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Abstract

The Standard Model (SM) faces both theoretical and experimental challenges that indicate
the existence of physics beyond its current framework. Among the proposed extensions,
supersymmetry (SUSY) emerges as a promising concept. The simplest extension of the
SM, which incorporates SUSY, is the Minimal Supersymmetric Standard Model (MSSM). It
provides a potential candidate for dark matter and offers solutions to the hierarchy problem.
As part of the definition of the MSSM, imposing a discrete R-parity (R,), to prevent proton
decay, forbids every term in the Lagrangian that violates baryon or lepton number. However,
imposing this symmetry is not necessary. Models that violate R-parity (RPV) exhibit a rich
and diverse phenomenology different from the R,-conserving MSSM and provide a more
original mechanism for neutrino mass production.

This thesis addresses the phenomenology of the RPV-MSSM by identifying different
characteristic regions within the RPV-MSSM landscape and exploring their signatures.
Depending on the choice of RPV couplings, the framework may exhibit potential gaps in the
coverage. We try to provide studies, which potentially close these gaps and try to give an
overview of the vast RPV-MSSM landscape.

By analyzing the structures of the neutrino mass matrix, we identify minimal models for
understanding neutrino masses in the Bs-conserving RPV-MSSM. These models provide
valuable insights into understanding neutrino masses, in the general context of RPV scenarios
that have not been analyzed.

We use several collider experiments to investigate how different types of signals can be
revealed as a result of the choice and strength of RPV couplings as well as the mass of SUSY
particles. We present a systematic analysis of the RPV-MSSM and its collider signatures
to find a minimal number of experimental searches for comprehensive LHC coverage. The
lightest neutralino with a mass of O(GeV) and small couplings is unconstrained in the
RPV-MSSM. We present three approaches for both constraining the coupling parameters and
exploring the sensitivity regions of future experiments. We consider neutralino production
in meson decays via LQD operators, followed by loop-induced decays into a photon and a
neutrino in FASER. We re-interpret experimental results, derived for heavy neutral leptons
(HNL), to constrain the RPV couplings. And we study a novel proton decay involving a
bino-like neutralino and the resulting decay signature.

Our approach emphasizes the potential of future experiments, including those not specifically
designed for SUSY searches, to effectively probe the RPV landscape.
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“There is nothing like looking, if you
want to find something. You certainly
usually find something, if you look, but
it is not always quite the something you
were after.”

J.R.R. Tolkien, The Hobbit | ntro d uction

The aim of the introduction is to motivate supersymmetry (SUSY) as a promising form of
physics beyond the Standard Model (BSM). We attempt to show where opportunities arise
to discover new phenomenological consequences leading to increased recent and upcoming
developments in experiments.

1.1 The Standard Model of Particle Physics

The recent progress in our experiments allows us to investigate our Universe with unpreceden-
ted precision, not only on large but also on small scales. Our fundamental knowledge about
our Universe is not only strengthened by the progress in the field of cosmology but also by
our understanding of elementary particles, forces, and symmetries. The modern understand-
ing of elementary particles and their interactions was formulated in the 1960s, leading to
the Standard Model of particle physics (SM). The SM has proven incredibly successful at
embedding experimentally observed features within its theoretical fabric. The underlying
mathematical framework of the SM is that of quantum field theory with the addition of gauge
symmetry, manifesting itself through the gauge group SU(3)c x SU(2);, x U(1)y. It embodies
the fundamental particles and their interactions; it comprises the fundamental building blocks
of matter - three generations of fermions (quarks and leptons), each characterized by unique
quantum numbers and mass eigenstates, and the gauge bosons (photons, W and Z bosons,
and gluons) that mediate interactions within the SM. A key element of the theory is the Higgs
field; its non-zero vacuum expectation value breaks the gauge symmetry, which subsequently
triggers the spontaneous symmetry breaking of the electroweak group to the electromagnetic
subgroup:

SUB3)e x SU@2), x U(l)y 28

SU3)c x U(1)qep-

The mechanism generates the masses of the weak gauge bosons and manifests itself in the
appearance of a physical scalar particle, the so-called Higgs boson. The fermion masses
and mixings are also generated through spontaneous symmetry breaking. SM matter is
naturally classified according to the color, weak isospin, and hypercharge, that it carries.
The achievement of the SM was the elaboration of a unified description of the strong, weak,
and electromagnetic forces in the language of quantum field theories. The SM achieved a
coherent description of the strong, weak, and electromagnetic forces, explaining in particular
short-range weak forces (spontaneously broken gauge symmetry) and the electroweak mixing.
It was predicted and was incorporated into the SM by Glashow [1], Weinberg [2], and



Chapter 1 Introduction

Salam [3], and lead to the discovery of the Higgs boson, the only scalar particle predicted by
the model, in 2012 [4, 5]. The Higgs particle was the last missing block of the SM framework.
The successful tests of the SM quantum corrections with precision electroweak data confirm
the assumed pattern of spontaneous symmetry breaking but are insufficient so far to prove
the validity of the minimal Higgs mechanism embedded in the SM. The fermion mass terms
are generated via gauge invariant renormalizable Yukawa couplings to the scalar Higgs field.
The mass itself is, thus, directly proportional to the Yukawa coupling. After symmetry
breaking one diagonalizes the mass matrices of all fields and after that one uses the freedom
in the phase definition of the fields to reabsorb as many phases as possible. The remaining
parameters in the Lagrangian are the physical parameters and represent the free parameters
of the SM.

In the context of the SM, symmetries are not limited to internal transformations associated
with particle interactions. There are also symmetries associated with the fundamental nature
of spacetime itself. These spacetime symmetries are described by the Poincaré group, which
is the second and more fundamental type of symmetry that appears in the SM; being the
building block of the underlying quantum field theory.

While the SM is a great success, essential puzzles remain unresolved within the framework.
We begin with a few observational flaws.

(i) What is the nature of Dark Matter (DM)?

Gravitational evidence for the existence of DM first arose in 1933[6]; from the observation
of the velocity distributions of galaxies within a cluster, it became clear that the actual
mass of a galaxy cluster is much larger than the sum of the masses of the luminous
stars, which were thought to make up the mass of the galaxies. The observation was
later confirmed by measuring rotation curves of galaxies [7, 8]. The circular velocities
of stars and gas in relation to their distance from the center of the galaxy did not
agree with predictions from Newtonian physics. In order to reconcile with Newtonian
physics, the total mass distribution in a galaxy can only be explained by the fact
that a large fraction of the galaxy’s mass consists of non-luminous matter, 7.e. Dark
Matter. Further experimental evidence was provided by observations of galaxy clusters,
gravitational lensing, and the cosmic microwave background (CMB) [9, 10]. Within
the current cosmological Standard Model (ACDM), only 32% of the Universe is in
the form of matter, but only one-sixth of it is baryonic. The remaining energy of the
Universe is dark energy (68%) [11]. Even though the existence of DM is well-motivated
by gravitational evidence at different mass scales its nature remains unknown and it
does not fit within the SM structure. This makes any non-gravitational measurement of
DM difficult and leads to a variety of models and corresponding detection possibilities.

(ii) What is the origin of neutrino masses?

The SM does not explain the origin of neutrino masses, so it must be extended; neutrino
masses have first been measured in precise neutrino oscillation data [12]: the observation
can be explained when the neutrinos - at least two out of three species - have a finite
mass and the lepton flavors are mixed. The SM mass operator of the neutrino necessarily
changes the handedness if it is to yield a non-zero value. However, right-handed neutrino
fields do not enter into the SM Lagrangian and there is no way to give mass to the
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. . . . 1
neutrinos, if fermion number is to be conserved . As a consequence, we find that
neutrino masses are identically zero in the minimal SM.

There are several simple extensions to the SM that could generate neutrino masses
without changing the local symmetry of the weak interactions. Neutrino masses can be
introduced into the SM by extending it to include right-handed neutrinos, called sterile
neutrinos, which do not participate in the weak interaction. A Yukawa interaction
would generate a Dirac mass term for the neutrino. However, the coupling would be
much smaller than the couplings of their charged lepton weak partner. A possible
mechanism, which provides an explanation of why the masses are so small compared to
the electroweak scale, is the seesaw mechanism. It introduces a large mass scale for the
right-handed neutrinos, resulting in tiny masses for the observed left-handed neutrinos.
The approach is more natural since the right-handed neutrino mass is not protected by
the electroweak symmetry and, hence, can be expectedly large.

In recent years, the interest in neutrino physics has gained a lot of attention. Since
the measurement of the first neutrino oscillations by Super-Kamiokande [13] through
studying high-energy atmospheric v, in 1998, many other experiments have measured
flavor oscillations. Neutrino oscillations also provided an explanation for the unanswered
solar neutrino problem measured at the Homestake experiment in the 1970s [14].
Experiments have now reached an era of precision measurements, the central focus of
which is the determination of the angles and the C' P phase of the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) neutrino mixing matrix. The mass eigenstates correspond
to eigenstates of the Hamiltonian describing a free neutrino, but the flavor eigenstates -
eigenstates of the weak interactions - do not. The three flavor eigenstates correspond
to the different reactions that produce those neutrinos. The flavor composition of the

different mass eigenstates can be found in Fig. 1.1.

Since the resulting appearance and disappearance probability in oscillation experiments
is a function of the difference of the squared neutrino masses, the absolute masses
remain unknown. The existence of oscillations just indicates that at least two out of
three mass eigenstates have non-zero values, as indicated by the two observed mass
splittings. The two independent mass differences Amzol = Am%l and Amztm = Am?ﬂ
measuring the solar and atmospheric neutrino oscillations are best fit when the squared

neutrino mass differences are O (7.5 x 107° eV2) and O (2.5 x 1072 eV2>, respectively.

While Amzol is measured to be positive, indicating that m; < my, the sign of Amgtm
remains unknown. This results in the possibility of two possible neutrino mass ordering
schemes:

Normal ordering (NO): my < mqy < mg,
Inverted ordering (I0): m3 < my < my.

However, global fits to neutrino oscillation data over the last several years tend to favor
the normal neutrino mass ordering and values of the C'P phase around maximal C' P

! One could also add a Majorana mass term with only left-handed neutrinos but this term violates the
electroweak gauge symmetry of the SM.
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normal ordering (NO) inverted ordering (10)

mZ A N m2
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Figure 1.1: Neutrino mass eigenstate flavor composition and mass pattern in the two cases of normal
(left) and inverted (right) ordering. Figure taken from [15].

violation.

(iii) Why is there predominantly matter and only very little antimatter in the Universe
observed today[16, 17]?

According to the SM, matter and antimatter are produced in equal amounts in the early
Universe. From observations, we can be almost certain that the Universe today contains
no significant amounts of (baryonic) antimatter, and the baryons are the remnant of
a small matter-antimatter asymmetry, approximately on the order of (’)(10_10). The
asymmetry may be explained through baryogenesis, first proposed by Sakharov [18].
There are three necessary conditions for successful baryogenesis, these require baryon
number to be violated, C' and C'P violation, and deviation from thermal equilibrium.
In the SM, B — L is accidentally conserved at the perturbative level; accidental here
means that the most general renormalizable gauge-invariant (perturbative) interactions
automatically preserve them. While baryon number is still violated in the SM non-
perturbatively through effects such as instantons and sphalerons [19-22], these cannot
account for the observed asymmetry [23-26]. In addition, P [27] and C'P [28] are
violated by the weak interaction and the quark Yukawa couplings [29] and the non-
equilibrium condition is fulfilled due to the expansion of the Universe. As it turns out,
the sources of C'P violation in the SM are extremely unlikely to be sufficient to explain
the observed asymmetry between matter and antimatter.

