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IV Abstract 

Big data is increasingly being generated across all sectors of medicine and high-dimensional 

omics data have been shown to be a powerful data space for AI applications that can assist in 

primary and differential diagnostics, therapeutic decision making, disease outcome prediction 

and clinical planning, as well as for an improved understanding of disease pathophysiology. 

Particularly blood transcriptomics was shown to be informative for a variety of machine 

learning tasks while at the same time being a technology that is clinically feasible.  

This thesis first exemplifies the enormous potential of leveraging AI for medical diagnosis by 

demonstrating that accurate prediction of Acute Myeloid Leukemia is possible on a large 

reference dataset across more than 120 independent studies covering two microarray platforms 

as well as bulk RNA-sequencing data. A large range of clinically relevant scenarios are 

evaluated, addressing several bottlenecks on the path towards clinical deployment of this 

technology. I provide evidence that accurate prediction of AML by near-automated machine 

learning algorithms based on high-dimensional omics data is possible. At the same time, 

translation of these possibilities into clinical practice is not happening yet due to limitations 

which are inherent to the health care sector. Mainly, aggregation of datasets which are 

sufficiently large to train robust classifiers that are generalizable across sites is not feasible due 

to strict regulations on data privacy. To overcome this obstacle, I introduce Swarm Learning 

in my thesis as a new framework for collaborative and decentral machine learning based on 

blockchain technology. I am showing that SL enables training of accurate classification 

algorithms which outperform local models across a wide range of scenarios predicting AML, 

tuberculosis, COVID-19 and lung diseases utilizing even different medical data spaces, while 

at the same time preserving data privacy.  

Consequently, I propose a new approach to be included into the development of routine 

diagnostics in the health care sector, which utilizes the power of machine learning for 

physicians to extract information from high-dimensional molecular data for data-driven 

prediction of disease or therapy outcome, thereby augmenting clinical decision making and 

ultimately leading to a more precise approach to medicine, while at the same time 

acknowledging data privacy and the need for democratic structures in collaborative machine 

learning across the health care sector.  
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1. Introduction & Background 

The capabilities of artificial intelligence (AI) to accurately detect patterns in almost any type 

of medical data ranging from image data to electronics health records (EHR), pulmonary 

function tests, data from ECG records or high-dimensional data as produced by genome and  

transcriptome technologies are immense (Rajkomar et al. 2018; Topalovic et al. 2019; Attia et 

al. 2019; Libbrecht and Noble 2015; Eraslan et al. 2019). While the possibilities of AI to 

potentially support various aspects of primary and differential diagnostics, patient morbidity or 

mortality risk prediction, prognosis, formulation of treatment recommendations and clinical 

decision making are widely appreciated (Rajpurkar et al. 2022; Acosta et al. 2022; Obermeyer 

and Emanuel 2016), the utilization of AI systems for clinical routine diagnostic methodologies 

is still in its infancy and the long list of publications on the subject in form of academic articles, 

health policy reports, statements from professional societies, and popular media coverage 

stands in stark contrast to the low number of applications that are already used in routine 

medical care (Meskó and Görög 2020; Benjamens, Dhunnoo, and Meskó 2020). At the same 

time however, high-dimensional omics technologies have been established and have shown to 

be very informative in human health and disease conditions (Rood et al. 2022) and particularly 

blood transcriptomics is known to provide a powerful data space to characterize a multitude of 

conditions (Zak et al. 2016; Altman et al. 2021; Ulas et al. 2020). The aim of this thesis is (1) 

to provide evidence on whether transcriptome datasets can be utilized for ML-based diagnostic 

purposes and (2) to propose a new concept of collaborative machine learning in combination 

with high-dimensional medical data that could make it possible to utilize the power of AI in 

medicine in a powerful, effective, and clinically feasible way.  

In this introduction, I put the topics of my theses into a broader perspective about how 

algorithm-based applications shape medicine in general and medical diagnostics in particular. 

Furthermore, the role of omics technologies, particularly blood transcriptomics, in future 

precision medicine approaches is highlighted (1.1). Next, the molecular and technical basis of 

transcriptomic technologies are briefly described (1.2). Third, developments and basic 

terminology of artificial intelligence and machine learning are introduced with emphasis on 

algorithms that are suitable for the transcriptomic data space (1.3). Lastly, medical data 

characteristics such as decentralized structures and strict privacy regulations are described, 

which need to be considered in any AI framework suitable for medical use cases, and the 

respective terminology is clarified (1.4).  

https://sciwheel.com/work/citation?ids=12342782,13647086,2170742&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5261294,7137366,7277238,307082,6781329&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=9741214,9656814&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5261294,7137366,7277238,307082,6781329&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=14056475&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12342782,13647086,2170742&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1406454,14307192,9239350&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0


Introduction & Background 

2 
 

1.1. The route towards artificial intelligence in medical diagnostics 
 

Artificial intelligence (AI)-guided technology is fundamentally shaping modern society in 

many regards and is supporting critical data interpretation and decision-making processes in 

politics, research, media and economics. Consequently, this general shift towards computer-

aided data interpretation is also altering biomedical research and healthcare in an 

unprecedented fashion and AI-based applications have the potential to influence every area and 

aspect of medicine from clinical routines to laboratory diagnostics. The route towards AI-

guided medicine is considered to be the “most significant transformation for healthcare in 

generations'' (E. J. Topol 2022) and roles and functions of clinical staff are expected to 

fundamentally change in all professions (E. Topol 2019).  

This implies that biomedical research as well as applied medicine are becoming increasingly 

data-intensive and technology-driven. Large volumes of biomedical data are produced at high 

speed of access and analysis, with substantial data heterogeneity across producing sites and 

data types (Price and Cohen 2019). At the same time, the whole field is exploring the 

armamentarium of computer science, mathematics, and computational modeling to turn this 

wealth of data into knowledge and utilize it for medical applications. Consequently, statistics 

and machine learning have become essential tools to find descriptive patterns and to utilize 

such data to answer biomedical questions. Examples of applications include the usage of 

machine learning tools to identify previously unknown subtypes of diseases in genomic, 

transcriptomic and epigenomic data (Dai et al. 2022; Nakauma‑González et al. 2022; Cancer 

Genome Atlas Research Network 2015), to identify new therapeutic targets in proteome data 

(Piazza et al. 2020) or to link biochemical pathways to a disease in a multi-omics setting (Frost 

and Amos 2018).  

1.1.1. AI for primary diagnostics  

This work focuses on the usage of AI for diagnostic purposes and various predictive algorithms 

have been proposed to potentially assist practitioners in clinical decision making (Rajpurkar et 

al. 2022). There are, however, different diagnostic requirements depending on the concrete 

medical sector that need to be considered. In the context of primary diagnostics at the general 

practitioner (GP), disease prevalence is usually rather low compared to the situation at medical 

specialists. Patients at the GP often present with milder forms of disease and rather nonspecific 

symptoms, which leads to a diagnostic uncertainty that is considered inherent to general 

medical practice (Wübken, Oswald, and Schneider 2013). At the same time, early diagnosis 

https://sciwheel.com/work/citation?ids=12984159,13011215,966623&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=9512546&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12984159,13011215,966623&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
https://sciwheel.com/work/citation?ids=12342782&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6221564&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12342782&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6221564&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14160498&pre=&suf=&sa=0
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and referral of the patient to a specialized clinician are crucial for a better prognosis and lower 

mortality in severe diseases, as it could be modeled by the consequences of systemic delay in 

cancer diagnostics during the COVID-19 pandemic (Sud et al. 2020; Maringe et al. 2020). 

Therefore, GPs are expected to identify individuals with severe diseases early on while they 

also need to avoid excessive testing or inappropriate onward referrals (Summerton and 

Cansdale 2019). 

Consequently, standard diagnostic tests that are performed at the GP are rather broad and 

include tests to evaluate the overall health of patients and to check for a variety of conditions, 

such as anemia, infection, and inflammation. One common test is the complete blood count 

(CBC) (George‑Gay and Parker 2003), which measures the levels of red blood cells, white 

blood cells and platelets in the blood, as well as hemoglobin and hematocrit levels. Another 

example is the basic metabolic panel (BMP) (Kildow et al. 2018), which measures several 

substances in the blood, such as sodium, potassium, and calcium, as well as glucose and kidney 

function markers like creatinine and blood urea nitrogen, which are generally considered 

parameters for body function and provide a broad and unspecific picture of a patient’s overall 

health condition. These standard blood tests are very easy-to-use, quick and inexpensive and 

pose relatively little risk of harm to the patient. However, despite their usability for the large 

“problem space” that general practitioners face (Knottnerus 1991), the efficacy of such non-

specific markers for early detection of severe diseases could not be demonstrated (Boland, 

Wollan, and Silverstein 1996; S Rüttimann and Clémençon 1994; Sigmund Rüttimann 1992; 

Alpert, Greiner, and Hall 2004). Even when all tested values turn out to be in the normal range, 

none of these tests should generally be used as a “rule out” test for malignant diseases (J. 

Watson et al. 2019). Furthermore, individual blood tests that test for single disease-specific 

biomarkers only have a low positive predictive value (PPV) and high false-positive rates in 

low-risk populations such as those seen by GPs (J. Watson et al. 2019).  

Interestingly, with the advent of machine learning technologies, it became apparent that routine 

blood test results contain much more information than commonly recognized in primary care. 

In contrast to human evaluation of those tests, where physicians tend to pay particular attention 

mostly to values outside of a particular reference range (Luo et al. 2016), machine learning 

algorithms are able to detect non-obvious and latent relationships in the data and subtle 

correlated deviations in measured parameters. It has been shown that parameters collected from 

standard blood tests can be used to detect e.g. hematologic diseases (Gunčar et al. 2018) and 

liver fibrosis (Blanes‑Vidal et al. 2022), but also infectious diseases like COVID-19 (Kukar et 

https://sciwheel.com/work/citation?ids=7663724&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14160510&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1727417&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9086029&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7663724&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12980628&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5948835,14161049,5949163,14161052&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=7397276&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14536456&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5948835,14161049,5949163,14161052&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=7663724&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10107489,9357356&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=13460416&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=5948835,14161049,5949163,14161052&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0
https://sciwheel.com/work/citation?ids=13343649&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14536456&pre=&suf=&sa=0


Introduction & Background 

4 
 

al. 2021) as well as brain tumors with a reported diagnostic accuracy that is comparable to that 

of neuroimaging studies (Podnar et al. 2019). First products are on the market that make use of 

this, e.g., the SABS software, a clinical decision support system that interprets blood test results 

and expands differential diagnostics (Smart Blood Analytics 2023b) and mobile applications 

such as mySmartBlood (Smart Blood Analytics 2023a), which makes it possible for laypersons 

to enter their blood test results and with that determine their most likely groups of diseases.  

Similarly, other directions have been proposed on how AI can enhance primary care decision 

making and to develop screening tests. For example, risk prediction by modeling on Electronic 

Health Record (EHR) data has been shown to be helpful for scheduling primary care 

interventions in the ambulatory setting (Lin, Mahoney, and Sinsky 2019). Also, several ideas 

are being proposed on how for instance smartphone technology can help to make health metrics 

accessible outside of specialized settings, like recording and translating heart sounds with 

smartphones (Bae et al. 2022) or using a smartphone camera to detect eye diseases (Babenko 

et al. 2022). This is particularly relevant for developing nations and remote areas, where AI-

driven health interventions outside of specialized settings might accelerate the achievement of 

health-related sustainable development goals (Schwalbe and Wahl 2020). Taken together, the 

use of AI to support primary care is seen to have great potential in improving diagnostic 

accuracy and efficiency, to reduce risks to patients safety associated with human frailties such 

as cognitive bias in primary diagnostics (Summerton and Cansdale 2019) and to ultimately 

lead to a more precise treatment (E. Topol 2019), which takes into account a much more 

holistic space of disease parameters than current approaches. However, besides first landmark 

demonstrations, the translation of such data-driven concepts to routine primary care is still 

challenging and considered a largely unfulfilled opportunity today (Rajpurkar et al. 2022).  

1.1.2 AI in medical specialties  

In contrast to the demand for accurate screening tests suitable for primary health care described 

above, medical specialists usually require differential diagnostics. Patients have been referred 

to medical specialists by general practitioners and usually show more severe and specific 

symptoms. Consequently, diagnostics performed at medical specialists are usually aimed at 

clearly defined hypotheses about the type of disease and the predictive value of diagnostics 

tests is generally higher in such a specialized setting due to the higher prevalence (Knottnerus 

1991). Additionally, specific companion diagnostics may be performed that aim to identify 

patients who are most likely to benefit from a particular therapeutic intervention.   

https://sciwheel.com/work/citation?ids=11187568&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14161178&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=14547948&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=12342782&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14160510&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14536456&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10504292&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=9241530&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13460416&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13353296&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14161168&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13353296&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14160510&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14536579&pre=&suf=&sa=0
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Medical disciplines that heavily rely on image interpretation have particularly profited from 

AI-based applications already with most FDA approved technologies having been developed 

for Radiology, Cardiology and Internal Medicine (Benjamens, Dhunnoo, and Meskó 2020). 

Data spaces which have been studied extensively to be used for AI-guided diagnosis in 

specialized medical settings are for example computed tomography (CT) images (P. Huang et 

al. 2019), optical coherence tomography (OCT) images (Kermany et al. 2018), X-ray images 

(X. Wang et al. 2017), and images of histopathological slides (Echle et al. 2021), which have 

also been proposed to be used for companion diagnostics in prostate cancer (Leo et al. 2021). 

Neural networks have been shown to perform equally well or better than oncologists in the 

detection of skin cancer (Esteva et al. 2017), breast cancer (McKinney et al. 2020; Wu et al. 

2020) or lung cancer (Ardila et al. 2019) on such images and they can furthermore be used for 

risk prediction (P. Huang et al. 2019; Elshafeey et al. 2019), assisting in treatment decisions 

(G. Kaissis et al. 2019) and for assessing tumor composition and prognosis (Fu et al. 2020) and 

it’s genomic characterization (Lu et al. 2019). Also for gastroenterology, it has been 

demonstrated how AI-guided systems can assist in detection of adenoma (Schauer et al. 2022) 

and randomized controlled studies have been performed (Gong et al. 2020; P. Wang et al. 

2020), which show how these technologies can have a quantifiable effect in real-world settings. 

Additionally, advances have been made in the field of ophthalmology, where retinal fungus 

imaging can be used to detect diabetic retinopathy (Abràmoff et al. 2013), which was further 

demonstrated in a pivotal trial (Abràmoff et al. 2018). In fact, a diabetic retinopathy diagnostic 

system became the first fully autonomous AI-based system approved for marketing in the USA 

(Keane and Topol 2018; FDA 2018).  

Besides image interpretation, there are many different types of health data and corresponding 

technological platforms which were shown to be usable in AI-based applications with the goal 

to improve and accelerate medical diagnostics. Medical texts can be screened by natural 

language processing (J. Lee et al. 2020), and medical signal data such as 

electroencephalograms (EEG) (Claassen et al. 2019) or electrocardiograms (ECG) (Porumb et 

al. 2020; Attia et al. 2019) can be used to predict medical outcomes (Rajpurkar et al. 2022). 

Furthermore, wearables can be used to record medical health data and predict disease (Sabry 

et al. 2022) and microphone and speakers of smartphones can be used e.g. to detect the 

presence of middle ear fluid, a key diagnostic marker for common pediatric ear diseases (Chan 

et al. 2019).  

https://sciwheel.com/work/citation?ids=8091868,7277238&pre=&pre=&suf=&suf=&sa=0,0
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https://sciwheel.com/work/citation?ids=5689688&pre=&suf=&sa=0
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1.1.3. The role of omics technologies and systems medicine 

Many of the above-mentioned applications have the great benefit that they mostly rely on 

technologies which are already being present at clinical sites, like e.g. CT imaging, which 

makes an add-on application of trained AI models for evaluation of this data relatively easy to 

implement, provided that the metadata for these data is available in machine-readable formats 

according to international standards such as the Observational Medical Outcomes Partnership 

(OMOP) Common Data Model (CDM) by the Observational Health Data Sciences and 

Informatics (ODHSI) program (Sivesind et al. 2022) or the Fast Healthcare Interoperability 

Resource (FHIR) (Ayaz et al. 2021). However, given the huge technological advances that 

have been made in molecular biomedicine (Rajewsky et al. 2020; Rood et al. 2022) and the 

potential of utilizing such big data to transform clinical medicine (Shilo, Rossman, and Segal 

2020), current applications of AI in diagnostics particularly based on omics data are still in 

their infancy. While present diagnostic practice usually relies on single or few markers in 

diagnostic tests which are evaluated manually, high-throughput technologies for DNA- and 

RNA-profiling, epigenomics, metabolomics and proteomics have been introduced which make 

it possible to access almost all biological layers of a biological sample with high resolution. 

Most importantly, these data have been shown to be highly informative for a multitude of 

disease conditions (Apweiler et al. 2018; Aronson and Rehm 2015; Davis, Tato, and Furman 

2017; Rajewsky et al. 2020). Systems Medicine approaches combine these technological 

advances with expertise from biology, biostatistics, informatics, mathematics, and 

computational modeling to extract previously inaccessible knowledge from high-dimensional 

omics data in order to enhance clinical decision making (Apweiler et al. 2018). Such 

approaches do not only have the potential to improve diagnostic sensitivity, but could also 

enable a more holistic understanding of disease cause, precise therapeutic targeting and 

outcome risk prediction (Rood et al. 2022), which goes beyond “simple” screenings for 

individual diseases by taking into account a multitude of parameters (Ashley 2016).  

Particularly whole blood as well as peripheral blood mononuclear cells (PBMC) have been 

shown to be especially well-suited for data-driven assessments of molecular phenotypes in 

human health and disease (Chaussabel 2015) and compared to other sources of biological 

material that can be used for system medicine approaches, blood comes with several 

advantages. First, blood is easily accessible and taking blood is considered a procedure that 

poses relatively little risk of harm to patients (Wisser et al. 2003), which enables longitudinal 

sampling before, during and after any medical intervention (Brodin, Duffy, and 
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Quintana‑Murci 2019). Second, robust sampling protocols are in place for molecular profiling 

of blood, which can be implemented on a large scale both within and outside of clinical settings 

(Mahajan et al. 2016; Speake et al. 2017), Third, the blood circulatory system connects every 

organ and every tissue throughout the body and thus signals of health and disease are 

transferred via the blood and can often be measured directly, such as cell-free DNA (cfDNA), 

which is known to be present in raised concentrations in patients with cancer, but also other 

conditions (Wan et al. 2017) as well as direct detection of pathogens in infectious diseases by 

DNA or RNA sequencing (Ko et al. 2019; Miller et al. 2013). Finally, blood captures dynamic 

systemic immunological responses in patients (Chaussabel, Pascual, and Banchereau 2010). In 

other words, not only can infectious diseases be identified by targeting the infectious agents, 

but also the biological processes underpinning infection and host response can be monitored 

using molecular profiles of the blood. This provides possibilities for more precise treatment 

decisions as well as outcome prediction and disease subtyping in a wide range of disease 

conditions and a large body of literature has been published on blood transcriptome profiling 

in health and disease. Examples include studies on viral (Ulas et al. 2020; Hou et al. 2014), 

bacterial and fungal infections (Mahajan et al. 2016; Piasecka et al. 2018) and transcriptomic 

profiling of various non-infectious conditions such as autoimmune diseases (Acquaviva et al. 

2020) or cancer (Dumeaux et al. 2015; Nichita et al. 2014). The information content of the 

blood compartment in respect to biological heterogeneity can also be dissected in higher 

granularity by single-cell RNA sequencing in health and disease, and large studies have been 

performed on infections (Oelen et al. 2022; Schulte‑Schrepping et al. 2020a) and chronic 

inflammatory and autoimmune diseases (Perez et al. 2022) for example.   

This vision of a blood-based molecular diagnosis can be formulated as to have a future 

“Complete Blood Count 2.0”, meaning an omics-based test which would measure many more 

parameters than in current approaches and by that providing a high-resolution portrait of the 

molecular profiles of nucleated blood cells (Rood et al. 2022). Results of such a test could then 

be compared against known blood profiles of known diseases and conditions and would 

provide a comprehensive view of the status of the immune network (Bonaguro, 

Schulte‑Schrepping, Ulas, et al. 2022). Such a concept would potentially be applicable to all 

mentioned diagnostic tasks, such as screening tests in primary care (Montgomery, Bernstein, 

and Wheeler 2022), as well as disease subtyping (Chen et al. 2020) and companion diagnostics 

(Mellors et al. 2020) and therapy response prediction (Sammut et al. 2022) in specialized 

hospital settings.  
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1.2 Biological and technological background of omics technologies 

1.2.1 Molecular biomedicine: From DNA-sequencing to systems biology  

As introduced above, high-throughput omics technologies such as whole genome DNA- and 

RNA-profiling are integral part of any systems-level approach to medicine. While there is no 

binding definition of “omics” technologies, the word affix goes back to the Latin word 

“omnis”, everything. Accordingly, all of these technologies aim to expand the number of 

measured parameters from single genes, proteins or metabolites, to the entirety of all genes, 

proteins or metabolites in a given sample (Vogeser and Bendt 2023).  

To put this into context, modern molecular biomedicine had its foundation in the middle of the 

last century (Schrödinger 1944) and starting from the discovery of the double-helical structure 

of DNA (J. D. Watson and Crick 1953), major technological milestones were achieved in the 

following decades, which were prerequisite for today’s standard high-throughput technologies, 

such as the development of a technique to systematically determine a sequence of DNA 

(Sanger, Nicklen, and Coulson 1977) and the invention of PCR (Mullis et al. 1986). Following 

that, the Human Genome Project was initiated and the first draft of the human genome was 

published in 2001 (International Human Genome Sequencing Consortium et al. 2001), a 

landmark achievement which can be seen as a starting point for any further “omics” 

technologies. Since then, DNA sequencing has become one of the most influential technologies 

in biomedical research and large studies on population genetics have been conducted with the 

aim to improve our understanding of health and disease by investigating the combined effects 

of genetic and environmental influences (Allen et al. 2014; All of Us Research Program 

Investigators et al. 2019). However, most diseases that manifest in clinical phenotypes are not 

attributable to single genetic variants alone, and relationships between genetic variations and 

phenotypic traits, large genetic association studies (GWAS) are conducted to identify 

susceptibility loci for different diseases (Severe Covid‑19 GWAS Group et al. 2020). 

However, this is often not straightforward and association signals tend to be spread across most 

of the genome, which include many genes without an obvious connection to disease (Boyle, 

Li, and Pritchard 2017). In contrast to Mendelian or monogenic diseases which are mostly 

caused by changes in protein-coding regions, complex diseases are often associated with non-

coding variants that affect gene regulation (Y. I. Li et al. 2016). For example, variants that are 

causally linked to autoimmune diseases mostly map to immune enhancers (Farh et al. 2015), 

which are important regulatory elements for gene expression. Furthermore, common single-

nucleotide polymorphisms (SNPs) with small effect sizes account for genetic variance in many 
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traits (Boyle, Li, and Pritchard 2017; H. Shi, Kichaev, and Pasaniuc 2016) and a large meta-

analysis on height has shown that over 12,000 independent SNPs are significantly associated 

with that trait, which accounts for almost all of the SNP-based heredity (Yengo et al. 2022). 

This implies that, to understand how phenotypic alterations in health and disease can be 

causally linked to biological mechanisms, it is important to consider not only genomic 

alterations, but also which genomic information is actively transcribed into RNA and finally 

translated to protein, which is in the end serving a biological function and constitutes a 

particular phenotype. This process of gene expression cannot be attributed to genetic 

information alone, it is rather the “interpretation” of genomic information by the cell, which is 

highly context-dependent and involves heavy regulation at all levels from RNA transcription 

to RNA-splicing, translation of mRNA to protein and finally post-translational modifications 

of proteins (Figure 1). 

 

 

Figure 1: Schematic representation of gene expression from DNA to mRNA to protein. The upper part 

shows the general structure of the DNA of a protein-coding gene, including its 5’ and 3’ regulatory 

elements, transcription start and stop sites as well as exons and introns. Nucleotides of the open reading 

frame are transcribed to pre-mRNA, which is further processed to mRNA. mRNA is exported to the 

cytosol, where it is either translated to protein or subjected to decay mechanisms. Gene expression is 

regulated at transcription from DNA to mRNA, at post-transcriptional and at post-translational level. 

