits a unique connection
which is both metric and torsion-free; this is known as the Levi-Civita-connection, see
[Bou11, Section 3.1]. One obtains a corresponding notion of geodesics with respect to
this connection. In the case of the relative tangent bundle 𝑇 𝑓 , it follows from [Bou11,
Proposition 3.2] that the geodesics with respect to the Levi-Civita connection on 𝑇 𝑓 are
precisely those curves 𝛾 : [𝑡0, 𝑡1] → 𝑋 such that the composite 𝑓 ◦𝛾 : [𝑡0, 𝑡1] → 𝑆 is constant,
say with value 𝑠 ∈ 𝑆, and such that the resulting curve 𝛾 : [𝑡0, 𝑡1] → 𝑋𝑠 = 𝑓 −1(𝑠) into the
fiber of 𝑓 is a geodesic when 𝑋𝑠 is equipped with the Riemannian metric inherited from
𝑋 . The usual construction of the exponential map carries over to this relative setting and
produces a relative exponential map

exp 𝑓 : E 𝑓 → 𝑋,

where E 𝑓 ⊆ 𝑇 𝑓 is the open neighborhood of the zero section on which the relevant geodesics
are defined. From the fact that the relative geodesics live in a single fiber, it follows the map
exp 𝑓 lives over 𝑆, in the sense that 𝑓 (exp(𝑥, 𝑣)) = 𝑓 (𝑥) for every relative tangent vector 𝑣
at 𝑥 ∈ 𝑋 .

Since 𝑖∗𝑇 𝑓 admits a Riemannian metric, we can embed 𝑁𝑖 into 𝑖∗𝑇 𝑓 as the orthogonal
complement of 𝑇𝑔. We may restrict the relative exponential map to the intersection 𝑁𝑖 ∩
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𝑖∗E 𝑓 ⊆ 𝑖∗𝑇 𝑓 , and a calculation of the derivative of this restriction shows that it is a local
diffeomorphism. An adaptation of the standard argument for Riemannian manifolds shows
that this map becomes an actual diffeomorphism when restricted to a sufficiently small open
neighborhood of the zero section in 𝑁𝑖, see for example [Lan95, Theorem IV.5.1]. This
finishes Step 1.

Step 2: In the general case, we may choose an atlas for S and equip Z and X with the
atlases obtained by pullback, as in Lemma 2.2.3. This means that we may represent S, Z
and X by Lie groupoids K, H and G, and the maps 𝑖, 𝑓 and 𝑔 correspond to cartesian
morphisms of Lie groupoids 𝑖 : H ↩→G, 𝑔 : Z→K and 𝑓 : G →K.

Our goal is to reduce the claim to the statement from Step 1. We will use the proof strategy
from [HF18, Theorem 5.3.1]. Since X is separated, the corresponding Lie groupoid G is
proper by Example 3.3.2. It was shown by Hoyo and Fernandes [HF18, Theorem 4.3.4]
that every proper Lie groupoid G admits a simplicial Riemannian metric1: a collection
of Riemannian metrics on each of the smooth manifolds G𝑛 for [𝑛] ∈ Δ such that for
every injective map 𝜑 : [𝑛] → [𝑚] in Δ the induced map G𝜑 : G𝑚 → G𝑛 is a Riemannian
submersion. We may restrict these Riemannian metrics to the relative tangent bundles
𝑇 𝑓𝑛→ G𝑛. By Lemma 3.5.3, the relative tangent groupoid 𝑇 𝑓•→ G is cartesian, so that
for every map [𝑛] → [𝑚] in Δ we obtain a pullback square

𝑇 𝑓𝑚 G𝑚

𝑇 𝑓𝑛 G𝑛.

Due to the uniqueness of the geodesics, it follows that the relative exponential maps
exp 𝑓𝑛 : E 𝑓𝑛 →G𝑛 produced in Step 1 are all compatible: for every injection 𝜑 : [𝑛] → [𝑚]
in Δ, the square

E 𝑓𝑚 G𝑚

E 𝑓𝑛 G𝑛

𝑑G𝜑

exp 𝑓𝑚

G𝜑

exp 𝑓𝑛

commutes. As in [HF18, Theorem 5.3.1], one can show that there exist compatible open
neighborhood 𝑈𝑛 ⊆ 𝑁𝑖𝑛 ∩ 𝑖∗𝑛E 𝑓𝑛 of the zero section on which the relative exponential map
exp 𝑓𝑛 restricts to a diffeomorphism, where the word ‘compatible’ means that the 𝑈𝑛 form
a simplicial diagram in Diff constituting a Lie groupoid. Passing to classifying stacks then
produces the desired relative tubular neighborhood. □

1In fact, del Hoyo and Fernandes restrict attention to 2-metrics. We will work with simplicial metrics for
ease of exposition.

129



3.7 Local structure of separated differentiable stacks

An important consequence of the linearization theorem for proper Lie groupoids mentioned
above is the simple local structure of separated differentiable stacks: locally they look like
a quotient stack 𝑉//𝐺 for a compact Lie group 𝐺 and an orthogonal 𝐺-representation 𝑉 .
We shall discuss this result and deduce various consequences. The starting point is the
following theorem on the local structure of proper Lie groupoids:

Theorem 3.7.1 ([CS13, Corollary 3.9], [PPT14, Corollary 3.11]). Let G be a proper Lie
groupoid over 𝑀 , let 𝑥 ∈ 𝑀 and let O = O𝑥 ⊆ 𝑀 be the orbit of 𝑥. Then there exists an
open neighborhood O ⊆ 𝑈 ⊆ 𝑀 such that the restriction G|𝑈 is Morita equivalent to the
action groupoid 𝐺𝑥 ⋉N𝑥 , where N𝑥 = 𝑇𝑥𝑀/𝑇𝑥 (O) is the normal tangent space at 𝑥 of the
orbit O inside 𝑀 . Under this Morita equivalence, the orbit O ⊆ 𝑀 corresponds to the point
0 ∈ N𝑥 . □

We deduce from this the local structure theorem for separated differentiable stacks:

Theorem 3.7.2 (Local structure of separated differentiable stacks). Let X be a separated
differentiable stack and let 𝑥 ∈ X be a point ofX. Then there exists an open substackU ⊆X
containing 𝑥, a 𝐺𝑥-representation 𝑉 , and an equivalence

U ≃𝑉//𝐺𝑥

sending the point 𝑥 ∈ U to the point 0 ∈ 𝑉//𝐺𝑥 .

Proof. Choose an atlas 𝑓 : 𝑀↠X, and let G := �̌� ( 𝑓 ) denote the associated Čech groupoid.
The point 𝑥 of X can be lifted to a point 𝑥 of 𝑀 . Let O = O𝑥 denote the orbit of 𝑥 in 𝑀 ,
which is an embedded submanifold by Proposition D.11, and let N𝑥 := 𝑇𝑥𝑀/𝑇𝑥O denote
the normal space 𝑥 of O inside 𝑀 . By Theorem 3.7.1, there exist an open neighbhorhood
𝑈 of O in 𝑀 such that the restricted Lie groupoid G|𝑈 is Morita equivalent to the action
groupoid𝐺𝑥 ⋉N𝑥 and such that the orbit O corresponds to the zero-vector 0 ∈ N𝑥 under this
Morita equivalence. By Proposition 2.3.14, this Morita equivalence induces an equivalence
of stacks

B(G|𝑈) ≃ B(𝐺𝑥 ⋉N𝑥) =N𝑥//𝐺𝑥

which sends 𝑥 ∈ B(G|𝑈) to 0 ∈ N𝑥//𝐺𝑥 . By Lemma 3.6.4, the inclusion G|𝑈 ↩→ G then
induces an open embedding

N𝑥//𝐺𝑥 ≃ B(G|𝑈) ↩→ BG ≃ X,

finishing the proof. □
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Using the structure theorem, one can generalize various results about the differential ge-
ometry of smooth 𝐺-manifolds for a compact Lie group 𝐺 to the setting of separated
differentiable stacks.

3.7.1 Factorization of proper maps

We will show that every proper map of separated differentiable stacks can locally be factored
as a closed embedding followed by a proper representable submersion.

Proposition 3.7.3. Let 𝑝 : X→Y be a proper map between separated differentiable stacks.
Around every point 𝑦 ∈ Y there exists an open neighborhoodU ⊆Y such that the restriction
𝑝U : XU→U factors as

XU
𝑖
↩−→ 𝑆E

𝜋−→U,

where 𝜋 : E →U is a vector bundle and where 𝑖 is a closed embedding factoring through
E ↩→ 𝑆E .

Proof. Let 𝐺 = 𝐺𝑦 denote the isotropy group of Y at 𝑦. By Theorem 3.7.2, there is an
open neighborhoodU′ of 𝑦 in Y of the form 𝑉//𝐺 for some orthogonal 𝐺-representation
𝑉 . The restriction XU′ of X is then of the form 𝑀//𝐺 for some 𝐺-manifold 𝑀 , and
the map 𝑝 is induced by a 𝐺-equivariant proper map 𝑞 : 𝑀 → 𝑉 . Let 𝐷 ⊆ 𝑉 denote the
open unit disk inside 𝑉 . Since the closure of 𝐷 inside 𝑉 is compact and the map 𝑞 is
proper, it follows that the closure of the preimage 𝑝′−1(𝐷) ⊆ 𝑀 is also compact. Hence
by [Bre72, Theorem VI.4.1], there exists a 𝐺-representation𝑊 and a 𝐺-equivariant closed
embedding 𝑞−1(𝐷) ↩→𝑊 . Setting U = 𝐷//𝐺 ↩→Y, we thus obtain a closed embedding
XU = 𝑞−1(𝐷)//𝐺 ↩→𝑊//𝐺.

Define a vector bundle E →U via the following pullback square:

E 𝑊//𝐺

U = 𝐷//𝐺 B𝐺.

𝜋

Then we get 𝑆E ≃ 𝑆𝑊//𝐺 ×B𝐺U. The maps XU →U and XU ↩→𝑊//𝐺 ↩→ 𝑆𝑊//𝐺 then
determine a commutative diagram

XU 𝑆E

U.

𝑖

𝑝U
𝜋
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The map 𝑖 is an embedding, and it is proper by Lemma 2.4.10, since the map 𝑝U is proper.
Since any proper embedding is a closed embedding, this finishes the proof. □

3.7.2 Locally extending sections

As our final result in this chapter, we show that a partial section of a representable submersion
defined on a closed substack can locally be extended to a section defined on an open
neighborhood of the closed substack. Furthermore, this section can be chosen to be the
zero section of a vector bundle. We start wtih an auxiliary lemma.

Lemma 3.7.4. Let𝐺 be a compact Lie group, let 𝑓 : 𝑌→ 𝑋 be a𝐺-equivariant submersion
between smooth 𝐺-manifolds and let 𝑠 : 𝑌 → 𝑋 be a section of 𝑓 . For every 𝑥 ∈ 𝑋 , there
exist 𝐺-invariant open neighborhoods 𝑥 ∈ 𝑁 ⊆ 𝑋 and 𝑠(𝑥) ∈ 𝐸 ⊆ 𝑌 such that:

• We have 𝑓 (𝐸) ⊆ 𝑁 and 𝑠(𝑁) ⊆ 𝐸;

• The restriction 𝑓 |𝐸 : 𝐸 → 𝑁 is isomorphic to a 𝐺-equivariant vector bundle with
zero-section 𝑠 |𝑁 : 𝑁→ 𝐸 .

Proof. Let𝐻 :=𝐺𝑥 ⊆𝐺 denote the isotropy group of 𝑥 in 𝑋 , which is also the isotropy group
of 𝑠(𝑥) in 𝑌 . Consider the closed submanifold 𝑆 := 𝑠(𝑋) ⊆ 𝑌 . The restriction 𝑝 |𝑆 : 𝑆→ 𝑋

is a diffeomorphism and in particular a smooth submersion. By [PW19, Corollary 2.8],
there exist orthogonal 𝐻-representations 𝑉 ,𝑊 and𝑊′ and 𝐺-equivariant open embeddings
Φ : 𝐺 ×𝐻 (𝑉 ×𝑊 ×𝑊′) ↩→ 𝑌 and Ψ : 𝐺 ×𝐻𝑉 ↩→ 𝑋 such that:

• We have Θ( [𝑒,0,0,0]) = 𝑠(𝑥) and Ψ( [𝑒,0]) = 𝑥;

• The map
Θ : 𝐺 ×𝐻 (𝑉 ×𝑊) → 𝑀, [(𝑔, 𝑣,𝑤)] ↦→Φ[(𝑔, 𝑣,𝑤,0)]

has image in 𝑆 = 𝑠(𝑋) and comprises a 𝐺-equivariant diffeomorphism onto an open
neighborhood of the orbit 𝐺𝑥 in 𝑆.

• The following diagram commutes:

𝐺 ×𝐻 (𝑉 ×𝑊 ×𝑊′) 𝑀

𝐺 ×𝐻𝑉 𝑁.

id𝐺 ×pr𝑉

Φ

𝑓

Ψ

132



Since 𝑝 |𝑆 : 𝑆→ 𝑋 is a diffeomorphism, it follows that𝑊 = 0 is the trivial 𝐻-representation.
Observe that the left vertical map is a𝐺-equivariant vector bundle. Defining 𝑠0 : 𝐺×𝐻𝑉→
𝐺 ×𝐻 (𝑉 ×𝑊 ×𝑊′) by 𝑡 ( [𝑔, 𝑣]) = [𝑔, 𝑣,0,0], we see that the diagram

𝐺 ×𝐻 (𝑉 ×𝑊 ×𝑊′) 𝑀

𝐺 ×𝐻𝑉 𝑁

Φ

𝑠0

Ψ

𝑠

commutes. Since 𝑠0 is the zero section of the vector bundle, this proves the claim. □

Proposition 3.7.5. Consider a commutative diagram of separated differentiable stacks

Y

Z X,

𝑝𝑡

𝑖

where 𝑝 is a representable submersion and 𝑖 is a closed embedding. Then for every point
𝑧 ∈ Z, there is a commutative diagram

E Y

𝑧 ∈ Z∩N N X,

𝑗E

𝜋 𝑝
𝑡

𝑖

𝑠0

𝑗N

where 𝑗E : E ↩→Y is an open neighbhorhood of 𝑡 (𝑧) inside Y, 𝑗N : N ↩→X is an open
neighbhorhood of 𝑧 inside X, and the map 𝜋 : E →N is a vector bundle with zero section
𝑠0 : N → E.

Proof. We will prove the statement in three steps:

Step 1 We first reduce to the case whereX ≃ 𝑋//𝐺 is the quotient stack of a smooth action
of a compact Lie group 𝐺 on a smooth manifold 𝑋 , and the point 𝑧 ∈ X lifts to a
𝐺-fixed point 𝑧′ ∈ 𝑋;

Step 2 We then further reduce to the case where the partial section 𝑠 : Z→Y of 𝑝 is the
restriction along 𝑖 : Z ↩→X of a section 𝑠 : X →Y of 𝑝;

Step 3 In this case, we prove that, locally in Y, 𝑠 can be chosen to be the zero-section of a
vector bundle.

Step 1. Let 𝐺 := 𝐺𝑧 denote the isotropy group of 𝑧 in X. By Theorem 3.7.2, we can find
an open neighborhoodU of 𝑧 in X of the form 𝑋//𝐺 for some smooth 𝐺-manifold 𝑋 such
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that the point 𝑧 ∈ X lifts to a 𝐺-fixed point 𝑧′ ∈ 𝑋 . The restrictionsZU andYU overU are
of the form 𝑍//𝐺 and𝑌//𝐺 for smooth𝐺-manifolds 𝑍 and𝑌 -respectively. As 𝑧′ is𝐺-fixed
in 𝑋 , it follows that 𝑧′ is also 𝐺-fixed in 𝑍 and thus 𝑡 (𝑧) is 𝐺-fixed in 𝑌 .

Step 2. By Step 1, it will suffice to prove the analogous statement in the setting of smooth
𝐺-manifolds. So assume given a commutative triangle

𝑌

𝑍 𝑋

𝑝𝑠

𝑖

of smooth 𝐺-manifolds, and a 𝐺-fixed point 𝑧 ∈ 𝑍 . We will show that the partial section 𝑡
of 𝑝 extends to a section 𝑠 : 𝑈→ 𝑌 on some open neighborhood𝑈 of 𝑍 inside 𝑋 .

By [PW19, Proposition 2.7], there exist orthogonal 𝐺-representations 𝑉 and 𝑊 , and 𝐺-
equivariant embeddings Φ : 𝑉 ×𝑊 ↩→ 𝑌 and Ψ : 𝑉 ↩→ 𝑋 such that Φ(0,0) = 𝑡 (𝑧), Ψ(0) =
𝑖(𝑧), and the following diagram commutes:

𝑉 ×𝑊 𝑌

𝑉 𝑋.

Φ

pr𝑉 𝑝

Ψ

By scaling down the embedding Ψ if needed, we may assume that the section 𝑡 : 𝑍 ∩𝑉→𝑌

factors through 𝑉 ×𝑊 ↩→ 𝑌 . The second component 𝑍 →𝑊 can be extended to a small
open neighborhood𝑈 of 𝑍 ∩𝑉 inside 𝑋 , which leads to a section 𝑠 : 𝑈→𝑈×𝑊 extending
𝑡.

Step 3: From Step 2, we have obtained a commutative diagram

𝑈′ 𝑌

𝑧 ∈ 𝑍 ∩𝑈 𝑈 𝑋

𝑝 |𝑈′ 𝑝
𝑡

𝑖

𝑠

of smooth 𝐺-manifolds. By Lemma 3.7.4, there exist 𝐺-invariant open neighborhoods
𝑧 ∈ 𝑁 ⊆𝑈 and 𝑡 (𝑧) ∈ 𝐸 ⊆𝑈′ such that 𝑝(𝐸) ⊆ 𝑁 , 𝑠(𝑁) ⊆ 𝐸 , and the restriction 𝑝 |𝐸 : 𝐸→ 𝑁

is isomorphic to a 𝐺-equivariant vector bundle with zero-section 𝑠 |𝑁 : 𝑁 → 𝐸 . In other
words, we obtain a commutative diagram

𝐸 𝑈′ 𝑌

𝑧 ∈ 𝑍 ∩𝑁 𝑁 𝑈 𝑋,

𝜋 𝑝 |𝑈′ 𝑝
𝑡

𝑖

𝑠0 𝑠

where 𝜋 is a 𝐺-equivariant vector bundle with zero-section 𝑠0. Passing to quotient stacks
then gives the claim. □
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II.4 Genuine sheaves

In this chapter, we will introduce for every separated differentiable stack X the∞-category
H(X) of genuine sheaves of animae on X and the ∞-category SH(X) of genuine sheaves
of spectra on X.

The ∞-categories H(X) and SH(X) may be thought of as ‘genuine’ refinements of the
∞-categories Shv(X) and Shv(X;Sp) of ordinary sheaves of animae/spectra on X. While
the latter two ∞-categories are easy to define using descent, they do not fully capture all
of the “stacky” behavior of X. To illustrate this, consider the case of a classifying stack
X = B𝐺 of a compact Lie group 𝐺. Using descent for the effective epimorphism pt↠ B𝐺,
one can show that sheaves on B𝐺 correspond to animae/spectra with a 𝐺-action: there are
equivalences of∞-categories

Shv(B𝐺) ≃ An𝐵𝐺 and Shv(B𝐺;Sp) ≃ Sp𝐵𝐺 ,

see Lemma 4.1.21 below. In equivariant homotopy theory, one frequently wants to work
instead with the more refined ∞-categories An𝐺 and Sp𝐺 of genuine 𝐺-animae (a.k.a.
‘𝐺-spaces’) and genuine 𝐺-spectra, which retain additional geometric fixed point data for
closed subgroups of 𝐺. Forcing descent with respect to the map pt↠ B𝐺 destroys this
geometric information, since it inverts all 𝐺-equivariant maps which are an equivalence
after forgetting the 𝐺-action.

The goal of this chapter is to extend the above story to the case of an arbitrary separated
differentiable stackX by introducing a notion of a ‘genuine sheaf’ onX, which compared to
an ordinary sheaf on X retains additional isotropy information. The resulting∞-categories
H(X) and SH(X) come equipped with forgetful functors to Shv(X) and Shv(X;Sp), respec-
tively, which are simultaneously localizing and colocalizing, inverting precisely those maps
which become equivalences after forgetting all this isotropy information. When X is the
classifying stack B𝐺, these two functors specialize to the forgetful functors An𝐺 → An𝐵𝐺

and Sp𝐺 → Sp𝐵𝐺 discussed above. In the case of a smooth manifold 𝑀 , which has trivial
isotropy groups, there is no difference between genuine sheaves and ordinary sheaves.

135



The approach we will take for defining genuine sheaves closely resembles the definition of
the motivic categories H(𝑆) and SH(𝑆) for a scheme 𝑆, introduced by Morel and Voevodsky
[MV99] in their development of motivic homotopy theory (also referred to as A1-homotopy
theory). The starting point is the observation that there is an equivalence between the
∞-category An of animae and the∞-category Shvhtp(Diff) of homotopy invariant sheaves
of animae on the site of smooth manifolds. An analogue for a separated differentiable
stack X is obtained by replacing the site Diff of smooth manifolds by the site Sub/X of
representable submersions over X, where we think of a representable submersion Y →X
as an ‘X-indexed family of smooth manifolds’. The ∞-category H(X) of genuine sheaves
of animae on X is then defined as the∞-category of homotopy invariant sheaves on Sub/X .
The ∞-category SH(X) of genuine sheaves of spectra on X is defined, at least locally in
X, by monoidally inverting the sphere bundles 𝑆E in H(X)∗, where E runs over all vector
bundles over X.

The chapter is organized as follows. In Section 4.1, we introduce the site Sub/X for a
differentiable stack X and study the ∞-category of sheaves on Sub/X . In Sections 4.2 and
4.3, we introduce the∞-categories H(X) and SH(X) of genuine sheaves of animae/spectra,
respectively. In Section 4.4, we establish the connection with equivariant homotopy theory
by producing equivalences of∞-categories H(B𝐺) ≃An𝐺 and SH(B𝐺) ≃ Sp𝐺 . Finally, we
show in Section 4.5 that the assignmentsX ↦→H(X) andX ↦→ SH(X) admit universal prop-
erties, phrased in terms of the notion of a pullback formalism C : DiffStkop→ CAlg(PrL)
due to Drew and Gallauer [DG22].

4.1 Sheaves on Sub/X

In this section, we study the ∞-category Shv(Sub/X) of sheaves on the category Sub/X of
representable submersions over X.

Definition 4.1.1. LetX ∈DiffStk be a differentiable stack. We let Sub/X ⊆DiffStk/X denote
the full subcategory spanned by the representable submersions Y →X.

Recall that for a Lie groupoid G, the ∞-category Sub/BG of representable submersions
into the classifying stack BG is naturally equivalent to the category DiffG of smooth G-
manifolds, see Corollary 2.3.19. In particular, Sub/X is an ordinary category for every
differentiable stack X.

The category Sub/X admits a Grothendieck topology given by the open covers:
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Definition 4.1.2 (Open covers). Given a differentiable stack Y, a collection of morphisms
𝑗𝛼 : U𝛼 →Y in DiffStk is called an open cover of Y if the following two conditions are
satisfied:

(1) Each morphism 𝑗𝛼 : U𝛼 ↩→Y is an open embedding of differentiable stacks;

(2) The morphism
⊔
𝛼U𝛼→Y is an effective epimorphism in Shv(Diff).

A sieve { 𝑓𝛽 : Y𝛽→Y} in DiffStk is said to be a covering sieve of Y if it contains an open
cover of Y.

Proposition 4.1.3. The covering sieves of Definition 4.1.2 equip DiffStk with the structure
of a Grothendieck topology.

Proof. The identity on Y is an open cover, hence generates a covering sieve of Y. If
{ 𝑓 𝑗 : Y𝑗 → Y} is a covering sieve of Y containing an open cover {𝜄𝑖 : U𝑖 ↩→ Y} and
Y′→Y is a morphism of differentiable stacks, then the pullback sieve {Y𝑗 ×YY′→Y′}
on Y′ contains the open cover {V𝑖 :=U𝑖 ×Y Y′ ↩→Y′}, where we use that

⊔
𝑖V𝑖 →Y′

is an effective epimorphism since it is a base change of the map
⊔
𝑖U𝑖 →Y. Finally, let

{𝜄𝑖 : U𝑖→Y} be an open cover of Y and let { 𝑓 𝑗 : Y𝑗 →Y} be an arbitrary sieve. Assume
that for every 𝑖, the pullback sieve {U𝑖 ×YY𝑗 →U𝑖} is a covering sieve, so that it contains
an open cover {V𝑖, 𝑗 ↩→U𝑖}. We claim that the collection of composites {V𝑖, 𝑗 ↩→U𝑖 ↩→Y}
forms an open cover of Y, contained in the original sieve. Indeed, these maps are open
embeddings and the composite map⊔

𝑖

⊔
𝑗

V𝑖, 𝑗 ↠
⊔
𝑖

U𝑖 ↠Y

is an effective epimorphism. □

The open covers in DiffStk directly induce a Grothendieck topology on Sub/X:

Definition 4.1.4. We define a Grothendieck topology on Sub/X in which a collection of
morphisms { 𝑓𝑖 : Y𝑖 →Y} in Sub/X is a cover of Y if and only if it is cover of Y in the
∞-category DiffStk, in the sense of Definition 4.1.2. Given a presentable∞-category C, we
let Shv(Sub/X;C) denote the∞-category of C-sheaves on the resulting site (Sub/X ,open).

The sheaf condition can be made very explicit: a presheaf on Sub/X is a sheaf if and only
if it satisfies a form of excision and turns countable unions of open substacks into limits.
More precisely:
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Proposition 4.1.5 (cf. [BBP19, Theorem 5.1], [ADH21, Theorem 3.6.1]). Let X be a
differentiable stack and let C be a presentable ∞-category. Then a C-valued presheaf
F : Subop

/X→C is a sheaf if and only if F satisfies the following conditions:

(1) The object F (∅) is terminal in C;

(2) For every representable submersionY→X and every pair of open substacksU,V ⊆Y
satisfying Y =U∪V, the induced square

F (Y) F (V)

F (U) F (U∩V)

is a pullback square in C;

(3) For every representable submersion Y → X and every N-indexed sequence of open
substacks

U0 ⊆ U1 ⊆ · · · ⊆ Y

such that Y =
⋃
𝑛≥0U𝑛 =Y, the induced morphism

F (Y) → lim𝑛≥0F (U𝑛)

is an equivalence in C.

Proof. Given a representable submersionY→X, any open substackU ofY is naturally an
object of Sub/X via the compositeU ↩→Y→X, and this provides a functor Open(Y) →
Sub/X . Observe that F is a sheaf if and only if for every Y the composite functor

Open(Y)op→ Subop
/X

F−−→ C

is a sheaf with respect to the open cover topology on Open(Y). Recall from Corollary 3.1.12
that the poset Open(Y) of open substacks of Y is equivalent to the poset Open( |Y|mod) of
open subspaces of the coarse moduli space |Y|mod. SinceY admits a representable atlas by
a smooth manifold, the topological space |Y|mod is the quotient of a smooth manifold, and
thus is in particular hereditarily Lindelöf : every open subspace 𝑈 ⊆ |Y|mod is Lindelöf,
meaning that every open cover of 𝑈 admits a countable subcover. It is a general fact that
a presheaf F : Open(𝑋)op→C on a hereditarily Linfelöf topological space 𝑋 is a sheaf if
and only if it satisfies the conditions analogous to (1), (2) and (3), see for example [ADH21,
Proposition 3.6.6]. Applying this result to 𝑋 = |Y|mod finishes the proof. □
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Corollary 4.1.6. The subcategory Shv(Sub/X) ⊆ PSh(Sub/X) is closed under 𝜔1-filtered
colimits.

Proof. This is immediate from Proposition 4.1.5 and the fact that 𝜔1-filtered colimits
commute with countable (that is, 𝜔1-small) limits in the ∞-category of animae by [Lur09,
Proposition 5.3.3.3]. □

4.1.1 Pullback and pushforward functors

Let 𝑓 : X′→X be a morphism of differentiable stacks. Our goal in this subsection is to
construct the pullback and pushforward functors

𝑓 ∗ : Shv(Sub/X)⇄ Shv(Sub/X′) : 𝑓∗,

and prove various basic properties about them.

We start with the construction of 𝑓∗. Since base changes of representable submersions exist
in DiffStk and are again representable submersions, there is a functor Sub/X→ Sub/X′ given
by Y ↦→ Y×XX′. Precomposition with this functor then defines a pushforward functor at
the level of presheaf categories:

𝑓∗ : PSh(Sub/X′) → PSh(Sub/X),
𝑓∗F (Y) := F (Y ×XX′).

Lemma 4.1.7. The functor 𝑓∗ restricts to sheaves:

𝑓∗ : Shv(Sub/X′) → Shv(Sub/X).

Proof. Observe that the functor−×XX′ : Sub/X→ Sub/X′ preserves covering sieves. Since
coverings consists of open embeddings, Sub/X admits pullbacks along open embeddings
and the functor −×XX′ preserves such pullbacks, it follows that this is a continuous functor
in the sense of Definition E.39, and thus the restriction functor 𝑓∗ preserves sheaves. □

The functor 𝑓∗ : Shv(Sub/X′) → Shv(Sub/X) admits a left adjoint

𝑓 ∗ : Shv(Sub/X) → Shv(Sub/X′)

given as the composite Shv(Sub/X) ↩→ PSh(Sub/X) → PSh(SubX/)
𝐿open−−−−→ Shv(Sub/X′),

where the middle functor is left Kan extension along the functor −×XX′ : Sub/X→ Sub/X′ .
In case 𝑓 is a representable submersion, 𝑓 ∗ admits a further left adjoint 𝑓♯:
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Lemma 4.1.8. Let 𝑓 : X′→X be a representable submersion.

(1) The functor −×XX′ : Sub/X→ Sub/X′ admits a left adjoint 𝑓♯ : Sub/X′→ Sub/X given
by postcomposition with 𝑓 .

(2) The functor 𝑓♯ : Sub/X′ → Sub/X is a continuous functor, so that restriction along it
preserves sheaves.

(3) The functor 𝑓 ∗ : Shv(Sub/X) → Shv(Sub/X′) admits a left adjoint

𝑓♯ : Shv(Sub/X′) → Shv(Sub/X)

which on representables restricts to 𝑓♯ : Sub/X′ → Sub/X .

Proof. Assertion (1) is clear. For assertion (2), note that 𝑓♯ preserves covering sieves
and preserves all pullbacks that exist in Sub/X′ . In particular, the functor PSh(Sub/X) →
PSh(Sub/X′) given by restriction along 𝑓♯ preserves sheaves. As 𝑓♯ is left adjoint to −×X
X′ : Sub/X→ Sub/X′ , restriction along 𝑓♯ is left adjoint to the functor 𝑓∗ : Shv(Sub/X′) →
Shv(Sub/X), and therefore is equivalent to 𝑓 ∗. But this means that 𝑓 ∗ admits a left adjoint
given by the composite

Shv(Sub/X′) ↩→ PSh(Sub/X′) → PSh(Sub/X)
𝐿open−−−−→ Shv(Sub/X),

where the middle functor is left Kan extension along 𝑓♯. Since the left Kan extension
reduces to the functor 𝑓♯ on representable objects, the last claim follows. This finishes the
proof. □

To have more control over the functoriality of the construction X ↦→ Shv(Sub/X), we now
provide an alternative description of the pullback functors 𝑓 ∗ in terms of the ∞-topos
Shv(DiffStk) of sheaves on the site DiffStk from Proposition 4.1.3.

Lemma 4.1.9. For a differentiable stack X, the inclusion Sub/X ↩→ DiffStk/X induces a
fully faithful functor

Shv(Sub/X) ↩→ Shv(DiffStk/X) ≃ Shv(DiffStk)/X ,

given by left Kan extension followed by sheafification. The essential image is the subcategory
of Shv(DiffStk)/X generated under colimits by the representable submersions 𝑓 : Y →X.

For a morphism 𝑓 : X′→X, the following diagram commutes:

Shv(Sub/X) Shv(Sub/X′)

Shv(DiffStk)/X Shv(DiffStk)/X′

𝑓 ∗

𝑓 ∗
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where the bottom map is given by pullback along 𝑓 in Shv(DiffStk).

Proof. Given a representable submersion Y → X and an open cover {U𝑖 ↩→Y} of Y,
each of the composite morphisms U𝑖 →Y →X is again a representable submersion. It
follows that the inclusion Sub/X ↩→ DiffStk/X is a cocontinuous functor. It follows from
Corollary E.47 that the right Kan extension functor along Sub/X ↩→ DiffStk/X preserves
sheaves and is fully faithful.

Since this inclusion also preserves covering sieves, it is also a continuous functor, so that
restriction along it preserves sheaves. It follows that this restriction functor admits a further
left adjoint given by the functor in the statement. As this is a double left adjoint of a fully
faithful functor, it is itself fully faithful, proving the first claim. The description of the
essential image is immediate.

To see that the claimed commutative diagram exists, observe that all four functors preserve
colimits, and thus it suffices to prove the claim at on representables. But here the claim
is clear: by definition, the functor 𝑓 ∗ restricts on representables to the functor − ×X
X′ : Sub/X → Sub/X′ , which in turn is just defined as a restriction of the functor −×X
X′ : DiffStk/X→ DiffStk/X′ . □

By the previous lemma, we can turn the assigment X ↦→ Shv(Sub/X) into a functor
DiffStkop→ Cat∞ by regarding it as a subfunctor of the slice functor X ↦→ Shv(SepStk)/X .

Lemma 4.1.10. The functor DiffStkop → Cat∞ given by X ↦→ Shv(Sub/X) is a sheaf of
∞-categories on DiffStk.

Proof. It follows directly from Remark 4.5.2 below and Theorem E.3 that the assignment
X ↦→ Shv(SepStk)/X is a sheaf of ∞-categories on SepStk. Since the assignment X ↦→
Shv(Sub/X) is a subfunctor of this functor, it thus remains to show that the condition for
an object to be contained in this subcategory can be checked locally in X. To this end, let
𝑓 : 𝐴→X be an object of Shv(SepStk)/X satisfying the assumption that each of the base
changes 𝐴×XU𝑖 can be written as iterated colimits of representable submersionY𝑖, 𝑗 →U𝑖.
By descent, it follows that the map 𝐴→ X can be written as an iterated colimit of the
compositesY𝑖, 𝑗 →U𝑖 ↩→X. Since these are again representable submersions, this finishes
the proof of the claim. □

Lemma 4.1.11. The inclusion Shv(Sub/X) ↩→ Shv(DiffStk/X) preserves finite products.

Proof. In both source and target finite products commute with colimits in each variable.
In particular, the statement may be checked at the level of representables. There it is
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clear as the category Sub/X admits products and these are preserved by the inclusion
Sub/X ↩→ DiffStk/X . □

Corollary 4.1.12 (Symmetric monoidality). For every morphism 𝑓 : X′→X of differen-
tiable stacks, the pullback functor 𝑓 ∗ : Shv(Sub/X) → Shv(Sub/X′) preserves finite prod-
ucts. In particular, the assignment X ↦→ Shv(Sub/X) defines a limit-preserving functor
DiffStkop→ CAlg(PrL).

Proof. The first statement follows from Lemma 4.1.11 and Lemma 4.1.9. The sec-
ond statement is then a direct consequence from Lemma 4.1.10 as the forgetful functor
CAlg(PrL) → Cat∞ preserves limits. □

4.1.2 Sheaves on the coarse moduli space

In Section 3.1 we assigned to every differentiable stack X a topological space |X|mod, the
coarse moduli space ofX. The goal of this section is to relate its sheaf∞-topos Shv( |X|mod)
to the∞-topos Shv(Sub/X).
Recall from Corollary 3.1.12 that the poset Open( |X|mod) of open subsets of the coarse
moduli space is equivalent to the poset Open(X) of open substacks of X, giving an equiva-
lence

Shv( |X|mod) = Shv(Open( |X|mod)) ≃ Shv(Open(X)).

Henceforth, we will work with the sheaf category Shv(Open(X)) rather than Shv( |X|mod).
Since every open embedding U ↩→X is in particular a representable submersion, there is
an inclusion of categories 𝜄 : Open(X) ↩→ Sub/X .

Proposition 4.1.13. Let X be a differentiable stack.

(1) The inclusion 𝜄 : Open(X) ↩→ Sub/X is a cocontinuous functor, in the sense of Defini-
tion E.43. In particular, right Kan extension along 𝜄 preserves sheaves and defines a
fully faithful geometric morphism of∞-topoi

𝜄∗ : Shv(Open(X)) ↩→ Shv(Sub/X).

(2) The inclusion 𝜄 : Open(X) ↩→ Sub/X admits a left adjoint im: Sub/X → Open(X)
which is also cocontinuous. In particular, the restriction functor −◦ 𝜄 : PSh(Sub/X) →
PSh(Open(X)) preserves sheaves, and thus restricts to a functor

𝜄∗ : Shv(Sub/X) → Shv(Open(X))

which is left adjoint to 𝜄∗.
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(3) The functor 𝜄∗ admits a fully faithful left-exact left adjoint

𝜄♯ : Shv(Open(X)) ↩→ Shv(Sub/X).

(4) The functor 𝜄∗ preserves limits and colimits.

(5) For every morphism 𝑓 : Y→X of differentiable stacks, there are preferred commutative
diagrams as follows:

Shv(Sub/Y) Shv(Open(Y))

Shv(Sub/X) Shv(Open(X)),

𝜄∗

𝑓∗ 𝑓∗

𝜄∗

Shv(Open(X)) Shv(Sub/X)

Shv(Open(Y)) Shv(Sub/Y).

𝜄♯

𝑓 ∗ 𝑓 ∗

𝜄♯

(6) For every sheaf F ∈ Shv(Open(X)), the sheaf 𝜄♯F ∈ Shv(Sub/X) is given at a repre-
sentable submersion 𝑓 : Y →X by

(𝜄♯F )(Y) ≃ ΓY ( 𝑓 ∗F ),

the anima of global sections of the pullback sheaf 𝑓 ∗F ∈ Shv(Open(Y)).

Proof. We start with part (1). The fact that 𝜄 is cocontinuous is clear as any open cover in
SubX of an open substackU ↩→X consists of smaller open substacksV ↩→U ↩→X. The
‘in particular’ follows from Corollary E.47.

Now we prove part (2). By Lemma 2.4.9, every representable submersion 𝑓 : Y → X
factors uniquely as a representable surjective submersion Y ↠ 𝑓 (Y) followed by an open
embedding 𝑓 (Y) ↩→X. Since effective epimorphisms and monomorphisms are part of a
factorization system on Shv(Diff), it follows immediately that sending ( 𝑓 : Y→X) ∈ Sub/X
to im( 𝑓 ) := ( 𝑓 (Y) ↩→X) ∈ Open(X) defines a left adjoint im of 𝜄.

To see that im is cocontinuous, consider a representable submersion 𝑓 : Y→X and consider
a collection of open substacks U𝑖 ↩→ 𝑓 (Y) covering its image in X. Then the preimages
V𝑖 := 𝑓 −1(U𝑖) ⊆ Y form an open cover of Y satisfying 𝑓 (V𝑖) =U𝑖 ⊆ 𝑓 (Y). This proves
that im: Sub/X→ Open(X) is cocontinuous.

As in part (1), it follows from Corollary E.47 that right Kan extension along im preserves
sheaves and defines a geometric morphism of∞-topoi. Since right Kan extension along im
is equivalent to restriction along 𝜄, this proves (2).

For (3), we know that 𝜄∗ ≃ im∗ admits a left-exact left adjoint 𝜄♯ ≃ im∗ by part (2). Further-
more, since 𝜄∗ is fully faithful, it follows that also 𝜄♯ is fully faithful.

Part (4) is immediate, since 𝜄∗ admits both a left and a right adjoint.
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For part (5), the right square is obtained from the left square by passing to left adjoints. The
left square is obtained by restriction along the following commutative diagram:

Open(Y) Sub/Y

Open(X) Sub/X .

𝜄

X×Y− X×Y−

𝜄

For part (6), observe that the value of 𝜄♯F at Y is the same as the anima of global sections
of the sheaf 𝑓 ∗𝜄♯F ∈ Shv(Sub/Y), as the functor 𝑓 ∗ : Shv(Sub/X) → Shv(Sub/Y) is given
by precomposition with the functor 𝑓 ◦− : Sub/Y→ Sub/X . By part (5), this is the same as
the global sections of the sheaf 𝜄♯ 𝑓 ∗F ∈ Shv(Sub/Y), which in turn is the same as the global
sections of 𝜄∗𝜄♯ 𝑓 ∗F ∈ Shv(Open(Y)). As 𝜄♯ is fully faithful, the latter sheaf is equivalent
to 𝑓 ∗F , proving the claim. □

Corollary 4.1.14. Let X be a differentiable stack. For every representable submersion
𝑓 : Y →X, consider the composite

𝜄∗ ◦ 𝑓 ∗ : Shv(Sub/X)
𝑓 ∗

−−→ Shv(Sub/Y)
𝜄∗−→ Shv(Open(Y)).

Then the functors 𝜄∗ ◦ 𝑓 ∗ preserve all limits and colimits and are jointly conservative.

Proof. The functor 𝑓 ∗ preserves limits and colimits by Lemma 4.1.8 and the functor 𝜄∗ by
Proposition 4.1.13. It thus remains to show these functors are jointly conservative. But this is
clear: for a sheaf F ∈ Shv(Sub/X), the value of F at some object ( 𝑓 : Y→X) ∈ Shv(SubY)
is equivalent to the anima of global sections of (𝜄∗ ◦ 𝑓 ∗)F = 𝜄∗ 𝑓 ∗F :

F (Y) ≃ ΓY (𝜄∗ 𝑓 ∗F ). □

The previous result can be used to prove properties of the ∞-category Shv(Sub/X) by
reducing them to analogous properties of the∞-categories Shv(Open(Y)). The following
result on hypercompleteness of Shv(Sub/X) is an important illustration of this method. We
thank Marc Hoyois for useful discussions concerning the proof of this result.

Proposition 4.1.15. For a separated differentiable stack X, the ∞-topos Shv(Sub/X) is
hypercomplete.

Proof. Let 𝜑 : F → F ′ be an ∞-connected morphism in Shv(Sub/X). We have to show
that 𝜑 is an equivalence. By Corollary 4.1.14, we may show that the image of 𝜑 under the
composite

Shv(Sub/X)
𝑓 ∗

−−→ Shv(Sub/Y)
𝜄∗−→ Shv(Open(Y))
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is an equivalence for everyY ∈ Sub/X . As 𝜄∗ ◦ 𝑓 ∗ preserves limits and colimits, it preserves
∞-connected morphisms, and it follows that the morphism 𝜄∗ 𝑓 ∗𝜑 is again ∞-connected.
Hence it will suffice to show that the∞-topos Shv(Open(Y)) is hypercomplete.

AsX is separated by assumption and the map 𝑓 : Y→X is representable and thus separated
by Lemma 3.3.3, it follows that also Y is separated. By Theorem 3.7.2, Y is locally
isomorphic to a quotient stack 𝑀//𝐺 for a compact Lie group 𝐺 and a smooth 𝐺-manifold
𝑀 . As Shv(Open(Y)) satisfies descent for open covers, a morphism in Shv(Open(Y)) is
an equivalence if and only if it is so locally in Y, and we may thus assume that Y is of the
form 𝑀//𝐺.

Observe that pullback along the quotient map 𝑀 ↠ 𝑀//𝐺 defines an inclusion of posets
Open(𝑀//𝐺) ↩→Open(𝑀) whose image consists of the𝐺-invariant open subspaces of 𝑀 .
This inclusion admits a left adjoint given by sending an open subspace𝑈 to the𝐺-saturation
𝐺 ·𝑈 = {𝑔 · 𝑢 | 𝑔 ∈ 𝐺,𝑢 ∈ 𝑈}, and this functor preserves open coverings. In particular,
the inclusion Open(𝑀//𝐺) ↩→ Open(𝑀) is a morphism of sites by Example E.42, and
the resulting pullback functor Shv(Open(𝑀//𝐺)) ↩→ Shv(Open(𝑀)) = Shv(𝑀) preserves
∞-connected morphisms by Remark E.51. It will thus suffice to show that Shv(𝑀) is
hypercomplete. This is a special case of [Lur09, Theorem 7.2.3.6, Corollary 7.2.1.12], see
also Example E.54. □

4.1.3 Ordinary sheaves on differentiable stacks

In this subsection, we recall the definition of the∞-category Shv(X) of (ordinary) sheaves
on a differentiable stack X, and compare it with the ∞-topos Shv(Sub/X). The material of
this subsection will not play a significant role in the remainder of the article and may be
skipped on first reading.

Lemma 4.1.16. Let C be a presentable∞-category. Then the functor Shv(−;C) : Diffop→
Cat∞ if a sheaf of∞-categories with respect to the open cover topology on Diff.

Proof. Any open cover of a smooth manifold 𝑀 consists of objects of Open(𝑀) and hence
it suffices that for every 𝑀 the composite

Open(𝑀)op ↩→ (Diff/𝑀)op fgt
−−→ Diffop Shv(−;C)

−−−−−−−→ Cat∞

is a sheaf of∞-categories on 𝑀 . For every open𝑈 ⊆ 𝑀 , the inclusion Shv(𝑈) ↩→ Shv(𝑀)
induces an equivalence Shv(𝑈) ∼−−→ Shv(𝑀)/𝑈 , and thus we obtain an equivalence

Shv(𝑈;C) ≃ Shv(𝑀)/𝑈 ⊗ C,
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where the tensor product is Lurie’s tensor product of presentable ∞-categories. It is clear
that for a smaller open subset 𝑉 ⊆𝑈 ⊆ 𝑀 the restriction functor (−)|𝑉 : Shv(𝑈) → Shv(𝑉)
corresponds under this equivalence to the functor Shv(𝑀)/𝑈→ Shv(𝑀)/𝑉 given by pullback
along the inclusion 𝑉 ↩→ 𝑈, hence we see that the above composite is equivalent to the
composite

Open(𝑀)op Shv(𝑀)/−−−−−−−−→ PrR −⊗C−−−−−→ PrR fgt
−−−→ Cat∞.

Since the∞-topos Shv(𝑀) satisfies descent, the first functor sends covering sieves to limits.
As the functors −⊗ C : PrR→ PrR and fgt : PrR→ Cat∞ preserves limits, this finishes the
proof. □

Definition 4.1.17 (Sheaves on a stack). Let C be a presentable ∞-category. By the previ-
ous lemma, the functor Shv(−;C) : Diffop→ Cat∞ uniquely extends to a limit-preserving
functor

Shv(−;C) : Shv(Diff)op→ Cat∞.

For a stack X on Diff, we refer to Shv(X;C) as the∞-category of C-valued sheaves on X.

Remark 4.1.18. We will frequently refer to a sheaf onX as an ordinary sheaf, to emphasize
the contrast with the notion of a genuine sheaf which will be introduced in Section 4.2.

There are comparison functors between Shv(Sub/X) and Shv(X) analogous to the ones for
Shv( |X|mod) from Proposition 4.1.13:

Construction 4.1.19. Given X be a differentiable stack, we construct a functor

𝛾∗ : Shv(Sub/X) → Shv(X)

which is natural inX. Since the assignmentX ↦→ Shv(X) is by definition right Kan extended
from the subcategory Diff ⊆ DiffStk, it suffices to define this when X = 𝑀 is a smooth
manifold, naturally in 𝑀 . In this case we let 𝛾∗ be the functor 𝜄∗ : Shv(Sub/X) → Shv(𝑀)
from Proposition 4.1.13.

Since the ∞-category Shv(X) is a limit of Shv(𝑀) where 𝑀 ranges over all smooth
manifolds 𝑀 equipped with a map of stacks 𝑓 : 𝑀 → X, the functor 𝛾∗ is essentially
determined by the existence of commutative squares

Shv(Sub/X) Shv(X)

Shv(Sub/𝑀) Shv(𝑀),

𝑓 ∗

𝛾∗

𝑓 ∗

𝜄∗

naturally in 𝑀 .
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Proposition 4.1.20. Let X be a differentiable stack.

(1) The functor 𝛾∗ : Shv(Sub/X) → Shv(X) admits a fully faithful right adjoint

𝛾∗ : Shv(X) ↩→ Shv(Sub/X)).

(2) The functor 𝛾∗ admits a fully faithful left adjoint

𝛾♯ : Shv(X) ↩→ Shv(Sub/X)).

(3) For every morphism 𝑔 : Y→X of differentiable stacks, there are preferred commutative
diagrams as follows:

Shv(Sub/Y) Shv(Y)

Shv(Sub/X) Shv(X),

𝛾∗

𝑔∗ 𝑔∗

𝛾∗

Shv(X) Shv(Sub/X)

Shv(Y) Shv(Sub/Y).

𝛾♯

𝑔∗ 𝑔∗

𝛾♯

(4) For every sheaf F ∈ Shv(X), the sheaf 𝛾♯F ∈ Shv(Sub/X) is given at a representable
submersion 𝑓 : Y →X by

(𝛾♯F )(Y) ≃ ΓY ( 𝑓 ∗F ),

the anima of global sections of the pullback sheaf 𝑓 ∗F ∈ Shv(Y).

Proof. For parts (1) and (2), we first show that the functor 𝛾∗ preserves limits and colimits.
Let 𝑁 ↠ X be a representable atlas for X. By descent there is an equivalence Shv(X) ≃
lim[𝑛]∈ΔShv(𝑁×𝑛X ). Since each map 𝑁×

𝑛
X →X is a representable submersion, it will suffice

to show that for every representable submersion 𝑓 : 𝑀→X, the composite

Shv(Sub/X)
𝛾∗

−→ Shv(X)
𝑓 ∗

−−→ Shv(𝑀)

preserves limits and colimits. But by definition of 𝛾∗, this functor agrees with the composite

Shv(Sub/X)
𝑓 ∗

−−→ Shv(Sub/𝑀)
𝜄∗−→ Shv(𝑀),

which preserve limits and colimits by Corollary 4.1.14. It follows in particular that 𝛾∗

admits both a right adjoint 𝛾∗ and a left adjoint 𝛾♯.

For part (3) follows directly from part (5) of Proposition 4.1.13, since the both functors 𝑔∗
commute with the pullback functors 𝑓 ∗ for representable submersions 𝑀→X.
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We may now prove that the functors 𝛾∗ and 𝛾♯ are fully faithful, finishing the proof of parts
(1) and (2). It suffices to prove that 𝛾♯ is fully faithful, as then so is its double right adjoint
𝛾∗. To show that the unit id→ 𝛾∗𝛾♯ is an equivalence, it suffices to do so after applying the
pullback functor 𝑓 ∗ : Shv(X) → Shv(𝑀) for every representable submersion 𝑓 : 𝑀 →X.
To this end, consider the following diagram:

Shv(X) Shv(Sub/X) Shv(X)

Shv(𝑀) Shv(Sub/𝑀) Shv(𝑀).

𝑓 ∗

𝛾♯

𝑓 ∗

𝛾∗

𝑓 ∗

𝜄♯ 𝜄∗

The right square commutes by definition of 𝛾∗ while the left square commutes by part (3)
we have just proved. We thus obtain an equivalence 𝑓 ∗𝛾∗𝛾♯ ≃ 𝜄∗𝜄♯ 𝑓 ∗ and the claim thus
follows from fully faithfulness of 𝜄♯.

Finally, part (4) follows from (3) just as in the proof of part (6) of Proposition 4.1.13. □

The following result, which identifies C-valued sheaves on the classifying stack B𝐺 with
objects in C with a 𝐺-action, was pointed out to the author by Dustin Clausen.

Lemma 4.1.21 (Sheaves on classifying stacks). Let 𝐺 be a Lie group and let C be a
presentable∞-category. Then there is an equivalence

Shv(B𝐺;C) ≃ C𝐵𝐺

between the∞-category ofC-valued sheaves on the classifying stackB𝐺 and the∞-category
of C-valued local system on the classifying space 𝐵𝐺 ∈ An.

Proof. It will suffice to show the claim when C is the∞-category of animae, as the general
case may be obtained by tensoring both sides with C in PrL. By definition, the stack B𝐺 is
the colimit of the simplicial diagram Δop→ Shv(Diff), [𝑛] ↦→ 𝐺𝑛, hence by descent there
is an equivalence

Shv(B𝐺) ≃ lim[𝑛]∈ΔShv(𝐺𝑛).

For a topological space 𝑋 , let Loc(𝑋) ⊆ Shv(𝑋) denote the subcategory of locally constant
sheaves, as in [Lur17, Definition A.1.12]. By [Lur17, Theorem A.1.15], there is a functorial
equivalence Loc(𝑋) ≃ Anshp(𝑋) , where shp(𝑋) ∈ An denotes the shape of 𝑋 . Since 𝐺 is a
smooth manifold, its shape agrees with its homotopy type, and thus we obtain an equivalence

lim[𝑛]∈ΔLoc(𝐺𝑛) ≃ lim[𝑛]∈ΔAn𝐺
𝑛 ≃ Ancolim[𝑛]∈Δop 𝐺𝑛 ≃ An𝐵𝐺 .
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To finish the proof, it thus remains to observe that the inclusion

lim[𝑛]∈ΔLoc(𝐺𝑛) ↩→ lim[𝑛]∈ΔShv(𝐺𝑛)

is essentially surjective: given an object (F𝑛)[𝑛]∈Δ of the target, the sheaf F𝑛 ∈ Shv(𝐺𝑛)
is the pullback along 𝐺𝑛 → pt of the sheaf F0 ∈ Shv(pt) = Loc(pt) and thus is a locally
constant sheaf. □

4.2 Genuine sheaves of animae

In this section, we will introduce and study the ∞-category H(X) of genuine sheaves of
animae on a differentiable stackX: homotopy invariant sheaves of animae on the site Sub/X .

4.2.1 Homotopy invariant presheaves

We start by defining the notion of a homotopy invariant presheaf and study the homotopy
localization functor 𝐿R. Throughout this subsection, we fix a differentiable stack X and a
presentable∞-category C.

