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Introduction

This thesis comprises three self-contained essays dealing with the commu-
nication and use of information between strategic players. In Chapters 1
and 3, I follow the mechanisms design paradigm, assuming that a player
(referred to as the principal or designer) can commit to how she uses the
information other players (referred to as agents or voters) provide her. In
contrast, Chapter 2 aligns with the cheap-talk literature.

Chapter 1 studies a model of delegation in which allocations are lotter-
ies over a finite set of outcomes. The principal uses randomization to screen
agents’ von NeumannMorgenstern preferences and I permit the full domain
of such preferences. I characterize all mechanisms that cannot be imple-
mented by randomizing over other mechanisms, i.e., the extreme points
of the set of mechanisms. A principal who herself maximizes utility in the
von Neumann Morgenstern sense does not benefit from random mixing, as
her utility is linear, so it is without loss to assume that she always choose
an extreme point. It follows that every optimal mechanism using informa-
tion from the agent must grant him the option to veto one outcome of his
choosing. The only other potentially optimal mechanisms are constant and
deterministic, dictating an outcome for the agent. A second consequence
of this characterization illuminates the complexity of different classes of
delegation problems. For instance, the class of problems with at most three
different outcomes is simple, while all others are not.

Chapter 2, which is joint work with Justus Winkelmann, discusses a
model of advice. In this model, a single decision-maker receives messages
from multiple imperfectly informed experts about an unknown state of the
world, with binary state and action. We assume that advisors either align
with the interests of the decision maker or have state-independent prefer-
ences. These assumptions apply to various contexts, such as regulatory pro-
ceedings or peer review of research papers. The most informative equilib-
rium exhibits perfect communication of intermediate signals, but unaligned
experts limit the transmission of the best signals. We present the concept
of the "fragility of specialization" and show that more information is lost
with more specialized experts. If the likelihood of diverging interests among
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experts is high, communication becomes binary, resembling a voting proce-
dure.

Chapter 3 investigates utilitarian welfare maximization among strategy-
proof and anonymous mechanism in a social choice model. I focus the
question: Is surjectivity, i.e., the requirement that a social choice function
must select any possible outcome under some preference profile, restric-
tive? In the case decisions between more then three outcomes and consid-
ering the full domain of preferences, the answer is affirmative, due to the
Gibbard-Satterthwaite theorem. Decisions between two options typically
outperform dictatorships. When preferences are single-peaked, and feasi-
ble mechanisms satisfy surjectivity, the answer remains positive. However,
the most extreme outcomes need not be excluded to maximize welfare. I
provide a tight welfare guarantee for surjective mechanisms as a function
of the number of possible outcomes. In particular, no fraction of optimal
welfare can be guaranteed when the numbers of outcomes is unbounded.



.

Chapter 1

An Extreme-Points Approach to
Multidimensional Delegation:
1, 2, 3,∞⋆

1.1 Introduction
The allocation of decision rights is a fundamental question for organiza-
tional design. I study a simple model of such delegation in which a princi-
pal (she) has to make a potentially random decision between a finite set
of outcomes, affecting both her and an agent (he). The agent is privately
informed about the state of the world, which determines both players’ pref-
erences. The agent’s preferences are drawn from the entire domain of von
Neumann-Morgenstern (vNM) preferences over lotteries. The significance
of this model is threefold.

First, it is more general than most of the literature on delegation, where
both players are assumed to have concave, often quadratic loss, preferences
over a continuum of states. In contrast, this model makes no restrictions on
the kinds of von Neumann Morgenstern preferences players may have yet
assumes a finite set of outcomes. The only general property I do exploit is
the linearity of the utility functions in lotteries. As a consequence, the main

⋆ I thank my advisors, Benny Moldovanu, Felix Bierbrauer, and Aleh Tsyvinsky, for their
continued guidance and support. For helpful discussions, I thank Gregorio Curello, Alkis
Georgiadis-Harris, Avi Lichtig, Deniz Kattwinkel, Jan Knöpfle, Daniel Krähmer, Roger My-
erson, Axel Niemeyer, Lucas Pahl, Martin Pollrich, Justus Preußer, Tobias Rachidi, Mario
Schulz, Dezsö Szalay, Omer Tamuz, Paul Voß, Alex Winter and Mengxi Zhang.
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qualitative behavior will be different, with players choosing extreme points
of lotteries spaces rather than interior points of outcome spaces.1

Second, it accurately describes economic situations, such as a manager
allocating projects to a worker or a municipality allocating social housing to
those in need. Since those allocating need to balance supply and demand,
the preferences and allocations of others act as a de-facto randomization
and commitment device, with individual recipients frequently facing ra-
tioning and hence an unsure allocation.

Lastly, allowing for all von Neumann-Morgenstern preferences puts this
model in a similar systematic position as the full-domain model of social
choice. However, there is a strong difference: While in social choice the full
domain model is known for its stark lack of appealing mechanisms, in the
absence of strategic interaction between multiple agents, the full domain
setup has the richest set of mechanisms. This simply follows from the fact
that every mechanism on a restricted domain can be extended in potentially
multiple ways to a larger domain of preferences. Therefore, whatever is true
for all mechanisms on the full domain, translates to all possible domains.

My main result characterizes the set of extreme points of the incentive-
compatible direct mechanisms. For any concrete problem, one of these
extreme points is a, and generically the unique, second-best solution by
Bauer’s maximum principle. I do not study which extreme point is optimal
for which problem and hence do not solve the problem of optimal delega-
tion. In this respect, I only give a necessary condition for a mechanism to be
the unique optimizer.2 However, this characterization allows me to derive
two general insights on optimal solutions.

Grant veto or dictate: An extreme point grants the agent a veto, or
dictates a single outcome. Hence, the agent either has no autonomy at all
or always has the choice to select a lottery s.t. a given outcome is not in its
support.

Complexity of problems: For three outcomes, it is sufficient to focus on
mechanisms that offer three different lotteries. This resembles the post-it
price structure in the monopolistic seller problem with one good, in which
two alternatives are sufficient. In stark contrast, for more than three out-
comes, the set of extreme points lies dense in the set of mechanisms grant-
ing a veto. In particular, optimal mechanisms might require an arbitrary
amount of different lotteries to be offered.

1. Selecting an interior outcome for sure is an extreme point of the respective lottery
space.

2. If multiple extreme points are optimal, then so is every convex combination. This
opposite case with a unique optimum is, however, generic.
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On a conceptual level, this paper introduces new tools to the delegation
literature by primarily studying mechanisms via their associated delegation
sets and studying the indecomposability problem from convex geometry.
The characterization relies on characterizing the extreme points of the set
delegation sets, which are the extreme points of the set of convex bodies
in the unit simplex. These are the indecomposable and maximal delegation
sets.

I now summarize the structure of the arguments that allows me to derive
the aforementioned results.

A convex set is said to be indecomposable if it has no representation as
a Minkovski sum of two convex sets, both not homothetic3 to the sum. A
Minkovski sum is the set of all pairwise sums of its summands. Both inde-
composable sets and Minkovski sums are widely studied objects in convex
geometry. Grünbaum et al. (1967) is an excellent reference. It is well un-
derstood and easy to check algebraically whether a two-dimensional convex
body or any polytope is indecomposable. Further, I call a set maximal in the
simplex if it is either a vertex of the simplex or touches all facets⁴.

My characterization follows from separate characterizations. Both are of
independent interest. Note that the revelation and taxation principles apply
in this setting. Hence any implementable decision rule can be implemented
both by a direct mechanism and indirectly by letting the agent decide from
a delegation set. Since the agent has linear preferences, I can restrict at-
tention to delegation sets that are convex bodies, i.e., convex, compact, and
non-empty subsets of probability distributions over k outcomes.⁵ Given a di-
rect mechanism, one can easily describe the associated delegation set and
vice versa. I strengthen this equivalence of the two principles by demon-
strating the existence of an isomorphism between direct mechanisms, and
delegation sets that preserve convex combinations. In particular, the set of
delegation sets has a convex structure, where convex combinations of del-
egation sets refer to the Minkovski summation as defined above. Note that
I here and below refer to a convex set of convex sets. Except in specifically
noted circumstances, mentions of extreme points will refer to the objects
within this meta-structure. This directly yields theorem 1.3: A direct mech-
anism is an extreme point if and only if its associated delegation set is an
extreme point.

3. Two convex set K, L ⊂ Rd are homothetic if K = αL+ b, with α ∈ R+ and b ∈ Rd

4. The facets of the simplex represent the subsets of all lotteries for which a given
outcome has probability zero.

5. An agent can always select an option from the convex hull by randomizing over
reports, yet will never have the incentive to do so.
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For the second equivalence, I study the above delegation sets as geo-
metric objects. These are convex bodies within the unit simplex. A convex
body can be represented as a convex combination of other convex bodies in
the simplex homothetic to the first if and only if it is non-maximal. Hence,
maximality in the simplex is necessary for convex bodies to be an extreme
point.

In contrast, if a convex body in the simplex is indecomposable, any rep-
resentation as a convex combination must, in turn, imply that the parts are
homothetic to the original. Hence maximality and indecomposability com-
bined are sufficient for convex bodies to be an extreme point. The reverse
is also true. This yields Theorem 1.7: A convex body of probability distribu-
tions over a finite set of outcomes is an extreme point of the set of all such
bodies if and only if it is maximal and indecomposable. Maximality has a
simple economic interpretation: A maximal delegation set either leaves no
choice at all, i.e., always implements the same outcome, or it grants a veto,
i.e., the agent can make sure that one outcome never realizes. Jointly with
theorem 1.3, it implies my main characterization: A direct non-constant
mechanism is an extreme point if it grants a veto and has an indecompos-
able delegation set. The above-mentioned results are then all direct conse-
quences of the literature on indecomposable sets.

Related Literature
Holmstrom (1984) has initiated a vast field of research on delegation. Most
of this literature has focused on a one-dimensional action and type space
and parameterized, mostly quadratic loss utility functions, e.g., Dessein
(2002), Alonso and Matouschek (2008), Amador and Bagwell (2013), and
Kolotilin and Zapechelnyuk (2019).

I deviate from this main strand in two ways: The set of alternatives
consists of lotteries over k outcomes, and arbitrary vNM preferences are
permissible. Both the space of alternatives and preferences are, therefore,
multi-dimensional and compact, and the utility functions of both players
are linear.

A smaller number of publications also consider multi-dimensional types
or action spaces. These include Bendor and Meirowitz (2004), Koessler and
Martimort (2012), Frankel (2016) and Kleiner (2022), yet they still deviate
from this present paper in the aforementioned ways.

Lastly, papers that study delegation over a finite set of outcomes include
Che, Dessein, and Kartik (2013), Nocke and Whinston (2013), and Arm-
strong and Vickers (2010). In these models, the agent selects one of the
alternatives for the principal. Upon selection, the principal receives a signal
on its quality and can accept or reject the agent’s recommendation. The
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anticipation of this signal acts as a screening device. My model shows that
commitment to enacting the agent’s recommendation contingent on a ran-
dom event can be effective, even if this event is completely independent of
the relevant state of the world.

The closest paper to the present is, however, on auctions. Manelli and
Vincent (2007) characterize the extreme points of the multi-good monop-
olistic seller problem. Given the differences between the models, also the
characterizations differ substantially. I will discuss the relationship paral-
lel to my own results below. Kleiner, Moldovanu, and Strack (2021) char-
acterize extreme points of the monotone functions that fulfill a majoriza-
tion constraint and apply their characterization to several one-dimensional
economic design problems. Both papers apply a different set of methods
but share the approach to directly studying the convex structure of the set
of mechanisms. In contrast, I apply an indirect approach via the convex
structure of feasible delegation sets. The approaches are, of course, deeply
related, yet the indirect approach allows me to apply results from convex
geometry, which fits my model exactly.

This paper is also more broadly related to a wide class of models of
screening without transfers. Most of these models analyze binary decisions
and employ a variety of additional tools for screening. Examples include
linking several independent decisions, (Jackson and Sonnenschein (2007)),
using correlated information (Kattwinkel et al. (2022))

More generally, my model is deeply connected to models of multi-
dimensional mechanism design and, in particular, the multi-object mo-
nopolistic seller problem, studied in, e.g., Rochet and Choné (1998), Je-
hiel, Meyer-Ter-Vehn, and Moldovanu (2007), Daskalakis, Deckelbaum,
and Tzamos (2015), Hart and Reny (2015) and Haghpanah and Hartline
(2021), since the later is a domain restriction of the present model as dis-
cussed in the introduction.

Recent work in this literature started by Hart and Nisan (2019) has fo-
cused on simplemechanisms in the sense that they have a small range of out-
comes. However, there is a tight connection to the study of extreme points
since extreme points are delegation set size efficient, i.e., when restricting
to mechanisms with delegation sets lower than a given size, extreme points
will retain their status as a sufficient candidate set. Hart and Nisan (2017)
demonstrate that for two goods and arbitrary correlation structures, finite
mechanisms may not secure any positive fraction of optimal revenue. Since
their model is a special case of mine, this result directly translates to my
model if k≥ 8, yet I conjecture it to be true for k≥ 4. Finally, Babaioff,
Gonczarowski, and Nisan (2017) study how fast optimal revenue can be
approximated by finite delegation set mechanisms when valuations for dif-
ferent goods are understood to be independent.
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1.2 Model

1.2.1 Notation

Conv(.) and Conv(.) denote the convex hull and closed convex hull of a set,
respectively. Ext(.) denotes the set of extreme points. Scalar multiplication
and addition of sets of real vectors refer to the following operations:

λM = {λm|m ∈M}

and
M+M0 = {m+m0|m ∈M, m0 ∈M0}.

The ”+ ” here is the standard definition of the Minkovski or vector sum.
M ∼M0 will denote that M and M0 are homothetic.

1.2.2 Setting
A principal (she) selects an alternative affecting herself and an agent (he).
The set of alternatives A is the set of probability distributions over some
finite set of outcomes A=∆{1, . . . , k}. Hence an element a ∈ A is of the form
a= (a1, . . . , ak), where ai ≥ 0 for l= 1,2, . . . , k and

k
∑

i=1
ai = 1. The agent is

privately informed about his type θ = (θ1, . . . ,θk) ∈ Θ = {[0,1]k : max
i
θi =

1 and min
i
θi = 0}which represents his (normalized) Bernoulli utilities over

outcomes. It is drawn from some prior µ on Θ. Hence his utility functions
U reads.

U(a,θ)= a · θ

I also will assume throughout that the principal is a von Neumann-
Morgenstern expected utility maximizer, i.e., given a type θ , her prefer-
ences over lotteries are characterized by her Bernoulli utilities over out-
comes v(θ)= (v1(θ), . . . , vk(θ)). The principal’s ex-ante utility function V
is then given by:

V(a)= Eµ [a · v(θ)]

1.2.3 Mechanisms
The principal commits to a mechanism, and I assume the agent plays the
best response.



1.2 Model | 9

A mechanism is given by a message space S and a choice functions f :
S→ A that specifies an alternative for each message sent by the agent.

Due to the revelation principle, it is without loss to restrict attention to
direct mechanisms, i.e., mechanisms with S= Θ and where agents have in-
centives to report their true type. Formally, a mechanism satisfies incentive
compatibility if

U(f(θ),θ) ≥ U(f(θ 0),θ) for each θ ,θ 0 ∈ Θ. (IC)
When the agent is indifferent between the alternative assigned to his

type and another, I assume that the principal can select which best response
is played by the agent.⁶

Definition 1.1. Amechanism with choice rule f satisfies principal preferred
tie-breaking if the following conditions are satisfied.

i For any θ ,θ 0 ∈ Θ s.t. U(f(θ),θ)= U(f(θ 0),θ) implies V(f(θ),θ)≥
V(f(θ 0),θ).

ii For any θ ,θ 0 ∈ Θ s.t. U(f(θ),θ)= U(f(θ 0),θ) and V(f(θ),θ)=
V(f(θ 0),θ), implies f(θ)≥lex f(θ 0), where "≥lex" refers to the lexico-
graphical order.

Henceforth, when considering direct mechanisms, I will restrict atten-
tion to those that satisfy incentive compatibility and principal preferred tie-
breaking. I will denote the set of choice rules implemented by such mecha-
nisms F . As a shorthand, I will refer to a mechanism f or the set of mecha-
nismsF to refer to direct mechanisms that implement the respective choice
rules.

