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Introduction

This dissertation consists of three self-contained essays in microeconomic theory and
statistics. The first chapter contributes to the literature on information economics.
It examines strategic information transmission in a sender-receiver game with en-
dogenous learning. The second chapter on search and matching theory analyses a
dynamic matching market in which match values increase over time, and agents
have the option to rematch. The third chapter on cluster analysis deals with a con-
strained clustering model.

Chapter 1 contains my job market paper "Endogenous Information Acquisition
in Cheap-Talk Games": It studies a communication game with endogenous learning:
An expert publicly acquires costly private information about a state of nature and
then communicates with a decision-maker by sending a cheap-talk message. Public
learning (i) improves the communication outcome, and (ii) fundamentally changes
the structure of communication: In Pareto efficient equilibria, the expert reveals all
acquired information to the decision-maker. In general, the expert does not acquire
full information—even if learning is costless. I provide a geometric characterization
of the Pareto efficient equilibria for a general setting by identifying the extreme
points for generic spaces of Blackwell experiments. These tools can also be applied
to standard cheap-talk settings with a perfectly informed expert. Under posterior-
mean preferences, any cheap-talk problem is solved by a convex combination of
two bi-pooling policies. An application is the uniform-quadratic model, for which the
best bi-pooling policies are characterized. Contrary to existing cheap-talk models,
monotone partitions are not always optimal.

Chapter 2 builds on joint work with Axel Niemeyer and Finn Schmieter, "On-
The-Match Search and Match-Specific Productivity Growth". We study a search-and-
matching model with heterogeneous agents that continue to search on-the-match.
In deciding with whom to match, agents must trade-off the flow utility provided by
a partner against the stability of a match, i.e., the rate at which the partner leaves
for another agent. Thus, stability determines and is determined by the agents’ be-
havior, and consequently, there are multiple steady state equilibria. In almost every
equilibrium, agents coordinate on payoff-dominated behavior. However, if there is
match-specific productivity growth, i.e., if flow utility increases in the duration of a
match, agents no longer fail to coordinate. We characterize the set of steady state
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equilibria that survive a perturbation with match-specific productivity growth. In
some equilibria, less productive agents prefer to match with other less productive
agents, suggesting an alternative explanation for assortative matching. In general,
productivity growth can significantly alter equilibrium outcomes and sorting pat-
terns: any match now becomes stable in the long run, but there is an incentive to
foster growth in matches that are stable to begin with; either effect can dominate
the agents’ trade-off.

Chapter 3 is my third paper "Clustering with a Minimum Distance Constraint".
This project studies the k-means clustering problem with one additional constraint:
The distance between any two cluster centroids is bounded below by some constant.
Specifying the minimum distance between cluster means determines the optimal
number of clusters. I characterize analytical properties of the solution to the con-
strained clustering problem. The classical k-means clustering algorithm extended
by the minimum distance constraint typically converges to an outcome that is a lo-
cal solution, but cannot be the global solution to the clustering problem. Moreover, I
propose a hypothesis test on uniformity of the underlying distribution of the original
data based on the clustered data.
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Chapter 1

Endogenous Information Acquisition
in Cheap-Talk Games?

1.1 Introduction

Information plays a central role in many decision processes. Nevertheless, decision-
makers often face a lack of information, preventing them from making good choices.
Hence, effective information transmission is crucial. A simple, but functional form of
information sharing is costless, non-binding and unverifiable communication: cheap
talk. Communication is key in our daily life, and cheap talk matters: The success of
big organizations depends on the interaction among its divisions. Another example
of economic relevance is the communication strategy of central banks such as the Fed
or ECB. This is cheap talk (see Duffy and Heinemann (2021)), and people care for
what central banks say. So, their announcements have an effect on people’s behavior,
markets, and the economy as a whole.

This paper investigates a communication game with public learning. The litera-
ture on cheap-talk goes back to the influential work by Crawford and Sobel (1982):
A biased sender transmits a message about a state to a receiver who takes a deci-
sion that affects both agents’ payoffs. The underlying assumption in their model is
that the sender is perfectly informed about the state. However, in many situations,
even experts are not omniscient, but need to acquire information before they can
give a recommendation. For example, central banks estimate some macroeconomic
models before making announcements.

? I am grateful to Nemanja Antić, Andreas Asseyer, Sarah Auster, Dirk Bergemann, Alexander
Bloedel, Andreas Blume, Nina Bobkova, Florian Brandl, Francesc Dilmé, Daniel Krähmer, Patrick Lahr,
Stephan Lauermann, Benny Moldovanu, Harry Pei, Francisco Poggi, Francesco Squintani, Philipp
Strack, Roland Strausz, and Dezső Szalay as well as audiences at Bonn and Yale, and at various semi-
nars and conferences for valuable comments and suggestions. Funding by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC 2126/1
– 390838866 and through CRC TR 224 (Project B04) is gratefully acknowledged.
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I deviate from Crawford and Sobel (1982) by assuming that the sender is not per-
fectly informed about the state. Instead, I allow the sender to decide which and how
much information to acquire by conducting an experiment whose outcome yields
an informative signal about the state. Information acquisition is flexible in the sense
that the sender can choose an arbitrary statistical experiment à la Blackwell (1953)
from a large set of available experiments.1 Moreover, I study public learning, mean-
ing that the receiver observes the choice of experiment, but not the outcome. In
the central banks application, public learning means that the central banks disclose
which macroeconomic models they use.2

In equilibrium, the receiver might remain partially uninformed about the state
(i) due to a conflict of interest between the two parties, preventing the sender from
sharing all acquired information with the receiver, and (ii) because the sender might
not acquire all information if this is too costly. To better understand the overall effect
and interplay of these two forces, the paper examines optimal experiments, i.e.,
Pareto efficient implementable experiments. There typically exist multiple optimal
experiments because the two agents benefit from information asymmetrically:While
the receiver is best off from the most informative experiments, the sender also has to
bear the cost of learning so that the sender may be better off from experiments with
limited information content. I provide an equilibrium selection criterion3—off-path
coordination, meaning that agents coordinate on payoff-dominant behavior off the
equilibrium path—that justifies the focus on Pareto efficient experiments. Besides,
it is worthwhile to study optimal experiments even if one is not merely interested
in Pareto efficient outcomes, but in the set of achievable equilibrium outcomes per
se: Any equilibrium payoffs can be derived from convex combinations of the agents’
payoffs in Pareto efficient and babbling equilibria.

Mymodel is a general version of Crawford and Sobel (1982) going beyond single-
peaked and single-crossing preferences. Apart from the usual continuity assump-
tions on utility and cost functions, and compactness assumptions on state and ac-
tion spaces, I impose amonotonicity condition on the cost function, ensuring that the
costs of an experiment are proportional to its Blackwell informativeness⁴. Cost func-
tions commonly used in the literature on rational inattention, such as the entropy-

1. Flexible information acquisition is a standard assumption in the literature on information
design (cf. Kamenica and Gentzkow (2011)) and coordination games (cf. Yang (2015)).

2. Another application of the model is communication based on survey data: A firm who con-
templates launching a new product might contact a market researcher, who then conducts a survey
among potential customers in order to evaluate the product’s expected profitability. In this scenario,
public learning could mean that the firm views the survey’s questionnaire in advance to monitor the
learning process to ensure that its outcome provides valuable information to the firm. Disclosure of
the survey’s result might not be possible due to data protection reasons.

3. For further selection criteria in the cheap-talk literature, see Chen, Kartik, and Sobel (2008),
and Antić and Persico (2023).

4. An experiment is more informative in the sense of Blackwell (1953) than another experiment
if the latter is a Blackwell garbling of the former. An experiment is most informative if no other available
experiment is Blackwell more informative.
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based cost function, satisfy this requirement. Also, free learning, i.e., zero cost, is a
special case of the model.

I begin with a result that simplifies the identification of the set of optimal ex-
periments: It is without loss of generality to restrict attention to equilibria in which
the sender fully reveals all acquired information to the receiver. The intuition for
this recommendation principle is straightforward: Since the receiver has the author-
ity over decision making, the sender does not directly benefit from any information
which is not transmitted to the receiver. It is more efficient if the sender only gath-
ers information that the sender actually wants to forward to the receiver due to the
cost caused by information gathering. Additionally, the paper provides an existence
theorem for Pareto efficient equilibria in the general framework.

Having too much information can be harmful. To see this most clearly, consider
the zero-cost case. Even if the sender has the option to choose a most informative
experiment, the sender typically does not do so in an optimal equilibrium.⁵ Since
the sender cannot commit to fully revealing the experiment’s outcome, the sender
can transmit information to the receiver more credibly by having less private infor-
mation: With less information, the sender has less incentives to misreport. In other
words: The sender optimally acquires only information for which both agents agree
on what is the best decision given that information, thus endogenously reducing the
conflict of interest between the two parties.

I estimate the efficiency of the communication game’s decision-making process
by comparing the optimal equilibrium outcomes to Pareto efficient feasible out-
comes. What are feasible outcomes? Suppose a social planner chooses an experi-
ment in lieu of the sender and takes an action instead of the receiver based on the
acquired information. An outcome that can be implemented this way is feasible. A
common concern about cheap talk is that the lack of verifiability and commitment
implies efficiency losses. It seems natural that frictions arise in the communication
game if the two agents have unequal interests. But where exactly do those inefficien-
cies come from? Under certain regularity conditions, I show that a Pareto efficient
feasible outcome is implementable if and only if there is a unique Pareto efficient
feasible outcome. So if there is no disagreement about what is the best possible
outcome, the two agents manage to coordinate in equilibrium to achieve this out-
come. On the other hand, if the agents prefer different feasible outcomes, cheap
talk involves inefficiencies. Consequently, different preferences per se do not lead to
inefficiencies. Only if there is disagreement about best possible outcomes, frictions
are inevitable under cheap talk. This finding provides an explanation why cheap
talk is prevalent in real life.

5. This is an immediate consequence of the recommendation priciple. In cheap-talk settings with
a perfectly informed sender, communication is typically coarse (cf. Crawford and Sobel (1982) and
Green and Stokey (2007)).
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Next, I geometrically characterize the optimal experiments for both the costless
case and for concave⁶ cost structures. I identify their support set of posterior beliefs.
The cheap-talk problem is solved by an experiment that is a convex combination
of up to two experiments. Their posterior beliefs satisfy an analogous condition as
the convex independence condition of Crémer and McLean (1988, p.1251)). In the
costless case, it is the notion of probabilistic independence as formulated by Lopomo,
Rigotti, and Shannon (2022). For the costly case, a stronger version of this is needed:
I define the notion of strong probabilistic independence. I show that the set of ex-
periments satisfying this condition is the set of extreme points in the space of Black-
well experiments for arbitrary underlying distributions of the state. Intuitively, such
experiments are optimal because they produce a certain expedient amount of infor-
mation using the least possible number of different outcomes. If the state space is
finite, the number of outcomes of an optimal experiment is bounded by twice the
number of states.

An application are settings with a real-valued state space and posterior-mean
preferences⁷: Optimal experiments are convex combinations of up to two bi-pooling
policies—a term introduced by Arieli et al. (2023). A bi-pooling policy is a general-
ization of a monotone partition⁸: It divides the state space into convex subsets and
associates up to two outcomes of the experiment to each subset. Similar results have
been derived in the literature on Bayesian persuasion. This is an interesting obser-
vation on the relation between cheap talk and persuasion: While the two problems
do not necessarily admit the same solution⁹, they are equivalent in the sense that
they admit a solution within the same class of experiments.

I apply the bi-pooling result to the uniform-quadratic case à la Crawford and So-
bel (1982) with zero cost. Notably, the bi-pooling result provides sufficient structure
to solve for the optimal experiment: The characterization builds on a proof by induc-
tion on the number of bi-pooling elements. Themain qualitative finding—monotone
partitions are not always optimal—is illustrated in Example 1.1:
Example 1.1. Figure 1.1 (a) shows the best equilibrium if the sender decides to
become perfectly informed—it corresponds to the Pareto efficient Crawford-Sobel
equilibrium. Can we do better by allowing the sender to acquire less than perfect

6. Concave cost include posterior separable cost—the standard assumption on cost in the litera-
ture on rational inattention (cf. Maćkowiak, Matějka, and Wiederholt (2018) and Matějka and McKay
(2015)).

7. Such preferences do not depend on the whole distribution of conditional distribution of the
state, but only on the distribution of its conditional expected value at any stage of the game.

8. A monotone partition divides the state space into convex subsets, and associates exactly one
outcome of the experiment to each subset.

9. In general, optimal cheap talk and optimal Bayesian persuasion are not outcome-equivalent
due to the commitment constraint that is imposed under cheap talk, but absent in the persuasion
problem. Lipnowski (2020) derives outcome-equivalence of the two problems under certain conditions
(namely finiteness of the action space and continuity of the sender’s value function), which render the
commitment constraint non-binding.
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information? The answer is yes. Figure 1.1 (b) shows an equilibrium in which the
sender only learns whether the state is in the first or second interval. So incentive
compatibility means that the sender prefers the prescribed equilibrium action of
each interval in expectation.1⁰ This equilibrium dominates the one in Figure 1.1 (a)
because two equally informative messages are more efficient than one rather infor-
mative and one rather uninformative one. Figure 1.1 (c) shows an equilibrium that
is a uniform monotone partition11 with three intervals, which dominates the one in
Figure 1.1 (b) because more messages are more efficient. It turns out that monotone
partitions with four or more intervals are not implementable. Intuitively, incentive
compatibility requires that the equilibrium actions must be sufficiently distant from
one another. The partition in Figure 1.1 (d) is not incentive compatible because a1

and a2 as well as a3 and a4 are too close, respectively. However, incentive compatibil-
ity can be restored by adding a perturbation: By shifting the second interval further
to the center, a2 increases, and a3 decreases. The partition in Figure 1.1 (e) is no
longer monotone, but it is incentive compatible and dominates the best monotone
partition of Figure 1.1 (c).

In general, the optimal experiment is either a uniform monotone partition, a
non-uniform monotone partition with alternatingly sized intervals, or a bi-pooling
policy with exactly two bi-pooling elements. This is an interesting finding because
optimality of monotone partitions is prevalent in the uniform-quadratic case of re-
lated cheap-talk games (see Crawford and Sobel (1982), Pei (2015) and Ivanov
(2010)). Comparative statics show that the outcome of my model is closest to the
Pareto frontier of the set of feasible outcomes as compared to the related cheap-talk
models (i.e., perfect information à la Crawford and Sobel (1982), private learning,
public learning restricted to experiments being monotone partitions, mediation à la
Krishna and Morgan (2004), long cheap talk à la Aumann and Hart (2003), noisy
talk à la Blume, Board, and Kawamura (2007), etc.). This result suggests that pub-
lic and flexible information acquisition is valuable. So the main practical takeaway
is that agents should use these factors if they are available: In terms of the central
banks application, this means, for instance, that it is beneficial for both the central
banks and the population if central banks disclose how they collect their data. More
abstractly speaking, the economic insight is that if two individuals with conflicting
interests communicate, it is beneficial for both if the party that acquires information
discloses how the information is gathered.

The cheap-talk model with public learning can also be interpreted as a persua-
sion model with partial commitment: The sender can commit to the experiment,
but not to the message. So this case is in between full commitment, i.e, Bayesian

10. If the sender is perfectly informed, incentive compatibility requires that the sender prefers
the prescribed equilibrium action at every state.

11. A uniform monotone partition is a monotone partition into equally sized intervals.
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Figure 1.1. The graphs show (probabilistic) mappings from states ω to actions: Area i represents
the mass of states associated with action ai.

persuasion à la Kamenica and Gentzkow (2011), and no commitment (cheap talk
with private learning). Is the outcome of partial commitment closer to no or full
commitment? That is, is commitment to the information choice valuable on its own,
or only in conjunction with commitment to the communication strategy? Compara-
tive statics for the uniform quadratic model suggest that commitment with respect
to the information choice has indeed an intrinsic value.

Notably, there is a structural equivalence between cheap talk with public learn-
ing and the standard cheap-talk setting with a perfectly informed sender. The tools
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provided in the present paper can also be applied to the standard setting. I find that
the distribution over posterior beliefs in a Pareto efficient equilibrium satisfies the
convex independence conditions, and I derive a version of the bi-pooling result for
the setting with posterior-mean preferences. Besides, the number of messages in a
Pareto efficient equilibrium can be bounded by twice the number of states.

Similarly, the results of this paper are also valid for standard persuasion settings
as cheap talk with public learning is Bayesian persuasion with additional incentive
constraints.

Related Literature. First, this paper contributes to the literature on Bayesian per-
suasion as it is a model with partial commitment. Following the pioneering work by
Kamenica and Gentzkow (2011), the main tool of this literature is the concavifica-
tion approach—the characterization of solutions via concave closures of the sender’s
valuation function.12 This approach is also a useful technique to study cheap-talk
games with state-independent sender preferences (see Lipnowski and Ravid (2020))
or settings with a binary state space (see Lyu and Suen (2022)). For general set-
tings, the concavification approach is intractable due to a potentially high number
of sender incentive compatibility constraints. Therefore, I use techniques from the
literature on extreme points and majorization.

Since Kleiner, Moldovanu, and Strack’s (2021) work on extreme points of mono-
tonic functions under majorization constraints, the extreme-point approach—the
characterization of solutions by extreme points—has become increasingly popular
in the persuasion literature.13 Kleiner, Moldovanu, and Strack (2021) and Arieli
et al. (2023) show the optimality of bi-pooling policies in the standard persuasion
problem with a real-valued state space and posterior-mean preferences.1⁴

The present paper shows how the extreme-point technique can be adapted to
cheap-talk settings with incentive compatibility constraints, and how they can be
generalized beyond the case of real-valued state spaces and posterior-mean prefer-
ences.

Dworczak andMartini (2019) analyze optimal persuasion using a price-theoretic
approach that yields sufficient conditions for a solution. My characterization via
extreme points provides complementary necessary conditions for a solution.

Second, the present paper is related to the literature on strategic information
transmission. Since the seminal work by Crawford and Sobel (1982), the embed-
ment of endogenous learning into communication games has been an active subfield
of the literature.

12. See Gentzkow and Kamenica (2014), Gentzkow and Kamenica (2016), and Ely (2017) for
further applications of the concavification approach.

13. See Matysková and Montes (2021) and Candogan and Strack (2022) for further applications
of the extreme-point approach in the persuasion literature.

14. In recent, independent work, Lou (2023) derives a version of the bi-pooling result in the
cheap-talk game with public learning for a certain class of posterior-mean preferences using a convex
programming approach, and also provides an analysis of the uniform-quadratic model.
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Ivanov (2010) examines cheap talk under costless, public learning with one sub-
stantial difference: The receiver selects the experiment instead of the sender. He
derives optimal monotone partitions for the uniform-quadratic case. I find that his
model is equivalent to mine in terms of equilibrium outcomes. So as a byproduct,
the tools in the present paper can also be applied to generalized versions of his
model. In particular, they allow me to solve for the overall optimal partition in the
uniform-quadratic case.

Pei (2015) discusses a cheap-talk game with costly, private learning. For the
uniform-quadratic case, he shows that monotone partitions are chosen in equilib-
rium. The equilibrium outcomes in the limit case when costs converge to zero are
equal to those in the model with a perfectly informed sender. This highlights the dif-
ference between public and private learning: The option for endogenous learning
does not necessarily improve information transmission. It may be crucial that the
sender can commit to the experiment.

Argenziano, Severinov, and Squintani (2016) investigate a communication game
with both public and private costly information acquisition. The sender gathers infor-
mation by repeatedly conducting a binary experiment. Its outcome is either a success
or a failure. The probability for either outcome depends on the actual state realiza-
tion. Each of these experiments can be converted into a Blackwell experiment, but
the converse is not true. Therefore, the model predictions are different. For instance,
the recommendation principle is not applicable.

Deimen and Szalay (2019) analyze public learning in a communication game
with an endogenous bias: The conflict of interest between the two agents evolves
through the learning process. In efficient equilibria, the sender acquires information
that is equally beneficial for both agents. This reduces the endogenous bias, thus
increasing cooperation between both parties. This relates to the intuition behind the
implementability of Pareto efficient feasible outcomes in my model: Communication
is best if the two agents are not biased towards different best feasible outcomes. This
allows them to cooperate.

The present paper adds to this literature by investigating a general setting be-
yond single-peaked and single-crossing preferences or the uniform-quadratic case.

The paper is structured as follows: Section 1.2 introduces the model. Section 1.3
studies the implementable payoffs. Section 1.4 provides the geometric characteriza-
tion of the optimal experiments. Section 1.5 deals with the application to bi-pooling
policies. Section 1.6 discusses the relation to the standard cheap talk game. Sec-
tion 1.7 contains the analysis of the uniform-quadratic case and comparative statics.
Finally, Section 1.8 deals with the model variants, and Section 1.9 concludes.
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1.2 Model

1.2.1 Setting

There is a sender S, a receiver R, and a state of the world ω following a distribution
µ0 ∈4Ω,1⁵, which is common knowledge. The state space Ω is convex.

The game proceeds as follows: First, the state realizes but remains unknown
to both players. Second, the sender publicly chooses an experiment π, i.e., a dis-
tribution over posterior beliefs of the state µ ∈4Ω, at cost c(π) and privately ob-
serves its outcome µ. The set of available experiments Π is a compact subset of
4
�

4Ω
�

. Third, the sender transmits a message m ∈4Ω to the receiver. Fourth, the
receiver takes an action a from a compact, convex action space A. Payoffs are deter-
mined by the agents’ von Neumann-Morgenstern utility functions uS : A×Ω→ R
and uR : A×Ω→ R, which are continuous on A×Ω.

Two assumptions on the learning cost and the set of experiments are imposed:1⁶
Assumption 1.2.

• (Monotonicity): The cost function c :4
�

4Ω
�

→ R is continuous and monotone,
i.e., if π0 is a Blackwell garbling of π, then c (π)≥ c

�

π0

�

.
• (Richness): If π ∈Π and π0 is a Blackwell garbling of π, then π0 ∈Π.

Monotonicity captures the idea that Blackwell more precise information is
costlier because information provided by a Blackwell garbling π0 can also be gen-
erated by the original experiment π through appropriate mixing over its outcomes.
Richness means that for any available experiment, the sender could also choose an
arbitrary Blackwell garbling of it. Intuitively, the sender has enough flexibility in
acquiring information about the state by having the option to choose any desired
experiment—up to a certain level of precision.

1.2.2 Equilibrium Characterization

A sender strategy
�

σI ,σM
�

is an information rule σI ∈4Π and a commu-
nication rule σM :Π ×4Ω→4(4Ω). A receiver strategy is an action rule
σA :Π ×4Ω→4A. The sender’s belief after choosing the experiment π and ob-
serving its outcome µ is µ. The receiver has a belief function µR :Π ×4Ω→4Ω
with µR (·|π, m) indicating the receiver’s belief after observing the sender’s choice of
the experiment π and receiving message m.

As is standard in the cheap-talk literature, I study perfect Bayesian equilibria.1⁷

15. For a compact metrizable space X, let 4X denote the set of distributions over X, endowed
with the topology of weak convergence. For each χ ∈4X, let supp(χ) denote the support of χ.

16. These are generalizations of the assumptions by Pei (2015).
17. Restricting attention to PBE is for tractability: For any PBE, there exists an outcome-equivalent

Bayesian equilibrium. Hence, all results in this paper also apply to the latter equilibrium concept.
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Definition 1.3. A perfect Bayesian equilibrium (PBE) E =
���

σI ,σM
�

,σA
�

,µR)
	

consists of a strategy profile
��

σI ,σM
�

,σA
�

with beliefs µR such that

(i) the information rule σI is optimal given
�

σM ,σA
�

, that is,

supp(σI ) ⊆ arg max
π∈Π

∫∫∫∫

uS (a,ω) dσA (a|π, m) dµ (ω) dσM
�

m|π,µ
�

dπ
�

µ
�

− c (π)

(ii) the communication rule σM is optimal given σA , i.e., for all (π,µ) ∈Π ×4Ω,

supp
�

σM
�

π,µ
��

⊆ arg max
m∈4Ω

∫∫

uS (a,ω) dσA (a|π, m) dµ (ω)

(iii) the action rule σA is optimal given µR, that is, for all (π, m) ∈Π ×4Ω,

supp
�

σA (π, m)
�

⊆ arg max
a∈A

∫

uR (a,ω) dµR (ω|π, m)

(iv) the receiver’s beliefs are derived from Bayes’ rule, whenever possible.

The agents’ ex-ante expected payoffs of an equilibrium E areUS (E) andUR (E).

1.3 Implementable Payo�s

Which payoffs can be attained in equilibrium? To evaluate this, let’s first consider
the best and worst possible outcomes:

Definition 1.4. A payoff profile
�

UR,US

�

is implementable if there exists a PBE E
such that Ui =Ui(E) for all i ∈ {S, R}. It is best (worst) implementable if there is no
other implementable payoff profile

�

U 0

R,U 0

S

�

with Ui <U 0

i (Ui >U 0

i ) for all i.

The following lemma underpins the idea that for the sake of studying the set
of implementable payoffs, it is sufficient to characterize the set of best and worst
implementable payoffs: any implementable payoff profile can be represented as a
convex combination of best and worst implementable payoff profiles.

Lemma 1.5. Any implementable payoff profile lies in the convex hull of the set of the
best and worst implementable payoff profiles.

Figure 1.2 illustrates this argument: Any payoff profile outside area A is not im-
plementable: For those in area B, at least one agent’s payoff is smaller than their
payoff in the worst implementable outcome X. If a payoff profile in area C, for in-
stance Y, was implementable, it would be best implementable or there would exist
another best implementable payoff profile Y 0 Pareto dominating Y. Payoffs in area
D are not implementable as they Pareto dominate the best implementable payoffs.
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UR

US

X

Y Y ′

A

B

C

C D

Figure 1.2. The solid line on the bottom left shows the worst implementable payo�s, and all
other solid dots and lines show the best implementable payo�s. Area A is their convex hull.

1.3.1 Worst Implementable Payo�s

Worst implementable payoffs are attained in babbling equilibria, that is, PBE in
which no information is transmitted to the receiver.1⁸

Lemma 1.6. Any worst implementable payoff profile can be generated in a babbling
PBE. The set of worst implementable payoff profiles is non-empty, compact and convex.

The existence result trivially follows from the existence of babbling equilibria. As
illustrated in Figure 1.2, the receiver’s payoff is constant across all babbling equilib-
ria: The receiver achieves this payoff by choosing an optimal action given the prior
distribution µ0. Moreover, the receiver can secure this payoff by choosing that action
in any PBE. Hence, it is the receiver’s minimal payoff across all PBE. On the contrary,
the sender’s payoff is not necessarily the same across all babbling equilibria if the
receiver’s best response to the prior µ0 is not unique. There is a sender-optimal and
a sender-worst best response, and a range of payoffs for the sender can be gener-
ated through appropriate mixing over those two actions (see Figure 1.2). Given the
receiver’s strategy, the sender can secure any such payoff by choosing the uninfor-
mative experiment whose sole outcome is µ0.

18. Formally, I define a babbling equilibrium as a PBE with µR (·|π, m)= µ0 for all π, m ∈4Ω.
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1.3.2 Pareto E�cient Implementable Payo�s

Pareto efficient implementable payoff profiles are a subset of the set best imple-
mentable payoff profiles. It is without loss of generality to focus on Pareto efficient
implementable payoffs because the convex hull of the implementable payoffs in
Lemma 1.5 can be derived from the set of Pareto efficient implementable payoffs. 1⁹

1.3.2.1 Recommendation Principle

This section provides a useful tool towards determining the set of Pareto efficient
implementable payoff profiles: It is without loss of generality to focus on PBE where
the sender (i) does not mix at the learning stage, and (ii) fully reveals the acquired
information to the receiver.

Definition 1.7. An information rule σI is called pure-strategy if | supp
�

σI
�

|= 1.
A PBE is fully revealing if µR (·|π, m)= µ for every m ∈ supp

�

σM
�

π,µ
��

, all
µ ∈ supp(π) and all π ∈ supp

�

σI
�

. The communication rule in a fully revealing
PBE is denoted by σFR

M .

The following lemma states the recommendation principle:

Lemma 1.8. Any Pareto efficient implementable payoff profile can be generated by a
fully revealing PBE with a pure-strategy information rule. If c is strictly monotone2⁰,
any PBE generating a Pareto efficient implementable payoff profile is fully revealing.

The argument involves two steps. First, for any PBE with a mixed-strategy infor-
mation rule, there exists a weakly Pareto dominant PBE with a pure-strategy infor-
mation rule: The sender is indifferent between all experiments in the mixture, so
one can choose the one that is best for the receiver to construct a PBE with a pure-
strategy information rule. Second, for any PBE with a pure-strategy information
rule, there exists a weakly Pareto dominant fully revealing PBE with a pure-strategy
information rule: Consider a non-fully revealing PBE in which the sender chooses
experiment π. Construct a new experiment π∗ replicating the information that is
transmitted in that PBE. Note that π∗ is a Blackwell garbling of π, hence less costly.
One can design a fully revealing PBE in which the sender chooses π∗ all else equal.
The receiver’s payoff is the same and the sender’s payoff is weakly higher.

The recommendation principle is interesting because (i) it is a preliminary re-
sult facilitating the characterization of Pareto efficient experiments, but more impor-
tantly (ii) it provides an insightful interpretation: Since information is costly, it is

19. To be precise, the convex hull of the implementable payoffs is equal to the convex hull of
the worst implementable payoffs, the Pareto efficient implementable payoffs, and all implementable
payoff profiles for which the sender’s (receiver’s) payoffs is the same as in the sender-optimal (receiver-
optimal) equilibrium.

20. A cost function c is strictly monotone if c (π)> c
�

π0

�

wheneverπ0 is a strict Blackwell garbling
of π.
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inefficient if the sender acquires information that is not transmitted to the receiver.
Any additional private information is of no use to the sender. The receiver’s decision
can only be influenced via the revealed amount of information. Therefore, it is opti-
mal if the sender only acquires information which both agents agree on what is the
best decision, and which the sender can therefore truthfully share with the receiver.

Next, I prove the existence of Pareto efficient implementable payoff profiles.

Theorem 1.9. The set of Pareto efficient implementable payoffs is
non-empty and compact.

Existence follows from an application of Berge’s maximum theorem.21 Assump-
tion 1.2 and compactness of Π ensure that the corresponding optimization problem
has a continuous objective function over a compact set. Let

ŨS

�

π, σ̃A
�

≡
∫

4Ω

∫

Ω

∫

A

uS (a,ω) dσ̃A
�

a|µ
�

dµ (ω) dπ
�

µ
�

− c (π)

ŨR

�

π, σ̃A
�

≡
∫

4Ω

∫

Ω

∫

A

uR (a,ω) dσ̃A
�

a|µ
�

dµ (ω) dπ
�

µ
�

be the agents’ ex-ante expected payoffs if the sender chooses experiment π, com-
municates truthfully, and the receiver chooses an action according to the strategy
σ̃A :4Ω→4A. A payoff profile

�

U ∗S ,U ∗R
�

is a Pareto efficient implementable out-
come if and only if there exists some π∗ and some σ̃∗A with U ∗i = Ũi

�

π∗, σ̃∗A
�

for
each i ∈ {S, R} solving

max
(π,σ̃A )

ŨS

�

π, σ̃A
�

s.t.
supp

�

σ̃A
�

µ
��

⊆ arg max
a∈A

∫

uR (a,ω) dµ (ω) for all µ ∈ 4Ω (1.1)
∫∫

uS(a,ω) dσ̃A
�

a|µ
�

dµ(ω)
≥
∫∫

uS(a,ω) dσ̃A
�

a|µ0

�

dµ(ω)
for all µ,µ0 ∈ supp (π) (1.2)

ŨS

�

π, σ̃A
�

≥ U 0
S (1.3)

ŨR

�

π, σ̃A
�

≥ UR (1.4)

for someUR ≥U 0
R , whereU 0

i denotes agent i’s minimal ex-ante expected payoff in
a PBE. This maximization problem determines the highest possible ex-ante expected
payoff the sender can obtain in a fully revealing PBE with a pure-strategy informa-
tion rule provided that the receiver’s ex-ante expected payoff does not fall below a
threshold valueUR: The constraints (1.1) guarantee the optimality of the receiver’s

21. See Aliprantis and Border (2006, p.570).
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action rule. The inequality constraints (1.2) ensure that the sender has an incentive
to report the experiment’s observed outcome always truthfully. The participation
constraint (1.3) makes sure that the sender is willing to acquire costly information,
that is, the ex-ante expected payoff must not be lower than the minimal ex-ante ex-
pected payoff obtainable by acquiring no information. Condition (1.4) makes sure
that the receiver’s ex-ante expected payoff is at least UR.

The equilibrium implementing the best implementable payoffs
�

U ∗S ,U ∗R
�

is as
follows: It is a fully revealing PBE with a pure-strategy information rule in which
the sender chooses the experiment π∗. For any other experiment off the equilibrium
path, the agents agree on a babbling outcome which yields the minimal ex-ante
expected payoff U 0

S to the sender.

1.3.2.2 O�-Path Coordination

The literature on communication games focuses on sender- or receiver-optimal equi-
libria (cf. Kamenica and Gentzkow (2011), Gentzkow and Kamenica (2014), and
Ambrus, Azevedo, and Kamada (2013)). So why study all Pareto efficient imple-
mentable payoff profiles beyond the reasons surrounding Lemma 1.5? A natural
selection criterion is off-path coordination: The two players coordinate on Pareto ef-
ficient outcomes off the equilibrium path (when the sender chooses an experiment
not prescribed by the information rule).
Definition 1.10. Let P (P I) be the set of Pareto efficient implementable (imple-
mentable) payoffs, and let Pi be the set of payoffs that agent i can attain in a Pareto
efficient PBE. For V ∈ PS, letUmin

S (V) be the minimal payoff the sender can attain in
a fully revealing PBE by choosing the same experiment as in a fully revealing Pareto
efficient PBE generating sender payoff V. A payoff profile

�

US,UR

�

∈ P I satisfies
off-path coordination if

US = sup
�

V ∈ PS : Umin
S (V) ≥ V0 for all V0 ∈ PS : V0 ≤ V

	

,

UR = sup
�

V :
�

US, V
�

∈ P I
	

. (1.5)

Off-path coordination yields a unique outcome, which is Pareto efficient:
Lemma 1.11. There exists a unique payoff profile

�

U ∗S ,U ∗R
�

∈ P I satisfying off-path
coordination. Moreover,

�

U ∗S ,U ∗R
�

∈ P .

If the receiver’s best response in the action stage is always unique (which is the
case under quadratic preferences, for instance), the model prediction under off-path
coordination is the sender-optimal PBE. This is no longer true if the receiver is in-
different between several actions: The receiver could announce choosing an action
from the indifference set being least favorable to the sender in case the sender devi-
ates to an experiment off path. This is a credible threat. Therefore, off-path coordina-
tion typically yields an outcome in between the sender- and the receiver-optimum.
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Analyzing all best implementable outcomes thus ensures to find the characteristics
of the optimal experiment under this selection criterion.

Off-path coordination can be interpreted as a one-sided version of Antić and Per-
sico’s (2023) forward induction argument where the sender chooses an experiment
at a cost instead of both agents choosing their preferences at a cost.

1.3.3 Feasible Payo�s

The set of Pareto efficient implementable payoffs depends on both the model’s
parameters (utility functions, set of available actions/experiments, etc.) and the
game’s structure (information acquisition and transmission by the sender, decision
authority of the receiver): To better understand the interplay of these two forces, I
compare the best possible outcomes that do not depend on the game’s structure to
the Pareto efficient implementable payoffs.

Suppose there is a social planner, i.e., a third neutral party, who chooses an
experiment in lieu of the sender according to a mixed strategy σ̄I ∈4Π and, based
on the experiment’s outcome, an action in place of the receiver according to the
strategy σ̄A :Π ×4Ω→4A. Payoffs that can be generated via such an intervention
by a social planner are of the form

ŪS

�

σ̄I , σ̄A
�

≡
∫∫∫∫

uS(a,ω) dσ̄A (a|π,µ) dµ(ω) dπ
�

µ
�

− c (π) dσ̄I (π)

ŪR

�

σ̄I , σ̄A
�

≡
∫∫∫∫

uR(a,ω) dσ̄A (a|π,µ) dµ(ω) dπ
�

µ
�

dσ̄I (π).

Definition 1.12. A payoff profile
�

US,UR

�

is feasible if there exist some σ̄I and
some σ̄A such that Ui = Ūi

�

σ̄I , σ̄A
�

for all i.

The existence of Pareto efficient feasible payoff profiles is guaranteed:

Theorem 1.13. The set of Pareto efficient feasible payoffs is non-empty and compact.

The proof is analogous to Theorem 1.9. Payoffs
�

U ∗S ,U ∗R
�

are a Pareto efficient
feasible outcome if and only if there is some

�

σ̄∗I , σ̄∗A
�

with U ∗i = Ūi

�

σ̄∗I , σ̄∗A
�

for
all i solving

max
(σ̄I ,σ̄A )

ŪS

�

σ̄I , σ̄A
�

s.t. ŪR

�

σ̄I , σ̄A
�

≥ UR. (1.6)

for someUR ∈ R. While every implementable payoff profile is feasible, the converse
is not true. So Pareto efficient implementable payoffs can, but need not be Pareto effi-
cient feasible outcomes. The next theorem states a sufficient condition for the equiv-
alence of Pareto efficient implementable and Pareto efficient feasible outcomes:
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Theorem 1.14. Suppose there exists a unique Pareto efficient feasible payoff profile.
Then, it is the unique Pareto efficient implementable one.

Uniqueness of the Pareto efficient feasible payoff profile implies that the sender-
and receiver-optimal feasible payoff profile coincide. So both players agree on what
is the best attainable outcome. This closes the gap between Pareto efficient fea-
sible and Pareto efficient implementable payoffs because the two players have an
incentive to coordinate in equilibrium to achieve the unique Pareto efficient feasible
outcome.

Allowing for multiplicity annihilates the equivalence result:

Theorem 1.15. Suppose there exist at least two Pareto efficient feasible outcomes.
Then, the Pareto efficient feasible payoffs

�

US,UR

�

are not implementable if
supp(σI )= {πfull} for any

�

σ̄I , σ̄A
�

with Ui = Ūi

�

σ̄I , σ̄A
�

for each i.

Consider first the receiver-optimal feasible payoff profile. Since it is feasible only
with the fully informative experiment πfull, the sender would have an incentive to
misreport in the communication stage to achieve the receiver-optimal feasible payoff
profile, which is distinct by multiplicity. For all other Pareto efficient feasible payoffs,
the receiver would have an incentive to choose another action rule after the sender
fully revealed the outcome of πfull in order to generate the receiver-optimal feasible
payoff profile instead.

To conclude, the frictions caused by information transmission from the acquirer
to the decision-maker affect the Pareto efficient implementable outcomes beyond
the model parameters whenever the sender and the receiver do not concur about
the best achievable outcome, that is, whenever there are multiple Pareto efficient
feasible payoffs.

The subsequent finding reinforces the idea that disagreement over optimal
feasible outcomes leads to inefficiencies: It provides conditions under which
uniqueness of Pareto efficient feasible payoffs is a necessary and sufficient con-
dition for the equivalence of Pareto efficient implementability and feasibility. Let
A∗(ω, u)= argmaxa∈A u (a,ω) be the set of optimal actions if the state is ω given
the utility function is u.

