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Abstract

The surfaces of 3D shapes are discretized by surface meshes that represent them in a
processable way. This enables simulations of deforming components in CAE, animations
for movies, or representations of human organs to plan operations. Since surface meshes
are relevant in different areas, the amount of 3D surface meshes representing diverse
shapes is constantly growing.

Since many datasets containing surface meshes are high-dimensional, we are interested
in low-dimensional shape features that enable the analysis of the dataset structure.
Nevertheless, reducing the redundancies while preserving the essential information is
not trivial. We need to disentangle the features from the mesh representation to create
global shape features invariant to the discretization by the mesh.

Many dimension reduction methods for surface meshes calculate spectral shape fea-
tures exploiting the basis defined by decomposing the Laplace-Beltrami operator. More
recently, machine learning approaches have been applied to learn features for surface
meshes, especially autoencoders in combination with mesh coarsening, which facilitates
the dimension reduction. Nevertheless, the approaches depend on fixed surface mesh
connectivity in the studied datasets. This limits not only the types of datasets that can
be analyzed but also the transfer of learned methods and knowledge to different data.

To address these issues, I introduce two novel learning-based approaches for encoding
3D surface meshes in a low-dimensional space.

In the first approach, I transform the discretization of the surfaces to meshes with
locally regular connectivity and hierarchical meshing. It allows me to divide the surfaces
into patches, to which I then apply different convolutional methods for learning hierar-
chical features. The resulting Convolutional Semi-Regular Mesh Autoencoder (CoSMA)
reconstructs surfaces not presented during training and generalizes the deformation be-
havior of the surface patches. In addition, I introduce a flexible optimization-based
semi-regular remeshing algorithm that can handle a wide range of surface meshes and is
tailored to the learning method.

In the second approach, I use correspondence maps between shapes to define a low-
dimensional basis where all shapes are represented independently of their mesh repre-
sentation. To this end, I propose a spectral mesh pooling technique that establishes this
universal latent space, breaking free from the traditional constraints of mesh connec-
tivity. The resulting network is called Canonical Consistent Latent Basis-Autoencoder
(CCLB-AE).

In comparison to baselines, I can apply my networks to larger and more diverse
datasets, whereas baselines handle only surface meshes with fixed mesh connectivity. The
methods successfully learn shape features that reveal the structure of several datasets
from different domains. Additionally, the reconstructions of the proposed methods are
of higher quality than those of the baseline models. Moreover, the smooth embedding
space allows for the generation of shapes by combining the learned low-dimensional
shape representations. I conduct further experiments to evaluate the patch-based ap-
proach to learning hierarchical features for other tasks and predict time series in the
joint CCLB-autoencoder embedding space.
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Notation and Acronyms

Notations

Surfaces

M(V,F) triangular polygonal mesh defined by n vertices V ⊂ Rd and
a set of triangular faces F ⊂ V × V × V

V ⊂ Rd set of vertices v1, . . . , vn
n ∈ N number of vertices
F ⊂ V × V × V set of faces, pointing to the vertices that define them
E ⊂ V × V set of edges, pointing to the vertices that define them
A ∈ Rn×n adjacency matrix of a graph or surface
f : V → RF function defined on the vertices V
Nr(v) r-ring neighborhood of vertex v
DRn×n diagonal degree matrix
rl ∈ N refinement level of a semi-regular mesh
dV (M,M′) vertex-wise mean squared error between two triangular polyg-

onal meshes M and M′

dC(M,M′) average chamfer distance between two triangular polygonal
meshes

dH(M,M′) Hausdorff distance between two triangular polygonal meshes
dOT (M,M′) Optimal Transport distance between two triangular polygonal

meshes
dgeod(v, w) geodesic distance between points v and w on a surface
LC ∈ Rn×n combinatorial graph Laplacian
LN ∈ Rn×n normalized graph Laplacian
LB ∈ Rn×n Laplace-Beltrami operator
F ∈ Rn×F F -dimensional vertex-wise features
F dimension of the vertex-wise features
Φ ∈ Rn×k projection matrix to k-dimensional spectral basis
•† left Moore-Penrose pseudo-inverse
A ∈ Rk×F F -dimensional spectral features
T12 : M1 → M2 vertex-wise point-to-point map
Π12 ∈ Rn2×n1 matrix representation of point-to-point map T12

C21 ∈ Rk×k functional map that maps functions defined in the spectral
basis of M2 to the spectral basis of M1

G graph describing a functional map network
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Yi ∈ Rk1×k1 consistent latent basis functions to mesh Mi given a functional
map network

k or k1 dimension of the functional maps for a shape collection

Ỹi ∈ Rk1×k2 canonical consistent latent basis (CCLB) functions to shape
Mi given a functional map network

ACCLB
i ∈ Rk2×F F -dimensional spectral features in the CCLB

Learning

fθ : Rn → Rm neural network with learnable parameters θ
xi ∈ Rn, i = 1, . . . , d d input data points
yi ∈ Rm, i = 1, . . . , d corresponding output data
ŷi predicted output
l : Rm × Rm → R training loss function, for example, the MSE lMSE or cross

entropy lCE

aj : R → R activation function
lj : Rnj → Rnj+1 function describing layer j of a neural network
nj ∈ N number of nodes of layer j
o output of a layer
Wj ∈ Rnj+1×nj weight matrix of fully connected layer j
bj ∈ Rnj+1 bias term of fully connected layer j
(Wconv)j ∈ Rk×k one-channel convolutional kernel matrix at layer j
∗ convolution operator
hi ∈ Rhr feature representation of input xi calculated by encoder en of

an autoencoder
en : Rn → Rhr encoder of an autoencoder network
de : Rhr → Rn decoder of an autoencoder network
hr latent dimension of the autoencoder

CoSMA

vp ∈ Rm×3 m vertex coordinates of patch p

WKS
hex hexagonal convolutional filter with 1 +

∑KS
k=1 6k trainable pa-

rameters
KS ∈ N kernel size of a hexagonal convolutional filter
HexConvKS function describing the hexagonal spatial convolution
WCh ∈ RK trainable parameters of a one-channel Chebyshev convolu-

tional filter
K ∈ N filter size of a Chebyshev convolutional filter
ChebConvK function describing the Chebyshev spectral convolution
PS ∈ N padding size
Pad(vp) padded patch vp

viii
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Phex pooling function applied to a regularly meshed patch
UPhex unpooling function
hrp patch-wise embedding dimension for CoSMA models
enCoSMA, deCoSMA CoSMA encoder and decoder
MSESA(vp, v̂p) ∈ R surface-aware mean squared error between input patch coor-

dinates vp and their reconstruction v̂p

CCLB-autoencoder

PSpec : Rn×F → Rk2×F spectral mesh pooling
UPSpec : Rk2×F → Rnt×F spectral mesh unpooling
Mt template mesh with nt vertices
enCCLB, deCCLB encoder and decoder of the CCLB-autoencoder
Vrec ∈ Rn×3 reconstructed vertex positions
L1 : Rn×3 × Rnt×3 → R point-to-point loss for evaluating a CCLB-autoencoder recon-

struction
L2 : Rn×3 × Rnt×3 → R reconstruction loss for evaluating a CCLB-autoencoder recon-

struction
DV ∈ Rn×n vertex-to-vertex distance matrix of vertices V
λrec ∈ R weight of the reconstruction loss for CCLB-AE

Semi-regular Remeshing

Mcoarse,k coarse base mesh with k faces
MIR mesh with irregular connectivity
MSR,j semi-regular mesh of refinement level j with nj vertices VSR,j

dC,geod(M,M′) ∈ R chamfer distance weighted by geodesic distance
dB(M,M′) ∈ R boundary loss between two triangular polygonal meshes
rE(M ∈ R) edge length regularizer
rL(M) ∈ R Laplacian smoothing regularizer
rN (M) ∈ R regularizer enforcing normal consistency
ωB, ωE , ωL, ωN ∈ R regularization weights
ζj ∈ Rnj deformation vector fitting vertices of MSR,j to MIR

Experiments

RecErr(M,Mrec) ∈ R reconstruction error between M and Mrec used for evaluation

Li, L̂i true and predicted face labels
Vpred ∈ Rn×3 predicted vertex positions
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Acronyms

CCLB-AE canonical consistent latent basis autoencoder
CoSMA convolutional semi-regular mesh autoencoder
3D three-dimensional
2D two-dimensional
SR semi-regular
OT optimal transport
p2p map point-to-point map
FM functional map
FMN functional map network
CCLB canonical consistent latent basis
hks heat kernel signature
wks wave kernel signature
NN neural network
MSE mean squared error
CE cross entropy
CNN convolutional neural network
AE autoencoder
PCA principal component analysis
VAE variational autoencoder
KL Kullback–Leibler (divergence)
GAN generative adversarial network
DMD dynamic mode decomposition
GT ground truth
kNN k-nearest neighbor
mIoU mean Intersection-over-Union
GPU graphics processing unit
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1 Introduction

In many applications, we are interested in deformations of shapes or processes on their
surface. This includes simulations or digital twins for cars and airplanes, animated
shapes for computer games and movies, weather predictions on the surface of the earth, or
models of human organs for planning operations. In order to digitalize and process these
tasks on a computer, the surfaces of the shapes have to be discretized and represented in
a processable way. 3D surface meshes are flexible surface representations that discretize
the surface by multiple small faces, mostly of triangular or rectangular shape, similar
to how a soccer ball is divided into small patches. Since this representation is common
and its creation is, in many cases, done automatically, the amount of 3D surface meshes
representing diverse shapes is constantly growing. For the analysis of these meshes and
the processing to solve the specific tasks, we need to extract necessary information from
the data sets. Nevertheless, this extraction of information from 3D data is not trivial.
Since the shape size, deformation, and mesh representation depend on the application,
hand-crafted solutions combined with human inspection are often applied to structure
and analyze the data.

For introduction

FAUST 47, SCAPE 6, horse 9, elephant 6
Selection of surface meshes.

3D surface meshes are generally represented by
tens of thousands of faces. They contain abun-
dant features and are, therefore, high-dimensional
and unwieldy. Analyzing high-dimensional data is
time-consuming and sometimes not manageable us-
ing the available computational resources. Also,
redundancies in the data make comparative anal-
ysis difficult. Low-dimensional representations of
the data evade these difficulties by reducing the re-
dundancies in the data while preserving the essen-
tial information. Since these representations are of
lower dimensionality, the data needs less storage,
the dataset structure becomes visible, and many
times, they allow easier handling by a computer.
For example, while for a human, the meanings of
words or even sentences are easily compared and
put into context, the success of recent large lan-
guage models [DCLT19, TLI+23] depends highly
on significant word embeddings. These word em-
beddings represent the meanings of words of differ-
ent lengths by real values [MSC+13, PNI+18].

In this work, I propose novel approaches to calculate low-dimensional representations

1



Chapter 1. Introduction

for surface meshes and evaluate the learned representations in follow-up tasks analyzing
the datasets. Because most state-of-the-art methods specialize in one type of shape, for
example, only humans, with fixed mesh representations, my proposed approaches and
methods loosen this strong constraint and aim to handle more diverse collections of 3D
surface meshes.

Calculating Low-dimensional Representations

Low-dimensional representations are obtained using various techniques. Dimension re-
duction methods project the data to a lower dimensional space using, for example, prin-
cipal component analysis [Pea01]. More recent machine learning methods use so-called
autoencoders to learn a function from the data that calculates the low-dimensional fea-
tures. The learned features are trained to fulfill requirements for specific tasks, from re-
construction of the input to classification, anomaly detection, or interpretability [Mur22].
The approach and method to learn the features depend highly on the data type. While
convolutional neural networks learn significant features for images, transformer models
with attention modules calculate meaningful representations for texts. Since these meth-
ods calculate low-dimensional representations that are not known beforehand but are to
be identified by the methods, they fall in the category of unsupervised learning.

Low-dimensional Representations for 3D Surface Meshes

Many dimension reduction methods for surface meshes representing 3D shapes calculate
spectral shape features by projecting to a basis defined by eigenvectors of the so-called
Laplace-Beltrami operator or using the eigenvalues of the operator [KG00, RWP06,
RBG+09, ITG19]. More recently, machine learning approaches have been applied to
learn features for surface meshes [BBL+17, BBCV21, WNEH22, SACO22]. Because
the surface meshes are locally two-dimensional, many of these methods are inspired by
convolutional neural networks for 2D images. Convolutional neural networks for 2D
images calculate global features by sliding local filters along the vertical and horizontal
axes and then downsampling the resolution by applying the so-called pooling. Figure
1.1 visualizes these operations. Nevertheless, surface meshes do not align along a global
grid structure that facilitates these operations. While existing convolutional layers for
surface meshes calculate local vertex-wise features, there are no general solutions for
pooling on surface meshes. However, methods that learn surface representations must
disentangle the local features from the given surface mesh to calculate global lower
dimensional shape features. If all of the meshes share the same mesh connectivity,
many methods coarsen all the meshes iteratively by reducing the number of faces in a
fixed pattern and calculating hierarchical features at different levels of detail [RBSB18,
BBP+19, ZWL+20]. Autoencoders apply this downsampling by mesh coarsening to
calculate meaningful compact representations for the shapes, and they provide a function
for the reconstruction that allows shape editing or generation.

2



2D Convolution Pooling

Figure 1.1: Convolution and pooling on 2D images and transferring the idea of convolu-
tional filters to surface meshes, where filters cannot be aligned nor translated
along a global grid.

Low-dimensional Representations for 3D Surface Meshes of Different Mesh
Connectivity

Both dimension reduction methods for surface meshes, based on the decomposition of
a discrete Laplace-Beltrami operator or coarsening of the mesh, depend on fixed mesh
connectivity for all the samples. The discrete Laplace-Beltrami operator changes under
changes in mesh connectivity or non-isometrically deformations (not preserving distances
on the shape), and a method coarsening the surface mesh for dimension reduction cannot
be transferred to a different mesh representation. That means a learned method is no
longer fitting, and calculated low-dimensional spectral features of different shapes cannot
be compared. Given the substantial limitations of existing methods, this thesis develops
and evaluates machine learning approaches to learn meaningful low-dimensional repre-
sentations using methods that handle various shapes with different mesh connectivities.

In a first approach, I transform the discretization of the surfaces to semi-regular meshes
with locally regular connectivity and hierarchical meshing. It allows me to divide the
surface meshes into patches, to which I then apply convolutional methods for learning
hierarchical features. The resulting Convolutional Semi-Regular Mesh Autoen-
coder (CoSMA) reconstructs surfaces not presented during training and generalizes the
deformation behavior of the surface patches. Since existing semi-regular remeshing al-
gorithms place strong requirements on the input surface meshes, I introduce a flexible
optimization-based semi-regular remeshing algorithm that can handle a wide range
of surface meshes and is tailored to the learning method.

In a second approach, I use correspondence maps between shapes to define a low-
dimensional basis where all shapes are represented independently of their mesh repre-
sentation without projecting the meshes to a template or reference shape. To this end,
I propose a spectral mesh pooling technique that establishes this universal latent space,
breaking free from the traditional constraints of mesh connectivity. This network is
called Canonical Consistent Latent Basis-Autoencoder (CCLB-AE) because the
CCLB defines the universal latent space.

I apply these two general approaches to learn shape features for several datasets and
evaluate the reconstruction quality and the significance of the learned features. Both

3



Chapter 1. Introduction

...

3D Surface Meshes Autoencoder Follow-up Tasks in Low-dimensional Space

Analysis and Pattern Detection

GenerationPrediction

Low-dimensional 
shape features

Interpolation

Figure 1.2: Pipeline calculating low-dimensional representations of surface meshes using
autoencoders to facilitate the analysis of collections of 3D shapes.

methods are applied to four different datasets from different domains: surface meshes
representing animals and humans in various poses, components from a car model deform-
ing in a car crash simulation, and a synthetic triangular mesh dataset. Model-specific
loss functions optimize both models, in the case of the CoSMAs leveraging the division
of the surface into patches and for the CCLB-autoencoder regularizing erroneous corre-
spondence maps. I can apply my networks to larger and more diverse datasets compared
to baselines handling only surface meshes with fixed mesh connectivity. Additionally,
the reconstructions of the proposed methods are of higher quality than those of the
baseline models. Moreover, I test the smoothness of the learned embedding space by
interpolating and combining the learned low-dimensional shape representations. I con-
duct further experiments to evaluate the patch-based approach to learning hierarchical
features for other tasks. Finally, I also apply methods for time series prediction in the
joint low-dimensional embedding space created by the novel spectral mesh pooling to
evaluate whether this common space allows the joint analysis of several shapes of differ-
ent connectivity. Figure 1.2 visualizes the pipeline of learning surface mesh autoencoders
that calculate low-dimensional shape representations, facilitating analysis tasks on the
datasets.

1.1 List of Accepted Papers and Collaborations

Valuable collaborations contributed to the work presented in this thesis, and part of it
has been published in a series of joint publications:

[HG22] Sara Hahner and Jochen Garcke. Mesh Convolutional Autoencoder for
Semi-Regular Meshes of Different Sizes. In Proceedings of the IEEE/CVF

4



1.2. Structure

Winter Conference on Applications of Computer Vision. pages 2344-2353,
2022, doi: 10.1109/WACV51458.2022.00240.

[HKG22] Sara Hahner, Felix Kerkhoff, and Jochen Garcke. Transfer Learning Using
Spectral Convolutional Autoencoders on Semi-Regular Surface Meshes. In
Proceedings of the First Learning on Graphs Conference. volume 198, pages
18:1–18:19. PMLR, 2022.

[HAGO23] Sara Hahner, Souhaib Attaiki, Jochen Garcke, and Maks Ovsjanikov. Un-
supervised Representation Learning for Diverse Deformable Shape Collec-
tions. Accepted at International Conference on 3D Vision 2024.

Felix Kerkhoff contributed to the implementation of the spectral CoSMA [HKG22].
The work on the CCLB-Autoencoder [HAGO23] started during a visit of the research
group of Maks Ovsjanikov at École Polytechnique. I published the paper in equal col-
laboration with Souhaib Attaiki. While I developed the model architecture and spectral
mesh pooling, he contributed the unsupervised case and learned the correspondence
maps between the shapes.

I also want to thank the students who implemented additional experiments for me as
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1.2 Structure

At first, three chapters give an overview of relevant work, starting with chapter 2 on sur-
faces, their discretization, semi-regular remeshing, and their analysis using the Laplace-
Beltrami operator and its decomposition. Chapter 3 summarizes related work on ma-
chine learning and neural networks. Chapter 4 combines the first two and states related
work to learning methods and approaches on and for surface meshes.

Chapter 5 introduces the two proposed autoencoding approaches, CoSMA and the
CCLB-autoencoder, for feature learning for surface meshes that do not share the same
mesh connectivity. Since one approach requires the surfaces to be represented by semi-
regular meshes, in chapter 6, I introduce the proposed remeshing method tailored to
fulfill the requirements of the CoSMA. Chapter 7 introduces the various datasets from
diverse sources on which the proposed models are trained and evaluated. This chapter
also evaluates the remeshing results on the datasets. Chapter 8 presents the results on
representation learning of surface meshes using the proposed autoencoders. It evaluates
their reconstruction quality and compares it to several baselines. Afterward, the low-
dimensional representations are analyzed, and the embedding spaces are evaluated for
shape generation. In chapter 9, additional experiments evaluate parts of the CoSMA
and CCLB-autoencoder approaches on human body part segmentation and time series
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prediction in the embedding space. Finally, chapter 10 concludes this thesis, states open
questions, and provides an outlook.
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2 Surfaces

This work analyzes surfaces that are two-dimensional manifolds embedded in three-
dimensional space. This chapter introduces general related work regarding surfaces
and provides a solid foundation for understanding the building blocks of the proposed
methods for analyzing 3D shapes.

For their computational analysis, the surfaces are discretized by surface meshes. Fol-
lowing a general definition in section 2.1, the section focuses on the discretization of
surfaces and how we influence and condition the discretization by a mesh to facilitate
their analysis by neural networks. Additionally, section 2.2 explores distances measured
on and between surfaces that I use to evaluate and optimize the proposed methods of
this work. Afterward, section 2.3 introduces Laplace operators that are calculated for
surface meshes and describe their smoothness. The decomposition of the Laplace oper-
ator defines a basis, also referred to as spectral basis, in which functions defined on the
surfaces can be represented in lower dimensionality. Section 2.4 motivates why many
tasks can be solved more efficiently in this representation and introduces functional maps
that take advantage of the fact that a representation in the basis of the Laplace operator
can be of lower dimensionality. Finally, section 2.5 introduces spectral shape descriptors,
whose calculation also involves this spectral basis.

2.1 Surface Meshes

For the computational analysis, the surfaces in R3 are discretized by a surface mesh
defined by vertices and faces, also referred to as elements. The proposed and baseline
mesh autoencoders handle triangular polygonal meshes where the faces are triangular.

Definition 1 (Triangular Polygonal Mesh). A triangular polygonal mesh M is defined
by n vertices V ⊂ Rd and a set of triangular faces F ⊂ V × V × V , which describe
the shape surface and point to the vertices that define them. The edges E = {{v1, v2} ∈
V × V | ∃ f ∈ F s.t. v1 ∈ f and v2 ∈ f} are undirected, i.e. (v, w) ∈ E ⇒ (w, v) ∈ E.

Since this work considers 3D triangular surface meshes, it holds d = 3.
In other areas, for example, Computer Aided Engineering, quadrilateral faces are more

common when the component structure allows it by being relatively flat. Quadrilateral
faces generally lead to regular meshes and a lower number of total faces, which provides
high accuracy and efficiency when simulating processes on them. Nevertheless, the
creation of quadrilateral meshes is more complicated on complex or curved structures.
Since every quadrilateral mesh can be remeshed to be a triangular mesh by splitting
every quadrilateral face into two triangular ones, I only focus on the more versatile
triangular polygonal meshes in this work.
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Figure 2.1: Irregular (left) and semi-regular (center, irregular vertices in red) surface
mesh of a sphere, and a regular (right) one of a spherical cap.

Additionally, we define the adjacency matrix A ∈ Rn×n of a graph or surface that
stores all the edges. Its elements Aij are one if there is an edge from vertex vi to
vj and zero otherwise. Since the polygonal meshes are defined using undirected edges
((vi, vj) ∈ E ⇒ (vj , vi) ∈ E), the adjacency matrix is symmetric. In some cases, the
edges (vi, vj) can be assigned a weight wij , which is then stored in the adjacency matrix
Aij = wij .

Given a triangular polygonal mesh M, we define more characteristics for the mesh,
its edges, and vertices. If every edge e ∈ E is adjacent to at most two faces in F , the
mesh is a manifold or surface mesh. An edge e ∈ E is a boundary edge if it is adjacent
to exactly one face in F . The vertices v ∈ V of a mesh M can store information defined
by a function f : V → RF .

For each vertex v ∈ V , the r-ring neighborhood Nr(v) are all the vertices that are
connected to v by at most r edges:

Nr(v) = {w ∈ V | w and v connected by

r or less edges in E and v ̸= w} ⊂ V.
(2.1)

Then, the degree or valence of a vertex v ∈ V is the size of its one-ring neighborhood
N1(v). The diagonal matrix of size n × n with the vertex degrees on its diagonal is
referred to as the diagonal degree matrix D.

For triangular surface meshes, we refer to a vertex with degree six as regular, and
a triangular surface mesh has regular connectivity if all vertices in V that do not lie
on the boundary are regular [BKP+10]. When working with functions that operate
on the vertices and their 1-ring neighborhood, regularity in their degrees facilitates the
function definition, efficiency of the computations, and calculations on a GPU because
the 1-ring neighborhoods are of constant size. Nevertheless, a triangular surface mesh
with only regular vertices has limited representation power. Only surface meshes that
are topologically (part of) a torus can be represented by a regular mesh [BKP+10].
Nevertheless, most meshes in the considered datasets are topologically a sphere, having
genus 0. These meshes must have some irregular vertices in their triangular polygonal
mesh representation, see Figure 2.1.

Images represented in pixels can also be interpreted as two-dimensional triangular
surface meshes of rectangular shape in R2 [BBL+17]. Every pixel is a vertex, the feature
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2.1. Surface Meshes

Characteristics 2D image Surface mesh
Semi-regular
surface mesh

Data information saved on vertices

Grid structure global structure locally Euclidean locally Euclidean

Connectivity fixed - semi-regular

Distance to neighbors fixed - -

highly different
Size of instances similar highly different with similar

local patches

Table 2.1: Relevant characteristics of images and surface meshes in R3 for convolutional
neural networks

function f outputs the pixel color values, and edges connect every vertex to the eight
neighboring pixels (horizontal, vertical, and diagonal).

2.1.1 Semi-regular Surface Meshes

Semi-regular (SR) (or subdivision connectivity) meshes are a flexible representation of
surfaces in R3 that have a regular local structure and allow irregularities at selected ver-
tices, whose positions can be controlled [BKP+10, EDD+95, GVSS00, LSS+98, PRS15].

We follow the definition of semi-regular meshes from [PRS15], which gives one condi-
tion on the specific structure: iteratively merging four triangular faces into one leads to
a low-resolution mesh. This means that all vertices of a semi-regular mesh are regular
(i.e., have six neighbors) besides the vertices of the low-resolution mesh, see Figure 2.1.
Therefore, a semi-regular mesh is obtained by regular subdivision of a low-resolution
mesh that can be irregular.

The overview in Table 2.1 shows that certain mesh characteristics of semi-regular
meshes are closer to the ones of 2D images than those of general surface meshes.

Note that the iterative subdivision of the low-resolution mesh automatically defines
a multi-scale structure. For this reason, semi-regular meshes are well suited for multi-
resolution analysis, coarse-to-fine surface modeling, and of interest to adapt wavelets to
surfaces and geometry compression [Mal89, KSS00, PRS15, MLDH15, LKC+20]. Later
on, this hierarchical structure allows for a definition of a local pooling operation on the
semi-regular meshes that can be applied to the piecewise regular structures.

2.1.2 Remeshing to Semi-regular Meshes

The authors of [PRS15, KPF+20] compare different semi-regular remeshing algorithms
to each other. At first, all algorithms build a base mesh that is a coarse approximation
of the irregular mesh. Classic incremental mesh simplification algorithms are based on
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edge collapses [Hop96, GH97]. Given the coarse base mesh, the semi-regular mesh is
generated by iteratively refining the base mesh and adjusting it to fit the shape of the
irregular mesh. The refinement level rl states the number of times each face of the coarse
base mesh is iteratively subdivided. The number of faces in the final semi-regular mesh
is then

nsemireg
F = 4rl · nc

F , (2.2)

with nc
F being the number of faces describing the coarse base mesh. The iteratively

refined faces of the irregular base mesh are called patches of the semi-regular mesh. All
the vertices of the patch, but the three corner vertices and possibly boundary vertices,
have six neighbors.

Some algorithms for subdivision surfaces, such as Loop [Loo87] and Butterfly [DLG90],
create meshes that fulfill the definition of semi-regular meshes. The definition of subdivi-
sion surfaces also includes a deterministic, recursive subdivision mechanism that creates
the upsampled surface meshes. Their limit surface then refers to the surface that is
defined by an infinite number of upsampling/subdivision iterations. There is a rich the-
ory that connects these limit surfaces to traditional splines [Zor07]. Nevertheless, since
the goals of these algorithms are general convergence and smoothness properties, the
positions of the vertices are calculated by taking a weighted average based on the local
neighborhood. Therefore, the resulting meshes are overly smooth, see Figure 2.2.

Some remeshing algorithms build on the traditional algorithms for subdivision surfaces
and aim to solve the over-smoothing. MAPS [LSS+98] builds a self-parameterization of
the original mesh over a semi-regular base domain. The non-linear subdivision method
Neural Subdivision [LKC+20] builds on MAPS and predicts the positions of new vertices
using a neural network. While MAPS can handle surfaces with boundaries, it depends
on the local mesh density of the irregular mesh, see the remeshing results for the mesh
representing a human in Figure 2.2. Also, MAPS fails if there are non-manifold vertices
in the interior of the surface. Neural Subdivision [LKC+20] uses an adapted mesh
decimation algorithm that prevents edge collapses causing poor quality of triangles.
However, this restricts the lowest coarse mesh size that the algorithm reaches for training.
Also, the algorithm is restricted to meshes without boundaries and non-manifold edges.

