
On the Usability of Coverage-Based Fuzzing of
C/C++ Programs

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von
Stephan Plöger

aus
Bielefeld

Bonn, August 2023

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn.

Erstgutachter: Prof. Dr. Matthew Smith
Zweitgutachter: Prof. Dr. Michael Meier

Tag der Promotion: 07.02.2024
Erscheinungsjahr: 2024

iii

Acknowledgements
I would like to thank my advisor, Prof. Dr. Matthew Smith, who not only guided
me along my journey but was also a calm anchor in stressful and hectic times.
He always had a sympathetic ear for me and my projects. And I’m grateful for
the opportunity he provided me to pursue my research.

I’m grateful to my family and friends, who gave me strength and endurance,
and who always supported me on my adventure. Their cheerfulness and light-
heartedness were a source of joy. It’s nice to know your crowd is behind you.

My special thanks go to Anne, for her never-ending support and encourage-
ment, especially in times of setbacks. She supported me at any point in time,
and with the help of her confidence in me, I could overcome all challenges. She
distracted me from work when necessary and cleared my head with her cheerful
nature. It is just essential to have someone always by your side.

I would also like to thank my office buddy Mischa Meier, who gracefully
accepted the "opportunity" to assist my research by coding and discussing every
single interview of my studies that was ever transcribed. You are one of the true
unsung heroes.

Also, I want to thank all my other colleagues at the Behavioral Security
Group for their valuable input for my research, the chatting in the coffee kitchen,
and just having a good time. I was very lucky to have such a supporting and
benevolent working group.

v

Abstract
Even though the foundations for fuzzing were laid more than 30 years ago, it
did not play a role in industry or academia for a long time. Interestingly, the
popularity of fuzzing has risen for top-tier companies and academia in recent
years. There are no firm findings on the reasons for this, but a continued in-
crease in awareness of the need for secure software systems and access to more
computing power may have played a role. In addition, fuzzing has proven to
be capable of finding severe software vulnerabilities that slipped through the
established security process. In academia, the focus on the topic of fuzzing lies
heavily in improving performance, e.g., better execution speed or covering more
code faster or making fuzzing applicable to more software and systems. How-
ever, examining the usability of fuzzing has yet to be touched.

A drawback of the current state of fuzzing is that especially small or medium-
sized companies are not benefiting from it because they do not use it. The rea-
sons for this still need to be explored.

Motivated by the lack of understanding about the usability of fuzzing and
its potential negative influence on widespread adoption, I examine in this thesis
the usability of fuzzers in the context of C and C++ programs by conducting
four user studies.

In the first qualitative study with computer science (CS) students and Cap-
ture the Flag (CTF) players, I examined the usability of a fuzzer and a static
code analysis tool, with static code analysis being a technique that is already
very commonly used. This way, I found first insights into potential problems
that hinder the adoption of fuzzing. The results revealed several usability is-
sues, which I converted into recommendations.

I strengthened the qualitative findings of my first study with a quantitative
comparison of the two most popular fuzzers, AFL and libFuzzer, in a second
user study with CS students. Large parts of the original recommendations could
be confirmed and supplemented. Moreover, I could show that AFL performed
better overall and was rated higher than libFuzzer.

To be able to make a more generalizable statement on the findings, I repli-
cated my second study, but this time with freelance developers. With this study,
I provided insights into the methodological implications of substituting free-
lancers with students in fuzzing studies and solidified the quantitative results
for both fuzzers.

In my fourth study, I investigated whether developers should fuzz their self-
written code or code written by others. This was motivated by existing examples
in related fields for and against analyzing someone’s own code. In the results,
I could not find any evidence that a practical difference exists between fuzzing
self-written code and the code of others.

Based on the results of the four studies, I additionally give recommendations
to improve the usability of fuzzers.

vii

Contents

1 Introduction 1
1.1 Research Contribution . 2
1.2 Thesis Structure . 4

2 Related Work 5
2.1 Usability of Static Code Analysis 5
2.2 Usability of Fuzzing . 7
2.3 Ecological Validity of Student Samples 8
2.4 Studies with Freelancers . 8
2.5 User Studies - Working with Self-Written Code 9

3 Background 11
3.1 Static Code Analysis . 11

3.1.1 Example of a Static Code Analysis 11
3.2 Fuzzing . 14

3.2.1 How does Fuzzing Work? 15
3.2.2 Fuzzing Examples . 16

AFL and libroxml . 17
libFuzzer and Suricata . 18

4 Usability Evaluation of a Static Analysis Tool and libFuzzer 23
4.1 Motivation . 23
4.2 Methodology . 24

4.2.1 Tool Selection . 24
4.2.2 Task Selection . 25
4.2.3 Study Design CS Study . 27
4.2.4 Study Design CTF Study . 29
4.2.5 Scoring Results . 30

4.3 Limitations . 30
4.4 Ethics . 31
4.5 CS Study Results . 31

4.5.1 Drop-outs . 32
4.5.2 Static Task . 33
4.5.3 Dynamic Task . 34

4.6 CTF Study Results . 38
4.7 Discussion . 42

viii

4.7.1 Clang Static Analyzer . 42
4.7.2 libFuzzer . 42
4.7.3 Comparison . 44

4.8 Summary . 44

5 A Usability Evaluation of AFL and libFuzzer with CS Students 47
5.1 Motivation . 47
5.2 Methodology . 49

5.2.1 Fuzzer Selection . 49
5.2.2 Terminology . 49
5.2.3 Target Program Selection 50
5.2.4 Recruitment & Participants 52

Demographics . 53
5.2.5 Study Design . 53
5.2.6 Scoring Systems . 56

5.3 Limitations . 58
5.4 Results . 60

5.4.1 Completion Rate and Success 60
5.4.2 Fuzzing Score Results . 61
5.4.3 Analysis of Participants’ Traits and Performance 63
5.4.4 User Rating of Fuzzers . 63
5.4.5 Support System Insights . 64
5.4.6 Familiarization with the Fuzzers 65
5.4.7 How did Participants Select a Function to Fuzz 66
5.4.8 Fuzz-Target-Less Fuzzing with AFL 66
5.4.9 Writing the Fuzz Target . 67
5.4.10 Building and Instrumenting 67
5.4.11 Running the Fuzzer . 68
5.4.12 Run-time Output . 69
5.4.13 Crash Output . 70
5.4.14 Improvements to the Fuzzing Process 71

5.5 Discussion . 73
5.5.1 Extensions . 73
5.5.2 New Recommendations . 74

5.6 Summary . 75

6 Comparison of AFL and libFuzzer with Freelance Developers 77
6.1 Motivation . 77
6.2 Ethics & Private Disclosure . 78
6.3 Methodology . 78

6.3.1 Target Programs . 78
6.3.2 Fuzzers . 79
6.3.3 Study Design . 79
6.3.4 Participants . 83

ix

6.3.5 Support System . 84
6.3.6 Scoring System . 85

6.4 Limitations . 86
6.5 Results . 87

6.5.1 Statistical Analyses . 88
6.5.2 Fuzz-Target-Less Fuzzing, User Error Induced Crash and

direct compilation . 88
6.5.3 Participants . 88
6.5.4 Completion Rate and Success 90
6.5.5 Fuzzing Score Results . 91
6.5.6 Analysis of the fuzzing steps 93
6.5.7 User Rating of Fuzzers . 94
6.5.8 Support System Insights . 97

6.6 Analysis of Fuzzing Steps . 98
6.6.1 Selected Function . 99
6.6.2 Working FT . 99
6.6.3 Building and Instrumenting the Target Program 100
6.6.4 FTL Support . 100
6.6.5 Ran Fuzzer . 100
6.6.6 Address Sanitizer . 101
6.6.7 Corpus/Dictionary . 101
6.6.8 Fuzzing-run Output . 101
6.6.9 Crash Output . 101

6.7 Discussion . 102
6.7.1 Quantitative Analysis . 102
6.7.2 Qualitative Analysis . 103
6.7.3 Recommendations . 103

6.8 Conclusion . 103

7 CS Students Fuzzing Their Own Code or Code Written by Others 105
7.1 Motivation . 105
7.2 Methodology . 106

7.2.1 Shell & Programming Tasks 107
7.2.2 Choice of Fuzzer . 109
7.2.3 Fuzzing Task . 109
7.2.4 Support System . 110
7.2.5 Scoring . 111
7.2.6 Recruitment & Participants 112

7.3 Ethics . 113
7.4 Limitations . 113
7.5 Results . 114

7.5.1 Programming Task Results 114
7.5.2 Support System . 115
7.5.3 Success Rate . 116

x

7.5.4 Fuzzing Steps . 117
7.5.5 Fuzzing Scores . 119
7.5.6 Crash Handling . 119

Problems of Interpretation 120
Fixing Crashes . 120

7.5.7 System Usability Scale . 121
7.6 Qualitative Analysis . 121

7.6.1 Familiarization with New Code 122
7.6.2 Selecting the Function to Fuzz 122
7.6.3 Writing the Fuzz Target . 122
7.6.4 Triggerable Fuzz Target . 122
7.6.5 Building & Instrumentation 123
7.6.6 Running the Fuzzer . 123
7.6.7 Crash Handling . 124
7.6.8 Problems of Interpretation 124
7.6.9 Fixing Crashes . 124
7.6.10 Perceived Difficulty of Fuzzing Other Peoples’ Code . . . 125

7.7 Discussion . 125
7.7.1 Own Code vs. Others’ Code 125

7.8 Summary . 126

8 Conclusion 127

Bibliography 131

A Static vs. Dynamic 153
A.1 Semi-Structured Interview . 153

A.1.1 CS Study . 153
A.1.2 CTF Study . 154

A.2 Clang Static Analyzer Overview 154
A.3 Overview of Task Ordering . 155
A.4 Comments and Usage in Future . 158
A.5 Pre-Questionnaire . 158

A.5.1 Pre-Questionnaire CS Students 158
A.5.2 Pre-Questionnaire CTF Players 160

B AFL vs. libFuzzer 161
B.1 Pre-Questionnaire . 161
B.2 How to Solve the Tasks . 162

B.2.1 AFL and tomlc99 . 162
B.2.2 libFuzzer and libroxml . 163

B.3 Semi-Structured Interview . 165
B.3.1 AFL and libFuzzer . 165
B.3.2 Comparison . 166

xi

B.4 Overview of All Participants . 166
B.5 User Rating of Fuzzer . 169
B.6 Example of an Error Message . 169
B.7 Outputs of Fuzzers While Running 169
B.8 Improvements to the Fuzzing Process 171

C Replication: AFL vs. libFuzzer 175
C.1 Pre-Questionnaire . 175
C.2 Post-Questionnaire . 177

C.2.1 Comparison . 181
C.3 Nationalities . 181

D Own vs. Other 183
D.1 How to solve the task . 183
D.2 Dependencies in Fuzzing Process 184

1

Chapter 1

Introduction

Adding security to the software development life cycle has been an ongoing pro-
cess for many years. The need for this ultimately arises from an ever-increasing
threat situation. In the beginning, security experts like software testers were
working on the security of the software alone. In recent years, however, a dis-
tribution of responsibility has begun so that more and more parties, such as
developers, are involved. This is due to a change in the distribution of tasks and
duties but also because smaller companies feel obliged to invest in the security
of their software. Security experts are a rare good, and therefore small or even
medium-sized companies frequently do not have the capacity to provide a des-
ignated security expert for a software project. Consequently, developers have to
take over this task.

There exist many different techniques and approaches to adapt security in
the software development life cycle. One of them is security testing, which is
the field where the topic of my thesis lies. Security testing is a science in itself. A
plethora of tools and techniques exist, which are built for different parties. From
a developer’s point of view, static code analysis [34], also known as static appli-
cation security testing (SAST), has been a constant for many years. Static code
analysis aims to find software bugs by analyzing the program’s source code. It
is used by very many companies of different sizes – ranging from small to very
large – including Google [164], and there is a variety of commercial [44, 125, 29,
41, 184] as well as open-source [69, 147, 39] SAST tools on the market. Tools
exist for nearly any programming language that is used in production. Static
code analysis is also a recurring theme in academia, where not only the capabil-
ities and speed in finding bugs have been tested and improved but where also,
albeit to a lesser extent, the usability of such tools has been investigated in both
interviews and user studies [172, 173, 174, 99, 36, 183].

In recent years, another type of application security testing has emerged: fuz-
zing. Fuzzing is a dynamic analysis technique, which means that the program
under test is run to find bugs. It thus forms a counterpart to static code analysis.

In industry, an ambiguity about fuzzing exists. On the one hand, it is already
extensively and effectively used by large companies such as Microsoft [127],
Cisco [37], and Google – Google found more than 40,000 bugs in 650 open source
projects [168], 26,000 of them in Chrome alone [26]. On the other hand, small and

2 Chapter 1. Introduction

medium-sized companies have yet to discover fuzzing for themselves, and the
reasons for that have not been examined so far. Moreover, fuzzers are still in
their infancy. The market for commercial fuzzers is very small, if not even non-
existent. Even in the open-source area, the choice is small [159, 88, 117, 4, 5],
and existing fuzzers are typically for programs written in C or C++. Although,
companies and developers are actively working on making fuzzing available for
more programming languages [76, 163].

There is also a lot of interest in fuzzing in the scientific community. Many
efforts have been made to further improve the speed and recognition rate and
make fuzzing accessible to other systems, such as other kernels [35, 43]. How-
ever, an ambiguity exists here as well. Research into the usability of fuzzers has
so far remained entirely untouched.

1.1 Research Contribution

Motivated by the lack of understanding about the usability of fuzzing and its
potential negative influence on widespread adoption, I examined in this the-
sis the usability of fuzzers in the context of C and C++ software from different
points of view.

At first, I qualitatively evaluated the usability of the prevalent software test-
ing technique, static code analysis, and the challenger fuzzing in a within-subjects
user study with computer science students and Capture the Flag (CTF) play-
ers [27]. I recruited students as the next best alternative to professional software
developers because recruiting these is very difficult. Reasons include that the
group of professional software developers is, on the one hand, relatively small
and, on the other hand, highly educated, well-paid, and oftentimes challenged
and under time pressure in their full-time jobs [1, 2, 171, 107]. To complicate mat-
ters, working with a fuzzer takes several hours, which makes recruitment even
more difficult. Moreover, in related fields of study, such as user studies with pro-
gramming tasks, others showed that computer science students can successfully
substitute software developers with a high chance of receiving similar results in
relative terms [136, 137, 138, 3, 2].

In the study, the computer science students worked on two easy or hard
tasks, which were randomly assigned. Each participant used once the open-
source static code analyzer Clang Static Analyzer [39] (CSA) and once the open-
source fuzzer libFuzzer [117]. The study design for the CTF players was the
same; however, as they were considered hackers with broader knowledge about
the topic, they only worked with the hard tasks. The results indicate that the
CSA had, based on the definitions of Nielsen [144], a good usability, which
means it was easy to use, but had a bad utility, which means a bad effective-
ness and efficiency. In contrast, the participants rated the usability of fuzzing as
very bad but perceived the utility as better. Therefore, I saw a lot of potential for
the fuzzer libFuzzer and proposed recommendations to improve its usability.

1.1. Research Contribution 3

Unfortunately, many participants dropped out of the study because it was too
challenging for them or they got stuck fairly early in the fuzzing process so that
only very little information on the usability in the later steps could be gathered.

As a consequence, I conducted a second user study with computer science
students to, on the one hand, gather more information on the usability of fuz-
zing, especially in the later steps, and also compare the usability of the two most
popular fuzzers AFL [4] and libFuzzer. To make sure that participants reached
deeper into the fuzzing process, I guided them through the fuzzing process with
subtasks in the task description and also implemented a support system where
they could get help if they got stuck working on the task. With the help of the
results, I confirmed some of the recommendations proposed in my first study
and could also extend them, especially for the later steps in the fuzzing pro-
cess. Moreover, I showed that the CS students scored significantly better results
with AFL than with libFuzzer. Although, despite the introduction of guiding
subtasks and a support system, the dropout rate was still very high.

So far, both studies have examined the usability of fuzzing considering stu-
dents and CTF players, but a generalizability of the results to professional soft-
ware developers cannot be assumed without further ado. To tackle this topic,
I conducted a third study, which is a replication of the comparison of AFL and
libFuzzer, but this time with freelance developers instead of CS students. This
way, I provided first insights on the substitution of developers with CS students
and solidified the quantitative results for both fuzzers. The results of the study
were similar to those of the previous study. The participants performed bet-
ter using AFL than libFuzzer in terms of success and fuzzing score. Moreover,
the usability of AFL was rated higher. These results indicate that a substitution
is possible. Interestingly, the freelancers performed slightly worse than the CS
students overall.

In my last study, CS students fuzzed their own code or code written by oth-
ers. This way, I gained first insights on who in a company should take on the
task of fuzzing. As I already briefly touched on, small and medium-sized com-
panies often do not have fuzzing or security experts in their ranks. Therefore,
software developers do the testing. It is common for developers not to test their
own code but the code of others, as it is standard practice for code reviewing.
The idea behind that is simple. A fresh set of eyes that has less of an emotional
connection to the code and the work behind it can find bugs better than develop-
ers that examine their code themselves. However, to the best of my knowledge,
there is no empirical evidence that this actually helps to find more bugs. As a
counter-example, unit tests are typically created by the developer of the code
instead of a coworker. So the question I tackled with my study was whether it
is more helpful to fuzz your self-written code or that written by another person.
The results did not show any evidence that a practical difference exists between
fuzzing someone’s own code or the code of others.

4 Chapter 1. Introduction

1.2 Thesis Structure

My thesis is structured as follows:

Chapter 1 In the first chapter, I introduce and motivate my thesis topic and
present its structure.

Chapter 2 I embed my work in the scientific context in Chapter 2. The
content of this chapter was partially published in my work "A Qualitative
Usability Evaluation of the Clang Static Analyzer and libFuzzer with CS
Students and CTF Players" [156].

Chapter 3 In the third chapter, I give an introduction to fuzzing itself. I
explain the origin and briefly describe the idea of the type of fuzzing rel-
evant to this thesis. Moreover, I present an easy and a hard example of
fuzzing tasks and their solutions for both relevant fuzzers to get a better
understanding of fuzzing.

Chapter 4 Chapter 4 describes a qualitative usability evaluation of the
static code analyzer Clang Static Analyzer and the fuzzer libFuzzer with
CS Students and CTF Players. The content was previously published as
parts of the publication "A Qualitative Usability Evaluation of the Clang
Static Analyzer and libFuzzer with CS Students and CTF Players" by Ste-
phan Plöger, Mischa Meier, and Matthew Smith, presented at the Seven-
teenth Symposium on Usable Privacy and Security (SOUPS 2021).

Chapter 5 Chapter 5 describes the comparison of AFL and libFuzzer with
CS students. The content is at the time of writing this thesis under review
as part of the paper "A Usability Evaluation of AFL and libFuzzer with CS
Students".

Chapter 6 Chapter 6 describes the replication of the AFL and libFuzzer
study but this time with freelance developers.

Chapter 7 Chapter 7 describes the comparison of developers fuzzing their
own code or code written by others.

Chapter 8 In Chapter 8, I summarize my studies presented in Chapters 4
to 7. Based on my findings, I give recommendations on how fuzzers can
be improved to be more usable.

In the disclaimers at the beginning of Chapters 4 to 7, I provide details on
my co-authors’ and my contributions to that particular work. To express my
gratitude for my colleagues’ and co-authors’ help in the studies, the personal
pronoun "we" is used in place of "I". Their support was an integral part of what
made the studies possible.

5

Chapter 2

Related Work

In this chapter, I would like to present previous work on usability studies on
fuzzing and static code analysis to embed the studies presented in Chapters 4 to
7 into the scientific context. I start by discussing related work on the usability
of static code analysis. Second, I present publications tackling the usability of
fuzzing. I then address related work for the substitution of professional devel-
opers with freelancers or computer science students before presenting studies
with freelance developers. And last but not least, I discuss related work on user
studies that work with self-written code.

2.1 Usability of Static Code Analysis

The works on the usability of static code analysis, also known as static appli-
cation security testing, can be loosely divided into five categories: data analy-
ses [94], interview and survey studies [99, 183, 60], task-based user studies [172,
174, 173, 177, 180, 10], and analyses of practical usage [36, 164, 8, 93, 12].

Data analyses In 2019, Imtiaz et al. [94] presented an analysis of 280 Stack
Overflow questions asked by developers about static analysis tool alerts. They
found that the top six types of questions constituted more than 90 % of the ques-
tions asked. The most prominent ones were about ignoring and filtering alerts
and false positive validation.

Interview and survey studies In 2013, Johnson and Song [99] conducted 20
interviews about static code analysis with 20 developers. They found that most
participants felt that using static analysis tools is beneficial but that the high
number of false positives and the presentation of the bugs were demotivating.
Moreover, the participants expressed the importance of workflow integration.
Participants also stated that the tools should make suggestions for a fix.

In 2016, Christakis and Bird [36] conducted a survey at Microsoft to get more
insights into the use of static code analysis. They set the focus on the barriers to
using static analysis, the functionality that the developers desire, and the non-
functional characteristics that a static analyzer should have. They also found

6 Chapter 2. Related Work

that false-positive rates were the main factor leading developers to stop using
the analyzer. Developers were willing to guide the analyzer on where to focus
with their input and desired customizability and the option to prioritize warn-
ings.

Vassallo et al. [183] confirmed those findings in 2018. They surveyed 42 de-
velopers and interviewed 11 industrial experts to shed light on the influences of
the development context on usability issues. Besides other things, they found
that developers mainly used DAST tools in three different contexts, local envi-
ronment, code review, and continuous integration, and that many developers
paid attention to different warning categories depending on the development
context.

Task-based user studies Smith et al. [172] conducted a heuristic walkthrough
and a user study on the usability of four static analysis tools. They used Find
Security Bugs and an anonymized commercial tool for Java, RIPS for PHP, and
Flawfinder for C. They identified several issues ranging from problems with the
inaccuracy of the analysis, over workflow integration, to features that do not
scale. They also conducted a think-aloud study in 2013 with five professional
software developers and five students who had contributed to a security-critical
Java medical records software system [174, 173]. They aimed to study users’
needs while assessing security vulnerabilities in software code. The participants
worked on four tasks for a maximum of one hour in a lab. However, partici-
pants were only asked to examine the reports of the static analysis tool and fix
potential bugs, not to run the tool itself. Based on their findings, they gave rec-
ommendations for the design of static analysis tools. Their main suggestion was
that tools should help developers search for relevant web resources.

In 2021, Tahaei et al. [177] ran an online experiment with 132 participants
on the helpfulness of SAT guidance. They recruited their participants from
GitHub, an online platform that provides participants for studies, and snow-
ball sampling. Participants were shown four vulnerable Java code samples with
the guidance of one of two SAT tools or no guidance at all. The participants were
asked to provide the appropriate fix to the vulnerable code sample. They found
that the SAT tools’ guidance led to slightly improved code correction answers
and to more detailed open-ended answers overall.

Analyses of practical usage In 2015, Sadowski et al. [164] conducted an in-
situ evaluation of their static analysis tool Tricorder at Google. They presented
their goals for the system and their lessons learned, such as empowering users
to contribute and customizing the DAST tool based on the project and not based
on the user.

A case study on alert occurrences and triage of those alerts on five open-
source projects with Coverity was conducted by Imtiaz et al. [93] in 2019. They

2.2. Usability of Fuzzing 7

found that the fixes of Coverity are generally low in complexity but that devel-
opers take 96 days (median) to fix these. Moreover, their data suggest that the
severity of the alert and fix complexity may correlate.

Miscellaneous In addition to this, Nachtigall et al. [131] surveyed research
publications on static code analysis in the past decade, summarized the usabil-
ity challenges, and found that the reported usability challenges fell into six cat-
egories:: understandable warning messages, fix support, false positives, user
feedback, workflow integration, and specialized user interface.

Also, Nachtigall et al. [132] provided a comprehensive view of the usability
of SAST tools by extracting usability measuring criteria from a detailed literature
review and evaluating current SAST tools based on them. Even though they
used a complementary approach to the aforementioned interview and survey,
task-based studies, and use cases, they could confirm many previous findings
and suspicions. They found that many tools did not address the areas of explain-
ing warning messages, fix support, handling of false positives, consideration of
user feedback, integration into the developer’s workflow, and supporting user
interfaces, especially not CLI-based ones. They showed that the usability of
SAST tools still needed improvement.

Furthermore, a comparison of open-source static analysis tools for C/C++
code was conducted by Arusoaie et al. [6] in 2017. They compared 11 analysis
tools on the Toyota ITC test suite [169]. They ranked them by productivity, bal-
ancing the detection rate with the false-positive rate to compensate for a high
false-positive rate. The top three performers were clang [38], Frama-C [69], and
OCLint [147].

2.2 Usability of Fuzzing

While the usability of static code analysis tools has been studied in various ways
in recent years [172, 174, 173, 99], to my knowledge, there is very little work on
the usability of fuzzers.

In 2021 Li et al. [115] constructed a benchmark for fuzzers consisting of 20
real-world programs. They also tested the usability of 35 fuzzers by manually
building and testing each of the fuzzers. They found more than 15 flaws in this
process. They suggest ensuring that the documentation is complete and correct,
the fuzzer can successfully be installed, the fuzzer is robust, and the results are
reproducible.

In 2020 Nosco et al. [146] performed a user study to find an effective process
for finding bugs. In their study, 12 participants from the US Cyber Command
personnel with different skill levels ranging from apprentice over journeyman
to master worked in two teams. Their main tool to hunt for bugs was AFL, in
which they received short training. They scored each participant based on the
number of working harnesses, the number of bugs found, and the number of

8 Chapter 2. Related Work

bugs reproduced. Unfortunately, due to their different focus, those numbers are
not shared.

2.3 Ecological Validity of Student Samples

As it is very challenging to recruit professional developers for studies due to lack
of time and very high costs [1, 2, 171, 107], students as substitutes are of inter-
est. Although it is assumed that students can substitute professional developers
for software engineering, this still needs to be determined regarding software
security and IT security [107]. Nevertheless, indications for that can be found.
Naiakshina et al. [136] compared password storage of students, freelancers, and
professional software developers in German companies. They concluded that
CS students could be used in comparative studies in their case even though they
performed overall better than CS students because the effect of the dependent
and independent variables held nonetheless. In 2017 Acar et al. [3] conducted a
study with GitHub users on security-relevant programming tasks. The results
showed that "neither student nor professional status was a significant factor for
functionality, security, or security perception". They also conducted a user study
in 2016 on the impact of information sources on code security, where partici-
pants had to complete four programming tasks [2]. The results did not show a
difference in security for professionals and non-professionals.

Moreover, Tahaei and Vaniea [176] published their study on recruiting par-
ticipants with programming skills. They recommended using CS mailing lists to
recruit participants for studies where programming skills are required but also
suggested collaborating with other universities to reduce validity issues. Be-
sides that, Kaur et al. [103] compared six software developer samples to tackle
the question of where to recruit for security development studies. They found
that participants of all six recruiting platforms, including the student sample,
report rich general software development and security experience, skills, and
knowledge.

2.4 Studies with Freelancers

Gutfleisch et al. [84] published a study in 2022 where they explored how devel-
opers and other decision-makers encounter and deal with security and usability
during the software development process in their companies. They conducted
25 semi-structured interviews. Of the 25 participants, they recruited ten from the
freelancer platform Upwork. They highlight a need for more understanding of
usable security and overall awareness, as well as strengthening communication
between security and usability experts.

In 2013, Yamashita and Moonen [201, 200] conducted an online survey with
85 freelancers from freelancer.com to understand better the level of knowledge

2.5. User Studies - Working with Self-Written Code 9

on code smells. They found that a considerably large portion of the participants,
32%, stated that they did not know about code smells. The majority of the par-
ticipants were moderately concerned with respect to the perceived criticality of
code smells. Moreover, the freelancers stated that they used technical blogs,
programmer forums, colleagues, and industry seminars as their main sources of
information.

Bau et al. [11] published a tech report in 2013 where they conducted a study
about the security evaluation of 27 web applications developed by developers
from 19 Silicon Valley startups and 8 freelancers. They found a disconnect be-
tween developer security knowledge and actual measurable vulnerability rate.
Moreover, in their study, freelancers were significantly more prone to injection
vulnerabilities than startups. Although, they theorized that the difference might
be more attributable to motivation than education.

Naiakshina et al. [136] conducted a study with freelancers from freelancer.com
in 2019 where they replicated a former study of them where participants had to
program a password storage back-end for a web page of a startup. The 43 free-
lancers produced similar results as the students. In contrast to Bau et al., they
found the freelancers very dependable.

Danilova et al. [48, 51] published two papers in 2020 and 2021 about studies
with freelancers. In the first paper, they replicated the study of Naiakshina et
al. about password storage. They altered the deception of the original study by
announcing the project as a study and not as a real project. They found that the
deception did not have a large effect and that open recruitment without decep-
tion was a viable recruitment method.

In the second paper, they conducted a study on code reviewing as a method-
ology for Online Security Studies. For that purpose, they recruited 44 develop-
ers from freelancer.com. The participants had to review an insecure password
storage code snippet. They investigated how participants behaved in a code-
reviewing study. Not even one-third reported the security issue, and almost all
the participants who reported an issue were prompted for security.

2.5 User Studies - Working with Self-Written Code

The field of user studies where participants worked with their self-written code
is rather scarce. As Rojas et al. [161] already pointed out in 2015, studies with
testers testing their self-written code instead of code written by others were
nonexistent. Rojas et al. studied the usefulness of automated unit test gener-
ation during the software development process. In their study, participants had
to write two classes based on JavaDoc specifications and had to write unit tests
that achieved the highest possible branch coverage. They had to manually write
the unit test for one class and for the other class with their unit test generation
tool EvoSuite.

10 Chapter 2. Related Work

To the best of our knowledge, the landscape of own vs. other software testing
has mostly stayed the same since then. It is centered around software compre-
hension and recognition and only scratches testing or analyzing and debugging
code.

A Secure Programming Clinic was developed by Dark et al. [53] in 2016. The
clinic was tested in a programming class at a US university. It included graded
programming homework, which could be resubmitted after visiting the clinic.
They showed that using the clinic significantly increases robust programming
compared to not using it.

In 2021 Lehtinen et al. [112] conducted a study with CS students from an
introductory course in programming about the students’ understanding of their
own written code. They used automatically generated questions developed in
a previous paper to measure the understanding of their own code [113]. They
found a similar ratio of students failing to explain their own code as previous
studies with non-self-written code have shown.

Krüger et al. [108] investigated forgetting in software development with a
user study with 60 open-source developers in 2018. Participants had to fill out
a survey which included a pre-submitted file of self-written code the questions
were designed around. Besides other things, they found a need to understand
better how developers track their code.

11

Chapter 3

Background

In this chapter, I would like to give a short overview of static code analysis and
fuzzing. Both testing techniques will be presented with a brief introduction to
their history as well as with an example of their usage. The example is provided
to give a sense of usage and usability.

In addition, for fuzzing, I will also give an overview of how it works since
the topic of fuzzing and its usability is the main focus of the thesis.

3.1 Static Code Analysis

As for many topics, determining the exact origin can be challenging. This is also
true for static code analysis. Nevertheless, the program checker Lint[100] from
Johnson and Murray published in 1978, is one of the first analysis tools that left
a lasting impression. It was the namesake of lint programs, or linters, which
highlight programming errors and bugs in code.

Other milestones in the development of static code analysis tools are difficult
to identify. It is perhaps more appropriate to speak of a steady development.
Altogether an upswing of the topic could be determined at the beginning of
2000. At this time, some companies [44, 29, 184], which are well-known today,
were founded, which drive products out in the range of the static code analysis.

From that point onwards, static code analysis became more and more an inte-
gral part of the development and operations lifecycle. This was also reinforced
by the fact that it was introduced to many coding standards, like NIST [13],
BSI [170], or the UK Defense Standard [64], over the years.

I do not want to go into detail about individual static code analysis tech-
niques, as this would exceed the scope of this thesis. However, I would like to
present an example to give an impression of how a static code analysis tool can
be used and to give insights into its usability.

3.1.1 Example of a Static Code Analysis

As an example of a static code analysis, I would like to show the process for
the Clang Static Analyzer [39] used on Tesseract [178], an open-source optical
character recognition program and library. I took this example from a paper my

12 Chapter 3. Background

scan −build ./ conf igure

scan −build ./make

LISTING 3.1: Fuzz Target of AFL for tomlc99

scan −view * f i l e *

LISTING 3.2: Fuzz Target of AFL for tomlc99

colleagues and I previously published, titled "Qualitative Usability Evaluation
of the Clang Static Analyzer and libFuzzer with CS Students and CTF Players".

Doing a static code analysis with the Clang Static Analyzer can be divided
into two steps.

Step 1: Building the target program with the analyzer In the first step, the
target program, in this case, Tesseract, needs to be build with the analyzer,
Clang Static Analyzer. This is done by combining the two building commands of
Tesseract, configure and make, with the scan build command of the analyzer.
The commands are shown in Listing 3.1. Combining the commands results in
the interposing of the analyzer on the project’s build process. This way, the an-
alyzer analyzes every source file that is compiled by the compiler during the
project build. However, if a source file is not part of the particular building pro-
cess, it is thus also not analyzed. The addition of the static code analysis leads to
an increase in the compile time. However, even for large projects like Tesseract,
the build is typically completed in the range of minutes.

The Clang Static Analyzer consists of a plethora of options, including so-
called checkers that can be turned on or off, which scan the code for specific
types of bugs. Those include, e.g., checks for divisions by zero, dereferencing
of null pointers, double frees and use-after-frees, and checks for index out-of-
bounds. When the analyzer is run without any options, a basic set of checkers is
used by default.

Step 2: Viewing and analyzing the findings After the target program is built
and the analyses are finished, the results, including the findings, can be viewed
by opening the created HTML file. This is done by using the scan-view com-
mand, as shown in Listing 3.2, is provided.

On the HTML page, a detailed summary of all findings, called bugs, is shown.
The bug summary for Tesseract can be seen in Figure 3.1. It can be seen that with
the basic set of checkers, the Clang Static Analyzer reports 165 findings. Of these
165 findings, to the best of my knowledge, only 1 is a true positive, resulting in
a true positive rate of .06%. This directly highlights one of the biggest issues of
static code analyzers, the too-high false-positive rate.

3.1. Static Code Analysis 13

FIGURE 3.1: Clang Static Analyzer - run summary

Detached from this issue, the Clang Static Analyzer allows, as all static code
analysis tools, to take a detailed look at every finding. For the true positive,
these details are shown in Figure 3.2.

The analyzer assesses the situation correctly by deciding that accessing the
field word->part_of_combo results in a dereference of an undefined pointer value.
The analyzer not only points out the issue but also provides a path to its con-
clusion, starting in line 227, where it is stated that the variable word is declared.
The reason for that is that the definition of the variable word was deleted by me
from the original code to create this bug. The difference between the original
code and the altered one can be seen in Figure 3.3.

FIGURE 3.3: Code comparison altered and original code

14 Chapter 3. Background

FIGURE 3.2: Clang Static Analyzer - finding details

A fix for the bug would therefore be to reinstate the definition of the variable.
Overall, this example can be considered a complex case. Not because it is dif-

ficult to get the analysis running but rather due to the large amount of findings
and the low number of actual true positives.

3.2 Fuzzing

It started on a dark and stormy night. One of the authors was logged
on to his workstation on a dial-up line from home and the rain had
affected the phone lines; there were frequent spurious characters on
the line. It was a race to see if he could type a sensible sequence of
characters before the noise scrambled the command. This line noise
was not surprising; but we were surprised that these spurious char-
acters were causing programs to crash. [...] It is reasonable to expect
that basic utilities should not crash ("core dump"); on receiving un-
usual input, they might exit with minimal error messages, but they
should not crash.

This is a part of the introduction of a publication by Miller et al. [128], which was
the foundation of the term fuzzing and fuzzing itself. In their publication, they
presented a program called fuzz, which did similar things as the rain described
in the introduction. fuzz generates random characters. These random characters
can then be used to give them to the program under test as input. In the process,

3.2. Fuzzing 15

the target program is executed with new random inputs over and over again. If
the target program crashes, a bug is found. This is the process of fuzzing.

In the early years of fuzzing, from the 1990s till about 2007, research on fuz-
zing was rather sparse. However, from 2007 onward, the number of publica-
tions has drastically increased with a strong polynomial growth [116]. Böhme
et al. [16] attributed this to a tremendous need. Everyday life and nearly every
business are highly dependent on computer systems. Consequently, security
vulnerabilities can have major consequences. This realization has also led to
the development of a different mindset where software security is becoming in-
creasingly important. Companies are also trying new ways to make the software
even more secure. For example, Google and Microsoft have therefore integrated
fuzzing into their general workflow with success. Moreover, companies have
installed bug bounty programs that pay good money for finding and reporting
bugs [23, 24, 25]. This incentivizes developers and enthusiasts to look for vul-
nerabilities and develop tools to support them, benefiting the fuzzers. Good
fuzzers are freely available and open source.

3.2.1 How does Fuzzing Work?

There are many different ways in which fuzzing can be performed and applied.
These include approaches that fall into the categories of black-box, white-box,
and gray-box testing [16].

Since this thesis is focused on studies with software in which the source code
is available to the tester and written for common servers and home computers,
I will only give an overview of the fuzzing technique most applicable to that
situation. Moreover, as the studies addressed in this thesis are conducted with
programs under test written in C and C++, I will not get into detail about fuzzing
programs written in other programming languages.

The type of fuzzing I’m presenting in this thesis is usually referred to as
feedback-based fuzzing. The basic idea of feedback-based fuzzing can be ex-
plained with the help of Figure 3.4. A fuzzer feeds an input to a system or pro-
gram under test (PUT), which can also be called a target program (TPr), monitors
the behavior of the program, which is done by afore-applied instrumentation
and uses that information to generate a new input to feed it to the TPr again. A
fuzzer has successfully found a bug when it provides an input to the TPr that
causes the TPr to behave so that the operating system forbids the action, which
usually results in the TPr crashing. A common example is an attempt to read
from or write to a memory address that does not belong to the program under
test.

For example, a TPr could be a PDF viewer, and the fuzzer could start the
TPr with this thesis. Normally, the PDF viewer will take the PDF, open it by
reading its content, and then display it. This process, however, is monitored
so that the fuzzer can retrieve information on which code of the PDF viewer
was used to handle the input, which parts of the code were not used, and how

16 Chapter 3. Background

Fuzzer Program
Under Test

Instrumentation

Coverage

Information

Input

Crash

FIGURE 3.4: Feedback-based Fuzzing

the PDF viewer behaved overall. This monitoring is established when the PDF
viewer itself is created. That means that when the PDF viewer is built out of
its source code, additional instructions are added to the PDF viewer to provide
the information to the fuzzer. The addition of additional instructions to provide
information to other programs is called instrumentation in this context. Further-
more, the information itself is called coverage information. It tells the fuzzer which
and how much code of the TPr is reached, respectively covered, by the input.

Moreover, depending on the fuzzer used, it can be necessary to write a snip-
pet of code in which the parts, respectively, the functions of the TPr, to test the
TPr are called. This snippet is called a fuzz target (FT).

In the end, when a crash is encountered, the root cause of the crash has to be
determined.

Overall, fuzzing can therefore be divided into the following steps:

1. Find a suitable function to fuzz.

2. Write your fuzz target.

3. Compile and instrument the target program.

4. Compile the fuzz target.

5. Run the fuzzer and interpret the output.

3.2.2 Fuzzing Examples

In the following, I would like to give a short impression of the fuzzing process
with two examples for the fuzzers AFL and libFuzzer. The first example is rather
simple, while the second is more complex. Both examples are structured based
on the five fuzzing steps mentioned above.

3.2. Fuzzing 17

include <unistd . h>
include < s t r i n g . h>

include " toml . h"

i n t main () {
char buf [1 0 0] ;

while (__AFL_LOOP(1 0 0 0)) {
char errbuf [2 0 0] ;

memset (buf , 0 , 100) ;
read (0 , buf , 100) ;

t o m l _ t a b l e _ t * tab = toml_parse (buf , errbuf , 200) ;

toml_free (tab) ;
}

return 0 ;
}

LISTING 3.3: Fuzz Target of AFL for tomlc99

AFL and libroxml

I took this example from the previously published paper "A Usability Evaluation
of AFL and libFuzzer with CS Students". The fuzzer AFL is used to fuzz the
target program libroxml. This is arguably the easiest example possible for a
fuzzing task.

Step 1: Find a suitable function to fuzz To fuzz tomlc99, I choose the toml_parse
function. It is the very first function that needs to be used to interact with the
library, and from that point on, a lot of the library can be covered.

Step 2: Write the fuzz target The fuzz target with the signature while-loop for
using the persistent mode is shown in Listing 3.3. It reads the input from stdin,
writes the input into a buffer, and calls toml_parse with this buffer. Moreover,
an error buffer is created and passed to the function. In the end, the resulting
toml table is freed.

Step 3: Build and instrument the target program The target program is built
and instrumented with the command presented in Listing 3.4. The make com-
mand is invoked with the compiler set to the AFL compiler.

Step 4: Compile the fuzz target Then the fuzz target is built with the com-
mand also shown in Listing 3.4. In the building process, the AFL compiler is

18 Chapter 3. Background

B u i l d i n g T a r g e t Program
AFL_USE_ASAN=1 make CC= a f l −clang − f a s t

B u i l d i n g Fuzz T a r g e t
AFL_USE_ASAN=1 a f l −clang − f a s t t a r g e t . c − I . . / \\

. . / l i b t o m l . a −o t a r g e t

LISTING 3.4: Build commands of AFL for tomlc99

#Running AFL
a f l −fuzz − i in −o out −− ./ t a r g e t

LISTING 3.5: Run commands of AFL for tomlc99

used, the include path is extended to the path to the build folder, and the library
to link against is specified. In both compilations, the variable AFL_USE_ASAN
is set to 1 to use the address sanitizer.

Step 5 & 6: Run the fuzzer and interpret the result Afterward, the fuzzer is
run by specifying the input and output folder and the target. The command is
shown in Listing 3.5.

The fuzzer finds a crash in less than 5 minutes. The crash can further be
analyzed, and it can be traced back to line 2014 in toml.c as the root cause.

libFuzzer and Suricata

In this example, libFuzzer is used to fuzz the open-source software Suricata.
This example was also depicted in the previously published paper "A Qualita-
tive Usability Evaluation of the Clang Static Analyzer and libFuzzer with CS
Students and CTF Players," presented at the seventeenth Symposium On Us-
able Privacy and Security (SOUPS) in 2021, together with my co-authors Mischa
Meier and Matthew Smith and was created with the support of Sirko Höer. The
Fuzzer libFuzzer is used to fuzz the target program Suricata. This is a much
more complex example in comparison to the previous one.

Step 1: Find a suitable function to fuzz Usually, parts of the code where
the user input is used or parsed are good starting points. In the case of Suri-
cata, I chose the AppLayerParserParse function. On the one hand, the function
parses incoming packages and therefore opens up the possibility of covering
larger parts of this specific part of the code. On the other hand, the function
has a rather complex-looking structure with nesting and memory access which
is prone to errors.

3.2. Fuzzing 19

Step 2: Write the fuzz target Within the fuzz target, the LLVMFuzzerInitial-
ize function is used to call several setup functions, and also a LVVMFuzzerTe-
stOneInput function is written where a local setup is done with an initialization
of a data package followed by the actual call of the function to fuzz where the
data package had to be used. Hints for doing this could already be found in the
existing AFL fuzz targets within the project. The fuzz target for Suricata can be
found in Listing 3.6.

Step 3: Build and instrument the target program Instrumentation, as well as
address sanitizer, are mandatory to trigger the bug in a reasonable amount of
time. Since Suricata is not producing a library with the common build com-
mands, a way has to be found to build Suricata such that the linking process to
the fuzz target would be convenient.

The Makefile and target program are adjusted so that the make command
directly builds the fuzzer. Also, a possible solution for that is to build the target
program as described above and link the fuzz target later on against Suricata
by, e.g., archiving all object files created by the common build commands in
a library. In my opinion, the second solution is far less complex since it only
requires a flag for building the target program, a one-liner to archive the object
files, renaming the main function in the library, and a flag for compiling the fuzz
target. On the other hand, altering Makefiles created by Automake can be very
troublesome. The build commands for the target program and fuzz target can
be found in Listing 3.7.

Step 4: Compile the fuzz target The command for compiling the fuzz target is
depicted in Listing 3.8. the fuzzer flag, -fsanitize=fuzzer, is used to link the fuzz
target agains libFuzzer. Also, the compiler is told where to find the library of the
target program and the needed header files.

Step 5 & 6: Run the fuzzer and interpret the result The fuzzer is run by simply
executing the executable build in Step 4.

The bug can be triggered depending on the corpus and chance within six
to 24 hours. The output of libFuzzer when the bug is triggered is shown in
Listing 3.9.

20 Chapter 3. Background

include <arpa/ i n e t . h>
include <stdbool . h>
include < s t d i n t . h>
include < s t d l i b . h>

include " s u r i c a t a −common . h"
include " app−layer −parser . h"
include " flow − u t i l . h "
include " app− l a y e r . h"
include " app−layer − s s l . h "
include " app−layer −dns−tcp . h"

i n t LLVMFuzzerInit ial ize (i n t * argc , char * * * argv) {
t ime_t t ;
MpmTableSetup () ;
SpmTableSetup () ;
AppLayerProtoDetectSetup () ;
AppLayerParserSetup () ;
AppLayerParserRegis terProtocolParsers () ;

srand ((unsigned) time(& t)) ;
return 0 ;

}

i n t GetDirect ion () {
return rand () % 2 ;

}

i n t LLVMFuzzerTestOneInput (const u i n t 8 _ t * data , s i z e _ t s i z e) {
i f (s i z e <= 63) return 0 ;

/ / Data s e t u p
AppProto a lpro to = ALPROTO_TLS ;

s i z e _ t input_len = s i z e ;
u i n t 8 _ t * input = malloc (input_len) ;
memcpy(input , data , input_ len) ;

Flow * f = NULL;
TcpSession ssn ;
AppLayerParserThreadCtx * a l p _ t c t x = AppLayerParserThreadCtxAlloc () ;

memset(&ssn , 0 , s i ze of (ssn)) ;

f = c a l l o c (1 , s i ze of (Flow)) ;
i f (f == NULL) goto out ;
FLOW_INITIALIZE (f) ;

f −> f l a g s |= FLOW_IPV6 ;
f −> s r c . addr_data32 [0] = 0 x01020304 ;
f −>dst . addr_data32 [0] = 0 x05060708 ;
f −>sp = rand () % 65535 ;
f −>dp = rand () % 65535 ;
f −>protoc tx = &ssn ;
f −>proto = IPPROTO_TCP ;
f −>protomap = FlowGetProtoMapping (f −>proto) ;
f −>a lpro to = a lpro to ;

i n t s t a r t = 1 ;
i n t f l i p = 0 ;

u i n t 8 _ t f l a g s = STREAM_TOSERVER | STREAM_START ;
SSLState * app_state = f −> a l s t a t e ;
i n t r = AppLayerParserParse (NULL, a l p _ t c t x , f , ALPROTO_TLS, STREAM_TOCLIENT,

input , input_len) ;
i f (r != 0) {

goto out ;
}

out :
i f (a l p _ t c t x) AppLayerParserThreadCtxFree (a l p _ t c t x) ;
i f (f) FlowFree (f) ;
i f (input) f r e e (input) ;

return 0 ;
}

LISTING 3.6: Suricata Fuzz Target

3.2. Fuzzing 21

B u i l d i n g T a r g e t Program
./ conf igure \

CFLAGS = "−O0 −g −fPIC \
− f s a n i t i z e =fuzzer −no−l ink , address , undefined , signed −integer −overflow , bool , pointer −

overflow \
− f s a n i t i z e −coverage=trace −cmp, i n d i r e c t − c a l l s , i n l i n e −8 b i t −counters , pc−tab le , t race −

div , t race −gep \
− f p r o f i l e − i n s t r −generate −fcoverage −mapping " \
LDFLAGS = "− f p r o f i l e − i n s t r −generate −fcoverage −mapping \
− f s a n i t i z e =fuzzer −no−l ink , address , undefined , signed −integer −overflow , bool , pointer −

overflow \
− f s a n i t i z e −coverage=trace −cmp, i n d i r e c t − c a l l s , i n l i n e −8 b i t −counters , pc−tab le , t race −

div , t race −gep \
− f p r o f i l e − i n s t r −generate −fcoverage −mapping "

make − j $ (nproc)

Patch Main
sed − i −e ’ s/main/mmmm/g ’ s u r i c a t a . o

C r e a t e L i b r a r y
ar rv s u r i c a t a _ f u z z . a * . o

LISTING 3.7: Build commands for TPr of Suricata

B u i l d i n g Fuzz T a r g e t
clang++ −O1 fuzz_app_ssl . c − I . . / s r c − I . . / l i b h t p \

. . / s r c / s u r i c a t a _ f u z z . a \
−lmagic −lcap −ng −lpcap −lpthread − l n e t −lyaml − l p c r e − l z −llzma − l l z 4 \
− f s a n i t i z e =fuzzer , address , undefined , signed −integer −overflow , bool , pointer −overflow \
−o fuzzer

LISTING 3.8: Build commands for FT to fuzz Suricata

22 Chapter 3. Background

==79836==ERROR: AddressSani t izer : heap−buffer −overflow on address \
0 x62a00000dbff a t pc 0 x55d87348d19e bp 0 x7ffed8d60730 sp 0 x7f fed8d5fee0

WRITE of s i z e 772 a t 0 x62a00000dbff thread T0
#0 0 x55d87348d19d in __asan_memcpy (s u r i c a t a − 5 . 0 . 0 / f u z z i n g / a p p _ s s l _ b u g / f u z z _ a p p _ s s l _ b u g +0 x134e19d)
#1 0 x55d873a5e719 in SSLv3ParseHandshakeType s u r i c a t a − 5 . 0 . 0 / s r c / app − l a y e r − s s l . c : 1 4 7 6 : 1 3
#2 0 x55d873a52131 in SS Lv 3 Pa rs eH a nd sh ak e Pr o t o c o l s u r i c a t a − 5 . 0 . 0 / s r c / app − l a y e r − s s l . c : 1 6 2 4 : 1 4
#3 0 x55d873a40f18 in SSLv3Decode s u r i c a t a − 5 . 0 . 0 / s r c / app − l a y e r − s s l . c : 2 2 9 7 : 2 2
#4 0 x55d873a2 f3c1 in SSLDecode s u r i c a t a − 5 . 0 . 0 / s r c / app − l a y e r − s s l . c : 2 4 6 4 : 3 0
#5 0 x55d873a22051 in S S L P a r s e S e r v e r R e c o r d s u r i c a t a − 5 . 0 . 0 / s r c / app − l a y e r − s s l . c : 2 5 5 8 : 1 2
#6 0 x55d8739911c8 in A p p L a y e r P a r s e r P a r s e s u r i c a t a − 5 . 0 . 0 / s r c / app − l a y e r − p a r s e r . c : 1 2 3 9 : 1 3
#7 0 x55d8734c99a1 in LLVMFuzzerTestOneInput s u r i c a t a − 5 . 0 . 0 / f u z z i n g / f u z z _ a p p _ s s l _ b u g . c : 8 7 : 1 1
#8 0 x55d8733ca98 f in f u z z e r : : Fuzzer : : E x e c u t e C a l l b a c k (uns igned c h a r c o n s t * , uns igned \

long) (s u r i c a t a −5 .0 .0/ fuzzing/app_ssl_bug/fuzz_app_ssl_bug +0 x128b98f)
#9 0 x55d8733b14b7 in f u z z e r : : RunOneTest (f u z z e r : : Fuzzer * , c h a r c o n s t * , uns igned l ong) \

(s u r i c a t a −5 .0 .0/ fuzzing/app_ssl_bug/fuzz_app_ssl_bug +0x12724b7)
#10 0 x55d8733b6588 in f u z z e r : : F u z z e r D r i v e r (i n t * , c h a r * * * , i n t (*) (uns igned c h a r c o n s t * , \

unsigned long)) (s u r i c a t a −5 .0 .0/ fuzzing/app_ssl_bug/fuzz_app_ssl_bug +0x1277588)
#11 0 x55d8733a5e93 in main (s u r i c a t a − 5 . 0 . 0 / f u z z i n g / a p p _ s s l _ b u g / f u z z _ a p p _ s s l _ b u g +0 x1266e93)
#12 0 x7f342825a151 in _ _ l i b c _ s t a r t _ m a i n (/ usr / l i b / l i b c . s o .6+0 x28151)
#13 0 x55d8733a5eed in _ s t a r t (s u r i c a t a − 5 . 0 . 0 / f u z z i n g / a p p _ s s l _ b u g / f u z z _ a p p _ s s l _ b u g +0 x1266eed)

Address 0 x62a00000dbff i s a wild pointer .
SUMMARY: AddressSani t izer : heap−buffer −overflow \

(s u r i c a t a −5 .0 .0/ fuzzing/app_ssl_bug/fuzz_app_ssl_bug +0x134e19d) in __asan_memcpy
Shadow bytes around the buggy address :

0 x 0 c 5 4 7 f f f 9 b 2 0 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0 x 0 c 5 4 7 f f f 9 b 3 0 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0 x 0 c 5 4 7 f f f 9 b 4 0 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0 x 0 c 5 4 7 f f f 9 b 5 0 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0 x 0 c 5 4 7 f f f 9 b 6 0 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

=>0 x 0 c 5 4 7 f f f 9 b 7 0 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa [fa]
0 x 0 c 5 4 7 f f f 9 b 8 0 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0 x 0 c 5 4 7 f f f 9 b 9 0 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0 x 0 c 5 4 7 f f f 9 b a 0 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0 x0c547f f f9bb0 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0 x 0 c 5 4 7 f f f 9 b c 0 : fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa

Shadow byte legend (one shadow byte r e p r e s e n t s 8 a p p l i c a t i o n bytes) :
Addressable : 00
P a r t i a l l y addressable : 01 02 03 04 05 06 07
Heap l e f t redzone : fa
Freed heap region : fd
Stack l e f t redzone : f1
Stack mid redzone : f2
Stack r i g h t redzone : f3
Stack a f t e r return : f 5
Stack use a f t e r scope : f8
Global redzone : f9
Global i n i t order : f6
Poisoned by user : f7
Container overflow : fc
Array cookie : ac
I n t r a o b j e c t redzone : bb
ASan i n t e r n a l : f e
L e f t a l l o c a redzone : ca
Right a l l o c a redzone : cb
Shadow gap : cc

==79836==ABORTING

LISTING 3.9: Output Libfuzzer Suricata Bug

23

Chapter 4

Usability Evaluation of a Static
Analysis Tool and libFuzzer

Disclaimer: The contents of this chapter were previously published as part of the paper
“A Qualitative Usability Evaluation of the Clang Static Analyzer and libFuzzer with
CS Students and CTF Players,” presented at the seventeenth Symposium On Usable
Privacy and Security (SOUPS) in 2021, together with my co-authors Mischa Meier and
Matthew Smith. As this work was conducted with my co-authors as a team, this chapter
will use the academic “we” to mirror this fact. I designed the study with advice from
Matthew Smith. I set up and performed the study as well as designed and conducted
all interviews. Mischa Meier supported me in the coding and the discussion of the
interviews.

