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Abstract

Johannes Philipp Grün

Uncertainty Reduction in Diffusion Magnetic Resonance
Imaging Tractography

Diffusion Magnetic Resonance Imaging (dMRI) is currently the only non-invasive
method capable of mapping the geometry and microstructure of major white matter
tracts in vivo. This technique measures the movement of water molecules along
magnetic field gradients. Since fiber tracts impede water movement perpendicular
while facilitating it along their length, dMRI can measure intricate microstructural
information.

Tractography, the process of reconstructing streamlines representing fiber path
bundles, has become indispensable in brain studies and surgical planning due to
its low risk and high image quality. However, the entire tractography pipeline, from
dMRI measurement through pre-processing to final tractography, is highly susceptible
to uncertainties, stemming from complex measurement schemes and model imperfec-
tions.

In this work, we study multiple sources of uncertainty in tractography and propose
models to mitigate these challenges.

Within our first contribution, model uncertainties, stemming from the necessary
choice of an appropriate model a-priori, and measurement uncertainties are exam-
ined. Further, the interaction between both types of uncertainties is investigated and
novel methods to reduce them are introduced. It is shown that reducing model un-
certainty also reduces the susceptibility to measurement noise. Finally, the impact of
both methods to tractography is discussed and it is visually demonstrated that both
methods increase the completeness compared to a more restrictive model selection
approach, while at the same time reducing false positives, compared to the low-rank
approach. Quantitative analysis over several subjects from the Human Connectome
Project (HCP) and a variety of tracts supports the visual impression.

Within our second contribution, we introduce two novel regularized tractography
methods to stabilize the tractography against errors in the local direction field, which
are amplified if not taken into account. The first method computes a joint low-rank
approximation by considering the local neighborhood, while the second employs an
unscented Kalman Filter (UKF) to update the local configuration in each step, based
on previous estimations.
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The approaches are evaluated on several datasets, such as a high quality dataset
from the HCP, a challenge dataset for tractography and a clinical dataset from a
tumor patient. Results show that both regularization techniques lead to a significant
improvement of reconstruction quality, compared to their unregularized counterparts,
Pareto optimal results on the challenge dataset, and also high quality reconstructions
within measurements of a tumor patient.

However, the low-rank UKF model, while effectively regularizing, occasionally
misses some parts of fanning tracts. This originates in the low-rank model, which
is able to recover fiber crossings but lags in accounting for fanning. Within our
third contribution, we have combined the Bingham distribution, which is able to
capture fanning on the sphere, with the low-rank model. Implementing this model
involved to overcome several technical challenges. The approach is evaluated on
the HCP dataset for a variety of tracts. Results indicate its clear superiority over
the previously presented low-rank UKF model in terms of capturing fanning, while
maintaining specificity.
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Chapter 1

Introduction

1.1 Motivation

Diffusion Magnetic Resonance Imaging (dMRI) [70, 98] is the only method able to
reconstruct the fiber architecture of tissues in vivo without any known harm to the
imaged subject. It measures the dephasing of proton spins while a magnetic gradient
field is applied along a diffusion-sensitizing direction. When molecules, mainly water,
diffuse in the direction of the applied magnetic gradient field, this causes the proton
spins to dephase. Thus, diffusion along that gradient direction leads to a measurable
signal loss. Within parts of the human brain the movement is not free, due to barriers
such as cell membranes, myelin sheaths and microtubules [13]. By these barriers the
movement of water is restricted or the displacement is limited, leading to a signal
loss, which reflects the underlying tissue structure.

These properties make dMRI an indispensable tool to get a deeper understanding
of the human brain without clinical intervention. Currently, it is used to prepare
neurosurgeries and for clinical studies [22, 147, 154, 181, 185]. A typical task is to
reconstruct the trajectory of a fiber pathway to answer questions about the anatomical
connectivity of different brain regions. Therefore, the local direction field is integrated
to generate streamlines, which should represent fiber pathways and is commonly
termed as tractography.

As dMRI involves the repeated measurement of the whole brain along different
gradients, it is highly susceptible to artefacts due to head movements within and
in-between measurements. Further, typical imaging artefacts, such as Gibbs ringing,
ghosting etc. are present [152]. Although tools to reduce these uncertainties are avail-
able and should be applied, later processing steps should account for inadequacies.

The presented work investigates different sources of uncertainty, namely model
uncertainty, measurement uncertainty, and Partial Volume Effect (PVE) uncertainty,
which denotes the presence of several tissue types within a single voxel due to the
large voxel size.

Firstly, the interaction between model uncertainty and measurement uncertainty
is analysed and methods to reduce both types of uncertainty are proposed.
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Secondly, we propose two techniques to mitigate measurement uncertainties by
estimating regularized local directions. Either by incorporating neighborhood infor-
mation into the estimation or by applying an UKF, which estimates the new local
fiber configuration based on the previous estimations.

Thirdly, a novel model to reduce the impact of PVE is introduced. To account
for fiber fanning, the low-rank model, which is able to recover crossings but lacks in
reconstructing fiber fanning, is extended. Therefore, each local direction is convolved
with a Bingham distribution, which is a generalization of the Gaussian distribution
to the unit sphere and is able to account for fiber fanning.

In several experiments it has been shown that the proposed works reduce the
uncertainty and are therefore very handy for clinical applications, where data quality
is not as good as in large studies such as the HCP.

1.2 Publications

This dissertation is based upon the following three publications:

• [59]: “Model Averaging and Bootstrap Consensus Based Uncertainty Reduction
in Diffusion MRI Tractography” by Johannes Grün, Gemma van der Voort, and
Thomas Schultz in Computer Graphics Forum, Volume 42, Issue 1, Pages: 217-
230, Year 2023.

• [57]: “Spatially Regularized Low-Rank Tensor Approximation for Accurate and
Fast Tractography” by Johannes Grün, Samuel Gröschel, and Thomas Schultz
in NeuroImage, Volume 271, Year 2023.

• [58]: “Anisotropic Fanning Aware Low-Rank Tensor Approximation Based Trac-
tography” by Johannes Grün, Jonah Sieg, and Thomas Schultz, in proceedings
of Medical Image Computing and Computer Assisted Invention Society (MIC-
CAI) International Workshop on Computational Diffusion MRI (CDMRI), Year
2023, Accepted for publication.

Additionally, [60]: “Reducing Model Uncertainty in Crossing Fiber Tractography”,
Johannes Grün, Gemma van der Voort, and Thomas Schultz in proceedings EG
Workshop on Visual Computing for Biology and Medicine (VCBM), Year 2021 has
been published and extended into [59]. Further, we published [9]: “Detection and
Visual Analysis of Pathological Abnormalities in Diffusion Tensor Imaging with an
Anomaly Lens” by Marlo Bareth, Samuel Gröschel, Johannes Grün, Pabo Pretzel,
and Thomas Schultz in Eurographics Conference on Visualization (EuroVis) Short
Papers, Year 2023.

1.3 Related Work

Uncertainties are prevalent throughout the entire dMRI pipeline, encompassing image
acquisition, model selection, and parameter setting of the chosen model.
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This section offers a concise, though not exhaustive, overview of various uncertainty
sources and some tractography design decisions aimed at mitigating their impact.
Schultz et al. provided a broader overview of uncertainties and strategies for a more
reliable interpretation of results [139].

During image acquisition, uncertainties arise from both physical and numerical
insufficiencies:

Eddy currents, induced by rapidly changing magnetic fields, lead to additional
magnetic fields. These fields slightly alter the expected resonance frequency, resulting
in image distortions. They can also cause ghosting artifacts, typically overlaying the
brain image several times. Such artifacts may also originate from coil heating, patient
movements, and errors in the magnetic fields.

Gibbs ringing is occurring near anatomical boundaries due to truncation in the
inverse Fourier transformation [51].

Beyond these technical limitations, the measured object itself can introduce un-
certainties. This includes within-volume motion, leading to zigzag patterns in the
reconstructed image, or between-volumes motion, causing misalignments between dif-
ferent gradient directions or leading to dropout [87]. These examples highlight just a
few of the potential errors in a typical dMRI experiment.

In addition to structural noise, random background noise arises from imperfections
or limitations of the coils, electronics, and inductive losses in the imaged subject.

While a variety of methods exists to reduce and suppress these measurement un-
certainties, all subsequent reconstruction steps should account for these uncertainties.
A more detailed list, including recent developments to suppress these uncertainties,
has been published by Tax et al. [152].

Within each voxel, a local model is applied to reconstruct the local fiber config-
uration. In this work, Constrained Spherical Deconvolution (CSD) with a low-rank
approximation is the chosen local model [4, 137]. This model offers a mathematically
elegant solution to the inverse problem and shows higher angular resolution than other
approaches. However, this model is not without uncertainties. For single-shell mea-
surements, it is not possible to estimate PVE, which denotes the existence of several
tissue types within one voxel. In a study from 2014 it was estimated that this effect is
present in 35-50% of white matter voxels, leading to misalignment of extracted direc-
tions and an increase in spurious directions [126]. Multi-shell measurements enable
the model to account for PVE and effectively reduce this uncertainty. Further, the
assumption that a single response function is valid within the whole brain might be
overly simplistic, due to structural differences within the brain. Additionally, while
the low-rank model can extract multiple fibers from a fiber distribution function, the
number of fibers must be pre-determined. Setting this number too low causes the
tractography algorithm to miss relevant directions, while setting it too high intro-
duces spurious directions. Lastly, the low-rank model is a crossing model but unable
to recover fiber fanning, which occurs as a result of PVE.
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To quantify the impact of noise on parameter estimation of local models, several
works have proposed to use bootstrapping. One of the first works by Derek Jones used
two acquired dMRI of the same subject and created random bootstraps by selecting
randomly from both measurements with replacement [75]. Later, wild bootstrapping
was proposed to overcome the necessity of acquiring the same image several times,
without loss of performance [77, 177].

To this end, we present a work that employs a Bayesian Framework to estimate
the most probable number of fibers within a single voxel and develop a novel av-
erage model, which fuses information from all single estimations into one average
fiber direction estimation. Further, we use wild bootstrapping to simulate measure-
ment uncertainties and suppress them by building a consensus model through all
bootstraps.

Given the extraordinary amount of uncertainties, the reconstruction of stream-
lines is error-prone, and a vast array of different approaches has been developed to
incorporate anatomical priors, such as smoothness or maximum angle assumptions,
into the tractography algorithm. The earliest approaches used the diffusion tensor
model, capable of reconstructing only a single direction of anisotropy, and applied
simple Euler integration to it [11]. This approach suffers from all the aforementioned
uncertainties and the model’s inability to account for complex fiber geometry within
a single voxel. From this point, development split into local and global approaches.

Local approaches are extended to higher order integration schemes to capture
higher curvature accurately, considered different models, and used probabilistic fiber
direction selection to visualize uncertainty [14, 42]. Moreover, various studies incor-
porated neighborhood information to derive asymmetric information from the data
[46]. Additionally, some works proposed methods to regularize tractography, either
by applying a Kalman Filter to allow for the evolution of the current solution [53,
101, 102, 123] or by representing the streamline as a smooth curve with restricted
curvature and finding a solution for a local neighborhood [7]. These approaches are
helpful to reduce the amplification of single small errors, which would possibly result
in a false streamline.