Switching now to theoretical flaws within the SM framework:

(i) Can we achieve gauge coupling unification and embed the SM in a bigger gauge group?
Within the SM, the strong, weak, and electromagnetic interactions exist as basically
unrelated and independent gauge groups. It remains a plausible scenario that all of
these interactions really are arbitrary and that their origin is simply too hard for
us to understand; clearly one desires a more unified theory that can combine the
three interactions into one fundamental force. The SM is a formally complete theory,
however, the cancellation of gauge anomalies seems rather fortuitous and calls for a
justification. The idea of grand unified theories is that the observed interactions are
low-energy manifestations of an underlying unified theory. In addition, a unified theory
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is compelling because it can provide an explanation for charge quantization and family
structure, can predict Yukawa coupling unification, and might explain the hierarchy
of fermion masses. In the SM, the low-energy gauge couplings remain as seemingly
arbitrary parametersQ. This difficulty can be addressed by embedding the gauge group
of the SM into a simple unified gauge group. The simplest approach involves unifying
the gauge group SU(3)c x SU(2);, x U(1)y into the semisimple group SU(5) [30], i.e.
the three coupling constants g3, g5 and g; are given by one coupling constant gs~. One
immediate consequence of the unified scheme is an explanation for the experimentally
observed charge quantization. In SU(5), the electric charge is one of the generators and,
thus, its eigenvalues are discrete and quantized. In such case, quarks and leptons are
two sides of the same coin, related by a new grand unified gauge symmetry, then that
same symmetry relates the Yukawa couplings (and hence the masses) of quarks and
leptons. Quarks and leptons can be unified within a single framework, and put into
corresponding irreducible representations of the gauge group. Nevertheless, Yukawa
unification is not successful within the framework of the simplest unification models.
The introduction of new representations of the Higgs fields generally becomes to achieve
the required degrees of freedom.

One consequence of GUT models is that baryon number and lepton number are no
longer symmetries at the perturbative level and the lifetime of the proton, depending
on the exact model, is finite.

(ii) What is dark energy?

Hubble’s discovery [31] that the Universe is expanding eliminated the empirical need for
a static world model. Corresponding to the introduction of DM, the term “dark energy’
was later introduced to explain the accelerated evolution of our Universe [32] - for a
historic overview of the development of the concept of dark energy, cf. Ref [33]. One
proposed candidate for dark energy is the cosmological constant. In recent years, we have
realized that the cosmological constant can be interpreted as a measure of the energy
density of the vacuum. This energy density is the sum of several seemingly unrelated
contributions, each much larger than the present upper limits on the cosmological
constant. This leads to the question: why the observed vacuum energy is so small
compared to the scales predicted by particle physics? This has remained a puzzle and is
called the “cosmological constant problem”.

9

One further unsolved theoretical problem is the so-called “Hierarchy problem”. The
consistency of the SM is endangered by the instability of the Higgs vacuum expectation
value under quantum loop corrections originating from new physics, e.g. unification. It is
not a direct problem of the SM itself but rather it reflects the Higgs potential’s sensitivity

% The strength of these couplings evolves with energy scale due to the renormalization group evolution (and
the conformal anomaly). In turn, while coupling strengths deviate at the electroweak scale, they could
potentially be equal at a higher energy scale.

% The attempts to embed the SM in SU(5) do not succeed since the three gauge couplings do not meet in one
point. This can be cured in a multi-step unification scenario at the price of introducing new particles. In
addition, SUSY close to the electroweak scale offers a way to adjust the theory so that all three coupling
constants precisely match at an energy scale of approximately O (1 x 10'° GeV).
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to the new physics energy scale under the assumption that new physics couples directly or
indirectly to the Higgs boson. The need for precise fine-tuning - between the bare parameters
of the high-energy model and the finite quantum corrections - to maintain the observed mass
hints at the existence of a more comprehensive theory that can naturally, without excessive
fine-tuning, explain the hierarchy of mass scales between the electroweak and Planck scale
and whose lightest new particle resides very likely at the TeV scale. Otherwise, our Universe
is oddly fine-tuned for our existence. Unlike scalars, the quantum corrections to fermion
and gauge boson masses are proportional to the particle masses themselves. Corrections to
the fermion masses are preserved by an approximate chiral symmetry that becomes exact
when the product of the fermion mass, my, and the corresponding chiral field, f, approaches
zero. Similarly, for gauge bosons, this is imposed because gauge symmetry is restored in the
massless limit. However, there is no equivalent symmetry to protect the mass of a scalar field.

In fact, it can be seen, performing the loop corrections, that the corrections to the
Higgs mass diverge quadratically with the high-energy cutoff. The Higgs mass my receives a
correction due to the Higgs field coupling to a Dirac fermion f, whose mass m is proportional
to its coupling A, with Higgs,

A+, (1.1)

where A%v is the ultraviolet momentum cutoff. We find that there are both quadratic and
logarithmic divergent contributions. Notably, any renormalization procedure leaves a residual
finite correction. The quadratic dependence on the energy scale is reintroduced by any new
physics. One could perhaps argue that there is no contradiction, and if our theory can
reproduce the data, consistent even with procedural technicalities, then other considerations
might simply be philosophical. However, measuring the viability of a theory solely by the fact
that it is not absolutely implausible and is consistent with the data is an extremely modest
standard. We can understand naturalness as a useful guide toward new physics, and this
guide has worked well in the past.

At a technical level, we can cure the quadratic divergence by a possible compensation
between fermionic and scalar loops. By introducing a symmetric mapping between fermionic
and bosonic representations of the Lorentz group, we end up with an equal number of
fermionic and bosonic degrees of freedom. This symmetry would cure the problem by relating
fermionic and bosonic masses, hence extending the chiral protection to the scalars. This
approach ensures that the symmetry is not even violated at the radiative level. This field-
theoretic mechanism, which prevents contributions to the Higgs mass in the UV, can be
achieved by a certain symmetry, namely supersymmetry. As long as SUSY is unbroken, all
particles of the same supermultiplet are degenerate in mass and, thus, cancel the instability
exactly. Nevertheless, this holds only true for unbroken SUSY which has not been observed.
Nevertheless, even softly-broken supersymmetric extensions of the SM [34, 35] have long been
regarded as a leading class of candidates for the resolution of the hierarchy problem [36-38]
without excessive fine-tuning leading to an electroweak-scale Higgs boson mass.

Among the theoretical naturalness puzzles of the SM, there is the strong C'P-problem [39].
This puzzle has to do with the presence of the #-term in the SM Lagrangian - the QCD
vacuum angle. A non-vanishing 0-term generates a non-zero electric dipole moment of the
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neutron, which is experimentally strong constrained [40, 41], implying the bound |§] < 10719
Since there is a priori no symmetry or dynamical mechanism related to the 6-term the
question arises why its value is unnaturally small if it is different from zero. A proper
discussion can be found, e.g. in Refs. [42—-44].

1.2 Supersymmetry

The following section is based on Refs. [45, 46]. Coleman and Mandula [47] proved a “no-
go”-theorem that the only symmetry group of the scattering matrix that included Poincaré
symmetry was the product of Poincaré symmetry and an internal symmetry group, e.g. a
trivial tensor product of these two symmetry groups. For a possible extension, we are forced
to look at a loophole of this theorem which is to consider superalgebras. Haag, Lopuszanski,
and Sohnius [48] showed, extending the Coleman-Mandula theorem, that SUSY is the only
possible extension of the Poincaré algebra. In addition to the Poincaré algebra, we introduce
complex, anticommuting spinors @, QJr which satisfy:

{Qa: Qs } =0={QLQL} . (1.2)

A supersymmetry transformation turns a bosonic state into a fermionic state, and vice versa.
Thus, the spinor generates transformations with

@ |boson, fermion) = |fermion, boson) . (1.3)

The states that transform into one another and fall into irreducible representations of the SUSY
algebra form a supermultiplet. Bosons and fermions are contained in each supermultiplet.
In addition, the anticommutator of the fermionic generators is proportional to the Poincaré
translation generator P" and take the schematic form,

{Q.q'} =P, (1.4)
[P*,Ql =[P, Q'] =0. (1.5)

The generators commute with the generators of the gauge transformation. Thus, the particles
contained in a supermultiplet are in the same representation, having the same electric charge,
weak isospin, and color degrees of freedom. Theories with more than one distinct copy of the
SUSY generators are possible and considered in extended supersymmetry.

In order to formulate a N = 1 SUSY extension of the SM, each SM field must be
incorporated within a supermultiplet, hence appearing together with a new, non-BSM field,
which is called its superpartner. In exact SUSY, the superfields, belonging to the same
multiplet, are mass degenerate and differ in spin by 1/2. The simplest extension of the SM
is called the Minimal Supersymmetric Standard Model (MSSM) and contains the SM and
preserves its symmetries. Its particle content is doubled by adding fermionic partners for all
bosons, scalar partners for all the fermions, and an extra Higgs doublet with its corresponding
fermionic partner. The interactions of superfields are described by specifying a so-called
superpotential W a polynomial in the superfields. The shape of the superpotential is specified
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Superfield spin 0 spin 1/2  gen. SU(3)¢ SU(2), U(1l)y

Q (ﬁu CiL) (ur,dr) 3 3 2 3

U iR u% 3 3 1 1
~ ) 2 )
D dy dly 3 3 1 2

L (01, €r) (vr,er) 3 1 2 -1
E & el 3 1 1 2

H, H H° HT H® 1 1 2 1

H, H° H™ H° H~ 1 1 2 1

Table 1.1: Chiral supermultiplets in the MSSM

Superfield spin 1 spin 1/2 gen. SU(3)c SU(2);, U(l)y

B B B 1 1 1 0
we we we 3 1 3 0
G° g° §° 8 8 1 0

Table 1.2: Gauge supermultiplets in the MSSM

by gauge symmetries, discrete symmetries, and holomorphicity. The extra Higgs doublet
is made necessary by the holomorphicity of the superpotential, which forbids simultaneous
Yukawa couplings for top and bottom if only one Higgs superfield exists. In addition, the
cancellation of gauge anomalies requires higgsinos, superpartners of the scalar Higgs, of
opposite hypercharges. In the MSSM, quarks and leptons are parts of chiral superfields with
the same SM quantum numbers, together with their superpartners squarks and sleptons,
respectively. Gauge bosons and their spin-1/2 partners enter the vector superfields. We
summarize the chiral supermultiplets in Table 1.1 according to their transformation properties
under the SM gauge groups and the gauge superfields in Table 1.2, where the fields are gauge
eigenstates. The superpotential of the MSSM is given by

_ 4 _ _
Wassm = pH, - Hy+Y5Hy - L;E; + Y5Hy - Q;D; — Vi H, - Q;U;,

where p is the Higgsino mass parameter and Y’s are 3 x 3 Yukawa matrices. L' and Qi
are the SU(2) -doublet lepton and quark chiral superfields; E*, U’, D' are SU(2)-singlet
charged anti-lepton, up-type, and down-type anti-quark chiral superfields; and H; and H,
are the Higgs chiral superfields that are responsible for the down-type and up-type masses,
respectively. The gauge indices are not shown explicitly but we depict the generational ones:
i,7,k € {1,2,3}, and employ the summation convention. - denotes the SU(2); invariant
product. In order to enforce the conservation of baryon and lepton number, R-parity has
been imposed in the superpotential.