Figure adapted from (Halbeisen et al. 2008).  
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One particularly informative snapshot of this complex process is the transcriptome, which 

describes the complete set of ribonucleic acid (RNA) molecules that are present at a given time 

within an organism, tissue, or a single cell (Zhong Wang, Gerstein, and Snyder 2009). In 

contrast to the genome, which is incredibly stable over replications, the transcriptome changes 

dynamically in response to various factors like environmental influences, developmental 

stages, or disease conditions (Magnuson, Bedi, and Ljungman 2016). RNA types present in the 

cell are protein-coding messenger RNA (mRNA) and non-coding RNAs, which participate in 

transcription, RNA processing (e.g., small nuclear RNAs) and translation (e.g., ribosomal 

RNAs, transfer RNAs, microRNAs) as well as other RNAs that are involved in other processes 

and whose functions are less well characterized or unknown (Cooper, Wan, and Dreyfuss 

2009).  

Especially mRNA molecules are of great interest since they are transient intermediary 

molecules in the process of translating genetic information to biological function: Protein 

coding genes are first transcribed into pre-mRNA, which is then spliced to remove introns, 

resulting in mature mRNA, which will finally be translated into protein products (Figure 1). 

The information which mRNA molecules are present in a biological sample can therefore be 

seen as a direct surrogate of active gene expression. Depending on the transcriptome 

technology and data processing method being used, mRNA quantification can even be 

performed on splice variant level (Zhong Wang, Gerstein, and Snyder 2009). In addition, long 

non-coding RNAs (lncRNA) have been studied with increased interest in the last years and are 

known to be crucial for gene regulation. They affect gene expression in different biological and 

pathophysiological contexts, for example by modulation of chromatin function or by altering 

the stability and translation of cytoplasmic mRNA (Statello et al. 2021). Capturing the full set 

of coding and non-coding RNA molecules in a biological sample can therefore serve as a 

snapshot of the cell’s biological state, be it in steady state or in response to environmental or 

pathophysiological conditions, which can also be used for diagnostic purposes. Particularly 

circulating micro RNAs (miRNAs), a group of lncRNAs that suppress gene expression both 

by inhibiting protein translation and promoting mRNA cleavage, have been indicated to be 

attractive biomarkers for disease diagnosis and prognosis in cancer and parkinsons disease, for 

example (Ravanidis et al. 2020; Asakura et al. 2020; Sharifi, Talkhabi, and Taleahmad 2022). 

Different technologies exist that can measure gene expression levels in a given sample. One 

fundamental difference between technologies is whether these approaches target a predefined 

set of RNA molecules, such as in DNA microarrays, or whether in principle all RNA molecules 
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can be detected and therefore also unknown RNA molecules can be found, such as in next 

generation RNA sequencing. Today, most transcriptome data is generated using RNA 

sequencing. However much of the data that has been generated during the last decades is based 

on DNA microarray technology, which can be repurposed and re-analyzed also for the 

applications discussed in this work. Therefore, DNA microarrays are shortly introduced here.  

1.2.2 DNA Microarrays for targeted detection of mRNA 

DNA microarrays are a group of technologies that assess gene expression levels by measuring 

the amount of fluorescently labeled target nucleotides which hybridize to a set of DNA-probes 

on a surface. To measure a sample with a DNA microarray, the RNA has to be isolated and to 

be enriched for mRNA. This mRNA is either labeled directly or converted to cDNA and then 

labeled (Bumgarner 2013). Different methods exist for labeling cDNA (Richter et al. 2002), 

but usually fluorochrome dyes are used. The labeled cDNA is then hybridized to the probes on 

the microarray. These are short DNA sequences usually between 25 and 60 bps and each probe 

targets a short region of a specific transcript (“Microarray Probe Mapping” 2023). Molecules 

that successfully bind to the plate emit light, which can be measured. Since the location of each 

probe on the chip is known, the fluorescence intensity can be used as a surrogate for the 

transcript abundance of the target transcript. This can be done for an arbitrary number of 

probes. For example, the Affymetrix U133 2.0 chip consists of 604,258 probes covering 17,271 

gene symbols (Robinson and Speed 2007). To analyze microarray data, the scanned microarray 

image needs to be converted into quantifiable values, which can be used for downstream 

computing. These are usually stored in a binary format (e.g. a CEL file) or as a text file. After 

a quality control and a correction for background fluorescence, the data is normalized to control 

for technical variation between arrays, e.g. by Robust Multichip Average (RMA) (Irizarry et 

al. 2003). The resulting data is usually a table with genes in rows and samples in columns, and 

each value represents an intensity value. 

After the technology was introduced in the 1990s (Lockhart et al. 1996), DNA microarrays 

have been important to generate first transcriptomic datasets on a larger scale (Su et al. 2002, 

2004). However, reliability and consistency issues were raised regarding microarray data and 

their potential application in clinical and regulatory settings (Marshall 2004; Miklos and 

Maleszka 2004). This led to the creation of microarray standards, quality measures (MAQC 

Consortium et al. 2006) and a consensus on data analysis for the development and validation 

of predictive models (L. Shi et al. 2010). Accordingly, a large body of clinical research has 
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been proposed using transcriptome data generated by microarrays, including prediction of 

diseases such as multiple myeloma (Kuiper et al. 2012; Zhan et al. 2007) or breast cancer (van 

’t Veer et al. 2002; Zemmour et al. 2015) and the discovery (Bullinger et al. 2004; Alizadeh et 

al. 2000) and prediction (Andersson et al. 2007) of disease subtypes.  

1.2.3 RNA sequencing  

Today, the use of microarray-based transcriptome technologies has largely been replaced by 

next-generation RNA sequencing (RNA-seq). This method not only quantifies known 

transcripts but also identifies alternatively spliced genes, detects allele-specific expression and 

unannotated transcripts (Zhong Wang, Gerstein, and Snyder 2009). Compared to microarrays, 

RNA-seq also has a wider dynamic range of detecting transcripts, which makes it the method 

of choice for recent clinical transcriptomic studies (Van den Berge et al. 2019). In addition, 

single-cell sequencing techniques (Potter 2018) have made it possible to study the gene 

expression of individual cells, which is of great advantage when studying disease biology at 

the cellular level (Schulte‑Schrepping et al. 2020b; Rood et al. 2022; Oelen et al. 2022) and 

developing disease- and cell type-specific predictive signatures (Bernardes et al. 2020). 

Furthermore, it is possible to couple RNA-seq with methods to measure genomic, epigenomic 

and proteomic profiles thereby generating multi-omics data, also at single-cell resolution 

(Vandereyken et al. 2023).  

RNA-seq protocols are manifold and can differ in the RNA species they detect. While most 

protocols aim at detecting polyadenylated mRNA (Van den Berge et al. 2019), it is also 

possible to investigate non-polyadenylated RNA species, such as certain lncRNAs (Kukurba 

and Montgomery 2015), which are known to be important regulatory elements in a variety of 

diseases (DiStefano 2018). During the procedure, RNA is extracted and specific RNA species 

are selected either by enriching polyA-containing transcripts or by depleting highly abundant 

ribosomal RNA (Zhao et al. 2018). Then, the selected RNA is fragmented, converted into 

cDNA, sequencing adapters are added and the cDNA is amplified to construct a library for 

sequencing. For Illumina sequencing, libraries are loaded onto a flow cell, where 

complementary oligonucleotides bind to cDNA molecules. Then, sequencing by synthesis (Ju 

et al. 2006) is performed with the primary sequencing output being binary per-cycle BCL 

basecall files which store base calls and quality for each sequencing cycle. These files are then 

translated into FASTQ files containing the base sequences of the library fragments, which 

correspond to the transcribed RNA molecules of the original specimen, along with 
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corresponding quality scores. In order to retain gene expression information from those 

fragments of sequences, they need to be mapped to a reference genome or transcriptome, 

depending on the application (Van den Berge et al. 2019). Following this, the relative 

expression levels of each feature (transcript or gene) are quantified, which results in a count 

matrix that summarizes expression values per sample.  

The major focus of this work is the usage of transcriptomic data for disease prediction in a 

clinical setting, which could eventually become routine diagnostics pipelines for infective as 

well as non-transmittable diseases. A large body of work has been using transcriptomic 

profiling to develop RNA-based diagnostic and prognostic biomarker panels, for infectious (de 

Araujo et al. 2016; Hou et al. 2014; Thompson et al. 2017) and non-infectious diseases like 

cancer (Bhalla et al. 2017; Sanchez and Mackenzie 2020; Biswas et al. 2019; Abdul Aziz et 

al. 2016) or diabetes (Y. Wang, Wang, and Zhang 2018). Transcriptomic data was shown to be 

applicable for predictions of disease outcome (Xuan Liu et al. 2017; Abdul Aziz et al. 2016), 

for detection and characterization of disease subtypes based on molecular features (Figgett et 

al. 2019; Ulas et al. 2020; Ben Azzouz et al. 2021; Y.‑R. Liu et al. 2016), for predicting drug 

responses (Carraro et al. 2022; Preuer et al. 2018; Cherlin et al. 2020), and also to model quasi 

loss- or gain-of-function experiments based solely on transcriptomic data (Bonaguro, 

Schulte‑Schrepping, Carraro, et al. 2022). To clarify how such applications relate to artificial 

intelligence and machine learning, I will next introduce the respective terminology and provide 

background on the basic concepts of AI.  

 

1.3 Artificial Intelligence methods for medical diagnostics  

1.3.1 Defining Artificial Intelligence and Machine Learning 

Research on artificial intelligence (AI) has been influenced by various disciplines with 

contributions from mathematics, philosophy, neuroscience, economics, psychology and 

computer engineering. Consequently, AI is not a monolithic term, but describes a broad, 

interdisciplinary and dynamic field of research as well as practical applications that build on it. 

Today, artificial intelligence is generally considered to be both theory and development of 

computer systems which are able to perform tasks that normally require human intelligence 

(Figure 2) (Lidströmer, Aresu, and Ashrafian 2022; Toosi et al. 2021).  
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Figure 2: Terminology as used within this thesis. Artificial Intelligence is a broad concept describing 

both theory and application of computer systems which can perform tasks that normally require human 

intelligence. Machine Learning is an application of AI, which allows machines to extract specific 

patterns from data autonomously. Deep learning is a specific architecture of ML that uses artificial 

neural networks with more than two layers. (Lidströmer, Aresu, and Ashrafian 2022) 

While the idea of non-human artificial or mechanistic intelligence builds upon concepts and 

myths that reach way back to ancient Greece (Nilsson 2009), one of the first influential modern 

theoretical concepts of AI was initiated by Alan Turing. He proposed that a machine should be 

considered intelligent if a human interrogator, when having a prolonged conversation with the 

machine via written questions and responses, could not tell the machine apart from a human 

being (Turing 1950). This idea of a machine with human-like behavior has also been extended 

to other forms of human-machine interactions and has inspired parts of the research on robotics 

and computer vision, leading to another definition of machine intelligence as “acting 

humanely” (S. J. Russell 2010). Taking this understanding of AI one step further, “general” or 

“strong” AI would ultimately be a human-like system which can reason independently of 

external human input, can apply knowledge and skills in different contexts, plan for the future 

and have self-consciousness. This idea of AI benchmarked by human-like performance has 

been inspirational for the philosophical debate about the nature of self-consciousness and 

human intelligence (Bringsjord and Govindarajulu 2022; Müller 2021) and is a commonly 

covered theme in public discussions about AI (“Can We Stop AI Outsmarting Humanity? ” 

2019), especially after the recent introduction of multimodal large language models like GPT-

4, in which some already see sparks of strong AI (Bubeck et al. 2023) and call on a temporary 
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moratorium before developing even more powerful systems (Future of Life Institute 2023). 

However, whether a truly human-like or “general” AI is at all reachable is subject to debate 

(Butz 2021) and goes beyond the scope of this introduction.  

In contrast to that, the great successes of AI systems in ubiquitous applications today rely on 

algorithms that have been designed for well-defined and structured tasks. Here, computers can 

easily outperform human cognition, especially when it comes to large and high-dimensional 

data. Even though various AI-related research such as robotics and natural language processing 

has been inspired by the goal of mimicking human behavior, this is not the core function of AI 

applications. In that sense, all currently used AI is “narrow” or “weak”, since it works rationally 

within a set of predefined algorithms and it cannot just veer off that programmed path (S. 

Russell and Norvig 2016). Nevertheless, it does involve sophisticated algorithms that learn 

patterns from high-dimensional data, can solve complex problems and perform certain well-

defined tasks more efficiently than humans.  

There has been a significant development in algorithmic and computational techniques since 

the early applications of artificial intelligence (Schneider 2022). One of the first approaches for 

clinical usability of AI was to hard-code scientific knowledge into formal language. With this, 

a computer could reason automatically within statements and use formal inference rules to 

answer questions or solve problems posed to it. Such “expert systems'' were designed for very 

specific tasks, for example to identify unknown chemical compounds (B. Buchanan and 

Sutherland 1969). In the 1970s, Stanford University developed a system to identify bacteria 

which cause an infection and to recommend antibiotics with dosages according to each 

individual’s body weight (B. G. Buchanan and Shortliffe 1984). In principle, such logic-based 

approaches were sought to be well-suited for medical decision making, since clinical 

knowledge and decision-trees are usually very structured to prevent malpractice. For example, 

the clinical decision tree for the diagnosis of diabetes can be displayed in a rule-based decision 

tree with solely if-then conditions, which takes as input the result of a fasting blood sugar test 

(Buchard and Richens 2022). However, solely knowledge-based approaches were not largely 

successful, since they turned out to be useful only in very narrowly defined tasks and rely on 

explicit, structured knowledge, which requires human experts to encode their knowledge in a 

set of rules.  

The difficulties of such systems suggested that AI systems needed not to rely on hard-coded 

information but to acquire their own knowledge by extracting patterns from data. This can be 
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accomplished by algorithms of machine learning (ML), which automatically identify such 

patterns from data and are able to make predictions based on past data. The terminology is 

often not clear-cut and AI and ML are used as synonyms in many cases or in combination. 

However, ML is usually considered a subset of AI techniques as well as a general term to 

describe applications in which computers learn from data, which is how the terminology is 

used throughout this work (see Figure 2) (Lidströmer, Aresu, and Ashrafian 2022). ML is 

different from classical statistical approaches in terms of the question that is being asked in 

either of the disciplines. While traditional statistical methods aim to find a model that explicitly 

formalizes the relationship between a set of variables and can be used to test a hypothesis about 

how the system behaves, machine learning focuses on generating a model that allows for 

accurate outcome prediction of previously unseen data and does not necessarily provide 

detailed information on the underlying model architecture itself (Bzdok, Altman, and 

Krzywinski 2018). Thus, machine learning methods are particularly helpful when dealing with 

“long data”, in which the number of input variables exceeds the number of measured samples, 

which is an important aspect of any omics type of data (Bzdok, Altman, and Krzywinski 2018).  

One important distinction of ML tasks is whether the algorithm is trained with a set of labeled 

or unlabeled data. The first type of task is called supervised machine learning. Here, labeled 

data is used to train or “supervise” the algorithm, which can then predict the label of previously 

unseen data. When the output labels are categorical quantities, the algorithm is called 

classification and if the output is a quantity, it is called regression. AI-based diagnosis of a 

disease condition is usually performed as classification tasks and the output variables are either 

two or more disease categories. The second family of ML algorithms is unsupervised machine 

learning, which can detect patterns directly from unlabeled data and is used for ubiquitous 

analysis tasks in medical research. To give an example, the exploratory data analysis of high-

dimensional omics-data requires dimensionality reduction (Becht et al. 2018) and clustering 

for quality control as well as to identify biological heterogeneity in the data (Duò, Robinson, 

and Soneson 2018). Another type of machine learning is reinforcement learning, which 

involves training an agent to make decisions in an environment in order to maximize a reward 

(Esteva et al. 2019). 

1.3.2 Classification algorithms for medical diagnostics  

Many classification algorithms exist that can perform diagnostic modeling tasks; however, they 

differ in their specifications and the type of data they can be used for. Linear regression is a 
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simple algorithm which models a linear relationship of one or more independent variables, or 

features, to a numeric dependent variable, like for example a drug dosage. Generalized linear 

models can also take other variables as output, for example logistic regression, which can 

predict a categorical variable, or multinomial models, if the output variable has more than two 

categories (McCullagh and Nelder 1989). In such a setting, the association between input and 

prediction output is transparent and explainable and the algorithm learns how each of the 

features correlated with various outcomes (Goodfellow, Bengio, and Courville 2016). This 

makes linear modeling particularly interesting for clinical applications, for example to estimate 

the risk of breast cancer from a set of clinical parameters (Chhatwal et al. 2009) or to predict 

long-COVID conditions from electronic health records (Kulenovic and Lagumdzija‑Kulenovic 

2022). However, these algorithms are not particularly well-suited for high-dimensional data 

such as genomics data, where the feature space is very large and exceeds the sample number 

by far. There, models are likely to overfit and generalize very poorly to other data sets. In such 

cases, algorithms are preferred which can perform feature selection and remove irrelevant 

predictors from the model (Saeys, Inza, and Larrañaga 2007; Bühlmann and Van De Geer 

2011). One example of a feature selection method is the Least Absolute Shrinkage and 

Selection Operator (Lasso) (Tibshirani 1996), which can be applied to linear modeling. There, 

predictors which have no discriminatory power are shrunken to zero, while features with 

nonzero coefficients represent features that can separate classes (Ghosh and Chinnaiyan 2005). 

This makes the algorithm well-suited for e.g. genomics and epigenomics data and it has been 

e.g. applied for biomarker selection and disease prediction in chronic kidney disease (Xiao et 

al. 2019). Interestingly, it has been shown that Lasso performs equally well as neural networks 

on prediction tasks such as readmission prediction from administrative clinical data (Allam et 

al. 2019).  

Another algorithm which is widely used in the context of disease prediction is the support 

vector machine (SVM) (James et al. 2021a). In this method, two classes are divided by finding 

a hyperplane with a maximal margin between them and in a linear SVM, a hyperplane is a line 

that separates samples in two dimensions. The data points that lie closest to the separating 

hyperplane are called “support vectors” since they “support” the hyperplane: If they would be 

moved, then the hyperplane would move as well (see Figure 3A).  
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Figure 3: Concept of a Support Vector Machine. A two-dimensional dataset is shown that 

consists of two classes (grey and red). A) Separating hyperplanes are depicted as solid lines 

and margins as dotted lines. Three support vectors are shown and their distance to the 

hyperplane is indicated with arrows. New observations will be classified according to their 

position in relation to the separating hyperplane. B) The example shows data points that cannot 

be separated by a linear hyperplane (left). After transformation using the radial kernel trick, a 

linear separation becomes possible (right). Figures adapted from (James et al. 2021b).  

 

This indicates that more distant data points do not influence the hyperplane, which is robust to 

the behavior of those observations. However, in most cases a perfectly separating hyperplane 

is either not possible or not desirable, as accounting for outliers would lead to overfitting. To 

get a greater robustness to individual observations and to achieve a better classification of most 

of the testing observations, it is reasonable to allow for some training observations to be on the 

“wrong” side of the hyperplane. The amount of allowed hyperplane violation can be controlled 

by using a tuning parameter, which can be thought of as a “budget” for margin violations. It 

controls the bias-variance trade-off (James et al. 2021a): If the margin is rather large, the 

classifier will have low variance, but high bias, whereas a small margin will highly depend on 

individual observations, which increases its variance and lowers the according bias. But even 

when a penalty parameter C is included, it is not possible for a linear function to separate two 

given sets of data points in many cases. Then, the data can be transformed using the kernel 

trick: Upon transformation in higher dimensional spaces, the data can become linearly 

separable (see Figure 3B). Commonly used kernel transformations include polynomial, radial 

and sigmoid functions. SVMs are widely used for clinical use cases as they account for around 

40% of ML papers in healthcare (Richens and Buchard 2022) and have been shown to be 

applicable to various clinical predictions, such as the prediction of diabetes from clinical 

parameters (Yu et al. 2010; Barakat, Bradley, and Barakat 2010) or for automated recognition 

of obstructive sleep apnea from ECG recordings (Almazaydeh, Elleithy, and Faezipour 2012). 

SVMs have also been used for image classification such as for breast cancer classification from 

magnetic resonance imaging (Vidić et al. 2018), however, they need a pre-processing step for 

https://sciwheel.com/work/citation?ids=14167280&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10421053&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3697675,13948837&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=14167271&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=13933543&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11513336&pre=&suf=&sa=0&dbf=0


Introduction & Background 

19 
 

feature extraction. Furthermore, SVMs have been influential for the analysis of transcriptomic 

data, where they are used for a variety of disease prediction studies in early microarray studies 

(Statnikov et al. 2005) as well as in bulk (S. Huang et al. 2018) and single cell sequencing data 

(Hu et al. 2016; Alquicira‑Hernandez et al. 2019).  

Another widely used machine learning algorithm that can be used for medical diagnostics is 

the random forest classifier (James et al. 2021b; Breiman 2001; Díaz‑Uriarte and Alvarez de 

Andrés 2006). It relies on an ensemble of decision trees, which are rather easy to interpret and 

can be displayed graphically (see Figure 4A).  

 

Figure 4: Concept of classification based on decision trees. A) A decision tree is created based 

on a top-down binary splitting of the training data. Each terminal node represents a class label 

and each top-down path represents a classification rule. B) Ensemble of three decision trees 

that combines the votes of individual models. In this case, the final output is the class selected 

by most trees.  

 

Starting at the top of the tree, each branch represents a decision. This brings the predictors in 

an intuitive order of importance since the influence of a predictor directly corresponds to its 

position in the tree and there is one prediction result for each tree in the random forest. 

However, single decision trees usually don’t show a very good performance, because they are 

unstable and small changes in the learning sample impair the prediction accuracy in the test 

samples. Instead, by aggregating many decision trees as done in random forest classification 

(see Figure 4B) gives a greater prediction performance. In random forest, each split on each 

tree is performed using a random subset of the features. In order to increase interpretability of 

the random forest, additional measures for variable selection have been introduced, such as the 

Gini importance (Nembrini, König, and Wright 2018). Random forest has been used on 

transcriptome data, examples include prediction of survival in patients with Ebola virus 

infection based on blood transcriptome data (Xuan Liu et al. 2017), inferring stages of multiple 
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sclerosis from blood transcriptomes (Acquaviva et al. 2020) and subclassification of patients 

with systemic lupus erythematosus (Figgett et al. 2019).  

In addition to the algorithms mentioned above, neural networks have been successfully used in 

medical diagnostics and are applicable to various kinds of medical data (Keane and Topol 

2018; Piccialli et al. 2021). Especially such neural networks that contain many layers, also 

termed deep neural network (DNN) (LeCun, Bengio, and Hinton 2015) (see Figure 2), 

outperform other methods in machine learning in tasks like visual object (Krizhevsky, 

Sutskever, and Hinton 2012) or speech recognition (Hinton et al. 2012), but also in predicting 

the effects of mutations on non-coding DNA on gene expression (Xiong et al. 2015) for 

example. One prominent example is AlphaFold, a deep learning model which has been shown 

to predict the three-dimensional structure of a protein solely based on the amino acid sequence 

with high accuracy, a task that has previously been considered one of biology’s grandest 

unresolved challenges (Jumper et al. 2021; Callaway 2020). One important aspect, particularly 

for image processing, is that DNNs can learn directly from raw data, meaning that it is not 

necessary to run feature extractors that transform raw data into suitable representations from 

which the algorithm can detect patterns (Esteva et al. 2019).  

Neural network algorithms are inspired by biological neural networks. In principle, any such 

network consists of nodes and connections between the nodes. Nodes are considered to perform 

basic features of a biological neuron. In biological neurons, dendrites receive signals from other 

neuronal cells. The cell body summarizes this signal, and the axon transmits a signal to other 

cells, only if a certain threshold is reached. In analogy to that, artificial neurons receive signals 

from other nodes, process them and can signal to other nodes, only if a certain threshold is 

reached. They can be mathematically described with an activation function, which “fires”, 

when a linear combination of its inputs exceeds a certain threshold (Rosenblatt 1958). Having 

only one such artificial neuron, without connections to other nodes, would be equivalent to a 

logistic regression model (Dybowski 2022). A neural network is a combination of many of 

such artificial neurons and these connections, also called edges, are inspired by biological 

synapses. Each connection has a numeric weight associated with it, which determines the 

strength and the sign of the connection. This link between two nodes serves to propagate the 

activation from one node to the next. To define the numerical values of the weights and the 

biases, the network has to be fitted to the data. That is, it starts out with unknown parameter 

values and those are estimated to fit to the dataset using backpropagation, a process which can 

become enormously complex and time-consuming depending on the size of the training data 
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and the network architecture (LeCun, Bengio, and Hinton 2015). Once the parameters are 

fixed, the trained model can be used to calculate outputs based on a given input. The properties 

of a neural network are determined by its topology and the characteristics of the included 

neurons and there are different ways on how such a network can be constructed. When all 

connections are pointing in the same direction, then the network is called a feed-forward 

network. Every node receives input from upstream nodes and gives output to downstream 

nodes and there are no loops. One can think of an easy example of a feed-forward neural 

network, where there is one input node, which takes as an input a dosage of a medicine, one 

output node, which would give out effectiveness of the drug and two intermediate nodes (see 

Figure 5A).  