Corollary 1.16. If A∗(ω,αuS + (1−α)uR)∩ A∗(ω0,αuS + (1−α)uR)= ; for all
α ∈ [0,1] and all ω 6=ω0, and c= 0, then a Pareto efficient feasible payoff profile is
implementable if and only if it is unique.

The set of Pareto efficient feasible and implementable payoffs either coincide
or are disjoint—depending on whether the former one is a singleton or not. In
that sense, the potential frictions introduced by the cheap-talk game influence all
Pareto efficient implementable payoff profiles equally. The section concludes with
an illustrating example:
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Example 1.17. Consider the uniform-quadratic model à la Crawford and
Sobel (1982) with an additive bias b ∈

�

0, 1
4

�

and zero cost. Notice that
A∗(ω,αuS + (1−α)uR)=ω+ (1−α)b for all α,ω ∈ [0,1]. As illustrated in Fig-
ure 1.3, there is a continuum of Pareto efficient feasible payoff profiles none of
which is implementable: The unique Pareto efficient implementable payoff profile
�

U ∗R ,U ∗S
�

is below the Pareto frontier of feasible payoffs.

UR0−b2− 1
12

U∗
R

US

0

−b2

− 1
12
− b2

U∗
S

Figure 1.3. The shaded area represents the feasible payo�s, and the curve on the upper right is
their Pareto frontier. The straight line shows the implementable payo�s.

1.4 Optimal Experiments

This section analyses optimal experiments, i.e., experiments that the sender chooses
in a Pareto efficient PBE.

1.4.1 Costless Case

In the zero-cost case, optimal experiments have the following property:

Definition 1.18. An experiment π satisfies probabilistic independence22 if

22. This follows the definition introduced by Lopomo, Rigotti, and Shannon (2022).
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for almost all µ ∈ supp(π) : µ =

∫

supp(π)

ν dλ (ν) ⇒ λ = δµ a.e.,

where δµ is the Dirac measure at µ.
For experiments with a finite support, probabilistic independence means that no

posterior belief in the support can be represented as a convex combination of other
posterior beliefs in the support. The following theorem formalizes the optimality
result:
Theorem 1.19. If c= 0, any Pareto efficient implementable payoff profile can be gen-
erated23 by an experiment satisfying probabilistic independence.

The proof is based on an extreme-point argument. Here is a sketch for the finite-
support case: Consider an experiment π not satisfying probabilistic independence.
There exists a posterior belief µ that can be represented as a convex combination
of other posterior beliefs. Construct a new experiment π∗ by replacing µ by the
respective convex combination. Note that the π is a Blackwell garbling of π∗. Hence,
the receiver’s payoff is weakly higher in a fully revealing PBE in which the sender
chooses π∗ instead of π. Moreover, note that supp (π∗) ⊆ supp (π). Therefore, if π
is incentive compatible, so is π∗. Furthermore, the sender’s payoff is weakly higher
in a fully revealing PBE in which the sender chooses π∗ instead of π by revealed
preferences: If not, there must be a belief in the convex combination µ0 so that the
sender has an incentive to misreport µ when the true belief is µ0.

For binary state spaces, optimality of probabilistic independence implies that
optimal experiments have at most two outcomes:
Corollary 1.20. If | supp

�

µ0

�

|= 2, any Pareto efficient implementable payoff profile
can be generated by an experiment π with | supp (π) | ≤ 2.

1.4.2 Costly Case

This section analyzes optimal experiments under the following additional assump-
tion:
Assumption 1.21. The cost function c is concave.

Concave cost functions include affine functions, so in particular posterior sepa-
rable cost functions2⁴—the standard assumption on the cost structure in the litera-
ture on rational inattention (cf. Caplin and Dean (2013) or Caplin, Dean, and Leahy
(2019)).

23. "Payoff profile X can be generated by experiment Y" is shortcut for "There exists a fully re-
vealing PBE with a pure-strategy information rule in which the sender chooses experiment Y yielding
ex-ante expected payoffs X."

24. A cost function c posterior separable if c (π)= −k
�

µ0

�

+
∫

4Ω k
�

µ
�

dπ
�

µ
�

for all π for some
convex function k :4Ω→ R. Notice that any posterior separable cost function satisfies Assump-
tion 1.2.



1.4 Optimal Experiments | 21

(a) (b)

(c) (d)

Figure 1.4. The 2-simplices show the convex hull of 4Ω for a ternary state space. The dots and
lines in the simplices show the support of four di�erent experiments.

To characterize optimal experiments in the costly case, I introduce a stronger
notion than probabilistic independence:
Definition 1.22. An experiment π satisfies strong probabilistic independence if

∫

supp(π)

ν dλ1 (ν) =

∫

supp(π)

ν dλ2 (ν) ⇒ λ1 = λ2 a.e..

for all λ1,λ2 ∈4
�

4Ω
�

with pλi + (1− p)λ0

i = π for some p ∈ (0, 1) and
λ0

i ∈4
�

4Ω
�

for i ∈ {1,2}.
For experiments with a finite support, strong probabilistic independence means

that no convex combination of posterior beliefs in the experiment’s support can be
represented by another convex combination of beliefs. Strong probabilistic indepen-
dence implies probabilistic independence, but not vice versa. In fact, they are not
equivalent. The following example illustrates the differences of the two concepts for
a ternary state space:
Example 1.23. Figure 1.4 (a) shows an experiment with three different outcomes
forming the edges of a triangle within the simplex—a subsimplex. Note that any
belief in the subsimplex can be uniquely determined by a convex combination of
the three edges. Hence, the experiment satisfies strong probabilistic independence.
Figure 1.4 (b) shows an experiment with two outcomes forming the edges of a line—
another subsimplex. Again, any belief on the line can be uniquely determined by a
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convex combination of the two edges. So the experiment satisfies strong probabilis-
tic independence. Figure 1.4 (c) shows an experiment with four outcomes forming
the edges of a rectangle. Note that no outcome can be represented as a convex
combination of the other three outcomes, so the experiment satisfies probabilis-
tic independence. However, it does not satisfy strong independence: The belief at
the intersection of the two dotted lines can be represented by two different convex
combinations of the experiment’s outcomes. Indeed, this is a general pattern: No
experiment with more than three outcomes satisfies strong probabilistic indepen-
dence (cf. Corollary 1.26). On the contrary, this is not true for experiments satisfy-
ing probabilistic independence: They may have infinitely many different outcomes.
Figure 1.4 (d) shows an experiment with a continuum of outcomes forming a circle.
Obviously, this experiment does not satisfy strong probabilistic independence, but it
does satisfy probabilistic independence: No outcome can be represented as a convex
combination of other outcomes in the circle.

The geometric characterization of the example extends beyond the ternary-state
case: Strong probabilistic independence means that the set of beliefs in the experi-
ment’s support represents the edges of a subsimplex within the simplex of all poste-
rior beliefs 4Ω.

Lemma 1.24. An experiment is an extreme point of Π if and only if it satisfies strong
probabilistic independence.

Equipped with the notion of strong probabilistic independence, I can now state
the optimality result for the costly case2⁵: Optimal experiments are convex combina-
tions of two experiments each of whom satisfies strong probabilistic independence.

Theorem 1.25. Any Pareto efficient implementable payoff profile can be generated by
an experiment of the form απ1 + (1−α)π2, where α ∈ [0,1], and π1 and π2 satisfy
strong probabilistic independence. For sender- and receiver-optimal payoffs, it holds
that α= 1.

The proof idea builds on another extreme-point argument as illustrated in Fig-
ure 1.5: Take an experiment π not satisfying the condition stated in Theorem 1.25.
So in particular, π does not satisfy strong probabilistic independence. Hence, there
exist two experiments π1 and π2 so that π corresponds to a convex combination
of those two experiments, that is, π lies on the dotted line between π1 and π2. If
either one, say π2, does not satisfy strong probabilistic independence, it can be rep-
resented as a convex combination of two other experiments π3 and π4, so π2 lies on
the line between π3 and π4. But then, there is some convex combination of either

25. Concave cost include zero cost, so all results derived in this section also apply to the costless
case, and indeed they are complementary: No result implies or is implied by another one.
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π1 π4

π3

π2

π

UR

π′

π′′

Figure 1.5. The 2-simplex shows the convex hull of the experiments π1, π3 and π4. The dashed
line between π0 and π00 represents all experiments yielding payo�UR to the receiver.

π1 and π3, π1 and π4, or π3 and π4 that is incentive compatible and Pareto dom-
inates π: Incentive compatibility follows from the fact that the support of all three
convex combinations is a subset of the support of π. Pareto dominance follows from
the linearity of payoffs: By linearity of the receiver’s payoff, the set of experiments
that yield the same ex-ante expected payoffUR to the receiver as the original experi-
ment π form a straight line. By linearity of the sender’s payoff, the sender’s payoff is
monotone along this line so that the optimum is attained at one of its intersections
with the edges of the simplex, say π0. If π1 and π4 satisfy strong probabilistic inde-
pendence, π0 is a candidate solution. If not, one can repeat the process starting with
π0, forming a new simplex, etc. By compactness of Π, this algorithm either ends
after finitely many steps, or it converges.

For finite state spaces, optimality of strong probabilistic independence implies
that the size of an optimal experiment’s support is bounded by twice the number of
states.

Corollary 1.26. If | supp
�

µ0

�

|<∞, any Pareto efficient implementable payoff profile
can be generated by an experiment π with supp (π) | ≤ 2| supp

�

µ0

�

|.

The proof idea is that any set of |Ω|+ 1 outcomes is linearly dependent, hence
contradicts strong probabilistic independence. The number of outcomes is thus
bounded by twice the number of states because the optimal experiment can be a
convex combination of two experiments according to Theorem 1.25. Especially for
environments with a small state space, Corollary 1.26 can be a helpful step towards
finding an optimal experiment as it rules out a huge number of potential candidates
for such an experiment. The section concludes with an application of the previous
results.

Example 1.27. Let Ω = {ω1,ω2,ω3}, A= {a1, a2, a3}, and c= 0. The agent’s ordi-
nal preferences are summarized in Table 1.1. If the sender is perfectly informed, it
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Table 1.1. The entries in column 2 (3) show the receiver’s (sender’s) preferences given the state
specified in column 1.

States R S
ω1 a1 � a2 � a3 a1 � a2 � a3
ω2 a2 � a1 � a3 a3 � a2 � a1
ω3 a3 � a1 � a2 a2 � a3 � a1

is possible2⁶ that only babbling PBE exist: Too see this, note first that there is no
PBE in which the receiver chooses all three actions with positive probability. If so,
the sender would choose a message inducing action a3 (a2) if and only if the state is
ω2 (ω3). Hence, both states would be fully revealed to the receiver who would then
choose a2 (a3) if and only if the state is ω2 (ω3)—a contradiction. Second, there is
no PBE in which the receiver chooses two actions with positive probability. Suppose
there was one with a1 and a2.2⁷ The sender would induce action a1 (a2) if the state
isω1 (ω2 orω3). But if uR(a2,ω3) is sufficiently small, the receiver prefers a1 if the
state is ω2 or ω3—a contradiction.

With public, flexible information acquisition, non-babbling PBE may exist as il-
lustrated in Figure 1.6. First, there does not exist a PBE in which the receiver chooses
all three actions: The sender would never truthfully report a belief for which the re-
ceiver chooses action a3 as the sender prefers a2 for any such belief (see Figure 1.6
(a) and (b)). But there exists an equilibrium in which the receiver chooses a1 and
a2: There exist beliefs for which both agent’s preferences over a1 and a2 coincide
(the shaded areas in Figure 1.6 (d)) and whose convex hull includes µ0. A candidate
equilibrium is one generating beliefs µ1 and µ2.

The example provides an interesting insight on the value of endogenous learn-
ing: There are cases where no information can be transmitted if the sender is ex-
ogenously perfectly informed. Meaningful communication is only possible under en-
dogenous learning.

1.5 Optimality of Bi-Pooling Policies

This section studies optimal experiments for posterior-mean preferences.

Definition 1.28. A von Neumann-Morgenstern utility function u is partially sepa-
rable if there are continuous functions u1 : A→ R, u2 : A→ R and u3 : Ω→ R such
that

u(a,ω) = u1(a) + u2(a) ·ω + u3(ω).

26. "Possible" means "There are cardinal preferences consistent with Table 1.1 for which only
babbling PBE exist."

27. The argument for the other two action-combinations works analogously.
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(a) Area i ∈ {1, 2, 3} shows the posterior beliefs for
which the receiver’s preferred action in A is ai.
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(b) Area i ∈ {1, 2, 3} shows the posterior beliefs for
which the sender’s preferred action in A is ai.
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(c) Area i ∈ {1, 2} shows the posterior beliefs for
which the sender’s preferred action in {a1, a2} is ai.
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1
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µ0

µ1

µ2

(d) The shaded area i ∈ {1, 2} shows the posterior
beliefs for which the both agents’ preferred action
in {a1, a2} is ai. µ1 and µ2 represent the beliefs gen-
erated in an equilibrium.

Figure 1.6

Partially separable utility functions are additively separable in a and ω, except
for one component that is linear in ω. This class of preferences contains commonly
studied preferences such as quadratic utility2⁸ and quasi-linear utility2⁹.

The following results are derived under the assumption of a real-valued state
and posterior-mean preferences and costs:
Assumption 1.29. Suppose that
• Ω ⊂ R,
• uR and uS are partially separable, and
• the cost function c satisfies

ρπ = ρπ0 ⇒ c (π) = c
�

π0
�

28. See Crawford and Sobel (1982), Krishna and Morgan (2004), Ivanov (2010), Pei (2015), etc.
29. See Gentzkow and Kamenica (2016), Kolotilin et al. (2017), Candogan and Strack (2022),

etc.
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for all π,π0 ∈Π, where ρπ denotes the distribution over posterior means of the
state induced by the experiment π.

Posterior-mean costs include the class of Fréchet differentiable cost functions
as introduced by Ravid, Roesler, and Szentes (2022), and in particular posterior
separable cost functions that depend on the distribution of the posterior mean only:

Definition 1.30. A cost function c is posterior-mean separable if

c(π) = −k

�∫

Ω

ω dµ0(ω)

�

+

∫

4Ω
k

�∫

Ω

ω dµ(ω)

�

dπ(µ).

for all π for some convex function k : R→ R.

Notice that any posterior-mean separable cost function satisfies Assumptions 1.2
and 1.21. Under these assumptions, both player’s decisions at any stage of the game
depend on the distribution of the posterior mean only. Moreover, both agents’ pay-
offs are additively separable with respect to the prior µ0 and the distribution over
posteriors π.

Lemma 1.31. Take any µ,µ0 ∈4Ω with
∫

Ω
ω dµ(ω)=

∫

Ω
ω dµ0(ω). Then, it holds

that

argmax
a∈A

∫

uR(a,ω) dµ(ω) = argmax
a∈A

∫

uR(a,ω) dµ0(ω),

and for any a, a0 ∈ A,
∫

uS(a,ω) dµ(ω) ≥
∫

uS(a,ω) dµ(ω)

⇔
∫

uS(a,ω) dµ0(ω) ≥
∫

uS(a,ω) dµ0(ω).

For any σA :4
�

4Ω
�

×4Ω→4A and π ∈4
�

4Ω
�

, there exist functions vi,1 :
4Ω→ R and vi,2 : Ω→ R such that

∫∫∫

ui(a,ω) dσA (a|π,µ) dµ(ω) dπ
�

µ
�

=

∫

vi,1

�

µ
�

dπ
�

µ
�

+

∫

vi,2 (ω) dµ0 (ω) .

(1.7)

Next, I introduce the notion of a bi-pooling policy3⁰, which is a generalization of
a monotone partition: A monotone partition divides the state space into subintervals

30. The term "bi-pooling policy" is borrowed from Arieli et al. (2023). I extend their definition to
distributions of the state with atoms.
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assigning exactly one outcome of the experiment to each subinterval. A bi-pooling
policy is a division of the state space into subintervals assigning up to two outcomes
to each subinterval.

Definition 1.32. A partitioning of an experiment π ∈Π is a collection of closed in-
tervals inΩ, denoted by {[ωj, ω̄j]|j ∈ J}, endowed with the corresponding collection
of open intervals {(ωj, ω̄j)|j ∈ J} such that

(1)
⋃

j∈J[ωj, ω̄j]= Ω,
(2) (ωj, ω̄j)∩ (ωj0 , ω̄j0)= ; for all j, j0 ∈ J : j 6= j0, and
(3) for all µ ∈ supp(π), there is exactly one j ∈ J so that Pr

�

ω̃ ∈ [ωj, ω̄j]|µ,π
�

= 1.

A partitioning {[ωj, ω̄j]|j ∈ J} of I is called finest if there is no j∗ ∈ J and
ω∗ ∈ [ωj∗ , ω̄j∗] so that the collection {[ωj, ω̄j]|j ∈ J\{j∗}}∪ {[ωj,ω

∗], [ω∗, ω̄j]} is a
partitioning of π.

A partitioning is a collection of closed and open intervals so that the union of
closed intervals covers the state space, the open intervals are pairwise disjoint, and
each outcome µ is associated with one closed interval of the collection.31 Endowed
with the definition of a partitioning, bi-pooling policies can be specified:

Definition 1.33. Take an experiment π ∈Π with finest partitioning {[ωj, ω̄j]|j ∈ J}.
Then, π is a bi-pooling policy if for any j ∈ J with (ωj, ω̄j)∩ supp(µ0) 6= ;, there are
at most two outcomes µ,µ0 ∈ supp(π) that realize if ω ∈

�

ωj, ω̄j

�

. Two outcomes
form a 2-partition if they realize with positive probability on the same open interval
(ωj, ω̄j). All other outcomes form a 1-partition.

The following corollary formalizes the optimality of bi-pooling policies:

Corollary 1.34. Any Pareto efficient payoff profile can be generated by an experiment
that is a convex combination of two bi-pooling policies. If c= 0, it can be generated by
a bi-pooling policy.

Bi-pooling policies satisfy strong probabilistic independence, but not every such
experiment is a bi-pooling policy. However, the distributions over posterior means
implied by bi-pooling policies form the extreme points of this space.32 Intuitively,
bi-pooling policies are optimal because they are the most informative experiments
(they cannot be replicated by amixture of other experiments) among all experiments
for which both agents have a common interest in the revelation of their information
content, that is, among all experiments the sender is willing to choose in a fully
revealing PBE.

31. Each experiment has a partitioning: the singleton collection {Ω}. Furthermore, the finest
partitioning always exists and is unique.

32. More precisely, an experiment π is a bi-pooling policy if every experiment inducing the same
distribution over posterior means as π satisfies probabilistic independence.
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Remark 1. As shown by Kleiner, Moldovanu, and Strack (2021) and Arieli
et al. (2023), bi-pooling policies are the optimal experiments in Bayesian-persuasion
settings. Corollary 1.34 reveals a structural equivalence of cheap-talk and Bayesian
persuasion: While the solution of the cheap-talk game is generally different from
the solution under Bayesian persuasion, it belongs to the same class of experiments.

1.6 Cheap-Talk With a Perfectly Informed Sender

While the cheap-talk setting with public learning is conceptually different from the
standard cheap-talk setting with a perfectly informed sender, there are two rela-
tions:

First, any equilibrium in the standard model is also an equilibrium under public
learning (if the set of available experiments includes the fully informative one πfull):
They can be constructed by letting the sender choose πfull on-path and imposing a
babbling outcome everywhere off path. Consequently, Pareto efficient payoff profiles
under public learning weakly dominate all implementable payoffs in the standard
model.

Second and more importantly, the tools of the previous two sections can be ap-
plied to the standard model: Theorems 1.19 and 1.25, hence also Corollaries 1.20
and 1.26, continue to hold. To see this, note first that for any PBE E in the stan-
dard model, there exists an outcome-equivalent fully revealing PBE in the model
with public learning and zero cost. In this fully revealing PBE E∗, the sender chooses
an experiment π∗ that replicates the outcome of the PBE E. Suppose π∗ is not op-
timal in the model with public learning. Then, there exists an experiment π0 with
supp(π0) ⊆ supp(π∗) that the sender chooses in a Pareto dominant PBE in the model
with public learning. This outcome is also implementable in the standard model as
the incentive constraints are

∫

uS(a,ω)dσA (a|µ) ≥
∫

uS(a,ω)dσA (a|µ0) for all ω ∈ supp(µ), (1.8)

for all µ,µ0 ∈ supp(π0), and thus a subset of those in the PBE E.
It is well known that in the standard model with a finite state space, Pareto

efficient payoffs might not be implementable if the number of messages may not
exceed the number of states. Corollary 1.26 sheds light on that: If the state space is
finite, the number of messages in a Pareto efficient equilibrium can be bounded by
twice the number of states.

A similar finding as the bi-pooling result can also be derived.

Definition 1.35. An experiment π is a bi-partition if for all Ω0 ⊆ supp(µ0) with
µ0(Ω0)> 0 and |Ω0| ≥ 2, it holds that

⋂

ω∈Ω0

{ω̄(µ) : ω ∈ supp(µ) and Prob(µ|ω) > 0} ≤ 2.
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For any bi-pooling policy, there exists a bi-partition inducing the same distri-
bution over posterior means of the state, but the converse does not hold true. For
instance, all deterministic partitions, which map each state to exactly one posterior
mean, are bi-partitions, but need not be bi-pooling policies.

Corollary 1.36. Under Assumption 1.29, any Pareto efficient payoff profile can be gen-
erated by a convex combination of two bi-partitions. If c= 0, it can be generated by a
bi-partition.

The difference to Corollary 1.34 stems from the fact that the incentive con-
straints (1.8) depend on ω instead of µ.

1.7 The Uniform-Quadratic Case

This section characterizes the optimal experiments for the uniform-quadratic case à
la Crawford and Sobel (1982) with zero cost: The state is uniformly distributed
on the interval [0, 1]. The agents’ von Neumann-Morgenstern utility functions
are uR(a,ω)= −(a−ω)2 and uS(a,ω)= −(a− (ω+ b))2. Note that these utility
functions are partially separable. By Corollary 1.34, optimal experiments are bi-
pooling policies. They can be determined using the general maximization problem
on page 15.

Lemma 1.37. A tuple
�

π, σ̃A
�

fulfills (1.1) and (1.2) if and
only if supp

�

σA
�

µ
��

= {
∫

ω dµ(ω)} for all µ ∈ supp(π) and
�

�

∫

ω dµ(ω)−
∫

ω dµ0(ω)
�

�≥ 2b for all µ,µ0 ∈ supp(π).

Due to the quadratic preferences, the receiver’s unique best response to outcome
µ is the conditional mean

∫

ω dµ (ω) in a fully revealing PBE. The sender’s incentive
compatibility constraints reduce to the distance between any two induced posterior
means of the state exceeding some constant, namely twice the bias.
Remark 2. In the standard model with a perfectly informed sender, incentive com-
patibility requires that the distance between any two induced adjacent actions is not
constant, but increasing: Equilibria exhibit intervals of increasing length (cf. Craw-
ford and Sobel (1982)). Where does the difference come from? In the model with
public learning, the recommendation principle is responsible for the constant dis-
tance between induced action: This model can also be interpreted as one where the
sender is perfectly informed, but the states of interest are the conditional means,
i.e., the induced actions. These are in the center of the different intervals. In Craw-
ford and Sobel (1982), intervals are of increasing length because the sender is in-
clined towards exaggerating on the right end of an interval, which are the states
where the sender has the highest incentives to misreport. In my model, the sender’s
incentives towards exaggerating/undermining are equally distributed because the
relevant state is not on the right end of an interval, but in the center.
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The agents’ ex-ante expected payoffs in a fully revealing PBE differ by a constant
only: ŨS

�

π, σ̃A
�

= ŨR

�

π, σ̃A
�

− b2 for all
�

π, σ̃A
�

satisfying the conditions stated
in Lemma 1.37. So there is a unique Pareto efficient implementable payoff profile,
making (1.3) and (1.4) redundant.

The sender’s incentive compatibility constraints imply that the optimal experi-
ment has a finite support {µ1, . . . ,µn}, where n ∈ N. Define ω̄i ≡

∫

ω dµi(ω), and
let pi be the probability that the experiment’s outcome is µi.

The optimal experiment depends on the bias: If b> 1
4 , no information is re-

vealed.33 Before deriving the exact structure of an optimal experiment for b≤ 1
4 ,

it is useful to think about its size n. The underlying trade-off is the following: Exper-
iments with a larger n are more informative, thus payoff superior, but also less likely
implementable in equilibrium. The best experiment is thus of a sufficiently large
size n that is still consistent with incentive compatibility. The size of an optimal
experiment can only take two different values:

Lemma 1.38. If b ∈
� 1

2n , 1
2(n−1)

�

for some n≥ 3, the optimal experiment is

• the uniform monotone partition of size n− 1, or
• a bi-pooling policy of size n so that ω̄i+1 − ω̄i = 2b for all i ∈ {1, . . . , n− 1}, and

both µ1 and µn are 1-partitions.

Neglecting all incentive compatibility constraints, the best experiment of a spe-
cific size is the uniform monotone partition of that size. Moreover, uniform mono-
tone partitions of larger sizes dominate uniformmonotone partitions of smaller sizes.
Consequently, the uniform monotone partition of size n− 1 dominates all experi-
ments of size n− 1 or smaller. Also, it satisfies incentive compatibility. Experiments
of size n+ 1 or larger are not incentive compatible. The optimal experiment is thus
either the uniform partition of size n− 1, or a bi-pooling policy of size n.

1.7.1 Small Bias: b ≤ 1
12

For b ∈
� 1

2n , 1
2(n−1)

�

≤ 1
12 , the optimal bi-pooling policy of size n is either a non-

uniform monotone partition whose 1-partitions are of alternating size, or a bi-
pooling policy with exactly two 2-partitions—one between the second and third
outcome, and another one between the second-last and third-last outcome.

Lemma 1.39. Let n≥ 7 and b ∈
� 1

2n , 1
2(n−1)

�

. The optimal bi-pooling policy of size n
satisfies ω̄i =

1
2 + b(2i− n− 1) for all i, and

33. In this case, the distance between any two adjacent induced actions must be strictly larger
than 1

2 , implying that at most two different actions on [0, 1] can be implemented. However, the dis-
tance between these two actions may be no larger than 1

2 . Due to the uniform distribution of the state,
the maximal distance 1

2 can essentially be achieved if and only if the lower action is induced whenever
ω ∈ (0, x) and the upper action is induced whenever ω ∈ (x, 1) for some x ∈ (0, 1), that is, whenever
the experiment is essentially a monotone partition.
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• if n is odd, there exists some b̂n ∈
� 1

2n , 1
2(n−1)

�

so that

– if b≤ b̂n, it is a monotone partition with

pi =

(

1 − 2b(n − 1) , if i is odd

2b(n + 1) − 1 , if i is even
(1.9)

– if b≥ b̂n, µ2 and µ3 as well as µn−2 and µn−1 form a 2-partition, respectively,
and all other µi are 1-partitions such that

pi =























1 − 2b(n − 1) , if i ∈ {1, n}
(2b(n2−17)−(n−4))(2b((n−2)n−7)−(n−4))

16b(n−4)2 , if i ∈ {2, n − 1}
(2b(n2−17)−(n−4))((n−4)−2b(n−3)2)

16b(n−4)2 , if i ∈ {3, n − 2}
2b(n−4+(−1)i)

n−4 , else

(1.10)

• if n is even, µ2 and µ3 as well as µn−2 and µn−1 form a 2-partition, respectively,
and all other µi are 1-partitions such that

pi =























1 − 2b(n − 1) , if i ∈ {1, n}
(2b(n+4)−1)(2b(n+2)−1)

16b , if i ∈ {2, n − 1}
(2b(n+4)−1)(1−2b(n−3))

16b , if i ∈ {3, n − 2}

2b , else

(1.11)

To give an intuition for this result, notice that uniform monotone partitions
would be best, but are infeasible. Therefore, one has to give up on uniformity or
monotonicity. If n is odd, one can keep monotonicity if the bias is small, but the
partition has alternatingly sized 1-partitions. The discrepancy between even and
odd 1-partitions increases as the bias increases. At some point, it is better to add 2-
partitions to restore more similarly sized 1-partitions in the center of the state space.
If n is even, the optimal experiment of size n cannot be a monotone partition.3⁴ The
solution must contain 2-partitions. The pattern is similar to the odd case: To restore
parity for most outcomes in the center, two 2-partitions close to the boundary of the
state space are added.

Why is this optimal? First, note that 2-partitions involve a loss of information.
Separating a 2-partition into two separate 1-partitions would be payoff dominant.
However, adding a small number of 2-partitions (two due to symmetry) can increase

34. Any monotone partition for which all IC-constraints of adjacent induced actions are bind-
ing has alternatingly sized 1-partitions: p1 = p3 = . . .= pn−1 and p2 = p4 = . . .= pn. Moreover, the
posterior mean ω̄i is always exactly at the center of the interval of states associated with µi. This
implies p1 + p2 = . . .= pn−1 + pn = 4b and thus

∑n
i=1 pi =

n
2 · 4b= 2bn> 1—a contradiction because

∑n
i=1 pi = 1.
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the efficiency of other outcomes. The first and last outcome form 1-partitions, so the
2-partitions cannot be directly at the margins of the state space. But why are they
not further to the center? If so, there would be 1-partitions of alternating sizes at
the margins, and less 1-partitions of more similar size in the center. This would be
less efficient.

1.7.2 Large Bias: 1
12 < b ≤ 1

4

If the bias exceeds 1
12 , the optimal bi-pooling policy of maximal size n can be con-

structed straightforwardly. If n= 3, the optimal experiment is a monotone partition:
Both the first and last outcome form a 1-partition by Lemma 1.38, so does the in-
termediate one. For n= 4, there are two options: The two intermediate outcomes
either form a 2-partition or two separate 1-partitions. Recall that monotone par-
titions are not feasible because n= 4 is even. Consequently, the two intermediate
outcomes must form a 2-partition. If n= 5, three different scenarios are possible:
Either the second and third outcome form a 2-partition, or the third and fourth out-
come form a 2-partition, or all outcomes form 1-partitions. Due to the symmetry of
the uniform distribution, the optimal partition turns out to be symmetric. Hence, it
is a monotone partition. For n= 6, one obtains by a similar symmetry-argument and
by infeasibility of monotone partitions that both the second and the third as well as
the fourth and the fifth outcome form a 2-partition, respectively.

Lemma 1.40. Let n ∈ {3,4, 5,6} and b ∈
� 1

2n , 1
2(n−1)

�

. The optimal bi-pooling policy
of size n satisfies ω̄i =

1
2 + b(2i− n− 1) for all i, and

• if n is odd, it is a monotone partition with (1.9).
• if n is even, µ2 and µ3 as well as µn−2 and µn−1 form a 2-partition with (1.11).

1.7.3 Globally Optimal Experiments

The underlying trade-off when comparing the optimal bi-pooling policy of size n
with the optimal experiment of size n− 1, i.e., the uniform partition of that size, is
the following: The optimal bi-pooling policy of size n has an additional outcome re-
alization coming at the expense of non-uniform 1-partitions or 2-partitions to satisfy
incentive compatibility. The latter effect dominates as the bias increases.

Theorem 1.41. If b ∈
� 1

2n , 1
2(n−1)

�

for some n≥ 3, there exists some b̄n ∈
� 1

2n , 1
2(n−1)

�

such that the optimal experiment is the best bi-pooling policy of size n if b≤ b̄n and it
is the uniform partition of size n− 1 if b≥ b̄n. Furthermore, if n≥ 7 and n is odd, then
b̄n ≥ b̂n.

1.7.4 Comparative Statics

This section compares the outcome of the model with public learning to the outcome
of other communication games.
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First, consider the cheap-talk game with a perfectly informed sender à la Craw-
ford and Sobel (1982). For any b ∈ (0, 1

4), the Pareto efficient implementable out-
come in this model is strictly dominated by the best outcome under public learning
(cf. Proposition 1.42).

Second, consider cheap talk with private learning à la Pei (2015). In fact, the
best outcome with private learning is equivalent to the best Crawford-Sobel equilib-
rium, and thus strictly dominated by the best outcome under public learning. Why
is this? Under private learning (and zero cost), the sender chooses the fully informa-
tive experiment in every equilibrium, thus becoming perfectly informed. So, private
learning has no effect, while public learning has a significant effect.

Third, consider cheap talk with public learning à la Ivanov (2010): Information
acquisition is not flexible, but the sender can only choose monotone partitions. By
Theorem 1.41, Ivanov’s (2010) solution is the globally optimal experiment if and
only if the latter is a monotone partition. But if it is a bi-pooling policy with proper
2-partitions, the difference can be substantial, as illustrated in Figure 1.7: The solu-
tion under public, flexible learning lies mid-way between the solution under public,
restricted learning and the Pareto frontier of feasible payoffs. So, flexible informa-
tion acquisition—the option to choose non-monotone partitions—is valuable. All

UR0−b2 U∗RU ′RU ′′R

US

0

−b2

U ′S
U∗S

U ′′S

Figure 1.7. The curve represents the Pareto frontier of feasible payo�s. The dot at (U ∗S ,U ∗R ) shows
the optimal payo�s under public learning, (U 0

S ,U 0

R) those under public learning among the set
of monotone partitions, and (U 00

S ,U 00

R ) those under perfect information/private learning.
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in all, the figure illustrates that the best outcome under public, flexible learning is
closest to the Pareto frontier of feasible payoffs.

How does public learning compare to Bayesian persuasion à la Kamenica and
Gentzkow (2011)? In the uniform-quadratic setting, the sender commits to the fully
informative experiment, and truthfully reports it to the receiver under optimal per-
suasion. Payoffs are (U BP

S ,U BP
R )= (−b2, 0)—the right endpoint of the Pareto fron-

tier. Cheap talk with public learning is a model of partial commitment (commitment
to information, but not to communication), and Crawford and Sobel (1982) can
be interpreted as an environment with no commitment. The payoffs under partial
commitment are closer to those under full commitment than to those under no com-
mitment:

Proposition 1.42. For any b ∈
�

0, 1
4

�

, it holds that U BP
i −U

∗
i ≤U

∗
i −U

00

i for all i.

The value of commitment to information is higher than the value of commit-
ment to communication: The efficiency loss of giving up on the latter commitment
device while keeping the former one is not too large. This is good news to the in-
formation design literature: A common critique about Bayesian persuasion is that
commitment to communication is hard to apply to real-world settings. On the other
hand, there are applications for which commitment to information makes sense (see
the example of survey data from the introduction). Since the latter commitment de-
vice dominates the former (in terms of value), the model of partial commitment
could be an adequate alternative to Bayesian persuasion.

Finally, consider mediation à la Krishna andMorgan (2004): Suppose the sender
is perfectly informed about the state, but does not directly communicate with the
receiver. Instead, the sender transmits a message to a neutral mediator who then
talks to the receiver. Can better equilibrium outcomes be attained than under public
learning? In general, public learning and mediation cannot be ranked: The sender’s
incentives to report information are affected at different stages: Under public learn-
ing, the sender has less incentives to misreport by deciding to acquire less than
perfect information. On the other hand, the mediator can enforce outcomes that
are beneficial to both agents: If the sender communicates with the receiver directly,
the sender would always send a message that implements the best possible action
among all that the receiver chooses in equilibrium given the sender’s information
about the state. A mediator is not restricted to that (see the mediation solution by
Krishna and Morgan (2004), for instance). In the uniform-quadratic case, public
learning outperforms mediation:

Proposition 1.43. For any b ∈
�

0, 1
2

�

, the unique Pareto efficient implementable payoff
profile under public learning dominates any payoff profile under mediation.

Public learning also outperforms long cheap talk à la Aumann and Hart (2003)
as mediation dominates long cheap talk (see Krishna and Morgan (2004)), and it
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dominates noisy talk à la Blume, Board, and Kawamura (2007) as mediation and
optimal noisy talk are payoff-equivalent.

Note that delegation à la Dessein (2002) is not Pareto comparable to public
learning: The delegation solution corresponds to the sender-optimal feasible payoff
profile: the left endpoint of the Pareto frontier in Figure 1.7. The receiver is strictly
worse off under delegation for any b ∈

�

0, 1
4

�

(cf. Ivanov (2010)) than under public
learning, but the sender is not.

1.8 Model Variants

1.8.1 Experiment Choice by the Receiver

Consider the following model variant: First, the receiver publicly chooses an ex-
periment π. Then, the sender decides whether to accept or reject π. If the sender
accepts, the sender pays the cost c(π), privately observes the experiment’s outcome
and sends a cheap-talk message to the receiver who then takes an action. If the
sender rejects, communication breaks down and the receiver chooses an action based
on the prior belief.3⁵ The recommendation principle remains valid: The Pareto ef-
ficient implementable payoff profiles of the original model can be generated by a
fully revealing PBE in which the sender chooses a pure-strategy information rule,
and a babbling outcome is implemented everywhere off-path. Since both agents’
on-path payoffs exceed their payoffs under the babbling outcome, it does not matter
whether the sender or the receiver chooses the experiment. Consequently, the model
predictions do not change:

Proposition 1.44. The set of Pareto efficient implementable payoff profiles in themodel
where the receiver chooses the experiment coincides with the one of the original model.

1.8.2 Private Learning

Suppose now the sender chooses the experiment privately instead of publicly, that is,
the sender cannot commit to the choice of the experiment. A version of recommen-
dation principle can be established (cf. Pei (2015)). Any PBE of the model variant
is a PBE of the original model, but the converse does not hold true: If the sender
chooses an experiment in absence of commitment, the sender will also choose it
with commitment power.

Proposition 1.45. Any Pareto efficient implementable payoff profile under private
learning is dominated by an implementable payoff profile under public learning.

35. An alternative interpretation of rejection is that the sender chooses the uninformative exper-
iment, and the communication stage yields a babbling outcome.
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1.8.3 Bayesian Persuasion

Under Bayesian persuasion, the sender can commit to both the experiment and the
full revelation of its outcome. Therefore, higher payoffs can be achieved in equilib-
rium:

Proposition 1.46. Any Pareto efficient implementable payoff profile under public
learning is dominated by an implementable payoff profile under Bayesian persuasion.

1.9 Conclusion

This paper explores the effects of costly information procurement in a model of
strategic information transmission from an expert to a decision-maker. Despite a
conflict of interest between the two parties, full communication is attained in Pareto
efficient equilibria. Less information acquisition leads to more credible communica-
tion, and thus more information transmission. The main contribution is a geometric
characterization of the optimal experiments. I identify the set of extreme points in
the space of Blackwell experiments. It is (i) a helpful tool for applications, and (ii) a
robust pattern of information aggregation in different communication settings. The
results carry over to the standard cheap-talk setting with a perfectly informed sender
and Bayesian persuasion, for instance. It can therefore be considered as a promis-
ing approach to study more general heterogeneous-agents models with asymmetric
information.

Appendix 1.A Proofs: Implementable Payo�s

Proof of Lemma 1.5. The proof directly follows from the description in the main
text.

