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Abstract
by Vadim Sushko

for the degree of

Doctor rerum naturalium

Generative modeling of images is an important task aimed at synthesizing new images
that are indistinguishable from real samples. The ability to generate diverse, realistic-
looking images holds numerous applications, ranging from artistic content creation to data
augmentation for other computer vision tasks. In this thesis, we study generative adversarial
networks (GANs), which have gained popularity as the leading image synthesis framework
due to their exceptional performance. GANs consist of a generator and a discriminator that
are engaged in an adversarial game. In this game, the discriminator learns to correctly clas-
sify incoming real and fake images, while the generator is trained to fool the discriminator
by producing more realistic samples. Although GANs have made significant advancements
in recent years, more research is needed to further enhance their scalability across diverse
datasets, as well as the quality and diversity of their synthesis. To this end, this thesis
presents several new GAN methods that expand the literature on GANs in various aspects.

Firstly, we address the task of semantic image synthesis, generating realistic images
from semantic label maps. For this task, our work introduces a new segmentation-based
discriminator that provides a strong training signal for the generator, eliminating the need for
additional losses and tricks used in prior models. Compared to previous GAN approaches,
our proposed method achieves a synthesis with higher image quality and diversity, while
showing much better scalability to datasets with severe class imbalances.

Secondly, we explore the training of unconditional GAN models in low data regimes.
Previously, under limited data, GAN models suffered from training instabilities and mem-
orization issues, which limited their application in restricted image domains. To address
this, we propose new GAN approaches for various limited-data scenarios, including tradi-
tional one-shot and few-shot learning regimes. The advancements of our methods include
new training schemes, improved architectures of discriminators, and novel regularization
terms for generators. Our proposed methods enable high-quality and diverse synthesis from
extremely small datasets, on which prior GAN models could not be trained successfully.

Overall, this thesis advances the field of generative adversarial networks by introducing
new GAN models that improve over prior work in the image synthesis quality, diversity, and
applicability across various image domains. The proposed approaches demonstrate superior
performance in semantic image synthesis and unconditional training with limited data, mak-
ing GANs more powerful and effective for a wide range of computer vision applications.

Keywords: generative adversarial networks (GANs), image synthesis
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1.1 Motivation

Can you imagine a giant city floating in the clouds, entirely made of glass, without any visible
support structures? Although this concept obviously violates the laws of physics, it is not surprising
that you can imagine such a structure and reproduce it on a piece of paper. Indeed, as humans,
we often hallucinate objects we have never seen before or scenarios that have never occurred to
us. We use such ability for a variety of purposes, including artistic expression, problem-solving,
teaching, innovation, or simply for entertainment. In the field of artificial intelligence, researchers
are therefore trying to develop algorithms that can replicate the human ability to create new images.
This problem, known as generative modeling of images, has gained significant attention from the
research community in recent years. The objective of this task is to train a machine learning model,
usually a neural network, to generate novel images that follow the distribution of a given training
dataset. The potential applications of such models are numerous, ranging from generating scenery
for video games or movies and new designs for products or buildings, to converting images to new
artistic styles and producing synthetic data augmentation for other computer vision applications.

Training powerful generative models is, unfortunately, not straightforward. Unlike discriminative
tasks such as image classification or segmentation, generative models are typically more challenging
to train in the paradigm of supervised learning, mainly because the concept of “realism” in generated
images is difficult to formalize. For example, the most obvious approach – forcing the generated
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Figure 1.1: These people are not real, they were generated by StyleGANv2 (Karras et al., 2020b).
GANs excel with human faces due to their simplicity and ample data, but struggle with more com-
plex, imbalanced, or small datasets. This thesis aims to enhance GANs’ capabilities for image gen-
eration in diverse image domains, as well as their applicability to new downstream applications.

images to be similar to training examples via a reconstruction loss – can encourage the model to
produce only the images that it has already seen during training, which is undesirable, since the
ultimate goal of generative models is to be “creative”.

To overcome these issues, the computer vision community has been working to develop alter-
native approaches. In this thesis, we focus on a special class of generative models – generative
adversarial networks (GANs) (Goodfellow et al., 2014), a very powerful class of models that have
demonstrated state-of-the-art performance across various image generation tasks. GANs consist of
two neural networks, a generator and a discriminator, that are trained simultaneously in a game-like
setup. The goal of the generator is to transform provided input noise vectors into realistic images
that the discriminator would judge as real. In turn, the discriminator tries to distinguish between the
synthesized fake images and the real images from the dataset. Through this game, the generator op-
timizes the objective that directly forces the output to be “indistinguishable from reality”, without an
explicit goal to reconstruct any of the training images. After training, the generator allows to sample
many new images by varying the input noise. This training scheme has allowed to generate diverse
and highly-realistic images in many image domains. A famous example of this ability is the domain
of human faces, which is shown in Fig. 1.1. In this example, all the presented human faces are not
real, but instead were generated by a GAN model called StyleGANv2 (Karras et al., 2020b). The
ability to generate new, diverse, and highly-realistic human faces at high resolutions has enormous
potential for a variety of applications, including in fashion, cosmetics, photography enhancement,
privacy protection, or virtual reality. Remarkably, this has already led to the creation of several popu-
lar online services, such as this-person-does-not-exist.com, which provide synthetic human faces that
can be used for downstream applications without concerns for the privacy of the original images.

While such success of GANs is impressive, it is important to note that it heavily relies on the
availability of high-quality, large-scale datasets, which require careful curation. For instance, in order
to build the FFHQ1 dataset used to generate the human faces shown in Fig. 1.1, researchers had to
crawl Flickr2 to find images containing human faces, apply a series of filters to remove poor-quality
images, and manually check every image for inappropriate content or copyright violations using
Amazon Mechanical Turk3. The resulting dataset contains 70,000 high-quality images of centered
human faces at resolution of 1024ˆ1024 pixels.

However, it is evident that not all applications allow to collect well-balanced datasets of such

1https://github.com/NVlabs/ffhq-dataset
2https://www.flickr.com/about
3https://www.mturk.com/
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Semantic image synthesis Unconditional image synthesis

Figure 1.2: Two main tasks of interest in this thesis. In semantic image synthesis, a GAN generator is
conditioned on input noise and semantic label maps. In unconditional image synthesis, the generator
is conditioned only on noise. For the latter, we study specific scenarios where training data is limited.

size, resolution, and quality. In most cases, real-world datasets are constrained by factors such as
privacy concerns, application design, or the costs associated with data collection and annotation.
For example, in industrial applications such as the detection of manufacturing defects, only a few
images of defective details may be available, and each of these images may bear a striking similarity
to others. Alternatively, in large-scale image collections encompassing many object categories, it is
natural to observe a small number of frequently occurring classes alongside a long tail of exceedingly
rare classes (Gupta et al., 2019). As demonstrated throughout this thesis, irregular data conditions
impede the effectiveness of GANs, and achieving a synthesis with satisfactory image quality and
diversity becomes challenging. Consequently, the applicability of GANs has been severely hindered,
relegating them primarily to “good” types of images like in the domain of human faces.

Therefore, in this thesis we aim to broaden the scope of potential applications for GANs while
enhancing their performance in terms of image synthesis quality and diversity. We make contribu-
tions to several important image generation tasks, which can be categorized into two main areas (see
Fig. 1.2). The first task focuses on semantic image synthesis, which aims to generate realistic and di-
verse images from provided input noise vectors and semantic label maps (Fig. 1.2, left). The second
area of our study is unconditional image synthesis (Fig. 1.2, right), with a specific focus on scenarios
where training data is limited. In both domains, we introduce novel GAN models that surpass the ex-
isting state of the art in the GAN literature. These models not only enable new applications of image
synthesis but also overcome several challenges faced by previous GAN methods. The two subsequent
sections provide a detailed discussion of these challenges and our corresponding contributions.

1.2 Challenges

The goal of generative adversarial networks is to learn the distribution of provided images and train
a generator with several desirable properties. (1): The first objective is to generate realistic images
that belong to the distribution of real images, without any distortions that would visually differen-
tiate them from the images in the training dataset. (2): The second objective is to ensure that the
generated images exhibit diversity, covering all the different modes of the training distribution rather
than concentrating on a limited types of images. (3): Finally, in numerous applications, it is essential
that the generated images are distinct enough from the training examples to avoid mere repetition.
Achieving these goals involves several challenges, many of which are characteristic to all GANs due
to their architecture and optimization procedures.
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General Challenges of Training GANs

(1): Image quality. From the optimization perspective, training a GAN model involves solving a
minimax problem, where the discriminator maximizes its objective in distinguishing between real
and fake images, while the generator attempts to minimize it. Due to the non-convex nature of this
loss function and the dynamic adversarial process, the optimization of GANs is notoriously unstable.
Usually, it requires a careful balance between the two players. For example, if the GAN discriminator
becomes too strong, its gradient updates may become too small or vanish, causing the generator to
stop learning. In this case, the training saturates at the point when the quality of produced images is
still far from optimal. On the other hand, a very strong generator leads to difficulties in the learning
of the discriminator, which in turn impedes the overall training and often collapses the generator.
Therefore, achieving realistic image synthesis requires a delicate balancing of the adversarial process,
which requires extensive experimentation to find optimal hyperparameters such as learning rates,
batch size, or network architecture. These parameters often depend on the dataset type, its size, and
the image resolution used during training, which makes achieving good image quality with GANs
both challenging and time-consuming in practice.

(2): Synthesis diversity. Another problem of GANs is that their training procedure generally
discourages the diversity of synthesis. As the GAN generator is rewarded for producing samples that
the discriminator cannot distinguish from real samples, it naturally focuses on the samples that were
successful in fooling the discriminator in the past. In contrast, less successful modes of generated
images receive less attention and disappear from the generated distribution. In the worst-case sce-
nario, the generator may become so restricted that it generates only a single image that it believes is
the most realistic, resulting in mode collapse. Mitigating this problem requires the tuning of hyper-
parameters to reach more optimal training dynamics and employing additional regularization losses
to encourage diversity in generated images.

(3): Memorization of training data. Training a GAN typically takes hundreds or thousands
epochs until convergence. Having seen the training images many times, the GAN discriminator be-
comes prone to overfitting, which leads it to judge about the realism of generated images based only
on their similarity to any of the training images. Naturally, this forces the generator to produce only
the exact copies of training examples rather than create new images. This is undesirable, since the
ultimate goal of generative models is to be “creative” and to produce novel images, which is espe-
cially important in applications in which generated images are used as synthetic data augmentation.
The problem of memorization is naturally amplified in situations when the available training datasets
are very small, which severely limits the applications of GANs in restricted image domains.

The contributions of this thesis are concerned with overcoming all the above challenges in dif-
ferent image generation tasks. In addition to these general GAN challenges, each studied task has its
own characteristic challenges. They are summarized in the next sections.

1.2.1 Semantic Image Synthesis

GAN models offer the flexibility to condition their output on specific information, allowing greater
control over the generation process. A prominent example of this is the task of semantic image
synthesis, which aims to generate images that are aligned with provided semantic label maps (see
Fig. 1.2, left). The limitations of previous semantic image synthesis models are as follows.

Reliance on the perceptual loss. In order to reach good image quality, previous models for
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semantic image synthesis have to be trained with a perceptual loss (Wang et al., 2018a) in addition
to the standard adversarial loss from the discriminator. The perceptual loss is computed by passing
images through a deep neural network pre-trained on ImageNet (Deng et al., 2009), with the aim to
bring the extracted features of real and fake images closer together. The perceptual loss is critical
for existing methods, and poor results are obtained without it. Although this loss improves the
performance of previous methods, unfortunately, it has several disadvantages, as we demonstrate
in Chapter 4. Firstly, the perceptual loss can bias the training signal with the color and texture
statistics learned by the perceptual network on ImageNet, limiting the GAN’s ability to learn the
target dataset’s colors and textures. Secondly, the perceptual loss imposes additional constraints on
the feature space of the GAN generator, significantly limiting the diversity of its synthesis. Lastly, as
the the perceptual loss utilizes an extra network, it introduces a noticeable computational overhead
to the training process.

Insensitivity to input noise. In semantic image synthesis, one label map can correspond to mul-
tiple plausible generated images. It is therefore desired for the generator to produce diverse images
from the same label map by varying its input noise vector. However, previous models struggle to
achieve this goal by simply resampling noise, as the generator often disregarded the noise and in-
stead concentrated solely on the provided semantic label maps. As a result, previous models resorted
to using additional image encoders to change the style of produced images based on reference im-
ages. This is an expensive solution as it requires to train an additional network and necessitates a
new reference image for every generated sample. Moreover, the diversity of this sampling method is
limited, partially owing to the perceptual loss that is needed to train prior methods.

Imbalanced datasets. GAN models for semantic image synthesis are trained with datasets that
were originally introduced for semantic segmentation. A well-known challenge for semantic seg-
mentation applications is class imbalance, which leads to suboptimal performance of models (Sudre
et al., 2017). As shown in Chapter 4, this problem becomes similarly important in semantic image
synthesis, where GAN models perform best for well-represented classes, while the quality of colors
and textures of rare semantic classes remains poor. Overcoming the problem of learning from class-
imbalanced datasets is a crucial step to enable the application of GAN-based data augmentation for
semantic segmentation models.

1.2.2 Training GANs in Extremely Low Data Regimes

The quality of GAN-based image synthesis strongly depends on the amount and quality of data
provided for training. GANs achieve impressive results in many image domains due to the availability
of large, diverse datasets with thousands of images. However, in some applications, collecting even
a small dataset can be challenging due to privacy, copyright, or rare nature of objects or events.
Therefore, improving the training procedure of GANs in very low data regimes can enhance their
utility for applications. This requires overcoming several limitations of prior GAN models.

Training instabilities. Even when training data is sufficient, GAN optimization is notoriously
unstable, frequently displaying oscillatory behaviour and escalated gradients of the discriminator
(Arjovsky and Bottou, 2017; Mescheder et al., 2018). In much lower data regimes, this problem is
naturally amplified due to a quick overfitting of the discriminator to limited data. In fact, even training
a large-scale GAN model with only 5000 images often results in the early generator’s collapse.
When the number of training images is 2-3 orders of magnitude lower, successfully training such
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models becomes almost impossible. Solving this problem requires a careful redesign of existing
GAN architectures and training losses.

Memorization. Even in case when the GAN training on limited data is stabilized, it remains
challenging to address the issue of the discriminator’s overfitting. Typically, after several training
epochs, the discriminator memorizes the limited dataset and starts to penalize even minor deviations
from the training data in generated images. As a result, the generator converges to a state when it
reproduces exact copies of the training samples. One potential solution to this issue is to weaken the
discriminator by limiting its receptive field, learning capacity, or providing additional tasks beyond
evaluating the proximity between real and fake images, which is commonly done in few-shot GAN
models. However, this can negatively impact the quality of the generated images, and does not solve
the issue completely when the lack of data is extreme, as is shown in Chapter 5.

Distortions in patch-based GANs. Patch-based single-image GANs (Shaham et al., 2019; Hinz
et al., 2021) appeared as a remedy to overcome memorization in the extreme case of training models
on a single image. These models employ a cascade of multi-scale GANs trained in multiple stages,
each having a different resolution and receptive field. Although they have been demonstrated to
overcome memorization and generate diverse versions of the provided single image, they still can-
not learn the high-level semantic features of image scenes. Consequently, they often suffer from
incoherent shuffling of image patches, resulting in distortions in the appearance of objects and scene
layouts. Moreover, the design of this solution prevents patch-based GANs to learn from multiple
images. Therefore, alternative solutions have to be designed to enable effective training of GANs
with extremely limited data.

1.2.3 Generating Data Augmentation for One-Shot Segmentation Applications

Even though GANs often excel at generating images that look very realistic to a human eye, it is
not straightforward whether these images can be used as additional data for other computer vision
applications. Firstly, data augmentation is most valuable when the applications themselves have
insufficient data for training the models. Apart from providing only limited data available for training
a GAN model, many applications require annotations for each image during training. In Chapter 6,
we will explore the application of GANs to one-shot segmentation, a class of limited-data tasks that
requires segmentation masks for each training image. To generate valuable data augmentation for
such applications, it is necessary not only to overcome the challenges related to training on limited
data, but also to learn to generate accurate segmentation masks for synthesized images. To achieve
this goal, the challenges are as follows.

Training a GAN on a single image-mask pair. One-shot segmentation models are commonly
trained using the meta-learning paradigm, which involves pre-training on a large dataset, and the fine-
tuning stage which uses a single provided image-mask pair depicting previously unseen objects. As
the training data at inference stage is severely limited, synthetic data augmentation has a significant
potential to improve the performance. However, achieving this requires training a GAN to generate
not only images, but also their accurate segmentation masks, using only a single labelled example
for training. As shown in Chapter 6, training a GAN on a single image-mask pair is even more
difficult than on a single image, as models become more susceptible to memorization due to a smaller
variation in the content of segmentation masks compared to RGB images. In fact, due to the difficulty
of the task for prior image-mask GANs, this problem remained unaddressed prior to our work.



1.3. Contributions 7

Need for additional supervision. In order to generate segmentation masks alongside images,
the GAN generator needs guidance on how to align the masks with the images. However, as images
generated by GANs do not have ground truth annotations, finding the source of such supervision is
not straightforward. To address this issue, existing approaches use external pre-trained segmentation
networks, employ additional discriminators that judge the image-mask realism jointly, or manually
annotate a small set of generated images. Although these solutions do allow to supplement generated
images with segmentation masks, they introduce significant overhead to the adversarial GAN training
process and are not effective for learning new classes with limited data. As such, they are not well-
suited for one-shot segmentation applications as a data augmentation generation tool.

1.2.4 Usage of Pre-Trained GANs for Few-Shot Image Synthesis

As training GAN models with limited data from scratch suffers from several drawbacks, it is natural
to mitigate them with the help of transfer learning. This line of research, referred to as few-shot
GAN adaptation, pre-trains GAN models on large datasets and fine-tunes them on smaller datasets of
interest. This approach commonly improves the quality and diversity of images generated by GANs
in restricted image domains, but also comes with a major limitation.

Requirement on source-target proximity. The difficulty of fine-tuning a GAN on a small
dataset are similar to the ones described in Sec. 1.2.2: training instabilities and memorization is-
sues. For example, the model can forget about its initial knowledge very quickly, falling into simply
repeating the training samples from the small target dataset. To avoid this issue, existing approaches
for few-shot GAN adaptation commonly employ additional regularization losses to maintain the re-
alism and diversity of images from the source dataset. While this method works well when the target
domain closely resembles the source dataset, its performance drastically degrades when the source
and target domains are not so restrictively similar. For example, in Chapter 7 it will be demonstrated
that prior methods struggle to generate high-quality images when the shapes of objects in the two
domains do not match. This poses a significant challenge to the use of GANs in restricted image
domains, where large pre-training datasets are practically impossible to find.

1.3 Contributions

This thesis focuses on solving the challenges highlighted in Sec. 1.2. We provide contributions to
several GAN-based image generation tasks, mainly focusing on improving the quality and diversity
of semantic image synthesis, as well as unconditional image synthesis in various extremely low
data regimes. Following the order in which the challenges in Sec. 1.2.1-1.2.4 were introduced, in
Sec. 1.3.1-1.3.4 we present our contributions and approaches to the challenges.

1.3.1 OASIS Model for Semantic Image Synthesis

In Chapter 4, we introduce our OASIS model, which effectively addresses several issues of previous
semantic image synthesis GANs, such as overreliance on the perceptual loss, limited diversity of
multi-modal synthesis, and inadequate synthesis of rare classes in datasets with class imbalances.
Parts of this chapter have been published in (Schönfeld et al., 2021) and (Sushko et al., 2022).

The main contribution of the OASIS model is a segmentation-based discriminator, which seg-
ments each pixel of a given image into one of the real classes or an additional fake class, instead of
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making one global real/fake decision for the whole image. This discriminator brings much stronger
supervision about image realism than previous discriminators, which makes the use of the perceptual
loss superfluous. In addition, the OASIS discriminator allows to introduce a new LabelMix regu-
larization, which mixes semantic areas from both real and fake images. This regularization forces
the discriminator to learn stronger and more local representations. Overall, these innovations signif-
icantly improve the quality of semantic image synthesis.

The second major contribution of OASIS is a novel 3D noise injection scheme. In this scheme, we
sample a 3D noise tensor and use it to modulate the intermediate generator features at different layers.
The benefit of using 3D noise is that it allows not only global image resampling, but also changing
only the areas belonging to selected semantic classes. Apart from improving the controllability of
image resampling, this scheme significantly improves sensitivity of the generator to input noise and,
therefore, overall diversity of multi-modal synthesis.

With the proposed modifications in the discriminator and generator design, our OASIS model
outperforms the prior state of the art on several benchmark datasets. Omitting the necessity of the
VGG perceptual loss, our model generates samples of higher quality and diversity, and follows the
color and texture distributions of real images more closely.

Another contribution of our work considers the LVIS dataset (Gupta et al., 2019), which had not
been considered before our work in the context of semantic image synthesis. LVIS has a large set of
more than 1000 semantic classes, most of which are severely underrepresented. For comparison, the
largest dataset among standard benchmark datasets, COCO-Stuff (Caesar et al., 2018), has only 184
classes, which are relatively well balanced. As demonstrated in our experiments on LVIS, prior work
performs poorly in case of severe class imbalances and suffers from mode collapse. In contrast, our
OASIS model overcomes these issues and outperforms prior work by a large margin.

Finally, we introduce a new evaluation protocol for semantic image synthesis, which considers
the performance of generated images as synthetic data augmentation in semantic segmentation ap-
plications. This performance depends on many important synthesis aspects, including image quality,
diversity, label map alignment, and degree of memorization. OASIS outperforms prior work in this
measure, showing higher utility for downstream semantic segmentation applications.

1.3.2 SIV-GAN Model for Image Synthesis in Extremely Low Data Regimes

In Chapter 5, we introduce a new limited-data GAN training regime and a new SIV-GAN model
that overcomes training instabilities, memorization, and the issue of global scene incoherence when
trained in extremely low data regimes. Parts of this chapter have been published in (Sushko et al.,
2021a).

Previous studies on GAN training in low data regimes focused on using single-image datasets
or few-shot datasets consisting of at least 100 diverse images. Our first contribution is a new setup
where a GAN is trained on approximately 100 frames extracted from a single video. The goal in
this setup is to generate diverse images, but not necessarily coherent videos. This setup is interesting
for training unconditional GANs because short videos are easy to capture and offer a practical so-
lution for collecting data required for successful GAN training. Additionally, compared to few-shot
datasets, the frames in a video exhibit lower diversity due to high correlation between adjacent video
frames. Our experiments show that previous single-image and few-shot GAN models are ineffective
in this scenario, making it an interesting benchmark for evaluation.
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The next two contributions are concerned with our new SIV-GAN model. One of them is the SIV-
GAN two-branch discriminator architecture. This discriminator has two branches which separately
judge the realism of image content and layout. The content branch evaluates the fidelity of scene
objects irrespective of their spatial arrangement, while the layout branch looks only at the global
scene coherency. With this disentanglement, we solve the problem of memorization of the entire
image, providing the generator with informative signals even when training data is extremely limited.

The third contribution is a diversity regularization for the generator developed for extremely
low data regimes. This regularization forces the images produced from different latent codes to
be different. In contrast to diversity losses from previous methods, our approach is not dependent
on the distance between generated images in the latent space and operates in the feature space of
various generator layers, rather than in the image space. As a result, while prior regularizations
prove ineffective for extremely low data regimes, our proposed diversity regularization ensures a
high diversity among generated samples.

SIV-GAN is the first model that successfully overcomes the challenges of both the single-image
and extreme few-shot settings. Despite the low data regimes, the design of our model allows it to
avoid memorization and training instabilities, yet to preserve the realism objects and layouts. The
exceptional diversity of synthesis of SIV-GAN from one or few images makes it well-suited for data
augmentation tasks in various restricted image domains.

1.3.3 New Task: One-Shot Synthesis of Images and Segmentation Masks

Chapter 6 is devoted to generating data augmentation for one-shot segmentation applications. We
introduce a novel task of one-shot joint image-mask synthesis and propose our OSMIS model as an
approach for this task. Parts of this chapter have been published in (Sushko et al., 2023b).

The first contribution of our work is a new evaluation protocol for GANs, in which a model is
required to generate diverse and accurate paired image-mask data, given only a single image-mask
pair for training. This setup had not been addressed in the literature, as previous image-mask GAN
methods could not be trained in such low data regimes. Nonetheless, considering the recent advances
of training GANs on single images, such as our SIV-GAN model, we demonstrate that this task can
be accomplished by extending successful single-image GAN models to segmentation masks.

Thus, our second contribution is the OSMIS model, which enables the accurate and diverse syn-
thesis of image-mask paired data in a one-shot regime. The main novelty of the model is a masked
content attention mechanism, which integrates the learning of the image-mask alignment into the
discriminator’s objective. Considering the provided segmentation masks, this mechanism allows to
compare the image areas belonging to the same objects in real and fake images. As a result, this
allows the discriminator not only to prevent the memorization of the whole given image, but also to
provide supervision for the generator to label all objects correctly. An advantage of this approach
over previous image-mask methods is the purely adversarial training, without the need for manual
annotation of generated images, external segmentation networks, or additional discriminators.

Finally, the third contribution of our work is the successful application of OSMIS in one-shot
segmentation applications. Despite the low data regime, our model can generate accurately labeled
data of sufficient diversity to provide useful data augmentation for one-shot video object segmenta-
tion (Caelles et al., 2017) and one-shot semantic image segmentation (Boudiaf et al., 2021). OSMIS
is the first model to demonstrate the potential of synthetic data augmentation in such low-data appli-
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cations.

1.3.4 Smoothness Similarity Regularization for Few-Shot GAN Adaptation

In Chapter 7, we introduce a new method for few-shot GAN adaptation, which, in contrast to previous
approaches, does not require a strong similarity between the source and target domains to achieve
good performance. Parts of this chapter have been published in (Sushko et al., 2023a).

The main contribution of the proposed method is a new regularization term for the fine-tuning of
GANs. This regularization encourages the target generator to preserve the smoothness properties of
the generator that was obtained during pre-training on a larger source dataset. By enforcing similar
smoothness between generators, our loss encourages the target generator to build a well-structured
latent space, in which different latent space directions can lead to smooth and interpretable image
transitions. The advantage of this approach is that the nature of transferred image transitions is
remarkably general, making it unnecessary for the source and target image domains to be very similar.
In effect, the proposed model can be applied to new few-shot image domains that were previously
unreachable by previous techniques.

The second contribution of the method is a new way to compute the adversarial discriminator’s
loss. While conventional GAN discriminators compute the loss after the last discriminator block, our
method allows the computation of the loss after each block. Interestingly, the discriminator learns
to utilize this freedom to automatically adjust the contribution of different layers depending on the
similarity between the source and target datasets. This adaptiveness is a great advantage that further
enhances the ability of our method to be trained successfully in a wide range of source and target
domain pairs.

1.4 Publications

Parts of this thesis are based on the following publications:

• You Only Need Adversarial Supervision for Semantic Image Synthesis
Edgar Schönfeld*, Vadim Sushko*, Dan Zhang, Juergen Gall, Bernt Schiele, Anna Khoreva
International Conference on Learning Representations (ICLR), 2021.

• One-Shot GAN: Learning to Generate Samples from Single Images and Videos
Vadim Sushko, Juergen Gall, Anna Khoreva
IEEE Computer Vision and Pattern Recognition Conference (CVPR) Workshops, 2021.
DOI: 10.1109/CVPRW53098.2021.00293

• OASIS: Only Adversarial Supervision for Semantic Image Synthesis
Vadim Sushko*, Edgar Schönfeld*, Dan Zhang, Juergen Gall, Bernt Schiele, Anna Khoreva
International Journal of Computer Vision (IJCV), 2022.
DOI: 10.1007/s11263-022-01673-x

• One-Shot Synthesis of Images and Segmentation Masks
Vadim Sushko, Dan Zhang, Juergen Gall, Anna Khoreva
IEEE Winter Conference on Applications of Computer Vision (WACV), 2023.
DOI: 10.1109/WACV56688.2023.00622
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• Smoothness Similarity Regularization for Few-Shot GAN Adaptation
Vadim Sushko, Ruyu Wang, Juergen Gall
IEEE International Conference on Computer Vision (ICCV), 2023.
DOI: 10.1109/ICCV51070.2023.00651

(* denotes equal contribution)

1.5 Thesis Structure

The rest of this thesis is organized as follows:

• In Chapter 2, we provide an overview of the literature related to this thesis. We begin with
the general review of works on generative adversarial networks, followed by surveys on ex-
isting approaches to our studied challenges. The chapter is concluded with the discussion of
alternative image generation methods to GANs.

• Chapter 3 formally defines the task of image generation, its relation to other machine learn-
ing tasks, and existing evaluation methods. Then, it explains the basic working principles of
GANs, and introduces the building blocks of GAN architectures and training losses that are
used throughout the thesis. Finally, it provides a description of applications of image synthesis
studied in subsequent chapters.

• Chapters 4-7 are based on the publications listed in Sec. 1.4 and constitute the main body of
this thesis. They present in detail our contributions introduced in Sec. 1.3, aimed at resolving
the challenges outlined in Sec. 1.2. In particular, Chapter 4 is devoted to semantic image
synthesis. There we introduce our OASIS model that improves over existing approaches in
the quality and diversity of synthesis, while enabling new capabilities that were not explored
by prior work. The subsequent three chapters study unconditional GAN training in low data
regimes. Chapter 5 introduces a new training setup of learning from frames of a single video
and the SIV-GAN model, capable of learning successfully in extremely low data regimes. In
Chapter 6, the impressive capability of SIV-GAN is extended to one-shot joint image-mask
synthesis. With our proposed OSMIS model, we generate useful data augmentation that helps
to improve the performance of one-shot segmentation applications. Lastly, Chapter 7 studies
few-shot adaptation of GANs. There we introduce a smoothness similarity regularization that
enables effective GAN fine-tuning even between dissimilar source and target domains.

• Finally, Chapter 8 concludes the thesis with discussions on our main contributions, remaining
challenges, and the outlook of future research directions on generative modelling of images.





CHAPTER 2

Related Work

In this chapter, we discuss the relevant literature that directly relates to this thesis. Given the primary
focus of our thesis on GANs, the initial section is dedicated to the discussion of the overall evolution
of GANs, encompassing the development of their training procedures and architectures. The sub-
sequent sections provide the review of the previous approaches to the specific tasks and challenges
addressed in this thesis. These include semantic image synthesis, training GANs under various lim-
ited data conditions, and the joint synthesis of images and segmentation masks. Lastly, we briefly
discuss alternative image generation models that are not based on adversarial training.
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2.1 Development of GANs

Generative adversarial networks were first introduced in (Goodfellow et al., 2014). In their pioneering
work, Goodfellow et al. (2014) trained a generator and a discriminator, both initialized as multilayer
perceptron networks, on datasets with relatively small resolutions (32ˆ32), such as MNIST (LeCun
et al., 1998) and CIFAR-10 (Krizhevsky and Hinton, 2009). Subsequent works on GANs have pri-
marily concentrated on scaling these models to larger, more complex datasets, and on improving the
quality and diversity of produced images (see Fig. 2.1). This research mainly focused on two direc-
tions: improving the stability of training through new training schemes and losses, and developing
more sophisticated network architectures. In the following, we review both these directions.
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Figure 2.1: Illustration of the rapid image quality development of GAN-based face generation meth-
ods, as demonstrated in (Hermosilla et al., 2021).

2.1.1 GAN Training Procedure and Losses

Adversarial losses. In the original GAN formulation (Goodfellow et al., 2014), the loss function of
the generator is to maximize the loss function of the discriminator, which is a simple binary cross
entropy loss of its real/fake classification task. However, this loss tended to produce insufficient gra-
dients when the predictions of the discriminator were too confident, which lead to the saturation of
the training process. Thus, already in the first GAN work, the loss function was replaced by a simple
negative log-likelihood of the discriminator being wrong. This loss function helped to stabilize the
original GAN and solved the saturation problem, and the community has thus been referring to this
formulation as non-saturating GAN loss, or NS-GAN. Since then, several alternative GAN loss func-
tions have been proposed. For example, one proposal was to replace the binary cross-entropy loss
of the discriminator with a least squares loss (LSGAN) (Mao et al., 2017), which was shown to im-
prove image quality and training stability. Another popular GAN loss function was the Wasserstein
GAN (WGAN) loss (Arjovsky et al., 2017). The WGAN loss uses the earth-mover Wasserstein dis-
tance between the real and generated data distributions. In contrast to the JS-Divergence minimized
by NS-GAN, the Wasserstein distance yields strong and useful gradients even when the real and
synthetic data have only a small overlap, e.g., at the beginning of training. Other variants of GAN
losses include f-GAN (Nowozin et al., 2016), EBGAN (Zhao et al., 2017), Fisher-GAN (Mroueh
and Sercu, 2017), MCGAN (Mroueh et al., 2017b), Sobolev-GAN (Mroueh et al., 2017a), and many
other. Although the research on new GAN loss formulations was extensive and solved many issues
of early GAN models, there is still no consensus in the community regarding which GAN objective
performs best with most modern GAN architectures (Mescheder et al., 2018; Shannon et al., 2021).
Interestingly, in a large study conducted by Kurach et al. (2019), it was concluded that the original
NS-GAN should be used as the default choice for new GAN architectures. Our thesis goes in line
with this study, as we use the standard non-saturating adversarial GAN loss in our models that will
be introduced in Chapters 4-7.

Regularization losses. To improve the quality and diversity of generated images, as well as
to address the issues of overfitting, memorization, and training instabilities, various regularizations
losses were introduced for GAN training. Compared to the development of adversarial losses, regu-
larization techniques played a bigger role in the evolution of GANs. Particularly notable among them
is the class of Lipschitz regularizations, which ensures that the gradients in both the generator and
discriminator do not exceed a certain threshold. This regularization technique restricts the weights of
the networks from making sudden jumps between training epochs, which significantly stabilizes the
overall adversarial training and minimizes the risk of training collapse. The Lipschitz regularization
can be implemented in several ways, including gradient clipping (Arjovsky and Bottou, 2017), gradi-
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ent penalties (Gulrajani et al., 2017; Mescheder et al., 2018), or by rescaling the weights and biases
of the trained networks (Miyato et al., 2018). Like many other state-of-the-art GANs, our models
from Chapters 4-7 employ spectral normalization to achieve stable training.

While restricting gradient updates to enforce the Lipschitz property can help achieve optimiza-
tion stability, it is not a complete solution to the problems of overfitting and mode collapse. Previous
research has developed a new category of regularizations that specifically encourage high diversity
among generated images to tackle these issues. These regularizations typically involve generating
a batch of fake images and penalizing the generator if the produced images are too similar. For in-
stance, Yang et al. (2019) proposed a new loss term to encourage the generator to produce distinct
outputs depending on their input latent codes, in a way that the generated samples with closer la-
tent codes look more similar to each other, and vice versa. Later works experimented with diversity
regularizations using small perturbations in the latent space (Zhao et al., 2021) or extended it to con-
ditional tasks, such as image-to-image translation (Choi et al., 2020). In Chapter 5, we demonstrate
the crucial role of diversity regularization in GAN training with extremely limited data and introduce
a new diversity regularization approach that outperforms prior regularizations significantly.

Another method to avoid mode collapse in GANs is by looking at image transitions while walk-
ing in the generator’s space. Ideally, small shifts in the latent space of the generator should result in
small (but non-zero) changes in the output images. In this case, the generator avoids quick jumps and
has to generate smooth and realistic transitions between all generated images. Thus, to enforce the
smoothness and good conditioning of the generator’s mapping, prior work proposed several regular-
izations. Odena et al. (2018) proposed to penalize the generator against having a large conditioning
number, which is defined as the ratio between the maximal and minimal spectral values of its Jaco-
bian matrix. More recently, StyleGANv2 (Karras et al., 2020b) introduced a regularization based on
the perceptual path length measure (PPL) (Karras et al., 2019), which encourages that a fixed-size
step in the latent space results in a fixed-magnitude change in the image space. A smoothness regular-
ization was also introduced for training GANs in low data regimes (Kong et al., 2022). With the help
of the above regularizations, modern GAN models often display smooth and realistic latent space
interpolations. In Chapter 7, we explore the methods to transfer this property during fine-tuning of
GANs on extremely small datasets.

2.1.2 GAN Architectures

Unconditional GANs. The development of GAN training losses and regularizations has been ac-
companied by the emergence of novel GAN architectures. The original GAN formulation from
Goodfellow et al. (2014) used multilayer perceptron networks for both the generator and discrimina-
tor, which was suitable for modeling simple grayscale datasets of digits or faces (see leftmost image
in Fig. 2.1), but not complex datasets. DCGAN (Radford et al., 2016) was the first fully-convolutional
GAN architecture that employed convolutions and transposed convolutions in the discriminator and
generator, BatchNorm layers, and LeakyReLu activations. This allowed for the synthesis of still
low-resolution but more complex scenes, such as bedrooms. DCGAN became a building block for
many other GAN models (Mao et al., 2017; Gulrajani et al., 2017; Miyato et al., 2018). However,
scaling these models to high image resolutions was prone to instabilities, as at higher resolutions the
discriminator could easier distinguish between real and fake images. One way to bypass this issue
was to use progressive growing (Karras et al., 2018), gradually increasing the generated image size
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starting from a low-resolution image and adding more layers as the training progresses. Alternatively,
MSG-GAN (Karnewar and Wang, 2020) used skip-connections between intermediate generator and
discriminator blocks to facilitate gradient flow to lower image resolutions. High-resolution image
synthesis also posed the challenge of balancing global and local realism, as generated images looked
realistic at first glance but had artifacts at the local level or incoherent details in different parts of
images. To address this problem, some researchers introduced a self-attention mechanism to the
generator (Zhang et al., 2019) or a segmentation-based discriminator (Schönfeld et al., 2020), which
helped to achieve high-quality synthesis on complex datasets (e.g., photos of different animals) at
128ˆ128 or even 256ˆ256 resolution.

The field of generative adversarial networks was greatly influenced by a series of works on Style-
GANs (Karras et al., 2019, 2020b, 2021). The first StyleGAN (Karras et al., 2019) introduced a
style-based generator that separates the generation of image content from image style. This gener-
ator introduces an additional latent space of style codes that are used to modulate its intermediate
features. In effect, this architecture enabled stable training at high resolutions, allowing for high-
quality and diverse synthesis with a high degree of control over the style of images. The next model
StyleGANv2 (Karras et al., 2020b) redesigned the normalization inside the convolutional blocks and
revisited the progressive growing mechanism. Lastly, Karras et al. (2021) observed a strong aliasing
in the first two StyleGANs and designed their alias-free StyleGANv3 generator by treating images
as continuous signals, accordingly redesigning convolution layers, nonlinearities, and upsampling
layers. Overall, all StyleGANs showed state-of-the-art performance on numerous image synthesis
benchmarks at the time of their publishing, so their architectures are a popular choice for researchers
experimenting with new GAN features. We follow this trend in Chapter 7, where the StyleGANv2
backbone is used to test our regularization loss for few-shot adaptation of pre-trained GAN models.

While StyleGANs showed the usefulness of style-content separation for unconditional image
generation, it is noteworthy that similar separations were also explored in other contexts with GANs
(Huang et al., 2018; Wu et al., 2019; Park et al., 2020a). For example, such works attempt to dis-
entangle the parts of latent space responsible for the appearance of objects in the scene (e.g., their
shape) and their style (e.g., colors and textures). This was shown useful in representation learning
(Mathieu et al., 2016), improving diversity in unconditional image generation (Wu et al., 2019), or
in image editing, when a generator is provided with style and content vectors of two different images
(Park et al., 2020a). In Chapter 5, we also explore how to disentangle the learning of content and
layouts of images. In contrast to these related works, we study this separation in order to mitigate
memorization of training data in low data regimes, and do so in a GAN discriminator, not generator.

Conditional GANs. Our thesis is also related to conditional GAN models. Unlike unconditional
GANs, that take only a noise vector as input (see Fig. 2.2), conditional GANs (Mirza and Osindero,
2014) can produce images that adhere to provided class labels (Brock et al., 2019; Casanova et al.,
2021), text descriptions (Zhang et al., 2018a, 2021a; Sauer et al., 2023), semantic label maps (Park
et al., 2019b; Wang et al., 2021b; Shijie et al., 2022), or other images (Isola et al., 2017; Park et al.,
2020b; Choi et al., 2020). Among these, our thesis is most related to two conditional tasks: GANs
conditioned on semantic label maps and class labels. We provide a review on GAN synthesis from
semantic label maps in Sec. 2.2, while the discussion on class-conditional GANs follows next.

The earliest GAN model conditioned on class labels is the Conditional GAN (cGAN) (Mirza
and Osindero, 2014), which is an extension of the original GAN framework from Goodfellow et al.
(2014), simply taking a class label as input for both the generator and discriminator. Since this work,
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Image-to-image translation Sketch-to-image synthesis Text-conditional synthesis

Figure 2.2: Overview of unconditional and conditional image synthesis tasks solved with GANs. In
this thesis, we cover unconditional, class-conditional, and GANs for semantic image synthesis.

cGANs have quickly improved in quality. On the one hand, this was enabled by borrowing all the
advances in architectures and training losses from literature on unconditional GANs. On the other
hand, this required designing architectures that made use of the provided labels more effectively.
Odena et al. (2017) proposed an Auxiliary Classifier GAN (ACGAN) that extends the cGAN frame-
work by adding an auxiliary classifier in the discriminator network (see Fig. 2.3). The auxiliary
classifier is trained to predict the class label of the generated sample, in addition to its realism. This
additional supervision helps to improve the quality of generated samples and ensures that they are
consistent with the provided class label. Later, Miyato and Koyama (2018) proposed to input class
labels to the discriminator via a linear embedding layer, which projects the class information onto
the discriminator’s features before the final classification layer. While these works concentrated on
discriminator’s conditioning, BigGAN (Brock et al., 2019) introduced an effective mechanism for
the conditioning of the generator, in which a class label is first mapped into an embedding space via
a learnable mapping, concatenated to the input noise, and injected in the generator at every layer.
Thanks to the efficient usage of class labels and large-scale architecture, BigGAN became the first
model to enable high-quality synthesis from class-conditional ImageNet (Deng et al., 2009) at resolu-
tions 256ˆ256, 512ˆ512, and 1024ˆ1024. Since then, BigGAN became the most popular model for
class-conditional synthesis, inspiring many later models (Casanova et al., 2021; Sauer et al., 2022;
Hou et al., 2022; Zhou et al., 2021; Zhao et al., 2020b). In this thesis, we use the projection-based
discriminator from Miyato and Koyama (2018) as a baseline for assessing our proposed approaches
in Chapters 4 and 6, and explore our proposed regularization term for few-shot GAN adaptation
(Chapter 7) with the help of the BigGAN (Brock et al., 2019) backbone architecture.

2.2 GANs for Semantic Image Synthesis

The task of semantic image synthesis corresponds to conditional image generation, where a model
is conditined on semantic label maps. Since the introduction of the first GAN model for image-
to-image translation (Isola et al., 2017), GANs have emerged as dominant approach for this task.
To achieve the synthesis of images that are realistic, diverse, and well-aligned to semantic label
maps, researchers designed specialized generator and discriminator architectures that incorporate
label maps into training. A specific feature of semantic image synthesis models is the perceptual
loss, which is used in addition to the discriminator loss to train the generator. Next, we review these
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Figure 2.3: Different ways to condition a GAN discriminator on labels y, as presented in (Miyato
and Koyama, 2018).

previous approaches, which constitute the related work for our OASIS model introduced in Chapter 4.

2.2.1 Generator Architectures

To enforce the alignment between the generated images and the conditioning label maps, previous
methods for semantic image synthesis explored different ways to incorporate the label maps into the
generator. In many early approaches (Isola et al., 2017; Wang et al., 2018a; Tang et al., 2020c,b;
Ntavelis et al., 2020; Richardson et al., 2021), label maps are provided to the generator via an ad-
ditional encoder network. However, this solution has been shown to be suboptimal at preserving
the semantic information until the later stages of image generation. For this reason, SPADE (Park
et al., 2019b) introduced a spatially-adaptive normalization layer that directly modulates the label
map onto the generator’s hidden layer outputs at various scales. Alternatively, CC-FPSE (Liu et al.,
2019) proposed to use spatially-varying convolution kernels conditioned on the label map. After the
publication of our OASIS, SC-GAN (Wang et al., 2021b) proposed to utilize label maps as input to
generate class-specific semantic vectors at different scales, which are used as conditioning at different
layers of the image rendering network; and CollageGAN (Li et al., 2021b) proposed to extract a label
map representation via feature pyramid encoder and inject it as spatial style tensor to a StyleGAN2
generator.

Noise injection. While improving the quality of generated images, the models published before
OASIS struggled to achieve diverse results by sampling the input noise, as the generator tended to be-
come insensitive to noise or achieved only poor quality, as first observed by Isola et al. (2017). Thus,
these previous approaches resorted to having an image encoder in the generator design to enable
multi-modal synthesis. The generator then combined the extracted image style with the label map
to reconstruct the original image. By alternating the style vector, one can generate multiple outputs
conditioned on the same label map. However, using an image encoder is a resource-demanding solu-
tion. In our OASIS model, we enable multi-modal synthesis directly through sampling of a 3D noise
tensor which is injected at every layer of the network. Differently from the structured noise injection
of Alharbi and Wonka (2020) and class-specific latent codes of Zhu et al. (2020), OASIS injects the
3D noise along with label maps and adjust it to image resolution, which also enables re-sampling of
selected semantic segments.
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2.2.2 Discriminator Architectures

To provide a powerful guiding signal to the generator, a GAN discriminator for semantic image syn-
thesis should evaluate both the image realism and its alignment to the provided semantic label map.
Thus, a fundamental question is to find the most efficient way for the discriminator to utilize the given
semantic label maps. To this end, Pix2pix (Isola et al., 2017), Pix2pixHD (Wang et al., 2018a) and
SPADE (Park et al., 2019b) rely on concatenating the label maps directly to the input image, which
is fed to a multi-scale PatchGAN discriminator. Alternatively, SESAME (Ntavelis et al., 2020) em-
ployed a projection-based discriminator (Miyato and Koyama, 2018), applying an additional branch
to process semantic label maps separately from images, and merging the two streams before the last
convolutional layer via a pixel-wise multiplication. CC-FPSE (Liu et al., 2019) proposed a feature-
pyramid discriminator, embedding both images and label maps into a joint feature map, and then
consecutively upsampling it in order to classify it as real/fake at multiple scales. LGGAN (Tang
et al., 2020c) introduced a classification-based feature learning module to learn more discriminative
and class-specific features. In Chapter 4, we propose to use a simple pixel-wise semantic segmenta-
tion network as a discriminator instead of multi-scale image classifiers as in the above approaches,
and to directly exploit the semantic label maps for its supervision. Segmentation-based discrimina-
tors have been shown to improve semantic segmentation (Souly et al., 2017) and unconditional image
synthesis (Schönfeld et al., 2020), but have not been explored for semantic image synthesis. OASIS
is therefore the first work to apply an adversarial semantic segmentation loss for this task. Notewor-
thy, the idea to use a segmentation-based discriminator has been adopted in several subsequent works
(Wang et al., 2021b; Jain et al., 2022; Jeong et al., 2021; Musat et al., 2022).

2.2.3 Perceptual Losses

Gatys et al. (2015); Gatys et al. (2016); Johnson et al. (2016) and Bruna et al. (2016) were pioneers
at exploiting perceptual losses to produce high-quality images for super-resolution and style transfer
using convolutional networks. Such a loss extracts deep features from real and generated images by
an external classification network, and minimizes their L1-distance to bring fake images closer to
the real data. For semantic image synthesis, the VGG-based perceptual loss was first introduced by
CRN (Chen and Koltun, 2017), and later adopted by Pix2pixHD (Isola et al., 2017). Since then, it has
become a default for training the generator (Park et al., 2019b; Liu et al., 2019; Tan et al., 2020; Tang
et al., 2020a; Richardson et al., 2021; Wang et al., 2021b; Li et al., 2021b; Musat et al., 2022). As
the perceptual loss is based on a VGG network pre-trained on ImageNet (Deng et al., 2009), methods
relying on it are constrained by the ImageNet domain and the representational power of VGG. With
the recent progress on GAN training, e.g., by architecture designs and regularization techniques, the
actual necessity of the perceptual loss requires a reassessment. In Chapter 4, we experimentally show
that such loss imposes unnecessary constraints on the generator, significantly limiting the diversity
among samples. We find that without the VGG loss it is possible to achieve higher diversity, at the
same time not compromising the synthesis quality.

2.2.4 Semantic Image Synthesis not with GANs

In addition to GANs, the literature suggested alternative models for semantic image synthesis. Con-
currently to Pix2Pix, several works trained generators without the adversarial components, using only
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the VGG perceptual loss for supervision. For example, Chen and Koltun (2017) proposed to train a
cascaded refinement network (CRN) with a combination of the VGG loss and a diversity regulariza-
tion, outperforming Pix2Pix in diversity. SIMS (Qi et al., 2018) extended CRN with a non-parametric
component, serving as a memory bank of segments of real images to further improve the synthesis
quality. However, all the subsequent non-GAN approaches were significantly underperforming in
image quality compared to subsequent state-of-the-art GANs.

Diffusion models. More recently, diffusion models appeared as an alternative class of powerful
image generation models (Dhariwal and Nichol, 2021; Rombach et al., 2022). The first diffusion
model for semantic image synthesis was SDM (Wang et al., 2022b), which incorporates label maps
using spatially-adaptive normalizations, similarly to SPADE (Park et al., 2019b). Other models
aimed to leverage pre-trained diffusion models, introducing extra label map encoders (PITI) (Wang
et al., 2022a) or spatial cross-attention layers (FreestyleNet) (Xue et al., 2023). These diffusion
models were published significantly later than OASIS and generally outperform our model in image
quality and diversity. However, they still do not achieve a good alignment between images and label
maps, achieving lower scores in the mIoU measure compared to OASIS.

2.3 Unconditional GANs in Low Data Regimes

To achieve impressive performance using the models reviewed in previous sections, it is typically
necessary to provide a large dataset of training images, consisting of at least several thousand im-
ages. In contrast, the performance of GAN models severely degrades when the available training data
is insufficient. For this reason, improving GANs in low data regimes has become its own research
direction. In this section, we discuss existing approaches for training GANs in various data-limited
regimes, which constitute related work for our models introduced in Chapters 5, 6, and 7. We cat-
egorize previous models based on the data regimes they were designed for (see Table 2.1), such
as limited-data setups (100-5000 training images), few-shot learning (5-100 images), and one-shot
training regime (learning from a single image). Additionally, we provide a separate overview of
existing methods for the fine-tuning of pre-trained GAN models.

2.3.1 GANs Learning from Limited Data

Training Generative Adversarial Networks (GANs) can be highly challenging, especially when work-
ing with smaller datasets. The inherent imbalance between the generator and discriminator is am-
plified in such cases, as the discriminator quickly overfits to the limited training data, overtaking
the generator. In fact, Zhao et al. (2020a) demonstrated that this issue is already prominent when
training on a mere 10% subset of the CIFAR-10 dataset, which contains as much as 5000 images.
Thus, many prior works attempted to address this problem and enable successful GAN training on
smaller datasets. One line of works focused on leveraging data augmentations, a widely used tech-
nique to combat overfitting in discriminative deep learning (Simard et al., 2003; Wan et al., 2013).
While augmenting real images is the obvious choice for GANs (Zhang et al., 2020a), it has been
shown that augmenting both real and fake images through differentiable image augmentations yields
superior results (Zhao et al., 2020c,a). Karras et al. (2020a) introduced an adaptive approach called
Adaptive Differentiable Augmentation (ADA), which dynamically adjusts the strength of differen-
tiable augmentations based on the current degree of overfitting in the discriminator. These data
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Training regime Dataset size Chapters of this thesis

Training GANs from limited data 100 - 5000 -
Few-shot image synthesis 10-100 6, 7
One-shot image synthesis 1 5, 6

Table 2.1: Different low data regimes for training GANs.

augmentations have significantly reduced the data requirements of state-of-the-art GANs. For in-
stance, StyleGANv2-ADA achieved successful training with as few as 1000 images from various
high-resolution datasets, becoming the standard baseline for many subsequent studies. In line with
these advancements, this thesis adopts differentiable augmentations during the training of our pro-
posed models in Chapters 6-7.

Several other works have proposed alternative methods that complement differentiable augmen-
tations. Tseng et al. (2021) introduced an anchors-based regularization term that encourages the
discriminator to blend the predictions of real and generated images. Yang et al. (2021) made the
discriminator’s task more complex by requiring it to differentiate between individual images, thereby
replacing the conventional real-fake binary classification. Chen et al. (2021a) proposed to train only
a small subset of the networks’ weights, resulting in reduced training time and improved synthesis
quality. Li et al. (2022) identified the problem of latent space discontinuity in data-efficient GANs
and solved it with a new contrastive loss. These works have significantly enhanced GAN synthe-
sis when working with limited data. Still, their performance has primarily been demonstrated with
datasets containing several hundreds of images, a scenario commonly referred to as “learning from
limited data” in the GAN literature. In Chapters 6-7, we do not directly compare our proposed ap-
proaches to these models, as our methods operate in even lower data regimes, commonly denoted as
“few-shot” or “one-shot” regimes.

2.3.2 Few-Shot GANs

Despite the considerable progress made in limited-data GANs thanks to data augmentation tech-
niques and regularizations, these models still struggle with addressing the issue of overfitting in
few-shot data regimes. This problem arises when the number of training images is severely lim-
ited, e.g., does not exceed a hundred. Stabilizing the training in this challenging regime required
developing new architectures. For example, FastGAN (Liu et al., 2021) proposed a new generator
architecture using a channel-wise excitation module, and a self-supervised discriminator trained as
a feature-encoder. This resulted in a lightweight architecture capable of generating high-quality and
diverse images even when provided with as few as 100 training images. Building upon the advance-
ments of FastGAN, FreGAN (Wang et al., 2022c) introduced a series of techniques that enhance
the spectral properties of the generated images. Additionally, GenCo (Cui et al., 2022) introduced
an approach involving multiple complementary discriminators that provide diverse supervision from
multiple distinctive image views, further mitigating overfitting. These improvements contributed to
further improving the quality and diversity of few-shot image generation.

In Chapter 5, we extend previous few-shot image generation benchmarks by introducing a new
setup, in which the training datasets are composed of 60-100 frames taken from a short video clip.
These datasets, characterized by a strong correlation among adjacent video frames, exhibit reduced
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overall diversity, making them particularly challenging for existing few-shot GANs. As we will
demonstrate in Chapter 5, our SIV-GAN model enables GAN training in this new challenging few-
shot regime, while FastGAN, a strong few-shot GAN baseline, is not able to overcome memorization.

2.3.3 Single-Image GANs

Another line of works investigated generative models from a single image. Before the emergence of
first single-image GANs, Ulyanov et al. (2018); Shocher et al. (2018) showed that when trained on a
single image, a deep convolutional network can learn a useful representation that captures the internal
statistics of that image. These learned representations can be employed to synthesize textures from a
sample texture image (Bergmann et al., 2017; Zhou et al., 2018; Ulyanov et al., 2017), to “blindly”
super-resolve (Shocher et al., 2018), or to inpaint the image (Ulyanov et al., 2018).

Motivated by these advances, several single-image GAN models (Shocher et al., 2019; Shaham
et al., 2019) have been proposed, revealing the power of image priors learned from a single natural
image for synthesis and manipulation tasks. For example, InGAN (Shocher et al., 2019) introduced
a GAN model conditioned on a single natural image, which can remap the input to any size or shape
while preserving its internal patch-based distribution. However, this model is limited to input images
with highly repetitive image content (e.g., used for texture synthesis) and performs poorly with more
natural images. SinGAN (Shaham et al., 2019) proposed a new GAN architecture, in which a cascade
of networks at different resolutions is trained in different stages. This allowed to learn multi-scale
patch distribution of a given image and produce images of new size from noise. Later, ConSinGAN
(Hinz et al., 2021) improved SinGAN by rescaling the multi-stage training and training several stages
concurrently, which enabled reducing the model size and made the training more efficient.

In Chapters 5 and 6, our SIV-GAN and OSMIS models demonstrate the capability to excel in
the one-shot learning regime. In contrast to previous multi-stage single-image SinGAN and ConSin-
GAN, our models are not only designed to capture distributions of image patches, but also to learn
more high-level image features like scene layouts and appearance of objects. Consequently, our mod-
els not only surpass prior methods in the one-shot regime but can also learn from multiple images,
e.g., in few-shot setups. Furthermore, in addition to new versions of the provided single image, our
model OSMIS from Chapter 6 not only provides new versions of the original single image, but also
generates segmentation masks for synthesized images, which was not considered in prior works.

2.3.4 Fine-Tuning of Pre-Trained GANs

While the models discussed in Sections 2.3.1-2.3.3 are trained from scratch, there is a line of research
aimed at avoiding overfitting to limited data through the use of transfer learning. These methods usu-
ally start from GANs pre-trained on large datasets, and adapt them on a few samples in the target
domain by fine-tuning the generator and discriminator weights, e.g., as first proposed in TGAN
(Wang et al., 2018b). However, if the number of training images is not large enough (e.g. just sev-
eral hundreds), naive fine-tuning still often suffers from overfitting and results in poor performance.
To mitigate this issue, researchers proposed several techniques, such as mining suitable parts of the
latent space before fine-tuning (Wang et al., 2020) or restricting weight updates, for example, freez-
ing the singular vectors of all layers (Robb et al., 2021), updating only the BatchNorm parameters
of the generator (Noguchi and Harada, 2019), penalizing drastic changes in important weights (Li
et al., 2020), or freezing the earliest layers of the discriminator, a technique referred to as FreezeD
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(Mo et al., 2020). While the above techniques help to mitigate overfitting during adaptation, their
effectiveness is limited by the number of images required for successful training. They are unable
to overcome the challenge of memorization when dealing with datasets consisting of fewer than 100
images.

