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Abstract

DNA can, in addition to the B-DNA conformation, fold into a variety of additional
conformations. Among them are G-quadruplex structures that have gained a lot of
attention in recent years. G-quadruplex structures (G4s) are highly stable nucleic acid
structures that can fold within DNA and RNA molecules. They form in guanine-rich
regions that harbor a specific G4 motif. The three-dimensional structure forms via
Hoogsteen hydrogen bonding, where the guanines form hydrogen bonds to each
other in order to generate G quartets, which stack in order to become G4 structures.

The existence and relevance of G4s was controversial as discussed in the past.
However, accumulating data was published that supported the model that G4s form
in living cells and importantly support biological processes. G4 formation and unfolding
is tightly regulated in vivo. If G4s persist in the cell, they can lead to cellular defects such
as genome instability. To avoid G4 accumulation in cells, and by this prevent cellular
defect, cells has evolved a variety of proteins, mostly helicases, that efficiently unfold
G4 DNA and RNA structures. Here, we describe a detailed protocol to monitor G4 struc-
ture unfolding by helicases.
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1. Introduction

The central dogma of molecular biology describes the propagation of

genetic information from DNA to RNA to protein. Only in the last several

years has it become obvious that this process is not linear. DNA and RNA

molecules can directly influence this process and each other by the formation

of alternative structures (Shapiro, 2009). In recent years, a variety of alter-

native DNA and RNA structures have been described in the literature

(Wu & D’Souza, 2020). The formation of alternative structures expands

the function and relevance of given nucleic acid regions and extends their

biological function. These alternative nucleic acid structures can also pose a

threat to the cell if their formation is not controlled and they form at

“wrong” regions or too many at a specific time in the cell (Kosiol, Juranek,

Brossart, Heine, & Paeschke, 2021; Richard & Manley, 2017; Shao &

Zhang, 2020; Spiegel, Adhikari, & Balasubramanian, 2020; Svoboda & Di

Cara, 2006). To prevent negative downstream consequences of “mis-

regulated” alternative nucleic acid structures, their formation and unfolding

is controlled by proteins. The most prominent alternative nucleic acids struc-

tures are hairpins, cruciform DNA, Z-DNA, and G-quadruplexes (Bochman,

Paeschke, & Zakian, 2012). So far, only a few have been shown to be relevant

in vivo. Among the best described alternative DNA and RNA conformation is

the G-quadruplex structure (G4). G4 structures can form in guanine-rich

sequences containing a specific sequence motif (G�2NxG�2NyG�
2NzG�2), called G4 motif. Because of this motif, the guanines self-assemble

into (at least two) π�π stacking subplanar guanine tetrads, which are stabilized
by Hoogsteen hydrogen bonding and monovalent cations (Bochman et al.,

2012; Burge, Parkinson, Hazel, Todd, & Neidle, 2006; Spiegel et al., 2020).

G4 motifs have been identified in all surveyed organisms (Huppert &

Balasubramanian, 2005; Lavezzo et al., 2018; Marsico et al., 2019;

Vannutelli, Belhamiti, Garant, Ouangraoua, & Perreault, 2020; Wu et al.,

2021; Yadav et al., 2021; Yadav, Hemansi, Kim, Tuteja, & Yadav, 2017;

Zyner et al., 2022). The genomic locations of G4 motifs are conserved and

enriched at key genomic regions such as telomeres, promoters, splicing sites,

origins of replication, untranslated regions of mRNAs and immunoglobulins

switch regions, where they support cellular functions (Bohalova, Dobrovolna,

Brazda, & Bidula, 2021; Capra, Paeschke, Singh, & Zakian, 2010; Huppert,

2010; Marsico et al., 2019; Wu et al., 2021). Therefore, the current model is

that G4 structures are nucleic acid-based tools that support cellular functions.
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In this model, specific G4s form based on exogenous or endogenous stimuli

and support cellular pathways such as changes in gene expression (Bochman

et al., 2012; Linke, Limmer, Juranek, Heine, & Paeschke, 2021; Lipps &

Rhodes, 2009; Spiegel et al., 2020). In contrast to this regulatory function

of G4s is the fact that G4 structures can, under certain conditions, also impair

cellular functions and even lead to genome instability (De Magis et al.,

2019; Gong et al., 2021; Hansel-Hertsch et al., 2020; Hui, Simeone,

Zyner, Tannahill, & Balasubramanian, 2021, 2022; Paeschke et al., 2013;