Finally, before compiling the paper for publication, Matthew Smith and I jointly
discussed the study’s implications.

4.1 Motivation

The number of critical security vulnerabilities is rising, with the same type of
programming mistakes being made over and over again. Testing software for
bugs and vulnerabilities is one crucial aspect of helping developers write secure
code and countering this development.

The two prevalent approaches for application security testing are static anal-
ysis and dynamic analysis.

Static analysis has seen widespread adoption across the industry, dominating
the leaders’ portfolio of the April 2020 Gartner magic quadrant for application
security testing [73]. Dynamic analysis, and in particular fuzzing, has received
much attention in academia in recent years, as can be seen by this selection of
fuzzing papers published in 2020 alone: [115, 206, 142, 207, 149, 68, 162, 148,
96, 31, 111, 71, 209, 151, 203, 122, 98, 154, 187, 192, 123, 20, 197, 72, 143, 145, 22,
166, 14, 105, 189, 32, 57, 7, 90, 198, 153]. Moreover, large software companies
such as Google, Microsoft, Cisco, and others use fuzzing very successfully. For
instance, using fuzzing, Google found over 20,000 bugs in Chrome alone [26].
Despite these impressive results, fuzzing has not yet found the same adoption
in industry that static analysis has.

24 Chapter 4. Usability Evaluation of a Static Analysis Tool and libFuzzer

In this paper, we examine the usability of the static analyzer Clang Static An-
alyzer and the fuzzer libFuzzer to get first insights into the question of whether
usability issues might be hindering the adoption of fuzzing. For our study, we
evaluated several fuzzers and static analyzers. We selected the Clang Static An-
alyzer because it performed very well in the comparison of Arusoaie et al. [6]
and libFuzzer because it is a popular example of a dynamic code analysis tool in
academia [155, 96, 17]. However, we would like to stress that neither the Clang
Static Analyzer nor libFuzzer are necessarily representative examples of static
and dynamic analysis tools. Moreover, since the tools are good at finding bugs
of different types, our evaluation should not be seen as a like-for-like compari-
son but as gathering first insights into usability strengths and weaknesses of two
different tools.

We performed a qualitative mixed factorial design study with 32 CS master
students and six competitive Capture the Flag (CTF) competitors to evaluate the
usability of the Clang Static Analyzer and libFuzzer with an easy and a hard
task. We designed an easy and a hard task to get a broader view of the tools.
The easy task was designed to see if participants could get the tool running in
principle, while the hard task was designed to reflect a more realistic challenge
as would be faced in a real project. The two tools were studied using a within-
subjects design to also gather comparative insights into the two tools. The dif-
ficulty of the tasks was tested between subjects with the CS students. The CTF
participants only got the hard task. Participants had ten hours over a period of
ten days per task to work on the solution.

Our results indicate that the Clang Static Analyzer is easy to use in principle,
but it did not scale well to the hard task. Only one CTF participant was able to
find the bug due to a large amount of false positive warnings. With libFuzzer,
the usability hurdles were much higher, and many CS participants did not man-
age to solve even the easy task. Even the CTF players did not manage to find the
bug in the time allotted, although they were able to use libFuzzer in principle.
While the majority of participants only failed in the last step of the Clang Static
Analyzer, we found usability problems in every step needed to use libFuzzer,
which we will discuss throughout the paper.

4.2 Methodology

We wanted to gain insights into the usability issues of the Clang Static Analyzer
and libFuzzer. In the following, we will discuss the design and methodology of
the two studies we conducted to do this.

4.2.1 Tool Selection

We decided to pick one tool per category instead of a spread since it was ex-
pected that we would not be able to recruit enough participants to compare

4.2. Methodology 25

multiple tools.

Static Analysis We evaluated the popular commercial static analysis tools For-
tify [125], Coverity [44], CodeSonar [41] and checkmarx [29]. Unfortunately,
they all forbid publishing evaluations in their terms of use [126, 45, 42, 30]. We
based our selection of the open-source static analysis tool on the evaluation of
Arusoaie et al. [6]. Also, we took the new analyzer ikos [19] into consideration
as it was not part of their evaluation. We concluded that ikos was not yet stable
and production-ready and removed it from the list of possible candidates. Based
on this, we selected the Clang Static Analyzer, which was the analyzer with the
highest productivity rate, a combination of detection rate and false-positive rate,
and the highest win rate combining all subcategories within their analysis. We
selected the Clang Static Analyzer in version 8.0 as it was the latest version at
the time we conducted the first study.

Dynamic Analysis When designing the study, there were no popular commer-
cial fuzzers for C/C++ code available, so we only evaluated the open-source
fuzzers: AFL [4], AFL++ [5], libFuzzer, honggfuzz [88] and radamsa [159]. Our
literature review showed that AFL/AFL++ and its forks, as well as libFuzzer, are
the most common fuzzers in use [120, 9, 33, 187, 14, 67, 96, 17]. Both AFL and
libFuzzer were viable choices. While both Fuzzers can fulfill the same tasks, we
think that both have strengths and weaknesses for specific situations. To fuzz
with libFuzzer a specific function is picked as an entry point. In contrast, AFL
primarily works on and with executables. The fuzzer itself is a standalone exe-
cutable that takes the executable of the target program as input. This provides
the user straightforward access to the fuzzing process, and it helps to get a first
impression of the robustness of a target program. On the other hand, it only
allows fuzzing a target program from the main entry point, leading to the case
that the Fuzzer might not reach specific parts of the code. In the hard task, it is
unrealistic that the code section containing the bug can be reached by AFL this
way, while libFuzzer can be run directly on the function. For this reason, we
choose libFuzzer over AFL.

4.2.2 Task Selection

To evaluate the usability of the tools, we needed programs containing vulnera-
bilities that participants should find. While we were also interested in compar-
ing the usability of the Clang Static Analyzer and libFuzzer, it was not feasible to
use the same vulnerabilities for both tools since the types of bugs these tools are
good at finding vary too much. We were also interested in comparing how the
tools performed at different levels of difficulty. We chose one easy task per tool
to get a baseline. With that, we could uncover fundamental difficulties with the

26 Chapter 4. Usability Evaluation of a Static Analysis Tool and libFuzzer

tool itself. Additionally, a hard task was chosen per tool to see how it performed
in a more realistic setting.

Prerequisites

An appropriate task, i.e. a program to be analyzed, needs to contain a vulnera-
bility that the respective analysis tool can find. This bug should be hard to find
by other means than using the tool, particularly by using search engines, thus
data-sets like the DARPA Cyber Grand Challenge [54] were not viable options
for us. We also decided against using tools like Lava-M [61] since they generate
a recognizable style of bugs that we knew were familiar to the CTF participants,
and inserting bugs into existing programs opens up the risk that participants
could use the DIFF tool to identify changes quickly. Ideally, we could use actual
undiscovered bugs. To make the matter more complicated, it was also desirable
that the difficulty of the two easy and two hard tasks would be similar.

Static Task

We started by running the Clang Static Analyzer on several trending GitHub
projects at that time. A list can be found in the Appendix in Table A.1. While
most of the projects had a high number of warnings, we could not find any true
positives, despite investing a significant amount of effort into this. Since this
proved fruitless, we contacted experts in static analysis from the Cyber Analy-
sis and Defense and the Cyber Security research departments of the Fraunhofer
FKIE to discuss program selection. They did not have any fixed but unpublished
bugs, so we were unable to find an unpublished bug suitable for our study.
Thus, we fell back on inserting vulnerabilities ourselves but attempting to miti-
gate the issues mentioned above. For this, we injected one bug in a local copy of
the open-source project jq [101] for the easy task and two bugs into a local copy
of the open-source project Tesseract [178] for the hard task. The injected bugs
were never deployed anywhere outside the study and did not endanger any-
body. We chose these projects based on the number of warnings since related
work showed that the number of false positives is the main usability issue of
static analyzers. Project jq only produced five warnings, and we checked all to
confirm they were false positives. Tesseract produced 476 warnings, and we did
not find any true positives. We chose to inject one bug, which the Clang Static
Analyzer can find without any options activated in both programs. We also in-
jected an additional bug in the hard task, which requires the tester to set the
checker alpha.security.ArrayBoundV2 manually to inspect array boundaries. To
mitigate the risk of participants using DIFF to find the inserted bug, we chose
older versions of the programs and removed all information concerning the ver-
sion number.

4.2. Methodology 27

Dynamic Task

Unlike with the Clang Static Analyzer, there was no simple way with libFuzzer
to evaluate a set of GitHub projects similarly, so we contacted Code Intelligence,
a company offering fuzzing as a service to get an overview of difficulty levels of
different projects. Fortunately, they knew a couple of open-source projects with
vulnerabilities that had already been reported and fixes submitted but not pub-
licly announced yet. Hence, we selected two of these for our fuzzing tasks. For
the easy task, we used yaml-cpp [202] since it is a comparatively small project
and has only a handful of public interfaces. This circumstance makes it reason-
ably easy to get a good overview of the program in a moderate amount of time.
Also, writing the fuzz target is relatively simple, and the bug is found in a couple
of seconds, even without instrumentation. We knew of one bug in yaml-cpp.

For the hard task, we selected the Suricata [175] project. The fuzz target
needed to trigger the bug is more complex than for the yaml-cpp project, and
instrumentation, a fitting corpus, and time are needed. Based on the fuzzing
expert’s recommendations, we opted to give a starting hint to give participants
an idea of where they should start looking since the code base was huge, and it
would take more time than was available in the study to get an overview. We
knew of two bugs in the location where we gave a hint. We fixed one of them
since it was a very easy bug, and this was supposed to be the hard task. There
were also two other bugs in a different code section. However, these were not
relevant to our study. So for the purpose of this study, we had one bug in the
location for which we gave the hint. In addition to our hint, the Suricata project
contained two other sources participants might use to guide their fuzzing effort.
The project contained unit tests that could be adapted into fuzz targets. The
projects also contained some AFL fuzz targets. As far as we could tell, triggering
the bugs with the AFL fuzz targets was impossible.

4.2.3 Study Design CS Study

Our study contains two independent variables, each with two levels: analyzer
(Clang Static vs. libFuzzer) and difficulty (easy vs. hard). Based on our external
experts’ feedback and internal pre-studies, we decided to allot ten hours for
each of the four study conditions. Since this study is highly skill-dependent, we
opted for a within-subjects study design for the analyzer variable. To reduce
the time needed per participant, we opted to study the difficulty level between-
subjects, which then gave us a mixed factorial study design. So each participant
either did the easy task with both the Clang Static Analyzer and libFuzzer or did
the hard task with both analyzers. We randomly assigned the participants to the
hard or easy tasks and randomized the order in which participants used the
analyzers to counter learning and fatigue effects. Due to the length of the tasks
and the fact that fuzzers need to run for a while to find bugs, we conducted the
study online. Participants had ten days per condition and were instructed to

28 Chapter 4. Usability Evaluation of a Static Analysis Tool and libFuzzer

work ten hours. If they thought they had found all bugs, they could report in
early and would then be given the second task. Participants were asked to keep
a diary while working on the task detailing what they spent time on and what
problems they encountered. We supplied remote virtual machines with the tools
pre-installed for participants to use. They were, however, also allowed to work
on their machines if they preferred. After completing both tasks, participants
took part in a 30-minute semi-structured interview.

Recruitment and Participants

Since our study required a time commitment of 20 hours, recruiting enough pro-
fessional developers was not feasible for us at this stage of our research. Thus,
we opted to use CS students from a lecture on usable security and privacy and
CTF players to gain first insights but want to point out that professional devel-
opers would probably perform better in absolute numbers. However, fixing the
usability problems discovered by the CS students is likely also to be beneficial
to professional developers. However, we cannot make any claims to this extent.
Additionally, CS students are also a legitimate user group for these tools, and
consequently, fixing usability issues for them is also a desirable goal.

The lecture is part of a master of computer science curriculum and is not
mandatory. The focus of the lecture is usability in the context of security. Conse-
quently, all participants had a bachelor’s degree in computer science, had some
basic knowledge of how to evaluate the usability of security tools.

Since the tasks require C/C++ and Linux skills, we used a pre-questionnaire
as a filter. We selected a self-reported skill level for Linux and C/C++ of four or
higher on a scale of one to seven. We distributed the pre-questionnaire to about
110 students and selected 32 for the study who fulfilled the requirements. They
were compensated with an 11% bonus for their end-of-term exam. Students not
selected for this study had other opportunities to earn the same bonus. Table 4.1
shows the demographics of the CS student participants.

Gender Male: 26 Female: 5 Other: 0 No Answer: 1
Age min: 22, max: 34 mean: 26.03, median: 25 sd=2.95, NA=0

TABLE 4.1: CS Participant Demographics

Only six out of the 32 participants reported that they had ever used a static
code analyzer before. 17 participants reported that they were familiar with the
term fuzzing. However, only four of them had used a fuzzer before. Three of
the participants had found a bug with a fuzzer, and one had used the fuzzer
libFuzzer before.

4.2. Methodology 29

4.2.4 Study Design CTF Study

The second study conducted with CTF players was designed and run after the
results of the first study with CS students had been evaluated. While the studies
are very similar, we did make three changes which we will highlight here.

Firstly, based on the results of the CS study and the expected skill level of
the CTF players, we dropped the easy tasks since we did not expect to learn
much there and focused on the hard task, as it would be more beneficial also
considering the small pool of CTF players.

Secondly, the Suricata project released an update fixing two of the three bugs
we knew of, and information about them had been released. To prevent partici-
pants from quickly finding these two bugs via a web search, we gave our partic-
ipants the updated version, which thus only contained one bug we knew of for
them to find. Fortunately, this bug was the one in the code section for which we
gave a hint so we could leave the task unchanged except for the update.

Finally, since exam bonus points were not an option, we offered monetary
compensation instead. We initially offered a base compensation of 70 euro, with
an additional 70 euro offered for finding bugs. We thought due to the competi-
tive nature of CTF players, they would respond well to the incentive. However,
we were not able to gain enough interest in our study. After talking to some po-
tential participants, we switched to a flat compensation of 140 euro independent
of success.

Recruitment and Participants

We recruited participants from a local Capture-the-Flag (CTF) team via announce-
ments in the weekly team meetings and email. This pool contains roughly 80
people, of which 16 filled out the pre-screening survey. We removed partici-
pants who did not have at least one year of CTF experience and had taken part
in at least one online and one in-person CTF challenge since we wanted to have
a highly skilled group for comparison with the CS students. This left us with
eight participants who took part in the main study. During the study, it turned
out that two participants had misunderstood the question about in-person CTF
events. They actually had not taken part in any and thus are not included in this
report.

The demographics of the CTF group are shown in Table 4.2.

Gender Male: 8 Female: 0 Other: 0
Age min: 19, max: 32 mean: 23.25, median: 22 sd=4.2, NA=0

Level of education Bachelor: 2 apprenticeship: 2 high-school diploma: 4

CTF events online min: 1 , max: 20+ mean: 11.4, median: 12.5 sd=8.4, NA=0
CTF events offline* min: 1 , max: 7 mean: 4.2 , median:4 sd=2.6, NA=0

TABLE 4.2: CTF Participant Demographics

30 Chapter 4. Usability Evaluation of a Static Analysis Tool and libFuzzer

Compared to the CS group, the CTF group is younger, more male and the
education level is slightly lower.

Similar to the CS group, only two of the six participants had used a static
code analysis tool.

However, all participants reported that they were familiar with the term fuz-
zing. Five of them had already used a fuzzer before, and three of those five
participants had also used libFuzzer and half of all participants reported that
they had already found at least one bug with a fuzzer.

This indicates that the CS and CTF group were on a similar level w.r.t. static
code analysis tools, but the CTF group had more experience with fuzzing.

4.2.5 Scoring Results

We evaluated the analyzers based on the success or failure of the participants
to get the tool up and running as well as finding the bug. These are separate
since it is possible to correctly use the tool but still fail to find the bugs. To make
our assessment, we analyzed the submissions of the participants (code and bug
reports) as well the content of the diary and the exit interview. The fulfillment is
a binary variable with the possible values of success and no success.

In the static analysis case, a participant successfully fulfilled a static task if
the participant used the Clang Static Analyzer correctly and found at least one
of the bugs we inserted.1

A participant successfully fulfilled a dynamic task if the participant triggered
the bug present in the code by using libFuzzer and recognized it as a bug.

4.3 Limitations

Our studies have the following limitations:

Task Selection. The most considerable limitation concerns the task selection.
While we did our best to find fair easy and hard tasks for both tools and con-
sulted external experts, we cannot guarantee that the two easy and hard tasks
are exactly the same level of difficulty. While the identified problems likely re-
main for other tasks, the difference between the two approaches could vary for
different tasks.

Participants. We sampled participants from a master course in usable security
and a CTF team. Thus this sample is not representative of the wider world.
Nonetheless, fixing the issues we found is most likely a good idea, even if more
experienced developers might have learned to overcome them.

1Another true positive bug would also have counted, but this did not occur.

4.4. Ethics 31

Tools Selection. We tested two specific tools: Clang Static Analyzer and lib-
Fuzzer. Other tools might perform differently.

Time. Participants only had ten hours per task. While our internal testing sug-
gested that this would be sufficient, some CTF participants would likely have
found the bug with libFuzzer, since they were making progress until the end.
The time limit did not seem to affect the CS participants or the static tasks.

Unknown Code. Our evaluation only looks at participants analyzing code that
they did not write themselves. Further studies with code known to the partici-
pants are needed to make claims about this scenario.

Incentives. When comparing the CS and CTF groups, the different incentives
must be taken into account.

Bugs. During the second study with the CTF participants, information about
the bugs in Suricata was published in a blog. One of our participants found
this blog and informed us about it. We contacted the author of the blog, and
they kindly agreed to take it offline until the end of the study. The participant
who informed us about the blog had already finished the task. We asked all
other participants whether they had come across the blog or other information
online. One additional participant had found some information in an online
presentation; however, this did not help them complete the task.

4.4 Ethics

Our studies were reviewed and approved by the Research Ethics Board of our
university.

Our studies also complied with the General Data Protection Regulations.
Since we were working with live vulnerabilities, responsible disclosure guide-
lines were followed. The developers of both programs were already aware of
the Bugs, and all participants agreed to comply with responsible disclosure in
case they found bugs.

4.5 CS Study Results

We label participants based on their group (CS or CTF), the order of assign-
ment to the conditions ((FS: fuzzing then static, SF: static then fuzzing), and
the difficulty of their tasks(E: easy, H: hard). For the analyses, we used the
pre-questionnaire, the reports submitted by the participants, the diaries, and

32 Chapter 4. Usability Evaluation of a Static Analysis Tool and libFuzzer

the semi-structured post-interview. The questions of the interview and the pre-
questionnaire can be found in the Appendix in Section A.1.1 and A.5.1. Except
for CS16-FSE, every participant consented to the interview being recorded and
transcribed. For the interview of CS16-FSE, handwritten notes were taken. The
interviews were transcribed and anonymized.

To analyze the interviews and diaries, we used inductive coding [179] with
two researchers. The two researchers started by coding the same four ran-
domly chosen interviews independently and in parallel. They compared, an-
alyzed, and discussed the two resulting coding sets. It turned out that due to
the open approach, the code sets of both researchers were substantially differ-
ent. Through a discussion of the codes, a common coding set was agreed upon.
The four interviews were then recorded and discussed again. This procedure
was repeated in steps of three interviews. The diaries of the participants were
coded with the resulting coding set from the coding of the interviews. During
the coding of the diaries, the coding set was again supplemented by codes that
emerged from the data. All quotes from the participants were translated from
German into English by the authors.

4.5.1 Drop-outs

Of the 32 CS student participants, only 18 started the second task, and only ten
finished both tasks and were interviewed. CS18-FSH finished both tasks and
took part in the interview, but we decided to remove them from our analysis be-
cause it became clear that they had not put any real effort into either task. This
leaves us with nine participants that finished both tasks and were interviewed.
The drop-out rates were much higher than we expected. We have conducted
many usability studies with CS students, and it is normal that some drop-out,
but this drop-out rate is noteworthy. While we did not conduct formal inter-
views with the drop-outs, we spoke to some of them. They told us that the tasks
were too hard and that they did not know how to solve them and thus dropped
out.

The second column of Table 4.3 shows the drop-out rates, and, as can be seen,
only a quarter of the participants dropped out of the easy static task, while half
dropped out of the hard static task. With the fuzzing tasks, half dropped out
both in the easy and hard tasks. This is a first indication that there are usability
issues with both approaches. While this explanation seems plausible, based on
the rest of the data we could gather, it is also possible that the drop-out rate
could be an artifact of our study design. Further studies with different designs
are needed to confirm this.

Since we were also interested in a qualitative within-subjects comparison of
the Clang Static Analyzer and libFuzzer, most of our analysis focuses on the nine
CS participants who completed both tasks and who were interviewed. Table A.7
shows an overview of the participants’ positive and negative comments and

4.5. CS Study Results 33

their preference for the two tools. In the following, we look at the results in
more detail.

4.5.2 Static Task

The results of the static analysis tasks can be seen in Table 4.3. Table A.2 in the
appendix breaks the results down into those who were assigned the conditions
as their first or second task. As can be seen, the easy task was indeed relatively
easy, with only three participants aborting the task. Moreover, in eight out of
nine submissions in the easy tasks, the bug was correctly identified. In contrast
to that, half the participants dropped out of the hard task. Of those who sub-
mitted a report for the hard task, none had found either of the two bugs. In the
following, we will group our insights by the different steps needed to complete
the task.

Step1: Build Target Program with Clang Static Analyzer All participants, ex-
cept for CS23-SFE, started by reading the documentation of the Clang Static An-
alyzer. CS23-SFE had used the analyzer before and knew the necessary steps.
None of the participants reported that they used any other source of informa-
tion besides the documentation of the Clang Static Analyzer and the target pro-
gram(TPr).

Not many participants had problems with this step, except for two partici-
pants, CS31-SFE and CS24-FSE. Both had used the configure and make commands
on the project to check if everything worked as intended. This interfered with
the Clang Static Analyzer because the target program was already built. There-
fore the analyzer could not build the target program again and consequently
could not find any bugs. CS24-FSE solved this problem on their own. CS31-SFE
submitted a report stating that no bugs were found. To gather more information,
we let CS31-SFE know that something went wrong and gave a hint. CS31-SFE
still counts as a fail in the overall statistics, but with the hint were able to com-
plete this step, and their results are considered in the following steps.

Step 2: View the Output Five out of the nine participants who submitted a
report had trouble viewing the output of the Clang Static Analyzer. However,
this problem only arose because the participants were working on the remote
machines offered by us. Except for CS31-SFE, all participants solved the issue
by downloading the output to their local machines. Since this problem stemmed
from our study setup, we do not see this as a usability issue of the tool.

Step 3: Analyze Reports The presentation of the output of the Clang Static
Analyzer was rated very positively by the participants. However, as expected,
all participants in the hard task and some in the easy task stated that the massive
number of warnings was a substantial problem. In particular, the high number

34 Chapter 4. Usability Evaluation of a Static Analysis Tool and libFuzzer

of duplicate bug reports was viewed negatively. This is in line with previous
work looking at static analyzers. What is noteworthy though is that this problem
has been well known for over a decade but is still an issue with current tools.

4.5.3 Dynamic Task

The results of the dynamic analysis tasks in Table 4.3 show that both tasks were
hard to solve for our CS participants. For a more detailed overview showing in
which order the tasks were assigned, please refer to Table A.5 in the Appendix.

Only two CS participants were able to solve the easy task. CS6-FSE dropped
out in the following static task, but their diary showed that they straightfor-
wardly solved the task mentioning no problems. The other participant was
CS23-SFE, who had stated that they already had experience with fuzzing and
libFuzzer in particular. Another participant, CS5-SFE, wrote the correct fuzz
target and ran the fuzzer triggering the bug but was convinced that the fuzzing
report did not describe a bug.

None of the participants was able to solve the hard task. The drop-out rates
for both fuzzing tasks were roughly half, just like for the hard static task.

combined started drop-out submitted success

Static-easy 12 3 9 8
Static-hard 10 5 5 0

Fuzzing-easy 16 8 8 2
Fuzzing-hard 10 6 4 0

TABLE 4.3: CS static analysis and fuzzing overview

Unlike with the Clang Static Analyzer, which almost all participants used
correctly, we found many problems with the usage of libFuzzer. Table 4.4 gives
an overview of where participants had problems. The columns of Table 4.4 de-
pict the six steps of the fuzzing process. The first step of finding a suitable func-
tion to fuzz contains two values. The first value is the number of functions a
participant tried to fuzz. The second value indicates if the participant found a
function that triggers one of the bugs known to us. The step of building and
instrumenting the target program also contains two values. The first value in-
dicates whether the target program was built, the second if the target program
was instrumented. The other columns indicate: how many fuzz targets were
created, whether they could build the fuzz targets, whether they ran the fuzzer,
triggered the bug, interpreted the output correctly (either as false or true posi-
tives), used a corpus and used toy examples to try out fuzzing before trying it
on the main project.

The first nine participants in the table are those who completed all tasks and
the interview. The next participant in blue is the low-effort participant. The

4.5. CS Study Results 35

participants below in gray completed the fuzzing task but then dropped out.
Since we conducted the study online, and participants were allowed to use their
own computers, we could not always reconstruct every step. When we were
uncertain about whether a participant successfully took a step or not, we marked
this with a circle.

Participant Condition Found Func. Wrote FT Build & Inst. TPr Build FT Ran Fuzzer Bug Trig. Interp. Output Corpus Toy

CS16-FSE easy ✗ / ✗ ✗

CS31-FSE easy ✗ / ✗ ✓

CS15-SFE easy 2 / ✓ 2 ✗ / ✗ (FT in TPr) ✗ ✗

CS24-FSE easy 1 / ✓ 1 ✓ / ✗ ✗ ✓

CS5-SFE easy 1 / ✓ 1 ✓ / ✗ ✓ ✓ ✓ ✗ ✓ ✗

CS23-SFE easy 1 / ✓ 1 ✓ / ✓ ✓ ✓ ✓ ✓ ✓ ✗

CS4-FSH hard ✗ / ✗ ✓

CS3-SFH hard ❍ / ❍ ❍ ✗ / ✗ ✗ ✓

CS8-FSH hard 1 / ✗ ❍ ✗ / ✗ ✓

CS18-FSH hard ✗ / ✗ ✗

CS28-FSE easy ✗ / ✗

CS6-FSE easy 2 / ✓ 2 ✓ / ✗ ✓ ✓ ✓ ✓ ✗ ✗

CS17-SFH hard ✗ / ✗ ✗

CS30-FSH hard ✗ / ✗ ✗ / ❍

CS26-FSH hard ❍ / ❍ ❍ ❍ / ❍ ✓

TABLE 4.4: CS dynamic analysis deeper statistics: ✓ denotes suc-
cess in this phase, ✗ failure and ❍ undecidable

For our qualitative analysis, we again focus on the participants that finished
both tasks and were interviewed. In the following, we will group our insights
by the separate steps needed to complete the task.

Familiarization with the Process All participants started with getting an over-
view of libFuzzer as well as the target program. Unlike the Clang Static An-
alyzer, where participants only used the official documentation, many partic-
ipants searched for additional information about libFuzzer on the web. This
highlights deficits in the official documentation as emphasized by CS5-SFE:

So if you visit the [libFuzzer] page, it is not really obvious what you
need to do.

and by CS15-SFE:

I have not used a fuzzer and I would have wished for a guideline.
Such as: Step one, do this, step two, do this... getting started was
really hard.

Moreover, participant CS15-SFE stated that the documentation negatively
impacted them:

Even after reading through the paragraphs several times, I‘m not
sure where to start. Instantly start to lose interest.

36 Chapter 4. Usability Evaluation of a Static Analysis Tool and libFuzzer

Step 1: Find a Suitable Function to Fuzz In this step, participants had to
identify functions to fuzz. In the easy task, all participants who identified any
functions to fuzz also identified the one that could trigger the bug. Three par-
ticipants, CS16-FSE, CS31-SFE, and CS4-FSH did not find any functions they
thought they could fuzz. CS4-FSH summarized the problems with:

I looked at the source code of Suricata and was completely over-
whelmed. [...] And in the end I did not find any approach how I
could fuzz this with a fuzzer.

CS31-SFE commented on that:

I had problems finding the right point to start fuzzing. The website
was not much of a help: [...]. Should I try to look at it from an external
view and try to feed information from the outside or should I do it
internally [...]? I was missing many examples. It would have been
good to not only see somebody fuzzing an easy function [...].

Step 2: Write a Fuzz Target All participants in the easy task who found the
function to fuzz also successfully wrote the correct fuzz target. None of the CS
participants managed to write a correct fuzz target in the hard task.

Two participants, CS15-SFE and CS3-SFH, tried to write the fuzz target in an
existing file of the target program. CS3-SFH changed their mind after having
problems with the compilation and used an external fuzz target. For CS15-SFE,
this resulted in a more complicated situation. They had to remove the corre-
sponding main function of the target program to use libFuzzer since libFuzzer
is shipped with a main function, which interferes with other main functions.
More importantly, they also had to modify the make file in order to compile
the altered target program. This seemed to have been motivated by the code
snipped in the official documentation that could give the impression that the
fuzz target is part of the target program. CS3-SFH also stated to this topic:

I tried to write a simple fuzzer target for a function in app-layer-
parser. I started simple and did not manipulate the inputs. I directly
wrote it into the app-layer-parser.c file like in the examples given...

CS3-SFH did not include the fuzz target in the report, so we could not confirm
this.

While this is a legitimate way to run libFuzzer, in our view writing the fuzz
target in a separate file is a cleaner and more straightforward approach.

Step 3: Compile and Instrument Target Program The actions taken in the step
of compiling and instrumenting the target program were wild. In the case of the
easy task, none of the CS participants, except CS23-SFE, seemed to be aware that
instrumentation exists or had any idea why instrumentation is useful. CS23-SFE

4.5. CS Study Results 37

was the only participant who actively dealt with instrumentation and was aware
of the implications of the "fuzzer-no-link"-flag and was the only one ever to use
it.

All participants of the hard task had the problem that Suricata builds as an
executable, and libFuzzer can not directly fuzz executables. CS8-FSH tried to
find a solution by exporting a function from the Suricata elf binary into a shared
object and then load and run it within a fuzz target. However, they were not
able to do so.

Step 4: Build Fuzz Target The five remaining participants reported severe
problems in the building and linking step. CS24-FSE stated:

I believe that the library itself wasn’t the problem, but the stupefying
linking and compiling was.

The problems with building and linking could have a variety of reasons. Two
participants stated that they lacked knowledge concerning the make system
(CS24-FSE, CS15-SFE) or even compiling C/C++ code in general (CS5-SFE). Other
participants had problems linking libraries and were randomly trying out com-
piler and linker flags to get the fuzz target to compile. For yaml-cpp, some
participants also tried to use make install on the target program to increase the
chance of hitting the right combination of compiler and linker flags. Overall,
we observed a lack of understanding concerning the interaction between fuzz
target, target program, and compilation process.

Step 5: Run and Observe the Fuzzer In the easy task CS5-SFE, CS6-FSE, and
CS23-SFE were able to build the fuzz target and run libFuzzer. Moreover, they
all triggered the bug because, in the easy task, the bug was triggered within
seconds.

Step 6: Interpret Output Of the three participants who triggered the bug, CS5-
SFE incorrectly classified the output as a false positive. CS5-SFE saw the out-of-
memory error and the malformed input the fuzzer had generated but thought
this was a mistake by libFuzzer instead of a bug in the program.

Even though CS23-SFE was by far the best participant in solving the easy
fuzzing task in less than two hours, they did not find the output of libFuzzer
very helpful, stating:

I would be helpful if the output did not just contain the input which
led to the bug, but also information about the crash.

Toy Examples and Documentation Six of the nine participants experimented
with the toy examples from the documentation to get to know libFuzzer. How-
ever, as described above, this led some astray.

38 Chapter 4. Usability Evaluation of a Static Analysis Tool and libFuzzer

Moreover, almost all participants stated that the documentation was lacking
in many different ways. The two most prominent complaints were the lack of
precise steps and the request for more complex and well-explained examples.

4.6 CTF Study Results

The interviews and diaries of the CTF group were coded based on the same
principles we used for the CS group. The questions of the interview and the
pre-questionnaire can be found in the Appendix in Section A.1.2 and A.5.2.

An overview of the CTF-group’s success can be seen in Table 4.5. Unlike in
the CS group, we had no drop-outs in the CTF group. There are two potential
explanations for this. Based on our interviews, the CTF participants were not
as frustrated with the tools as the CS participants or had a higher frustration
threshold and a willingness to work with complicated and puzzling systems.
However, it could also be that the 140 euro incentive was more motivating than
the 11% exam bonus or a combination of these factors. As in the previous sec-
tion, we will structure our results around the steps needed to operate tools.

combined started dropout submitted success

Static-hard 6 0 6 1
Fuzzing-hard 6 0 6 0

TABLE 4.5: CTF: overall results

Static Analysis

Steps 1 & 2 The participants had no problems getting to the point where they
had to inspect the reports given by the Clang Static Analyzer. Some participants
reported issues viewing the results, like in the CS study, but could quickly solve
them.

Step 3: Analyze Reports Overall, participants were satisfied with the usability
of the tool as with the presentation of the output but had the same problem with
the high number of false positives as the CS group. CTF7-SF stated:

More than once I wondered whether it‘s me or the analyzer who
doesn‘t understand the code.

Only one participant (CTF2-FS) was able to find one of the bugs.
Notably, four out of six participants reported that they heavily prioritized

reports in the category memory errors. Some specifically mentioned that they
neglected reports in other categories, such as Logic errors, which was the category

4.6. CTF Study Results 39

where the Bug was. Their reasoning was that these kinds of bugs potentially
have low exploitability. In the interviews, some of the CTF participants stated
that they did not consider availability/denial of service an issue in this context.
This could be an artifact of the fact that in CTF games denial-of-service attacks
are often forbidden. CTF7-SF stated:

Going through the "Memory error" bugs - If there are any vulnerabil-
ities I expected to find them here, so I took some time for them.

All in all, participants showed strong tendencies to focus on bug types, ig-
noring much of the output produced by the Clang Static Analyzer. CTF3-SF
summarized it as follows:

I filtered for use-after-free and double-free/delete, which seemed most
likely to have immediate security impacts. While there were 72 bugs
shown in total, most of them were duplicates. I decided to only look
at one bug per bug group/function combination, which eliminates
mostly very similar code paths... For each combination, I chose the
shortest path length to have a minimum-complexity example of a
triggering code path.

This filtering caused the participants to miss our bug, which was in the cate-
gory Dereference of undefined pointer value.

Dynamic Analysis

Despite being more experienced and security savvy, our CTF participants also
had trouble with libFuzzer. Table 4.6 gives an overview of where participants
had problems.

Participant Found Func. Wrote FT Build & Inst. TPr Build FT Ran Fuzzer Bug Trig. Interp. Output Corpus Toy

CTF5-SF 1 / ✓ 1 ✗ / ✗ ✗ ✗

CTF4-FS 1 / ✓ 1 ✓ / ✓ (FT in TPr) ❍ ❍ ✗ ✓ ✗

CTF2-FS 1 / ✓ 1 ✓ / ✓ (FT in TPr) ✓ ✓ ✗ ✓ ✓ ✗

CTF6-FS 1 / ✓ 10 ✓ / ✓ (FT in TPr) ✓ ✓ ✗ ❍ ✗ ✗

CTF7-SF 1 / ✓ 11 ✓ / ✓ ✓ ✓ ✗ ✓ ✓ ✗

CTF3-SF 1 / ✓ 3+ ✓ / ✓ (FT in TPr) ✓ ✓ ✗ ✓ ✓ ✗

TABLE 4.6: CTF dynamic analysis deeper statistics: ✓ denotes suc-
cess in this phase, ✗ failure and ❍ undecidable

Step 1: Find a Suitable Function to Fuzz Unlike the CS participants, all CTF
participants were able to identify the correct function to fuzz.

40 Chapter 4. Usability Evaluation of a Static Analysis Tool and libFuzzer

Step 2: Write Fuzz Target The writing of the fuzz target split the CTF group
in two. Participants CTF4-FS and CTF5-SF used the unit tests as the basis for
their fuzz targets. Participants CTF2-FS, CTF3-SF, CTF6-FS, and CTF7-SF based
their fuzz target on the AFL targets contained in the project. In general, all
participants agreed that creating the fuzz target was a complicated and time-
consuming task.

Step 3 & 4: Compilation and Instrumentation Five out of six participants
were successful in compiling and instrumenting all necessary parts, only CTF5-
SF did not successfully manage this step. CTF5-SF had criticism for the docu-
mentation and some suggestions on how the usability of these steps could be
improved.

Although everything was described [in the example] instructions were
missing how to approach fuzzing a real-world project, how to inte-
grate it into an existing boot-system. Maybe one could have made
something generic to integrate it into Cmake or Auto-build.

Four of the five participants who created a fuzz target wrote the fuzz target
directly into the target program. Unlike the CS participants, they were able to
make the necessary modification to make this work. We found this interesting
since it does not seem to be the intuitive way for us.

Step 5: Running and Observing the Fuzzer The four remaining participants,
CTF2-FS, CTF3-SF, CTF6-FS, and CTF7-SF, created multiple fuzz targets and ob-
served the fuzzing process.

All participants focused on using the executions per second as well as the
code coverage as the indicators on whether the fuzzing process was going well
or not. Concerning the code coverage, some participants mentioned that it could
sometimes be hard to interpret the relative magnitude of the given value cor-
rectly. CTF6-FS summarized it as follows:

Of course, this depends on the complexity [of the TPr], but when I
have such an HTTP fuzzer, and I know it is implemented in C, and
I only have twenty branches or so which have been covered, then I
know: This can’t be. This absolutely can’t be! You can’t implement
an HTTP fuzzer with so few branches or so few basic blocks. And if
it also isn’t making progress, then, you need to find out what is the
matter.

The problem of knowing whether libFuzzer covered the necessary parts of the
code was a frequently reoccurring statement. Only CTF2-FS used the visualizer
of LLVM to get a better understanding of the situation.

4.6. CTF Study Results 41

Step 6: Interpret the Output CTF4-FS wrote a fuzz target and was also able to
build it. However, the fuzz target quality was relatively low, so that the fuzz tar-
get crashed directly due to problems during initialization when executed. The
participant was aware of the problem but could not fix it. CTF4-FS stated:

And when I wanted to fuzz the correct filter, I always failed because
something was uninitialized and this was why it always crashed. So
it always fuzzed but crashed in each attempt.

Unsurprisingly, CTF4-FS believed that fuzz target creation was a big prob-
lem. They reasoned that this might partially be because they did not know the
code.

It was probably because I didn’t know the software at all and then I
couldn’t proceed as well as I hoped

All four remaining participants were able to interpret the output of libFuzzer.
Depending on the situation, they handled the corresponding situation differ-
ently.

CTF2-FS and CTF3-SF had problems with memory leaks due to how they
implemented the fuzz targets. They were able to fix the problems and re-ran the
fuzz target without the memory leak.

CTF7-SF wrote at least ten fuzz targets and ran them. Their fuzz target for
the smb protocol crashed for every input. They decided that the fuzz target was
flawed and just ignored it because they had several other fuzz targets that were
up and running.

CTF7-SF’s fuzz target for the dnp3 protocol also produced many errors, but
again they understood that this was due to a flawed fuzz target and not because
of actual bugs. They attributed the flaws to initialization problems and did not
fix them for the same reason as before. CTF2-FS and CTF3-SF also had problems
with initialization, but both fixed the issues to make the fuzz target work.

None of the four participants found a bug. However, all four were using lib-
Fuzzer correctly, and with more time available, it seems likely that they would
have found the bug in the target program. While our pre-testing suggested that
ten hours was enough time, future iterations of this kind of study should plan
more time for this kind of task. Nonetheless, we are confident that they would
be capable of finding these kinds of bugs with libFuzzer in the wild with the skill
they already possess. However, the effort and skill required are quite substan-
tial. In contrast, we do not believe that our CS would be able to use libFuzzer
without investing significant effort in learning how to use the tool.

Expanding the Search As the participants did not encounter any true crashes,
they felt the need of exploring further options. Most of them did this by manu-
ally targeting specific parts of the code. Still not encountering any crashes, they
tried to optimize the fuzz targets and tried to develop more complex inputs to

42 Chapter 4. Usability Evaluation of a Static Analysis Tool and libFuzzer

the functions. In the interviews participants CTF6-FS and CTF3-SF phrased this
as a feature request.

Consequently, stateful fuzzing was needed. CTF3-SF considered implement-
ing stateful fuzzing but was not able to do it in the given time. CTF6-FS im-
plemented a minimal form of stateful fuzzing. However, they were not very
enthusiastic about it:

Libfuzzer does not support stateful fuzzing, therefore no high expec-
tations as path stability will be horrible.

Corpus and Dictionary Except for CTF2-FS, all participants used corpora for
their respective fuzz targets. Interestingly, CTF6-FS used both a corpus and a
dictionary. CTF6-FS observed their fuzz targets with a corpus and a dictionary
included and noticed a drop in performance because the coverage was lower
than without the corpus and dictionary. Consequently, they proceeded without
either.

4.7 Discussion

4.7.1 Clang Static Analyzer

The Clang Static Analyzer enabled even inexperienced users to check the target
project for potential security issues. With the Clang Static Analyzer, both our
participant groups were able to start the process reasonably easily and quickly.
The usability of the tool was consequently viewed fairly positively. Our par-
ticipants intuitively used Nielsen’s view on usability [144], which separates us-
ability and utility. In the hard task, the high number of false-positive warnings
was seen negatively by both the CS and CTF groups, but this did not affect their
perception of ”usability“. The CTF participants also had a negative view of the
usefulness in general. They did not think the tool was helpful when looking for
vulnerabilities. Consequently, they saw the tools as having good usability but
bad utility. It is worth noting, though, that under the ISO 9241 [95] definition of
usability, the bad effectiveness and efficiency measured against the capability of
finding true bugs would lead the Clang Static Analyzer to receive a bad usability
evaluation.

Thus, the holy grail of static analysis continues to be the reduction of the
number of false positives. This would improve the utility under Nielsen or us-
ability under ISO 9241 and enable users to effectively and efficiently find bugs.

4.7.2 libFuzzer

In stark contrast to the Clang Static Analyzer, where participants only struggled
in the very last step, we found no step in the libFuzzer process that did not cause

4.7. Discussion 43

our participants severe problems. Our CS participants struggled even with the
easy fuzzing task showing that the usability of libFuzzer is not at a comparable
level to the Clang Static Analyzer. Even our skilled CTF players found many
aspects vexing, unnecessarily complicated, and burdensome. However, in the-
ory, the utility of libFuzzer is good. Consequently, we see a lot of potential if the
usability can be improved.

Based on our observations, our recommendations for libFuzzer are:

• Assist users in finding suitable functions to fuzz It would be useful if lib-
Fuzzer assisted users in identifying functions worth fuzzing quickly. This
was not an issue for our CTF participants, but if libFuzzer is to see the same
level of adoption as static analysis, it needs to be usable by non-experts as
well.

• Fuzz-target creation This is one of the most important points. It takes a lot
of expertise to write anything but the most trivial fuzz targets for libFuzzer.
In the case of Suricata, participants actually wrote multiple fuzz targets for
the same function to account for the different parsers. Either assisting in
creating fuzz targets or making the coverage-guided self-exploration of
libFuzzer more intelligent would be a great benefit. It is essential for less
experienced users, but it would also save time and effort for users like our
CTF players.

• Build automation The building and linking process currently also requires
a lot of manual work for non-toy projects, and it also requires a good un-
derstanding of how the different components interweave. It would be
highly desirable to automate a lot of this so users do not need to under-
stand, or know of, these issues.

• Opt-out sanitizers: Currently, the use of sanitizers is opt-in, i.e., the user
has to integrate them actively. We would recommend including many of
these by default and letting users opt out if necessary.

• Support automatic stateful fuzzing Many situations require stateful fuz-
zing to achieve good performance. In libFuzzer, this is a completely man-
ual task, and some of our CTF participants even wrote their own stateful
fuzzers to deal with the situation.

• Improve Code Coverage Our study shows that Code coverage plays a ma-
jor role in the usability of libFuzzer. Even our CTF participants struggled to
write fuzz targets that covered all the code of just one target function. This
had to be done manually because libFuzzer is not yet powerful enough
to do this on its own in a reasonable time. Potentially focusing on code
coverage close to fuzz targets would be a worthwhile endeavor to increase
usability.

44 Chapter 4. Usability Evaluation of a Static Analysis Tool and libFuzzer

• Better documentation Finally, while this is not particularly glamorous and
is a well-known problem in many areas, we saw a clear need for bet-
ter documentation. There is a clear difference between the Clang Static
Analyzer and the libFuzzer documentation despite both belonging to the
LLVM project. The current libFuzzer documentation led some of our par-
ticipants astray. In particular, we recommend creating more complex ex-
amples instead of just using toy examples.

4.7.3 Comparison

Since we conducted a within-subjects study, we were also interested in our par-
ticipants’ comparative view of the two tools. To support our impressions from
the interviews and diaries, we also analyzed the number of positive and nega-
tive comments to get an overview of the disposition towards the two tools.2

The majority of CS participants favored the Clang Static Analyzer when an-
swering the question of which tool they would want to use in the future, includ-
ing those faced with over 500 warnings in the hard task. In contrast, the CTF
participants had a somewhat ambivalent relationship with the Clang Static An-
alyzer. In principle, they described the usability positively and had fewer neg-
ative comments for the Clang Static Analyzer than for the libFuzzer. However,
they did not see the Clang Static Analyzer as a serious contender for finding vul-
nerabilities. As a result, they stated that they favored libFuzzer for future use
and often stated that they would only use the Clang Static Analyzer for fixing
style issues.

That is because they saw far more potential for libFuzzer than for the Clang
Static Analyzer and thus would use libFuzzer. The corresponding Table A.7 can
be found in the Appendix.

So, in summary, our interpretation of the results suggests that poor usability
of libFuzzer and the good usability of the Clang Static Analyzer led CS students
to prefer it despite the poor utility. However, the CTF participants acknowl-
edged the better usability of the Clang Static Analyzer but saw too little utility
to want to use it for their work in the future and tolerated the poor usability of
libFuzzer due to its better-perceived utility.

4.8 Summary

In this paper, we presented the first qualitative studies examining the usability
of libFuzzer and the Clang Static Analyzer. In the context of our study design,
we found that the Clang Static Analyzer offers good usability but poor utility,
while libFuzzer offers poor usability but better utility. Since static analysis and
fuzzing find different kinds of bugs, ideally, they would both be used in tandem.

2The comment count does not necessarily reflect the weight of individual issues but offers
interesting insights nonetheless.

4.8. Summary 45

For this, the usability of libFuzzer would need to be improved to lower the bar
for entry. To aid in this, we identified several usability issues in libFuzzer and
make suggestions for improvements.

47

Chapter 5

A Usability Evaluation of AFL and
libFuzzer with CS Students

Disclaimer: The contents of this chapter were previously published as part of the paper
“A Usability Evaluation of AFL and libFuzzer with CS Students” at the ACM CHI
Conference on Human Factors in Computing Systems (CHI). This was joined work
together with my co-authors Mischa Meier and Matthew Smith. As this work was
conducted with my co-authors as a team, this chapter will use the academic “we” to
mirror this fact. I designed the study with advice from Matthew Smith. I set up and
performed the study as well as designed and conducted all interviews. Mischa Meier
supported me in the coding and the discussion of the interviews.

Finally, before compiling the paper for publication, Matthew Smith and I jointly
discussed the study’s implications.

5.1 Motivation

Green and Smith called for more focus on the human aspects of software devel-
opment [82]. Since then, many papers researching these aspects or improving
the usability of software development have been published e.g. [139, 137, 136,
138, 47, 50, 49, 52, 85, 193, 89, 80, 191, 79, 70, 185, 186]. However, there are still
many areas of software security where the human aspects have received little
attention.

Fuzzing has emerged as a major hot topic in the security and programming
languages research communities, with over 50 new fuzzing papers published
over the last two years at the top four security conferences (IEEE S&P, ACM
CCS, Usenix Security, NDSS) and ICSE [18, 62, 114, 141, 109, 86, 195, 130, 81, 124,
83, 196, 204, 92, 190, 194, 91, 205, 35, 160, 160, 65, 58, 87, 97, 152, 134, 208, 110,
115, 167, 133, 66, 59, 102, 104, 188, 199, 206, 68, 162, 148, 96, 31, 111, 71, 209, 151,
203, 122, 98, 154, 166, 15, 105, 189, 32, 57, 7, 90, 198, 153]. Furthermore, large soft-
ware companies such as Google, Microsoft, and others use fuzzing extensively
and effectively. Tens of thousands of bugs have been found with fuzzing [168],
proving its worth.

However, the many software vulnerabilities that still get uncovered almost
on a daily basis show that current countermeasures are not enough. We argue

48 Chapter 5. A Usability Evaluation of AFL and libFuzzer with CS Students

that one aspect of this problem is that fuzzing currently requires a high degree
of expertise to use, and there are not enough experts to go around.