Restricting attention to F can not reduce the principal’s utility. I can
hence state her problem as follows:

max
f∈F

Eµ [f(θ) · v(θ)]

1.2.4 Delegation Sets
A delegation set M is a convex, compact, non-empty subset of A. I will say
that M has size n if |Ext(M)|= n. I will denote the set of all delegation
sets with M . Consider the following indirect mechanism: The agent has
a message space S=M, and the alternative corresponding to his message

6. This selection follows Holmstrom (1984). Kamenica and Gentzkow (2011) use
sender-preferred equilibrium as a related notion in information design.
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realizes.⁷ I will say that M is the delegation set of a direct mechanism f ∈ F
if the allocation the agent receives under f is a best response in this indirect
mechanism.

Definition 1.2. M is the delegation set of a mechanism f ∈ F if

f(θ) ∈ arg max
a∈M

U(θ , a).

In principle, a mechanism could have multiple delegation sets, which
is why at this point, to speak "the delegation set" is an abuse of language.
Yet, I will demonstrate below that a unique delegation set is associated with
every mechanism in our setting.

1.3 Extreme Points of the Mechanism Set

1.3.1 The Strong Equivalence between the Revelation
and Taxation Principle

It is well known that both direct mechanisms and delegation sets are com-
prehensive notions to capture all implementable decision rules. In what fol-
lows, I will primarily work with delegation sets. Yet to translate my findings
onto direct mechanisms, I need to show an equivalence between both ap-
proaches that extends to the convex structure of both sets. In particular, the
set of delegation sets has a convex structure induced by Minkovski’s addi-
tion on sets. Hence the following is a strengthened version of equivalence
between the revelation and taxation principles:

Theorem 1.3. Define T :F →M , s.t. T(f)= Conv(f(Θ)) for all f ∈ F .
Then T satisfies the following properties:

i T is a bijection that maps f to the delegation set of f .
ii |f(Θ)|= n<∞ if and only if T(f) is a polytope with n vertices.
iii T preserves convex combinations, i.e., for all f , f 0, f 00 ∈ F

f = λf 0 + (1 − λ)f 00 ⇐⇒ T(f) = λT(f 0) + (1 − λ)T(f 00) (1.1)

In particular, f is an extreme point of F if and only if T(f) is an extreme
point ofM .

7. This indirect approach to mechanism design is referred to as the taxation principle
going back to Hammond (1979).
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Proof. See Appendix A

The first two points are the equivalence of revelation and taxation princi-
ple restated in the context of this model. In contrast, the third point shows
that this equivalence preserves relevant convex structure. Therefore, it is
worthwhile to view both convex combinations from the agent’s perspective
and view them as randommixing between different mechanisms. This inter-
pretation on the direct side is straightforward. For the equivalence to hold,
the agent must achieve the same overall selection if he selects from the
Minkowski sum as if he were to select from both delegations sets separately.
However, by definition, the first choice is from all potential combinations,
which is equivalent.

= λ + (1 − λ)

Figure 1.1. A convex combination of two delegation sets.

This result is the central connection between direct mechanisms and
convex sets of probability distributions I employ in this paper.

1.3.2 Extreme Points of Delegation Sets
Extreme points of our delegation setM are such delegation sets that are
not the Minkowski sums of appropriately scaled feasible delegation sets.
Whether a given convex body has a representation as the Minkowski sum
of other convex bodies is a well-studied problem that goes back to Gale
(1954). Schneider (2014) is an excellent reference. The difference between
both problems is the feasibility constraints for the sum and the summands
present in the current setting.

To connect both problems and introduce the relevant notions, let me
recall that two convex bodies K, K0 ∈ R are homothetic if K = αK0 + v, for
some α ∈ R and v ∈ Rd. Any convex body K can be written as the sum K =
(λK − v)+ ((1−λ)K + v) for λ ∈ (0,1) and v ∈ Rd. I will hence call such
decompositions trivial.

Definition 1.4. A convex body K ⊂ Rd is decomposable if it has a non-trivial
decomposition, i.e., if there exist convex bodies B, C ⊂ Rd, B and C not ho-
mothetic to K s.t. K = B+ C. A convex body that is not decomposable is
indecomposable.



12 | 1 An Extreme-Points Approach to Multidimensional Delegation

To compare the notion of M ∈M being an extreme point ofM or being
indecomposable, suppose there exist convex bodies B, C both different from
M s.t. M = B+ C. B and C are a counterexample to M being indecomposable
if they are both not homothetic to M. In contrast B and C are a counterex-
ample to M being an extreme point of M if there exists a λ ∈ (0,1), s.t.
1
λB and 1

1−λC are both feasible delegation sets, i.e. subsets of A, since then
M = λ 1

λB+ (1−λ) 1
1−λC. In particular, no notion implies the other.

To connect the two concepts, I next discuss a notion of delegation sets
for which the constraint to be inside a given simplex is binding.
Definition 1.5. i A delegation set is dictating if it consists of a single ver-

tex of the simplex.
ii A delegation set grants a veto if it has a non-empty intersection with all
facets of A.

iii A delegation set M is maximal if it is dictating or granting a veto.
The next lemma establishes maximality as a necessary condition for a

delegation set to be an extreme point.
Lemma 1.6. A delegation set M ∈M has a decomposition of the form M =
λM0 + (1−λ)M00, with M, M0, M00 all sets are non-identical and homothetic, if
and only if M is non-maximal.

In particular, for such a delegation set, there exists delegation sets Mh, Md ∈
M and λ ∈ (0,1), where Mh ∼M and M and Md consists of a single vertex of
A s.t., M = λMh + (1−λ)Md.

Proof. See Appendix A.
A non-maximal delegation set has at least one outcome s.t. the probabil-

ity of that outcome is bounded away from zero, regardless of the selection
of the agent. Hence the delegation that has a convex component that disre-
gards the agents choice. Geometrically, if M ∈M is not maximal, it is fully
enclosed in a smaller sub-simplex within A. It can be rewritten as a convex
combination of a scaled-up original version and a vertex.

There is a close connection between this result and the frequent observa-
tion that "there is no distortion at the top" in several models of mechanism
design, such as the multi-object monopolistic seller problem. The usual ar-
gument for this observation is that the highest type does not grant infor-
mation rents to any other type. However, a distortion at the top implies a
trivial decomposition of the mechanism into a scaled-up version of the same
mechanism and a mechanism that never allocates a given good, contradict-
ing optimality.

M ∈M being maximal is a necessary condition to be an extreme point.
If, in addition, it is indecomposable, it has to be an extreme point since it
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neither has a trivial nor non-trivial decomposition into non-identical dele-
gation sets. In particular, it is not the sum of appropriately scaled feasible
delegation sets. It is not obvious that these conditions are also jointly neces-
sary. For example, a delegation set might be decomposable, yet the scaled
parts might not be feasible for any decomposition. This is the case when fea-
sibility depends on being a subset of, e.g., a square. However, in this setting,
being maximal and indecomposable characterizes extreme points.

Theorem 1.7. A delegation set M ∈M is an extreme point ofM if and only
if M is maximal, i.e., dictating or granting a veto and indecomposable.

Proof. See Appendix A

1.3.3 Extreme Points of the set of Direct Mechanisms
Theorem 1.3 and 1.7 jointly characterize the extreme points of F . I sum-
marize this below.

Theorem 1.8. A non-constant mechanism f ∈ F is an extreme point of F if
it grants a veto and T(f) is indecomposable.

Proof. Immediate by Theorems 1.3 and 1.7.

At this point, everything known about indecomposable convex bodies is
a statement on extreme points in our model and vice versa. A full charac-
terization of extreme points of direct mechanisms in terms other than these
would substantially extend the existing geometry literature. However, no
such attempt is made here.

Indcomposability is well understood in two dimensions and for poly-
topes in any dimension, which correspond to finite mechanisms. In partic-
ular, simple algebraic procedures exist to check whether a polytope is inde-
composable by calculating the rank of an associated matrix. SeeSmilansky
(1987) for details.

In the remainder of this section, I will focus on the consequences of two
results on indecomposable sets.

As with the connection of granting a veto and no distortion at the top,
both results have a substantially different yet closely related corresponding
phenomenon in the multi-good monopolistic seller problem.

Delegation with one or two outcomes is each trivial. In the latter, the
principal has to decide between taking the decision herself or full delegation.
In contrast, the case with three alternatives allows intermediate extreme
points, which still all have a simple structure.
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Theorem 1.9. Suppose k≤ 3. Then a non-constant mechanism f is an ex-
treme point of F if it grants a veto and has a menu size of at most three, i.e.,
f(Θ)≤ k.

Proof. See Appendix A
Points, line segments, and triangles are the only indecomposable convex

bodies in two dimensions.⁸
The case k= 3 corresponds to the one good case in the monopolistic

seller problem. There are three possible "trades" of probabilities for two
outcomes against a third. Any bundle of two trades is on itself a single trade,
even though potentially for a different "price" or rate of substitution.

The situation with four or more outcomes is in sharp contrast to this
classification. It is similar to how bundling opportunities and possible dis-
counts lead to a rich set of extreme points. In both cases, an additional lever
to screen can be combined in a continuum of ways.
Theorem 1.10. Suppose k≥ 4. Then the non-constant extreme points of F
with finite range are a dense subset of mechanisms granting a veto.

Proof. See Appendix A
There are two important consequences to this characterization. First,

although extreme points can have delegation sets of infinite sizes, any such
extreme point is arbitrarily close to a mechanism with a finite delegation
set size. Therefore it is approximately without loss to focus attention on
this better-understood class. The second consequence, however, is that even
this class is so rich that it is not an easily comprehensible and sufficient
candidate class for optimization, as seen for k= 3.

1.4 Application: Allocation of Social housing
An applicant applying at the local government for housing can be allocated
option 0 no housing, at no cost or any of k housing options, with positive
costs to the government. The applicant’s type is his value for each option,
while the local government maximizes the agent’s expected value minus
expected costs. Since their is no conflict of interest, when the agent prefers
no housing, no housing is always part of the optimal set of choices. Indeed,
whenever no housing is not offered, both the local government and agent
benefit from including it.

8. The result was first mentioned in Gale (1954), yet no proof was published. It was
later independently demonstrated by Meyer (1972) and Silverman (1973).
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Given this observation the only dictating mechanism worth considering
never offers housing. In contrast all veto mechanisms need to also offer one
lottery s.t. the applicant always receives some housing option, since such a
lottery is the relevant veto against no housing.

If there are only two housing options then offering no housing, an option
that guarantees some housing option and potentially a third arbitrary lot-
tery, designed to screen preferences between houses, by including a chance
that no housing is offered is always enough to maximize the local govern-
ments problem. However as we have seen, with three or more options, op-
timality might require arbitrarily complicated choices from the applicant.

1.5 Conclusion

I have characterized the extreme points of the full domain model of dele-
gation with a finite set of outcomes. This characterization relies on a novel
connection to the indecomposability problem from convex geometry. This
connection is the methodological contribution of this paper. Part of the char-
acterization also implies that extreme points are dictating or granting a
veto.

I have also applied this characterization and existing insights on the in-
decomposability problem to study the complexity of the model as it depends
on the number of outcomes. This analysis has lead to two results with starke
differences. With three outcomes, optimal mechanisms have a simple struc-
ture and offer at most three choices. With more then four outcomes the set
of candidates for optimality can not be reasonably reduced further then to
restrict attention to the aforementioned mechanisms that dictate or grant a
veto. This robust prediction is in fact the only possible robust prediction in
this setting.

The natural next step is to consider how complexity can again be re-
duced by limiting the model, most notably by studying how the set of ex-
treme points is reduced, if one limits the domain of preferences.

Appendix 1.A Proofs
Proof of Theorem 1.3.

i) Fix an arbitrary θ ∈ Θ, then

f(θ) ∈ argmax
a∈f(Θ)

U(θ , a) ⊂ argmax
a∈Conv(f(Θ))

U(θ , a)

Hence T(f) is a delegation set of f .
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Next, I show that an inverse function exists. For this, define fM s.t.

fM(θ) ∈ argmax
a∈M

U(θ , a)

and fM satisfies principle-preferred tie-breaking. Now T−1 :M →F
with T−1(M)= fM is the required inverse function by construction.

ii) If |f(Θ)| is finite, all extreme points of T(f) are exposed. Hence f(Θ)=
Ext(T(f)).

iii) I will prove sufficiency first. For this I assume fix f , f 0, f 00 ∈ F s.t. f =
λf 0 + (1−λ)f 00 for some λ ∈ (0,1). I can deduce the following:

T(f) = T(λf 0 + (1 − λ)f 00)

= Conv(λf 0(Θ) + (1 − λ)f 00(Θ))

= Conv(λf 0(Θ)) + Conv((1 − λ)f 00(Θ))

= λConv(f 0(Θ)) + (1 − λ)Conv(f 00(Θ))

= λT(f 0) + (1 − λ)T(f 00)

Now for the reverse direction fix f , f 0, f 00 ∈ F s.t. Conv(f(Θ))=
λConv(f 0(Θ))+ (1−λ)Conv(f 00(Θ)) for some λ ∈ (0, 1). Then I can deduce:

f = T−1(T(f))

= T−1(Conv(f(Θ)))

= T−1(λConv(f 0(Θ)) + (1 − λ)Conv(f 00(Θ)))

= λT−1Conv(f 0(Θ)) + (1 − λ)T−1Conv(f 00(Θ))

= (λT−1T(f 0) + (1 − λ)T−1T(f 00))

= λf 0 + (1 − λ)f 00

Proof of Lemma 1.6.
Suppose M ∈M has an empty intersection with one facet. Without loss

of generality, assume that for all a= (a1, . . . , ak) ∈M, a1 ̸= 0. Since M is
closed, there exists an ϵ > 0, s.t. a1 ≥ ϵ for all a ∈M. Define

Mϵ =
§

aϵ = (
1

1− ϵ
a1 − ϵ,

1
1− ϵ

a2, . . . ,
1

1− ϵ
ak)|a ∈M}
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Mϵ is a feasible delegation set since all probabilities in all alternatives
are positive and add to 1. It is then easy to check that

M = ϵ(1, 0, . . . , 0)+ (1− ϵ)Mϵ.

For the reverse, suppose M ∈M is maximal and suppose

M = λM0 + (1−λ)M00

for some M0, M00 ∈M , s.t. M ∼M0 ∼M00. If one of the parts does not
intersect a facet, so does M, but since M is maximal, so are M0, M00. Yet this
implies M =M0 =M00.

= λ + (1 − λ)

Figure 1.A.1. Illustration of the proof of Lemma 1.6

Proof of Theorem 1.8.
Suppose M ∈M is indecomposable and maximal, and suppose there

exists M0, M00 ∈M , s.t.

M = λM0 + (1−λ)M00

since M is indecomposable M ∼M0 ∼M00, yet since M is maximal by
Lemma 1: M =M0 =M00.

Suppose M is an extreme point. Then M is maximal by Lemma 1. Sup-
pose there exist convex bodies K0, K00 ∈ Rd, s.t. M = K0 +K00.

There are unique maximal sets M0, M00 ∈M , s.t. M0 ∼ K0 and M00 ∼ K00.
Therefore

M = λM0 + (1−λ)M00

Proof of Theorem 1.9.

Theorem (Meyer (1972) and Silverman (1973)). InR2, an indecomposable
compact convex set must be either a point, a line segment, or a triangle.

Given this statement, the theorem is immediate from theorem 1.9.
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Proof of Theorem 1.10.

Theorem (Shephard (1963)). If all the 2-faces of a polytope P are triangles,
then P is indecomposable.