Within our second contribution we propose, two methods to regularize tractogra-
phy. Firstly, the UKF is extended to work with the low-rank model. Secondly, it is
shown that the computation of the joint low-rank approximation is as complex as the
computation of a low-rank approximation for a single voxel. This is used to create a
joint low-rank approximation, which regularizes over a neighborhood.

As discussed previously, the low-rank model is unable to recover fanning from the
fiber Orientation Distribution Function (fODF). Within our third contribution the
model is extended to capture fanning. The newly proposed model uses a Bingham
distribution to capture fanning along with the fiber direction. This model is combined
with the UKF.
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Beside the local models, some works have proposed to reconstruct streamlines
globally. This should reduce amplification of small errors from local estimations
effectively. Commonly, these models minimize a sum of internal energy, i.e., fit to
the underlying local model, and some anatomical priors, such as the angle between
sections [28, 103, 124].

While these global methods effectively reduce uncertainty through noise, their
application is quite limited due to excessive computational requirements, as stated in
[124]. Another uncertainty within tractography arises due to the presence of fanning,
kissing or bending of fibers within a single voxel. Global models are able to resolve
fanning and kissing to some extent, but not entirely [124]. A way to completely
resolve this is to set up hard boundary conditions based on prior knowledge.

Such boundary conditions could be the explicit start and end points of a stream-
line. Several geodesic, i.e., shortest path algorithms, have been proposed [65, 132].
Although these methods effectively resolve the problems of kissing and crossing, de-
termining the true boundary conditions is quite challenging, and incorrect settings
can lead to biased results [124].

In recent years, various deep learning-based approaches have been introduced
[45, 112, 128, 171]. They offer an effective toolbox to include prior information into
tractography and have shown promising results.

For the local model, several methods have been proposed as post-processing steps
to overcome limitations such as the inability to differentiate between fanning, kissing
and bending. The commonly used SIFT approach filters the streamlines such that
the distribution of streamlines within a voxel agrees with the underlying fODF [144,
145]. Another approach, named COMMIT, introduces anatomical priors into the
optimization [36, 129].

While these advanced tractography algorithms reduce the impact of data am-
biguities, such as fiber kissing, crossing, and bending, they introduce a new set of
challenges, namely setting tractography parameters. The most common parameters
are seed points, step width, maximal angular deviation, and stopping criteria. Several
works have illuminated the impact of these parameters on the final tractogram and
have developed visualization tools [19, 25].

1.4 Outline

In Chapter 2, the foundational concepts relevant to this thesis are presented. The
mathematical frameworks of tensors and spherical harmonics, along with their inter-
connections, are introduced in Sections 2.1 and 2.2. Essential aspects of the human
brain, crucial for understanding the content of this thesis, are discussed in Section
2.3. DMRI and the mathematical models used to quantify diffusion are the focus of
Section 2.4. Section 2.5 sheds light on the key design choices in local fiber tracking.
The extension of Kalman Filters to non-linear applications is explored in Section 2.6.
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Additionally, Section 2.7 delves into the adaptations of the Gaussian distribution for
spherical applications.

Chapter 3 details the primary contributions of this work. An evaluation of model
and measurement uncertainties within the low-rank model is presented in Section 3.1,
along with a mathematical model designed to mitigate these uncertainties. Two novel
approaches for tractography regularization are proposed in Section 3.2. The first
method enhances the low-rank approximation by integrating spatial neighborhood
data into local fiber configuration estimations. The second method utilizes an UKF
to estimate local fiber directions based on previous estimations. Both methods show
promising results in various test scenarios. An extension of the low-rank model to
account for anisotropic fanning is discussed in Section 3.3.

Finally, Chapter 4 offers an evaluation of these contributions, providing insights
into the appropriate application of each approach. This chapter also contemplates
the broader implications of this work and further directions of research.
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Chapter 2

Background

2.1 Tensors

In this thesis, the foundational concepts of tensor calculus play a pivotal role, par-
ticularly as they intersect with spherical harmonics. To ensure clarity and provide
context for the subsequent discussions, we present a brief introduction to these es-
sential mathematical constructs.

This introduction covers the necessary main concepts of tensors and is based on
the textbook by Fischer [47].

2.1.1 Definitions

Definition 1 A vector space V over a field K ∈ {R,C} is an abelian group (V,+)
equipped with a scalar multiplication operation

· : K × V → V (2.1)

(λ, v) 7→ λv (2.2)

which is distributive and 1 · v = v for all v ∈ V and 1 the identity in K.

Definition 2 A mapping ⟨·, ·⟩ : V × V → K with

• Conjugate symmetric: ⟨x, y⟩ = ⟨y, x⟩ for x, y ∈ V

• Linear: ⟨ax+ by, z⟩ = a⟨x, z⟩ + b⟨y, z⟩ for x, y, z ∈ V and a, b ∈ K

• Positive-definiteness: ⟨x, x⟩ > 0 for x ∈ V \ {0}

is called scalar product.

Definition 3 Given a vector space V over a field K the set of all linear maps f :
V → K is called dual space V ⋆.

Definition 4 A covariant tensor T ∈ T d = V ⋆ ⊗ · · · ⊗ V ⋆︸ ︷︷ ︸
d

of order d is a multi-linear

map T : V × · · · × V → R.
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A tensor in T d can be expressed in a basis given by
(
e⋆

id
⊗ · · · ⊗ e⋆

id

)
for i1, . . . , id ⊂

{1, . . . , n} via

T =
n∑

i1,...,id

Ti1,...,id
e⋆

i1 ⊗ · · · ⊗ e⋆
id
, (2.3)

where the coefficients Ti1,...,id
form a d-dimensional array. To evaluate the tensor at

a specific point v1, . . . ,vd, we use

T (v1, . . . ,vd) =
n∑

i1,...id=1
Ti1,...,id

v1,i1 . . . vd,id
, (2.4)

using that
(
e⋆

i1 ⊗ · · · ⊗ e⋆
id

)
(v1, . . . ,vd) = ∏d

k=1 vk,ik
.

Definition 5 A tensor is called symmetric if

T (v1, . . . ,vd) = T
(
vσ(1), . . . ,vσ(d)

)
, (2.5)

for any permutation σ ∈ S (d). The space of all symmetric tensors of order d is
denoted as Symn,d.

Hence, a symmetric tensor is fully determined by its components with Ti1,...,id
with

i ≤ · · · ≤ id, since all other components can be recovered by Ti1,...,id
= Tiσ(1),...,iσ(d)

and the dimension of Symn,d coincides with collecting d balls from a set of n elements:(n+d−1
d

)
.

2.1.2 Approximation

Figure 2.1: Schematic representation of the approximation. Left
the estimated parameters λi,vi, i = {1, 2} and right the minimiza-
tion problem, i.e. norm of the sum of both rank-1 tensors depicted
as overlay minus the high order tensor. Now the parameters get op-
timized until the norm is minimized.
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For a real symmetric matrix M ∈ Rn×n the spectral theorem1 states that

M =
n∑

i=0
λivi ⊗ vi, (2.6)

where λi ∈ R≥0 and vi ∈ S2, which denotes the two dimensional sphere. There
are algorithms to calculate the rank-r approximation, which include the r greatest
eigenvalues.

In general, a symmetric tensor T of order l can be decomposed into a sum of
l-folded rank-1 tensors:

T =
∑

i

λiv⊗l
i , (2.7)

where λi ∈ R, vi ∈ S2 and v⊗l = v ⊗ · · · ⊗ v︸ ︷︷ ︸
l−times

. This is commonly referred as low-

rank approximation and is in general a hard problem. Within this work, a greedy
algorithm is applied, which optimizes the parameters iteratively over the r low-rank
tensors, i.e. the objective function gets altered to

f (λj ,vj) = ∥Rj − λjv⊗l
j ∥F , (2.8)

where Rj is the residual regarding all other low-rank tensors beside j and ∥ · ∥F

denotes the Frobenius norm. As in the work [57], it can be shown that

λj = Rj (vj) . (2.9)

For parameter optimization, a gradient descent algorithm with Armijo step size con-
trol is used [6]. Figure 2.1 depicts the approximation.

2.2 Spherical Harmonics

2.2.1 Definitions

A common way to parameterize functions on the sphere is the use of polar coordinates:

r : (R≥0, [0, π] , [0, 2π)) → R3 (2.10)

(r, θ, ϕ) 7→ r


sin (θ) cos (ϕ)
sin (θ) sin (ϕ)

cos (θ)

 . (2.11)

1A proof can be found in Fischer, Lineare Algebra, Diagonalisierungssatz [47]
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Setting r = 1 leads to the unit sphere S2 and the square integrable functions form an
inner product space with inner product

⟨f, g⟩S2 :=
∫
S2
fgdµ =

∫ π

0

∫ 2π

0
f (θ, ϕ) g (θ, ϕ) sin (θ) dϕdθ. (2.12)

A commonly used basis on the sphere are the spherical harmonics, which appear
as a solution of the Laplace equation ∆f = 0, when enforcing separability of variables:

Definition 6 The complex spherical harmonics are the set of functions

Ym
l (θ, ϕ) :=

√
2l + 1

4π
(l −m)!
(l +m)!P

m
l (cos (θ)) exp (imϕ) , (2.13)

for (l,m) ∈ N × Z with −l ≤ m ≤ l and Pm
l denote the associated Legendre polyno-

mials.

A derivation can be found in [32]. Similarly, the real spherical harmonics can be
constructed:

Definition 7 The real Spherical Harmonics (SH) are defined as

Y m
l :=


√

2Re
(
Y−m

l

)
m < 0

Y0
l m = 0

√
2Im (Ym

l ) m > 0,

(2.14)

where Im denotes the imaginary part and Re denotes the real part.

l = 0

1

2

3

4
−4 −3 −2 −1 m = 0 1 2 3 4

Table 2.1: Visualization of the complex spherical harmonics Y l
m

up to degree l ≤ 4. The hue represents the complex phase and the
radius is scaled by the absolute value.

2.2.2 Properties

Due to the construction, spherical harmonics come with a range of useful properties.
In the following subsections the most important ones will be introduced.
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Orthonormality and Basis

Due to the normalization constant, the spherical harmonics are orthonormal

⟨Ym
l ,Ym′

l′ ⟩S2 = ⟨Y m
l , Y m′

l′ ⟩S2 = δm,m′δl,l′ for all |m| ≤ l and
∣∣m′∣∣ ≤ l′ (2.15)

and are complete in the square integrable functions on the sphere and thus build a
basis.

Expansion

Hence, any square integrable function f : S2 → C can be expanded as linear combi-
nation of this basis, i.e.

f (θ, ϕ) =
∞∑

l=0

l∑
m=−l

fm
l Ym

l (θ, ϕ) (2.16)

for coefficients fm
l ∈ C. The convergence holds in L2 and the coefficients can be

calculated as

fm
l = ⟨f,Ym

l ⟩S2 , (2.17)

where Ym
l is the complex conjugated. In a similar way we can calculate the real

valued coefficients, using the real valued basis.

