
The Signature Transform in
Numerics and Machine Learning

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Biagio Paparella
aus

Terlizzi (Italien)

Bonn 2024

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

Betreuer: Prof. Dr. Michael Griebel

Gutachter: Prof. Dr. Jochen Garcke

Tag der Promotion: 19.04.2024

Erscheinungsjahr: 2024

Abstract

In this work we study the signature transform from the viewpoint of applied
and numerical mathematics.

The theoretical background is established in the first part, where the signa-
ture is defined as a map going from continuous paths of bounded variations to
ordered tensor algebras. Approximation theorems and computational consider-
ations are clarified, together with explicit and well commented examples. Only
selected essential properties are pointed out, useful for non-linear approximation
of functionals, dimension reduction and extension to the probabilistic setting.

In the second part we use all the previously introduced theory to design
numerical experiments of interest in data science and machine learning, tar-
geting problems like time series classification, clustering, correlation detection
and generation of artificial samples. A small section on agents classification for
reinforcement learning is also included.

Finally, the reader is given a list of possible connections to other areas of
mathematics like PDE, kernel theory, jump processes and even algebraic geom-
etry. We did our best to keep the exposition clear and compact.

1

Contents

I Foundation 9

1 Background 10
1.1 Tensor algebras . 10

1.1.1 Tensor products: algebraic definition 10
1.1.2 Connection to words and alphabets 11
1.1.3 Connection to non-commutative polynomials 11
1.1.4 On the tensor notation . 12
1.1.5 Vectorization, P-notation and scalar products 12
1.1.6 The tensor algebras T∞(E), TN (E) 13
1.1.7 The Hilbert space T (E) 14
1.1.8 Tensors in computer science 15

1.2 Elementary path integrals . 16
1.2.1 Path integrals for smooth curves 16
1.2.2 Invariances . 16
1.2.3 Bounded variation functions 18
1.2.4 Linear piecewise approximation 22
1.2.5 Riemann-Stieltjes integrals 24
1.2.6 Recap of the section . 26
1.2.7 An additional remark on generic p variation 26

2 The signature transform: definition 27
2.1 Defining the signature transform 27

2.1.1 Motivation . 27
2.1.2 The signature coefficients 28
2.1.3 The signature transform 29
2.1.4 Notation in other papers 30
2.1.5 The signature truncation 31
2.1.6 The signature decay . 32
2.1.7 Practical conclusion . 33

2.2 Computing the signature transform 33
2.2.1 Working with the segment on [0, 1] 33
2.2.2 The factorization property 34
2.2.3 Working on the canonical interval 35
2.2.4 All paths can start from the origin 37

2

2.2.5 Recipe for the signature computation 37
2.2.6 Studying a one dimensional case 37
2.2.7 The Signatory library . 38
2.2.8 A small and complete numerical example 40
2.2.9 Monte Carlo and other integration strategies 42

3 The signature transform: key properties 43
3.1 Four properties of relevance . 43

3.1.1 Comments about surjectivity 43
3.1.2 Injectivity and uniqueness 44
3.1.3 Dimensionality reduction 45
3.1.4 Functional linearization 45

3.2 A connection to probability theory 47
3.2.1 The moments of a real random variable 47
3.2.2 The signature moment equivalence for the real case 48
3.2.3 A numerical example for the signature as moments 49
3.2.4 Extending on path augmentation 50
3.2.5 Expected signature for stochastic processes 50
3.2.6 Building statistical tests 51
3.2.7 The log-signature . 51

II Applications 53

4 Clustering and visualization 54
4.1 Stochastic macro-clustering . 54

4.1.1 A recap on confidence intervals 54
4.1.2 Confidence intervals for Gaussian samples 55
4.1.3 Confidence intervals for general samples 55
4.1.4 Confidence intervals on higher dimensions 56
4.1.5 The signature for stochastic processes 57
4.1.6 The macrovariance of a family of processes 58
4.1.7 The multidimensional scaling algorithm 59
4.1.8 A simple experiment: Gaussian segments 59
4.1.9 A complete example using the Brownian motion 60
4.1.10 Recap of the experiments 63
4.1.11 Increasing the family of processes 63
4.1.12 Conclusions . 63

4.2 Stochastic micro-clustering . 65
4.2.1 Introduction . 65
4.2.2 Definition of microvariance 65
4.2.3 Experimenting with Gaussian walks 65
4.2.4 Applications in reinforcement learning 66
4.2.5 Comparing the three agents 69

3

5 Approximating nonlinear functionals 76
5.1 The max operator . 76

5.1.1 The deterministic case . 76
5.1.2 The expected payoff . 78

5.2 A correlation classifier . 79
5.2.1 Experiment 1: classification of two Gaussian walks 80
5.2.2 A closer look to the expected signature 83
5.2.3 Experiment 2: classification of many Gaussian walks . . . 83
5.2.4 Working with geometric Brownian motions 85
5.2.5 Experiment 3: correlation with two fixed classes of GBM 86
5.2.6 Experiment 4: correlation with three classes of GBM . . . 86
5.2.7 Conclusion . 88

6 Signature shape analysis 90
6.1 The problem of inverting the signature 90
6.2 Numerical remarks . 91
6.3 Shape analysis: overview . 94
6.4 Shape analysis: straight lines . 94
6.5 Shape analysis: sinusoidal curves 95
6.6 Shape analysis: impulses . 98
6.7 Generation of artificial data . 100

7 Conclusion 103

4

Introduction

Nowadays we are surrounded by data in different forms, like pictures, videos
and texts. Part of the current research aims at using them to build predictions,
at least to some extent. This goal has essentially been true for the whole history
of science, but nowadays we experience the capability of collecting and process-
ing huge amount of data as never done before. Digitalization, either on small
(smartphones) and bigger scale (infrastructures, digital services) combined with
the increase of processing speed and available storage, prepares the ground for
modern data science and machine learning technologies.

In these fields where science and engineering are mixed together, there is
a balance between classical statistics (e.g. Bayesian methods), optimization
(e.g. gradient strategies), computer science (e.g. parallel computing) to build
software capable of hopefully finding patterns in big collections of data, some-
times for the pure benefit of society (e.g. in medicine), sometimes for profit
(e.g. marketing and advertisement), and of course for situations in between
(e.g. pharmacology or robotics).

The nature of the data under analysis, the associated models, the chosen
optimization methods, usually determine the level of mathematics required to
understand (and justify) the strategies into play. In some case they are relatively
accessible, while sometime quite advanced and mainly for the experts.

The purpose of this work is to focus on a technique called the signature
transform potentially very useful to analyze numerical time series data, i.e.
collections of measurements organized in time. Examples can be found every-
where: daily temperature records, stock price oscillations, or even the number
of infected during a pandemic as we sadly experienced recently.

In their generality, data algorithms need a criteria to estimate whether two
data points are ”similar” or not. This can be very easy for some contexts
(like numbers), but very hard on others (what is the ”similarity” between two
videos?). Since we interpret time series as (discrete) curves having x-axis given
by timestamps, and y-axis given by the corresponding values, it is possible
to simply compute their ordinary Euclidean norm to check their differences.
Unfortunately, this method has serious limitations, for instance when two time
series have a different number of points or when the sampling size is so big to
represent a computational obstacle.

Both these issues are reasonably ”fixed” when using the signature transform,
which then offers an additional method to measure distances between paths. It

5

Figure 1: Two paths having small Euclidean distance and bigger signature
difference (in absolute norm).

0 1 2 3

0

1

2

3

4 first path
second path

0 10 20 30 40 50 60

100

50

0

50

100 first path
second path

Euclidean diff: 0.7, Signature diff: 24.6

is not a replacement for the Euclidean metric, but rather a further supporting
tool that should be used with awareness and caution.

For instance, we suggest having a look at the simple plot above. The two
portrayed curves are maybe ”similar” to our eyes: they indeed have a very
”small” Euclidean distance. On the other hand, their signature transforms (right
plot) are ”enough” different. One should technically argue about the meaning
of the absolute error in such a context, and we will. But in this introductory
section the goal is simply to provide a simple intuitive example, and to point out
how there is no universal ”better” or ”worse” way to measure these distances,
rather it depends on the goals and the algorithms into play.

In the first part of this thesis we try to offer a solid and clear theoretical
foundation. The theory of the signature transform can quickly became quite
advanced from a mathematical perspective, which means to be less accessible
and less prone to be actually used in applications. We did our best to select
only the strongest and essential properties, always trying to be self-contained
and then referencing to appropriate papers for important theorems and proofs.

In the chapter number 1, our intention is to refresh the notion of tensor.
Indeed, there is usually a potential confusion around this term because of its
appearance across multiple fields from pure mathematics to really applied com-
puter science. We construct a solid algebraic setting and point out the combi-
natorial nature of tensors.

In the next section we revise the notion of path integral, starting from the
smooth case and generalizing up to piecewise linear maps. It is here that we
revise the definition of bounded variation functions and Riemann-Stieltjes inte-
gration, both of fundamental importance in order to later define the signature
transform.

6

Indeed, given a curve X : [0, 1]→ Rd of appropriate regularity, the signature
transform is related to the idea of performing iterated integrals between its
components. The regularity of the curve determines the kind of ”integration”
under usage. And since we introduce bounded variation maps, that type will
be the mentioned Riemann-Stieltjes.

Furthermore, the choice of the components can be described by correspond-
ing multi-indices, which can be algebraically sorted so to facilitate their interpre-
tation and even mirror analytical properties. In this operations of combinatorial
arrangements tensor algebras will emerge as a powerful tool.

Moving further, in the second chapter the signature transform is defined,
possible since there are no more mathematical prerequisites. The notion is in-
troduced step by step, carefully checking all the details and including some
remarks about slightly alternative definitions sometimes present in the litera-
ture.

The chapter proceeds with the problem of actually computing the signature
of a curve. We start with simple segments and then extend to piecewise-linear in-
terpolations, exploiting a ”concatenation” property capable of strongly simplify
the computations. Many explicit examples are provided in order to preserve a
clear exposition and guide the reader step-by-step. When moving to the compu-
tational aspects, the Signatory Python library is used and of course referenced
with its main paper, where the computational costs are better discussed and
completed with remarks about parallelization (using OpenMP) and comparison
with other algorithms (esig and iisignature).

We finally conclude the theoretical section with a chapter about the main
properties of the signature transform. If it is true that we selected only few
of them, on the other hand we used all and only them in our experiments
without involving anything else. The single exception is maybe when we deal
with geometric Brownian motions, where we tacitly still work with piecewise
linear approximations and avoid to properly extend the signature to stochastic
integration. This operation is legit (and regularly pointed out in the given
references), but ultimately we limit ourselves on analyzing samples as piecewise
linear maps without discussing asymptotic properties, mainly by reason of time
and motivated by real world data where the discretization is fixed and not chosen
by the user.

Summing up, the first part of the thesis has the goal of clarifying any pos-
sible theoretical ambiguity, preparing the ground for the second half where we
really develop our original ideas. We remark how despite being mathematically
”simple”, the first part required a meticulous check between numerous papers
of different level of expertise, viewpoints and approaches. Part of our effort was
indeed to well organize the theoretical foundation in a self-contained and linear
way hopefully constructing a ”bridge” between this area of pure mathematics
and the language of machine learning.

Machine learning is indeed the content of part two, where we conduct a series
of numerical experiments so to use the signature transform to target typical
problems in the field, like clustering and data visualization.

The second part opens with chapter 4, where our favorite technique is de-

7

veloped. A full explanation of the problems of clustering and data visualization
is offered. This is done either in the context of ”macro-clustering” (aimed at
measuring how different two stochastic processes are), as well as in the case of
”micro-clustering” (where we analyze the differences between the paths sampled
by a single process). We apply these ideas in the setting of reinforcement learn-
ing where we try to better understand the behaviors of three popular agents
(PPO, DQN, A2C) trained to solve the ”cart pole problem”.

In chapter 5 we numerically validate the idea of approximating a nonlinear
functional with a linear one, using data appropriately preprocessed. This is a
very important idea and we perform the experiments either in the deterministic
setting (max operator), as well as in the stochastic case when computing ex-
pected values (this connects to the field of ”uncertainty quantification”, where
this operation is usually called ”quantity of interest”). This chapter has a
great potential because ”non-linearity” commonly constitutes a problem when
training models, as recently proved by the explosion of neural networks method-
ologies.

When working with time series on a practical viewpoint, the detection of
correlation is always appreciated, since it allows (for instance) to greatly im-
prove prediction methods. This topic is also expanded here with corresponding
numerical experiments.

The final chapter (number 7) is then a step towards an even more intuitive
understanding of what the signature transform ”really does”. We choose very
familiar shapes (straight lines, sinusoids, impulses) and look at how they are
processed by such a transform, commenting the results and always trying to
offer an explanation for what observed. In this section we also develop the idea
of ”reversing” the signature, and the combination of all these remarks will allow
to implement a simple algorithm for the generation of artificial data (of limited
applicability, but with a great development potential).

We finally conclude the work with a list of further references and connections
to other fields of mathematics, without pretending to be exhaustive, but hoping
to offer a nice overview of the available landscape.

The author would like to remark how the experiments were on purpose short
and compact, aimed at quickly illustrate principles and completely executable on
common laptops. The source code is available on request and has been arranged
so to offer hopefully good readability and reproducibility. This is very important
since accessibility and transparency of code must not be underestimated.

We express our gratitude to the reader and hope that the following work can
offer a satisfying experience.

8

Part I

Foundation

9

Chapter 1

Background

1.1 Tensor algebras

The goal of this section is to build a solid algebraic architecture to host the
main object of this work: the signature transform.

We start by revising concepts like tensor products and tensor algebras, in-
cluding remarks on vectorization and computational aspects.

1.1.1 Tensor products: algebraic definition

Let E be a real vector space, generally assumed to be E = Rd. Most of the
following theory extends to the infinite-dimensional case. Nevertheless, we prefer
this simpler setting to fix the essentials.

Definition 1.1.1. [Tensor product] Let E, F be two vector spaces with basis
BE and BF . A pair (E ⊗ F, φ) is called a tensor product iff:

i) E ⊗ F is a vector space;

ii) the map φ : E × F → E ⊗ F is bilinear;

iii) a basis of E ⊗ F is given by {φ(ei, fj)|ei ∈ BE , fj ∈ BF } and called the
canonical tensor basis;

The images φ(ei, fi) are written as ei ⊗ fj .

Definition 1.1.2 (Tensor). Any element of the space E ⊗F is called a tensor.

For more comments concerning the existence and uniqueness of tensor prod-
ucts, we refer to [Hac19].

By definition it follows that dim(E ⊗ F) = dim(E) dim(F) revealing the
combinatorial nature of tensor products. For instance, consider R2 and R3. A
basis for their tensor product has length 6 and is given by:

{e1 ⊗ e1, e1 ⊗ e2, e1 ⊗ e3, e2 ⊗ e1, e2 ⊗ e2, e2 ⊗ e3} (1.1)

10

The order matters: e1 ⊗ e2 6= e2 ⊗ e1.
This is clearly in contrast to ordinary Cartesian products, or direct sums,

where we would have any element of R2 ⊕ R3 written as tuple of length 5.
This difference is mathematically straightforward but nevertheless important

to be clarified.
Tensor products emerge when objects are considered distinct and then mixed

with a combinatorial perspective, direct sums when they are ”glued” together.

1.1.2 Connection to words and alphabets

Let Σ = {1, . . . , d} be a set of integers. A word of length n is a formal con-
catenation of n digits, like for instance the string ”112” for the case n = 3. It
is possible to rigorously define products between words (as suitable symbolic
concatenation) and study their properties.

Let E = Rd a vector space of the same dimension as the set above, d. Then
any word of length n can be seen as a tensor belonging to the product of E with
itself, repeated n times. For instance for n = 3, the word 112 corresponds to
the tensor e1 ⊗ e1 ⊗ e2 ∈ E ⊗ E ⊗ E.

This interpretation establishes a connection between the algebraic setting
that we are going to further develop, and a more formal combinatorial approach
available in the literature.

1.1.3 Connection to non-commutative polynomials

Let’s consider non-commutative real polynomials, say of degree 3, with 2 inde-
terminates, called x and y. Each polynomial is therefore written in the form:

P (a1, . . . , a8) = a1(xxx) + a2(xxy) + a3(xyx)+

+a4(xyy) + a5(yxx) + a6(yxy)+

+a7(yyx) + a8(yyy)

(1.2)

for some real 23 = 8 coefficients (a1, . . . , a8).
Let E = R2. Each tensor in the space E⊗E⊗E can be written in the form:

T (b1, . . . , b8) = b1(e1 ⊗ e1 ⊗ e1) + b2(e1 ⊗ e1 ⊗ e2)+

b3(e1 ⊗ e2 ⊗ e1) + b4(e1 ⊗ e2 ⊗ e2)+

b5(e2 ⊗ e1 ⊗ e1) + b6(e2 ⊗ e1 ⊗ e2)+

b7(e2 ⊗ e2 ⊗ e1) + b8(e2 ⊗ e2 ⊗ e2)

(1.3)

for some real 23 = 8 coefficients.
We can identify the indeterminates x and y with e1 and e2, interpreting non-

commutative polynomials as tensors, and the other way around. This allows to
extend the theory of tensors with results from non-commutative algebra.

11

1.1.4 On the tensor notation

We develop our work in a pure algebraic tensor notation, but the reader should
keep in mind the two given alternative interpretations (formal words and non-
commutative polynomials) since they nicely connect to other branches of math-
ematics and are quite common in the literature.

1.1.5 Vectorization, P-notation and scalar products

Let’s come back to the definition of tensor products. If we start from two
spaces of dimensions d1 and d2, their tensor product has dimension d1d2 and
can therefore be identified with Rd1d2 .

Let’s fix E = Rd, and define E⊗n = E ⊗ · · · ⊗E, product done n times. For
convention set E⊗0 = R. An element of E⊗n is called an n-tensor. For every
integer n, the resulting space has dimension dn and can be identified with Rdn .

For our computations, the choice of that isomorphism plays a role. We
call vectorization any mapping of canonical tensor basis to canonical euclidean
basis.

Definition 1.1.3 (Vectorization). LetG = Rd with canonical basis {g1, . . . , gd}.
Let {e1, . . . , ed2} be the canonical basis of Rd2 . A vectorization v of G ⊗ G is
any bijection:

v : {gi ⊗ gj} 7→ {ek} (1.4)

linearly extended so to define an isomorphism between G⊗G and Rd2 .

Different choices for the order of the indices k generate different vectoriza-
tion maps, leading to multiple representations of the same tensor in Rdn . This
opens the way to optimization strategies according to the applications: indeed,
the explosion of dimensionality dn represents a challenge from a computational
viewpoint. Mathematical theories like ”sparse tensors” and related are con-
nected with this observation.

It is time to introduce some notation that will strongly simplify all the
computations from now on.

Definition 1.1.4 (P-notation). For any two positive integers d and n, we call
P (d, n) the set of all possible multi-indexes I, I = (i1, . . . , in), such that ik is
chosen from {1, . . . , d}. When the dimension d is completely understood and
clear from the context, we write P (n) instead of P (d, n).

Since repetitions are allowed, P (d, n) has cardinality dn, motivating our
choice of P for ”powers”. For instance, choosing d = 3 and n = 2 leads to:

P (3, 2) = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)} (1.5)

of cardinality 32 = 9.
Let’s come back to E = Rd and the tensor space E⊗n. For each possible

multi-index I = {i1, . . . , in} for I ∈ P (d, n), we abbreviate the basis tensor
ei1 ⊗ . . .⊗ ein simply by eI ∈ E⊗n.

12

Since (by definition) a basis for E is given by all the possible eI , each element
a ∈ E⊗n can be uniquely written as:

a =
∑

I∈P (d,n)

aIeI (1.6)

for suitable real coefficients aI ∈ R. One advantage of this notation is that
it allows to introduce scalar products quite easily.

Definition 1.1.5 (Scalar product in E⊗n). Let E = Rd and a, b ∈ E⊗n. Then:

(a, b)E
.
=

∑
I∈P (d,n)

aIbI ∈ R (1.7)

When E⊗n is identified with Rdn by using any vectorization, we have by
construction that the operation above (·, ·)E⊗n coincides with the standard Eu-
clidean product (·, ·)Rdn . This happens because the real coefficients of the basis
are only re-arranged when converting tensors into vectors. Since on computers
we usually represent tensors as ”long arrays” implicitly using a vectorization
map, this remark ensures compatibility.

Finally, we recall how given two elements eI ∈ E⊗n and eJ ∈ E⊗m, their
tensor product is simply the tensor ei1 ⊗ · · · ⊗ ein ⊗ ej1 ⊗ · · · ⊗ ejm ∈ E⊗n+m.
Extending this expression linearly we obtain the definition of tensor products
between two generic elements of E⊗n and E⊗m.