This set is dense in the set of convex bodies for the Hausdorff metric.
See, e.g., Schneider (2014). Given this statement, the theorem is immediate
from theorem 1.9.
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Chapter 2

The Fragility of Specialized
Advice⋆

Joint with Justus Winkelmann

2.1 Introduction
Consider a receiver who must decide on an action but who relies on multi-
ple senders to obtain relevant information.1 Given any particular question,
the more specialized the senders are, the more information is concentrated
among a few of them, because fewer and fewer will know anything about
the subject at hand. Greater specialization can benefit decision making, be-
cause having one source that conveys perfect information is superior to hav-
ingmany sources whosemajority advice may err. On the other hand, relying
on only a few sources naturally grants each of them more influence, which
increases the risk that some senders with diverging interests pose as experts.
Therefore, the main questions of this article are as follows. What are opti-
mal communication patterns, taking into account that some senders have
privately known diverging interests? How do specialization and preference
uncertainty affect communication, and how do they interact? Lastly, how

⋆ This manuscript has previously been circulated under the title "Fake Experts". We
thank Ian Ball, Felix Bierbrauer, Jan Knöpfle, Daniel Krähmer, Stephan Lauermann, Benny
Moldovanu, Martin Pollrich, Larry Samuelson, Dezsö Szalay, and Aleh Tsyvinski. Both au-
thors wish to express their gratitude for the hospitality of the Yale Economics Department
during their respective visits, amid which much of this research has been conducted. Fund-
ing by the Deutsche Forschungsgemeinschaft (DFG) through CRC TR 224 Project B1 is
gratefully acknowledged.

1. Throughout the article, we refer to the receiver with the female pronoun and to
the senders with the male pronoun.
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can we explain that voting mechanisms are still prevalent in some situa-
tions, despite seemingly ignoring specialization?

To illustrate these questions, let us consider an example of a government
agency asking for expert advice on a new regulatory decision. In these cases,
experts hold information that is valuable in making the decision, yet they
might also have private interests owing to financial ties to the regulated
industry. Due to different specializations and experiences, it is likely that
the experts in the advisory bodies are not equally well-informed. In such
a situation, should the regulator give more weight to those experts who
express high confidence in their positions? This allows her to account for the
heterogeneity of information, but it also increases the possibility of experts
with conflicts of interest exerting greater influence by falsely claiming high
confidence. Or should she simply decide based on the numbers of individual
votes for and against approval?

More generally, how should individuals adjust their learning when they
might be lied to by interested parties? This concern extends beyond com-
mercial interest and has recently been at the center of political debates, most
notably that of “fake news.” We therefore try to understand the impact of a
voter struggling to distinguish between interest-led rhetoric and reputable
news. Is in-depth reporting still heard, or does public discourse reduce to
deciding which side has gathered sufficient numbers?

In this article, we examine such decision problems using a multi-sender
cheap talk model in which the senders receive conditionally independent
information. Instead, we assume that they have either aligned interests or
state-independent preferences. We believe that this assumption is reason-
able in situations like the ones above, in which a clear common interest ob-
jective that might be trumped by the private considerations of the senders.
As is standard in the literature, we focus throughout on themost informative
equilibrium. Essential to our analysis is the interaction between the senders’
information structures and the receiver’s uncertainty over their preferences.
To make things concrete, suppose the regulator from our first example has
a prior of 1/2 that the approval of a new regulation is the right decision.
She is advised by 5 experts. All these experts are informed conditionally iid,
which can take either of the two following forms:

1. Each expert receives a binary signal that is known to match the true
state of the world with a 62% chance.

2. Each expert has a 15% chance of learning the state perfectly and other-
wise learns nothing.

In the absence of preference uncertainty, the regulator bases her deci-
sion under information structure 1 on a majority vote. This gives her a 72%



2.1 Introduction | 23

chance of being correct. Under Information structure 2, she follows per-
fectly informed experts, of whom there is at least one with a 56% chance.
Otherwise, she has to toss a coin, which, in total, gives her a 78% chance of
being correct.2 However, as we show below, because gains from very precise
signals are particularly vulnerable to preference uncertainty, the advantage
of Information Structure 2 shrinks as preference uncertainty is gradually
introduced. At around a 10% chance that a expert is partisan in either di-
rection, both information structures allow the regulator to make the right
decision with the same probability, i.e., only 68% of the time. If the chance
of partisanship rises further, Information Structure 1 becomes even superior
to Information Structure 2.

To conceptualize the difference between such information structures,
we introduce two concepts. Any information a expert receives has both a di-
rection, i.e., it favors either the approval or rejection of the regulation, and
an intensity, i.e., how much it moves the expert’s belief away from the prior.
We call the mean intensity of a expert’s signal his average informativeness.
In our example, average informativeness is higher under information struc-
ture 1 because each expert’s posterior is moved 0.12 away from his prior,
although in the second structure this distance on average is only 0.075.

In our example, a specialized expert learns whether the question is in
his field of specialization and hence updates his posterior more or less than
his generalist colleague. To illustrate the concept of specialization, consider
the following Information Structure 3:
3. Each expert receives a signal that matches the true state of the world
with a 60% chance, but also has a 5% chance of learning the state per-
fectly.3
Information Structure 3 can be interpreted as a expert now recognizing,

whether a given question is in his field of specialization in which case he is
more secure in his judgment or not in which case he is less secure. For a gen-
eralist the same information would have no effect. Information Structure 3
is always weakly better than 1, but completely loses its edge when there
is at least a 1 in 12 chance that a expert with either information structure
is a partisan in either direction an effect we formalize in Lemma 2. Thus,
preference uncertainty destroys possible gains from specialization.

As noted above, in these comparisons, we focus on the most informa-
tive equilibrium. Behavior in this equilibrium in the presence of preference

2. The two precision numbers can be derived from the following two expressions:
0.625 +
�5

4

�

0.6240.38+
�5

3

�

0.6230.382 and 1− 0.855 + 1
2 0.855 respectively.

3. As 0.05 ∗ 0.5+ 0.95 ∗ 1= 0.12 average informativeness is the same as for infor-
mation structure 1.
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uncertainty is characterized by senders with aligned interest stating their
true beliefs, whereas partisans send messages independently of their in-
formation, mimicking senders who receive the most informative signals in
their preferred direction. The receiver acts on the central trade-off to use
as much information from aligned senders as possible although limiting the
influence of partisans and putting caps on the influence any one message
can have on her decision. However, between these caps, communication be-
tween the aligned senders and the receiver remains perfect. This is in con-
trast to the typical coarsening of messages in cheap talk games with known
bias in which there is a coarsening affects all messages. Consequently, par-
tisanship has two distinct effects on information transmission, which relate
to the two concepts of informational content: average informativeness and
specialization.

The first effect is that the information held by partisans is lost, because
they send messages independent of the signal they receive. This leads to
a proportional loss in average informativeness. Such a loss is due to the
mere existence of partisans and is equally effective if the partisan senders
preferences are known to the receiver; hence, partisan messages can be
ignored. In that sense known partisanship is equivalent to having aligned
but incompetent sender types.

The second effect is a loss in effective specialization caused by the indis-
tinguishability of advisory and partisan senders. The receiver experiences
uncertainty over the senders’ preferences, which results in the uninforma-
tive messages of the partisans, being treated the same as the messages from
senders with the most valuable signals. This leads to an effective loss in spe-
cialization, because the best signals are now diluted by signals that are, on
average, uninformative, which makes the value of different messages more
homogeneous overall.

If partisanship becomes sufficiently strong, all gains from specialization
are wiped out. The senders reduce their messages to mere indications of
the direction of their information, although the receiver bases her decision
on whether the number of messages in favor of one alternative meets a
fixed threshold. This binary communication between the senders and the
receiver resembles a form of qualified majority voting. Consequently, even
in situations in which some senders naturally have more to contribute than
others, voting arises as an optimal way of communication. In these environ-
ments, the average informativeness of each sender becomes the decisive
predictor of the receiver’s ability to match the state with her decision, al-
though specialization becomes worthless. More generally, in some configu-
rations, a group of expert advisors with more heterogeneously distributed
posteriors is preferable to a receiver, when partisanship is low, but performs
worse when partisanship is high. We are thus worried that increasing po-
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litical polarization might substantially diminish the gains society can reap
from increases in the specialization of knowledge.

The article continues as follows. In the rest of this section, we review the
literature. In Section 2, we introduce our model. Section 3 analyzes the spe-
cial case in which all the senders have aligned interests. We use this natural
benchmark to contrast our later findings. Section 4 introduces concepts to
analyze both the senders’ information structure and the information that is
transmitted to the receiver. We apply these concepts to our general model
in Section 5 and derive our main results. Section 6 concludes.

Related Literature
We place our work between the literatures on cheap talk and information
aggregation in voting. The former builds on the seminal work of Crawford
and Sobel (1982) and analyzes strategic communication between a better-
informed sender and a receiver whose action determines the payoff of both.
In their original setup, the sender has private and perfect information on a
one-dimensional state of the world and a bias known to the receiver.

We depart from this classical model in three central ways, with multiple
senders who are imperfectly informed and whose preferences are unknown
to the receiver.

Gilligan and Krehbiel (1989) were the first to study a model with mul-
tiple senders. In their model, two privately and perfectly informed senders
with publicly known biases communicate with a receiver. The focus of their
analysis is the comparison of three communication protocols that comprise
different forms of cheap talk. Similarly, Krishna and Morgan (2001) study
a setting with two senders who sequentially send public messages to a
receiver. The degree of information revelation depends on whether the
senders have aligned or opposing biases.

Austen-Smith (1990) was the first to study a cheap talk problem in
which the senders are imperfectly informed about a binary state of the
world. Wolinsky (2002) identifies circumstances under which a cheap talk
phase between senders alters the decision and solves for the most efficient
communication structure.

Battaglini (2017) studies public protests as an informal means to aggre-
gate dispersed information in democracies. As politicians generally do not
commit to a reaction to protests ex-ante, such protests are, in fact, modeled
by cheap talk. Information does not need to aggregate if the variation in
optimal decision threshold between the politicians and the citizens is large
relative to the information available to each citizen.

In Alonso, Dessein, and Matouschek (2008) and Hummel, Morgan, and
Stocken (2013), uncertainty about the senders’ preferences arises endoge-
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nously, because each sender is interested in the decision matching his type,
although the receiver wants to match her decision to the average of the
senders’ types. Hence, a sender’s type contains both relevant information
about the state, i.e., the average of types and information about the bias,
i.e., the distance of the individual sender’s type from the average.

In contrast to this approach and in line with our own, Morgan and
Stocken (2003) and Li and Madarász (2008) analyze a single-sender game
with private bias that does not enter the receiver’s payoff. In Morgan and
Stocken (2003) senders are either aligned or have a non-partisan bias. The
authors show that any uncertainty on the receiver’s side about such a bias
yields to the bunching of messages and therefore information loss. If the po-
tential conflict of interest is sufficiently large, a case they call semi-response
equilibrium of size one, the communication of their single sender, is similar
to the one of a every sender individually in our model, when partisanship
can only occur in one direction. In extreme cases, only information that
is opposed to the potential bias is truthfully reportable. Li and Madarász
(2008) find that both players can benefit from the privacy of the sender’s
bias. The receiver’s ignorance sender’s preferences allows for conflict-hiding
equilibria in which amore or oppositely biased type can transmit more infor-
mation, because identical messages are also transmitted by the other type,
changing the expectedmeaning of themessage. In contrast in our model not
knowing the senders’ types is always detrimental to the receiver, because
senders with state independent preferences message independently of the
signals they received. Knowing a sender’s bias therefore makes it possible
to ignore such messages, instead of them being garbled with informative
messages from aligned agents.

Another strand of literature has assumed that one type of sender is
non-strategic and always communicates thruthfully. This strand includes
Sobel (1985), Benabou and Laroque (1992), Vidal (2006), and Glazer, Her-
rera, and Perry (2021). The last is an independent paper modelling inter-
net recommendation systems. Their work, like ours, studies a model with
multiple imperfectly informed senders, in which some senders have state-
independent preferences. because we find in our model that the most in-
formative equilibrium is one in which aligned senders have a best response
to be honest, the equilibria in both models are similar. However, given the
different economic motivations of the two works, the analyses building on
these equilibria are distinct. For a comparison of honest sender types, versus
strategic yet aligned types see also Kim and Pogach (2014).

There is also a structural similarity of our model to models of voluntary
disclosure, a literature started by Dye (1985) and in particular to the of
work of Jung and Kwon (1988). These similarities can be understood by
focusing on the special case of our model with a single sender, that can
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only be a partisan towards state 0. As partisans will always send messages
yielding to the lowest posterior, the resulting communication is similar to
disclosure games where agents desire the receiver to have high believes
about their type, yet some agents are unable to provide evidence and are
hence treated equally to the the lowest types that opt not to disclose their
information.

The second body of literature we relate to is on information aggregation
in voting. It goes back to Condorcet (1785) and his famous jury theorem,
stating that large groups of independently informed senders select the cor-
rect alternative with near certainty. He assumes that senders vote sincerely,
although Feddersen and Pesendorfer (1997) establish a similar result for
strategic senders. They show that when the number of voters grows large,
privately held information leads to the same decision as public information.

Despite the effectiveness of voting for information aggregation in large
populations, the same literature has revealed effects such as the swing
voter’s curse, first discussed by Feddersen and Pesendorfer (1996), which
illustrates a loss of information in small populations. This loss is mainly
due to the nature of the voting game, with its limited number of messages,
usually two or three, and its fixed threshold. Any such voting rule can be
interpreted in our model as a behavioral type of receiver to which strategic
voters react optimally. We therefore believe that ourmodel, with its strategic
receiver, provides a natural benchmark for voting systems and helps distin-
guish which losses of information are necessary consequences of conflicts
of interest and which are due to the specific features of real-world voting
systems.

McMurray (2017) and Azrieli (2018) examine the limitations of elec-
tions with few available messages. McMurray (2017) studies a common in-
terest election of ex-ante symmetric candidates by a fixed number of hetero-
geneously informed senders. In equilibrium, voters coordinate around spe-
cific candidates to transmit information. His model can be interpreted as a
cheap talk game with a restricted number of messages. If the number of can-
didates becomes large, the model converges to our common interest setting.
Azrieli (2018) analyzes the loss of anonymous voting rules if the senders are
publicly known to be differently well-informed. The common-value analysis
is also closely related to ours. However, we assume that signals are private
information and focus on their interplay with private interests.

Lastly, Li, Rosen, and Suen (2001) analyze two-player decision games
with known conflicts of interest. Agents can choose from a set of integer
weights, and an action is taken depending on whether the sum of the
weights exceeds a predetermined threshold. These rules are reminiscent of
the equilibrium play of the receiver in our communication games, despite
the lack of commitment in our model.
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2.2 The Model
There is a set of senders {1, ..., n} and a receiver indexed by 0. Each sender
i receives a signal about the unknown state of the worldω= {0, 1}. Signals
are identically distributed and independent, conditional on the true state
of the world. There is a common prior p0 = P[ω= 1] ∈ (0,1) that the state
of the world is 1. As signals are conditionally independent, all information
is contained in the resulting distribution over posteriors, and we shift the
attention completely to the latter. Each sender draws his posterior from
the probability mass function µ, which is consistent with p0. We assume
that the information structure is such that it leads to a finite number of
possible posteriors P = supp µ. For some results, we assume that no signal
is uninformative, i.e., µ(p0)= 0. We call a distribution µ that fulfills this
assumption never-ignorant. The receiver shares the prior but observes no
signal.⁴

In addition to different signals, players are heterogeneous with respect
to their preferences, as described by a parameter λ ∈ {0,λ0, 1} with λ0 ∈
(0, 1). Each sender i independently draws a preference parameter λi that
is independent of the posteriors and distributed according to probability
mass function γ. The decision-maker has the commonly known preference
parameter λ0. Each sender also draws a posterior pi independently from
both other agents and his preference type according to probability mass
function µ. We call the tuple (pi,λi) the type of sender i, and denote with
µ× γ the distribution over types.

After observing the signal, each sender i simultaneously sends a cheap
talk message ti ∈ [0,1] to the receiver. We denote the potentially mixed
strategy by mi :P × {0,λ0, 1}→∆[0, 1], where ∆[0,1] denotes the set of
all probability measures over [0,1]. Whenever the strategy of the sender
specifies a finite set of messages to be sent a.s. we denote the probability
that sender i with type (pi,λi) sends message ti by mi(pi,λi)(ti). We call
a strategy truthful for preference type λi if mi(pi,λi)(pi)= 1 for all types
(pi,λi). The tuple of messages of all the senders is denoted by t= (t1, ..., tn).