2.2 Distances for and on Surface Meshes

When comparing reconstructed or predicted surface meshes to each other and when eval-
uating remeshing results, measures determine how similar two meshes are. This section
defines distances for comparing two surface meshes representing the same underlying
surface and introduces the geodesic distance on a surface mesh.

2.2.1 Distances between Surface Meshes

To compare a remeshed surface mesh to a target mesh or a reconstructed mesh from
an autoencoder to the input mesh, we need to calculate a distance or a measure of
dissimilarity between the two surface meshes.
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Irregular Coarse
(100 faces)

Midpoint Loop Butterfly MAPS Neural
Subdivision

Irregular 
coarse 

midpoint 
loop 

butterfly 
MAPS

neuralsub
division

Irregular Coarse
(120 faces)

Midpoint Loop Butterfly MAPS

Irregular 
coarse 

midpoint 
loop 

butterfly 
MAPS

neuralsub
division

Figure 2.2: Different approaches for remeshing to semi-regular meshes of refinement level
4. The irregular mesh is the original mesh. The coarse mesh is input to the
Loop and Butterfly subdivision algorithms. The midpoint method inserts
new vertices at the midpoints of the edges. MAPS creates its own coarse
base mesh of the same number of faces. Neural Subdivision downsamples the
human mesh to 250 faces for training and cannot handle the elephant. The
human and elephant meshes are from the FAUST and GALLOP datasets,
respectively, which are both introduced in chapter 7.

Two surface meshes M(V,F) and M′(V ′,F), which share the same mesh connectivity,
whose vertices are in the same order, and which represent the same underlying surface,
can be compared using a simple vertex-wise mean squared error

dV (M,M′) =
1

|V |
∑

v∈V,v′∈V ′

∥v − v′∥22. (2.3)

Nevertheless, we require a distance measure that compares two mesh representations
M(V,F) and M′(V ′,F ′) to each other, which do not share the same mesh connectivity,
for example, when comparing an irregular representation of a surface to a semi-regular
one. If a parametrization or point-to-point (p2p) map exists between the two meshes, we
can map one mesh to the other, and calculate a vertex-wise mean squared error. Often,
this parametrization between the meshes is not given, and in order to calculate a distance,
the meshes are registered or somehow put in correspondence [SFC+21, WPZ+21].

The average chamfer distance relies on nearest neighbor projections [Bor84] be-
tween M(V,F) and M′(V ′,F ′). It randomly samples points S from M and S′ from
M′. Then, following the definition in [ADMG18], the chamfer distance measures the
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average squared distance between each point in set S to its nearest neighbor in S′ and
vice versa:

dC(M,M′) = dsamp,C(S, S′)

=
1

|S|
∑
x∈S

min
y∈S′

∥x− y∥22 +
1

|S′|
∑
y∈S′

min
x∈S

∥x− y∥22
(2.4)

Another metric that relies on nearest neighbor calculation is the Hausdorff distance
[HKR93]

dH(M,M′) = max{max
x∈V

d(x,M′),max
y∈V ′

d(y,M)}, (2.5)

where d(x,M) = minz sampled from M∥x−z∥22. It outputs the maximum distance between
any vertex from M and its nearest projection to M′ or vice versa. We use it to evaluate
the remeshing results, but not as a training loss since it only considers the distance
between the two most distant points. Therefore, when calculating the gradient at all the
other vertices of the mesh, it is zero.

The Optimal Transport (OT) distance between two sets is the solution of a trans-
portation problem that attempts to transform one set to the other one in the shortest way
[PC19]. Interpreted as the cost to move one pile of earth to another, it is referred to as
“earth mover’s distance” [RTG00]. Mathematically, it is the problem of comparing two
probability distributions. Each surface mesh is interpreted as a probability distribution,
and the distance measures the transportation cost between them [FCVP17, FSV+19].
The surface represented by M is sampled at the mesh vertices, and to every vertex
vi a weight αi ≥ 0 is assigned that corresponds to the area of its surrounding faces.
Given this, we define a discrete, positive measure as a weighted sum of Dirac masses

α =
∑|V |

i=1 αiδvi and α′ for M′ respectively. Taking C(x, y) = 1
2∥x − y∥2 as cost func-

tion for the feature space R3, the OT distance recalls the standard Monge-Kantorovitch
transportation problem:

dOT (M,M′) = OT(α, α′)

= min
π∈R|V |×|V ′|

≥0

∑
i,j

πi,jC(vi, v
′
j) s.t. (π1)i = αi, (π

T1)j = α′
j .

(2.6)

Note that the OT distance is, similar to the chamfer distance, also a nearest neighbor
projection but with the global constraint of bijectivity, which leads to a more consistent
matching [SFC+21].

2.2.2 Geodesic Distance on a Surface Mesh

Given two points v, w on the surface mesh M, the Euclidean distance calculates the
distance between them in R3 by ignoring the surface.

The geodesic distance dgeod(v, w), on the other hand, is calculated by passing the
shortest path between v and w on the surface defined by the mesh M between the two
points, see Figure 2.3 for a visualization. The path is constrained to lie on the surface
and typically cuts across faces in the mesh. Therefore, calculating the shortest path
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Figure 2.3: Two points v, w with low Euclidean distance in red but higher geodesic dis-
tance in green on the surface on which they lie.

cannot be solved by applying the Dijkstra algorithm, which finds the shortest path only
passing through vertices and edges of M.

[MMP87] present the MMP algorithm for determining the exact shortest path be-
tween a source point v and all destinations on an arbitrary polyhedral surface. The
exact MMP algorithm has a worst-case time complexity of O(n2 log n). Nevertheless,
[SSK+05] demonstrate that, in practice, the exact algorithm runs in sub-quadratic time.
An early approximation of the MMP algorithm applies Dijkstra and finds the shortest
path through the vertices of a refined version of the initial surface mesh M [LMS97].
Among others, [KS98, SSK+05, BK07] present more recent approximations of the exact
algorithm with a lower runtime. My remeshing pipeline calculates geodesic distances
between all pairs of vertices of a surface mesh M and applies the recent approach in-
troduced in [CWW13]. They present a fast approach to compute the geodesic distances
based on heat flow on the surface. The algorithm is rooted in the idea that a hot parti-
cle traveling from v to w in little time also had little time to deviate from the shortest
possible path.

2.3 Laplacians for Surface Meshes

We begin by considering a 3D shape, represented as a triangular mesh M(V,F) com-
prising n vertices V ⊂ R3 and additionally a feature function f : V → RF defined on the
vertices. A Laplace operator L generalizes the second derivative of functions to other
domains and, therefore, characterizes the domain smoothness. The Laplace-Beltrami
operator is a special form for functions defined on surfaces or, more generally, manifolds.
Nevertheless, all surface meshes are also graphs, so one can use the simpler graph Lapla-
cian operators that only consider the connectivity between the vertices given by the faces
F . Section 2.3.1 introduces several discrete Laplacians for Graphs and Surfaces.

When decomposing the Laplace matrix, its orthonormal eigenvectors define a basis,
and a function defined on M can be represented as a linear combination of these basis
vectors. By only considering the most important basis vectors, f can be represented
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k = 0 k = 1 k = 10 k = 30 k = 50 k = 100 k = 300

Reconstruction from spectral representation of dimension
K = all, 10, 50, 100, 250, 500

Visualize eigenfunctions
K = 0, 1, 10, 30, 50, 100, 300

Figure 2.4: Visualization of selected k-th eigenfunctions of the discrete Laplace-Beltrami
operator of a surface mesh representing a horse.

in lower dimension, and following processing tasks incorporating the function f can be
performed in lower dimensionality [VL08]. Section 2.3.2 details the decomposition of the
Laplacian and how to define the low-dimensional basis.

2.3.1 Discrete Laplacians for Graphs and Surfaces

Graph Laplacians play a crucial role in analyzing graph signals in spectral graph the-
ory. They act as a counterpart to the Laplace operator for functions in the Euclidean
space. Essentially, the graph Laplacian quantifies the smoothness of a graph signal by
considering the variations between the signal at a particular vertex and its neighboring
vertices. In that way, this measure provides valuable information about the connectivity
of the graph. The combinatorial and normalized graph Laplacians are two of the most
widely utilized graph Laplacians and consider only the adjacency matrix.

Definition 2 (Combinatorial Graph Laplacian). The combinatorial graph Laplacian
LC ∈ Rn×n is given as the difference of the diagonal degree matrix D and the adjacency
matrix A:

LC := D −A

Definition 3 (Normalized Graph Laplacian). The normalized graph Laplacian LN ∈
Rn×n is defined as:

LN := D−0.5LCD
−0.5 = D−0.5(D −A)D−0.5 = I −D−0.5AD−0.5

The discretization of the Laplace-Beltrami operator is a generalization of the Laplace
operator to surface meshes. We apply the definition of the symmetrized cotangent
Laplace-Beltrami operator LB ∈ Rn×n from [SC20] for triangular meshes that can have
non-manifold edges. Compared to the combinatorial graph Laplacians, it also considers
vertex areas and cotan weights [MDSB03, PP93]. [SC20] provides a detailed definition
of the Laplace-Beltrami Operator LB. Note that because its definition considers vertex
areas and cotan weights, this Laplacian is not only dependent on the mesh connectivity
but also changes under non-isometric deformation of the mesh.
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k = 10 k = 50 k = 100 k = 250 k = 500

Reconstruction from spectral representation of dimension
K = all, 10, 50, 100, 250, 500

Visualize eigenfunctions
K = 0, 1, 10, 30, 50, 100, 300

Figure 2.5: Reconstructed surface meshes from the representation of the vertex 3D co-
ordinates V in the k-dimensional spectral basis, which is obtained from the
decomposition of the discrete Laplace-Beltrami operator. The original sur-
face mesh is visualized in green on the left.

2.3.2 Decomposition of the Laplacians and Definition of the Spectral Basis

The introduced Laplace matrices L to surface mesh M are real, symmetric, and positive
semidefinite. Therefore, when decomposing L, its orthonormal eigenvectors vi with
corresponding real and nonnegative eigenvalues λi, i = 1, . . . , n

λivi = Lvi (2.7)

define a basis, and a function f defined on M can be represented as a linear combination
of these basis vectors. This basis is called spectral basis because it possesses properties
similar to the classical Fourier basis functions. If all eigenvalues are different, the de-
composition of the Laplace operator and the representation of f in the spectral basis is
unique.

The eigenvectors vi, which in the interpretation as a spectral basis resemble eigenfunc-
tions, are ordered by ascending absolute value of the corresponding eigenvalues λi, which
resemble the frequencies of the eigenfunction. In the spectral domain, the eigenfunctions
that correspond to the lowest eigenvalues and, therefore, the lowest frequencies are con-
sidered the most relevant ones to describe a function f because higher frequencies are
related to higher noise. Eigenfunctions corresponding to lower eigenvalues, on the other
hand, capture the features of the lowest frequency of functions defined on the surface.
Therefore, these eigenfunctions resemble coarser patterns, see Figure 2.4. Hence, the
projection matrix Φ ∈ Rn×k is defined using the first k eigenvectors vi as the columns
of Φ.

Now we can project F -dimensional vertex-wise features F ∈ Rn×F defined by function
f : V → RF from the mesh representation to the spectral representation by multiplying

A = Φ†F, (2.8)

where •† refers to the (left) Moore-Penrose pseudo-inverse. The resulting spectral fea-
tures A lie in Rk×F . Note how this projection disentangles vertex-wise features from
the representation on a mesh defined by a list of faces because it is captured by the
eigenvectors resembling functions on the surface.
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When setting F to the vertex 3D coordinates V , we can evaluate the significance of
the low-dimensional spectral representation A = Φ†V by reconstructing it to the vertex-
space via ΦΦ†V and visualizing the reconstructed surface mesh. Figure 2.5 visualizes
a reconstructed horse for different numbers k of considered eigenvectors to define the
spectral basis. Note how finer structures of the mesh are only reconstructed for higher
numbers of eigenvectors to define the spectral basis.

2.4 Functional Maps

Point-to-point (p2p) maps and functional maps describe a mapping from one shape to
another shape. They have various applications, such as shape matching, animation,
and texture or feature transfer [BBK09]. A point-to-point map between two shapes puts
points on the surface meshes in correspondence, while a functional map maps real-valued
functions from one shape to another. Additionally, functional maps are generally rep-
resented in a spectral basis obtained from decomposing the Laplace-Beltrami operator,
which allows for a compact representation when selecting only the most important basis
vectors. This chapter introduces both p2p maps (section 2.4.1) and functional maps
(section 2.4.2) between shapes. Given a diverse collection of shapes, every shape has a
different spectral basis since the shape-wise Laplace-Beltrami operators depend on the
deformation, shape, and discretization of the shapes. If functional maps connect these
shapes to each other, we can define the canonical consistent latent basis (CCLB) in sec-
tion 2.4.3. It uses the correspondence information provided by the functional maps to
define the common latent basis CCLB. This common basis then allows the joint analysis
of the entire shape collection.

2.4.1 Point-to-point Maps Between Shapes

Point-to-point (p2p) maps are mappings from the set of vertices of one shape to the set
of vertices of another shape. They describe the correspondence or alignment between
individual points on the shapes. Let us consider two shapes represented by triangular
surface meshes M1 and M2, a source and target shape, respectively. Then, a vertex-wise
point-to-point map T12 : M1 → M2 is defined as the function that maps each vertex in
M1 to a corresponding vertex in M2. The sparse matrix Π12 ∈ Rn2×n1 , which takes the
value 1 if T12(i) = j, and 0 otherwise, represents the p2p map T12. Then, to transfer
vertex-wise features from M2 to M1, we can multiply ΠT

12 from the left to the feature
vector defined on the vertices of M2. Therefore, ΠT

12 is the pullback of the vertex-wise
map T12 to the functional space.

This work only considers vertex-wise p2p maps describing exact correspondences. But
it is also possible to encode correspondence in soft maps that assign to each point on
M1 a probability distribution representing likely matches on M2.
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2.4.2 Functional Maps

The direct estimation of the p2p map Π12 is computationally infeasible since the number
of possible point correspondences grows quadratically with an increasing number of
vertices in the shapes. To address this issue, [OBCS+12] propose the functional map
paradigm and reduce the dimensionality of ΠT

12 by representing it in the spectral bases of
rank k defined by the first k eigenvectors of the Laplacians L1 and L2 of surface meshes
M1 and M2. They construct the functional map C21 = Φ†

1Π
T
12Φ2, which maps functions

defined in the spectral basis of M2 to the spectral basis of M1. The functional map has
a small size of (k × k), with k usually below 50 in this work.

The functional map can either be obtained from a vertex-wise map Π12 or is optimized
directly in the low-dimensional spectral basis. To this end, two F -dimensional feature
functions F1 and F2 defined on M1 and M2 respectively (Fi ∈ Rni×F ) are represented in

the reduced basis Ai = Φ†
iFi. Next, the solution to the following optimization problem

arg min
C

∥CA2 −A1∥2F (2.9)

is the sought-after functional map C21.

2.4.3 Canonical Consistent Latent Basis

Given a collection of related 3D shapes represented by the meshes M1, . . . ,Mn, and a
set of functional maps between some shape pairs, we build a functional map network
(FMN) on the collection as follows. We construct a graph G = (VG , EG), where the i-th
vertex represents the functional space of Mi, and the edge (i, j) exists if the functional
maps Cij and Cji are given, in which case, the graph is symmetric. We assume that
the graph G is connected, which means a path exists between any two shapes in the
collection.

With this construction in hand, we can translate functions between any mesh rep-
resentations Mi and Mj in the shape collection by multiplying the functional maps
corresponding to the edges on the path through the graph G. Nevertheless, there is
no common basis where features from different shapes can be compared to each other.
[WHG13] solve this by using a limit shape construction, which provides a consistent
latent basis Yi for the shape features of the collection, such that CijYi ≈ Yj , ∀i, j. They
obtain Yi by solving the optimization problem

min
Y

∥CijYi − Yj∥F s.t.
∑
i

Y T
i Yi = I (2.10)

These consistent latent basis vectors Yi ∈ Rk1×k1 (k1 is the dimensionality of the func-
tional maps) can be interpreted as functional maps from a latent shape to each mesh Mi.
If the shapes in the shape collection are in 1-to-1 vertex correspondence, [HAGO19] prove
that

∑
i Y

T
i ΛiYi = Λ is a diagonal matrix, and its diagonal corresponds to the eigenval-

ues of the latent shape. Also, the eigenbasis Φ0 of the latent shape can be recovered as
Φ0 = ΦiYi for any i.
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Chapter 2. Surfaces

ALGORITHM 1: Constructing a Canonical Consistent Latent Basis (CCLB)

Input : A shape collection of meshes M1, . . . ,Mn and associated connected
FMN G with functional maps of size k1 × k1.

Output: A set of canonical consistent latent basis {Ỹi}ni=1 ⊂ Rk1×k2 with
k1 ≤ k2, the eigenbasis Φ0 and spectrum Λ0 for the latent shape.

(1) Obtain the consistent latent basis Yi by optimizing (2.10).

(2) Compute the eigen-decomposition of E =
∑

i Y
T
i ΛiYi so that EU = UΛ and let

Ỹi = YiU .

(3) Let Φ0 = ΦiỸi for an arbitrary i, and Λ0 = Λ from the previous step.

Nevertheless, [HAGO19] observe significant instabilities in the extracted latent basis Yi
if the shapes are not in 1-to-1 correspondence, which is the case for the studied datasets
in this thesis. They propose to further enhance the stability of this construction by
introducing a normalization that forces

∑
i Y

T
i ΛiYi to be a diagonal matrix. Algorithm

1 summarizes the calculation of the more stable canonical consistent latent basis (CCLB)
Ỹi ∈ Rk1×k2 .

[HAGO19] apply the CCLB for improving functional maps and for understanding vari-
ability within and across different shape classes. In comparison to selecting a template or
reference shape for the definition of a common basis, they show that the CCLB enables
an unbiased comparison of shapes using compact and meaningful representations in the
common basis.

In section 5.3, I use the projection of shape features Fi to the latent shape in the
encoder and, for the first time, the projection from the latent shape to a template
shape for reconstruction in the decoder of the autoencoder network. [HAGO19] calculate
characteristic shape differences following [ROA+13] that are linear operators acting on
the function space of the limit shape to compare shapes in a common basis to each other.
Nevertheless, they did not present any results on using the pseudo inverse of the matrices
Ỹ †
i as a projection matrix to the common basis. Similarly to (2.8), where vertex-wise

features Fi are projected to the spectral representation expressed in the eigenbasis Φi of
shape i represented by Mi, we can use Ỹ †

i to project features to the CCLB

ACCLB
i = Ỹ †

i Φ†
iFi. (2.11)

Figure 2.6 evaluates the stability of the projection to the CCLB and back to the
vertex representation by visualizing the reconstructed 3D coordinates ΦiỸiỸ

†
i Φ†

iV . For
this experiment, I select the three animals in different poses from the GALLOP dataset
(section 7.1.1), construct p2p maps between the three animals, build a fully connected
FMN, and apply algorithm 1 to calculate the CCLB. There is no perfect p2p map between
the animals since the trunk, tusks, and ears of the elephant do not correspond perfectly
to horse and camel. This leads to unstable reconstructions for a higher dimension of
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2.5. 3D Shape Feature Descriptors

Visualize cclb reconstruction
T=11
K_1 = 55, 105
K_2 = 50, 100

k2 = 50 k2 = 100 k2 = 50 k2 = 100 k2 = 50 k2 = 100

Figure 2.6: Reconstructed surface meshes from the GALLOP dataset from the represen-
tation of the vertex 3D coordinates V in the k2-dimensional CCLB, which is
obtained following algorithm 1. We chose k1 = k2 + 5. The original surface
meshes are visualized in green on the left, and the circles highlight recon-
struction artifacts for k2 = 100.

k2 = 100 of the CCLB. For k2 = 50, we observe a similar reconstruction quality as for
the spectral reconstruction in Figure 2.5.

2.5 3D Shape Feature Descriptors

Methods for learning global 3D shape features build on local, for example, vertex-wise
shape features that are summarized into one descriptor for the entire shape. Section 4.1
compares methods that learn vertex-wise features. This section focuses on hand-crafted
3D shape feature descriptors. The vertex-wise descriptors are used in many higher-level
tasks, including finding shape correspondences [WBBP11, OBCS+12] and segmentation
algorithms based on clustering [SOCG10] or neural networks [QYSG17, SACO22]. Also,
the additional experiments on 3D shape segmentation in section 9.1 use vertex-wise
shape descriptors as input.

The choice of the local shape descriptor depends on the task and the desired invariance
properties. For the segmentation of 3D shapes, one generally focuses on features that are
invariant under rigid motion (global Euclidean transformations) and isometric deforma-
tions, which means inelastic bending transformations. Earlier descriptors used geodesic
distances on the surfaces [HSKK01, EK03, GSCO07]. However, geodesic distances are
sensitive to noise in the mesh topology because adding or removing small connections
can lead to strong changes in the geodesic distances on the surface [SOG09, LB14].

More recent intrinsic 3D shape feature descriptors that are also invariant to isometric
deformation are based on the diffusion distance proposed by [Laf04] also applied in the
dimension reduction method Diffusion Maps [CL06]. These include the common heat
kernel signature (hks) [SOG09] and wave kernel signature (wks) [ASC11]. The features
use the spectral decomposition of the Laplace–Beltrami operator LB, see section 2.3.2,
to compare and analyze geometric shapes. Therefore, they are isometry-invariant by
construction.

The vertex-wise hks is based on heat diffusion over a surface. It applies the heat
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FAUST SHREC SHREC
irregular semi-regular irregular semi-regular irr. semi-reg.

Signatures: Wks (grün) and hks (blau), 20th timestep, irr (left) and sr (right) mesh

["FAUST-single-remeshed", "mesh 038"], ["shrec-remeshed-reorientated", "mesh14"], ["shrec-remeshed-reorientated", "mesh9"]

wks

hks

Figure 2.7: Three human meshes represented by irregular and semi-regular surface
meshes with highlighted wks and hks descriptors on the surface. For two
meshes representing the same underlying surface, the same color range is
used to highlight the hks or wks feature descriptors. Note how the hks as-
signs different signature values to the hands of the different shapes. The
vertex-wise wks is colored in log-scale.

kernel kt : R+ ×M×M → R, which can be interpreted as the amount of heat kt(x, y)
transferred from point x, where a heat source is placed, to point y (both on the surface
M) after time t. The heat kernel of a shape is computed using the eigendecomposition
of the corresponding Laplace-Beltrami operator. For the analysis of different shapes, the
hks descriptor restricts the heat kernel to the temporal domain by calculating kt(x, x) for
several timesteps t and a x on the surface described by M. The timesteps are selected
from a time range that depends on the largest and smallest non-zero eigenvalue of the
Laplace-Beltrami operator.

The wks follows a similar concept to the hks but replaces the heat equation with the
Schrödinger wave equation. This change makes the wks more discriminative than the
hks for shape matching [ASC11].

Figure 2.7 visualizes hks and wks signatures corresponding to the largest considered
time t on different human mesh representations. Since hks and wks are not invariant to
scale, all analyzed shapes are scaled to unit area. Note how the hks is higher on the limbs
than on the trunk, and both signatures are higher for hands and feet. Nevertheless, the
signature values lie in different ranges for different meshes, because they are not invariant
to changes in the triangle mesh structure [OBBG09, WBBP11, DSO20].
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3 Machine Learning and Neural Networks

The verb learn is defined as “to acquire knowledge or skills as a result of study, expe-
rience, or teaching” in the Oxford English Dictionary [lea23]. Machine learning focuses
on using data and algorithms to imitate how humans learn. To this end, we define a
computer program that aims to learn the measurable performance of a clearly defined
task by experience [Mit97]. Additionally, the user passes knowledge to the program by
how it is defined and the kind of data presented to the program.

This work uses programs based on neural networks (NN) motivated by connected
neurons in the human brain that are structured in one or more successive layers [GBC16].
A neural network with multiple layers between the input and output is called a deep
neural network. Their high approximation power makes them a powerful tool for various
learning tasks.

To successfully learn from experience, we must provide data to the network. We refer
to the given input data by xi ∈ Rn, i = 1, . . . , d, and the corresponding output data
that should be predicted is yi ∈ Rm, i = 1, . . . , d. The neural network then resembles a
function

fθ : Rn → Rm s.t. f(xi) ≈ yi, (3.1)

whose parameters θ are learned. To measure the performance of the neural network, a
loss function l : Rm×Rm → R compares the predicted output ŷi to the expected output
yi. The loss l(yi, ŷi) for data samples xi, i = 1, . . . , d is then gradually minimized,
generally by stochastic gradient descent.

This chapter summarizes related work regarding machine learning and neural net-
works, starting with an overview of different types of learning algorithms, loss functions,
and how they are optimized in section 3.1. Section 3.2 introduces different layers of neu-
ral networks, while section 3.3 introduces autoencoders, the networks I apply to learn
low-dimensional shape features. Finally, section 3.4 gives an overview of approaches to
analyzing simulations using machine learning.

3.1 Learning Algorithms

This section gives an overview of different types of learning and summarizes the training
of neural networks by gradient descent.

3.1.1 Supervised and Unsupervised Learning

The three main categories of learning algorithms are supervised, unsupervised, and rein-
forcement learning [Mur22]. This work focuses mainly on unsupervised approaches and
conducts selected supervised experiments.
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In supervised learning, the neural network is trained on labeled data, meaning that
the correct output or “label” yi is provided for each input xi for i = 1, . . . , d. This allows
the neural network to learn to create outputs on new, unseen data. A typical application
is the classification of the input data into different categories [LJB+89]. In the case of
image classification, the network predicts one class for the entire image that describes
what the image is showing, or in the case of spam classifiers, a network predicts a spam
or non-spam label for messages. Another application is the segmentation of regions of
the input into different categories, where in the case of image segmentation, the network
predicts a class for each pixel of the image.

In unsupervised learning, the neural network is not provided with labeled data, so
there are no corresponding outputs. Instead, the goal is to find patterns or structures
in the input data space. Dimension reduction algorithms are trained in an unsupervised
way, and their performance is evaluated on the reconstruction of the input based on a
latent low-dimensional feature representation also calculated by the network. This latent
representation is expected to be meaningful if the reconstruction quality is high. Autoen-
coders are neural networks that can be used for dimension reduction and are explained in
more detail in section 3.3. Other common applications are clustering algorithms where
the input data should be clustered into significant subsets [Mur22].

3.1.2 Loss Functions

The loss function l : Rm × Rm → R evaluates how good the prediction fθ(x) = ŷ is
compared to the true label y, and it depends highly on the task and the data.

For regression-type problems, where f outputs a real-valued quantity, the most com-
mon loss function is the mean squared error (MSE) [Mur22]. It is calculated as the
average of the squared differences between the predicted ŷ and actual values y

lMSE(y, ŷ) =
1

m

m∑
j=1

(yj − ŷj)
2. (3.2)

The training of autoencoders is a typical regression-type problem, where this work also
applies the mean squared error. Nevertheless, the data handled in this work are surface
meshes, which is why section 2.2.1 evaluates several loss functions based on the mean
squared error that compare surface meshes to each other.

For classification-type problems, the function f predicts one of c class labels. Every
sample x is provided with a class label y that is encoded in a one-hot vector y ∈ [0, 1]c,
which is only one for the single true class index. This is a special kind of regression, where
we want the output ŷj to resemble the probability to belong to class j, for j = 1, . . . , c.
Here, the most common loss function is the cross-entropy [Mur22]. It calculates a score
for the predicted ŷ and true label y that summarizes the average difference between the
actual and predicted probability distributions for the c classes

lCE(y, ŷ) = −
c∑

j=1

yj log(ŷj). (3.3)
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3.2. Neural Networks and Convolutional Layers

Generally, before the loss calculation, a softmax activation function is applied to the
network output ŷ, which ensures that the output resembles probabilities in range [0, 1]
summing up to one

softmax(ŷ)j =
eŷj∑c
k=1 e

ŷk
for j = 1, . . . , c. (3.4)

3.1.3 Training using Stochastic Gradient Descent

Given the function fθ resembling the neural network with trainable parameters θ, the
data xi ∈ Rn, i = 1, . . . , d, and the loss function l, we minimize the loss function with
respect to the parameters θ of the neural network

min
θ

d∑
i=1

l(yi, fθ(xi)). (3.5)

Neural networks are generally trained by methods based on first-order gradient descent
that can scale to large datasets and models with lots of parameters [PPGS21, SCZZ20].
Consequently, successful training of neural networks requires a high amount of training
data. The validation with unseen data is inevitable, and the datasets are separated into
training and test data. The test data is then only presented to the network for evaluation
of the training result [Mur22].