In Chapter 7, we are interested to adapt pre-trained GANs on extremely small datasets, such
as target domains containing only 10 images. This regime could not be successfully tackled with
the above fine-tuning approaches, neither with prior few-shot or single-image GANs trained from
scratch. Thus, recent works advocated the necessity of strong regularizations that preserve specific
knowledge from the pre-trained model and prevent the degradation of diversity of the initial gener-
ators (Zhao et al., 2022). For example, CDC (Ojha et al., 2021) proposed to preserve the pair-wise
perceptual similarity between samples from the source domain and transfer it to the target domain,
while RSSA (Xiao et al., 2022) designed a novel consistency term to align the structural information
between source and target domains. These two methods achieved impressive performance on the
task of 10-shot GAN adaptation, however, their assumptions impose strong constraints on the struc-
ture of the few-shot target domain. In particular, they fail in the more challenging regime when the
source and target domains are not restrictively similar, as will be shown in Chapter 7. This issue was
addressed by AdAM (Yunqing et al., 2022), which replaced knowledge preservation criterias with
adaptation-aware kernel modulation (AdAM), relaxing the source-target proximity requirement to
some extent. Nonetheless, the issue of source-target proximity is not solved until today, as the per-
formance of methods still strongly depends on the semantic consistency between the target domain
and the pre-trained model, and their incompatibility can make the use of pre-training meaningless
(Zhao et al., 2020a). In Chapter 7, we introduce a new regularization term to preserve the genera-
tor’s smoothness properties that are not limited to a specific domain, enabling successful adaptation
between image domains of unprecedented structural dissimilarity.

2.4 GANs for Joint Synthesis of Images and Segmentation Masks

So far, we have discussed only single-modality GANs, that only generate new images from provided
image datasets. Naturally, many computer vision applications require paired data, such as segmen-
tation applications that require images and their pixel-level label maps. Therefore, several works
concentrated on GANs to generate segmentation masks along with images.

Most works on image-mask GANs are based on the observation that a GAN generator, trained
on a large dataset, implicitly learns discriminative pixel-wise features of the generated scene objects
(Tritrong et al., 2021). Thus, it is possible to extract these features from different generator lay-
ers and transform them into a segmentation mask of objects using a small decoder. As the ground
truth segmentation masks for generated images are typically not available, prior works proposed
several methods to train such a decoder. For example, RepurposeGAN (Tritrong et al., 2021) and
DatasetGAN (Zhang et al., 2021b) proposed to train the decoder using a handful of manually an-
notated generated images. LinearGAN (Xu and Zheng, 2021) replaced manual annotations by the
predictions of an external segmentation network. Alternatively, SemanticGAN (Li et al., 2021a) and
EditGAN (Ling et al., 2021) enforced the alignment between generated images and masks with the
loss from an additional discriminator, which takes both images and masks as inputs.

Although the above models require only a few masks to achieve high-quality image-mask syn-
thesis, they are not successful when the number of training images is not sufficient. This significantly
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Figure 2.4: Comparison of GANs and two alternative image synthesis paradigms: variational au-
toenvoders (VAE) and diffusion models. The image source is (Weng, 2021).

limits their application in restricted image domains. For example, these models do not allow to gen-
erate diverse data augmentation that can be used in data-limited setups, for example, in one-shot
segmentation applications. In Chapter 6, we introduce our OSMIS model, that, in contrast to prior
image-mask GANs, learns high-quality image-mask synthesis just from a single image-mask pair,
without requiring pre-training. A specific advantage of our model is that it is trained in a purely ad-
versarial fashion without any additional overhead, e.g., not requiring manual annotations of generated
images, external segmentation networks, or additional discriminators.

2.5 Alternatives to GANs

Lastly, we discuss alternative image generation models that are based on likelihood maximization
rather than on adversarial training. The two most popular alternative paradigms are variational au-
toencoders (VAE) and diffusion models (their schemes are shown in Fig. 2.4). In the following, we
briefly explain their working principles and their advantages and disadvantages compared to GANs.

Variational autoencoders. VAEs are constructed as encoder-decoder structures, with an encoder
mapping an input image to a low-dimensional latent space, and a decoder reconstructing the image
based on its latent input code. The loss function used in VAEs consists of two components: a recon-
struction loss and a regularization term. The reconstruction loss measures the dissimilarity between
the original input and the reconstructed output. The regularization term, based on the Kullback-
Leibler (KL) divergence, encourages the distribution in the latent space to match a predefined prior
distribution, typically a standard Gaussian. Once a VAE is trained, the decoder network can be used
to generate new data samples by sampling from the latent space.

The first VAE was proposed in (Kingma and Welling, 2014). The most recent VAE-based image
synthesis models (Child, 2022; Vahdat and Kautz, 2020; Hazami et al., 2022) excel at generating
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images from datasets of simple structure, such as human faces. However, modeling more complex
datasets, such as ImageNet, is still challenging with VAEs and so far has led to unsatisfying image
quality (Child, 2022). Overall, compared to GANs, VAEs have an advantage of having more stable
training process, as well as a lack of mode collapse. However, they allow to achieve only reduced
image quality and cover less complex datasets. Another disadvantage of VAEs is the tendency to
produce blurry outputs, since using the reconstruction loss incentivizes the decoder to tend towards
the mean image across all plausible outputs from a given latent vector. Among the tasks studied in
Chapters 4-7, VAEs do not achieve comparable performance to GANs. We therefore do not compare
our proposed models to VAEs in this thesis.

Diffusion models. Diffusion models (Ho et al., 2020) build on the concept of the diffusion pro-
cess, which is a stochastic process that describes the spread or diffusion of particles over time. In the
context of image generation, the core idea behind diffusion models is to transform a simple Gaussian
distribution into distribution of realistic images through a sequence of intermediate steps. In the for-
ward diffusion step, the image is updated by adding noise and applying a learnable transformation.
In the backward steps, the input Gassian noise is gradually reduced in multiple steps, in a way that
the the final denoised image looks realistic. During training, the model learns the parameters of the
diffusion steps, such as the noise level and the transformation functions, which allows it to generate
high-quality samples during backward process.

Unlike GANs, diffusion models do not suffer from training instabilities and frequently achieve
higher synthesis diversity, avoiding the issues related to mode collapse. Diffusion models are evolv-
ing rapidly, and have already outperformed GANs on several tasks and datasets (Nichol and Dhari-
wal, 2021; Dhariwal and Nichol, 2021; Rombach et al., 2022). The main disadvantage of diffusion
models is their slow sampling time due to the iterative generation procedure, which may require
thousands of network evaluations. For example, it can take up to several days to generate 50000
images with a diffusion model, which is commonly required to compare to other generative models
from the literature. One way to make diffusion models more efficient is to apply them only in an
image generator’s latent space, referred to as a latent diffusion model (Rombach et al., 2022).

Diffusion models, as a relatively recent type of models, have mostly emerged after the devel-
opment of our models presented in Chapters 4-7. They have been successfully applied in semantic
image synthesis, but so far have not been widely adopted in image generation tasks related to low
data regimes. Therefore, in this thesis, we will compare our semantic image synthesis model OA-
SIS to diffusion models in Chapter 4. In contrast, models from Chapters 5-7, designed for low data
regimes, will not be compared to diffusion models.





CHAPTER 3

Preliminaries

In this chapter, we present the formalism and notations related to the key concepts addressed in this
thesis, including the studied tasks, algorithms, and applications. As the main focus of this thesis re-
volves around the generation of realistic images, we start by defining the tasks of generative modeling
and image synthesis and highlight their connection to other machine learning tasks. We also discuss
different methods for their evaluation. The subsequent sections focus on the central tool studied in
this thesis: generative adversarial networks (GANs). Here, we discuss the operational principles of
GANs and explain the optimization procedures used for their training. As highlighted in the preced-
ing chapter, the effectiveness of GANs heavily relies on the specific architectures of the generator
and discriminator networks, as well as on the applied regularizations and other training techniques.
Hence, we provide an overview of the architectures, regularizations, and training strategies upon
which our models in Chapters 4-7 are constructed. Finally, apart from synthesizing realistic images
across various scenarios, our thesis also explores the usage of image synthesis in downstream appli-
cations. Therefore, we conclude this chapter by providing a description of these downstream tasks
and their relationship to our proposed models.
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3.1 The Task of Image Generation

3.1.1 Unsupervised Learning and Generative Modeling

From the perspective of machine learning, generative modeling can be considered as a form of unsu-
pervised learning. The general goal of unsupervised learning is to learn the distribution of provided
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data and extract meaningful patterns, structures, and relationships inside a given dataset, without any
explicit guidance or labeled examples. Mathematically, we consider an input space X Ď Rd, a fixed
unknown probability distribution Ddata, and a dataset S “ pxiq

m
i“1 consisting of m examples that are

i.i.d. sampled from Ddata. There are several tasks that fall into the category of unsupervised learning,
for instance, the following examples:

• Clustering: given a similarity measure d : X 2 Ñ R` between data points, find a function
F pxq : X Ñ Y , which assigns a given data point x to one of n clusters t1, ..., nu P Y , in a
way that similar data points fall into the same clusters, while dissimilar points are separated.

• Dimensionality reduction: learn a mapping from input space to a much lower-dimensional
space F pxq : X Ñ Y Ď Rl, where l ăă d, in a way that the transformed distribution
F pDdataq preserves most of the information about original data distribution Ddata.

• Density estimation: learn the underlying probability density function ppxq (PDF) of the data
distribution Ddata.

Our task of generative modeling is similar to the above examples, as it also aims to learn the
characteristics of data distribution Ddata by using unstructured collections of provided data points
S “ pxiq

m
i“1, while also assuming no access to labels and any other external guidance. In contrast to

the above examples, our task operates directly in the input data space X :

• Generative modeling: train a generator function G : Z Ñ X , in a way that it transforms a
given prior probability distribution Z into a generated distribution Dgen “ GpZq that is close
to the real data distribution Ddata.

This way, the trained generator G should allow to generate individual synthetic samples xgen “

Gpzq, z „ Z that follow the distribution of the dataset S consisting of real data samples.
The concept of data generation is closely associated with other unsupervised learning tasks. On

one hand, the prior distribution Z typically encompasses low-dimensional choices, e.g., Z : Rk Ñ R,
where k is significantly smaller than the input data dimensionality d. Consequently, when training
a generative model, the real data distribution can be approximated by a lower-dimensional manifold
GpZq, which remains within k dimensions. In this manner, generative modeling provides a form of
dimensionality reduction for representing real data.

On the other hand, in the context of density estimation, many existing approaches not only learn
the density function ppxq, but also offer effective algorithms for sampling from this distribution. For
a well-estimated ppxq, this sampling provides samples that follow Ddata, which can be regarded as a
solution for the data generation task. However, it is important to note that these methods may not be
suitable for sampling all types of data X , as will be discussed further.

3.1.2 Image Synthesis

Image synthesis is a branch of generative modeling that focuses specifically on generating new im-
ages. Mathematically, an image can be represented as a set of CˆHˆW numbers, where H and W
are the height and width of images in pixels, and the third dimension C is usually set to 3, represent-
ing the intensities of each pixel in the RGB color space. Thus, the task of image synthesis can be
formulated as:
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• Unconditional image synthesis: given a prior probability distribution (latent space) Z : Rk Ñ

R, a dataset of images S “ pxiq
m
i“1,Ď X “ RCˆHˆW sampled i.i.d. from Ddata, and a

pre-defined similarity measure between data distributions dp., .q, train a generator function
G : Z Ñ X that minimizes dpGpZq,Ddataq.

Optionally, the dataset S can contain conditioning information y P Y about each image, such as
a class label or semantic label map. In this case, the task of image synthesis becomes conditional,
and the goal is to model a joint distribution of images and labels:

• Conditional image synthesis: given a prior probability distribution (latent space) Z : Rk Ñ

R, a dataset of images with labels S “ pxi, yiq
m
i“1,Ď X ˆ Y “ RCˆHˆW ˆ Y sampled

i.i.d. from Ddata, and a pre-defined similarity measure between data distributions dp., .q, train
a generator function G : Z ˆ Y Ñ X that minimizes dpGpZ,Yq,Ddataq.

While the definitions of unconditional and conditional image synthesis are similar to those of
other generative modeling tasks, working with images as the modeled space X presents distinct chal-
lenges compared to other data types. These challenges arise primarily due to the intricate structure
of natural images. The summary of their specific structure and their challenges is provided below:

High dimensionality. Images are typically represented as very high-dimensional data. For ex-
ample, most images considered in Chapters 4-7 have resolution 256ˆ256, so they consist of
3ˆ256ˆ256=196608 dimensions. Modeling complex dependencies in X Ď R196608 requires very
powerful models catching non-linear dependencies between millions of pairs of dimensions. The
high dimensionality of the problem also makes the problem very difficult computationally.

Scarcity of the target manifold. The manifold of realistic images occupies an extremely sparse
region within the vast space of all possible images X (Arjovsky et al., 2017). For this reason, during
the initial stages of training a generator, the distributions Ddata and GpZq, representing real and gen-
erated images, often lack any significant overlap. This lack of overlap poses challenges for training
the generator, as numerous statistical similarity measures rely on non-zero support overlap between
the compared distributions in order to yield useful training signals.

Spatial structure. Images have inherent dependencies along spatial dimensions W and H, meaning
that the arrangement of pixels and their relationships within a local neighborhood or global con-
text is crucial for generating coherent images. Capturing spatial structure requires models that can
effectively learn both short-range and long-range dependencies and preserve spatial consistency.

Diversity. At a high level, images can exhibit a vast range of variations, including different objects,
backgrounds, lighting conditions, orientations, and scales. Additionally, while certain datasets en-
compass a wide range of object categories and scene types, there are also datasets specifically curated
for industrial applications, featuring grayscale images showcasing only one type of manufacturing
detail. Such diversity in images, as well as diversity in datasets themselves, requires careful generator
designs that have to be different for each specific task at hand.

Interpretability and ambiguity. Images can be subject to subjective interpretation by people, and
their meaning may vary across different observers. For example, in class-conditional datasets, it is
a known issue that the annotation of classes can vary between individuals (e.g., what one person
perceives as a “dog” may be labelled as a “wolf” or a “fox” by other annotators). In such cases, a
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successful generator needs to capture the inherent ambiguity and subjectivity in image data, which is
hard to formalize.

3.1.3 Evaluation of Image Synthesis

Similar to other machine learning tasks, the development of image synthesis models requires quan-
titative measures which allow objective comparisons across different models. Designing such mea-
sures is, however, not straightforward. At first glance, one might consider deriving a measure of a
model’s quality from the task’s definition itself: a similarity measure dp, q already provides an es-
timation of how close the distributions of generated and real images are. Nonetheless, the problem
with such a metric is that it would not be universal, as different models employ drastically differ-
ent approaches for modeling dp, q. For example, while some approaches like autoregressive models
(Van Den Oord et al., 2016) allow density estimation and computing likelihood of images in the
validation set, other models (e.g., GANs) utilize learnable discriminator critiques that are unique to
each trained model. Thus, these measures are not directly comparable to each other, which makes
objective comparisons between models difficult.

Another difficulty in the evaluation of image synthesis is subjectivity. Unlike other types of
data, generated images in many applications are primarily intended for visual perception by humans.
Therefore, any attempt to quantitatively assess image synthesis models must consider the correlation
to human preferences and expectations about how generated images should look like (Heusel et al.,
2017). This is difficult due to the highly non-linear and subjective nature of human perception of
image quality, which also varies from person to person (Goetschalckx et al., 2019). In addition,
human perception is highly sensitive to minor visual cues, and even slightest deviations from realism
can lead to images that appear unnatural or unconvincing to a human eye.

One more challenge of evaluating image synthesis is to detect overfitting and mode collapse.
In principle, an image generator that learned to replicate all training samples pxi, yiq

m
i“1 naturally

exhibits low dpGpZ,Yq,Ddataq, and such “generated” images would also look highly realistic from
the perspective of human perception. Therefore, a good evaluation protocol for image synthesis
should encompass both the quality and diversity aspects.

Although the search for reliable evaluation metrics for image synthesis remains an active area
of research (Borji, 2022; Alaa et al., 2022), several evaluation approaches have gained widespread
usage. In this thesis, we mostly use two metrics: FID (Heusel et al., 2017) and LPIPS (Zhang et al.,
2018b), separately measuring the quality and diversity of generated images. For completeness, below
we present an overview of these metrics along with other commonly used evaluation methods.

• Human studies. Evaluating the realism of generated images often begins with the simplest
approach of seeking human assessment. Numerous studies employ large-scale evaluations
by asking users to provide feedback on the generated images through various types of ques-
tions. For instance, one common test involves presenting a mixture of real and fake images
and asking users to identify the fake ones. A higher confusion rate among users in this test
would suggest a higher level of realism in the generated images. Alternatively, researchers
may present batches of images generated by different models and request users to rank them.
Overall, human studies allow the researchers to capture subjective perceptions and preferences
of human participants. However, conducting extensive user studies with a significant number
of participants can be both time-consuming and expensive, often requiring external platforms
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such as Amazon Mechanical Turk. These logistical constraints, coupled with the potential for
biased preparation of samples and the subjective nature of user responses, make human studies
challenging to reproduce and susceptible to misinterpretation.

• Negative log-likelihood (NLL). To assess the generalization ability of generative models that
allow the computation of the image likelihood, a common approach is to calculate the negative
log-likelihood (NLL) of real images. This typically requires a held-out validation set of images
that were not used during training the model. For evaluation, the NLL is then averaged over
all images in the validation set, and lower NLL values indicate better performance. It is worth
noting that NLL does not always align with the perceptual quality of generated images, and it
is not applicable in case of GANs, which are the main focus of this thesis.

• Inception score (IS). Other proposed approaches to evaluate image synthesis involve exter-
nal pre-trained neural networks. One of them is Inception Score (IS) (Salimans et al., 2016),
which is based on the Inceptionv3 image classification network (Szegedy et al., 2016), pre-
trained on ImageNet (Deng et al., 2009). Computing IS requires passing a set of generated
images pxgen,iq

m
i“1 (typically, with m “ 50k samples) through the Inceptionv3 network to es-

timate conditional label distributions ppy|xgen,iq, where y denotes classes from ImageNet. The
two assumptions of IS are that a well trained generator should have images with ppy|xgen,iq

of low entropy, while the entropy of
ş

ppy|x “ Gpzqqdz should be high. The first assump-
tion corresponds to generating “sharp” (realistic) images that can be easily categorized by the
InceptionV3 network, while the second assumption forces the images to be categorized as
different classes, corresponding to high diversity. Mathematically, IS is formulated as:

IS “ exp

ˆ

Ex„Dgen

„

DKL

ˆ

ppy|xq||

ż

ppy|x “ Gpzqqdz

˙ȷ˙

. (3.1)

A high Inception Score indicates that the generated images are both of high quality and exhibit
diversity. However, it is worth noting that the Inception Score has some limitations. The major
drawback of IS is that it is computed irrespective of Dreal and does not consider the similarity
of the generated distribution to the target domain of real images. This way, IS cannot provide
a reliable metric for the image domains that are significantly different from ImageNet.

• Frechet Inception distance (FID). Unlike IS, which evaluates only the distribution of gener-
ated images, the Frechet Inception distance (FID) (Heusel et al., 2017) compares the distribu-
tion of generated images with the distribution of a set of real images. Computing FID involves
calculating the feature representations of both the real images and the synthetic images using
a pre-trained InceptionV3 network (excluding the last classification layer). This is followed
by the computation of the mean and covariance matrices of the obtained representations. The
final step is to fit multivariate Gaussian distributions for the real and fake mean and covari-
ance matrices and to compute the Frechet distance between them. Mathematically, for the two
estimated Gaussian distributions N pµgen,Σgenq and N pµreal,Σrealq, the FID equals:

FID “ ||µgen ´ µreal||
2
2 ` Tr

´

Σgen ` Σreal ´ 2 pΣgenΣrealq
1{2

¯

. (3.2)

The FID metric considers both the quality and diversity of generated images. A lower FID
score indicates a closer similarity between the real and synthetic image distributions, implying
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better image quality and more similar diversity to the real images. Similarly to IS, the FID
metric has its own set of advantages and limitations. In general, it addresses some of the
limitations of the Inception Score by directly comparing feature representations, rather than
relying solely on predicted class probabilities. More importantly, it was shown to correlate
very well with the human perceptual judgement. On the other hand, FID is still computed
based on a network pre-trained on ImageNet, which introduces biases. In addition, computing
FID requires multiple forward passes through the InceptionV3 network and computing inverse
matrices, which can be computationally expensive, especially when dealing with large-scale
datasets. It was also shown to be statistically biased, in the sense that the expected value of FID
over finite data is not the same as when a number of samples is infinite (Chong and Forsyth,
2020). Despite these considerations, FID remains the standard metric for evaluating image
synthesis models, and is used in Chapters 4-7 of this thesis.

• Single-Image Frechet Inception distance (SIFID). In the special task of generating new im-
ages from a single training image, computing FID becomes impossible due to the absence of
a defined covariance matrix Σreal (this matrix cannot be derived from a single image alone).
To address this limitation, Shaham et al. (2019) introduced a new evaluation approach, which
involves computing statistics from feature representations at much earlier layers of the Incep-
tionV3 network, rather than before the final classification layer. As the receptive field of these
layers is relatively small, this way of computation allows to evaluate the statistics of different
small image patches (e.g., 1

16 of the size of the original image), and compute the covariance
matrices using them. After that, when N pµgen,Σgenq and N pµreal,Σrealq are calculated based
on different patches of generated and fake images, the SIFID is computed according to Eq. 3.2.
In effect, SIFID allows to measure the quality of images generated by models trained on a sin-
gle image. In this thesis, SIFID at various InceptionV3 layers is used in Chapters 5-6.

• Learned Perceptual Image Patch Similarity (LPIPS). While FID has been widely adopted
in the community for evaluating the quality of generative models, it has faced criticism due
to its limitations in detecting significant failure cases. One fundamental drawback is its one-
dimensional nature, which prevents it from distinguishing between models with high precision
but poor recall and those with poor precision but high recall (Sajjadi et al., 2018). Additionally,
FID fails to identify overfitting, as a model that simply replicates the training set can achieve an
FID score close to zero. Consequently, a comprehensive evaluation of image synthesis should
include another measure that isolates image diversity from fidelity.

An example of a purely diversity-based metric is LPIPS. It is based on the idea that human per-
ception of image diversity is not purely based on pixel-wise differences but also on higher-level
features and structures within the images. To capture these perceptual differences between
images, LPIPS uses image features computed by deep layers in a pre-trained classification
network. For two given images x1 and x2 and a pre-trained network F , LPIPS is computed as:

LPIPS “
ÿ

l

1

HlWl

ÿ

h,w

||F l
hwpx1q ´ F l

hwpx2q||2, (3.3)

where Hl,Wl correspond to the dimensions of features at layer l, while F l
hw denotes the fea-

tures computed at layer l at spatial location ph,wq.
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By comparing different pairs of generated images with LPIPS, one can estimate the degree
of diversity present in the generated images. This measure, computed independently from
FID, can provide a score that helps to detect training instabilities, mode collapse, and simply
lack of diversity in generated images. Another method to use LPIPS is to compute it between
generated and training images. This way, the average LPIPS from generated images to their
“nearest” training samples would clearly indicate the degree of memorization in a generator.
In this thesis, LPIPS is used to evaluate the diversity of our models in each of the Chapters 4-7.

3.2 Generative Adversarial Networks

In this thesis, we consider a special type of image synthesis models – generative adversarial net-
works (GANs). In the next sections, we explain their working principles and introduce the GAN
architectures, losses, and training techniques that will be used in the next chapters.

3.2.1 GAN Working Principles

Like other generative models, GANs aim to train a generator G that transforms a prior distribution
Z into the distribution of generated images GpZq which is close to Dreal. As also commonly used
in other generative models, for the latent space Z : Rk Ñ R, GANs select a multi-variate Gaussian
distribution z „ N p0, Iq, where k is usually chosen as a power of 2 within the range of 64 to 512. In
contrast to other approaches, instead of directly estimating the probability density ppxq for generated
images, GANs utilize an additional classifier network Dpxq P r0, 1s, estimating the probability that
an input image x is real. The D network thus serves as a proxy for the measure dp, q, which evaluates
the similarity between generated and real images.

The overview of the general GAN paradigm is presented in Fig. 3.1. A GAN consists of two
networks: a generator G and a discriminator D. G takes a random noise vector z and generates
an image xgen “ Gpzq. D takes two inputs: the generated image xgen and an image xreal from a
provided dataset of real images; the output of D is a score Dpxq giving a probability of an image
being real. The generator and discriminator are trained in alternate fashion, performing updates one
after another. The goal of the generator is to produce images that the discriminator judges as real.
In turn, the discriminator has to categorize all input images correctly. Therefore, GAN training is a
game of two players with the following binary cross-entropy objective:

min
G

max
D

Ez„pZ

“

logp1 ´ DpGpzqqq
‰

` Ex„Dreal

“

logpDpxqq
‰

. (3.4)

The solution to (3.4) is a saddle point, from which neither G nor D can improve. To train the
networks, the ADAM (Kingma and Ba, 2015) optimizer is used with learning rates typically set in
the range from 0.0001 to 0.001 for both G and D. It is worth noting that the gradients resulting from
logp1 ´ DpGpzqqq can vanish if the discriminator produces confident predictions. Therefore, it is
common to change the objective to a non-saturating variant of (3.4), referred to NS-GAN:

LG “ ´Ez„pZ

“

logpDpGpzqqq
‰

,

LD “ ´Ez„pZ

“

logp1 ´ DpGpzqqq
‰

´ Ex„Dreal

“

logpDpxqq
‰

.
(3.5)

The described GAN training pipeline is summarized in Algorithm 1.
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Figure 3.1: Overview of the GAN paradigm. A generator G produces an image xgen from the input
noise z P Z . A discriminator D tries to distinguish between generated images xgen and real images
from a provided dataset xreal P S.

Algorithm 1 GAN training.
Input: G: Generator network, D: Discriminator network, S: Dataset, N : Batch size,

Opt.: Parameters of the optimization algorithm
1 for number of training iterations do
2 ¨ Sample a batch of noise vectors tz1, ..., zNu Ă Z
3 ¨ Sample a batch of images tx1, ..., xNu Ă S (possibly, with data augmentation)
4 ¨ Update D using Opt. minimizing loss

´
1

N

N
ÿ

n“1

”

logDpxnq ` logp1 ´ DpGpznqqq

ı

5 ¨ Update G using Opt. minimizing loss

´
1

N

N
ÿ

n“1

”

logDpGpznqq

ı

6 end for

3.2.2 Alternative Adversarial GAN Losses

The form of the GAN adversarial objective is mainly defined by the choice of the classification loss
for the discriminator. While the NS-GAN loss, which is based on binary cross entropy, is used in the
majority of GAN models, there exist several alternative formulations:
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Least-square GAN (LSGAN) (Mao et al., 2017):

LG “
1

2
Ez„pZ

“

pDpGpzqq ´ 1q2
‰

,

LD “
1

2
Ez„pZ

“

DpGpzqq2
‰

`
1

2
Ex„Dreal

“

pDpxq ´ 1q2
‰

.

(3.6)

Hinge loss (Lim and Ye, 2017):

LG “ ´Ez„pZ

“

DlogitspGpzqq
‰

,

LD “ ´Ez„pZ

“

minp0,´1 ` pDlogitspGpzqqq
‰

´ Ex„Dreal

“

minp0,´1 ´ pDlogitspxqq
‰

.
(3.7)

Note: the formulation of the Hinge loss uses the discriminator logits Dlogitspxq P p´ inf, infq instead
of the probabilities Dpxq P r0, 1s that are usually obtained via a non-linear activation layer.

Wasserstein GAN (WGAN) (Arjovsky et al., 2017):

LG “ ´Ez„pZ

“

DpGpzqq
‰

,

LD “ `Ez„pZ

“

DpGpzqqq
‰

´ Ex„Dreal

“

Dpxq
‰

.
(3.8)

In contrast to minimizing various statistical divergence measures (e.g., the JS-Divergence for NS-
GAN and Pearson χ2-Divergence for LSGAN), the WGAN loss uses the earth-mover Wasserstein
distance between the real and generated data distributions. In Chapters 4-7, all our developed models
use the NS-GAN objective, while some of the important comparison baselines employ the Hinge loss
(such as SPADE, FastGAN, and BigGAN) or WGAN (used in SinGAN and ConSinGAN).

3.2.3 GAN Regularizations

In its basic form, the optimization of the adversarial losses from (3.5) can lead to training instabilities
or mode collapse due to the non-convex minimax nature of the objective. For this reason, GANs often
have additional regularization terms that are added either to LG or LD. While the amount of GAN
regularizations available in the literature is tremendous, below we present the four regularizations
that are most relevant to our thesis:

Gradient penalty. The Gradient penalty (Gulrajani et al., 2017) was introduced to stabilize GAN
training by constraining the speed of the discriminator’s gradient updates. This regularization penal-
izes the squared difference of the D’s gradient for deviating from the unit sphere:

LGP “ λGP ¨ Ex̂„Px̂

“

p||∇Dpx̂q||2 ´ 1q2
‰

. (3.9)

In Eq. (3.9), Px̂ is the distribution obtained by uniformly sampling along a straight line between the
real and generated distributions. This way, x̂ are obtained as linear interpolations between generated
and real images. The Gradient penalty was proposed as a replacement for the earlier gradient clipping
approach (Arjovsky et al., 2017). This regularization significantly improved the performance and
stability of previous GAN models, allowing them to model much more complex data distributions.

Spectral normalization. Another method to enforce the Lipschitz property on trained networks is
to use the Spectral normalization (Miyato et al., 2018). Spectral normalization tackles the issue of
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drastic output changes by normalizing the spectral norm of the weight matrices. The normalization is
typically applied to all learnable layers of both G and D, such as convolutions or fully-connected lay-
ers. For a given layer g, parameterized with a weight matrix A, the first step of spectral normalization
is to compute the spectral norm of A:

σpAq “ max
h‰0

||Ah||2

||h||2
“ max

||h||2ď1
||Ah||2, (3.10)

which is equivalent to the largest singular value of A. The spectral normalization then normalizes the
spectral norm of the weight matrix A so that it satisfies the Lipschitz constraint σpAq “ 1.

By using spectral normalization, GANs can achieve improved stability, better convergence prop-
erties, and higher-quality generated samples. It has been also shown to be effective in mitigating
mode collapse, where the generator fails to capture the full diversity of the target distribution.

Diversity-sensitive loss. While Lipschitz regularizations like spectral normalization stabilize the
training and mitigate mode collapse, they do not directly address the problem of GANs generating
images with reduced diversity compared to real data. For this reason, Yang et al. (2019) proposed a
diversity-sensitive regularization that explicitly encourages the generator to produce diverse outputs
for different input noise vectors. This loss term is expressed as:

LDS “ ´λDS ¨ Ez1,z2„pZ

„

min

ˆ

||Gpz1q ´ Gpz2q||

||z1 ´ z2||
, ε

˙ȷ

, (3.11)

where ε is an upper bound that assists numerical stability. LDS helps to structure the generator in a
way that the diversity of generated images is maximized without compromising image quality.

Path length regularization. Odena et al. (2017) and Karras et al. (2020b) observed a positive cor-
relation between the quality of GAN-based generated images and the smoothness of the generator’s
mapping that was used to produce them. Mathematically, the generator’s smoothness is expressed
via a Jacobian matrix JGpzq “ BGpzq{Bz, quantifying how G’s output changes under noise shifts.
In a smooth generator, random small steps in the latent space lead to minor but non-zero changes in
output images. This property is usually visualized via latent space interpolations, which demonstrate
that intermediate images Gpαz1 ` p1 ´ αqz2q are realistic for different pairs of z1 and z2. In prior
work, it was therefore proposed to enforce smooth latent space interpolations explicitly using the
generator’s Jacobian matrix. This regularization is known as the path length regularization (PPL):

LPPL “ λPPL ¨ Ez„pZ p||JT
Gpzq ¨ y||2 ´ aq2. (3.12)

Karras et al. (2020b) showed that minimizing Eq. (3.12) leads to a generator with an orthogonal
JGpzq at any z. The fact that the Jacobian matrix is orthogonal indicates that every noise shift
∆z : ||∆z|| “ ε leads to a fixed-size and non-zero step in the image space. This property was shown
to induce several attractive properties to GANs, including the stability of training, higer quality and
diversity of generated images, as well as the ability for GAN inversion.

In this thesis, the above regularizations are present in some of our models or in our most important
comparison baselines. For example, the Gradient penalty is used by default in StyleGANv2, which
is the baseline for our model in Chapter 7. Spectral normalization is used in our models OASIS
(Chapter 4), SIV-GAN (Chapter 5), and OSMIS (Chapter 6). Lastly, the diversity-sensitive loss
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BigGAN G block BigGAN D block

Figure 3.2: The architecture of the BigGAN (Brock et al., 2019) G and D blocks.

and path length regularizer constitute important comparison methods for our proposed Diversity
Regularization and Smoothness Similarity regularization introduced in Chapters 5 and 7.

3.2.4 GAN Architectures

Along with adversarial losses and regularizations, the performance of GAN models strongly depends
on the exact architectures of G and D used for training. In what follows, we discuss the common
neural architecture choices in the GAN literature.

Generator and discriminator blocks. GAN models borrow a lot of solutions from the recent ad-
vancements in general deep learning architectures. In state-of-the-art GAN models, both the gener-
ator and discriminator are structured as deep neural networks with multitude of layers, organized in
repetitive blocks. A typical block usually consists of a skip-connection, convolutional layers with a
kernel size of 3ˆ3 and stride 1, non-linearities (e.g., ReLu), up/downsampling, and normalization
layers. The exact order of operations and their parameters, however, depends on the model.

One of the most successful GAN architectures is BigGAN (Brock et al., 2019). The structure of
BigGAN’s residual G and D blocks is shown in Fig. 3.2. In the generator, BigGAN uses conditional
Batch normalization layers, ReLU activations, 2ˆ2 bilinear upsampling, and 3ˆ3 convolutions. The
output features of the G block are therefore 2 times larger in spatial dimensions than the input. Along
the channel dimensions, the output can remain the same or become 2 times smaller, depending on
the number of output filters in the second convolution. In the skip-connection, the dimensions of
the input features are matched to the output size via an upsampling layer and a 1ˆ1 convolution. In
the discriminator, BigGAN employs ReLU activations, 3ˆ3 convolutions, and 2ˆ2 average pooling
for downsampling. The skip connection of BigGAN’s D block consists of a 1ˆ1 convolution and
average pooling, which are used to match the shape of output features between different pathways.
Overall, the architecture depicted in Fig. 3.2 influenced many subsequent models, and inspired the
design of G and D blocks used in our SIV-GAN and OSMIS models (Chapters 5 and 6).
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StyleGAN (global view) StyleGAN (detailed view) StyleGANv2 (detailed view)

Figure 3.3: The architecture of StyleGAN (Karras et al., 2019) and StyleGANv2 (Karras et al.,
2020b) G blocks. Convolutions in both models are followed by a LeakyReLu activation (not shown).

Another influential GAN architecture comes from a series of works on StyleGANs (Karras et al.,
2019, 2020b, 2021). The main novelty of StyleGANs lies on the generator’s side (see Fig. 3.3). Style-
GAN’s generator contains Style blocks, consisting of a bilinear upsampling, 3ˆ3 convolutions with
LeakyReLu activations, and Adaptive Instance normalizations (Huang and Belongie, 2017) to adapt
the style of generated images. In StyleGANv2, Adaptive Instance normalization was redesigned to
adjust only the standard deviation of feature maps (see Fig. 3.3, right). In this thesis, StyleGANv2
architecture is used in Chapter 7 for the evaluation of the smoothness similarity regularization.

Connections between blocks and between G and D. While the low-level architecture of the G and
D block is important, the performance of GANs also depends on how these blocks are connected to
each other. Fig. 3.4 demonstrates several popular ways to organize GAN architectures at a higher
level. The simplest among them is to use residual networks (Fig. 3.4, right), applying ResNet blocks
sequentially one after another in both G and D. This solution is used, for example, in BigGAN.
Another approach is to employ skip connections from all G’s blocks to corresponding D’s blocks
(Fig. 3.4, left), as was proposed in MSG-GAN (Karnewar and Wang, 2020). This solution was
shown to facilitate the flow of the gradient from D to the earliest blocks of G and thus to improve
performance. This approach is used in our SIV-GAN and OSMIS models in Chapters 5 and 6. Lastly,
Karras et al. (2020b) explored a mixed approach, in which a generated image is assembled as sum
of images generated at different G blocks, and this image is processed at different resolutions at each
D block (Fig. 3.4, center). Such skip-layer strategy is used in the StyleGANv2 generator.

Conditioning of G. Another degree of freedom in the GAN design is how to condition the gener-
ator on input noise and, optionally, on other data (e.g., class labels). There are several popular G
conditioning mechanisms. The simplest way is to use noise simply as input to the first G block.
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MSG-GAN Skip layers Residual networks

Figure 3.4: Different strategies for connecting the GAN generator and discriminator, as presented in
(Karras et al., 2020b). tRGB and fRGB denote convolutions that transform feature representations
into images, and vice versa.

In this case, the class label is concatenated to noise as a one-hot vector or as output of a separate
encoder. Alternatively, the combination of noise and class label can be projected into various G’s
blocks via self-modulation in conditional batch normalization (Chen et al., 2019; Brock et al., 2019).
In StyleGANs, a separate MLP network maps the conditioning noise to a style space, after which
a style vector is injected into each G block via adaptive instance normalization or by adjusting the
standard deviation of intermediate features. Overall, the design of G conditioning plays an important
role in its sensitivity to noise, diversity of generated images, and its ability to precisely follow the
conditioning labels.

In semantic image synthesis, when generated images should adhere to given semantic label maps,
G’s sensitivity to input labels is especially important. In this field, most recent works inject the
input label maps via the spatially-adaptive normalization (SPADE) (Park et al., 2019b). The SPADE
layer takes semantic label maps y and intermediate feature representations f of shape NˆCˆWˆH
as input (the dimensions N,C,W,H correspond to the batch size, channels, width and height of
intermediate features). The output of SPADE is expressed as:

f̂n,c,x,y “ γc,y,xpyq
fn,c,x,y ´ µc

σc
` βc,x,ypyq, (3.13)

where γ and β are the learned scaling and bias parameters that depend on y, and the µc and σc are the
mean and standard deviation of the activations f in channel c. Essentially, SPADE is a conditional
batch normalization layer, in which the learned scaling and bias parameters are learned independently
for pixels belonging to different semantic classes. In Chapter 4, we leverage the SPADE layer as the
foundation for introducing a new 3D noise injection scheme in our OASIS model.

Discriminator architectures. The GAN discriminator is a neural network designed to classify input



40 Chapter 3. Preliminaries

Standard D PatchGAN D Segmentation-based D

Figure 3.5: Different GAN discriminator architectures.

images as real or fake. It typically takes the form of an encoder, consisting of consecutive blocks
tDiuNi“1. When given an image x, the encoder computes a real/fake logit after the last block, denoted
as l “ sN ˝ DN pxq, where sN represents the final processing layer, such as convolution. This D

architecture, depicted in Fig. 3.5 (left), has a receptive field that covers the entire image, enabling
global-level assessment of image realism. This architecture is utilized in various state-of-the-art
GAN models, including BigGAN and StyleGANs.

However, relying solely on global-level evaluation may not always yield optimal results. For
example, when training data is limited, this approach can lead to easier memorization of the training
images. To address this, prior work introduced an alternative solution to mitigate memorization of
training data and to encourage more diverse synthesis. This solution involves disregarding the latest
D blocks and making the real/fake decision at an intermediate layer: l “ sk ˝ Dkpxq, where k ă N .
This approach, known as PatchGAN D (Isola et al., 2017) (Fig. 3.5, center), has a limited receptive
field, which allows to judge the input images at a more local level. PatchGAN D is used in several
important comparison baselines in this thesis, including SPADE (Chapter 4) and CDC (Chapter 7).

The third discriminator architecture related to this thesis is a segmentation-based D. This dis-
criminator utilizes an encoder-decoder architecture (see Fig.3.5, right), enabling it to generate indi-
vidual real/fake predictions for each pixel of an image. Consequently, segmentation-based discrimi-
nators provide a rich training signal for the generator by precisely identifying the areas in generated
images that require improvement. The effectiveness of segmentation-based discriminators has been
demonstrated in applications such as semantic segmentation (Souly et al., 2017) and unconditional
image synthesis (Schönfeld et al., 2020). In Chapter 4, we explore the potential of this architecture
for semantic image synthesis and demonstrate its efficacy for the OASIS model.

3.2.5 Useful Techniques for GAN Training

Prior works on GANs also explored numerous training techniques that are complimentary to adver-
sarial losses, regularizations, and network architectures. This section describes the techniques that
are the most related to this thesis.

Differentiable image augmentation. In the field of machine learning, data augmentation is a stan-
dard technique to mitigate overfitting and improve the generalization of models. In the context of
GANs, data augmentation of real data is also commonly employed to mitigate overfitting in discrim-
inator. However, as argued in (Zhao et al., 2020a), in this case the image transformations used for
data augmentation can inadvertently affect the generated images. For instance, if vertical flipping is
included as a data augmentation technique, the discriminator will encourage the generator to produce
vertically flipped images.

Consequently, a challenge arises in striking a balance between preventing unrealistic generations
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p “ 0.0 p “ 0.1 p “ 0.2 p “ 0.3 p “ 0.5 p “ 0.8

Figure 3.6: Differentiable image augmentation (DA), which is applied to both real and fake images
before D takes them as input. DA includes a series of image transformations that are applied con-
sequently, with probability p for each transformation. In the figure, the two rows illustrate possible
outcomes of DA with different p, as presented in (Karras et al., 2020a).

and leveraging the benefits of data augmentation. To tackle this issue, Zhao et al. (2020a) proposed
a novel approach that applies data augmentation to both real and fake images. This strategy involves
passing a real or fake image through a sequence of differentiable image transformations T pxq, each
applied with a fixed probability p. Fig. 3.6 illustrates the outcomes of this image augmentation
process, referred to as differentiable augmentation (DA), for various values of p. By increasing p,
the discriminator is exposed to a significantly more diverse range of images, effectively preventing
overfitting. As demonstrated in (Karras et al., 2020a), if DA is applied during both the G and D

training steps, the generator can learn to counteract the applied transformations, even when p is
relatively large. In this thesis, DA is employed in all of our models that operate under limited data
regimes (Chapters 5-7).

Perceptual loss. Perceptual loss is a widely used technique in paired image-to-image translation
tasks, such as semantic image synthesis. A perceptual loss estimates deep features of real and fake
images via a pre-trained classification network, aiming to make generated images perceptually closer
to real data. In semantic image synthesis, a popular choice is the VGG-16 network (Simonyan and
Zisserman, 2015), pre-trained on ImageNet (Deng et al., 2009). For given batches of real and fake
images xreal and xgen, generated from the same label maps, the standard perceptual loss extracts ten
feature representations tΦipxrealqu5i“1, tΦipxgenqu5i“1, where Φi correspond to the VGG-16 features
extracted at the ReLu-1,2, ReLu-2,2, ReLu-3,3, ReLu-4,3, ReLu-5,3 layers. The perceptual loss is
then formulated as:

LV GG “ λV GG ¨

5
ÿ

i“1

wi||Ψipxrealq ´ Ψipxgenq||1, (3.14)

where wi represents the weight assigned to the VGG-16 layer with index i. In prior works on seman-
tic image synthesis, the standard choice for w is r1{32, 1{16, 1{8, 1{4, 1s. In Chapter 4, we demon-
strate that using a perceptual loss is suboptimal for semantic image synthesis GANs, and propose a
new model that achieves good performance without relying on this loss.
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Feature matching Loss. Another technique employed in semantic image synthesis is the feature
matching loss. This loss operates on a similar principle as the perceptual loss, but instead of us-
ing an external VGG-16 feature extractor, it leverages the discriminator network. For the real and
fake batches xreal and xgen, generated from the same label maps, the discriminator extracts feature
representations tDipxrealquNi“1 and tDipxfakequNi“1. Here, Di corresponds to the output of the i-th
discriminator block, and N represents the total number of blocks in D. The feature matching loss is
defined as follows:

LFM “ λFM ¨

N
ÿ

i“1

||Dipxrealq ´ Dipxgenq||1. (3.15)

Similar to our findings regarding the perceptual loss, Chapter 4 demonstrates that the feature
matching loss is unnecessary for achieving satisfactory performance in semantic image synthesis. As
a result, we exclude this loss from our proposed OASIS model.

3.3 Applications of GAN-Based Image Synthesis

In previous sections, we explored the concept of image synthesis and the use of GANs for generating
realistic images. However, the impact of GAN-based image synthesis goes beyond simply achieving
impressive visual quality. In this thesis, we will study several downstream applications that can
benefit from the high-quality images produced by GANs. The first application is semantic image
editing, which enables controlled editing of distinct semantic regions within images. The second set
of applications focuses on synthetic data augmentation. This involves using the generated images as
a means of augmenting existing data for other computer vision applications. The next sections will
provide an overview of the downstream applications that are considered in this thesis.

3.3.1 Semantic Image Editing

Image editing is the process of modifying an existing image according to user-defined specifications.
In semantic image synthesis, this task takes a special form, referred to as semantic image editing. In
this task, users have the ability to select a specific region of an image belonging to a particular object
and generate new images where the chosen object is visually transformed, while the rest of the scene
is preserved. More specifically, given an image x, its semantic label map y P NHˆW , and a specified
class c P r1..N s, semantic image editing aims to generate new content within the mask m “ 1y“c

while preserving the content outside of it. Figure 3.7 provides an example of semantic image editing,
showcasing modifications made to mountains (upper row) or trees (bottom row) in the given scenes.
In Chapter 4 of this thesis, we explore semantic image editing with our OASIS model

3.3.2 Synthetic Data Augmentation

In a well-trained GAN model, the generator produces new synthetic samples that closely resemble
images from the original dataset. One notable advantage of well-trained models is their ability to
avoid the memorization of training samples and produce new images that were not present in the
original dataset. Therefore, the synthetic data can serve as a valuable resource for data augmenta-
tion, addressing limitations such as a small dataset size, class imbalance, or limited variation in the
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Figure 3.7: Examples of semantic image editing. In the shown images, only the area belonging to
one semantic class is modified: mountain in the 1st row, tree in the 2nd row.

original data. When added to the original data, synthetic samples thus have a potential to improve
the robustness and overall performance of models in other computer vision applications. In this the-
sis, we study the application of synthetic data augmentation to several computer vision tasks (see
Fig. 3.8):

Semantic image segmentation. In semantic image segmentation, the task is to train a neural net-
work F that predicts a semantic label map y of a given image x (Fig. 3.8, upper left corner). In the
simplest scenario, the network F is trained on a dataset consisting of paired images and label maps
S “ pxi, yiq

m
i“1. Notably, this type of data is also employed for training semantic image synthesis

models, where a generator G produces an image x based on a provided label map y. Therefore,
in Chapter 4, our model OASIS can generate new images x̂ “ Gpyq for each label map y from
S, thereby serving as data augmentation px̂, yq for training F . In Chapter 4, we demonstrate that
synthetic data augmentation produced by OASIS helps to improve the performance of semantic seg-
mentation on two datasets, providing larger gains compared to the baseline SPADE.

One-shot semantic image segmentation. The task of one-shot semantic image segmentation aims to
adapt a pre-trained semantic segmentation network F to new object classes based on a single labeled
example (Fig. 3.8, lower left corner). This is a highly challenging task as the network must learn
the appearance of new classes and achieve generalization from just a single image-mask pair px, yq

during the test phase. In the context of GANs, this type of data is used in our newly introduced task
OSMIS in Chapter 6. Therefore, we apply our OSMIS model to this task, generating new diverse
image-mask pairs px̂, ŷq “ Gpzq that contain the same objects as in the original pair px, yq. The
high quality and diversity of the OSMIS generations in this one-shot scenario allow us to effectively
augment the original data, resulting in significant mIoU gains in the one-shot image segmentation
benchmark COCO-20i (Lin et al., 2014).

One-shot video object segmentation. One-shot video object segmentation is the task which seg-
ments objects in videos, provided a mask of objects only in the first video frame (Fig. 3.8, right).
At test time, this task provides a network F with a set of video frames px1, ..., xnq and the seman-
tic mask y1. To generate data augmentation for this task, we train OSMIS on the image-mask pair
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Semantic image segmentation: One-shot video object segmentation:

One-shot semantic image segmentation:

Figure 3.8: Downstream applications for GAN-based synthetic data augmentation studied in this
work. For one-shot semantic image segmentation and one-shot video object segmentation tasks,
only the test stage is illustrated. For all the tasks, the desired output is highlighted in red frames.

px1, y1q. As demonstrated in Chapter 6, the generated image augmentation helps the model to avoid
overfitting and achieve better generalization to other video frames.



CHAPTER 4

You Only Need Adversarial Supervision
for Semantic Image Synthesis

In this chapter, we focus on semantic image synthesis. This task can be considered as an extension
of class-conditional image generation, where the class index is provided for each pixel in an image.
Semantic label maps are of great help to the generation process, as they provide the generator with
pixel-wise guidance on how to realistically arrange objects in the scene at a pixel level. Thus, ideally,
semantic image synthesis GANs should outperform unconditional and class-conditional GANs in
terms of synthesis quality and diversity. However, in reality, these GANs often struggle to produce
images with correct colors and textures and fail to achieve diversity. In this chapter, we identify that
these problems are caused by the overreliance of previous models on additional training techniques
like perceptual losses. To this end, in this chapter we introduce a new GAN model that achieves
impressive performance using only the adversarial loss. Our model, called OASIS, is simpler than
prior models, while offering better performance and introducing several new capabilities.

Individual Contribution

This chapter is based on the following journal and conference publications (Sushko et al., 2022;
Schönfeld et al., 2021):

OASIS: Only Adversarial Supervision for Semantic Image Synthesis
Vadim Sushko*, Edgar Schönfeld*, Dan Zhang, Juergen Gall, Bernt Schiele, Anna Khoreva
International Journal of Computer Vision (IJCV), 2022. DOI: 10.1007/s11263-022-01673-x

You Only Need Adversarial Supervision for Semantic Image Synthesis
Edgar Schönfeld*, Vadim Sushko*, Dan Zhang, Juergen Gall, Bernt Schiele, Anna Khoreva
International Conference on Learning Representations (ICLR), 2021.

This publication was a result of a highly collaborative effort involving Vadim Sushko, Edgar Schönfeld,
Dan Zhang, and Anna Khoreva. Bernt Schiele and Juergen Gall provided scientific guidance and generously
supported this work with valuable feedback and suggestions. Anna Khoreva initially proposed to explore a
segmentation-based discriminator in the context of semantic image synthesis. Subsequently, through extensive
joint discussions, all co-authors contributed to the development of this idea, leading to additional proposals.
In this publication, Vadim Sushko and Edgar Schönfeld are joint first authors who contributed equally to all
aspects of the paper, including discussions, codebase development, ablations, final experiments, evaluations,
and paper writing.
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Semantic SPADE (Park et al., 2019b) Our model (OASIS), sampled with different noise
label map with VGG w/o VGG w/o VGG

Figure 4.1: Existing semantic image synthesis models heavily rely on the VGG-based perceptual
loss to improve the quality of generated images. In contrast, our model (OASIS) can synthesize di-
verse and high-quality images while only using an adversarial loss, without any external supervision.

4.1 Introduction

Conditional generative adversarial networks (GANs) (Mirza and Osindero, 2014) synthesize images condi-
tioned on class labels (Brock et al., 2019; Casanova et al., 2021), text (Reed et al., 2016; Zhang et al., 2018a,
2021a), other images (Isola et al., 2017; Huang et al., 2018; Park et al., 2020b), or semantic label maps (Park
et al., 2019b; Liu et al., 2019; Wang et al., 2021b). In this work, we focus on the latter, addressing seman-
tic image synthesis. Taking pixel-level annotated semantic maps as input, semantic image synthesis enables
the rendering of realistic images from user-specified layouts, without the use of an intricate graphics engine.
Therefore, its applications range widely from content creation and image editing to producing training data
for downstream applications that adhere to specific semantic requirements (Park et al., 2019a; Ntavelis et al.,
2020).
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Despite the recent progress on stabilizing GANs (Miyato et al., 2018; Zhang and Khoreva, 2019; Karras
et al., 2020a; Sauer et al., 2021) and developing their architectures (Karras et al., 2021, 2019, 2020b; Brock
et al., 2019; Liu et al., 2021), state-of-the-art GAN-based semantic image synthesis models (Park et al., 2019b;
Liu et al., 2019; Wang et al., 2021b) still greatly suffer from training instabilities and poor image quality when
the generator is only trained to fool the discriminator in an adversarial fashion (see Fig. 4.1). An established
practice to overcome this issue is to employ a perceptual loss (Wang et al., 2018a) to train the generator, in
addition to the discriminator loss. The perceptual loss aims to match intermediate features of synthetic and
real images, that are estimated via an external perception network. A popular choice for such a network is
VGG (Simonyan and Zisserman, 2015), pre-trained on ImageNet (Deng et al., 2009). Although the perceptual
loss substantially improves the performance of previous methods, it comes with the computational overhead
introduced by utilizing an extra network for training. Moreover, as we show in our experiments, it dominates
over the adversarial loss during training, as the generator starts to learn mostly through minimizing the VGG
loss, which has a negative impact on the diversity and quality of generated images. Therefore, in this work we
propose a novel, simplified model that establishes new state-of-the-art results without requiring a perceptual
loss.

To achieve semantic image synthesis of high quality, the training signal to the GAN generator should con-
tain feedback on whether the generated images are well aligned to the input label maps. Thus, a fundamental
question for GAN-based semantic image synthesis models is how to design the discriminator that would effi-
ciently utilize information from given semantic label maps, in addition to judging the realism of given images.
Conventional methods (Park et al., 2019b; Wang et al., 2018a; Liu et al., 2019; Isola et al., 2017; Wang et al.,
2021b; Ntavelis et al., 2020) adopt a multi-scale classification network, taking the label map as input along
with the image, and making a global image-level real/fake decision. This discriminator has limited represen-
tation power, as it is not incentivized to learn high-fidelity pixel-level details of the images and their precise
alignment with the input semantic label maps. For example, such a classification-based discriminator can base
its decision solely on image realism, without the need of examining the alignment between the image and label
map. To mitigate this issue, we propose an alternative architecture for the discriminator, re-designing it as an
encoder-decoder semantic segmentation network (Ronneberger et al., 2015), and directly exploiting the given
semantic label maps as ground truth via an (N+1)-class cross-entropy loss. This new discriminator provides
semantically-aware pixel-level feedback to the generator, partitioning the image into segments belonging to
one of the N real semantic classes or the fake class. With this design, the network cannot ignore the provided
label maps, as it has to predict a correct class label for each pixel of an image. Enabled by the discriminator
per-pixel response, we further introduce a LabelMix regularization, which fosters the discriminator to focus
more on the semantic and structural differences of real and synthetic images. The proposed changes lead
to a much stronger discriminator, that maintains a powerful semantic representation of objects, giving more
meaningful feedback to the generator, and thus making the perceptual loss supervision superfluous (see Fig.
4.1).

Semantic image synthesis is naturally a one-to-many mapping, where one label map can correspond to
many possible real images. Thus, a desirable property of a generator is to generate a diverse set of images
from a single label map, only by sampling noise. This property is known as multi-modality. Previously, only
using a noise vector as input was not sufficient to achieve multi-modality, because the generator tended to
mostly ignore the noise or synthesized images of poor quality (Isola et al., 2017; Wang et al., 2018a). Thus,
prior work (Wang et al., 2018a; Park et al., 2019b) resorted to using an image encoder to produce multi-modal
outputs. In this work, we enable multi-modal synthesis of the generator via a newly-introduced 3D noise
sampling method, without requiring an image encoder and not relying on availability of a reference image
to produce new image styles. Empowered by our stronger discriminator, the generator can now effectively
synthesize different images by simply resampling a 3D noise tensor, which is used not only as the input, but is
also combined with intermediate features via conditional normalization at every layer. This procedure makes
the generator spatially sensitive to noise, so we can re-sample it both globally (channel-wise) and locally
(pixel-wise), allowing to change not only the appearance of the whole scene, but also of specific semantic
classes or any chosen area (see Fig. 4.2). As shown in our experiments, the proposed 3D noise injection
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Figure 4.2: OASIS multi-modal synthesis results. 3D noise can be sampled globally (first 2 rows),
changing the whole scene, or locally (last 2 rows), partially changing the image. For the latter, we
sample different noise per region, like the bed segment (in red) or arbitrary areas defined by shapes.

scheme enables a significantly higher diversity of synthesis compared to previous methods.
With the proposed modifications in the discriminator and generator design, we outperform the prior state

of the art in synthesis quality across the commonly used ADE20K (Zhou et al., 2017b), COCO-Stuff (Caesar
et al., 2018) and Cityscapes (Cordts et al., 2016) datasets. Omitting the necessity of the VGG perceptual loss,
our model generates samples of higher quality and diversity, and follows the color and texture distributions of
real images more closely.