Concerning the expertise, Plöger et al. [156] conducted a qualitative study
with CS students and Capture the Flag (CTF) players, they compared the us-
ability of libFuzzer [117] and the Clang Static Analyzer [39]. In their study, the
majority of participants had so much trouble with the fuzzer that in the end,
only 3 of 32 students managed to run the fuzzer at all, and while four of the six
CTF players managed to run the fuzzer, none of them found the bug.

Concerning the lack of experts, we did a back-of-the-envelope calculation us-
ing the professional network service LinkedIn [121] to estimate the ratio of reg-
ular software developers to security specialists. Our search turned up roughly 9
million people claiming developer expertise. Compared to that, we only found
roughly 90000 IT security experts. This includes anybody claiming security ex-
pertise - not only those claiming software testing expertise and thus is a very
generous upper bound. But even with this upper bound, the ratio of experts to
developers is roughly 1 to 100. If we narrow the search to people mentioning
fuzzing, we are down to only 2300 in total 1. Despite this being only a back-
of-the-envelope calculation, we think these search results clearly show that the
ratio of fuzzing experts to developers is off by many orders of magnitude. The
imbalance is backed up by a study by Wermke et al. [193], who showed that only
five out of 27 owners, maintainers, and contributors from a diverse set of open-
source projects were aware of a role in their projects that deals with security. So
in many cases, security rests with developers who do not have specialized se-
curity expertise, with the predictable outcome we see in the number of software
vulnerabilities. To echo Green and Smith, we do not blame the developer and
do not think it a realistic or sensible plan to educate masses of developers to be-
come security experts. Instead, we want to aid them by improving the usability
of fuzzing so they can benefit from this powerful technology without becom-
ing fuzzing experts. As a first step, we need to understand the current usability
problems of fuzzers better. While the study conducted by Plöger et al. already
highlights some issues, their study design, in combination with the very high
drop-out rate, led to very little information being gathered on the latter fuzzing
steps, such as actually running the fuzzer.

To remedy this and gather more fine-grained information on all steps of the
fuzzing process, we designed an improved study protocol aimed at getting a
larger sample into contact with all fuzzing steps. To accomplish this, we divided
the monolithic fuzzing task from Plöger et al. into seven subtasks and provided
an interactive study support system to assist the participants if they got stuck
and to gather usability feedback in situ. We also extended the study to include
the AFL fuzzer [4] as well as libFuzzer [117] to be able to compare two different
fuzzing approaches with each other to see the strengths and weaknesses of each.
We conducted the study within subjects with two 10-hour tasks - one for each

1Results may vary depending on region and time of search

5.2. Methodology 49

fuzzer. We started the study with 47 CS students. Of those, 16 dropped out,
but we gathered data on most steps from 31 participants. Twenty-five managed
to run a fuzzer in at least one of the two tasks, and 17 completed both. While
this is still a small sample size compared to end-user studies, it is the largest
fuzzing study to date and offers a solid base to evaluate what causes problems
and what already works well for two popular fuzzers. We highlight areas that
work well in one fuzzer that are problematic in the other and vice versa. This
offers insights into improvements that can be transferred from one fuzzer to the
other.

Based on our findings, we suggest how the usability of AFL and libFuzzer
can be improved to make fuzzing more accessible to non-experts and hopefully
help even out the odds.

5.2 Methodology

To evaluate the usability issues of libFuzzer and AFL, we chose a within-subjects
design so all participants would use both fuzzers.

5.2.1 Fuzzer Selection

We decided to limit our study to two fuzzers. While it would certainly be in-
teresting to study more fuzzers, the length of the study and the difficulty of
recruiting enough participants makes it infeasible to add more. Limiting our-
selves to two fuzzers enabled us to use a within-subjects study design which is
preferable for a small number of participants.

At the time of conducting the study, we wanted to use fuzzers that are popu-
lar in academia as well as industry. Klees et al. [106] evaluated 32 recent fuzzing
papers and concluded that AFL was a very prominent fuzzer in the community
as 14 out of the 32 investigated papers chose AFL as their comparison’s baseline,
followed by libFuzzer and zzuf [210], with 3 out of the 32. Moreover, Google’s
fuzzing projects OSS-fuzz [150] and Clusterfuzz [77] were prominent as they
found several thousand bugs in open-source software [168]. Both were origi-
nally based on libFuzzer and have infrastructure additions to run on clusters,
which was not relevant to our study. Therefore, we choose AFL and libFuzzer
as our testing tools. Furthermore, since AFL is primarily an application-based
fuzzer and libFuzzer a library fuzzer, it enabled us to compare the benefits and
drawbacks of these fuzzer types as well. When we ran the study, AFL++ [5] was
not yet as prominent as it now is.

5.2.2 Terminology

The documentation of AFL and libFuzzer sometimes refer to slightly different
things with the same name or use different terms for the same things. In order

50 Chapter 5. A Usability Evaluation of AFL and libFuzzer with CS Students

to prevent ambiguity, we will give a short description of some important terms
in the following.

• target program: We understand a target program as the software as a whole
that a user of a fuzzer tries to fuzz. A target program can be, for example, a
library or an executable. Participants have the source code and can compile
and use the binaries.

• fuzz target: We understand a fuzz target as a piece of code that is written by
the user that contains the code that runs the fuzzer on a specific function of
the target program. In the case of libFuzzer, the fuzz target is usually the
function LLVMFuzzerTestOneInput. For AFL, this is usually a stand-alone
program with a separate main-function where a function of the target pro-
gram is executed by the fuzzer.

• target function: We understand a target function as a function of the target
program that is called by a fuzz target.

5.2.3 Target Program Selection

For our two target programs, we chose libroxml [119, 118] and tomlc99 [182].
Our choices will be explained in the following.

Target Program Difficulty

Plöger et al. had one easy and one hard fuzzing task in their study and compared
their results between subjects. Their results showed that the hard fuzzing task
was too hard to solve in the study’s time frame, even for the competitive CTF
players. So we decided to only use target programs that were fairly simple to
fuzz.

We tried to find two bugs of similar difficulty by using target programs of
comparable size and similar overall structure. We also tried to find bugs that
could be found with similar effort on the fuzzing side. This has to be seen as a
best effort though, as no two projects or bugs are alike.

We randomized the order of the target programs and fuzzers.

Bug Requirements

The selected target programs had to have a bug that could be found with fuzzing
with little effort. While the bugs should be easy to find with the fuzzers, the bugs
should be hard to find by other means. Consequently, participants should not be
able to find a solution online, e.g., by finding hints in an issue tracker or using
existing CVEs, and should not be able to find a solution by just browsing the
code. Consequently, we did not use the same target programs as in Plöger et al.
as these might already have solutions online. Like Plöger et al., we also did not

5.2. Methodology 51

want to use synthetic bugs, so we fuzzed open-source projects ourselves to find
new vulnerabilities.

We are not aware of any sources that address the difficulty of bugs in fuzzing.
Therefore, we have again followed Plöger et al. They considered a program to be
easy to fuzz if it is relatively small, has only a small number of public interfaces,
the necessary fuzz target is simple, the bug is found in a short period of time
by the fuzzer, and no additional options or features are necessary. Even though
these conditions are not very detailed, we agree with them and applied them
according to our standards. We also choose to find target programs that parse
files since we have had the same experience that these are usually perceived as
easy to fuzz.

We then evaluated all the bugs we found and selected two programs based
on our assessment of their suitability. To make sure that the bugs are found in
a short period of time, we ran each fuzzer, with configurations setups if appli-
cable, on the target programs 1000 times on the provided setup on a 5-year-old
notebook. In every fuzzing run, a bug was found. For the slowest but still rea-
sonable setup, fuzzing the afl-gcc-compiled slowest executable with AFL and
activated ASAN, the average trigger time for a bug was about 4 minutes, and
the maximum time it took to trigger a bug was 15 minutes.

Responsible Disclosure and Ethics

Since we were working with real vulnerabilities, responsible reporting guide-
lines were followed. We notified the developers of all programs about all found
bugs righter after the study ended. Consequently, all participants had to agree
to abide by the responsible disclosure practices. The entire experiment was con-
ducted locally, and no risk to any live systems was posed.

The study complied with the EU GDPR and was reviewed and approved by
the Research Ethics Board of our university.

libroxml

libroxml was one of the programs we selected. It is a library designed for pars-
ing XML, which also contains two executables that both read in and parse an
XML file to either resolve xpaths or to show the XML subtree. It contains typical
functions for loading XML via a file or directly via a buffer. After loading XML,
it can be used to navigate through the XML tree or access nodes. The project
consists of 13 source files with about 7800 lines of C code. Therefore, it is nearly
10 times smaller than yaml-cpp which was used by Plöger et al. Moreover, the
number of public interfaces is comparable. It uses Automake for the configura-
tion and compilation.

Bugs We found one bug in libroxml suitable for our study. The bug could be
triggered by loading an XML document via a file or buffer, arguably the library’s

52 Chapter 5. A Usability Evaluation of AFL and libFuzzer with CS Students

most exposed function. As the bug could be triggered by loading an XML doc-
ument it can also be found with the two existing executables. A straightforward
fuzz target (FT) is sufficient to trigger the bug, i.e., no special seed, corpus, dic-
tionary, or any form of sanitizer was necessary, and the bug could also be trig-
gered without instrumenting the target program. More details on the bugs can
be found in Section 3.1.1 and Appendix B.2.

tomlc99

tomlc99 was the second program we selected. It is a C library for parsing toml
files. After reading in and parsing the toml file, it can also be used to traverse
and locate a table in TOML and extract values. tomlc99 also contains two exe-
cutables which again both read in and parse a toml file to either print the content
to the console or transform it to JSON. With 1200 lines of code, it is about 6.5
times smaller than libroxml but still comparable because the overall structure of
reading and parsing a file or buffer of a specific file format is similar. tomlc99 is
built via a handwritten Makefile. We thought the simple Makefile might result
in the build process of tomlc99 being easier to manipulate, but we did not see
any evidence for that.

Bugs In tomlc99, we found one bug suitable for our study. The bug could be
triggered by reading in a toml file via a buffer or a file. The bug could again also
be triggered by using both executables. As in the case of libroxml, the functions
from which the bug could be triggered are arguably the most exposed functions
of the target program. As above, a straightforward fuzz target was sufficient,
and no special seeds in the corpus or dictionary were needed. However, it was
necessary to use an address or memory sanitizer. We did not think that the use of
an address sanitizer would pose a problem and initially judged the two bugs to
be of fairly similar difficulty. However, it turned out that it did cause more issues
than expected, making the tomlc99 bug slightly more complex to find than the
libroxml bug. A benefit of this was that we got additional insights into the im-
portant aspect of address sanitizers. Since fuzzer and program assignment were
counter-balanced, the difference in difficulty should not affect the comparison
of libFuzzer and AFL. More details on the bugs can be found in Appendix B.2.

5.2.4 Recruitment & Participants

Like Plöger et al., we recruited our participants from a usable security master’s
course in computer science.

We sent the pre-screening questionnaire to 129 students, of which 113 com-
pleted the questionnaire. Of those, we invited 59 students who reported having
at least a basic proficiency in C/C++ and Linux and sent them a pre-questionnaire.
49 of the 59 invited students completed the pre-questionnaire and started the
study. We excluded one participant (P31) as it became apparent that they did not

5.2. Methodology 53

have the minimum knowledge necessary and one (P07) because they worked as
a student assistant in our group.

Demographics

To have a clearer picture of our group of participants, we asked them about
their programming experience in years and programming proficiency in C/C++
on a scale from 1 very bad to 7 very good. Moreover, we asked them if they
were familiar with the term fuzzing if they had used a fuzzer before, and if
they had found a bug with a fuzzer. Due to a mistake, we lost the data on
fuzzing experience from participants P46 and P48. It was striking that less than a
handful of participants had used a fuzzer before and that 10 participants had 3 or
fewer years of programming experience. In contrast, the proficiency in C/C++
revealed no major outliers. Neither participants with very low self-reported
proficiency nor very high proficiency were part of our group. We will discuss
possible implications in the later sections of this paper.

The overall demographics of our group can be seen in Table 5.1.

Gender Male: 36 Female: 8 Other: 0 No Answer: 3
Age min: 20, max: 35 mean: 24.46, median: 24 sd: 2.99 NA: 0

Prog. exp. min: 1, max: 13 mean: 6.91, median: 7 sd: 3.37 NA: 1

Fam. fuzzing Yes: 28 No: 17 NA: 2
Used fuzzer Yes: 5 No: 23
Bug found Yes: 4 No: 1

Proficiency in C/C++

Prof. 1 2 3 4 5 6 7 plot median

Parts. 0 3 11 7 18 7 1 5

TABLE 5.1: Participant Demographics

Compensation

As in the study of Plöger et al., the participants were compensated with 10%
bonus points for their end-of-term exam. Participants were only compensated if
they completed all parts of the study. Students who did not want to participate
in the study had other possibilities to acquire the same bonus.

5.2.5 Study Design

We used a within-study design since fuzzing is very skill-dependent, and in-
dividual differences can have a large impact. The assignment of the fuzzers,

54 Chapter 5. A Usability Evaluation of AFL and libFuzzer with CS Students

as well as the two target programs, were randomized and counterbalanced to
roughly have all fuzzer and target program combinations equally distributed
over the first and second tasks participants would work on.

As in Plöger et al., after filling out a pre-questionnaire, the participants had to
work on two tasks consecutively. While working on the tasks, participants were
asked to keep a diary about their work. In the end, a 45-minute semi-structured
interview about their work on both tasks was conducted. The pre-questionnaire
was based on the one of Plöger et al. It contained questions about demographics,
programming experience, and previous knowledge about fuzzing. For the diary,
participants received a based on the subtasks pre-structured document, and they
were urgently asked in the task description to document their work, their bugs
found, and the online resources used. However, the diaries differed greatly in
their completeness and detail. The post-interview was again based on the one
of Plöger et al. but was also structured based on the subtasks. Participants were
asked, e.g., what they did in each step and their biggest problem for each step.

We also adopted the coding process of Plöger et al. Two researchers coded
and analyzed the interviews using inductive coding [179]. For this, the inter-
views were randomly split into groups of three. The two researchers started
coding the first three interviews independently and in parallel. The two result-
ing coding sets were compared, analyzed, discussed, and a new resulting set
of codes was created. This new resulting coding set was used to again code
the already coded interviews. Afterward, the subsequent three interviews were
again coded in parallel and independently by the same two researchers with the
current coding set. The coding sets were supplemented if codes emerged from
the data in the process. Again the two resulting coding sets were compared and
discussed, and a new coding set was created. The process for the last three inter-
views was repeated for the next three interviews until all interviews were coded.
Therefore, in the end, every interview was coded with the resulting coding set.
In this process, categories were developed, which were conceptualized into a
model in further discussion. We then applied the themes included in the model
to the qualitative analysis. So the qualitative analysis presents the categories
and themes which were developed in the coding process.

All quotes from participants were translated from redacted for review to En-
glish by the authors.

The questions of the pre-questionnaire and semi-structured interview can be
found in Appendix B.1 and B.3.

Plöger et al. offered participants pre-configured servers on which they could
execute their fuzzing runs but reported that some participants struggled due to
the lack of a GUI. To avoid this problem, we decided to offer pre-configured
virtual machines that participants could run locally with a GUI.

All fuzzers and all necessary programs were pre-installed. The participants
had root access to the virtual machines and were free to use any other software
they wanted.

5.2. Methodology 55

Time Frame and Limits

We kept the time limit and time frame for the tasks as in Plöger et al. Every
participant had a hard time limit of ten hours to work on a task within a soft
frame of ten days.

As far as possible, we encouraged participants to fully use the ten hours but
we did not grant extensions to the number of hours they could work on the
task. As with Plöger et al., we did however grant an extension to the ten-day
time frame as long as the ten hours were not used up already. Participants were
allowed to hand in earlier than ten days. Seven participants requested and got
an extension for up to ten more days.

Task Structure

We decided to alter the task structure of Plöger et al. The task structure in Plöger
et al. was monolithic, simply stating that the task was to find bugs with the
given tool. Participants had to find out the necessary steps themselves and many
participants got stuck and dropped out early, thus making information about
later steps very scarce. To counter this, we divided the monolithic tasks into
seven subtasks as outlined below. This gave participants some guidance and
made the overall task easier. It also allowed us to implement a support system to
help participants who were stuck on one subtask to move on to the next. While
this approach allowed us to gather more usability data on all of the subtasks,
which Plöger et al. could not, the support framework must be taken into account
when interpreting the later steps.

The subtasks were derived from the fuzzing steps depicted in the companion
document of Plöger et al.’s work. They are also a direct consequence of the steps
described in the libFuzzer documentation [117], which are also identical to the
steps needed to use AFL in the preferred persistent mode [129] and on libraries.

In the following, we present the subtasks from the task description. We
stated that it was not mandatory for them to follow the subtasks, so if partic-
ipants wanted to take a different route, they could. The seven subtasks were:

1. Get a first impression of the target program and get an overall idea of what the
program does.

2. Find a suitable function to fuzz.

3. Write your fuzz target in an external file.

4. Compile and instrument the target program.

5. Compile the fuzz target.

6. Run the fuzzer and interpret the output.

7. If necessary, adjust and improve.

56 Chapter 5. A Usability Evaluation of AFL and libFuzzer with CS Students

The final subtask was added to encourage the participants to dig deeper into
the fuzzing process. From a technical point of view, these steps are not sequen-
tial. If we leave out subtask 1, which was implemented to provide a smoother
entry into the task, subtask 4 could be done anywhere before subtask 5. How-
ever, we wanted to provide the participants with a clear structure to work with
and thus decided to give them a simple list of steps. Furthermore, we decided
against placing subtask 4 between subtasks 2 and 3, as those have a clear connec-
tion to each other. In the end, we settled with this order because the transition
from subtask 1 to subtask 2 felt more in line than from subtask 1 to subtask 4.

Support System

The high drop-out rate in Plöger et al. hampered their ability to analyze the
whole fuzzing process, as only three CS students made it to the end. To miti-
gate this problem, we implemented a support system similar to the one used in
Tiefenau et al. [181].

Participants were told that if they got stuck they could contact support via
e-mail. We stated that we would try to answer within a working day. We an-
swered the first e-mail within 24 hours between nine a.m. and five p.m. but at
the earliest after six hours. We implemented the six-hour rule because we did
not want the support channel to be a quick way out. Follow-up questions on the
same topic were answered as soon as possible, considering a typical working
day and the working behavior of the study assistant, ensuring a normal conver-
sation. Like Tiefenau et al. we divided our support into hints and help. A hint
simply pointed the participant to the subtask, which was the cause of getting
stuck, e.g. “Please look at the subtask: Compile and instrument the target pro-
gram.”. If that was not enough, we could follow up with a second hint which
was more specific, e.g. “You need to instrument your program.” If up to two
hints did not enable the participant to get past the problem, we would offer ac-
tual help in solving the problem. If participants handed in their solution but
were missing a subtask, we would apply the same support system.

For the sake of scoring the usability of the subtasks, we count any interven-
tion as a fail for that subtask and all subsequent subtasks.

5.2.6 Scoring Systems

Successful Task Completion

We used the same method as Plöger et al. to determine a successful completion
of the two tasks:

A participant successfully completed a task if the participant triggered a bug
present in the code by using the respective fuzzer and recognized it as such.

5.2. Methodology 57

Fuzzing Score

The fuzzing score awards a participant a point for every step successfully com-
pleted without support. We assigned a point for each of the following actions:

- Chose a useful function to fuzz

- Wrote a functional fuzz target

- Built the target program

- Instrumented all useful parts of the target program

- Built and instrumented the fuzz target

- Ran the fuzzer

- Used the address sanitizer

- Used a meaningful corpus or dictionary

- Triggered a bug

- Recognized a bug

Consequently, a participant was able to get a fuzzing score between 0 and 10.
The steps reflect the necessary steps to fuzz a target program as well as the most
fundamental optimizations in the form of the usage of the address sanitizer and
a meaningful corpus or dictionary.

Since we did not restrict participants to following the subtasks, we had to
accommodate alternative solutions in which some steps could be combined or
skipped while still reaching the end goal. For example, a participant could de-
cide to fuzz the executable of the target program with AFL instead of writing
and using a fuzz target. If a participant successfully did that, they got multiple
points. One point each for technically choosing a useful function to fuzz (the
main function), have written a functional fuzz target (again the main function),
built and instrumented all necessary parts of the target program, and also built
and instrumented the fuzz target. Even if participants were not fully aware that
this approach combined several steps, we consider the number of points fair
since we believe this reflects good usability.

Exploratory Analysis

While we expected there to be differences between the two fuzzers, we had no
basis for any kind of directional hypothesis and designed and ran our study
as an exploratory mixed methods study. We gathered both quantitative and
qualitative data from the participant’s virtual machine, including the working

58 Chapter 5. A Usability Evaluation of AFL and libFuzzer with CS Students

directory and the bash history, their interaction with support, their diaries, and
their exit interview.

For the comparison based on contingency tables, we used the odds ratio.
In the case of central tendency comparisons, we report the difference between
means. However, since this study is exploratory and we did not pre-define hy-
potheses, we do not place a large emphasis on statistical testing and do not re-
port p-values. We do, however, report the 95% confidence intervals to highlight
the expected range and uncertainty better. The confidence intervals for the odds
ratios were calculated using bootstrapping. As described by Davison and Hink-
ley [55], this can cause the confidence intervals to be slightly smaller than the
actual interval.

5.3 Limitations

Our study has the following limitations: In many ways, this study is a best-case
scenario for the fuzzers. We chose moderately simple programs and broke the
task down into subtasks. Participants also had the option of contacting us for
support, which we logged and took into account in the evaluation. So the fairly
poor usability we measured needs to be taken in this best-case context, and thus
the real-world usability is likely to be even worse. In the following, we will go
into more detail.

Participants

As it is very challenging to recruit professional developers for studies due to
lack of time and high costs [1, 2, 171, 107], CS students are often used as proxies,
and several studies have examined the validity of this practice [136, 137, 138, 3,
2].

Moreover, just recently, Tahaei and Vaniea [176] published their study on re-
cruiting participants with programming skills. They recommended using CS
mailing lists to recruit participants for studies where programming skills are
required but also suggested collaborating with other universities to reduce va-
lidity issues. Moreover, Kaur et al. [103] compared six software developer sam-
ples to tackle the question of where to recruit for security development studies.
They found that participants of all six recruiting platforms, including the stu-
dent sample, report rich general software development and security experience,
skills, and knowledge.

Thus, we also opted to use CS students for our study. However, it is conceiv-
able that professional developers could achieve different results.

Unknown Code

Our participants were not familiar with the projects used in the study. Partic-
ularly the subtask for selecting a function to fuzz is likely to be different when

5.3. Limitations 59

fuzzing a project the participants are familiar with. However, this step was one
of the few which caused very little trouble. Nevertheless, we think it is likely
that developers of a company already have at least a rough overview of the
codebase if they have to fuzz it and, thus, might perform differently.

Tools Selection

In our study, the participants only worked with the fuzzers AFL and libFuzzer.
Although these fuzzers are widely used, other fuzzers might perform differ-
ently. Therefore, a generalization to other fuzzers and programming languages
is not possible.

Project / Bug Selection

Since we did not want to work with synthetic bugs and needed two different
bugs and projects for the within-subjects design, the bugs are not perfectly equal.
Through randomization and counterbalancing, the effects should be distributed
over the two fuzzers, but the choice of bugs and projects is still relevant to the
overall outcome. Other bugs might lead to different results.

Guiding the Participants with Subtasks

By breaking down the overall task of finding bugs into more detailed subtasks,
we gave participants more structure than they would have in the wild, where
they would have to figure out the steps on their own. This was a trade-off to
gather more data about later steps since Plöger et al. found that participants got
stuck early on in the process. This means that our participants had an easier task
than users would have in the real world. Consequently, fuzzing might even be
more complex and challenging.

Support System

We offered our participants a support system. As with the subtasks, we in-
troduced this system to avoid participants getting stuck or dropping out. For
calculating the overall participants’ scores, we discarded any points achieved
due to the support system. So the participant scores could be lower than they
would have scored without the support system because participants might feel
tempted to choose the easier path of receiving support instead of solving the
problem on their own. We saw no indications that make us believe this oc-
curred. The benefit of the support system is that it helped participants reach
deeper into the fuzzing process, which allowed us to gain more insights into all
fuzzing steps. On a per-step evaluation, this was useful since it allowed us to
assess the usability of a particular step of a fuzzer independently of previous
steps. However, caution must be used when looking at how many participants

60 Chapter 5. A Usability Evaluation of AFL and libFuzzer with CS Students

worked on a specific step since, in this metric, the support system leads to a best-
case scenario since participants might not have reached a specific step without
help.

5.4 Results

5.4.1 Completion Rate and Success

Table 5.2 shows the overall drop-out and success rates for the two fuzzers. To
be able to take ordering and learning effects into account, the results show the
order in which participants used the fuzzer as well as the overall sum.

Apart from a slightly lower drop-out rate in the second task, there does not
seem to be any great difference. In the overall score we can see that the drop-
out and completion rates are fairly similar for AFL and libFuzzer (OR = 1.43,
CI [0.51, 4.11]). However, almost half of the completed AFL studies ended in
success while only a quarter of libFuzzers completions did (OR = 2.53, CI [0.68,
10.69]).

Overall, we could not identify demographic traits or skills, such as program-
ming experience or proficiency, of our participants that impacted their comple-
tion rate or success.

Fuzzer Order started drop-out completed success

AFL
1st 25 10 15 7 28%
2nd 11 4 7 3 30%
∑ 35 13 22 10 29%

libFuzzer
∑ 37 17 20 5 14%

2nd 15 5 10 2 13%
1st 22 11 11 3 14%

TABLE 5.2: Overall drop-out, completion and success of our par-
ticipants for AFL and libFuzzer.

The outcome for our 17 participants who completed both conditions and
took part in the interview in terms of success can be seen in Table 5.3. Seven
of 17 participants did not succeed with either fuzzer, and only 2 succeeded
with both. But 7 who did not succeed with libFuzzer did succeed with AFL.
In contrast, only 1 participant who did not succeed with AFL succeeded with
libFuzzer. This time, the odds ratio was 7 and in favor of AFL (CI [1.33, 10]). So
in the direct within-subjects comparison of the two fuzzers AFL clearly outper-
forms libFuzzer. On average, the odds of a participant succeeding with AFL are
7 times higher than with libFuzzer.

5.4. Results 61

libFuzzer
success no success ∑

AFL
success 2 7 9

no success 1 7 8
∑ 3 14 17

TABLE 5.3: Contingency table of outcome for AFL and libFuzzer in
terms of success.

Target Program Results

We also compared the results of the two projects. As can be seen in Table 5.4,
nearly three times more participants successfully solved the fuzzing task for li-
broxml than for tomlc99 (OR = 3.46, CI [0.89, 16.72]). This is interesting since
tomlc99 is the smaller project with the arguably more straightforward compi-
lation method. But, the need to use an address sanitizer for tomlc99 proved to
be more of a challenge than we expected. Due to the counterbalanced nature of
our study design, both fuzzers were affected by this fairly equally, so we do not
think this is an issue for the evaluation.

Target Program started drop-out completed success

libroxml 36 15 21 11 31%
tomlc99 36 15 21 4 11%

TABLE 5.4: Overall drop-out, completion and success of our par-
ticipants for the target programs.

Additional Bug Found by Participant

Participant P15 found a bug in tomlc99 using AFL that was not known to us
beforehand. P15 provided several crashing inputs with which we were able to
confirm the bug. P15 did not find the study bug, but was still rated as successful
as they had found a true bug. The bug was reported to the tomlc99 project.

5.4.2 Fuzzing Score Results

For all participants, the median fuzzing score, as described in Section 5.2.6, of
AFL is 8 compared to 6 for libFuzzer, and the mean score of AFL is 7.08 com-
pared to 5.81 for libFuzzer.

If we only consider the 17 participants that finished the study, the differences
between AFL and libFuzzer are stronger. For those 17 participants, the median
score of AFL is 9, and the mean is 8.24, while the median and mean in the case
of libFuzzer are 6 and 6.65. Therefore, the difference between means is 1.59 (CI

62 Chapter 5. A Usability Evaluation of AFL and libFuzzer with CS Students

[0.71, 2.35]). On average, the groups are divided by more than one and a half
points in favor of AFL.

The differences in scores between AFL and libFuzzer for the 17 participants
who finished the study become even more apparent when we look at the sepa-
rate steps as shown in Table 5.5.

Each cell contains a ratio and a percentage. The denominator of the ratio is
the number of participants that worked on a step, while the numerator is the
number of participants that were successful in it. The percentage is the percent-
age of this ratio. This gives a usability assessment of each step in isolation and
can highlight where usability improvements would be most needed, e.g., lib-
Fuzzer would benefit from helping users instrument the target program while
AFL does this very well already. Both fuzzers could benefit from better usabil-
ity for ASAN, although here libFuzzer fares better than AFL. However, in most
steps, it can be seen that libFuzzer lags behind AFL.

Fuzzing Steps AFL libFuzzer

Selected function 16/17 94% 16/17 94%
Wrote correct fuzz target 16/17 94% 8/17 47%
Built target program 17/17 100% 17/17 100%
Instrumented target program 17/17 100% 9/17 53%
Built fuzz target 17/17 100% 17/17 100%
Ran fuzzer 16/17 94% 16/17 94%
Used ASAN 5/6 83% 9/9 100%
Used Corpus/Dict 16/17 94% 13/13 100%
Triggered bug 12/16 75% 5/16 31%
Correctly interpreted bug 9/12 75% 3/5 60%

TABLE 5.5: Ratio and success percentage of steps by fuzzer.

A detailed listing of how our participants performed in every step of the
fuzzing process and for every step of the fuzzing score can be found in Ap-
pendix B.4. There it can be seen that with the exception of two participants,
every participant who finished both parts of the study reached every subtask.
In comparison, in Plöger et al., only two of the six participants who finished the
task got to run the fuzzer, and two participants did not even reach the step of
building and instrumenting the target program.

Thus, our modified study design with the subtask outline and support sys-
tem allowed us to gather significantly more data on all subtasks, leading to a
richer understanding of the usability issues. However, in particular the sub-
tasks make life easier for our participants than in the real world, and thus the
poor results would likely be even worse in a real-world setting.

5.4. Results 63

5.4.3 Analysis of Participants’ Traits and Performance

While our study did not set out to measure the effect of programming skills on
fuzzing, we did gather some data on participants’ programming skills and fuz-
zing experience. To gain insights for future work we conducted a post-hoc ex-
ploratory analysis of this data. For all correlation tests with two ordinal variables
or an ordinal variable and a binary variable we used Kendall’s rank correlation
test. In the case that two binary variables were present, Pearson’s correlation
test was used. The 15 correlation test results can be seen in Table 5.6. We want to
stress that these tests were conducted in an exploratory manner and thus false
positives are likely. Thus, the results should only be used to motivate future
research. We see a potential small trend that libFuzzer benefits from more ex-
perience, which would be in line with our qualitative finding that it is the more
complex solution. However, on the whole, we see that most effect sizes are
fairly small and not statistically significant, and thus previous experience does
not seem to have played a major role in our study.

independent variable dependent variable fuzzer p-value effect size

prog. proficiency

score AFL 0.79 τb = -0.05, CI [-0.50, 0.39]
libFuzzer 0.06 τb = 0.38, CI [-0.01, 0.78]

finished 0.97 τb = 0.00, CI [-0.28, 0.29]

success AFL 0.56 τb = -0.08, CI [-0.37, 0.21]
libFuzzer 0.02 τb = 0.30, CI [0.01, 0.62]

prog .experience

score AFL 0.86 τb = 0.03, CI [-0.42, 0.48]
libFuzzer 0.69 τb = 0.08, CI [-0.41, 0.56]

finished 0.07 τb = 0.23, CI [0.01, 0.46]

success AFL 0.21 τb = 0.16, CI [-0.04, 0.35]
libFuzzer 0.12 τb = 0.20, CI [-0.06, 0.44]

used fuzzer before

score AFL 0.40 τb = 0.19, CI [-0.15, 0.54]
libFuzzer 0.69 τb = -0.09, CI [-0.56, 0.39]

finished 0.34 ρ = 0.17, CI [-0.12, 0.44]

success AFL 0.24 ρ = 0.18, CI [-0.11, 0.45]
libFuzzer 0.29 ρ = 0.19, CI [-0.10, 0.45]

TABLE 5.6: Correlations effect sizes of participants’ traits and per-
formance via Kendall’s rank correlation and Pearson’s correlation

test.

5.4.4 User Rating of Fuzzers

At the end of the study, we asked participants to rate the usability of the fuzzers
and also give an overall score both on a scale from 1 (very bad) to 7 (very good),
the corresponding Table can be found in Appendix B.5. For the overall rating,
the mean and median for AFL were 5.18 and 5, while for libFuzzer they were
4.29 and 4. This results in a mean difference of 0.88 (CI [-0.04, 1.81]) in favor of
AFL.

64 Chapter 5. A Usability Evaluation of AFL and libFuzzer with CS Students

0

1

2

3

4

5

6

7

8

9

AFL libFuzzer Both None
Fuzzer

n

Fuzzer AFL libFuzzer Both None

FIGURE 5.1: Number of participants that intended to use AFL or
libFuzzer in the future.

Surprisingly, this was not reflected in the Usability score. Despite all other
comparisons favoring AFL, the mean usability scores are almost identical, and
the mean difference confidence interval is spread equally over the two fuzzers.
The mean and median for AFL were 4.53 and 5, while for libFuzzer, they were
4.47 and 5. Thus, the difference between means is very small (MD = .06, CI
[-1.21, 1.32]), giving no fuzzer an edge. The median value of 5 represents an
evaluation of “somewhat good”. This might seem surprising considering the
many problems the fuzzers have. However, the survivors’ bias must be taken
into account when interpreting these numbers, i.e., participants who dropped
out of the study did not rate this question, and thus the 5 is likely an optimistic
upper bound.

However, we also asked the participants if they wanted to use one, both, or
none of the fuzzers, in the future. As depicted in Figure 5.1, the results show a
clear preference for AFL. Although, this also needs to be taken in the context of
the 64% drop-out rate where participants chose to use neither fuzzer.

5.4.5 Support System Insights

18 of the 47 participants received support for at least one step in one of the two
tasks. Ten of the 18 Participants dropped out in one of the tasks despite receiving
support. Of the 18 participants who finished both tasks eight received hints.

In total, support was given 41 times, with 38 being hints and three being help.
An overview of the distribution of all given hints for both tasks can be seen

in Figure 5.2. The most striking differences between AFL and libFuzzer are the
instrumentation of the target program and the construction of the fuzz target.
It also stands out that our participants often needed assistance with ASAN for
both fuzzers. We will discuss this in more detail in our later analysis.

The initial support delay of 6 hours before responding to a request for sup-
port led to one participant solving their problem on their own after all.

5.4. Results 65

0

1

2

3

4

5

6

7

8

9

Select Func Working FT Instr. TPr Build FT ASAN in TPr
Steps

H

in
ts

Fuzzer AFL libFuzzer

FIGURE 5.2: Number of hints given per steps for both tasks com-
bined.

Both times the help was given it was in the first condition, once when the
participant was using AFL and once when the participant was using libFuzzer.
The help was given for building the fuzz target and starting the fuzzer. Both par-
ticipants who received help dropped out of the study. One participant dropped
out directly, while the other participant dropped out in the next condition.

While the support system did not prevent as many drop-outs as we had
hoped, it was still very beneficial to us since it gave us deeper insights into where
participants had problems.

In the following, we will report our observations from the analysis of the
interviews, logbooks, and support interactions to give more detailed insights
into the different steps, with the aim of offering a basis with which to improve
the fuzzers.

From the data, we could not draw connections between traits and skills, and
performance. However, the qualitative analysis, especially from the interviews,
revealed a tendency that perseverance and a high tolerance for frustration were
factors for success.

5.4.6 Familiarization with the Fuzzers

To familiarize themselves with the fuzzers, each participant read the documen-
tation for each fuzzer linked in the task description. For AFL, more was needed
to understand the fuzzer for most of our participants, and they started to google
AFL and its usage. Consequently, participants frequently expressed frustration
with the documentation in the interviews.

The documentation was awful. (P16)

66 Chapter 5. A Usability Evaluation of AFL and libFuzzer with CS Students

In the interviews and diaries, our participants reported that in the process, they
came across several websites, which they searched through to gather all the in-
formation that was sufficient for them eventually. Neither in the interviews nor
the diaries were the same websites mentioned by multiple participants in the
case of AFL.

Our participants viewed the documentation of libFuzzer less negatively. Nev-
ertheless, they explored other sources to get information. In their search for
other sources, it was striking that many participants mentioned the google fuz-
zing tutorials [78] as a useful source.

Overall, participants strongly focused on written information. Other sources,
such as YouTube videos, were only mentioned once.

5.4.7 How did Participants Select a Function to Fuzz

We asked participants how well they thought they had managed to get an over-
view of the target program. They mostly reported that they had gotten a good
overview with a median score of 5 out of 7.

They mostly felt they could make an informed decision about which function
to fuzz. Most participants expressed that they chose a specific function to fuzz
because it was directly exposed in the API of the target program. It was a high-
level function concerning the calling hierarchy or the first entry point for users.

5.4.8 Fuzz-Target-Less Fuzzing with AFL

Eight participants used Fuzz-Target-Less (FTL) fuzzing. In the case of FTL fuz-
zing, participants had to compile the target program the same way as when
writing a fuzz target but did not have to write and build the fuzz target, which
could make the task easier. Participants mentioned different reasons for doing
this. Participants P08, P12, P14, and P44 used FTL fuzzing because they believed
this would be the easiest way of getting the fuzzer to run. Participant P12 specif-
ically mentioned that they intended to get back to writing the fuzz target if this
method did not turn out to be fruitful. Since they were able to trigger a bug
they stayed with this approach. Participant P26 and P48 were were struggling
with the task and found FTL instructions in the documentation. Participant P06
misinterpreted the task thinking they were asked to fuzz the functionality of the
whole target program instead of a function of the target program. None of the
seven participants had an accurate picture of which part of the target program
the fuzzer reached. P08 stated:

I mean, when I call the program, the main function is executed. That
means it has to go through that somehow.

In contrast to the other seven participants, P15 actively chose a function to
fuzz, which was the parsing function in their case. However, they then realized

5.4. Results 67

that the parsing is triggered within the main function of the target program and
thus decided to use FTL.

5.4.9 Writing the Fuzz Target

Of the eight participants that wrote a fuzz target for AFL, none used the rec-
ommendable persistent mode. Instead, they wrote a main function without the
signature AFL loop, resulting in poor performance. While it was sufficient for
our simple bug, this is not ideal. A recommended improvement for AFL is that
it should inform users of this mode and assists in using it.

With libFuzzer, participants recognized the need for the LLVMFuzzerTest-
OneInput function and how it should be used. However, they often struggled to
correctly pass the Data argument of the LLVMFuzzerTestOneInput function to
the target function since the target function expected a string and not a pointer
to a character or character array. Passing a pointer to a character or character
array instead of a string led to the problem that the passed element was not
null-terminated. Nonetheless, those fuzz targets could be compiled without er-
rors. However, the non-null-termination resulted in many crashes in conjunc-
tion with an address sanitizer. Critically, most participants had trouble figuring
out the cause of the crashes, leading to delays and frustration.

This problem did not arise for AFL because inputs are null-terminated by
default.

5.4.10 Building and Instrumenting

In the case of AFL, the compilation and instrumentation of the target program
and the fuzz target revealed minor problems. One was that participants already
compiled the target program with the standard compiler while making them-
selves familiar with the target program and thus overlooked the compilation
of the target program with one of the compilers of AFL. However, they found
out about the problem and could fix it on their own. The error messages AFL
showed when starting the fuzzer were considered very helpful, e.g., participant
P08 stated:

But then I had the error stating that the binary was not properly in-
strumented again [...] and then I recompiled the program, and then
the code was properly instrumented.

On the other hand, participants had more noteworthy problems in the com-
pilation and instrumentation process when using libFuzzer. Five of the par-
ticipants reported that it was not apparent that the target program should be
instrumented. Participant P08 also said:

Yeah, I didn’t really pay attention to that back then. I think I only no-
ticed that in the second task. But the program has to be instrumented

68 Chapter 5. A Usability Evaluation of AFL and libFuzzer with CS Students

so that the fuzzer can work with it. It actually needs to be compiled
in a certain way and not simply with the standard compilation that
one might otherwise use. But then I didn’t actually do that since I
only used make.

Three other participants also did not instrument the target program. Reasons for
that were that instrumentation did not look important or that the participants
thought they would also instrument the target program when building the fuzz
target. Participant P44 stated:

The target program could be compiled without any special fuzzing
attributes. But the fuzzing target must be compiled with the fuzzer.
And if you link the two together, then the program should have been
instrumented.

Most participants had problems understanding the connection of the target pro-
gram, the fuzz target, instrumentation, linking, the compiler, and the fuzzer.
The problems were especially apparent when participants had to work with lib-
Fuzzer. The participants had problems differentiating between the target pro-
gram and the fuzz target and did not understand what instrumentation is and
what needs to be instrumented. Moreover, participants had problems linking
the target program with the fuzz target and choosing which compiler to use.
Furthermore, they struggled to understand what parts of the process are influ-
enced by the fuzzer. The questions about instrumentation and how to link the
target program with the fuzz target stood out. The problem of correctly linking
the target program with the fuzz target frequently resulted in a guessing game
where participants tried to find the right combination of things like CC, make,
CFLAGS, configure, afl-gcc, clang, and fsanitize. As a last resort, some partici-
pants used make install, which helped them find the right arguments to compile
the fuzz target.

Overall, participants perceived the compilation and instrumentation as time-
consuming and tedious.

5.4.11 Running the Fuzzer

Several of the participants had problems starting AFL. The problems were mainly
based on passing the input of the fuzzer to the executable. The option of giv-
ing the executable a file as input or giving the input to the executable via the
standard input stream was confusing. The confusion was not based on the two
possibilities of passing the input to the fuzzer, but on how to pass those inputs
to the fuzzer. The participants understood the concept of the corpus directory.
However, they struggled to understand when the path or content of a file was
given as input. In this context, participants had problems grasping the "@@" op-
tion. It was hard for the participants to understand that the starting command of
the fuzzer included the path of the corpus in both cases but that the "@@" option

5.4. Results 69

determined the form of input. The participants were warned by AFL with the
comment "odd, check syntax!" in the UI. They recognized the warning, but had
problems to identify the cause. In the end, they experimented, until the problem
was solved.

Moreover, AFL warned every one of our participants via an error message
when starting the fuzzer that a modification of the OS core pattern is needed to
avoid crashes being misinterpreted as timeouts. This was seen as disruptive and
tedious. However, the error was informative so that fixing it was not a problem
for the participants. Participants praised the error messages AFL showed here.
An example of such an error message can be seen in Appendix B.6.

This error message is only shown when FTL fuzzing was used. It is not
shown in the case that a fuzz target was written and compiled and linked to a
non-instrumented target program. Participant P16 was the only participant to
encounter this scenario and was only warned by AFL with the comment "odd,
check syntax!".

In the case of libFuzzer starting the fuzzer was seen as an uncomplicated
step. The participants praised the simplicity of executing the fuzz target and
were pleased with running the fuzzer.

5.4.12 Run-time Output

The output while running the fuzzer was often rated very positively by the par-
ticipants for AFL. In contrast, the output of libFuzzer only received negative
comments. Participant P12 summarized this as follows:

I noticed positively that AFL generates much nicer, much easier to
understand statistics while the [AFL] is running [compared to lib-
Fuzzer].

Examples of the output of both fuzzers can be found in Appendix B.7.

Fuzzing Metrics

When using AFL, participants had a variety of metrics to determine whether the
fuzzer was running well or not. Unsurprisingly, as they appear in bright red, the
appearance of crashes was the most named reason for a good fuzzing run. P15
stated:

I was sure when we found the first crash because a nice red number
appears, and it tells you where [AFL] stored it.

Moreover, the number of paths detected and the increase of the number of paths
was also seen as a good measurement but partially hard to interpret. Partici-
pants reported this was the case because they could not tell what magnitude for
the paths was necessary to have good coverage, an acceptable coverage, or poor

70 Chapter 5. A Usability Evaluation of AFL and libFuzzer with CS Students

coverage. Participants also sometimes based the success of their fuzzing on the
growth and appropriateness of the corpus.

For libFuzzer, a crash was also by far the most named indicator with which
to tell if the fuzzer is running well because the fuzzer stops when it finds a crash.
As with AFL, the number of paths was also the second-best indicator. However,
participants struggled to tell whether the fuzzer ran well with libFuzzer more
often compared to AFL. Most of the time, they decided that the fuzzing process
was running fine since it was generating some outputs. P06 said:

... the program wrote something on the command line every few
seconds. So it seemed like it was working, even if I didn’t know
exactly what it was doing.

5.4.13 Crash Output

In contrast, participants’ ratings of the crash output of the fuzzers were re-
versed.For the crashes, the output of AFL was not rated positively even once,
while some participants gave negative feedback about it. In contrast, the out-
put for crashes of libFuzzer was partially seen positively and rarely was given
negative feedback.

Our participants mentioned several reasons for this. One reason was that,
even though AFL gave direct feedback in the interface that a crash occurred,
additional information had to be searched for in the output folder. This was
seen as tedious and some participants were not able to find it.

libFuzzer was helped by the fact, that many participants used the address
sanitizer, which augments the output with additional information. Participant
P06 stated on the matter:

Well, after it threw an error, the output was pretty helpful because I
could just see right away where to look next. It also told me what
type of error occurred. That was helpful.

Participants were pleased with getting a name of the function and a line
number of where the crash occurred.

Crash Check

Three participants said that they analyzed the crashes by manually browsing
the code and looking at the respective positions in the code. Only four partic-
ipants validated crashes by running the executable of the target program with
the crash file. Those four participants valued this method of confirmation since
they perceived it as very safe. One of the four participants ran the executable
in conjunction with Valgrind [140] to get further information on the crash. The
method most commonly used was a debugger such as vanilla GDB [75] or GDB

5.4. Results 71

with the pwndbg [158] plugin. Seven participants in nine tasks used a debug-
ger. However, the certainty about a crash being a bug after the inspection with
a debugger varied considerably.

We perceived that participants had noticeably higher confidence of crashes
being actual bugs because the crashes were produced with the executable pro-
vided by the target program and not via a self-written code snippet.

When to End the Fuzzing Campaign

Participants faced the problem of deciding when to stop the fuzzing process
when no bugs were found. The documentation of AFL suggests a combination
of different approaches to this problem. Broadly speaking, proper coverage in
combination with a green-colored cycle count is a good indication for stopping
the fuzzer. Three participants were aware of the meaning and the purpose of
the cycles, but only participant P19 reached the point where the paths were rea-
sonable, and no crashes were found. Nonetheless, participant P19 stopped the
fuzzer before the cycles were green because they felt that the paths were already
very high and no significant improvements were realistic.

In the libFuzzer documentation, no explicit recommendations are given re-
garding the problem when to stop the fuzzer. Although, it is recommended to
use coverage visualization to check if improvements can be made to the fuzzing
process. We will discuss coverage visualization in the Section improvements to
the fuzzing process.

Overall, most participants followed the idea of stopping the fuzzer when
they had the feeling that nothing new would happen. Participant P25 summa-
rized it as follows:

Then I thought, okay, how long do I let this run now? Because nor-
mally, you should always let a fuzzer run for a longer period of time.
However, I then noticed relatively quickly that after thirty minutes,
nothing new had happened. Then I let it run for another hour and
then I stopped it.

5.4.14 Improvements to the Fuzzing Process

In the last subtask, participants were asked to improve the fuzzing process. We
did not specify how because we were interested in seeing what they would find
and deem promising. As a reminder, the bug in libroxml could be found without
this subtask, whereas the bug in tomlc99 required the use of the address sani-
tizer, which falls into this subtask. In the following, we set the focus on the most
important improvements chosen. More information on other improvements can
be found in Appendix B.8.

72 Chapter 5. A Usability Evaluation of AFL and libFuzzer with CS Students

Corpus and Dictionary

A popular improvement that participants chose for both fuzzer was to work
with meaningful seeds in the corpus. For both fuzzers, this was not an issue
for the participants. While AFL must have a corpus right at the beginning, it
was not uncommon for participants to start with a very minimal corpus, for
example, just one random file, but to adjust the seeds in different ways later.
The creation and adjustment of meaningful seeds were made in different ways.
Some participants searched for existing corpora for the specific parser on the
internet, while others created the seeds by hand. Other participants used the
existing test cases in the projects. Usually, all groups had in mind that they
wanted to have a corpus containing valid and invalid inputs for the target.

Nearly all participants ignored the possibility of using a dictionary. Only
three participants used them, mainly because it was just another thing in the
documentation, and they wanted to explore this option.

Sanitizers

The address sanitizer was the by far most used sanitizer as it was one of the few
mentioned in the documentation.

A positive aspect of AFL’s address sanitizer was that if the sanitizer was
used, the fuzz target, the target function, and all other necessary functions were
instrumented with it. On the downside, the ASN documentation of AFL was
hard to understand and received negative feedback, e.g., participant P14 said:

When I started to use the address sanitizer, it found a crash quite
quickly. But in the beginning, it was definitely not obvious that [ASN
was useful].

With libFuzzer, participants used more kinds of sanitizers but the address
sanitizer was still the most common and was perceived as the most useful. In
contrast to AFL, participants had no problems finding the right commands to
use the sanitizers with libFuzzer but often only applied it to the fuzz target and
not the target program. Frequently, participants were unaware that the target
program should also be compiled with sanitizers or did not properly understand
the process.

Coverage Visualization

In AFL, the code coverage visualization is offered via a third-party tool. Whereas
libFuzzer requires two compiler arguments and two executions of different pro-
grams. As a result, none of the participants looked at the coverage when using
AFL, and only two participants tried to use the visualization provided by lib-
Fuzzer but failed to do so. This also meant that participants struggled to deter-
mine whether the fuzzer was doing something meaningful.

5.5. Discussion 73

Consequently, participants were also unsure when to end the fuzzing cam-
paign.

5.5 Discussion

The overall success rate for all 47 participants was 29% for AFL and 14% for
libFuzzer. If we only consider the 17 participants who finished both tasks, the
success rates were 53% for AFL and 18% for libFuzzer. Our mixed methods
analysis shows AFL having better usability than libFuzzer in many - but not all
- areas. But even AFL did not offer what we would call good usability.

While giving participants a more structured task and a support system re-
sulted in substantially more participants reaching all steps compared to Plöger
et al.’s study, we still had a substantial number of participants who did not fin-
ish the entire study: 30 from 47 participants. This highlights that fuzzing - even
with a fairly simple target program - is a tough challenge for CS students in a
10-hour time frame. 64% of our participants dropped out, and even some who
made it all the way through stated that they would not want to use fuzzers
again. Although often overcoming arising problems, it is noteworthy that even
the final 17 participants struggled with nearly every step of the fuzzing process.
This really highlights that it is important to invest research effort into the HCI of
fuzzing as well as into new features.

In our estimation, fuzzers are currently products of cutting-edge research
and are built by experts and used by experts who are willing to invest the time
and effort needed. However, this makes the entry barrier very high for regular
programmers who would benefit from fuzzing their code but do not have the
time or inclination to become fuzzing experts. The results presented in the pre-
vious section show that large usability improvements could be made. First, we
add weight to some as well as question some recommendations made by Plöger
et al. then we present further recommendations based on our observations.

5.5.1 Extensions

Better documentation

Unsurprisingly, like Plöger et al., we also see a clear need for a better docu-
mentation for both fuzzers. We can strengthen this recommendation by our
observation that the simple list of steps we gave participants as part of their
task description was already a great help to our participants. Consequently, we
would recommend that the documentation also add a high-level overview in-
stead of only focusing on the details since we saw that many participants did
not get how the steps interact and how they build on each other.

74 Chapter 5. A Usability Evaluation of AFL and libFuzzer with CS Students

Build automation

We also agree with Plöger et al.’s finding that automating the building process
for the target program as well as the fuzz targets can be very beneficial for the
users. The building and instrumenting of both were a major pain point for many
of our participants, mostly for libFuzzer but also for AFL.