Paeschke, Capra, & Zakian, 2011; Wang et al., 2019). G4s can block the

processivity of polymerases or form at incorrect times and locations on the

DNA (RNA) as a protein loading hub to alter cellular changes (e.g., gene

expression, epigenetic changes). It has been shown that persisting G4 struc-

tures can alter gene expression, splicing, mRNA abundance, stress response,

telomerase activation, DNA damage accumulation and the efficiency of the

DNA repair and replication machineries (Bryan, 2020; Kim, 2019; Kosiol

et al., 2021; Robinson, Raguseo, Nuccio, Liano, & Di Antonio, 2021).

Different proteins have been identified that impact G4 formation. These pro-

teins can be grouped into two classes: G4 forming/stabilizing proteins and G4

unwinding proteins including helicases. So far, 25 eukaryotic helicases have

been described that can unwind G4 structures. These helicases differ in direc-

tionality (5’-3’ vs 3’-5’), their nucleic acid substrate (DNA vsRNA), and their

mode in selection their targets. Furthermore, they differ in their G4-binding

modes, as some helicases bind directly to the G4 structures, whereas others

need a single-stranded tail in front of the G4s. Detailed structural analysis

among helicases have shown that not only is their binding mode different,

but the mechanism of G4 structures unwinding also differs among helicases

(reviewed in (Caterino & Paeschke, 2021)).

Many processes in the cell depend on helicases. More than 31 DNA and

64 RNA helicases exist in humans (Umate, Tuteja, & Tuteja, 2011). Of

these, 16 can bind to G4s. Most helicases can unwind G4s in vitro, and it

is believed that more helicases will be identified that can unwind G4 struc-

tures in vitro and vivo. This raises two questions: (i) if nearly all helicases can

unwind G4s, why is it worthwhile to characterize this function? (ii) If all

helicases can unwind G4s in vitro does this still point to a special function

or relevance in vivo. In our opinion, both questions can be answered with

a clear “yes.” Current experiments show that G4s have a function in vivo

and that their formation and unfolding changes dynamically and depends

on the cell type and cell state. This dynamic regulation is primarily depen-

dent on helicases. As described above, without G4-unwinding helicases, G4s

3Detecting G4 unwinding

ARTICLE IN PRESS



accumulate in cells and lead to cellular defects (e.g., genome instability,

stress, slow growth, apoptosis (Beauvarlet et al., 2019; Byrd et al., 2016;

Lee et al., 2021; Qi et al., 2006; Sauer et al., 2019; Teng et al., 2021)).

As most helicases can unwind G4s, this points to a significant role of G4s

in vivo. By understanding which helicases can unwind G4s with which

processivity and target preference, the function and relevance of G4 struc-

tures in vivo can be determined. The importance of helicase function at G4s is

underlined by the current model that helicases support each other at G4s and

can compensate for each other’s loss at G4s. How helicase compensation at

G4s is mediated and how they select their specific G4 targets is not currently

clear. Detailed biochemical studies are required to understand if and how

helicases unwind specific G4s. This knowledge is not only interesting for

fundamental research to understand helicase function at G4s, but it is also

of great interest for diagnostic and therapeutical aspects. Most human cancer

cells have higher abundance of G4s, which may be connected to the muta-

tional burden, cancer subtype generation and tumorigenesis (Biffi, Di

Antonio, Tannahill, & Balasubramanian, 2014; Hansel-Hertsch et al.,

2020; Hui et al., 2021, 2022; Kosiol et al., 2021). In some cancers, helicases

that regulate G4s are mutated causing elevated G4s (Mohaghegh &Hickson,

2001; Suhasini & Brosh, 2013). A greater understanding on G4—helicase

interaction will be essential to understand how G4s and helicases contribute

to different cancer states and whether this can be used in the future as a diag-

nostic tool. In addition, the connection of G4s and helicases may also be

relevant for novel therapeutic ideas. In recent years, chemical G4 ligands

(e.g., PDS, BRACO-19, Telomestatin, CX5461) have been designed with

the goal to stabilize G4s as a targeted approach for anti-cancer treatment

(reviewed in (Kosiol et al., 2021; Sanchez-Martin, Soriano, & Garcia-

Salcedo, 2021)). Multiple studies have shown that stabilized G4s cause alter-

ations in the cancer cells that lead to reduced tumor growth and increased

survival (Kosiol et al., 2021). So far, these ligands are very promising, but

they can also cause many additional changes in the cells from undirected

G4 stabilization. One interesting alternative approach could be to target spe-

cific G4s by modulating/blocking helicases (and their associated proteins)

that contribute to G4 unwinding. This modulation of helicase activity will

also increase G4 levels (of specific, selected G4s) and may also be useable as a

therapeutic approach.