 

 

Figure 5: Schematic diagrams of neural network. A) A simple neural network consists of a 

single layer of neurons, with input connections that receive information from external sources, 

such as sensors or other networks. The neurons in the layer process the input signals and 

generate output signals that are transmitted to other networks or to the outside world. B) The 

deep neural network consists of multiple layers of neurons, each layer processing the output 

signals of the previous layer. The input connections receive input signals as in the simple 

neural network, but the information is processed through multiple layers of nonlinear 

transformations, enabling the network to learn complex patterns and relationships in the input 

data. 

 

Such a network structure can already provide a non-linear decision boundary for classification 

(Dybowski 2022). However, in practice this can get much more complicated. Usually, neural 

networks have more than one input node, more than one output node (e.g. for different classes 

in a multilabel prediction), different layers of nodes between the input and output nodes and a 

spider web of connections between each layer of nodes (Figure 5B). The layers of nodes 

between the input and output nodes are called hidden layers. When a network consists of 
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several hidden layers, it is considered a deep neural network (Dybowski 2022). Other network 

architectures also exist, for example recurrent networks, where outputs can be fed back to the 

input of the network (Choi et al. 2017), or convolutional neural networks, which are used in 

image processing (Yadav and Jadhav 2019) .  

Given their advantages compared to classical machine learning algorithms, neural networks 

have also become increasingly important in biomedical research. Applications of these 

algorithms are numerous and they have been widely applied to genomics (Kelley et al. 2018), 

transcriptomics (Eraslan et al. 2019) and epigenomics data (Angermueller et al. 2017), single 

cell RNA sequencing data analysis (Zheng and Wang 2019) or in multi omics datasets (Leng 

et al. 2022), where they are used for tasks such as dimensionality reduction, batch removal, 

classification and clustering tasks.  

Convolutional neural networks have been used extensively for computational image analysis 

for various clinical use cases. Retinal images for example can be used to detect chronic kidney 

disease (Sabanayagam et al. 2020), to assess risk of cardiovascular diseases (Cheung et al. 

2021) and to detect early signs of Alzheimer’s (Cheung et al. 2022). Deep neural networks 

have been developed to detect tuberculosis from chest X-Rays (Lakhani and Sundaram 2017) 

and outperformed dermatologists in detection of skin cancer (Codella et al. 2017; Haenssle et 

al. 2018; Esteva et al. 2017). Another field of application is natural language processing, for 

example recurrent neural networks can be used to process electronic health records (Rajkomar 

et al. 2018). A disadvantage is however that neural networks are considered “black boxes”, and 

approaches for increasing interpretability of neural networks are being developed (Novakovsky 

et al. 2023; Lauritsen et al. 2020).  

1.4 Considerations for machine learning frameworks in the clinical setting    

As outlined above, machine learning applications can successfully be showcased for various 

diagnostic purposes and have been proposed to support medical practice in many regards. 

However, in order to establish clinical classifiers that can predict well across real-world 

settings, it is important to thoroughly consider how predictive algorithms perform in out-of-

distribution (OOD) data characterized by e.g. technical imbalances and sample heterogeneity, 

which are inherent to any clinical setting. A model trained on data from one healthcare system 

or hospital, for example, may not be generalizable to another site due to differences in local 

demographics, laboratory equipment and assays, data measurement frequency, and clinical and 

administrative practices, such as coding and definition of diagnoses. Furthermore, individual 
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rare diseases may be too infrequent for a per-condition classification in individual training 

datasets, but can collectively be common and clinically significant when considering a larger 

population. There is a large body of research on improving OOD robustness of predictive 

algorithms by e.g. data augmentation methods (Hendrycks et al. 2021; Shorten and 

Khoshgoftaar 2019), by using synthetic data for training on under-represented labels (Röglin 

et al. 2022) or by using transfer learning for generalization of algorithms across clinical sites 

(Wardi et al. 2021). Also, it is important to quantify prediction uncertainty under OOD 

conditions, so that models can on the one hand accurately predict classes that have been seen 

during training, but also provide reliable informative estimates about uncertainty and flag such 

abnormalities for further analyses (Guha Roy et al. 2022; Zimmerer et al. 2022; Linmans et al. 

2023). However, despite these important efforts in dealing with distribution shifts in medical 

data, it is widely acknowledged that model generalizability across OOD conditions can best be 

achieved when large, heterogeneous, and high-quality clinical data are available for training, 

which represent clinical distributions as close as possible. (Mårtensson et al. 2020; Zech et al. 

2018; Guha Roy et al. 2022).  

Such heterogeneous medical data is not readily available for machine learning algorithms to be 

trained for a variety of reasons. First, medical infrastructure is inherently decentralized. Each 

patient is an individual data source and healthcare infrastructure is distributed across various 

providers and systems, which makes it difficult to transfer data between computing centers. 

Second, the medical sector is highly valuing patient’s privacy and confidentiality, which results 

in a reluctance to share data beyond what is necessary for patient care. Third, data privacy is 

strictly protected (Price and Cohen 2019) and regulated by legal frameworks like the General 

Data Protection Regulation (GDPR) (“General Data Protection Regulation” 2023) in the EU 

and the Health Insurance Portability and Accountability Act (HIPAA) in the USA (“HIPAA 

and Administrative Simplification” 2022). In case of HIPAA, one of the main strategies to 

protect medical patient data is to de-identify the data by removing identifying elements such 

as email addresses or social security numbers (El Emam 2011). The problem with this, 

however, is that it often results in the removal of useful information and that it does not ensure 

adequate privacy protection of the individual, since de-identified data is not necessarily 

anonymous. This concerns all medical data types that are commonly used in machine learning. 

Not only do genomics data have the potential to uniquely identify individuals (Oestreich et al. 

2021), but the same is true for electronic health records for example, where only a few 

annotations are enough for patient re-identification (L Sweeney 2000). Furthermore, patient 
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identification from medical imaging data is possible (Esmeral and Uhl 2022; Rieke et al. 

2020). On the other hand, the GDPR is an attempt to regulate this by putting strict regulations 

on sharing of any personal medical data, which is relevant to any international research 

collaboration as well as to nearly all large global research companies which build machine 

learning models using personal data to train them. As a result, concepts based on data sharing 

are difficult to realize in the medical sector overall. (McCall 2018; Oestreich et al. 2021) 

Nevertheless, huge endeavors have been undertaken to collect curated high-dimensional atlas-

like datasets that can serve as reference datasets for the scientific community, and which also 

have been used to exemplify how disease classifiers could be trained on such data. For example 

The Cancer Genome Atlas Network (Cancer Genome Atlas Network 2015; Cancer Genome 

Atlas Research Network et al. 2013) alone has generated 2.5 petabytes of genomic, 

epigenomic, transcriptomic and proteomic data on 33 cancer types (Hoadley et al. 2018). Other 

datasets cover population-based data such as the UK biobank, a population-based prospective 

cohort of 500,000 men and women in the UK (Allen et al. 2014) and e.g. Scotland’ Safe 

Havens, where EHR data are stored centrally on the NHS network and de-identified data is 

being made available for research purposes. Further large datasets are the NIH initiative “all of 

us” (All of Us Research Program Investigators et al. 2019) collected genomic information 

together with electronic health records. Prospective population-based cohorts such as the Dutch 

LifeLines DEEP aim to collect multi-omics data to understand environmental influences e.g. 

on the development of chronic diseases (Tigchelaar et al. 2015; Zijlema et al. 2016). 

Furthermore, large databases exist e.g. on Alzheimer-related data (Weiner et al. 2013) as well 

as clinical radiology image data, which has been used for training of predictive classifiers (Prior 

et al. 2017; X. Wang et al. 2017). Additional, huge datasets e.g. on single cell transcriptomics 

have been published, which are being used to generate transcriptomic signatures for diseases 

in specific cell-types (Perez et al. 2022; Nichita et al. 2014; Schulte‑Schrepping et al. 2020a). 

However, when compared to the amount of data which was used e.g. to train the algorithmic 

agents in the game of Go (Silver et al. 2016) or in the field of research on autonomous vehicles 

(Fridman et al. 2019; G. A. Kaissis et al. 2020), these carefully collected datasets still come 

from a relatively small number of sources or from single technological platforms with strict 

protocol harmonization. Therefore, to establish machine learning applications which can learn 

from data on real-world scale datasets, other solutions have to be put forward that go beyond 

data that can be collected in an academic context, even within large consortia. 
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Cloud computing infrastructures have been proposed as one major framework to overcome 

limitations of local model training and have been proposed as a solution to integrate data from 

genomics, systems biology and biomedical data mining without having to have the full 

computing infrastructure as well as the data locally. However, even though this comes with 

several advantages compared to local computing, having data and models stored at a central 

instance comes with the disadvantages such as data duplication and increased data traffic as 

well as challenges for data privacy and security (Dove et al. 2015). Furthermore, such an 

architecture favors data monopoles and among others large corporations such as Meta 

(formerly known as Facebook), Amazon, and Alphabet (formerly known as Google) have 

started massive AI initiatives within health, and providing personalized health data to such 

large companies might be critical in terms of data protection (Lidströmer, Aresu, and Ashrafian 

2022).  

Federated learning (FL) has been developed as an alternative approach for confidential 

machine learning without data sharing (McMahan et al. 2016b). Here, a federation of 

participating sites (or nodes) each train a local model. When each different site with local data 

has finished calculating, the model weights are sent to a central server, which is merging them 

to create a global model and those updated parameters are sent back to the participating sites. 

With this, model training is decoupled from the need for direct access to the raw training data, 

which makes FL an attractive approach for distributed machine learning and various 

applications for healthcare data have been published (Xu et al. 2021; Rieke et al. 2020; X. Li 

et al. 2020; Pati et al. 2022). However, the star-shaped structure is kept with one central server 

being responsible for aggregating the parameters, which decreases fault tolerance and requires 

trust in the central instance. Therefore, a computational infrastructure is needed that fully 

matches the needs of the medical domain for collaborative, yet confidential machine learning. 
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2 Aim of the thesis 

Advances in AI for medical diagnostics hold great promise for assisting and improving clinical 

decision making by translating high-dimensional biomedical data into scores and 

recommendations on disease diagnostics, disease severity, and treatment options, which are 

clinically usable and demonstrate added value in comparison to current standard diagnostic 

workflows. However, AI models presented in literature oftentimes fail to materialize such 

demonstrable value and may even be detrimental when being deployed into clinical 

applications (S.‑C. Huang et al. 2022). Therefore, new computational frameworks are needed 

to finally translate innovations in technological and algorithmic research into improvements in 

individual medical care. It is the aim of this thesis to contribute to this translation by evaluating 

the use of high-dimensional transcriptomic datasets for privacy-preserving disease 

classification and to put this into the broader context of using omics technologies for AI-driven, 

systems-level medical diagnostics.  

My work is presented as a cumulative thesis consisting of two publications:  

In the first publication, I present my work on disease classification based on high-dimensional 

transcriptomics data, exemplified for the prediction of Acute Myeloid Leukemia (AML). I 

provide evidence that transcriptome data can be utilized for highly accurate and scalable ML-

based primary disease diagnosis (Warnat-Herresthal et al. 2020). In the second publication, I 

introduce Swarm Learning as a new concept of privacy-preserving, collaborative machine 

learning, which can generate shared classification models on high-dimensional data, without 

sharing any personal data. This is exemplified for transcriptomic data on AML, COVID-19 and 

tuberculosis, as well as for X-Ray data on lung diseases and covering a variety of clinically 

relevant prediction scenarios (Warnat-Herresthal et al. 2021).  

In summary, the research presented here provides evidence that high-dimensional medical data, 

in combination with a decentral machine learning framework such as Swarm Learning, could 

make it possible to utilize the power of AI for medicine in an effective and clinically feasible 

way.  
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3 Developing blood-based disease classifiers for prediction of AML 

Accompanying text for the following publication:  

Stefanie Warnat-Herresthal, Konstantinos Perrakis, Bernd Taschler, Matthias Becker, Kevin 

Baßler, Marc Beyer, Patrick Günther, Jonas Schulte-Schrepping, Lea Seep, Kathrin Klee, 

Thomas Ulas, Torsten Haferlach, Sach Mukherjee, Joachim L. Schultze. Scalable Prediction 

of Acute Myeloid Leukemia Using High-Dimensional Machine Learning and Blood 

Transcriptomics. iScience. 2020 Jan 24;23(1):100780. doi: 10.1016/j.isci.2019.100780.  

 

Acute myeloid leukemia (AML) is a severe, often fatal cancer of the hematopoietic system, 

which is characterized by uncontrolled proliferation of malignant bone marrow stem cells. It is 

the most common form of acute leukemia in adults, with a median age at diagnosis of 68 years 

and an estimated 5-year overall survival rate of 30% (Shimony, Stahl, and Stone 2023). AML 

presents with very unspecific symptoms such as infection, anemia and bleeding and despite 

enormous improvements in diagnosis and therapy during the last years, primary diagnosis is 

often delayed. While subclassification of AML is already mainly based on molecular features, 

particularly taking into account the mutational status of the leukemic cells (Shimony, Stahl, 

and Stone 2023), guidelines for primary diagnosis and management of the disease recommend 

diagnosis by a rather conservative diagnostic pipeline consisting of a combination of 

cytomorphology, cytogenetics and immunophenotyping (Eckardt et al. 2020; Döhner et al. 

2017). At the same time, AML has been used as a prime showcase for data-driven disease 

prediction and subtype discovery since the very first landmark studies that demonstrated the 

usability of machine learning for transcriptome data already in 1999 (Golub et al. 1999). Many 

research articles followed that analyzed blood transcriptome data on AML and related diseases 

(Goswami et al. 2009; Zhang et al. 2018), as well as computational models that were presented 

to detect prognostic gene-expression profiles (Valk et al. 2004; Z. Li et al. 2013; T Haferlach 

et al. 2007) or predict the disease and its subtypes (Bullinger et al. 2004; Wouters et al. 2009; 

Torsten Haferlach et al. 2010, 2005). Furthermore mutational status in 25 genes have been 

proposed for AML stratification and 14 separate disease subtypes with distinct diagnostic 

features and clinical outcomes have been proposed (Papaemmanuil et al. 2016), underlining 

the molecular heterogeneity of the disease. Furthermore, prediction of AML has been 

showcased to be suitable for other ML-based automated diagnostic frameworks, such as 

automated detection and classification of leukemia based on microscopic images of blood cells 

(Bibi et al. 2020), underlining the various possibilities in which AML diagnostics could 

potentially be enhanced. However, despite this rich body of data and research that has been 
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gathered, there has been little translation of such approaches into clinical practice, which 

prompted the starting point for the present study. 

As the data sciences have developed and transcriptome data from peripheral blood, including 

samples from AML patients, have become more available, we sought to test whether primary 

and differential diagnosis would be possible by using transcriptome-based machine learning 

approaches. For that aim, we first collected all data on human blood transcriptomes of AML 

patients that was available for two microarray platforms as well as for Illumina RNA 

sequencing. This resulted in a unique transcriptomics dataset for classifier development 

consisting of three independent datasets with a total of 12,029 samples from 105 studies, 

containing 4,145 AML samples of diverse subtypes, 7,884 other samples derived from healthy 

controls (n = 904), patients with acute lymphocytic leukemia (ALL, n = 3,466), chronic 

myeloid leukemia (CML, n = 162), chronic lymphocytic leukemia (CLL, n = 770), 

myelodysplastic syndrome (MDS, n = 267), and other non-leukemic diseases (n = 2,312). To 

the best of our knowledge, the dataset as presented in this work is still the most comprehensive 

transcriptome dataset on AML prediction to date. 

After quality control and preprocessing, the data was used for the prediction of AML in several 

clinically relevant scenarios, such as the prediction of AML vs. all other samples, including 

healthy controls and the prediction of AML in a differential diagnosis setting, where AML is 

tested against other leukemias. We found that classification accuracy, specificity, and 

sensitivity are already very good when sampling sizes are small, but the performance of 

prediction still increased when the training dataset size was larger. This is particularly relevant 

when considering low prevalence scenarios and we demonstrate that even small gains in overall 

accuracies can lead to massive improvements in positive predictive values (PPVs) in low-

prevalence settings. Nine different prediction algorithms were applied to all scenarios, and 

overall, the prediction task was very robust regardless of the algorithm used. Also, prediction 

accuracy was not dependent on specific AML subtypes.  

However, it is known that effects of site-specific factors, such as technical batch effects or 

differences due to sample distribution in different studies can pose problems for generalizing 

predictive models. Following that, we analyzed the effect of cross-study variation on predictive 

performance on our dataset. Due to the large number of studies included, it was possible to 

perform an entirely disjoint cross-study analysis, meaning that we were able to separate 

samples of complete studies in training and test sets and permuted this setting 100 times. As 
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expected, performance measures were worse than in the random sampling approach, where 

training and test samples came from a pool of all studies. However, performance measures got 

better with increasing training set size, meaning that large datasets can help to overcome such 

study-specific batch effects, which demonstrated the power of current machine learning 

algorithms even when using such a heterogeneous sample sets which were collected from many 

individual sites.  

Another major part of the work concentrated on the question whether classifiers could be 

translated across technical platforms. Technologies evolve and it is important that classifiers 

can cope with changes of the technical platforms. To this end, we evaluated whether an 

algorithm which was trained on one microarray platform could be used to predict data which 

was generated by another microarray platform or RNAseq data and saw huge differences in 

prediction accuracies depending on the technological platform used for training. However it 

was possible to rescue classifier performance by using rank transformation (Zwiener, Frisch, 

and Binder 2014) applied on each dataset independently, meaning that transcriptomic 

signatures do translate robustly across technologies. 

Lastly, we analyzed the relationship of features establishing a predictive signature compared 

to genes that qualify as differentially expressed (DE) and genes that are known to be important 

for AML biology. Genes which were selected by the lasso classifier were often not 

differentially expressed and the classification algorithm was shown to be robust to removal of 

known AML-related genes, pointing out that it can be beneficial for prediction to consider data-

driven, genome-wide signatures rather than taking into account sets of single genes.  

Taken together, we demonstrated that the combination of machine learning and transcriptomics 

can yield highly accurate and robust classifiers, which can be translated across clinical batches 

as well as technological platforms. This supports the vision that transcriptomic-based ML could 

be introduced to clinical practice to support AML primary diagnosis, particularly in settings 

where hematological expertise is not sufficiently available and lays the ground for the design 

of future prospective studies to assess diagnostic utility.   

For this publication I was responsible for major areas of the work including the design of the 

study search strategy, the collection and preprocessing of datasets 1, 2 and 3, writing code and 

performing calculations, evaluation of results, preparation of figures and I was the major 

contributor to paper writing.  

 

https://sciwheel.com/work/citation?ids=1102263&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1102263&pre=&suf=&sa=0&dbf=0


Developing blood-based disease classifiers for prediction of AML 

30 
 

 

Figure 6: Graphical abstract of Warnat-Herresthal et al. 2020. A comprehensive meta-

analysis on the prediction of AML based on published gene expression profiles was performed. 

Nine high-dimensional machine-learning algorithms were trained in different clinically 

relevant scenarios. We report highly accurate disease classifiers, which are scalable and can 

be translated across site-specific clinical study batches as well as technical platforms.  
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4 Swarm Learning as a decentral and privacy-preserving machine 

learning approach for disease classification 

Accompanying text for the following publication:  

Stefanie Warnat-Herresthal, Hartmut Schultze, Krishnaprasad Lingadahalli Shastry, 

Sathyanarayanan Manamohan, Saikat Mukherjee, Vishesh Garg, Ravi Sarveswara, Kristian 

Händler, Peter Pickkers, Ahmad Aziz, Sofia Ktena, Florian Tran, Michael Bitzer, Stephan 

Ossowski, Nicolas Casadei, Christian Herr, Daniel Petersheim, Uta Behrends, Fabian Kern, 

Tobias Fehlmann, Philipp Schommers, Clara Lehmann, Max Augustin, Jan Rybniker, Janine 

Altmüller, Neha Mishra, Joana P. Bernardes, Benjamin Krämer, Lorenzo Bonaguro, Jonas 

Schulte-Schrepping, Elena De Domenico, Christian Siever, Michael Kraut, Milind Desai, 

Bruno Monnet, Maria Saridaki, Charles Martin Siegel, Anna Drews, Melanie Nuesch-

Germano, Heidi Theis, Jan Heyckendorf, Stefan Schreiber, Sarah Kim-Hellmuth, COVID-19 

Aachen Study (COVAS), Jacob Nattermann, Dirk Skowasch, Ingo Kurth, Andreas Keller, 

Robert Bals, Peter Nürnberg, Olaf Rieß, Philip Rosenstiel, Mihai G. Netea, Fabian Theis, 

Sach Mukherjee, Michael Backes, Anna C. Aschenbrenner, Thomas Ulas, Deutsche COVID-

19 Omics Initiative DeCOI), Monique M. B. Breteler, Evangelos J. Giamarellos-Bourboulis, 

Matthijs Kox, Matthias Becker, Sorin Cheran, Michael S. Woodacre, Eng Lim Goh, Joachim 

L. Schultze (2021). Swarm Learning for decentralized and confidential clinical machine 

learning, Nature 594, 265–270.  

Applications of machine learning, including those that are building on genomic and 

transcriptomic data, have the potential to make medical diagnostics more accurate, efficient, 

and accessible for patients worldwide, and to radically transform several aspects of medical 

practice. However, as the possibilities of ML/AI technologies for medicine are appreciated 

scientifically, major challenges remain in the deployment of such technologies in the clinical 

setting. Those include concerns about implementation, accountability and fairness of AI 

algorithms (Rajpurkar et al. 2022). One central aspect underlying these concerns is the 

generalizability of models, meaning the performance of disease prediction on data that has not 

been included in training (Mårtensson et al. 2020; Zech et al. 2018). To overcome these 

limitations, classifiers need to be trained on large datasets from various clinical sites, as it has 

been demonstrated in the previous chapter of this dissertation. Technically, if sufficient data is 

available at any clinical site, model training for disease prediction can be performed locally 

(see Figure 7A). However, such a model will likely not generalize well across other clinical 

instances due to sources of variation, such as different technological platforms or different data 

handling and processing protocols, different distribution of patient characteristics such as age, 

ethnicity and disease subtype (Obermeyer and Emanuel 2016). Furthermore, rare disease 

conditions are likely to be missed from individual local training data. 
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Data centralization, for example by cloud solutions, has become one alternative to overcome 

the limitations of local computing (Figure 5B), including access to sufficiently large datasets 

and adequate infrastructure for data storage, processing, and analysis. (Dove et al. 2015; 

Langmead and Nellore 2018; Ping et al. 2018) Compared to local approaches, cloud 

computing can significantly increase the amount of data for training of ML algorithms, 

therefore reducing prediction biases and improving testing performance. However, cloud 

computing has disadvantages such as data duplication from local to central data storage, 

increased data traffic and issues with locally differing data privacy and security regulations. 

Furthermore, such an architecture favors data monopolies.  

As an alternative, federated learning (FL) has been developed (Konečný et al. 2016; McMahan 

et al. 2016a) (Figure 5C). Unlike in a conventional centralized machine learning framework, 

participants do not need to share their data to a central custodian. Instead, only the parameters 

of the model are shared, which is trained on local data (McMahan et al. 2016b). The parameters 

are then merged by a central server and communicated back to the participating sites (G. A. 

