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Angefertigt mit Genehmigung der Landwirtschaftlichen Fakultät der Universität Bonn  



III 

Acknowledgements 

First of all, I would like to express my sincere thanks to my Ph.D. supervisor, P.D. Dr. Luna 

Bharati, for her trust, guidance, and continuous support in successfully completing this Ph.D. 

project. I am thankful to Prof. Dr. Christian Borgemeister, my Ph.D. co-supervisor and 

Executive Director of the Center for Development Research (ZEF) at the University of Bonn, 

for his valuable guidance and support during my Ph.D. I am also thankful to Dr. Reinhard 

Mechler for his outstanding support and guidance in conducting part of this Ph.D. project at 

the International Institute for Applied Systems Analysis (IIASA). I am very much thankful to 

Dr. Samir KC, Prof. Dr. Georg Pflug, and Ms. Sanita Dhaubanjar for the excellent research 

collaboration during my Ph.D. 

This Ph.D. project was funded by the doctoral scholarship program of the Heinrich Böll 

Foundation. I sincerely thank Dr. Anne-Katrin Holfelder, Dr. Sevilay Karaduman and Ms. 

Angelika Steinborn from the Heinrich Böll Foundation for their excellent cooperation during 

the scholarship period. ZEF provided financial support for the data and field research in Nepal. 

Part of the research was developed in the Young Scientists Summer Program at the IIASA, 

Laxenburg, Austria. The research results have been published as peer-reviewed articles in the 

Journal of Climatic Change and Regional Environmental Changes and submitted to Climate 

Risk Management. Funding for the Open Access Publication of the research results was 

enabled and organized by Projekt DEAL. I am grateful to all of these institutions and 

individuals. 

This Ph.D. is part of the Bonn International Graduate School for Development Research 

(BIGS-DR) at ZEF. I am thankful to Dr. Günther Manske, Dr. Silke Tönsjost, Mr. Max Voit, 

and all the staff at ZEF for the academic and administrative support. I sincerely thank my fellow 

Ph.D. students at ZEF from the 2019 and 2020 batches. My sincere thanks to Ms. Regina 

Kirchner-Bierschenk from the Faculty of Agriculture, University of Bonn. 

Finally, the attainment of this Ph.D. would not have been possible without the unwavering 

support of my family. I greatly appreciate my wife, Dr. Sabita Bhandari Chapagain, for 

standing by my side through every easy and tough moment and providing me with immense 

love and strength. I am grateful to my parents, Dirgha Dhwaja Chapagain and Durga Devi 

Chapagain, for all their hard work and sacrifice in raising and educating me. The motivation 

and strength provided by my daughter, Sadikshya Chapagain, have been invaluable throughout 



IV 

this journey. I express my gratitude to my brother, Dinesh Chapagain; sister, Dipa Chapagain; 

parents-in-law, Babulal Bhandari and Bimala Bhandari; as well as all my beloved family 

members and friends for their tremendous support and encouragement that played a pivotal 

role in helping me achieve this significant milestone. 

I thank all of you from the bottom of my heart, and please understand that I hold a profound 

affection and deep gratitude for each and every one of you. 

 

Sincerely yours, 

Dipesh Chapagain  



V 

Summary 

The socioeconomic impacts of climatic disasters are increasing globally. Some studies have 

argued that this increasing trend results from the growing population and assets exposed to 

hazardous events. Other studies have reported that it is caused by the increased frequency, 

intensity, and duration of extreme weather and climate events owing to climate change. 

Therefore, the reasons behind the increasing impact of disasters remain elusive. Limited 

information is available on future scenarios of extreme climate indices and their implications 

in various sectors, including disasters. Although disaster impacts relative to the country’s 

economy are felt more acutely in low-income countries, existing studies focus primarily on 

developed countries or at the cross-country level. Therefore, this dissertation addresses the 

issue of detecting and attributing trends of climatic disaster impacts in the context of low-

income countries using Nepal as a case study. Furthermore, this dissertation investigates future 

climate extremes scenarios and their potential impacts on climate-sensitive sectors in the 

Karnali river basin in western Nepal. 

First, this study assessed the spatiotemporal trends of the frequency, impacts, and vulnerability 

of multiple climate disasters using the observed 30-year (1992–2021) disaster data at the scale 

of the 753 subnational units of Nepal. Loss of human life is the most extreme consequence of 

disasters. Therefore, this study employed human mortality as a measure of disaster impacts and 

mortality normalized by the exposed population as a measure of vulnerability. Second, the 

attribution of flood and landslide mortality to indicators of climatic hazards, exposure, and 

vulnerability was assessed. Floods and landslides were selected for the attribution study 

because they account for 70% of all climatic disaster mortality in Nepal. This study employed 

a disaster-specific mixed-effects zero-inflated negative binomial regression model to study the 

causality of the observed mortality. As explanatory variables, this study used mean and extreme 

precipitation indices, population density, and per capita income and a social vulnerability index 

as indicators of hazards, exposure, and vulnerability. Finally, this study provided future 

projections of 26 mean and extreme climate indices in western Nepal for the near (2021–2045), 

mid (2046–2070), and far (2071–2095) future for low- and high-emission scenarios (RCP4.5 

and RCP8.5, respectively) using bias-corrected ensembles of 19 regional climate models from 

the COordinated Regional Downscaling EXperiment for South Asia. In addition, a qualitative 

analysis based on expert interviews and a literature review of the potential implications of the 

projected climate extremes on the climate-sensitive sectors are performed. Western Nepal was 



VI 

selected to study the future scenario where the strongest rise in precipitation extremes, disaster 

frequency, and mortality was observed in the past decades. 

Results show that ~5,000 fatal climatic disasters were recorded from 1992–2021 in Nepal, 

killing >10,000 people. The frequency of disasters has increased by about seven incidences per 

year, and mortality has increased by nearly nine persons per year. However, vulnerability has 

decreased, most likely owing to economic growth and progress in disaster risk reduction and 

adaptation. The spatiotemporal trends of disaster mortality closely follow the trend of 

precipitation extremes. An increase in one standardized unit in maximum one-day precipitation 

has increased flood mortality by 33%, and heavy rain days have increased landslide mortality 

by 45%. A one-unit increase in per capita income has decreased landslide and flood mortality 

by 30% and 45%, respectively. Population exposure does not show significant effects. Hence, 

this study concludes that the observed rise in climatic disaster mortality, mainly in western 

Nepal, is primarily attributable to the increased precipitation extremes caused by climate 

change. Temperature and precipitation patterns in western Nepal are projected to deviate 

significantly from the historical reference in the near future with an increase in extreme events. 

Low-intensity precipitation events will decline, but the magnitude, frequency, and duration of 

extreme precipitation events will increase. This projected rise in precipitation extremes will 

most likely increase climate-related disaster mortality if actions are not taken to strongly reduce 

the vulnerability. Similarly, the compounding effects of the increase in extreme temperature 

and precipitation events will have largely negative implications for the six climate-sensitive 

sectors in the Karnali region, namely water resources and energy, climate induced disasters, 

agriculture and food security, forest and biodiversity, tourism, natural and cultural heritage, 

and public health. 
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Zusammenfassung 

Die sozioökonomischen Auswirkungen von Klimakatastrophen nehmen weltweit zu. Einigen 

Studien zufolge ist dieser zunehmende Trend auf die wachsende Bevölkerung und die 

Vermögenswerte zurückzuführen, die gefährlichen Ereignissen ausgesetzt sind. Andere 

Studien berichten, dass dies auf die zunehmende Häufigkeit, Intensität und Dauer extremer 

Wetter- und Klimaereignisse infolge des Klimawandels zurückzuführen ist. Die Gründe für die 

Zunahme der Auswirkungen von Katastrophen sind daher nach wie vor nicht klar. Es liegen 

nur begrenzte Informationen über künftige Szenarien extremer Klimaindizes und deren 

Auswirkungen auf verschiedene Sektoren, einschließlich Katastrophen, vor. Obwohl die 

Auswirkungen von Katastrophen im Verhältnis zur Wirtschaft eines Landes in Ländern mit 

niedrigem Einkommen stärker zu spüren sind, konzentrieren sich die vorhandenen Studien in 

erster Linie auf Industrieländer oder auf die länderübergreifende Ebene. Daher befasst sich 

diese Dissertation mit der Erkennung und Zuordnung von Trends bei den Auswirkungen von 

Klimakatastrophen im Kontext von Ländern mit niedrigem Einkommen. Nepal dient dabei als 

Fallstudie. Darüber hinaus werden in dieser Dissertation künftige Szenarien für Klimaextreme 

und ihre möglichen Auswirkungen auf klimasensible Sektoren im Einzugsgebiet des Karnali 

im Westen Nepals untersucht. 

Zunächst wurden in der Studie die raumzeitlichen Tendenzen der Häufigkeit, Auswirkungen 

und Vulnerabilität für verschiedene Klimakatastrophen anhand der beobachteten 30-jährigen 

(1992-2021) Katastrophendaten der 753 subnationalen Einheiten Nepals untersucht. Der 

Verlust von Menschenleben ist die extremste Folge von Katastrophen, weshalb in dieser Studie 

die menschliche Sterblichkeit als Maß für die Katastrophenauswirkungen verwendet wurde. 

Die auf die exponierte Bevölkerung normierte Sterblichkeit wurde wiederum als Maß für die 

Anfälligkeit verwendet. Zweitens wurden Sterblichkeitsraten bei Überschwemmungen und 

Erdrutschen als Indikatoren für klimatische Gefahren und Vulnerabilität herangezogen. 

Überschwemmungen und Erdrutsche wurden für die Zuordnungsstudie ausgewählt, da sie für 

70 % der gesamten klimabedingten Todesfälle in Nepal verantwortlich sind. In der Studie 

wurde ein katastrophenspezifisches Regressionsmodell mit gemischten Effekten und 

negativem Binomialmodell mit Null-Inflation verwendet, um die Kausalität der beobachteten 

Sterblichkeit zu untersuchen. Als erklärende Variablen wurden in dieser Studie Indizes für 

mittlere und extreme Niederschläge, Bevölkerungsdichte und Pro-Kopf-Einkommen sowie ein 

Index der sozialen Verwundbarkeit als Indikatoren für Gefahren, Exposition und 
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Verwundbarkeit verwendet. Schließlich lieferte diese Studie Zukunftsprojektionen von 26 

mittleren und extremen Klimaindizes in Westnepal für die nahe (2021-2045), mittlere (2046-

2070) und ferne (2071-2095) Zukunft. Die Projektionen behandeln dabei Szenarien mit 

niedrigen und hohen Emissionen (RCP4.5 bzw. RCP8.5) unter Verwendung von 

verzerrungskorrigierten Ensembles von 19 regionalen Klimamodellen aus dem COordinated 

Regional Downscaling EXperiment for South Asia. Darüber hinaus wird eine qualitative 

Analyse auf der Grundlage von Experteninterviews und einer Literaturrecherche zu den 

möglichen Auswirkungen der prognostizierten Klimaextreme auf die klimasensiblen Sektoren 

durchgeführt. Für die Untersuchung des Zukunftsszenarios wurde Westnepal ausgewählt, wo 

in den vergangenen Jahrzehnten der stärkste Anstieg von Niederschlagsextremen, 

Katastrophenhäufigkeit und Sterblichkeit zu beobachten war. 

Die Ergebnisse zeigen, dass zwischen 1992 und 2021 wurden in Nepal insgesamt ~5.000 

tödliche Klimakatastrophen registriert, bei denen mehr als 10.000 Menschen ums Leben 

kamen. Die Häufigkeit der Katastrophen hat um etwa sieben Ereignisse pro Jahr zugenommen, 

und die Sterblichkeit ist um fast neun Personen pro Jahr gestiegen. Jedoch hat die Anfälligkeit 

gegenüber Klimakatastrophen abgenommen, was höchstwahrscheinlich auf das 

Wirtschaftswachstum und die Fortschritte bei der Verringerung des Katastrophenrisikos und 

der Anpassung an den Klimawandel zurückzuführen ist. Diese Entwicklung der 

Katastrophensterblichkeit folgt eng dem Trend der Niederschlagsextreme. Ein Anstieg des 

maximalen Tagesniederschlags um eine standardisierte Einheit hat die Sterblichkeit bei 

Überschwemmungen um 33 % erhöht, und die Sterblichkeit bei Erdrutschen ist um 45 % 

gestiegen. Ein Anstieg des Pro-Kopf-Einkommens um eine Einheit hat die Erdrutsch- und 

Hochwassersterblichkeit um 30 % bzw. 45 % verringert. Die Exposition der Bevölkerung zeigt 

keine signifikanten Auswirkungen. Daher kommt diese Studie zu dem Schluss, dass der 

beobachtete Anstieg der Sterblichkeit bei Klimakatastrophen, vor allem im Westen Nepals, in 

erster Linie auf die durch den Klimawandel verursachten vermehrten Niederschlagsextreme 

zurückzuführen ist. Es wird prognostiziert, dass die Temperatur- und Niederschlagsmuster im 

Westen Nepals in naher Zukunft erheblich von den historischen Referenzwerten abweichen 

werden, was zu einer Zunahme von Extremereignissen führen wird. Niederschlagsereignisse 

mit geringer Intensität werden abnehmen, aber Ausmaß, Häufigkeit und Dauer von extremen 

Niederschlagsereignissen werden zunehmen. Dieser prognostizierte Anstieg der 

Niederschlagsextreme wird höchstwahrscheinlich zu einem Anstieg der klimabedingten 

Katastrophensterblichkeit führen, wenn keine Maßnahmen ergriffen werden, um die Resilienz 
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gegen Katastrophen zu stärken. Auch die sich verstärkenden Auswirkungen der Zunahme 

Temperatur- und Niederschlagsextreme werden für die sechs klimasensiblen Sektoren in der 

Karnali-Region weitgehend negative Folgen haben, nämlich Wasserressourcen und Energie, 

Klimakatastrophen, Landwirtschaft und Ernährungssicherheit, Wald und Biodiversität, 

Tourismus, Natur- und Kulturerbe, und Gesundheit. 
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1.1. Problem statement and motivation 

Global warming and climate change due to human-induced greenhouse gas (GHG) emissions 

have adversely impacted people and the environment worldwide (IPCC 2022a). This recently 

published Sixth Assessment Report (AR6) of the Intergovernmental Panel on Climate Change 

(IPCC) concluded with high confidence that anthropogenic climate change has caused 

widespread impacts on various sectors such as ecosystems and biodiversity, water, agriculture, 

health, settlements, and infrastructures. The frequency and intensity of climate and weather 

extremes, such as hot extremes, heavy precipitation events and drought, have increased 

resulting the rise in climate-related disasters and its impacts (IPCC 2022a). Furthermore, global 

warming will intensify the weather and climate extremes in the future. Extreme precipitation 

events will increase nonlinearly with global warming, and the frequency of rare events, such 

as 10- and 50-year events, are likely to double and triple compared with the past at 4°C of 

global warming (Seneviratne et al. 2021). Hence, a better understanding of the behavior of the 

extreme climate indices is important to understand its impacts in various climate sensitive 

sectors and plan for adaptation (ETCCDI 2009). 

During 1970–2019, weather- and climate-related disasters caused 2.06 million deaths and 

economic losses of 3.6 trillion USD worldwide (WMO 2021). In the last two decades (2001–

2020), at least 27,031 people died, and economic losses of 126.2 billion USD were incurred as 

a direct result of 331 climatic disaster events annually (CRED 2021). Moreover, the incidence 

and impact of climatic disasters are rising globally. On average, ~90–100 medium- and large-

scale disasters were recorded annually during 1970–2000. However, this increased to 350–500 

events per year during 2001–2020 (UNDRR 2022). Consequently, inflation-adjusted global 

economic losses owing to multiple climatic disasters increased by 2.6 billion USD/year during 

1980–2016 (Formetta and Feyen 2019). Furthermore, climatic disaster-related human mortality 

also increased in the long term, with large spatial and interannual variability (Formetta and 

Feyen 2019; UNDRR 2022). 

The disaster-induced fatality and economic losses relative to the country’s gross domestic 

product (GDP) are unevenly distributed worldwide; they are higher in developing countries. 

Further, ~91% of the global disaster mortality during 1998–2017 occurred in low- and middle-

income countries, and only 9% in high-income countries (UNISDR 2018). Similarly, on 

average, disaster-induced economic losses in low- and lower-middle-income countries are 

0.8%–1% of GDP compared with only 0.1%–0.3% in high- and upper-middle-income 
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countries (UNDRR 2022). According to the INFORM Risk Index, the countries at the highest 

future risk of climatic disasters are also low- and middle-income countries, mainly in Africa 

and South Asia (Inter-Agency Standing Committee and the European Commission 2022). Most 

of the 3.6 billion people living in conditions highly vulnerable to climate change are in 

developing countries (IPCC 2022a). Similarly, ~90% of the ~1.5 billion people worldwide 

exposed to flood risk live in low- and middle-income countries (Rentschler and Salhab 2020). 

The high impacts and risks in developing countries mainly result from the increased 

vulnerability caused by socioeconomic factors such as poverty, development deficit, 

marginalization, inequality, and governance challenges (IPCC 2022a). 

Small island developing states (SIDSs) and least developed countries (LDCs) have advocated 

a burden-sharing mechanism for climate change–induced loss and damage since the 

establishment of the United Nations Framework Convention on Climate Change (UNFCCC) 

in 1992 (Mechler et al. 2019). However, attributing impacts and risks to anthropogenic climate 

change has been a major challenge in this loss and damage debate (Bouwer 2019; James et al. 

2019). Attribution in this climate change impacts and loss and damage context is the process 

of studying the relative contribution of multiple causal factors, such as the anthropogenic 

climate change or socioeconomic factors, to a change or event, such as the rise in disaster 

impacts (IPCC 2022b). For the first time since the beginning of the UNFCCC negotiation 

process, the UNFCCC 27th Conference of the Parties (COP 27) and 4th Conferences of the 

Parties serving as the meeting of the Parties to the Paris Agreement (CMA 4) held in Sharm el-

Sheikh in Egypt in November 2022 decided to establish funding mechanisms for responding 

to loss and damage due to climate change (UNFCCC 2022). Nevertheless, empirical evidence 

of the climate change–induced rise in extreme climate events that increased disaster impacts 

remains limited (IPCC 2014a, 2022a). 

Previous studies have analyzed the historical trends of climatic disaster impacts and their 

causes. However, the results are diverse and contradictory. Some studies have reported that the 

increasing trend of climatic disaster impacts so far results from the rapid growth in population 

and assets exposed to hazardous events, and the role of anthropogenic climate change is not 

evident (Bouwer 2011, 2019; Visser et al. 2014; Mohleji and Pielke 2014; McAneney et al. 

2019; Pielke 2021). These studies have used the standard loss normalization approach to 

normalize the disaster impacts by exposure and investigate any remaining trends of the 

exposure-normalized losses that can be attributed to climate change. However, vulnerability is 
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not often, or incompletely, accounted for in these studies, resulting in the false attribution of 

disaster impacts given the dynamic nature of vulnerability (Mechler and Bouwer 2015; Botzen 

et al. 2021). In contrast, several studies have observed a decreasing trend of exposure-

normalized disaster impacts, also used as a proxy for disaster vulnerability (Kellenberg and 

Mobarak 2008; Jongman et al. 2015; Tanoue et al. 2016; Wu et al. 2019; Formetta and Feyen 

2019). Disaster vulnerability reduction could have resulted from climate change adaptation, 

disaster risk reduction (DRR), and overall economic growth, which could have covered the 

climate change effects. The climate change effect is much greater in explaining the increasing 

trend of disaster impacts if vulnerability is controlled for (Estrada et al. 2015; Forzieri et al. 

2017). 

Disaster trends and attribution findings are derived from global cross-country studies or high-

income countries (Bouwer 2019; Pielke 2021). Cross-country studies are mainly based on 

nationally aggregated data. Analyses are performed at a low spatial resolution, such as by 

country clusters (low- and high-income countries) or by continents. However, climatic disasters 

are often local phenomena, and their impact and vulnerability are particular to locations. 

Therefore, such global cross-country analyses cannot capture the spatiotemporal dynamics of 

disaster impacts, vulnerabilities, and relationships with their drivers for any particular location 

(Rubin 2014; Wu et al. 2019). The few available studies in low-income countries (Aryal 2012; 

Rubin 2014; Mechler and Bouwer 2015; Aksha et al. 2018) are very limited in the scope of 

analysis or have several methodological limitations. This knowledge gap significantly hinders 

the achievement of the goals and targets of the 2030 Agenda for Sustainable Development and 

their stated Sustainable Development Goals (SDGs), the Sendai Framework for Disaster Risk 

Reduction (SFDRR), and the global adaptation goal of the 2015 Paris Agreement. Burden-

sharing, such as compensation for unavoidable loss and damage due to climate change, has 

been a critical agenda of LDCs and SIDSs in the UNFCCC negotiations (Deubelli and Mechler 

2021). However, attribution has been the crux of this loss and damage debate (Bouwer 2019; 

James et al. 2019). Therefore, much evidence from attribution science is necessary to avert, 

minimize, and address residual loss and damage caused by climatic disasters (James et al. 2019; 

Mechler et al. 2020). 

A country-specific study can investigate the relationship between disaster impacts and their 

drivers considering the governmental, political, institutional, and other unobserved variables, 

often not feasible in cross-country studies (Rubin 2014). Studying the observed disaster 
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impacts is significant in identifying high-impact and vulnerable areas, planning and 

implementing DRR and adaptation measures, monitoring and evaluating the effectiveness of 

these measures, and investigating the attribution of impacts to climate and socioeconomic 

change (Koç and Thieken 2018). Therefore, this study examined the spatiotemporal trends of 

climatic disaster impacts and vulnerability and its attribution to climatic and socioeconomic 

variables in Nepal, a low-income country. 

Based on the Global Climate Risk Index 2021, Nepal is among the top ten countries worldwide 

suffering from extreme weather events in recent decades (Eckstein et al. 2021). In the past 30 

years (1992–2021), climate-related disasters caused >10,000 deaths in the country (Chapagain 

et al. 2022). Additionally, economic losses amounted to 380 million Nepalese rupees (2010 

price) (i.e., USD~3.8 million/year) over the past decade, which is a 55% increase over the 

previous decade (DesInventar 2021; MoHA 2021). Nepal has been classified as a high-disaster 

risk country by the INFORM Risk Index 2022. Hence, Nepal can be a case study of a low-

income and highly disaster-prone country. 