The parts of the Lagrangian of the MSSM contained in superpotential Wy ggy are as



1.2 Supersymmetry

follows:
10 Waissum (aWMSSM>2
%, —_— h.c. 1.6
int — 2 6¢18¢] %% 8¢z +h.c ) ( )
where BWaM% is the derivative of Wyggy with respect to the superfield ¢, and v, is

the fermionic component of the superfield ¢,. In these derivatives, one needs to first take
the derivative with respect to the superfield, then the superfield is replaced by the scalar
component.

Since SUSY particles have not been observed with the same masses as their SM partners,
we know that there is a mass splitting between SM particles and their superpartners, if
they exist. This means that, in a phenomenologically viable model, SUSY is necessarily
broken. Nevertheless, this breaking may be soft, i.e. involves only terms that do not cause a
quadratic sensitivity of the scalar masses to UV scales. This means that any dimensionless
SUSY-breaking terms are not allowed. The possible soft-breaking terms of the MSSM are:

Lot = Q*mQQ +D'mGD + Um0 + L'mi L + E'mlE +mi; |Hyl> + mi;, | Hyl
(MlBB + MyWOW® + My + hec. ) (1.7)
+ (Aﬁf@i - H,U;+ AJQ; - HyD; + AYL; - HyF; +bHy - H, + hee. ),

where D = cﬁ%, U= g, E = ég. Each m , M ,mz,mi,mg is a 3 x 3 hermitian matrix and
corresponds to quadratic parameters for the masses of the squarks, sleptons. m%{u, m%{ , are
the squared-mass terms for the Higgs fields, while M;, My, M3 are the bino, wino, and gluino
mass term. A7, A7, A7, b define a holomorphic function of the scalar fields, with a one-to-one
correspondence in the superpotential. The soft SUSY-breaking Lagrangian is essential for
a successful low-energy phenomenology. The soft terms do not only cause a degeneracy in
mass between the SM particles and their superpartners, but these terms are also necessary
for electroweak symmetry breaking [49]. By definition, a softly broken theory is indeed still

free of quadratic divergences in the corrections to scalar masses which was one of our main
motivations to extend our SM. The terms are also compatible with gauge invariance.

Beyond providing a solution to the Hierarchy Problem, the MSSM has remarkable con-
sequences for the applicability of a one-step unification at high energy. Indeed, investigating
the running of the gauge couplings in the presence of SUSY superpartners at the TeV scale,
it was observed that these converge almost exactly towards a common value at a scale of
10'® GeV. Such a scale might also suppress the proton decay rates in a unified model within
the limits compatible with current bounds.

Despite its many advantages, the R -preserving MSSM (RPC-MSSM) here provides no
new mechanism compared to the SM concerning neutrino masses. Within the RPC-MSSM
seesaw-like models are possible. Nevertheless, a more original approach to address neutrino
masses is to relax the lepton and baryon number conservation; neutrino masses can be
incorporated by introducing new terms into the superpotential that violate lepton number
conservation. The extended MSSM is often referred to as the R-parity violating MSSM or
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RPV-MSSM.

1.3 R-Parity Violation

In this section, we discuss the concept of R-parity violation (RPV), which is an assumption
regarding the discrete symmetry of the MSSM. R-parity, which is often referred to as matter
parity, is characterized by a discrete multiplicative quantum number that takes the value
+1 for particles and —1 for their superpartners, thus forming a Z, symmetry. Although the
conservation of R-parity is a standard characteristic in the MSSM, there is no compelling
theoretical reason to enforce it. It only serves to forbid lepton- and baryon-number-violating
terms in the renormalizable Lagrangian. We can express R-parity in terms of baryon number
(B), lepton number (L), and spin (5), using the relation,

R, = (—1)3BHL+42S (1.8)

A priori, it is not clear why baryon and lepton number should be considered good quantum
numbers in SUSY at energies beyond the weak scale. Even in the MSSM, the stability of the
proton is not exact; if one were to regard it as an effective framework, higher-order operators
can mediate proton decay [50-52]. An exact MSSM does not allow for non-renormalizable
terms. However, it is clear that the MSSM itself can only be an effective theory so the
existence of non-renormalizable terms satisfying R, but violating baryon and lepton numbers
would be likely, thus, hints at the need for stronger protection than R, to avoid proton
decay. In the case of no R, one could allow for renormalizable baryon- and lepton-number-
violating interactions [45, 50, 53, 54]. To efficiently address the problem of proton decay,
other types of symmetries, such as baryon-triality or proton hexality, have been proposed [55,
56]. Consequently, the possibility of RPV is a valid choice to be considered as a distinctive
phenomenology.

In this work, we will explore the phenomenology of the RPV landscape that does not
violate experimental bounds on the proton lifetime. By investigating the scope of RPV in
the MSSM, we seek to illuminate the viability of scenarios within the known experimental
limits. In addition, we will examine how RPV can lead to intriguing new signals and discuss
the possibility of improving the constraints applying to the RPV-MSSM using existing
experiments as well as determining sensitivity ranges for future experiments. We aim to
provide new avenues for exploring striking signals being different from SM and RPC-MSSM.

First, we take a step back and introduce the superpotential of the RPV-MSSM which may
be expressed in the notation of Ref. [54]:

W = Wynssm + Winy + Wany (1.9)

where Wyggnm is the MSSM superpotential, while the terms,
1 o o . 1 o
Winy = g)kazLjEk + N L'QP DY + i H L, Wany = iAQ’ijlD”Dk, (1.10)

violate lepton and baryon number, respectively. We employed the superfields of the MSSM,
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Li, Qi, Ei, Ui, Di, H,, and H,, as introduced in Table 1.1. Together, Wrpy = Winv + Wany
are referred to as R-parity-violating terms. They include 48 (complex-valued) parameters: 3
% bilinears mixing the charged lepton and H, superfields, and 45 Yukawa-like couplings: 9
As and 27 X's which violate lepton number, and 9 \”s which violate baryon number. One
can impose the following symmetry-conditions on the parameters \;;;, and A;'jk without loss
of generality: A;jp = —Aj, )\;/]k = —)\f/kj. The introduction of numerous new parameters
can create a nightmare when exploring the whole phenomenology. Therefore, we adopt a
simplifying approach: although there is no good reason to assume that the RPV couplings
are hierarchical, it is a predictive guiding principle to explore the otherwise vast parameter
space. Based on the assumption, we consider just one or two RPV couplings to be dominant
at a time - assuming that the others vanish.

With R, explicitly broken, new soft SUSY-breaking terms are included, and can be
expressed as follows:

- -1 . o 1 Y
iRPV,SOft = qule;Lz + szuLz + iAijLzL]Ek + A;,]kLszDk + §A;/]kUzD]Dk + h.c..
(1.11)

Again, only the last set of terms violate baryon number (in the squark sector), while the
others violate lepton number. We emphasize that the first group of operators in the RPV
superpotential, given in Eq. (1.10), and the first two groups of terms in the soft RPV
Lagrangian introduce different mixtures between MSSM and SM fields. These mixtures
involve neutrinos-neutralinos, charged lepton-charginos, sneutrinos-neutral Higgs, and slepton-
charged Higgs interactions. While the RPC-MSSM already includes slepton, sneutrino, and
squark-flavor mixing, the additional effects caused by the bilinear operators of the RPV
superpotential and soft Lagrangian potentially imply new observable features for the RPV
model. Therefore, when considering the full RPV-MSSM model, these new effects must be
taken into account.

The terms in the RPV Lagrangian lead to a significantly changed phenomenology which
we will discuss in detail in the following sections. However, we want to summarize the four
main changes:

(i) The lightest supersymmetric particle (LSP) is potentially unstable and its lifetime
depends on its mass and couplings. Its decay products could appear in collider searches.

(ii) In the RPC-MSSM, the LSP may have a non-vanishing relic density causing cosmolo-
gically unacceptable charged relics when the LSP is (color) charged. It follows that the
LSP of the MSSM has to be electrically neutral. However, the constraint on the - now
unstable - LSP can be dropped in RPV-MSSM. Thus, the lightest neutralino is not
necessarily the LSP.

(iii) Baryon and lepton number can be violated as well as lepton flavor.

(iv) Single sparticle production is possible and processes with external SM particles can be
mediated by sparticles, leading to interference effects.

11
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1.3.1 Where to find RPV Supersymmetry?

Despite the fascinating aspects of phenomenological SUSY, all attempts to directly detect
BSM particles by experimental means have returned negative results so far. At present,
sparticles within the mass range of approximately O(1 — 2TeV) for the colored sector and
O(100—1000 GeV) for the electroweak sector have been ruled out in the MSSM [57]. Searches
most commonly focus on the RPC case, where SUSY particles are produced in pairs and
are expected to leave significant amounts of missing energy. RPV phenomenology can be
extremely different from this picture, though, and prompts the study of new signatures in
collider experiments. Detection of these signatures would provide an experimental hint for
SUSY at the weak scale rejecting the RPC-MSSM*. The search for BSM, whether SUSY or
not, particles through production and decay processes is a critical component of research
programs at current and future high-energy accelerators. The work aims to predict possible
signals, extract exclusion bounds, and generate candidate models that exist for particles in
the mass range from sub-TeV to a few TeV in the RPV-MSSM.

To effectively distinguish between signals produced by BSM particles and SM backgrounds,
it is critical to identify distinctive signatures. An important feature in the “vanilla” MSSM
found in all such processes is the well-known missing transverse energy E7"™. Significant
ET"™ searches have been considered for the past decades as the most sensitive observable to
detect the production and decay of SUSY particles at colliders. However, even in the MSSM,
there are in fact scenarios with too little missing energy escaping the Large Hadron Collider
(LHC) detectors. The strategy of E7™ searches can be applied to the RPV-MSSM only if
the LSP is long-lived and neutral. In scenarios where this condition is not fulfilled alternative
search strategies become necessary.

In this work, we consider three different approaches concerning how RPV couplings can
play an important role in phenomenological searches. (i) As mentioned in the previous section,
it is possible to generate neutrino masses in RPV-SUSY. (ii) If the coupling parameters and
mass of the LSP are small enough, the LSP produced in a collider will decay outside the
detector. In such a scenario, assuming the LSP is electrically neutral, the phenomenology of
particle searches at near detectors remains the same compared to the RPC-MSSM. However,
since the LSP is not stable in RPV, it will eventually decay. In some regions of the parameter
space, this decay may be observed in far-forward detectors and provides a novel signature
relative to the SM background. (iii) When the coupling strengths are relatively weak but the
mass of the LSP is higher, the LSP decays inside nearby detectors. It is necessary to consider
such decays as mediated by each of the 48 couplings in the RPV-MSSM and to determine
detectable signatures.

1.3.2 Massive Neutrinos

In the RPV-MSSM, neutrino masses may result from neutrino-neutralino mixing if lepton
number is violated, with an underlying seesaw mechanism [58-64]. In this case, no further
BSM particles are required. Due to the violation of lepton number, the lepton doublet
superfields L, carry the same quantum numbers as the down—type H,; doublet superfield.
As a result, they are not distinguishable. The neutral higgsinos and neutrinos mix due

* Whether SUSY is the theory behind the signal would require dedicated studies.
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to the bilinear term HuLi in the superpotential. In addition, the trilinear lepton number
violating terms of the RPV-MSSM superpotential, given in Eq. (1.10), and of the soft breaking
Lagrangian, given in Eq. (1.11), in particular lead to the dynamical generation of neutrino
masses. Following spontaneous symmetry breaking, the neutral gauginos also mix with the
neutrino, yielding:

1 ~ ~ ~ . -

M is a 7 x 7 mass matrix. As neutrinos are known to be extremely light, we assume that
there exists a strong hierarchy between the mass scales of the neutralinos and neutrinos.