In practice, the network weights are optimized by stochastic gradient descent using
randomly selected subsets (batches) of the data to calculate the gradient. This reduces
the update time and, combined with adaptive learning rate and momentum methods,
allows for a significant acceleration of the calculation [SCZZ20, KB15, SMDH13]. The
calculation and tracking of the gradients are done automatically using, for example,
PyTorch [PGM+19]. The gradients are calculated by iterating backward through the
neural network, which is why it is also called backpropagation. Note that training using
stochastic gradient descent requires the neural network function fθ and the loss function
l to be differentiable with respect to the network parameters θ.

3.2 Neural Networks and Convolutional Layers

Neural Networks (NN) are motivated by the structure and function of interconnected
neurons in the human brain. They consist of layers, frequently considered to resemble
neurons, that process and transmit information [Mur22]. In the case of feed-forward
networks, the information flows in one direction, from the network input xi to its output
yi, without looping back. Each layer processes and transforms the input and passes it on
to the next layer. Most of the layers are made up of a linear function lj : Rnj → Rnj+1

for each layer j, that combines the input from several neurons from the previous layer
in a weighted sum. It is followed by an activation function aj : R → R, which generally
introduces non-linearity to the network. The parameters of lj are optimized during the
training.
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Figure 3.1: Feed-forward network. Every line resembles a connection between two nodes
in subsequent layers (in grey). The first layer resembles a convolutional layer,
and the second layer is fully connected.

We introduce different types of feed-forward layers for neural networks: fully connected
layers and convolutional as well as pooling layers.

3.2.1 Fully-Connected Layers

In a fully connected layer, each node in layer j + 1 is connected to every node in the
previous layer j, and each connection has its own weight. The output o ∈ Rnj+1 of
a fully connected layer is computed by taking the dot product of the input x ∈ Rnj

with a weight matrix Wj ∈ Rnj+1×nj , adding a bias term bj ∈ Rnj+1 , and applying the
activation function aj element-wise.

ō = lj(x) = Wjx + bj (3.6)

o = aj(ō). (3.7)

The weight matrix values Wj and the bias term bj are optimized during training. A
network made of multiple fully connected layers is also called a multilayer perceptron.
The universal approximation property of deep neural networks states that this basic
network architecture has a high approximation power, which refers to their ability to
approximate any function, given enough data and capacity [LL20]. However, the dense
weight matrix Wj uses nj+1 × nj parameters per layer, which motivates lighter layer
architectures, for example, convolutional layers.

3.2.2 Convolutional and Pooling Layers

Convolution for images was first introduced in [LJB+89] for digit recognition. Every
neuron connects to one pixel of the rectangular image. Instead of fully connecting all
pixels to each other, we only connect them to the locally close ones because they are
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3.3. Autoencoders

Zero-padded input I Weight matrix Wconv

Figure 3.2: Application of a convolutional filter that slides vertically and horizontally
along the dashed lines.

expected to be correlated. Additionally, the weights are shared for all positions to extract
the same features for every neighborhood. The small weight matrix (Wconv)j ∈ Rk×k is
referred to as filter or kernel, which slides over the image I and at every position, a dot
product is computed with the local neighborhood. Figure 3.2 visualizes a convolutional
layer when the stride is 1 and no positions are skipped when sliding the filter over the
input. If the input is zero-padded, the image size remains the same. Again, a non-linear
activation function aj is applied element-wise [Mur22]

o = aj(I ∗ (Wconv)j). (3.8)

Generally, a convolutional layer combines several convolutional filters whose pixel-wise
outputs are concatenated and which calculate multi-dimensional feature vectors per
pixel in the output image. The feature dimensions are also referred to as channels.
For cin input and cout output feature channels, the resulting weight matrix is of size
cout × cin × k × k. Neural networks that are made of mainly convolutional layers are
referred to as convolutional neural networks (CNN).

If we want to reduce the spatial size of the image, applying a pooling layer is common.
Common types of pooling are max pooling, which selects the maximum value in a small
window and replaces the entire window with that value, and mean pooling, which takes
the average. Pooling layers are used to reduce the computational complexity of the
network, make it more robust to small translations of the input, and reduce overfitting
[GBC16].

Note that in the case of classical representation learning for 2D images with convolu-
tional layers, one has a fixed-size grid along which the pixels align; in fact, all samples
are in 1-to-1 correspondence. The convolutional filters with stride 1 calculate vertex-wise
features, then pooling summarizes many vertex-wise features, reducing the number of
pixels. This is done symmetrically for all the images, and the features from different
samples are comparable because of the 1-to-1 correspondence.

3.3 Autoencoders

Autoencoders (AE) are a type of unsupervised learning algorithm that use neural net-
works to learn feature representations hi ∈ Rhr of input data xi for i = 1, . . . , n
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xi en : Rn → Rhr hi de : Rhr → Rn

Figure 3.3: Autoencoder.

[Mur22, GBC16, BK88]. This is achieved by setting yi = xi. Then, the principle
purpose is that the learned features of the input allow its recreation.

Autoencoders consist of two parts: an encoder network en : Rn → Rhr that calculates a
low-dimensional representation hi of the input xi, and a decoder network de : Rhr → Rn

that recreates the input from the hr-dimensional representation, see Figure 3.3. The
encoder and decoder are trained together to approximate the identity function

f(xi) = de(en(xi)) ≈ xi for i = 1, . . . , d. (3.9)

In case hr < n, the feature representation is of a lower dimension than the input data.
Therefore, we expect that the low-dimensional representation hi, also called hidden
representation, captures the most prominent features of the training data and allows
distinction between the samples. This makes autoencoders an alternative to dimen-
sion reductions like the linear Principal Component Analysis (PCA) [Pea01], Isomap
[TdSL00], or Diffusion Maps [CL06].

In practice, the user is generally not interested in the output of the decoder, the
reconstructed input, but in the low dimensional feature representation, which captures
the most relevant aspects that distinguish the input from the rest of the data.

As autoencoders learn an encoder function en, an advantage over standard dimension
reduction methods is their improved generalization performance. The function en is
quickly evaluated and describes the manifold. Therefore, embeddings for new data
points do not have to be obtained by interpolation.

3.3.1 Evaluation

The evaluation of autoencoders for any data type can be separated into different steps
[GBC16]. Autoencoders are typically evaluated based on their ability to reconstruct
the input data from the encoded representation, which is also the loss used during
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training. This reconstruction error measures the difference between the original data
and its reconstruction and allows us to compare different autoencoder architectures.

The capacity of the autoencoder to learn a good representation of the data is evaluated
by analyzing the encoded representations. Generally, they are visualized in a 2D or 3D
space using, for example, the linear dimension reduction method PCA [Pea01] or the
non-linear t-SNE [vdMH08]. In these low-dimensional visualizations, we expect to detect
latent features of the dataset.

Since the goal of an autoencoder is to learn the underlying distribution of the input
data, we also test to generate new samples from the latent space for the evaluation of
the learned model. In the first step, new samples are created by interpolating between
the latent representation of samples from the train or test data. The decoder is then
evaluated, generally visually, on how realistic the generated samples are to understand
if the model is overfitting to the training data.

The special and more challenging case of autoencoders for surface meshes and their
evaluation is described in more detail in section 4.2 in the related work and in chapter
5 when introducing the proposed surface mesh autoencoders.

3.3.2 Autoencoders and Generative Models

Autoencoders learn a compact representation of the input data, which makes them
relevant for many generative approaches since the low-dimensional embedding space is
then used for data generation and manipulation. Autoencoders are an essential building
block for variational autoencoders and generative adversarial networks [Mur23]. These
two generative architectures are introduced shortly.

Variational Autoencoders

In a variational autoencoder (VAE) [KW14, RMW14], the encoder maps the input data
to a probability distribution in the latent space, and the decoder maps a sample from
this distribution back to the original data space. The goal of training is, similar to
the original autoencoder, to minimize the difference between the original and decoded
data. Additionally, the distribution of the samples in the latent space is encouraged to
follow a fixed prior distribution (generally Gaussian), allowing the user to generate new
samples from random noise after successful training. This is achieved by introducing
an additional component to the optimizer, the Kullback–Leibler (KL) divergence, which
measures the difference between the learned latent space and the prior distribution. In
addition to using the Gaussian distribution as a prior distribution, there has been work
on Gaussian mixture variational autoencoders [DMG+16], who use this approach for
clustering with a predefined number of Gaussian kernels that correspond to the clusters
after successful training.

Generative Adversarial Networks

Generative adversarial networks (GAN) [GPAM+20] aim to generate new data samples
that are indistinguishable from real data. A generator produces new data and a discrim-
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inator classifying the data into real and generated samples are trained simultaneously.
In this context, autoencoders can be used as the generator part of the GAN to produce
the new data samples by sampling from the low-dimensional embedding space.

3.4 Machine Learning from Simulations

A simulation imitates a process or system that could exist in the real world, generally
using the finite element method. A model and a configuration, for example, a car
represented by several meshes and a crash scenario, are provided, and the simulation
represents the evolution of this system over time. A simulation is generally cheaper
and/or safer than conducting the actual experiment. Therefore, the goal of simulating
a process is acquiring information about the process and understanding the behavior
and relation between the input model and the simulation outcome before experimenting
in the real world. To this end, several setups and model configurations are simulated,
which creates a data pool of simulation results.

This paves the way to analyze the growing datasets using machine learning [vRMS+20],
for example, via clustering [BGIT+13], anomaly detection [KDSG23], data-based mesh
adaptation [BF21, YDP+23], or surrogate modeling [LBD+18]. If the dynamics of a
simulation setup are understood, simulation results can be anticipated, and desired sim-
ulation results correlated to certain model parameters.

One research direction aims to learn the dynamics from a collection of simulations to
predict the outcome of a simulation. [BRFF18] use convolutional networks emulating a
fluid dynamics simulator to optimize the aerodynamic properties of a shape. [KGE+21]
learn low-dimensional features of a workpiece and, based on these features, predict the
axial crushing response using recurrent neural networks. [HITG20], on the other hand,
provide the first few timesteps as an input to predict a coarse approximation of the
outcome of simulation results using LSTM modules. All these methods are generally
tailored to a specific simulation setup and model.

Nevertheless, predicted simulation results using machine learning might not be phys-
ically correct. This issue led to physics-informed machine learning that enforces certain
physical laws by incorporating them into the objective function for training or design-
ing specialized network architectures [JKK20, KKL+21]. Because domain knowledge is
incorporated into the network, better results with less training data are expected.

Generally, simulations result in high-dimensional data sequences because, per timestep,
the model state and local features are calculated. Therefore, data-based dimensional
reduction techniques are common. A popular technique for data sequences is the dy-
namic mode decomposition (DMD) that was initially presented to analyze flow data
[Sch10]. The dimension reduction into dynamic modes is not learned. The modes are,
in fact, obtained by an eigen decomposition [HWM+14, Sch22], see section 9.2.1. Re-
cently, DMD has been combined with machine learning to learn a representation of the
state space, for example, by using a fully connected network [TKY17] or autoencoders
[LKB18, OR19, PD20]. Then, the DMD is applied to the learned features.
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4 Learning on Surface Meshes

Neural Networks can learn significant local features for data and global features repre-
senting the data they handle. This is also the case for surface meshes, which this work
explores. Many architectures excel at calculating vertex-wise features by applying convo-
lution, see section 4.1, which finds application in mesh segmentation or correspondence
learning.

Representation learning for surface meshes focuses on learning shape features, which
represent the entire shape in one feature vector and often use learned vertex-wise features.
These features facilitate the comparison of different shapes, speed up following analysis
tasks on the shapes, and simplify shape editing. Section 4.2 introduces autoencoders
calculating 3D surface mesh features. Many of the autoencoders presented in this section
will serve as a baseline for the surface mesh autoencoding methods presented in this work.

Feature learning is also crucial for mesh generation, to which I provide an overview
in section 4.3. Finally, section 4.4 introduces recent works in shape correspondence
learning.

4.1 Convolutional Networks for Learning Vertex Features

When learning vertex-wise features, convolutional neural networks have proven to be
good feature learners in many domains, including image and video analysis and natural
language processing. This is because their combination of local weight sharing and con-
sidering neighborhoods of vertices allows the network to detect common ’local’ features.

The convolutional filters applied to vertices of surface meshes can be distinguished
into isotropic and anisotropic filters. Anisotropic filters have increased expressiveness
because they are direction-dependent and take into account the direction on the surface
from which we consider information. While this is a trivial task in the case of convo-
lution on images since they are aligned along a global grid, surface meshes lack this
global grid. Therefore, most earlier convolutional methods [BZSL14, MBBV15, DBV16,
GSR+17, KW16, MBM+17] are isotropic because information from neighboring vertices
is averaged and, therefore, rotation-invariant.

Since surface meshes can be viewed as graphs, earlier, graph-based convolutional meth-
ods were often applied to meshes. Generally, convolutional networks on graphs or sur-
faces can be separated into spectral and spatial ones [BBCV21, BBL+17, WPC+21].

Spatial convolutional methods for graphs aggregate features based on a node’s spatial
relations, for example, in its r-ring neighborhood. These methods allow generalization
across different domains, and since they follow a common definition as message passing
neural networks, their implementations are flexible and efficient [GSR+17, WPC+21].
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The spatial methods use different ways to orient the local filters. The authors of
[MBBV15, MBM+17] calculate isotropic, rotation-invariant features by averaging the
result of different anisotropic kernels that are sensitive to orientation. [LDCK18] intro-
duces the spiral convolutions SpiralNet, which move around the neighborhood of the
vertices in spirals. They enforce the network to learn rotation-invariant, anisotropic
features by randomly selecting vertices for the spiral to start. In [BMR+16, HJZS20],
the kernels are aligned with the principal curvature direction, whereas [WGS+18] sort
neighboring vertices by similarity. [TPZ18], on the other hand, project neighborhoods
onto tangent planes, and [HAGO19] align the filters along a 4-rotational symmetric field.
Triangular polygonal meshes with highly regular meshing can be represented in hexag-
onal grids in almost all areas of the surface. Therefore, [HPCW18] apply hexagonal
2D-convolutional kernels that take advantage of the regular meshing and align the fil-
ters along the grid defined by regular connectivity. SubdivNet [HLG+22] calculates face
features for input meshes that are remeshed to semi-regular mesh connectivity. They
define a spatial convolutional layer that takes advantage of the local regular meshing in
their aggregation function with variable kernel size, stride, and dilation.

On the other hand, spectral approaches interpret information on the vertices as a signal
propagating along the vertices. They exploit the connection of the graph Laplacian and
the Fourier basis (see section 2.3), and vertex features are projected to the low-frequency
Laplacian eigenvector basis, where filters and a non-linearity are applied [BZSL14]. In-
stead of explicitly computing Laplacian eigenvectors, the authors of [DBV16] use trun-
cated Chebyshev polynomials, while [KW16] only use first-order Chebyshev polynomials.
These spectral methods require fixed connectivity of the graph. If not, the adjacency
matrix and, consequently, the Laplacian eigenvector basis changes. Note that these
graph convolutional networks are also isotropic because the graph Laplacian is isotropic.

Furthermore, network architectures take into account the geometry of the surface when
calculating vertex-wise features. They have been proposed to improve results on surfaces
for classification, mesh segmentation, and shape correspondence. The anisotropic convo-
lutional networks DiffusionNet [SACO22] and DeltaConv [WNEH22] are motivated by
diffusion on the surfaces. DiffusionNet is discretization agnostic and learns the diffusion
using Laplace–Beltrami operators of the local neighborhoods and directional features
from gradients. DeltaConv, on the other hand, uses a more extensive set of operators and
processes directional vector-valued features. Similarly, HodgeNet [SS21] constructs an
operator based on a parameterized class of learnable operators. An alternative approach
to building intrinsic rotation-equivariant convolutional networks for surface meshes is
to use local parametrizations. [CWKW19, dHWCW21, WEH20, WFVW21] are inde-
pendent of the choice of bases in the tangent spaces because they apply rotation- or
gauge-equivariant kernels in the parameter domain. Generally, these methods track how
the basis changes between the local parametrizations at the vertices, which can be costly.

The methods introduced in the previous paragraph, as well as the spectral approaches,
are intrinsic convolutional methods because they operate directly on the tangent spaces
around the vertices. Since the tangent spaces are two-dimensional, intrinsic convolu-
tions can be more efficient, and additionally, they are robust to rigid- and non-rigid
deformations [BMR+16].
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4.2 Shape Representation Learning via Mesh Autoencoder

While there are many approaches to calculating vertex-wise features, these architectures
cannot be implemented directly into autoencoders. Surface mesh autoencoders calculate
a relevant low-dimensional representation of the input shape and then reconstruct it only
given this low-dimensional representation, see section 3.3. Nevertheless, the methods for
calculating vertex-wise features for surface meshes are missing approaches to significantly
combine these vertex features into one feature vector representing the entire mesh. For
images, pooling operators successfully downsample the image resolution by combining
vertex features from local neighborhoods. This approach cannot be directly transferred
to meshes since the vertex neighborhoods do not have a fixed connectivity, see Table 2.1.
Therefore, there is a need for different solutions and mesh-specific approaches.

The simplest approach is to average all vertex features to obtain a shape representa-
tion, for example, in PointNet [QSMG17] for point clouds. We refer to this averaging
as global average pooling. A weighted local averaging that depends on the point den-
sity improves this slightly in [QYSG17] and, more recently, in [QLP+22]. Although the
global pooling loses all information about the mesh connectivity and locality of certain
features in the learned shape representations, it is applied to 3D data because it is simple
and avoids handling the geometry of the data. Note that the learned features are not
localized. This makes the reconstructing by an autoencoder more challenging, as evident
in the experiments in section 8.2.3.

Because of the disadvantages of global pooling of local features, other approaches cal-
culate localized mesh features by downsampling the mesh to a target number of vertices
or faces. In [LBBM18] and [RBSB18] (CoMA), some of the first mesh autoencoders
have been introduced. The authors of CoMA, the Neural3DMM network [BBP+19],
SpiralNet++ [GCBZ19], [YLY+20], MeshConv [ZWL+20], and [ZCAK23] utilize mesh
downsampling and mesh upsampling layers for pooling and unpooling. CoMA combines
this with spectral convolutional layers, whereas Neural3DMM uses adapted anisotropic
SpiralNet layers from [LDCK18]. [GCBZ19] slightly improves the autoencoder recon-
struction results by introducing SprialNet++ layers. By manually choosing latent ver-
tices maintained during downsampling into the embedding space, MeshConv [ZWL+20]
defines an autoencoder that allows interpolating in the latent space. They learn a global
kernel weight basis from which they sample a convolutional kernel for every vertex,
which accounts for irregular sampling and connectivity. [ZCAK23] again use SpiralNet
layers but improve the upsampling in the unpooling operations. The spectral autoen-
coder (SAE) [LDLD22] projects all meshes of the same mesh connectivity to the possi-
bly reduced eigenbasis of the constant graph Laplacian, where the autoencoder learns
low-dimensional features. In contrast to the latter models, all pooling and unpooling
operations take place in the spectral space.

All the above-mentioned mesh convolutional autoencoders work only for collections
of meshes with the same connectivity because the pooling, convolutional layers, and/or
graph Laplacian eigenbasis depend on the adjacency matrix. The MeshCNN architec-
ture [HHF+19] can be implemented as an encoder and decoder that handles different
mesh topologies. Nevertheless, the pooling is feature-dependent, so the embeddings can
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be of different significance.

An earlier line of research maps surface meshes in R3 to R2 or some regular sur-
face [BWS+18, MGA+17, SUHR17, SBR16]. In these representations, the definition of
convolution and pooling can be defined regularly and more efficiently. Nevertheless, a
successful projection can not be guaranteed, and the projection results are generally
distorted and affected by artifacts [ZCAK23].

For surfaces represented as signed distance functions and in other implicit represen-
tations, [GYH+20] and [PFS+19] achieve good results in shape reconstruction and com-
pletion. Nevertheless, their generalization and scalability are often limited to a small set
of deformations and require big training datasets as these approaches represent entire
shapes using a single fixed-length vector.

Another parallel line of work is representation learning on point clouds [ADMG18,
YFST18, QYW+19, ZBDT19, PWT+22, XHG+23]. Theoretically, these methods can
handle surface meshes when disregarding the faces defining the surface mesh. However,
these methods only reconstruct and generate point clouds, which is a different and more
straightforward task than my work aims for because point sets are permutation invariant.
This means that the reconstructed 3D coordinates do not need to fit a mesh topology and
vertex arrangement; hence, the chamfer distance or OT loss measures the reconstruction
loss appropriately [FSG17], which is not the case for surface meshes, see chapter 6.

4.3 Generative Models for Meshes

Generating new meshes or features for a given mesh connectivity is an important ad-
ditional application of autoencoding because it requires compact representations of the
shapes that lie on a smooth embedding manifold from which one can sample. To evaluate
the smoothness of the learned embedding spaces using the proposed autoencoders, I also
conduct generative experiments by interpolating in the embedding space and generating
shapes in new positions. While generating deformed meshes from (random) sampling
from the embedding space is not one of the main contributions of this work, this section
briefly summarizes related work.

For generative models, low-dimensional features are combined linearly to generate
shapes in positions that the user controls or the features are randomly sampled from an
embedding space to create new samples.

[FKSC21, HRA+19, RBSB18] show mesh generative results by sampling from the mesh
feature space of an autoencoder or variational autoencoder. These methods generally
require a given mesh connectivity, which has to be the same for the entire dataset and
predict the 3D positions of the vertices. For meshes of different connectivity, we expect
the low-dimensional features to be arranged into clusters corresponding to the different
mesh topologies. This impedes the application of standard variational autoencoders to
most of the considered datasets because VAEs expect the set of embedded features to
be normally distributed. Although there is research on Gaussian mixture VAEs, they
are unstable when training and the number of clusters has to be predefined because it
corresponds to the number of considered Gaussians [DMG+16].
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Various methods enhance or replace the learned latent space with calculated and non-
learned features. [YGT+23] generate shapes using a multiscale approach in combination
with attention-based autoencoders. Their latent space for meshes of fixed mesh con-
nectivity relies on a non-learned deformation representation [GLY+21]. The authors of
[TGLX18] present a variational autoencoder for deforming 3D meshes that also han-
dles a similar feature representation of the deforming meshes of fixed mesh connectivity.
[BPAD23] presents a generative model that uses one template mesh for learned recon-
struction and generation in combination with an encoder that calculates mesh-invariant
features. They define a dissimilarity measure based on geometric measure theory to
compare the generated mesh to the input mesh for optimization.

An alternative line of work uses generative adversarial networks (GANs) for mesh
generation [BBP+19, CBZ+19, BHMK+18], which randomly sample from the embedding
space. While GANs generally generate more diverse 3D shapes than autoencoders, they
are more unstable, difficult to train, and require big training datasets.

Attention modules or transformers [VSP+17] have been applied in mesh generative
experiments. [SWL+20] and [NGEB20] use an autoregressive generative model for 3D
point clouds or meshes respectively and predict the 3D positions of vertices sequen-
tially. They use transformers to capture spatial dependencies and [NGEB20] predict
the faces using a second attention-based network. The recent work in [SAA+19], on
the other hand, use transformers to create sequences of triangles. In an active paral-
lel line of work, transformer models are used to generate human meshes from images
[LWL21a, LWL21b, CYO22, Yos23] or from images and text [FLD+23], for example,
for applications in virtual reality or human-computer interaction. Here, the transformer
architectures model spatial interactions between vertices and joints from the 3D mesh
representation.

4.4 Learning Shape Correspondences

The research area of correspondence learning or shape matching has the goal of predicting
the point-to-point (p2p) map T12 for two shapes represented by meshes M1 and M2,
[BBL+17, GBS+16, GWH+21]. Functional Maps allow a representation of these p2p
maps in a lower dimension. See section 2.4 for a definition of T12 as well as the derived
Functional Map C21 derived from T12. Instead of optimizing a p2p map directly, one
can optimize the functional map [DSO20, MRR+19, NO17, OCB+17, SO20, HSA+23],
which is more feasible since the size of the p2p map is quadratic in the number of
vertices and the functional map is of reduced size k× k with k smaller than the number
of vertices. Here, [DSO20] calculate vertex-wise features F1 and F2 for M1 and M2 using
DiffusionNet [SACO22] and project them onto the corresponding reduced Laplacian basis

Ai = Φ†
iFi. Then the functional map C21 can be estimated by

arg min
C

∥CA2 −A1∥2F + λ∥C∆2 − ∆1C∥2F . (4.1)

The second term is a differentiable regularization that promotes the isometry of the
maps, as described in [OBCS+12]. To train the DiffusionNet, they define a loss function
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that captures the quality of the functional maps.
While the above works depend on ground truth p2p maps for this optimization, there

are recent works that focus on unsupervised learning of p2p maps [AO22, ETLTC20,
HLRK19, RSO19]. Since there are no ground truth correspondences, these works impose
structural properties such as bijectivity and orthonormality on functional maps in the
reduced spectral basis, penalize the geodesic distortion of the predicted maps, or combine
intrinsic and extrinsic shape alignment. Additionally, [HAGO23] apply the refinement
method ZoomOut [MRR+19] to improve the quality of the maps. This method navigates
between the spectral and spatial domains while progressively increasing the number of
spectral basis functions.
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5 Proposed Methods for Mesh
Autoencoding

This chapter first expresses the reason for creating an autoencoder to process meshes
with varying connectivities in section 5.1. This is a shift from traditional autoencoders,
which mainly work with point clouds and meshes with fixed connectivities.

After the motivation, I introduce two novel approaches and the resulting model ar-
chitectures for shape representation and generation, resolving the challenges motivated
in the first section. Section 5.2 introduces the convolutional semi-regular mesh
autoencoder (CoSMA) and followed by the canonical consistent latent basis au-
toencoder (CCLB-autoencoder) in section 5.3.

Notice the elephant in the lower right corner?1

5.1 Motivation

Conventional autoencoders for 3D shape feature learning deal primarily with point clouds
and surface meshes with fixed mesh connectivity, see section 4.2. Nevertheless, point
clouds do not capture the shape surface, and many datasets are not limited to one
fixed mesh topology. Therefore, I aim to develop autoencoders that handle meshes with
different connectivities representing diverse shapes.

When learning shape features, the crucial step is to reduce the dimensionality of local
features to one feature vector with a low dimension that describes the entire shape. In
the case of 3D point clouds, autoencoders have been successfully applied by reducing
point-wise features to a compact representation. Point clouds are unordered sets of 3D
points and, therefore, invariant to the permutation of the points. Generally, point-cloud
autoencoders take advantage of this and are also defined as permutation invariant, which
allows effective processing. This means that the learned low-dimensional feature and the
decoder output do not depend on the order or permutation of the points in the cloud.
Generally, this property is enforced by applying a permutation invariant global pooling
function on the entire set, like averaging or maximizing.

Triangular meshes are not permutation invariant in their vertex order because they
encode detailed geometry and topology information of the surface, which is crucial for
applications, for example, in computer graphics. The order of vertices in triangular
meshes is essential for the definition of mesh connectivity, which is given by a face
or edge list pointing to the indices of the connected vertices. Modifying the order of

1 On this page starts the flipbook animating the galloping sequence of the elephant from the GALLOP
dataset introduced in section 7.1.1. All shapes are reconstructed by the CCLB-autoencoder, and
subsequent timesteps have been interpolated in the embedding space for a smoother animation.
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vertices results in the disturbance and loss of connectivity information, diminishing the
representational utility of the mesh.

Therefore, point cloud autoencoders cannot be applied straight-forward to surface
meshes without disregarding the given connectivity information.

Existing approaches assume a strict 1-to-1 correspondence between meshes [LBBM18,
RBSB18, BBP+19, GCBZ19, ZWL+20], see section 4.2. This allows for fixed mesh
down and upsampling operations in the encoder and decoder that calculate hierarchical
features. As a side effect, all the meshes share the same embedding space for the learned
mesh features.