Symmetry

Spherical harmonics with even degree l are symmetric and antisymmetric for odd
degree:

Ym
l (−x) = (−1)l Ym

l (x) . (2.18)

Connection between Real and Complex Spherical Harmonics

When a real-valued function f on the sphere is considered, it can be represented in
the complex spherical harmonic basis. However, a challenge arises: even though the
function itself maps to R, the coefficients f l

m associated with it might be found to be
complex.

Through symmetry and definitions, the following relationships between the com-
plex and real versions of spherical harmonics can be derived:

c0
l = al0 (2.19)

cm
l = (alm − iblm)√

2
, (2.20)

where cm
l are the complex coefficients and alm, blm are the real valued coefficients.
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These relations permit a direction conversion between real and complex spherical
harmonics.

Rotation

A key feature of complex spherical harmonics is the closure under rotations, i.e.
rotation of a spherical harmonic leads to a combination of spherical harmonics of the
same degree. This shows that the basis is an irreducible representation of the group
SO (3) of dimension 2 (l + 1) and can be formalized as

R (Ym
l ) =

l∑
m′=−l

D
(l)
mm′ (R)Ym′

l , (2.21)

where D
(l)
mm′ (R) denotes the complex conjugated of an element of the Wigner D-

matrix for a rotation R. As Green pointed out, the computation of the Wigner
D-matrix is computational expensive and might be unstable [55]. A more stable and
less expensive way is to express the rotations as ZYZ-Euler rotations, or cheaper as
five consecutive rotations, where the expensive Y-Euler rotation is replaced by a 90
degrees X rotation, a Z rotation, and a -90 degree X rotation. This leads to the
decomposition

R (α, β, γ) = Rz (γ)Rx (π/2)T Rz (β)Rx (π/2)Rz (α) , (2.22)

where

Rx (θ) :=


1 0 0
0 cos (θ) − sin (θ)
0 sin (θ) cos (θ)

 (2.23)

Ry (θ) :=


cos (θ) 0 − sin (θ)

0 1 0
sin (θ) 0 cos (θ)

 (2.24)

Rz (θ) :=


cos (θ) − sin (θ) 0
sin (θ) cos (θ) 0

0 0 1

 . (2.25)

Equivalence to Tensors and Polynomials

A bijection exists between real spherical harmonics and the symmetric tensor basis,
as it was shown in [41, 115]. Through a linear transformation coefficients can be
converted, where the rank l of a truncated SH basis is equal to the order k of a
symmetric tensor.
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Convolution

Intuitively, the convolution of a function with a kernel smooths the function by av-
eraging the function with the kernel. This definition can be extended for spherical
functions with the small restriction that the kernel k is rotational symmetric and can
therefore be written as

k (θ) :=
∑

l

flY0
l (θ, ϕ) (2.26)

which is symmetric around the z-axis and independent of ϕ. We define the convolution
on the set of all possible shifts, which coincides with the rotation group SO (3). We
denote that every function f : S2 → R can be lifted to SO (3) by setting f̃ (R) =
f (Rez), where R ∈ SO (3).

Definition 8 The spherical convolution of a function f : S2 → C with a kernel
k : S2 → C is defined as

(k ⋆ f) (u) =
∫

SO(3)
k (Rez) f

(
R−1u

)
dR, (2.27)

integrated with respect to the Haar measure with
∫

SO(3) dR = 1.

Theorem 1 For an isotropic kernel k the convolution becomes a multiplication of
the coefficients

(k ⋆ f)m
l = 1√

4π (2l + 1)
klf

m
l . (2.28)

A proof can be found in [44]. Since the Haar measure is not assumed to be normalized
to 1, the constant differs.

2.3 Brain Anatomy

Within this section a short introduction to the anatomy of the human brain is pre-
sented, which will help to understand the applied measurement schemes as well as
the models to reconstruct local fiber directions. This section is based on the textbook
Anatomy [35]. For more details we refer the interested reader to this book. Figures
2.3-2.5 within this section are adapted from the 20th edition of this book, which was
released into public domain and can be found online.

The human brain stands at the epitome of biological intricacy, encompassing
an estimate in the order of 10 billion neurons [35]. At their core, neurons form
the circuitry of our nervous system. They are essential for encoding information
and establishing complex networks through inter-neuronal interactions. These vast
numbers of neurons oversee everything in the body, from fundamental physiological
functions to complex cognitive tasks.
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Figure 2.2: Simplified representation of neuron with basic synaptic
connections.

(a) Neuron in the cerebellum with
branching dendrites.

(b) Layers in the Gray Matter (GM). tttajkjkjkjkjkiiiiiiiiii-
iiiiiiiiiiiiiiii

Figure 2.3: Example of neuron structures.

A neuron is structured with a soma, or cell body, from which several slender
extensions arise. These extensions are categorized as axons, which are primarily re-
sponsible for transmitting signals, and dendrites, which predominantly receive them.
However, it is worth noting that in certain scenarios, dendrites can also emit signals.
The juncture where an axon of one neuron interacts with the dendrite of another is
termed a synapses. A schematic representation of neuron is depicted in Figure 2.2
and more complex neuron structures are depicted in Figure 2.3.

The communication between neurons is facilitated through the release of neuro-
transmitters at the synapses when an axon sends a signal. These neurotransmitters
are then taken up by the dendrites, triggering a response in the connected neurons.
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While the diameter of an axon typically ranges between 1 and 15µm, their lengths
can vary significantly. Many axons are as short as dendrites, but some span much
longer distances, connecting regions that are far apart, such as different areas of the
brain or even the toe tips to the brain. Long axons are typically enveloped in myelin,
a fatty, insulating sheath. This sheath aids in transmitting signals more rapidly.
Tissues with high myelin density are termed White Matter (WM), which will be the
primary focus of this thesis due to its inclusion of fiber bundles. These bundles consist
of groups of well-organized axon structures that connect different regions of the brain.

(a) Axial cut through the brain showing WM
and Gray Matter (GM).

(b) Sagittal view showing the Corpus Callosum
(CC).

Figure 2.4: Visualizations of the brain.

In addition to WM, there are two other major tissue types in the brain. One such
type is the Cerebrospinal Fluid (CSF), which is housed within the ventricles2. This
fluid does not contain aligned fiber structures. Additionally, the brain’s outer layer,
known as the cortex, is composed of Gray Matter (GM). This is a densely packed
tissue characterized by short and unorganized connections. Sagittal and axial cuts of
the brain are visualized in Figure 2.4.

The bundles can be characterized into three groups. Firstly, association fibers
which stay within one hemisphere. Examples which are relevant in this work are
the Inferior Fronto-Occipital Fasciculus (IFO), the Inferior Longitudinal Fasciculus
(ILF), and the Superior Longitudinal Fasciculus (SLF). Secondly, commissural fibers
which connect both hemispheres. The Corpus Callosum (CC) is one example for
commissural fibers. Thirdly, projection fibers which connect the cerebral cortex with
other parts of the brain. An example is the Corticospinal Tract (CST). Figure 2.5
visualizes some association fibers.

In the subsequent sections dMRI will be introduced, which is capable to measure
the diffusion of water in the brain.

2Being precise, CSF is not a tissue since it contains fluid. However, in context of MRI it is
commonly denoted as tissue, as by Zhang et al. [188]
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Figure 2.5: Sagittal cut showing different association fibers (red) in
the white matter.

DMRI has a resolution of approximately 1 mm isotropic, which is far below the reso-
lution of a single axon, but due to strong alignment of fibers within WM, structures
are visible.

2.4 Diffusion Magnetic Resonance Imaging

Diffusion Magnetic Resonance Imaging (dMRI) employs a specific Magnetic Reso-
nance Imaging (MRI) sequence that utilizes the diffusion of water molecules as a
contrast agent [10]. This allows for unique, in vivo, and non-invasive insights into
the human brain. The diffusion process within tissues is not random; instead, it re-
flects interactions with structures, such as fibers. As a result, diffusion measurements
can unveil intricate details of brain structure without posing any known risk to the
patient. The subsequent subsections will provide a brief overview of the basic con-
cepts of MRI and dMRI. This chapter is based on the textbook by Brown [21], which
contains a more detailed description.

2.4.1 Magnetic Resonance Imaging

The foundational principle behind MRI is Nuclear Magnetic Resonance (NMR), which
was discovered around 1940 by Felix Bloch and Edward Purcell. Both received a
Nobel Prize in 1952 for their work.

MRI leverages the interaction between nuclear magnetic moments of particles and
an external magnetic field. In MRI, the dominant nucleus is the proton in hydrogen,
found for example in water molecules. This accounts for two-thirds of the atoms in
the human body [68]. Protons constantly spin around their own axis, acting as small
magnets [56]. This behavior is formalized with a spin-vector s of length ∥s∥ =

√
3

2 ℏ
and a magnetic moment µ = γs.
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Here, ℏ ≈ 1.0546 · 10−34Js is the reduced Planck constant, and γ ≈ 267.5 · 106 rad
sT

is the gyromagnetic ratio of protons. In the absence of an external magnetic field,
these axes are randomly distributed, canceling each other out and leading to a zero
net magnetization M = 1

V

∑
i µi = 0 in the volume V . When an external magnetic

field B0 is applied, the axes of the proton align in its direction and rotate around the
axis of B0 with the Larmor frequency ω = γB0. The magnetic moments are either
aligned parallel or anti-parallel to the B0 field with a slightly larger fraction aligned
with the field leading to a measurable magnetization M0 aligned with B0.

(a) Magnetization M precesses around an ap-
plied field B0.

(b) Relaxation effects as described by the Bloch
Equation (2.29).

Figure 2.6: Effect of relaxation to the magnetization M . Gray
lines describe the trajectory of the magnetization.

To generate a measurable signal, a second magnetic field B1, perpendicular to
B0, is applied. For simplicity, we assume that B0 is aligned with the z-axis. The B1

field is a short pulsed Radio Frequency (RF) at ω rotating in the x-y plane. This
leads to a coherent rotation of the spins, yielding to a net magnetization precessing
with ω. Shortly after such a pulse, the excited transversal magnetization continues
to rotate, decaying according to T2-relaxation, due to loss of phase coherence. The
T1 relaxation describes the recovery of the longitudinal magnetization and occurs
exponentially. This relaxation is intricate but can be described by the Bloch equation
for a z-aligned B0 field:

dM

dt
= γM ×B0 − ex

Mx

T2
− ey

My

T2
− ez

Mz −M0
T1

, (2.29)

where T1 describes the spin-lattice relaxation time, T2 describes the spin-spin re-
laxation time, and M0 represents the initial magnetization. The Bloch equation
characterizes the relaxation of the net magnetization as an exponential decay over
time. After the RF pulse, the spins produce an oscillating magnetic field, which can
be detected by a receiver coil tuned to ω. The signal is called Free Induction Decay
(FID) and should decay according to the Bloch Equation with T2.
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However, due to inhomogeneities in the static B0 field and resulting differences in the
Larmor frequency, the FID is always shorter than T2 and can be written as

1
T ⋆

2
= 1
T2

+ 1
T

′
2
, (2.30)

where T ′
2 describes the decay introduced by the inhomogeneity of the magnetic field.