Multiple methods have been developed to study helicase function at G4s

(reviewed in (Caterino & Paeschke, 2021)). We have limited the scope of

this review on simple methods to study G4 unwinding by helicases using
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a gel-based assay. We will explain in detail G4 target selection, G4 structure

folding, controlling G4 structure formation and helicase activity assays.

2. Before you begin

Key to most in vitro assays is a detailed planning and small adjustments

to experimental settings will be required in dependency on the selected heli-

case. Therefore, buffer preparation (pH, salt, source of NTP (most likely

ATP)) and target selection can take quite some time, but once that is accom-

plished, data can be generated quickly. The following points needs to be

considered and discussed before the start of the experiment:

• Selection of a helicase.

Depending on your experimental setting, you must select a helicase

to test on a given G4 substrate. Helicases are classified according to

conserved sequence motifs into superfamilies (SF1-SF6). SF1 and SF2

are grouped based on similarities of two helicase domains (Fairman-

Williams, Guenther, & Jankowsky, 2010). The SF1 helicase family

shares a GDxxQ motif. SF2 helicases share structural similarities in the

catalytic core. Based on the superfamily, you can deduce whether the

helicase is a DNA or RNA helicase, which is the preferred NTP utilized

for hydrolysis (e.g., ATP), and which unwinding polarity/directionality

(5’-3, 3’-5’) it employs. This information is essential to select and design

targets for helicase activity assays.

• Purification of the helicase

G4 unwinding by a helicase is a biochemical assay which requires

recombinant expressed and purified helicase. The purification strategy

is always dependent on the helicase. The helicase can be expressed

and purified from E. coli, insect cells, yeasts or even in small amounts

from cell culture cell that overexpress the helicase. Protocols how to

express and purify different helicases can be found in the literature

and adopted to the helicase of interest. For example, purification

protocols for Pif1 or RecQ helicase members (Boule & Zakian, 2007;

Gu, Masuda, & Kamiya, 2008; Karow, Chakraverty, & Hickson,

1997; Nickens & Bochman, 2021; Orren et al., 1999) or DHX36 and

DDX5 (Chen et al., 2018; Choi, Dutta, Fielding, & Tan, 2010; Xing,

Wang, & Tran, 2017; Yangyuoru, Bradburn, Liu, Xiao, & Russell,

2018) can be found in the literature. In most cases, it is important to

understand whether an active unwinding process takes place or if the

activity is passive (Benhalevy et al., 2017). This can either be monitored
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by the amount of ATP hydrolyzed or by purifying mutated proteins that

lack catalytic activity (e.g., mutations in the helicase core domains

walker A or walker B box). For most cases described in the literature,

the catalytic inactive helicases are expressed and purified with similar

protocols to their active counterpart (Nickens & Bochman, 2021;

Paeschke et al., 2013).

• Selection of DNA or RNA G4 targets

It is also essential to select the target G4 structure to test your helicase.

For this, it is advised to select either a standard G4-forming DNA or

RNA sequence from the literature (for some examples that work in

our hands see Table 1 or (Byrd & Raney, 2015)) or select a G4 motif

from a genomic region or transcript, ideally of the same species of the

helicase. A canonical G4 motif has four guanine tracts consisting of at

least two guanines (see Fig. 1A for a cartoon of a G4 structure). These

guanine tracts are separated by short intervening loop regions, which

vary in their nucleotide composition. Different algorithms have successfully

used this G4 motif to identify regions in silico that have a strong potential to

fold into G4 structures (Brazda et al., 2019; Huppert & Balasubramanian,

2005; Lombardi & Londono-Vallejo, 2020; Miskiewicz, Sarzynska, &

Szachniuk, 2021; Todd, Johnston, & Neidle, 2005). Different experimen-

tal findings also report G4 formation in guanine-rich regions that do not

follow this canonical G4 motif ( Jana, Mohr, Vianney, & Weisz, 2021).