A well known challenge for semantic segmentation applications is the problem of class imbalance. In
practice, a dataset can contain underrepresented classes (representing a very small fraction of the dataset
pixels), which can lead to suboptimal performance of models (Sudre et al., 2017). However, to the best of our
knowledge, this problem has not been studied in the context of semantic image synthesis. For this reason, we
propose to extend the evaluation setup used in previous works by using the highly imbalanced LVIS dataset
(Gupta et al., 2019). Originally introduced as a dataset for long-tailed object recognition, LVIS contains a large
set of 1203 classes, the majority of which appear only in a few images. Moreover, to simplify dataset curation,
label maps in LVIS were annotated sparsely, with large image areas being occupied with a generic background
label. The above properties make LVIS a very challenging evaluation setting for previous semantic image
synthesis models, as we demonstrate by the example of the state-of-the-art SPADE model (Park et al., 2019b).
As the classification-based discriminator of SPADE makes a global real/fake decision for each image-label
pair, the loss contribution originating from underrepresented classes can be dominated by the loss contribution
of well represented classes. In contrast, our proposed discriminator mitigates this issue: with the (N+1)-class
cross-entropy loss computed for each image pixel, it becomes possible to assign higher weights for the pixels
belonging to underrepresented classes. As shown in our experiments, our model successfully deals with both
the extreme class imbalance and sparsity in label maps, outperforming SPADE on the LVIS dataset by a large
margin.

To extend the evaluation of our model further, we test the efficacy of generated images when applied as
synthetic data augmentation for the training of semantic segmentation networks. This way, the performance
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Figure 4.3: SPADE (left) vs. OASIS (right). OASIS outperforms SPADE, while being simpler and
lighter: it uses only an adversarial loss as supervision and a single segmentation-based discriminator,
without relying on heavy external networks. Furthermore, OASIS learns to synthesize multi-modal
outputs by directly re-sampling the 3D noise tensor, instead of using an image encoder as in SPADE.

of semantic image synthesis is assessed through a task that holistically requires high image quality, diversity,
and precise image alignment to the label maps. We demonstrate that the synthetic data produced by our model
achieves high performance on this test, eliciting a notable increase in downstream segmentation performance.
In doing so, our model outperforms a strong baseline SPADE (Park et al., 2019b), indicating its high potential
to be applied in segmentation applications. In addition, we also demonstrate how our model for the first time
enables the application of a GAN-based semantic image synthesis model to unlabelled images, without requir-
ing external segmentation networks. Thanks to a good segmentation performance of our trained discriminator,
we can infer the label map of an image and generate many alternative versions of the same scene by varying
the 3D noise. We find these results promising for future utilization of our model in applications.

We call our model OASIS, as it needs only adversarial supervision for semantic image synthesis. In sum-
mary, our main contributions include: (i) We propose a novel segmentation-based discriminator architecture,
that gives more powerful feedback to the generator and eliminates the necessity of the perceptual loss super-
vision. (ii) We present a simple 3D noise sampling scheme, notably increasing the diversity of multi-modal
synthesis and enabling both complete or partial resampling of a generated image. (iii) With the OASIS model,
we achieve high-quality results on the ADE20K, Cityscapes and COCO-Stuff datasets, outperforming previous
state-of-the-art models while relying only on adversarial supervision. (iv) We show that images synthesized
by OASIS exhibit much higher diversity and more closely follow the color and texture distributions of real
images. (v) We propose to use the LVIS dataset (Gupta et al., 2019) to assess image generation in the regime
with many underrepresented semantic classes, leading to a severe class imbalance. (vi) We show how the
OASIS design directly addresses these issues and thereby outperforms the strong baseline SPADE (Park et al.,
2019b) by a large margin. (vii) We test the efficacy of generated images for synthetic data augmentation, as a
unified measure that simultaneously depends on image quality, diversity, and label map alignment. The images
generated by OASIS elicit a stronger increase in downstream segmentation performance compared to SPADE,
suggesting a higher potential of our model for future utilization in applications.

4.2 Method

In this section, we present our OASIS model, which, in contrast to other semantic image synthesis methods,
needs only adversarial supervision for training. Using SPADE as a starting point (Sec. 4.2.1), we first propose
to re-design the discriminator as a semantic segmentation network, directly using the given semantic label
maps as ground truth (Sec. 4.2.2). Empowered by spatially- and semantically-aware feedback of the new
discriminator, we next re-design the SPADE generator, enabling its effective multi-modal synthesis via 3D
noise sampling (Sec. 4.2.3).
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4.2.1 The SPADE Baseline

We choose SPADE as our baseline as it is a state-of-the-art model and a relatively simple representative of
conventional semantic image synthesis models. As depicted in Fig. 4.3, the discriminator of SPADE largely
follows the PatchGAN multi-scale discriminator (Isola et al., 2017), adopting two image classification net-
works operating at different resolutions. Both of them take the channel-wise concatenation of the semantic
label map and the real/fake image as input, and produce real/fake classification scores. On the generator side,
SPADE adopts spatially-adaptive normalization layers to effectively integrate the semantic label map into the
synthesis process from low to high scales. Additionally, the image encoder is used to extract the style vector
from the reference image, which is then combined with a 1D noise vector for multi-modal synthesis. The
training loss of SPADE consists of three terms, namely, an adversarial loss, a feature matching loss and the
VGG-based perceptual loss:

L “ max
G

min
D

Ladv ` λFMLFM ` λVGGLVGG. (4.1)

Overall, SPADE is a resource-demanding model at both training and test time, i.e., with two PatchGAN dis-
criminators, an image encoder in addition to the generator, and the VGG loss. In the following, we revisit its
architecture and introduce a simpler and more efficient solution that offers better performance and reduces the
model complexity.

4.2.2 The OASIS Discriminator

To train the generator to synthesize high-quality images that are well aligned with the input semantic label
maps, we need a powerful discriminator that coherently captures discriminative semantic features at different
image scales. While classification-based discriminators, such as PatchGAN, take label maps as input concate-
nated to images, they can afford to ignore them and make the decision solely on image patch realism. Thus, we
propose to cast the discriminator task as a multi-class semantic segmentation problem to directly utilize label
maps for supervision, and accordingly alter its architecture to an encoder-decoder segmentation network (see
Fig. 4.3). Encoder-decoder networks have proven to be effective for semantic segmentation (Badrinarayanan
et al., 2016; Chen et al., 2018). Thus, we build our discriminator architecture upon U-Net (Ronneberger et al.,
2015), which consists of the encoder and decoder connected by skip connections. This discriminator architec-
ture is multi-scale through its design, integrating information over up- and down-sampling pathways as well
as through the encoder-decoder skip connections. The segmentation task of the discriminator is formulated to
predict the per-pixel class label of the real images, using the given semantic label maps as ground truth. In
addition to the N semantic classes from the label maps, all pixels of fake images are categorized as one extra
class. As the formulated semantic segmentation problem has N ` 1 classes, we propose to use an (N+1)-class
cross-entropy loss for training.

In practice, the N semantic classes are often imbalanced, as some of the classes represent significantly
less pixels of the dataset compared to others. The loss contribution for such underrepresented classes can be
dominated by well represented classes, which can lead to suboptimal performance. To mitigate this issue,
empowered by the pixel-level loss computation of our discriminator, we propose to weight each class by its
inverse pixel-wise frequency in a batch, thus giving underrepresented semantic classes more weight. In doing
so, the loss contributions of each class are equally balanced, and, thus, the generator is also encouraged to pay
more attention to underrepresented classes. Mathematically, the new discriminator loss is expressed as:

LD “ ´ Epx,tq

«

N
ÿ

c“1

αc

HˆW
ÿ

i,j

ti,j,c logDpxqi,j,c

ff

´ Epz,tq

«

HˆW
ÿ

i,j

logDpGpz, tqqi,j,c“N`1

ff

, (4.2)

where x denotes the real image; pz, tq is the noise-label map pair used by the generator G to synthesize a
fake image; and the discriminator D maps the real or fake image into a per-pixel (N+1)-class prediction
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Label map Real image x Fake image x̂ Mask M LabelMixpx,x̂qDLabelMixpx,x̂q
LabelMixpDx,Dx̂q

Figure 4.4: LabelMix regularization. Real x and fake x̂ images are mixed using a binary mask
M , sampled based on the label map, resulting in LabelMixpx,x̂q. The consistency regularization
minimizes the L2 distance between the logits of DLabelMixpx,x̂q

and LabelMixpDx,Dx̂q. In this visual-
ization, black corresponds to the fake class in the N+1 segmentation output.

probability. The ground truth label map t has three dimensions, where the first two correspond to the spatial
position pi, jq P H ˆ W , and the third one is a one-hot vector encoding the class c P t1, .., N `1u. The class
balancing weight αc is the inverse pixel-wise frequency of a class c per batch:

αc “
H ˆ W

řHˆW
i,j Et r1rti,j,c “ 1ss

. (4.3)

In effect, improving the synthesis of underrepresented and well represented classes is equally necessary to min-
imize the loss. As we show in Sec. 4.3.3, this step helps to improve the synthesis quality of underrepresented
classes.

LabelMix regularization. In order to encourage our discriminator to focus on differences in content and
structure between the fake and real classes, we propose a LabelMix regularization. Based on the semantic
layout, we generate a binary mask M to mix a pair px, x̂q of real and fake images conditioned on the same
label map: LabelMixpx, x̂,Mq “ M d x ` p1 ´ Mq d x̂, as visualized in Fig. 4.4. Given the mixed image,
we further train the discriminator to be equivariant under the LabelMix operation. This is achieved by adding
a consistency loss term Lcons to Eq. 4.2:

Lcons “

›

›

›
Dlogits

´

LabelMixpx, x̂,Mq

¯

´ LabelMix
´

Dlogitspxq, Dlogitspx̂q,M
¯

›

›

›

2

, (4.4)

where Dlogits are the logits attained before the last softmax activation layer, and } ¨ } is the L2 norm. This
consistency loss compares the output of the discriminator on the LabelMix image with the LabelMix of its
outputs, penalizing the discriminator for inconsistent predictions. LabelMix is different to CutMix (Yun et al.,
2019), which randomly samples the binary mask M . A random mask will introduce inconsistency between
the pixel-level labels and the scene layout provided by the label map. For an object with the class label c, it
will contain pixels from both real and fake images, resulting in two labels, i.e. c and N ` 1. To avoid such in-
consistency, the mask of LabelMix is generated according to the label map, providing natural borders between
semantic regions, see Mask M in Fig. 4.4. Under LabelMix regularization, the generator is encouraged to re-
spect the natural semantic boundaries, improving pixel-level realism while also considering the class segment
shapes.

Alternative ways to encode label maps. Besides the proposed (N+1)-class cross entropy loss, there are other
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ways to incorporate a label map into the training of a segmentation-based discriminator. One can concatenate
the label map to the input image, analogous to SPADE. Another option is to use projection, by taking the
inner product between the last linear layer output and the embedded label map, analogous to class-label con-
ditional GANs (Miyato and Koyama, 2018). For both alternatives, the training loss is the pixel-level real/fake
binary cross-entropy (Schönfeld et al., 2020). As in these two variants the label maps are used as input to
the discriminator (concatenated to the input image or fed to the last linear layer), they are propagated forward
through the network. In contrast, the (N+1)-setting uses label maps only as targets for the loss computation, so
they are propagated backward through the network via the gradients updates. Backward propagation ensures
that the discriminator learns semantic-aware features, in contrast to forward propagation, where the alignment
of a generated image to the input label map can be ignored. The comparison between the above label map
encodings is shown in Table 4.10.

4.2.3 The OASIS Generator

To stay in line with the OASIS discriminator design, the training loss for the generator is changed to

LG “ ´Epz,tq

«

N
ÿ

c“1

αc

HˆW
ÿ

i,j

ti,j,c logDpGpz, tqqi,j,c

ff

, (4.5)

which is a direct outcome of the non-saturation trick (Goodfellow et al., 2014) to Eq. 4.2. We next re-design
the generator to enable multi-modal synthesis through noise sampling. SPADE is deterministic in its default
setup, but can be trained with an extra image encoder to generate multi-modal outputs. We introduce a simpler
version, that enables synthesis of diverse outputs directly from input noise. For this, we construct a noise
tensor of size MˆHˆW , matching the spatial dimensions of the label map of size NˆHˆW , where N is
the number of semantic labels and H ˆ W corresponds to the height and width of the image. Note that for
simplicity during training we sample the 3D noise tensor globally, i.e. per-channel, replicating each channel
value spatially along the height and width of the tensor. In other words, a M -dimensional latent vector is
sampled and then broadcasted to each pixel of an image. After sampling, the noise and the label map are
concatenated along the channel dimensions to form a combined noise-label 3D tensor of size pM`NqˆHˆ

W . This combined tensor serves as input to the first generator layer, but also as input to the spatially-adaptive
normalization layers in every generator block. This way, all intermediate feature maps are conditioned on both
the semantic labels and the noise (see Fig. 4.3), making the noise hard to ignore. As the 3D noise is channel-
and pixel-wise sensitive, at test time, one can sample the noise globally, per-channel, and locally, per-segment
or per-pixel, for controlled synthesis of the whole scene or of specific semantic objects. For example, when
generating a scene of a bedroom, one can re-sample the noise locally and change the appearance of the bed
alone (see Fig. 4.2).

Note that using image styles via an encoder, as in SPADE, is also possible in our setting, as the 3D
noise can be simply concatenated to the encoder style features. Lastly, to further reduce the complexity, we
remove the first residual block in the generator, reducing the number of parameters from 96M to 72M without
a noticeable performance loss (see Table 4.8).

4.3 Experiments

We provide an extensive experimental evaluation of our contributions, using the official implementation of
SPADE1 as our baseline. The setup of our experiments is described in detail in Sec. 4.3.1. Firstly, we com-
pare OASIS with other methods on common semantic image synthesis benchmark datasets, comparing their
performance in terms of both image quality and diversity (Sec. 4.3.2). To further highlight the advantages of
OASIS over the SPADE baseline, we provide additional discussions on different aspects of the semantic image

1github.com/NVlabs/SPADE
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Figure 4.5: Qualitative comparison of OASIS with other methods on ADE20K and Cityscapes.
Trained with only adversarial loss, OASIS generates images with better visual quality and structure.

synthesis. In particular, Sec. 4.3.3 is devoted to the performance analysis on the underrepresented classes,
extending the comparison of the models to the LVIS dataset (Gupta et al., 2019). Sec. 4.3.4 demonstrates
new semantic image editing techniques enabled by OASIS. Sec. 4.3.5 explores the application of generated
images as synthetic data augmentation for the training of semantic segmentation networks. Lastly, we provide
an extensive ablation study to verify the effectiveness of the proposed contributions (Sec 4.3.6).

4.3.1 Experimental Setup

Datasets. We conduct experiments on several challenging datasets. Firstly, to compare OASIS with other
models, we use the ADE20K (Zhou et al., 2017b), COCO-Stuff (Caesar et al., 2018) and Cityscapes (Cordts
et al., 2016), which are the three benchmark datasets commonly used in the semantic image synthesis literature
(see Sec. 4.3.2). The image resolution is set to 256x256 for ADE20K and COCO-Stuff, and 256x512 for
experiments on Cityscapes. Following Qi et al. (2018), we also evaluate OASIS on ADE20K-outdoors, the
subset of ADE20K containing only outdoor scenes.



54 Chapter 4. You Only Need Adversarial Supervision for Semantic Image Synthesis

Figure 4.6: Comparison of class distributions of the COCO and LVIS datasets. LVIS has a much
larger vocabulary of 1203 classes with a long tail of underrepresented classes.

Secondly, to test the capability of models to learn underrepresented classes, we conduct additional eval-
uations on the ADE20K and LVIS dataset (Gupta et al., 2019) (see Sec. 4.3.3). We select ADE20K among
conventional datasets for its notable class imbalance, as among its 150 classes, more than 86% of the image
pixels belong only to the 30 best represented ones (see Table 4.4). In addition, to test the networks under
more extreme class imbalance, we propose to use LVIS, the dataset that has been originally introduced for the
task of long-tailed instance segmentation. LVIS employs the same set of training images as COCO-Stuff, but
its annotations are different in two important ways. Firstly, LVIS provides a significantly larger set of 1203
annotated classes, following a long-tailed distribution in which some classes are present only in one or a few
training samples (see Fig. 4.6). Secondly, due to a fixed labelling budget, different background types were not
considered for annotation in LVIS. Consequently, the images in LVIS dataset contain large areas belonging to
the background class, which sometimes covers more than 90% of the pixels in an image (see grey areas in Fig.
4.9). For the above two reasons, the structure of LVIS poses a new challenge for semantic image synthesis, as
models need to account for a much more extreme class imbalance. We conduct experiments on LVIS at the
image resolution of 128x128.

Training. We follow the experimental setting of Park et al. (2019b). The Adam (Kingma and Ba, 2015)
optimizer was used with momenta β “ p0, 0.999q and constant learning rates p0.0001, 0.0004q for G and D.
We did not use the GAN feature matching loss for OASIS, as we did not observe any improvement with it,
and used the VGG loss only for ablations with λVGG = 10. The parameter for LabelMix λLM was set to 5

for ADE20k and Cityscapes, and to 10 for COCO-Stuff and LVIS. The latent dimension M was set to 64.
We did not experience any training instabilities and, thus, did not employ any extra stabilization techniques.
All our models use an exponential moving average (EMA) of the generator weights with 0.9999 decay. All
the experiments were run on 4 Tesla V100 GPUs, with a batch size of 20 for Cityscapes and 32 for the other
datasets. The training epochs are 200 on ADE20K and Cityscapes, and 100 for the larger COCO-Stuff and
LVIS datasets. On average, a complete forward-backward pass with batch size 32 on ADE20k takes around
0.95ms per image.

Evaluation metrics. Following prior work (Park et al., 2019b; Liu et al., 2019), we evaluate the quality
of semantic image synthesis by computing the FID (Heusel et al., 2017) and evaluate the alignment of the
generated images with their semantic label maps via mIoU (mean intersection-over-union) or mAP (mean
average precision) on the test set (see Sec. 4.3.2). mIoU evaluates the alignment of generated images with
their ground truth label maps, as measured by an external pre-trained semantic segmentation network. We
use UperNet101 (Xiao et al., 2018) for ADE20K, multi-scale DRN-D-105 (Yu et al., 2017) for Cityscapes,
and DeepLabV2 (Chen et al., 2015) for COCO-Stuff. Differently, for the LVIS dataset, the alignment of
generated images to ground truth label maps is measured using mAP instead of mIoU, following the official
guidelines for evaluating instance segmentation models on this dataset (see Sec. 4.3.3). We compute mAP
using a state-of-the-art instance segmentation model from Wang et al. (2021a), pre-trained on LVIS.

In addition, to better understand how the perceptual loss influences the synthesis performance, we pro-
pose to compare the color and texture statistics of generated and real images. For this, we compute color
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Method # param VGG
ADE20K ADE-outd. Cityscapes COCO-stuff

FIDÓ mIoUÒ FIDÓ mIoUÒ FIDÓ mIoUÒ FIDÓ mIoUÒ

CRN 84M ✓ 73.3 22.4 99.0 16.5 104.7 52.4 70.4 23.7
SIMS 56M ✓ n/a n/a 67.7 13.1 49.7 47.2 n/a n/a

Pix2pixHD 183M ✓ 81.8 20.3 97.8 17.4 95.0 58.3 111.5 14.6
LGGAN n/a ✓ 31.6 41.6 n/a n/a 57.7 68.4 n/a n/a
CC-FPSE 131M ✓ 31.7 43.7 n/a n/a 54.3 65.5 19.2 41.6
SC-GAN 66M ✓ 29.3 45.2 n/a n/a 49.5 66.9 18.1 42.0
SESAME 104M ✓ 31.9 49.0 n/a n/a 54.2 66.0 n/a n/a
SPADE 102M ✓ 33.9 38.5 63.3 30.8 71.8 62.3 22.6 37.4

SPADE+ 102M
✓ 32.9 42.5 51.1 32.1 47.8 64.0 21.7 38.8
✗ 60.7 21.0 65.4 22.7 61.4 47.6 99.1 16.1

OASIS 94M ✗ 28.3 48.8 48.6 40.4 47.7 69.3 17.0 44.1

Table 4.1: Comparison with other GAN methods across datasets. Bold denotes the best performance.

histograms in the LAB space and measure the earth mover’s distance between the real and generated image
sets (Rubner et al., 2000). We also measure the texture similarity to the real data as the χ2-distance between
Local Binary Patterns histograms (Ojala et al., 1996). As different semantic classes have different color and
texture distributions, we aggregate the histogram distances separately per class and compute their average.

To measure the diversity among synthesized samples in the multi-modal generation regime, we evaluate
MS-SSIM (Wang et al., 2003) and LPIPS (Zhang et al., 2018b) between the images generated from the same
label map. For each label map in the test set, we generate 20 images and compute the mean pairwise scores.
For the final numbers, the scores are averaged over all label maps.

Lastly, we propose to test the efficacy of generated images when applied as synthetic data augmentation
for the task of semantic segmentation (see Sec. 4.3.5). For this, we take a DeepLab-V3 segmentation network
with a ResNeSt-50 backbone (Zhang et al., 2020b) and train it on ADE20K and Cityscapes. At each training
step of DeepLab-V3, we add for each training image its synthetic counterpart to the batch, generated from the
same label map. The efficacy of synthetic images is therefore measured by its effect on the downstream mIoU
performance of DeepLab-V3.

4.3.2 Evaluation of the Synthesis Quality and Diversity

In this section, we compare OASIS to other state-of-the-art methods, focusing on GANs. For a fair comparison
to the baseline SPADE, we additionally train this model without the feature matching loss and using EMA
(Yazici et al., 2018) at the test phase. We refer to this improved baseline as SPADE+. In addition, the end of
this section provides a quantitative comparison between OASIS and most recent diffusion models.

Synthesis quality. Table 4.1 compares the image synthesis quality achieved by OASIS and other GAN meth-
ods. In this table, we report the results of our evaluation for OASIS and SPADE+, and the officially reported
numbers for all the other models. As seen from Table 4.1, OASIS outperforms prior state-of-the-art GAN mod-
els in FID on all benchmark datasets. Our model also achieves the highest mIoU scores on three out of four
datasets, being almost on par with the highest score on ADE20K achieved by SESAME (Ntavelis et al., 2020)
Importantly, OASIS achieves the improvement using only adversarial supervision from its segmentation-based
discriminator. On the contrary, in the absence of the VGG loss, the baseline SPADE+ does not produce images
of high visual quality (see Fig. 4.1), with two-digit drops in FID scores observed for all the datasets in Table
4.1. The strong adversarial supervision also allows OASIS to produce images with color and texture distribu-
tions closer to the real data. Such improvement over SPADE+ on the ADE20K dataset is shown in Fig. 4.7,
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Figure 4.7: Histogram distances to real data on the ADE20K validation set. While SPADE+ relies
on the VGG loss to learn colors and textures, OASIS achieves low scores without it.

Method Multi-mod. VGG MS-SSIMÓ LPIPSÒ FIDÓ mIoUÒ

SPADE+ Encoder ✓ 0.85 0.16 33.4 40.2

SPADE+ 3D noise
✗ 0.35 0.50 58.4 18.7
✓ 0.53 0.36 34.4 36.2

OASIS 3D noise
✗ 0.65 0.35 28.3 48.8
✓ 0.88 0.15 31.6 50.8

Table 4.2: Multi-modal synthesis evaluation on ADE20K. Bold and red numbers show the best and
the worst performance.

where OASIS achieves the lowest color and texture distances to the target distribution. In contrast, SPADE+
needs to compensate a weaker discriminator signal with the VGG loss, struggling to learn the color and texture
distribution of real images without it (see Fig. 4.7).

Fig. 4.5 shows a qualitative comparison of our results to previous models. Our approach noticeably
improves image quality, synthesizing finer textures and more natural colors. While the previous methods
occasionally produce areas with unnatural checkerboard artifacts, OASIS generates large objects and surfaces
with higher photorealism. Notably, the improvement over previous models is especially remarkable for the
semantic classes that occupy large areas, e.g, wall (rows 1,4 in Fig. 4.5), road (rows 5,6) or water (row 3).

Synthesis diversity. By resampling the input 3D noise, OASIS can produce diverse images given the same
label map (see Fig. 4.2). To measure the diversity of such multi-modal synthesis, we evaluate MS-SSIM (Wang
et al., 2003) and LPIPS (Zhang et al., 2018b). The lower the MS-SSIM and the higher the LPIPS scores, the
more diverse the generated images are. As seen from Table 4.2, OASIS outperforms SPADE+ in both diversity
metrics, improving the MS-SSIM scores from 0.85 to 0.65 and LPIPS from 0.16 to 0.35. To assess the effect
of the perceptual loss and the noise sampling on diversity, we train SPADE+ with 3D noise or the image
encoder, and with or without the perceptual loss. Table 4.2 shows that OASIS, without the perceptual VGG
loss, improves over SPADE+ with the image encoder, both in terms of image diversity (MS-SSIM, LPIPS)
and quality (mean FID, mIoU across 20 realizations). Using 3D noise further increases diversity for SPADE+.
However, a strong quality-diversity trade-off exists for SPADE+: 3D noise improves diversity at the cost of
quality, and the perceptual loss improves quality at the cost of diversity. We conclude that our 3D noise
injection strongly improves the synthesis diversity, while the VGG loss decreases it.

While the increased diversity is a big advantage, it can also lead to failures in rare cases: for some samples
the colors and textures of objects may lie further from the real distribution and seem unnatural to the human
eye (see Fig. 4.8).

Comparison to diffusion models. In addition to the previous comparisons with GAN models, Table 4.3
provides a qualitative comparison of OASIS to the diffusion models SDM (Wang et al., 2022b), PITI (Wang
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Label map Ground truth SPADE CC-FPSE OASIS

Figure 4.8: Failure mode of OASIS. Without the VGG loss, OASIS has less constraints on the
diversity in colors and textures. This helps to achieve higher diversity among the generated samples,
but sometimes leads to synthesis of objects with outlier colors and textures which may look less
realistic compared to (Park et al., 2019b) and (Liu et al., 2019).

Method Type
ADE20K COCO-stuff

FIDÓ mIoUÒ LPIPSÒ FIDÓ mIoUÒ LPIPSÒ

OASIS GAN 28.3 48.8 0.35 17.0 44.1 0.42
SDM DM 27.3 39.2 0.52 15.8 40.2 0.52
PITI˚ DM 27.9 29.4 0.48 16.1 34.1 0.52

FreestyleNet˚ DM 25.0 41.9 0.59 14.4 40.7 0.59

Table 4.3: Comparison with diffusion models. Bold denotes the best performance. * indicates that a
model was pre-trained on a very large text-image data corpus and not trained from scratch.

et al., 2022a), and FreestyleNet (Xue et al., 2023). It is worth noting that diffusion models are a relatively
recent technology compared to GANs, and the aforementioned models were published significantly later than
OASIS. Hence, the diffusion models outperform OASIS in terms of overall image quality and diversity, as
seen in FID and LPIPS scores in Table 4.3. It is notable that their improvement in LPIPS is particularly
significant, indicating the potential of diffusion models to address common diversity issues in GANs, such as
reduced recall and mode collapse. On the other hand, we note that diffusion models lag behind OASIS in the
mIoU measure. This suggests that better mechanisms for the injection of label maps into diffusion models
are required. Other disadvantages of diffusion models include their very slow sampling time (tens of seconds
per image) and requirements for very large pre-training datasets (e.g., as in PITI and FreestyleNet), which can
complicate their adaptation to datasets of rare structures.

As this thesis focuses on GANs, in the next sections we concentrate on comparing OASIS with other GAN
models, primarily with our baseline SPADE+.



58 Chapter 4. You Only Need Adversarial Supervision for Semantic Image Synthesis

L
ab

el
m

ap
G

T
SP

A
D

E
+

O
A

SI
S

Figure 4.9: Qualitative comparison between OASIS and SPADE+ on the long-tailed LVIS dataset
with 1203 classes. OASIS generates higher-quality images with more natural colors and textures.
For label maps covered mostly by the background class (four right columns), OASIS hallucinates
plausible and diverse images, while SPADE+ suffers from mode collapse.

4.3.3 Synthesis Performance on Underrepresented Classes

Class imbalance is a well-known challenge in semantic segmentation applications (Sudre et al., 2017). Simi-
larly to semantic segmentation, to ensure good performance in real-life test scenarios, semantic image synthesis
models should account for a possible dataset class imbalance, especially considering that GANs are notorious
for dropping modes of training data (Arjovsky and Bottou, 2017). However, to the best of our knowledge, this
issue was not addressed in prior works. Thus, in what follows, we evaluate the performance of OASIS and
SPADE+ on the ADE20K and LVIS datasets, considering their class imbalances. While the class imbalance
in ADE20K is notable (e.g., 86.4% of all image pixels belongs to the 30 best represented classes), this issue is
much more amplified in LVIS, which has a long tail of underrepresented classes (see Fig. 4.6).

Evaluation on ADE20K. OASIS significantly outperforms the SPADE+ baseline in the alignment between
generated images and label maps, as measured by mIoU (see Table 4.1). As shown in Table 4.4, the improve-
ment in mIoU on ADE20K comes mainly from the better IoU scores achieved for underrepresented semantic
classes. To illustrate this, the semantic classes are sorted by their pixel-wise frequency in the training images,
obtained by dividing the number of pixels a class occupies in the dataset by the total number of pixels of all
images (2nd column in Table 4.4). Table 4.4 highlights that the relative gain in mIoU is especially high for
the groups of underrepresented semantic classes, that cover less than 3% of all pixels in the dataset. For these
classes, the relative gain over the SPADE+ baseline exceeds 40%. Remarkably, the gain for this group mainly
comes from the per-class balancing applied in the OASIS loss function (columns “w/o αc” and “w. αc”), which
draws the attention of the discriminator to underrepresented semantic classes, thus allowing a higher quality
of their generation. This class balancing computes a weight αc for the losses of each class c on a per-batch
basis, for which the total number of pixels in a given batch is divided by the number of pixels belonging to the
class (see Eq. 4.2 and 4.3 ). We note that the possibility to introduce the pixel-wise frequency based balancing
requires the loss to be computed separately for each image pixel. This is a unique property of the OASIS
discriminator, in contrast to conventional classification-based discriminators, which have to evaluate realism
with a single score for images containing both well- and underrepresented classes together.

Evaluation on LVIS. A quantitative comparison between the models on the LVIS dataset is shown in Table
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Classes IDs Pixel-wise
frequency

mIoU

SPADE+
OASIS

(w/o αc)
OASIS
(w. αc)

0 - 29 86.4% 63.7 69.1 68.8
30 - 59 7.2% 47.4 52.4 56.6
60 - 89 3.5% 45.3 47.0 51.5
90 - 119 1.8% 29.3 36.2 41.5
120 - 149 1.0% 26.2 31.2 39.7

0-149
(all classes)

100% 42.4 47.2 51.6

Table 4.4: Per-class IoU scores on ADE20k, grouped by pixel-wise frequency (the fraction of all
pixels in the datasets belonging to one class). Bold denotes the best performance. Training with
per-class loss balancing is denoted by αc.

Method FID Ó mAP, % Ò classes with AP ą 0 Ò

SPADE+ 26.8 4.56 439
OASIS 15.3 5.38 510
real data 0 6.70 624

Table 4.5: Comparison of SPADE+ and OASIS on the LVIS dataset with 1203 classes and a long
tail of underrepresented classes. Bold denotes the best performance. Last row shows the scores for
the LVIS validation set.

4.5. In this more extremely imbalanced data regime, the gain of our model is pronounced: OASIS outperforms
SPADE+ by a large margin, lowering the FID by 43% (from 26.8 to 15.3). Fig. 4.9 shows a qualitative
comparison between the models. OASIS produces images of higher visual quality with more natural colors
and textures. In Table 4.5 we report the mean Average Precision (mAP) of the instance segmentation network
evaluated on the set of generated images. OASIS outperforms SPADE+ in mAP by a notable margin (5.38 vs
4.56), thus producing objects with a more realistic appearance and largely reducing the gap to real data (mAP
of 6.70). To evaluate the ability of the models to generate underrepresented classes at the tail of the LVIS data
distribution, we count the number of classes for which a non-zero AP score is achieved. Table 4.5 shows that
OASIS can model more semantic classes: OASIS achieves a positive AP for 510 semantic classes compared
to 439 for SPADE+, thus exhibiting a better capability to synthesize underrepresented classes.

In addition to better handling the class imbalance, OASIS also visually outperforms SPADE+ on the LVIS
label maps with a very large proportion of the background class. As seen in Fig. 4.9 (four rightmost columns),
from such label maps, SPADE+ fails to produce plausible images and suffers from mode collapse. In contrast,
OASIS successfully deals with such kinds of inputs, producing diverse and visually plausible images even for
the least annotated label maps, with the highest proportion of the background class.

In conclusion, we consider long-tailed datasets, such as LVIS, an interesting direction for future work, as
the improved synthesis of multiple tail classes under severe imbalance can significantly boost the applicability
of semantic image synthesis to real-world applications.
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Figure 4.10: Images generated by OASIS on ADE20K with 256 ˆ 256 resolution using different
3D noise inputs. For both input label maps, the noise is re-sampled globally (first row) or locally in
the areas marked in red (second row).

4.3.4 Image Editing with OASIS

OASIS can generate many different-looking images for a single label map by directly resampling input 3D
noise. In the following, we present qualitative multi-modal results and discuss two unique semantic image
editing techniques enabled by our model: local resampling of selected semantic classes and diverse resampling
of unlabelled images.

Global and local resampling of the 3D noise. The 3D noise of OASIS modulates the activations directly
at every generator layer, matching the spatial resolution of features at different generation scales. Therefore,
such modulation affects both global and local characteristics of a generated image. At test time, this allows
different strategies for noise sampling. For example, the noise can be sampled globally for all pixels, varying
the whole image (see Fig. 4.10, first and third rows). Alternatively, a noise vector can be re-sampled only for
specified image regions, resulting in local image editing while preserving the rest of the scene. For example,
the local strategy allows to re-sample only the sky area in a landscape scenery, or only the window in a scene
of a bedroom (see Fig. 4.10, second and fourth rows). Spatial sensitivity of OASIS to 3D noise is further
demonstrated in Fig. 4.11, showing interpolations in the latent space. The learned latent space captures
well the semantic meaning of objects and allows smooth interpolations not only globally, but also locally for
selected objects (see Fig. 4.11, two last rows).

Creating diverse images from unlabelled data. In contrast to previous semantic image synthesis methods,
the OASIS discriminator can be reused as a stand-alone image segmenter. To obtain a segmentation prediction
for a given image, a user just needs to feed it to our pre-trained discriminator and select the highest activation
among real classes in its (N+1)-channel output for each pixel. When tested as an image segmenter on the
validation set of ADE20K, the OASIS discriminator reaches a mIoU of 40.0. For comparison, the state-of-the-
art model DeepLab-V3 with a ResNeST backbone (Zhang et al., 2020b) achieves an mIoU of 46.91. The good



4.3. Experiments 61

Figure 4.11: Latent space interpolations between images generated by OASIS for the ADE20K
dataset at resolution 256 ˆ 256. The first two rows display global interpolations. The second two
rows show local interpolations of the floor or water only.

segmentation performance allows OASIS to be applied to unlabelled images: given an unseen image without
the ground truth annotation, OASIS can predict a label map via the discriminator. Subsequently feeding this
prediction to the generator allows to synthesize a scene with the same layout but different style (see Fig. 4.12).
The recreated scenes closely follow the ground truth label map of the original image and vary considerably,
due to the high sensitivity of OASIS to the 3D noise. We note that OASIS uniquely reaches this ability using
only adversarial training, without the need for an external segmentation network or additional loss functions.
We believe that the ability to create multiple versions of one image while retaining the layout, but not requiring
the ground truth label map, may provide useful data augmentation for various applications in future research.

4.3.5 Synthetic Data Augmentation

As an additional evaluation method, we test the efficacy of generated images when applied as synthetic data
augmentation for the task of semantic segmentation. Synthetic data augmentation is a task that benefits from
both image quality and diversity, as well as the ability to generate semantic classes that are underrepresented
in the original data (see Table 4.4). Therefore, the effect of synthetic data augmentation on downstream perfor-
mance can constitute a more holistic evaluation of semantic image synthesis models. To test the efficiency of
OASIS, we train a DeepLab-V3 segmentation network on ADE20K and Cityscapes, at each step augmenting
each training image with its synthetic augmentation, produced by OASIS from the same label map.

We compare OASIS against the strong baseline SPADE in Table 4.6. Between the two methods, OASIS
elicits a stronger increase in segmentation performance with an improvement of 2.0 mIoU on Cityscapes
and 0.8 mIoU on ADE20K, compared to DeepLab-V3 trained without synthetic augmentation. The higher
performance improvement of OASIS compared to SPADE is explained by all the previously observed gains
in image quality, diversity, and the alignment to input label maps (see Fig. 4.7, Tables 4.1 and 4.2). In
addition to that, the segmentation performance is also improved due to the fact that OASIS tends to synthesize
underrepresented classes better than SPADE, which is evident from Table 4.7. This table compares the IoU
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Input image Segmentation Recreation 1 Recreation 2 Recreation 3

Figure 4.12: After training, the OASIS discriminator can be used to segment images. The first
two columns show the real image and the segmentation of the discriminator. Using the predicted
label map, the generator can produce multiple versions of the original image by resampling noise
(Recreations 1-3). Note that no ground truth maps are required.

Data augmentation
Cityscapes ADE20K

mIoUÒ mIoUÒ

no synthetic DA 62.7 41.0
with SPADE 62.6 41.6
with OASIS 64.7 41.8

Table 4.6: Semantic segmentation performance of ResNeSt-50 with and without synthetic data aug-
mentation (DA). Bold denotes the best performance.

performance of DeepLab-V3 on the well represented and underrepresented classes of Cityscapes, as measured
by the pixel-wise frequency of the semantic class in the dataset. Examples of well represented classes are road
and building (see the 1st row of Table 4.7), while classes like bicycle or traffic light are the least represented
in the dataset (see 4th row in Table 4.7). Note that the IoU comparison in Table 4.7 is different from Table
4.4, where the IoU was measured directly on synthetic data using a pretrained segmenter. It can be seen that
the improvement in IoU through OASIS can be mostly attributed to better performance on underrepresented
classes, as the gap in performance between OASIS and SPADE becomes larger for the classes which are
less represented. Lastly, since the OASIS generator was trained to fool an image segmenter (the OASIS
discriminator), it may synthesize harder examples for semantic segmentation than SPADE, thus having higher
potential to improve the generalization of segmentation networks to challenging corner cases. We find the
above results promising for future utilization of OASIS in various downstream applications. Moreover, for
future research, we find it interesting to explore synthetic data augmentation in combination with other data
augmentation techniques, e.g., RandAugment (Cubuk et al., 2020), which has the potential to provide further
performance gains for downstream applications.
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Sorted classes
Pixel-wise
frequency

None
SPADE OASIS
abs rel abs rel

0 - 4 82.7% 90.6 90.6 +0.0 90.9 +0.3
5 - 8 12.5% 66.2 66.2 +0.0 67.4 +1.2
9 - 12 3.3% 50.2 49.1 -1.1 52.2 +2.0
13 - 18 1.6% 51.9 52.3 +0.4 55.4 +3.5

all classes 100% 62.7 62.6 -0.1 64.7 +2.0

Table 4.7: Per-class IoU scores on Cityscapes, obtained without (None) and with synthetic data aug-
mentation using SPADE or OASIS. The classes are sorted and grouped by class pixel-wise frequency,
as measured by the total fraction of pixels in the dataset belonging to one class. Bold denotes the
best performance. The absolute (abs) and relative (rel) mIoU gain via data augmentation is shown.

G D VGG LabelMix FIDÓ mIoUÒ

SPADE+ SPADE+ ✗ ✗ 60.7 21.0
SPADE+ OASIS ✗ ✗ 29.0 52.1

OASIS OASIS
✗ ✗ 29.3 51.6
✗ ✓ 28.4 50.6

OASIS
+3D noise

OASIS
✗ ✓ 28.3 48.8
✓ ✓ 31.6 50.8

Table 4.8: Main ablation on ADE20K. The OASIS generator is a lighter version of the SPADE+
generator (72M vs 96M parameters). Bold denotes the best performance.

4.3.6 Ablations

We conduct all our ablations on the ADE20K dataset. We choose this dataset as it more challenging (with 150
classes) than Cityscapes (35 classes) and ADE20K-Outdoors (110 classes), and has more reasonable training
time (5 days) compared to COCO-Stuff and LVIS (4 weeks). Our main ablation shows the impact of the
main technical components of OASIS, including the new discriminator, lighter generator, LabelMix and the
3D noise. Further ablations are concerned with the architecture changes in the discriminator, the label map
encoding in the discriminator, different noise sampling strategies, LabelMix and the GAN feature matching
loss.

Main ablation. Table 4.8 shows that SPADE+ achieves low performance on the image quality metrics without
the perceptual loss. Replacing the SPADE+ discriminator with the OASIS discriminator, while keeping the
generator fixed, improves FID and mIoU by more than 30 points. Changing the SPADE+ generator to the
lighter OASIS generator leads to a negligible degradation of 0.3 in FID and 0.5 in mIoU, but reduces the
number of parameters from 96M to 72M. With LabelMix FID improves further by about 1 point. Adding
3D noise improves FID but degrades mIoU, as diversity complicates the task of the pre-trained semantic
segmentation network used to compute the mIoU score. For OASIS the perceptual loss deteriorates FID by
more than 2 points, but improves mIoU. Overall, without the VGG loss the new discriminator is the key to the
performance boost over SPADE+.

Ablation on the discriminator architecture. We train the OASIS generator with three alternative discrimina-
tors: the original multi-scale PatchGAN consisting of two networks, a single-scale PatchGAN, and a ResNet-
based discriminator, corresponding to the encoder of the U-Net shaped OASIS discriminator. Table 4.9 shows
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D architecture
w/o VGG with VGG

FIDÓ mIoUÒ FIDÓ mIoUÒ

MS-PatchGAN (2x) 60.7 21.0 32.9 42.5
PatchGAN 197 0.62 34.2 42.2
ResNet-PatchGAN 147 0.42 32.4 45.1
OASIS 29.3 51.6 29.2 51.1

Table 4.9: Ablation on D architecture. Bold denotes the best performance, red shows collapsed runs.

Label encoding
w/o VGG with VGG

FIDÓ mIoUÒ FIDÓ mIoUÒ

Input concatenation 280 0.02 30.0 43.9
Projection 32.4 44.9 28.0 46.9
N+1 loss 28.3 47.2 28.6 49.8
Balanced N+1 loss 29.3 51.6 29.2 51.1

Table 4.10: Ablation on the label map encoding. Bold denotes the best performance, red shows
collapsed runs.

that the alternative discriminators only perform well with perceptual supervision, while the OASIS discrimi-
nator achieves superior performance independent of it. The single-scale discriminators even collapse without
the perceptual loss (red colors in Table 4.9).

Ablation on the discriminator label map encoding. We study four different ways to use label maps in
the discriminator: the first encoding is input concatenation, as in SPADE. The second option is a pixel-wise
projection-based GAN loss (Miyato and Koyama, 2018). Unlike Miyato and Koyama (2018), we condition
the GAN loss on the label map instead of a single label. The third and fourth option is to employ the label
maps as ground truth for the N+1 segmentation loss, or for the class-balanced N+1 loss (see Sec. 4.2.2). For
a fair comparison we use neither 3D noise nor LabelMix. As shown in Table 4.10, input concatenation is not
sufficient without additional perceptual loss supervision, leading to training collapse. Without the perceptual
loss, the N+1 loss outperforms the input concatenation and the projection in both the FID and mIoU metrics.
Finally, the class balancing enables enhanced supervision for underrepresented semantic classes, which no-
ticeably improves mIoU scores. On the other hand, we observed that the FID metric is more sensitive to the
synthesis of well represented classes and not underrepresented classes, which explains the negative effect of
the class balancing on FID.

Ablation on LabelMix. Consistency regularization for the segmentation output of the discriminator requires
a method of generating binary masks. Therefore, we compare the effectiveness of CutMix (Yun et al., 2019)
and our proposed LabelMix. Both methods produce binary masks, but only LabelMix respects the boundaries
between semantic classes in the label map. Table 4.11 compares the FID and mIoU scores of OASIS trained
with both methods on the Cityscapes dataset. As seen from the table, LabelMix improves both FID (51.5
vs. 47.7) and mIoU (66.3 vs. 69.3), in comparison to OASIS without consistency regularization. CutMix-
based consistency regularization only improves the mIoU (66.3 vs. 67.4), but not as much as LabelMix
(69.3). We suspect that since the images are already partitioned through the label map, an additional partition
through CutMix results in a dense patchwork of areas that differ by semantic class and real/fake class identity.
This may introduce additional label noise during training for the discriminator. To avoid such inconsistency
between semantic classes and real/fake identity, the mask of LabelMix is generated according to the label map,
providing natural borders between semantic regions, so that the real and fake objects are placed side-by-side
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Transformation FIDÓ mIoU Ò

No CR 51.5 66.3
CutMix 52.1 67.4
LabelMix 47.7 69.3

Table 4.11: Ablation study on the impact of LabelMix and CutMix for consistency regularization
(CR) in OASIS on Cityscapes. Bold denotes the best performance.

without interfering with each other. Under LabelMix regularization, the generator is encouraged to respect
the natural semantic class boundaries, improving pixel-level realism while also considering the class segment
shapes.

4.4 Conclusion

In this chapter we studied semantic image synthesis, the task of generating diverse and photorealistic images
from semantic label maps. Conventionally, semantic image synthesis GAN models employed a perceptual
VGG loss to overcome training instabilities and improve the synthesis quality. In our experiments we demon-
strated that the VGG-based perceptual loss imposes unnecessary constraints on the feature space of the gen-
erator, significantly limiting its ability to produce diverse samples from input noise, as well as the ability to
produce images with colors and textures closely matching the distribution of real images. Therefore, in this
work we propose OASIS, a GAN model for semantic image synthesis that needs only adversarial supervision
to achieve high-quality results.

The improvement over the prior work in image synthesis quality is achieved via the detailed spatial and
semantic-aware supervision from our novel segmentation-based discriminator, which uses semantic label maps
as ground truth for training. With this powerful discriminator, OASIS can easily generate diverse outputs from
the same semantic label map by resampling 3D noise, eliminating the need for additional image encoders
to achieve multi-modality. The proposed 3D noise injection scheme can work both in a global and local
regime, allowing to change the appearance of the whole scene and of individual objects. With the proposed
modifications, OASIS significantly improves over previous state-of-the-art GAN models in terms of image
synthesis quality.

Furthermore, we proposed to use the LVIS dataset to evaluate semantic image synthesis under severe class
imbalance and sparse label annotations. Thanks to the class balancing mechanism enabled by its segmentation-
based discriminator, OASIS achieves more realistic synthesis of underrepresented classes, achieving pro-
nounced gains on the extremely unbalanced LVIS dataset. Lastly, the design of OASIS can be better suited
for image editing applications compared to the SPADE baseline, enabling diverse resampling of scenes from
unlabelled images, as well as for synthetic data augmentation, improving the performance of a segmentation
network by a larger margin.

While semantic image synthesis is an interesting task that has a lot of applications, it comes with some
practical restrictions. Firstly, achieving good performance in this task necessitates the availability of large
training datasets. For example, the size of datasets used for the training of OASIS in Table 4.1 ranges from
3000 images (Cityscapes) to over 100000 images (COCO-stuff, LVIS). This requirement naturally limits the
utilization of OASIS in many restricted image domains, where finding such datasets is challenging. Secondly,
semantic image synthesis datasets require semantic label maps for each image. Annotating pixel-wise segmen-
tation masks of objects is widely recognized as an expensive and time-consuming process, thereby making the
curation of large datasets costly. Therefore, in the upcoming chapters, our focus will shift towards exploring
unconditional GANs in scenarios with limited data, with the aim of expanding the application of GANs to new
practical domains and applications.





CHAPTER 5

Generating Novel Scene Compositions
from Single Images and Videos

In Chapter 4, we showed that GANs can achieve impressive performance with sufficient training data and rich
conditioning. However, in many scenarios it is interesting to train GANs on much smaller image datasets and
without annotations. Therefore, in this chapter, we explore GAN training on extremely limited unconditional
datasets. Previous research in this direction focused on two types of models: training GANs on a single image
and on few-shot datasets (at least 100 diverse images). We find a significant gap between these models: the
former struggles to learn even from two images, while the latter suffers from overfitting and memorization
when the number and diversity of training images are reduced from standard few-shot datasets. To address
these limitations, we introduce a new GAN model, called SIV-GAN. Our model generates new diverse images
given a small set of very similar images, such as frames from a single video. SIV-GAN consists of two
main components: a two-branch discriminator to mitigate overfitting and a diversity regularization technique
for diverse synthesis in challenging data scenarios. Compared to previous single-image and few-shot GAN
methods, as well as existing image manipulation techniques, our model demonstrates higher efficiency in
producing diverse and realistic scene compositions from extremely limited data.

Individual Contribution

This chapter is based on the following conference workshop publication (Sushko et al., 2021a):

One-Shot GAN: Learning to Generate Samples from Single Images and Videos
Vadim Sushko, Juergen Gall, Anna Khoreva
IEEE Computer Vision and Pattern Recognition Conference (CVPR) workshops, 2021.
DOI: 10.1109/CVPRW53098.2021.00293

This work was done in very close collaboration between Vadim Sushko and Anna Khoreva. The initial idea
to explore the GAN training on frames of a single video was proposed by Anna Khoreva. Subsequently, the
joint discussions shaped the architecture of the SIV-GAN model, and the model was later found to generalize
in the single image setting. Throughout the entire development process, Juergen Gall provided invaluable
scientific guidance, feedback, and suggestions. Additionally, Dan Zhang joined the project after the initial
submission and provided guidance and suggestions for the further exploration of the experimental settings
and paper writing. In this paper, Vadim Sushko is the first author who made contributions to all stages of the
project, including discussions, implementation, evaluations, and paper writing.
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5.1 Introduction

Training image and samples generated from a single image

Training video and samples generated from a single video

Figure 5.1: Images generated by SIV-GAN. Our model successfully operates in extremely low data
regimes, generating new scene compositions with varying content and layout from a single image
(first two rows) or a single video (last two rows). For example, from the single training surfing
image, it can synthesize layouts with a different position and configuration of waves and change
the number of surfers; and from a single video with a car on the road, SIV-GAN generates images
without a car or with two cars. Original training samples are shown in red or grey frames.

The quality of synthetic images produced by generative adversarial networks (GANs) has greatly improved
in recent years (Brock et al., 2019; Schönfeld et al., 2020; Karras et al., 2021, 2020b). These impressive results
are in large part enabled by the availability of large, diverse datasets, typically consisting of tens of thousands of
images. This dependency on the availability of training data limits the applicability of GANs in domains where
collecting a large dataset is not feasible. In some real-world applications, collection of even a small dataset
remains challenging due to specific constraints related to privacy, copyright status, subject type, geographical
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location, time, and dangerous or hazardous environments. It may happen that rare objects or events are present
only in one image or video, and it is difficult to obtain a second one. For example, this includes images of rare
animal species or videos of traffic accidents recorded in extreme conditions. Thus, enabling GANs to generate
diverse and high-quality images in extremely low data regimes can improve their utilization in practice.

In this context, prior work mainly focused on developing GAN models for two low data regimes: learning
from a single image (Shocher et al., 2019; Shaham et al., 2019; Hinz et al., 2021) (Fig. 5.1, first two rows),
or from few-shot datasets, which usually consist of 100 diverse images or more (Liu et al., 2021). As our
experiments revealed, the latter methods are still strictly limited by the number of images that are available for
training, or their overall diversity. For example, we observed a severe performance degradation of the few-shot
model FastGAN (Liu et al., 2021) when trained on few-shot datasets consisting of very similar images. To
explore the limitations of existing models further, in this work we introduce a new task of generating images
from a single video (Fig. 5.1, last two rows), where the training data is a collection of 60-100 frames taken
from a short (2-10 seconds) video clip. Similarly to Liu et al. (2021), in this task we aim to generate diverse
images, but not temporally-coherent videos. The introduced single video setting is interesting for training
unconditional GANs for two reasons. Firstly, capturing a short video is easy in practice, which can facilitate
the data collection needed for successful GAN training in restricted image domains. Secondly, compared to a
few-shot dataset containing 60-100 images (e.g., as used in (Liu et al., 2021)), the overall diversity of frames
taken from the same video is much smaller due to a high correlation between adjacent video frames. As shown
in our experiments, both single-image and few-shot GAN models cannot successfully deal with such a data
regime, which makes it an interesting evaluation benchmark that can boost the applications of GANs to new
image domains.

The challenge of training GANs from only a single image, as well as from only a few highly-correlated
video frames, is the problem of overfitting (Karras et al., 2020a). For example, applying few-shot image
synthesis models, such as FastGAN (Liu et al., 2021), to learn from a single image or video leads to severe
memorization problems (see Sec. 5.3). As one approach to mitigate the memorization issues, single image
GAN models (Shaham et al., 2019; Hinz et al., 2021) proposed to learn an internal patch-based distribution
of an image, employing a cascade of multi-scale patch-GANs (Isola et al., 2017) trained in multiple stages.
Though these models overcome memorization, producing different versions of a training image, they cannot
learn high-level semantic properties of the scene, e.g., to dissect objects from the background. Consequently,
they often suffer from incoherent shuffling of image patches, distorting objects and producing unrealistic
layouts (see Fig. 5.4). Furthermore, the success of these models is inherently limited to learning from a single
image. As we demonstrate in our experiments (see Sec. 5.3), these models struggle to generate realistic scenes
when trained on multiple images, e.g., on frames collected from a single video.

In this work, we aim to go beyond patch-based learning and to achieve image synthesis of high diversity
and quality at the same time. Given only a single image or video, we aim to learn a model which is able
to compose new layouts, re-arrange objects in the scene, remove or duplicate instances, and change their
shape and size. The generated scene compositions should be visually plausible, with objects preserving their
appearance and natural shape, and scene layouts looking realistic to the human eye.

Although there exists an alternative way to compose new images by using image manipulation methods,
such as image inpainting (Dong et al., 2022) or blending of objects (Zhang et al., 2020c), training an uncon-
ditional GAN model on limited data has several advantages. In particular, image manipulation methods need
to be pre-trained, and they typically require a lot of data to achieve high performance. Moreover, for each
new image, they require pixel-level user input to indicate which objects should be edited, which poses a limi-
tation on a number of images these methods can produce. The above properties limit the utilization of image
manipulation methods in practical applications dealing with restricted data domains, for example one-shot or
few-shot image classification (Tian et al., 2020a). As in such scenarios classification models are required to
learn to recognize a new class (e.g., previously unseen dog breed) by using only one or a few examples, they
are severely prone to overfitting. Therefore, augmenting the limited available training data with diverse novel
scene compositions, for example by changing the shape or location of objects in the images, has the potential
to reduce overfitting of classification models and thereby improve their performance.
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SinGAN, lowest resolution of 20px

Training image

SinGAN, lowest resolution of 35px

Figure 5.2: Limitation of the multi-stage training of the single image SinGAN model (Shaham et al.,
2019). As the finer generation stages cannot correct the layout decision made by the coarser scale
generators, without a careful tuning of the lowest resolution size the model produces images of very
low diversity (first row) or lacking global coherency (last row).

To this end, we introduce SIV-GAN (Single Image and Video GAN), an unconditional, one-stage GAN
model, capable of learning from the single data instances to generate images that are substantially different
from the original training sample, while still preserving its context. This is achieved by two key ingredients:
the novel discriminator design and the proposed diversity regularization for the generator. Our discriminator
has two branches, separately judging image content and scene layout realism. The content branch evaluates
objects’ fidelity irrespective of their spatial arrangement, while the layout branch looks only at the global scene
coherency. Disentangling the discriminator’s decision about content and layout helps to prevent overfitting and
provides a more informative signal to the generator. To achieve a high diversity among generated samples, we
further extend the regularization technique of Yang et al. (2019) to unconditional image synthesis in single data
instance regimes. The prior work of Yang et al. (2019) encourages the generation of different images depending
on their input latent codes, thus the difference between images is proportional to the distance between their
codes in the latent space. Assuming that in case of a single image or a single video all generated images should
belong to one semantic domain (i.e. preserve the original training sample context), and thus should be more or
less equally different from each other, we apply diversity regularization uniformly, independent of the latent
space distance. Moreover, we use the regularization in the feature space, inducing both high- and low-level
diversity.

We demonstrate the effectiveness of our model for the single image setting, as well as for the novel single
video setting in Sec. 5.3. SIV-GAN is the first model that successfully learns in both of these extremely
low-data settings, improving over prior work (Shaham et al., 2019; Hinz et al., 2021; Liu et al., 2021) in
both image quality and diversity. As shown in our experiments, in contrast to FastGAN (Liu et al., 2021),
our model does not suffer from memorization, successfully dealing with a high similarity between training
images, while compared to single image GANs (Shaham et al., 2019; Hinz et al., 2021), our model does
not distort objects and preserves their appearance. In summary, our main contributions are: i) We propose
a new task of learning generative models from frames of a single video, which introduces a new challenge
for few-shot image synthesis models due to a high similarity between training images. ii) We present a novel
two-branch discriminator, encouraging the generation of new scene compositions with layouts and content
substantially different from training samples. Our proposed diversity regularization ensures a high variability
among generated samples in the challenging single data instance regimes. iii) With SIV-GAN, we achieve high
quality and diversity when learning from both single images and videos, outperforming prior GAN models and
image manipulation methods.
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5.2 Method

In this section, we present SIV-GAN, an unconditional GAN model that learns from a single image or a
single video to generate new plausible compositions of a given scene with varying content and layout. The
key ingredients of SIV-GAN are a novel design of a two-branch discriminator (Sec. 5.2.1) and a diversity
regularization introduced for synthesis in single data instance regimes (Sec. 5.2.2).