Definition 4.2.1 (Homotopy invariance). A C-valued presheaf F ∈ PSh(Sub/X;C) is said
to be homotopy invariant1 if for every objectY ∈ Sub/X , the projection map pr : Y×R→Y
induces an equivalence pr∗ : F (Y) ∼−−→ F (Y ×R) in C. We denote by

PShhtp(Sub/X;C) ⊆ PSh(Sub/X;C)

the full subcategory spanned by the homotopy invariant presheaves.

Since a presheaf F is homotopy invariant if and only if it is local with respect to the projec-
tions pr : Y×R→Y, the∞-category PShhtp(Sub/X;C) is a localization of PSh(Sub/X;C)
at these maps and in particular PShhtp(Sub/X;C) is a presentable∞-category. We recall an
explicit description of the localization functor, due to Morel and Voevodsky [MV99] and
already known to Suslin. Our discussion takes inspiration from [ADH21, Chapter 5].

Construction 4.2.2 (The Morel–Suslin–Voevodsky construction). We define the algebraic
𝑛-simplex Δ𝑛alg as the hyperplane in R𝑛+1 defined by

Δ𝑛alg := {(𝑥0, 𝑥1, . . . , 𝑥𝑛) ∈ R(𝑛+1) |
𝑛∑︁
𝑖=0
𝑥𝑖 = 1}.

1This is sometimes also referred to as R-invariance or concordance invariance.
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The algebraic simplices form a cosimplicial smooth manifold Δ•alg : Δ→ Diff. Given a
presheaf F ∈ PSh(Sub/X;C), we define another presheaf 𝐿RF by

𝐿RF (Y) := colim[𝑛]∈Δop F (Y ×Δ𝑛alg),

the geometric realization in C of the simplicial object [𝑛] ↦→ F (Y ×Δ𝑛alg). This defines a
functor

𝐿R : PSh(Sub/X;C) → PSh(Sub/X;C).

As Δ0
alg � pt, there is a canonical map of presheaves 𝜂F : F → 𝐿RF .

Proposition 4.2.3. For any presheaf F ∈ PSh(Sub/X;C), the presheaf 𝐿RF is homotopy
invariant. Furthermore, the resulting functor

𝐿R : PSh(Sub/X;C) → PShhtp(Sub/X;C)

is left adjoint to the inclusion PShhtp(Sub/X;C) ↩→ PSh(Sub/X;C), with unit given by the
map 𝜂F : F → 𝐿RF .

Proof. The proof is in essence identical to that of [ADH21, Proposition 5.1.2], where the
case X = pt is treated. We spell out the core ingredients of the proof and leave some details
to the reader.

First we show that the presheaf 𝐿RF is homotopy invariant. Given a smooth manifold Y,
we have to show that the functor pr∗ : 𝐿RF (Y) → 𝐿RF (Y ×R) induced by the projection
pr : Y×R→Y is an equivalence. We claim that an inverse is given by the map 𝑖∗0 : 𝐿RF (Y×
R) → 𝐿RF (Y), where 𝑖0 : Y ↩→Y×R denotes the inclusion of Y×{0}. Since pr◦𝑖0 = id,
it remains to show that pr∗ 𝑖∗0 ≃ id. This is a standard argument which goes back at least to
[MV99]: the composite map

Y×R×Δ•alg
pr× id
−−−−→Y×Δ•alg

𝑖0×id−−−−→Y×R×Δ•alg

is simplicially homotopic to the identity of the simplicial objectY×R×Δ•alg and since sim-
plicially homotopic maps between simplicial objects induce homotopic maps on realizations
this provides the desired homotopy pr∗ 𝑖∗0 ≃ id∗ = id.

In order to show that the map 𝜂F : F → 𝐿RF is the unit of an adjunction, we apply
[Lur09, Proposition 5.2.7.4]. Note that if F is already homotopy invariant, each of the
maps F (Y) → F (Y ×Δ𝑛alg) is an equivalence and hence the map 𝜂F is an equivalence.
For arbitrary F , we showed above that 𝐿RF is homotopy invariant, and thus the map
𝜂𝐿RF : 𝐿RF → 𝐿R𝐿RF is an equivalence for arbitrary F . It follows that also the map

150



𝐿R𝜂F : 𝐿RF → 𝐿R𝐿RF is an equivalence, as this agrees with 𝜂𝐿RF up to swapping the two
indices [𝑛] and [𝑚] in the double colimit

𝐿R𝐿RF = colim[𝑛]∈Δop colim[𝑚]∈Δop F (Y ×Δ𝑛alg×Δ
𝑚
alg).

This shows that the conditions of part (3) of [Lur09, Proposition 5.2.7.4] are satisfied,
finishing the proof. □

Corollary 4.2.4 (cf. Hoyois [Hoy17, Proposition 3.4]). Assume that geometric realizations
commute with finite products in C (e.g. C is an∞-topos or C is stable). Then the localization
functor 𝐿R preserves finite products.

Proof. Since the functor F ↦→ F (− ×Δ𝑛alg) preserves limits and geometric realizations
commute with finite products in PSh(Sub/X;C), this is clear from the definition of 𝐿R. □

Corollary 4.2.5 (cf. Hoyois [Hoy17, Proposition 3.4]). When C = An is the∞-category of
animae, the localization functor 𝐿R : PSh(Sub/X) → PShhtp(Sub/X) is locally cartesian:
for a pair of maps 𝐴→ 𝐵 and 𝐶 → 𝐵 in PSh(Sub/X) such that 𝐴 and 𝐵 are homotopy
invariant, the exchange map

𝐿R(𝐴×𝐵𝐶) → 𝐴×𝐵 𝐿R(𝐶)

is an equivalence in PShhtp(Sub/X).

Proof. We have to show that for all Y ∈ Sub/Y the square

colim[𝑛]∈Δop

(
𝐴(Y ×Δ𝑛alg) ×𝐵(Y×Δ𝑛

alg) 𝐶 (Y ×Δ
𝑛
alg)

)
𝐴(Y)

colim[𝑛]∈Δop𝐶 (Y ×Δ𝑛alg) 𝐵(Y)

is a pullback square. As 𝐴 and 𝐵 are homotopy invariant, the top left corner is equivalent
to the realization of the simplicial object [𝑛] ↦→ 𝐴(Y) ×𝐵(Y) 𝐶 (Y ×Δ𝑛alg), and thus this is
an instance of universality of colimits in PSh(Sub/X). □

4.2.2 Genuine sheaves of animae

The following is the main definition of this section.
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Definition 4.2.6 (Genuine sheaves). Let X be a differentiable stack. A genuine sheaf on
X is a sheaf F ∈ Shv(Sub/X) which is homotopy invariant as a presheaf, in the sense of
Definition 4.2.1. We denote by

H(X) := Shvhtp(Sub/X) ⊆ Shv(Sub/X)

the full subcategory spanned by the genuine sheaves on X. More generally, if C is a
presentable∞-category, we let

H(X;C) := Shvhtp(Sub/X;C) ⊆ Shv(Sub/X;C)

be the subcategory of homotopy invariant C-valued sheaves on Sub/X . Note that there is
an equivalence H(X,C) ≃ H(X) ⊗ C.

As in the case of presheaves, H(X) is a localization of Shv(Sub/X) at the projections
Y×R→Y, and the inclusion admits a left adjoint

𝐿htp : Shv(Sub/X) → H(X),

which we will refer to as the homotopy localization functor. We will study this functor in
more detail in Subsection 4.2.3 below.

Unsurprisingly, a consequence of forcing homotopy invariance is that fiberwise homotopic
maps over X become equivalent in H(X).

Definition 4.2.7. Let X be a differentiable stack, let Y,Z ∈ Sub/X be submersions over
X, and let 𝑓0, 𝑓1 : Y → Z be two maps in Sub/X . A homotopy over X is a homotopy
𝑓 : Y ×R→Z in Sub/X whose restriction to 𝑖𝑟 : Y × {𝑟} ↩→ Y ×R is the map 𝑓𝑟 , for
𝑟 ∈ {0,1}.
A map 𝑓 : Y →Z in Sub/X is a strict homotopy equivalence if there is a map 𝑔 : Y →Z
over X such that the maps 𝑔 𝑓 and 𝑓 𝑔 are homotopic over X to the respective identities, in
the sense of Definition 2.5.5.

Lemma 4.2.8. Let X be a differentiable stack and let 𝑓 : Y×R→Z be a homotopy over
X of maps Y →Z in Sub/X . Then the maps 𝐿htp( 𝑓0), 𝐿htp( 𝑓1) : 𝐿htp(Y) → 𝐿htp(Z) are
equivalent as maps in H(X).

Proof. It will suffice to prove this in the case thatZ =Y×R and 𝑓 is the identity, so that 𝑓0
and 𝑓1 are the inclusions 𝑖𝑟 : Y×{𝑟} ↩→Y×R. In that case, 𝐿htp(𝑖0) and 𝐿htp(𝑖1) are both
inverse to the equivalence 𝐿htp(pr) : 𝐿htp(Y×R) ∼−−→ 𝐿htp(Y), and are hence equivalent. □
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Corollary 4.2.9. Let 𝑓 : Y → Z be a strict homotopy equivalence over X. Then the
morphism 𝐿htp( 𝑓 ) : 𝐿htp(Y) → 𝐿htp(Z) is an equivalence in H(X). □

Example 4.2.10. Every vector bundle E →Y over X is a strict homotopy equivalence in
Sub/X .

4.2.3 The homotopy localization functor

The homotopy localization functor 𝐿htp : PSh(Sub/X) → H(X) admits an explicit formula
as a transfinite iteration of the localization functor 𝐿R and the sheafification functor 𝐿open.
The goal of this subsection is to make this precise and to deduce some consequences.

Construction 4.2.11. For an ordinal 𝛼, let [𝛼] denote the linearly ordered set of ordinals
𝛽 ≤ 𝛼. We will construct for every ordinal 𝛼 a functor

𝐿 : [𝛼] → Fun(PSh(Sub/X),PSh(Sub/X)),

which we informally denote by 𝛽 ↦→ 𝐿𝛽 for 𝛽 ≤ 𝛼. We proceed via transfinite induction:

• If 𝛼 = 0, we set 𝐿0 = id.

• If 𝛼 = 𝛽+1 is a sucessor ordinal, we define

𝐿𝛽+1 := 𝐿open ◦ 𝐿R ◦ 𝐿𝛽 : PSh(Sub/X) → PSh(Sub/X).

The units id→ 𝐿open and id→ 𝐿R define a natural transformation 𝐿𝛽→ 𝐿𝛽+1 which
thus defines the extension 𝐿 : [𝛽+1] → Fun(PSh(Sub/X),PSh(Sub/X)).

• If 𝛼 is a limit ordinal, we define

𝐿𝛼 := colim𝛽<𝛼 𝐿
𝛽

and let 𝐿 : [𝛼] = 𝛼⊲ → Fun(PSh(Sub/X),PSh(Sub/X)) denote the cocone for this
colimit.

We may think of the functor 𝐿𝛼 as the 𝛼-fold power of the functor 𝐿1 = 𝐿open ◦ 𝐿R.

Lemma 4.2.12. For every ordinal𝛼, the functor 𝐿𝛼 : PSh(Sub/X) → PSh(Sub/X) preserves
finite products and is locally cartesian.
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Proof. We proceed via transfinite induction. For 𝛼 = 0 we have 𝐿𝛼 = id and the claim is
obvious. When 𝛼 = 𝛽+1 is a successor ordinal, we have 𝐿𝛼 = 𝐿open ◦ 𝐿R ◦ 𝐿𝛽 and the claim
follows from a combination of the induction hypothesis, Corollary 4.2.4 and left-exactness
of the sheafification functor 𝐿open. When 𝛼 is a limit ordinal, the claim is immediate as
finite limits commute with filtered colimits in PSh(Sub/X). □

Lemma 4.2.13. For any uncountable limit ordinal 𝛼, the functor 𝐿𝛼 : PSh(Sub/X) →
PSh(Shv/X) lands in the subcategory H(X) of homotopy invariant sheaves. Moreover,
the transformation id = 𝐿0→ 𝐿𝛼 exhibits the functor 𝐿𝛼 as a left adjoint to the inclusion
H(X) ↩→ PSh(Sub/X).

Proof. We start by showing that 𝐿𝛼 lands in homotopy invariant sheaves. It follows
immediately from Corollary 4.1.6 that 𝐿𝛼F is a sheaf for every preheaf F ∈ PSh(Sub/X),
as for every 𝛽 < 𝛼 the functor 𝐿𝛽+1 = 𝐿open ◦ 𝐿R ◦ 𝐿𝛽 lands in sheaves. Since 𝐿2

R ≃ 𝐿R,
we obtain an equivalent definition of 𝐿𝛼 if for successor ordinals we had defined 𝐿𝛽+1 =
𝐿R ◦ 𝐿open ◦ 𝐿R ◦ 𝐿𝛽, and since homotopy invariant presheaves are closed under colimits in
PSh(Shv/X) it follows that 𝐿𝛼 lands in homotopy invariant presheaves. This proves the first
claim.

To prove that 𝐿𝛼 is left adjoint to the inclusion, let F ,G ∈ PSh(Shv/X) be presheaves and
assume that G is a homotopy invariant sheaf. We will prove by transfinite induction that for
every ordinal 𝛽 ≤ 𝛼, the map

HomPSh(Shv/X) (𝐿
𝛽F ,G) → HomPSh(Shv/X) (F ,G)

given by precomposition with F → 𝐿𝛽F is an equivalence. For 𝛽 = 0 we have 𝐿𝛽F = F
and there is nothing to show. When 𝛽 = 𝛾 +1 is a successor ordinal, the claim follows from
the induction hypothesis for 𝛾, the fact that 𝐿𝛽F = 𝐿open(𝐿R(𝐿𝛾F )) and the fact that G is a
homotopy invariant sheaf. When 𝛽 is a limit ordinal, this is immediate from the induction
hypothesis.

Taking 𝛽 = 𝛼 then finishes the proof. □

Corollary 4.2.14. The functor 𝐿htp : Shv(Sub/X) → H(X) preserves finite products and is
locally cartesian: for every pair of maps 𝐴→ 𝐵 and 𝐶 → 𝐵 in Shv(Sub/X) such that 𝐴
and 𝐵 are homotopy invariant, the exchange map

𝐿htp(𝐴×𝐵𝐶) → 𝐴×𝐵 𝐿htp(𝐶)

is an equivalence in H(X).

Proof. Let𝛼 be an uncountable ordinal. By Lemma 4.2.13 there is an equivalence 𝐿htp ≃ 𝐿𝛼,
and thus the claim follows from Lemma 4.2.12. □
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4.2.4 Pullback and pushforward functors

The∞-categories H(X) come equipped with pullback and pushforward functors analogous
to those for the∞-categories Shv(Sub/X).

Lemma 4.2.15. For a morphism 𝑓 : X′ → X of differentiable stacks, the pushforward
functor 𝑓∗ : Shv(Sub/X′) → Shv(Sub/X) preserves homotopy invariant sheaves:

𝑓∗ : H(X′) → H(X).

Proof. The functor 𝑓∗ is given by precomposition with the base change functor − ×X
X′ : Sub/X→ Sub/X′ , which sends the projection mapY×R→Y to the projection (Y ×X
X′) ×R→Y×XX′. The claim follows immediately. □

The pushforward functor 𝑓∗ : H(X′) → H(X) admits a left adjoint

𝑓 ∗ : H(X) → H(X′)

given as the composite H(X) ↩→ Shv(Sub/X)
𝑓 ∗

−−→ Shv(Sub/X′)
𝐿htp−−−→H(X′). Here we abuse

notation by writing both 𝑓 ∗ for the pullback functor both before and after applying homotopy
localization; when potential confusion arises we make the source and target of the functor
𝑓 ∗ explicit. In case 𝑓 is a representable submersion, the two functors in fact agree:

Lemma 4.2.16. For every representable submersion 𝑓 : Y → X, the pullback functor
𝑓 ∗ : Shv(Sub/X) → Shv(Sub/Y) preserves homotopy invariant sheaves.

Proof. The functor 𝑓 ∗ is given by precomposition with the forgetful functor Sub/Y→Sub/X .
Since this preserves the projection mapsZ×R→Z, the claim follows. □

Corollary 4.2.17. For every representable submersion 𝑓 : Y → X, the pullback functor
𝑓 ∗ : H(X) → H(Y) admits a left adjoint 𝑓♯ : H(Y) → H(X) given as the composite

H(Y) ↩→ Shv(Sub/Y)
𝑓♯−→ Shv(Sub/X)

𝐿htp−−−→ H(X). □

Again, we abuse notation by writing 𝑓♯ for the left adjoint to 𝑓 ∗ both before and after
applying homotopy localization.

Proposition 4.2.18 (Symmetric monoidality). For a morphism 𝑓 : X′→X of differentiable
stacks, the pullback functor 𝑓 ∗ : H(X) → H(X′) preserves finite products.

Proof. By Corollary 4.2.14, this follows directly from Corollary 4.1.12. □
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Proposition 4.2.19 (Smooth base change). Consider a pullback square of differentiable
stacks

Y′ Y

X′ X,

𝑓 ′

ℎ

𝑓

𝑔

where 𝑓 (and thus 𝑓 ′) is a representable submersion. Then the Beck-Chevalley map

BC♯ : 𝑓 ′
♯
ℎ∗⇒ 𝑔∗ 𝑓♯

of functors H(Y) → H(X′) is an equivalence.

Proof. The map is obtained by applying the homotopy localization functor

𝐿htp : Shv(Sub/X′) → H(X′)

to the analogous exchange map 𝑓 ′
♯
ℎ∗⇒ 𝑔∗ 𝑓♯ as functors from Shv(Sub/Y) to Shv(Sub/X′),

and thus it will suffice to show the latter is an equivalence. As all functors in sight preserve
colimits, it suffices to check this on representablesZ ∈ Sub/Y . But in this case, this is simply
the equivalenceZ×YY′ ∼−−→Z×XX′ over X′, obtained from the pullback square. □

Corollary 4.2.20. Let 𝑗 : U ↩→X be an open embedding of differentiable stacks. Then the
functors

𝑗♯ : H(U) → H(X) and 𝑗∗ : H(U) → H(X)

are fully faithful.

Proof. Applying Proposition 4.2.19 to the pullback square

U U

U X

𝑗

𝑗

shows that the unit id→ 𝑗∗ 𝑗♯ is an equivalence, showing that 𝑗♯ is fully faithful. The claim
for 𝑗∗ follows immediately. □

Proposition 4.2.21 (Smooth projection formula). Let 𝑓 : Y →X be a representable sub-
mersion of differentiable stacks. Then for all objects 𝐴 ∈H(X) and 𝐵 ∈H(Y), the exchange
map

PF♯ : 𝑓♯ ( 𝑓 ∗𝐴×𝐵) → 𝐴× 𝑓♯𝐵

is an equivalence in H(X)
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Proof. By Corollary 4.2.14, it suffices to prove the analogous statement for the functor
𝑓♯ : Shv(Sub/Y) → Shv(Sub/X). As both sides preserve colimits in 𝐴 and 𝐵, we may
assume that 𝐴 ∈ Sub/X and 𝐵 ∈ Sub/Y are representables. In that case, this map is simply
the canonical equivalence

(𝐴×XY) ×Y 𝐵 ∼−−→ 𝐴×X 𝐵. □

Proposition 4.2.22 (Homotopy invariance). Let 𝜋 : E → X be a vector bundle over a
differentiable stack X. Then the functor 𝜋∗ : H(X) → H(E) is fully faithful.

Proof. We show that for every object 𝐴 ∈ H(X), the counit map 𝜋♯𝜋∗𝐴→ 𝐴 is an equiv-
alence. Since both sides preserve colimits in the variable 𝐴, it suffices to prove this when
𝐴 is a representable ( 𝑓 : Y →X) ∈ Sub/X . In that case, there is an equivalence 𝜋♯𝜋∗𝐴 ≃
𝐿htp(E ×X Y), and the counit is given by the map 𝐿htp(prY) : 𝐿htp(E ×X Y) → 𝐿htp(Y)
induced by the projection onto Y. Since this projection is a strict homotopy equivalence,
the claim thus follows from Corollary 4.2.9. □

We end the section by making precise the functoriality of the assignment X ↦→ H(X) and
showing that it forms a sheaf of∞-categories on DiffStk.

Construction 4.2.23. We will turn the assignment X ↦→ H(X) into a functor DiffStkop→
CAlg(PrL). Consider again the functor Shv(Sub/−) : DiffStkop→ CAlg(PrL) from Corol-
lary 4.1.12. As the value at the terminal object pt ∈ DiffStk is Shv(Diff), this functor
admits a canonical enhancement to a functor Shv(Sub/−) : DiffStkop→ CAlgShv(Diff) (PrL).
To obtain H(X) from Shv(Sub/X), we have to invert the morphisms Y×R→Y, but note
that these morphisms are obtained by tensoring Y ∈ Shv(Sub/X) with the map R→ pt
in Shv(Diff). As localizing the ∞-category Shv(Diff) at the map R→ pt gives the ∞-
category An by Proposition 4.2.27, it follows that for every differentiable stack X there is
an equivalence

H(X) ≃ Shv(Sub/X) ⊗Shv(Diff) An ∈ CAlg(PrL).

For every morphism 𝑓 : X′→X, the pullback functor 𝑓 ∗ : H(X) → H(X′) is obtained by
localizing the pullback functor 𝑓 ∗ : Shv(Sub/X) → Shv(Sub/X′), and it follows that the
functor

H(−) := Shv(Sub/−) ⊗Shv(Diff) An : DiffStkop→ CAlg(PrL)

is a functorial extension of the assignment X ↦→ H(X).

Lemma 4.2.24. The functor X ↦→ H(X) is a sheaf of∞-categories on DiffStk.
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Proof. It suffices to show that for every differentiable stack X, the composition of H with
the forgetful functor Open(X)op → DiffStkop is a sheaf of ∞-categories on Open(X).
As each inclusion 𝑗 : U ↩→ V in Open(X) is a representable submersion, it follows
from Lemma 4.2.16 that the pullback functor 𝑗∗ : Shv(Sub/V) → Shv(Sub/U) sends the
subcategory H(V) into the subcategory H(U). This determines a unique subdiagram
H(−) ⊆ Shv(Sub/−) on Open(X)op. Since each composite

H(U) ↩→ Shv(Sub/X)
𝐿htp−−−→ H(U)

is an equivalence, the functoriality of this subdiagram agrees with the restricted functoriality
from the functor H: DiffStkop→ Cat∞. Since the assignmentU ↦→ Shv(Sub/U) is a sheaf
of ∞-categories by Lemma 4.1.10, it will thus suffice to prove the following statement:
given an open cover {U𝑖 ↩→ X} of a differentiable stack X, a sheaf F ∈ Shv(Sub/X) is
homotopy invariant if and only if its restriction to everyU𝑖 is homotopy invariant. But this
is immediate from the definition. □

4.2.5 From ordinary sheaves to genuine sheaves

In this subsection, we will show that the forgetful functor 𝛾∗ : H(X) → Shv(X) from
genuine sheaves to ordinary sheaves, defined in Construction 4.1.19, exhibits Shv(X) as
both a localization as well as a colocalization of H(X). In particular, every ordinary sheaf
on a differentiable stack X naturally gives rise to two distinct genuine sheaves on X.

Notation 4.2.25. For a differentiable stack X, we abuse notation and write 𝛾∗ : H(X) →
Shv(X) for the restriction of the functor 𝛾∗ : Shv(Sub/X) → Shv(X) from Construc-
tion 4.1.19.

Proposition 4.2.26. Let X be a differentiable stack. Then the fully faithful functor
𝛾♯ : Shv(X) ↩→ Shv(Sub/X) from Proposition 4.1.20 lands in the subcategory of genuine
sheaves:

𝛾♯ : Shv(X) ↩→ H(X).

In particular, the functor 𝛾∗ : H(X) → Shv(X) admits a fully faithful left adjoint.

Proof. Given an ordinary sheaf F ∈ Shv(X), we show that the associated sheaf 𝛾♯F ∈
Shv(Sub/X) is homotopy invariant. Recall from Proposition 4.1.20 that, for a representable
submersion 𝑓 : Y →X, the ∞-groupoid (𝜄♯F )(Y) is obtained by first pulling back F to a
sheaf 𝑓 ∗F ∈ Shv(Y) over Y, and then passing to global sections:

(𝜄♯F )(Y) ≃ ΓY ( 𝑓 ∗F ).
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In a similar way, one sees that the restriction map pr∗ : (𝜄♯F )(Y) → (𝜄♯F )(Y ×R) induced
by the projection map pr : Y ×R→Y is equivalent to the map ΓY ( 𝑓 ∗F ) → ΓY×R(( 𝑓 ◦
pr)∗F ) = ΓY (pr∗ pr∗ 𝑓 ∗F ) induced by the unit map id→ pr∗ pr∗. It will thus suffice to show
that this unit map is an equivalence, i.e., that the pullback functor

pr∗ : Shv(Y) → Shv(Y ×R)

is fully faithful. Since both sides satisfy descent in the variable Y, it will suffice to prove
this in the case where Y = 𝑀 is a smooth manifold, which is a special case of [Lur17,
Lemma A.2.9]. This finishes the proof. □

As we will see in Section 4.4, the functor 𝛾∗ : H(X) → Shv(X) is not an equivalence in
general: the ∞-category H(X) of genuine sheaves captures more geometric fixed point
data than the∞-category Shv(X) of ordinary sheaves. The following result shows that this
difference between genuine and ordinary sheaves vanishes when X has trivial isotropy:

Proposition 4.2.27. Let 𝑀 be a smooth manifold. Then the functor

𝛾∗ : H(𝑀) → Shv(𝑀)

from Notation 4.2.25 is an equivalence of∞-categories.

Proof. Since 𝛾∗ admits a fully faithful left adjoint 𝛾♯, it will suffice to show that the functor
𝛾∗ is conservative. To this end, let 𝜑 : F → G be a morphism of genuine sheaves on X,
i.e., a morphism of homotopy invariant sheaves on Sub/X , and assume that the induced map
𝜑(𝑈) : F (𝑈) → G(𝑈) is an equivalence of animae for every open subspace 𝑈 ⊆ 𝑀 . By
homotopy invariance of F and G, it follows that also the map 𝜑(𝑈 ×R𝑛) : F (𝑈 ×R𝑛) →
G(𝑈×R𝑛) is an equivalence for every𝑈 ∈ Open(𝑀) and 𝑛 ∈ N. Consider now an arbitrary
smooth submersion 𝑓 : 𝑌→𝑀 and letU be the poset of open subspaces𝑉 of𝑌 for which the
restriction 𝑓 |𝑉 : 𝑉→ 𝑓 (𝑉) =:𝑈 is isomorphic in Sub/𝑀 to the projection pr : 𝑈×R𝑛→𝑈 for
some natural number 𝑛. By Theorem C.8,U forms a complete open cover of𝑌 , in the sense
of Definition E.58, and thus it follows from Proposition E.60 that 𝑌 admits a hypercover
consisting of elements of U. Since Shv(Sub/𝑀) is hypercomplete by Proposition 4.1.15
and since the map 𝜑(𝑉) : F (𝑉) → G(𝑉) is an equivalence for every𝑉 ∈ U, we deduce that
also the map 𝜑(𝑌 ) : F (𝑉) → G(𝑉) is an equivalence. Since this holds for every𝑌 ∈ Sub/𝑀 ,
it follows that the map 𝜑 is an equivalence in H(𝑀), finishing the proof. □

Remark 4.2.28. By taking 𝑀 = pt in the previous proposition, we recover the well-known
fact that the constant sheaf functor Γ∗ : An→ Shv(Diff) induces an equivalence An ≃
Shvhtp(Diff). We refer to [ADH21, Proposition 4.3.1] for a more direct proof of this fact.
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We saw in Proposition 4.2.26 that the functor 𝛾∗ : H(X) → Shv(X) admits a fully faithful
left adjoint 𝛾♯ and thus exhibits Shv(X) as a colocalization of H(X). The next lemma shows
that it also admits a full faithful right adjoint:

Lemma 4.2.29. Let X be a differentiable stack. Then the functor 𝛾∗ : H(X) → Shv(X)
admits a fully faithful right adjoint

𝛾∗ : Shv(X) ↩→ H(X).

Proof. To show that 𝛾∗ admits a right adjoint, it suffices to show that it preserves small
colimits. Choosing a representable atlas 𝑓 : 𝑀 ↠ X for X, the functor 𝑓 ∗ : Shv(X) →
Shv(𝑀) is conservative and preserves colimits, so it suffices to show that the composite
𝑓 ∗ ◦𝛾∗ preserves colimits. By naturality of 𝛾∗, this composite is equivalent to the composite

H(X)
𝑓 ∗

−−→ H(𝑀)
𝛾∗

−→ Shv(𝑀).

The first functor preserves colimits as it admits a right adjoint 𝑓∗, and the second functor
preserves colimits as it is an equivalence by Proposition 4.2.27. This shows that 𝛾∗ preserves
colimits and thus admits a right adjoint 𝛾∗. As 𝛾∗ is a double right adjoint of the fully faithful
functor 𝛾♯ : Shv(X) ↩→H(X), it follows that also 𝛾∗ is fully faithful, finishing the proof. □

We may now make precise the heuristic mentioned in the introduction of this chapter that
a morphism is inverted by the localization functor 𝛾∗ : H(X) → Shv(X) if and only if it
becomes an equivalence after forgetting the isotropy information:

Corollary 4.2.30. Let X be a differentiable stack and let 𝑓 : 𝑀 ↠ X be a representable
atlas forX. Then a morphism 𝜑 : F →G of genuine sheaves onX is sent to an equivalence
under the functor 𝛾∗ : H(X) → Shv(X) if and only if the morphism 𝑓 ∗𝛾 : 𝑓 ∗F → 𝑓 ∗G in
H(𝑀) is an equivalence.

Proof. By Proposition 4.2.27, the bottom horizontal map in the commutative diagram

H(X) Shv(X)

𝐻 (𝑀) Shv(𝑀)

𝛾∗

𝑓 ∗ 𝑓 ∗

𝛾∗

∼

is an equivalence. As the functor 𝑓 ∗ : Shv(X) → Shv(𝑀) is conservative, the claim
follows. □

160



4.3 Genuine sheaves of spectra

In this section, we define for every separated differentiable stack X an ∞-category SH(X)
of genuine sheaves of spectra on X.

4.3.1 Pointed genuine sheaves

Fix a differentiable stack X.

Definition 4.3.1 (Pointed genuine sheaves). We define the ∞-category H•(X) of pointed
genuine sheaves on X as the∞-category of pointed objects in H(X):

H•(X) := H(X)∗.

Observe that this is equivalent to the∞-category H(X,An∗) of An∗-valued genuine sheaves
on X.

A priori, the ∞-category H•(X) contains two kinds of spheres 𝑆𝑛: the geometric spheres,
obtained by regarding 𝑆𝑛 as a smooth manifold, and the homotopical spheres, obtained by
regarding 𝑆𝑛 as an∞-groupoid. We will show that they are in fact equivalent.

Lemma 4.3.2. For any vector bundle 𝑝 : E →X, there is a cofiber sequence in H(X)

𝐿htp(E \ 𝑠(X)) ↩→ 𝐿htp(E) → 𝐿htp(𝑆E).

Proof. There are pullback squares

E \ 𝑠(E) E 𝑆E X

(R𝑛 \{0})//GL(𝑛) R𝑛//GL(𝑛) 𝑆𝑛//GL(𝑛) BGL(𝑛).

𝑝

By descent, it will suffice to prove the statement for the universal case R𝑛//GL(𝑛) →
BGL(𝑛). Identify the subspace R𝑛 ⊆ 𝑆𝑛 with the open complement of the point ∞ ∈ 𝑆𝑛.
Then R𝑛 and 𝑆𝑛 \ {0} form an open cover of 𝑆𝑛 whose intersection is R𝑛 \{0}. By passing
to quotient stacks, we obtain an analogous open cover of 𝑆𝑛//GL(𝑛). By descent, we thus
obtain a pushout square

𝐿htp(R𝑛 \{0}//GL(𝑛)) 𝐿htp(R𝑛//GL(𝑛))

𝐿htp(𝑆𝑛 \ {0}//GL(𝑛)) 𝐿htp(𝑆𝑛//GL(𝑛))
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in H(BGL(𝑛)). As 𝑆𝑛 \ {0} � R𝑛 is strictly homotopy equivalent to the point, the lower
left corner is terminal in H(BGL(𝑛)), and hence this pushout square constitutes the desired
cofiber sequence. □

Corollary 4.3.3. For every natural number 𝑛 ≥ 0, the following two objects in H•(X) are
equivalent:

(1) The geometric 𝑛-sphere, defined as the image of 𝑆𝑛 ∈ Diff under the functor

Diff
X×−−−−→ Sub/X ↩→ Shv(Sub/X)

𝐿htp−−−→ H(X),

with base point given by the map {∞} → 𝑆𝑛.

(2) The homotopical 𝑛-sphere, defined as the image of 𝑆𝑛 ∈An∗ under the unique symmetric
monoidal colimit-preserving functor An∗→ H•(X).

Proof. This is clear when 𝑛 = 0. For 𝑛 > 1, this follows by induction: applying Lemma 4.3.2
to the vector bundleX×R𝑛 and using the homotopy equivalencesR𝑛 \{0} ≃ 𝑆𝑛−1 andR𝑛 ≃ pt,
we obtain a cofiber sequence

𝐿htp(X × 𝑆𝑛−1) → ∗→ 𝐿htp(X × 𝑆𝑛),

showing that 𝐿htp(X × 𝑆𝑛) ≃ Σ(𝐿htp(X × 𝑆𝑛−1)). □

4.3.2 Genuine sheaves of spectra on global quotient stacks

We will now define the ∞-category SH(X) in the case where X is a global quotient stack,
i.e. of the form 𝑀//𝐺 for some compact Lie group 𝐺 and some smooth 𝐺-manifold 𝑀 .
Equivalently, by Corollary 2.3.21, this means that the stack X comes equipped with a
representable map X → B𝐺 for some compact Lie group 𝐺.

Definition 4.3.4. Let X be a global quotient stack, and let Sph(X) ⊆ H•(X) denote the
subcategory spanned by the sphere bundles 𝐿htp(𝑆E) for all vector bundles E → X. We
define the ∞-category SH(X) of genuine sheaves of spectra over X by formally inverting
the objects of Sph(X):

SH(X) := H•(X)[Sph(X)−1] ∈ CAlg(PrL).

More explicitly, this means that SH(X) comes equipped with a functor Σ∞ : H•(X) →
SH(X) such that for any presentable ∞-category E precomposition with Σ∞ induces an
inclusion of path components

HomCAlg(PrL) (SH(X),E) → HomCAlg(PrL) (H•(X),E)

162



hitting those symmetric monoidal left adjoints 𝐹 : H•(X) → E which sends every sphere
bundle 𝐿htp(𝑆E) ∈ H•(X) to an invertible object in E.

We let Σ∞+ : H(X) → SH(X) denote the composite

H(X)
(−)+−−−→ H•(X)

Σ∞−−→ SH(X).

Remark 4.3.5. We shall show in Proposition 4.4.17 below that for a compact Lie group
𝐺 the ∞-category SH(B𝐺) of genuine sheaves of spectra over the classifying stack B𝐺 is
equivalent to the∞-category Sp𝐺 of genuine 𝐺-spectra, explaining the terminology.

Lemma 4.3.6. For every global quotient stack X, the∞-category SH(X) is stable.

Proof. As SH(X) is stable if and only if the homotopical 1-sphere 𝑆1 is invertible, this is
a direct consequence from Corollary 4.3.3, since the object 𝐿htp(X × 𝑆1) ∈ 𝐻•(X) is the
sphere bundle of the vector bundle X×R→X and thus invertible in SH(X). □

Warning 4.3.7. The ∞-category SH(X) should not be confused with the ∞-category
H(X;Sp) of Sp-valued genuine sheaves on X, which is obtained from H•(X) by only
inverting the object 𝐿htp(X × 𝑆1).

Lemma 4.3.8. For every vector bundle E → X, the sphere bundle 𝑆 = 𝐿htp(𝑆E) ∈ H•(X)
is a symmetric object, in the sense that the cyclic permutation 𝜎123 : 𝑆∧ 𝑆∧ 𝑆→ 𝑆∧ 𝑆∧ 𝑆
is homotopic to the identity.

Proof. It suffices to prove this in the universal case E = R𝑛//GL(𝑛) → BGL(𝑛). Note
that the twist map 𝜏 =

( 0 1
1 0

)
: R𝑛×R𝑛 → R𝑛×R𝑛 is homotopic to the linear map

( 1 0
0 −1

)
via the rotation homotopy 𝑡 ↦→

(
−sin( 𝜋2 𝑡) cos( 𝜋2 𝑡)
cos( 𝜋2 𝑡) sin( 𝜋2 𝑡)

)
. It follows that the cyclic permutation

𝜎123 : R𝑛×R𝑛×R𝑛→ R𝑛×R𝑛×R𝑛 is homotopic to the identity. As all of the linear maps
in the homotopy are invertible, they extend to maps 𝑆𝑛+𝑛+𝑛→ 𝑆𝑛+𝑛+𝑛, giving the claim. □

Proposition 4.3.9. Let 𝑓 : Y →X be a representable morphism of global quotient stacks.
Then the functor

H(Y) ⊗H(X) SH(X) → SH(Y),

obtained by the tensoring up the functor Σ∞+ : H(Y) → SH(Y) from H(X) to SH(Y), is an
equivalence.

Proof. By assumption we may write X in the form 𝑁//𝐺 for a compact Lie group 𝐺 and a
smooth 𝐺-manifold 𝑁 . Since 𝑓 is representable, it follows that we may write Y as 𝑀//𝐺
for some smooth 𝐺-manifold 𝑀 and that 𝑓 is induced by a 𝐺-equivariant map 𝑀 → 𝑁 .
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Observe that if we know the statement for both maps 𝑀//𝐺 → B𝐺 and 𝑁//𝐺 → B𝐺, it
also follows for 𝑓 . This means we may assume that X = B𝐺 and Y = 𝑀//𝐺.

Let 𝐸 → 𝑀 be a 𝐺-equivariant vector bundle over 𝑀 . By [Seg68, Proposition 2.4] there
exists a finite-dimensional 𝐺-representation 𝑉 and a 𝐺-equivariant vector bundle 𝐸′→ 𝑀

such that there is an isomorphism 𝐸 ⊕ 𝐸′ � 𝑉 ×𝑀 as vector bundles over 𝑀 . This implies
that 𝑆𝑉×𝑀 ≃ 𝑆𝐸 ⊗ 𝑆𝐸 ′ , and thus 𝑆𝐸 is a factor of the pullback of 𝑆𝑉 ∈ H•(B𝐺) along the map
𝑀//𝐺→ B𝐺. Since this holds for all 𝐸 ∈ Vect𝐺 (𝑀), the claim now follows from Lemma
I.2.45 and Lemma I.2.44 in Part I. □

Corollary 4.3.10 (Sheaves of spectra on smooth manifolds). When X = 𝑀 is a smooth
manifold, there is an equivalence

SH(𝑀) ≃ Shv(𝑀;Sp)

between the∞-categories of genuine and ordinary sheaves of spectra on 𝑀 .

Proof. Recall the equivalence H(𝑀) ≃ Shv(𝑀) from Proposition 4.2.27. By Proposi-
tion 4.3.9 we thus have SH(𝑀) ≃ Shv(𝑀) ⊗An Sp = Shv(𝑀;Sp). □

We will now make precise the functoriality of the assignment X ↦→ SH(X) and show that
it is a sheaf of∞-categories.

Construction 4.3.11. Let QtStk ⊆ DiffStk denote the full subcategory of global quotient
stacks. We will turn the assignmentX ↦→ SH(X) into a functor SH: QtStkop→CAlg(PrL).
Recall from Definition 2.41 in Chapter I.2 the∞-category CAlg(PrL)aug of augmented pre-
sentably symmetric monoidal∞-categories: presentably symmetric monoidal∞-categories
C equipped with a fully faithful subcategory 𝑆. The assignmentX ↦→H•(X) admits a lift to
a functor H• : QtStkop→ CAlg(PrL)aug by equipping H•(X) with the subcategory Sph(X)
of sphere bundles from Definition 4.3.4; this is well-defined as the pullback functor 𝑓 ∗

sends sphere bundles to sphere bundles for any morphism of stacks 𝑓 : Y → X. The
functor SH: QtStkop→ CAlg(PrL) is now given as the composite

SH: QtStkop H•−−→ CAlg(PrL)aug
L−→ CAlg(PrL),

where L is the formal inversion functor (C, 𝑆) ↦→ C[𝑆−1] from Lemma 2.42 in Chapter I.2.

More explicitly, given a morphism 𝑓 : Y → X of global quotient stacks, the functor
𝑓 ∗ : SH(X) → SH(Y) is the unique symmetric monoidal colimit-presering left adjoint
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which makes the following diagram commute:

H(X) H(Y)

SH(X) SH(Y).

𝑓 ∗

Σ∞+ Σ∞+

𝑓 ∗

Lemma 4.3.12. The functor SH: QtStkop→ Cat∞ is a sheaf of∞-categories on QtStk.

Proof. It suffices to show that for every compact Lie group 𝐺, the functor Diffop
𝐺
→ Cat∞

sending 𝑀 to SH(𝑀//𝐺) is a sheaf of ∞-categories on Diff𝐺 . By Proposition 4.3.9, this
functor is equivalent to the functor 𝑀 ↦→ H•(𝑀//𝐺) ⊗H• (B𝐺) SH(B𝐺). As the objects
𝐿htp(𝑆𝑉 ) ∈ 𝐻 (B𝐺) are symmetric objects by Lemma 4.3.8, the ∞-category SH(B𝐺) may
be expressed as a colimit in PrL of the sequence

H•(B𝐺)
−⊗𝑆𝑉1
−−−−−→ H•(B𝐺)

−⊗𝑆𝑉2
−−−−−→ H•(B𝐺)

−⊗𝑆𝑉3
−−−−−→ . . . ,

where 𝑉1,𝑉2,𝑉3, . . . is a sequence of irreducible 𝐺-representations containing every irre-
ducible 𝐺-representation infinitely many times, see [Rob15, Corollary 2.22] and [Hoy17,
Section 6.1]. It follows that for every smooth 𝐺-manifold 𝑀 the∞-category SH(𝑀//𝐺) is
expressed as the colimit in PrL of the sequence

H•(𝑀//𝐺)
−⊗𝑆𝑉1
−−−−−→ H•(𝑀//𝐺)

−⊗𝑆𝑉2
−−−−−→ H•(𝑀//𝐺)

−⊗𝑆𝑉3
−−−−−→ . . . ,

which means that the underlying ∞-category of SH(𝑀//𝐺) is a limit in Cat∞ of the
diagram of right adjoints Hom(𝑆𝑉𝑖 ,−) : H•(𝑀//𝐺) → H•(𝑀//𝐺). Since the functor
H•(−//𝐺) : Diffop

𝐺
→ Cat∞ is a sheaf of ∞-categories by Lemma 4.2.24 and limits com-

mute with limits, it follows that also the functor SH(−//𝐺) : Diffop
𝐺
→ Cat∞ is a sheaf of

∞-categories. This finishes the proof. □

4.3.3 Genuine sheaves of spectra on separated stacks

We will now define the ∞-category SH(X) for an arbitrary separated differentiable stack
X. Observe that every global quotient stack X = 𝑀//𝐺 is in particular separated, since
we assume that the Lie group 𝐺 is compact. This provides an inclusion of QtStk into the
(2,1)-category SepStk of separated differentiable stacks.

Lemma 4.3.13. Every sheaf of ∞-categories on QtStk extends uniquely to a sheaf of
∞-categories on SepStk via right Kan extension.
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Proof. Since every open substack of a global quotient stack is again a global quotient stack,
right Kan extension provides a fully faithful functor from sheaves on QtStk to sheaves on
SepStk, see Corollary E.47. Since every separated differentiable stack is locally a global
quotient stack by Theorem 3.7.2, this functor is an equivalence. □

Definition 4.3.14 (Genuine sheaves of spectra). We define the functor

SH: SepStkop→ CAlg(PrL)

as the unique extension of the functor SH: QtStkop→CAlg(PrL) from Construction 4.3.11.
For a separated differentiable stack X we refer to the∞-category SH(X) as the∞-category
of genuine sheaves of spectra on X. We similarly define a functor Σ∞+ : H(X) → SH(X) by
extension from QtStk.

The∞-category SH(X) admits the following explicit description:

SH(X) ≃ limU∈OpenQtStk (X) SH(U) ∈ CAlg(PrL).

Here the limit runs over the poset OpenQtStk(X) of open substacks U ⊆ X of X which are
global quotient stacks.

Proposition 4.3.15. Let 𝑓 : Y→X be a representable morphism of separated differentiable
stacks. Then the functor

H(Y) ⊗H(X) SH(X) → SH(Y),

obtained by the tensoring up the functor Σ∞+ : H(Y) → SH(Y) from H(X) to SH(Y), is an
equivalence.

Proof. By Proposition 4.3.9 this holds after pulling back along any inclusionU ↩→X of a
global quotient stackU. The general statement then follows by descent. □

Proposition 4.3.16. Let 𝑓 : Y →X be a representable submersion of separated differen-
tiable stacks.

(1) (Left adjoint) The pullback functor 𝑓 ∗ : SH(Y) → SH(X) admits a left adjoint, denoted
by 𝑓♯ : SH(X) → SH(Y);

(2) (Smooth base change) These left adjoints satisfy smooth base change, as in Proposi-
tion 4.2.19;

(3) (Smooth projection formula) These left adjoints satisfy the smooth projection formula,
as in Proposition 4.2.21.
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Proof. By Proposition 4.3.15, the functor 𝑓 ∗ : SH(Y) → SH(X) is given by tensoring
the functor 𝑓 ∗ : H(Y) → H(X) with SH(X) over H(X). By Corollary 4.2.17 the latter
functor admits a left adjoint 𝑓♯ : H(X) →H(Y) which is H(X)-linear by Proposition 4.2.21,
and thus we may tensor it with SH(X) over H(X) to obtain a SH(X)-linear left adjoint
𝑓♯ : H(X) → H(Y), proving parts (1) and (3). For part (2), consider a pullback square of
separated differentiable stacks

Y′ Y

X′ X.

𝑓 ′

ℎ

𝑓

𝑔

By Proposition 4.2.19, the induced square

H(X) H(Y)

H(X′) H(X)

𝑔∗

𝑓 ∗

ℎ∗

𝑓 ′∗

is horizontally left adjointable. By tensoring with SH(X) over H(X) and using the equiva-
lence H(Y) ⊗H(X) SH(X) → SH(Y) from Proposition 4.3.15, we see that the top square in
the following diagram is horizontally left adjointable:

SH(X) SH(Y)

H(X′) ⊗H(X) SH(X) SH(X) ⊗H(X) SH(X)

H(X′) ⊗H(X′) SH(X′) SH(X) ⊗H(X′) SH(X′)

SH(X′) SH(Y′).

𝑔∗

𝑓 ∗

ℎ∗

𝑓 ′∗

𝑓 ′∗

≃
𝑓 ′∗

The middle square is also clearly horizontally left adjointable, and the equivalence on the
bottom right is another instance of Proposition 4.3.15. It follows that the outer square is
horizontally left adjointable, which is what we needed to prove. □

4.4 Comparison with genuine equivariant spectra

Recall from the introduction of this chapter that our main motivation for introducing the
∞-categories H(X) and SH(X) of genuine sheaves of animae/spectra on a differentiable

167



stack X is its relation to equivariant homotopy theory. For a compact Lie group 𝐺, there
are ∞-categories An𝐺 and Sp𝐺 of genuine 𝐺-animae (a.k.a. ‘𝐺-spaces’) and genuine 𝐺-
spectra, respectively. The goal of this section is to show that there are equivalences of
∞-categories

H(B𝐺) ≃ An𝐺 and SH(B𝐺) ≃ Sp𝐺 ,

explaining the terminology ‘genuine sheaves’. We thank Marc Hoyois and Sil Linskens for
useful discussions and valuable input concerning the results of this section.

We start by analyzing the ∞-category H(B𝐺). Recall from Corollary 2.3.20 that the
category Sub/B𝐺 of representable submersions over the classifying stack B𝐺 is equivalent
to the category Diff𝐺 of smooth 𝐺-manifolds. As a consequence, we get an equivalence

𝐻 (B𝐺) = Shvhtp(Sub/B𝐺) ∼−−→ Shvhtp(Diff𝐺)

between the ∞-category of genuine sheaves on B𝐺 and the ∞-category of homotopy
invariant sheaves on the site Diff𝐺 , where the Grothendieck topology is given by 𝐺-
equivariant open covers. We shall show that the latter is equivalent to An𝐺 in two steps:

(a) We first show that the∞-category Shvhtp(Diff𝐺) is equivalent to a presheaf category, in-
dexed by the full subcategory Orb′

𝐺
⊆ Shvhtp(Diff𝐺) spanned by the objects 𝐿htp(𝐺/𝐻);

(b) We then produce a comparison functor 𝑅 : An𝐺 → Shvhtp(Diff𝐺) and show that it
preserves colimits and restricts to an equivalence Orb𝐺 ∼−−→ Orb′

𝐺
.

By combining (a) and (b), and using Elmendorf’s theorem, it follows that 𝑅 is an equivalence,
leading to the desired equivalence 𝐻 (B𝐺) ≃An𝐺 . The equivalence SH(B𝐺) ≃ Sp𝐺 is then
immediate an immediate consequence. We shall now spell out these steps in more detail.

4.4.1 Genuine sheaves form a presheaf category

We start by showing that the∞-category Shvhtp(Diff𝐺) is equivalent to a presheaf category.

Proposition 4.4.1. The evaluation functors

ev𝐺/𝐻 : Shvhtp(Diff𝐺) → An

for closed subgroups 𝐻 ⩽ 𝐺 are jointly conservative.

Proof. Let 𝜑 : F →F ′ be a morphism of homotopy invariant sheaves on Diff𝐺 and assume
that 𝜑(𝐺/𝐻) : F (𝐺/𝐻) → F ′(𝐺/𝐻) is an equivalence for every closed subgroup 𝐻 ⩽ 𝐺.
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We have to show that 𝜑(𝑀) : F (𝑀) → F ′(𝑀) is an equivalence for every smooth 𝐺-
manifold. To this end, recall that 𝑀 is locally of the form 𝐺 ×𝐻 R𝑛 for some closed
subgroup 𝐻 ⊆ 𝐺 and some 𝐻-action on R𝑛, and thus it follows from Proposition E.60 that
𝑀 admits a hypercover by 𝐺-manifolds of this form. Since the ∞-topos Shv(Diff𝐺) is
hypercomplete by Proposition 4.1.15, it follows that 𝑀 is a colimit of objects of the form
𝐺 ×𝐻 R𝑛. Consequently, it will suffice to show that the map

𝜑(𝐺 ×𝐻 R𝑛) : F (𝐺 ×𝐻 R𝑛) → F ′(𝐺 ×𝐻 R𝑛)

is an equivalence for all 𝐻 ⩽ 𝐺 and all 𝑛 ∈ N. But since F and F ′ are homotopy invariant
and 𝐺 ×𝐻 R𝑛 is 𝐺-equivariantly homotopy equivalent to 𝐺/𝐻, this follows directly from
the assumption on 𝜑. □

Corollary 4.4.2. The∞-category Shvhtp(Diff𝐺) is generated under colimits by the objects
𝐿htp(𝐺/𝐻) for all closed subgroups 𝐻 ⩽ 𝐺.

Proof. By adjunction and the Yoneda lemma, there is a natural equivalence

ev𝐺/𝐻 ≃ HomShvhtp (Diff𝐺) (𝐿htp(𝐺/𝐻),−)

of functors Shvhtp(Diff𝐺) → An. By Proposition 4.4.1, these functors are conservative. It
follows that the objects 𝐿htp(𝐺/𝐻) generate Shvhtp(Diff𝐺) under colimits, see for example
[Yan22, Corollary 2.5]. □

Definition 4.4.3 (Fixed point functor). For a closed subgroup 𝐻 ⩽ 𝐺, consider the functor
𝐺/𝐻 ×− : Diff→ Diff𝐺 from smooth manifolds to smooth 𝐺-manifolds. We suggestively
denote by

(−)𝐻 : PSh(Diff𝐺) → PSh(Diff)

the functor given by precomposition with this functor, and refer to it as the 𝐻-fixed point
functor.

Remark 4.4.4. For a smooth 𝐺-manifold 𝑀 , the sheaf 𝑀𝐻 : Diffop→ An is a subsheaf of
the representable sheaf on 𝑀 , given at a smooth manifold 𝑁 by those smooth maps 𝑁→ 𝑀

which factor through the subset of 𝐻-fixed points 𝑀𝐻 ⊆ 𝑀 . This justifies the notation and
terminology for the functor (−)𝐻 .

The functor (−)𝐻 is fully compatible with sheafification and homotopy localization:

Proposition 4.4.5. Let 𝐻 ⩽ 𝐺 be a closed subgroup.
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(1) The functor (−)𝐻 : PSh(Diff𝐺) → PSh(Diff) preserves sheaves.

(2) The functor (−)𝐻 commutes with sheafification:

PSh(Diff𝐺) PSh(Diff)

Shv(Diff𝐺) Shv(Diff).

(−)𝐻

𝐿open 𝐿open

(−)𝐻

(3) The functor (−)𝐻 : PSh(Diff𝐺) → PSh(Diff) preserves homotopy invariant presheaves.

(4) The functor (−)𝐻 commutes with homotopy localization:

PSh(Diff𝐺) PSh(Diff)

PShhtp(Diff𝐺) PShhtp(Diff).

(−)𝐻

𝐿R 𝐿R

(−)𝐻

(5) The functor (−)𝐻 : PSh(Diff𝐺) → PSh(Diff) restricts to a functor

(−)𝐻 : Shvhtp(Diff𝐺) → Shvhtp(Diff)

which preserves limits and colimits.