To map these G4 regions, a motif-independent screening tool has been

developed that also identifies RNA G4 (Garant, Perreault, & Scott,

2017). Furthermore, polymerase stop assays and target-specific next gener-

ation sequencing approaches (e.g., chromatin immunoprecipitation) using

G4-specific antibodies and probes have been performed in different organ-

ism that also experimentally determine G4 formation at specific DNA and

RNA loci ( Jamroskovic et al., 2019; Kwok, Marsico, & Balasubramanian,

2018; Marsico et al., 2019; Tu et al., 2021; Yang et al., 2018).

• Selection of control targets

To estimate and compare helicase activity on G4 structures, a selec-

tion of control substrates is recommended. The choice of the control

DNA or RNA regions depends on the scientific question. Most fre-

quently, G-rich forked nucleic acid constructs were used as well as other

secondary DNA or RNA structures such as hairpins or cruciform

(Bochman et al., 2012; Ribeyre et al., 2009).

• Synthesizing DNA or RNA targets

Selected regionscanbeorderedas standardunmodifiedoligonucleotides

fromcommercial sources. Lyophilized oligonucleotides are reconstituted at
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Table 1 Table provides examples of G-rich sequences that can fold G4 structures and have been used in the past for helicase unwinding
experiments.
Sequence of G4 motif Name of G4 Description Topology

GGGGTTTTGGGGTTTTGGGGTTTTGGGG Oxy Telo Telomeric G4 sequence from Stylonychia lemnea Antiparallel

GGGTTGGGTTGGGTTGGG telo G4 Reduced loop size Antiparallel

ACTGTCGTACTTGATATTTTGGGGTTTTGG

GG

bi-Oxy G4 Bi-molecular telomeric G4 sequence from

Stylonychia lemnea

Antiparallel

GGGGTGGGTAGGGTGGGTAA c-MYC G4 G4 within c-MYC Parallel

TTTCGGGCGGGCGCGAGGGAGGG c-KIT G4 G4 within c-KIT Parallel

TTTGGGAGGGAGAGGGGGDGGG HIF-1alpha

G4

G4 within HIF-1alpha Parallel

TTTGGTTGGTGTGGTTGG TBA G4 Thrombin binding G4 aptamer Antiparallel

TGGACCAGACCTAGCAGCTATGGGGGAGCT

GGGGAAGGTGGGAATGTGA

TP G4 Murine immunoglobulin switch sequence Parallel

CCCAACCCAACCCTTCCC rev_telo Sequence use in helicase stop assay No G4

Table provides sequences of G4 motif, name of the region used in the literature, description where this sequence origins from and the experimentally determined G4
topology.
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100μM with ultrapure water. Oligonucleotides can be stored at �20°C.
RNA targets can be synthesized by in vitro transcription. For this. the target

sequence will be in front of a T7 promoter and the RNAwill be generated

by reverse transcription. Due to the tight conformation of most G4s, we

always add three adenines to the 5’ end of each oligo. This renders the

5’-end free and available for end labeling instead of being buried within

the G4. Also, we note that some helicases bind directly to the G4 (e.g.,

Pif1). Other helicases load in front of the G4 (e.g., DHX36 or BLM).

Thesehelicases requirealsoanextensiontailnext to theG4.Whiledesigning

these constructs that favor helicase binding and unwinding, please keep the

directionality of your helicase in mind.

• Labeling of DNA or RNA target

For later detection, DNA or RNAmolecules need to be labeled. This

protocol utilizes a radioactivity to label theDNAorRNA, however, alter-

native 5’ or 3’-end labeling including biotinylation or addition of a fluo-

rophore can be used. Labeling position needs to be carefully considered as

to not hinder the formation of the G4 or affect helicase function.

3. Materials and equipment

3.1 General equipment
• Vertical polyacrylamide gel electrophoresis equipment (if using

acrylamide gels)

CBA
NMM EtBr

linear DNA

G4 DNA

Fig. 1 Control of G4 formation. (A) Cartoon of a parallel G4 structure (B) CD spectra of a
G4- and non-G4-forming oligodeoxynucleotide. (C) NMM- and ethidium bromide-(EtBr)
stain of G4-forming oligodeoxynucleotide. EtBr gels detects all loaded nucleic acids.
NMM gels visualizes only those nucleic acids that have a folded G4 structures. First lane
G4, second lane control DNA (no G4 formation). Cartoon on the right indicates topology
of the nucleic acid within the gel.
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• Horizontal gel electrophoresis equipment (if using agarose gels)