1.1.6 The tensor algebras T∞(E), TN(E)

As usual we fix E = Rd. The tensor algebra associated to E is the direct sum
of all the tensor products of the space with itself. More precisely:

Definition 1.1.6 (Tensor algebra). For a vector space E, its tensor algebra is
defined as:

T∞(E)
.
=

∞⊕
n=0

E⊗n (1.8)

Equivalently, it is the space of formal infinite tensor sequences:

T∞(E) = {(a0, . . . , an, . . .)|an ∈ E⊗n} (1.9)

Similarly, we have the:

Definition 1.1.7 (Truncated tensor algebra). For N ∈ N, the corresponding
truncated tensor algebra is defined as:

TN (E)
.
=

N⊕
n=0

E⊗n (1.10)

Equivalently, this is the space of finite sequences of length N + 1:

TN (E) = {(a0, . . . , aN)|an ∈ E⊗n} (1.11)

13

Both T∞(E) and TN (E) are vector spaces by pointwise extensions of the
original operations on E. For instance, if a, b ∈ T∞(E), their sum is defined as
the infinite sequence having in position n the n-tensor (a+b)n

.
= an+bn ∈ E⊗n,

and similarly for the scalar multiplication.
Every element (a) ∈ TN (E) can be identified with the sequence (a, 0, 0, . . .)

(same as a in the first N + 1 components, followed my infinitely many zeroes)
in T∞(E), offering the linear embedding ι : TN (E) ↪→ T∞(E).

Conversely, any sequence b ∈ T (E) can be truncated after N + 1 terms
giving the surjective linear projection πN : T∞(E) → TN (E), and such that
πN ◦ ι(x) = x for each x ∈ TN (E).

Tensor products can be extended on tensor algebras.

Definition 1.1.8 (Tensor product on T∞(E)). For two elements a, b ∈ T∞(E),
their tensor product is defined as:

a⊗ b .= (c0, c1, . . . , cn, . . .) ∈ T∞(E) (1.12)

where cn =
∑n
k=0 ak ⊗ bn−k ∈ E⊗n

We remark how this operation resembles classic polynomial multiplication.
This insight that can be used to develop more efficient computational imple-
mentations.

Finally, by simply ignoring any emerging term with order higher than N ,
the tensor product can be defined between elements of TN (E).

1.1.7 The Hilbert space T (E)

For two elements a, b ∈ TN (E) is it directly possible to define their scalar
product:

(a, b)TN (E) =

N∑
n=0

(an, bn)E⊗n ∈ R (1.13)

When trying to extend the definition to the larger algebra T∞(E), we can
encounter infinite sums. This is at the base of the following definition:

Definition 1.1.9 (Hilbert tensor algebra). We call T (E) the Hilbert vector
space T (E) ⊂ T∞(E) of summable tensors:

T (E)
.
= {a ∈ T∞(E) such that ‖a‖T∞(E) <∞} (1.14)

To prove its completeness, let’s consider the classic Hilbert space of summable
sequences:

l2 = {a ∈ R∞, a = (a0, a1, . . .)|
∞∑
i=0

a2
i <∞} (1.15)

Our strategy is to construct a linear isomorphism between l2 and T (E).

14

Recall the structure T∞(E) =
⊕
E⊗n. For each member we can select a

vectorization vn : E⊗n → Rdn . By concatenating them we obtain a linear map:

v : T∞(E)→ Rd ⊕ Rd
2

⊕ Rd
3

... (1.16)

given by
(a0, . . . , an, . . .) ∈ T∞(E) 7→ (v0(a0), v1(a1), . . .) (1.17)

Observe that if ‖a‖2T∞(E) <∞, then:

‖a‖2T∞(E) =
∑
i∈N
‖ai‖E⊗n =

∑
i∈N
‖vi(ai)‖Rdn =

∑
k∈N

b2k ∈ l2 (1.18)

where the last equality holds since every single addend ‖vi(ai)‖Rdn can be
expressed as a finite sum of dn squared reals, and we repeat these sums a infinite-
countable number of times. For simplicity we grouped all these squared terms
under the notation bk.

This shows that the map above can be restricted to a linear isometry v :
T (E)→ l2. Surjectivity can also be verified: for any infinite sequence b, we can
always group the ordered coefficients into parts of length d, d2, ..., then send
them back by using the vectorization maps, obtaining a tensor in T∞(E) with
the same (finite) norm as the squared sums of b, therefore belonging to T (E).

In conclusion, we have the following chain of strict inequalities:

R = T 0(E) ⊂ T 1(E) ⊂ . . . ⊂ TN (E) ⊂ . . . ⊂ T (E) ⊂ T∞(E) (1.19)

where each set is a closed vector space w.r.t. the next one and T (E) is also an
Hilbert space.

1.1.8 Tensors in computer science

In this section we defined the notion of tensors and tensor algebra from an
applied mathematical perspective. We would like to invest few lines to point
our connections with other fields, hopefully clarifying any possible ambiguity.

On a more abstract mathematical level, tensor spaces are usually defined
by using a specific universal characterization for bilinear maps, a property we
did not mention, which is actually still true in our definition (and explained
in the mentioned reference). By insisting on developing connections with other
algebraic or analytical structures, tensors are defined slightly differently for
instance in the contexts of category theory or differential geometry, to mention
two examples.

Our definition aims at something more ”practical”: combinatorial com-
putations. We defined tensors essentially as ordered couples endowed with
polynomial-like operations. For instance, a 3−tensor is just an element of
E ⊗ E ⊗ E, which is completely characterized by multi-indices of depth 3,
aijk(ei ⊗ ej ⊗ ek). Collections of tensors of various ranks can be multiplied
(tensor products) in a way similar to polynomials. All these operations are
made explicit, scalar products and norms can be computed.

15

Finally, we have the classic informal computer science viewpoint. Here a
tensor of depth n is simply defined as a collection of numbers arranged via a
multi-index of length n. For instance, a picture can be seen as a 2-tensor, with
aij being the color value at position i, j into a Cartesian axis. A video can
be seen as a 3-tensor, basically adding the time coordinate to a picture, and
similarly for other cases. No further mathematical structure is required.

Note that our formal definition of tensor is also a tensor in the sense of com-
puter science, on which we add multiple mathematical operations that enable
to develop a more solid theory connected with multiple branches.

In all our numerical experiments we use the Python programming language,
more specifically the PyTorch library. We suggest the very interesting book
[ES20] (in particular chapters 3 and 4) for everyone interested in understanding
more on tensors in the world of programming and their implementations in Py-
Torch. We finally remark how PyTorch enables a complete scientific computing
framework where it is very easy to take advantage of GPU computing, gaining
huge performance boosts in multiple scenarios, as well as ”semi-parallel” organi-
zation of processes (the so-called PyTorch ”vectorization”). All the experiments
in this work are reproducible in seconds or minutes and have been tested even
on the author’s machine (i7-12700H, 16 GB Ram, NVIDIA 3060, Debian Linux
12).

1.2 Elementary path integrals

We introduce the notion of path integral, a necessary ingredient for the defini-
tion of the signature transform. When combined with tensor algebras from the
section before, this notion completes the required background.

1.2.1 Path integrals for smooth curves

Let’s consider two smooth paths, X and Y : [a, b]→ R. The path integral of X
with respect to Y is defined as:∫ b

a

X(t)dY (t)
.
=

∫ b

a

X(t)Ẏ (t)dt (1.20)

Sometimes we write path integrals more succinctly as
∫ b
a
XdY . Path inte-

grals will play a central role in the whole work therefore it is useful to refresh
some key properties.

1.2.2 Invariances

First of all, we point out how path integrals do not vary under time reparametriza-
tions. We recall a change of variable formula, consequence of the chain rule:

16

Proposition 1.2.0.1 (Change of variables for Riemann integrals). Let g :
[a, b]→ [c, d] be a diffeomorphism, f : [c, d]→ R a continuous function. Then:∫ d

c

f(t)dt =

∫ g(b)

g(a)

f(t)dt =

∫ b

a

f(g(u))g′(u)du (1.21)

It directly follows that:

Proposition 1.2.0.2 (Invariance under time reparametrization). Let X, Y be
two smooth paths [c, d]→ R and φ : [a, b]→ [c, d] a diffeomorphism. If X̂ = X◦φ
and Ŷ = Y ◦ φ, then: ∫ d

c

XdY =

∫ b

a

X̂dŶ (1.22)

Proof. Let f(u)
.
= X(u)Y ′(u) and g(u)

.
= φ(u). Using the proposition above:

∫ d

c

XdY =

∫ φ(b)

φ(a)

f(t)dt =

∫ b

a

f(g(u))g′(u)du =∫ b

a

X(φ(u))Y ′(φ(u))φ′(u)du =

∫ b

a

X̂(u)(Y ◦ φ)′(u)du =

∫ b

a

X̂dŶ

(1.23)

It is particularly convenient to use the map φ : [0, 1] → [c, d] defined as
φ(t) = c+ t(d− c) to transport the setting on the canonical unit interval [0, 1].
When fixing a value of t ∈ [0, 1] and restricting φ on the domain [0, t] the formula
above becomes: ∫ t

0

X̂dŶ =

∫ c+t(d−c)

c

XdY (1.24)

which will be useful later.
The results above clarify how path integration does not depend on the

”speed” at which trajectories are traversed, as long as it is done with enough
regularity. The invariance is preserved also when we add constants r ∈ R, since
integrating with respect to Y + r cancels r when taking the derivative.

From a computational perspective these changes of domains are very useful
for data normalization, for instance when making paths starting with value 0
(e.g. by translating X̂ = X −X(0)), and then compressing them into [0, 1] by
using the mentioned φ map.

Another important remark is that path integrals are still paths themselves!
For instance, defining Z(t) as Z(t)

.
=
∫ t
c
XdY , the integration of it against

another smooth path Q(t) is totally meaningful.
Let’s conclude this section by establishing a notation. If X : [0, 1] → Rd is

a smooth multi-dimensional curve, each component is indicated by an upper
index Xi(t).

17

Note that we can path-integrate any component Xi with respect to an-
other component Xj , and that we can repeat the process recursively on the ob-
tained curve. This is a key remark before introducing the signature transform,
which can be seen as a combinatorial object emerging by performing these cross-
integrals among all possible (infinite) combinations of available components.

1.2.3 Bounded variation functions

The previous section was more focused around the hypothesis of smooth regu-
larity. For our applications it is not enough, since practical data usually comes
in form of discrete entries. We need to extend the theory.

We remark a brief abuse of notation present in our whole work. When
indicating the paths domains (compact intervals in R), we generally denote
them with [a, b] or [c, d]. In the the latter case, the letter d has of course no
relationship with the codomain dimension Rd.

The symbol C([c, d];Rd) indicates the Banach space of continuous maps
X : [c, d] → Rd, equipped with the uniform norm ‖X‖sup = supt∈[c,d]‖X(t)‖,
the latter being the canonical Euclidean norm ‖X(t)‖2 =

∑d
i=1(Xi(t))2. The

shortcut C([c, d]) is used when the target set is simply R.
We aim at extending the notion of path integration to less regular cases. We

can start with an intuitive idea. Given two curves X and Y , their path integral∫
XdY should relate to the sums ”X(ti)(Y (ti+1) − Y (ti))” (ti being part of

a time interval partitioning). Indeed, the choice of Y as the identity function
gives back the classic Riemannian sums, confirming this intuition.

Before proceeding in a more precise way, we need to clarify some definitions.

Definition 1.2.1 (Dissection/mesh). For any integer N , an ordered collection
of N values ti such that c = t1 < · · · < tj < · · · < tN = d is called a dissection
(or alternatively, mesh) of the interval [c, d]. It is generically indicated by the
symbol D[c,d], and sometimes only D if the context allows no ambiguity. The
number of its elements, N , is also referred as]D[c,d].

Definition 1.2.2 (δ-dissection). Given a dissection D with N elements, its
meshsize |D| is the value |D| .= maxi∈{1,...,N−1}|ti+1 − ti|. A δ-dissection is a
dissection with meshsize δ.

A classic situation is to study convergence properties of functions approxi-
mated on some dissections whose meshsizes approach zero progressively.

Example 1.2.0.1 (The uniform dissection). A typical h−dissection is given
by choosing an integer M and h = d−c

M . Then, M + 1 points {t0, . . . , tM} are
generated as ti = c+ ih, for i ∈ {0, . . . ,M}. Note that |ti − ti+1|= h.

We are now ready to introduce the notion of 1−variation which will allow
to generalize path integrals over less regular paths.

18

Definition 1.2.3 (1-variation). The 1-variation of a continuous mapX : [c, d]→
Rd is defined as:

[X] = sup
(t1,...,tN)∈D

N−1∑
i=1

‖X(ti+1)−X(ti)‖ ∈ R ∪ {∞} (1.25)

where the sup, with an abuse of notation, is taken among all possible dissections
of the interval [c, d].

Any continuous path X having finite 1−variation is called of bounded vari-
ation. The 1−variation is a seminorm, but we can slightly modify it to obtain
a proper norm.

Definition 1.2.4 (Buonded variation norm). The bounded variation norm for
a continuous function of bounded variation X : [c, d]→ Rd is

‖X‖bv
.
= [X] + ‖X(c)‖ (1.26)

Theorem 1.2.1 (Bounded variation norm and BV spaces). Let BV d([c, d]) be
the set of continuous path of bounded variation from [c, d] to Rd, BV d0 ([c, d]) its
subset of maps starting at zero. Then, both spaces are Banach when equipped
with the bounded variation norm. The set BV d0 ([c, d]) is a closed subspace of
BV d([c, d]).

Proof. See theorem 1.25 of [FV10], page 31.

We sometimes abbreviate BV 1([a, b]) and BV 1
0 ([a, b]) simply by BV ([a, b])

and BV0([a, b]) respectively.
The following proposition will help in having quantitative bounds on paths

of bounded variation.

Proposition 1.2.1.1 (1-variation of components). For every continuous map
X : [a, b]→ Rd, we have X ∈ BV d([a, b]) if and only if for each component Xk,
one has Xk ∈ BV ([a, b]) for all k ∈ {1, . . . , d}. Additionally, [Xk] ≤ [X] and

[X] ≤
∑d
k=1[Xk].

Proof. Let’s suppose X ∈ BV d. Then for every component k we have

|Xk(ti+1)−Xk(ti)|≤√√√√ d∑
j=1

|Xj(ti+1)−Xj(ti)|2 =

‖X(ti+1)−X(ti)‖

(1.27)

which implies [Xk] ≤ [X] when passing to the sup on all possible interval
meshes (a = t1 < · · · < tN = b).

19

For the other implication, observe that for a generic vector v ∈ Rd the
triangle inequality implies:

‖v‖ = ‖v1e1 + · · ·+ vded‖ ≤
d∑
k=1

‖vkek‖ =

d∑
k=1

|vk| (1.28)

which translates into:

N−1∑
i=0

‖X(ti+1)−X(ti)‖ ≤

N−1∑
i=0

d∑
k=1

|Xk(ti+1)−Xk(ti)|=

d∑
k=1

N−1∑
i=0

|Xk(ti+1)−Xk(ti)|

(1.29)

implying [X] ≤
∑d
k=1[Xk] by taking the sup with respect to the meshsize

indexed by i.

We clarify now the relationship between (C([c, d];Rd), ‖·‖sup), the Banach
space of continuous functions with uniform norm, and (BV d([c, d]), ‖·‖bv), the
Banach space of maps with bounded variation as above.

We start with a lemma in that regard.

Lemma 1.2.2. For any continuous function X : [c, d]→ Rd, we have:

sup
t
‖X(t)‖ ≤ ‖X‖bv (1.30)

Proof. Let t∗ be a point of maximum of the continuous X on the compact [c, d].
Assume t∗ ∈ (c, d). Then:

‖X(t∗)‖−‖X(c)‖ ≤ ‖X(t∗)−X(c)‖ ≤ ‖X(c)−X(t∗)‖+ ‖X(t∗)−X(d)‖ ≤ [X]
(1.31)

where we used the triangle inequality and finally the sum on the three-points
dissection {c < t∗ < d} combined with the definition of 1−variation. Therefore:

sup
t
‖X(t)‖ = ‖X(t∗)‖ ≤ [X] + ‖X(c)‖ = ‖X‖bv (1.32)

The cases for t∗ = d or c follow the same logic, this time on the simpler two-
points dissection {c, d}.

Lemma 1.2.3 (Equivalence of norms). The bounded variation norm, ‖X‖bv =
[X] + ‖X(c)‖, is equivalent to the alternative norm:

‖X‖A
.
= [X] + sup

t
‖X(t)‖ (1.33)

20

Proof. Directly by construction

‖X‖bv = [X] + ‖X(c)‖ ≤ [X] + sup
t
‖X(t)‖ = ‖X‖A (1.34)

Conversely, using the lemma above:

‖X‖A = [X] + sup
t
‖X(t)‖ ≤ [X] + ‖X‖bv =

= [X] + [X] + ‖X(c)‖ ≤ 2[X] + 2‖X(c)‖ = 2‖X‖bv
(1.35)

Corollary 1.2.3.1. The set BV d([c, d]) is a linear subspace of C([c, d];Rd) and
the inclusion BV d([c, d]) ⊂ C([c, d];Rd) is continuous and strict. Convergence
in the bounded variation norm implies uniform convergence, but the converse is
not necessarily true.

Proof. Since we proved the equivalence between the two norms, we can directly
apply proposition 1.7 from [Lyo07].

We have connected BV functions to continuous maps. The next step is to
check possible relationships when differentiability comes into play.

Proposition 1.2.3.1. Let X : [c, d] → Rd be a C1 path (differentiable with
continuous derivatives). Then, it is of bounded variation, X ∈ BV d([c, d]), and

[X] =

∫ d

c

‖Ẋ(t)‖dt <∞ (1.36)

Proof. See Proposition 1.24 of [FV10], page 30.

Sometimes the bounded variation norm can be explicitly interpreted.

Example 1.2.3.1. Let f : [0, 1]→ R be a C1 function and X the planar curve
X(t) = (t, f(t)). Then:

[X] =

∫ 1

0

‖Ẋ(t)‖dt =

∫ 1

0

√
1 + f ′(t)2dt (1.37)

which is the length of the function graph! This is to highlight the interpretation
of bounded variation curves as paths of finite length.

Given a curve X(t), the corresponding map X̂(t) = (t,X(t)) will also play
an important role later better explained. We call this operation a time augmen-
tation. Note that if X(t) is in BV d−1

0 , then X̂ ∈ BV d0 and ‖X̂‖bv ≤ 1 + ‖X‖bv.
To conclude this section, we provide an example of a two dimensional planar

curve not of bounded variation: the trajectory of a Brownian motion. This
result is classic and available in usual textbooks of stochastic analysis. The fact
that it is not of bounded variation constitutes the premise on which the develop-
ment of more general stochastic integration theories (like Itō and Stratonowich)
are built.

21

1.2.4 Linear piecewise approximation

In this section we define the method of piecewise linear approximation and relate
it to bounded variation functions. Let X : [c, d] → E = Rd be a continuous
path, and Dδ = (t1, . . . , tk) a δ-mesh of [c, d].

Definition 1.2.5 (Piecewise linear approximation). The piecewise linear ap-
proximation of X w.r.t. Dδ is the map Xδ : [c, d]→ E defined as:

Xδ(t)
.
= X(ti) +

t− ti
ti+1 − ti

(X(ti+1)−X(ti)) (1.38)

on every ti ≤ t ≤ ti+1. The values ti in the mesh are called nodes.

Piecewise approximations are always of bounded variation:

Proposition 1.2.3.2. Any map Xδ corresponding to a piecewise approximation
in the sense of the definition above is of bounded variation. In symbols, Xδ ∈
BV d([c, d]).

Proof. Proposition 1.28 [FV10], page 32.

We are actually able to compute the bounded variation norm of a piecewise
linear path. Let’s start by a preparatory lemma.

Lemma 1.2.4. Let X : [c, d] → Rd be a continuous map, and D1 and D2 two
meshes on [c, d] such that D1 ⊆ D2. Then:∑

ti∈D1

‖X(ti+1)−X(ti)‖ ≤
∑
tk∈D2

‖X(tk+1)−X(tk)‖ (1.39)

Proof. Consider t∗ ∈ D2 \ D1. By construction (since D1 is a mesh) we can
always find points ti and ti+1 in D1 such that ti < t∗ < ti+1. They are also
contained in D2 (since D1 ⊆ D2). Using then the triangle inequality:

‖X(ti+1)−X(ti)‖ ≤ ‖X(ti+1 − t∗)‖+ ‖X(t∗)−X(ti)‖ (1.40)

The proof is concluded by repeating the reasoning for each point in D2 \D1 and
taking the overall sums, possible since these points are of finite quantity.

Proposition 1.2.4.1. Let X be a piecewise linear curve on N nodes, defined
on the mesh D. Then:

[X] =
∑
ti∈D
‖X(ti+1)−X(ti)‖ (1.41)

Proof. We have to prove that the mesh D corresponding to the nodes is the one
capable of maximizing the sums in the bounded variation definition. We use in
this proof the temporarily notation shortcut:∑

D

.
=
∑
ti∈D
‖X(ti+1)−X(ti)‖ (1.42)

22

Let D1 be a generic mesh. We want to prove that
∑
D1 ≤

∑
D.

First of all, define D2 as the mesh obtained by adding to D1 all the nodal
points of the piecewise function. In other words, D2 = D1 ∪D. Because of the
lemma above,

∑
D1 ≤

∑
D2 . We conclude the proof by showing

∑
D2 =

∑
D.