A significant increase in disaster risk and vulnerability is projected by 2050 owing to climate 

change and demographic and socioeconomic changes (Inter-Agency Standing Committee and 

the European Commission 2022). In addition to the climate-related disasters, the change in 

climate extremes in the future is most likely to have impacts on other sectors. Water resources 

and energy; climate-induced disasters; agriculture and food security; forests and biodiversity; 

tourism and natural and cultural heritage; public health; and urban settlements and 

infrastructure are the six key climate sensitive sectors in Nepal (MoPE 2017).  However, only 

limited studies so far have studied the future scenarios of climate extremes and their 

consequences in these climate sensitive sectors. Therefore, this study further investigated future 

extreme weather and climate scenarios and their potential consequences in climate-sensitive 

sectors in the Karnali river basin in western Nepal. Due to the very high geographic and 

climatic heterogeneity within small spatial distance in Nepal, the future climate projections and 

impact assessments is required at a finer spatial scale (Dhaubanjar et al. 2020; Chapagain et al. 

2021). Karnali is the poorest and one of the most climate vulnerable regions in the country 

(Siddiqui et al. 2012; NPC 2018; Panthi et al. 2018; Matheswaran et al. 2019). Moreover, this 

study found that western Nepal has experienced the fastest increase in climate extremes and 

disaster impacts in the past compared to the other regions (see chapter three for the findings). 
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Therefore, this study focused on Karnali river basin in western Nepal to study the future climate 

extremes scenarios and its implications in the climate sensitive sectors. 

The research objectives and dissertation structure are presented in Sections 1.3 and 1.4. 

1.2. State of the art 

The frequency and intensity of weather and climate extremes have increased since around the 

1950s because of anthropogenic greenhouse gas (GHG) emissions (Seneviratne et al. 2021), 

which are increasingly likened to the increasing incidence and impact of climatic disasters 

(Huggel et al. 2013; IPCC 2014a, 2022a; James et al. 2019). However, several studies have 

concluded that anthropogenic climate change has not had a significant role in increasing the 

impact of climatic disasters (Bouwer 2011, 2019; Neumayer and Barthel 2011; Visser et al. 

2014; Mohleji and Pielke 2014; McAneney et al. 2019; Pielke 2021). These authors have 

argued that the increase in disaster exposure due to population and economic growth is the 

most important driver of the increasing disaster impacts because the impact trend after 

normalization for exposure is constant. Nevertheless, this argument is valid only if there are no 

DRR and adaptation efforts or if such efforts are completely unsuccessful in reducing 

vulnerability (Nicholls 2011). Otherwise, the exposure-normalized impacts on the absence of 

climate change effects should exhibit a downward trend because of the global advancement in 

weather forecasting, disaster preparedness, adaptation, and development efforts (Nicholls 

2011; Neumayer and Barthel 2011; IPCC 2022a). 

Loss normalization is the most used approach in the literature to i) re-express impacts in terms 

of vulnerability through normalization by exposure, and ii) investigate whether there is a 

residual trend of normalized impacts that could be attributed to climate change (Huggel et al. 

2013; Estrada et al. 2015; Bouwer 2019). Several studies have normalized disaster mortality 

and economic losses by the exposed population and the exposed GDP, respectively, as a 

measure of human and economic vulnerabilities. Such normalized human and economic losses 

have shown a decreasing trend in different world regions (Kellenberg and Mobarak 2008; Zhou 

et al. 2014; Wu et al. 2019; Formetta and Feyen 2019). Exposure-normalized impacts caused 

by a single hazard, such as floods (Jongman et al. 2015; Tanoue et al. 2016) and storms 

(Bouwer and Jonkman 2018), have also declined in all world regions. The normalized impacts 

or vulnerabilities in low-income countries have decreased considerably faster, fostering the 

convergence of the vulnerability gap between the rich and the poor. Declining vulnerabilities, 
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particularly in low-income countries, are linked to improved socioeconomic conditions, mainly 

due to economic growth, DRR, and adaptation. This shows that the effect of the potential 

increase in climatic hazards on disaster impacts because of climate change is counterbalanced 

by a decrease in vulnerability. 

Some studies have observed a clear nonlinear (power function) decreasing trend of disaster 

vulnerability with economic growth (Jongman et al. 2015; Wu et al. 2019; Formetta and Feyen 

2019). Others have argued that vulnerability follows an inverted U-shape trend, indicating an 

initial increase in vulnerability before declining. Because, the implementation and effects of 

DRR and adaptation progress more slowly than increases in exposure (Kellenberg and 

Mobarak 2008; Huang 2014; Zhou et al. 2014). The monotonic downward trend supports the 

role of economic growth in reducing disaster vulnerability. At the same time, an inverted U-

shaped relationship questions the prominent belief that the best way for developing countries 

to avoid disaster impacts is by developing and growing faster (Kellenberg and Mobarak 2008). 

Vulnerabilities may increase with economic growth because low-income countries, such as 

Nepal, may not have reached the turning point. Although the role of DRR and adaptation in 

reducing vulnerabilities and impacts are acknowledged, such an association has not been 

studied empirically. Bahinipati et al. (2016) attempted to introduce adaptation variables into 

normalization models. They concluded that adaptation significantly reduced economic losses 

resulting from climatic extremes in Odisha, India. 

The effectiveness of the loss normalization approach in determining whether there is a residual 

trend that can be attributed to changing climatic hazards is limited because the underlying 

assumptions, such as the relevance of the normalization variables to detrend the impacts of 

socioeconomic changes, may not hold (Estrada et al. 2015). Likewise, its inability to adequately 

explain the change in vulnerability does not allow for detecting the role of climatic hazards in 

the observed impacts (Huggel et al. 2013; Mechler and Bouwer 2015; Botzen et al. 2021). 

When the vulnerability is controlled, Forzieri et al. (2017) concluded, based on the historical 

loss trend, that climate change is the dominant driver accounting for >90% of the projected rise 

in the risk to humans (number of deaths) in Europe, with only a minor (~10%) contribution of 

population growth and distribution. Therefore, Estrada et al. (2015) proposed a regression-

based approach with socioeconomic and climatic variables to explain the variability of US 

tropical cyclone losses. They reported that the upward loss trend is consistent with changes in 

its climatic drivers. Nevertheless, such an approach is not yet conclusive, and there is a need 
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for further confirmation through consecutive studies (Bouwer 2019). Moreover, DRR and 

adaptation variables are still not included in their regression model because of data 

unavailability. 

The literature and findings discussed above are mostly from developed countries or global 

cross-country studies. Low-income countries are poorly represented in such analyses, and in 

particular, there is a lack of information at the subnational scale (James et al. 2019). 

Furthermore, whether the observed results at a global scale or in one country apply to other 

countries or regions is unclear (Neumayer and Barthel 2011). Among the few studies available 

in a low-income country context, Rubin (2014) attempted to study disaster vulnerability at the 

provincial scale in Vietnam. However, analysis is limited to the provincial distribution pattern 

of disaster mortality (decadal average instead of annual trend) and per capita economic losses 

over a very short study period (2000–2009). Mechler and Bouwer (2015), in a flood-specific 

study in Bangladesh, observed a decreasing trend of economic losses relative to the GDP in the 

flooded area and fatalities relative to the area flooded. In Nepal, Aryal (2012) observed an 

increasing trend of the reported disaster incidence and casualty per disaster incidence (the 

author defined it as vulnerability). This study was based on disaster data extracted from the 

review of newspaper articles. They did not provide any information on disaster impacts (life or 

asset) and impacts after controlling for exposure. Aksha et al. (2018) observed an increasing 

trend of total deaths due to natural disasters in Nepal, with a higher crude death rate in the mid- 

and high-mountain regions. However, research in Nepal is limited to disaster mortality and 

includes death caused by non-climatic hazards, such as earthquakes. Furthermore, the crude 

death rate does not control the exposed population to provide vulnerability measures. 

In Nepal, several studies have investigated previous extreme climate indices and found a rise 

in heavy precipitation events and hot extremes (Khatiwada et al. 2016; Karki et al. 2017, 2019; 

Bohlinger and Sorteberg 2018; Talchabhadel et al. 2018; Pokharel et al. 2019; Sharma et al. 

2020; Poudel et al. 2020). However, only a few studies have examined the scenarios of future 

climate extremes, and even fewer have explored the implications for different climate-sensitive 

sectors (Rajbhandari et al. 2017; MoFE 2019; Pokharel et al. 2019; Dahal et al. 2020; Singh et 

al. 2021). These previous studies mostly looked at the mean climate indices and limited number 

of old and generic indices based on Expert Team on Climate Change Detection and Indices 

(ETCCDI). The Expert Team on Sector-specific Climate Indices (ET-SCI) introduced in 2011 

recommend a more comprehensive mean and extreme climate indices for the sector-specific 



9 

impact assessments (ET-SCI 2016). The limited number of future climate projection studies in 

Nepal are mostly based on a small number of global climate models (GCMs). However, 

regional climate models (RCMs) are better suitable for a region specific assessments as they 

are richer in spatial and temporal detail to better simulate the local phenomena and extremes 

(Flato et al. 2013; Dhaubanjar et al. 2020). 

1.3. Research objectives 

The overall objective of this research is to increase our understanding of climate change 

impacts through the detection of spatiotemporal trends of climatic disaster impacts and relevant 

climatic and socioeconomic indices in a low-income country Nepal. This study also provides 

new insights on the attribution of disaster impacts to climatic and socioeconomic changes 

through an empirical example from a low-income country, Nepal. 

The specific objectives of this research are as follows: 

i. To understand the spatiotemporal trends of the occurrence, impacts, and vulnerability 

of multiple climatic disasters in Nepal. 

ii. To assess the attribution of flood and landslide mortality to climatic hazards, exposure, 

and vulnerability in Nepal. 

iii. To evaluate future scenarios of extreme climate indices and their sectoral implications 

in the Karnali Basin of western Nepal. 

1.4. Research design and dissertation structure 

This cumulative doctoral dissertation is divided into five main chapters and appendices. 

Chapter one introduces the main research problem and motivation, state of the art in the 

research topic, and the research objectives. Chapters two, three, and four are the interconnected 

analytical chapters dealing with the first, second, and third research objectives listed in Section 

1.3. The research design of the three analytical chapters of this dissertation is schematically 

illustrated in Fig. 1.1. Chapter five is the concluding chapter. Supplementary information from 

these chapters are presented as appendices. 
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Figure 1.1: Research design of the three analytical chapters of the Ph.D. dissertation. 

Chapter two starts by investigating the spatiotemporal trends of the past 30 years (1992–2021) 

multiple climatic disaster frequency, impacts, and vulnerability in Nepal. It focuses on disaster 

mortality as a measure of disaster impact because the loss of human life is the most extreme 

impact of a disaster. Mortality data are better recorded than other impacts, making them an 

appropriate proxy for disaster impacts. The 753 local administrative units of Nepal, the smallest 

subnational units, are used as the study unit to allow analysis at a very high resolution. This 

study follows the most used loss normalization approach for vulnerability assessment in which 

disaster mortality was normalized by the exposed population as a proxy measure of human 

vulnerability to climatic disasters. The use of this normalization approach to study multiple 

disaster vulnerabilities at the smallest sub-national unit scale in a low-income country is unique 

to this study. This study further explores the relationship between disaster vulnerability and 

economic growth measured in terms of per capita income (PCI). The findings of chapter two 

have been published in Regional Environmental Change journal as Chapagain et al. (2022). 

Chapter three investigates the attribution of disaster mortality to climatic hazards, exposure, 

and vulnerability using a regression-based approach. Among the eight types of climatic 

disasters studied in chapter two, floods and landslides were selected for this attribution study 

because they are the deadliest climatic disasters in Nepal, accounting for 70% of the total 
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climatic disaster mortality. Six mean and extreme precipitation indices were climatic hazard 

indicators, the population density was an exposure indicator, and the PCI and social 

vulnerability index (SoVI) were vulnerability indicators. Finally, regression models were 

employed to study the causality of flood and landslide mortality. This regression-based 

approach overcomes the limitations of the commonly used loss normalization approach in 

studying the attribution of disaster impacts. The findings of chapter three have been submitted 

for publication in Climate Risk Management and are currently under review. 

Chapter four presents projections for mean and extreme climate indices in western Nepal for 

the near (2021–2045), mid (2046–2070), and far future (2071–2095) for low- and high-

emission scenarios (RCP4.5 and RCP8.5, respectively) using bias-corrected ensembles of 19 

regional climate models from the COordinated Regional Downscaling EXperiment 

(CORDEX) for South Asia. Furthermore, the potential implications of the projected climate 

extremes in six key climate-sensitive sectors in the region were analyzed based on expert 

interviews and a literature review. The most substantial rise in extreme precipitation events, 

climatic disaster frequency, and mortality in the historical period was observed in western 

Nepal compared with other regions. Hence, the Karnali River Basin of western Nepal was 

selected for the future scenario study. The findings of this chapter have been published in 

Climatic Change as Chapagain et al. (2021). 

Finally, the key results and conclusions from the three analytical chapters are synthesized in 

chapter five. Furthermore, the study findings are discussed in the global, national, and local 

policy context. This chapter also addresses future research perspectives. 
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2. Chapter Two: Spatio-Temporal Trends of Climatic Disaster 

Impacts and Vulnerability in Nepal 

This chapter has been published as 

Chapagain, D., Bharati, L., & Borgemeister, C. (2022). Declining vulnerability but rising 

impacts: the trends of climatic disasters in Nepal. Regional Environmental Change, 

22(2), 55. https://doi.org/10.1007/s10113-022-01903-5 

 

Abstract 

The impacts of climatic disasters have been rising globally. Several studies argue that this 

upward trend is due to rapid growth in the population and wealth exposed to disasters. Others 

argue that rising extreme weather events due to anthropogenic climate change are responsible 

for the increase. Hence, the causes of the increase in disaster impacts remain elusive. Disaster 

impacts relative to income are higher in low-income countries, but existing studies are mostly 

from developed countries or at the cross-country level. Here we assess the spatio-temporal 

trends of climatic disaster impacts and vulnerability and their attribution to climatic and 

socioeconomic factors at the subnational scale in a low-income country, using Nepal as a case 

study. Loss of life is the most extreme consequence of disasters. Therefore, we employed 

human mortality as a measure of disaster impacts, and mortality normalized by exposed 

population as a measure of human vulnerability. We found that climatic disaster frequency and 

mortality increased in Nepal from 1992 to 2021. However, vulnerability decreased, most likely 

due to economic growth and progress in disaster risk reduction and climate change adaptation. 

Disaster mortality is positively correlated with disaster frequency and negatively correlated 

with per capita income but is not correlated with the exposed population. Hence, population 

growth may not have caused the rise in disaster mortality in Nepal. The strong rise in disaster 

incidence, potentially due to climate change, has overcome the effect of decreasing 

vulnerability and caused the rise in disaster mortality. 

 

Keywords: Climatic disasters, Mortality, Vulnerability, Loss-normalization, Attribution, 

Nepal  

https://doi.org/10.1007/s10113-022-01903-5


13 

2.1. Introduction 

Loss of life and property due to climatic disasters is increasing globally (Hoeppe 2016; 

Formetta and Feyen 2019). As a direct result of over 11,000 extreme weather events, more than 

475,000 people died worldwide, and economic losses of USD 2.56 trillion (in purchasing 

power parity) were incurred from 2000 to 2019 (Eckstein et al. 2021). Disaster-induced fatality 

and economic losses relative to a country’s gross domestic product (GDP) are higher in low-

income countries (UNDRR 2019; Formetta and Feyen 2019). For example, 90% of disaster 

deaths during the past two decades have occurred in low- and middle-income countries 

(UNISDR 2018). An increase in weather and climate extremes has also been observed since 

about 1950 due to anthropogenic climate change (IPCC 2012, 2021). This is often equated with 

the growing impact of climatic disasters (Huggel et al. 2013; Bouwer 2019; IPCC 2021). 

However, the detection and attribution of the spatial and temporal trend of climatic disaster 

impacts remain elusive. 

A growing body of research has analyzed the historical trends of climatic disaster impacts and 

their causes, but the findings are varied and contradictory. One line of argument is that the 

upward trend in climatic disaster impacts so far is due to the rapid growth in population and 

wealth exposed to the hazards, and the role of the increase in climatic hazards is not evident 

(Visser et al. 2014; Bouwer 2019; McAneney et al. 2019; Pielke 2021). This argument is valid 

only if there have not been any disaster preparedness and adaptation efforts so far or if such 

efforts have been completely unsuccessful in reducing vulnerability (Nicholls 2011). 

Otherwise, the exposure-normalized impacts in the absence of climate change effects should 

exhibit a decreasing trend, since there has been progress in weather forecasting and disaster 

preparedness worldwide to reduce vulnerability (Nicholls 2011; Neumayer and Barthel 2011). 

Several studies have observed a declining trend in exposure-normalized disaster impacts, 

which is associated with disaster vulnerability (Jongman et al. 2015; Tanoue et al. 2016; 

Formetta and Feyen 2019). Such vulnerability reduction could be due to economic growth, 

disaster risk reduction (DRR), and climate change adaptation, which could have masked the 

effect of an increase in climatic hazards. If the vulnerability is controlled, the effect of climatic 

hazards is much greater for explaining the increasing trend of disaster impacts (Estrada et al. 

2015; Forzieri et al. 2017). Some studies have observed a monotonic decrease in vulnerability 

with economic growth (Jongman et al. 2015; Wu et al. 2019; Formetta and Feyen 2019), 

whereas others have claimed an inverted U-shaped trend, indicating an initial increase in 
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vulnerability before it decreases (Kellenberg and Mobarak 2008; Zhou et al. 2014; Tanoue et 

al. 2016). 

The findings on trends in disaster impacts are either from global cross-country studies or from 

developed countries (Bouwer 2019; Pielke 2021). Global studies are generally based on 

nationally aggregated data, and the analyses are done at the low spatial resolution, such as by 

country clusters (low- and high-income countries) or by continents. However, climatic 

disasters most often are local phenomena, and their impact and vulnerability are highly context 

specific. Therefore, such cross-country analyses cannot capture the true spatial and temporal 

dynamics of disaster impacts, vulnerability, and relationship with their drivers in any particular 

location (Rubin 2014; Wu et al. 2019). Low-income countries are poorly represented in such 

analyses, and in particular, there is a lack of information at the subnational scale for vulnerable 

countries (James et al. 2019). Such a knowledge gap significantly hinders the achievement of 

the goals of the Sendai Framework for Disaster Risk Reduction (SFDRR); Sustainable 

Development Goals (SDGs) 11 and 13, along with others; and the global adaptation goal of the 

Paris Agreement. 

A country-specific study can explore the association of disaster impacts with their drivers by 

controlling the governance, institutional, and political variables, which is often not feasible in 

cross-national studies (Rubin 2014). Such an analysis of observed disaster impacts is important 

to identify high-impact and vulnerable areas, plan and implement DRR and climate change 

adaptation measures, monitor the effectiveness of these measures, and study the attribution of 

impacts to climate change (Koç and Thieken 2018). Therefore, the objectives of our study were 

to map the high-impact and vulnerable areas of climatic disasters in Nepal; to understand the 

temporal trends in the occurrence, impact, and vulnerability of climatic disasters; and to 

provide empirical evidence for the causes of trends in the impact of climatic disasters at the 

subnational scale in a low-income country. 

Nepal is among the top 10 countries worldwide most affected by climatic disasters in the past 

two decades with 0.82 fatalities per 100,000 inhabitants and 0.39% losses per unit GDP 

(Eckstein et al. 2021). Extreme precipitation events, such as the numbers of heavy precipitation 

days and consecutive wet days, are increasing in many parts of the country, especially in the 

western half (Karki et al. 2017; Chapagain et al. 2021), and warm days and nights are occurring 

more frequently across the country (DHM 2017). Previous studies have observed increasing 

trends in the frequency of climatic disasters and mortality from climatic disasters in Nepal 
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(Petley et al. 2007; Aryal 2012; Elalem and Pal 2015; Aksha et al. 2018; Adhikari and Tian 

2021; MoFE 2021). However, the underlying causes of growing disaster mortality and its 

attribution to climatic and socioeconomic change remain unexplored. Previous studies do not 

provide information on disaster impacts after controlling for exposure or the relationship 

between vulnerability and economic growth. Most previous spatial analyses were done at the 

district level, which is no longer a relevant administrative unit in Nepal after the federalization 

and administrative restructuring in 2015. Similarly, the districts do not provide a sufficiently 

fine resolution to account for the huge geographic and socioeconomic heterogeneity in Nepal. 

We conducted this study in Nepal for the period 1992 to 2021 at the level of the new local 

administrative units. Our first research question was what are the spatial and temporal trends 

in the frequency and mortality of climatic disasters in Nepal? We focused on human mortality 

as a measure of climatic disaster impact. Human mortality is a good measure of non-monetary 

disaster impact since death is the most extreme consequence of disasters (Rubin 2014). The 

second question was, what are the spatial and temporal trends in human vulnerability to 

climatic disasters in Nepal? Among various approaches of vulnerability assessment, we 

followed the most widely used loss normalization approach (Jongman et al. 2015; Tanoue et 

al. 2016; James et al. 2019; Wu et al. 2019; Formetta and Feyen 2019; Pielke 2021). We 

normalized disaster mortality by the exposed population as a proxy measure of human 

vulnerability to climatic disasters. We further explored the relationship of disaster vulnerability 

with economic growth measured in terms of per capita income. Our final research question was 

what are the attributions of trends in mortality from climatic disasters to climatic and 

socioeconomic changes? We applied regression analyses to study the attribution of disaster 

mortality to disaster frequency, the exposed population, and per capita income as proxy 

indicators of climatic hazard, exposure, and vulnerability, respectively. 

2.2. Methodology 

2.2.1. Study location, units, and period 

Nepal is a landlocked country located in South Asia between India and China. It has a total 

area of 147,516 km2 and a population of slightly below 30 million (CBS 2022). This 

mountainous country is divided into five physiographic regions: Tarai, Siwalik, Hills, Middle 

Mountains, and High Mountains (MoFE 2021). Each region has distinct geographic and 

climatic characteristics. Within a distance of about 200 km from south to north, the altitude 
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increases from 70 meters above sea level (m.a.s.l.) to 8849 m.a.s.l. at Mount Everest, the 

world’s highest peak (DOS 2021). The country is divided into 7 provinces and 753 local 

administrative units in the new federal system in 2015 (see Fig. 2.1) (MoFAGA 2019). The 

urban locations consist of six metropolitan cities, 11 sub-metropolitan cities, and 276 

municipalities, and the rural locations consist of 460 rural municipalities. These local units are 

the smallest subnational administrative units in Nepal. Hence, we selected them as the study 

unit to allow for a very fine resolution of the analysis. The results at the local scale are highly 

policy relevant and can be easily aggregated into the district, province, and national scale as 

well as other analytical dimensions such as rural-urban or physiographic regions. We selected 

the most recent 30 years (1992–2021) as the study period following the World Meteorological 

Organization (WMO)-recommended minimum time frame in climate research. 

 

Figure 2.1: Map of Nepal showing local administrative units and physiographic regions. 

Inset: Nepal in the world map. 