However, many meshes do not have fixed mesh topology. One could force them into
the same connectivity via remeshing. Nevertheless, remeshing to achieve a 1-to-1 cor-
respondence can introduce distortions and undermine the quality of the original mesh.
Additionally, it might not be feasible. For example, meshes with different genus or
boundaries cannot be remeshed to have the same mesh connectivity.

Another possibility to enforce a fixed mesh representation is to map the meshes to
a common space, for example, a 2D space or a regular surface like a sphere or a torus
[HSBH+19, MGA+17]. Projection to 2D allows for the application of 2D autoencoders.
Noticeably, this can introduce high distortions. Also, there might not be a projection
function back to the mesh representation, which limits the usability of this approach.

Therefore, this work aims to develop mesh autoencoder pipelines that handle arbitrary
triangular surface meshes without needing 1-to-1 correspondence.

5.2 Convolutional Semi-regular Mesh Autoencoder (CoSMA)

As a first approach, I propose to remesh the given surface meshes to a semi-regular
structure instead of enforcing fixed mesh connectivity for the entire mesh. It results in
mesh patches that are of fixed and regular mesh connectivity. The proposed autoencoder
pipeline takes advantage of these regularly meshed regional patches. For the first time,
it can analyze arbitrary shapes represented by a semi-regular mesh, including different
shape categories.

This section introduces the novel handling of semi-regular meshes for autoencoding
It defines the Convolutional Semi-Regular Mesh Autoencoder (CoSMA) for patch-based
shape representation learning for semi-regular meshes. The CoSMA makes use of tai-
lored convolutional and pooling functions as well as padding of the patches, which are
introduced in the following section. The two resulting network architectures using spa-
tial and spectral convolution are introduced in section 5.2.2, followed by the introduction
of the loss calculation.

Since the CoSMA handles meshes of semi-regular connectivity, I present a flexible
remeshing pipeline for remeshing arbitrary irregular surface meshes to a semi-regular
mesh representation that is presented in chapter 6. The entire pipeline consisting of
remeshing and feature learning is visualized in Figure 5.1.
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3D Surface Meshes

Remeshing 
to semi-
regular 
surface 
meshes

Convolutional Autoencoder Handling Patches

Analyze low-
dimensional
latent space

Assemble 
reconstructed

meshes

Padded Input Patch Pooling Embedding Unpooling Output Patch

Figure 5.1: CoSMA pipeline and method overview: The method consists of two stages.
In the first stage (left), we calculate semi-regular mesh representations for
the underlying surfaces. In the second stage (right), we train an autoencoder
that handles the regularly meshed and padded patches of the surface meshes
and calculates low-dimensional representations.

5.2.1 Method: Autoencoding Semi-Regular Meshes

The semi-regular mesh structure, see section 2.1.1, results in regional mesh patches
that are of fixed and regular mesh connectivity. I propose an autoencoder to handle
these regular substructures of the mesh, leveraging that the local surface deformation
follows similar patterns on the entire shape. Therefore, I apply patch-wise parameter
sharing to learn translation-invariant localized features. Also, semi-regular meshes have,
by definition, a multi-scale structure that provides mesh representations in different
resolutions. This can be exploited for an efficient definition of pooling.

Because of the patch-wise handling, the pipeline can handle any shapes represented by
semi-regular meshes that are not required to share the same global mesh connectivity.
In fact, the shapes can be from different shape categories.

Note that remeshing the polygonal mesh only changes the representation of the ob-
jects. The considered surface embedded in R3 is the same but now represented by a
different discrete approximation.

A similarly motivated line of research uses the patch approach for learning regional fea-
tures that are then used for denoising and regularizing images [Pey08, Pey09, XLH+21].
The authors assume the patches lie on a patch manifold with a low-dimensional structure
characterized by patch image features. This relates to my patch-wise mesh autoencod-
ing approach, where I motivate the patch-wise handling by common local and regional
deformation behavior.

Because all the regional patches share the same meshing and the convolutional neural
networks learn local features, the patches are input separately into the network. For a
semi-regular surface mesh with j patches of regular connectivity, we refer to the vertex
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ALGORITHM 2: Calculating the patch-wise padding of size PS.

Input : Vertex coordinates vp of patch p and V of the entire shape, padding size PS.
Output: Vertex coordinates PadPS(vp) of the patch p with padding of size PS.
for l = 0; l < PS; l = l + 1 do

for vertex (vp)i on the patch boundary do
if (vp)i a vertex on the boundary of the entire shape then

pad with boundary vertices (vp)i
else

if N1((vp)i) = 6 then
// vertex with regular degree

use the coordinates of the vertices in N1((vp)i)
else if N1((vp)i) < 6 then

interpolate the values of the vertices in N1((vp)i)
else

chose the closest vertices in N1((vp)i) in both cyclic rotations
end

end

end

end

Figure 5.2: Visualization of the padding of a patch of refinement level rl = 3 using
padding size PS = 2 .

coordinates of a patch as vp ∈ Rm×3 for p = 1, . . . , j. To consider the global context
when handling patches, it is fed to the network via padding. Now, we define the padding,
different convolutional functions, and a pooling function that are applied to the patches.

Padding

The padding is crucial for the network to consider the regional patches in a larger
context. Since the network handles the patches separately, I consider the features of the
neighboring patches in a padding of size PS. Algorithm 2 outputs for every input patch
vp the padded patch vertices Pad(vp). Since the vertices where two patches meet are of
regular degree, the padding is the regular PS-ring neighborhood of the vertices. At the
corner vertices of possibly irregular degrees and the boundary of the entire shape, the
algorithm approximates the padding. Figure 5.2 shows the application of the padding
operation to a regularly meshed patch of refinement level rl = 3.
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Padded patch Pad(vp) Weight matrix WKS
hex

Figure 5.3: Application of a hexagonal convolutional filter of kernel size KS = 2 slided
along the dashed lines to a padded input patch Pad(vp).

Spatial Convolution

The regional patches are of the same regular structure. All vertices have exactly six
neighbors; only the three corners can be irregular, but we project their neighborhood
to a regular one with the padding. Additionally, the patches are intrinsically two-
dimensional and represent a surface. Therefore, the application of a 2D-convolutional
kernel is possible. Since the regional patches are represented in hexagonal grids, the
application of hexagonal 2D-convolutional kernels has been shown to yield better results
[HPCW18, SH19]. Similarly to [BRFF18], the consistent degree of the vertices results
in better runtimes since similar calculations at these vertices can be moved to GPU.

On the local regular structure, the translation of the convolutional kernels is well-
defined. Therefore, the kernels preserve the orientation of the neighborhood and are
anisotropic. The padded patch-based approach assures gauge equivariance of the net-
work. The authors of [CWKW19, dHWCW21] show how anisotropic kernels that pre-
serve orientation significantly improve the expressivity of models.

This leads, in comparison to rectangular filters for images in Figure 3.2, to filters
WKS

hex of hexagonal shape, see Figure 5.3. Their kernel size KS is given by the KS-ring
neighborhood considered by a filter WKS

hex with 1 +
∑KS

k=1 6k trainable parameters. The
hexagonal convolution on one-channel input features x on a hexagonal grid is defined as

o = HexConvKS(x) = x ∗WKS
hex. (5.1)

I use the implementation of hexagonal convolution in Pytorch from [SH19]. Note that
the network does not correct differences in the distances to neighbors or angles between
neighbors. Nevertheless, the edge lengths of the semi-regular meshes are stable because
of the edge length regularization during the remeshing, see section 6.2.2.

39



Chapter 5. Proposed Methods for Mesh Autoencoding

Spectral Convolution

For the spectral convolution, I apply fast Chebyshev filters [DBV16], which [RBSB18]
also apply to surface meshes, with the distinction that I perform them on the regional
patches instead of the entire mesh. Spectral convolutions perform spectral decomposition
using spectral filters and apply convolutions directly in frequency space. The Cheyshev
convolution approximates the spectral filters by truncated Chebyshev polynomials, which
avoids explicitly computing the Laplacian eigenvectors and, by this means, reduces the
computational complexity.

The Chebyshev polynomials of order k ∈ N for input features x are defined as

T1 =x (5.2)

T2 =L̂x (5.3)

Tk =2L̂Tk−1 − Tk−2, (5.4)

where L̂ denotes the scaled and normalized Laplacian 2LN
λmax

− 1. Finally, the Cheby-
shev spectral graph convolutional function of filter size K approximated by truncated
Chebyshev polynomials is defined as

o = ChebConvK(x) =
K∑
k=1

Tk(WCh)k, (5.5)

with WCh ∈ RK the trainable parameters for one-channel input x and output o vectors.

Note that the kth-order polynomials of the Laplacian are k-localized. Therefore, they
encode information from the k-ring neighborhoods of the vertices. Since a large spectral
filter size K leads to fewer trainable parameters than a large spatial kernel size KS,
K is generally greater than KS. Also, in the experiments, the spectral convolutions
consider bigger neighborhoods and, therefore, more general characteristics of the patch
deformations.

Pooling

The piecewise regular form of the semi-regular meshes has a multi-scale structure created
by the iterative subdivision of the faces of the low-resolution mesh. I take advantage
of this structure that all semi-regular meshes have in common and define an average
pooling function that undoes the subdivision of one into four faces. This reduces the
dimensions of the features and the number of network parameters, as pooling layers
for 2D convolution do as well [GBC16, Mur22]. The vertices kept during this pooling
operation take the average of their value and the values of the six neighboring vertices
in the one-ring neighborhood that are discarded. The resulting pooling function Phex is
defined as

Phex(vp)iP =
1

7

(
(vp)i +

∑
w∈N1((vp)i)

w
)
, (5.6)
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Padded Input Patch Pooling Embedding Unpooling Output Patch

Figure 5.4: Resolution of a padded regularly meshed patch Pad(vp) with refinement level
rl = 4 inside the CoSMA. The encoder pools the patches twice by undoing
the subdivision. In the decoder, the unpooling increases the resolution again
by subdivision. The orange vertices are the vertices from the irregular base
mesh. Red and purple vertices were created in the 1st and 2nd refinement
steps.

with vp being the vertex coordinates of patch p and the index of vertex i is mapped to
iP by reducing the refinement level.

To increase the resolution of the mesh patches in the decoder, the unpooling function
UPhex recreates the multi-scale structure of the semi-regular mesh. Every face is sub-
divided into four faces, and the newly created vertices are assigned the average value
of neighboring vertices from the lower-resolution mesh patch. This corresponds to one
midpoint subdivision of the mesh, see Figure 2.2.

A similar pooling and unpooling is also applied by [HLG+22], where the information
is saved on the faces. Figure 5.4 illustrates how the pooling and unpooling layers undo
the subdivision of the regular patch or increase its resolution, respectively.

5.2.2 Network Architecture

I define a general structure for a mesh autoencoder using the convolution and pooling
layers that are defined above. It is inspired by [RBSB18] but processes the padded
regular patch coordinates Pad(vp) with padding size PS = 2 of a semi-regular mesh. The
autoencoder compresses every padded patch, which corresponds to one face of the low-
resolution mesh, from R276×3 (dimensions for padded input at refinement level rlin = 4)
to an hrp dimensional latent vector and reconstructs the original padded patch from the
latent vector.

The encoder enCoSMA consists of two blocks containing a convolutional layer followed
by an average pooling layer. The output of the second encoding block is mapped to the
latent space by a fully connected layer. The resulting hrp-dimensional embedding is
referred to as hp = enCoSMA(Pad(vp)).

The decoder deCoSMA mirrors the structure of the encoder by first applying a fully
connected layer, which transforms the latent space vector back to a regular triangle rep-
resentation with refinement level rlin − 2. Afterward, two decoding blocks consisting
of an unpooling layer followed by a convolutional layer transform the coarse triangle
representation back to the original padded patch representation. Finally, another con-
volutional layer is applied without activation function to reconstruct the original patch
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Spatial CoSMA Spectral CoSMA

Layer Output Shape KS Param. Layer Output Shape K Param.

E
n

co
d

er
Input (•, 3, 267) 0 Input (•, 3, 267) 0
HexConv (•, 24, 267) 2 912 ChebConv (•, 24, 267) 6 304
Pooling (•, 24, 78) 0 Pooling (•, 24, 78) 0
HexConv (•, 25, 78) 1 3,584 ChebConv (•, 25, 78) 6 3,104
Pooling (•, 25, 15) 0 Pooling (•, 25, 15) 0
Fully Conn. (•, 10) 8,010 Fully Conn. (•, 10) 4,810

D
ec

o
d

er

Fully Conn. (•, 25, 15) 8,800 Fully Conn. (•, 25, 15) 5,280
Unpooling (•, 25, 78) 0 Unpooling (•, 25, 78) 0
HexConv (•, 24, 78) 1 3,584 ChebConv (•, 25, 78) 6 6,176
Unpooling (•, 24, 267) 0 Unpooling (•, 25, 267) 0
HexConv (•, 24, 267) 2 4,864 ChebConv (•, 24, 267) 6 3,088
HexConv (•, 3, 267) 1 336 ChebConv (•, 3, 267) 6 291

Total number of parameters 30,090 23,053

Table 5.1: Structure of the autoencoders spatial CoSMA and spectral CoSMA for re-
finement level rl = 4, and hidden representation of size hrp = 10. The table
also lists the number of trainable parameters for selected spatial convolution
kernel size KS and spectral convolution filter size K. The bullets • reference
the corresponding batch size. The last dimension of the data is the number
of vertices considered for each padded patch.

coordinates by reducing the number of features to three dimensions.

This general CoSMA architecture can handle all surface meshes remeshed into a
semi-regular mesh representation of the same refinement level rlin. This workflow is
independent of the original irregular mesh connectivity and size, thanks to the remeshing
and patch-wise handling. Note that this approach can handle non-manifold edges of the
coarse base mesh because the patches, whose interiors by construction have only manifold
edges, are fed separately.

Depending on the applied convolutional layers, we define two versions of the CoSMA.
The spectral CoSMA uses the spectral convolutional layers with Chebyshev polyno-
mials in combination with an exponential linear unit (ELU) as an activation function
[CUH16]. The spatial CoSMA, on the other hand, uses the spatial convolutional layers
followed by a biased ReLU activation function.

Table 5.1 defines and compares these two architectures. If not stated differently, the
experiments use K = 6 Chebyshev polynomials for the spectral CoSMA, and for the
spatial CoSMA, the kernel sizes KS listed in the Table. Figure 5.4 illustrates the patch
sizes inside the CoSMA autoencoder for rlin = 4.
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5.2.3 Surface-aware Loss Calculation

I input the 3D coordinates of the padded patch to the autoencoders, and both the
spatial and spectral CoSMA output the reconstructed patch, including the padding.
Nevertheless, for the reconstruction of the entire shape, the padding of the patch is not
relevant. Therefore, during the model training, I optimize the mean square error (MSE)
without considering the padding of the reconstructed patch. Let vp be the ground truth
3D coordinates of the patch p and

v̂p = deCoSMA(enCoSMA(Pad(vp))) (5.7)

their reconstructions. The patches have m vertices without considering the padding.
Then, the MSE between vp and v̂p is

MSE(vp, v̂p) =
1

m

m∑
i=1

((vp)i − (v̂p)i)
2. (5.8)

Nevertheless, a patch-wise application of a mean squared error as the training loss does
not keep track of multiple appearances of the vertices in the patch boundaries. Because
the patches are considered separately, the boundary errors are weighted higher than in
the interior of the patches. Therefore, it is not surface-aware and does not consider the
patches as part of the entire mesh but separately. By weighting the vertex-wise error in
the training loss with one divided by the number of appearances of the vertices in the
different patches, I employ a surface-aware error for training.

Let us consider a semi-regular mesh with n vertices that is made up of j patches, which
have m vertices without considering the padding. For all vertices, Pi is the set of patches
in which vertex i appears. Then, I calculate the patch-wise surface-aware training loss
between the ground truth 3D coordinates vp of the patch p and their reconstructions v̂p
as follows:

MSESA(vp, v̂p) =
1

m

m∑
i=1

1

|Pi|
((vp)i − (v̂p)i)

2. (5.9)

When considering the MSE for the entire mesh, it holds

1

j

j∑
p=1

MSESA(vp, v̂p) =
1

j

j∑
p=1

1

m

m∑
i=1

1

|Pi|
((vp)i − (v̂p)i)

2 (5.10)

=
1

jm

j∑
p=1

m∑
i=1

1

|Pi|
((vp)i − (v̂p)i)

2 (5.11)

=
1

jm

j∑
i=1

∑
p∈Pi

1

|Pi|
((vp)i − (v̂p)i)

2 (5.12)

and the reconstructions of all vertices have the same weight, taking the average if there
are multiple reconstructions. This improves the calculation of the reconstruction error
and avoids artifacts and errors due to overemphasizing the patch boundaries.
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Figure 5.5: CCLB autoencoder pipeline: The method consists of two stages. In the first
stage (left), we define a functional maps network using p2p maps between
the 3D surface meshes. These p2p maps are used to calculate the canonical
consistent latent basis (CCLB), which is used as the basis of the joint em-
bedding space of the mesh autoencoder in stage 2 (right).

5.3 Mesh Autoencoder using a Canonical Consistent Latent
Basis (CCLB-AE)

As a second approach, I propose to use shape correspondences to overcome different
mesh connectivities when calculating shape features. For that objective, I introduce a
novel spectral mesh pooling.

Note that all previously introduced approaches require the same mesh connectivity to
situate the learned mesh features within a shared embedding space that allows for both
comparative and manipulative operations on the shapes. Using mesh correspondences
for autoencoding allows, for the first time, to calculate shape features of differently
meshed shapes that lie in a joint embedding space.

As a first stage of my approach, the required mesh correspondences are calculated to
construct point-to-point (p2p) maps between a collection of shapes. The second stage
of the model is the autoencoder, where I make use of the novel spectral mesh pooling.
This pipeline is visualized in Figure 5.5.

This section first introduces the proposed spectral mesh pooling, and then I define
the network architecture and explain the applied p2p map extraction. Finally, I de-
fine the loss function and the regularizer that improves the performance when using
unsupervised, imprecise learned p2p maps between the shapes.
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5.3. Mesh Autoencoder using a Canonical Consistent Latent Basis (CCLB-AE)

5.3.1 Method: Spectral Mesh Pooling

I propose a spectral mesh pooling method to reduce the dimensionality of the meshes in
the spectral domain to handle meshes of different connectivity and represent them in a
joint low-dimensional embedding space.

In the case of classical representation learning for 2D images with convolutional net-
works, all image samples have a fixed size and are in 1-to-1 correspondence. The con-
volutional filters with stride 1 calculate vertex-wise features, then pooling summarizes
many vertex-wise features, going from n pixels to k. This is done uniformly for all the
images in correspondence; hence, features from different samples are comparable to each
other because of the 1-to-1 correspondence. Let us consider average pooling for images
of size n = 4×4 and the pooling size k = 2×2. Then, these four matrices are a common
basis for all the images with 2 × 2 pixels:(

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
. (5.13)

The projection vector from n pixels towards one of low-dimensional basis has ones in
the corresponding corner. For the first common basis, the resulting average pooling
operation is

1

4


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 , (5.14)

displayed in the shape of the image. Therefore, pooling in 2D can also be interpreted
as a projection from n dimensions to a set of common basis functions in k dimensions.
This projection reduces the dimensionality of the data while the pixel-wise feature di-
mensionality stays the same.

A similar pooling operation cannot be constructed for meshes with different mesh
connectivities. Only p2p maps between the shapes are available, allowing a function to
be projected from one shape to another.

To solve the pooling for meshes, I propose to adapt the CCLB method (initially
developed for deformation detection) and introduce a novel intrinsic spectral mesh
pooling PSpec : Rn×F → Rk2×F . I project vertex-wise features Fi that are calculated for
every surface mesh Mi separately to the common CCLB basis, reducing the dimension
from the number of vertices to the size of the limit shape

PSpec(Fi) = Ỹ †
i Φ†

iFi. (5.15)

At the same time, the local features are disentangled from the given surface mesh to
global shape features. I calculate the limit shape basis CCLB as described in algorithm
1 in section 2.4.3. It has dimension k2 and uses eigendecompositions of the Laplacians
of size k1 ≥ k2. It is the common basis for the low-dimensional embedding space.
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For the spectral mesh unpooling, I project the features from the limit shape basis back
to the vertex representation of a template shape Mt. The resulting unpooling function
UPSpec : Rk2×F → Rnt×F is defined as

UPSpec(A
CCLB
i ) = ΦtỸtAi (5.16)

with ACCLB
i being the spectral mesh features and nt the number of vertices of the

template shape used for reconstruction.
If the dimensionality of the CCLB is 1 (k1 = k2 = 1), the projection of the shape

features into the CCLB corresponds to a global ± average pooling for all the shapes in
the collection. Furthermore, the inverse of this operation duplicates the average feature
to the mesh vertices, similar to upsampling in the 2D case. Also, the sign of the resulting
global average pooling function from all shapes in the shape collection to the CCLB is the
same, making the different low-dimensional representations comparable to each other. I
formally state this observation in the following lemma.

Lemma 1. If k1 = k2 = 1, there are only two possible solutions for the projection Ỹ †
i Φ†

i

from the vertex-wise features Fi to the CCLB for all surface meshes Mi, i = 1, 2, . . .
and the projection from the CCLB to a template shape ΦtỸt. Either

PSpec(Fi) = Ỹ †
i Φ†

iFi = mean(Fi) ∀i and ΦtỸt = 1nt (5.17)

or
PSpec(Fi) = Ỹ †

i Φ†
iFi = −mean(Fi) ∀i and ΦtỸt = −1nt (5.18)

with mean : Rni×d → Rd the vertex-wise average function, 1nt the column-vector with
only ones in Rnt, and nt being the number of vertices of the template shape.

Proof. At first, we proof that Ỹ †
i Φ†

iFi = ±mean(Fi) for a fixed i. If k1 = k2 = 1, it
holds

Φi = ±1ni (5.19)

being the eigenvector corresponding to the smallest eigenvalue Λi = 0 because the sum
of all values in each row of the Laplacian Li is 1. Therefore,

Φ†
iFi =

1

ni
ΦT
i Fi = ±mean(Fi). (5.20)

The functional map
Cij = ΦT

j Φi ∈ R1×1 (5.21)

is 1 or -1, projecting only constant functions from shape j to shape i. It holds Cij = Cji.
If k1 = 1, the optimization problem to compute the Consistent Latent Basis

min
Y

∥CijYi - Yj∥ s.t.
∑
i

Y T
i Yi = I (5.22)

(see also equation (2.10)) has the solutions:

if Cij = Cji = 1 ⇒ Yi = Yj ∈ {−1, 1}
else Cij = Cji = −1 ⇒ Yi = −Yj ∈ {−1, 1}.

(5.23)
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Since Λi = 0, the matrix E in algorithm 1 in section 2.4.3 is 0. Therefore, the possible
solutions for its eigenvector U are -1 and 1. For the calculation of the CCLB, this leads
to

Ỹi = YiU ∈ {1,−1}. (5.24)

For the inverse it holds

Ỹ †
i = Ỹi. (5.25)

From (5.20) and (5.25) follows

Ỹ †
i Φ†

iFi = ±mean(Fi) (5.26)

and all entries of the matrix have the same sign.

In a second step, we prove by contradiction that the non-zero entries of the matrix
products Ỹ †

i Φ†
i have the same sign for all i = 1, 2, . . . .

Assume that the sign of Ỹ †
i Φ†

i is different from the sign of Ỹ †
j Φ†

j for i ̸= j. Without loss

of generality, assume the sign of Ỹ †
i Φ†

i to be positive. Therefore, the sign of Ỹ †
i is the

same as the sign of Φ†
i . Then, either Ỹ †

j or Φ†
j has a different sign.

If Ỹ †
j = −Ỹ †

i , then Yj = −Yi and therefore Cij = Cji = −1 because Yi and Yj solve
(5.22). From (5.21) follows that Φj and Φi have different signs, which is a contradiction

to Φ†
i having the same sign as Φ†

j .

If in the other case Φ†
i has a different sign than Φ†

j , Cij = Cji = −1 because of (5.21).

It follows Yi = −Yj , which is a contradiction to Ỹ †
j having the same sign as Ỹ †

i .

Finally, the entries of the matrix product ΦtỸt, which projects the features from the
CCLB representation to the template shape, have the same sign as Ỹ †

i Φ†
i .

5.3.2 Network Architecture

Given a shape collection of meshes that can have different connectivity and p2p maps,
we calculate functional maps between the shapes and then construct the functional map
network, as well as the limit shape basis CCLB as described in 2.4.3 using only the shapes
in the train set. The CCLB basis has dimension k2 and uses eigendecompositions of the
Laplacians of size k1 ≥ k2. It will be the common basis for the low-dimensional embed-
ding space. In addition, we chose a set of template meshes from the collection for the
different types of meshes whose mesh connectivity will be used for the reconstructions.

The encoder enCCLB : Rn×3 → Rk2×F takes as an input the vertex 3D coordinates
of mesh Mi. Four trainable DiffusionNet Blocks [SACO22] are applied to calculate
F -dimensional vertex-wise features Fi ∈ Rn×F . Then, I apply the proposed spectral
mesh pooling and project the features to the CCLB ACCLB

i = PSpec(Fi). This low-
dimensional representation of dimension k2 · F is now independent of the mesh connec-
tivity of Mi because it is represented in the common CCLB basis.

The decoder deCCLB : Rk2×F → Rnt×3 projects the features represented in the CCLB
to the template shape Mt by applying the spectral mesh unpooling UPSpec(A

CCLB
i ).
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CCLB Mesh Autoencoder

Layer Output Shape Param.

E
n

co
d

er Input (n, 3) 0

4 DiffusionNet Blocks (n, F ) 466,472

Projection to CCLB (k2, F ) 0

D
ec

o
d

er Projection to template shape (n, F ) 0

Append template 3D coordinates (n, F + 3) 0

4 DiffusionNet Blocks (n, 3) 466,819

Total number of parameters 933,291

Table 5.2: Structure of the CCLB mesh autoencoder calculating a hidden representation
of size hr = k2 · F . The given parameter counts correspond to a model
calculating F = 40 DiffusionNet features and are independent of the number
of mesh vertices n and embedding dimensions k2.

At this point, I concatenate the vertex-wise 3D coordinates of the template shape to
the projected features to provide more information for reconstructing the input shape.
Finally, four trainable DiffusionNet Blocks reconstruct the 3D coordinates of the input
shape on the template mesh vertices, see Table 5.2 for network details.

The proposed autoencoder applies the surface-based convolutional network Diffusion-
Net. Following the default segmentation configuration of DiffusionNet, 128 eigenvectors
approximate the diffusion in the encoder and decoder.

For the test meshes, I estimate the projection matrix Ỹ †
i by first projecting the features

to the template shape Mt via the corresponding functional map and then applying the
CCLB projection matrix of the template shape. This results in Ỹ †

t CitΦ
†
iFi for the

spectral mesh pooling of test mesh Mi.

5.3.3 Extraction of Point-to-point Maps

The calculation of the common latent basis using the CCLB requires point-to-point
(p2p) maps or functional maps between enough shapes to construct a fully connected
functional maps network G. Also, the vertex-wise loss calculation takes advantage of
given true p2p maps because it takes advantage of the shared mesh connectivity.

Many datasets come with true p2p maps between the shapes since the dataset or
subsets of the dataset share the same mesh connectivity. Nevertheless, the CCLB-AE is
not limited to datasets with given true p2p maps between the shapes.

Obtaining supervised p2p maps is challenging and time-consuming since it requires
significant labeling effort. However, there are different methods to calculate approximate
p2p maps in an unsupervised way. We chose the method introduced in [HAGO23],
see section 4.4. Since the unsupervised maps might be of lower quality, we apply an
additional regularizing loss function to rectify the defaults in the maps.
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5.3. Mesh Autoencoder using a Canonical Consistent Latent Basis (CCLB-AE)

5.3.4 Loss Calculation

The CCLB-autoencoder is fully differentiable, and we denote the 3D coordinates of the
input mesh as V ; the reconstruction is defined as Vrec = deCCLB(enCCLB(V )). It is
trained using a combination of two losses.
Point-to-point (p2p) loss: Given a p2p map Π (either ground truth or learned in

an unsupervised way) between the template and the input mesh, the p2p loss is defined
as L1 = ∥ΠV − Vrec∥2F . However, in the case of unsupervised learned maps, this loss
may provide inaccurate signals as the p2p map is often faulty and not entirely correct.
An additional loss addresses this issue.