We denote the belief of the receiver accounting only for sender i’s mes-
sage ti by q(ti)= E[pi|ti] and call it the virtual posterior of sender i.⁵ The
posterior of the receiver incorporating the messages t of all the senders is
denoted by q(t). After processing all messages, the receiver takes action

4. We discuss alternatives to some of the assumptionsmade in this model in Appendix
2.C.

5. Different strategies mi induce different virtual posteriors qi(·). Anticipating that
the senders play symmetric strategies in an optimal equilibrium, we drop the subscript i
of the virtual posterior qi(·) to simplify the notation.
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a ∈ {0, 1}. Utilities for the senders and the receiver are given by

u(a,ω,λi) = (1 − λi)1{a = 0} + λi1{a = 1} + 1{a = ω},

where 1 is the indicator function, i.e., 1{A} is 1 if event A is true and 0
otherwise.

A player i prefers action 1 if and only if his belief that the state of the
world is 1 is larger than or equal to 1−λi. A higher preference parameter
λi leads to a higher expected utility of player i given that the action is equal
to 1. Senders with preference parameters 0 and 1 weakly prefer the action
that matches their preference parameter irrespective of the posterior. We
call senders with these preference parameters partisans. The remaining
senders with λi = λ0 have the same interests as the receiver. We call these
senders advisors. Before we proceed, we summarize the timing of the game.
First, nature draws a state of the worldω. Second, every sender i randomly
draws a type (pi,λi) according to the conditional type distribution µω × γ.
Third, each sender i sends a message ti to the receiver. Last, the receiver
takes an action a, and payoffs are realized. We assume that the receiver
does not have commitment power, i.e., she can not credibly commit to a
decision rule before getting the messages of the senders.⁶ Consequently,
we solve for Bayesian Nash equilibria.

In the following, we split the analysis into three parts. We start by study-
ing the common interest case in Section 2.3. Here, all the senders have
aligned preferences. The special case of our setting serves as a benchmark
and allows us to become familiar with how the receiver processes the sig-
nals from the senders. In Section 2.4, we focus on the information structure
of the senders, introduce the concept of specialization, and illustrate its sig-
nificance in the common interest case. Lastly, in Section 2.5, we apply these
concepts in our analysis of the general case, in which we allow for private
interests.

2.3 Common Interest
In this section, we derive a benchmark equilibrium that maximizes the
utility of the receiver when all the senders have aligned preferences, i.e.,
γ(λ0)= 1 and γ(0)= γ(1)= 0. In the common interest case, such an equi-
librium maximizes the utility of the senders as well. The general idea of

6. In particular, this excludes equilibria of the kind discussed in Gerardi, McLean,
and Postlewaite (2009).



30 | 2 The Fragility of Specialized Advice

this equilibrium is straightforward. The receiver needs to perform Bayesian
updating given the senders’ messages, and the senders, knowing that their
information is aggregated in a statistically correct way, can state their pos-
teriors, revealing all their information. It is as if the regulator could observe
all the signals of the experts.

In the following description of this equilibrium, we focus on the statisti-
cal properties and interpretation of how the receiver updates the informa-
tion and how she translates it into her decision.

Definition 2.1. A receiver follows a weighted majority rule if her strategy
a : [0,1]n→ {0, 1} is of the form

a(t) =

¨

1 if
∑n

i=1 w(ti) > τ

0 else

for messages t= (t1, ..., tn) of the senders, a weighting function w : [0,1]→
R, and a threshold τ.

Under a weighted majority rule, the receiver transforms every message
ti into a weight w(ti) and takes decision 1 if the sum of weighted messages
is larger than a threshold τ. One can interpret this as the receiver giving the
senders free choice over the weights in the image of w and limiting herself
to the application of a simple rule. When the size of the image is equal to 2,
this comes down to proposing a decision by qualified majority voting. We
come back to this analogy in Section 2.5. The next proposition translates
the above-described equilibrium into this language.

Proposition 2.2. The following describes a receiver-optimal Bayesian Nash
equilibrium:

• Advisors message truthfully, i.e., mi(pi,λ0)(pi)= 1.
• The receiver follows a weighted majority rule with weighting function

w(x) = ln
x

1 − x
− ln

p0

1 − p0

and threshold τ= −
�

ln λ0
1−λ0
+ ln p0

1−p0

�

.

Proof. See Appendix 2.A.

In this optimal equilibrium, the senders play the truthful strategy to
transmit their posterior to the receiver. The receiver has correct beliefs about
this and can deduce from the posteriors the entirety of their information.
She then translates it into the optimal decision via Bayesian updating, which
we interpret as her applying a weighted majority rule, with log-likelyhood
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ratio weights.⁷ Hence, an equilibrium with higher payoffs for the receiver
cannot exist.⁸

Figure 2.1 illustrates the weighting function with prior p0 =
3
4 for the

common interest case.
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Figure 2.1. Weighting function w(x) = ln x
1−x − ln p0

1−p0
with prior p0 = 3

4 for the
common interest case.

A posterior pi of sender i that equals the prior p0 gets weight 0 because
it does not transmit any additional information. In contrast, a posterior
pi ∈ {0,1} means that sender i knows the state of the world perfectly.
This sender’s information is sufficient to make an optimal decision, and
he should outweigh all other senders. Thus, as pi goes to 1 (0), the
corresponding weight tends to ∞ (−∞). The unrestrictedness of the
weighting function encodes the extraordinary value of perfect information.

In the next section, we refer to the receiver-optimal equilibrium when
we assess different distributions of sender types. The expected utility of the
receiver u⋆(q(t)) with the posterior q(t) is given by

u⋆(q) =

¨

λ0 + q if q > 1 − λ0

2 − λ0 − q else.

We now turn to the analysis of the senders’ information structure.

7. See Nitzan and Paroush (1982) and Shapley and Grofman (1984) for two classi-
cal treatments of the role of such weighting roles for optimal information aggregation in
groups.

8. McLennan (1998) studies optimality of equilibria in common interest games more
generally.
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2.4 Specialization
The distribution over posteriors of the senders is a crucial object in our
model. In this section, we develop the concepts that we use to describe
them throughout. A classical concept in this regard is, Blackwell’s informa-
tiveness order, introduced in, Blackwell (1950).⁹

Definition 2.3. Let µ and ν be two distributions over posteriors with cdfs
F and G, respectively. We say that µ is more informative than ν, denoted by
µ≻ ν, if
∫ y

0

F(x)dx ≥
∫ y

0

G(x)dx for all y ∈ [0,1].

For convenience, we have summarized some facts about the informa-
tiveness order in Appendix 2.B. An important interpretation of the above
integral condition is that the more informative information structure is a
mean-preserving spread of its less informative counterpart. Note that in our
setting, both integrals are equal at 1 given equal priors. In this section, we
build on this classical order to conceptualize specialization in knowledge:

Definition 2.4. Let µ and ν be two distributions over posteriors with cdfs
F and G, respectively. We say that µ is more specialized than ν, denoted by
µ≻s ν, if µ≻ ν and

∫ p0

0

F(x)dx =

∫ p0

0

G(x)dx. (2.1)

We refer to the reverse order as one measure being more generalized
than another.

Because of the additional equality condition, specialization is clearly a
coarsening of the informativeness order. This condition is equivalent to re-
quiring that no mass can be spread to the other side of or away from the
prior. These one-sided spreads can be understood as learning about the qual-
ity of ones signal, in contrast to learning about the direction. The more
specialized an agent is, the more the quality of his assessment depends on
whether a given question is in his area of spezialization or not and hence
the more he can learn about the quality of his judgment, based on observing
the question.

9. The particular characterization used is related to the second stochastic order used
in decision theory. A “riskier” distribution over posteriors contains more information.
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To illustrate the difference between specialization and informativeness
order, let us get back to our example from the introduction with a slight
adjustment. To recall, we have assumed a symmetric prior and discussed
three possible signal structures for experts advising a regulator:

1.Each expert receives a signal that matches the true state of the world
with a 62% chance.

20.Each expert has a 40% chance to learn the state perfectly.
3.Each expert receives a signal that matches the true state of the world
with a 60% chance, but also has a 5% chance to learn the state perfectly.

In contrast to the introduction, we have changed the probability that
a expert receives a perfect signal in 2’. Figure 2 illustrates the cdfs corre-
sponding to these information structures.

As we can see, 3 is a mean-preserving spread of 1, wheras 2’ is a mean-
preserving spread of both. However, the integrals are also equal at the prior
only in the case of 3 and 1. We can interpret this spread as a expert under
signal structure 3 receiving an additional signal that identifies 5% of his
signals as fully revealing, without ever changing the direction of any of his
signals.

Another possible way to understand specialization is to pose that be-
tween two experts that have equal information once one averages above
their signal in either direction the specialist is more heterogeneously in-
formed. We fix this idea in the following definition.1⁰

Definition 2.5. The average informativeness π(µ) of a sender’s distribution
over posteriors µ is

π(µ) = E [|pi − p0|] .

A distribution µ with π(µ)= 0 has all mass at the prior and hence does
not contain any information, whereas the maximal average informativeness
is 2p0(1− p0). Note that equal or higher average informativeness of µ com-
pared to ν is a necessary but not a sufficient condition for µ to be more
informative than ν.

In our example, average informativeness in 1 and 3 equals 0.12, al-
though it is 0.2 in 2’. The following proposition clarifies the link between
average informativeness and specialization:

10. See Frankel and Kamenica (2019) for a critical discussion of the use of metrics,
such as the euclidean metric used here, to quantify information. We should note however,
that because we only use average informativeness in combination with the informativeness
order, their criticisms generally do not apply to our setting.
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(a) Information Structure 2’ is a mean-
preserving spread of 1. However, 2’ is not a
mean-preserving spread on both sides of the
prior separately. Hence, 1 and 2’ are not com-
parable with the specialization order.
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(b) Information Structure 3 can be constructed
by applying mean-preserving spreads on both
sides of the prior of Information Structure 1.
Therefore, 3 is more informative and more spe-
cialized than 1.

Figure 2.2. Illustration of specialization. Distribution of virtual posteriors.
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Proposition 2.6. Let µ and ν be two distributions over posteriors. Then µ≻s

ν if and only if µ≻ ν and π(µ)= π(ν).

Proof. See Appendix 2.A.

By this characterization, a specialist is more informed not because his
posterior is, on average, further away from the prior, but because his pos-
teriors are more heterogeneous. The proof consists in arguing that the one-
sided mean preserving spreads from the definition are exactly those that do
not increase average informativeness.

In the remainder of this subsection, we connect the above insights to the
receiver’s utility. As more informativeness of independent individuals’ distri-
butions over posteriors produces more informativeness overall, as discussed
in Blackwell and Girshick (1979) (see Proposition C in Appendix 2.B), the
utility of the receiver increases with the specialization of posteriors. Thus,
the next corollary to Proposition 2.2 links our discussion in this section so
far with the utility of the receiver.

Corollary 2.7. Let µ and ν be distributions over posteriors with µ≻ ν. When
comparing receiver optimal equilibria under common interests, the utility of
the receiver is monotone with respect to the informativeness and hence the
specialization order, i.e., weakly higher if she is facing senders with distribution
over posteriors µ rather than ν.

Proof. See Appendix 2.A.

As we learned previously that under common interests, all information
held by the senders reaches the receiver and becausemore information is ad-
vantageous, the receiver directly benefits from more informative and there-
fore more specialized senders.

2.5 The Vulnerability of Specialized Advice -
Private Interest Analysis

In this section, we turn to the case with private interests. In Subsection 2.5,
we solve for the receiver-optimal equilibrium. In Subsection 2.5, we decom-
pose the total loss of information into despecialization and a loss of average
informativeness. Lastly, in Subsection 2.5, we present two consequences
of despecialization. First, we show that voting is optimal if preferences are
sufficiently heterogeneous. Second, average informativeness becomes more
important and specialization less important as the number of partisans in-
creases.



36 | 2 The Fragility of Specialized Advice

Receiver-Optimal Equilibrium
Similar to our treatment of the common-interest case we focus on a receiver
optimal equilibrium. It turns out that an optimal equilibrium exists such
that advisors play the truthful strategy, as in Proposition 2.2. Transmitting
as much information as possible is in their best interest. Partisans interfere
with this communication, by mixing over the most extreme messages in
their preferred direction.

As the average posterior of a partisan sender equals the prior, their strat-
egy shifts virtual posteriors towards the prior. They do not transmit any
information to the receiver, but maximize their influence by imitating ad-
visors with the most informative signals. Therefore, the receiver needs to
discount these messages. This way, expertise bounds b and b arise. They
constitute bounds on the highest (lowest) possible virtual posteriors asso-
ciated with any message. The weights w(b) and (w(b)) are the lowest and
highest weights used in the weighted majority rule of the receiver, respec-
tively. They are endogenously determined by the sender type distribution.

Within the expertise bounds, communication between the advisors and
the receiver is noise-free because partisans do not imitate advisors with
imprecise signals. Thus, communication is perfect within these bounds, as
in the equilibrium from Proposition 2.2. Off-equilibrium messages receive
weight 0. Figure 2.3 depicts an example of a weighting function of virtual
posteriors with upper and lower expertise bounds. We formalize the above
discussion in our first theorem.

Theorem 2.8. The following describes a receiver-optimal Bayesian Nash equi-
librium. There exist unique expertise bounds b, b ∈ [0, 1], s.t.

• Advisors message truthfully, i.e., mi(pi,λ0)(pi)= 1.
• Partisans imitate and devalue expertise:

mi(pi, 0)(ti) =

(

γ(λ0)µ(ti)(b−ti)
γ(0)(p0−b) if ti ≤ b

0 else

mi(pi, 1)(ti) =

(

γ(λ0)µ(ti)(ti−b)

γ(1)(b−p0)
if ti ≥ b

0 else

• The receiver uses weighted majority rule with weight function
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w(x) =























ln b
1−b − ln p0

1−p0
if x < b

ln x
1−x − ln p0

1−p0
if x ∈ [b, b]

ln b
1−b
− ln p0

1−p0
if x > b

0 else

and threshold τ= −
�

ln λ0
1−λ0
+ ln p0

1−p0

�

.

Proof. See Appendix 2.A.
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Figure 2.3. Weighting function w(x) = ln x
1−x − ln p0

1−p0
with prior p0 = 3

4 , b = 1
4 ,

and b = 7
8 .

We briefly sketch the proof, which consists of three steps. First, we pro-
vide an explicit formula for expertise bounds and show that they exist and
are unique. This is formally captured in Lemma 2.12 in the Appenddix.

Second, we verify that the senders and the receiver play a best strategy.
We show that the receiver uses weights corresponding to the expected pos-
terior for every message. It is clear that partisans’ play a best response by
maximizing their weight in the preferred direction. Further, aligned senders
ideally want their messages to be weighted according to the untruncated
weighting function, yet given the receiver’s strategy, they get as close as
possible by stating their true posterior.

Lastly, we show that no other equilibrium is better for the receiver. For
this, we first establish that the equilibrium utilities of all agents are charac-
terized by the strategy played by senders conditioned on being advisors. We
already saw in the common interest case that the receiver’s on-path strat-
egy is fully determined by the strategies used by the senders because he
acts last.
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This builds on the insight that whenever an advisory type strategy leads
to more informative messaging in the absence of partisan types, the same
holds true, when partisans are introduced.

This argument in lemma 2.14 in the Appendix. Optimality follows in
combination with Proposition 2.2 that has established, that truthful mes-
saging by advisors is optimal, in the absence of private interests.

We end the Subsection by briefly illustrating the theorem by means of
the example from the introduction. In Information Structure 3, we assume
that an expert gets a perfect signal with a 5% chance and otherwise a signal
that is right 60% of the time. Under a symmetric prior, the senders’ posterior
is 0 or 1 and 0.4 or 0.6 with probabilities 2.5% and 47.5%, respectively. Now
we introduce private interests in the form of a sender being a partisan type,
with an equal chance of 1

38 ≈ 2.6% on either side. Theorem 2.8 predicts the
following effect on the information structure:

• Senders claim with probability 1
38 +

18
19 · 2.5%= 5% a posterior of 0 or

1, respectively. The receiver treats these messages as if everyone has
truthfully reported a posterior of 5

19 and 14
19 , respectively.

• Senders claim with probability 18
19 · 47.5%= 45% a posterior of 0.4 or

0.6, respectively. The receiver treats these messages as true statements.