Let t̂ be a point in D2 not included in D. By construction, there must exists
two nodes ti, ti+1 in D such that ti < t̂ < ti+1. On that point the function has
value:

X(t̂) = X(ti) +
t̂− ti

ti+1 − ti
(X(ti+1)−X(ti)) (1.43)

by definition of piecewise linear map. Therefore by taking the norm:

‖X(t̂)−X(ti)‖ = ‖X(ti+1)−X(ti)‖(
t̂− ti

ti+1 − ti
) (1.44)

and subtracting to the next point:

‖X(ti+1)−X(t̂)‖ = ‖X(ti+1)−X(ti)‖(1−
t̂− ti

ti+1 − ti
) (1.45)

leading to:

‖X(ti+1)−X(t̂)‖+ ‖X(t̂)−X(ti)‖ = ‖X(ti+1)−X(ti)‖ (1.46)

It means that
∑
D2 =

∑
D2\{t̂}. In other words, the point t can be omitted

when computing the sum. Repeating the same procedure for all non-nodes point
(they are finite), we have

∑
D2 =

∑
D as desired.

Remark. Piecewise linear maps with a very high number of nodes and oscillat-
ing values will tend to have in practice big bounded-variation norms. To make
computations more reliable, we will sometimes rescale the path with a coeffi-
cient 0 < λ < 1 so to reduce the bounded variation (‖λX‖bv = λ‖X‖bv) still
preserving the path’s ”geometry”.

Let’s go back the the general approximation theory. The following concise
notation will simplify future ideas:

Definition 1.2.6 (piecewise approximating sequence). A sequence {Xk}k∈N of
piecewise linear approximations for X, such that the meshsize goes to zero for
k →∞ is called a piecewise approximating sequence for X.

The piecewise approximations of a differentiable function with continue first
and second derivatives, converge uniformly to the original function when the
meshsize goes to zero:

Theorem 1.2.5 (Piecewise convergence: C2 case). Let X be a two-times dif-
ferentiable path [c, d]→ Rd and {Xk}k∈N a piecewise approximating sequence of
X. Then:

‖X −Xk‖sup → 0 if k →∞ (1.47)

Proof. See paragraph 8.3 from [Kre98], page 169.

23

When, additionally, the original curve is smooth, that convergence happens
also in the bounded variation norm:

Theorem 1.2.6 (Piecewise convergence: C∞ case). Let X be a smooth path
[c, d]→ Rd and {Xk} a piecewise approximating sequence of X. Then:

‖X −Xk‖bv → 0 if k →∞ (1.48)

Proof. Theorem 1.34, [FV10], Page 35.

This result is very, very important, essentially because (as we will see) the
signature transform is ”well approximated” for paths that converge in bounded-
variation.

1.2.5 Riemann-Stieltjes integrals

The goal of this section is to extend integration theory to paths of finite varia-
tions and clarify convergence properties in relation to smooth or piecewise linear
paths.

We work with paths on R, one dimensional. When integrating a more general
path in Rd, we interpret all the operations to be component-wise.

Definition 1.2.7 (Riemann-Stieltjes integral). Let X and Y be two paths from
[c, d] to R. Let Dδ = (tδ0 < · · · < tδi < · · · < tδd) be a sequence of dissections of
[c, d] with |Dδ|= δ → 0. Let ξδi be some points in [tδi , t

δ
i+1]. Assume that the

sums:
]Dδ−1∑
i=0

Y (ξδi)(X(tδi+1)−X(tδi)) (1.49)

converge for δ → 0 to a limit I ∈ R independent of the choice of ξδi and the
choice of dissections Dδ. Then we define:∫ d

c

Y dX
.
=

∫ d

c

Y (t)dX(t)
.
= I ∈ R (1.50)

This the Riemann-Stieltjes integral of Y against X.

Theorem 1.2.7 (Integrating against a BV function). Let X ∈ BV ([c, d])

and Y ∈ C([c, d]). Then the Riemann-Stieltjes integral
∫ d
c
Y dX exists (and

is unique).

Proof. See proposition 2.2, page 45 of [FV10].

Example 1.2.7.1 (Integrating against the identity). When integrating against

the identity curve I : [c, d] → R, I(t) = t, we have
∫ d
c
Y dI =

∫ d
c
Y dt in the

classical Riemannian sense.

The compatibility does not end here, and we also have a good interplay when
working with the smooth case.

24

Proposition 1.2.7.1 (Integrating against a differentiable function). If Y , X
are two path on [c, d], the former continuous, the latter differentiable. Then∫ d
c
Y dX =

∫ d
c
Y (t)Ẋ(t)dt. The first integral is to be meant in the sense of

Riemann-Stieltjes. Therefore, there is no ambiguity when dealing with smooth
function integration and the Riemann-Stieltjes path integration can be safely
seen as an extension of the previous case.

Proof. Consult the end of page 47 from [FV10].

Another important remark is about the change of variable formula.

Proposition 1.2.7.2 (Change of variable for Riemann-Stieltjes). Let Y ∈
C([c, d]), X ∈ BV ([c, d]), and φ : [a, b] → [c, d] a non-decreasing diffeomor-
phism. Defining X̂ = X ◦ φ, Ŷ = Y ◦ φ, we have:∫ b

a

Ŷ dX̂ =

∫ d

c

Y dX (1.51)

Proof. This is under proposition 2.4 from [FV10], page 48.

The chain rule above essentially extends the situation for the non-smooth
case, having an important consequence as already pointed out for smooth maps:
path integrals will be invariant when performing the classic change of coordinate
[0, 1]→ [c, d], φ : t 7→ c+ t(d− c) introduced before.

We conclude this section with a continuity property that we will exploit a
lot.

Proposition 1.2.7.3 (Convergence in BV implies convergence of the integrals).
For any time interval [c, d] ⊆ R, the map:∫ ·

c

: C([c, d])×BV ([c, d])→ BV ([c, d]) (1.52)

given by (Y,X) 7→
∫ ·
c
Y dX is well-defined, of bounded variation, bilinear and

continuous. With the open integral we mean the path
∫ ·
c
Y dX : [c, d] → R

mapping u 7→
∫ u
c
Y dX.

Proof. See the beginning of section 2.2 from [FV10], page 49.

Corollary 1.2.7.1 (Convergence of self-integrated integrands). Let X be a
smooth curve X : [c, d] → R, and {Xk}k∈N a piecewise approximating sequence
of X. Then for k →∞ we have:∫ ·

c

XkdXk →
∫ ·
c

XdX (1.53)

in bounded variation (all these open integrals are in BV ([c, d])).

Proof. Since the original path X is smooth, the piecewise approximation con-
verges in the uniform norm as well as in bounded variation. Apply then the
proposition above.

For further properties of the Riemann-Stieltjes integral we suggest reading
chapter 2 of [FV10].

25

1.2.6 Recap of the section

The goal of this section was to introduce paths integrals for the case of piecewise
linear maps, showing their theoretical convergence and invariances as in the case
of time reparametrizations (important when ”normalizing” data). Of particular
relevance will be the case when we integrate the components of a multidimen-
sional discrete path X against each others

∫
XidXj , as better explained in the

next chapter.

1.2.7 An additional remark on generic p variation

We defined the notion of 1−variation without commenting more about the
meaning of the number ’1’. It is indeed possible to extend the construction
and integration theory on paths of bounded p−variations by looking at sums
‖X(ti+1) − X(ti)‖p instead. This connects well with a more abstract mathe-
matical setting called rough path theory. This goes beyond the purpose of this
work, where we stay in more regular cases and explore multiple applications in
modern machine learning.

For more information, we suggest for instance the paper [CK16], section 1.4
or the book [Lyo07].

26

Chapter 2

The signature transform:
definition

2.1 Defining the signature transform

2.1.1 Motivation

At the end of the previous chapter we briefly mentioned the existence of more
general integration theories suitable for less regular paths. This leads to the
definition of more abstract differential equations, as well as the development of
corresponding solving strategies.

Let’s consider for a moment a more classic ODE setting, where the Picard
algorithm can be exploited to compute the unknown solution. Recall that the
strategy is to rewrite the ODE as an integral equation, whose fixed point is
the searched solution. Using an iterative algorithm directly derived from the
general fixed-point theory, such a solution is finally numerically approximated.

We remark how during the process multiple iterated integrals are computed
and finally used to characterize the true solution.

By extending this idea to differential equations driven by a path X, as for
instance quickly shown in section 1.2.3, page 7 of [CK16], one can show that
a specific collection of iterated integrals called the signature of X is able to
completely characterize the solution for equations of the form ”dY = F (Y)dX”.

Because of this characterization, one can intuitively guess that the signature
of a path contains ”enough information” about it, and might therefore be a
good feature from a machine learning viewpoint when working with time series.

In other words, if it is true that the signature of a curve X emerges when
solving more abstract ODEs, is it on the other hand an object defined only on
the path X itself and in principle independent on its original ODE environment.

This is the approach we follow. Instead of using the signature to solve
and study rough differential equations, we focus more on its intrinsic properties
targeting machine learning and numerical applications.

27

2.1.2 The signature coefficients

Let X be a smooth path X : [a, b]→ Rd. We recall the notion of simplex, which
constitutes a fundamental integration domain.

Definition 2.1.1 (simplex). The d-dimensional simplex on [a, b] is the set:

∆d
ab = {(u1, . . . , ud), ui ∈ [a, b], a < u1 < · · · < ud < b} (2.1)

When the base interval is [0, 1], we write ∆d, omitting the subscript.

To define the signature transform we first need to get the signature coeffi-
cients, which can be derived from a combinatorial approach using iterated path
integrals.

Let n be an integer and d the codomain dimension in our path X : [a, b]→
Rd. Let P (d, n) be as usual the set of all possible multi-indices In = (i1, . . . , in),
where 1 ≤ ik ≤ d. Note that P (d, n) contains a total of dn elements.

Definition 2.1.2 (Signature coefficient). The signature coefficient correspond-
ing to the multi-index In = (i1, . . . , in) ∈ P (d, n) is the real number sIn defined
as:

sIn =

∫
∆n
ab

Ẋi1(u1) · · · Ẋin(un)du1 · · · dun (2.2)

where Ẋk is the derivative of the k-th component of the path X.

Remark. More explicitly, the signature coefficient can be equivalently computed
as the concatenation of n integrals:

sIN =

∫ b

a

∫ un

a

∫ un−1

a

· · ·
∫ u2

a

dXi1(u1) . . . dXin(un) (2.3)

This follows directly from the definition of the simplex given above, and is
more common in the literature as for instance in the recommended introduction
[CK16]. If on the one hand the former formulation is more compact to write,
the latter brings to us a great advantage. Being defined as an iteration of path
integrals, it already shows how the signature can directly be extended on curves
of bounded variation!

Furthermore we directly have many properties inherited by path integral
theory, like the invariance under translations. Let φ : [0, 1]→ [a, b] the canonical
transform t 7→ a + t(b − a). Let X̂ be the reparametrized curve X̂(t) = (X ◦
φ)(t)−X(a). Then we have:

Proposition 2.1.0.1 (Signature invariance). The signature coefficients for the
curve X̂ are exactly the same as for the curve X.

Proof. This is a corollary from the path integral invariance explained before, a
result of the change of variable formula valid for the smooth as well as for the
bounded variation case.

28

The curve X̂ has the computational advantage of starting from 0 and evolv-
ing into the interval [0, 1], which can be interpreted as a form of data normal-
ization.

Summing up, in this section we defined the notion of signature coefficient
for a bounded variation curve, and seen how without loss of generality we can
assume to work on [0, 1] and to start from the origin.

2.1.3 The signature transform

The complete signature transform is essentially an algebraic arrangement of the
previously defined coefficients, so that they mirror multiple analytic properties.

Let X : [0, 1] → Rd be a bounded variation curve, and P (d, n) as usual
the set of all possible multi-indices In = (i1, . . . , in), where 1 ≤ ik ≤ d. As a
notation shortcut, let E = Rd. Recall that for each choice of In we have the real
coefficient sIn defined in the section before. Furthermore, recall the notation
eIn as a shortcut for ei1 ⊗ . . .⊗ ein ∈ E⊗n.

Definition 2.1.3 (n-th level of the signature). Let n be a positive integer,
X : [0, 1] → E be a curve of bounded variation. The corresponding level n of
the signature transform is the n-tensor Sn defined as:

Sn
.
=

∑
In∈P (d,n)

sIneIn ∈ E⊗n (2.4)

For n = 0, S0 is always defined as the constant number 1 ∈ R = E0.
In other words, the level n of a signature transform stores the values of

crossed integrations between n components of the speed (derivative) of a path,
arranged so to keep track of their integration order.

The signature levels are bounded in norm.

Proposition 2.1.0.2 (Upper bound for level n). If X : [0, 1]→ E is a path of
bounded variation, then, for each n:

‖Sn‖E⊗n ≤
[X]n

n!
(2.5)

where, as usual, [X] is the previously defined 1-variation of X. We adopt the
convention 0! = 1.

Proof. This is the content of proposition 2.2 in [Lyo07], page 27. The proof
uses a reparametrization to simplify integration over the simplex, from which
the factorials come from.

We can finally proceed to define the signature transform, the central object
in this work.

Definition 2.1.4 (Signature transform). The signature transform of the bounded
variation curve X : [0, 1] → E is the element S(X) ∈ T (E) ⊂ T∞(E) defined
as:

29

S(X)
.
=

∞∑
n=0

Sn ∈ T (E) (2.6)

where each Sn has been embedded into T (E) so to make the sum mathe-
matically clear (or, equivalently, it is possible to use direct sums ⊕ instead).

The signature is in principle an object belonging to T∞(E), but the following
corollary ensures the correctness of the definition above.

Corollary 2.1.0.1 (Upper bound for the signature transform). Let X : [0, 1]→
E be a path of bounded variation. Then ‖S(X)‖T∞(E) <∞, i.e. S(X) ∈ T (E).

Proof. Direct consequence of the proposition above. Indeed:

‖S(X)‖T∞(E) =

∞∑
n=0

‖Sn‖E⊗n ≤
∞∑
n=0

[X]n

n!
= exp([X]) <∞ (2.7)

2.1.4 Notation in other papers

Some papers in the literature (for instance [NSW+20]) use an even more different
notation when referring to the signature transform. The purpose of this section
is to clarify this potential ambiguity.

Let X : [a, b] → Rd be a curve of bounded variation. The signature is
sometimes defined as a sequence of k-tensors {Xk}k∈N each defined as:

Xk =

∫
t1<t2<···<tk,t1,...,tk∈[a,b]

dX(t1)⊗ · · · ⊗ dX(tk) (2.8)

The first element X0 set to 1 ∈ R.
A first look at this writing could confuse readers coming from a different

background, since the symbol ”⊗” usually refers to product measures when in
the context of integration. Here, this is not the case. The notation above should
be interpreted essentially as a combinatorial operation, similarly to what we did
in the previous section. In other words, for each fixed k, we define a k-tensor
called Xk, element of (Rd)⊗k, such that:

Xk =
∑

Ik∈P (d,k)

xIkeIk (2.9)

and for each multi-index Ik = (i1, . . . , ik):

xIk =

∫
t1<t2<···<tk,t1,...,tk∈[a,b]

dXi1(t1) · · · dXik(tk) =∫
∆k
ab

dXi1(t1) · · · dXik(tk) = sIk

(2.10)

This coincides with our definition, therefore there is no conflict between our
exposition and other variants in the literature.

30

2.1.5 The signature truncation

The definition in the section before points out how the signature is essentially
an algebraically organized set of an infinite number of coefficients. This can be
quite impractical for concrete applications. Therefore we mainly work with its
truncated version.

Definition 2.1.5 (Truncated signature). For each integer D, the truncated
signature at depth D is defined as:

SD(X) =

D∑
n=0

Sn ∈ TD(E) ⊂ T (E) (2.11)

The truncated signature can be bounded as a direct corollary of the corre-
sponding proposition above.

Corollary 2.1.0.2 (Bounds for the truncated signature). Let X ∈ BV d. Then:

‖SD(X)‖TD(E) ≤
D∑
n=0

[X]n

n!
(2.12)

We find useful to clarify an approximation result:

Proposition 2.1.0.3 (Convergence of the truncated signature). Let X be a
path of bounded variation. Then as D →∞, we have:

SD(X)
T (E)−−−→ S(X) (2.13)

Proof. By direct computation using the bounds above:

‖S(X)−SD(X)‖T (E) =

∞∑
n=D+1

‖Sn‖E⊗n ≤
∞∑

n=D+1

[X]n

n!
= exp([X]n)−

D∑
n=0

[X]n

n!
→ 0

(2.14)
as D →∞.

We conclude this section by pointing out a convergence property with respect
to path discretization.

Proposition 2.1.0.4 (Convergence of path approximations). Let Xk be a se-
quence of approximations of X, such that as k →∞:

Xk
bv−→ X (2.15)

(for instance, this holds with piecewise approximating sequences)
Then, for each D ∈ N:

SD(Xk)
T (E)−−−→ SD(X) (2.16)

when k →∞.

Proof. See corollary 2.11 of [Lyo07], page 32. The proof uses the interpretation
of the truncated signature as a solution to a particular algebraic differential
equation, exploiting then its continuity properties.

31

2 4 6 8 10
n

0

1

2

3

4

f(n
)

Behavior of f(n) = x^n / n! for different values of x
x = 0.1
x = 1
x = 3

2.1.6 The signature decay

In the previous section we explained how the signature transform is bounded,

and in particular that each level n satisfies ‖Sn‖E⊗n ≤ [X]n

n! .
We would like to analyze in more details this behavior, so to better under-

stand the effects of truncating the signature.
If we had a strict monotone decrease like ‖Sn‖E⊗n > ‖Sn+1‖E⊗(n+1) , we

would be sure that the information left after stopping the signature is somehow
small and controlled.

To reach this goal, we have a look at the function xn

n! . Given a fixed value
of x, we know it must decay from a certain n on, since their sums converge to
the exponential function exp(x). Here we remark when this decay starts.

The inequality to set is xn+1

(n+1)! <
xn

n! which can be rewritten as n > x − 1

since all the involved quantities are positive.
Therefore, the value of x determines the starting point of the decay of the

function! In order to graphically convey this message, a plot displaying examples
with x = 0.5, 2, 5 is attached.

When translating into the signature context, the value of x is the total
variation norm of the path. The higher is this value, the later we observe a
monotone decay of the signature coefficient.

As a natural consequence of these remarks, we will sometimes modify our
paths to reduce their total variation. In principle there is no need to use sophis-
ticated methods: a simple scalar multiplication by λ ∈ R can be very helpful
(indeed we have [λX] = λ[X]). Choosing λ = 1

[X] would surely ensure the signa-

ture decay from the very beginning on (x = 1, as also readable on the plot). On
the other hand, too small values can also represent a problem from a numerical
viewpoint.

In conclusion, controlling the signature size represents a remark that we
should always keep in mind when performing experiments, despite the lack of a

32

’universal’ solution. Each case will be appropriately commented if required.

2.1.7 Practical conclusion

The signature convergence theorems are of crucial importance even from a nu-
merical perspective, as here explained in details.

Given a smooth path Y : [a, b] → Rd, we are interested in working with its
signature, S(Y).

First, we need to accept accessing only a limited amount of its infinite ex-
pansion. We choose a target level D ∈ N and try to approximate the value
of SD(Y). Thanks to the theorem above, we know the approximation to be
exact for D →∞, but we usually stop around D = 5 for computational reasons
(exponential growth of the number of coefficients to compute).

Let φ : [0, 1] → [a, b] be the canonical translation. Since it is easier to work
(and compute) with maps on the interval, we consider the time translation
X = Y ◦ φ. It does not introduce any change since SD(X) = SD(Y). At this
point we can also translate the curve so to start from zero.

Finally, we cannot take into account the full smooth path X, but we rather
consider a piecewise approximating sequence {Xk} and stop at a sufficient small
meshsize (i.e. high value of k). This is again in accordance with the theory since
SD(Xk)→ SD(X) as k →∞.

The last step is the computation of SD(Xk), which is precisely the purpose
of the next section.

In conclusion, the original infinite tensor S(Y) is approximated with a (gen-
erally long) array SD(Xk) according the rules above. This strategy will be the
default method in this work.

2.2 Computing the signature transform

The goal of this section is to explain aspects concerning the practical computa-
tion of the signature. In the previous section we clarified how (and why) given
a smooth path, we approximate it with linear piecewise interpolations. The sig-
nature is evaluated always and only on these approximations, since asymptotic
convergence is guaranteed.

In other words, we are only interested in computing signatures on piece-
wise linear paths X : [a, b] → Rd. We start with simple cases and proceed
progressively.

2.2.1 Working with the segment on [0, 1]

The simplest path is provided by the standard unitary segment. When we work
under this condition, with a linear path X : [0, 1]→ Rd, we can always rewrite it
in the form X(t) = X(0) + t(X(1)−X(0)) pointing out its constant derivative.
As usual, we use upper indices for the components, for instance X1 : [0, 1]→ R
for the first, and similarly for the others.

33

The constant derivatives come into play when computing the signature trans-
form. Since the integral of constants over the standard simplex is exact, we can
perform a precise signature computation.

Let I = {i1, . . . , in} be a multi-index of length n, where each value is in
{1, . . . , d}. In other words, I ∈ P (d, n). The corresponding signature coefficient
on the interval [0, 1] is then:

sI(X) =

∫
∆n

dXi1(t1) · · · dXin(tn) =∫
∆n

(Xi1(1)−Xi1(0)) · · · (Xin(1)−Xin(0))dt1 · · · dtn =

=
n∏
k=1

(Xik(1)−Xik(0))

∫
∆n

dt1 · · · dtn =

=
1

n!

n∏
k=1

(Xik(1)−Xik(0))

(2.17)

Where, we recall, ∆n is the unitary simplex in dimension n,

∆n = {(x1, . . . , xn) ∈ Rn, 0 < x1 < · · · < xn < 1} (2.18)

responsible for the factor 1
n! .