Reconstruction loss: Given the reconstructed coordinates Vrec, we construct the
matrix DV such that DV,rec

i,j = ∥Vrec,i − Vrec,j∥2F . We similarly create the matrix DV for

ΠV . The reconstruction loss is formulated as L2 = ∥DV −DV,rec∥2F . This loss computes
the cumulative reconstruction error, and each point receives reconstruction feedback from
the other n − 1 points. Thus, even if the p2p map is faulty in some places, the faulty
points receive signals from the non-faulty ones [HAGO23]. Due to the possibly large size
of the matrices DV and DV,rec, the mesh vertices Vrec and ΠV are resampled to 20,000
vertices during the loss computation, if the mesh has more than 20,000 vertices. As this
loss is rotation invariant, it cannot be used alone. Therefore, when using unsupervised
learned p2p-maps, the final loss combines the two losses: L = L1 + λrecL2.
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6 Semi-Regular Remeshing

The convolutional semi-regular mesh autoencoders introduced in section 5.2 require the
surface to have a semi-regular mesh representation. Section 2.1.2 introduced existing
remeshing algorithms for semi-regular meshes and highlighted their limitations, see Fig-
ure 2.2. Also, the existing algorithms have strict conditions on the mesh characteristics
that, for example, the mesh of the camel and horse cannot fulfill since they have non-
manifold vertices and edges. Therefore, there is a need for a new pipeline for semi-regular
remeshing.

The pipeline has two building blocks: At first, the irregular mesh MIR is coarsened
to a coarse representation Mcoarse; then I iteratively refine this coarse base mesh via
subdivision of the faces and fit the resulting mesh MSR to the original irregular mesh
MIR. This chapter introduces the coarsening algorithm in section 6.1, followed by the
subdivision and the mesh fitting in section 6.2.

Section 7.2 in the next chapter sets these steps together to a remeshing pipeline and
evaluates the remeshing results after introducing the datasets.

6.1 Mesh Coarsening

To coarsen the surface mesh, I employ an adapted Garland-Heckbert algorithm for sur-
face simplification using quadric error metrics [GH97]. It simplifies the mesh by col-
lapsing edges until the target number of faces k∗ is reached, constantly contracting the
pair of edges with the lowest cost, see Figure 6.1. The algorithm starts with a surface
mesh M(V,F), which is coarsened iteratively Mcoarse,k with k ∈ N describing the actual
number of faces until k ≤ k∗.

The cost per edge c : Ecoarse,k → R measures the shape changes that are introduced
by contracting the edge. For the edge (v1, v2) in the initial mesh, the cost function adds
up the square distances between the newly created vertex v̄ to the faces adjacent to v1

v1
v2

v

edge collapse

Before After

Figure 6.1: The edge (v1, v2) is contracted into the newly created vertex v̄. This degen-
erates the shaded triangles.
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irregular mesh
regularization

none + edge length + face area + prevent non-
manifold edges

irregular mesh, none, 

edge, face, non-

manifold

0 6 4 8 0
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Figure 6.2: Mesh coarsening results from 13,776 to 100 faces and the number of non-
manifold edges in the visualized mesh.

and v2
c((v1, v2)) = ∆(v̄) =

∑
p∈planes(v̄)

distp2pl(v̄, p)2, (6.1)

where distp2pl is the distance between a point and a plane, and planes(v̄) = {plane p
defined by f ∈ F|f adjacent to v1 or v2}. The coordinates of the newly created vertex
v̄ are chosen to minimize ∆(v̄).

The faces adjacent to v1 or v2 are now considered adjacent to v̄. This union of adjacent
faces is approximated to reduce the runtime [GH97].

Regularization

If necessary, this cost is regularized. I regularize the edge lengths of the resulting coarse
mesh [YLY+20] by adding the maximum length of the neighboring edges

rmax,E((v, w)) = max
e∈E

v∈e or w∈e

∥e∥2 (6.2)

to the edge-wise contraction cost c((v, w)). For regularizing the face areas, I add the
maximum area of the neighboring faces

rmax,F ((v, w)) = max
f∈F

v∈f or w∈f

area(f). (6.3)

Both regularizers are weighted by λE ≥ 0 and λF ≥ 0 respectively and added to the cost
of contracting edge (v, w). This increases the cost of an edge contraction that would
make coarsely sampled mesh areas even coarser.
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j = 0 j = 1 j = 2 j = 3

Figure 6.3: Iterative subdivision by splitting every face into four faces. j indicates the
refinement level.

Additionally, I prevent contractions of edges that lead to non-manifold edges and
vertices in the mesh and disconnected components. This is only done towards the end
of the coarsening procedure when the number of remaining faces k is smaller than a
selected knm because otherwise, finer mesh structures of the irregular mesh cannot be
coarsened, and the algorithm does not terminate. If k < knm edges, whose contraction
would create non-manifold structures in the mesh, are not considered, although their
cost might be low. Figure 6.2 visualizes the regularization effect on the resulting coarse
mesh.

6.2 Iterative Subdivision and Mesh Fitting

The subdivision is generally done iteratively, alternating the subdivision and the adap-
tion of the vertex locations [LSS+98, PRS15].

A 1-to-4 subdivision splits every face into four faces, which creates a new vertex for
every existing edge. When splitting every face into four faces, all newly created vertices
that do not lie on the mesh boundary have six neighbors, which creates the desired
semi-regular mesh structure, see Figure 6.3. To calculate the initial 3D position of the
newly created vertex, the positions of the two vertices that define the subdivided edge
are averaged. This corresponds to one midpoint subdivision, see Figure 2.2.

The resulting 3D positions of the vertices of the semi-regular mesh of refinement level
j ∈ N, j > 0 are referred to as VSR,j ∈ Rnj×3, with nj the number of vertices.

The semi-regular mesh MSR,j has to be fit to the original irregular mesh MIR to
describe the surface well. The fitting is described by a deformation vector ζj ∈ Rnj

that contains 3D translations for the vertices VSR,j of the semi-regular mesh. I optimize
the deformation vector ζj , such that the surface mesh MSR,j with vertex positions
VSR,j − ζj describes the underlying surface of MIR. The final vertex positions V ∗

SR,j of
the semi-regular mesh at refinement level j are then calculated by

V ∗
SR,j = VSR,j − ζ∗j . (6.4)

I apply different loss functions comparing MSR,j to MIR and additionally regularizers
to MSR,j in order to fit the created semi-regular mesh to the irregular one. Since I
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optimize with respect to the translation vector ζj , the loss function and regularizers
must be differentiable with respect to ζj .

The resulting objective function is composed of a selected loss function and regularizers
and optimized using stochastic gradient descent. Therefore, it needs to be efficient to
compute the forward and backpropagation of the loss functions and regularizers. Because
the refinement level j is fixed during the optimization of ζj , I omit the subscript •j .

6.2.1 Loss Functions

The loss functions measure the distance between the semi-regular mesh representation
MSR and the target irregular mesh representation MIR. In section 2.2.2, I have intro-
duced several distance measures between surface meshes and point clouds that I slightly
adapt to use as loss functions for remeshing.

Average Chamfer Distance

The average chamfer distance is calculated between sampled points SIR from the sur-
faces described by the original mesh MIR and sampled points SSR from the iteratively
deformed semi-regular mesh MSR respectively, as explained in more detail in section
2.2.1:

dC(MIR,MSR) =dsamp,C(SIR, SSR) (6.5)

=
1

|SIR|
∑

x∈SIR

min
y∈SSR

∥x− y∥22 (6.6)

+
1

|SSR|
∑

y∈SSR

min
x∈SIR

∥x− y∥22. (6.7)

Chamfer Distance weighted by Geodesic Distance

The chamfer loss handles point clouds sampled from the surface meshes. Therefore, their
distance is minimized when two points on the surface meshes are nearest neighbors in the
3D space. They are brought closer together, disregarding that their geodesic distance on
the remeshed surface might be high. This is why we want to prevent these cases, which
generally occur when two convex regions of the surface mesh are close to each other, see
Figure 6.4.

Note, how minimizing the chamfer distance dC(MIR,MSR) fits the meshes in two
directions: MIR is projected to MSR (6.6) and MSR is projected to MIR (6.7). Also,
in convex regions of the shape surface, the semi-regular mesh that is built from a coarse
approximation generally lies in the interior of the irregularly meshed shapes because
the vertices of the coarse mesh lie on the surface. Therefore, the vertices created by
subdivision lie in the interior. So, the described case appears when erroneously projecting
vertices from MIR to an unwanted area of MSR, see Figure 6.4.

Let xIR be a vertex on MIR and its closest projection to MSR and back to MIR

is xIR,proj , which lies again on MIR. Now, I weigh the corresponding error term from
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MSR

xSR,proj

MIR

xIR,proj
xIR

∇xSR,proj (∥xIR − xSR,proj∥22)

Figure 6.4: xIR is erroneously projected to xSR,proj on MSR and the gradi-
ent ∇xSR,proj (∥xIR − xSR,proj∥22) pulls improperly at xSR,proj . There-
fore, this projection is regularized depending on the geodesic distance
dgeod(xIR, xIR,proj) on MIR.

equation 6.6 by a factor < 1, if the geodesic distance dgeod(xIR, xIR,proj) is higher than
a threshold tgeod:

dC,geod(MIR,MSR) =
1

|SIR|
∑

x∈SIR

min
y∈SSR

tgeod
max(tgeod, dgeod(x, xIR,proj))

∥x− y∥22+

1

|SSR|
∑

y∈SSR

min
x∈SIR

∥x− y∥22.
(6.8)

Only if xIR is projected to the intended area of the semi-regularly meshed surface,
tgeod > dgeod(x, xIR,proj) and the regularization factor

tgeod
max(tgeod,dgeod(x,xIR,proj))

is equal
to one.

Boundary Loss

If the meshes have a boundary, we want the semi-regular mesh boundary ∂MSR to
follow the one of the irregular mesh ∂MIR. Nevertheless, since the coarse mesh lies in
the interior of the irregular meshed shape, the random sampling of the chamfer distance
leads to a semi-regular mesh representation that also lies in the interior of the irregular
mesh.

Therefore, I define an additional loss that measures the distance between the two mesh
boundaries. To this end, I use the chamfer distance between sampled points from the
boundary of the irregular mesh S∂MIR

and the one of the semi-regular mesh S∂MSR
:

dB(MIR,MSR) = dC(S∂MIR
, S∂MSR

)

= dsamp,C(SIR,B, SSR,B).
(6.9)
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Optimal Transport (OT) Distance

Equation (2.6) in section 2.2.1 defines the Optimal Transport (OT) distance between
two surface meshes dOT (MIR,MSR) as the lowest transportation cost from one surface
sampled at the vertices to the other one. To consider the vertex density on the surfaces,
each vertex is assigned a weight corresponding to the area of the surrounding faces.

Since the calculation of the OT distance is computationally expensive, [FSV+19] pro-
pose to approximate a regularized version of (2.6) using Debiased Sinkhorn divergences
dOT,reg(MIR,MSR). It is a computationally affordable approximation of the OT dis-
tance between MIR and MSR. [FSV+19] prove that it is a reliable loss function for
machine learning applications because it is symmetric, smooth, and positive definite.
Additionally, the authors provide a Pytorch implementation that allows its calculation
and optimization on the GPU.

6.2.2 Regularizers

Note that both the chamfer distance and the OT distance do not fit the actual surfaces to
each other but calculate distances between point clouds that are sampled from the mesh
surfaces. This can lead to unwanted artifacts and non-smooth shapes, see Figure 7.10.
Therefore, I add different shape regularizers to the loss functions to enforce smoothness.

Edge Length

At first, I apply an edge length regularizer, similarly to the edge length regularizer
applied during the mesh coarsening (6.2), to enforce similar lengths of the edges E of the
semi-regular mesh MSR

rE(MSR,j) =
1

|E|
∑
e∈E

∥e∥22 . (6.10)

Since the filters of the CoSMA convolutional layers do not consider the edge lengths,
they rely on stable edge lengths of the meshes for reasonable results and transfer learning
experiments.

Laplacian Smoothing

I also smooth the surface of the mesh MSR by utilizing the Laplace Operator [DMSB99,
NISA06]. I apply a discrete Laplace operator L to the vertex positions VSR, measuring
the smoothness of the mesh. Then, its norm is minimized

rL(MSR) =
1

n

∑
i

∥(LV )i∥22 . (6.11)

I utilize the combinatorial graph Laplacian LC (Definition 2), which compares a vertex
value to all its neighbors, and divide by the number of contributing edges for point-wise
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evaluation (LCV )i. It is evaluated as follows

(LCV )i =
∑

w∈N1(vi)

1

|N1(vi)|
(w − vi) (6.12)

where N1(vi) is the one-ring neighborhood of vertex vi. Note how (LCV )i points to the
centroid of the neighboring vertices of vi. Alternatively, one could apply a cotangent
Laplacian for the Laplacian smoothing, whose computation is more complex since it
requires the calculation of cotangent weights. Then (LV )i approximates the surface
normal [DMSB99]. Nevertheless, I use the uniform combinatorial graph Laplacian LC

in the proposed remeshing pipeline because, at the same time, it regularizes the edge
lengths of all neighboring edges by pointing to the centroid of the neighboring vertices.

Normal Consistency

In addition, I enforce normal consistency for each pair of neighboring faces of MSR. This
prevents neighboring faces from wrinkling and overlapping each other. The regularizer
is defined as

rN (MSR,j) =
1

|Einterior|
∑

e∈Einterior

1 − cos(ne,0, ne,1), (6.13)

where ne,0 and ne,1 are the normals of the two neighboring faces of the interior edge e.

6.2.3 Optimization

The regularization terms are weighted by the weights ωE , ωL, ωN > 0 and, if applicable,
the boundary loss by ωB > 0. They are added to the chosen loss d(MIR,MSR). Since
all the loss functions and regularizers are differentiable with respect to the deformation
vector ζ, I apply stochastic gradient descent with momentum to approximate

ζ∗ = arg min
ζ

d(MIR,MSR) (6.14)

+ ωB · dB(MIR,MSR) boundary loss (6.15)

+ ωE · rE(MSR) edge length (6.16)

+ ωL · rL(MSR) Laplacian smoothing (6.17)

+ ωN · rN (MSR) normal consistency (6.18)

and fit the semi-regular mesh to the original irregular mesh. The chamfer loss, edge
length regularization, Laplacian smoothing, and normal consistency are implemented in
Pytorch3D [RRN+20], who motivated their application for fitting a sphere to a different
mesh. The optimization of the losses is done using Pytorch [PGM+19].

6.2.4 Parametrization

If a dataset contains a shape in different positions or deformations while the mesh topol-
ogy stays the same (for example, a shape deforming over time), I remesh a template mesh
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that shares the same set of faces F . The semi-regular remeshing result is parameterized
and transferred to the meshes in different positions and deformations. After project-
ing the vertices of the semi-regular mesh to the closest face of the irregular template
mesh MIR, I calculate the barycentric coordinates and obtain a parametrization. This
parametrization of the remeshing result is then applied to the other deformed meshes,
and semi-regular meshes discretize the complete sequence of the deforming shape. Note
that this simplifies the overall workflow and allows visualization of a shape deformation
sequence in a joint CoSMA embedding space. In principle, a semi-regular representation
can be calculated for all the meshes, albeit sharing the same mesh connectivity, as done
for the human body part segmentation in section 9.1.

Additionally, I use barycentric coordinates to calculate a parametrization of the ir-
regular mesh based on the obtained semi-regular remeshing results. Then, I can project
the reconstructed semi-regular meshes of the CoSMA architectures back to the irregular
meshing. This allows the calculation of the reconstruction error in the irregular mesh
representation, which is comparable to reconstructions of baseline methods.
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7.1 Datasets

I test the proposed surface mesh autoencoders on four categories of data containing
various surface meshes from different domains and datasets.

7.1.1 GALLOP

The dataset contains triangular meshes representing a motion sequence with 48 timesteps
from a galloping horse, elephant, and camel [SP04]. The authors of [SP04] transferred
the surface deformation of a galloping horse to the camel and the elephant by using
correspondences. Consequently, their deformation follows the same pattern, although
elephants do not gallop [HFLK03]. Figure 7.1 visualizes example poses and, starting
at page 35, a flipbook animates the galloping sequence of the elephant. While the
galloping movement is similar, the meshes representing the surfaces of the three animals
are different in connectivity and the number of vertices (horse: 8,431, camel: 21,887,
elephant: 42,321). This is why mesh-dependent autoencoders have to be trained three
times. I use the first 70% of the galloping sequences for training in the feature learning
experiments. The architectures are tested on the remaining 30%.

Figure 7.1: Animals from GALLOP dataset in three different poses from the galloping
pattern.
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normal armsfront shouldersup headright tree macarena armsup forearmup lowerlegbent step

Figure 7.2: Ten different individuals in ten different poses from the FAUST dataset.

Figure 7.3: Individual from the SCAPE dataset in different poses.

7.1.2 Human Body Datasets

FAUST

The dataset contains 100 meshes [BRLB14], which are in 1-to-1 correspondence to each
other, meaning that they share the same mesh connectivity. The dataset consists of
ten different individuals in ten different poses, see Figure 7.2. To analyze the learned
shape features later, I describe each position with a short name. The irregular surface
meshes have 6,890 vertices, and I rotate the meshes around the vertical axis such that
the individuals face in the same direction. Two different feature learning experiments
are conducted: First, I consider the known poses of two unseen individuals in the testing
set, referred to as “unknown individuals”. Then, I consider two unknown poses of all
bodies in the testing set, referred to as “unknown poses”. In both cases, 20% of the data
is included in the testing set.

SCAPE

The dataset contains 71 meshes [ASK+05], which are in 1-to-1 correspondence. The
dataset consists of one individual in different poses. Figure 7.3 visualizes a selection.
The irregular surface meshes have 12,499 vertices, and they are also rotated around the
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Training meshes Test meshes

Figure 7.4: Human meshes with true segmentation labels for the human segmentation
task.

vertical axis such that the individuals face in the same direction. To demonstrate the
reconstruction quality of the introduced methods on datasets that contain multiple mesh
connectivities, I add the SCAPE dataset to the “unknown poses” experiment. For this,
I use the same FAUST test shapes plus ten additional SCAPE shapes for testing.

Human Body Part Segmentation Task

The human body dataset for segmentation contains 381 training shapes (FAUST [BRLB14],
SCAPE [ASK+05], ADOBE [Ado23], and MIT [VBMP08]) and 18 test shapes from the
SHREC dataset [GBP08]. The authors of [MGA+17] labeled the mesh faces into eight
different segments corresponding to different body parts. The resulting learning problem
predicting these face labels is a supervised one. Figure 7.4 visualizes meshes and their
face-wise true segmentation labels from the different datasets.

7.1.3 TRUCK and YARIS

In a car crash simulation, the car components, which are generally represented by sur-
face meshes, often deform in different patterns. A different surface mesh discretizes
every component, while the same physical rules describe the local deformation. The
TRUCK dataset contains 32 completed frontal crash simulations of 30 timesteps and
six components of a Chevrolet C2500 pick-up truck. The components have between 696
and 1,736 vertices. 30% of the timesteps and two entire simulations are used only for
testing. The YARIS dataset contains ten simulations of up to 26 timesteps and ten
components of a detailed model of the Toyota Yaris (both models from NCAC [Nat]). It
is only considered as a test set and the components have between 534 and 3,205 vertices.
Figures 7.5 to 7.7 visualize the car models and the selected components. From simula-
tion run to simulation run, model parameters are modified to achieve multiple design
goals, for example, crash safety, weight, or performance. The car model often deforms in
different patterns depending on the chosen model and simulation parameters, see Figure
7.6. Since the simulations nowadays contain detailed information for up to two hundred
time steps and more than ten million nodes, their analysis is challenging and is generally
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Figure 7.5: Bottom view of the TRUCK model after half of the simulation time.
Left: the entire model, right: the six selected components.

Figure 7.6: Two deformation patterns that manifest in the TRUCK front beams.
Blue: Part 0; Orange: Part 1.

Figure 7.7: Bottom view of the YARIS model after half of the simulation time.
Left: the entire model without the protective plate; right: the ten selected
components.

assisted by dimension reduction methods. One goal is the detection of clusters corre-
sponding to different deformation patterns in the embeddings of the components. This
way, relations between model parameters and the deformation behavior are discovered
more easily, and the analysis of car crash simulations is accelerated [BGIT+13, HITG20].

7.1.4 SYNthetic Dataset

The dataset SYN contains regularly meshed triangles with 153 vertices, whose three cor-
ners are bent up and down. Therefore, the deformation of the triangles is parametrized
by three variables α, β, γ ∈ [−1, 1] that describe the deformation of the corners. I sample
25 × 25 = 625 noisy triples from a plane in 3D by selecting 25 equally distributed pairs
(α, β) ∈ [−1, 1]2 and calculate γ by

γ = 0.8 · α− 0.5 · β + N (0, 0.152). (7.1)
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Alpha, beta, gamma
[1.] [1.] [0.44501493]
[0.] [0.] [0.03711255]
[0.] [-1.] [0.65266631]

α = β = 1 α = β = 0 α = 0, β = −1

Figure 7.8: Triangular Meshes from the synthetic dataset SYN sampled from a plane in
3D.

Figure 7.8 illustrates sample triangles from the dataset. Since the deformation of the
dataset is parametrized by three variables that lie approximately on a two-dimensional
manifold, I expect to detect this structure in the embedding space. I include 9% of the
triangles in the testing set to train the mesh autoencoders.

7.2 Remeshing to Semi-regular Meshes

The CoSMA networks, introduced in section 5.2, handle the regional patches of semi-
regular surface meshes. Therefore, all shapes in the diverse collections need to be rep-
resented by a semi-regular mesh. For the different datasets, I remesh a template mesh
for a set of meshes that share the same connectivity, applying and combining losses and
regularizers proposed in section 6.2.

As explained in section 6.1, I calculate a coarse base mesh Mcoarse,k with a given
number of faces k that approximates the surface of the shape. I choose k as low as
possible to increase the size of the patches that the CoSMAs handle while maintaining
a high remeshing quality.

The semi-regular remeshing is done in two iterative and one projection step:

(i) The coarse base mesh is refined to level 3 using midpoint subdivisions. The result-
ing semi-regular mesh is fitted to the original irregular mesh using a regularized
loss.

(ii) The resulting semi-regular (SR) mesh of refinement level 3 is refined once more to
refinement level 4. This mesh is again fitted to the original irregular mesh.

(iii) Finally, I project the vertices of the semi-regular mesh to the surface of the irregular
one. This final semi-regular mesh representation is referred to as the projected
semi-regular (SR) mesh.

The remeshing pipeline for the FAUST template mesh is visualized in Figure 7.9.

63



Chapter 7. Datasets and Remeshing Results

Irregular Coarse (i) Refine to level 3 (ii) Refine to level 4 (iii) Projected
mesh base mesh Chamfer loss OT loss SR mesh

irregular mesh, coarse mesh, refine to 3, chamfer loss, refine to 4, ot loss, proj to irr

Figure 7.9: Remeshing pipeline for the FAUST template mesh to a semi-regular mesh
representation of refinement level 4.

7.2.1 Selecting Loss Functions and Regularizers

Depending on the mesh structure, different loss functions fit the vertices of the semi-
regular mesh MSR to the irregular mesh vertices MIR.

Using the chamfer distance dC(MIR,MSR) generally creates smooth meshes if ade-
quately regularized. Nevertheless, its usage for higher refinement levels leads to artifacts
in areas with finer deformations, for example, the face, see Figure 7.10. On the other
hand, if the distance between the irregular mesh and the semi-regular mesh is higher,
the OT loss dOT (MIR,MSR) fails and its minimization creates artifacts as overlapping
areas of the mesh.

Both the chamfer and the OT loss consider points sampled for the surface mesh as
point clouds, making regularization of the semi-regular mesh surface crucial. Figure 7.10
shows how the meshes overlap locally and how the surface wrinkles if fitted without any
regularizer. The figure visualizes how the remeshing results change if regularizing the
edge length rE(MSR), the normal consistency rN (MSR), and smoothing the Laplacian
rL(MSR) with regularization weights ωE , ωN , and ωL, respectively.

The above observations lead to a combined application of the chamfer distance and the
OT loss. The first refinement step (i) is fitted using the regularized chamfer distance, and
in the last refinement step (ii), the regularized OT loss is minimized since the distance
between the surface meshes is lower now. I apply the resulting remeshing pipeline to
shapes from the GALLOP and SCAPE datasets to semi-regular meshes of refinement
level 4. For the SCAPE meshes, I did not change any regularization weights but used
the same hyperparameters from the FAUST setup. Figure 7.11 shows the remeshing
results. While the regularized chamfer distance leads to smooth surfaces, the OT loss
in the last refinement step allows for a more detailed remeshing result, also describing
smaller structures of the surface, for example, the ears.
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OT Loss Chamfer Loss
Chamfer &

OT loss

ωE = 0 0.0001 0 0.1 1 1, 0.0001
ωL = 0 0.01 0 0.01 0.1 0.1, 0.01
ωN = 0 0.001 0 0.001 0.001 0.001

Figure 7.10: Remeshing the FAUST template mesh using different loss functions and
regularization losses. Without the regularizers artefacts are visible in the
mesh representing the head

Figure 7.11: Selected remeshing results to semi-regular meshes of refinement level 4 for
the GALLOP and SACPE datasets. Irregular meshes in gray, semi-regular
meshes in light blue. 100 to 115 coarse faces.

7.2.2 Additional Regularizers

Some meshes require some of the additional loss functions or regularizers introduced
in sections 6.2.1 and 6.2.2. Since the car components from the TRUCK and YARIS
datasets have boundaries, I add the weighted boundary loss ωB · dB(MIR,MSR) to
ensure that the semi-regular mesh covers the surface well. The remeshing results and
the effect of the boundary loss are visualized in Figure 7.12.

The elephant template mesh requires the geodesic distance as an additional regu-
larizer for the chamfer distance because otherwise, the ears are fitted to the shoul-
ders, which leads to high remeshing and, therefore, reconstruction errors of the autoen-
coders. The effect, when applying the chamfer distance weighted by geodesic distance
dC,geod(MIR,MSR), is visualized in Figure 7.13.
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TRUCK YARIS

Ref

no bound loss

bound loss

projected sr mesh

Truck: 002 – Yaris: 239

Irregular mesh

ωB = 0

ωB = 0.2

Projected SR mesh

Figure 7.12: Selected remeshing results to semi-regular meshes of refinement level 4 for
the TRUCK and YARIS datasets without and with weighted boundary loss
ωB · dB(MIR,MSR). 15 to 20 coarse faces.

Irregular mesh dC dC,geod

Figure 7.13: Remeshing results to semi-regular meshes of refinement level 4 for the
elephant from the GALLOP dataset when using the chamfer distance
dC(MIR,MSR) or chamfer distance regularized depending on the geodesic
distance dC,geod(MIR,MSR). 120 coarse faces.

7.2.3 Remeshing Error

All surface meshes are remeshed to the semi-regular mesh representation for analysis
by the CoSMA networks. Nevertheless, the final reconstruction error is computed on
the irregular meshes after a second remeshing back to the irregular meshing using the
parametrization calculated during the remeshing, see section 6.2.4. These two steps of
remeshing result in an error that can be measured between the vertices of the original
mesh and the projected semi-regular vertices onto the irregular mesh. Using the same
error calculation for evaluating the reconstruction quality, I provide the remeshing errors
in Table 7.1. Therefore, a perfect reconstruction of the CoSMA networks on the semi-
regular meshes results in these reconstruction errors measured on the irregular meshes.