• Centrifuges (table-top) capable of cooling to 4 °C
• Incubators for 1.5mL tubes (21–95 °C)
• Phosphoimager and phosphoimager screen (e.g. Typhoon FLA 7000)

(alternative: X-ray films and developer). pH meter

• Circular dichroism (CD) instrument (e.g., Jasco-1500 spectropolarimeter)

• Quartz cell cuvette

• UV shadowing lamp

• Gel dryer (Biorad)

• Shaking incubators capable or heating (�37 °C) and cooling (�18 °C)

3.2 Reagents
• NaCl

• KCL

• Glycerol

• ß-Mercaptoethanol

• HEPES

• EDTA

• Tris

• HCl

• NaOH

• NaOAc

• MgCl2
• Boric acid

• Agarose (if using agarose gels)

• Ethidium bromide

• 19:1 acrylamide:bis-acrylamide solution (PAA)

• Ammonium persulfate (APS) (if using acrylamide gels)

• N,N,N’,N’-Tetramethylethylenediamine (TEMED) (if using acrylamide

gels)

• Sodium dodecyl sulphate (SDS)

• Ammonium acetate

• Triton-X100

• Dithiothreitol (DTT)

• T4 polynucleotide kinase (PNK)

• G25 columns

• [sγ-32P]ATP
• N-Methylmesoporphyrin IX (NMM)

• 10x TBE (1.3M Tris (pH 7.6), 450mM boric acid, 25mM EDTA)

• Fresh 10% APS solution in water (if using acrylamide gels)
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3.3 Oligonucleotides
Oligonucleotides can either be designed, taken from literature (Byrd &

Raney, 2015) or be mined using biocomputational means (Brazda et al.,

2019; Huppert & Balasubramanian, 2005; Lombardi & Londono-Vallejo,

2020; Miskiewicz et al., 2021; Todd et al., 2005). Examples are shown in

Table 1.

4. Step-by-step method details

4.1 G4 formation
Different factors influence the formation of G4 structures including the type

of salt, temperature, and the concentration of the oligonucleotide (Kim,

Evans, Dubins, & Chalikian, 2015; Lane, Chaires, Gray, & Trent, 2008;

You et al., 2017; Yuan et al., 2020). In general, use of K+ leads to more stable

G4s than Na+, whereas Li+ leads to less stable G4s (Bardin & Leroy, 2008;

Kim et al., 2015). Of those ions, K+ is discussed to be the more physiological

relevant salt condition (Ghosh, Largy, & Gabelica, 2021; Zhang, Xu,

Kumar, Zhang, & Wu, 2019).

As for many other protocols, there are different protocols described in

the literature how to fold an G4 motif into a G4 structure in vitro. Here,

we describe the two most common methods that were successfully used

in our lab.

4.1.1 DNA G4 formation
DNA G4 formation

1. Selected DNA oligonucleotides (see above) were dissolved at 100μM in

G4 folding buffer (10mM Tris (pH 7.5), 100mM KCl, 1mM EDTA).

Depending on the experimental question KCl can be exchanged to

NaCl or LiCl (see above). Once dissolved, we keep this as a stock, which

is handy to freeze in aliquots at �20 °C. It is advised not to freeze/thaw

the folded G4 oligonucleotides too often, which would prevent proper

G4 formation.

2. Before the start of the experiment, the oligonucleotides will be diluted to

10μM in G4 folding buffer.

3. Samples will be heat denatured for 10min at 95 °C using a heating block.

4. Following denaturation, we slowly cool down samples to room temper-

ature. We have achieved excellent results by decreasing the temperature
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by 2 °C min�1 using either a PCR machine or temperature controlled

incubators (Eppendorf thermomixer C).

5. Once the temperature reaches 21 °C, the G4 structures are folded

properly.

6. Optional: To control for the efficiency of G4 formation, it is advised to

separate the unfolded, partly folded and folded G4 structures from each

other. This can be done by using vertical native gels (12% native acrylam-

ide (19,1 acrylamide:bisacrylamide, 1x TBE, 1% APS, 0.1% TEMED).

Gels will be run slowly using 10Vcm�1. After ultraviolet shadowing,

the correct size can be excised from the gel. Gel pieces can be cut into

tiny pieces. Folded G4s are eluted overnight at 4°C in TE (10mM

Tris, 1mM EDTA pH 8.0) buffer. G4s are then ethanol-precipitated,

dried and dissolved in water.