2.2.2. Data 

DesInventar, EM-DAT, NatCatSERVICE, and Sigma are the major global disaster database 

(Huggel et al. 2015; Moriyama et al. 2018). Only the first two are open access. EM-DAT 

managed by the Centre for Research on the Epidemiology of Disasters (CRED) has stricter 
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disaster criteria (10 or more people dead; or 100 or more people affected; or the declaration of 

a state of emergency: or a call for international assistance) (EM-DAT 2022). On the contrary, 

DesInventar, hosted by the United Nations Office for Disaster Risk Reduction (UNDRR), 

records the smaller disasters as well and includes information at the local level (DesInventar 

2021). Consequently, the numbers of disasters recorded in EM-DAT are very limited compared 

to DesInventar (Huggel et al. 2015; Aksha et al. 2018; WMO 2021). Therefore, we selected 

DesInventar as the most robust and local-level disaster database for Nepal. Disaster data for 

the period 1971–2013 in Nepal are available in DesInventar. They include information on the 

type, location, and date of disasters; the numbers of people who died or were injured; and the 

estimated direct economic losses, along with other information. Since 2011, the Nepal DRR 

Portal of the Ministry of Home Affairs (MoHA) has also maintained the disaster database for 

Nepal (MoHA 2021). The two databases are developed in collaboration following a similar 

recording format. The overlapping years do not show any major inconsistency. Hence, we 

combined DesInventar and the Nepal DRR portal in this study. 

The disaster types listed in the Hydrological, Meteorological, or Climatological family of the 

DesInventar disaster classification system are the criteria for climatic disasters in this study. 

We grouped climatic disasters in Nepal into eight types: landslides, floods and heavy rains, 

thunderstorms, cold waves and frosts, windstorms, snowstorms and avalanches, heat waves, 

and hailstorms. The exact disaster type as listed in the DesInventar and Nepal DRR Portal and 

the corresponding disaster type in our grouping is provided in Table A2.1 in the appendices. 

Because of its slow onset, the impacts of drought are poorly documented in Nepal. Similarly, 

the observed incidences of fires and forest fires were largely linked to human error. Hence, 

drought, fires, and forest fires, along with other nonclimatic disasters, are excluded from this 

analysis. 

We focused on the mortality aspect of disaster impacts. Therefore, we extracted only the 

incidences of disaster that caused at least one death. The disaster database was checked for 

multiple reporting of the same incident, and duplicated events were removed. Each incidence 

of the disaster was then assigned to the respective new local administrative unit based on the 

location information available in the database. For incidences with reported locations as old 

Village Development Committees (VDCs), the new local units were identified based on the 

list of old VDCs in new local units published in the Gazette by the MoFAGA (2019). The exact 

location information was missing in around 7% of the total incidences recorded and is 
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distributed throughout the study period. These incomplete incidences were excluded from the 

analysis. 

Population data were accessed from the last four national censuses (1991, 2001,2011, and 

2021) by the Central Bureau of Statistics (CBS), Nepal. For the 1991 and 2001 censuses, the 

population of old VDCs was aggregated to the new local units using the same local units list 

as disaster data. Finally, the annual population data by new local units were generated by linear 

interpolation of the 10-year interval census data. Income data were accessed from the Nepal 

Living Standard Survey (NLSS) 1995, 2003, and 2010 conducted by the CBS. The nominal 

per capita income data were available at the NLSS 12 analytical dimensions level covering 

urban-rural, Tarai–Hills–Mountains, and east-west aspects of Nepal (see Table A2.2 in the 

appendices for the list of the 12 analytical dimensions). The income data were first adjusted 

for inflation using the World Bank’s consumer price index. The inflation-adjusted per capita 

income was then assigned to the local units that fell under the respective NLSS analytical 

dimensions. Finally, income data were linearly interpolated and extrapolated for the study 

period for each local unit. 

2.2.3. Disaster impacts and vulnerability 

The impact of climatic disaster is determined by the complex interaction of hazard, exposure, 

and vulnerability, as illustrated in Eq. (1) (IPCC 2012). In this IPCC impact and vulnerability 

framework, hazard refers to climate-related physical events or trends that may cause loss of 

life, injury, or other health impacts, as well as damage and loss of property, infrastructure, 

livelihoods, service provision, and environmental resources. A hazard turns into a disaster and 

causes impacts when it interacts with exposure (for example, the inventory of people living in 

the area hit by the hazard) and their vulnerability. Our research deals with the historically 

observed climatic events that have turned hazards into disasters and caused impacts. Therefore, 

the observed disaster events represent the hazard, people living in the disaster location 

represent the exposure and resulted human mortality represent the impacts component of this 

framework. 

 

Impact = f (Hazard, Exposure, Vulnerability)   (1) 
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Vulnerability is the characteristic of the exposed element and is a result of various historical, 

social, economic, political, cultural, institutional, and environmental conditions (IPCC 2012). 

The concepts, definitions, and measures of vulnerability have evolved rapidly as knowledge, 

needs and contexts vary. In disaster studies, vulnerability is considered the degree of impact in 

a disaster event (Mechler and Bouwer 2015). Therefore, we normalized the annual disaster 

mortality (Mdit) by the disaster-exposed population (Pdit) as a proxy measure of human 

vulnerability (Vdit), as shown in Eq. (2). Even though the adequacy of normalized loss to 

represent the vulnerability is still not clear (Huggel et al. 2015), this is the most commonly 

used approach in disaster studies (Jongman et al. 2015; Tanoue et al. 2016; James et al. 2019; 

Wu et al. 2019; Formetta and Feyen 2019; Pielke 2021). Normalized disaster mortality as a 

proxy measure of human vulnerability is based on the hypothesis that the normalized impacts 

are higher in more vulnerable regions than in less vulnerable regions (Jongman et al. 2015; 

Formetta and Feyen 2019). This measure of vulnerability controls for hazard and exposure 

elements makes it possible to compare between spatial units and the temporal scale. 

 

𝐻𝑢𝑚𝑎𝑛 𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑉𝑑𝑖𝑡) =
𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 (𝑀𝑑𝑖𝑡)

𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟−𝐸𝑥𝑝𝑜𝑠𝑒𝑑 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 (𝑃𝑑𝑖𝑡)
   (2) 

Where, d = disaster type 

i = local unit 

t = year 

Even though normalized disaster mortality is a theoretically sound proxy for vulnerability, the 

exact delineation of the area exposed to the hazard, which determines the boundaries of the 

population exposed, is challenging (Neumayer and Barthel 2011; Formetta and Feyen 2019). 

There has been some progress in estimating hazard-specific exposure, such as flood exposure 

using river and inundation models (Jongman et al. 2015; Tanoue et al. 2016). However, this 

technique is not feasible for multidisaster analysis because each incidence of disaster is unique 

(Wu et al. 2019; Formetta and Feyen 2019). Hence, previous global-scale analyses assumed an 

entire country as an exposed area (Visser et al. 2014) or made the simple assumption that each 

disaster affects an equal-sized area, such as a 100 × 100 km square (Neumayer and Barthel 

2011) or a circle with a radius of 50, 100, 200, or 400 km (Formetta and Feyen 2019), arranged 



20 

around the reported center of the disaster. Country-specific studies used subnational 

administrative units such as provinces as exposed areas (Rubin 2014; Zhou et al. 2014; Wu et 

al. 2019). In our study, local administrative units, with an average area of approximately 195 

km2, are considered the boundaries of the exposed population. Because of the lack of precise 

information on the hazard-specific exposed area, such assumptions may result in bias in the 

estimated vulnerability. However, the error is likely to be random, with no systematic under-

or overestimation of the true area exposed, and will not have a significant impact on the spatio-

temporal  trend (Neumayer and Barthel 2011; Formetta and Feyen 2019). 

2.2.4. Trend analysis 

The presence or absence of temporal trends in disaster frequency, mortality, and vulnerability 

was examined using the Mann–Kendall test (Mann 1945). This nonparametric test is an 

appropriate method of assessing the monotonic trend in disaster data because of its lack of any 

distributional assumptions and its ability to handle missing values and the influence of outliers 

(Chandler and Scott 2011). The actual slope of the monotonic trend was estimated by the 

Theil−Sen (TS) slope method (Sen 1968). The TS slope provides a measure of change over a 

unit time period (Chandler and Scott 2011). Both the Mann–Kendall test and the TS slope are 

widely used methods in climate and disaster studies (Karki et al. 2017; Wu et al. 2019). 

2.2.5. Attribution to climatic and socioeconomic changes 

Loss normalization is the commonly used approach in the literature to re-express the impacts 

in terms of vulnerability through normalization by the exposure and to investigate if there is a 

residual trend in normalized impacts that could be attributed to climate change (Huggel et al. 

2013; Estrada et al. 2015; Bouwer 2019). However, the usefulness of the normalization 

approach to establish whether there is a remaining trend that could be attributed to climate 

change is limited, because the underlying assumptions may not hold, such as the relevance of 

the normalization variables to detrend the impacts due to socioeconomic changes (Estrada et 

al. 2015). Similarly, its current inability to appropriately account for the change in vulnerability 

does not allow it to detect the role of climatic hazards in the observed impacts (Huggel et al. 

2013). Therefore, we employed a regression-based approach to study the attribution of disaster 

mortality to indicators of climatic hazards, exposure, and vulnerability. 
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In our fixed-effect regression model shown in Eq. (3), we used annual multidisaster mortality 

(Mit) in a local unit (i) during the year (t) as the dependent variable, which represents the 

impacts component of Eq. (1). Disaster frequency (Fit), exposed population (Pit), and per 

capita income (Iit) as proxy indicators of climatic hazard, exposure, and vulnerability, 

respectively, were used as the explanatory variables. The location fixed effect (ui) was 

introduced in the model to control for other individual differences between the local units and 

to provide more robust estimates of the parameters. βs are the marginal effects of explanatory 

variables, and ε is the random error term. 

 

𝑙𝑛(𝑀𝑖𝑡) = 𝛽𝐹𝑙𝑛(𝐹𝑖𝑡) + 𝛽𝑃𝑙𝑛(𝑃𝑖𝑡) + 𝛽𝐼𝑙𝑛(𝐼𝑖𝑡) + 𝑢𝑖 +  𝜀𝑖𝑡  (3) 

The relationship between the dependent and explanatory variables is most likely to be 

nonlinear. Similarly, the disaster mortality data are highly skewed and non-normally 

distributed. To capture such nonlinearity and to make the impacts data approximately normal, 

the variables were log-transformed. In such a log-log model, regression coefficients are 

interpreted as elasticity, which makes the coefficients more comparable (Wooldridge 2013). 

Data processing and statistical analysis were performed with the R programming language. 

2.3. Results 

2.3.1. Climatic disaster frequency and mortality trends in Nepal 

During the past three decades, almost 5,000 deadly climatic disasters were recorded in Nepal, 

which killed more than 10,000 people across the country. Landslides and floods were the two 

deadliest disaster types, accounting for 37% and 32% of total disaster mortality, respectively. 

Thunderstorms were the third major disaster type in terms of total mortality, followed by cold 

waves and frost, windstorms, snowstorms and avalanches, heat waves, and hailstorms (Table 

2.1). Above 800 people were missing and 5,000 were injured during the disasters. Most of the 

missing people and several injured people could have died, but this was not updated in the 

database. Similarly, several incidences of disaster could have gone unreported. Therefore, the 

recorded numbers are an underestimate of the actual occurrence and mortality of disasters in 

Nepal. 
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Table 2.1: Total climatic disaster mortality by disaster types in Nepal during 1992–2021. 

S. no. Disaster types Mortality Mortality in % of total 

1.  Landslides 3692 36.66 

2.  Floods and heavy rains 3201 31.78 

3.  Thunderstorms 1780 17.67 

4.  Cold waves and frosts 848 8.42 

5.  Windstorms 273 2.71 

6.  Snowstorms and avalanches 223 2.21 

7.  Heat waves 35 0.35 

8.  Hailstorms 20 0.20 

 TOTAL 10072 100 

The number of incidences of disaster recorded and the number of people who died due to these 

disasters has increased in Nepal since 1992 (Fig. 2.2). Both multidisaster frequency and 

mortality showed increasing trends that were significant at the 0.05 level (Table 2.2). The 

frequency of climatic disasters increased by about seven incidences per year. Similarly, disaster 

mortality has increased at the rate of about nine persons per year. Among the individual disaster 

types, cold waves and frost had the highest rate of increase in mortality, followed by 

thunderstorms, floods and heavy rains, and landslides. Windstorms, snowstorms and 

avalanches, heat waves, and hailstorms did not show any significant trends, most likely because 

of their infrequency or low mortality. 1993 was an extreme year in terms of mortality. Floods 

due to the torrential rains in July 1993 killed around 1500 people in south-central Nepal 

(Marahatta and Bhusal 2009; DesInventar 2021). Since both Mann–Kendall test and the TS 

slope are less sensitive to outliers, the trend results are not significantly different from the 

trends in the absence of this outlier event. 
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Figure 2.2: Annual number of climatic disaster incidences recorded (frequency) and number 

of people died (mortality) by disaster types in Nepal during 1992–2021. 

Disaster mortality showed a clear monthly pattern (Fig. 2.3). It was highest during the monsoon 

season (June to September), and July was the deadliest month. However, a shift has been 

observed in the monthly pattern of mortality. Mortality is decreasing in July but is increasing 

in the pre-monsoon (March to May) and late monsoon (August to October) months. The July 

mortality for the 1992-2001 decade was still higher than the latter two decades even if we 

exclude the 1993 extreme flood event. Mortality in winter (December to February), mainly due 

to cold waves, has also increased. This shift has spread disaster mortality throughout the year, 

making all other months more deadly than they used to be. 
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Figure 2.3: Monthly pattern of climatic disaster mortality in Nepal by decade. 

2.3.2. Climatic disaster vulnerability trend in Nepal 

In contrast to mortality, multidisaster vulnerability across Nepal showed a significantly 

decreasing trend at the 0.01 level (Table 2.2 and Fig. 2.4a). Multidisaster vulnerability has 

decreased at the rate of 0.15 deaths per 100 thousand people exposed per year. Vulnerability 

to cold waves and frost, floods and heavy rains, and landslides decreased significantly. 

However, vulnerability to other individual disaster types did not show significant trends. 

Vulnerability in rural Nepal has decreased at a much faster rate (0.44 deaths/100 thousand 

people exposed/year) than in urban Nepal (0.08 deaths/100 thousand people exposed/year). 

Even though vulnerability in rural regions is decreasing at a much faster rate and the urban-

rural vulnerability gap is narrowing, rural regions are still considerably more vulnerable than 

urban regions. Multidisaster vulnerability had a nonlinear negative relationship with per capita 

income (Fig. 2.4b). 
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Figure 2.4: Multidisaster vulnerability trend (3 years moving average) over time in urban 

areas, rural areas, and whole Nepal during 1992–2021. b Relationship of multidisaster 

vulnerability (in log scale) to per capita income. 

 

Table 2.2: Trend (Theil-Sen slope) and its statistical significance (based on Mann-Kendall p-

value) for disaster mortality, frequency and vulnerability for multidisaster and individual 

disaster types for Nepal. 

Disaster Type 
No. of people 

died/year 

No. of incidence 

recorded/year 

Mortality/100K 

people exposed/year 

Multidisaster (whole Nepal) 8.5 ** 7.19 *** -0.15 *** 

Multidisaster (rural areas) 5.111 *** 4.32 *** -0.44 *** 

Multidisaster (urban areas) 3.4 ** 3.25 *** -0.08 ** 

Cold waves and frost 3.873 ** 4.056 ** -0.26 * 

Thunderstorms 2.812 *** 2.875 *** 0.01 

Floods and heavy rains 2.643 ** 2.244 *** -0.1 ** 

Landslides 2.417 * 1.56 *** -0.21 * 

Windstorms 0.049 0.133 * -0.04 

Hailstorms 0 0 0.57 

Heat waves 0 0 0.03 

Snowstorms and avalanches 0 0 1.01 

Significance codes: *p<0.1; **p<0.05; ***p<0.01. 
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2.3.3. Spatial pattern of climatic disaster mortality and vulnerability in Nepal 

Climatic disaster mortality in the past three decades has been recorded all over Nepal, except 

in a few local units and protected areas (Fig. 2.5). The locations with high mortality are mainly 

concentrated in the Mid-Hills and Mountains regions in central and eastern Nepal and in the 

southern lowlands of eastern Nepal. Landslides, floods and heavy rains, and thunderstorms 

have caused the highest mortality in these regions. Western Nepal has experienced relatively 

low mortality. Disaster vulnerability is higher in the Mid-Hills and Mountains regions, mainly 

in western Nepal. The Mid-Hills and Mountains regions are vulnerable to landslides, and the 

Tarai and Mid-Hills regions are more vulnerable to floods and heavy rains. The Mountains 

region is vulnerable to snowstorms and avalanches. Eastern Nepal is highly vulnerable to 

thunderstorms. Spatial patterns of mortality and vulnerability by individual disaster types are 

presented in appendices. 
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Figure 2.5: Spatial distribution of climatic disaster impacts (total mortality) and vulnerability 

(average annual mortality per 100K people exposed) in Nepal during 1992–2021. The color 

code range in the maps is manually assigned, and the range values are shown in the legend. 

2.3.4. Attribution of disaster mortality trend 

Based on the regression analysis, disaster mortality is significantly positively correlated with 

disaster frequency and per capita income but is not significantly correlated with the exposed 
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population at the 0.01 level (Table 2.3). We selected the location fixed-effect model over the 

ordinary least-squares model (results in Table A2.3 in the appendices) after the F-test, which 

rejects the null hypothesis and confirms the existence of a significant fixed effect in our data. 

Adding the location fixed effect significantly improved the model’s goodness-of-fit (R2) to 

0.52, implying that the model could explain 52% of the variability in observed disaster 

mortality. Moreover, the variance inflation factor analysis ruled out any multicollinearity 

problem in the model. Furthermore, the location fixed-effect model excellently serves our 

purpose to control for other location-specific vulnerability parameters and explains the roles of 

climatic disaster frequency, exposed population, and per capita income in determining disaster 

mortality. 

Table 2.3: Results of the regression analysis. 

 Dependent variable: no. of people died (log) 

No. of people exposed to disasters (log) 
 

0.039 (0.095) 

No. of disaster incidences recorded (log) 1.156*** (0.028) 

Per capita income (log) -0.345*** (0.030) 

Observations 3683 

R2 0.521 

Adjusted R2 0.402 

Residual Std. Error 0.575 (df = 2948) 

F Statistic 4.373*** (df = 734; 2948) 

Note: 

*p<0.1; **p<0.05; ***p<0.01 

Estimate std. error in parentheses 

The results showed that a 1% increase in disaster frequency is expected to increase disaster 

deaths by 1.16%, while other variables are held constant. On the other hand, if per capita 

income increases by 1%, disaster deaths are expected to decrease by 0.34%. The change in the 

exposed population does not have any significant effect on disaster mortality. 

2.4. Discussion 

Our study found increasing trends in climatic disaster frequency and mortality in the past three 

decades in Nepal. However, a potential influence of gradual improvement in the recording of 

disaster incidence on the observed trends cannot be ruled out. The increase in mortality from 
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climatic disasters is in agreement with the increase in mortality from natural disasters in Nepal 

during 1971–2011 reported by Aksha et al. (2018). MoFE (2021), however, reported a decline 

in mortality from climatic disasters in recent years, and Adhikari and Tian (2021) observed no 

clear trend in mortality from landslides, even though the frequency of landslides is increasing. 

These differences are mainly due to differences in the study period and the disaster types 

studied. We found that overall multidisaster vulnerability in Nepal is decreasing, more strongly 

in the rural regions. This trend is consistent with the observed declining trend in exposure- 

normalized mortality from climatic disasters in other world regions (Jongman et al. 2015; 

Bouwer and Jonkman 2018; Wu et al. 2019; Formetta and Feyen 2019). Such vulnerability 

reduction can be attributed to improvements in socioeconomic conditions and disaster 

preparedness, mainly due to economic growth and investment in DRR and climate change 

adaptation. We found a nonlinear decreasing trend in multidisaster vulnerability with economic 

growth, as also observed by Formetta and Feyen (2019) and Wu et al. (2019). However, we 

believe that further study of the role of DRR and adaptation in decreasing vulnerability is 

necessary. In any case, the decreasing vulnerability in Nepal has counterbalanced the effect of 

the potential increase in climatic hazards on disaster impacts. Hence, we can infer from our 

results that disaster mortality could have increased much faster than the currently observed rate 

if there was no progress in vulnerability reduction. 

Several studies argue that the upward trend in climatic disaster mortality is due to the rapid 

growth of the population exposed to the hazards (Visser et al. 2014; Kreibich et al. 2019; 

McAneney et al. 2019; Pielke 2021). However, we found that the size of the exposed 

population had no significant effect on disaster mortality. Our results further suggest that the 

increase in disaster frequency (and probably intensity), potentially due to climate change, has 

overpowered the effect of decreasing vulnerability, leading to an increase in disaster mortality. 

The observed increases in the frequency and intensity of extreme weather and climatic events 

across Nepal in recent decades support this argument (Karki et al. 2017, 2019; Talchabhadel 

et al. 2018; Pokharel et al. 2019). For example, Pokharel et al. (2019) found that high-intensity 

(>300 mm/day) precipitation in the Mid-Hills region started to become more frequent since 

2000 and was not common earlier. The observed shift in monthly disaster mortality, 

particularly the increase in pre-monsoon and post-monsoon mortality, could be due to the 

change in seasonality in Nepal. A significant increase in pre-monsoon precipitation, which is 

accompanied by thunderstorms, and delayed monsoon withdrawal have been observed in Nepal 
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(Karki et al. 2017). Nonclimatic factors, such as changes in land use, haphazard construction 

of roads in steep hills and mountains, and the 2015 earthquake, could have also had a role in 

increasing landslide occurrence and mortality in Nepal (Petley et al. 2007; Adhikari and Tian 

2021). Therefore, a more robust attribution study with a larger number of climatic hazards, 

exposure, and vulnerability indicators is necessary to confirm the role of climate change. 

The Mid-Hills and Mountains regions in central and eastern Nepal have been hit the hardest by 

climatic disasters in the past three decades. This can be linked with the highest rainfall in 

eastern and central Nepal due to the dominance of the monsoon and peak annual precipitation 

between 2,000 and 3,500 m.a.s.l. due to elevation-dependent precipitation (Talchabhadel et al. 

2018). Such high precipitation could have caused the highest occurrence of landslides in the 

hills with steep slopes and floods and flash floods in the river valleys. When we controlled for 

the exposed population and only looked at disaster vulnerability, the whole Mid-Hills and 

Mountains region, especially in western Nepal, was highly vulnerable to climatic disasters. 

This vulnerability map aligns well with the social vulnerability to natural hazards mapped by 

Aksha et al. (2019) and other overall climate change vulnerability maps of Nepal (Siddiqui et 

al. 2012; Mainali and Pricope 2017; MoFE 2021). The higher vulnerability in these regions is 

mainly due to the underlying poor socioeconomic conditions, steep slopes, limited 

accessibility, and overall development deficits. The Mid-Hills and Mountains region in western 

Nepal has the highest multidimensional poverty index in Nepal (NPC 2018). 