Proof. Part (1) is clear from the fact that the functor 𝐺/𝐻 ×− : Diff → Diff𝐺 preserves
pullbacks along open embeddings and that it sends open covers to 𝐺-equivariant open
covers.

For part (2), it suffices by Corollary E.45 to show that the functor 𝐺/𝐻 ×− : Diff→ Diff𝐺
is a cocontinuous functor of sites, in the sense of Definition E.43. This is immediate from
the fact that for a smooth manifold 𝑀 , the 𝐺-equivariant subsets of 𝐺/𝐻×𝑀 are precisely
those of the form 𝐺/𝐻 ×𝑈 for open subsets𝑈 ⊆ 𝑀 .

Part (3) is obvious from the definition of homotopy invariance. Part (4) is immediate from
the formula for the homotopy localization functor provided in Construction 4.2.2.

For part (5), the𝐻-fixed point functor restricts to homotopy invariant sheaves by parts (1) and
(3). At the level of presheaves, the 𝐻-fixed point functor (−)𝐻 : PSh(Diff𝐺) → PSh(Diff)
preserves limits and colimits as these are computed pointwise. It follows at once that also
the functor (−)𝐻 : Shvhtp(Diff𝐺) → Shvhtp(Diff) preserves limits as these are computed in
presheaves. Since colimits in homotopy invariant sheaves are computed by first computing
the colimit in presheaves and then reflecting back into homotopy invariant sheaves, it then
follows from parts (2) and (4) that the functor (−)𝐻 : Shvhtp(Diff𝐺) → Shvhtp(Diff) also
preserves colimits, finishing the proof. □
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Corollary 4.4.6. For every closed subgroup 𝐻 ⩽ 𝐺, the evaluation functor

ev𝐺/𝐻 : Shvhtp(Diff𝐺) → An

preserves colimits.

Proof. This evaluation functor is given by the composite

Shvhtp(Diff𝐺)
(−)𝐻
−−−−→ Shvhtp(Diff) Γ∗−→ An,

where Γ∗ denotes the global section functor. The first functor preserves colimits by part (5)
of Proposition 4.4.5. The second functor preserves colimits because it is an equivalence:
it is the right adjoint of the equivalence 𝛾♯ : An ∼−−→ Shvhtp(Diff) of Proposition 4.2.27, cf.
Remark 4.2.28. □

Corollary 4.4.7. Let Orb′
𝐺
⊆ Shvhtp(Diff𝐺) denote the full subcategory spanned by the

objects 𝐿htp(𝐺/𝐻). Then the unique colimit-preserving extension

PSh(Orb′𝐺) → Shvhtp(Diff𝐺)

of the inclusion Orb′
𝐺
↩→ Shvhtp(Diff𝐺) is an equivalence.

Proof. The objects 𝐿htp(𝐺/𝐻) are completely compact (or tiny) by Corollary 4.4.6: by
adjunction and representability there is an equivalence of functors

HomShvhtp (Diff𝐺) (𝐿htp(𝐺/𝐻),−) ≃ ev𝐺/𝐻 : Shvhtp(Diff𝐺) → An.

Furthermore, the objects 𝐿htp(𝐺/𝐻) generate Shvhtp(Diff𝐺) under colimits by Corol-
lary 4.4.2. The statement is now an instance of [Lur09, Corollary 5.1.6.11]. □

4.4.2 Comparison with genuine equivariant animae

Having established that Shvhtp(Diff𝐺) is a presheaf category, we will now move to the
construction of a comparison functor 𝑅 : An𝐺 → Shvhtp(Diff𝐺) and prove that it is an
equivalence.

Definition 4.4.8 (Equivariant homotopy type). Consider the composite functor

Π𝐺 : Diff𝐺
fgt
−−→ Top𝐺 → An𝐺 ,

where the first functor is the forgetful functor from smooth 𝐺-manifolds to topological
𝐺-spaces and where the second is the Dwyer-Kan localization at the weak 𝐺-homotopy
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equivalences defining the ∞-category An𝐺 of genuine 𝐺-animae (a.k.a ‘𝐺-spaces’). Ob-
serve that Π𝐺 sends open covers of smooth 𝐺-manifolds to colimit-diagrams, and hence it
uniquely extends to a colimit-preserving functor

Π𝐺 : Shv(Diff𝐺) → An𝐺 .

We refer to the functor Π𝐺 as the 𝐺-equivariant homotopy type functor.

Definition 4.4.9. As Π𝐺 is colimit-preserving, it admits a right adjoint, which we will
denote by 𝑅 : An𝐺 → Shv(Diff𝐺). It follows immediately from the adjunction that for a
genuine 𝐺-anima 𝑋 , the sheaf 𝑅(𝑋) : Diffop

𝐺
→ An is given by

𝑅(𝑋) (𝑀) = HomAn𝐺 (Π𝐺 (𝑀), 𝑋).

Observation 4.4.10. The functor Π𝐺 : Diff𝐺 → An𝐺 is homotopy invariant: for a smooth
𝐺-manifold 𝑀 we have Π𝐺 (𝑀 ×R) ∼−−→ Π𝐺 (𝑀). It follows that the functor 𝑅 : An𝐺 →
Shv(Diff𝐺) lands in homotopy invariant sheaves, so that 𝑅 defines a functor

𝑅 : An𝐺 → Shvhtp(Diff𝐺).

Lemma 4.4.11. The functor 𝑅 : An𝐺 → Shvhtp(Diff𝐺) preserves colimits.

Proof. Since the evaluation functors ev𝐺/𝐻 : Shvhtp(Diff𝐺) → An are jointly conservative
by Proposition 4.4.1 and preserve colimits by Corollary 4.4.6, it will suffice to show that
each of the composites ev𝐺/𝐻 ◦𝑅 preserves colimits. Observe that this composite is given
by sending 𝑋 to

𝑅(𝑋) (𝐺/𝐻) = HomAn𝐺 (Π𝐺 (𝐺/𝐻), 𝑋) = HomAn𝐺 (𝐺/𝐻, 𝑋) = 𝑋𝐻 ,

the anima of 𝐻-fixed points of 𝑋 . This functor is well-known to preserve colimits. □

To show that 𝑅 is an equivalence, it will suffice to show that 𝑅 restricts to an equivalence
between Orb𝐺 ⊆ An𝐺 and Orb′

𝐺
⊆ Shvhtp(Diff𝐺). The main ingredient for this will be the

comparison between the simplicial enrichments of Diff𝐺 and Top𝐺 .

Construction 4.4.12. Recall from Construction 4.2.2 the cosimplicial object Δalg : Δ→
Diff𝐺 , sending [𝑛] to the algebraic 𝑛-simplex Δ𝑛alg equipped with the trivial 𝐺-action. It
gives rise to a simplicial enrichment of Diff𝐺 given by

HomΔ
Diff𝐺
(𝑀,𝑁)𝑛 := HomDiff𝐺

(𝑀 ×Δ𝑛alg, 𝑁).
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In a similar way, we obtain a simplicial enrichment of Top𝐺 :

HomΔ
Top𝐺
(𝑋,𝑌 )𝑛 := HomTop𝐺 (𝑋 ×Δ

𝑛
alg,𝑌 ).

The forgetful functor Diff𝐺 → Top𝐺 induces a morphism of simplicial sets

𝜑 : HomΔ
Diff𝐺
(𝑀,𝑁) → HomΔ

Top𝐺
(𝑀,𝑁),

natural in 𝑀 and 𝑁 .

Our next goal is to show that the map 𝜑 is a simplicial homotopy equivalence of Kan
simplicial sets.

Lemma 4.4.13. For every 𝑛, 𝑘 ≥ 0, every simplicial subset 𝐴 ⊆ Δ𝑛 ×Δ𝑘 and every solid
commutative diagram of simplicial sets

𝐴 HomΔ
Diff𝐺
(𝑀,𝑁)

Δ𝑛×Δ𝑘 HomΔ
Top𝐺
(𝑀,𝑁),

𝑓

𝜑

𝐻

�̃�

there exists a diagonal filler �̃� which makes the top triangle commute strictly and which
makes the bottom triangle commute up to a homotopy which is constant on 𝐴.

Proof. The map𝐻 corresponds to a𝐺-equivariant continuous map𝐻 : 𝑀×Δ𝑛alg×Δ
𝑘
alg→ 𝑁 ,

and the map 𝑓 expresses that 𝐻 is a smooth map when restricted to the (closed) subset of
𝑀 ×Δ𝑛alg ×Δ

𝑘
alg corresponding to 𝐴 ⊆ Δ𝑛 ×Δ𝑘 . By [Bre72, Theorem VI.4.2], 𝐻 is 𝐺-

equivariantly homotopic to a smooth map �̃� : 𝑀 ×Δ𝑛alg ×Δ
𝑘
alg→ 𝑁 which agrees with 𝐻

on the subset of 𝑀 ×Δ𝑛alg ×Δ
𝑘
alg corresponding to 𝐴 ⊆ Δ𝑛 ×Δ𝑘 , and the homotopy can be

chosen to be constant on this subset. □

Proposition 4.4.14. For every two smooth 𝐺-manifolds 𝑀 and 𝑁 , the map

𝜑 : HomΔ
Diff𝐺
(𝑀,𝑁) → HomΔ

Top𝐺
(𝑀,𝑁)

is a simplicial homotopy equivalence of Kan simplicial sets.

Proof. We first show that the source and target are Kan simplicial sets. This is clear for
HomΔ

Top𝐺
(𝑀,𝑁). For HomΔ

Diff𝐺
(𝑀,𝑁), this follows immediately from Lemma 4.4.13 by

taking 𝑘 = 0 and letting 𝐴 = Λ𝑛
𝑙
⊆ Δ𝑛 be a horn.

To show that the map 𝜑 is a simplicial homotopy equivalence, it will thus suffice to show
that 𝜑 induces a bĳection on path components and isomorphisms on all simplicial homotopy
groups. Surjectivity follows from Lemma 4.4.13 using 𝐴 = 𝜕Δ𝑛 ⊆ Δ𝑛. Injectivity follows
from Lemma 4.4.13 using 𝐴 = Δ𝑛× 𝜕Δ1 ⊆ Δ𝑛×Δ1. □
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The above comparsion map leads to an equivalence between 𝐿htp(𝐺/𝐻) and 𝑅(𝐺/𝐻).

Construction 4.4.15. We produce an equivalence 𝜓 : 𝐿htp(𝐺/𝐻) → 𝑅(𝐺/𝐻) of homotopy
invariant sheaves on Diff𝐺 . Let 𝑀 be a smooth 𝐺-manifold. By Proposition 4.2.3, there is
an equivalence

𝐿htp(𝐺/𝐻) (𝑀) ≃ |HomΔ
Diff𝐺
(𝑀,𝐺/𝐻) | ∈ An.

Furthermore, since the∞-category An𝐺 is the homotopy coherent nerve of the simplicially
enriched category CW𝐺 of 𝐺-CW-complexes, which is a full sipmlicial subcategory of
Top𝐺 , we have by [HK20] a natural equivalence

𝑅(𝐺/𝐻) (𝑀) ≃ HomAn𝐺 (Π𝐺 (𝑀),𝐺/𝐻) ≃ |HomΔ
Top𝐺
(𝑀,𝐺/𝐻) | ∈ An.

The map 𝜑 : HomΔ
Diff𝐺
(𝑀,𝐺/𝐻) → HomΔ

Top𝐺
(𝑀,𝐺/𝐻) from Construction 4.4.12 thus

produces the desired map 𝜓 : 𝐿htp(𝐺/𝐻) → 𝑅(𝐺/𝐻), which is an equivalence by Proposi-
tion 4.4.14.

Theorem 4.4.16. Let 𝐺 be a Lie group. Then the functor 𝑅 : An𝐺 → Shvhtp(Diff𝐺) =
H(B𝐺) is an equivalence of∞-categories.

Proof. Consider the full subcategory Orb𝐺 ⊆ An𝐺 spanned by the orbits 𝐺/𝐻 and the full
subcategory Orb′

𝐺
⊆ Shvhtp(Diff𝐺) spanned by the objects 𝐿htp(𝐺/𝐻). The equivalence

𝑅(𝐺/𝐻) ≃ 𝐿htp(𝐺/𝐻) of Construction 4.4.15 shows that the functor 𝑅 restricts to a functor
𝑅 | : Orb𝐺 → Orb′

𝐺
. Consider now the following diagram:

PSh(Orb𝐺) PSh(Orb′
𝐺
)

An𝐺 Shvhtp(Diff𝐺).

≃ ≃

𝑅

The top horizontal functor is the colimit-extension of 𝑅 |. The vertical functors are the
colimit-extensions of the respective inclusions; the left vertical functor is an equivalence
by Elmendorf’s theorem [Elm83] while the right vertical functor is an equivalence by
Corollary 4.4.7. It thus remains to show that the restriction 𝑅 | : Orb𝐺 → Orb′

𝐺
is an

equivalence of∞-categories. The equivalence 𝑅(𝐺/𝐻) ≃ 𝐿htp(𝐺/𝐻) shows it is essentially
surjective. For fully faithfulness, let 𝐻 ⩽ 𝐺 be a closed subgroup and 𝑋 a genuine𝐺-anima,
and consider the following diagram:

HomAn𝐺 (𝐺/𝐻, 𝑋) HomShv(Diff) (𝑅(𝐺/𝐻), 𝑅(𝑋))

HomShv(Diff𝐺) (𝐿htp(𝐺/𝐻), 𝑅(𝑋)).

𝑅

−◦𝜓
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We have to show that the horizontal map is an equivalence. Since 𝜓 is an equivalence,
we may equivalently show that the diagonal composite is an equivalence. We may further
compose this diagonal with the following chain of equivalences:

HomShv(Diff𝐺) (𝐿htp(𝐺/𝐻), 𝑅(𝑋)) ≃ 𝑅(𝑋) (𝐺/𝐻) ≃ HomAn𝐺 (𝐺/𝐻, 𝑋).

The resulting map Hom(𝐺/𝐻, 𝑋) →Hom(𝐺/𝐻, 𝑋) is natural in 𝑋 and thus by the Yoneda-
lemma it is given by precomposition with some endomorphism 𝐺/𝐻→𝐺/𝐻. Since every
such endomorphism is an equivalence, this finishes the proof. □

4.4.3 Comparison with genuine equivariant spectra

Having established the equivalence between H(B𝐺) and An𝐺 in Theorem 4.4.16, we
will now move to its stable analogue. The equivalence 𝑅 : An𝐺 ∼−−→ H(B𝐺) induces an
equivalence 𝑅∗ : An𝐺,∗ ∼−−→H(B𝐺)∗ =H•(B𝐺). This functor sends the representation sphere
𝑆𝑉 of a 𝐺-representation 𝑉 to the sphere bundle 𝑆𝑉//𝐺 of the vector bundle 𝑉//𝐺→ B𝐺
associated to 𝑉 , and thus induces a functor

Sp𝐺 = An𝐺,∗ [{(𝑆𝑉 )−1}] → H•(B𝐺) [{(𝑆E)−1}] = SH(B𝐺).

Proposition 4.4.17. Let 𝐺 be a compact Lie group. Then the functor Sp𝐺 → SH(B𝐺) is
an equivalence of∞-categories.

Proof. This is immediate as every vector bundle E → B𝐺 is of the form 𝑉//𝐺→ B𝐺 for
some 𝐺-representation 𝑉 . □

4.5 Pullback formalisms and universal properties

In this section, we study the assignments X ↦→ H(X) and X ↦→ SH(X) and show that they
can be characterized by universal properties. The universal properties will be phrased within
the setting of pullback formalisms on SepStk, a concept we will introduce momentarily. We
will show:

(1) The assignment X ↦→ Shv(Sub/X) is the initial pullback formalism on SepStk, see
Proposition 4.5.12;

(2) The assignment X ↦→ H(X) is the initial pullback formalism on SepStk , see Proposi-
tion 4.5.21;
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(3) The assignmentX ↦→ SH(X) is the initial pullback formalism on SepStk satisfying both
homotopy invarianceand genuinely stability, see Proposition 4.5.27.

These results will not be used later in this paper and thus may be skipped on first reading.

4.5.1 Sheaves of∞-categories on SepStk

We start by making explicit the notion of a sheaf of∞-categories on SepStk.

Definition 4.5.1. A sheaf of ∞-categories on SepStk is a functor C : SepStkop → Cat∞
which satisfies the sheaf condition with respect to the open cover topology: for every open
cover {U𝑖}𝑖∈𝐼 of a separated differentiable stack X, the map

C(X) → lim
( ∏

𝑖∈𝐼 C(U𝑖)
∏
𝑖, 𝑗∈𝐼 C(U𝑖 ×XU𝑗 ) . . .

)
is an equivalence. Similarly, a sheaf of presentably symmetric monoidal ∞-categories
is a functor C : SepStkop→ CAlg(PrL) satisfying the sheaf condition. Since the forgetful
functor CAlg(PrL) →Cat∞ preserves limits, this may be tested on underlying∞-categories.

Remark 4.5.2. A sheaf of∞-categories on SepStk may equivalently be encoded by a limit-
preserving functor Shv(SepStk)op→ Cat∞. In other words, letting B denote the ∞-topos
Shv(SepStk), this is the same data as a B-category in the sense of [Mar21; MW21], see
also Chapter I.2.

Example 4.5.3. The three assignments X ↦→ Shv(Sub/X), X ↦→ H(X) and X ↦→ SH(X)
form sheaves of presentably symmetric monoidal∞-categories on SepStk. For the first two,
see Corollary 4.1.12 and Lemma 4.2.24. For the third, we showed in Lemma 4.3.12 that
the assignment X ↦→ SH(X) is a sheaf of ∞-categories on QtStk, and this then uniquely
extends to a sheaf of∞-categories on all of SepStk.

Lemma 4.5.4 (Disjoint union). Let C be a sheaf of∞-categories on SepStk.

(1) The∞-category C(∅) is equivalent to the terminal∞-category;

(2) For every collection of differentiable stacks {X𝑖}𝑖∈𝐼 , the pullback functors C(⊔𝑖∈𝐼X𝑖) →
C(X𝑖) induced by the inclusionsX𝑖 ↩→

⊔
𝑖∈𝐼X𝑖 constitute an equivalence of∞-categories

C(
⊔
𝑖∈𝐼
X𝑖) →

∏
𝑖∈𝐼
C(X𝑖).
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Proof. Part (1) follows from applying the sheaf condition to the empty cover of the empty
stack. For part (2), note that the disjoint union

⊔
𝑖∈𝐼X𝑖 is covered by the collection of open

substacks X𝑖 ↩→
⊔
𝑖∈𝐼X𝑖, which have empty intersection. By part (1), the sheaf condition

for this cover thus provides the claimed equivalence. □

4.5.2 Pullback formalisms on differentiable stacks

We now introduce the notion of a pullback formalism on the site SepStk. Our definition is
essentially a specialization of that of Drew and Gallauer [DG22], except for some differences
in conventions explained in Remark 4.5.6 below.

Definition 4.5.5 (Pullback formalism, cf. [DG22, Definition 2.11]). Let C : SepStkop→
CAlg(PrL) be a sheaf of presentably symmetric monoidal∞-categories on SepStk. We will
say that C is a pullback formalism on SepStk if the following conditions are satisfied:

(1) For every representable submersion 𝑓 : Y → X of differentiable stacks, the pullback
functor 𝑓 ∗ : C(X) → C(Y) admits a left adjoint 𝑓♯ : C(Y) → C(X);

(2) (Smooth base change) For every pullback square

Y′ Y

X′ X

ℎ

𝑓 ′ 𝑓

𝑔

of differentiable stacks, where 𝑓 (and thus 𝑓 ′) is a representable submersion, the Beck-
Chevalley transformation

BC♯ : 𝑓♯ℎ∗→ 𝑔∗𝑖′
♯
: C(Y) → C(X′)

is an equivalence;

(3) (Smooth projection formula) For every representable submersion 𝑓 : Y →X of differ-
entiable stacks, every 𝐴 ∈ C(X) and every 𝐵 ∈ C(Y), the projection formula map

PF♯ : 𝑓♯ ( 𝑓 ∗𝐴⊗ 𝐵) → 𝐴⊗ 𝑓♯𝐵 ∈ C(X)

is an equivalence.

Let D be another pullback formalism on SepStk. A natural transformation 𝐹 : C → D of
functors SepStkop→ CAlg(PrL) is called a morphism of pullback formalisms if for every
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representable submersion 𝑓 : Y →X of differentiable stacks, the naturality square

C(Y) D(Y)

C(X) D(X)

𝑓 ∗

𝐹Y

𝑓 ∗

𝐹X

is vertically left adjointable, in the sense that the Beck-Chevalley transformation 𝑓♯ ◦𝐹X⇒
𝐹Y ◦ 𝑓♯ : C(X) → D(Y) is an equivalence. We let

PB(SepStk) ⊆ Fun(SepStkop,CAlg(PrL))

denote the (non-full) subcategory spanned by the pullback formalisms on SepStk and the
morphisms of pullback formalisms.

Remark 4.5.6. In contrast to [DG22], we include both the presentability condition as well
as the descent condition with respect to the Grothendieck topology on SepStk into the
definition of a pullback formalism. Hence the ∞-category PB(SepStk) would be written
as PBpr

open(SepStk) in [DG22]. Closely related is also the notion of a (∗, ♯,⊗)-formalism by
Khan and Ravi [KR21, Definition 5.5].

Remark 4.5.7. By Drew and Gallauer [DG22, Proposition 2.12, Proposition 4.4, Propo-
sition 5.6], the (very large) ∞-category PB(SepStk) is presentable and the inclusion
PB(SepStk) ↩→ Fun(SepStkop,CAlg(Cat∞)) admits a left adjoint.

Example 4.5.8. Each of the three functors X ↦→ Shv(Sub/X), X ↦→H(X) and X ↦→ SH(X)
is a pullback formalism, see Corollary 4.2.17, Proposition 4.2.19, Proposition 4.2.21 and
Proposition 4.3.16.

The condition for a sheaf of ∞-categories on SepStk to be a pullback formalism may be
neatly formulated in the language of parametrized category theory.

Construction 4.5.9. Let B denote the ∞-topos Shv(SepStk). By Remark 4.5.2, a sheaf C
of presentably symmetric monoidal ∞-categories on SepStk may equivalently be encoded
by a fiberwise presentably symmetric monoidal B-category. In particular, the sheaf X ↦→
Shv(Sub/X) from Example 4.5.3 corresponds to a B-category U. By Lemma 4.1.9 this
defines a parametrized subcategory of X ↦→ Shv(SepStk)/X , and thus it defines a class of
B-groupoids in the sense of [MW21, Remark 2.7.5]. We say that a morphism 𝑓 : 𝔜→ 𝔛 in
Shv(SepStk) is a morphism in U if it is an object of the subcategory U(𝔛) ⊆ Shv(SepStk)/𝔛.
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Lemma 4.5.10. With the above notations, let C : Shv(SepStk)op = Bop→ CAlg(PrL) be
a fiberwise presentably symmetric monoidal B-category. Then its restriction to SepStkop

is a pullback formalism if and only if the B-category C admits U-colimits and the tensor
product B-functor −⊗− : C×C → C preserves U-colimits in both variables.

Proof. We refer to [MW21, Definition 4.1.3] for the definition of parametrized colimits,
and to [MW21, Example 4.1.9] for the characterization of parametrized colimits along
B-groupoids. It follows from this characterization that C admits U-colimits if and only if
the following two conditions hold:

(1’) For every morphism 𝑓 : 𝔜→ 𝔛 in U, the pullback functor 𝑓 ∗ : C(𝔛) → C(𝔜) admits
a left adjoint 𝑓♯ : C(𝔜) → C(𝔛);

(2’) For every pullback square
𝔜′ 𝔜

𝔛′ 𝔛

ℎ

𝑓 ′ 𝑓

𝑔

in Shv(SepStk) where 𝑓 (and thus 𝑓 ′) is in U, the Beck-Chevalley transformation
𝑓♯ℎ
∗→ 𝑔∗𝑖′

♯
is an equivalence.

Similarly, the condition that the B-functor −⊗− : C×C→C to preserve U-colimits in both
variables is characterized by the following condition:

(3’) For every 𝑓 : 𝔜→𝔛 in U, every 𝐴 ∈ C(𝔛) and every 𝐵 ∈ C(𝔜), the projection formula
map 𝑓♯ ( 𝑓 ∗𝐴⊗ 𝐵) → 𝐴⊗ 𝑓♯𝐵 is an equivalence.

Since U is generated under fiberwise colimits by the representable submersions 𝑓 : Y→X,
Lemma 4.1.9, and since B = Shv(SepStk) is the localization of a presheaf category, it
follows from [MW22, Proposition A.2.1] and [MW21, Corollary 3.2.10] that it suffices to
check the conditions (1’)-(3’) in the case where 𝑓 : Y →X is a representable submersion
between differentiable stacks. But these are precisely conditions (1)-(3) in the definition of
a pullback formalism, finishing the proof. □

Given an ∞-topos B and a class of B-groupoids U, Martini and Wolf [MW22, Section 8]
defined a tensor product of U-cocompleteB-categories, giving rise to a symmetric monoidal
∞-category CatU−cc(B) of U-cocomplete B-categories. The above characterization of
pullback formalisms can then be reformulated as follows:
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Corollary 4.5.11. Let B = Shv(SepStk) and let U′ be the class of B-categories containing
both U and the locally constant B-categories. There is a fully faithful inclusion

PB(SepStk) ↩→ CAlg(CatU
′−cc(B))

whose essential image consists of those C such that C(X) is presentable for every X ∈
SepStk.

Proof. Recall that a B-category 𝐾 : Bop→Cat∞ is called locally constant if it is equivalent
to the sheafification of a constant functor with value some ∞-category 𝐾 . A B-category
C admits 𝐾-indexed parametrized colimits if and only if each ∞-category C(X) admits
𝐾-indexed colimits and each pullback functo 𝑓 ∗ preserves 𝐾-indexed colimits, see [MW21,
Example 4.2.6]. In particular, a commutative algebra in CatU

′−cc(B) consists of symmetric
monoidalB-category C : Bop→CAlg(Cat∞) which, in addition to satisfying the conditions
(1)-(3) from Definition 4.5.5, also factors through the subcategory CAlg(Catcc

∞) of symmet-
ric monoidal ∞-categories admitting small colimits and whose tensor product preserves
small colimits in each variable. Since the condition on a transformation 𝐹 : C → D of
functors SepStkop→ CAlg(PrL) to satisfy the Beck-Chevalley condition in Definition 4.5.5
corresponds to the condition for the associated B-functor to preserve U-indexed colimits, it
follows that∞-category PB(SepStk) is equivalent to the subcategory of CAlg(CatU

′−cc(B))
spanned by those functors Bop→ CAlg(Cat∞) which in fact factor through the full subcat-
egory CAlg(PrL) ⊆ CAlg(Catcc

∞). This finishes the proof. □

4.5.3 The initial pullback formalism

Proposition 4.5.12. The assignment X ↦→ Shv(Sub/X) is the initial pullback formalism on
SepStk.

Proof. Let B = Shv(SepStk) and recall from the previous subsection that we defined the B-
category U as the B-category corresponding to the pullback formalism X ↦→ Shv(Sub/X).
By Corollary 4.5.11, it will now suffice to prove that U is an initial object of the∞-category
CAlg(CatU

′−cc(B)), or equivalently that U is the monoidal unit of the symmetric monoidal
∞-category CatU

′−cc(B). But since U is already closed under fiberwise colimits, we see that
U is the smallest B-subcategory of ΩB containing the point and closed under U′-colimits,
and thus the theorem is a consequence of [MW21, Theorem 7.1.11]. □

Notation 4.5.13. Let C be a pullback formalism on SepStk. By the previous proposition,
there exists a unique morphism ℎC : Shv(Sub/−) ⇒ C of pullback formalisms. In particular,
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for every differentiable stack X, there is a symmetric monoidal left adjoint

ℎCX : Shv(Sub/X) → C(X).

Because these functors are required to commute with the functors 𝑓♯ for all representable
submersions 𝑓 , it follows that ℎCX is given at a representable object ( 𝑓 : Y →X) ∈ Sub/X
by

ℎCX (Y) = 𝑓♯1Y ∈ C(X).

We will often just write ℎX (Y) for this object when C is clear from context.

Definition 4.5.14. A pullback formalism C on SepStk is called pointed if the ∞-category
C(X) is pointed for every differentiable stack X. We say that C is stable if C(X) is stable
for every differentiable stack X.

Remark 4.5.15. For a morphism 𝑓 : X →Y of differentiable stacks, the pullback functor
𝑓 ∗ : C(X) → C(Y) preserves all colimits. Hence if C is pointed, 𝑓 ∗ is a pointed functor.
Similarly, if C is stable the pullback functors are exact.

Corollary 4.5.16. The assignment X ↦→ Shv(Sub/X;An∗) is the initial pointed pullback
formalism on SepStk. The assignment X ↦→ Shv(Sub/X;Sp) is the initial stable pullback
formalism on SepStk.

Proof. These pullback functors are obtained fromX ↦→ Shv(Sub/X) by pointwise tensoring
with An∗ and Sp, respectively, and hence the result follows from Proposition 4.5.12 and
the fact that the functors − ⊗An∗ : CAlg(PrL) → CAlg(PrL

∗ ) and − ⊗ Sp : CAlg(PrL) →
CAlg(PrL

st) are left adjoint to the respective inclusions. □

4.5.4 Homotopy invariance

We introduce the notion of homotopy invariance for a pullback formalism, and show that
the assignmentX ↦→H(X) is the initial pullback formalism on SepStk satisfying homotopy
invariance.

Definition 4.5.17 (Homotopy invariance). We say that a pullback formalism C on SepStk
satisfies homotopy invariance if for every differentiable stack X the pullback functor
pr∗ : C(X) → C(X×R) associated to the projection pr : X×R→X is fully faithful.

Warning 4.5.18. We emphasize that homotopy invariance does not imply that the ∞-
category C(X) is a homotopy invariant of the stack X.
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The condition of homotopy invariance is in essence the condition that the real line becomes
contractible in C:

Lemma 4.5.19. A pullback formalism C on SepStk satisfies homotopy invariance if and
only if the object ℎpt(R) ∈ C(pt) is terminal.

Proof. Note that C satisfies homotopy invariance if and only if for every object 𝐴 ∈ C(X)
the counit map pr♯ pr∗ 𝐴→ 𝐴 is an equivalence. By the smooth projection formula and
smooth base change, one sees that there is an equivalence pr♯ pr∗ 𝐴 ≃ ℎX (X ×R) ⊗ 𝐴, and
the counit map is obtained by tensoring 𝐴 with the projection ℎX (X ×R) → ℎX (X). Since
this map is the pullback along X → pt of the map of ℎpt(R) → ℎpt(pt) = ∗ in C(pt), we get
the claim. □

For a separated differentiable stack X, consider the symmetric monoidal functor

Shv(Diff)
𝑝∗

−−→ Shv(Sub/X)
ℎX−−→ C(X),

where 𝑝 : X → pt is the map to the point. Homotopy invariance of C demands that this
functor inverts the map R→ pt, or in other words, that it factors through the homotopy
localization functor 𝐿htp : Shv(Diff) → Shvhtp(Diff) ≃ An. Conversely, this means that we
can enforce homotopy invariance by tensoring with An over Shv(Diff):

Lemma 4.5.20. The inclusion PBhtp(SepStk) ↩→ PB(SepStk) of homotopy invariant pull-
back formalisms into all pullback formalisms admits a left adjoint C ↦→ Chtp given by

Chtp(X) := C(X) ⊗Shv(Diff) An.

Proof. As argued above, C satisfies homotopy invariance if and only if the Shv(Diff)-
algebra C(X) in PrL is the restriction of an Shvhtp(Diff)-algebra in PrL, and a left adjoint
to the inclusion PrL ≃ CAlgShvhtp (Diff) ↩→ CAlgShv(Diff) (PrL) is given by −⊗Shv(Diff) An. It
thus remains to show that Chtp is in fact a pullback formalism.

The fact that Chtp is a sheaf of ∞-categories can be proved just like in Lemma 4.2.24. The
left adjoints 𝑓♯ for Chtp are inherited from C, as are smooth base change and the smooth
projection formula, where for the latter we invoke Corollary 4.2.14. It follows that Chtp is a
pullback formalism, which satisfies homotopy invariance by Lemma 4.5.19. □

Proposition 4.5.21. The assignment X ↦→ H(X) is the initial homotopy invariant pullback
formalism on SepStk.

Proof. As the functor H(−) was defined in Construction 4.2.23 as Chtp for C(X) =
Shv(Sub/X), this is immediate from Lemma 4.5.20 and Proposition 4.5.12. □
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It follows that for every homotopy invariant pullback formalism C on SepStk there is a
unique morphism H→ C of pullback formalisms. We will abuse notation and denote this
morphism again by ℎC , just like in Notation 4.5.13. So for every X ∈ SepStk, there is a
symmetric monoidal left adjoint

ℎCX : H(X) → C(X);

it sends the object 𝐿htp(Y) to ℎCX = 𝑔♯1Y for every (𝑔 : Y →X) ∈ Sub/X . We will often
write ℎX (Y) for ℎCX (Y) when C is clear from context.

Corollary 4.5.22. Let X be a differentiable stack and let C be a pullback formalism on
SepStk satisfying homotopy invariance.

(1) If 𝑓 : Y ×R→ Z is a homotopy over X of maps Y → Z in Sub/X , then the maps
ℎX ( 𝑓0), ℎX ( 𝑓1) : ℎX (Y) → ℎX (Z) are equivalent as maps in C(X);

(2) Let 𝑓 : Y →Z be a strict homotopy equivalence over X. Then the morphism

ℎX ( 𝑓 ) : ℎX (Y) → ℎX (Z)

is an equivalence in C(X).

Proof. This is immediate from Lemma 4.2.8 Corollary 4.2.9. □

Corollary 4.5.23. Assume that C is a homotopy invariant pullback formalism on SepStk.
Then for every vector bundle 𝜋 : E →X, the functor 𝜋∗ : C(X) → C(E) is fully faithful.

Proof. We need to show that the counit map 𝜋♯𝜋∗→ id is a homotopy equivalence. By
the smooth projection formula, this map is given by tensoring with ℎX (E) → ℎX (X).
As the map E → X is a strict homotopy equivalence, this map is an equivalence by
Corollary 4.5.22. □

Corollary 4.5.24. The assignment X ↦→ H•(X) is the initial pointed homotopy invariant
pullback formalism on SepStk.

Proof. This is immediate from Proposition 4.5.21. □

4.5.5 Genuine stability

We introduce the notion of genuine stability for a pullback formalism C, and show that
the assignment X ↦→ SH(X) of genuine sheaves of spectra form the universal example of a
pullback formalism which satisfies both homotopy invariance and genuinely stability.
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Notation 4.5.25 (Sphere bundles in a pullback formalism). Let C be a pointed pullback
formalism on SepStk satisfying homotopy invariance. Let E → X be a vector bundle of
separated differentiable stacks. Then we define the sphere bundle of E in C as the cofiber

𝑆E := cofib(ℎX (X) → ℎX (𝑆E)) ∈ C(X),

where the map is induced from the canonical section X → 𝑆E at∞.

Definition 4.5.26 (Genuine stability). A pullback formalism C on SepStk is called genuinely
stable if it is pointed and for every vector bundle 𝜋 : E → X its sphere bundle 𝑆E ∈ C(X)
is monoidally invertible. In this case, we let 𝑆−E denote a monoidal inverse of 𝑆E .

Note that every morphism 𝐹 : C →D of pullback formalisms preserves the sphere bundles
𝑆E . In particular, if C is genuinely stable, then so is D.

Proposition 4.5.27. The assignmentX ↦→ SH(X) is the initial homotopy invariant genuinely
stable pullback formalism on SepStk.

Proof. Observe that a pullback formalism C on SepStk is homotopy invariant or genuinely
stable if and only if its restriction to the subcategory QtStk of global quotient stacks is
homotopy invariant or genuinely stable, hence we may as well restrict to pullback formalisms
on QtStk. In that case, SH is obtained from H• by inverting the sphere bundles, hence the
statement is a consequence of Corollary 4.5.24. □
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II.5 Localization sequences

Our goal in this chapter is to prove a version of the localization theorem for genuine sheaves
on differentiable stacks. This roughly states that, for a closed embedding 𝑖 : Z ↩→X with
open complement 𝑗 : U ↩→X, the inclusions

SH(Z) SH(X) SH(U)𝑖∗ 𝑗∗

form a recollement in the sense of [Lur17, Definition A.8.1]. Our proof strategy will closely
follow that of [Hoy17, Section 4.3] and [Kha19], which in turn are based on the original
reference [MV99, Theorem 3.2.21]. Other sources are [CD19, Section 2.3] and [Vol21,
Section 4].

5.1 The localization axiom

In the spirit of [CD19, Section 2.3], we start by introducing the localization axiom for an
arbitrary pullback formalism C : SepStkop→ CAlg(PrL) on SepStk (see Definition 4.5.5).

Lemma 5.1.1. Let C be a pointed pullback formalism on SepStk and let 𝑖 : Z ↩→X be a
closed embedding of differentiable stacks with complementary open embedding 𝑗 : U→X.
Then the following properties are satisfied:

(a1) The unit id =⇒ 𝑗∗ 𝑗♯ is an equivalence;

(a2) The counit 𝑗∗ 𝑗∗ =⇒ id is an equivalence;

(a3) The functor 𝑗♯ : C(U) → C(X) is fully faithful;

(a4) The functor 𝑗∗ : C(U) → C(X) is fully faithful;

(b1) The composite functor 𝑖∗ 𝑗♯ : C(U) → C(Z) is zero;

(b2) The composite functor 𝑗∗𝑖∗ : C(Z) → C(U) is zero;
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(c) The composite map 𝑗♯ 𝑗∗
counit
=====⇒ id

unit
===⇒ 𝑖∗𝑖∗ admits a preferred null-homotopy.

Proof. Note that (a1)-(a4) are all equivalent, and also (b1) and (b2) are equivalent. Proper-
ties (a1) and (b1) follow from smooth base change, applied to the following two pullback
squares:

U U

U X

𝑗

𝑗

∅ U

Z X.

𝑗

𝑖

For (c), note that by naturality the counit 𝑗♯ 𝑗∗→ id and the unit id→ 𝑖∗𝑖∗ give rise to a
commutative square

𝑗♯ 𝑗
∗ id

𝑗♯ 𝑗
∗𝑖∗𝑖∗ 𝑖∗𝑖∗.

By (b2) the lower left corner is the zero functor, hence this square produces the required
null-homotopy. □

Definition 5.1.2 (Localization axiom, cf. [CD19, Section 2.3]). Let C be a pointed pullback
formalism on SepStk. Let 𝑖 : Z ↩→X be a closed embedding of differentiable stacks with
complementary open embedding 𝑗 : U → X. We say that C satisfies the localization1

axiom for 𝑖, (Loc𝑖), if the following two conditions are satisfied:

(1) The functor 𝑖∗ : C(Z) → C(X) is conservative;

(2) The sequence
𝑗♯ 𝑗
∗ counit
=====⇒ id

unit
===⇒ 𝑖∗𝑖

∗,

equipped with the null-homotopy from (c) above, is a cofiber sequence of natural
transformations C(X) → C(X).

We say thatC satisfies the localization axiom ifC satisfies (Loc𝑖) for every closed embedding
𝑖 : Z ↩→X of separated differentiable stacks.

The localization property implies that the functor 𝑖∗ is well-behaved: it is fully faithful,
satisfies base change, satisfies the projection formula and commutes with the pushforward
functors 𝑓♯ for representable submersions 𝑓 :

1This is sometimes referred to as the gluing axiom.
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Proposition 5.1.3 (Properties closed pushforwards). Let C be a pointed pullback formalism
on SepStk which satisfies property (Loc𝑖) for a closed embedding 𝑖 : Z → X. Then the
following conditions are satisfied:

(1) (Fully faithfulness) The functor 𝑖∗ : C(Z) → C(X) is fully faithful.

(2) (Closed projection formula) For objects 𝐴 ∈ C(Z) and 𝐵 ∈ C(X), the exchange map

PF∗ : 𝑖∗(𝐴) ⊗ 𝐵→ 𝑖∗(𝐴⊗ 𝑖∗𝐵)

is an equivalence in C(X).

(3) (Closed base change) For every pullback square of differentiable stacks

Z′ X′

Z X,

𝑓 ′

𝑖′

𝑓

𝑖

the exchange map
BC∗ : 𝑓 ∗𝑖∗⇒ 𝑖′∗ 𝑓

′∗ : C(Z) → C(X′)

is an equivalence.

(4) (Smooth-closed base change) Consider a pullback square of differentiable stacks

Z′ Y

Z X,

𝑓 ′

𝑖′

𝑓

𝑖

where 𝑓 is a representable submersion. Assume that C satisfies property (Loc𝑖′). Then
the exchange map

BC♯,∗ : 𝑓♯𝑖′∗⇒ 𝑖∗ 𝑓
′
♯

: C(Z′) → C(X)

is an equivalence.

Proof. To see that 𝑖∗ is fully faithful, we need to show that the counit map 𝑖∗𝑖∗𝑍 → 𝑍 is an
equivalence for all 𝑍 ∈ C(Z). Since 𝑖∗ is conservative, it suffices to show that 𝑖∗𝑖∗𝑖∗𝑍→ 𝑖∗𝑍

is an equivalence, and by the triangle identities it will suffice to show that the unit map
𝑖∗𝑍→ 𝑖∗𝑖∗𝑖∗𝑍 is an equivalence. By (Loc𝑖), there is a cofiber sequence

𝑗♯ 𝑗
∗𝑖∗𝑍→ 𝑖∗𝑍→ 𝑖∗𝑖

∗𝑖∗𝑍
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in C(X). But by (b2), the object 𝑗♯ 𝑗∗𝑖∗𝑍 is zero, and thus the map 𝑖∗𝑍 → 𝑖∗𝑖∗𝑖∗𝑍 is an
equivalence. This proves part (1).

We now show part (2). As 𝑖∗ is fully faithful, the unit map 𝐴→ 𝑖∗𝑖∗𝐴 is an equivalence and
thus it suffices to prove the claim when 𝐴 = 𝑖∗𝐴′ for some object 𝐴′ ∈ C(X). In this case,
consider the following diagram:

𝑗♯ 𝑗
∗(𝐴′) ⊗ 𝐵 𝐴′⊗ 𝐵 𝑖∗𝑖∗(𝐴′) ⊗ 𝐵

𝑗♯ ( 𝑗∗(𝐴′) ⊗ 𝑗∗𝐵) 𝑖∗(𝑖∗𝐴⊗ 𝑖∗𝐵)

𝑗♯ 𝑗
∗(𝐴′⊗ 𝐵) 𝐴′⊗ 𝐵 𝑖∗𝑖∗(𝐴′⊗ 𝐵).

PF∗≃ PF♯

≃ ≃

The diagram is commutative by Lemma F.18. By assumption, the top and bottom sequences
are cofiber sequences. The left vertical composite is an equivalence by the smooth projection
formula, and thus also the right vertical composite is an equivalence. It follows that the
map 𝑖∗𝑖∗(𝐴′) ⊗ 𝐵→ 𝑖∗(𝑖∗𝐴′⊗ 𝑖∗𝐵) is an equivalence, proving part (2).

The proofs of parts (3) and (4) are similar to that of part (2), and hence we will be
more brief. For (3), it suffices by fully faithfulness of 𝑖∗ to show that the composite
𝑓 ∗𝑖∗𝑖∗⇒ 𝑖′∗ 𝑓

′∗𝑖∗ ≃ 𝑖′∗𝑖′∗ 𝑓 ∗ is an equivalence. This follows from the following diagram of
cofiber sequences:

𝑓 ∗ 𝑗♯ 𝑗
∗ 𝑓 ∗ 𝑓 ∗𝑖∗𝑖∗

𝑗 ′
♯
𝑗 ′∗ 𝑓 ∗ 𝑓 ∗ 𝑖′∗𝑖

′∗ 𝑓 ∗,

≃

where the left equivalence is obtained from smooth base change. The diagram commutes
by Lemma F.5. For (4), it suffices to show that the composite 𝑓♯𝑖′∗𝑖′

∗⇒ 𝑖∗ 𝑓 ′♯ 𝑖
′∗ ≃ 𝑖∗𝑖∗ 𝑓♯ is an

equivalence. This follows from the following diagram of cofiber sequences:

𝑓♯ 𝑗
′
♯
𝑗 ′∗ 𝑓♯ 𝑓♯𝑖

′
∗𝑖
′∗

𝑗♯ 𝑗
∗ 𝑓♯ 𝑓♯ 𝑖∗𝑖∗ 𝑓♯,

≃

where the left equivalence is obtained from smooth base change. Again the diagram
commutes by Lemma F.5. □

The proof strategy from the previous lemma also applies to the following very general
statement:
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Lemma 5.1.4. Let C and D be pointed pullback formalisms on SepStk which satisfy
property (Loc𝑖) for a closed embedding 𝑖 : Z ↩→ X. Let 𝐹 : C → D be a morphism of
pullback formalisms. Then the Beck-Chevalley transformation

𝐹X ◦ 𝑖∗⇒ 𝑖∗ ◦𝐹Z ∈ Fun(C(Z),D(X))

is an equivalence.

Proof. As 𝑖∗ : C(Z) ↩→ C(X) is fully faithful, it suffices to show that the map 𝐹X𝑖∗𝑖∗→
𝑖∗𝐹Z𝑖

∗ is an equivalence. As 𝐹 is a morphism of pullback formalisms, the latter functor is
equivalent to 𝑖∗𝑖∗𝐹X . We may now contemplate the following two cofiber sequences:

𝐹X 𝑗♯ 𝑗
∗ 𝐹X 𝐹X𝑖∗𝑖∗

𝑗♯ 𝑗
∗𝐹X 𝐹X 𝑖∗𝑖∗𝐹X .

≃

The vertical equivalence on the left is given by the equivalences 𝐹X 𝑗♯ ≃ 𝑗♯𝐹Z and 𝐹Z 𝑗∗ ≃
𝑗∗𝐹Z. As the diagram commutes by Lemma F.5, it follows that also the right vertical map
on cofibers is an equivalence, finishing the proof. □

Corollary 5.1.5 (Closed exceptional pullback). For a closed embedding 𝑖 : Z ↩→X, the
functor 𝑖∗ : C(Z) ↩→C(X) preserves colimits, and thus admits a right adjoint

𝑖! : C(X) → C(Z),

called the exceptional pullback functor.

Proof. Given an indexing∞-category, we have to show that 𝑖∗ preserves 𝐼-indexed colimits.
This is a special case of Lemma 5.1.4 applied to the morphism of pullback formalisms
colim𝐼 : C 𝐼 →C. □

In the stable setting, we obtain the following alternative characterization of the localization
axiom:

Lemma 5.1.6. Let C be a stable pullback formalism on SepStk and let 𝑖 : Z ↩→X be a
closed embedding with open complement 𝑗 : U→X. Then C satisfies (Loc𝑖) if and only if
the following two conditions hold:

(d) The functor 𝑖∗ : C(Z) → C(X) is fully faithful;

(e) The functors 𝑗∗ : C(X) → C(U) and 𝑖∗ : C(X) → C(Z) are jointly conservative.
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Proof. First assume that C satisfies the localization axiom (Loc𝑖) for 𝑖. We have seen in
Proposition 5.1.3 that 𝑖∗ is fully faithful, proving (d). To see that the functors 𝑗∗ and 𝑖∗

are jointly conservative, let 𝑓 : 𝑋 → 𝑌 be a morphism in C(X) such that 𝑖∗ 𝑓 and 𝑗∗ 𝑓 are
equivalences. It follows that 𝑗♯ 𝑗∗ 𝑓 and 𝑖∗𝑖∗ 𝑓 are equivalences, and hence so is 𝑓 by the
bifiber sequence 𝑗♯ 𝑗∗ 𝑓 → 𝑓 → 𝑖∗𝑖∗ 𝑓 . This proves (e).

Conversely, assume that conditions (d) and (e) are satisfied. We will show that C satisfies
(Loc𝑖). As every fully faithful functor is conservative, it remains to show that for every
𝑋 ∈ C(X), the sequence

𝑗♯ 𝑗
∗𝑋→ 𝑋→ 𝑖∗𝑖

∗𝑋

is a cofiber sequence in C(X). By (e), we may test this after pulling back along 𝑖 and 𝑗 .
Using (a1), (b1), (b2) and (d), the pulled back sequences are equivalent to

𝑗∗𝑋→ 𝑗∗𝑋→ 0 and 0→ 𝑖∗𝑋→ 𝑖∗𝑋,

which are clearly cofiber sequences. □

Remark 5.1.7 (Stable recollement). If C is a stable pullback formalism on SepStk which
satisfies the localization axiom for 𝑖 : Z ↩→ X, then Lemma 5.1.6 shows that the full
subcategories 𝑖∗ : C(Z) ↩→ C(X) and 𝑗∗ : C(U) ↩→ C(Z) of C(X) are part of a stable
recollement, in the sense of [Cal+20, Definition A.2.9]:

C(Z) C(X) C(U).𝑖∗ 𝑗∗

𝑖!

𝑖∗

𝑗∗

𝑗♯

5.2 The localization theorem for genuine sheaves

In the previous section, we introduced the localization axiom for a pointed pullback for-
malism C on SepStk. The goal of this section is to verify this axiom in the case C = H• of
pointed genuine sheaves.

5.2.1 Exactness of the closed pushforward functor

Let 𝑖 : Z ↩→X be a closed embedding of differentiable stacks. In this subsection, we will
show that the pushforward functor 𝑖∗ : H(Z) → H(X) preserves all weakly contractible
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colimits, meaning those colimits indexed by weakly contractible2 ∞-categories. This
exactness property of 𝑖∗ follows from a general criterion on a morphism of sites. We follow
Khan [Kha19, Section 3.1].

Definition 5.2.1 ([Kha19, Definition 3.1.5]). Let C and D be essentially small∞-categories
equipped with Grothendieck topologies 𝜏C and 𝜏D. Assume that D admits an initial object
∅D. A functor 𝑢 : C→ D is called topologically quasi-cocontinuous if the following
condition holds:

For every 𝑐 ∈ C and every 𝜏D-covering sieve 𝑅′ ↩→ 𝑦(𝑢(𝑐)) in D, the sieve
𝑅 ↩→ 𝑦(𝑐), generated by morphisms 𝑐′→ 𝑐 such that either 𝑢(𝑐′) is initial or
𝑦(𝑢(𝑐′)) → 𝑦(𝑢(𝑐)) factors through 𝑅′ ↩→ 𝑦(𝑢(𝑐)), is a covering in C.

Lemma 5.2.2 ([Kha19, Lemma 3.1.6]). Consider a topologically quasi-cocontinuous func-
tor 𝑢 : C→ D, as in Definition 5.2.1. Assume further that the following two conditions on
D are satisfied:

(1) The initial object ∅D is strict: given an object 𝑑 ∈D, any morphism 𝑑→∅D is invertible.

(2) For any object 𝑑 ∈ D, the sieve ∅PSh(D) ↩→ 𝑦(𝑑) is a covering in D if and only if 𝑑 is
initial (where ∅PSh(D) denotes the initial object of PSh(D)).

Then the functor Shv𝜏D (D) → Shv𝜏C (C) given by the assignment F ↦→ 𝐿𝜏C (𝑢∗(F )) com-
mutes with contractible colimits. □

We apply this to the situation of differentiable stacks.

Proposition 5.2.3. Let 𝑖 : Z ↩→X be a closed embedding of differentiable stacks. Then the
functor 𝑖∗ : Shv(Sub/Z) → Shv(Sub/X) commutes with contractible colimits.

Proof. We apply Lemma 5.2.2 to the morphism of sites 𝑖∗ : Sub/X → Sub/Z. It is clear
that the initial object ∅ →Z of Sub/Z is strict and that the only object of Sub/Z covered
by the empty sieve is the empty stack. It thus remains to show that 𝑖∗ is topologically
quasi-cocontinuous.

Let 𝑓 : Y→X be a representable submersion of differentiable stacks and consider an open
cover {V𝑖 ↩→ 𝑖∗Y}𝑖∈𝐼 of the pullback 𝑖∗Y →Z. We have to show that the sieve

𝑇 = {W ↩→Y | 𝑖∗W = ∅ or 𝑖∗W ↩→V𝑖 for some 𝑖 ∈ 𝐼}
2Recall that an ∞-category 𝐼 is called weakly contractible if the ∞-groupoid |𝐼 | formed by inverting all

morphisms in 𝐼 is contractible
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covers Y. For every 𝑖 ∈ 𝐼, letW𝑖 ↩→Y be an open substack such that V𝑖 = 𝑖∗W𝑖 ⊆ 𝑖∗Y;
this exists by Corollary 3.2.3. Further, let 𝑗 : U ↩→X denote the open complement of Z.
It is clear that the inclusionYU ↩→Y and the inclusionsW𝑖 ↩→Y are all in 𝑇 and that they
cover Y, proving the claim. □

In order to deduce something about the pushforward functor 𝑖∗ : H(Z) →H(X) at the level
of genuine sheaves, we need to understand the interaction with the localization functor
𝐿htp : Shv(Sub/X) → H(X). We introduce the following auxiliary terminology:

Definition 5.2.4 (Weak equivalence). A morphism 𝑓 : F → G in Shv(Sub/X) is called a
weak equivalence if it is inverted by the localization functor 𝐿htp : Shv(Sub/X) → H(X).
A square

F F ′

G G′

in Shv(Sub/X) is called weakly cocartesian if its image in H(X) is a cocartesian square.

If follows from Corollary 4.2.9 that every strict homotopy equivalence is a weak equivalence.
We thank Adeel Khan for a discussion about the proof of the following result.

Proposition 5.2.5. Let 𝑓 : Z→X be a morphism of differentiable stacks. Then the functor
𝑓∗ : Shv(Sub/Z) → Shv(Sub/X) preserves weak equivalences.