Different tissue types have different T1 and T2 decays, depending on the free water
and density of the tissue [106]. For example, CSF and other liquids have high T1 and
T2 decay times [56]. In general T1 relaxation times are about 5-10 times longer than
T2 times [34].

Spin Echo

Figure 2.7: Application of a spin echo to refocus. At t = 0 the
initial pulse is applied, at t = ∆t the pulse is flipped and at t = 2∆t
the spin echo is present.

As described previously, inhomogeneities in the B0 field lead to different precession
rates of the spins, resulting in FID. To mitigate this effect, a second pulse, flipped
by 180◦, is applied after time t, following the initial 90◦ pulse. This pulse inverts the
phase of the spins. After a duration of t, the faster spins catch up with the slower
ones, and the spins are refocused. This process compensates for the de-phasing caused
by inhomogeneities and aids in retaining the signal’s clarity and strength.

Spatial Localization

While it is now possible to receive a signal from the protons, achieving spatial reso-
lution is not possible. Instead, we detect an overall signal

S =
∫

V
m (x, y, z) dV, (2.31)

where V represents the volume and m denotes the signal strength at position (x, y, z).
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Figure 2.8: The applied magnetic field with an additional gradi-
ent in the z-direction, yielding to a z dependent Larmor frequency.
Hence, a radio pulse will only resonate to a small slice around z.

A common technique to overcome this limitation is by adding a gradient to the B0

field leading to a varying Larmor frequency along the gradient. Assuming the gradient
Gz is in the z direction, the magnetic field becomes B0 (x, y, z) = B0 + zGz yielding
a Larmor frequency ω (x, y, z) = γB0 (x, y, z). Using this gradient, it is possible to
select a thin slice along the z-axis by tuning the B1 radio pulse to the corresponding
Larmor frequency as depicted in Figure 2.8.

Figure 2.9: The phase encoding is carried out by an additional y-
gradient applied to B, leading to a change of the rotation frequency
ω (y) during the application and phase differences along the y-axis.

To achieve spatial resolution in the x and y directions, additional techniques
are employed. For separability along the x-axis, another gradient, Gx, is applied
during the readout time. This results in a varying frequency along the gradient, a
process referred to as frequency encoding. By applying a Fourier transformation to
the received signal, the signal can be separated based on this frequency variation.

Phase encoding is applied to achieve spatial resolution along the y direction: After
the radio pulse, another gradient, Gy, is applied. This causes protons at different y-
locations to precess at different speeds. Subsequently, the phase of these protons is
shifted in proportion to the strength of the gradient. Figure 2.9 shows how the phase
shift leads to different shifts along the y axis and therefore provides information about
their position along the y-axis.



20 Chapter 2. Background

Figure 2.10: Schematic spin echo sequence. The RF pulse is ap-
plied with additional gradient in z-direction to excite a thin slice. A
slice rewinder is applied to reduce phase dispersion of the transverse
magnetization. Afterwards the phase encoding along the y axis and
k-space centering along the x axis is applied. Then spin inversion is
applied to account for inhomogeneities in the magnetic field. During
the readout frequency encoding is applied.

By combining these three gradient techniques (slice selection, frequency encoding,
and phase encoding), it is possible to determine the spatial position of signals within
a 3D volume. A schematic representation of this process is depicted in Figure 2.10.

2.4.2 Diffusion Magnetic Resonance Imaging

DMRI enables the measurement of the diffusion of water molecules by introducing
additional gradient pulses. In the absence of any external field, water molecules
naturally move around due to their kinetic energy, exhibiting random motion patterns
known as Brownian motion. The specific pattern of this diffusion is influenced by the
surrounding structures.

For instance, in regions without boundaries, such as the CSF, water molecules
move freely in all directions. Their paths are altered primarily by collisions with
other molecules, resulting in isotropic diffusion, where the diffusion is uniform in all
directions. Conversely, in WM tissues, the cellular structures restrict the movement
of water molecules [109]. This confinement causes the molecules to predominantly
spread along the direction of the structures and less perpendicular to them, leading
to anisotropic diffusion [117].

To harness the diffusion properties of water molecules, Stejskal and Tanner intro-
duced the Pulse Gradient Spin Echo (PGSE) technique [150]. This method employs
two consecutive RF pulses: the first pulse is applied at 90 degrees, tipping the net
magnetization from its equilibrium position into the transverse plane, and the second
pulse is applied at 180 degrees. Surrounding the 180-degree RF pulse, two gradient
pulses are applied.
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The initial gradient pulse causes de-phasing of the spins. The subsequent 180-
degree RF pulse inverts the phase, and the second gradient pulse aims to re-phase
the spins. If the molecules remain stationary, the re-phasing aligns the spins since the
gradient strength remains consistent. However, if there is diffusion in the gradient
direction, molecules experience different gradient strengths during de-phasing and
re-phasing. This discrepancy results in a measurable signal reduction due to loss of
focus.

Stejskal and Tanner formulated the effect on the spin echo intensity as:

S (d) = S0 exp (−bd) , (2.32)

where S0 is the base signal without applied diffusion gradients, d is the diffusion
coefficient along the gradient direction, and the b-value is given by:

b = (γGδ)2
(

∆ − δ

3

)
. (2.33)

In this equation, γ represents the gyromagnetic ratio, G is the strength of the applied
gradient pulse, δ denotes the pulse duration, and ∆ is the time interval between the
two gradient pulses.

2.4.3 Diffusion Tensor Imaging

(a) Isotropic tensor with
FA = 0.
asdfjkajsdfkjsak

(b) Anisotropic tensor with
equal first and second eigen-
value and FA = 0.33.

(c) Anisotropic tensor with
FA = 0.75.
asdfjkajsdfkjsak

Figure 2.11: Visualizations of Diffusion Tensor Imaging (DTI) for
different Fractional Anisotropy (FA) values.

By incorporating multiple gradient directions, we can generalize Equation (2.32) to:

S (x) = S0 exp
(
−bxT Dx

)
, (2.34)

where D ∈ R3×3 represents the symmetric diffusion tensor and x ∈ S2. Owing to its
symmetry, only six independent components are necessary to fully define the diffusion
tensor. In theory, the tensor can be determined using just six diffusion-weighted
measurements with non-collinear gradient directions.
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However, in clinical practice, more than six measurements are typically acquired
to mitigate the effects of noise and enhance the accuracy of the tensor estimation [76].
The parameters are then estimated by computing the least squares fit. This method
is commonly named Diffusion Tensor Imaging (DTI).

The diffusion tensor can be decomposed into its eigenvalues, ordered by magni-
tude, and their corresponding eigenvectors. The primary eigenvector represents the
predominant direction of fiber orientation within the voxel. This directionality pro-
vides valuable insights into the underlying microstructural organization of the tissue.

For visualization purposes, an ellipsoid can be constructed, with its axes aligned
to the eigenvectors of the diffusion tensor. The lengths of these axes are scaled by
the corresponding eigenvalues, providing a geometric representation of the diffusion
characteristics within the voxel. An example is depicted in Fig. 2.11.

Among the scalar measures, one of the most common is Fractional Anisotropy
(FA), which quantifies the anisotropy or directionality of the diffusion within a voxel.
It is calculated as:

FA =

√√√√(λ2 − λ1)2 + (λ3 − λ2)2 + (λ1 − λ3)2

2
(
λ2

1 + λ2
2 + λ2

3
) , (2.35)

where λ1, λ2, and λ3 are the eigenvalues of the diffusion tensor. High FA values are
typically found in single fiber WM regions, while low FA values suggest more isotropic
diffusion, as seen in GM or CSF or crossing regions.

While the single tensor model is able to capture a primary fiber direction, it falls
short when it comes to multi-fiber reconstruction. Considering that 70 to 90% of the
WM volume contain multiple fiber orientations, this limitation is significant [72, 133].

A direct extension of the model to account for multiple fibers might look like:

S = S0
∑

i

fi exp
(
−bxT Dix

)
, (2.36)

where x ∈ S2, Di ∈ R3×3 denotes the diffusion tensors and fi ∈ R+ denotes the
volume fractions. If the signal is isotropic, i.e. xT Dx = d ∈ R+ for all g ∈ S2, the
extensions leads to ambiguities as the expression can be rewritten as follows:

f exp (d) = f exp(d1 + d2︸ ︷︷ ︸
=d

) (2.37)

= f exp (d1)︸ ︷︷ ︸
=f1

exp (d2) = f1 exp (d2) , (2.38)

hence the diffusion tensor and the volume fraction are interchangeable. This problem
can be solved by the ball-and-stick model, which models the isotropic part of the
measurement as ball and diffusion as sticks [14].
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(a) Multi-shell sampling with 3 shells as con-
ducted by the Human Connectome Project.

(b) Cartesian grid sampling.

Figure 2.12: Different Q-space sampling schemes illustrated in 2D.

(a) b = 1000 (b) b = 2000 (c) b = 3000

(d) b = 1000 (e) b = 2000 (f) b = 3000

Figure 2.13: Visualization of a single voxel measurement from an
HCP subject. A least square fit for a fourth (top row) and tenth
(bottom row) order spherical harmonics basis is estimated per shell.
With increasing b-value the diffusion and therefore the signal loss
increases, leading to decreasing signal with increasing b-value. Fur-
ther, the diffusion profile gets sharper. The surface is color coded by
projecting XY Z-axis on RGB colors.



24 Chapter 2. Background

2.4.4 Q-space and Shells

As discussed in the last section, a key challenge is the measurement of S (g), which
highly depends on selecting suitable directions g ∈ S2 measured at a b-value. Com-
monly, these quantities are unified to a b-vector b = bg or in so called q-space notation

q = qg, with q = γGδ. (2.39)

As stated before, it is sufficient to measure at seven different directions (including
the S0 measurement). However, to fully approximate the space, it would be ideal
to measure at every position. Obviously, this is not possible and a discrete number
of directions has to be chosen. The most common measurement schemes are either
to sample the q-space on a Cartesian grid, called Diffusion Spectrum Imaging (DSI)
[174] or on spherical shells for a few q values, called High Angular Resolution Diffu-
sion Imaging (HARDI) [161]. HARDI requires just a fraction of the sample points
DSI is using and is used in the HCP for b = {1000, 2000, 3000} mm/sec on 90 gradient
directions per shell and additional 18 b0 measurements. Figure 2.13 depicts an exam-
ple white matter voxel measurement from the Human Connectome Project (HCP).
With increasing b-value the signal loss increases and the signal gets sharper.

2.4.5 Deconvolution of dMRI Data

While earlier models were grounded in physical descriptions and delineated a finite
number of fiber directions, spherical deconvolution offers a departure from this ap-
proach. Instead, it introduces a continuous density function:

f :S2 → R (2.40)

v 7→ f (v) . (2.41)

This function is termed the fiber Orientation Distribution Function (fODF). The un-
derlying assumption here is that the diffusion signal can be expressed as a convolution
of the fODF with a kernel. This presupposes that all fibers contribute the same MR
signal, up to their orientation [159]. The kernel describes the projection of the single
fiber response function on a delta peak. Therefore, the single fiber response is repre-
sented a convolution between a kernel and a delta peak. We will denote this kernel
as delta-kernel.