2.5. Conclusions 

In this study, we analyzed the spatio-temporal trend of climatic disaster mortality and human 

vulnerability in Nepal using the observed disaster data for the period 1992–2021. In addition, 

we explored the attribution of the observed disaster mortality trend to climatic and 

socioeconomic change. We draw the following key conclusions from our analysis: 

• Climatic disaster frequency, as well as mortality, has increased in Nepal in the past 

three decades. The increase in mortality and shift in monthly mortality patterns have 

made the entire year more deadly than in the past.  

• The Mid-Hills and Mountains region in central and eastern Nepal has the highest 

disaster mortality. However, disaster vulnerability is higher in western Nepal due to 

poor socioeconomic conditions. 
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• Climatic disaster vulnerability has decreased in Nepal, potentially due to the economic 

growth and progress in DRR and climate change adaptation. 

• The size of the exposed population is not significantly related to disaster mortality. 

Hence, population growth may not be the major cause of the increase in disaster 

mortality in Nepal. 

• Disaster mortality is positively correlated with disaster frequency but negatively 

correlated with per capita income. 

• Despite the strong decrease in vulnerability, disaster mortality has increased in Nepal. 

This implies that the strong increase in disaster incidences, potentially due to climate 

change, has overpowered the effect of decreased vulnerability and caused the increase 

in disaster mortality. However, the potential influence of improvement in disaster 

recording and nonclimatic factors cannot be ruled out. 
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3. Chapter Three: Attribution of Climatic Disaster Impacts to 

Climatic and Socioeconomic Changes 

This chapter has been submitted for publication as 

Chapagain, D., Bharati, L., Mechler, R., KC, S., Pflug, G., & Borgemeister, C. (2023). 

Understanding the role of climate change in disaster mortality: Empirical evidence from 

the Global South. In Review on Climate Risk Management. Available at SSRN: 

https://ssrn.com/abstract=4361196 or http://dx.doi.org/10.2139/ssrn.4361196 

 

Abstract 

Climatic disaster impacts, such as loss of human life as its most severe consequence, have been 

rising globally. Several studies argue that population growth is responsible for the rise, and the 

role of climate change is not evident. While disaster mortality is highest in low-income 

countries, existing studies focus mostly on developed countries. Here we address this impact 

attribution question in the context of the Global South using disaster-specific mixed-effects 

regression models. We show that the rise in landslide and flood mortality in a low-income 

country such as Nepal between 1992-2021 is primarily attributable to increased precipitation 

extremes. An increase in one standardized unit in maximum one-day precipitation increases 

flood mortality by 33%, and heavy rain days increase landslide mortality by 45%. Similarly, a 

one-unit increase in per capita income decreases landslide and flood mortality by 30% and 

45%, respectively. Population density does not show significant effects. 

 

Keywords: climatic disaster, disaster impacts, precipitation extremes, attribution, regression 

model, Nepal 

 

https://ssrn.com/abstract=4361196
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3.1. Introduction 

On average, weather and climate-related disasters caused 27,031 deaths and USD 126.2 billion 

in economic losses annually worldwide between 2001–2020 (CRED 2021). Climatic disaster 

occurrences, as well as loss of life and property, are on the rise globally (Hoeppe 2016; 

Formetta and Feyen 2019; UNDRR 2022). These observed impacts have been increasingly 

attributed to anthropogenic climate change (Huggel et al. 2013; Bouwer 2019; IPCC 2022c). 

The latest report of the Intergovernmental Panel on Climate Change (IPCC) has confirmed that 

the frequency and intensity of weather and climate extremes have increased since pre-industrial 

times due to anthropogenic greenhouse gas (GHG) emissions (Seneviratne et al. 2021). There 

is also high confidence that even a small additional increase in global warming will intensify 

temperature and precipitation extremes. Nevertheless, empirical evidence of the rise in climate 

extremes leading to an increase in disaster impacts is still limited and focuses primarily on the 

Global North. 

Several past studies argue that the main cause of the rise in disaster impacts has been the rapid 

growth in population and assets exposed to disaster events and that the role of climate change 

is not evident (Bouwer 2011; Visser et al. 2014; McAneney et al. 2019; Pielke 2021). These 

studies, focusing on socioeconomic impact attribution, use the predominant loss normalization 

approach first to normalize the impacts by exposure and check for any residual trend in the 

normalized losses that can be attributed to climate change. Vulnerability, however, is often not 

or incompletely accounted for in this literature, which given the dynamic nature of 

vulnerability, potentially results in the false attribution of disaster impact trends (Mechler and 

Bouwer 2015; Botzen et al. 2021). A regression-based approach has been used to appropriately 

account for the change in exposure and vulnerability (Estrada et al. 2015). One of such studies 

found an upward trend in the economic losses from hurricanes in the United States that cannot 

be explained by the exposure variable. The effect of climatic hazard variables in explaining the 

trend of disaster impacts is much higher if the vulnerability is also controlled (Estrada et al. 

2015; Forzieri et al. 2017). 

During 1998-2017, 91% of global disaster mortality has occurred in low- and middle-income 

countries (UNISDR 2018). The economic losses due to disasters in these countries represent 

0.8–1% of their gross domestic product (GDP) compared to 0.1–0.3% in high- and upper-

middle-income countries (UNDRR 2022). Moreover, almost 90% of the around 1.5 billion 

people exposed to flood risk and a large proportion of the 3.6 billion people highly vulnerable 
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to climate change live in low- and middle-income countries (Rentschler and Salhab 2020; IPCC 

2022c). Therefore, a better understanding of disaster impact trends and the role of climatic 

hazards, exposure, and vulnerability in developing countries is essential for effective planning 

and implementation of climate change adaptation and disaster risk reduction (DRR) measures. 

Otherwise, achieving the goals of the Sendai Framework for Disaster Risk Reduction, the 

adaptation goal associated with the Paris Agreement, and the Sustainable Development Goals 

will be extremely difficult. Poor and vulnerable countries have been calling for burden-sharing 

mechanisms, including compensation for unavoidable loss and damage due to climate change 

(Mechler and Deubelli 2021). The recent United Nations Climate Change Conference (COP 

27) in Egypt agreed to establish a new loss and damage fund for vulnerable countries impacted 

by climatic disasters (UNFCCC 2022). However, the attribution has been the crux of the loss 

and damage debate in the global climate negotiations (Bouwer 2019; James et al. 2019). 

Most of the existing climatic disaster impact attribution studies are from the United States, 

Europe, or other developed countries (Bouwer 2019; Pielke 2021). Therefore, to address these 

scientific and policy-relevant issues in the Global South context, we present an empirical 

example of the attribution of climatic disaster mortality to indicators of climatic hazards, 

exposure, and vulnerability in a low-income country. Nepal was among the top ten countries 

worldwide most affected by climatic disasters in the past two decades (Eckstein et al. 2021). 

Over 10,000 people have lost their lives to climatic disasters in the past 30 years, with 

landslides and floods together accounting for almost 70% of the total climatic disaster mortality 

in Nepal (Chapagain et al. 2022). The INFORM Risk Index 2022 also categorized it as a high-

disaster risk country, and a significant increase in disaster risk and vulnerability by 2050 is 

projected for Nepal, due to climatic, demographic, and socioeconomic changes (Inter-Agency 

Standing Committee and the European Commission 2022). Nepal is thus a useful case study 

of climatic disaster risk in low-income and highly disaster-vulnerable countries. 

In our study, we focus on the loss of human life as a measure of disaster impact, as this is the 

most extreme impact of a disaster. Mortality data for Nepal (and in general) are also better 

recorded than other impacts, making it an appropriate proxy for attribution studies. We first 

studied the spatio-temporal trends of the past 30 years (1992–2021) in flood and landslide 

mortality in Nepal. Second, we studied the spatio-temporal trends of six mean and extreme 

precipitation indices in a climate change context. Third, we employed a disaster-specific 

mixed-effects zero-inflated negative Binomial (ZINB) regression model to study the attribution 
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of disaster mortality to climatic hazards, exposure, and vulnerability. We used mean and 

extreme precipitation indices as indicators of climatic hazards, population density as an 

indicator of exposure, and per capita income (PCI) and the social vulnerability index (SoVI) as 

indicators of vulnerability. Finally, we synthesized the observed spatio-temporal trends of 

disaster mortality with climatic hazards, exposure, and vulnerability indicators, together with 

their statistical association, to draw a conclusion on the attribution of disaster mortality. 

3.2. Methodology 

3.2.1. Study location 

Nepal is a landlocked, mountainous country in South Asia located between 26° 22′ to 30° 27′ 

N and 80° 04′ to 88° 12′ E (Fig. 3.1). It has a total area of 147,516 km2 and is divided into five 

physiographic regions, namely Tarai, Siwalik, Hills, Middle Mountains, and High Mountains 

(MoFE 2021). The Tarai is a low-lying flatland in the south with a lowest point of 60 m.a.s.l. 

and a tropical climate (Karki et al. 2015). Within the country’s 193 km width from south to 

north, the altitude increases up to 8,849 m.a.s.l. at Mount Everest with a permanently snow-

covered polar climate in the High Mountains (DOS 2021). Such a dramatic variation in altitude 

within such a small area reflects the country’s topographic and climatic heterogeneity, leading 

to highly localized extreme precipitation and disaster events (Pokharel et al. 2019). Hills and 

mountains are prone to landslides due to the steep slopes, whereas the deep river valleys and 

the low-lying flat lands are at risk of floods and flash floods. 

Administratively, Nepal is divided into seven provinces and 753 local administrative units 

(MoFAGA 2019). The local administrative units are the smallest sub-national units and are 

categorized into metropolitan cities, sub-metropolitan cities, municipalities as urban units, and 

rural municipalities as rural units. According to the 2021 census, the country's total population 

is almost 30 million, of which 66% live in urban units and 34% in rural units (CBS 2022). 

Nepal is one of the lowest-income countries in the world, with only 1,222 USD per capita GDP 

(World Bank 2022). 
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Figure 3.1: Map showing Nepal’s local administrative units, provinces, and physiographic 

regions. Inset: Nepal on the world map. 

3.2.2. Data source and processing 

3.2.2.1. Climatic disaster mortality 

The Emergency Events Database (EM-DAT), NatCatSERVICE, Sigma, Geocoded Disasters 

Dataset (GDIS), and DesInventar are some of the commonly used global disaster databases. Of 

all of them, DesInventar is presently the most robust, long-term, local scale, and open-access 

disaster database for Nepal (Aksha et al. 2018; Chapagain et al. 2022). It is a global disaster 

information management system of the United Nations Office for Disaster Risk Reduction 

(UNDRR) and used to keep inventories of the occurrence and impact of disasters (DesInventar 

2021). Currently, disaster data for 1971–2013 are available in DesInventar for Nepal. In recent 

years, the Nepal DRR Portal of the Ministry of Home Affairs (MoHA) has regularly updated 

all disaster events in the country (MoHA 2021). Both databases follow a similar recording 

format and provide information on the type, date, location, and impacts of individual disasters. 

We used disaster data from DesInventar for 1992–2013 and the Nepal DRR portal for 2014–
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2021 to develop 30-year panel data at the local administrative unit level for floods and 

landslides. 

3.2.2.2. Climatic hazard indicators 

Around 400 surface weather stations of the Department of Hydrology and Meteorology (DHM) 

across Nepal keep records of daily temperature, precipitation, and other climatic parameters 

(DHM 2017). We identified 232 stations across Nepal that provided daily precipitation records 

for the study period 1992–2021. The observed daily precipitation data from the DHM stations 

were used to estimate mean precipitation indices and extreme precipitation duration, frequency, 

and intensity-related indices at an annual scale using Climpact software (ET-SCI 2016). For 

this study, we selected six precipitation indices (Table 3.1) from the list of Expert Team on 

Sector-specific Climate Indices (ET-SCI) that are most relevant to floods and landslides in 

Nepal (ET-SCI 2016; Chapagain et al. 2021). Selected precipitation indices estimated by 

observational stations were used for the spatio-temporal trend analysis in section 3.3.2. 

Table 3.1: List of selected precipitation indices (ET-SCI 2016). 

Index type ID Name Definition Unit 

Mean 

precipitation 

PRCPTOT 
Total annual 

precipitation 

Sum of daily precipitation ≥ 

1.0 mm 
mm 

SDII 
Simple daily 

intensity index 

PRCPTOT divided by the 

number of wet days 
mm/day 

Extreme 

precipitation 

duration 

CWD 
Consecutive wet 

days 

Maximum annual number of 

consecutive wet days (when 

precipitation is ≥1.0 mm) 

days 

Extreme 

precipitation 

frequency 

R10mm 
Number of heavy 

rain days 

Annual number of days when 

precipitation is ≥10 mm 
days 

Extreme 

precipitation 

intensity 

R95pTOT 
Contribution from 

very wet days 

Fraction of total wet-day 

precipitation that comes from 

very wet days 

% 

RX1day 
Max 1-day 

precipitation 

Maximum annual 1-day 

precipitation total 
mm 
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Furthermore, we interpolated station-based daily precipitation data to gridded data for the 

whole country using a Random Forest–based merging procedure (Zambrano-Bigiarini et al. 

2020). This procedure combines information from ground-based observations, satellite-based 

precipitation products, and topographic features to improve the accuracy of spatial 

interpolation of precipitation data in data-scarce regions (Baez-Villanueva et al. 2020). We 

used gridded daily precipitation data from the Multi-Source Weighted-Ensemble Precipitation 

(MSWEP) (Beck et al. 2019) as a satellite-based precipitation product covariate. Similarly, the 

ASTER Global Digital Elevation Model (DEM) V003 (NASA/METI/AIST/Japan 

Spacesystems and U.S./Japan ASTER Science Team 2019) was used for topographic feature 

covariates. The one arc-second resolution DEM was aggregated to a coarser 0.025° resolution 

grid using bilinear interpolation. MSWEP data were disaggregated from 0.1° to 0.025° 

resolution grids by assigning the same value from the larger original cell. Similar to the station 

data, the merged gridded daily precipitation data were then used to estimate precipitation 

indices using Climpact. Finally, average indices values for each local administrative unit were 

extracted from the gridded data. The precipitation indices by local units were then used for the 

regression analysis in sections 3.3.3 and 3.3.4 as indicators of climatic hazards. 

3.2.2.3. Exposure and vulnerability indicators 

We accessed population data from the periodic national censuses (1991, 2001, 2011, and 2021) 

from the Nepal’s Central Bureau of Statistics (CBS). The per capita income data were accessed 

from the national scale periodic Nepal Living Standards Survey (NLSS) conducted by the CBS. 

The data were then interpolated and extrapolated to develop 30-year panel data at the local 

administrative unit level of Nepal (see Chapagain et al. (2022) for further explanation). The 

population density was then estimated from the population and local unit’s area. 

As an alternate proxy of vulnerability, we used the Social Vulnerability Index (SoVI) to the 

Natural Hazards data (Aksha et al. 2019). This study applied a principal component analysis to 

estimate the SoVI for Nepal using 39 variables from seven dimensions of vulnerability (Renters 

and Occupation, Poverty and Poor Infrastructure, Favorable Social Conditions, Migration and 

Gender, Ethnicity, Medical Services, and Education). The SoVI uses cross-sectional data based 

on the 2011 national census. Therefore, we also aggregated disaster mortality, climatic hazards, 

and exposure indicator data for the period 2007-2015 for the regression analysis with SoVI 

data in section 3.3.4. 
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3.2.3. Trend analysis 

The temporal trends of disaster mortality, frequency, and precipitation indices were estimated 

using the nonparametric Mann-Kendall test (Mann 1945) and Theil-Sen slope (Sen 1968). The 

Mann-Kendall p-value assesses the presence or absence of a monotonic trend in data, and the 

Theil-Sen slope estimates the trend slope. Both tests are widely used methods in disaster trend 

analysis (Karki et al. 2017; Wu et al. 2019; Chapagain et al. 2022) because of their ability to 

handle missing data and the influence of outliers, as well as the absence of any distributional 

assumptions (Chandler and Scott 2011). 

3.2.4. Regression model fitting 

Climatic disaster impacts occur due to the complex interaction of hazards, exposure, and 

vulnerability (IPCC 2012; Oppenheimer et al. 2014). In this risk framework, climatic hazard 

usually refers to climatic physical events or trends or to their physical impacts (IPCC 2014b). 

A climatic hazard becomes a disaster when it interacts with exposure and vulnerability and 

causes impacts. Exposure, for example, relates to the people living in places and settings that 

could be adversely affected; vulnerability is their propensity or predisposition to be adversely 

affected (IPCC 2014b). We focused on observed human mortality as a measure of disaster 

impacts and developed a regression-based approach to study flood and landslide mortality 

attribution to climatic hazards, exposure, and vulnerability indicators. 

As floods and landslides are precipitation-related disasters, we used six mean and extreme 

precipitation indices (duration, frequency, and intensity-based) defined in Table 3.1 as 

indicators of climatic hazards. As we are looking at the human aspect of disaster impacts, we 

used population density as an indicator of exposure. Vulnerability is a characteristic generated 

by multiple factors such as social, economic, political, cultural, institutional, and environmental 

conditions (IPCC 2012). To this effect, as in many other disaster studies (Zhou et al. 2014; 

Jongman et al. 2015; Tanoue et al. 2016; Wu et al. 2019; Formetta and Feyen 2019), we used 

per capita income as a proxy of vulnerability. We also used the composite SoVI as a measure 

of social vulnerability to climatic disasters. Finally, to control for the effects of all other 

location-specific unobserved variables on disaster mortality, we added location (local 

administrative unit) random effects and employed mixed-effects regression models (Park 

2011). The regression models were run separately for flood and landslide mortality. 
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We started out by fitting the regression models with the ordinary least squares (OLS) mixed-

effects linear model. However, disaster mortality, which is right-skewed count data, has many 

small and occasionally large values. Therefore, count data models such as Poisson, negative 

Binomial, and zero-inflated models are better suited for disaster mortality than a linear model 

(Roback and Legler 2021). The mortality data also suffered from the overdispersion issue, that 

is, variance is greater than the mean, and violated the equidispersion assumption for standard 

Poisson regression (Table A3.1 in appendices. Hence, we tested the negative Binomial model 

to account for overdispersion in the dependent variable (Roback and Legler 2021). The disaster 

mortality data also includes many observations where there was zero mortality. To take excess 

zero into account, we fitted the zero-inflated regression models. 

The zero-inflated model adds an additional parameter to the classical counting models (Poisson 

or the negative Binomial) to accommodate the fact that often the probability of zero counts is 

higher than predicted by these counting models data (Kim et al. 2019; Roback and Legler 

2021). In the case of disaster mortality, a zero count may be structural (in this year no disaster 

was observed) or actual (if there was a disaster, but no fatalities). In this two-part model, the 

zero-inflated model part first fits the logistic regression to predict the number of structural and 

actual zeros. The count model part separates the excessive zeros from the structural origin and 

runs the count data model with a log-linear link function. Therefore, the zero-inflated model 

give a better fit than the non-inflated models. The results of mixed effects linear, Poisson, 

negative Binomial, zero-inflated Poisson, and zero-inflated negative Binomial (ZINB) models 

are compared to identify the most robust model. These model results are presented in Table 

A3.2 in appendices. Descriptive statistics (such as mean, variance, and dispersion), model 

diagnostics, and goodness-of-fit measures, mainly the Akaike Information Criterion (AIC), 

Bayesian information criterion (BIC), R2, and Interclass Correlation Coefficient (ICC) were 

explored in the model selection process. We mainly observed the consistent direction of the 

association and its significance between dependent and explanatory variables across the 

models. However, the R2 value is highest (0.47), and AIC and BIC are lowest in the case of the 

ZINB model. Based on these results, we identified the mixed effects ZINB model as the most 

appropriate regression model for disaster mortality. The count model part of the regression 

model with log link is summarized below in equation 1. 

 

log (𝑀𝑖,𝑡) =  +  𝛽ℎ𝐻𝑖,𝑡 + 𝛽𝑒𝐸𝑖,𝑡 + 𝛽𝑣𝑉𝑖,𝑡 + 𝑢𝑖 + 𝑣𝑖,𝑡  (1) 
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The dependent variable 𝑀𝑖,𝑡 is the disaster-specific total annual mortality in local 

administrative unit 𝑖 in year 𝑡. The explanatory variable 𝐻𝑖,𝑡 is the corresponding climatic 

hazard indicator, that is, the observed mean and extreme precipitation indices defined in Table 

3.1. 𝐸𝑖,𝑡 is the corresponding population density to represent disaster exposure. 𝑉𝑖,𝑡 is the 

vulnerability component, and we used PCI and SoVI as vulnerability proxies. The intercept  

is the grand mean of location-specific intercepts. 𝛽ℎ, 𝛽𝑒, and 𝛽𝑣 are the marginal effects of 

hazards, exposure, and vulnerability indicators. 𝑢𝑖 is the random effect variable to 

accommodate local administrative unit specific heterogeneity. 𝑣𝑖,𝑡 is the standard random error 

term. 

3.3. Results 

3.3.1. Spatiotemporal trends of climatic disaster mortality in Nepal 

More than 10,000 people have lost their lives due to climatic disasters in Nepal in the past three 

decades. Landslides and floods killed 3,692 and 3,201 people, respectively, which together 

account for 70% of the total climatic disaster mortality in the country. Landslide mortality was 

highest in mid-hills and mountains in eastern (Province 1) and central Nepal (Bagmati and 

Gandaki). Flood mortality was highest in central Nepal (Madhesh, Bagmati, and Gandaki) (Fig. 

3.2). Western Nepal (Lumbini, Karnali, and Sudurpashchim) has experienced relatively less 

disaster mortality in the past. 



42 

 

Figure 3.2: Spatial trends of landslide and flood mortality in Nepal during 1992–2021. 

Temporal trends show that disaster mortality is by and large increasing in western Nepal, which 

has been a historically less impacted region. Both the frequency and mortality of the floods and 
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landslides showed significantly increasing trends (at p = 0.05 level) during the past three 

decades in Lumbini, Karnali, and Sudurpashchim provinces. Most of the trends for Gandaki, 

Bagmati, Madhesh, and Province 1 in central and eastern Nepal were positive but not 

significant (Table 3.2). Flood frequency in Province 1 and landslide frequency in Bagmati and 

Gandaki showed statistically significant increasing trends. 

Table 3.2: Trends in flood and landslide mortality (number of fatalities/year) and frequency 

(number of incidences recorded/year) in Nepal by provinces. Trend slope based on Theil-Sen 

slope and significance based on Mann-Kendall p-value. 