The example illustrates how partisans undermine the messages of the
most informed sender types, although not affecting the messaging of their
less informative counterparts. We decompose the associated loss of infor-
mation in the next Subsection into two parts that relate to the concepts
introduced in Section 2.4.

Lack of Trust versus Lack of Competence
In this Subsection, we inspect the equilibrium derived in the last Subsec-
tion with respect to the notion of specialization introduced in Section 4. To
do so, we introduce an intermediate regime between private interest and
common interest. In this intermediate regime, there are non-advisory types,
just as before but instead of having misaligned interests, these types are
aligned but incompetent, i.e., they receive no signal.11 A receiver-optimal
equilibrium is characterized by full communication, just as in Proposition
2.2, with the only difference that incompetent agents always message unin-
formatively.

11. The discussion below is equally valid for the case of a receiver who knows the
identity of (informed) senders with partisanship. The receiver ignores any message from
these sender types.
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We make two principal observations. First, the possibility that a sender
is incompetent has the same impact on average informativeness as the pos-
sibility that he is a partisan. Second, in contrast to this regime, partisanship
also leads to an effective loss in specialization because the uninformative
messages of partisans are treated the same as messages from senders with
the most valuable signals. The most informative signals are thus diluted by
signals that are, on average, uninformative. The distrust in messages with
a reportedly high precision destroys the benefits a receiver can reap from
the specialization of her senders.

Therefore, we can decompose the loss of information caused by parti-
sanship in a loss of average informativeness and a loss in specialization, as
formalized in the following theorem:

Theorem 2.9. Let µγpartisan and µγincompetent be the distribution over virtual pos-
teriors in the equilibrium above and the most informative equilibrium with
incompetent types, respectively. The loss of average informativeness in both
cases is identical and equal to the probability that a sender is non-advisory:

π(µγpartisan) = π(µγincompetent) = γ(λ0)π(µ)

However, the virtual posteriors under partisanship are less specialized than
under incompetence:

µ
γ

partisan ≺s µ
γ

incompetent

Proof. See Appendix 2.A.

Let us briefly sketch the proof. First, note that average informativeness is
reduced proportionally under ignorance almost axiomatically. Second, we
show that the way partisans garble advisors’ best signals with their own
uninformative messages is a one-sided mean-preserving contraction of the
distribution of virtual posterior under ignorance. Therefore, it is less special-
ized and, by Proposition 2.6, implies that both distributions have the same
average informativeness.

Having studied the two distinct parts of information loss, we continue by
pointing out two consequences of high degrees of partisanship. We demon-
strate that sufficiently heterogeneous preferences can prevent any differen-
tiated weighting of messages. Further, we show that the value of specializa-
tion vanishes and that average informativeness becomes more important as
the share of partisans rises.



40 | 2 The Fragility of Specialized Advice

A Justification for Voting
In this Subsection, we analyze the effect of a rising share of partisans by
building on the results from the previous two Subsections and the concepts
from Section 2.4. We demonstrate that specialization vanishes as the share
of partisans rises. This is reflected by an equilibrium in which the receiver
weights all messages with the same direction equally. To see why such an
equilibrium might evolve, consider the following reasoning. A partisan im-
itates senders with the most valuable signals. The receiver devalues these
messages accordingly. If the share of partisans is high enough, the weight
of the most informative and second most informative signals become equal.
As the share of partisans increases further although assuming that no com-
pletely uninformed senders exist, only two distinct weights remain - one for
each direction.

We interpret such an equilibrium as voting because only the number
of senders messaging in each direction matters. Specifically, suppose that
there are weights w0 and w1 for the senders’ messages expressing that their
posteriors are left and right from the prior, respectively. According to the
equilibrium, the receiver takes action 1 if n0 ·w0 + n1 ·w1 > τ, where n0

and n1 denote the number of senders with weight w0 and w1, respectively.
This decision rule corresponds to a qualified majority rule that we consider
as a form of voting. The formal statement of the result is as follows:
Theorem 2.10. Let µ be never-ignorant. Then there exists c0, c1 ∈ (0, 1) with
c0 + c1 < 1, s.t. for all γ with γ(0)≥ c0 and γ(1)≥ c1 the receiver forms only
two virtual posteriors, i.e., (qualified majority) voting is the most informative
equilibrium.

Proof. See Appendix 2.A.
We find it instructive to illustrate this result by means of our example

too. Consider Information Structure 3:
3.Each expert receives a signal that matches the true state of the world
with 60%, but also has a 5% chance to learn the state perfectly.

If there are only a few partisans, all of them imitate senders with a perfect
signal. But as the share of partisans rises, the weight that the receiver assigns
to this message decreases and eventually equals to the weight of the initially
less informative message. To be precise, equality is achieved if 1

12 of the
senders are partisan in either direction. Equilibrium play guarantees that
the weight of both messages stays equal for any greater share of partisans.
In fact, if at least 1

12 of the senders are partisan on each side, Information
Structure 3 collapses to Information Structure 1 in terms of the expected
posteriors.
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In such equilibria, the benefits of specialization are completely de-
stroyed by partisans. The level of distrust is so high that effectively only
the direction of a signal can be communicated.12 At the same time, The-
orem 2.10 underlines the robustness of voting. Thus, privately interested
senders might prevent any communication of specialization and provide a
justification for the prevalence of voting in many real-world information
aggregation systems.

We demonstrated that specialization vanishes if there are sufficiently
many partisans. Following Theorem 2.9, average informativeness decreases
too. In the following we relate the information loss of both concepts to each
other. Note that in an equilibrium where voting is the most efficient way to
communicate, average informativeness becomes the most important statis-
tic for the receiver because there is no more specialization. We capture this
observation by the following Proposition:
Proposition 2.11. Let µ and ν distributions over posteriors with π(µ)>
π(ν) and cdfs F and G, respectively. Then there exist c0, c1 ∈ (0,1) with
c0 + c1 < 1, s.t. for all γ with γ(0)≥ c0 and γ(1)≥ c1 and any number of
senders n, we have that µγ ≻ νγ and hence the ex-ante expected utility of the
receiver is weakly greater under distribution over posteriors µ than under ν.

Proof. See Appendix 2.A.
Proposition 2.11 implies that the comparison of two information struc-

tures in terms of the receiver’s utility depends on the number of partisans.
While Information Structure 2 leads to a higher utility of the receiver with
only a few partisans, Information Structure 1 leads to a higher utility if
the share of partisans is at least 10%. Information Structure 2 has a high
degree of specialization that can only be materialized with low numbers
of partisans. In contrast, Information Structure 1 has a higher average in-
formativeness that becomes decisive if there are enough partisans. Taken
together, specialization is particularly valuable with few partisans, and av-
erage informativeness is valuable with many partisans. Thus, even if parti-
sans interfere, information aggregation guaranteeing that signals are good
on average is an effective way to counteract.

12. When the receiver is not indifferent at the prior, there always exist levels of par-
tisanship s.t. the receiver completely ignores senders, because the virtual posterior distri-
bution becomes to uninformative. This collapse of communication corresponds to a voting
threshold below 1 or above n. Our interpretation of voting is therefor most natural, when
either, the receiver is close or indifferent, the number of senders is high, or the least in-
formative signals in either direction are relatively informative. The same point applies to
Proposition 2.11



42 | 2 The Fragility of Specialized Advice

2.6 Conclusion

Our goal in this research has been to understand the optimal communica-
tion of a decision maker with multiple advising experts when she faces un-
certainty about experts’ preferences. In particular, we have been interested
in how these uncertainties affect changes among senders with different in-
formation structures.

We have found that communication that discriminates between mes-
sages, indicating different degrees of confidence, is potentially very infor-
mative for the receiver, but also highly vulnerable to strategic manipulation
by partisan experts. Consequently, such communication is not optimal in
a case with high levels of partisanship. In contrast, binary communication
protocols such as voting prove to be very robust, explaining their prevalence
as a means for information aggregation.

Our research may also lead to a new approach towards questions re-
garding political lobbying. Much of the literature on the subject (see, for
example, Buchanan, Tollison, and Tullock (1980) and Baye, Kovenock, and
De Vries (1993)) has focused on lobbying as a way in which special interest
groups try to provide incentives for political actors, in order to sway them
in their favored direction. It is, however, just as plausible for such groups to
buy influence with advising experts to influence politicians’ beliefs rather
than offer direct incentives. Our work shows that this can be effective even
if politicians are aware of it, as long as they remain ignorant about the
exact identity of the experts who have been compromised. In particular, in-
terest groups may seek to sometimes influence experts against their own
favored decisions to create the justified belief that some experts advocating
the other side are not trustworthy. When talk is cheap, trust is a valuable
yet vulnerable asset.

Appendix 2.A Proofs

Proof of Proposition 2.2. In this proof, we follow closely standard ar-
guments regarding the representation of Bayesian updating usings log-
liklyhood ratios as they can be found, for example, in the proof of Theo-
rem 1 in Nitzan and Paroush (1982), who derive the optimal non-strategic
processing of signals with a symmetric prior λ0 =

1
2 .

In the main text, we use the same notation for random variables and
their realizations. For this proof, it is useful to introduce a separate notation.
We use upper-case characters for random variables and lower-case charac-
ters for their realizations.
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The receiver processes messages t to update her posterior. She prefers
the action that yields the higher expected utility given her posterior q(t).
More precisely, an optimal decision rule selects action 1 if

λ0 + P[ω = 1|T = t] > (1 − λ0) + P[ω = 0|T = t]

⇔ λ0P[ω = 1|T = t] > (1 − λ0)P[ω = 0|T = t]

⇔ λ0
P[P = p|ω = 1] · P[ω = 1]

P[P = p]
>

(1 − λ0)
P[P = p|ω = 0] · P[ω = 0]

P[P = p]

⇔ λ0p0

∏

i

P[Pi = pi|ω = 1] >

(1 − λ0)(1 − p0)
∏

i

P[Pi = pi|ω = 0]

⇔ λ0p0

∏

i

pi

p0
> (1 − λ0)(1 − p0)

∏

i

1 − pi

1 − p0

⇔
∏

i

�

pi

1 − pi

1 − p0

p0

�

>
1 − λ0

λ0

1 − p0

p0

⇔
∑

i

�

ln
pi

1 − pi
− ln

p0

1 − p0

�

> −
�

ln
λ0

1 − λ0
+ ln

p0

1 − p0

�

.

The first equivalence is a simple algebraic consequence of the fact that
the first and second factors each add to one. For the second equivalence, we
apply Bayes’s rule and exploit the fact that senders play the truthful strategy.
In the third step, we use the conditional independence of signals. We arrive
at the fifth equation by applying Bayes’s rule once again. The sixth equation
is a simple reformulation of the fourth. Finally, we obtain the last equation
by taking the logarithm on both sides. The resulting decision rule can be
interpreted as a weighted majority rule with weighting function

w(ti) = ln
ti

1 − ti
− ln

p0

1 − p0

and threshold τ= −
�

ln λ0
1−λ0
+ ln p0

1−p0

�

.
It is optimal for the senders to play the truthful strategy because senders

and the receiver have the same utility function. With the truthful strategy,
the senders can transmit all available information. Any beneficial transfor-
mation of messages can be done by the receiver.
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Proof of Proposition 2.6. We rewrite π(µ) until we arrive at an expression
from which the result is immediate:

π(µ) = E [|pi − p0|]

=

∫ 1

0

|x − p0| µ(x)dx

=

∫ p0

0

(p0 − x) µ(x)dx +

∫ 1

p0

(x − p0) µ(x)dx

= p0 · F(p0) −
∫ p0

0

x µ(x)dx

+

�

p0 −
∫ p0

0

x µ(x)dx

�

− p0 ·
�

1 − F(p0)
�

= 2

�

p0 · F(p0) −
∫ p0

0

x µ(x)dx

�

= 2

∫ p0

0

F(x)dx.

The fourth equation follows from the common prior p0 =
∫ 1

0
x µ(x)dx and

the last equality from integration by parts. Therefore, two posterior distribu-
tions with the same prior have the same average informativeness if and only
if they satisfy the integral condition for second-order stochastic dominance
at the prior with equality.

Proof of Corollary 2.7. In the receiver-optimal equilibrium from Proposi-
tion 1, we have seen that all the information reaches the receiver. When
senders’ signals are more informative and their information is independent,
their joint information also becomes more informative by Proposition C in
Appendix 2.B. The receiver’s utility then can only increase from more infor-
mation reaching her.

Proof of Theorem 2.8, Part A: Expertise bounds:

Lemma 2.12. For distribution over posteriors µ with cdf F and preference
distribution γ, the lower expertise bound b in the receiver-optimal equilibrium
is determined by

γ(0)
�

p0 − b
�

=

∫ b

0

(b − x)dµ = γ(λ0) ·
∫ b

0

F(x) dx,
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and the upper expertise bound b is determined by

γ(1)
�

b − p0

�

= γ(λ0)

∫ 1

b

(x − b)dµ = γ(λ0) ·
∫ 1

b

1 − F(x) dx.

Both equations have a unique solution for all µ and γ.

Proof of Lemma 2.12. As all messages ti ≤ b result in the same virtual pos-
terior b, we have

γ(λ0)
b
∫

0
F(x)dx + γ(0)p0

γ(λ0)F(b) + γ(0))
= b

An algebraic manipulation yields

γ(0)
�

p0 − b
�

= γ(λ0)

∫ b

0

(b − x)dµ

as stated in the lemma. Note that the left side of the equation is strictly
decreasing in b ∈ [0, p0] and is 0 only if b= p0. The right side is weakly
increasing in b and is 0 for b= 0. Further, both sides are continuous in b.
Thus, there is a unique b that fulfills the equation.

The proof for the upper expertise bound is analogous.

Proof of Theorem 2.8, Part B: Equilibrium. As in the proof of Proposition
2.2, we use upper-case characters for random variables and lower-case char-
acters for their realizations.

We start to calculate the virtual posterior q(ti). The only senders that
send messages within the expertise bounds are advisors. Thus, q(ti)= ti for
ti ∈ (b, b)∩P . For messages ti ≤ b with ti ∈ P , the virtual posterior of the
receiver is

q(ti) = P [ω = 1|Ti = ti]

=P [ω = 1|Ti = ti ∧ λi = λ0]P [Ti = ti|λi = λ0]

+ P [ω = 1|Ti = ti ∧ λi = 0]P [Ti = ti|λi = 0]

=
tiγ(λ0)µ(ti) + p0γ(0)m(., 0)(ti)
γ(λ0)µ(ti) + γ(0)m(., 0)(ti)
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=
ti +

b − ti

p0 − b
p0

1 +
b − ti

p0 − bp0

= b.

The calculation for the virtual posterior of messages ti ≥ b with ti ∈ P is
q(ti)= b by an analogous calculation. Thus, the receiver’s on-path beliefs
are consistent with Bayesian updating.

The technique of Nitzan and Paroush (1982) and the proof of Proposi-
tion 2.2 teach us how to process a set of (virtual) posteriors optimally. Again,
the best response of the receiver can be interpreted as a weighted majority
rule with weighting function

w(x) = ln
q(x)

1 − q(x)
− ln

p0

1 − p0

=























ln b
1−b − ln p0

1−p0
x ∈ P ∧ x ≤ b

ln x
1−x − ln p0

1−p0
x ∈ P ∧ b ≤ x ≤ b

ln b
1−b
− ln p0

1−p0
x ∈ P ∧ b ≤ x

0 else

and threshold τ= −
�

ln λ0
1−λ0
+ ln p0

1−p0

�

.

We proceed by proving that senders play best responses. Partisans
maximize the probability that the receiver takes the action that matches
their preference parameter. Given the strategy of advisors and the receiver,
they send a message with maximal weight in the preferred direction. In
the equilibrium strategy 0- (1-) partisans mix over messages with weight
ln b

1−b
− ln p0

1−p0
(ln b

1−b − ln p0
1−p0

) which is the highest (lowest) weight as-
signed by the receiver. Hence, these partisans play best responses.