Proof. It will suffice to show that the functor 𝑓∗ : PSh(Sub/Z) → PSh(Sub/X) preserves
𝐿R-local morphisms. As this functor preserves colimits, it suffices to show that it sends
morphisms of the form pr : Y ×R→Y to weak equivalences, where Y ∈ Sub/Z. The
projection map admits a section given by the map 𝑖0 : Y → Y ×R, and the composite
𝑖0 ◦pr : Y×R→Y×R is homotopic to the identity map. It will thus suffice to show that
𝑓∗ sends homotopic maps to homotopic maps. But this is clear: if 𝐻 : Y′×R→X′ is a
homotopy between two maps 𝐻0 and 𝐻1, then a homotopy between 𝑓∗(𝐻0) and 𝑓∗(𝐻1) is

given by the composite 𝑓∗(Y′) ×R→ 𝑓∗(Y′×R)
𝑓∗ (𝐻)−−−−→ 𝑓∗(X′), where the first map is the

projection formula map. □

Corollary 5.2.6. Let 𝑖 : Z ↩→X be a closed embedding of differentiable stacks. Then the
functor 𝑖∗ : H(Z) → H(X) preserves weakly contractible colimits.

Proof. Colimits in H(X) are computed by first forming them in Shv(Sub/X) and then
applying the homotopy localization functor 𝐿htp : Shv(Sub/X) → H(X). The result is thus
immediate from Proposition 5.2.3 and Proposition 5.2.5. □
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Corollary 5.2.7 (Exceptional pushforward). Let 𝑖 : Z ↩→ X be a closed embedding of
differentiable stacks. Then the functor 𝑖∗ : H•(Z) → H•(X) preserves all small colimits,
and thus admits a right adjoint 𝑖! : H•(X) → H•(Z).

Proof. Since H•(Z) and H•(X) are pointed, it is clear that 𝑖∗ preserves the initial object.
By Corollary 5.2.6 it preserves all contractible colimits. The claim follows: given any small
∞-category 𝐼 and a diagram 𝐹 : 𝐼 → H(Z)•, we may lift 𝐹 to a functor 𝐹 : 𝐼⊳→ H(Z)•
which sends the cone point to the zero object. Note that 𝐹 has the the same colimit as 𝐹,
but has a weakly contractible indexing diagram. As 𝑖∗ preserves the initial object, we have
𝑖∗ ◦𝐹⊳ = (𝑖∗ ◦𝐹)⊳, and it follows that 𝑖∗ preserves the colimit of 𝐹. □

5.2.2 Presheaves ofZ-trivialized morphisms

To streamline the proof of the localization theorem for C = H•, we introduce some auxiliary
notation regarding certain presheaves of Z-trivialized morphisms. Our definitions, state-
ments and proofs are direct analogues of those of Khan [Kha19, Section 4.1] and go back
to Morel and Voevodsky [MV99].

In the following, we denote for every differentiable stackX the Yoneda embedding of Sub/X
by ℎX : Sub/X ↩→ PSh(Sub/X).

Definition 5.2.8. Let 𝑖 : Z ↩→X be a closed embedding with open complement 𝑗 : U ↩→X.
For anyY ∈ Sub/X , we define the presheaf ℎZX (Y) ∈ PSh(Sub/X) as the following pushout:

ℎX (YU) ℎX (Y)

ℎX (U) ℎZX (Y).

Note that forW∈ Sub/X , the animaΓ(W, ℎX (U)) is either empty or contractible depending
on whether WZ is empty or not. It follows that the anima of sections Γ(W, ℎZX (Y)) is
contractible whenWZ is empty, and otherwise is given by the set Hom/X (W,Y).

Since 𝑖∗ commutes with colimits, we have 𝑖∗(ℎZX (Y)) ≃ ℎZ (YZ).

Construction 5.2.9 (Presheaf ofZ-trivialized morphisms). LetY ∈ Sub/X and let 𝑡 : Z ↩→
Y be a morphism overX, i.e., a partially defined section ofY→X. We define the presheaf
ℎZX (Y, 𝑡) ∈ PSh(Sub/X), referred to as the presheaf of Z-trivialized morphisms, as the
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following pullback:

ℎZX (Y, 𝑡) ℎZX (Y)

ptX 𝑖∗𝑖∗ℎ
Z
X (Y).

𝑢∗
𝑖

𝜏

Here the right vertical map is the unit map and the bottom horizontal map is given by

ptX ≃ 𝑖∗ℎZ (Z)
𝑡−→ 𝑖∗ℎZ (YZ) ≃ 𝑖∗𝑖∗ℎZX (Y).

In other words, the anima Γ(W, ℎZX (Y, 𝑡)) is contractible whenWZ is empty, and otherwise
is given by the fiber of the restriction map

Hom/X (W,Y) → Hom/Z (WZ,YZ)

at the point defined by the compositeWZ→Z
𝑡−→XZ.

Remark 5.2.10. For a representable submersion 𝑝 : X′→X, there is a natural equivalence

𝑝∗ℎZX (Y, 𝑡) ≃ ℎ
𝑝∗Z
X′ (𝑝

∗Y, 𝑝∗𝑡),

where 𝑝∗𝑡 : 𝑝∗Z→ 𝑝∗Y is the base change of 𝑡 along 𝑝. This is immediate from the fact
that 𝑝∗ preserves limits and colimits.

Our goal in this subsection will be to show that the presheaf ℎZX (Y, 𝑡) is weakly contractible,
see Proposition 5.2.13 below.

Lemma 5.2.11. Let 𝜋 : E → X be a vector bundle with zero section 𝑠0 : X ↩→ E. Let
𝑡 : Z→E denote the composite 𝑡 = 𝑠0◦ 𝑖. Then the presheaf ℎZX (E, 𝑡) is weakly contractible.

Proof. The map 𝜋 induces a map 𝜋 : ℎZX (E, 𝑡) → ℎZX (X, 𝑖), and conversely 𝑠0 induces a
map 𝑠0 : ℎZX (X, 𝑖) → ℎZX (E, 𝑡). We have 𝜋 ◦ 𝑠0 = id, and 𝑠0 ◦ 𝜋 ≃ id via the homotopy

R×ℎZX (E, 𝑡) → ℎZX (E, 𝑡), (𝑎, 𝑓 ) ↦→ 𝑎 𝑓 .

We thus have a weak equivalence ℎZX (E, 𝑡) ≃ ℎ
Z
X (X, 𝑖). The claim now follows since the

presheaf ℎZX (X, 𝑖) is the terminal presheaf. □

Lemma 5.2.12. Let 𝑗 ′ : V ↩→Y be an open embedding in Sub/X . Let 𝑡V : Z →V be a
partial section of the mapV →X and let 𝑡Y = 𝑗 ′ ◦ 𝑡V . Then the induced map

𝑗 ′ : ℎZX (V, 𝑡V) → ℎZX (Y, 𝑡Y)

in PSh(Sub/X) is inverted by the sheafification functor 𝐿open : PSh(Sub/X) → Shv(Sub/X).
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Proof. We will show the map 𝐿open( 𝑗 ′) is both a monomorphism as well as an effective
epimorphism in Shv(Sub/X).
Step 1: We first show that 𝐿open( 𝑗 ′) is a monomorphism. Since the sheafification preserves
pullbacks, we may show that the map 𝑗 ′ : ℎZX (V, 𝑡V) → ℎZX (Y, 𝑡Y) is a monomorphism.
GivenW ∈ Sub/X , we will show that the map

Γ(W, ℎZX (V, 𝑡V)) → Γ(W, ℎZX (Y, 𝑡Y))

of animae is a monomorphism. This is clear ifWZ is empty, so assume it is not. Then this
map is the map induced on fibers in the following diagram:

Γ(W, ℎZX (V, 𝑡V)) Map/X (W,V) Map/Z (WZ,VZ)

Γ(W, ℎZX (Y, 𝑡Y)) Map/X (W,Y) Map/Z (WZ,YZ).

Since the middle and right vertical morphisms are monomorphisms of animae, so is the
induced map on fibers.

Step 2: We show that the map 𝐿open( 𝑗 ′) is an effective epimorphism in Shv(Sub/X). It
suffices to show that for everyW ∈ Sub/X , anyW-section of ℎZX (Y, 𝑡) can locally be lifted
along 𝑗 ′. We may again assume thatWZ is non-empty, since the claim is clear otherwise.
In that case, let 𝑓 be aW-section of ℎZX (Y, 𝑡), i.e., aZ-trivialized morphism 𝑓 : W→Y.
We claim that the substacks

WU ↩→W, WV ↩→W

coverW. Indeed,WU is the open complement of the closed substackWZ, and the map
𝑓Z : WZ→YZ factors throughZ by assumption, and thus in particular throughVZ.

It will thus suffice to show that both 𝑓U as well as 𝑓V admit lifts along 𝑗 ′. For 𝑓V this is
true by construction, as YV =V. For 𝑓U this is automatic asUZ = ∅. □

Proposition 5.2.13. Let 𝑖 : Z ↩→X be a closed embedding of separated differentiable stacks
with open complement 𝑗 : U ↩→X. Let 𝑝 : Y →X be a representable submersion, and let
𝑡 : Z ↩→Y be a section of 𝑝 overZ. Then the presheaf ℎZX (Y, 𝑡) is weakly contractible, in
the sense that its image in H(X) is the terminal object.

Proof. The question is local in X, in light of Remark 5.2.10. Around points inU = X \Z
the statement is trivially true, so it suffices to prove the claim locally around points 𝑧 ∈ Z.
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By Proposition 3.7.5, we can therefore reduce to the case where there is a commutative
diagram

E Y

Z X X,

𝑗

𝜋 𝑝
𝑡

𝑖

𝑠0

where 𝑗 is an open embedding and the map 𝜋 : E →X is a vector bundle with zero section
𝑠0 : X → E. By Lemma 5.2.12, the map 𝑗 induces a weak equivalence

𝑗 : ℎZX (E, 𝑡)
∼−−→ ℎZX (Y, 𝑡).

But by Lemma 5.2.11, the presheaf ℎZX (E, 𝑡) is weakly contractible, finishing the proof. □

5.2.3 Proof of the localization theorem

We are now ready for the proof of the localization theorem for genuine sheaves. Let
𝑖 : Z ↩→ X be a closed embedding with open complement 𝑗 : U ↩→ X. For any sheaf
F ∈ Shv(Sub/X), consider the functorial commutative square

𝑗♯ 𝑗
∗(F ) F

𝑗♯ 𝑗
∗𝑖∗𝑖∗(F ) 𝑖∗𝑖∗(F ),

𝑐
♯

𝑗

𝑢∗
𝑖

𝑢∗
𝑖

𝑐
♯

𝑗

where 𝑐♯
𝑗
: 𝑗♯ 𝑗∗ → id is the adjunction counit and 𝑢∗

𝑖
: id→ 𝑖∗𝑖∗ is the adjunction unit.

By smooth base change, 𝑗∗𝑖∗ is the constant functor with value the terminal object U ∈
Shv(Sub/U). Hence the lower left corner 𝑗♯ 𝑗∗𝑖∗𝑖∗(F ) of the diagram is simply 𝑗♯U ∈
Shv(Sub/X).

Theorem 5.2.14 (Localization theorem for genuine sheaves). Let 𝑖 : Z ↩→X be a closed
embedding of separated differentiable stacks with open complement 𝑗 : U ↩→X. Then for
every F ∈ H(X) the square

𝑗♯ 𝑗
∗(F ) F

𝑗♯ (U) 𝑖∗𝑖∗(F )

𝑐
♯

𝑗

𝑢∗
𝑖

is cocartesian in H(X).
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Proof. Given an object F ∈ H(X), we have to show that the square is weakly cocartesian
in PSh(Sub/X), in the sense of Definition 5.2.4. Observe that F can be written as a weakly
contractible colimit of representables, indexed by the∞-category

(Sub/X)/F = Shv(Sub/X)/F ×Shv(Sub/X) Sub/X ,

which is weakly contractible as it has an initial object ∅ → F . By Corollary 5.2.6, all four
functors in the square commute with contractible colimits, and thus it suffices to prove the
claim when F = 𝐿htp(Y) for some representable submersion 𝑓 : Y →X. In other words,
we have to show that canonical map

ℎZX (Y) = ℎX (Y) ⊔ℎX (YU ) ℎX (U) → 𝑖∗ℎZ (YZ)

is a weak equivalence of presheaves on Sub/X . By universality of colimits in PSh(Sub/X), it
will suffice to prove that for any other (𝑝 : W→X) ∈ Sub/X and any morphism ℎX (W) →
𝑖∗ℎZ (YZ), the base change

ℎZX (Y) ×𝑖∗ℎZ (YZ) ℎX (W) → ℎX (W)

is a weak equivalence. Note that we have ℎX (W) ≃ 𝑝♯ℎW (W), and thus by the smooth
projection formula we may identify this morphism with

𝑝♯ (𝑝∗ℎZX (Y) ×𝑝∗𝑖∗ℎZ (YZ) ℎW (W)) → 𝑝♯ℎX (W).

Consider the pullback square
WZ W

Z X.

𝑘

𝑞 𝑝

𝑖

By smooth base change we have 𝑝∗𝑖∗ ≃ 𝑘∗𝑞∗, and under this equivalence, the above mor-
phism is the image of 𝑝♯ of the morphism

ℎ
WZ
W (Y ×XW)×𝑘∗ℎWZ ((Y×XW)Z) ℎW (W) → ℎW (W).

But the source of this morphism is precisely the presheaf ℎWZW (Y ×XW, 𝑡W), where
𝑡W : Z ×XW → Y ×XW is the base change of 𝑡 : Z → Y along 𝑝 : W → X. We
conclude by Proposition 5.2.13. □

Corollary 5.2.15. For every closed embedding 𝑖 : Z ↩→ X of separated differentiable
stacks with open complement 𝑗 : U ↩→ X and every pointed genuine sheaf F ∈ H•(X),
the sequence

𝑗♯ 𝑗
∗F → F → 𝑖∗𝑖

∗F

is a cofiber sequence in H•(X).
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Proof. For the purpose of this proof, let us make a distinction in notation between the
functors 𝑗H

♯
: H(U) ↩→H(X) and 𝑗H•

♯
: H•(U) ↩→H•(X). We may express 𝑗H•

♯
in terms of

𝑗H
♯

as follows: for a pointed object G ∈ H•(U) = H(U)∗, regarded as a morphismU→G
in H(U), we have a pushout square

𝑗H
♯
(U) 𝑗H

♯
(G)

𝑦(X) 𝑗
H•
♯
(G).

In particular, the object 𝑗H•
♯
𝑗∗F is given by the top left pushout square in the following

commutative diagram:

𝑗H
♯
(U) 𝑦(X)

𝑗♯ 𝑗
∗F 𝑗

H•
♯
𝑗∗F F

𝑗♯ (U) 𝑦(X) 𝑖∗𝑖∗F .

It follows by the pasting rule for pushout squares that the bottom left square is also a
pushout. As the outer bottom rectangle is a pushout by Theorem 5.2.14, it follows from
another application of the pasting rule that also the bottom right square is a pushout square.
This square is precisely the underlying null-homotopy of the sequence 𝑗H•

♯
F → F → 𝑖∗𝑖∗F

in the statement, so since the forgetful functor H•(X) → H(X) preserves pushouts this
finishes the proof. □

Theorem 5.2.16 (Localization theorem for pointed genuine sheaves). The pullback formal-
ism C = H• satisfies the localization axiom.

Proof. In light of Corollary 5.2.15, it remains to show that for every closed embedding
𝑖 : Z ↩→X, the pushforward functor 𝑖∗ : H•(Z) ↩→ H•(X) is conservative. This may be
tested after forgetting the base point. So let 𝜑 : F1 → F2 be a morphism in H(Z) such
that the induced map 𝑖∗(𝜑) is invertible in H(X). We need to show that 𝜑 itself is already
an equivalence, i.e., that for every Y ∈ Sub/Z the map 𝜑(Y) : F1(Y) → F2(Y) is an
equivalence. By Corollary 3.6.7, there exists an objectY′ ∈ Sub/X such thatY ≃Z×XY′.
It thus then follows that F𝑘 (Y) ≃ F𝑘 (Z×XY′) = 𝑖∗F𝑘 (Y′) and similarly 𝜑(Y) ≃ 𝑖∗𝜑(Y′).
This proves the claim. □
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Corollary 5.2.17. The functors 𝑖∗ : H•(Z) →H•(X) for closed embeddings between sepa-
rated differentiable stacks are fully faithful and satisfy the closed projection formula, closed
base change and smooth-closed base change.

Proof. This is a special case of Proposition 5.1.3. □

Corollary 5.2.18 (Localization theorem for genuine sheaves of spectra). The pullback
formalism C = SH satisfies the localization axiom.

Proof. In light of Lemma 5.1.4, this is an immediate consequence of Theorem 5.2.16. □
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II.6 Relative Poincaré duality for differ-
entiable stacks

The goal of this chapter is to establish a relative version of Poincaré duality for separated
differentiable stacks: for every proper representable submersion 𝑓 : Y → X of separated
differentiable stacks, we will establish an equivalence

𝑓♯ (−) ≃ 𝑓∗(− ⊗𝜔 𝑓 )

of functors SH(Y) → SH(X), where 𝜔 𝑓 ∈ SH(Y) is the relative dualizing sheaf of 𝑓 .
Our treatment is similar to that of Hoyois [Hoy17], who proves the analogous result in the
context of equivariant motivic homotopy theory.

6.1 Statement of Main Theorem

The proof of relative Poincaré duality only relies on three crucial properties satisfied by
the ∞-categories SH(X): homotopy invariance, the localization axiom, and the stability
axiom. We have chosen to write all constructions and proofs of this chapter in this level
of generality, as we feel that removing the specifics of the construction of SH(X) from the
discussion clarifies the nature of the argument. Following [KR21, Definition 5.5], we will
refer to these three properties as the Voevodsky conditions, as they were first singled out by
Voevodsky in the case of schemes.

Definition 6.1.1 (Voevodsky conditions). Consider a pullback formalism C : SepStkop→
CAlg(PrL) on SepStk, in the sense of Definition 4.5.5. We say that C satisfies the Voevodsky
conditions if it satisfies homotopy invariance, genuine stability and the localization axiom:

(1) (Homotopy invariance, Definition 4.5.17) For every separated differentiable stackX, the
pullback functor pr∗ : C(X) → C(X×R) associated to the projection map pr : X×R→
X is fully faithful;
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(2) (Genuine stability, Definition 4.5.26) The pullback formalism C is pointed and for every
vector bundle 𝜋 : E →X over a separated differentiable stack X, the associated sphere
bundle 𝑆E ∈ C(X) is monoidally invertible.

(3) (Localization axiom, Definition 5.1.2) For every closed embedding 𝑖 : Z ↩→ X with
open complement 𝑗 : U ↩→Y, the functors 𝑖∗ : C(Z) ↩→C(X) and 𝑗∗ : C(U) ↩→C(X)
are fully faithful, and there is a cofiber sequence 𝑗♯ 𝑗∗→ id→ 𝑖∗𝑖∗ in Fun(C(X),C(X)).
Equivalently, C(X) is a recollement of the full subcategories C(U) and C(Z).

Example 6.1.2. The pullback formalism C = SH satisfies the Voevodsky conditions: ho-
motopy invariance and genuine stability hold by definition, while the localization axiom
holds by Corollary 5.2.18.

For the remainder of the section, we fix a pullback formalism C satisfying the Voevodsky
conditions. We will now give the statement of relative Poincaré duality in this level of
generality.

Definition 6.1.3 (Dualizing object). Let 𝑓 : Y → X be a representable submersion. We
define its dualizing object 𝜔 𝑓 ∈ C(Y) as

𝜔 𝑓 := pr1♯Δ∗1Y ∈ C(Y),

where pr1 : Y ×XY →Y is the projection to the first factor and Δ : Y →Y×XY is the
diagonal of 𝑓 .

We will see below in Corollary 6.2.11 that the object 𝜔 𝑓 is the incarnation in C(Y) of the
tangent sphere bundle 𝑆𝑇 𝑓 of 𝑓 over Y, i.e. the fiberwise one-point compactification of the
relative tangent bundle 𝑇 𝑓 →Y of 𝑓 .

Remark 6.1.4 (Twist functor). We refer to the functor −⊗𝜔 𝑓 : C(Y) → C(Y) as a ‘twist
functor’. By the smooth and closed projection formulas, it is equivalent to the composite
pr1♯Δ∗ : C(Y) → C(Y):

𝑋 ⊗𝜔 𝑓 = 𝑋 ⊗ pr1♯Δ∗1Y ≃ pr1♯ (pr∗1 𝑋 ⊗Δ∗1Y) ≃ pr1♯Δ∗(Δ∗ pr∗1 𝑋 ⊗1Y) ≃ pr1♯Δ∗𝑋.

Construction 6.1.5 (Poincaré duality map, cf. [CD19, Section 2.4.b]). Given a repre-
sentable submersion 𝑓 : Y → X, we construct a natural transformation 𝔭 𝑓 : 𝑓♯ (−) →
𝑓∗(− ⊗𝜔 𝑓 ), called the Poincaré duality map. Consider the following pullback square:

Y×XY Y

Y X.

pr1

pr2

𝑓

𝑓
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There is a a double Beck-Chevalley transformation BC♯,∗ : 𝑓♯pr2∗→ 𝑓∗pr1♯ associated to
this diagram, see Appendix F.2 for details. We then define 𝔭 𝑓 as the following composite:

𝔭 𝑓 : 𝑓♯ ≃ 𝑓♯pr2∗Δ∗
BC♯,∗−−−−→ 𝑓∗pr1♯Δ∗ ≃ 𝑓∗(− ⊗𝜔 𝑓 ),

where the last equivalence holds by Remark 6.1.4.

Remark 6.1.6. There seems to be no standard terminology for the transformation 𝔭 𝑓 .
Cisinski and Déglise use the term ‘purity equivalence’. Bachmann and Hoyois [BH21,
Section 5.4] use the term ‘ambidexterity equivalence’. Although we certainly think this
map as a geometric form of ambidexterity, we prefer to reserve the term ‘ambidexterity’ for
the homotopical notion introduced in Part I. As explained in the introduction, we prefer the
terminology ‘relative Poincaré duality’: we want to think of the representable submersion
𝑓 : Y→X as anX-indexed family of smooth manifolds overX, and we think of the functors
𝑓♯ and 𝑓∗ as the X-indexed homology and cohomology, respectively, of this family.

The following is our main theorem, which is a refined version of Theorem A stated in the
introduction:

Theorem 6.1.7 (Relative Poincaré duality). Let C be a pullback formalism on SepStk
satisfying the Voevodsky conditions. Let 𝑓 : Y →X be a proper representable submersion
between separated differentiable stacks. Then the transformation

𝔭 𝑓 : 𝑓♯ (−) → 𝑓∗(− ⊗𝜔 𝑓 )

is an equivalence of functors C(Y) → C(X).

The proof strategy for Theorem 6.1.7 is a generalization of the usual proof of Atiyah duality
for a compact smooth manifold 𝑀 . A crucial ingredient in the proof is the construction
of a Pontryagin-Thom collapse map associated to a closed embedding of differentiable
stacks, discussed in Section 6.2. To simplify the required bookkeeping in the proof of
Theorem 6.1.7, we introduce in Section 6.3 the notion of a kernel operator, which is
closely related to the notion of Fourier-Mukai transforms in algebraic geometry. Using
these ingredients, we give a proof of Theorem 6.1.7 in Section 6.4. Finally, we discuss
various important consequences of relative Poincaré duality in Section 6.5, like relative
Atiyah duality, proper base change and smooth-proper base change.
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6.2 Relative Thom spaces and the Pontryagin-Thom con-
struction

Fixing a pullback formalism C satisfying the Voevodsky conditions, we start by introducing
the analogues of Thom spaces and the Pontryagin-Thom construction in C. Throughout,
we fix a base stack S, and all other stacks are assumed to live in the category Sub/S: every
differentiable stack X comes equipped with a representable submersion 𝑔X : X → S and
every morphism 𝑓 : Y →X is assumed to commute with the structure maps to S.

6.2.1 Relative Thom spaces

We start by defining relative Thom spaces.

Definition 6.2.1 (Relative Thom space). Consider a commutative diagram

Z X

S,
𝑔Z

𝑖

𝑔X

where 𝑔Z and 𝑔X are representable submersions and 𝑖 is a closed embedding. We define
the (relative) Thom space ofZ in X over S as

ThS (X,Z) := (𝑔X)♯𝑖∗1Z ∈ C(S).

We might sometimes write ThCS (X,Z) to emphasize the dependence on C.

Remark 6.2.2 (Change of base stack). If ℎ : S →S′ is a representable submersion of dif-
ferentiable stacks, then every differentiable stack over S may be regarded as a differentiable
stack over S′ by composing with ℎ. It is clear from the definitions that we have

ThS′ (X,Z) ≃ ℎ♯ThS (X,Z) ∈ C(S′).

Example 6.2.3. IfZ = X and 𝑖 = idX , we get ThS (X,X) = ℎS (X).

Example 6.2.4. Given a representable submersion 𝑓 : Y →X, the dualizing object 𝜔 𝑓 ∈
C(Y) is an example of a relative Thom space: we have

𝜔 𝑓 = pr1♯Δ∗1Y = ThY (Y ×XY,Y) ∈ C(Y),

where the diagonal Δ : Y → Y ×X Y of 𝑓 is a closed embedding which we regard as a
morphism in Sub/X via the first projection map pr1 : Y×XY →Y.
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The relative Thom space ThS (X,Z) may be thought of as a homotopy quotient of the stack
X by the open substackX\Z, taken fiberwise overS. This is made precise by the following
lemma:

Lemma 6.2.5. For a closed embedding 𝑖 : Z ↩→X in Sub/X , there is a preferred cofiber
sequence

ℎS (X \Z) → ℎS (X) → ThS (X,Z) ∈ C(S).

Proof. Let 𝑗 : X \Z ↩→X denote the open complement of 𝑖. By the localization axiom,
there is a preferred cofiber sequence

𝑗♯1X\Z→ 1X→ 𝑖∗1Z ∈ C(X).

Applying the colimit-preserving functor (𝑔X)♯ : C(X) → C(Z), we get a cofiber sequence

(𝑔X\Z)♯1X\Z→ (𝑔X)♯1X→ (𝑔X)♯𝑖∗1Z = ThS (X,Z) ∈ C(Z).

Since ℎS (X \Z) = (𝑔X\Z)♯1X\Z and ℎS (X) = (𝑔X)♯1X , this finishes the proof. □

We will frequently be interested in the case whereS =Z, so that 𝑖 : S ↩→X is the section of
a representable submersion 𝑔 : X →S. In the case 𝑔 is a vector bundle, the relative Thom
space is given by the associated sphere bundle:

Corollary 6.2.6. Let 𝜋 : E → S be a vector bundle and let 𝑠 : S → E be its zero section.
Then the Thom space of 𝑠 over S is the sphere bundle associated to E:

ThS (E,S) ≃ 𝑆E ∈ C(S).

Proof. Consider the unique morphism ℎ : H→ C of pullback formalisms. The induced
functor ℎS : H(S) → C(S) preserves colimits and sends the object 𝐿htp(Y) to ℎS (Y) for
every Y ∈ Sub/S . By Lemma 4.3.2 we thus obtain for every vector bundle 𝜋 : E → S a
pushout square

ℎS (E \S) ℎS (E)

ℎS (S) ℎS (SE)

in C(S), which gives rise to an equivalence between the cofibers in C(S) of the two
horizontal maps. As the object 𝑆E was defined in Notation 4.5.25 to be the cofiber of the
bottom map and the relative Thom space ThS (E,S) is by Lemma 6.2.5 the cofiber of the
top map, this finishes the proof. □
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We prove various basic properties of the relative Thom space construction. We start by
showing that the relative Thom space ThS (X,Z) only depends on an arbitrarily small open
neighborhood ofZ in X.

Lemma 6.2.7 (Invariance under open neighborhoods). Let 𝑖 : Z ↩→X be a closed embed-
ding over S, and let 𝑗 : U ↩→X be an open embedding over S such that 𝑖 factors through
a map 𝑖′ : Z ↩→U. Then there is a preferred equivalence

ThS (U,Z) ∼−−→ ThS (X,Z) ∈ C(S).

Proof. Applying smooth-closed base change to the pullback square

Z U

Z X,

𝑖′

𝑗

𝑖

we obtain an equivalence 𝑗♯𝑖′∗
∼−−→ 𝑖∗. We thus obtain the desired equivalence as the following

composite:

ThS (U,Z) = (𝑔U)♯𝑖′∗1Z = (𝑔X)♯ 𝑗♯𝑖′∗1Z ∼−−→ (𝑔X)♯𝑖∗1Z = ThS (X,Z). □

Due to the existence of relative tubular neighborhoods from Proposition 3.6.10, the previous
lemma implies that the relative Thom space of a closed embedding 𝑖 : Z ↩→X in fact only
depends on its normal bundle:

Corollary 6.2.8. Let 𝑖 : Z ↩→ X be a closed embedding over S and let N𝑖 →Z be its
normal bundle. There is an equivalence

ThS (X,Z) ≃ ThS (N𝑖,Z) ∈ C(S).

Proof. By Proposition 3.6.10, the substack Z admits a tubular neighborhood U inside X
relative to S, meaning that there exists a commutative diagram

Z

X U N𝑖

𝑠0𝑖

𝑗 𝑗 ′

in Sub/S , whereN𝑖 lives over S by composing the bundle projectionN𝑖→Z with the map
𝑔Z : Z → S and where the maps 𝑗 and 𝑗 ′ are open embeddings of differentiable stacks.
The claim thus follows from two instances of Lemma 6.2.7: equivalences

ThS (X,Z) ∼←−− ThS (U,Z) ∼−−→ ThS (N𝑖,Z). □
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Corollary 6.2.9 (Invertibility of Thom spaces). Let 𝑝 : X→S be a representable submer-
sion and assume 𝑝 admits a section 𝑖 : S ↩→X, which is automatically a closed embedding.
Then there is an equivalence

ThS (X,S) ≃ 𝑆N𝑖 ∈ C(S).

In particular, the relative Thom space ThS (X,S) is an invertible object of C(S).

Proof. The first statement is immediate from Corollary 6.2.8 and Corollary 6.2.6. The
second statement follows from the genuine stability assumption on C. □

Warning 6.2.10. In Corollary 6.2.9, it is crucial that Z = S: the relative Thom space
ThS (X,Z) is generally not invertible whenZ ≠ S.

Corollary 6.2.11 (Dualizing object is tangent sphere bundle). Let 𝑓 : Y →X be a repre-
sentable submersion. Then there is an equivalence 𝜔 𝑓 ≃ 𝑆𝑇 𝑓 ∈ C(Y).

Proof. By Corollary 6.2.9, there is an equivalence 𝜔 𝑓 = ThY (Y ×XY,Y) ≃ 𝑆NΔ in C(Y).
Since Proposition 3.5.19 provides an isomorphism of vector bundles NΔ � 𝑇 𝑓 over Y, this
finishes the proof. □

Lemma 6.2.12 (Multiplicativity of Thom spaces). Consider representable submersions
𝑔𝑖 : X𝑖 → S for 𝑖 = 1,2,3, equipped with sections 𝑠𝑖 : S → X𝑖. Assume there exists a
pullback square

X1 X2

S X3

𝑔1

𝑎

𝑏

𝑠3

over S, where 𝑏 is a representable submersion and such that 𝑎 ◦ 𝑠1 = 𝑠2 : S → X2. Then
there is an equivalence

ThS (X2) ≃ ThS (X1) ⊗ThS (X3) ∈ C(S).

In particular, taking X2 = X1×SX3 gives ThS (X1×SX3) ≃ ThS (X1) ⊗ThS (X3).

Proof. Since 𝑔2 = 𝑔3 ◦ 𝑏 and 𝑠2 = 𝑎 ◦ 𝑠1, we have

ThS (X2) = 𝑔2♯𝑠2∗ = 𝑔3♯𝑏♯𝑎∗𝑠1∗
BC♯,∗−−−−→ 𝑔3♯𝑠3∗𝑔1♯𝑠1∗ ≃ ThS (X1) ⊗ThS (X3).

Here the double Beck-Chevalley map BC♯,∗ associated to the pullback square is an equiva-
lence by smooth-closed base change and the last equivalence follows from the smooth and
closed porjection formulas. □
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Remark 6.2.13. One can in fact prove more generally that for closed embeddings 𝑖 : Z→X
and 𝑖′ : Z′→X′ over S there is an equivalence

ThS (X,Z) ⊗ThS (X′,Z′) ≃ ThS (X ×SX′,Z×SZ′) ∈ C(S).

We will not need this and leave the verification to the reader.

6.2.2 Pontryagin-Thom construction

Given a closed embedding of smooth manifolds 𝑖 : 𝑍 ↩→ 𝑀 , one can define a Pontryagin-
Thom collapse map PT(𝑖) : 𝑀→ Th𝑍 (𝑁𝑖), where 𝑁𝑖 denotes the normal bundle of 𝑍 in 𝑀 ,
and Th𝑍 (𝑁𝑖) is the Thom space of this normal bundle. This map is usually constructed at the
point-set level by collapsing the complement of a tubular neighborhood𝑈 of 𝑍 inside 𝑀 to
a point, and identifying the resulting quotient with the Thom space Th𝑍 (𝑁𝑖). From a more
homotopical perspective, we may also think of this map as a composite of the homotopy
quotient map 𝑀→ 𝑀/(𝑀 \ 𝑍) with the string of identifications

𝑀/(𝑀 \ 𝑍) ≃𝑈/(𝑈 \ 𝑍) ≃ 𝑁𝑖/(𝑁𝑖 \ 𝑍) ≃ Th𝑍 (𝑁𝑖);

here we abuse notation by writing 𝑋/𝐴 for the homotopy quotient of a topological space
𝑋 by a subspace 𝐴, that is, the cofiber of the map 𝐴 ↩→ 𝑋 in the ∞-category An of
animae. The advantage of the latter formulation is that it admits a simple generalization
to the general context of a pullback formalism C over differentiable stacks satisfying the
Voevodsky conditions.

Remark 6.2.14. Another approach to a generalization of the Pontryagin-Thom construction
to differentiable stacks can be found in [EG11, Section 3].

Construction 6.2.15 (Quotient map). Let 𝑖 : Z ↩→ Z′ and 𝑖′ : Z′ ↩→ X be two closed
embeddings over S. Then the unit map 1Z′ → 𝑖∗𝑖∗1Z′ ≃ 𝑖∗1Z gives rise to a map

𝑢∗𝑖 : ThS (X,Z′) = (𝑔X)♯𝑖′∗1Z′ → (𝑔X)♯𝑖′∗𝑖∗1Z = ThS (X,Z).

Construction 6.2.16 (Pontryagin-Thom construction). Let 𝑖 : Z ↩→X be a closed embed-
ding, and let U be a relative tubular neighborhood of Z in X relative to S in the sense of
Definition 3.6.9: a choice of a commutative diagram

Z

X U N𝑖

𝑠0𝑖

𝑗 𝑗 ′
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of stacks over S, where the maps 𝑗 and 𝑗 ′ are open embeddings. We define the Pontryagin-
Thom collapse map PTS (𝑖) : ℎS (X) → ThS (N𝑖,Z) (with respect to U) as the following
composite:

PTS (𝑖) : ℎS (X)
6.2.3≃ ThS (X,X)

𝑢∗
𝑖−→ ThS (X,Z)

6.2.7≃ ThS (U,Z)
6.2.7≃ ThS (N𝑖,Z).

Here the map 𝑢∗
𝑖

is the quotient map from Construction 6.2.15.

Informally speaking, this map may be thought of as the composite

X →X/(X \Z) ≃ U/(U \Z) ≃ N𝑖/(N𝑖 \Z) = Th(N𝑖,Z),

where the first map is the homotopy quotient map X →X/(X \Z).

Example 6.2.17. Let 𝜋 : E → S be a vector bundle and let 𝑠 : S → E be its zero section.
Let 𝑖 be the composite inclusion S ↩→ E ↩→ 𝑆E , and pick the open neighborhood E as a
tubular neighborhood of S inside 𝑆E . Then by Corollary 6.2.6 there is an equivalence
ThS (E,S) ≃ 𝑆E , and unwinding that equivalence we see that Pontryagin-Thom map PTS (𝑖)
fits in a cofiber sequence

ℎS (S) → ℎS (𝑆E)
PTS (𝑖)−−−−−→ ThS (E,S).

We will in fact need a slight generalization of the above construction where X is allowed to
be embedded in some larger ambient stack X′:

Construction 6.2.18 (Generalized Pontryagin-Thom construction). Let 𝑖 : Z ↩→ X and
𝑖′ : X ↩→X′ be closed embeddings. Choose a tubular neighborhood

X

X′ U′ N𝑖′

𝑠0𝑖′

𝑗 ′

of 𝑖′ relative to S, and choose another tubular neighborhood

Z

U′ U N𝑗 ′◦𝑖 � N𝑖′◦𝑖

𝑠0𝑗 ′◦𝑖

of the composite 𝑗 ′◦𝑖 : Z ↩→U′ relative toS. We define the map PTS (𝑖, 𝑖′) as the following
composite:

PTS (𝑖, 𝑖′) : ThS (N𝑖′ ,X)
𝑢∗
𝑖−→ ThS (N𝑖′ ,Z) ≃ ThS (U′,Z) ≃ ThS (U,Z) ≃ ThS (N𝑖′◦𝑖,Z).

Here the last three equivalences are instances of Lemma 6.2.7.
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It is clear that Construction 6.2.18 specializes to Construction 6.2.16 when X′ = X and
𝑖′ = idX .

Lemma 6.2.19 (Compatibility with composition). In the situation of Construction 6.2.18,
the following diagram commutes up to preferred homotopy:

ℎS (X′) ThS (N𝑖′ ,X)

ThS (N𝑖′◦𝑖,Z) ThS (N𝑖′◦𝑖,Z).

PTS (𝑖′◦𝑖)

PTS (𝑖′)

PTS (𝑖,𝑖′)

Proof. This follows from the following commutative diagram:

ℎS (X′)

ThS (X′,X) ThS (N𝑖′ ,X)

ThS (X′,Z) ThS (N𝑖′ ,Z) ThS (N𝑖′◦𝑖,Z)

PTS (𝑖′)

PTS (𝑖,𝑖′)

𝑢∗
𝑖′

𝑢∗
𝑖

≃

≃

𝑢∗
𝑖

≃

𝑢∗
𝑖′◦𝑖

PTS (𝑖′◦𝑖)

Note that the bottom composite is given by the composite of the equivalences

ThS (X′,Z) ∼←−− ThS (U,Z) ∼−−→ ThS (N𝑖′◦𝑖,Z).

from Lemma 6.2.7. The two small triangles and the outer triangle then commute by
definition and the lower left square commutes by naturality. □

Lemma 6.2.20 (Compatibility with base change). Let 𝑖 : Z ↩→X be a closed embedding
overS. Let 𝑓 : S′→S be a morphism of differentiable stacks and write 𝑓 ∗ : SubS→ SubS′
for the pullback functor.

(1) If U is a tubular neighborhood of 𝑖 : Z ↩→ X relative to S, then 𝑓 ∗U is a tubular
neighborhood of 𝑓 ∗𝑖 : 𝑓 ∗Z ↩→ 𝑓 ∗X relative to S′.

(2) There are preferred equivalences

ℎS′ ( 𝑓 ∗X) ≃ 𝑓 ∗ℎS (X) and ThS′ (N 𝑓 ∗𝑖, 𝑓
∗Z) ≃ 𝑓 ∗ThS (N𝑖,Z)

(3) With respect to the choice of tubular neighborhood from (1), there is a preferred
homotopy making the following diagram commute:

ℎS′ ( 𝑓 ∗X) 𝑓 ∗ℎS (X)

ThS′ (N 𝑓 ∗𝑖, 𝑓
∗Z) 𝑓 ∗ThS (N𝑖,Z).

PTS′ ( 𝑓 ∗ (𝑖))

≃

𝑓 ∗ PTS (𝑖)
≃
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Proof. This is immediate from spelling out the definitions and using that by smooth and
closed base change the functor 𝑓 ∗ commutes with all the constructions that appear. □

Lemma 6.2.21 (Invariance under homotopy). Let 𝑖 : Z×R ↩→X×R be closed embedding
over S×R, and letZ×R ↩→U ↩→X×R be a tubular neighborhood. Then:

(1) For every 𝑟 ∈ R, the restrictionZ ↩→U𝑟 ↩→X is a tubular neighborhood of the closed
embedding 𝑖𝑟 : Z ↩→X;

(2) For every 𝑟 ∈ 𝑅, there is an isomorphism 𝛼 : N𝑖𝑟 �N𝑖0 of vector bundles overZ making
the following diagram commute up to homotopy:

ℎS (X)

ThS (N𝑖𝑟 ,Z) ThS (N𝑖0 ,Z).

PT(𝑖𝑟 ) PT(𝑖0)

𝛼

≃

Proof. Part (1) is an instance of part (1) of Lemma 6.2.20. The first part of (2) is a
special case of Lemma 3.5.18. For the convenience of the reader, we shall recall how
the isomorphism 𝛼 is constructed. Considering the normal bundle N𝑖 →Z×R of 𝑖, it
follows from Lemma 2.5.4 that N𝑖 is of the form 𝜋×R : N ×R→Z×R for some vector
bundle 𝜋 : N → Z over Z. As N𝑖𝑟 is obtained by pulling back N𝑖 along the inclusion
Z× {𝑟} ↩→Z×R, we obtain an isomorphism N𝑖𝑟 � N for every 𝑟 ∈ R, and thus we may
define 𝛼 as the composite N𝑖𝑟 � N � N𝑖0 .
Next consider the Pontryagin-Thom collapse map for the embedding 𝑖 relative to S ×R,
which takes the form

PTS×R(𝑖) : ℎS×R(X ×R) → ThS×R(N𝑖,Z×R) ∈ C(S ×R).

Letting pr : S ×R→S denote the projection, observe that both source and target of this
map lie in the image of the fully faithful functor pr∗ : C(S) ↩→ C(S ×R), so that the map
PTS×R(𝑖) is of the form pr∗(𝜑) for some morphism 𝜑 : ℎS (X) → ThS (N ,Z) in C(S).
Applying Lemma 6.2.20 to the inclusion S = S×{𝑟} ↩→S×R and using that this map is a
section of the projection map pr, we obtain for every 𝑟 ∈ R a commutative square as follows:

ℎS (X) ℎS (X)

ThS (N𝑖𝑟 ,Z) ThS (N ,Z).

PTS (𝑖𝑟 ) 𝜑

≃

Combining this square with the analogous square for 𝑟 = 0 then proves the claim. □
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6.3 Kernel operators

We continue fixing a pullback formalism C satisfying the Voevodsky conditions. In this
section, we will study the behavior of functors C(X) → C(Y) of a specific form, which we
will call kernel operators. As in the previous section, we fix a base stack S over which all
other stacks live.

Definition 6.3.1 (Kernel operator). Let X,Y ∈ Sub/S and let 𝐷 ∈ C(X ×SY). We define
the kernel operator 𝐹𝐷 of 𝐷 (relative to S) as the functor 𝐹𝐷 : C(X) → C(Y) given as the
following composite:

𝐹𝐷 : C(X)
(prX)∗−−−−−→ C(X×SY)

−⊗𝐷−−−−→ C(X×SY)
(prY )♯−−−−−→ C(Y).

A functor 𝐹 : C(X) → C(Y) is called a kernel operator (relative to S) if it comes equipped
with an equivalence 𝐹 ≃ 𝐹𝐷 for some 𝐷 ∈ C(X×SY). The object 𝐷 is called the kernel of
𝐹.

If 𝐷′ ∈ C(X ×SY) is another kernel, then every morphism 𝛼 : 𝐷→ 𝐷′ induces a natural
transformation 𝐹𝛼 : 𝐹𝐷 → 𝐹𝐷′ on kernel operators.

Warning 6.3.2. It is not necessarily true that the functor 𝐹𝐷 uniquely determines the object
𝐷. For this reason, the kernel 𝐷 is required as data.

The notion of a kernel operator is formally analogous to the notion of a Fourier-Mukai
transform in algebraic geometry, where one would instead consider functors of the form
(prY)∗((prX)∗(−) ⊗𝐷) : C(X) → C(Y), using the right adjoint (prY)∗ rather than the left
adjoint (prY)♯. All the results below on kernel operators are straightforward adaptations of
well-known results for Fourier-Mukai transforms. A similar discussion appears in [FS21,
p.263].

The following are the main examples of kernel operators that we will use.

Example 6.3.3 (Pullback). Let 𝑓 : X → S be a representable submersion and let Y = S.
Then the functor 𝑓 ∗ : C(S) → C(X) is a kernel operator relative to S, with kernel 1X ∈
C(X).

Example 6.3.4 (Pushforward). Let 𝑔 : Y→S be a representable submersion and letX =S.
Then the functor 𝑔♯ : C(Y) → C(S) is a kernel operator relative to S, with kernel 1Y ∈
C(Y).
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Example 6.3.5. Let 𝑓 : X → S be a representable submersion. Then the composite
𝑓 ∗ 𝑓♯ : C(X) → C(X) is equivalent to pr1♯ pr∗2 : C(X) → C(X) by smooth base change
and thus is a kernel operator with kernel 1X×SX ∈ C(X ×S X). Given the previous two
examples, this may also be deduced from Lemma 6.3.9 below.

Example 6.3.6 (Tensor product). Letting X =Y = S, every object 𝐷 ∈ C(S) gives rise to
a kernel operator 𝐹𝐷 = −⊗𝐷 : C(S) → C(S).

Example 6.3.7 (Suspension by a vector bundle). Let 𝜋 : E →S be a vector bundle and let
𝑠 : S → E be its zero section. We define the suspension functor ΣE as

ΣE := 𝜋♯𝑠∗ : C(S) → C(S).

Note that ΣE 1S = ThS (E,S), which by Corollary 6.2.6 is equivalent to the sphere bundle
𝑆E . By the smooth and closed projection formulas, it then follows that there is a natural
equivalence

ΣE ≃ −⊗ 𝑆E ,

so that ΣE is a kernel functor relative to S.

Example 6.3.8 (Twist functor). Let 𝑓 : Y→S be a representable submersion and consider
its dualizing object 𝜔 𝑓 ∈ C(Y) from Definition 6.1.3. We claim that the twist functor

−⊗𝜔 𝑓 : C(Y) → C(Y)

is a kernel operator over S with kernel Δ∗1Y ∈ C(Y ×SY). Indeed, by the smooth and
closed projection formulas we obtain natural equivalences

𝐴⊗𝜔 𝑓 = 𝐴⊗ pr1♯Δ∗1Y ≃ pr1♯ (pr∗1 𝐴⊗Δ∗1Y)
≃ pr1♯Δ∗(Δ∗ pr∗1 𝐴⊗1Y)
≃ pr1♯Δ∗(Δ∗ pr∗2 𝐴⊗1Y)
≃ pr1♯ (pr∗2 𝐴⊗Δ∗1Y) = 𝐹Δ∗1Y (𝐴),

where we use that pr1 ◦Δ = pr2 ◦Δ as both are the identity on Y.

Kernel operators behave well under composition:

Lemma 6.3.9. Consider objects X,Y,Z ∈ Sub/S and consider kernels 𝐷 ∈ C(X ×SY)
and 𝐷′ ∈ C(Y ×SZ). Then the composite 𝐹𝐷′ ◦ 𝐹𝐷 : C(X) → C(Z) is again a kernel
operator, with kernel given by

𝐷′⊙𝐷 := (pr13)♯ (pr∗12𝐷 ⊗ pr∗23𝐷
′) ∈ C(X ×SZ),
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where pr12 : X×SY×SZ →X×SY denotes the projection on the first two factors, and
similarly for pr23 and pr13.

Proof. This is a straightforward computation using smooth base change and the smooth
projection formula, which we will leave to the reader. See Lemma I.3.23 in Part I for an
analogous computation. □

Lemma 6.3.10. Let X,Y,Z,W ∈ Sub/S and consider a kernel 𝐷 ∈ C(X ×S Y) with
associated kernel operator 𝐹𝐷 : C(X) → C(Y).

(1) For a representable submersion 𝑓 : Y →Z, the composite 𝑓♯ ◦𝐹𝐷 : C(X) → C(Z) is
again a kernel operator with kernel (X × 𝑓 )♯𝐷 ∈ C(X×SZ).

(2) For a representable submersion 𝑔 : Z→Y, the composite 𝑔∗ ◦𝐹𝐷 : C(X) → C(Z) is
again a kernel operator with kernel (X ×𝑔)∗𝐷 ∈ C(X×SZ).

(3) For a representable submersion ℎ : W→X, the composite 𝐹𝐷 ◦ ℎ♯ : C(W) → C(Y)
is again a kernel operator with kernel (ℎ×Y)∗𝐷 ∈ C(W×SY).

(4) For a representable submersion 𝑘 : X →W, the composite 𝐹𝐷 ◦ 𝑘∗ : C(W) → C(Y)
is again a kernel operator with kernel (𝑘 ×Y)♯𝐷 ∈ C(W×SY).

Proof. This is a straightforward computation using smooth base change and the smooth
projection formula, which we will leave to the reader. □

Warning 6.3.11. We warn the reader that the identity idC(X) : C(X) → C(X) is not neces-
sarily a kernel operator relative to S, unlike in the situation for Fourier-Mukai transforms.
The problem is that the diagonal Δ : X → X ×S X of X over S is usually not a repre-
sentable submersion. If it is, then the identity is a kernel operator with kernel given by
Δ♯1X ∈ C(X×SX).
As a consequence, it is not necessarily true that for a representable submersion 𝑓 : X →Y
over S, the functors 𝑓♯ : C(X) → C(Y) and 𝑓 ∗ : C(Y) → C(X) are kernel functors relative
to S.

6.4 Proof of Main Theorem

In this section, we will prove relative Poicaré duality for separated differentiable stacks,
Theorem 6.1.7. Recall the setup: we are given a pullback formalism C satisfying the
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Voevodsky conditions and a proper representable submersion 𝑓 : Y → X of separated
differentiable stacks. Our goal is to show that the natural transformation

𝔭 𝑓 : 𝑓♯ (−) ⇒ 𝑓∗(− ⊗𝜔 𝑓 ),

constructed in Construction 6.1.5, is an equivalence. The proof will consist of two steps:
in Subsection 6.4.1 we prove the theorem in the special case where Y is a closed substack
of a vector bundle over X, and in Section 6.4.2 we argue how to reduce the general case to
this special case.

6.4.1 A special case

We will start by proving relative Poincaré duality under the following additional assumption
on the proper submersion 𝑓 :

(A) The stack Y is a closed substack of a vector bundle over X: there is a commutative
diagram

Y E

X,

𝑖

𝑓
𝜋

where 𝑖 is a closed embedding and 𝜋 is a vector bundle.

Our proof strategy in this case will be as follows: we will use the embedding 𝑖 to construct
explicit unit and counit transformations that exhibit the functor 𝑓♯ (−⊗𝜔−1

𝑓
) as a right adjoint

of 𝑓 ∗, and then show that the resulting equivalence 𝑓∗ ≃ 𝑓♯ (−⊗𝜔−1
𝑓
) is compatible with the

Poincaré duality map 𝔭 𝑓 .

Let 𝜋𝑖 : N𝑖→Y denote the normal bundle of the embedding 𝑖 and let 𝜋Δ : NΔ→Y denote
the normal bundle of the diagonal map Δ = Δ 𝑓 : Y →Y×XY. Via Example 6.3.7, these
bundles give rise to suspension functors Σ𝑁Δ ,Σ𝑁𝑖 : C(Y) → C(Y). The following lemma
shows that their composite is given by suspension along the pullback bundle 𝑓 ∗𝜋 : 𝑓 ∗E→Y:

Lemma 6.4.1. There is a short exact sequence of vector bundles over Y of the form
NΔ→ 𝑓 ∗E →N𝑖. In particular, there is an equivalence 𝑆 𝑓 ∗E ≃ 𝑆NΔ ⊗ 𝑆N𝑖 in C(Y), giving
rise to natural equivalences of functors

Σ𝑁𝑖Σ𝑁Δ ≃ Σ 𝑓 ∗E ≃ Σ𝑁ΔΣ𝑁𝑖 : C(Y) → C(Y).

214



Proof. Observe that the second statement follows from the first using Lemma 6.2.12 and
Corollary 6.2.6, while the final statement then follows from the fact that ΣE : C(X) → C(X)
is given by tensoring with 𝑆E ∈ C(X) for a vector bundle E over X, see Example 6.3.7. It
thus remains to prove the first statement.

Consider the embedding 𝑖′ : Y ↩→ 𝑆E , given as the composite of 𝑖 : Y ↩→ E with the
inclusion E ↩→ 𝑆E . Since the map 𝑓 is proper and 𝑆E→X is representable, it follows from
Lemma 2.4.10 that the map 𝑖′ is proper, and thus it is a closed embedding. Consider now
the composite

(𝑖′, id) : Y Δ
↩−→Y×XY

𝑖′×XY
↩−−−−→ 𝑆E ×XY.

Observe that the normal bundle of the map 𝑖′×XY is N𝑖 ×XY, and the pullback of this
bundle along the diagonal Δ is simply the map 𝜋𝑖 : N𝑖 →Y. By Lemma 3.5.16, we thus
obtain a short exact sequence

NΔ→N(𝑖′,id)→N𝑖

of vector bundles overY. It thus remains to show that the normal bundle of the map (𝑖′, id)
is isomorphic to 𝑓 ∗E.

Letting 𝑠0 : X → E denote the zero-section of 𝜋 : E → X, observe that the embedding
𝑖 : Y ↩→ E is homotopic to the zero map 0: Y

𝑓
−→ X 𝑠0−→ E ↩→ 𝑆E via the straight-line

homotopy Y ×R→ 𝑆E , (𝑦,𝑟) ↦→ 𝑟 · 𝑖(𝑦). It follows that the map (𝑖′, id) is isotopic to the
closed embedding (0, id) : Y ↩→ 𝑆E ×XY. Lemma 3.5.18 thus provides an isomorphism of
normal bundles

N(𝑖′,id) � N(0,id) ∈ Vect(Y).