5.2.1 Content-Layout Discriminator

One challenge of training GANs in single data instance regimes is the problem of overfitting to original sam-
ples. In many cases the model can simply memorize the original training images and their augmented versions
(if used during the training). To avoid this memorization effect, Shaham et al. (2019) and Hinz et al. (2021)
proposed to learn an internal patch-based distribution of a single image by using a hierarchy of patch-GANs
(Isola et al., 2017) at different image scales. As the employed patch-GANs have small receptive fields and
limited capacity, they are prevented from memorizing the full image. However, the downside of training each
scale of the patch-GANs in a separate stage is that any layout decisions made by the coarser scale generators
cannot be corrected at later, finer generation stages. Thus, both the quality and diversity of generated images
are highly dependent on the chosen lowest resolution size. This parameter needs careful tuning for specific im-
ages at hand, otherwise image layouts may lack diversity or loose global coherency (see Fig. 5.2). Moreover,
this approach does not generalize to learning from multiple images, as in the single video case (see Fig. 5.5).

We therefore introduce an alternative solution to overcome the memorization effect but still to produce
high-quality images. We note that in order to produce realistic and diverse images, the generator should learn
the appearance of objects and combine them in the image in a globally-coherent way. To this end, we propose
a discriminator that judges the content distribution of a given image separately from its layout realism. To
achieve the disentanglement, we design a two-branch discriminator architecture, with separate content and
layout branches. Note that the branching of the discriminator happens after intermediate layers; this is done
in order to learn relevant representations for building the branches. As seen from Fig. 5.3, our discriminator
consists of the low-level feature extractor Dlow-level, the content branch Dcontent, and the layout branch
Dlayout. For a given image x, the purpose of Dlow-level is to learn low-level features and to produce an
image representation F pxq “ Dlow-levelpxq for the branches. Next, Dcontent will judge the content of F pxq,
irrespective from its spatial layout, while on the other hand Dlayout will inspect only the spatial information
extracted from F pxq. Inspired by the attention modules of Park et al. (2018); Woo et al. (2018), we implement
the content-layout disentanglement by squeezing channels or spatial dimensions of the intermediate features
F pxq. Note that afterwards the branches Dcontent and Dlayout receive only limited information about the
image from F pxq, preventing them from overfitting to the whole image, and thus mitigating the negative effect
of memorizing the original image.

Content branch. The content branch decision should be based upon the image content, i.e. the fidelity of
objects composing the image, independent of their spatial location in the scene. Let the feature map F pxq

have dimensions Hpheightq ˆ W pwidthq ˆ Cpchannelq. Note that the spatial dimensions H ˆ W capture
spatial information, while the channels C encode the semantic representation. As we want the content branch
to ignore the spatial location of objects, we apply global average pooling to aggregate the spatial information
HˆW across the channels C. The resulting feature map Fcontentpxq has size 1ˆ1ˆC, which is then processed
by several layers for further real/fake decision making. By removing the spatial information, Dcontentpxq is
induced to respond to content features encoded in different channels regardless of their spatial location (see
Fig. 5.7).

Layout branch. The layout branch, in contrast, should assess the spatial location of objects in the scene,
but not their specific appearance. Thus, the layout branch is designed to judge only the spatial information
of F pxq, filtering out the content details. Since the layout information is encoded only in spatial dimensions
H ˆ W , and not in channels C, we aggregate the channel information from F pxq via a p1 ˆ 1q convolution
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Figure 5.3: SIV-GAN architecture. Two separate discriminator branches judge the image content
separately from the scene layout realism and thus enable the generator to produce images with vary-
ing content and global layouts. Before the branching, a low-level feature extractor is trained via a
separate low-level loss, enabling to learn the low-level image realism and to build relevant represen-
tations for the content and layout branches.

with only one output channel, which forms a feature map Flayoutpxq with size H ˆ W ˆ 1. This channel
aggregation weakens the content representation but does not affect the spatial information. The Flayoutpxq

features are further processed by several layers before a real/fake decision is made. As Dlayoutpxq is designed
to be sensitive only to the spatial representation of the input image, it learns to judge the realism of scene
layouts (see Fig. 5.7).

Feature augmentation. The proposed two-branch discriminator prevents the memorization of training sam-
ples, enabling the generation of images with content and layouts different from the original sample. To fur-
ther improve the diversity of generated images, we propose to augment the content Fcontentpxq and layout
Flayoutpxq features of real images. For the single image setting this is done by mixing the features of two
different augmentations of the original image, and for the single video setting by mixing the features of aug-
mentations of two different video frames. For two real samples x1 and x2 we apply a mixing transformation
F˚px1q “ TmixpF˚px1q, F˚px2qq. We use two types of mixing: 1) For the layout branch, we sample a rectan-
gular crop of Flayoutpx2q and paste it on to Flayoutpx1q at the same spatial location, similarly to CutMix (Yun
et al., 2019). In contrast to CutMix, our approach augments features, not input images, and mixes only features
of real images. 2) For the content branch, we sample a set of channels from Fcontentpx2q and copy their values
to the corresponding channels of Fcontentpx1q. As the channels encode semantic features of images, we expect
the resulting augmented tensor to represent objects seen in two different images. We also found it useful to
remove channels from Fcontentpxq, thus removing some object representations. For this, we sample a set of
channels and drop out their values (Srivastava et al., 2014; Zhengsu et al., 2018). With the above augmenta-
tions, Dcontent and Dlayout see significantly more variance in both the content and layout representations of
real images, which prevents overfitting and improves the diversity of generated samples. The effect of feature
augmentation (FA) is shown in Table 5.3.

Adversarial loss. To evaluate images at different scales, we design our discriminator to make a binary true/fake
decision at each intermediate resolution. For each discriminator part D˚: Dlow-level, Dcontent, and Dlayout,
the loss is computed by aggregating the contributions across all layers constituting the corresponding discrim-
inator part:

LD˚
“

1

N˚

N
ÿ̊

l“1

LDl
˚
, (5.1)

where Dl
˚ is the l-th ResNet block of D˚, N˚ is the number of ResNet blocks used in D˚, and the loss LDl

˚

is the binary cross-entropy: LDl
˚

“ ´ExrlogDl
˚pxqs ´ Ezrlogp1 ´ Dl

˚pGpzqqqs. Dl
˚ aims to distinguish

between real x and generated Gpzq images based on their corresponding features at block l, which captures
either their low-level details, content, or layout at a certain resolution. The overall adversarial loss for SIV-
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GAN is then computed by taking the decisions from the content branch Dcontent, the layout branch Dlayout,
and the low-level features of Dlow-level:

LadvpG,Dq “ LDcontent
` LDlayout

` 2LDlow-level
, (5.2)

where D aims to distinguish between real and generated images based on their low-level, content, and layout
realism. As two D branches operate on high-level image features, contrary to only one Dlow-level operating
on low-level features, we double the weighting for LDlow-level

. This is done in order to properly balance the
contributions of different feature scales and encourage the generation of images with good low-level details,
plausible content, and coherent scene layouts. The effect of LDlow-level

is discussed in Sec. 5.3.3.

5.2.2 Diversity Regularization

To improve the variability among the generated images, we propose to add a diversity regularization (DR)
loss term LDR to the SIV-GAN objective. Prior work (Yang et al., 2019; Zhao et al., 2021; Choi et al.,
2020) also proposed to use diversity regularization for GAN training, but mainly to avoid mode collapse, and
assuming the availability of a large training set. The regularization of Yang et al. (2019) aimed to encourage
the generator to produce different outputs depending on the input latent code, in such a way that the generated
samples with closer latent codes should look more similar to each other, and vice versa. In contrast, our
diversity regularization is tuned for synthesis from single data instance regimes. Assuming that in case of a
single image or a single video we are operating in one semantic domain, the generator should produce images
that are in-domain but more or less equally different from each other, and substantially different from the
original training sample. Thus, in such regimes the difference of generated images should not be dependent
on the distance between their latent codes, so we propose to encourage the generator to produce perceptually
different image samples independent of their distance in the latent space. Mathematically, the new diversity
regularization is expressed as:

LDRpGq “ Ez1,z2

«

1

L

L
ÿ

l“1

}Glpz1q ´ Glpz2q}

ff

, (5.3)

where } ¨ } denotes the L1 norm, Glpzq indicates a feature extracted after l-th resolution block of the generator
G given input z, and z1, z2 are randomly sampled latent codes in the batch, i.e. z1, z2 „ Np0, 1q. By
regularizing the generator to maximize Eq. (5.3), we force it to produce diverse outputs for different latent
codes z. Note that, in contrast to Yang et al. (2019); Zhao et al. (2021); Choi et al. (2020), we compute the
distance between samples in the feature space of the generator. Computing the distance in the feature space
results in a more meaningful diversity among the generated images, as different layers of the generator capture
different image semantics, inducing both high- and low-level diversity. Computing the distance in the image
space, i.e. LDRpGq “ }Gpz1q ´ Gpz2q} as in (Choi et al., 2020), leads to reduced image diversity in our
experiments (see Table 5.4).

The overall SIV-GAN objective can be written as:

max
G

min
D

LadvpG,Dq ` λLDRpGq, (5.4)

where λ controls the strength of the diversity regularization and Ladv is the adversarial loss in Eq. (5.2).
The proposed diversity regularization is shown to be highly-effective for SIV-GAN, while prior regulariza-
tions (Yang et al., 2019; Zhao et al., 2021; Choi et al., 2020) underperform in our experiments (see Table 5.4).

5.2.3 Implementation and Training

The overall architecture of SIV-GAN is shown in Fig. 5.3. In our implementation, the SIV-GAN generator
employs ResNet blocks which are similar to BigGAN (Brock et al., 2019). However, we do not use BatchNorm
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or self-attention. As in MSG-GAN (Karnewar and Wang, 2020), we generate images at intermediate ResNet
blocks of G, passing them to Dlow-level to facilitate the gradient flow from the discriminator. The latent vector
z, of length 64, is sampled from Np0, 1q. It is by default broadcasted to the spatial dimensions of 3x5, which
can be adjusted to closer fit the shape of a training sample. For diversity regularization, we use the tanh

activation on the features from the final convolutions of the G blocks.
The SIV-GAN discriminator also uses ResNet blocks. We set Nlow´level “ 3, Nlayout “ Ncontent “ 4,

thus using 3 ResNet blocks before branching and 4 ResNet blocks for the content and layout branches (the
ablation is presented in Sec. 5.3.3). To enable multi-scale gradients, we incorporate images at different scales
using the ϕlin_cat strategy from Karnewar and Wang (2020). The proposed feature augmentation (FA) is ap-
plied with probability 0.4 at every discriminator forward pass. We also use differentiable image augmentation
(DA) (Karras et al., 2020a; Zhao et al., 2020c,a), applying translation, cropping, rotation, and horizontal flip-
ping for real and fake images with a probability of 0.7 at each forward pass. As in Karras et al. (2020a), we
observe no signs of leaking augmentations in the generated samples.

In contrast to previous single image GANs (Shaham et al., 2019; Hinz et al., 2021), which employ a multi-
stage training scheme, SIV-GAN is trained end-to-end in one stage, with the losses from Eq. (5.4), with λ =
0.15 for LDR (see the ablation on λ in Sec. 5.3.3). We use spectral normalization (Miyato et al., 2018) for
both G and D, and do not use a reconstruction loss as in Shaham et al. (2019); Hinz et al. (2021), or any
other stabilization techniques. SIV-GAN is trained using the ADAM optimizer with pβ1, β2q “ p0.5, 0.999q,
a learning rate of 0.0002 for both G and D, and a batch size of 5 (using different augmentations of a single
image or of video frames).

5.3 Experiments

5.3.1 Experimental Setup

We evaluate SIV-GAN by conducting experiments in two different settings: learning from a single image and
from a single video. For both of them, we use the same model configuration as described in Sec. 5.2.3. We
train our model for 100k iterations in the Single Image setting and for 300k iterations in the Single Video
setting.

Datasets. Following SinGAN (Shaham et al., 2019), we evaluate the Single Image setting on 50 images
extracted from the Places dataset (Zhou et al., 2017a). In addition to their protocol, we also select 15 videos
from the DAVIS (Perazzi et al., 2016) and YFCC100M (Thomee et al., 2016) datasets. In the Single Video
setting, we use all the frames as training images, while for the Single Image setup we use only one frame from
the middle of each sequence. The chosen videos last for 2-10 seconds and consist of 60-100 frames.

Metrics. To assess the quality of generated images, we measure the mean single FID (SIFID) (Shaham et al.,
2019). Following the evaluation from Shaham et al. (2019); Hinz et al. (2021), in the Single Image setting we
also report the best SIFID among the generated samples. The original SIFID formulation uses InceptionV3
features before the first pooling layer at HˆW

4 resolution. We observed that such metric captures only low-level
image details, such as colors and textures, and not high-level semantic image properties, such as appearance
of objects or global layouts. Therefore, to evaluate higher-level realism, we additionally use later features,
obtained before the final classification layer (at HˆW

16 resolution). To evaluate the diversity of samples, we
adopt the pixel diversity metric from Shaham et al. (2019). To measure perceptual diversity, we also report
the average LPIPS (Dosovitskiy and Brox, 2016) across pairs of generated images. To verify that the models
do not simply reproduce the training set, we report average LPIPS to the nearest image in the training set,
augmented in the same way as during training (Dist. to train). We note that SIFID tends to penalize diversity,
favouring overfitting (Robb et al., 2021). Thus, to account for this quality-diversity trade-off, a fair analysis
should assess both diversity and quality.

Comparison models. We compare our model with single image methods, SinGAN (Shaham et al., 2019) and
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Figure 5.4: Visual comparison between models in the Single Image setting. Single image
GANs (Shaham et al., 2019; Hinz et al., 2021) are prone to shuffle patches incoherently (e.g. sky tex-
tures below horizon, perturbed fish contours), while the few-shot FastGAN (Liu et al., 2021) suffers
from memorization, reproducing only the original image or its flipped version. In contrast, SIV-GAN
achieves both high quality and diversity, preserving the realism of image content and layout.

ConSinGAN (Hinz et al., 2021), and with a recent model for few-shot image synthesis, FastGAN (Liu et al.,
2021). We use the original implementation codes provided by the authors. While training single image GANs
(Shaham et al., 2019; Hinz et al., 2021) on a single video, we applied the reconstruction loss on all frames, as
we found this helpful in stabilizing the training.

5.3.2 Comparison to Previous GAN Models

Tables 5.1 and 5.2 present a quantitative comparison between the models in the Single Image and Single Video
settings, while the respective visual results are shown in Fig. 5.4 and 5.5. As seen from the tables, SIV-
GAN notably outperforms other models in both studied settings. Despite a potential trade-off between quality
and diversity, our model achieves better performance in both, reaching lower SIFID values and higher diver-
sity scores. Importantly, only SIV-GAN successfully learns from both single images and videos, generating
globally-coherent images of high diversity. Next, we analyse results in these settings separately.
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Places DAVIS-YFCC100M

Method
SIFID Ó

LPIPS Ò
Pixel Ò Dist. SIFID Ó

LPIPS Ò
Pixel Ò Dist.

HˆW
4

HˆW
16

Diversity to train HˆW
4

HˆW
16

Diversity to train

SinGAN 0.15 25.33 0.22 0.52 0.24 0.13 34.52 0.26 0.54 0.30

ConSinGAN 0.08 23.45 0.24 0.50 0.25 0.09 27.33 0.29 0.59 0.31

FastGAN 0.14 16.52 0.15 0.48 0.08 0.13 19.48 0.18 0.49 0.11

SIV-GAN 0.06 12.12 0.28 0.57 0.31 0.08 16.30 0.33 0.66 0.37

Table 5.1: Comparison with other methods in the Single Image setting on Places (Zhou et al., 2017a)
and DAVIS-YFCC100M (Perazzi et al., 2016; Thomee et al., 2016) datasets.

Method
SIFID Ó

LPIPS Ò
Dist.

HˆW
4

HˆW
16

to train

SinGAN 2.47 96.35 0.32 0.51

ConSinGAN 2.74 74.50 0.34 0.53

FastGAN 0.79 9.24 0.43 0.13

SIV-GAN 0.55 5.14 0.43 0.34

Table 5.2: Comparison in the Single Video setting on DAVIS-YFCC100M.

Single Image. As seen from Fig. 5.1 and Fig. 5.4, given a single image for training, SIV-GAN produces diverse
samples of high visual quality. For example, in Fig. 5.4 our model can change the number and placement of
foreground objects (e.g., fish and people), or edit the contour and position of rocks in landscape images. Note
that such changes preserve the original scene context, retaining the appearance of objects and maintaining
the scene layout realism. In contrast, the prior single image GAN models, SinGAN and ConSinGAN, tend to
disturb the appearance of objects (e.g., by washing away the contours of fish and people) and disrespect layouts
(e.g., sky textures can appear below the horizon), while exhibiting lower diversity in content and layouts. This
is reflected in their higher SIFID and lower diversity scores in Table 5.1. On the other hand, the few-shot
FastGAN model suffers from memorization issues, only reproducing the training image or its flipped version.
In Table 5.1 this is reflected in lowest diversity and Dist. to train (in red) metrics on both datasets. Despite
having the lowest diversity, we observe that FastGAN does not reach a low SIFID due to leaking augmentations
(horizontal flipping).

Single Video. The Single Video setting provides multiple video frames for training. Consequently, generative
models have the potential to combine the knowledge observed in different video frames, and thereby to syn-
thesize more interesting combinations of objects and scenes. Fig. 5.1 and Fig. 5.5 show the images generated
by SIV-GAN in this setting. Our model generates high-quality images that are substantially different from
the training frames, adding/removing objects and changing the scene geometry. For example, having seen a
car following a road (Fig. 5.1), SIV-GAN generates the scene without a car or with two cars. In Fig. 5.5 our
model varies the length of a bus and placement of trees, or removes a horse from the scene and changes the
jumping obstacle configuration. In contrast, SinGAN, tuned to learn from a single image, does not generalize
to the Single Video setting, distorting objects and producing unrealistic layouts (note a low diversity and an
extremely high SIFID in Table 5.2). The few-shot FastGAN, on the other hand, generates images with reason-
able fidelity, but is still unable to produce samples with non-trivial layout changes, achieving only a very low
Dist. to train score (0.13 in Table 5.2). We conclude that only SIV-GAN deals with the challenging Single
Video setting successfully, producing globally-coherent images and avoiding memorization of training data.

In Fig. 5.6 we provide an extended analysis, exploring the performance of SIV-GAN and FastGAN while
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Figure 5.5: Visual comparison in the Single Video setting. While other models fall into reproducing
the training frames or fail to correctly generate objects, SIV-GAN produces high-quality images
substantially different from the original training frames.

Figure 5.6: Comparison between SIV-GAN and FastGAN in the single video setting. A skip-factor
factor of N indicates that each N -th consecutive video frame was used as training data (a smaller
factor means higher average similarity between the training frames).

varying the average similarity between training frames of a given video. For this, we take 5 long frame
sequences from YFCC100M (Thomee et al., 2016) and for each of them construct 10 different subsets: a
subset with index i includes each ith video frame (the total number of frames is always kept to 100). This
way, a lower skip-frame factor indicates that the chosen frames are closer in time (and thus more similar
to each other), and vice versa. As seen from Fig. 5.6, FastGAN suffers from memorization the most when
learning from a set of very similar images: its Dist. to train scores fall dramatically when the skip-frame
factor is decreased. This indicates that learning from a few-shot dataset consisting of very similar images can
be challenging for prior few-shot GAN models. In contrast, SIV-GAN preserves high Dist. to train scores
even for lowest skip-frame factors. Notably, our model also outperforms FastGAN in SIFID for all skip-frame
factors.

5.3.3 Ablations

Ablations on the main model components. In Table 5.3 we demonstrate the importance of model’s compo-
nents. In each line we remove only one component, starting from the full SIV-GAN model.
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Single Image Single Video

Method
SIFID Ó

LPIPS Ò
Pixel Ò Dist. SIFID Ó

LPIPS Ò
Dist.

HˆW
4

HˆW
16

diversity to train HˆW
4

HˆW
16

to train

Full model 0.08 16.30 0.33 0.66 0.37 0.55 5.14 0.43 0.34

No Layout br. 0.14 20.29 0.35 0.67 0.40 0.71 11.70 0.42 0.38

No Content br. 0.08 23.25 0.34 0.64 0.36 0.73 10.43 0.41 0.33

No branches 0.03 7.73 0.13 0.43 0.12 0.42 3.73 0.37 0.18

No DR 0.05 11.99 0.04 0.33 0.06 0.40 9.81 0.30 0.32

No FA 0.08 14.81 0.27 0.58 0.33 0.51 4.85 0.41 0.32

No LDlow´level
0.08 15.92 0.27 0.56 0.29 0.58 5.32 0.40 0.31

Table 5.3: Ablation study in the Single Image and Video settings on DAVIS-YFCC100M. Indicators
of collapsed diversity (low LPIPS, Pixel Diversity) or poor quality (high SIFID) are marked in red.

Regularization SIFID Ó LPIPS Ò
Pixel Ò Dist.
diversity to train

None 0.05 0.04 0.33 0.06

zCR 0.05 0.06 0.37 0.09

DS 0.06 0.14 0.45 0.14

DR (im. space) 0.07 0.21 0.52 0.25

DR 0.08 0.33 0.66 0.37

Table 5.4: Comparison of diversity regularization techniques in the Single Image setting on DAVIS-
YFCC100M.

Firstly, we ablate our discriminator architecture, testing it without any branches (No branches), corre-
sponding to a standard GAN discriminator, and without the layout branch or the content branch. The model
without branches is trained together with our proposed diversity regularization (DR) and feature augmentation
(FA), as well as differentiable augmentations (DA) as in Karras et al. (2020a); Zhao et al. (2020a). However,
as seen from Table 5.3, it memorizes the training images and reproduces them with poor diversity. Using only
one of the branches shows good diversity, but the model fails to generate globally-coherent images, having a
high HˆW

16 SIFID. The qualitative results for these ablation models in the Single Image setting are presented
in Fig. 5.7. We observe that the visual results correspond well to the conclusions from Table 5.3. For example,
employing none of the branches visually leads to reproducing only the training image. The model without the
layout branch generates different objects in various combinations, but the model often fails to reproduce cor-
rect positioning of objects or globally-coherent layouts. In particular, there might be a horizon discontinuity,
or air balloons may follow unrealistically structured positions in a grid. On the other hand, the model trained
without the content branch generates images with more realistic layouts, but does not preserve the content
distribution of the original training image, distorting the appearance of objects or perturbing their shapes.

To illustrate further our intuition on the content and layout learning, in Fig. 5.8 we analyse the feature
distances between real images in the content and layout embeddings of a trained SIV-GAN discriminator. We
take the discriminators trained on the “bus” and “parkour” videos from DAVIS. The plots show the content and
layout distances between the middle frame and other frames of the same video. We observe that the distances
correlate well with our intuition. Firstly, as nearby frames have very similar content and layouts, the lowest
embedding distances are always between adjacent frames, while higher temporal distances from the middle
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No branches No layout branch No content branch Both branches

Training image

Training image

Figure 5.7: Visual results for the ablation on the two-branch discriminator in the Single Image
setting. The model with a standard GAN discriminator (No branches) memorizes the training image.
The model without the layout branch fails to produce images with realistic layouts or positioning of
objects. Absence of the content branch leads to a model that does not preserve well the appearance
of objects. Finally, the model with both branches generates diverse images with realistic content and
layouts. The qualitative comparison of these models is presented in Table 5.3.

frame lead to higher feature distances. Secondly, the embeddings correlate with the perceptual judgement: the
layout distances (solid red) between “bus” frames are lower than for the “parkour” video. Finally, as frames
of a short video depict similar content (e.g. same objects), the content distances between frames of the same
sequence (solid blue) are much lower than between the middle frames of two different videos (dashed blue).

Next, we observe the effect of the proposed DR and FA. Without DR, the model does not achieve multi-
modality, scoring low in all the diversity metrics. The absence of FA notably decreases diversity, resulting in
the diversity scores dropping by 0.02-0.08 points. The qualitative results for these models are shown in Fig.
5.9. SIV-GAN without DR does not mitigate overfitting, suffering from mode collapse. The model with DR
but without FA manages to achieve diverse image synthesis. However, such a model produces only modest
diversity in content and layouts, e.g, it only slightly translates a rock to new locations in the image.

Finally, removing the low-level loss LDlow-level
also results in decreased diversity. According to Eq. (5.1)

and (5.2), this term shifts the attention of the loss function from the latest discriminator layers towards ear-
lier layers with smaller receptive field, which complicates the memorization of the whole image. This way,
LDlow-level

not only helps to learn low-level image statistics, but also to regularize the discriminator and thus
allow a synthesis of higher diversity.

Comparison of DR to alternative techniques. In Table 5.4 we compare our proposed DR to the latent
consistency regularization (zCR) (Zhao et al., 2021), diversity-sensitive loss (DS) (Yang et al., 2019), and
using no regularization (None). We apply zCR only to the generator loss, leaving the discriminator objective
intact. As both zCR and DS operate in the image space, we also test our proposed DR in the image space
instead of the G feature space, as in Choi et al. (2020). As seen from Table 5.4, our DR noticeably improves
over zCR and DS in all diversity metrics. Moreover, we find it beneficial to use DR in the feature space, which
leads to more variation in the generated samples. Interestingly, Table 5.4 illustrates a quality-diversity trade-off
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Figure 5.8: Feature distances from video frames to middle frame. The layout embedding distances
(solid red) between “bus” frames are lower than for the “parkour” video. The content embedding
distances between frames of the same sequence (solid blue) are significantly lower than distance
between middle frames of different videos (dashed blue).

λ SIFID Ó LPIPS Ò
Pixel Ò Dist.

diversity to train

0.00 0.05 0.04 0.33 0.06

0.05 0.07 0.19 0.50 0.23

0.15 0.08 0.33 0.66 0.37

0.50 0.13 0.39 0.69 0.46

Table 5.5: Effect of the diversity regularization (DR) strength in the Single Image setting on DAVIS-
YFCC100M.

in the Single Image setting, where improvements in diversity lead to deterioration in SIFID.

Ablation on the DR strength. In all our experiments, we used DR with λ “ 0.15. In Table 5.5 we show
the effect of setting different λ for DR in the Single Image setting, changing the strength of the diversity
regularization. Table 5.5 illustrates that setting the multiplier too high (λ “ 0.50) leads to good diversity, but
harms image quality, while setting small values (λ “ r0.00, 0.05s) is beneficial for quality, but deteriorates
diversity. We observed that using λ “ 0.15 leads to a good trade-off, resulting in a high diversity among
generated samples, while not corrupting the quality of textures and the global layout coherency, so we picked
this value for the final version of the model.

Ablation on the number of low-level ResNet blocks. The SIV-GAN discriminator has 3 ResNet blocks
before the branching for Dlow-level. In Table 5.6 and Fig. 5.10 we analyse the effect of applying branching at
an earlier or a later discrimination stage, keeping the overall depth of the network equal to 7 ResNet blocks.
The results indicate that the branching should be applied neither too early nor too late. Using too few ResNet
blocks (1-2) before the branching leads to a reduced capacity of the low-level feature extractor Dlow-level, so
this network becomes unable to learn meaningful content and layout features. Such a model learns the color
distribution of an image, but cannot produce a globally-coherent scene and generate textures of good quality
(see Fig. 5.10). In Table 5.6 this effect is indicated by a very high SIFID. On the other hand, using too many
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SIV-GAN without DR SIV-GAN without FA Full model

Training image

Figure 5.9: Qualitative ablation on the proposed diversity regularization (DR) and feature augmen-
tation (FA). Without DR, the model does not mitigate memorization, producing only images that
are perceptually indistinguishable from the original sample. Without FA, SIV-GAN achieves only
modest diversity in content and layouts. Finally, using both DR and FA enables generating more
interesting scene compositions, varying global scene layouts, or duplicating and removing objects.

Training image NDlow-level
“ 1 NDlow-level

“ 2 NDlow-level
“ 3 NDlow-level

“ 4 NDlow-level
“ 5, 6

Figure 5.10: Effect of the number of discriminator blocks used before branching. Using too few
blocks (1-2) leads to reduced synthesis quality, as Dlow-level is unable to extract the features neces-
sary to build the content and layout representations. Increasing the number of blocks (3-4) results
in improved quality while maintaining good diversity. Using too many blocks (5-6) leads to the
memorization of the training image.

blocks before the branching (5-6) increased the capacity of Dlow-level, so it becomes easier to memorize the
whole image (see Fig. 5.10), which corresponds to low diversity metrics in Table 5.6. We found that using
Nlow´level “ 3 leads to an optimal quality-diversity trade-off in both the Single Image and Single Video
settings.

5.3.4 Comparison to Image Manipulation Methods

In Fig. 5.11 and Table 5.7 we compare the ability of SIV-GAN to compose new scenes with image manipula-
tions methods. For this, for each single image from DAVIS-YFCC100M, using a provided segmentation mask,

NDlow-level

Single Image Single Video

SIFID Ó LPIPS Ò SIFID Ó LPIPS Ò

1 0.59 0.42 2.75 0.46
2 0.13 0.40 1.12 0.45

3 0.08 0.33 0.55 0.43

4 0.06 0.24 0.36 0.38

5 0.03 0.15 0.40 0.37

6 0.03 0.13 0.35 0.36

Table 5.6: Ablation on the number of blocks NDlow-level used before the content-layout branching on
the DAVIS-YFCC100M dataset.
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Single image & mask Image manipulation results using inpainting and object blending methods

Training image SIV-GAN generation results

Figure 5.11: Comparison of SIV-GAN synthesis to image manipulation methods in the Single Image
setting. The ability of SIV-GAN to remove objects from scenes can be performed by image inpaiting
(Dong et al., 2022), while moving or duplicating objects can be done with an object blending method
()zhang2020deep applied at random locations. Nonetheless, unlike SIV-GAN these methods require
object annotations, which can be restrictive in practice.

Approach SIFID Ó LPIPS Ò Dist. to train

Image manipulation 0.07 0.19 0.18

SIV-GAN 0.08 0.33 0.37

Table 5.7: Comparison to image manipulation methods (Dong et al., 2022; Zhang et al., 2020c) on
DAVIS-YFCC100M in the Single Image setting.

we first remove a foreground object using a state-of-the-art image inpainting method (Dong et al., 2022) (see
Fig. 5.11, second image). Next, we paste the removed object at random locations within the scene by using
deep image blending (Zhang et al., 2020c) (see Fig. 5.11, images 3-5). We observe that the images manipu-
lated this way sometimes exhibit inpainting distortions, while the blended objects can be modified too strongly
and appear unrealistic. As seen in Table 5.7, SIV-GAN allows a synthesis of significantly higher diversity than
image manipulation alternatives. We note that SIV-GAN achieves this without any mask annotations, which
eliminates the need for manual annotations.

5.4 Conclusion

In this chapter, we proposed SIV-GAN, a new unconditional generative model which successfully learns from
a single image or a single video. In such extremely low-data regimes, our model prevents memorization
and generates diverse images that are significantly different from the training set. Inherently, the synthesis
of our model is constrained by the appearance of objects present in the original sample. Nevertheless, SIV-
GAN can synthesize novel scene compositions by blending objects in different combinations, changing their
shape or position, while preserving the original context and plausibility of the scene. Astonishingly, such
compositionality is enabled by the model’s ability to distinguish objects and backgrounds learnt just from a
single image or video.

The fact that one image is enough to train a GAN to generate new diverse images with realistic-looking ob-
jects raises an interesting question: can such synthesis be utilized for data augmentation for other applications?
Consider various one-shot applications, where neural networks are trained or fine-tuned based on a single pro-
vided training example. In such cases, models are naturally susceptible to overfitting, making it reasonable
to assume that augmentations produced by GANs can enhance their generalization. This question is studied
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in Chapter 6, where we explore the application of one-shot GAN synthesis to synthetic data augmentation in
one-shot segmentation applications.





CHAPTER 6

One-Shot Synthesis of Images and
Segmentation Masks

In the previous chapter, we introduced a GAN model capable of generating highly realistic scene compositions,
even with extremely limited data such as a single image. Notably, this model can rearrange objects within the
scene, alter their positions, remove or duplicate them, while preserving their realistic appearance. Building on
this, we hypothesize that the model’s ability to distinguish between objects and backgrounds can be exploited
for segmentation applications. To this end, in this chapter we present a novel GAN training setup where
models are trained using a single image along with its corresponding segmentation mask. Using SIV-GAN as
the baseline, we introduce a mask synthesis branch in the generator and a masked content attention mechanism
in the discriminator. These additions enable us not only to avoid memorization, in contrast to previous image-
mask GANs, but also to surpass previous single-image GAN models in terms of both image quality and
diversity. Moreover, we demonstrate that our model, called OSMIS, provides valuable data augmentation for
one-shot segmentation applications.

Individual Contribution

This chapter is based on the following publication (Sushko et al., 2023b):

One-Shot Synthesis of Images and Segmentation Masks
Vadim Sushko, Dan Zhang, Juergen Gall, Anna Khoreva
IEEE Winter Conference on Applications of Computer Vision (WACV), 2023.
DOI: 10.1109/WACV56688.2023.00622

This publication is the outcome of a collaborative effort involving Vadim Sushko, Dan Zhang, and Anna
Khoreva. Juergen Gall supported the project with scientific guidance and valuable suggestions. The initial idea
to explore the joint synthesis of images and segmentation masks in low data regimes was proposed by Anna
Khoreva. Anna Khoreva also proposed the idea to incorporate segmentation masks into GAN training through
a masked attention mechanism, which was further refined through collaborative discussions. The final stage
of the project, including final evaluations and paper writing, was largely shaped by Vadim Sushko. Overall, as
the first author, Vadim Sushko made significant contributions to discussions, implementation, evaluations, and
the writing of the paper.
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Figure 6.1: We introduce a new task of generating new images and their segmentation masks from
a single training pair, without access to any pre-training data. Under this challenging regime, our
proposed model achieves a synthesis of a high structural diversity, preserving the photorealism of
original images and a precise alignment of produced segmentation masks to the generated content.
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6.1 Introduction

Deep neural networks have been shown powerful at solving various segmentation problems in computer vision
(Chen et al., 2018; He et al., 2017; Kirillov et al., 2019; Perazzi et al., 2016; Nilsson and Sminchisescu, 2018;
Wang et al., 2019). The success of these segmentation models strongly relies on the availability of a large-
scale collection of labelled data for training. Nevertheless, annotation of a large dataset is not always feasible in
practice due to a very high cost of manual labelling of segmentation masks (Caesar et al., 2018). For example,
accurately labelling a single image with many objects can take more than 30 minutes (Zhang et al., 2021b).
Therefore, diminishing the human effort required for obtaining diverse and precisely aligned image-mask data
is an important problem for many practical applications.

Recently, several works (Tritrong et al., 2021; Zhang et al., 2021b; Li et al., 2021a; Saha et al., 2021)
proposed to tackle this issue by jointly generating images and segmentation masks with generative adversarial
networks (GANs). Utilizing a few provided pixel-level annotations in addition to an image dataset for train-
ing, such GAN models become a source of labelled data that can be used to train neural networks in various
practical applications. Despite achieving impressive synthesis of segmentation masks based on limited an-
notated examples, existing image-mask GAN models still require large pre-training image datasets to learn
high-fidelity image synthesis. This naturally restricts their application only to the data domains where such
datasets are available (e.g., images of faces or cars). However, in some practical scenarios such a dataset can
be difficult to find, for example in one-shot segmentation applications (Amirreza et al., 2017), where the object
types can be rare. Therefore, in this work we aim to learn a high-fidelity joint mask and image synthesis having
as little limitations on the data domain as possible. To this end, we propose a novel GAN training setup, in
which we assume availability only of a single training image and its segmentation mask, not relying on any
image dataset for pre-training (see Fig. 6.1). After training, we aim to generate diverse new image samples and
supplement them with accurate segmentation masks. To the best of our knowledge, we are the first to consider
such a training scenario for GANs.



6.1. Introduction 87

Training pair SemanticGAN DatasetGAN OSMIS

Figure 6.2: A comparison to SemanticGAN (Li et al., 2021a), trained on a single image-mask pair
(in red), and DatasetGAN (Zhang et al., 2021b), pre-trained on a single image and trained on a single
manual mask annotation. Both models suffer from memorization, while SemanticGAN also has poor
quality due to training instabilities. In contrast, OSMIS avoids mode collapse.

Training a GAN from a single training sample is well known to be challenging due to the problem of
memorization (Nagarajan et al., 2018), as in many cases the generator converges to reproducing the exact
copies of training data. For example, as shown in our experiments, this issue occurs in the prior image-mask
GAN models from Li et al. (2021a); Zhang et al. (2021b) (see Fig. 6.2). Recently, the issue of memorization
has been mitigated in the line of works on single-image GANs, which enabled diverse image synthesis from a
single training image (Shaham et al., 2019; Hinz et al., 2021; Sushko et al., 2021b). Inspired by these models,
we aim to extend this ability to a joint synthesis of images and segmentation masks. To this end, we propose
a new model, introducing two modifications to conventional GAN architectures. Firstly, we introduce a mask
synthesis branch for the generator, enabling the synthesis of segmentation masks in addition to images. Sec-
ondly, to ensure that the produced segmentation masks are precisely aligned to the generated image content, we
propose a masked content attention module for the discriminator, allowing it to judge the realism of different
objects separately from each other. This way, to fool the discriminator, the generator is induced to label syn-
thesized images accurately. In effect, our proposed model enables a structurally diverse, high-quality one-shot
joint mask and image synthesis (see Fig. 6.1), and we thus name it OSMIS. As we show in our experiments,
compared to prior single-image GANs (Shaham et al., 2019; Hinz et al., 2021; Sushko et al., 2021b), OSMIS
not only offers an additional ability to generate accurate segmentation masks, but also achieves higher quality
and diversity of generated images.

Despite using only a single image-mask pair for training, OSMIS can generate a set of labelled samples of
a high structural diversity, which sometimes cannot be achieved with standard data augmentation techniques
(e.g., flipping, zooming, or rotation). For example, for a given scene, OSMIS can change the relative locations
of foreground objects or edit the layout of backgrounds (see Fig. 6.1, 6.4, 6.5). Moreover, in contrast to Li et al.
(2021a); Zhang et al. (2021b), OSMIS can successfully handle masks of different types, e.g., having class-wise
(see Fig. 6.1) or instance-wise (see Fig. 6.4) annotations. This suggests a good potential of our model to serve
as a source of additional labelled data augmentation for practical applications. We demonstrate this potential
in Sec. 6.3.4, where we apply OSMIS at the test phase of one-shot video object segmentation (Perazzi et al.,
2016) and one-shot semantic image segmentation (Amirreza et al., 2017). The results indicate that the data
generated by OSMIS helps to improve the performance of state-of-the-art networks: OSVOS (Caelles et al.,
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Figure 6.3: OSMIS model. A simple mask synthesis branch in the generator G allows the generation
of segmentation masks of objects together with images. The precise alignment between the masks
and the generated image content is enforced by a masked content attention (MCA) module in the
discriminator D, designed to evaluate the realism of different objects separately from each other.

2017), STM (Oh et al., 2019), and RePRI (Boudiaf et al., 2021), providing complementary gains to standard
data augmentation. We find these results promising for utilization of one-shot image-mask synthesis in future
research.

6.2 Method

Given a single image with its pixel-level segmentation mask and assuming no access to any pre-training data,
we aim to generate a diverse set of new image-mask pairs. In this section, we present OSMIS, our one-shot
image-mask synthesis model. Adopting our SIV-GAN model, introduced in Chapter 5, as a state-of-the-art
image synthesis baseline (Sec. 6.2.1), we propose modifications to the generator (Sec. 6.2.2) and discriminator
(Sec. 6.2.3) architectures, enabling one-shot synthesis of segmentation masks that are precisely aligned with
generated images.

6.2.1 SIV-GAN Baseline

As the baseline network architecture for OSMIS, we use SIV-GAN (Sushko et al., 2021b), as it generates high-
quality novel scene compositions with realistic objects, thereby achieving the highest quality and diversity
of one-shot image synthesis among previous works. The detailed decription of the SIV-GAN architecture is
provided in Chapter 5. To recap, SIV-GAN has a two-branch discriminator, in which an input image x is first
transformed into a feature representation F pxq by a low-level discriminator Dlow´level. Next, two separate
discriminators assess different aspects of F pxq. The content discriminator Dcontent judges the realism of
objects regardless of their spatial location by averaging out the spatial information contained in F pxq via
global average pooling. On the other hand, the layout discriminator Dlayout evaluates the realism only of
the spatial scene layouts by squeezing F pxq with a one-channel convolution. In addition, the discriminator
applies feature augmentation in the content and layout representations of F pxq to further increase the high-
level diversity among generated samples. The adversarial loss of the SIV-GAN model consists of three terms:

LadvpG,Dq “ LDcontent
` LDlayout

` 2LDlow-level
, (6.1)

where each term is the mean of binary cross entropies obtained at different layers of respective discriminator
parts.

In contrast to one-shot image synthesis, we assume that the single training image is provided with its
pixel-level mask of objects, not assuming any fixed annotation type (e.g., class-wise or instance-wise). To
incorporate it into the training process, we introduce two modifications to the architecture of the baseline
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model. Firstly, we propose to generate segmentation masks simultaneously with images via an additional
generator’s mask synthesis branch. Secondly, to enforce the precise mask alignment to the generated image
content, we re-formulate the objective of the content discriminator Dcontent, designing it to judge the fidelity
of different objects separately from each other. This is made possible by the introduced masked content
attention module, which builds a separate content feature vector for each object considering the provided
segmentation mask. The overview of our model architecture is shown in Fig. 6.3. Next, we describe the
proposed modifications in detail.

6.2.2 Mask Synthesis Branch in the Generator

In line with Tritrong et al. (2021); Zhang et al. (2021b), we hypothesize that during training the generator
should be able to learn discriminative features that completely describe the appearance of generated objects.
Thus, while synthesizing an image, we collect feature activations of the generator layers and use them as input
for the mask synthesis branch. In contrast to Tritrong et al. (2021); Zhang et al. (2021b), we use only the
activations after the last generator block, as this simplest solution already performs well in our experiments.
Using a simple convolution followed by a softmax activation, we transform these features into an N -channel
soft probability map, where each channel corresponds to one of N ´ 1 objects of interest in the segmentation
mask or to the background. To obtain the final discrete mask prediction, an argmax operation T along the
channel dimension is applied.

To enable the training of the mask synthesis branch with the discriminator loss, the generated masks should
allow back-propagation of gradients, similarly to generated images. In our experiments, feeding the discrim-
inator the continuous segmentation probability maps obtained before the non-differentiable argmax operation
T impaired the GAN training, as the discriminator learnt to detect the continuous-discrete discrepancy be-
tween fake and real inputs. Thus, inspired from Van den Oord et al. (2017); Bengio et al. (2013), we enable
back-propagation through argmax by developing a straight-through gradient estimator:

MaskArgmaxpyq “ y ` argmaxpyq ´ sgrys, (6.2)

where sg denotes a stop-gradient operation. This way, the discriminator is provided with the generated masks
in a discrete form T pyq, which enables its effective training, while the generator can be trained with the
gradients passing through its probability map prediction y.

Yet, this solution can sometimes lead to degenerate solutions, e.g., when all the pixels are predicted as the
background channel. This cannot be corrected during training, as in this case the gradient flow through all the
other mask channels is blocked. We found that it can be mitigated by softening the argmax operation T at
the beginning of training. For this, during the first P0 epochs we regard each mask pixel as a random variable
following Bernoulli distribution:

T pyq “

#

„ Bernoullipyq epoch ă P0,

argmaxpyq epoch ě P0.
(6.3)

6.2.3 Masked Content Attention in the Discriminator

To provide a training signal to the generator’s mask synthesis branch, we propose to incorporate the learning of
the image-mask alignment to the objective of the content discriminator Dcontent. In SIV-GAN, Dcontent was
designed to judge the content distribution of the whole given image. Considering the provided segmentation
mask, we can now select the image areas belonging to different objects, and require the discriminator to
learn their appearance separately from each other. With this objective, as the discriminator can compare the
appearance of the area belonging to the same object in real and fake images, it encourages the generator not
only to synthesize realistic objects, but also to label them correctly.
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To this end, we introduce a masked content attention (MCA) module. As shown in Fig. 6.3, MCA receives
a downsampled segmentation mask y along with an intermediate feature representation F pxq “ Dlow´levelpxq

of an input image x, and thereout produces a set of N content vectors, corresponding to the masked content
representations of each of the N ´ 1 objects of interest and the background:

MCApx, yq “ tAvgPool pF pxq ˆ 1y“iquNi“1. (6.4)

Accordingly, we re-design the objective of the content discriminator (further denoted Dobject). For each of
the obtained object representations, our proposed Dobject is induced to predict a correct identity of each object
or background of a real image, while all the identities of fake images should be categorized as an additional
fake class:

LDobject
“ ´Epx,yq

«

N
ÿ

i“1

αi logDi
objectpMCAi

px, yqq

ff

´Ez

«

N
ÿ

i“1

logp1 ´ Dfake
objectpMCAi

pGpzqqq

ff

,

(6.5)

where z is the noise vector used by the generator G to synthesize a fake image-mask pair Gpzq “

tGxpzq, Gypzqu, px, yq denotes the real image-mask pair, and Dip˚q is the discriminator logit for the object
i. Considering that different objects or background can occupy different areas, we introduce a class balancing
weight αi, which is the inverse of the per-pixel class frequency in the segmentation mask y:

αi “
psump1y“iqq´1

řN
j“1psump1y“jqq´1

. (6.6)

Note that the balancing is applied only for real images, as in Eq. 6.5 all fake objects are considered as the same
class.

Our Dobject learns the content distribution of each object separately. The advantage of such a training
scheme is two-fold. Firstly, a generator now needs to synthesize correct segmentation masks in order to fool
the discriminator. The precise image-mask alignment is thus enforced directly by the adversarial loss, without
the need for using additional networks or manual annotation. Secondly, as MCA provides representations only
of separate objects, Dobject has restricted access to the content distribution of the whole image. In effect, the
discriminator memorization of the whole training sample becomes more difficult, which enables more diverse
image synthesis (see Table 6.3).

6.3 Experiments

We evaluate OSMIS as follows. Firstly, we provide the qualitative and quantitative assessment of the achieved
one-shot image-mask synthesis, evaluating the quality and diversity of generated images, as well as their
alignment to the produced segmentation masks. Secondly, we apply OSMIS to two one-shot segmentation
applications, demonstrating the potential of the generated image-mask pairs to be used as data augmentation.

6.3.1 Experimental Setup

Training details. We train our model with the loss from Eq. (6.5) for the object discriminator Dobject, setting
P0=15000. We employ differentiable augmentation (DA) of input images and masks while training the dis-
criminator, using the whole set of transformations as proposed in Karras et al. (2020a). We use an exponential
moving average of the generator weights with a decay of 0.9999, and follow SIV-GAN in setting all the other
hyperparameters.
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Training pair Generated samples Training pair Generated samples

Figure 6.4: Qualitative results of OSMIS on DAVIS (Perazzi et al., 2016). Given a single image-
mask pair for training, our model achieves high-fidelity image synthesis with a high structural di-
versity, changing the positions of objects or editing the layout of backgrounds. For each synthesized
image, it produces segmentation masks that accurately annotate the generated content. Training pairs
are shown in red frames.

Datasets. To evaluate the synthesis, we use the DAVIS dataset (Perazzi et al., 2016), originally introduced
for video object segmentation. For each video from the DAVIS-17 validation split, we take the first frame and
its segmentation mask of objects, which results in 30 image-mask pairs on which we train separate models.
The resolution is set to 640x384. For additional visual results, we use samples from COCO (Lin et al., 2014),
trying to closely fit their resolution. Note that the datasets have different annotation types (class-wise and
instance-wise).

Metrics. To mind a possible quality-diversity trade-off in our one-shot regime (Robb et al., 2021; Li et al.,
2020), we assess the quality and diversity of generated images separately. For this, we report the average
SIFID (Shaham et al., 2019) as the measure of image quality, while the average LPIPS (Zhang et al., 2018b)
between the pairs of generated images is used to assess the diversity of synthesis.

On the other hand, evaluating the quality of generated masks is challenging, because generated images do
not have ground truth segmentation annotations. To bypass this issue, we propose to evaluate the alignment
between generated masks and synthetic images using an external segmentation network. For this, we take
a UNet (Ronneberger et al., 2015) and train it on the generated image-mask pairs for 500 epochs. After
training, we compute its mIoU performance on the original real image, augmented with standard geometric
transformations. Intuitively, a good performance on this test reveals that synthetic masks describe well the
objects from the real data, indicating precise alignment between the generated images and their masks.

6.3.2 Evaluation of One-Shot Image-Mask Synthesis

Qualitative results. Fig. 6.4 and 6.5 show the image-mask pairs generated by OSMIS trained on samples
from DAVIS and COCO. Given only a single image-mask pair, our model learns to generate new image-mask
pairs, demonstrating a remarkable structural diversity among samples, photorealism of synthesized images,
and a high quality of generated annotations. For example, OSMIS can re-synthesize the provided scene with
a different number of foreground objects, e.g., more dogs (3rd example in Fig. 6.4), less people (2nd example
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Training pair Generated samples Training pair Generated samples

Figure 6.5: Qualitative results of OSMIS on COCO (Lin et al., 2014). OSMIS successfully deals
with different scene types and annotation styles. For example, it achieves high quality and diversity
for both indoor and outdoor scenes, or sparse and dense annotations of foreground objects.

in Fig. 6.5), or edit layouts of backgrounds (1st examples in Fig. 6.4-6.5), in all cases providing accurate
segmentation masks for the re-synthesized scenes. In addition, we remark that OSMIS successfully deals with
very different scene types (e.g., both indoor and outdoor scenes), supports masks with both sparse and dense
object annotations (e.g., foreground objects occupying small or large image areas), and can handle masks with
many objects or even separate instances of the same semantic class (e.g., fish in 4th example in Fig. 6.4).

We note that reaching diverse synthesis from a single image-mask pair is extremely difficult from a single
sample. For example, as can be seen in Fig. 6.2, in this regime, prior image-mask GAN methods DatasetGAN
and SemanticGAN suffer from memorization issues and training instabilities. Like OSMIS, SemanticGAN
was trained from scratch, using a single provided image-mask pair as real data. On the other hand, the training
of DatasetGAN consisted of two stages: pre-training of the StyleGAN (Karras et al., 2019) backbone archi-
tecture on the single provided training image, and training a label synthesis branch with manual segmentation
annotations of generated images. Since StyleGAN typically collapsed to generating the same image, annotat-
ing a single generated sample was enough to train the label synthesis branch in our experiments. As seen from
Fig. 6.2, both SemanticGAN and DatasetGAN suffer from memorization issues, always producing the same
image that repeats the layout of the training sample. In addition, SemanticGAN showed unstable training,
resulting in a low visual quality of generated images and noisy annotations. In contrast, OSMIS achieves high
diversity and visual quality of generated image-masks at the same time. For example, in the examples from
Fig. 6.2 our model changes the number of sails or cars, at the same time editing the layout of the backgrounds,
while still preserving the realism of objects.

Quantitative results. We compare the quality and diversity of generated images to the single-image GAN
models SinGAN (Shaham et al., 2019), ConSinGAN (Hinz et al., 2021) and SIV-GAN (Sushko et al., 2021b).
The image-mask synthesis is compared to DatasetGAN (Zhang et al., 2021b) and SemanticGAN (Li et al.,
2021a). We use the official repositories provided by the authors.

The quantitative comparison of the image synthesis to single-image GAN models on DAVIS-17 is pre-
sented in Table 6.1. Compared to these models, OSMIS not only offers an additional ability to generate
segmentation masks, but also achieves higher image quality and diversity. As seen in Table 6.1, despite a
potential trade-off between SIFID and LPIPS, our model outperforms previously published baselines in both
metrics by a notable margin. Further, Table 6.2 demonstrates that prior image-mask methods, DatasetGAN
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Method SIFIDÓ LPIPSÒ

SinGAN 0.131 0.267
ConSinGAN 0.103 0.296
SIV-GAN 0.091 0.347
OSMIS (ours) 0.073 0.387

Table 6.1: Comparison of image quality and diversity to single-image GANs on DAVIS-17. Bold
denotes the best performance.

Method SIFIDÓ LPIPSÒ mIoU
DatasetGAN 0.118 0.007 91.1*
SemanticGAN 0.211 0.012 65.8
OSMIS (ours) 0.073 0.387 86.6

Table 6.2: Comparison to prior image-mask GANs on DAVIS-17. Bold denotes the best perfor-
mance. Red indicates mode collapse. * Indicates manual annotation of masks for DatasetGAN
training.

and SemanticGAN, suffer from instabilities and fail to achieve diverse synthesis, scoring very low in LPIPS.

6.3.3 Ablations

In Table 6.3 we compare the proposed masked content attention module (MCA) with three alternative discrim-
inator mechanisms to provide supervision for the generator’s mask synthesis branch. The simplest baseline is
to concatenate the input masks to images, requiring the discriminator to judge their realism jointly. Another
method is to use projection (Miyato and Koyama, 2018), by taking the inner product between the last linear
layer output of Dlow-level and the pixel-wise linear projection of the input mask. Finally, we compare to the
approach of SemanticGAN (Li et al., 2021a), adding a separate discriminator network Dm which takes both
segmentation masks and images, and propagate its gradients only to the generator’s mask synthesis branch.
While training these baselines, we preserve all the OSMIS hyperparameters, but remove the MCA and use the
original Dcontent as in SIV-GAN. As seen from mIoU in Table 6.3, MCA enables the generation of segmenta-
tion masks with the best alignment to the generated image content, as measured by an external segmentation
network. Notably, while all the alternative methods negatively affect diversity, MCA improves it (0.387 vs
0.368 LPIPS), highlighting its regularization effect which prevents the discriminator memorization of training
data.

While enabling on average higher image diversity and mask quality, we found that MCA can struggle if
the training sample contains annotations of fine-grained object details, due to downsampling of input masks.
This is illustrated in Fig. 6.6 and Table 6.4, for which we train OSMIS with different numbers of low-level
discriminator blocks Nlow-level, corresponding to different degrees of mask downsampling. We observe a trade-
off between the quality of images and masks: decreasing Nlow-level improves the image diversity and pixel-level
mask fidelity, but harms image quality. We selected Nlow-level “ 4 as a compromise between the metrics in
Table 6.4, even though this configuration sometimes fails to annotate small object details (as in Fig. 6.6). Note
that despite this limitation, MCA still outperforms other methods that do not use downsampling on DAVIS-17
(see Table 6.3), and leads to image-mask pairs that are more useful as data augmentation, as discussed next.
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Mask supervision SIFIDÓ LPIPSÒ mIoU
None 0.071 0.368 -
Projection 0.071 0.362 72.1
Input concat. 0.079 0.328 82.4
SemanticGAN Dm 0.074 0.351 83.3
MCA (ours) 0.073 0.387 86.6

Table 6.3: Comparison of MCA to other mask synthesis supervision mechanisms on DAVIS-17. Red
indicates decreased diversity compared to the baseline. Bold denotes the best performance.

Training pair Nlow-level “ 1 Nlow-level “ 2 Nlow-level “ 3 Nlow-level “ 4 Nlow-level “ 5

Figure 6.6: Trade-off between the image and mask quality when varying the number of Dlow-level

discriminator blocks. Increased number improves image quality, but harms the ability of masks to
capture fine-grained object details due to stronger downsampling during training.

6.3.4 Application to One-Shot Segmentation Tasks

After training, OSMIS can augment the provided image-mask pair with novel diverse samples. As such diver-
sity (edited backgrounds, objects changing relative locations) is difficult to achieve by means of standard data
augmentation, we foresee a potential usage of our model as a source of labelled data augmentation. Thus, in
what follows, we test the efficacy of OSMIS generations when applied at test phase of two one-shot segmen-
tation applications.

One-shot video object segmentation. We apply our model to the semi-supervised one-shot video segmenta-
tion benchmark DAVIS (Perazzi et al., 2016). At test phase, this task provides a video and the segmentation
mask of objects only in the first frame, while a model is required to segment all the remaining video frames.
We select two popular models from the literature: OSVOS (Caelles et al., 2017), which fine-tunes the network
weights on the first video frame and segments other frames independently, and STM (Oh et al., 2019), which
propagates the segmentation prediction sequentially using a space-time memory module. We conduct exper-
iments on two DAVIS splits: DAVIS-16, having 20 videos with a single annotated object; and its extension
DAVIS-17, having 30 videos with multi-instance annotations. To evaluate the video segmentation, we compute
the average of the mean mIoU region similarity (J ) and the mean contour accuracy (F) across all videos,
which is a popular metric for this task (Perazzi et al., 2016).

One-shot semantic image segmentation. The second setup is the one-shot image segmentation benchmark
COCO-20i (Lin et al., 2014). In this task, a segmentation model is first trained on a large dataset. At test
phase, the model is given a single image-mask pair (support set) with an object of a previously unseen test
class, and is then required to segment another sample (query image) containing instances of the same class.
We conduct experiments with the state-of-the-art RePRI network (Boudiaf et al., 2021). COCO-20i contains
80 classes, which are divided into 4 folds, with 60 base and 20 test classes in each fold. To test OSMIS, we
randomly selected 5 support samples for each test class, resulting in 100 image-mask pairs in each of the folds,
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Nlow-level SIFIDÓ LPIPSÒ mIoU
1 0.262 0.395 82.4
2 0.165 0.404 87.1
3 0.102 0.394 86.9
4 0.073 0.387 86.6
5 0.070 0.321 83.9

Table 6.4: Ablation on the number of Dlow-level discriminator blocks on DAVIS-17. Bold denotes the
best performance.

and trained OSMIS on all of them separately. The performance of this task is evaluated separately for each
fold, using the average mIoU across many different support-query examples.