The advisor and the receiver have the same utility function and prefer
the same action when they have the same information. Thus, the best the ad-
visor can do is to get as close to revealing all his information to the receiver
as possible. Given any posterior the advisor holds he can either transmit his
information noise-free if his posterior happens to be within the expertise
bounds or their is a cap to what he can communicate, which he reaches,
when sending his posterior as his message. He hence never faces the trade-
off of having to over or undershoot in what he communicates and hence
truthfully messaging is optimal.
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Taken together, the strategies and beliefs in Theorem 2.8 are a weak
perfect Bayesian equilibrium.

Proof of Theorem 1, Part C: Receiver Optimality . We show that the
equilibrium in Theorem 2.8 is optimal for the receiver. We proceed in
two steps. First, we introduce a technique that allows us to compare
equilibria in the common interest case. This represents a more complete
discussion than necessary to prove Proposition 2.2. Second, we show that
the comparison carries over to the case with partisans. More concretely,
we show that if an equilibrium in which advisors play the truthful strategy
is more informative than another one in the case without partisans, it
continues to be more informative than the other one in the presence of
partisans.

The receiver bases her decision on the virtual posteriors q(ti), which
she infers from messages ti of senders i= {1, ..., n}. The same set of virtual
posteriors leads to the same decision. The distribution of virtual posteriors
q(ti) for sender i is determined by the distribution of posteriors µ and the
sender i’s strategy mi.
Definition 2.13. Let µ be a distribution of posteriors and mi the strategy of
sender i. We denote the distribution of virtual posteriors of sender i by µγmiand define it by its cdf

Fγmi
(x) = P[q(ti) ≤ x],

where ti is sender i’s message. We suppress superscript γ in the common
interest case, i.e., we write µmi

and Fmi
if γ(λ0)= 1.

In the following, we compare the distribution over virtual posteriors of
the equilibrium in which advisors play the truthful strategy with the distri-
butions over virtual posteriors of other equilibria. We know from Proposition
2.2 that playing the truthful strategy is part of a receiver-optimal equilib-
rium for the common interest case. Using the concept of distributions over
virtual posteriors helps us generalize this observation to the case with par-
tisans.

The rest of the proof consists of three steps. First, we formalize that
the virtual posterior distribution of a single sender is most informative in
the common interest case, when advisors play the truthful strategy. Then
second we show that even though partisans do not imitate and devalue
expertise in all equilibria, whenever they do not, it never changes the action
the receiver takes. We can hence ignore such equilibria when checking that



48 | 2 The Fragility of Specialized Advice

our optimality candidate might be dominated. Lastly, we demonstrate that
given that truth telling is optimal in the absence of partisans and given
that partisans imitate and devalue expertise when they are added, truth
telling remains optimal. These three statements are formalized in the three
following Lemmas respectively.

Lemma 2.14. Let µ be a distribution over posteriors, m⋆i a strategy in which
advisors play truthfully, and m0

i any other strategy of sender i. Then, if µm⋆i
is

more informative than µm0

i
, it follows that µγm⋆i is more informative than µγm0

i
,

i.e.
µm⋆i
≻ µm0

i
⇒ µγm⋆i ≻ µ

γ

m0

i
.

Lemma 2.15. Let µ be a distribution over posteriors, m⋆i the truthful strategy,
and m0

i any other strategy. Then it holds that µm⋆i
is more informative than

µm0

i
, i.e., µm⋆i

≻ µm0

i
.

Lemma 2.16. Take any weak Bayes Nash Equilibrium s.t. some senders’
strategies conditioned on partisanship do not imitate and devalue expertise.
Then the receiver’s action is always the same as if they were to play this strat-
egy.

Given these three statements, the virtual posterior of sender i is most
informative if types with λi = λ0 play the truthful strategy. Again, under
Theorem 12.3.2 in Blackwell and Girshick (1979) (see Proposition B in Ap-
pendix 2.B), the sender-wise comparison carries over to the overall infor-
mation structure. By Theorem 12.2.2 (4) in Blackwell and Girshick (1979)
(see Proposition C in Appendix 2.B), we conclude that no better equilibrium
for the receiver than that described in Theorem 2.8 exists. We now proof
the three lemmas we just applied.

Proof of Lemma 2.14. To simplify the notation, we denote µm⋆i
by µ, µm0

i

by ν, µγm⋆i by µ
γ, and µγm0

i
by νγ. Further, we denote Fm⋆i

by F, Fm0

i
by G, Fγm⋆i

by Fγ, and Fγm0

i
by Gγ.

To prove that µγ is more informative than νγ, we show that
∫ y

0

Gγ(x)dx ≤
∫ y

0

Fγ(x)dx for all y ∈ [0, 1].

We first derive the following condition:
Let µ and ν with µ≻ ν be distributions over posteriors with cdfs F and

G, respectively. Let γ be the distribution of preference parameters. Then, the
lower (upper) expertise bound b

µ
of µ is weakly smaller (greater) or equal
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than the lower (upper) expertise bound b
ν
of ν in the optimal equilibria

with partisans.
This holds by the following argument. Suppose that b

ν
< b

µ
, and use

Lemma 2.12 to see that

γ(0)
�

p0 − b
ν

�

= γ(λ0) ·
∫ bν

0

G(x)dx

≤ γ(λ0) ·
∫ bν

0

F(x)dx

≤ γ(λ0) ·
∫ bµ

0

F(x)dx = γ(0)
�

p0 − b
µ

�

.

Hence, b
µ
≤ b

ν
, which is a contradiction. The proof for the upper expertise

bound is analogous.
Using this insight, it holds that b

µ
≤ b

ν
and bµ ≥ bν. This allows us to

check the inequality separately on the three intervals
�

0, b
ν

�

,
�

b
ν
, bν
�

, and
�

bν, 1
�

.
For all y ∈
�

0, b
ν

�

, it holds that
∫ y

0

Gγ(x)dx = 0 ≤
∫ y

0

Fγ(x)dx.

For all y ∈
�

b
ν
, bν
�

it holds that
∫ y

0

Gγ(x)dx =

∫ y

bν

γ(0) + γ(λ0)G(x)dx

= γ(0)(y − b
ν
) + γ(λ0)

∫ y

0

G(x)dx − γ(λ0)

∫ bν

0

G(x)dx

= γ(0)(y − p0) + γ(λ0)

∫ y

0

G(x)dx

≤ γ(0)(y − p0) + γ(λ0)

∫ y

0

F(x)dx

=

∫ y

0

Fγ(x)dx.

The first equality follows from the definition of virtual posteriors and the
equilibrium strategies. For the third equality, we apply Lemma 2.12. The
inequality follows from the assumption that µ≻ ν.
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As Gγ(x)= 1 for x ≥ bν, it follows that for all y ∈
�

bν, 1
�

, it holds that

∫ 1

y

Gγ(x)dx ≥
∫ 1

y

Fγ(x)dx.

The expected value of both distributions is consistent with the common prior,
i.e.,
∫ 1

0
Fγ(x)dx =
∫ 1

0
Gγ(x)dx = 1− p0. Thus, we conclude that
∫ y

0

Gγ(x)dx ≤
∫ y

0

Fγ(x)dx,

for all y ∈ [bν, 1], which concludes the proof.

Proof of Lemma 2.15. Let µm⋆i
be the distribution over virtual posteriors

under the truthful strategy m⋆i . Any distribution µm0

i
that is induced by an-

other strategy m0

i can be constructed from µm⋆i
by an application of garblings.

We do not restrict strategies to use only a finite set of messages. Therefore,
we apply a result from Blackwell (1953) that generalizes Theorem 12.2.2
in Blackwell and Girshick (1979) (see Proposition A in Appendix 2.B) to
the case with continuous signals. Thereby, we conclude that µm⋆i

is more
informative than µm0

i
.

Proof of Lemma 2.16. We will prove this by contradiction. Let us assume
that an equilibrium exists that violates the statement of the lemma. Recall
that in any equilibrium, the receiver strategy is to follow a weighted major-
ity rule. Fix a state of the world and senders’ types (p,γ) s.t. if partisans
were to imitate and devalue expertise, wlog action 1 would be taken, but
instead, action 0 is taken. We will show that partisan types do not play a
best response, thereby implying a contradiction.

In this state, if all senders with preference type 1 were to change their
message to that associated with the highest virtual posterior, action 1 would
be taken. If any partisan is pivotal, he is not best responding, and we directly
have a contradiction.

Let us instead assume that multiple 1 partisans need to change their
message, to change the action of the receiver and fix any ordering of them.
Then there will be a first critical 1 partisan that can change the receiver’s ac-
tion provided that all partisans before him have already selected a message
corresponding to the highest virtual posterior.

Now let us replace all partisan senders that were before the critical one
with their respective aligned types that send the message associated with
the highest virtual posterior. They need to exist in any non-babbling equilib-
ria. This event happens with positive probability. In this situation the critical
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partisan is pivotal and hence his strategy was not a best response to begin
with.

This concludes the proof of optimality.

Proof of Theorem 2.9. The distribution over posteriors of a sender whose
partisan types have been exchanged with incompetent types is given by:

µ
γ

incompetent = γ(λ0)µ(x) +
�

γ(0) + γ(1)
�

δp0

with average informativeness:

π(µincompetent)= γ(λ0)π(µ).

The distribution over virtual posteriors derived from the equilibrium in
Theorem 2.8 is given by

µ
γ

partisan(x) =























γ(λ0)F(x) + γ(0) if x = b

γ(λ0)µ(x) if x ∈
�

b, b
�

γ(λ0) (1 − F(x)) + γ(1) if x = b

0 else.

We first check whether µpartisan is less informative than µincompetent. For
this, let us denote with Fγpartisan, Fγincompetent, and F the cdfs of µγpartisan,
µ
γ

incompetent, and µ, respectively. We then must show that
y
∫

0

Fincompetent(x)dx ≥

y
∫

0

Fpartisan(x)dx ∀y ∈ [0, 1].

When y ∈ [0, b], this is true, because Fpartisan is constant and equal to 0

on this interval. The case for the interval y ∈ [b, 1] follows by a symmetric
argument, because the integrals become equal to the prior at y = 1. Let us
hence focus on y ∈ [b, b]. We then get

y
∫

0

Fincompetent(x)dx =

y
∫

0

γ(λ0)F(x) + (1 − γ(λ0))1{x ≥ p0})dx

=

b
∫

0

γ(λ0)F(x)dx
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+

y
∫

b

γ(λ0)F(x) + (1 − γ(λ0))1{x ≥ p0})dx

≥ γ(0)(p0 − b) +

y
∫

b

γ(λ0)F(x) + γ(0)1{x ≥ p0})dx

≥

y
∫

b

γ(λ0)F(x) + γ(0)dx

=

y
∫

0

Fpartisan(x)dx.

The first inequality makes use of Lemma 2.12. In the last equality, we
use the fact that Fpartisan is equal to 0 on [0, b]. Lastly, we verify the average
informativeness of µpartisan to be

π(µγpartisan) =

∫ 1

0

|x − p0|dµpartisan

=γ(λ0)

1
∫

0

|x − p0|dµ + γ(0)(p0 − b)

−

b
∫

0

(b − x)dµ + γ(1)(b − p0) −

1
∫

b

(x − b)dµ

=γ(λ0)π(µ).

Here the last equation is a consequence of Lemma 2.12.

Proof of Theorem 2.10. We prove the proposition in two steps. We start to
show that by monotonicity and continuity of b and b, there exists c0, c1 ∈
(0,1), such that the receiver can only form two expected posteriors in the
optimal equilibrium. Then, we prove that there exist c0 and c1 such that
c0 + c1 < 1. For both parts, we use Lemma 2.12, which characterizes the
lower expertise bound by the equation
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γ(0)
�

p0 − b
�

= γ(λ0) ·
∫ b

0

F(x)dx.

The lower expertise bound can take any value in b ∈
[0,max{x : F(x)= 0}] if γ(0)= 0. Further, it is p0 if γ(0)= 1. Rewrit-
ing the above equation yields

γ(0)
γ(λ0)

=

∫ b

0
F(x)dx

p0 − b
(2.A.1)

which exhibits that b is monotonically increasing in γ(0), monotonically
decreasing in γ(λ0), and continuous in γ(0),γ(λ0) ∈ (0, 1).

As µ is never-ignorant, there exists a highest type strictly smaller than
the prior, pL :=max{x|x < p0 ∧ x ∈ P }. The proposition is fulfilled if the
lower expertise bound equals this type b= pL. The continuity and mono-
tonicity of b imply that the right-hand side of Equation (2.A.1) is pos-
itive and finite, and hence, γ(0)< 1 if b= pL. The proof for the upper
part with type pH :=min{x|x > p0 ∧ x ∈ P } is analogous, so that constants
c0, c1 ∈ (0, 1) are implicitly given by

c0

�

p0 − pL

�

= γ(λ0) ·
∫ pL

0

F(x)dx (2.A.2)

c1

�

pH − p0

�

= γ(λ0) ·
∫ 1

pH

1 − F(x)dx. (2.A.3)

To see that c0 + c1 < 1, divide Equations (2.A.2) by
�

p0 − pL

�

and
�

pH − p0

�

, respectively. Adding both equations yields

c0 + c1 = γ(λ0) ·

∫ pL

0
F(x)dx

p0 − pL
+ γ(λ0) ·

∫ 1

pH
1 − F(x)dx

pH − p0
.

As
∫ pL

0 F(x)dx
p0−pL

,
∫ 1

pH
1−F(x)dx

pH−p0
> 0, it follows that γ(λ0)> 0. This implies that c0 +

c1 = γ(0)+ γ(1)= 1− γ(λ0)< 1, which completes the proof.

Proof of Proposition 2.11. By Lemma 2.12, we know that as long as γ(0)
and γ(1) remain above some fixed ε > 0, we have that as γ(λ0) converges
to 0, expertise bounds converge to the prior.

Hence, there exists c0 and c1 for which both µγ and νγ have, at most, one
mass point above and below the prior, and for large enough partisanships,
the masses of these points become arbitrarily similar, as almost no aligned
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senders are left. However, the relative difference in the average informative-
ness of both virtual posterior measures stays fixed. Therefore, there exist c0

and c1 for which the mass points, which are not at the prior, of µγ are nec-
essarily further away from the prior than those of νγ. However, this implies
that µγ is more informative than νγ, which implies our result by Proposition
2.
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Appendix 2.B Appendix: Basic Properties of
the Informativeness Order

In this part of the appendix, we collect certain tools from the literature
that we use throughout and that are related to definition 1. This allows us
to compare the receiver’s utility for different distributions over posteriors
of senders. The methods and results in this Subsection are borrowed from
Chapter 12 in Blackwell and Girshick (1979), building on majorization the-
ory, first developed by Hardy, Littlewood, and Polya (1929). To apply their
machinery to our problem, we adjust our setting, and translate our notation
into theirs.

The following results rely on the assumption that the action space of the
receiver is a closed bounded convex subset of R. To fulfill this assumption,
we extend the action space of the receiver from {0, 1} to ∆{0,1}, so that
her action space is the interval [0,1]. An action a ∈∆{0, 1} corresponds
to the probability that the receiver takes action 1. Note that we can use
this extended action space throughout the whole article without changing
any result. In all statements on the receiver’s best response, one of the two
extreme actions {0,1} ⊂∆{0,1} is optimal. We use the action space {0,1}
in the main text of the article to simplify the exposition.

To present the next results, it is also helpful to introduce some of the
notation of Blackwell and Girshick (1979). For a distribution over posteriors
µ, we define a 2×N matrix P, where N = |P | is the number of possible
posteriors. The rows represent the two states of the world 0 and 1. Each
column represents one possible posterior. The value Pij is the probability of
observing the posterior represented by column j in state i. Note that matrix
P is Markov, which means that Pij > 0 for all i and j and that

∑N
j=1 Pij = 1 for

all i. With the notation, we are equipped to remind the reader of Theorem
12.2.2 in Blackwell and Girshick (1979).

Proposition A (Blackwell and Girshick (1979)). Let P and Q be two 2×N1

and 2×N2 Markov matrices of distributions over posteriors µ and ν. µ is
more informative than ν if and only if there is an N1 ×N2 Markov matrix M
with PM = Q.

Matrix M is said to garble information by transforming matrix P to
Q. This means that distribution ν can be constructed from distribution µ.
This interpretation justifies the statement that µ is more informative than ν.