Note that if X(0) = 0, the formula becomes even quicker to evaluate. In
other words, for segments starting at the origin, the signature can be computed
with a fast closed formula.

2.2.2 The factorization property

In this section we explain a trick that will allow to spare a lot of computa-
tional resources. Given two paths X : [a, b] → Rd and Y : [b, c] → Rd, their
concatenation is the map X ∗ Y : [a, c]→ Rd defined as:

(X ∗ Y)(t)
.
=

{
X(t) if t ∈ [a, b]

X(b) + Y (t)− Y (b) if t ∈ [b, c]
(2.19)

This notion interacts extremely well with the signature, because it commutes
with algebraic tensor products:

Theorem 2.2.1 (Chen’s identity). Let X : [a, b] → Rd and Y : [b, c] → Rd be
two paths of bounded variation. Then:

S(X ∗ Y) = S(X)⊗ S(Y) (2.20)

Proof. This is theorem 2, page 14, from [CK16].

34

0.00 0.25 0.50 0.75 1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00 path1
path2

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

path1 * path2

Concatenation of two paths

This formula is extremely important and at the core of the algorithm used
for computing signatures in practice. The message is the following. To compute
the signature of a generic curve, it is enough to split it into simpler pieces,
compute the signature of them, and finally take their tensor product. This last
step can be compared to the classic product between polynomials, therefore
implemented without particular obstacles. The only missing ingredient is to
understand a good choice for these ”simpler pieces” in which to split the curve.

Since we are working with piecewise linear paths, the answer is already there:
they can be written as concatenations of segments between every two nodes.
And as shown in the section before, the signature computation for segments is
straightforward, and even easier when we are on [0, 1] starting on the origin.
Therefore, in the next sections we discuss the conversion of paths into this
setting despite not strictly required.

2.2.3 Working on the canonical interval

The signature displays an interesting property concerning the time domain, due
to the change-of-variable-formula when performing integration.

Remark (Invariance for time reparametrization). Let X : [a, b]→ Rd be a map
of bounded variation. Let Ψ : [0, 1]→ [a, b] be the time rescaling:

Ψ(t) = a+ t(b− a) (2.21)

and X̂ = X ◦Ψ : [0, 1]→ Rd, then we have:

S(X) = S(X̂) (2.22)

We have already proved this result in the sections before. This equation has
a fundamental deep consequence for our applications, since it allows to convert
every setting to the [0, 1] case, easier to deal with from a computational and
notational viewpoint.

35

We study now in details how to use this transformation.
Let X : [a, b]→ Rd be a piecewise linear path, and assume it can be charac-

terized by its values at N equidistant nodes (it will be the case in any simulation
here provided). In other words, let h = b−a

N and define all nodes as the values
{a, . . . , a + nh, . . . , b} for n ∈ {0, . . . , N}. On these N + 1 points, the values
of X are assumed to be given and stored into a dataset array that we call
x
.
= (x0, . . . , xN), where xn = X(a+ nh).

On the remaining time points t, the path is understood to be linearly con-
structed: assuming without loss of generality that t ∈ [a+ nh, a+ (n+ 1)h] for
a fixed n, then:

X(t)
.
= X(a+ nh) +

t− a− nh
h

[X(a+ (n+ 1)h)−X(a+ nh)] (2.23)

We are interested in computing S[a,b](X) using the equivalence on [0, 1] with

the path X̂ = X ◦ Φ; therefore the question: how does X change after the
composition with Ψ? Which modifications must be done on the dataset array
x?

To understand the structure of X̂, let’s start by dividing [0, 1] in N nodes,
{0, . . . , nk, . . . , 1} with k = 1

N and n ∈ {0, . . . , 1}. On these new nodes we have:

X̂(nk) = X(Ψ(nk)) = X(a+ (b− a)nk) = X(a+ nh) (2.24)

because h = b−a
N . Consequently if x̂ = (X̂(0), . . . , X̂(nk), . . . , X̂(1)) is the

array of the node evaluations for X̂, we simply have: x̂ = x.
Let’s investigate the time values in between. For a generic s ∈ [nk, (n+1)k],

note that Ψ(s) ∈ [a+ nh, a+ (n+ 1)h]. Using the interpolation formula for the
original X, we have:

(2.25)

X̂(s) = X(Ψ(s))

= X(a+ nh) +
Ψ(s)− a− nh

h
[X(a+ h(n+ 1))−X(a+ nh)]

= X̂(nk) +
s− nk
k

[(X̂((n+ 1)k)− X̂(nk)]

after substituting Ψ(s) = a + (b − a)s. But this is precisely the linear
interpolation formula on X̂. That’s very nice and practical! In other words, X̂
is a piecewise linear function too, characterized by the N equidistant nodes in
[0, 1], on which it takes the same values the original X had on its nodes. Let’s
sum up the results.

Proposition 2.2.1.1 (Rescaling on the unit interval). Let X : [a, b] → Rd
be a piecewise linear map characterized by N equidistant nodes on which it
takes values stored in the array x = (x0, . . . , xN). Let Ψ be the time rescaling
Ψ : [0, 1]→ [a, b], s 7→ a+ (b− a)s.

Then, the composition X̂ = X ◦Ψ is a piecewise linear map, characterized by
the N equidistant nodes on the unit interval [0, 1], and on which it takes exactly
the same values stored in x.

36

This proposition directly implies the following:

Corollary 2.2.1.1. With the notation above, both the path X and X̂ have the
same 1-variation.

Proof. Both paths are piecewise linear maps, therefore their 1-variation is given
by evaluating the differences at the nodes, where their values, as seen, coincide.

This is important to keep in mind and has a very intuitive interpretation:
changing the speed at which we traverse the curve, as well as translating it, do
not change its length.

2.2.4 All paths can start from the origin

If X(0) ∈ Rd is the starting value a the path under analysis, assumed to run on
[0, 1], then Y : [0, 1]→ Rd defined as Y (t) = X(t)−X(0) is the translated path
starting from 0. A direct consequence of derivatives into the signature definition
is that:

S(X) = S(Y) (2.26)

In other words we can always assume without loss of generality to have
paths staring from the origin. This condition will facilitate some mathemati-
cal remarks and data normalization, especially when combined with the time
reparametrization showed above.

2.2.5 Recipe for the signature computation

We can now state a general strategy to compute the signature of a piecewise
linear path:

1. split it into its segments;

2. transpose every segment on [0, 1] and starting in the origin;

3. precisely compute the signature of every segment;

4. perform the tensor product between all these results.

The next section is about the particular case of one-dimensional paths, fol-
lowed then by computational remarks in the Python programming language.

2.2.6 Studying a one dimensional case

Let X : [0, 1]→ R be a one dimensional curve starting from zero. Call λ = X(1)
its final point. Since d = 1, for each level n ∈ N the set P (1, n) contains multi-
indexes of ”1” repeated n times, In = (1, . . . , 1). Since the curve X has only

37

a single component, in the signature we iteratively integrate such a component
against itself multiple times.

An explicit computation similar for what done with the linear segment gives:

sIn =
λn

n!
(2.27)

meaning that:

S(X) = 1 +

∞∑
n=1

λn

n!
eIn = 1 +

∞∑
n=1

λn

n!
e⊗n1 (2.28)

In other words, for a one dimensional paths the signature only depends on
the final point, giving us not so much information. We will later explain that
it is essential to work at least in dimension 2 in order to have a set of useful
properties.

If the original path X(t) has values in R, we can instead consider the aug-
mented path t 7→ (t,X(t)) taking values in R2. From a machine learning view-
point, the extension t 7→ (t,X(t)) can be interpreted as storing data values and
their timestamps. From now on we will work with augmented paths if not stated
otherwise.

2.2.7 The Signatory library

When using the Python programming language, it is possible to compute the
signature for a curve on [0, 1] in a pretty straightforward way, since (an algorithm
similar to) the recipe explained before is essentially already implemented. This
is thanks to the library Signatory, supported by Python3 and using PyTorch-
type of data. Its core is written in C++ and offers overall quite good CPU and
GPU performances (at least, in the cases we studied).

The main Signatory routine takes in input an array, say of length N , repre-
senting the values of the curve at its N equidistant nodes on [0, 1] (of course,
for a curve in Rd, that array contains d−dimensional values). This choice is by
construction, and at a first sight might seem restrictive. On the other hand,
as explained in the paragraph above, the assumption of working on the unitary
interval can be done without loss of generality.

Let’s write a concrete example. Suppose to have a piecewise linear curve
X : [5, 7]→ R2 composed by N = 5 nodes.

Its first component, being simply the time t as explained in the paragraph
above, mirrors the discretization of [5, 7] with N points:

X1 = (5.0, 5.5, 6.0, 6.5, 7.0) (2.29)

Regarding the second component, for this example we freely choose:

X2 = (−1.9, 0.5,−0.4,−1.1, 1.8) (2.30)

Let’s start now the signature computation.

38

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
first component

0

1

2

3

se
co

nd
 c

om
po

ne
nt

example of 2-path

2 4 6 8 10 12 14
n-th signature coefficient

2

4

6

8

va
lu

e

vectorized signature tensor (truncated at depth 3)

A path and its signature coefficients computed with Signatory

As a first operation, we center the curve on the origin by subtracting the
value (5.0,−1.9); call the new curve Y = (Y 1, Y 2). Then, since Signatory only
supports curves on [0, 1], we need to rescale Y by using the trick explained in the
section before. According to the previous section, these same arrays (Y 1, Y 2)
can be interpreted as the node evaluations of the rescaled curve on the time
interval [0, 1]. Therefore, Y has component:

Y 1 = (0, 0.2, 0.4, 0.6, 0.8, 1.0) (2.31)

and

Y 2 = (0, 2.4, 1.5, 0.8, 3.7) (2.32)

This data from Y are ready to be sent to the Signatory main routine.
To conclude the operation, we only need to specify the depth at which we

want to truncate the (infinite) signature tensor. We choose e.g. to stop at level
3, which should produce an array of length 1 + 21 + 22 + 23 = 15 since the
curve is 2−dimensional. On the other hand, Signatory omits the first signature
coefficient (being always 1 by construction), and therefore the actual output
length is 14.

We attach a simple plot illustrating either the curve Y , and the values of its
14 signature coefficients. There is nothing in particular to comment, rather it
is an exercise to acquire some degree of familiarity.

39

2.2.8 A small and complete numerical example

In this section we take a simple smooth curve on which we can compute by
hands the first terms of the signature. We compare this exact values with
numerical approximations so to validate the whole approach described until
now. Comments on the signature bounds are included.

The curve X : [0, 5]→ R2 is taken from [CK16], and defined as:

X(t) 7→ (3 + t, (3 + t)2) (2.33)

For the sake of computing everything explicitly, we also consider the bounded
variation norm of X since it will directly provide bounds for the signature coeffi-
cients. We know that [X] ≤ [X1] + [X2] where X1 and X2 are two components.

Being differentiable, we directly have [X1] =
∫ 5

0
|Ẋ1(t)|dt = 5 and [X2] = 55,

leading to [X] ≤ 60.
If we only look at the first two signature levels, we expect then ‖S1‖ ≤ [X] ≤

60 and ‖S2‖ ≤ [X]2

2 = 1800. These two levels are actually computable by hands
by solving the corresponding integrals. We report the results directly:

S(X)1 = 5

S(X)2 = 55

S(X)1,1 =
25

2

S(X)1,2 =
475

3

S(X)2,1 =
350

3

S(X)2,2 =
3025

2

(2.34)

Note how ‖S1‖ =
√

52 + 552 ≈ 56 ≤ 60 and ‖S2‖ ≈ 1500 ≤ 1800, as
predicted.

Proceeding now towards numerical implementations, we reparametrize the
curve into [0, 1] by the composition with t 7→ 5t, subtract the pair (3, 9) so to
have a curve starting from zero, (0, 0). On that resulting path (whose signature,
we remark again, is theoretically proven to be the same as the original), we
numerically compute the truncated signature (now up to level 2) as follows.

We construct a sequence of piecewise approximating functions {Xn}, with
meshsize halved every time that n→ n+ 1.

On these piecewise paths, the Signatory library is used to compute the sig-
nature until level 2. These values are finally compared with the known true
one.

We know that the convergence must hold, since for n→∞ we have:

S2(Xn)→ S2(X) (2.35)

40

Figure 2.1: Numerical convergence of the signature for an exact known case.

2 3 4 5 6 7
log2(mesh size)

20

15

10

5

0

lo
g2

(e
rro

r)

Convergence of Signature computation
error plot
a reference:y=-2x

as proved before, despite we cannot predict the rate.
The logarithmic plot displaying the meshsize against the resulting absolute

error is attached here, suggesting, for reference, a convergence rate better than
1√
n

(n being here the number of points chosen when discretizing the original

smooth curve).
We conclude this section with a further remark on controlling the signature in

this specific example. If we consider the original curve and numerically compute
the coefficients until a certain level, for instance 5, we would notice very big
values that will (eventually) start decaying if we compute even higher levels
(here not plotted).

On the other hand, if we rescale the curve by dividing it with the scalar
λ = 60 (which, as seen, is an upper bound for its 1-variation), we obtain Y

.
= X

60
a curve with 1-variation less than 1. The signature coefficients of Y will start
decaying already from the first level.

These considerations are readable in the second attached plot. The numerical
norm of the computed signature of Y results to be the number 1.1, which is lower
than the theoretical upper bound ‖S‖ ≤ exp([Y]) ≤ exp(1) ≈ 2.7. Note that for
the original X, the computed signature norm reaches the value of 4.30e + 06,
but is also inferior than the (huge) theoretical bound of e60. On the other hand,
dividing by a ”too big” scalar can easily produce very small coefficients that
can be very hard to handle from a numerical viewpoint. We hope that these
comments would help in understanding the relevance of even simple operations
like the multiplication of a path by a scalar value.

41

0 10 20 30 40 50 60

0

1

2

3

4

1e6 Signature of the original path

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

Signature of the rescaled path

Figure 2.2: The signature coefficients of the original (left) and rescaled (right)
curves, up to level 5. Observe the difference in the coefficients decay.

2.2.9 Monte Carlo and other integration strategies

The previous sections explained the use of algebraic strategies to compute the
signature of a piecewise curve by using tensor products and concatenations.
This is essentially (one of) the idea beyond the Python Signatory library and
other tools available online.

On the other hand, from a conceptual viewpoint, the problem of estimat-
ing the signature is essentially a high dimensional integration over the simplex.
Therefore numerical quadrature algorithms can be used, but they are usually
subjected by the curse of dimensionality especially when computing higher sig-
nature terms.

That said, for the sake of providing a form of double verification, we tried to
compute signatures using a simple Monte Carlo integration, without any kind
of particular optimization. It worked well for the lower coefficients and allowed
to confirm the results given by signatory. We remark again how this was done
as a form of benchmark and to check our theoretical understanding.

On the other hand, there was no comparison between our naive Monte Carlo
method and the speed provided by Signatory, therefore we preferred to remain
with Signatory and PyTorch for the rest of the work.

For more information on this library and a general overview about computing
the signature, we suggest the paper [KL20], where computational costs are also
explained as well as remarks and comparisons between various past strategies.

42

Chapter 3

The signature transform:
key properties

3.1 Four properties of relevance

In this section we study four properties of the signature transform, selected in
a way to be used for our later applications. Resources as [Lyo07] offer a more
complete overview.

Let BV d be the Banach space of continuous paths X : [0, 1]→ Rd of bounded
variation and BV d0 its subspace of paths starting from zero.

Let E
.
= Rd, and T (E) be the Hilbert space of elements in T∞(E) =⊕

n∈NE
⊗n of finite norm. Let’s consider the map:

S : BV d → T (E) (3.1)

associating to every path of bounded variation its signature transform.
We have already carefully explained how it works and why it is well de-

fined. We now investigate its range, injectivity and some additional properties
concerning dimensionality reduction and functional approximation.

3.1.1 Comments about surjectivity

The signature transform is not surjective, since the coefficients are not inde-
pendent to each other. They are subjected to mutual relationships:

Proposition 3.1.0.1 (Shuffle product identity). Let X ∈ BV d. For any cou-
ple of multi-indexes I = (i1, . . . , ik) and J = (j1, . . . , jm), with each index
i1, . . . , ik, j1, . . . , jm ∈ {1, . . . , d}, there exists a set of multi-indexes K such that:

sI(X)sJ(X) =
∑
K∈K

sK(X) (3.2)

Each multi-index in K has length k +m.

43

Proof. Please refer to [CK16], page 12, theorem 1, where a more complete for-
mulation of the theorem is also available.

The set K is actually computable and very precise, but here omitted since
our goal is to point out some implications of this theorem.

First, we learn that we can transform any product between signature coef-
ficients, into sum of coefficients of higher order (in particular it holds for any
polynomial evaluation). This interpretation will be important later.

Second, the signature coefficients are revealed to be mutually connected.
Therefore if the values in a tensor g ∈ T (E) does not respect the identity
above, there is no path whose signature corresponds to g, disproving surjectivity.
Nevertheless, one can try to answer the following question: given a tensor in h ∈
T (E) with compatible numbers that satisfy the identity given in the theorem, can
we find a path whose signature corresponds to h? This is called the ”signature
inversion” problem and is, for instance, discussed in [Gen15]. Experiments in
this direction are also provided in the last chapter of this thesis.

3.1.2 Injectivity and uniqueness

In general, two different paths can have the same signature. We are aware of this
property. For any path X, the addition of a constant c gives S(X) = S(X + c).
To ensure uniqueness, a first step is then to establish a common starting point,
say zero, to eliminate the possibility of translations. But can two paths starting
in 0 still have the same signature? The answer is positive again, using for
instance a time reparametrization of the interval. We also carefully discussed in
details this property, but in case the reference [CK16], page 11, section 1.3.1 can
offer further remarks. In case of necessity, it’s fairly easy to circumvent these
issues by augmenting the path:

Definition 3.1.1 (Path augmentation). Let X : [0, 1] → Rd such that X ∈
BV d0 . It’s augmentation is the path X̂ : [0, 1]→ Rd+1 defined as:

X̂(t)
.
= (t,X(t))

.
= (t,X1(t), . . . , Xd(t)) (3.3)

We have X̂ ∈ BV d+1
0 .

Augmenting a path simply means to add timestamps as first coordinate.
This is the same operation introduced before when discussing an example for the
signature computation in dimension one. Every augmented path has dimension
at least 2, still starts from zero and is of bounded variation ([X̂] ≤ 1 + [X]).

Proposition 3.1.0.2 (Augmentation embedding). Let ι : BV d0 → BV d+1
0 be

the map X(t) 7→ (t,X(t)). Then it is injective and continuous.

Proof. Suppose X → Y in BV d0 . Then:

‖ι(X)− ι(Y)‖bv = ‖(t,X(t))− (t, Y (t))‖bv =

‖(0, X(t)− Y (t))‖bv = ‖(X(t)− Y (t))‖bv → 0
(3.4)

44

We will usually indicate with X̂ the image ι(X). Augmenting a path is a
way to ensure uniqueness:

Theorem 3.1.1 (Signature uniqueness). Let X, Y ∈ BV d0 . Let X̂ and Ŷ be
their augmentations in BV d+1

0 . Then:

X̂ 6= Ŷ =⇒ S(X̂) 6= S(Ŷ) (3.5)

Proof. We refer to [Fer20], proposition 1, page 5. From a intuitive viewpoint,
adding the first coordinate t disables the invariance under time reparametriza-
tion since changes in time are now ”tracked”.

Augmenting a path ensures the injectivity of the signature transform, very
useful especially when there is interest in discriminating paths belonging to
different ”classes” (typical in the machine learning context). It is also acceptable
from a practical viewpoint, since adding the time coordinate can be interpreted
as writing ”timestamps”, something mandatory anyway when processing time
series datasets. Finally, rescaling them in [0, 1] and translating to the origin not
only give us the mathematical foundation for uniqueness, but also encourage a
better processing of data.

3.1.3 Dimensionality reduction

Suppose to have two different augmented paths, the first linearly approximated
with N points, the second with M > N . This is something that in practice can
happen, for instance when measurements are done in two different situations.

Normally, it would be hard to compare them due to the different number
of nodes. On the other hand, when computing their signatures the resulting
arrays (obtained by linearizing the tensors) always have the same length!

The computed signature for the second path will be more accurate, but this
might of secondary importance in settings where the priority is to have a quick
rough comparison of multiple data.

This reasoning does not stop here. Let’s suppose to work with high-frequency
data, for instance 2-dimensional augmented paths with millions of nodes. Man-
aging them can be challenging or even not suitable for concrete algorithm im-
plementations, due to computational constraints.

On the other hand, computing the first few levels of the signature would
convert each time series into arrays of length around sixty, offering a huge gain
with respect to manageability.

In conclusion, the signature transform presents itself also as a tool to en-
courage comparison of data and reduce dimensionality.

3.1.4 Functional linearization

This section represents a great occasion to introduce the problem of functional
regression. We start with the classic setting of ordinary regression.