1.A.1 Section 1.3.1

Proof of Lemma 1.6. First, I show that the set of babbling equilibria E0 is
non-empty by explicitly constructing one: Since Π is non-empty (by implicit as-
sumption), and π0 is a Blackwell garbling of any experiment, it follows from As-
sumption 1.2 that π0 ∈Π and c

�

π0
�

=minπ∈Π c(π). Fix some m0 ∈4Ω and some
a0 ∈ arg mina∈A0

∫

uS(a,ω) dµ0 (ω) where A0 ≡ arg maxa∈A

∫

uR(a,ω) dµ0 (ω). No-
tice that a0 is well-defined: Since A×Ω is compact and uR is continuous on A×Ω,
uR is bounded on A×Ω. By the Dominated Convergence Theorem, continuity of
uR(·,ω) on A for each ω ∈ Ω implies continuity of

∫

uR(·,ω) dµ0 (ω) on A. Con-
sequently,

∫

uR(·,ω) dµ0 (ω) attains a maximum on the compact set A, i.e., A0 is
non-empty, by the Weierstrass extreme value theorem. Consider the strategy profile
��

σ0
I ,σ0

M

�

,σ0
A

�

and beliefs µ0
R with
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supp
�

σ0
I

�

= {π0},

supp
�

σ0
M

�

π,µ
��

= {m0} for all µ ∈ 4Ω and all π ∈ Π,

supp
�

σ0
A (π, m)

�

= {a0} for all m ∈ 4Ω and all π ∈ Π, and
µ0

R (·|π, m) = µ0 for all m ∈ 4Ω and all π ∈ Π.

It can be easily verified that these profiles constitute a PBE E0: First, the receiver’s
beliefs are always consistent with Bayes’ rule on the equilibrium path, and it is µ0

in any subgame in the action stage. Hence, it is—by definition of a0—optimal for
her to choose a0 always. Likewise, it is a best response for the sender to transmit
the uninformative message m0 always because the receiver does not condition her
action decision on the sender’s message. Third, note that both agents’ expected util-
ities (excluding the sender’s cost) are constant across all subgames after the infor-
mation acquisition stage. Therefore, the sender optimally chooses an experiment
which induces the lowest possible cost in the information acquisition stage. Since
c
�

π0
�

=minπ∈Π c(π), it is optimal to take experiment π0. By definition of µ0
R, E0 is

a babbling equilibrium.
Second, the receiver’s payoff is constant across all babbling equilibria by op-

timality of the receiver’s action rule. Moreover, the receiver can secure this pay-
off UR(E0) in any PBE by choosing the action rule σ0

A . The sender can secure
US(E0) in any PBE by choosing the information rule σ0

I . However, the sender’s
payoff is not necessarily constant across all babbling equilibria. Depending on the
receiver’s action rule, the sender’s payoff in a babbling PBE can take any value in
�

infE∈E0
US(E), supE∈E0

US(E)
�

. The set of worst implementable payoff profiles is
��

UR(E0),US

�

|US ∈
�

infE∈E0
US(E), supE∈E0

US(E)
�	

, which completes the proof.

1.A.2 Section 1.3.2

Proof of Lemma 1.8. First, I show that any PBE with a mixed-strategy in-
formation rule is Pareto dominated by a PBE with a pure-strategy informa-
tion rule: Fix a PBE E =

���

σI ,σM
�

,σA
�

,µR

	

. For any π ∈ supp(σI ), let
Eπ =

���

σπI ,σM
�

,σA
�

,µR

	

where supp(σπI )= {π}, and note that Eπ is a PBE, too.
By optimality of σI for the sender in the PBE E, it follows for all π,π0 ∈ supp(σI )
that US (Eπ)=US

�

Eπ
0
�

because
∫∫∫∫

uS (a,ω) dσA (a|π, m) dµ (ω) dσM
�

m|π,µ
�

dπ
�

µ
�

− c (π)

=

∫∫∫∫

uS (a,ω) dσA
�

a|π0, m
�

dµ (ω) dσM
�

m|π0,µ
�

dπ0
�

µ
�

− c
�

π0
�

.

Take π ∈ supp(σI ) with UR (Eπ)≥UR (E), which is possible because
UR (E)=

∫

Π
UR (Eπ) dσI (π). The PBE Eπ generates payoffs

�

US (E) ,UR (Eπ)
�

, so
Eπ weakly dominates E.
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Second, any PBE with a pure-strategy information rule is dominated
by a fully revealing PBE with a pure-strategy information rule: Fix a PBE
E with supp(σI )= {π∗} for some π∗ ∈Π. Consider the experiment π∗∗
with outcomes {µR (·|π∗, m)}m∈⋃µ∈supp(π∗) supp(σM (π∗,µ)) distributed according to
∫

µ∈supp(π∗)σM
�

·|π∗,µ
�

dπ∗
�

µ
�

. In words, the distribution over outcomes under
the experiment π∗∗ corresponds to the distribution over the receiver’s on-path be-
liefs in the PBE E. By Assumption 1.2, π∗∗ ∈Π as π∗∗ is a Blackwell garbling of
π∗, and c (π∗∗)≤ c (π∗). One can find a fully revealing PBE E0 in which the sender
chooses π∗∗. The agents’ expected utilities are the same as in the PBE E, but the
sender’s cost are smaller in E0. Hence, E0 dominates E. In order to construct the fully
revealing PBE, consider the strategy profile

��

σ0

I ,σ0

M

�

,σ0

A

�

and beliefs µ0

R with
supp(σ0

I )= {π∗∗},

σ0

M

�

·|π,µ
�

=

(

σFR
M

�

·|π∗∗,µ
�

,π = π∗∗

σ0
M

�

·|π,µ
�

,else
for all µ ∈ 4Ω

σ0

A (·|π, m) =











σA (·|π∗,τ (m)) , m ∈ supp
�

σ0

M

�

π∗∗,µR (·|π∗,τ (m))
��

and π = π∗∗

σ0
A (·|π, m) , m ∈ 4Ω and π 6= π∗∗

µ0

R (·|π, m) =

(

µ , m ∈ supp
�

σ0

M

�

π∗∗,µ
��

and π = π∗∗

F , m ∈ 4Ω and π 6= π∗∗
,

where
��

σ0
I ,σ0

m

�

,σ0
a

�

and µ0
R are defined as in the proof of Lemma 1.6, and where

the mapping τ :
⋃

µ∈supp(π∗∗) supp
�

σ0

M

�

π∗∗,µ
��

→
⋃

µ∈supp(π∗) supp
�

σM
�

π∗,µ
��

is a bijective function defined as follows: If the sender takes message m af-
ter choosing π∗ in the PBE E, the sender chooses message τ−1 (m) after
taking π∗∗ in the equilibrium candidate E0 if the experiment’s outcome is
µR (·|π∗, m).3⁶ The above profiles constitute a PBE E0: First, the receiver’s be-
liefs are updated according to Bayes’ rule whenever possible. Moreover, since
∫

uR (a,ω) dµ0

R (ω|π∗∗, m)=
∫

uR (a,ω) dµR (ω|π∗,τ (m)) for all a ∈ A and all m ∈
supp

�

σ0

M

�

π∗∗,µR (·|π∗,τ (m))
��

, and since σA is a best response given µR in any
subgame after the sender chooses π∗, one can infer that σ0

A is optimal given µ0

R

36. Bijectivity of τ (or rather τ−1) ensures that E0 is fully revealing: If µR (·|π∗, m) 6= µR

�

·|π∗, m0

�

for some m, m0 ∈
⋃

µ∈supp(π∗) supp
�

σM
�

π∗,µ
��

, but τ−1 (m)= τ−1
�

m0

�

, the sender would not fully re-
veal to the receiver whether he observed outcome µR (·|π∗, m) or µR

�

·|π∗, m0

�

after choosing π∗∗ in E0.
Moreover, σ0

A (·|π∗∗, m) is well-defined for all m ∈
⋃

µ∈supp(π∗∗) supp
�

σ0

M

�

π∗∗,µ
��

since the communi-
cation rule is fully revealing on the equilibrium path and the receiver updates her beliefs according
to Bayes’ rule: For any such m, which the sender sends after choosing π∗∗ in the candidate for a fully
revealing equilibrium E0 , there exists a message τ (m) which the sender takes in the PBE E after
choosing π∗ so that the receiver’s belief after observing π∗ and τ (m) in E equals the outcome of the
experiment π∗∗ conditional on which the sender transmits m in E0.
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in any subgame after he takes π∗∗. Besides, σ0

A is also a best response given µ0

R
in any subgame after the sender chooses an experiment π 6= π∗∗ (it’s the babbling
outcome). Hence, σ0

A is optimal given µ0

R. Furthermore, one obtains that
∫∫

uS (a,ω) dσ0

A

�

a|π∗∗, m
�

dµ (ω)

=

∫∫

uS (a,ω) dσA
�

a|π∗,τ (m)
�

dµ (ω)

=

∫ ∫∫

uS (a,ω) dσA
�

a|π∗,τ (m)
�

dµ (ω)

︸︷︷ ︸

≥
∫∫

uS (a,ω) dσA
�

a|π∗,τ
�

m0
��

dµ (ω) for all µ0 ∈ supp
�

π∗
�

dPr
�

µ0|π∗,τ (m) ,σM
�

≥
∫∫

uS (a,ω) dσA
�

a|π∗,τ
�

m0
��

dµ (ω)

=

∫∫

uS (a,ω) dσ0

A

�

a|π∗∗, m0
�

dµ (ω)

for all m ∈ supp
�

σ0

M

�

π∗∗,µ
��

, m0 ∈4Ω and µ ∈ supp (π∗∗). The first
equality holds true because σ0

A (·|π∗∗, m)= σA (·|π∗,τ (m)) for every
m ∈

⋃

µ∈supp(π∗∗) supp
�

σ0

M

�

π∗∗,µ
��

. The second equality is obtained by the
law of iterated expectations, with Pr

�

·|π∗,τ (m) ,σM
�

being the distribution
over outcomes after the sender chooses π∗ and given he takes message τ (m)
according to σM . The weak inequality is due to the fact that τ (m) is optimal
for the sender in the PBE E after taking π∗ and learning its outcome µ so that
τ (m) ∈ supp

�

σM
�

π∗,µ
��

. The last two equalities follow from the same arguments
as for the first two equalities applied in reverse order. So σ0

M is a best response
given σ0

A in any subgame after the sender chooses π∗∗. Also, σ0

M is a best response
given σ0

A in any subgame after the sender chooses an π 6= π∗∗ (it’s the babbling
outcome). Hence, σ0

M is optimal given σ0

A . By the law of iterated expectations, it
holds for all i ∈ {S, R} that

∫∫∫∫

ui (a,ω) dσ0

A

�

a|π∗∗, m
�

dµ (ω) dσ0

M

�

m|π∗∗,µ
�

dπ∗∗
�

µ
�

(1.A.1)

=

∫

· · ·
∫

ui (a,ω) dσA
�

a|π∗,τ (m)
�

dµ (ω) dPr
�

µ0|π∗,τ (m) ,σM
�

dPr
�

τ (m) |π∗
�

=

∫∫∫∫

ui (a,ω) dσA
�

a|π∗,τ (m)
�

dµ (ω) dσM
�

τ (m) |π∗,µ
�

dπ∗
�

µ
�

,

so each agent’s expected utilities after π∗∗ in E0 and after π∗ in E coincide. This
yields
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∫∫∫∫

uS (a,ω) dσ0

A

�

a|π∗∗, m
�

dµ (ω) dσ0

M

�

m|π∗∗,µ
�

dπ∗∗
�

µ
�

− c
�

π∗∗
�

(1.A.2)

≥
∫∫∫∫

uS (a,ω) dσA
�

a|π∗,τ (m)
�

dµ (ω) dσM
�

τ (m) |π∗,µ
�

dπ∗
�

µ
�

− c
�

π∗
�

≥ US

�

E0
�

=

∫∫∫∫

uS (a,ω) dσ0

A

�

a|π0, m
�

dµ (ω) dσ0

M

�

m|π0,µ
�

dπ0
�

µ
�

− c
�

π0
�

≥
∫∫∫∫

uS (a,ω) dσ0

A (a|π, m) dµ (ω) dσ0

M

�

m|π,µ
�

dπ
�

µ
�

− c (π)

for all π ∈Π. The first inequality follows from c (π∗∗)≤ c (π∗). Since E is a PBE
where the sender chooses π∗, the term in the second line equalsUS (E). The second
inequality immediately follows from the definition of E0 (cf. the proof of Lemma 1.6).
Since the sender’s expected utility is constant across all subgames after the sender
chooses some π 6= π∗∗ (as the babbling outcome is implemented in any such sub-
game), the last inequality results from the fact that c (π)≥ c

�

π0
�

by Assumption 1.2
as π0 is a Blackwell garbling of π. As a consequence, the σ0

I is optimal given
�

σ0

M ,σ0

A

�

. This concludes the proof that
���

σ0

I ,σ0

M

�

,σ0

A

�

,µ0

R

	

forms a PBE E0,
which is fully revealing and has a pure-strategy information rule. (1.A.1) implies
that UR

�

E0

�

=UR (E), and that US

�

E0

�

≥US (E) since c (π∗∗)≤ c (π∗). The PBE E
is thus dominated by the fully revealing PBE E0 with a pure-strategy information
rule.

If c is strictly monotone, the first inequality in (1.A.2) is strict implying that
any PBE with a pure-strategy information rule which is not fully revealing is strictly
dominated by a fully revealing equilibrium.

Proof of Theorem 1.9. I apply Berge’s maximum theorem to the optimiza-
tion problem stated on page 15. Let S be the set of continuous mappings
σ̃A :

�

4Ω, dLP
�

→
�

4A, dLP
�

, where dLP is the Lévy–Prokhorov metric3⁷, endowed
with the sup metric. Let C : R⇒Π ×S be the correspondence defined by
C
�

UR

�

≡
��

π, σ̃A
�

∈Π ×S |
�

π, σ̃A
�

satisfies (1.1)− (1.4).
	

for eachUR ∈ R. Re-
call that Π is compact. Moreover, the set of continuous functions S endowed with
the sup metric constitutes a compact space. So by Tychonoff’s theorem, Π ×S is
compact. To apply the maximum theorem, I need the following auxiliary lemmata:
Lemma 1.47. If C

�

UR

�

6= ;, then C
�

UR

�

is compact.

Proof. Suppose C
�

UR

�

6= ;. Let’s show that C
�

UR

�

is closed: Fix some sequence
�

πn, σ̃A ,n

�

n∈N in C
�

UR

�

with limit
�

π, σ̃A
�

. Let ãn

�

µ
�

(ã
�

µ
�

) denote the random

37. See Dudley (1989), p.394 for the definition.
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variable with distribution σ̃A ,n

�

·|µ
�

(σ̃A
�

·|µ
�

). I verify in sequence that
�

π, σ̃A
�

satisfies (1.1)–(1.4):
(1). Suppose some a0 ∈ supp

�

σ̃A
�

µ
��

with a0 /∈ argmaxa∈A

∫

uR (a,ω) dµ (ω)
exists. Notice that Pr

�

ã
�

µ
�

∈
�

a0 − ε, a0 + ε
��

= σ̃A
�

a0 + ε|µ
�

− σ̃a

�

a0 − ε|µ
�

> 0
for any ε > 0 as a0 ∈ supp

�

σ̃A
�

µ
��

. Since the metric space
�

4A, dLP
�

is endowed with the Lévy-Prokhorov metric,
�

σ̃A ,n

�

·|µ
��

converges
in distribution to σ̃A

�

·|µ
�

(see billingsley1999convergence, p.72).
Take any ε > 0 with Pr

�

ã
�

µ
�

∈ {a0 − ε, a0 + ε}
�

= 0, and note that
�

a0 − ε, a0 + ε
�

is a continuity set of ã
�

µ
�

. Let ε∗ denote the set of
such ε. As

�

σ̃A ,n

�

·|µ
��

converges in distribution to σ̃A
�

·|µ
�

, one gets
Pr
�

σ̃A ,n

�

·|µ
�

∈
�

a0 − ε, a0 + ε
��

→ Pr
�

σ̃A
�

·|µ
�

∈
�

a0 − ε, a0 + ε
��

as n→∞ for
any ε ∈ ε∗. As Pr

�

σ̃A
�

·|µ
�

∈
�

a0 − ε, a0 + ε
��

> 0, for all ε ∈ ε∗, there is an n (ε) ∈ N
with Pr

�

σ̃a,n

�

·|µ
�

∈
�

a0 − ε, a0 + ε
��

> 0. So there is some a0 (ε) ∈
�

a0 − ε, a0 + ε
�

so that a0 (ε) ∈ arg maxa∈A

∫

uR (a,ω) dµ (ω) because
�

πn(ε), σ̃A ,n(ε)

�

satisfies
(1.1). By construction, a0 (ε)→ a0 as ε→ 0.3⁸ Since argmaxa∈A

∫

uR (a,ω) dµ (ω)
is closed, this implies that a0 ∈ argmaxa∈A

∫

uR (a,ω) dµ (ω).
(2). Suppose

∫∫

uS(a,ω) dσ̃A
�

a|µ
�

dµ(ω)<
∫∫

uS(a,ω) dσ̃A
�

a|µ0

�

dµ(ω)
for some µ,µ0 ∈ supp(π). So for all n ∈ N, µ /∈ supp(πn) or µ0 /∈ supp(πn).
Take a subsequence

�

πnk
, σ̃A ,nk

�

k∈N of
�

πn, σ̃A ,n

�

n∈N so that µ /∈ supp(πnk
)

for any k.3⁹ By analogous arguments as in the proof of step (1), there
exists a subsubsequence

�

πnkl
, σ̃A ,nkl

�

l∈N
and a sequence

�

µl

�

l (
�

µ0

l

�

l)
with µl ∈ supp(πnkl

) (µl ∈ supp(πnkl
)) for all l converging to µ (µ0). Since

∫∫

uS(a,ω) dσ̃A
�

a|µ
�

dµ(ω)−
∫∫

uS(a,ω) dσ̃A
�

a|µ0

�

dµ(ω) is continuous in
�

µ,µ0

�

and
∫∫

uS(a,ω) dσ̃A
�

a|µ
�

dµl(ω)−
∫∫

uS(a,ω) dσ̃A
�

a|µ0

�

dµl(ω)≥ 0

for all l because the sequence
�

πnkl
, σ̃A ,nkl

�

satisfies (1.2), one obtains that
∫∫

uS(a,ω) dσ̃A
�

a|µ
�

dµ(ω)−
∫∫

uS(a,ω) dσ̃A
�

a|µ0

�

dµ(ω)≥ 0.
(3). As ŨS is continuous, ŨS

�

πn, σ̃A ,n

�

≥U 0
S for all n implies that

ŨS

�

π, σ̃A
�

≥U 0
S .

(4). By continuity of ŨR, ŨR

�

πn, σ̃A ,n

�

≥UR for all n yields ŨR

�

π, σ̃A
�

≥UR.
Hence, C

�

UR

�

is a closed subset of the compact setΠ ×S , so C
�

UR

�

is compact.

Lemma 1.48. There is some U max
R ∈

�

U 0
R ,∞

�

so that C
�

ŪR

�

6= ; iff ŪR ≤U max
R .

Proof. Note that C
�

UR

�

E0
��

6= ; since
�

π0,σ0
A

�

π0, ·
��

∈ C
�

UR

�

E0
��

, where
σ0
A is defined as in the proof of Lemma 1.6. Recall that E0 is a fully

revealing PBE with a pure-strategy information rule, so
�

π0,σ0
A

�

π0, ·
��

satisfies (1.1) and (1.2). Also, ŨS

�

π0,σ0
A

�

π0, ·
��

=US

�

E0
�

≥U 0
S and

38. There exists a sequence in ε∗ converging to zero because ã
�

µ
�

has at most countably many
realizations that occur with positive probability.

39. If such a subsequence does not exist, take any infinite subsequence
�

πnk
, σ̃A ,nk

�

k∈N of
�

πn, σ̃A ,n

�

n∈N such that µ0 /∈ supp(πnk
) for any k, which must then exist, and switch the labels of

µ and µ0.
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ŨR

�

π0,σ0
A

�

π0, ·
��

=UR

�

E0
�

=U 0
R , that is,

�

π0,σA
�

π0, ·
��

fulfills (1.3)
and (1.4). Second, C

�

UR

�

6= ; implies C
�

U 0

R

�

6= ; for all U 0

R ≤UR: If
�

π0,σA
�

π0, ·
��

∈ C
�

UR

�

, then ŨR

�

π0,σA
�

π0, ·
��

≥UR ≥U 0

R. Since (1.1)–
(1.3) do not depend on UR, this yields

�

π0,σA
�

π0, ·
��

∈ C
�

U 0

R

�

. Third, continuity
of uR and compactness of A×Ω yield ŨR

�

π, σ̃A
�

≤max(a,ω)∈A×Ω uR (a,ω)<∞
for any

�

π, σ̃A
�

∈Π ×S . Hence, there exists some Umax
R ∈

�

U 0
R ,∞

�

such that
C
�

UR

�

6= ; if UR <Umax
R and C

�

UR

�

= ; if UR >Umax
R . Finally, let’s verify that

C
�

Umax
R

�

6= ;: Consider an increasing sequence
�

UR,n

�

n∈N with limit Umax
R , and

a sequence
�

πn, σ̃A ,n

�

n∈N satisfying ŨR

�

πn, σ̃A ,n

�

=UR,n and (1.1)–(1.3) for all
n. Such a sequence exists since C

�

UR

�

6= ; for all UR <Umax
R . By compactness

of Π ×S , there exists a convergent subsequence of
�

πn, σ̃A ,n

�

n∈N with limit
�

π, σ̃A
�

. By continuity of ŨR, it follows that ŨR

�

π, σ̃A
�

=Umax
R . From the proof

of Lemma 1.47,
�

π, σ̃A
�

satisfies (1.1)–(1.3) so that
�

π, σ̃A
�

∈ C
�

Umax
R

�

.

Lemma 1.49. C is continuous in UR on
�

−∞,U max
R

�

.

Proof. I show that C is both upper and lower hemicontinuous at any
UR ∈

�

−∞,Umax
R

�

: Take any sequence
�

UR,n

�

n converging to UR, any tuple
�

π, σ̃A
�

∈Π ×S , and any sequence
�

πn, σ̃A ,n

�

n so that
�

πn, σ̃A ,n

�

∈ C
�

UR,n

�

for
all n converging to

�

π, σ̃A
�

. Suppose
�

π, σ̃A
�

/∈ C
�

UR,n

�

. By Lemma 1.47, since
�

πn, σ̃A ,n

�

n satisfies (1.1)–(1.3), so does its limit. So
�

π, σ̃A
�

/∈ C
�

UR

�

means that
ŨR

�

π, σ̃A
�

<UR. Continuity of ŨR yields ŨR

�

πn, σ̃A ,n

�

<UR,n for large n—a
contradiction. This proves upper hemicontinuity. Take again a sequence

�

UR,n

�

n
converging to UR and any

�

π, σ̃A
�

∈ C
�

UR

�

. If ŨR

�

π, σ̃A
�

>UR, then it follows
that

�

π, σ̃A
�

∈ C
�

UR,n

�

for large n. So there is a subsequence
�

UR,nl

�

l and a se-
quence

�

πl, σ̃A ,l

�

l with
�

πl, σ̃A ,l

�

=
�

π, σ̃A
�

and ŨR

�

πl, σ̃A ,l

�

>
�

UR,l

�

for all l,
which converges to

�

π, σ̃A
�

. If ŨR

�

π, σ̃A
�

=UR, there is, by continuity of ŨR,
some

�

πn, σ̃A ,n

�

n satisfying (1.1)–(1.3) and ŨR

�

πn, σ̃A ,n

�

=UR,n for all n with
limit

�

π, σ̃A
�

. This proves lower hemicontinuity.

So the objective function ŨS is continuous in
�

π, σ̃A
�

, and the correspon-
dence C is compact-valued, non-empty and continuous on

�

−∞,Umax
R

�

. It fol-
lows by Berge’s maximum theorem that arg max(π,σ̃A )∈C(UR) ŨS

�

π, σ̃A
�

is non-
empty for every UR ∈

�

−∞,Umax
R

�

, and U ∗S
�

ŪR

�

≡max(π,σ̃A )∈C(UR) ŨS

�

π, σ̃A
�

is continuous in UR on
�

−∞,Umax
R

�

. This proves the existence part of
the theorem. To prove the compactness part, notice first that the set of
Pareto efficient implementable payoff profiles is

⋃

UR∈(−∞,Umax
R ]U

∗
S

�

UR

�

. More-
over, observe that min(a,ω)∈A×Ω uS (a,ω)≤U ∗S

�

UR

�

≤max(a,ω)∈A×Ω uS (a,ω) for all
UR ∈

�

−∞,Umax
R

�

, where the min- and max-function are well-defined by conti-
nuity of uS and compactness of A×Ω. As a result, continuity of U ∗S implies that
⋃

UR∈(−∞,Umax
R ]U

∗
S

�

UR

�

is compact.
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Proof of Lemma 1.11. Let K =
�

V ∈ PS :Umin
S (V)≥ V0 for all V0 ∈ PS : V0 ≤ V

	

,
and note that K ⊆ PS ⊂R . Since PS is compact by Theorem 1.9 and thus
bounded, sup K exists by the Supremum Property. Moreover, sup K ∈ PS. Conse-
quently,

�

US,UR

�

∈ P immediately follows from US ∈ PS by (1.5). Uniqueness is
obvious (as suprema are unique).

1.A.3 Section 1.3.3

Proof of Theorem 1.13. Analogously to Theorem 1.9, the proof proceeds by ap-
plying Berge’s maximum theorem to the optimization problem on page 17. Details
are therefore omitted.

Proof of Theorem 1.14. Let
�

U ∗S ,U ∗R
�

be the unique Pareto efficient feasible
payoff profile. By feasibility, there is some

�

σ̄I , σ̄A
�

so that U ∗i = Ūi

�

σ̄I , σ̄A
�

for all i. First, the strategy profile
��

σ̄I,σ
FR
m

�

, σ̄A
�

together with some beliefs
µR form a PBE E: Suppose the receiver has an incentive to deviate. Then,
there is some σA with UR

����

σ̄I ,σFR
M

�

,σA
�

,µR

	�

>U ∗R . As σFR
M is fully re-

vealing, Ui

����

σ̄I ,σFR
M

�

,σA
�

,µR

	�

= Ūi

�

σ̄I ,σA
�

for all i, i.e., the payoff pro-
file induced by the receiver’s deviation is feasible. This yields ŪS

�

σ̄I ,σA
�

<U ∗S
as
�

ŪS

�

σ̄I ,σA
�

, ŪR

�

σ̄I ,σA
��

is feasible and would otherwise strictly domi-
nate

�

U ∗S ,U ∗R
�

—a contradiction since
�

U ∗S ,U ∗R
�

is Pareto efficient feasible. By
compactness of the set of Pareto efficient feasible payoff profiles (cf. Theo-
rem 1.13), there exists thus a Pareto efficient feasible payoff profile

�

U 0

S,U 0

R

�

with
U 0

R ≥ ŪR

�

σ̄I ,σA
�

>U ∗R and U 0

S ≤ ŪS

�

σ̄I ,σA
�

<U ∗S , contradicting uniqueness
of the Pareto efficient feasible payoff profile. Now, suppose the sender has a profitable
deviation

�

σIσM
�

, that is,US

����

σI ,σM
�

, σ̄A
�

,µR

	�

>U ∗S . Notice that there is
some σ̂A so thatUi

����

σI ,σM
�

, σ̄A
�

,µR

	�

= Ūi

�

σI , σ̂A
�

for all i, i.e., the pay-
off profile induced by the sender’s deviation is feasible. One can conclude from this
that either

�

U ∗S ,U ∗R
�

is not Pareto efficient feasible, or there exists another Pareto
efficient feasible payoff profile, contradicting uniqueness. By construction, it holds
that Ui (E)=U ∗i for all i. Hence,

�

U ∗S ,U ∗R
�

is implementable. Since
�

U ∗S ,U ∗R
�

is
also Pareto efficient feasible, it is Pareto efficient implementable. Finally, suppose
�

U ∗S ,U ∗R
�

is not the unique Pareto efficient implementable payoff profile, i.e., there
is another Pareto efficient implementable payoff profile

�

U 00

S ,U 00

R

�

. But then, since
�

U ∗S ,U ∗R
�

is also feasible, there exists another Pareto efficient feasible payoff profile
by Theorem 1.13—a contradiction.

Proof of Theorem 1.15. Fix some Pareto efficient feasible payoff profile
�

U ∗S ,U ∗R
�

and suppose that the conditions stated in Theorem 1.15 hold true.
In particular, supp(σ̄I )=

�

πfull	 implies that the best feasible payoff profile
for agent i is generated if the social planner fully learns the state and
chooses the optimal action for agent i per state, i.e., this payoff profile is
(
∫

uS

�

a∗i (ω) ,ω
�

dµ0 (ω)− c
�

πfull� ,
∫

uR

�

a∗i (ω) ,ω
�

dµ0 (ω)). Since there are at
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least two Pareto efficient feasible payoff profiles, the sender-optimal and receiver-
optimal ones do not coincide so that the set of states with a∗S (ω) 6= a∗R (ω) is of posi-
tive measure. If

�

U ∗S ,U ∗R
�

is implementable, there is a PBE
���

σ̄I ,σFR
M

�

, σ̄A
�

,µR

	

for some such
�

σ̄I , σ̄A
�

. However, if
�

U ∗S ,U ∗R
�

is the receiver-optimal feasible pay-
off profile, the sender has an incentive to misreport in the communication stage to
generate the sender-optimal outcome. Similarly, if

�

U ∗S ,U ∗R
�

is any other Pareto ef-
ficient feasible payoff profile, the receiver has an incentive to deviate in the action
stage to generate the receiver-optimal outcome.

Proof of Corollary 1.16. The "if" direction holds due to Theorem 1.14. The "only
if" direction follows from Theorem 1.15: Fix a Pareto efficient feasible payoff pro-
file

�

U ∗S ,U ∗R
�

. From the optimization problem on page 17, it follows that there
is some

�

σ̄∗I , σ̄∗A
�

solving max(σ̄I ,σ̄A )αŪS

�

σ̄I , σ̄A
�

+ (1−α)ŪR

�

σ̄I , σ̄A
�

, with
α ∈ [0,1], so that U ∗i = Ūi

�

σ̄∗I , σ̄∗A
�

for all i. Since c= 0, one obtains that

αŪS

�

σ̄I , σ̄A
�

+ (1 − α)ŪR

�

σ̄I , σ̄A
�

=

∫∫∫∫

αuS(a,ω) + (1 − α)uR(a,ω) dσ̄A (a|π,µ) dµ(ω) dπ
�

µ
�

dσ̄I (π).

Since cost are zero and A∗(ω,αuS + (1−α)uR)∩ A∗(ω0,αuS + (1−α)uR)= ; for all
ω 6=ω0, the objective function is maximized if and only if supp(σ̄I )= {πfull}.

Appendix 1.B Proofs: Optimal Experiments

1.B.1 Section 1.4.1

Proof of Theorem 1.19. Suppose the sender chooses an experiment π not satis-
fying probabilistic independence in any fully revealing PBE E with a pure-strategy
information rule generating Pareto efficient implementable payoffs (US,UR). Let
µ∗ be the set of outcomes µ ∈ supp(π) with µ=

∫

ν dλµ (ν) for some λµ not being
equal to δµ a.e., and let λµ∗ be the conditional distribution over outcomes of π given
µ ∈ µ∗. Since µ∗ is of positive measure p ∈ (0, 1], there exists some λ0 ∈4

�

4Ω
�

with π= pλµ∗ + (1− p)λ0. Let π0 ≡ p
∫

µ∗
λµ dλµ∗

�

µ
�

+ (1− p)λ0 be the experiment
that results from replacing mass p of outcomes in µ∗ by the corresponding distri-
bution over outcomes λµ. By construction, π0 satisfies probabilistic independence.
Furthermore, π is a Blackwell garbling of π0. Implementability of

�

US,UR

�

yields
existence of some σ̃A so that Ui = Ũi

�

π, σ̃A
�

for all i and implementability of
�

ŨS

�

π0, σ̃A
�

, ŨR

�

π0, σ̃A
��

because supp(π0) ⊆ supp(π). Incentive compatibility
(1.2) of

�

π, σ̃A
�

implies ŨS

�

π0, σ̃A
�

= ŨS

�

π, σ̃A
�

since cost are zero. Since π
is a Blackwell garbling of π0, one gets ŨR

�

π0, σ̃A
�

≥ ŨR

�

π, σ̃A
�

. So
�

US,UR

�

is
either dominated by (ŨS

�

π0, σ̃A
�

, ŨR

�

π0, σ̃A
�

), or it is generated by a fully re-
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vealing PBE with a pure-strategy information rule in which the sender chooses the
experiment π0.

Proof of Corollary 1.20. If supp(µ0)= {ω1,ω2}, any experiment π satisfying
probabilistic independence can have most two different outcomes: Suppose not,
i.e., there are at least three different outcomes µ1,µ2,µ3 ∈ supp(π). Define
wi ≡

�

µi

�

ω1

�

,µi

�

ω2

��

0 for each i, and notice that µi(ω)= 0 for all ω /∈ supp(µ0).
The 2-dimensional vectors w1, w2 and w3 are linearly independent implying
existence of some β1,β2,β3 ∈ R, not all zero, so that

∑3
i=1 βi ·wi = 02. Without loss

of generality, suppose β1 < 0 and β2,β3 ≥ 0. Rearranging
∑3

i=1 βi ·wi = 02 yields
w1 =

∑3
i=2

βi
−β1
·wi, where βi

−β1
≥ 0 for i= 2, 3 and

∑3
i=2

βi
−β1
= 1 as

∑3
i=1 βi = 0.

Since this holds true for any three outcomes, there is a positive measure of
outcomes in supp(π) that can be represented as a convex combination of other out-
comes in supp(π)—a contradiction. If cost are zero, an immediate consequence of
Theorem 1.19 is that any Pareto efficient implementable payoff profile is generated
in a fully revealing PBE in which the sender chooses some π with supp(π)≤ 2.

1.B.2 Section 1.4.2

Proof of Lemma 1.24. If π is no extreme point, there exist some α ∈ [0, 1],
and some π1,π2 ∈Π with π1 6= π2 such that π= απ1 + (1−α)π2. But then,
∫

νdπ1(ν)=
∫

νdπ2(ν), so π does not satisfy strong probabilistic independence.
If π does not satisfy strong probabilistic independence, there exist some

p ∈ (0,1), and some λ1,λ2,λ0

1,λ0

2 ∈4
�

4Ω
�

with pλi + (1− p)λ0

i = π for all i
such that λ1 and λ2 are not equal a.e., but

∫

Π
ν dλ1 (ν)=

∫

Π
ν dλ2 (ν). Let

π1 ≡ pλ2 + (1− p)λ0

1 be the experiment resulting from π by replacing mass p of
the distribution over outcomes λ1 by mass p of λ2, and π2 ≡ pλ1 + (1− p)λ0

2. Note
that π1+π2

2 =
pλ1+(1−p)λ0

1+λ2+(1−p)λ0

2
2 = π, so π is no extreme point of Π.

Proof of Theorem 1.25. Suppose the sender chooses an experiment π not being
a convex combination of two experiments satisfying strong probabilistic indepen-
dence in any fully revealing PBE E with a pure-strategy information rule generat-
ing Pareto efficient implementable payoffs (US,UR). In particular, π does not sat-
isfy strong probabilistic independence as π= α ·π+ (1−α) ·π for any α ∈ [0,1].
By Lemma 1.24, π is no extreme point, so there exist π1,π2 with π= π1+π2

2 . By
assumption, π1 or π2 does not satisfy strong probabilistic independence, so for
concreteness, suppose π2 does so. By Lemma 1.24, π2 is no extreme point, so
there exist π3,π4 with π2 =

π3+π4
2 . Thus,π= 2π1+π3+π4

4 . Let Πconv be the set of
all convex combinations

∑

i∈{1,3,4}αiπi. Implementability of
�

US,UR

�

implies ex-
istence of some σ̃A so thatUi = Ũi

�

π, σ̃A
�

for all i. Also, it implies implementabil-
ity of

�

ŨS

�

π0, σ̃A
�

, ŨR

�

π0, σ̃A
��

as supp(π0) ⊆ supp(π) ensures that (1.2) holds
true for any π0 ∈Πconv. Denote by Π

�

UR

�

the set of experiments π0 ∈Πconv with
ŨR

�

π0, σ̃A
�

=UR. By linearity of ŨR

�

·, σ̃A
�

on Πconv, this set forms a straight
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line in the 2-simplex Πconv. Linearity of ŨS

�

·, σ̃A
�

on Πconv implies that one of
the endpoints of this line π00 maximizes ŨS

�

·, σ̃A
�

on Πconv on that line. More-
over, α1α3α4 = 0 at any such endpoint, that is, π00 a convex combination of π1 and
π3, π1 and π4, or π3 and π4. By construction, ŨS

�

π00, σ̃A
�

≥US as π00 ∈Π
�

UR

�

.
If ŨS

�

π00, σ̃A
�

>US,
�

US,UR

�

is dominated by the implementable payoff profile
�

ŨS

�

π00, σ̃A
�

,UR

�

contradicting Pareto efficient implementability of the former
one. If ŨS

�

π00, σ̃A
�

=US, then
�

US,UR

�

is generated by a fully revealing PBE with
a pure-strategy information rule in which the sender chooses the experiment π00

being a convex combination of two experiments. If these two experiments satisfy
strong probabilistic independence, the proof is complete. If not, one can repeat the
above argumentation takingπ1 = π00 as the new initial experiment instead ofπ. One
can rerun this procedure until either

�

US,UR

�

is shown to be dominated or until
one finds an experiment π00n satisfying the properties mentioned in the theorem’s
statement. This process ends eventually: If

�

US,UR

�

is not shown to be dominated
in any (finite) round n and the constructed experiment π00n does not satisfy (i),
then limn→∞π

00n is an extreme point of Πconv thus also of 4
�

4Ω
�

, hence satis-
fying strong probabilistic independence. Consequently,

�

US,UR

�

is generated by a
fully revealing PBE with a pure-strategy information rule where the sender takes
limn→∞π

00n.