The table also lists the Hausdorff Distance dH(MIR,MSR) between the irregular
meshes and their remeshing results. To make this distance comparable to the above error,
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Dataset Shape |VIR| Vertex-wise error Hausdorff

Horse 8,431 0.03 ± 0.002 | 0.03 128.0
GALLOP Camel 21,887 0.08 ± 0.003 | 0.09 359.9

Elephant 42,321 0.41 ± 0.003 | 0.41 1794.6
FAUST 6,890 0.09 ± 0.058 | 0.07 126.6
SCAPE 12,499 0.08 ± 0.009 | 0.08 270.2
TRUCK 696 to 1736 0.06 ± 0.004 | 0.07 56.0
YARIS 534 to 3205 0.05 ± 0.010 | 0.06 57.3

Table 7.1: Remeshing errors on all datasets. Average vertex-wise error, standard devia-
tion, and median between the original and irregular meshes resulting from
remeshing twice, and the average Hausdorff distance dH(MIR,MSR) be-
tween the original and semi-regular remeshing results. For the car datasets,
component-wise errors are averaged.

I multiply it by the number of vertices in the irregular mesh. The distance describes the
highest distance between a vertex from one mesh to its closest projection on the other
mesh, see section 2.2.1. Therefore, it can be interpreted as a measure of stability since
it measures the worst closest projection.

Note that the errors between the different shapes are not comparable. The complexity
of the remeshing task highly depends on the mesh structure, the quality of the irregular
mesh representation, and the number of vertices in the irregular mesh. For more densely
sampled vertices on the surface, the remeshing error is expected to be lower since the
surface description is better. At the same time, adding up the vertex-wise squared errors
for a shape (instead of averaging), on the other hand, leads to higher errors for a higher
number of vertices. Table 7.1 lists the number of vertices and the shapes.

Nevertheless, we can compare the ratio between the Hausdorff distance and the vertex-
wise error for the different meshes. It measures how much larger the error at the worst
fitting surface area is compared to the average error. Note how it is the lowest for the
car components, which are the most simple meshes, and how the remeshing result fits
smoothly to the irregular mesh. The FAUST remeshing results also have almost no
artifacts. Therefore, their ratio is low. It is the highest for the elephant remeshing
result, where the regularization of the remeshing cannot impede all the artifacts.

7.2.4 Summary

The proposed semi-regular remeshing algorithm is flexible and remeshes all given surface
meshes to a semi-regular mesh representation. The resulting semi-regular meshes resem-
ble the irregular meshes more closely than baseline remeshing methods, whose results are
visualized in Figure 2.2. Compared to the baseline methods, the regular surface meshes
can have holes or boundaries, and not be watertight. This is due to the Garland-Heckbert
algorithm that also coarsens non-manifold edges and holes and the flexible loss functions.
The resulting semi-regular mesh depends highly on this coarse mesh representation. If
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the coarse representation has unevenly distributed vertices or non-manifold edges, the
refined mesh has the same unwanted characteristics. Nevertheless, the CoSMA networks
only consider connectivity, so the edges should be of similar lengths. Also, non-manifold
edges unavoidably lead to high remeshing errors. Therefore, the regularization of edge
length and face areas, as well as the adaption avoiding non-manifold edges, are essential
for semi-regular mesh representations that the neural networks can handle.

The vertices of the resulting semi-regular meshes are generally equally distributed over
the surface as a consequence of the regularization. Only in areas with a high degree of
detail, such as the fingers of the human meshes, the semi-regular surface meshes cannot
capture all the details and simplify the details. At the elephant’s thin ears, artifacts can
not be entirely avoided. In general, the chamfer loss and the optimal transport-inspired
loss, in combination with the regularizers, lead to stable remeshing results using gradient
descent for optimization, which a GPU can speed up. The loss functions consider points
on the surface meshes, which makes the pipeline flexible in the kind of surface meshes
it can handle. Nevertheless, the hyperparameters and regularization weights must be
carefully chosen for the different types of meshes.
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8 Representation Learning Results

This chapter compares the representation learning results from the proposed surface
mesh autoencoders spatial CoSMA, spectral CoSMA, and CCLB-autoencoder to several
baseline networks. After detailing the experiment setup in section 8.1, I compare the
reconstruction qualities of each network in section 8.2. Afterward, section 8.3 evaluates
the learned low-dimensional features, including visualizations in two or three dimensions.
Finally, section 8.4 provides generative results of my autoencoders by sampling from and
interpolating in the learned embedding spaces.

8.1 Experiment Setup

I compare the three introduced autoencoders, spatial CoSMA, spectral CoSMA, and
CCLB-AE, to several baseline autoencoders. The three baseline mesh autoencoders
CoMA [RBSB18], Neural3DMM [BBP+19], and MeshConv [ZWL+20] have been ex-
plained in more detail in section 4.2. Additionally, we built one baseline autoencoder
based on the SubdivNet convolutional method for semi-regular meshes [HLG+22]. The
architecture of the SubdivNet autoencoder is detailed in section 8.5. It also handles
the semi-regular surface mesh representations. All baselines handle entire meshes and
require them to share the same mesh connectivity, so I have to split some datasets into
several subsets of meshes to process them using these methods.

For the CoSMA models, I normalize the 3D coordinates of each mesh to range [−1, 1]
relative to the coordinates’ ratio and translate every input patch to zero mean. The
CCLB-autoencoder handles meshes normalized to unit area and centered to zero con-
cerning the average of the vertex areas, as proposed by DiffusionNet [SACO22]. For
the original training of CoMA and Neural3DMM, every vertex was normalized to zero
mean and a standard deviation of one. Nevertheless, a vertex-wise normalization is in-
appropriate since I aim to learn the mesh deformation and handle meshes with different
connectivities. Therefore, to train the baseline methods, I normalize the entire mesh to
zero mean and standard deviation of one.

The latent representation is a compressed representation of the input data. Therefore,
its size hr is essential when comparing different autoencoder architectures to each other.
A higher latent dimension can capture more details but may lead to overfitting, while a
lower dimension may result in lossy compression and, thus, loss of important information.
For comparability of the results, the different architectures produce low-dimensional
representations of similar size hr.

The CoSMA embedding dimensions hr = hrp · #(patches) for every mesh category
depend on the number of patches, which is equal to the chosen number of faces in the
coarse mesh created during the remeshing procedure. All networks use a patch-wise
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Method
Learnable GALLOP FAUST TRUCK YARIS

Parameters Horse Camel Elephant

CoMA∗ 192,935 100 100 100 100 - -
Neural3DMM 7,558,147 1024 1024 1024 1024 - -
SubdivNet 19,675,855 1024 1024 1024 1024 - -
MeshConv 4,076,917 9 · 454 9 · 1122 - 9 · 400 - -

spatial CoSMA 30,090
10 · 100 to 10 · 120 10 · 100

10 · 15 10 · 15
spectral CoSMA 23,053 to 10 · 20 to 10 · 20
CCLB-AE 928,665 40 · 26 22 · 45 18 · 11 -

Table 8.1: Dimension hr of the hidden representation calculated by the different models
and number of learnable parameters when analyzing FAUST.
∗: no convergence for higher latent dimension.

embedding dimension of hrp = 10. Table 8.1 lists the resulting shape-wise embedding
dimensions. The embedding dimension of the CCLB-autoencoder depends on the num-
ber of features F output by the DiffusionNet layer in the encoder and the dimensionality
k2 of the CCLB. F and k2 for all shape collections are chosen in a way that ensures that
the embedding dimension hr = k2 × F is similar to the CoSMA models, see Table 8.1.
For the baseline architectures, I chose to keep the latent embedding dimensions as in the
original papers or increase them if the original embedding dimensions were lower than
those of the CoSMAs and CCLB-autoencoder. Additionally, Table 8.1 lists the number
of learnable parameters of all autoencoder networks for the FAUST dataset.

The CoSMA networks (implemented in PyTorch [PGM+19]) are trained with the
adaptive learning rate optimization algorithm [KB15] using a learning rate of 0.001
(spatial CoSMA) or 0.0001 (spectral CoSMA). To augment the data in the case of the
GALLOP and the FAUST datasets, I rotate the regional patches by 0°, 120°, and 240°.
Similarly to the CoSMA models, the CCLB-autoencoder is implemented in PyTorch
[PGM+19] and trained using the Adam optimizer [KB15] with an initial learning rate
of 0.001. When using unsupervised p2p maps, we weight the reconstruction loss using
λrec = 10, see section 5.3.4, and apply dropout inside the DiffusionNet blocks.

8.2 Reconstruction Results

The analysis is initiated by conducting a conventional reconstruction experiment. The
evaluation of the reconstruction quality of the proposed mesh autoencoders to the base-
line methods is followed by additional experiments to analyze the characteristics of the
specific models. Finally, I ablate the proposed model architectures.

To obtain reconstructed meshes, I first encode the vertex positions V of mesh M
from the test set, which was never seen during the training phase, into a latent rep-
resentation en(V ). Subsequently, I decode the latent representation using my decoder
Vrec = de(en(V )) and compare the reconstructed shape Mrec to the initial shape M to
assess the reconstruction quality. To this end, I compute the squared Euclidean distance
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Method
GALLOP

Horse Camel Elephant

CoMA 3.2 ± 0.3 7.8 ± 1.4 24.3 ± 4.4
Neural3DMM 4.7 ± 0.1 12.4 ± 0.1 29.7 ± 3.5
SubdivNet 7.0 ± 1.8 7.9 ± 0.7 54.4 ± 8.7
MeshConv 7.3 ± 0.1 19.2 ± 0.4 –

Spatial CoSMA 1.5 ± 0.05 3.7 ± 0.03 16.8 ± 0.9
Spectral CoSMA 1.2 ± 0.01 3.3 ± 0.01 20.0 ± 0.3
CCLB-AE 0.1 ± 0.02 0.4 ± 0.05 1.4 ± 0.3

Table 8.2: Reconstruction errors on the GALLOP dataset. Only the proposed CoSMAs
and the CCLB-autoencoder train one model on three animals together.

between the vertex coordinates of the input shape V and its reconstruction Vrec and add
these vertex-wise errors up to determine the reconstruction error:

RecErr(M,Mrec) =
∑
v∈V

vrec∈Vrec

∥v − vrec∥22 . (8.1)

To obtain consistent results, the reconstructions of the remeshed semi-regular meshes
are projected back to the irregular mesh using the parametrization obtained during
the remeshing. For uniform results, I normalize all meshes into the range [−1, 1]. All
reported reconstruction errors are mean errors over three randomly initialized runs, and
± denotes the standard deviation.

8.2.1 Evaluation of Reconstruction Qualities

I compare the reconstructed meshes from my proposed models and the baseline mesh
autoencoders for each dataset.

GALLOP Dataset

The three introduced autoencoders can be trained on the three animals together, al-
though they do not share the same connectivity. The baselines have to be trained
separately for every animal. The MeshConv network for the elephant with 42,321 ver-
tices has more than 20 million trainable parameters and could not be trained on a GPU
with 40 GB. Table 8.2 lists the reconstruction errors.

The baseline reconstructions are worse, more unstable in the legs, and have incorrectly
positioned limbs, as Figure 8.1 illustrates. Also, when considering only one animal, the
datasets are small since they contain only 34 training shapes. This is also notable in the
higher standard deviation concerning the reconstruction error for the baseline methods.
On the other hand, the reconstructions from the CoSMAs and the CCLB-autoencoder
are not only of higher quality but also more stable. In fact, the reconstruction errors
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GT spatial CoSMA spectral Cosma CCLB-AE

Coma Neural3DMM SubdivNet MeshConv

Figure 8.1: Ground truth (GT) and reconstructed test meshes from the GALLOP
dataset. Vertex-wise reconstruction error is highlighted.

of the CoSMA models are at least 17% lower, and the ones of the CCLB-autoencoder
are at least 94% lower than the reconstruction errors of the baselines. Qualitatively, the
reconstructed meshes are smooth, deform naturally, and do not have any outlier vertices,
which is not the case for some baseline methods, see Figure 8.1.

Human Body Datasets

I conduct the “unknown individuals” and “unknown poses” experiments on the FAUST
dataset and list reconstruction errors in Table 8.3. The reconstruction errors on the
“unknown individuals” experiments are generally lower since the difference between the
train and test samples solely originate from different body shapes and sizes. On the
other hand, the test shapes in the “unknown poses” experiments are in poses that are
not contained in the training set. It makes this a more challenging setup since the
autoencoders need to generalize well to the test shapes.
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Method
Unkown poses Unknown indiv. Unkown poses

FAUST FAUST FAUST SCAPE

CoMA 569.3 ± 203.1 28.3 ± 6.4
Neural3DMM 246.2 ± 5.4 10.4 ± 0.9
SubdivNet 783.7 ± 58.1 47.1 ± 22.8
MeshConv 18.2 ± 2.2 3.5 ± 0.4

Spatial CoSMA 2.5 ± 0.4 1.0 ± 0.03 1.55 ± 0.1 2.41 ± 0.2
Spectral CoSMA 1.0 ± 0.02 0.9 ± 0.01 1.01 ± 0.001 1.45 ± 0.01
CCLB-AE 2.8 ± 0.1 0.7 ± 0.02 2.97 ± 0.04 3.30 ± 0.17

Table 8.3: Reconstruction errors on the two experiment setups for the FAUST dataset
and when training one model for FAUST and SCAPE shapes.
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CoSMA
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Figure 8.2: Reconstructed test meshes from the FAUST dataset of the “unknown poses”
experiment setups. Vertex-wise reconstruction error is highlighted.

73



Chapter 8. Representation Learning Results

GT
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Figure 8.3: Reconstructed test meshes from the FAUST dataset of the “unknown indi-
viduals” experiment setups. Vertex-wise reconstruction error is highlighted.

The three introduced autoencoders have at least 80% lower reconstruction errors than
all the baseline methods in the “unknown poses” setup and 70% lower errors in the
“unknown individuals” setup. The spectral CoSMA reconstruction quality is superior
to the spatial CoSMA for both setups.

The patch-based approach is convenient for reconstructing unknown poses, so the
reconstruction quality of the CoSMAs is higher than for the CCLB-autoencoder. Fig-
ure 8.2 visualizes how the CCLB-autoencoder fails to reconstruct well-formed arms in
unknown positions. No training shape includes arms or legs in the unknown step posi-
tion, which makes its reconstruction more challenging, and baseline reconstructions fail
entirely.

On the other hand, for known poses and unknown individuals, the CCLB-autoencoder
reaches lower errors than the CoSMA networks. Figure 8.3 compares reconstructed test
meshes from the “unknown individuals” setup to each other. Note that the CCLB-
AE reconstructions are more detailed than the CoSMA reconstructions. Also, in the
case of the CoSMAs, some patch boundaries are noticeable, and the reconstructions
in feet and hands are less detailed. When comparing the spatial and spectral CoSMA
reconstructions, it is noticeable that the spectral CoSMA reconstructed shapes have
smoother surfaces.

To demonstrate the reconstruction quality of the introduced methods on datasets
that contain multiple mesh connectivities, I add the SCAPE dataset to the “unknown
poses” experiment. I use the same FAUST test shapes plus ten additional SCAPE
shapes for testing. Note that for this experiment, the CCLB-autoencoder reconstruction
quality is slightly worse when compared to the FAUST -only “unknown poses” setup.
On the other hand, the results of the CoSMAs improve in comparison to the previous
experiments since the networks seem to take advantage of the larger and more diverse
training dataset. Comparing the results to the CCLB-autoencoder reconstructions, the
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Figure 8.4: Reconstructed test meshes from the SCAPE dataset of the “unknown poses”
experiment setup. Vertex-wise reconstruction error is highlighted.

spectral CoSMA errors are more than 60% lower. Figure 8.4 visualizes reconstructed
SCAPE test meshes.

TRUCK Dataset

Due to the relatively large number of different mesh connectivities in the dataset, I
restrict myself to testing the three presented autoencoding methods on the TRUCK
dataset because they can be trained on all parts at once. Also, I use only 30% of the
simulations for the training of the larger CCLB-autoencoder to reduce the runtime.
Table 8.4 compares the reconstruction errors, and Figure 8.5 visualizes reconstructed
test meshes.

The reconstruction errors are the lowest for the CCLB-autoencoder, and the recon-
structed meshes are of very high quality. The spectral CoSMA reconstruction errors
are five times higher. The actual reconstruction is of very high quality. The higher
error is partly due to the remeshing of some indentations and bends of the components,
as visible in Figure 8.5. In fact, the remeshing error from Table 7.1 is a third of the
reconstruction error, whereas it is less than a tenth for the other datasets. The spatial
CoSMA reconstructs the general shape and deformation of the components but fails to
reconstruct details, which is why the error is almost 70 times higher than the error from
the CCLB-autoencoder.

Table 8.4 allows for a comparison of the CoSMA reconstruction results for refinement
levels rl = 3 and rl = 4. The spatial CoSMA reconstruction quality decreases when the
refinement level increases. This is due to the fixed kernel size KS = 2. Since the mesh
is finer, the neighborhoods considered by a spatial filter using kernel size KS = 2 cover
smaller surface areas. The spectral CoSMA using K = 6, on the other hand, considers
almost the entire patch in spectral representation. Therefore, increasing the refinement
level does not impair the reconstruction quality. In fact, the errors decrease for finer
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Method Error

Spatial CoSMA rl = 3 1.15 ± 0.13
Spectral CoSMA rl = 3 0.27 ± 0.01
Spatial CoSMA rl = 4 1.60 ± 0.13
Spectral CoSMA rl = 4 0.16 ± 0.01
CCLB-AE 0.03 ± 0.001

Table 8.4: Reconstruction errors on the TRUCK dataset. The component-wise errors
for each training run are averaged.

GT spatial CoSMA spectral Cosma CCLB-AE

Figure 8.5: Reconstruction of a deformed component from two different simulations from
the TRUCK dataset. Vertex-wise reconstruction error is highlighted.

meshes.

SYN Dataset

Since the synthetic dataset SYN contains deforming triangular meshes that are regularly
meshed, we can compare the reconstruction errors of the three presented models and the
CoMA baseline without applying any remeshing. My CoSMA models and the CoMA
network calculate a hidden representation of size hr = 10, the CCLB-AE hr = F · k2 =
3 · 3 = 9.

Table 8.5 compares the reconstruction errors on SYN, where three corners of a meshed
triangle bend. In general, the errors of the CCLB-AE are the lowest, followed by CoMA
and the spectral CoSMA. Spatial CoSMA reconstruction errors are the highest.

For the first time, CoMA yields better results than the spectral CoSMA approach.
This is due to the smaller sample size of only 153 vertices. Recall that the CoMA
approach was unstable in analyzing the global deformation patterns, which we do not
observe for the small synthetic mesh samples. Also, the patch approach of the CoSMA
models is not used in the case of this synthetic dataset, where the shape is represented
by one patch. This leads to worse results than the baseline.

Even though the CCLB-AE has the lowest reconstruction error, it has the highest
runtime since its DiffusionNet Blocks only allow a batch size of one and have more
learnable parameters than the light CoSMA models. Also, since the DiffusionNet Blocks
are applied vertex-wise, their number of trainable parameters does not decrease for
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Method Error hr Learnable parameters Runtime per epoch

CoMA 4.1 ± 1.1 10 25,901 0.3 s

Spatial CoSMA 24.9 ± 2.5 10 30,090 0.5 s
Spectral CoSMA 7.2 ± 1.0 10 23,053 0.6 s∗

CCLB-AE 0.3 ± 0.1 3 · 3 923,782 21.3 s

Table 8.5: Reconstruction errors (×100), learnable parameters, and runtimes on the syn-
thetic dataset SYN.
∗: using data augmentation, which increases the runtime × 3
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Figure 8.6: Reconstructed test meshes from the SYN dataset. Vertex-wise reconstruc-
tion error is highlighted.

meshes with fewer vertices.

8.2.2 Out-of-Distribution Generalization using CoSMA Models

The spectral CoSMA and spatial CoSMA are the only networks that can reconstruct an
unseen shape of different connectivity because the regularly meshed patches are handled
separately. This admits testing the CoSMAs’ out-of-distribution generalization abili-
ties, where models are tested on data whose distribution differs from the training data
[YXC+21, ZLQ+23, WLL+23]. The deforming patches are represented on the learned
embedding manifold. Therefore, we expect reasonable reconstruction results for meshes
whose local deformation patterns stem from similar sources as for the training meshes.

Elephant

In the case of the GALLOP dataset, we evaluate the reconstruction quality for the ele-
phant’s mesh after not presenting it to my network during training. The spectral CoSMA
reconstruction error on the elephant is only 20% higher than when training on all three
animals together, see Table 8.6. On the other hand, the spatial CoSMA reconstruction
error on the unseen elephant is more than 2.5 times as high as when presenting it dur-
ing training. While the spectral CoSMA reconstruction deteriorates slightly distributed
over the entire shape, the spatial CoSMA reconstruction has outliers, and the surface is
creased, see Figure 8.7. In this setup, the spatial CoSMA reconstruction quality of the
unseen elephant is inferior to many baseline networks, which was not the case when in-
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Method Error
Horse Camel Elephant (only testing)

Spatial CoSMA 1.5 ± 0.130 4.1 ± 0.37 46.0 ± 3.06
Spectral CoSMA 1.2 ± 0.005 3.3 ± 0.03 24.1 ± 0.25

Table 8.6: Reconstruction errors on the GALLOP dataset when excluding the elephant
during training.

spatial CoSMA spectral Cosma

spectral Cosma
Elephant train, elephant only test,

Spatial Cosma
Elephant train, elephant only test,

elephant: 43

Figure 8.7: Reconstruction of the elephant from the GALLOP dataset, when excluding
it during training. In small, I visualize the reconstruction result when in-
cluding the elephant in the training set. Vertex-wise reconstruction error is
highlighted.

cluding it in the training data. This highlights the improved transfer learning capability
of the spectral approach.

Out-of-Distribution Generalization on Different Datasets

Additionally, I test trained CoSMAs on a dataset containing structurally different shapes
that have not been presented to these networks during training. Table 8.7 provides these
results.

I first test the out-of-distribution generalization of the CoSMA networks on the GAL-
LOP and FAUST since the patch-wise deformations are of natural origin for both
datasets. To this end, I train the model on one and attempt reconstruction on an-
other dataset. The reconstruction errors are compared to the ones after training on the
actual dataset.

The spectral CoSMA reconstruction errors are only slightly higher (increase by 8%
to 28%) when applying the FAUST -trained network to the GALLOP testing samples.
Conversely, the reconstruction results on the FAUST dataset are even as good as the
results from the “unknown poses” experiment. In contrast to the spatial approach, where
the errors increase drastically, the spectral convolutions seem to capture and generalize
the patch deformations and not overfit to training data. The spectral approach takes
advantage of the large size and variability of the patches in the datasets. Since the
training patches cover many possible regional deformations, a method that generalizes
well allows for a successful application to unseen datasets.
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Test Dataset Training Dataset spectral CoSMA spatial CoSMA

FAUST GALLOP 1.1 ± 0.01 72.9 ± 20.6

Horse 1.3 ± 0.01 3.4 ± 0.2
Camel FAUST 3.7 ± 0.04 23.4 ± 23.7
Elephant 25.5 ± 0.50 48.9 ± 2.6

TRUCK
GALLOP 1.6 ± 0.03 21.9 ± 4.2
FAUST 1.3 ± 0.02 7.2 ± 4.2

TRUCK 4.5 ± 0.08 20.2 ± 1.3
YARIS GALLOP 2.8 ± 0.07 36.3 ± 3.3

FAUST 2.1 ± 0.01 12.1 ± 11.0

Table 8.7: Reconstruction errors for CoSMA out-of-distribution generalization experi-
ments. The unknown poses setup was used if FAUST has been considered as
the training dataset. Note that the errors for YARIS are not comparable to
TRUCK because the number of vertices in the meshes differs.

GT spatial CoSMA spectral CoSMA

Figure 8.8: Reconstruction of a deformed component from two different simulations from
the YARIS dataset, when applying a network trained on FAUST. Vertex-
wise reconstruction error is highlighted.

Secondly, I aim to reconstruct shapes from the two datasets YARIS and TRUCK
containing deforming car components. The selected components are beams with dis-
tinct mesh connectivity, and the passenger’s safety mainly depends on their deformation
behavior during a frontal crash. The reconstruction errors on the TRUCK dataset are
eigth or ten times higher when using a pre-trained spectral CoSMA in comparison to a
trained CoSMA on TRUCK.

When testing the reconstruction on the YARIS dataset, the trained spectral CoS-
MAs always generalize better than the spatial ones. Also, pre-trained CoSMAs from
the FAUST dataset best reconstruct the YARIS components. Figure 8.8 visualizes re-
constructed meshes. This is an unexpected observation since the local deformation on
the FAUST surfaces is of natural origin. At the same time, the TRUCK deformation
also stems from buckling components out of similar material. I assume that the patch
deformation is more diverse in the FAUST than TRUCK dataset, which would explain
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Dataset global pooling unsupervised CCLB-AE

GALLOP
Horse 4.1 ± 1.2 1.2 ± 0.1
Camel 81.8 ± 27.9 3.3 ± 0.3
Elephant 50.2 ± 9.7 11.5 ± 0.4

FAUST
Unknown poses 394.6 ± 162.1 4.7 ± 0.2
Unknown indiv. 32.8 ± 6.1 2.3 ± 0.1

TRUCK 0.16 ± 0.01 0.09 ± 0.02

Table 8.8: Reconstruction errors between the reconstructed and original meshes of
the GALLOP, FAUST, and TRUCK datasets for the unsupervised CCLB-
autoencoder experiments.

the better generalization results for the YARIS using a FAUST -trained model.

8.2.3 Unsupervised Shape Representation Learning using CCLB-AE

The baseline mesh autoencoders require point-to-point (p2p) supervision because they
only handle meshes with 1-to-1 correspondence, and the CoSMA models require corre-
spondence and fixed mesh connectivity at the patch level. Also, the above CCLB-AE
results take advantage of constant mesh connectivity in the datasets and use supervised
p2p maps for the CCLB calculation and the p2p training loss.

This section evaluates the CCLB-autoencoder in an unsupervised setup, where we
apply unsupervised methods to learn p2p maps between the shapes in the dataset. We
add the reconstruction loss to the p2p training loss using the unsupervised p2p maps
between input mesh and template mesh (see section 5.3.4). This compensates for faulty
mappings by the unsupervised p2p map.

For comparison, we construct a baseline method that uses unsupervised p2p maps and
global average pooling instead of the introduced spectral mesh pooling. This corresponds
to the case when the dimensionality of the CCLB is 1 (k1 = k2 = 1), see section 5.3.1
for the proof. Reconstruction errors are listed in Table 8.8.

Due to the highly non-isometric nature of the three animal categories in the GALLOP
dataset, most unsupervised methods for shape matching fail. Thus, the unsupervised
CCLB-AEs is trained on each animal category individually. The CCLB-autoencoder
using spectral mesh pooling achieves results comparable to the baselines and outperforms
the unsupervised global pooling approach. This demonstrates that learning high-quality
mesh autoencoders is possible even without ground truth p2p maps between the shapes.

For the FAUST dataset, the unsupervised CCLB-autoencoder results are better than
the supervised baseline results that do not require any remeshing, see Figure 8.9 for
visualizations of reconstructed test meshes. This demonstrates the usefulness of the pro-
posed approach and the regularization introduced by the losses to mitigate errors in the
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Figure 8.9: Reconstructed test meshes from the unsupervised CCLB-autoencoder ex-
periments on the FAUST dataset of the “unknown individuals” (left) and
“unknown poses” (right) experiment setups. Vertex-wise reconstruction er-
ror is highlighted.

GT unsup. CCLB-AE global pooling

Figure 8.10: Reconstructed test meshes from the unsupervised CCLB-autoencoder ex-
periments on the TRUCK dataset. Vertex-wise reconstruction error is high-
lighted.

maps. Additionally, the novel spectral mesh pooling strongly improves the reconstruc-
tion quality for the unsupervised experiments compared to using global pooling in the
encoder.

On the TRUCK meshes, the unsupervised p2p maps are of high quality such that
we do not apply the reconstruction loss and minimize only the p2p training loss using
the unsupervised maps. When comparing to the supervised reconstruction errors in
Table 8.4, one notices that the unsupervised reconstruction quality from the CCLB-
autoencoder for this dataset is superior to both CoSMA reconstructions. Figure 8.10
visualizes the same reconstructed test meshes as for the supervised experiments.
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Setting FAUST “unknown poses”
spatial CoSMA spectral CoSMA

w/o surface-aware loss 4.06 1.08
K = 4 - 1.04
23 and 24 channels 2.72 1.05
hrp = 8 7.29 1.38

full model
2.55 1.02

(hrp = 10; 24 and 25 channels)

Figure 8.11: Ablation study on the component of the spatial and spectral CoSMA archi-
tecture.

with surface-aware loss without surface-aware loss patch location

Figure 8.12: Comparison of reconstructed patches of the spectral CoSMA networks with-
out and with the surface-aware loss calculation during training. I depict the
face-wise reconstruction errors for the highlighted patch, which are averaged
over time.