45

Definition 3.1.2 (Dataset). A d−dimensional regression dataset is a finite
collection of ordered couples {(x̂1, y1), . . . , (x̂K , yK)} where x̂i ∈ Rd and yi ∈ R.

The classic regression problem consists in:

� fixing a class of functions, F , from Rd to R;

� finding the ”best” f ∈ F such that f(x̂i) ≈ yi
The function f is then used on new data to make predictions.

Our approach is a little different. We interpret each row x̂i ∈ Rd as a collec-
tion of the d node values of an hypothetical piecewise linear function Xi (uni-
formly discretized on [0, 1] with d equidistant nodes). Our dataset is therefore
seen as a finite set of pairs ”(function, value)” rather than ”(arrays, value)”.

We also need to set the first value of x̂i to be 0. We can do it for instance by
translation, but also to artificially add a zero is legit. If not differently specified,
translations will be used in our applications.

Note how having a finite number of K points (functions Xi) the dataset D
can be interpreted as a compact set of continuous functions of bounded variation
starting from zero.

We are therefore looking for some optimal (continuous) functional F : D →
R such that F (Xi) ≈ yi for every i.

The following theorem manages to strongly simplify the research:

Theorem 3.1.2 (The linearization theorem). Let D ⊂ BV d0 be a compact set
of paths of bounded variation starting in zero. For each X ∈ D, denote with X̂
the augmented path t 7→ (t,X(t)). Let F : D → R be a continuous functional.
Then, for every ε > 0, there exists a natural N ∈ N and l ∈ TN (Rd) such that:

|F (X)− (l, SN (X̂))TN (Rd)|< ε (3.6)

Sketch of the proof. We refer to [Fer20], page 5 and [LLN13], theorem 3.1, for
the actual proof and sketch here the key ideas.

Let F : D → R be a continuous functional. Since the augment embedding
ι : BV d0 → BV d+1

0 is continuous, a continuous map F̂ is induced on ι(D)

by defining F̂ (ι(X))
.
= F (X). The set ι(D) is still compact since image of a

continuous function. Similarly, since the map S : BV d+1
0 → T (E) is continuous,

we obtain a continuous functional: SF : S(ι(D))→ R simply by SF (S(ι(X)))
.
=

F̂ (ι(X)) = F (X). The domain on this functional is still a compact set.
At this point it is possible to show that there are algebraic conditions that

make possible to use the Weierstrass approximation theorem, so that SF can be
approximated with a polynomial on the signature coefficients.

But since every polynomial on the signature coefficients can be rewritten as
a linear sum (Proposition 3.1.0.1), the reasoning is concluded.

Note that since the first element of the signature is always the real number 1
(because of the time augmentation t), the scalar product (l, SN (X̂)) can be in-
terpreted as a ”linear model with bias” or simply ”linear model” in the machine
learning usual terminology.

46

In conclusion, the main theorem in this section is explaining that machine
learning nonlinear regression problems can be approximated with linear one,
provided working on the signature of data instead of their original form.

This is definitely quite useful and very promising, despite some words of
cautions are mandatory, since there is neither information concerning the rate
of convergence nor about the needed truncation level N .

3.2 A connection to probability theory

Until now we worked on a deterministic, non random setting. In this section
we extend our vision by adding observations from probability theory. More
specifically, we analyze how the signature transform connects naturally to the
moment problem in the case of real random variables.

3.2.1 The moments of a real random variable

Let X be a one dimensional real random variable. Integrating powers of X
originates the sequence of its moments.

Definition 3.2.1 (Moment). For each n ∈ N, its moment of order n is the
integral

Mn
.
= E[Xn] ∈ R (3.7)

where by convention M0 = 1.

It is possible to prove that for any random variable X, either all moments
exist, or they exist for every order less that a number k ≥ 0. For instance, we
have k = 0 for the Cauchy distribution, since all its moments diverge. Sometimes
we have explicit values for every n, as for instance in the case of Gaussian
distributions.

The moments are connected to the characteristic function of a random vari-
able, arising from its Taylor expansion around the origin. Since characteristic
functions uniquely determine random variables, one might ask how strong mo-
ments are able to characterize probability laws.

Definition 3.2.2 (The moment problem). The moment problem is the prob-
lem of deducing the complete probability distribution of a random variable X,
knowing only its sequence of moments.

Generally speaking, the answer to the moment problem is negative. It is
possible to construct two real random variables with the same moments despite
having different distributions. We refer [Var01], page 22, chapter 2.2 for the
construction of such an example. The informal idea is relatively easy to grasp,
since it would be similar to the problem of completely characterize a complex
function by only looking at its Taylor expansion around the origin.

On the other hand, this interpretation allows some positive results by using
ideas coming from complex analysis. If X and Y are two random variables with

47

same moments of every order, then they have the same distributions providing
satisfying additional conditions as (for instance) described in theorem 2.2 from
[Var01]. In this case, we say that the two random variables are compatible with
the moment problem.

Definition 3.2.3 (Compatibility). Two real random variables X and Y are
compatible with the moment problem if and only if having the same moments
implies being equidistributed, in symbols X ∼ Y .

The current topic is also very relevant in practical applications. Suppose that
we have two sets of samples coming from two sources X and Y . The goal is to
understand if they are likely coming from the same probability distribution. If it
is true that there exists more sophisticated statistical tools (always welcome to
complement our approach), to compare their moments is a good first benchmark.
If the moments are ”different enough”, X and Y are likely not equidistributed.

3.2.2 The signature moment equivalence for the real case

Assuming a basic knowledge or real random variables, we very quickly recall the
notion of stochastic process as its ”dynamic” counterpart.

Definition 3.2.4 (stochastic process). A collection of random variables {Xt}t∈[0,1]

is called a stochastic process. If Yt and Xt are two stochastic processes, they are
equidistributed if and only if for every finite choice of t1 < · · · < tn, the vectors
(Xt1 , . . . , Xtn) and (Yt1 , . . . , Ytn) are equidistributed.

Let now X be a real (”static”) random variable. The signature transform
is an interesting tool when working with time series, therefore we bring X into
this setting by defining the stochastic process Xt

.
= tX.

Note that for each realization X(ω), we have a path [0, 1] → R defined as
t 7→ tX(ω). Therefore we interpret the stochastic process Xt as a random path
and call it X̃ with an abuse of notation.

Since each realization of X̃ is simply a linear segment, we can explicitly com-
pute the signature as pointed out previously. The only multi-indices involved
are of the form (1), (1, 1), . . . , and so on, as also commented in the past sections.
Let then n ∈ N and In = (1, . . . , 1) a multi-index of length n composed by only
1s. The signature coefficients are:

SIn(X̃) =
1

n!
Xn (3.8)

leading to:

� E[SI0(X̃)] = 1 = M0

� E[SI1(X̃)] = M1

1

� E[SI2(X̃)] = M2

2

� ...

48

1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5 true values
using Monte Carlo

1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

0.5 true values
averaging the Signature

First 6 Moments of a Standard Gaussian Distribution

� E[SIn(X̃)] = Mn

n!

In other words, we verified that computing the expected signature of the
random path X̃ is equivalent to computing all the moments of X.

Recalling that with the symbol SN (X) we mean the signature truncated at
level N , patching all the pieces together we obtain:

Corollary 3.2.0.1 (Signature characterization for the real case). Let X and Y
be two real random variables compatible with the moment problem. Let X̃ and
Ỹ be the two linear paths defined as above. Then we have:

X ∼ Y ⇐⇒ E[SN (X̃)] = E[SN (Ỹ)] ∀N ∈ N (3.9)

In the next section we perform a numerical validation of this principle.

3.2.3 A numerical example for the signature as moments

If X is a standard normal variable, X ∼ N(0, 1), its moments are zero for odd

parity and 2(−n/2)

(n/2)! otherwise. We compute them by using two methods:

� averaging Xn samples via Monte Carlo;

� using the expected signature of the paths for X̃.

By comparing the numerical results with the true values, we estimate the
errors and validate the theoretical understanding. We used 100 standard normal
samples and the Signatory library to compute the required path signatures. The
(small) confidence intervals are not represented for simplicity.

The plots highlight how both methods work flawlessly. Differently from the
naive Monte Carlo averages, the signature method has the great advantage of
enjoying a greater level of generalization as we explain in the upcoming sections.

49

3.2.4 Extending on path augmentation

In the previous chapters we insisted on the importance of ”augmenting” paths
by adding the time coordinate t, for reasons concerning data normalization and
signature uniqueness. Therefore in order to keep a coherent style we briefly
discuss its adaptation for this section.

Definition 3.2.5 (Time augmentation for a stochastic process). Let {Xt}t∈[0,1]

be a stochastic process. Its time augmentation is the stochastic process {X̂t}t∈[0,1]

defined as X̂t = (t,Xt) for each t ∈ [0, 1].

We remark how:

Proposition 3.2.0.1 (equidistribution). Two stochastic processes {Xt} and
{Yt} are equidistributed if and only if their time augmentations {X̂t} and {Ŷt}
are equidistributed.

If X is a real random variable, call X̂ the time augmentation of the process
X̃ (again, we omit indices with an abuse of notation). We interpret the process
as a random path whose first coordinate is deterministic and simply t, therefore
as a random variable in the space of continuous functions.

The signature characterization still holds:

Corollary 3.2.0.2 (Signature characterization for the augmented real case).
Let X and Y be two real random variables compatible with the moment problem.
Let X̂ and Ŷ be their time augmentation. Then we have:

X ∼ Y ⇐⇒ E[SN (X̂)] = E[SN (Ŷ)] ∀N ∈ N (3.10)

Proof. Suppose X ∼ Y . Then we have X̂ ∼ Ŷ . For each integer N , the random
variables SN (X̂), SN (Ŷ) are results of the same measurable transform (finite
collections of integrals) and therefore equidistributed. In particular, they have
the same expectation.

Conversely, if E[SN (X̂)] = E[SN (Ŷ)] for each truncation level N , then in
particular the signature coefficients corresponding to the moments of the original
X and Y are the same for each N and X ∼ Y since they are assumed to be
compatible.

There is a reason for which we rephrased this theorem using the time aug-
mentation notation, despite being a mathematically straightforward technique.
Indeed, the formulation here presented still works with the same notation in a
much more general case, as explained in the next paragraph.

3.2.5 Expected signature for stochastic processes

We discussed the signature characterization for random variables X with values
in R, therefore for point random data.

If, more generally, we have a random variable X with values in Rd, we can
interpret these d numbers as the d node values for a corresponding piecewise

50

linear path. In other words, we read the multidimensional random variable X as
a random path in BV 1, which can then be translated and augmented in BV 2

0 .
We pursue this direction because in this work we focus on time-series data

(rather than general statistic theory for multidimensional variables), and be-
cause in this setting an important theorem can be stated.

Theorem 3.2.1 (Signature characterization of stochastic processes). Let X,
Y random variables in BV d−1

0 . Consider their augmentation X̂, Ŷ with re-

alizations in BV d0 . Assume that the complex series
∑∞
n=0 z

nE[‖Sn(X̂)‖E⊗n]

and
∑∞
n=0 z

nE[‖Sn(Ŷ)‖E⊗n] have an infinite radius of convergence (the tensor

Sn(X̂) being the n-th level of the signature). Then:

X ∼ Y ⇐⇒ E[S(X̂)] = E[S(Ŷ)] (3.11)

Sketch of the proof. The intuitive idea is to transform the stochastic processes
Xt and Yt into random tensors by looking at their composition with the sig-
nature. Then, in this appropriate algebraic tensor space, one develops a gener-
alization of probability theory and ”solve” the moment problem there, proving
this theorem as a corollary.

We suggest consulting theorem 2.2, page 4 of [NSW+20]. Note that for each
random path X ∈ BV d−1

0 , its augmentation is in BV d0 which is precisely the
space ”Ω1

0(J,Rd)” in the referred paper. Further comments are also available at
the end of page 23 of [LM22] and in [CL13].

This result is absolutely crucial for all our application, and can be heavily
used with a numerical perspective in mind. Before moving into applications, we
remark some theoretical consequences.

3.2.6 Building statistical tests

Let’s go back to the case of X and Y one dimensional random variables. The
theorem above gives us a criteria under which X and Y are compatible. Indeed,
if the radius of convergence of

∑∞
n=0 E[‖Sn(X̂)‖] (and similarly for Y) is finite,

they can be characterized by the expected signatures.
The same idea still works if X, Y are two multidimensional random variables,

when considering again the random segments (t, tX) and (t, tY).
In other words, the signature can be used to build statistical test for more

classical settings and generalize the notion of moments to multidimensional
random variables and even time series.

We do not explore more in this direction for reasons of time, but we suspect
that connections to some already known statistical methods can be discovered.

3.2.7 The log-signature

At this point it is worth mentioning another attempt when developing the signa-
ture theory keeping numerical and machine learning applications in mind. We
know that the signature transform:

51

� is capable of linearizing nonlinear path functionals;

� can characterize many path classes, deterministic and random;

� can become very high dimensional for longer truncations.

In an attempt to contrast the curse of dimensionality, another transform is
available through algebraic manipulation and is called the log-signature.

The name comes from the logarithm, whose real Taylor expansion is gener-
alized in a formal algebraic sense. The following holds:

� given a signature, its algebraic logarithm produces the log-signature;

� given a log-signature, its algebraic exponential map gives the signature
back.

Therefore the signature and the log-signature conceptually contain the same
amount of ”information”. On the one hand, the log-signature presents a first
advantage since it has a much smaller dimension. The arrays produced after
vectorizing the tensors are far shorter than the other obtained by the classic
signature, and consequently easier to manipulate.

On the other hand, this advantage has a cost: the linearization property
fails and there is no more characterization.

The interpretation is also harder to state. For instance, we know that for
a one dimension random variable X, the expected signature contains the mo-
menta. On the other hand, the expected log-signature of X would simply be
the expectation of X, of very limited utility.

One can suspect a possible connection between the usual logarithm and the
logarithm of the signature coefficient. This is not the case, since the logarithm
involved is an abstract generalization which only loosely resembles the common
operation from a formal viewpoint.

Furthermore, if for reals we have log[ab] = log[a] + log[b], on tensor algebras
is it not true that log[a⊗ b] = log[a] + log[b], making some attempts we did to
connect this topic to others, not working (for instance, we tried to involve the
cumulants as logarithm expansions in the characteristic functions).

For more information on the topic we suggest the paper [CK16], where in
particular equations (1.60), (1.54) and (1.58) can be used as examples to prove
the just mentioned non-distributivity of the algebraic logarithm.

52

Part II

Applications

53

Chapter 4

Clustering and visualization

4.1 Stochastic macro-clustering

We start the second part of this work with a familiar task typical in machine
learning: dataset clustering. We develop a technique suitable when data are in
form of time series, interpreted as samples coming from stochastic processes.

We introduce the notion of ”macro-clustering”, briefly defined as the idea
of grouping and visualizing the members of a family of processes. This is in
contrast to our next section (”micro-clustering”), where with similar techniques
we study paths coming from a single fixed process.

We study numerical strategies that finally allow a visualization of data on
an easy-to-read two dimensional plane. The key idea is to use the expected
signature as a way to measure how different two processes are. Since we need
to estimate averages, a quick recap on confidence intervals is included. Pair-
wise differences originate a distance matrix, which can be visualized on a two
dimensional plane thanks to the ”Multidimensional Scaling Algorithm” avail-
able in the machine learning literature. To measure how these expectations
are ”spread” helps in understanding how rich the family of processes is. This
leads to the notion of macro-variance, here measured in a percentage form, so
to support quick interpretations of the results.

Many numerical experiments follow and we take the opportunity to recap
the notion of Geometric Brownian Motion, pillar example in the context of
mathematical finance.

4.1.1 A recap on confidence intervals

Since we often use estimations of expected quantities (averages), we include a
recap on confidence intervals. The reference is [KPS94], section 1.5.

54

4.1.2 Confidence intervals for Gaussian samples

Let {Xi}i=1,...,n be a collection of n samples coming from a Gaussian one dimen-
sional random variable X, with mean µ and variance σ2. Let µ̂

.
= 1

n

∑n
i=1Xi

be the empirical mean, and σ̂2 .
= 1

n−1

∑n
j=1(Xj − µ̂)2 the (unbiased) empirical

variance. By using the Student’s t-distribution it is possible to construct 99%
confidence intervals, i.e. values a = a(n) such that:

P [µ ∈ (µ̂− a, µ̂+ a)] > 0.99 (4.1)

making possible to guess where the true value of µ lies only on the base of
observed data. For the case of n = 100, the variable a turns out to be computed
as a = 0.262σ̂, leading to the following quick and practical result:

Proposition 4.1.0.1. Let Xi be a set of 100 Gaussian samples from N(µ, σ).
Then the true mean µ belongs to the interval (µ̂ − 0.262σ̂, µ̂ + 0.262σ̂) with a
probability higher that 99%.

It is of course possible to use different number of samples. The quantity a is
generally proportional to σ̂√

n
and commonly referred as the Monte Carlo error.

We refer to the table at page 33 in [KPS94] for further information.

4.1.3 Confidence intervals for general samples

Let {Yj}j=1,...,N a set of identically distributed samples from the one dimen-
sional random variable Y with mean µ and variance σ2. We are again interested
in estimating the value of µ, but are unable to use the theorem above since the
samples are not assumed to follow a Gaussian distribution.

We then rely on the Central Limit Theorem. Assume to have N big enough
so to be written as N = 100b, with b > 20. Divide then the dataset into
100 batches, each containing b samples. Consider then the new dataset of 100
samples {Zi}i=1,...,100, where Zi

.
= 1

b

∑ib
k=(i−1)b+1 Yk for each i = 1, . . . , 100.

In other words, we are splitting the original dataset into subsets and col-
lecting the averages of them. Thanks to the Central Limit Theorem, the new
dataset {Zi} of 100 samples is now (approximately) distributed as a Gaussian

variable with mean µ (same as the original data!) and (new) variance η2 = σ2

b .
If µ̂ and η̂2 are the empirical mean and variance of the dataset Zi, thanks

to the theorem in the previous section we have:

P [µ ∈ (µ̂− 0.262η̂, µ̂+ 0.262η̂)] > 0.99 (4.2)

We performed a simple numerical experiment by using 2000 samples uni-
formly distributed in (0, 1). They have been divided into 100 batches of length
20 and the overall mean estimated as 0.50 ± 0.02. Attached there are two his-
togram plots. The first refers to the original dataset Yi, while the second to the
transformed Zi. Despite being basic results, is it good to clarify and visualize
them as well.

55

0.0 0.2 0.4 0.6 0.8 1.0
0

25

50

75

100

125

150

175

Histogram: original data

0.35 0.40 0.45 0.50 0.55 0.60 0.65
0

5

10

15

20

25

Histogram: averages of the data batches

Figure 4.1: The initial set of 2000 samples follows an uniform distribution.
We divided it into 100 batches containing each 20 samples, considering then
the averages values of each batch. The resulting dataset of 100 points follows
approximately a Normal distribution, on which we can apply the confidence
interval estimation.

4.1.4 Confidence intervals on higher dimensions

We extend the confidence interval estimation to the multidimensional case.
Many methods are available in the literature. We rather develop a naive and
simple one, with focus on immediate applicability and interpretability.

Let X be a random variable in Rd and µ ∈ Rd its mean. Assume to have n
samples of X. By acting independently on every (one-dimensional) coordinate,
we obtain confidence intervals for each single coordinate by using the algorithm
previously described.

In other words, if µ̂ = (µ̂1, . . . , µ̂d) and σ̂ = (σ̂1, . . . , σ̂d) are the empirical
means and standard deviations of each coordinate, then the confidence interval
rule holds on every component:

P (µi ∈ [µ̂i − ci, µ̂i + ci]) ≥ 0.99 ∀i ∈ {1, . . . , d} (4.3)

where ci depends on σ̂2
i as described before. For instance, in the Gaussian

case with n = 100, we have ci = 0.262σ̂2
i . For the non-Gaussian case, we need

to divide the dataset in batches and operate ad mentioned in the section above.
Independent on the case under analysis, we always end up with appropriate
values ci. Let now c

.
= maxi ci.

Proposition 4.1.0.2 (The confidence ball). Given the following sets:

1. A1
.
= {y ∈ Rd|yi ∈ [µ̂i − ci, µ̂i + ci],∀i ∈ {1, . . . , d}}

2. A2
.
= {y ∈ Rd|yi ∈ [µ̂i − c, µ̂i + c],∀i ∈ {1, . . . , d}}

3. A3
.
= {y ∈ Rd|‖µ̂− y‖ ≤ c

√
d}

the following inclusions hold:

A1 ⊆ A2 ⊆ A3 (4.4)

56

Furthermore:
P [µ ∈ A3] ≥ 0.99 (4.5)

Proof. By definition c is the biggest of the (positive) values ci, therefore the
inclusion A1 ⊆ A2 is immediate.