Proof of Corollary 1.26. Suppose supp(µ0)= {ω1, . . . ,ωn} for some n ∈ N.
Verify that | supp(π)| ≤ supp(µ0)= n for all π satisfying strong probabilis-
tic independence. If not, there exists some π satisfying strong probabilis-
tic independence and | supp(π)| ≥ n+ 1. There are at least n+ 1 differ-
ent distributions over outcomes λ1, . . . ,λn+1 ∈4

�

4Ω
�

of positive measure:
∑n+1

i=1 αiλi +
�

1−
∑n+1

i=1 αi

�

λ0 = π for some α1, . . . ,αn+1 ≥ 0 with
∑n+1

i=1 αi ≤ 1.
Define the vector vi ≡

�∫

Π
µ
�

ω1

�

dλi

�

µ
�

, . . . ,
∫

Π
µ
�

ωn

�

dλi

�

µ
��

0 for all
i ∈ {1, . . . , n+ 1}. As

∫

Π
µ (ω) dλi

�

µ
�

= 0 for all ω /∈ Ω, the posterior distri-
bution of the state given the distribution over outcomes λi is fully characterized
by vi. Since n+ 1 n-dimensional vectors are linearly dependent, there are numbers
β1, . . . ,βn+1 ∈ R, not all zero, so that

∑n+1
i=1 βi · vi = 0n. Note that

∑n+1
i=1 βi = 0 as

∑n
j=1

∫

Π
µ
�

ωj

�

dλi

�

µ
�

= 1 for all i. Particularly, there is some i with βi < 0. Rear-
ranging

∑n+1
i=1 βi · vi = 0n yields

∑

i:βi<0
βi

−
∑

j:βj<0 βj
· vi =

∑

i:βi≥0
βi

∑

j:βj<0 βj
· vi, where

βi
−
∑

j:βj<0 βj
∈ [0,1] for all βi < 0 and βi

∑

j:βj<0 βj
∈ [0, 1] for all βi ≥ 0. Hence, there

are two convex combinations (over convex combinations) over outcomes which
can be represented by one another, that is, π does not satisfy strong probabilistic
independence. With that, it follows from Theorem 1.25 that any Pareto efficient
implementable payoff profile is generated by a fully revealing PBE in which the
sender chooses a experiment with at most n+ n= 2n different outcomes.
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Appendix 1.C Proofs: Optimality of Bi-Pooling Policies

Proof of Lemma 1.31. Denote ω̄(µ)=
∫

ω dµ (ω). By Assumption 1.29, it holds
that

∫

ui (a,ω) dµ (ω) = ui,1(a) + ui,2(a) · ω̄(µ) +

∫

ui,3(ω) dµ (ω) (1.C.1)

for all µ ∈4Ω and each i.
Now fix any µ,µ0 ∈4Ω with ω̄(µ)= ω̄(µ0). Condition (1.C.1) implies that

argmaxa∈A

∫

uR (a,ω) dµ (ω)= argmaxa∈A

�

uR,1(a)+ uR,2(a) · ω̄(µ)
�

and thus
argmaxa∈A

∫

uR (a,ω) dµ (ω)= argmaxa∈A

∫

uR (a,ω) dµ0 (ω). Take any a, a0 ∈ A,
and note that by (1.C.1), it follows that

∫

uS(a,ω) dµ(ω)≥
∫

uS(a,ω) dµ(ω)
is equivalent to uS,1(a)+ uS,2(a) · ω̄(µ)≥ uS,1(a0)+ uS,2(a0) · ω̄(µ), and thus
also equivalent to

∫

uS(a,ω) dµ0(ω)≥
∫

uS(a,ω) dµ0(ω). Finally, for all
µ ∈ supp(π) and ω ∈ Ω, let vi,1(µ)≡

∫

ui,1(a)+ ui,2(a) · ω̄(µ) dσA (a|π,µ)
and vi,2(ω)≡ ui,3(ω). With that, (1.7) can be easily verified.

Proof of Corollary 1.34.
(i). For any π, let λ̄(π) be the distribution over posterior means of the state un-

der π. As shown by Kleiner, Moldovanu, and Strack (2021), λ̄(π) is not an extreme
point in the space of distributions over posterior means if π is no bi-pooling policy.
Hence, there exist experiments π1 and π2 such that λ̄(π)= λ̄(π1)+λ̄(π2)

2 . Note that
supp(λ̄(π1)), supp(λ̄(π2)) ⊆ supp(λ̄(π)). So by Lemma 1.31, π1 and π2 are imple-
mentable if π is implementable. The rest of the proof follows exactly the same steps
as the proof of Theorem 1.25.

(ii). By the construction as in Arieli et al. (2023), either λ̄(π1) or λ̄(π2) is a
Blackwell garbling of λ̄(π). The rest of the proof follows the same steps as the proof
of Theorem 1.19.

Appendix 1.D Proofs: Cheap-Talk With a Perfectly Informed
Sender

Proof of Corollary 1.36. The proof works analogously to the proof of Corol-
lary 1.34: For any experiment π that is no bi-partition, there exist π1, π2 ∈Π such
that λ̄(π)= λ̄(π1)+λ̄(π2)

2 and for all i ∈ {1,2}, and if ω ∈ supp(µ) for some µ ∈ πi,
there exists some µ0 ∈ π with ω̄(µ)= ω̄(µ0) so that ω ∈ supp(µ0). The latter prop-
erty ensures that π1 and π2 are implementable if π is.

Here is the construction of π1 and π2: Fix some Ω0 with µ0(Ω0)> 0
and |Ω0| ≥ 2 such that Y ≡

⋂

ω∈Ω0{ω̄(µ) :ω ∈ supp(µ) and Prob(µ|ω)> 0}≥ 3.
Choose ω̄1, ω̄2, ω̄3 ∈ Y. For each i ∈ {1,2, 3}, let p∗i > 0 (qi) be the mass of states
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in (not in) Ω0 associated with ω̄i, and let x∗i (yi) be the conditional mean of this
mass. Define the map f : R×R5→ R5 as

f(p1, (p2, p3, x1, x2, x3)) =













p1x1 + q1y1 − (p1 + q1)ω̄1

p2x2 + q2y2 − (p2 + q2)ω̄2

p3x3 + q3y3 − (p3 + q3)ω̄3

p1 + p2 + p3 − µ0(Ω0)
p1x1 + p2x2 + p3x3 − µ0(Ω0)

∫

ωdµ0(ω)













.

Note that f(p∗1, (p∗2, p∗3, x∗1, x∗2, x∗3))= 0, and f is continuously differentiable.
The derivative of (p2, p3, x1, x2, x3) 7→ f(p∗1, (p2, p3, x1, x2, x3)) is invertible at
(p∗2, p∗3, x∗1, x∗2, x∗3): It can be shown that the determinant of the Jacobian matrix
is p∗1p∗2p∗3(ω̄3 − ω̄2) 6= 0. By the implicit function theorem, there exist a function
g : R→ R5 such that f(p1, g(p1))= 0 for all p1 sufficiently close to p∗1.

Then, one can construct the experiment π1 (π2) based on the parameters
(p∗1 + ε, g(p∗1 + ε)) ((p∗1 − ε, g(p∗1 − ε))) for some ε > 0 sufficiently close to zero,
keeping everything else as in π. Note that π is a Blackwell garbling of π1.

Appendix 1.E Proofs: Uniform-Quadratic Case

Proof of Lemma 1.37. Solving maxa∈A

∫

− (a−ω)2 dµ (ω) yields the first-order
condition a= ω̄(µ). It is the global maximizer by strict concavity of the objective
function.

Take any µ,µ0 ∈ supp(π), and notice that the incentive compatibility constraints
(1.2) of the sender to fully reveal µ instead of misreporting µ0 reduce to

0 ≤
∫

−
�

ω̄(µ) −ω − b
�2
+
�

ω̄(µ0) −ω − b
�2

dµ(ω)

=

∫

−
�

ω̄(µ) −ω − b
�2
+
�

ω̄(µ0) − ω̄(µ) + ω̄(µ) −ω − b
�2

dµ(ω)

=

∫

2
�

ω̄(µ0) − ω̄(µ)
�

·
�

ω̄(µ) −ω − b
�

+
�

ω̄(µ0) − ω̄(µ)
�2

dµ(ω)

=
�

ω̄(µ0) − ω̄(µ) − 2b
�

·
�

ω̄(µ0) − ω̄(µ)
�

.

Hence, either ω̄(µ0)− ω̄(µ)≥ 2b or ω̄(µ0)− ω̄(µ)≤ 0 must hold. Similarly, the
sender has an incentive to truthfully reveal µ0 instead of deviating to µ if

0 ≤
�

ω̄(µ) − ω̄(µ0) − 2b
� �

ω̄(µ) − ω̄(µ0)
�

,

implying that ω̄(µ)− ω̄(µ0)≥ 2b or ω̄(µ)− ω̄(µ0)≤ 0 must hold. These two incen-
tive compatibility constraints yield

�

�ω̄(µ)− ω̄(µ0)
�

�≥ 2b.
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Ex-ante expected payoffs. Notice that

ŨR

�

π, σ̃A
�

=

∫∫

−
�

ω̄(µ) −ω
�2

dµ (ω) dπ
�

µ
�

= −
n
∑

i=1

piVar
�

ω|µi

�

,

where Var
�

ω|µi

�

is the conditional distribution of the state given µi. These con-
ditional variances take simple analytic forms for bi-pooling policies: If µi forms
a 1-partition, the state is uniformly distributed on the interval

�

ω̄i −
pi
2 , ω̄i +

pi
2

�

,
so Var

�

ω|µi

�

=
p2

i
12 . Let Ωi ⊆ Ω be set of states associated with the 1-partition µi.

To determine the conditional variance given µi or µi+1 if µi and µi+1 form a 2-
partition, let Ωi,i+1 ⊆ Ω be set of states associated with outcomes µi and µi+1 (i.e.,
if the state lies in Ωi,i+1, the outcome is µi or µi+1). Let di = ω̄i − inf{Ωi,i+1} and
d̄i+1 = sup{Ωi,i+1}− ω̄i+1. Simple algebraic transformations yield

Var
�

ω|µi or µi+1

�

=
(pi + pi+1)2

12
−
�pi + pi+1

2
− di

��pi + pi+1

2
− d̄i+1

�

.

Proof of Lemma 1.38. Fix n≥ 3 and b ∈
� 1

2n , 1
2(n−1)

�

. First, I show that ignoring
all incentive compatibility constraints, uniform partition are the best bi-pooling poli-
cies:

Fact 1. The optimal bi-pooling policy of size k ∈ N is the uniform partition of size k.

Proof. Consider a non-monotone bi-pooling policy with outcomes µ1, . . . ,µk and
probabilities p1, . . . , pk. By non-monotonicity, there is some i so that µi and µi+1

form a 2-partition. Consider a new experiment with probabilities p̂1, . . . , p̂k that is
constructed from the original experiment by splitting the 2-partition between µi and
µi+1 into two separate 1-partitions while keeping their weights equal: p̂i = pi and
p̂i+1 = pi+1. Note that

k
∑

i=1

p̂iÓVar
�

ω|µi

�

−
k
∑

i=1

piVar
�

ω|µi

�

= −
�

pi + pi+1

�

�pi + pi+1

2
−

pi

2

��pi + pi+1

2
−

pi+1

2

�

+
�

pi + pi+1

�

�pi + pi+1

2
− di

��pi + pi+1

2
− d̄i+1

�

< 0

since di >
pi
2 and d̄i+1 >

pi+1
2 as µi and µi+1 form a 2-partitions. So the optimal bi-

pooling policy must be monotone. Now suppose it was not uniform. But then, it
holds that

k
∑

i=1

piVar
�

ω|µi

�

=
k
∑

i=1

p3
i

12
>

k
∑

i=1

� 1
k

�3

12 ,
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where the last term is the weighted conditional variance of the uniform partition of
size k. The inequality follows from convexity of x3 and

∑k
i=1 pi =

∑k
i=1

1
k = 1.

Next, notice that
∑k

i=1

� 1
k

�3

12 >
∑n−1

i=1

� 1
n−1

�3

12 for all k< n− 1, that is, the uniform
partition of size n− 1 yields strictly dominates the uniform partition of size k< n− 1.
Moreover, the uniform partition of size n− 1 is implementable as the IC-constraints
are satisfied: The distance between any two adjacent induced actions is 1

n−1 ≥ 2b as
b≤ 1

2(n−1) . Consequently, the optimal experiment is either of size n or the uniform
partition of size n− 1.

It remains to show that under an optimal bi-pooling policy of size n, the out-
comes µ1 and µn form 1-partitions and the incentive compatibility constraints of all
adjacent induced actions are binding. The proof is completed by the following two
facts:

Fact 2. For any optimal bi-pooling policy, both µ1 and µn are 1-partitions.

Proof. Suppose µ1 is no 1-partition, that is, µ1 and µ2 form a 2-partition. Hence, it
holds that p1 + p2 > 2 · (ω̄2 − ω̄1) and max

�

d1, d̄2

	

<
p1+p2

2 . One obtains that

Var
�

ω|µ1 or µ2

�

=

�

p1 + p2

�2

12
−
�p1 + p2

2
− d1

�

·
�p1 + p2

2
− d̄2

�

.

Construct a new experiment by decreasing ω̄1 by some ε > 0, decreasing p1 by
δ = p1ε

ω̄2−ω̄1+ε
∈ (0, p1) and increasing p2 by δ , keeping everything else unmodi-

fied.⁴⁰ Note that all IC-constraints remain satisfied because all posterior means ex-
cept ω̄1 are the same as under the original experiment, and ω̄1 decreases. As long
as ε < p1+p2

2 −
�

ω̄2 − ω̄1

�

, µ1 and µ2 continue forming a 2-partition. One gets

ÓVar
�

ω|µ1 or µ2

�

=

�

p1 + p2

�2

12
−
�p1 + p2

2
−
�

d1 − ε
�

�

·
�p1 + p2

2
− d̄2

�

.

For all ε ∈
�

0, p1+p2
2 −

�

ω̄2 − ω̄1

��

, this variance is strictly smaller than under the
original experiment because

ÓVar
�

ω|µ1 or µ2

�

− Var
�

ω|µ1 or µ2

�

= −ε ·
�p1 + p2

2
− d̄2

�

< 0.

Since the conditional variance of the state givenω /∈ Ω1,2 and the set Ω1,2 (and thus
the probability that ω̃ ∈ Ω1,2)) are the same under both experiments, the original
bi-pooling policy is not optimal.
The proof for the fact that µn must be a 1-partition, too, works analogously.

40. δ is chosen such that the conditional mean of the state given µ1 or µ2 remains unchanged,
that is, it satisfies p1ω̄1 + p2ω̄2 = (p1 −δ)(ω̄1 − ε)+ (p2 +δ)ω̄2.
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Fact 3. Under any optimal bi-pooling policy of size n ∈
� 1

2b , 1
2b + 1

�

∩N, all incentive
compatibility constraints are binding.

Proof. Suppose not, i.e., ω̄− ω̄i−1 > 2b for some i ∈ {2, . . . , n}. There are four
different cases to be considered:

Case 1: (a) µi−1 belongs to a 1-partition, and µi belongs to a 2-partition.
(b) µi−1 belongs to a 2-partition, and µi belongs to a 1-partition.

Case 2: µi−1 and µi belong to different 2-partitions.
Case 3: µi−1 and µi belong to the same 2-partition.
Case 4: µi−1 and µi both belong to a 1-partition.
Proof of Case 1 (a). : Since µi and µi+1 form a 2-partition,

pi + pi+1 > 2
�

ω̄i+1 −ωi

�

and max
�

di, d̄i+1

	

<
pi+pi+1

2 .
Now construct a new experiment by decreasing ω̄i by some ε > 0, decreasing pi

by δ = piε
ω̄i+1−ω̄i+ε

∈ (0, pi), and increasing pi+1 by δ so that all incentive constraints
remain satisfied, that is,

�

ω̄i − ε
�

− ω̄i−1 ≥ 2b ⇔ ε ≤
�

ω̄i − ω̄i−1

�

− 2b,

and such that µi and µi+1 continue forming a 2-partition, i.e.,

pi + pi+1 > 2 ·
�

ω̄i+1 −
�

ω̄i − ε
��

⇔ ε <
pi + pi+1

2
−
�

ω̄i+1 − ω̄i

�

.

The total decrease of the conditional variance of the state given µi or µi+1 is

ε ·
�pi + pi+1

2
− d̄i+1

�

> 0.

Proof of Case 1 (b). : The proof of this case works
analogously to the proof of Case 1 (a): Increasing ω̄i−1 by
ε ∈

�

0,min
��

ω̄i−1 − ω̄i−2

�

− 2b, pi−2+pi−1
2 −

�

ω̄i−1 − ω̄i−2

�	�

, decreasing pi−1 by
δ = pi−1ε

ω̄i−1−ω̄i−2+ε
and increasing pi−2 by δ yields a better experiment.

Proof of Case 2. : The proof of this case proceeds exactly as in Case 1 (a).
Proof of Case 3. : Note that ω̄i−1 − ω̄i−2 = ω̄i+1 − ω̄i = 2b by Case 1/2. Since

µi−1 and µi form a 2-partition, one can conclude that di−1 + d̄i > ω̄i − ω̄i−1 > 2b,
implying di−1 > b or d̄i > b. As pi−1 + pi = di−1 +

�

ω̄i − ω̄i−1

�

+ d̄i, it follows that
pi−1 + pi > 4b and di−1 + d̄i >

pi−1+pi
2 .

(i) Let’s consider the case where di−1 ≤ d̄i, so in particular it holds that d̄i > b:
If µi+1 is a 1-partition, one can construct a new experiment by shifting the in-

terval of states
�

ω̄i + d̄i − ε, ω̄i + d̄i

�

from outcomes µi−1 or µi to outcome µi+1 for
some ε > 0. Since µi+1 is a 1-partition, ω̄i+1 decreases by exactly ε2 . Hence, ω̄i must
decrease by at least ε2 in order to fulfill the ith incentive compatibility constraint. For



52 | 1 Endogenous Information Acquisition in Cheap-Talk Games

concreteness, suppose that ω̄i decreases by exactly ε2 as well. To satisfy the (i− 1)th
incentive compatibility constraint, it is necessary that

�

ω̄i −
ε

2

�

− ω̄i−1 ≥ 2b ⇔ ε ≤
ω̄i − ω̄i−1

2
− b.

One obtains that

i+1
∑

j=i−1

p̂jÓVar
�

ω|µj

�

=

�

pi−1 + pi − ε
�3

12
+

�

pi+1 + ε
�3

12
−
�

pi−1 + pi − ε
�

·
�pi−1 + pi − ε

2
− di−1

�

·
�pi−1 + pi − ε

2
−
�

d̄i −
ε

2

��

.

At ε= 0, the derivative with respect to ε is

−

�

pi−1 + pi

�2

4
+

p2
i+1

4
+
�pi−1 + pi

2
− d̄i

�

·
�

pi−1 + pi − di−1

�

. (1.E.1)

Notice that di−1 >
pi−1+pi

2 − d̄i holds due to the fact that µi−1 and µi are a 2-partition,
and that pi+1 = 2 ·

�

2b− d̄i

�

because µi+1 is a 1-partition, which implies pi+1 < 2b as
d̄i > b. Consequently, the derivative term at ε= 0 (1.E.1) is strictly negative as

−

�

pi−1 + pi

�2

4
+

p2
i+1

4
+
�pi−1 + pi

2
− d̄i

�

·
�

pi−1 + pi − di−1

�

< −

�

pi−1 + pi

�2

4
+

p2
i+1

4
+
�pi−1 + pi

2
− d̄i

�

·
�pi−1 + pi

2
+ d̄i

�

=
p2

i+1

4
− d̄2

i <
(2b)2

4
− b2 = 0.

Since the derivative is continuous in ε, it is thus strictly negative on some non-empty
open set around zero. So for any ε > 0 sufficiently close to zero, the conditional
variance of the state given µi−1 or µi or µi+1 is strictly smaller under the new ex-
periment compared to the original bi-pooling policy (which corresponds to the case
when ε= 0), which therefore cannot be optimal.

If µi+1 and µi+2 form a 2-partition and the (i+1)th incentive constraint is bind-
ing, i.e., ω̄i+2 − ω̄i+1 = 2b, construct a new experiment by shifting the interval
(ω̄i + d̄i − ε, ω̄i + d̄i) from outcomes µi−1 or µi to outcomes µi+1 or µi+2 for some
ε > 0 leaving ω̄i and ω̄i+1 unchanged. As long as

di−1 + d̄i − ε ≥
pi−1 + pi − ε

2

⇔ ε ≤ 2 ·
�

di−1 + d̄i −
pi−1 + pi

2

�

= 2 ·
�

di−1 + d̄i

�

−
�

pi−1 + pi

�

,
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µi+1 and µi+2 continue being a 2-partition. One obtains that

i+2
∑

j=i−1

p̂jÓVar
�

ω|µj

�

=

�

pi−1 + pi − ε
�3

12
−
�

pi−1 + pi − ε
�

·
�pi−1 + pi − ε

2
− di−1

�

·
�pi−1 + pi − ε

2
−
�

d̄i − ε
�

�

+

�

pi+1 + pi+2 + ε
�3

12
−
�

pi+1 + pi+2 + ε
�

·
�pi+1 + pi+2 + ε

2
−
�

di+1 + ε
�

�

·
�pi+1 + pi+2 + ε

2
− d̄i+2

�

.

At ε= 0, the derivative with respect to ε becomes

− d̄i ·
��

pi−1 + pi

�

− di−1

�

+ di+1 ·
��

pi+1 + pi+2

�

− d̄i+2

�

= −d̄i ·
��

ai − ai−1

�

+ d̄i

�

+ di+1 ·
�

di+1 +
�

ai+2 − ai+1

��

< −b · (2b + b) + b · (b + 2b) = 0.

By continuity of the derivative term in ε, there exists some non-empty open interval
around zero such that the derivative is strictly negative on this interval. So for any
ε > 0 sufficiently close to zero, the conditional variance of the state given µi−1, µi,
µi+1 or µi+2 is strictly smaller than under the original experiment.

As a consequence, the original experiment can only be optimal if µi+1 and µi+2

form a 2-partition and ω̄i+2 − ω̄i+1 > 2b. Since di+1 =
�

ω̄i+1 − ω̄i

�

− d̄i < 2b− b= b,
this implies d̄i+2 > b. So by applying the same reasoning as above, this can only be
optimal if µi+3 and µi+4 form a 2-partition and ω̄i+4 − ω̄i+3 > 2b. Iterating forward,
it is thus necessary that for all j ∈ {i, i+ 2, . . . , n− 2, n},µj−1 andµj form a 2-partition
and ω̄j − ω̄j−1 > 2b. So in particular, n− i must be even. However, since µn forms a
1-partition by Fact 2, this is not possible under an optimal bi-pooling policy.

(ii) The proof for the case where di−1+> d̄i works analogously: One can show
that µi−2 cannot form a 1-partition, but for all j ∈ {2, 4, . . . , i− 2, i}, µj must belong
to a 2-partition together with µj−1 such that the (j− 1)th incentive compatibility
constraint is binding—implying that i must be even. However, this contradicts the
fact that µ1 forms a 1-partition by Fact 2.

Proof of Case 4. : If both µi and µi−1 are 1-partitions, it follows from
ω̄i − ω̄i−1 > 2b that pi−1 + pi = 2 ·

�

ω̄i − ω̄i−1

�

> 4b.
Let’s focus on the case pi ≥ pi−1. Consequently, it holds that pi > 2b.
Suppose first that i= n, i.e., pn > 2b. Since µ1 and µn form a 1-partition, respec-

tively, it holds that d1 =
p1
2 and d̄n =

pn
2 . Hence, one obtains that

p1 + pn

2
= d1 + d̄n = 1 −

n
∑

j=2

ω̄j − ω̄j−1 ≤ 1 − (n − 1) · 2b < 2b,
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where the first, weak inequality holds true due to the fact that all incentive compat-
ibility constraints are satisfied, and the second, strong inequality follows from the
fact that b> 1

2n . One thus gets that p1 < 2b< pn.
Consider now the following alternative experiment: Increase p1 by some ε > 0

and decrease pn by the same ε such that

pn−1 + pn − ε
2

≥ 2b ⇔ ε ≤ 4b −
�

pn−1 + pn

�

.

One obtains that

∑

j∈{1,n}

p̂jÓVar
�

ω|µj

�

=

�

p1 + ε
�3

12
+

�

pn − ε
�3

12
.

Its derivative with respect to ε is p2
1−p2

n
4 < 0 at ε= 0. So the derivative is strictly

negative on some non-empty, open interval around ε= 0. Hence, the conditional
variance of the state given µ1 or µn is strictly smaller under the alternative experi-
ment for any ε > 0 sufficiently close to zero, implying that the original bi-pooling
policy cannot be optimal. Consequently, it must be that i< n.

Suppose µi+1 is a 1-partition. If pi+1 ≥ pi, one gets
ω̄i+1 − ω̄i =

pi+1+pi
2 > 2b+2b

2 = 2b. But then, one can find a better experiment
by decreasing pi by some ε > 0 and increasing min{p1, pn}< 2b by the same ε so
that all incentive compatibility constraints remain satisfied, i.e., pi+1 + pi − ε≥ 4b
and pi + pi−1 − ε≥ 4b, or, equivalently, ε≤ 4b− pi − pi+1. Note that

∑

j∈{1,i,n}

p̂jÓVar
�

ω|µj

�

=

�

min{p1, pn} + ε
�3

12
+

�

pi − ε
�3

12
.

The derivative with respect to ε is min{p1,pn}2−p2
i

4 < 0 at ε= 0, implying that the orig-
inal experiment is not optimal.

Hence, it must be that pi+1 < pi. But then, there is a better experiment under
which pi+1 is increased by some ε > 0 while pi is reduced by the same ε such that
all incentive compatibility constraints remain valid, i.e., pi−1 + pi − ε≥ 4b, and such
that the conditional variance of the state given µi or µi+1 shrinks because the deriva-
tive of

∑

j∈{i,i+1}

p̂jÓVar
�

ω|µj

�

=

�

pi − ε
�3

12
+

�

pi+1 + ε
�3

12

with respect to ε is strictly negative at ε= 0.
Hence, µi+1 must belong to a 2-partition. Let j be the smallest integer larger

than i+ 1 such that µj is a 1-partition. This is well-defined as µn is a 1-partition
by Fact 2. Then, j− (i+ 1) is even, and for all k ∈ {1, . . . , j−(i+1)

2 }, µ2k+i−1 and µ2k+i
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form a 2-partition. Moreover, one obtains that ω̄l − ω̄l−1 = 2b for all l ∈ {i+ 1, . . . , j}
by Cases 1-3. Consider the following alternative experiment: For some ε ∈ (0, b),
shift the interval

�

sup{Ωi}− ε, sup{Ωi}
�

from outcome µi to outcomes µi+1 or
µi+2, for each k ∈ {1, . . . , j−(i+1)

2 − 1}, shift
�

sup{Ω2k+i−1,2k+i}− ε, sup{Ω2k+i−1,2k+i}
�

from Ω2k+i−1,2k+i to Ω2k+i+1,2k+i+2, and shift
�

sup{Ωj−2,j−1}− ε, sup{Ωj−2,j−1}
�

from
Ωj−2,j−1 to Ωj such that the posterior means ω̄i, ω̄i+1, . . . , ω̄j−1, ω̄j decrease by ε

2 ,
respectively.⁴1 The fact that both ω̄i and ω̄j decrease by ε

2 yields that µi and µj

remain 1-partitions. Furthermore, the construction ensures that µ2k+i−1 and µ2k+i

continue forming a 2-partition for all k ∈ {1, . . . , j−(i+1)
2 }. Additionally, as long as

ω̄i − ω̄i−1 −
ε
2 ≥ 2b, all incentive compatibility constraints remain valid. Besides,

note that d2k+i−1 < b and d̄2k+i > b holds for all k ∈ {1, . . . , j−(i+1)
2 }, which can be

shown by induction on k: For k= 1, this is true because

di+1 =
�

ω̄i+1 − ω̄i

�

− d̄i = 2b −
pi

2
< 2b −

2b
2
= b,

and thus

d̄i+2 = pi+1 + pi+2 −
�

ω̄i+2 − ω̄i+1

�

− di+1 > 4b − 2b − b = b.

So for k> 1, one obtains that

d2k+i−1 =
�

ω̄2(k−1)+i+1 − ω̄2(k−1)+i

�

− d̄2(k−1)+i = 2b − ˆ̄d2(k−1)+i < b,

as d̄2(k−1)+i > b by the induction hypothesis (k− 1), and hence

d̄2k+i = p2k+i−1 + p2k+i −
�

ω̄2k+i − ω̄2k+i−1

�

− d2k+i−1 > 4b − 2b − b = b.

For any k ∈ {1, . . . , j−(i+1)
2 }, one obtains

2k+i
∑

l=2k+i−1

p̂lÓVar
�

ω|µl

�

=

�

p2k+i−1 + p2k+i

�3

12
−
�

p2k+i−1 + p2k+i

�

·
�p2k+i−1 + p2k+i

2
−
�

d2k+i−1 +
ε

2

��

·
�p2k+i−1 + p2k+i

2
−
�

d̄2k+i −
ε

2

��

.

At ε= 0, the derivative with respect to ε is

p2k+i−1 + p2k+i

2
·
�

d2k+i−1 − d̄2k+i

�

<
p2k+i−1 + p2k+i

2
· (b − b) = 0.

41. Choosing ε < b ensures that intervals are shifted from one 1- or 2-partition to the next one
only, that is,

�

sup{Ωi}− ε, sup{Ωi}
�

⊆ Ωi and
�

sup{Ω2k+i−1,2k+i}− ε, sup{Ω2k+i−1,2k+i}
�

⊆ Ω2k+i−1,2k+i for
every k ∈ {1, . . . , j−(i+1)

2 }.
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Moreover, note that

∑

l∈{i,j}

p̂lÓVar
�

ω|µl

�

=

�

pi − ε
�3

12
+

�

pj + ε
�3

12
,

and its derivative with respect to ε is − p2
i −p2

j

4 < 0 at ε= 0 because pi > 2b and
pj = 2dj = 2

�

ω̄j − ω̄j−1 − d̄j−1

�

< 2(2b− b)= 2b.
Therefore, one can conclude by the same reasoning as in the above three cases

that there is a better experiment for some ε > 0 sufficiently close to zero.

Proof of Lemma 1.39, Lemma 1.40 and Theorem 1.41.
Optimal Partial Bi-pooling Policies. Consider the following auxiliary problem:
Fix b> 0, j ∈ N and (ω, ω̄) ⊂ [0, 1]. The aim is to find an optimal partial bi-
pooling policy of size j on the interval (ω, ω̄). I characterize the optimal partial
bi-pooling policies with ω̄i − ω̄i−1 = 2b for all i ∈ {2, . . . , j}, d1 ≡ ω̄1 −ω ∈ (0,2b)
and d̄j ≡ ω̄− ω̄j ∈ (0,2b).

Optimal Partial Bi-pooling Policy Given d
1
and d̄j. I characterize the optimal

partial bi-pooling policy for any fixed d1 ∈ (0, 2b) and d̄j ∈ (0,2b) and for any j ∈ N:
I determine under which conditions Ω1 forms a 1-partition or a 2-partition with Ω2.
Then, I compute the optimal conditional variance, which turns out to depend on d1,
d̄j and j only. Let v∗ : (0, 2b)× (0, 2b)×N→ R be defined by

v∗(d1, d̄j, j) =
�

d1 + 2b(j − 1) + d̄j

�

· Var(ω|ω ∈ (ω, ω̄)).

j = 1: Ω1 forms a 1-partition, so d1 = d̄1. Therefore, v∗(d1, d̄1, 1)= (d1+d̄1)
3

12 .
j = 2: Ω1 and Ω2 form a 2-partition, so d1 + d̄2 ≥ 2b. One obtains

v∗(d1, d̄2, 2) =
d3

1 + d̄3
2

3
+ b · (d2

1 + d̄2
2) −

4b3

3
.

j = 3:Ω1 forms a 1-partition iff d1 ≤ d̄3.Ω1 andΩ2 form a 2-partition iff d1 ≥ d̄3.
One obtains

v∗(d1, d̄3, 3) =

(

v∗(d1, d1, 1) + v∗(2b − d1, d̄3, 2) , if d1 ≤ d̄3

v∗(d1, 2b − d̄3, 2) + v∗(d̄3, d̄3, 1) , if d1 ≥ d̄3

=

(

d3
1+d̄3

3
3 + 3bd2

1 + bd̄2
3 − 8b2d1 +

16b3

3 , if d1 ≤ d̄3
d3

1+d̄3
3

3 + bd2
1 + 3bd̄2

3 − 8b2d̄3 +
16b3

3 , if d1 ≥ d̄3
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Lemma 1.50. If j≥ 4, any optimal partial bi-pooling policy on (ω, ω̄) satisfies:
(i) If j is even, Ω1 forms a 1-partition iff d1 ≤min { (j−2)b

j−3 ,max{b, 2b− d̄j}}. Ω1 and Ω2

are a 2-partition iff d1 ≥min { (j−2)b
j−3 ,max{b, 2b− d̄j}}. The optimal value is

v∗(d1, d̄j, j) =






































































d3
1+d̄3

j

3 + 3b
�

d2
1 + d̄2

j

�

− 8b2
�

d1 + d̄j

�

+ 2(j+14)b3

3 , d1 ≤ b ∧ d̄j ≤ b
d3

1+d̄3
j

3 + (2j − 5)bd2
1 + 3bd̄2

j − 4(j − 2)b2d1 − 8b2d̄j +
(8j+4)b3

3 , d1 + d̄j ≤ 2b ∧ (j−2)b
j−3 ≥ d1 ≥ b

d3
1+d̄3

j

3 + 3bd2
1 + (2j − 5)bd̄2

j − 8b2d1 − 4(j − 2)b2d̄j +
(8j+4)b3

3 , d1 + d̄j ≤ 2b ∧ (j−2)b
j−3 ≥ d̄j ≥ b

d3
1+d̄3

j

3 + bd2
1 + 3bd̄2

j − 8b2d̄j +
�

2(j+5)
3 − 2

j−3

�

b3 , d1 ≥
(j−2)b

j−3 ∧ d̄j ≤
(j−4)b

j−3
d3

1+d̄3
j

3 + 3bd2
1 + bd̄2

j − 8b2d1 +
�

2(j+5)
3 − 2

j−3

�

b3 , d1 ≤
(j−4)b

j−3 ∧ d̄j ≥
(j−2)b

j−3
d3

1+d̄3
j

3 + (2j − 3)bd2
1 + bd̄2

j − 4(j − 2)b2d1 +
4(2j−5)b3

3 , d1 + d̄j ≥ 2b ∧ b ≥ d1 ≥
(j−4)b

j−3
d3

1+d̄3
j

3 + bd2
1 + (2j − 3)bd̄2

j − 4(j − 2)b2d̄j +
4(2j−5)b3

3 , d1 + d̄j ≥ 2b ∧ b ≥ d̄j ≥
(j−4)b

j−3
d3

1+d̄3
j

3 + b ·
�

d2
1 + d̄2

j

�

+ 2(j−4)b3

3 , d1 ≥ b ∧ d̄j ≥ b

(ii) If j is odd, Ω1 forms a 1-partition iff d1 ≤min { j−1
j−2 · b,max{b, d̄j}}. Ω1 and Ω2 are

a 2-partition iff d1 ≥min { j−1
j−2 · b, max{b, d̄j}}. The optimal value is

v∗(d1, d̄j, j) =






































































d3
1+d̄3

j

3 + 3b
�

d2
1 + d̄2

j

�

− 8b2
�

d1 + d̄j

�

+
�

2(j+14)
3 − 2

j−4

�

b3 , d1 ≤
(j−5)b

j−4 ∧ d̄j ≤
(j−5)b

j−4
d3

1+d̄3
j

3 + (2j − 5)bd2
1 + 3bd̄2

j − 4(j − 3)b2d1 − 8b2d̄j +
8(j−1)b3

3 , d1 ≥ d̄j ∧ b ≥ d1 ≥
(j−5)b

j−4
d3

1+d̄3
j

3 + 3bd2
1 + (2j − 5)bd̄2

j − 8b2d1 − 4(j − 3)b2d̄j +
8(j−1)b3

3 , d̄j ≥ d1 ∧ b ≥ d̄j ≥
(j−5)b

j−4
d3

1+d̄3
j

3 + bd2
1 + 3bd̄2

j − 8b2d̄j +
2(j+5)b3

3 , d1 ≥ b ≥ d̄j
d3

1+d̄3
j

3 + 3bd2
1 + bd̄2

j − 8b2d1 +
2(j+5)b3

3 , d̄j ≥ b ≥ d1
d3

1+d̄3
j

3 + bd2
1 + (2j − 3)bd̄2

j − 4(j − 1)b2d̄j +
8(j−1)b3

3 , d1 ≥ d̄j ∧
(j−1)b

j−2 ≥ d̄j ≥ b
d3

1+d̄3
j

3 + (2j − 3)bd2
1 + bd̄2

j − 4(j − 1)b2d1 +
8(j−1)b3

3 , d̄j ≥ d1 ∧
(j−1)b

j−2 ≥ d1 ≥ b
d3

1+d̄3
j

3 + b ·
�

d2
1 + d̄2

j

�

+ 2(j−1)(j−5)b3

3(j−2) , d1 ≥
(j−1)b

j−2 ∧ d̄j ≥
(j−1)b

j−2

Proof. This result is proven by induction on j with two base cases (j= 4, 5) and two
induction steps, one for j odd and the other for j even:

Base case 1: j = 4. SupposeΩ1 forms a 1-partition. Using the result of the case
j= 3, this experiment is uniquely determined: Ω2 forms a 1-partition if and only if
2b− d1 ≤ d̄4, and Ω2 and Ω3 form a 2-partition if and only if 2b− d1 ≥ d̄4.

If Ω1 and Ω2 form a 2-partition, the optimal value of a partial bi-pooling policy
on ω ∈ (ω, ω̄) is given by

min
d

v∗(d1, d, 2) + v∗(2b − d, d̄4, 2) s.t. d1 + d ≥ 2b and (2b − d) + d̄4 ≥ 2b.
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The constraint set is non-empty if and only if 2b− d1 ≤ d̄4. The solution of the opti-
mization problem is

d∗ =











b , if d̄4 ≥ b ≥ 2b − d1

d̄4 , if b ≥ d̄4 ≥ 2b − d1

2b − d1 , if d̄4 ≥ 2b − d1 ≥ b

One obtains

v∗(d1, d̄4, 4)

=

(

v∗(d1, d1, 1) + v∗(2b − d1, d̄4, 3) , if 2b − d1 ≥ d̄4

v∗(d1, d∗, 2) + v∗(2b − d∗, d̄4, 2) , if 2b − d1 ≤ d̄4

=



























d3
1+d̄3

4
3 + 3b

�

d2
1 + d̄2

4

�

− 8b2
�

d1 + d̄4

�

+ 12b3 , if d1 + d̄4 ≤ 2b
d3

1+d̄3
4

3 + 5bd2
1 + bd̄2

4 − 8b2d1 + 4b3 , if b ≥ d1 ≥ 2b − d̄4
d3

1+d̄3
4

3 + bd2
1 + 5bd̄2

4 − 8b2d̄4 + 4b3 , if b ≥ d̄4 ≥ 2b − d1
d3

1+d̄3
4

3 + b
�

d2
1 + d̄2

4

�

, if d1 ≥ b and d̄4 ≥ b

Ω1 forms a 1-partition in the first two cases: d1 + d̄4 ≤ 2b or b≥ d1 ≥ 2b− d̄4.
Base case 2: j = 5. Suppose Ω1 forms a 1-partition. Using the result of case

j= 4, this experiment is uniquely determined: Ω2 forms a 1-partition if and only
if 2b− d1 ≤max{b, 2b− d̄j}, or, equivalently, d1 ≥min{b, d̄5}. Ω2 and Ω3 form a 2-
partition if and only if d1 ≤min{b, d̄5}.

If Ω1 and Ω2 form a 2-partition, the optimal value of a partial bi-pooling policy
on ω ∈ (ω, ω̄) is given by

min
d

v∗(d1, d, 2) + v∗(2b − d, d̄5, 3) s.t. d1 + d ≥ 2b.