Province 
Flood Landslide 

Mortality Frequency Mortality Frequency 

1. Province 1 0.211 0.4 *** 0 0.059 

2. Madhesh 0.167 0.1 0 0 

3. Bagmati 0 0.118 0.222 0.3 ** 

4. Gandaki 0.182 0.1 * 0.375 0.273 ** 

5. Lumbini 0.524 *** 0.4 *** 0.4 ** 0.25 *** 

6. Karnali 0.167 ** 0.105 *** 0.579 *** 0.286 *** 

7. Sudurpashchim 0.24 ** 0.2 ** 0.318 ** 0.25 *** 

Significance codes: *p < 0.1; **p < 0.05; ***p < 0.01 

3.3.2. Spatio-temporal trends of mean and extreme precipitation indices in Nepal 

Mean and extreme precipitation indices showed mixed trends across the country in the past 30 

years, with mainly rising trends in western but decreasing trends in central Nepal (Fig. 3.3). 

Rising trends in total annual precipitation (PRCPTOT) were observed in 75% of the stations in 

Karnali (significant in 13% of the stations), and 57% in Sudurpashchim province (significant 

in 5%). Consecutive wet days (CWD), a duration-based extreme precipitation index, showed 

rising trends in 50% of the stations in Karnali (significant in 6% of the stations) and 42% in 

Sudurpashchim (significant in 11%). The annual number of heavy rain days (R10mm), an 

extreme precipitation frequency index, showed increasing trends in 53% of stations in 

Sudurpashchim (significant in 5% of the stations). Maximum 1-day precipitation (RX1day), 

an indicator of extreme precipitation intensity, showed increasing trends in 68% of the stations 

in Sudurpashchim (significant in 11% of the stations), and 58% in Lumbini (significant in 

15%). Contribution from very wet days (R95pTOT), another intensity-based index, also 
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showed an increasing trend in 58% of the stations in both Sudurpashchim and Lumbini 

(significant in 5% and 4% of the stations, respectively). 

In central Nepal, precipitation indices mainly showed decreasing trends. PRCPTOT and simple 

daily intensity index (SDII) decreased in 83% of the stations in Bagmati (significant in 21% 

and 24% of the stations). Similarly, CWD showed decreasing trends in 60% of the stations in 

Bagmati (significant in 24% of the stations) and R10mm in 86% of stations (significant in 29% 

of the stations). RX1day and R95pTOT showed decreasing trends in 76% of the stations 

(significant in 10%) and 69% of the stations in Bagmati (significant in 14%), respectively. A 

similar pattern was observed in Gandaki province, with decreasing trends for R10mm and 

R95pTOT in 53% and 58% of the stations (significant in 18% and 13% of the stations, 

respectively). 

 

Figure 3.3: Temporal trends of mean and extreme precipitation indices during 1992–2021 by 

observational stations across Nepal. Significance at p = 0.05 level. 

3.3.3. Attribution of disaster mortality to climatic hazards 

All the mean and extreme precipitation indices studied showed a significant positive 

association with landslide mortality, and most of the indices showed also a significant positive 

association with flood mortality (Fig. 3.4). The results of selected regression models are 

presented in Table 3.3 and all regression models are presented in Tables A3.3 and A3.4 in the 

appendices. Regression results revealed that a one-unit increase (one standard deviation from 
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the mean) in PRCPTOT increases landslide mortality by 41% and flood mortality by 16% 

(ceteris paribus). The rise in extreme precipitation intensity proved to have the most potent 

effect on flood mortality. A one-unit increase in RX1day and R95pTOT increase flood 

mortality by 33% and 31%, respectively. The effects of extreme precipitation frequency and 

duration are highest in landslide mortality. Landslide mortality increased by 45% and 34%, 

respectively, with a one-unit increase in R10mm and CWD. 

 

Figure 3.4: Effects of mean and extreme precipitation indices (in standardized Z-score) on 

flood and landslide mortality shown as Incidence Rate Ratios–IRR (points), and its 95% 

confidence interval - CI (lines). IRRs are estimated from the mixed effects ZINB models and 

equal to the exp (𝛽ℎ) in equation 1. Statistical significance at the 0.05 level (see appendices 

Tables A3.3 and A3.4 for the complete regression results). 

The differences in effect size and significance of extreme precipitation indices with flood and 

landslide mortality could also be due to the nature of the disaster types. As landslides are largely 

local phenomena, the local unit’s boundary appears sufficient to capture the precipitation 

events associated with the landslides. However, floods are not only determined by local 

precipitation events but also by upstream precipitation. Our regression model does not capture 

the precipitation events that could have been observed in the local units upstream that then 

caused flooding in the local units downstream. 
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Table 3.3: Results of mixed effects ZINB models (count model part). Disaster mortality as a 

dependent variable and indicators of exposure, vulnerability, and hazard (in standardized Z-

score) as explanatory variables. 

 Flood mortality Landslide mortality 

Predictors IRR 95% CI p IRR 95% CI p 

Intercept 0.42 0.33 – 0.54 <0.001 0.61 0.39 – 0.96 0.033 

Pop. density 1.03 0.91 – 1.17 0.637 0.96 0.87 – 1.06 0.432 

Per capita income 0.55 0.48 – 0.63 <0.001 0.70 0.62 – 0.78 <0.001 

RX1day 1.33 1.21 – 1.46 <0.001    

R10mm    1.45 1.28 – 1.66 <0.001 

Observations 15420 13020 

Marginal R2 0.303 0.466 

3.3.4. Attribution of disaster mortality to vulnerability and exposure 

Per capita income as a proxy indicator of vulnerability showed a significant negative 

association with disaster mortality. A one-unit increase in per capita income decreases 

landslide mortality by 30% and flood mortality by 45% (Table 3.3). The social vulnerability 

index showed a positive association with disaster mortality but was significant only with 

landslide mortality (Table 3.4). A one-unit increase in SoVI increases landslide mortality by 

22%. The population density as a proxy of exposure does not show any significant association 

with disaster mortality. 

Table 3.4: Results of negative Binomial models. Disaster mortality as a dependent variable 

and indicators of exposure, vulnerability, and hazard (in standardized Z-score) as explanatory 

variables. 

 Flood mortality Landslide mortality 

Predictors IRR 95% CI p IRR 95% CI p 

Intercept 2.98 2.67 – 3.33 <0.001 3.80 3.40 – 4.25 <0.001 

Pop. density 0.80 0.67 – 0.92 0.008 0.95 0.82 – 1.09 0.443 

Social Vulnerability Index 1.08 0.97 – 1.21 0.154 1.22 1.08 – 1.38 0.001 

RX1day 1.13 1.01 – 1.26 0.036    

R10mm    1.38 1.24 – 1.54 <0.001 

Observations 271 252 

R2 Nagelkerke 0. 079 0.212 
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3.4. Discussion and Conclusion 

Landslides and floods have been the two deadliest forms of disaster in Nepal during 1992–

2021, accounting for 70% of the total climatic disaster mortality. Historically, flood and 

landslide mortality have been highest in central and eastern, and lowest in western Nepal. This 

spatial pattern of disaster mortality aligns exactly with Nepal’s mean and extreme precipitation 

pattern. Eastern and central Nepal have received higher precipitation due to the dominance of 

the Indian summer monsoon (Karki et al. 2017; Talchabhadel et al. 2018). The highest mean 

annual precipitation (> 3,500 mm) has been located mainly in and around the 83–85 

longitudinal zones in central Nepal at between 2,000–3,500 meters above sea level (m.a.s.l.) 

elevation (Talchabhadel et al. 2018). Similarly, the southern foothills of central Nepal have 

received the highest extreme precipitation, and pocket areas in the middle mountain have 

received relatively higher extreme precipitation (Karki et al. 2017; Talchabhadel et al. 2018). 

Western Nepal has experienced less precipitation than the country on average, and its disaster 

mortality has also been the lowest in this country. 

As for the temporal trends of disaster mortality and frequency, these are increasing significantly 

in western Nepal but do not show significant trends in the central and eastern part of the 

country. Almost similar temporal trends are observed in the mean and extreme precipitation 

indices. Most of the stations in western Nepal have shown a rise in mean and extreme 

precipitation, although the trends are significant only in a relatively small proportion of the 

stations. Rising precipitation extremes in western Nepal have also been reported in previous 

studies (Karki et al. 2017; Bohlinger and Sorteberg 2018; Talchabhadel et al. 2018; Pokharel 

et al. 2019). There is high confidence that such a rise in precipitation extremes at the global 

and regional scales is a direct consequence of increased radiative forcing and the increased 

water-holding capacity of the atmosphere due to global warming (Seneviratne et al. 2021). For 

example, 1C of warming results in a 7% increase in atmospheric water vapor content, leading 

to a robust increase in precipitation extremes such as RX1day (Seneviratne et al. 2021). The 

change in precipitation patterns and the rise in extreme precipitation in the Himalayas are 

attributed to the warming Indian Ocean, alteration of the Arctic Oscillation, and intensification 

of an upper tropospheric mid-latitude shortwave due to the rise in GHGs and aerosols (Wang 

et al. 2013; Karki et al. 2017). 

Nepal’s flood and landslide mortality showed a mostly significant positive association with the 

mean precipitation and extreme precipitation duration, frequency, and intensity. The rise in 
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extreme precipitation intensity, such as maximum one-day precipitation (RX1day) and 

contribution from very wet days (R95pTOT), is mainly associated with flood mortality in 

Nepal. A one-unit increase in RX1day and R95pTOT increases flood mortality by 33% and 

31%, respectively. Most of the deadliest flooding events in recent years in Nepal, such as the 

Melamchi flood of 2021, the Terai flood of 2017, and the western Nepal flood of 2014 and 

2021, were triggered by unusually high-intensity precipitation events (ISET 2015; Bhandari et 

al. 2018; Maharjan et al. 2021). Such high-intensity precipitation events cause a sudden rise in 

peak flow, triggering floods, particularly flash floods, along the river valleys and allowing no 

time for people to escape, thus causing higher mortality. 

Landslide mortality in Nepal is strongly associated with extreme precipitation frequency 

indices, such as the annual number of heavy rain days (R10 mm), and duration indices, such 

as consecutive wet days (CWD). A one-unit increase in R10mm and CWD increases landslide 

mortality by 45% and 34%, respectively. The accumulated rain over the previous 3-, 7-, and 

10-day periods is directly associated with landslide occurrence in the hills and mountains in 

Nepal (Dahal and Hasegawa 2008; Muñoz-Torrero Manchado et al. 2021), as the continuous 

precipitation events saturate the soil water, triggering slope failure (Kirschbaum et al. 2015). 

Moreover, the highest incidences of landslides in western Nepal have been recorded when the 

wet monsoon has been preceded by a warm and dry monsoon (Muñoz-Torrero Manchado et 

al. 2021). 

As a proxy of vulnerability, per capita income showed a significant negative association with 

flood and landslide mortality. A one-unit increase in per capita income decreases landslide 

mortality by 30% and flood mortality by 45%. This may suggest that increases in income are 

associated with reduced disaster vulnerability, thus ultimately reducing disaster mortality. This 

is because people with higher income also have a higher desire for more safety measures. A 

higher income also enables people to spend more on physical and non-physical risk reduction 

measures such as better housing, early warning systems, and disaster response (Jongman et al. 

2015; Wu et al. 2019; Formetta and Feyen 2019). A significant positive association of landslide 

mortality with the social vulnerability index indicates that regions with high social vulnerability 

experience higher landslide mortality. We do not find a significant role of population density 

on landslide and flood mortality in Nepal. In the context of Nepal, this refutes the conclusion 

that the observed increase in disaster impacts is mainly due to exposure increments (Bouwer 

2011; Visser et al. 2014; McAneney et al. 2019; Pielke 2021). We argue that the mortality in 
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highly populated regions is not higher because urban areas in Nepal are relatively less 

vulnerable to climatic disasters than rural ones (Chapagain et al. 2022). Hence, the observed 

rise in flood and landslide mortality, mainly in western Nepal, is attributable primarily to the 

rise in precipitation extremes in those regions due to climate change. 

With additional global warming, extreme precipitation events will inevitably become more 

frequent and intense worldwide (Seneviratne et al. 2021). In Nepal, extreme precipitation 

events are projected to rise, with the strongest rise being in high emission scenarios 

(Rajbhandari et al. 2017; MoFE 2019; Chapagain et al. 2021). For example, the number of 

extremely wet days is projected to increase by 28% in 2016–2045 and by 60% in 2036–2065 

in the high emission scenario (RCP8.5) compared to the 1981–2010 period (MoFE 2019). Such 

a rise in precipitation extremes in Nepal and worldwide is highly likely to increase disaster 

mortality if no actions are taken to strongly reduce the vulnerability. 

Overall, climate change impacts attribution studies from the Global South are scarce, as most 

researchers think that lack of comprehensive data sets are a major constraint in carrying out 

analysis. However, due to the urgency for climate action, especially in low-income and highly 

vulnerable countries, results and analysis are much needed and cannot wait for further data 

acquisition. We demonstrated an example of using the most robust and high-resolution 

empirical data currently available for countries in the Global South. The findings are highly 

relevant in the global policy context to plan and implement adaptation and DRR measures. 

Moreover, it also highlights the need for urgent and stronger mitigation action and establishing 

mechanism to address loss and damage. This study can be replicated in other countries, regions, 

and at the global scale to further explore the role of climate change on disaster impacts in 

different parts of the world. Moreover, the statistical models developed here can be applied to 

predict future risks of climate-related disaster mortality in different climate and socioeconomic 

scenarios. Nevertheless, geocoding of the disaster locations, improved delineation of the 

disaster-specific exposure boundary, and inclusion of more indicators of explanatory variables, 

particularly the vulnerability indicators, could further improve the accuracy of our findings. 
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4. Chapter Four: Future Scenarios of Climate Extremes and their 

Implications in Key Climate Sensitive Sectors in Western 

Nepal 

This chapter has been published as 

Chapagain, D., Dhaubanjar, S., & Bharati, L. (2021). Unpacking future climate extremes and 

their sectoral implications in western Nepal. Climatic Change, 168(1–2), 8. 

https://doi.org/10.1007/s10584-021-03216-8 

 

Abstract 

Existing climate projections and impact assessments in Nepal only consider a limited number 

of generic climate indices such as means. Few studies have explored climate extremes and their 

sectoral implications. This study evaluates future scenarios of extreme climate indices from the 

list of the Expert Team on Sector-specific Climate Indices (ET-SCI) and their sectoral 

implications in the Karnali Basin in western Nepal. First, future projections of 26 climate 

indices relevant to six climate-sensitive sectors in Karnali are made for the near (2021–2045), 

mid (2046–2070), and far (2071–2095) future for low- and high-emission scenarios (RCP4.5 

and RCP8.5, respectively) using bias-corrected ensembles of 19 regional climate models from 

the COordinated Regional Downscaling EXperiment for South Asia (CORDEX-SA). Second, 

a qualitative analysis based on expert interviews and a literature review on the impact of the 

projected climate extremes on the climate-sensitive sectors is undertaken. Both the temperature 

and precipitation patterns are projected to deviate significantly from the historical reference 

already from the near future with increased occurrences of extreme events. Winter in the 

highlands is expected to become warmer and dryer. The hot and wet tropical summer in the 

lowlands will become hotter with longer warm spells and fewer cold days. Low-intensity 

precipitation events will decline, but the magnitude and frequency of extreme precipitation 

https://doi.org/10.1007/s10584-021-03216-8
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events will increase. The compounding effects of the increase in extreme temperature and 

precipitation events will have largely negative implications for the six climate-sensitive sectors 

considered here. 

Keywords: Climate extremes; ET-SCI, Climate change impacts, ClimPACT2, Karnali, Nepal 
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4.1. Introduction 

Extreme weather and climate events linked with anthropogenic climate change have become 

more frequent and intense around the world since the 1950s (IPCC 2013, 2021). Furthermore, 

the changes in extremes will be larger with projected global warming (IPCC 2021). Nepal is 

one of the most impacted countries by extreme weather events and is at high risk due to its high 

vulnerability and low readiness (ND-GAIN 2018; Eckstein et al. 2021). Climatic disaster 

incidences have been increasing in recent decades, which is also the leading cause of natural 

disaster mortality in Nepal (Aksha et al. 2018). Warmer temperatures have intensified the risk 

of vector-borne diseases and epidemics (Thakur et al. 2012; Dhimal et al. 2015). Agricultural 

productivity losses due to changing climate cause severe food insecurity and have a detrimental 

impact on the country’s overall economy (Chalise et al. 2017; Bocchiola et al. 2019). 

Therefore, a better understanding of the behavior of extreme values is necessary, particularly 

to understand its sectoral implications and plan for adaptation (ETCCDI 2009). 

The characterization of climate extremes and their evolution over time can be made using 

standardized extreme indices (ETCCDI 2009). In 1999, the Expert Team on Climate Change 

Detection and Indices (ETCCDI) formulated a set of indices to detect and characterize the 

nature of climate extremes in terms of frequency, amplitude, and persistence. Subsequently, 

the Expert Team on Sector-specific Climate Indices (ET-SCI) was introduced in 2011 to 

expand the generic ETCCDI indices to more comprehensive and sector-specific climate indices 

(ET-SCI 2016). The team noted however that the sectorial practices and climate characteristics 

vary across the region and recommend the customization of the ET-SCI indices to fit the study 

location. 

Past studies have analyzed historical extreme climate indices trends and observed a rise in 

heavy precipitation events and hot extremes across Nepal (Khatiwada et al. 2016; Karki et al. 

2017, 2019; Bohlinger and Sorteberg 2018; Talchabhadel et al. 2018; Pokharel et al. 2019; 

Sharma et al. 2020; Poudel et al. 2020). For example, Karki et al., (2019) observed a rising 

trend for warm days (13 days/decade) and nights (4 days/decade), but the cold days and nights 
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are decreasing (6 days/decade). The high-intensity (> 300 mm/day) precipitation started 

becoming more frequent since 2000, which was not common earlier (Pokharel et al. 2019). 

DHM (2017) observed an increasing trend in the number of rainy days, especially in the 

northern region. Nevertheless, only a few studies have addressed the future climate extremes, 

and even fewer have explored their implications for various sectors (Rajbhandari et al. 2017; 

MoFE 2019; Pokharel et al. 2019; Dahal et al. 2020; Singh et al. 2021). Moreover, these studies 

are mostly based on means and a small subset of the old and generic ETCCDI indices. 

The location-specific climate responses due to the heterogeneous geographic and climatic 

conditions within small spatial extents in Nepal demand future climate projections and impact 

assessments on a finer scale (Rajbhandari et al. 2017; Dhaubanjar et al. 2020). The faster 

increase in extreme precipitation in western Nepal compared to other parts of the country 

highlights the necessity of future climate assessments in this region (Bohlinger and Sorteberg 

2018; Talchabhadel et al. 2018; Pokharel et al. 2019). However, basin-scale climate 

assessments are mostly concentrated in eastern Nepal (Bharati et al. 2014, 2019; Devkota and 

Gyawali 2015; Nepal 2016) as opposed to western Nepal (Dahal et al. 2020; Pandey et al. 

2020). 

Regional climate models (RCMs) are designed for a specific region and are richer in spatial 

and temporal detail to better simulate topography-influenced phenomena and extremes (Flato 

et al. 2013). Therefore, RCMs are more suitable than global climate models (GCMs) for climate 

projections in countries with diverse and steep terrain, such as Nepal (Dhaubanjar et al. 2020). 

Multi-modal ensembles are recommended for climate impact assessments (Knutti et al. 2010). 

However, most climate projections and impact assessments in Nepal have used a limited 

number of GCMs. The development of RCMs specifically for South Asia remains a relatively 

new initiative by the COordinated Regional Downscaling EXperiment for South Asia 

(CORDEX-SA) (Sanjay et al. 2017) to generate dynamically downscaled projections for the 

region. Dhaubanjar et al. (2020) presented one of the first and the most comprehensive studies 

that utilized all available 19 RCMs in CORDEX-SA to generate application-specific multi-
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model ensemble climate projections for the Karnali Basin. However, the scope of Dhaubanjar 

et al. (2020) was limited to ensemble generation. 

Leveraging the bias-corrected and application-specific RCM ensemble projections generated 

by Dhaubanjar et al. (2020), this study presents the first assessment of the ET-SCI indices to 

understanding changes in future climate extremes and their sectoral implications in Karnali. 

We first identify sector-relevant climate indices for Karnali. Second, we project future 

scenarios of these climate indices. A total of 26 climate indices were selected based on an index 

evaluation, expert consultation, and literature review. Their trends were projected for three 

future timeframes, i.e., near (2021–2045), mid (2046–2070), and far (2071–2095) future, for 

two emission scenarios (RCP4.5 and RCP8.5). Unlike a pure climate projection study, we 

finally analyzed the potential implications of the projected index trends in six key climate-

sensitive sectors in the region based on expert interviews and literature review. 

4.2. Methodology 

4.2.1. Study area 

Covering an area of 49,889 km2 with an elevation ranging from 142 to 8143 m along a south-

north transect in western Nepal, the Karnali River Basin (Fig. 4.1), also referred to as Karnali 

in this paper, is at the headwaters of the Ganges Basin (Pandey et al. 2020). Area-wise, Karnali 

is the biggest river basin in Nepal, yet it is the least developed and most food-insecure region 

in the country (UN-WFP 2014). This region has the highest poverty rate in Nepal, with every 

second person being multidimensionally poor (NPC 2018). The highlands in Karnali are 

relatively water-poor regions in Nepal (Panthi et al. 2018). The indigenous communities rely 

on natural springs as their primary source of water for drinking and irrigation and are highly 

vulnerable to changes in precipitation (Matheswaran et al. 2019). The southern lowlands are 

prone to disasters, such as floods and droughts, and the northern highlands experience 

landslides and flash floods. 
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Figure 4.1: Map of the Karnali River Basin and locations of the meteorological stations 

selected for this study. 

Western Nepal has over 336,927 ha of agricultural land, of which nearly 49% remains to be 

irrigated (CBS 2020). Similarly, Karnali has a run-off river-type hydropower potential of 

15,660 MW because of the major rivers and steep slopes in the highlands (Jha 2010). Nearly 

127 projects, including some of the country’s largest hydropower and irrigation projects, are in 

various stages of development in this basin (IWMI 2018). Karnali is also a biodiversity hotspot, 

with approximately 14% of the area under protection, and is comprised of four national parks, 

one wildlife reserve, one hunting reserve, two buffer zones, and three Ramsar sites (Khatiwada 

and Pandey 2019; DNPWC 2020). Overall, Karnali remains largely rural, with sparse 

communities relying heavily on nature-based livelihoods, rich biodiversity and natural 

resources, and untapped hydropower potential spread throughout the basin. These 

characteristics of Karnali provide a suitable background for a multi-sectoral climate impact 

assessment on a relatively pristine basin. 
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4.2.2. Bias-corrected ensemble projection 

An overview of our research design and methodology is presented in Fig. 4.2. We started with 

the ensemble projections developed by Dhaubanjar et al. (2020) for nine meteorological 

stations based on 19 RCMs in CORDEX-SA. Dhaubanjar et al. (2020) first use quantile 

mapping to bias-correct the 19 RCMs and then apply the climate futures framework (Clarke et 

al. 2011) to generate application-specific projections for climate impact assessment (see Table 

A4.1 in appendices for details on the stations and Table A4.2 for details on the RCMs). 