Kaissis et al. 2020; Konečný et al. 2016; Zhilin Wang and Hu 2021; Pati et al. 2022). FL is a 

pioneering ML architecture in the sense that it enables the establishment of a shared ML model 

without sharing the actual data. However, a remainder of the central architecture is kept, which 

requires trust, hampers implementation across different jurisdictions and therefore still requires 

the respective legal negotiations. Furthermore, the risk for a single point of failure at the central 

structure reduces fault-tolerance.  

To overcome these limitations, we introduced Swarm Learning (SL) as a completely 

decentralized machine learning architecture, which facilitates integration of any omics data 

from any data owner world-wide without violating privacy laws (Figure 5D). In SL, the 

dedicated central parameter server is dismissed, which is facilitated by blockchain-based peer-

to-peer networking and coordination in a completely decentralized network with immutable 

parameter sharing. This enables different organizations or consortia to efficiently collaborate 

in a completely decentralized and privacy-preserving manner and thereby goes beyond 

federated learning.  
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Figure 7. Schematic overview of Machine Learning architectures with three independent 

clinical sites. A) Local Training. Each hospital trains its own model B) Cloud computing: Data 

is sent to a central instance and a shared model is trained C) Federated Learning: Data stays 

local, model is trained locally, and model parameters are shared to a central parameter server 

C) Swarm Learning: Model and parameters are both local. Model parameters are shared 

within the decentral Swarm Network.  

In the paper presented here, we used more than 16,400 blood transcriptomes derived from 127 

individual studies with non-uniform distribution of cases and controls and significant study 

biases. First, we used the transcriptome dataset consisting of peripheral blood mononuclear cell 

(PBMC) transcriptomes established in Warnat-Herresthal et al. 2020. With this, we illustrated 

the feasibility of SL to develop disease classifiers based on distributed data for Acute Myeloid 

Leukemia by siloing various distributions of cases and controls per node and comparing model 

performance of individual nodes against performance of the model achieved within the Swarm 

Network. SL outperformed prediction results of single nodes in most settings and most 

importantly, we could demonstrate that Swarm Learning can overcome single-source biases of 

nodes as well as prediction biases based on technological differences between nodes. We 

extended this to the prediction of samples from patients with acute lymphoblastic leukemia 

(ALL) as cases, ran a multi-class prediction across four major types of leukemia, extended the 

number of nodes to 32, tested onboarding of nodes at later time points and replaced the deep 



Swarm Learning as a decentral and privacy-preserving machine learning approach for disease 
classification 

34 
 

neural network with LASSO, and the results echoed the initial findings, illustrating that SL 

outperforms local learning.  

In a second use case, we sought to investigate whether SL would also be feasible in conditions 

which are expected to be more heterogeneous, such as infectious diseases like tuberculosis 

(TB). Previous work in smaller studies had already suggested that active TB as well as outcome 

of TB treatment can be revealed by blood transcriptomics (Zak et al. 2016; Leong et al. 2018; 

de Araujo et al. 2016; Verma et al. 2018; Thompson et al. 2017). In the present study, we 

demonstrated that this prediction task is also feasible in a Swarm Learning setting and that 

patients with active and latent tuberculosis can indeed be identified based on their blood 

transcriptomes. For this, we tested several distributions of cases and controls, sizes of nodes 

and numbers of nodes. In each of the tested settings, models trained by the Swarm Network 

outperformed models trained at single nodes.  

Next, we extended our analysis to X-Ray images to also include a second medical data space, 

which is already extensively used for developing AI-guided diagnostics. For this, we used a 

publicly available dataset of more than 95,000 chest X-rays which has been used before to 

benchmark machine learning approaches. Also here, we showed that SL outperforms the 

contributing nodes in a multi-class and multi-label classification problem.  

Finally, we evaluated how clinical prediction would work in an outbreak scenario of a newly 

identified disease, as it has been encountered in the world-wide pandemic of COVID-19. 

Usually, COVID-19 patients are identified by PCR-based assays to detect viral RNA (Corman 

et al. 2020). However, we used this case as a proof-of-principle study to illustrate how SL could 

be used even very early on during an outbreak based on the patients’ immune response captured 

by analysis of the circulating immune cells in the blood. Here, blood transcriptomes only 

present a potential feature space to illustrate the performance of SL and it has been shown that 

COVID-19 can be predicted based on several data modalities (Zoabi, Deri‑Rozov, and 

Shomron 2021; Laguarta, Hueto, and Subirana 2020). However, using blood transcriptomes 

for assessing the specific host response, in addition to disease prediction, might be beneficial 

in situations for which the pathogen is unknown or specific pathogen tests are not yet possible. 

Furthermore, blood transcriptomics can contribute to the understanding of the host’s immune 

response (Schulte‑Schrepping et al. 2020b; Bernardes et al. 2020; Krämer et al. 2021), and 

also includes information about COVID-19 severity, which cannot be assessed by viral testing 

alone (Ulas et al. 2020).  
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To extend this to a real-life scenario, we evaluated how data from different individual centers 

with very different patient characteristics in terms of their local controls, age-, sex- and disease 

severity distributions would perform in a SL setting to collectively predict COVID-19. This 

Swarm network of six participating centers was additionally tested on two external datasets, 

one with only convalescent COVID-19 cases and one dataset of only granulocyte COVID-19 

samples instead of whole blood samples. SL outperformed all nodes in AUC for the prediction 

of the global test dataset and could successfully predict the external datasets. In addition, we 

tested further unbalanced scenarios with training e.g., on male samples and testing on females 

or using test nodes with very different disease severity distributions. In all cases, SL 

outperformed models trained on single nodes.  

Collectively, the SL approach combines blockchain technology with decentralized machine 

learning to create an entirely democratized approach that eliminates the need for a centralized 

custodian. It therefore represents a uniquely suitable strategy to utilize the possibilities of 

machine learning in the medical domain, which is inherently decentralized and fundamentally 

based on trust. Blood transcriptomes were used since they combine blood as the most widely 

used surrogate tissue for diagnostic purposes with an omics technology that is providing high-

dimensional data. However, the here presented approach can be translated to a multitude of 

clinical use-cases, algorithms and data spaces and this way enable global cooperation on a 

variety of use-cases, ultimately leading to a more data-driven systems-level approach to 

medicine.  

 

The results of this publication were obtained in close collaboration with different research 

groups, clinical centers and in cooperation with Hewlett Packard Enterprise (HPE), who 

developed the Swarm Learning Library. My specific contributions include the design of all 

predictive scenarios presented within this publication as well as the collection, preprocessing 

and quality control of datasets A1, A2, A3, B, D, and E. Furthermore, I was responsible for the 

calculation of predictive performance measures from raw prediction output files and I was the 

main contributor to the interpretation of the results, the preparation of figures and to paper 

writing.   
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5 Summary & Outlook  

The first part of the thesis illustrates that accurate detection of AML is possible solely by 

machine learning algorithms based on blood transcriptome data without requiring additional 

expert input. In Warnat-Herresthal et al. 2020 a unique reference dataset of annotated public 

transcriptome data has been compiled for this purpose, combining 105 independently 

performed studies across three technological platforms with more than 12,000 samples in total 

including AML as well as other leukemic diseases, healthy and other non-leukemic control 

samples. This made it possible to thoroughly evaluate the performance of classifiers across a 

wide range of clinically relevant scenarios, including prediction across independent studies and 

translation of trained models between technological platforms. ML-based detection of AML 

was highly accurate across all tested scenarios and robust in terms of the used prediction 

algorithm. In this way, this publication provides evidence that combination of ML approaches 

with existing technologies for high-dimensional blood transcriptomics can yield highly 

effective, robust, and purely data-driven classifiers for near-automated primary diagnosis of 

AML, opening the possibility for prospective clinical trials based on these results.   

The second part of this thesis covers Swarm Learning as a decentralized machine learning 

framework which enables collaborative machine learning across independent institutions, as 

introduced in Warnat-Herresthal et al. 2021. In SL, medical data from any data owner world-

wide can be used to establish shared, data-driven models for disease prediction at the same 

time supporting data privacy by design. This approach was evaluated for the prediction of 

AML, active and latent tuberculosis as well as COVID-19 and other lung pathologies based on 

five transcriptome datasets consisting of more than 16,400 blood transcriptomes derived from 

127 independent clinical studies with non-uniform distributions of cases and controls and 

substantial study biases, as well as more than 95,000 chest X-ray images. High performance of 

SL was demonstrated across a multitude of real-world prediction scenarios, such as primary 

diagnosis of AML and tuberculosis, as well as simulation of an COVID-19 outbreak scenario 

across independent clinical sites and SL outperformed single-site predictions across all 

evaluated scenarios. In this publication we proposed that SL represents a uniquely suitable 

strategy to utilize the possibilities of machine learning in the medical domain, and to ultimately 

enable systems-level diagnostics based on high-dimensional molecular profiles, while at the 

same time ensuring data confidentiality and privacy. 
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With these two elements, first a proof-of-concept on the robustness of ML models to predict 

AML based on high-dimensional transcriptomic profiles and second, the introduction of a 

machine learning framework for confidential and decentralized, collaborative machine 

learning, I have laid the foundation to formulate a concrete hypothesis on how future AI-

assisted medical diagnosis can be envisioned.  

AML has served as a showcase within this thesis to elaborate the power of high-dimensional 

omics profiles, with blood transcriptomics providing a particularly informative snapshot of the 

immunological state across the body as a whole. Importantly, AML is a disease with enormous 

diagnostic and therapeutic complexity, and any future ML-based diagnostic workflow needs to 

account for this. The disease heterogeneity is becoming even more pronounced with a 

continuously improved understanding of the molecular pathophysiology, illustrated by the fact 

that two competing classification systems on AML were recently published by independent 

expert groups (Khoury et al. 2022; Arber et al. 2022), which introduce non-overlapping 

subtype terminology and contain different additions or updates of disease entities based on 

clinical, immunophenotypic, and molecular data (Falini and Martelli 2023).  

The obvious question is, however, how this phenotypic complexity of the disease can be 

tackled best by any diagnostic workflow. As introduced, technological tools for accessing high-

dimensional molecular profiles are in place, have been tested to be robust for clinical use and 

could, together with state-of-the-art machine learning algorithms, be utilized for an accurate, 

data-driven, and diagnostic pipeline that analyzes a multitude of parameters in parallel. In fact, 

the notion that gene expression profiles particularly of leukemic patients contain highly 

informative patterns which can be detected by classification algorithms is not new (Golub et 

al. 1999) and have proposed early on as an unbiased and robust readout that could complement 

current diagnostic pipelines of AML (Torsten Haferlach et al. 2010). If and where to position 

transcriptome technologies within the current standard diagnostic pipeline of leukemia is 

however still subject to debate and the translation of the large body of academic findings on 

the topic into clinical practice is not happening at a large scale.  

Interestingly, recent classification proposals and guidelines clearly emphasize the integration 

of molecular characterization into clinical practice and, in addition to the genetic 

characterization of leukemic subtypes, results of transcriptomic profiling are starting to be 

described (Khoury et al. 2022; Arber et al. 2022; Shimony, Stahl, and Stone 2023). For 

example, the international consensus classification (ICC) of myeloid Neoplasms and Acute 
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Leukemias lists new subcategories of ALL with driver structural lesions, which are also 

recognizable by their distinct gene expression signatures (Arber et al. 2022). Additionally, the 

revised 2022 ELN risk classification includes new response criteria and treatment 

recommendations based on increased understanding of the molecular pathogenesis of AML 

(Döhner et al. 2022). 

Meanwhile, research on usage of ML for diagnostics of leukemia is accelerating and could be 

integrated at different levels of the diagnostic pipeline. Genome-based molecular signature 

profiles have been shown to define previously unrecognized subgroups of AML which reflect 

disease prognosis, potentially harmonizing the disease classification (Awada et al. 2021). Bulk 

transcriptomic profiles can be linked to drug sensitivity in AML treatment (S.‑I. Lee et al. 

2018) and single-cell RNA sequencing profiles reveal distinct disease hierarchies that are 

relevant to disease progression (van Galen et al. 2019). Beyond omics data, it has been shown 

that AML diagnostics based on blood smear image data can be automated (Fatma and Sharma 

2014; Das and Dutta 2019; Shafique and Tehsin 2018; Jha, Das, and Dutta 2020), that cell 

morphology can serve as a predictor or therapy response (Duchmann et al. 2022) and that 

clinical data includes valuable information for algorithmic classifiers, e.g. to predict relapse in 

childhood ALL (Pan et al. 2017), underlining the strength and flexibility of ML-based 

approaches overall.  

This raises the general question of why such innovative AI concepts have not been translated 

to clinical practice much more quickly. Clearly, this question goes beyond the presented 

showcase of AML diagnostics, but touches upon the relationship of AI and medicine in general 

(Rajpurkar et al. 2022). The recent COVID-19 pandemic has been an extraordinary example, 

where the interaction of biomedical science, AI developers, medical stakeholders, media, 

politics and society could be monitored “fast forward” and made it possible to identify 

structural deficits in the process of developing and deploying medical AI models (S.‑C. Huang 

et al. 2022). While large global efforts have been undertaken to leverage digital health data and 

machine learning techniques to tackle the challenges posed by the pandemic, and to provide 

e.g. models for early detection and prognostication (Mei et al. 2020), severity scoring 

(Frid‑Adar et al. 2021), long-term outcome and mortality predictions (Ramtohul et al. 2020), 

most of these models failed to provide demonstrable practical value, and some may even have 

been detrimental if rolled out to the clinics (Roberts et al. 2021), partly generating 

disillusionment and distrust in the potential of AI to impact medicine (Wilkinson et al. 2020).  
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The answers on which lessons can be learned from the ‘pandemic experience’ are manifold 

and concern the whole process of building models for clinical applications, from having a more 

clear definition of actual clinical needs that need to be tackled upfront, to better curation of 

data for model training and more thorough model testing as well as careful evaluations of 

models also post-deployment (S.‑C. Huang et al. 2022). Importantly, there is broad consensus 

that AI models, to finally deliver improvements in individual care, need to be trained on data 

which is resembling the clinical situation as close as possible, and any retrospective collection 

of public datasets is necessarily lacking this. While retrospective data collection often is the 

natural starting point for model development, prospective trials must follow that touch the 

clinical “ground truth”, which is mirroring actual deployment scenarios. Such data is 

characterized not only by a more specific set of samples than covered in most retrospectively 

collected datasets, e.g. particularly including early disease samples for screening applications, 

but also factors of technical and biological variation will need to be considered that by 

definition cannot be ruled out a priori, especially for high-dimensional omics data, as described 

in this thesis. Depending on the concrete diagnostic setting in each and every medical site, there 

might be different sample handling and data processing protocols in place, different 

technological platforms being used for data generation, and different institutions, countries and 

continents will include different patient populations in terms of ethnicity, age, sex and social 

background. Sites may even apply varying disease classification scores and terminology to 

describe clinical phenotypes. Ultimately, estimating how well any machine learning model is 

generalizing across this range of unknown variation is only possible a posteriori, meaning after 

thoroughly testing them within these described settings. In addition, randomized clinical trials 

would be necessary to proof clinical benefit, which is to show that clinical decisions made on 

the bases of new AI-procedures have a beneficial influence on the disease course in relation to 

well-defined outcome measures, such as e.g. increase in the five-year survival rate (Vogeser 

and Bendt 2023). Furthermore, possibilities for continuous evaluation and model improvement 

need to be considered also after deployment, to detect distribution shifts that were not 

anticipated beforehand. Clearly, collection of such data goes beyond what can be performed in 

an academic setting and it requires medical institutions to allow data management to become 

an integral part of any clinical daily routine, so that continuous integration of new knowledge 

and true data distributions are included. While further digitalization of the medical sector will 

likely be pushed by political authorities, the adoption of machine-learning tools as part of 

clinical routines is, to date, rather alien for most clinicians and requires individual engagement, 

motivation, and trust. To account for this and to enable medicine and the health care sector to 
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profit from knowledge contained in big data, which is not accessible via current laboratory 

diagnostics, IT frameworks must account for the characteristics of the medical and health care 

sector setting, not vice versa.  

Swarm Learning accounts for this by translating the core values of the medical traditions such 

as confidentiality and knowledge sharing to a state-of-the-art machine learning framework and 

could therefore become the basis for large prospective trials on ML-based applications as well 

as integral part of future diagnostic pipelines. Interestingly, the concept of Swarm Learning has 

been taken up by the scientific community in biomedicine as well as computer science and is 

currently being explored further. An independent research group has shown that SL can be 

used to predict the mutational status of colorectal cancer based on histopathology images 

(Saldanha et al. 2022) and for establishing molecular biomarkers in gastric cancer (Saldanha et 

al. 2023), and the European Union recently funded a large consortium to establish a Swarm 

Learning Network in the context of breast cancer screening (“ODELIA ” 2023). Technical 

extensions of the SL concept have been proposed in the field of computer science, e.g. adding 

a human-in-the loop for integrating user feedback in the loop of learning (Dong, Sarker, and 

Qian 2022) and a swarm deep reinforcement learning framework in the field of robotics (Zhu, 

Zhang, and Li 2022).  

In essence, SL is a computational framework which is agnostic to the concrete machine 

learning algorithm that is used for training, and the concept is in principle applicable to any 

model architecture which is defined by sharable parameters. Therefore, when arguing for SL 

in diagnostic routines, a multitude of additional perspectives relate to this. One central aspect 

is model interpretability, which is not only necessary to generate trust among clinicians and 

patients, but it has also recently been formulated as a requirement for GDPR-compliance 

(Sovrano, Vitali, and Palmirani 2020). The lack of explainable models is considered as one of 

the key reasons for the restricted uptake of AI algorithms in healthcare and when models or 

systems cannot be well interpreted, it can be difficult to accept and communicate their 

conclusions (Reddy 2022). This is especially important when high-performing models are 

found to use wrong or confounding variables, as it has been described for the image-based 

prediction of hip fractures (Badgeley et al. 2019) or the detection of COVID-19 (DeGrave, 

Janizek, and Lee 2021). A whole field of research has emerged to address these issues and to 

illuminate and communicate decision processes of deep-learning architectures (Mukhtorov et 

al. 2023; Javed et al. 2023; Kandul et al. 2023). Of note, many of these improvements that are 

being made on explainable AI can also be integrated in a clinical pipeline based on the SL 
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framework. The same is true for additional measures of data safety and security such as 

homomorphic encryption (Froelicher et al. 2021) and differential privacy (Abadi et al. 2016), 

which are in principle orthogonal to the SL framework and can be added to it.  

Another important aspect for a potential deployment of a decentralized machine learning 

system in the healthcare sector is the option to deploy a model sequentially at different sites 

since data might not be available at all contributing centers simultaneously. For this, continuous 

learning algorithms are needed, where a single model continues to learn from new cohorts of 

patients and maintains generalizability. Clinical examples of this have been reported 

(Amrollahi et al. 2022; Kiyasseh, Zhu, and Clifton 2021) and implementing such an approach 

in a Swarm Learning-based application would be of high importance.  

To exemplify how SL can be utilized at different stages of a future diagnostic workflow, 

consider a patient with undiagnosed AML that presents at the GP with unspecific symptoms 

such as weakness and fever (Figure 8). Currently, the most likely diagnostic path is that this 

patient faces several referrals before the correct primary diagnosis is being made, especially in 

early stages of the disease. Also, standard blood tests that are being performed at the GP are 

providing only single parameters, which need to be evaluated manually. When being referred 

to a hematologist, AML subtyping is performed and the therapy is started. In contrast, an 

alternative workflow which considers also high-dimensional omics profiles and world-wide 

insights based on Swarm Learning would look differently. The general practitioner would still 

examine the overall health of the patient by routine procedures, but additionally perform a 

standard “CBC 2.0”, which profiles the whole transcriptome of a patient, and potentially further 

omics layers. This data would be stored locally, for instance at a cooperating hospital with the 

respective IT infrastructure, which is collaborating via an international Swarm Network, 

thereby receiving regular updates on diverse disease models. For example, one could imagine 

a Swarm Network collaboratively training a pan-cancer classification model, which can predict 

the most likely type of cancer based on the transcriptome. Ideally, the GP would have easy 

access to these scores via a SL portal, could get information on these disease scores and match 

it with other parameters that they assessed manually, such as the overall condition of the 

patient. Like this, onward referral of a patient could be accelerated. Next, the hematologist 

could equally profit from accessing the Swarm Portal and could, in addition to standard tools 

such as assessing cytomorphology, cytogenetics and immunophenotyping, have access to 

individualized therapy response predictions based on the molecular profile of the patient. 

Finally, after the disease subtype is defined and a therapy plan is established, it would be 
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essential for such a workflow to include a follow-up evaluation e.g. one and five years after 

treatment.  

 

Figure 8: Schema on current workflow of AML primary and differential diagnostics in 

comparison to a future, multi-omics based workflow that which is connected to a continuously 

learning Swarm Learning ecosystem. Like this, world-wide knowledge can be accessed and 

translated into local treatment decisions.  

Like this, the patient data on the finally assigned disease subtype, the response to the chosen 

therapy regimen, remission status and survival could be added to the secure database and these 

expert-proven labeled data could in turn improve the globally shared diagnostic model, without 

compromising sensitive information. Like this, classifier performance could be continuously 

evaluated, and it can be immediately intervened in case the performance is not sufficient. This 

stands in stark contrast to current practice, where performance measures of state-of-the-art 
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diagnostic methods are simply not measured or reported. Clearly, such an alternative diagnostic 

workflow would, besides the proposed solution for knowledge sharing without data sharing, 

require fundamental changes in the infrastructure and mechanisms for data collection and 

storage, which are beyond the scope of this work.  

Finally, as with any AI-based system meant to support clinical decision making, additional 

ethical, regulatory, and practical considerations would need to be addressed for deployment. 

Importantly, the approach proposed here is not aiming to put AI in a position to outcompete 

human decision making, as it may regularly be framed as “human vs. AI”. The perspective is 

rather to elucidate whether a collaborative setup between humans and AI is possible, where 

humans still have oversight and are integral part of the decision process (“human in the loop”) 

(Rajpurkar et al. 2022). This is also reflected by current legal frameworks, since ultimately AI 

systems will not be subject to liability. In that sense, AI-guided diagnostics would be an 

additional, yet very powerful, set in the diagnostic toolbox, which would be no means free 

human from responsibility that comes with any diagnostic test, not the user, the physician, nor 

the producer of the application, who are liable for the performance of any diagnostic tests 

provided already today. In case of harm caused by AI systems, the legal responsibility would 

be allocated between either the producers or the users of AI, but not the AI itself. (Buiten, de 

Streel, and Peitz 2023). This having said, the concrete status of AI-based technology in routine 

diagnostics however would also be dependent on the perception and the usability for a concrete 

medical use-case. For example, whether results of AI algorithms are communicated as 

probabilities, text recommendations or by highlighting areas of interest in an image. As 

outlined above, the next step would be to develop prospective trials, which systematically 

access the diagnostic utility of the proposed approach, ideally in comparison to the current 

diagnostic standards, for which unfortunately no information on detection performance is 

reported. Standard guidelines that aim to improve completeness of reporting of clinical trials 

and their protocols have however been extended to also cover AI interventions (Cruz Rivera et 

al. 2020; Xiaoxuan Liu et al. 2020), making a systematic evaluation of such a concept possible.  

Overall, the concept presented here could be translated to many other settings than AML 

diagnostics, it would enable improved detection of rare diseases, it could be beneficial e.g. in 

pandemic scenarios, and it would enable the development of system-level medical diagnostics 

based on global cooperation. 
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SUMMARY

Acute myeloid leukemia (AML) is a severe, mostly fatal hematopoietic malignancy. We were inter-

ested in whether transcriptomic-based machine learning could predict AML status without requiring

expert input. Using 12,029 samples from 105 different studies, we present a large-scale study of ma-

chine learning-based prediction of AML inwhichwe address key questions relating to the combination

of machine learning and transcriptomics and their practical use. We find data-driven, high-dimensional

approaches—in which multivariate signatures are learned directly from genome-wide data with no

prior knowledge—to be accurate and robust. Importantly, these approaches are highly scalable

with low marginal cost, essentially matching human expert annotation in a near-automated workflow.

Our results support the notion that transcriptomics combined with machine learning could be used as

part of an integrated -omics approach wherein risk prediction, differential diagnosis, and subclassifi-

cation of AML are achieved by genomics while diagnosis could be assisted by transcriptomic-based

machine learning.