Opt-out sanitizers

While we also observed that it would be very beneficial if more participants
had used sanitizers, we are not sure whether the opt-out sanitizers suggested
by Plöger et al. are a good idea. In our larger sample, we saw that many of our
participants already struggled with the complexity of the fuzzing process and
did not have a good understanding of what was going on. So adding a large
number of extra sanitizers and requiring users to opt-out could be detrimental
to some users. Instead, it might be a better option if fuzzers could guide users
in the use of extra sanitizers (see 5.5.2).

5.5.2 New Recommendations

Error Messages

The error messages offered by AFL were generally rated favorably by our par-
ticipants, while libFuzzer warnings were considered unhelpful or even non-
existent. For example, libFuzzer does not warn participants if the target pro-
gram was not instrumented, causing many problems for our participants. Im-
proving libFuzzer warnings and feedback based on AFL is thus a simple yet
effective solution.

UI Guidance

But more generally, it would be beneficial if the UI guided the user through the
different steps proactively. We saw that the simple list of steps we gave our par-
ticipants helped them compared to Plöger et al.’s task description. Integrating
these steps into an interactive UI could help novice users. Currently, many im-
portant steps, such as using ASAN, must be known a priori because the UI does
not point them out or integrate them automatically. The same goes for feedback
about how the fuzzing run is going. Participants often stated that they did not
know if the fuzzer was working correctly, or worse yet, thought that it was even
though it was not. Furthermore, getting graphical feedback during run-time is
possible but cumbersome. We would suggest graphical feedback should be the
default option that experts can opt out of if they want to.

5.6. Summary 75

Metrics of Fuzzing Runs

The metrics about fuzzing runs currently offered by the fuzzers did not help our
participants to judge whether the fuzzer was running well or when it was OK
to end a fuzzing run. Developing more helpful explanations for current fuzzing
metrics or potentially more user-friendly metrics themselves is an open research
challenge.

Crash Analysis

Helping users understand and analyze crashes automatically would also be a
substantial help. For our scenario, it would have been particularly useful if lib-
Fuzzer had been able to recognize that many of the crashes were caused by
problems in the fuzz target (UEICs). However, it would be even better if UEICs
were not an issue at all because fuzz targets are generated automatically.

Fuzz target-less fuzzing

AFL’s ability to fuzz an executable without the need to write a fuzz target was
a great help, but it only works for programs that receive their controlling input
from standard-in or command-line arguments. It would be very desirable for
fuzzers to be able to automatically fuzz arbitrary functions without much input
or fuzzing knowledge required from the user. This is, of course, an open research
challenge, but one which is very worthwhile both from a technical as well as an
HCI perspective.

5.6 Summary

In this paper, we present the results of our 20-hour user study with CS students
comparing the usability of the two popular fuzzers AFL and libFuzzer.

We found that our participants got better results when using AFL compared
to libFuzzer, but both fuzzers were a challenge for our participants. If fuzzing
is to realize its full potential and be used by regular developers who are not
fuzzing experts, the usability needs to be improved significantly. Our analysis
highlights which steps were particularly challenging and where usability im-
provements are necessary. Fuzzing is an incredibly effective tool in the right
hands, but usability issues currently limit the impact outside of research and
the top-tier companies capable of hiring fuzzing experts. Thus, focusing on the
usability issues raised in this paper and designing and testing improvements is
recommendable future work that can have a significant impact on the wide-scale
adoption of fuzzing.

77

Chapter 6

Comparison of AFL and libFuzzer
with Freelance Developers

Disclaimer: The content of this chapter was joined work together with my supervisor
Matthew Smith. As this work was conducted with my supervisor as a team, this chapter
will use the academic “we” to mirror this fact. I designed the study with advice from
Matthew Smith. I set up and performed the study as well as designed and conducted all
interviews.

Finally, before compiling the paper for publication, Matthew Smith and I jointly
discussed the study’s implications.

6.1 Motivation

Fuzzing continuose to be a hot topic in the security and programming languages
research communities, with over 50 new fuzzing papers published over the last
two years at the top security and software engineering conferences (IEEE S&P,
ACM CCS, Usenix Security, NDSS and ICSE) [18, 62, 114, 141, 109, 86, 195, 130,
81, 124, 83, 196, 204, 92, 190, 194, 91, 205, 35, 160, 160, 65, 58, 87, 97, 152, 134, 208,
110, 115, 167, 133, 66, 59, 102, 104, 188, 199, 209, 68, 162, 148, 96, 31, 111, 71, 151,
203, 122, 98, 154, 166, 15, 105, 189, 32, 57, 7, 90, 198, 153]. However, these papers
focus heavily on the technical aspects of fuzzing, such as code coverage or open-
ing up a new system to fuzzing. The usability side of fuzzing has received far
less attention. Plöger et al. have published two studies with CS students in this
domain. In their first study, Plöger et al. [156] conducted a qualitative analysis of
libFuzzer and the Clang Static Analyzer. They found that their participants saw
greater potential with fuzzing; however, the usability was sorely lacking, with
only 3 of 32 students managing to run the fuzzer. In their second study, Plöger et
al. [157] conducted a fuzzing study with 17 CS students to evaluate the usability
of two prominent fuzzers AFL [4] and libFuzzer [117]. In the study, participants
were asked to find security-related bugs in two different software projects - once
using AFL and once using libFuzzer. The study was conducted within subjects,
and the students had ten hours per fuzzer for a total of 20 hours in the study.
The main finding was that while AFL performed better both in finding bugs and

78 Chapter 6. Comparison of AFL and libFuzzer with Freelance Developers

in the subjective usability evaluation of the participants, students struggled with
both fuzzers, and there were many areas for improvement.

However, the results still need to be taken with some caution since the sam-
ple size was small and the fuzzers were only tested by CS students. The small
sample size limited the statistical power, and the student sample might limit the
applicability of the results to other types of developers. To address both these
limitations, we conducted a power analysis to determine how many participants
would be needed for a sound statistical analysis and based on that, we hired 150
freelance developers to take part in a replication of Plöger et al.’s study, of which
62 completed the study. We compensated freelancers with 430€ for their effort.
Our results show that despite having a mean of 10 years of experience, free-
lancers struggled with many of the same issues that the CS students struggled
with and actually had more problems with the usability of the fuzzers than the
students. Based on our results, we highlight similarities and difference between
the student and freelancer samples and highlights the need for usability im-
provements if fuzzing is to see more widespread adoption outside of academia
and top-tier tech companies such as Google, Microsoft, etc., that have dedicated
fuzzing departments.

6.2 Ethics & Private Disclosure

Since one of the vulnerabilities was not yet fixed when replicating the study,
we had our participants commit to a private disclosure agreement before being
allowed to enter the study. This was done to ensure that information about the
vulnerability was not leaked before the project owners could fix it. The study
was conducted in virtual machines on the participants’ working stations, and
thus no risk to any live system was posed.

The study was reviewed and approved by our institutional ethics review
board.

6.3 Methodology

To be able to compare the results from our freelancer sample with the student
sample, we tried to replicate the study design of Plöger et al. as closely as possi-
ble.

In the following, we will present the similarities and point out and discuss
the necessary differences between both studies.

6.3.1 Target Programs

Since the target programs and vulnerabilities are very influential in the study
design, we used the same target programs, namely libroxml and tomlc99, in the

6.3. Methodology 79

same versions as in Plöger et al. To reduce the risk of participants circumventing
the fuzzing task by looking for changes in newer versions of the program, we
removed all information about the versions of the programs. We also thoroughly
checked all submissions for hints of finding bugs by comparing the provided
target programs with their current states. We were not able to find any.

libroxml

libroxml is an XML parsing library that consists of 13 source files with about
7800 lines of C code. For the configuration and compilation, it uses automake.

Bugs The bug in libroxml found by Plöger et al. and used in their study can
be triggered by fuzzing the parsing function, arguably, the most exposed func-
tion of the library. Within the fuzz target, the participant only had to load an
XML document. The fuzz target is straightforward, and no corpus, dictionary,
or sanitizer needs to be used to trigger the bug.

tomlc99

tomlc99 is a parsing library for toml files written in C. It is comparably smaller
than libroxml, with about 1200 lines of code. It has a handwritten Makefile for
building.

Bugs The bug in tomlc99 found by Plöger et al. and used in their study can
be found by parsing a toml file, but only if the address or memory sanitizer is
used. During the study of Plöger et al., a participant found another bug in one of
the executables of tomlc99. We were also able to confirm the bug. This bug can
be found without using the memory or address sanitizer. However, a corpus is
very helpful in finding the bug in a reasonable amount of time.

6.3.2 Fuzzers

To ensure the best possible comparison, we used the same fuzzers in the same
version as in Plöger et al. Therefore, AFL in version 2.56b and clang [38] in
version 10.0.1 was deployed. The current versions would have been 2.57b for
AFL and 11.0.1 for clang. To the best of our ability to judge, none of the changes
had anything to do with usability and thus plays no role in this study.

6.3.3 Study Design

We chose the same within-subjects study design as Plöger et al., as the within-
subjects approach is best suited to account for individual differences in skill and

80 Chapter 6. Comparison of AFL and libFuzzer with Freelance Developers

has more power than a between-subjects study. We also randomized and coun-
terbalanced the assignment of the fuzzers and the target programs to ensure that
both were equally distributed over the participants’ first and second tasks.

The participants started by filling out a pre-questionnaire where they were
asked to rate and describe their programming skills as well as their demographic
background. The pre-questionnaire was very similar to the one of Plöger et
al. and can be found in Appendix C.1. After the pre-questionnaire, the two
tasks were handed out consecutively. Participants had to keep a diary of their
work on both tasks. Due to the much larger sample size than in the study by
Plöger et al., we did not conduct interviews with all participants at the end of
the study. Instead, we had all participants fill out a post-questionnaire, and
only a subset was invited to a semi-structured interview, as Plöger et al. did.
The communication with the freelancers was conducted via the freelancer.com
messaging system as it is typical and mandatory for projects on the platform.
This is in contrast to the study by Plöger et al. in which communication was
done via email. We used the same playbook and phrasing used by Plöger et al.
for all communication to ensure consistency in dealing with support requests.

The virtual machines supplied to the freelancers were also identical to that
used by Plöger et al., with the exception that the Ubuntu OS was updated from
18.04 to 20.04, the latest stable version at that time. The update was done to
prevent wasted time or other issues if a participant tried to update the system.
Consequently, the GCC [74] compiler was updated from version 10.1.0 to ver-
sion 10.3.0. With the update, no changes in the interaction of a participant with
the system with respect to the fuzzing task were introduced. We do not assume
that the update could have an impact on the results.

Recruitment

Since the main sign seen in the study by Plöger et al. was that the usability
of AFL was slightly better than that of libFuzzer, we wanted to ensure that we
would have enough statistical power to show statistical significance. So, we
conducted an a priori power analysis for the pair-wise test of difference in the
fuzzing score between AFL and libFuzzer based on the difference in means and
standard deviation taken from Plöger et al. (MD = 1.59, sd = 1.77) on a scale
from zero to ten. Since Plöger’s study had a fairly small sample size, which
increases the risk that measured differences in sample mean are larger than in
the population [63], we set our target at a difference of mean of half that, i.e.,
MD = 0.795. We also think that any effect size smaller than that carries little
practical relevance, so this is a good cutoff.

We calculated the necessary sample using the typical values for α = 0.05 and
β = 0.2. Using gPower [21], we calculated that we would need 61 participants
to finish the study. We anticipated a completion rate between the completion
rate of Plöger et al. of 36% of CS students and the one of Naiakshina et al. [136]

6.3. Methodology 81

in their study with freelancers, which was about 90%. So initially, we aimed to
recruit 100 freelancers.

On freelancer.com, one can hire two types of freelancers, preferred or non-
preferred. A freelancer can get the status of being a preferred freelancer via an
application. Minimum entry requirements include, besides other things being
"top 3% overall ranking in one or more of your skills" and "active on the plat-
form in the past 90 days". We hired a technical Co-pilot of freelancer.com who
managed the recruitment process.

At first, we decided to only recruit from the pool of preferred freelancers with
the same recruitment criteria as Plöger et al., namely proficiency in C/C++ and
Linux. Moreover, we added the requirement of having sufficient communica-
tion skills in English since Naiakshina et al. [136] reported language difficulties
with some freelancers.

As a part of the recruitment, freelancers were explicitly told that they would
be taking part in a study. The recruitment included a very brief and simple check
for C programming skills to ensure the freelancers could work with C-code.

We started with a batch of 10 participants.
However, only two of the first 10 participants finished the first task. Of

the eight dropouts, two were classified as low-effort participants by our co-
pilot since they claimed to have spent the entire time familiarizing themselves
with the task. Since this also surprised our freelancer.com co-pilot, we inter-
viewed the participants to understand if they understood the task and why they
dropped out.

It turned out that the participants fully understood the task but found it very
difficult to complete the task. They also reported that, as some of them were
mostly working with C++ on a regular basis, they were not sufficiently familiar
with C-code to be able to solve the task. Therefore, we adjusted the recruiting
criteria from Plöger et al. to only include freelancers that were proficient in C
instead of C or C++. Moreover, we removed the first subtask, which was "Get
a first impression of the program libroxml and get an overall idea of what the
program does.", to minimize the excuses for low-effort participants. We also
increased our target sample start size from 100 to 200.

With the limitation of recruiting only preferred freelancers with proficiency
in C and Linux, the pool of potential participants shrank to the point that our
Co-Pilot contacted all freelancers from that category who are on the platform.
Of those 284 preferred freelancers, 60 expressed interest in participating in the
study. In the end, 37 of those decided to fill out the pre-questionnaire and started
with the study. Thus, we decided to also recruit from the pool of non-preferred
freelancers, which was significantly larger, containing 852 freelancers, and is in
line with other studies using freelancer.com, such as those conducted by Na-
iakshina et al. and Danilova et al. From the pool of non-preferred freelancers,
177 expressed interest in taking part, and 113 started the study. In total, 237
freelancers expressed interest in participating in the study, 150 started and 62
finished. Among those who completed the study, 11 were preferred Freelancers,

82 Chapter 6. Comparison of AFL and libFuzzer with Freelance Developers

and 51 were non-preferred. Since our study uses a within-subjects design, all
participants were exposed to all conditions. So while we did not hit our in-
creased target of starting with 200 freelancers, the drop-out rate was not as large
as suggested by our first batch, and the number of participants who completed
the study is large enough to meet our power requirement.

Compensation / Payment

To determine the compensation, we took advice from the Technical Co-pilot of
Freelancer.com, who recommended an hourly wage of 20€. With an approxi-
mate maximum workload of 21.5 hours, we paid freelancers 430€ for participat-
ing in the study. The total cost of the study, including the fees for the co-pilot,
was just over 37,000€.

Time Frame and Limits

For each task, the participants had the same time limit of 10 hours to work on
the task in a time frame of 10 days, as in Plöger et al. The time limit of 10 hours
was strict, while the time frame could be extended on request. Since Plöger et
al. always granted their students extensions to the time frame on request, we
also started with this approach. However, in a few cases, freelancers asked for
extensions multiple times, extending the time frame to several weeks or even
months. Consequently, we decided to grant extensions of up to 30 days per
task.

Task Structure

We utilized the same task description and task structure as Plöger et al. with one
modification. As mentioned in Section 6.3.3 we omitted the first subtask “Get a
first impression of the target program and get an overall idea of what the program does”
after the first batch of 10 freelancers since we saw some claiming they had spent
eight hours on that task and thus did not have time for the actually fuzzing
subtasks. Thus, our participants only received the following six subtasks, which
reflect the necessary steps of the fuzzing process:

1. Find a suitable function to fuzz.

2. Write your fuzz target in an external file.

3. Compile and instrument the target program.

4. Compile the fuzz target.

5. Run the fuzzer and interpret the output.

6. If necessary, adjust and improve.

6.3. Methodology 83

Post-Questionnaire

Since it was foreseeable that such a large amount of participants could not all be
interviewed, we decided to use a post-questionnaire to gather information on
the participants’ assessment of the fuzzing process, the fuzzers, and the com-
parison of both. The post-questionnaire can be found in Appendix C.2.

Semi-structured Interviews

While we opted not to interview all of our participants, we randomly selected
participants from the batches for interviews since this would give us the capa-
bility to detect more subtle differences between the CS students and freelancers.
After 11 interviews no new themes emerged. We then used purposeful recruit-
ing to select another 7 participants, from which we hoped to get further and
different perspectives on the usability of the fuzzers. In total, we conducted
interviews with 18 of our participants.

For the semi-structured interviews, we used the same interview guideline as
Plöger et al., which can be found in Appendix B.3.

6.3.4 Participants

The demographics of our participants who finished the study can be found in
Table 6.1.

Gender Male: 60 Female: 1 Other: 0 Prefer not to say: 1
Age min: 16, max: 65 mean: 32.47, median: 31 sd = 10.33, NA = 0

TABLE 6.1: Participants’ Demographics

Looking at gender, the group of participants is very male-dominated, with
only one female freelancer. This is an accurate representation of the freelancer
population. The age of our participants is fairly widespread, between 16 and 65
years, with a median of 31 years.

We also asked our participants in which country they are currently living in.
To give a better overview, we summarized their countries by continent from a
geographical point of view. The summary can be found in Table 6.2. We asso-
ciate a country that is part of multiple continents, e.g., Turkey or Russia, with
one continent based on where most people of that country live. A complete
listing of all nations participants are currently living in can be found in Ap-
pendix C.3.

Interestingly, compared to the freelancer study of Naiakshina et al. [136], our
participants are far more distributed over the continents with a lesser focus on
Asia. We still have a fairly large number of participants from India (10) and
Pakistan (5), although, measured by the number of all participants, it does not
seem unusual.

84 Chapter 6. Comparison of AFL and libFuzzer with Freelance Developers

Continent n

Africa 9
Asia 27
Europe 12
North-America 4
South-America 9
Oceania 0
NA 1

TABLE 6.2: Current country of our participants summarized by
continent.

Programming and Fuzzing Proficiency

The programming experience of the participants that finished the study ranged
from 1 to 42 years, with a mean of 10.60 years and a median of 7 years (sd = 8.80).
This enables us to add the usability perspective of more experienced developers
compared to the student sample of Plöger et al.

One participant reported a proficiency in C of 2, while all others reported a
proficiency of at least 3. The median was 5 and the mean 5.23.

When asked if they were familiar with the term fuzzing 36 of the 62 partici-
pants answered the question with yes. Although, of those 36, only 11 had used
a fuzzer before.

The usage of fuzzers was fairly spread, and no fuzzer was used by more than
two participants before. The named fuzzers and tools can be grouped into web
application fuzzing and non-web application fuzzing. For the non-web applica-
tions, fuzzers like libFuzzer, AFL/AFL++, honggfuzz, radamsa and OSS-Fuzz
were named. wfuzz, dirb, dirbuster, ffuf, Monkey, and more were mentioned by
our participants for web application fuzzing.

6.3.5 Support System

We used the same support system as Plöger et al., which was originally derived
from Tiefenau et al. [181]. The support system was used to counter the problem
of participants getting stuck early on and either delivering almost no data or
dropping out entirely.

In the task description, the participants were told that if they had a problem
that they could not solve on their own, they could contact the study assistant for
advice after having invested a reasonable amount of effort. We stated that we
would try to answer within one working day. We answered the first message
of a topic within 24 hours between the working hours of the study assistant
between nine a.m. and five p.m. and, as in Plöger et al., after a delay of 6 hours
to not provide a quick way out with the support channel. As in Plöger et al.,
we gave support in the form of hints and help. For the first hint, we pointed the

6.3. Methodology 85

participants to the subtask that was causing the problem. In the second hint, we
suggested taking a look at a specific part of the aforementioned subtask. After
that, we gave help by providing a solution to their problem. We applied the same
support system when a participant had submitted a solution but did not work
on a subtask.

Any intervention from our side within the boundaries of the support system
was counted as a failure for scoring the success of the affected subtask.

In contrast to the study of Plöger et al., as it seems to be common practice
on this freelancing platform, we were asked by some participants to have short
video calls to discuss questions and clarify the task, which we did. In the calls,
the typical support behavior was maintained.

6.3.6 Scoring System

We used the same scoring system as Plöger et al. Every participant was able
to get a fuzzing score between 0 and 10. We awarded a point for each of the
following actions:

• Chose a useful function to fuzz

• Wrote a functional fuzz target

• Built the target program

• Instrumented all useful parts of the target program

• Built and instrumented the fuzz target

• Ran the fuzzer

• Used the address sanitizer

• Used a meaningful corpus or dictionary

• Triggered a bug

• Recognized a bug

As Plöger et al., we also accommodated alternative solutions in which partic-
ipants combined or skipped steps in the fuzzing process. Therefore, we also
awarded a point for each action if participants combined or skipped it if the
participant reached the same end goal. This could be the case, for example, if
a participant directly fuzzed the executable of the target program with AFL. In
this case, they did not have to choose a suitable function to fuzz and write and
build the fuzz target.

86 Chapter 6. Comparison of AFL and libFuzzer with Freelance Developers

Successful Task Completion

We also use and report the measure of success of Plöger et al.
A participant completed their task successfully if they found and recognized

a bug in the target program using the designated fuzzer without needing any
support in doing so.

6.4 Limitations

In principle, this study inherits most of the limitations of Plöger et al.s study
[157] This includes that only the fuzzers AFL and libFuzzer are evaluated; other
fuzzers might produce different results. Furthermore, for comparability, we
used the same two bugs as in Plöger et al. While Plöger et al. tried to find
bugs of similar complexity, the match is not perfect. We counterbalanced the
fuzzers and bugs to mitigate this issue, though.

The participants were guided with subtasks, and help was provided via the
support system. While tutorials and forums also offer guidance and help and are
used by many developers, we can only approximate the interaction and must be
heedful to not be overly helpful. However, using this support system enabled us
to gather far more detailed information on all fuzzing steps, compared to Plöger
et al.’s first study where these systems were not in place [156]. In our view, the
benefits far outweigh the drawbacks.

Last, but not least, all participants worked with code they were not familiar
with. It is possible that their results would be different if they were fuzzing
projects they had worked on before. Although as we will see in the following
section, most of the problems we found seem fairly independent of the target
programs and thus are likely to be attributable to usability issues of the fuzzers.

In addition, our study has the following differing limitations.

Sample

While Plöger et al. had the limitation of only having a CS student sample, our
sample consists of freelancers from freelancer.com. As discussed in the related
work section there are multiple different freelancer platforms which, while be-
ing similar, are not identical. Online freelancers also differ from developers em-
ployed by Western companies. Although the study done by Naiakshina [138]
showed that the statistical significance and direction of effects were similar when
comparing freelancers from freelancer.com and a sample of developers in Ger-
man companies. Nonetheless, we point out that our sample is certainly not rep-
resentative of all possible developers, and further research is needed for other
subgroups.

6.5. Results 87

Sample Size / Exploratory Study

The sample size in Plöger et al.’s study was very small and their analysis was fo-
cused on an exploratory approach with less emphasis on statistical testing. Since
we used an a-priory power calculation to determine how many participants we
would need to detect the main differences between AFL and libFuzzer reliably,
we do not have this limitation.

Fixed bugs

Since we used the same target programs in the same version as Plöger et al., and
they reported all known bugs to the developers, it is possible that participants
used the online repositories of the target programs to get information on the
bugs. We tried to mitigate this risk by removing all version information from
the target programs. We analyzed the logbooks, bash history, exit surveys, and
interviews for hints that this might have occurred and found no evidence of that.

Incentives

We believe the most relevant difference between the study of Plöger et al. and
ours is participant type, i.e. CS students and freelancers. However, it is also
possible that the different incentives had an effect. The students were rewarded
with bonus points for their exam while the freelancers were paid their regular
wages. It is possible that the students would have performed differently if they
had been paid similarly. It is common practice to use different incentives for
different types of participants, and, thus, any difference in results usually occurs
in tandem anyway. More concretely, working with freelancers is significantly
more expensive than working with students. The total cost of this study was
just over 37,000€, and we are unaware of any study with CS students paying
such high compensation. So from a methodological perspective, it is natural to
compare outcomes, including typical incentives.

6.5 Results

In the following, we present the results of our freelancer fuzzing study.
When it is relevant, we compare the results of the preferred freelancer par-

ticipants and the non-preferred freelancer participants. Overall, we found no
major differences between the two groups.1 Since the differences were small
and not statistically significant by any means, we will report the majority of the
results of all freelancers as one group.

1As far as we can tell the main difference is the payment/fee process on the freelancer plat-
form and this has no effect on their performance.

88 Chapter 6. Comparison of AFL and libFuzzer with Freelance Developers

6.5.1 Statistical Analyses

In this paper, we report the 95% confidence intervals (CI) instead of p-values
since they more reliably communicate the uncertainty and scope of likely ef-
fect sizes, i.e., the true effect size is likely to lie within the CI. The larger the CI,
the more uncertainty remains. If the CI of an odds ratio does not include the
neutral 1, the result is considered statistically significant. Analog, if the CI of
a mean difference does not include the neutral 0, the result is considered sta-
tistically significant. We leave α and β at the typical 0.05 and 0.8 values, re-
spectively. All analysis was conducted using the statistical software R. The odds
ratios for all between-subjects comparisons were calculated using the R-function
oddsratio.fisher. For the odds ratios for the within-subjects tests, we used the
R-functioncohenG of the rcompanion package with 10,000 replications for the
bootstrapping. We used the MeanDiffCI function, again from the rcompanion
package, for the difference in means and their confidence intervals.

6.5.2 Fuzz-Target-Less Fuzzing, User Error Induced Crash and
direct compilation

As in the study of Plöger et al., some participants used Fuzz-Target-Less (FTL)
fuzzing when working with AFL. In this study, more than half of our partici-
pants, 36 out of 62, used FTL fuzzing, 19 in the first task and 17 in the second.
These participants thus did not write a fuzz target but fuzzed the executable of
the compilation process of the target program. This executable was directly fed
to AFL. A very similar picture also emerged among CS Students. There, 9 of the
17 participants used FTL fuzzing.

If participants wrote fuzz targets it was possible for them to make mistakes
that would lead to crashes that could be confused with the crashes fuzzers are
supposed to find. Since the bug was contained in the participant’s fuzz target it
has no bearing on the target program. We denote these crashes in our analysis
as UEIC (User Error Induced Crash).

Moreover, it was also possible to never build the target program as a whole
with the configure and make commands but to only compile and link the needed
parts of the target program and the fuzz target in one step.

6.5.3 Participants

Seven participants submitted solutions where they used the same fuzzer for
both tasks instead of switching as instructed. All of them were asked to redo
the second task with the designated fuzzer, which they agreed to do. As far as
we could tell this did not impact their results.

Of the 150 participants who started the study, 64 participants finished the
first task, and 62 of those finished the second task and the study. This gives us a
completion rate of 41%, which is slightly higher than the rates of both previous

6.5. Results 89

fuzzing studies by Plöger et al. (28% and 36%). Nevertheless, the finishing rate
is still lower than we would like, so we asked every participant who dropped
out to share their reasons for their decision, to gain a better understanding and
to hopefully be able to improve drop-out rates in the future.

We categorized the reasons of the 88 participants who dropped out or were
excluded and summarized them. The corresponding Table can be found in Ta-
ble 6.3. The reasons above the line are the drop-outs and below are the excluded.

Reason n

No response 44
No expertise 21

No time 10
Personal Issues 4

Technical difficulties 2

Low effort 6
Outsourcing 1

TABLE 6.3: Reasons for dropping out of the study.

More than half of our participants did not respond to any of our communi-
cation attempts regarding their drop-out. Twenty-two participants stated they
lacked the expertise to work on the task and thus wanted to drop out. The most
common underlying reason for this was that participants perceived the com-
plexity of the task to be very high, and they estimated that the effort to learn
how to use the fuzzer would also be too high. In some cases, this was combined
with a worry that poor performance would lead to a negative review on the
platform. This is despite the fact that we made it clear in the study description
that we were testing the fuzzers and not them, and there would be no negative
outcome for them as long as they tried their best in the time given. All partici-
pants who completed the study got the same good review, and thanks for taking
part in our study.

Initially, we had 9 low-effort participants. All of these were contacted via the
co-pilot and 3 decided to improve their work and finish the study, but 6 decided
to drop out.

Entertainingly, one enterprising participant tried to outsource the task by
creating their own project on freelancer.com. The participant was removed from
the study.

Finally, while conducting the study, we found that one participant had cre-
ated a second account on the platform to take part in the study twice. Since par-
ticipating multiple times was forbidden, we removed the second account from
the study but let the first attempt stay in.

We monitored the platform and the results for further such attempts but
could not find any others.

90 Chapter 6. Comparison of AFL and libFuzzer with Freelance Developers

6.5.4 Completion Rate and Success

The overall statistics for all 150 participants regarding drop-outs, completion,
and success rates can be seen in Table 6.4. The differences in drop-outs and
completion between the two fuzzers were not statistically significant in our or
in Plöger et al.’s study. The odds actually point in different directions. In our
study, we found OR = 1.20, CI [0.67, 2.15] in favor of libFuzzer. Plöger et al
found OR = 1.43, CI [0.51, 4.11] in favor of AFL. Since the results are not statisti-
cally significant, this is not a contradiction.In terms of failure and success when
counting drop-outs as failures, both studies show a non-significant advantage
to AFL: CS students (OR = 2.53, CI [0.68, 10.69]) and freelancers (OR = 2.06, CI
[0.90, 5.00]).

The picture gets clearer when only looking at completed tasks of the 150
participants. Here we have a statistically and practically significant advantage
for AFL: OR = 2.52, CI [1.03, 6.46]

Fuzzer Order started drop-out completed success

AFL
1st 76 47 29 12 15%
2nd 35 1 34 10 29%
∑ 111 48 63 22 19%

libFuzzer
∑ 103 40 63 11 11%

2nd 29 1 28 5 17%
1st 74 39 35 6 8%

TABLE 6.4: Overall drop-out, completion, and success of our par-
ticipants for AFL and libFuzzer.

libFuzzer
success no success ∑

AFL
success 5 17 22

no success 6 34 40
∑ 11 51 62

TABLE 6.5: Contingency table of outcome for AFL and libFuzzer in
terms of success.

We now narrow down the analysis and only look at the 62 participants who
completed both tasks and who finished the study. The outcome in terms of suc-
cess and failure can be seen in Table 6.5. More than half of the participants (34)
did not succeed with either of the fuzzers. In contrast to that, only 5 partici-
pants succeeded with both. For those participants who were able to solve the
tasks with only one of the fuzzers successfully, AFL received better results than
libFuzzer (17 vs 6). The odds ratio shows an advantage for AFL (OR = 2.83, CI
[1.22, 10.00]) and is both statistically and practically significant.

6.5. Results 91

Target Program Results

Target Program started drop-out completed success

libroxml 107 44 63 19 19%
tomlc99 107 47 63 14 14%

TABLE 6.6: Overall drop-out, completion, and success of our par-
ticipants for the target programs.

In the analysis of Plöger et al., there was uncertainty about whether libroxml
was an easier target program. The results for our target program analysis can be
seen in Table 6.6. Our results indicate a considerably smaller difference between
the target programs (OR = 1.43, CI [0.64, 3.29]) than in Plöger et al. The dif-
ference is not statistically significant, and since we counterbalanced the fuzzers
and programs, it should also not be practically relevant.

6.5.5 Fuzzing Score Results

This section contains the main comparison of the two fuzzers for which we con-
ducted the power analysis. For our participants who finished the study, the
mean and median fuzzing scores for AFL were 6.95 and 7, respectively. In com-
parison, the mean and median scores for libFuzzer were 5.63 and 6, resulting in
a statistically significant difference in means of 1.32, CI [0.73, 1.91]. So, on aver-
age, the difference between a participant’s score of AFL and libFuzzer is more
than one point on a scale from 0 to 10.

The fuzzing scores of our freelancers are very similar to the results of the CS
students in the study of Plöger et al (AFL: M = 8.24, Mdn = 9; libFuzzer M =
6.65, Mdn = 6). The scores of the freelancers are overall lower by about 1 point.
However, the differences in means between the fuzzers are fairly similar, 1.32
for the freelancers to 1.59 for the CS students. Here we can see that the greater
power of our study is helpful in making a clearer statement about the differences
between the two fuzzers.

A detailed listing of the performance of all participants that finished the
study in all the steps of the fuzzing process for the first and second tasks can
be found in Table 6.7 and in Table 6.8. The tables have the identical structure
and coding as those of Plöger et al.

When a participant received a hint in a step, it is denoted with an asterisk.
For help, we used the plus sign. When a participant did not reach a step, it is
denoted with a dash. Columns in gray are not part of the score.

As in Plöger et al., every step of a participant is color coded into four cate-
gories to provide further information about the performance. The categories are
color-coded in the following way:

92 Chapter 6. Comparison of AFL and libFuzzer with Freelance Developers

green An action is colored in green if the participant succeeded in this step with-
out any support in this step or any dependent step before. This is equiva-
lent to receiving a point for the score.

blue If a participant succeeded in a step without any support in it, but with
support in a dependent step before, it is colored in blue.

yellow Yellow is used when a participant succeeded in the step but with support.
Here we do not further distinguish between a first hint, a second hint, or
help.

red If a participant did not succeed in a step, it is colored red.

For better comprehensibility, the structure and meanings of the columns, as
described in Plöger et al., are repeated below.

Participant, Fuzzer and Program Those columns name the participant, the
fuzzer that was assigned to the participant, and the target program for the task.

Sel. Func. The column Selected Function is two-folded. It shows how many
functions the participant tried to fuzz, and the tick denotes if the bug could be
triggered via one of those functions.

Working FT The number in the column Working Fuzz Target (FT) depicts the
number of fuzz targets a participant wrote. The tick denotes whether a fuzz
target could, in theory, trigger the bug.

Built TPr & Instr. TPr The column Built Target Program (TPr) contains the
information on whether the target program was built, while the column Instru-
mented TargetProgram shows if the target program was instrumented.

Built FT The column Built Fuzz Target shows whether the fuzz target was built
correctly.

Ran Fuzzer The column Ran Fuzzer shows if the fuzzer was run.

ASAN in TPr The column ASAN in Target Program shows whether the target
program was built with the address sanitizer. The address sanitizer is of interest
since it is needed to find the known bug in tomlc99. We awarded points in
the libroxml condition as well since participants could not know that it was not
needed, and it also helps when interpreting crashes.

6.5. Results 93

Corpus/Dict The column Corpus/Dictionary shows whether participants used
a corpus or dictionary. While this was not necessary to find the bugs, which the
participants did not know, it is a common and recommendable optimization.

Trig. UEIC and Trig. Bug The column Triggered UEIC (User Error Induced
Crash) shows whether a crash was induced by an error of the user and is not
caused by an actual bug in the target program. A check mark means the par-
ticipant did not trigger a UEIC, while a cross mark signals the opposite. The
column Triggered Bug shows whether an actual bug in the target program was
triggered.

Success The column Success shows if participants correctly interpreted the
output as a bug, thus completing the overall task.

Score The fuzzing score is shown in the last column and is the sum of all sub-
tasks which participants successfully solved without support.

6.5.6 Analysis of the fuzzing steps

If we look at the results from the perspective of the fuzzing steps, we better
understand which steps were easy and which caused trouble for AFL and lib-
Fuzzer, respectively.

The corresponding data can be seen in Table 6.9. For each step and each
fuzzer, a fraction and a percentage are shown. The denominator is the number of
participants that reached that step. The numerator is the number of participants
that successfully solved that step without needing support. The participants
included in the numerator are those whose steps are marked in green and blue
in Tables B.1 and B.2. The percentage is the percentage of the fraction.

Relevant differences between the fuzzers in favor of AFL can be seen in
writing a correct fuzz target (AFL: 53/62 - LibFuzzer: 24/62), instrumenting
the target program (49/62 - 30/62), and using a corpus or dictionary (56 - 38).
Moreover, selecting a suitable function to fuzz seemed easier for our participants
when using AFL. On the other side, libFuzzer had slight advantages when run-
ning the fuzzer and bigger advantages when using the address sanitizer. There
were hardly any differences between the fuzzers for building the fuzz target
and, interestingly, for correctly interpreting a bug.

Both similarities and differences to CS students can be seen in this compari-
son. Overall, the CS students had fewer problems in the fuzzing steps than the
freelancers, which is also reflected in the higher overall fuzzing score. In the case
of libFuzzer, writing a correct fuzz target and instrumenting the target program
was a challenge for both groups. The benefit of the address sanitizer was higher
for libFuzzer and is similar in both groups. Furthermore, building the target
program was not a problem for the CS students or the freelancers.

94 Chapter 6. Comparison of AFL and libFuzzer with Freelance Developers

Participant Fuzzer Program Built TPr Sel. Func. Working FT Instr. TPr Built FT Ran Fuzzer ASAN in TPr Corpus/Dict Trig. UEIC Trig. Bug Success Score

P015 AFL libroxml ✓ ✓ ./rocat (FTL fuzzing)** ✓ ✗ ✓ ✓ ✓ ✗ 1
P016 libFuzzer libroxml ✓ ✓ ✗ ✗* ✓ ✓ ✗* ✓ ✗ ✓ ✓* 6
P019 AFL libroxml ✓ ✓ ./rocat (FTL fuzzing)+ ✓+ ✗ ✗ ✓ ✓ ✗ 1
P021 AFL tomlc99 ✓ ✓ ./toml_json (FTL fuzzing) ✓ ✗ ✓ ✓ ✓ ✓ 9
P022 libFuzzer tomlc99 ✓ ✓ ✓ ✗* ✓ ✓ ✗ ✗ ✓ ✗ - 5
P027 AFL libroxml ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗* 8
P040 libFuzzer libroxml ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ 7
P045 AFL tomlc99 ✓ ✓ ./toml_cat (FTL fuzzing) ✓ ✗* ✗ ✓ ✗ ✗ 6
P047 AFL tomlc99 ✓ ✓ ./toml_json (FTL fuzzing) ✓ ✗ ✓ ✓ ✓ ✗* 8
P053 libFuzzer tomlc99 ✓ ✗ ✗ ✗ - - ✗ ✗ - - - 1
P067 AFL libroxml ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 9
P070 AFL libroxml ✓** ✓ ✓ ✓ ./roxml (FTL fuzzing) ✓ ✓ ✓ ✓ ✓ ✓ 3
P071 libFuzzer tomlc99 ✓ ✓ ✗* ✗ ✓ ✓ ✗ ✓ ✓ - - 5
P072 libFuzzer libroxml ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ - - 4
P077 libFuzzer tomlc99 ✓* ✓* ✓+ ✓ ✓* ✓ ✓ ✓ ✗ ✓ ✓ 1
P084 libFuzzer tomlc99 ✓ ✓+ ✓+ ✓direct compilation ✓ ✗ ✗ ✗+ ✓ ✓ 4
P090 libFuzzer tomlc99 ✓ ✓ ✓+ ✗ ✓ ✓ ✗* ✗ ✗ ✓ ✓ 4
P092 libFuzzer libroxml ✓ ✓ ✗+ ✗ ✓ ✓ ✗ ✗ ✗ - - 4
P093 libFuzzer libroxml ✓ ✗** ✗ ✗ ✓ ✓ ✗ ✗ ✓ - - 3
P094 AFL tomlc99 ✓ ✓ ./toml_cat (FTL fuzzing) ✓ ✗ ✓ ✓ ✓ ✓ 9
P097 libFuzzer libroxml ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓ 8
P104 AFL tomlc99 ✓ ✓ ./toml_cat (FTL fuzzing) ✓ ✗ ✓ ✓ ✓ ✓ 9
P108 libFuzzer libroxml ✓ ✓** ✓+ ✓+ ✓** ✓ ✓ ✓ ✓ ✓ ✓ 2
P112 AFL libroxml ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 9
P113 AFL libroxml ✓ ✓ ./roxml (FTL fuzzing) ✓ ✗ ✓ ✓ ✓ ✓* 8
P116 AFL tomlc99 ✓ ✓ ./toml_cat (FTL fuzzing) ✓ ✗ ✓ ✓ ✗ - 7
P118 libFuzzer libroxml ✓ ✓ ✗ ✓direct compilation ✓ ✓ ✓ ✗ - - 7
P122 AFL tomlc99 ✓ ✓ ./toml_cat (FTL fuzzing) ✓ ✓* ✓ ✓ ✓ ✓ 7
P125 AFL libroxml ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 9
P126 libFuzzer tomlc99 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ 9
P127 libFuzzer tomlc99 ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ - - 4
P128 AFL tomlc99 ✓ ✓ ./toml_cat (FTL fuzzing) ✓ ✗ ✗ ✓ ✓ ✓ 8
P131 AFL libroxml ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 9
P135 AFL libroxml ✓ ✓ ./roxml (FTL fuzzing) ✓** ✗ ✓ ✓ ✓ ✓** 6
P138 libFuzzer tomlc99 ✓ ✓ ✗ ✗ ✗ - ✗ ✗ - - - 2
P139 libFuzzer tomlc99 ✓ ✗ ✗ ✓direct compilation ✓ ✓ ✗ ✗* - - 5
P144 libFuzzer tomlc99 ✓ ✓ ✓ ✓direct compilation ✓ ✓ ✓ ✗ ✓ ✓ 10
P145 AFL libroxml ✓ ✓ ./roxml (FTL fuzzing) ✓ ✗ ✓ ✓ ✓ ✓ 9
P147 AFL libroxml ✓ ✓ ✗ ✓direct compilation ✓ ✓ ✓ ✗ ✓ ✓* 8
P150 libFuzzer libroxml ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗* - - 4
P154 AFL libroxml ✓ ✓ ./roxml (FTL fuzzing) ✓** ✗ ✓ ✓ ✓ ✓* 6
P157 libFuzzer libroxml ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ 7
P159 AFL tomlc99 ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✗ - - 6
P160 libFuzzer tomlc99 ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗ - - 4
P162 AFL libroxml ✓ ✓ ✓ ✗ ✓ ✓* ✗ ✓ ✓ ✓ ✗ 5
P174 libFuzzer tomlc99 ✓ ✓ ✗ ✓direct compilation ✓ ✓ ✓ ✗ - - 7
P177 AFL tomlc99 ✓ ✓ ./toml_cat (FTL fuzzing) ✓ ✓* ✓ ✓ ✓ ✓* 7
P178 libFuzzer tomlc99 ✓ ✗ ✗+ ✓ ✓ ✓ ✗ ✗ ✗ - - 2
P184 AFL tomlc99 ✓ ✓ ./toml_cat (FTL fuzzing) ✓ ✗ ✓ ✓ ✓ ✓ 9
P190 libFuzzer libroxml ✓ ✓ ✓ ✓direct compilation ✓ ✓ ✓ ✓ ✓ ✓ 10
P193 AFL libroxml ✓ ✓ ✓ ✓direct compilation ✓ ✗ ✓ ✓ ✓ ✓ 9
P194 libFuzzer libroxml ✓ ✓* ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ - 5
P197 libFuzzer tomlc99 ✓ ✓+ ✓+ ✗ ✓+ ✓ ✗ ✓ ✗ ✓ ✗ 2
P198 libFuzzer tomlc99 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ 9
P210 libFuzzer tomlc99 ✓ ✓ ✓ ✓direct compilation ✓ ✓ ✓ ✓ ✓ ✓* 9
P216 libFuzzer libroxml ✓ ✓ ✗ ✓direct compilation ✓ ✗ ✓ ✗ - - 6
P218 libFuzzer tomlc99 ✓ ✓ ✓* ✓direct compilation ✓ ✓ ✗ ✗ ✓ ✓ 6
P225 libFuzzer tomlc99 ✓ ✓ ✗ ✓direct compilation ✓ ✓✗ ✗ ✗ - - 6
P226 AFL libroxml ✓ ✓ ./roxml (FTL fuzzing) ✓ ✗ ✓ ✓ ✓ ✓ 9
P228 AFL tomlc99 ✓ ✓ ./toml_cat (FTL fuzzing) ✓ ✓* ✓ ✓ ✓ ✓* 7
P230 libFuzzer libroxml ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 8
P235 libFuzzer libroxml ✓ ✓ ✓** ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗* 5

TABLE 6.7: Results of the 62 participants that finished the study for
the first Task: ✓: success - ✗: failure - green: success without sup-
port - yellow: success with support - violet: success after support

in previous step - red: no success - gray: not in score

On the other hand, when using AFL, the freelancers had more problems than
the CS students with the instrumentation of the target program. Again for AFL,
the correct interpretation of a crash as a bug was also harder for our freelancers.
In addition, running the fuzzer also posed a challenge for a few of the freelanc-
ing developers which was not an issue for the CS students of Plöger et al.

6.5.7 User Rating of Fuzzers

As a part of the post-questionnaire, we asked our participants, to give both
fuzzers an overall score and to rate their usability, both on a scale from 1, very
bad, to 7, very good. The results of that can be seen in Table 6.10.

6.5. Results 95

Participant Fuzzer Program Built TPr Sel. Func. Working FT Instr. TPr Built FT Ran Fuzzer ASAN in TPr Corpus/Dict Trig. UEIC Trig. Bug Success Score

P015 libFuzzer tomlc99 ✓ ✗** ✗** ✗ ✓** ✓ ✗ ✗ ✗ - - 1
P016 AFL tomlc99 ✓ ✓ ✓ ✓* ✓ ✓ ✓** ✓ ✗ ✓ ✓ 6
P019 libFuzzer tomlc99 ✓ ✓+ ✗** ✓ ✓** ✓ ✗ ✓ ✓ - - 1
P021 libFuzzer libroxml ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗* - - 5
P022 AFL libroxml ✓ ✓ ./roxml (FTL fuzzing) ✓ ✗ ✓ ✓ ✓ ✓ 9
P027 libFuzzer tomlc99 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 10
P040 AFL tomlc99 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 9
P045 libFuzzer libroxml ✓ ✓ ✗ ✓direct compilation ✓ ✗ ✓ ✗ - - 6
P047 libFuzzer libroxml ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗* ✓ ✓ 7
P053 AFL libroxml ✓ ✓ ./roxml (FTL fuzzing) ✓ ✗ ✓ ✓ ✓ ✗* 8
P067 libFuzzer tomlc99 ✓ ✓ ✓ ✓direct compilation ✓ ✓ ✓ ✓ ✓ ✓ 10
P070 libFuzzer tomlc99 ✓ ✓+ ✓* ✗ ✓ ✓ ✗ ✗ ✗+ ✗ - 3
P071 AFL libroxml ✓ ✓ ✗+ ✗ ✓ ✓ ✗* ✓ ✓ - - 5
P072 AFL tomlc99 ✓ ✓ ./toml_cat (FTL fuzzing) ✓ ✗ ✓ ✗ ✗ - 7
P077 AFL libroxml ✓ ✓ ./rocat (FTL fuzzing)** ✓ ✗ ✓ ✗ ✓ ✓** 2
P084 AFL libroxml ✓ ✓ ./roxml (FTL fuzzing) ✓* ✗ ✗ ✗ ✓ ✓** 5
P090 AFL libroxml ✓** ✓ ✓ ✓ ./roxml (FTL fuzzing) ✓* ✗* ✓ ✗ ✓ ✓* 3
P092 AFL tomlc99 ✓ ✓ ✓+ ✓direct compilation ✓ ✓* ✓ ✗ ✓ ✓ 6
P093 AFL tomlc99 ✓ ✓ ./toml_cat (FTL fuzzing) ✓ ✓ ✓ ✓ ✓ ✓ 10
P094 libFuzzer libroxml ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓ 6
P097 AFL tomlc99 ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ - 7
P104 libFuzzer libroxml ✓ ✓ ✓* ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗ 5
P108 AFL tomlc99 ✓ ✓+ ✓ ✓ ✓ ✓* ✓** ✓ ✗ ✓ ✓* 5
P112 libFuzzer tomlc99 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 10
P113 libFuzzer tomlc99 ✓ ✓ ✓ ✓direct compilation ✓ ✓** ✓ ✗ ✓ ✓ 7
P116 libFuzzer libroxml ✓ ✓ ✗ ✗ ✓** ✓ ✗ ✗ ✗ ✓ ✓ 5
P118 AFL tomlc99 ✓ ✓ ✓ ✗* ✓ ✓ ✗ ✓ ✗ ✗ - 6
P122 libFuzzer libroxml ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ - - 5
P125 libFuzzer tomlc99 ✓ ✓ ✓ ✗* ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6
P126 AFL libroxml ✓ ✓ ./rocat (FTL fuzzing) ✓ ✗ ✓ ✓ ✓ ✓* 8
P127 AFL libroxml ✓ ✓ ./roxml (FTL fuzzing) ✓ ✗ ✓ ✓ ✓ ✓ 9
P128 libFuzzer libroxml ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✓ - - 4
P131 libFuzzer tomlc99 ✓ ✓ ✓ ✓direct compilation ✓ ✓ ✓ ✓ ✓ ✓ 9
P135 libFuzzer tomlc99 ✓ ✓ ✗+ ✓direct compilation ✓ ✓** ✓ ✗* ✓ ✓ 6
P138 AFL libroxml ✓ ✓ ✓ ✓ ./toml_cat (FTL fuzzing) - ✗ ✗ - - - 3
P139 AFL libroxml ✓ ✓ ./rocat (FTL fuzzing) ✓ ✗ ✓ ✓ ✓ ✓ 9
P144 AFL libroxml ✓ ✓ ✓ ✓direct compilation ✓ ✗ ✓ ✓ ✓ ✓ 9
P145 libFuzzer tomlc99 ✓ ✓ ✓ ✓ ✓ ✓ ✓* ✓ ✓ ✓ ✓ 7
P147 libFuzzer tomlc99 ✓ ✓ ✓+ ✓direct compilation ✓ ✓ ✗ ✗** ✓ ✗* 6
P150 AFL tomlc99 ✓ ✓ ✓ ✗** ✓ ✓ ✗ ✓ ✓ ✗ - 6
P154 libFuzzer tomlc99 ✓ ✓+ ✗ ✓ ✓ ✓ ✓ ✗ ✗** - - 5
P157 AFL tomlc99 ✓ ✓ ./toml_cat (FTL fuzzing) ✓ ✓* ✓ ✓ ✓ ✓ 7
P159 libFuzzer libroxml ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 10
P160 AFL libroxml ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗* ✓ ✓* 7
P162 libFuzzer tomlc99 ✓ ✓ ✓+ ✓direct compilation ✓ ✓* ✓ ✗ ✓ ✓* 6
P174 AFL libroxml ✓ ✓ ./roxml (FTL fuzzing) ✗ ✗ ✓ ✓ ✗ - 6
P177 libFuzzer libroxml ✓ ✓ ✗+ ✓direct compilation ✓ ✗ ✓ ✓ - - 6
P178 AFL libroxml ✓ ✓ ✓ ✓ ./roxml (FTL fuzzing)* ✓** ✗ ✓ ✗ ✓ ✗ 4
P184 libFuzzer libroxml ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓ 7
P190 AFL tomlc99 ✓ ✓ ./toml_cat (FTL fuzzing) ✓ ✗ ✓ ✓ ✓ ✓ 9
P193 libFuzzer tomlc99 ✓ ✓ ✓ ✓direct compilation ✓ ✓ ✓ ✓ ✓ ✗ 9
P194 AFL tomlc99 ✓ ✓ ./toml_cat (FTL fuzzing) ✓ ✓* ✓ ✓ ✓ ✓ 7
P197 AFL libroxml ✓ ✓* ✓* ✓+ ✓ ✓ ✓ ✗ ✗ ✓ ✗* 2
P198 AFL libroxml ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 8
P210 AFL libroxml ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ 5
P216 AFL tomlc99 ✓ ✓ ✓ ✓direct compilation ✓ ✓ ✓ ✓ ✓ ✓ 10
P218 AFL libroxml ✓ ✓ ./rocat (FTL fuzzing) ✓ ✗ ✓ ✓ ✓ ✓ 9
P225 AFL libroxml ✓ ✗ ✗+ ✓direct compilation ✓ ✓ ✓ ✓ - - 6
P226 libFuzzer tomlc99 ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ - - - 4
P228 libFuzzer libroxml ✓ ✓ ✓ ✗ ✓** ✓ ✗ ✓ ✓ ✓ ✗ 4
P230 AFL tomlc99 ✓ ✓ ✓ ✓ ✓ ✓ ✓* ✓ ✓ ✓ ✓ 7
P235 AFL tomlc99 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 10

TABLE 6.8: Results of the 62 participants that finished the study
for the second Task: ✓: success - ✗: failure - green: success without
support - yellow: success with support - violet: success after sup-

port in previous step - red: no success - gray: not in score

The mean and median usability score given by our participants for AFL was
5.59 and 6, respectively. For libFuzzer, the scores were 4.92 and 5. Therefore, the
difference in means in the usability score of both fuzzers is 0.67 in favor of AFL,
CI [0.24, 1.09] . The difference of two-thirds of a point on a 7-point scale can be
noticeable from a practical point of view. However, the lower bound of the CI
is only 0.24 which would not be a practically relevant difference. Thus while
we can conclude that our participants rate the usability of AFL better, the lead
might be quite small.