In this model, a linear mapping is established by utilizing the fact that the convo-
lution of a rotationally symmetric delta-kernel with a spherical harmonic function can
be reduced to a matrix multiplication, as detailed in Section 2.2.2. The parameters
are then estimated by a linear least squares fit. A notable advantage of this method is
that there is no need to predefine the number of fibers, allowing for a more adaptive
and accurate representation of the fiber orientations within a voxel [159].
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Figure 2.14: Left: a single fiber response. Center: Rank-1 kernel
as proposed by Schultz and Seidel [137]. Right: the resulting rank-1
kernel.

The single fiber response function is commonly estimated by selecting the n ∈ N
voxels with the highest FA values within in the brain, aligning them with the z -
axis, computing a least squares fit of a spherical harmonic basis model for each voxel
and averaging the coefficients. The response function is then extracted as the zonal
symmetric part of the series, i.e. Y 0

l for l ∈ {0, 2, . . . , 2n} , n ∈ N [159]. Figure 2.14
shows an example response function.

Spherical deconvolution of dMRI data often faces challenges due to noise and
various artifacts. A notable consequence of these challenges is the emergence of
negative values in the resulting fODF. Such negative values are contradictory both to
the mathematical model of a distribution function and to the intuitive understanding
of fODFs, where negative values do not have a clear physical interpretation.

To address this issue, Tournier et al. introduced Constrained Spherical Deconvo-
lution (CSD). This method iteratively penalizes negative values on a discrete set of
directions. The result is a significantly improved fODF representation that contains
only minimal negative fractions, aligning better with the expected properties of a
distribution function and the inherent nature of fODFs [158].

Due to the large voxel size, many voxels are affected by PVE, i.e. the presence
of several tissue types within one voxel [126]. As the signal decay differs between
different tissues with increasing b-values, it is possible to differentiate between tissues,
such as WM, GM, and CSF, if multi-shell measurements (measurements at different
b-values) are available. Therefore, the CSD approach has to be extended to account
for multi-shell data. Further, while the approach effectively reduces the occurrence of
negative values in the fODF, it does not ensure a strictly positive solution. As a result,
there are instances where the resulting fODF might still present non-interpretable
negative values.

Jeurissen et al. modeled a distinct response function for each shell and tissue type
to account for PVE [74]. This method is practical and effective for a limited number
of shells. However, as the number of different b-values grows, the complexity of the
approach escalates rapidly. Hence, the method is not applicable to measurement
protocols with many distinct b-values, such as DSI.

The constructed delta-kernel faces numerical instabilities, due to the inability of
a limited SH basis to represent a delta peak. To enhance the computational stability,
Schultz and Seidel have represented the response function as a convolution between
a rank-1 peak and a kernel [137].
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(a) Rank-1 kernel and order 4. (b) Delta-kernel and order 4. (c) Delta-kernel and order 8.

(d) Rank-1 kernel and order 4. (e) Delta-kernel and order 4. (f) Delta-kernel and order 8.

Figure 2.15: Top row shows the deconvolution of the signal from
Figure 2.13 for all shells. Bottom row shows deconvolution in a
crossing fiber region. For Subfigures (A) and (D) the main direc-
tions align with the directions from the low-rank approximation,
which is depicted as scaled lines in the background. For the remain-
ing subfigures the directions align with the local maxima. With the
application of the low-rank approximation it is possible to recover
two directions.

In this setup, the fiber directions align with the low-rank approximation of the re-
sulting fODF. While this introduces an additional computational layer, the trade-off
is justified by the reduction in angular error.

Ankele et al. tackled the challenges of potential negativity and the limitation to a
few b-values by representing the single fiber response in a SHORE basis, which cap-
tures the whole spectrum of b-values [4]. In the tensorial framework, non-negativity
amounts to a positive semidefiniteness constraint (H-psd) that can be enforced with
quadratic cone programming. A visual comparison between the proposed method by
Jeurissen et al. and Ankele et al. is depicted in Figure 2.15.

2.5 Tractography

In the previous subsection, we discussed methods to estimate local fiber distributions.
A prevalent objective in dMRI research is to piece together entire fibers by logically
linking local fiber directions. This process is often termed tractography. There exists
a huge variety of tractography algorithms.
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Commonly, iterative approaches are used, which are divided into deterministic and
probabilistic approaches. A typical deterministic tractography pipeline is composed
as follows:

Given local directions, either by a DTI, a low-rank, or any other discrete model,
tractography is conducted by defining a seed point with an initial direction and then
growing the so-called streamline iteratively by selecting a direction and applying an
integration scheme until a stopping criteria is reached.

In each step, a new direction is selected based on the current streamline direction.
In case of the low-rank model, the closest peak to the current direction is chosen, in
the easier DTI model the present principal eigenvector direction is used. Commonly,
easy Euler integration is performed, i.e. taking the direction and following it for a
fixed step size [108]. However, also more evolved Runge-Kutta approaches are used,
reducing the possible integration error [11].

Common stopping criteria encompass factors like insufficient data support, such
as low WM density, exiting the WM, low FA, or notably high curvature.

Deterministic tractography struggles to capture the intricate geometry of the hu-
man brain. Specifically, it fails to discern fiber configurations like kissing and fanning.
To address this limitation, there is a shift towards probabilistic techniques. For in-
stance, rather than selecting the nearest peak of a fODF, the fODF is interpreted as a
probability distribution, and the subsequent direction is determined through random
sampling [157]. Alternatively, a probability can be assigned to each discrete fiber
direction based on their alignment with the current direction and a random draw
determines the next direction. There is a vast array of such strategies, each with
its own set of advantages and drawbacks [77]. A shared shortcoming of probabilistic
methods is their propensity to produce outliers, and they often lack reproducibility.

For completeness, there are also other tractography approaches, which, instead of
using iterative local integration schemes, try to set up a global minimization problem
[89]. While they have a few benefits, a great drawback of these methods is the
computational infeasibility.

2.6 Filter

In Section 2.1.2, the low-rank r approximation of a high-order tensor was introduced.
This approximation serves as a local optimization problem within each voxel to es-
timate r fiber directions. To refine the streamline estimation, our objective is to
introduce a sense of regularity. This can be realized by embedding dependencies
among the estimations. A straightforward approach would be to initialize the op-
timization based on the solution derived from the preceding step and restrict the
deviation from the initialization.

Revisiting this problem from a stochastic perspective, we can conceptualize it as a
sequence of random variables (Xt)t∈N. These variables represent the state at a given
time t ∈ N, here the set of possible directions.
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Moreover, we operate under the assumption that the estimation of current parameters
is solely influenced by the previous parameter estimation.

Figure 2.16: Schematic representation of a hidden Markov model.
The zi are observables, while xi are the hidden states of interest.

While the random variables (Xt)t∈N are not directly observable and are thus
termed “hidden”, we do observe the measurements (Zt)t∈N. These measurements
are directly linked to the unobserved variables via the low-rank model. The pair(
(Xt)t∈N , (Zt)t∈N

)
is referred to as a hidden Markov model. A representation of

this model is depicted in Figure 2.16. At this juncture, this formalization has not
provided us with any new insights. The intriguing and logical subsequent query is:
Given a sequence of observations, how can we deduce the hidden state? In the realm
of statistics, this challenge is commonly known as the filtering problem [8].

In the following subsection, a solution to this problem, namely the Kalman Filter,
is introduced. Although the low-rank approximation is non-linear, first the linear
problem is considered and afterwards it is extended to the non-linear case. Further,
the Kalman Filter is viewed with Bayesian glasses. To prove that the Kalman Filter is
a Maximum A Posterior (MAP) estimator, it is assumed that the errors are normally
distributed. We denote that Gaussianity of the errors is not necessary to proof the
more general minimal mean square error optimally, as pointed out by Uhlmann and
Julier [162]. Therefore, it is just assumed that the first two moments of the errors are
known.

2.6.1 Kalman Filter

The Gauss Markov model satisfies the following assumptions: The next measurement
at time n can be expressed as:

Zn = HXn + εn. (2.42)

Additionally, the time update is given by:

Xn = AXn−1 + νn−1, (2.43)

where H, A are linear mappings, Xn is the hidden state, εn ∼ N (0,R), νn ∼ N (0,Q)
are mutually independent normal distributed errors and Zn is the observation.
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To get insight into the hidden state, Bayes rule will be the guardian angle, since
it allows to link the prior knowledge with the likelihood. The Bayes rule is

P (X | Z) = P (Z | X)P (X)
P (Z) , (2.44)

where P (Z) is the evidence of the marginal likelihood, P (X) is the prior probability,
P (X | Z) is the posterior probability of X given Z, and P (Z | X) is the likelihood.
Hence, Bayes rule can be utilized to express our belief about the next step based on
past observations.

To apply the Bayes rule to the recursive problem, we calculate the prior belief
from Eq. (2.43) yielding Xn ∼ N

(
Axn−1,APn−1AT + Q

)
, where Pn−1 denotes the

covariance of Xn−1.

Derivation of the Update Equations

Given our model, we aim to compute the MAP estimator to estimate the most likely
next state. Ignoring the denominator from Bayes rule, the MAP estimator becomes

arg max
xn

P (Xn | Zn) = arg max
xn

P (Zn | Xn)P (Xn) (2.45)

= arg min
xn

(zn − Hxn)T R−1 (zn − Hxn) (2.46)

+ (xn − Axn−1)T
(
APn−1AT + Q

)−1

· (xn − Axn−1) .

This formulation captures the trade-off between fitting the observation and staying
close to the model’s prediction. Further, it shows the impact of noise which acts as a
regularizing parameter in this sum.

As a next step, the equation is differentiated regarding xn and rearranged, such
that xn is separated. Together with

xn|n−1 = Axn−1 (2.47)

Pn|n−1 = APn−1AT + Q (2.48)

this yields:

xn =
(
HT RH + PT

n|n−1

)−1 (
HT R−1zn + P−1

n|n−1xn|n−1
)

(2.49)

=
(

Pn|n−1 − Pn|n−1HT
(
R + HPn|n−1HT

)−1
HPn|n−1

)
(2.50)(

HT R−1zn + P−1
n|n−1xn|n−1

)
= xn|n−1 + Kn

(
zn − Hxn|n−1

)
, (2.51)
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with

Kn := Pn|n−1HT
(
R + HPn|n−1HT

)−1
. (2.52)

To derive Equation (2.50), the Woodbury matrix identity is used [183]. This allows to
update the state in a Bayes optimal way, given the last state and a new measurement.
The covariance matrix can be updated by calculating

Pn = E
(
xnxT

n

)
(2.53)

= E
((

xn|n−1 + Knzn − KnHxn|n−1
)

(2.54)

= ·
(
xn|n−1 + Knzn − KnHxn|n−1

)T
)

= Pn|n−1 − KnHPn|n−1. (2.55)

Applying this scheme leads to MAP optimal estimations of the new state. The
Kalman Gain can be simplified to

Kn = PxzPzz, (2.56)

using

Pn|n−1HT = E
((

xn|n−1 − E
(
xn|n−1

)) (
xn|n−1 − E

(
xn|n−1

))T
)

HT (2.57)

= + E
(
xn|n−1 − E

(
xn|n−1

))
E (ε− E (ε))

= E
((

xn|n−1 − E
(
xn|n−1

))
(2.58)

= ·
((

xn|n−1 − E
(
xn|n−1

))T
HT + εT − E

(
εT

)))
= E

((
xn|n−1 − E

(
xn|n−1

))
(2.59)

= ·
(
Hxn|n−1 + ε− E

(
Hxn|n−1 + ε

))T
)

= Pxy (2.60)

and the fact that
(
R + HPn|n−1HT

)−1
is the covariance Pzz of the observation.