8.2.4 Ablation Studies on Proposed Mesh Autoencoders

I conduct ablation studies concerning the components of the CoSMA and the CCLB-
autoencoder pipelines.

CoSMAs

We aim to evaluate the impact of the surface-aware loss calculation, the size hrp of the
embedding space, and selected hyperparameters of the surface convolutional layers. The
four experiments are conducted in the “unknown poses” setting of the FAUST dataset.

The CoSMAs are trained using a surface-aware loss that prevents over-weighting patch
boundaries, whose vertices can be included in multiple patches, see section 5.2.3. Fig-
ure 8.12 shows how patch-wise training without using the surface-aware loss leads to
higher errors in the interior of the patches, especially if the surface is curved. Table
8.11 lists the reconstruction errors when using a patch-wise train MSE compared to the
surface-aware loss calculation during training. It also evaluates the effect of a smaller
embedding dimension hrp, fewer channels in the convolutional layers, and a lower number
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Setting FAUST dataset

w/o spectral pooling 19.6
w/o reconstruction loss 4.7
with unsupervised maps 2.3
with supervised maps 0.7

Table 8.9: Ablation study on the components of the CCLB-autoencoder pipeline.

Figure 8.13: Impact of the dimensionality k2 of the CCLB after 100 epochs. Test com-
binations of CCLB dimension k2 and vertex feature dimension F , such that
the hidden representation is of size hr = F · k2 = 1040. If k2 = 1 this
corresponds to global average pooling.

K of Chebyshev polynomials in the spectral convolutional layers.

CCLB-Autoencoder

I conduct three experiments in the “unknown individuals” setting of the FAUST dataset
to ablate the role of the embedding space defined by the CCLB and the dependence on
high-quality shape correspondences. The first one uses the entire pipeline with super-
vised or true p2p maps between the shapes, the second one with unsupervised maps, the
third uses unsupervised maps but omits the reconstruction loss, and the last one uses
global average pooling instead of spectral mesh pooling in combination with true p2p
maps. The averaged features are then duplicated on the template shape, as previous
works have done [LBBM18]. The results in Table 8.9 show that all components are
necessary for optimal results. Note that spectral mesh pooling significantly contributes
to the combined embedding space; using just global pooling leads to an inferior model
performance.

Secondly, I evaluate the impact of the dimensionality of the CCLB on the reconstruc-
tion error on the GALLOP dataset. The size of the embedding space is fixed and equal
to the embedding dimension from section 8.3 (1040), which is determined by k2, the di-
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Model Runtime per epoch (sec) MSE 50 vs 150 epochs

spatial CoSMA 19.2 175%
spectral CoSMA 14.1 6%

CCLB-AE 9.7 415%

Table 8.10: Runtimes and convergence speed of proposed models for the GALLOP. The
last column depicts how much higher the training error is after 50 compared
to 150 epochs. All values are averages over three training runs.

mension of the CCLB, multiplied by the feature dimensions F of the encoder. I increase
k2 from k2 = 1 to k2 = 70, while adapting the feature dimension F accordingly. Figure
8.13 shows that the CCLB dimension k2 and the feature dimension F must be balanced.
Almost no spectral pooling in combination with a high feature dimension (low k2, high
F ) as well as a shallow feature dimension in combination with a high CCLB dimension
(low F , high k2) lead to a degradation of the performance.

8.2.5 Runtime comparison

Table 8.10 compares the runtimes per epoch when training the proposed methods for
the GALLOP dataset on an Nvidia Tesla A100 GPU. It also compares the training
errors after 50 and 150 epochs, when the optimization of all networks has converged, to
evaluate the convergence speeds. The CCLB-autoencoder has the fastest runtime per
epoch. The spectral CoSMA runtime per epoch is the highest, being twice as high as
for the CCLB-autoencoder. Nevertheless, the CoSMAs converge faster than the CCLB-
autoencoder. This is due to the smaller network sizes and data augmentation, which
rotates the patches and increases the size of the dataset by three. Therefore, although
all networks have similar runtimes per epoch, the spectral CoSMA converges the fastest.
After 50 epochs, the training error is only 6% higher than after 150.

8.3 Low-dimensional Representation

This section evaluates the learned low-dimensional representations for the studied data-
sets. We aim to make the dataset structures visible by visualizing the learned fea-
tures. At first, I evaluate the learned low-dimensional representations of the CoSMA
networks. Leveraging the patch-based approach, I can localize visible patterns in the
low-dimensional feature spaces. Then, the hidden features of the CCLB-autoencoder are
evaluated, whose common low-dimensional space allows a comparison of multiple shapes
in one embedding space.

8.3.1 CoSMA

The CoSMAs calculate hrp-dimensional representations for each patch. To calculate
shape-wise features, I concatenate the patch-wise hidden representations, obtaining one
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spatial CoSMA spectral CoSMA

Spatial CoSMA
Part 000
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Spectral CoSMA
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Part 001

Part 000 sim 018 (Branch A, green)
Part 000 sim 001 (Branch B, blue)
Part 001 sim 018 (Branch A, orange)
Part 001 sim 001 (Branch B, purple)

Immer t=120
Part 000 = 2000001
Part 001 = 2000002

Part 0 (Branch A)

Part 0 (Branch B)

Part 1 (Branch B)

Part 1 (Branch A)

Figure 8.14: Embeddings of two TRUCK components from Figure 7.6 and visualization
of the deformation pattern in two branches. The color refers to the part
and deformation branch and the color intensity to the simulation time.

embedding for each shape of size hr = hrp · #(patches). In all experiments hrp = 10.
For the visualization, I calculate 2D embeddings of the concatenated hidden patch-
wise representations using the linear dimension reduction method Principal Component
Analysis (PCA) [Pea01]. This allows an analysis of several surface meshes represented
by the same semi-regular mesh in a low-dimensional space.

Also, the patch-wise hidden representations of size hrp can be projected to the two-
dimensional space using PCA. I compare these patch-wise results to the 2D embedding
of the entire shape. This comparison provides an understanding and interpretation of
which surface areas lead to the patterns in the embedding space.

TRUCK and YARIS

In the 2D visualizations of the learned features from the spectral and spatial CoSMA
for the TRUCK components, we detect two clusters corresponding to two different de-
formation patterns in Figure 8.14.

The patch-based approach allows an additional comparison of the 2D patch-wise em-
beddings and the 2D embedding for the entire shape. I aim to identify the patches that
contribute the most to the pattern visible for the entire shape. For each patch, I define
a score, which equals the accuracy of an SVM (between 0.5 and 1) that classifies the
observed two deformation patterns of the entire component in the patch embedding, see
Figure 8.15, where a high similarity is colored in yellow.

For the spectral CoSMA, the highlighted patches correlate to the left part of the beam
(part 0), where the deformation is visibly different for two different TRUCK simulations
in Figure 8.15. On the other hand, the spatial approach highlights patches from the
middle of the component, although the deformation pattern manifests towards both
ends of the beam. These less significant results for the spatial CoSMA might be due to
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spectral CoSMA spatial CoSMA

spectral spatial

Select patch: 8, 13, 0

Figure 8.15: Patch-wise score for the TRUCK front beam (Part 0). Only the patches
with the high scores manifest the deformation in two patterns. This is
visible in the example of patch-wise embeddings with high and low scores.
The embedding colors encode timestep and branch.

spatial CoSMA spectral CoSMA

Branch A

Branch B

Part 164 sim 964 (Branch A, green)

Part 164 sim 924 (Branch B, blue)

Immer last timestep

Part 164 = 2000166

Spatial CoSMA
Part 164

Spectral CoSMA
Part 164 (in d3plot, a4 ist 2000166)

Figure 8.16: Embedding of a YARIS component and visualization of the deformation
pattern. The color refers to the deformation branch and the color intensity
to the simulation time.

the instability of its results, which is also visible in higher reconstruction errors.

For the YARIS, which the CoSMA networks have never seen during training, Fig-
ure 8.16 visualizes the low-dimensional representations for a component in 2D using
PCA. For calculating the representations, I chose the FAUST trained model, which has
the lowest reconstruction errors on the YARIS data. A deformation pattern is visible
for the front beam that splits up the simulation set into two clusters.

GALLOP

The time-dependent CoSMA embeddings from the GALLOP dataset exhibit a periodic
galloping sequence, visualized in Figure 8.17, that are of similar shape for both the spatial
and the spectral CoSMA. The features of the elephant are calculated by the CoSMA
models trained only on horse and camel, while the elephant is excluded during training.
Both CoSMAs calculate significant features of the unseen elephant that capture the
periodic deformation pattern of the meshes. The flipbook starting at page 35 animates
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spatial CoSMA spectral CoSMA
elephant horse camel elephant

0 2 4 6 8 10

Figure 8.17: Top: 2D embeddings of the animals’ low-dimensional representation from
the CoSMAs over time. Timesteps are depicted in the plots.
Bottom: The elephant’s pose is visualized at six equally distributed
timesteps from one cyclic deformation behavior.

the galloping sequence for the elephant and makes its cyclic dynamical pattern visible.

The dataset is constructed such that the movement of the three animals aligns. Nev-
ertheless, the positions of the timesteps in the embedding change from animal to animal
because the animals do not share the same mesh connectivity and, therefore, do not
share the same embedding space; only their patches do. Note how the order of the first
two PCA components change and also their signs. For example, when comparing the
horse-embedding to the camel-embedding, the sign of the x-axis is switched.

Again, I compare the patch-wise embedding to the embedding of the entire shape over
time. Because of the poorer results on the spatial CoSMA, the comparison focuses on
the spectral CoSMA for the GALLOP dataset. By measuring how similar the patch-
wise embedding is to the component embedding, I can determine how important the
deformation of the patch is for the general deformation behavior of the whole shape.
The patch-wise distance (low distance in yellow) is visualized in Figure 8.18 for the
spectral CoSMA learned features. To calculate this distance, I interpolate and densely
subsample the lines connecting the embedding points of consecutive timesteps. Between
the sampled points psi describing the deformation of the entire shape over time and the
sampled points ppj from the patch embedding, I calculate the chamfer distance, since
the embedding shape is cyclic. Then, the distance is the lowest for circle-like patch-wise
embeddings. This is the case for the body and legs, which define the elephant’s gallop,
whereas the movement of the trunk and head do not follow the periodic pattern.
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0 2 4 6 8 10

Figure 8.18: Highlighting the distance of the patch-wise embeddings to the embedding
of the entire shape analyzed by the spectral CoSMA.

spectral CoSMA CCLB-autoencoder

Figure 8.19: Spectral CoSMA and CCLB-autoencoder 2D-Embedding of the FAUST
shapes in common basis. Poses marked with a triangle raise the arms;
their embedded points are clustered towards the right. Figure 7.2 visualizes
the ten different poses.

FAUST and SYN

In the case of the FAUST dataset, several clusters form in the 2D visualization of
the features learned by the spectral CoSMA in Figure 8.19 corresponding to different
positions. The spectral CoSMA has been trained in the “unknown individual” setup.
Note that along the horizontal axis, the position of the arms can be split into raised
or not raised. Also, the positions with the least deformation from the upright standing
position (“normal”, “shouldersup”, and “headright”) are clustered together.

The deformation of the triangular meshes in the SYN dataset is parametrized by
three variables α, β, γ ∈ [−1, 1] that describe the deformation of the corners. The three
variables are approximately sampled from a rectangular area on a plane in 3D. The
spectral CoSMA recovers this structure and calculates features for the samples that,
when embedded in 2D, form a projection of the plane to the two-dimensional space, see
Figure 8.20.
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8.3. Low-dimensional Representation

spectral CoSMA CCLB-autoencoder

Figure 8.20: Spectral CoSMA and CCLB-autoencoder 2D-embeddings of the deformed
triangles from the SYN dataset. The colors are sampled from a 2D colormap
depending on the position of the sampled deformation parameters from the
plane in 3D.

8.3.2 CCLB-Autoencoder

For every mesh from the collections, the CCLB-autoencoder calculates a hidden repre-
sentation of size hr = k2 × F that describes the entire shape. The shape features from
the same collection can be visualized in 2D or 3D using a principal component analysis
[Pea01].

The CCLB-autoencoder allows us to embed the different shapes separately from each
other and detect their deformation patterns, for example, in the case of the FAUST
dataset, where all the meshes share the same connectivity. Compared to the CoSMAs,
we can additionally visualize the features from various shapes of different connectivity
in a common basis.

TRUCK

For the first time, different TRUCK components can be visualized together using the
representation in the CCLB. Figure 8.21 visualizes the two left front beams of the car in
three dimensions. The two deformation branches, A and B, in two different components
are split along the vertical axis of the 3-dimensional embedding space. This visualizes
nicely that the deformation of the two components manifests in similar deformation
patterns. The features of both components align over time along a horizontal axis.
Since the method is not invariant to different geometries and mesh connectivities, the
two components are separated along the third axis.

GALLOP

The CCLB-autoencoder allows a joint visualization of camel, horse, and elephant gal-
loping sequences from the GALLOP shape collection. These align over time up to
translation but are still separated from each other, which captures the different shape
categories, see Figure 8.21.
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Chapter 8. Representation Learning Results

Figure 8.21: Left: Embedding of galloping sequences from the GALLOP dataset in com-
mon basis. Timesteps are provided in the plot.
Right: Embedding of two TRUCK components (left front beams), which
deform in two clusters over time. The clusters of the two beams correspond
to the deformation patterns highlighted in the same colors in Figure 8.14.

FAUST and SYN

In the case of the FAUST dataset, several clusters form in the 2D visualization in
Figure 8.19 corresponding to different positions. Note that the visualization looks similar
to the embedded features calculated by the spectral CoSMA. First, in both embeddings,
the position of the arms can be split into raised or not raised along the horizontal axis.
Also, the same positions are clustered as in the spectral CoSMA embedding.

Like the spectral CoSMA, the CCLB-autoencoder recovers the rectangle from which
the triangle deformation in the SYN dataset is sampled, see Figure 8.20.

8.4 Generative Results

I generate new shapes by sampling from the latent feature spaces of the spectral CoSMA
and the CCLB-autoencoder. The quality of the generative results lets us evaluate if the
shape features lie on a smooth manifold and if the networks are not overfitting to the
training samples. I conduct three different generative experiments on the FAUST shape
collection using the learned models from the “unknown individuals” setup: Interpolation
of two test shapes, generation of combined positions, and feature transfer between two
different bodies.

For the interpolation, I select an individual from the test set in two distinct poses. I
interpolate along a straight line in the hr-dimensional space, pick four equally distributed
points from that line, and input them to the decoders. Since the spectral CoSMA
handles centered patches, the corresponding patch centers must also be interpolated. The
generated shapes from both models in Figure 8.22 resemble averaged positions between
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Figure 8.22: Interpolating between different FAUST test shapes, using the latent space
representation from the spectral CoSMA and the CCLB-autoencoder.
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Figure 8.23: Combining two positions of FAUST test shapes

the two test samples and are of similar quality to the reconstructed meshes. The CCLB-
autoencoder generates equally detailed shapes for the interpolated shape features, and
arms and legs are well-formed, while the CoSMA generations slightly collapse. I apply
the interpolation to the elephant galloping sequence to create the flipbook that animates
it. It starts on page 35. All elephants are reconstructed by the CCLB-autoencoder, and
subsequent timesteps have been interpolated in the embedding space for a smoother
animation.

To blend two different shapes, I combine the low-dimensional shape features of two
deformed shapes en(S1) and en(S2). To ensure that the calculated features lie on the
embedding manifold and that I only transfer the deformation information, I subtract
the features of the undeformed meshes in the upright position en(S0

1) and en(S0
2). Then

I add en(S1)− en(S0
1) + en(S2)− en(S0

2) to the shape features of the undeformed target
shape en(S0

t ).

When blending two distinct poses, I select one individual from the test set, add the
shape features of two different poses, and input the resulting feature to the decoder

de
(
en(S1) − en(S0

1) + en(S2) − en(S0
2) + en(S0

t )
)
. (8.2)

Since poses of the same individual are combined, this simplifies to en(S1) + en(S2) −
en(S0

1). Figure 8.23 visualizes the generative results, combining a bent leg with a tilted

91



Chapter 8. Representation Learning Results

spectral CoSMA CCLB-autoencoder

+ - ▹

+ - ▹

transfer of features
57+90-50
Oben: spectral cosma
Unten: CCLB-ae

+ - ▹

+ - ▹

transfer of features
57+90-50
Oben: spectral cosma
Unten: CCLB-ae

Figure 8.24: Transferring the pose from a female to a male individual from the FAUST
dataset.
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Figure 8.25: Feature transfer from one component to another from the TRUCK dataset
using the shape features learned by the CCLB-autoencoder.

head. This position combination experiment creates shapes not found in the shape
collection and shows that my models do not overfit the training poses.

To transfer features, I select a female individual and transfer her pose to a male indi-
vidual, again subtracting the upright female individual shape features from the deformed
ones to ensure sampling from the embedding manifold. Figure 8.24 visualizes the gener-
ated meshes. While the generated shape by the CCLB-autoencoder is smooth and the
limbs are positioned correctly and naturally, the spectral CoSMA generation collapses
in the arms. This might be due to the algebraic manipulation of the patch centers since
this experiment involves two different individuals.

The combination of positions and feature transfer shows that the embedding spaces
are smooth and allow algebraic manipulation (addition and subtraction) of shape embed-
dings. Nevertheless, the spectral CoSMA generations, when involving two different indi-
viduals, tend to collapse in the limbs. The generated shapes by the CCLB-autoencoder,
on the other hand, are detailed, with little loss of details, well-formed, and have correctly
and naturally positioned limbs.

Feature Transfer to Different Shape

The CCLB-autoencoder represents shapes of different mesh connectivity in the same
basis. Therefore, for the first time, it allows the transfer of features from shape S1 to
another shape S2 that does not share the same mesh connectivity. I test this for the
TRUCK dataset and transfer the deformation of one component to another one. The
results are visualized in Figure 8.25. The generated deformed component is plausible
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8.5. SubdivNet Autoencoder Architecture

when the two different components are of similar shape (upper row). It looks less realistic
when the two components have a different structure. While being useful for animations
in games or virtual reality, the generated deformation might not be physically correct
because conservation laws apply for the deformation of components, for example, that
the mass must stay constant. Nevertheless, the network was not conditioned to fulfill
the conservation laws.

8.5 SubdivNet Autoencoder Architecture

I compare my surface mesh autoencoders to an additional baseline model that learns
hierarchical features for semi-regular surface meshes using convolutional layers, see sec-
tion 8.1. To this end, the CoSMA architecture is translated to the SubdivNet baseline
by replacing the convolutional layers with the subdivision-based mesh convolutions and
the corresponding pooling and unpooling operations introduced in [HLG+22], see Table
8.11. All SubdivNet convolutions use stride and dilation equal to one and kernel size
equal to three and are followed by ReLU activations. As the SubdivNet convolutions
operate on face features rather than vertex features, we use the coordinates of the three
adjacent vertices per face as input features. The bullets • reference the corresponding
batch size. The second dimension is the number of features, and the last dimension is
the number of faces of the current mesh.

Subdivnet Autoencoder

Encoder Layer Output Shape Param. Decoder Layer Output Shape Param.

Input (•, 9, 25600) 0 Fully Conn. (•, 6, 1600) 9,840,000
SubdivConv (•, 16, 25600) 592 SubdivUnpool (•, 6, 6400) 0
SubdivPool (•, 16, 6400) 0 SubdivConv (•, 32, 6400) 800
SubdivConv (•, 6, 6400) 390 SubdivUnpool (•, 32, 25600) 0
SubdivPool (•, 6, 1600) 0 SubdivConv (•, 16, 25600) 2,064
Fully Conn. (•, 1024) 9,831,424 SubdivConv (•, 9, 25600) 585

Table 8.11: Structure of the SubdivNet [HLG+22] autoencoder using Mesh Convolution,
Mesh Pooling, and Mesh Unpooling for meshes with subdivision connectivity.

8.6 Summary

This chapter compares the proposed surface mesh autoencoder architectures to each
other based on the quality of reconstructed unseen meshes, the learned low-dimensional
features, and the generation by decoding manipulated low-dimensional shape features.

On one hand, I propose the spatial and spectral CoSMA that handle padded patches
of the surface meshes. To this end, all the surface meshes have been remeshed to semi-
regular mesh connectivity. Since the patches have the same regular mesh connectivity, I
train one CoSMA network that handles all the patches and learns hierarchical features
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using pooling. On the other hand, the CCLB-autoencoder handles entire meshes and
projects the mesh features to a common spectral basis using the proposed spectral mesh
pooling. This requires a functional map network that connects the shapes to each other
by functional maps or p2p correspondences. The CCLB-autoencoder handling entire
meshes has a slower convergence and a 30 times higher number of trainable parameters
than the CoSMA models, which apply the lighter patch-based approach.

In most cases, the reconstruction quality of the CCLB-autoencoder is higher than the
CoSMA reconstruction quality. The spectral CoSMA always has lower reconstruction
errors than the spatial CoSMA, except for one exception in Table 8.2.

The cases when the spectral and spatial CoSMA reconstructions are better than the
CCLB-autoencoder are of special interest. In the ”unknown poses“ experiment setup on
the FAUST dataset, possibly in combination with the SCAPE dataset, test poses are not
included in the training set. Here, the CCLB-autoencoder generalizes less successfully,
while the reconstruction quality of the spectral CoSMA is similar to including the poses
in the training set. The out-of-distribution experiments highlight this generalization
capability of the spectral CoSMA models. Here, I successfully apply a learned spectral
CoSMA to a different dataset. The patch deformation seems well-parametrized in the
CoSMA embedding space since the network reconstructs unknown shapes. This is only
possible because of the patch-based approach. Since the CCLB-autoencoder requires
correspondence maps between the shapes, it cannot be applied to shapes without any
natural correspondence.

When different shapes are of similar pose to the training shapes, for example, in the
GALLOP dataset, the CCLB-autoencoder reconstructs small details as the ears, even
though the p2p maps are erroneous, since the three animals have no perfect correspon-
dence. The spectral basis seems to capture the general pose of the animals, see Figure
2.6 in the related work on surfaces. Since the dimensionality of the CCLB is low, the
errors in the p2p maps are not considered. The details are taken from the template mesh
used for reconstruction and the vertex-wise features learned by DiffusionNet. Even if the
p2p maps are learned unsupervised, leading to more mapping errors, the reconstructions
are of reasonable quality because of the effective regularization of the loss.

Both networks learn significant low-dimensional features for the training and test
shapes that allow the detection of deformation patterns. Interestingly, the 2D plots of
the learned features look very similar, for example, in Figure 8.19 for FAUST, albeit ap-
plying different approaches. The CoSMA networks calculate patch-wise features, whose
comparison to the shape-wise features allows the localization of deformation patterns on
the surfaces. For the first time, the CCLB-autoencoder calculates surface mesh features
in one embedding space for different mesh connectivities without applying global pool-
ing. This allows the comparison of shape features in one space, for example, different
components from the TRUCK datasets.

The stable spectral mesh pooling and significant learned features lead to smooth and
well-formed generated shapes using the CCLB-autoencoder. Although the generated
shapes using the learned spectral CoSMA have noticeable patch boundaries, the patch
deformations are well interpolated. Both approaches can generate shapes that are not
in the training set.
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9 Additional Experiments

We conduct additional experiments to evaluate, on the one hand, the patch-based ap-
proach to learning hierarchical features and, on the other hand, to test time series
prediction in the joint embedding space of the CCLB-autoencoder. For the additional
experiment in section 9.1, we build a patch-based mesh segmentation model based on
the spectral CoSMA. These segmentation results are compared to baseline approaches
on the human body part segmentation experiment.

Section 9.2 evaluates whether the common embedding space of the CCLB-autoencoder
allows the joint analysis of several shapes of different connectivity. Since generative ex-
periments have shown that the joint embedding space is smooth and allows interpolation,
we test the prediction of the time series defined by the shape features in the joint em-
bedding space of the TRUCK dataset. The CCLB-decoder reconstructs the predicted
mesh features.

9.1 Mesh Segmentation

The CoSMA autoencoding architecture learns features at various levels of detail, which
means features describing fine and coarser shape structures because of the mesh down-
sampling in the encoder. We want to test the network structure and the patch-wise
approach handling semi-regular mesh representations in a different experimental setup,
which requires coarser and finer features and a pipeline that handles meshes of different
sizes and connectivity. This is why we chose to test the CoSMA pipeline on shape seg-
mentation. Additionally, the spectral CoSMA autoencoder generalized well for unseen
meshes in several out-of-distribution experiments, see section 8.2.2. Therefore, we chose
the human body part segmentation experiment, where a label is assigned to every face
of the surface mesh that corresponds to one of eight human body parts. The experiment
is conducted on five human datasets, see Figure 7.4 in section 7.1.2, where the SHREC
dataset is only used for testing. Therefore, the learned method must generalize well
to unseen meshes of unknown mesh connectivity. A network is trained by supervised
learning to predict the face-wise probability of belonging to a particular body part. This
prediction generally needs global information about the location of the vertex or face in
the entire mesh and about local mesh features.

All recent architectures aim to solve the mesh segmentation task by applying mesh
convolutional layers. The networks handle entire meshes and apply the filters on a lo-
cal mesh structure. [SS21, LT20, SACO22] calculate vertices-wise features, [HLG+22]
faces-wise, [HHF+19] edge-wise features, and [MLR+20] a combination of all of them.
[HSBH+19, MGA+17] handle a 2D parametrization of the mesh. The networks concate-
nate multiple convolutional layers to incorporate non-local information in the learned fea-
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tures. Additionally, some networks provide global information via pre-computed shape
features, for example, the shape descriptors heat kernel signature (hks) or wave kernel
signature (wks) [SACO22, HSBH+19, MGA+17], see section 2.5. Most networks do not
apply pooling to the local features or downsample the meshes. They operate only on
the local structures, which makes it possible to handle meshes of diverse connectivities.
MeshCNN [HHF+19] and PD-MeshNet [MLR+20] implement a mesh-dependent down
and up-sampling, and SubdivNet [HLG+22] handles semi-regular meshes and applies a
pooling operation similar to mine.

9.1.1 Method

The CoSMA architectures combine concatenated convolutional and pooling layers to
calculate features capturing a different level of detail. Since the spectral CoSMA gener-
alizes well, we only apply spectral convolutions in the mesh segmentation experiments.
To make use of the features learned at different resolutions, skip connections are added to
the CoSMA network, similar to [MLR+20, HHF+19]. [RFB15] proposed implementing
skip connections for image segmentation in their U-Net architecture. The skip connec-
tions resemble shortcuts between layers in the encoder to the corresponding decoder
layers, skipping the hidden layer of lowest dimensionality and providing more data for
the label prediction than only the low-dimensional latent representation. Additionally,
we increase the size of the two convolutional layers to 64 and 128 output channels and
calculate a latent representation of hr = 256. The resulting CoSMA network for seg-
mentation has 1,324,680 learnable parameters.

Similarly to baseline approaches [SACO22, HSBH+19], we input the 3D coordinates
describing the vertex positions and provide additional precalculated vertex-wise features
that capture global information. To the vertex-wise 3D coordinates, we concatenate the
vertex-wise hks in Rn×t [SOG09] and the wks in Rn×t [ASC11] descriptors for t = 20
timesteps, see section 2.5.

Also, every mesh from the five datasets is remeshed separately to a semi-regular mesh
representation. This way, the space of deformed patches is more diverse, which prevents
the network from overfitting to a fixed semi-regular mesh representation. At the same
time, we test the stability of the CoSMA segmentation network to diverse remeshing
results.

Figure 9.1 visualizes the human body mesh segmentation experiment pipeline.

9.1.2 Experiment Setup

The hks and wks descriptors are calculated on the irregular meshes. The signatures are
not scale invariant, so they are calculated on normalized meshes with unit area, similar
to Figure 2.7. We use the parametrization calculated during the semi-regular remeshing
to project the vertex-wise descriptors to the semi-regular mesh. The signatures are
concatenated to the vertex-wise 3D coordinates before input into the network.