INTRODUCTION

Recommendations for the diagnosis and management of malignant diseases are organized by interna-

tional expert panels. For example, the first edition of the European LeukemiaNet (ELN) recommendations

for the diagnosis and management of acute myeloid leukemia (AML) in adults was published in 2010 (Döh-

ner et al., 2010) and recently revised in 2017 (Döhner et al., 2017). Based on recent DNA sequencing results,

such as those derived from The Cancer Genome Atlas, AML can be subdivided into multiple subclasses

(Arber et al., 2016; Ding et al., 2012; Ley et al., 2008, 2010; Loriaux et al., 2008; Papaemmanuil et al.,

2016; The Cancer Genome Atlas Research Network (TCGA) et al., 2013; Welch et al., 2012; Yan et al.,

2011). Leukemias are characterized by strong transcriptomic signals, as seen in a pioneering study almost

two decades ago by Golub et al. (Golub et al., 1999) and a rich body of subsequent work (Debernardi et al.,

2003; Kohlmann et al., 2003; Ross et al., 2004; Schoch et al., 2002; Virtaneva et al., 2001). These findings led

to the suggestion that gene expression profiling (GEP) could be utilized to define leukemia subtypes and

derive useful predictive gene signatures (Andersson et al., 2007; Bullinger et al., 2004). Nevertheless, ac-

cording to the ELN recommendations primary diagnosis still relies on classical approaches including

assessment of morphology, immunophenotyping, cytochemistry, and cytogenetics (Döhner et al., 2017).

Although undoubtedly effective in detecting disease, these existing diagnostic approaches rely on large

investments in human expertise (training and employment of specialists) and physical infrastructure, whose

costs scale with the number of samples. This has implications for accessibility (e.g., in rural areas or outside

developed regions) and on cost and logistical grounds alone limits the scope to consider alternatives to the

overall decision pipeline. In contrast to classical diagnostic pipelines that are centered on interpretation of

results by human experts, artificial intelligence- (AI) and machine learning- (ML) based approaches have

the potential for low marginal cost (i.e., cost per additional sample once the system is trained) (Esteva

et al., 2017), and this key aspect of AI and ML is widely appreciated in the economics literature (see,

e.g., Brynjolfsson and McAfee, 2014).

The potential of GEP for leukemia diagnosis has been recognized. A decade after the pioneering work

of Golub et al., the International Microarray Innovations in Leukemia Study Group proposed GEP by micro-

array analysis to be a robust technology for the diagnosis of hematologic malignancies with high accuracy
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(Haferlach et al., 2010). The utility of GEP by RNA sequencing (RNA-seq) has been also demonstrated for

other tumor entities, for example, breast cancer (Ciriello et al., 2015; Kristensen et al., 2012; Parker et al.,

2009), bladder cancer, or lung cancer (Hoadley et al., 2014; Robertson et al., 2017). Furthermore, in AML

research large RNA-seq datasets have been described in the meantime (Garzon et al., 2014; Lavallee

et al., 2016; Lavallée et al., 2015; Macrae et al., 2013; Pabst et al., 2016).

In parallel, a series of advances in ML, AI, and computational statistics have transformed our understanding

of prediction using high-dimensional data. A variety of approaches are now an established part of the tool-

kit, and for some models (including sparse linear and generalized linear models), there is a rich mathemat-

ical theory concerning their performance in the high-dimensional setting (Bühlmann and van de Geer,

2011). In a nutshell, the body of empirical and theoretical research has shown that learning predictive

models over large numbers of variables is often feasible and remarkably effective. In applied ML, there

has been a deepening understanding of practical issues, e.g., relating to the transferability of predictions

across contexts (Quiñonero-Candela et al., 2009), that is very relevant to the clinical setting.

Based on these developments in the data sciences and the increasing availability of GEP data derived

from peripheral blood including AML, we sought to develop near-automated approaches in which ML

tools automatically learn suitable patterns directly from the global transcriptomic data without pre-selec-

tion of genes. To this end, we built the probably largest reference blood GEP dataset comprising 105 in-

dividual studies with, in total, more than 12,000 patient samples. We applied high-dimensional ML

approaches to build genome-wide predictors in an unbiased, entirely data-driven manner and tested

predictive accuracy in held-out data. We emphasize that our goal was not to outperform classical diag-

nostic methods, but to ask whether we could match human annotation in a near-automated and scalable

manner. This aim is common to a number of recent efforts to use ML and AI advances in the diagnostic

setting (see, e.g., Esteva et al., 2017) wherein human-derived labels are used to guide learning. We did

not address the question of subclassification of leukemic disease, where the mutation status of the

leukemic cells is currently the dominant approach (Arber et al., 2016; Heath et al., 2017; Papaemmanuil

et al., 2016; The Cancer Genome Atlas Research Network (TCGA) et al., 2013), but rather focused on

primary diagnosis, which continues to rely mostly on classical approaches (morphology, immunophenotyp-

ing, cytochemistry). We carried out extensive tests designed to address specific concerns relevant to prac-

tical use, including the case of transferring predictive models between entirely disjoint studies (that could

be subject to batch effects or other unwanted variation) and even between transcriptomic platforms. Our

results show that combining ML and blood transcriptomics can yield highly effective and robust classifiers.

This supports the notion that transcriptomic-based ML could be used to assist AML diagnostics, particu-

larly in settings wherein hematological expertise is not sufficiently available and/or costly.

RESULTS

Establishment of a Unique GEP Dataset for Classifier Development

We hypothesized that the determination and comprehensive evaluation of GEP- and ML-based AML

classifiers requires large datasets, should include samples from many sources to mimic the situation in

real-world deployment, and should include several technical platforms to better understand their influence

on classifier performance. To achieve these goals, we wanted to include the largest number of peripheral

blood mononuclear cells (PBMC) or bone marrow samples possible and therefore systematically

searched the National Center for Biotechnology Gene Expression Omnibus (GEO; Edgar, 2002) database

for PBMC and bonemarrow studies (Figure 1A). We identified 153,922 datasets, of which 111,632 contained

human samples. To include only whole sample series and to avoid duplicate samples, we filtered for GEO

series (GSE) and excluded the so-called super series, which resulted in 2,715 studies. We then focused the

analysis on studies with samples analyzed on one of three platforms including the HG-U133A microarray,

the HG-U133 2.0 microarray, and Illumina RNA-seq. Next, duplicated samples and studies working with

pre-filtered cell subsets were excluded. This study search strategy resulted in 105 studies with a total of

12,029 samples (Figure 1) including 2,500 samples assessed by HG-U133A microarray (Dataset 1), 8,348

samples by HG-U133 2.0 microarray (Dataset 2), and 1,181 samples by RNA-seq (Dataset 3). In total, the

dataset contained 4,145 AML samples of diverse disease subtypes and 7,884 other samples derived

from healthy controls (n = 904), patients with acute lymphocytic leukemia (ALL, n = 3,466), chronic myeloid

leukemia (CML, n = 162), chronic lymphocytic leukemia (CLL, n = 770), myelodysplastic syndrome (MDS, n =

267), and other non-leukemic diseases (n = 2,312) (Figures 1B, S1, and S2). Unless otherwise noted, all

samples derived from patients with AML are referred to as cases and non-AML samples as controls. We
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additionally considered a differential diagnosis-like setting, in which case the controls comprised non-AML

leukemias. According to the three platform types, the whole sample cohort was divided into three datasets

referred to as datasets 1, 2, and 3 (Table S1, Figure S1).

Figure 1. Establishing Datasets for the Largest AML Meta-study to Date

(A) Flowchart for the inclusion of studies. The gene expression omnibus (GEO) database was systematically searched for

GEO Series of human PBMC and bone marrow samples processed with microarray platforms (Affymetrix HG-U133A and

HG-U133 2.0) or next-generation RNA sequencing (RNA-seq) data. These data were filtered for inclusion of AML samples,

samples of other leukemia, and healthy samples or other diseases. After manual revision and exclusion of duplicates and

experiments using sorted cell populations (‘‘expert filter’’), the data were combined and normalized independently for

each dataset.

(B) Detailed overview of the three datasets established in this study after filtering as given in (A).

See also Figure S1.
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Effective AML Classification Using High-Dimensional Models

Here, we sought to assess classification of AML versus non-AML. Microarray data were RMA normalized

using the R package affy (Gautier et al., 2004), whereas RNA-seq data were normalized as implemented

in the R package DESeq2 (Love et al., 2014). For further analysis and better comparison between the

different datasets, we trimmed the data to 12,708 genes, which were annotated within all datasets. No

filtering of low expressed genes was performed (Figure 2A). The size of the test set was 20% of the total

sample size, and random sampling of training and test sets was repeated 100 times. As main performance

metrics, we considered (held-out) accuracy, sensitivity, and specificity. Classification was performed using

l1-regularized logistic regression (the lasso; see also later).

First, we included all non-AML samples, consisting of healthy controls and non-leukemic diseases, among

the controls (Figures 2B, 2D, and 2F, light blue lines, Table S2). The goal was to classify unseen samples

as AML or control. To understand how much data is needed in this setting, we plotted learning curves

showing the test set accuracy as a function of training sample size ntrain. For each gene expression platform,

this was done by randomly subsampling ntrain samples and testing on held-out test data with fixed sample

size ntest (as shown). We see that prediction in this setting is already highly effective with a small number of

training samples, although accuracy still increases with increasing ntrain (note that the total number of

samples and hence range of ntrain differs by platform).

In many clinical settings, the control group does not contain healthy controls, but rather related diseases.

To test effectiveness in a differential diagnosis setting, we repeated the experiments but with controls

sampled only from other leukemic diseases, such as ALL, CLL, CML, and MDS (Figures 2C, 2E, S3–S5,

and S13). We observed similar prediction results, which indicated that prediction accuracy is not only

due to large differences between AML and non-leukemic conditions.

In additional experiments we considered performance of nine different classification methods (Figures S3–

S5, Table S4). We could predict AML with good accuracy with all tested classification algorithms on micro-

array platforms (Figures S3 and S4). For RNA-seq data, the lasso, k nearest neighbors, linear support vector

machines, linear discriminant analysis, and random forests were able to predict with high sensitivity

and specificity (Figure S5, for details on used packages see Transparent Methods). Lasso-type methods

have several advantages, including extensive theoretical support and interpretability, so we focused on

these as our main predictive tool. Deep neural networks provided similar prediction performance to

the lasso (Figure 2G) on dataset 2. We preferred the latter in this setting due to interpretability, because

the lasso provides explicit variable selection, facilitating model interpretation.

Evaluation of Positive Predictive Value under Various Prevalence Scenarios

For diagnostic utility, the positive predictive value (PPV; the probability of disease given a positive test

result) is an important quantity. The PPV depends not only on sensitivity and specificity but also on prev-

alence, as it is harder to achieve a high PPV for a condition that is rare in the population of interest.

This has implications for any change to the effective threshold at which a potential case enters the diag-

nostic pipeline. As this threshold is relaxed, the prevalence (in the tested population) decreases, which in

turn reduces the PPV. Thus, although we found high accuracy, sensitivity, and specificity already at mod-

erate ntrain, depending on the use case, this could still imply that large training sample sizes would

be useful to reach acceptable PPVs. For example, the predictive gains in increasing ntrain from the lowest

to the highest values indicated in Figure 2C, which is for the dataset with largest total sample size, corre-

spond to a doubling of PPV from �20% to �40% at an assumed prevalence of 1% (Figure 3). This

illustrates the fact that although after a certain point increasing ntrain tends to increase accuracy only

slowly, the gains, even if small in absolute terms, can be highly relevant with respect to PPV in low-prev-

alence settings.

Assessing the Effect of Cross-Study Variation on Predictive Performance

Microarray data and data generated by high-throughput sequencing are both known to be susceptible to

batch effects (Leek et al., 2010). More generally, diverse study-specific effects and sources of study-to-study

variation can pose problems in the context of predictive tests for clinical applications. Predictors that

perform well within one study may perform worse when applied to data from new studies (Hornung

et al., 2017) with implications for practical generalizability.
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The aforementioned results spanned data frommultiple heterogeneous studies. Provided training and test

data are sampled in the same way, such heterogeneity does not necessarily pose problems for classifica-

tion, as evidenced earlier. However, if the training and test data are from entirely different sites/studies

(rather than randomly sampled from a shared pool), then the impact of batch/study effects may be more

serious. We took advantage of the large number of studies in our dataset to sample training and testing

sets in such a way that they were mutually disjoint with respect to studies. That is, any individual study

from which any sample was included into the training dataset was entirely absent from the test set, and

vice versa, and we use the term cross-study to refer to this strictly disjoint case. Results are shown in Figures

2B, 2D, and 2F (dark blue lines). As expected, performance was worse in the cross-study setting than

under entirely random sampling (light blue lines). However, in the dataset with the largest sample size (da-

taset 2, platform HG-U133 2.0; Figure 2D) we see that the performance in the cross-study case gradually

catches up to the random sampling case with only a small gap at the largest ntrain. The other two datasets

have smaller total sample sizes, so they never reach comparable training sample sizes. Note that we did not

carry out any batch effect removal using tools such as combat (Johnson et al., 2007), SVA (Leek et al., 2012),

or RUV (Jacob et al., 2016), and in that sense our results are conservative. Despite the availability of

these and other tools for batch effect correction, it is difficult to be fully assured of the removal of unwanted

variation in practice. Our intention here was not to remove between-study variation but rather to (conser-

vatively) quantify its effects on accuracy.

Owing to the large number of studies included in our analysis, we were able to carry out an entirely disjoint

cross-study analysis also for the differential diagnosis case. These results are shown in Figures 2C and 2E

(dark blue lines; cross-study sampling for differential diagnosis was not possible using dataset 3 due to

lack of samples, see Figure S1) and are broadly similar, also across different classification algorithms

(Figures S6–S8).

However, even in this strict cross-study sampling scenario, where samples from studies of the training

and testing sets are entirely disjoint, the predictor matrices are still normalized together, meaning that

the prediction rule still depends to some extent on features (not labels) in the test set. To address this issue,

we performed addon RMA normalization (Hornung et al., 2017) as implemented in the R package bapred

(Hornung et al., 2016). We split dataset 1 in training and testing data in a strict cross-study setting as in

Figure 2A, performed RMA normalization on the training data, and then performed addon normalization

of the test data onto the training data, meaning that the normalization of the training data does not in

any sense depend on the testing data (Figure S9A). Accuracy, sensitivity, and specificity of this setting

compare well to the ‘‘classical’’ cross-study setting described earlier (Figures 2 and S6A).

Classification Accuracy and AML Subtypes

Next, we sought to understand whether the accuracy of the classifiers depended on specific AML subtypes.

As only a limited number of samples in our data were already annotated according to the newWorld Health

Organization (WHO) classification, we utilized the French-American-British (FAB) classification of AML. The

FAB classification was available for a total of 616 samples of dataset 1 and 1,269 samples in dataset 2.

We utilized results from train/test splits of datasets 1 and 2 to quantify accuracy for each individual sample

(Figures 4A and 4D). No particular AML subtype dominated classification accuracy in either dataset 1 or 2

(Figures 4C and 4F). Prediction accuracy was also consistent when broken down by non-AML disease

category (Figures 4B and 4E). In dataset 1, 8 MDS samples and 10 samples from patients with Down

syndrome transient myeloproliferative disorder were misclassified. However, both are diseases closely

related to AML and represented by a very limited sample size in dataset 1. For dataset 2, correct classifi-

cation of MDS appeared to depend on the individual sample, potentially reflecting disease heterogeneity.

Figure 2. Prediction of AML in Random and Cross-study Sampling Scenarios

(A) Schema illustrating the approach to predict AML in random and cross-study sampling scenarios.

(B–D) AML classification accuracies based on the lasso model of AML versus all other samples and for both sampling strategies are shown for dataset 1 (B),

dataset 2 (C), and dataset 3 (D).

(E and F) Classification accuracies for the differential diagnosis case (AML versus other leukemic samples, namely, AML, ALL, CML, CLL, and MDS) for both

sampling strategies are shown for dataset 1 (E) and dataset 2 (F). Mean accuracies of the lasso models are shown as a function of the training sample size

ntrain. Results are over 100 random training and test sets, with error bars indicating the standard deviation.

(G) Comparison of the performance of the LASSO models introduced in panels A to F with a neural network approach using either 5 or 10 layers. Error bars

indicate the standard deviation.

See also Figures S3–S8 and S13, and Tables S2 and S4.
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While our main focus is on diagnosis, we asked whether the transcriptomic data could contribute to clas-

sifying AML subtypes. To exemplify this aspect, we focused on AML subtype M3, also named acute pro-

myelocytic leukemia, as this is the only genetically defined subtype of the FAB classification that is also

part of the WHO classification. Using dataset 2, we used a train/test approach, drawing subsets of dataset

2 with approximately the same class balance as in main results (here, one-third AML-M3 cases in every sub-

set) (Figure 4G). M3 was distinguished from non-M3 AMLwith high accuracy, sensitivity, and specificity (Fig-

ure 4H). Although the data here do not allow rigorous testing of transcriptomics combined with genomics

in an integrated fashion for subtype classification, and we would not recommend at this stage the use of a

purely transcriptomic classifier for subtyping, these initial results suggest that it may be useful to further

study the potential value of testing scalable ML- and GEP-based methodology in the area of subclassifi-

cation as well.

Translation of Classifiers across Technical Platforms

Over the long term, clinical pipelines must cope with changes in technological platforms. It is therefore

relevant to understand to what extent predictors can generalize not only between studies but also between

different platforms. In other words, is it possible to take a model learned on data from platform A and

deploy it using unseen data from platform B? To address this question, we constructed AML versus non-

AML training and test sets in a cross-platformmanner, i.e., training on one platform and testing on another

(Figure 5A). That is, a model was learned using independently normalized data from one platform and

then this model, used ‘‘as is,’’ with no further fine-tuning, was used to make predictions using expression

data from a different platform. We see that classification accuracy varies greatly. Classifiers that were

trained on HG-U133 A (dataset 1) work well when tested using data generated with the more advanced mi-

croarray HG-U133 2.0 (dataset 2) (Figures 5B and S10) and models trained on HG-U133 2.0 data can predict

well using RNA-seq data (dataset 3) (Figures 5D and S11). However, models trained naively on HG-U133 A

data cannot predict using RNA-seq data (Figures 5F, S12, and S13, Table S4).

To explore the utility of simple transformations in this context, we then performed a rank transformation to

normality on all datasets (see Transparent Methods). This is among the simplest and best known data trans-

formations, has previously been shown to increase the performance of prognostic gene expression signa-

tures, and can even outperform more complex variance-stabilizing approaches (Zwiener et al., 2014). With

this approach, we reached very good overall performance across all platforms under study (Figures 5C, 5E,

and 5G). This is particularly interesting for the prediction of dataset 3, which fails when the model is trained

on the untransformed dataset 1 (Figures 5F, 5G, S11, and S12) and performs worse (on dataset 3) as ntrain
increases. This is because as ntrain increases, the models learn a pattern that is increasingly fine-tuned to

the data type in the training set. However, because the test set is from a different platform, test perfor-

mance suffers. This is most likely not classical ‘‘overfitting,’’ because as shown in previous figures test error

is well-behaved within dataset 1, but rather an example of a transfer learning/distribution-shift type prob-

lem, which in this case is solved simply by rank transformation. Note that the transformation is simply

applied to each dataset independently and could be easily deployed in any practical use case without

any need for prior input into, e.g., cross-platform designs such as inclusion of control samples.
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Furthermore, we used the rich resource of the present dataset to explore whether prediction across

leukemic diseases would be possible as well. For this, we trained a multilabel-classifier on dataset 2 using

both datasets 1 and 3 as independent validation sets (Figure S14A). We found good prediction accuracy,

sensitivity, and specificity over most tested diseases (Figure S14B); however, a rigorous study over all

leukemic conditions would clearly require the inclusion of more training samples for CLL and CML.

Predictive Signatures and AML Biology

The predictive models derived from the lasso and used earlier are sparse in the sense that they automat-

ically select a small number of genes to drive the prediction. The genes are selected in a unified global anal-

ysis, rather than by differential expression (DE) on a gene-by-gene basis. From a statistical point of view,

global sparsity patterns for prediction and gene-by-gene DE are different criteria. Differentially expressed

genes are those that individually have different levels between the groups, whereas genes selected for

prediction are those that together perform well in a predictive sense. For the lasso, the selected set of

genes also typically includes false-positives with respect to the truly relevant predictors. Furthermore, a

good set of genes for prediction need not be mechanistic (in the sense of constituting causal drivers of

the disease state). We therefore sought to understand the relationship between DE, known mechanisms,

and predictive gene signatures.

Using dataset 2 (the largest dataset) we compared DE and the sparse predictive models (Figure S15). We

performed DE analysis using the whole dataset and compared the results with the set of genes in the lasso

model (‘‘lasso genes’’) based on the same data (Figure 6A). A total of 506 genes was differentially expressed

(‘‘DE genes’’), of which 26 were associated with the disease ontology term or Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway for AML (‘‘AML-related genes’’). Of the 141 lasso genes, 7 genes were

leukemia related and 46 were DE genes, meaning that many of the lasso genes were not differentially ex-

pressed, as clearly seen when overlaying the lasso gene selection on a volcano plot (Figure 6A). This under-

lines the fact that DE and predictive value in a signature sense are different criteria.

Next, we extended this analysis to focus on DE and lasso genes whose selection was robust to data sub-

sampling. This was done by subsampling half the dataset randomly 100 times and in each such subsample

carrying out the full DE and lasso analyses. For the lasso this type of approach has been studied under

the name stability selection (Meinshausen and Bühlmann, 2010). DE and lasso genes were then scored

according to the frequency with which they appeared among the 100 rounds of selection (Figure 6B).

Thus, an inclusion score of 100% for a DE gene means that the gene is selected as differentially expressed

in all 100 iterations, and similarly for the lasso genes. In total, 669 genes passed the DE cutoffs in at least

50% of the iterations, whereas 80 genes were called in at least 50% of the iterations by the lasso model (Fig-

ure 6B). Of these genes, 35 were called according to both criteria. The above-mentioned results show that

even among the genes that are included in the lasso models with high frequency (i.e., those genes that are

robustly selected for prediction), many are not differentially expressed.

Next, we excluded the 155 known AML genes that are associated with the disease ontology term or

KEGG pathway for AML from the prediction, which did not affect disease prediction at all (Figure 6C), high-

lighting the strong robustness of the classifier. To better understand the potential biological relevance for

AML of the 35 genes that were robustly called under both DE and lasso criteria (Figure 6B), we visualized the

top-ranked genes over all 8,348 samples within the dataset by hierarchical clustering of z-transformed

expression values (Figure 6D). We identified one distinct cluster of genes with the majority of genes being

elevated in AML compared with other leukemias and non-leukemic samples (cluster 1, n = 29). Although we

identified several well-known AML-related genes (gene name in red color) such as the KIT Proto-Oncogene

Receptor Tyrosine Kinase (KIT) (Gao et al., 2015; Heo et al., 2017; Ikeda et al., 1991), RUNX2 (Kuo et al.,

2009), and FLT3 (Bullinger et al., 2008; Carow et al., 1996) in this cluster, many genes have not yet been

Figure 4. Accuracy of AML Classification in Different Leukemia Types and AML Subclasses

(A) Schema for determining accuracy for leukemia types and AML subclasses in dataset 1.

(B–D) Normalized dataset 1 was randomly split into training and test sets 100 times (same permutations as in Figure 2B), and prediction accuracy is reported

for each individual sample. The bars in the figure correspond to individual samples broken down by leukemia type (B) and AML subtype (C). (D) Schema for

determining accuracy for leukemia types and AML subclasses in dataset 2.

(E–H) Normalized dataset 2 was randomly split into training and test sets 100 times (D) and prediction accuracy is reported for each individual sample, listed

by leukemia type (E) and AML subtype (F). Workflow for M3 subtype prediction using dataset 2 (G) Boxplots of prediction accuracy, sensitivity, and specificity

over 100 train/test splits (H). Error bars depict the standard deviation.
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linked to AML biology, and, although not the focus of the present article, further study of these genes may

be interesting from a mechanistic point of view. Within the other cluster (cluster 2, n = 6 genes), genes had

reduced expression values in AML compared with other leukemias and two of these genes have been

linked to other types of leukemias (gene names in orange color).