Thus, we can write My as:
Mo m
My = s ) (1.13)

m m,

where m,, is the 3 X 3 mass matrix in the neutrino sector and equals 0 and M o is the
4 x 4 mass matrix in the neutralino sector. m denotes the 3 x 4 mixing matrix which arises
through R-parity violation. Details of a possible diagonalization procedure can be found, for
instance, in Ref. [63]. Analogously to a classic seesaw mechanism, one can end up with an
approximately block-diagonal matrix,

. M 0
My~ (0 : (1.14)
0 M,

where M, =m,, — m/\/l_1 T The neglected contributions to My, and M, in the above

can be estimated as ||||m4X3|\|\ < O(1eV), and |‘|‘$4X3‘|‘| SO (10 eV), respectively [63]. It is
4x4

important to emphasize that the rank—1 structure of M leads to only one non-zero neutrino
mass at tree-level. Neutrino data show that at least two neutrinos are massive. Nevertheless, it
is necessary to take radiative corrections into account [58], generally leading to the emergence
of a second mass eigenstate. There are two classes contributing to one-loop diagrams [61].
The first one consists of fermion—sfermion loops and depends on the RPV trilinear terms. The
second, which in many cases is the dominant one, consists of sneutrino—neutralino loops and
depends on the sneutrino—anti-neutrino mass splitting. Contributions to the neutrino mass
matrix are generated from diagrams involving a charged lepton-slepton loop and an analogous
down-type quark-squark loop. In general, the existence of a sneutrino—anti-neutrino mass
splitting, which is a result of a AL = 2 interaction, generates a one-loop contribution to the
neutrino mass.
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1.3.3 A Light Neutralino

As we will discuss later, certain scenarios involve a very light neutralino state and it is
important to analyze how far such a setup is phenomenologically realistic. For a stable
lightest neutralino which can serve as a DM candidate - as in the MSSM - chargino searches
at LEP indirectly set the strongest lower limit on the mass, m o 2 46 GeV [65]. However, in

the RPV-MSSM, in principle, any particle can be the LSP [66, 67]. In this search, it was
assumed that the soft-SUSY breaking gaugino masses SU(2) and U(1) satisfy the grand-
unification mass relation M; = %tan2 Oy My =~ 0.5M5, where 0y, is the electroweak mixing
angle. If we relax this assumption of gaugino mass unification and consider M; and My as
independent parameters, we gain an additional degree of freedom. No actual lower limit
can be derived from the LEP search anymore. Thus, limits on electroweak charged particles
make it phenomenologically impossible to consider a SUSY particle other than the bino in
the sub-GeV range [68-71]. Such a light bino would necessarily emerge as the LSP.

Beyond collider experiments, limits arise from cosmology considerations: the search for
dark matter places a lower limit on the mass of a stable neutralino LSP since such a particle
would contribute to the relic density. The argument of Lee and Weinberg [72] then implies the
bound mo > O (10) GeV [69, 73-82], or, using the argument of Cowsik and McClelland [83],

m o < 0.7eV [69]. However, if the neutralino is unstable and decays via RPV coupling, then
1
it does not intervene on cosmological scales, and these limits do not apply [68].

In contrast, an unstable high-mass neutralino with a short lifetime would be severely
constrained in collider searches due to visible decays [84, 85]. Light neutralinos can also be
strongly constrained by astrophysical considerations, such as the cooling of supernovas and
white dwarfs [86-88]. The key point that allows us to make the limits on the mass of the
neutralino void is that the neutralino is stable on collider scales but decays on astrophysical
scales. This assumes that the RPV couplings are small, which we expect. Accordingly,
bino-like neutralinos in the RPV-MSSM could have arbitrarily small masses [69].

1.3.4 Proton Decay in the RPV-MSSM

As we discussed in Section 1.3, the superpotential of the RPV-MSSM [34, 35, 45, 48, 89,
90] results in a framework that includes new source of baryon number violation potentially
contributing to baryogenesis, with additional contributions from leptogenesis [91-94]. One
drastic consequence of allowing such baryon- and lepton-number-violating operators is that
they may lead to rapid proton decay [50, 95-97]. Proton decay in the RPV-MSSM has been
thoroughly studied in literature; see, for instance, Refs. [98-101]. The simultaneous presence
of baryon- and lepton-number-violating couplings allow for nucleons to decay into mesons
and leptons via tree-level squark exchange [102, 103]; this mainly constrains products of RPV
couplings involving the first two generation indices. The simplest possibility for proton decay
is via simultaneous L;Q,D; and U, D, D, operators (with i € {2,3} ). For this combination
of operators, the proton can decay into a pion and a positron (or a neutrino). To date, there
has been no observation of proton decay, and the current strongest bound on its lifetime is,
7(p— 7 +e") > 1.6 x 10 yrs at 90% confidence level [104]. Using this, one can estimate
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the strict bound on the product of couplings,

/ "
)‘lli)‘lli

S0 (1077), (1.15)

if the mass of the virtual squarks, mediated in the decay, is of the order ~ O(1TeV). More
involved channels including loops, bilinear insertions, or additional electroweakinos in the
diagram have also been studied [58, 105-108]. The case corresponding to a light photino has
been considered in literature [58, 109]. This, and other decay modes lead to bounds on a
wider set of products of RPV couplings. RPV interactions also allow for more exotic proton
decay modes involving only a single RPV coupling. If the lightest neutralino is lighter than

the proton, i.e. mo < my — M+, a direct decay p — KT+ )2(1) becomes possible, being a
one coupling scenario using only a non-zero Aqjqs.

On the experimental side, several next-generation detectors are being planned or are even
under construction, such as DUNE [110-113], JUNO [114, 115], and Hyper-Kamiokande [116],

making the phenomenology of proton decay a central avenue to investigate BSM.

1.4 OQOutline

This thesis is organized as follows: in Chapter 2, we present a framework permitting neutrino
mass generation in the context of the RPV-MSSM. We try to make predictions in the most
general framework. As discussed earlier, the neutrino mass matrix is subject to numerous
different contributions involving various RPV-MSSM parameters. We will demonstrate how
our approach allows us to study the effects of neutrino oscillation data on a wide range
of models in a unified and model-independent manner. In Appendix A detailed analytic
expressions and further benchmarks, including C'P violation, can be found.

In Chapter 3, we provide a systematic analysis of the potential final states that can occur
within the RPV landscape, relying on minimal assumptions about the details of the model,
particularly the mass spectrum. Our primary goal is to categorize the extensive spectrum of
possibilities into a manageable and concise set of signatures in order to ensure comprehensive
coverage of the model space. We conduct a detailed investigation of the current experimental
coverage of these signatures. This allows us to identify potential gaps in experimental coverage
if they exist. In Appendix B, we provide supplementary decay modes and tables, which
might be useful for numeric simulations. In addition, we provide an introduction to a Python
package, which might be helpful for analyzing collider signatures.

In Chapter 4, we first introduce the framework of a light neutralino being produced from
mesons at the LHC. We perform a detailed simulation procedure of the radiative decay mode
of the light bino at the basic setup of FASER at the LHC. Then we estimate the sensitivity
reach in the parameter space of RPV-SUSY. Remaining in the framework, we further study
the phenomenology of a light bino in various scenarios and demonstrate that it is very similar
to that of a light heavy neutral lepton in Chapter 5. This allows us to find sensitivity limits
and reach for the various RPV couplings including even the bilinears. A detailed calculation
of neutralino production and decay width can be found in Appendix C. We continue with
the proton decay mode, p — K + )2(1], induced by via a single UDD coupling in Chapter 6.
Since the bino can be massless we can compare it to the decay p — K * 4+ v, which has been
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searched for. Different neutralino masses can lead to different kinematics and, thus, lead to
different signatures. We shall also discuss the possibility of the neutralino further decaying
inside the detector as a complementary method of proton decay detection. We finish with a
conclusion in Chapter 7.
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A v Approach to Analyzing Neutrino Data in
the R-Parity-Violating MSSM

2.0 Preface

The contents of this chapter and the supplementary material presented in Appendix A are
based on the following publication:

e H. K. Dreiner, D. Kohler, and S. Nangia,
A v approach to analyzing neutrino data in the R-parity-violating MSSM,
Published in Eur. Phys. J. C 83 (2023) 1, 44, arXiv:2210.07253 [hep-ph].

Saurabh Nangia developed the analytical framework of Minimal Oscillation Models (MOMs).
The implementation of a X2 routine using the MINUIT2 package, as described in Section 2.7
using the newest neutrino data in Section 2.5 was provided by the author. Further, all plots
in Section 2.7, Section 2.8 and Appendix A were also made by the author. Additionally, the
author implemented the analysis for the CP-violating case, which is shown in Appendix A.
Finally, the author provided the different properties of the considered example scenarios by
considering the numerical properties of the fit.

As previously discussed in Chapter 1, neutrino masses are the first glimpse into BSM
physics. Experimental observations have revealed neutrino oscillations, implying non-zero
neutrino masses. These observations indicate that neutrinos are relatively light, with direct
measurements constraining their masses to be less than m, < 0.8eV [117]. Cosmological
observations give more stringent upper limits of only > >m,, < 0.12€V for the sum of neutrino
masses [65]. The data from atmospheric and solar neutrino oscillation suggest squared-neutrino-
mass differences are O (1 x 1073 eV2) and O (1 x 1077 eV2), respectively, implying that at
least two neutrinos must be massive [118]. In principle, it is seemingly straightforward to
extend the SM Lagrangian by a Dirac neutrino mass term. This requires only right-handed
neutrinos and new Yukawa couplings of O (1 X 10712>. However, such tiny couplings appear
highly unnatural and could indicate a dynamical mechanism explaining their smallness.
Furthermore, right-handed neutrinos may carry an unspecified Majorana neutrino mass.
Among the most discussed extensions of the SM is the see-saw mechanism which introduces
right-handed neutrinos and assumes a large Majorana neutrino mass scale [119-121]. By
fixing a large Majorana mass scale, it becomes possible to obtain light neutrinos with a mass
O (0.1eV) even with O(1) Yukawa couplings.

The RPV-MSSM has been shown to be a compelling framework that naturally accom-
modates massive neutrinos and accounts for the observed oscillation data, as we have seen
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in Section 1.3. However, the phenomenological exploration of this model is challenging due
to a large number of undetermined parameters, making individual predictions difficult. To
simplify the analysis, previous studies have focused on specific submodels to make progress
in understanding the RPV-MSSM. Within the supersymmetric SM, there exist three Zy
symmetriesl, one of them being the usual and so far discussed R-parity, also referred to
as matter parity. The other symmetries are a Z3, called baryon triality (Bsg), allowing
for LNV [52, 55, 122] and a Zg symmetry, called proton hexality, which conserves lepton-
and baryon-number. The latter symmetries forbid the presence of dangerous dimension-5
operators leading to proton decay.

In this chapter, we consider a novel and less restrictive approach for studying the parameter
space of the RPV-MSSM. We focus specifically on neutrino-mass generation in the Bj-
conserving case to explore the phenomenological implications of the model in the most
comprehensive way possible. The primary emphasis lies in the analysis of the structure of
the neutrino mass matrix, with particular attention to the case of two massive neutrinos.
Under mild assumptions, we show that these contributions, up to one-loop order, can be
simplified into only two types of structures. We demonstrate that there are only four essential
categories of models capable of explaining neutrino data. We refer to these classes as Minimal
Oscillation Models.

We address a comprehensive examination of each of the introduced MOM classes, whose
individual characteristics and properties we list. Our study includes the general characteristics
of each MOM class and includes numerical fits to the oscillation data. We find the implications
of neutrino oscillation data across all RPV models, provided that they meet the MOM criteria.
We also extend our analysis to include the CP-violating phase in the fitting procedure.
Generally, the framework can be extended to also include three massive neutrinos as well as
non-minimal classes of models.