Since (0, id) is the zero-section of the vector bundle 𝑓 ∗𝜋 : 𝑓 ∗E →Y, its normal bundle is
simply given by the map 𝑓 ∗E →Y, finishing the proof. □

We now move to the construction of the aforementioned unit and counit transformations.

Construction 6.4.2. We define a natural transformations 𝜀 : 𝑓 ∗ 𝑓♯ → ΣNΔ and 𝜂 : ΣE →
𝑓♯Σ
N𝑖 𝑓 ∗:

• For 𝜀, recall from Example 6.3.5 and Example 6.3.8 that the functors 𝑓 ∗ 𝑓♯ and
ΣNΔ ≃ pr1♯Δ∗ are kernel functors relative to X, in the sense of Definition 6.3.1, with
kernels given by with kernels given by 1Y×XY and Δ∗1Y , respectively. We define 𝜀
as the transformation induced by the unit map 𝑢∗

Δ
: 1Y×XY → Δ∗Δ∗1Y×XY = Δ∗1Y

in C(Y ×XY). More explicitly, 𝜀 is given by the following composite:

𝑓 ∗ 𝑓♯ ≃ pr1♯ pr∗2
𝑢∗
Δ−−→ pr1♯Δ∗Δ

∗ pr∗2 ≃ pr1♯Δ∗ ≃ ΣNΔ ∈ Fun(C(Y),C(Y)).
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• For 𝜂, its source and target are also kernel functors relative to X, as they are given
by tensoring with the objects 𝑆E and 𝑓♯𝑆

N𝑖 , respectively. We define 𝜂 as the trans-
formation induced by the Pontryagin-Thom map PT(𝑖′) of the closed embedding
𝑖′ : Y ↩→ 𝑆E :

PT(𝑖′) : 𝑆E → ThX (N𝑖′ ,Y) = ThX (N𝑖,Y) ≃ 𝑓♯𝑆N𝑖 .

The following result is the main ingredient for relative Poincaré duality in the special case.

Proposition 6.4.3 (cf. [Hoy17, Theorem 5.22]). The composites

𝑓 ∗ΣE
𝑓 ∗𝜂
−−−→ 𝑓 ∗ 𝑓♯Σ

N𝑖 𝑓 ∗
𝜀ΣN𝑖 𝑓 ∗

−−−−−→ ΣNΔΣN𝑖 𝑓 ∗
6.4.1≃ Σ 𝑓 ∗E 𝑓 ∗ ≃ 𝑓 ∗ΣE (II.6.1)

ΣE 𝑓♯
𝜂 𝑓♯−−→ 𝑓♯Σ

N𝑖 𝑓 ∗ 𝑓♯
𝑓♯Σ
N𝑖 𝜀

−−−−−→ 𝑓♯Σ
N𝑖ΣNΔ

6.4.1≃ 𝑓♯Σ
𝑓 ∗E ≃ ΣE 𝑓♯ (II.6.2)

are homotopic to the identity.

Proof. As 𝜀 and 𝜂 are defined as transformations between kernel functors induced by a map
on kernels, it follows from Lemma 6.3.9 that also each of the functors appearing in (II.6.1)
and (II.6.2) are kernel functors relative to X and that each of the transformations is induced
by a morphism on kernels. It will thus suffice to show that the composites at the level of the
kernels are homotopic to the respective identities.

It follows from Lemma 6.3.10 that the transformations 𝑓 ∗𝜂 and 𝜂 𝑓♯ are both induced by the
𝑓 ∗PT(𝑖′) : 𝑓 ∗𝑆E→ 𝑓 ∗ThX (N𝑖,Y) on kernels. Similarly, it follows from Lemma 6.3.9 that
the transformation 𝜀ΣN𝑖 𝑓

∗ is induced by the composite

𝑓 ∗ 𝑓♯𝑆
𝑁𝑖 ≃ pr1♯ pr∗2 𝑆

N𝑖
𝑢∗
Δ−−→ pr1♯Δ∗Δ

∗ pr∗2 𝑆
N𝑖 ≃ 𝑆NΔ ⊗ 𝑆N𝑖

on kernels, and the transformation 𝑓♯Σ
N𝑖𝜀 is induced by the analogous map 𝑓 ∗ 𝑓♯𝑆

𝑁𝑖 →
𝑆NΔ ⊗ 𝑆N𝑖 where the roles of the two projection maps pr1 and pr2 are swapped. It follows
that up to swapping the two components ofY×XY the two composites (II.6.1) and (II.6.2)
are induced by the same map on kernels, and thus it suffices to show the statement for
(II.6.1). To this end, consider the following diagram:
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𝑓 ∗𝑆E 𝑓 ∗ThX (N𝑖,Y) 𝑓 ∗ 𝑓♯𝑆
N𝑖 𝑆NΔ ⊗ 𝑆N𝑖

𝑆E ×XY ThY (N𝑖 ×XY,Y×XY) 𝑆N(𝑖′ ,id)

𝑆E ×XY 𝑆N(𝑖′ ,id)

𝑆E ×XY 𝑆 𝑓
∗E .

𝑓 ∗ PTX (𝑖′)

PTY ( 𝑓 ∗𝑖′)

≃

≃ 𝜀

≃

PT((𝑖′,id))

PT(Δ, 𝑓 ∗𝑖′)

≃

PT((0,id))

≃(1) (2)

(3)

(4)

Note that by Example 6.2.17 the bottom map is the canonical equivalence, as the map
(0, id) : Y→E×XY is the zero-section of the vector bundle 𝑓 ∗E overY. Also note that the
right vertical composite 𝑆NΔ ⊗ 𝑆N𝑖 ≃ S 𝑓 ∗E is precisely the equivalence from Lemma 6.4.1.
It follows that the composite around the top, right and bottom is the map on kernels
inducing the composite (II.6.1). Since the left side of the diagram is the identity, it thus
remains to show that the diagram commutes up to homotopy. The square (1) commutes
by Lemma 6.2.20. Square (3) commutes by Lemma 6.2.19. Square (4) commutes by
Lemma 6.2.21. It thus remains to show that square (2) commutes.

From the description for the map 𝜀 obtained before, we see that we may write the square
(2) as follows:

ℎY (Y ×XY) ⊗ThY (N𝑖,Y) ThY (NΔ,Y) ⊗ThY (N𝑖,Y) 𝑆NΔ ⊗ 𝑆N𝑖

ThY (N𝑖 ×XY,Y×XY) 𝑆N(𝑖,id) ,

≃

PTY (Δ, 𝑓 ∗𝑖′)
≃ (2)

PTY (Δ)⊗id ≃

where the left equivalence is the equivalence from Lemma 6.2.12 using the identification
of N𝑖 ×X Y with N𝑖 ×Y (Y ×X Y). Both of the Pontryagin-Thom maps PTY (Δ) and
PTY (Δ, 𝑓 ∗𝑖′) start with the quotient map 𝑢∗

Δ
. On the top, we use a choice of tubular

neighborhood UΔ for the diagonal embedding Δ, while on the bottom we use a choice of
tubular neighborhood U(𝑖,id) for the embedding (𝑖, id) : Y ↩→ E ×X Y. We thus need to
show the commutativity of the following diagram:

ThY (Y ×XY,Y) ⊗ThY (𝑁𝑖,Y) ThY (UΔ,Y) ⊗ThY (𝑁𝑖,Y) ThY (𝑁Δ,Y) ⊗ThY (𝑁𝑖,Y)

ThY (N𝑖 ×XY,Y) ThY (U(𝑖,id) ,Y) ThY (𝑁(𝑖,id) ,Y).

(1)
≃

(2)
≃

(5) ≃ (6)≃
(3)
≃

(4)
≃

217



Each of the six equivalences appearing in the above square are specific instances of double
Beck-Chevalley maps. The equivalences labeled (1)-(4) are obtained from Lemma 6.2.7,
and are thus given by the double Beck-Chevalley maps BC♯,∗ associated to the following
four pullback squares:

Y Y Y

Y×XY UΔ NΔ

Δ 𝑠0(1) (2) and
Y Y Y

N𝑖 ×XY U(𝑖′,id) N(𝑖′,id) .

(𝑖′,id) (3) (4)

The two vertical equivalences are both instances of the multiplicativity of Thom spaces,
Lemma 6.2.12, which in turn are obtained from the double Beck-Chevalley equivalences
BC♯,∗ associated to the following two pullback squares:

Y×XY N𝑖 ×XY

Y N𝑖

pr1pr1 (5)

𝑠0

(𝑠0,id)

and
NΔ N(𝑖,id)

Y N𝑖 .𝑠0

𝜋Δ (6)

The trick now is to observe that the tubular neighborhood UΔ of Δ can be chosen as
a pullback along 𝑠0 : Y ↩→ N𝑖 of a tubular neighborhood U(𝑖,id) of (𝑖, id). To see this,
consider the following pullback square:

Y Y×XY

N𝑖 N𝑖 ×XY;

𝑠0×id𝑠0

Δ

Δ′

here the map Δ′ = (id, 𝜋𝑖) is the identity in the first component and is the bundle projection
𝜋𝑖 : N𝑖→Y in the second component. By Lemma 6.2.20, may obtain a tubular neighbor-
hood UΔ of Δ relative to Y by pulling back a tubular neighborhood UΔ′ of Δ′ along the
inclusion 𝑠0 : Y →N𝑖. We claim that the composite NΔ→N𝑖

𝜋𝑖−→Y is isomorphic to the
normal bundle of the map (𝑖, id). Indeed, note that the normal bundle of (𝑖, id) is the same
as that of (𝑠0, id) : Y→N𝑖 ×XY, which is the diagonal composite in the previous pullback
square. In turn, the normal bundle of (𝑠0, id) is isomorphic to the normal bundle of the com-
posite Y 𝑠0−→N𝑖

𝑠0−→NΔ, which is the zero-section of the composite bundleNΔ→N𝑖
𝜋𝑖−→Y,

thus showing the claim. It follows thatUΔ′ also serves as a tubular neighborhoodU(𝑖,id) for
(𝑖, id).
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All in all, we see that the six pullback squares (1)-(6) above all fit in a large pullback diagram
of the following form:

Y Y Y

Y×XY UΔ NΔ

𝑁𝑖 ×XY U(𝑖,id) N(𝑖,id)

Y Y Y

N𝑖 N𝑖 N𝑖 .

Δ

𝑠0

Y×𝑠0

𝑠0

𝜋Δ

𝑠0𝑠0

pr1

pr1

𝑠0

The result now follows from the pasting law for double Beck-Chevalley transformations,
Lemma F.13. □

We are now ready to prove the special case of relative Poincaré duality, Theorem 6.1.7.

Proposition 6.4.4 (Special case of relative Poincaré duality). Consider a commutative
diagram of separated differentiable stacks

Y E

X,

𝑖

𝑓
𝜋

where 𝑓 is a proper representable submersion, 𝑖 is a closed embedding and 𝜋 is a vector
bundle. Then the Poincaré duality map 𝔭 𝑓 : 𝑓♯→ 𝑓∗(− ⊗𝜔 𝑓 ) is an equivalence.

Proof. We first show that the transformation 𝜀 : 𝑓 ∗ 𝑓♯ → ΣNΔ adjoins over to an equiva-
lence 𝑓♯ ≃ 𝑓∗ ◦ΣNΔ . Equivalently, since ΣNΔ is invertible, we may show that the induced
map 𝜀 : 𝑓 ∗ 𝑓♯Σ−NΔ → id exhibits the functor 𝑓♯Σ−NΔ : C(Y) → C(X) as a right adjoint to
𝑓 ∗ : C(X) → C(Y). Indeed, it is a direct consequence of the triangle identities from Propo-
sition 6.4.3 that a compatible unit transformation id→ 𝑓♯Σ

−NΔ 𝑓 ∗ is given by whiskering
the transformation 𝜂 : ΣE → 𝑓♯Σ

N𝑖 𝑓 ∗ with Σ−E : C(Y) → C(Y).
It thus remains to show that the transformation 𝔭 𝑓 is obtained under adjunction from the
transformation 𝜀 : 𝑓 ∗ 𝑓♯ → pr1♯Δ∗ ≃ − ⊗𝜔 𝑓 . It follows from the explicit description of 𝜀
from Construction 6.4.2 that the mate transformation arising in this way is given by the
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following composite:

𝑓♯

𝑢∗
𝑓−−→ 𝑓∗ 𝑓

∗ 𝑓♯ ≃ 𝑓∗pr1♯ pr∗2
𝑢∗
Δ−−→ 𝑓∗pr1♯Δ∗Δ

∗ pr∗2 ≃ 𝑓∗pr1♯Δ∗ ≃ 𝑓∗(− ⊗𝜔 𝑓 ).

To unwind the definition of 𝔭 𝑓 , recall that the double Beck-Chevalley transformation BC♯,∗
is given by the composite

𝑓♯pr2∗
𝑢∗
𝑓−−→ 𝑓∗ 𝑓

∗ 𝑓♯pr2∗ ≃ 𝑓∗pr1♯ pr∗2 pr2∗
𝑐∗pr2−−−→ 𝑓∗pr1♯.

Plugging this into the definition of 𝔭 𝑓 , we thus see that it unwinds to the composite

𝑓♯

𝑢∗
𝑓−−→ 𝑓∗ 𝑓

∗ 𝑓♯ ≃ 𝑓∗pr1♯ pr∗2 ≃ 𝑓∗pr1♯ pr∗2 pr2∗Δ∗
𝑐∗pr2−−−→ 𝑓∗pr1♯Δ∗ ≃ 𝑓∗(− ⊗𝜔 𝑓 ).

The claim thus follows from the commutativity of the following square:

pr∗2 Δ∗Δ∗ pr∗2

pr∗2 pr2∗Δ∗ Δ∗,

≃
𝑐∗pr2

𝑢∗
Δ

≃

which holds by the triangle identity and the fact that the equivalence id ≃ (pr2Δ)∗ ≃ pr2∗Δ∗

can be taken to be the following composite:

id
unit−−−→ pr2∗ pr∗2

unit−−−→ pr2∗Δ∗Δ
∗ pr∗2 ≃ pr2∗Δ∗(pr2 ◦Δ)∗ = pr2∗Δ∗. □

6.4.2 The general case

We will now prove relative Poincaré duality for an arbitrary proper representable submersion
𝑓 : Y→X of separated differentiable stacks. The key ingredient is the fact that the property
of the Poincaré map 𝔭 𝑓 to be an equivalence can be tested locally in the base stack X, see
Corollary 6.4.6 below, which lets us reduce to the special case treated in the previous
subsection. This in turn is a consequence of the following compatibility between the
Poincaré duality transformations and pullbacks of stacks:

Lemma 6.4.5 (Poincaré map commutes with base change). Consider a pullback square of
differentiable stacks

Y′ Y

X′ X

𝑓 ′

ℎ

𝑓

𝑔

such that the morphisms 𝑓 and 𝑓 ′ are representable submersions.
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(1) There is an equivalence

𝛼 : 𝜔 𝑓 ′ ≃ ℎ∗𝜔 𝑓 ∈ C(Y′).

(2) There is a commutative diagram

𝑓 ′
♯
ℎ∗ 𝑓 ′∗ (ℎ∗(−) ⊗𝜔 𝑓 ′)

𝑓 ′∗ℎ
∗(− ⊗𝜔 𝑓 ).

𝑔∗ 𝑓♯ 𝑔∗ 𝑓∗(− ⊗𝜔 𝑓 )

BC∗

𝔭 𝑓

𝔭 𝑓 ′

𝛼

BC♯

Proof. Consider the following commutative diagram, in which all faces are pullback
squares:

Y′×X′Y′ Y×XY

Y′ Y

Y′ Y

X′ X.
𝑓

𝑔

ℎ

𝑘

𝑓 ′
𝑓 ′

𝑝′1 𝑝1

𝑝2

𝑝′2

ℎ

ℎ

𝑓

Part (1) follows from the following sequence of equivalences:

ℎ∗𝜔 𝑓 = ℎ
∗pr1♯Δ 𝑓 ∗1Y ≃ pr1♯𝑘

∗Δ 𝑓 ∗1Y ≃ pr1♯Δ∗ℎ
∗1Y = pr1♯Δ∗1Y′ = 𝜔 𝑓 ′ ,

where we used smooth and closed base change associated to the above pullback squares.
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For part (2), we consider the following large diagram:

𝑓 ′
♯
ℎ∗ 𝑓 ′∗ (ℎ∗(−) ⊗𝜔𝑝′)

𝑓♯𝑝
′
2∗Δ
′
∗ℎ
∗ 𝑓 ′∗ 𝑝

′
1♯Δ
′
∗ℎ
∗

𝑓 ′
♯
𝑝′2∗𝑘

∗Δ∗ 𝑓 ′∗ 𝑝
′
1♯𝑘
∗Δ∗

𝑓 ′
♯
ℎ∗ 𝑓 ′

♯
ℎ∗𝑝2∗Δ∗ 𝑓 ′∗ℎ

∗𝑝1♯Δ∗ 𝑓 ′∗ℎ
∗(− ⊗𝜔𝑝)

𝑔∗ 𝑓♯𝑝2∗Δ∗ 𝑔∗ 𝑓∗𝑝1♯Δ∗

𝑔∗ 𝑓♯ 𝑔∗ 𝑓∗(− ⊗𝜔 𝑓 ).

BC♯ BC∗

𝔭 𝑓

≃

BC♯

≃

BC♯,∗

≃

BC∗

BC∗
BC♯,∗

BC∗

BC♯

BC♯,∗

BC∗

≃

≃

𝛼

≃

𝔭 𝑓 ′

(2)

(1) (3)

Apart from the faces labeled (1), (2) and (3), all faces either by naturality or by definition.
Commutativity of (1) holds by Lemma F.6. Commutativity of (2) holds by Proposition F.14.
Commutativity of (3) is immediate from unwinding the constructions of the equivalences
from part (1) and Remark 6.1.4. □

Corollary 6.4.6. Let 𝑓 : Y → X be a representable submersion between separated dif-
ferentiable stacks. Then the property that the Poincaré duality transformation 𝔭 𝑓 : 𝑓♯ →
𝑓∗(− ⊗𝜔 𝑓 ) is an equivalence can be checked locally in X.

Proof. Let { 𝑗𝑖 : U𝑖 ↩→X}𝑖∈𝐼 be an open cover ofX and for every 𝑖 ∈ 𝐼 and let 𝑓𝑖 : Y×XU𝑖→
U𝑖 denote the base change of 𝑓 along the inclusion 𝑗𝑖 : U𝑖 ↩→X. Assume that for every
𝑖 ∈ 𝐼, the transformation 𝔭 𝑓𝑖 : 𝑓𝑖♯ (−) ⇒ 𝑓𝑖∗(− ⊗𝜔 𝑓 ) is an equivalence. Our goal is to show
that also the transformation 𝔭 𝑓 : 𝑓♯ (−) ⇒ 𝑓∗(− ⊗𝜔 𝑓 ) is an equivalence.

Since C is a sheaf of ∞-categories with respect to the open cover topology on SepStk, the
collection of pullback functors 𝑗∗

𝑖
: C(X) →C(U𝑖) is jontly conservative. It will thus suffice

to show that the transformation 𝑗∗
𝑖
𝔭 𝑓 : 𝑗∗

𝑖
𝑓♯⇒ 𝑗∗

𝑖
𝑓∗(−⊗𝜔 𝑓 ) is an equivalence for every 𝑖 ∈ 𝐼.

By Lemma 6.4.5, this follows directly from the condition that 𝔭 𝑓𝑖 is an equivalence for every
𝑖 ∈ 𝐼, finishing the proof. □

We may now finish the proof of Theorem 6.1.7: for every proper representable submersion
𝑓 : Y →X, the Poincaré duality map 𝔭 𝑓 : 𝑓♯ (−) → 𝑓∗(− ⊗𝜔 𝑓 ) is an equivalence.
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Proof of Theorem 6.1.7. By Proposition 3.7.3, we may find an open cover { 𝑗𝛼 : U𝛼 ↩→
X}𝛼∈𝐼 of X such that for every 𝛼 ∈ 𝐼 the restriction 𝑓𝛼 : XU𝛼

→U𝛼 factors as

XU𝛼

𝑖𝛼−→ 𝑆E𝛼
𝜋𝛼−−→U𝛼,

where 𝜋𝛼 : E𝛼 →U𝛼 is a vector bundle and where 𝑖𝛼 is a closed embedding factoring
through E ↩→ 𝑆E . By Proposition 6.4.4 we get that the transformation 𝔭 𝑓𝛼 is an equivalence
for every 𝛼. It then follows from Corollary 6.4.6 that also the transformation 𝔭 𝑓 is an
equivalence, finishing the proof. □

6.5 Consequences of relative Poincaré duality

This section will discuss several important consequences of relative Poincaré duality. We
continue working in the setting of a pullback formalism C on SepStk satisfying the Voevod-
sky conditions.

6.5.1 Relative Atiyah duality

Given a proper representable submersion Y →X, it follows from relative Poincaré duality
that the image ofY in C(X) is dualizable, with dual given by the Thom object of the inverse
tangent sphere bundle:

Proposition 6.5.1 (Relative Atiyah duality). Let 𝑓 : Y → X be a proper representable
submersion of separated differentiable stacks. Then the object ℎX (Y) ∈ C(X) is dualizable
with dual given by 𝑓♯ (𝑆−𝑇 𝑓 ).

Proof. The functor ℎX (Y) ⊗− : C(X) → C(X) is equivalent to 𝑓♯ 𝑓
∗, regarded as a C(X)-

linear functor. Its right adjoint is equivalent to 𝑓∗ 𝑓 ∗, which is given by tensoring with 𝑓∗1Y
by the projection formula for 𝑓∗. It follows that ℎX (Y) is dualizable with dual 𝑓∗1Y . But
by relative Poincaré duality there is an equivalence 𝑓∗1Y ≃ 𝑓♯ (𝑆−𝑇 𝑓 ) in C(X), finishing the
proof. □

6.5.2 Proper base change

As another consequence of relative Poincaré duality, we obtain good properties of the
pushforward functors 𝑝∗ : C(Y) → C(X) for proper morphisms 𝑝 : Y → X of separated
differentiable stacks: proper base change, the proper projection formula and smooth-proper
base change.
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Proposition 6.5.2 (Proper base change). Let 𝑝 : Y→X be a proper morphism of separated
differentiable stacks. For every pullback square of differentiable stacks

Y′ Y

X′ X,

𝑝′

ℎ

𝑝

𝑔

the right Beck-Chevalley map
BC∗ : 𝑔∗𝑝∗⇒ 𝑝′∗ℎ

∗

is an equivalence in Fun(C(Y),C(X′)).

Proof. By Proposition 3.7.3, the map 𝑝 factors as a closed embedding followed by a proper
representable submersion, hence by Lemma F.6 it suffices to prove the claim in these
two cases. For closed embeddings this is closed base change, see Proposition 5.1.3. So
assume that 𝑝 is a proper representable submersion. Since the functor −⊗𝜔𝑝 : C(Y) →
C(Y) is an equivalence by Corollary 6.2.11, it will suffice to show that the transformation
BC∗ : 𝑔∗𝑝∗(− ⊗𝜔𝑝) → 𝑝′∗ℎ

∗(− ⊗𝜔𝑝) is an equivalence. This follows from Lemma 6.4.5,
since the map BC♯ is an equivalence by smooth base change and the transformations 𝔭 𝑓

and 𝔭 𝑓 ′ are equivalences by relative Poincaré duality, Theorem 6.1.7. This finishes the
proof. □

Proposition 6.5.3 (Proper projection formula). For every proper map 𝑝 : X →Y of sepa-
rated differentiable stacks and objects 𝐴 ∈ C(X), 𝐵 ∈ C(Y), the exchange map

PF∗ : 𝑝∗(𝐴) ⊗ 𝐵→ 𝑝∗(𝐴⊗ 𝑝∗𝐵)

is an equivalence in C(Y).

Proof. The proof is analogous to Proposition 6.5.2. By Proposition 3.7.3, the map 𝑝

factors as a closed embedding followed by a proper representable submersion, hence by
Lemma F.17 it suffices to prove the claim in these two cases. For closed embeddings
this is the closed projection formula, see Proposition 5.1.3. So assume that 𝑝 is a proper
representable submersions. By relative Poincaré duality and the smooth projection formula,
it suffices to show that the following diagram commutes:

𝑝♯ (𝐴) ⊗ 𝐵 𝑝∗(𝐴⊗𝜔𝑝) ⊗ 𝐵

𝑝♯ (𝐴⊗ 𝑝∗𝐵) 𝑝∗(𝐴⊗ 𝑝∗𝐵⊗𝜔𝑝).

PF♯ PF∗

𝔭𝑝

𝔭𝑝
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This is a consequence of the following large commutative diagram:

𝑝♯𝐴⊗ 𝐵 𝑝∗(𝐴⊗𝜔𝑝) ⊗ 𝐵

𝑝♯𝑝1∗Δ∗𝐴⊗ 𝐵 𝑝∗𝑝1♯Δ∗𝐴⊗ 𝐵

𝑝♯ (𝐴⊗ 𝑝∗𝐵) 𝑝♯ (𝑝1∗Δ∗𝐴⊗ 𝑝∗𝐵) 𝑝∗(𝑝1♯Δ∗𝐴⊗ 𝑝∗𝐵) 𝑝∗(𝐴⊗𝜔𝑝 ⊗ 𝑝∗𝐵)

𝑝♯𝑝1∗(Δ∗𝐴⊗ 𝑝∗1𝑝
∗𝐵) 𝑝∗𝑝1♯ (Δ∗𝐴⊗ 𝑝∗1𝑝

∗𝐵)

𝑝♯𝑝1∗Δ∗(𝐴⊗Δ∗𝑝∗1𝑝
∗𝐵) 𝑝∗𝑝1♯Δ∗(𝐴⊗Δ∗𝑝∗1𝑝

∗𝐵)

𝑝♯𝑝1∗Δ∗(𝐴⊗ 𝑝∗𝐵) 𝑝∗𝑝1♯Δ∗(𝐴⊗ 𝑝∗𝐵)

𝑝♯ (𝐴⊗ 𝑝∗𝐵) 𝑝∗(𝐴⊗ 𝑝∗𝐵⊗𝜔𝑝).

PF♯ PF∗

𝔭𝑝

≃
BC♯,∗

≃

PF♯

≃

PF∗

PF∗

BC♯,∗

PF♯

PF∗

𝔭𝑝

≃

PF∗

≃

≃

≃

BC♯,∗

≃

≃

(2)

(1) (3)

The unlabeled faces of the diagram commute either by naturality or by definition. Face (1)
commutes by Lemma F.17. Face (2) commutes by Lemma F.20. The commutativity of face
(3) follows from unwinding the definition of the equivalence from Remark 6.1.4. □

Proposition 6.5.4 (Smooth-proper base change). For every pullback square of separated
differentiable stacks

Y′ Y

X′ X

𝑝′

𝑓 ′

𝑝

𝑓

where 𝑝 is a proper morphism and 𝑓 is a representable submersion, the double Beck-
Chevalley map

BC♯,∗ : 𝑓♯𝑝′∗⇒ 𝑝∗ 𝑓
′
♯

is an equivalence in Fun(C(Y),C(X)).

Proof. The proof is analogous to Proposition 6.5.2. By Proposition 3.7.3, the map 𝑝

factors as a closed embedding followed by a proper representable submersion, hence by
Lemma F.13 it suffices to prove the claim in these two cases. For closed embeddings this
holds by smooth-closed base change, see Proposition 5.1.3, so assume that 𝑝 is a proper
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representable submersions. Since the functor −⊗𝜔𝑝′ is invertible, it will suffice to show
that the map BC♯,∗ : 𝑓♯𝑝′∗(−⊗𝜔𝑝′) → 𝑝∗ 𝑓 ′♯ (−⊗𝜔𝑝′) is an equivalence. By relative Poincaré
duality and smooth base change, this follows from the following large commutative diagram:

𝑓♯𝑝
′
♯

𝑓♯𝑝
′
∗(− ⊗𝜔𝑝′)

𝑓♯𝑝
′
♯
𝑝′2∗Δ

′
∗ 𝑓♯𝑝

′
∗𝑝
′
1♯Δ
′
∗

𝑝♯ 𝑓
′
♯

𝑝♯ 𝑓
′
♯
𝑝′2∗Δ

′
∗ 𝑝∗ 𝑓 ′♯ 𝑝

′
1♯Δ
′
∗ 𝑝∗ 𝑓 ′♯ (− ⊗𝜔𝑝′)

𝑝♯𝑝2∗ 𝑓
′′
♯
Δ′∗ 𝑝∗𝑝1♯ 𝑓

′′
♯
Δ′∗ 𝑝∗ 𝑓 ′♯ (− ⊗ 𝑓

′∗𝜔𝑝)

𝑝♯𝑝1♯Δ∗ 𝑓
′
♯

𝑝∗𝑝1♯Δ∗ 𝑓
′
♯

𝑝♯ 𝑓
′
♯

𝑝∗( 𝑓 ′♯ (−) ⊗𝜔𝑝).

𝔭𝑝′

𝔭𝑝

PF♯

≃
BC♯,∗

≃

BC♯,∗

BC♯,∗

≃

≃

≃

≃

BC♯,∗
BC♯,∗

≃

≃

BC♯,∗
BC♯,∗

BC♯,∗

≃

≃

(2)

(3)

(1)

The unlabeled faces of the diagram commute either by naturality or by definition. Faces (1)
and (2) commute by Lemma F.13. The commutativity of face (3) is somewhat involved and
we will only give the core idea of the proof. Spelling out the definitions of the equivalences
from Remark 6.1.4 and Lemma 6.4.5, the claim will follow from the following commutative
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diagram:

𝑓 ′
♯
𝑝′1♯Δ

′
∗ 𝑓 ′

♯
𝑝′1♯Δ

′
∗( 𝑓 ′∗1⊗Δ′∗𝑝′1

∗(−)) 𝑓 ′
♯
𝑝′1♯ (Δ

′
∗ 𝑓
′∗1⊗𝑝′1

∗(−)) 𝑓 ′
♯
(𝑝′1♯Δ

′
∗ 𝑓
′∗1⊗−)

𝑝1♯ 𝑓
′′
♯
Δ′∗ 𝑝1♯ 𝑓

′′
♯
Δ′∗( 𝑓 ′∗1⊗Δ′∗𝑝′1

∗(−)) 𝑝1♯ 𝑓
′′
♯
(Δ′∗ 𝑓 ′∗1⊗𝑝′1

∗(−))

𝑝1♯Δ∗ 𝑓
′
♯
( 𝑓 ′∗1⊗Δ′∗𝑝′1
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PF∗
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BC♯,∗
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(2)

(3)

BC∗

BC∗

Except for the labeled faces, all faces commute by naturality. Face (1) commutes by
Lemma F.6. Faces (2) and (3) are formal properties of mate transformations, whose
verification we will leave to the reader. □

Proposition 6.5.5 (Proper exceptional pullback). Let 𝑝 : Y →X be a proper map of sep-
arated differentiable stacks. Then the functor 𝑝∗ : C(Y) → C(X) admits a right adjoint
𝑝! : C(X) → C(Y).

Proof. By Proposition 3.7.3, the map 𝑝 factors as a closed embedding followed by a proper
representable submersion. If 𝑝 is a closed embedding, the claim holds by Corollary 5.1.5.
If 𝑝 is a proper representable submersion, there is an equivalence 𝑝∗(−) ≃ 𝑝♯ (−⊗𝜔−1

𝑓
) and

the latter functor admits a right adjoint 𝜔 𝑓 ⊗ 𝑓 ∗(−). □

6.5.3 Relative Poincaré duality for stacks on SepStk

Thus far, our discussion of the categorical properties for the pullback functors 𝑓 ∗ : C(X) →
C(Y) has been restricted to morphisms 𝑓 : Y →X between differentiable stacks. As we
will see now, these properties formally extend to more general morphisms in Shv(SepStk).
This generalization will be used in Section III.III.4 to deduce relative Poincaré duality for
proper genuine sheaves of spectra.
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Recall that, since C is a sheaf of ∞-categories on SepStk, it admits a unique extension
to a limit-preserving functor C : Shv(SepStk)op → CAlg(PrL). We will refer to objects
𝔛 ∈ Shv(SepStk) as stacks on SepStk. We will identify a differentiable stack X with its
image under the Yoneda embedding.

Definition 6.5.6 (Representable submersions and proper maps of stacks on SepStk). Let
𝑓 : 𝔜→ 𝔛 be a morphism of stacks on SepStk.

(1) We say that 𝑓 is a representable submersion if for every separated differentiable stack
X and every pullback square

Y 𝔜

X 𝔛

𝑓 ′ 𝑓

in Shv(SepStk), the objectY is also a separated differentiable stack and the base change
morphism 𝑓 ′ : Y →X is a representable submersion;

(2) We say that 𝑓 is an open embedding if it is a representable submersion and the base
change morphism 𝑓 ′ : Y →X in part (1) is even an open embedding for all X → 𝔛;

(3) We say that 𝑓 is representable if for every separated differentiable stack X and every
pullback square

Y 𝔜

X 𝔛

𝑓 ′ 𝑓

in Shv(SepStk) in which the bottom map X → 𝔛 is a representable submersion, the
object Y is also a separated differentiable stack;

(4) We say that 𝑓 is proper if it is representable and the base change morphism 𝑓 ′ : Y→X
in the previous point is proper for every X → 𝔛.

Remark 6.5.7. By definition, the condition that the base change morphism 𝑓 ′ : Y→X is a
representable submersion or a proper morphism can be tested by further pulling back along
a map𝑀→X from a smooth manifold𝑀 , hence the same could be done in Definition 6.5.6.
We have chosen this formulation to enhance the analogy with Definition 2.1.4.

Proposition 6.5.8. Let C : Shv(SepStk)op→CAlg(PrL) be a pullback formalism on SepStk
satisfying the Voevodsky conditions. Then the following hold:
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(1) For every representable submersion 𝑓 : 𝔜→𝔛 of stacks on SepStk, the pullback functor
𝑓 ∗ : C(𝔛) → C(𝔜) admits a left adjoint 𝑓♯ : C(𝔜) → C(𝔛). Furthermore, these left
adjoints satisfy smooth base change and the smooth projection formula.

(2) For every proper morphism 𝑝 : 𝔜→ 𝔛 of stacks on SepStk, the pullback functor
𝑝∗ : C(𝔛) → C(𝔜) admits a right adjoint 𝑝∗ : C(𝔜) → C(𝔛). Furthermore, these
right adjoints satisfy proper base change and the proper projection formula.

(3) The left adjoints 𝑓♯ and right adjoints 𝑝∗ from parts (1) and (2) satisfy smooth-proper
base change.

(4) For every proper representable submersion 𝑓 : 𝔜→𝔛 of stacks on SepStk the Poincaré
duality map 𝔭 𝑓 : 𝑓♯ (−) → 𝑓∗(− ⊗𝜔 𝑓 ) is an equivalence of functor C(𝔜) → C(𝔛).

Proof. Each of these properties are local in the morphism 𝑓 : 𝔜→ 𝔛, in the sense that they
may be tested after pulling back along an effective epimorphism 𝔛′↠ 𝔛 in Shv(SepStk).
They then follow immediately from the analogous properties for morphisms of differentiable
stacks:

(1) Smooth base change and the smooth projection formula hold by assumption on C;

(2) Proper base change and the proper projection formula hold by Proposition 6.5.2 and
Proposition 6.5.3, respectively;

(3) Smooth-proper base change holds by Proposition 6.5.4;

(4) Relative Poincaré duality holds by Theorem 6.1.7.

This finishes the proof. □
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Part III

Outlook
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III.1 Introduction

In the final part of this dissertation, we indicate several potential directions for future
research following up on the results from parts I and II. In Section III.2, we explain in some
detail the expected close relation between twisted ambidexterity from Part I and relative
Poincaré duality from Part II. In Section III.3, we discuss six-functor formalisms on the site
SepStk and formulate a conjecture concerning a six-functor formalism of genuine sheaves of
spectra. In Section III.4, we discuss the notion of proper genuine sheaves on a differentiable
stack.

We emphasize that the contents of this final part are much more speculative in nature than
the contents of parts I and II.

III.2 From Poincaré duality to twisted ambidexterity

The goal of this section is to explain the close connection between twisted ambidexterity
for orbispectra, the main topic of Part I of this dissertation, and relative Poincaré duality for
differentiable stacks, the main topic of Part II of this dissertation.

We start in Subsection 2.1 by discussing the underlying orbispace of a differentiable stack.
In Subsection 2.2 we propose a notion of locally constant genuine sheaves on a stack and
indicate why the category of such should only depend on the underlying orbispace of the
stack. In Subsection 2.3 we come to the comparison of twisted ambidexterity and Poincaré
duality.

2.1 From differentiable stacks to orbispaces

Given a differentiable stack X and a compact Lie group 𝐺, the space of 𝐺-fixed points of
X is the homotopy type of the internal mapping stack Hom(B𝐺,X) in Shv(Diff). These
fixed point spaces can be assembled into a presheaf on the global indexing category Glo
from Definition I.4.11, thus forming a global space. It was recognized by Gepner and
Henriques [GH07], who worked in the topological rather than the differentiable setting,
that this passage from stacks to global spaces is precisely capturing the homotopy theory of
stacks.1

The philosophy that global spaces constitute the homotopy theory of stacks admits a per-
spective using the notion of homotopy invariant sheaves, introduced in Section II.4.2.

1Both orbispaces and global spaces are called ‘orbispaces’ by Gepner and Henriques
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Consider the∞-category Shv(SepStk) of sheaves of spaces on the site SepStk of separated
differentiable stacks, equipped with the open covering topology from Definition II.4.1.2. By
inverting the projection maps X×R→X for all separated differentiable stacks, we obtain
a homotopy localization functor

𝐿htp : Shv(SepStk) → Shvhtp(SepStk).

The target of this map can be shown to be equivalent to a presheaf category, whose
indexing category is the full subcategory Glo′ ⊆ Shvhtp(SepStk) spanned by the homotopy
localizations 𝐿htp(B𝐺) of the classifying stacks B𝐺 for all compact Lie groups 𝐺:

Proposition 2.1. There is a unique equivalence PSh(Glo′) ≃−→ Shvhtp(SepStk) extending the
inclusion Glo′ ↩→ Shvhtp(SepStk).

The proof is entirely analogous to that of Corollary II.4.4.7 in the 𝐺-equivariant situation,
the only subtle point being the use of Theorem II.3.7.2 to deduce that every separated
differentiable stack is locally homotopy equivalent to a stack of the form B𝐺.

The ∞-categories Glo′ and Glo are very similar to each other: both have one object for
every compact Lie group 𝐺, and the space of morphisms from 𝐻 to 𝐺 can in both cases
be computed to be Π∞(Hom(B𝐻,B𝐺)), the homotopy type of the internal mapping object
Hom(B𝐻,B𝐺) in Shv(Diff). It seems likely that the two∞-categories are in fact equivalent:

Conjecture 2.2. There is an equivalence of ∞-categories Glo ≃ Glo′. In particular, there
exists a functor

ΠGlo : Shv(SepStk) → GloSpc

which exhibs the ∞-category GloSpc as the Bousfield localization of Shv(SepStk) at the
homotopy equivalences.

Given a separated differentiable stack X, we refer to the global space ΠGlo(X) as the global
homotopy type of X.

Remark 2.3. A variant of this conjecture has previously been considered by Adrian Clough
in personal writings.

From the characterization of representable maps between separated differentiable stacks
from Corollary II.3.4.6, one may deduce that for any representable map 𝑓 : Y→X between
separated differentiable stacks, the induced map ΠGlo( 𝑓 ) : ΠGlo(Y) →ΠGlo(X) is a faithful
map of global spaces. Since every separated differentiable stack is a colimit of global
quotient stacks along representable maps, it follows that the global homotopy type ΠGlo(X)
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of a separated stack X is in fact an orbispace, meaning that it is contained in the essential
image of the left Kan extension functor OrbSpc = PSh(Orb) ↩→ PSh(Glo) = GloSpc.

2.2 Locally constant genuine sheaves

Given an∞-topos B, one may consider sheaves of∞-categories on B, i.e. limit-preserving
functors Bop → Cat∞. In Part I of this dissertation, our focus was on examples of ho-
motopical nature, like the ∞-topoi OrbSpc and GloSpc of orbispaces and global spaces,
respectively. In Part II of this dissertation, our focus was instead on examples of geomet-
ric nature, in particular the ∞-topos Shv(SepStk). In light of Conjecture 2.2, these two
situations are closely related:

Definition 2.4 (Strong homotopy invariance). A sheaf of ∞-categories C on Shv(SepStk)
is said to be strongly homotopy invariant if for every separated differentiable stack X the
pullback functor pr∗ : C(X) → C(X×R) is an equivalence.

Corollary 2.5. Assuming that Conjecture 2.2 holds, precomposition with the global homo-
topy type functor ΠGlo : Shv(SepStk) → GloSpc induces an equivalence

Cat(GloSpc) ≃−→ Cats.htp(Shv(SepStk)

between the ∞-category of global ∞-categories, i.e. sheaves of ∞-categories on GloSpc,
and the∞-category of strongly homotopy invariant sheaves of∞-categories on SepStk.

The main examples of sheaves of ∞-categories on SepStk studied in Part II are the assign-
mentsX ↦→H(X) andX ↦→ SH(X) of genuine sheaves of spaces/spectra. However, just like
the∞-category Shv(𝑀) of sheaves on a smooth manifold 𝑀 does not solely depend on the
homotopy type of 𝑀 , also the∞-categories H(X) and SH(X) depend on more than just the
underlying global homotopy type of the differentiable stack X, and thus these assignments
are not strongly homotopy invariant. Nevertheless, we expect that, just like in the situation
for smooth manifolds, one can define subcategories

HLoc(X) ⊆ H(X) and SHLoc(X) ⊆ SH(X)

of locally constant genuine sheaves which do satisfy strong homotopy invariance. The
following definition is an attempt of defining such notion of locally constant genuine sheaves:

Predefinition 2.6 (Locally constant objects). Let C : SepStkop→ Cat∞ be a sheaf of ∞-
categories on SepStk which is homotopy invariant, in the sense of Definition II.4.5.17. Let
X be a separated differentiable stack.
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• Assume X comes equipped with a map of stacks 𝑝 : X → B𝐺 for some compact Lie
group 𝐺. An object 𝐴 ∈ C(X) is called 𝐺-constant if it is in the essential image of
the functor 𝑝∗ : C(B𝐺) → C(X).

• An object 𝐴 ∈ C(X) is called locally constant if for every point 𝑥 ∈ X admits an open
neighborhoodU ⊆ X equipped with a mapU→ B𝐺 for some compact Lie group 𝐺
such that 𝐴|U is 𝐺-constant.

We let CLoc(X) ⊆ C(X) denote the full subcategory spanned by the locally constant objects.

The reason for calling this a ‘predefinition’ is to emphasize that we view this as a suggestion
for a definition, but that more work should be done to see whether this definition is actually
well-behaved. The idea is that every separated stack X is locally of the form 𝑉//𝐺 for
some representation 𝑉 of a compact Lie group 𝐺, and the locally constant objects over
𝑉//𝐺 should all be pulled back from B𝐺. Informally speaking: “locally constant objects
are locally captured by their isotropy”.

Example 2.7. Vector bundles are locally constant and thus so are their associated sphere
bundles. It thus follows from Corollary II.6.2.11 that the dualizing sheaf 𝜔 𝑓 ∈ SH(Y) of a
representable submersion 𝑓 : Y →X is locally constant.

We leave to the reader the proof that the pullback functors 𝑓 ∗ : C(X) → C(Y) preserves
locally constant objects for every morphism 𝑓 : Y →X of separated differentiable stacks,
so that CLoc defines a subfunctor

CLoc : SepStkop→ Cat∞

of C. Since being a locally constant object is clearly a local condition, this subfunctor CLoc

is again a sheaf of∞-categories on SepStk. We conjecture this sheaf is strongly homotopy
invariant:

Conjecture 2.8. Let C be a homotopy invariant sheaf of∞-categories on SepStk. Then the
subsheaf CLoc is strongly homotopy invariant.

This conjecture seems plausible: as the pullback functor pr∗ : CLoc(X) → CLoc(X ×R) is
fully faithful by assumption, it will suffice to show that any locally constant object in C(X×
R) is pulled back from X. Using a technique like the one from [Lur17, Proposition A.2.1],
one should be able to reduce to the case where the object is in fact constant, i.e. obtained
via pullback along a map X×R→ B𝐺 for some 𝐺. But this map must factor through X by
strong homotopy invariance of principal 𝐺-bundles, giving the claim.
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Assuming both Conjecture 2.2 and Conjecture 2.8 are true, the locally constant objects in
C give rise to a global ∞-category CLoc : GloSpcop→ Cat∞. In particular, taking C = SH
would provide a global ∞-category SHLoc of genuine sheaves of spectra. At the level of
objects, SHLoc agrees with the global ∞-category Sp• of genuine spectra, in light of the
equivalences SH(B𝐺) ≃ Sp𝐺 from Proposition 4.4.17. One can similarly check that they
agree at the level of morphism. This leads to the following conjecture:

Conjecture 2.9. There is an equivalence of global ∞-categories SHLoc ≃ Sp• between
the global ∞-category of locally constant genuine sheaves and the global ∞-category
B𝐺 ↦→ Sp𝐺 of genuine equivariant spectra.

In fact, we expect this equivalence to hold as presentably symmetric monoidal global ∞-
categories.

2.3 From Poincaré duality to twisted ambidexterity

We will now explain the conjectural connection between the (homotopical) twisted am-
bidexterity equivalences obtained in Part I and the (geometric) Poincaré duality equivalences
obtained in Part II.

Recall from Theorem II.6.1.7 that for every proper representable submersion 𝑓 : Y →X,
there is a relative Poincaré duality equivalence 𝑓♯ (−) ≃ 𝑓∗(− ⊗𝜔 𝑓 ) of functors SH(Y) →
SH(X). For an arbitrary representable submersion 𝑓 , the functors 𝑓♯ and 𝑓∗ do not in
general restrict to locally constant genuine sheaves. However, they do if we assume that 𝑓
is locally trivial, in the following sense:

Predefinition 2.10 (Locally trivial submersions). Let 𝑓 : Y →X be a morphism of sepa-
rated differentiable stacks.

• AssumeX = 𝑁//𝐺 is a global quotient stack of some smooth𝐺-manifold 𝑁 , where𝐺
is a compact Lie group. We say that 𝑓 is 𝐺-trivial if there exists another 𝐺-manifold
𝑀 such that Y →X is equivalent to the projection map (𝑀 ×𝑁)//𝐺→ 𝑁//𝐺.

• For general X, we say that 𝑓 is locally trivial if around every point 𝑥 ∈ X there exists
an open neighborhood U ⊆ X of 𝑥 of the form U � 𝑁//𝐺 for some compact Lie
group 𝐺 and a smooth 𝐺-manifold 𝑁 such that the restriction 𝑓 |U : Y|U →U is
𝐺-trivial.

Since every 𝐺-trivial morphism is a representable submersion, it follows that every locally
trivial morphism is a representable submersion.

236



Conjecture 2.11. Let 𝑓 : Y → X be a locally trivial submersion. Then the functor
𝑓♯ : SH(Y) → SH(X) preserves locally constant objects. If 𝑓 is proper, then also the
functor 𝑓∗ : SH(Y) → SH(X) preserves locally constant objects.

Proof sketch. By smooth/proper base change, the statement can be checked locally inX, so
that we may assume that 𝑓 is given as the projection map (𝑀 ×𝑁)//𝐺→ 𝑁//𝐺 for some
compact Lie group 𝐺 and smooth 𝐺-manifolds 𝑀 and 𝑁 . By [Die87, Theorem 5.6] we
may further assume 𝑁 = 𝐺 ×𝐻 𝑉 for a closed subgroup 𝐻 ⩽ 𝐺 and an 𝐻-representation 𝑉 .
Replacing 𝐺 by 𝐻 we may in fact assume that 𝑁 =𝑉 is a 𝐺-representation. It follows from
Conjecture 2.8 that every locally constant object 𝐴 in SH((𝑀 ×𝑉)//𝐺) is pulled back from
SH(𝑀//𝐺) and it thus follows from smooth and proper base change that the objects 𝑓♯𝐴 and
𝑓∗𝐴 in C(𝑉//𝐺) are pulled back from C(B𝐺), showing that they are locally constant. □

A stacky version of the classical Ehresmann’s theorem says that any proper representable
submersion is locally trivial:

Proposition 2.12 (Ehresmann’s theorem for differentiable stacks, Hoyo and Fernandes
[HF19, Corollary 6.4.5]). Any proper representable submersion 𝑓 : Y → X is locally
trivial. □

In particular, given a proper representable submersion 𝑓 : Y → X the relative Poincaré
duality equivalence 𝑓♯ (−) ≃ 𝑓∗(−⊗𝜔 𝑓 ) restricts to an equivalence of functors SHLoc(Y) →
SHLoc(X). This equivalence only depends on the under lying map ΠGlo( 𝑓 ) : ΠGlo(Y) →
ΠGlo(X) of orbispaces. We expect that the resulting equivalence is essentially the twisted
ambidexterity equivalence for orbispectra from I.4.20:

Conjecture 2.13. Let 𝑓 : Y→X be a proper representable submersion between separated
differentiable stacks.

(1) Under the conjectured equivalence SHLoc(Y) ≃OrbSp(ΠGlo(Y)) from Conjecture 2.9,
the dualizing sheaf 𝜔 𝑓 ∈ SHLoc(Y) from Definition II.6.1.3 is inverse to the dualizing
object 𝐷 𝑓 ∈ OrbSp(ΠGlo(Y)) from Definition I.3.1:

𝐷 𝑓 ≃ 𝜔−1
𝑓 ∈ SHLoc(Y).

(2) Under the conjectured equivalences from Conjecture 2.9, the relative Poincaré duality
equivalence

𝔭 𝑓 : 𝑓♯ (− ⊗𝜔−1
𝑓 ) ≃ 𝑓∗(−) : SHLoc(Y) → SHLoc(X)

237



agrees with the twisted ambidexterity equivalence

Nm 𝑓 : 𝑓!(− ⊗𝐷 𝑓 ) ≃ 𝑓∗(−) : OrbSp(ΠGlo(Y)) → OrbSp(ΠGlo(X)).

Proof sketch. In the proof of relative Poincaré duality, we have produced a map 𝜂 : 1X →
𝑓♯𝑆
−𝑇 𝑓 which induced the unit transformation idC(X)→ 𝑓♯ ( 𝑓 ∗(−) ⊗ 𝑆−𝑇 𝑓 ) of an adjunction

𝑓 ∗ ⊣ 𝑓♯ (− ⊗ 𝑆−𝑇 𝑓 ). Considering the global ∞-category C = SHLoc, it then follows from
Lemma 3.26 that the map 𝜂 exhibits 𝑆−𝑇 𝑓 as a left Costenoble-Waner dual, in the sense of
Definition 3.24. Due to the formulation of twisted ambidexterity in terms of Costenoble-
Waner duality from Proposition 3.28, it follows that the dualizing object 𝐷 𝑓 is equivalent
to 𝑆−𝑇 𝑓 , which is the inverse of the dualizing sheaf 𝜔 𝑓 , and the resulting twisted norm map
Nm 𝑓 : 𝑓♯ (− ⊗ 𝑆−𝑇 𝑓 ) → 𝑓∗ agrees with the relative Poincaré duality equivalence 𝔭 𝑓 . □

III.3 A six-functor formalism of genuine sheaves on differ-
entiable stacks

In this section, we discuss the notion of a six-functor formalism on the site SepStk of
separated differentiable stacks. We speculate that the assignment X ↦→ SH(X) should
enhance to such a six-functor formalism, assigning an exceptional pushforward functor
𝑓! : SH(Y) → SH(X) to every representable morphism 𝑓 : Y →X of separated differen-
tiable stacks. We illustrate this by giving some partial results in this direction.

3.1 Six-functor formalisms

We start by recalling Mann’s definition of a six-functor formalism.

Definition 3.1 ([Man22, Definition A.5.1]). A geometric setup is a pair (B, 𝐸) where B is
an∞-category and 𝐸 ⊆ B is a subcategory satisfying the following conditions:

(i) The subcategory 𝐸 contains all equivalences;

(ii) Pullbacks of morphisms in 𝐸 exist in B and are again in 𝐸 .

Recall that for any geometric setup (B, 𝐸), there exists an ∞-category Span(B, 𝐸), called
the span category of (B, 𝐸) or the ∞-category of correspondences in (B, 𝐸), which may
informally be described as follows:

• The objects of Span(B, 𝐸) are the objects of B;
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• A morphism from 𝑋 to 𝑌 in Span(B, 𝐸) is a triple (𝑈, 𝑓 , 𝑒), where𝑈 ∈ B and 𝑓 and
𝑒 are maps

𝑈

𝑋 𝑌

𝑓 𝑔

such that 𝑒 ∈ 𝐸 . We refer to such triple as a span from 𝑋 to 𝑌 .

• The identity span on 𝑋 is given by the triple (𝑋, id𝑋 , id𝑋).

• Composition of spans is given by pullback inB, as indicated by the following diagram:

𝑊

𝑈 𝑉

𝑋 𝑌 𝑍.

𝑓 𝑢 𝑢 𝑣 𝑒′𝑣

𝑓 𝑒 𝑓 ′ 𝑒′

Remark 3.2. If the ∞-category B is modeled by a quasicategory, the span category
Span(B, 𝐸) may be modeled by the quasicategory whose 𝑛-simplices are those maps of
quasicategories 𝐶 (Δ𝑛) → B which send vertical morphisms to morphisms in 𝐸 and send
exact squares in 𝐶 (Δ𝑛) to pullback squares in B. Here 𝐶 (Δ𝑛) ⊆ Δ𝑛× (Δ𝑛)op is the full sub-
category spanned by the pairs ( [𝑖], [ 𝑗]) with 𝑖 ≤ 𝑗 , a morphism in 𝐶 (Δ𝑛) is called vertical
if its projection to the second component is an equivalence, and a square in 𝐶 (Δ𝑛) is called
exact if it is both a pullback and a pushout square.