Experimental setup. For both applications, we train OSMIS on the single given image-mask pair (the first
video frame or support sample). We try to closely fit the resolution of each image from COCO, and set a
fixed resolution of 640x384 for images from the DAVIS benchmark. After training, we generate a pool of
synthetic image-mask pairs consisting of n “ 100 samples. As OSMIS can occasionally fail and synthesize
noisy examples, we compute the SIFID metric (Shaham et al., 2019) for each generated image as a measure of
its quality. Ranking the images by the average of SIFID ranks at different InceptionV3 layers, we exclude bad-
quality samples by filtering out 15% lowest-ranked images. Finally, we add the remaining synthetic samples to
the original image-mask pair as data augmentation. However, the exact method of utilizing data augmentation
depends on the segmentation network, as described next.

OSVOS (Caelles et al., 2017) fine-tunes weights of a pre-trained segmentation network on the image and mask
of the first frame of a given video sequence. At each fine-tuning epoch, we double the batch size and randomly
add generated image-mask pairs to the original data. Therefore, we keep the 50%-50% ratio between real and
synthetic data, which we found to yield the best video segmentation performance.

STM (Oh et al., 2019) scans a given video sequence frame-by-frame, starting from the first frame, for which
a mask annotation is provided. This image-mask pair, as well as each K-th pair of a video frame and its
segmentation prediction are added to a spatio-temporal memory bank. The memory bank is used to make the
segmentation prediction of the latest video frames more accurate. To employ data augmentation, we added
synthesized image-mask pairs to the STM memory bank at step 0, before processing the first video frame.
To fit the memory bank into GPU memory, we had to limit the number of added samples to 10, which were
sampled randomly from the synthetic pool.

RePRI (Boudiaf et al., 2021) trains a small pixel-level classifier given a single support image-mask pair con-
taining an object of a previously unseen class. We simply provide synthetic image-mask pairs as data aug-
mentation for the original data. To fit the extended support set into GPU memory, we limited the number of
added samples to 10. This way, the task of RePRI could be technically regarded as 11-shot semantic image
segmentation, where all the available support data originates from a provided data sample.

Among the used segmentation models, only OSVOS (Caelles et al., 2017) applies data augmentation at
test phase (random combinations of image-mask flipping, zooming, and rotation). Thus, in experiments we
compare our synthetic data augmentation to this pipeline (referred to as standard augmentation).

6.3.5 Effectiveness of Synthetic Data Augmentation

The performance of segmentation networks using different data augmentation is shown in Tables 6.5 and 6.6.
To account for the variance between runs, all the results are averaged across 5 runs with different seeds for
augmentation. We generally managed to reproduce the official reported numbers closely, with the exception
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Network
Augmentation:

DAVIS-16 DAVIS-17
Standard Ours

OSVOS

✗ ✗ 76.9 51.3
✓ ✗ 78.5 (80.2) 52.9 (52.8)

✗ ✓ 78.2 52.6
✓ ✓ 79.8 54.2

STM

✗ ✗ 89.7 (89.4) 72.4 (72.2)

✓ ✗ 89.9 72.4
✗ ✓ 90.1 72.6
✓ ✓ 90.2 72.7

Table 6.5: Effect of data augmentation on the mean of mIoU and contour accuracy (J&F) of one-
shot video object segmentation. Bold denotes the best performance. Round brackets show the results
reported in (Caelles et al., 2017; Oh et al., 2019). Reproduced and reported numbers for OSVOS
differ as its official code lacks some model components.

Network
Augmentation:

COCO0 COCO1 COCO2 COCO3

Standard Ours

RePRI

✗ ✗
31.2 38.3 32.9 33.2
(31.2) (38.1) (33.3) (33.0)

✓ ✗ 31.8 38.5 33.4 33.8
✗ ✓ 32.4 38.7 33.7 34.3
✓ ✓ 32.8 39.0 34.1 34.6

Table 6.6: Effect of synthesized data augmentation on mIoU of one-shot image segmentation. In
each data split, support examples were sampled from a subset of 100 image-mask pairs, for which
our model was trained. Bold denotes the best performance. The round brackets contain the numbers
reported in (Boudiaf et al., 2021).

of OSVOS, for which the official codebase1 does not implement the model in full configuration. As seen in
Tables 6.5 and 6.6, the synthetic data augmentation produced by OSMIS yields a notable increase in segmen-
tation performance, on average improving the metrics of OSVOS and STM by 1.3 and 0.3 J&F points, and
RePRI by 0.9 mIoU points compared to the models using no data augmentation. Despite a possible mismatch
between OSMIS training resolution and target image size (e.g., 640x384 vs 854x480 for DAVIS) and the need
for image resizing, our synthetic data augmentation consistently outperforms standard data augmentation for
STM and RePRI, and is almost on par for OSVOS, which was originally tuned for training with standard data
augmentation. These results validate the ability of OSMIS to generate structurally diverse data augmentation
of sufficient quality in the one-shot regime. Finally, we note that the effect of OSMIS generations is comple-
mentary to standard data augmentation, as the best results for all models are observed when the two pipelines
are used in combination.

Table 6.7 demonstrates the efficiency of synthetic data augmentation obtained with different GAN models.
The previous image-mask models DatasetGAN and SemanticGAN both show poor applicability in the scenario
of one-shot applications due to poor synthesis performance. Further, among the comparison methods for mask
synthesis supervision, the strongest increase in performance is achieved with our proposed MCA module. This

1https://github.com/kmaninis/OSVOS-PyTorch
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Synthesis method
OSVOS, DAVIS-16 RePRI, COCO0

J&F mIoU
Reference w/o synth. augm. 78.5 31.8
SemanticGAN 73.1 29.4
DatasetGAN 77.8 30.9
Projection 78.4 30.9
Input concat. 79.3 31.9
SemanticGAN Dm 79.5 32.3
MCA (ours) 79.8 32.8

Table 6.7: Impact on the performance of synthesized data produced with different models and mask
supervision methods. The reference performance is obtained using standard data augmentation. Bold
denotes the best performance.

Data selection η
OSVOS, DAVIS-16 RePRI, COCO0

J&F mIoU
Reference w/o augmentations 78.5 (+0.0) ˘0.3 31.2 (+0.0) ˘0.1

No data selection - 78.7 (+0.2) ˘0.6 30.7 (-0.5) ˘0.5

Only SIFID-pool1 15% 79.3 (+0.8) ˘0.5 32.2 (+1.0) ˘0.4

SIFID-{1,2,3,4} (ours)

5% 79.3 (+0.8) ˘0.6 31.9 (+0.7) ˘0.4

10% 79.6 (+1.1) ˘0.4 32.6 (+1.4) ˘0.2

15% 79.8 (+1.3) ˘0.3 32.8 (+1.6) ˘0.2

25% 79.7 (+1.2) ˘0.3 32.3 (+1.1) ˘0.2

50% 79.5 (+1.0) ˘0.3 32.0 (+0.9) ˘0.1

Table 6.8: Impact of synthetic data selection strategies on one-shot segmentation performance. Bold
and underlined show the first and second best performance.

indicates that the high synthesis diversity and precise image-mask alignment (see Table 6.3) are the keys to
achieve useful data augmentation.

Finally, Table 6.8 shows that it is important to filter out noisy samples before forming a pool of synthetic
augmentations. For example, if generated samples are used without any filtering, the performance of segmen-
tation networks can decrease. On the contrary, a simple strategy to filter out 15% of lowest-ranked generated
images by SIFID, computed after the first pooling layer of the InceptionV3 network, helps to reduce the im-
pact of bad-quality augmentation and, in effect, substantially improves the final segmentation performance.
However, we observed that the SIFID metric is biased towards low-level image statistics, such as color and
texture distributions, and is not indicative of the quality of generated images at higher scales. To account for
the quality of generated images at different scales, we ranked synthesized examples by a joint ranking at differ-
ent layers (denoted as SIFID-1,2,3,4), taking the average of all ranks. As seen in Table 6.8, filtering out noisy
examples using this strategy helps to boost the performance of one-shot segmentation networks. Furthermore,
we observed that it helps to significantly decrease the performance variance between different runs, which gen-
erally increased while using synthetic data augmentation in our experiments. Lastly, Table 6.8 demonstrates
that the filtering rate should be neither too low nor too high: filtering out only 5% or 10% leaves some low
quality images that are harmful for the data augmentation efficiency, while filtering too many samples (25%,
50%) decreases the diversity of the synthetic data pool and thus also diminishes its effectiveness.
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6.4 Conclusion

We presented OSMIS, an unconditional GAN model that can learn to generate new high-quality image-mask
pairs from a single training pair, not relying on any pre-training data. In such a low-data regime, our model
generates photorealistic scenes that structurally differ from the original samples, while the produced masks
are precisely aligned to the generated image content. Without requiring any extra data for pre-training, it can
serve as a source of useful data augmentation for one-shot segmentation applications, providing complemen-
tary gains to standard image augmentation. Thus, we find using one-shot image-mask synthesis in practical
applications promising for future research.

Although OSMIS demonstrates impressive diversity of synthesis, it is important to note that its capabilities
remain inherently constrained by the appearance of objects in the original training samples. For instance, when
presented with white cars as depicted in 6.2, OSMIS cannot be expected to generate cars of varying colors or
models. This limitation of OSMIS is shared with our model SIV-GAN, introduced in Chapter 5, where it is
similarly not expected to change colors of the cars present in Fig. 5.1. Another common limitation of SIV-
GAN and OSMIS is that these models exhibit limited interpolation ability. For example, when provided with
multiple images featuring cars of different colors and shape, our models usually do not generate novel cars with
intermediate sizes and shapes that lie between the displayed examples. In the next chapter, we will introduce
an approach that aims to address these limitations by utilizing pre-trained GAN models.



CHAPTER 7

Smoothness Similarity Regularization
for Few-Shot GAN Adaptation

In Chapters 5 and 6, we introduced GAN models for diverse synthesis in extremely low data regimes, trained
from scratch. This chapter explores an alternative approach to improve few-shot GAN synthesis by leveraging
pre-training. This task, known as few-shot GAN adaptation, involves fine-tuning GAN models that were
pre-trained on large, diverse datasets using a small few-shot dataset consisting of 1-10 images. The use of
pre-trained models comes with both advantages and disadvantages. On one hand, models trained without
pre-training are inherently limited in capacity due to the narrow scope of features present in the training data,
making generalization and extrapolation challenging. This way, pre-training has the potential to enhance the
quality, diversity, and generalization of models. On the other hand, pre-training typically works well only
when the structures of the pre-training dataset are similar to the few-shot target dataset, which restricts its
usage in rare image domains. In this chapter, we aim to mitigate this limitation. To this end, we propose
a new smoothness similarity regularization for the generator that transfers the inherently learned smoothness
of the pre-trained GAN to the few-shot target domain. The advantage of this regularization is that it works
well even if the source and target domains are very different. The proposed approach is evaluated by adapting
both unconditional and class-conditional GANs to diverse few-shot target domains. Our method significantly
improves the quality and diversity of few-shot GAN synthesis in rare domains.

Individual Contribution

This chapter is based on the following publication (Sushko et al., 2023a):

Smoothness Similarity Regularization for Few-Shot GAN Adaptation
Vadim Sushko, Ruyu Wang, Juergen Gall
IEEE International Conference on Computer Vision (ICCV), 2023. DOI: 10.1109/ICCV51070.2023.00651

This publication is the result of a collaborative effort between Vadim Sushko and Juergen Gall. Vadim
Sushko proposed the initial idea of regularizing the fine-tuning a GAN with the smoothness of the source
generator, which was further refined and extended through joint discussions with Juergen Gall. Ruyu Wang
greatly assisted this project with helpful discussions and implementations of the class-conditional setting.
All co-authors contributed to the writing of the paper. Vadim Sushko, as the first author, made substantial
contributions to all stages of the project, including the initial idea, implementation, and paper writing.
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Figure 7.1: Training a GAN model G on a few-shot dataset (row 1) from scratch fails due to training
instabilities (row 2). We thus aim to adapt a GAN Gs that has been pre-trained on a large dataset like
LSUN-Church (row 3) to the target few-shot dataset (Gt). While fine-tuning (Ojha et al., 2021) does
not perform well either if source and target are dissimilar (row 4), our approach generates diverse
and realistic images (row 5) by transferring the smoothness properties of Gs.
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7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.1 Introduction

Generative adversarial networks (GANs) have been shown powerful at various image synthesis tasks (Choi
et al., 2020; Schönfeld et al., 2021; Chan et al., 2022; Karras et al., 2021; Sauer et al., 2022, 2023). The
success of these models is in large part enabled by the availability of large datasets for training, typically
consisting of thousands of images. However, there are many applications and computer vision tasks such as
one-shot or few-shot learning (Boudiaf et al., 2021; Tian et al., 2020b), out-of-distribution detection (Ren et al.,
2019), or long-tailed recognition tasks (Gupta et al., 2019) where the number of available training images is
very low.

Since training a GAN from scratch on very few samples does not perform well as shown in Fig. 7.1,
a common strategy is to fine-tune a pre-trained GAN model on the few-shot dataset, typically employing
additional regularization losses to penalize the degradation of the diversity (Ojha et al., 2021; Xiao et al.,
2022). This approach, referred to as few-shot GAN adaptation, performs well when the target domain is
structurally very similar to the dataset that has been used for pre-training, e.g., photographs vs. sketches of
human faces. However, the performance drastically degrades in case of large dissimilarities between the
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learned smoothness of Gs while adapting it to a target domain with very few images. To mitigate
overfitting to the target domain, the discriminator loss utilizes features at various layers and automat-
ically adjusts the impact of different semantic scales to the similarity of source-target domains.

source and target domain as shown in Fig. 7.1. Such dissimilarities are a major bottleneck of using GANs
in other disciplines like medicine, production, or crop science, where there is a lack of large datasets due to
privacy, confidentiality, or simply lack of data. Motivated by this fact, we extend the protocol for few-shot
GAN adaptation by investigating also pairs of datasets that are very different like churches and shells as shown
in Fig. 7.1.

To improve few-shot GAN adaptation in the case of structurally dissimilar pairs, we propose a new GAN
adaptation strategy. Firstly, we propose a new smoothness similarity regularization for the generator. Our
key observation is that pre-trained GAN generators, regardless of the exact structure of objects in the pre-
training dataset, learn well-structured and smooth latent spaces. For example, prior works demonstrated that
various local shifts in the latent space can lead to interpretable and smooth transitions of output images, such
as translation of objects in the scene or changing their size (Voynov and Babenko, 2020; Härkönen et al., 2020;
Shen and Zhou, 2021). As we show in our experiments, the proposed smoothness similarity regularization
enables the transfer of this desirable property to other few-shot image domains without compromising the
synthesis quality. Secondly, to overcome overfitting issues, we revisit the adversarial loss function of the
discriminator and propose a simple yet efficient modification by computing the loss at different layers of the
discriminator. This leads to the mitigation of overfitting and a more stabilized adaptation of the model to
diverse target domains.

We evaluate our approach by adapting an unconditional (Karras et al., 2020b) and a class-conditional
GAN (Brock et al., 2019) to diverse few-shot target domains. Our model significantly outperforms previous
state-of-the-art methods in image quality and diversity in the challenging case of dissimilar source and target
domains, while performing on par with the state of the art on structurally similar dataset pairs. In summary, our
contributions are as follows: (i) We extend the evaluation protocol for few-shot GAN adaptation by including
new dataset pairs that are structurally much less similar than was considered in prior work. (ii) We propose a
new smoothness similarity regularization, which enables diverse synthesis in the target domain by transferring
the learned smoothness of a pre-trained GAN. (iii) We revisit the adversarial loss function of the discriminator
to stabilize few-shot GAN adaptation across diverse target domains. (iv) Our proposed model enables high-
quality synthesis in the challenging case of dissimilar source and target domains, significantly outperforming
prior methods. In addition, we show that our method can be applied to different classes of GAN architectures,
including unconditional and class-conditional GAN models.

7.2 Method

In the task of few-shot GAN adaptation, we are given a small target dataset T and a pre-trained GAN model,
consisting of a discriminator D and a generator Gs, which produces an image x “ Gspzq from a continuous
input variable z, such as a random noise vector or a continuous class embedding. The goal is to adapt the
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generator to the target dataset such that it generates diverse and realistic images in the target domain as shown
in Fig. 7.1. We denote the adapted target generator by Gt.

To achieve few-shot synthesis with a high image quality and diversity, our model should adhere to the
following two properties. Firstly, the generator Gt should not only memorize and generate the target images,
which will be addressed by the smoothness similarity regularization (Sec. 7.2.1). Secondly, the discriminator
D must avoid overfitting to the few target images in order to provide useful supervision for Gt (Sec. 7.2.2).
The overview of our method is shown in Fig. 7.2.

7.2.1 Smoothness Similarity Regularization for the Target Generator

In a low data regime like ours, Gt can easily overfit to the target dataset T and collapse to reproducing only
the few modes represented in the training data. When walking in the latent space of such a generator, one
would observe “staircase” patterns, where minor shifts in the latent space cause discontinuous transitions in
the output image space (as shown in row 4 of Fig. 7.5). Naturally, to achieve a synthesis of high diversity,
it is desirable for Gt to avoid such discontinuities, as having smoother image transitions allows to generate
intermediate samples that can exhibit novel features. Therefore, in our model we aim to encourage Gt to
produce smooth latent space interpolations, in which all the intermediate images are realistic.

Our approach is based on the observation that GANs trained on large datasets tend to have a well-structured
latent space (Voynov and Babenko, 2020; Härkönen et al., 2020; Shen and Zhou, 2021), in which different
latent space directions can lead to smooth and interpretable image transitions. For example, in a generator pre-
trained on a large dataset of churches, there can emerge latent directions causing smooth zooming or translation
of churches (see Fig. 7.2). Our observation is that the nature of such image transitions (e.g., zooming or
translation) is remarkably general. Thus, we propose a regularizer that utilizes this smoothness property of
the source generator Gs as a cue while adapting it to another image domain, which can be very different from
the domain that was used for pre-training. For example, as shown in Fig. 7.2, the same latent directions of
churches can cause similar zooming or translation effects on shells.

Mathematically, the smoothness of the generator can be represented via a Jacobian matrix JGlpzq “

||BGlpzq{Bz||, quantifying how the generator’s intermediate features after the l-th block change under local
shifts in the latent space. As we want the same latent shift to cause perceptually similar image transitions in
the source and target domains, we design a regularization term that brings the Jacobian matrices of Gl

s and
Gl

t closer together. As the computation of full Jacobian matrices is expensive, we use an unbiased estimator
of their products with a Gaussian vector (Dauphin et al., 2015; Karras et al., 2020b), which can be computed
with standard back-propagation:

JT
Glpzq ¨ y “ Epyq„Np0,1q∇zxGlpzq, yy, (7.1)

where y is a Gaussian tensor of the same shape as Gl. Our smoothness similarity regularization is then
expressed as:

LSS “ λSS ¨Epz,yq„Np0,1q||∇zxGl
spzq, yy ´ ∇zxGl

tpzq, yy||2, (7.2)

where λSS steers the impact of the regularizer. As shown in Fig. 7.2, the smoothness similarity regularization
depends on both generators, but only Gt is updated. It is interesting to note that the Jacobian matrix is also
used for the path length regularization (Karras et al., 2020b), which forces JGpzq to be orthogonal up to a
global scale at any z. While this alternative regularizer also induces some form of smoothness, it does not
transfer the inherently learned smoothness of a pre-trained GAN. In our experiments we show that it struggles
to enforce the realism of intermediate images, as will be discussed in Sec. 7.3.4.

7.2.2 Revisiting the Adversarial Loss

To identify what kind of image transitions look realistic for the target domain, Gt requires strong supervision
from the discriminator on image realism at different semantic scales. This includes the colors and textures of
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Figure 7.3: Visual comparison to prior methods on source-target dataset pairs with a dissimilar
structure. In this challenging regime prior methods suffer from training instabilities, memorization
issues, or inability to adapt the shapes of objects to the new domain. In contrast, our method generates
realistic images that flexibly combine the features of different target images.

objects, as well as object shapes, especially if their distribution is different from the shapes of objects in the
source domain. Learning the concept of image realism in low data regimes is, however, challenging due to the
problem of overfitting.

Typically, a GAN discriminator consists of several consecutive blocks tDiuNi“1 and for each given image
x computes a real/fake logit after the last block l “ sN ˝ DN pxq, where sN is a final processing layer such as
a convolution. When adapting to a very small dataset, such a discriminator is prone to memorizing the training
set (Sushko et al., 2021b), leading to mode collapse and a synthesis of poor diversity (Ojha et al., 2021).
A possible solution (Ojha et al., 2021; Xiao et al., 2022) to overcome memorization is to use variants of the
PatchGAN discriminator (Isola et al., 2017), discarding the latest discriminator layers: l “ sk˝Dkpxq, k ă N .
This solution allows to adapt colors and textures of generated images to the target domain and still to avoid the
memorization problem. However, it naturally has a limited capacity to learn more high-level semantic scene
properties such as the shapes of objects, which we show in experiments.

In order to avoid memorization, and yet to balance the adaptation of colors, textures, and shapes of gen-
erated objects to a new domain, we hypothesize that a more flexible attention to different levels of image
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realism is required by the discriminator. To this end, we perform a simple yet efficient modification to the loss
function of the discriminator. Given a discriminator tDiuNi“1 and its adversarial loss function LDplq used for
pre-training (e.g., cross-entropy or hinge loss), we design the discriminator to produce real/fake logits after
each discriminator’s block, and correspondingly compute the loss as the average across all blocks:

Lallpxq “
1

N

N
ÿ

i“1

LDrlipxqs, lipxq “ si ˝ Dipxq. (7.3)

With the new objective, D is given more freedom to utilize the features extracted at different scales to com-
pute the loss. Our finding is that D dynamically learns to use this freedom to identify the correct magnitude of
each scale’s loss contribution individually for each target domain, without explicit supervision. Consequently,
we observe a strong overall stabilization effect on the adaptation performance across diverse source-target
dataset pairs.

7.3 Experiments

To demonstrate that our approach for few-shot GAN adaptation can be applied to unconditional and class-
conditional GANs, we selected for each category a popular GAN architecture: unconditional StyleGANv2
(Karras et al., 2020b) and class-conditional BigGAN (Brock et al., 2019). For both models, we test our
approach on a variety of source-target domain pairs. For fair comparisons with prior works, most of our
ablations and comparisons are conducted in the unconditional setting with StyleGANv2.

7.3.1 Experimental Setup

Datasets. In contrast to previous works that mostly considered pairs of similar datasets like FaceÑSketch
and FaceÑSunglasses, we extend the protocol by including structurally dissimilar pairs of source and target
domains, which is a more challenging task and is our primary interest. As source generators, we use Style-
GANv2 checkpoints pre-trained on FFHQ (Karras et al., 2019), LSUN-Church, and LSUN-Horse (Yu et al.,
2015). For the target datasets, we selected 10-shot subsets of various commonly used few-shot datasets, such
as Anime-Face, Shells, or Pokemons (Zhao et al., 2020a; Liu et al., 2021).

Training details. We fine-tune StyleGANv2 using the LSS and Lall loss terms as presented in Sec. 7.2.
For the smoothness similarity regularization, we use the intermediate features Gl at resolution (32ˆ32) and
set λSS “ 5.0. We follow Ojha et al. (2021) in choosing all the other hyperparameters, such as image
resolution (256ˆ256), learning rates, and batch size. Our experiments across all datasets use the same model
configuration and set of hyperparameters.

Baselines. We compare our method to most recent few-shot GAN adaptation approaches: TGAN (Wang
et al., 2018b), FreezeD (Mo et al., 2020), CDC (Ojha et al., 2021), RSSA (Xiao et al., 2022), and AdAM
(Yunqing et al., 2022). In addition, we compare our proposed smoothness similarity regularizer LSS to other
regularization techniques: path length regularization (PPL) (Karras et al., 2020b) and MixDL (Kong et al.,
2022).

Evaluation. We assess the diversity and the quality of the generated images in the target domains. Following
Ojha et al. (2021), we evaluate diversity with the intra-LPIPS, a measure that clusters generated images around
the nearest training samples and computes the average LPIPS (Zhang et al., 2018b) of all the clusters. To
measure the image quality, we use FID (Heusel et al., 2017) computed between a held-out validation set and a
generated set of the same size. We train all models for 30k epochs in case of dissimilar source-target domains
and for 5k on close domain pairs, evaluating metrics every 1k epochs. The final checkpoints in all experiments
are selected by best FID.
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Figure 7.4: Visual comparison to most recent prior methods on FaceÑSketch and
ChurchÑSunglasses, the dataset pairs depicting similar image domains. In this regime, our method
performs on par with previous state of the art. See Table 7.2 for a quantitative comparison.

Method
FaceÑAnime ChurchÑShells HorseÑPokemons

FIDÓ LPIPSÒ FIDÓ LPIPSÒ FIDÓ LPIPSÒ

TGAN 153.2 0.29 205.3 0.22 115.0 0.52

FreezeD 112.4 0.22 180.8 0.27 123.3 0.49

CDC 140.2 0.50 187.9 0.48 109.5 0.55

RSSA 133.2 0.37 182.4 0.44 117.3 0.54

AdAM 116.4 0.42 152.4 0.28 106.5 0.55

Ours 97.3 0.57 140.5 0.53 84.1 0.61

Table 7.1: Comparison of the adaptation performance in case of dissimilar source-target domains.
Bold denotes best performance.

7.3.2 Results With Dissimilar Source-Target Domains

We first present our results on the source-target domain pairs with dissimilar structure: FaceÑAnime,
ChurchÑShells, and HorseÑPokemon (see Fig. 7.3). Our general observation from Fig. 7.3 is that in this
challenging regime prior methods suffer either from training instabilities, memorization issues, or inability
to adapt the shape of objects to the new domain. For example, for FaceÑAnime, despite an apparent corre-
spondence between the two domains, none of the prior methods successfully transfers the distribution of head
poses to the anime style, e.g., overfitting too strongly to the 10 provided samples (FreezeD), failing to adapt
the shape of faces to the style of anime (CDC), or not generating high-quality anime-faces due to instabilities
(TGAN, RSSA, AdAM). Similarly, for ChurchÑShells we observe that prior methods produce only copies of
the example shells (FreezeD, AdAM), generate shells of unrealistic church-like shapes (CDC, RSSA), or suf-
fer from instabilities (TGAN). In contrast, our method achieves high-quality synthesis, in which the generated
images (i) look like realistic anime-faces and shells; (ii) flexibly combine features observed in different target
images (e.g., anime hair color can be combined with various eye colors or background styles); and (iii) mean-
ingfully transfer the variation of images from the source domain (e.g., generated shells adjust to the positions
and shapes of churches).
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Method
FaceÑSketch FaceÑSunglasses

FIDÓ LPIPSÒ FIDÓ LPIPSÒ

TGAN 54.2 0.38 36.8 0.56

FreezeD 48.8 0.32 32.0 0.59

CDC 54.2 0.40 30.5 0.59

RSSA 61.4 0.45 36.3 0.58

AdAM 56.3 0.37 31.1 0.60

Ours 45.2 0.44 27.5 0.60

Table 7.2: Comparison in case of close source-target domains. Bold denotes best performance.
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Figure 7.5: Latent space interpolations of the source generator and the ablation models from Ta-
ble 7.3. Leftmost and rightmost columns show the used D loss and G smoothness regularization.

The quantitative comparison in Table 7.1 confirms our analysis, where our method achieves the best quality
and diversity scores across all datasets. We note a high average relative improvement of more than 18% and
11% in FID and LPIPS compared to the highest scores achieved by prior methods. Overall, we conclude that
our method significantly improves over prior works on few-shot GAN adaptation with dissimilar source and
target domains.

7.3.3 Results With Close Source-Target Domains

Next, we follow the evaluation of prior works and compare the models on similar source and target do-
mains, such as adaptation of human faces to a different style. The visual results for FaceÑSketch and
FaceÑSunglasses are shown in Fig. 7.4. Our method successfully performs the few-shot adaptation in this
setting, adapting the colors and textures of faces to the gray-scale sketch domain, or adding a novel attribute
(sunglasses). We note that our method is not explicitly designed to transfer all the details of a face from the
source domain, thus changes in the generated images like facial hair are expected. Yet, we observe that our
method generally does not lose distinctive features of faces in source images, performing on par with previous
state-of-the-art methods. The quantitative comparison is provided in Table 7.2: on both datasets our method
achieves the best FID scores and performs on par with the best performer in LPIPS.
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FaceÑAnime ChurchÑShells

Figure 7.6: The contribution of features at different D blocks to the adversarial loss function Lall.
For two closer image domains (the left plot), the network concentrates mostly on earlier layers to
compute the loss, while for less similar domains the network learns to use the later layers representing
more high-level D features.

D loss
Smooth FaceÑAnime ChurchÑShells

reg. for G FIDÓ LPIPSÒ FIDÓ LPIPSÒ

StyleGANv2 - 178.0 0.21 243.8 0.17

StyleGANv2 SS (ours) 180.7 0.61 252.8 0.62

PatchGAN - 145.2 0.37 183.1 0.31

PatchGAN SS (ours) 132.2 0.55 184.2 0.56

Lall (ours) - 116.4 0.36 175.4 0.43

Lall (ours) SS (ours) 97.3 0.57 140.5 0.53

Table 7.3: Impact of Lall and LSS . Bold denotes best performance.

7.3.4 Ablations

We demonstrate the importance of our proposed loss terms in Fig. 7.5, which shows latent space interpolations
of trained models and their similarity to the pre-trained source model Gs (row 1). Firstly, we note that the plain
StyleGANv2 model (row 2) suffers from instabilities in our low data regime, achieving poor image quality and
diversity and having “staircase”-like latent space interpolations. Applying LSS without Lall (row 3) helps to
achieve diverse synthesis with smooth interpolations, but is not enough to achieve good image quality. On
the other hand, using Lall (row 4) helps to overcome instabilities and improve image quality, but it cannot
maintain smooth interpolations and high diversity. Finally, our full model (row 5) allows a higher-quality,
diverse synthesis with smooth and realistic latent space interpolations. Note how the image transitions mimic
the behaviour of the source model (churches and shells change shapes and positions similarly), allowing to
achieve diverse and realistic synthesis.

The effect of Lall is further demonstrated in Fig. 7.6, where we show the contribution of different D
blocks to the adversarial loss at different epochs. We note the ability of the discriminator to identify correct
loss contributions adaptively for different source-target domain pairs. For example for FaceÑAnime, the
network concentrates mostly on the earliest D blocks to adapt the colors and textures of faces to a new style.
In contrast, for the more distant domains ChurchÑShells, the network learns to attribute a higher weight to
the later blocks to also adapt higher-level features, such as shapes of objects. In effect, we observe a stabilized
adaptation of colors, textures, and shapes of objects across diverse source-target pairs. Using PatchGAN (Ojha
et al., 2021) as discriminator loss does not achieve such a balance as it focuses mostly on lower-scale features
(row 6 in Fig. 7.5).

Our observations are confirmed by the quantitative study in Table 7.3: without LSS the model does not
achieve high diversity (high LPIPS), while Lall is necessary for high image quality (low FID). We conclude
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Figure 7.7: Latent space interpolations of the source generator and the ablation models from Table
7.4. Leftmost and rightmost columns show the used λSS and the resolution of Gl.

that both our proposed loss terms are important to achieve high-quality synthesis.

An ablation on the parameters of LSS (λSS and the resolution of features Gl)) is provided in Fig. 7.7 and
Table 7.4. Firstly, we observe the effect of λSS (rows 3-6 in Fig. 7.7 and rows 2-5 in Table 7.4). As seen from
the ablation study, compared to the model without any regularization, our smoothness similarity regularization
helps to overcome memorization and achieve diverse synthesis. The effect of LSS is, as expected, higher when
λSS is increased, which is indicated by increasing LPIPS scores. Yet, we find that setting a high λSS starts
to compromise the image quality, as the loss starts to overtake the adversarial loss supervision. We found
that λ “ 5.0 consistently achieves a good trade-off between image quality and diversity across many source-
target domains. Furthermore, we observe the effect of using features at different resolutions, corresponding to
different generator blocks (rows 7-10 in Fig. 7.7 and rows 6-9 in Table 7.4). We find that using later generator
blocks at higher resolution increases the impact of the regularization. However, we also observe that using
a very high resolution leads to the transfer of image transitions from the source domain at more fine-grained
level, which can compromise image quality, for example transferring minor details that do not look realistic in
the target domain. Based on the results in Table 7.4, we concluded that the resolution (32ˆ32) provides a good
quality-diversity trade-off as it transfers high-level, more interpretable image variations without compromising
the high-level coherency in the target domain.

Lastly, Table 7.5 provides a comparison of our proposed LSS loss term to other regularizers: path length
regularization (PPL) (Karras et al., 2019) and MixDL (Kong et al., 2022). While all regularizers help to
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Figure 7.8: Latent space interpolations of the source generator and the ablation models from Ta-
ble 7.5. Leftmost and rightmost columns show the used D loss and G smoothness regularization.

λSS

Res. FaceÑAnime ChurchÑShells

of Gl FIDÓ LPIPSÒ FIDÓ LPIPSÒ

- - 116.4 0.36 175.4 0.43

0.2 32ˆ32 110.0 0.41 160.2 0.44

1.0 32ˆ32 96.4 0.51 144.5 0.50

25.0 32ˆ32 105.2 0.58 171.0 0.55

125.0 32ˆ32 131.3 0.64 188.5 0.57

5.0 8ˆ8 104.1 0.44 156.6 0.45

5.0 16ˆ16 101.4 0.55 150.2 0.48

5.0 64ˆ64 114.7 0.59 165.5 0.54

5.0 128ˆ128 128.2 0.60 182.2 0.57

5.0 32ˆ32 97.3 0.57 140.5 0.53

Table 7.4: Ablation on the λSS and the resolution of Gl for the smoothness similarity regularization.

achieve smoother latent space interpolations and thus improve the quality and diversity metrics, our smooth-
ness similarity regularization enables the highest performance in both FID and LPIPS. While our approach
transfers the learned smoothness of the source generator to the target domain, PPL and MixDL resort to gradu-
ally interpolating between the provided training samples, which leads to latent space interpolations that either
look unrealistic or lack diversity (rows 7-8 in Fig. 7.5). This demonstrates that transferring smoothness from a
pre-trained generator is beneficial to enforce image transitions that are realistic and diverse.

7.3.5 Experiments in the 1-shot and 5-shot settings and comparison to SIV-GAN

In addition to the above experiments in the 10-shot regime, it is interesting to study the behaviour of the
models in more extreme data settings, such as the tasks of 1-shot and 5-shot image generation. Consistent
with the main goal of this Chapter, our main focus is on the challenging case of rare target domains that do
not have a structurally similar pre-training dataset. The results for 1-shot and 5-shot image generation setups
are presented in Fig. 7.9. In this setting, we compare our proposed method to CDC (Ojha et al., 2021), a
popular baseline from the literature. Our observations from Fig. 7.9 are consistent with Sec. 7.3.2: while the
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Figure 7.9: 1-shot and 5-shot image generation results using two adaptation techniques (CDC (Ojha
et al., 2021) and ours) and SIV-GAN training from scratch.

prior method CDC cannot learn the shapes of objects in the new domain, our method achieves more realistic
synthesis, successfully transferring meaningful high-level image variations even from structurally dissimilar
datasets.

It is interesting to note that our model SIV-GAN from Chapter 5 can be also applied to such extremely low
data regimes as learning from 1 or 5 images. The results of SIV-GAN are therefore also included to Fig. 7.9.
The difference of SIV-GAN from models in this Chapter is that it is trained from scratch, without using any
pre-training. As seen from the figure, SIV-GAN also overcomes memorization and generates new images
with noticeable diversity. Yet, in comparison to few-shot GAN adaptation, SIV-GAN demonstrates more
copying of objects’ shapes and, in case of 5-shot synthesis, rarely generates objects that combine features
from multiple training images. This makes the usage of pre-training preferable in practical scenarios requiring
image synthesis with higher diversity.

7.3.6 Adaptation of Class-Conditional GAN

Our approach is not limited to unconditional GANs, but it can also be applied to a class-conditional GAN
model. We selected BigGAN (Brock et al., 2019) for our experiments as it is a popular backbone architecture
for class-conditional synthesis on ImageNet (Deng et al., 2009). We make two modifications to enable the
adaptation of the model to unconditional few-shot datasets. Firstly, we remove the conditioning of the dis-
criminator via the projection layer (Miyato and Koyama, 2018). Secondly, we treat the generator’s learned
continuous class embedding as part of the latent space, thus sampling a Gaussian vector in the joint noise-class
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D loss
Smooth FaceÑAnime ChurchÑShells

reg. for G FIDÓ LPIPSÒ FIDÓ LPIPSÒ

Lall (ours) - 116.4 0.36 175.4 0.43

Lall (ours) PPL 107.8 0.46 179.4 0.44

Lall (ours) MixDL 105.9 0.50 150.4 0.51

Lall (ours) SS (ours) 97.3 0.57 140.5 0.53

Table 7.5: Comparison of smoothness similarity regularization LSS with other regularizers. Bold
denotes best performance.

D loss
Smooth ImageNetÑFlowers ImageNetÑPokemons

reg. for G FIDÓ LPIPSÒ FIDÓ LPIPSÒ

BigGAN - 213.3 0.29 226.8 0.15

BigGAN SS (ours) 225.6 0.47 208.3 0.47

Lall (ours) - 123.9 0.28 129.4 0.27

Lall (ours) SS (ours) 106.4 0.55 89.6 0.56

Table 7.6: Ablation on the performance when adapting the class-conditional BigGAN model (Brock
et al., 2019) pre-trained on ImageNet.

space at each fine-tuning epoch. This way, the generator produces an image based on a single input vector
in an unconditional fashion. We then fine-tune the pre-trained model using our loss terms LSS and Lall as
presented in Sec. 7.2. We use image resolution 256ˆ256 and batch size of 32. The hyperparameters for LSS

are the same as for StyleGANv2: Gl features at resolution (32ˆ32) and λSS “ 5.0. We train for 30k epochs
and select checkpoints by best FID.

Datasets. As the source generator, we use the BigGAN checkpoint pre-trained on class-conditional ImageNet
at resolution 256ˆ256. We demonstrate 10-shot adaptation results with two commonly used few-shot gener-
ation datasets: Oxford-Flowers (Nilsback and Zisserman, 2006) and Pokemons (Liu et al., 2021). We use the
same model configuration for both datasets.

Results. Fig. 7.10 demonstrates latent space interpolations of the source and target generators. We note that a
simple fine-tuning of BigGAN suffers from training instabilities and mode collapse. In contrast, our method
successfully adapts BigGAN to generate diverse images in the target domains. We highlight that our method
transfers smooth and realistic image transitions from the well-learned BigGAN’s noise-class space, despite
significant dissimilarities between ImageNet and the few-shot datasets, in particular Pokemons. For example,
it can be noticed how the latent space interpolations in the target domains mimic the source domain, e.g., the
generated flowers and pokemons change their position and size similarly to dogs and wolves (5th-10th columns
in Fig. 7.10) or stretch their shape to mimic the proportions of busses (11th-14th columns).

Table 7.6 shows the importance of our proposed loss terms. Our observations are consistent with the
ablations with StylGANv2: Lall is necessary to avoid instabilities and achieve a good image quality (low
FID), while LSS is required to achieve smooth latent space interpolations and good diversity (high LPIPS).
We conclude that our method successfully extends to the adaptation of class-conditional models, where target
domains benefit from the rich noise-class space learned on a multi-class dataset such as ImageNet.
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10-Shot adaptation results of our method on class-conditional BigGAN, pre-trained on ImageNet
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Figure 7.10: Results for the class-conditional BigGAN (Brock et al., 2019) pre-trained on ImageNet.
While simple fine-tuning (FT) suffers from training instabilities and mode collapse, our method
helps to achieve much higher image quality and diversity, transferring smooth and realistic image
transitions from the source domain, e.g., objects smoothly changing their locations, size, and shape.

7.4 Conclusion

In this work, we presented a new method for few-shot adaptation of GAN models. It transfers the smooth latent
space of a pre-trained GAN, which was trained on a large dataset, to a new domain with very few images. We
addressed the case of few-shot GAN adaptation when the source and target domains are structurally dissimilar,
which is a common issue in applications. Our extensive results demonstrate that in this setting our approach
outperforms previous works in terms of image quality and diversity. These results show the potential of few-
shot GAN synthesis for applications in other disciplines where there is a lack of large datasets due to privacy,
confidentiality, or simply lack of data.

Although our models presented in this chapter are significantly less reliant on the structure of the pre-
training datasets compared to previous approaches, it is important to acknowledge that our method may still
have inherent limitations. One such limitation arises from the assumption that the knowledge gained from large
datasets of natural images regarding image transitions can be effectively applied to target domains. However,
this assumption can be violated if common image variations like zooming or translation cannot be readily
applied to objects within the target domain. In such cases, our models SIV-GAN and OSMIS, which do not
rely on any pre-training, may be preferred. Nevertheless, our experiments have demonstrated remarkably high
levels of generalization even for distinct image domains (e.g., shells on black background) for our new method.
Compared to SIV-GAN and OSMIS, it enables the generation of images with significantly greater diversity
and, notably, the ability to interpolate between different images, resulting in objects with novel shapes and
intermediate sizes that were not observed in the training set. This enhanced synthesis capability can become
of great value across a wide range of image domains and applications.
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8.1 Overview

In this thesis, we have addressed several image generation tasks with generative adversarial networks (GANs).
These tasks can be categorized into two areas: semantic image synthesis and unconditional image synthesis in
low data regimes. In semantic image synthesis, the goal is to produce realistic and diverse images that adhere
to provided semantic label maps. Historically, to achieve good performance in this task, GAN models relied
on the perceptual VGG loss, which was used to train the generator in addition to the adversarial discriminator’s
loss. As we demonstrated in Chapter 4, this loss limited the progress of semantic image synthesis GANs, as it
biased the color and texture distributions of generated images and severely constrained diversity. To mitigate
these issues, in Chapter 4, we have introduced a new OASIS model that needs only adversarial supervision
for successful training. Our model outperforms previous models in terms of both image quality and diversity
while being more lightweight and offering new capabilities.

The subsequent three chapters were concerned with different regimes for limited-data unconditional GAN
training. Potentially, applications dealing with restricted image domains are the ones that require synthetic
images the most, as there is the highest potential for synthetic data augmentation to be useful. However, con-
ventional GAN models did not perform well with insufficient training data due to training instabilities, mode
collapse, and memorization issues. In Chapter 5, we have addressed these problems by introducing the SIV-
GAN model, which enables diverse synthesis of realistic images even in very low data regimes. Notably, it
excels in a new training regime: few-shot datasets comprising very similar images. In contrast, as was demon-
strated in our experiments, previous single-image and few-shot GAN methods struggled in this challenging
regime. In Chapter 6, we have extended the impressive capabilities of SIV-GAN to the joint synthesis of im-
ages and segmentation masks. While previous single-image GAN methods failed to generate segmentation
masks for synthesized images, and image-mask GANs encountered memorization and training instability is-
sues when trained on a single image-mask pair, our proposed model, OSMIS, enables the generation of diverse
and high-quality paired image-mask data from a single training example. These results facilitate the successful
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use of generated samples as synthetic data augmentation in downstream one-shot segmentation applications.
Lastly, in Chapter 7, we have explored the task of few-shot GAN adaptation, which leverages pre-training
knowledge to enhance the quality and diversity of few-shot image synthesis. As demonstrated in Chapter 7,
conventional adaptation methods struggled when the source and target domains exhibited similar structures,
severely limiting their applicability in rare image domains. To address this limitation, we have developed a
new regularization loss that transfers the smoothness of a pre-trained GAN generator to the target domain. Our
method performs well even when the source and target domains are not closely similar, outperforming prior
methods by a significant margin in such cases.

8.2 Discussion of Contributions

The overall goal of this thesis was to improve the performance of GANs in various image generation tasks,
expanding their potential for new applications, datasets, and different data types. The main contributions of
this thesis are summarized and reviewed next.

8.2.1 Semantic Image Synthesis with Only Adversarial Supervision

As discussed in Sec. 2.2, to achieve good performance in semantic image synthesis, GAN models require
optimal conditioning mechanisms for both the generator and discriminator. The networks need to be effectively
conditioned: on label maps, for the discriminator, and on both noise and label maps for the generator. While the
conditioning of the generator on label maps has received considerable attention in the literature, leading to the
development of mechanisms like spatially-adaptive normalization layers (SPADE) (Park et al., 2019b), other
forms of conditioning have been largely underexplored. Conventionally, noise has been used simply as input
to the first layer of the generator, while the discriminator naively concatenated the label maps with the input
images. In Chapter 4, we demonstrated that these approaches are suboptimal. We introduced a segmentation-
based discriminator that uses the provided semantic label maps as targets for the loss function, rather than as
input. This discriminator provides stronger and more detailed pixel-level feedback, which is further enhanced
through the introduction of LabelMix regularization. By leveraging the improved training signal from the
discriminator, we eliminate the need for additional losses such as the VGG perceptual loss. Consequently,
this enabled us to achieve the synthesis with color and texture distributions that are closer to real data. In
addition, we introduced a novel 3D noise injection scheme that spatially modulates noise at different layers
of the generator. This scheme eliminates the need for image encoders to achieve multi-modality, enables both
global and local image resampling, and significantly improves the overall diversity of synthesis. Moreover,
as demonstrated in Sec. 4.3.3, the proposed architectural improvements, make it possible to train a semantic
image synthesis GAN even on datasets with severe class imbalance. Our model, OASIS, achieves high-quality
and diverse synthesis on the LVIS dataset, which consists of over 1000 classes, the majority of which are
underrepresented. Unlike the baseline SPADE, OASIS also effectively handles sparsely annotated label maps
and avoids mode collapse in such scenarios.

Overall, with our proposed OASIS model, we mitigate the issues of prior GAN models for semantic image
synthesis outlined in Sec. 1.2.1: overreliance on the perceptual loss, insensitivity to noise, and learning from
imbalanced datasets.

8.2.2 Diverse Unconditional Synthesis in Extremely Low Data Regimes

GAN models are notorious for their instability, frequently displaying collapsed training due to escalated gradi-
ents. This behaviour is more prevalent when dealing with very limited data, as the discriminator is more prone
to overfitting to the limited training data. In fact, training GAN models with only a single image or a few
very similar images has proven to be challenging, as these models frequently suffered from mode collapse and
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training instabilities. These issues significantly limited the application of GANs in domains where collecting
data remains a challenge.

In Chapter 5, we introduced a new two-branch SIV-GAN discriminator architecture that effectively miti-
gates the memorization of the whole training data in extremely low data regimes. The core idea of this discrim-
inator is to disentangle the learning of the appearance of objects from their spatial arrangements, through two
distinct branches. As a result, the discriminator avoids rapid overfitting to the entire training data and encour-
ages the generator to produce novel scene compositions with realistic content and layouts. On the generator
side, we introduced a new diversity regularization technique specifically designed for extremely limited data
scenarios. This regularization maximizes the difference in generator’s outputs at different layers for different
noise inputs. In effect, our SIV-GAN model overcomes training instabilities and memorization problems when
provided with just one or a few similar images. Our model also reduces the limitation of prior single-image
GAN models that suffered from distorting object appearances and struggled to learn from multiple images.

8.2.3 One-Shot Image-Mask Synthesis

Diverse image generation from very small datasets has great potential to be used as synthetic data augmenta-
tion in applications. However, previous GAN models struggled to produce sufficiently high-quality and diverse
images for synthetic data augmentation to be successful, mainly for two reasons. Firstly, as discussed previ-
ously, GANs were generally not successful in low data regimes, commonly suffering from training instabilities
and mode collapse. In addition to this problem, computer vision applications often require annotations in ad-
dition to new images, which are non-trivial to obtain with GANs without using expensive and non-automatic
labelling procedures.

In Chapter 6, we mitigated the above issues by extending SIV-GAN to joint synthesis of images and
segmentation masks. Our new model, called OSMIS, produces new diverse image-mask pairs when given
only a single image-mask pair for training. This is achieved via the introduced masked content attention
mechanism, which allowed the discriminator to compare the content of different objects in the real and fake
images separately from each other, thereby encouraging the generator to produce accurate segmentation masks.
In contrast to previous image-mask GANs, this solution is remarkably inexpensive as it does not require
expensive labelling procedures, such as manual annotation or external pre-trained segmentation networks. In
effect, OSMIS became an effective tool for producing useful data augmentation, as demonstrated in Chapter 6
with the example of one-shot segmentation applications.

It is interesting to note that semantic image synthesis models, like OASIS, can be also be applied to
segmentation applications. For example, in Chapter 4, we demonstrated how OASIS improves the performance
of a segmentation network on rare classes in case of large-scale datasets. However, OASIS and SIV-GAN
are tailored for very different data regimes and are thus unlikely to have the same use cases. At inference
stage, OASIS requires semantic label maps, which suggests its usage in domains where annotations are easily
available (e.g., self-driving datasets like Cityscapes). On the other hand, OSMIS creates images and masks
with new semantic layouts without any conditioning, making it better suited for restricted domains where
new segmentation masks along with new images should be produced (such as the generation of defects on
manufacturing details in new locations).

8.2.4 Few-Shot GAN Adaptation with Dissimilar Source-Target Domains

Transfer learning is a widely used technique in machine learning that improves the performance of neural
networks when trained on limited data. However, prior to our work, transfer learning in the context of GANs
had only been successful between highly similar image domains, where the object shapes in the source and
target domains were very similar. In contrast, for rare image domains where a large pre-training dataset with a
similar structure is not available, existing methods for few-shot GAN adaptation failed to achieve satisfactory
performance.
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In Chapter 7, we addressed this issue by introducing a novel few-shot GAN adaptation method specifically
designed for diverse pairs of source and target domains. Our approach involves fine-tuning a GAN model
using a few-shot dataset while preserving the smoothness properties of the original pre-trained generator. By
doing so, our method effectively mitigates the problem of memorization while maintaining the realism of the
generated images through the transfer of smooth and realistic latent space interpolations from the pre-trained
GAN. Additionally, we revisited the adversarial loss of the discriminator and enabled the computation of the
loss across different layers. This change not only helps to mitigate overfitting but also allows the discriminator
to automatically identify the appropriate contributions for a given source-target pair of domains. As a result,
our new model significantly enhances the quality and diversity of synthesized images compared to prior GAN
adaptation methods, opening up possibilities for applying GANs in new few-shot image domains.

Remarkably, the approach of transferring the smoothness of a pre-trained GAN extends even to 1-shot
image domains, which was also addressed by our SIV-GAN model in Chapter 5. Interestingly, our adaptation
approach in Chapter 7 outperformed SIV-GAN in terms of synthesis diversity, addressing the difficulty of
generating new objects combining features from different training images. It is therefore preferable to make use
of pre-trained GANs over training from scratch in applications that benefit from increased synthesis diversity.

8.3 Outlook and Future Perspectives

In the subsequent sections, we will outline limitations and potential areas for improvement in the two primary
research areas of this thesis: GANs for semantic image synthesis and unconditional GAN training in low
data regimes. Additionally, we will provide a broader outlook on the development of generative adversarial
networks and explore alternative directions for image synthesis models beyond GANs.

8.3.1 GANs for Semantic Image Synthesis

Semantic image synthesis is the focus of the Chapter 4. In this section, we discuss possible research directions
to improve the performance and extend the capabilities of semantic image synthesis GANs.

Alternative segmentation losses. In Chapter 4, we demonstrated that a segmentation-based discriminator is a
reasonable choice for semantic image synthesis GANs. Our OASIS uses a simple balanced multi-class cross
entropy loss, while the alternative segmentation losses were left unexplored. In recent years, the literature on
semantic segmentation has seen higher-performing losses, including the focal loss (Lin et al., 2017), lovasz-
softmax loss (Berman et al., 2018), region mutual information loss (Zhao et al., 2019), or poly loss (Leng
et al., 2022). Improved ways to train a segmentation-based discriminator can lead to clearer feedback for the
generator, having a potential to speed up the training and improve the final synthesis performance.

Semi-supervised learning. In addition to exploring alternative segmentation losses, the discriminator of OA-
SIS can benefit from the advancements in the field of semi-supervised semantic segmentation. Semi-supervised
segmentation often involves incorporating large collections of unlabeled images in addition to the standard
training datasets. While these unlabeled images may not directly contribute to the learning of semantic classes,
they can play a role in improving the discriminator’s understanding of image realism and reducing overfitting.
Consequently, by incorporating semi-supervised learning techniques, we can anticipate a significant improve-
ment in the generation of more realistic images.

GAN inversion for image editing. In Sec. 4.3.4, we demonstrated that the OASIS discriminator can be used
to predict the semantic label map of a given unlabelled image, and then to re-synthesize it in many other
styles while preserving its global layout. However, preserving also the style of a given image remains not
straightforward. One possible approach for capturing the style of an image is to use an image encoder, as
done in prior works, such as SPADE (Park et al., 2019b). Another approach could be to use existing GAN
inversion techniques, which aim to find noise vectors that leads to the generation of images of interest. When
such noise vectors are found, the generator can be used to apply minor image edits, both in the style (Schönfeld
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et al., 2023) and layout aspects (Richardson et al., 2021). Therefore, exploring ways to invert semantic image
synthesis generators can assist many applications related to image editing.

The usage of pre-training. In Chapter 7, we explored the usage of pre-trained GANs in few-shot image
synthesis. In the context of semantic image synthesis, however, the usage of pre-training remains unexplored.
Like in other disciplines, pre-training the models on larger sets of images can contribute to the improvement
of the training speed, prevention of overfitting, and overall performance. As large-scale collections of images
with pixel-wise annotations cannot be found in all domains and for all possible semantic classes, it would be
beneficial to design transfer techniques from GANs pre-trained with a set of other semantic classes, or even
from unconditional GANs. In addition, it would be interesting to couple semantic image synthesis with the
recent findings on using pre-trained feature extractors in discriminators, e.g., as proposed in ProjectedGAN
(Sauer et al., 2021).

Data augmentation. Our models in Chapters 5-7 incorporate data augmentation techniques, both during
pre-processing (e.g., doubling the dataset size through horizontal flipping) and training. However, semantic
image synthesis models, including OASIS, are typically trained without any augmentations. Nevertheless,
widely used techniques like differentiable data augmentation (DA) can be applied to semantic image synthesis
GANs too, presenting the opportunity to reduce the amount of data required for successful training. It is worth
mentioning that our proposed LabelMix consistency regularization can also benefit from advanced transfor-
mations and augmentations of label maps, which have the potential to further enhance the effectiveness of the
discriminator in providing localized feedback on image realism.

8.3.2 GANs in Low Data Regimes

In Chapters 5-7, we presented new models for unconditional GAN training in low data regimes. In the follow-
ing, we discuss possible future steps for this research direction.

Universal techniques between data regimes. The literature review in Sec. 2.3 highlights that various low
data regimes, including limited-data, few-shot, and one-shot learning, are typically addressed using different
models with their own specific training techniques. Having divergent research branches working on very
similar problems leads to drawbacks such as confusion and duplicated effort of researchers. In Chapter 5,
SIV-GAN takes a step towards the unification of one-shot and few-shot models, being able to train from a
single image or a small collection of very similar images. Moreover, all our models from Chapters 5-7 use
differentiable augmentation (DA), demonstrating that DA is generally beneficial in all low data regimes. Yet,
more research is needed to develop more training strategies that cover broader ranges of limited-data training
regimes.

Continual learning. Continual learning aims to learn from a stream of data that comes in sequences. The
objective of such learning is to learn about new data while retaining the knowledge about the old data, thus
avoiding catastrophic forgetting. In the context of GANs, continual learning can aim to adapt to a new limited
set of image building upon the previously shown larger dataset. This has an advantage of potentially using
the same model for different limited data domains, unlike our models in Chapters 5-7. It is worth noting that
our few-shot adaptation method from Chapters 7 does not support continual learning, as the target generator is
not incentivized to remember the exact appearance of object in the source domain. Yet, it remains to be seen
whether popular continual learning techniques can be applied to GANs to improve their learning from limited
data.

Controllability. While our models in Chapters 5-7 significantly improve the synthesis quality and diversity,
more research is yet to be conducted towards making this generation controllable. For example, SIV-GAN and
OSMIS can re-generate the provided scene with different locations or number of objects, but synthesizing the
exact desired combination can take several attempts with different input noise vectors. Improving the control-
lability of our models, for example through spatial conditioning or interpretable latent directions (Voynov and
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Babenko, 2020), is an interesting direction for future work.

Advanced filtering of data augmentation. In Chapter 6, we explored the application of OSMIS to synthetic
data generation. As was discussed in Sec. 6.3.4, filtering out noisy generated examples plays a crucial role for
the overall effectiveness of generated images for synthetic data augmentation. In the future, more systematic
studies on how to select the images that are most useful for downstream applications should be conducted.
An interesting question would be to outline theoretical and practical limits of possible performance gains
depending on the dataset size, image diversity, and application type.

8.3.3 Broader Outlook and Other Image Generation Models

With the current pace of progress in deep learning, breakthroughs in generative models occur at a very im-
pressive rate. In recent years, generative adversarial networks have made tremendous progress, improving
the abilities for image synthesis in numerous aspects. These advances include the overall image quality and
diversity, ability to scale up to high-resolution images and large-scale datasets, addressing the challenges of
unstable training, and significantly improving the synthesis invertibility, explainability, and controllability. As
a result, GANs have found numerous applications in areas such as artistic content creation, image editing, and
synthetic data augmentation.

The progress of both semantic image synthesis and unconditional image synthesis models heavily relies
on the general development of neural network architectures and training algorithms in other fields of deep
learning. In the following, we identify the three trends in deep learning that are likely to shape the development
of generative modeling of images in the nearest future.