However, this is still a clear contrast to the CS students, where the usability
score of both fuzzers was nearly dead even, and no difference could be seen
(DM = 0.06, CI [-1.21, 1.32]). AFL performed noticeably better for the usability

96 Chapter 6. Comparison of AFL and libFuzzer with Freelance Developers

Fuzzing Steps AFL libFuzzer

Built target program 60/62 97% 60/62 97%
Selected function 56/62 90% 46/62 74%
Wrote correct fuzz target 53/62 85% 24/62 39%
Instrumented target program 49/62 79% 30/62 48%
Built fuzz target 57/62 92% 53/61 87%
Ran fuzzer 51/61 84% 58/60 97%
Used ASAN 8/62 13% 22/62 35%
Used Corpus/Dict 56/62 90% 38/62 61%
Correctly interpreted bug 30/51 59% 22/35 63%

TABLE 6.9: Ratio and success percentage of steps by fuzzer.

Overall

Fuzzer 1 2 3 4 5 6 7 plot median

AFL 0 0 5 3 16 28 11 6

libFuzzer 3 0 7 14 12 19 9 5

Usability

Fuzzer 1 2 3 4 5 6 7 plot median

AFL 0 2 4 11 15 15 16 5

libFuzzer 3 5 9 13 13 14 6 5

TABLE 6.10: Usability and Overall rating of AFL and libFuzzer
given by the participants

score for the freelancers, while libFuzzer performed similarly for both groups.
The overall score is quite similar to the usability score for the freelancers. The

mean and median for AFL are 5.35 and 5, and for libFuzzer, the scores are 4.49
and 5. Even though the median of both is the same, the difference in means with
0.86 (CI [0.39, 1.33]) is even higher in comparison to the usability score. Like-
wise, the lower bound of the confidence interval is higher so that the difference
in any plausible cases is noticeable.

For the overall score, the results for the freelancers are very similar to those
of the CS students (DM = 0.88, CI [-0.04, 1.81]). Both prefer AFL overall, and the
difference between the two fuzzers is nearly identical.

Moreover, we also asked our participants, if they wanted to use one of the
fuzzers in the future. The results are shown in Figure 6.1. More than half of our
participants reported that they wanted to use both fuzzers in the future, while
only one participant did not want to use either. Of those participants who only
picked one fuzzer AFL was far more popular. The odds ratio is 3.14 in favor of
AFL (CI [1.45, 9.67]), showing a strong tendency.

Again, CS students (OR = 4.5, CI [1.2, 12]) and freelancers were of the same
opinion about the usage of a fuzzer in the future.

6.5. Results 97

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

AFL libFuzzer Both None
Fuzzer

n

Fuzzer AFL libFuzzer Both None

FIGURE 6.1: Number of participants that intended to use AFL or
libFuzzer in the future.

6.5.8 Support System Insights

Over all 150 Participants, we gave 194 hints, 92 in the first task and 102 in the
second task. We also helped 19 times in the first task and 15 times in the second
task. In the first task, we gave hints to 41 participants, of whom 8 dropped out
in that task. So, more than half of all participants that finished the first task
received a hint. For the second task, 38 participants (59%), received a hint, and
none dropped out. Overall, hints were given to 56 different participants.

An overview of hints and help is given for both tasks for every step of the
fuzzing process, and both fuzzers can be seen in Figure 6.2. Besides the steps,
we also added information on the support given in the situation where FTL
fuzzing was used.

The analysis of crashes was also a step where participants often needed sup-
port. In principle, it included checking whether a crash was a security-related
bug or not. There were two possible scenarios. On the one hand, the crash could
stem from a bug in the target program, and the participant had to analyze it in
order to find out that the crash was indeed a bug. On the other hand, the crash
could stem from a UEIC. In this case, the participant had to understand that they
made a mistake and to correct their fuzz target.

For AFL, especially in comparison to libFuzzer, a lot of hints were given for
actually starting the fuzzer and working with the address sanitizer. In contrast

98 Chapter 6. Comparison of AFL and libFuzzer with Freelance Developers

Built_TPr Selected_Func. Working_FT Instr_TPr Built_FT FTL support Ran_Fuzzer ASAN_in_TPr Crash_analysis

AFL libFuzzer AFL libFuzzer AFL libFuzzer AFL libFuzzer AFL libFuzzer AFL libFuzzer AFL libFuzzer AFL libFuzzer AFL libFuzzer

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

Fuzzer

H
in

ts

Type Hint Help

FIGURE 6.2: Hints and Help given per steps for both fuzzers

to that, a large amount of hints and help was given for selecting a suitable func-
tion to fuzz and writing a working fuzz target in the case of libFuzzer. For both
fuzzers support was needed for the analysis of crashes.

Large differences can be seen when we compare the graphs of support given
for the freelancers and the CS students. We attribute this mostly to the fact the
freelance developers struggled more and earlier in the fuzzing process. There-
fore, the amount of support for selecting a suitable function to fuzz and writ-
ing a working fuzz target is comparably high. Those numbers are for the free-
lancers lower in the case of AFL, most likely because many of them used FTL
fuzzing and because a fuzz target writing for AFL automatically provides a null-
terminated string causing the user to not run into out-of-bounds access prob-
lems.

Support during the instrumentation of the target program and the usage of
the address sanitizer is comparably low, potentially because there was less time
left to give support in these steps. But the failure rate was similar between the
groups. We will get into more detail about those findings below.

6.6 Analysis of Fuzzing Steps

For the analysis of fuzzing steps, we analyzed the participant’s working directo-
ries, the post-questionnaire as well as the diaries and double-checked our find-
ings with the interviews.

6.6. Analysis of Fuzzing Steps 99

6.6.1 Selected Function

For the selection of a suitable function to fuzz, our participants can be divided
into two groups. The first group, which is the majority of the participants,
namely 43, choose to use a function to read in a toml or XML file for the rea-
son that they thought it was obvious and well-suited for good coverage:

it was the obvious choice (P097)

[the] function provides great coverage as it is the root node in this
Library. (P174)

The second group, however, tried to find a function that was the easiest to
use, especially in combination with the provided arguments of libFuzzer. Often
STRNDUP was chosen for this reason. The function duplicates a string by taking
a string in the form of a char pointer as input, allocating a buffer of the same size,
copying the content of the input into the buffer, and returning a pointer to that
buffer. Even though the function STRNDUP was very small (9 lines of code,)
participants often made mistakes leading to two UEICs when fuzzing it. Firstly,
they did not provide a string, but only a char pointer as an input which resulted
in a direct crash if the address sanitizer was used, as the size of the input could
not be determined, causing a read outside of the buffer. Secondly, the created
buffer was not freed in the fuzz target after receiving the pointer to it, causing
an out-of-memory error.

This shows a certain difference to the 17 CS students, as this step seemed to
cause more problems for the freelancers.

6.6.2 Working FT

Writing a working fuzz target was arguably the most complex task for our free-
lancers, especially when using libFuzzer. In the case of libFuzzer, using the
provided arguments of the LLVMFuzzerTestOneInput function, Data and Size
posed the by far greatest challenge. They were either not used at all, at the
wrong place or, when a string was needed, not null-terminated.

AFL, on the other hand, was easier to use for our participants in that case. A
not to be underestimated number of participants, namely 36, used FTL fuzzing
which circumvents the problem of writing a fuzz target. Moreover, working
with a main function seemed to be the more intuitive way for our participants as
the LLVMFuzzerTestOneInput function overall led to confusion. Furthermore,
the input received from the main function or when using a read-in function is
automatically null-terminated, which prevented a for libFuzzer typical out-of-
bounds access.

These problems affected both the freelancers and the CS students. Both
struggled to create working fuzz targets.

100 Chapter 6. Comparison of AFL and libFuzzer with Freelance Developers

6.6.3 Building and Instrumenting the Target Program

The instrumentation of the target program was also a major In Table 6.9 it can be
seen that libFuzzer performs a lot worse than AFL. This is due in large part to
AFL FTL mode. If we exclude the 33 times that participants used FTL fuzzing,
the success rate in this step for AFL shrinks to 55%, which is comparable to the
47% of libFuzzer.

There were several reasons for the difficulties. Participants both overlooked
the need for instrumentation but also had technical difficulties with the process
with many hoping that it would work without it.

This is similar to the CS students, where the problems resulted in a guessing
game to find the right commands to make it work. Oftentimes, it ended in using
make install to install the library system-wide to make it easier to link against
it. Typically, this was accompanied by the fact that the target program was not
instrumented.

6.6.4 FTL Support

In contrast to the CS students of Plöger et al., a few of the freelancers needed
support when using FTL fuzzing. This included either compiling the target pro-
gram in a way that the executable is instrumented or helping the participant to
find the right executable after the compilation and instrumentation.

6.6.5 Ran Fuzzer

For the freelancers, there was no difference compared to the CS students of
Plöger et al. when it came to running the fuzzer. For libFuzzer, no problems
were present. However, AFL had the same problem with starting the fuzzer.
Our participants struggled with the "@@" option of AFL. Similar to the CS stu-
dents, they did not understand that in both cases, the path to the corpus is pro-
vided but that in the case without the "@@" it is provided via standard in while
with the "@@" it is provided as a command line argument. This resulted in
the situation that the fuzzer showed a red warning in the main window stating
"(Last new path : none yet (odd, check syntax!))". In contrast to the CS students,
who were able to overcome the problem by themselves, 7 freelancers overlooked
the warning, ran the fuzzer from a couple of minutes to hours, and concluded
that no bug existed in the target program. If they concluded this and handed in
their work we used the support channel to request that they analyze everything
marked in red in the output, causing them to discover and work on the problem.

Even though AFL provides feedback in the form of telling the user that no
paths are discovered, it would be more useful if more specific feedback could
be provided. Our suggestion would be that AFL automatically starts with and

6.6. Analysis of Fuzzing Steps 101

without the "@@" option to see which produces better coverage. Even one sec-
ond with each option would most likely tell a clear story of which option is the
better one, which would improve usability.

6.6.6 Address Sanitizer

While none of the freelancers struggled using the address sanitizer or any other
sanitizer, only a handful used them of their own volition. Overall, 35% of the
participants used the address sanitizer when using libFuzzer, while only 13%
used it in conjunction with AFL. This is similar to the findings of Plöger et al.
for the CS students.

6.6.7 Corpus/Dictionary

We do not consider it surprising that the vast majority of our participants used
a meaningful corpus or dictionary while working with AFL, as it is a necessity
to provide one to start the fuzzer. The majority used a corpus, a few used both,
none used only a dictionary With libFuzzer we see that only 61% used a corpus,
which we attribute to the fact that it is not mandatory. Interestingly, the use of a
corpus is more common among freelancers than among students.

6.6.8 Fuzzing-run Output

In the post-questionnaire, 43 participants reported that they studied the output
of both fuzzers while they were running. Some of the participants couldn’t be-
cause they did not reach that step and for some a crash occurred immediately, so
they could not evaluate the runtime output. We asked the 43 participants who
saw the output of the fuzzers while running on a scale from 1, very bad, to 7,
very good. The mean and median of AFL were 5.91 and 6, and for libFuzzer, 4.72
and 5. The difference in means was 1.19, CI [0.67, 1.70] and shows a significant
preference for AFLs output. This data was not gathered from the CS students.

In terms of deciding whether the fuzzer was running properly, the free-
lancers behaved very similarly to the CS students. They checked whether the
fuzzer was finding new paths or if new unique crashes were being found.

6.6.9 Crash Output

We also asked the participants to rate the output when a crash occurred on a
scale from 1, very bad, to 7, very good. This question was answered by 42 par-
ticipants. The mean and median of AFL were 5.33 and 6, and for libFuzzer,
4.76 and 5. The difference in means was 0.57, CI [-0.16, 1.30]. This difference
is smaller than for the output while running and is not statistically significant.
However, it needs to be taken into account that, as we found out in the inter-
views, this grade is mostly based on the direct feedback in the interface of AFL

102 Chapter 6. Comparison of AFL and libFuzzer with Freelance Developers

as well as the structure and form of the output in terms of crash files and their
locations. It is less about getting further information about the crash by the
fuzzer.

Therefore, the situation seems to be more in line with the statements of the CS
students that the notification about crashes and the cleanness of the structure of
AFL was good, but the information provided is insufficient. On the other hand,
more information on the actual crash was provided by libFuzzer, especially in
the case that the address sanitizer was used. This highlights an interesting di-
vergence between usability and functionality.

6.7 Discussion

While our completion rate of 41% is higher than in the previous two studies by
Plöger et al., we were still surprised by the high drop out rate. Since we were
paying the freelancers regular wages and they were not being judged on results
but merely for taking part, we had expected higher completion rates. Unlike
Plöger et al., who attribute this to both the complexity and length of the task, we
think for our sample, it is mainly the complexity. The fact that the most named
reason for dropping out of the study was not having enough expertise to work
on the task emphasizes this.

This shows that the poor results found by Plöger et al. with the CS students
replicated very clearly with the freelancers. Consequently, we can now be more
confident that it is worthwhile investing more effort into improving the usability
of these powerful tools since it is not only inexperienced students who have
trouble.

In the following, we will go into more detail with a quantitative and qualita-
tive comparison of the CS students and the freelancers.

6.7.1 Quantitative Analysis

From a quantitative point of view, the CS students and freelance developers
performed very similarly in relative terms. For success as well as for the fuzzing
score, both groups performed better with AFL than with libFuzzer.

From an absolute point of view, the CS students interestingly performed bet-
ter with both fuzzers.

Small differences occur for the proportion of dropouts and completions with
the respective fuzzers. More CS participants dropped out while using libFuzzer
in contrast to the freelancers, where more participants dropped out using AFL.
However, the effect sizes are quite small and were not statistically significant.
Another observation is that a noticeable difference in terms of the proportion of
failure and success with respect to the target programs could be found for the
CS students. This effect is much lower for the freelance developers.

6.8. Conclusion 103

Also, the self-reported opinions are very similar. The overall score, as well
as the intended usage in the future, show the same preference for AFL. Only the
usability score, which was a surprise in the study with the CS students, differs.
While the usability score for the freelancers shows a strong tendency towards
AFL, the CS students did not have a preference between the two.

6.7.2 Qualitative Analysis

The qualitative analysis also reveals many similarities between the two groups.
Writing a meaningful fuzz target was a complex task for both groups. Therefore,
using FTL fuzzing was a more user-friendly alternative that many participants
chose. Moreover, building and instrumenting all necessary code was, for many
participants, a guessing game, where make install was a method of last resort.
Also, the output while running the fuzzer and the output presented when a
crash occurred were perceived similarly.

Differences could be seen, especially in choosing a suitable function to fuzz,
where only very few CS students had trouble doing so and where a noticeable
number of freelancers struggled. This is also reflected in the support statistic.
The step of running the fuzzer is another example where we can see a slightly
better overall performance of the CS students. In both groups, participants en-
countered the problem of starting AFL the right way. However, nearly all of the
CS students overcame the problem, while a lot of freelancers needed support to
do so.

6.7.3 Recommendations

Based on the increased statistical power and different population sample of our
study, we want to strengthen the recommendations made by Plöger et al. These
will benefit not only inexperienced CS students but the wider developer com-
munity as well.

6.8 Conclusion

In this paper, we replicated Plöger et al.’s small-scale CS student fuzzing study
with a larger sample of freelance developers. We conducted an a priori power
analysis to make sure our sample was large enough for our statistical analysis.
Of the 150 freelancers we hired, 62 completed the full 20-hour study with both
AFL and libFuzzer. We were able to replicate Plöger et al.’s results finding the
same relative results in all major comparisons between the fuzzers. Although
interestingly, the freelancers performed slightly worse in absolute terms. Our
results show that the usability of fuzzers still needs significant improvements -
even more so for the freelance developers than for CS students. We think it is a
worthwhile goal to improve usability for non-expert developers since there are

104 Chapter 6. Comparison of AFL and libFuzzer with Freelance Developers

not enough fuzzing experts to go around, and it is unrealistic that we train all
developers to become fuzzing experts. So enabling these kinds of developers
to use fuzzing effortlessly would be a sea change and enable powerful software
testing at scale.

105

Chapter 7

CS Students Fuzzing Their Own
Code or Code Written by Others

Disclaimer: This chapter’s content was joined work with my co-authors Mischa Meier,
Christian Tiefenau, and Matthew Smith. As this work was conducted with my co-
authors as a team, this chapter will use the academic “we” to mirror this fact. I designed
the study with advice from Matthew Smith. I set up and performed the study as well as
designed and conducted all interviews. Mischa Meier supported me in the coding and
the discussion of the interviews. He, Christian Tiefenau, and I carried out the scoring,
and we discussed the results.

Finally, before compiling the paper for publication, Matthew Smith and I jointly
discussed the study’s implications.

7.1 Motivation

Fuzzing is one of the hot topics in academic research, with more than 200 pub-
lished papers about it since 2020 [28]. The popularity of fuzzing is also rapidly
rising in industry. Large software companies such as Microsoft[127], CISCO [37],
Deutsche Telekom [56] and Google [40] are using fuzzing extensively to make
their software more secure.

While it would be ideal if all companies that produce code also hire internal
or external security testing experts, many organizations do not have the means
to do so. It is still recommendable for organizations to implement a code secu-
rity testing process in which their software engineers/developers are involved
in testing. A question that arises in this context is whether it would be better
if developers test their own code because they are familiar with it or whether it
would be better if a peer-based testing strategy is implemented where develop-
ers test the code of team members. The idea is that a fresh set of eyes - poten-
tially also more critical eyes - serve better than having developers test their own
code. To the best of our knowledge, there is no empirical evidence to answer
this question.

As a first step in shedding light on this question, we present the first random-
ized control trial with code-authorship being the independent variable to gather
empirical evidence on the effectiveness of fuzzing one’s own code vs. fuzzing

106 Chapter 7. Fuzzing Own Code or Code Written by Others

code written by a team member. We conducted our study with 35 CS students
who were fuzzing novices and had taken part in a system-level programming
module in which they learned C and assembly and took part in programming a
shell over the course of a semester. We tasked the students either with fuzzing
their own code or code from another participant with libFuzzer. We also extend
insights into the usability of libFuzzer for novice users. Specifically, we extend
the insights from Plöger et al. [156, 157] on usability issues when using libFuzzer
to find bugs and present the first usability insights into using libFuzzer’s output
to fix the bugs found. We argue that this novice perspective is essential since, as
we argued, there are not enough fuzzing experts to go around. Hence it would
be beneficial if powerful testing tools like fuzzing were so easy to use that even
novices without any security specialization could benefit from them.

Table 7.1 gives an overview of the different types of testers. In this paper,
we focus on the last two rows, i.e., the internal testers without specialized secu-
rity/fuzzing knowledge, since, in our experience, these are the most common
resources organizations can deploy, so helping them would be of great benefit.

Tester Organisation Testing Specialization Project Familiarity Wrote the Code
External specialist external yes no no
Internal specialist internal yes yes no

Peer tester internal no yes no
Self testing internal no yes yes

TABLE 7.1: Overview of different types of testers

7.2 Methodology

In order to examine the effect of fuzzing one’s own code compared to fuzzing
code written by others, we needed a study setup fulfilling several requirements:

1) we needed enough participants who have written code that can be tested
to have a decent chance of finding statistically significant effects if they are
present in the population.

2) The codebase of the participants needs to be large enough to not just be a
toy example and it needs to be of similar size and complexity to the code of the
other participants so that the code does not create a confounding effect.

3) We need to find an equal number of participants who are similar enough
to 1 that they can be used as the “other” group without confounding the results.

Due to these requirements recruiting company developers or developers from
open-source projects was not an option. Firstly, it is unlikely that one would get
enough. Secondly, both they and their code are likely heterogeneous and thirdly,
it would be very hard to find enough similar developers for the “other” group.
Instead, like Plöger et al., we recruited CS students - in our case, however, from a
module in system-level programming. We picked this module because, over the
course of the semester, students incrementally built a shell in C and assembly

7.2. Methodology 107

from scratch, i.e., students were prohibited from using any external library such
as the C standard library. This gave us an excellent environment to conduct our
study since we had a large number of fairly similar participants who were all
familiar with the same moderately complex code base, which we could extend
for our study. This allowed us to isolate the effect of fuzzing one’s own code
better than with any other participants or code we could think of.

While the use of CS students from this course allowed us to fulfill require-
ments 1-3, it does have the limitation that they are not the same as seasoned de-
velopers, and thus, this limits generalisability. However, Naiakshina et al. [135]
found that students can be a helpful substitute for professionals in a program-
ming study, especially since this is an exploratory study. We think the benefits
of using CS students outweigh the downsides.

Thus, we recruited students from this module and had them fill out a short
pre-questionnaire (10 minutes). Then we assigned them to a four-hour program-
ming task that extended the shell project. Since all students had built the shell,
we needed to create code for the study to be fuzzed that was not known to all
participants. So we randomly assigned half the participants to a parser program-
ming task (treatment task/TT) or a four-hour color converter programming task
(control task/CT).

After that, all participants took part in a ten-hour fuzzing task. Those par-
ticipants who were assigned the programming treatment task (TT) fuzzed their
own code (own-group). Those in the control condition were randomly assigned
to fuzz the code from a participant of the own-group and thus fuzzed code writ-
ten by someone else (other-group). The ten hours could be spread freely over the
course of ten days. These times were taken from the fuzzing studies by Plöger
et al.

During the two tasks, participants were asked to keep a detailed diary about
their work and how much time they invested in the different steps.

Once they completed the fuzzing task, participants were asked to fill out a
post-questionnaire (20 minutes) and had to participate in a final interview (30
minutes).

In the following, we will discuss the design decisions in more detail.

7.2.1 Shell & Programming Tasks

We designed programming tasks to extend the shell for several reasons. Firstly,
if we had just used a stand-alone programming task, the code would either have
been very simple and thus unrealistic for the other-group or the programming
task would have had to be prohibitively long. Thus, adding the shell gave us the
benefit of having a more realistic complexity within a feasible time frame. But
since all students recruited for the study had programmed and discussed parts
of the shell, we deemed those components too familiar even if they should fuzz
someone else’s implementation. Thus, we decided to add a treatment task, the

108 Chapter 7. Fuzzing Own Code or Code Written by Others

code later to be fuzzed, and a control task. The control task was needed to make
sure that all participants had four hours of programming before starting to fuzz.

Treatment-Task

For the treatment task, we needed a programming task that could be completed
in a short amount of time, that was fairly likely to contain bugs and was simple
to fuzz. So we chose to task participants with implementing a parser to read a
configuration file for the shell. We chose parsing because a simple parser can
be coded in a couple of hours, the input, a string, is comparably easy to create
out of the Data and Size argument of the LLVMFuzzerTestOneInput function
of libFuzzer and correctly implementing parsing has proven to be error-prone.
Just as with the shell, participants were not allowed to use libraries and had to
implement everything from scratch.

To keep the task as short as possible, we provided an example configura-
tion file, the code to read the configuration file from disk, and the header of the
parsing function. So the participants only had to implement the actual parsing
functionality. The parsing task was to set a Welcome- and End-Message for the
shell. Only lines with the structure: Keyword:Value should be considered, with
Keyword having two possible values namely WelcomeMessage and EndMessage.
The value of Value can be any string.

Our research hypothesis is that taking part in the treatment task has an effect
on the fuzzing outcome. This could either be a positive effect, e.g., because being
familiar with the code being fuzzed makes it easier to write a good fuzz-target,
or a negative effect, e.g., because familiarity leads to things being overlooked.
Consequently, all statistical testing is done two-tailed.

Control-Task

In the Control-Task, participants had to extend the shell by implementing a color
converter as a helper function to change the background color of the shell. For
this participants had to write a function to convert the color components of a
color value specified in the RGB color space, which are represented in hexadec-
imal notation, to decimal notation and vice versa. An example of conversion
could be:
#FF32AC < − > [255,50,172].
We did not expect this programming task to have an effect on participants’ abil-
ity to fuzz a parsing function, but it was necessary to keep the effort and thus
fatigue similar in both groups.

We conducted several pilot studies to judge the time needed for the TT and
TP programming tasks and picked the four-hour time frame based on these.

7.2. Methodology 109

7.2.2 Choice of Fuzzer

We chose libFuzzer since it was used by Plöger et al. This allowed us to draw
from their experience and compare our results to theirs. libFuzzer also better
fits our treatment task since we wanted to avoid participants trying to fuzz the
target program’s executable instead of only the parsing function.

7.2.3 Fuzzing Task

In the fuzzing task, the participants of the own-group were asked to fuzz the
parsing function they had just programmed. The participants in the other-group
were randomly assigned the code from one of the own-group. Due to having
programmed the shell, they were familiar with the basic structure of the project,
but they were unfamiliar with the parsing code - a similar situation as would be
the case if a software engineer tests the code of a colleague in the same project.
Participants of the Other-Group also received a short summary of the parser
programming task. The summary included the actual task and all descriptions
of edge cases and annotations.

As in Plöger et al., we gave our participants a time limit of ten hours in a
time frame of ten days. Moreover, we anticipated a comparably high drop-out
rate as in Plöger et al.’s first study (69%), and thus opted for the same support
options that they did in their second study. Therefore, we structured the tasks.

We did this by adding six subtasks. The first two subtasks slightly differ
between the two groups due to the fact the Other-Group had to work with the
code of another person. The two subtasks that differ between the groups are
marked with an * for the Own-Group and a + for the Other-Group.

1* Briefly familiarize yourself with libFuzzer.

1+ Briefly familiarize yourself with the new shell extension and with libFuzzer.

2* Select a suitable function to fuzz from your extension.

2+ Select a suitable function to fuzz from the new extension.

3 Write the fuzz target.

4 Compile and instrument all necessary code.

5 Start the fuzzer and interpret the outputs.

6.1 If you find a bug, fix it and continue fuzzing.

6.2 If you don’t find a bug, try to improve your fuzzing.

We encouraged the participants to follow the subtasks. However, it was not
mandatory to do so.

A detailed discussion on how to solve the fuzzing task can be found in Ap-
pendix D.1.

110 Chapter 7. Fuzzing Own Code or Code Written by Others

7.2.4 Support System

We also adopted the second measure, the support system, to counter the high
dropout rate as well as to gain more insights into specific parts of the fuzzing
process with libFuzzer. The support system is similar to the one used in Tiefenau
et al. [181].

In the task description, participants were informed that they could contact
the study assistant via e-mail for support if they got stuck - but after having
made reasonable efforts to solve the problem. We responded to every support
request within 24 hours but within the constraints of the typical working behav-
ior of the study assistant. We followed the following scheme when responding
to participants’ questions.

If the question was a general technical question or a question regarding the
understanding of the task, it was answered immediately by providing a solution
for the problem.

If the question was a question regarding the fuzzing process and the fulfill-
ment of the task, we delayed our answer by six hours. This was done to pre-
vent the support system from becoming an easy way out of any problem while
still being responsive enough not to lose participants or delay them too much.
Follow-up questions were again answered immediately. We distinguished be-
tween two levels of support.

• Hint: The first type of support a participant received was a hint. A hint
was a peace of information where the participant was told which specific
thing in the fuzzing process could be helpful to further investigate in order
to be able to solve the problem. An example of a hint could be: "It can be
helpful for you to take a closer look at the instrumentation in subtask 4."

• Help: If the participant was not able to solve the issue after receiving a hint,
help was given. This consisted of the solution to the problem with some
information about the context. An example of help could be: "You need to
instrument the target program. You can do this by adding the following
parameter "-fsanitize=fuzzer-no-link" to the make command."

We also used the support channel to request participants work on subtasks if
they handed in their solutions without having completed them. For subtask 6.2,
"If you don’t find a bug, try to improve your fuzzing." we regarded the usage
of at least one sanitizer, such as ASAN, a corpus, and the checking of coverage
or coverage visualization as having completed the sub-task. We have chosen
these improvements because the usage of sanitizers and corpora are part of the
fundamentals in the libFuzzer documentation and the question "How good is
my fuzzer?" is answered in the documentation by checking the code coverage.

When evaluating the fuzzing process, we scored each subtask separately and
we counted any intervention in the form of hint, help, or asking the participant
to further work on a specific part of the task as a fail. We rated the overall
fuzzing process only as a success if participants did not require any hint or help.

7.2. Methodology 111

The two main benefits of this support system are
1) We gain more direct insights into problems since they are communicated

to us in-situ and
2) we can gather more insights into all fuzzing subtasks as we hope that we

don’t lose as many participants as Plöger et al. did in their first study.

7.2.5 Scoring

As Plöger et al. in their second study, we implemented a fuzzing score to allow
a more precise evaluation of our participants’ issues working with libFuzzer,
which enabled us to do a quantitative evaluation of the steps themselves. A
point could be awarded for each of the following actions:

• Selecting a suitable function to fuzz.

• Write a buildable, meaningful, and triggerable fuzz target.

• Build all necessary code.

• Instrument all necessary code.

• Ran the fuzzer.

• Used a meaningful corpus.

• Used the address sanitizer on all code of interest.

The first five actions are a direct consequence of the subtasks and are the basics
of implementing a reasonable form of fuzzing. We define building all necessary
code as compiling and linking it. We also added the usage of a meaningful cor-
pus and of a sanitizer since these were also fundamentals based on the libFuzzer
documentation. Consequently, participants were able to get a fuzzing score be-
tween zero and seven points. However, participants only received a point if
they did not get any hints or help for that action or any action leading up to it. A
detailed discussion of the dependencies for the fuzzing process can be found in
Appendix D.2. Therefore, the participant score reflects the score the participant
would have received without support.

Successful Task Completion

Moreover, we adopted the binary success value used by Plöger et al. Participants
successfully finished the fuzzing task if they found a bug using the fuzzer and
also recognized it as a bug. Unlike Plöger’s studies, our study could contain the
situation that the parsing code being fuzzed contains no bug. We thoroughly
discussed this situation but were unfortunately not able to find a fitting solution
for that problem. Thus, we did not include all participants that could not find a
bug in the evaluation of the success.

112 Chapter 7. Fuzzing Own Code or Code Written by Others

7.2.6 Recruitment & Participants

We recruited our participants from a course about system-level programming.
The course is part of our universities bachelor’s degree program in computer
science. The course is scheduled for the third semester but can also be taken in
the first semester or later on. Moreover, it is not mandatory to take the lecture,
so only students who want to learn C and assembly take it. This is slightly in
contrast to the recruitment of Plöger et al.’s first and second studies, where they
both times recruited from a usable security master’s course in computer science.

The study was announced at the end of the course as a code analysis study.
The announcement was made in the lecture, on the mailing list, on the lecture
website and in the exercises courses. At the time the study was conducted in
the semester, 97 students were still taking part. Forty-nine students expressed
interest in participating in the study, of which 45 answered the pre-questionnaire
and were admitted to the study, which is 46% of the course participants at that
time.

We compensated our participants with 210€ for participating in the study,
which is an hourly rate of at least 14€. This was 4€ per hour more than the
hourly rate of a student job at the university and 4.5€ more than the country’s
minimum wage at that time.

The demographics of our group can be seen in Table 7.2.

Gender Male: 37 Female: 8 Other: 0 No Answer: 0
Age min: 19, max: 30 mean: 21.84, median: 21 sd= 2.49, NA= 1

TABLE 7.2: Participants’ Demographics

Proficiency and Fuzzing Experience

The median of the self-reported proficiency in C and Linux was 4 on a scale from
1, very bad, to 7, very good.

Only 4 of the 45 participants had prior experience in the usage of a fuzzer.
Three participants stated that they had used the fuzzer AFL or AFL++ before,
while one participant used libFuzzer before. One participant did so at work, two
at university, and one in private. To avoid an imbalance, the four participants
with prior experience were split equally between the own and other group and
the own code was assigned to the other pair.

Work Environment

Since Plöger et al. reported that some of their participants struggled to work
on a fuzzing server without a GUI. Thus, We provided a pre-configured virtual
machine where libFuzzer and the shell were already installed on the system and
we could log their steps. Our participants had root access to the virtual machine

7.3. Ethics 113

and were free to use any software they liked. We used the latest LTS version of
Ubuntu and libFuzzer (11.1.0) at the time the study was conducted.

7.3 Ethics

Our study was reviewed and approved by our institutional review board. The
study complied with the EU General Data Protection Regulation. We have paid
great attention to making sure that the code which other participants analyzed
had no information to identify the author of it.

7.4 Limitations

Our study has the following limitations.

Participants As Plöger et al., we recruited our participants from a university
course in computer science. While this is a legitimate user group, they do not
generalize to all developers. However, Naiakshina et al. [135] found that stu-
dents can be a helpful substitute for professional developers. Considering that
it would have been next to impossible to run a 14-hour controlled experiment of
this size with professional developers, we think this is an acceptable limitation.
Nevertheless, of course, no generalized statements can be made.

Sample Size Despite this being the largest study of its kind, the sample size is
still fairly small. Therefore, the statistical tests are subject to uncertainty.

Fuzzing Experience The majority of our participants had no previous fuzzing
experience and must be considered fuzzing novices and not representative of
specialized experts. However, this is a useful group to study since many orga-
nizations cannot afford specialized security testers or fuzzing experts, and thus,
we think understanding the issues novice developers face and improving us-
ability for them is a worthwhile goal.

Fuzzer Selection Our participants only worked with the fuzzer libFuzzer. For
other fuzzers, the situation may be different.

Guiding the Participants with Subtasks We decided to support our partici-
pants by breaking down the overall task into structured subtasks and thus pro-
viding guidance within the process of fuzzing. This was done with the intention
of being able to gather more information, especially in the later steps of the fuz-
zing process, which the study of Plöger et al. lacked. However, this type of
guidance does not fully reflect the situation a user is in outside of this study.

114 Chapter 7. Fuzzing Own Code or Code Written by Others

Support System We implemented a support system to overcome the problem
of participants getting stuck in the early stages of the fuzzing process and not
delivering many insights into problems in later stages. We adjusted the scores,
so the support process did not affect the quantitative scores, while at the same
time offering more insights.

7.5 Results

Of the 45 participants who started the study, 38 participants finished their pro-
gramming task (either treatment or control) successfully. Two did not manage
to create functional code, and 5 dropped out. 40 participants started the fuzzing
task and 34 participants finished it. Participant P35 worked on the fuzzing task,
submitted their work, and was asked to further work on the task as they did not
work on all subtasks and had time left, although they received multiple hints
and help in that process. However, they did not feel comfortable further work-
ing on the task and decided to drop out. We offered full compensation when
participating in the final interview, which they agreed upon. We also report the
results of P35 for the scores and in the qualitative analysis because, at the time of
their dropout, they could not have received any more points for the score. Of the
5 participants who did not have a partner at the end, 2 were fuzzing their own
code and 3 others’ code. Consequently, we quantitatively evaluated the data of
14 pairs. This results in a completion rate of 75.6%. This is more than double
that of Plöger et al.’s 31%. This leads us to believe the modifications we made to
the study protocol are beneficial.

We asked all of the 11 participants who dropped out what their reason was.
Three did not answer, five stated lack of time, and two reported illness. Only one
participant dropped out, stating that they did not feel able to continue despite
having received multiple hints and help.

We analyzed our data both quantitatively as well as qualitatively. For the
quantitative analysis, our main hypothesis was that the independent variable
code authorship - own vs. other - has an effect on the fuzzing outcome. For all
our statistical tests, we use two-tailed non-parametric tests, and we report effect
sizes, p-values, and confidence intervals with an α of 0.05.

7.5.1 Programming Task Results

We manually checked all 40 submissions of the programming tasks for function-
ality. Nineteen participants started in the control task, the color converter, and
all handed in a functional solution. This code was then discarded as it was not
needed any further.

Twenty-one participants started the treatment task, the parser. Two did not
manage to create a functional solution in the four-hour time period. Their code
was discarded and they were removed from the own-group since the lack of

7.5. Results 115

functional code meant that they would not be able to fuzz their own code. Nine-
teen handed in a functional solution. The 19 participants from the other-group
were randomly assigned codes from these 19 solutions.

Before we started the fuzzing task, we analyzed the 19 parser codes in-depth
to make sure the code was suitable for the study. While we expected most
parsers to contain bugs1, we needed to check that we had a mix of code with
and without bugs for our study and that the bugs were easy enough to find in a
ten-hour time frame.

To do this, we fuzzed the code ourselves. We also used a small custom cor-
pus. We found bugs in 15 of the 19 parsers within seconds. The four solutions
that did not crash quickly were then examined more thoroughly. First of all, we
checked whether all code was covered by our fuzz target, which was the case.
Then we created a fuzzing campaign including fuzzing with no sanitizers and
with ASAN, MSAN, and UBSAN and value profiles in parallel, which also in-
cluded our corpus. We ran the campaign for 24 hours but were not able to find
any bugs during that time in those four parsers. This gives us a nice mix of
parsers with and without bugs.

The two participants, P1 and P22, who did not successfully complete the pro-
gramming task and were removed from the main experiment were assigned to
fuzz a parser from the own-group to let them finish the study and gain qualita-
tive insights. They were not used for any of the statistical tests.

So at the end of the programming task, we had 19 participants starting the
fuzzing task on their own code and 19 participants starting the fuzzing task
randomly assigned code from the own-group. We also had P1 and P22 fuzzing
outside of the main experiment.

7.5.2 Support System

In the fuzzing task, we gave 45 hints in total, spread over 24 different partic-
ipants (53%). Only three participants who received a hint dropped out of the
study.

We also gave Help to participants 18 times, spread over 7 participants in
total. Of the participants that received Help, only one participant dropped out
of the study.

Overall, only 3 participants who benefited from the support system dropped
out of the study.

The distribution of Hints and Help given for the participants who fuzzed
their own code and the participants who fuzzed code from a different person
and for the specific steps are shown in Figure 7.1. The high number of hints
and help in the working fuzz target, building, and instrumentation steps are
particularly striking. Moreover, the hints for interpreting crashes are fairly high.

1Writing parsers is hard

116 Chapter 7. Fuzzing Own Code or Code Written by Others

Selected_Func. Working_FT Building Instr. Ran_Fuzzer ASAN_in_TPr Corpus/Dict Interp_Crash

Own Other Own Other Own Other Own Other Own Other Own Other Own Other Own Other

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Groups

n

Type Hint Help

FIGURE 7.1: Hints and Help given per steps for the fuzzing task

We will get into more detail about that as well as the differences between the
two groups in the later stages of our analysis.

7.5.3 Success Rate

The corresponding table for the success in the fuzzing task for our 11 pairs that
could find a bug can be seen in Table 7.3. We had no pair where both members
were successful. We had five pairs where both members failed. While in four
pairs, only the participant fuzzing their own code was successful, and only in
two pairs only the participant fuzzing the other’s code was successful. This
leads to an OR of 2. However, this result is not statistically significant, and the
CI is very wide [0.33, 7].

Own
success no success

Other success 0 2
no success 4 5

TABLE 7.3: Comparison of pairs for success

7.5. Results 117

Participant Sel. Func. Working FT Building Instr. Ran Fuzzer Sanitizer used Corpus/Dict Score Trig. UEIC Fixed UEIC Trig. bug Success

Own
4 1 / ✓ ✓/ ✓/ ✓+ ✓+ ✓+ ✓ ✓ ✓ 3 ✓ - ✓ ✓

6 1 / ✓ ✓/ ✓/ ✗ ✓ ✓ ✓ ✓ ✗ 5 ✗ ✗ ✗ -
7 1 / ✓ ✓/ ✓/ ✓* ✓ ✓ ✓ ✓ ✓ 6 ✗ ✓* ✓ ✓

15 1 / ✓ ✓/ ✓/ ✓ ✓ ✓ ✓ ✓ ✓ 7 ✓ - ✓ ✓

23 1 / ✓ ✓/ ✓* / ✗* ✗ ✗ ✗ ✗ ✗ 1 - - - -
28 1 / ✓ ✓/ ✓/ ✗* ✓* ✗* ✓ ✓ ✓ 3 ✗ ✗ ✗ -
30 5 / ✓ ✓/ ✓/ ✓ ✓ ✓ ✓ ✓ ✓ 7 ✗ - ✓ ✓

32 5 / ✓ ✓/ ✓/ ✓ ✓ ✓ ✓ ✓ ✓ 7 ✗ ✓ ✓ ✓

33 5 / ✓ 5 / ✓/ ✓ ✓ ✓ ✓ ✓ ✓* 6 ✗ ✓ ✓ ✓

34 1 / ✓ 1 / ✓/ ✓ ✓ ✓ ✓ ✓ ✓ 7 ✓ - ✓ ✓

37 1 / ✓ ✓/ ✓/ ✗ ✓ ✓ ✓ ✓ ✓ 6 ✗ ✗ ✗ -
43 2 / ✓ ✓/ ✓/ ✗ ✓ ✗ ✓ ✗ ✓ 4 ✗ ✗ ✗ -

Own - with no bug
16 1 / ✓ ✓/ ✓/ ✓ ✓ ✓ ✓ ✓ ✓ 7 ✗ ✓ - -
17 1 / ✓ 1 / ✓/ ✓ ✓ ✓ ✓ ✓ ✓ 7 ✗ ✓ - -
39 1 / ✓ ✓/ ✓/ ✓* ✓* ✓ ✓ ✓* ✓ 3 ✗ ✓* - -
40 1 / ✓ ✓/ ✓/ ✓ ✓ ✓ ✓ ✓ ✓ 7 ✗ ✓ - -

Other
3 1 / ✓* ✓/ ✓/ ✓* ✓ ✓ ✓ ✓ ✓ 4 ✗ ✓* ✓ ✓

5 1 / ✓ ✓/ ✓/ ✓+ ✓+ ✓+ ✓ ✓ ✓ 3 ✓ - ✓ ✓

8 1 / ✓ ✓/ ✓/ ✓ ✓ ✗ ✓ ✓ ✓ 7 ✓ - ✓ ✓

9 1 / ✓ ✓/ ✓/ ✓ ✓ ✗ ✓ ✓ ✓ 7 ✗ ✓ ✓ ✓

11 1 / ✓ ✓/ ✓/ ✓ ✓ ✓ ✓ ✓ ✓ 7 ✗ ✓ ✓ ✓

12 1 / ✓ ✓/ ✓/ ✗ ✓ ✓ ✓ ✓ ✗ 5 ✗ ✓ ✗ -
13 1 / ✓ ✓/ ✓/ ✓* ✓ ✗ ✓ ✗ ✓ 4 ✗ ✓* ✓ ✓

19 1 / ✓ ✓/ ✓/ ✗ ✓* ✓ ✓ ✓ ✗ 3 ✓ ✗ ✗ -
20 1 / ✗ ✓/ ✓/ ✓+ ✓ ✗ ✓ ✗ ✗ 3 ✗ ✓* ✓ ✗

21 1 / ✓ ✓/ ✓/ ✗ ✓ ✓ ✓ ✓ ✓ 6 ✗ ✗ ✗ -
29 1 / ✓ ✓/ ✓/ ✓ ✓* ✓ ✓ ✓ ✓ 5 ✗ ✓ ✓ ✓

31 1 / ✗ ✓/ ✗/ ✗ ✗ ✗ ✗ ✗ ✗ 0 - - - -
44 1 / ✓ ✓/ ✓/ ✓* ✓ ✓ ✓ ✓ ✓* 5 ✗ ✓* ✓ ✓

Other with no bug
36 1 / ✓ ✓/ ✓/ ✓+ ✓ ✓ ✓ ✓ ✓ 6 ✗ ✓ - -
41 1 / ✓ ✓/ ✓/ ✗ ✓ ✗ ✓ ✗ ✓ 4 ✗ ✗ - -
10 1 / ✓ ✓/ ✓/ ✓* ✓ ✓ ✓ ✓ ✓ 6 ✗ ✓* - -

RC Task - Unusable programming solution
22 1 / ✓ ✓/ ✓+ / ✓+ ✓+ ✓+ ✓ ✓+ ✗ 1 ✓ - ✓ ✗

1 1 / ✓ ✓* / ✓/ ✗+ ✓* ✓* ✓ ✗ ✓ 2 ✗ ✗ ✗ -

TABLE 7.4: Results of All Participants for the Fuzzing Task: ✓: suc-
cess - ✗: failure - green: success without support - yellow: success
with support - blue: success after support in previous step - red:

no success - orange: prior knowledge of fuzzing

7.5.4 Fuzzing Steps

As described in section 7.2.5 we also computed a more detailed stepwise score
of the fuzzing task. The results can be found in Table 7.4.

In the table, success is denoted with ✓, while failure is denoted with ✗. We
have divided success into three levels to specify further how our participants
succeeded in the different fuzzing steps. The resulting five outcomes are:
green: The color green is used when a participant was successful in this and all
dependent steps without getting any hint or help. This is equivalent to receiving
a point.
blue: The color blue is used if a participant succeeded in a step without any hint
or help in that step but received a hint or help in a dependent step before. The
participant did not receive a point in this step since they would not have reached
this step without our support. However, the blue highlights that the step itself
did not cause the participant a problem, which is relevant to the usability eval-
uation of the fuzzer.
yellow: If a participant succeeded in a step but received a hint or help in it, it is
colored in yellow.

118 Chapter 7. Fuzzing Own Code or Code Written by Others

red: A step is marked in red if the participant did not succeed.
gray: The color gray is used if a step could not be positively or negatively been
rated.

When we gave a hint, it is shown with an asterisk, * . For help, we used the
plus sign, +.

The Table 7.4 is structured as followed:
Selected function: The column Sel. Func. is twofold and depicts on the left

side the number of functions a participant tried to fuzz. On the right side, it
is shown whether the participant chose a meaningful function to fuzz in the
context of the task.

Working fuzz target: Working FT is tripartite. at first, it is shown whether the
fuzz target was buildable, followed by being meaningful and triggerable. A fuzz
target is buildable if commands exist so it can be built, or, in other words, if it is
syntactically correct. A meaningful fuzz target is a fuzz target where it is tried to
fuzz a function that is reasonable with respect to the task. It has to be a function
of the target program. A triggerable fuzz target is able to repeatedly trigger a bug
in the target program.

Building: The column Building shows whether the participant was able to
build all necessary code,

Instrumentation: while in Instr. it is shown whether the participant was able
to instrument all necessary code.

Ran fuzzer: Whether a participant Ran Fuzzer is displayed in the correspond-
ing column.

Sanitizer used: The usage of sanitizers, most likely the address sanitizer, is
presented in the column Sanitizer used.

Corpus or dictionary: Analogously, this applies to the column Corpus/Dict.
Score: The score of each participant, as specified in Section 7.2.5 can be seen

in the last column before the section.
Triggered UEIC: The first column Trig. UEIC (User Error Induced Crash)

after the section shows whether the participant triggered a user error induced
crash (UEIC). These are not true program crashes but are crashes that are caused
by the user, for example, due to programming mistakes in the fuzz target.

Fixed UEIC: In Fixed UEIC it is shown whether the participant was able to
overcome the UEIC.

Triggered bug: Whether a participant triggered a bug in the target program
is depicted in the column Trig. bug

Correctly interpreting bug: The last column shows whether the participant
found a bug in the target program and also recognized it as a bug, which is the
equivalent to "success" in the studies of Plöger et al.

7.5. Results 119

7.5.5 Fuzzing Scores

Scoring Procedure When we aggregated the data, we realized that due to the
large amount of information per participant and the complexity of the task, scor-
ing the participants could be error-prone. Therefore, we decided to score each
participant by 3 researchers independently and in parallel. We started with 10
% (4) of our participants and compared all 3 scorings afterwards. Possible dif-
ferences were resolved through discussion. This was done to ensure that all
researchers had the same concept for the scoring. We repeated the process again
with 4 participants. After that, it became clear that all 3 researchers had the same
concept so we scored the remaining participants in one go. In summary, every
participant was scored by 3 researchers independently and in parallel, and pos-
sible differences were resolved through discussion.

The fuzzing score of a participant could lie between 0 and 7. For the 14 pairs,
the mean of the fuzzing score for the own-group is 5.14, and for the other-group,
it is 4.71. This results in a difference in means of 0.43, CI [-0.91, 1.76], p = .48
(Wilcoxon signed rank). Similar to the above, we can detect no statistically sig-
nificant difference. In addition, the mean difference of 0.43 is fairly small, which
means there would also be little practical difference, even if it was statistically
significant.

Participants with prior experience Participants P4 and P44 as well as P30 and
P19 reported prior knowledge in fuzzing C/C++ code. They are depicted in
orange in Table 7.4. Despite this, their results were not better than the results of
the other participants. On the contrary, if anything they performed worse.

7.5.6 Crash Handling

The results of how our participants dealt with crashes produced by the fuzzer
can be seen in the second part of Table 7.4. The color scheme and character
selection follow the same principle as in the first part of the table.

Overall, we did not find any particular differences between the two groups
when it came to handling crashes, which we found surprising since it is plausi-
ble that knowing the code in which the bug is contained might give an edge.

Crash Output: Four things in the output of the fuzzer have left a lasting
impression on our participants.

Type of crash: The type of crash was mentioned by nearly all of our partici-
pants. They felt it helped to understand the situation and they were thus pleased
with the information.

Crash file: The crash file or the crashing input respectively was also men-
tioned by many participants as one of the information they received from the
fuzzer. The crashing input was actively used to better localize the problem’s
cause. However, there was also some confusion regarding crashes that were
caused by the empty input.

120 Chapter 7. Fuzzing Own Code or Code Written by Others

I got the crash file, but it was empty. I relied on that. I have no idea
what the reason was. That also bothered me a bit. (P23 of own group)

Stack trace: If the participants used the address sanitizer, the stack trace was
heavily used to localize the crash and it was rated very positively by our partic-
ipants. In this, the crashing function, the line of code and the sequence of called
functions were highlighted as very useful.

Heap info: The heap information provided by the address sanitizer was the
last of the four outstanding provided information. Although this was more of a
negative example, as nearly nobody was able to use it effectively, but at least it
looked pretty:

There was a nice colored diagram of the memory with the bytes and
how far they’re used and stuff. And which ones are partially ac-
cessible and so on. Looks nice, but didn’t help me much. (P43 of
own-group)

Problems of Interpretation

Nevertheless, several participants had severe problems effectively using the in-
formation provided to determine the cause of the crash and how to fix it. Partic-
ipant P43 of the own-group answered the question of what the fuzzer provided
to fix crashes:

For the most part, lots of crap. That was my big problem, I must
say. The fuzzer detected bugs wonderfully. How to solve these bugs
was very unclear to me. And that was my biggest problem with the
fuzzer. (P43 of own-group)

Fixing Crashes

The user error-induced crashes were a very noticeable problem for our partici-
pants. Of the 34 participants who ran the fuzzer, 26 triggered a UEIC and only
ten of those 26 were able to find and fix it without any support. Accordingly,
this was a part where support was regularly sought. We were not able to find
meaningful differences in either the frequency of UEIC or the success of fixing
them between groups.

Moreover, noticeable differences between trying to fix UEICs and real bugs
in the program under test could not be found, which is not very surprising since
the fuzzer can not distinguish between them and thus presents the same type of
information for both.

Fifteen of our participants reached the stage of trying to fix the bugs found
by the fuzzer. Nine of the 15 participants were able to remove all bugs the fuzzer
had found. However, one of the participants actually cut the functionality of the
program in the process. It is also noteworthy that three participants, P8 and

7.6. Qualitative Analysis 121

P9 of the own-group, and P30 of the other-group, altered the code of the target
function to overcome problems caused by a bad fuzz target. This resulted in
crashes or leaks when running the shell or the inability to compile it alone. But
the code was functional with the respective fuzz target.

Overall, the remaining participants were fairly successful in removing the
bugs reported by the fuzzer. Moreover, no difference can be seen between the
own-group participants and the other-group participants.