The span-category Span(B, 𝐸) is symmetric monoidal, where the symmetric monoidal
structure is inherited from the cartesian product in B.

Definition 3.3 ([Man22, Definition A.5.6]). Let (B, 𝐸) be a geometric setup. A pre-six-
functor formalism on (B, 𝐸) is a lax symmetric monoidal functor

D : Span(B, 𝐸) → Cat∞,

where Cat∞ is equipped with the cartesian symmetric monoidal structure.

Let us unpack some of the information contained in a pre-six-functor formalism D on
(B, 𝐸):

(a) (Symmetric monoidality) By restricting D along the symmetric monoidal inclusion
Bop ↩→ Span(B, 𝐸), we obtain a lax symmetric monoidal functor D∗ : Bop→ Cat∞.
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Since Bop carries the cocartesian symmetric monoidal structure, this corresponds
to a functor Bop → CAlg(Cat∞) by [Lur17, Theorem 2.4.3.18]. In particular, the
∞-category D(X) = D∗(X) comes equipped with a symmetric monoidal structure
(D(X),⊗X ,1X) for every object X ∈ B;

(b) (Pullback functors) For every morphism 𝑓 : Y → X in B, we obtain a symmetric
monoidal functor

𝑓 ∗ :=D∗( 𝑓 ) : D(X) →D(Y),

which we will call the pullback functor.

(c) (Exceptional pushforward functors) Restricting D to the subcategory 𝐸 ⊆ Span(B, 𝐸)
produces a functor D! : 𝐸→ Cat∞. For a morphism 𝑓 : Y →X in 𝐸 , we will write

𝑓! :=D( 𝑓 )! : D(Y) →D(X)

for the resulting functor, and refer to 𝑓! as the exceptional pushforward functor.

(d) (Base change) By unwinding the functoriality ofD on compositions of spans, it follows
that the exceptional pushforward functors satisfy base change: for every pullback square

Y′ Y

X′ X

𝑓 ′

ℎ

𝑓

𝑔

in B, there is a natural equivalence

𝑔∗ 𝑓! ≃ 𝑓 ′! ℎ
∗

of functors D(Y) →D(X′).

(e) (Projection formula) By unwinding the lax symmetric monoidality of D, one observes
that for every morphism 𝑓 : Y → X in 𝐸 and every pair of objects 𝐴 ∈ D(Y) and
𝐵 ∈ D(X), there is a natural equivalence

𝑓!(𝐴⊗ 𝑓 ∗𝐵) ≃ 𝑓!𝐴⊗ 𝐵 ∈ C(X).

Definition 3.4 (Six-functor formalism, [Man22, Definition A.5.6]). Let (B, 𝐸) be a geo-
metric setup. A pre-six-functor formalism D : Span(B, 𝐸) → Cat∞ on (B, 𝐸) is called a
six-functor formalism if it satisfies the following three conditions:

(1) For every objectX ∈ B, the symmetric monoidal∞-categoryD(X) is closed monoidal:
there exists an internal hom functor Hom(−,−) : D(X)op×D(X) →D(X).
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(2) For every morphism 𝑓 : Y → X in B, the pullback functor 𝑓 ∗ admits a right adjoint
𝑓∗ : D(Y) →D(X), called the pushforward functor.

(3) For every morphism 𝑓 : Y →X in 𝐸 , the exceptional pushforward functor 𝑓! admits a
right adjoint 𝑓 ! : D(X) →D(Y), called the exceptional pullback functor.

Definition 3.5. Let (B, 𝐸) be a geometric setup. A presentable six-functor formalism is a
lax symmetric monoidal functor D : Span(B, 𝐸) → PrL, where PrL is equipped with the
Lurie tensor product.

Remark 3.6. Every presentable six-functor formalism gives rise to a pre-six-functor for-
malism by postcomposing with the lax symmetric monoidal forgetful functor PrL→ Cat∞,
and it follows from the adjoint functor theorem that this pre-six-functor formalism is in
fact a six-functor formalism. A six-functor formalismD : Span(B, 𝐸) → Cat∞ is obtained
in this way if and only if the ∞-category D(X) is presentable for all X ∈ B, see [Lur17,
Remark 4.8.1.9].

3.2 A six-functor formalism of genuine sheaves of spectra

We expect that the functor SH: Shv(SepStk)op→ CAlg(PrL) of genuine sheaves of spectra
should extend to a six-functor formalism on the∞-category Shv(SepStk), where 𝐸 consists
of the representable morphisms from Definition II.6.5.6:

Conjecture 3.7. Set B := Shv(SepStk), and let C : Bop→ CAlg(PrL) be a pullback for-
malism on SepStk satisfying the Voevodsky conditions: homotopy invariance, genuine
stability and the localization axiom. Let 𝐸 ⊆ B denote the wide subcategory spanned
by the representable morphisms. Then C extends to a presentable six-functor formalism
C!
∗ : Span(B, 𝐸) → PrL, satisfying the following conditions:

(1) For every open embedding 𝑗 : U ↩→X of separated differentiable stacks, there is an
equivalence 𝑗! ≃ 𝑗♯;

(2) For every proper morphism 𝑝 : Y ↩→X of separated differentiable stacks, there is an
equivalence 𝑝! ≃ 𝑝∗.

We currently do not have the technology to prove this conjecture in the stated generality.
Nevertheless, we can obtain some partial results using a general existence result for six-
functor formalisms due to Mann [Man22, Proposition A.5.10]. The idea of this result is that
one starts off with a functor D : Bop→ CAlg(Cat∞) such that D satisfies the analogues
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of smooth base change, smooth projection formula, proper base change, proper projection
formula and smooth-proper base change. These conditions are formulated with respect to
two classes of morphisms 𝐼 and 𝑃 ofB, thought of as the ‘open immersions’2 and the ‘proper
morphisms’ respectively; 𝐼 and 𝑃 need to satisfy various compatibility conditions, among
which is the condition that every morphism of 𝐸 factors as an open immersion followed
by a proper morphism. Under these assumptions, Mann’s result says that D extends to
a pre-six-functor formalism D : Span(B, 𝐸) → Cat∞. The condition that this an actual
six-functor formalism translates to conditions on the original functor D.

While Mann’s result does not immediately seem to apply in the case of Conjecture 3.7,
it can be used to prove a weaker result where we obtain exceptional pushforwards 𝑓! for
compactifiable morphisms. In the remainder of this section, we fix a separated differentiable
stack S which serves as our base stack.

Definition 3.8 (Separated S-stacks). We let SepStkS be the full subcategory of DiffStk/S
spanned by the separated morphisms X →S of differentiable stacks. We will refer to such
morphism as a separated S-stack. We will often drop the structure map to S from the
notation.

The∞-category SepStkS inherits a Grothendieck topology from SepStk given by the open
coverings.

Definition 3.9 (Compactifiable morphisms). A morphism 𝑓 : 𝔜→ 𝔛 in Shv(SepStkS) is
calledS-compactifiable if there exists a proper morphismP→S of separated differentiable
stacks and a morphism 𝑗 : 𝔜→P in Shv(SepStkS) such that the map ( 𝑓 , 𝑗) : 𝔜→ 𝔛×SP
is an open embedding. In particular, 𝑓 factors as an open embedding ( 𝑓 , 𝑗) followed by a
proper morphism pr1 : 𝔛×SP → 𝔛.

We say that 𝑓 is source-locally S-compactifiable if there exists an open cover { 𝑗𝛼 : 𝔘𝛼 ↩→
𝔜}𝛼∈𝐼 in Shv(SepStkS) such that the composite 𝔘𝛼 ↩→ 𝔜→ 𝔛 is S-compactifiable for
every 𝛼.

It is clear from the definition that both the S-compactifiable and the source-locally S-
compactifiable morphisms define geometric setups on Shv(SepStkS).

Proposition 3.10. For a separated differentiable stack S, consider the ∞-category B =

Shv(SepStkS). Let C : Bop→CAlg(PrL) be a pullback formalism satisfying the Voevodsky
conditions: homotopy invariance, genuine stability and the localization axiom. Let 𝐸 ⊆ B
denote the wide subcategory spanned by all the source-locallyS-compactifiable morphisms.

2Mann refers to them as the ‘local isomorphisms’
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Then C extends to a presentable six-functor formalism C!
∗ : Span(B, 𝐸) → PrL, satisfying

the following conditions:

(1) For every open embedding 𝑗 : U ↩→X of separated Sstacks, there is an equivalence
𝑗! ≃ 𝑗♯;

(2) For every proper morphism 𝑝 : Y ↩→X of separated S-stacks, there is an equivalence
𝑝! ≃ 𝑝∗.

Proof. We first show the weaker claim that C extends to a presentable six-functor formalism
Span(B, 𝐸′) → PrL, where 𝐸′ is the wide subcategory of B = Shv(SepStkS) spanned by
the S-compactifiable morphisms. For this, we apply [Man22, Proposition A.5.10]. Let 𝐼
denote the collection of open embeddings in Shv(SepStkS) and let 𝑃 denote the collection
of proper morphisms in Shv(SepStkS). These two collections of morphisms satisfy the
conditions of [Man22, Definition A.5.9]:

(a) By definition, every morphism in 𝐸′ is of the form 𝑓 = 𝑝 ◦ 𝑖 for some 𝑖 ∈ 𝐼 and 𝑝 ∈ 𝑃;

(b) The morphisms in 𝐼 and 𝑃 are 0-truncated;

(c) The collections of morphisms 𝐼 and 𝑃 contain all equivalences and are closed under
composition and base change in Shv(SepStkS).

(d) The collections of morphisms 𝐼 and 𝑃 are left-cancellable: given morphisms 𝑓 : Y→X
and 𝑔 : Z→Y in Shv(SepStkS) such that 𝑓 ∈ 𝐼 and 𝑓 𝑔 ∈ 𝐼 (resp. 𝑓 ∈ 𝑃 and 𝑓 𝑔 ∈ 𝑃)
then also 𝑔 ∈ 𝐼 (resp. 𝑔 ∈ 𝑃).

It then remains to check the conditions of [Man22, Proposition A.5.10]. This is precisely
the content of Proposition 6.5.8.

This gives the extension of C to Span(B, 𝐸′) → PrL. The further extension to the source-
locally compactifiable morphisms is then an immediate consequence of [Man22, Propo-
sition A.5.14], since by assumption C satisfies descent with respect to open covers of
differentiable stacks. □

III.4 Proper genuine sheaves

When defining genuine sheaves of spectra on differentiable stacks in Chapter II.4, we
restricted our attention to the separated differentiable stacks. Every such stack is locally
equivalent to a quotient stack 𝑀//𝐺 of a compact Lie group 𝐺 and a smooth 𝐺-manifold
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𝑀 , and on such stacks there is a good supply of vector bundles whose associated sphere
bundles can be inverted. In stable equivariant homotopy theory one usually restricts to
compact Lie groups 𝐺 rather than arbitrary Lie groups for essentially the same reason.

If the Lie group𝐺 is non-compact, one can still obtain a well-behaved notion of𝐺-spectra by
restricting attention only to the compact subgroups of 𝐺. This leads to the notion of proper
genuine 𝐺-spectra, introduced and studied by Degrĳse et al. [Deg+19]. As made precise
in Section I.4.4, one can rephrase this definition in terms of parametrized orbispectra: one
associates to 𝐺 an orbispace B𝐺 described informally by ‘probing’ 𝐺 by all compact Lie
groups 𝐾 , and the∞-category of proper genuine 𝐺-spectra is equivalent to the∞-category
of orbispectra parametrized over the orbispace B𝐺.

The goal of this section is to indicate how one probing an arbitrary differentiable stack X
by separated differentiable stacks similarly similarly leads to an ∞-category SHpr(X) of
proper genuine sheaves of spectra.

Definition 4.1. We define a functor (−)pr : Shv(Diff) → Shv(SepStk) as follows: for a
stack X on Diff, we define Xpr : SepStkop → Spc by Xpr(Y) := HomShv(Diff) (Y,X) for
Y ∈ SepStk ⊆ Shv(Diff). Since every open cover

⊔
𝛼U𝛼→Y in SepStk is in particular an

effective epimorphism in Shv(Diff), Xpr is indeed a sheaf.

It is immediate that the functor (−)pr preserves limits and that composing (−)pr with the
inclusion SepStk ↩→ Shv(Diff) results in the Yoneda embedding for SepStk.

Predefinition 4.2 (Proper genuine sheaves of spectra). We define the functor

SHpr : Shv(Diff)op→ CAlg(PrL)

by SHpr(X) := SH(Xpr). Given a sheaf X ∈ Shv(Diff), we refer to SHpr(X) as the ∞-
category of proper genuine sheaves of spectra on X.

Warning 4.3. The functor SHpr is not a sheaf of∞-categories on Shv(Diff).

Note that if 𝑓 : X′→X is a morphism in Shv(Diff) which is a representable submersion,
an open/closed embedding or a a proper morphism, in the sense of Definition 2.4.2, then
the map 𝑓 pr : X′pr→Xpr in Shv(SepStk) has the analogous property, now interpreted in
the sense of Definition 6.5.6. It thus follows from Proposition 6.5.8 that the ∞-categories
SHpr(X) inherit all of the functoriality properties from SH(Y): left adjoints 𝑓♯ for repre-
sentable submersions satisfying smooth base change and the smooth projection formula,
right adjoints 𝑝∗ for proper morphisms satisfying proper base change, the proper projection
formula and smooth-proper base change. In particular:
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Proposition 4.4 (Relative Poincaré duality for proper genuine sheaves). For every proper
representable submersion 𝑓 : Y →X of stacks on Diff, there is an equivalence

𝔭 𝑓 : 𝑓♯ (−) ∼−−→ 𝑓∗(− ⊗𝜔 𝑓 )

of functors SHpr(Y) → SHpr(𝔛).

We expect that the aforementioned functorial properties of the∞-categories SHpr(X) should
be part of a six-functor formalism:

Conjecture 4.5. The functor SHpr : Shv(Diff)op → CAlg(PrL) extends to a six-functor
formalism Span(Shv(Diff), 𝐸) → PrL, where 𝐸 consists of the representable morphisms in
Shv(Diff).

Just like genuine sheaves of spectra on the classifying stack B𝐺 of a compact Lie group
𝐺 recover genuine 𝐺-spectra, we expect the proper genuine sheaves of spectra on the
classifying stack of an arbitrary Lie group to recover proper genuine 𝐺-spectra:

Conjecture 4.6. For a Lie group 𝐺, there is an equivalence of ∞-categories SHpr(B𝐺) ≃
Sppr

𝐺
.

The idea is that both ∞-categories are a limit of the ∞-categories SH(B𝐾) as 𝐾 ranges
over all compact subgroups of 𝐺. For Sppr

𝐺
this holds by [LNP22, Theorem 12.11], using

the equivalences SH(B𝐾) ≃ Sp𝐾 from Proposition 4.4.17. For SHpr(B𝐺) one would a
priori need to take the limit of the∞-categories SH(X) over the larger indexing diagram of
separated differentiable stacks X equipped with a morphism X → B𝐺 of stacks. However,
since any separated stack is locally a quotient stack 𝑀//𝐺 for some compact Lie group 𝐾
and some smooth 𝐾-manifold 𝑀 , and since every map 𝑀//𝐾 → B𝐺 factors through B𝐾 ,
we may instead form the limit over maps B𝐾 → B𝐺. Since every group homomorphism
𝐾→ 𝐺 factors as a surjection followed by an injection, it will suffice to take the limit over
those maps B𝐾→ B𝐺 corresponding to compact subgroups 𝐾 ⩽ 𝐺.
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A Symmetric monoidal unstraightening

LetB be an∞-topos and let O⊗ be an∞-operad. In this appendix, we recall unstraightening
techniques from Lurie [Lur17] and Drew and Gallauer [DG22, Appendix A] to describe
O-algebras in the ∞-category Cat(B) of B-categories in terms of suitable cocartesian
fibrations.

We start by recalling the situation for O = Comm⊗ from [DG22, Appendix A].

Definition A.1. LetD⊗ be a symmetric monoidal∞-category. AD⊗-monoidal∞-category
is a symmetric monoidal∞-category C⊗ equipped with a symmetric monoidal cocartesian
fibration 𝑝⊗ : C⊗ →D⊗. A D⊗-monoidal functor is a symmetric monoidal functor over
D⊗ which preserves D⊗-cocartesian edges. We let CatD

⊗ ⊆ CAlg(Cat∞)/D denote the
(non-full) subcategory of D⊗-monoidal∞-categories.

Remark A.2. By [DG22, Remark A.3], a functor 𝑝⊗ : C⊗ →D⊗ is a D⊗-monoidal ∞-
category Definition A.1 if and only if it is a D⊗-monoidal ∞-category in the sense of
[Lur17, p. 2.1.2.13].

Proposition A.3 ([DG22, Corollary A.12]). Assume D⊗ is a cocartesian monoidal struc-
ture. Straightening / unstraightening induces an equivalence

CatD
⊗
∞ ≃ Fun(D,CAlg(Cat∞)).

Let B be an∞-topos, and consider the symmetric monoidal∞-category Bop,⊔, the opposite
of B equipped with the cocartesian monoidal structure. In this case, the equivalence of
Proposition A.3 may informally be described as follows. Given a functor C : Bop→Bop,⊔,
the resulting Bop,⊔-monoidal∞-category

𝑝⊗ : C⊠→Bop,⊔

which may informally be described as follows:
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• The objects of C⊠ are pairs (𝐵, 𝑋) where 𝐵 is an object in B, and 𝑋 is an object
in C(𝐵).

• A morphism (𝐵, 𝑋) → (𝐵′, 𝑋′) in C⊠ consists of a morphism 𝑓 : 𝐵′→ 𝐵 in B, and a
morphism 𝑓 ∗𝑋→ 𝑋′ in C(𝐵′).

• The tensor product of (𝐵, 𝑋) and (𝐵′, 𝑋′) is the “external product”

𝑋 ⊠ 𝑋′ := pr∗𝐵 𝑋 ⊗𝐵×𝐵′ pr∗𝐵′ 𝑋
′ ∈ C(𝐵×𝐵′),

where pr𝐵 : 𝐵×𝐵′→ 𝐵 and pr𝐵′ : 𝐵×𝐵′→ 𝐵′ are the canonical projections in B.

Conversely, if 𝑝⊗ : C⊠ → Bop,⊔ is a Bop,⊔-monoidal ∞-category, we may straighten the
underlying cocartesian fibration 𝑝 : (C⊠)1 → Bop to a functor C : Bop→ Cat∞, sending
𝐵 ∈ B to the fiber of 𝑝 over 𝐵. The symmetric monoidal structure on this fiber C(𝐵) may
be described as follows: given 𝑋, 𝑋′ ∈ C(𝐵), their tensor product is the object Δ∗(𝑋 ⊠ 𝑋′)
where Δ denotes the diagonal map 𝐵→ 𝐵×𝐵 in B.

As there is an equivalence Fun(Bop,CAlg(Cat∞)) ≃ CAlg(Fun(Bop,Cat∞)), it follows
from Proposition A.3 that we may regard every symmetric monoidal B-category C ∈
CAlg(Cat(B)) as a cocartesian fibration C⊠→Bop,⊔. We will now discuss how one may
describe O-algebras in Cat(B) for an arbitrary∞-operad O⊗ in a similar fashion.

Definition A.4. We define the∞-category Bop,O via the following pullback diagram:

Bop,O Bop,⊔

O⊗ Fin∗.

𝑞 𝑝

Being the pullback of a cocartesian fibration, the map 𝑞 : Bop,O → O⊗ is a cocartesian
fibration.

Proposition A.5. There is an equivalence

AlgO (Fun(Bop,Cat∞)) ≃ CatB
op,O
∞ ,

natural in O⊗, which for O⊗ = Comm⊗ reduces to the equivalence of Proposition A.3.

Proof. This follows from the following equivalences:

AlgO (Fun(Bop,Cat∞)) ≃ Fun(Bop,AlgO (Cat∞))
≃ AlgBop,O (Cat∞) [Lur17, Theorem 2.4.3.18]

≃ CatB
op,O
∞ . [Lur17, Remark 2.4.2.6]
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For O⊗ = Comm⊗, this reduces to the equivalence of Proposition A.3 given in [DG22,
Corollary A.12]. □

We are mainly interested in the case O⊗ = LM⊗ in order to describe left C-modules in
Cat(B).

Corollary A.6. Consider C ∈ CAlg(Cat(B)) and let C⊠ ∈ CatB
op,⊔
∞ denote the associated

Bop,⊔-monoidal∞-category. The equivalence of Proposition A.5 restricts to an equivalence

LModC (Fun(Bop,Cat∞)) ≃ CatB
op,LM
∞ ×CatBop,⊔

∞
{C⊠}.

The full subcategory LModC (Cat(B)) of the left-hand side is equivalent to a full subcategory
of the right-hand side spanned by those Bop,LM-monoidal ∞-categoriesM⊠→ Bop,LM

whose pullback along the inclusion Bop ↩→Bop,LM is corresponds to a B-category (i.e.,
its straightening Bop→ Cat∞ preserves limits).

From this description of C-modules in Cat(B) in terms of cocartesian fibrations, we can
deduce a non-parametrized criterion for a C-linear B-functor 𝐹 : D→E to have a C-linear
right adjoint.1

Proposition A.7. Let C be a symmetric monoidalB-category, letD and E beB-categories
tensored over C, and let 𝐹 : D → E be a C-linear functor. Assume that 𝐹 admits a
parametrized right adjoint 𝐺 : E → D satisfying the following projection formula: for
every 𝐵 ∈ B, every 𝐶 ∈ C(𝐵) and every 𝐸 ∈ E(𝐵), the map 𝐶 ⊗𝐵 𝐺 (𝐸) → 𝐺 (𝐶 ⊗𝐵 𝐸)
adjoint to the composite

𝐹 (𝐶 ⊗𝐵𝐺 (𝐸)) ≃ 𝐶 ⊗𝐵 𝐹 (𝐺 (𝐸))
𝐶⊗𝐵unit−−−−−−→ 𝐶 ⊗𝐵 𝐸

is an equivalence in D(𝐵). Then the right adjoint 𝐺 admits canonical C-linear structure
and the adjunction enhances to an adjunction in ModC (Cat(B)).

Proof. By Corollary A.6, we may identify the C-module structures on D and E with
cocartesian fibrations over Bop,LM whose restriction to Bop,⊔ is C⊠. The map 𝐹 thus
corresponds to a map

D⊠ E⊠

Bop,LM

𝐹⊠

1In this appendix, contrary to the convention used in the body of the text, C-linear B-functors are not
assumed to preserve colimits.
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of cocartesian fibrations. If 𝐹 : D → E has a parametrized right adjoint, then in particular
𝐹⊠ has fiberwise right adjoints, and by [Lur17, Proposition 7.3.2.1] these assemble into a
relative right adjoint 𝐺⊠ : E⊠→D⊠ over Bop,LM which moreover is a map of∞-operads.
In particular 𝐺 preserves inert maps. Our goal is to show that 𝐺 in fact preserves all
cocartesian edges. By the product description of the mapping spaces in an ∞-operad, we
may restrict attention to cocartesian morphism in E⊠ whose target lies over ⟨1⟩ ∈ Fin∗.
Given such morphism, let (𝐵1, . . . , 𝐵𝑛) → 𝐵 be the image in Bop,LM .2 This map is a
composite of two maps (𝐵1, . . . , 𝐵𝑛) → 𝐵1× · · · ×𝐵𝑛→ 𝐵, so we may assume without loss
of generality that either 𝑛 = 1 or that the map is cocartesian for the cocartesian fibration
Bop,LM → Fin∗. When 𝑛 = 1, this is just the condition that 𝐺 : E → D is a parametrized
functor, by assumption on 𝐹. So assume the map (𝐵1, . . . , 𝐵𝑛) → 𝐵 is cocartesian for
Bop,LM → Fin∗. When 𝐵 lies over 𝔞 ∈ LM, the claim is clear since 𝐹 is the identity over
Assoc ⊆ LM. So we may assume without loss of generality that 𝐵 lies over 𝔪 ∈ LM,
and moreover that 𝐵𝑛 lies over 𝔪 while all the other 𝐵𝑖 lie over 𝔞. By induction, we may
assume that 𝑛 = 2, so that the map in Bop,LM takes the form (𝐵1, 𝐵1) → 𝐵1 × 𝐵2 and lies
over the map (𝔞,𝔪) →𝔪 in LM. A cocartesian edge in E⊠ over this map has the form
(𝐶,𝐸) → 𝐶 ⊠𝐸 . The condition that the induced map 𝐺 (𝐶,𝐸) = (𝐶,𝐺 (𝐸)) → 𝐺 (𝐶 ⊠𝐸)
is again cocartesian is equivalent to the condition that the map 𝐶 ⊠𝐺 (𝐸) → 𝐺 (𝐶 ⊠ 𝐸)
is an equivalence in D(𝐴× 𝐵). Since for 𝐶 ∈ C(𝐴), 𝐸 ∈ E(𝐵) and 𝐸′ ∈ E(𝐴) there are
equivalences

𝐶 ⊠𝐸 ≃ 𝜋∗𝐴𝐶 ⊗𝐴×𝐵 𝜋
∗
𝐵𝐸

𝐶 ⊗𝐴 𝐸′ ≃ Δ𝐴∗(𝐶 ⊠𝐸′),

and since 𝐺 commutes with base change, it follows that this condition is equivalent to the
assumption on 𝐺. □

2This notation is abusive: the LM⊗-component is hidden in the notation.
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B Duality in equivariant stable homo-
topy theory

Let 𝐺 be a compact Lie group. In his PhD dissertation, Campion [Cam23] proved a
universal property of the ∞-category Sp𝐺 of genuine 𝐺-spectra: the suspension spectrum
functor Σ∞ : Spc𝐺∗ → Sp𝐺 in CAlg(PrL) is initial among symmetric monoidal left adjoints
𝐹 : Spc𝐺∗ → D into a stable presentably symmetric monoidal ∞-category D such that
𝐹 (𝑋) is dualizable for every compact pointed 𝐺-space 𝑋 . Since we know from [GM20,
Corollary C.7] that Σ∞ is initial among functors 𝐹 that invert representation spheres, the
crux of Campion’s result is that these two conditions on 𝐹 : Spc𝐺∗ →D are in fact equivalent:

Theorem B.1 (cf. Campion [Cam23, Section 5]). Let 𝐺 be a compact Lie group, let D ∈
CAlg(PrL

st) be a stable presentably symmetric monoidal∞-category, and let 𝐹 : Spc𝐺∗ →D
be a symmetric monoidal left adjoint. Then the following are equivalent:

(1) For every orthogonal𝐺-representation𝑉 , the functor 𝐹 sends the representation sphere
𝑆𝑉 to an invertible object of D;

(2) For every compact pointed 𝐺-space 𝑋 ∈ Spc𝐺∗ , the object 𝐹 (𝑋) is dualizable in D;

(3) For every orthogonal𝐺-representation𝑉 , the functor 𝐹 sends the representation sphere
𝑆𝑉 to a dualizable object of D.

For completeness, we will include a proof of this theorem. While we present both the
statement and the proof slightly differently, the core ideas are taken from Campion’s thesis
[Cam23]. The first core idea is that certain dualizable objects are already close to being
invertible:

Definition B.2 (Campion [Cam23, Definition 2.1.2]). Let D be a presentably symmetric
monoidal ∞-category, let 𝑇 ∈ D be an object and let 𝑡 : 𝑇 → 𝑇 be an endomorphism of 𝑇 .
We say that 𝑇 has 𝑡-twisted trivial braiding if the twist morphism 𝜎𝑇,𝑇 : 𝑇 ⊗𝑇 → 𝑇 ⊗𝑇 is
homotopic to the map 1⊗ 𝑡 : 𝑇 ⊗𝑇 → 𝑇 ⊗𝑇 .
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Proposition B.3 (cf. Campion [Cam23, Proposition 2.3.1]). Let 𝑇 ∈ D be a dualizable
object. Assume that 𝑇 has 𝑡-twisted trivial braiding for some endomorphism 𝑡 : 𝑇 → 𝑇 .
Then the morphism

𝑇 ⊗𝑇∨ ⊗𝑇 1⊗ev−−−→ 𝑇

is an equivalence.

Proof. Since 1⊗ ev𝑇 always admits a right-inverse given by coev𝑇 ⊗1: 𝑇 → 𝑇 ⊗𝑇∨ ⊗𝑇 , it
remains to show that 1⊗ ev𝑇 also admits a left-inverse. We claim that in fact already the
evaluation map ev𝑇 itself admits a left-inverse, given by the following composite:

1D
coev−−−→ 𝑇 ⊗𝑇∨ 𝑡⊗𝑇∨−−−−→ 𝑇 ⊗𝑇∨

𝜎𝑇,𝑇∨−−−−→ 𝑇∨ ⊗𝑇.

Indeed, this follows from the following string diagram:

𝑇𝑇∨

𝑡

𝑇∨ 𝑇

𝜀

𝜂

𝜎𝑇,𝑇∨

≃

𝑇𝑇∨

𝑡

𝑇∨ 𝑇
𝜀

𝜂

𝜎𝑇,𝑇∨

(1)
≃

𝑇𝑇∨

𝑇∨ 𝑇
𝜀

𝜂

𝜎𝑇,𝑇∨

𝜎𝑇,𝑇

≃

𝑇𝑇∨

𝑇∨ 𝑇
𝜀

𝜂 ≃

𝑇𝑇∨

𝑇∨ 𝑇

Here we have abbreviated 𝜀 = ev𝑇 and 𝜂 = coev𝑇 . Each of the five diagrams represents
a composite of morphisms in D, where each downward pointing arrow denotes a tensor
factor of 𝑇∨ while an upward pointing arrow denotes a tensor factor of 𝑇 . For example, the
third diagram is to be read as the following composite:

𝑇∨⊗𝑇
1⊗𝜂
−−−→𝑇∨⊗𝑇 ⊗𝑇 ⊗𝑇∨

1⊗𝜎𝑇,𝑇⊗1
−−−−−−−→𝑇∨⊗𝑇 ⊗𝑇 ⊗𝑇∨

1⊗𝜎𝑇,𝑇∨−−−−−−→𝑇∨⊗𝑇 ⊗𝑇∨⊗𝑇 𝜀⊗1−−−→𝑇∨⊗𝑇

The equivalence labelled (1) holds because of the assumption that 𝑇 has a 𝑡-twisted trivial
braiding. The other equivalences are easy manipulations of string diagrams. This finishes
the proof. □

Lemma B.4 (Campion [Cam23, Example 2.1.6]). For every𝐺-representation𝑉 , the repre-
sentation sphere 𝑆𝑉 ∈ Spc𝐺∗ has (−1)-twisted trivial braiding, where−1: 𝑆𝑉→ 𝑆𝑉 : 𝑣 ↦→ −𝑣.
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Proof. Consider the family of linear𝐺-equivariant maps𝐻 : [0,1] → End𝐺 (𝑉 ×𝑉) sending
𝑡 to the matrix (

−sin( 𝜋2 𝑡) cos( 𝜋2 𝑡)
cos( 𝜋2 𝑡) sin( 𝜋2 𝑡)

)
: 𝑉 ×𝑉 →𝑉 ×𝑉.

We have 𝐻0(𝑣1, 𝑣2) = (𝑣2, 𝑣1) and 𝐻1(𝑣1, 𝑣2) = (−𝑣1, 𝑣2). Since 𝐻𝑡 is invertible at all times,
it induces a pointed map 𝑆𝐻𝑡 : 𝑆𝑉×𝑉 → 𝑆𝑉×𝑉 . As 𝑆𝑉×𝑉 � 𝑆𝑉 ∧ 𝑆𝑉 , it follows that the twist
map of 𝑆𝑉 in Spc𝐺∗ is homotopic to the map (−1) ∧ id as desired. □

To continue, we need the notion of 𝐺-spaces concentrated at a single conjugacy class. We
fix a compact Lie group 𝐺 and a conjugacy class (𝐻) of subgroups of 𝐺.

Definition B.5. We say that a pointed 𝐺-space 𝑋 ∈ Spc𝐺∗ is concentrated at 𝐻 if we have
𝑋𝐾 = ∗ for any subgroup 𝐾 ⊆ 𝐺 that is not in the conjugacy class of 𝐻.

Let 𝑊 =𝑊𝐺 (𝐻) = 𝑁𝐺 (𝐻)/𝐻 denote the Weyl group of 𝐻 in 𝐺. Observe that the full
subcategory of the orbit category Orb𝐺 spanned by 𝐺/𝐻 is equivalent to the classifying
space 𝐵𝑊 of𝑊 , as𝑊 is equivalent to the endomorphism space of 𝐺/𝐻 in Orb𝐺 . It follows
that the 𝐻-fixed point functor (−)𝐻 : Spc𝐺∗ = Fun(Orb𝐺 ,Spc∗) → Fun(𝐵𝑊,Spc∗) becomes
an equivalence when restricted to the pointed 𝐺-spaces concentrated at 𝐻.

We let 𝑆{𝐻} denote a copy of 𝑆0 concentrated at 𝐻 corresponding:

(𝑆{𝐻})𝐾 =


𝑆0 𝐾 conjugate to 𝐻;

∗ otherwise.

Note that the functor −∧ 𝑆{𝐻} : Spc𝐺∗ → Spc𝐺∗ is a localization onto the pointed 𝐺-spaces
concentrated at 𝐻.

Lemma B.6. Let 𝑉 be a 𝐺-representation and let 𝑛 := dim(𝑉𝐻). Then there is an equiva-
lence of pointed 𝐺-spaces 𝑆𝑉 ∧ 𝑆{𝐻} ∧𝐺/𝐻+ ≃ Σ𝑛 (𝑆{𝐻} ∧𝐺/𝐻+).

Proof. Since both sides are concentrated at 𝐻, the equivalence can be checked after forget-
ting to Fun(𝐵𝑊,Spc∗) after passing to 𝐻-fixed points. As the 𝐻-fixed points of 𝐺/𝐻+ are
𝑊+, this follows from the sequence of equivalences

(𝑆𝑉 )𝐻 ∧𝑊+ ≃ 𝑆𝑉
𝐻 ∧𝑊+ ≃ 𝑆𝑛∧𝑊+ = Σ𝑛 (𝑊+).

Here the second equivalence uses the shear isomorphism for 𝑊-spaces, using that the
underlying pointed space of 𝑆𝑉𝐻 is 𝑆𝑛. □
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We are now ready for the proof of Theorem B.1.

Proof of Theorem B.1. Let 𝐹 : Spc𝐺∗ →D be a symmetric monoidal left adjoint as in the
statement of the theorem. We prove that 1), 2) and 3) are equivalent. The implication (2)
=⇒ (3) is obvious. For the implication (1) =⇒ (2), note that (1) implies by the universal
property of Sp𝐺 = (Spc𝐺∗ ) [{𝑆𝑉 }−1] that 𝐹 uniquely extends to a symmetric monoidal left
adjoint 𝐹 : Sp𝐺 → D. Since the suspension functor Σ∞+ : Spc𝐺∗ → Sp𝐺 sends compact
𝐺-spaces to dualizable objects, the same follows for 𝐹.

It remains to show that 3) implies 1). Let 𝑉 be a 𝐺-representation and assume that 𝐹 (𝑆𝑉 )
is dualizable. To prove that 𝐹 (𝑆𝑉 ) is invertible, we need to show that the evaluation map
ev𝐹 (𝑆𝑉 ) : 𝐹 (𝑆𝑉 ) ⊗𝐷 (𝐹 (𝑆𝑉 )) → 1D is an equivalence, or equivalently that the cofiber

𝑄 := cofib(𝐹 (𝑆𝑉 ) ⊗𝐷 (𝐹 (𝑆𝑉 ))
ev

𝐹 (𝑆𝑉 )−−−−−−→ 1D)

is zero inD. We will inductively show that𝑄 ⊗𝐹 (𝑋) is zero for a large family of 𝐺-spaces
𝑋 .

Step 1: We have seen in Lemma B.4 that 𝑋 = 𝑆𝑉 has twisted trivial braiding, and since
the functor 𝐹 is symmetric monoidal it follows that 𝐹 (𝑆𝑉 ) also has twisted-trivial braiding.
Proposition B.3 then gives us that the map ev𝐹 (𝑆𝑉 ) : 𝐹 (𝑆𝑉 ) ⊗𝐷 (𝐹 (𝑆𝑉 )) → 1D becomes an
equivalence after tensoring with 𝐹 (𝑆𝑉 ). In particular, 𝑄 ⊗ 𝐹 (𝑆𝑉 ) = 0.

Step 2: We will show that𝑄 ⊗𝐹 (𝑆{𝐻}) = 0 for every subgroup 𝐻 of 𝐺. By step 1, we know
that 𝑄 ⊗ 𝐹 (𝑆𝑉 ∧ 𝑆{𝐻} ∧𝐺/𝐻+) ≃𝑄 ⊗ 𝐹 (𝑆𝑉 ) ⊗ 𝐹 (𝑆{𝐻} ∧𝐺/𝐻+) = 0. From the equivalence
of Lemma B.6 and exactness of 𝑄 ⊗ 𝐹 (−), it follows that

0 =𝑄 ⊗ 𝐹 (𝑆𝑉 ∧ 𝑆{𝐻} ∧𝐺/𝐻+) ≃ Σ𝑛 (𝑄 ⊗ 𝐹 (𝑆{𝐻} ∧𝐺/𝐻+)),

so that also 𝑄 ⊗ 𝐹 (𝑆{𝐻} ∧𝐺/𝐻+) = 0 by stability of D. Since 𝑄 ⊗ 𝐹 (−) commutes with
homotopy orbits, we get

𝑄 ⊗ 𝐹 (𝑆{𝐻}) ≃𝑄 ⊗ 𝐹
(
(𝑆{𝐻} ∧𝐺/𝐻+)ℎ𝑊

)
≃

(
𝑄 ⊗ 𝐹 (𝑆{𝐻} ∧𝐺/𝐻+)

)
ℎ𝑊

= 0.

Step 3: We show that 𝑄 = 0. For a family F of subgroups of 𝐺 we let 𝐸F denote the
universal 𝐺-space with F -isotropy, characterized by the property that

(𝐸F )𝐾 =


∗ 𝐾 ∈ F ;

∅ otherwise.

We let 𝐸F ,+ := (𝐸F )+. Consider U be the poset of all families F of subgroups of 𝐺 for
which 𝑄 ⊗ 𝐹 (𝐸F ,+) = 0. Our goal is to show that the family of all subgroups is contained
inU, as in that case we have 𝐸F ,+ = 𝑆0 so that 𝑄 ⊗ 𝐹 (𝐸F ,+) =𝑄 ⊗ 𝐹 (𝑆0) ≃𝑄 ⊗1D ≃𝑄.
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Note that U contains F = ∅ since 𝐸F = ∅ and 𝑄 ⊗ 𝐹 (−) preserves the initial object.
Furthermore, for a chain F1 ⊆ F2 ⊆ F3 ⊆ . . . of nested families inU with union F , we have
𝐸F = colim𝑖 𝐸F𝑖 , as is easily checked on 𝐾-fixed points for every 𝐾 ⩽ 𝐺. As 𝑄 ⊗ 𝐹 (−)
preserves colimits, it follows that also F ∈ U. Thus U satisfies the conditions of Zorn’s
lemma and thus contains a maximal element F𝑚.

We claim that F𝑚 must contain all subgroups of 𝐺. Assume that a subgroup 𝐻 is not
contained in F𝑚. Since the poset of subgroups of 𝐺 is well-founded, we may assume that
𝐻 is minimal with this property, i.e. every strict subgroup of 𝐻 is in F𝑚. We now define
F ′ as the family of subgroups either contained in F𝑚 or conjugate to 𝐻. This is indeed a
family by assumption on 𝐻. We then have a cofiber sequence

𝐸F𝑚,+→ 𝐸F ′,+→ 𝑆{𝐻} .

in Spc𝐺∗ . Since 𝑄 ⊗ 𝐹 (−) preserves cofiber sequences, the sequence

𝑄 ⊗ 𝐹 (𝐸F𝑚,+) →𝑄 ⊗ 𝐹 (𝐸F ′,+) →𝑄 ⊗ 𝐹 (𝑆{𝐻})

is again a cofiber sequence inD. Since F𝑚 ∈ U, the left term is zero, and by step 2) also the
right term is zero. It follows that the middle term is zero and thus F ′ ∈ U. This contradicts
the maximality of F𝑚. We conclude that 𝐻 must have already be contained in F𝑚 and thus
that F𝑚 contains all subgroups of 𝐺. This finishes the proof of the implication (3) =⇒ (1),
thus finishing the proof of the theorem. □
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C Smooth manifolds

We collect some basic results on smooth manifolds. Let Diff denote the category of smooth
manifolds and smooth maps. It will be convenient for us to allow impure smooth manifolds,
meaning that different path components might have distinct dimensions.

Definition C.1. Let 𝑓 : 𝑀→ 𝑁 be a smooth map between smooth manifolds.

• The map 𝑓 is called a submersion if for every 𝑥 ∈ 𝑀 the map 𝑇𝑥 𝑓 : 𝑇𝑥𝑀→ 𝑇 𝑓 (𝑥)𝑁 on
tangent spaces is surjective.

• The map 𝑓 is called an immersion if for every 𝑥 ∈ 𝑀 the map 𝑇𝑥 𝑓 : 𝑇𝑥𝑀 → 𝑇 𝑓 (𝑥)𝑁

on tangent spaces is injective.

• The map 𝑓 is called an embedding if it is an injective immersion such that 𝑓 restricts
to a homeomorphism 𝑀

�−→ 𝑓 (𝑀).

• The map 𝑓 is called proper if the preimage 𝑓 −1(𝐾) ⊆ 𝑀 of a compact subspace
𝐾 ⊆ 𝑁 is compact.

Definition C.2 (Embedded submanifold). A subset 𝑁 ⊆ 𝑀 of an 𝑛-dimensional smooth
manifold 𝑀 is called an embedded 𝑘-submanifold for 𝑘 ≤ 𝑛 if around every point 𝑥 ∈ 𝑁
there exists a chart 𝜑 : 𝑈

�−→𝑉 ⊆ R𝑛 such that

𝜑(𝑈 ∩𝑁) = {(𝑥1, . . . , 𝑥𝑘 , 𝑥𝑘+1, . . . , 𝑥𝑛) ∈ 𝑉 ∩ 𝑥𝑘+1 = · · · = 𝑥𝑛 = 0}.

This definition is local in 𝑀 and hence gives a notion of an embedded submanifold also for
impure smooth manifolds.

Proposition C.3 ([Lee02, Proposition 5.5]). Let 𝑁 ⊆ 𝑀 be an embedded submanifold,
equipped with the subspace topology. Then 𝑁 admits a unique structure of a smooth
manifold such that the inclusion 𝑁 ↩→ 𝑀 is a smooth embedding. □
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Proposition C.4 ([Mic08, Theorem 1.15]). The category Diff is idempotent complete:
given a smooth manifold 𝑀 and a smooth endomorphism 𝑓 : 𝑀→ 𝑀 satisfying 𝑓 ◦ 𝑓 = 𝑓 ,
the image 𝑓 (𝑀) ⊆ 𝑀 is an embedded submanifold of 𝑀 . □

Corollary C.5. The image of the Yoneda embedding 𝑦 : Diff ↩→ PSh(Diff) is closed under
retracts. □

Smooth manifolds are closed under closed equivalence relations.

Proposition C.6 (Godement, [Ser92, Section III.12, Theorem 2], [Bou67, Section 5.9.5]).
Let 𝑀 be a smooth manifold and let 𝑅 ⊆ 𝑀 ×𝑀 be a closed smooth submanifold defining
an equivalence relation on 𝑀 . Assume that the first projection pr1 : 𝑅→ 𝑀 is a smooth
submersion. Then the quotient space 𝑀/𝑅 admits a unique structure of a smooth manifold
making the quotient map 𝑀→ 𝑀/𝑅 a smooth submersion. □

The following lemma discusses various cancellation properties of smooth maps between
smooth manifolds:

Lemma C.7. Consider a commutative triangle of smooth maps between smooth manifolds:

𝑀

𝑁 𝑂.

𝑓 𝑔 𝑓

𝑔

(1) If 𝑔 𝑓 is an embedding, then 𝑓 is an embedding;

(2) If 𝑔 𝑓 is proper, then 𝑓 is proper;

(3) If 𝑔 𝑓 is a closed embedding, then 𝑓 is a closed embedding.

(4) If 𝑓 is a surjective submersion, then 𝑔 𝑓 is a surjective submersion if and only if 𝑔 is a
surjective submersion.

Proof. For (1), assume that 𝑔 𝑓 is an embedding. As 𝑔 𝑓 is injective, also 𝑓 is injective. As
the composite

𝑇𝑥𝑀
𝑇𝑥 𝑓−−−→ 𝑇 𝑓 (𝑥)𝑁

𝑇 𝑓 (𝑥 )𝑔−−−−−→ 𝑇𝑔 𝑓 (𝑥)𝑂

is injective, so is 𝑇𝑥 𝑓 . So 𝑓 is an injective immersion. If ℎ : 𝑔 𝑓 (𝑀) → 𝑀 is a continuous
inverse to the homeomorphism 𝑔 𝑓 : 𝑀→ 𝑔 𝑓 (𝑀), then the composite

𝑓 (𝑀)
𝑔
−→ 𝑔 𝑓 (𝑀) ℎ−→ 𝑀
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will be a continuous inverse to 𝑓 : 𝑀→ 𝑓 (𝑀).
For (2), assume that 𝑔 𝑓 is proper. Let 𝐾 ⊆ 𝑁 be a compact subspace. Since 𝑔 𝑓 is proper,
the subspace (𝑔 𝑓 )−1(𝑔(𝐾)) ⊆ 𝑁 is compact. The preimage 𝑓 −1(𝐾) is a closed subspace of
(𝑔 𝑓 )−1(𝑔(𝐾)), hence it is also compact.

For (3), it suffices to observe that a smooth map is a closed embedding if and only if it is a
proper embedding.

For (4), it is clear that if 𝑓 and 𝑔 are surjective submersions then so is 𝑔 𝑓 , so assume that
𝑓 and 𝑔 𝑓 are surjective submersions. For any 𝑦 ∈ 𝑁 , take 𝑥 ∈ 𝑀 such that 𝑓 (𝑥) = 𝑦. Then
both 𝑇𝑥 𝑓 : 𝑇𝑥𝑀→ 𝑇 𝑓 (𝑥)𝑁 as well as the composite

𝑇𝑥𝑀
𝑇𝑥 𝑓−−−→ 𝑇𝑦𝑁

𝑇𝑦𝑔−−→ 𝑇𝑔𝑦𝑂

are surjective, and thus so is 𝑇𝑦𝑔 as desired. □

Every smooth submersion locally admits a simple ‘normal form’:

Theorem C.8 (Local submersion theorem). Let 𝑓 : 𝑀→ 𝑁 be a smooth submersion between
smooth manifolds. Then for every point 𝑥 ∈ 𝑀 there exists an open neighborhood 𝑥 ∈𝑈 ⊆ 𝑀
equipped with an isomorphism 𝑈 � 𝑓 (𝑈) ×R𝑛 for some natural number 𝑛 such that the
following diagram commutes:

𝑓 (𝑈) ×R𝑛 𝑈 𝑀

𝑓 (𝑈) 𝑁.

�

pr 𝑓 (𝑈)
𝑓 |𝑈 𝑓 (C.1)

Proof. This is a special case of the Constant Rank Theorem of [Lee02, Theorem 5.13]: as
𝑓 has constant rank 𝑘 = dim(𝑁), one may choose local coordinates on 𝑀 and 𝑁 such that 𝑓
is of the form 𝑓 (𝑥1, . . . , 𝑥𝑘 , 𝑥𝑘+1, . . . , 𝑥𝑘+𝑛) = (𝑥1, . . . , 𝑥𝑘 ). Choosing small open balls around
𝑥 and 𝑓 (𝑥) thus shows that 𝑓 is locally given by a projection R𝑘+𝑛→ R𝑘 onto the first 𝑘
coordinates. □

It is a folklore theorem that base changes of smooth submersions exist in Diff and are again
smooth immersions. More precisely:

Proposition C.9. Let 𝑀 , 𝑁 and 𝑁′ be smooth manifolds, let 𝑓 : 𝑀 → 𝑁 be a smooth
submersion, and let 𝑔 : 𝑁′→ 𝑁 be a smooth map. Then the pullback space 𝑀 ×𝑁 𝑁′ admits
a unique smooth structure such that a map ℎ : 𝑋 → 𝑀 ×𝑁 𝑁′ is smooth if and only if both
composites pr𝑀 ◦ℎ : 𝑋→𝑀 and pr𝑀 ′ ◦ℎ : 𝑋→ 𝑁′ are smooth. Furthermore, the projection
𝑀 ×𝑁 𝑁′→ 𝑁′ is a smooth submersion.
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Proof. This is a special case of the fact that pullbacks in Diff of transversal maps exist.
Although this result is widely known, we were not able to find a proof in the literature,
hence we will provide one for the special case 𝑓 is a smooth submersion.

Observe that the statement is local in 𝑀 , in the sense that if {𝑈𝛼} is an open cover of 𝑀
such that the statement holds for the composite 𝑓𝛼 = 𝑈𝛼 ↩→ 𝑀

𝑓
−→ 𝑁 , then it also holds

for 𝑓 . By Theorem C.8, it will thus suffice to prove the claim when 𝑓 is either an open
embedding, where the statement is clear, or a projection 𝑁 ×R𝑛→ 𝑁 , where the pullback
is the projection 𝑁′×R𝑛→ 𝑁′. □

Lemma C.10. Let 𝑓 : 𝑀 → 𝑁 be a submersion between smooth manifolds. Then it is
surjective if and only if it admits local sections.

Proof. If 𝑓 admits local sections, it is clear that 𝑓 is surjective. Conversely, consider a
point 𝑦 ∈ 𝑁 . We have to find an open neighborhood around 𝑦 on which 𝑓 admits a section.
By surjectivity of 𝑓 , we may pick 𝑥 ∈ 𝑓 −1({𝑦}). Using Theorem C.8, we may find an
open neighborhood 𝑥 ∈ 𝑈 ⊆ 𝑀 equipped with an isomorphism 𝑈 � 𝑓 (𝑈) ×R𝑛 for some
natural number 𝑛 such that the diagram (C.1) commutes. Since the left diagonal map
𝑓 (𝑈) ×R𝑛→ 𝑓 (𝑈) admits a section 𝑦′ ↦→ (𝑦′,0), it follows that 𝑓 admits a partial section
defined on the open neighborhood 𝑓 (𝑈) around 𝑦, proving that 𝑓 admits local sections. □

We finish the chapter by discussing relative tangent bundles and normal bundles.

Definition C.11. Let 𝑓 : 𝑀→ 𝑁 be a smooth map between smooth manifolds. We define
its relative tangent bundle 𝑇 𝑓 as the kernel of the derivative 𝑑𝑓 of 𝑓 :

𝑇 𝑓 := ker(𝑑𝑓 : 𝑇𝑀→ 𝑓 ∗𝑇𝑁) ∈ Vect(𝑀).

We define its normal bundle as the cokernel of 𝑑𝑓 :

𝑁 𝑓 := coker(𝑑𝑓 : 𝑇𝑀→ 𝑓 ∗𝑇𝑁) ∈ Vect(𝑀).

Relative tangent bundles and normal bundles behave well under pullback:

Lemma C.12. Consider a pullback square of smooth manifolds

𝑀′ 𝑀

𝑁′ 𝑁

𝑓 ′

ℎ

𝑓

𝑔
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such that 𝑔 is a smooth submersion. Then the induced square on tangent bundles

𝑇𝑀′ 𝑇𝑀

𝑇𝑁′ 𝑇𝑁

𝑑𝑓 ′

𝑑ℎ

𝑑𝑓

𝑑𝑔

is again a pullback square.

Proof. The statement is clear when 𝑔 is an open embedding. Theorem C.8 then allows us
to reduce to the case where 𝑁′ = 𝑁 ×R𝑛 and 𝑔 = pr𝑁 : 𝑁 ×R𝑛→ 𝑁 is the projection. In this
case we have 𝑀′ = 𝑀 ×R𝑛, and the statement now follows as 𝑇 (𝑁 ×R𝑛) � 𝑇𝑁 ×R𝑛+𝑛 and
similarly for 𝑇 (𝑀 ×R𝑛). □

Corollary C.13. For a pullback square of smooth manifolds as in Lemma C.12, the following
square is also a pullback square:

𝑇 𝑓 ′ 𝑇 𝑓

𝑀′ 𝑀.

𝑑ℎ

ℎ

If 𝑓 and (thus) 𝑓 ′ are immersions, than also the following square is a pullback square:

𝑁 𝑓 ′ 𝑁 𝑓

𝑀′ 𝑀.

𝑑𝑔

ℎ

Proof. For every 𝑥 ∈ 𝑀′, the induced square of vector bundles

𝑇𝑥𝑀
′ 𝑇ℎ(𝑥)𝑀

𝑇 𝑓 ′ (𝑥)𝑁
′ 𝑇 𝑓 (ℎ(𝑥))𝑁

𝑑𝑓 ′

𝑑ℎ

𝑑𝑓

𝑑𝑔

is a pullback square by Lemma C.12. Passing to vertical kernels shows that the map
𝑑ℎ : 𝑇 𝑓 ′ → 𝑇 𝑓 induces isomorphisms on fibers, proving that the first square is a pullback
square. If 𝑓 and 𝑓 ′ are immersions, then 𝑑𝑓 and 𝑑𝑓 ′ are injections. Passing to vertical
cokernels in the above square shows that the map 𝑑𝑔 : 𝑁 𝑓 ′→ 𝑁 𝑓 induces isomorphisms on
fibers, proving that the second square is a pullback square. □
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D Lie groupoids

In this appendix, we recall some background material on Lie groupoids freely used in the
body of the text.

D.1 Definition and examples

We recall the definition and some basic examples of Lie groupoids.