Transformer-based architectures. As discussed in Sec. 3.2.4, GAN models inherit a lot of architectural ad-
vances from discriminative deep learning. For example, most of the models used in this thesis are based on
convolutional neural networks (CNNs), mostly ResNets (He et al., 2016). While ResNets are strong mod-
els that enable good performance in many computer vision tasks, they have been recently outperformed by
transformer-based architectures (Dosovitskiy et al., 2021). In particular, in (Dosovitskiy et al., 2021), it was
shown that replacing CNN-based residual blocks with transformer-based attention blocks, originally intro-
duced for natural language processing (Vaswani et al., 2017), allows to achieve higher performance on standard
image classification benchmarks such as ImageNet. Since then, vision transformers have quickly conquered
state of the art in semantic segmentation (Xie et al., 2021), super-resolution (Liang et al., 2021), video recog-
nition (Liu et al., 2022), image restoration (Zamir et al., 2022), self-supervised representation learning (Chen
et al., 2021b), and many other computer vision tasks. In the context of GANs, vision transformers have been
already implemented in the generator and discriminator of several models (Lee et al., 2022; Jiang et al., 2021;
Hudson and Zitnick, 2022), improving image synthesis quality over respective CNN-based baselines. Trans-
formers may appear a suitable choice for image synthesis, as they are well suited for learning the correlations
between distant image patches, which can significantly improve the global coherency in generated images.
Therefore, it can be expected that more GAN models will adopt transformers in their design to improve the
performance, and more research will follow on their application to semantic image synthesis and restricted
image domains.

Synergies between data modalities. Recently, the community has seen impressive results in the task of con-
ditional image generation from text prompts, also known as text-to-image translation. These results were in
large part enabled by the availability of powerful text embeddings, which were pre-trained on datasets consist-
ing of more than 400 million samples (Schuhmann et al., 2021). The synergy between images and texts will
likely be extended to other modalities as well, and there are already signs that training GANs with different
conditionings (e.g., text, sketches, and semantic label maps) at the same time leads to higher performance
(Huang et al., 2022). Training with multiple modalities presents distinct challenges in data curation, as col-
lecting annotations of multiple types can be prohibitive in practice. Overcoming these challenges, for example
via novel semi-supervised training schemes or algorithms that deal with unbalanced or missing annotations,
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may give a boost to new content creation tools or producing synthetic data augmentation in more controlled
ways.

Diffusion models. Finally, there remains a question whether GANs will be replaced by more recent model
designs. In recent times, numerous advancements in image synthesis have been made not with GANs, but with
diffusion models (DMs). In Chapter 4, for instance, we demonstrated that DMs already outperform OASIS
and other GAN models in semantic image synthesis, as evidenced by higher FID and LPIPS scores. Diffusion
models have also demonstrated superior performance compared to GANs in many other tasks (Nichol and
Dhariwal, 2021; Dhariwal and Nichol, 2021; Rombach et al., 2022; Xue et al., 2023). Therefore, it is likely that
diffusion models will become the dominant class of image generation models in the near future. These models
have several advantages, including stable training, absence of mode collapse issues, and effective scalability to
multiple modalities. However, it is improbable that GANs will be completely replaced. The primary limitation
of diffusion models lies in their notably slow inference speed, which makes GANs still more favorable for
real-time applications or situations with hardware constraints. In semantic image synthesis, GANs still achieve
much better alignment between images and label maps, as measured by mIoU, making them more suitable for
tasks like synthetic data augmentation. Furthermore, similar to GANs, the early successes of DMs have been
enabled by the availability of large training datasets, while their performance in low data regimes remains
suboptimal. Therefore, we can expect the future of image generation to be shaped by concurrent advancement
of GANs and DMs, with these models specializing in different dataset types, use cases, and applications.
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Appendices

Parts of this thesis are based on several publications as indicated in the corresponding chapters. We provide
these publications in the appendices. Namely, Appendix A, B, C, D, and E provide our publications in the
following order:
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ABSTRACT

Despite their recent successes, GAN models for semantic image synthesis still
suffer from poor image quality when trained with only adversarial supervision.
Historically, additionally employing the VGG-based perceptual loss has helped to
overcome this issue, signicantly improving the synthesis quality, but at the same
time limiting the progress of GAN models for semantic image synthesis. In this
work, we propose a novel, simplied GAN model, which needs only adversarial
supervision to achieve high quality results. We re-design the discriminator as a se-
mantic segmentation network, directly using the given semantic label maps as the
ground truth for training. By providing stronger supervision to the discriminator as
well as to the generator through spatially- and semantically-aware discriminator
feedback, we are able to synthesize images of higher delity with better align-
ment to their input label maps, making the use of the perceptual loss superuous.
Moreover, we enable high-quality multi-modal image synthesis through global
and local sampling of a 3D noise tensor injected into the generator, which allows
complete or partial image change. We show that images synthesized by our model
are more diverse and follow the color and texture distributions of real images more
closely. We achieve an average improvement of 6 FID and 5mIoU points over the
state of the art across different datasets using only adversarial supervision.

Semantic SPADE (Park et al., 2019) Our model (OASIS), sampled with different noise

label map with VGG w/o VGG w/o VGG

Figure 1: Existing semantic image synthesis models heavily rely on the VGG-based perceptual
loss to improve the quality of generated images. In contrast, our model can synthesize diverse and
high-quality images while only using an adversarial loss, without any external supervision.

∗Equal contribution. Correspondence to {edgar.schoenfeld, vadim.sushko}@bosch.com.
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1 INTRODUCTION

Conditional generative adversarial networks (GANs) (Mirza & Osindero, 2014) synthesize images
conditioned on class labels (Zhang et al., 2019; Brock et al., 2019), text (Reed et al., 2016; Zhang
et al., 2018a), other images (Isola et al., 2017; Huang et al., 2018), or semantic label maps (Wang
et al., 2018; Park et al., 2019). In this work, we focus on the latter, addressing semantic image syn-
thesis. Semantic image synthesis enables rendering of realistic images from user-specied layouts,
without the use of an intricate graphic engine. Therefore, its applications range widely from con-
tent creation and image editing to generating training data that needs to adhere to specic semantic
requirements (Wang et al., 2018; Chen & Koltun, 2017). Despite the recent progress on stabilizing
GANs (Gulrajani et al., 2017; Miyato et al., 2018; Zhang & Khoreva, 2019) and developing their
architectures (Zhang et al., 2019; Karras et al., 2019), state-of-the-art GAN-based semantic image
synthesis models (Park et al., 2019; Liu et al., 2019) still greatly suffer from training instabilities
and poor image quality when trained only with adversarial supervision (see Fig. 1). An established
practice to overcome this issue is to employ a perceptual loss (Wang et al., 2018) to train the genera-
tor, in addition to the discriminator loss. The perceptual loss aims to match intermediate features of
synthetic and real images, that are estimated via an external perception network. A popular choice
for such a network is VGG (Simonyan & Zisserman, 2015), pre-trained on ImageNet (Deng et al.,
2009). Although the perceptual loss substantially improves the accuracy of previous methods, it
comes with the computational overhead introduced by utilizing an extra network for training. More-
over, it usually dominates over the adversarial loss during training, which can have a negative impact
on the diversity and quality of generated images, as we show in our experiments. Therefore, in this
work we propose a novel, simplied model that achieves state-of-the-art results without requiring a
perceptual loss.

A fundamental question for GAN-based semantic image synthesis models is how to design the
discriminator to efciently utilize information from the given semantic label maps. Conventional
methods (Park et al., 2019; Wang et al., 2018; Liu et al., 2019; Isola et al., 2017) adopt a multi-scale
classication network, taking the label map as input along with the image, and making a global
image-level real/fake decision. Such a discriminator has limited representation power, as it is not
incentivized to learn high-delity pixel-level details of the images and their precise alignment with
the input semantic label maps. To mitigate this issue, we propose an alternative architecture for the
discriminator, re-designing it as an encoder-decoder semantic segmentation network (Ronneberger
et al., 2015), and directly exploiting the given semantic label maps as ground truth via a (N+1)-class
cross-entropy loss (see Fig. 3). This new discriminator provides semantically-aware pixel-level feed-
back to the generator, partitioning the image into segments belonging to one of the N real semantic
classes or the fake class. Enabled by the discriminator per-pixel response, we further introduce a La-
belMix regularization, which fosters the discriminator to focus more on the semantic and structural
differences of real and synthetic images. The proposed changes lead to a much stronger discrimina-
tor, that maintains a powerful semantic representation of objects, giving more meaningful feedback
to the generator, and thus making the perceptual loss supervision superuous (see Fig. 1).

Next, we propose to enable multi-modal synthesis of the generator via 3D noise sampling. Pre-
viously, directly using 1D noise as input was not successful for semantic image synthesis, as the
generator tended to mostly ignore it or synthesized images of poor quality (Isola et al., 2017; Wang
et al., 2018). Thus, prior work (Wang et al., 2018; Park et al., 2019) resorted to using an image
encoder to produce multi-modal outputs. In this work, we propose a lighter solution. Empowered
by our stronger discriminator, the generator can effectively synthesize different images by simply
re-sampling a 3D noise tensor, which is used not only as the input but also combined with interme-
diate features via conditional normalization at every layer. Such noise is spatially sensitive, so we
can re-sample it both globally (channel-wise) and locally (pixel-wise), allowing to change not only
the appearance of the whole scene, but also of specic semantic classes or any chosen areas (see Fig.
2). We call our model OASIS, as it needs only adversarial supervision for semantic image synthesis.

In summary, our main contributions are: (1) We propose a novel segmentation-based discriminator
architecture, that gives more powerful feedback to the generator and eliminates the necessity of the
perceptual loss supervision. (2) We present a simple 3D noise sampling scheme, notably increasing
the diversity of multi-modal synthesis and enabling complete or partial change of the generated
image. (3) With the OASIS model, we achieve high quality results on the ADE20K, Cityscapes and
COCO-stuff datasets, on average improving the state of the art by 6 FID and 5 mIoU points, while
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Figure 2: OASIS multi-modal synthesis results. The 3D noise can be sampled globally (rst 2 rows),
changing the whole scene, or locally (last 2 rows), partially changing the image. For the latter, we
sample different noise per region, like the bed segment (in red) or arbitrary areas dened by shapes.

relying only on adversarial supervision. We show that images synthesized by OASIS exhibit much
higher diversity and more closely follow the color and texture distributions of real images. Our code
and pretrained models are available at https://github.com/boschresearch/OASIS.

2 RELATED WORK

Semantic image synthesis. Pix2pix (Isola et al., 2017) rst proposed to use conditional
GANs (Mirza & Osindero, 2014) for semantic image synthesis, adopting an encoder-decoder gen-
erator which takes semantic label maps as input, and employing a PatchGAN discriminator. Since
then, various generator and discriminator modications have been introduced (Wang et al., 2018;
Park et al., 2019; Liu et al., 2019; Tang et al., 2020c;b; Ntavelis et al., 2020). Besides GANs, Chen
&Koltun (2017) proposed to use a cascaded renement network (CRN) for high-resolution semantic
image synthesis, and SIMS (Qi et al., 2018) extended it with a non-parametric component, serving as
a memory bank of source material to assist the synthesis. Further, Li et al. (2019) employed implicit
maximum likelihood estimation (Li &Malik, 2018) to increase the variety of the CRN model. How-
ever, these approaches still underperform in comparison to state-of-the-art GAN models. Therefore,
next we focus on the recent GAN architectures for semantic image synthesis.

Discriminator architectures. Pix2pix (Isola et al., 2017), Pix2pixHD (Wang et al., 2018) and
SPADE (Park et al., 2019) all employed a multi-scale PatchGAN discriminator, that takes an im-
age and its semantic label map as input. CC-FPSE (Liu et al., 2019) proposed a feature-pyramid
discriminator, embedding both images and label maps into a joint feature map, and then consec-
utively upsampling it in order to classify it as real/fake at multiple scales. LGGAN (Tang et al.,
2020c) introduced a classication-based feature learning module to learn more discriminative and
class-specic features. In this work, we propose to use a pixel-wise semantic segmentation network
as a discriminator instead of multi-scale image classiers as in the above approaches, and to directly
exploit the semantic label maps for its supervision. Segmentation-based discriminators have been
shown to improve semantic segmentation (Souly et al., 2017) and unconditional image synthesis
(Schönfeld et al., 2020), but to the best of our knowledge have not been explored for semantic image
synthesis and our work is the rst to apply adversarial semantic segmentation loss for this task.

Generator architectures. Conventionally, the semantic label map is provided to the image genera-
tion pipeline via an encoder (Isola et al., 2017; Wang et al., 2018; Tang et al., 2020c;b; Ntavelis et al.,
2020). However, it is shown to be suboptimal at preserving the semantic information until the later
stages of image generation. Therefore, SPADE introduced a spatially-adaptive normalization layer
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Figure 3: SPADE (left) vs. OASIS (right). OASIS outperforms SPADE, while being simpler
and lighter: it uses only adversarial loss supervision and a single segmentation-based discriminator,
without relying on heavy external networks. Furthermore, OASIS learns to synthesize multi-modal
outputs by directly re-sampling the 3D noise tensor, instead of using an image encoder as in SPADE.

that directly modulates the label map onto the generator’s hidden layer outputs at various scales.
Alternatively, CC-FPSE proposed to use spatially-varying convolution kernels conditioned on the
label map. Struggling with generating diverse images from noise, both Pix2pixHD and SPADE re-
sorted to having an image encoder in the generator design to enable multi-modal synthesis. The
generator then combines the extracted image style with the label map to reconstruct the original im-
age. By alternating the style vector, one can generate multiple outputs conditioned on the same label
map. However, using an image encoder is a resource demanding solution. In this work, we enable
multi-modal synthesis directly through sampling of a 3D noise tensor injected at every layer of the
network. Differently from structured noise injection of Alharbi & Wonka (2020) and class-specic
latent codes of Zhu et al. (2020), we inject the 3D noise along with label maps and adjust it to image
resolution, also enabling re-sampling of selected semantic segments (see Fig. 2).

Perceptual losses. Gatys et al. (2015); Gatys et al. (2016); Johnson et al. (2016) and Bruna et al.
(2016) were pioneers at exploiting perceptual losses to produce high-quality images for super-
resolution and style transfer using convolutional networks. For semantic image synthesis, the VGG-
based perceptual loss was rst introduced by CRN, and later adopted by Pix2pixHD. Since then,
it has become a default for training the generator (Park et al., 2019; Liu et al., 2019; Tan et al.,
2020; Tang et al., 2020a). As the perceptual loss is based on a VGG network pre-trained on Ima-
geNet (Deng et al., 2009), methods relying on it are constrained by the ImageNet domain and the
representational power of VGG. With the recent progress on GAN training, e.g. by architecture
designs and regularization techniques, the actual necessity of the perceptual loss requires a reassess-
ment. We experimentally show that such loss imposes unnecessary constraints on the generator,
signicantly limiting sample diversity. While our model, trained without the VGG loss, achieves
improved image diversity while not compromising image quality.

3 OASIS MODEL

In this section, we present our OASIS model, which, in contrast to other semantic image synthesis
methods, needs only adversarial supervision for generator training. Using SPADE as a starting
point (Sec. 3.1), we rst propose to re-design the discriminator as a semantic segmentation network,
directly using the given semantic label maps as ground truth (Sec. 3.2). Empowered by spatially-
and semantically-aware feedback of the new discriminator, we next re-design the SPADE generator,
enabling its effective multi-modal synthesis via 3D noise sampling (Sec. 3.3).

3.1 THE SPADE BASELINE

We choose SPADE as our baseline as it is a state-of-the-art model and a relatively simple represen-
tative of conventional semantic image synthesis models. As depicted in Fig. 3, the discriminator of
SPADE largely follows the PatchGAN multi-scale discriminator (Isola et al., 2017), adopting two
image classication networks operating at different resolutions. Both of them take the channel-wise
concatenation of the semantic label map and the real/synthesized image as input, and produce true/-
fake classication scores. On the generator side, SPADE adopts spatially-adaptive normalization
layers to effectively integrate the semantic label map into the synthesis process from low to high
scales. Additionally, the image encoder is used to extract the style vector from the reference image
and then combine it with a 1D noise vector for multi-modal synthesis. The training loss of SPADE
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consists of three terms, namely, an adversarial loss, a feature matching loss and the VGG-based
perceptual loss: L = maxG minD Ladv + λfmLfm + λvggLvgg. Overall, SPADE is a resource de-
manding model at both training and test time, i.e., with two PatchGAN discriminators, an image
encoder in addition to the generator, and the VGG loss. In the following, we revisit its architecture
and introduce a simpler and more efcient model that offers better performance with less complexity.

3.2 OASIS DISCRIMINATOR

For the generator to learn to synthesize images that are well aligned with the input semantic label
maps, we need a powerful discriminator that coherently captures discriminative semantic features
at different image scales. While classication-based discriminators, such as PatchGAN, take label
maps as input concatenated to images, they can afford to ignore them and make the decision solely
on image patch realism. Thus, we propose to cast the discriminator task as a multi-class semantic
segmentation problem to directly utilize label maps for supervision, and accordingly alter its archi-
tecture to an encoder-decoder segmentation network (see Fig. 3). Encoder-decoder networks have
proven to be effective for semantic segmentation (Badrinarayanan et al., 2016; Chen et al., 2018).
Thus, we build our discriminator architecture upon U-Net (Ronneberger et al., 2015), which con-
sists of the encoder and decoder connected by skip connections. This discriminator architecture is
multi-scale through its design, integrating information over up- and down-sampling pathways and
through the encoder-decoder skip connections. For details on the architecture see App. C.1.

The segmentation task of the discriminator is formulated to predict the per-pixel class label of the
real images, using the given semantic label maps as ground truth. In addition to the N semantic
classes from the label maps, all pixels of the fake images are categorized as one extra class. Overall,
we haveN+1 classes in the semantic segmentation problem, and thus propose to use a (N+1)-class
cross-entropy loss for training. Considering that the N semantic classes are usually imbalanced and
that the per-pixel size of objects varies for different semantic classes, we weight each class by its
inverse per-pixel frequency, giving rare semantic classes more weight. In doing so, the contributions
of each semantic class are equally balanced, and, thus, the generator is also encouraged to adequately
synthesize less-represented classes. Mathematically, the new discriminator loss is expressed as:

LD = −E(x,t)





N
∑

c=1

αc

H×W
∑

i,j

ti,j,c logD(x)i,j,c



− E(z,t)





H×W
∑

i,j

logD(G(z, t))i,j,c=N+1



 , (1)

where x denotes the real image; (z, t) is the noise-label map pair used by the generator G to synthe-
size a fake image; and the discriminatorD maps the real or fake image into a per-pixel (N+1)-class
prediction probability. The ground truth label map t has three dimensions, where the rst two cor-
respond to the spatial position (i, j) ∈ H ×W , and the third one is a one-hot vector encoding the
class c ∈ {1, .., N+1}. The class balancing weight αc is the inverse of the per-pixel class frequency

αc =
H ×W

H×W

i,j Et [ [ti,j,c = 1]]
. (2)

LabelMix regularization. In order to encourage our discriminator to focus on differences in con-
tent and structure between the fake and the real classes, we propose a LabelMix regularization.
Based on the semantic layout, we generate a binary mask M to mix a pair (x, x̂) of real and fake
images conditioned on the same label map: LabelMix(x, x̂,M) = M  x+ (1−M) x̂, as visu-
alized in Fig. 4. Given the mixed image, we further train the discriminator to be equivariant under
the LabelMix operation. This is achieved by adding a consistency loss term Lcons to Eq. 1:

Lcons =
∥

∥

∥
Dlogits

(

LabelMix(x, x̂,M)
)

− LabelMix
(

Dlogits(x), Dlogits(x̂),M
)∥

∥

∥

2

, (3)

where Dlogits are the logits attained before the last softmax activation layer, and ‖ · ‖ is the L2

norm. This consistency loss compares the output of the discriminator on the LabelMix image with
the LabelMix of its outputs, penalizing the discriminator for inconsistent predictions. LabelMix is
different to CutMix (Yun et al., 2019), which randomly samples the binary mask M . A random
mask will introduce inconsistency between the pixel-level classes and the scene layout provided by
the label map. For an object with the semantic class c, it will contain pixels from both real and fake
images, resulting in two labels, i.e. c andN +1. To avoid such inconsistency, the mask of LabelMix
is generated according to the label map, providing natural borders between semantic regions, see
Fig. 4 (MaskM ). Under LabelMix regularization, the generator is encouraged to respect the natural
semantic boundaries, improving pixel-level realism while also considering the class segment shapes.
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Label map Real image x Fake image x̂ Mask M LabelMix(x,x̂) DLabelMix(x,x̂)
LabelMix(Dx,Dx̂)

Figure 4: LabelMix regularization. Real x and fake x̂ images are mixed using a binary mask
M , sampled based on the label map, resulting in LabelMix(x,x̂). The consistency regularization
then minimizes the L2 distance between the logits of DLabelMix(x,x̂)

and LabelMix(Dx,Dx̂). In this
visualization, black corresponds to the fake class in the N+1 segmentation output.

Other variants. Besides the proposed (N+1)-class cross entropy loss, there are other ways to train
the segmentation-based discriminator with the label map. One can concatenate the label map to
the input image, analogous to SPADE. Another option is to use projection, by taking the inner
product between the last linear layer output and the embedded label map, analogous to class-label
conditional GANs (Miyato & Koyama, 2018). For both alternatives, the training loss is pixel-level
real/fake binary cross-entropy (Schönfeld et al., 2020). From the label map encoding perspective,
these two variants use labels map as input (concatenated to image or at last linear layer), propagating
it forward through the network. The (N+1)-setting uses the label map for loss computation, so it
is propagated backward via gradient updates. Backward propagation ensures that the discriminator
learns semantic-aware features, in contrast to forward propagation, where the label map alignment is
not as strongly enforced. Performance comparison of the label map encodings is shown in Table 5.

3.3 OASIS GENERATOR

To stay in line with the OASIS discriminator design, the training loss for the generator is changed to

LG = −E(z,t)





N
∑

c=1

αc

H×W
∑

i,j

ti,j,c logD(G(z, t))i,j,c



 , (4)

which is a direct outcome of the non-saturation trick (Goodfellow et al., 2014) to Eq. 1. We next
re-design the generator to enable multi-modal synthesis through noise sampling. SPADE is deter-
ministic in its default setup, but can be trained with an extra image encoder to generate multi-modal
outputs. We introduce a simpler version, that enables synthesis of diverse outputs directly from input
noise. For this, we construct a noise tensor of size 64×H×W , matching the spatial dimensions of
the label map H×W . Channel-wise concatenation of the noise and label map forms a 3D tensor
used as input to the generator and also as a conditioning at every spatially-adaptive normalization
layer. In doing so, intermediate feature maps are conditioned on both the semantic labels and the
noise (see Fig. 3). With such a design, the generator produces diverse, noise-dependent images. As
the 3D noise is channel- and pixel-wise sensitive, at test time, one can sample the noise globally,
per-channel, and locally, per-segment or per-pixel, for controlled synthesis of the whole scene or of
specic semantic objects. For example, when generating a scene of a bedroom, one can re-sample
the noise locally and change the appearance of the bed alone (see Fig. 2). Note that for simplicity
during training we sample the 3D noise tensor globally, i.e. per-channel, replicating each channel
value spatially along the height and width of the tensor. We analyse alternative ways of sampling 3D
noise during training in App. A.7. Using image styles via an encoder, as in SPADE, is also possible
in our setting, by replacing noise with encoder features. Lastly, to further reduce the complexity,
we remove the rst residual block in the generator, reducing the number of parameters from 96M to
72M (see App. C.2) without a noticeable performance loss (see Table 3).
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Label map Ground truth Pix2pixHD SPADE CC-FPSE OASIS

Figure 5: Qualitative comparison of OASIS with other methods on ADE20K. Trained with only
adversarial supervision, our model generates images with better perceptual quality and structure.

4 EXPERIMENTS

We conduct experiments on three challenging datasets: ADE20K (Zhou et al., 2017), COCO-stuff
(Caesar et al., 2018) and Cityscapes (Cordts et al., 2016). Following Qi et al. (2018), we also
evaluate OASIS on ADE20K-outdoors, a subset of ADE20K containing outdoor scenes. We follow
the experimental setting of Park et al. (2019). We did not use the GAN feature matching loss for
OASIS, as we did not observe any improvement with it (see App. A.5), and used the VGG loss
only for ablations with λVGG = 10. We did not experience any training instabilities and, thus, did
not employ any extra stabilization techniques. All our models use an exponential moving average
(EMA) of the generator weights with 0.9999 decay. For further training details refer to App. C.3.

Following prior work (Isola et al., 2017; Wang et al., 2018; Park et al., 2019; Liu et al., 2019),
we evaluate models quantitatively on the validation set using the Fréchet Inception Distance (FID)
(Heusel et al., 2017) and mean Intersection-over-Union (mIoU). FID is known to be sensitive to
both quality and diversity and has been shown to be well aligned with human judgement (Heusel
et al., 2017). We show additional evaluation of quality and diversity with ”improved precision and
recall” in App. A.9. Mean IoU is used to assess the alignment of the generated image with the
ground truth label map, computed via a pre-trained semantic segmentation network. We use Uper-
Net101 (Xiao et al., 2018) for ADE20K, multi-scale DRN-D-105 (Yu et al., 2017) for Cityscapes,
and DeepLabV2 (Chen et al., 2015) for COCO-Stuff. We additionally propose to compare color
and texture statistics between generated and real images on ADE20K to better understand how the
perceptual loss inuences performance. For this, we compute color histograms in LAB space and
measure the earth mover’s distance between the real and generated sets (Rubner et al., 2000). We
measure the texture similarity to the real data as the χ2-distance between Local Binary Patterns his-
tograms (Ojala et al., 1996). As different classes have different color and texture distributions, we
aggregate histogram distances separately per class and then take the mean. Lower values for the
texture and color distances indicate a closer similarity to real data.

4.1 MAIN RESULTS

We use SPADE as our baseline, using the authors’ implementation1. For a fair comparison, we train
this model without the feature matching loss and using EMA (Yaz et al., 2018) at test phase, which

1github.com/NVlabs/SPADE
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Table 1: Comparison with other methods across datasets.Bold denotes the best performance.

Method # param VGG
ADE20K ADE-outd. Cityscapes COCO-stuff

FID↓ mIoU↑ FID↓ mIoU↑ FID↓ mIoU↑ FID↓ mIoU↑

CRN 84M 3 73.3 22.4 99.0 16.5 104.7 52.4 70.4 23.7
SIMS 56M 3 n/a n/a 67.7 13.1 49.7 47.2 n/a n/a

Pix2pixHD 183M 3 81.8 20.3 97.8 17.4 95.0 58.3 111.5 14.6
LGGAN n/a 3 31.6 41.6 n/a n/a 57.7 68.4 n/a n/a
CC-FPSE 131M 3 31.7 43.7 n/a n/a 54.3 65.5 19.2 41.6
SPADE 102M 3 33.9 38.5 63.3 30.8 71.8 62.3 22.6 37.4

SPADE+ 102M
3 32.9 42.5 51.1 32.1 47.8 64.0 21.7 38.8
7 60.7 21.0 65.4 22.7 61.4 47.6 99.1 16.1

OASIS 94M 7 28.3 48.8 48.6 40.4 47.7 69.3 17.0 44.1

Table 2: Multi-modal synthesis evaluation on ADE20K.
Bold and red denote the best and the worst performance,
respectively.

Method Multi-mod. VGG MS-SSIM↓ LPIPS↑ FID↓mIoU↑

SPADE+ Encoder 3 0.85 0.16 33.4 40.2

SPADE+ 3D noise
7 0.35 0.50 58.4 18.7
3 0.53 0.36 34.4 36.2

OASIS 3D noise
7 0.65 0.35 28.3 48.8
3 0.88 0.15 31.6 50.8 Figure 6: Histogram distances to real data.

we further refer to as SPADE+. We found that the feature matching loss has a negligible impact (see
App. A.5), while EMA signicantly increases the performance for all metrics (see Table 1).

OASIS outperforms the current state of the art on all datasets with an average improvement of 6
FID and 5 mIoU points (Table 1). Importantly, OASIS achieved the improvement via adversarial
supervision alone. On the contrary, SPADE+ does not produce images of high visual quality without
the perceptual loss, and struggles to learn the color and texture distribution of real images (Fig. 6).
A strong discriminator is the key factor for good performance: without a rich training signal from
the discriminator, the SPADE+ generator has to learn through minimizing the VGG loss. With the
stronger OASIS discriminator, the perceptual loss does not overtake the generator supervision (see
App. A.2), allowing to produce images with the color and texture distribution closer to the real data.

Fig. 5 shows a qualitative comparison of our results to previous models. Our approach noticeably
improves image quality, synthesizing ner textures and more natural colors. With the powerful
feedback from the discriminator, OASIS is able to learn the appearance of small or rarely occurring
semantic classes (which is reected in the per-class IoU scores presented in App. A.3), producing
plausible results even for complex scenes with rare classes and reducing unnatural artifacts.

Multi-modal image synthesis. In contrast to previous work, OASIS can produce diverse images by
directly re-sampling input 3D noise. As 3D noise modulates features directly at every layer of the
generator at different scales, matching their resolution, it affects both global and local characteristics
of the image. Thus, the noise can be sampled globally, varying the whole image, or locally, resulting
in the selected object change while preserving the rest of the scene (see Fig. 2).

To measure the variation in the multi-modal generation, we evaluate MS-SSIM (Wang et al., 2003)
and LPIPS (Zhang et al., 2018b) between images generated from the same label map. We generate
20 images and compute the mean pairwise scores, and then average over all label maps. The lower
the MS-SSIM and the higher the LPIPS scores, the more diverse the generated images are. To assess
the effect of the perceptual loss and the noise sampling on diversity, we train SPADE+ with 3D noise
or the image encoder, and with or without the perceptual loss. Table 2 shows that OASIS, without
perceptual loss, improves over SPADE+ with the image encoder, both in terms of image diversity
(MS-SSIM, LPIPS) and quality (mean FID, mIoU across 20 realizations). Using 3D noise further
increases diversity for SPADE+. However, a strong quality-diversity tradeoff exists for SPADE+:
3D noise improves diversity at the cost of quality, and the perceptual loss improves quality at the
cost of diversity. For OASIS, the VGG loss also reduces diversity but does not noticeably affect
quality. Note that in our experiments LabelMix does not notably affect diversity (see App. A.1).
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4.2 ABLATIONS

We conduct ablations on ADE20K to evaluate our proposed changes. The main ablation shows the
impact of our new discriminator, lighter generator, LabelMix and 3D noise. Further ablations are
concerned with architecture changes and the label map encodings in the discriminator, where for
fair comparison we use no 3D noise and LabelMix.

Table 3: OASIS ablation on ADE20K. Bold
denotes the best performance.

G D VGG LabelMix FID↓ mIoU↑

SPADE+ SPADE+ 7 7 60.7 21.0

SPADE+ OASIS 7 7 29.0 52.1

OASIS OASIS
7 7 29.3 51.6

7 3 28.4 50.6

OASIS

+3D noise
OASIS

7 3 28.3 48.8

3 3 31.6 50.8

Main ablation. Table 3 shows that SPADE+ scores
low on the image quality metrics without the percep-
tual loss. Replacing the SPADE+ discriminator with
the OASIS discriminator, while keeping the gener-
ator xed, improves FID and mIoU by more than
30 points. Changing the SPADE+ generator to the
lighter OASIS generator leads to a negligible degra-
dation of 0.3 in FID and 0.5 in mIoU. With La-
belMix FID improves further by∼ 1 point (more ab-
lations on LabelMix in App. A.4). Adding 3D noise
improves FID but degrades mIoU, as diversity complicates the task of the pre-trained semantic seg-
mentation network used to compute the score. For OASIS the perceptual loss deteriorates FID by
more than 2 points, but improves mIoU. Overall, without the perceptual loss the new discriminator
is the key to the performance boost over SPADE+.

Table 4: Ablation on the D architecture.
Bold denotes the best performance, red high-
lights collapsed runs.

D architecture
w/o VGG with VGG

FID↓ mIoU↑ FID↓ mIoU↑

MS-PatchGAN (2x) 60.7 21.0 32.9 42.5

PatchGAN 197 0.62 34.2 42.2

ResNet-PatchGAN 147 0.42 32.4 45.1

OASIS 29.3 51.6 29.2 51.1

Ablation on the discriminator architecture. We
train the OASIS generator with three alternative dis-
criminators: the original multi-scale PatchGAN con-
sisting of two networks, a single-scale PatchGAN,
and a ResNet-based discriminator, corresponding to
the encoder of the U-Net shaped OASIS discrimi-
nator. Table 4 shows that the alternative discrim-
inators only perform well with perceptual supervi-
sion, while the OASIS discriminator achieves supe-
rior performance independent of it. The single-scale
discriminators even collapse without the perceptual loss (highlighted in red in Table 4).

Table 5: Ablation on the label map encod-
ing. Bold denotes the best performance, red
highlights collapsed runs.

Label encoding
w/o VGG with VGG

FID↓ mIoU↑ FID↓ mIoU↑

Input concatenation 280 0.02 30.0 43.9

Projection 32.4 44.9 28.0 46.9

N+1 loss 28.3 47.2 28.6 49.8

Balanced N+1 loss 29.3 51.6 29.2 51.1

Ablation on the label map encoding. We study
four different label map encodings: input concate-
nation, as in SPADE, projection conditioned on the
label map (Miyato & Koyama, 2018), employing la-
bel maps as ground truth for the N+1 segmentation
loss, or for the class-balanced N+1 loss (see Sec.
3.2). As shown in Table 5, input concatenation is not
sufcient without additional perceptual loss supervi-
sion, leading to training collapse. Without percep-
tual loss, the N+1 loss outperforms the input con-
catenation and the projection in both the FID and mIoU metrics. The class balancing noticeably
improves mIoU due to better supervision for rarely occurring semantic classes. More ablations can
be found in App. A.

5 CONCLUSION

In this work we propose OASIS, a semantic image synthesis model that only relies on adversar-
ial supervision to achieve high delity image synthesis. In contrast to previous work, our model
eliminates the need for a perceptual loss, which often imposes extra constraints on image quality
and diversity. This is achieved via detailed spatial and semantic-aware supervision from our novel
segmentation-based discriminator, which uses semantic label maps as ground truth for training. With
this powerful discriminator, OASIS can easily generate diverse multi-modal outputs by re-sampling
the 3D noise, both globally and locally, allowing to change the appearance of the whole scene and of
individual objects. OASIS signicantly improves over the state of the art in terms of image quality
and diversity, while being simpler and more lightweight than previous methods.
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Abstract
Despite their recent successes, generative adversarial networks (GANs) for semantic image synthesis still suffer from poor
image quality when trained with only adversarial supervision. Previously, additionally employing the VGG-based perceptual
loss has helped to overcome this issue, significantly improving the synthesis quality, but at the same time limited the progress
of GAN models for semantic image synthesis. In this work, we propose a novel, simplified GAN model, which needs only
adversarial supervision to achieve high quality results. We re-design the discriminator as a semantic segmentation network,
directly using the given semantic label maps as the ground truth for training. By providing stronger supervision to the
discriminator as well as to the generator through spatially- and semantically-aware discriminator feedback, we are able to
synthesize images of higher fidelity and with a better alignment to their input label maps, making the use of the perceptual
loss superfluous. Furthermore, we enable high-quality multi-modal image synthesis through global and local sampling of a
3D noise tensor injected into the generator, which allows complete or partial image editing. We show that images synthesized
by our model are more diverse and follow the color and texture distributions of real images more closely. We achieve a strong
improvement in image synthesis quality over prior state-of-the-art models across the commonly used ADE20K, Cityscapes,
and COCO-Stuff datasets using only adversarial supervision. In addition, we investigate semantic image synthesis under
severe class imbalance and sparse annotations, which are common aspects in practical applications but were overlooked in
prior works. To this end, we evaluate our model on LVIS, a dataset originally introduced for long-tailed object recognition.
We thereby demonstrate high performance of our model in the sparse and unbalanced data regimes, achieved by means of the
proposed 3D noise and the ability of our discriminator to balance class contributions directly in the loss function. Our code
and pretrained models are available at https://github.com/boschresearch/OASIS.

Keywords Semantic image synthesis · GAN · Semantic segmentation · Label-to-image translation · Image editing
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1 Introduction

Conditional generative adversarial networks (GANs) (Mirza
& Osindero, 2014) synthesize images conditioned on class
labels (Brock et al., 2019; Casanova et al., 2021), text (Reed
et al., 2016; Zhang et al., 2018a, 2021), other images (Isola
et al., 2017; Huang et al., 2018; Park et al., 2020), or seman-
tic label maps (Park et al., 2019b; Liu et al., 2019; Wang
et al., 2021b). In this work, we focus on the latter, address-
ing semantic image synthesis. Taking pixel-level annotated
semantic maps as input, semantic image synthesis enables
the rendering of realistic images from user-specified layouts,
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Fig. 1 Existing semantic image synthesis models heavily rely on the VGG-based perceptual loss to improve the quality of generated images. In
contrast, our model (OASIS) can synthesize diverse and high-quality images while only using an adversarial loss, without any external supervision

without the use of an intricate graphics engine. Therefore, its
applications range widely from content creation and image
editing to producing training data for downstream applica-
tions that adhere to specific semantic requirements (Park et
al., 2019a; Ntavelis et al., 2020).

Despite the recent progress on stabilizing GANs (Miyato
et al., 2018; Zhang & Khoreva, 2019; Karras et al., 2020a;
Sauer et al., 2021) and developing their architectures (Kar-
ras et al., 2021, 2019, 2020b; Brock et al., 2019; Liu et al.,
2021), state-of-the-art GAN-based semantic image synthe-
sis models (Park et al., 2019b; Liu et al., 2019; Wang et
al., 2021b) still greatly suffer from training instabilities and
poor image quality when the generator is only trained to fool
the discriminator in an adversarial fashion (see Fig. 1). An
established practice to overcome this issue is to employ a
perceptual loss (Wang et al., 2018) to train the generator, in
addition to the discriminator loss. The perceptual loss aims to
match intermediate features of synthetic and real images, that
are estimated via an external perception network. A popular
choice for such a network is VGG (Simonyan & Zisserman,
2015), pre-trained on ImageNet (Deng et al., 2009). Although
the perceptual loss substantially improves the performance
of previous methods, it comes with the computational over-
head introduced by utilizing an extra network for training.
Moreover, as we show in our experiments, it dominates over
the adversarial loss during training, as the generator starts
to learn mostly through minimizing the VGG loss, which
has a negative impact on the diversity and quality of gen-
erated images. Therefore, in this work we propose a novel,
simplified model that establishes new state-of-the-art results
without requiring a perceptual loss.

To achieve semantic image synthesis of high quality, the
training signal to the GAN generator should contain feed-
back on whether the generated images are well aligned to the
input label maps. Thus, a fundamental question for GAN-
based semantic image synthesis models is how to design
the discriminator that would efficiently utilize information
from given semantic label maps, in addition to judging
the realism of given images. Conventional methods (Park
et al., 2019b; Wang et al., 2018, 2021b; Liu et al., 2019;
Isola et al., 2017; Ntavelis et al., 2020) adopt a multi-
scale classification network, taking the label map as input
along with the image, and making a global image-level
real/fake decision. This discriminator has limited represen-
tation power, as it is not incentivized to learn high-fidelity
pixel-level details of the images and their precise alignment
with the input semantic label maps. For example, such a
classification-based discriminator can base its decision solely
on image realism, without the need of examining the align-
ment between the image and label map. To mitigate this issue,
we propose an alternative architecture for the discriminator,
re-designing it as an encoder-decoder semantic segmentation
network (Ronneberger et al., 2015), and directly exploit-
ing the given semantic label maps as ground truth via an
(N + 1)-class cross-entropy loss. This new discriminator
provides semantically-aware pixel-level feedback to the gen-
erator, partitioning the image into segments belonging to one
of the N real semantic classes or the fake class. With this
design, the network cannot ignore the provided label maps,
as it has to predict a correct class label for each pixel of an
image. Enabled by the discriminator per-pixel response, we
further introduce a LabelMix regularization, which fosters
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Fig. 2 OASIS multi-modal synthesis results. The 3D noise can be sam-
pled globally (first 2 rows), changing the whole scene, or locally (last 2
rows), partially changing the image. For the latter, we sample different

noise per region, like the bed segment (in red) or arbitrary areas defined
by shapes (Color figure online)

the discriminator to focus more on the semantic and struc-
tural differences of real and synthetic images. The proposed
changes lead to a much stronger discriminator, that maintains
a powerful semantic representation of objects, giving more
meaningful feedback to the generator, and thus making the
perceptual loss supervision superfluous (see Fig. 1).

Semantic image synthesis is naturally a one-to-many ma-
pping, where one label map can correspond to many possible
real images. Thus, a desirable property of a generator is to
generate a diverse set of images from a single label map,
only by sampling noise. This property is known as multi-
modality. Previously, only using a noise vector as input was
not sufficient to achieve multi-modality, because the genera-
tor tended to mostly ignore the noise or synthesized images
of poor quality (Isola et al., 2017; Wang et al., 2018). Thus,
prior work (Wang et al., 2018; Park et al., 2019b) resorted to
using an image encoder to produce multi-modal outputs. In
this work, we enable multi-modal synthesis of the generator
via a newly-introduced 3D noise sampling method, without
requiring an image encoder and not relying on availability of
a reference image to produce new image styles. Empowered
by our stronger discriminator, the generator can now effec-
tively synthesize different images by simply resampling a
3D noise tensor, which is used not only as the input, but
is also combined with intermediate features via conditional
normalization at every layer. This procedure makes the gen-

erator spatially sensitive to noise, so we can re-sample it both
globally (channel-wise) and locally (pixel-wise), allowing to
change not only the appearance of the whole scene, but also of
specific semantic classes or any chosen area (see Fig. 2). As
shown in our experiments, the proposed 3D noise injection
scheme enables a significantly higher diversity of synthesis
compared to previous methods.

With the proposed modifications in the discriminator and
generator design, we outperform the prior state of the art
in synthesis quality across the commonly used ADE20K
(Zhou et al., 2017), COCO-Stuff (Caesar et al., 2018) and
Cityscapes (Cordts et al., 2016) datasets. Omitting the neces-
sity of the VGG perceptual loss, our model generates samples
of higher quality and diversity, and follows the color and tex-
ture distributions of real images more closely.

A well known challenge for semantic segmentation appli-
cations is the problem of class imbalance. In practice, a
dataset can contain underrepresented classes (representing
a very small fraction of the dataset pixels), which can lead
to suboptimal performance of models (Sudre et al., 2017).
However, to the best of our knowledge, this problem has
not been studied in the context of semantic image synthe-
sis. For this reason, we propose to extend the evaluation
setup used in previous works by using the highly imbalanced
LVIS dataset (Gupta et al., 2019). Originally introduced as
a dataset for long-tailed object recognition, LVIS contains
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a large set of 1203 classes, the majority of which appear
only in a few images. Moreover, to simplify dataset curation,
label maps in LVIS were annotated sparsely, with large image
areas being occupied with a generic background label. The
above properties make LVIS a very challenging evaluation
setting for previous semantic image synthesis models, as we
demonstrate by the example of the state-of-the-art SPADE
model (Park et al., 2019b). As the classification-based dis-
criminator of SPADE makes a global real/fake decision for
each image-label pair, the loss contribution originating from
underrepresented classes can be dominated by the loss contri-
bution of well represented classes. In contrast, our proposed
discriminator mitigates this issue: with the (N + 1)-class
cross-entropy loss computed for each image pixel, it becomes
possible to assign higher weights for the pixels belonging to
underrepresented classes. As shown in our experiments, our
model successfully deals with both the extreme class imbal-
ance and sparsity in label maps, outperforming SPADE on
the LVIS dataset by a large margin.

To extend the evaluation of our model further, we test
the efficacy of generated images when applied as synthetic
data augmentation for the training of semantic segmenta-
tion networks. This way, the performance of semantic image
synthesis is assessed through a task that holistically requires
high image quality, diversity, and precise image alignment
to the label maps. We demonstrate that the synthetic data
produced by our model achieves high performance on this
test, eliciting a notable increase in downstream segmenta-
tion performance. In doing so, our model outperforms a
strong baseline SPADE (Park et al., 2019b), indicating its
high potential to be applied in segmentation applications. In
addition, we also demonstrate how our model for the first time
enables the application of a GAN-based semantic image syn-
thesis model to unlabelled images, without requiring external
segmentation networks. Thanks to a good segmentation per-
formance of our trained discriminator, we can infer the label
map of an image and generate many alternative versions of
the same scene by varying the 3D noise. We find these results
promising for future utilization of our model in applications.

We call our model OASIS, as it needs only adversarial
supervision for semantic image synthesis. In summary, our
main contributions include:

– We propose a novel segmentation-based discriminator
architecture, that gives more powerful feedback to the
generator and eliminates the necessity of the perceptual
loss supervision.

– We present a simple 3D noise sampling scheme, notably
increasing the diversity of multi-modal synthesis and
enabling both complete or partial resampling of a gener-
ated image.

– With the OASIS model, we achieve high-quality results
on the ADE20K, Cityscapes and COCO-Stuff datasets,

outperforming previous state-of-the-art models while
relying only on adversarial supervision. We show that
images synthesized by OASIS exhibit much higher diver-
sity and more closely follow the color and texture
distributions of real images.

– We propose to use the LVIS dataset (Gupta et al., 2019) to
assess image generation in the regime with many under-
represented semantic classes, leading to a severe class
imbalance. We show how the OASIS design directly
addresses these issues and thereby outperforms the strong
baseline SPADE (Park et al., 2019b) by a large margin.

– We test the efficacy of generated images for synthetic data
augmentation, as a unified measure that simultaneously
depends on image quality, diversity, and label map align-
ment. The images generated by OASIS elicit a stronger
increase in downstream segmentation performance com-
pared to SPADE, suggesting a higher potential of our
model for future utilization in applications.

This paper is an extended version of our previous work
(Schönfeld et al., 2021). Compared to the prior conference
version, we provide a a significantly extended experimental
evaluation and a more in-depth discussion of the proposed
contributions. In particular, the conventional evaluation setup
is extended to the extremely imbalanced data regime on the
LVIS dataset (see Sect. 4.3). We further extend the evaluation
by testing the efficacy of synthetic images as data augmen-
tation for the task of semantic segmentation (see Sect. 4.5).
We add new results on the synthesis of diverse images from
unlabelled data (see Sect. 4.4 and Fig. 13). These new results
highlight specific benefits of our approach compared to other
models. Finally, we offer a new detailed ablation study of the
method (see Tables 7, 10, 11, 12a) and extend the discussion
of our model by analysing its independence on the perceptual
loss (Sect. 3.4).

2 RelatedWork

Semantic image synthesis. The task of semantic image syn-
thesis is to solve the inverse problem of semantic image
segmentation: generate photorealistic and diverse images
from provided semantic label maps. Currently, the most
prominent approaches for this task are based on conditional
GANs (Mirza & Osindero, 2014), as first proposed by the
Pix2pix model (Isola et al., 2017). Pix2pix generates images
with an encoder-decoder generator that takes label maps
as input, and employs a PatchGAN discriminator which is
induced to distinguish between real and fake image-label
pairs. Lately, various GAN models with modified generator
and discriminator architectures have been introduced (Wang
et al., 2018; Park et al., 2019b; Liu et al., 2019; Tang et al.,
2020c, b; Ntavelis et al., 2020; Wang et al., 2021b; Richard-
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son et al., 2021; Li et al., 2021) to improve the quality
and diversity of image synthesis. Besides GANs, Chen and
Koltun (2017) proposed to use a cascaded refinement net-
work (CRN) for high-resolution semantic image synthesis,
and SIMS (Qi et al., 2018) extended it with a non-parametric
component, serving as a memory bank of source material
to assist the synthesis. Further, Li et al. (2019) employed
implicit maximum likelihood estimation (Li & Malik, 2018)
to increase the synthesis diversity of the CRN model. How-
ever, these approaches still underperform in comparison to
state-of-the-art GAN models. Therefore, we next focus on
the recent GAN architectures for semantic image synthesis.
Discriminator architectures. To provide a powerful guid-
ing signal to the generator, a GAN discriminator for semantic
image synthesis should evaluate both the image realism and
its alignment to the provided semantic label map. Thus, a
fundamental question is to find the most efficient way for
the discriminator to utilize the given semantic label maps. To
this end, Pix2pix (Isola et al., 2017), Pix2pixHD (Wang et
al., 2018) and SPADE (Park et al., 2019b) rely on concate-
nating the label maps directly to the input image, which is
fed to a multi-scale PatchGAN discriminator. Alternatively,
SESAME (Ntavelis et al., 2020) employed a projection-based
discriminator (Miyato & Koyama, 2018), applying an addi-
tional branch to process semantic label maps separately from
images, and merging the two streams before the last con-
volutional layer via a pixel-wise multiplication. CC-FPSE
(Liu et al., 2019) proposed a feature-pyramid discriminator,
embedding both images and label maps into a joint fea-
ture map, and then consecutively upsampling it in order to
classify it as real/fake at multiple scales. LGGAN (Tang et
al., 2020c) introduced a classification-based feature learning
module to learn more discriminative and class-specific fea-
tures. In this work, we propose to use a simple pixel-wise
semantic segmentation network as a discriminator instead of
multi-scale image classifiers as in the above approaches, and
to directly exploit the semantic label maps for its supervi-
sion. Segmentation-based discriminators have been shown
to improve semantic segmentation (Souly et al., 2017) and
unconditional image synthesis (Schönfeld et al., 2020), but
to the best of our knowledge have not been explored for
semantic image synthesis and our work is the first to apply
an adversarial semantic segmentation loss for this task.
Generator architectures. To enforce the alignment between
the generated images and the conditioning label maps, pre-
vious methods explored different ways to incorporate the
label maps into the generator training. In many conventional
approaches (Isola et al., 2017; Wang et al., 2018; Tang et
al., 2020b, c; Ntavelis et al., 2020; Richardson et al., 2021),
label maps are provided to the generator via an additional
encoder network. However, this solution has been shown to
be suboptimal at preserving the semantic information until
the later stages of image generation. Therefore, SPADE intro-

duced a spatially-adaptive normalization layer that directly
modulates the label map onto the generator’s hidden layer
outputs at various scales. Alternatively, CC-FPSE proposed
to use spatially-varying convolution kernels conditioned on
the label map. Most recently, SC-GAN (Wang et al., 2021b)
utilized label maps as input to generate class-specific seman-
tic vectors at different scales, which are used as conditioning
at different layers of the image rendering network; and Col-
lageGAN (Li et al., 2021) proposed to extract a label map
representation via feature pyramid encoder and inject it as
spatial style tensor to a StyleGAN2 generator.

While improving the quality of generated images, the
above models struggled to achieve multi-modality through
sampling the input noise, as the generator tended to become
insensitive to noise or achieved only poor quality, as first
observed by (Isola et al., 2017). Thus, the above approaches
resorted to having an image encoder in the generator design to
enable multi-modal synthesis. The generator then combines
the extracted image style with the label map to reconstruct
the original image. By alternating the style vector, one can
generate multiple outputs conditioned on the same label map.
However, using an image encoder is a resource-demanding
solution. In this work, we enable multi-modal synthesis
directly through sampling of a 3D noise tensor which is
injected at every layer of the network. Different from the
structured noise injection of Alharbi and Wonka (2020) and
class-specific latent codes of Zhu et al. (2020), we inject
the 3D noise along with label maps and adjust it to image
resolution, also enabling re-sampling of selected semantic
segments (see Fig. 2).
Perceptual losses. Gatys et al. (2015, 2016); Johnson et al.
(2016) and Bruna et al. (2016) were pioneers at exploiting
perceptual losses to produce high-quality images for super-
resolution and style transfer using convolutional networks.
Such a loss extracts deep features from real and generated
images by an external classification network, and minimizes
their L1-distance to bring fake images closer to the real data.
For semantic image synthesis, the VGG-based perceptual
loss was first introduced by CRN (Chen & Koltun, 2017),
and later adopted by Pix2pixHD (Isola et al., 2017). Since
then, it has become a default for training the generator (Park
et al., 2019b; Liu et al., 2019; Tan et al., 2020; Tang et al.,
2020a; Richardson et al., 2021; Wang et al., 2021b; Li et al.,
2021). As the perceptual loss is based on a VGG network
pre-trained on ImageNet (Deng et al., 2009), methods rely-
ing on it are constrained by the ImageNet domain and the
representational power of VGG. With the recent progress on
GAN training, e.g., by architecture designs and regulariza-
tion techniques, the actual necessity of the perceptual loss
requires a reassessment. We experimentally show that such
loss imposes unnecessary constraints on the generator, signif-
icantly limiting the diversity among samples. Trained without
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Fig. 3 SPADE (left) versus OASIS (right). OASIS outperforms
SPADE, while being simpler and lighter: it uses only an adversarial loss
as supervision and a single segmentation-based discriminator, without

relying on heavy external networks. Furthermore, OASIS learns to syn-
thesize multi-modal outputs by directly re-sampling the 3D noise tensor,
instead of using an image encoder as in SPADE

the VGG loss, our model achieves improved diversity, at the
same time not compromising the quality of generated images.

3 The OASIS Model

In this section, we present our OASIS model, which, in
contrast to other semantic image synthesis methods, needs
only adversarial supervision for training. Using SPADE
as a starting point (Sect. 3.1), we first propose to re-
design the discriminator as a semantic segmentation network,
directly using the given semantic label maps as ground truth
(Sect. 3.2). Empowered by spatially- and semantically-aware
feedback of the new discriminator, we next re-design the
SPADE generator, enabling its effective multi-modal syn-
thesis via 3D noise sampling (Sect. 3.3). Lastly, we illustrate
the superfluity of the VGG loss for our model (Sect. 3.4).

3.1 The SPADE Baseline

We choose SPADE as our baseline as it is a state-of-the-art
model and a relatively simple representative of conventional
semantic image synthesis models. As depicted in Fig. 3,
the discriminator of SPADE largely follows the PatchGAN
multi-scale discriminator (Isola et al., 2017), adopting two
image classification networks operating at different resolu-
tions. Both of them take the channel-wise concatenation of
the semantic label map and the real/fake image as input,
and produce real/fake classification scores. On the generator
side, SPADE adopts spatially-adaptive normalization layers
to effectively integrate the semantic label map into the synthe-
sis process from low to high scales. Additionally, the image
encoder is used to extract the style vector from the reference
image, which is then combined with a 1D noise vector for
multi-modal synthesis. The training loss of SPADE consists
of three terms, namely, an adversarial loss, a feature matching
loss and the VGG-based perceptual loss:

L = max
G

min
D

Ladv + λfmLfm + λvggLvgg. (1)

Overall, SPADE is a resource-demanding model at both train-
ing and test time, i.e., with two PatchGAN discriminators, an
image encoder in addition to the generator, and the VGG loss.
In the following, we revisit its architecture and introduce a
simpler and more efficient solution that offers better perfor-
mance and reduces the model complexity.