In summary, this chapter presents an important contribution to the field of RPV-MSSM
by providing a novel, general approach for studying neutrino masses within the (almost)
completely general RPV-MSSM framework. The work explores the structure of the neutrino
mass matrix and identifies minimal classes of structures.

! When requiring the original gauge symmetry to be anomaly-free, and demanding a viable low-energy
superpotential.
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2.1 Introduction

The Standard Model of particle physics (SM) is incomplete. The nature of gravity, dark
matter, dark energy, the baryon asymmetry, etc. are important unresolved issues. However,
the most conclusive sign of physics beyond the SM comes from the precise neutrino oscillation
data. It is now established that at least two of the neutrino species are massive. One
way to give neutrinos mass is to add right-handed neutrinos to the SM spectrum. Via the
see-saw mechanism, one then ‘naturally’ obtains very light neutrinos, as required indirectly
by cosmology (Z m,, < 0.12 eV) [65] or, directly, for example, by the KATRIN experiment
(m, < 0.8eV) [117]. However, this requires the right-handed neutrinos to be very heavy.

Supersymmetry (SUSY), a well-motivated extension of the SM [34, 45], is an attractive
alternative. The simplest phenomenological realization, the Minimal Supersymmetric Stand-
ard Model (MSSM), has been studied extensively. An equally well-motivated [53, 99] setting
is provided by adding R-parity-violating (RPV) terms to the MSSM Lagrangian, giving the
RPV-MSSM [54]. This framework leads to a starkly different phenomenology compared to
the MSSM, allows for lepton- and baryon-number violation, as well as flavor violation. Most
importantly for this paper: Neutrino masses arise for free, without the need for any heavy
right-handed partners [58, 123].

Neutrino-mass generation in the RPV-MSSM framework has been studied extensively in
the literature. Early work on the tree-level calculation can be found in Refs. [58, 59, 124,
125], and on the loop-level one in Refs. [58, 123, 126-134]. Ref. [62] gives a (nearly) complete
list of one-loop contributions, presented in a basis-independent formalism. Detailed accounts
of the one-loop calculation can be found in Refs. [63, 64].

There has also been a lot of work to fit the theory calculations to the neutrino data; see
the above references as well as Refs. [135-145]. The main obstacle to a systematic study is
the unmanageably large number of contributions to the neutrino mass matrix in the most
general RPV-MSSM. Thus, all numerical studies are performed within specific submodels; for
instance bilinear-only RPV models [123, 132, 146], trilinear-only RPV models [136], mixed
models [135, 137, 140, 147], and constrained MSSM (¢cMSSM) models extended by one (or
two) RPV couplings [64, 145]. For an overview of the various types of models that have been
considered, see Ref. [99].

The above studies allow an interpretation of the neutrino data within a predictive framework,
but are limited in their scope. In this work, we approach the problem from a different
perspective. Working in the general RPV-MSSM setting, allowing for all terms, we analyze
the possible resulting structures (textures) of the neutrino mass matrix. To this end, we
first argue that the most general neutrino mass matrix in the RPV-MSSM, to a good
approximation, can be written as a sum of just two types of terms. This expression is general
and simple but still has far-too-many free variables to be predictive. However, appealing
to minimality, we identify just four structures of the mass matrix that are relevant for the
case of two massive neutrinos. We refer to these as Minimal Oscillation Models (MOMs).
The advantage of this approach is its simplicity and generality. By analyzing just four cases,
it allows us to study qualitative and quantitative features of all RPV models in a unified,
model-independent way, as long as they satisfy the MOM criteria; we demonstrate through
examples that many interesting scenarios do indeed fulfill this condition. If, in turn, new
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neutrino measurements arise, then this data can be systematically analyzed in terms of
the MOMs we present here, instead of in terms of the many, many different RPV-MSSM
neutrino-mass models.

This paper is organized as follows. In Section 2.2, we introduce the RPV-MSSM (and
our notation). In Section 2.3, we discuss neutrino masses in the R-parity-violating context.
In Section 2.4, we define the MOM framework and classify the four relevant structures of
the neutrino mass matrix that arise in the RPV-MSSM. In Section 2.5, we summarize the
current status of the neutrino data. We then analyze the four classes of MOMs, studying their
general features in Section 2.6. We solve each class by numerically fitting to the neutrino
data in Section 2.7. Finally, in Section 2.8, we consider example applications to show how
results from the MOM framework can be directly translated to specific neutrino-mass models
in the RPV-MSSM. We conclude in Section 2.9.

2.2 R-Parity Violation: Theoretical Framework

Assuming the N = 1 SUSY algebra, and the MSSM particle spectrum, the most general
renormalizable superpotential invariant under the SM gauge group is,

W = Wyssm + Winy + Wanv (2.1)
with,
Wassm = he HyLE; + hi H,Q:D; + h Q,H,U;
+IUHqu )
1 .. _ . _ .
Winy = iA’JkLiLjEk + N*L,Q; Dy + K'H, L; ,
1 g — - —
Weny = iA"ZJkUiDjDk . (2.2)

In the notation we employ, L (Q) and E (U, D) label the lepton (quark) SU(2)-doublet
and -singlet chiral superfields, respectively, while H,, H; refer to the SU(2);-doublet Higgs
chiral superfields. All gauge indices are suppressed while the generational ones have been
retained explicitly: ¢, 5,k = 1,2, 3, with a summation implied over repeated indices. The \’s
and the h’s are dimensionless Yukawa couplings, while ¢ and the ’s are dimension-one mass
parameters.

In Eq. (2.1), the Wygqm terms conserve both lepton- (L) and baryon-number (B), the
WiNv terms violate only L, and the Wyyy terms violate only B. A disconcerting consequence
of allowing unsuppressed L- and B-violating terms simultaneously is proton decay at a rate
that is disallowed by experimental constraints on the proton lifetime, 7, > 3.6 x 10%% yrs [65].
The usual approach in the MSSM is to invoke R-parity [148], a Z, symmetry that allows
Whussm, while disallowing the R-parity-violating terms, Wrpy = Winv + Weny. However,
to stabilize the proton, R-parity is sufficient, but not necessary. For instance, forbidding
either the Wgny or the Wy v terms alone results in a stable proton.2 Baryon triality, Bs, is

% If the lightest neutralino is lighter than the proton [69], then the proton can also decay with just W =
-0
Whssm + Wanvy, e.g., p — K X1 [101].
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such a symmetry that forbids the former and leaves the latter [122]. In fact, unlike R-parity,
B3 even forbids potentially dangerous proton-decay operators of dimension five. We note
that R-parity and Bg are the only Zy or Z3 symmetries possible with the MSSM low-energy
particle content free from gauge anomalies [51, 52]; the higher symmetries have been classified
in Ref. [55].

R-parity-violating phenomenology differs strongly from the R-parity-conserving case [53,
67, 99, 149]. Collider signals are no longer dominated by missing transverse momentum,
the lightest neutralino is no longer a dark matter candidate, and baryogenesis, lepton-flavor
violation and neutrino masses arise naturally. We summarize the last point, central to the
further discussion.

2.3 Neutrino Masses and R-parity Violation

For neutrino masses at next-to-leading order, without loss of generality, we specialize to the
B3-MSSM, and abusively call it the RPV-MSSM. Our superpotential is,

Wpg, = Wyssm + Winy- (2.3)

There is no quantum number distinguishing H; from L; and hence, we define the following
vectors and matrix:

a= (Hd’LbLQaLS) ) (24)
= ( KRS K ) , (2.5)
)\/ajk — (hfik:, /1_]k‘ /2jk A/B]k) 7 (26)
0 hF nZFp¥
1k 12k 13k
AR = _hgk Slk A >\23k (2.7)
—h" A 0 A
_p3k )3k \32k
e
o, = 0,1,2,3 label the vector and matrix components, e.g., Ly = Hy, and NIk = hflk.
J,k =1,2,3 are as before. We can thus write the superpotential as,
L\ apk = 1ok = ij -
Wp, = 5)\ LoLgEy + N7 LoQ; Dy, + hyy Q; H, U
+Kk“H,L, . (2.8)
In addition, there are the soft-breaking terms,
1 ~ ~ = g~ o~ =
L, = mass terms + anﬁkL aLsE) + A'O‘jkLanDk
+ AYQ,H, U + B“H,L, + h.c. (2.9)

where the fields appearing in the above equation are the scalar components of the corres-
ponding chiral superfields. The definitions of the parameters with one (BO‘, A’ k), and two
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AP k) Greek indices are obvious generalizations of the MSSM soft-breaking parameters, cf.
Eqgs. (2.4)-(2.7).

After spontaneous symmetry breaking, the neutrinos, the neutral gauginos, and the
higgsinos mix, leading to a 7x7 mass matrix. At tree level in the gauge eigenbasis,
(—iB; —iWO; ]ZIS; 1/&), with v, = (ﬁg, Vi), we have the overall mass matrix,

Myys myys
My=| . , (2.10)

m3,, 0343

with My,4 corresponding to the MSSM neutralino mass matrix,

91Uy —91%q
M, 0 S 3
0 M2 —92Yy 9294
2 2
M4><4 — 3 (2 1 1)
91V —92Yy 0 —K,O
2
—91%q 92Yq _,.0
5 5 K 0

and the sub-block my 3 containing the RPV terms,

—91U1 —91V2 —91v3
2 2 2
92v1 g2v2 92v3
_ 2 2 2
myy3 = 1 9 3 . (212)
—K —K —K
0 0 0

B and W denote the neutral gauginos, I:IS, ﬁg the neutral higgsinos, and v; the neutri-
nos. My, My, and gy, g9 are the electroweakino soft-breaking masses and gauge couplings,
respectively. %, %, %, with i = 1,2,3, are the vacuum expectation values (vevs) of the
two neutral Higgs fields and the three sneutrinos, respectively.

The mass matrix of Eq. (2.10) has been discussed abundantly in the literature. The details
of the diagonalization procedure can be found, for instance, in Ref. [63]. The scales in the
various blocks are expected to have a hierarchy. Given the lower mass bounds on sparticles
from the LHC, one expects the lepton-number-conserving SUSY scales of M, 4 to be at least
~ O (1TeV), while the lepton-number-violating scales of m, 3 are constrained by various
stringent low-energy bounds to be much smaller [99]. For example, the cosmological limit on
neutrino masses implies v;, k' < O (1 MeV) [54]. One can then proceed & la see-saw, and end
up with an approximately block-diagonal matrix,

. M 0
Mg o (0 , (2.13)
0 M,
where,
iy ( ) 0 7 ) (U J
M, = Tdet (M) (v,m Vgk > (Ujli Vgk ) . (2.14)
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The neglected contributions to My, 4, and M, in the above approximation are of order

Imisl Imial < -6 : . :
Ml O (1eV), and TR (@) (10 eV), respectively [63]. To this order, M, is

unaffected compared to the MSSM and we identify it as the neutralino mass matrix, and the
corresponding mass eigenstates as the neutralinos. The high-scale-suppressed M,, can then
be identified as the effective neutrino mass matrix.

Importantly, M, is rank one at tree level, i.e., it has only one non-zero eigenvalue. However,
at least two neutrinos must be massive to explain the oscillation data. This can be achieved
by including one-loop corrections [58], which have been computed several times in the
literature. We shall use the results of Ref. [62]. There, an almost complete list of the one-loop
contributions to M,, is presented; certain contributions whose effects are expected to be
negligible have been dropped.