Let now y ∈ A2.
If yi − µ̂i is positive, from yi ≤ µ̂i + c we obtain (yi − µ̂i)2 ≤ c2 (since c is

always positive).
If yi − µ̂i is negative, from yi ≥ µ̂i − c we get yi − µ̂i ≥ −c and therefore

µ̂i − yi ≤ c (both positive quantities now), giving (yi − µ̂i)2 ≤ c2 again.
The fact that y ∈ A3 is proved by inserting that inequality into the following

computation:

‖µ̂− y‖ =

√√√√ d∑
i=1

(µ̂i − yi)2 ≤

√√√√ d∑
i=1

c2 ≤ c
√
d (4.6)

Finally, the set-theoretic inclusions A3 ⊇ A2 ⊇ A1 implies:

P [µ ∈ A3] ≥ P [µ ∈ A2] ≥ P [µ ∈ A1] ≥ 0.99 (4.7)

where the last step comes directly by construction of A1 and c, concluding the
proof.

The set A3 is usually indicated with Bµ̂(c
√
d), the ball in Rd centered in µ̂

with radius c
√
d. In other words we proved the following:

Proposition 4.1.0.3 (The confidence ball). Let X be a random variable in Rd
with mean µ. Let Xi be n samples from X used to estimate the average using
the classic mean µ̂ = 1

n

∑n
i Xi. Let ci be the componentwise confidence intervals

as previously discussed. If c
.
= maxi ci, then:

P [µ ∈ Bµ̂(c
√
d)] ≥ 0.99 (4.8)

Note how we started from a multidimensional random variable in Rd and
obtained a confidence radius c

√
d which is a single real number that scales with

the variable dimension. These properties will be very useful in the upcoming
applications.

4.1.5 The signature for stochastic processes

In the previous chapters we described multiple properties of the signature trans-
form. We briefly recap some of them, according to what relevant in this chapter.

A wide range of processes Xt on t ∈ [0, 1] (abbreviated X) can be char-
acterized by their expected signatures E[S(X)]: if two share the same average
signatures, they are equidistributed. This allows to interpret the signature of a
time series as an exhaustive, ordered collection of statistics. This is similar to
what happens for sequences of moments for the case of one dimensional random
variables.

57

When moving to implementations, multiple limitations come into play. The
infinite dimensional signature tensor must be truncated, expectations are re-
placed with averages on finite samples, and continuous processes are simulated
on discrete times. On the other hand, during the previous chapters we learned
some tricks that help in preparing the ground. For instance, to work with the
augmented process (t,X(t)) instead of the original one, to normalize the paths
so to start by the origin, and even divide X by some constant so to better
control the signature coefficients’ decay.

Let’s now consider a family of k stochastic processes X1, X2, . . . , Xk, denote
by X̂1, . . . , X̂k their time augmentations, X̂i(t) = (t,Xi(t)) for t ∈ [0, 1]. The
k × k matrix of pairwise differences:

Dij
.
= ‖E[S(X̂i)− S(X̂j)]‖T (Rd) (4.9)

has entries such that Dij = 0 if and only if the processes Xi and Xj are equidis-
tributed. We numerically approximate this matrix. For each i ∈ {1, . . . , k}:

1. fix a time mesh h for the interval [0, 1];

2. sample N (discretized) path distributed as X̂i, with time mesh h;

3. using the Signatory library, compute the signature of each of the N sam-
pled path. Each computation gives an array of a certain length q. For
instance, by stopping at depth 5 for a process X̂i ∈ R2, we get N arrays
of length q = 62 = 21 + . . . 25;

4. estimate their average Ei ∈ Rd and corresponding interval ball Ci ∈ R (as
explained in the sections above).

In conclusion, to each process Xi we associate a couple (Ei, Ci) where Ei ∈
Rq approximates its expected signature, whose true value has 99% of probability
of being in the q-dimensional ball of radius Ci

√
q ∈ R centered in Ei. The

distance matrix is finally approximated with:

Dij ≈ dij
.
= ‖Ei − Ej‖Rq (4.10)

Entries with ”big” values indicate dissimilarity between the processes, and con-
versely. To increase the safety in practice, we are more likely to trust detected
differences, rather than similarities.

4.1.6 The macrovariance of a family of processes

For two real numbers x and y we define their symmetric relative error as

r(x, y)
.
= |x−y|

max (|x|,|y|) . For two arrays X,Y ∈ Rn, the mean symmetric rela-

tive error is the average over the coordinates, msre(X,Y)
.
= 1

n

∑n
i=1 r(Xi, Yi).

The obtained number can be multiplied by 100 for a percentage interpretation.
The definition is motivated by the fact that absolute errors, expressed as norm
differences as in the distance matrix above, produce sometimes number which

58

are hard to interpret. Our numerical experiments are enhanced with a percent-
age number which helps in understanding how ”spread” the family of processes
X1, . . . , Xk is:

1. compute the centrum χ = 1
k

∑k
i=1Ei, average between the approximated

expected signatures, then vi = msre(χ,Ei) be the relative distance be-
tween the reference point χ and the Ei;

2. the macrovariance is the average between all the vi.

Since every expected signature Ei represents (in theory uniquely) the corre-
sponding process Xi, the macrovariance tells us how far they are located with
respect to their center average. Intuitively speaking, a family of stochastic pro-
cesses with a small macrovariance should have similar members, since they are
all very close to a common central point. The next section finally explains how
we can visualize the point Ei so to have overall informative plots.

4.1.7 The multidimensional scaling algorithm

Given a generic k× k distance matrix between points in some high dimensional
space Rd, we are interesting in visualizing these k points on the plane, in dimen-
sion two, in order to provide a visual interpretation. For instance, it is possible
that they form clusters which can be subsequently analyzed by using appro-
priate algorithms (for instance, k-means). Our favorite solution comes from a
known algorithm in machine learning called multidimensional scaling.

In few words, it simply searches for k points in R2 whose distance matrix is
approximately the original one. After the execution, the algorithm correctness
can be quickly checked by comparing the error between the distance matrices.
If it is true that the solutions are generally not unique (translations or rota-
tions will still produce valid points), it does not constitute a problem for our
experiments. Our goal is a visualization to gain insight, to clarify the processes
differences. Possible further steps are always run on the original data.

We conclude this section with an important remark. Since the points to plot
will often be the expected signatures Ei, it is important to understand how to
manage the confidence balls Ci. We propose an heuristic approach: when Ei are

projected into dimension 2, the value of Ci
√
d is multiplied by

√
2√
d

so to rescale

it with the new dimension 2 instead of the original d.

4.1.8 A simple experiment: Gaussian segments

In this section we compute the similarities between various centered Gaussians.
We choose k = 11 variables differing only for their standard deviations σi,
ranging in {0.3, 0.6, 0.9, . . . , 3.0}.

A total of N = 10000 random segments [0, 1] 3 t 7→ (t, tX) for each variable
are simulated, the signatures truncated at depth 5 before taking their expec-
tations. After having built the (approximated) distance matrix, the processes

59

0 2 4 6 8

8

6

4

2

0

2

4 0.3
1.2
1.5
1.7

2.0

2.2

2.5
2.7

3.0

Similarities between centered Gaussians (Macrovar. 47.9%)

Figure 4.2: Simulations with simple Gaussian segments. Each dots represents
a process whose label is the standard deviation. The circles are the rescaled
confidence radius. Their overall center χ is represented by the red star. The
macrovariance, i.e. how far the points are from the center, is around 48% (high
value). The processes here are governed by a one-dimensional parameter (they
only differ because of the σi), and they place themselves among a single curve
(one-dimensional manifold).

are visualized on the plane by using the multidimensional scaling algorithm.
Comments on this experiment are reported directly in the plot’s caption.

4.1.9 A complete example using the Brownian motion

In this section we perform a second experiments by using instances of geometric
Brownian motions. All the needed definitions follow in form of a brief recap.

Definition 4.1.1 (Brownian motion). A stochastic process Bt for t ∈ [0, 1] is
a standard Brownian motion if the following conditions hold:

� Bt has almost surely continuous realizations;

� B0 = 0;

� for every 0 ≤ r < t ≤ 1, Bt −Br ∼ N(0, t− r);

� for every possible choice 0 ≤ r < t < a < s ≤ 1, the random variables
Bt −Br and Bs −Ba are independent.

We use the following simple rule to numerically simulate a Brownian.

Definition 4.1.2 (Brownian motion simulation). Choose a time division N ,
set W0 = 0 and h = 1

N−1 . Then for every n ∈ 1, . . . , N − 1 define:

Wn = Wn−1 +
√
hN(0, 1) (4.11)

60

This process {Wn}n=0,...N−1 converges in distribution to a Brownian motion for
h→ 0.

We refer again to [KPS94] for a more complete description, as well as the
general methods for stochastic differential equations.

The Brownian motion can be used as a ”trick” to randomly perturb an
exponential growth, with various direct applications for instance in the field of
mathematical finance (Black-Scholes model, to cite one). This originates the so
called geometric Brownian motion.

Definition 4.1.3 (Geometric Brownian motion). Let Wt be a Brownian motion
and S0 > 0 a starting value. For a couple of parameters µ ∈ R and σ > 0, the
corresponding geometric Brownian motion is the stochastic process:

St = S0 exp((µ− σ2

2
)t+ σWt) (4.12)

Dividing by S0 and taking the logarithm we obtain the log-return process:

Lt = (µ− σ2

2
)t+ σWt (4.13)

We generally work with log-returns since they always start from zero and
are therefore easier to include in the context of the signature.

The simulation of a geometric Brownian motion (sometimes abbreviated
with GBM) can be done by running a Brownian motion as above and then
applying the formula in the definition. More accurate and interesting methods
are available and described in the book previously mentioned ([KPS94]), but
they are not needed for our experiments.

We measure the distances in a family of geometric Brownian motions de-
scribed by changing their parameters µ and σ as follows.

The values of µ (the ”trend”) are chosen in the range (−1, 1), while the
values of σ in the interval (0, 0.8) (i.e. up to a ”volatility of 80%”). A total of
20 combinations are selected and reported as labels in the attached plot.

We consider N = 20 timesteps and a total of 2000 path samples per param-
eter.

The results are as usual plotted in two dimensions producing a quite interest-
ing picture. We apologize for some aesthetic overlapping, but this compromise
was necessary to keep the content readable.

Observe how there is a clear splitting between the area with a positive trend
(bottom part, gray dots), and the one where µ is negative (upper part, orange
dots). A interesting radial structure is also quite evident. Once a value of µ is
fixed, variations of σ are located on seemingly regular arcs, and the other way
around.

The processes are seemingly ordered on a two-dimensional grid, coherently
with the fact the they are originally described by pairs of parameters. This
phenomenon happened also before when we studied Gaussian segments. They
were described by a single parameter, and the dots aligned themselves among
a one dimensional submanifold (curve).

61

2.0 1.5 1.0 0.5 0.0 0.5

1.0

0.5

0.0

0.5

1.0
-1.0 0.0-1.0 0.3

-1.0 0.5
-1.0 0.8

-0.5 0.0-0.5 0.3-0.5 0.5-0.5 0.8

0.0 0.00.0 0.30.0 0.50.0 0.8

0.5 0.00.5 0.3
0.5 0.50.5 0.8

1.0 0.01.0 0.3

1.0 0.5

1.0 0.8

Family of GBMs (mu, sigma) (Macrovar. 70.4%)

Figure 4.3: Each dot represents a geometric Brownian motion whose parameters
are described by the label in the form (µ, σ). The macrovariance is above 70%
suggesting remarkable differences between the processes. They ultimately seem
to be ordered on a very regular two-dimensional ”radial grid”.

62

4.1.10 Recap of the experiments

In the two previous experiments we always started with a precise family of
processes, generally described by varying certain parameters in a set P. For
instance we had P = {0.3, . . . , 3}, in the case of Gaussian segments, we had P
done by 20 pairs in the case of geometric Brownian motions.

In all cases, we used the macrovariance as a quantity to measure how spread,
rich, the family of the corresponding processes is.

We validate even more this interpretation in the next section.

4.1.11 Increasing the family of processes

In this section we always work with centered Gaussian random walks.
The set P is made explicit later, but the reader can assume to be always

given by 10 positive real numbers. For each choice of p ∈ P, we simulate 10000
Gaussian random walks with increments of mean zero, standard deviation p and
mesh composed by 30 time points in [0, 1]. The average of their 10000 signatures
is stored and truncated at level 5. The macrovariance between them is measured
and considered as the result of a single simulation.

Differently from before, this time this whole experiment is repeated 9 times,
every time choosing a larger set of P.

Initially we set P = {1, . . . , 1}, expecting therefore a zero macrovariance
since all the 10 simulated paths were theoretically equidistributed. Despite
this, the numerical estimation had a value of around 3%.

We then progressively increase P to the interval [1, 1.5], then [1, 2], [1, 2.5],
and larger and larger until [1, 5]. Every interval was always divided in 10 equal
parts so to keep the family of processes of the same cardinality. The overall
results are attached in form of plots. It is possible to clearly read an increase in
the macrovariance (y-axis) every time the parameter set is made larger (x-axis).

As a way to support even more the interpretations of the results, we plotted
the expected signatures of the 10 processes for the case P = [1, 5]. It is possible
to ”read” the macrovariance by looking at how different these values are.

4.1.12 Conclusions

In this chapter we studied the problem of measuring differences between stochas-
tic processes by using the signature transform. We started with the case of a
fixed family of processes, and measured their difference using the empirical no-
tion of macrovariance. We also introduced the geometric Brownian motion
which is of importance especially in contexts like financial applications and will
be used again in later chapters.

Visualization also covered an important role, and we proposed a way to plot
the family of processes in two dimensions with the inclusion of confidence radius
so to keep track of uncertainties.

In the next section we perform a very similar analysis, but focusing on the
sample paths produced from a single process instead.

63

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0 sig-0
sig-1
sig-2
sig-3
sig-4
sig-5
sig-6
sig-7
sig-8
sig-9
centrum

Figure 4.4: The average signatures of the 10 (dataset of) different Gaussian
random walks. The macrovariance is here pictorially understandable by looking
at how the spikes progressively change and cover wide range of values, when
compared to their overall mean dashed in black (label ”centrum”).

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

5

10

15

20

25

30
Macrovariance evolution when extending the parameters set

avg macrovariance %

Figure 4.5: Values x on the x-axis represents the range defining P = [1, x] in
which we choose 10 parameters and run the macrovariance analysis. The first
value corresponds to the singleton {1} which means that all the simulated paths
are from the same stochastic process, therefore the macrovariance is theoretically
zero. It does not numerically happen (∼ 3%) and it points out well the effects of
discrete truncation. Despite these limitations, it’s easy to see that increasing the
parameter ranges implies increasing the macrovariance of the resulting family
as intuitively expected.

64

4.2 Stochastic micro-clustering

4.2.1 Introduction

In the previous section we introduced the idea of macrovariance as a tool to
quantify the ”diversity” in a family of stochastic processes. We follow a similar
approach, this time in another setting: a single process is fixed, then we try
to investigate the diversity in its random samples. The suggested methodology
is based on the use of the signature transform. We introduce a percentage
quantity here conventionally called the microvariance. Numerical experiments
are performed in that regard, including applications in the field of reinforcement
learning.

4.2.2 Definition of microvariance

Assume to have n sample paths X1, . . . , Xn coming from a stochastic process X
satisfying our usual hypothesis. In order to quantify how different the samples
are, we act as follows:

1. compute the (truncated) signature Si of every path Xi;

2. estimate the average EX = 1
n

∑n
i=1 Si, approximation of the expected

signature of the process X;

3. for each sample Xi, compute the symmetric relative error ri between Xi

and EX ;

4. store the microvariance, defined as the average between the n values of ri.

For a given process X with multiple samples, we estimate its microvariance
as a way to understand how different and sparse the samples are with respect to
their center. The difference with respect to classic techniques lies in the space in
which we perform the measurement. The signatures of the data is in principle
stronger than naive euclidean methods since the average signature is able to
characterize a process, while the pointwise average path is not. It is possible to
have two processes having the same mean path, but if two processes have the
same mean signature, they are equidistributed. It is from this idea that comes
the intuition of measuring sparsity using the average signature as central point
(instead of the average path).

We test this method on a Gaussian random walks before moving to more
interesting contexts.

4.2.3 Experimenting with Gaussian walks

The data used in this experiment are precisely the same as in the last section
about the macrovariance. We work with Gaussian random walks with a variable
parameter σ representing the standard deviations of the progressive increments.

65

0 10 20 30 40 50 60
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Signatures of three paths compared to the average
sig-path0
sig-path1
sig-path2
sig-average

1 2 3 4 5 6

10

20

30

40

50

60

70

80

90

Impact on microvariance when changing the increment variance

avg microvariance %
max
min

Figure 4.6: In the left plot we simply compare the average signature (red) with
the signature of three sample paths for the case σ = 6. Their mean (relative)
differences give us the microvariance measurement. On the left, we observe how
an increase in the standard deviation of the simulated Gaussian walks (x-axis)
leads to an increase in the microvariance (y-axis), as intuitively expected since
the produced paths are more spread.

For each value of σ we have a single process and therefore a microvariance
measurement on their samples. We observe here how much the microvariance
increases when we vary the values of σ.

Intuitively speaking (from an Euclidean viewpoint), the higher the standard
deviation, the higher the microvariance should be, since the sample paths are
farther from their mean.

The results are actually in line with this intuition and are here reported in
the attached plots.

4.2.4 Applications in reinforcement learning

In this section we cover an application in the field of reinforcement learning.
We directly refer to resources like [RSS18], freely available on the official web-
page http://incompleteideas.net/book/the-book.html, as well as [Ber23]
from the website http://www.mit.edu/~dimitrib/RLCOURSECOMPLETE.pdf for
a more mathematical description.

In the reinforcement learning setting (abbreviated ”RL”), the programmer
has to tune an ”agent” capable at each time step to decide which ”action” to
perform. Once an action is taken, the ”state” of the system changes and the
agent is given a ”reward”. Given a time horizon, the programmer’s goal is to
write an agent capable of maximizing the total reward.

The mathematical description changes depending on the nature of the ele-
ments into play. One can have a finite and small set of possible actions, or a
continuous one where approximation techniques are then required. The time
horizon does not need to be finite, and some solutions are possible thanks to
the dynamic programming principle which builds a strong connection between

66

http://incompleteideas.net/book/the-book.html
http://www.mit.edu/~dimitrib/RLCOURSECOMPLETE.pdf

Figure 4.7: A representation of the cart-pole problem. Applying the action 1
pushes the cart to right. The agent must then react properly so to preserve the
pole equilibrium.

reinforcement learning and classic optimal control theory.
Examples of applications are vast and from multiple fields. Some are more

fun and recreational, like the game of chess, go, or classic Atari games, oth-
ers more serious and oriented towards new technologies like self-driving cars,
robotics and automated trading.

In this section we focus on the cart-pole problem, very famous in the field,
easy to to introduce and generally considered to be a good toy benchmark when
testing reinforcement learning algorithms. We suggest the following link to get
more information on that regard: https://www.gymlibrary.dev/environments/
classic_control/cart_pole/. In our applications we stay focus on this spe-
cific case.

In the cart-pole problem, at every time step the agent can perform only two
actions: ”push right”, encoded with the integer 1, or ”push left”, encoded as 0.

The state of the system at time t, call it X(t) = (X1(t), X2(t), X3(t), X4(t))
is always described by using four real numbers. The first is simply the cart
position, the second its velocity, the third the pole angle and the last the pole
angular velocity.

On the base of the system state, it is possible to deduce if the pole is still
in equilibrium or not. If the equilibrium is broken, the system stops and the
reward corresponds to the current time step. Otherwise, the game proceeds.

A reward of over 475 points is considered a ”win”. In other words, the goal
of the programmer is to write an agent capable of pushing the cart right or left
at every time step so to preserve the pole equilibrium for longer than 475 time
units.

The entire interface is already packaged and available in Python thanks to
the stable-baseline3 library (https://stable-baselines3.readthedocs.io/
en/master/).

We call the entire 5-dimensional collection of the states {t,X(t)}t=1,2,...,T

a rollout, where the time horizon T depends on how well the agent performs.
The stable-baseline3 library allows to quickly train agents by using standard
available algorithms, for instance PPO, DQN and A2C.

In our experiment, for each algorithm we train an agent to keep the equilib-
rium for more than 500 time units.

67

https://www.gymlibrary.dev/environments/classic_control/cart_pole/
https://www.gymlibrary.dev/environments/classic_control/cart_pole/
https://stable-baselines3.readthedocs.io/en/master/
https://stable-baselines3.readthedocs.io/en/master/

0.00 0.25 0.50 0.75 1.00

0.04

0.02

0.00 component-1

0.00 0.25 0.50 0.75 1.00
0.10

0.05

0.00

0.05 component-2

0.00 0.25 0.50 0.75 1.00
0.010

0.005

0.000

0.005 component-3

0.00 0.25 0.50 0.75 1.00
0.10

0.05

0.00

0.05

0.10

component-4

ppo Average rollout components (100 samples)

0 500 1000 1500 2000 2500 3000 3500 4000
0.2

0.0

0.2

0.4

0.6

0.8

1.0

ppo Expected 5-signature of the rollouts
E[sig]

Figure 4.8: Left: the average rollouts in the trained PPO agent. Note how the
velocities oscillates a lot, sign that they are trying to preserve the equilibrium.
Right: the average signature. It is interesting to notice how coefficients in
positions higher that 1000 are approximately irrelevant.

Then, once the training is done, we store 100 rollouts from the agent until
time T = 500. Due to intrinsic probabilistic strategies, despite having being
trained one time, the agent will not always perform precisely the same rollout.