DISCUSSION

Despite the pioneering studies by Golub and others (Debernardi et al., 2003; Kohlmann et al., 2003; Ross

et al., 2004; Schoch et al., 2002; Virtaneva et al., 2001) suggesting high potential value of GEP for primary

AML diagnosis and differential diagnosis, current recommendations for diagnosing this disease currently

center on classical approaches including assessment of morphology, immunophenotyping, cytochemistry,

and cytogenetics (Döhner et al., 2017). Analyzing more than 12,000 samples from more than 100 individual

studies, we provide evidence that combining large transcriptomic data withML allows for the development

of robust disease classifiers. Such classifiers could, in the future, potentially assist in primary diagnosis of

this deadly disease particularly in settings where hematological expertise is not sufficiently available

and/or costly. Considering the increased utilization of whole-genome and whole-transcriptome

sequencing in the management of patients with cancer, we propose that application of GEP- and ML-

based classifiers for diagnosis needs to be re-evaluated. This is in line with previous suggestions by the In-

ternational Microarray Innovations in Leukemia Study Group (Haferlach et al., 2010). Furthermore, we sug-

gest that similar analyses may be useful for other diseases when analyzing whole blood or PBMC-derived

gene expression profiles, or for multiple conditions in parallel (see later).

We sought to understand and address some of the bottlenecks in the way of clinical deployment of

transcriptomic-based ML tools for diagnosis. To this end, we considered a range of practical scenarios,

including cross-study issues and prediction across different technological platforms. We found that accu-

rate prediction is possible across a range of scenarios and, in many cases, with relatively few training sam-

ples. However, we also showed that depending on the use case and the associated prevalence, large

training sets may be required to reach accuracies high enough to yield acceptable PPVs.

Our results show that with existing technologies it is potentially possible to achieve good performance in

a near-automated fashion. An ML-plus-genomics approach can be run at very low marginal cost: the RNA

assays can already be done at <$100 (and this continues to fall), and in the long-term these costs will drop

still further. To our knowledge, this is already in a cost range that is lower than the combined use of

morphology, immunophenotyping, and cytochemistry for primary AML diagnosis. Furthermore, the sparse

models we considered, once trained, require only a small subset of the genome, hence custom sequencing

pipelines could be used. Marginal cost is important precisely because it opens up the possibility of a truly

scalable detection/diagnosis strategy. One example of a recently developed, very-low-cost whole-tran-

scriptomics protocol is BRB-seq which allows generating genome-wide transcriptomic data at a similar

cost as profiling four genes using RT-qPCR (Alpern et al., 2019), which could be a candidate for future clin-

ical development. Furthermore, recent developments in nanopore sequencing (Byrne et al., 2017) suggest

that in the future, delivery of transcriptomic assays could be greatly simplified, and this, combined with

cloud- or local-device-based ML prediction, would represent a paradigm shift in terms of scalability and

accessibility. Such transcriptome-based ML might therefore also be utilized at an earlier time point in

the disease course, when patients present with non-specific symptoms to their primary care physician.

Here, ML-based diagnostics might assist a faster transfer of the patient to specialized hematology centers

for complete diagnostics and therapeutic management.

The next steps toward better understanding ML-based diagnosis for AML would include prospective

studies specifically aimed at assessing diagnostic utility. Before any development in the future pivotal clin-

ical trials for approval with the respective regulatory bodies would be required. Naturally, any such devel-

opment would require additional, independent studies with the development of deployment-ready

Figure 5. Translating Predictive Signatures across Technological Platforms

(A) Schema of signature translation across platforms. Datasets were normalized individually and trimmed to 12,708 common genes. The classifiers were

trained on subsamples of different sizes on one platform and tested on all samples of another platform.

(B–G) Classification accuracies are shown as a function of training sample size (ntrain) without rank transformation (B, D, and F) and with rank transformation (C,

E, and G). For the latter case, the training and test datasets (from different platforms) were separately rank transformed (see text for details). Error bars depict

the standard deviation.

See also Figures S10–S13.

iScience 23, 100780, January 24, 2020 11



pipelines, which by itself is a nontrivial undertaking (as discussed in Keane and Topol, 2018). However,

initial prospective studies have already been started, such as the 5000 genomes project (https://www.

mll.com/en/science/5000-genome-project.html), which also performs RNA-seq to develop such a classifier
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Figure 6. Predictive Signatures and AML Biology

(A) Volcano plot of global differentially expressed (DE) genes and genes of the lasso model (‘‘lasso genes’’) in dataset 2,

and Venn diagram indicating the overlap of both gene sets and the genes included in the KEGG pathway or the disease

ontology term ‘‘AML.’’

(B) Inclusion plot of DE genes and lasso genes in 100 random permutations of dataset 2. The plot is sorted according to

DE gene rank, and a Venn diagram shows the overlap between genes with a minimum of 50% inclusion.

(C) Boxplot of accuracy, sensitivity, and specificity of the predictive model trained and tested on random subsets of

dataset 2 with inclusion of all genes of the dataset and without 155 genes known to be relevant for AML biology. Error bars

depict the standard deviation.

(D) Heatmap and hierarchical clustering of z-scaled expression values of 35 genes with >50% inclusion both in lasso and

DE genes, as shown in (B). Genes with known associations with AML are marked red; genes associated with other types of

leukemia are labeled in orange.

See also Figure S15.
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for the clinics. It is also important to emphasize that just as regulatory standards have evolved for classical

diagnostics, so too will new regulatory frameworks be needed for ML-assisted diagnostics in the future

(Keane and Topol, 2018).

An additional point concerns explicit and implicit thresholds at which a suspected case is entered into

the pipeline in the first place. A lower threshold for entry could lower false-negatives and reduce the risk

of delayed treatment (which has been associated with worse outcomes, notably in younger patients;

Sekeres et al., 2008). Using current diagnostic systems any such change would dramatically increase the

overall costs; in contrast, more efficient solutions would allow thresholds to be optimized for patient benefit

while keeping the overall costs controlled. Naturally any modification to the overall diagnostic strategy

would need a full health economic and decision analysis (accounting in particular for a necessarily higher

false-positive rate) and case-by-case assessment. For some diseases it may be the case that earlier entry

into a diagnostic pipeline would overall not be beneficial, a point that is widely appreciated in the context

of population-level screening (see, e.g., Jacobs et al., 2016). Nevertheless, the point is that scalable diag-

nostic strategies increase the scope for optimization of decision making for patient benefit.

We saw also encouraging results across other conditions. Although the data used in the present study do

not allow rigorous study of diagnosis across multiple conditions, we conjecture that diagnosis of multiple

conditions from blood transcriptomes may be possible, opening up the possibility of training multi-class

classifiers on blood transcriptomic data. Note that this would allow diagnosis of several conditions at

essentially the same marginal cost per additional sample, bolstering the economic case outlined earlier.

Rigorous study would require new pan-disease study designs, but we think that such approaches could

lead to large efficiency gains in the future.

All our models were learned in an unbiased manner, directly from the full transcriptome data with no prior

biological knowledge or any pre-selection of genes. We showed that genes relevant for prediction were

often not differentially expressed and that prediction was robust to removal of known AML-related genes.

These observations illustrate two points of relevance to clinical applications. First, for prediction it can be

more fruitful to consider signatures derived in data-driven, genome-wide fashion than to think in terms of

single genes or DE. Second, high-dimensional analyses, although complex relative to more classical

methods, can be highly predictive as well as robust to the presence or absence of specific genes. Taken

together, our results underline the immense value of making GEP data publicly available, allowing

for new and large-scale multi-study analyses. Furthermore, we support the notion that the application of

ML approaches based on sequencing data to identify gene signatures for certain diseases such as AML

will become part of recommendations for diagnosis andmanagement of AML. We envision that combining

whole-genome and whole-transcriptome analysis based on ML algorithms will ultimately allow early

detection, diagnosis, differential diagnosis, subclassification, and outcome prediction in an integrated

fashion.

Limitations of the Study

It is important to note that the data used here were pooled from multiple studies with different designs

and goals. Further work, including suitably designed prospective studies, would be needed to better

understand the diagnostic utility of an ML-plus-transcriptomics approach. Site- and study-specific effects

may be relevant for clinical applications. This is because a classifier once learned might be deployed in a

range of new settings (sites, regions) that could lead in a number of ways to unwanted variation. If training

and test sets are very different, this can impact performance. In clinical applications of predictive models

it will be important to continually track performance even after deployment and the possibility of distribu-

tional shifts that require more complex analyses cannot be ruled out.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

Processed data can be accessed via the SuperSeries GSE122517 or via the individual SubSeries GSE122505

(dataset 1), GSE122511 (dataset 2), and GSE122515 (dataset 3). The code for preprocessing and for predic-

tions can be found at GitHub (https://github.com/schultzelab/aml_classifer). In addition, all data and
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package versions are stored in a docker container on Docker Hub (https://hub.docker.com/r/schultzelab/

aml_classifier, Table S3).

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.100780.

ACKNOWLEDGMENTS

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) un-

der Germany’s Excellence Strategy—EXC2151—390873048. This project has received funding from the Eu-

ropean Union’s Horizon 2020 research and innovation programme under grant agreement No 733100. J.L.S

is member of the Helmholtz network Sparse2Big.

AUTHOR CONTRIBUTIONS

Conceptualization, J.L.S. and S.M.; Methodology, S.M., J.L.S., and S.W.-H.; Software, S.W.-H., K.P., and

B.T.; Validation, B.T.; Formal Analysis, S.W.-H., T.U., K.P., J.S.-S., K.K., M.B., L.S.; Investigation, S.W.-H.,

T.U., P.G., K.B.; Resources, T.H., S.W.-H.; Data Curation, S.W.-H.; Writing – Original Draft, J.L.S., S.M.,

S.W.-H.; Visualization, S.W.-H., Supervision, J.L.S., S.M., M.B.

DECLARATION OF INTERESTS

There are no competing interests.

Received: August 26, 2019

Revised: December 3, 2019

Accepted: December 12, 2019

Published: January 24, 2020

REFERENCES
Alpern, D., Gardeux, V., Russeil, J., Mangeat, B.,
Meireles-Filho, A.C.A., Breysse, R., Hacker, D.,
and Deplancke, B. (2019). BRB-seq: ultra-
affordable high-throughput transcriptomics
enabled by bulk RNA barcoding and sequencing.
Genome Biol. 20, 71.

Andersson, A., Ritz, C., Lindgren, D., Edén, P.,
Lassen, C., Heldrup, J., Olofsson, T., Råde, J.,
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Supplemental Figure Legends 

 

Figure S1: Sample overview, related to Figure 2 

(A) Overview of the sample and study composition of all three datasets. The GSE number and the number 
of samples per disease are depicted for each study.  

 

Figure S2: Comparison of bone marrow and PBMC samples, related to Figure 1 

(A) Workflow: Dataset 2 was used to sample bone marrow and PBMC samples of AML patients and controls 
in equal numbers. (B) The resulting dataset of 332 samples was scaled and gene expression values of the 
top 25% variable genes were clustered and shown in a dendrogram.   

 

Figure S3: Prediction of AML in random sampling scenarios (dataset 1), related to Figure 2 

(A) Workflow: Dataset 1 (Affymetrix HG-U133 A) was RMA normalized and subjected to 100 times random 
sampling of training and test data, with training data samples from ntrain = 100 to ntrain = 2000 samples and 
test data of ntest = 500 samples. (B) Accuracy, sensitivity and specificity for nine different prediction 
algorithms on the whole dataset 1. (C) Accuracy, sensitivity and specificity for nine different prediction 
algorithms on leukemia samples of dataset 1 (AML, ALL, CML, CLL, MDS and down syndrome transient 
myeloproliferative disorder). Errorbars depict the standard deviation. 

 

Figure S4: Prediction of AML in random sampling scenarios (dataset 2), related to Figure 2 

(A) Workflow: Dataset 2 (Affymetrix HG-U133 2.0) was RMA normalized and subjected to 100 times random 
sampling of training and test data, with training data samples from ntrain = 100 to ntrain = 6679 samples and 
test data of ntest = 1669 samples. (B) Accuracy, sensitivity and specificity for nine different prediction 
algorithms on the whole dataset 2. (C) Accuracy, sensitivity and specificity for nine different prediction 
algorithms on leukemia samples of dataset 1 (AML, ALL, CML, CLL, MDS). Errorbars depict the standard 
deviation. 

 

Figure S5: Prediction of AML in random sampling scenarios (dataset 3), related to Figure 2 

(A) Workflow: Dataset 3 (RNA-seq) was normalized using DESeq2 and subjected to 100 times random 
sampling of training and test data, with training data samples from ntrain = 100 to ntrain = 945 samples and 
test data of ntest = 236 samples. (B) Accuracy, sensitivity and specificity for nine different prediction 
algorithms on the whole dataset 3. Prediction of leukemia samples only was not possible due to small 
sample sizes (see Figure S1). Errorbars depict the standard deviation. 

 

Figure S6: Prediction of AML in cross-study sampling scenarios (dataset 1), related to Figure 2 

(A) Workflow: Dataset 1 (Affymetrix HG-U133 A) was RMA normalized and subjected to 100 times cross-
study sampling of training and test data. (B) Accuracy, sensitivity and specificity for nine different prediction 
algorithms on cross-study sampling on the whole dataset 1, with training data samples from ntrain = 100 to 
ntrain = 1865 (mean) samples and test data of ntest = 500 samples. (C) Accuracy, sensitivity and specificity 
for nine different prediction algorithms on cross-study sampling of leukemia samples of dataset 1 (AML, 
ALL, CML, CLL, MDS and down syndrome transient myeloproliferative disorder), with training data samples 
from ntrain = 100 to ntrain = 1480 (mean) samples and test data of ntest = 436 samples. Errorbars depict the 
standard deviation. 



Figure S7: Effective prediction of AML in cross-study sampling scenarios (dataset 2), related to 
Figure 2 

(A) Workflow: Dataset 2 (Affymetrix HG-U133 2.0) was RMA normalized and subjected to 100 times cross-
study sampling of training and test data. (B) Accuracy, sensitivity and specificity for nine different prediction 
algorithms on cross-study sampling on the whole dataset 1, with training data samples from ntrain = 100 to 
ntrain = 5926 (mean) samples and test data of ntest = 1669 samples. (C) Accuracy, sensitivity and specificity 
for nine different prediction algorithms on cross-study sampling of leukemia samples of dataset 1 (AML, 
ALL, CML, CLL and MDS), with training data samples from ntrain = 100 to ntrain = 1750 (mean) samples and 
test data of ntest = 1210 samples. Errorbars depict the standard deviation. 

 

Figure S8: Effective prediction of AML in cross-study sampling scenarios (dataset 3), related to 
Figure 2 

(A) Workflow: Dataset 3 (RNA-seq) was normalized using DESeq2 and subjected to 100 times cross-study 
sampling of training and test data. (B) Accuracy, sensitivity and specificity for nine different prediction 
algorithms on cross-study sampling on the whole dataset 3, with training data samples from ntrain = 100 to 
ntrain = 889 (mean) samples and test data of ntest = 236 samples. Prediction of leukemia samples only was 
not possible due to small sample sizes (see Figure S1). Errorbars depict the standard deviation. 

 

Figure S9: Addon RMA normalization, related to Figure 2 

(A) Schema for addon RMA normalization on dataset 1. The 2500 samples were subjected to 50 times 
cross-study sampling, which corresponds to the first 50 permutations in Figure 5SA. Different to the 
aforementioned approach, the data was not normalized beforehand, but after splitting the samples into 
training and test data. Training data was RMA-normalized and testing data was normalized “onto” the 
training data using addon normalization. (B) Accuracy, sensitivity and specificity of addon normalization as 
shown in (A) (light blue), compared to performance of the “standard” cross-study sampling approach as 
described in Figure 5SA.  

 

Figure S10: Translating predictive signature across technological platforms (setting 1), related to 
Figure 4 

(A) Workflow: Datasets were normalized individually and trimmed to 12,708 common genes. The predictors 
were trained on subsamples of different sizes on dataset 1 and tested on all samples of dataset 2. (B) 
Accuracy, sensitivity and specificity of lasso prediction trained on dataset 1 with training sample size from 
ntrain = 100 to ntrain = 2500 and tested on the full dataset 2 (ntest = 8348). (C) Accuracy, sensitivity and 
specificity of lasso prediction trained on rank transformed dataset 1 with training sample size from ntrain = 
100 to ntrain = 2500 and tested on the full dataset 2 (ntest = 8348, rank transformed). Errorbars depict the 
standard deviation. 

 

Figure S11: Translating predictive signature across technological platforms (setting 2), related to 
Figure 4 

(A) Workflow: Datasets were normalized individually and trimmed to 12708 common genes. The predictors 
were trained on subsamples of different sizes on dataset 2 and tested on all samples of dataset 3. (B) 
Accuracy, sensitivity and specificity of lasso prediction trained on dataset 2 with training sample size from 
ntrain = 100 to ntrain = 8348 and tested on the full dataset 3 (ntest = 1181). (C) Accuracy, sensitivity and 
specificity of lasso prediction trained on rank transformed dataset 2 with training sample size from ntrain = 
100 to ntrain = 8348 and tested on the full dataset 3 (ntest = 1181, rank transformed). Errorbars depict the 
standard deviation. 



Figure S12: Translating predictive signature across technological platforms (setting 3), related to 
Figure 4 

(A) Workflow: Datasets were normalized individually and trimmed to 12708 common genes. The predictors 
were trained on subsamples of different sizes on dataset 1 and tested on all samples of dataset 3. (B) 
Accuracy, sensitivity and specificity of lasso prediction trained on dataset 1 with training sample size from 
ntrain = 100 to ntrain = 2500 and tested on the full dataset 3 (ntest = 1181). (C) Accuracy, sensitivity and 
specificity of lasso prediction trained on rank transformed dataset 1 with training sample size from ntrain = 
100 to ntrain = 2500 and tested on the full dataset 3 (ntest = 1181, rank transformed). Errorbars depict the 
standard deviation. 

 

Figure S13: F1 scores of AML prediction in random sampling, cross-study and cross-platform 
scenarios, related to Figures 2 and 5 
 
F1 scores of prediction results in random and cross-study sampling scenarios in dataset 1, all samples 
(A), dataset 1, leukemia samples only (B), dataset 2, all samples (C), dataset 2, leukemia samples only 
(D), and dataset 3, all samples (E). F1 scores for cross-platform prediction results for the settings 
depicted in Figure 5. (F-K).  

 

Figure S14: Pan-leukemia classification across platforms, related to Figure 4 

(A) Workflow: Datasets were normalized individually and trimmed to 12708 common genes and samples 
were filtered to include only AML, ALL, CML, CLL and healthy samples. A multilabel logistic regression 
model was fit on dataset 2 and then tested on the independently normalized datasets 1 and 3. (B,C) 
Confusion matrices comparing predicted labels to true labels for all tested leukemia types for testing on 
dataset 1 and 3, respectively. (D,E) Balanced accuracy, sensitivity and specificity of the multiclass 
prediction on dataset 1 and 3.   

 

Figure S15: Workflow: Comparing differentially expressed and predictive genes, related to Figure 5 

(A) Workflow to Figure 5: Dataset 2 was used to compare DE and the sparse predictive models. First, a 
global analysis of DE genes and lasso genes was performed and visualized in a heatmap. Second, dataset 
2 was permuted and 35 genes that appeared at least 50 out of 100 times as “DE gene” or “lasso gene” 
were visualized in a heatmap. Third, predictive signatures were trained on all 12708 genes, with and without 
155 known AML genes (genes included in DO and KEGG terms). Results were visualized in a boxplot.  
(B) Comparison of “lasso genes” of the prediction AML vs. all samples and AML vs. other leukemia samples 
of dataset 2 (same prediction setting as in Figures 2D, E).  
 

  



Transparent Methods 

Study search strategy 
All data sets published in the National Center for Biotechnology Information Gene Expression Omnibus 
(GEO, (Edgar, 2002)) on 20 September 2017 were reviewed for inclusion in the present study. Basic 
criteria for inclusion were the cell type under study (human peripheral blood mononuclear cells (PMBCs) 
and/or bone marrow samples) as well as the species (Homo sapiens). Both tissues are considered 
equivalent in the diagnosis of AML. We compared bone marrow and PBMC samples of dataset 2 and did 
not identify overall differences in gene expression (Figure S2) and therefore did not differentiate between 
bone marrow and PBMC samples throughout the study. Furthermore, we excluded GEO SuperSeries to 
avoid duplicated samples (Table S1). We filtered the datasets for data generated with Affymetrix HG-
U133 A microarrays, Affymetrix HG-U133 2.0 microarrays and high-throughput RNA sequencing (RNA-
seq) and excluded studies with very small sample sizes (< 50 samples for microarray and < 10 samples 
for RNA-seq data). We then applied a disease-specific search, in which we filtered for acute myeloid 
leukemia, other leukemia and healthy or non-leukemia-related samples. 

The results of this search strategy were then internally reviewed and data were excluded based on the 
following criteria: (i) exclusion of duplicated samples, (ii) exclusion of studies that sorted single cell types 
(e.g. T cells or B cells) prior to gene expression profiling, (iii) exclusion of studies with inaccessible data. 
Other than that, no studies were excluded from our analysis (see also Table S1). In addition, we included 
one unpublished dataset (in dataset 1). The above steps gave rise to the data referred to above as dataset 
1 (Affymetrix HG-U133 A microarrays), dataset 2 (Affymetrix HG-U133 2.0 microarrays) and dataset 3 
(RNA-seq). The RNA-seq data contained was not filtered for any particular protocol and contained paired 
and well as single-end data of different sequencing depth. AML subtype annotations were taken from the 
respective metadata-files on GEO. Subgroups of FAB-classifications were combined to represent the major 
FAB class (e.g. AML M3 and AML M3v were combined to AML M3).  

Pre-processing 
All raw data files were downloaded from GEO. For normalization, we considered all platforms 
independently, meaning that normalization was performed separately for the samples in dataset 1, 2 and 
3, respectively. Microarray data (datasets 1 and 2) were normalized using the robust multichip average 
(RMA) expression measures (Irizarry et al., 2003), as implemented in the R package affy (Gautier et al., 
2004). RNA-seq data (dataset 3) was preprocessed using kallisto (Bray et al., 2016) and normalized with 
the R package DESeq2 using standard parameters (Love et al., 2014). In order to keep the datasets 
comparable, we filtered the data for genes annotated in all three datasets, which resulted in 12,708 genes. 
No filtering of low-expressed genes was performed. All scripts used in this study for pre-processing are 
provided as a docker container on Docker Hub (https://hub.docker.com/r/schultzelab/aml_classifier). 

Prediction  
Prior to classification, data sets were split into non-overlapping training and test data. For the comparisons 
of AML vs. all samples, all non-AML samples were used as controls, which would in clinical terms, reflect 
finding a diagnosis. For the prediction of AML vs. other leukemia, all non-AML leukemias, namely chronic 
myeloid leukemia (CML), acute lymphoblastic leukemia (ALL), chronic lymphoblastic leukemia (CLL), 
Myelodysplastic syndrome (MDS) and down syndrome transient myeloproliferative disorder were used as 
non-AML labels, which would be the equivalent of finding a differential diagnosis between different 
leukemias. All main classification tasks were performed in the programming language R (R Core Team, 
2016). All main results were obtained using l1-penalized logistic regression using the package glmnet 
(Friedman et al., 2010). Non-zero coefficients were extracted for feature ranking (Figure 4). The 
regularization parameter was set using 10-fold cross-validation (using training set data only). To assess 
predictive performance, accuracy, sensitivity, specificity and F1 score were calculated as well as positive 
predictive value (PPV) under several prevalence scenarios. For assessing the performance of support 
vector machines (SVMs), we used the R package e1071 for SVMs (linear, radial, polynomial and sigmoid 
kernels) (Meyer et al., 2015). The R package randomForest was used for random forest classification (Shi 
et al., 2004). K nearest neighbors classification was done using the knn function implemented in the class 
package in R (Venables and Ripley, 2002). Linear discriminant analysis was performed with the lda function 
implemented in the R package MASS (Venables and Ripley, 2002). For RNA-seq data, features with zero 
variance were excluded for LDA. Prediction analysis of microarrays was done with the pamr package 



(Hastie et al., 2014). Neural networks were built using Keras (Chollet et al., 2017) with a Tensorflow 
backend (10 layers, ~7×106 parameters). Unless otherwise noted, default settings were used for tuning 
parameters as implemented in the respective packages.  