The advantage of using the formalism of Ref. [62] is that the contributions have been
written in terms of basis invariants. It is common practice in the literature to use the U(4)
‘flavor’ freedom to rotate L, to a specific basis. Various useful choices have been identified
— the most common being the vanishing-" basis [58, 150], and the vanishing-sneutrino-vev
basis [130]. The notation of Ref. [62] is invariant under this U(4) and is useful to compare
results across works using different bases.

We present an adapted version of all the contributions calculated in Ref. [62] in Table 2.1.
Each entry can have multiple diagrams contributing. Further, the expressions are not
exact but are meant to indicate the resulting form. For brevity, we have set all the SUSY
mass scales to mgygy, all gauge couplings to g, dropped some factors involving the ratio
of vevs — tan 3, and taken some scalar-sector flavor matrices as diagonal. We discuss the
implications of this point in more detail shortly. The &’s appearing in the table are the basis
invariants. Throughout, the constraints we derive apply to them but the results can always
be translated into a specific basis using the general expressions [62]. For instance, in the
vanishing-sneutrino-vev basis, we have,

4 p . Bt
5Z = T 51B = 1o
" k] | B
Sk = ik oI = NE, (2.15)
with,
3 3
WP= 3P BP =Y 1B (2.16)
a=0 a=0

Motivated by the above expressions, we often loosely refer to the §’s as ‘RPV couplings’.

Even though the contributions in Table 2.1 are in terms of basis invariants, they have been
written in a specific basis which corresponds approximately to the charged lepton mass basis.
Analogous to the neutral case, the uncolored 5 x 5 charged fermion mass matrix mixes the
charged gaugino, charged Higgsino, and the three charged leptons. However, it also has a
hierarchical structure and can be approximately block-diagonalized to obtain separate 3 x 3
and 2 x 2 mass matrices, corresponding to the charged leptons and charginos, respectively.
The charged lepton matrix, subject to small neglected terms, can then be diagonalized as

23



Chapter 2 A v Approach to Analyzing Neutrino Data in the R-Parity-Violating MSSM

usual.
With a diagonal charged lepton mass matrix, one can then diagonalize the effective neutrino
mass matrix M, :

M, = Uppnins M58 U s (2.17)

where Mgiag is the diagonalized neutrino mass matrix, and Upyng is the PMNS matrix that
appears in the charged-current interactions of the neutrinos. It should be clear that the
PMNS matrix, as defined here, is a 3 x 3 sub-matrix inside the larger 5 x 7 matrix describing
the mixing between all the 5 charged fermions and 7 neutral fermions. Thus Upyng is not
exactly unitary, here. However, these effects are suppressed by the high-energy scales and we
ignore them [63].

Contribution 167 msysy M)
Tree-Level 167" momsusy 007,

1 6§nk5§\knmenmek + (i< J)
2 303" 80 mg, mg, + (i ¢ )
3 9°0B0Lmausy /4
4 3 (00000% + 6200 ) ma, bl
5 5f\jk§§mek (me]_ hg —me, hle)
6 (30 + 703" ) m?, h
7 6;5ﬁmelmejhéh£ + (i < J)
8 R [(melhi)z + (m, hfﬂ
9 5485 (me,ht) + 040k (me )’
10 6§\jk6,§mek (meihf3 — mejh£>
11 (5;’;5& + 5{35:;) hihme,me,
12 g (5,i5-]"3m§z + 5i6f§m§j)
13 9oL (m2, +m?)
14 g msusy (‘ﬁ:‘f\kk + ‘ﬁéﬁ\kk) Mey
15 3 gmsusy (6,251’% + 5£6;’7k) mg,
16 g*miusy (3h3% + 60%) /4
17 g (oohm? + olopm?,)

Table 2.1: M,, contributions as calculated in Ref. [62]. The numbered entries are due to one-loop
diagrams. Summation is implied over all repeated indices other than 4, j. The §’s are the RPV basis
invariants. mg is the tree-level mass scale of Eq. (2.14), the remaining m’s are the SM fermion
masses, and the h’s are the Yukawas.
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2.4 Minimal Oscillation Models

The matrix equation to be solved is,
! X * .
M, = MJ® = Uy nsdiag (myl,ml,Q,m,,3> UE’MNS , (2.18)

where M, is the one-loop effective neutrino mass matrix computed from the RPV Lagrangian
and the right-hand side is to be determined through fits to the neutrino oscillation data. The
difficulty of numerically analyzing the most general RPV neutrino-mass model should be
evident from the large number of contributions in Table 2.1. The goal of this paper is to show
that — despite this — due to the structure of the entries, only a small set of truly ‘distinct
models’ is possible. These, in turn, can be systematically analyzed.

Eq. (2.18) is a set of six complex equations, or 12 real constraints. Nine of these are
physical, corresponding to the three neutrino masses, the three mixing angles, and the three
C P-violating phases in the PMNS matrix (see the parameterization of the PMNS matrix
below). The remaining three are not physical constraints. They correspond to arbitrary
phases in the PMNS matrix that can be rotated away [151].

Looking at Table 2.1, it is clear that the most general one-loop mass matrix arising in RPV
models, entering Eq. (2.18) on the left-hand side, has too many parameters; the system is very
much underdetermined. Just the RPV superpotential has (mi, N k, N k) 3+9+27 =39 free
complex (or 78 real) parameters. As mentioned, the usual approach of numerical studies has
been to assume specific models. For instance, bilinear-only models (A% = X% — O) [123],

or unification approaches that begin with a small number of non-zero \’s at My, which then
generate other non-zero couplings at the low scale through renormalization-group effects [152],
etc. Our aim in this work is to remain as general as possible.

In a first step, we observe that all the contributions of Table 2.1 (except entries 5 and 10 —
we return to this point) can be reduced to combinations of just two types of structures:

2. xiyj + yixj

Here, the z' and yi are place-holding variables with mass-dimension [M ]1/ 2 that are directly
proportional to the §’s of Table 2.1. For instance, when the first one-loop entry of the table
is expanded out, we get,

1
87 msusy

+ 5P, + 626w + )

ij _
M, = "

o
(53335§33mT + 6323673 m m

= ziad + (xéxi + xixé) +abal 4+ ..., (2.19)
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with
i 5133 Z 6122
r=—"— ro=-—=r
LT oam2mgusy| 0 2my2 msusy ’
57423 5232

T T (2.20)

K3 1
3 271'\/ 2mSUSY ’ 1= 27’['\/ 2mSUSY '
We see that the first and fourth terms correspond to an 2'z’ structure while the second and
third terms together form an y +y'z’? structure. The choice of the variables is non-unique.
For instance, one can multiply x5 by a constant and divide x} by the same constant without
changing the total contribution. Similarly, xi, :cé are defined only up to a sign. The important
point is that the variables are chosen to be directly proportional to the §’s.

One can similarly check the other entries. So, (ignoring the two exceptions) the most
general one-loop effective neutrino mass matrix in RPV models can symbolically be written
as,

MY = le:c] + Z (:z:ly' + yixj) , (2.21)

where the sum over « (3) is such that all the contributions of the first (second) type in Table 2.1
are included. Given Eq. (2.21), the simplest neutrino mass matrix that one can construct in
the RPV-MSSM is with only one set, x":

MY = z'a (2.22)

The rank of this matrix is one, leading to two massless neutrinos which is inconsistent with
oscillation data. The next simplest case involves two sets z*, 2"". Consider, for instance,

MY = z'a? + 22" . (2.23)

This is, in general, a rank two structure and could possibly explain neutrino data if the
lightest neutrino is massless. However, it does not work if the two sets are linearly dependent.
To see this, let 2" = ka'; we get,

MY = 22! + kP2’ = (1 + k?)2'a’
=3, (2.24)

where 7' = 1/1 + k? 2'. The structure reduces to the rank one case. Thus, we must have two
linearly independent sets.

We emphasize that the number of linearly independent 2 sets is not the same as the
number of RPV-coupling sets that give rise to them. For instance, one can check that
reducing the tree-level contribution and entry 7 of Table 2.1 to the form of Eq. (2.21) requires
two linearly independent sets, z' and 2, even if both contributions arise from just a single
RPV-coupling set, &,,. The inverse is also possible: Several RPV parameters can be written
in terms of just one set z', ¢f. Appendix A.2.
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With the above in mind, all possible structures that can be written with two linearly
independent sets, 2 and =", are:

g L,
e Class 1: M)} = z'2"” + 22’

Class 2: MY = 2’2/ + (2'2"” + 2"27)

e Class 3: Mf,j =z'2’ + 22"
e Class 4 MY =227 + 2”2”7 + A (xix'j + :E’ixj)

These four structures® are all rank two — the minimum required, and are the only possible
solutions to the neutrino data, as long as one is interested in a minimal setup. This is a
crucial observation of this paper. We analyze these structures in the following.

Let us now discuss the exceptions mentioned above — entries 5 and 10 in Table 2.1. Before
proceeding, we note that the various contributions to the neutrino mass matrix in Table 2.1
have a natural hierarchy. For instance, consider a scenario with only the 6, # 0, leading to
four contributions: The tree-level term, and entries 7, 8 and 13. Contributions 7 and 8 are
suppressed by at least two extra powers of the small lepton-Yukawas compared to the other
two. Thus, to a first approximation, we can neglect them.? The remaining two contributions
can be reduced to a Class 2 MOM structure, cf. Section 2.8. This is a general trend, not
specific to this example; we explore several examples later.

Indeed, the exceptions 5, 10 are not too worrisome for the same reason. They are Yukawa
suppressed compared to the other terms involving the same sets of couplings. Let us see
this explicitly for entry 5. The RPV parameters involved are d5 and 5f\]k. Assuming other
couplings vanish, this entry would be competing with entries 1 and 3. We can estimate the
magnitudes of the three contributions as:

Entry 1 ~ |6,|*m2,

20 12 2
9°19p| " msusy
4 cos® I}
Entry 5 ~ |0, ||65|m2h, tan 3, (2.25)

Entry 3 ~

)

where we have assumed a common magnitude for all generations of a particular coupling
and hence dropped the latin indices. Further, we have only retained the terms proportional
to the dominant 7 lepton Yukawas for entries 1 and 5. The tan 8 and cos 3 factors are
read off from the expressions found in Ref. [62]. Substituting the known values, and taking
mgusy ~ O (1TeV), one can easily prove that there is no configuration of parameters for
which Entry 5 becomes important relative to the other two contributions. A similar argument
can be made for entry 10.

% The Class 4 structure follows by using Eq. (2.21) to write the most general expression involving only z' ",
or couplings that are a linear combination of the two; and then suitably redefining the variables such that
all the proportionality constants appear only in A. The detailed steps are given in Appendix A.2.

* One should make sure that the tan 8 factors, not shown in Table 2.1, cannot undo the hierarchies. As
discussed in Section 2.8, this is indeed not the case here.
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Going beyond rank two, it is possible that all three neutrinos are massive, requiring a rank
three structure and a third linearly independent set, . Three linearly independent sets is
the most general case and hence this approach would capture all RPV-MSSM neutrino-mass
models. However, the number of classes to be considered is large making them less conducive
for systematic numerical studies. In this paper we focus only on the rank two case.

We should note that the MOM approach does not cover the most general rank two structure
possible in an RPV model. In Table 2.1, we assume some scalar-sector mixing matrices are
diagonal in the charged lepton mass basis we are working in. This includes matrices that
diagonalize the charged doublet and singlet sleptons and down-type squarks, and matrices
that describe the left-right sparticle mixings; that is, we assume the sparticle and particle
flavors are aligned with no inter-generational mixing. The fact that all contributions can
be reduced to one of just two types of structures relies on this assumption. Further, by
setting all SUSY scales in Table 2.1 common, we have neglected the possibility that strong
hierarchies in the scalar sector may undo some of the hierarchies that we saw above. Finally,
it is possible that three linearly independent sets —z*, 2", 2" — lead to a rank two structure
through specific cancellations (see Appendix A.2 for an illustration of this point). The four
structures listed above with only two sets would not capture such models. Hence, we shall
refer to these as Minimal Oscillation Models (MOMs). MOMs are not minimal in the sense
of having the fewest number of RPV parameters. They are, rather, minimal in the sense that
the mass matrix has the minimal structure demanded by the data.