Ensemble projections are available for three future risk scenarios (low risk, consensus and high 

risk) for long-term water management of which we only consider the consensus case, i.e., 

projections based on an ensemble of RCMs that show consensus in the magnitudes of change 

in precipitation and temperature. More specifically, we use the consensus case data from 

Dhaubanjar et al. (2020) for the historical (1981–2005) period and three future timeframes 

(near: 2021–2045, mid: 2046–2070, and far: 2071–2095) under two global representative 

concentration pathways (RCP4.5 and RCP8.5). Details on data quality control, bias correction 

using the quantile-mapping approach, evaluation of the bias correction performance, and 

generation of the climate ensembles are provided in Dhaubanjar et al. (2020). 
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Figure 4.2: Methodological framework for unpacking future climate extremes in Karnali and 

their sectoral implications. 
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4.2.3. Evaluation of ET-SCI indices 

The ClimPACT2 program, developed by ET-SCI (2016) in the R programming language, was 

used to evaluate 34 core and 29 non-core ET-SCI indices at both annual and monthly time-

steps. For each station, we prepared single time-series combining bias-corrected historical 

(1981–2005) and future (2006–2100) time series for each of the six RCM ensembles as inputs 

to ClimPACT2. The bias-corrected historical data for 1981–2005 were therefore inserted as the 

base period for the evaluation of all the percentile-based indices. To allow for cross-

comparisons with global studies, default values were used for indices with absolute thresholds. 

The evaluated index values were then sliced for the respective historical and future timeframes. 

4.2.4. Selection of sector-relevant indices 

The National Adaptation Plan (NAP) process in Nepal was initiated in 2015 to determine 

medium- and long-term adaptation needs, which identified seven sectors as the most climate-

sensitive in Nepal (MoPE 2017). These sectors include (i) water resources and energy, (ii) 

climate-induced disasters, (iii) agriculture and food security, (iv) forests and biodiversity, (v) 

tourism and natural and cultural heritage, (vi) public health, and (vii) urban settlements and 

infrastructure. We considered six of these sectors in this study to identify the relevant indices 

and study the sectoral implications in Karnali. Urban settlement and infrastructure was not 

considered as a separate sector here because Karnali is a largely rural region. 

To determine the relevance of the ET-SCI indices to the climate-sensitive sectors, we gathered 

qualitative inputs from stakeholders in two rounds of consultations. We conducted a hands-on 

workshop with 39 participants, largely practitioners and policymakers from all sectors, as 

shown in Fig. A4.1 in appendices. Participants engaged in group discussions followed by a 

survey asking for their perception of climate characteristics or types of extreme climate that 

posed risks to their sectors. Note that the climate indices were not directly referenced in the 

questionnaire; instead, real-life examples were presented to make participants consider what-

if climate scenarios and their impacts on their sectors. Very few participants were able to 
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consider climate characteristics beyond means and minimum and maximum values, providing 

a limited basis to consider the specialized ET-SCI indices. 

To further unpack the stakeholder’s perspectives, we followed up with more targeted key-

expert interviews. We explicitly discussed the relevance of the ET-SCI indices with at least 

two experts from each sector (the list of consulted experts is given in Table A4.3). In addition, 

we reviewed the literature to identify the reported relationship between the climate 

characteristics and the sectoral impacts. Finally, considering the inputs from the stakeholders 

and literature, the type of indices and thresholds used, and our experiences working in Karnali, 

we selected 26 of the ET-SCI indices for this study. We grouped the indices by type into mean-

based, absolute-value-based, percentile-based, threshold-based, and duration-based indices 

that characterize the average and extreme statistical features of the climate data. Details of the 

selected indices are summarized in Table 4.1. 
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Table 4.1: List of selected climate indices for this study (adapted from ET-SCI (2016)). 

Index type S. No. ID Name Definition Unit 

Mean temperature indices 
1.  TNm Mean TN Annual mean daily minimum temperature C 

2.  TXm Mean TX Annual mean daily maximum temperature °C 

Absolute-value-based 

extreme temperature indices 

3.  TNn Min TN Annual coldest daily TN °C 

4.  TNx Max TN Annual warmest daily TN °C 

5.  TXn Min TX Annual coldest daily TX °C 

6.  TXx Max TX Annual warmest daily TX °C 

Percentile-based extreme 

temperature indices 

7.  TN10P Amount of cold nights 
Annual percentage of days when TN < 10th 

percentile 
% 

8.  TN90P Amount of warm nights 
Annual percentage of days when TN > 90th 

percentile 
% 

9.  TX10P Amount of cool days 
Annual percentage of days when TX < 10th 

percentile 
% 

10.  TX90P Amount of hot days 
Annual percentage of days when TX > 90th 

percentile 
% 

Duration-based extreme 

temperature indices 
11.  CSDI 

Cold spell duration 

indicator 

Annual number of days contributing to 

events where six or more consecutive days 

experience TN < 10th percentile 

days 
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12.  WSDI 
Warm spell duration 

indicator 

Annual number of days contributing to 

events where six or more consecutive days 

experience TX > 90th percentile 

days 

13.  GDDgrow10 Growing degree days 
Annual sum of the daily mean temperature 

(TM) − 10 

degree-

days 

14.  SU Summer days Annual number of days when TX > 25°C days 

15.  TR Tropical nights Annual number of days when TN > 20°C days 

Magnitude-based 

precipitation indices 

16.  PRCPTOT Total precipitation Sum of daily precipitation ≥ 1.0 mm mm 

17.  WDAYS Number of wet days 
Annual number of days when precipitation is 

≥1.0 mm 
days 

18.  SDII 
Simple Daily Intensity 

Index 
PRCPTOT divided by the WDAYS mm/day 

Absolute-value-based 

extreme precipitation indices 

19.  RX1day Max 1-day precipitation Maximum annual 1-day precipitation total mm 

20.  RX5day Max 5-day precipitation Maximum annual 5-day precipitation total mm 

Threshold-based extreme 

precipitation indices 

21.  R10mm Number of heavy rain days 
Annual number of days when precipitation is 

≥10 mm 
days 

22.  R30mm 
Number of very heavy rain 

days 

Annual number of days when precipitation is 

≥30 mm 
days 

Percentile-based extreme 

precipitation indices 
23.  R95pTOT 

Contribution from very wet 

days 

Fraction of total wet-day precipitation that 

comes from very wet days 
% 



 
62 

 

24.  R99pTOT 
Contribution from 

extremely wet days 

Fraction of total wet-day precipitation that 

comes from extremely wet days 
% 

Duration-based extreme 

precipitation indices 

25.  CDD Consecutive dry days 
Maximum annual number of consecutive dry 

days (when precipitation is <1.0 mm) 
days 

26.  CWD Consecutive wet days 
Maximum annual number of consecutive wet 

days (when precipitation is ≥1.0 mm) 
days 
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4.2.5. Index anomaly and trend analyses 

For the selected indices, we analyzed the projected index trend and their anomalies to evaluate 

the spatio-temporal variation across the regions. The widely used non-parametric Mann-

Kendall test (Mann 1945; Kendall 1975) was used to investigate the trend significance for the 

near-, mid-, and far-future timeframes. The trend value was estimated using Sen’s slope (Sen 

1968) method. Only trend values significant at 95% confidence interval (p < 0.05) are reported 

in this paper unless otherwise stated. Nevertheless, the count of the trend significance cases for 

each index is summarized in Fig. 4.3. The index anomaly or the projected change from the 

historical average was calculated by subtracting the mean of the bias-corrected historical value 

from the equivalent projected future value. To capture the altitudinal difference, the five 

stations located below an altitude of 1000 m were grouped as the lowland stations and the four 

stations above an altitude of 1000 m were grouped as the highland stations. Trends across the 

four seasons (pre-monsoon: March–May, monsoon: June–September, post-monsoon: October–

November, and winter: December–February) were further assessed for relevant indices based 

on the monthly values. 

 

Figure 4.3: Future trends of the selected climate indices defined in Table 4.1. The horizontal 

axis represents the count of the index trend significance cases out of 54 cases from the nine 

stations, three future timeframes, and two RCPs. 
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4.2.6. Characterization of sectoral implications 

The projection results of the selected indices were shared with experts from all of the studied 

sectors in the third round of expert interviews. The experts were asked to share their opinions 

concerning the potential implications of the projected index trends on their sectors. Received 

inputs were supplemented by a literature review to characterize the potential implications of 

the projected changes to the six sectors. 

4.3. Results and discussion 

4.3.1. Projected changes in temperature 

4.3.1.1. Mean temperature indices 

Our projections show an increase in the annual mean daily minimum and maximum 

temperatures (mean TN and TX, respectively) in Karnali; these increases are more pronounced 

in the highlands and during winter (Fig. 4.4). In the near future, the annual mean TN and TX 

are both projected to increase on average by 0.03 C/year in RCP4.5 and by 0.04 C/year in 

RCP8.5. This increasing trend slows in the mid future and is not significant in the far future in 

RCP4.5 (Fig. A4.2). Conversely, in RCP8.5, the trends for mean TN and TX are 0.06 C/year 

and 0.05 C/year, respectively, in the lowlands in the mid future. Both indices increase at a rate 

of 0.07 C/year in the highlands. The winter shows the highest warming rate from the near 

future with the mean TX increasing as fast as 0.1 C/year in the highlands in the mid future. 

The warming rate is highest during the pre-monsoon in the lowlands. The annual mean TN and 

TX are projected to continue to increase by 0.06 C/year and 0.04 C/year, respectively, in the 

lowlands in the far future. In the highlands, the trends of the mean TN and TX are 0.06 C/year 

and 0.05 C/year, respectively. The monsoon shows the highest warming rate in the far future. 

The higher rate of the mean TN than the mean TX indicates that the nighttime temperature will 

increase faster than the daytime temperature and that the diurnal temperature range will narrow 

in the future. 
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Figure 4.4: Projected annual and seasonal mean TN and mean TX trends for Karnali by 

future timeframe and geographical region in the RCP8.5 scenario. The middle dark lines 

represent the mean; the boxes represent the interquartile range; the whiskers represent the 

minimum and maximum values; and the dots represent outliers. 

In RCP8.5, by the end of the century, the annual mean TN and TX are projected to be 4–5 C 

and 3.5–4.5 C warmer, respectively, in the lowlands and 4.5–6.0 C and 4.5–5.0 C warmer, 

respectively, in the highlands than the historical average (Fig. 4.5). However, these values 

could exceed 6 C during the winter and pre-monsoon in the highlands. In RCP4.5, the annual 

mean TN and TX will be approximately 1.5–2.5 C and 1.0–2.5 C warmer, respectively, in 

the lowlands and 2.0–2.5 C and 2.5–3.0 C warmer, respectively, in the highlands. 
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Figure 4.5: Projected mean and extreme temperature index anomalies (base period 1981–

2005) for Karnali by future timeframe, scenario, and geographical region. The dark lines 

represent the locally smooth values, and the gray bands represent the 95% confidence 

intervals. 

4.3.1.2. Absolute-value-based extreme temperature indices 

The annual coldest and warmest daily minimum temperature (min and max TN) and maximum 

temperature (min and max TX) show higher warming than their respective means (mean TN 

and mean TX) discussed in section 4.3.1.1. Relative to the historical average, the min and max 

TN will be 1.5 C and 2.5 C higher, respectively, in RCP4.5 but 4.5 C and 6.5 C higher, 

respectively, in RCP8.5 in both the lowlands and the highlands (Fig. 4.5). The min and max 

TX will be 1.5 C and 2.5 C higher, respectively, in the lowlands and 2 C and 3 C higher, 

respectively, in the highlands in RCP4.5. In RCP8.5, the min and max TX will be 6 C and 4.5 

C higher, respectively, in the lowlands and 6.5 C and 6 C higher, respectively, in the 
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highlands. The trends of the absolute-value-based extreme temperature indices for Karnali are 

presented in Fig. A4.3 in appendices. 

4.3.1.3. Percentile-based extreme temperature indices 

The amount of hot days (TX90P) and warm nights (TN90P) steeply increases in the range of 

1.3–1.9 percentage points/year in the near future in both RCPs (Fig. 4.6 and Fig. A4.4). This 

leads to nearly 100% and 80–90% of the days in the year being warmer than the historical hot 

days and warm-night threshold by the end of the mid future in RCP8.4 and RCP4.5, 

respectively. Consequently, the amount of cool days (TX10P) and cold nights (TN10P) is 

already very low in the near future and declines showing no statistically significant trend (Fig. 

4.3). Nearly no days will be below the historical cool days and cold-night threshold in all future 

scenarios. Such projections, therefore, suggest an alarming increase in extreme temperatures 

both during the daytime and at night compared to the historical thresholds. A new normal will 

be necessary to classify extreme temperature thresholds in future contexts. 
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Figure 4.6: Projected percentile- and duration-based extreme temperature index anomalies 

for Karnali by future timeframe, geographical region, and emission scenario (different y-axis 

scales are used for each index). Base period, lines, and shading are as in Fig. 4.5. 
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4.3.1.4. Duration-based extreme temperature indices 

Both the number of summer days (SU) and the number of tropical nights (TR) are increasing, 

similar to the trends of the amount of hot days and warm nights in section 4.3.1.3 (Fig. 4.6). 

However, higher rates are seen for the highlands. For example, SU will increase by 0.5–1.4 

days/year in the highlands but by 0.4–0.9 days/year in the lowlands in the near future for both 

RCPs (Fig. A4.4). The rate will slow in RCP4.5 but will increase to 1.2–2.3 days/year in the 

highlands and 0.7–1.2 days/year in the lowlands in RCP8.5. In the far future, there is no 

significant trend for RCP4.5; however, SU will increase by 0.7–1.3 days/year in the highlands, 

while nearly all 365 days of the year will be summer days in the lowlands. TR shows a similar 

increasing trend to SU. 

The warm spell duration indicator (WSDI) is increasing fastest in the near future at a rate of 5–

8 days/year (Fig. 4.6 and Fig. A4.4) in both RCPs and both regions. In RCP4.5, the increasing 

rate slows to 2–5 days/year in the mid future, while the trend is not significant in the far future. 

In RCP8.5, the increasing rate is 5–7 days/year in the mid future resulting in nearly 365 days 

of the year being classified as a warm spell in both the highlands and the lowlands in the far 

future. Subsequently, the cold spell duration indicator (CSDI) has zero values in all future 

scenarios and shows no trend (Fig. 4.3). 

The growing degree days (GDDgrow10) is a measure of the heat accumulation used to predict 

plant developmental rates. This index will increase at a rate of 7–10 degree-days/year in 

RCP4.5 and 9–14 degree-days/year in RCP8.5 in the near future in both regions (Fig. A4.4). 

This increasing rate will slow in the mid future, and no significant trend is observed in the far 

future in RCP4.5. In RCP8.5, GDDgrow10 is projected to increase by 18–25 degree-days/year 

in the mid future and 17–22 degree-days/year in the far future, with a slightly higher rate in the 

highlands. By the end of the century, GDDgrow10 will be higher by 1500–2000 degree-days 

in RCP8.5 and 500–1000 degree-days in RCP4.5 compared to the historical average (Fig. 4.6). 

4.3.2. Projected changes in precipitation 

4.3.2.1. Magnitude-based precipitation indices 

Unlike temperature, the precipitation indices do not show statistically significant future trends 

in most cases (Fig. 4.3). The spatial differences and the differences between the future emission 

scenarios in precipitation are also not as stark as those seen for temperature. This suggests a 
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higher uncertainty in precipitation trends than in temperature trends. However, the change in 

annual total precipitation (PRCPTOT) from the historical average is positive in most scenarios 

(Fig. 4.7). Therefore, Karnali is projected to receive more annual rainfall than the historical 

average in all future scenarios. Even though the PRCPTOT trends are not significant, they are 

mostly positive in the near and far future and negative in the mid future. Similar to the annual 

total, the changes in the pre-monsoon, monsoon, and post-monsoon precipitation are mostly 

positive. The largest percentage change from the historical average is projected for the post-

monsoon precipitation. However, the percentage change in the winter precipitation, 

particularly in RCP8.5, is mostly negative. This indicates the occurrence of drier winters in the 

future. 

 

 

Figure 4.7: Projected percentage change in annual and seasonal total precipitation 

(PRCPTOT) and number of heavy and very heavy rain days (R10mm and R30mm) for 

Karnali by future timeframe, geographical region, and emission scenario. Base period, lines, 

and shading. 
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The simple daily intensity index (SDII) is also mostly positive in the future (Fig. 4.8). However, 

the projected annual number of wet days (WDAYS) shows a relatively unchanged pattern in 

the future. Therefore, the future annual precipitation change is projected to be dominated by 

higher intensity precipitation than in the past. 
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Figure 4.8: Projected percentage change in the extreme precipitation indices from the 

historical average for Karnali by future timeframe, geographical region, and emission 

scenario. Base period, lines, and shading are as in Fig. 4.5. 
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4.3.2.2. Absolute-value-based extreme precipitation indices 

Corroborating the increasing SDII values, the changes in the maximum annual 1- and 5-day 

precipitation totals (RX1day and RX5day, respectively) are also positive for the future 

scenarios (Fig. 4.8). The index trends are also positive, although not significant, in both regions 

for a majority of the scenarios and negative in some, especially in the far future (Fig. 4.3). 

Similarly, the RX1day shows a higher change than the RX5day. The intensities of 1- and 5-

day extreme precipitation events could be up to 60% and 40% higher, respectively, than the 

historical average in the highlands in the far future. 

4.3.2.3. Threshold-based extreme precipitation indices 

The numbers of heavy and very heavy rain days (R10mm and R30mm, respectively) show a 

strong positive change in the future (Fig. 4.7). The annual R10mm could double in some 

regions, while the R30mm could increase two- to three-fold by the far future. R30mm are rarer 

events but show a much higher increase in percentage relative to the historical average than 

R10mm. The trend values of both indices in most scenarios are not statistically significant. 

Karnali is projected to experience more heavy rain days in all seasons and more very heavy 

rain days in the monsoon in the future. Even during the pre- and post-monsoon, Karnali may 

experience some very heavy rain days in the mid and far future, which was not normal in the 

past (not shown in Fig. 4.7 due to extremely high percentage change). 

4.3.2.4. Percentile-based extreme precipitation indices 

The percentage changes in the contributions from very wet and extremely wet days (R95pTOT 

and R99pTOT, respectively) are mostly positive in future scenarios (Fig. 4.8). This is due to 

the increase in the rainfall intensities, as shown by RX1day and RX5day, and the frequency, 

as shown by R10mm and R30mm, of extreme precipitation days. The index trends are mostly 

positive in the near and mid future and both positive and negative in the far future (Fig. 4.3). 

The contribution from very wet days could double and the contribution from extremely wet 

days could triple compared to the historical average by the far future. 

4.3.2.5. Duration-based extreme precipitation indices 

Similar to the annual WDAYS, the percentage changes in consecutive dry and wet days (CDD 

and CWD, respectively) are also equally distributed in negative and positive sides in the near 
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and mid future (Fig. 4.8). However, the CDD changes are positively skewed, and the CWD 

changes are negatively skewed, indicating a potential increase in CDD in the far future. The 

inter-annual and spatial variability of CDD and CWD might also increase in the future. 

4.3.3. Projection results with respect to historical trends and other future 

projections 

Our projection results are largely in agreement with the observed historical trends in the region 

and with other comparable projections. The projected warming in the highlands and lowlands 

in Karnali by the end of the century is slightly higher than the GCM-based projected national 

average for the respective regions and scenarios by MoFE (2019) but similar to the projections 

made for Karnali by Dahal et al. (2020). MoFE (2019) projected average warming of 3.69 C 

and 3.44 C in middle mountain and lowlands respectively in the RCP8.5 scenario by 2071-

2100. Nevertheless, MoFE (2019) also projected that western Nepal would warm faster than 

eastern Nepal and that the pre-monsoon and winter would warm the most. The projected higher 

warming trends in the highlands are consistent with the elevation-dependent warming (EDW) 

trends observed across Nepal (Khatiwada et al. 2016; DHM 2017; Karki et al. 2019; Thakuri 

et al. 2019; Dahal et al. 2020). Such EDW in southern Himalaya could be attributed to the 

weakening monsoon and the reduced cloud cover in the region (Yang et al. 2018; Karki et al. 

2019; Thakuri et al. 2019). The faster increase in the mean TN than the mean TX, however, is 

opposite to the historical warming pattern in Nepal. The weakening winter monsoon in western 

Nepal could be a cause for higher winter warming leading to a faster increase in mean TN 

(Wang et al. 2013; Karki et al. 2017; Yang et al. 2018). The projected extreme temperature 

index trends are largely consistent with the projected increase in warm extremes and decrease 

in cold extremes across Nepal (Rajbhandari et al. 2017; MoFE 2019; Singh et al. 2021). For 

example, MoFE (2019) projected that the hot days in Nepal will increase by 87% in RCP4.5 

and 125% in RCP8.5 by the end of the century. Similarly, the cold nights will decrease by 53% 

and 74% in the respective scenarios. Nevertheless, it is hard to make one-to-one comparison 

of these indices due to the underlying differences such as baseline period, location, and climate 

models used. A similar increasing trend of hot extremes and decreasing trend of cold extremes 

was observed in the historical period (DHM 2017; Bohlinger and Sorteberg 2018; Karki et al. 

2019; Poudel et al. 2020). 

The projected increase in the annual total precipitation in Karnali agrees with the historically 

observed increasing annual precipitation trend in western Nepal (Khatiwada et al. 2016; Karki 
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et al. 2017; Sharma et al. 2020), even though some studies (Khatiwada et al. 2016; Pokharel et 

al. 2019; Dahal et al. 2020) also reported a decreasing trend, mainly in the lowlands. In the 

future, Dahal et al. (2020), MoFE (2019), and Pokharel et al. (2019) all project an increase in 

the annual total precipitation but a decrease in winter precipitation similar to the projection in 

our study. A decreasing trend in the winter precipitation in western Nepal has already been 

observed in the historical period (Khatiwada et al. 2016; Karki et al. 2017). Wang et al. (2013) 

argue that the decreasing winter precipitation in western Nepal is linked with the warming sea 

surface temperature in the Indian Ocean, alteration of Arctic Oscillation, and rise in 

anthropogenic aerosols. High-intensity extreme precipitation events are more common in 

Karnali compared to other parts of Nepal (Karki et al. 2017; Bohlinger and Sorteberg 2018; 

Talchabhadel et al. 2018; Pokharel et al. 2019). Furthermore, these studies reported an 

increasing trend in extreme precipitation in the past. The projected increase in the frequency 

and intensity of the extreme precipitation indices is in line with other projections for Nepal 

(MoFE, 2019; Rajbhandari et al., 2017; Singh et al., 2021). MoFE (2019) projected that there 

will be around 20% more very wet days but 60% more extreme precipitation days in Nepal by 

the end of the century in RCP8.5. 