Rank transformation to normality 

As an example of a simple data transformation that would facilitate translation between gene expression 
platforms, we performed a rank transformation to normality. For this, gene expression values were 
transformed from microarray intensities (dataset 1 & 2) or RNAseq counts to their respective ranks. This 
was done gene-wise, meaning all gene expression values per gene were given a rank based on ordering 
them from lowest to highest value. The rankings were then turned into quantiles and transformed via the 
inverse cumulative distribution function of the Normal distribution. This leads to all genes following the exact 
same distribution (that is, a standard Normal with a mean of 0 and a standard deviation of 1) across all 
samples (Zwiener et al., 2014).  

Differential expression analysis 

For differential expression analysis of dataset 2 the R package limma was used (Ritchie et al., 2015). A 
linear model was fit on the data with inclusion of the study as a factor. Differentially expressed genes were 
called using an FDR-corrected p-value < 0.05 and a minimum fold change of +/- 2. For the permutation-
based approach, 4174 samples were randomly drawn 100 times from the dataset. In each subset, DE 
genes were called as before, but without correcting for any batch in the model. The number of times each 
gene was called was summed up over all 100 permutations. Genes were ranked according to their overall 
DE count.  

In addition to that a l1-penalized logistic regression was performed using the package glmnet (Friedman et 
al., 2010) on the whole dataset and on each of the permutations. Genes were called to be of predictive 
importance if features had non-zero coefficients. The number of times each feature was of predictive 
importance was summed up, which resulted in a feature ranking of all “lasso genes”.  

Hierarchical Clustering  

35 genes which had a stability of > 50% over 100 permutations for lasso and DE genes were visualized 
using the R package pheatmap (Kolde, 2015) (Figure 6B). The data was z-scaled and columns clustered 
according to Euclidean distance. Rows were ordered according to diseases. Two gene clusters were 
visualized. 

Exclusion of gene sets from prediction 

In order to evaluate the robustness of our classification results (Figure 6C), we excluded 155 genes present 
in either the KEGG or the disease ontology term “Acute Myeloid Leukemia” and compared this to the results 
achieved when all 12078 genes of the dataset are included (random sampling, dataset 2).  
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Fast and reliable detection of patients with severe and heterogeneous illnesses is a 
major goal of precision medicine1,2. Patients with leukaemia can be identified using 
machine learning on the basis of their blood transcriptomes3. However, there is an 
increasing divide between what is technically possible and what is allowed, because of 
privacy legislation4,5. Here, to facilitate the integration of any medical data from any 
data owner worldwide without violating privacy laws, we introduce Swarm 
Learning—a decentralized machine-learning approach that unites edge computing, 
blockchain-based peer-to-peer networking and coordination while maintaining 
confidentiality without the need for a central coordinator, thereby going beyond 
federated learning. To illustrate the feasibility of using Swarm Learning to develop 
disease classifiers using distributed data, we chose four use cases of heterogeneous 
diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 
16,400 blood transcriptomes derived from 127 clinical studies with non-uniform 
distributions of cases and controls and substantial study biases, as well as more than 
95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those 
developed at individual sites. In addition, Swarm Learning completely fulfils local 
confidentiality regulations by design. We believe that this approach will notably 
accelerate the introduction of precision medicine.

Identification of patients with life-threatening diseases, such as leu-
kaemias, tuberculosis or COVID-196,7, is an important goal of preci-
sion medicine2. The measurement of molecular phenotypes using 
‘omics’ technologies1 and the application of artificial intelligence (AI) 
approaches4,8 will lead to the use of large-scale data for diagnostic 
purposes. Yet, there is an increasing divide between what is techni-
cally possible and what is allowed because of privacy legislation5,9,10. 
Particularly in a global crisis6,7, reliable, fast, secure, confidentiality- and 
privacy-preserving AI solutions can facilitate answering important 
questions in the fight against such threats11–13. AI-based concepts range 
from drug target prediction14 to diagnostic software15,16. At the same 

time, we need to consider important standards relating to data privacy 
and protection, such as Convention 108+ of the Council of Europe17.

AI-based solutions rely intrinsically on appropriate algorithms18, 
but even more so on large training datasets19. As medicine is inherently 
decentral, the volume of local data is often insufficient to train reliable 
classifiers20,21. As a consequence, centralization of data is one model 
that has been used to address the local limitations22. While beneficial 
from an AI perspective, centralized solutions have inherent disad-
vantages, including increased data traffic and concerns about data 
ownership, confidentiality, privacy, security and the creation of data 
monopolies that favour data aggregators19. Consequently, solutions 
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to the challenges of central AI models must be effective, accurate and 
efficient; must preserve confidentiality, privacy and ethics; and must 
be secure and fault-tolerant by design23,24. Federated AI addresses some 
of these aspects19,25. Data are kept locally and local confidentiality issues 
are addressed26, but model parameters are still handled by central 
custodians, which concentrates power. Furthermore, such star-shaped 
architectures decrease fault tolerance.

We hypothesized that completely decentralized AI solutions would 
overcome current shortcomings, and accommodate inherently decen-
tral data structures and data privacy and security regulations in medi-
cine. The solution (1) keeps large medical data locally with the data 
owner; (2) requires no exchange of raw data, thereby also reducing 
data traffic; (3) provides high-level data security; (4) guarantees secure, 
transparent and fair onboarding of decentral members of the network 
without the need for a central custodian; (5) allows parameter merging 
with equal rights for all members; and (6) protects machine learning 
models from attacks. Here, we introduce Swarm Learning (SL), which 
combines decentralized hardware infrastructures, distributed machine 
learning based on standardized AI engines with a permissioned block-
chain to securely onboard members, to dynamically elect the leader 
among members, and to merge model parameters. Computation is 

orchestrated by an SL library (SLL) and an iterative AI learning proce-
dure that uses decentral data (Supplementary Information).

Concept of Swarm Learning
Conceptually, if sufficient data and computer infrastructure are avail-
able locally, machine learning can be performed locally (Fig. 1a). In 
cloud computing, data are moved centrally so that machine learning 
can be carried out by centralized computing (Fig. 1b), which can sub-
stantially increase the amount of data available for training and thereby 
improve machine learning results19, but poses disadvantages such as 
data duplication and increased data traffic as well as challenges for 
data privacy and security27. Federated computing approaches25 have 
been developed, wherein dedicated parameter servers are responsible 
for aggregating and distributing local learning (Fig. 1c); however, a 
remainder of a central structure is kept.

As an alternative, we introduce SL, which dispenses with a dedicated 
server (Fig. 1d), shares the parameters via the Swarm network and 
builds the models independently on private data at the individual sites 
(short ‘nodes’ called Swarm edge nodes) (Fig. 1e). SL provides security 
measures to support data sovereignty, security, and confidentiality 

a

e

b c d

i

j k l

ModelModel Private data

ParametersParameters

Swarm network
Private permissioned 
blockchain network

Private data

Swarm edge nodeSwarm edge node

Model Private data

Swarm edge node

Model Private data

Swarm edge node 101101
010010

Parameters

101
010

Parameters

101
010

0 500

Active tuberculosis 
(TB)

Whole blood transcriptomes (dataset B)

Latent TB  HIV Fatigue AID   Healthy

1,000 1,500 2,000

h

g

f
0

0

0

200

AML

AML

AML

ALL

ALL

PBMC transcriptomes (dataset A1)

PBMC transcriptomes (dataset A2)

PBMC transcriptomes (dataset A3)

MDS CML CLL Inf.  Diab. Other  Healthy

ALL MDS CML CLL Vaccination JIA Other Healthy

MDS   CML   CLL   Inf.   MS   Other Healthy

1,000

400 600

2,000

800

4,000

2,000

1,000

6,000 8,000

Swarm Learning

1

2 4

3

Data and
parameter

at edge

Federated learning

1

2

4

3

Parameter
central

Data 
at edge

Central learning

1

2

4

3

Data and
parameter

central

Local learning

1

2

4

3

Disconnected

0 20,000 40,000 60,000 80,000

X-ray images 
(dataset C)

Atelectasis Effusion In�ltration  Healthy>1 label

0 500

Acute TB    HIV  Fatigue  AID  Healthy

1,000 1,500 2,000

Whole blood transcriptomes 
(dataset D)

COVID-19

0 500 1,000 1,500 2,000

Whole blood and granulocyte 
transcriptomes (dataset E)

Convalescent COVID-19
 

HealthySepsisInf. 
COVID-19 

Latent TB 

Fig. 1 | Concept of Swarm Learning. a, Illustration of the concept of local 
learning with data and computation at different, disconnected locations.  
b, Principle of cloud-based machine learning. c, Federated learning, with data 
being kept with the data contributor and computing performed at the site of 
local data storage and availability, but parameter settings orchestrated by a 
central parameter server. d, Principle of SL without the need for a central 
custodian. e, Schematic of the Swarm network, consisting of Swarm edge 
nodes that exchange parameters for learning, which is implemented using 
blockchain technology. Private data are used at each node together with the 
model provided by the Swarm network. f–l, Descriptions of the transcriptome 

datasets used. f, g, Datasets A1 (f; n = 2,500) and A2 (g; n = 8,348): two 
microarray-based transcriptome datasets of PBMCs. h, Dataset A3: 1,181 
RNA-seq-based transcriptomes of PBMCs. i, Dataset B: 1,999 RNA-seq-based 
whole blood transcriptomes. j, Dataset E: 2,400 RNA-seq-based whole blood 
and granulocyte transcriptomes. k, Dataset D: 2,143 RNA-seq-based whole 
blood transcriptomes. l, Dataset C: 95,831 X-ray images. CML, chronic myeloid 
leukaemia; CLL, chronic lymphocytic leukaemia; Inf., infections; Diab., type II 
diabetes; MDS, myelodysplastic syndrome; MS, multiple sclerosis; JIA, juvenile 
idiopathic arthritis; TB, tuberculosis; HIV, human immunodeficiency virus; 
AID, autoimmune disease.
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(Extended Data Fig. 1a) realized by private permissioned blockchain 
technology (Extended Data Fig. 1b). Each participant is well defined and 
only pre-authorized participants can execute transactions. Onboarding 
of new nodes is dynamic, with appropriate authorization measures to 

recognize network participants. A new node enrolls via a blockchain 
smart contract, obtains the model, and performs local model training 
until defined conditions for synchronization are met (Extended Data 
Fig. 1c). Next, model parameters are exchanged via a Swarm application 
programming interface (API) and merged to create an updated model 
with updated parameter settings before starting a new training round 
(Supplementary Information).

At each node, SL is divided into middleware and an application layer. 
The application environment contains the machine learning platform, 
the blockchain, and the SLL (including a containerized Swarm API to 
execute SL in heterogeneous hardware infrastructures), whereas the 
application layer contains the models (Extended Data Fig. 1d, Sup-
plementary Information); for example, analysis of blood transcrip-
tome data from patients with leukaemia, tuberculosis and COVID-19 
(Fig. 1f–k) or radiograms (Fig. 1l). We selected both heterogeneous and 
life-threatening diseases to exemplify the immediate medical value 
of SL.

Swarm Learning predicts leukaemias
First, we used peripheral blood mononuclear cell (PBMC) transcrip-
tomes from more than 12,000 individuals (Fig. 1f–h) in three datasets 
(A1–A3, comprising two types of microarray and RNA sequencing 
(RNA-seq))3. If not otherwise stated, we used sequential deep neural 
networks with default settings28. For each real-world scenario, sam-
ples were split into non-overlapping training datasets and a global 
test dataset29 that was used for testing the models built at individual 
nodes and by SL (Fig. 2a). Within training data, samples were ‘siloed’ 
at each of the Swarm nodes in different distributions, thereby mimick-
ing clinically relevant scenarios (Supplementary Table 1). As cases, we 
used samples from individuals with acute myeloid leukaemia (AML); all 
other samples were termed ‘controls’. Each node within this simulation 
could stand for a medical centre, a network of hospitals, a country or 
any other independent organization that generates such medical data 
with local privacy requirements.

First, we distributed cases and controls unevenly at and between 
nodes (dataset A2) (Fig. 2b, Extended Data Fig. 2a, Supplementary 
Information), and found that SL outperformed each of the nodes 
(Fig. 2b). The central model performed only slightly better than SL in 
this scenario (Extended Data Fig. 2b). We obtained very similar results 
using datasets A1 and A3, which strongly supports the idea that the 
improvement in performance of SL is independent of data collection 
(clinical studies) or the technologies (microarray or RNA-seq) used for 
data generation (Extended Data Fig. 2c–e).

We tested five additional scenarios on datasets A1–A3: (1) using evenly 
distributed samples at the test nodes with case/control ratios similar 
to those in the first scenario (Fig. 2c, Extended Data Fig. 2f–j, Supple-
mentary Information); (2) using evenly distributed samples, but siloing 
samples from particular clinical studies to dedicated training nodes 
and varying case/control ratios between nodes (Fig. 2d, Extended Data 
Fig. 3a–h, Supplementary Information); (3) increasing sample size for 
each training node (Extended Data Fig. 4a–f, Supplementary Informa-
tion); (4) siloing samples generated with different technologies at dedi-
cated training nodes (Fig. 2e, Extended Data Fig. 4g–i, Supplementary 
Information); and (5) using different RNA-seq protocols (Extended 
Data Fig. 4j–k, Supplementary Table 7, Supplementary Information). 
In all these scenarios, SL outperformed individual nodes and was either 
close to or equivalent to the central models.

We repeated several of the scenarios with samples from patients with 
acute lymphoblastic leukaemia (ALL) as cases, extended the predic-
tion to a multi-class problem across four major types of leukaemia, 
extended the number of nodes to 32, tested onboarding of nodes at a 
later time point (Extended Data Fig. 5a–j) and replaced the deep neural 
network with LASSO (Extended Data Fig. 6a–c), and the results echoed 
the above findings (Supplementary Information).
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Swarm Learning to identify tuberculosis
We built a second use case to identify patients with tuberculosis (TB) 
from blood transcriptomes30,31 (Fig. 1i, Supplementary Information). 
First, we used all TB samples (latent and active) as cases and distributed 
TB cases and controls evenly among the nodes (Extended Data Fig. 7a). 
SL outperformed individual nodes and performed slightly better than 
a central model under these conditions (Extended Data Fig. 7b, Sup-
plementary Information). Next, we predicted active TB only. Latently 
infected TB cases were treated as controls (Extended Data Fig. 7a) and 
cases and controls were kept even, but the number of training samples 
was reduced (Fig. 3a). Under these more challenging conditions, overall 
performance dropped, but SL still performed better than any of the 
individual nodes. When we further reduced training sample numbers by 
50%, SL still outperformed the nodes, but all statistical readouts at nodes 
and SL showed lower performance; however, SL was still equivalent to a 
central model (Extended Data Fig. 7c, Supplementary Information), con-
sistent with general observations that AI performs better when training 
data are increased19. Dividing up the training data at three nodes into six 
smaller nodes reduced the performance of each individual node, whereas 
the SL results did not deteriorate (Fig. 3b, Supplementary Information).

As TB has endemic characteristics, we used TB to simulate potential 
outbreak scenarios to identify the benefits and potential limitations of 
SL and determine how to address them (Fig. 3c, Extended Data Fig. 7d–f, 
Supplementary Information). The first scenario reflects a situation 
in which three independent regions (simulated by the nodes) would 
already have sufficient but different numbers of disease cases (Fig. 3c, 
Supplementary Information). In this scenario, the results for SL were 
almost comparable to those in Fig. 3a, whereas the results for node 
2 (which had the smallest numbers of cases and controls) dropped 
noticeably. Reducing prevalence at the test node caused the node 
results to deteriorate, but the performance of SL was almost unaffected 
(Extended Data Fig. 7d, Supplementary Information).

We decreased case numbers at node 1 further, which reduced test 
performance for this node (Extended Data Fig. 7e), without substan-
tially impairing SL performance. When we lowered prevalence at the 
test node, all performance parameters, including the F1 score (a meas-
ure of accuracy), were more resistant for SL than for individual nodes 
(Extended Data Fig. 7f–j).

We built a third use case for SL that addressed a multi-class predic-
tion problem using a large publicly available dataset of chest X-rays32 
(Figs. 1l, 3d, Supplementary Information, Methods). SL outperformed 
each node in predicting all radiological findings included (atelectasis, 
effusion, infiltration and no finding), which suggests that SL is also 
applicable to non-transcriptomic data spaces.

Identification of COVID-19
In the fourth use case, we addressed whether SL could be used to detect 
individuals with COVID-19 (Fig. 1k, Supplementary Table 6). Although 
COVID-19 is usually detected by using PCR-based assays to detect viral 
RNA33, assessing the specific host response in addition to disease pre-
diction might be beneficial in situations for which the pathogen is 
unknown, specific pathogen tests are not yet possible, existing tests 
might produce false negative results, and blood transcriptomics can 
contribute to the understanding of the host’s immune response34–36.

In a first proof-of-principle study, we simulated an outbreak situation 
node with evenly distributed cases and controls at training nodes and 
test nodes (Extended Data Fig. 8a, b); this showed very high statistical 
performance parameters for SL and all nodes. Lowering the prevalence 
at test nodes reduced performance (Extended Data Fig. 8c), but F1 
scores deteriorated only when we reduced prevalence further (1:44 
ratio) (Extended Data Fig. 8d); even under these conditions, SL per-
formed best. When we reduced cases at training nodes, all performance 
measures remained very high at the test node for SL and individual 
nodes (Extended Data Fig. 8e–j). When we tested outbreak scenarios 
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a, Scenario with even number of cases at each node; 10 permutations.  
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d, Scenario for multilabel prediction of dataset C with uneven distribution of 
diseases at nodes; 10 permutations. a–d, Box plots show accuracy of all 

permutations for the training nodes individually and for SL. All samples are 
biological replicates. Centre dot, mean; box limits, 1st and 3rd quartiles; 
whiskers, minimum and maximum values. Accuracy is defined for the 
independent fourth node used for testing only. Statistical differences between 
results derived by SL and all individual nodes including all permutations 
performed were calculated with one-sided Wilcoxon signed rank test with 
continuity correction; *P < 0.05, exact P values listed in Supplementary Table 5.
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with very few cases at test nodes and varying prevalence at the inde-
pendent test node (Fig. 4a), nodes 2 and 3 showed decreased perfor-
mance; SL outperformed these nodes (Fig. 4b, Extended Data Fig. 8k, 
l) and was equivalent to the central model (Extended Data Fig. 8m). 
The model showed no sign of overfitting (Extended Data Fig. 8n) and 
comparable results were obtained when we increased the number of 
training nodes (Extended Data Fig. 9a–d).

We recruited further medical centres in Europe that differed in 
controls and distributions of age, sex, and disease severity (Supple-
mentary Information), which yielded eight individual centre-specific 
sub-datasets (E1–8; Extended Data Fig. 9e).

In the first setting, centres E1–E6 teamed up and joined the Swarm 
network with 80% of their local data; 20% of each centre’s dataset was 
distributed to a test node29 (Fig. 4c) and the model was also tested on 
two external datasets, one with convalescent COVID-19 cases (E7) and 
one of granulocyte-enriched COVID-19 samples (E8). SL outperformed 
all nodes in terms of area under the curve (AUC) for the prediction of 
the global test datasets (Fig. 4d, Extended Data Fig. 9f, Supplementary 
Information). When looking at performance on testing samples split by 
centre of origin, it became clear that individual centre nodes could not 
have predicted samples from other centres (Extended Data Fig. 9g). By 
contrast, SL predicted samples from these nodes successfully. This was 
similarly true when we reduced the scenario, using E1, E2, and E3 as train-
ing nodes and E4 as an independent test node (Extended Data Fig. 9h).

In addition, SL can cope with biases such as sex distribution, age or 
co-infection bias (Extended Data Fig. 10a–c, Supplementary Informa-
tion) and SL outperformed individual nodes when distinguishing mild 
from severe COVID-19 (Extended Data Fig. 10d, e). Collectively, we 
provide evidence that blood transcriptomes from COVID-19 patients 
represent a promising feature space for applying SL.

Discussion
With increasing efforts to enforce data privacy and security5,9,10 and to 
reduce data traffic and duplication, a decentralized data model will 
become the preferred choice for handling, storing, managing, and ana-
lysing any kind of large medical dataset19. Particularly in oncology, success 
has been reported in machine-learning-based tumour detection3,37, sub-
typing38, and outcome prediction39, but progress is hindered by the lim-
ited size of datasets19, with current privacy regulations5,9,10 making it less 
appealing to develop centralized AI systems. SL, as a decentralized learn-
ing system, replaces the current paradigm of centralized data sharing in 
cross-institutional medical research. SL’s blockchain technology gives 
robust measures against dishonest participants or adversaries attempting 
to undermine a Swarm network. SL provides confidentiality-preserving 
machine learning by design and can inherit new developments in differ-
ential privacy algorithms40, functional encryption41, or encrypted transfer 
learning approaches42 (Supplementary Information).

Global collaboration and data sharing are important quests13 and 
both are inherent characteristics of SL, with the further advantage 
that data sharing is not even required and can be transformed into 
knowledge sharing, thereby enabling global collaboration with com-
plete data confidentiality, particularly if using medical data. Indeed, 
statements by lawmakers have emphasized that privacy rules apply 
fully during a pandemic43. Particularly in such crises, AI systems need 
to comply with ethical principles and respect human rights12. Systems 
such as SL—allowing fair, transparent, and highly regulated shared data 
analytics while preserving data privacy—are to be favoured. SL should 
be explored for image-based diagnosis of COVID-19 from patterns in 
X-ray images or CT scans15,16, structured health records12, or data from 
wearables for disease tracking12. Collectively, SL and transcriptomics 
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(or other medical data) are a very promising approach to democratize 
the use of AI among the many stakeholders in the domain of medicine, 
while at the same time resulting in improved data confidentiality, pri-
vacy, and data protection, and a decrease in data traffic.
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Methods

Pre-processing
PBMC transcriptome dataset (dataset A). We used a previously pub-
lished dataset compiled for predicting AML in blood transcriptomes 
derived from PBMCs (Supplementary Information)3. In brief, all raw 
data files were downloaded from GEO (https://www.ncbi.nlm.nih.gov/
geo/) and the RNA-seq data were preprocessed using the kallisto v0.43.1 
aligner against the human reference genome gencode v27 (GRCh38.
p10). For normalization, we considered all platforms independently, 
meaning that normalization was performed separately for the sam-
ples in datasets A1, A2 and A3. Microarray data (datasets A1 and A2) 
were normalized using the robust multichip average (RMA) expression 
measures, as implemented in the R package affy v.1.60.0. The RNA-seq 
data (dataset A3) were normalized using the R package DESeq2 (v 1.22.2) 
with standard parameters. To keep the datasets comparable, data were 
filtered for genes annotated in all three datasets, which resulted in 
12,708 genes. No filtering of low-expressed genes was performed. All 
scripts used in this study for pre-processing are provided as a docker 
container on Docker Hub (v 0.1, https://hub.docker.com/r/schultzelab/
aml_classifier).

Whole-blood-derived transcriptome datasets (datasets B, D and 
E). As alignment of whole blood transcriptome data can be performed 
in many ways, we re-aligned all downloaded and collected datasets 
(Supplementary Information; these were 30.6 terabytes in size and com-
prised a total of 63.4 terabases) to the human reference genome gen-
code v33 (GRCh38.p13) and quantified transcript counts using STAR, an 
ultrafast universal RNA-seq aligner (v.2.7.3a). For all samples in datasets 
B, D, and E, raw counts were imported using DESeq (v.1.22.2, DESeqData 
SetFromMatrix function) and size factors for normalization were cal-
culated using the DESeq function with standard parameters. This was 
done separately for datasets B, D, and E. As some of the samples were 
prepared with poly-A selection to enrich for protein-coding mRNAs, we 
filtered the complete dataset for protein-coding genes to ensure greater 
comparability across library preparation protocols. Furthermore, we 
excluded all ribosomal protein-coding genes, as well as mitochondrial 
genes and genes coding for haemoglobins, which resulted in 18,135 
transcripts as the feature space in dataset B, 19,358 in dataset D and 
19,399 in dataset E. Furthermore, transcripts with overall expression 
<100 were excluded from further analysis. Other than that, no filtering 
of transcripts was performed. Before using the data in machine learn-
ing, we performed a rank transformation to normality on datasets B, 
D and E. In brief, transcript expression values were transformed from 
RNA-seq counts to their ranks. This was done transcript-wise, meaning 
that all transcript expression values per sample were given a rank based 
on ordering them from lowest to highest value. The rankings were then 
turned into quantiles and transformed using the inverse cumulative 
distribution function of the normal distribution. This leads to all tran-
scripts following the exact same distribution (that is, a standard normal 
with a mean of 0 and a standard deviation of 1 across all samples). All 
scripts used in this study for pre-processing are provided on Github 
(https://github.com/schultzelab/swarm_learning) and normalized and 
rank-transformed count matrices used for predictions are provided via 
FASTGenomics at https://beta.fastgenomics.org/p/swarm-learning.