In the absence of any experimental information about the scalar sector, we believe the
MOM framework provides a minimal setting that is widely applicable for the interpretation
of neutrino data. It is simple and predictive. After briefly reviewing the neutrino data, we
analyze qualitative and quantitative features of the models in the subsequent sections.

2.5 Neutrino Data

The PMNS matrix can be parameterized [65] by the three mixing angles (04, 013, 023), one
C'P-violating Dirac phase (6¢p), and two C' P-violating Majorana phases (1;,15):

C12€13 519C13 sige 0P\ e 0 0
Upmns = | —S12C23 — 012823813€MCP C12€23 — 81282351361'5013 823C13 0 €™ 0
$12523 — 01202381361'5013 —C12823 — 5120238136i5CP C93C13 0 0 1

(2.26)

where sin6;; and cos 6;; are written as s;; and ¢;; respectively. Without loss of generality,
the angles 6;; can be taken to lie in the first quadrant, i.e., 8;; € [0,7/2], and the phases
5CP7 ni € [07 27T]'

We summarize neutrino oscillation data from Ref. [118] in Table 2.2. We follow their
assumption of three active oscillating neutrinos. They present the best-fit values of the
combined global analysis of atmospheric, solar, reactor, and accelerator neutrinos. Here,
we specifically choose their fit including the SK atmospheric data [153, 154]. The data
still allows one neutrino to be massless; we work in this limit. For Normal Ordering (NO)
(my < mg < mg) this means m; ~ 0, and for Inverted Ordering (I0) (m3 < my < my) it
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means mg ~ 0. In the global neutrino fit, the Normal Ordering is preferred over the inverted
ordering, however this has become less pronounced with more recent data [118, 155].

Normal Ordering Inverted Ordering
0,5/° 33.4470°77 33.457578
Oos/° 49.20-9 49.3%0-9
o 0.12 0.12
0,3/ 8.57 015 8.601015
Scp/° 197727 282126
Am? 0.21 0.21
1017;;1\/ 7427028 7.42703
A 0.026 0.028
o +2.51710 058 —2.49870 058

Table 2.2: Neutrino oscillation parameters from a global fit to data. The first (second) column depicts
the best fit assuming NO (I0). Note that A3, = A3, > 0 for NO and A%, = A3, < 0 for I0.

We use the data as presented in Table 2.2 for our numerical fits, except we set dop = 0.
Further, we also set the as-yet-undetermined Majorana phases to be zero. That is, we work
in the C P-conserving scenario. We do this merely for convenience; the solution space is more
symmetric. Nevertheless, to show our analysis can accommodate C'P violation, we show a
sample plot in Appendix A.3 for dop # 0.

We will also find it convenient, at times, to use the so-called tri-bi-maximal (TBM)
approximation® for the angles instead of the values in Table 2.2 [156]:

. 2 I I o
sin”(019) = 3 sin (B93) = 5 sin (013) =0, 6cp=0. (2.27)
Even though this scenario is ruled out by the sin ;3 measurement, it gives convenient
analytical expressions, provides initialization for numerical fits, and allows studying qualitative
features that carry through to the experimentally viable scenarios.

2.6 General Features of our Results

In the following, we present solutions to Eq. (2.18) for each of the four classes of MOMs. As
we explain below, the solution space is an infinite set. Furthermore, since the neutrino data
are quite precise, we shall ignore the experimental errors in the graphical presentation of our
results below; technically each line in the plot should be understood to have a finite width.

There are two subtle points applying to all MOM classes worth mentioning before we solve
them. The first concerns the basis choice. Even with our basis fixed to the (approximate)
charged lepton mass basis, there is remnant freedom in the Upyyg matrix. This corresponds
to the freedom to multiply Upyng by three arbitrary phases [151]:

UPMNS — dlag (Bial y 6ia2, Cia?’) UPMNS . (228)

® See Ref. [152] for relating the TBM to RPV neutrino-mass models.
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Using Eq. (2.17), this corresponds to shifting M,
M, ~ diag (e_ial,e_iQQ,e_ia?’) x M, x

x diag (e_ml e o e_m3) : (2.29)

This, in turn, can be interpreted as shifts in the phases of the aci, 2" variables. For instance,
if M, has a Class 1 MOM structure, the above equation becomes:

- i s , , S
(SCZ.CUJ —I-JZZ.CU]) s Ze ia; gia (ajal“b-i-l‘al‘b) 5(;]6 et
a,b

)
_ (e—iaiwi) (e—iaj $/j)

+ (eimix/i> (eimjxj> , (2.30)
which is equivalent to the simultaneous transformations:
s 3= (e_mi:ci) ,

P & = (7). (2.31)

A change of basis induces simultaneous phase rotations on the RPV couplings. This holds
for all MOM classes.

The second subtlety is the issue of degrees of freedom. MOM classes 1-3 have six free
(complex) parameters while the fourth has seven. One might expect the six (complex)
equations in Eq. (2.18) are enough to determine the system of variables for at least the
first three classes. However, for the case at hand, the experimental matrix [right-hand side
of Eq. (2.18)] is rank two. Hence, its last row can be written as a linear combination of the
first two rows; the sixth constraint is redundant. We, thus, have an infinite set of solutions
characterized by one unconstrained variable. Correspondingly, for Class 4 MOMs, we have
two unconstrained variables.

To summarize, our solution space is an infinite set parameterized by one (or two) free
variables. Further, the phases of the variables are only meaningful once the basis is completely
specified. Our results are presented in the basis oy, a9, ag = 0 with Upyng given by Eq. (2.26).

We now study the solution spaces for MOMs in detail. The analytical expressions are
presented in Appendix A.1l; our emphasis here is on a qualitative discussion of the general
features. We exclude a study of Class 4 models. They are straightforward to solve numerically
(see Section 2.7 for the discussion on numerical fits), but the analytical expressions are
rather long and awkward. Furthermore, a visual representation would require non-intuitive
three-dimensional plots.

2.6.1 Class 1: z'z"” + x''x’

The equations we solve are quadratic in xi, 2" Thus, there are multiple distinct solution
sets for each MOM class. For instance, from Eq. (A.1) in Appendix A.1, we see that Class 1
MOMs have four solution sets. However, using the symmetries of the equations, we can
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relate these to each other. Let us assume we know one solution set. Taking 2" to be our free
variable and expressing the other variables as a function of it, this set has the form:

St [l‘% (:L’l) ,:L‘% (w1> ,ZL‘/Il (:171> ,x? <$1> ,xf)’ (:Ul)] . (2.32)
The subscript I labels the solution set. More explicitly, let us choose the constraints

corresponding to the elements ij = 11,12, 13,22, 33 of M}/ as our five independent conditions.
Then, the Class 1 equations are invariant under the simultaneous transformations,

2’ (xl) — —z? (—azl) , 2 —a? (—xl) . (2.33)

To see this, consider the constraint corresponding to ij = 12; for the others, the check is
trivial. We have,

z'a? (xl) + 2? <x1) 2! (a:l) . (2.34)

Making the transformations of Eq. (2.33), we get,

ot [ (=ot)] o+ [ (o))" (o)
= [=o]a® (=) e (=a!) [0 ()]
[ } ( xl) +a:2< x ) n (—xl) , (2.35)
where, in the last line, we have used z* ( ) — (—x1> which follows straightforwardly

from the ij = 11 constraint. Finally, replacing the dummy variable —zl xl, we see that
we recover Eq. (2.34).
Thus, given set S7, we can obtain a new solution set:

St [m% (ml) ,x% <x1> ,xﬁ (ml) ,xﬁ (:c1> ,xﬁ (:1;1)} , (2.36)

with,
2 (1 _ 2 1
LI\ ) = —Tp (=T |,
n( 1\ _ (.1
T \xr ) =21\ ),
2 1\ _ .2 1
Ii\r | = -2 |\ =% ),

1‘%;)3 (wl) = x{)g (xl) . (2.37)

The third set can be obtained by transforming the 333, 2’ variables instead of the xz, 2’ vari-
ables in an analogous manner, and the last one can be obtained by making the transformations
on both sets simultaneously. )
Consulting the analytical expressions in Appendix A.1, we see that, as long as M, # 0 for
any 7, the solution implies that the magnitudes of the 2" couplings are inversely proportional
to the magnitude of 2! while those of :):2, 2% are directly proportional to it. Thus, a solution
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Figure 2.1: Absolute values of the couplings required to fit the IO limit of the TBM scenario in models
with Class 1 structure.

point where any of the |z*| are small comes at the price of bigger |z'|, and vice-versa. Knowing
which RPV coupling can be made smaller by trading for another is useful from a model-
building perspective, since the low-energy bounds on RPV couplings are non-democratic,
varying over orders of magnitude [157]. We draw upon this point further when we study
applications to specific models.

As an illustration, we plot one solution-set for the IO limit (m3 & 0), assuming TBM values
for the angles6 in Fig. 2.1. For visualization, we restrict ourselves to real 2" values. The
solution then constrains ' to be real, while the other couplings are complex, in general. The
behavior of the couplings is as described above. We observe a symmetry under RS —ml;
this is an intrinsic feature of the model structure. More generally, for a complex acl, the

magnitude of the couplings is unchanged if ]a:1| is unchanged. The relation between the
magnitudes of 562(55/2) and z° (:13/3) in Fig. 2.1 is a peculiarity of the numbers involved in the
TBM case;7 it is not present when using experimental data.

Another point of interest is the “total amount of RPV” a particular model requires to
explain the neutrino data. As an illustration, consider how the z', 2" variables relate to the
RPV parameters, i.e, the §'s of Table 2.1:

=A%, = A (2.38)

where no summation is implied. In the above, § and &’ are general symbols corresponding to
any of the invariants in Table 2.1; they can both also correspond to the same invariant. One

5 Even though we use the TBM limit for illustration in this section, all features we discuss are general.
" This arises due to the fact that the TBM-IO mass matrix is antisymmetric under an interchange of the
second and third columns.
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measure of the “total amount of RPV” we can define in the model is the sum,
c=> 101+
i

i
The two terms represent the amount of RPV arising due to each individual set. Substitut-

ing Eq. (2.38),
) : (2.40)

This will be a function of z'. One could use the analytical expressions in Appendix A.1l
to study how the RPV-amount demanded by each point varies with 2! and find the point
where it is minimal or maximal. In general, this requires that we first fix the constants
A', A" i.e., we specify the model we wish to study. However, in the special case where
A" = A, A" = A’ Vi (which holds for several contributions in Table 2.1), there is some
simplification for Class 1 MOMs. Eq. (2.40), then, gives,

) . (2.41)

Now, the structure of Class 1 MOMs allows us the freedom to choose xi, 2" suitably such
that A" = A without losing any generality. Then,

a:ﬁu;(

5 5" (2.39)

I
X

’ A/i

i
T

x|

T\

% 17
X T

oy (-

i

1) - (2.42)

1
T

+

7
xT

Thus, with the above choice of the xi, 2" variables, the RPV amount is directly proportional to
Zi( + ‘xm
or minimizing the RPV amount without specifying the details of the model; determining the
absolute scale, though, still requires the constant |A| to be specified.