3.2 The OASIS Discriminator

To train the generator to synthesize high-quality images
that are well aligned with the input semantic label maps,
we need a powerful discriminator that coherently captures
discriminative semantic features at different image scales.
While classification-based discriminators, such as Patch-
GAN, take label maps as input concatenated to images, they
can afford to ignore them and make the decision solely on
image patch realism. Thus, we propose to cast the discrimi-
nator task as a multi-class semantic segmentation problem to
directly utilize label maps for supervision, and accordingly
alter its architecture to an encoder-decoder segmentation net-
work (see Fig. 3). Encoder-decoder networks have proven to
be effective for semantic segmentation (Badrinarayanan et
al., 2016; Chen et al., 2018). Thus, we build our discrim-
inator architecture upon U-Net (Ronneberger et al., 2015),
which consists of the encoder and decoder connected by
skip connections. This discriminator architecture is multi-
scale through its design, integrating information over up- and
down-sampling pathways as well as through the encoder-
decoder skip connections. The segmentation task of the
discriminator is formulated to predict the per-pixel class label
of the real images, using the given semantic label maps as
ground truth. In addition to the N semantic classes from the
label maps, all pixels of fake images are categorized as one
extra class. As the formulated semantic segmentation prob-
lem has N + 1 classes, we propose to use an (N + 1)-class
cross-entropy loss for training.
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Fig. 4 LabelMix regularization. Real x and fake x̂ images are mixed
using a binary mask M , sampled based on the label map, resulting in
LabelMix(x,x̂). The consistency regularization minimizes the L2 dis-

tance between the logits of DLabelMix(x,x̂)
and LabelMix(Dx ,Dx̂ ). In this

visualization, black corresponds to the fake class in the N + 1 segmen-
tation output

In practice, the N semantic classes are often imbalanced,
as some of the classes represent significantly less pixels of
the dataset compared to others. The loss contribution for such
underrepresented classes can be dominated by well repre-
sented classes, which can lead to suboptimal performance. To
mitigate this issue, empowered by the pixel-level loss compu-
tation of our discriminator, we propose to weight each class
by its inverse pixel-wise frequency in a batch, thus giving
underrepresented semantic classes more weight. In doing so,
the loss contributions of each class are equally balanced, and,
thus, the generator is also encouraged to pay more attention to
underrepresented classes. Mathematically, the new discrim-
inator loss is expressed as:

LD = − E(x,t)

⎡
⎣

N∑
c=1

αc

H×W∑
i, j

ti, j,c log D(x)i, j,c

⎤
⎦

− E(z,t)

⎡
⎣

H×W∑
i, j

log D(G(z, t))i, j,c=N+1

⎤
⎦ ,

(2)

where x denotes the real image; (z, t) is the noise-label map
pair used by the generator G to synthesize a fake image;
and the discriminator D maps the real or fake image into a
per-pixel (N + 1)-class prediction probability. The ground
truth label map t has three dimensions, where the first two
correspond to the spatial position (i, j) ∈ H × W , and the
third one is a one-hot vector encoding the class c ∈ {1, .., N+
1}. The class balancing weight αc is the inverse pixel-wise
frequency of a class c per batch:

αc = H × W∑H×W
i, j Et

[
1[ti, j,c = 1]] . (3)

In effect, improving the synthesis of underrepresented and
well represented classes is equally necessary to minimize
the loss. As we show in Sect. 4.3, this step helps to improve
the synthesis quality of underrepresented classes.
LabelMix regularization. In order to encourage our dis-
criminator to focus on differences in content and structure
between the fake and real classes, we propose a LabelMix
regularization. Based on the semantic layout, we generate a
binary mask M to mix a pair (x, x̂) of real and fake images
conditioned on the same label map: LabelMix(x, x̂, M) =
M � x + (1 − M) � x̂ , as visualized in Fig. 4. Given the
mixed image, we further train the discriminator to be equiv-
ariant under the LabelMix operation. This is achieved by
adding a consistency loss term Lcons to Eq. 2:

Lcons =
∥∥∥Dlogits

(
LabelMix(x, x̂, M)

)

− LabelMix
(

Dlogits(x), Dlogits(x̂), M
)∥∥∥2

,

(4)

where Dlogits are the logits attained before the last softmax
activation layer, and ‖·‖ is the L2 norm. This consistency loss
compares the output of the discriminator on the LabelMix
image with the LabelMix of its outputs, penalizing the dis-
criminator for inconsistent predictions. LabelMix is different
to CutMix (Yun et al., 2019), which randomly samples the
binary mask M . A random mask will introduce inconsis-
tency between the pixel-level labels and the scene layout
provided by the label map. For an object with the class label
c, it will contain pixels from both real and fake images,
resulting in two labels, i.e. c and N +1. To avoid such incon-
sistency, the mask of LabelMix is generated according to
the label map, providing natural borders between semantic
regions, see Mask M in Fig. 4. Under LabelMix regular-
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ization, the generator is encouraged to respect the natural
semantic boundaries, improving pixel-level realism while
also considering the class segment shapes.
Alternative ways to encode label maps. Besides the pro-
posed (N +1)-class cross entropy loss, there are other ways to
incorporate a label map into the training of a segmentation-
based discriminator. One can concatenate the label map to
the input image, analogous to SPADE. Another option is to
use projection, by taking the inner product between the last
linear layer output and the embedded label map, analogous to
class-label conditional GANs (Miyato & Koyama, 2018). For
both alternatives, the training loss is the pixel-level real/fake
binary cross-entropy (Schönfeld et al., 2020). As in these two
variants the label maps are used as input to the discrimina-
tor (concatenated to the input image or fed to the last linear
layer), they are propagated forward through the network. In
contrast, the (N+1)-setting uses label maps only as targets
for the loss computation, so they are propagated backward
through the network via the gradients updates. Backward
propagation ensures that the discriminator learns semantic-
aware features, in contrast to forward propagation, where the
alignment of a generated image to the input label map can
be ignored. The comparison between the above label map
encodings is shown in Table 9.

3.3 The OASIS Generator

To stay in line with the OASIS discriminator design, the train-
ing loss for the generator is changed to

LG = −E(z,t)

⎡
⎣

N∑
c=1

αc

H×W∑
i, j

ti, j,c log D(G(z, t))i, j,c

⎤
⎦ , (5)

which is a direct outcome of the non-saturation trick (Good-
fellow et al., 2014) to Eq. 2. We next re-design the generator
to enable multi-modal synthesis through noise sampling.
SPADE is deterministic in its default setup, but can be trained
with an extra image encoder to generate multi-modal out-
puts. We introduce a simpler version, that enables synthesis
of diverse outputs directly from input noise. For this, we con-
struct a noise tensor of size M×H×W , matching the spatial
dimensions of the label map of size N×H×W , where N is
the number of semantic labels and H × W corresponds to
the height and width of the image. Note that for simplicity
during training we sample the 3D noise tensor globally, i.e.
per-channel, replicating each channel value spatially along
the height and width of the tensor. In other words, a M-
dimensional latent vector is sampled and then broadcasted
to each pixel of an image. We analyze alternative ways of
sampling 3D noise during training in the ablation section
(see Sect. 4.6). After sampling, the noise and the label map
are concatenated along the channel dimensions to form a

combined noise-label 3D tensor of size (M+N )×H×W .
This combined tensor serves as input to the first generator
layer, but also as input to the spatially-adaptive normalization
layers in every generator block. This way, all intermediate
feature maps are conditioned on both the semantic labels
and the noise (see Fig. 3), making the noise hard to ignore.
As the 3D noise is channel- and pixel-wise sensitive, at test
time, one can sample the noise globally, per-channel, and
locally, per-segment or per-pixel, for controlled synthesis of
the whole scene or of specific semantic objects. For example,
when generating a scene of a bedroom, one can re-sample the
noise locally and change the appearance of the bed alone (see
Fig. 2).

Note that using image styles via an encoder, as in SPADE,
is also possible in our setting, as the 3D noise can be simply
concatenated to the encoder style features. Lastly, to further
reduce the complexity, we remove the first residual block in
the generator, reducing the number of parameters from 96M
to 72M without a noticeable performance loss (see Table 7).

3.4 Superfluity of the Perceptual Loss for OASIS

In contrast to SPADE, which strongly relies on the percep-
tual loss during training (see Fig. 1), the OASIS generator is
trained only with the adversarial loss from the segmentation-
based discriminator, according to Eq. 5. To illustrate the
insignificance of the VGG loss for OASIS, in Fig. 5 we com-
pare the curves of the VGG and generator adversarial loss
functions of SPADE and OASIS, for comparison additionally
trained with the perceptual loss. We see that SPADE focuses
on minimizing the VGG loss during training, but keeps the
adversarial generator loss constant. Without a rich training
signal from its Patch-GAN discriminator, the generator of
SPADE resorts to learning mostly from the VGG loss. In con-
trast, with the stronger discriminator supervision provided by
the semantic label maps and the multi-scale U-Net architec-
ture, OASIS achieves a better adversarial balance. Hence, the
generator is forced to learn semantically meaningful features
that the segmentation-based discriminator judges as real, and
the generator loss does not stay constant (see Fig. 5).

Fig. 5 VGG and adversarial generator loss functions for SPADE and
OASIS trained with VGG loss on ADE20k dataset. The adversarial loss
scales are different due to different objectives (binary or (N + 1)-class
cross entropy loss)
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Fig. 6 Qualitative comparison of OASIS with other methods on ADE20K and Cityscapes. Trained with only adversarial supervision, our model
generates images with better perceptual quality and structure

The advantage of training the generator only with the
adversarial loss is three-fold. Firstly, the perceptual loss can
bias the training signal with the color and texture statistics
encoded in the VGG features extracted from ImageNet. As
shown in Sect. 4.2, the strong adversarial supervision from
the OASIS discriminator, without the VGG loss, allows to
generate images with color and texture distributions closer
to the provided real data. Secondly, the perceptual loss can
induce unnecessary constraints on the generator and thus sig-
nificantly limit the diversity of multi-modal image syntesis.
This effect is further demonstrated in Table 2. Lastly, remov-
ing the perceptual loss eliminates the computational overhead
which was introduced by an additional VGG network during
training.

4 Experiments

We provide an extensive experimental evaluation of our con-
tributions, using the official implementation of SPADE1 as
our baseline. The setup of our experiments is described in
detail in Sect. 4.1. Firstly, we compare OASIS with prior
methods on common semantic image synthesis benchmark
datasets, comparing their performance in terms of both
image quality and diversity (Sect. 4.2). To further high-
light the advantages of OASIS over the SPADE baseline,
we provide additional discussions on different aspects of
the semantic image synthesis. In particular, Sect. 4.3 is
devoted to the performance analysis on the underrepresented
classes, extending the comparison of the models to the LVIS

1 https://github.com/NVlabs/SPADE.
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dataset (Gupta et al., 2019). Section 4.4 demonstrates new
semantic image editing techniques enabled by OASIS. Sec-
tion 4.5 explores the application of generated images as
synthetic data augmentation for the training of semantic seg-
mentation networks. Lastly, we provide an extensive ablation
study to verify the effectiveness of the proposed contributions
(Sect. 4.6).

4.1 Experimental Setup

Datasets. We conduct experiments on several challenging
datasets. Firstly, to compare OASIS with prior models, we
use the ADE20K (Zhou et al., 2017), COCO-Stuff (Caesar
et al., 2018) and Cityscapes (Cordts et al., 2016), which are
the three benchmark datasets commonly used in the semantic
image synthesis literature (see Sect. 4.2). The image resolu-
tion is set to 256x256 for ADE20K and COCO-Stuff, and
256x512 for experiments on Cityscapes. Following Qi et al.
(2018), we also evaluate OASIS on ADE20K-outdoors, the
subset of ADE20K containing only outdoor scenes.

Secondly, to test the capability of models to learn under-
represented classes, we conduct additional evaluations on
the ADE20K and LVIS dataset (Gupta et al., 2019) (see
Sect. 4.3). We select ADE20K among conventional datasets
for its notable class imbalance, as among its 150 classes,
more than 86% of the image pixels belong only to the 30
best represented ones (see Table 3). In addition, to test the
networks under more extreme class imbalance, we propose to
use LVIS, the dataset that has been originally introduced for
the task of long-tailed instance segmentation. LVIS employs
the same set of training images as COCO-Stuff, but its anno-
tations are different in two important ways. Firstly, LVIS
provides a significantly larger set of 1203 annotated classes,
following a long-tailed distribution in which some classes
are present only in one or a few training samples (see Fig. 7).
Secondly, due to a fixed labelling budget, different back-
ground types were not considered for annotation in LVIS.
Consequently, the images in LVIS dataset contain large areas
belonging to the background class, which sometimes covers
more than 90% of the pixels in an image (see grey areas
in Fig. 10). For the above two reasons, the structure of LVIS
poses a new challenge for semantic image synthesis, as mod-
els need to account for a much more extreme class imbalance.
We conduct experiments on LVIS at the image resolution of
128x128.
Training. We follow the experimental setting of Park et al.
(2019b). The Adam (Kingma & Ba, 2015) optimizer was
used with momenta β = (0, 0.999) and constant learning
rates (0.0001, 0.0004) for G and D. We did not use the GAN
feature matching loss for OASIS, as we did not observe any
improvement with it, and used the VGG loss only for abla-
tions with λVGG = 10. The parameter for LabelMix λLM was
set to 5 for ADE20k and Cityscapes, and to 10 for COCO-

Fig. 7 Comparison of class distributions of the COCO and LVIS
datasets. LVIS has a much larger vocabulary of 1203 classes with a
long tail of underrepresented classes

Stuff and LVIS. The latent dimension M was set to 64.
We did not experience any training instabilities and, thus,
did not employ any extra stabilization techniques. All our
models use an exponential moving average (EMA) of the
generator weights with 0.9999 decay. All the experiments
were run on 4 Tesla V100 GPUs, with a batch size of 20
for Cityscapes and 32 for the other datasets. The training
epochs are 200 on ADE20K and Cityscapes, and 100 for the
larger COCO-Stuff and LVIS datasets. On average, a com-
plete forward-backward pass with batch size 32 on ADE20k
takes around 0.95ms per training image.
Evaluation metrics. Following prior work (Park et al.,
2019b; Liu et al., 2019), we evaluate the quality of seman-
tic image synthesis by computing the FID (Heusel et al.,
2017) and evaluate the alignment of the generated images
with their semantic label maps via mIoU (mean intersection-
over-union) or mAP (mean average precision) on the test
set (see Sect. 4.2). mIoU evaluates the alignment of gener-
ated images with their ground truth label maps, as measured
by an external pre-trained semantic segmentation network.
We use UperNet101 (Xiao et al., 2018) for ADE20K, multi-
scale DRN-D-105 (Yu et al., 2017) for Cityscapes, and
DeepLabV2 (Chen et al., 2015) for COCO-Stuff. Differ-
ently, for the LVIS dataset, the alignment of generated images
to ground truth label maps is measured using mAP instead
of mIoU, following the official guidelines for evaluating
instance segmentation models on this dataset (see Sect. 4.3).
We compute mAP using a state-of-the-art instance segmen-
tation model from Wang et al. (2021a), pre-trained on LVIS.

In addition, to better understand how the perceptual loss
influences the synthesis performance, we propose to com-
pare the color and texture statistics of generated and real
images. For this, we compute color histograms in the LAB
space and measure the earth mover’s distance between the
real and generated image sets (Rubner et al., 2000). We also
measure the texture similarity to the real data as the χ2-
distance between Local Binary Patterns histograms (Ojala
et al., 1996). As different semantic classes have different
color and texture distributions, we aggregate the histogram
distances separately per class and compute their average.
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Table 1 Comparison with other methods across datasets

Method # param VGG ADE20K ADE-outd. Cityscapes COCO-stuff
FID↓ mIoU↑ FID↓ mIoU↑ FID↓ mIoU↑ FID↓ mIoU↑

CRN 84M ✓ 73.3 22.4 99.0 16.5 104.7 52.4 70.4 23.7

SIMS 56M ✓ n/a n/a 67.7 13.1 49.7 47.2 n/a n/a

Pix2pixHD 183M ✓ 81.8 20.3 97.8 17.4 95.0 58.3 111.5 14.6

LGGAN n/a ✓ 31.6 41.6 n/a n/a 57.7 68.4 n/a n/a

CC-FPSE 131M ✓ 31.7 43.7 n/a n/a 54.3 65.5 19.2 41.6

SC-GAN 66M ✓ 29.3 45.2 n/a n/a 49.5 66.9 18.1 42.0

SESAME 104M ✓ 31.9 49.0 n/a n/a 54.2 66.0 n/a n/a

SPADE 102M ✓ 33.9 38.5 63.3 30.8 71.8 62.3 22.6 37.4

SPADE+ 102M ✓ 32.9 42.5 51.1 32.1 47.8 64.0 21.7 38.8

✗ 60.7 21.0 65.4 22.7 61.4 47.6 99.1 16.1

OASIS 94M ✗ 28.3 48.8 48.6 40.4 47.7 69.3 17.0 44.1

Bold denotes the best performance

To measure the diversity among synthesized samples in
the multi-modal image generation regime, we evaluate MS-
SSIM (Wang et al., 2003) and LPIPS (Zhang et al., 2018b)
between the images generated from the same label map. For
each label map in the test set, we generate 20 images and
compute the mean pairwise scores. For the final numbers,
the scores are averaged over all label maps.

Lastly, we propose to test the efficacy of generated images
when applied as synthetic data augmentation for the task
of semantic segmentation (see Sect. 4.5). For this, we take
a DeepLab-V3 segmentation network with a ResNeSt-50
backbone (Zhang et al., 2020) and train it on ADE20K and
Cityscapes. At each training step of DeepLab-V3, we add
for each training image its synthetic counterpart to the batch,
generated from the same label map. The efficacy of synthetic
images is therefore measured by its effect on the downstream
mIoU performance of DeepLab-V3.

4.2 Evaluation of the Synthesis Quality and Diversity

In this section, we compare OASIS to previous state-of-the-
art methods. For a fair comparison to the baseline SPADE,
we additionally train this model without the feature matching
loss and using EMA (Yaz et al., 2018) at the test phase. We
refer to this improved baseline as SPADE+.
Synthesis quality. Table 1 compares the image synthesis
quality achieved by OASIS and previous methods. In this
table, we report the results of our evaluation for OASIS and
SPADE+, and the officially reported numbers for all the other
models. As seen from Table 1, OASIS outperforms prior
state-of-the-art models in FID on all benchmark datasets.
Our model also achieves the highest mIoU scores on three
out of four datasets, being almost on par with the highest
score on ADE20K achieved by SESAME (Ntavelis et al.,

Fig. 8 Histogram distances to real data on the ADE20K validation set.
While SPADE+ relies on the VGG loss to learn colors and textures,
OASIS achieves low scores without it

2020) Importantly, OASIS achieves the improvement using
only adversarial supervision from its segmentation-based
discriminator. On the contrary, in the absence of the VGG
loss, the baseline SPADE+ does not produce images of high
visual quality (see Fig. 1), with two-digit drops in FID scores
observed for all the datasets in Table 1. The strong adversar-
ial supervision also allows OASIS to produce images with
color and texture distributions closer to the real data. Such
improvement over SPADE+ on the ADE20K dataset is shown
in Fig. 8, where OASIS achieves the lowest color and tex-
ture distances to the target distribution. In contrast, SPADE+
needs to compensate a weaker discriminator signal with the
VGG loss, struggling to learn the color and texture distribu-
tion of real images without it (see Fig. 8).

Figure 6 shows a qualitative comparison of our results to
previous models. Our approach noticeably improves image
quality, synthesizing finer textures and more natural col-
ors. While the previous methods occasionally produce areas
with unnatural checkerboard artifacts, OASIS generates large
objects and surfaces with higher photorealism. Notably, the
improvement over previous models is especially remarkable
for the semantic classes that occupy large areas, e.g, wall
(rows 1,4 in Fig. 6), road (rows 5,6) or water (row 3).
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Table 2 Multi-modal synthesis
evaluation on ADE20K

Method Multi-mod. VGG MS-SSIM↓ LPIPS↑ FID↓ mIoU↑
SPADE+ Encoder ✓ 0.85 0.16 33.4 40.2

SPADE+ 3D noise ✗ 0.35 0.50 58.4 18.7

✓ 0.53 0.36 34.4 36.2

OASIS 3D noise ✗ 0.65 0.35 28.3 48.8

✓ 0.88 0.15 31.6 50.8

Bold and italic denote the best and the worst performance

Fig. 9 Failure mode of OASIS. Without the VGG loss, OASIS has less
constraints on the diversity in colors and textures. This helps to achieve
higher diversity among the generated samples, but sometimes leads to

synthesis of objects with outlier colors and textures which may look
less realistic compared to Park et al. (2019b) and Liu et al. (2019)

Synthesis diversity. By resampling the input 3D noise,
OASIS can produce diverse images given the same label
map (see Fig. 2). To measure the diversity of such multi-
modal synthesis, we evaluate MS-SSIM (Wang et al., 2003)
and LPIPS (Zhang et al., 2018b). The lower the MS-SSIM
and the higher the LPIPS scores, the more diverse the gener-
ated images are. As seen from Table 2, OASIS outperforms
SPADE+ in both diversity metrics, improving the MS-SSIM
scores from 0.85 to 0.65 and LPIPS from 0.16 to 0.35. To
assess the effect of the perceptual loss and the noise sam-
pling on diversity, we train SPADE+ with 3D noise or the
image encoder, and with or without the perceptual loss.
Table 2 shows that OASIS, without the perceptual VGG
loss, improves over SPADE+ with the image encoder, both
in terms of image diversity (MS-SSIM, LPIPS) and qual-
ity (mean FID, mIoU across 20 realizations). Using 3D
noise further increases diversity for SPADE+. However, a
strong quality-diversity trade-off exists for SPADE+: 3D
noise improves diversity at the cost of quality, and the per-
ceptual loss improves quality at the cost of diversity. We

conclude that our 3D noise injection strongly improves the
synthesis diversity, while the VGG loss decreases it.

While the increased diversity is a big advantage, it can also
lead to failures in rare cases: for some samples the colors and
textures of objects may lie further from the real distribution
and seem unnatural to the human eye (see Fig. 9).

4.3 Synthesis Performance on Underrepresented
Classes

Class imbalance is a well-known challenge in semantic seg-
mentation applications (Sudre et al., 2017). Similarly to
semantic segmentation, to ensure good performance in real-
life test scenarios, semantic image synthesis models should
account for a possible dataset class imbalance, especially
considering that GANs are notorious for dropping modes of
training data (Arjovsky & Bottou, 2017). However, to the
best of our knowledge, this issue was not addressed in prior
works. Thus, in what follows, we evaluate the performance
of OASIS and SPADE+ on the ADE20K and LVIS datasets,
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Table 3 Per-class IoU scores on
ADE20k, grouped by pixel-wise
frequency (the fraction of all
pixels in the datasets belonging
to one class)

Classes IDs Pixel-wise frequency (%) mIoU
SPADE+ OASIS (w/o αc) OASIS (w. αc)

0–29 86.4 63.7 69.1 68.8

30–59 7.2 47.4 52.4 56.6

60–89 3.5 45.3 47.0 51.5

90–119 1.8 29.3 36.2 41.5

120–149 1.0 26.2 31.2 39.7

0–149 (all classes) 100 42.4 47.2 51.6

Bold denotes the best performance. Training with per-class loss balancing is denoted by αc

Table 4 Comparison of SPADE+ and OASIS on the LVIS dataset with
1203 classes and a long tail of underrepresented classes

Method FID ↓ mAP, % ↑ Classes with AP > 0 ↑
SPADE+ 26.8 4.56 439

OASIS 15.3 5.38 510

real data 0 6.70 624

Bold denotes the best performance. Last row shows the scores for the
LVIS validation set

considering their class imbalances. While the class imbal-
ance in ADE20K is notable (e.g., 86.4% of all image pixels
belongs to the 30 best represented classes), this issue is much
more amplified in LVIS, which has a long tail of underrep-
resented classes (see Fig. 7).
Evaluation on ADE20K. OASIS significantly outperforms
the SPADE+ baseline in the alignment between generated
images and label maps, as measured by mIoU (see Table 1).
As shown in Table 3, the improvement in mIoU on ADE20K
comes mainly from the better IoU scores achieved for under-
represented semantic classes.

To illustrate this, the semantic classes are sorted by their
pixel-wise frequency in the training images, obtained by
dividing the number of pixels a class occupies in the dataset
by the total number of pixels of all images (2nd column in
Table 3). Table 3 highlights that the relative gain in mIoU is
especially high for the groups of underrepresented semantic
classes, that cover less than 3% of all pixels in the dataset.
For these classes, the relative gain over the SPADE+ base-
line exceeds 40%. Remarkably, the gain for this group mainly
comes from the per-class balancing applied in the OASIS loss
function (columns “w/o αc” and “w. αc”), which draws the
attention of the discriminator to underrepresented semantic
classes, thus allowing a higher quality of their generation.
This class balancing computes a weight αc for the losses of
each class c on a per-batch basis, for which the total number
of pixels in a given batch is divided by the number of pixels
belonging to the class (see Eqs. 2 and 3 ). We note that the
possibility to introduce the pixel-wise frequency based bal-
ancing requires the loss to be computed separately for each
image pixel. This is a unique property of the OASIS dis-

criminator, in contrast to conventional classification-based
discriminators, which have to evaluate realism with a single
score for images containing both well- and underrepresented
classes together.
Evaluation on LVIS. A quantitative comparison between the
models on the LVIS dataset is shown in Table 4. In this more
extremely imbalanced data regime, the gain of our model is
pronounced: OASIS outperforms SPADE+ by a large mar-
gin, lowering the FID by 43% (from 26.8 to 15.3). Figure 10
shows a qualitative comparison between the models. OASIS
produces images of higher visual quality with more natural
colors and textures. In Table 4 we report the mean Aver-
age Precision (mAP) of the instance segmentation network
evaluated on the set of generated images. OASIS outper-
forms SPADE+ in mAP by a notable margin (5.38 vs 4.56),
thus producing objects with a more realistic appearance and
largely reducing the gap to real data (mAP of 6.70). To eval-
uate the ability of the models to generate underrepresented
classes at the tail of the LVIS data distribution, we count the
number of classes for which a non-zero AP score is achieved.
Table 4 shows that OASIS can model more semantic classes:
OASIS achieves a positive AP for 510 semantic classes com-
pared to 439 for SPADE+, thus exhibiting a better capability
to synthesize underrepresented classes.

In addition to better handling the class imbalance, OASIS
also visually outperforms SPADE+ on the LVIS label maps
with a very large proportion of the background class. As
seen in Fig. 10 (four rightmost columns), from such label
maps, SPADE+ fails to produce plausible images and suffers
from mode collapse. In contrast, OASIS successfully deals
with such kinds of inputs, producing diverse and visually
plausible images even for the least annotated label maps,
with the highest proportion of the background class.

In conclusion, we consider long-tailed datasets, such
as LVIS, an interesting direction for future work, as the
improved synthesis of multiple tail classes under severe
imbalance can significantly boost the applicability of seman-
tic image synthesis to real-world applications.
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Fig. 10 Qualitative comparison between OASIS and SPADE+ on the
long-tailed LVIS dataset with 1203 classes. OASIS generates higher-
quality images with more natural colors and textures. For label maps

covered mostly by the background class (four right columns), OASIS
hallucinates plausible and diverse images, while SPADE+ suffers from
mode collapse

Fig. 11 Images generated by OASIS on ADE20K with 256 × 256 resolution using different 3D noise inputs. For both input label maps, the noise
is re-sampled globally (first row) or locally in the areas marked in red (second row)

4.4 Image Editing with OASIS

OASIS can generate many different-looking images for a sin-
gle label map by directly resampling input 3D noise. In the
following, we present qualitative multi-modal results and dis-

cuss two unique semantic image editing techniques enabled
by our model: local resampling of selected semantic classes
and diverse resampling of unlabelled images.
Global and local resampling of the 3D noise. The 3D
noise of OASIS modulates the activations directly at every
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Fig. 12 Latent space interpolations between images generated by OASIS for the ADE20K dataset at resolution 256 × 256. The first two rows
display global interpolations. The second two rows show local interpolations of the floor or water only

generator layer, matching the spatial resolution of features
at different generation scales. Therefore, such modulation
affects both global and local characteristics of a generated
image. At test time, this allows different strategies for noise
sampling. For example, the noise can be sampled globally for
all pixels, varying the whole image (see Fig. 11, first and third
rows). Alternatively, a noise vector can be re-sampled only
for specified image regions, resulting in local image edit-
ing while preserving the rest of the scene. For example, the
local strategy allows to re-sample only the sky area in a land-
scape scenery, or only the window in a scene of a bedroom
(see Fig. 11, second and fourth rows). Spatial sensitivity of
OASIS to 3D noise is further demonstrated in Fig. 12, show-
ing interpolations in the latent space. The learned latent space
captures well the semantic meaning of objects and allows
smooth interpolations not only globally, but also locally for
selected objects (see Fig. 12, two last rows).
Creating diverse images from unlabelled data. In contrast
to previous semantic image synthesis methods, the OASIS
discriminator can be reused as a stand-alone image seg-
menter. To obtain a segmentation prediction for a given
image, a user just needs to feed it to our pre-trained discrim-
inator and select the highest activation among real classes in
its (N + 1)-channel output for each pixel. When tested as
an image segmenter on the validation set of ADE20K, the
OASIS discriminator reaches a mIoU of 40.0. For compari-

son, the state-of-the-art model DeepLab-V3 with a ResNeST
backbone (Zhang et al., 2020) achieves an mIoU of 46.91.
The good segmentation performance allows OASIS to be
applied to unlabelled images: given an unseen image with-
out the ground truth annotation, OASIS can predict a label
map via the discriminator. Subsequently feeding this predic-
tion to the generator allows to synthesize a scene with the
same layout but different style (see Fig. 13). The recreated
scenes closely follow the ground truth label map of the orig-
inal image and vary considerably, due to the high sensitivity
of OASIS to the 3D noise. We note that OASIS uniquely
reaches this ability using only adversarial training, without
the need for an external segmentation network or additional
loss functions. We believe that the ability to create multi-
ple versions of one image while retaining the layout, but not
requiring the ground truth label map, may provide useful data
augmentation for various applications in future research.

4.5 Synthetic Data Augmentation

As an additional evaluation method, we test the efficacy
of generated images when applied as synthetic data augmen-
tation for the task of semantic segmentation. Synthetic data
augmentation is a task that benefits from both image qual-
ity and diversity, as well as the ability to generate semantic
classes that are underrepresented in the original data (see
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Fig. 13 After training, the OASIS discriminator can be used to segment
images. The first two columns show the real image and the segmentation
of the discriminator. Using the predicted label map, the generator can

produce multiple versions of the original image by resampling noise
(Recreations 1–3). Note that no ground truth maps are required

Table 5 Semantic segmentation performance of ResNeSt-50 with and
without synthetic data augmentation (DA)

Data augmentation Cityscapes ADE20K
mIoU↑ mIoU↑

No synthetic DA 62.7 41.0

With SPADE 62.6 41.6

With OASIS 64.7 41.8

Bold denotes the best performance

Table 3). Therefore, the effect of synthetic data augmen-
tation on downstream performance can constitute a more
holistic evaluation of semantic image synthesis models. To
test the efficiency of OASIS, we train a DeepLab-V3 seg-
mentation network on ADE20K and Cityscapes, at each step
augmenting each training image with its synthetic augmen-
tation, produced by OASIS from the same label map.

We compare OASIS against the strong baseline SPADE in
Table 5. Between the two methods, OASIS elicits a stronger
increase in segmentation performance with an improvement
of 2.0 mIoU on Cityscapes and 0.8 mIoU on ADE20K,
compared to DeepLab-V3 trained without synthetic aug-
mentation. The higher performance improvement of OASIS
compared to SPADE is explained by all the previously
observed gains in image quality, diversity, and the alignment
to input label maps (see Fig. 8, Tables 1 and 2). In addition
to that, the segmentation performance is also improved due
to the fact that OASIS tends to synthesize underrepresented

classes better than SPADE, which is evident from Table
6. This table compares the IoU performance of DeepLab-
V3 on the well represented and underrepresented classes of
Cityscapes, as measured by the pixel-wise frequency of the
semantic class in the dataset. Examples of well represented
classes are road and building (see the 1st row of Table 6),
while classes like bicycle or traffic light are the least rep-
resented in the dataset (see 4th row in Table 6). Note that
the IoU comparison in Table 6 is different from Table 3,
where the IoU was measured directly on synthetic data using
a pretrained segmenter. It can be seen that the improvement
in IoU through OASIS can be mostly attributed to better
performance on underrepresented classes, as the gap in per-
formance between OASIS and SPADE becomes larger for the
classes which are less represented. Lastly, since the OASIS
generator was trained to fool an image segmenter (the OASIS
discriminator), it may synthesize harder examples for seman-
tic segmentation than SPADE, thus having higher potential
to improve the generalization of segmentation networks to
challenging corner cases. We find the above results promis-
ing for future utilization of OASIS in various downstream
applications. Moreover, for future research, we find it inter-
esting to explore synthetic data augmentation in combination
with other data augmentation techniques, e.g., RandAugment
(Cubuk et al., 2020), which has the potential to provide fur-
ther performance gains for downstream applications.
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Table 6 Per-class IoU scores on
Cityscapes, obtained without
(None) and with synthetic data
augmentation using SPADE or
OASIS

Sorted classes Pixel-wise frequency (%) None SPADE OASIS
abs rel abs rel

0–4 82.7 90.6 90.6 + 0.0 90.9 + 0.3

5–8 12.5 66.2 66.2 + 0.0 67.4 + 1.2

9–12 3.3 50.2 49.1 −1.1 52.2 + 2.0

13–18 1.6 51.9 52.3 + 0.4 55.4 +3.5

All classes 100 62.7 62.6 −0.1 64.7 + 2.0

The classes are sorted and grouped by class pixel-wise frequency, as measured by the total fraction of pixels
in the dataset belonging to one class. Bold denotes the best performance. The absolute (abs) and relative (rel)
mIoU gain via data augmentation is shown

Table 7 Main ablation on
ADE20K. The OASIS generator
is a lighter version of the
SPADE+ generator (72M vs
96M parameters)

G D VGG LabelMix FID↓ mIoU↑
SPADE+ SPADE+ ✗ ✗ 60.7 21.0

SPADE+ OASIS ✗ ✗ 29.0 52.1

OASIS OASIS ✗ ✗ 29.3 51.6

✗ ✓ 28.4 50.6

OASIS +3D noise OASIS ✗ ✓ 28.3 48.8

✓ ✓ 31.6 50.8

Bold denotes the best performance

Table 8 Ablation on the D architecture

D architecture w/o VGG with VGG
FID↓ mIoU↑ FID↓ mIoU↑

MS-PatchGAN (2x) 60.7 21.0 32.9 42.5

PatchGAN 197 0.62 34.2 42.2

ResNet-PatchGAN 147 0.42 32.4 45.1

OASIS 29.3 51.6 29.2 51.1

Bold denotes the best performance, italics shows collapsed runs

4.6 Ablations

We conduct all our ablations on the ADE20K dataset. We
choose this dataset as it more challenging (with 150 classes)
than Cityscapes (35 classes) and ADE20K-Outdoors (110
classes), and has more reasonable training time (5 days)
compared to COCO-Stuff and LVIS (4 weeks). Our main
ablation shows the impact of the main technical components
of OASIS, including the new discriminator, lighter generator,
LabelMix and the 3D noise. Further ablations are concerned
with the architecture changes in the discriminator, the label
map encoding in the discriminator, different noise sampling
strategies, LabelMix and the GAN feature matching loss.
Main ablation. Table 7 shows that SPADE+ achieves low
performance on the image quality metrics without the per-
ceptual loss. Replacing the SPADE+ discriminator with the
OASIS discriminator, while keeping the generator fixed,
improves FID and mIoU by more than 30 points. Changing
the SPADE+ generator to the lighter OASIS generator leads

Table 9 Ablation on the label map encoding runs

Label encoding w/o VGG with VGG
FID↓ mIoU↑ FID↓ mIoU↑

Input concatenation 280 0.02 30.0 43.9

Projection 32.4 44.9 28.0 46.9

N+1 loss 28.3 47.2 28.6 49.8

Balanced N+1 loss 29.3 51.6 29.2 51.1

Bold denotes the best performance, italics shows collapsed runs

to a negligible degradation of 0.3 in FID and 0.5 in mIoU, but
reduces the number of parameters from 96M to 72M. With
LabelMix FID improves further by about 1 point. Adding 3D
noise improves FID but degrades mIoU, as diversity com-
plicates the task of the pre-trained semantic segmentation
network used to compute the mIoU score. For OASIS the
perceptual loss deteriorates FID by more than 2 points, but
improves mIoU. Overall, without the VGG loss the new dis-
criminator is the key to the performance boost over SPADE+.
Ablation on the discriminator architecture. We train the
OASIS generator with three alternative discriminators: the
original multi-scale PatchGAN consisting of two networks,
a single-scale PatchGAN, and a ResNet-based discriminator,
corresponding to the encoder of the U-Net shaped OASIS
discriminator. Table 8 shows that the alternative discrimina-
tors only perform well with perceptual supervision, while the
OASIS discriminator achieves superior performance inde-
pendent of it. The single-scale discriminators even collapse
without the perceptual loss (italic in Table 8).
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Table 10 Different 3D noise
sampling strategies during
training. Bold denotes the best
performance

Sampling Cityscapes ADE20K
FID↓ mIoU↑ MS-SSIM↓ FID↓ mIoU↑ MS-SSIM↓

Image-level 47.7 69.3 0.64 28.3 48.8 0.65

Region-level 48.1 69.7 0.62 28.8 48.1 0.58

Pixel-level 50.9 65.5 0.84 28.6 34.0 0.68

Mix 46.4 70.9 0.68 28.5 47.6 0.66

Ablation on the discriminator label map encoding. We
study four different ways to use label maps in the discrimi-
nator: the first encoding is input concatenation, as in SPADE.
The second option is a pixel-wise projection-based GAN
loss (Miyato & Koyama, 2018). Unlike Miyato and Koyama
(2018), we condition the GAN loss on the label map instead
of a single label. The third and fourth option is to employ the
label maps as ground truth for the N + 1 segmentation loss,
or for the class-balanced N + 1 loss (see Sect. 3.2). For a
fair comparison we use neither 3D noise nor LabelMix. As
shown in Table 9, input concatenation is not sufficient with-
out additional perceptual loss supervision, leading to training
collapse. Without the perceptual loss, the N + 1 loss outper-
forms the input concatenation and the projection in both the
FID and mIoU metrics. Finally, the class balancing enables
enhanced supervision for underrepresented semantic classes,
which noticeably improves mIoU scores. On the other hand,
we observed that the FID metric is more sensitive to the syn-
thesis of well represented classes and not underrepresented
classes, which explains the negative effect of the class bal-
ancing on FID.
Ablation on noise sampling strategies for training. Our 3D
noise can contain the same sampled vector for each pixel, or
different vectors for different regions. This allows for dif-
ferent sampling strategies during training. Table 10 shows
the effect of using different methods of sampling 3D noise
for different locations during training: Image-level sampling
creates one global 1D noise vector and replicates it along the
height and width of the label map to create a 3D noise tensor.
Region-level sampling relies on generating one 1D noise vec-
tor per semantic class, and stacking them in 3D to match the
height and width of the semantic label map. Pixel-level sam-
pling creates different noise for every spatial position, with
no replication taking place. Mix switches between image-
level and region-level sampling via a coin flip decision at
every training step. With no obvious winner in performance,
we choose the simplest scheme (image-level) for our exper-
iments. We find a further investigation with more advanced
strategies an interesting direction for future work.
Ablation on LabelMix. Consistency regularization for the
segmentation output of the discriminator requires a method
of generating binary masks. Therefore, we compare the effec-
tiveness of CutMix (Yun et al., 2019) and our proposed
LabelMix. Both methods produce binary masks, but only

Table 11 Ablation study on the impact of LabelMix and CutMix for
consistency regularization (CR) in OASIS on Cityscapes

Transformation FID↓ mIoU ↑
No CR 51.5 66.3

CutMix 52.1 67.4

LabelMix 47.7 69.3

Bold denotes the best performance

LabelMix respects the boundaries between semantic classes
in the label map. Table 11 compares the FID and mIoU
scores of OASIS trained with both methods on the Cityscapes
dataset. As seen from the table, LabelMix improves both
FID (51.5 vs. 47.7) and mIoU (66.3 vs. 69.3), in comparison
to OASIS without consistency regularization. CutMix-based
consistency regularization only improves the mIoU (66.3 vs.
67.4), but not as much as LabelMix (69.3). We suspect that
since the images are already partitioned through the label
map, an additional partition through CutMix results in a
dense patchwork of areas that differ by semantic class and
real/fake class identity. This may introduce additional label
noise during training for the discriminator. To avoid such
inconsistency between semantic classes and real/fake iden-
tity, the mask of LabelMix is generated according to the label
map, providing natural borders between semantic regions, so
that the real and fake objects are placed side-by-side without
interfering with each other. Under LabelMix regularization,
the generator is encouraged to respect the natural semantic
class boundaries, improving pixel-level realism while also
considering the class segment shapes.
Ablation on the feature matching loss. We measure the
effect of the discriminator feature matching loss (FM) in the
absence and presence of the perceptual loss (VGG). The dis-
criminator feature matching loss is used by default in SPADE.
Table 12 presents the results for OASIS and SPADE+ on
Cityscapes. For SPADE+, we observe that the feature match-
ing loss affects the metrics notably only when no perceptual
loss is used. In this case, the FM loss improves mIoU by
8.2 points. In contrast, the effect of the FM loss on the
mIoU is small when the perceptual loss is used (0.4 points).
Hence, the role of the FM loss in the training of SPADE+ is
to improve performance by stabilizing the training, similar
to the perceptual loss. This observation is in line with the
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Table 12 The effect of the discriminator feature matching loss (FM) in
the absence or presence of the perceptual loss (VGG)

VGG FM FID↓ mIoU↑
(a) OASIS on Cityscapes

✗ ✗ 47.7 69.3

✗ ✓ 48.5 69.1

✓ ✗ 46.1 72.0

✓ ✓ 46.5 70.9

(b) SPADE+ on Cityscapes

✗ ✗ 61.4 47.6

✗ ✓ 57.3 55.8

✓ ✗ 47.8 64.0

✓ ✓ 48.1 64.4

Bold denotes the best performance

general observation that SPADE and other semantic image
synthesis models require the help of additional loss functions
because the adversarial supervision through the discrimina-
tor is not strong enough. In comparison, we did not observe
any training collapses in OASIS, despite not using any extra
loss functions. For OASIS, the feature matching loss results
in a worse FID (by 0.8 points) in the absence of the percep-
tual loss. We also observe a degradation of 1.1 mIoU points
through the FM loss, in the case where the perceptual super-
vision is present. This indicates that the FM loss negatively
affects the strong supervision from the semantic segmenta-
tion adversarial loss of OASIS.

5 Conclusion

This work studies semantic image synthesis, the task of gen-
erating diverse and photorealistic images from semantic label
maps. Conventionally, semantic image synthesis GAN mod-
els employed a perceptual VGG loss to overcome training
instabilities and improve the synthesis quality. In our experi-
ments we demonstrated that the VGG-based perceptual loss
imposes unnecessary constraints on the feature space of the
generator, significantly limiting its ability to produce diverse
samples from input noise, as well as the ability to produce
images with colors and textures closely matching the distri-
bution of real images. Therefore, in this work we propose
OASIS, a semantic image synthesis model that needs only
adversarial supervision to achieve high-quality results.

The improvement over the prior work in image synthesis
quality is achieved via the detailed spatial and semantic-
aware supervision from our novel segmentation-based dis-
criminator, which uses semantic label maps as ground truth
for training. With this powerful discriminator, OASIS can
easily generate diverse outputs from the same semantic
label map by resampling 3D noise, eliminating the need for

additional image encoders to achieve multi-modality. The
proposed 3D noise injection scheme can work both in a global
and local regime, allowing to change the appearance of the
whole scene and of individual objects. With the proposed
modifications, OASIS significantly improves over previous
state-of-the-art models in terms of image synthesis quality.

Furthermore, we proposed to use the LVIS dataset to eval-
uate semantic image synthesis under severe class imbalance
and sparse label annotations. Thanks to the class balancing
mechanism enabled by its segmentation-based discriminator,
OASIS achieves more realistic synthesis of underrepresented
classes, achieving pronounced gains on the extremely unbal-
anced LVIS dataset. Lastly, the design of OASIS can be better
suited for image editing applications compared to the SPADE
baseline, enabling diverse resampling of scenes from unla-
belled images, as well as for synthetic data augmentation,
improving the performance of a downstream segmentation
network by a larger margin.
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Training video & Generated samples from a single video

Training image & Generated samples from a single image

Figure 1: Our proposed One-Shot GAN needs only one video (first two rows) or one image (last two rows) for training. At
inference phase, it generates novel scene compositions with varying content and layouts. E.g., from a single video with a
car on a road, One-Shot GAN can generate the scene without the car or with two cars, and for a single air balloon image, it
produces layouts with different number and placement of the balloons. (Original samples are shown in grey or red frames.)

Abstract

Training GANs in low-data regimes remains a challenge,
as overfitting often leads to memorization or training di-
vergence. In this work, we introduce One-Shot GAN that
can learn to generate samples from a training set as little
as one image or one video. We propose a two-branch dis-
criminator, with content and layout branches designed to
judge the internal content separately from the scene lay-
out realism. This allows synthesis of visually plausible,
novel compositions of a scene, with varying content and
layout, while preserving the context of the original sample.
Compared to previous single-image GAN models, One-Shot
GAN achieves higher diversity and quality of synthesis. It is
also not restricted to the single image setting, successfully
learning in the introduced setting of a single video.

1. Introduction

Without sufficient training data, GANs are prone to over-
fitting, which often leads to mode collapse and training in-
stabilities [9, 4]. This dependency on availability of training
data limits the applicability of GANs in domains where col-
lecting a large dataset is not feasible. In some real-world
applications, collection even of a small dataset remains
challenging. It may happen that rare objects or events are
present only in one image or in one video, and it is difficult
to obtain a second one. This, for example, includes pictures
of exclusive artworks or videos of traffic accidents recorded
in extreme conditions. Enabling learning of GANs in such
one-shot scenarios has thus a potential to improve their uti-
lization in practice. Previous work [9, 4] studied one-shot
image generation in the context of learning from a single
image. In this work, we introduce a novel setup of learn-
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Figure 2: One-Shot GAN. The two-branch discriminator judges the content distribution separately from the scene layout
realism and thus enables the generator to produce images with varying content and global layouts. See Sec. 2 for details.

ing to generate new images from frames of a single video.
In practice, recoding a video lasting for several seconds can
take almost as little effort as collecting one image. How-
ever, a video contains much more information about the
scene and the objects of interest (e.g., different poses and
locations of objects, various camera views). Learning from
a video can enable generation of images of higher quality
and diversity, while still operating in a one-shot mode, and
therefore can improve its usability for applications.

To mitigate overfitting in the one-shot mode, recent
single-image GAN models [9, 4] proposed to learn an image
patch-based distribution at different image scales. Though
these models overcome memorization, producing different
versions of a training image, they cannot learn high-level
semantic properties of the scene. They thus often suffer
from incoherent shuffling of image patches, distorting ob-
jects and producing unrealistic layouts (see Fig. 3 and 4).
Other low-data GAN models, such as FastGAN [6], have
problems with memorization when applied in the one-shot
setting (see Sec. 3). In this work, we go beyond patch-based
learning, seeking to generate novel plausible compositions
of objects in the scene, while preserving the original image
context. Thus, we aim to keep novel compositions visually
plausible, with objects preserving their appearance, and the
scene layout looking realistic to a human eye.

To this end, we introduce One-Shot GAN, an uncon-
ditional single-stage GAN model, which can generate im-
ages that are significantly different from the original train-
ing sample while preserving its context. This is achieved
by two key ingredients: the novel design of the discrimina-
tor and the proposed diversity regularization technique for
the generator. The new One-Shot GAN discriminator has
two branches, responsible for judging the content distribu-
tion and the scene layout realism of images separately from
each other. Disentangling the discriminator decision about
the content and layout helps to prevent overfitting and pro-
vides more informative signal to the generator. To achieve
high diversity of generated samples, we also extend the reg-
ularization technique of [13, 2] to one-shot unconditional

image synthesis. As we show in Sec. 3, The proposed One-
Shot GAN generates high-quality images that are signifi-
cantly different from training data. One-Shot GAN is the
first model that succeeds in learning from both single im-
ages and videos, improving over prior work [9, 6] in image
quality and diversity in these one-shot regimes.

2. One-Shot GAN
Content-Layout Discriminator. We introduce a solution
to overcome the memorization effect but still to generate
images of high quality in the one-shot setting. Building
on the assumption that to produce realistic and diverse im-
ages the generator should learn the appearance of objects
and combine them in a globally-coherent way in an image,
we propose a discriminator judging the content distribution
of an image separately from its layout realism. To achieve
the disentanglement, we design a two-branch discriminator
architecture, with separate content and layout branches (see
Fig.2). Our discriminator D consists of the low-level fea-
ture extractor Dlow-level, the content branch Dcontent, and
the layout branch Dlayout. Note that the branching hap-
pens after an intermediate layer in order to learn a relevant
representation. Dcontent judges the content of this repre-
sentation irrespective from its spatial layout, while Dlayout,
inspects only the spatial information. Inspired by the atten-
tion modules of [7, 12], we extract the content from inter-
mediate representations by aggregating spatial information
via global average pooling, and obtain layout by aggregat-
ing channels via a simple (1×1) convolution. This way, the
content branch judges the fidelity of objects composing the
image independent of their spatial location, while the layout
branch is sensitive only to the realism of the global scene
layout. Note that Dcontent and Dlayout receive only limited
information from previous layers, which prevents overfit-
ting. This helps to overcome the memorization of training
data and to produce different images.
Diversity regularization. To improve variability of gen-
erated samples, we propose to add diversity regularization
(DR) loss term LDR to the objective. Previously proposed



SinGAN [9] FastGAN [6] One-Shot GAN

Training image

Figure 3: Comparison with other methods in the single image setting. Single-image GAN of [9] is prone to incoherently
shuffle image patches (e.g. sky textures appear on the ground), and the few-shot FastGAN model [6] collapses to producing
the original image or its flipped version. In contrast, One-Shot GAN produces diverse images with realistic global layouts.

Single Image Single Video

Method SIFID↓ LPIPS↑ MS-SSIM ↓ Dist.
SIFID↓ LPIPS↑ MS-SSIM ↓ Dist.

to train to train
SinGAN [9] 0.13 0.26 0.69 0.30 2.47 0.32 0.65 0.51
FastGAN [6] 0.13 0.18 0.77 0.11 0.79 0.43 0.55 0.13

One-Shot GAN 0.08 0.33 0.63 0.37 0.55 0.43 0.54 0.34

Table 1: Comparison in the Single Image and Single Video settings on DAVIS-YFCC100M [8, 10] dataset.

regularization terms [13, 2] aimed to encourage the genera-
tor to produce different outputs depending on the input la-
tent code, in such a way that the generated samples with
closer latent codes should look more similar to each other,
and vice versa. In contrast, in the one-shot image synthe-
sis setting, the perceptual distance of the generated images
should not be dependent on the distance between their latent
codes. As we operate in one semantic domain, the generator
should produce images that are in-domain but more or less
equally different from each other and substantially different
from the original sample. Thus, we propose to encourage
the generator to produce perceptually different image sam-
ples independent of their distance in the latent space. LDR

is expressed as follows:

LDR(G) = Ez1,z2

[ 1
L

L∑

l=1

‖Gl(z1) − Gl(z2)‖)
]
, (1)

where ‖ · ‖ denotes the L1 norm, Gl(z) indicates features
extracted from the l-th block of the generator G given the
latent code z. Contrary to prior work, we compute the dis-
tance between samples in the feature space, enabling more
meaningful diversity of the generated images, as different
generator layers capture various image semantics, inducing
both high- and low-level diversity.
Final objective. We compute adversarial loss for each dis-
criminator part: Dlow-level, Dcontent, and Dlayout. This
way, the discriminator decision is based on low-level de-
tails of images, such as textures, and high-scale properties,
such as content and layout. The overall adversarial loss is

Ladv(G,D) = LDcontent + LDlayout
+ 2LDlow-level

, (2)

where LD∗ is the binary cross-entropy Ex[logD∗(x)] +
Ez[log(1 − D∗(G(z)))] for real image x and generated im-

age G(z). As the two branches of the discriminator operate
at high-level image features, contrary to only one Dlow-level
operating at low-level features, we double the weighting for
the LDlow-level

loss term. This is done in order to properly
balance the contributions of different feature scales and en-
courage the generation of images with good low-level de-
tails, coherent contents and layouts.

The overall One-Shot GAN objective can be written as:

min
G

max
D

Ladv(G,D) − λLDR(G), (3)

where λ controls the strength of the diversity regularization
and Ladv is the adversarial loss in Eq. 2.
Implementation. The One-Shot GAN discriminator uses
ResNet blocks, following [1]. We use three ResNet blocks
before branching and four blocks for the content and layout
branches. We employ standard image augmentation strate-
gies for the discriminator training, following [5]. λ for LDR

in Eq. 3 is set to 0.15. We use the ADAM optimizer with
(β1, β2) = (0.5, 0.999), a batch size of 5 and a learning rate
of 0.0002 for both G and D.

3. Experiments
Evaluation settings. We evaluate One-Shot GAN on two
different one-shot settings: training on a single image and
a single video. We select 15 videos from DAVIS [8] and
YFCC100M [10] datasets. In the Single Video setting, we
use all frames of a video as training images, while for the
Single Image setup we use only one middle frame. The
chosen videos last for 2-10 seconds and consist of 60-100
frames. To assess the quality of generated images, we mea-
sure single FID (SIFID) [9]. Image diversity is assessed by
the average LPIPS [3] and MS-SSIM [11] across pairs of
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Figure 4: Comparison with other methods in the single video setting. While other models fall into reproducing the training
frames or fail to learn textures, One-Shot GAN generates high-quality images significantly different from the original video.

generated images. To verify that the models do not sim-
ply reproduce the training set, we report average LPIPS to
the nearest image in the training set, augmented in the same
way as during training (Dist. to train). We compare our
model with a single image method SinGAN [9] and with a
recent model on few-shot image synthesis, FastGAN [6].
Main results. Table 1 presents quantitative comparison be-
tween the models in the Single Image and Video settings,
while the respective visual results are shown in Fig. 3 and
4. As seen from Table 1, One-Shot GAN notably outper-
forms other models in both quality and diversity metrics.
Importantly, our model is the only one which successfully
learns from both single images and single videos.

As seen from Fig. 1 and 3, in the Single Image setting,
One-Shot GAN produces diverse samples of high visual
quality. For example, our model can change the number of
rocks on the background or change their shapes. Note that
such changes keep appearance of objects, preserving origi-
nal content, and maintain scene layout realism. In contrast,
single-image method SinGAN disrespects layouts (e.g. sky
textures may appear below horizon), and is prone to modest
diversity, especially around image corners. This is reflected
in higher SIFID and lower diversity in Table 1. The few-
shot FastGAN suffers from memorization, only reproduc-
ing the training image or its flipped version. In Table 1 this
is reflected in low diversity and small Dist. to train (in red).

In the proposed Single Video setting, there is much more
information to learn from, so generative models can learn
more interesting combinations of objects and scenes. Fig. 1
and 4 show images generated by the models in this setting.
One-Shot GAN produces plausible images that are substan-
tially different from the training frames, adding/removing
objects and changing scene geometry. For example, hav-
ing seen a bus following a road, One-Shot GAN varies the
length of a bus and placement of trees. For the video with

an equestrian competition, our model can remove a horse
from the scene and change the jumping obstacle configura-
tion. In contrast, SinGAN, which is tuned to learn from a
single image, does not generalize to this setting, producing
”mean in class” textures and failing to learn appearance of
objects (low diversity and very high SIFID). FastGAN, on
the other hand, learns high-scale scene properties, but fails
to augment the training set with non-trivial changes, having
a very low distance to the training data (0.13 in Table 1).

Table 1 confirms that the proposed two-branch discrimi-
nator in combination with diversity regularization manages
to overcome the memorization effect, achieving high dis-
tance to training data in both settings (0.37 and 0.34). This
means that One-Shot GAN augments the training set with
structural transformations that are orthogonal to standard
data augmentation techniques, such as horizontal flipping
or color jittering. To achieve this, the model requires as lit-
tle data as one image or one short video clip. We believe,
such ability can be especially useful to generate samples for
augmentation of limited data, for example by creating new
versions of rare examples.

4. Conclusion

We propose One-Shot GAN, a new unconditional gener-
ative model operating at different one-shot settings, such as
learning from a single image or a single video. At such low-
data regimes, our model mitigates the memorization prob-
lem and generates diverse images that are structurally dif-
ferent from the training set. Particularly, our model is capa-
ble of synthesizing images with novel views and different
positions of objects, preserving their visual appearance. We
believe, such structural diversity provides a useful tool for
image editing applications, as well as for data augmentation
in domains, where data collection remains challenging.
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Figure 1. We introduce a new task of generating new images and their segmentation masks from a single training pair, without access to any
pre-training data. Under this challenging regime, our proposed GAN model (OSMIS) achieves a synthesis of a high structural diversity,
preserving the photorealism of original images and a precise alignment of produced segmentation masks to the generated content.

Abstract

Joint synthesis of images and segmentation masks with
generative adversarial networks (GANs) is promising to
reduce the effort needed for collecting image data with
pixel-wise annotations. However, to learn high-fidelity
image-mask synthesis, existing GAN approaches first need a
pre-training phase requiring large amounts of image data,
which limits their utilization in restricted image domains.
In this work, we take a step to reduce this limitation, intro-
ducing the task of one-shot image-mask synthesis. We aim
to generate diverse images and their segmentation masks
given only a single labelled example, and assuming, con-
trary to previous models, no access to any pre-training
data. To this end, inspired by the recent architectural de-
velopments of single-image GANs, we introduce our OS-
MIS model which enables the synthesis of segmentation
masks that are precisely aligned to the generated images
in the one-shot regime. Besides achieving the high fidelity
of generated masks, OSMIS outperforms state-of-the-art
single-image GAN models in image synthesis quality and
diversity. In addition, despite not using any additional
data, OSMIS demonstrates an impressive ability to serve
as a source of useful data augmentation for one-shot seg-
mentation applications, providing performance gains that
are complementary to standard data augmentation tech-
niques. Code is available at https://github.com/
boschresearch/one-shot-synthesis.

1. Introduction

Deep neural networks have been shown powerful at
solving various segmentation problems in computer vision
[8, 10, 14, 23, 21, 32]. The success of these segmentation
models strongly relies on the availability of a large-scale
collection of labelled data for training. Nevertheless, anno-
tation of a large dataset is not always feasible in practice
due to a very high cost of manual labelling of segmenta-
tion masks [7]. For example, accurately labelling a single
image with many objects can take more than 30 minutes
[35]. Therefore, diminishing the human effort required for
obtaining diverse and precisely aligned image-mask data is
an important problem for many practical applications.

Recently, several works [30, 35, 15, 26] proposed to
tackle this issue by jointly generating images and segmen-
tation masks with generative adversarial networks (GANs).
Utilizing a few provided pixel-level annotations in addition
to an image dataset for training, such GAN models become
a source of labelled data that can be used to train neural net-
works in various practical applications. Despite achieving
impressive synthesis of segmentation masks based on lim-
ited annotated examples, existing image-mask GAN models
still require large pre-training image datasets to learn high-
fidelity image synthesis. This naturally restricts their ap-
plication only to the data domains where such datasets are
available (e.g., images of faces or cars). However, in some
practical scenarios such a dataset can be difficult to find, for
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Training pair SemanticGAN [15] DatasetGAN [35] OSMIS

Figure 2. A comparison to SemanticGAN [15], trained on a single image-mask pair (in red), and DatasetGAN [35], pre-trained on a single
image and trained on a single manual mask annotation. Both models suffer from memorization, while SemanticGAN also has poor quality
due to training instabilities. In contrast, OSMIS avoids mode collapse and generates diverse high-quality samples. This is achieved by
means of a discriminator that judges the realism of different objects separately, which prevents memorization of the whole given image.

example in one-shot segmentation applications [1], where
the object types can be rare. Therefore, in this work we aim
to learn a high-fidelity joint mask and image synthesis hav-
ing as little limitations on the data domain as possible. To
this end, we propose a novel GAN training setup, in which
we assume availability only of a single training image and
its segmentation mask, not relying on any image dataset for
pre-training (see Fig. 1). After training, we aim to generate
diverse new image samples and supplement them with accu-
rate segmentation masks. To the best of our knowledge, we
are the first to consider such a training scenario for GANs.