4.3.4. Sectoral implications 

4.3.4.1. Water resources and energy 

Projection results indicate that the Karnali region will experience a change in the precipitation 

patterns with wet-get-wetter and dry-get-drier. The increase in the RX1day and RX5day, 

R10mm and R30mm, and R95pTOT and R99pTOT will increase the peak flow. The increased 

peak flow may cause damage to hydropower and irrigation infrastructures and siltation. On the 

other hand, the decrease in the occurrence of both scattered and consecutive low-intensity rainy 

days will reduce the percolation of water into the subsurface affecting groundwater recharge 

and subsequent baseflow contribution to streams, natural springs, and aquifer storages. Such 

decline in base flow could affect water available for electricity generation or agriculture. The 

projected decrease in winter precipitation, when the water availability and river flow are lowest 

(Dahal et al., 2020; Khatiwada et al., 2016), followed by hot and dry pre-monsoon can increase 

the water stress in the region in the future. This could exacerbate migration and settlement 

displacement in the highlands, as observed in other parts of the country (Joshi and Dongol 

2018). 
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4.3.4.2. Climate-induced disasters 

A projected increase in both the intensity (shown by RX1day and RX5day) and the frequency 

(shown by R10mm and R30mm) of extreme precipitation events, mainly during the already 

very wet monsoon, could increase the risk of landslides and erosion in the highlands. The 

increase in the peak flow caused by the increase in extreme rain could exacerbate flash floods 

and cause the inundation of fields and settlements in the lowlands. Because the maximum 1- 

and 5-day precipitation is projected to increase by 40–60%, even a single extreme event could 

be devastating. Moreover, the increasing R10mm in all future timeframes and the occurrence 

of R30mm in the far future, even during the pre-and post-monsoon, indicate the possibility of 

these disasters occurring even during the dry season. An increase in the probability of floods 

and landslides in the historically dry season is alarming because such events are more likely to 

catch people off-guard. 

The projected higher increase in temperature in the highlands could accelerate Himalayan 

glacier retreat and increase the size and number of glacial lakes, increasing the risk of glacial 

lake outburst floods. The highest warming of the mean and extreme temperatures in the 

lowlands during the hot pre-monsoon and monsoon and extended warm spells could increase 

the risk of heatwaves in the future. This risk is even higher in the growing urban areas because 

of the urban heat island effect. 

4.3.4.3. Agriculture and food security 

The spatial differences in the projected climate extremes in Karnali indicate varying 

implications for agriculture in the highlands and lowlands in the short and long term. The 

decline in cold nights and increase in mean temperatures, warm spells, and growing degree 

days suggest that more areas in the highlands could become favorable for agriculture. A 

potential increase in the annual precipitation also favors this expansion. According to some 

studies, current subsistence farming in Karnali could expand to grow crops such as rice, maize, 

bananas, and vegetables at higher altitudes, provided other conditions, such as water 

availability and soil fertility, are favorable (Bhatt et al. 2014; Ranjitkar et al. 2016). 

Nevertheless, the increasing temperature has already shown negative impacts on major cereal 

crop (wheat, rice, and maize) production in Karnali, Dudh Koshi, and other parts of the country 

(Bocchiola et al. 2019; Khatiwada and Pandey 2019), warning against a focus on the potential 

expansion of cultivable areas with increasing temperatures in the highlands. 
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The compounded effect of the changes in the temperature and precipitation patterns will 

directly influence crop physiological processes, crop seasons, phenology, and crop cultivation 

suitability, while increasing the incidence of disease, pests, and other disasters affecting crop 

production (Bocchiola et al. 2019; Aryal et al. 2020). Therefore, the negative consequences of 

the projected climate on the crop yield will most likely surpass the positive impacts in the long 

term, worsening food insecurity in the region. Bhatt et al. (2014) pointed out that many crops 

are already under temperature stress in the lowlands, with impacts likely to worsen because the 

mean and extreme maximum temperatures are projected to increase by as much as 6 C by the 

end of the century in RCP8.5. 

Any change in the precipitation patterns will challenge the existing agricultural practices in 

Karnali that largely remain rain-fed and will increase the uncertainties in farmer decision-

making. The projected decrease in the critical winter precipitation and increase in temperature 

will affect winter crops such as wheat, potatoes, oilseeds, and vegetables. Similarly, the 

temperature increases could also increase evapotranspiration. As frequent and severe droughts 

observed over the last decade in Karnali have already shown, such dry conditions and decreased 

soil moisture will lead to a decrease in the crop yield and soil degradation over time (Wang et 

al. 2013; Khatiwada and Pandey 2019). The actual level of the impact on agriculture also 

depends on the extent to which farmers adapt their agricultural practices to the changing 

climate. 

4.3.4.4. Forests and biodiversity 

The forests and biodiversity along the south-north transect in Karnali will respond differently 

to the projected changes. The increasing average temperature will shift the climate boundaries 

northward in Nepal’s Himalaya ultimately affecting the current biome and species distribution 

(Zomer et al. 2014; Talchabhadel and Karki 2019). Grasslands and shrublands in the highlands 

in Karnali include several endemic species and high-value medicinal plants, such as 

Yarsagumba (Ophiocordyceps sinensis). However, such sensitive alpine ecosystems may 

experience hot days and nights during 80–90% of the year by the mid future, even in the 

RCP4.5 scenario. Winter could be more than 6C warmer by the end of the century in RCP8.5. 

The characteristic cold winter climate of the highlands could vanish in the long term because 

the mean and extreme temperature warming rate is highest in the highlands. Such warming will 

enable a future advance of tree lines, and such a shift in the tree line into treeless ecosystems 
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could have major consequences, such as decreases in alpine diversity, carbon storage, and 

ecosystem services (Schickhoff et al. 2016; Bhattacharjee et al. 2017). 

The projected higher temperature will favor the expansion of climatically suitable regions for 

invasive alien plants in the southern tropical and temperate forest and agricultural lands; this 

has already been observed in the region (Shrestha and Shrestha 2019; Bhatta et al. 2020). The 

expanded summer and warm spells may cause changes in the vegetation phenology and an 

early onset of the growing season, particularly in the ecoregions of higher elevations in Karnali, 

as indicated in the literature (Xu et al. 2009; Shrestha et al. 2012). A prolonged dry period due 

to the projected warmer and drier winter followed by a hot and dry pre-monsoon could 

aggravate the incidence of forest fires, further endangering terrestrial biodiversity. Expanded 

warm spells and reduced winter precipitation could also negatively impact the water 

availability and ecosystem in important wetlands such as Rara and Phoksundo in the highlands 

and Ghodaghodi in the lowlands. Changes in the river flows in response to changing 

precipitation patterns will also affect aquatic biodiversity (Poff and Zimmerman 2010). 

4.3.4.5. Tourism and natural and cultural heritage 

National parks and wildlife reserves, high-altitude wetlands, rivers, mountains, and indigenous 

culture are among the major tourist attractions in Karnali. The degradation of the natural 

heritage due to the projected changes may negatively affect the tourism industry in the future. 

More summer days in the highlands could have a positive impact on tourism in the short term 

(K.C. 2017). However, the projected increase in climate extremes, such as the mean and 

extreme daytime temperature, hot days, and number of heavy and very heavy rain days, will 

reduce favorable weather conditions for major tourist activities such as trekking, 

mountaineering, river rafting, and jungle safaris. Such tourist activities are highly climate-

sensitive, and unfavorable climatic conditions may cause locational and seasonal shifts in 

tourist flows (K.C. 2017). The highest precipitation increase and increased chances of heavy 

and very heavy rain days during the pre- and post-monsoon, which are also the peak tourist 

seasons in Nepal (K.C. et al. 2020), could severely affect tourism by hindering mobility (both 

land and air) and increasing the probability of climate disasters. Mountaineering is very 

sensitive to snow cover and favorable climatic windows. Projected warming-induced snow 

cover loss and an uncertain climate could negatively affect mountain tourism. Temperature 

increases could also increase costs for tourism entrepreneurs because they will need to invest 

more in cooling systems in lowland areas. 
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4.3.4.6. Public health 

The projected increase in the mean temperature will increase the risk of vector-borne diseases 

(such as dengue, malaria, and Japanese encephalitis), water-borne diseases (such as diarrhea 

and hepatitis), and other health risks in Karnali. Every unit increase in the mean TN at a lag of 

2 months increases the incident rate ratio of dengue cases by more than 1% in southern Nepal 

(Tuladhar et al., 2019). Similarly, a 1 °C increase in the mean TN increases the malaria 

incidence by 27% (Dhimal et al. 2014). Water scarcity during dry and hot summers may lead 

to poor hygienic practices and an increase in the risk of disease prevalence (Bhandari et al., 

2020; Dhimal et al., 2015; Shrestha et al., 2016; Tuladhar et al., 2019). Altogether, this 

indicates a higher risk of vector-borne diseases over a larger area in Karnali and an intensified 

risk of epidemics in the future. Water-borne diseases could also increase in the future; Bhandari 

et al. (2020) found that a 1 °C increase in the mean TX and a 10-mm increase in the monthly 

precipitation increase the monthly count of diarrhea cases in Kathmandu by 8.1% and 0.9%, 

respectively. A projected increase in hot extremes, hot days, and warm spells in the already hot 

tropical lowlands could cause heat stress, leading to an increase in morbidity and mortality, as 

observed by Shrestha et al. (2016). 

4.4. Limitations 

Future climate projections and bias corrections come with inherent uncertainties. Therefore, 

the projected results and sectoral implications should be interpreted with caution. To better 

capture the highly heterogeneous terrain in western Nepal, we use bias-corrected RCM-based 

projections over GCM-based projections, as RCMs are better able to resolve meso-scale 

climatic processes in regions with highly variable topography (Flato et al. 2013). However, 

bias-corrected RCM projections are provided by Dhaubanjar et al. (2020) only for a limited 

number of stations. Many stations were discarded due to short and poor-quality data that results 

in poor performance in the quantile-mapping method for bias correction. The nine stations used 

here are skewed toward the southern lowlands increasing the uncertainty in our interpretations 

for the northern mountainous regions. 

In addition, we further consolidated the data across the nine stations into two geographical 

regions (lowlands and highlands) to interpret the index trends across the study area. Thus, the 

regional inferences made here by consolidating a limited number of stations are most applicable 
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for areas closest to our study stations. Higher uncertainty should be assumed when applying 

our index trends and sectoral implication to areas farther away from these stations.  

The selection of different indices as relevant to different sectors was a subjective iterative 

process. In general, sectorial experts were unfamiliar with the ET-SCI indices and struggled 

with defining their linkage to their sectors. More dialog are required between climatologists 

and sector experts to improve upon the first efforts we have made to designate and interpret 

sector-specific indices for Karnali. Quantifying future impacts to different sectors is difficult 

because there are limited studies that quantify the relationship between ET-SCI indices and 

sectoral activities in Nepal. Future research could develop a quantitative projection of impacts 

to each sector, building on the qualitative analysis we performed here. 

4.5. Conclusions 

The projections of the 26 ET-SCI climate indices examined here suggest that both the 

temperature and precipitation patterns in Karnali will already change significantly from their 

historical patterns in the near future, irrespective of the emission scenario. If the global 

emission pathways do not follow stronger emission reductions, the region will encounter a 

much more extreme climate in the mid and far future. The northern highlands in Karnali are 

projected to warm faster than the southern lowlands. Because of its highest warming rate and 

decrease in precipitation, winter in the highlands is expected to be warmer and dryer. The 

already hot and wet summer in the lowlands will be hotter with more extreme temperatures and 

scattered extreme precipitation events. The hottest days and nights will be hotter, summer and 

warm spells will be longer, and cold days will be fewer. The increasing precipitation intensity 

(SDII), maximum 1- and 5-day precipitation (RX1day and RX5day), and contribution from 

very wet and extremely wet days (R95pTOT and R99pTOT) suggest an increase in sporadic 

higher intensity rains and fewer days of low-intensity rains throughout the year. The frequency 

(R10mm and R30mm) and intensity (RX1day and RX5day) of extreme precipitation events 

will be much higher in all futures, even in the dry season in the far future. All these projected 

changes in the temperature and precipitation will have largely negative implications for the six 

climate-sensitive sectors in Karnali. Therefore, there is an urgent need to plan adaptation 

measures to reduce risks and strengthen the climate resilience of the key sectors in Karnali. 
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Chapter Five: Conclusion
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5.1. Summary of findings 

The extreme weather and climate events have increased due to anthropogenic climate change 

and are projected to increase further in future GHG emission scenarios. Climatic disasters and 

their socioeconomic impacts have also shown upward trends worldwide. Notably, the poor in 

low-income countries are mostly impacted by such disasters, and future risks are high. 

However, few studies have examined the role of climate change and socioeconomic changes 

in increasing disaster impacts in low-income countries. This study investigates the 

spatiotemporal trends of climatic disaster impacts, attribution of disaster impacts to climatic 

and socioeconomic changes, using Nepal as a case study. Additionally, this study further 

unpacked climate change impacts by assessing future scenarios of extreme climate indices and 

their potential implications in six key climate sensitive sectors in Karnali river basin of western 

Nepal. 

This study starts by analyzing the spatiotemporal trends of multiple climatic disaster frequency, 

mortality, and human vulnerability in Nepal, using the observed disaster data at the level of the 

753 subnational units during 1992–2021. More than 10,000 people lost their lives in these 30 

years after ~5,000 climatic disasters in Nepal. The climatic disaster frequency and disaster 

mortality have also increased in the past three decades. The frequency of multiple climatic 

disasters has increased by about seven incidences annually, and mortality has increased by 

almost nine persons annually. The increase in mortality and shift in monthly mortality patterns 

have made the entire year more deadly than in the past. Contrary to mortality, the exposure-

normalized mortality or vulnerability has decreased in Nepal, potentially because of the 

economic growth and progress in DRR and climate change adaptation. The multidisaster 

exposure-normalized mortality in Nepal has fallen at the rate of 0.15 deaths per 100,000 people 

exposed annually. The vulnerability decrease rate is much faster in rural than urban areas. 

However, rural regions remain considerably more vulnerable than urban regions due to the 

historical rural–urban vulnerability gap. Historically, the Mid Hills and Mountain regions of 

central and eastern Nepal have experienced the highest climatic disaster mortality. However, 

disaster vulnerability was higher in western Nepal due to poor socioeconomic conditions and 

development deficits. 

Landslides and floods were the deadliest disasters in Nepal, accounting for 70% of all climate-

related disaster mortality. Landslide mortality was the highest in the Mid Hills and Mountain 

regions in eastern (Province 1) and central (Bagmati and Gandaki) Nepal. Flood mortality was 
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the highest in central Nepal (Madhesh, Bagmati, and Gandaki). Western Nepal (Lumbini, 

Karnali, and Sudurpashchim) experienced relatively less disaster mortality in the past three 

decades. This landslide and flood mortality pattern closely matched the observed spatial pattern 

of the mean and extreme precipitation in Nepal. However, the temporal trends of extreme 

precipitation indices were mainly increasing in western Nepal but mostly decreasing in central 

Nepal. For example, maximum 1-day precipitation (RX1day) showed increasing trends in 68% 

of the stations in Sudurpashchim (significant in 11%) and 58% in Lumbini (significant in 15%). 

However, it showed decreasing trends in 76% of the stations in Bagmati (significant in 10%). 

Correspondingly, the landslide and flood frequency and mortality have increased in western 

Nepal, but no significant trends were observed in central and eastern Nepal. Such 

spatiotemporal patterns show a direct association between precipitation extremes and landslide 

and flood mortality. 

The regression results confirmed that the extreme precipitation indices, mainly the extreme 

precipitation intensity indices (RX1day and R95pTOT), increased flood mortality and the 

extreme precipitation frequency and duration indices (R10mm and CWD) increased landslide 

mortality. A one-unit increase in RX1day and R95pTOT raised flood mortality by 33% and 

31%, respectively. A one-unit increase in R10mm and CWD raised landslide mortality by 45% 

and 34%, respectively. Lower vulnerability, represented by higher PCI and lower SoVI, 

lowered flood and landslide mortality. A one-unit increase in PCI reduced landslide and flood 

mortality by 30% and 45%, respectively. However, population exposure did not show a 

significant effect on mortality. Hence, the observed rise in flood and landslide mortality, mainly 

in western Nepal, is primarily attributable to the increased precipitation extremes in these 

regions owing to climate change. 

Projections of the 26 extreme climate indices suggest that the temperature and precipitation 

patterns in western Nepal will change significantly from their historical patterns already in the 

near future, irrespective of the emission scenario. If the global emission pathways do not follow 

strong emission reductions, the region will encounter a much more extreme climate in the mid 

and far future. The northern highlands of western Nepal are projected to warm faster than the 

southern lowlands. Winters in the highlands are expected to be warmer and dryer because of 

the higher warming rate and decreasing winter precipitation. The hot and wet summers in the 

lowlands will be hotter with more extreme temperatures and scattered extreme precipitation 

events. The intensities of 1- and 5-day extreme precipitation events (RX1day and RX5day) 
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could increase by 40%–60% in the far future, increasing the risk of flash floods, and even a 

single extreme event could be devastating. The annual R10mm could double in some regions, 

whereas the R30mm could increase two- to threefold in the far future. Western Nepal may 

experience some days of very heavy rain in the mid and far future, even during the pre- and 

post-monsoon seasons, which was not normal in the past. Such an increase in the probability 

of floods and landslides in the historically dry season is alarming because these events are more 

likely to be surprising. 
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5.2. Policy relevance 

SDG 11 aims to “make cities and human settlements inclusive, safe, resilient, and sustainable” 

(United Nations 2015). SDG 13 highlights the need to “take urgent action to combat climate 

change and its impacts.” This aim of addressing the threat of anthropogenic climate change 

was elaborated and agreed upon in the Paris Agreement 2015 under the UNFCCC. In addition 

to the mitigation goal of pursuing efforts to limit global temperature rise to 1.5°C above the 

preindustrial levels in Article 2, the Paris Agreement set the global goal of adaptation 

(UNFCCC 2015). Article 7 of the Paris Agreement “establish(es) the global goal on adaptation 

of enhancing adaptive capacity, strengthening resilience and reducing vulnerability to climate 

change, with a view to contributing to sustainable development and ensuring an adequate 

adaptation response in the context of the temperature goal referred to in Article 2.” The SFDRR 

aims for the “substantial reduction of disaster risk and losses in lives, livelihoods and health 

and in the economic, physical, social, cultural and environmental assets of persons, businesses, 

communities and countries” (UNISDR 2015). The results of this study, which shows rising 

climate extremes but slow progress in reducing vulnerability, indicate challenges in achieving 

the aforementioned goals and targets of the SDGs, Paris Agreement, and SFDRR. 

One of the targets of SDG 11 is to “significantly reduce the number of deaths and the number 

of people affected and substantially decrease the direct economic losses relative to global GDP 

caused by disasters, including water related disasters, with a focus on protecting the poor and 

people in vulnerable situations” by 2030 (United Nations 2015). The first target of the SFDRR 

is also to “substantially reduce global disaster mortality by 2030, aiming to lower the average 

per 100,000 global mortality rate in the decade 2020–2030 compared to the period 2005–2015” 

(UNISDR 2015). Almost half of the 15-year period planned to achieve the SDGs and SFDRR 

has already passed. Nevertheless, in many countries, including Nepal, total disaster mortality 

has not decreased but rather increased over time. This study reported that the annual climatic 

disaster mortality rate in Nepal has increased by about nine persons per year in the past three 

decades. Furthermore, extreme precipitation events have increased, particularly in western 

Nepal, and are projected to increase further because of climate change. Therefore, there is an 

urgent and strong need for global action to mitigate GHG emissions. 

With the current climate change mitigation policies, the world is exceeding the 1.5°C limit of 

the Paris Agreement and heading toward a 2.7°C warming (CAT 2022). Notably, the benefits 

of mitigation will be in the long term, starting in mid-century (Estrada and Botzen 2021). 
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Therefore, only adaptation and DRR can reduce the climatic disaster impacts and residual loss 

and damage in the following few decades (UNEP 2021). Moreover, several adaptations and 

DRR options are already in place, successfully reducing vulnerability to climate change and 

increasing community resilience (MoPE/NCCSP 2016; Mishra et al. 2017). This study 

observed a decreasing trend of disaster vulnerability in Nepal, potentially due to the progress 

in DRR, adaptation, weather forecast, early warning systems, and overall socioeconomic 

development. Without the progress in vulnerability reduction, disaster-related human fatality 

could have increased much faster than the observed trend. Despite the progress made, disaster 

vulnerability and mortality remain high in Nepal, particularly in the rural regions. 

SDG 11 and SFDRR aimed to substantially increase the national and local DRR and adaptation 

strategies by 2020 (UNISDR 2015; United Nations 2015). Globally, 125 countries have 

developed national DRR strategies (Target E of the SFDRR), and ~84% of the countries 

worldwide have prepared national adaptation plans, strategies, or policies (UNDRR and WMO 

2022; UNEP 2022). The number of countries with local DRR strategies almost doubled from 

51 in 2015 to 98 in 2021 (United Nations 2022). However, progress still needs improvement 

in low-income countries, such as Nepal, mainly in developing the local DRR and adaptation 

plans. Only 30% of local administrative units of Nepal had local DRR strategies until 2019 

(NPC 2020). These national and local plans have substantial financial and implementation 

gaps. The financing needs for adaptation in developing countries are five to ten times greater 

than the current international adaptation finance flow, and the gap continues to widen (UNEP 

2022). Nepal requires USD 47.4 billion between 2021 and 2050 to implement priority 

adaptation programs, of which USD 8.5 billion is for the climatic disasters sector (Government 

of Nepal 2021). However, the average climate finance commitment received during 2013–2017 

was USD 383 million USD per year, and only 53% of the commitment received was for 

adaptation projects (Rai et al. 2020). There has been progress in establishing multi-hazard early 

warning systems globally. Still, only one-third of SIDs and less than half of the LDCs are 

covered by early warning systems (UNDRR and WMO 2022). Such finance and 

implementation gaps, as well as the limits to adaptation, increase the risk of climatic disasters-

induced loss and damage. 

Loss and damage in this context are the residual economic and noneconomic impacts 

(observed) and risks (projected) due to climate change, including extreme events and slow-

onset events that are beyond the adaptation limits (Mechler et al. 2019; IPCC 2022b). In the 
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global climate negotiations, poor and vulnerable countries have been calling for a burden-

sharing mechanism, including compensation for unavoidable loss and damage caused by 

climate change (Deubelli and Mechler 2021). In 2013, the Warsaw International Mechanism 

for Loss and Damage was established under the UNFCCC mechanism (UNFCCC 2015). 