7
X

) — a model-independent quantity. This allows us to find the point maximizing

In Fig. 2.2, we plot the sum of the magnitudes of the 2" and 2”* for the 10 limit of the
TBM case, as well as the overall sum. We see that the latter varies from a clear minimum to
an unbounded value for ]a:1| — 0. Thus, the neutrino data can be described by relatively
small or large amounts of RPV, depending on the point one chooses. The minimum is
situated precisely at the point where the individual sums of the z* and z” sets are equal.
The general expression for this point is lengthy. However, for the C P-conserving case — and

2
if the conditions (M?) < Mil X M,Q,2 and an analogous one with the generation index 2
replaced by 3 are satisfied — the point is given by,

‘MH

1
27| =

(2.43)

33



Chapter 2 A v Approach to Analyzing Neutrino Data in the R-Parity-Violating MSSM

— S — Xk — 3 (e )

i

3.0F
25F

20F \

v

10
05
/__/ \
00f L L L L L L ]
-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6
o [Ver]

Figure 2.2: A measure of the amount of RPV required by each point in the solution space for Class 1
models. The plot corresponds to the 10 limit of the TBM case.

This holds for a general complex 2t

and the magnitude of the minimum is »,4/2 ’Ml; .

The condition we mention above is satisfied by the TBM matrix as well as the experimental
data we use in our numerical fits.

2.6.2 Class 2: 'z’ + (wia:'j + a:'iwj)
There are four distinct solution sets related in the same way as in the previous case. Con-

sulting Eq. (A.2) in Appendix A.1, we see that x2, 2 satisfy the same relations as for the

Class 1 case. The behavior of the z is different, however. For |x1\ < ’Mil , it is as

before. However, for |ac1\ > ‘Mll,l , they grow linearly with ]:p1| In particular, 2" vanishes

precisely at 2t = 44/ 1\/111,1 without any of the other couplings diverging. x2, 2* can not vanish
without other couplings diverging. \33/2|, |x/3| can also vanish but we skip the long general
expressions.

We plot one of the solution sets corresponding to the TBM-IO limit for this class in Fig. 2.3,
for real z'. The symmetry under 2t + —2' is evident and again intrinsic. The relation
between z2(z'?) and z°(2") is TBM-specific. We see the behavior described above. Indeed

' =0at |z'| = /IML']; 2%, |2"| have their minima at |z'| = \/|M_L'| too. This is not a
2
general feature but holds in the C'P-conserving case if, as before, (M,1,2> < Mll,1 X MZQ,2 and

the analogous condition with the index 2 replaced by 3 are satisfied. x’2, 2?=0in general
requires a non-zero phase for 2t

We plot the sum of magnitudes for |z'| and |z"*| for the IO limit in Fig. 2.4. The individual
sums are directly proportional to the RPV amount for each set and can be interpreted as

34



2.6 General Features of our Results

0.7

0.6F

05F

04F

[ve7]

0.2F

0.1F

0.0F

/1‘

— |z

|22, |23 |22, |2

0.3F

/

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

o [ver]

Figure 2.3: Absolute values of the couplings required to fit the IO limit of the TBM scenario in models

with Class 2 structure.
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Figure 2.4: A measure of the amount of RPV required by each point in the solution space for Class 2
models. The plot corresponds to the IO limit of the TBM case.

before. However, the overall sum is no longer directly related to the total RPV amount.
Unlike the case of Class 1 MOMs, we do not always have the freedom to choose A = A’
in Eq. (2.38) for Class 2 MOMs. We still plot the quantity; however, it should only be used
for models where A = A’ holds.
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Figure 2.5: Absolute values of the couplings required to fit the TBM scenario in models with Class 3
structure. The notation f, ., means f <,$1> has been plotted instead of f (ml)

2.6.3 Class 3: z'2’ + o

Class 3 MOMs have eight distinct solution sets. Four can be obtained using the same
arguments as before; this time the invariance is under the simultaneous transformations,

z? (x1> — —z? (fx1> , o a? (71:1) . (2.44)

and the analogous ones for 2% and 2. In addition, the whole system of equations is invariant
under the simultaneous transformations,

A —L (2.45)

Thus, for each of the four solution sets, we can obtain one more by changing the signs of all
the z” couplings.
In general, the solution space is more complicated than for the other two classes. Con-

sulting Eq. (A.3) in Appendix A.1, in the limit ]m1| > ‘M,l,l , all the coupling magnitudes

increase roughly linearly with |x1\ This class is somewhat special: It allows solutions where

all the couplings are simultaneously real; this occurs when |z'| < \/|M_'|, with 2" real. This

also requires 0op = 0, (Mll,2)2 < Mil X Ml2,2 and the analogous condition with the index 2
replaced by 3 to hold.

We plot one solution set for the TBM-IO and TBM-NO limits in Fig. 2.5, restricted to
the above region. The symmetry of 2" under 2 <+ —2' is an intrinsic feature of the model
structure. Although the TBM-IO limit numbers conspire to make it look otherwise in our
plot, the other couplings do not generally possess such a symmetry — this is clear after looking

at the NO limit. As before, the z* (w/2> and z° (a:/3> relation is TBM-specific.

Within our region of interest, we see that the magnitude of 2! always falls as that of 2!
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Figure 2.6: A measure of the amount of RPV required by each point in the solution space for Class 3
models. The plots correspond to the TBM scenario.

. - . . 1 1l .
increases and it is zero precisely at the point = = +4/M,,". There are no such universal trends

for the other couplings. Unlike before, however, they can each be made to vanish in appropriate
. . 2 3 . 1 11 M12(13)XM12(13) X

regions of the solution space. The x (x ) vanish at ¥~ = 4, /M, — =*—5=2—— while

Ml/

2" (m’B) vanish at iMl{Z(lS)/\/MEZ(Sg).

We study the relative RPV amount in Fig. 2.6. As for Class 2 MOMSs, the overall sum
may only be interpreted as the total RPV amount if A=A 1n Eq. (2.38). Here, the amount
of RPV is dominated by the z' for vanishing 2!t , with the z’* share growing as |x"| grows.

The amount of RPV is minimal near the two |z'| extremes.

2.7 Numerical Fits

We now present the solution space for the experimental data. We numerically solve the first
three MOM classes for each of the dependent parameters with 2" as the free variable. We
estimate the couplings by means of an error-weighted least-squares fit. We use the neutrino
data of Table 2.2 (with dop = 0) at the 1o level. In order to extract predictions for the
couplings, we define a X2 function:

13 T M”
N SN ( ) , (2.46)

S =1 j=1i

where M% are the central values of the Nps experimentally determined parameters of the
mass matrix defined in Eq. (2.18), 2/ are the parameters to be determined, and §* are the
lo experimental uncertainties.

We initiate the fit using the TBM approximation for the 2. We minimize the X2
of Eq. (2.46) by using the program package MINUIT2 [158]. We consider both the NO and 10

limits. We accept the minimization result as a success if the routine yields X2 <0 (10_5).
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Figure 2.7: Real (left) and imaginary (right) values of the couplings required to fit the actual neutrino
data for the NO limit in models with Class 1 structure.

To handle complex couplings, we fit the real and imaginary parts of each parameter
separately. This extends the definition of our X2 function:

, 1 G| [Re(a¥) —Re (MY) ’
* :mizl =i 5"
Y () I (1) : (2.47)

5"

where we demand that the imaginary components of the neutrino mass matrix vanish, since
we are working in the C'P-conserving limit.

Fig. 2.7 shows the numerical result using the neutrino data, assuming the NO limit, for
Class 1 MOMs. We restrict ourselves to real z'. This automatically implies that 2" has
to be real. As before, we depict only one of the multiple solution sets. We see that the
solution space reproduces the general features discussed in Section 2.6.1. The analogous
results for the 10 limit for Class 1 MOMs ( Fig. A.1), as well as the plots corresponding to
Class 2 MOMs ( Fig. A.2), and Class 3 MOMs ( Fig. A.3) can be found in Appendix A.3. A
corresponding solution including a non-zero d~p can be found in Fig. A.4 with more details
in Appendix A.3.

To depict the robustness of our procedure, we show, in Fig. 2.8, the variation of X2 by
varying one of the fitted couplings — 2" — about the best-fit point. The other couplings are
held fixed. The minimum is extremely well-defined, indicating excellent convergence.
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Figure 2.8: Variation of x> as a function of the fitted parameter 2 for the Class 3 NO scenario around
the best-fit point as determined by MINUIT2. The other couplings are held fixed.

2.8 Example Applications

As long as a model has a MOM structure, our general results can be directly translated into
model-specific numbers. We now demonstrate this by considering several examples of RPV
models. The statement that only certain RPV couplings are non-vanishing in a given model
is U(4)-basis dependent; our statements in this section apply to the vanishing-sneutrino-vev
basis.

2.8.1 k-only Models

In a model where the only RPV sources are the J,, invariants, the effective neutrino mass
matrix has contributions at tree level, and of types 7, 8 and 13 in Table 2.1 at one-loop level.
The expression for the mass matrix is [54, 62],

g [(me)" 5 ()]

16720
X (1 + sin? 8 + tan B sin’ ﬂ) 5;5i + ..., (2.48)

X

where my = —M is the tree-level mass scale of Eq. (2.14), v is the electroweak
mgysy —Mz sin 28
vev, go is the SU(2); gauge coupling, and the other notation is as in Table 2.1. There are
three separate diagrams of type 13 that lead to the second term [62]. The ellipsis indicates
all the terms of higher (fourth) order in the lepton Yukawas, due to contributions of types
7,8. We have set all SUSY mass scales to mgygy-
Eq. (2.48) does not have a MOM structure. However, we can neglect the terms in the

ellipsis to a first approximation, given their suppression by two extra powers of the small
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Yukawas. Then, making the identifications,
R \/mod,i, and

2

. go \ Mg, ]

2= (2) (1 +sin? B + tan B sin’ 5) S (2.49)
167m°v/my

we see that the model reduces to a Class 2 MOM structure, and our framework can be
applied. One can easily show that such a model cannot solve the neutrino pattern. The
above equations imply the following relations involving the lepton masses:

1 /1

2 3
T 1
21

o

T xT
T x

1
2
m my, x m

Consulting Eq. (A.2) in Appendix A.1, there is no point in the solution space of Class 2
models satisfying this.

2.8.2 kK — B Models

We next consider a model also including the soft-breaking bilinear terms, i.e., 6,.,0p # 0 with
all other RPV couplings zero (see also Ref. [123]). We have the contributions, cf. Table 2.1:
Tree-level, and of types 3, 7, 8, 9, 11, 12, 13, 16 and 17. The complete expression is [62],

2
MY = m, 6t 67 + _921MSUSY_ si s
v 07 n 647?20052533

2
g m . . . .
+ ﬁ (600% + 00L) + .. (2.51)

The ellipsis again proxies contributions of higher (second and above) order in the Yukawas. As
before, the full model does not have a MOM structure but neglecting the Yukawa-suppressed
termSS, and making the identifications,

i i
T = moém ’
2= 924/MsUSY 5

8 cos 3 B
A= 92/MsUsY ’ (2'52)
8m\ /Mg
the model reduces to a Class 4 MOM.

As a numerical illustration, we set mgygy = 1TeV, tan § = 10, and substitute the other

® Some of these Yukawa-suppressed terms have tan 8 factors which may enhance them for large tan 8; however,
even in this case the second and third terms in Eq. (2.51) dominate due to the cos 8 factors.
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known parameters. This gives,
o (9.081 x 10° \/eV) iot |
2t = (2.607 x 10° \/eV) 8,
A~ —2.