The four training human body datasets containing 381 shapes are split into train and
validation set (75% to 25% per dataset). The SHREC dataset containing 18 meshes is
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Figure 9.1: Pipeline for human body mesh segmentation using a CoSMA inspired patch-
wise segmentation network.

only used for testing. All semi-regular meshes are aligned along the vertical axis and
normalized into the range [−1, 1].

We train the spectral CoSMA segmentation network with the adaptive learning rate
optimization algorithm [LH19] using a learning rate of 0.0001 and patch-wise cross-
entropy as the loss function, see section 3.1.2, with class weights to handle the unbalanced
labels. Following SubdivNet [HLG+22], the patches are augmented by randomly rotating
the patch 3D coordinates around the vertical axis by τ ∈ {0°, 90°, 180°, 270°} and scaling
each axis of a patch by a factor sampled from N (1, 0.1).

After training, we evaluate the performance of the models on the original irregularly
meshed meshes. To this end, we first reassemble a semi-regular mesh from the labels of
the unpadded patches. In case of overlap at the patch boundaries, we sum the outputs
from neighboring patches for the same vertex and rescale to one. The predicted vertex
label on the semi-regular mesh is the class with the highest weight. Then, we determine
the face labels on the original irregular meshes from the vertex-wise predicted labels on
the semi-regular meshes. For this, the label of the node closest to the face centroid is
chosen.

Two metrics measure the fidelity of the predicted face labels L̂i for mesh Mi. The
ground truth labels are referred to as Li. The prediction accuracy acc(Li, L̂i) for each
mesh in the datasets is the number of correctly classified faces divided by the number
of faces

acc(Li, L̂i) =
|{(Li)j = (L̂i)j | j = 1, . . . , |F|}|

|Li|
. (9.1)

Since the classes are not represented equally, for example, there are more faces la-
beled “torso” than “hand”, we also calculate the mean Intersection-over-Union (mIoU)
mIoU(Li, L̂i), which is a widely used metric for segmentation or object detection tasks.
Per class, it divides the correctly labeled faces by the number of true positive, false
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Method Test accuracy mIoU

Pointnet++ [QYSG17] 82.3 % 74.7 %
PD-MeshNet [MLR+20] 86.9 % 86.9 %

MeshCNN [HHF+19] 87.7 % 92.3 %
SNGC [HSBH+19] 91.3 % 91.0 %

DiffusionNet [SACO22] 91.5 %
SubdivNet [HLG+22] 93.0% 93.0 %
MeshFormer [Won23] 94.2%

CoSMA 87.0 ± 0.7% 78.4 ± 0.9%

Table 9.1: Mesh segmentation accuracy on the human body dataset by several surface
mesh convolutional networks. For the CoSMA network, the average and stan-
dard deviation over three training runs are provided. Baseline accuracies from
[HLG+22] and mIoU from [Won23]. DiffusionNet accuracy from [SACO22].

Mesh 7 76.3 % mesh 12 80.3 % Mesh 17 86.4 % Mesh 8 92.0 % mesh 13 92.0 % Mesh 3 97.3 %

76.3 % 80.3 % 86.4 % 92.0 % 92.0 % 97.3 %

Figure 9.2: Test meshes from the SHREC dataset with highlighted predicted and true
(small shapes) face labels and mesh-wise segmentation accuracy.

positive, and false negative labeled faces:

mIoU(Li, L̂i) =
1

#(classes)

∑
class c

IoUc(Li, L̂i)

=
1

#(classes)

∑
class c

|{Li = L̂i = c}|
|{Li = c}| + |{L̂i = c}| − |{Li = L̂i = c}|

.

(9.2)

9.1.3 Experiment Evaluation

The test accuracies and mIoU of the CoSMA segmentation network and baseline models
are listed in Table 9.1 and predicted labels on test meshes in Figure 9.2. The CoSMA
test accuracy is comparable to results from 2020 [MLR+20]. The mIoU of baseline

98



9.1. Mesh Segmentation

Dataset Validation accuracy mIoU Top-2 accuracy

FAUST 96.4 ± 0.2 % 91.6 ± 0.5 % 99.9 ± 0.04 %
MIT 94.1 ± 0.1 % 89.5 ± 0.3 % 99.9 ± 0.04 %

ADOBE 94.0 ± 1.0 % 87.5 ± 1.3 % 99.6 ± 0.2 %
SCAPE 95.6 ± 0.1 % 91.6 ± 0.1 % 99.9 ± 0.1 %

SHREC 87.0 ± 0.7 % 78.4 ± 0.9 % 97.9 ± 0.5 %

Table 9.2: CoSMA mesh segmentation accuracy, mIoU, and top-2 accuracy on test and
validation sets from the human body dataset. Average values and standard
deviation over three training runs.

head hand forearm upper arm torso upper leg lower leg feet

head 88% 0 0 3% 9% 0 0 0

hand 0 92% 6% 0 1% 0 0 0

forearm 5% 90% 4% 0 0 0 0

upper arm 2% 0 7% 75% 16% 0 0 0

torso 1% 0 0 1% 90% 7% 0 0

upper leg 1% 1% 0 0 14% 79% 5% 0

lower leg 1% 1% 0 0% 0 4% 90% 3%

feet 0 0 0 0 0 0 10% 89%

tr
u

e 
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b
el

s

predicted labels

Table 9.3: CoSMA mesh segmentation confusion matrix for the test set predictions nor-
malized by true labels.

networks handling meshes cannot be improved. The CoSMA mIoU is only higher than
the Pointnet++ results handling point clouds.

Nevertheless, the validation accuracies are comparable to the baseline methods, as
Table 9.2 indicates. This means that the CoSMA-inspired network does not generalize
well on the test dataset, which contains meshes from a different dataset (SHREC ).

The most misclassifications are due to the difficulties of the CoSMA segmentation
network to distinguish body parts that are next to each other, like forearm and hand,
as well as forearm and upper arm, as the confusion matrix in Table 9.3 indicates. This
is also visible in Figure 9.2 at the knees and hips. The high top-2 accuracies in Table
9.2, which counts a prediction as correct if the true label is one of the two labels with
the highest predicted probabilities, reflects this observation.

The ablation study of the CoSMA segmentation network in Table 9.4 indicates that
the performance of the network depends highly on the surface descriptors. On the other
hand, reducing the model size or omitting 3D coordinates as input features only slightly
deteriorates the results. This is because the signatures provide information on the vertex
positions in the context of the entire surface mesh that the 3D coordinates on the patch
and the patch padding cannot provide. This information is crucial for a segmentation
network handling only patches of the entire mesh and allows high-quality segmentation
results on the validation meshes.
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Input features Test accuracy

Only 3D coordinates 78.6 %
Only signatures 86.3 %
Small model 84.4 %

3D coordinates and signatures, full model 87.0 %

Table 9.4: Ablation Study: CoSMA mesh segmentation test accuracies when inputting
only 3D coordinates or hks and wks shape descriptors or reducing the model
size.

Nevertheless, the hks and wks depend on the mesh connectivity and change under non-
isometric deformation (deformations that change the geodesic distances on the surface),
see Figure 2.7 in section 2.5. Since several meshes from the test dataset are structurally
different, for example, the two shapes on the left of Figure 9.2, the signatures might not
be directly comparable to the ones of the train shapes. Therefore, they do not provide
comparable global information about the test meshes to segment successfully with a
patch-wise approach, and the network does not generalize well.

9.2 Time Series Prediction

The deforming car components from the TRUCK dataset manifest similar deformation
behavior over time. This is visible in the joint 3D embedding of the learned features by
the CCLB-autoencoder, see Figure 8.21, where one of the 3D embedding dimensions is
highly correlated with the simulation time.

Also, for the first time, multiple components are represented in one embedding space
and the same basis, enabling a joint analysis of multiple components. Besides this,
the representation in the low-dimensional embedding space reduces spatial redundancies
in the data. We do not need to handle surface meshes that are represented by a high
number of 3D vertex coordinates combined with a set of faces or edges. This information
is encoded in the low-dimensional representation.

The TRUCK dataset stems from a design of experiment study, where multiple sim-
ulations are calculated for different model parameters. The goal of the experiment is
to understand the effect of the model parameters on the simulation output and to se-
lect the combination of parameters such that the model and simulation behavior fulfill
specific design goals. This is a time-consuming process, but the in-situ analysis of sim-
ulations, which means analyzing the simulation after a few initial timesteps t1, . . . , ts,
can speed it up. If undesirable behavior is detected or predicted after the first s of
a total of e timesteps, a new simulation can already be started with adapted model
parameters or the ongoing simulation can be interrupted. For this decision, a good pre-
diction of the simulation results and the deformation of the components in the following
timesteps can be calculated. Since surface meshes over time contain many redundan-
cies, their deformation is often predicted using low-dimensional data representations
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Figure 9.3: Prediction pipeline: The first s timesteps of the sequences of deforming com-
ponents are encoded in the joint CCLB-autoencoder embedding space. In the
low-dimensional space, a learned predictor predicts the timesteps ts+1, . . . , te.
The predicted shape features are reconstructed to the mesh representation
using the decoder.

[DSC18, HITG20, KGE+21].

The CCLB-embedding space for different components not only calculates significant
low-dimensional shape features but also allows for a joint analysis of multiple compo-
nents that manifest similar deformation behavior yet are represented by different surface
meshes. Also, the generative experiments with the CCLB-autoencoder have shown that
the learned embedding manifold of the CCLB-autoencoder is smooth and that the de-
coder deCCLB robustly reconstructs interpolated or algebraicly manipulated features.
Therefore, we decide to predict the remaining timesteps ts+1, ts+2, . . . , te of the sim-
ulation in the low-dimensional feature space, where the data has fewer redundancies
and where a feature vector compactly represents every mesh. Then, we can predict the
surface mesh deformation by applying our decoder de to the predicted shape features.
Figure 9.3 visualizes this pipeline.

Notation

For this experiment, we consider the TRUCK dataset as a set of sequences and not only a
collection of shapes; hence, we change the notation to describe the timestep. Mi,t(Vi,t, Ei)
denotes the mesh from the i-th simlution at timestep t. The mesh connectivity stays
the same over time. Applying the trained CCLB-autoencoder, the mesh is compactly
represented by a flattened hr-dimensional feature vector (hr = k2 · F )

ACCLB
i,t = enCCLB(Vi,t) ∈ Rhr. (9.3)
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Since we only use representations in the CCLB, we omit the subscript •CCLB.

9.2.1 Methods

We test different approaches to predict the shape features Ai,ts+1 , . . . ,Ai,te at the re-
maining timesteps, given the shape features of the first s timesteps of the sequences
Ai,t1 , . . . ,Ai,ts . Section 3.4 gives a broad overview of machine learning approaches to
learning the dynamics of simulations. Nevertheless, since the CCLB-autoencoder pro-
vides significant low-dimensional features and due to the rather small size of the TRUCK
dataset containing six components and 32 simulations, this additional experiment mainly
focuses on deterministic instead of machine learning methods for predicting the simula-
tion.

k-Nearest Neighbor

As a simple baseline, we apply a k-nearest neighbor (kNN) search in the set of all training
time series. For predicting the timesteps ts+1, . . . , te of the test simulation, we average
the low-dimensional representations of the k nearest neighbors in the set of all training
simulations up to timestep ts.

Dynamic mode decomposition

The dynamic mode decomposition (DMD) is a dimension reduction algorithm for time
series data, originally presented to extract and analyze dynamical features from flow
data [Sch10, Sch22]. The method (in a discrete-time setting) assumes a time series of
observables describing the state of a dynamical system. In our case, we first consider Ai,tj

and Ai,tj+1 for all simulations i in the train set and j = 1, . . . , e − 1 as the observables
from the underlying dynamical system. We define two matrices with the shape features
shifted in times and for all train simulations in their columns

X=̂[Ai,tj . . . ]j=1,...,e−1
i=1,2,...

Y =̂[Ai,tj . . . ]j=2,...,e
i=1,2,...

(9.4)

and want to approximate the matrix U , describing the temporal correlations for the
training simulations, by solving the potentially over- or underconstrained problem

Y = UX. (9.5)

The DMD (for example, algorithm 2 for the exact DMD from [HWM+14]) estimates
U=̂Y X† and, at the same time, calculates the eigenmodes of the dynamical system. Since
the optimization may be inefficient for high data dimensions or numbers of samples, the
exact DMD algorithm circumvents an explicit representation or direct manipulation of
U . It takes advantage of a reduced decomposition using only the rDMD most important
eigenmodes. The eigenmodes, together with the corresponding eigenvalues, can be used
to analyze the dynamics of the system [Mez05, RMB+09, Sch10, KBBP16, Sch22]. We,
on the other hand, are interested in the matrix U or its description by the most important
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GT kNN DMD
DMD & delay
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Figure 9.4: Reconstruction of predicted shape features using the CCLB-autoencoder.
Vertex-wise prediction error to true mesh is highlighted.

eigenfunctions since it allows the prediction of the remaining timesteps ts+1, . . . , te, given
Ai,ts

Apred,ts+k
= UkAts . (9.6)

DMD & Delay Embedding

Figure 8.21 shows that the observables Ai,tj embedded in 3D do not evolve linearly, which
suggests that equation (9.5) is illposed. Nevertheless, Koopman theory [Koo31, KN32]
states that nonlinear dynamical systems can be reproduced by a linear evolution in a
space of observables on the state variables

g(At+1) = Ug(At), (9.7)

where g is the mapping from the state space to the space of observables. Given the
mapping to a space of observables, DMD algorithms often approximate the Koopman
Operator that describes this linear evolution [RMB+09, Sch10, HWM+14, KBBP16].

Nevertheless, the approach requires finding a mapping g from the observed mea-
surement series into a space where the dynamics are linear. Various methods have
been taken into account to find the mapping, including kernel methods [Gia19], deep
learning of coordinate transformations (see section 3.4), and time-delay embeddings
[BBP+17, AM17, KKBK20, YZZ+21, DKBK22].

The time-delay embedding is a coordinate transformation g : Rhr → Rhr·(d) that
concatenates d copies of an observation that are shifted in time at t − j · τ for j =
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0, . . . , d− 1

g(At) =


At

At−1·τ
...

At−(d−1)·τ

 . (9.8)

Hence, the time-delay embedding as the space of Koopman observables allows consider-
ing relations between more than two consecutive timesteps. This technique is motivated
by the influential Takens embedding theorem, which demonstrates that under certain
conditions, a chaotic attractor can be reconstructed up to a diffeomorphism from a time
series of observations of the state of the dynamical systems [Tak81]. We refer to this
approach of using Koopman observables from the time-delay embedding and approxi-
mating the Koopman operator using the DMD as DMD & delay embedding.

NN & Delay Embedding

To evaluate the power of the DMD to approximate the Koopman operator when using the
time-delay embedding as the space of Koopman observables, we compare it to learning
a nonlinear function uNN : Rhr∗(d) → Rhr∗(d) that predict the following observable

g(At+1) = uNN (g(At)), (9.9)

by a two-layer fully connected NN with one hidden layer of size rNN .

9.2.2 Experiment Setup

The six different components lie in the same embedding space. Therefore, the approaches
handle the six different components together. To reduce the differences in the embedding
that are due to the different geometries of the components, as visible in the 2D embedding
of several TRUCK components in Figure 8.21, we translate every time series by −Ai,t1

to start at zero. We run experiments for s = 10 and s = 12 and predict the last e − s
timesteps of the simulations. For the TRUCK simulations, we consider e = 29 timesteps
in this experiment. Therefore, similarly to [HITG20], we input approximately one-third
of the time series to the predictor. The same 30% of the simulations are provided for
training and optimizing the predictors as for training the CCLB-autoencoder.

For the k-nearest neighbor (kNN) baseline, it always holds k = 3. The chosen param-
eters for the DMD embedding dimension rDMD, the parameters τ and d of the delay
embedding, and the size of the hidden layer rNN in the NN are provided together with
the results.

For the loss calculation, we apply the same error as for the evaluation of the re-
construction experiments, see (8.1) in section 8.2. We sum up the squared Euclidean
distance between the true vertex coordinates V and the reconstructed predicted shape
features Vpred = deCCLB(Apred)

RecErr(M(V, E),Mpred(Vpred, E)). (9.10)
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Error between predicted
Method Parameters s mesh coordinates Vpred to

true V reconstr. Vrec

CCLB-AE 0.03 0

kNN k = 3 10 0.77 0.72
DMD rDMD = 34 10 0.82 0.77

DMD & delay embedding rDMD = 125, τ = 2, d = 5 10 0.58 0.53
NN & delay embedding rNN = 100, τ = 2, d = 5 10 6.88 ± 0.3 6.80 ± 0.3

kNN k = 3 12 0.66 0.61
DMD rDMD = 85 12 0.63 0.58

DMD & delay embedding rDMD = 70, τ = 3, d = 4 12 0.33 0.29
NN & delay embedding rNN = 130, τ = 3, d = 4 12 4.61 ± 0.3 4.54 ± 0.3

Separate components
DMD & delay embedding rDMD = 62, τ = 2, d = 5 10 0.54 0.48
DMD & delay embedding rDMD = 35, τ = 3, d = 4 12 0.33 0.28

Table 9.5: Errors for the predicted meshes from the TRUCK dataset, providing s = 10 or
s = 12 input timesteps and shape representations in the common embedding
space from the CCLB-autoencoder experiments. For the best method, we also
provide results when considering the components separately. For the learned
method, the mean and std of three training runs are provided.

Since the reconstruction is imperfect, the upper error cannot be zero. Therefore, we
also provide the error comparing the reconstructed predicted shape features Vpred to the
reconstructed true shape features Vrec = deCCLB(enCCLB(V ))

RecErr(Mrec(Vrec, E),Mpred(Vpred, E)). (9.11)

9.2.3 Experiment Evaluation

Figure 9.4 and Table 9.5 provide quantitative and qualitative prediction results for all
tested predictors. The TRUCK dataset is densely sampled, which leads to relatively
good results using the k-nearest neighbors search in the training dataset, which was also
observed in [HITG20]. The DMD using the delay embedding always performs better
than the kNN for both quantities of provided input timesteps. On the other hand, the
same delay embedding in combination with an NN can neither capture the dynamics
nor the two deformation patterns. In general, providing only s = 10 input timesteps
leads to worse prediction results since more timesteps need to be predicted. Also, the
deformation patterns can not be entirely distinguished after ten simulation timesteps.

Figure 9.5 shows how the errors develop over time for the six different components and
numbers of input timesteps s = 10, 12. While being almost zero at the first predicted
timestep, the error increases over time. This is expected since the predictions of the
following timesteps use possibly incorrectly predicted features as inputs. Possibly due
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s = 12 s = 10

Figure 9.5: Reconstruction error to true meshes over time with DMD & delay embedding
for a different number of input timesteps s.

to a bouncing back of the entire car towards the end of the frontal crash simulation, the
errors decrease for the last timesteps.

To evaluate the usefulness of shape representations in a common space, Table 9.5 also
provides the prediction results when considering one predictor for each of the six parts.
For the single-part DMDs, we only use half of the DMD-embedding dimensions rDMD.
The average prediction errors are the same or slightly lower when estimating a DMD
for every component separately. This shows, on the one hand, that the deformation
dynamics of the six components are similar and, on the other hand, that the joint
CCLB-embedding space captures these similar dynamics independent of the different
mesh representations.
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10 Conclusion and Outlook

This research work proposes and evaluates new methods for representation learning for
various 3D shapes represented by different surface meshes. The two proposed surface
mesh autoencoder architectures CoSMA and the CCLB-autoencoder emerged as reliable
learners of shape features. The experiments with the two networks confirmed that they
not only reconstruct meshes of high quality but, more importantly, calculate significant
features that facilitate follow-up tasks analyzing deformations and generating shapes.
This final chapter summarizes the main research findings considering all experiments and
compares the two proposed architectures, given their specific advantages and limitations.
Finally, I propose questions that remain to be answered and provide an outlook.

10.1 Summary and Contributions

Learning 3D Shape Features

In this thesis, I propose two general network architectures, the CoSMA and the CCLB-
autoencoder, to calculate low-dimensional representations of 3D shapes represented by
surface meshes. Both methods have a common feature: they can handle shapes rep-
resented by different meshes, which is impossible with the baseline methods. For the
analysis with baseline methods, I had to split up the datasets, separating different shapes
from each other, making the task easier. Notwithstanding, the reconstructed meshes by
my proposed methods are smoother and of higher quality, showing the effectiveness of
both proposed methodologies.

The proposed network architectures follow different approaches for calculating low-
dimensional representations for different meshes. The CoSMA pipelines split up the
surface in regularly meshed patches handled individually by a network. The networks
then calculate patch-wise low-dimensional representations that are set together for an-
alyzing the entire shape. Since the CoSMAs handle patches, the pipeline using the
same trained network can be applied to all surface meshes that can be split up into
regularly meshed patches, making this approach very flexible. For instance, the out-
of-distribution experiments in section 8.2.2 with the spectral CoSMA have proven that
a network trained on meshes representing humans can be applied to a dataset of de-
forming car components and that I can detect deformation patterns in the calculated
low-dimensional representations of the components. This also shows that the network
does not overfit to one semi-regular representation and the resulting patch locations but
that it learns features that are independent of the semi-regular mesh structure.

The CCLB-autoencoder can handle different mesh connectivities because it calculates
shape-wise projection matrices to a common low-dimensional space that combines the
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spectral bases of all shapes. I call this novel projection approach spectral mesh pooling.
At the same time, the spectral mesh pooling projects the shape features to a shared space
and disentangles vertex-wise features from the mesh by representing them in the spectral
space. The basis defining the common low-dimensional space is optimized by leveraging
correspondence maps between the shapes in the dataset. The CCLB-autoencoder has
shown stable reconstruction quality despite using erroneous correspondence maps and is
therefore successfully applied to datasets for which perfect maps cannot be computed,
for example, between an elephant and a horse. In most cases, the CCLB-autoencoder
reconstructs smoother and better-formed surface meshes than the CoSMA approaches.
Only if the test meshes differ strongly from the shapes in the training dataset, the
CoSMAs generalize better and reconstruct more accurate surface meshes.

Both networks learn significant low-dimensional features for all surface meshes that
allow the detection of patterns and characteristics in the datasets. The low-dimensional
shape features from the CoSMA networks depend on the division of the mesh into
patches. Therefore, while the training is independent of the connectivity, the shape
features are only comparable for meshes with the same connectivity. On the other
hand, the spectral mesh pooling of the CCLB-autoencoder overcomes this limitation
and allows for the first time a joint analysis of different shapes, for example, different
car components that manifest similar deformation behavior over time.

Application of Learned 3D Shape Features

The learned 3D shape features are applied in a variety of tasks. The CoSMAs patch-wise
low-dimensional representations allow us to compare patterns detected on the patches
to patterns in the representation of the entire shape. This comparison provides an
understanding and interpretation of which surface areas lead to the patterns observed
in the embedding space.

I test the smoothness of the learned embedding spaces by generating new shapes via
sampling from the embedding space and decoding the created shape representations. The
spectral CoSMA and the CCLB-autoencoder generate new shapes that cannot be found
in the datasets. The CCLB-autoencoder can also transfer the deformation encoded in
the low-dimensional representation from one shape to another because different shapes
are represented in one joint embedding space.

Another advantage of this common embedding space is that it allows for conducting
follow-up tasks independent of the mesh connectivity for several parts together. If the
small size of the dataset limits its analysis, a representation of several shapes in one
embedding space opens the door to a joint analysis by the same method. The experiments
predicting time series in section 9.2 in the embedding space show how the predictions are
of similar quality when considering more parts than when considering them separately.
Machine Learning methods depending on large datasets will profit from joint embedding
spaces for different shapes.

In comparison to the CCLB-autoencoder, which applies only one spectral mesh pool-
ing, the CoSMAs learn hierarchical features by interleaved convolutional and pooling
layers. These hierarchical features were tested in the human mesh segmentation exper-
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iment in section 9.1. Since the CoSMAs handle regional patches, providing vertex-wise
shape descriptors capturing global information has proven crucial. Nevertheless, the
performance of the segmentation model depends on the quality of the input shape de-
scriptors.

Semi-Regular Remeshing Pipeline

To divide the surface meshes into patches for analysis by the CoSMAs, the mesh rep-
resentation must be remeshed to semi-regular connectivity. Since existing semi-regular
remeshing algorithms place substantial requirements on the input surface meshes, for
example, they have to be watertight and may not have holes or boundaries, I propose
a novel semi-regular remeshing pipeline. It creates smooth and well-fitted semi-regular
surface meshes and poses no requirements on the input meshes, as the remeshing re-
sults in section 7.2 show. Nevertheless, it does not give any convergence guarantees to
a limit surface because this is irrelevant for the mesh autoencoders. The weights of the
regularization terms in the loss function of the remeshing algorithm have to be selected
carefully. The algorithm creates stable results once these hyperparameters are optimized
for a shape. The human segmentation experiments using a CoSMA-inspired network in
section 9.1 prove this, where more than 300 different human surface meshes are remeshed
using the same hyperparameters for my algorithm.

10.2 Open Questions and Outlook

Both proposed surface mesh autoencoders require preprocessing steps to handle meshes
of different connectivity. On the one hand, the CoSMA pipeline requires the surface
meshes to be of semi-regular connectivity, possibly decimating detailed structures on
the surface to divide the surface meshes into patches. The CCLB-autoencoder, on the
other hand, requires correspondence maps between the input shapes to calculate the
common spectral basis. While being stable with respect to slightly erroneous maps, it
limits the datasets to contain shapes with some natural correspondence. Correspon-
dence maps can be calculated without supervision, the provided loss function handles
erroneous correspondence maps, and the reconstruction results are better than unsu-
pervised baseline methods, see section 8.2.3. Nevertheless, it impairs the reconstruction
quality, and the unsupervised correspondence learning algorithms do not yet work for all
shapes. Using soft maps capturing insecurities in the learned correspondences between
the shapes might improve the reconstruction quality.

While this thesis provides successful approaches to learning low-dimensional represen-
tations, it only answers how this is possible in combination with preprocessing steps.
A method to divide surface meshes into patches without remeshing would make the
CoSMA an even more flexible network architecture. The patch-based approach could
be combined with a global feature learner to incorporate global information as done for
the mesh segmentation experiment in section 9.1.

When generating meshes, for example, using the decoders of my methods, it remains an
open question of how to choose a mesh for the reconstruction. Both approaches require
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the mesh connectivity of a template mesh because methods generating surface meshes,
including their connectivity, are still a recent and young research direction. To better
understand the implications of my generative results, future studies could address how
the learned low-dimensional representations improve shape generation in combination
with generative neural networks.

The CoSMA networks learn hierarchical features by iterative coarsening the mesh,
while the CCLB-autoencoder only applies one spectral mesh pooling operation. In gen-
eral, the hierarchical calculation of features leads to more significant results. Neverthe-
less, it remains an open question on how to use the proposed spectral mesh pooling for
iteratively coarsening the feature resolution.

Lastly, the findings of this thesis suggest testing the patch-based approach as a foun-
dation model for the analysis of surface meshes. Large language models apply a similar
approach, where a text is split into words represented in word embeddings. The CoSMA
method has learned significant patch-wise features and generalizes to unseen shapes that
can be reconstructed to a high quality. Therefore, these experiments open the door for
a pre-learned foundation model learning shape features that can be adapted to a wide
range of downstream tasks analyzing these 3D shapes.
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Mirela Ben-Chen, Leonidas Guibas, Frederic Chazal, and Alex Bronstein.
Computing and Processing Correspondences with Functional Maps. In
ACM SIGGRAPH 2017 Courses, pages 1–62, New York, NY, USA, 2017.
ACM.

[OR19] Samuel E. Otto and Clarence W. Rowley. Linearly Recurrent Autoencoder
Networks for Learning Dynamics. SIAM Journal on Applied Dynamical
Systems, 18(1):558–593, 2019.
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ulated Mesh Animation from Multi-view Silhouettes. ACM Transactions
on Graphics, 27(3):1–9, 2008.

[vdMH08] Laurens van der Maaten and Geoffrey Hinton. Visualizing Data using
t-SNE. Journal of Machine Learning Research, 9(86):2579–2605, 2008.
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