The solution to the optimization problem is

d∗ =























b , if d1 ≥ b ≥ d̄5
2b
3 , if d1 ≥

4b
3 and d̄5 ≥

4b
3

2b − d̄5 , if d1 ≥ d̄5 and 4b
3 ≥ d̄5 ≥ b

2b − d1 , d1 ≤ min{4b
3 , max{b, d̄5}}

If d1 ≤min{4b
3 ,max{b, d̄5}}, the best experiment under which Ω1 and Ω2 form a 2-

partition is essentially one under whichΩ1 andΩ2 form two separate 1-partitions as
the solution to the optimization problem is d∗ = 2b− d1. Consequently, the globally
optimal experiment must be the one under which Ω1 is a 1-partition.
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Notice that min{b, d̄5}≤min{4b
3 , max{b, d̄5}}. If d1 ≥min{4b

3 ,max{b, d̄5}}, im-
plying that d1 ≥min{b, d̄5} , the experiment under which Ω1 is a 1-partition be-
longs to the constraint set of the minimization problem. But it is not optimal as
d∗ 6= 2b− d1. The globally optimal experiment is thus one under which Ω1 belongs
to a 2-partition. One obtains

v∗(d1, d̄5, 5)

=

(

v∗(d1, d1, 1) + v∗(2b − d1, d̄5, 4) , if d1 ≤ min{4b
3 , max{b, d̄j}}

v∗(d1, d, 2) + v∗(2b − d, d̄5, 3) , if d1 ≥ min{4b
3 , max{b, d̄j}}

=



























































d3
1+d̄3

5
3 + 5bd2

1 + 3bd̄2
5 − 8b2(d1 + d̄5) + 32b3

3 , if b ≥ d1 ≥ d̄5
d3

1+d̄3
5

3 + 3bd2
1 + 5bd̄2

5 − 8b2(d1 + d̄5) + 32b3

3 , if b ≥ d̄5 ≥ d1
d3

1+d̄3
5

3 + bd2
1 + 3bd̄2

5 − 8b2d̄5 +
20b3

3 , if d1 ≥ b ≥ d̄5
d3

1+d̄3
5

3 + 3bd2
1 + bd̄2

5 − 8b2d1 +
20b3

3 , if d̄5 ≥ b ≥ d1
d3

1+d̄3
5

3 + bd2
1 + 7bd̄2

5 − 16b2d̄5 +
32b3

3 , if d1 ≥ d̄5 and 4b
3 ≥ d̄5 ≥ b

d3
1+d̄3

5
3 + 7bd2

1 + bd̄2
5 − 16b2d1 +

32b3

3 , if d̄5 > d1 and 4b
3 ≥ d1 ≥ b

d3
1+d̄3

5
3 + b

�

d2
1 + d̄2

5

�

, if d1 ≥
4b
3 and d̄5 ≥

4b
3

Induction step 1:. j− 1→ j, j even

If Ω1 forms a 1-partition, the best experiment has the following characteristics (cf.
the results of case j− 1):Ω2 is a 1-partition iff 2b− d1 ≤min{ (j−2)b

j−3 ,max{b, d̄j}}, i.e.,

d1 ≥ min
§

b,max
§

(j − 4)b
j − 3

,2b − d̄j

ªª

,

while Ω2 and Ω3 are a 2-partition iff d1 ≤min {b, max
¦

(j−4)b
j−3 , 2b− d̄j

©

}.
If Ω1 and Ω2 form a 2-partition, the optimal value of a partial bi-pooling policy

on ω ∈ (ω, ω̄) is given by

min
d

v∗(d1, d, 2) + v∗(2b − d, d̄j, j − 2) s.t. d1 + d ≥ 2b.

The solution of the optimization problem is

d∗ =























(j−4)b
j−3 , if d1 ≥

(j−2)b
j−3 and d̄j ≤

(j−4)b
j−3

b , if d1 ≥ b and d̄j ≥ b

d̄j , if d1 ≥ 2b − d̄j and b ≥ d̄j ≥
(j−4)b

j−3

2b − d1 , if d1 ≤ min{ (j−2)b
j−3 , max{b, 2b − d̄j}}
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If d1 ≤min{ (j−2)b
j−3 ,max{b, 2b− d̄j}}, the best experiment under which Ω1 and Ω2

form a 2-partition is essentially one under which Ω1 and Ω2 form two separate
1-partitions as the solution to the minimization problem is d∗ = 2b− d1. Conse-
quently, the globally optimal experiment must be the best one under which Ω1 is
a 1-partition.

Notice that min{ (j−2)b
j−3 ,max{b, 2b− d̄j}}≥min{b,max{ (j−4)b

j−3 , 2b− d̄j}}. Hence,
if d1 ≥min{ (j−2)b

j−3 , max{b, 2b− d̄j}}, implying that d1 >min{b,max{ (j−4)b
j−3 , 2b− d̄j}},

the best experiment under which Ω1 forms a 1-partition also belongs to the con-
straint set of the minimization problem. But it is not optimal as d∗ 6= 2b− d1. The
globally optimal experiment is thus one under which Ω1 belongs to a 2-partition.

One obtains

v∗(d1, d̄j, j)

=

(

v∗(d1, d1, 1) + v∗(2b − d1, d̄j, j − 1) , if d1 ≤ min{ (j−2)b
j−3 , max{b, d̄j}}

v∗(d1, d∗, 2) + v∗( (j−2)b
j−3 , 2b − d∗, j − 2) , if d1 ≥ min{ (j−2)b

j−3 , max{b, d̄j}}

By plugging in the terms of the functions v∗(·, ·, j− 1) and v∗(·, ·, j− 2), one obtains
the expressions in the lemma’s statement.

Induction step 2:. j− 1→ j, j odd

If Ω1 forms a 1-partition, the best experiment has these characteristics (cf. the
results of case j− 1): Ω2 is a 1-partition iff 2b− d1 ≤min{ (j−3)b

j−4 ,max{b, 2b− d̄j}},
i.e.,

d1 ≥ min
§

b,max
§

(j − 5)b
j − 4

, d̄j

ªª

,

while Ω2 and Ω3 are a 2-partition iff d1 ≥min
¦

b,max
¦

(j−5)b
j−4 , d̄j

©©

.
If Ω1 and Ω2 form a 2-partition, the optimal value of a partial bi-pooling policy

on ω ∈ (ω, ω̄) is given by

min
d

v∗(d1, d, 2) + v∗(2b − d, d̄j, j − 2) s.t. d1 + d ≥ 2b.

The solution of the optimization problem is

d∗ =























(j−3)b
j−2 , if d1 ≥

(j−1)b
j−2 and d̄j ≥

(j−1)b
j−2

b , if d1 ≥ b and d̄j ≤ b

2b − d̄j , if d1 ≥ d̄j and (j−1)b
j−2 ≥ d̄j ≥ b

2b − d1 , if d1 ≤ min{ (j−1)b
j−2 , max{b, d̄j}}

.

If d1 ≤min{ (j−1)b
j−2 ,max{b, d̄j}}, the best experiment under whichΩ1 andΩ2 form a 2-

partition is essentially one under whichΩ1 andΩ2 form two separate 1-partitions as
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the solution to the minimization problem is d∗ = 2b− d1. Consequently, the globally
optimal experiment must be the best one under which Ω1 is a 1-partition.

Notice that min{ (j−1)b
j−2 , max{b, d̄j}}≥min{b,max{ (j−5)b

j−4 , d̄j}}. As a consequence,
if d1 ≥min{ (j−1)b

j−2 ,max{b, d̄j}}, implying that d1 ≥min{b, max{ (j−5)b
j−4 , d̄j}}, the best

experiment under which Ω1 forms a 1-partition also belongs to the constraint set of
the minimization problem. But it is not optimal as d∗ 6= 2b− d1. The globally optimal
experiment is thus one under which Ω1 belongs to a 2-partition.

One obtains

v∗(d1, d̄j, j)

=

(

v∗(d1, d1, 1) + v∗(2b − d1, d̄j, j − 1) , if d1 ≤ min{ (j−1)b
j−2 ,max{b, d̄j}}

v∗(d1, d∗, 2) + v∗( (j−2)b
j−3 , 2b − d∗, j − 2) , if d1 ≥ min{ (j−1)b

j−2 ,max{b, d̄j}}}

By plugging in the terms of the functions v∗(·, ·, j− 1) and v∗(·, ·, j− 2), one obtains
the expressions in the lemma’s statement.

Optimal Partial Bi-pooling Policy Given d
1
+ d̄j. Next, I determine the opti-

mal partial bi-pooling policy for any fixed d1 + d̄j ∈ (0, 2b] by comparing the optimal
partial bi-pooling policies for fixed d1 and fixed d̄j from above. It turns out that it is
symmetric in the sense that d1 = d̄j:

Lemma 1.51. For any j ∈ N, and any d1, d̄j ∈ (0,2b) so that d1 + d̄j ∈ (0, 2b], it holds

that v∗(d1, d̄j, j)≥ v∗
�

d1+d̄j

2 ,
d1+d̄j

2 , j
�

.

Proof. This can be easily checked by inspection of v∗ as specified above.

Optimal Bi-Pooling Policies. The aim of this section is to determine the opti-
mal bi-pooling policy for a given bias b ∈

� 1
2n , 1

2(n−1)

�

, where n≥ 2.
By Fact 3, all incentive compatibility constraints are binding under the opti-

mal bi-pooling policy of size n. Notice that d1 + (n− 1)2b+ d̄n = 1, which yields
d1 + d̄n = 1− (n− 1)2b ∈

�

0, 1
n

�

⊂ (0,2b). Therefore, the results on optimal partial
bi-pooling policies also apply to the complete bi-pooling policies on the whole state
space: Set ω= 0 and ω̄= 1.

It can be easily verified that the bi-pooling policies of size n as characterized in
Lemma 1.40 and Lemma 1.39 are optimal because their payoffs correspond to v∗.

The payoff of the optimal bi-pooling policy of size n is weakly decreasing in
b on the interval

� 1
2n , 1

2(n−1)

�

. This is obvious because the IC constraints become
stricter as b increases, so the value of the minimization problem weakly increases.
The payoff of the uniform monotone partition of size n− 1 is constant in b. So for
given b ∈

� 1
2n , 1

2(n−1)

�

, the globally optimal experiment is the best bi-pooling policy
of size n if b is sufficiently large, while it is the uniform monotone partition of size
n− 1 if b is sufficiently small.
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Proof of Proposition 1.42. Fix b ∈
� 1

2n , 1
2(n−1)

�

. Note that U BP
R = 0. Moreover, no-

tice that U ∗R ≥ − 1
12(n−1)2 ≥ − b2

3(1−2b)2 , where the first inequality follows from the
fact that the payoff is at least the one achieved by a uniform monotone partition
of size n− 1, and the second inequality follows from b≥ 1

2n . Finally, notice that
U

00

R ≤ −
1

12N −
b2(N2−1)

3 , where 2bN(N − 1)= 1 (cf. Crawford and Sobel (1982)). Sub-
stituting N, it can be easily verified thatU 00

R − 2U ∗R ≤ −
1

12N −
b2(N2−1)

3 + 2b2

3(1−2b)2 ≤ 0

for any b≤ 0.19. If b> 0.19, U ∗R ≥ − 1
48 and U 00

R ≤
−49
600 , hence U

00

R − 2U ∗R < 0.

Proof of Proposition 1.43. For any b≤ 1
2 , the receiver’s ex-ante expected payoff un-

der anymediation rule is bounded above by−1
3b(1− b) (see Goltsman et al. (2009)).

By Lemma 1.38, the receiver’s ex-ante expected payoff in the unique best equilib-
rium under public learning is bounded below by − 1

12(n−1)2 , where n is the unique
integer such that b ∈

� 1
2n , 1

2(n−1)

�

. It can be easily verified that this lower bound ex-
ceeds the above upper bound.
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Chapter 2

On-The-Match Search and
Match-Specific Productivity Growth?

Joint with Axel Niemeyer and Finn Schmieter

2.1 Introduction

We study decentralized match formation with search frictions as in Shimer and
Smith (2000) and Smith (2006) with two new features: agents continue to search
even when they are matched (on-the-match search), and matches become more
productive the longer they persist (match-specific productivity growth). The combi-
nation of these two features is novel and captures many interesting scenarios. For
example, workers are looking for better jobs, firms are trying to replace underper-
forming workers, businesses are looking for better contractors, and romantic rela-
tionships sometimes fall apart as one partner meets somebody else.1 In many of
these situations, partnerships become more productive the longer they persist, as
agents become attuned to one another and learn how to optimize their joint pro-

? We thank Daniel Bird, Ege Destan, Francesc Dilmé, Thomas Kohler, Daniel Krähmer, Stephan
Lauermann, Benny Moldovanu, Justus Preusser, Tobias Rachidi, Dezsö Szalay, and seminar partici-
pants from Bonn and Cologne for valuable comments and suggestions. Kreutzkamp and Niemeyer
gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy – EXC 2126/1 – 390838866. Kreutzkamp and
Schmieter gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) through CRC TR 224 (Project B04).

1. In the labor market, on-the-job search by workers is a well-documented empirical fact (see
Fallick and Fleischman (2004)), but even on the firm side, there is evidence for replacement hiring
(see Burgess, Lane, and Stevens (2000) and Albak and Sørensen (1998)). Bobbio (2019) and Acharya
and Wee (2020) argue that replacement hiring can partly be explained through “on-the-job” search
by firms for better workers. This is particularly prominent in the labor market for CEOs and managers
(Parrino (1997); Murphy and Zabojnik (2007)). For evidence regarding the marriage market, see
Stevenson and Wolfers (2007).
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duction over time.2 We are interested in the matching behavior and sorting patterns
that emerge with on-the-match search and how they are affected by match-specific
productivity growth.

In our model, there are two types of agents, more productive agents (H-agents)
and less productive agents (L-agents), and a continuum of agents for each type. Time
is continuous, and meetings between agents are Poisson events. If two agents meet,
they observe each others’ types. If they agree to match, they each enjoy a flow utility
that depends on their own as well as their partner’s type. Single agents of each type
enter the market at a constant rate, and agents leave the market at random times.
What we have described so far is our baseline model, where agents search on-the-
match but flow utility in a match is constant over time. In an augmented model,
we additionally assume that flow utility is an increasing function of match tenure,
reflecting match-specific productivity growth. Our solution concept is steady state
equilibrium: we require that agents’ matching behavior is mutually optimal given
the distribution of matched and unmatched agents and that this distribution is in a
steady state.3

Let us now summarize our main findings regarding the baseline model. Without
on-the-match search, assortative matching is typically driven by the agents’ search
for more productive partners—by the market clearing top-down—but with on-the-
match search, the behavior of less productive agents becomes much more relevant
to the sorting patterns that emerge in equilibrium.⁴ The reason is that agents trade-
off flow utility against the stability of a match, i.e., the rate at which their partner
leaves for another agent. Indeed, in our baseline model, less productive L-agents
may prefer to match among themselves for fear of being left by the more productive
H-agents; thus, the market may additionally clear bottom-up. The fact that agents’
acceptance strategies need not be monotone—that it may be more difficult for more
productive agents to find a partner—contrasts with many other matching models
where agents do not search on-the-match.

Our baseline model has a fundamental problem with equilibrium multiplicity,
which is rooted in the fact that match stability is endogenous: stability both deter-
mines and is determined by the agents’ behavior. For example, if all other L-agents
accept to match with H-agents rather than L-agents, then an LL-match becomes less
stable, making H-agents more desirable for any individual L-agent. The same kind of

2. For empirical evidence, see the literature on team-specific human capital (Kellogg (2011);
Jaravel, Petkova, and Bell (2018); Chen (2021)). In the context of employment, this is also known as
firm-specific human capital (see Becker (1964); Topel (1991); Lazear (2009)).

3. We keep our model as simple and tractable as possible, e.g., there are only two types of agents
and utility is non-transferable, while retaining the distinguishing features of the search-and-matching
framework as well as the solution concept of Shimer and Smith (2000) and Smith (2006). Our model
applies to both one-sided markets and two-sided markets with symmetric sides.

4. With transferable utility, one additionally needs type complementaries in production for as-
sortative matching to obtain. See Chade, Eeckhout, and Smith (2017, Section 4) for a comprehensive
survey of sorting without on-the-match search.
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coordination problem also governs the behavior of H-agents. Specifically, in an HH-
match, it is optimal to stay in the match if the partner plans to stay, but it can also
be optimal to leave for an L-agent if the partner plans to leave, precisely because
becoming single entails a period without any flow utility. The fact that matched
agents play a kind of coordination game with respect to staying in or leaving their
current match implies a continuum of steady state equilibria in our baseline model.
Strikingly, in almost every equilibrium, matched agents miscoordinate on payoff-
dominated behavior.

We find that match-specific productivity growth can alleviate the problem of
equilibrium multiplicity: if flow utility increases in the duration of a match, then
miscoordination can no longer be sustained in equilibrium. In a nutshell, the reason
is that agents anticipate their match to become stable far into the future, breaking
miscoordination as an equilibrium even slightly earlier, and this argument can be
iterated backward in time. Consequently, by letting productivity growth vanish, we
can select precisely those steady state equilibria of the baseline model where agents
coordinate on payoff-dominant behavior—we call them coordination equilibria. In
a coordination equilibrium, H-agents always accept to match with H-agents, agents
never accept to match with agents of their partner’s type, and matched L-agents
either accept to match with L-agents or H-agents but not with both. We fully charac-
terize the set of coordination equilibria. Specifically, there are at most three equilib-
ria, there is at most one pure-strategy equilibrium where matched L-agents accept
to match with L-agents (the “assorting equilibrium”), and there is at most one pure-
strategy equilibrium where matched L-agents accept to match with H-agents (the
“non-assorting equilibrium”); we provide conditions for equilibrium uniqueness or
coexistence.

More generally, match-specific productivity growth can significantly affect
agents’ matching behavior, which makes it an important factor in assessing the per-
formance of decentralized matching markets. Compared to our baseline model, two
new and opposing effects are at play. On the one hand, a growing flow utility stabi-
lizes any type of match in the long run, even those between H-agents and L-agents,
leading to less assortative matching.⁵ On the other hand, a growing flow utility also
incentivizes agents to foster growth in matches that are stable to begin with: becom-
ing single now not only hurts because it entails a period without production but also
because it means forgoing productivity accumulation in another, more stable match.
This incentivizes L-agents to match among themselves, leading to more assortative
matching. Either effect can dominate in equilibrium depending on the precise shape

5. We assume that productivity growth bites in that agents lock into any kind of match once
enough time has passed, but we make no assumptions about how long a match must persist for agents
to change their behavior. This “lock-in” effect is consistent with evidence from labor markets that
job-to-job transitions decrease with employment tenure (see Hall (1982)).
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of productivity growth, even to the extent that the predictions of the baseline model
may be reversed.

The rest of the paper is organized as follows. In Sections 2.2 and 2.3, we intro-
duce our baseline model with on-the-match search and define the notion of steady
state equilibrium. In Sections 2.4 and 2.5, we analyze the baseline model, first the
set of coordination equilibria and then all the other equilibria where agents fail to
coordinate. In Section 2.6, we augment our baseline model with match-specific pro-
ductivity growth. In Sections 2.7 and 2.8, we analyze the augmented model, first
characterizing only partial equilibria and then taking into account the steady state
balance conditions. In Section 2.9, we present an argument for selecting coordi-
nation equilibria in the baseline model through vanishing rates of match-specific
productivity growth. In Section 2.10, we are then in a position to compare the two
models and assess the effects of match-specific productivity growth. Section 3.5 con-
cludes. All proofs are in the Appendix. The remainder of this introduction discusses
the related literature and thus clarifies our contribution.

Related Literature. As mentioned before, we build on the search-and-matching
framework with heterogeneous agents of Shimer and Smith (2000) and Smith
(2006). To this framework, we add two new features: on-the-match search and
match-specific productivity growth. As far as we are aware, our paper is the first
to examine these two features jointly.

On-the-match search is related to on-the-job search, which search-theoretic mod-
els of the labor market have long taken into account (see the survey by Rogerson,
Shimer, and Wright (2005).) However, there is a crucial difference between the two
notions. In a typical labor market model with on-the-job search, firms create jobs
through vacancy posting, and once a vacancy is filled, a firm cannot fire or replace
its worker while the worker can search for other open vacancies. Translated to our
setting, this means that only one agent in a match searches for better partners and
only so among the unmatched, i.e., firms do not search “on-the-job”. Therefore, indi-
vidual decision problems are quite different: an agent whose partner does not search
on-the-match no longer needs to worry about stability, which is a key determinant
of matching behavior and sorting patterns when everyone searches on-the-match.
For this reason, search-and-matching models with heterogeneous workers, hetero-
geneous firms, and on-the-job search are different from our baseline model (see,
e.g., Dolado, Jansen, and Jimeno (2009), Gautier, Teulings, and Vuuren (2010),
and Lentz (2010)). Bobbio (2019) and Acharya andWee (2020) consider on-the-job
search by firms in models with heterogeneous or ex ante identical agents, respec-
tively, but their scope and methodology are very different from ours.

Only few other papers study on-the-match search in the sense described above.
Cornelius (2003) is close to our baseline model in that she also assumes two types of
agents and non-transferable utility, but there are three key assumptions she makes
that we do not. First, agents that enter a stable match—a match that will not be dis-
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solved in equilibrium—immediately leave the market and are replaced by two iden-
tical singles.⁶ Second, matches between two more productive H-agents are stable,
and agents never leave their partner for an agent of the partner’s type. Third, agents
break indifferences in favor of accepting a match. We show that many of the insights
in Cornelius (2003) obtain in our model with exogenous entry and exit, in particu-
lar, that there is at most one non-assorting and at most one assorting equilibrium
(“Type I” and “Type II” equilibria, respectively, in Cornelius (2003)) and therefore,
that matching behavior may be a matter of coordination on what is stable. Moreover,
we give a selection argument based on-match-specific productivity growth that rules
out the miscoordination that Cornelius (2003) assumes away from the start. Finally,
we show that tie-breaking without cloning is problematic because pure-strategy equi-
libria need no longer exist. Nevertheless, Cornelius (2003) examines two features
from which we abstract, namely different search intensities in-and-out of a match
and divorce costs.

The idea that stability can be amatter of coordination is also explored in Burdett,
Imai, andWright (2004). In their model, ex-ante identical agents choose their search
intensity in a match, hence might search more intensely if their partner does the
same.

There are two more recent papers on on-the-match search: Bartolucci and Mon-
zon (2019) and Goldmanis and Ray (2019). Bartolucci and Monzon (2019) study
a model with finitely many types and transferable utility. They show that with
on-the-match search, assortative matching can emerge even without complemen-
taries in production when there are high enough search frictions. Goldmanis and
Ray (2019) study a two-sided market with a continuum of types on each side and
non-transferable utility. They give conditions for the existence of an equilibrium in
which agents upgrade to higher types of partners whenever possible, akin to our
non-assorting equilibrium, and show that the associated sorting pattern converges
to perfect assortative matching as agents become infinitely-lived.⁷ In short, these
models are quite sophisticated, ours is simpler; they study the implications of on-
the-match search on sorting in specific situations, we study these implications more
generally.

Finally, match-specific productivity growth has been considered in the context of
labor markets by Pissarides (1994) and Schwartz (2020), but the models, method-
ology, and scope of these papers are again completely different from ours.

6. This “cloning” assumption is arguably problematic because it neglects the impact that agents’
matching decisions have on the pool of unmatched agents; see Chade, Eeckhout, and Smith (2017,
Section 4) for a discussion.

7. Without on-the-match search and non-transferable utility, a series of papers has pointed out
the phenomenon of “block segregation”, a sorting pattern that is not perfectly assortative; see again
Chade, Eeckhout, and Smith (2017, Section 4) and in particular Smith (2006) for a discussion. In our
setting with binary types, block segregation is moot.
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2.2 Baseline Model: On-The-Match Search

Time is continuous. At any given moment, there is a continuum of agents in the
market, each of whom is either single or matched to another agent. Each agent is
characterized by a permanent productivity type, which we assume to be either L or
H (low or high) for simplicity.⁸ We call an agent of type i ∈ {L, H} an i-agent, and
we call a match between an i-agent and a j-agent an ij-match.

New i-agents enter the market as singles at a constant rate ηi, i.e., in an interval
of time dt, a mass ηidt of new single i-agents enters the market. Agents exit the
market according to a Poisson process with rate δ; thus, the lifetime of each agent
is an exponential random variable. If a matched agent exits the market, her partner
becomes single.⁹

Search is undirected and time-consuming but otherwise costless. For concrete-
ness, we assume that meetings between agents follow a quadratic search technology
(see Diamond and Maskin (1979)): every agent (matched or not) randomly meets
other agents at a Poisson rate λm, where m is the total mass of agents in the mar-
ket, and λ is a velocity parameter that captures the underlying degree of search
frictions. When two agents meet, they observe each others’ types and then decide
whether or not to accept the match. If both accept, their current matches (if they are
matched) are dissolved, and their former partners become single. The assumption
of on-the-match search, that even matched agents continue to meet others, is what
distinguishes our baseline model from much of the existing literature.1⁰

Without loss of generality, we normalize the flow utility of single agents to 0.
When an i-agent is matched with a j-agent, she obtains a flow utility uij > 0. We
assume that flow utility is non-transferable across partners.11 To ascribe meaning

8. Our baseline model is embedded in any model of on-the-match search with more than two
types of agents. Therefore, our analysis remains relevant for the general case.

9. Instead of assuming market entry and exit, we could alternatively assume infinitely-lived
agents and random match destruction as in Shimer and Smith (2000) and Smith (2006) without
changing the results. The advantage of our approach is that we do not need to assume any discounting
beyond the exit rate δ; see below.

10. Note that the search velocity λ is independent of whether an agent is single or matched. This
assumption simplifies our analysis because it will be a dominant strategy for singles to accept any
match. If on-the-match search is more efficient, e.g., because one has access to a larger network of
potential mates, then matching behavior will remain the same. On the other hand, if off-the-match
search is more efficient, e.g., because one has less time to search, then it can be optimal for singles
to reject a match in order to search more efficiently. Therefore, our results might change, but the
underlying trade-offs we characterize are still present. As such, equal search efficiencies for single and
matched agents are a useful abstraction.

11. Non-transferable utility is a reasonable assumption in themarriagemarket or in labor markets
where wages are fixed prior to ameeting, e.g., when employment contracts are non-negotiable as in the
public sector. From a technical perspective, allowing for transfers comes at the expense of tractability:
we would have to extend our model in that agents whomeet now bargain over the joint surplus created
by their match. Nonetheless, the underlying trade-off between flow utility and stability remains, and
we would thus expect similar qualitative results when utility is transferable (and match values are
supermodular in types).
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to types, we assume that H-partners yield a higher flow utility than L-partners, i.e.,
uiL < uiH for i ∈ {L, H}.12 Note that the exit rate δ implicitly acts as a discount rate
on future flow utility as agents no longer gain utility when they exit the market. For
simplicity, we assume no further discounting beyond the exit rate.

Although we follow much of the related literature in framing our model as a one-
sided rather than a two-sided market, i.e., a market where agents can be divided
into two groups and a match consists of exactly one agent from each group, the gist
of our findings carries over to two-sided markets. Indeed, our one-sided model is
equivalent to a symmetric two-sided model where agents’ strategies and inflows of
single agents are the same on both market sides.

2.3 The Definition of Steady State Equilibrium

The goal of this section is to define an appropriate notion of steady state equilibrium
for our baseline model with on-the-match search. Steady state equilibrium imposes
two requirements on the matching behavior and the distribution of agents over the
six possible matching states, i.e., L-agents or H-agents being single, matched with
an L-agent, or matched with an H-agent. First, the agents’ matching behavior is
mutually optimal given the match distribution (partial equilibrium). Second, this
distribution is stable over time given the agents’ matching behavior (steady state).
In the following, we shall formalize these two requirements one at a time.

2.3.1 Partial Equilibrium

We need some preliminary definitions. A stationary strategy for an i-agent is a tuple
pi = (pijk)j,k∈{L,H}, where pijk ∈ [0, 1] is the probability that an i-agent matched with
a j-agent accepts to match with a k-agent. In our model, single agents will accept to
match with everyone they meet, as this yields a positive flow utility and meeting op-
portunities continue to arrive at the same rate.13 Therefore, we shall spare ourselves
the hassle of carrying along the strategies of singles and take their behavior as given
throughout. Moreover, we restrict attention to type-symmetric strategy profiles in
which agents of the same type use the same strategy.

Suppose agents take as given the distribution of matches, i.e., a tuple of masses
m= (mL;, mH;, mLL, mLH, mHL, mHH), where mij is the mass of i-agents that are
matched with j-agents and mi; is the mass of single i-agents. Clearly, the account-

12. Whether or not flow utility is increasing in one’s own type is irrelevant because types are
permanent, but this would certainly be a reasonable assumption.

13. One could imagine that agents make their strategies dependent on the matching state or
even matching history of the agents they meet. In this case, there could be additional equilibria in
which single agents do not accept to match with everyone they meet because they would otherwise
be discriminated against in future interactions. We abstract from such considerations.
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ing identity mLH =mHL holds, and we shall sometimes identify these two masses
without further mention.

Suppose agents follow strategies p= (pL, pH). Let αik(m,p) denote the rate at
which an i-agent meets a k-agent that is willing to match with her, and let βij(m,p)
denote the rate at which an i-agent that is matched with a j-agent becomes single
because her partner leaves the market or rematches. Formally, we have

αik(m,p) = λ

 

mk; +
∑

l∈{L,H}

pklimkl

!

(2.1)

βij(m,p) = δ +
∑

k∈{L,H}

pjikαjk(m,p). (2.2)

Equipped with the definition of these rates, we can recursively define the ex-
pected continuation utility Vij(m,p) of an i-agent that is matched with a j-agent
(or single, in which case we write j= ;) for given masses m and strategies p. For
matched agents, we have

Vij(m,p) =
uij +

∑

k∈{L,H} pijkαik(m,p)Vik(m,p) + βij(m,p)Vi;(m,p)

δ +
∑

k∈{L,H} pijkαik(m,p) + βij(m,p)
. (2.3)

Let us parse this expression. The denominator is the rate at which an ij-match is dis-
solved, which happens either if the i-agent exits the market, or if she rematches with
another agent, or if she becomes single. Equivalently, the reciprocal of the denomina-
tor is the expected match duration. Now, consider the three terms in the numerator
separately, each divided by the denominator. The first term is the expected utility
gained from the current match; the second term is the probability of transitioning
to an ik-match when the current match is dissolved times the respective expected
continuation utility; the third term is the probability of becoming single when the
current match is dissolved, again, times the expected continuation utility. The ex-
pression Vi;(m,p) for single agents (j= ;) is similar:

Vi;(m,p) =

∑

k∈{L,H}αik(m,p)Vik(m,p)

δ +
∑

k∈{L,H}αik(m,p)
. (2.4)

Definition 2.1. The tuple (m,p) is a partial equilibrium if Vij(m,p)> Vik(m,p) im-
plies pijk = 0 and Vij(m,p)< Vik(m,p) implies pijk = 1.
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Our definition requires that agents’ acceptance decisions are optimal under the
condition of being accepted. It thus rules out equilibria in weakly dominated strate-
gies where i-agents never accept j-agents because j-agents never accept i-agents.1⁴

We conclude the discussion of partial equilibrium behavior by characterizing the
agents’ fundamental trade-off between flow utility and stability.

Lemma 2.2. The following are equivalent.

(1) Vij(m,p)> Vik(m,p).
(2)

uij

uik
>
δ +

∑

l∈{L,H}αil(m,p) + βij(m,p)

δ +
∑

l∈{L,H}αil(m,p) + βik(m,p)
. (2.5)

Proof. See Appendix 2.A.1.

In plain words, an i-agent matched with a k-agent accepts to match with a
j-agent if and only if the relative gain in flow utilities (left-hand side) exceeds the
relative increase in the costs of instability (right-hand side), i.e., the rate βij(m,p) at
which i is left by her potential new partner versus the rate βik(m,p) at which she is
left by her current partner. Note the following comparative statics: if the exit rate δ
or the rate

∑

k∈{L,H}αik(m,p) of finding a partner when being single are high, then
the right-hand side is close to 1. In either case, stability has no value because the
agent expects to leave the market soon or expects to be single for only a little while.
Thus, she makes her matching decisions almost exclusively based on flow payoffs.
Conversely, if these rates are low, then the rate of being left by the partner dominates
the right-hand side, hence stability becomes an essential consideration.

We say that a match is stable given (m,p) if it dissolves only due to market exit,
i.e., at rate 2δ.

2.3.2 Steady States

Given agents’ strategies p= (pL, pH), the market is in a steady state if, for each of
the six possible matching states, the inflow and outflow of agents exactly balance.
Formally, for all i, j ∈ {L, H}, the masses m must satisfy the balance conditions

ηi +
∑

k∈{L,H}

mikβik(m,p) = mi;

 

δ +
∑

k∈{L,H}

αik(m,p)

!

(2.6)

αij(m,p)

 

mi; +
∑

k∈{L,H}

mikpikj

!

= mij

�

βij(m,p) + βji(m,p)
�

, (2.7)

14. By the one-shot deviation principle, the above definition of partial equilibrium implies the
standard definition that each agent’s strategy should maximize her expected lifetime utility given the
strategies of others.
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where the first equation is for singles, the second equation is for matched agents,
and for both equations, the inflow is on the left-hand side, whereas the outflow
is on the right-hand side.1⁵ For example, L-agents enter the pool of singles at the
exogenous entry rate ηi or when their current partner leaves them, and they leave
the pool of singles when they exit the market (at Poisson rate δ) or when they meet
someone that is willing to match with them.

Definition 2.3. The tuple (m,p) is a steady state if the masses m satisfy the balance
conditions (2.6) and (2.7) for the given strategy profile p.

Definition 2.4. The tuple (m,p) is a steady state equilibrium if it is both a partial
equilibrium and a steady state.

2.4 Coordination Equilibria

We divide the analysis of steady state equilibria into two parts. In this section, we
analyze a particular class of steady state equilibria, which we call coordination equi-
libria. In a coordination equilibrium, H-agents always accept to match with other
H-agents, and only when they are single do they accept to match with L-agents,
agents never accept to match with agents of the same type as their current partner,
and matched L-agents either accept to match with other L-agents or with H-agents
but not with both. In the next section, we analyze the remaining steady state equi-
libria of the baseline model.

Definition 2.5. A steady state equilibrium (m,p) is a coordination equilibrium if
(1) pHHL = 0 and pHLH = 1,
(2) pijj = 0 for all i, j ∈ {L, H}, and
(3) pLHL = 0 or pLLH = 0.

Each restriction corresponds to a situation where agents coordinate on payoff-
dominant behavior. In an HH-match, if both agents stay together until one exits
the market, then they both enjoy the highest possible expected continuation utility
across every pair of their strategies, regardless of how all other agents in the market
behave. However, if one H-agent is concerned that her H-partner might leave for an
L-agent, then it might be best for her to match with the next L-agent she meets so
as not to become single and thus unproductive later on. This coordination problem

15. These balance conditions are exactly the same for symmetric two-sided markets. Indeed, in
one-sided markets with discrete types, as considered in this paper, there is the subtle issue that if two
agents from the same matching state meet and agree to match, then both exit the current state and
both enter the same new state. Thus, the respective entry and exit rates are twice the respective match
formation and dissolution rates. However, under the quadratic meeting technology, the aggregate
meeting rate of agents in the same matching state is only 1/2λm2

ij, where mij is the respective mass of
such agents; thus, the balance conditions for one-sided and symmetric two-sided markets remain the
same.
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bears some resemblance to a stag hunt game. Similarly, in any ij-match, if neither
agent leaves for an agent of their partner’s type, then both agents are strictly better
off because their match becomes more stable, yet they gain no additional flow utility
by switching. Finally, if L-agents switch back and forth between H-agents and other
L-agents, then there is excessive match destruction so that any such steady state
equilibrium would be Pareto-dominated by one where, all other strategies equal,
L-agents make only the net switches, thus switch only in one direction.

In a coordination equilibrium, the behavior of H-agents is fully determined, but
it remains to characterize the behavior of L-agents. We distinguish two cases. In an
assorting equilibrium, L-agents match with L-agents unless they are matched to one
already. In a non-assorting equilibrium, L-agents match with H-agents instead.

Definition 2.6. A coordination equilibrium (m,p) is
• assorting if pLHL = 1 and pLLH = 0,
• non-assorting if pLHL = 0 and pLLH = 1,
• mixed assorting if 0≤ pLHL < 1 and pLLH = 0, and
• mixed non-assorting if pLHL = 0 and 0≤ pLLH < 1.1⁶

The following theorem is about the existence and uniqueness of such equilibria.

Theorem 2.7. There exists a coordination equilibrium, and there is at most one of
each of the equilibria in Theorem 2.6. Moreover, keeping all other parameters fixed,
there are cutoff values ū,

¯
u, û> 1, where û>max{ū,

¯
u}, such that

• the assorting equilibrium exists if and only if uLH
uLL
≤ ū,

• the non-assorting equilibrium exists if and only if uLH
uLL
≥

¯
u,

• the mixed assorting equilibrium exists if and only if ū< uLH
uLL
≤ û,

• the mixed non-assorting equilibrium exists if and only if
¯
u< uLH

uLL
≤ û,

• the two mixed equilibria coincide if and only if uLH
uLL
= û.

Proof. See Section 2.A.2.

The result is illustrated in Figure 2.1. It says that the existence of the different
types of coordination equilibria is determined by the ratio uLH

uLL
, i.e., the relative gain

in flow utility of an L-agent in a match with an H-agent rather than an L-agent.
Specifically, the assorting equilibrium is the unique coordination equilibrium when-
ever the relative gain in flow utility from an LH-match is sufficiently small so that,
in view of Theorem 2.2, the stability of an LL-match is more important. Similarly,
the non-assorting equilibrium is the unique coordination equilibrium whenever the
gain in flow utility is sufficiently large so that match stability is less important. In
the intermediate range of flow payoffs, both of these equilibria may coexist (

¯
u< ū)

16. An equilibrium where pLHL = 0 and pLLH = 0, i.e., where there is no on-the-match search by
L-agents, is clearly not mixed. However, it is helpful think of this knife-edge case as the coincidence of
a mixed assorting and a mixed non-assorting equilibrium.
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uLH
uLL

1 ū
¯
u û

assorting
assorting

non-assorting
mixed non-assorting

non-assorting
mixed assorting

mixed non-assorting
non-assorting

(a)
¯
u < ū

uLH
uLL

1 ū
¯
u û

assorting mixed assorting
non-assorting

mixed assorting
mixed non-assorting

non-assorting

(b)
¯
u > ū

Figure 2.1. Existence of coordination equilibria as a function of uLH
uLL

.

or neither equilibrium may exist at all (
¯
u> ū), in which case there are only mixed

coordination equilibria that make an L-agent exactly indifferent between H-agents
and L-agents. Indeed, one can find parameter constellations such that

¯
u< ū, and

one can find other parameter constellations such that
¯
u> ū.