4.1.2 RNA G4 formation
1. Selected RNA G4 motifs were either synthesized or experimentally

produced.

2. Selected RNA G4 oligonucleotides were dissolved at 2μM in 10mM

Tris (pH 7.5) and 100mM KCl (or NaCl/LiCl).

3. Samples will be heat denatured for 10min at 95 °C using a heating block.

4. Following denaturation, slowly cool down the samples to room temper-

ature. We have achieved excellent results by decreasing the temperature

by 2 °C min�1 using either a PCR machine or temperature controlled

incubators (e.g. Eppendorf Thermomixer C).

5. Once the temperature reaches 21 °C, the G4 structures are folded

properly.

Optional: To control for the efficiency of G4 formation, it is advised

to separate unfolded, partly folded and fully folded G4 structures from

each other. This can be done by using vertical native gels. After ultravi-

olet shadowing, the correct size can be excised from the gel. Gel pieces

can be cut into tiny pieces. RNA fragment will be eluted overnight 4 °C
in elution buffer (1mM EDTA, 0.1% SDS and 0.5M ammonium ace-

tate). RNA G4s are then ethanol-precipitated, dried, and dissolved in

water.

4.2 Control G4 structure formation
Different G4 structures conformations described in the literature can form par-

allel, anti-parallel, or as hybrid (Burge et al., 2006; Popenda, Miskiewicz,

Sarzynska, Zok, & Szachniuk, 2020). It is known that protein binding and
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helicase function may differ dependent on the G4 topology. Different

methods have been developed to monitor the formation of G4 structures

in vitro. Among the most commonly used are circular dichroism (CD)

measurements (Del Villar-Guerra, Trent, & Chaires, 2018; Kejnovska,

Renciuk, Palacky, & Vorlickova, 2019; Randazzo, Spada, & da Silva,

2013), N-methylmesoporphyrin (NMM) gels (Smith & Johnson, 2010),

gel mobility changes in native gels (Moon & Jarstfer, 2010; Paeschke

et al., 2013; Sun & Hurley, 2010), NMR (Lin, Dickerhoff, & Yang,

2019; Sket & Plavec, 2010; Webba da Silva, 2007), thermal melting exper-

iments (Gray & Chaires, 2011), FRET (especially single molecule FRET

( Juskowiak & Takenaka, 2006; Luo, Granzhan, Verga, & Mergny, 2021;

Maleki, Budhathoki, Roy, & Balci, 2017)), and TDS spectra (UV basically

(Dao, Haselsberger, Michel-Beyerle, & Phan, 2011; Mergny, Li, Lacroix,

Amrane, & Chaires, 2005)). Here, we will describe CD and NMM gels in

more detail.

4.2.1 CD
1. Either G4 folding buffer or water will be used as the blank in the spec-

tropolarimeter (CD instrument). The spectral input of buffers, salts, and

if required proteins were subtracted by using the software supplied with

the instrument (Spectra Manager II Spectroscopy Software Suite).

2. Folded G4 structures (at least 2μM, see above) will be pipetted into a

1mL quartz cell cuvette with a path length of 1mm.

3. CD spectra are recorded at 20°Cusing a wavelength range of 220–320nm.

4. Scanning speed should be 100nmmin�1 with a 1 s response time, 1nm

data pitch, and 1nm bandwidth.

5. The measurement is repeated at least three times. Data will be presented

as the average of three wavelength scans.

6. To analyze and interpret the data obtained by CD spectral analysis, dis-

tinct and characteristic maxima and minima peaks of G4 structures are

essential. CD spectral features associated with specific G4 topologies,

namely parallel G4 conformation have a distinct positive band at

264nm and a relative shallow negative band at 245nm; antiparallel

G4 structures have a positive band at 295nm and a negative band around

265nm; hybrid G4 structures have two positive bands around 295nm

and 264nm and a negative band around 245nm. See Fig. 1A for an

example of a parallel G4 structure.
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4.2.2 N-mesoporphyrin IX (NMM) native gel electrophoresis
Different chemical probes (G4 ligands) have been generated that bind specif-

ically to G4 structures. These G4 ligands bind and, in most cases, stabilize the

G4 structure. These G4 ligands vary in their specificity toward G4s, and some

exist that are either tagged or are fluorescent (Santos, Salgado, Cabrita, &

Cruz, 2021; Umar, Ji, Chan, & Kwok, 2019). In this gel-based system. We

use the G4-specific ligand NMM (KD �0.1–1μM (Yett, Lin, Beseiso,

Miao, & Yatsunyk, 2019)) to specifically stain parallel G4 structures in native

TBE gels. thioflavin (ThT) also binds specifically to both parallel and antipar-

allel G4s and can be also used in this assay.