X-ray dataset (dataset C). The National Institutes of Health (NIH) 
chest X-Ray dataset (Supplementary Information) was downloaded 
from https://www.kaggle.com/nih-chest-xrays/data32. To preproc-
ess the data, we used Keras (v.2.3.1) real-time data augmentation and 
generation APIs (keras.preprocessing.image.ImageDataGenerator 
and flow_from_dataframe). The following pre-processing arguments 
were used: height or width shift range (about 5%), random rotation 
range (about 5°), random zoom range (about 0.15), sample-wise centre 
and standard normalization. In addition, all images were resized to  

128 × 128 pixels from their original size of 1,024 × 1,024 pixels and 32 
images per batch were used for model training.

The Swarm Learning framework
SL builds on two proven technologies, distributed machine learning 
and blockchain (Supplementary Information). The SLL is a framework 
to enable decentralized training of machine learning models without 
sharing the data. It is designed to make it possible for a set of nodes—
each node possessing some training data locally—to train a common 
machine learning model collaboratively without sharing the training 
data. This can be achieved by individual nodes sharing parameters 
(weights) derived from training the model on the local data. This allows 
local measures at the nodes to maintain the confidentiality and pri-
vacy of the raw data. Notably, in contrast to many existing federated 
learning models, a central parameter server is omitted in SL. Detailed 
descriptions of the SLL, the architecture principles, the SL process, 
implementation, and the environment can be found in the Supple-
mentary Information.

Hardware architecture used for simulations
For all simulations provided in this project we used two HPE Apollo 
6500 Gen 10 servers, each with four Intel(R) Xeon(R) CPU E5-2698 v4 @ 
2.20 GHz, a 3.2-terabyte hard disk drive, 256 GB RAM, eight Tesla P100 
GPUs, a 1-GB network interface card for LAN access and an InfiniBand 
FDR for high speed interconnection and networked storage access. 
The Swarm network is created with a minimum of 3 up to a maximum 
of 32 training nodes, and each node is a docker container with access 
to GPU resources. Multiple experiments were run in parallel using this 
configuration.

Overall, we performed 16,694 analyses including 26 scenarios for 
AML, four scenarios for ALL, 13 scenarios for TB, one scenario for detec-
tion of atelectasis, effusion, and/or infiltration in chest X-rays, and 18 
scenarios for COVID-19 (Supplementary Information). We performed 
5–100 permutations per scenario and each permutation took approxi-
mately 30 min, which resulted in a total of 8,347 computer hours.

Computation and algorithms
Neural network algorithm. We leveraged a deep neural network with 
a sequential architecture as implemented in Keras (v 2.3.1)28. Keras is 
an open source software library that provides a Python interface to 
neural networks. The Keras API was developed with a focus on fast 
experimentation and is standard for deep learning researchers. The 
model, which was already available in Keras for R from the previous 
study3, has been translated from R to Python to make it compatible 
with the SLL (Supplementary Information). In brief, the neural network 
consists of one input layer, eight hidden layers and one output layer. 
The input layer is densely connected and consists of 256 nodes, a rec-
tified linear unit activation function and a dropout rate of 40%. From 
the first to the eighth hidden layer, nodes are reduced from 1,024 to 
64 nodes, and all layers contain a rectified linear unit activation func-
tion, a kernel regularization with an L2 regularization factor of 0.005 
and a dropout rate of 30%. The output layer is densely connected and 
consists of one node and a sigmoid activation function. The model is 
configured for training with Adam optimization and to compute the 
binary cross-entropy loss between true labels and predicted labels.

The model is used for training both the individual nodes and SL. The 
model is trained over 100 epochs, with varying batch sizes. Batch sizes 
of 8, 16, 32, 64 and 128 are used, depending on the number of training 
samples. The full code for the model is provided on Github (https://
github.com/schultzelab/swarm_learning/)

Least absolute shrinkage and selection operator (LASSO). SL is not re-
stricted to any particular classification algorithm. We therefore adapted 
the l1-penalized logistic regression3 to be used with the SLL in the form 
of a Keras single dense layer with linear activation. The regularization 
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parameter lambda was set to 0.01. The full code for the model is provided 
on Github (https://github.com/schultzelab/swarm_learning/)

Parameter tuning. For most scenarios, default settings were used 
without parameter tuning. For some of the scenarios we tuned model 
hyperparameters. For some scenarios we also tuned SL parameters to 
get better performance (for example, higher sensitivity) (Supplemen-
tary Table 8). For example, for AML (Fig. 2e, f, Extended Data Fig. 2), the 
dropout rate was reduced to 10% to get better performance. For AML 
(Fig. 2b), the dropout rate was reduced to 10% and the epochs increased 
to 300 to get better performance. We also used the adaptive_rv param-
eter in the SL API to adjust the merge frequency dynamically on the 
basis of model convergence, to improve the training time. For TB and 
COVID-19, the test dropout rate was reduced to 10% for all scenarios. For 
the TB scenarios (Extended Data Fig. 7f, g), the node_weightage param-
eter of the SL callback API was used to give more weight to nodes that 
had more case samples. Supplementary Table 8 provides a complete 
overview of all tuning parameters used.

Parameter merging. Different functions are available for parameter 
merging as a configuration of the Swarm API, which are then applied 
by the leader at every synchronization interval. The parameters can 
be merged as average, weighted average, minimum, maximum, or 
median functions.

In this Article, we used the weighted average, which is defined as
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in which PM is merged parameters, Pk is parameters from the kth node, 
Wk is the weight of the kth node, and n is the number of nodes partici-
pating in the merge process.

Unless stated otherwise, we used a simple average without weights to 
merge the parameter for neural networks and for the LASSO algorithm.

Quantification and statistical analysis
We evaluated binary classification model performance with sensitivity, 
specificity, accuracy, F1 score, and AUC metrics, which were determined 
for every test run. The 95% confidence intervals of all performance 
metrics were estimated using bootstrapping. For AML and ALL, 100 
permutations per scenario were run for each scenario. For TB, the per-
formance metrics were collected by running 10 to 50 permutations. For 
the X-ray images, 10 permutations were performed. For COVID-19 the 
performance metrics were collected by running 10 to 20 permutations 
for each scenario. All metrics are listed in Supplementary Tables 3, 4.

Differences in performance metrics were tested using the one-sided 
Wilcoxon signed rank test with continuity correction. All test results 
are provided in Supplementary Table 5.

To run the experiments, we used Python version 3.6.9 with Keras 
version 2.3.1 and TensorFlow version 2.2.0-rc2. We used scikit-learn 
library version 0.23.1 to calculate values for the metrics. Summary 
statistics and hypothesis tests were calculated using R version 3.5.2. 
Calculation of each metric was done as follows:

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Accuracy =
TP + TN

TP + FP + TN + FN

F1score =
2TP

FP + FN + 2TP

where TP is true positive, FP is false positive, TN is true negative and FN 
is false negative. The area under the ROC curve was calculated using 
the R package ROCR version 1.0-11.

No statistical methods were used to predetermine sample size. The 
experiments were not randomized, but permutations were performed. 
Investigators were not blinded to allocation during experiments and 
outcome assessment.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Processed data from datasets A1–A3 can be accessed from GEO via the 
superseries GSE122517 or the individual subseries GSE122505 (dataset 
A1), GSE122511 (dataset A2) and GSE122515 (dataset A3). Dataset B con-
sists of the following series, which can be accessed at GEO: GSE101705, 
GSE107104, GSE112087, GSE128078, GSE66573, GSE79362, GSE84076, 
and GSE89403. Furthermore, it contains the data from the Rhineland 
Study. The Rhineland Study dataset falls under current General Data 
Protection Regulations (GDPR). Access to these data can be provided 
to scientists in accordance with the Rhineland Study’s Data Use and 
Access Policy. Requests to access the Rhineland Study’s dataset should 
be directed to RS-DUAC@dzne.de. New samples generated for data-
sets D and E have been deposited at the European Genome-Phenome 
Archive (EGA), which is hosted by the EBI and the CRG, under accession 
number EGAS00001004502. The healthy RNA-seq data included from 
Saarbrücken are available on application from PPMI through the LONI 
data archive at https://www.ppmi-info.org/data. Samples received from 
other public repositories are listed in Supplementary Table 2. Dataset 
C (NIH chest X-ray dataset) is available on Kaggle (https://www.kaggle.
com/nih-chest-xrays/data). Normalized log-transformed and rank 
transformed expressions as used for the predictions are available via 
FASTGenomics at https://beta.fastgenomics.org/p/swarm-learning.

Code availability
The code for preprocessing and for predictions can be found at GitHub 
(https://github.com/schultzelab/swarm_learning). The Swarm Learn-
ing software can be downloaded from https://myenterpriselicense.
hpe.com/. 
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Extended Data Fig. 1 | Corresponding to Fig. 1. a, Overview of SL and the 
relationship to data privacy, confidentiality and trust. b, Concept and outline 
of the private permissioned blockchain network as a layer of the SL network. 
Each node consists of the blockchain, including the ledger and smart contract, 
as well as the SLL with the API to interact with other nodes within the network. 

c, The principles of the SL workflow once the nodes have been enrolled within 
the Swarm network via private permissioned blockchain contract and dynamic 
onboarding of new Swarm nodes. d, Application and middleware layer as part 
of the SL concept.
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Extended Data Fig. 2 | Scenario corresponding to Fig. 2b, c in datasets A1 
and A3. Main settings and representation of schema and data visualization as 
described in Fig. 2a. a, Evaluation of test accuracy for 100 permutations of the 
scenario shown in Fig. 2b. b, Evaluation of SL versus central model for the 
scenario shown in Fig. 2b for 100 permutations. c, Scenario with different 
prevalences of AML and numbers of samples at each training node. The test 
dataset has an even distribution. d, Evaluation of test accuracy for 100 
permutations of dataset A1 per node and SL. e, Evaluation using dataset A3  
for 100 permutations. f, Scenario with similar training set sizes per node  
but decreasing prevalence. The test dataset ratio is 1:1. g, Evaluation of test 
accuracy for 100 permutations of the scenario shown in Fig. 2c. h, Evaluation of 
SL versus central model of the scenario shown in Fig. 2c for 100 permutations.  

i, Evaluation of test accuracy over 100 permutations for dataset A1 with the 
scenario shown in f. j, Evaluation of test accuracy over 100 permutations for 
dataset A3 with the scenario shown in f. b, d, e, h–j, Box plots show 
representation of accuracy of 100 permutations performed for the 3 training 
nodes individually as well as the results obtained by SL. All samples are 
biological replicates. Centre dot, mean; box limits, 1st and 3rd quartiles; 
whiskers, minimum and maximum values. Accuracy is defined for the 
independent fourth node used for testing only. Statistical differences between 
results derived by SL and all individual nodes including all permutations 
performed were calculated with one-sided Wilcoxon signed rank test with 
continuity correction; *P < 0.05, exact P values listed in Supplementary Table 5.



Extended Data Fig. 3 | Scenario to test for batch effects of siloed studies in 
datasets A1–A3 and scenario with multiple consortia. Main settings and 
representation of schema and data visualization are as in Fig. 2a. a, Scenario 
with training nodes coming from independent clinical studies for local models 
(left), central model (middle) and the Swarm network (right) and testing on a 
non-overlapping global test with samples from the same studies. b, Evaluation 
of test accuracy over 100 permutations for dataset A2 with the scenario shown 
in a (right) and Fig. 2d. c, Comparison of test accuracy between central model 
(a, middle) and SL (a, right). d, Comparison of test accuracy on the local test 
datasets (a, left) for 100 permutations. e, Evaluation of test accuracy of 
individual nodes versus SL over 100 permutations for dataset A1 when training 
nodes have data from independent clinical studies. f, Evaluation of test 
accuracy of individual nodes versus SL over 100 permutations for dataset A3 

when training nodes have data from independent clinical studies. g, Scenario 
with three consortia contributing training nodes and a fourth one providing 
the testing node. h, Evaluation of test accuracy for scenario shown in g over 100 
permutations for dataset A2. d–f, h, Box plots show representation of accuracy 
of all permutations performed for the 3 training nodes individually as well as 
the results obtained by SL (d only for local models). All samples are biological 
replicates. Centre dot, mean; box limits, 1st and 3rd quartiles; whiskers, 
minimum and maximum values. Performance measures are defined for the 
independent fourth node used for testing only. Statistical differences between 
results derived by SL and all individual nodes including all permutations 
performed were calculated with one-sided Wilcoxon signed rank test with 
continuity correction; *P < 0.05, exact P values are listed in Supplementary 
Table 5.
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Extended Data Fig. 4 | Scenario corresponding to Fig. 2e in datasets A1 and 
A3 and scenario using different data generation methods in each training 
node. Main settings and representation of schema and data visualization are  
as in Fig. 2a. a, Scenario with even distribution of cases and controls at each 
training node and the test node, but different numbers of samples at each node 
and overall increase in numbers of samples. b, c, Test accuracy for evaluation of 
dataset A2 over 100 permutations. d, Comparison of central model with  
SL over 100 permutations. e, Test accuracy for evaluation of dataset A1 over  
99 permutations. f, Test accuracy for evaluation of dataset A3 over 100 
permutations. g, Scenario where datasets A1, A2, and A3 are assigned to a single 
training node each. h, Evaluation of test accuracy over 100 permutations.  
i, Comparison of the test accuracy of central model and SL over 98 

permutations. j, Scenario similar to g but where the nodes use datasets from 
different RNA-seq protocols. k, Evaluation of results for accuracy, AUC, 
sensitivity, and specificity over five permutations. d–f, i, k, Box plots show 
predictive performance over all permutations performed for the three training 
nodes individually as well as the results obtained by SL. All samples are 
biological replicates. Centre dot, mean; box limits, 1st and 3rd quartiles; 
whiskers, minimum and maximum values. Performance measures are defined 
for the independent fourth node used for testing only. Statistical differences 
between results derived by SL and all individual nodes including all 
permutations performed were calculated with one-sided Wilcoxon signed rank 
test with continuity correction; *P < 0.05, exact P values listed in 
Supplementary Table 5.



Extended Data Fig. 5 | Scenario for ALL in dataset 2 and multi-class 
prediction and expansion of SL. Main settings are identical to what is 
described in Fig. 2a. Here cases are samples derived from patients with ALL, 
while all other samples are controls (including AML). a, Scenario for the 
detection of ALL in dataset A2. The training sets are evenly distributed among 
the nodes with varying prevalence at the testing node. Data from independent 
clinical studies are samples to each node, as described for AML in Fig. 2d.  
b, Evaluation of scenario in a for test accuracy over 100 permutations with a 
prevalence ratio of 1:1. c, Evaluation using a test dataset with prevalence ratio of 
10:100 over 100 permutations. d, Evaluation using a test dataset with 
prevalence ratio of 5:100 over 100 permutations. e, Evaluation using a test 
dataset with prevalence ratio of 1:100. f, Scenario for multi-class prediction of 
different types of leukaemia in dataset A2. Each node has a different 

prevalence. g, Test accuracy for the different types of leukaemia over 20 
permutations. h, Scenario that simulates 32 small Swarm nodes. i, Evaluation of 
test accuracy for the 32 nodes and the Swarm over 10 permutations.  
j, Development of accuracy over training epochs with addition of new nodes. 
b–e, g, i, Box plots show performance of all permutations performed for the 
training nodes individually as well as the results obtained by SL. All samples are 
biological replicates. Centre dot, mean; box limits, 1st and 3rd quartiles; 
whiskers, minimum and maximum values. Performance measures are  
defined for the independent test node used for testing only. Statistical 
differences between results derived by SL and all individual nodes including all 
permutations performed were calculated with one-sided Wilcoxon signed rank 
test with continuity correction; *P < 0.05, exact P values listed in 
Supplementary Table 5.
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Extended Data Fig. 6 | Comparison of LASSO and neural networks.  
a, Scenario for training different models in the Swarm. b, Evaluation of a LASSO 
model for accuracy, sensitivity, specificity and F1 score over 100 permutations. 
c, Evaluation of a Neural Network model for accuracy, sensitivity, specificity 
and F1 score over 100 permutations. b, c, Box plots show performance of all 
permutations performed for the training nodes individually as well as the 
results obtained by SL. All samples are biological replicates. Centre dot, mean; 

box limits, 1st and 3rd quartiles; whiskers, minimum and maximum values. 
Performance measures are defined for the independent fourth node used for 
testing only. Statistical differences between results derived by SL and all 
individual nodes including all permutations performed were calculated with 
one-sided Wilcoxon signed rank test with continuity correction; *P < 0.05, 
exact P values listed in Supplementary Table 5.



Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Scenarios for detecting all TB versus controls and for 
detecting active TB with low prevalence at training nodes. Main settings are 
as in Fig. 2a. a, Different group settings used with assignment of latent TB to 
control or case. b, Left, evaluation of a scenario where active and latent TB are 
cases. The data are evenly distributed among the training nodes. Right, test 
accuracy, sensitivity and specificity for nodes, Swarm and a central model over 
10 permutations. c, Left, scenario similar to b but with latent TB as control. 
Right, test accuracy, sensitivity and specificity for nodes, Swarm and a central 
model over 10 permutations. d, Left, scenario with reduced prevalence at the 
test node. Right, test accuracy, sensitivity and specificity for nodes and Swarm 
over 10 permutations. e, Scenario with even distribution of cases and controls 
at each training node, where node 1 has a very small training set. The test 
dataset is evenly distributed. Right, test accuracy, sensitivity and specificity 
over 50 permutations. f, Left, scenario similar to e but with uneven distribution 
in the test node. Right, test accuracy, sensitivity and specificity over 50 

permutations. g, Scenario with each training node having a different 
prevalence. Three prevalence scenarios were used in the test dataset.  
h, Accuracy, sensitivity, specificity and F1 score over five permutations for 
testing set T1 as shown in g. i, As in h but with prevalence changed to 1:3 
cases:controls in the training set. j, As in h but with prevalence changed to 1:10 
cases:controls in the training set. b–f, h–j, Box plots show performance of all 
permutations performed for the training nodes individually as well as the 
results obtained by SL. All samples are biological replicates. Centre dot, mean; 
box limits, 1st and 3rd quartiles; whiskers, minimum and maximum values. 
Performance measures are defined for the independent fourth node used for 
testing only. Statistical differences between results derived by SL and all 
individual nodes including all permutations performed were calculated with 
one-sided Wilcoxon signed rank test with continuity correction; *P < 0.05, 
exact P values listed in Supplementary Table 5.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Baseline scenario for detecting patients with 
COVID-19 and scenario with reduced prevalence at training nodes. Main 
settings are as in Fig. 2a. a, Scenario for detecting COVID-19 with even training 
set distribution among nodes 1–3. Three testing sets with different prevalences 
were simulated. b, Accuracy, sensitivity, specificity and F1 score over 50 
permutations for scenario in a with a 22:25 case:control ratio. c, As in b for an 
11:25 ratio. d, As in b for a 1:44 ratio. e, Scenario with the same sample size at 
each training node, but prevalence decreasing from node 1 to node 3. There are 
two test datasets (f, g). f, Evaluation of scenario in e with 22:25 ratio at the test 
node over 50 permutations. g, Evaluation of scenario in e with reduced 
prevalence over 50 permutations. h, Scenario similar to e but with a steeper 
decrease in prevalence between nodes 1 and 3. i, Evaluation of scenario in h with 
a ratio of 37:50 at the test node over 50 permutations. j, Evaluation of scenario 
in h with a reduced prevalence compared to i over 50 permutations. k, Scenario 

as in Fig. 4a using a 1:5 ratio for cases and controls in the test dataset evaluated 
over 50 permutations. l, Scenario as in Fig. 4a using a 1:10 ratio in the test 
dataset to simulate detection in regions with new infections, evaluated over  
50 permutations. m, Performance of central models for k, l and Fig. 4b.  
n, Loss function of training and validation loss over 100 training epochs.  
b–d, f, g, i–m, Box plots show performance of all permutations performed for 
the training nodes individually as well as the results obtained by SL. All samples 
are biological replicates. Centre dot, mean; box limits, 1st and 3rd quartiles; 
whiskers, minimum and maximum values. Performance measures are defined 
for the independent fourth node used for testing only. Statistical differences 
between results derived by SL and all individual nodes including all 
permutations performed were calculated with one-sided Wilcoxon signed rank 
test with continuity correction; *P < 0.05, exact P values listed in 
Supplementary Table 5.



Extended Data Fig. 9 | Scenario with reduced prevalence in training and 
test datasets and multi-centre scenario at a four-node setting. Main 
settings as in Fig. 2a. a, Scenario with prevalences from 10% at node 1 to 3% at 
node 4. There are three test datasets (b–d) with decreasing prevalence and 
increasing total sample size. b, Evaluation of scenario in a with 111:100 ratio 
over 50 permutations. c, Evaluation of scenario in a with 1:4 ratio and increased 
sample number of the test dataset over 50 permutations. d, Evaluation of 
scenario in a with 1:10 prevalence and increased sample number of the test 
dataset over 50 permutations. e, Dataset properties for the participating cities 
E1–E8, indicating case:control ratio and demographic properties. f, AUC, 
accuracy, sensitivity, specificity and F1 score over 20 permutations for 
scenario that uses E1–E6 as training nodes and E7 as external test node.  
g, Evaluation of a multi-city scenario where a medical centre (in each row) 

serves as a test node. The AUC for each training node and the SL is shown for  
20 permutations. h, Multi-city scenario. Only three nodes (E1–E3) are used for 
training and the external test node E4 uses data from a different sequencing 
facility. AUC, accuracy, sensitivity and specificity as well as the confusion 
matrix for one prediction. b–d, f, g, Box plots show performance of all 
permutations performed for the training nodes individually as well as the 
results obtained by SL. All samples are biological replicates. Centre dot, mean; 
box limits, 1st and 3rd quartiles; whiskers, minimum and maximum values. 
Performance measures are defined for the independent fourth node used for 
testing only. Statistical differences between results derived by SL and all 
individual nodes including all permutations performed were calculated with 
one-sided Wilcoxon signed rank test with continuity correction; *P < 0.05, 
exact P values listed in Supplementary Table 5.
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Extended Data Fig. 10 | Scenarios for testing different factors and scenario 
for testing disease severity. Main settings as in Fig. 2a. a, Top, scenario to test 
influence of sex with three training nodes. Training node 1 has only male cases, 
node 2 has only female cases. Training node 3 and the test node have a 50%/50% 
split. Bottom, accuracy, sensitivity, specificity and F1 score for each training 
node and the Swarm in 10 permutations. b, Top, scenario to test influence of 
age with three training nodes. Training node 1 only has cases younger than 
65 years, node 2 only has cases older than 65 years. Training node 3 and the test 
node have a 50%/50% split of cases above and below 65 years. Bottom, accuracy, 
sensitivity, specificity and F1 score for each training node and the Swarm in 10 
permutations. c, Top, scenario to test influence of co-infections with three 
training nodes. Training node 1 has only cases with co-infections, node 2 has no 
cases with co-infections. Training node 3 and the test node have a 50%/50% 
split. Bottom, accuracy, sensitivity, specificity and F1 score for each training 
node and the Swarm in 10 permutations. d, Prediction setting. Severe cases of 

COVID-19 are cases, mild cases of COVID-19 and healthy donors are controls.  
e, Left, scenario to test influence of disease severity with three training nodes. 
Training node 1 has 20% mild or healthy and 80% severe cases, node 3 has 40% 
mild or healthy and 60% severe cases. Training node 2 and the test node have 
30% mild or healthy and 70% severe cases. Right, accuracy, sensitivity, 
specificity and F1 score for each training node and the Swarm for 10 
permutations. a–c, e, Box plots show performance all permutations performed 
for the training nodes individually as well as the results obtained by SL. All 
samples are biological replicates. Centre dot, mean; box limits, 1st and 3rd 
quartiles; whiskers, minimum and maximum values. Performance measures 
are defined for the independent fourth node used for testing only. Statistical 
differences between results derived by SL and all individual nodes including all 
permutations performed were calculated with one-sided Wilcoxon signed rank 
test with continuity correction; *P < 0.05, exact P values listed in 
Supplementary Table 5.
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