In other words, to every algorithm (PPO, DQN or A2C) we associate a fixed
trained agent, which can be interpreted as a 5−dimensional stochastic process
XPPO, XDQN , XA2C . The samples of the processes are given by the agent
rollouts, dataset of 100 random paths of length 500 (that we rescale on [0, 1]).

In the pure reinforcement learning setting, an important question is: given
a training method, how much ”variability” does it produce in the resulting
trained agent? The word ”variability” is on purpose not precise and not well
defined, being an open topic in the reinforcement learning field with synonym
like ”population variation” and others.

In our approach we offer a clear interpretation. The ”variability” will be
nothing but the measure of the microvariance as described in the previous sec-
tions.

Other than measuring this quantity, we perform a further analysis of the
data. For each of the three agents, we plot an average of the rollouts so to gain
an insight of their performances. We then compute the signature transform on
the samples, so to estimate the expected signatures and use the multidimensional
scaling visualize them in dimension two.

In all the three cases two clusters are identified. For each of them, we plot
the average paths of their members so to give an interpretation of the results.

All the plots are attached and independently well commented.

68

0.015 0.010 0.005 0.000 0.005 0.010 0.015
0.0100

0.0075

0.0050

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

ppo Rollouts in the 5-sig space [Microvariance: 13.6%]
avg_sig

Figure 4.9: The rollout samples can be easily clustered into two groups. Their
microvariance is around 14%, meaning that there are few differences between
the various rollouts.

4.2.5 Comparing the three agents

In the previous section we studied the sampled rollouts from every (fixed) agent
(PPO, DQN or A2C), aiming at understanding which of them produces more
”variability”. Clustering in the signature space revealed how they always dis-
played two main groups, whose interpretation was easy for the PPO algorithm
but less straightforward for the remaining two.

In retrospective, we can further apply the techniques from the macro-clustering
chapter, in order to compare the three agents directly! We proceed exactly as
previously done with the experiment in that chapter. We use the expected
signatures already computed and plot them in two-dimensions by using the
multidimensional rescaling algorithm. The results are attached and very easy
to interpret. It seems that the three agents are essentially equidistant, but
sensitively different with respect to each others.

In order to test the algorithm even further, we also repeated the same proce-
dure this time training three agents under the same algorithm (PPO). The plot
highlights how they are numerically detected as (very likely...) equidistributed,
as theoretically expected.

In conclusion, between this and the previous section we explained in details
how the signature transform can be used to perform some data analysis when
working with time series. We added an hopefully interesting example coming
from reinforcement learning to point out the flexibility of our ideas, not limited
to any specific field of application.

69

0.00 0.25 0.50 0.75 1.00

0.04

0.02

0.00
component-1

0.00 0.25 0.50 0.75 1.00
0.1

0.0

0.1

0.2
component-2

0.00 0.25 0.50 0.75 1.00

0.005

0.000

0.005 component-3

0.00 0.25 0.50 0.75 1.00
0.3

0.2

0.1

0.0

0.1

component-4

ppo Components of cluster 0 (49.0%)

0.00 0.25 0.50 0.75 1.00

0.04

0.02

0.00 component-1

0.00 0.25 0.50 0.75 1.00

0.15
0.10
0.05
0.00
0.05

component-2

0.00 0.25 0.50 0.75 1.00

0.010

0.005

0.000

0.005 component-3

0.00 0.25 0.50 0.75 1.00

0.1

0.0

0.1

0.2
component-4

ppo Components of cluster 1 (51.0%)

Figure 4.10: In the plot above, the average rollouts of samples belonging to the
first and then second cluster. Trajectories in the first cluster have a cart position
below −0.04, while the samples in the second go beyond and stays below −0.02
(component-1).

70

0.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

component-1

0.00 0.25 0.50 0.75 1.00
0.75
0.50
0.25
0.00
0.25
0.50 component-2

0.00 0.25 0.50 0.75 1.00

0.00

0.05

0.10 component-3

0.00 0.25 0.50 0.75 1.00
0.5

0.0

0.5

1.0 component-4

dqn Average rollout components (100 samples)

0 500 1000 1500 2000 2500 3000 3500 4000
0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

dqn Expected 5-signature of the rollouts
E[sig]

Figure 4.11: Left: the average rollouts in the trained DQN agent. Note how
the velocities oscillates less than in the PPO algorithm, meaning that the agent
is more stable. Right: the average signature. Note how the higher order coef-
ficients still have relevant values, possibly meaning that the paths have a more
regular periodicity (for more about this interpretation, compare to the sinusoidal
case in the later section on ”shape analysis”).

0.25 0.20 0.15 0.10 0.05 0.00
0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

dqn Rollouts in the 5-sig space [Microvariance: 32.9%]
avg_sig

Figure 4.12: For the DQN algorithm again, the rollouts can be clustered into two
groups. This time, their microvariance is higher and around 33%. According to
our measurements, the DQN algorithm produces agents with higher ”variation”
than PPO.

71

0.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

component-1

0.00 0.25 0.50 0.75 1.00

0.50

0.25

0.00

0.25

0.50 component-2

0.00 0.25 0.50 0.75 1.00
0.05

0.00

0.05

0.10 component-3

0.00 0.25 0.50 0.75 1.00
0.5

0.0

0.5

1.0
component-4

dqn Components of cluster 0 (45.0%)

0.00 0.25 0.50 0.75 1.00
0.1

0.0

0.1

0.2

component-1

0.00 0.25 0.50 0.75 1.00

0.5

0.0

0.5 component-2

0.00 0.25 0.50 0.75 1.00

0.00

0.05

0.10
component-3

0.00 0.25 0.50 0.75 1.00

0.5

0.0

0.5

1.0 component-4

dqn Components of cluster 1 (55.0%)

Figure 4.13: The mean rollouts for the first and second clusters are here plotted.
This time is harder to give an Euclidean interpretation of the clusters. It’s pos-
sible that the only criterion are the ending points of the velocities (components
2 and 4).

72

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

component-1

0.00 0.25 0.50 0.75 1.00
0.4

0.2

0.0

0.2
component-2

0.00 0.25 0.50 0.75 1.00

0.00

0.02

0.04

0.06
component-3

0.00 0.25 0.50 0.75 1.00

0.2

0.0

0.2

0.4
component-4

a2c Average rollout components (100 samples)

0 500 1000 1500 2000 2500 3000 3500 4000
0.2

0.0

0.2

0.4

0.6

0.8

1.0

a2c Expected 5-signature of the rollouts
E[sig]

Figure 4.14: Left: the average rollout when using the a2c algorithm. It is
possible to read how the position slowly increases to 0.8, which is still consid-
ered a ”winning” value according to the algorithm documentation (bounds not
reached). On the right the expected signature is showed, here again higher order
coefficients seem to have approximately zero relevance.

0.015 0.010 0.005 0.000 0.005 0.010 0.015

0.01

0.00

0.01

0.02

a2c Rollouts in the 5-sig space [Microvariance: 29.7%]
avg_sig

Figure 4.15: As in the previous processes, two clusters are available. The mi-
crovariance is comparable to the DQN case and higher than the PPO agent.

73

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8

component-1

0.00 0.25 0.50 0.75 1.00
0.4

0.2

0.0

0.2

0.4
component-2

0.00 0.25 0.50 0.75 1.00

0.00

0.02

0.04

0.06 component-3

0.00 0.25 0.50 0.75 1.00

0.2

0.0

0.2

0.4
component-4

a2c Components of cluster 0 (61.0%)

0.00 0.25 0.50 0.75 1.00

0.0

0.2

0.4

0.6

0.8
component-1

0.00 0.25 0.50 0.75 1.00

0.2

0.0

0.2
component-2

0.00 0.25 0.50 0.75 1.00

0.00

0.02

0.04
component-3

0.00 0.25 0.50 0.75 1.00

0.2

0.0

0.2

0.4
component-4

a2c Components of cluster 1 (39.0%)

Figure 4.16: The average rollouts of the two clusters. There is again some diffi-
culty in giving a straight interpretation, but it is possible that the discriminant
is again just the final velocity (component-2, positive or negative).

74

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8
A2C

DQN
PPO

Comparing three Agents (macrovariance 31.1%)

Figure 4.17: The three RL agents plotted in two dimensions, such that each
point represents their expected signature. Confidence intervals are given by the
circles, while the average distance with respect to the center (star point) has
a relative value of around 30%, suggesting a moderate difference between the
agents. Finally, it is interesting to note how they place themselves so that they
can be considered equidistant.

0.2 0.1 0.0 0.1 0.2

0.15

0.10

0.05

0.00

0.05

0.10

0.15

PPO1

PPO2PPO3

Comparing three Agents (macrovariance 2.5%)

Figure 4.18: The same experiment repeated again after training three PPO
agents. Since the algorithm is the same, the three agents should theoretically be
equidistributed processes. The plot validates this idea, thanks to the largeness
of confidence intervals and a very small macrovariance of 2.5%.

75

Chapter 5

Approximating nonlinear
functionals

5.1 The max operator

5.1.1 The deterministic case

In this chapter we discuss numerical experiments to support the idea of ap-
proximating nonlinear functionals on time series by using linear functionals on
their signatures. Recall that this is one of the four properties mentioned in the
chapter before, based on the section ”Function linearization” (3.1.4). We start
by commenting the mathematical max operator either in the deterministic and
probabilistic case, moving then on further applications where we build a tool to
detect correlation between time series data.

For the first experiment, we build a dataset of 500 samples of the form
{(xn, yn)}, where each xn is a sequence of 20 numbers. Each xn starts from
0, while the 19 remaining values are random and sampled from independent
Gaussians of mean 0 and variance 3. For each time series xn, the corresponding
value is yn = maxxn. The max operator is nonlinear, very common and simple
to implement, therefore it constitutes a good example to start our investigation.

The dataset is 50 : 50 split into two subsets, train and validation. We use
the PyTorch scientific framework to test two different models for our data. Both
are linear models, i.e. equations of the form f(x) = ax+b where the vectors a, b
are chosen so to minimize the loss function (mean square error) between f(xi)
and yi.

The first model takes in input the time series xi itself, therefore ”raw” data
with no particular modification. Since the max operator is nonlinear, we do not
expect good results. The second linear model acts instead on the signatures of
the augmented paths, truncated at depth 5.

The loss minimization is done by using PyTorch’s Adam gradient descent
algorithm with 10000 epochs, and in both the experiments the running time

76

0 2000 4000 6000 8000 10000

5

10

15

20

25

30

35

40
Loss function evolution

train
val

0 2000 4000 6000 8000 10000

2

4

6

8

10
Loss function evolution

train
val

Figure 5.1: The loss function decay when training the linear model on time series
(left). When instead we use their signature transform, this decay happens faster
(right picture).

2 4 6 8 10 12

2

4

6

8

10

12

Approximating MAX using Lin [mre = 18.6%]
true data VS predicted
diagonal target

2 4 6 8 10 12

2

4

6

8

10

12

14
Approximating MAX using Lin(Sig) [mre = 10.5%]

true data VS predicted
diagonal target

Figure 5.2: Comparing the approximation of the max operator. A simple linear
model (left picture, mean relative error of 18%), and a linear model on the
signature of data (right picture, mean relative error of 10%).

was a matter of seconds.
Recall that we actively minimize the loss function only using training data,

and any loss decay happening also on validation points ensures the absence of
overfitting.

After the training procedure, the models are evaluated on the full dataset and
the mean relative errors are displayed. The signature linear model produces a
far smaller error (10% against 18%) and had overall a better performance during
the loss function reduction.

We also offer the results in a readable way thanks to a plot in the form ’(true
value, predicted value)’, so that the more the picture gets close to the identity
function, the better it is. Coherently with its lower error, the signature model
follows the diagonal better than the simple linear one.

The results on this section add a touch of concreteness to the approximation

77

theorem explained in the theoretical chapter, suggesting that the signature can
be an useful tool already when combined with simple linear regressions.

We proceed with cautious optimisms in that regard, pointing out that hy-
perparameters can definitely influence the results, like for instance the learning
rate, the number of training epochs and the level of the signature truncation. We
repeated the experiment under different circumstances and we observed some
output changes, but overall the signature model always showed a faster loss
decay (allowing therefore a reduced training time) and never performed worse
than the linear one, supporting its use in further contexts.

5.1.2 The expected payoff

For a general process Xt and a functional F the question of approximating the
value of E[F (Xt)] is commonly of great interest. We prefer the writing F (X) to
highlight that the functional might depend on the whole path instead of a precise
fixed time t. In the context of finance mathematics this is strong connected to
the problem of pricing, where F depends on the option under analysis (payoffs)
and X is for instance the behavior of the stock asset.

Many theories and strategies are available depending on the case under anal-
ysis, but we focus on a simple idea. If by using the signature we can approximate
F (X) ≈ (k, S(X)), for some tensor k ∈ T (E), then informally :

E[F (X)] ≈ (k,E[S(X)]) (5.1)

because of the linearity of the expectation, which in the case of a truncated
signature at level N translates into:

E[F (X)] ≈ (k,E[SN (X)])Rp (5.2)

for the Euclidean scalar product in an suitable dimension p = p(N).
We perform a numerical experiment in support of this idea. In order to

vaguely connect with finance, we choose paths Xt given by (log-returns of)
geometric Brownian motions and F as the max operator, often used in many
payoffs (usually combined with other operations).

Our dataset {zi, yi} is composed by a total of 200 records, i = 1, . . . , 200
now explained in details.

We know that any (log-) geometric Brownian motion depends on two param-
eters µ and σ. Therefore, we choose µ from [−2, 2] (interval divided in 10 steps),
σ from [0.4, 3] (interval divided in 20 steps), for a total of 200 combinations of
parameters. Each combination corresponds to an index i of our records.

For each i (so, a fixed pair (µ, σ)), a total of 500 paths of length 30 are
simulated. For each path the max is computed: the label yi ∈ R is defined as
their average.

Each of the 500 path is then augmented (i.e. a first coordinate equals to
the time t is added), and its signature (truncated at level 5) computed. The
average of all (500) of them is stored as value zi. Therefore for each i, zi is in

78

0 2000 4000 6000 8000 10000

0.2

0.4

0.6

0.8

1.0

Loss function evolution
train
val

0 2000 4000 6000 8000 10000

0.0

0.2

0.4

0.6

0.8

1.0

Loss function evolution
train
val

Figure 5.3: Loss functions during the training process of 10000 epochs. The right
figure represents the model without the use of the signature, the left figure when
using this transform to preprocess data. Observe the remarkable performance
boost. Furthermore, the right model seems to likely to overfit.

our case an array of length 62 (consult chapter 2 for more information about
this number).

Summing up, the z-entries in our dataset are done by 200 arrays of length 62,
representing signature expectations of (log)geometric Brownian motions ruled
by different parameters, and the y-label by 200 scalars given by the average max
values reached by each parameter’s choice. The data are mixed and split 50 : 50
(train and validation). Finally a linear model approximation by using PyTorch
is performed and the final prediction error computed.

In order to better understand the effect the using the signature, the exper-
iment is repeated again on the original data without passing the time series
under the signature transform.

The results are directly readable in the plot and display a clear advantage
when using the signature method.

In conclusion we showed how the signature transform can be effectively used
to linearize functionals even in the case of probabilistic settings. We would
like to also point out how these simulations required only few minutes on the
author’s laptop and a standard Python installation, which is a strong point in
terms of portability and usability.

5.2 A correlation classifier

Given a dataset of time series it is often of great importance to understand
if some paths are correlated. In such a case, observing few of them could be
enough to qualitatively predict the behavior of the others. For instance, if two
stocks A and B are negatively correlated and we track an increase in the price
of A, a decrease in the value of B should be expected.

In this section we try to understand if the signature transform can be suit-
able for this kind of tasks. Since we previously interpreted the signature as a

79

0.0 0.5 1.0 1.5 2.0

0.5

0.0

0.5

1.0

1.5

2.0

Approximating E[MAX] using Lin(E[path]) [mre = 52.4%]
true data VS predicted
diagonal target

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

Approximating E[MAX] using Lin(E[Sig]) [mre = 2.8%]
true data VS predicted
diagonal target

Figure 5.4: Approximating the expected max value of geometric Brownian mo-
tions ruled by different parameters. The plot on the top represents a naive
linear model, with a mean average error of 50%. The plot on the bottom refers
to the same data, but after having been preprocessed by the signature. The
error hugely decreases to 3%, showing with no doubt one of the strongest effect
of using the signature transform.

generalization of moments for time series, our attempt has at least an intuitive
justification. We expect the information about the correlation to be encoded
into the signature transform, possibly in the first few levels being it a quantity
related to the variance (second moment) in the one-dimensional case.

We choose two cases of studies to test experimental ideas.

5.2.1 Experiment 1: classification of two Gaussian walks

In our first experiment the dataset is composed by 4000 paths of dimension 3
and labels 0 or 1, constructed as follows.

Each path X (we omit its index to improve readability) is as a collection of
50 node values on [0, 1], always with starting point 0 ∈ R3.

The first component X1 equals the standard time discretization, X1
n = n

49
for n = 0, . . . , 49.

The remaining two components require a bit of explanation. We set a posi-
tive correlation parameter ρ ∈ [0, 1], a mean vector µ = 0 ∈ R2 and covariance

matrices C0 =

(
1 ρ
ρ 1

)
and C1 =

(
1 −ρ
−ρ 1

)
.

We then define two Gaussian random variables in R2, G0 ∼ N(µ,C0) and
G1 ∼ N(µ,C1). Note that the elements in the pairs generated by G0 have
correlation ρ, while the one coming from G1 have negative correlation −ρ.

For each subsequent time index n ∈ [1, . . . , 49] define:

(X2
n, X

3
n) = (X2

n−1, X
3
n−1) +G0 ∈ R2 (5.3)

if a path is labeled with 0. Replace G0 by G1 for paths labeled as 1.

80

0.0 0.2 0.4 0.6 0.8 1.0

3

2

1

0

1

Two paths when rho=0.8 (1st component is time)

path with label 0, 2nd component
path with label 0, 3rd component
path with label 1, 2nd component
path with label 1, 3rd component

Figure 5.5: Two 3-dimensional paths from the dataset. Their first component
is always the time [0, 1] used as x-axis, while the other two components are
plotted. The increments for the walk 0 (green) are positive correlated, while the
increments with label 1 (red) are negatively correlated.

In other words, each path is an augmented Gaussian random walk starting
in zero and with increments obeying a specific known correlation.

Half of the paths are labeled with 0 and follow a fixed positive correlation,
while half with 1 and enjoy a negative one. The paths are transformed by using
the signature at depth 4, obtaining a labeled dataset of 4000 arrays of length
3 + 32 + 33 + 34 = 120 (the ”3” coming from the dimension, the ”4” from the
truncation level, as previously explained).

The data are randomly shuffled and split into train and validation sets, each
containing 2000 samples. As usual the task is to tune a model on the base of
training data, but capable of correctly predict the labels for both training and
validation sets. We explore two methods to reach this task.

Recall from previous sections that stochastic processes like the random walks
here defined can be theoretically characterized by their expected signatures.
Therefore the following strategy seems legit:

� compute the average signature of the paths with label 1, call is S1;

� repeat the same for paths with label 0, call the average S0;

� for each element in the dataset X, if its signature is closer to S0 classify
it as 0, otherwise as 1;

We call this strategy the ”closest expectation classifier”. The potential prob-
lem with this strategy is soon explained. If two stochastic processes have similar

81

0 2000 4000 6000 8000 10000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Signature training to classify correlation
train loss
validation loss

Figure 5.6: The decay of loss (y-axis) when training the linear classifier for 10000
epochs (x-axis). The loss behaves very regularly for both the training and the
validation data. This plot refers to ρ = 0.8, but it is similar for ρ = 0.4. On the
other hand, the training ”fails” for ρ = 0, as it should be. The final stationarity
reflects that we are approaching the modeling limit.

empirical expected signatures and enough big ”variance” when generating paths,
it’s likely that miss-classification will happen.

Another problem can be given by having a number of paths not enough
big to create confidence intervals small enough. Finally the signature must be
truncated at some level, possibly compromising the theorem’s application.

The second strategy to solve the classification problem is based on the linear
approximation theorem. We know that every functional on paths (in particular,
the ”classifier functional” associating each path to its class), can be approxi-
mated with a linear function over the signature. We therefore set the simplest
linear classifier in PyTorch, trained with stochastic gradient descent over 10000
epochs with learning rate 0.1. A plot displaying the loss decaying is attached,
suggesting success and lack of overfitting.

The whole experiment is repeated overall three times, with different values
of ρ chosen as 0, 0.4 and 0.8. For ρ = 0, since we then have G0 = G1 we expect
the algorithm to be unable to learn (since there is no difference in the paths),
producing an accuracy around 50%. Despite not being particularly interesting,
it is important to test against basic cases like that.

Higher correlation are intuitively ”easier” to spot, therefore we expect the
algorithm to work better with ρ = 0.8, and worse for ρ = 0.4.

The results follow and are summarized in compact tables. The title ”LIN-
EAR CLASSIFIER” refers to the method of using the linear model on the
signature of our data, while ”CLOSEST EXD” to classify on the base of the
closest expected signature.