7.5.7 System Usability Scale

In the post-questionnaire, we asked our participants to fill out the System Us-
ability Scale (SUS) to determine the usability of libFuzzer. The own-group had
a median of 61.25 and mean of 59.69, while the other-group had a median of
45 and mean of 47.94. A Wilcoxon ranked sum test just misses statistical signif-
icance, p=0.051. However, a more than 15-point difference in the median and
more than a 10-point difference in means of a SUS score is practically relevant.
For more information on interpreting p values and effect sizes, please see Cum-
ming and Finch [46]. To determine the effect size, we again used the difference
in means. The difference in means showed an effect size of MD = 11.75, CI [0.26,
23.23]. It is noteworthy that this CI is statistically significant. However, this is
down to the bootstrapping method used to compute the CI. This tends to pro-
duce smaller confidence intervals [55], which causes the confidence interval not
to include 0 even though the Wilcoxon ranked sum test does not show statistical
significance. We interpret these results to mean that the population average can
range from no impact to a positive impact for those who fuzz their own code.

However, it is even more noteworthy that even the upper score of 61.25 is
a pretty bad SUS score, as described by Jeff Sauro [165]. This would be the
equivalent of an F in a school grading system. Considering the context that our
participants had just completed a semester voluntarily learning C and assembly,
these scores are particularly damming and highlight that fuzzers have much
potential for improvement for this user group. To add some more insights into
this, we conducted a qualitative analysis of the diaries and interviews.

7.6 Qualitative Analysis

We used inductive coding with two researchers to qualitatively analyze the par-
ticipants’ interviews and their diaries. We adopted the coding process of Plöger
et al. We randomly divided the 35 interviews into twelve sets of three interviews
each. Starting with the first set, the two researchers coded the three interviews of
the set independently and in parallel. The resulting codes and codebooks were
discussed, changes were incorporated and they agreed on a common codebook.
The changes were applied to all interviews coded so far. The resulting codebook

122 Chapter 7. Fuzzing Own Code or Code Written by Others

was used to code the interviews of the next set. This process was repeated until
all interviews were coded.

7.6.1 Familiarization with New Code

The participants of the other-group described the familiarization with the new
code at first as not very difficult. To get to know the code, they read the code
but also played with the program to see how it behaved with different inputs.
Although, some of them specifically stated that they did not take a closer look
at the code at this point, as they anticipated that they had to dive in deeper in
the later stages of the task.

7.6.2 Selecting the Function to Fuzz

The selection of the target function did not pose a problem for almost all partic-
ipants. For our participants of the own-group, the by far most common reason
for choosing a function was that the function was the only self-written function
or that it was the highest self-written function in terms of code depths.

The reason for choosing the only self-written function was also sometimes
the reason to choose a function for the participants of the other-group. Even
though they did not write the chosen function themselves, they recognized the
function as the function of the programming task of the own-group and thus
chose it. However, their most common reasons for choosing a function to fuzz
were working directly with the user input.

7.6.3 Writing the Fuzz Target

Principally, participants in both groups showed a sufficient understanding of
what a fuzz target is. Only the two participants, P1 and P22, who had also solved
the RC programming task in such a way that it could not be used for fuzzing,
and the participants P23 and P31, did not have a sufficient understanding.

Looking at the fuzzing process chronologically, only very few of our partic-
ipants reported problems in this stage of the fuzzing process. This was mostly
the case because participants of both groups were able to write fuzz targets that
were buildable and meaningful. The few problems actually referred exclusively to
using the parameters of the LLVMFuzzerTestOneInput function and then adapt-
ing them to the target function.

7.6.4 Triggerable Fuzz Target

Creating a triggerable fuzz target is the step with the most pronounced differ-
ence between the groups and also the first step many participants struggled
with. This was a severe problem for many of our participants resulting in only
12 of our 34 finished participants to fulfill that task on their own. There were

7.6. Qualitative Analysis 123

noticeable differences between the two groups in this regard. More than twice
as many participants from the own-group were able to solve this step without
support than from the other-group.

Many of our participants made mistakes when passing strings between the
fuzzer and the target program resulting in UEICs. P39 of the own-group stated
on the matter:

... that scanRC sets initial conditions... that the output did not end
on the terminal symbol. This also led to errors for me, because I
assumed this in the scanRC function.

7.6.5 Building & Instrumentation

The building and instrumentation were the second major problematic step our
participants encountered. In contrast to the step of writing the fuzz target, we
were not able to find striking differences between both groups.

It should be said at the outset that some of the participants left the instru-
mentation almost completely out of the equation. Only two participants had a
sufficient understanding of what instrumentation is. The other participants ei-
ther tried to gather information about it but failed or admitted that they read the
word but ignored it completely. Participant P21 of other-group said:

I honestly haven’t really thought about it that much. I thought that
you just somehow prepare it in such a way that it all works together.

The participants clearly focused on putting the right flags at the right posi-
tion in the Makefile or in the command executed on the command line. A result
of that was that some participants only instrumented the fuzz target and not all
other necessary code since this seemed to be the easiest way of achieving the
compilation. Frequently, participants could not compile the code by guessing
and went on to adjust the code to solve the problem. The most popular way was
to remove the main function of the program under test.

Because I have found no code example for the application of this
fuzzer-no-link. To make it simple, I commented out the main func-
tion and then simply compiled everything with libFuzzer. That worked,
but then the code is no longer executable. And you have to comment
out the main function again and again when you are done with fuz-
zing and then compile again. (P39 of own-group)

The struggle of our participants also resulted in the need for hints and help.

7.6.6 Running the Fuzzer

The groups did not differ in the perceived information that libFuzzer displayed
to them. The most noticed information was the number of all runs, the event

124 Chapter 7. Fuzzing Own Code or Code Written by Others

codes, and the coverage. Most of the time, however, the coverage was used to
determine if the fuzzer was running properly. The other markers for a properly
running fuzzer were that the fuzzer runs at all and the occurrence of crashes.
Overall, there was a slight uncertainty as to whether the fuzzer was actually
doing useful things. Participant 36 of the other-group stated:

As far as that is concerned, I wasn’t sure in the end. Even now, I’m
still not sure if the fuzzer really ran correctly.

7.6.7 Crash Handling

The results of how our participants dealt with crashes produced by the fuzzer
can be seen in the second part of Table 7.4. The color scheme and character
selection follow the same principle as in the first part of the table.

Overall, we did not find any particular differences between the two groups
when it came to handling crashes. This was slightly surprising since it had
seemed plausible, that knowing the code where the crash happens would be
beneficial.

7.6.8 Problems of Interpretation

Nevertheless, several participants had severe problems effectively using the in-
formation provided to determine the cause of the crash and how to fix it. Partic-
ipant P43 of the own-group answered the question of what the fuzzer provided
to fix crashes:

For the most part, lots of crap. That was my big problem, I must
say. The fuzzer detected bugs wonderfully. How to fix these bugs
was very unclear to me. And that was my biggest problem with the
fuzzer. (P43)

7.6.9 Fixing Crashes

The user error-induced crashes were a very noticeable problem for our partici-
pants. Of the 34 participants who ran the fuzzer, 27 triggered a UEIC and only
ten of those 27 were able to find and fix it without any support. Accordingly,
this was a part where support was regularly sought. We were not able to find
meaningful differences in either the frequency of UEIC or the success of fixing
them between the own- and other-group.

Moreover, noticeable differences between trying to fix UEIC and real bugs in
the program under test could not be found, which is not very surprising since
the fuzzer can not distinguish between them and thus presents the same type of
information for both.

Fifteen of our participants reached the stage of trying to fix the bugs found
by the fuzzer. Nine of the 15 participants were able to remove all bugs the fuzzer

7.7. Discussion 125

had found. However, one of the participants actually cut the functionality of the
program in the process. Surprisingly, the code coverage information revealed
indications for dead code for the code of four participants, which proved to
be true. The participants did not detect this. It is also noteworthy that three
participants, P8 and P9 of the own-group, and P30 of the other-group, altered
the code of the target function to overcome problems caused by an insufficient
fuzz target. This resulted in crashes or leaks when normally running the shell or
the inability to compile it, but the code was functional with the respective fuzz
target.

Overall, the remaining participants were fairly successful in removing the
bugs reported by the fuzzer. Moreover, no difference can be seen between the
Own-Group participants and the Other-Group participants.

7.6.10 Perceived Difficulty of Fuzzing Other Peoples’ Code

In the interviews, it was noticeable that none of the participants in the other-
group associated the difficulties they encountered with fuzzing with the fact
that they were fuzzing other people’s code.

Also, when asked if it would have been easier to fuzz their own code, the
other-group showed a spread of opinions. On the one hand, some of the par-
ticipants, for example, P44, stated that fuzzing their own code would have been
easier.

Yes, so for sure it’s easier. You know your own code, so you don’t
have to deal with how it works.

On the other hand, There was a broader movement within the other-group that
would not have thought this would be easier. One of them was participant P21:

Probably not. The understanding of the code itself was not the prob-
lem for me personally.

In contrast to that, the own-group was uniformly sure that it would be much
harder to fuzz code from someone else. Participant P8 said:

I think so. Because I had such a good understanding of my code.
[...] But I think it would have been more difficult [to fuzz some elses
code].

7.7 Discussion

7.7.1 Own Code vs. Others’ Code

When we take a look at the situation from a practical point of view, we did
not find any statistically significant differences between the group that fuzzed

126 Chapter 7. Fuzzing Own Code or Code Written by Others

their own code and those who fuzzed the other participants’ code. However, it
must be noted that while we recruited as many participants from the systems
programming course as possible, our sample is still fairly small. Thus only large
effects or even very large effects are likely to be statistically significant. The
mean difference in the fuzzing score, however, was fairly small, only 0.43 on a
7-point scale. So even if this were statistically significant, it would have little
practical implication. The odds ratio for success of 2 in favor of fuzzing one’s
own code was also not statistically significant but would be a more meaningful
effect.

This might be attributed to the fact that the creation of a working fuzz target
seemed to be easier for the participants that fuzzed their own code. Moreover,
small advantages could be seen for the recognition of bugs, also for participants
of the own-group.

Interestingly, the biggest difference could be seen in the participants’ usabil-
ity assessment of libFuzzer. Here the own group gave libFuzzer an 11-point
better SUS score than the other group. This is interesting because the fuzzer was
the same for both groups, but obviously, the experience was a different one.

To summarize, we do not have robust evidence that either group has a sta-
tistical or practical advantage over the other. But it does look like that the own
group might have a slight edge. This, however, needs to be tested again in future
work.

So in the debate about which group (own vs other) is better suited to fuzz
code, we would currently recommend adopting the position that for our CS
students it doesn’t matter, but it does matter that someone does.

However, it is also clear that the usability of libFuzzer needs to be improved,
as can be seen in the low SUS scores and the many problems both groups had.

7.8 Summary

In this paper, we present the first controlled experiment examining the effect of
fuzzing code written by oneself or by others. We conducted our study with 45
CS students, of whom 34 made it all the way through. Our results show little
difference between the two groups. However, there are some indications that the
own group might have a slight advantage. We plan future studies to examine
whether these differences can be substantiated.

But we also highlight that libFuzzer - the fuzzer we used in our study - poses
significant challenges for fuzzing novices, and we call on the community to im-
prove fuzzing usability.

127

Chapter 8

Conclusion

Although fuzzing has good success in large companies and has been a hot topic
in academia for several years, there had not been any studies on its usability.
Therefore, I conducted four user studies to shed light on the usability perspec-
tive of fuzzing.

In the first study, I qualitatively evaluated the usability of the Clang Static
Analyzer and libFuzzer with CS students and CTF players. In terms of fuzzing,
I found several usability issues with libFuzzer. Furthermore, I found indications
that CTF players, as a representative of hackers, had the same problems as the
CS students. Although, they were better able to overcome those problems and
dig deeper into the fuzzing process. Unfortunately, the study struggled with a
comparably low number of participants. Moreover, the CS students failed fairly
early in the fuzzing process, so I could only retrieve sparse insights into the later
steps.

In the second study, I examined the usability of the two most popular fuzzers,
AFL and libFuzzer, with CS students to get deeper insights into the later steps
of the fuzzing process and to improve the insights of the previous study. The re-
sults showed that the CS students achieved better results with AFL and favored
it from a usability perspective. Moreover, I was able to solidify the afore-found
usability issues of libFuzzer and additionally found usability issues encountered
in the later steps of the fuzzing process. Furthermore, I highlighted the positive
aspects of both fuzzers.

To be able to make a more generalizable statement on the findings, I con-
ducted a third study where I replicated the previously conducted study with
freelance developers. The freelancers performed very similarly to the CS stu-
dents and again achieved better results using AFL. Moreover, AFL was again
more appreciated. The results showed that CS students are adequate substitutes
for freelance developers and potentially professional developers.

Finally, I conducted a user study to provide first insights on whether it is
more beneficial to fuzz someone’s own code and code written by others. The
results did not show any evidence that a practical difference exists between fuz-
zing someone’s own code or the code of others.

Overall, I was able to derive the following insights from my studies:

128 Chapter 8. Conclusion

Fuzzing Usability I propose the following recommendations extracted from
the results of my studies to improve the usability of fuzzing so that the barrier
to entry can be overcome more easily and that fuzzing becomes accessible to a
broader audience.

• Assist users in finding suitable functions to fuzz While the CTF players
could find meaningful functions to fuzz in a straightforward manner, the
CS students and freelance developers struggled more in this step. Since it
is essential for an efficient fuzzing run to choose the best possible functions
to fuzz, it would be helpful to assist users in making a good decision. This
can also lower the entry bar to start with fuzzing as it is one of the first steps
to do and can therefore contribute to fuzzing being used by non-experts as
well.

• Fuzz target creation In my study about the usability of a static code anal-
ysis tool and libFuzzer, I found that especially the non-expert participants
struggled heavily with writing more than the most simple fuzz target. I
concluded from this that it would be very helpful to support users in cre-
ating fuzz targets or improving the coverage-guided self-exploration. This
recommendation was supported by my findings in comparing AFL and
libFuzzer, where the participants were very vocal about the positive as-
pects of fuzz-target-less fuzzing. Therefore, I extend the recommendation
to be able to fuzz arbitrary functions without much knowledge of fuzzing.
However, this is, of course, an open research question.

• Build automation The automation of the building process would be highly
desirable as the process itself can require a lot of manual work and, fre-
quently, advanced knowledge about the interaction and connections of
several components.

• Sanitizer Usage The way in which sanitizers should be applied was a point
of discussion. At first, I recommended making it an opt-out option so that
novice users would use it without thinking about it. However, in our later
studies, I found that sanitizers can also be overwhelming, and an opt-in
might be a more usable solution. Undoubtedly, sanitizers can be very ben-
eficial and are all in all recommended for users to get more information on
the fuzzer.

• Error Messages AFL provided meaningful error messages to the partici-
pants so that they could overcome problems and get deeper into the fuz-
zing process. Adopting those error messages is recommended.

• UI Guidance In the study about the comparison of AFL and libFuzzer,
the replication and the comparison of fuzzing self-written code or code
written by others, it has been shown that the guidance of the participants
with subtasks has enabled them to reach deeper into the fuzzing process.

Chapter 8. Conclusion 129

Therefore, it can be helpful if this type of guidance is integrated into the
user interface of a fuzzer. Especially a graphical interface, which gives
information about the fuzzing steps and, e.g., the use of sanitizers, can
bring advantages. It can also be good if, for example, experts can opt out
of the graphical interface.

• Metrics of Fuzzing Runs Even though some metrics by AFL and libFuzzer
about the fuzzing run are provided, they did not help the participants as-
sess whether the fuzzer was running properly. Developing more meaning-
ful, usable, and easier-to-interpret metrics is an interesting open research
question.

• Crash Analysis In our studies, user error-induced crashes happened very
frequently. Participants had problems understanding the cause of those
crashes and were often overwhelmed by getting to the core issue of a crash.
It would be useful if fuzzers could recognize if a crash originated from a
problem in the fuzz target and not from a bug in the target program.

• Better documentation This is not a very glamorous recommendation. Nev-
ertheless, the documentation of AFL and libFuzzer was rated anything but
good. Proper documentation can increase usability.

In conclusion, I hope that these initial findings on the usability of fuzzers
will help non-experts use them more frequently and with fewer impediments
and that others will take up my research and take it further.

131

Bibliography

[1] Y. Acar, S. Fahl, and M. L. Mazurek. “You are Not Your Developer, Either:
A Research Agenda for Usable Security and Privacy Research Beyond
End Users”. In: 2016 IEEE Cybersecurity Development (SecDev). 2016, pp. 3–
8.

[2] Y. Acar et al. “You Get Where You’re Looking for: The Impact of Infor-
mation Sources on Code Security”. In: 2016 IEEE Symposium on Security
and Privacy (SP). 2016, pp. 289–305.

[3] Yasemin Acar et al. “Security Developer Studies with GitHub Users: Ex-
ploring a Convenience Sample”. In: Thirteenth Symposium on Usable Pri-
vacy and Security (SOUPS 2017). Santa Clara, CA: USENIX Association,
July 2017, pp. 81–95. ISBN: 978-1-931971-39-3. URL: https://www.usenix.
org/conference/soups2017/technical-sessions/presentation/acar.

[4] AFL. https://github.com/google/AFL. Accessed: November 2022.

[5] AFL++. https : / / github . com / AFLplusplus / AFLplusplus. Accessed:
November 2022.

[6] Andrei Arusoaie et al. “A comparison of open-source static analysis tools
for vulnerability detection in C/C++ Code”. In: Proceedings - 2017 19th
International Symposium on Symbolic and Numeric Algorithms for Scientific
Computing, SYNASC 2017 (2018), pp. 161–168. DOI: 10.1109/SYNASC.
2017.00035.

[7] Cornelius Aschermann et al. “Ijon: Exploring Deep State Spaces via Fuz-
zing”. In: 2020 IEEE Symposium on Security and Privacy, SP 2020, San Fran-
cisco, CA, USA, May 18-21, 2020. IEEE, 2020, pp. 1597–1612. DOI: 10.1109/
SP40000.2020.00117. URL: https://doi.org/10.1109/SP40000.2020.
00117.

[8] Nathaniel Ayewah and William Pugh. “A Report on a Survey and Study
of Static Analysis Users”. In: Proceedings of the 2008 Workshop on Defects
in Large Software Systems. DEFECTS ’08. Seattle, Washington: Association
for Computing Machinery, 2008, pp. 1–5. ISBN: 9781605580517. DOI: 10.
1145/1390817.1390819. URL: https://doi.org/10.1145/1390817.
1390819.

https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/acar
https://github.com/google/AFL
https://github.com/AFLplusplus/AFLplusplus
https://doi.org/10.1109/SYNASC.2017.00035
https://doi.org/10.1109/SYNASC.2017.00035
https://doi.org/10.1109/SP40000.2020.00117
https://doi.org/10.1109/SP40000.2020.00117
https://doi.org/10.1109/SP40000.2020.00117
https://doi.org/10.1109/SP40000.2020.00117
https://doi.org/10.1145/1390817.1390819
https://doi.org/10.1145/1390817.1390819
https://doi.org/10.1145/1390817.1390819
https://doi.org/10.1145/1390817.1390819

132 Bibliography

[9] Domagoj Babić et al. “FUDGE: Fuzz Driver Generation at Scale”. In: ES-
EC/FSE 2019. Tallinn, Estonia: Association for Computing Machinery,
2019, pp. 975–985. DOI: 10.1145/3338906.3340456. URL: https://doi.
org/10.1145/3338906.3340456.

[10] Titus Barik et al. “From Quick Fixes to Slow Fixes: Reimagining Static
Analysis Resolutions to Enable Design Space Exploration”. In: 2016 IEEE
International Conference on Software Maintenance and Evolution (ICSME).
2016, pp. 211–221. DOI: 10.1109/ICSME.2016.63.

[11] Jason Bau et al. “Vulnerability factors in new web applications: Audit
tools, developer selection & languages”. In: Stanford, Tech. Rep (2012).

[12] Al Bessey et al. “A Few Billion Lines of Code Later: Using Static Analy-
sis to Find Bugs in the Real World”. In: Commun. ACM 53.2 (Feb. 2010),
pp. 66–75. ISSN: 0001-0782. DOI: 10.1145/1646353.1646374. URL: https:
//doi.org/10.1145/1646353.1646374.

[13] Paul E. Black, Vadim Okun, and Barbara Guttman. Guidelines on Min-
imum Standards for Developer Verification of Software. en. Oct. 2021. DOI:
https://doi.org/10.6028/NIST.IR.8397. URL: https://tsapps.nist.
gov/publication/get_pdf.cfm?pub_id=933350.

[14] William Blair et al. “HotFuzz: Discovering Algorithmic Denial-of-Service
Vulnerabilities Through Guided Micro-Fuzzing”. In: Proceedings 2020 Net-
work and Distributed System Security Symposium (2020). DOI: 10.14722/
ndss.2020.24415. URL: http://dx.doi.org/10.14722/ndss.2020.
24415.

[15] William Blair et al. “HotFuzz: Discovering Algorithmic Denial-of-Service
Vulnerabilities Through Guided Micro-Fuzzing”. In: 27th Annual Network
and Distributed System Security Symposium, NDSS 2020, San Diego, Califor-
nia, USA, February 23-26, 2020. The Internet Society, 2020. URL: https:
/ / www . ndss - symposium . org / ndss - paper / hotfuzz - discovering -
algorithmic-denial-of-service-vulnerabilities-through-guided-
micro-fuzzing/.

[16] Marcel Böhme, Cristian Cadar, and Abhik Roychoudhury. “Fuzzing: Chal-
lenges and Reflections”. In: IEEE Softw. 38.3 (2021), pp. 79–86. DOI: 10.
1109/MS.2020.3016773. URL: https://doi.org/10.1109/MS.2020.
3016773.

[17] Marcel Böhme, Valentin J. M. Manès, and Sang Kil Cha. “Boosting fuzzer
efficiency: an information theoretic perspective”. In: ESEC/FSE ’20: 28th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Virtual Event, USA, November 8-13,
2020. Ed. by Prem Devanbu, Myra B. Cohen, and Thomas Zimmermann.
ACM, 2020, pp. 678–689. DOI: 10.1145/3368089.3409748. URL: https:
//doi.org/10.1145/3368089.3409748.

https://doi.org/10.1145/3338906.3340456
https://doi.org/10.1145/3338906.3340456
https://doi.org/10.1145/3338906.3340456
https://doi.org/10.1109/ICSME.2016.63
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1646353.1646374
https://doi.org/https://doi.org/10.6028/NIST.IR.8397
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933350
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=933350
https://doi.org/10.14722/ndss.2020.24415
https://doi.org/10.14722/ndss.2020.24415
http://dx.doi.org/10.14722/ndss.2020.24415
http://dx.doi.org/10.14722/ndss.2020.24415
https://www.ndss-symposium.org/ndss-paper/hotfuzz-discovering-algorithmic-denial-of-service-vulnerabilities-through-guided-micro-fuzzing/
https://www.ndss-symposium.org/ndss-paper/hotfuzz-discovering-algorithmic-denial-of-service-vulnerabilities-through-guided-micro-fuzzing/
https://www.ndss-symposium.org/ndss-paper/hotfuzz-discovering-algorithmic-denial-of-service-vulnerabilities-through-guided-micro-fuzzing/
https://www.ndss-symposium.org/ndss-paper/hotfuzz-discovering-algorithmic-denial-of-service-vulnerabilities-through-guided-micro-fuzzing/
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1145/3368089.3409748
https://doi.org/10.1145/3368089.3409748
https://doi.org/10.1145/3368089.3409748

Bibliography 133

[18] Marcel Böhme, Laszlo Szekeres, and Jonathan Metzman. “On the Reli-
ability of Coverage-Based Fuzzer Benchmarking”. In: Proceedings of the
44th International Conference on Software Engineering (ICSE ’22), May 22–
27, 2022, Pittsburgh, PA, USA. ACM, May 2022.

[19] Guillaume Brat et al. “IKOS: A Framework for Static Analysis Based on
Abstract Interpretation”. In: Software Engineering and Formal Methods. Ed.
by Dimitra Giannakopoulou and Gwen Salaün. Cham: Springer Interna-
tional Publishing, 2014, pp. 271–277.

[20] Tegan Brennan, Seemanta Saha, and Tevfik Bultan. “JVM Fuzzing for JIT-
Induced Side-Channel Detection”. In: Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. ICSE ’20. Seoul, South
Korea: Association for Computing Machinery, 2020, pp. 1011–1023. DOI:
10.1145/3377811.3380432. URL: https://doi.org/10.1145/3377811.
3380432.

[21] Axel Buchner et al. G*Power 3.1 manual. Düsseldorf, 2020.

[22] Alexandra Bugariu and Peter Müller. “Automatically Testing String Sol-
vers”. In: Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. ICSE ’20. Seoul, South Korea: Association for Com-
puting Machinery, 2020, pp. 1459–1470. DOI: 10.1145/3377811.3380398.
URL: https://doi.org/10.1145/3377811.3380398.

[23] Meta Bug Bounty Program Info. https://www.facebook.com/whitehat.
Accessed: November 2022.

[24] Microsoft Bug Bounty Program. https://www.microsoft.com/en- us/
msrc/bounty. Accessed: November 2022.

[25] Security Bug Bounty Program. https://www.mozilla.org/en-US/securit
y/bug-bounty/. Accessed: November 2022.

[26] Bugs found in Chrome with fuzzing. https://bugs.chromium.org/p/chr
omium/issues/list?q=label%3AClusterFuzz%20-status%3AWontFix%
2CDuplicate&can=1. Accessed: February 2021.

[27] Benjamin Carlisle et al. “On the other side of the table: Hosting capture
the flag (ctf) competitions”. In: Proceedings of the 6th Workshop on Security
Information Workers, ser. WSIW. Vol. 20. 2020.

[28] Catalogue Fuzzing. https://wcventure.github.io/FuzzingPaper/. Ac-
cessed: June 2022.

[29] Checkmarx SAST. https://www.checkmarx.com/de/products/static-
application-security-testing. Accessed: November 2022.

[30] Checkmarx SAST license agreement. https://checkmarx.atlassian.net/
wiki/spaces/CCD/pages/1253442222/CxIAST+End+User+License+
Agreement+EULA. Accessed: November 2022.

https://doi.org/10.1145/3377811.3380432
https://doi.org/10.1145/3377811.3380432
https://doi.org/10.1145/3377811.3380432
https://doi.org/10.1145/3377811.3380398
https://doi.org/10.1145/3377811.3380398
https://www.facebook.com/whitehat
https://www.microsoft.com/en-us/msrc/bounty
https://www.microsoft.com/en-us/msrc/bounty
https://www.mozilla.org/en-US/security/bug-bounty/
https://www.mozilla.org/en-US/security/bug-bounty/
https://bugs.chromium.org/p/chromium/issues/list?q=label%3AClusterFuzz%20-status%3AWontFix%2CDuplicate&can=1
https://bugs.chromium.org/p/chromium/issues/list?q=label%3AClusterFuzz%20-status%3AWontFix%2CDuplicate&can=1
https://bugs.chromium.org/p/chromium/issues/list?q=label%3AClusterFuzz%20-status%3AWontFix%2CDuplicate&can=1
https://wcventure.github.io/FuzzingPaper/
https://www.checkmarx.com/de/products/static-application-security-testing
https://www.checkmarx.com/de/products/static-application-security-testing
https://checkmarx.atlassian.net/wiki/spaces/CCD/pages/1253442222/CxIAST+End+User+License+Agreement+EULA
https://checkmarx.atlassian.net/wiki/spaces/CCD/pages/1253442222/CxIAST+End+User+License+Agreement+EULA
https://checkmarx.atlassian.net/wiki/spaces/CCD/pages/1253442222/CxIAST+End+User+License+Agreement+EULA

134 Bibliography

[31] Hongxu Chen et al. “MUZZ: Thread-aware Grey-box Fuzzing for Effec-
tive Bug Hunting in Multithreaded Programs”. In: 29th USENIX Secu-
rity Symposium (USENIX Security 20). USENIX Association, Aug. 2020,
pp. 2325–2342. URL: https://www.usenix.org/conference/usenixsecu
rity20/presentation/chen-hongxu.

[32] Yaohui Chen et al. “SAVIOR: Towards Bug-Driven Hybrid Testing”. In:
2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA,
USA, May 18-21, 2020. IEEE, 2020, pp. 1580–1596. DOI: 10.1109/SP40000.
2020.00002. URL: https://doi.org/10.1109/SP40000.2020.00002.

[33] Yuanliang Chen et al. “EnFuzz: Ensemble Fuzzing with Seed Synchro-
nization among Diverse Fuzzers”. In: 28th USENIX Security Symposium
(USENIX Security 19). Santa Clara, CA: USENIX Association, Aug. 2019,
pp. 1967–1983. URL: https://www.usenix.org/conference/usenixsecu
rity19/presentation/chen-yuanliang.

[34] B. Chess and G. McGraw. “Static analysis for security”. In: IEEE Security
& Privacy 2.6 (2004), pp. 76–79. DOI: 10.1109/MSP.2004.111.

[35] Jaeseung Choi et al. “NtFuzz: Enabling Type-Aware Kernel Fuzzing on
Windows with Static Binary Analysis”. In: 42nd IEEE Symposium on Secu-
rity and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May 2021. IEEE,
2021, pp. 677–693. DOI: 10 . 1109 / SP40001 . 2021 . 00114. URL: https :
//doi.org/10.1109/SP40001.2021.00114.

[36] Maria Christakis and Christian Bird. “What developers want and need
from program analysis: an empirical study”. In: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering, ASE
2016, Singapore, September 3-7, 2016. Ed. by David Lo, Sven Apel, and Sar-
fraz Khurshid. ACM, 2016, pp. 332–343. DOI: 10.1145/2970276.2970347.
URL: https://doi.org/10.1145/2970276.2970347.

[37] CISCO Fuzzing. https://blogs.cisco.com/security/talos/mutiny-
decept. Accessed: June 2022.

[38] clang. Clang: a C language family frontend for LLVM. https://clang.llvm.
org/. Accessed: October 2022.

[39] Clang Static Analyzer. https://clang-analyzer.llvm.org/. Accessed:
November 2022.

[40] Google Fuzzing. https://google.github.io/clusterfuzz/. Accessed:
June 2022.

[41] CodeSonar SAST. https://www.grammatech.com/codesonar- cc. Ac-
cessed: November 2022.

[42] CodeSonar SAST license agreement. https://support.grammatech.com/
documentation/licenses/GrammaTech_License_Agreement_CodeSonar_
ver.2016.1.0.pdf. Accessed: November 2022.

https://www.usenix.org/conference/usenixsecurity20/presentation/chen-hongxu
https://www.usenix.org/conference/usenixsecurity20/presentation/chen-hongxu
https://doi.org/10.1109/SP40000.2020.00002
https://doi.org/10.1109/SP40000.2020.00002
https://doi.org/10.1109/SP40000.2020.00002
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
https://www.usenix.org/conference/usenixsecurity19/presentation/chen-yuanliang
https://doi.org/10.1109/MSP.2004.111
https://doi.org/10.1109/SP40001.2021.00114
https://doi.org/10.1109/SP40001.2021.00114
https://doi.org/10.1109/SP40001.2021.00114
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://blogs.cisco.com/security/talos/mutiny-decept
https://blogs.cisco.com/security/talos/mutiny-decept
https://clang.llvm.org/
https://clang.llvm.org/
https://clang-analyzer.llvm.org/
https://google.github.io/clusterfuzz/
https://www.grammatech.com/codesonar-cc
https://support.grammatech.com/documentation/licenses/GrammaTech_License_Agreement_CodeSonar_ver.2016.1.0.pdf
https://support.grammatech.com/documentation/licenses/GrammaTech_License_Agreement_CodeSonar_ver.2016.1.0.pdf
https://support.grammatech.com/documentation/licenses/GrammaTech_License_Agreement_CodeSonar_ver.2016.1.0.pdf

Bibliography 135

[43] Jake Corina et al. “DIFUZE: Interface Aware Fuzzing for Kernel Drivers”.
In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security. CCS ’17. Dallas, Texas, USA: Association for Com-
puting Machinery, 2017, pp. 2123–2138. DOI: 10.1145/3133956.3134069.
URL: https://doi.org/10.1145/3133956.3134069.

[44] Coverity Scan. https://scan.coverity.com/. Accessed: November 2022.

[45] Coverity Scan license agreement. https://www.synopsys.com/company/
legal/software-integrity/coverity-product-license-agreement.
html. Accessed: November 2022.

[46] Geoff Cumming and Sue Finch. “Inference by eye: confidence intervals
and how to read pictures of data.” In: American psychologist 60.2 (2005),
p. 170.

[47] A. Danilova et al. “Testing Time Limits in Screener Questions for Online
Surveys with Programmers”. In: 2022 IEEE/ACM 44th International Con-
ference on Software Engineering (ICSE). Los Alamitos, CA, USA: IEEE Com-
puter Society, May 2022, pp. 2080–2090. DOI: 10.1145/3510003.3510223.
URL: https : / / doi . ieeecomputersociety . org / 10 . 1145 / 3510003 .
3510223.

[48] Anastasia Danilova et al. “Code Reviewing as Methodology for Online
Security Studies with Developers - A Case Study with Freelancers on
Password Storage”. In: Seventeenth Symposium on Usable Privacy and Se-
curity, SOUPS 2021, August 8-10, 2021. Ed. by Sonia Chiasson. USENIX
Association, 2021, pp. 397–416. URL: https://www.usenix.org/confere
nce/soups2021/presentation/danilova.

[49] Anastasia Danilova et al. “Code Reviewing as Methodology for Online
Security Studies with Developers - A Case Study with Freelancers on
Password Storage”. In: Seventeenth Symposium on Usable Privacy and Se-
curity, SOUPS 2021, August 8-10, 2021. Ed. by Sonia Chiasson. USENIX
Association, 2021, pp. 397–416. URL: https://www.usenix.org/confere
nce/soups2021/presentation/danilova.

[50] Anastasia Danilova et al. “Do You Really Code? Designing and Evaluat-
ing Screening Questions for Online Surveys with Programmers”. In: Pro-
ceedings of the 43rd International Conference on Software Engineering. ICSE
’21. Madrid, Spain: IEEE Press, 2021, pp. 537–548. ISBN: 9781450390859.
DOI: 10.1109/ICSE43902.2021.00057. URL: https://doi.org/10.1109/
ICSE43902.2021.00057.

[51] Anastasia Danilova et al. “Replication: On the Ecological Validity of On-
line Security Developer Studies: Exploring Deception in a Password-Stor-
age Study with Freelancers”. In: Sixteenth Symposium on Usable Privacy
and Security, SOUPS 2020, August 7-11, 2020. Ed. by Heather Richter Lip-
ford and Sonia Chiasson. USENIX Association, 2020, pp. 165–183. URL:

https://doi.org/10.1145/3133956.3134069
https://doi.org/10.1145/3133956.3134069
https://scan.coverity.com/
https://www.synopsys.com/company/legal/software-integrity/coverity-product-license-agreement.html
https://www.synopsys.com/company/legal/software-integrity/coverity-product-license-agreement.html
https://www.synopsys.com/company/legal/software-integrity/coverity-product-license-agreement.html
https://doi.org/10.1145/3510003.3510223
https://doi.ieeecomputersociety.org/10.1145/3510003.3510223
https://doi.ieeecomputersociety.org/10.1145/3510003.3510223
https://www.usenix.org/conference/soups2021/presentation/danilova
https://www.usenix.org/conference/soups2021/presentation/danilova
https://www.usenix.org/conference/soups2021/presentation/danilova
https://www.usenix.org/conference/soups2021/presentation/danilova
https://doi.org/10.1109/ICSE43902.2021.00057
https://doi.org/10.1109/ICSE43902.2021.00057
https://doi.org/10.1109/ICSE43902.2021.00057

136 Bibliography

https : / / www . usenix . org / conference / soups2020 / presentation /
danilova.

[52] Anastasia Danilova et al. “Replication: On the Ecological Validity of On-
line Security Developer Studies: Exploring Deception in a Password-Storage
Study with Freelancers”. In: Sixteenth Symposium on Usable Privacy and
Security, SOUPS 2020, August 7-11, 2020. Ed. by Heather Richter Lipford
and Sonia Chiasson. USENIX Association, 2020, pp. 165–183. URL: https:
//www.usenix.org/conference/soups2020/presentation/danilova.

[53] Melissa Dark et al. “Effect of the Secure Programming Clinic on Learners’
Secure Programming Practices”. In: Journal of The Colloquium for Informa-
tion Systems Security Education. Vol. 4. 1. 2016, pp. 18–18.

[54] DARPA Cyber Grand Challenge. https://www.darpa.mil/program/cyber
-grand-challenge. Accessed: November 2022.

[55] A. C. Davison and D. V. Hinkley. Bootstrap Methods and their Applica-
tion. Cambridge Series in Statistical and Probabilistic Mathematics. Cam-
bridge University Press, 1997. DOI: 10.1017/CBO9780511802843.

[56] Deutsche Telekom Fuzzing. https://www.code-intelligence.com/case-
study-telekom. Accessed: June 2022.

[57] Sushant Dinesh et al. “RetroWrite: Statically Instrumenting COTS Bina-
ries for Fuzzing and Sanitization”. In: 2020 IEEE Symposium on Security
and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 2020,
pp. 1497–1511. DOI: 10.1109/SP40000.2020.00009. URL: https://doi.
org/10.1109/SP40000.2020.00009.

[58] Ren Ding et al. “Hardware Support to Improve Fuzzing Performance and
Precision”. In: CCS ’21: 2021 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, Republic of Korea, November 15 - 19,
2021. Ed. by Yongdae Kim et al. ACM, 2021, pp. 2214–2228. DOI: 10.1145/
3460120.3484573. URL: https://doi.org/10.1145/3460120.3484573.

[59] Sung Ta Dinh et al. “Favocado: Fuzzing the Binding Code of JavaScript
Engines Using Semantically Correct Test Cases”. In: 28th Annual Network
and Distributed System Security Symposium, NDSS 2021, virtually, February
21-25, 2021. The Internet Society, 2021. URL: https://www.ndss-symp
osium.org/ndss-paper/favocado-fuzzing-the-binding-code-of-
javascript-engines-using-semantically-correct-test-cases/.

[60] Lisa Nguyen Quang Do, James R. Wright, and Karim Ali. “Why Do Soft-
ware Developers Use Static Analysis Tools? A User-Centered Study of
Developer Needs and Motivations”. In: IEEE Transactions on Software En-
gineering 48.3 (2022), pp. 835–847. DOI: 10.1109/TSE.2020.3004525.

[61] Brendan Dolan-Gavitt et al. “LAVA: Large-Scale Automated Vulnerabil-
ity Addition”. In: Proceedings - 2016 IEEE Symposium on Security and Pri-
vacy, SP 2016 (2016), pp. 110–121. DOI: 10.1109/SP.2016.15.

https://www.usenix.org/conference/soups2020/presentation/danilova
https://www.usenix.org/conference/soups2020/presentation/danilova
https://www.usenix.org/conference/soups2020/presentation/danilova
https://www.usenix.org/conference/soups2020/presentation/danilova
https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
https://doi.org/10.1017/CBO9780511802843
https://www.code-intelligence.com/case-study-telekom
https://www.code-intelligence.com/case-study-telekom
https://doi.org/10.1109/SP40000.2020.00009
https://doi.org/10.1109/SP40000.2020.00009
https://doi.org/10.1109/SP40000.2020.00009
https://doi.org/10.1145/3460120.3484573
https://doi.org/10.1145/3460120.3484573
https://doi.org/10.1145/3460120.3484573
https://www.ndss-symposium.org/ndss-paper/favocado-fuzzing-the-binding-code-of-javascript-engines-using-semantically-correct-test-cases/
https://www.ndss-symposium.org/ndss-paper/favocado-fuzzing-the-binding-code-of-javascript-engines-using-semantically-correct-test-cases/
https://www.ndss-symposium.org/ndss-paper/favocado-fuzzing-the-binding-code-of-javascript-engines-using-semantically-correct-test-cases/
https://doi.org/10.1109/TSE.2020.3004525
https://doi.org/10.1109/SP.2016.15

Bibliography 137

[62] Zhengjie Du et al. “WindRanger: A Directed Greybox Fuzzer driven by
DeviationBasic Blocks”. In: Proceedings of the 44th International Conference
on Software Engineering (ICSE ’22), May 22–27, 2022, Pittsburgh, PA, USA.
ACM, May 2022.

[63] Paul D Ellis. The essential guide to effect sizes: Statistical power, meta-analysis,
and the interpretation of research results. Cambridge university press, 2010.

[64] UK Defence Standardization - Defence Equipment and Support. “Re-
quirements for Safety of Programmable Elements (PE) in Defence Sys-
tems Part: 01 : Requirements and Guidance”. In: (2021).

[65] Xiaotao Feng et al. “Snipuzz: Black-box Fuzzing of IoT Firmware via
Message Snippet Inference”. In: CCS ’21: 2021 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, Republic of Korea,
November 15 - 19, 2021. Ed. by Yongdae Kim et al. ACM, 2021, pp. 337–
350. DOI: 10.1145/3460120.3484543. URL: https://doi.org/10.1145/
3460120.3484543.

[66] Andrea Fioraldi, Daniele Cono D’Elia, and Davide Balzarotti. “The Use
of Likely Invariants as Feedback for Fuzzers”. In: 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021. Ed. by Michael
Bailey and Rachel Greenstadt. USENIX Association, 2021, pp. 2829–2846.

[67] Andrea Fioraldi et al. “AFL++ : Combining Incremental Steps of Fuzzing
Research”. In: 14th USENIX Workshop on Offensive Technologies (WOOT
20). USENIX Association, Aug. 2020. URL: https://www.usenix.org/
conference/woot20/presentation/fioraldi.

[68] Paul Fiterau-Brostean et al. “Analysis of DTLS Implementations Using
Protocol State Fuzzing”. In: 29th USENIX Security Symposium (USENIX
Security 20). USENIX Association, Aug. 2020, pp. 2523–2540. URL: https:
/ / www . usenix . org / conference / usenixsecurity20 / presentation /
fiterau-brostean.

[69] Frama-C. https://frama-c.com/. Accessed: November 2022.

[70] Kelsey R. Fulton et al. “Benefits and Drawbacks of Adopting a Secure
Programming Language: Rust as a Case Study”. In: Seventeenth Sympo-
sium on Usable Privacy and Security, SOUPS 2021, August 8-10, 2021. Ed.
by Sonia Chiasson. USENIX Association, 2021, pp. 597–616. URL: https:
//www.usenix.org/conference/soups2021/presentation/fulton.

[71] Shuitao Gan et al. “GREYONE: Data Flow Sensitive Fuzzing”. In: 29th
USENIX Security Symposium (USENIX Security 20). USENIX Association,
Aug. 2020, pp. 2577–2594. URL: https://www.usenix.org/conference/
usenixsecurity20/presentation/gan.

https://doi.org/10.1145/3460120.3484543
https://doi.org/10.1145/3460120.3484543
https://doi.org/10.1145/3460120.3484543
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://frama-c.com/
https://www.usenix.org/conference/soups2021/presentation/fulton
https://www.usenix.org/conference/soups2021/presentation/fulton
https://www.usenix.org/conference/usenixsecurity20/presentation/gan
https://www.usenix.org/conference/usenixsecurity20/presentation/gan

138 Bibliography

[72] Xiang Gao et al. “Fuzz Testing Based Data Augmentation to Improve
Robustness of Deep Neural Networks”. In: Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. ICSE ’20. Seoul, South
Korea: Association for Computing Machinery, 2020, pp. 1147–1158. DOI:
10.1145/3377811.3380415. URL: https://doi.org/10.1145/3377811.
3380415.

[73] Gartner Magic Quadrant for Application Security Testing. https :/ / www .
gartner.com/en/documents/3984345. Accessed: February 2021.

[74] gcc. GCC, the GNU Compiler Collection. https://gcc.gnu.org/. Accessed:
October 2022.

[75] GDB web page. https://www.sourceware.org/gdb/. Accessed: February
2022.

[76] Go Fuzzing. https://go.dev/security/fuzz/. Accessed: November
2022.

[77] Google. ClusterFuzz. https://google.github.io/clusterfuzz/. Ac-
cessed: May 2022.

[78] Google. Google fuzzing tutorial. https://github.com/google/fuzzing/
blob/master/tutorial/libFuzzerTutorial.md. Accessed: July 2022.

[79] Peter Leo Gorski et al. “Developers Deserve Security Warnings, Too: On
the Effect of Integrated Security Advice on Cryptographic API Misuse”.
In: Fourteenth Symposium on Usable Privacy and Security, SOUPS 2018, Bal-
timore, MD, USA, August 12-14, 2018. Ed. by Mary Ellen Zurko and Heather
Richter Lipford. USENIX Association, 2018, pp. 265–281. URL: https://
www.usenix.org/conference/soups2018/presentation/gorski.

[80] Peter Leo Gorski et al. “Listen to Developers! A Participatory Design
Study on Security Warnings for Cryptographic APIs”. In: Proceedings of
the 2020 CHI Conference on Human Factors in Computing Systems. CHI ’20.
Honolulu, HI, USA: Association for Computing Machinery, 2020, pp. 1–
13. ISBN: 9781450367080. DOI: 10.1145/3313831.3376142. URL: https:
//doi.org/10.1145/3313831.3376142.

[81] Harrison Green and Thanassis Avgerinos. “GraphFuzz: Library API Fuz-
zing with Lifetime-aware Dataflow Graphs”. In: Proceedings of the 44th In-
ternational Conference on Software Engineering (ICSE ’22), May 22–27, 2022,
Pittsburgh, PA, USA. ACM, May 2022.

[82] M. Green and M. Smith. “Developers are Not the Enemy!: The Need
for Usable Security APIs”. In: IEEE Security & Privacy 14.05 (Sept. 2016),
pp. 40–46. ISSN: 1558-4046. DOI: 10.1109/MSP.2016.111.

[83] Jiazhen Gu et al. “Muffin: Testing Deep Learning Libraries via Neural
Architecture Fuzzing”. In: Proceedings of the 44th International Conference
on Software Engineering (ICSE ’22), May 22–27, 2022, Pittsburgh, PA, USA.
ACM, May 2022.

https://doi.org/10.1145/3377811.3380415
https://doi.org/10.1145/3377811.3380415
https://doi.org/10.1145/3377811.3380415
https://www.gartner.com/en/documents/3984345
https://www.gartner.com/en/documents/3984345
https://gcc.gnu.org/
https://www.sourceware.org/gdb/
https://go.dev/security/fuzz/
https://google.github.io/clusterfuzz/
https://github.com/google/fuzzing/blob/master/tutorial/libFuzzerTutorial.md
https://github.com/google/fuzzing/blob/master/tutorial/libFuzzerTutorial.md
https://www.usenix.org/conference/soups2018/presentation/gorski
https://www.usenix.org/conference/soups2018/presentation/gorski
https://doi.org/10.1145/3313831.3376142
https://doi.org/10.1145/3313831.3376142
https://doi.org/10.1145/3313831.3376142
https://doi.org/10.1109/MSP.2016.111

Bibliography 139

[84] Marco Gutfleisch et al. “How Does Usable Security (Not) End Up in Soft-
ware Products? Results From a Qualitative Interview Study”. In: 43rd
IEEE Symposium on Security and Privacy, IEEE S&P 2022, May 22-26, 2022.
IEEE Computer Society, May 2022.

[85] Marco Gutfleisch et al. “How Does Usable Security (Not) End Up in Soft-
ware Products? Results From a Qualitative Interview Study”. In: 43rd
IEEE Symposium on Security and Privacy, SP 2022, San Francisco, CA, USA,
May 22-26, 2022. IEEE, 2022, pp. 893–910. DOI: 10.1109/SP46214.2022.
9833756. URL: https://doi.org/10.1109/SP46214.2022.9833756.

[86] Yu Hao et al. “Demystifying the Dependency Challenge in Kernel Fuz-
zing”. In: Proceedings of the 44th International Conference on Software Engi-
neering (ICSE ’22), May 22–27, 2022, Pittsburgh, PA, USA. ACM, May 2022.

[87] Xiaoyu He et al. “SoFi: Reflection-Augmented Fuzzing for JavaScript En-
gines”. In: CCS ’21: 2021 ACM SIGSAC Conference on Computer and Com-
munications Security, Virtual Event, Republic of Korea, November 15 - 19,
2021. Ed. by Yongdae Kim et al. ACM, 2021, pp. 2229–2242. DOI: 10.1145/
3460120.3484823. URL: https://doi.org/10.1145/3460120.3484823.

[88] Honggfuzz. https://github.com/google/honggfuzz. Accessed: Novem-
ber 2022.

[89] Nicolas Huaman et al. “A Large-Scale Interview Study on Information
Security in and Attacks against Small and Medium-sized Enterprises”.
In: 30th USENIX Security Symposium, USENIX Security 2021, August 11-
13, 2021. Ed. by Michael Bailey and Rachel Greenstadt. USENIX Associ-
ation, 2021, pp. 1235–1252. URL: https://www.usenix.org/conference/
usenixsecurity21/presentation/huaman.

[90] Heqing Huang et al. “Pangolin: Incremental Hybrid Fuzzing with Poly-
hedral Path Abstraction”. In: 2020 IEEE Symposium on Security and Pri-
vacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 2020, pp. 1613–
1627. DOI: 10.1109/SP40000.2020.00063. URL: https://doi.org/10.
1109/SP40000.2020.00063.

[91] Jaewon Hur et al. “DifuzzRTL: Differential Fuzz Testing to Find CPU
Bugs”. In: 42nd IEEE Symposium on Security and Privacy, SP 2021, San Fran-
cisco, CA, USA, 24-27 May 2021. IEEE, 2021, pp. 1286–1303. DOI: 10.1109/
SP40001.2021.00103. URL: https://doi.org/10.1109/SP40001.2021.
00103.

[92] Suhwan Songand Jaewon Hur et al. “R2Z2: Detecting Rendering Regres-
sions in Web Browsers through Differential Fuzz Testing”. In: Proceedings
of the 44th International Conference on Software Engineering (ICSE ’22), May
22–27, 2022, Pittsburgh, PA, USA. ACM, May 2022.

https://doi.org/10.1109/SP46214.2022.9833756
https://doi.org/10.1109/SP46214.2022.9833756
https://doi.org/10.1109/SP46214.2022.9833756
https://doi.org/10.1145/3460120.3484823
https://doi.org/10.1145/3460120.3484823
https://doi.org/10.1145/3460120.3484823
https://github.com/google/honggfuzz
https://www.usenix.org/conference/usenixsecurity21/presentation/huaman
https://www.usenix.org/conference/usenixsecurity21/presentation/huaman
https://doi.org/10.1109/SP40000.2020.00063
https://doi.org/10.1109/SP40000.2020.00063
https://doi.org/10.1109/SP40000.2020.00063
https://doi.org/10.1109/SP40001.2021.00103
https://doi.org/10.1109/SP40001.2021.00103
https://doi.org/10.1109/SP40001.2021.00103
https://doi.org/10.1109/SP40001.2021.00103

140 Bibliography

[93] Nasif Imtiaz, Brendan Murphy, and Laurie Williams. “How Do Devel-
opers Act on Static Analysis Alerts? An Empirical Study of Coverity Us-
age”. In: 2019 IEEE 30th International Symposium on Software Reliability En-
gineering (ISSRE). 2019, pp. 323–333. DOI: 10.1109/ISSRE.2019.00040.

[94] Nasif Imtiaz et al. “Challenges with responding to static analysis tool
alerts”. In: Proceedings of the 16th International Conference on Mining Soft-
ware Repositories, MSR 2019, 26-27 May 2019, Montreal, Canada. Ed. by
Margaret-Anne D. Storey, Bram Adams, and Sonia Haiduc. IEEE, 2019,
pp. 245–249. DOI: 10.1109/MSR.2019.00049. URL: https://doi.org/10.
1109/MSR.2019.00049.

[95] Ergonomics of human-system interaction — Part 11: Usability: Definitions and
concepts. Standard. ISO/TC 159/SC 4 Ergonomics of human-system in-
teraction, Mar. 2018.

[96] Kyriakos Ispoglou et al. “FuzzGen: Automatic Fuzzer Generation”. In:
29th USENIX Security Symposium (USENIX Security 20). USENIX Asso-
ciation, Aug. 2020, pp. 2271–2287. URL: https : / / www . usenix . org /
conference/usenixsecurity20/presentation/ispoglou.