The fundamental assumptions underlying the Kalman Filter are the linearity of
the model and the Gaussian nature of the noise and uncertainties. Specifically, the
process relies on the fact that the state space follows a Gaussian distribution, and
linear transformations preserve this Gaussianity. A general proof can be found in
[85].
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The Update Equations

To summarize the above, the Equations can be combined to describe one update step
of a Kalman Filter as follows: First, the time update is calculated as:

xn|n−1 = Axn−1, (2.61)

Pn|n−1 = APn−1AT + Q. (2.62)

Second, the measurement is updated as:

xn = xn|n−1 + Kn

(
zn − Hxn|n−1

)
, (2.63)

Pn = Pn|n−1 − KnHPn|n−1, (2.64)

Kn = Pn|n−1HT
(
R + HPn|n−1HT

)−1
. (2.65)

2.6.2 Extensions to Non-linearity

Since the low-rank r approximation is non-linear, an extension of the traditional
Kalman Filter is required. There are two dominant deterministic approaches to ad-
dress this non-linearity. On the one hand, is the Extended Kalman Filter (EKF).
The EKF linearizes the non-linear system using a first-order Taylor series expansion.
While it is computationally efficient, its performance can degrade with high non-
linearities. On the other hand, the unscented Kalman Filter (UKF) employs a set
of deterministically chosen sigma points to capture the mean and covariance of the
non-linear transformation. This approach often provides a more accurate represen-
tation of the system’s true behavior, especially when non-linearities are pronounced
[79, 82].

In contrast to the deterministic methods, there is the probabilistic approach of
the Particle Filter [39]. This method uses a set of random samples or “particles”
to represent the posterior distribution of the state. By propagating these particles
through the non-linear system, the particle filter can approximate non-Gaussian and
non-linear systems to any order. However, its computational cost is significantly
higher than its deterministic counterparts.

Given the need to execute the filtering step millions of times, computational effi-
ciency becomes paramount. While the particle filter offers a high degree of flexibility,
its computational demands make it less suitable for applications requiring rapid state
estimation. Therefore, deterministic approaches like the UKF are more appropriate.
Given the pronounced non-linearities in our model, we opted for the UKF.
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2.6.3 Unscented Kalman Filter

As described before, the main achievement of the UKF, is the Unscented Transform,
which replaces the non-linear functions with approximations of the density. First we
will introduce the new model:

Zn = f (Xn) + εn (2.66)

and the time update

Xn = h (Xn−1) + νn−1, (2.67)

where Zn denotes the observation, Xn the unobservable state, h,f some non-linear
functions and εn ∼ N (0,Q) , νn ∼ N (0,R) Gaussian errors. Given an initial
distribution of X0 ∼ N (x0,P0), we are able to distribute a set of carefully chosen
so-called sigma points, which reflect the distribution.

Sigma Points

To fully determine the mean and covariance in dimension n, n + 1 samples are nec-
essary. That set can be built as described by Julier and Uhlmann [80]. A drawback
of this method is that the set is not unskewed in contradiction to a Gaussian dis-
tribution. Therefore, we are commonly interested in a set of points, which is also
unskewed and has a kurtosis of 3, i.e. is close to Gaussian. Using 2n sigma points,
the skewness can be easily controlled by distributing them according to the matrix
square root. Additionally, a single centered sigma point can be used to control the
skewness. Therefore, we use 2n + 1 sigma points, which are trivially distributed as
follows:

X0 = x̄ w0 = κ

n+ κ
(2.68)

Xi+1 = x̄ +
(√

(n+ κ)Pxx

)
i

wi+1 = 1
2 (n+ κ) (2.69)

Xi+n+1 = x̄ −
(√

(n+ κ)Pxx

)
i

wi+n+1 = 1
2 (n+ κ) . (2.70)

The mean of the sigma points is x̄, the covariance is Pxx, the skewness is zero, since
we carefully distributed the points, and the kurtosis depends on κ as follows:

E
(
X4

)
j

=
2n+1∑
i=0

ωi

(
Xij

)4
(2.71)

= 2
2 (n+ κ)

(√
n+ κ

)4
(2.72)

= n+ κ, (2.73)
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under the assumption that Pxx = 1 and x̄ = 0. Since a standard normal distribution
has a kurtosis of 3, we can minimize this by setting n + κ = 3. Negative κ values
are possible but might lead to non-positive definiteness of the covariance matrix.
If it is assumed that the underlying distribution is non-Gaussian, we can tune the
κ parameter differently. Additionally, we note that higher moments of the normal
distributed Gaussian follow

E
(
X l

)
=

1 · 3 · . . . · (l − 1) for even l

0 else,
(2.74)

while the sigma points diverge from this, following

E
(
X l

)
=

(n+ κ)l/2−1 for even l

0 else.
(2.75)

These sigma points are now used to estimate the distribution of the time update and
the space mapping as follows:

x̄ =
∑

i

wih (Xi) , (2.76)

Pxx =
∑

wi (h (Xi) − x̄) (h (Xi) − x̄)T + Q (2.77)

and

z̄ =
∑

wif (h (Xi)) , (2.78)

Pzz =
∑

wi (f (h (Xi)) − z̄) (f (h (Xi)) − x̄)T + R. (2.79)

2.7 Spherical Distributions

Within this section we will introduce two extensions of the Gaussian distribution
on the sphere and show important properties. The distributions are used in the
presented works to incorporate fiber fanning into the low-rank model by convolving
the spherical distribution with a rank-1 peak. The convolution works as described in
Section 2.2.2. Therefore a representation in a spherical harmonic basis is necessary.
The following Section is based on the textbook by Mardia [104].
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2.7.1 Watson Distribution

(a) κ = 1 (b) κ = 5 (c) κ = −10

Figure 2.17: Watson distribution for different κ values. For in-
creasing values the distribution is more concentrated around its
peak. For negative values the distribution is a griddle distribution.

The Watson distribution [172] has the probability density function

f : S2 → R+

x 7→ 1
c (κ) exp

(
κ

(
µT x

)2
)
, (2.80)

where κ ∈ R denotes the concentration parameter, µ ∈ S2 the mean direction and
the normalization constant c (κ) is calculated using the Kummer function as

c (κ) = 4π · 1F1 (1/2, 3/2, κ) . (2.81)

The distribution is rotational symmetric about the principal direction and antipodal
symmetric, i.e. f (x) = f (−x). As seen in Figure 2.17, the concentration depends
on the κ parameter: For large κ the concentration around the mean is strong, for
κ = 0 we have a uniform distribution on the sphere and for κ < 0 we see a symmetric
griddle distribution.

Assuming that µ = [0, 0, 1]T a series expansion is given by

fSH (x;κ) =
∞∑

l=0
cl (κ)

√
2l + 1

4π Y 0
l (θ, ψ) (2.82)

where

cl (κ) =

2πc (κ)
∫ 1

−1 exp
(
κt2

)
Pl (t) dt if l even

0 else,
(2.83)
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where Pn (t) is the n-th Legendre polynomial and c (κ) is the normalizing constant
[64]. Using Mathematica we can evaluate the first coefficients:

c0 (κ) = 1 (2.84)

c2 (κ) = 1
4

( 3√
κF (κ) − 3

κ
− 2

)
(2.85)

c4 (κ) =
5
√

κ(2κ−21)
F(√

κ) + 12κ (κ+ 5) + 105

32κ2 (2.86)

c6 (κ) =
21

√
κ(4κ(κ−5)+165)

F(√
κ) − 5

(
8κ3 + 84κ2 + 378κ+ 693

)
128κ3 (2.87)

c8 (κ) = 3
√
κ (2κ (2κ (62κ− 1925) + 15015) − 225225)

F (
√
κ) 2048κ4 (2.88)

+ 35 (8κ (κ (2κ (κ+ 18) + 297) + 1287) + 19305)
2048κ4 . (2.89)

2.7.2 Bingham Distribution

(a) κ = 5 and β = 0.5 (b) κ = 5 and β = 2.5 (c) κ = 5 and β = 4

Figure 2.18: Visualization of the Bingham distribution for dif-
ferent β values. For increasing β the distribution becomes more
anisotropic.

The Bingham distribution relaxes the rotational symmetric property and has the
probability density function

f : S2 → R+

x 7→ 1
N (Z) exp

(
xT MZMT x

)
, (2.90)

where Z is a diagonal matrix with non-increasing entries z1 ≥ z2 ≥ z3, M =
(µ1, µ2, µ3) is an orthogonal matrix and N (Z) denotes the hypergeometric function
of matrix argument [17]. Without loss of generality, we set z3 = 0 and rewrite the
density function as

f (x;µ1, µ2, κ, β) = 1
N (κ, β) exp

(
κ

(
µT

1 x
)2

+ β
(
µT

2 x
)2

)
, (2.91)

where κ = z1 and β = z2.
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Defining the Bingham distribution in this way, µ1 defines the mean direction, κ its
concentration and µ2 the direction of ellipticity and β the strength. Setting β = 0
leads to the Watson distribution. While the Watson distribution has a closed form
spherical harmonic representation, the Bingham distribution does not provide such an
easy solution. But a spherical harmonic representation can be computed numerically
for a set of κ and β values with µ1 aligned to the north pole, since the rotation can
be applied afterwards, as discussed in Section 2.2.2.
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Contributions

3.1 Model Averaging and Bootstrap Consensus Based
Uncertainty Reduction in Diffusion MRI Tractogra-
phy
Johannes Grün, Gemma van der Voort, and Thomas Schultz in Computer

Graphics Forum, Volume 42, Issue 1, Pages: 217-230, Year 2023.

This study addresses two primary uncertainties in the tractography process and
investigates the interactions between them.

Firstly, we address model uncertainty, which arises when estimating the fiber
directions within each voxel using the low-rank approximation, since the rank, i.e.
the number of fibers, has to be set a priori. Determining the correct number of fibers
is pivotal. Setting it too low will overlook fiber directions, while setting it too high
will introduce spurious directions. In the first case, the tractography algorithm will
miss important parts of the tract, while in the second case, it will find non-existing
connections.