Similarly, the importance of addressing loss and damage was agreed upon in Article 8 of the 

Paris Agreement in 2015. Finally, the country parties agreed in the recently adopted Sharm el-

Sheikh Implementation Plan in the COP 27 and CMA 4 to establish a funding arrangement for 

responding to loss and damage (UNFCCC 2022). However, loss and damage is often 

interpreted as issues of responsibility, blame, and liability (James et al. 2019). Attribution has 

been the major issue in this global debate (Bouwer 2019; James et al. 2019). This is the first 

empirical study from the global south on the attribution of disaster mortality to climatic and 

socioeconomic changes using a regression-based approach. The study findings help strengthen 

the argument of Nepal and other climate change–impacted countries for establishing and 

implementing the mechanisms to address loss and damage. Therefore, the relevance of this 

research is very high for global climate policy, including loss and damage and international 

climate finance. 

At the national scale, Nepal has developed the National Adaptation Plan (2021–2050) and 

identified 64 priority adaptation programs in eight thematic and four cross-cutting sectors in 

the short, medium, and long terms (Government of Nepal 2021). Disaster Risk Reduction and 

Management is one of the priority thematic sectors in the National Adaptation Plan. Similarly, 

Nepal has approved the Disaster Risk Reduction and Management Act 2017, the National 

Policy for Disaster Risk Reduction 2018, and the National Climate Change Policy 2019. These 

policies and plans aim to make the country climate-adaptive and resilient (MoHA 2018; 

Government of Nepal 2021). However, planning and implementing these policies and plans at 

the subnational scale remain a considerable challenge. This study provides critical information 

on high-risk and vulnerable areas to climatic disasters at the local administrative unit scale in 

Nepal. Similarly, this study provides the future scenarios of climate extremes and the sectoral 

risks in one of the most vulnerable regions Karnali. Responsible authorities, such as local 

administrative units, province and federal ministries, national planning commission, 

development partners and donors can use the results to plan and implement adaptation and 

DRR projects. An example of an actual application of the findings of this study is the Climate-

Resilient Landscapes and Livelihoods project in western Nepal, developed by the Asian 

Development Bank and the Government of Nepal. A part of this study contributed to the 
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assessment of climate change impacts, vulnerability, and adaptation options at the community 

and landscape scale for designing a USD 50 million project in Karnali and Sudurpashchim 

provinces in western Nepal. 
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5.3. Future research needs 

This study is based on a state-of-the-art methodology and the most robust data currently 

available for a low-income country like Nepal. Nevertheless, climate change impacts 

attribution science and future risks projections are complex, dynamic, and subject to several 

uncertainties. Therefore, continuous research is necessary to improve the understanding of this 

complex global problem. 

This study focuses on Nepal as a low-income country. However, the results may not be entirely 

true for other countries. The types of climatic disasters observed in Nepal differ from other 

countries because of the geographic and climatic differences. Hence, our study does not provide 

insights on other important climatic disasters such as coastal flooding, cyclone, and drought. 

Therefore, similar studies should be replicated in other countries and regions and on a global 

scale to understand the role of climate change in disaster and other impacts at different settings 

and scales. In the case of Nepal, this study focused on Landslides and Floods for the attribution 

study. However, similar assessments could be carried out for other disaster types, such as 

thunderstorms, cold and heatwaves, snowstorms, and avalanches. More national and sub-

national scale studies will help improve the disaster type specific adaptation and DRR planning 

in the study location. It will also generate more empirical evidence to strengthen the attribution 

science of climate change impact. Similarly, regional and global scale studies will help 

compare the countries and regions. This is important to inform global policies and actions. 

This study provides projections of future climate extremes in western Nepal. However, the 

study of their potential consequences on different sectors was limited to qualitative analysis 

based on expert interviews and a literature review. Therefore, another crucial research step is 

the application of our climate extreme indices projections as inputs in various sector specific 

risk assessment models to quantitatively project the future risks in various scenarios and time 

frames. Similarly, this study proposed statistical models to predict future risks of climate-

related disaster mortality in different climate and socioeconomic scenarios. An important 

follow-up of this research is the use of climate projection data and socioeconomic scenarios 

data in our proposed statistical models to estimate the future climatic disaster mortality in 

Nepal. Such future projections will provide vital information about scenario-based adaptation 

and DRR planning. 
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In addition to human mortality, several other aspects of disaster impacts exist. Applying this 

approach to investigate the trends and attribution of other disaster impacts, such as direct and 

indirect economic losses, disaster morbidity and health costs, and displacement, can be of equal 

value. However, significant improvement in disaster impact data may be necessary because 

such impacts still need to be recorded and quantified compared with disaster mortality. Among 

the drivers of disaster impacts, hazards and exposure are relatively better incorporated in the 

existing literature compared to vulnerability. Future research could improve this gap by 

incorporating more and better measures of vulnerability, adaptation, and DRR. In the case of 

Nepal, CBS is soon releasing new and comprehensive socioeconomic data from the 2021 

national census. This 2021 census data could be extremely valuable in estimating the updated 

socioeconomic vulnerability index and other indicators of vulnerability and exposure. 

Finally, long-time, high-quality, and high-resolution data can improve research results. 

Therefore, the geocoding of disaster locations and delineation of disaster-specific exposure 

boundaries should be further improved. Importantly, denser networks of meteorological 

stations should be used for the observed climate data. Moreover, including more indicators of 

explanatory variables for disaster impacts, particularly vulnerability indicators, can further 

improve the accuracy of causality. Using new and evolving technologies, such as satellite data, 

artificial intelligence, and machine learning techniques for data collection and analysis, could 

help to fill the data gap. 
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Appendices 

Table A2.1: List of disaster types included in this study and respective disaster types as listed 

in the DesInventar and Nepal DRR Portal database. 

Disaster Types 

Grouped in this study As listed in DesInventar As listed in Nepal DRR Portal 

Landslides Landslides Landslides 

Floods and heavy rains 

Floods 

Rains 

Floods 

Heavy Rainfall 

Flash Floods 

Thunderstorms Thunderstorms Thunderbolt 

Cold waves and frosts 
Cold Waves 

Frosts 

Cold Waves 

Frosts 

Windstorms 

Strong Wind 

Storms 

Strong Wind 

Wind Storms 

Storms 

Snowstorms and avalanches 
Snow Storms 

Avalanches 

Snow Storms 

Avalanches 

Heat waves Heat Waves Heat Waves 

Hailstorms 
Haim Storms Hailstones 

Hail Storms 

 

Table A2.2: List of analytical dimensions of the Nepal Living Standard Survey (NLSS). 

S. No. NLSS Analytical Dimensions 

1.  Mountains 

2.  Urban-Kathmandu 

3.  Urban-Hills 

4.  Urban-Tarai 

5.  Rural-Hills-Eastern 

6.  Rural-Hills-Central 

7.  Rural-Hills-Western 

8.  Rural-Hills-Mid & Far Western 

9.  Rural-Tarai-Eastern 

10.  Rural-Tarai-Central 

11.  Rural-Tarai-Western 

12.  Rural-Tarai-Mid & Far Western 
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Figure A2.1: Spatial distribution of climatic disaster impacts (total mortality) by disaster 

types in Nepal during 1992-2021. The color code range in the maps is manually created and 

the range values are as shown in the legend. 
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Figure A2.2: Spatial distribution of climatic disaster vulnerability (average annual mortality 

per 100K people exposed) by disaster types in Nepal during 1992-2021. The color code range 

in the maps is manually created and the range values are as shown in the legend.
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Table A2.3: Results of the regression analysis. 

 Dependent variable: No. of people died (log) 

 OLS model Location fixed effect model 

Constant 3.533*** (0.215)  

No. of people exposed to disaster (log) 
 

-0.039*** (0.014) 0.039 (0.095) 

No. of disaster incidences recorded (log) 1.164*** (0.025) 1.156*** (0.028) 

Per capita income (log) -0.265*** (0.021) -0.345*** (0.030) 

 

Observations 3,683 3,683 

R2 0.38 0.521 

Adjusted R2 0.38 0.402 

Residual Std. Error 0.586 (df = 3679) 0.575 (df = 2948) 

F Statistic 752.81*** (df = 3; 3679) 4.373*** (df = 734; 2948) 

Note: 

*p<0.1; **p<0.05; ***p<0.01 

Estimate std. error in parentheses 

 

Table A3.1: Descriptive statistics of dependent variable. 

Parameter Landslide mortality Flood mortality 

Observations (n) 13020 15420 

Mean 0.28 0.21 

Variance 3.97 16.9 

Dispersion 

(Dispersion test results for Poisson model) 

12.23 

(p-value = 0.0016) 

70.34 

(p-value = 0.0821) 
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Table A3.2: Comparison of OLS and count data regression models. Explanatory variables in standardized Z-score. 

 Dependent variable: number of fatalities due to landslides 

 
Linear Poisson Negative Binomial Zero-Inflated Poisson 

Zero-Inflated Negative 

Binomial 

Predictors Estimates std. Error p IRR std. Error p IRR std. Error p IRR std. Error p IRR std. Error p 

Intercept 0.28 0.02 <0.001 0.16 0.01 <0.001 0.20 0.01 <0.001 1.90 0.11 <0.001 0.61 0.14 0.033 

Pop. density -0.01 0.02 0.586 0.95 0.04 0.206 0.95 0.05 0.294 1.02 0.06 0.770 0.96 0.05 0.432 

Per capita income -0.00 0.02 0.994 1.06 0.02 0.005 1.06 0.06 0.235 0.75 0.02 <0.001 0.70 0.04 <0.001 

R10mm 0.14 0.02 <0.001 1.72 0.05 <0.001 1.69 0.09 <0.001 1.29 0.04 <0.001 1.45 0.10 <0.001 

Zero-Inflated Model 

Intercept          9.09 0.42 <0.001 1.56 0.64 0.283 

Pop. density          1.03 0.05 0.507 0.99 0.09 0.878 

Per capita income          0.71 0.03 <0.001 0.45 0.08 <0.001 

R10mm          0.76 0.03 <0.001 0.77 0.06 <0.001 

Random Effects 

σ2 3.94 1.91 3.26 0.01 0.00 

τ00 0.01 Local units 0.81 Local units 0.23 Local units 0.72 Local units 0.32 Local units 

ICC 0.00 0.30 0.07 0.99 1.00 

N 434 Local units 434 Local units 434 Local units 434 Local units 434 Local units 

Observations 13020 13020 13020 13020 13020 

Marginal R2 0.005 0.099 0.075 0.164 0.466 

AIC 54870.8 22536.7 11376.1 12750.5 11277.2 

BIC 54915.6 22574.1 11421.0 12795.4 11326.1 
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Table A3.3: Results of mixed effects zero-inflated negative Binomial models. Flood mortality as dependent 

variable and indicators of exposure, vulnerability, and hazard (in standardized Z-score) as explanatory 

variables. 

 Dependent variable: number of fatalities due to floods 

 (1) (2) (3) (4) (5) (6) 

Predictors IRR p IRR p IRR p IRR p IRR p IRR p 

Count Model 

Intercept 0.35 <0.001 0.37 <0.001 0.36 <0.001 0.40 <0.001 0.42 <0.001 0.41 <0.001 

Pop. density 1.00 0.987 1.04 0.569 1.00 0.975 1.04 0.531 1.03 0.637 1.04 0.547 

Per capita income 0.60 <0.001 0.58 <0.001 0.60 <0.001 0.57 <0.001 0.55 <0.001 0.57 <0.001 

CWD 1.04 0.617           

PRCPTOT   1.16 0.034         

R10mm     1.06 0.399       

R95pTOT       1.31 <0.001     

RX1day         1.33 <0.001   

SDII           1.16 0.025 

Zero-Inflated Model 

Intercept 0.99 0.981 1.21 0.397 1.03 0.890 1.64 0.014 1.96 <0.001 1.55 0.029 

Pop. density 0.67 0.142 1.12 0.425 0.77 0.315 1.20 0.026 1.21 0.014 1.19 0.042 

Per capita income 0.22 <0.001 0.22 <0.001 0.21 <0.001 0.26 <0.001 0.29 <0.001 0.26 <0.001 

CWD 0.85 0.102           

PRCPTOT   0.69 <0.001         

R10mm     0.79 0.009       

R95pTOT       0.68 <0.001     

RX1day         0.66 <0.00   

SDII           0.74 <0.001 

Random Effects 

σ2 0.00 0.00 0.00 0.00 0.00 0.00 

τ00 0.77 Local units 0.83 Local units 0.78 Local units 0.85 Local units 0.90 Local units 0.86 Local units 

ICC 1.00 1.00 1.00 1.00 1.00 1.00 

N 514 Local units 514 Local units 514 Local units 514 Local units 514 Local units 514 Local units 

Observations 15420 15420 15420 15420 15420 15420 

Marginal R2 0.254 0.264 0.257 0.304 0.303 0.267 

AIC 10695.5 10626.4 10680.7 10536.4 10471.8 10631.6 

BIC 10746.5 10677.3 10731.6 10587.3 10522.7 10682.5 
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Table A3.4: Results of mixed effects zero-inflated negative Binomial models. Landslide mortality as 

dependent variable and indicators of exposure, vulnerability, and hazard (in standardized Z-score) as 

explanatory variables. 

 Dependent variable: number of fatalities due to landslides 

 (1) (2) (3) (4) (5) (6) 

Predictors IRR p IRR p IRR p IRR p IRR p IRR p 

Count Model 

Intercept 0.50 0.001 0.60 0.035 0.61 0.033 0.69 0.103 0.79 0.195 0.64 0.069 

Pop. density 0.98 0.703 0.97 0.490 0.96 0.432 0.95 0.381 0.95 0.399 0.95 0.313 

Per capita income 0.75 <0.001 0.69 <0.001 0.70 <0.001 0.70 <0.001 0.69 <0.001 0.69 <0.001 

CWD 1.34 <0.001           

PRCPTOT   1.41 <0.001         

R10mm     1.45 <0.001       

R95pTOT       1.16 0.020     

RX1day         1.23 <0.001   

SDII           1.29 <0.001 

Zero-Inflated Model 

Intercept 0.97 0.942 1.56 0.307 1.56 0.283 1.96 0.066 2.61 <0.001 1.67 0.224 

Pop. density 0.89 0.437 1.01 0.868 0.99 0.878 1.02 0.862 1.04 0.616 1.02 0.760 

Per capita income 0.36 <0.001 0.45 <0.001 0.45 <0.001 0.50 <0.001 0.55 <0.001 0.47 <0.001 

CWD 0.74 0.001           

PRCPTOT   0.71 <0.001         

R10mm     0.77 <0.001       

R95pTOT       0.72 <0.001     

RX1day         0.72 <0.001   

SDII           0.81 0.003 

Random Effects 

σ2 0.00 0.00 0.00 0.00 0.00 0.00 

τ00 0.28 Local units 0.33 Local units 0.32 Local units 0.42 Local units 0.50 Local units 0.39 Local units 

ICC 1.00 1.00 1.00 1.00 1.00 1.00 

N 434 Local units 434 Local units 434 Local units 434 Local units 434 Local units 434 Local units 

Observations 13020 13020 13020 13020 13020 13020 

Marginal R2 0.41 0.44 0.47 0.26 0.25 0.34 

AIC 11310.4 11258.9 11277.2 11318.8 11280.9 11334.9 

BIC 11359.3 11307.7 11326.1 11367.7 11329.7 11383.8 
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Table A4.1: List and details of meteorological stations selected for this study. 

 

Station Name Index No. District Latitude Logitude Elevation Region 

Dadeldhura s104 Dadeldhura 29.300 80.583 1848 Highland 

Chainpur (West) s202 Bajhang 29.550 81.217 1304 Highland 

Tikapur s207 Kailali 28.533 81.117 140 Lowland 

Dhangadi Airport s209 Kaliali 28.800 80.550 187 Lowland 

Jumla s303 Jumla 29.283 82.167 2300 Highland 

Chisapani s405 Bardiya 28.650 81.267 225 Lowland 

Birendranagar s406 Surkhet 28.600 81.617 720 Lowland 

Chaur Jhari Tar s513 Rukum 28.633 82.200 910 Lowland 

Musikot s514 Rukum 28.633 82.483 2100 Highland 
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Table A4.2: Details of the 19 CORDEX-SA RCMs used in Dhaubanjar et al. 2020. All RCMs have 0.44° spatial resolution [adapted from 

Dhaubanjar et al. 2020]. 

 

S. 

No. 

Short Name 

(GCM_RCM) 

Driving GCM CORDEX-SA RCM 

description 

RCM modeling Centre Timeframe Coordinate system 

1.  ACCESS_CCAM ACCESS1.0 CSIRO-CCAM-1391 

M: Conformal 

cubical atmospheric 

model (McGregor 

and Dix, 2001) 

Commonwealth scientific 

and industrial research 

organization (CSIRO), 

marine and atmospheric 

research, Melbourne, 

Australia 

Hist: 1970–2005 

RCP4.5/8.5:2006–2099 

Regular 

2.  CNRM_CCAM CNRM-CM5 Hist: 1970–2005 

RCP4.5/8.5:2006–2099 

Regular 

3.  GFDL_CCAM GFDL-CM3 Hist: 1970–2005 

RCP4.5:2006–2070 

RCP8.5:2006–2099 

Regular 

4.  MPI_CCAM MPI-ESM-LR Hist: 1970–2005 

RCP4.5/8.5:2006–2099 

Regular 

5.  NorESM_CCAM NorESM-M Hist: 1970–2005 

RCP4.5:2006–2099 

RCP8.5: None 

Regular 

6.  HadGEM_RA HadGEM2-AO HadGEM3-RA: 

HadGEM3 regional 

atmospheric model 

(Moufouma-Okia 

and Jones, 2014) 

Met Office Hadley Centre 

(MOHC), UK 

Hist: 1970–2005 

RCP4.5/8.5:2006–2100 

Curvilinear 

rotated_Latitude_long

itude 

7.  CNRM_RCA4 CNRM-CM5 Hist: 1951–2005 Rotated pole 
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SMHI-RCA4: 

Rossby Centre 

regional atmospheric 

model version 4 

(Samuelsson et al., 

2011) 

Rossby Centre, Swedish 

Meteorological and 

Hydrological Institute 

(SMHI), Sweden 

RCP: 2006–2100 

8.  ICHEC_RCA4 ICHEC-EC-

EARTH 

Hist: 1970–2005 

RCP: 2006–2100 

Rotated_latitude_Lon

gitude 

9.  IPSLMR_RCA4 IPSL-CM5A-

MR 

Hist: 1951–2005 

RCP: 2006–2100 

Rotated_pole 

10.  MIROC5_RCA4 MIROC-

MIROC5 

Hist: 1951–2005 

RCP: 2006–2100 

Rotated_pole 

11.  MPI_RCA4 MPI-ESM-LR Hist: 1951–2005 

RCP: 2006–2100 

Rotated_pole 

12.  NOAA_RCA4 NOAA-GFDL-

GFDL-ESM2M 

Hist: 1951–2005 

RCP: 2006–2100 

Rotated_pole 

13.  MPI_REMO MPI-ESM-LR MPI-CSC-

REMO2009: MPI 

regional model 2009 

(Teichmann et al., 

2013) 

Climate service Centre 

(CSC), Germany 

Hist: 1970–2005 

RCP: 2006–2100 

Regular 

14.  CanESM2_RegCM4 CCCma-

CanESM2 

IITM-RegCM4 Centre for Climate 

Change Research 

Hist: 1951–2005 

RCP4.5/8.5:2006–2099 

Rotated_mercator 

15.  CNRM_RegCM4 CNRM-CM5 The Abdus Salam 

International Centre 

for Theoretical 

Physics Regional 

Climatic Model 

(CCCR), Indian Institute 

of Tropical Meteorology 

(IITM), India 

Hist: 1951–2005 

RCP4.5:2006–2099 

RCP8.5:2006–2085 

Rotated_mercator 

16.  CSIRO_RegCM4 CSIRO-Mk3.6 Hist: 1951–2005 

RCP4.5/8.5:2006–2099 

Rotated_mercator 
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17.  IPSLLR_RegCM4 IPSL-CM5A-

LR 

version 4 (Giorgi et 

al., 2012) 

Hist: 1951–2005 

RCP4.5/8.5:2006–2099 

Rotated_mercator 

18.  MPIMR_RegCM4 MPI-ESM-MR Hist: 1951–2005 

RCP4.5/8.5:2006–2099 

Rotated_mercator 

19.  NOAA_RegCM4 NOAA-GFDL-

GFDL-ESM2M 

Hist: 1970–2005 

RCP: 2006–2099 

Curvilinear_rotated_

mercator 
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Table A4.3: List of consulted experts during indices selection process and study of sectoral implications. 

 

S. No. Name Affiliation Sector 

1 Dipak Gyawali 
Nepal Academy of Science and Technology 

(NAST) 

Water Resource and Energy, Climate Induced 

Disaster, Agriculture and Food Security, Tourism 

2 Dr. Khadga Bahadur Bisht IPPAN Water Resource and Energy 

3 Anup Gurung Nepal Kayak Club Tourism 

4 Dr. Sanjeev Bhuchar 
International Centre for Integrated Mountain 

Development (ICIMOD) 
Tourism 

5 Dr. Ram Chandra Bastakoti 
National Planning Commission, Government 

of Nepal 
Agriculture and Food Security 

6 Bishnu Prasad Paudel 
Nepal Agricultural Research Council 

(NARC), Government of Nepal 
Agriculture and Food Security 

7 Dr. Madhav Karki 
IUCN Commission on Ecosystem 

Management 
Forest and Biodiversity, Agriculture and Food Secutiry 

8 Sadiksha Rai 
Department of Water Resources and 

Irrigation, Government of Nepal 
Water Resource and Energy, Climate Induced Disaster 

9 Dr. Sailesh Ranjitkar 
Honghe Center of Mountain Futures, 

China/Mid-Western University, Nepal. 
Agriculture and Food Security, Forest and Biodiversity 

10 Anup KC Clemson University, USA Tourism 

11 Rajan Thapa Oxford Policy Management Climate Induced Disaster 
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12 Dr. Rocky Talchabhadel Texas A&M University, USA Climate Induced Disaster 

13 Jeeban Panthi University of Rhode Island, USA 
Water Resources and Energy, Climate induced 

Disaster 

14 Dr. Meghnath Dhimal Nepal Health Research Council (NHRC) Public Health 

15 Dr. Uttam Khanal 
Queensland University of Technology, 

Australia 
Agriculture and Food Security 
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Figure A4.1: Sectoral background of participants in stakeholder consultation workshop. 

 

Figure A4.2: Projected annual and seasonal mean temperature index trends for Karnali by 

future timeframe and geographical region in the RCP4.5 scenario. The middle dark lines 

represent the mean; the boxes represent the interquartile range; the whiskers represent the 

minimum and maximum values; and the dots represent outliers. 
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Figure A4.3: Projected absolute-value-based extreme temperature index trends for Karnali 

by future timeframe, geographical region, and emission scenario. Symbols are as defined in 

Fig. S2. 
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Figure A4.4: Projected percentile- and duration-based extreme temperature index trends for 

Karnali by future timeframe, geographical region, and emission scenario (different y-axis 

scales are used for each index). Symbols are as defined in Fig. S2. 