Definition D.1 (Lie groupoid). A Lie groupoid G is a groupoid (G1 ⇒ G0) in which G1

and G0 are smooth manifolds, the structure maps 𝑠, 𝑡 : G1→G0, 𝑚 : G1×𝑠,G0,𝑡 G1→G1 and
𝑢 : G0→ G1 are all smooth, and the source and target maps 𝑠, 𝑡 are smooth submersions.
A morphism of Lie groupoids 𝑓 : G →H is a smooth functor, i.e. a pair of smooth maps
𝑓0 : G0→H0 and 𝑓1 : G1→H1 commuting with the structuer maps. We denote by LieGrpd
the category of Lie groupoids and morphisms of Lie groupoids.

Given a smooth manifold 𝑀 , we say that G is a Lie groupoid over 𝑀 if G0 = 𝑀 .

Warning D.2. While one sometimes reads that ‘Lie groupoids are groupoid objects internal
to the category Diff of smooth manifolds’, this statement needs to be taken with care, as the
category Diff does not admit all pullbacks. The assumption that source and target maps are
smooth submersions is needed to get a well-behaved theory.

Example D.3 (Classifying groupoid). Let 𝐺 be a Lie group. We let 𝐺 ⋉ pt be the Lie
groupoid given by (𝐺 ⋉pt)0 = pt and (𝐺 ⋉pt)1 = 𝐺, with composition and inversion given
by multiplication and inversion in 𝐺. We call 𝐺 ⋉pt the classifying groupoid of 𝐺.

Example D.4 (Action groupoid). More generally, let 𝑀 be a smooth 𝐺-manifold, i.e., a
smooth manifold equipped with a smooth 𝐺-action. We let 𝐺 ⋉𝑀 be the Lie groupoid
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given by (𝐺 ⋉𝑀)0 = 𝑀 and (𝐺 ⋉𝑀)1 = 𝐺 ×𝑀 . The structure maps are given by

𝑠(𝑔,𝑥) = 𝑥, 𝑡 (𝑔, 𝑥) = 𝑔 · 𝑥, 𝑒(𝑥) = (𝑒, 𝑥),
𝑖(𝑔, 𝑥) = (𝑔−1, 𝑔𝑥) 𝑚((𝑔′, 𝑔𝑥), (𝑔,𝑥)) = (𝑔′𝑔, 𝑥).

We call 𝐺 ⋉𝑀 the action groupoid of 𝑀 . It defines a functor 𝐺 ⋉− : Diff𝐺 → LieGrpd,
where Diff𝐺 denotes the category of smooth 𝐺-manifolds.

Example D.5 (Čech groupoid). Let 𝑝 : 𝑀 → 𝑁 be a smooth submersion between smooth
manifolds. Then its Čech groupoid �̌� (𝑝) is defined as the Lie groupoid with �̌� (𝑝)0 = 𝑀 ,
�̌� (𝑝)1 = 𝑀 ×𝑁 𝑀 , and structure maps

𝑠(𝑥, 𝑥′) = 𝑥, 𝑡 (𝑥, 𝑥′) = 𝑥′, 𝑒(𝑥) = (𝑥, 𝑥),
𝑖(𝑥, 𝑥′) = (𝑥′, 𝑥), 𝑚((𝑥, 𝑥′), (𝑥′, 𝑥′′)) = (𝑥, 𝑥′′).

When 𝑁 = pt is a point, the resulting Lie groupoid 𝑀 ×𝑀 ⇒ 𝑀 is known as the pair
groupoid of 𝑀 .

Example D.6 (Gauge groupoid). Let 𝑃→𝑀 be a principal𝐺-bundle. The gauge groupoid
is the Lie groupoid (𝑃×𝑃)/𝐺 ⇒ 𝑀 , where 𝐺 acts diagonally on 𝑃×𝑃. The composition
is defined as in the pair groupoid.

Example D.7 (Pullback groupoid). Let G be a Lie groupoid over 𝑀 , let 𝑁 be a smooth
manifold and let 𝑓 : 𝑁 → 𝑀 be a smooth submersion. We define the pullback groupoid
𝑓 ∗G by letting ( 𝑓 ∗G)0 = 𝑁 and defining

( 𝑓 ∗G)1 = 𝑁 ×𝑀 G1×𝑀 𝑁 = {(𝑥, 𝑔, 𝑦) ∈ 𝑁 ×G1×𝑁 | 𝑠(𝑔) = 𝑓 (𝑥), 𝑡 (𝑔) = 𝑓 (𝑦)},

with structure maps inherited from G. As a special case, we get for every open subspace
𝑈 ⊆ 𝑀 a groupoid G|U , called the restriction of G to𝑈:

G|𝑈 =

(
{𝑔 ∈ G1 | 𝑠(𝑔), 𝑡 (𝑔) ∈𝑈}

𝑠

𝑡
𝑈

)
.

More generally, we may define a topological groupoid G|𝑋 for any subspace 𝑋 ⊆ 𝑀 .
However, it is not always true that G|𝑋 is a Lie groupoid.

We recall the definition of the orbits and isotropy groups of a Lie groupoid.

Definition D.8 (Orbits). Let G be a Lie groupoid over 𝑀 . Two points 𝑥, 𝑦 ∈ 𝑀 are said to
lie in the same orbit of G if there exists an arrow 𝑔 : 𝑥→ 𝑦, i.e., a point 𝑔 ∈ G1 with 𝑠(𝑔) = 𝑥
and 𝑡 (𝑔) = 𝑦. This gives rise to a partition of 𝑀 into the orbits of G: every point 𝑥 ∈ 𝑀 is
contained in a unique orbit:

O𝑥 := {𝑡 (𝑔) ∈ 𝑀 | 𝑔 ∈ G1, 𝑠(𝑔) = 𝑥} ⊆ 𝑀.
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Definition D.9 (Isotropy group). Let G be a Lie groupoid over 𝑀 and let 𝑥, 𝑦 ∈ 𝑀 . We
define

G(𝑥,−) := 𝑠−1(𝑥) = {𝑔 ∈ G1 | 𝑠(𝑔) = 𝑥}
G(−, 𝑦) := 𝑡−1(𝑦) = {𝑔 ∈ G1 | 𝑡 (𝑔) = 𝑦}
G(𝑥, 𝑦) := G(𝑥,−) ∩G(−, 𝑦) = {𝑔 ∈ G1 | 𝑠(𝑔) = 𝑥, 𝑡 (𝑔) = 𝑦}

𝐺𝑥 := G(𝑥, 𝑥).

The composition in G restricts to a group structure on𝐺𝑥 , and we call𝐺𝑥 the isotropy group
of G at 𝑥.

Example D.10. The isotropy group of the action groupoid 𝐺 ⋉𝑀 at a point 𝑥 ∈ 𝑀 is the
usual isotropy group 𝐺𝑥 = {𝑔 ∈ 𝐺 | 𝑔𝑥 = 𝑥} of the 𝐺-action on 𝑀 .

As 𝑠 and 𝑡 are smooth submersions, the fibers G(𝑥,−) and G(−, 𝑦) are closed submanifolds
of G1. One can prove that also the subspaces G(𝑥, 𝑦) ⊆ G1 and O𝑥 ⊆ 𝑀 are smooth
manifolds, implying in particular that the isotropy group 𝐺𝑥 is a Lie group:

Proposition D.11 (Moerdĳk and Mrčun [MM03, Theorem 5.4]). Let G be a Lie groupoid
over 𝑀 and let 𝑥, 𝑦 ∈ 𝑀 .

(1) The subspace G(𝑥, 𝑦) is a closed submanifold of G1;

(2) The isotropy group 𝐺𝑥 is a Lie group;

(3) The orbit G · 𝑥 is an immersed submanifold of 𝑀;

(4) The target map 𝑡 : G(𝑥,−) → O𝑥 is a principal 𝐺𝑥-bundle.

Definition D.12. Let G be a Lie groupoid over 𝑀 and let 𝑆 ⊆ 𝑀 be a subspace. We say
that 𝑋 is saturated if it contains all orbits that intersect 𝑆: if 𝑥 ∈ 𝑆, then also 𝑔𝑥 ∈ 𝑆 for all
𝑔 ∈ G1 with 𝑠(𝑔) = 𝑥. For an arbitrary subspace 𝑆 ⊆ 𝑀 , we define the G-saturation G · 𝑆 of
𝑆 as the union in 𝑀 of all orbits of G intersecting 𝑆 non-trivially:

G · 𝑆 :=
⋃
𝑥∈𝑆
O𝑥 = {𝑔𝑥 ∈ 𝑀 | 𝑔 ∈ G1, 𝑠(𝑔) = 𝑥 ∈ 𝑋}.

Definition D.13 (Proper Lie groupoids). A Lie groupoid G is called proper if the map
(𝑠, 𝑡) : G1→G0×G0 is a proper map.

An action groupoid 𝐺 ⋉𝑀 is proper if and only if the action of the Lie group 𝐺 on the
smooth manifold 𝑀 is proper. Note that the isotropy groups 𝐺𝑥 of a proper Lie groups are
compact, being given as the fibers of the map (𝑠, 𝑡) : G1→G0×G0 at (𝑥, 𝑥).

264



D.2 Principal bundles

We recall the notions left actions of Lie groupoids and of smooth principal bundles for Lie
groupoids.

Definition D.14 (Left G-action). Let G be a Lie groupoid, let 𝑀 be a smooth manifold and
let 𝑀→G0 be a smooth submersion. A left G-action on 𝑀→G0 consists of a smooth map
𝑎 : G1×𝑠,G0 𝑀→ 𝑀 over G0 which is associative and unital in the sense that the diagrams

G1×G0 G1×G0 𝑀 G1×G0 𝑀

G1×G0 𝑀 𝑀

𝑚×1

1×𝑎 𝑎

𝑎

and
G0×G0 𝑀 G1×G0 𝑀

𝑀 𝑀

𝑖×1

� 𝑎

commute. A smooth G-manifold is a smooth manifold 𝑀 → G0 over G0 equipped with a
left G-action.

Given another map 𝑀′→ G0 equipped with a left G-action, a morphism of smooth G-
manifolds 𝜑 : 𝑀 → 𝑀′ is a map 𝜑 : 𝑀 → 𝑀′ which commutes with the action maps
𝑎 : G1×G0 𝑀→ 𝑀 and 𝑎′ : G1×G0 𝑀

′→ 𝑀′. We denote the resulting category of smooth
G-manifolds by DiffG .

Note that for a Lie group𝐺, a smooth (𝐺⋉pt)-manifold is simply a smooth𝐺-manifold, i.e.
a smooth manifold 𝑀 equipped with a smooth 𝐺-action. We let Diff𝐺 denote the category
of smooth 𝐺-manifolds.

Definition D.15 (Smooth principal G-bundle). Let G be a Lie groupoid and let 𝑁 be a
smooth manifold. A smooth principal G-bundle is a smooth manifold 𝑃 equipped with
smooth maps 𝑃→G0 and 𝑝 : 𝑃→ 𝑁 and equipped with a left G-action 𝑎 : G1×G0 𝑃→ 𝑃

on 𝑃 satisfying the following conditions:

(1) The map 𝑝 : 𝑃↠ 𝑁 is a surjective smooth submersion.

(2) The action lives over 𝑁 , in that the following diagram commutes:

G1×G0 𝑃 𝑃

𝑁.

𝑎

𝑝◦pr2
𝑝

(3) The map

G1×G0 𝑃
(𝑎,pr2)−−−−−→ 𝑃×𝑁 𝑃

is a diffeomorphism.
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If 𝑃′→ 𝑁 is another smooth principal G-bundle over 𝑁 , a morphism 𝑃→ 𝑃′ of smooth
principal G-bundles over 𝑁 consists of a map 𝜑 : 𝑃→ 𝑃′ of smooth G-manifolds which lies
over 𝑁 . We let PrnBdlG (𝑁) denote the resulting category of smooth principal G-bundles
over 𝑁 .

Construction D.16. Let 𝑝 : 𝑃↠ 𝑁 be a smooth principal G-bundle and consider a point
𝑥 ∈ 𝑁 . As 𝑝 is a surjective smooth submersion, it admits local sections, and thus there exists
an open neighborhood 𝑥 ∈ 𝑈 ⊆ 𝑁 and a smooth map 𝑠 : 𝑈 ↩→ 𝑃 such that the following
diagram commutes:

𝑃

𝑈 𝑁.

𝑝𝑠

Now, pulling back the diffeomorphism

G1×G0 𝑃
(𝑎,pr2)−−−−−→ 𝑃×𝑁 𝑃

along the map 𝑠 : 𝑈 ↩→ 𝑃, we obtain a diffeomorphism

G1×G0𝑈
�−→ 𝑃 |𝑈

over 𝑈, where the map 𝑈 → G0 is the composite of 𝑠 : 𝑈 ↩→ 𝑃 and the structure map
𝑃→G0. In particular, for a point 𝑥 ∈𝑈 ⊆ 𝑁 the fiber 𝑃𝑥 of 𝑝 over 𝑥 is given by G(𝑥′,−),
where 𝑥′ is the image of 𝑥 under the map𝑈→G0.

We may think of the diffeomorphisms G1 ×G0 𝑈
�−→ 𝑃 |𝑈 as analogue to the classical local

triviality condition on principal bundles.

Corollary D.17. Every morphism 𝜑 : 𝑃→ 𝑃′ of smooth principal G-bundles over 𝑁 is
invertible. In other words, the category PrnBdlG (𝑁) is a groupoid.

Proof. It suffices to check this locally on 𝑁 . Choosing a point 𝑥 ∈ 𝑁 and proceeding as in
Construction D.16, we find an open neighborhood 𝑥 ∈𝑈 ⊆ 𝑁 and a commutative diagram

G1×G0𝑈

𝑃 |𝑈 𝑃′|𝑈 ,

� �

𝜑|𝑈

proving that the restriction of 𝜑 to𝑈 is a diffeomorphism. The claim follows. □
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D.3 Morita equivalence

We recall the notion of Morita equivalence of Lie groupoids. The relevance of this notion
of equivalence is that it corresponds to an equivalence between the underlying differentiable
stacks of the two Lie groupoids, see Proposition II.2.3.14.

Definition D.18 (Morita equivalence). Let G be a Lie groupoid over 𝑀 and letH be a Lie
groupoid over 𝑁 . A Morita equivalence between G andH consists of:

(1) Surjective smooth submersions 𝛼 : 𝑃→ 𝑀 and 𝛽 : 𝑃→ 𝑁;

(2) A left G-action 𝑎G : G1 ×𝑀 𝑃→ 𝑃 on 𝑃 over 𝑀 making 𝛽 : 𝑃→ 𝑁 into a principal
G-bundle;

(3) A left H -action 𝑎H : H1 ×𝑁 𝑃→ 𝑃 on 𝑃 over 𝑁 making 𝛼 : 𝑃→ 𝑀 into a principal
H -bundle;

(4) We require that the actions 𝑎G and 𝑎H commute with each other.

We say that G andH are Morita equivalent if there exists a Morita equivalence between G
andH .

We mention some standard examples of Morita equivalences, whose proofs we leave to the
reader.

Example D.19. Let 𝐺 and 𝐻 be Lie groups. Then the Lie groupoids 𝐺 ⋉pt and 𝐻 ⋉pt are
Morita equivalent if and only if 𝐺 and 𝐻 are isomorphic.

Example D.20. Let G be a Lie groupoid over 𝑀 with a single orbit. Then there is a Morita
equivalence between G and 𝐺𝑥 ⋉pt for any 𝑥 ∈ 𝑀 .

Example D.21. Let 𝑝 : 𝑀 → 𝑁 be a smooth submersion. Then the Čech groupoid �̌� (𝑝)
from Example D.5 is Morita equivalent to the submanifold 𝑝(𝑀) ⊆ 𝑁 , regarded as a Lie
groupoid with only identity arrows.

Example D.22. Given a smooth, free and proper action of a Lie group 𝐺 on a smooth
manifold 𝑀 , the action groupoid 𝐺 ⋉𝑀 is equivalent to the quotient 𝑁 = 𝑀/𝐺.

Example D.23. Let G be a Lie groupoid over 𝑀 and let 𝑈 ⊆ 𝑀 be an open subset. Let
𝑈′ := G ·𝑈 ⊆ 𝑀 be the G-saturation of 𝑈. Then the restriction G|𝑈 of G to 𝑈 is Morita
equivalent to the restriction G|𝑈′ of G to𝑈’.
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E Recollections on∞-topoi

Throughout this dissertation, we make extensive use of the theory of∞-topoi, due to Rezk,
Toën-Vezzosi and Lurie. For the convenience of the reader, we will provide in this appendix
a thorough treatment of this theory, covering all the foundations that we will need in this
dissertation.

The appendix is organized as follows. We start in Appendix E.1 by recalling the definition
and most important characterizations of ∞-topoi. The correspondence between groupoid
objects and effective epimorphisms is discussed in Appendix E.2. In Appendix E.3 we
define groupoid actions and principal bundles in ∞-topoi and show how they can be
classified using the classifying stack of the groupoid, following the treatment of [NSS15]
and [SS21, Section 3.2] for group actions. We discuss sheaf topoi in Appendix E.4 and
hypercompleteness and hyperdescent in Appendix E.5.

E.1 Definition and characterizations of∞-topoi

Recall the definition of an∞-topos and of a geometric morphism between∞-topoi.

Definition E.1 (∞-topos). An ∞-category B is called an ∞-topos if it is equivalent to an
accessible left exact Bousfield localization of a presheaf category PSh(C), for some small
∞-category C.

Definition E.2 (Geometric morphism). A functor 𝜓∗ : B → B′ between ∞-topoi is called
a geometric morphism if it admits a left exact left adjoint 𝜓∗ : B′→B.

The following theorem provides criteria for testing whether an∞-category is an∞-topos:

Theorem E.3 (Lurie [Lur09, Proposition 6.1.3.9, Proposition 6.1.0.6]). Let B be an ∞-
category. The following conditions are equivalent:

(1) The∞-category B is an∞-topos;

268



(2) The ∞-category B satisfies the following ∞-categorical analogues of the Giraud’s
axioms:

(i) The∞-category B is presentable;

(ii) Colimits in B are universal, see Definition E.4;

(iii) Coproducts in B are disjoint, see Definition E.6;

(iv) Every groupoid object of B is effective, see Definition E.7.

(3) The∞-categoryB is presentable and the cartesian fibration 𝑡 : Ar(B) →B is classified
by a limit preserving functor

B/− : Bop→ PrL, 𝑋 ↦→ B/𝑋 .

Condition (3) is often referred to as descent for∞-topoi.

We will now explain the meaning of some of the conditions in the above theorem.

Universal colimits

Let 𝑓 : 𝑇 → 𝑆 be a morphism in a presentable ∞-category B. Since B has all limits, the
functor 𝑓! : B/𝑇 →B/𝑆 given by composition with 𝑓 admits a right adjoint

𝑓 ∗ : B/𝑆→B/𝑇
(𝑋→ 𝑆) ↦→ (𝑋 ×𝑆 𝑇 → 𝑇).

Definition E.4. Let B be a presentable∞-category. We say that colimits in B are universal
if, for any morphism 𝑓 : 𝑇 → 𝑆 in B, the associated pullback functor

𝑓 ∗ : B/𝑆→B/𝑇

preserves colimits.

By the adjoint functor theorem, 𝑓 ∗ preserves all colimits if and only if it admits a right
adjoint 𝑓∗ : B/𝑇 →B/𝑆.

Proposition E.5 (Lurie [Lur09, Proposition 6.1.1.4]). LetB be an∞-category which admits
finite limits. The following conditions are equivalent:

(1) The∞-category B is presentable, and colimits in B are universal;

(2) The cartesian fibration 𝑡 : Ar(B) → B is classified by a functor B/− : Bop→ PrL into
the∞-category of presentable∞-categories and colimit preserving functors.
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Disjoint coproducts

Definition E.6. If C is an ∞-category that admits finite coproducts, then we will say that
coproducts in C are disjoint if every cocartesian diagram

∅ 𝑌

𝑋 𝑋 ⊔𝑌

is also cartesian, provided that ∅ is an initial object of C. More informally this says that the
intersection of 𝑋 and 𝑌 inside the union 𝑋 ⊔𝑌 is empty.

Effective groupoid objects

We refer to Appendix E.2 for the definition of a groupoid object in an ∞-category and for
the definition of the Čech nerve of a morphism in an∞-category.

Definition E.7. Let G : Δop → C be a groupoid object in a presentable ∞-category C.
We say that G is effective if it is equivalent to the Čech nerve of the canonical map
G0→ |G| := colim[𝑛]∈ΔG𝑛.

E.2 Groupoids and effective epimorphisms

We recall from [Lur09, Section 6.2.3] the correspondence between groupoid objects and
effective epimorphisms in an∞-topos B. Throughout this section, B will stay fixed.

Definition E.8 (Groupoid object, [Lur09, Definition 6.1.2.7]). Let C be an ∞-category. A
simplicial object G : Δop→ C is called a groupoid object if for every 𝑛 ∈ N and every (not
necessarily order-preserving) partition

[𝑛] ≃ {𝑖0, . . . , 𝑖𝑘 } ⊔{𝑖𝑘} {𝑖𝑘 , . . . , 𝑖𝑛},

the induced diagram

G𝑛 G𝑘

G𝑛−𝑘 G0

(𝑖0,...,𝑖𝑘)∗

(𝑖𝑘 ,...,𝑖𝑛)∗ 𝑖∗
𝑘

𝑖∗
𝑘

is a pullback in C. We let Grpd(C) ⊆ Fun(Δop,C) denote the full subcategory spanned by
the groupoid objects in C.
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Definition E.9. Let C be an∞-category admitting simplicial colimits and let𝑈 : Δop→C
be a simplicial object. We define is geometric realization |𝑈 | of𝑈 as its colimit in C:

|𝑈 | := colim[𝑛]∈Δop𝑈𝑛.

It comes equipped with a structure map𝑈0→ |𝑈 |.

Construction E.10 (Čech nerve). Let C be a presentable ∞-topos and let 𝑓 : 𝑋 → 𝑌 be
a morphism C. We will construct a groupoid object �̌� ( 𝑓 ) called the Čech nerve of 𝑓 ,
informally given by

�̌� ( 𝑓 )𝑛 := 𝑋 ×𝑌 𝑋 ×𝑌 · · · ×𝑌 𝑋,

the 𝑛-fold fiber product of 𝑋 over 𝑌 . More formally, we let Δ+ denote the augmented
simplex category and let Δ≤0

+ ⊆ Δ+ the full subcategory on the objects [−1] and [0]. As
Δ≤0
+ has a single non-identity morphism [−1] → [0], we may regard 𝑓 as as a functor
𝑓 : (Δ≤0

+ )op→C, sending [0] to 𝑋 , [−1] to 𝑌 and the morphism [−1] → [0] to 𝑓 : 𝑋→𝑌 .
Let 𝜄∗( 𝑓 ) : Δop

+ →C denote the right Kan extension of 𝑓 along the inclusion 𝜄 : Δ≤0
+ ↩→ Δ+.

Then the Čech nerve �̌� ( 𝑓 ) of 𝑓 is defined as the restriction of 𝜄∗( 𝑓 ) to Δop.

Lemma E.11. For every morphism 𝑓 : 𝑋 → 𝑌 in a presentable ∞-category C, the Čech
nerve �̌� ( 𝑓 ) is a groupoid object in C.

Proof. This follows immediately from [Lur09, Proposition 6.1.2.11]. □

Definition E.12 (Effective epimorphism, cf. [Lur09, Corollary 6.2.3.5]). Consider a mor-
phism 𝑓 : 𝑋 → 𝑌 in B. The diagram 𝜄∗( 𝑓 ) : Δop

+ → B from Construction E.10 defines a
cocone from the Čech nerve �̌� ( 𝑓 ) to the object 𝑌 , giving rise to a comparison map

|�̌� ( 𝑓 ) | = colim[𝑛]∈Δop 𝑋×
𝑛
𝑌 → 𝑌 .

We call 𝑓 an effective epimorphism if this comparison map is an equivalence. In this case,
we will also refer to 𝑓 as exhibiting 𝑋 as an atlas for 𝑌 . We write

Atl(B) ⊆ Fun(Δ1,B)

for the full subcategory spanned by the effective epimorphisms 𝑓 : 𝑋 ↠ 𝑌 in B.

The above constructions of geometric realization and Čech nerve are inverse to each other:
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Proposition E.13 (cf. [Lur09, Discussion below Corollary 6.2.3.5]). Let B be a ∞-topos.
Then the Čech nerve construction restricts to an equivalence of∞-categories

�̌� : Atl(B) ∼−−→ Grpd(B), 𝑓 ↦→ �̌� ( 𝑓 ).

The inverse is given by sending a groupoid object G to the map G0→ |G|.

Proof. By definition, the effective epimorphisms are precisely those morphisms 𝑓 : 𝑋→𝑌

for which the canonical comparison map

�̌� ( 𝑓 )0 𝑋

|�̌� ( 𝑓 ) | 𝑌

𝑓

in Fun(Δ1,B) is an equivalence. Conversely, given a groupoid object G in B, the colimit
cone defining |G| corresponds to an extension of G to Δ

op
+ , which in turn gives rise to a

comparison map G → �̌� (G0→ |G|) of groupoid objects. A groupoid object G is called
effective if this comparison map is an equivalence. But in an∞-topos, every groupoid object
is effective, see [Lur09, Theorem 6.1.0.6(3)]. It follows in particular that the morphism
G0→ |G| is an effective epimorphism. □

Definition E.14. IfG is a groupoid object in an∞-topos, we denote its geometric realization
alternatively by BG and refer to it as the classifying stack of G:

BG := |G| = colim[𝑛]∈Δop G𝑛.

Corollary E.15. The structure map G0→ BG of the colimit is an effective epimorphism.

Proof. This is immediate from Proposition E.13. □

We finish this subsection by showing that the equivalence Atl(B) ≃ Grpd(B) of Propo-
sition E.13 sends cartesian squares on the left to cartesian natural transformations on the
right, and vice versa.

Lemma E.16. Let 𝛼 : G →H be a morphism of groupoid objects in B, and let

G0 H0

|G| |H |

𝛼0

|𝛼 |

(E.1)

be the map in Atl(B) induced by the equivalence of Proposition E.13. Then 𝛼 is cartesian
as a natural transformation of simplicial objects in B if and only if the diagram (E.1) is a
cartesian square.
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Proof. If 𝛼 is cartesian, then the square (E.1) is cartesian by [Lur09, Theorem 6.1.3.9(4)].
For the converse, it suffices by the pasting law of pullback squares to show that the diagram

G𝑛 H𝑛

G0 H0

𝛼𝑛

𝛼0

is a pullback square for each 𝑛 ≥ 0. For 𝑛 = 0 this is clear. For 𝑛 = 1, this follows by applying
the pasting law of pullback squares to the following diagram:

G1 H1

G0 H0

G0 H0

|G| |H |.

𝛼0

𝛼1

𝛼0

|𝛼 |

The general case then follows by induction by applying the pasting law of pullback squares
to the diagram

G𝑛 H𝑛

G𝑛−1 H𝑛−1

G1 H1

G0 H0.

𝛼𝑛−1

𝛼𝑛

𝛼1

𝛼0

This finishes the proof. □

E.3 Groupoid actions and principal bundles

In this subsection we discuss G-actions for a groupoid object G in an∞-topos B and prove
that the ∞-category of G-actions is equivalent to the slice of B over the classifying stack
BG of G. We further recall the notion of a principal G-bundle over an object 𝐵 ∈ B, and
show that these are classified by morphisms 𝐵→ BG. Our treatment is based on [NSS15]
and [SS21, Section 3.2], where the analogous situation for group actions is discussed.
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Actions by groupoid objects

We introduce the notion of an action of a groupoid object in an ∞-topos B, generalizing
the treatment of Sati and Schreiber [SS21] of group actions in∞-topoi.

Definition E.17. LetG be a groupoid object in an∞-toposB, and consider an object 𝑋 ∈ B.
Then an action of G on 𝑋 consists of the following data:

• a groupoid object G ⋉ 𝑋 in B;

• an equivalence (G ⋉ 𝑋)0 ≃ 𝑋;

• a cartesian natural transformation 𝑐 : G ⋉ 𝑋→G of simplicial objects in B.

We let ActG (B) ⊆ Grpd(B)/G denote the full subcategory of G-actions in B.

Remark E.18. LetG⋉𝑋 be an action ofG on 𝑋 . Since (G⋉𝑋)0 ≃ 𝑋 , the map 𝑐 : G⋉𝑋→G
induces a structure map 𝑐0 : 𝑋 → G0. Since 𝑐 is a cartesian natural transformation, there
are cartesian squares

· · · (G ⋉ 𝑋)2 (G ⋉ 𝑋)1 𝑋

· · · G2 G1 G0,

𝑑0

𝑐2

𝑑0

𝑐1 𝑐0

𝑑0 𝑡=𝑑0

and in particular we obtain equivalences

(G ⋉ 𝑋)1 ∼−−→ G1×G0 𝑋;

(G ⋉ 𝑋)2 ∼−−→ G2×G0 𝑋 ≃ G1×G0 G1×G0 𝑋;
...

Under these equivalences, the map 𝑠 = 𝑑1 : (G ⋉ 𝑋)1 → (G ⋉ 𝑋)0 corresponds to a map
𝑎 : G1×G0 𝑋 → 𝑋 , thought of as the action map. The rest of the simplicial diagram G ⋉ 𝑋
should be thought of the data witnessing that this action is unital and associative up to
coherent homotopy.

Definition E.19. If G⋉𝑋 is an action of a groupoid object G on an object 𝑋 ∈ B, we define
the quotient 𝑋//G as the geometric realization of G ⋉ 𝑋:

𝑋//G := |G ⋉ 𝑋 | ≃ colim[𝑛]∈Δop G𝑛×G0 𝑋.

The map G ⋉ 𝑋 → G of groupoids induces a map 𝑋//G = |G ⋉ 𝑋 | → |G| = BG, and this
defines a functor −//G : ActG (B) → B/BG .
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Proposition E.20 (Classification of groupoid-actions, cf. [SS21, Proposition 3.2.63]). The
quotient functor −//G is an equivalence of∞-categories:

−//G : ActG (B) ∼−−→ B/BG .

Proof. By definition, ActG (B) is a full subcategory of the slice Grpd(B)/G spanned by
those morphisms into G which are cartesian. Similarly, the slice B/BG embeds as a full
subcategory of the slice Atl(B)/(G0→BG) by sending a morphism 𝐵→ BG to the square

𝐵×BG G0 G0

𝐵 BG.

The essential image of this embedding B/BG ↩→ Atl(B)/(G0→BG) precisely consists of the
pullback squares. Under these identifications, the functor−//G : ActG (B) →B/BG is given
by the restriction of the equivalence Grpd(G)/G≃Atl(B)/(G0→BG) of Proposition E.13. By
Lemma E.16, the subcategory ActG (B) on the left precisely corresponds to the subcategory
B/BG on the right, finishing the proof □

Free and transitive actions

Given a G-action in B, one can define when the action is free or transitive. Actions which
are both free and transitive will correspond to principal G-bundles over the terminal object
of B.

Definition E.21 (Higher shear maps, cf. [SS21, Definition 3.2.73]). Let G⋉𝑋 be an action
of a groupoid object G on an object 𝑋 in the fixed∞-topos B. We define the shear map of
G ⋉ 𝑋 as the map

shear1 = (𝑎,pr𝑋) : G1×G0 𝑋→ 𝑋 × 𝑋,

where 𝑎 : G1×G0 𝑋→ 𝑋 is the action map and pr𝑋 is the projection onto 𝑋 . More generally,
we define the higher shear maps of G ⋉ 𝑋 as follows. Consider the following commutative
square in B:

𝑋 𝑋

𝑋//G pt .

Regarding this as a morphism from 𝑋 ↠ 𝑋//G to 𝑋 → pt in Fun(Δ1,B) and passing to
Čech nerves, we obtain a morphism of groupoid objects

shear : (G ⋉ 𝑋) → �̌� (𝑋→ pt).
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Under the identifications of Remark E.18, it may be displayed as follows:

G ⋉ 𝑋 = . . . G2×G0 𝑋 G1×G0 𝑋 𝑋

�̌� (𝑋→ pt) = . . . 𝑋 × 𝑋 × 𝑋 𝑋 × 𝑋 𝑋.

shear shear2 shear1

𝑎

pr𝑋
shear0

pr1

pr2

Definition E.22 (Free, transitive and regular∞-actions, cf. [SS21, Definition 3.2.75]). Let
G ⋉ 𝑋 be an action of a groupoid object G on an object 𝑋 ∈ B. We say that this action is

• free if its shear map shear1 is a monomorphism:

G ⋉ 𝑋 is free ⇔ G1×G0 𝑋 𝑋 × 𝑋 ;shear1

• transitive if its shear map shear1 is an effective epimorphism:

G ⋉ 𝑋 is transitive ⇔ G1×G0 𝑋 𝑋 × 𝑋 ;shear1

• regular if its shear map shear1 is an equivalence:

G ⋉ 𝑋 is regular ⇔ G1×G0 𝑋 𝑋 × 𝑋 .∼
shear1

Note that G ⋉ 𝑋 is regular if and only if it is free and transitive.

In case the morphism 𝑋→ pt is an effective epimorphism in B, regularity of G ⋉ 𝑋 can be
expressed as the triviality of the quotient 𝑋//G:

Lemma E.23 (cf. [SS21, Proposition 3.2.77]). Let 𝑋 ∈ B be an object such that the terminal
morphism 𝑋→ pt is an effective epimorphism in B. Let G ⋉ 𝑋 be an action of a groupoid
object on 𝑋 . Then the action G⋉𝑋 is regular if and only if the quotient 𝑋//G is the terminal
object of B.

Proof. First assume that the map 𝑋//G → pt is an equivalence. Then the map 𝑋 ↠ 𝑋//G
is equivalent to the map 𝑋→ pt. It follows that the shear map shear : (G⋉𝑋) → �̌� (𝑋→ pt)
is an equivalence, being defined by applying Čech nerves to these two morphisms.

Conversely, assume that G×𝑋 is regular and that 𝑋↠ pt is an effective epimorphism. Then
the map 𝑋//𝐺→ pt is obtained from the higher shear map shear : (G ⋉ 𝑋) → �̌� (𝑋 → pt)
by passing to colimits. It will thus suffice to show that each of the higher shear maps
shear𝑛 : G𝑛 ×G0 𝑋 → 𝑋𝑛 is an equivalence. We proceed by induction. The case 𝑛 = 1 is
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assumed, so assume that shear𝑛−1 is an equivalence. Consider the following diagram:

G𝑛×G0 𝑋 𝑋𝑛+1

G𝑛−1×G0 𝑋 𝑋𝑛

G1×G0 𝑋 𝑋2

𝑋 𝑋

shear𝑛−1
≃

shear𝑛

shear1
≃

shear0

Since the left and right squares are pullback squares, it follows that shear𝑛 is an equivalence
as well, finishing the proof. □

Principal bundles

Given a groupoid object G in B and an object 𝐵 ∈ B, we obtain a notion of principal
G-bundles over 𝐵 by applying the above definition of regular actions to the slice topos B/𝐵.
Observe that G gives rise to a groupoid G × 𝐵 in the slice B/𝐵 by applying the pullback-
preserving functor 𝐵×− : B →B/𝐵. For every object 𝑋 ∈ B/𝐵, there is an equivalence

(G𝑛×𝐵) ×G0×𝐵 𝑋 ≃ G𝑛×G0 𝑋 ∈ B/𝐵,

and thus a (G × 𝐵)-action on 𝑋 is nothing but a G-action G ⋉ 𝑋 : Δop→ B of G on the
underlying object of 𝑋 together with a lift of G ⋉ 𝑋 along the forgetful functor B/𝐵→B.
For this reason, we will refer to a (G ×𝐵)-action in the slice B/𝐵 simply as a G-action over
𝐵.

Definition E.24 (Principal bundles, cf. [SS21, Definition 3.2.79]). Consider an object 𝐵 ∈ B
and let G ∈ Grpd(B) be a groupoid in B.

(1) Let 𝑝 : 𝑃→ 𝐵 be an object of B/𝐵 equipped with a G-action over 𝐵. We say that the
map 𝑝 is a formally principal G-bundle over 𝐵 if this action corresponds to a regular
(G ×𝐵)-action in the slice B/𝐵:

G1×G0 𝑃 𝑃×𝐵 𝑃 .∼
shear1

(2) A formally principal B-bundle 𝑝 : 𝑃→ 𝐵 is called a principal G-bundle if it is an
effective epimorphism.
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(3) We write
PrnBdlG (B)𝐵 ↩−−→ ActG (B/𝐵)

for the full subcategory of principal G-bundles over 𝐵.

Remark E.25. One observes that for a morphism 𝑓 : 𝐵′→ 𝐵 in B, the pullback functor
𝑓 ∗ : B/𝐵→B/𝐵′ sends principal G-bundles to principal G-bundles.

We end this section with a classification of principalG-bundles over 𝐵 in terms of morphisms
𝐵→ BG in B.

Lemma E.26. Let 𝑝 : 𝑃 ↠ 𝐵 be an effective epimorphism in B which comes equipped
with a G-action over 𝐵. Let 𝑃//G ∈ B/𝐵 denote the quotient of the G-action. Then the
map 𝑝 : 𝑃→ 𝐵 is a principal G-bundle if and only if the canonical map 𝑃//G → 𝐵 is an
equivalence.

Proof. This is an instance of Lemma E.23. □

It follows from Lemma E.26 that the forgetful functor from principal G-bundles over 𝐵 to
G-actions in B lands in the fiber over 𝐵 ∈ B of the quotient functor −//G : ActG (B) → B.

Proposition E.27. The functor

PrnBdlG (B)𝐵→ ActG (B) ×B {𝐵}

is an equivalence of∞-categories.

Proof. We will construct an explicit inverse of this functor. Consider a G-action G ⋉ 𝑃
in B equipped with an equivalence 𝐵 ≃ 𝑃//G. The cocone (Δop)⊲ → B which exhibits
𝐵 ≃ 𝑃//G as a colimit of G ⋉𝑃 then adjoints over to provide a lift of the simplicial object
G ⋉ 𝑃 : Δop→ B along the forgetful functor B/𝐵→ B; we will abuse notation and again
denote this lift by G ⋉ 𝑃. By adjunction, this lift comes equipped with a groupoid map
to G × 𝐵, and since the forgetful functor B/𝐵 → 𝐵 preserves pullbacks this is a cartesian
morphism of groupoids, thus defining a (G × 𝐵)-action in G/𝐵. This construction thus
defines a functor

ActG (B) ×B {𝐵} → ActG (B/𝐵).

It follows directly from Lemma E.26 that this functor factors through the subcategory
PrnBdlG (B)𝐵 of principal G-bundles over 𝐵. It is clear that the two functors we have
constructed are inverse to each other, finishing the proof. □
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Theorem E.28 (Classification of principal G-bundles, cf. [SS21, Theorem 3.2.82]). Given
a groupoid objectG ∈Grpd(B) and an object 𝐵 ∈ B, there is an equivalence of∞-categories

HomB (𝐵,BG) ∼−−→ PrnBdlG (B)𝐵,

given on objects by sending a morphism 𝑐 : 𝐵→ BG to the principal G-bundle 𝑃→ 𝐵

defined by the pullback square
𝑃 G0

𝐵 BG.𝑐

Proof. Recall from Proposition E.20 the equivalence −//G : ActG (B) ∼−−→ B/BG , which
induces an equivalence on fibers over B:

ActG (B) ×B {𝐵} ≃ B/BG ×B {𝐵} ≃ HomB (𝐵,BG).

Its inverse sends a morphism 𝑐 : 𝐵→ BG to the base change 𝑃 = 𝐵×BG G0↠ 𝐵 along 𝑐 of
the map G0↠BG. Combining this equivalence with the equivalence from Proposition E.27
then finishes the proof. □

Corollary E.29. For every groupoid object G in B and every object 𝐵 ∈ B, the∞-category
PrnBdlG (B)𝐵 is an∞-groupoid. □

E.4 Sheaf topoi

We recall the definition of a Grothendieck topology 𝜏 on an∞-category C and the definition
of the associated∞-topos Shv𝜏 (C) of 𝜏-sheaves on C.

Definition E.30 (Sieve, [Lur09, Definition 6.2.2.1]). Let C be an ∞-category. A sieve on
C is a full subcategory C (0) ⊆ C having the property that if 𝑓 : 𝑋→ 𝑌 is a morphism in C
and 𝑌 belongs to C (0) , then 𝑋 also belongs to C (0) . If 𝑋 ∈ C is an object, then a sieve on 𝑋
is a sieve on the ∞-category C/𝑋 . Given a morphism 𝑓 : 𝑋→ 𝑌 and a sieve C (0)/𝑌 on 𝑌 , we

let 𝑓 ∗C (0)/𝑌 ⊆ C/𝑋 denote subcategory spanned by those morphisms (𝑔 : 𝑍→ 𝑋) ∈ C/𝑋 such

that 𝑓 ◦𝑔 ∈ C (0)/𝑌 .

Remark E.31. By [Lur09, Lemma 6.2.2.5], the data of a sieve C(0) on C is equivalenc to
the data of a subterminal object 𝑅 of PSh(C): C (0) defines the presheaf

𝑅(𝑋) =


pt 𝑋 ∈ C (0) ,

∅ otherwise.
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Because of the equivalence PSh(C/𝑋) ≃ PSh(C)/𝑦(𝑋) , it follows that the data of a sieve
on 𝑋 is the same as the data of a monomorphism 𝑅 ↩→ 𝑦(𝑋) of presheaves on C, where
𝑦(𝑋) := HomC (−, 𝑋) : Cop→ Spc is the presheaf represented by 𝑋 .

Definition E.32 (Grothendieck topology, [Lur09, Definition 6.2.2.1]). Let C be an ∞-
category. A Grothendieck topology on C consists of a specification, for each object 𝑋 of C,
of a collection of sieves on C which we will refer to as covering sieves. The collections of
covering sieves are required to satisfy the following properties:

(1) For every object 𝑋 of C, the sieve C/𝑋 ⊆ C/𝑋 on 𝑋 is a covering sieve;

(2) For every morphism 𝑓 : 𝑋 → 𝑌 in C and every covering sieve C (0)/𝑌 on 𝑌 , the sieve

𝑓 ∗C (0)/𝑌 is a covering sieve on 𝑋;

(3) Let 𝑋 be an object of C, C (0)/𝑋 a covering sieve on 𝑋 , and C (1)/𝑋 an arbitrary sieve on 𝑋 .

Suppose that, for every morphism 𝑓 : 𝑌 → 𝑋 belonging to the sieve C (0)/𝑋 , the pullback

sieve 𝑓 ∗C (1)/𝑋 is a covering sieve on 𝑌 . Then C (1)/𝑋 is a covering sieve on 𝑋 .

A site is an∞-category C equipped with a Grothendieck topology.

Definition E.33 (Sheaf category, [Lur09, Definition 6.2.2.6]). Let C be an ∞-category
equipped with a Grothendieck topology 𝜏 and let 𝑆 denote the collections of monomorphisms
{𝑅 ↩→ 𝑦(𝑋)} which corresponds to covering sieves on 𝑋 . An object F ∈ PSh(C) is called
a 𝜏-sheaf, or simply a sheaf if 𝜏 is clear from context, if it is 𝑆-local: for every covering
sieve 𝑅 ↩→ 𝑦(𝑋), the induced map of spaces

F (𝑋) = HomPSh(C) (𝑦(𝑋),F ) → HomPSh(C) (𝑅,F )

is an equivalence. We let Shv𝜏 (C) ⊆ PSh(C) denote the full subcategory of sheaves with
respect to 𝜏.

Proposition E.34 ([Lur09, Proposition 6.2.2.7]). The inclusion Shv𝜏 (C) ⊆ PSh(C) admits
a left exact accessible left adjoint 𝐿𝜏 : PSh(C) → Shv𝜏 (C). In particular, Shv𝜏 (C) is an
∞-topos. □

The functor 𝐿𝜏 is known as the sheafification functor.

An equivalent description of the∞-category Shv𝜏 (C) is in terms of Čech descent.

Definition E.35 (Čech descent). Let C be an ∞-category and let U = {𝑈𝑖 → 𝑋}𝑖∈𝐼 be a
collection of morphisms. We will denote by �̌� (U) the Čech nerve of the morphism⊔

𝑖∈𝐼
𝑦(𝑈𝑖) → 𝑦(𝑋)
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in PSh(C). A presheaf F ∈ PSh(C) is said to satisfy Čech descent with respect toU if the
map

F (𝑋) = HomPSh(C) (𝑦(𝑋),F ) → lim[𝑛]∈Δop HomPSh(C) (�̌� (U)𝑛,F )

is an equivalence. More concretely, F satisfies Čech descent with respect to U if the
diagram

F (𝑋) ∏
𝑖∈𝐼 F (𝑈𝑖)

∏
𝑖, 𝑗∈𝐼 F (𝑈𝑖 ×𝑋𝑈 𝑗 ) . . .

is a limit diagram.

Proposition E.36 (cf. [Lur09, Lemma 6.2.3.18]). Let U = {𝑈𝑖→ 𝑋}𝑖∈𝐼 be a collection of
morphisms in an∞-category C and let 𝑅 ↩→ 𝑋 be the covering sieve generated byU. Then
a presheaf F on C satisfies Čech descent with respect to U if and only if it is local with
respect to 𝑅 ↩→ 𝑋 .

Proof. The morphism
⊔
𝑖∈𝐼 𝑦(𝑈𝑖) → 𝑦(𝑋) factors as an effective epimorphism followed by

a monomorphism: ⊔
𝑖∈𝐼
𝑦(𝑈𝑖)↠ 𝑅 ↩→ 𝑦(𝑋).

By [Lur09, Lemma 6.2.3.18], the map 𝑅 ↩→ 𝑦(𝑋) is precisely the monomorphism corre-
sponding to the covering sheaf generated byU. It follows that 𝑅 is equivalent to the colimit
of the Čech nerve �̌� (U) ofU, and we obtain for every F ∈ PSh(C) an equivalence

HomPSh(C) (𝑅,F ) ≃HomPSh(C) (colim[𝑛]∈Δ �̌� (U)𝑛,F ) ≃ lim[𝑛]∈Δop HomPSh(C) (�̌� (U)𝑛,F ).

As this map is compatible with the map from F (𝑋), the claim follows. □

The effective epimorphisms in a sheaf topos Shv𝜏 (C) can be characterized as those mor-
phisms which admit local sections, in the following sense:

Definition E.37. Let C be an ∞-category equipped with a Grothendieck topology 𝜏. Let
𝑓 : 𝑋 → 𝑌 be a morphism in Shv𝜏 (C) and assume that 𝑌 = 𝑦(𝐶) lies in the image of the
sheafified Yoneda functor 𝑦 : C → Shv𝜏 (C). We say that 𝑓 admits local sections if there
exists a covering family {𝑈𝑖→𝐶}𝑖∈𝐼 of𝐶 such that the base change 𝑓 ′ : 𝑋×𝑌 𝑦(𝑈𝑖) → 𝑦(𝑈𝑖)
of 𝑓 along the map 𝑦(𝑈𝑖) → 𝑌 admits a section for every 𝑖 ∈ 𝐼.
If 𝑓 : 𝑋→𝑌 is an arbitrary morphism in Shv𝜏 (C), we say that 𝑓 admits local sections if its
base change along any map 𝑦(𝐶) → 𝑌 from a representable admits local sections.

Lemma E.38. A morphism 𝑓 : 𝑋 → 𝑌 in Shv𝜏 (C) is an effective epimorphism if and only
if it admits local sections.
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Proof. By [Lur09, Proposition 6.2.3.15], a morphism 𝑓 : 𝑋→𝑌 is an effective epimorphism
if and only if its base change along any map 𝑦(𝐶) → 𝑌 is an effective epimorphism. We
may thus assume that 𝑌 = 𝑦(𝐶) is a representable object.

Consider the sieve C ( 𝑓 )/𝐶 ⊆ C/𝐶 on 𝐶 generated by the map 𝑓 : 𝑋→ 𝐶:

C ( 𝑓 )/𝐶 := {𝑔 : 𝐶′→ 𝐶 | 𝑦(𝑔) : 𝑦(𝐶′) → 𝑦(𝐶) factors through 𝑓 : 𝑋→ 𝑦(𝐶)}.

Notice that a morphism 𝑔 : 𝐶′ → 𝐶 factors through 𝑓 if and only if the base change
𝑦(𝐶′) ×𝑦(𝐶) 𝑋 → 𝑦(𝐶′) admits a section. Hence we have to prove that 𝑓 is an effective
epimorphism if and only if C ( 𝑓 )/𝐶 contains an covering family of 𝐶, i.e., if C ( 𝑓 )/𝐶 is a covering
sieve. Under the equivalence of sieves over 𝐶 and monomorphisms 𝑍 ↩→ 𝑦(𝐶) from
Remark E.31, the sieve C ( 𝑓 )/𝐶 corresponds to a monomorphism 𝜏≤−1( 𝑓 ) ↩→ 𝑦(𝐶) which by
(a slight generalization of) [Lur09, Lemma 6.2.3.18] is equivalent to the (−1)-truncation of
𝑓 inside the slice PSh(C)/𝐶 . By [Lur09, Lemma 6.2.2.16] the sieve C ( 𝑓 )/𝐶 is a covering sieve
if and only if the sheafification of this map 𝜏≤−1( 𝑓 ) ↩→𝐶 is an equivalence in Shv𝜏 (C). By
[Lur09, Proposition 6.2.3.4], the (−1)-truncation 𝜏≤−1( 𝑓 ) of 𝑓 is computed by the colimit
of its Čech nerve inside PSh(C). Since colimits in Shv𝜏 (C) are computed by sheafifying
the colimit in PSh(C), it follows that C ( 𝑓 )/𝐶 is a covering sieve if and only if the colimit of the
Čech nerve �̌� ( 𝑓 ) inside Shv𝜏 (C) is equivalent to 𝑐, which is by definition what it means
for 𝑓 : 𝑋→ 𝑦(𝐶) to be an effective epimorphism. This finishes the proof. □

Morphisms of sites

We discuss continuous and cocontinuous functors between Grothendieck sites.

Definition E.39 (Continuous functor between sites). Let (C, 𝜏) and (D, 𝜏′) be∞-categories
equipped with Grothendieck topologies. A functor 𝑢 : C → D is called continuous if the
functor PSh(D) → PSh(C) given by precomposition with 𝑢 restricts to a functor

𝑢∗ : Shv𝜏′ (D) → Shv𝜏 (C),

i.e., sends 𝜏′-sheaves on D to 𝜏-sheaves on C. In this case, 𝑢∗ admits a left adjoint

𝑢∗ : Shv𝜏 (C) → Shv𝜏′ (D)

given by the composite Shv𝜏 (C) ↩→ PSh(C) LKE𝑢−−−−→ PSh(D)
𝐿𝜏′−−→ Shv𝜏′ (D), where LKE𝑢

denotes left Kan extension along 𝑢.

Remark E.40. Assume that C andD admit pullbacks and that 𝑢 preserves pullbacks. Then
𝑢 : C →D is continuous if and only if 𝑢 sends 𝜏-covering sieves to 𝜏′-covering sieves.

282



Definition E.41 (Morphism of sites). Let (C, 𝜏) and (D, 𝜏′) be∞-categories equipped with
Grothendieck topologies. A functor 𝑢 : C →D is called a morphism of sitesD→C if it is
a continuous functor and the pullback functor

𝑢∗ : Shv𝜏 (C) → Shv𝜏′ (D)

preserves finite limits. In other words, the functor 𝑢∗ : Shv𝜏′ (D) → Shv𝜏 (C) is a geometric
morphism of∞-topoi.

Example E.42. Let 𝑢 : C → D be a continuous functor and assume that 𝑢 admits a left
adjoint 𝑢′ : D → C. Then the functor LKE𝑢 : PSh(C) → PSh(D) given by left Kan
extension along 𝑢 is equivalent to the restriction functor along 𝑢′. In particular, the functor
𝑢∗ is a composite of three left exact functors and thus is itself left exact. It follows that 𝑢 is
a morphism of sites.

Definition E.43 (Cocontinuous functor between sites). Let (C, 𝜏) and (D, 𝜏′) be ∞-
categories equipped with Grothendieck topologies. A functor 𝑣 : C → D is called cocon-
tinuous if for every object 𝑋 ∈ C and every covering sieve D (0)/𝑣(𝑋) ⊆ D/𝑣(𝑋) on 𝑣(𝑋) ∈ D,
the pullback sieve

𝑣∗D (0)/𝑋 := {(𝜓 : 𝑌 → 𝑋) ∈ C/𝑋 | (𝑣(𝜓) : 𝑣(𝑌 ) → 𝑣(𝑋)) ∈ D (0)/𝑣(𝑋)} ⊆ C/𝑋

is a covering sieve on 𝑋 .

Lemma E.44. Let 𝑣 : (C, 𝜏) → (D, 𝜏′) be a functor between sites. Then 𝑣 is cocontinuous
if and only if the right Kan extension functor PSh(C) → PSh(D) restricts to a functor

𝑣∗ : Shv𝜏 (C) → Shv𝜏′ (D),

i.e., sends 𝜏-sheaves on C to 𝜏′-sheaves onD. In this case, 𝑣∗ admits a left exact left adjoint
𝑣∗, so that 𝑣∗ is a geometric morphism of∞-topoi.

Proof. The right Kan extension functor sends 𝜏-sheaves on C to 𝜏′-sheaves on D if and
only if the composite

PSh(D) −◦𝑣−−−→ PSh(C) 𝐿𝜏−−→ Shv𝜏 (C)

sends every covering sieve 𝑅 ↩→ 𝑦(𝑋) to an equivalence. Since this composite preserves
finite limits, it preserves monomorphisms, and thus the image of 𝑅 ↩→ 𝑦(𝑋) is again a
monomorphism. It follows that the map 𝑅 ↩→ 𝑦(𝑋) is sent to an equivalence in Shv𝜏 (C) if
and only if it is sent to an effective epimorphism. By Lemma E.38, this is in turn equivalent
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to the statement that this map admits local sections. Spelling out the definition, this is
precisely the condition that 𝑓 is cocontinuous.