1. Prepare a native polyacrylamide TBE gel (1x TBE, 15% PAA (19,1),

1% APS, 0.1% TEMED). 15% is the optimal concentration to separate

10–100 bp.

2. After polymerization (30min), assemble gel and add 1x TBE as running

buffer to the chamber.

3. Wash wells thoroughly with 1x TBE to remove residual acrylamide.

4. Add to folded G4 structures (0.5μg) 1x native loading dye (60mM

KCl, 10mM Tris (pH 7.5), 50% (w/v) glycerol, 0.025% (w/v) xylene

cyanol, 0.025% (w/v) bromophenol blue) and load samples in the wells.

5. Run electrophoresis for 90min at 12Vcm-1.

6. PrepareN-mesoporphyrin IX (NMM) stock solution. 4mgNMMwill

be dissolved in 0.2NHCL. Use dark tubes or wrap with aluminum foil

and store the stock solution in the dark at room temperature.

7. After the electrophoresis is completed, stain the gel with 10μgmL�1

NMM or 0.5μM Thioflavin (ThT) in 1x G4 folding buffer for 15min

under agitation. Because NMM requires KCl, only KCl-containing

staining buffers work for this reaction. If G4 structures are formed using

either NaCl or LiCl, switch to a KCl-containing buffer.We keep the gels

in the dark to avoid losing fluorescent signal.

8. G4 structures can be visualized using a gel-documentation system that

can utilize excitation wavelengths of 399nm (NMM) or 420nm (ThT)

(emission max: 610 and 487nm, respectively). See Fig. 1B, left, for an

example.

9. As a last step, we monitor all nucleic acids by staining with ethidium

bromide. For this, gels will be incubated with 0.5μgmL�1 ethidium

bromide in 1x TBE for 15min at room temperature. During this step

we usually agitate the gels slowly.
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10. Nucleic acids will be detected using a standard gel documentation

system (e.g., BioRad, ChemiDoc) with an UV lamp (254nm). See

Fig. 1B, right, for an example.

4.3 Helicase activity assay
G4 structures can be unfolded by many helicases. Depending on the stability

of the G4 structure and the length and position of an overhang (tail), helicase

processivity differs among different helicase families and family members.

Once the G4 structure is folded and controlled, established helicase assay

for given helicase can be used. Different assays that measure helicase activity

are possible with the generated substrates (e.g., FRET, ATP hydrolysis

analysis, radioactive, and fluorescence gel-based assays). The buffers and

timepoints described here are for Pif1 family members but work well for

other helicases. In our lab, we have very good experience using radioactive

helicase assays that will be analyzed on native gels. This has the advantage

that small amounts of G4 structures and helicases are required for this assay.

1. Folded G4 DNA structures (e.g. telo G4, see Table 1) were 5’ end

labeled with 32P using T4 PNK (NEB) according to the manufactures

protocol.

2. After labeling free nucleotides were separated using a G25 column or

similar to remove unincorporated radionucleotides.

3. Prepare 5x reaction buffer (100mM Tris (pH 7.5), 200mM NaCl,

500μgmL�1 BSA, 10mM DTT).

4. Prepare helicase STOP buffer (17% Ficoll, 50mM EDTA, 1μM
unlabeled single stranded DNA oligonucleotide (see Table 1 for example

sequence matching telo G4) that is reverse complement to the G4 motif,

0.05% bromophenol blue and 0.05% xylene cyanol).

5. Prepare a 12% native polyacrylamide (19:1, 1x TBE, 1% APS, 0.1%

TEMED) vertical gel.

6. To characterize the processivity of a given helicase on a G4 substrate the

parameters in the helicase reaction can be altered. First, the concentra-

tion of the helicase and second the length/timing of the reaction. We

will first (a) describe the reaction with altered helicase concentrations

and second (b) the reaction with different incubation times of the

helicases unwinding reaction.