To address this problem, the probability of a specific rank, given a fODF is of
interest. Bayes rule is applied to connect the posterior probability of the hypothesis
that the rank is r given the fODF, with the likelihood of the fODF given that the rank
is r, multiplied by the prior knowledge of the rank distribution. Due to inconsistent
values in literature, the prior is set as non-informative, i.e., uniform over the ranks.
The likelihood is approximated using the Bayesian Information Criterion. It remains
essential to calculate or approximate the probability of a fODF given the rank and
its parameters, namely fiber directions and lengths. Ideally, a fODF should have a
high probability if the approximation error is low and vice versa. This is modeled
using a flexible Kumaraswamy Probability Density Function. Instead of selecting the
low-rank model with the maximum posteriori probability, it is proposed to create an
average model. This model fuses fiber direction estimations from all different low-
rank r approximations, by first clustering the directions into three groups, ensuring
that the distance within groups is minimized and each low-rank r approximations
contributes to each group at most once. Each low-rank r contribution is weighted by
its posterior probability, ensuring a more accurate and comprehensive representation.
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The second uncertainty relates to measurement noise. Due to the complex nature
of the dMRI protocol, measurement noise is always present and has multiple sources,
such as inhomogeneous magnetic fields, body movement etc.

To quantify and address this, we employ a wild bootstrapping approach. By sim-
ulating multiple fODF datasets, we can estimate inherent data uncertainty without
additional measurements. Similar to the average model, a consensus bootstrap
model is constructed, by first matching the fiber directions and afterwards averag-
ing them. While finding global minima for the average model is feasible, due to its
limited number of single low-rank models, this becomes challenging for the consensus
model. Therefore, an optimization problem is constructed and iteratively the groups
are built, such that the distances within the group are minimized and each low-rank
model contributes to each group once.

Our findings indicate a strong agreement between the dominant rank in the boot-
straps and the most probable rank determined by the Bayesian framework, further
endorsing the Bayesian approach.

For each bootstrap realization a selection model, i.e. selecting the most probable
model by the posterior probability, and an average model are built. Fitting a Watson
distribution to the different models, it is evident that both models reduce variability
of the main fiber direction compared to a rank-3 model. This shows that both the
selection and the average model effectively reduce susceptibility to measurement noise.

Finally, we conduct tractography on 12 subjects from the HCP dataset for 7 tracts,
for which reference tractographies are available. We select a single seeding slice and
post-processed the tractography results using inclusion and exclusion regions.

A visual comparison of the right CST shows that the consensus model increases
the reconstruction density compared to the base models in all cases. It is important to
note that the average model is more favourable than the rank-3 model, as it reduces
the false positives. To evaluate the reconstructions quantitatively, we compare the
results by computing the dice scores, where the reference reconstructions are set as
ground truth. It is evident that the median of all models improves with the application
of the consensus model. Moreover, a median dice improvement is observed for the
average model compared to the selection model. To delve deeper into the results, we
conduct a non-parametric Friedman test, revealing significant differences between the
dice scores of the models. A Nemenyi post-hoc test identified significant differences,
showing that the average and rank-3 consensus model yield significant difference to
their respective base models in terms of dice score with a higher mean dice. Further,
model averaging shows significant differences compared to the selection model and
the rank-3 model with a higher median dice score.

In conclusion, we have investigated two sources of uncertainty, i.e. model uncer-
tainty and measurement uncertainty, and their interaction with each other. It has
been shown that the average model successfully reduces both types with much less
effort than the bootstrap models.
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The main author has contributed the methodology, implementation, validation,
data curation, the original draft and all visualizations.

3.2 Spatially Regularized Low-Rank Tensor Approxima-
tion for Accurate and Fast Tractography

Johannes Grün, Samuel Gröschel, and Thomas Schultz in NeuroImage, Vol-
ume 271, Year 2023.

In recent years, the field of multi-fiber tractography has witnessed significant
advancements, with a primary focus on extracting more detailed information from
data. Historically, the diffusion tensor imaging model was employed to estimate a
single direction of anisotropy. Modern advancements, however, such as the ball-and-
stick model, facilitate the reconstruction of multiple fibers. Even more advanced
methods, such as CSD, are capable of reconstructing an entire fODF.

However, with increasing model complexity comes heightened susceptibility to
noise and other data-related anomalies. While research data quality has improved,
thanks in part to initiatives such as the HCP, real-world clinical scenarios pose unique
challenges. Economic constraints often mean that clinical measurements are shorter,
making them more susceptible to noise and inconsistencies. Given the iterative na-
ture of most tractography approaches, a single local error can amplify, resulting in
inaccurate streamline representations. This highlights the necessity of robust regu-
larization techniques in tractography to ensure model reliability in both research and
clinical contexts.

To address this, we propose two novel spatial regularization approaches for the
low-rank r approximation:

Firstly, instead of approximating each voxel individually, we consider neighboring
voxels in the approximation to reduce outliers. It is shown that the joint low-rank
approximation over local neighborhood does not increase the optimization complexity
compared to the low-rank approximation of a single voxel. Further, a weighting
scheme is introduced to keep the tract borders intact, while regularizing at the same
time.

Secondly, we apply an UKF, to introduce a relation between the previously un-
related measurements. Further, it offers a balance between measurement fit and
deviation from the current state, based on covariances of the additive noises.

To validate the efficacy of these models, we conduct extensive benchmarks against
existing models. Our first experiment involves twelve randomly selected subjects from
the HCP dataset, focusing on seven major tracts with existing reference tractogra-
phies. We emulate clinical data quality by limiting the number of gradient directions
to 30 and using a single b-value of 1000. Seeding is performed in a single slice of a
tract and the performance of the different methods is evaluated using the dice score.
As baseline comparison, the low-rank model and a multi-tensor UKF are used.
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A visual comparison of the CST shows that the joint low-rank approximation leads
to a denser reconstruction than the low-rank model and the low-rank UKF results
in a denser reconstruction than the multi-tensor UKF on both the full and reduced
data. Comparing the joint low-rank model with the low-rank UKF shows that the
joint low-rank model captures the fanning much better. It is also clearly visible that
the novel approaches improve the regularity of the reconstructions.

Further, the quantitative results from the reduced dataset reveal that in six out
of seven tracts the joint low-rank model has the highest median dice. To analyze
the results further, a Friedman test is conducted, which shows significant differences
between the dice scores of the models. A Nemenyi post-hoc test shows that the
dice of the joint low-rank model differs significantly from all other models. Further,
the low-rank UKF shows significant differences to the traditional low-rank and the
multi-tensor UKF with a higher median dice.

Our second experiment utilizes the ISMRM challenge dataset. Here, whole-brain
tractography is executed, followed by outlier removal and automated tract segmenta-
tion. Results, averaged over the tracts, indicate that both proposed methods achieve
Pareto optimal results compared to other competitors, consistently across various
WM densities that are used as stopping criteria.

Lastly, we evaluate the regularized approaches on a clinical dataset from a tumor
patient. We focus on reconstructing the CST due to its close proximity to the tumor.
The results are compared to the widely-used iFOD2 tractography framework by MR-
trix. A clinical collaborator analyzed the outcomes, concurring that the results were
more coherent and complete, compared to iFOD2.

In conclusion, our research has introduced innovative regularization techniques
that promise enhanced accuracy and reliability in multi-fiber tractography, serving
both research and clinical applications.

The main author has contributed the methodology, implementation, validation,
formal analysis, investigation, data curation, writing of the original draft and visual-
izations.

3.3 Anisotropic Fanning Aware Low-Rank Tensor Ap-
proximation Based Tractography

Johannes Grün, Jonah Sieg, and Thomas Schultz, in proceedings of Medical
Image Computing and Computer Assisted Invention Society (MICCAI), Inter-
national Workshop on Computational Diffusion MRI (CDMRI), Year 2023,
Accepted for publication.

Previous research demonstrated that the low-rank UKF outperforms the joint
low-rank approximation in whole-brain tractography settings in terms of reaching
more overlap, while keeping the overreach limited. Further, the model is much faster
compared to the joint low-rank method.
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However, in a Region of Interest based setting, it fails to capture portions of the tract
when fiber fanning is present, due to the inability of the low-rank approximation to
model fanning.

To overcome this limitation, we propose to replace the low-rank model with a
novel model that convolves each rank-1 peak with a Bingham distribution, which is
called Bingham UKF. Instead of determining just three parameters (direction and
length), it is necessary to ascertain six parameters. Specifically, a rotation with length
accounts for four parameters, and the remaining two parameters define the spread of
the Bingham distribution. This new model is combined with the UKF.

The implementation of this model presents three main challenges:
Initialization: A proper initialization is essential, since it reduces the false

streamlines due to wrong initialization as well as the initial necessity of state adaption.
The direct approach would be to identify parameters that minimize the optimization
problem, but this is considerably more complex than estimating the low-rank approx-
imation. Within this work, a novel method to estimate the parameters is introduced.
Using the fact that the Hessian of the low-rank problem provides insights into the
curvature at a given point, it also provides insights into the presence of fanning at a
point. A low curvature in a direction indicates that a slight change of the point into
this direction would not change the residual dramatically, i.e. spread in this direction
is likely, while a strong curvature indicates a sharp peak and no spread. Calculating
the eigenvectors of the Hessian reflects the directions with the largest spread and is
used as an initialization of the quaternion rotation. To use the relation between the
Hessian and the Bingham parameters, a lookup table is created by computing the
Hessian for a wide range of Bingham parameters.

Spherical Harmonics of the Bingham Distribution: No closed-form solution
exists to represent the Bingham distribution in spherical harmonics. Therefore, we
numerically evaluate the integral for a Bingham distribution oriented towards the
north pole across a broad spectrum of coefficients. As discussed in Section 2.2.2, the
rotation can be applied afterwards.

Representation of Rotations: While the minimal representation of a rotation
can be achieved using Euler angles, they come with challenges like gimbal lock. We
address this by employing quaternions. Given their normalized nature, this introduces
dependencies within the UKF state, possibly leading to degeneration of the covariance
matrix. As a solution, we introduce Modified Rodrigues Parameters, establishing a
homeomorphism between R3 and S3. We map the quaternions to the north pole and
subsequently to R3. This eliminates the state dependencies. Then, the sigma points
are distributed in the lower dimensional space and are pulled back.

We compare our approach to the previously introduced low-rank UKF and a
Watson UKF model, which only supports isotropic fanning. Our evaluation involves
twelve randomly selected subjects from the HCP dataset and seven major tracts.
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We use the manually refined reconstructions provided along the TractSeg paper
as a baseline. The directed Hausdorff distance’s 95% quantile serves as measurement
metric, assessing completeness and excess based on argument order.

Visually, the new method presents a significant improvement in completeness.
However, overreach is also increased. It is worth noting that a portion of this overreach
is not problematic and could be rectified by expert human intervention or advanced
filtering techniques.

When comparing the Hausdorff distances, it is evident that in six out of the seven
tracts, the Bingham model’s completeness surpasses both the low-rank and Watson
models. The excess remains moderate across all methods, with a few exceptions. We
conduct Friedman tests at the tract level, revealing significant differences in six out of
seven tracts for the completeness metric and four out of seven for the excess metric.