Why is it that the two pure coordination equilibria—assorting and non-
assorting—may coexist or not exist at all? The answer lies in the way the two equi-
libria differ, namely the behavior of L-agents and the steady state masses. On the
one hand, the behavior of L-agents determines whether or not an LL-match is sta-
ble: if agents behave as in the assorting equilibrium, then the match is stable, but if
they behave as in the non-assorting equilibrium, it is not. Thus, there is an incentive
for L-agents to follow the behavior of other L-agents, and it is precisely this collec-
tive coordination among L-agents that allows the two equilibria to coexist. On the
other hand, different partial equilibrium behavior also implies different steady state
masses. In particular, if agents behave as in the assorting equilibrium, then there
are relatively many single H-agents. Thus, there is an incentive for an L-agent to act
against the other L-agents by matching with an H-agent because she can expect to
quickly find a new partner when her H-partner leaves. When we increase the ratio
uLH
uLL

towards the intermediate range of values, this steady state effect can be more
pronounced than the coordination effect described above; in other words, matching
with L-agents can stop being an equilibrium before matching with H-agents starts
being an equilibrium, leaving mixing as the only possibility.

Let us describe in more detail how the steady state masses differ across the vari-
ous coordination equilibria. Indeed, the comparative statics are exactly as one might
expect; the steady state matching is more assortative in the assorting equilibrium
than in the non-assorting equilibrium.

Theorem 2.8. When comparing coordination equilibria, if pLHL is higher and pLLH is
lower, then there are fewer single L-agents, more single H-agents, fewer LH-matches,
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and more LL-matches. The mass of HH-matches is the same in every coordination equi-
librium.

Proof. See Section 2.A.2.

The results of this section show that with on-the-match search, sorting is driven
not only by the more productive H-agents seeking to match among themselves but
also by the behavior of the less productive L-agents. The fact that an L-agent may
accept to match with another L-agent even whenmatched with an H-agent contrasts
withmany othermatchingmodels where acceptance strategies aremonotone, where
higher types are accepted more often than lower types and the market clears top-
down (see also the discussion in Section 2.10). In our model, it is the type preferred
by the L-agents that determines how the market clears, whether we observe more or
less assortative matching. Indeed, if multiple coordination equilibria coexist, then
the sorting pattern is a matter of coordination among L-agents.

2.5 Miscoordination and Equilibrium Multiplicity

Equilibrium multiplicity is a fundamental problem when agents search on-the-
match, and our baseline model is no exception. The reason is the following: if agents
believe that their match is stable and therefore accept other matches less often, then
this belief becomes a self-fulfilling prophecy, and the match is actually more stable.
However, this reasoning could just as easily be reversed, yielding multiple equilibria.
Indeed, in the previous section, we have already seen how collective coordination
among L-agents can yield two equilibria, the assorting and the non-assorting one.
Both equilibria are plausible in that they cannot be attributed to coordination failure.
In this section, we present two results on the existence of equilibria where agents
clearly fail to coordinate, even on a bilateral level. One result is about H-agents
matching with L-agents rather than H-agents, and the other is about agents match-
ing with agents of their partner’s type. Therefore, it is not without loss of generality
to consider only the coordination equilibria from the previous section.

Theorem 2.9. Keeping all other parameters fixed, there is a cutoff value ũ> 1 such
that there exists a steady state equilibrium (m,p) where
(1) pHHL = 1 and pHLH = 0, and
(2) pijj = 0 for all i, j ∈ {L, H}
if and only if uHH

uHL
≤ ũ.

Proof. See Appendix 2.A.3.

The intuition for this result is again based on the trade-off between flow utility
and stability (Lemma 2.2): if H-agents expect to be abandoned by other H-agents,
then they might seek stability in an HL-match and thereby forgo the higher flow
utility in an HH-match. The condition for existence in Theorem 2.9—that H-agents
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are not significantly more productive with H-agents than with L-agents—can be
satisfied independently of the conditions in Theorem 2.7. Thus, for certain parame-
ter constellations, there may indeed exist an assorting equilibrium, a non-assorting
equilibrium, and an equilibrium with miscoordination among H-agents. However,
equilibrium multiplicity is much more pronounced, as shown by the following re-
sult.
Theorem 2.10. There exists a continuum of steady state equilibria.

Proof. See Appendix 2.A.3.

For this result, we construct equilibria in which agents sometimes replace their
partner with an agent of the partner’s type. This kind of multiplicity may seem con-
trived in that it can be overcome by assuming a tie-breaking rule, e.g., that agents
only accept matches they strictly prefer. However, recall from Theorem 2.7 that the
existence of a steady state equilibrium can only be guaranteed if agents are allowed
to play mixed strategies. Thus, tie-breaking is out of question if we wish to guarantee
equilibrium existence.

Theorems 2.9 and 2.10 show that our baseline model cannot sharply predict
equilibrium behavior by itself; it requires an external selection argument. This raises
the following question: Should we restrict attention to coordination equilibria for the
sake of payoff-dominance (as in the previous section)? Not necessarily. If we recall
the analogy between the agents’ coordination problem and a stag hunt game, there
are certainly reasons why one might expect miscoordination among agents, perhaps
most notably because coordination is a matter of trust, and mistrust is pervasive in
the real world. Nevertheless, we will later provide an argument that rationalizes
coordination through match-specific productivity growth (see Section 2.9). For this,
however, we must first extend our baseline model.

2.6 Augmented Model: Match-Specific Productivity Growth

In this section, we augment our baseline model with match-specific productivity
growth. Formally, the flow utility uij(t)> 0 of an i-agent matched with a j-agent is
now a strictly increasing function of match duration t, whereas it was constant over
time before. In particular, accumulated productivity is lost once a match is dissolved,
and agents do not become more productive on their own.1⁷ This extension will also
require some adjustments in the definition of steady state equilibrium.

17. In the context of labor markets, the literature distinguishes between general human capital
and specific human capital that is tied to a particular firm or occupation (see e.g. Becker (1964)). The
type of productivity growth we analyze is analogous to the accumulation of specific human capital,
but we abstract from general productivity growth, e.g., agents randomly transitioning between types,
to keep our model simple. However, our qualitative insights into matching behavior and sorting would
remain valid even with the addition of general productivity growth because agents would still have to
make a trade-off between flow utility and stability.
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We make three assumptions about match-specific productivity growth. First, the
utility from any given match is finite, which also ensures that all expected continu-
ation utilities are finite: for all i, j ∈ {L, H},

∫ ∞

0

uij(t)e
−2δt dt < ∞. (2.8)

Second, as before, H-agents are more productive partners than L-agents, and we
now assume this pointwise for every match duration: uiL(t)< uiH(t) for all i ∈ {L, H}
and t≥ 0. Third, productivity in a match eventually increases to the point where
matched agents no longer accept to match with others. This assumption makes it
interesting to study match-specific productivity growth because it causes agents to
change their matching behavior relative to the baseline model. Indeed, the simplest
way to ensure that matched agents eventually become unwilling to match with oth-
ers is to assume unbounded productivity growth: for all i, j ∈ {L, H},

lim
t→∞

uij(t) = ∞. (2.9)

Given these assumptions, our baseline model is not nested in the augmented model.
It might be more realistic to assume productivity growth that diminishes over

time and converges to a (large enough) finite limit. For our analysis, however, it
is not the precise limit that is important but only the question of whether agents
eventually stop accepting other matches. Thus, we assume unbounded growth for
simplicity. Indeed, our assumption is mild regardless of whether growth is bounded
or unbounded because we allow for arbitrarily slow growth in either case.

Given match-specific productivity growth, we need to make some adjustments
to the definition of steady state equilibrium. A stationary strategy for an i-agent is a
now a collection of measurable functions pijk : [0,∞)→ [0,1], where pijk(t) is the
probability that an i-agent who is matched with a j-agent for time t accepts to match
with a k-agent. As before, single agents accept to match with everyone they meet.

Let mij(t) denote the mass density of i-agents that have been matched with
j-agents for exactly time t; thus mij =

∫∞
0 mij(t). Let m denote the tuple of the sin-

gle masses mi; and the mass densities mij(t) of matched agents. For the rate αij at
which an i-agent meets a j-agent that is willing to match and the rate βij at which
an i-agent is left by a j-agent, we now have

αik(m,p) = λ

 

mk; +
∑

l∈{L,H}

∫ ∞

0

pkli(t)mkl(t) dt

!

(2.10)

βij(m,p; t) = δ +
∑

k∈{L,H}

pjik(t)αjk(m,p). (2.11)
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Note that βij is now a function of match duration since the same holds for the strate-
gies pjik(t).

In order to define expected continuation utilities, we first define the survival
function qij(m,p; t) of an ij-match, i.e., the probability that an ij-match lasts for at
least time t:

qij(m,p; t) = exp

�

−
∫ t

0

�

βij(m,p; s) + βji(m,p; s)
�

ds

�

. (2.12)

For the expected continuation utility Vij(m,p; t) of an i-agent that is matched with a
j-agent for time t, we then have (dropping the dependence on (m,p) for readability)

Vij(t) =

∫ ∞

t

qij(s)

qij(t)
uij(s) ds +

∫ ∞

t

qij(s)

qij(t)

∑

k∈{L,H}

αikpijk(s)Vik(0) ds

+

∫ ∞

t

qij(s)

qij(t)
βij(s)Vi; ds.

(2.13)

The three components have the same interpretation as in the baseline model, namely
the expected utility from the current match, the expected continuation utility from
transitioning to another match, and the expected continuation utility from becoming
single. Indeed, if productivity does not grow and agents play time-invariant strate-
gies, then (2.13) reduces to (2.3) from before. The expression Vi; for single agents
is exactly (2.4) from earlier and, in particular, time-invariant.

The definition of partial equilibrium is the same as in the baseline model, modulo
the dependence on match duration, i.e., Vij(m,p; t)> Vik(m,p; 0) implies pijk(t)= 0
and Vij(m,p; t)< Vik(m,p; 0) implies pijk(t)= 1.

The definition of steady states is more involved than in the baseline model. We
must now not only ensure that the six masses mij are constant over time but also
that the entire mass densities mij(t) with respect to match duration are constant over
time. However, the following section shows that partial equilibrium behavior takes a
certain form, which later allows us to simplify the balance conditions considerably.

2.7 Cuto� Strategies and Coordination

We now show that with match-specific productivity growth, agents behave as in a
coordination equilibrium except that matches become stable for long enough match
durations. In particular, agents use cutoff strategies with respect to match duration.

Theorem 2.11. If (m,p) is a partial equilibrium, then for all t> 0 and
i, j ∈ {L, H}, pHHL(t)= 0 and pijj(t)= 0. Moreover, there exist non-negative cutoffs
t = (tLLH, tLHL, tHLH) such that
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pijk(t)=

(

1 if t< tijk,

0 if t> tijk

with the following properties:
(1) tLLH = 0 or tLHL = 0,
(2) tLHL < tHLH, and
(3) for each cutoff tijk, if tijk > 0, then tijk is the unique solution to Vij(tijk)= Vik(0).

Proof. See Appendix 2.B.1.

Why is miscoordination no longer an equilibrium when productivity in a match
grows over time? At first glance, it would seem that there could be equilibria in
which agents do not separate until a certain point in time but then suddenly begin
to accept other matches because they expect their partner to do the same. How-
ever, we show by a kind of “unraveling argument” that such behavior cannot oc-
cur in equilibrium. First, we observe that agents strictly prefer to stay in a match
for long enough match durations regardless of whether their partner accepts other
matches since the flow utility eventually grows large enough to compensate for any
lack of stability. More so, agents anticipate this “lock-in” point and therefore reject
other matches even slightly earlier because it is unlikely that their partner will meet
someone in the short timeframe until the match becomes stable. Thus, the match
is actually stable earlier, and this logic can be iterated backward in time. Indeed, in
an HH-match, this unraveling halts only at the time of matching, and for the other
types of matches, we eventually reach a cutoff point.
Remark 3. The cutoff tHLH is the same across all partial equilibria because it solves

VHL(tHLH) = VHH(0) ⇐⇒
∫ ∞

tHLH

uHL(t)e−2δ(t−tHLH)dt =

∫ ∞

0

uHH(t)e−2δtdt.

(2.14)
By Theorem 2.11, we may identify partial equilibrium strategies p with their

associated cutoffs t, and we thus sometimes write (m, t) for a partial equilibrium
(m,p).1⁸

2.8 Steady State Analysis

Our characterization of partial equilibrium behavior greatly simplifies the balance
conditions that must be satisfied in a steady state, allowing for a tractable analysis
of steady state equilibria.

18. Note that we have only characterized partial equilibrium behavior up to a finite number of
match durations, namely t= 0 and the cutoffs. We can henceforth ignore this issue since matching
decisions on a nullset of match durations do not affect the steady state masses.
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mLH(t)

tLHL tHLH t
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(a) The mass density mLH(t) decreases exponentially
over time; the rate changes at the cuto�s tLHL and
tHLH.

mLL(t)

tLLH t

D
E

(b) The mass density mLL(t) decreases exponentially
over time; the rate changes at the cuto� tLLH.

Figure 2.2. An illustration of the mass densities mLH(t) and mLL(t) of LH-matches and LL-matches,
respectively, which are proportional to the survival functions qLH(t) and qLL(t).

Let us recall from the previous section that agents use cutoff strategies in ev-
ery partial equilibrium (m,p). These cutoff strategies imply that a match can only
be in one of a few states, depending on the match duration. Specifically, there
are only three states for an LH-match: (1) if the agents have been matched for a
time shorter than tLHL, then both accept to match with other agents, and therefore,
the match dissolves at rate 2δ+ βLH(m,p; t)+ βHL(m,p; t), where βLH(m,p; t) and
βHL(m,p; t) are constant over (0, tLHL); (2) if the agents have been matched for a
time longer than tLHL but shorter than tHLH, then only the H-agent agrees to match
with other agents, and consequently, the match dissolves at rate 2δ+ βLH(m,p; t),
where βLH(m,p; t) is constant over (tLHL, tHLH); (3) for durations longer than tHLH,
the match is stable and henceforth dissolves at rate 2δ. Similarly, an LL-match can
only be in one of two states depending on whether it has lasted for longer or shorter
than tLLH, and for an HH-match, there is only one state since the match is stable
to begin with. Hence, the survival function qij(m,p; t) of an ij-match is exponen-
tially decreasing with a different but constant rate in each state; this observation is
illustrated in Figure 2.2.

If we integrate the mass density mij(t) of an ij-match—which is proportional to
the survival function qij(t)—over one of the intervals in the previous paragraph, we
obtain the mass of agents in the associated state. Specifically, we define

A =

∫ tLHL

0

mLH(t) dt, B =

∫ tHLH

tLHL

mLH(t) dt, C =

∫ ∞

tHLH

mLH(t) dt,

D =

∫ tLLH

0

mLL(t) dt, E =

∫ ∞

tLLH

mLL(t) dt.
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These masses are the respective areas under the curves in Figure 2.2. By Theo-
rem 2.11, A= 0 or D= 0. Henceforth, we write m= (mL;, mH;, A, B, C, D, E, mHH)
for the tuple of all the relevant masses.

With the definition of these masses, we can formulate the balance conditions.
The reason is that the time-invariance of (A, B, C) implies the time-invariance of the
entire mass density mLH(t), and, similarly, the time-invariance of (D, E) implies the
time-invariance of the entire mass density mLL(t). In other words, we can simplify
the balance conditions from tracking entire mass densities to tracking masses in a
few states. For illustration purposes, let us describe here only the balance condition
for A, i.e., the mass of L-agents matched with H-agents for a time shorter than tLHL,
and move the other balance conditions to Appendix 2.B.2 (see equations (2.B.1) to
(2.B.8)). The balance condition for A reads:

λmH;(mL; + D) = 2δA + λA(mL; + A) + λA(mH; + A + B)

+ λmH;(mL; + D)qLH(m,p; tLHL),

where

qLH(m,p; tLHL)= exp
�

−(2δ+λ(mL; + A)+λ(mH; + A+ B))tLHL

�

.

The left-hand side is the inflow of L-agents into LH-matches, which is, by defini-
tion, the inflow into A. The right-hand side is the outflow from A, which comprises
the outflow due to (1) market exit, (2) the L-agent rematching, (3) the H-agent re-
matching, and (4) the flow from A into B through matches that last for longer than
tLHL.

A steady state equilibrium is, as before, a partial equilibrium that satisfies the
balance conditions. We have the following result about the existence and uniqueness
of steady state equilibria in the augmented model.

Theorem 2.12. There exists a steady state equilibrium. Moreover, fixing all parame-
ters except the inflows (ηL,ηH), for every pair of single masses (mL;, mH;), there exists
a unique pair of inflows (ηL,ηH), a unique collection of masses m with single masses
(mL;, mH;), and a unique strategy profile p such that (m,p) is a steady state equilib-
rium.

Proof. See Appendix 2.B.2.

The fact that the balance conditions are more involved relative to the baseline
model prevents us from obtaining as sharp of a uniqueness result as Theorem 2.7
for coordination equilibria in the baseline model. Nonetheless, we can show that
the augmented model is identified from the masses of single agents. In other words,
observing the masses of single agents is enough to uniquely determine the mass
densities of matched agents, the agents’ equilibrium behavior, and the inflows of
agents into the market. As an illustration, one could consider the context of labor
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markets. With data on the unemployed population and suitable estimates of the
parameters of our model, one could uniquely predict matching behavior and sorting
in the market. Our proof strategy is similar to other results in the literature: we
show that a particular composite mapping reflecting best-response and steady state
dynamics is well-defined and continuous and argue that a fixed point of this mapping
corresponds to a steady state equilibrium.
Remark 4. While we cannot uniquely predict equilibrium behavior in general, let us
briefly discuss the two polar cases where the velocity parameter λ is very small or
very large, i.e., if the search technology is very efficient or very inefficient. Indeed, fix
all parameters except for λ. It can easily be shown that there exists some λ̄ > 0 such
that for all λ < λ̄, we have t∗LLH > 0 in any steady state equilibrium, i.e., L-agents pre-
fer to match with H-agents rather than L-agents. Moreover, as λ→∞,mHH→

ηH
δ ,

mLL→
ηL
δ , and mL;, mH;, mLH→ 0 uniformly across all steady state equilibria. Anal-

ogous statements hold for the baseline model.

2.9 Equilibrium Selection in the Baseline Model

In this section, we take up the idea of selecting steady state equilibria in the base-
line model by perturbing the model with small rates of match-specific productivity
growth. We show that coordination equilibria are precisely those equilibria that sur-
vive such a perturbation.

Since the baseline model is not nested in the augmented model (see Section 2.6),
we must first discuss how to map between the baseline model and the perturbed
model. To this end, we call the limit of a sequence of steady state equilibria in the
augmented model along a sequence of vanishing growth rates a limit equilibrium,
and we define when such a limit equilibrium corresponds to a steady state equi-
librium in the baseline model. As we will be studying the baseline and augmented
model jointly, we assume that the common parameters of both models are the same
and fixed throughout this section. Moreover, we fix flow utilities in the baseline
model as u∗ =

�

u∗ij
�

i,j∈{L,H}
, leaving only the flow utilities in the augmented model

undetermined.

Definition 2.13. The tuple (m,p) is a limit equilibrium of the augmented model if
there exist sequences

�

mn,pn
�

n∈N
and un =

�
�

un
ij(t)

�

i,j∈{L,H}, t≥0

�

n∈N

of masses, strategies, and flow utilities in the augmented model with the following
properties:
(1) limn→∞ un

ij(t)= u∗ij for all i, j ∈ {L, H} and t≥ 0,
(2) (mn,pn) is a steady state equilibrium when flow utilities are given by un, and
(3) (mn,pn)→ (m,p) pointwise as n→∞.



2.10 The E�ects of Match-Specific Productivity Growth | 85

Definition 2.14. A steady state equilibrium (m∗,p∗) in the baseline model corre-
sponds to a limit equilibrium (m,p) of the augmented model if, for all i, j, k ∈ {L, H},
m∗i; =mi;, m∗ij =mij, and

m∗ijp
∗
ijk =

∫ ∞

0

mij(t)pijk(t) dt. (2.15)

The second definition says that the two equilibria correspond to one another if
they have the same steady state masses and the same masses of agents that accept
to match with others. Instead of the latter condition, it might seem more straight-
forward to require that for every match duration t, the acceptance probabilities p∗ijk
and pijk(t) in the baseline and the perturbed model, respectively, are the same. How-
ever, this alternative definition would not be particularly useful because equilibrium
strategies in the augmented model are (almost everywhere) pure while they may
well be mixed in the baseline model.

Theorem 2.15. A steady state equilibrium in the baseline model corresponds to a limit
equilibrium of the augmented model if and only if it is a coordination equilibrium.

Proof. See Appendix 2.C.1.

This result is important because it can alleviate the problem of equilibriummulti-
plicity that is inherent to our baseline model without productivity growth. While we
have previously argued that one might expect agents to play a coordination equilib-
rium for the sake of payoff dominance, we have also noted that coordination failure
cannot be ruled out in equilibrium, leaving ample room for equilibrium multiplicity;
see Section 2.5. In contrast, the present result uniquely selects the class of coordi-
nation equilibria in the baseline model, a class of steady state equilibria for which
we have a sharp characterization; see Theorem 2.7.

2.10 The E�ects of Match-Specific Productivity Growth

We now discuss how match-specific productivity growth changes the predictions of
the baseline model. Indeed, it is only with the selection result from the previous sec-
tion that we can meaningfully compare equilibrium behavior in the two models be-
cause our characterization of coordination equilibria is sharp, whereas virtually any
equilibrium behavior is possible when agents miscoordinate. We find that produc-
tivity growth can both impede and promote sorting and even reverse the matching
behavior of L-agents relative to the baseline model.

Similar to the baseline model, we say that a steady state equilibrium is assorting
if tLHL > 0 and tLLH = 0 and non-assorting if tLHL = 0 and tLLH > 0.
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Theorem 2.16. Fix all parameters except for the flow utilities. If
∫∞

0

�

uHH(t)− uHL(t)
�

e−2δt dt is sufficiently large and
∫∞

0

�

uLH(t)− uLL(t)
�

e−2δt dt
is sufficiently small, then every steady state equilibrium is assorting. Moreover, if
∫∞

0

�

uHH(t)− uHL(t)
�

e−2δt dt is sufficiently small or
∫∞

0

�

uLH(t)− uLL(t)
�

e−2δt dt is
sufficiently large, then every steady state equilibrium is non-assorting.

Proof. See Appendix 2.C.2.

Theorem 2.16 provides conditions on flow utilities such that the matching be-
havior of L-agents is the same in all steady state equilibria of the augmented model.
For comparison with the baseline model, let us take the initial flow utilities uij(0)
in the augmented model to be the flow utilities uij from the baseline model. Then,
the conditions on the initial flow utilities in Theorem 2.7—our characterization of
coordination equilibria in the baseline model—can be satisfied independently of
the conditions on the evolution of flow utilities in Theorem 2.16. Thus, for certain
flow utilities, it can be unambiguously determined in both models whether L-agents
match with L-agents or H-agents, and this behavior need not be the same, i.e., pro-
ductivity growth may indeed reverse the matching behavior of L-agents.

There are two opposing forces that determine the precise effect of match-specific
productivity growth. On the one hand, productivity growth locks agents into non-
assortative matches for long enough match durations. On the other hand, the sta-
bility of an assortative match is now desirable not only because being single entails
a period without production but also because being single means forgoing produc-
tivity accumulation in a stable match. The former leads to less assortative matching
while the latter leads to more assortative matching, and either force may dominate
in equilibrium depending on the precise shape of productivity growth.

These findings suggest that some caution is warrantedwhen analyzing decentral-
ized matching markets where match-specific productivity growth could play a role
because one might otherwise draw false conclusions from observed sorting patterns.
For example, assortative matching can be the result of low search frictions (high
λ), thus driven by the fact that more productive agents quickly find one another,
or it can be driven by the agents’ desire to foster growth in long-term relationships
with similar types. Likewise, non-assortative matching need not be an indication of
high search frictions (low λ) per se, but it could be driven by the fact that agents
voluntarily commit to their matches once they become sufficiently productive.

In the baseline model, we have already seen that it may be more difficult for
H-agents to find a partner than for L-agents when L-agents coordinate to match
among themselves. This phenomenon can be exacerbated by match-specific produc-
tivity growth because L-agents now have an additional incentive to match among
themselves, namely to foster growth in stable relationships. In labor markets, for
example, this finding may provide an explanation for how “overqualification” can
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lead to involuntary unemployment, perhaps even more so when productivity in a
match grows over time.1⁹

2.11 Conclusion

We have analyzed a search-and-matching model with heterogeneous agents in the
spirit of Shimer and Smith (2000) and Smith (2006) with two new features: on-the-
match search and match-specific productivity growth. With on-the-match search,
agents must make a trade-off between flow utility and match stability, which is
in turn determined by the agents’ behavior. The fact that stability is endogenous
implies a coordination problem among agents and, consequently, a fundamental
problem with equilibrium multiplicity when agents search on-the-match. We have
shown that this problem can be alleviated by match-specific productivity growth and
have characterized the set of steady state equilibria that survive a perturbation with
match-specific productivity growth. In general, the desire for stability can lead less
productive agents to prefer matching with other less productive agents, which is an
alternative explanation for assortative matching. Moreover, the behavior of less pro-
ductive agents can significantly change under match-specific productivity growth,
which makes it an important factor in assessing the performance of decentralized
matching markets.

The following directions for future research seem promising to us:
(1) Extend our analysis to more than two types of agents and see how equilibrium

selection through match-specific productivity growth plays out. Because there
is now even more scope for equilibrium multiplicity, it will be a significant chal-
lenge for future research to identify a reasonable class of steady state equilibria
within which further analysis can be carried out. (After all, a model that can pre-
dict virtually any behavior is not particularly useful.) Match-specific productivity
growth will still be able to eliminate some equilibria, and a characterization of
the surviving equilibria would be interesting. It is needless to say that other se-
lection arguments would prove helpful as well.

(2) Endogenizematch-specific productivity growth, for example, by havingmatched
agents play an investment game. For this extension to be tractable, some other
elements of our model would most likely have to be simplified.2⁰

(3) Analyze pre-match agreements and match dissolution costs. The fact that it
might be more difficult for more productive agents to find a partner in equi-
librium suggests that they might sometimes want to commit to a match with
a less productive agent. What are the aggregate effects of allowing agents to

19. See e.g. Galperin et al. (2020) for empirical evidence.
20. Lentz and Roys (2015) and Flinn, Gemici, and Laufer (2017) study labor market models with

on-the-job search where firms may invest in match-specific productivity.
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commit to a match unilaterally for some period of time? Relatedly, what hap-
pens if match dissolution is costly or if agents can agree to make it costly upon
matching?

Appendix

For the sake of readability, we henceforth omit the arguments m, p, and t of the
rates αij and βij and the expected continuation utilities Vij whenever there is no risk
of confusion.

Appendix 2.A Proofs: Baseline Model

2.A.1 Section 2.3

Proof of Lemma 2.2. Fix some i, j ∈ {L, H}, and let k 6= j be the opposite type of j.
Plugging (2.4) into (2.3), we get the following expressions for the expected con-

tinuation utilities of an i-agent in a match with a j-agent and a k-agent, respectively:

Vij =
uij +

∑

l∈{L,H} pijlαilVil + βij

�
∑

l∈{L,H} αilVil

δ+
∑

l∈{L,H} αil

�

δ +
∑

l∈{L,H} pijlαil + βij

Vik =
uik +

∑

l∈{L,H} piklαilVil + βik

�
∑

l∈{L,H} αilVil

δ+
∑

l∈{L,H} αil

�

δ +
∑

l∈{L,H} piklαil + βik
.

From these two equations, one can construct a system of linear equations of the
form

�

Ajj Ajk

Akj Akk

�

·
�

Vij

Vik

�

=

 �

δ +
∑

l∈{L,H}αil

�

uij
�

δ +
∑

l∈{L,H}αil

�

uik

!

,

where

Ajj = δ

 

δ +
∑

l∈{L,H}

αil

!

+ pijkαik

 

δ +
∑

l∈{L,H}

αil

!

+ βij

�

δ + αik

�

,

Ajk = −αik



pijk

 

δ +
∑

l∈{L,H}

αil

!

+ βij



 ,

Akj = −αij



pikj

 

δ +
∑

l∈{L,H}

αil

!

+ βik



 ,

Akk = δ

 

δ +
∑

l∈{L,H}

αil

!

+ pikjαij

 

δ +
∑

l∈{L,H}

αil

!

+ βik

�

δ + αij

�

.
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Let A≡
�

Ajj Ajk

Akj Akk

�

. Since

det (A) = AjjAkk − AjkAkj

=



δ

 

δ +
∑

l∈{L,H}

αil + βij

!

− Ajk







δ

 

δ +
∑

l∈{L,H}

αil + βik

!

− Akj



 − AjkAkj

= δ2

 

δ +
∑

l∈{L,H}

αil + βij

! 

δ +
∑

l∈{L,H}

αil + βik

!

− δ

 

δ +
∑

l∈{L,H}

αil + βij

!

Akj − δ

 

δ +
∑

l∈{L,H}

αil + βik

!

Ajk

> 0,

it follows by Cramer’s rule that the system of equations has a unique solution, namely

Vij =
1

det (A)
· det

 �

δ +
∑

l∈{L,H}αil

�

uij Ajk
�

δ +
∑

l∈{L,H}αil

�

uik Akk

!

Vik =
1

det (A)
· det

 

Ajj

�

δ +
∑

l∈{L,H}αil

�

uij

Akj

�

δ +
∑

l∈{L,H}αil

�

uik

!

.

From this, we can infer that

Vij > Vik ⇔ uijAkk − uikAjk > uikAjj − uijAkj

⇔
uij

uik
>

Ajj + Ajk

Akj + Akk
=
δ +

∑

l∈{L,H}αil + βij

δ +
∑

l∈{L,H}αil + βik
,

which completes the proof.

2.A.2 Section 2.4

It is often an essential step in the analysis of steady state equilibria to prove the
existence of unique steady state masses for arbitrary strategies and to show that
this solution changes continuously in the strategies (see the so-called “fundamental
matching lemma” in Shimer and Smith (2000)). For our baseline model, we first
show the existence of steady states for arbitrary strategies and then argue that they
are unique and change continuously for certain classes of strategy profiles, including
those played in a coordination equilibrium. We do not show uniqueness for arbitrary
strategy profiles, nor do we need it, and we would even question the validity of this
claim.
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As a preliminary step, let us derive the aggregate balance conditions by adding
up the balance conditions for single agents and matched agents ((2.6) and (2.7),
respectively), separately for L-agents and H-agents:

ηL = δ
�

mL; +mLL +mLH

�

(2.A.1)
ηH = δ

�

mH; +mHH +mLH

�

. (2.A.2)

The left-hand side is the flow of i-agents that enter the market, and the right-hand
side is the total flow of i-agents that exit the market.

Moreover, we shall repeatedly use the R6-valued mapping F(m,p) that results
from the balance conditions (2.6) and (2.7) by subtracting for each mass its right-
hand side (outflow) from its left-hand side (inflow). In other words, F returns the
excess inflows for given (m,p). Also note that F is continuous in (m,p) because it is
a polynomial map.

Lemma 2.17. For every strategy profile p there exist masses m satisfying the balance
conditions (2.6) and (2.7).

Proof. Fix an arbitrary strategy profile p. Let M be the set of masses m ∈ R6
+ satisfy-

ing the aggregate balance conditions (2.A.1) and (2.A.2). Note that M is non-empty,
compact, and convex.

Fix any arbitrary strategy profile p. Define a mapping T : M→M via

T(m)=m+
1

2(δ+ληL+ηH
δ )

F(m,p),

where the scaling factor ensures that T(m)≥ 0 since the outflow from any matching
state is bounded by the exit and meeting rates. Moreover, by construction, T(m)
satisfies the aggregate balance conditions since m does. Thus, T(m) ∈M.

Finally, T is continuous since F is continuous. Thus, by Brouwer’s fixed point
theorem, T has a fixed point, and m is a fixed point of T if and only if F(m,p)= 0,
which completes the proof.

Lemma 2.18. Suppose P is a subset of strategy profiles such that, for every p ∈ P, there
is a unique solution m(p) to the balance conditions (2.6) and (2.7). Then, m(p) is
continuous over P.

Proof. By definition, F(m(p),p)= 0. For any sequence (pn) ⊂ P with pn→ p∗, we
have

F
�

lim
n→∞

m(pn),p∗
�

= lim
n→∞

F
�

m(pn),pn
�

= lim
n→∞

0= 0= F
�

m(p∗),p∗
�

.

By the uniqueness of m(p), we must have limn→∞m(pn)=m(p∗), which completes
the proof.
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The following lemma shows the uniqueness of a steady state for a specific class
of strategy profiles. This class may seem somewhat arbitrary at first, but we will
be working with it later on. In any case, we are covering the strategies used in a
coordination equilibrium.

Lemma 2.19. Let P be the set of strategy profiles satisfying the restrictions of a coordi-
nation equilibrium, except that pHLH ∈ [0, 1] and pHLL ∈ [0, 1]. For every p ∈ P there
exist unique masses m(p) such that (m(p),p) is a steady state. Moreover, m(p) is con-
tinuous in p over P.

Proof. In view of Lemmata 2.17 and 2.18, it suffices to show that for every p ∈ P,
there is at most one solution to the balance conditions (2.6) and (2.7), which sim-
plify as follows given the restrictions above:

mHH : λ
�

mH; + pHLHmLH

�2
= 2δmHH (2.A.3)

mLL : λ
�

mL; + pLHLmLH

�2
= 2δmLL + 2λmLL(pLLHmH; + pLLHpHLLmLH) (2.A.4)

mLH :
λ
�

mL; + pLLHmLL

�

mH; = 2δmLH

+ λmLH

�

pLHL(mL; +mLHpLHL) + pHLH(mH; + pHLHmLH)
� (2.A.5)

mL; :

ηL + δ(mLL +mLH) + λpLLHmLLmH;

+ λpHLHmLH

�

mH; + pHLHmLH

�

+ 2λmLLpLLHpHLLmLH

= δmL; + λmL;
�

mL; +mH; + pLHLmLH

�

(2.A.6)

mH; :
ηH + δ(mHH +mLH) + λpLHLmLH

�

mL; + pLHLmLH

�

= δmH; + λmH;
�

mL; +mH; + pLLHmLL + pHLHmLH

�

.
(2.A.7)

For the sake of contradiction, suppose for some p ∈ P there are two distinct so-
lutions, m and m0.

We first show that mLH 6=m0

LH. If mLH =m0

LH, then the aggregate balance con-
dition (2.A.2) together with (2.A.3) implies that mHH =m0

HH and mH; =m0

H;. In
turn, the aggregate balance condition (2.A.1) together with (2.A.4) implies that
mLL =m0

LL and mL; =m0

L;, contradicting that m 6=m0. Thus, without loss of general-
ity, assume mLH <m0

LH.
As in the previous paragraph, the aggregate balance condition (2.A.2) together

with (2.A.3) implies that mHH ≥m0

HH and mH; >m0

H;. In turn, the aggregate balance
conditions (2.A.1) and (2.A.2) together with (2.A.4) imply that mL; >m0

L;, and if
pLLH = 0, then mLL ≥m0

LL.
Now, suppose pLHL = 0. The inflow into mH;, i.e., the left-hand side of (2.A.7), is

larger under m0 than under m, whereas the outflow from mH;, i.e., the right-hand
side of (2.A.7), is larger under m than under m0, which is a contradiction.

Finally, suppose pLLH = 0. Compared to the argument in the previous
paragraph, there is now an additional source of inflow into mH;, namely
λpLHLmLH

�

mL; + pLHLmLH

�

. The only way that the balance condition (2.A.7) can
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be satisfied for both m and m0 is that this new source of inflow into mH; is so much
larger given m than given m0 that it offsets the larger outflow from mH; given m
rather than m0, as was argued in the previous paragraph. In particular,

pLHLmL;mLH − pLHLm0

L;m
0

LH > pHLHmH;mLH − pHLHm0

H;m
0

LH. (2.A.8)

Then, however, the difference of inflows into mL; between m and m0, i.e., the re-
spective left-hand sides of (2.A.6), is smaller than the difference of outflows, i.e.,
the respective right-hand sides of (2.A.6), from mL; between m and m0, which is a
contradiction.

We now define two classes of strategy profiles covered by Lemma 2.19. First, let
PLHL denote the set of strategy profiles satisfying the restrictions of a coordination
equilibrium with pLLH = 0, i.e., those of an assorting or mixed assorting equilibrium.
Second, let PLLH denote the set of strategy profiles satisfying the restrictions of a
coordination equilibrium with pLHL = 0, i.e., those of a non-assorting or mixed non-
assorting equilibrium. Note that both sets can be linearly ordered via pLHL and pLLH,
respectively.

The next two lemmas present comparative statics of the steady state solution
m(p) with respect to strategy profiles p ∈ PLHL or p ∈ PLLH.

Lemma 2.20. Let p,p0 ∈ PLHL be so that pLHL < p0

LHL, and let m=m(p) and
m0 =m(p0). Then, mHH =m0

HH, mH; <m0

H;, mLH >m0

LH, mL; >m0

L; and mLL <m0

LL.

Proof. We shall repeatedly use the balance conditions (2.A.3)-(2.A.7), setting
pLLH = 0, pHLH = 1, and pHLL = 0. The fact that mHH =m0

HH then immediately fol-
lows from (2.A.3) and (2.A.2).

For the sake of contradiction, suppose mLL ≥m0

LL. By (2.A.4), we have

mL; + pLHLmLH ≥m0

L; + p0

LHLm0

LH >m0

L; + pLHLm0

LH.

This inequality together with the aggregate balance condition for L-agents (2.A.1)
implies mLH <m0

LH and mL; >m0

L;. Moreover, the aggregate balance condition
for H-agents (2.A.2) implies mH; >m0

H;. Now, the left-hand side of (2.A.6) is
strictly larger under

�

m,p
�

than under
�

m0,p0

�

, whereas the right-hand side
of (2.A.6) is strictly larger under

�

m0,p0

�

than under
�

m,p
�

, which contra-
dicts that both

�

m,p
�

and
�

m0,p0

�

are steady states. Hence, mLL <m0

LL, and,
moreover,mL; + pLHLmLH <m0

L; + p0

LHLm0

LH by (2.A.4).
For the sake of contradiction, suppose mL; ≤m0

L;. By the aggregate balance con-
ditions (2.A.1) and (2.A.2), we have mLH >m0

LH and mH; <m0

H;. As in the previous
paragraph, these relationships yield a contradiction with (2.A.6). Hence, mL; >m0

L;.
Finally, for the sake of contradiction, suppose mLH ≤m0

LH. By the aggregate bal-
ance condition (2.A.2), we have mH; ≥m0

H;. Now, the left-hand side of (2.A.5)
is strictly larger under

�

m,p
�

than under
�

m0,p0

�

, whereas the right-hand side
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of (2.A.5) is strictly larger under
�

m0,p0

�

than under
�

m,p
�

, which contradicts
that both

�

m,p
�

and
�

m0,p0

�

are steady states. Hence, mLH >m0

LH and thus
mH; <m0

H;.

Lemma 2.21. Let p,p0 ∈ PLLH be such that pLLH < p0

LLH, and let m=m(p) and
m0 =m(p0). Then, mHH =m0

HH, mH; >m0

H;, mLH <m0

LH, mL; <m0

L; and mLL >m0

LL.
Moreover, mH; +mL; <m0

L; +m0

H;.

Proof. We shall repeatedly use the balance conditions (2.A.3)-(2.A.7), setting
pLHL = 0, pHLH = 1, and pHLL = 0. The fact that mHH =m0

HH then immediately fol-
lows from (2.A.3) and (2.A.2).