7. Prepare seven tubes that contain: 1x reaction buffer, labeled DNA sub-

strate (10nM), 5mM magnesium ions. The final reaction volume (after

starting the reaction with ATP (see step 9) is 5μL.
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4.3.1 Effect of helicase concentration on G4 unwinding
1. Add to these seven tubes different concentrations of purified helicase. If

you do not know how processive your helicase is, it is advised to choose a

wide concentration range in the first experiments (e.g. 1nM–100mM)

and narrow down the concentration in subsequent experiments to

calculate unwinding parameters.

2. 1 out of these 7 samples will be collected without ATP as a reference to

control for no helicase activity. Add 5μL of STOP buffer and samples

will be placed at 4 °C.
3. A second tube will be set to the site that will be used as a reference for full

unwinding. This tube will be incubated for 10min at 95 °C. The boiling
step will linearize the G4. After boiling, 5μL of STOP buffer must

be added to prevent re-formation of the G4. Sample will be placed

at 4 °C.
4. After setting the control samples, the reaction can be started using 4mM

ATP. Helicase unwinding will be performed at 30°C in a thermal block

or water bath

a. Note, 30 °C is optimal for yeast Pif1. Other helicases from other

organisms will perform better at higher temperatures, or, if unstable,

need to be incubated at 4 °C for longer.

5. After 10min (for less processive helicases this time can be extended to

30min), the reaction will be stopped using 5μL of STOP buffer.

6. Pre-run for 10min a native gel (10Vcm�1) and wash wells after this

thoroughly to remove soluble acrylamide and debits from wells.

7. Load total helicase reactions and run the gel for 30min at 10Vcm�1 in

1x TBE buffer.

8. Dry the gels using a vacuum gel drier and expose the dried gel to a phos-

phoimager plate for up to 24h. Scan the phosphoimager screen using a

phosphoimager. The gels can also be frozen at �20 °C for phospho-

imager or film exposure. Note: to prevent gel cracking during drying

or freezing, minimal amounts of TEMED (1%) should be used. Also,

degassing of TBE is advised, as we observe better results.

9. Quantify helicase activity bymeasuring the densitometry for bands of the

folded G4 and unfolded/linear substrate using ImageQuant, ImageJ, or

similar software. Subtract the background from both bands. The con-

trols, without ATP and the boiled sample, are set to 100% folded or

unfolded, respectively, and the percentage of unwinding will be calcu-

lated based on these parameters (equation: (unwinding-background)/

(control-background) * 100)
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4.3.2 Time course for G4 unwinding
1. Add to all seven tubes 10nM purified helicase.

2. As a 100% G4 folding control, take time-point 0. Here all oligos are

100% folded into a G4. The second control is the 100% unfolding con-

trol, which is prepared by boiling the tube for 10min at 95 °C. STOP

buffer will be added (5μL) to these controls and kept at 4°C.
3. After setting the control samples, the reaction can be started using 4mM

ATP. Helicase unwinding will be performed using a thermal block or

water bath. Unwinding activity will be monitored over time.

4. If the processivity of your helicase on G4s is unknown, first monitor G4

unfolding over a longer range over time. We usually start with time

points: 0 (not ATP),1, 2, 5, 10, 15, 30, and 60min. Once the time frame

of G4 unwinding is narrowed down, shorter and more detailed time slots

can be selected (see Fig. 2A). All reaction will be stopped immediately

using 5μL of STOP buffer.

5. Pre-run for 10min a native gel (10Vcm�1) and afterwards wash wells

thoroughly to remove soluble acrylamide and debits.

6. Load total helicase reaction and run reaction for 30min at 10Vcm�1 in

1x TBE buffer.

7. Dry the gels using a vacuum gel drier and expose the dried gel to a phos-

phoimager plate as described in 3.1.1. (see Fig. 2A for an example).

8. Quantify helicase activity by measuring the densitometry for bands as

described in 3.1.1. (see Fig. 2B for an example of the quantification of

Fig. 2A).

Here, we describe a standard helicase assay for G4 DNA, but similar proto-

cols work for G4 RNA. Since G4 can also form at the RNA level, it is noted
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Fig. 2 G4 unwinding by Pif1 helicase (A), G4 unwinding over timewasmonitored by gel.
Pif1 helicase action was monitored on Telo G4. (B) Quantification of unwinding reaction.
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that to study G4 RNA unwinding by helicases, similar gel-based helicase

unwinding protocols can be used. However, the amount and type of salt

should be taken into consideration. Also, general good working practice

for handling RNA should be observed, including using RNase-free reagents

and plastic ware, reducing the heating times, and avoiding divalent cations.
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