Training a GAN from a single training sample is well
known to be challenging due to the problem of memoriza-
tion [20], as in many cases the generator converges to re-
producing the exact copies of training data. For example,
as shown in our experiments, this issue occurs in the prior
image-mask GAN models from [15, 35] (see Fig. 2). Re-
cently, the issue of memorization has been mitigated in the
line of works on single-image GANs, which enabled diverse
image synthesis from a single training image [27, 12, 28].
Inspired by these models, we aim to extend this ability to a
joint synthesis of images and segmentation masks. To this
end, we propose a new model, introducing two modifica-
tions to conventional GAN architectures. Firstly, we intro-
duce a mask synthesis branch for the generator, enabling the
synthesis of segmentation masks in addition to images. Sec-
ondly, to ensure that the produced segmentation masks are
precisely aligned to the generated image content, we pro-
pose a masked content attention module for the discrimi-
nator, allowing it to judge the realism of different objects
separately from each other. This way, to fool the discrimi-
nator, the generator is induced to label synthesized images
accurately. In effect, our proposed model enables a struc-
turally diverse, high-quality one-shot joint mask and image
synthesis (see Fig. 1), and we thus name it OSMIS. As we
show in our experiments, compared to prior single-image
GANs [27, 12, 28], OSMIS not only offers an additional
ability to generate accurate segmentation masks, but also
achieves higher quality and diversity of generated images.

Despite using only a single image-mask pair for train-
ing, OSMIS can generate a set of labelled samples of a high

structural diversity, which sometimes cannot be achieved
with standard data augmentation techniques (e.g., flipping,
zooming, or rotation). For example, for a given scene, OS-
MIS can change the relative locations of foreground objects
or edit the layout of backgrounds (see Fig. 1, 4, 5). More-
over, in contrast to [15, 35], OSMIS can successfully han-
dle masks of different types, e.g., having class-wise (see
Fig. 1) or instance-wise (see Fig. 4) annotations. This sug-
gests a good potential of our model to serve as a source
of additional labelled data augmentation for practical appli-
cations. We demonstrate this potential in Sec. 4.2, where
we apply OSMIS at the test phase of one-shot video ob-
ject segmentation [23] and one-shot semantic image seg-
mentation [1]. The results indicate that the data generated
by OSMIS helps to improve the performance of state-of-
the-art networks: OSVOS [6], STM [22], and RePRI [5],
providing complementary gains to standard data augmen-
tation. We find these results promising for utilization of
one-shot image-mask synthesis in future research.

2. Related Work
GANs generating segmentation masks. Recently, it

was observed that a GAN generator, trained on a large
dataset, implicitly learns discriminative pixel-wise features
of the generated scene objects [30]. Thus, several works
proposed to collect feature activations from different gen-
erator layers and transform them into a segmentation mask
using a small decoder. RepurposeGAN [30] and Dataset-
GAN [35] proposed to train the decoder using a handful of
manually annotated generated images. LinearGAN [33] re-
placed manual annotations by the predictions of an external
segmentation network. Alternatively, SemanticGAN [15]
and EditGAN [18] enforced the alignment between gener-
ated images and masks with the loss from an additional dis-
criminator, which takes both images and masks as inputs.

Although the above models require only a few masks
to achieve high-quality image-mask synthesis, they are not
successful when the number of training images is not suf-
ficient. For example, DatasetGAN and SemanticGAN suf-
fer from instabilities and memorization issues when trained
on a single image-mask pair (see Fig. 2 and A in the sup-
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Figure 3. OSMIS model. A simple mask synthesis branch in the generator G allows the generation of segmentation masks of objects
together with images. The precise alignment between the masks and the generated image content is enforced by a masked content attention
(MCA) module in the discriminator D, designed to evaluate the realism of different objects separately from each other.

plementary material.). In contrast, our model learns in this
regime successfully, as it does not rely on large-scale pre-
training data. As shown in experiments, this makes our
model better suited for the scenarios dealing with restricted
data domains, such as one-shot segmentation applications.
Furthermore, our model is trained in a purely adversarial
fashion without any additional overhead, e.g., not requiring
manual annotations of generated images, external segmen-
tation networks, or additional discriminators.

Single Image GANs. A line of works investigated un-
conditional GAN training using only a single image. Un-
der such critically low-data regime, the models are suscep-
tible to training instabilities, as the discriminator can sim-
ply memorize the training sample and provide uninforma-
tive gradients to the generator [13]. SinGAN [27] pro-
posed to mitigate this issue using a cascade of GANs, where
each GAN stage is restricted to learn only the patch dis-
tribution at a certain image scale. ConSinGAN [12] im-
proved the performance and efficiency of SinGAN by re-
balancing the training of different GAN stages and by train-
ing several stages concurrently. Since then, numerous fur-
ther variations of multi-stage GAN training have been pro-
posed [2, 9, 4, 11]. More recently, One-Shot GAN [28] pro-
posed a two-branch content-layout discriminator, trained as
a single stage, enabling the synthesis of images with content
and layouts significantly differing from the original sam-
ple. Our paper has a similar motivation to the above works,
since we also aim to train a GAN model on a single data
instance. However, we extend the single image setup with
the synthesis of segmentation masks, which no prior work
has considered, to the best of our knowledge.

3. Method
Given a single image with its pixel-level segmentation

mask and assuming no access to any pre-training data, we
aim to generate a diverse set of new image-mask pairs. In
this section, we present OSMIS, our one-shot image-mask
synthesis model. Adopting One-Shot GAN [28] as a state-
of-the-art image synthesis baseline (Sec. 3.1), we propose
modifications to the generator and discriminator architec-

ture, enabling one-shot synthesis of segmentation masks
that are precisely aligned with generated images (Sec. 3.2).

3.1. One-Shot GAN baseline

As the baseline network architecture, we select the state-
of-the-art model One-Shot GAN [28], as it achieves the
highest quality and diversity of one-shot image synthesis
among previous works. One-Shot GAN proposed a two-
branch discriminator, in which an input image x is first
transformed into a feature representation F (x) by a low-
level discriminator Dlow−level. Next, two separate discrim-
inators assess different aspects of F (x). The content dis-
criminatorDcontent judges the realism of objects regardless
of their spatial location by averaging out the spatial infor-
mation contained in F (x) via global average pooling. On
the other hand, the layout discriminator Dlayout evaluates
the realism only of the spatial scene layouts by squeezing
F (x) with a one-channel convolution. In addition, the dis-
criminator applies feature augmentation in the content and
layout representations of F (x) to further increase the high-
level diversity among generated samples. The adversarial
loss of the One-Shot GAN model consists of three terms:

Ladv(G,D) = LDcontent
+ LDlayout

+ 2LDlow-level
, (1)

where each term is the mean of binary cross entropies ob-
tained at different layers of respective discriminator parts.

3.2. OSMIS model

In contrast to one-shot image synthesis, we assume that
the single training image is provided with its pixel-level
mask of objects, not assuming any fixed annotation type
(e.g., class-wise or instance-wise). To incorporate it into
the training process, we introduce two modifications to the
architecture of the baseline model. Firstly, we propose to
generate segmentation masks simultaneously with images
via an additional generator’s mask synthesis branch. Sec-
ondly, to enforce the precise mask alignment to the gen-
erated image content, we re-formulate the objective of the
content discriminator Dcontent, designing it to judge the fi-
delity of different objects separately from each other. This
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is made possible by the introduced masked content attention
module, which builds a separate content feature vector for
each object considering the provided segmentation mask.
The overview of our model architecture is shown in Fig. 3.
Next, we describe the proposed modifications in detail.

Mask synthesis branch in the generator. In line with
[30, 35], we hypothesize that during training the genera-
tor should be able to learn discriminative features that com-
pletely describe the appearance of generated objects. Thus,
while synthesizing an image, we collect feature activations
of the generator layers and use them as input for the mask
synthesis branch. In contrast to [30, 35], we use only the ac-
tivations after the last generator block, as this simplest solu-
tion already performs well in our experiments. Using a sim-
ple convolution followed by a softmax activation, we trans-
form these features into an N -channel soft probability map,
where each channel corresponds to one of N − 1 objects of
interest in the segmentation mask or to the background. To
obtain the final discrete mask prediction, an argmax opera-
tion T along the channel dimension is applied.

To enable the training of the mask synthesis branch with
the discriminator loss, the generated masks should allow
back-propagation of gradients, similarly to generated im-
ages. In our experiments, feeding the discriminator the con-
tinuous segmentation probability maps obtained before the
non-differentiable argmax operation T impaired the GAN
training, as the discriminator learnt to detect the continuous-
discrete discrepancy between fake and real inputs. Thus,
inspired from [31, 3], we enable back-propagation through
argmax by developing a straight-through gradient estimator:

MaskArgmax(y) = y + T (y)− sg[y], (2)

where sg denotes a stop-gradient operation. This way,
the discriminator is provided with the generated masks in
a discrete form T (y), which enables its effective training,
while the generator can be trained with the gradients pass-
ing through its probability map prediction y.

Yet, this solution can sometimes lead to degenerate so-
lutions, e.g., when all the pixels are predicted as the back-
ground channel. This cannot be corrected during training,
as in this case the gradient flow through all the other mask
channels is blocked. We found that it can be mitigated by
softening the argmax operation T at the beginning of train-
ing. For this, during the firstP0 epochs we regard each mask
pixel as a random variable following Bernoulli distribution:

T (y) =

{
∼ Bernoulli(y) epoch < P0,

argmax(y) epoch ≥ P0.
(3)

Masked content attention in the discriminator. To
provide a training signal to the generator’s mask synthesis
branch, we propose to incorporate the learning of the image-
mask alignment to the objective of the content discrimina-
tor Dcontent. In [28], Dcontent was designed to judge the

content distribution of the whole given image. Consider-
ing the provided segmentation mask, we can now select the
image areas belonging to different objects, and require the
discriminator to learn their appearance separately from each
other. With this objective, as the discriminator can compare
the appearance of the area belonging to the same object in
real and fake images, it encourages the generator not only to
synthesize realistic objects, but also to label them correctly.

To this end, we introduce a masked content attention
(MCA) module. As shown in Fig. 3, MCA receives a
downsampled segmentation mask y along with an interme-
diate feature representation F (x) = Dlow−level(x) of an in-
put image x, and thereout produces a set of N content vec-
tors, corresponding to the masked content representations
of each of the N −1 objects of interest and the background:

MCA(x, y) = {AvgPool (F (x)× 1y=i)}Ni=1. (4)

Accordingly, we re-design the objective of the content
discriminator (further denoted Dobject). For each of the ob-
tained object representations, our proposed Dobject is in-
duced to predict a correct identity of each object or back-
ground of a real image, while all the identities of fake im-
ages should be categorized as an additional fake class:

LDobject
=−E(x,y)

[
N∑

i=1

αi logDi
object(MCAi(x, y))

]

−Ez

[
N∑

i=1

log(1−Dfake
object(MCAi(G(z)))

]
,

(5)
where z is the noise vector used by the generator G to syn-
thesize a fake image-mask pair G(z) = {Gx(z), Gy(z)},
(x, y) denotes the real image-mask pair, and Di(∗) is the
discriminator logit for the object i. Considering that differ-
ent objects or background can occupy different areas, we
introduce a class balancing weight αi, which is the inverse
of the per-pixel class frequency in the segmentation mask y:

αi =
(sum(1y=i))

−1

∑N
j=1(sum(1y=j))−1

. (6)

Note that the balancing is applied only for real images, as
in Eq. 5 all fake objects are considered as the same class.

Our Dobject learns the content distribution of each ob-
ject separately. The advantage of such a training scheme
is two-fold. Firstly, a generator now needs to synthesize
correct segmentation masks in order to fool the discrimi-
nator. The precise image-mask alignment is thus enforced
directly by the adversarial loss, without the need for us-
ing additional networks or manual annotation. Secondly,
as MCA provides representations only of separate objects,
Dobject has restricted access to the content distribution of
the whole image. In effect, the discriminator memorization
of the whole training sample becomes more difficult, which
enables more diverse image synthesis (see Table 3).
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Training pair Generated samples Training pair Generated samples

Figure 4. Qualitative results of OSMIS on DAVIS [23]. Given a single image-mask pair for training, our model achieves high-fidelity image
synthesis with a high structural diversity, changing the positions of objects or editing the layout of backgrounds. For each synthesized
image, it produces segmentation masks that accurately annotate the generated content. Training pairs are shown in red frames.

Training pair Generated samples Training pair Generated samples

Figure 5. Qualitative results of OSMIS on COCO [17]. OSMIS successfully deals with different scene types and annotation styles. For
example, it achieves high quality and diversity for both indoor and outdoor scenes, or sparse and dense annotations of foreground objects.

4. Experiments
We evaluate our model as follows. Firstly, we provide

the qualitative and quantitative assessment of the achieved
one-shot image-mask synthesis, evaluating the quality and
diversity of generated images, as well as their alignment to
the produced segmentation masks (Sec. 4.1). Secondly, we
apply OSMIS to two one-shot segmentation applications,
demonstrating the potential of the generated image-mask
pairs to be used as data augmentation (Sec. 4.2).

4.1. Evaluation of one-shot image-mask synthesis

Training details. We train our model with the loss
from Eq. (5) for the object discriminator Dobject, setting
P0=15000. We employ differentiable augmentation (DA)

of input images and masks while training the discrimina-
tor, using the whole set of transformations as proposed in
[13]. We use an exponential moving average of the gen-
erator weights with a decay of 0.9999, and follow [28] in
setting all the other hyperparameters. More training details
are shown in the supplementary material.

Datasets. To evaluate the synthesis, we use the DAVIS
dataset [23], originally introduced for video object segmen-
tation. For each video from the DAVIS-17 validation split,
we take the first frame and its segmentation mask of objects,
which results in 30 image-mask pairs on which we train sep-
arate models. The resolution is set to 640x384. For addi-
tional visual results, we use samples from COCO [17], try-
ing to closely fit their resolution. Note that the datasets have
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Method SIFID↓ LPIPS↑
SinGAN [27] 0.131 0.267
ConSinGAN [12] 0.103 0.296
One-Shot GAN [29] 0.091 0.347
OSMIS (ours) 0.073 0.387

Table 1. Comparison of image quality and diversity to single-
image GANs on DAVIS-17. Bold denotes the best performance.

Method SIFID↓ LPIPS↑ mIoU
DatasetGAN [35] 0.118 0.007 91.1*
SemanticGAN [15] 0.211 0.012 65.8
OSMIS (ours) 0.073 0.387 86.6

Table 2. Comparison to prior image-mask GANs on DAVIS-17.
Bold denotes the best performance. Red indicates mode collapse.
* Indicates manual annotation of masks for DatasetGAN training.

different annotation types (class-wise and instance-wise).
Metrics. To mind a possible quality-diversity trade-off

in our one-shot regime [24, 16], we assess the quality and
diversity of generated images separately. For this, we report
the average SIFID [27] as the measure of image quality,
while the average LPIPS [34] between the pairs of gener-
ated images is used to assess the diversity of synthesis.

On the other hand, evaluating the quality of generated
masks is challenging, because generated images do not have
ground truth segmentation annotations. To bypass this is-
sue, we propose to evaluate the alignment between gener-
ated masks and synthetic images using an external segmen-
tation network. For this, we take a UNet [25] and train it
on the generated image-mask pairs for 500 epochs. After
training, we compute its mIoU performance on the origi-
nal real image, augmented with standard geometric trans-
formations. Intuitively, a good performance on this test re-
veals that synthetic masks describe well the objects from
the real data, indicating precise alignment between the gen-
erated images and their masks.

Qualitative results. Fig. 4 and 5 show image-mask pairs
generated by OSMIS trained on samples from DAVIS and
COCO. Given only a single image-mask pair, our model
learns to generate new image-mask pairs, demonstrating a
remarkable structural diversity among samples, photoreal-
ism of synthesized images, and a high quality of generated
annotations. For example, OSMIS can re-synthesize the
provided scene with a different number of foreground ob-
jects, e.g., more dogs (3rd example in Fig. 4), less people
(2nd example in Fig. 5), or edit layouts of backgrounds (1st

examples in Fig. 4-5), in all cases providing accurate seg-
mentation masks for the re-synthesized scenes. We note
that reaching such structural differences to training data si-
multaneously with photorealism is extremely difficult from
a single sample. For example, it could not be achieved with
DatasetGAN or SemanticGAN due to memorization issues
and training instabilities (see Fig. 2). Lastly, we remark that

Mask supervision SIFID↓ LPIPS↑ mIoU
None 0.071 0.368 -
Projection [19] 0.071 0.362 72.1
Input concat. 0.079 0.328 82.4
SemanticGAN Dm [15] 0.074 0.351 83.3
MCA (ours) 0.073 0.387 86.6

Table 3. Comparison of MCA to other mask synthesis supervi-
sion mechanisms on DAVIS-17. Red indicates decreased diversity
compared to the baseline. Bold denotes the best performance.

OSMIS successfully deals with very different scene types
(e.g., both indoor and outdoor scenes), supports masks with
both sparse and dense object annotations (e.g., foreground
objects occupying small or large image areas), and can han-
dle masks with many objects or even separate instances of
the same semantic class (e.g., fish in 4th example in Fig. 4).

Quantitative results. We compare the quality and di-
versity of generated images to the single-image GAN mod-
els SinGAN [27], ConSinGAN [12] and One-Shot GAN
[28]. The image-mask synthesis is compared to the pre-
vious methods DatasetGAN [35] and SemanticGAN [15].
We use the official repositories provided by the authors.

The quantitative comparison of the image synthesis to
single-image GAN models on DAVIS-17 is presented in
Table 1. Compared to these models, OSMIS not only of-
fers an additional ability to generate segmentation masks,
but also achieves higher image quality and diversity. As
seen in Table 1, despite a potential trade-off between SIFID
and LPIPS, our model outperforms previously published
baselines in both metrics by a notable margin. Further, Ta-
ble 2 demonstrates that prior image-mask methods, Dataset-
GAN and SemanticGAN, suffer from instabilities and fail to
achieve diverse synthesis, scoring very low in LPIPS.

Ablations. In Table 3 we compare the proposed masked
content attention module (MCA) with three alternative dis-
criminator mechanisms to provide supervision for the gen-
erator’s mask synthesis branch. The simplest baseline is to
concatenate the input masks to images, requiring the dis-
criminator to judge their realism jointly. Another method is
to use projection [19], by taking the inner product between
the last linear layer output of Dlow-level and the pixel-wise
linear projection of the input mask. Finally, we compare
to the approach of SemanticGAN [15], adding a separate
discriminator network Dm which takes both segmentation
masks and images, and propagate its gradients only to the
generator’s mask synthesis branch. While training these
baselines, we preserve all the OSMIS hyperparameters, but
remove the MCA and use the original Dcontent as in [28].
As seen from mIoU in Table 3, MCA enables the genera-
tion of segmentation masks with the best alignment to the
generated image content, as measured by an external seg-
mentation network. Notably, while all the alternative meth-
ods negatively affect diversity, MCA improves it (0.387 vs
0.368 LPIPS), highlighting its regularization effect which
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Training pair Nlow-level = 1 Nlow-level = 2 Nlow-level = 3 Nlow-level = 4 Nlow-level = 5

Figure 6. Trade-off between the image and mask quality when varying the number of Dlow-level discriminator blocks. Increased number
improves image quality, but harms the ability of masks to capture fine-grained object details due to stronger downsampling during training.

Nlow-level SIFID↓ LPIPS↑ mIoU
1 0.262 0.395 82.4
2 0.165 0.404 87.1
3 0.102 0.394 86.9
4 0.073 0.387 86.6
5 0.070 0.321 83.9

Table 4. Ablation on the number of Dlow-level discriminator blocks
on DAVIS-17. Bold denotes the best performance.

prevents the discriminator memorization of training data.
While enabling on average higher image diversity and

mask quality, we found that MCA can struggle if the train-
ing sample contains annotations of fine-grained object de-
tails, due to downsampling of input masks. This is illus-
trated in Fig. 6 and Table 4, for which we train OSMIS
with different numbers of low-level discriminator blocks
Nlow-level, corresponding to different degrees of mask down-
sampling. We observe a trade-off between the quality of
images and masks: decreasing Nlow-level improves the im-
age diversity and pixel-level mask fidelity, but harms im-
age quality. We selected Nlow-level = 4 as a compromise
between the metrics in Table 4, even though this configura-
tion sometimes fails to annotate small object details (as in
Fig. 6). Note that despite this limitation, MCA still outper-
forms alternative methods that do not use downsampling on
DAVIS-17 (see Table 3), and leads to image-mask pairs that
are more useful as data augmentation, as discussed next.

4.2. Application to one-shot segmentation tasks

After training, OSMIS can augment the provided image-
mask pair with novel diverse samples. As such diversity
(edited backgrounds, objects changing relative locations) is
difficult to achieve by means of standard data augmentation,
we foresee a potential usage of our model as a source of la-
belled data augmentation. Thus, in what follows, we test the
efficacy of OSMIS generations when applied at test phase
of two one-shot segmentation applications.

One-shot video object segmentation. We apply our
model to the semi-supervised one-shot video segmentation
benchmark DAVIS [23]. At test phase, this task provides
a video and the segmentation mask of objects only in the

Network Augmentation: DAVIS-16 DAVIS-17
Standard Ours

OSVOS [6]

7 7 76.9 51.3
3 7 78.5 (80.2) 52.9 (52.8)

7 3 78.2 52.6
3 3 79.8 54.2

STM [22]

7 7 89.7 (89.4) 72.4 (72.2)

3 7 89.9 72.4
7 3 90.1 72.6
3 3 90.2 72.7

Table 5. Effect of data augmentation on the mean of mIoU and
contour accuracy (J&F) of one-shot video object segmentation.
Bold denotes the best performance. Round brackets show the re-
sults reported in [6, 22]. Reproduced and reported numbers for
OSVOS differ as its official code lacks some model components.

first frame, while a model is required to segment all the re-
maining video frames. We select two popular models from
the literature: OSVOS [6], which fine-tunes the network
weights on the first video frame and segments other frames
independently, and STM [22], which propagates the seg-
mentation prediction sequentially using a space-time mem-
ory module. We conduct experiments on two DAVIS splits:
DAVIS-16, having 20 videos with a single annotated object;
and its extension DAVIS-17, having 30 videos with multi-
instance annotations. To evaluate the video segmentation,
we compute the average of the mean mIoU region similarity
(J ) and the mean contour accuracy (F) across all videos,
which is a popular metric for this task [23].

One-shot semantic image segmentation. The sec-
ond setup is the one-shot image segmentation benchmark
COCO-20i [17]. In this task, a segmentation model is first
trained on a large dataset. At test phase, the model is given
a single image-mask pair (support set) with an object of a
previously unseen test class, and is then required to seg-
ment another sample (query image) containing instances of
the same class. We conduct experiments with the state-of-
the-art RePRI network [5]. COCO-20i contains 80 classes,
which are divided into 4 folds, with 60 base and 20 test
classes in each fold. To test OSMIS, we randomly selected 5
support samples for each test class, resulting in 100 image-
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Network Augmentation: COCO0 COCO1 COCO2 COCO3

Standard Ours

RePRI [5]

7 7
31.2 38.3 32.9 33.2
(31.2) (38.1) (33.3) (33.0)

3 7 31.8 38.5 33.4 33.8
7 3 32.4 38.7 33.7 34.3
3 3 32.8 39.0 34.1 34.6

Table 6. Effect of synthesized data augmentation on mIoU of one-
shot image segmentation. In each data split, support examples
were sampled from a subset of 100 image-mask pairs, for which
our model was trained. Bold denotes the best performance. The
round brackets contain the numbers reported in [5].

mask pairs in each of the folds, and trained OSMIS on all
of them separately. The performance of this task is evalu-
ated separately for each fold, using the average mIoU across
many different support-query examples.

Experimental setup. For both applications, we train
OSMIS on the single given image-mask pair (the first video
frame or support sample). We try to closely fit the resolu-
tion of each image from COCO, and set a fixed resolution
of 640x384 for images from the DAVIS benchmark. Af-
ter training, we generate a pool of synthetic image-mask
pairs consisting of n = 100 samples. As OSMIS can oc-
casionally fail and synthesize noisy examples, we compute
the SIFID metric [27] for each generated image as a mea-
sure of its quality. Ranking the images by the average of
SIFID ranks at different InceptionV3 layers, we exclude
bad-quality samples by filtering out 15% lowest-ranked im-
ages. Finally, we add the remaining synthetic samples to the
original image-mask pair as data augmentation. See more
setup details in Sec. B of the supplementary material.

Among the used segmentation models, only OSVOS [6]
applies data augmentation at test phase (random combina-
tions of image-mask flipping, zooming, and rotation). Thus,
in experiments we compare our synthetic data augmentation
to this pipeline (referred to as standard augmentation).

Results. The performance of segmentation networks us-
ing different data augmentation is shown in Tables 5 and 6.
To account for the variance between runs, all the results are
averaged across 5 runs with different seeds for augmenta-
tion. We generally managed to reproduce the official re-
ported numbers closely, with the exception of OSVOS, for
which the official codebase1 does not implement the model
in full configuration. As seen in Tables 5 and 6, the syn-
thetic data augmentation produced by OSMIS yields a no-
table increase in segmentation performance, on average im-
proving the metrics of OSVOS and STM by 1.3 and 0.3
J&F points, and RePRI by 0.9 mIoU points compared to
the models using no data augmentation. Despite a possi-
ble mismatch between OSMIS training resolution and tar-
get image size (e.g., 640x384 vs 854x480 for DAVIS) and

1https://github.com/kmaninis/OSVOS-PyTorch

Synthesis method OSVOS, DAVIS-16 RePRI, COCO0

J&F mIoU
Reference w/o synth. augm. 78.5 31.8
SemanticGAN [15] 73.1 29.4
DatasetGAN [35] 77.8 30.9
Projection [19] 78.4 30.9
Input concat. 79.3 31.9
SemanticGAN Dm [15] 79.5 32.3
MCA (ours) 79.8 32.8
Table 7. Impact on the performance of synthesized data produced
with different models and mask supervision methods. The refer-
ence performance is obtained using standard data augmentation.
Bold denotes the best performance.

the need for image resizing, our synthetic data augmenta-
tion consistently outperforms standard data augmentation
for STM and RePRI, and is almost on par for OSVOS,
which was originally tuned for training with standard data
augmentation. These results validate the ability of OSMIS
to generate structurally diverse data augmentation of suffi-
cient quality in the one-shot regime. Finally, we note that
the effect of OSMIS generations is complementary to stan-
dard data augmentation, as the best results for all models are
observed when the two pipelines are used in combination.

Table 7 demonstrates the efficiency of synthetic data aug-
mentation obtained with different GAN models. The pre-
vious image-mask models DatasetGAN and SemanticGAN
both show poor applicability in the scenario of one-shot
applications due to poor synthesis performance. Further,
among the comparison methods for mask synthesis supervi-
sion, the strongest increase in performance is achieved with
our proposed MCA module. This indicates that the high
synthesis diversity and precise image-mask alignment (see
Table 3) are the keys to achieve useful data augmentation.

5. Conclusion
We presented OSMIS, an unconditional GAN model that

can learn to generate new high-quality image-mask pairs
from a single training pair, not relying on any pre-training
data. In such a low-data regime, our model generates pho-
torealistic scenes that structurally differ from the original
samples, while the produced masks are precisely aligned to
the generated image content. Although the synthesis of OS-
MIS is inherently constrained by the appearance of objects
in the original sample, it can serve as a source of useful
data augmentation for one-shot segmentation applications,
providing complementary gains to standard image augmen-
tation. Thus, we find using one-shot image-mask synthesis
in practical applications promising for future research.
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Abstract

The task of few-shot GAN adaptation aims to adapt a
pre-trained GAN model to a small dataset with very few
training images. While existing methods perform well when
the dataset for pre-training is structurally similar to the tar-
get dataset, the approaches suffer from training instabili-
ties or memorization issues when the objects in the two do-
mains have a very different structure. To mitigate this limi-
tation, we propose a new smoothness similarity regulariza-
tion that transfers the inherently learned smoothness of the
pre-trained GAN to the few-shot target domain even if the
two domains are very different. We evaluate our approach
by adapting an unconditional and a class-conditional GAN
to diverse few-shot target domains. Our proposed method
significantly outperforms prior few-shot GAN adaptation
methods in the challenging case of structurally dissimilar
source-target domains, while performing on par with the
state of the art for similar source-target domains.

1. Introduction
Generative adversarial networks (GANs) have been

shown to be powerful at various image synthesis tasks
[4, 28, 3, 13, 27, 26]. The success of these models is in large
part enabled by the availability of large datasets for train-
ing, typically consisting of thousands of images. However,
there are many applications and computer vision tasks such
as one-shot or few-shot learning [1, 33], out-of-distribution
detection [24], or long-tailed recognition tasks [8] where the
number of available training images is very low.

Since training a GAN from scratch on very few samples
does not perform well as shown in Fig. 1, a common strat-
egy is to fine-tune a pre-trained GAN model on the few-shot
dataset, typically employing additional regularization losses
to penalize the degradation of the diversity [23, 37]. This
approach, referred to as few-shot GAN adaptation, performs
well when the target domain is structurally very similar to
the dataset that has been used for pre-training, e.g., pho-
tographs vs. sketches of human faces. However, the perfor-
mance drastically degrades in case of large dissimilarities
between the source and target domain as shown in Fig. 1.

Gs

Gt

Gt

G

Few-shot Shells dataset

Few-shot GAN training (from scratch)

Few-shot GAN adaptation from LSUN-Churches

)CDC(

)ours(

Figure 1. Training a GAN model G on a few-shot dataset (row 1)
from scratch fails due to training instabilities (row 2). We thus aim
to adapt a GAN Gs that has been pre-trained on a large dataset like
LSUN-Church (row 3) to the target few-shot dataset (Gt). While
fine-tuning [23] does not perform well either if source and target
are dissimilar (row 4), our approach generates diverse and realistic
images (row 5) by transferring the smoothness properties of Gs.

Such dissimilarities are a major bottleneck of using GANs
in other disciplines like medicine, production, or crop sci-
ence, where there is a lack of large datasets due to privacy,
confidentiality, or simply lack of data. Motivated by this
fact, we extend the protocol for few-shot GAN adaptation
by investigating also pairs of datasets that are very different
like churches and shells as shown in Fig. 1.

To improve few-shot GAN adaptation in the case of
structurally dissimilar pairs, we propose a new GAN adap-
tation strategy. Firstly, we propose a new smoothness simi-
larity regularization for the generator. Our key observation
is that pre-trained GAN generators, regardless of the exact
structure of objects in the pre-training dataset, learn well-
structured and smooth latent spaces. For example, prior
works demonstrated that various local shifts in the latent
space can lead to interpretable and smooth transitions of



output images, such as translation of objects in the scene
or changing their size [34, 9, 30]. As we show in our ex-
periments, the proposed smoothness similarity regulariza-
tion enables the transfer of this desirable property to other
few-shot image domains without compromising the synthe-
sis quality. Secondly, to overcome overfitting issues, we
revisit the adversarial loss function of the discriminator and
propose a simple yet efficient modification by computing
the loss at different layers of the discriminator. This leads
to the mitigation of overfitting and a more stabilized adap-
tation of the model to diverse target domains.

We evaluate our approach by adapting an unconditional
[15] and a class-conditional GAN [2] to diverse few-shot
target domains. Our model significantly outperforms previ-
ous state-of-the-art methods in image quality and diversity
in the challenging case of dissimilar source and target do-
mains, while performing on par with the state of the art on
structurally similar dataset pairs. In summary, our contribu-
tions are as follows: (i) We extend the evaluation protocol
for few-shot GAN adaptation by including new dataset pairs
that are structurally much less similar than was considered
in prior work. (ii) We propose a new smoothness similarity
regularization, which enables diverse synthesis in the tar-
get domain by transferring the learned smoothness of a pre-
trained GAN. (iii) We revisit the adversarial loss function
of the discriminator to stabilize few-shot GAN adaptation
across diverse target domains. (iv) Our proposed model en-
ables high-quality synthesis in the challenging case of dis-
similar source and target domains, significantly outperform-
ing prior methods. In addition, we show that our method
can be applied to different classes of GAN architectures, in-
cluding unconditional and class-conditional GAN models.

2. Related Work
To address the image generation problem in the low data

regime, existing works mainly follow three research lines –
one-shot, low-shot, and few-shot learning. One-shot gen-
eration methods [29, 31] focus on leveraging the internal
patch distribution within a single image, however, their
extension to capture the distribution of a small collection
of images is non-trivial. In low-shot learning [41], sev-
eral works [41, 12] proposed to mitigate the limited-data-
induced overfitting issue by adapting data augmentations to
the generative networks. Others [18, 5] stabilized the train-
ing process and reduced overfitting by revising the network
design. Despite the promising performance in many low
data regimes (typically having 100+ images), these low-shot
methods fail in the extremely few-shot setting (e.g., 10 im-
ages). Our work lies in the scope of few-shot learning.

Few-shot image synthesis. Conventional few-shot
learning aims at learning a discriminative classifier under
limited data scenarios. In the context of image synthesis
with GANs, the goal instead is to produce diverse new im-

ages from the learned distribution while preventing overfit-
ting to the few training samples. A straightforward way is
to treat it as a domain adaptation problem and incorporate
the commonly used transfer learning technique, i.e., fine-
tuning, to ease the need for data. However, naive fine-tuning
(TGAN) [36] often suffers from overfitting and results in
poor performance. Researchers proposed remedies such as
mining suitable parts of the latent space before fine-tuning
[35] or restricting weight updates, for example, updating
only the BatchNorm parameters of the generator [22], pe-
nalizing drastic changes in important weights [17], or freez-
ing the earliest layers of the discriminator (FreezeD) [20].
More recent works focused on introducing different reg-
ularizations to preserve specific knowledge from the pre-
trained model and prevent diversity degradation [42]. For
example, CDC [23] proposed to preserve the pair-wise per-
ceptual similarity between samples from the source domain
and to transfer it to the target domain, while RSSA [37]
designed a novel consistency term to align the structural in-
formation between source and target domains. Although
the two aforementioned methods constitute the current state
of the art in few-shot generative learning, their assumptions
impose strong constraints on the structure of the few-shot
target domain. As we show in experiments, they fail in
the more challenging regime when the source and target
domains are not restrictively similar. Most recently, [39]
proposed to replace prior knowledge preservation criteria
with adaptation-aware kernel modulation (AdAM), which
relaxed the source-target proximity requirement of previ-
ous methods to some extent. In this work, we take a step
further and introduce a new regularization term to preserve
the generator’s smoothness properties that are not limited to
a specific domain, enabling successful adaptation between
image domains of unprecedented structural dissimilarity.

Smoothness of image generators. Smooth transitions
in the latent space are an important property for genera-
tive models, where it is believed to be a sign of a well-
conditioned generator. Models trained on large datasets nat-
urally possess this property with or without explicit regular-
ization [2, 15]. For example, StyleGANv2 [15] introduced a
regularization based on the perceptual path length measure
(PPL) [14], which encourages that a fixed-size step in the la-
tent space results in a fixed-magnitude change in the image
space. However, achieving a smooth mapping of the gen-
erator is difficult for few-shot image synthesis since there
are not enough training samples. Thus, MixDL [16] sought
to alleviate the “staircase” latent space interpolations, i.e.,
jumps between training samples, by introducing a continu-
ous coefficient vector and enforcing smooth interpolations
between training images. Although the two above regu-
larizers aim to encourage smoother interpolations between
training samples and thus mitigate mode collapse, they are
not designed to take advantage of the available pre-training
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Figure 2. Given a pre-trained generator Gs, the proposed smoothness similarity regularization preserves the learned smoothness of Gs

while adapting it to a target domain with very few images. To mitigate overfitting to the target domain, the discriminator loss utilizes
features at various layers and automatically adjusts the impact of different semantic scales to the similarity of the source and target domain.

knowledge. In contrast, in this work we develop a new
smoothness similarity regularization that leverages the well-
structured latent space of a pre-trained GAN generator. In
effect, our approach enables high-quality few-shot image
synthesis by transferring smooth and realistic image transi-
tions of pre-trained GANs to diverse few-shot domains.

3. Method
In the task of few-shot GAN adaptation, we are given a

small target dataset T and a pre-trained GAN model, con-
sisting of a discriminator D and a generator Gs, which pro-
duces an image x = Gs(z) from a continuous input variable
z, such as a random noise vector or a continuous class em-
bedding. The goal is to adapt the generator to the target
dataset such that it generates diverse and realistic images
in the domain of the target dataset as shown in Fig. 1. We
denote the adapted target generator by Gt.

To achieve few-shot synthesis with a high image quality
and diversity, our model should adhere to the following two
properties. Firstly, the generator Gt should not only memo-
rize and generate the target images, which will be addressed
by the smoothness similarity regularization (Sec. 3.1). Sec-
ondly, the discriminator D must avoid overfitting to the few
target images in order to provide useful supervision for Gt

(Sec. 3.2). The overview of our method is shown in Fig. 2.

3.1. Smoothness similarity regularization for Gt

In a low data regime like ours, Gt can easily overfit to
the target dataset T and collapse to reproducing only the
few modes represented in the training data. When walking
in the latent space of such a generator, one would observe
“staircase” patterns, where minor shifts in the latent space
cause discontinuous transitions in the output image space
(as shown in row 4 of Fig. 5). Naturally, to achieve a syn-
thesis of high diversity, it is desirable for Gt to avoid such
discontinuities, as having smoother image transitions allows
to generate intermediate samples that can exhibit novel fea-
tures. Therefore, in our model we aim to encourage Gt to
produce smooth latent space interpolations, in which all the
intermediate images are realistic.

Our approach is based on the observation that GANs
trained on large datasets tend to have a well-structured la-
tent space [34, 9, 30], in which different latent space direc-
tions can lead to smooth and interpretable image transitions.
For example, in a generator pre-trained on a large dataset
of churches, latent directions can emerge causing smooth
zooming or translation of churches (see Fig. 2). Our ob-
servation is that the nature of such image transitions (e.g.,
zooming or translation) is remarkably general. Thus, we
propose a regularizer that utilizes this smoothness property
of the source generator Gs as a cue while adapting it to
another image domain, which can be very different from
the domain that was used for pre-training. For example, as
shown in Fig. 2, the same latent directions of churches can
cause similar zooming or translation effects on shells.

Mathematically, the smoothness of the generator can be
represented via a Jacobian matrix JGl(z) = ||∂Gl(z)/∂z||,
quantifying how the generator’s intermediate features after
the l-th block change under local shifts in the latent space.
As we want the same latent shift to cause perceptually sim-
ilar image transitions in the source and target domains, we
design a regularization term that brings the Jacobian matri-
ces of Gl

s and Gl
t closer together. As the computation of full

Jacobian matrices is expensive, we use an unbiased estima-
tor of their products with a Gaussian vector [6, 15], which
can be computed with standard back-propagation:

JT
Gl(z) · y = E(y)∼N(0,1)∇z⟨Gl(z), y⟩, (1)

where y is a Gaussian tensor of the same shape as Gl. Our
smoothness similarity regularization is then expressed as:

LSS = λSS ·E(z,y)∼N(0,1)||∇z⟨Gl
s(z), y⟩ − ∇z⟨Gl

t(z), y⟩||2,
(2)

where λSS steers the impact of the regularizer. As shown
in Fig. 2, the smoothness similarity regularization depends
on both generators, but only Gt is updated. It is interest-
ing to note that the Jacobian matrix is also used for the
path length regularization [15], which forces JG(z) to be
orthogonal up to a global scale at any z. While this al-
ternative regularizer also induces some form of smooth-
ness, it does not transfer the inherently learned smoothness



of a pre-trained GAN. We show in Sec. 4.1 that it strug-
gles to enforce the realism of intermediate images. Fur-
thermore, our approach shares the motivation with some
prior regularization approaches that use noise perturbations
to enforce diversity [23, 37]. In contrast to Eq. 2, these
approaches incorporate non-gradient components, e.g., as-
suming similarity of images Gs(z)↔Gt(z) or distributions
d(Gt(z1), Gt(z2))↔d(Gs(z1), Gs(z2)). As such assump-
tions are violated when source and target domains are dis-
similar, they perform poorly compared to our smoothness
similarity regularization LSS as shown in the experiments.

3.2. Revisiting the D adversarial loss

To identify what kind of image transitions look realis-
tic for the target domain, Gt requires strong supervision
from the discriminator on image realism at different seman-
tic scales. This includes the colors and textures of objects,
as well as object shapes, especially if their distribution is
different from the shapes of objects in the source domain.
Learning the concept of image realism in low data regimes
is, however, challenging due to the problem of overfitting.

Typically, a GAN discriminator consists of several con-
secutive blocks {Di}Ni=1 and computes for each given im-
age x a real/fake logit after the last block l = sN ◦ DN (x),
where sN is a final processing layer such as a convolu-
tion. When adapting such a discriminator to a very small
dataset, it is prone to memorizing the training set [32],
leading to mode collapse and poor diversity of synthe-
sized images [23]. A possible solution [23, 37] to over-
come memorization is to use variants of the PatchGAN dis-
criminator [11], discarding the latest discriminator layers:
l = sk ◦ Dk(x), k < N . This solution allows to adapt col-
ors and textures of generated images to the target domain
while avoiding the memorization problem. However, it nat-
urally has a limited capacity to learn more high-level se-
mantic scene properties such as the shapes of objects, which
we show in the experiments.

In order to avoid memorization, and yet to balance the
adaptation of colors, textures, and shapes of generated ob-
jects to a new domain, we hypothesize that a more flexible
attention to different levels of image realism is required by
the discriminator. To this end, we perform a simple yet ef-
ficient modification to the loss function of the discrimina-
tor. Given a discriminator {Di}Ni=1 and its adversarial loss
function LD(l) used for pre-training (e.g., cross-entropy or
hinge loss), we design the discriminator to produce real/fake
logits after each discriminator’s block, and correspondingly
compute the loss as the average across all blocks:

Lall(x) =
1

N

N∑

i=1

LD[l
i(x)], li(x) = si ◦ Di(x). (3)

With the new objective, D is given more freedom to uti-
lize the features extracted at different scales to compute the

loss. Our finding is that D dynamically adapts the magni-
tude of the loss at each scale to the target domain, without
explicit supervision (see Fig. 6). Consequently, we observe
a strong overall stabilization effect on the adaptation perfor-
mance across diverse source-target dataset pairs.

4. Experiments

To demonstrate that our approach for few-shot GAN
adaptation can be applied to unconditional and class-
conditional GANs, we selected for each category a popu-
lar GAN architecture: unconditional StyleGANv2 [15] and
class-conditional BigGAN [2]. For both models, we test our
approach on a variety of source-target domain pairs. We fo-
cus on 10-shot target adaptation in the main paper, but we
provide results for 1-shot and 5-shot adaptation in the sup-
plementary material. For fair comparisons with prior works,
most of our ablations and comparisons are conducted with
StyleGANv2.

4.1. Adaptation of unconditional GAN

Datasets. In contrast to previous works that mostly
considered pairs of similar datasets like Face→Sketch and
Face→Sunglasses, we extend the protocol by including
structurally dissimilar pairs of source and target domains,
which is a more challenging task and is our primary interest.
As source generators, we use StyleGANv2 checkpoints pre-
trained on FFHQ [14], LSUN-Church, and LSUN-Horse
[38]. For the target datasets, we selected 10-shot sub-
sets of various commonly used few-shot datasets, such as
Anime-Face, Shells, or Pokemons [41, 18]. Results on more
datasets are shown in the supplementary material.

Training details. We fine-tune StyleGANv2 using the
LSS and Lall loss terms as presented in Sec. 3. For the
smoothness similarity regularization, we use the intermedi-
ate features Gl at resolution (32×32) and set λSS = 5.0.
We follow [23] in choosing all the other hyperparameters,
such as image resolution (256×256), learning rates, and
batch size. Our experiments across all datasets use the same
model configuration and set of hyperparameters.

Baselines. We compare our method to most recent few-
shot GAN adaptation approaches: TGAN [36], FreezeD
[20], CDC [23], RSSA [37], and AdAM [39]. In addition,
we compare our proposed smoothness similarity regularizer
LSS to other regularization techniques: path length regular-
ization (PPL) [15] and MixDL [16].

Evaluation. In low data regimes, it is necessary to judge
results both in quality and diversity aspects, as there is a
trade-off between them [25, 32]. We measure the quality
with FID [10] between a held-out validation set and a gen-
erated set of the same size. Following [23], we evaluate
diversity with the intra-LPIPS, clustering generated images
according to their nearest training samples and computing
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Figure 3. Visual comparison to prior methods on Face→Anime and Church→Shells, the source-target dataset pairs with a dissimilar
structure (e.g., shapes of objects). In this challenging regime, we observe that prior methods suffer from training instabilities, memorization
issues, or inability to adapt the shapes of objects to the new domain. In contrast, our method generates images that look realistic, flexibly
combine features of different target images, and transfer the variation of images from the source domain to the target domain.

the average LPIPS [40] of all the clusters. We train all mod-
els for 30k epochs in case of dissimilar domain pairs and for
5k on closer domains, evaluating metrics every 1k epochs.
Final checkpoints in all experiments correspond to best FID.

Results with dissimilar source-target domains. We
first present our results on the source-target domain pairs
with dissimilar structure: Face→Anime, Church→Shells,

and Horse→Pokemon (see Fig. 3 and supplementary ma-
terial). Our general observation from Fig. 3 is that in this
challenging regime prior methods suffer either from train-
ing instabilities, memorization issues, or inability to adapt
the shape of objects to the new domain. For example,
for Face→Anime, despite an apparent correspondence be-
tween the two domains, none of the prior methods success-
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Figure 4. Visual comparison to most recent prior methods on Face→Sketch and Church→Sunglasses, the dataset pairs depicting similar
image domains. In this regime, our method performs on par with previous state of the art. See Table 2 for a quantitative comparison.

Method
Face→Anime Church→Shells Horse→Pokemons
FID↓ LPIPS↑ FID↓ LPIPS↑ FID↓ LPIPS↑

TGAN [36] 153.2 0.29 205.3 0.22 115.0 0.52
FreezeD [20] 112.4 0.22 180.8 0.27 123.3 0.49
CDC [23] 140.2 0.50 187.9 0.48 109.5 0.55
RSSA [37] 133.2 0.37 182.4 0.44 117.3 0.54
AdAM [39] 116.4 0.42 152.4 0.28 106.5 0.55
Ours 97.3 0.57 140.5 0.53 84.1 0.61

Table 1. Comparison of the adaptation performance in case of dis-
similar source-target domains. Bold denotes best performance.

fully transfers the distribution of head poses to the anime
style, e.g., overfitting too strongly to the 10 provided sam-
ples (FreezeD), failing to adapt the shape of faces to the
style of anime (CDC), or not generating high-quality anime-
faces due to instabilities (TGAN, RSSA, AdAM). Similarly,
for Church→Shells, we observe that prior methods produce
only copies of the example shells (FreezeD, AdAM), gen-
erate shells of unrealistic church-like shapes (CDC, RSSA),
or suffer from instabilities (TGAN). In contrast, our method
achieves high-quality synthesis, in which the generated im-
ages (i) look like realistic anime-faces and shells; (ii) flex-
ibly combine features observed in different target images
(e.g., anime hair color can be combined with various eye
colors or background styles); and (iii) meaningfully transfer
the variation of images from the source domain (e.g., gener-
ated shells adjust to the positions and shapes of churches).

The quantitative comparison in Table 1 confirms our
analysis, where our method achieves the best quality and
diversity scores across all datasets. We note a high aver-
age relative improvement of more than 18% and 11% in
FID and LPIPS compared to the highest scores achieved
by prior methods. Overall, we conclude that our method
significantly improves over prior works on few-shot GAN

Method
Face→Sketch Face→Sunglasses
FID↓ LPIPS↑ FID↓ LPIPS↑

TGAN [36] 54.2 0.38 36.8 0.56
FreezeD [20] 48.8 0.32 32.0 0.59
CDC [23] 54.2 0.40 30.5 0.59
RSSA [37] 61.4 0.45 36.3 0.58
AdAM [39] 56.3 0.37 31.1 0.60
Ours 45.2 0.44 27.5 0.60

Table 2. Comparison in case of structurally close source-target do-
mains. Bold denotes best performance.

adaptation with dissimilar source and target domains.
Results with close source-target domains. Next, we

follow the evaluation of prior works and compare the mod-
els on similar source and target domains, such as adaptation
of human faces to a different style. The visual results for
Face→Sketch and Face→Sunglasses are shown in Fig. 4.
Our method successfully performs the few-shot adaptation
in this setting, adapting the colors and textures of faces to
the gray-scale sketch domain, or adding a novel attribute
(sunglasses). We note that our method is not explicitly de-
signed to transfer all the details of a face from the source
domain, thus changes in the generated images like facial
hair are expected. Yet, we observe that our method gener-
ally does not lose distinctive features of faces in source im-
ages, performing on par with previous state-of-the-art meth-
ods. The quantitative comparison is provided in Table 21:
on both datasets our method achieves the best FID scores
and performs on par with the best performer in LPIPS.

Ablations. We demonstrate the importance of our pro-
posed loss terms in Fig. 5, which shows latent space inter-
polations of trained models and their similarity to the pre-

1FID evaluation differs from prior works (discussed in suppl. material).
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Figure 5. Latent space interpolations of the source generator and
the ablation models from Tables 3-4. Leftmost and rightmost
columns show the used D loss and G smoothness regularization.

D loss
Smooth Face→Anime Church→Shells

reg. for G FID↓ LPIPS↑ FID↓ LPIPS↑
StyleGANv2 - 178.0 0.21 243.8 0.17
StyleGANv2 SS (ours) 180.7 0.61 252.8 0.62

PatchGAN [23] - 145.2 0.37 183.1 0.31
PatchGAN [23] SS (ours) 132.2 0.55 184.2 0.56
Lall (ours) - 116.4 0.36 175.4 0.43
Lall (ours) SS (ours) 97.3 0.57 140.5 0.53

Table 3. Impact of Lall and LSS . Bold denotes best performance.

trained source model Gs (row 1). Firstly, we note that the
plain StyleGANv2 model (row 2) suffers from instabilities
in our low data regime, achieving poor image quality and
diversity and having “staircase”-like latent space interpola-
tions. Applying LSS without Lall (row 3) helps to achieve
diverse synthesis with smooth interpolations, but it is not
enough to achieve good image quality. On the other hand,
using Lall (row 4) helps to overcome instabilities and im-
prove image quality, but it cannot maintain smooth interpo-
lations and high diversity. Finally, our full model (row 5) al-
lows a higher-quality, diverse synthesis with smooth and re-
alistic latent space interpolations. Note how the image tran-
sitions mimic the behaviour of the source model (churches
and shells change shapes and positions similarly), allowing
to achieve diverse and realistic synthesis.

The effect of Lall is further demonstrated in Fig. 6,
where we show the contribution of different D blocks to
the adversarial loss at different epochs. We note the abil-
ity of the discriminator to identify correct loss contributions

Face→Anime Church→Shells

Figure 6. The contribution of features at different D blocks to
the adversarial loss function Lall. For two closer image domains
(the left plot), the network concentrates mostly on earlier layers to
compute the loss, while for less similar domains the network learns
to use the later layers representing more high-level D features.

D loss
Smooth Face→Anime Church→Shells

reg. for G FID↓ LPIPS↑ FID↓ LPIPS↑
Lall (ours) - 116.4 0.36 175.4 0.43
Lall (ours) PPL [14] 107.8 0.46 179.4 0.44
Lall (ours) MixDL [16] 105.9 0.50 150.4 0.51
Lall (ours) SS (ours) 97.3 0.57 140.5 0.53

Table 4. Comparison of smoothness similarity regularization LSS

with other regularizers. Bold denotes best performance.

adaptively for different source-target domain pairs. For ex-
ample for Face→Anime, the network concentrates mostly
on the earliest D blocks to adapt the colors and textures
of faces to a new style. In contrast, for the more distant
domains Church→Shells, the network learns to attribute a
higher weight to the later blocks to also adapt higher-level
features, such as shapes of objects. In effect, we observe a
stabilized adaptation of colors, textures, and shapes of ob-
jects across diverse source-target pairs. Using PatchGAN
[23] as discriminator loss does not achieve such a balance as
it focuses mostly on lower-scale features (row 6 in Fig. 5).

Our observations are confirmed by the quantitative study
in Table 3: without LSS the model does not achieve high
diversity (high LPIPS), while Lall is necessary for high im-
age quality (low FID). We conclude that both our proposed
loss terms are important to achieve high-quality synthesis.
More ablations on LSS and Lall can be found in the sup-
plementary material.

Lastly, Table 4 provides a comparison of our proposed
LSS loss term to other regularizers: path length regulariza-
tion (PPL) [14] and MixDL [16]. While all regularizers help
to achieve smoother latent space interpolations and thus
improve the quality and diversity metrics, our smoothness
similarity regularization enables the highest performance
in both FID and LPIPS. While our approach transfers the
learned smoothness of the source generator to the target do-
main, PPL and MixDL resort to gradually interpolating be-
tween the provided training samples, which leads to latent
space interpolations that either look unrealistic or lack di-
versity (rows 7-8 in Fig. 5). This demonstrates that transfer-
ring smoothness from a pre-trained generator is beneficial to
enforce image transitions that are realistic and diverse.
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10-Shot adaptation results of our method on class-conditional BigGAN [2], pre-trained on ImageNet

Im
ag

eN
et Source

Fl
ow

er
s

FT
O

urs

Po
ke

m
on

s

FT
O

urs

Figure 7. 10-shot adaptation results for the class-conditional BigGAN [2] pre-trained on ImageNet. While simple fine-tuning (FT) suffers
from training instabilities and mode collapse, our method helps to achieve much higher image quality and diversity, transferring smooth
and realistic image transitions from the source domain, e.g., objects smoothly changing their locations, size, and shape.

D loss
Smooth ImageNet→Flowers ImageNet→Pokemons

reg. for G FID↓ LPIPS↑ FID↓ LPIPS↑
BigGAN - 213.3 0.29 226.8 0.15
BigGAN SS (ours) 225.6 0.47 208.3 0.47
Lall (ours) - 123.9 0.28 129.4 0.27
Lall (ours) SS (ours) 106.4 0.55 89.6 0.56

Table 5. Ablation on the performance when adapting the class-
conditional BigGAN model [2] pre-trained on ImageNet.

4.2. Adaptation of class-conditional GAN

Our approach is not limited to unconditional GANs, but
it can also be applied to a class-conditional GAN model.
We selected BigGAN [2] for our experiments as it is a pop-
ular backbone architecture for class-conditional image syn-
thesis on ImageNet [7]. We make two modifications to
enable the adaptation of the model to unconditional few-
shot datasets. Firstly, we remove the conditioning of the
discriminator via the projection layer [19]. Secondly, we
treat the generator’s learned continuous class embedding as
part of the latent space, thus sampling a Gaussian vector in
the joint noise-class space at each fine-tuning epoch. This
way, the generator produces an image based on a single in-
put vector in an unconditional fashion. We then fine-tune
the pre-trained model using our loss terms LSS and Lall as
presented in Sec. 3. We use image resolution 256×256 and
batch size of 32. The hyperparameters for LSS are the same
as for StyleGANv2: intermediate features Gl at resolution
(32×32) and λSS = 5.0. We train for 30k epochs and select
checkpoints by best FID.

Datasets. As the source generator, we use the Big-

GAN checkpoint pre-trained on class-conditional ImageNet
at resolution 256×256. We demonstrate 10-shot adapta-
tion results with two commonly used few-shot generation
datasets: Oxford-Flowers [21] and Pokemons [18]. We use
the same model configuration for both datasets.

Results. Fig. 7 demonstrates latent space interpolations
of the source and target generators. We note that a sim-
ple fine-tuning of BigGAN suffers from training instabili-
ties and mode collapse. In contrast, our method success-
fully adapts BigGAN to generate diverse images in the tar-
get domains. We highlight that our method transfers smooth
and realistic image transitions from the well-learned Big-
GAN’s noise-class space, despite significant dissimilarities
between ImageNet and the few-shot datasets, in particular
Pokemons. For example, it can be noticed how the latent
space interpolations in the target domains mimic the source
domain, e.g., the generated flowers and pokemons change
their position and size similarly to dogs and wolves (5th-
10th columns in Fig. 7) or stretch their shape to mimic the
proportions of busses (11th-14th columns).

Table 5 shows the importance of our proposed loss terms.
Our observations are consistent with the ablations with Styl-
GANv2: Lall is necessary to avoid instabilities and achieve
a good image quality (low FID), while LSS is required to
achieve smooth latent space interpolations and good diver-
sity (high LPIPS). We conclude that our method success-
fully extends to the adaptation of class-conditional models,
where target domains benefit from the rich noise-class space
learned on a multi-class dataset such as ImageNet. More de-
tails and results are provided in the supplementary material.



5. Conclusion
In this work, we presented a new method for few-shot

adaptation of GAN models. It transfers the smooth la-
tent space of a pre-trained GAN, which was trained on a
large dataset, to a new domain with very few images. We
addressed the case of few-shot GAN adaptation when the
source and target domains are structurally dissimilar, which
is a common issue in applications. Our extensive results
demonstrate that in this setting our approach outperforms
previous works in terms of image quality and diversity.
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