For the sake of contradiction, suppose mL; ≥m0

L;. By (2.A.4), we have
pLLHmH; ≥ p0

LLHm0

H; or mLL ≥m0

LL. In the former case, we get mH; ≥m0

H;. In the latter
case, we get mLH ≤m0

LH from the aggregate balance condition (2.A.1). Thus, by the
aggregate balance condition (2.A.2), we have mH; ≥m0

H; and mLH ≤m0

LH in either
case. From (2.A.5), it follows that mH;pLLHmLL ≤m0

H;p
0

LLHm0

LL. Now, (2.A.6) can only
be fulfilled if all the previously stated inequalities hold with equality because the left-
hand side of (2.A.6) is weakly larger under

�

m0,p0

�

than under
�

m,p
�

, whereas the
right-hand side of (2.A.6) is weakly larger under

�

m,p
�

than under
�

m0,p0

�

, which
would otherwise contradict that both

�

m,p
�

and
�

m0,p0

�

are steady states. How-
ever, pLLHmH;mLL = p0

LLHm0

H;m
0

LL and mH; =m0

H; imply mLL >m0

LL, and mLH =m0

LH
and mL; =m0

L; imply mLL =m0

LL via the aggregate balance condition (2.A.6), which
is a contradiction. Hence, mL; <m0

L;.
For the sake of contradiction, suppose mLL ≤m0

LL. Then, mLH ≥m0

LH from
the aggregate balance condition for L-agents (2.A.1). Consequently, mH; >

m0

H; from (2.A.5), which contradicts the aggregate balance condition for H-
agents (2.A.2). Hence, mLL >m0

LL, and, as in the previous paragraph, we have
pLLHmH;mLL < p0

LLHm0

H;m
0

LL by (2.A.4).
Now, for the sake of contradiction, suppose mH; ≤m0

H; and mLH ≥m0

LH. Then,
the left-hand side of (2.A.5) is strictly larger under

�

m0,p0

�

than under
�

m,p
�

,
whereas the right-hand side of (2.A.5) is weakly larger under

�

m,p
�

than under
�

m0,p0

�

, which contradicts that both
�

m,p
�

and
�

m0,p0

�

are steady states. Hence,
mH; >mH; and mLH <m0

LH by the aggregate balance condition for H-agents (2.A.2).
Finally, summing up the balance conditions (2.A.6) and (2.A.7) for singles yields

ηL +ηH +δ(mLL + 2mLH +mHH)+λm2
LH = δ(mL; +mH;)+λ(mL; +mH;)

2.

Using the aggregate balance conditions (2.A.1) and (2.A.2), we then have

2ηL + 2ηH +λm2
LH = 2δ(mL; +mH;)+λ(mL; +mH;)

2.

Thus, mL; +mH; <m0

L; +m0

H; since mLH <m0

LH.
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Lemma 2.22. The difference VLH(m(p),p)− VLL(m(p),p) is continuous and single-
crossing from below over PLHL and over PLLH.

Proof. First, consider p ∈ PLHL. For any tuple of masses m, we have

αLL(m,p) = λ(mL; + pLHLmLH)

αLH(m,p) = λmH;

βLL(m,p) = δ

βLH(m,p) = δ + λ(mH; +mLH).

From the proof of Lemma 2.20, it follows that αLL(m(p),p) and αLH(m(p),p)
are strictly increasing over PLHL, whereas βLL(m(p),p) and βLH(m(p),p) remain
constant. Thus, the ratio δ+αLL+αLH+βLH

δ+αLL+αLH+βLL
is strictly decreasing over PLHL. Thus, by

Lemma 2.2, the difference VLH(m(p),p)− VLL(m(p),p) is single-crossing from be-
low over PLHL.

Second, consider p ∈ PLLH. For any tuple of masses m, we have

αLL(m,p) = λmL;

αLH(m,p) = λmH;

βLL(m,p) = δ + λpLLHmLH

βLH(m,p) = δ + λ(mH; +mLH).

From the proof of Lemma 2.21, it follows that αLL(m(p),p)+αLH(m(p),p)
and βLL(m(p),p) are strictly increasing over PLLH, whereas βLH(m(p),p) remains
constant. Thus, the ratio δ+αLL+αLH+βLH

δ+αLL+αLH+βLL
is strictly decreasing over PLHL. Thus, by

Lemma 2.2, the difference VLH(m(p),p)− VLL(m(p),p) is single-crossing from be-
low over PLLH.

For the continuity claim, note that by the proof of Lemma 2.2, the tuple of func-
tions (VL;(m,p), VLL(m,p), VLH(m,p)) is the unique solution to a system of equations
that is continuous in (m,p). Hence, the solution is continuous in (m,p) using the
same argument as in the proof of Lemma 2.18. Moreover, by Lemma 2.18, m(p) is
continuous in p over both PLHL and PLLH, hence the claim.

Proof of Theorem 2.7. Let p ∈ PLHL ∪ PLLH, and let m be an arbitrary tu-
ple of masses. We have βHH(m,p)≤ βHL(m,p) and thus, by Lemma 2.2,
VHH(m,p)> VHL(m,p) because uHH

uHL
> 1. Hence, H-agents behave optimally in

(m,p).
Define three strategy profiles. First, let p1 ∈ PLHL be such that pLHL = 1, i.e., as

in an assorting equilibrium. Second, let p2 ∈ PLLH be such that pLLH = 1, i.e., as in a
non-assorting equilibrium. Third, let p3 ∈ PLHL ∩ PLLH, i.e., pLHL = 0 and pLLH = 0.
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Define the cutoffs

δ +
∑

l∈{L,H}αLl(m(p1),p1) + βLH(m(p1),p1)

δ +
∑

l∈{L,H}αLl(m(p1),p1) + βLL(m(p1),p1)
≡ ū

δ +
∑

l∈{L,H}αLl(m(p2),p2) + βLH(m(p2),p2)

δ +
∑

l∈{L,H}αLl(m(p2),p2) + βLL(m(p2),p2)
≡

¯
u

δ +
∑

l∈{L,H}αLl(m(p3),p3) + βLH(m(p3),p3)

δ +
∑

l∈{L,H}αLl(m(p3),p3) + βLL(m(p3),p3)
≡ û.

Moreover, note that

∑

l∈{L,H}

αLl(m(p3),p3) = λ(mL; +mH;) =
∑

l∈{L,H}

αLl(m(p2),p2)

<
∑

l∈{L,H}

αLl(m(p1),p1)

βLL(m(p3),p3) = δ = βLL(m(p1),p1)

< βLL(m(p2),p2)

βLH(m(p3),p3) = δ + λ(mH; +mLH) = βLH(m(p2),p2)

= βLH(m(p1),p1)

(see the proof of Lemma 2.22 for the two rightmost expressions in each line.) Hence,
û>max{ū,

¯
u}.

Finally, by the definition of a partial equilibrium, we need VLL ≥ VLH in an assort-
ing equilibrium, VLH ≥ VLL in a non-assorting equilibrium, and VLL = VLH in every
other coordination equilibrium. The claims regarding the pure coordination equilib-
ria immediately follow from Lemma 2.2, and the claims regarding the mixed coor-
dination equilibria follow from Lemma 2.22 by distinguishing cases based upon the
comparison of û and uLH

uLL
.

Proof of Theorem 2.8. Immediately follows from Lemmata 2.20 and 2.21.

2.A.3 Section 2.5

Proof of Theorem 2.9. Let p be a strategy profile where pHHL = 1, pHLH = 0 and
pijj = 0 for all i, j ∈ {L, H}, and let m be any tuple of non-negative masses. Then,

βLH(m,p)= δ ≤ δ+λpLLH(mH; +mHL)= βLL(m,p).

By Lemma 2.2, VLH(m,p)> VLL(m,p). Thus, if (m,p) is a steady state equilibrium,
then pLLH = 1 and pLHL = 0.
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Now, let p be the strategy profile where pHHL = 1, pHLH = 0, pijj = 0 for all
i, j ∈ {L, H}, pLLH = 1, and pLHL = 0, and let M be the set of non-negative masses satis-
fying the balance conditions (2.6) and (2.7) given p. M is non-empty by Lemma 2.17.
Moreover, M is compact since it is bounded and the preimage of the point 0 under
the continuous function F(·,p).

Define

ũ ≡ max
m∈M

δ +
∑

l∈{L,H}αHl(m,p) + βHH(m,p)

δ +
∑

l∈{L,H}αHl(m,p) + βHL(m,p)
.

The cutoff ũ is well-defined since the term on the right-hand side is continuous in m.
By Lemma 2.2, a desired steady state equilibrium exists if and only if uHH

uHL
≤ ũ.

Proof of Theorem 2.10. We will show that, for every q ∈ [0, 1], there is a steady
state equilibrium (m,p) such that pHLL = q.

Fix an arbitrary pHLL = q. Let P denote the set of strategy profiles where agents
otherwise behave as in a coordination equilibrium. By Lemma 2.19, for any such
strategy profile p ∈ P, there are unique masses m(p) such that (m(p),p) is a steady
state. It remains to show that there is some p ∈ P such that the tuple (m(p),p) is
also a partial equilibrium.

For every p ∈ P, we have βHH(m(p),p)≤ βHL(m(p),p). By Lemma 2.2,
VHH(m

�

p
�

,p)> VHL(m
�

p
�

,p) because uHH
uHL
> 1. Hence, H-agents behave optimally

for every p ∈ P.
If p ∈ P such that pLLH = 1 and pLHL = 0 is not an equilibrium strategy pro-

file, then VLL(m(p),p)> VLH(m(p),p). Moreover, if p ∈ P such that pLLH = 0 and
pLHL = 1 is not an equilibrium strategy profile, then VLH(m(p),p)> VLL(m(p),p).

Note that P is connected (it is an L-shaped path parametrized by pLLH and pLHL).
Moreover, VLL and VLH are both continuous functions of (m,p), and by Lemma 2.19,
m(p) is continuous on P. Thus, by the intermediate value theorem, there exists
some p∗ ∈ P such that VLL(m(p∗),p∗)= VLH(m(p∗),p∗) and (m(p∗),p∗) is a partial
equilibrium.

Remark 5. There are many ways to show that there is a continuum of steady state
equilibria. For example, instead of varying pHLL, we could have also varied pLHH

or pLLL. The reason that we do not consider multiple variations at once, e.g., even
varying pHHH or relaxing that pLLHpLHL = 0, is that we can no longer guarantee a
unique steady state. Of course, there is nothing suggesting that jointly considering
these variations would not yield an even greater number of steady state equilibria.
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Appendix 2.B Proofs: Augmented Model

2.B.1 Section 2.7

Proof of Theorem 2.11. Let (m,p) be a partial equilibrium. The proof narrows
down the possible equilibrium behavior in several steps.

We write ī for the type that is not type i ∈ {L, H}, i.e., {̄i}= {L, H} \ {i}. Moreover,
it will be convenient to let r= 2(δ+λm)<∞ denote the maximal rate at which a
match can possibly dissolve, where m is the total mass of agents in the market.

Step 1. For any ij-match, there exists a match duration t̄≥ 0 after which both agents
stay in the match, i.e., for all t> t̄, pijL(t)= 0, pijH(t)= 0, pjiL(t)= 0, and pjiH(t)= 0.

For all t≥ 0,

Vij(t)>

∫ ∞

t
e−r(s−t)uij(s) ds and Vji(t)>

∫ ∞

t
e−r(s−t)uji(s) ds.

By our assumptions on productivity growth, both right-hand sides diverge to infinity
as t→∞. Hence there is some t̄≥ 0 such that for all t> t̄,

Vij(t)>max{ViL(0), ViH(0)} and Vji(t)>max{VjL(0), VjH(0)}

since the right-hand sides are finite by assumption. The claim then follows from the
definition of partial equilibrium.

Step 2. For any ij-match and any match duration t∗ > 0, if
• pjīi(t)= 0 for all t> t∗ or pjīi(t) is a cutoff strategy, and
• pjii(t)= 0 for all t> t∗,
then there exists ε > 0 such that
(1) Vij(t)≷ Vij(t∗) for all t≷ t∗, and Vij(t) is continuous at t∗,
(2) pijj(t)= 0 for all t> t∗ − ε, and
(3) Vij(t

∗)> Vīj(0) implies Vij(t)> Vīj(0) and pij̄j(t)= 0 for all t> t∗ − ε.

The premises imply Vij(t)≷ Vij(t
∗) for all t≷ t∗ in either of the two cases because

flow utility uij(t) is strictly increasing in match duration t and the rate βij(t) at which
an ij-match is dissolved by the j-agent satisfies βij(t)Ñ βij(t

∗) for all t≷ t∗.
For the continuity claim, note that

Vij(t
∗)> Vij(t

∗ − ε)>
∫ t∗

t∗−ε
e−r̄(s−t∗)uij(s) ds+ e−r̄εVij(t

∗).

The right-most expression converges to Vij(t
∗) as ε ↓ 0, thus Vij(t

∗ − ε)→ Vij(t
∗) as

ε ↓ 0. A similar argument shows that Vij(t
∗ + ε)→ Vij(t

∗) as ε ↓ 0, hence Vij(t) is
continuous at t∗.
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Implications (2) and (3) follows immediately from the continuity of Vij(t) at t∗

and the definition of partial equilibrium.

Step 3. For any ij-match, there exists a match duration t∗ ≥ 0 after which both
agents stay in the match such that pij̄j or pjīi is a cutoff strategy with cutoff t∗ (or
both).

By combining the first two steps, in particular implications (2) and (3) in
Step 2, we can find some t∗ ≥ 0 after which both agents stay in the match
such that t∗ = 0 or Vij(t

∗)≤max{ViL(0), ViH(0)} or Vji(t
∗)≤max{VjL(0), VjH(0)}. If

t∗ = 0, then we trivially establish Step 3. Thus, without loss of generality, suppose
Vij(t

∗)≤max{ViL(0), ViH(0)}.
Since the j-agent stays in the match after t∗, the first implication in Step 2 yields

Vij(t
∗)> Vij(t) for all t< t∗, thus Vij(t

∗)≤ Vīj(0). Again, by the first implication in
Step 2, Vij(t)< Vīj(0) for all t< t∗. Thus, the definition of partial equilibrium implies
that pij̄j is a cutoff strategy.

Step 4. For all t> 0, pHHH(t)= 0, and pHHL(t)= 0.

By the previous step, pHHL(t) is a cutoff strategy with cutoff t∗, and both agents
in an HH-match stay after t∗. Since uHH(t)> uHL(t) for all t≥ 0, flow utility is in-
creasing, and both agents stay in the match after t∗, we have VHH(t∗)> VHL(0). Thus,
by the definition of partial equilibrium, t∗ = 0. Moreover, since both agents stay in
the match after t∗, pHHH(t)= 0 for all t> 0.

Step 5. For all t> 0, pLLL(t)= 0, and pLLH(t) is a cutoff strategy with cutoff tLLH.

By Step 3, pLLH(t) is a cutoff strategy with cutoff t∗, and both agents in an
LL-match stay after t∗. For the sake of contradiction, suppose pLLL(t)> 0 for some
t ∈ (0, t∗]. Let t0 = sup{t ∈ (0, t∗] | pLLL(t)> 0}. The second implication in Step 2 im-
mediately contradicts the definition of t0.

Step 6. The strategies pLHL(t) and pHLH(t) are cutoff strategies with cutoffs tLHL

and tHLH, respectively, where tLHL < tHLH. Moreover, for all t> 0, pLHH(t)= 0 and
pHLL(t)= 0.

By Step 3, there exists a match duration t∗ such that both agents in an LH-match
stay in the match after t∗ and such that pHLH(t) or pLHL(t) is a cutoff strategy
with cutoff t∗. However, pLHL(t) cannot be a cutoff strategy with cutoff t∗: we have
VLH(t∗)> VLL(0) because both agents in an LH-match stay after t∗ and an LH-match
yields a higher flow utility for L-agents than an LL-match. Thus, pHLH(t) is a cutoff
strategy with cutoff tHLH = t∗.

In analogy to Step 3, by using the second and third implication in Step 2, we can
find a match duration tLHL < tHLH for an LH-match such that the L-agent stays after
tLHL, pHLL(t)= 0 for all t> tLHL, and VLH(tLHL)≤ {VLL(0), VLH(0)} unless tLHL = 0. If
tLHL = 0, we are done, thus suppose tLHL > 0.
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The first implication of Step 2 yields VLH(tLHL)> VLH(t) for all t< tLHL, thus
VLH(tLHL)≤ VLL(0). Again, by the first implication in Step 2, VLH(t)< VLL(0) for all
t< tLHL. Thus, the definition of partial equilibrium implies that pLHL(t) is a cutoff
strategy with cutoff tLHL < tHLH. Finally, by the same argument as in Step 5, we have
pLHH(t)= 0 and pHLL(t)= 0 for all t> 0.

Step 7. Vij(t) is strictly increasing and continuous in match duration t for all
i, j ∈ {L, H}.

Follows immediately from Steps 4-6 and the first implication in Step 2.

Step 8. For each cutoff tijk, if tijk > 0, then tijk is the unique solution to
Vij(tijk)= Vik(0).

Follows immediately from Step 7 and the definition of partial equilibrium.

Step 9. tLLH = 0 or tLHL = 0.

Suppose tLLH > 0. By Steps 7 and 8, VLL(0)< VLL(tLLH)= VLH(0)< VLH(tLHL).
Again by Steps 7 and 8, tLHL = 0.

2.B.2 Section 2.8

Balance conditions. Let (m,p) be a partial equilibrium. Then, using the partial
equilibrium characterization in Theorem 2.11, the balance conditions for (m,p) to
be a steady state are as follows; as before, the inflows will be on the left-hand side
and the outflows on the right-hand side. For singles, we have

ηL + δ(A + B + C + D + E) + λDmH; + λ(A + B)(mH; + A + B)

= δmL; + λmL;(mL; +mH; + A)
(2.B.1)

ηH + δ(A + B + C +mHH) + λA(mL; + A)

= δmH; + λmH;(mL; +mH; + A + B + D).
(2.B.2)

For HH-matches, we have

λ(mH; + A + B)2 = 2δmHH. (2.B.3)

For LH-matches, i.e., A, B, and C, respectively, we have

λmH;(mL; + D)

= 2δA + λA(mL; + A) + λA(mH; + A + B)

+ λmH;(mL; + D)qLH(m,p; tLHL)

(2.B.4)

λmH;(mL; + D)qLH(m,p; tLHL)

= 2δB + λB(mH; + A + B) + λmH;(mL; + D)qLH(m,p; tHLH)
(2.B.5)

λmH;(mL; + D)qLH(m,p; tHLH) = 2δC (2.B.6)
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where the survival function of an LH-match reads

qLH(m,p; t)=











exp
�

−(2δ+λ(mL; + A)+λ(mH; + A+ B))t
�

0≤ t≤ tLHL

exp
�

−λ(mL; + A)tLHL − (2δ+λ(mH; + A+ B))t
�

tLHL ≤ t≤ tHLH

exp
�

−λ(mL; + A)tLHL −λ(mH; + A+ B))tHLH − 2δt
�

t≥ tHLH.

For LL-matches, i.e., D and E, respectively, we have

λ(mL; + A)2 = 2δD + 2λDmH; + λ(mL; + A)2qLL(m,p; tLLH) (2.B.7)
λ(mL; + A)2qLL(m,p; tLLH) = 2δE (2.B.8)

where the survival function of an LL-match reads

qLL(m,p; t)=

(

exp
�

−(2δ+ 2λmH;)t
�

0≤ t≤ tLLH

exp
�

−2λmH;tLLH − 2δt
�

t≥ tLLH.

We now prove some preliminary results.

Lemma 2.23. The expected continuation utilities Vi;(m,p), ViL(m,p; t), and
ViH(m,p; t) are continuous in (m,p) for all i ∈ {L, H} and t≥ 0.21

Proof. As in the proof of Lemma 2.2 for the baseline model, the values Vi;(m,p),
ViL(m,p; 0), and ViH(m,p; 0) are the unique solution to a system of linear equations,
namely (2.4) and (2.13). The coefficients of this system are continuous in (m,p);
hence, the unique solution is continuous in (m,p) by the same argument as in the
proof of Lemma 2.18. Given the continuity of ViL(m,p; 0) and ViH(m,p; 0), (2.13)
immediately implies the continuity of ViL(m,p; t) and ViH(m,p; t).

Lemma 2.24. For any pair of single masses (mL;, mH;), the following are true:
(1) Given cutoffs t = (tLLH, tLHL, tHLH) as in the statement of Theorem 2.11, there is a

unique solution (A, B, C, D, E, mHH) to the balance conditions (2.B.3)-(2.B.8), i.e.,
all balance conditions except those of singles. For this solution, AD= 0. Moreover,
the solution is continuous in t.

(2) Given masses (A, B, C, D, E) such that AD= 0 and such that the aggregate bal-
ance conditions for mLH and mLL, i.e., the sums (2.B.4)+(2.B.5)+(2.B.6) and

21. As a technical aside, we must specify a norm for the space of all strategy profiles p when
referring to the continuity of functions on that space. By Theorem 2.11, one may identify strategies p
with cutoffs t and simply consider the Euclidean norm. However, we will sometimes consider infinite
cutoffs, i.e., cutoffs in the extended reals. For this reason, we take the more general norm

||p||= max
i,j,k∈{L,H}

∫ ∞

0

pijk(t)e−2δt.
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(2.B.7)+(2.B.8), respectively, are satisfied, there are unique cutoffs t as in the state-
ment of Theorem 2.11 such the balance conditions (2.B.4)-(2.B.8) for (A, B, C, D, E)
are satisfied. Moreover, the cutoffs t are continuous in (A, B, C, D, E).

Proof. For both statements, the continuity claim follows immediately from the con-
tinuity of the balance conditions and the fact that there is a unique solution in either
case (cf. the proof of Lemma 2.18).

For the first statement, note that mHH is uniquely determined from (A, B, C, D, E)
by (2.B.3). Moreover, by (2.B.6) and (2.B.8), C and E are uniquely determined from
(A, B, D). We distinguish two cases: tLHL = 0 and tLLH = 0.

If tLHL = 0, then A= 0 by (2.B.4). Consequently, D is uniquely determined from
(2.B.7). Moreover, B is uniquely determined from (2.B.5). To see why, note that
(2.B.5) describes the intersection of an increasing concave function in B (of the form
z1(1− exp−(z2 + B)tHLH) for some z1, z2 > 0) and a quadratic, hence convex func-
tion in B (of the form B(z3 + z4B) for some z3, z4 > 0). At B= 0, the concave function
is strictly positive, while the convex one is zero. Thus, there are exactly two candi-
date solutions, one negative and one positive.

If tLLH = 0, then D= 0 by (2.B.7). Next, we show that A and B are uniquely
determined by (2.B.4) and (2.B.5). Suppose not, i.e., there are two different pairs
(A1, B1) and (A2, B2) solving these two equations. Without loss of generality, assume
that A1 ≤ A2. Note that (2.B.4) can be rewritten as

A = λmH;(mL; + D)

∫ tLHL

0

exp
�

−(2δ + λ(mL; + A) + λ(mH; + A + B))t
�

dt,

whose right-hand side is strictly decreasing in 2A+ B. Hence, we can conclude from
A1 ≤ A2 that 2A1 + B1 ≥ 2A2 + B2, implying that A1 + B1 ≥ A2 + B2 and B1 ≥ B2.
Similarly, (2.B.5) can be expressed as

B exp
�

(2δ + λ(mL; + A) + λ(mH; + A + B))tLHL

�

= λmH;(mL; + D)

∫ tHLH

tLHL

exp
�

−(2δ + λ(mH; + A + B))(t − tLHL)
�

dt,

whose right-hand side is strictly decreasing in A+ B. Consequently, B1 ≥ B2

and A1 + B1 ≥ A2 + B2 yield A1 + B1 ≤ A2 + B2. Therefore, we obtain that
A1 + B1 = A2 + B2, and thus A1 = A2 and B1 = B2.

The second statement follows immediately from the balance conditions (2.B.4)-
(2.B.8) given that survival functions are strictly decreasing inmatch duration and the
assumption that the aggregate balance conditions for mLH and mLL are satisfied.

Lemma 2.25. Suppose (m, t) and (m0, t0) are two steady state equilibria.
(1) If tLHL = t0LHL = 0 and B≤ B0, then VLj(m, t; 0)≥ VLj(m

0, t0; 0) for all j ∈ {L, H,;}.
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(2) If tLLH = t0LLH = 0, A≤ A0 and A+ B≥ A0 + B0, then VLj(m, t; 0)≤ VLj(m
0, t0; 0) for

all j ∈ {L, H,;}.

Proof. To see the first statement, let (Bt)
∞
t=0 be some sequence of masses, and let

V̂L,j((Bt)t) be an L-agents continuation payoff who just entered a match with a
j-agent, where her current partner (tth future partner) meets an H-agent in an
LH-match who is willing to switch to an H-agent at rate λB0 (λBt), conditional on
the L-agent and her current as well as all future partners behaving optimally given
that constraint. In the steady state equilibrium (m, t) ((m0, t0)), all her partner meet
such agents at rate λB (λB0). Moreover, she is worse off if she is left at a faster rate
(λ(mH; + B0) instead of λ(mH; + B)) in a match she does not want to leave (i.e., in
a LH-match). By construction, we obtain that

VLj(m, t; 0) = V̂L,j((B)t) ≥ V̂L,j((B
0, B, B, . . .))

≥ V̂L,j((B
0, B0, B, B, . . .))

≥ . . . ≥ V̂L,j((B0)t) = VLj(m
0, t0; 0).

For the second statement, let (At, Bt)
∞
t=0 be some sequence of masses, and let

V̂L,j((At, Bt)t) be an L-agents continuation payoff who just entered a match with
a j-agent, where she meets some L-agent in an LH-match willing to switch to an
L-agent at rate λA0 (λAt) while matched with her current partner (tth future part-
ner), and her current partner (tth future partner) meets an H-agent in an LH-match
willing to switch to an H-agent at rate λ(A0 + B0) (λ(At + Bt)), conditional on the
L-agent and her current as well as all future partners behaving optimally given these
constraints. Now she is better off if she meets agents willing to rematch with her at
a faster rate, and is left at a slower rate in any match. Consequently, we get

VLj(m, t; 0) = V̂L,j((A, B)t) ≤ V̂L,j(((A
0, B0), (A, B), (A, B), . . .))

≤ V̂L,j(((A
0, B0), (A0, B0), (A, B), (A, B) . . .))

≤ . . . ≤ V̂L,j((A0, B0)t) = VLj(m
0, t0; 0).

Proof of Theorem 2.12 (Existence). Our proof strategy is similar to that of other
existence results in the literature: we construct a continuous mapping that reflects
best-response and steady state dynamics and argue that a fixed point of this mapping
corresponds to a steady state equilibrium. Specifically, consider a mapping

T : q
(1)
7→ (m, t)

(2)
7→ (m̂, t̂)

(3)
7→ q̂,

where q= (qLLH, qLHL, qHLH) and qijk ∈ [0,1] is the share of i-agents matched with
j-agents that accept to match with k-agents among all i-agents matched with
j-agents. As before, m is a tuple of masses and t = (tLLH, tLHL, tHLH) is a profile of
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cutoffs. For the domain of inputs q, we require qLLHqLHL = 0 and qLHL ≤ qHLH. Note
for later that this domain is homeomorphic to a two-dimensional compact convex
set (it is a folded trapezoid). For each of the steps (1)-(3), we will now specify a
well-defined and continuous mapping.

First, given rematching shares q, we construct a steady state (m, t) that is con-
tinuous in q. Note that in the baseline model, we may identify rematching shares q
with strategies p. Thus, by Lemma 2.19, there exist unique steady state masses m0

consistent with q. Moreover, m0 is continuous in q. Now, let m= (m0, A, B, C, D, E),
where

A = qLHLmLH

B = (qHLH − qLHL)mLH,

C = (1 − qHLH)mLH

D = qLLHmLL

E = (1 − qLLH)mLL.

Given the above definitions, observe that the aggregate balance condition for mLH,
i.e., (2.B.4)+(2.B.5)+(2.B.6), coincides with the balance condition (2.A.5) for
mLH in the baseline model. Similarly, the aggregate balance condition for mLL, i.e.,
(2.B.7)+(2.B.8), coincides with the balance condition (2.A.4) for mLL in the base-
line model. Thus, by Lemma 2.24, there are unique cutoffs t such that (m, t) is a
steady state. Moreover, t is continuous in m, hence in q.

Second, given the steady state (m, t), we determine “best-response” cutoffs t̂ and
implied new masses m̂ (that are not necessarily part of a steady state). Let t̂HLH be
the unique solution to (2.14). By the 7th step in the proof of Theorem 2.11, there
are unique cutoffs t̂LLH and t̂LHL that solve

VLL(m, (tLLH, tLHL, t̂HLH)); t̂LLH) = VLH(m, (tLLH, tLHL, t̂HLH)); 0)

VLL(m, (tLLH, tLHL, t̂HLH)); 0) = VLH(m, (tLLH, tLHL, t̂HLH)); t̂LHL).

Clearly, only one equation has a solution and for the other, we set the respective
cutoff to zero; thus, t̂LLH t̂LHL = 0. Moreover, t̂LHL < t̂HLH by (2.13) and the assumption
that uLL(t)< uLH(t) for all t≥ 0. It follows from Lemma 2.23 that t̂ = (̂tLLH, t̂LHL, t̂HLH)
is continuous in (m, t). By Lemma 2.24, given t̂ and m0, we can uniquely determine
masses (Â, B̂, Ĉ, D̂, Ê), and these masses are continuous in t̂ and m, hence in t and
m. Let m̂= (m0, Â, B̂, Ĉ, D̂, Ê).

Third, let q̂= (q̂LLH, q̂LHL, q̂HLH) be such that q̂LLH = D̂/mLL, q̂LHL = Â/mLH,
and q̂HLH = (Â+ B̂)/mLH. Since t̂LLH t̂LHL = 0, we have q̂LLHq̂LHL = 0. Moreover,
q̂LLH < q̂HLH. Thus, q̂ is again in the domain of inputs to the composite mapping
T.
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By Brouwer’s fixed point theorem, the continuous mapping T has a fixed point.
Lemma 2.24 implies that at a fixed point, we have (m, t)= (m̂, t̂). By construction,
the steady state (m, t) is then also a partial equilibrium.

Proof of Theorem 2.12 (Identification). Fix some (mL;, mH;). As shown in the
existence part of the proof, there exist masses (A, B, C, D, E, mHH) and cutoffs t sat-
isfying the balance conditions (2.B.3)-(2.B.8) and the conditions for a partial equi-
librium characterized in Theorem 2.11. Then, the balance conditions (2.B.1) and
(2.B.2) yield inflows (ηL,ηH) so that (m, t) is a steady state equilibrium given these
inflows.

To prove uniqueness, suppose there exist two different steady state equilib-
ria (m, t) and (m0, t0) (with corresponding inflows (ηL,ηH) and (η0

L,η0

H), respec-
tively) that sustain the same single masses (mL;, mH;). We distinguish three cases:
tLHL = t0LHL = 0, tLLH = t0LLH = 0 and tLHL = t0LLH = 0.

If tLHL = t0LHL = 0, then A= A0 = 0 by (2.B.4). Without loss of generality, sup-
pose tLLH ≤ t0LLH. If tLLH = t0LLH, then m=m0 by (2.B.3)-(2.B.8) so that (m, t) and
(m0, t0) coincide. Hence, tLLH < t0LLH. Then, D< D0 by (2.B.7). Moreover, B< B0

by (2.B.5). To see this, recall that (2.B.5) describes the intersection concave
function z1(1− exp−(z2 + B)tHLH) the convex function B(z3 + z4B), which is in-
creasing on the positive real line. Increasing D implies an upward shift of the
concave function: If D< D0, then z1 < z0

1. Consequently, the positive intersec-
tion of the two functions increases; thus, B< B0. By the 7th step of the proof
of Theorem 2.11, tLLH < t0LLH implies VLL(m, t; tLLH)< VLL(m, t; t0LLH). Furthermore,
B< B0 yields VLH(m, t; 0)≥ V̂LH((B0, B, B, . . .)) and VL;(m, t; 0)≥ VL;(m

0, t0; 0) by
Lemma 2.25. Finally, observe that

VLL(m, t; tLLH) − VLH(m, t; 0)

< VLL(m, t; t0LLH) − V̂LH((B0, B, B, . . .))

=

∫ ∞

t0LLH

�

uLL(t) + δVL;(m, t; 0)
�

e−2δ(t−t0LLH) dt −

�

∫ ∞

tHLH

δVL;(m, t; 0)e−2δt dt

−
∫ tHLH

0

�

uLH(t) +
�

δ + λ(mH; + B0)
�

VL;(m, t; 0)
�

e−(2δ+λ(mH;+B0))t dt

�

≤
∫ ∞

t0LLH

�

uLL(t) + δVL;(m
0, t0; 0)

�

e−2δ(t−t0LLH) dt −

�

∫ ∞

tHLH

δVL;(m
0, t0; 0)e−2δt dt

−
∫ tHLH

0

�

uLH(t) +
�

δ + λ(mH; + B0)
�

VL;(m
0, t0; 0)

�

e−(2δ+λ(mH;+B0))t dt

�

= VLL(m0, t0; t0LLH) − VLH(m0, t0; 0),

where the weak inequality is due to VL;(m, t; 0)≥ VL;(m, t; 0). This yields a contra-
diction because
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VLL(m, t; tLLH) − VLH(m, t; 0) = 0 = VLL(m0, t0; t0LLH) − VLH(m0, t0; 0)

if both (m, t) and (m0, t0) are a steady state equilibrium.
If tLLH = t0LLH = 0, then D= D0 = 0 by (2.B.7). Without loss of generality, sup-

pose tLHL ≤ t0LHL. If tLHL = t0LHL, then m=m0 by (2.B.3)-(2.B.8) so that (m, t) and
(m0, t0) coincide. Hence, tLHL < t0LHL. By (2.B.4), we get A< A0 or 2A+ B< 2A0 + B0.
Suppose A≥ A0, so 2A+ B< 2A0 + B0 implying A+ B< A0 + B0. Then, (2.B.5) yields
B> B0—a contradiction as A≥ A0 and A+ B< A0 + B0 imply B< B0. Hence, A< A0.
Now suppose A+ B< A0 + B0 and thus 2A+ B< 2A0 + B0. Summing up (2.B.4) and
(2.B.5) yields

A + B =λmH;(mL; + D)

·
�∫ tLHL

0

exp
�

−(2δ + λ(mL; + A) + λ(mH; + A + B))t
�

dt

+

∫ tHLH

tLHL

exp
�

−λ(mL; + A)tLHL − (2δ + λ(mH; + A + B))t
�

dt

�

.

(2.B.9)

The left-hand side is strictly higher with the parameters A, B and tLHL than with A0,
B0, so A+ B> A0 + B0—a contradiction. Finally, observe that

VLH(m, t; tLHL) − VLL(m, t; 0)

< VLH(m, t; t0LHL) − VLL(m, t; 0)

=

�

∫ tHLH

t0LHL

�

uLH(t) + (δ + λ(mH; + A + B))VL;(m, t; 0)
�

e−(2δ+λ(mH;+A+B))(t−t0LHL) dt

+

∫ ∞

tHLH

�

uLH(t) + δVL;(m, t; 0)
�

e−2δ(t−t0LHL) dt

�

−
∫ ∞

0

�

uLL(t) + δVL;(m, t; 0)
�

e−2δt dt

≤

�

∫ tHLH

t0LHL

�

uLH(t) + (δ + λ(mH; + A0 + B0))VL;(m
0, t0; 0)

�

e−(2δ+λ(mH;+A0+B0))(t−t0LHL) dt

+

∫ ∞

tHLH

�

uLH(t) + δVL;(m
0, t0; 0)

�

e−2δ(t−t0LHL) dt

�

−
∫ ∞

0

�

uLL(t) + δVL;(m
0, t0; 0)

�

e−2δt dt

= VLH(m0, t0; t0LHL) − VLL(m0, t0; 0),

where the strict inequality follows from strict monotonicity of VLL (see 7th step
of the proof of Theorem 2.11), and the weak inequality is due to A+ B> A0 + B0
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and VL;(m, t; 0)≤ VL;(m
0, t0; 0) (see Lemma 2.25). Again, we obtain that (m, t) or

(m0, t0) cannot be a steady state equilibrium.
If tLHL = t0LLH = 0, then tLLH, t0LHL > 0 by the previous two cases and thus

0= A< A0 and D> D0 = 0. From (2.B.9), we can conclude that A+ B> A0 + B0. Let
m00 be the tuple of masses satisfying the balance equations (2.B.3)-(2.B.8) (given the
single masses (mL;, mH;)) for the cutoffs t00 = (0,0, tHLH), that is, A00 = D00 = 0, and
A+ B> A00 + B00 > A0 + B0 by (2.B.9). Following similar arguments as in the proof of
the first two cases, we obtain that

VLL(m0, t0; 0) − VLH(m0, t0; t0LHL) < VLL(m00, t00; 0) − VLH(m00, t00; 0)

< VLL(m, t; tLLH) − VLH(m, t; 0),

contradicting the fact that both (m, t) and (m0, t0) form a steady state equilibrium.

Appendix 2.C Proofs: Equilibrium Selection & Model Comparison

2.C.1 Section 2.9

Proof of Theorem 2.15. Let (m,p) be a limit equilibrium; let (un) and (mn,pn)
be the associated sequences of flow utilities and steady state equilibria; let (m∗,p∗)
be a steady state equilibrium that corresponds to (m,p). We will first show that
(m∗,p∗) is a coordination equilibrium.

By Theorem 2.11, pn
HHL(t)= 0 and pn

ijj(t)= 0 for all i, j ∈ {L, H} and t> 0, hence
pHHL(t)= 0 and pijj(t)= 0 for all i, j ∈ {L, H} and t> 0. Since (m∗,p∗) corresponds
to (m,p), equation (2.15) implies p∗HHL = 0, p∗ijj = 0 for all i, j ∈ {L, H}, and

p∗LHL = A/mLH, p∗LLH = D/mLH, p∗HLH = (A+ B)/mLH.

By Theorem 2.11, An = 0 or Dn = 0, hence A= 0 or D= 0 and, consequently,
p∗LHL = 0 or p∗HLH = 0. Finally, equation (2.14) and the initial assumption that un

HL(t)
and un

HH(t) converge to u∗HL and u∗HH for all t≥ 0, respectively, where u∗HL < u∗HH, im-
ply that tn

HLH diverges to infinity, hence (A+ B)n converges to mLH, thus p∗HLH = 1.
Altogether, we have shown that (m∗,p∗) is a coordination equilibrium.

For the converse, let (m∗,p∗) be a coordination equilibrium. We will construct a
corresponding limit equilibrium.

Suppose p∗LLH = 0. Fix an arbitrary sequence of strategies (pn) for the baseline
model such that pn

LHL < pn
HLH < 1 for all n ∈ N, pn

LHL→ p∗LHL, pn
HLH→ p∗HLH = 1, and

all other switching probabilities are as in p∗. By Lemma 2.19, mn =mn(pn) is the
unique tuple of steady state masses associated with pn, and also by Lemma 2.19,
mn→m∗. Let

An = pn
LHLmn

LH, Bn = (pn
HLH − pn

LHL)mn
LH, Cn =mn

LH − An − Bn, Dn = 0, En =mn
LL,
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and with slight abuse of notation, we understand mn to be augmented with the
masses An through En when referring to the augmented model.