In this study, the low-rank model was expanded to accommodate fiber fanning.
Along the way, several technical difficulties were overcome. The findings suggest
that the new Bingham model effectively addresses the issue of absent fiber fanning,
resulting in significantly denser reconstructions. A small caveat is that the time
consumption has increased compared to the low-rank UKF and that the evaluation
was just performed on high quality data.

The main author has contributed to the methodology, formalization, implemen-
tation, data curation, conducting the experiments, and all visualizations.

(a) Low-rank UKF (b) Bingham UKF

Figure 3.1: Reconstruction of a part of the CC tract in clinical
data. The Bingham UKF reconstructs to a larger extent than the
low-rank UKF but the streamlines are less organized.

After the submission we have evaluated the Bingham UKF further, with a focus
on clinical data. We will present a short visual comparison of a healthy volunteer as
addendum.

The dMRI dataset has a resolution of 1.71875×1.71875×1.7 mm on 128×128×72
voxels measured at b = 3000s/mm2 on 60 directions. Additionally, 6 b = 0 volumes
are measured. As pre-processing steps, the measurements are denoised using the
scripts provided by MRtrix [31, 160], Gibbs ringing is removed [86], and distortion is
corrected using topup and eddy_correct [3]. From the corrected data fODFs of order
6 are estimated [4]. The Bingham UKF parameters are adjusted slightly to account
for the worse data quality compared to the HCP dataset, i.e. R = 0.1.
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Seeding is conducted within the center of Corpus Callosum (CC) and exclusion
regions are defined to remove outliers. In Figure 3.1 results are depicted. As expected,
the low-rank UKF produces more aligned results compared to the Bingham UKF.
Therefore, the Bingham UKF is able to reconstruct parts of the fanning, which the
low-rank UKF does not reach.

We conclude that the Bingham UKF is applicable to high quality clinical sin-
gle shell measurements and the reconstruction captures the fanning better than the
low-rank UKF. Further experiments on clinical data with lower b-value have to be
conducted to determine the clinical applicability of the Bingham UKF in a wider
context.
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Chapter 4

Discussion

In this dissertation, several novel methods have been developed to mitigate uncer-
tainties. Within this section, the approaches are compared and recommendations for
the applications are formulated. Further, possible extensions are presented and the
general development of dMRI research is discussed.

The first paper explores both model and measurement uncertainty, highlighting
a relationship between them. It demonstrates that model averaging is an effective
approach to address both types of uncertainty. While the consensus model requires a
large number of samples, leading to significant time consumption, the average model
is much quicker, making it the preferred method.

The second paper introduces two innovative methods to spatially regularize trac-
tography using a low-rank model. The results suggest that, based on the setup, either
the joint low-rank or the low-rank UKF model outperforms the others. Moreover, the
low-rank UKF is considerably faster than both the joint low-rank and the multi-tensor
UKF methods. The latter is notably slower because the UKF update requires the in-
version of covariance matrices. In the measurement space, the covariance dimension
aligns with the number of gradient directions. However, for the low-rank UKF, it
aligns with the number of fODF parameters, i.e., 15 for an order 4 model compared
to 90 on a single shell of the full HCP dataset.

The third paper presents the innovative Bingham UKF, addressing the limitations
of the earlier low-rank UKF, namely the inability to model fiber fanning. The research
indicates that the Bingham model increases completeness compared to the low-rank
UKF. However, due to the Bingham model’s increased complexity, the fODF order
has been raised to 6, resulting in 28 dimensions in the fODF space, leading to a longer
computation time.

Collectively, these papers have advanced the state-of-the-art in tractography
pipelines. Naturally, one might wonder which model is best suited for specific cir-
cumstances. While there is no one-size-fits-all answer, we recommend the following:

For those prioritizing computational efficiency, the low-rank UKF emerges as the
top choice, being roughly ten times faster than its counterparts.
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For single slice seeding, the joint low-rank model or the Bingham UKF are recom-
mended. Although a direct comparison between these two is lacking, the Bingham
UKF uses an order 6 low-rank model, while the joint low-rank model employs order
4. This distinction means that the Bingham UKF demands more flexibility and data.

For whole-brain seeding, we suggest opting for either the low-rank UKF or the
Bingham UKF. While the low-rank UKF has its limitations, especially its inability to
reconstruct fiber fanning, these are offset when seeding directly into the fiber spread.
However, when fiber count is of paramount importance, the Bingham UKF may be
the more suitable choice due to its ability to recover spread from a wider area.

Concerning the consensus and average models, we do not recommend building the
consensus model. Its time-intensive nature and marginal advantages do not justify
its use, especially when compared to the significantly faster average model. Although
the average model is more efficient and outperforms the selection model, our pref-
erence still leans towards the joint low-rank or UKF models. These models have
consistently shown superior results without the added complexity of constructing an
average model.

The presented research shows a few loose ends which could be closed:
First, the Bingham UKF approach has only been evaluated on the HCP dataset

and a high quality clinical dataset. The effectiveness of this approach on a clinical
dataset of lower quality remains an unanswered question. While the low-rank UKF
and the joint low- rank approximation have demonstrated their effectiveness on low-
quality datasets due to their regularizing power, the Bingham UKF, with its inherent
flexibility and use of order 6 tensors, may be more susceptible to noise.

Second, the tractography approaches, especially the Bingham approach, could be
enhanced by employing a look-ahead strategy. This method involves not only sam-
pling the current next direction but also taking a step in this direction and sampling
again. The resulting probability would be the product of both individual steps. From
this distribution, a single step is sampled via rejection sampling and a step in the first
direction is taken. Although this method is more costly - necessitating more frequent
evaluations of the Kalman Filter at each step - it enables the identification of paths
closer to borders and likely ensures more reliable navigation through crossing areas.
Additionally, paths could be regularized using parallel transport, as suggested by Ay-
dogan et al. [7]. This adjustment would strongly regularize the taken directions in
each integration step, leading to more reliable reconstructions, as shown in the work.

Third, an attempt could be made to mitigate model uncertainty by constructing
an average model from three individual Kalman filters for each rank. Furthermore,
it would be worthwhile to investigate the behavior of a model if the model rank does
not coincide with the intrinsic fODF rank. It is possible that some minor fibers may
degenerate if the intrinsic fODF rank is lower than the model rank. If this is the case,
it could be interesting to reinitialize the model if certain constraints are fulfilled.
Lastly, the impact of the UKF measurement and process noise parameters on the
resulting reconstruction has to be evaluated in more detail.
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In general, it would be beneficial to have an automated adaption to new datasets
depending on spatial resolution and data quality.

Fourth, as the low-rank model shows improved reconstructions compared to
iFOD2 by MRtrix3, which was used as training reference for the TractSeg model, the
model performance might improve if retrained with improved reference tractographies
[170]. But alas, the used reference tractograms are manually cleaned. Therefore, it
might be necessary to clean the new reconstructions in the same way to achieve better
results.

Fifth, it might be an interesting idea to fuse the low-rank model with a learn-
ing model, which predicts the next directions at a given point. The fusion could be
achieved by predicting a regularized low-rank problem, where the regularizer penal-
izes the deviation from the estimated directions by the learning model. Tuning the
optimization parameter would allow to either trust the low-rank model or the deep
learning model more. A similar approach has been tried for fODF and it has been
shown that this leads to a higher accuracy, especially if the data quality is rather low
[118].

The advancements in fiber tractography presented in this work have far-reaching
implications. Within the last couple of years, new dMRI datasets have been published,
such as the Parkinsons Progression Markers Initiative [105]. The goal of this project is
the better understanding of Parkinsons, which could result in early diagnosis and more
efficient treatment. A common way to predict biomarkers is to build an anatomical
network based on tractography results and use this network as input for a graph
neural network [33]. Since the data quality is relatively worse, compared to the
Human Connectome Project, the application of multi fiber tractography approaches is
challenging. The proposed regularized tractography methods could be used to create
high quality tractographies for the further analysis. As it was shown by Bastiani
et al., the improvement in tractography algorithms has a significant impact on the
predictions [12]. With the increased accuracy, more fine grained analysis is possible,
leading to higher and more consistent deviations between two control groups.

The future of dMRI research is twofold. On the one hand is the evolution of MRI
scanners The Human Connectome Project (HCP) began in 2009, and since then, MRI
scanners have seen rapid advancements. The gradient strength has nearly doubled,
and the speed of gradient evaluation has tripled. This progress allows for measure-
ments at unprecedented resolutions of 0.76 mm isotropic, which is an improvement
by a factor of approximately 4.5 compared to the HCP measurements. The q-space
is sampled at 1260 directions. While such a scan requires a lengthy 18 hours, the
quality it offers is groundbreaking and promises to pave the way for further research
[62].

Another emerging trend in the field is b-tensor imaging [176]. While traditional
dMRI measures diffusion along a gradient, the b-tensor method adjusts the applied
field during the application along a specific trajectory.
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This adjustment aims to distinguish between microscopic diffusion within a voxel,
a distinction not achievable with the current setup, as it was pointed out already
in early 2000 [156]. With the advent of these new techniques, there is a need for
the development of new models. The diffusion tensor can be estimated as before,
by making the gradient direction time dependent. Currently this research branch is
more directed towards microstructural features of the underlying structures [43, 96].

On the other hand, advancements in computer hardware have enabled the con-
struction and optimization of more complex models. Over the past few years, there
has been a noticeable shift towards deep learning tractography approaches [15, 119,
170]. These approaches have yielded promising results, but have not yet become the
predominant method. This might be due to uncertainties which arrive with learning
based tractography. While there exist ways to visualize data fidelity for tractog-
raphy based on classical integration approaches, for learning based approaches the
interpretation of data fidelity is challenging, since the models are learned.

Another significant challenge is the absence of definitive ground truth tractograms.
Some strategies have utilized manually refined tractographies from existing models
as a baseline [170]. While this serves as a reasonable starting point, the intricate
nature of the data and the sheer volume of streamlines make it virtually impossible
for manual curation. Nevertheless, the outcomes have been encouraging.

Further, the approaches are normally trained on healthy humans, which have a
much smaller variety than ill patients, which can have a huge variety of artefacts, such
as tumors or neurodegenerative illnesses, affecting the underlying microstructure and
might lead to wrong results.

For neural network tractography purposes, additional information, like the rough
shape of a tract, will be learned during the training, making these approaches more
stable against outliers and inherit ambiguities within dMRI. While this is a feature
for healthy patients, it might be a problem for non-healthy patients. While the tracts
are within certain regions of the brain for healthy adults, for tumor patients this is
not necessarily the case, as it was shown in the second paper.

Another prevalent method involves approximating models, such as the CSD, using
neural networks [90, 99, 110, 111]. The primary advantage of these methods, aside
from increased speed, is their ability to operate on raw data. This bypasses the
information loss from extensive pre-processing steps.

Additionally, high-quality data can further push the boundaries of what is
achievable. While such data acquisition is not practical in clinical settings due to
economic constraints and patient time considerations, it could be instrumental in
enhancing deep learning approaches by providing a more accurate ground truth.

In this work we have evaluated different sources of uncertainty and developed
novel methods to successfully mitigate the. The methods show promising results and
indicate further paths of research to continuously improve tractography.
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