The last statement holds because the left adjoint 𝑣∗ of 𝑣∗ is given by the composite

Shv𝜏′ (D) ↩→ PSh(D) −◦𝑣−−−→ PSh(C) 𝐿𝜏−−→ Shv𝜏 (C),

and each of these three functors is left-exact. □

Corollary E.45. Let 𝑣 : (C, 𝜏) → (D, 𝜏′) be a cocontinuous functor between sites. Then
the following diagram commutes:

PSh(D) PSh(C)

Shv𝜏′ (D) Shv𝜏 (C).

−◦𝑣

𝐿𝜏′ 𝐿𝜏

𝑣∗

Proof. This diagram is obtained by passing to left adjoints from the fact that right Kan
extension along 𝑣 preserves sheaves by Lemma E.44. □

Warning E.46. Let 𝑢 : (C, 𝜏) ↩→ (D, 𝜏′) is a functor between sites which is both continuous
and cocontinuous, then the notation 𝑢∗ is overloaded: it could both stand for restriction along
𝑢 as well as for right Kan extension along 𝑢. In such cases, we will explicitly state what the
intended meaning of 𝑢∗ is.

Corollary E.47. Let 𝑣 : (C, 𝜏) ↩→ (D, 𝜏′) be a functor between sites. Assume that 𝑣 is fully
faithful and cocontinuous. Then the geometric morphism

𝑣∗ : Shv𝜏 (C) ↩→ Shv𝜏′ (D)

of Lemma E.44 is fully faithful.

Proof. This is immediate from the fact that the right Kan extension functor along a fully
faithful functor is again fully faithful. □

Corollary E.48. Let 𝑣 : (C, 𝜏) ↩→ (D, 𝜏′) be a functor between sites and assume that 𝑣
admits a right adjoint 𝑢 : D→ C. Then 𝑣 is cocontinuous if and only if 𝑢 is a morphism of
sites. In this case, we have 𝑣∗ ≃ 𝑢∗ and 𝑣∗ ≃ 𝑢∗.

Proof. Observe that right Kan extension along 𝑣 is equivalent to restriction along 𝑢, and thus
the former preserves sheaves if and only if the latter does. This shows that 𝑣 is cocontinuous
if and only if 𝑢 is continuous, and that in this case we have 𝑣∗ = 𝑢∗ and thus 𝑣∗ = 𝑢∗. It
follows from Example E.42 that 𝑢 is continuous if and only if it is a morphism of sites. This
finishes the proof. □
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E.5 Hypercompleteness

We discuss the notion of hypercomplete∞-topoi. Throughout, we work in a fixed∞-topos
B.

Definition E.49 (𝑛-truncated morphisms). A morphism 𝑓 : 𝑋 → 𝑌 in B is called (−2)-
truncated if it is an equivalence. It is called 𝑛-truncated, for 𝑛 ≥ −1, if its diagonal
Δ 𝑓 : 𝑋→ 𝑋 ×𝑌 𝑋 is (𝑛−1)-truncated. An object 𝑋 of B is 𝑛-truncated if the map 𝑋→ pt
to the terminal object is 𝑛-truncated.

Definition E.50 (𝑛-connective morphisms, cf. [Lur09, Proposition 6.5.1.18]). A morphism
𝑓 : 𝑋→𝑌 is called 0-connective if it is an effective epimorphism. It is called 𝑛-connective,
for 𝑛 ≥ 1, if it is an effective epimorphism and its diagonal Δ 𝑓 : 𝑋 → 𝑋 ×𝑌 𝑋 is (𝑛− 1)-
connective.

Remark E.51. Let𝜓∗ : B→B′ be a geometric morphism of∞-topoi. Then both the functor
𝜓∗ as well as its left adjoint 𝜓∗ are left-exact and thus preserve 𝑛-truncated morphisms
for every 𝑛. The left adjoint 𝜓∗ further preserves effective epimorphisms by [Lur09,
Remark 6.2.3.6], and thus also preserves 𝑛-connected morphisms for every 𝑛.

Definition E.52 (Hypercomplete∞-topoi, [Lur09, Section 6.5.2]). A morphism 𝑓 : 𝑋→𝑌

in an ∞-topos B is called ∞-connected if it is 𝑛-connective for every 𝑛 ≥ 0. The ∞-topos
B is called hypercomplete if every∞-connected morphism in B is an equivalence.

Example E.53 ([Lur09, Theorem 7.2.3.6, Corollary 7.2.1.12]). Let 𝑋 be a paracompact
topological space of covering dimension ≤ 𝑛. Then the ∞-topos Shv(𝑋) of sheaves on 𝑋
is hypercomplete.

Example E.54. Let 𝑀 be a smooth manifold. Then 𝑀 has finite covering dimension, and
thus by the previous example the∞-topos Shv(𝑀) of sheaves on 𝑀 is hypercomplete.

Hypercovers

Given an effective epimorphism 𝑓 : 𝑋 ↠ 𝑌 in an∞-topos B, we may think of 𝑋 as a cover
of 𝑌 . The Čech nerve �̌� ( 𝑓 ) 𝑓 encodes all the iterated self-intersections 𝑋×𝑛𝑌 of 𝑋 over
𝑌 , and since 𝑓 is an effective epimorphism this expresses 𝑌 as a colimit of these iterated
self-intersections.

In certain situations, it is convenient to work with a more general notion of cover, known
as a hypercover. A hypercover of 𝑌 also comes with an effective epimorphism 𝑋 ↠ 𝑌 , but
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rather than simply using the iterated self-intersections 𝑋×𝑛𝑌 one is allowed to further refine
this: there is some object 𝑋1 covering the intersection 𝑋 ×𝑌 𝑋 , some object 𝑋2 covering the
double intersections of 𝑋1 and 𝑋 , and so forth. The colimit of a hypercover of 𝑌 admits
a map to 𝑌 which one can show is always ∞-connected. In particular, if the ∞-topos is
hypercomplete then the hypercover expresses 𝑌 as a colimit of the objects 𝑋𝑖. We will now
recall the precise definitions and statements.

Notation E.55. For each natural number 𝑛 ≥ 0, let Δ≤𝑛 denote the full subcategory of Δ
spanned by the set of objects {[0], [1], . . . , [𝑛]}. If C is a presentable ∞-category, the
restriction functor

sk𝑛 : Fun(Δop,C) → Fun((Δ≤𝑛)op,C)

admits a right adjoint given by right Kan extension along the inclusion functor (Δ≤𝑛)op ↩→
Δop. We let

cosk𝑛 : Fun(Δop,C) → Fun(Δop,C)

denote the composition of sk𝑛 with its right adjoint and refer to cosk𝑛 as the 𝑛-coskeleton
functor.

Definition E.56 (Hypercover, [Lur09, Definition 6.5.3.2]). Let B be an ∞-topos. A sim-
plicial object 𝑈• ∈ Fun(Δop,B) is called a hypercover of B if, for each 𝑛 ≥ 0, the unit
map

𝑈𝑛→ (cosk𝑛−1𝑈•)𝑛

is an effective epimorphism. We will say that𝑈• is an effective hypercover ofB if the colimit
of 𝑈• is a terminal object of B. For an object 𝐵 ∈ B, a hypercover of 𝐵 is a hypercover of
the slice topos B/𝐵.

For 𝑛 = 0, the map𝑈𝑛→ (cosk𝑛−1𝑈•)𝑛 is simply the map𝑈0→ 1B to the terminal object of
B. For 𝑛 = 1, it is the map (𝑑1, 𝑑0) : 𝑈1→𝑈0×𝑈0. For general 𝑛, the object (cosk𝑛−1𝑈•)𝑛
is known as the 𝑛-th matching object.

As mentioned above, one can show that every hypercover is effective in a hypercomplete
∞-topos. In fact, this property completely characterizes the hypercomplete∞-topoi:

Theorem E.57 ([Lur09, Theorem 6.5.3.12]). Let B be an ∞-topos. Then the following
conditions are equivalent:

(1) The∞-topos B is hypercomplete;

(2) For every object 𝐵 ∈ B, every hypercover𝑈• of 𝐵 is effective. □
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Complete covers

An important example of a family of hypercovers comes from the notion of a complete
cover of a topological space. We follow the discussion of [DI04, Subsection 4.4].

Definition E.58 ([DI04, Definition 4.5]). Let 𝑋 be a topological space and letU = {𝑈𝑖}𝑖∈𝐼
be an open cover of 𝑋 . We say that U is a complete cover if for every finite collection
𝜎 = {𝑖1, . . . , 𝑖𝑛} of indices, the intersection

𝑈𝜎 :=𝑈𝑖1 ∩ · · · ∩𝑈𝑖𝑛

is covered by elements of U. It is called a Čech cover if each of the intersections 𝑈𝜎 is
again inU.

In what follows, we identify an open cover of 𝑋 with the associated subposet of the poset
Open(𝑋) of open subsets of 𝑋 .

Construction E.59 (Dugger-Isaksen). Given a coverU of a topological space 𝑋 , we define
a simplicial topological space Ω(U)•. For any 𝑛 ≥ 0, let 𝑃𝑛 denote the poset of nonempty
subsets of {0, . . . , 𝑛} and inclusions. The assignment [𝑛] ↦→ 𝑃𝑛 defines a cosimplicial poset
in the obvious way. We then define Ω(U)• to be the simplicial topological space

[𝑛] ↦→
⊔

𝐹 : 𝑃op
𝑛 →U

𝐹 ({0, . . . , 𝑛}),

where the coproduct runs over all maps of posets 𝐹 : 𝑃op
𝑛 →U. The face and degeneracy

maps are induced by those in 𝑃• in the expected way.

To illustrate the definition, observe that a point in Ω(U)3 is given by the following data:

(1) A sequence of open subsets𝑈0, . . . ,𝑈3 of 𝑋 which are inU;

(2) Six open subsets𝑈01,𝑈02, . . . ,𝑈23 inU such that𝑈𝑖 𝑗 ⊆ 𝑈𝑖 ∩𝑈 𝑗 for all 𝑖 < 𝑗 ;

(3) Four open subsets𝑈012, . . . ,𝑈123 inU such that𝑈𝑖 𝑗 𝑘 ⊆𝑈𝑖 𝑗 ∩𝑈 𝑗 𝑘 ∩𝑈𝑖𝑘 for all 𝑖 < 𝑗 < 𝑘;

(4) An open subset𝑈0123 inU which is contained in all the𝑈𝑖 𝑗 𝑘 ;

(5) A point in𝑈0123.

It is usually helpful to think of these open sets as indexed by the faces of a 3-simplex.

Proposition E.60 ([DI04, Proposition 4.6]). Let U be a complete cover of a topological
space 𝑋 . Then the simplicial topological space Ω(U)• is a hypercover of 𝑋 , in the sense
that for every 𝑛 ≥ 0 the matching morphism Ω(U)𝑛→ (cosk𝑛−1Ω(U)•)𝑛 is an open cover.
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F The calculus of mates

Throughout this thesis, we often make use of various kinds of ‘exchange maps’, also known
as ‘Beck-Chevalley maps’ or ‘mate transformations’. In this appendix, we clarify some of
the terminology and prove some of the basic properties of these exchange maps. A standard
reference for the calculus of mates is [KS74, Section 2.2]. Some aspects of our treatment
are inspired by [CSY22, Section 2.2] and [CD19, Section 1.1]. We thank Tobias Lenz for
various useful conversations concerning the contents of this appendix.

F.1 Beck-Chevalley transformations

We recall the definition of Beck-Chevalley transformations.

Convention F.1. Units and counits of adjunctions are denoted by 𝑢 and 𝑐, respectively. We
will often use indices to indicate to which adjunction the units and counits belong, but will
sometimes drop the indices when the context is clear.

Definition F.2 (Beck-Chevalley transformation). Let 𝛼 : 𝐻𝐹⇒ 𝐹′𝐺 be a natural transfor-
mation of functors as displayed in the following diagram:

C D

C′ D′.

𝐹

𝐺 𝐻𝛼

𝐹′

(1) If the functors 𝐹 and 𝐹′ have left adjoints 𝐹♯ : D→C and 𝐹′
♯
: D′→C′, we define the

left Beck-Chevalley transformation BC♯ : 𝐹′
♯
𝐻⇒ 𝐺𝐹♯ as the composite

BC♯ (𝛼) : 𝐹′♯𝐻
𝑢𝐹
==⇒ 𝐹′

♯
𝐻𝐹𝐹♯

𝛼
=⇒ 𝐹′

♯
𝐹′𝐺𝐹♯

𝑐𝐹′
===⇒ 𝐺𝐹♯.

(2) If the functors 𝐺 and 𝐻 have right adjoints 𝐺∗ : C′→ C and 𝐻∗ : D′→D, we define
the right Beck-Chevalley transformation BC∗ : 𝐹𝐺∗⇒ 𝐻∗𝐹′ as the composite

BC∗(𝛼) : 𝐹𝐺∗
𝑢𝐻
===⇒ 𝐻∗𝐻𝐹𝐺∗

𝛼
=⇒ 𝐻∗𝐹

′𝐺𝐺∗
𝑐𝐺
==⇒ 𝐻∗𝐹

′.
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Diagrammatically, the two Beck-Chevalley transformations may be displayed as follows:

BC♯ (𝛼) =

D

C D

C′ D′

C′

𝐹♯

𝐹

𝐺 𝐻

𝐹′

𝐹′
♯

𝛼

𝑢

𝑐

and BC∗(𝛼) =
C′ C D

C′ D′ D .

𝐹

𝐺 𝐻

𝐹′

𝛼

𝐺∗

𝐻∗

𝑐 𝑢

We will often employ these diagrammatic ways of displaying Beck-Chevalley transforma-
tions in proofs, as it is often easier to parse than the more symbolic way of writing these
transformations.

Warning F.3. The notation of Definition F.2 is somewhat abusive: if 𝐺 and 𝐻 have
left adjoints 𝐺♯ and 𝐻♯ we may flip the diagram and obtain another transformation
BC♯ (𝛼) : 𝐻♯𝐹′⇒ 𝐹𝐺♯. Analogously if 𝐹 and 𝐹′ have right adjoints 𝐹∗ and 𝐹′∗ one obtains
a transformation BC∗(𝛼) : 𝐺𝐹∗⇒ 𝐹′∗𝐻. It will always be clear from the source and target
of the maps BC♯ (𝛼) and BC∗(𝛼) which version we mean to use.

Lemma F.4. The assignment 𝛼 ↦→ BC♯ (𝛼) defines an equivalence of spaces

BC♯ : Nat(𝐻𝐹,𝐹′𝐺) ∼−−→ Nat(𝐹′
♯
𝐻,𝐺𝐹♯),

whose inverse is given by BC∗ : Nat(𝐹′
♯
𝐻,𝐺𝐹♯) → Nat(𝐻𝐹,𝐹′𝐺).

Proof. It follows directly from the triangle identities that one may recover 𝛼 from BC♯ (𝛼)
by forming the right Beck-Chevalley transformation:

BC∗(BC♯ (𝛼)) =

C D

C D

C′ D′

C′ D′

𝐹♯

𝐹

𝐺 𝐻

𝐹′

𝐹′
♯

𝛼

𝐹

𝐹′

𝑢

𝑐

𝑐

𝑢

≃
C D

C′ D′.

𝐹

𝐺 𝐻𝛼

𝐹′

= 𝛼.

One may similarly prove that BC♯ (BC∗(𝛽)) ≃ 𝛽 for a transformation 𝛽 : 𝐹′
♯
𝐻⇒ 𝐺𝐹♯. □

Lemma F.5. Consider the situation of Definition F.2.
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(1) If the functors 𝐹 and 𝐹′ have left adjoints 𝐹♯ : D → C and 𝐹′
♯
: D′→ C′, then the

following diagrams commute:

𝐹′
♯
𝐻𝐹 𝐹′

♯
𝐹′𝐺

𝐺𝐹♯𝐹 𝐺

BC♯ (𝛼)
𝑐𝐹

𝑐𝐹′

𝛼

and

𝐻 𝐹′𝐹′
♯
𝐻

𝐻𝐹𝐹♯ 𝐹′𝐺𝐹♯.

BC♯ (𝛼)

𝛼

𝑢𝐹′

𝑢𝐹

(2) If the functors 𝐺 and 𝐻 have right adjoints 𝐺∗ : C′→ C and 𝐻∗ : D′→D, then the
following diagrams commute:

𝐻𝐹𝐺∗ 𝐹′𝐺𝐺∗

𝐻𝐻∗𝐹′ 𝐹′

BC∗ (𝛼)
𝑐𝐻

𝑐𝐺

𝛼

and
𝐹 𝐹𝐺∗𝐺

𝐻∗𝐻𝐹 𝐻∗𝐹′𝐺.

BC∗ (𝛼)
𝛼

𝑢𝐺

𝑢𝐻

Proof. Just like the proof of Lemma F.4, this follows directly from the triangle identities. □

Lemma F.6 (Pasting laws for Beck-Chevalley transformations). Consider natural transfor-
mations 𝛼, 𝛽 and 𝛾 as in the following diagram:

C D E

C′ D′ E′

C′ D′′.

𝐹

𝐺 𝐻

𝐸

𝛼 𝐾𝛽

𝐹′

𝐺′
𝐸 ′

𝐻′𝛾

𝐹′′

(1) If the functors 𝐹, 𝐹′, 𝐸 and 𝐸′ have left adjoints 𝐹♯, 𝐹′♯, 𝐸♯ and 𝐸′
♯
, then the composite

(𝐸′𝐹′)♯𝐾 ≃ 𝐹′♯𝐸
′
♯
𝐾

BC♯ (𝛽)−−−−−→ 𝐹′
♯
𝐻𝐸♯

BC♯ (𝛼)−−−−−→ 𝐺𝐹♯𝐸♯ ≃ 𝐺 (𝐸𝐹)♯

is homotopic to BC♯ (𝛼𝛽).

(2) If the functors 𝐺, 𝐻 and 𝐾 admit right adjoints 𝐺∗, 𝐻∗ and 𝐾∗, then the composite

𝐸𝐹𝐺∗
BC∗ (𝛽)−−−−−→ 𝐸𝐻∗𝐹

′ BC∗ (𝛼)−−−−−→ 𝐾∗𝐸
′𝐹′

is homotopic to BC∗(𝛼𝛽).

(3) If the functors 𝐹, 𝐹′ and 𝐹′′ have left adjoints 𝐹♯, 𝐹′♯ and 𝐹′′
♯

, then the composite

𝐹′′
♯
𝐻′𝐻

BC♯ (𝛾)−−−−−→ 𝐺′𝐹′
♯
𝐻

BC♯ (𝛼)−−−−−→ 𝐺′𝐺𝐹♯

is homotopic to BC♯ (𝛼𝛾).
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(4) If the functors 𝐺, 𝐺′, 𝐻 and 𝐻′ admit right adjoints 𝐺∗, 𝐺′∗, 𝐻∗ and 𝐻′∗, then the
composite

𝐹 (𝐺′𝐺)∗ = 𝐹𝐺∗𝐺′∗
BC∗ (𝛾)−−−−−→ 𝐻∗𝐹

′𝐺′∗
BC∗ (𝛼)−−−−−→ 𝐻∗𝐻

′
∗𝐹
′′ = (𝐻′𝐻)∗𝐹′′

is homotopic to the BC∗(𝛼𝛾).

Proof. This follows directly from the definitions and the triangle identities. □

Total mates

We may specialize the definition of Beck-Chevalley transformation to the case where some
of the functors are the identity. In this case, the resulting transformation is known as the
total mate:

Definition F.7 (Total mate transformation). Consider two functors 𝐿, 𝐿′ : C→D that admit
right adjoints 𝑅, 𝑅′ : D→ C.

(1) Given a transformation 𝛼 : 𝐿→ 𝐿′, we obtain a (right) total mate 𝛼 = BC∗(𝛼) : 𝑅′→ 𝑅;

(2) Given a transformation 𝛽 : 𝑅′→ 𝑅, we obtain a (left) total mate 𝛽 = BC♯ (𝛽) : 𝐿→ 𝐿′.

It follows from Lemma F.4 that 𝛼 ≃ 𝛽 if and only if 𝛽 ≃ 𝛼, in which case we will say that 𝛼
and 𝛽 are total mates of each other.

Lemma F.8 (Total mates of composites). Consider three functors 𝐿, 𝐿′, 𝐿′′ : C → D with
right adjoints 𝑅, 𝑅′ and 𝑅′′. Then for all transformations 𝛼 : 𝐿 → 𝐿′ and 𝛼′ : 𝐿 → 𝐿′′,
there is an equivalence

𝛼′ ◦𝛼 ≃ 𝛼′ ◦𝛼 ∈ Nat(𝑅′′, 𝑅).

Proof. This is a special case of Lemma F.6. □

Corollary F.9 (Total mates of inverses). Consider functors 𝐿, 𝐿′ : C→D with right adjoints
𝑅 and 𝑅′. Then a transformation 𝛼 : 𝐿→ 𝐿′ is an equivalence if and only if its total mate
𝛼 : 𝑅′→ 𝑅 is an equivalence. In this case, the inverse of 𝛼 : 𝑅′→ 𝑅 is the total mate of
𝛼−1 : 𝐿′→ 𝐿.

Proof. This is immediate from Lemma F.8. □
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F.2 Double Beck-Chevalley transformations

Given a transformation 𝛼 as in Definition F.2, if both BC♯ (𝛼) and BC∗(𝛼) are defined, then
these transformations are the total mates of each other. This will lead to the definition of a
double Beck-Chevalley transformation BC♯,∗, Definition F.12.

Lemma F.10. Consider again a natural transformation 𝛼 : 𝐻𝐹→ 𝐹′𝐺 as in Definition F.2,
and assume that the following conditions are satisfied:

(1) The functors 𝐹 and 𝐹′ have left adjoints 𝐹♯ : D→ C and 𝐹′
♯
: D′→C′;

(2) The functors 𝐺 and 𝐻 have right adjoints 𝐺∗ : C′→C and 𝐻∗ : D′→D.

Then the left Beck-Chevalley transformation BC♯ (𝛼) : 𝐹′♯𝐻 ⇒ 𝐺𝐹♯ is the total mate of
the right Beck-Chevalley transformation BC∗(𝛼) : 𝐹𝐺∗⇒ 𝐻∗𝐹′. In particular the former
transformation is an equivalence if and only if the latter is.

Proof. The total mate of BC♯ (𝛼) : 𝐹′♯𝐻⇒ 𝐺𝐹♯ is defined as the image of BC♯ (𝛼) under
the equivalence

BC∗ : Nat(𝐹′
♯
𝐻,𝐺𝐹♯) ∼−−→ Nat(𝐹𝐺∗, 𝐻∗𝐹′).

Since 𝐹′
♯
𝐻 and 𝐺𝐹♯ are composites of adjoints, this map factors as two equivalences

Nat(𝐹′
♯
𝐻,𝐺𝐹♯)

BC∗−−−→
≃

Nat(𝐻𝐹,𝐹′𝐺) BC∗−−−→
≃

Nat(𝐹𝐺∗, 𝐻∗𝐹′).

Since the first map sends BC♯ (𝛼) to 𝛼 by Lemma F.4, the claim follows. □

Lemma F.11 (Double Beck-Chevalley transformation). In the situation of Lemma F.10,
assume that the left Beck-Chevalley transformation BC♯ (𝛼) : 𝐹′♯𝐻⇒𝐺𝐹♯ is an equivalence,
or equivalently that its total mate BC∗(𝛼) : 𝐹𝐺∗ ⇒ 𝐻∗𝐹′ is an equivalence. Then the
following two transformations are homotopic:

BC∗(BC♯ (𝛼)−1) : 𝐹♯𝐻∗
𝑢𝐺
==⇒ 𝐺∗𝐺𝐹♯𝐻∗

BC♯ (𝛼)−1

========⇒ 𝐺∗𝐹
′
♯
𝐻𝐻∗

𝑐𝐻
==⇒ 𝐺∗𝐹

′
♯
;

BC♯ (BC∗(𝛼)−1) : 𝐹♯𝐻∗
𝑢𝐹′
===⇒ 𝐹♯𝐻∗𝐹

′𝐹′
♯

BC∗ (𝛼)−1

========⇒ 𝐹♯𝐹𝐺∗𝐹
′
♯

𝑐𝐹
==⇒ 𝐺∗𝐹

′
♯
.

Proof. By Lemma F.4, we may equivalently show that the image of BC∗(BC♯ (𝛼)−1) under
the equivalence

BC∗ : Nat(𝐹♯𝐻∗,𝐺∗𝐹′♯)
∼−−→ Nat(𝐻∗𝐹′, 𝐹𝐺∗)

is homotopic to BC∗(𝛼)−1 : 𝐻∗𝐹′⇒ 𝐹𝐺∗. Since this image is the total mate of BC♯ (𝛼)−1,
this follows from a combination of Lemma F.10 and Corollary F.9. □
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Definition F.12 (Double Beck-Chevalley transformation). We will write BC♯,∗(𝛼) : 𝐹♯𝐻∗→
𝐺∗𝐹′♯ for the transformation from Lemma F.11, and refer to it as the double Beck-Chevalley
transformation.

Lemma F.13 (Pasting laws for double Beck-Chevalley transformations). Consider natural
transformations 𝛼, 𝛽 and 𝛾 as in the following diagram:

C D E

C′ D′ E′

C′ D′′.

𝐹

𝐺 𝐻

𝐸

𝛼 𝐾𝛽

𝐹′

𝐺′
𝐸 ′

𝐻′𝛾

𝐹′′

Then the following diagrams commute whenever they are defined:

(𝐸𝐹)♯𝐾∗ 𝐹♯𝐸♯𝐾∗

𝐹♯𝐻∗𝐸
′
♯

𝐺∗(𝐸′𝐹′)♯ 𝐺∗𝐹♯𝐸
′
♯

BC♯,∗ (𝛼𝛽)

≃

BC♯,∗ (𝛽)

BC♯,∗ (𝛼)

≃

and

𝐹′′
♯
(𝐺′𝐺)∗ 𝐹′′

♯
𝐺∗𝐺′∗

𝐻∗𝐹′♯𝐺
′
∗

𝐹♯ (𝐻′𝐻)∗ 𝐹♯𝐻∗𝐻
′
∗.

BC♯,∗ (𝛼𝛾)

≃

BC♯,∗ (𝛾)

BC♯,∗ (𝛼)

≃

Proof. This follows from a double application of Lemma F.6. □

The following proposition describes an intricate interaction between the transformations
BC♯, BC∗ and BC♯,∗.

Proposition F.14. Consider twelve functors as displayed in the following (non-commutative)
cubical diagram:

C0 D0

C1 D1

C′0 D′0

C′1 D′1.

𝐻1

𝐹′1

𝐾 𝐿

𝐾 ′
𝐿′

𝐹′0

𝐺0

𝐻0

𝐹0

𝐹1

𝐺1
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Given are further six natural transformations on each of the six faces of the cube such that
the two total transformations are homotopic:

C0 D0 D1

C0 C1 D1

C′0 C′1 D′1.

𝐹0 𝐿

𝐾 𝐹1

𝐺0 𝐻1

𝐾 ′ 𝐹′1

𝐺1𝛾′ 𝛼1

𝛽

≃

C0 D0 D1

C′0 D′0 D′1

C′0 C′1 D′1

𝐹0 𝐿

𝐹′0 𝐿′

𝐾 ′ 𝐹′1

𝐺0 𝐻1𝛼0 𝛾𝐻0

𝛽′

Assume that the functors 𝐹0, 𝐹′0, 𝐹1 and 𝐹′1 have left adjoints and that 𝐺0, 𝐻0, 𝐺1 and 𝐻1

have right adjoints. Further assume that the transformations BC♯ (𝛼0) and BC♯ (𝛼1) are
equivalences, so that the double Beck-Chevalley transformations BC♯,∗(𝛼0) and BC♯,∗(𝛼1)
are defined. Then there exists a commutative diagram of natural transformations as follows:

𝐹1♯𝐻1∗𝐿
′ 𝐺1∗𝐹

′
1♯𝐿
′

𝐹1♯𝐿𝐻0∗ 𝐺1∗𝐾
′𝐹′0♯

𝐾𝐹0♯𝐻0∗ 𝐾𝐺0∗𝐹
′
0♯.

BC♯,∗ (𝛼1)

BC♯ (𝛽′)BC∗ (𝛾)

BC♯ (𝛽) BC♯,∗ (𝛼0)
BC∗ (𝛾′)

Proof. Applying the pasting law for the right Beck-Chevalley transformations BC∗ to the
two given diagrams of natural transformations, we obtain

C0 D0 D1

C0 C1 D1

C′0 C′1 D′1.

𝐹0 𝐿

𝐾 𝐹1

𝐺0∗ 𝐻1∗

𝐾 ′ 𝐹′1

𝐺1∗BC∗ (𝛾′) BC∗ (𝛼1)

𝛽

≃

C0 D0 D1

C′0 D′0 D′1

C′0 C′1 D′1

𝐹0 𝐿

𝐹′0 𝐿′

𝐾 ′ 𝐹′1

𝐺0∗ 𝐻1∗𝐻0∗BC∗ (𝛼0) BC∗ (𝛾)

𝛽′
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Reorganizing the diagrams somewhat, we get

D0 D1 D1

C0 C1 D′1

C′0 C′1 C′1.

𝐾

𝐹1

𝐺0∗

𝐾 ′

𝐺1∗BC∗ (𝛾′)

𝐹0

𝐿

𝐻1∗𝛽

𝐹′1

BC∗ (𝛼1) ≃

D0 D0 D1

C0 D′0 D′1

C′0 C′0 C′1

𝐿

𝐹′0

𝐿′

𝐻1∗𝐻0∗ BC∗ (𝛾)

𝛽′ 𝐹′1

𝐾 ′

𝐺0∗

𝐹0

BC∗ (𝛼0)

Since BC∗(𝛼0) and BC∗(𝛼1) are assumed to be invertible, we can bring them to the other
side to obtain

D0 D0 D1

D′0 C0 C1

C′0 C′0 C′1.

𝐾

𝐹1

𝐺0∗

𝐾 ′

𝐺1∗BC∗ (𝛾′)

𝐹0

𝐿

𝛽𝐻0∗

𝐹′0

BC∗ (𝛼0)−1 ≃

D0 D1 D1

D′0 D′1 C1

C′0 C′1 C′1

𝐿

𝐹′0

𝐿′

𝐻1∗𝐻0∗ BC∗ (𝛾)

𝛽′ 𝐹′1

𝐾 ′

𝐹1

𝐺1∗

BC∗ (𝛼1)−1

Again rewriting the diagrams somewhat and applying the pasting-law for the left Beck-
Chevalley transformations BC♯, we obtain the following equivalence:

D′0 D0 D1

C′0 C0 C1

C′0 C′1 C1,

𝐾

𝐹1♯

𝐾 ′

𝐹0♯

𝐿

𝐹′0♯

𝐻0∗

𝐺0∗

𝐺1∗

BC♯,∗ (𝛼0) BC♯ (𝛽)

BC∗ (𝛾′)

≃

D′0 D0 D1

D′0 D′1 D1

C′0 C′1 C1

𝐿

𝐹′0♯

𝐿′

𝐹′1♯

𝐾 ′

𝐹1♯

𝐺1∗

𝐻1∗

𝐻0∗

BC♯,∗ (𝛼1)BC♯ (𝛽′)

BC∗ (𝛾)

where we use that the transformation BC♯,∗(𝛼𝑖) is defined as BC♯ (BC∗(𝛼𝑖)−1) for 𝑖 ∈ {0,1}.
This produces the desired equivalence of natural transformations in the statement. □
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F.3 Projection formulas

We recall the definition of the projection formula map and record its interaction with
Beck-Chevalley transformations.

Definition F.15 (Projection formula). Let 𝐹∗ : C → D be a symmetric monoidal functor
between symmetric monoidal∞-categories.

(1) If 𝐹 admits a left adjoint 𝐹♯ : D→C, we say that 𝐹∗ satisfies the left projection formula
if for all objects 𝑋 ∈ D and 𝑌 ∈ C the exchange map

PF𝐹
♯

: 𝐹♯ (𝑋 ⊗ 𝐹∗𝑌 )
𝑢
♯

𝐹−−→ 𝐹♯ (𝐹∗𝐹♯𝑋 ⊗ 𝐹∗𝑌 ) ≃ 𝐹♯𝐹∗(𝐹♯𝑋 ⊗𝑌 )
𝑐
♯

𝐹−−→ 𝐹♯𝑋 ⊗𝑌

is an equivalence.

(2) If 𝐹 admits a right adjoint 𝐹∗ : D → C, we say that 𝐹∗ satisfies the left projection
formula if for all objects 𝑋 ∈ D and 𝑌 ∈ C the exchange map

PF𝐹∗ : 𝐹∗𝑋 ⊗𝑌
𝑢∗
𝐹−−→ 𝐹∗𝐹

∗(𝐹∗𝑋 ⊗𝑌 ) ≃ 𝐹∗(𝐹∗𝐹∗𝑋 ⊗ 𝐹∗𝑌 )
𝑐∗
𝐹−−→ 𝐹∗(𝑋 ⊗ 𝐹∗𝑌 )

is an equivalence.

Remark F.16. By symmetric monoidality of 𝐹∗ : C →D, we may consider the following
commutative diagram:

C D

C D .

−⊗C𝑌

𝐹∗

−⊗𝐹∗𝑌
𝐹∗

The map PF♯ is precisely the left Beck-Chevalley transformation BC♯ associated to this
diagram.

Lemma F.17. Let 𝐹 : C →D and 𝐺 : D→ E be symmetric monoidal functors.

(1) If 𝐹 and 𝐺 have left adjoints 𝐹♯ and 𝐺♯, then for all 𝑋 ∈ E and 𝑌 ∈ C, the composite
map

𝐺♯𝐹♯ (𝑋 ⊗ 𝐹∗𝐺∗𝑌 )
PF𝐹

♯−−−→ 𝐺♯ (𝐹♯𝑋 ⊗𝐺∗𝑌 )
PF𝐺

♯−−−→ 𝐺♯𝐹♯𝑋 ⊗𝑌

is homotopic to PF𝐺𝐹
♯

: (𝐺𝐹)♯ (𝑋 ⊗ (𝐺𝐹)∗𝑌 ) → (𝐺𝐹)♯𝑋 ⊗𝑌 .
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(2) If 𝐹 and 𝐺 have right adjoints 𝐹∗ and 𝐺∗, then for all 𝑋 ∈ E and 𝑌 ∈ C, the composite
map

𝐺∗𝐹∗𝑋 ⊗𝑌
PF𝐺
∗−−−→ 𝐺∗(𝐹∗𝑋 ⊗𝐺∗𝑌 )

PF𝐺
∗−−−→ 𝐺∗𝐹∗(𝑋 ⊗ 𝐹∗𝐺∗𝑌 )

is homotopic to PF𝐺𝐹∗ : (𝐺𝐹)∗𝑋 ⊗𝑌 → (𝐺𝐹)∗(𝑋 ⊗ (𝐺𝐹)∗𝑌 ).

Proof. By Remark F.16, this is a special case of Lemma F.6. □

Lemma F.18. Let 𝐹∗ : C →D be a symmetric monoidal functor.

(1) Assume that 𝐹 admits a left adjoint 𝐹♯. Then for all objects 𝑋 ∈ D, 𝑌 ∈ C and 𝑍 ∈ C,
the diagrams

𝑋 ⊗ 𝐹∗𝑌 𝐹∗𝐹♯ (𝑋 ⊗ 𝐹∗𝑌 )

𝐹∗𝐹♯𝑋 ⊗ 𝐹∗𝑌 𝐹∗(𝐹♯𝑋 ⊗𝑌 )

𝑢
♯

𝐹
⊗1

𝑢
♯

𝐹

PF♯

≃

and
𝐹♯ (𝐹∗𝑍 ⊗ 𝐹∗𝑌 ) 𝐹♯𝐹

∗(𝑍 ⊗𝑌 )

𝐹♯𝐹
∗𝑍 ⊗𝑌 𝑍 ⊗𝑌

≃

PF♯ 𝑐
♯

𝐹

𝑐
♯

𝐹
⊗1

commute.

(2) Assume that 𝐹 admits a right adjoint 𝐹∗. Then for all objects 𝑋 ∈ D, 𝑌 ∈ C and 𝑍 ∈ C,
the diagrams

𝐹∗(𝐹∗𝑋 ⊗𝑌 ) 𝐹∗𝐹∗𝑋 ⊗ 𝐹∗𝑌

𝐹∗𝐹∗(𝑋 ⊗ 𝐹∗𝑌 ) 𝑋 ⊗ 𝐹∗𝑌

≃

PF∗ 𝑐∗
𝐹
⊗1

𝑐∗
𝐹

and
𝑍 ⊗𝑌 𝐹∗𝐹∗𝑍 ⊗𝑌

𝐹∗𝐹∗(𝑍 ⊗𝑌 ) 𝐹∗(𝐹∗𝑍 ⊗ 𝐹∗𝑌 )

𝑢∗
𝐹

𝑢∗
𝐹
⊗1

PF∗
≃

commute.

Proof. By Remark F.16, this is a special case of Lemma F.5. □

We finish this chapter by recording the interaction between Beck-Chevalley transformations
and the projection formula.

Lemma F.19. Consider a commutative square of symmetric monoidal functors

C D

C′ D′.

𝐹

𝐺 𝐻

𝐹′
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(1) Assume that 𝐹 and 𝐹′ admit left adjoints 𝐹♯ and 𝐹′
♯
. Then the following diagram

commutes for all 𝑋 ∈ D and 𝑌 ∈ C:

𝐹′
♯
𝐻 (𝑋 ⊗ 𝐹𝑌 ) 𝐹′

♯
(𝐻𝑋 ⊗ 𝐹′𝐺𝑌 )

𝐺𝐹♯ (𝑋 ⊗ 𝐹𝑌 ) 𝐹′
♯
𝐻𝑋 ⊗𝐺𝑌

𝐺 (𝐹♯𝑋 ⊗𝑌 ) 𝐺𝐹♯𝑋 ⊗𝐺𝑌.

BC♯

≃≃

PF♯

PF♯ BC♯
≃

(2) Assume that 𝐺 and 𝐻 admit right adjoints 𝐺∗ and 𝐻∗. Then the following diagram
commutes for all 𝑋 ∈ D and 𝑌 ∈ C:

𝐺∗(𝐹♯𝑋 ⊗𝑌 ) 𝐺𝐹♯𝑋 ⊗𝐺𝑌

𝐺𝐹♯ (𝑋 ⊗ 𝐹𝑌 ) 𝐹′
♯
𝐻𝑋 ⊗𝐺𝑌

𝐹′
♯
𝐻 (𝑋 ⊗ 𝐹𝑌 ) 𝐹′

♯
(𝐻𝑋 ⊗ 𝐹′𝐺𝑌 ).

≃

PF∗ BC∗

BC∗ PF∗
≃≃

Proof. For (1), it follows from Lemma F.6 that the composites on the left and right are
given by left Beck-Chevalley transformations associated to the following two commutative
diagrams:

C D

C D

𝐺 (−⊗C𝑌 )

𝐹

𝐻 (−⊗𝐹𝑌 )
𝐹′

C D

C D .

𝐺 (−)⊗C𝐺𝑌

𝐹

𝐻 (−)⊗𝐺𝐹′𝑌
𝐹′

The claim follows, since these diagrams are equivalent to each other. The proof of (2) is
similar. □

Lemma F.20. Consider a commutative diagram of symmetric monoidal functors

C D

C′ D′.

𝐹

𝐺 𝐻

𝐹′

Assume that 𝐹 and 𝐹′ admit left adjoints 𝐹♯ and 𝐹′
♯
, that 𝐻 and 𝐺 admit right adjoints 𝐺∗

and 𝐻∗, and that the double Beck-Chevalley map BC♯,∗ exists. Then for all 𝑋 ∈ D′ and

298



𝑌 ∈ C, the following diagram commutes:

𝐹♯𝐻∗𝑋 ⊗𝑌 𝐺∗𝐹′♯𝑋 ⊗𝑌

𝐹♯ (𝐻∗𝑋 ⊗ 𝐹𝑌 ) 𝐺∗(𝐹′♯ ⊗𝐺𝐵)

𝐹♯𝐻∗(𝑋 ⊗𝐻𝐹𝐵) 𝐺∗𝐹′♯ (𝑋 ⊗ 𝐹
′𝐺𝑌 ).

BC♯,∗

PF∗PF♯

PF∗ BC♯,∗
PF♯

Proof. This is a special case of Proposition F.14. □
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List of Symbols

↩→ A monomorphism or an embedding

↠ An effective epimorphism in an∞-topos

⊙ The composition product, Definition I.3.22

∅ The empty space or empty stack

1 The monoidal unit of a symmetric monoidal∞-category C

[1] The poset {0 < 1}, regarded either as a category or as an object of Δ

[𝑛] The poset {0 < 1 < · · · < 𝑛}, regarded either as a category or as an object of Δ

[𝛼] The poset of ordinals 𝛽 ≤ 𝛼 for an ordinal 𝛼

ActG (B) The ∞-category of objects of an ∞-category B equipped with the action of a
groupoid object G in B, Definition E.17

An The∞-category of animae/∞-groupoids

An𝐺 The∞-category of genuine 𝐺-animae/𝐺-spaces

Atl(B) The∞-category of effective epimorphisms in an∞-topos B, Definition E.12

Atlrep(Shv(Diff)) The∞-category of representable atlases 𝑀 ↠ X, Definition II.2.3.6

B A generic∞-topos, Definition E.1

B𝐺 Classifying stack of a Lie group 𝐺, Example II.2.3.4

BG Classifying stack of a Lie groupoid G, Definition II.2.3.2

BC♯ Left Beck-Chevalley transformation, Definition F.2

BC∗ Right Beck-Chevalley transformation, Definition F.2
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BC♯,∗ Double Beck-Chevalley transformation, Definition F.12

CAlg(C) The∞-category of commutative algebras in a symm. mon. ∞-category C

CAlg(PrL)aug The (very large)∞-category of augmented presentably symmetric monoidal
∞-categories, Definition I.2.41

Cat∞ The (very large)∞-category of large∞-categories

Cat(B) The (very large)∞-category of large B-categories, Definition I.2.2

CatB The (very large) B-category of large B-categories, see page 23

Cop The opposite of an∞-category C

C≃ The core, or underlying∞-groupoid, of an∞-category C

C𝐴 The C-linear B-category given by C𝐴 (𝐵) = C(𝐴×𝐵), Definition I.2.23

C[𝐴] The free C-linear B-category on 𝐴 ∈ B, Definition I.2.23

C[𝑆−1] The formal inversion of objects 𝑆 in a presentably symmetric monoidalB-category
C, Definition I.2.35

�̌� ( 𝑓 ) The Čech nerve of a morphism 𝑓 : 𝑋→ 𝑌 in an∞-category, Construction E.10

coev A coevaluation map

cofib( 𝑓 ) The cofiber of a map 𝑓

coind𝐺𝐻 Coinduction, right adjoint to res𝐺
𝐻

const A constant functor

cosk𝑛 The 𝑛-coskeleton of a simplicial object

𝐷𝐴 The dualizing object of an object 𝐴 ∈ B (with respect to a presentably symmetric
monoidal B-category C), Definition I.3.1

𝐷 𝑓 The relative dualizing object of morphism 𝑓 : 𝐴→ 𝐵 in B, Definition I.3.5

𝐷𝐶𝑊
𝐵
(𝑋) The weak Costenoble-Waner dual of an object 𝑋 ∈ C(𝐵), Definition I.3.31

Δ The simplex category

Δ≤𝑛 The full subcategory of Δ spanned by the set of objects {[0], [1], . . . , [𝑛]}
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Δ𝑛alg The algebraic 𝑛-simplex, Construction II.4.2.2

Δ 𝑓 The diagonal of a morphism 𝑓

Δ𝑘 ( 𝑓 ) The 𝑘-fold iterated diagonal of a morphism 𝑓 , Definition I.3.14

Diff The site of smooth manifolds and open covers, Definition II.2.1.1

DiffStk The (2,1)-category of differentiable stacks, Definition II.2.2.1

ev An evaluation map

E A generic vector bundle over a stack

𝑓 ∗ The pullback functor along a morphism 𝑓

𝑓∗ The pushforward functor, right adjoint to 𝑓 ∗

𝑓! In Part I: the left adjoint to 𝑓 ∗. In Part III: the exceptional pushforward functor in a
six-functor formalism

𝑓♯ In parts II and III: the left adjoint to 𝑓 ∗

fgt A forgetful functor

fib( 𝑓 ) The fiber of a map 𝑓

𝐹𝐷 The B-functor C𝐴→C𝐵 classified by an object 𝐷 ∈ C(𝐴×𝐵), Definition I.2.33

Fun(C,D) The∞-category of functors C →D

FunL(C,D) The∞-category of colimit-presering functors C →D

FunR(C,D) The∞-category of limit-presering functors C →D

FunB (C,D) The parametrized functor category, Example I.2.7

F A generic sheaf

Γ(C) The underlying∞-category of a parametrized∞-category C, Definition I.2.2

Γ(F ) The global sections of a sheaf F

𝛾∗ Comparison functor between genuine and ordinary sheaves on a differentiable stack
X, Construction II.4.2.25

𝑔X The structure map 𝑔X : X →S of a stack X over a base stack S

302



𝐺𝑥 The isotropy group of a differentiable stack at a point 𝑥, Definition II.3.4.1

𝐺 ⋉𝑀 The action groupoid of a smooth 𝐺-manifold 𝑀 , Example D.4

Glo The global indexing category, Definition I.4.11

Grpd The ordinary category of groupoids

Grpd(C) The∞-category of groupoid objects in an∞-category C, Definition E.8

G A generic Lie groupoid, Definition D.1, or a generic groupoid object in an ∞-
category, Definition E.8

G𝑛 The manifold of 𝑛-tuples of composable morphisms in a Lie groupoid G, Defini-
tion 2.3.1, or the 𝑛-th level of a groupoid object in an∞-category

G𝑈 The restriction of a Lie groupoid, Example D.7

ℎX (Y) The image of Y ∈ Sub/X in C(X), Notation II.4.5.13

ℎZX (Y, 𝑡) The presheaf ofZ-trivialized morphisms, Construction II.5.2.9

H(X) The∞-category of genuine sheaves on a differentiable stack X, Definition II.4.2.6

HomC (−,−) The space of morphisms in an∞-category C

HomΔ
C (−,−) The simplicial hom-set of a simplicially enriched category C

HomC The internal hom object in a symmetric monoidal∞-category C

𝑖 A generic closed embedding of differentiable stacks

id An identity map

ind𝐺𝐻 Induction from 𝐻-equivariant objects to 𝐺-equivariant objects, left adjoint to res𝐺
𝐻

𝑗 A generic open embedding of differentiable stacks

l.b.c. Abbreviation of ‘left base change, Definition I.2.9

l.p.f. Abbreviation of ‘left projection formula, see (2) on page 24

Lopen The sheafification functor 𝐿open : PSh(Diff) → Shv(Diff) with respect to the open
cover topology
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LR The homotopy localization functor at the level of presheaves inverting R→ pt,
Construction II.4.2.2

Lhtp The homotopy localization functor at the level of sheaves invertingR→ pt, Definition
II.4.2.6

𝐿𝛼 The 𝛼-th iteration of the functor 𝐿1 = 𝐿open ◦ 𝐿R for an ordinal 𝛼, Construction
II.4.2.11

LConst(E) The locally constant B-category associated to an∞-category E, Example I.2.5

LieGrpd The ordinary category of Lie groupoids

LMod𝑅 (C) The ∞-category of left modules over an associative algebra 𝑅 in a monoidal
∞-category C

L The formal inversion functor, Lemma I.2.42

M//G The quotient stack of a smooth 𝐺-manifold 𝑀 , Example II.2.3.5

Mod𝑅 (C) The ∞-category of modules over a commutative algebra 𝑅 in a symmetric
monoidal∞-category C

Nat(𝐹,𝐺) The space of natural transformations 𝐹⇒𝐺 between two functors 𝐹,𝐺 : C→D

NatC (𝐹,𝐺) The space of C-linear natural transformations 𝐹 ⇒ 𝐺 between two C-linear
functors 𝐹,𝐺 : D→ E,

NDiff The continuous diffeology functor, Definition II.3.1.1

Nm𝐴 The twisted norm map of an object 𝐴 ∈ B, Definition I.3.3

Ñm𝐴 The adjoint twisted norm map of an object 𝐴 ∈ B, Definition I.3.3

Nm 𝑓 The twisted norm map of a morphism 𝑓 in B, Definition I.3.5

N𝑖 The normal bundle of an embedding of stacks 𝑖, Definition II.3.5.14

Open(X) The poset of open substacks of a stack X

Orb The global orbit category, the wide subcategory of Glo spanned by the injective
group homomorphisms, Definition I.4.12

Orb𝐺 The orbit category of a Lie group 𝐺
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Orbpr
𝐺

The proper orbit category of a Lie group 𝐺, Definition I.4.21

OrbSp The orbicategory of orbispectra, Definition I.4.15

OrbSpc The orbicategory of orbispaces, Definition I.4.14

𝜔 𝑓 The dualizing object of a morphism of stacks 𝑓 , Definition II.6.1.3

ΩB The B-category of B-groupoids, Definition I.2.11

PB(SepStk) The (very large) ∞-category of pullback formalisms on SepStk, Defini-
tion 4.5.5

PF♯ The left projection formula map, Definition F.15

PF∗ The right projection formula map, Definition F.15

𝔭 𝑓 The Poincaré duality map 𝑓♯→ 𝑓∗(− ⊗𝜔 𝑓 ), Construction II.6.1.5

pr A projection map

PrL The (very large) ∞-category of presentable ∞-categories and colimit-preserving
functors

PrR The (very large) ∞-category of presentable ∞-categories and accessible limit-
preserving functors

PrL
st The∞-category of stable presentable∞-categories and colimit-preserving functors

PrL(B) The ∞-category of presentable B-categories and colimit-preserving B-functors,
Definition I.2.12

PrL
B The B-category of presentable B-categories and colimit-preserving B-functors, see

page 23

PrL
𝐺

The∞-category PrL(Spc𝐺) of presentable 𝐺-categories

PrnBdlG (B)𝐵 The ∞-category of principal G-bundles over an object 𝐵 in an ∞-topos B,
Definition E.24

PrnBdlG (𝑁) The ∞-category of smooth principal G-bundles over a smooth manifold 𝑁 ,
Definition D.15

PSh(C) The∞-category of presheaves on a small∞-category C
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PShhtp(−) The∞-category of homotopy invariant presheaves, Definition II.4.2.1

pt The one-point space

PTS (𝑖) The Pontryagin-Thom collapse map of a closed embedding 𝑖 : Z ↩→ X over S,
Construction II.6.2.16

𝜋∗
𝐵
C The pullback B/𝐵-category of a B-category C, Example I.2.6

(𝜋𝐵)∗C The pushforward B-category of a B/𝐵-category C, Example I.2.6

Π∞(𝑋) The fundamental∞-groupoid of a topological space 𝑋

Π𝐺 (𝑀) The 𝐺-equivariant homotopy type of a smooth 𝐺-manifold 𝑀 , Definition II.4.4.8

ΠGlo(X) The global homotopy type of a differentiable stack, Section III.2.1

QtStk The (2,1)-category of global quotient stacks 𝑀//𝐺, Example II.2.3.5

Rep𝐺 The category of 𝐺-representations

res𝐺
𝐻

Restriction from 𝐺-equivariant objects to 𝐻-equivariant objects

RMod𝑅 (C) The ∞-category of right modules over an associative algebra 𝑅 in a monoidal
∞-category C

𝑆E Sphere bundle of a vector bundle E → X of stacks, Definition II.2.5.2, Notation
II.4.5.25

S𝐺 The 𝐺-equivariant sphere spectrum

SepStk The (2,1)-category of separated differentiable stacks, Definition II.3.3.1

SH(X) The ∞-category of genuine sheaves of spectra on a separated differentiable stack
X, Definition II.4.3.14

shear The shear map, Definition E.21

Shv(C) The∞-category of sheaves on a Grothendieck site C, Definition E.33

Shv(X) The∞-category of ordinary sheaves on a differentiable stackX, Definition II.4.1.17

sk𝑛 The 𝑛-skeleton of a simplicial object

Span(B, 𝐸) The span category of a geometric setup (B, 𝐸), Definition III.3.1
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Sp The∞-category of spectra

Spc The∞-category of spaces/∞-groupoids

Sp𝐺 The∞-category of genuine 𝐺-spectra for a compact Lie group 𝐺, Definition I.4.1

Spc𝐺 The∞-category of 𝐺-spaces for a compact Lie group 𝐺

Spc𝐺pr The∞-category of proper 𝐺-spaces for a Lie group 𝐺, Definition I.4.21

Sp𝐺 The 𝐺-category of genuine 𝐺-spectra, Definition I.4.2

Spc𝐺 The 𝐺-category of 𝐺-spaces, Definition I.4.2

Sub/X The category of representable submersions Y →X, Definition II.4.1.1

ThS (X,Z) The relative Thom space of a closed embedding 𝑖 : Z ↩→X relative to a base
stack S, Definition II.6.2.1

𝑇G The tangent groupoid of a Lie groupoid G, Definition II.3.5.1

𝑇 𝑓 The relative tangent bundle of a morphism 𝑓 of stacks, Definition II.3.5.5

Top The ordinary category of topological spaces

TopGrpd1 The ordinary category of topological groupoids, Definition I.4.10

TopGrpd The∞-category of topological groupoids, Definition I.4.10

𝑈𝐴 Unit for the composition product, Definition I.3.22

U A generic open substack of some stack

Vect(X) The ordinary category of vector bundles over a differentiable stack X, Definition
II.2.5.3

Vect𝑘 The ordinary category of vector spaces over a field 𝑘

X \Z The open complement of a closed substackZ ⊆ X, Definition II.3.2.2

|X|mod The coarse moduli space of a stack X, Definition II.3.1.1

𝔛 A generic sheaf on SepStk

𝑦 The Yoneda embedding 𝑦 : C ↩→ PSh(C)

Z A generic closed substack of some stack
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