[97] Bahruz Jabiyev et al. “T-Reqs: HTTP Request Smuggling with Differen-
tial Fuzzing”. In: CCS ’21: 2021 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, Republic of Korea, November 15 - 19,
2021. Ed. by Yongdae Kim et al. ACM, 2021, pp. 1805–1820. DOI: 10.1145/
3460120.3485384. URL: https://doi.org/10.1145/3460120.3485384.

[98] Zu-Ming Jiang et al. “Fuzzing Error Handling Code using Context-Sensi-
tive Software Fault Injection”. In: 29th USENIX Security Symposium (USE-
NIX Security 20). USENIX Association, Aug. 2020, pp. 2595–2612.

[99] Brittany Johnson et al. “Why don’t software developers use static anal-
ysis tools to find bugs?” In: Proceedings of the 2013 International Confer-
ence on Software Engineering (2013), pp. 672–681. ISSN: 02705257. DOI: 10.
1109/ICSE.2013.6606613. URL: http://dl.acm.org/citation.cfm?id=
2486788.2486877.

[100] S. C. Johnson and Murray Hill. “Lint, a C Program Checker”. In: 1978.

[101] JQ. https://github.com/stedolan/jq. Accessed: November 2022.

[102] Jinho Jung et al. “WINNIE : Fuzzing Windows Applications with Har-
ness Synthesis and Fast Cloning”. In: 28th Annual Network and Distributed
System Security Symposium, NDSS 2021, virtually, February 21-25, 2021.
The Internet Society, 2021. URL: https://www.ndss- symposium.org/
ndss-paper/winnie-fuzzing-windows-applications-with-harness-
synthesis-and-fast-cloning/.

https://doi.org/10.1109/ISSRE.2019.00040
https://doi.org/10.1109/MSR.2019.00049
https://doi.org/10.1109/MSR.2019.00049
https://doi.org/10.1109/MSR.2019.00049
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou
https://doi.org/10.1145/3460120.3485384
https://doi.org/10.1145/3460120.3485384
https://doi.org/10.1145/3460120.3485384
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1109/ICSE.2013.6606613
http://dl.acm.org/citation.cfm?id=2486788.2486877
http://dl.acm.org/citation.cfm?id=2486788.2486877
https://github.com/stedolan/jq
https://www.ndss-symposium.org/ndss-paper/winnie-fuzzing-windows-applications-with-harness-synthesis-and-fast-cloning/
https://www.ndss-symposium.org/ndss-paper/winnie-fuzzing-windows-applications-with-harness-synthesis-and-fast-cloning/
https://www.ndss-symposium.org/ndss-paper/winnie-fuzzing-windows-applications-with-harness-synthesis-and-fast-cloning/

Bibliography 141

[103] Harjot Kaur et al. “Where to Recruit for Security Development Stud-
ies: Comparing Six Software Developer Samples”. In: 31st USENIX Secu-
rity Symposium (USENIX Security 22). Boston, MA: USENIX Association,
Aug. 2022, pp. 4041–4058. ISBN: 978-1-939133-31-1. URL: https://www.
usenix.org/conference/usenixsecurity22/presentation/kaur.

[104] Hyungsub Kim et al. “PGFUZZ: Policy-Guided Fuzzing for Robotic Vehi-
cles”. In: 28th Annual Network and Distributed System Security Symposium,
NDSS 2021, virtually, February 21-25, 2021. The Internet Society, 2021. URL:
https : / / www . ndss - symposium . org / ndss - paper / pgfuzz - policy -
guided-fuzzing-for-robotic-vehicles/.

[105] Kyungtae Kim et al. “HFL: Hybrid Fuzzing on the Linux Kernel”. In:
27th Annual Network and Distributed System Security Symposium, NDSS
2020, San Diego, California, USA, February 23-26, 2020. The Internet So-
ciety, 2020. URL: https://www.ndss-symposium.org/ndss-paper/hfl-
hybrid-fuzzing-on-the-linux-kernel/.

[106] George Klees et al. “Evaluating Fuzz Testing”. In: CCS ’18. Toronto, Ca-
nada: Association for Computing Machinery, 2018, pp. 2123–2138. DOI:
10.1145/3243734.3243804. URL: https://doi.org/10.1145/3243734.
3243804.

[107] Katharina Krombholz et al. “"I Have No Idea What I’m Doing" - On the
Usability of Deploying HTTPS”. In: 26th USENIX Security Symposium
(USENIX Security 17). Vancouver, BC: USENIX Association, Aug. 2017,
pp. 1339–1356. ISBN: 978-1-931971-40-9. URL: https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/
krombholz.

[108] Jacob Krüger et al. “Do you remember this source code?” In: Proceed-
ings of the 40th International Conference on Software Engineering, ICSE 2018,
Gothenburg, Sweden, May 27 - June 03, 2018. Ed. by Michel Chaudron et al.
ACM, 2018, pp. 764–775. DOI: 10.1145/3180155.3180215. URL: https:
//doi.org/10.1145/3180155.3180215.

[109] James Kukucka et al. “CONFETTI: Amplifying Concolic Guidance for
Fuzzers”. In: Proceedings of the 44th International Conference on Software
Engineering (ICSE ’22), May 22–27, 2022, Pittsburgh, PA, USA. ACM, May
2022.

[110] Gwangmu Lee, Woochul Shim, and Byoungyoung Lee. “Constraint-guid-
ed Directed Greybox Fuzzing”. In: 30th USENIX Security Symposium, USE-
NIX Security 2021, August 11-13, 2021. Ed. by Michael Bailey and Rachel
Greenstadt. USENIX Association, 2021, pp. 3559–3576. URL: https://
www.usenix.org/conference/usenixsecurity21/presentation/lee-
gwangmu.

https://www.usenix.org/conference/usenixsecurity22/presentation/kaur
https://www.usenix.org/conference/usenixsecurity22/presentation/kaur
https://www.ndss-symposium.org/ndss-paper/pgfuzz-policy-guided-fuzzing-for-robotic-vehicles/
https://www.ndss-symposium.org/ndss-paper/pgfuzz-policy-guided-fuzzing-for-robotic-vehicles/
https://www.ndss-symposium.org/ndss-paper/hfl-hybrid-fuzzing-on-the-linux-kernel/
https://www.ndss-symposium.org/ndss-paper/hfl-hybrid-fuzzing-on-the-linux-kernel/
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/krombholz
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/krombholz
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/krombholz
https://doi.org/10.1145/3180155.3180215
https://doi.org/10.1145/3180155.3180215
https://doi.org/10.1145/3180155.3180215
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-gwangmu
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-gwangmu
https://www.usenix.org/conference/usenixsecurity21/presentation/lee-gwangmu

142 Bibliography

[111] Suyoung Lee et al. “Montage: A Neural Network Language Model-Guid-
ed JavaScript Engine Fuzzer”. In: 29th USENIX Security Symposium (USE-
NIX Security 20). USENIX Association, Aug. 2020, pp. 2613–2630.

[112] Teemu Lehtinen, Aleksi Lukkarinen, and Lassi Haaranen. “Students Strug-
gle to Explain Their Own Program Code”. In: ITiCSE 2021: 26th ACM
Conference on Innovation and Technology in Computer Science Education, Vir-
tual Event, Germany, June 26 - July 1, 2021. Ed. by Carsten Schulte et al.
ACM, 2021, pp. 206–212. DOI: 10.1145/3430665.3456322. URL: https:
//doi.org/10.1145/3430665.3456322.

[113] Teemu Lehtinen, André L. Santos, and Juha Sorva. “Let’s Ask Students
About Their Programs, Automatically”. In: 29th IEEE/ACM International
Conference on Program Comprehension, ICPC 2021, Madrid, Spain, May 20-
21, 2021. IEEE, 2021, pp. 467–475. DOI: 10.1109/ICPC52881.2021.00054.
URL: https://doi.org/10.1109/ICPC52881.2021.00054.

[114] Wenqiang Li et al. “muAFL: Non-intrusive Feedback-driven Fuzzing for
Microcontroller Firmware”. In: Proceedings of the 44th International Confer-
ence on Software Engineering (ICSE ’22), May 22–27, 2022, Pittsburgh, PA,
USA. ACM, May 2022.

[115] Yuwei Li et al. “UNIFUZZ: A Holistic and Pragmatic Metrics-Driven
Platform for Evaluating Fuzzers”. In: 30th USENIX Security Symposium
(USENIX Security 21). USENIX Association, Aug. 2021, pp. 2777–2794.
ISBN: 978-1-939133-24-3. URL: https://www.usenix.org/conference/
usenixsecurity21/presentation/li-yuwei.

[116] Hongliang Liang et al. “Fuzzing: State of the Art”. In: IEEE Trans. Reliab.
67.3 (2018), pp. 1199–1218. DOI: 10.1109/TR.2018.2834476. URL: https:
//doi.org/10.1109/TR.2018.2834476.

[117] libFuzzer. https://llvm.org/docs/LibFuzzer.html. Accessed: Novem-
ber 2022.

[118] libroxml GitHub. https://github.com/blunderer/libroxml. Accessed:
February 2022.

[119] libroxml web page. https://www.libroxml.net/. Accessed: February 2022.

[120] Daniel Liew et al. “Just Fuzz It: Solving Floating-Point Constraints Us-
ing Coverage-Guided Fuzzing”. In: Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ESEC/FSE 2019. Tallinn, Estonia: As-
sociation for Computing Machinery, 2019, pp. 521–532. DOI: 10.1145/
3338906.3338921. URL: https://doi.org/10.1145/3338906.3338921.

[121] linkedIn. linkedIn. https://www.linkedin.com/. Accessed: November
2022.

https://doi.org/10.1145/3430665.3456322
https://doi.org/10.1145/3430665.3456322
https://doi.org/10.1145/3430665.3456322
https://doi.org/10.1109/ICPC52881.2021.00054
https://doi.org/10.1109/ICPC52881.2021.00054
https://www.usenix.org/conference/usenixsecurity21/presentation/li-yuwei
https://www.usenix.org/conference/usenixsecurity21/presentation/li-yuwei
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://doi.org/10.1109/TR.2018.2834476
https://llvm.org/docs/LibFuzzer.html
https://github.com/blunderer/libroxml
https://www.libroxml.net/
https://doi.org/10.1145/3338906.3338921
https://doi.org/10.1145/3338906.3338921
https://doi.org/10.1145/3338906.3338921
https://www.linkedin.com/

Bibliography 143

[122] Baozheng Liu et al. “FANS: Fuzzing Android Native System Services
via Automated Interface Analysis”. In: 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, Aug. 2020, pp. 307–323.

[123] Valentin J. M. Manès, Soomin Kim, and Sang Kil Cha. “Ankou: Guid-
ing Grey-Box Fuzzing towards Combinatorial Difference”. In: Proceed-
ings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing. ICSE ’20. Seoul, South Korea: Association for Computing Machin-
ery, 2020, pp. 1024–1036. DOI: 10.1145/3377811.3380421. URL: https:
//doi.org/10.1145/3377811.3380421.

[124] Ruijie Meng et al. “Linear-time Temporal Logic guided Greybox Fuz-
zing”. In: Proceedings of the 44th International Conference on Software En-
gineering (ICSE ’22), May 22–27, 2022, Pittsburgh, PA, USA. ACM, May
2022.

[125] Microfocus-fortify. https://www.microfocus.com/de- de/products/
static-code-analysis-sast/overview. Accessed: November 2022.

[126] Microfocus-fortify license agreement. https://www.microfocus.com/med
ia/documentation/micro_focus_end_user_license_agreement.pdf.
Accessed: November 2022.

[127] Microsoft Fuzzing. https://www.microsoft.com/en-us/research/blog/
a- brief- introduction- to- fuzzing- and- why- its- an- important-
tool-for-developers/. Accessed: June 2022.

[128] Barton P. Miller, Lars Fredriksen, and Bryan So. “An Empirical Study of
the Reliability of UNIX Utilities”. In: Commun. ACM 33.12 (1990), pp. 32–
44. DOI: 10.1145/96267.96279. URL: https://doi.org/10.1145/96267.
96279.

[129] AFL - persistent mode. american fuzzy lop - persistent mode. https://gi
thub.com/google/AFL/tree/master/llvm_mode. Accessed: November
2022.

[130] Facundo Molina, Marcelo d’Amorim, and Nazareno Aguirre. “Fuzzing
Class Specifications”. In: Proceedings of the 44th International Conference
on Software Engineering (ICSE ’22), May 22–27, 2022, Pittsburgh, PA, USA.
ACM, May 2022.

[131] Marcus Nachtigall, Lisa Nguyen Quang Do, and Eric Bodden. “Explain-
ing Static Analysis - A Perspective”. In: 34th IEEE/ACM International Con-
ference on Automated Software Engineering Workshops, ASE Workshops 2019,
San Diego, CA, USA, November 11-15, 2019. IEEE, 2019, pp. 29–32. DOI:
10.1109/ASEW.2019.00023. URL: https://doi.org/10.1109/ASEW.
2019.00023.

https://doi.org/10.1145/3377811.3380421
https://doi.org/10.1145/3377811.3380421
https://doi.org/10.1145/3377811.3380421
https://www.microfocus.com/de-de/products/static-code-analysis-sast/overview
https://www.microfocus.com/de-de/products/static-code-analysis-sast/overview
https://www.microfocus.com/media/documentation/micro_focus_end_user_license_agreement.pdf
https://www.microfocus.com/media/documentation/micro_focus_end_user_license_agreement.pdf
https://www.microsoft.com/en-us/research/blog/a-brief-introduction-to-fuzzing-and-why-its-an-important-tool-for-developers/
https://www.microsoft.com/en-us/research/blog/a-brief-introduction-to-fuzzing-and-why-its-an-important-tool-for-developers/
https://www.microsoft.com/en-us/research/blog/a-brief-introduction-to-fuzzing-and-why-its-an-important-tool-for-developers/
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279
https://github.com/google/AFL/tree/master/llvm_mode
https://github.com/google/AFL/tree/master/llvm_mode
https://doi.org/10.1109/ASEW.2019.00023
https://doi.org/10.1109/ASEW.2019.00023
https://doi.org/10.1109/ASEW.2019.00023

144 Bibliography

[132] Marcus Nachtigall, Michael Schlichtig, and Eric Bodden. “A Large-Scale
Study of Usability Criteria Addressed by Static Analysis Tools”. In: Pro-
ceedings of the 31st ACM SIGSOFT International Symposium on Software
Testing and Analysis. ISSTA 2022. Virtual, South Korea: Association for
Computing Machinery, 2022, pp. 532–543. ISBN: 9781450393799. DOI: 10.
1145/3533767.3534374. URL: https://doi.org/10.1145/3533767.
3534374.

[133] Stefan Nagy et al. “Breaking Through Binaries: Compiler-quality Instru-
mentation for Better Binary-only Fuzzing”. In: 30th USENIX Security Sym-
posium, USENIX Security 2021, August 11-13, 2021. Ed. by Michael Bailey
and Rachel Greenstadt. USENIX Association, 2021, pp. 1683–1700. URL:
https://www.usenix.org/conference/usenixsecurity21/presentatio
n/nagy.

[134] Stefan Nagy et al. “Same Coverage, Less Bloat: Accelerating Binary-only
Fuzzing with Coverage-preserving Coverage-guided Tracing”. In: CCS
’21: 2021 ACM SIGSAC Conference on Computer and Communications Secu-
rity, Virtual Event, Republic of Korea, November 15 - 19, 2021. Ed. by Yong-
dae Kim et al. ACM, 2021, pp. 351–365. DOI: 10.1145/3460120.3484787.
URL: https://doi.org/10.1145/3460120.3484787.

[135] Alena Naiakshina. “Don’t Blame Developers! Examining a Password-
Storage Study Conducted with Students, Freelancers, and Company De-
velopers”. PhD thesis. University of Bonn, Germany, 2020. URL: https:
//hdl.handle.net/20.500.11811/8842.

[136] Alena Naiakshina et al. “"If You Want, I Can Store the Encrypted Pass-
word": A Password-Storage Field Study with Freelance Developers”. In:
Proceedings of the 2019 CHI Conference on Human Factors in Computing Sys-
tems. CHI ’19. Glasgow, Scotland Uk: Association for Computing Ma-
chinery, 2019, pp. 1–12. DOI: 10.1145/3290605.3300370. URL: https:
//doi.org/10.1145/3290605.3300370.

[137] Alena Naiakshina et al. “Deception Task Design in Developer Password
Studies: Exploring a Student Sample”. In: Fourteenth Symposium on Us-
able Privacy and Security, SOUPS 2018, Baltimore, MD, USA, August 12-
14, 2018. Ed. by Mary Ellen Zurko and Heather Richter Lipford. USE-
NIX Association, 2018, pp. 297–313. URL: https://www.usenix.org/
conference/soups2018/presentation/naiakshina.

[138] Alena Naiakshina et al. “On Conducting Security Developer Studies with
CS Students: Examining a Password-Storage Study with CS Students,
Freelancers, and Company Developers”. In: CHI ’20: CHI Conference on
Human Factors in Computing Systems, Honolulu, HI, USA, April 25-30, 2020.
Ed. by Regina Bernhaupt et al. ACM, 2020, pp. 1–13. DOI: 10 . 1145 /
3313831.3376791. URL: https://doi.org/10.1145/3313831.3376791.

https://doi.org/10.1145/3533767.3534374
https://doi.org/10.1145/3533767.3534374
https://doi.org/10.1145/3533767.3534374
https://doi.org/10.1145/3533767.3534374
https://www.usenix.org/conference/usenixsecurity21/presentation/nagy
https://www.usenix.org/conference/usenixsecurity21/presentation/nagy
https://doi.org/10.1145/3460120.3484787
https://doi.org/10.1145/3460120.3484787
https://hdl.handle.net/20.500.11811/8842
https://hdl.handle.net/20.500.11811/8842
https://doi.org/10.1145/3290605.3300370
https://doi.org/10.1145/3290605.3300370
https://doi.org/10.1145/3290605.3300370
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://www.usenix.org/conference/soups2018/presentation/naiakshina
https://doi.org/10.1145/3313831.3376791
https://doi.org/10.1145/3313831.3376791
https://doi.org/10.1145/3313831.3376791

Bibliography 145

[139] Alena Naiakshina et al. “Why Do Developers Get Password Storage Wrong?:
A Qualitative Usability Study”. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX,
USA, October 30 - November 03, 2017. Ed. by Bhavani M. Thuraisingham
et al. New York, NY, USA: Association for Computing Machinery, 2017,
pp. 311–328. DOI: 10.1145/3133956.3134082. URL: https://doi.org/
10.1145/3133956.3134082.

[140] Nicholas Nethercote and Julian Seward. “Valgrind: a framework for heavy-
weight dynamic binary instrumentation”. In: ACM Sigplan notices 42.6
(2007), pp. 89–100.

[141] Hoang Lam Nguyen and Lars Grunske. “BeDivFuzz: Integrating Behav-
ioral Diversity into Generator-based Fuzzing”. In: Proceedings of the 44th
International Conference on Software Engineering (ICSE ’22), May 22–27, 2022,
Pittsburgh, PA, USA. ACM, May 2022.

[142] Hoang Lam Nguyen et al. “MoFuzz: A Fuzzer Suite for Testing Model-
Driven Software Engineering Tools”. In: 35th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE 2020, Melbourne, Australia,
September 21-25, 2020. IEEE, 2020, pp. 1103–1115. DOI: 10.1145/3324884.
3416668. URL: https://doi.org/10.1145/3324884.3416668.

[143] Tai D. Nguyen et al. “SFuzz: An Efficient Adaptive Fuzzer for Solidity
Smart Contracts”. In: Proceedings of the ACM/IEEE 42nd International Con-
ference on Software Engineering. ICSE ’20. Seoul, South Korea: Association
for Computing Machinery, 2020, pp. 778–788. DOI: 10.1145/3377811.
3380334. URL: https://doi.org/10.1145/3377811.3380334.

[144] Jakob Nielsen. Usability Engineering. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1994.

[145] Yannic Noller et al. “HyDiff: Hybrid Differential Software Analysis”. In:
Proceedings of the ACM/IEEE 42nd International Conference on Software En-
gineering. ICSE ’20. Seoul, South Korea: Association for Computing Ma-
chinery, 2020, pp. 1273–1285. DOI: 10.1145/3377811.3380363. URL: http
s://doi.org/10.1145/3377811.3380363.

[146] Timothy Nosco et al. “The Industrial Age of Hacking”. In: 29th USE-
NIX Security Symposium, USENIX Security 2020, August 12-14, 2020. Ed.
by Srdjan Capkun and Franziska Roesner. USENIX Association, 2020,
pp. 1129–1146. URL: https://www.usenix.org/conference/usenixse
curity20/presentation/nosco.

[147] OCLint. http://oclint.org/. Accessed: November 2022.

[148] Oleksii Oleksenko et al. “SpecFuzz: Bringing Spectre-type vulnerabilities
to the surface”. In: 29th USENIX Security Symposium (USENIX Security
20). USENIX Association, Aug. 2020, pp. 1481–1498. URL: https://www.
usenix.org/conference/usenixsecurity20/presentation/oleksenko.

https://doi.org/10.1145/3133956.3134082
https://doi.org/10.1145/3133956.3134082
https://doi.org/10.1145/3133956.3134082
https://doi.org/10.1145/3324884.3416668
https://doi.org/10.1145/3324884.3416668
https://doi.org/10.1145/3324884.3416668
https://doi.org/10.1145/3377811.3380334
https://doi.org/10.1145/3377811.3380334
https://doi.org/10.1145/3377811.3380334
https://doi.org/10.1145/3377811.3380363
https://doi.org/10.1145/3377811.3380363
https://doi.org/10.1145/3377811.3380363
https://www.usenix.org/conference/usenixsecurity20/presentation/nosco
https://www.usenix.org/conference/usenixsecurity20/presentation/nosco
http://oclint.org/
https://www.usenix.org/conference/usenixsecurity20/presentation/oleksenko
https://www.usenix.org/conference/usenixsecurity20/presentation/oleksenko

146 Bibliography

[149] Mitchell Olsthoorn, Arie van Deursen, and Annibale Panichella. “Gener-
ating Highly-structured Input Data by Combining Search-based Testing
and Grammar-based Fuzzing”. In: ().

[150] oss-orig. OSS-Fuzz. https://opensource.googleblog.com/2016/12/
announcing-oss-fuzz-continuous-fuzzing.html. Accessed: May 2022.

[151] Sebastian Österlund et al. “ParmeSan: Sanitizer-guided Greybox Fuz-
zing”. In: 29th USENIX Security Symposium (USENIX Security 20). USE-
NIX Association, Aug. 2020, pp. 2289–2306. URL: https://www.usenix.
org/conference/usenixsecurity20/presentation/osterlund.

[152] Gaoning Pan et al. “V-Shuttle: Scalable and Semantics-Aware Hypervi-
sor Virtual Device Fuzzing”. In: CCS ’21: 2021 ACM SIGSAC Conference
on Computer and Communications Security, Virtual Event, Republic of Korea,
November 15 - 19, 2021. Ed. by Yongdae Kim et al. ACM, 2021, pp. 2197–
2213. DOI: 10.1145/3460120.3484811. URL: https://doi.org/10.1145/
3460120.3484811.

[153] Soyeon Park et al. “Fuzzing JavaScript Engines with Aspect-preserving
Mutation”. In: 2020 IEEE Symposium on Security and Privacy, SP 2020, San
Francisco, CA, USA, May 18-21, 2020. IEEE, 2020, pp. 1629–1642. DOI: 10.
1109/SP40000.2020.00067. URL: https://doi.org/10.1109/SP40000.
2020.00067.

[154] Hui Peng and Mathias Payer. “USBFuzz: A Framework for Fuzzing USB
Drivers by Device Emulation”. In: 29th USENIX Security Symposium (USE-
NIX Security 20). USENIX Association, Aug. 2020, pp. 2559–2575. URL:
https://www.usenix.org/conference/usenixsecurity20/presentatio
n/peng.

[155] Theofilos Petsios et al. “SlowFuzz: Automated Domain-Independent De-
tection of Algorithmic Complexity Vulnerabilities”. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’17. Dallas, Texas, USA: Association for Computing Machinery, 2017,
pp. 2155–2168. DOI: 10.1145/3133956.3134073. URL: https://doi.org/
10.1145/3133956.3134073.

[156] Stephan Plöger, Mischa Meier, and Matthew Smith. “A Qualitative Us-
ability Evaluation of the Clang Static Analyzer and libFuzzer with CS
Students and CTF Players”. In: Seventeenth Symposium on Usable Privacy
and Security (SOUPS 2021). USENIX Association, Aug. 2021, pp. 553–572.
ISBN: 978-1-939133-25-0. URL: https://www.usenix.org/conference/
soups2021/presentation/ploger.

[157] Stephan Plöger, Mischa Meier, and Matthew Smith. “A Usability Evalu-
ation of AFL and libFuzzer with CS Students”. In: Proceedings of the 2023
CHI Conference on Human Factors in Computing Systems, CHI 2023, Ham-
burg, Germany, April 23-28, 2023. Ed. by Albrecht Schmidt et al. ACM,

https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://opensource.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://www.usenix.org/conference/usenixsecurity20/presentation/osterlund
https://www.usenix.org/conference/usenixsecurity20/presentation/osterlund
https://doi.org/10.1145/3460120.3484811
https://doi.org/10.1145/3460120.3484811
https://doi.org/10.1145/3460120.3484811
https://doi.org/10.1109/SP40000.2020.00067
https://doi.org/10.1109/SP40000.2020.00067
https://doi.org/10.1109/SP40000.2020.00067
https://doi.org/10.1109/SP40000.2020.00067
https://www.usenix.org/conference/usenixsecurity20/presentation/peng
https://www.usenix.org/conference/usenixsecurity20/presentation/peng
https://doi.org/10.1145/3133956.3134073
https://doi.org/10.1145/3133956.3134073
https://doi.org/10.1145/3133956.3134073
https://www.usenix.org/conference/soups2021/presentation/ploger
https://www.usenix.org/conference/soups2021/presentation/ploger

Bibliography 147

2023, 186:1–186:18. DOI: 10.1145/3544548.3581178. URL: https://doi.
org/10.1145/3544548.3581178.

[158] pwndbg web page. https://github.com/pwndbg/pwndbg. Accessed: Febru-
ary 2022.

[159] Radamsa. https://gitlab.com/akihe/radamsa. Accessed: November
2022.

[160] Nilo Redini et al. “Diane: Identifying Fuzzing Triggers in Apps to Gen-
erate Under-constrained Inputs for IoT Devices”. In: 42nd IEEE Sympo-
sium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May
2021. IEEE, 2021, pp. 484–500. DOI: 10.1109/SP40001.2021.00066. URL:
https://doi.org/10.1109/SP40001.2021.00066.

[161] José Miguel Rojas, Gordon Fraser, and Andrea Arcuri. “Automated unit
test generation during software development: a controlled experiment
and think-aloud observations”. In: Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore, MD,
USA, July 12-17, 2015. Ed. by Michal Young and Tao Xie. ACM, 2015,
pp. 338–349. DOI: 10.1145/2771783.2771801. URL: https://doi.org/
10.1145/2771783.2771801.

[162] Jan Ruge et al. “Frankenstein: Advanced Wireless Fuzzing to Exploit
New Bluetooth Escalation Targets”. In: 29th USENIX Security Symposium,
USENIX Security 2020, August 12-14, 2020. Ed. by Srdjan Capkun and
Franziska Roesner. USENIX Association, 2020, pp. 19–36. URL: https://
www.usenix.org/conference/usenixsecurity20/presentation/ruge.

[163] Rust Fuzz Book. https://rust-fuzz.github.io/book/introduction.
html. Accessed: November 2022.

[164] C. Sadowski et al. “Tricorder: Building a Program Analysis Ecosystem”.
In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engi-
neering. Vol. 1. 2015, pp. 598–608. DOI: 10.1109/ICSE.2015.76.

[165] Jeff Sauro. A practical guide to the system usability scale: Background, bench-
marks & best practices. Measuring Usability LLC, 2011.

[166] Sergej Schumilo et al. “HYPER-CUBE: High-Dimensional Hypervisor Fuz-
zing”. In: 27th Annual Network and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, February 23-26, 2020. The Internet
Society, 2020. URL: https://www.ndss-symposium.org/ndss-paper/
hyper-cube-high-dimensional-hypervisor-fuzzing/.

[167] Sergej Schumilo et al. “Nyx: Greybox Hypervisor Fuzzing using Fast
Snapshots and Affine Types”. In: 30th USENIX Security Symposium, USE-
NIX Security 2021, August 11-13, 2021. Ed. by Michael Bailey and Rachel
Greenstadt. USENIX Association, 2021, pp. 2597–2614. URL: https://www
.usenix.org/conference/usenixsecurity21/presentation/schumilo.

https://doi.org/10.1145/3544548.3581178
https://doi.org/10.1145/3544548.3581178
https://doi.org/10.1145/3544548.3581178
https://github.com/pwndbg/pwndbg
https://gitlab.com/akihe/radamsa
https://doi.org/10.1109/SP40001.2021.00066
https://doi.org/10.1109/SP40001.2021.00066
https://doi.org/10.1145/2771783.2771801
https://doi.org/10.1145/2771783.2771801
https://doi.org/10.1145/2771783.2771801
https://www.usenix.org/conference/usenixsecurity20/presentation/ruge
https://www.usenix.org/conference/usenixsecurity20/presentation/ruge
https://rust-fuzz.github.io/book/introduction.html
https://rust-fuzz.github.io/book/introduction.html
https://doi.org/10.1109/ICSE.2015.76
https://www.ndss-symposium.org/ndss-paper/hyper-cube-high-dimensional-hypervisor-fuzzing/
https://www.ndss-symposium.org/ndss-paper/hyper-cube-high-dimensional-hypervisor-fuzzing/
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity21/presentation/schumilo

148 Bibliography

[168] Kostya Serebryany. “OSS-Fuzz - Google’s continuous fuzzing service for
open source software”. In: Vancouver, BC: USENIX Association, Aug.
2017.

[169] Shinichi Shiraishi, Veena Mohan, and Hemalatha Marimuthu. “Test suites
for benchmarks of static analysis tools”. In: 2015 IEEE International Sym-
posium on Software Reliability Engineering Workshops, ISSREW 2015 Novem-
ber (2016), pp. 12–15. DOI: 10.1109/ISSREW.2015.7392027.

[170] Bundesamt für Sicherheit in der Informationstechnik. “Leitfaden zur En-
twicklung sicherer Webanwendungen. Empfehlungen und Anforderun-
gen an die Auftragnehmer”. In: (2013).

[171] Dag Sjøberg et al. “Conducting realistic experiments in software engi-
neering”. In: Feb. 2002, pp. 17–26. DOI: 10.1109/ISESE.2002.1166921.

[172] Justin Smith, Lisa Nguyen Quang Do, and Emerson Murphy-Hill. “Why
Can’t Johnny Fix Vulnerabilities: A Usability Evaluation of Static Analy-
sis Tools for Security”. In: Sixteenth Symposium on Usable Privacy and Secu-
rity (SOUPS 2020). USENIX Association, Aug. 2020, pp. 221–238. URL:
https : / / www . usenix . org / conference / soups2020 / presentation /
smith.

[173] Justin Smith et al. “How Developers Diagnose Potential Security Vul-
nerabilities with a Static Analysis Tool”. In: IEEE Transactions on Software
Engineering PP (Feb. 2018), pp. 1–1. DOI: 10.1109/TSE.2018.2810116.

[174] Justin Smith et al. “Questions Developers Ask While Diagnosing Poten-
tial Security Vulnerabilities with Static Analysis”. In: Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering. ESEC/FSE
2015. Bergamo, Italy: Association for Computing Machinery, 2015, pp. 248–
259. DOI: 10.1145/2786805.2786812. URL: https://doi.org/10.1145/
2786805.2786812.

[175] Suricata. https://suricata-ids.org/. Accessed: November 2022.

[176] Mohammad Tahaei and Kami Vaniea. “Recruiting Participants With Pro-
gramming Skills: A Comparison of Four Crowdsourcing Platforms and
a CS Student Mailing List”. In: Proceedings of the 2022 CHI Conference on
Human Factors in Computing Systems. CHI ’22. New Orleans, LA, USA:
Association for Computing Machinery, 2022. ISBN: 9781450391573. DOI:
10.1145/3491102.3501957. URL: https://doi.org/10.1145/3491102.
3501957.

[177] Mohammad Tahaei et al. “Security Notifications in Static Analysis Tools:
Developers’ Attitudes, Comprehension, and Ability to Act on Them”.
In: Proceedings of the 2021 CHI Conference on Human Factors in Comput-
ing Systems. CHI ’21. New York, NY, USA: Association for Computing
Machinery, 2021, pp. 1–17. DOI: 10.1145/3411764.3445616. URL: https:
//doi.org/10.1145/3411764.3445616.

https://doi.org/10.1109/ISSREW.2015.7392027
https://doi.org/10.1109/ISESE.2002.1166921
https://www.usenix.org/conference/soups2020/presentation/smith
https://www.usenix.org/conference/soups2020/presentation/smith
https://doi.org/10.1109/TSE.2018.2810116
https://doi.org/10.1145/2786805.2786812
https://doi.org/10.1145/2786805.2786812
https://doi.org/10.1145/2786805.2786812
https://suricata-ids.org/
https://doi.org/10.1145/3491102.3501957
https://doi.org/10.1145/3491102.3501957
https://doi.org/10.1145/3491102.3501957
https://doi.org/10.1145/3411764.3445616
https://doi.org/10.1145/3411764.3445616
https://doi.org/10.1145/3411764.3445616

Bibliography 149

[178] Tesseract OCR. https://github.com/tesseract- ocr/tesseract. Ac-
cessed: November 2022.

[179] David R. Thomas. “A General Inductive Approach for Analyzing Quali-
tative Evaluation Data”. In: American Journal of Evaluation (), pp. 237–246.

[180] Tyler Thomas et al. “What Questions Remain? An Examination of How
Developers Understand an Interactive Static Analysis Tool”. In: 2nd Work-
shop on Security Information Workers, WSIW@SOUPS 2016, Denver, CO,
USA, June 22, 2016. USENIX Association, 2016. URL: https://www.use
nix.org/conference/soups2016/workshop-program/wsiw16/presenta
tion/thomas.

[181] Christian Tiefenau et al. “A Usability Evaluation of Let’s Encrypt and
Certbot: Usable Security Done Right”. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. 2019, pp. 1971–
1988.

[182] tomlc99 GitHub. https://github.com/cktan/tomlc99. Accessed: Febru-
ary 2022.

[183] Carmine Vassallo et al. “Context is king: The developer perspective on
the usage of static analysis tools”. In: 25th International Conference on Soft-
ware Analysis, Evolution and Reengineering, SANER 2018, Campobasso, Italy,
March 20-23, 2018. Ed. by Rocco Oliveto, Massimiliano Di Penta, and
David C. Shepherd. IEEE Computer Society, 2018, pp. 38–49. DOI: 10.
1109/SANER.2018.8330195. URL: https://doi.org/10.1109/SANER.
2018.8330195.

[184] Veracode SAST. https://www.veracode.com/products/binary-static-
analysis-sast. Accessed: November 2022.

[185] Daniel Votipka, Desiree Abrokwa, and Michelle L. Mazurek. “Building
and Validating a Scale for Secure Software Development Self-Efficacy”.
In: CHI ’20. Honolulu, HI, USA: Association for Computing Machinery,
2020, pp. 1–20. ISBN: 9781450367080. DOI: 10.1145/3313831.3376754.
URL: https://doi.org/10.1145/3313831.3376754.

[186] Daniel Votipka et al. “Understanding security mistakes developers make:
Qualitative analysis from Build It, Break It, Fix It”. In: 29th USENIX Se-
curity Symposium, USENIX Security 2020, August 12-14, 2020. Ed. by Srd-
jan Capkun and Franziska Roesner. USENIX Association, 2020, pp. 109–
126. URL: https://www.usenix.org/conference/usenixsecurity20/
presentation/votipka-understanding.

[187] Haijun Wang et al. “Typestate-Guided Fuzzer for Discovering Use-after-
Free Vulnerabilities”. In: Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering. ICSE ’20. Seoul, South Korea: Asso-
ciation for Computing Machinery, 2020, pp. 999–1010. DOI: 10 . 1145 /
3377811.3380386. URL: https://doi.org/10.1145/3377811.3380386.

https://github.com/tesseract-ocr/tesseract
https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/presentation/thomas
https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/presentation/thomas
https://www.usenix.org/conference/soups2016/workshop-program/wsiw16/presentation/thomas
https://github.com/cktan/tomlc99
https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.1109/SANER.2018.8330195
https://doi.org/10.1109/SANER.2018.8330195
https://www.veracode.com/products/binary-static-analysis-sast
https://www.veracode.com/products/binary-static-analysis-sast
https://doi.org/10.1145/3313831.3376754
https://doi.org/10.1145/3313831.3376754
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-understanding
https://www.usenix.org/conference/usenixsecurity20/presentation/votipka-understanding
https://doi.org/10.1145/3377811.3380386
https://doi.org/10.1145/3377811.3380386
https://doi.org/10.1145/3377811.3380386

150 Bibliography

[188] Jinghan Wang, Chengyu Song, and Heng Yin. “Reinforcement Learning-
based Hierarchical Seed Scheduling for Greybox Fuzzing”. In: 28th An-
nual Network and Distributed System Security Symposium, NDSS 2021, virtu-
ally, February 21-25, 2021. The Internet Society, 2021. URL: https://www.
ndss-symposium.org/ndss-paper/reinforcement-learning-based-
hierarchical-seed-scheduling-for-greybox-fuzzing/.

[189] Yanhao Wang et al. “Not All Coverage Measurements Are Equal: Fuz-
zing by Coverage Accounting for Input Prioritization”. In: 27th Annual
Network and Distributed System Security Symposium, NDSS 2020, San Diego,
California, USA, February 23-26, 2020. The Internet Society, 2020. URL: ht
tps://www.ndss- symposium.org/ndss- paper/not- all- coverage-
measurements- are- equal- fuzzing- by- coverage- accounting- for-
input-prioritization/.

[190] Anjiang Wei et al. “Free Lunch for Testing: Fuzzing Deep-Learning Li-
braries from Open Source”. In: Proceedings of the 44th International Confer-
ence on Software Engineering (ICSE ’22), May 22–27, 2022, Pittsburgh, PA,
USA. ACM, May 2022.

[191] Charles Weir, Ben Hermann, and Sascha Fahl. “From Needs to Actions
to Secure Apps? The Effect of Requirements and Developer Practices on
App Security”. In: 29th USENIX Security Symposium, USENIX Security
2020, August 12-14, 2020. Ed. by Srdjan Capkun and Franziska Roesner.
USENIX Association, 2020, pp. 289–305. URL: https://www.usenix.org/
conference/usenixsecurity20/presentation/weir.

[192] Cheng Wen et al. “MemLock: Memory Usage Guided Fuzzing”. In: Pro-
ceedings of the ACM/IEEE 42nd International Conference on Software Engi-
neering. ICSE ’20. Seoul, South Korea: Association for Computing Ma-
chinery, 2020, pp. 765–777. DOI: 10.1145/3377811.3380396. URL: https:
//doi.org/10.1145/3377811.3380396.

[193] Dominik Wermke et al. “Committed to Trust: A Qualitative Study on Se-
curity & Trust in Open Source Software Projects”. In: 2022 IEEE Sympo-
sium on Security and Privacy (SP). 2022, pp. 1880–1896. DOI: 10.1109/
SP46214.2022.9833686.

[194] Alan Woodlief, Sebastian Elbaum, and Kevin Sullivan. “Semantic Image
Fuzzing of AI Perception Systems”. In: Proceedings of the 44th International
Conference on Software Engineering (ICSE ’22), May 22–27, 2022, Pittsburgh,
PA, USA. ACM, May 2022.

[195] Mingyuan Wu et al. “Evaluating and Improving Neural Program-Smooth-
ing-based Fuzzing”. In: Proceedings of the 44th International Conference on
Software Engineering (ICSE ’22), May 22–27, 2022, Pittsburgh, PA, USA.
ACM, May 2022.

https://www.ndss-symposium.org/ndss-paper/reinforcement-learning-based-hierarchical-seed-scheduling-for-greybox-fuzzing/
https://www.ndss-symposium.org/ndss-paper/reinforcement-learning-based-hierarchical-seed-scheduling-for-greybox-fuzzing/
https://www.ndss-symposium.org/ndss-paper/reinforcement-learning-based-hierarchical-seed-scheduling-for-greybox-fuzzing/
https://www.ndss-symposium.org/ndss-paper/not-all-coverage-measurements-are-equal-fuzzing-by-coverage-accounting-for-input-prioritization/
https://www.ndss-symposium.org/ndss-paper/not-all-coverage-measurements-are-equal-fuzzing-by-coverage-accounting-for-input-prioritization/
https://www.ndss-symposium.org/ndss-paper/not-all-coverage-measurements-are-equal-fuzzing-by-coverage-accounting-for-input-prioritization/
https://www.ndss-symposium.org/ndss-paper/not-all-coverage-measurements-are-equal-fuzzing-by-coverage-accounting-for-input-prioritization/
https://www.usenix.org/conference/usenixsecurity20/presentation/weir
https://www.usenix.org/conference/usenixsecurity20/presentation/weir
https://doi.org/10.1145/3377811.3380396
https://doi.org/10.1145/3377811.3380396
https://doi.org/10.1145/3377811.3380396
https://doi.org/10.1109/SP46214.2022.9833686
https://doi.org/10.1109/SP46214.2022.9833686

Bibliography 151

[196] Mingyuan Wu et al. “One Fuzzing Strategy to Rule Them All”. In: Pro-
ceedings of the 44th International Conference on Software Engineering (ICSE
’22), May 22–27, 2022, Pittsburgh, PA, USA. ACM, May 2022.

[197] Valentin Wüstholz and Maria Christakis. “Targeted Greybox Fuzzing with
Static Lookahead Analysis”. In: Proceedings of the ACM/IEEE 42nd Inter-
national Conference on Software Engineering. ICSE ’20. Seoul, South Korea:
Association for Computing Machinery, 2020, pp. 789–800. DOI: 10.1145/
3377811.3380388. URL: https://doi.org/10.1145/3377811.3380388.

[198] Meng Xu et al. “Krace: Data Race Fuzzing for Kernel File Systems”. In:
2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA,
USA, May 18-21, 2020. IEEE, 2020, pp. 1643–1660. DOI: 10.1109/SP40000.
2020.00078. URL: https://doi.org/10.1109/SP40000.2020.00078.

[199] Wen Xu, Soyeon Park, and Taesoo Kim. “FREEDOM: Engineering a State-
of-the-Art DOM Fuzzer”. In: CCS ’20: 2020 ACM SIGSAC Conference on
Computer and Communications Security, Virtual Event, USA, November 9-
13, 2020. Ed. by Jay Ligatti et al. ACM, 2020, pp. 971–986. DOI: 10.1145/
3372297.3423340. URL: https://doi.org/10.1145/3372297.3423340.

[200] Aiko Fallas Yamashita and Leon Moonen. “Do developers care about
code smells? An exploratory survey”. In: 20th Working Conference on Re-
verse Engineering, WCRE 2013, Koblenz, Germany, October 14-17, 2013. Ed.
by Ralf Lämmel, Rocco Oliveto, and Romain Robbes. IEEE Computer So-
ciety, 2013, pp. 242–251. DOI: 10.1109/WCRE.2013.6671299. URL: https:
//doi.org/10.1109/WCRE.2013.6671299.

[201] Aiko Fallas Yamashita and Leon Moonen. “Surveying developer knowl-
edge and interest in code smells through online freelance marketplaces”.
In: 2nd International Workshop on User Evaluations for Software Engineering
Researchers, USER 2013, San Francisco, CA, USA, May 26, 2013. IEEE Com-
puter Society, 2013, pp. 5–8. DOI: 10.1109/USER.2013.6603077. URL:
https://doi.org/10.1109/USER.2013.6603077.

[202] yaml-cpp. https://github.com/jbeder/yaml-cpp. Accessed: November
2022.

[203] Tai Yue et al. “EcoFuzz: Adaptive Energy-Saving Greybox Fuzzing as a
Variant of the Adversarial Multi-Armed Bandit”. In: 29th USENIX Secu-
rity Symposium (USENIX Security 20). USENIX Association, Aug. 2020,
pp. 2307–2324. URL: https://www.usenix.org/conference/usenixsecu
rity20/presentation/yue.

[204] Kunpeng Zhang et al. “Path Transitions Tell More: Optimizing Fuzzing
Schedules via Runtime Program States”. In: Proceedings of the 44th Inter-
national Conference on Software Engineering (ICSE ’22), May 22–27, 2022,
Pittsburgh, PA, USA. ACM, May 2022.

https://doi.org/10.1145/3377811.3380388
https://doi.org/10.1145/3377811.3380388
https://doi.org/10.1145/3377811.3380388
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1145/3372297.3423340
https://doi.org/10.1145/3372297.3423340
https://doi.org/10.1145/3372297.3423340
https://doi.org/10.1109/WCRE.2013.6671299
https://doi.org/10.1109/WCRE.2013.6671299
https://doi.org/10.1109/WCRE.2013.6671299
https://doi.org/10.1109/USER.2013.6603077
https://doi.org/10.1109/USER.2013.6603077
https://github.com/jbeder/yaml-cpp
https://www.usenix.org/conference/usenixsecurity20/presentation/yue
https://www.usenix.org/conference/usenixsecurity20/presentation/yue

152 Bibliography

[205] Zhuo Zhang et al. “StochFuzz: Sound and Cost-effective Fuzzing of Stripped
Binaries by Incremental and Stochastic Rewriting”. In: 42nd IEEE Sympo-
sium on Security and Privacy, SP 2021, San Francisco, CA, USA, 24-27 May
2021. IEEE, 2021, pp. 659–676. DOI: 10.1109/SP40001.2021.00109. URL:
https://doi.org/10.1109/SP40001.2021.00109.

[206] Rui Zhong et al. “SQUIRREL: Testing Database Management Systems
with Language Validity and Coverage Feedback”. In: CCS ’20: 2020 ACM
SIGSAC Conference on Computer and Communications Security, Virtual Event,
USA, November 9-13, 2020. Ed. by Jay Ligatti et al. ACM, 2020, pp. 955–
970. DOI: 10.1145/3372297.3417260. URL: https://doi.org/10.1145/
3372297.3417260.

[207] Chijin Zhou et al. “Zeror: Speed Up Fuzzing with Coverage-sensitive
Tracing and Scheduling”. In: 35th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2020, Melbourne, Australia, September
21-25, 2020. IEEE, 2020, pp. 858–870. DOI: 10.1145/3324884.3416572.
URL: https://doi.org/10.1145/3324884.3416572.

[208] Xiaogang Zhu and Marcel Böhme. “Regression Greybox Fuzzing”. In:
CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, Republic of Korea, November 15 - 19, 2021. Ed. by
Yongdae Kim et al. ACM, 2021, pp. 2169–2182. DOI: 10.1145/3460120.
3484596. URL: https://doi.org/10.1145/3460120.3484596.

[209] Peiyuan Zong et al. “FuzzGuard: Filtering out Unreachable Inputs in Di-
rected Grey-box Fuzzing through Deep Learning”. In: 29th USENIX Se-
curity Symposium (USENIX Security 20). USENIX Association, Aug. 2020,
pp. 2255–2269. URL: https://www.usenix.org/conference/usenixsecu
rity20/presentation/zong.

[210] zzuf. zzuf. https://github.com/samhocevar/zzuf. Accessed: November
2022.

https://doi.org/10.1109/SP40001.2021.00109
https://doi.org/10.1109/SP40001.2021.00109
https://doi.org/10.1145/3372297.3417260
https://doi.org/10.1145/3372297.3417260
https://doi.org/10.1145/3372297.3417260
https://doi.org/10.1145/3324884.3416572
https://doi.org/10.1145/3324884.3416572
https://doi.org/10.1145/3460120.3484596
https://doi.org/10.1145/3460120.3484596
https://doi.org/10.1145/3460120.3484596
https://www.usenix.org/conference/usenixsecurity20/presentation/zong
https://www.usenix.org/conference/usenixsecurity20/presentation/zong
https://github.com/samhocevar/zzuf

153

Appendix A

Static vs. Dynamic

A.1 Semi-Structured Interview

A.1.1 CS Study

Task 1

• Please explain what you did in the first task.

– Do you have a point where you want to elaborate on?
– Did you encounter any problems?
– Did anything went exceptionally well?
– Please elaborate on the output of the tool.
– Can you tell me something about the usability?
– Where do you see potential for improvement?

Task 2

• Please explain what you did in the second task.

– Do you have a point where you want to elaborate on?
– Did you encounter any problems?
– Did anything went exceptionally well?
– Please elaborate on the output of the tool.
– Can you tell me something about the usability?
– Where do you see potential for improvement?

Comparison

• Please compare the two tasks.

• Do you have anything particular in mind that was comparably easy or
hard?

• Would you want to use one of the tools, both or none in the future? Why?

154 Appendix A. Static vs. Dynamic

A.1.2 CTF Study

Static

• Please explain what you did in the task.

• How would you rate the usability of the Clang Static Analyzer on a scale
from 1-7, 1 very low, 7 very high?

• Please elaborate on the Usability of the Clang Static Analyzer.

• Can you tell me something about the Output of the analyzer?

• What was your biggest problem?

• How would you rate the documentation again on scale from 1-7?

Dynamic

• Please explain what you did in the task.

• How would you rate the usability of libFuzzer on a scale from 1-7, 1 very
low, 7 very high?

• Please elaborate on the Usability of libFuzzer.

• Please elaborate on your fuzz target.

• Have you used a dictionary or corpus?

• What did you think of the output?

• How did you interact with the output?

• How did you determine that the fuzzer is running well?

Comparison

• Please compare the two tasks.

• Do you have anything particular in mind that was comparably easy or
hard?

• Would you want to use one of the tools, both or none in the future? Why?

general

• What is a security related bug?