The next result generalizes the previous proposition by enabling the com-
parison of sets of distributions. Each sender sends a conditionally indepen-
dent posterior. Consider two sets of senders with different distributions over
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posteriors. Then, Theorem 12.3.2 in Blackwell and Girshick (1979) allows
us to compare the information of both groups in the following sense.

Proposition B (Blackwell and Girshick (1979)). Let (µi)
n
i=1 and (νi)

n
i=1 be

two sets of distributions over posteriors. Suppose that µi is more informative
than νi for every i. Then, the combination of distributions over posteriors
(µi)

n
i=1 is more informative than (νi)

n
i=1.

The proposition allows us to compare the information that is transmitted
to the receiver from different distributions. Theorem 12.2.2 (4) in Blackwell
and Girshick (1979) allows us to use this result for a statement on the utility
of the receiver.

Proposition C (Blackwell and Girshick (1979)). Let µ and ν be two dis-
tributions over posteriors such that µ is more informative than ν. Then for
every continuous convex function φ : [0, 1]→ R, we have

Eµ [φ(x)] ≥ Eµ0 [φ(x)] .

Note that the utility function u⋆(q) is convex in q. Thus, if there are two
distributions over posteriors with µ≻ ν, the proposition implies that the
expected utility for the receiver with distribution µ is at least as high, as
with distribution ν.

Appendix 2.C Appendix: Discussion of
Assumptions

More Actions
One can easily imagine situations in which a receiver not only has a binary
choice but also might prefer to take any of a range of intermediate actions
whenever his belief is sufficiently far away from either 0 or 1. In these cases,
our analysis mostly generalizes as long as aligned senders still have identical
utility functions as the receiver and the partisans, they still have monotone
preferences with regard to the receiver’s belief regardless of the true state of
the world. To describe such more general models, one would likely abstract
the exposition to a reduced form in which each agent’s utility is simply a
function of the receiver’s belief. We have forgone this extra generality to
present the model with a concrete and maximally simple decision problem.
As a byproduct, the interpretation of our numerous illustrations is also sim-
plified.
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Also note that our focus on a binary decision problem is conservative in
the role specialization and the loss of it plays for the receiver. Any additional
action that does not dominate any previous actions can only make the re-
ceiver’s utility more convex, hence increasing the gains from specialization.

Continuous Support
In this article, we focused on situations in which every signal only has a
finite set of possible realizations. We do not see this as more or less natural
than to assume a distribution over posteriors that is absolutely continuous
but rather find that working with general probability measures would likely
add little insight, yet complicate our exposition.

The only significant change that we anticipate, if one would pursue to
rewrite this model with absolutely continuous posterior functions is a ne-
cessity to redefine never-ignorant as we have used it in Theorem 2.10, to
mean that a neighborhood around the prior is not included in the support
of posterior distribution. In essence, we require a lower bound of the infor-
mation contained in every possible posterior, which in the discrete case, is
given whenever the prior is not itself a possible posterior.

Heterogeneous Senders
We decided to restrict our analysis to symmetric senders for ease of expo-
sition. However, in some of the applications, it stands to reason that the
receiver can discriminate among the senders based on prior knowledge. A
regulator might understand that one of his advising experts has previously
worked on the approval of similar regulations and might hence believe his
distribution over posteriors to be more informative than average.

As we have seen in our discussion of the symmetric senders, the re-
ceiver’s learning frommessages happens sender by sender, i.e., the message
of one sender does not change how the message of another is processed.
Consequently, all that changes in our model, when we allow for asymmet-
ric senders, is that the weighting function that the receiver uses needs to be
individualized based on each sender’s posterior and preference distribution.

Learning about the informativeness and preferences of senders can, of
course, only improve the receiver’s situation as she can always choose to
ignore that information regardless. Hence, our symmetric case can also be
interpreted as a worst-case benchmark for the effect of partisanship on in-
formation transmission.

Departing from that benchmark, our previous analysis suggests that the
largest gains from knowledge about the individual sender’s informativeness
and preferences are generated by the possibility of finding a specialist with
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a low probability of partisanship. As we have seen, specialization can have
great benefits as long as the expert is also well trusted.
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Chapter 3

Bad Compromises⋆

3.1 Introduction
The idea of the tyranny of the majority is a significant concern within mod-
ern democracies. Limitations of majority rule are central in most politi-
cal systems, from additional super-majority requirements and mandatory
checks and balances to the direct unchangeability of critical aspects of con-
stitutional frameworks. In this paper, I will discuss a related, yet much less
studied, threat to welfare within democracies: The tyranny of a compromis-
ing minority.

The famous mean voter theorem implies for single-peaked-preference
domains that majority rule leads to the election of the mean voter’s pre-
ferred alternative. However, in principle, the preferences of the mean and
average voters can be arbitrarily far apart. In some cases that I discuss below,
the mean voter would prefer both alternatives to the left and the right of
the median voter’s first choice. I will take the mechanism design approach
and ask how a robust voting system can deal with such instances. My find-
ings are rather stark. In contrast to the gradual options of super-majority
requirements that can regulate a tyranny of the majority, only the ex-ante
exclusion of compromises can prevent the tyranny of the compromising mi-
nority.

I should first revisit the famous Gibbard–Satterthwaite theorem to un-
derstand this surprising result. It states that any strategy-proof and surjec-
tive mechanism is dictatorial on the complete domain of preferences over
more than two alternatives. It is hence usually interpreted as a strong nega-

⋆ I thank Felix Bierbrauer, Tilman Börgers, Johannes Hörner, Stephan Lauermann,
Benny Moldovanu, Martin Pollrich and Justus Winkelmann for numerous helpful discus-
sions.
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tive result. However, suppose one is willing to preclude alternatives. In that
case, it is possible to implement any qualified majority decision between
two preselected alternatives, and with this limited form of preference aggre-
gation, welfare often increases. Hence, the reduction in incentive constraints
comes from precluding alternatives that potentially improve welfare.

This phenomenon extends to the domain of single-peaked preferences
for which the relevant characterization of surjective mechanisms due to
Moulin is usually seen as a positive result since it consists of a rich set of
generalized median voting mechanisms. More specifically, I will see that in
this setup, it will only ever be welfare-improving to exclude compromises,
i.e., alternatives other than the left-most and right-most.

Let us illustrate this result and its relevance with the example of parlia-
mentary elections. For most such elections, the outcomes can be classified
into three categories. They can result in either a stable majority of the two
blocks in the chamber or unclear majorities. Most voters favor a govern-
ment by their preferred block, yet some vote for fringe parties. These fringe
parties usually either represent a specific agenda incompatible with either
block or are also used by voters to voice their criticism and punish the parties
within the two blocks. Since those parties will not join a coalition of either
side, the supporters of those parties reveal their preference for uncertain
majorities. They are the compromising minority. The unstable majorities
that they enforce lead to a prolonged period of finding the next government
and can also lead to a government of the smallest consensus, depending on
how polarized the chamber is. To illustrate the welfare effects that can arise
in such a situation, I give the following numerical example. The numbers
should be read as von Neumann Morgenstern utilities.

Alternatives
Left Unclear Right Frequencies

Types

Left Block 1 1/3 0 46- 48%
Fringe Left 1/3 1 0 3-4%
Fringe Right 0 1 1/3 3-4%
Right Block 0 1/3 1 45-47%

Note that there is some aggregate uncertainty over the distribution of
agents’ preferences. This translates into uncertainty about whether a left-
block or a right-block government is the utilitarian choice. Note, however,
that there is no uncertainty that the unclear majority’s outcome is the worst
possible outcome, despite being the likely favored choice of the median
voter.

One possible reaction to this is to be willing to deviate frommajority rule
and allow for biased mechanisms to prevent compromise selection. How-
ever, this leads us to a more fundamental weakness of any non-precluding
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mechanism. It can be biased towards either extreme outcome and hence en-
sures this alternatives selection with near certainty. However, no such mech-
anism that fulfills standard conditions and is hence a generalized median
mechanism can always select the larger political block. Therefore, these
non-precluding mechanisms do not allow for an optimal decision between
the two block governments.

If, in contrast, the compromise outcome is precluded, then a near-
optimal comparison is possible, yielding an increase in expected total wel-
fare. Actual electoral provisions like voting thresholds, majority bonuses,
and two-party systems are all designed to reduce the chance of unclear
majorities. From those, only the two-party system precludes them entirely,
with the others giving incentives for strategic misreporting of preferences.

Another provision in a number of modern constitutions can be inter-
preted as a direct application of this theory: Constructive motions of no
confidence. As a lesson taken from the fragility of numerous governments
during the Weimar Republic1, the Grundgesetz of the Federal Republic of
Germany first introduced the requirement that a sitting chancellor can only
be removed from office by the election of his successor. It also leaves no abil-
ity for the opposition on their own to dismiss the parliament, even if they
received a majority due to the deterioration of the governing coalition. This
has removed the bad compromise of new elections that can generate a less
stable state.2

I proceed with this discussion as follows. I analyze strategy-proof mecha-
nisms and ex-ante welfare maximization in settings with arbitrary numbers
of agents and alternatives where agents have single-peaked preferences over
alternatives. As already discussed, utilitarian mechanisms are only some-
times surjective, i.e., they potentially never choose specific alternatives re-
gardless of agents’ reported preferences. This is particularly striking since it
is often possible yet unlikely that ex-post all agents jointly rank one of these
alternatives first.

I further determine the relative amount of welfare that can be guaran-
teed by surjective mechanisms and show that this “Guaranteed Fraction of
Optimal Welfare” (GFOW) is 50% for three alternatives and converges to 0
as the number of alternatives grows large.

This analysis relies on careful discussion of previous work characteriz-
ing strategy-proof and anonymous mechanisms within this model. Moulin
(1980) characterizes all surjective mechanisms that only depend on an
agent’s top choice from all alternatives (codomain-tops-only) as general-

1. The Weimar Republic had twenty governments in its fourteen-year existence.
2. Countries that since have adopted constructive motions of no confidence include,

among others, Belgium, Spain, Hungary, Israel, Poland, and Slovenia.
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ized median schemes. Such schemes select the median of agents’ reported
peaks and n− 1 fixed peaks of “phantom voters”. Under the same restriction,
he finds that non-surjective mechanisms can be described with the help of
n+ 1 phantoms. Later research by Barberà and Jackson (1994) shows that
all mechanisms only depend on an agent’s favorite choice from the subset
of alternatives that are potential outcomes of the mechanism (image-tops-
only).

The two notions of tops-only coincide for surjective mechanisms, and
hence all surjective mechanisms are generalized median schemes with n− 1
phantom voters. The same is not true for non-surjective mechanisms, i.e.,
some cannot be described by n+ 1 phantoms. Instead, I show that all mech-
anisms are generalized median voter schemes with n− 1 phantoms on pre-
determined subsets of alternatives. Of those, the mechanisms that satisfy
codomain-tops-only select from convex subsets.

The rest of this article is structured as follows. In the remainder of this
section, I review related literature. In section 2, I introduce the basic model
and characterize the set of strategy-proof mechanisms. I also contrast this
result with the previous characterizations discussed above. In section 3, I
show that mechanisms that map to convex proper subsets of alternatives
are only sometimes uniquely optimal, define bad compromises, and give
examples. In section 3.1, I discuss GFOW and its dependence on the number
of original alternatives. Section 4 concludes.

Related Literature
A large body of literature has studied the implementation of desirable social
choice rules. In many of these contexts, the focus has been on implemen-
tation in dominant strategies since this concept demands the least from
agents’ ability to predict other agents’ actions. The classical Median Voter
Theorem (Black (1948)) states that if agents are restricted to the domain
of single-peaked preferences, a Condorcet winner, i.e., the alternative that
would win against any other alternative in a one-to-one comparison, always
exists and can be implemented. By focusing on ordinal preferences, this arti-
cle and most of the subsequent literature do not consider agents’ preference
intensities.

In contrast, this analysis focuses on maximizing ex-ante expected wel-
fare, an approach that goes back to Rae (1969). However, Rae’s article, like
most in the social welfare literature, focuses on the case of two alternatives
and hence never deals with compromise alternatives.

Zeckhauser (1969) is the first who studies the implications of agents’
preference intensities for a social choice problem with compromise. He
observes that if a compromise alternative is the Condorcet winner, it can
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still lose against a proposed lottery over extreme alternatives in a majority
vote. In that case, agents have non-single-peaked preferences over the set
of all lotteries over alternatives, and hence the problem of cyclical majori-
ties arises. Consequently, Zeckhauser focuses on conditions that preclude
such occurrences. He finds that if agents are sufficiently averse to the risk
of their least preferred choice being elected, the Condorcet winner always
wins majority support against any lottery over alternatives.

Börgers and Postl (2009) study both compromises and welfare, but un-
der the less stringent condition of Bayesian incentive compatibility. In their
setup, there are three alternatives, and it is commonly known that each
agent’s first choice is the other agent’s last choice. However, the relative
value each agent assigns to the compromise is private information. They
characterize the set of incentive-compatible mechanisms and determine nu-
merically that the difference between utilitarian and first-best welfare is
often small.

Lastly, the work that is closest in spirit to mine is Gershkov, Moldovanu,
and Shi (2017). In this paper, the authors derive the welfare maximizing
surjective mechanism in settings in which agents have both single-peaked
and single-crossing preferences. My analysis also applies to their setup, but
I focus on the welfare effect of not requiring surjectivity.

3.2 The Social Choice Model
I consider a social choice problem in which n agents have to choose one out
of K alternatives. I denote by K = {1, . . . , K} the set of alternatives.

Agent i’s type is θi = (θ 1
i , . . . ,θK

i ) ∈ Θi, where θ k
i represents agent’s util-

ity if alternative k is selected. Θi is the same for all agents and consists of
all vectors θi ∈ RK s.t. The following three requirements are fulfilled.

Firstly, preferences are single-peaked with respect to the natural order,
i.e., there exists an alternative k ∈K , the peak, s.t. for all l, m ∈K , l<m≤
k or l>m≥ k implies θ l

i < θ
m
i . Secondly, an agent is never indifferent, i.e.,

∀k, l ∈K , k ̸= l I have θ k
i ̸= θ

l
i .3 Lastly, baseline utility is normalized, i.e.,

mink∈K θ
k
i = 0.⁴

3. This simplifies the exposition since it assures that agents have single-peaked pref-
erences over any subset of alternatives instead of single-plateaued preferences. Barberà
and Jackson (1994) and Berga (1998), among others, discuss the case of single-plateaued
preference and the characterization of strategy-proof tie-breaking rules.

4. This assumption is without loss of generality since I am only interested in the
absolute difference the group decision makes to each agent and not each agent’s baseline
utility.
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Agents’ types θ = (θ1, . . . ,θn) are distributed according to a commonly
known probability measure Ψ on Θ = Θ1 × · · · ×Θn.

A (direct and deterministic) mechanism asks agents for their types and
selects an alternative based on their reports. More formally:
Definition 3.1. A mechanism g is a function from Θ to K .

To formally describe the set of mechanisms that I consider, I need a few
standard definitions:
Definition 3.2. i Amechanism g satisfies dominant strategy incentive com-

patibility (DIC) if for all i and any θi,θ
0

i ∈ Θi and θ−i ∈ Θ−i I have
θ

g(θi,θ−i)
i ≥ θ g(θ 0

i ,θ−i)
i .

ii A mechanism g is anonymous if for all permutations σ : {1, . . . , n}→
{1, . . . , n} and all reports θ ∈ Θ I have g(θ1, . . . ,θn)= g(θσ(1), . . . ,θσ(n)).

iii A mechanism satisfies surjective if for all k ∈K there exists a θ ∈ Θ s.t.
|g(Θ)|= k.
DIC ensures that agents have a dominant strategy to report their types

truthfully. A mechanism satisfies anonymity if it treats agents the same.
Lastly, surjective precludes that any alternative cannot be chosen, indepen-
dent of agents’ reports.⁵

I denote with tS (θi)= arg maxk∈S θ
k
i , agent i’s top choice from a subset

of alternatives S ⊂K .
Definition 3.3. Let m be such that n+m is odd. A mechanism g is a general-
ized median voter scheme on S ⊂K with m phantom voters if there exist
numbers a1, . . . , am ∈ S s.t. g(θ)=Median(a1, . . . , am, tS (θ1), . . . , tS (θn))
for all θ ∈ Θ.