Now, according to Lemma 2.24, we can choose tn = (tn
LHL, tn

LLH, tn
HLH) with

tn
LLH = 0 and tn

LHL < tn
HLH such that the balance conditions for (A, B, C) are satisfied

(equations (2.B.4) to (2.B.6)). Note that as n→∞, Cn→ 0, hence tn
HLH→∞.

By construction, (mn, tn) is a steady state of the augmented model. We will now
construct flow utilities un =

�

un
ij(t)

�

i,j∈{L,H}, t≥0
such that (mn, tn) is also a partial

equilibrium of the augmented model.
Let us first construct the flow utilities for L-agents. Let (an) be a sequence such

that 0< an < u∗LH − u∗LL, an→ 0, and if flow utilities for L-agents are given by u∗LL
and u∗LH − an in the baseline model, then VLL(mn,pn)> VLH(mn,pn). A sequence
(an) with the desired properties exists because expected continuation are continu-
ous in their arguments (see the proof of Lemma 2.22), (mn,pn)→ (m∗,p∗), and
VLL(m∗,p∗)≥ VLH(m∗,p∗) since p∗LLH = 0 by assumption. Also, let (bn

1) be a any
strictly positive sequence converging to 0. Using these sequences, define

un
LL(t) = u∗LL + bn

1t

un
LH(t) = u∗LH − an + bn

2t,

where bn
2 > 0 is chosen such that

VLL(mn, tn; 0)= VLH(mn, tn; tn
LHL)

if flow utilities for L-agents are given by un
LL(t) and un

LH(t) in the augmented model.
The existence (and uniqueness) of bn

2 follows from an intermediate value
argument. First, for large enough bn

2 > 0, VLL(mn,pn; 0)< VLH(mn,pn; tn
LHL).

Second, for all small enough bn
2 > 0, VLL(mn, tn; 0)> VLH(mn, tn; 0) because

VLL(mn,pn)> VLH(mn,pn) in the baseline model and because under the strategies
pn for the baseline model, agents switch randomly, whereas under the constructed
strategies tn for the augmented model, agents switch deterministically—stay earlier
and switch later—which directly lowers VLH because agents discount future flow
utility but only indirectly lowers VLL through future flow utility from an LH-match.
Thus, for small enough bn

2 > 0, we also have VLL(mn, tn; 0)> VLH(mn, tn; tn
LHL). Third,

both expected continuation values VLL and VLH are continuous in bn
2; hence the de-

sired bn
2 > 0 exists.

Let us now construct the flow utilities for H-agents:

un
HL(t) = u∗HL +

u∗HH − u∗HL

tn
HLH

min{t, tn
HLH} +

1
n

max{t − tn
HLH, 0}

un
HH(t) = u∗HH +

1
n

t.

With these flow utilities, we ensure by (2.14) that
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VHH(mn, tn; 0)= VHL(mn, tn; tn
HLH).

By construction, (mn, tn) is then a steady state equilibrium given the flow utilities
un.

Finally, let us show that the flow utilities un converge pointwise to u∗, which im-
plies that (m, t)= limn→∞(mn, tn) is the desired limit equilibrium that corresponds
to (m∗,p∗) (where convergence of tn is understood to be in the extended reals). It
is clear that un

HL(t)→ u∗HL and un
HH(t)→ u∗HH for all t≥ 0 because tn

HLH→∞.
For the flow utilities of L-agents, it remains to show that bn

2→ 0. If tn
LHL→∞ and

limn→∞ bn
2 > 0, then VLH(mn,pn; tn

LHL) diverges to infinity, whereas VLL(mn,pn; 0)
is finite, which contradicts the definition of bn

2. If limn→∞ tn
LHL <∞, then

the definition of tn
LHL implies that limn→∞ Bn > 0, hence p∗LHL < 1 and conse-

quently, VLH(m∗,p∗)= VLL(m∗,p∗) by the definition of partial equilibrium. How-
ever, if limn→∞ bn

2 > 0 and flow utilities in the augmented model are given by
limn→∞ un, then VLH(m∗,p∗)= VLL(m∗,p∗) implies VLH(m, t; tLHL)> VLL(m, t; 0) be-
cause tn

HLH→∞, i.e., the behavior of H-agents in (m, t) is the same as in (m∗,p∗),
and the flow utility of an L-agent in an LH-match is strictly increasing in match dura-
tion whereas it is constant in an LL-match. The fact that VLH(m, t; tLHL)> VLL(m, t; 0)
given flow utilities limn→∞ un implies that VLH(mn, tn; tn

LHL)> VLL(mn, tn; 0) for all
sufficiently large n ∈ N by the continuity of expected continuation utilities in masses,
strategies, match durations, and flow utilities; see Lemma 2.23 and the proof of The-
orem 2.11. This contradicts the definition of bn

2, thus limn→∞ bn
2 = 0.

Recall that we have initially assumed p∗LLH = 0; the constructions for p∗LHL = 0
are similar.

2.C.2 Section 2.10

Proof of Theorem 2.16. As a preliminary observation, note that the masses m
for which there exists that a cutoff profile t = (tLLH, tLHL, tHLH) such that (m, t) is a
steady state are all bounded away from zero due to search frictions; see the balance
conditions (2.B.1)-(2.B.8). Let M denote the set of such masses.

For the first claim, suppose tLHL = 0. Fix tHLH =∞. Consider any m ∈M with
A= 0 and D≥ 0 and any cutoff tLLH ≥ 0. By (2.13), we then have

VLL(tLLH) =

∫ ∞

0

e−2βLLsuLL(s + tLLH) ds +
1
2

VL;

VLH(0) =

∫ ∞

0

e−(βLH+βHL)suLH(s) ds +
βLH

βLH + βHL
VL;

where βLH = δ+λ(mH; +mLH) and βHL = δ are constant, and βLL = δ is constant
for match durations s> tLLH.

Now, if
∫∞

0

�

uLH(t)− uLL(t)
�

e−2δt dt is sufficiently small, then VLL(tLLH)> VLH(0)
for all m ∈M with A= 0 and D≥ 0 and cutoffs tLLH ≥ 0. To see this, note that
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βLH

βLH + βHL
VL; ≤

�

1−
βLH

βLH + βHL

�

VL; +
�

2
βLH

βLH + βHL
− 1

�

VLH(0).

(If VL; > VLH(0), then VLL(0)> VL;; thus, we would be done.) Using the above in-
equality, we can bound the difference VLL(tLLH)− VLH(0) from below by

∫ ∞

0

e−2βLLsuLL(s) ds−
βLH + βHL

2βHL

∫ ∞

0

e−(βLH+βHL)suLH(s) ds.

Multiplying the expression with 2βLL = 2βHL reveals that it is nothing but the differ-
ence of the expectations of two exponential random variables. Since βLH is bounded
away from βLL = βHL = δ for all m ∈M with A= 0 and D≥ 0, the difference is in-
deed strictly positive if

∫∞
0

�

uLH(t)− uLL(t)
�

e−2δt dt is sufficiently small.
Recall that we have fixed tHLH =∞. However, by Lemma 2.23, i.e., the continu-

ity of expected continuation utilities, we still have

VLL(m, (tLLH, 0, tHLH); tLLH)> VLH(m, (tLLH, 0, tHLH); 0)

for all m ∈M with A= 0 and D≥ 0, all tLLH ≥ 0, and all sufficiently large tHLH, which,
by (2.14), is tantamount to

∫∞
0

�

uHH(t)− uHL(t)
�

e−2δt dt being sufficiently large.
This establishes the first claim because by Theorem 2.11, tLHL = 0 would not be
optimal, implying that there cannot exist a non-assorting equilibrium, and by Theo-
rem 2.12, there must then exist an assorting equilibrium.

For the second claim, suppose tLLH = 0. Consider any m ∈M with A≥ 0 and
D= 0 and any cutoffs 0≤ tLHL < tHLH. As in the proof of Theorem 2.11, let
r= 2(δ+λm)<∞ denote the maximal rate at which a match can possibly dis-
solve, where m is the total mass of agents in the market. By (2.13), we then have

VLL(0) =

∫ ∞

0

e−2δsuLL(s) ds +
1
2

VL;

VLH(tLHL) > exp(−r(tHLH − tLHL))

∫ ∞

0

e−2δsuLH(s + tHLH) ds +
1
2

VL;.

Thus, we can bound the difference VLL(tLLH)− VLH(0) from below by

exp(−r(tHLH − tLHL))

∫ ∞

0

e−2δsuLH(s+ tHLH) ds−
∫ ∞

0

e−2δsuLL(s) ds.

By assumption, uLH(t)> uLL(t) for all t≥ 0; hence, the difference is
strictly positive for all sufficiently small tHLH > 0, which, by (2.14), is tanta-
mount to

∫∞
0

�

uHH(t)− uHL(t)
�

e−2δt dt being sufficiently small. Alternatively, if
∫∞

0

�

uLH(t)− uLL(t)
�

e−2δt dt is sufficiently large, then the above difference is also
strictly positive for any 0≤ tLHL < tHLH, where tHLH solves (2.14). This establishes
the second claim because by Theorem 2.11, tLLH = 0 would not be optimal, implying
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that there cannot exist an assorting equilibrium, and by Theorem 2.12, there must
then exist a non-assorting equilibrium.
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.

Chapter 3

Clustering with a Minimum Distance
Constraint

3.1 Introduction

Cluster analysis is a method of grouping data records in order to identify similarity
patterns within these data. The objects of a data set are divided into several groups,
also called clusters, based on their observable characteristics. The idea is to select
the groups to maximize intra-cluster homogeneity and inter-cluster heterogeneity
with respect to the data characteristics. Clustering is a useful method to discern
information about the structure and composition of data and is therefore used in
many scientific fields like economics, physics, or medicine.

In this paper, I analyze a new constrained clustering problem: Given a data set,
allocate its data points to clusters in order to minimize the sum of squared distances
between the cluster centers and their assigned data points subject to a minimum dis-
tance between the cluster centers. Cluster assignment is probabilistic, meaning that
a data point is not necessarily allocated to only one cluster, but can be assigned to
several clusters with positive probability. The standard approach to clustering prob-
lems is applying an algorithm that yields a numerical solution, such as the classical
k-means algorithm. In contrast, I use optimization techniques to characterize the
optimal clustering analytically.

The trade-off between intra-cluster homogeneity and inter-cluster heterogene-
ity is a frequently discussed topic in the literature on cluster analysis, and it is closely
related to the problem of determining the optimal number of clusters: Increasing the
number of different clusters improves within-class similarity at the expense of mak-
ing clusters less distinguishable.Without further investigation of the data record, it is
a complex task to set this number. Imposing a lower bound on the distance between
the cluster centroids ensures that the formed clusters are sufficiently heterogeneous.
Indeed, the optimal number of clusters can be derived from the minimum distance
parameter in my setting. Justification of an appropriate distance between clusters
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is more straightforward than choosing the number of clusters directly. For instance,
one could select a reasonable minimum distance by evaluating the space covered by
the data record: If the maximal distance between any pair of data points is rather
small, suggesting that the data space is rather dense, it makes sense to choose a
moderate, not too large minimum distance between the clusters. Hence, specifying
a minimum distance can be used as a tool to find the best number of clusters.

Probabilistic clustering is a generalization of deterministic clustering, meaning
that each data point is associated with exactly one cluster. An alternative interpreta-
tion of probabilistic clustering is that shares of data points are assigned to clusters.
Probabilistic clustering is a promising strategy to handle data sets with small errors
or uncertainties: Under such circumstances, the data characteristics might not be
deterministic so that randomizing over different cluster assignments can become
optimal.

The basic k-means clustering problem aims at minimizing the sum of squared dis-
tances without imposing any side constraints. Also, only deterministic assignments
are considered. It is well known that the optimal clustering is a convex partition,
that is, if two data points are assigned to the same cluster, then any data point on
the line between these two points also belongs to that cluster. This result extends
to the case with probabilistic clustering: If two data points are allocated to a cluster
with positive probability, then any data point that lies in between belongs to that
cluster with certainty. These probabilistic partitions are called monotone.

With the minimum distance constraint, this changes : An optimal partition be-
longs to the class of so-called bi-pooling partitions: If two data points are assigned to
a cluster with positive probability, any data point in between is allocated to at most
two clusters with positive probability, namely to this cluster or to one other cluster,
which is the same for all such points. This result builds on optimization techniques
in convex analysis (see Bertsekas, Nedic, and Ozdaglar (2003), for instance): A lin-
ear function defined on a compact, convex set attains its maximum at an extreme
point1 of that set. Building on the work of Chapter 1, I prove that any extreme point
of the set of probabilistic partitions satisfying the minimum distance constraint is a
bi-pooling partition. This finding suggests that monotone partitions are not neces-
sarily globally optimal: While every monotone partition is a bi-pooling partition, the
converse does not hold true. In fact, I show by example that there exist clustering
problems that are solved by a non-monotone bi-pooling partition.

Optimality of bi-pooling partitions is a crucial step in setting up a reduced op-
timization problem: First, one can solve for the optimal cluster centroids and their
weights, i.e., the sum of data point shares assigned to each cluster. Exploiting the
bi-pooling structure, the corresponding probabilistic partition can be uniquely de-
termined. The minimization problem in the first step is considerably less complex

1. A point is an extreme point of a set if it cannot be represented as a convex combination of
two points from that set.
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than the original optimization problem because the number of variables and side
constraints is substantially smaller—especially if the data set is large.

The classical k-means algorithm works as follows: Starting with k initial cluster
centroids, each data point is assigned to the closest one. Based on this assignment,
new centroids are formed. The process is repeated until an iteration is reached at
which the centroids do not change anymore. By construction, this algorithm always
converges to a monotone partition which is a local solution to the clustering prob-
lem. My derivations indicate that a k-means algorithm extended by the minimum
distance constraint yields inefficient outcomes under certain circumstances: If the
solution to the clustering problem is a bi-pooling partition, the algorithm never con-
verges to the global optimizer.

Even though I consider the class of probabilistic clusters, this argument is also
valid when considering deterministic partitions only: Given an optimal probabilistic
bi-pooling partition, construct a deterministic partition by allocating each data point
to the cluster which it belongs to with highest probability.2 Clustering methods are
usually applied to large data sets. The larger the number of data points, the closer
the constructed deterministic partition to the optimal one.

A typical argument vindicating the use of monotone partitions is their simple
form. However, bi-pooling partitions are also quite tractable: Basically, they corre-
spond to almost monotone partitions that allow for mixing between pairs of clusters
only. The strength of the bi-pooling result is thus that one does not need to forgo
tractability when allowing for all possible partitions instead of monotone ones only.

The original distribution which the data are drawn from is usually unknown, but
one might have a guess about it that needs to be verified. The typical approach to
this problem is the implementation of a non-parametric hypothesis test based on the
empirical distribution function of the data. These techniques yield robust results, but
there is also a downside to that: First, constructing the empirical distribution func-
tion is an elaborate task if the data record is considerably large. Second, how should
one proceed if the original data are not available and one has access to the clustered
data only? I propose a new hypothesis test on the underlying distribution which the
data are drawn from. The test problem is to evaluate whether this distribution is
uniform or not. It is a Kolmogorov-Smirnov test which is performed on the basis of
the clustered data: Instead of testing whether empirical distribution function gener-
ated by the data set equals the uniform distribution, I consider the testing problem
whether the optimal distribution over cluster centroids implied by the data equals
the distribution over centroids that would be the solution of the clustering problem
if the underlying empirical distribution function could be the uniform distribution.
The latter distribution over clusters is thus the solution to a continuous version of
the constrained clustering problem, which is solved in Chapter 1.

2. In case of indifference, i.e., if a data point belongs to two clusters with the same probability,
choose one of them at random.
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Related Literature. This paper contributes to the literature on constrained clus-
ter analysis (see Basu, Davidson, and Wagstaff (2008) or Grossi, Romei, and Turini
(2017) for an excellent literature survey). The primary focus in this literature is on
pairwise constraints such as must-link and cannot-link constraints. These conditions
require that a pair of data points either must be assigned to the same cluster or can-
not belong to the same one. Babaki, Guns, and Nijssen (2014) consider the class
of antimonotone constraints that includes, among others, must-link and cannot-link
constraints as well as constraints on the maximal number of data points per cluster.
The minimum distance constraint analyzed in this paper is not antimonotone, and
to the best of my knowledge, a constraint of this form hasn’t been studied before in
this literature. Perhaps closest related to the minimum distance constraint is the DP-
means algorithm introduced by Kulis and Jordan (2012) or the λ-means algorithm
by Comiter et al. (2016). The DP-means algorithm is an improved k-means algo-
rithm, where new clusters are added at an iteration of the process if the distance of
a data point to its closest cluster centroid is sufficiently large. A minimum distance
evolves endogenously from running this algorithm, and depends on a prespecified
model parameter. The λ-means algorithm is an extension of this process that allows
estimating this parameter. This work differs from these two approaches because the
minimum distance parameter is set exogenously.

The majority of research in this field uses an algorithmic approach (see, e.g.,
Kulis and Jordan (2012) or Comiter et al. (2016)) or optimization techniques from
linear programming (see, e.g., Babaki, Guns, and Nijssen (2014) or Ganji, Bailey,
and Stuckey (2016)). This paper uses techniques from the field of convex analysis
and majorization (see Bertsekas, Nedic, and Ozdaglar (2003)).

This paper is also linked to the literature on information theory and quantization,
which is the theory on approximating continuous-valued objects by a discretized one
(for an excellent review of this strand of literature, let me refer to Gray and Neuhoff
(1998)). The hypothetical distribution over clusters, that is used in this paper to
perform the test for uniformity, can be interpreted as the output of a uniform quan-
tization process. Recall that this distribution is a non-monotone bi-pooling partition
in general. The standard approach in unconstrained quantization is a division of the
continuous object into a discrete number of convex subsets (cf. Gray and Neuhoff
(1998)). This technique extends to the work on constrained quantization embed-
ding constraints on distortion, such as entropy-constraints (see Chou, Lookabaugh,
and Gray (1989)), or on the shape of the discretized object such as the location or
weights of its points (see Xu and Berger (2019)). Consequently, standard quantiza-
tion techniques yield monotone partitions always, and can therefore not be applied
to this paper’s clustering problem. I am not aware of comparative work in the field of
quantization that allows for this form of non-monotonicity. Amid monotone quantiz-
ers, the connection between quantization and majorization has been observed (see
Baker (2015), for instance).
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The paper is structured as follows: Section 3.2 formalizes the constrained clustering
problem. Section 3.3 provides results on its analytic solution, and the reduced op-
timization problem. In Section 3.4, the hypothesis test for uniformity is proposed.
Finally, Section 3.5 contains a discussion, and Section 3.6 concludes.

3.2 Constrained Clustering Problem

There is a set X of n ∈ N real-valued data points x1, . . . , xn, arranged in non-
decreasing order.

Definition 3.1. A probabilistic partition P= (C , w) consists of a finite set of clusters
C and a weight function w : X ×C → [0, 1] so that

(i)
∑

C∈C w(x, C)= 1 for all x ∈ X, and
(ii)

∑

x∈X w(x, C)> 0 for all C ∈ C .

Probabilistic partitions assign shares w(x, C) of data points x to clusters C. This
generalizes the concept of a partition where each data point x is allocated to exactly
one cluster C, that is, w(x, C) ∈ {0, 1}. The centroid of cluster C,

µC =

∑

x∈X w(x, C)x
∑

x∈X w(x, C)
, (3.1)

is the mean of the data points in that cluster weighted by their shares.
The aim is to find a probabilistic partition that minimizes the weighted aver-

age Euclidean distance between the data points and their corresponding cluster
centroids subject to imposing a minimal distance between all cluster centroids. For-
mally, the objective is to solve

min
(C ,w)

∑

C∈C

∑

x∈X

w(x, C)
�

x − µC
�2 (3.2)

s.t. | µC − µC0 | ≥ K for all C, C0 ∈ C , (3.3)

for some constant K ≥ 0. This is a generalization of the basic probabilistic clustering
problem (see Höppner et al. (1999)) without any side constraints (K = 0).

3.3 Solving the Model

3.3.1 Bi-Pooling Partitions

This section studies a specific class of probabilistic partitions:
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Definition 3.2. A probabilistic partition P is a monotone partition if the following
holds true for all C ∈ C : For any x, x0 ∈ X with x ≤ x0 such that w(x, C), w(x0, C)> 0,
it follows that w(y, C)= 1 for all y ∈ X with x < y < x0.

Under a monotone partition, if a positive share of two data points is assigned to a
cluster, then any data point in between is fully allocated to that cluster. The following
figure shows a monotone partition. There are twelve data points, represented as

xx1 xn

Figure 3.1. Example of a monotone partition

dots on the axis. Cluster membership is visualized by the dots color. There are four
different clusters. The first two data points belong to the blue cluster, the next three
ones to the red cluster, the last one to the purple cluster, and all remaining ones
to the green cluster. Due to monotonicity, there is no overlap between the clusters
meaning that all data points of one cluster are larger or smaller than all data points
of another cluster.
Definition 3.3. A probabilistic partition P is a bi-pooling partition if the following
holds true for all C ∈ C : For any x, x0 ∈ X with x ≤ x0 such that w(x, C), w(x0, C)> 0,
it follows that there exist some C0 ∈ C such that w(y, C)+w(y, C0)= 1 for all y ∈ X
with x < y < x0.

A cluster C is said to form a 2-partition with cluster C0 6= C (and vice versa) if
there exist x, y, x0 ∈ X with x < y < x0 so that w(x, C), w(y, C0), w(x0, C)> 0. If C does
not form a 2-partition with any other cluster C0, it is said to form a 1-partition.

Under a bi-pooling partition, if a positive share of two data points is assigned
to a cluster, then any data point in between is allocated to that cluster or to one
other cluster with a positive share. Hence, there can be an overlap between different
clusters, but only between two adjacent ones. So at most two clusters are pooled,
therefore the name. The left graphic in Figure 3.2 depicts an example of a bi-pooling
policy: The blue and purple cluster are completely separated, they form 1-partitions,
whereas the red and green cluster are pooled and thus form a 2-partition. The right
graphic illustrates a partition that is not bi-pooling: Three clusters, namely the red,
green and purple one, are overlapping. By construction, any monotone partition is

xx1 xn

(a)

xx1 xn

(b)

Figure 3.2. Example of a bi-pooling partition on the left side and a counterexample on the right
side

a bi-pooling partition, but the converse does not hold true.
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It turns out that bi-pooling partitions are optimal under the minimum distance
constraint:

Theorem 3.4. For any K ≥ 0, the constrained clustering problem is solved by a bi-
pooling partition.

Proof. See Corollary 1.34.

Bi-pooling partitions are the extreme points of the set of probabilistic partitions
satisfying the minimum distance constraint (3.3). Linearity of the objective function
(3.2) implies their optimality.

If the minimum distance constraint vanishes, i.e., if K = 0, an optimal partition
can be found within the set of monotone partitions:

Corollary 3.5. If K = 0, the constrained clustering problem is solved by a monotone
partition.

Proof. See the appendix.

Intuitively, monotone partitions outperform bi-pooling partitions because data
points are assigned to their closest cluster centroid. Without any side constraints,
they can be implemented readily. In the presence of a minimum distance constraint,
this is no longer true: Efficient monotone partitions might not fulfill the minimum
distance constraints so that one resorts to bi-pooling partitions.

Whilemonotone partitions are prevalent in the literature on cluster analysis, The-
orem 3.4 suggests that it is with loss of generality to restrict attention to monotone
partitions, as illustrated in the following example:

Example 3.6. Let X = (0,2, 3.5,5.5, 7,9), and suppose K = 3. The best monotone
partition is depicted in the left graph of the figure below: There are three clusters,
each consisting of two data points. The cluster centroids are 1, 4.5, and 8, which
fulfill the minimum distance constraints. Can we find a better non-monotone parti-
tion? The answer is yes. The right graph illustrates the optimal probabilistic parti-
tion: There are four clusters. The blue and purple cluster consist of only one data
point, the red cluster consists of data point 3.5 and share 0.9 (0.1) of data point 2
(7). Similarly, the green cluster consists of 5.5 and the remaining shares of 2 and
7. Notice that this is a bi-pooling partition. Moreover, the cluster centroids are 0, 3,
6, and 9, so the minimum distance constraint is fulfilled. Compared to the optimal

x0 2 3.5 5.5 7 9

(a)

x0 2 3.5 5.5 7 9

(b)

Figure 3.3. Optimal monotone partition on the left side and optimal bi-pooling partition on the
right side
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monotone partition, there is one additional cluster. This is why the bi-pooling par-
tition outperforms the monotone partition. As argued above, monotone partitions
are more efficient than bi-pooling partitions: In the optimal bi-pooling partition on
the right graph, it would be better to assign data point 7 to the green cluster only,
for instance. However, reshuffling shares to create a monotone partition with four
clusters is infeasible. To see this, note that uncompressing the red and green cluster
increases the distance between their centroids. This yields a failure of the minimum
distance constraint between the blue and red cluster or between the green and the
purple cluster. So the question is whether or not to add one more cluster at the ex-
pense of giving up on monotonicity. Here, this tradeoff is in favor of the additional
cluster.

Besides, one can even argue that the bi-pooling partition is more reasonable by
taking a closer look at the data points. The smallest and the largest data point are
far apart from all other observations, indicating that each of them should form an
individual cluster consisting only of this data point.

For tractability, the data set of this example is rather small, but the underlying
idea is also applicable to larger data records.

A usual argument supporting the use of monotone partitions is their simple con-
struction. Notwithstanding, the strength of Theorem 3.4 is that optimal probabilis-
tic partitions take a relatively straightforward form. Consequently, a better partition
can be reached by allowing for arbitrary probabilistic partitions without losing much
tractability.

3.3.2 Simplified Problem

This section presents a simplified method on how to find an optimal bi-pooling par-
tition given a positive minimum distance.

First, notice that the number of different clusters can be bounded by the mini-
mum distance parameter K > 0: The smallest cluster centroid is at least x1, and the
largest cluster centroid does not exceed xn. Thus, the distance between the smallest
and the largest centroid must be no more than xn − x1. On the other hand, if there
are m different cluster centroids, the distance between the smallest and largest cen-
troid cannot exceed (m− 1)K. Together, this yields

(m − 1)K ≤ xn − x1.

Consequently, the number of clusters in a probabilistic partition satisfying the mini-
mum distance constraint (3.3) is at most xn−x1

K + 1.
The first step towards finding an optimal probabilistic partition with m clusters

is to determine the optimal cluster centroids and their weights, i.e., the sum of data
point shares associated with each cluster C, which is

∑

x∈X w(x, C). Let Fn denote
the empirical distribution function generated by the n data points, and let GP be
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the distribution over cluster centroids implied by the probabilistic partition P. By
construction, GP is a mean-preserving contraction of Fn, that is, they generate equal
means,

xn
∫

x1

y dFn(y) =

xn
∫

x1

y dGP(y), (3.4)

and Fn second-order stochastically dominates GP,

x
∫

x1

Fn(y) dy ≥

x
∫

x1

GP(y) dy for all x ∈ [x1, xn]. (3.5)

The problem of finding the optimal cluster centroids and their weights is thus equiv-
alent to determining the optimal mean-preserving contraction of Fn. Furthermore,
the objective function (3.2) is equal to

∑

C∈C

∑

x∈X

w(x, C)x2 − 2xµC + µ
2
C =

∑

x∈X

x2 −
∑

C∈C

�

∑

x∈X

w(x, C)

�

µ2
C , (3.6)

where the first term on the right-hand side,
∑

x∈X x2, is a constant, and can therefore
be dropped from the optimization problem.

Let µ= (µ1, . . . ,µm) with µ1 < . . . ,< µm be the m-dimensional vector contain-
ing the m realizations of a mean preserving contraction of Fn, and let p= (p1, . . . , pm)
be the vector containing the corresponding probabilities. The simplified optimiza-
tion problem becomes

max
(µ,p)∈[x1,xn]m×[0,1]m

m
∑

i=1

pi · µ2
i (3.7)

s.t. | µi − µi−1 | ≥ K for all i ∈ {2, . . . , m}, (3.8)
m
∑

i=1

pi = 1 (3.9)

m
∑

i=1

piµi =
1
n

n
∑

i=1

xi (3.10)

for all i ∈ {1, . . . , m} :
j−1
∑

k=1

1
n

(xj − xk) ≥
i
∑

k=1

pk(xj − µk) (3.11)

for all j ∈ {1, . . . , n} with xj ∈ [µi,µi+1],

where µm+1 ≡ xn. The objective function (3.8) corresponds to the negative of the
original one (3.2) rescaled by the constant

∑

x∈X x2. That is why the problem has
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become a maximization rather than a minimization problem. The inequality con-
straints (3.8) are the minimum distance constraints. (3.9) means that the probabili-
ties of the different clusters add up to 1, and (3.4) ensures equal means as imposed
by (3.10). The constraints (3.11) are sufficient to ensure second order stochastic
dominance, that is, only a finite number of the constraints (3.5) needs to hold. To
see this, recall that Fn and GP are discrete distributions implying that the integrals
∫ x

x1
Fn(y) dy and

∫ x
x1

GP(y) dy are piecewise linear and convex, as illustrated in Fig-
ure 3.4:

x
0

µi µi+1xj xj+1 xj+2

∫ x

x1
GP (y) dy

∫ x

x1
Fn(y) dy

Figure 3.4. Section of the integral functions of Fn and its mean-preserving contraction GP

The diagram shows the integral functions
∫ x

x1
Fn(y) dy and

∫ x
x1

GP(y) dy on an
interval between two centroids µi and µi+1. The graph of

∫ x
x1

GP(y) dy is linear on
that interval because GP has no realization on its interior. The graph of

∫ x
x1

Fn(y) dy
must lie above it by second order stochastic dominance. Piecewise linearity and
convexity imply that this is guaranteed whenever this holds true at all its kink points,
which are marked in blue.

Observe that it is easier to solve the above maximization problem than the orig-
inal minimization problem on page 117, especially if there are many data points
(n large), because there are considerably less optimization variables (2m instead of
nm) and also substantially less side constraints.

Using Theorem 3.4, the optimal probabilistic partition can immediately be
derived from the optimal mean-preserving contraction of Fn. First, note that if
∫ x

x1
Fn(y) dy =

∫ x
x1

GP(y) dy for some x ∈ [x1, xn], w(y, C)= 0 for all (y, C) with y < x
and µC > x as well as all (y, C) with y > x and µC < x. That is, all data points below
(above) the threshold x are only allocated to cluster centroids below (above) and
including that threshold. To see how to apply this, let’s go back to the setting of
Example 3.6:

Example 3.7. The empirical distribution function Fn has realizations X, each with
probability 1

6 . The distribution over cluster centroids of the optimal bi-pooling pol-
icy, GP, has realizations µ= (0, 3,6, 9) with probabilities p=

�1
6 , 1

3 , 1
3 , 1

6

�

. The follow-
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ing figure illustrates the integral functions of Fn and GP: At x = 1, the two integral

x

0

0 2 3 3.5 5.5 6 7 9

∫ x

x1
GP (y) dy

∫ x

x1
Fn(y) dy

Figure 3.5. Integral functions of Fn and GP

functions are equal. Consequently, w(x, C)= 0 for all x < 1 and all clusters C with
µC > 1, and w(x, C)= 0 for all x > 1 and all clusters with µC < 1. Since 0 is the only
data point and centroid below the threshold 1, the cluster with centroid 0 forms
a 1-partition. Analogously, one can argue that the cluster with centroid 9 forms a
1-partition because the integral functions are equal at x = 8. For all x ∈ (2,7), the
integral function of GP is strictly smaller than the one of Fn. Consequently, the re-
maining four data points can be assigned to the remaining two clusters arbitrarily,
subject to making sure that (3.1) holds for each such cluster and their weights equal
the sum of assigned data point shares. There are several options to create such an
assignment; one of them is the bi-pooling partition of Figure 3.3.

The observation from Example 3.7 that the first and last cluster form 1-partitions
holds in general:

Proposition 3.8. For any K ≥ 0, the constrained clustering problem is solved by a bi-
pooling partition such that the smallest and largest centroid belong to a 1-partition,
respectively.

Proof. See Lemma 1.38.

This finding allows to draw further conclusions about the structure of an optimal
bi-pooling policy if the number of clusters is small: If there are only two or three
clusters, there is an optimal bi-pooling policy. In particular, for the case of three
clusters, observe that if the first and the last cluster form a 1-partition, then the
intermediate one has to form a 1-partition as well.
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To conclude, an optimal bi-pooling partition can be determined using the fol-
lowing three-step procedure:

Step 1: For each m ∈ N∩
�

1, xn−x1
K + 1

�

, find the optimal mean-preserving
contraction G∗m of the empirical distribution function Fn (if it exists)3.

Step 2: Compare the mean-preserving contractions G∗1, . . . , G∗m and select the
best one out of them.

Step 3: Determine the optimal bi-pooling partition based on the optimal
mean-preserving contraction.

3.4 Test for Uniformity

The original distribution F of the data is unknown, but one often has a guess about it.
One way to verify this guess is to perform a Kolmogorov-Smirnov test based on the
empirical distribution function Fn. If the set of data points is very large, construction
of the empirical distribution function can be quite time-consuming. Beyond that,
what is the appropriate procedure if the original data are not available, but only the
clustered data?

This section proposes a test for the hypothesis that the data points are drawn
from a uniform distribution on [0,1] that does not rely on the data points itself, but
only on the clustered information:

H0 : F = Uni[0,1] versus H1 : F 6= Uni[0,1]. (3.12)

Let Gn be the optimal mean-preserving contraction of Fn, and let G∗ be the opti-
mal mean-preserving contraction of Uni[0, 1]. This function G∗ has been derived in
Section 1.7.

Instead of the original hypotheses (3.12), consider the problem

H0 : G = G∗ versus H1 : G 6= G∗. (3.13)

To test for uniformity, one can run a Kolmogorov-Smirnov test with the usual test
statistic supx∈[0,1] |Gn(x)−G∗(x)|.

3.5 Discussions

3.5.1 Implications on k-Means Clustering

The basic k-means clustering problem aims for optimal deterministic partitions of
the data set meaning that w(x, C) ∈ {0, 1} for all data points x and all clusters C.

3. If G∗m exists, then G∗m0
exists for all m0 ≤m. Moreover G∗1 always exists.
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In this setting, monotone partitions are optimal.⁴ Therefore, the k-means al-
gorithm, whose outcome is a deterministic, monotone partition, is an appropriate
method to find a numerical, approximate solution.

Introducing a minimum distance constraint annihilates this result. Theorem 3.4
suggests that the optimal deterministic partition can be a bi-pooling partition that is
not a monotone partition (cf. Example 3.6). So my results suggest that applying the
classical k-means algorithm in an environment with minimum distance constraints
may lead to imprecise numerical solutions as it never converges to a nonmonotone
partition.

3.5.2 Number of Clusters

Finding the right number of clusters for a data set is still an open research problem
in the field of cluster analysis.

As shown in Section 3.3.2, adding a minimum distance K resolves this problem
because the optimal number of clusters can be determined from the solution of the
constrained clustering problem. Consequently, the minimum distance parameter K
can be interpreted as a measure for the optimal number of clusters. This can be
helpful for applications because it is typically easier to argue what is the right dis-
tance between clusters to ensure meaningful disparity among them—even without
knowing detailed properties of the data set X. Otherwise, a certain amount of infor-
mation, such as a diagram showing the data points’ location, is necessary to make
a reasonable statement on why a certain number of clusters is appropriate for the
given data.

3.5.3 Extensions

There are several questions for future research that seem promising:
This paper studies one-dimensional data. It would be interesting to extend the

results of the constrained clustering problem to the multidimensional case. While
the representation of a mean-preserving contraction as depicted in Section 3.3.2
cannot be straightforwardly applied to spaces with more than one dimension, the
concept of bi-pooling partitions can be generalized.

As argued in Section 3.5.1, a version of the typical k-means algorithm, supple-
mented by the minimum distance constraint, is not an adequate method to find
numerical approximations. Hence, constructing an algorithm whose outcomes can
be bi-pooling partitions, not only monotone partitions, would be the next step for
future research.

Finally, the idea of the test for uniformity in Section 3.4 can be extended to
initial distributions F0 other than the uniform distribution on the unit interval. For

4. This follows from analogous arguments as those used in Corollary 3.5.
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that, one needs to determine the optimal mean preserving contraction of any such
F0.

3.6 Conclusion

Summing up, this paper explores a probabilistic clustering problem endowed with a
minimum distance constraint ensuring dissimilarity among clusters. The main qual-
itative result is that monotone partitions are not optimal in general. Typical cluster-
ing algorithms converge to monotone partitions, implying a need for an improved
algorithm for the constrained setting. Besides, specifying the minimum distance con-
straint replaces the problem of finding the optimal number of clusters. Moreover, a
test for uniformity of the initial distribution from which the data are drawn is sug-
gested that can be performed based on the clustered information only; the original
data are not needed for that.

Appendix 3.A

Proof of Corollary 3.5. Suppose to the contrary, the clustering problem is solved
by a bi-pooling partition P= (C , w) that is not monotone. Consequently, there exist
two different clusters C1 and C2 satisfying w(x, C1), w(y, C2), w(x0, C1)> 0 for some
x < y < x0. Without loss of generality, suppose µC1

< µC2
.⁵

Construct a new probabilistic partition P∗ = (C , w∗) with
∑

x∈X

w∗(x, C) =
∑

x∈X

w(x, C) for all C ∈ {C1, C2}, (3.A.1)

w∗(x, C1) = 0 for all x > x∗ and w∗(x, C2) = 0 for all x < x∗ for some x∗,
(3.A.2)

w∗(x, C) = w(x, C) for all x ∈ X and all C ∈ C\{C1, C2}. (3.A.3)

In words, the two clusters C1 and C2 are separated under the new partition by re-
assigning their data point shares among one another while keeping their weights
equal: Data points falling below some cutoff x∗ are only assigned to C1 while data
points exceeding this cutoff are allocated to C2 only. By construction, it holds for the
new centroids of the two clusters C1 and C2, denoted by µ∗C1

and µ∗C2
, that µ∗C1

< µC1
,

µ∗C2
> µC2

and
∑

C∈{C1,C2}

∑

x∈X

w∗(x, C)µ∗C =
∑

C∈{C1,C2}

∑

x∈X

w(x, C)µC. (3.A.4)

5. If not, switch the roles of C1 and C2.
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Finally, observe that
∑

C∈C

∑

x∈X

w∗(x, C)
�

x − µC
�2 −

∑

C∈C

∑

x∈X

w(x, C)
�

x − µC
�2

=
∑

x∈X

x2 −
∑

C∈C

�

∑

x∈X

w∗(x, C)

�

µ2
C −

�

∑

x∈X

x2 −
∑

C∈C

�

∑

x∈X

w(x, C)

�

µ2
C

�

= −
∑

C∈{C1,C2}

�

∑

x∈X

w∗(x, C)

�

�

µ∗C
�2
+
∑

C∈C

�

∑

x∈X

w(x, C)

�

µ2
C

< 0

where the first equality follows from (3.6) and the second one from (3.A.3). The
inequality is due to (3.A.1), (3.A.4) and the fact that f(x)= x2 is a convex function.
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