A.2 Clang Static Analyzer Overview

A.3. Overview of Task Ordering 155

Program Clang Static Analyzer reports

Tesseract 476
protobuf 3.9.x 92
protobuf 3.8.x 121

util-linux 142
simple-obfs 15

cmatrix 3
vlc 219

wine 4746
netdata 32
darknet 73
libnice 3

obs-studio 456
jq 4

FFmpeg 639
yuzu 339

spdlog 0
simdjson 2

TABLE A.1: Overview of GitHub projects and reports of Clang
Static Analyzer

A.3 Overview of Task Ordering

first started drop-out submitted success
Static-easy 8 1 7 6
Static-hard 7 4 3 0

second started drop-out submitted success
Static-easy 4 2 2 2
Static-hard 3 1 2 0

combined started drop-out submitted success
Static-easy 12 3 9 8
Static-hard 10 5 5 0

TABLE A.2: CS: static analysis overall statistics

156 Appendix A. Static vs. Dynamic

first started drop-out submitted success
Fuzzing-easy 9 5 4 1
Fuzzing-hard 7 4 3 0

second started drop-out submitted success
Fuzzing-easy 7 3 4 1
Fuzzing-hard 3 2 1 0

combined started drop-out submitted success
Fuzzing-easy 16 8 8 2
Fuzzing-hard 10 6 4 0

TABLE A.3: CS: fuzzing overall statistics

first started drop-out submitted success
Fuzzing 3 0 3 0

Static 3 0 3 0

second started drop-out submitted success
Fuzzing 3 0 3 0

Static 3 0 3 1

combined started drop-out submitted success
Fuzzing 6 0 6 0

Static 6 0 6 1

TABLE A.4: CTF: static analysis and fuzzing overall statistics

A.3. Overview of Task Ordering 157

Participant Static Dynamic
Step 1 Step 2 Step 3 Bug Step 1 Step 2 Step 3 Step 4 Step 5 Bug Step 6 Corpus Toy

CS27-SFE no submission not started
CS31-SFE ✗ ✓ ✓ ✓ ✗ / ✗ ✓

CS1-SFE ✓ ✓ ✓ ✓ no submission
CS9-SFE ✓ ✓ ✓ ✓ no submission

CS19-SFE ✓ ✓ ✓ ✓ no submission
CS15-SFE ✓ ✓ ✓ ✓ 2 / ✓ 2 ✗ / ✗ (FT in TPr) ✗ ✗

CS5-SFE ✓ ✓ ✓ ✓ 1 / ✓ 1 ✓ / ✗ ✓ ✓ ✓ ✗ ✓ ✗

CS23-SFE ✓ ✓ ✓ ✓ 1 / ✓ 1 ✓ / ✓ ✓ ✓ ✓ ✓ ✓ ✗

CS21-SFH no submission not started
CS25-SFH no submission not started
CS29-SFH no submission not started
CS7-SFH ✓ ✓ ✓ ✗ no submission

CS13-SFH ✓ ✓ ✓ ✗ no submission
CS17-SFH ✓ ✓ ✓ ✗ ✗ / ✗ ✗

CS3-SFH ✓ ✓ ✓ ✗ ❍ / ❍ ❍ ✗ / ✗ ✗ ✓

Participant Dynamic Static
Step 1 Step 2 Step 3 Step 4 Step 5 Bug Step 6 Corpus Toy Step 1 Step 2 Step 3 Bug

CS2-FSE no submission not started
CS10-FSE no submission not started
CS12-FSE no submission not started
CS20-FSE no submission not started
CS32-FSE no submission not started
CS11-FSH no submission not started
CS14-FSH no submission not started
CS22-FSH no submission not started
CS28-FSE ✗ / ✗ no submission
CS16-FSE ✗ / ✗ ✗ ✓ ✓ ✓ ✓

CS24-FSE 1 / ✓ 1 ✓ / ✗ ✗ ✓ ✓ ✓ ✓ ✓

CS6-FSE 2 / ✓ 2 ✓ / ✗ ✓ ✓ ✓ ✓ ✗ ✗ no submission

CS18-FSH ✗ / ✗ ✗ ✗

CS26-FSH ❍ / ❍ ❍ ❍ / ❍ ✓ ✓ ✓ ✓ ✗

CS4-FSH ✗ / ✗ ✓ ✓ ✓ ✓ ✗

CS8-FSH 1 / ✗ ❍ ✗ / ✗ ✓ ✓ ✓ ✓ ✗

CS30-FSH ✗ / ✗ ✗ / ❍ not started

TABLE A.5: CS overall

Participant Static Dynamic
Step 1 Step 2 Step 3 Bug Step 1 Step 2 Step 3 Step 4 Step 5 Bug Step 6 Corpus Toy

CTF1-SF ✓ ✓ ✓ ✗ no submission
CTF5-SF ✓ ✓ ✓ ✗ 1 / ✓ 1 ✗ / ✗ ✗ ✗

CTF3-SF ✓ ✓ ✓ ✗ 1 / ✓ 3+ ✓ / ✓ (FT in TPr) ✓ ✓ ✗ ✓ ✓ ✗

CTF7-SF ✓ ✓ ✓ ✗ 1 / ✓ 11 ✓ / ✓ ✓ ✓ ✗ ✓ ✓ ✗

Participant Dynamic Static
Step 1 Step 2 Step 3 Step 4 Step 5 Bug Step 6 Corpus Toy Step 1 Step 2 Step 3 Bug

CTF8-FS no submission not started
CTF4-FS 1 / ✓ 1 ✓ / ✓ (FT in TPr) ❍ ❍ ✗ ✓ ✗ ✓ ✓ ✓ ✗

CTF2-FS 1 / ✓ 1 ✓ / ✓ (FT in TPr) ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗

CTF6-FS 1 / ✓ 10 ✓ / ✓ (FT in TPr) ✓ ✓ ✗ ❍ ✗ ✗ ✓ ✓ ✓ ✓

TABLE A.6: CTF overall

158 Appendix A. Static vs. Dynamic

A.4 Comments and Usage in Future

Participant
Comment Use in Futurestatic dynamic

positive negative positive negative static dynamic none

CS5-SFE 4 2 2 9 ✓ ✓

CS15-SFE 4 4 1 7 ✓ ✓

CS16-FSE 6 1 0 5 ✓

CS23-SFE 3 3 1 9 ✓

CS24-FSE 8 7 3 3 ❍ ❍ ❍

CS31-FSE 2 4 1 2 ✓

∑ easy 27 21 8 35 4 2 1

CS3-SFH 8 6 0 5 ✓

CS4-FSH 6 6 2 6 ✓ ✓

CS8-FSH 6 6 0 7 ✓

∑ hard 20 18 2 18 3 1 0

∑ 47 39 10 53 7 3 1

TABLE A.7: CS: Comments and usage in future of the static and
dynamic analysis tools

Participant
Comment Use in Futurestatic dynamic

positive negative positive negative static dynamic none

CTF2-FS 2 3 2 10 ✓ ✓

CTF3-SF 2 5 1 2 ✓ ✓

CTF4-FS 2 5 1 6 ✓

CTF5-SF 4 2 0 4 ✓ ✓

CTF6-FS 2 4 2 5 clean code ✓

CTF7-SF 8 5 0 4 ✓

∑ 20 24 6 31 3 6 0

TABLE A.8: CTF Comments and usage in future of the static and
dynamic analysis tools

A.5 Pre-Questionnaire

First the pre-questionnaire for the CS participants is presented, followed by the
pre-questionnaire for the CTF participants.

A.5.1 Pre-Questionnaire CS Students

• How many years of programming experience do you have?
[Number]

A.5. Pre-Questionnaire 159

• Which programming languages are you proficient in?
Java, C, C++, Python, Ruby, Go, Pascal, Basic, Rust, Perl, PHP, JavaScript, R,
Other (please specify) [Free text]

• How proficient are you with the following operating systems?
1 - not at all - 7 - excellent
Windows, Linux, Mac, BSD

• How many hours per week do you spend programming?
[Number]

• Have you ever used static code analysis to support your programming?
Yes, No

• if yes

– Which static code analysis tools have you ever used?
[Free text]

– Please rate your agreement with the following statement: static code
analysis supported my programming!
1 - Disagree very strongly - 7 - agree very strongly

• Are your familiar with the term ’fuzzing’?
Yes, No

• Have you ever used a fuzzer?
Yes, No

• if yes

– Please name all fuzzers you have ever used.
[Free text]

– Have you ever found a bug with a fuzzer?
Yes, No

• Please rate how proficient you are in the following programming languages.
1 - not at all - 7 - excellent
Java, C, C++, Python, Ruby, Go, Pascal, Basic, Rust, Perl, PHP, JavaScript,
R

• Please state your age
[Number]

• Please state your gender
male, female, other, no answer

160 Appendix A. Static vs. Dynamic

A.5.2 Pre-Questionnaire CTF Players

The CTF players were asked the same question in the pre-questionnaire as the
CS students shown in Section A.5.1. Additionally, they were also asked the fol-
lowing question:

• What is your main occupation?
Student, Employee, Employer, Freelancer, job-seeking, no answer, Other (please
specify) [Free text]

• if Employee was selected

– How many employees does your company have?
[Number]

– How many members on average does the team you are working in
have?
[Number]

• if Student was selected

– What is your intended level of education?
[Free text]

– What is your major at the moment?
[Free text]

– What is your current semester?
[Number]

• Please state your level of education.
Master of Computer Science or comparable, Bachelor of Computer Science or
comparable, Ausbildung Fachinformatiker or comparable, Abitur, High school
diploma, Mittlere Reife, no answer, Other (please specify) [Free text]

161

Appendix B

AFL vs. libFuzzer

B.1 Pre-Questionnaire

Programming Experience

• How many years of programming experience do you have?
[Number]

• Which programming languages are you proficient in?
Java, C, C++, Python, Ruby, Go, Pascal, Basic, Rust, Perl, PHP, JavaScript, R,
Other (please specify) [Free text]

• Please rate how proficient you are in the following programming languages.
1 - not at all - 7 - excellent
Java, C, C++, Python, Ruby, Go, Pascal, Basic, Rust, Perl, PHP, JavaScript,
R

Static Code Analysis

• Have you ever used static code analysis to support your programming?
Yes, No

• if yes

– Which static code analysis tools have you ever used?
[Free text]

– Please rate your agreement with the following statement: static code
analysis supported my programming!
1 - Disagree very strongly - 7 - agree very strongly

Dynamic Code Analysis

• Are your familiar with the term ’fuzzing’?
Yes, No

162 Appendix B. AFL vs. libFuzzer

• Have you ever used a fuzzer?
Yes, No

• if yes

– Please name all fuzzers you have ever used.
[Free text]

– Have you ever found a bug with a fuzzer?
Yes, No

Demographics

• Please select your gender.
Male, Female, Prefer not say, Prefer to self-describe: [Free text

• Please enter your age:
[Number]

• How many hours per week do you spend programming?
[Number]

B.2 How to Solve the Tasks

In this section, we present possible solutions for our tasks. In order to save
space, we provide a solution for each target program with only one fuzzer.

B.2.1 AFL and tomlc99

In order to fuzz tomlc99, we choose the toml_parse function.
The fuzz target with the signature while-loop for using the persistent mode is

shown in Listing B.1. It reads the input from stdin, writes the input into a buffer,
and calls toml_parse with this buffer. Moreover, an error buffer is created and
passed to the function. In the end, the resulting toml table is freed.

The target program is built with the command presented in Listin B.2. The
make command is invoked with the compiler set to the AFL compiler. Then
the fuzz target is built with the command also shown in B.2. To do so, the AFL
compiler is used, the include path is extended to the path to the build folder,
and the library to link against is specified. In both compilations, the variable
AFL_USE_ASAN is set to 1 to use the address sanitizer.

Afterward, the fuzzer is run by specifying the input and output folder and
the target. The command is shown in Listing B.3.

include <unistd . h>
include < s t r i n g . h>

B.2. How to Solve the Tasks 163

include " toml . h"

i n t main () {
char buf [1 0 0] ;

while (__AFL_LOOP(1 0 0 0)) {
char errbuf [2 0 0] ;

memset (buf , 0 , 100) ;
read (0 , buf , 100) ;

t o m l _ t a b l e _ t * tab = toml_parse (buf , errbuf , 200) ;

toml_free (tab) ;
}

return 0 ;
}

LISTING B.1: Fuzz Target of AFL for tomlc99

B u i l d i n g T a r g e t Program
AFL_USE_ASAN=1 make CC= a f l −clang − f a s t

B u i l d i n g Fuzz T a r g e t
AFL_USE_ASAN=1 a f l −clang − f a s t t a r g e t . c − I . . / \\

. . / l i b t o m l . a −o t a r g e t

LISTING B.2: Build commands of AFL for tomlc99

#Running AFL
a f l −fuzz − i in −o out −− ./ t a r g e t

LISTING B.3: Run commands of AFL for tomlc99

B.2.2 libFuzzer and libroxml

To fuzz libroxml, we choose the function roxml_load_buf.
The fuzz target, which can be seen in Listing B.4, consists of the needed

LLVMFuzzerTestOneInput-function. The input argument is written into a buffer
and null-terminated. The buffer is then passed to the target function. In the end,
the resulting node is closed.

164 Appendix B. AFL vs. libFuzzer

The target program is built with the make command, the compiler is set to
clang, and the fuzzer-no-link flag is also passed to instrument the target pro-
gram. The fuzz target is also built with the clang compiler. The built command
for the fuzz target and target program is shown in Listing B.5. Moreover, the
fuzzer flag is used for instrumentation and linking the fuzzer. Besides that, the
include-path is extended to the path to the build folder, and the library to link
against is specified.

The fuzzer is started by running the executable, which is shown in Listing
B.6.

include <stddef . h>
include < s t d i n t . h>
include < s t r i n g . h>
include < s t d l i b . h>

include " roxml . h"

i n t LLVMFuzzerTestOneInput (u i n t 8 _ t * input , s i z e _ t s i z e) {
char * buf = (char *) malloc (s i z e +1) ;
memcpy(buf , input , s i z e) ;
buf [s i z e] = 0 ;

ROXML_API node_t * root = roxml_load_buf (buf) ;
roxml_close (root) ;

return 0 ;
}

LISTING B.4: Fuzz Target of libFuzzer for libroxml

B u i l d i n g T a r g e t Program
./ conf igure CC=clang CFLAGS="− f s a n i t i z e =fuzzer −no− l i n k "
make

B u i l d i n g Fuzz T a r g e t
clang t a r g e t . c − f s a n i t i z e =fuzzer − I . . / s r c . . / . l i b s /l ibroxml . a −o

t a r g e t

LISTING B.5: Build commands of libFuzzer for libroxml

#Running l i b F u z z e r
./ t a r g e t

LISTING B.6: Run commands of libFuzzer for libroxml

B.3. Semi-Structured Interview 165

B.3 Semi-Structured Interview

Here we present the questions asked in the final semi-structured Interview.

B.3.1 AFL and libFuzzer

Subtask 1: Get a first impression of the target program and getan overall idea
of what the program does.

• What did you do in this subtask?

• What was the most difficult part of this subtask?

Subtask 2: Find a suitable function to fuzz.

• What did you do in this subtask?

• What made you think that the function(s) were suitable?

• What was the most difficult part of this subtask?

Subtask 3: Write your fuzz target in an external file.

• What did you do in this subtask?

• Why do you think should the fuzz target be written in an external file?

• Please elaborate on your fuzz target.

• What was the most difficult part of this subtask?

Subtask 4: Compile and instrument the target program.

• What did you do in this subtask?

• What is meant with target program?

• What is the meaning of instrumentation?

• What was the most difficult part of this subtask?

Subtask 5: Compile the fuzz target.

• What did you do in this subtask?

• What is the connection between subtask 3, 4 and 5?

• What was the most difficult part of this subtask?

166 Appendix B. AFL vs. libFuzzer

Subtask 6: Run the fuzzer and interpret the output.

• What did you do in this subtask?

• How did you interact with the output?

• How did you decide whether the fuzzing is doing something meaningful?

• What was the most difficult part of this subtask?

Subtask 7: If necessary, adjust and improve.

• What did you do in this subtask?

• What was the most difficult part of this subtask?

Conclusion

• Please elaborate on the usability of the fuzzer.

• What was the most difficult subtask in this task?

• What was your biggest problem in this task?

• Do you have any further comments on this task?

• Do you have any further comments regarding the fuzzer?

B.3.2 Comparison

• Please compare both fuzzers.

• Would you use one of the fuzzers, both or none in the future?

B.4 Overview of All Participants

Table B.1 and Table B.2 show the detailed results for all steps of all of our partic-
ipants that made a submission. Table B.1 shows the results of the condition par-
ticipants were assigned to first and Table B.2 those for the second assignment.
The tables are sorted by fuzzer and target program. Participants highlighted
in gray did not manage to complete the condition. Participants highlighted in
purple completed the condition but did not complete the study (i.e., both condi-
tions). All participants with a white background completed both conditions.

In the tables the color green denotes whether a participant succeeded on their
own and received a point for the step. The color yellow denotes a step a partic-
ipant succeeded in after receiving support and thus did not get a point. If a
participant succeeded in a step after support was given in a step before, it is

B.4. Overview of All Participants 167

Participant Fuzzer Program Sel. Func. Working FT Built TPr Instr. TPr Built FT Ran Fuzzer ASAN in TPr Corpus/Dict Trig. UEIC Trig. Bug Success Score

P10 AFL tomlc99 1 / ✓ 1 / ✓ ✓ ✓ ✓ ✓ ✗* ✓ ✗ ✗ - 7
P46 AFL tomlc99 1 / ✓ 1 / ✓ ✓ ✓ ✓ ✓ ✗* ✓ ✗ ✗ - 7
P26 AFL tomlc99 ✗ ./unitt/t1* 1 / ✗* ✓FTL fuzzing ✗ ✗ ✗ ✗ ✗ - 3
P06 AFL tomlc99 ✓ ./toml_cat (FTL fuzzing) ✓ ✗* ✓ ✗ ✗ - 7
P14 AFL tomlc99 ✓ ./toml_json (FTL fuzzing) ✓ ✓* ✓ ✗ ✓ ✓ 7
P02 AFL tomlc99 1 / ✓ 1 / ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 10
P49 AFL libroxml 1 / ✓ 1 / ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ - - 3
P09 AFL libroxml ✗ FTL fuzzing* ✓ ✗* ✓+ ✗+ ✗ ✗ - - - 1
P29 AFL libroxml 1 / ✗ 1 / ✗* ✓ ✓ ✗ ✗ ✗ ✗ - - - 2
P37 AFL libroxml 2 / ✓ 2 / ✓ ✓ direct compilation ✓ ✗ ✓ ✗ ✓ ✓ 9
P25 AFL libroxml 7 / ✓ 1 / ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ 9
P33 AFL libroxml 2 / ✓ 2 / ✓ ✓ direct compilation ✓ ✗ ✓ ✗ ✓ ✗ 8
P05 AFL libroxml 1 / ✓ 1 / ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ 9
P21 AFL libroxml 1 / ✓ 1 / ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 10
P41 AFL libroxml 1 / ✓ 1 / ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ 9
P45 AFL libroxml 1 / ✓ 1 / ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✓ 9
P36 libFuzzer tomlc99 1 / ✗ 1 / ✗* ✓ ✗ ✗* - ✗ ✗ - - - 1
P20 libFuzzer tomlc99 1 / ✓ 1 / ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗ 8
P40 libFuzzer tomlc99 1 / ✗ 1 / ✗ ✓ ✗ ✗* - ✗ ✗ - - - 1
P04 libFuzzer tomlc99 1 / ✓ 1 / ✓ ✓ direct compilation ✓ ✓ ✓ ✗ ✓ ✓ 10
P32 libFuzzer tomlc99 1 / ✓ 1 / ✓ ✓ direct compilation ✓ ✓ ✓ ✗ ✓ ✓ 10
P08 libFuzzer tomlc99 1 / ✓ 1 / ✗ ✓ ✗* ✓ ✓ ✓ ✓ ✓! ✗ - 6
P44 libFuzzer tomlc99 1 / ✓ 1 / ✗ ✓ ✗** ✓ ✓ ✗ ✗ ✓ ✗ - 4
P12 libFuzzer tomlc99 1 / ✓ 1 / ✓ ✓ ✗* ✓ ✓ ✓* ✓ ✓ ✓ ✓ 6
P48 libFuzzer tomlc99 2 / ✓ 2 / ✗ ✓ direct compilation ✓ ✓ ✗ ✓! ✗ - 6
P16 libFuzzer tomlc99 2 / ✓ 2 / ✓ ✓ direct compilation ✓ ✓* ✓ ✓ ✗ - 7
P47 libFuzzer libroxml 0 / ✗ 0 / ✗ ✓ ✗* ✗+ - ✗ ✗ - - - 1
P39 libFuzzer libroxml 10 / ✓ 1 / ✗ ✓ ✗* ✓* ✓ ✓ ✗ ✓ ✗ - 3
P23 libFuzzer libroxml 3 / ✗ 3 / ✗ ✓ ✗ ✗* - ✗ ✗ - - - 1
P19 libFuzzer libroxml 1 / ✓ 1 / ✗* ✓ ✓ ✓ ✓ ✗** ✓ ✓ ✗ - 6
P15 libFuzzer libroxml 1 / ✓ 1 / ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 9

TABLE B.1: Results of All Participants for First Task: ✓: success -
✗: failure - green: success without support - yellow: success with
support - blue: success after support in previous step - red: no

success - gray: not in score

highlighted in blue. This is not awarded with a point since the score should
only reflects what a participant was able to reach without any help. The color
red denotes a step in which the participant did not succeed and thus also did
not receive a point. The column in gray is not part of the score. Participants
marked in gray did not finish the task, so only partial information is present,
while participants in violet finished the task but dropped out in the next.

If a hint was given in one of the steps, it is denoted with an asterisk, for
help the plus sign is used. If a participant did not work on a subtask, e.g., did
not investigate whether a crash was a bug and was asked to do so by the study
assistant, it is denoted with an exclamation mark. If a step was not reached it is
denoted by a dash.

Sel. Func. The number in the column Selected Function shows how many
functions the participant tried to fuzz. The tick denotes if the bug could be
triggered via one of those function.

Working FT The number in the column Working FuzzTarget depicts the num-
ber of fuzz targets a participant wrote. The tick denotes whether a fuzz target
could in theory trigger the bug.

Built TPr & Instr. TPr The column Built TargetProgram contains the informa-
tion on whether the target program was built, while the column Instrumented
TargetProgram shows if the target program was instrumented.

168 Appendix B. AFL vs. libFuzzer

Participant Fuzzer Program Sel. Func. Working FT Built TPr Instr. TPr Built FT Ran Fuzzer ASAN in TPr Corpus/Dict Trig. UEIC Trig. Bug Success Score

P23 AFL tomlc99 0 / ✗ 0 / ✗* ✓ ✗ ✗ - ✗ ✗ - - - 1
P19 AFL tomlc99 6 / ✓ 2 / ✓ ✓ ✓ ✓ ✓ ✓* ✓ ✓ ✓ ✓ 7
P15 AFL tomlc99 ✓ ./toml_cat (FTL fuzzing) ✓ ✓ ✗ ✓ ✗ ✓ ✓ 9
P32 AFL libroxml 1 / ✓ 1 / ✓ ✓ ✓ ✓ ✓ ✗* ✓ ✗ ✗ ✗ 7
P48 AFL libroxml ✓ ./roxml (FTL fuzzing) ✓ ✗ ✓ ✓ - - - 7
P08 AFL libroxml ✓ ./roxml (FTL fuzzing) ✓ ✓ ✗ ✓ ✗ ✓ ✗ 8
P44 AFL libroxml ✓ ./rocat (FTL fuzzing) ✓ ✓ ✗ ✓ ✗ ✓ ✗! 8
P12 AFL libroxml ✓ ./rocat (FTL fuzzing) ✓ ✓ ✓ ✓ ✗ ✓ ✓ 10
P16 AFL libroxml 1 / ✓ 1 / ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 10
P29 libFuzzer tomlc99 1 / ✓ 1 / ✗ ✓ ✗* ✓ ✓ ✗ ✗ ✗ ✗ - 4
P37 libFuzzer tomlc99 3 / ✓ 3 / ✓ ✓ ✗* ✓ ✓ ✗* ✓ ✓ ✗ - 6
P21 libFuzzer tomlc99 10 / ✓ 6 / ✗ ✓direct compilation ✓ ✓ ✓ ✓ ✗ - 7
P25 libFuzzer tomlc99 4 / ✓ 1 / ✗ ✓direct compilation ✓ ✓* ✓ ✓ ✗ - 6
P33 libFuzzer tomlc99 2 / ✓ 2 / ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗ - 6
P45 libFuzzer tomlc99 5 / ✓ 1 / ✓ ✓ ✗* ✓ ✓ ✗* ✓ ✓ ✗ - 6
P41 libFuzzer tomlc99 1 / ✓ 1 / ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 8
P05 libFuzzer tomlc99 3 / ✓ 3 / ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ 9
P26 libFuzzer libroxml 3 / ✗ 2 / ✗* ✓ ✗ ✓ ✓ ✗ ✗ ✗ - - 3
P06 libFuzzer libroxml 2 / ✓ 1 / ✗ ✓ ✗* ✓ ✓ ✗* ✓ ✓ ✗ - 5
P02 libFuzzer libroxml 1 / ✓ 1 / ✓ ✓direct compilation ✓ ✓ ✗ ✗ ✓ ✓ 9
P14 libFuzzer libroxml 1 / ✓ 1 / ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 10

TABLE B.2: Results of All Participants for Second Task: ✓: success
- ✗: failure - green: success without support - yellow: success with
support - violet: success after support in previous step - red: no

success - gray: not in score

Built FT The column Built FuzzTarget shows whether the fuzz target was built
correctly.

Ran Fuzzer The column Ran Fuzzer shows if the fuzzer was run.

ASAN in TPr The column ASAN in TargetProgram shows whether the target
program was built with the address sanitizer. The address sanitizer is of interest
since it is needed to find the known bug in tomlc99. We awarded points in
the libroxml condition as well since participants could not know that it was not
needed, and it also helps when interpreting crashes.

Corpus/Dict The column Corpus/Dictionary shows whether participants used
a corpus or dictionary. While this was not necessary to find the bugs, which the
participants did not know, it is a common and recommendable optimization.

Trig. UEIC The column Triggered UEIC (User Error Induced Crash) shows
whether a crash was induced by an error of the user, and the column Triggered
Bug shows whether an actual bug in the target program was triggered.

Success The column Success shows if participants correctly interpreted the
output as a bug thus completing the overall task. This column also matches
the success score of Plöger et al.’s study.

Score The fuzzing score is shown in the second to last column and is the sum
off all subtasks which participants successfully solved without support.

B.5. User Rating of Fuzzer 169

FIGURE B.1: Example of an AFL error message when no instru-
mentation is detected

If a participant decided not to write a fuzz target but to fuzz one of the ex-
ecutables of the target programs, we call that fuzz-target-less fuzzing (FTL fuz-
zing). In the case that FTL fuzzing was used in AFL, it spans from Selected
Function to Built FuzzTarget. In this case the target executable is noted in the
columns.

B.5 User Rating of Fuzzer

Table B.3 shows the Usability and Overall rating given by our participants for
AFL and libFuzzer.

Overall

Fuzzer 1 2 3 4 5 6 7 plot median

AFL 0 1 0 5 3 5 3 5
libFuzzer 0 1 4 4 5 3 0 4

Usability

Fuzzer 1 2 3 4 5 6 7 plot median

AFL 1 3 1 3 2 4 3 5
libFuzzer 0 2 3 3 3 6 0 5

TABLE B.3: Usability and Overall rating of AFL and libFuzzer
given by the participants

B.6 Example of an Error Message

In Figure B.1 an error message of AFL is shown when no instrumentation in the
target is detected.

B.7 Outputs of Fuzzers While Running

Figures B.2 and B.3 show an example of the outputs while running of AFL and
libFuzzer.

170 Appendix B. AFL vs. libFuzzer

FIGURE B.2: Example of an AFL output while running

FIGURE B.3: Example of a libFuzzer output while running

B.8. Improvements to the Fuzzing Process 171

B.8 Improvements to the Fuzzing Process

Most participants tried a variety of improvements which are described in the fol-
lowing. The improvements used by the participants are depicted in Table B.4 for
the first task and Table B.5 for the second task. The column Computing Power
describes what participants did to give more computing power to the fuzzing
process or if they tried to parallel the process. If participants made significant
changes to the fuzz target, it is depicted in the column Fuzz Target. Moreover,
the columns Corpus and Dict show if participants used meaningful seeds in the
corpus or a dictionary, respectively. The sanitizers used by the participants are
depicted in the column Sanitizer. In the last column, Other, other notable tech-
niques used are shown. If an element is followed by an *, it indicates that it is
based on support.

Moreover, the Tables B.6 and B.7 show the ratio and percentage of partici-
pants that used the mutual and distinct fuzzer improvements.

In the following, we will give further insides into the improvements of the
fuzzing process made by the participants.

Participant Fuzzer Program Computing Power Fuzz Target Corpus Dict Sanitizer Other

P26 AFL tomlc99 AFL_HARDEN
P06 AFL tomlc99 x AFL_HARDEN
P14 AFL tomlc99 2 instances x ASAN*
P02 AFL tomlc99 3 instances x x ASAN, MSAN
P33 AFL libroxml x afl-cmin
P05 AFL libroxml x ASAN (failed)
P21 AFL libroxml x ASAN
P25 AFL libroxml x
P41 AFL libroxml x
P45 AFL libroxml x
P08 libFuzzer tomlc99 20 instances x ASAN
P44 libFuzzer tomlc99 debug_symbols
P12 libFuzzer tomlc99 20 instances x ASAN*, signed-integer-overflow* debug symbols, -ignore_crashes=1 -fork=4
P48 libFuzzer tomlc99 8 instances ASAN, signed-integer-overflow, USBAN value_profile=1, coverage visualization (failed)
P16 libFuzzer tomlc99 error correction x x ASAN*, signed-integer-overflow* coverage visualization (failed)
P19 libFuzzer libroxml 4 instances error correction* x -only_ascii=1, -detect_leaks=0
P15 libFuzzer libroxml 10 instances error correction x x ASAN

TABLE B.4: Improvements Task 1
Participant Fuzzer Program Computing Power Fuzz Target Corpus Dict Sanitizer Other

P19 AFL tomlc99 2 instances x ASAN*, MSAN* afl-tmin
P15 AFL tomlc99 4 instances x x afl-cmin, afl-tmin, debug symbols
P48 AFL libroxml x ASAN
P08 AFL libroxml x
P44 AFL libroxml x
P12 AFL libroxml x ASAN
P16 AFL libroxml x x ASAN AFL_HARDEN
P25 libFuzzer tomlc99 x ASAN* debug symbols, -fork=1 -ignore_crashes=1
P21 libFuzzer tomlc99 4 instances x ASAN -detect_leaks=0
P33 libFuzzer tomlc99 error correction x
P41 libFuzzer tomlc99 4 instances x ASAN, signed-integer-overflow debug symbols, -fsanitize-recover=address ASAN_OPTIONS=halt_on_error=0
P45 libFuzzer tomlc99 1000 instances x debug symbols
P05 libFuzzer tomlc99 50 instances error correction x ASAN detect_leaks=0
P26 libFuzzer libroxml
P06 libFuzzer libroxml x ASAN*, signed-integer-overflow*
P02 libFuzzer libroxml ASAN, signed-integer-overflow, MSAN -detect_leaks=0, debug symbols
P14 libFuzzer libroxml 4 instances error correction x ASAN Bash-script to skip crashes, ignore_crashes (failed), detect_leaks=0, debug symbols

TABLE B.5: Improvements Task 2

Computing Power A widespread improvement for both fuzzer was to im-
prove the process by enhancing the computing power. The most common ways
to do this were running the fuzzer for a more extended period and using the
appropriate form of parallelization. The extended period was usually between
one and three hours during the day or several hours overnight. For AFL and lib-
Fuzzer, parallelization was not an issue for the participants. Some participants

172 Appendix B. AFL vs. libFuzzer

upgraded the virtual machine or used other external machines to get more com-
puting power. Neither of the participants reported a clear improvement from
computing power. We suspect that more computing power was chosen as an
improvement as it was recommended in both documentations and was fairly
easy to do.

Improvements to the Fuzz Target Many Participants tried to use more fuzz
targets and, in that sense, tried to fuzz more target functions to find more bugs.
The targeting of more functions was independent of the fuzzer used. They also
tried to improve their existing targets, but this was mostly done when using
libFuzzer. The improvement to existing targets was nearly solely based on the
situation that the participants had problems giving a useful input to the target
function, which resulted in false positives and, therefore, the necessity to remove
the problem. The root of the problems was that the input to the target programs
had to be a null-terminated string, but the input given from libFuzzer is not
null-terminated. The need to fix the fuzz target was not a problem when using
AFL because the input for the target program is null-terminated.

Compiler Optimization for AFL As depicted in Table B.7, only 35% of the 17
participants used the afl-clang-fast compiler, which results in a speed increase
of between 10% and 200% in comparison to the vanilla AFL compiler. Half of
those participants actively changed the compiler to afl-clang-fast from one of
the two slower compilers, afl-gcc and afl-clang. In comparison, three partici-
pants directly started with the fastest possible compiler. The changes necessary
to use the fastest compiler are minimal. Instead of setting the compiler to afl-gcc
or afl-clang, the compiler must be set to afl-clang-fast. The fastest compiler can
be used on nearly every target program. Only on rare occasions does the com-
pilation process with afl-clang-fast fail and a slower compiler has to be chosen.
As a consequence, setting the compiler to afl-clang-fast is highly recommended.
The insufficient documentation could explain that only a handful of participants
used afl-clang-fast since the necessary changes from a technical and usability
perspective are minimal.

Error Suppression in libFuzzer Some participants stated that they improved
their fuzzing by suppressing error messages from libFuzzer. They can be di-
vided into two groups. The first group, which contained two participants, was
annoyed by the leak detection. All leaks are self-induced due to misconfigura-
tion in the fuzz target. We were not able to find any leaks in the target program.
One of those two participants, participant P05, thought about the situation and
turned the leak detection right back on because they thought leaks could result
in bugs. They stated:

So at the very beginning I had the leaks disabled, or when running,
set the leaks flag to zero. But then I quickly took it back because

B.8. Improvements to the Fuzzing Process 173

memory consumption or if memory leaks can lead to a DOS sooner
or later

The other participant was not really aware of the situation and tried different
combinations of sanitizers and leak detection which resulted in different find-
ings for them. They were not able to make any sense out of the situation and
just started to use a debugger to get a better understanding.

The other group of three participants deactivated the address sanitizer be-
cause the usage of the address sanitizer resulted in a finding of the fuzzer. Al-
though they acknowledged the finding, they wanted to get more findings, but
the crash that occurred while using the address sanitizer was so dominant that
no other crashes were found. They concluded that the address sanitizer was the
cause of the situation and therefore dropped the address sanitizer to get more
findings. Participant P41 also believed that while the crash produced with the
address sanitizer is valid, the crash can not be triggered in a realistic situation
because it was not produced without the address sanitizer and consequently
ignored it.

Fuzzers point of view When looking at the accumulated numbers of mutual
improvements for the respective fuzzer, shown in Table B.6, it can be seen that
the usage of a meaningful corpus is the most common improvement for both
fuzzers. In addition, improvements for the fuzzing process with AFL are rather
sparse. For libFuzzer, the utilization of more than one core and the usage of the
address sanitizer are also expected improvements.

Improvement AFL libFuzzer

Corpus 16/17 94% 13/13 100%
Dict 3/3 100% 2/2 100%
Multi Proc 4/4 100% 10/10 100%
ASAN 5/6 83% 9/9 100%
MSAN 1/1 100% 1/1 100%

TABLE B.6: Ratio and success percentage of mutual fuzzer im-
provements

Assessing the fuzzer-specific improvements, as shown in Table B.7, the per-
centage of used improvements is even lower with no defining improvements.

174 Appendix B. AFL vs. libFuzzer

Improvement AFL libFuzzer

Compiler opti. 4/4 100% -
Best compiler 2/2 100% -
Pers. Mode 0/0 - -
AFL_HARDEN 3/3 100% -
afl-tmin 2/2 100% -
afl-cmin 2/2 100% -

Debug Symbols - 7/7 100%
Coverage Vis. - 0/2 0%
UBSAN - 1/1 100%
Signed San - 3/3 100%
ignore crashes - 2/3 67%
value profile - 1/1 100%

TABLE B.7: Ratio and success percentage of distinct fuzzer im-
provements

175

Appendix C

Replication: AFL vs. libFuzzer

C.1 Pre-Questionnaire

Programming Experience

• How many years of programming experience do you have?
[Number]

• Which programming languages are you proficient in?
Java, C, C++, Python, Ruby, Go, Pascal, Basic, Rust, Perl, PHP, JavaScript, R,
Other (please specify) [Free text]

• Please rate how proficient you are in the following programming languages.
1 - not at all - 7 - excellent
Java, C, C++, Python, Ruby, Go, Pascal, Basic, Rust, Perl, PHP, JavaScript,
R

Static Code Analysis

• Have you ever used static code analysis to support your programming?
Yes, No

• if yes

– Which static code analysis tools have you ever used?
[Free text]

– Please rate your agreement with the following statement: static code
analysis supported my programming!
1 - Disagree very strongly - 7 - agree very strongly

Dynamic Code Analysis

• Are your familiar with the term ’fuzzing’?
Yes, No

176 Appendix C. Replication: AFL vs. libFuzzer

• Have you ever used a fuzzer?
Yes, No

• if yes

– Please name all fuzzers you have ever used.
[Free text]

– Have you ever found a bug with a fuzzer?
Yes, No

Demographics

• Please select your gender.
Male, Female, Prefer not say, Prefer to self-describe: [Free text

• Please enter your age:
[Number]

• Which country do you live in?
[Free text]

• Do you have a university degree?
Yes, No

Degree

• if yes

– From which university/universities is/are your degree(s) from?
[Free text]

– What degree(s) do you have?
[Free text]

Occupation

• What is your current occupation? (Multiple answers are allowed)
Industry developer, Freelance tester, Industry tester, Industry researcher, Aca-
demic researcher, Undergraduate student, Graduate student, Other: [Free text]

Education

• if Undergraduate student or Graduate student

– At which university are you enrolled?
[Free text]

– What is your subject?
[Free text]

C.2. Post-Questionnaire 177

Development

• What type(s) of software do you develop/test? (Multiple answers allowed)
Web applications, Mobile/App applications, Desktop applications, Embedded Soft-
ware Engineering, Enterprise applications, Other: [Free text]

• How many years of experience do you have with software developmen-
t/testing in general?
[Number]

Skills

• How did you gain your IT skills? (Multiple answers allowed)
At university, On the job, Free online courses, Paid online courses, Paid on-
location courses, Free on-location courses, Self-taught, Other [Free text]

• How did you gain your IT-security skills? (Multiple answers allowed)
At university, On the job, Free online courses, Paid online courses, Paid on-
location courses, Free on-location courses, Self-taught, Other [Free text]

• What is currently your main source of learning about IT-security?
Mandatory IT-security trainings, Voluntary IT-security trainings, Colleagues,
Websites: [Free text], Journals / magazines: [Free text], Other: [Free text]

Company

• How many people work in your team? Please enter 1 if you work on your
own.
[Number]

• Please select what is more important to you. 0 - Functionality - 100 - Security

C.2 Post-Questionnaire

The following question were asked for AFL as well as libFuzzer if not otherwise
stated. The questions were present to the participant in order of working with
the fuzzers.

Fuzzing Steps

Fuzzer Task - Start

• How did you complete the following subtasks when using *fuzzer*?
I did not work on it, successfully, unsuccessfully, I don’t know
Subtask 1 - Find a suitable function to fuzz.; Subtask 2 - Write your fuzz

178 Appendix C. Replication: AFL vs. libFuzzer

target in an external file.; Subtask 3 - Compile and instrument the pro-
gram.; Subtask 4 - Compile the fuzz target.; Subtask 5 - Run the fuzzer and
interpret the output.; Subtask 6 - If necessary, adjust and improve.

• What was the last thing you worked on when using *fuzzer*?
[Free text]

Fuzzer Task - Overview Target Program

• What was the target program when you used *fuzzer*?
[Free text]

• How well were you able to get an overview of the target program on a
scale from 1 to 7 (1 very bad, 7 very good)?
1 - very bad - 7 - very good

• if fuzzer was AFL

– How did you use AFL?
I wrote a fuzz target, I used AFL on the executable without a fuzz target,
Both, I don’t know, I did not use AFL

Fuzzer Task - Function Selection

• Which function(s) did you chose to fuzz?
[Free text]

• What was the reason that you chose this/these function(s)?
[Free text]

Fuzzer Task - Building and Instrumentation - Target Program

• Which compiler(s) did you use to compile the target program when using
fuzzer?
AFL-gcc, AFL-clang, AFL-clang-fast, clang, gcc, CC, g++, clang++, I don’t know,
Other: [Free text]

• Please copy and paste the flags or environmental variables you used for
compiling the target program when using AFL.
[Free text]

• Did you use instrumentation on the target program when using AFL?
Yes, No, I don’t know

C.2. Post-Questionnaire 179

Fuzzer Task - Building and Instrumentation - Fuzz Target

• Which compiler(s) did you use to compile the fuzz target when using AFL?
AFL-gcc, AFL-clang, AFL-clang-fast, clang, gcc, CC, g++, clang++, I don’t know,
Other: [Free text]

• Please copy and paste the flags or environmental variables you used for
compiling the fuzz target when using *fuzzer*.
[Free text]

• Did you use instrumentation on the fuzz target when using *fuzzer*?
Yes, No, I don’t know

Fuzzer Task - Running the Fuzzer

• Did you start *fuzzer*? Yes, No, I don’t know

• Did you see an output similar to this *picture of output* when using *fuzzer*?
Yes, No, I don’t know

• How would you rate the Output of *fuzzer* while running on a scale from
1 to 7 (1 very bad, 7 very good)?
1 - very bad - 7 - very good

• How did you judge whether *fuzzer* was running well?
[Free text]

Fuzzer Task - Improvements

• What improvements to your fuzzing did you make?

• if AFL

– Corpus, Dictionary, Multiple Fuzzing Instances, Address Sanitizer, Mem-
ory Sanitizer, Used afl-clang-fast, Used Persistent Mode, AFL_HARDEN,
afl-tmin, afl-cmin, None, Other: [Free text]

• if libFuzzer

– Corpus, Dictionary, Multiple Fuzzing Instances, Address Sanitizer, Mem-
ory Sanitizer, Debug Symbols, Coverage Visualization, Undefined Behavior
Sanitizer, Signed Integer Overflow Sanitizer, ignore_crashes, value profile,
leaks off, None, Other: [Free text]

• Please rate the benefit of your improvements for your fuzzing from the
highest, top, to lowest, bottom, when using AFL.

• Sorting of improvements chosen above

180 Appendix C. Replication: AFL vs. libFuzzer

Fuzzer Task - Crashes

• Did *fuzzer* report a crash to you?
Yes, No

• How would you rate the output of *fuzzer* for a crash on a scale from 1 to
7 (1 very bad, 7 very good)?
1 - very bad - 7 - very good

• How many crashes did *fuzzer* report to you? [Number]

• How many bugs in the target program did you find?
[Number]

• How did you confirm that a crash was a bug?
Manually inspecting the code, Executing the target program with the crashing
input, Debugger, None, Other: [Free text]

Fuzzer Task - Summary

• Please rate the difficulty of the subtasks from the highest, top, to lowest,
bottom, when using *fuzzer*.
Sorting of Subtasks

Fuzzer Task - Scores

• How would you rate *fuzzer* overall on a scale from 1 to 7 (1 very bad, 7
very good)?
1 - very bad - 7 - very good

• How would you rate the usability of *fuzzer* on a scale from 1 to 7 (1 very
bad, 7 very good)?
1 - very bad - 7 - very good

• How would you rate the documentation of AFL on a scale from 1 to 7 (1
very bad, 7 very good)?
1 - very bad - 7 - very good

• What are your final thoughts about the usability of *fuzzer*? [Free text]

Fuzzing Knowledge

• Please explain what "Instrumentation" means in the context of fuzzing?
[Free text]

C.3. Nationalities 181

C.2.1 Comparison

• Which fuzzer would you prefer to use for the following actions?
0 - prefer AFL - 100 - prefer libFuzzer
Writing a fuzz target, Building and instrumenting, Running the fuzzer,
Monitoring output while running, Interpreting output on crash, Improv-
ing the fuzzing process

• Please rate which fuzzer you think is better in the following aspects
0 - AFL better - 100 - libFuzzer better
Helpfulness of error messages, Documentation, Supporting the user, Cor-
rectness of output, Transparency of actions, Working correctly

• Please rate which fuzzer made you feel the following emotions more
0 - AFL - 100 - libFuzzer
Anger, Enjoyment, Frustration, Surprise

• Which of the fuzzers would you use in the future?
AFL, libFuzzer, Both, None

C.3 Nationalities

Nation n Nation n

Argentina 1 Bangladesh 2
Brazil 2 Cameroon 1
China 1 Colombia 1
Czech Republic 1 Ecuador 2
Egypt 4 France 1
Greece 2 Hungary 1
India 10 Iran 1
Italy 2 Madagascar 1
Malaysia 1 Mexico 1
Morocco 1 Pakistan 5
Peru 1 Philippines 1
Russia 1 Slovakia 1
Spain 2 Spanish 1
Sri Lanka 1 Thailand 1
Tunisia 2 Turkey 3
United States 3 Venezuela 2
Vietnam 1

TABLE C.1: Current country of our participants.

183

Appendix D

Own vs. Other

D.1 How to solve the task

Since only one function had to be implemented by the participants and by the
design of the task, the function was also easy to fuzz. It is a suitable choice for
fuzzing the extension.

A fuzz target could look like shown in Listing D.1.
include <unistd . h>
include < s t d l i b . h>
include < s t r i n g . h>
include < s t d i n t . h>
include < s t d i o . h>

include " readInRC . h"
include " s h e l l . h "

i n t LLVMFuzzerTestOneInput (const u i n t 8 _ t * Data , s i z e _ t S ize) {
char * input = malloc (S ize +1) ;
memcpy(input , Data , S ize) ;
input [S ize] = ’ \0 ’ ;

scanRC (input) ;

f r e e (input) ;

return 0 ;
}

LISTING D.1: Fuzz Target for scanRC

The Data argument provided by the fuzzer is taken and the content is written
to an afor created memory block. Most importantly, the memory chunk is null-
terminated to create a string. This string is then inserted into the participant’s
written function. In the end, the allocated memory is freed.

One way to build all necessary code is to build the shell with instrumentation
firstly and, in a second step, build and link the fuzz target. The shell and the fuzz
target can be build and instrumented with the commands shown in Listing D.2.

184 Appendix D. Own vs. Other

B u i l d i n g S h e l l
make CC=clang CFLAGS="− f s a n i t i z e =fuzzer −no−l ink , address "

B u i l d i n g Fuzz T a r g e t
clang t a r g e t . c − f s a n i t i z e =fuzzer , address − I ./ . . . s h e l l . a −o t a r g e t

#Running t h e f u z z e r
./ t a r g e t

LISTING D.2: Build commands of libFuzzer for libroxml

For instrumenting the shell, the compiler clang has to be used and the fsanitize-
flag has to be set to fuzzer-no-link. To build the fuzz target also clang has to
be used, and, again, the fsanitize-flag has to be set, but this time including the
linking to the fuzzer. Therefore the flag is set to fuzzer. In this example, the
address flag is also set to activate the address sanitizer, which helps to identify
memory-related bugs and also provides additional information in the case that
a crash occurs.

Starting the fuzzer is as simple as running the resulting executable of the
building and instrumentation process. It is also shown in Listing D.2.

After the fuzzer is started, it periodically gives a status report of the fuzzing
run. When a crash is found, the fuzzer stops and reports information associated
with the crash. Depending on the type of crash and the flags used, such as debug
symbols and the address sanitizer, different information is given. Among other
things, the following can also be specified, the type of crash, the location of the
crash and the input that led to the crash. This information can then be used to
locate and fix the bug.

Improvements to the fuzzing process can be situational. Nevertheless, the
usage of different sanitizers, a corpus or dictionary and having a solid under-
standing of the code covered are nearly always reasonable.

D.2 Dependencies in Fuzzing Process

For the dependencies, we divided the building of all necessary code into three
parts. The first part is the creation of a fuzz target that is buildable in the sense
that no error is thrown when the right compilation and linking commands are
executed. The second part is the creation of a meaningful fuzz target. This in-
cludes actually fuzzing a function of the target program or at least showing a
strong intention in doing so. The third part is writing a triggerable fuzz target.
A triggerable fuzz target calls a meaningful function in a way that interesting
parts of the target function are reached and potential startup initialization are
handled. We defined the following dependencies, which can also be seen in
Figure D.1.

D.2. Dependencies in Fuzzing Process 185

The steps of selecting a suitable function to fuzz, writing a buildable fuzz
target, the instrumentation and using ASAN are not dependent on any of the
other steps.

Creating a corpus or writing a dictionary is dependent on the selected func-
tion. It is not preferable to have a corpus consisting of HTTP requests when
fuzzing an image parser.

To be able to build all necessary code, the fuzz target needs to be buildable.
Moreover, we decided that a dependency on a meaningful fuzz target for build-
ing all necessary code was appropriate because the building process can, for
example, be much easier if no function of the target program is fuzzed. Building
all necessary code is the dependency for running the fuzzer.

To have a triggerable fuzz target it needs to be meaningful.
For successfully finding and recognizing a bug, we defined a triggerable fuzz

target and running the fuzzer as the dependencies. Moreover, the usage of a
fitting corpus or dictionary and the address sanitizer, as well as instrumenting
all necessary code, can be necessary to be able to be successful and are thus
dependent dependencies. They are marked with dashed lines.

Sel. Func.

Meaningful FT

Buildable FT

Triggerable FT

Corpus/Dict

Building

Instr.

Ran Fuzzer

ASAN used

Success

FIGURE D.1: Dependencies of steps

	Introduction
	Research Contribution
	Thesis Structure

	Related Work
	Usability of Static Code Analysis
	Usability of Fuzzing
	Ecological Validity of Student Samples
	Studies with Freelancers
	User Studies - Working with Self-Written Code

	Background
	Static Code Analysis
	Example of a Static Code Analysis

	Fuzzing
	How does Fuzzing Work?
	Fuzzing Examples
	AFL and libroxml
	libFuzzer and Suricata

	Usability Evaluation of a Static Analysis Tool and libFuzzer
	Motivation
	Methodology
	Tool Selection
	Task Selection
	Study Design CS Study
	Study Design CTF Study
	Scoring Results

	Limitations
	Ethics
	CS Study Results
	Drop-outs
	Static Task
	Dynamic Task

	CTF Study Results
	Discussion
	Clang Static Analyzer
	libFuzzer
	Comparison

	Summary

	A Usability Evaluation of AFL and libFuzzer with CS Students
	Motivation
	Methodology
	Fuzzer Selection
	Terminology
	Target Program Selection
	Recruitment & Participants
	Demographics

	Study Design
	Scoring Systems

	Limitations
	Results
	Completion Rate and Success
	Fuzzing Score Results
	Analysis of Participants' Traits and Performance
	User Rating of Fuzzers
	Support System Insights
	Familiarization with the Fuzzers
	How did Participants Select a Function to Fuzz
	Fuzz-Target-Less Fuzzing with AFL
	Writing the Fuzz Target
	Building and Instrumenting
	Running the Fuzzer
	Run-time Output
	Crash Output
	Improvements to the Fuzzing Process

	Discussion
	Extensions
	New Recommendations

	Summary

	Comparison of AFL and libFuzzer with Freelance Developers
	Motivation
	Ethics & Private Disclosure
	Methodology
	Target Programs
	Fuzzers
	Study Design
	Participants
	Support System
	Scoring System

	Limitations
	Results
	Statistical Analyses
	Fuzz-Target-Less Fuzzing, User Error Induced Crash and direct compilation
	Participants
	Completion Rate and Success
	Fuzzing Score Results
	Analysis of the fuzzing steps
	User Rating of Fuzzers
	Support System Insights

	Analysis of Fuzzing Steps
	Selected Function
	Working FT
	Building and Instrumenting the Target Program
	FTL Support
	Ran Fuzzer
	Address Sanitizer
	Corpus/Dictionary
	Fuzzing-run Output
	Crash Output

	Discussion
	Quantitative Analysis
	Qualitative Analysis
	Recommendations

	Conclusion

	CS Students Fuzzing Their Own Code or Code Written by Others
	Motivation
	Methodology
	Shell & Programming Tasks
	Choice of Fuzzer
	Fuzzing Task
	Support System
	Scoring
	Recruitment & Participants

	Ethics
	Limitations
	Results
	Programming Task Results
	Support System
	Success Rate
	Fuzzing Steps
	Fuzzing Scores
	Crash Handling
	Problems of Interpretation
	Fixing Crashes

	System Usability Scale

	Qualitative Analysis
	Familiarization with New Code
	Selecting the Function to Fuzz
	Writing the Fuzz Target
	Triggerable Fuzz Target
	Building & Instrumentation
	Running the Fuzzer
	Crash Handling
	Problems of Interpretation
	Fixing Crashes
	Perceived Difficulty of Fuzzing Other Peoples' Code

	Discussion
	Own Code vs. Others' Code

	Summary

	Conclusion
	Bibliography
	Static vs. Dynamic
	Semi-Structured Interview
	CS Study
	CTF Study

	Clang Static Analyzer Overview
	Overview of Task Ordering
	Comments and Usage in Future
	Pre-Questionnaire
	Pre-Questionnaire CS Students
	Pre-Questionnaire CTF Players

	AFL vs. libFuzzer
	Pre-Questionnaire
	How to Solve the Tasks
	AFL and tomlc99
	libFuzzer and libroxml

	Semi-Structured Interview
	AFL and libFuzzer
	Comparison

	Overview of All Participants
	User Rating of Fuzzer
	Example of an Error Message
	Outputs of Fuzzers While Running
	Improvements to the Fuzzing Process

	Replication: AFL vs. libFuzzer
	Pre-Questionnaire
	Post-Questionnaire
	Comparison

	Nationalities

	Own vs. Other
	How to solve the task
	Dependencies in Fuzzing Process