A generalizedmedian voter scheme selects a subset of possible outcomes
and asks agents for their most preferred alternatives from that set. Then it
selects the median of these reported peaks and the previously fixed peaks
of phantom voters.

I start my analysis with Moulin’s characterization of anonymous, DIC,
and surjective mechanisms in a strengthened form proven in Barberà and
Jackson (1994).⁶
Theorem 3.4 (Moulin-Barberà-Jackson Theorem). For any mechanism g,
the following conditions are equivalent.

5. In the context of this model, surjective is equivalent to the usually stronger notions
of unanimity and Pareto-efficiency as noted for example in Ching (1997).

6. Moulin’s original work also assumes that mechanisms need to be codomain-tops-
only, a requirement that proved to be non-restrictive, as discussed below.
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(i) g is anonymous, DIC, and respects surjective.
(ii) g is a generalized median voting scheme onK with n− 1 phantom voters.

From this result, I can immediately deduce the following characteriza-
tion for mechanisms that do not need to respect surjective:

Theorem 3.5. For any mechanism g, the following conditions are equivalent.

(i) g is anonymous and DIC.
(ii) g is a generalized median voting scheme on a non-empty set S ⊂K with

n− 1 phantom voters.

Proof. The proof can be found in the Appendix.

One might wonder about the relationship between this characterization
and another result from Moulin (1980) about n+ 1 phantom voters that
seemingly analyze the same set of mechanisms. I compare the two below.
The essential difference is an additional assumption in the classical paper:

Definition 3.6. A mechanism g is image-tops-only if for all reports θ 0,θ 00 ∈
Θ s.t. tg(Θ)(θ

0

i )= tg(Θ)(θ
00

i ) for all i, I have g(θ 0)= g(θ 00). A mechanism g is
codomain-tops-only if for all reports θ 0,θ 00 ∈ Θ s.t. tK (θ 0

i )= tK (θ 00

i ) for all i,
I have g(θ 0)= g(θ 00).

Therefore an image-tops-only mechanism only considers agents’ top
choices from those alternatives that are potentially chosen. In contrast, a
codomain-tops-only mechanism only takes into account agents’ overall most
preferred choices irrespective of whether it might have been excluded ex-
ante. Most of the literature uses image-tops-only, and it was proven by
Barberà and Jackson (1994) that, indeed, all DIC mechanisms on the full
domain of single-peaked preferences are image-tops-only. Moulin (1980),
however, restrains attention to mechanisms that are codomain-tops-only.
These definitions coincide if the mechanisms considered are surjective, as
in the case of theorem 3.4, and hence, in this case, codomain-tops-only is
also non-restrictive. If, however, surjectivity is not assumed, this restriction
reduces the set of mechanisms:

Theorem 3.7 (Comparison to Proposition 2 in Moulin (1980)). For any
mechanism g, the following conditions are equivalent.

(i) g is anonymous, DIC and codomain-tops-only.
(ii) g is a generalized median voting scheme onK with n+ 1 phantom voters.
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(iii) g is a generalized median voting scheme on a non-empty convex set⁷ S ⊂K
with n− 1 phantom voters.

Proof. The proof can be found in the Appendix.

Note that any mechanism that excludes an interior alternative ex-ante
cannot be codomain-tops-only and DIC. Such a mechanism has to treat two
preference profiles with identical first but non-identical second preferences
the same, even though the first preference might have become irrelevant
hence giving an agent an incentive tomisreport. In contrast, if an alternative
is to the left or right of all alternatives in the image of the mechanism, then
an agent’s most preferred alternative in the image is always the alternative
closest to the original first preference. Hence the relevant information can
be retrieved from the agent stating his peak on the entire domain.

To illustrate the differences between the three classes of mechanisms
characterized in theorems 3.4 to 3.7, I have summarized all mechanisms
for two agents and three alternatives in Table 1. In this case, all mecha-
nisms can be represented by a triplet [a, b, c]⁸ with a, b, c ∈ {x, 0, 1, 2, 3},
where x represents that the respective alternative is not in S and 0,1, 2 or
3 represents the number of phantom voter peaks on a given alternative if it
is in S . The mechanisms that are characterized in theorem 3.5 but neither
in theorem 3.4 nor theorem 3.7 are [1,x,0] and [0,x,1]. They are precisely
those that only allow a decision between the extreme alternatives 1 and 3
and exclude the compromise choice 2 ex-ante.

7. I say that a set S ⊂K is convex if there exists an interval I ⊂ R s.t. S =K ∩ I.
8. I use square bracket to distinguish mechanism from utility vectors.



3.3 Bad compromises | 69

Table 3.1. Table of Mechanisms for n = 2 and K = 3

surjective Codomain-tops-only All
[1,0,0] [2,0,1] [1,0,0]
[0,1,0] [1,1,1] [0,1,0]
[0,0,1] [1,0,2] [0,0,1]

[2,1,0] [1,0,x]
[1,2,0] [0,1,x]
[0,2,1] [x,1,0]
[0,1,2] [x,0,1]
[3,0,0] [1,x,x]
[0,3,0] [x,1,x]
[0,0,3] [x,x,1]

[1,x,0]
[0,x,1]

3.3 Bad compromises

Now that I have characterized the set of possible mechanisms, I can proceed
with analyzing welfare maximization. I define the welfare function

W(g,Ψ)=
n
∑

i=1

∫

θ
g(θ)
i dΨ

that measures the expected ex-ante welfare under type measure Ψ when
mechanism g is employed.

Denote byM the set of all DIC and anonymous mechanisms, byMcon

those that additionally satisfy co-domain tops-only or equivalently have a
convex image and byMsur the set of those that satisfy surjective. Clearly, I
haveMsur ⊂Mcon ⊂M .

I can now formally state what it means for a mechanism to be welfare
maximizing.

Definition 3.8. A DIC mechanism g∗ : Θn→K is utilitarian for the type
measure Ψ , if g ∈ arg maxg∈M W(g,Ψ).

In opposition to that, I find it useful to define a notion of the inefficiency
of a mechanism that is much stronger than not always selecting Pareto-
efficient outcomes. This will guide my discussion of the different subclasses
of mechanisms,
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Definition 3.9. A mechanism g is inferior to a mechanism ĝ if for all θ ∈ Θ,
I have that ĝ(θ) is a weak Pareto-improvement over g(θ) and there exists a
θ ∈ Θ s.t. ĝ(θ) is a strict Pareto-improvement over g(θ).

An inferior mechanism is unappealing in a strong sense. All non-
surjective codomain-tops-only mechanisms are of this type.

Theorem 3.10 (No preclusion of extremes). For every mechanism g ∈M
s.t. 1 /∈ g(Θ) or K /∈ g(Θ) there exists a mechanism ĝ ∈M s.t. g is inferior to
ĝ

Proof. The proof can be found in the Appendix.

Corollary 3.11. There exists a utilitarian mechanism s.t. 1 and K are in its
image, and further, there is always a utilitarian mechanism that is not in
Mcon \Msur.

Proof. The proof can be found in the Appendix.

If one were to maximize welfare on Mcon, it would be without loss to
restrict oneself further to Msur, which gives us an additional reason why
the previous literature has focused on the latter. From the example in the
introduction, I know that welfare can be improved when one extends the
set of feasible mechanisms to M , allowing for the ex-ante restriction to
non-convex subsets. To describe these cases, I define:

Definition 3.12. An alternative k ∈K is a bad compromise if it is not in
the image of any utilitarian mechanism.

Next, I will give a quantitative analysis of the welfare impact of bad
compromises.

3.3.1 Welfare Guarantees for Surjective Mechanisms
Given surjectivity’s natural appeal, one might be tempted to disregard the
welfare loss to allow for a mechanism that gives more choices to voters. To
inform this discussion, I study the total welfare fraction at stake.

To make this analysis, I define it as

WELF(Ψ)=max
g∈M

W(g,Ψ)

utilitarian welfare and as
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SWELF(Ψ)= max
g∈Msur

W(g,Ψ)

welfare under the best surjective mechanism. I capture worst-case con-
siderations with the following definition.
Definition 3.13. The Guaranteed Fraction of Optimal Welfare for K alterna-
tives (GFOW(K)) describes the minimal relative welfare achieved by the best
surjective mechanisms relative to utilitarian welfare, i.e.:

GFOW(K)= inf
Ψ

SWELF(Ψ)
WELF(Ψ)

.
In the following theorem, I give a tight welfare bound:

Theorem 3.14 (Welfare Bound). The maximal welfare guarantee is
GFOW(K)=

1
�

K+1
2

� . In particular, no positive fraction can be guaranteed in-

dependent of the number of alternatives.

Proof. The proof can be found in the Appendix.

The ability to exclude an alternative ex-ante ensures that compromises
do not prevent an optimal decision between alternatives that are not di-
rect neighbors. In the extreme, welfare only depends on selecting the best
odd alternative, while all even alternatives are bad compromises. Excluding
compromises allows one always to select the welfare optimal odd alterna-
tive, while surjective mechanisms are constant mechanisms that only allow
the right alternative to be chosen in one case.

�

K+1
2

�

is the count of odd num-
bered alternatives. Hence the worst case is if all odd-numbered alternatives
contribute equally to total welfare.

3.4 Concluding Remarks
In this research, I studied utilitarian welfare within the framework of a tradi-
tional social choice problemwith single-peaked preferences. My exploration
primarily revolved around assessing the implications of enforcing surjective
mechanisms that do not exclude any outcome in advance. Two key findings
emerged from this study. Firstly, it is never advantageous to preclude the
selection of an extreme option. However, welfare might improve upon the
exclusion of a compromise. Secondly, the extent of welfare achievable via
surjectivemechanisms diminishes with an increasing number of alternatives
and is not bound away from zero.



72 | 3 Bad Compromises

Appendix 3.A Proofs
Proof of Theorem 3.5. The idea of the proof is to use codomain restrictions
to “surjectify” anonymous and DIC mechanisms and then use the Moulin-
Barberà-Jackson characterization on them.

For this fix, any anonymous and DIC mechanism g. I can now define ĝ
s.t. g(θ)= ĝ(θ) ∀θ ∈ Θ, with ĝ corestricted to g’s image, i.e. ĝ : Θ→ g(Θ).
Then ĝ is surjective by construction. Further, the utility vectors in Θ induce
the full domain of single-peaked preference profiles over g(Θ) due to our
non-indifference condition. Hence any mechanism ĝ can be described as
the corestricted version of a generalized median voter scheme on g(Θ) with
n− 1 phantom voters. If I now reverse the corestriction, I find that g itself
is a generalized median voter scheme on g(Θ) with n− 1 phantom voters.
If I reverse the steps in the previous argument, I can conclude the second
direction.

Proof of Theorem 3.7. The equivalence between (i) and (ii) is shown in
Moulin (1980). Hence I only prove the equivalence of (ii) and (iii). For this,
I argue in three steps: First, I show that any generalized median voting
scheme onK with n+ 1 phantoms has a convex image. Then I demonstrate
that it is also a generalized median voting scheme on that image with n+ 1
phantoms. Lastly, I show that two of these phantoms are superfluous and
that hence the mechanism is indeed a generalized median voting scheme
on its convex image with n− 1 phantoms. Simply reversing the above steps
proves the other direction.

Now suppose that g is a generalized median voting scheme on K
with n+ 1 phantoms and let a= (a1, . . . , an+1) ∈K n+1 be the vector of
these phantoms’ peaks. I denote with l(a)=mini∈{1,...,n+1} ai and r(a)=
maxi∈{1,...,n+1} ai the location of the leftmost and rightmost phantom voter
peak respectively. Now I show that g(Θ)= [l(a), r(a)]∩K and that hence
the image of g is indeed convex. Note that any alternative to the left of l(a)
or to the right of r(a) is never selected by the mechanism. This is true since
a majority of all votes are on the right or left of this alternative, respectively,
regardless of the reports of the agents. On the other hand, g selects any
alternative within [l(a), r(a)]∩K if all agents report their peak on this al-
ternative. This is the case since, for each of these alternatives, there is either
a phantom at that position or at least one at alternatives, both to the left
and to the right. In either case, the alternative with the unanimous support
of voters is the generalized median.

Next, I prove that g is also a generalized median voter scheme on
[l(a), r(a)]∩K with n+ 1 phantoms. For this, observe that reporting a type
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θi with a peak to the left of l(a) or right of r(a) always implies the same
outcome as reporting on l(a) and r(a) respectively. Further single-peaked
preferences imply that for any such type, I have t[l(a),r(a)]∩K (θi)= l(a) or
t[l(a),r(a)]∩K (θi)= r(a) respectively.

Lastly, g is also a generalized median voter scheme on [l(a), r(a)]∩K
with n− 1 phantoms. To see this, imagine deleting one phantom from each
l(a) and r(a). Whichever alternative has been the generalized median on
[l(a), r(a)]∩K before remains the generalized median.
Proof of Theorem 3.10. The proof is constructive: Fix any mechanism g
and suppose that without loss of generality 1 /∈ g(Θ). By theorem 3.5, g is
a generalized median voter scheme on its image g(Θ) characterized by a
vector (aj)j∈{1,...,n−1} of phantom voter peaks. Define now anothermechanism
ĝ as a generalized median voter scheme on g(Θ)∪ 1 with the same phantom
voters peaks (aj)j∈{1,...,n−1}.

Moving from g to ĝ counts reports as peaks at 1 instead of the left-most
alternative in g’s image. However, this change in peaks can change the posi-
tion of the median peak of the 2n− 1 real and phantom voters in one case.
It is the situation where all n actual voters get reattributed to 1, and hence
in this case, ĝ selects the unanimously preferred alternative.

Proof of Corollary 3.11. First, note that any mechanism in Mcon \Msur

does not contain 1 and K in its image. Suppose the corollary is false. Then
there would exist a mechanism whose image does not contain 1 or K and
that generates higher welfare than any mechanism that does. However, that
would be a direct contradiction to theorem 3.7.

Proof of Theorem 3.14. First I show GFOW(K)≤
1
�

K+1
2

� .

Denote with Kodd = {k ∈K : k odd} the set of odd alternatives. Note that
|Kodd|=
�

K+1
2

�

is the number of odd numbered alternatives.
For each element of o ∈ Kodd we now consider a state of the world θ ∗o ∈ Θ

with the following properties:
i In state θ ∗o aggregate welfare for alternative o is 1, while it is less then
ϵ > 0 for all different alternatives. This can be done with just a single
agent listing o as his top choice.

ii In state o ro ≤ n agents have their peak on alternative o+ 1 and r(o) is a
strictly decreasing sequence. Similarly, in state o n− ro − 1, agents have
their peak on alternative o− 1. Naturally r1 = n− 1 and rK = 0, for K
odd and rK−1 = 0 for K even. We assume that all but agents lists o at
least as their second choice.



74 | 3 Bad Compromises

Consider Ψodd a uniform measure over such states. Every mechanism
with image Kodd achieves the expected value of 1 since, in each state, the
alternative with aggregate welfare of 1 has unanimous support on that im-
age.

In contrast, consider mechanisms with the full image. For alternative o
to be selected in state θ ∗o , mechanisms need to have an exact difference of
phantom voters strictly to the right versus strictly to the left of alternative
o. Furthermore, this difference is strictly decreasing. Hence each surjective
mechanism can satisfy this criterion at most for a unique o. Since we have
chosen the bound ϵ arbitrarily, this yields the desired result.

For the reverse direction, we need to focus on the set of disconnected
subsets. For a set T ⊂K a subset S ⊂ T is disconnected if mins∈S0 s−
1,maxs∈S0 s− 1 /∈ T. For each mechanism g ∈M and a disconnected sub-
set S ⊂ g(Θ) there exists a surjective mechanism gS ∈Msur s.t. gS(θ)= g(θ)
for all θ ∈ Θ s.t. g(θ) ∈ S. To construct this mechanism, take the vector of
phantom voters of g and place all phantom voters to the left of mins∈S0s on
this alternative as well and the same on the right for maxs∈S0 s. This surjec-
tive mechanism receives at least as much welfare from selecting alternatives
from that subset as g. Taking the most welfare-contributing subset S∗ and its
corresponding mechanism gS∗ , gS∗ secures at least an equal fraction of total
welfare. Noting that |Kodd| is the maximal possible number of disconnected
subsets gives the desired result.
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