82

LINEAR CLASSIFIER ρ = 0 ρ = 0.4 ρ = 0.8
Training accuracy 57% 86% 99%

Validation accuracy 50% 83% 98%

CLOSEST EXD ρ = 0 ρ = 0.4 ρ = 0.8
Training accuracy 49% 51% 51%

Validation accuracy 50% 49% 50%

The experiments offer crystal clear results, suggesting how the closest ex-
pectation algorithm is not suitable at all for this situation. The explanation
(confirmed by a quick numerical check here not reported) is that the two pro-
cesses are ”too close” in the signature space (i.e. the norm of the difference
between the averages of their signature is relatively small) and therefore the
method is highly sensitive to oscillation in the path’s signatures.

On the other hand, the linear method perform greatly and perfectly matches
our expectations. It is then repeated on more complex situations in the upcom-
ing experiments.

We would like to finally point out some brief remarks. All the experiments
in this section have been repeated multiple times with consistent results, and
finally the random seed has been fixed so to allow reproducibility. The role of
hyperparameters like the learning rate or the depth for the signature truncation
should not be underestimated, since their influence of the results can be huge.

5.2.2 A closer look to the expected signature

If on the one hand we are satisfied with the results above, we think it is worth
spending even more time to better understand and interpret them.

The expected signatures (able to characterize the processes) are here plotted
(computed with classic Monte Carlo averages, with confidence intervals pictori-
ally omitted since small enough to be now ignored).

The plots are in our opinion interesting, since we can clearly see a sort of
”symmetric” structure between the two mean signatures. Linear separation is
therefore intuitively expected to be possible. Furthermore the main changes
start with the coefficient in position number 8, i.e. at position 9 since it counts
from 0. And since 9 = 32, this is precisely where the second level of the signature
begins (the number 3 comes from the fact that we worked with three-dimensional
paths). This is compatible with the idea that if for real variables the correlation
relates to second moments, then for time series it influences the second level of
the expected signature.

5.2.3 Experiment 2: classification of many Gaussian walks

In this section we perform a slightly more general experiment, where we aim at
detecting a possible positive or negative correlation, without being restricted on
precise values of ρ as before.

The dataset is similarly constructed, but this time we choose 6000 paths and
three labels, 0, 1 and 2, equally distributed.

83

0 20 40 60 80 100 120

1

0

1

expected signature 0
expected signature 1

0 20 40 60 80 100 120
0.0

0.5

1.0

1.5

2.0

2.5

Expected Signatures (top), their abs-difference (bottom)

Figure 5.7: Top: the expected signatures of the paths with positive correlation,
in green, and with negative correlation, in red. Bottom: their difference in ab-
solute values. Note how some components seem to follow a symmetric behavior.

For every path with label 0, a different random constant is sampled as
ρ ∈ (−1,−0.5), then its Gaussian increments set to follow that negative corre-
lation. Similarly, when the label is the value 1, the increments follow a ”weak”
correlation with a random ρ ∈ (−0.4, 0, 4), while a label of 2 determines a strong
positive correlation with a random ρ ∈ (0.5, 1). We remark again that the cor-
relation values are sampled every time for each path, therefore data with the
same label are now no more coming from the same distribution and, differently
from the previous experiment, there is no mathematical meaning in taking their
”expected signature”.

We confirm the use of the linear signature method with the same parame-
ters and description as in the experiment before. Since this time we have three
labels, the results are given in form of a classification matrix. We expect good
performance when classifying samples with strong positive and negative correla-
tions, and probably more errors when dealing with weak or absent correlations.
The training phase seems to work nicely and the loss function behaves well on
either training and validation data.

TOTAL training accuracy: ∼ 81%
TRAINING predicted label 0 predicted label 1 predicted label 2
true label 0 30 3.6 0.17
true label 1 5.6 21 5.8
true label 2 0.13 3.8 30

TOTAL validation accuracy: ∼ 78%

84

0 2000 4000 6000 8000 10000
0.4

0.6

0.8

1.0

1.2

Signature training to classify correlation
train loss
validation loss

Figure 5.8: As in the experiment before, we observe overall a decay of loss (y-
axis) when training the linear classifier for 10000 epochs (x-axis). Differently
from before, the loss is higher possibly reflecting the more sophisticated data.
Since stationarity is still reached, the limit capacity of our model is probably
hit.

VALIDATION predicted label 0 predicted label 1 predicted label 2
true label 0 29 4.6 0.13
true label 1 6.6 21 6.1
true label 2 0.20 4.1 28

The results are very consistent with our expectations. The trained linear
classifiers perform overall pretty good, being in general capable to predict the
right label on unseen data with around 78% of accuracy. The row with more
errors (both in the training and validation cases) is always the second one cor-
responding to label 1, i.e. paths with weak correlation, on which we actually
expected worse performances.

We point out how our results come from a linear model, particularly fast
and easy to implement. If simple algorithms involving the signature already
give reasonably results, maybe this transform can be included in more complex
methods to improve their performance even more.

5.2.4 Working with geometric Brownian motions

In the case of Gaussian walks is it relatively simple to set alternative strategies,
because by progressively storing the differences it is possible to evaluate their
averages and directly estimate the correlations, classifying the paths efficiently
without using the signature at all. On the other hand, not only the signature
can provide a further support to already existing tools (”double-check”), but
the linear classifier can be easily generalized.

As explained in the chapter before, geometric Brownian motions are classes
of stochastic processes very useful for (and not limited to) financial modeling. If

85

pairs of paths are available but there is a lack of knowledge about their governing
parameters σ and µ, it is in general not possible to estimate their correlation
(as far as the author knows).

Motivated by these remarks, we repeat our experiments using now log-
returns of geometric Brownian motions instead of simple Gaussian walks.

5.2.5 Experiment 3: correlation with two fixed classes of
GBM

This experiment is precisely the same as experiment number 1, but instead of
using Gaussian random walks we simulate instances of (log-returns) of geometric
Brownian motions.

Each path is then a three dimensional one, with first component equals to the
time t while the remaining two given by a couple of (log-returns) of geometric
Brownian motions with a fixed correlation ρ.

We have already explained how to numerically approximate a GBM, but for
specific remarks covering the correlated case we refer to [Shr04], example 4.6.6
at page 171.

The geometric Brownian motion parameters are set as µ = 0.4 and σ = 0.5,
and the number of time steps is 50 as before. The signature is truncated again
at depth 4, and the learning rate is 1e− 1.

The dataset is split into two classes with labels 0 (given by paths of correla-
tion ρ), and 1 for paths with correlation −ρ.

In order to keep a sense of coherence with the experiments before, we initially
chosen ρ = 0.8, then 0.4 and finally 0 as a base case test.

Examples of paths are plotted, as well the loss functions showing again a
sign of success. The final results are reported in the table.

Concerning the expected signature, note how the difference happens again
at the second level of its coefficients.

LINEAR CLASSIFIER ρ = 0 ρ = 0.4 ρ = 0.8
Training accuracy 54% 82% 98%

Validation accuracy 48% 80% 98%

5.2.6 Experiment 4: correlation with three classes of GBM

In this fourth section we build a scenario very similar to what already done with
Gaussian walks in our second experiment.

A total of 6000 three dimensional paths are simulated, divided into three
homogeneous classes with labels 0, 1 or 2. Each path has always the first
coordinate set as the time t, and the remaining two as (log-returns) of geometric
Brownian motions (µ = 0.4, σ = 0.5) following a specific correlation. If a
paths has label 0, the second and third coordinates have a random correlation
ρ ∈ (−1,−0.5). If the label is 1, then this value is taken from (−0.4, 0.4). Finally
for paths classified as 2 the random positive correlation lies in ρ ∈ (0.5, 1). The
full dataset is then split into two random parts of training and validation data.

86

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

Two GBM paths when rho=0.8 (1st component is time)
path with label 0, 2nd component
path with label 0, 3rd component
path with label 1, 2nd component
path with label 1, 3rd component

Figure 5.9: Log-returns of geometric Brownian motions with different corre-
lations. Green components share a positive correlation of ρ = 0.8, while red
coordinates a negative one of −ρ.

0 2000 4000 6000 8000 10000

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Signature training to classify correlation

train loss
validation loss

Figure 5.10: Training the linear classifier for the ρ = 0.8 case. The loss function
behaves perfectly well and suggests that a longer training could improve the
results even more.

87

0 20 40 60 80 100 120

0.0

0.2

0.4

0.6

0.8

1.0 expected signature 0
expected signature 1

0 20 40 60 80 100 120
0.00

0.05

0.10

0.15

0.20

Expected Signatures (left), their abs-difference (right)

Figure 5.11: Expected signature for the case ρ = 0.8. There is an important
information to point out: the first remarkable difference happens again at the
coefficient in position 8, which corresponds to the second level of the signature.

The paths are transformed using the signature truncated at level 4, and a
linear classifier is used to learn from training data and classify points from the
unseen validation set. A total of 20000 epochs are run with learning rate 2e−1.

We refer to the previous experiment number 2 in case further details are
desired. The results follow and are overall optimistic. Note how the most
difficult case is still given by the paths with label 1, most often misclassified, as
in the case of simple Gaussian walks.

TOTAL Training accuracy: ∼ 76%
TRAINING SET predicted label 0 predicted label 1 predicted label 2

true label 0 29 3.8 0.20
true label 1 7.5 17 7.8
true label 2 0.37 4.1 30

TOTAL Validation accuracy: ∼ 73%
VALIDATION SET predicted label 0 predicted label 1 predicted label 2

true label 0 27 5.1 0.70
true label 1 8.1 17 8.9
true label 2 0.50 3.8 28

5.2.7 Conclusion

In the past section we showed how the signature can be used to detect correlation
between time general series, assuming multiple samples are available. For the

88

0 2500 5000 7500 10000 12500 15000 17500 20000

0.6

0.7

0.8

0.9

1.0

1.1

Signature training to classify correlation
train loss
validation loss

Figure 5.12: The training phase in this more complex experiment is harder than
the previous cases, but still good and promising.

one dimensional case the correlation relates to the variance and therefore the
second moment of a random variable. Similarly, it seems that the correlation has
a connection to the second level of the expected signature of a time series. This
remark could be a starting point for the developing of further detection systems,
as well as improvements for already existing standard statistical methods.

89

Chapter 6

Signature shape analysis

In this chapter we try to develop a deeper intuition about the signature ”geomet-
rical” interpretation. We start by investigating the problem of reconstructing a
curve from a given signature tensor, focusing on simple cases of common interest
like straight lines, impulses and sinusoidal signals. Finally we suggest a method
to possibly generate artificial synthetic data based on observed time series.

6.1 The problem of inverting the signature

Given a time series we can apply the signature transform and get a tensor of
a certain depth. The question comes naturally: is it possible to ”reverse” the
process? Can we reconstruct a path by only observing its signature transform?
We briefly described this idea before, and recall that the answer is negative.

For the sake of avoiding any ambiguity we spend a couple of lines commenting
the use of the words ”signature inversion”. Given a signature tensor, sometimes
in the literature one calls its ”inverse” the tensor such that, multiplied with
the original, gives the unity element. This is legit because the tensor algebra
where each signature image lives can be endowed with a group structure. This
problem is solved. Indeed, given a path X in [0, 1] with signature S(X), its
time-reversed path Y (t) = X(1− t) satisfies:

S(Y)⊗ S(X) = 1 (6.1)

and therefore is its ”inverse”. This is explained in [CK16] (theorem 3, page
15). Now that this algebraic definition has been clarified, we highlight how our
problem is completely independent on that.

With the statement ”signature inversion” we refer exclusively to what ini-
tially stated: given a signature tensor S, find a path X such that S(X) = S.
Because the signature mapping is not surjective, there is usually no solution to
this problem. We need to add some further conditions.

First of all, we only take into account two-dimensional paths on [0, 1] starting
from 0 and having the time t as first coordinate. The monotonic behavior

90

would guarantee the signature injectivity, while keeping the dimension as low
as possible will be helpful from a computational viewpoint. Restricting finally
on tensors in the map’s range, we get a bijection and can proceed with our
investigation.

6.2 Numerical remarks

There are multiple problems when using the signature in practice, for instance
we lose the precious injectivity property when truncating the tensor to a finite
level. It is generally possible to have two paths such that their signatures are
the same up to level N , differing then only afterwards. There is no actual
”solution” for this, but a good level of truncation would anyway preserve enough
geometrical properties.

In all our experiments, with letters like X or Y we refer to one-dimensional
paths, while with X̂ to the corresponding time-augmentation X̂(t) = (t,X(t)).
We work with discretized piecewise linear paths as consistently done in all the
chapters before. The cardinality of the mesh is here denoted with n.

Let N be a positive integer referring to the truncation level, and S a finite
dimensional array with length p = 2(N+1) − 2. We are then looking for a one
dimensional path X such that S(X̂(t)) = S (the arithmetic formula before
comes from the way in which the signature is computed under the Signatory
library). We approach this problem simply as a minimization of:

‖S(t, Z(t))− S‖Rp (6.2)

among all possible one-dimensional arrays Z of length n− 1 (first value is fixed
to be zero) representing the node values of the path.

Since the truncated signature is a combination of differentiable operations
(see for instance [KL20] for a more detailed discussion), a gradient descent
approach is possible and when using PyTorch we can take advantage of its
automatic differentiation.

To see the algorithm in action, we perform multiple tests. Each of them is
constituted by the following steps:

� generate a discrete 1-dimensional path, X, starting from 0 and having
random n−1 values for each successive node point, each value distributed
as N(0, 1);

� compute the signature S(X̂) until level 5;

� use a gradient descent (10000 epochs, learning rate of 1e− 2) to minimize
the norm described above. Call Y the obtained 1-dimensional curve;

� finally compute the errors err(S(X̂), S(Ŷ)) and err(X,Y).

We run the tests with differently mesh sizes n starting from 4 and running
until 32, doubling at every step. For each fixed meshsize, the tests are repeated

91

5 10 15 20 25 30
Number of path points

0

10

20

30

40

%
 m

ea
n

re
la

tiv
e

er
ro

r

sig
path

5 10 15 20 25 30
Number of path points

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m
ea

n
sq

ua
re

 e
rro

r

sig
path

Behavior when reconstructing paths from the Signature

Figure 6.1: The typical errors (absolute and relative, on the signatures and
on paths) obtained on average when reconstructing a path from its signature.
On the x-axis the number of time discretization points, from 4 to 32. The
signature absolute error is always lower than 1e − 3, and it is the quantity
directly minimized by the gradient descent algorithm.

100 times so that we can have a hint about the typical, averaged errors coming
from the use of this algorithm.

Since a simple gradient descent approach did not perform so well, the learn-
ing rate has been programmed so to detect oscillations or slowdown and auto-
matically decrease or increase its value by 10%.

Two plots are finally attached. The first shows the results of our repeated
tests, as a form of benchmark before moving to applications.

The second plot shows the effect of using different truncation levels. The
same curve is reconstructed on the base of its signatures of depth 3, 5, 7 and
finally 9. It is interesting not only to have a confirm of the quality improvements,
but also to see how the curve is qualitatively reconstructed.

In general is is possible to increase the number of epochs and the signature
truncation so to ultimately obtain better errors, but at the expenses of the
running time. With our typical choice of parameters (30 time points, signature
depth 5 and 10.000 epochs starting with a learning rate of 1e − 2) we are able
to perform a single reconstruction in matter of seconds on a modern Desktop
PC even without any particular further optimization.

92

0.0 0.2 0.4 0.6 0.8 1.0

2

1

0

1

2

3

4 path
recon-3

0.0 0.2 0.4 0.6 0.8 1.0

2

1

0

1

2
path
recon-5

0.0 0.2 0.4 0.6 0.8 1.0

2

1

0

1

2
path
recon-7

0.0 0.2 0.4 0.6 0.8 1.0

2

1

0

1

2
path
recon-9

Same curve, different signature depth

Figure 6.2: Reconstructing the same curve using signatures of different levels,
3, 5, 7 and 9. The path errors decrease from 52% to 45%, with improvements
especially from a qualitative viewpoint. On the other hand, the errors between
the signatures of the reconstructed curves and the original are always less than
7% (not plotted).

93

6.3 Shape analysis: overview

The goal of the following sections will be to study how the signature transform
behaves when applied on some intuitive ”typical” shapes, like sinusoidal, straight
lines and Gaussian impulses. We are interested in checking how the signature
measure their differences, as well as and in observing their reconstructions.

In all cases (if not otherwise specified) the paths are discretized with a total
of 40 points, the reconstruction trained for 5000 epochs with a final mean square
error less than 0.01. The signature is truncated at level 5 producing arrays of
length p = 62. The curves are also normalized so to have values between −1
and 1 to improve readability.

Similarly to what done for stochastic processes, we measure the similarity
between two curves X̂ and Ŷ by looking and the norm ‖S(X̂)−S(Ŷ)‖R62 (there
is no ”expectation” since the curves are deterministic). To intuitively interpret
the produced number, we use the following heuristic idea.

We sampled 100.000 couples (X,Y) of paths starting from zero, with all the
remaining values uniformly sampled from [−1, 1]. We looked at the mean value
of the quantity ‖S(X̂)− S(Ŷ)‖, resulting to be τ = 0.594 +- 0.003 (very stable
upon repeated simulations).

Therefore when the signature between two curves is higher than this value,
we interpret as they would differ ”more than the average”, and the other way
around. Alternatively, one can use again a relative percentage distance. We
preferred the use of the absolute norm so to point out an alternative approach.
This is of course not rigorous, but can be surely helpful in view of concrete data
and applications.

Each example always shows three curves respectively numbered as 1, 2,
3. We report their signature distances (with interpretations with respect to
the threshold τ) and observe whether they can be reconstructed from their
signatures.

6.4 Shape analysis: straight lines

In this example we observe the signatures of a line of the form X(t) = (t, αt)
with α = 0, 0.5, 2. The first case where the curve is constant zero is of easy
interpretation. The effects in the signature will be only given by the time t
which will follow the predicted factorial decay.

The cases with α = 0.5 and α = 2 are related since one can be obtained from
the other by a simple scalar multiplication in the second coordinate. Therefore
the mixed signature terms between the two curves must be the same, up to
a coefficient starting with value 4 = 2

0.5 and factorially increasing with the
signature’s depth. The effect is that the behavior observed for the case α = 0.5
is now ”amplified”.

If we only look at their signatures, the three curves differ reciprocally as
described in the table. The curves 1 and 2 differ ”a bit less that the average”,
while all the other cases much more. This might be interpreted as the fact

94

that the signature is very sensitive to scalar multiplication, as we know from its
definition directly.

Curves Signature distance Compared to τ Similar?
1-2 0.648 1.1 τ likely not
1-3 3.840 6.5 τ not
2-3 3.350 5.6 τ not

6.5 Shape analysis: sinusoidal curves

In this example we take a sinusoid with increasing frequencies (2, 4 and 8).
Attached there are the plot for the reconstruction, as well as the signature
distances listed in the usual table.

Curves Signature distance Compared to τ Similar?
1-2 0.290 0.49 τ likely
1-3 0.432 0.73 τ likely
2-3 0.148 0.25 τ likely

This example requires a further remark. For the second and third curve, we
needed to increase the training time, and set the adaptive gradient descent with
20.000 epochs. This was actually not enough, since the loss function for the
curve reconstruction was finally around 0.03 and not lower our desired bench-
mark of 0.01. We have an interpretation for this behavior. Let’s focus on the
second component of the augmented curve, therefore the sin() itself. The first
sinusoid (here called ”simple”) has a certain signature S(X). The curve Y
corresponding to the sinusoid with doubled frequency can be interpreted as a
time-concatenation of two simple sinusoids! Thanks to the Chen’s formula, we
know that:

S(Y) = S(X)⊗ S(X) (6.3)

If we think of signatures as polynomials, the tensor product can be seen as poly-
nomial products. When polynomials of lower degree are multiplied, the results
is a polynomial with a higher one. Similarly, when the tensor product between
two signatures is performed, it is possible that coefficients corresponding to a
level previously very low have now some higher value, making the previously
truncation choice less effective.

In other words, a deeper truncation level could be required to preserve the
information about periodicity. This idea is partially validated in the attached
plot, where the signature level is now 6 (instead of 5), the final loss function
goes lower than 0.01. On the other hand, further tests should be performed if
there is an actual interest in linking the periodicity of a curve to the depth of
its signature truncation from a more general viewpoint.

95

0.00 0.25 0.50 0.75 1.00

0.04

0.02

0.00

0.02

0.04 original path

0.00 0.25 0.50 0.75 1.00

0.04

0.02

0.00

0.02

0.04 reconstructed

0 20 40 60
0.0

0.2

0.4

0.6

0.8

1.0 sig-5(original path)

0 20 40 60
0.0

0.2

0.4

0.6

0.8

1.0 sig-5(reconstructed)

A path followed by its Signature and its reconstruction

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5 original path

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5 reconstructed

0 20 40 60
0.0

0.2

0.4

0.6

0.8

1.0 sig-5(original path)

0 20 40 60
0.0

0.2

0.4

0.6

0.8

1.0 sig-5(reconstructed)

A path followed by its Signature and its reconstruction

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0 original path

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0 reconstructed

0 20 40 60
0.0

0.5

1.0

1.5

2.0 sig-5(original path)

0 20 40 60
0.0

0.5

1.0

1.5

2.0 sig-5(reconstructed)

A path followed by its Signature and its reconstruction

Figure 6.3: Signature analysis for straight lines. The three plots refer to the
cases α = 0, 0.5 and 2 respectively.

96

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.5

0.0

0.5

1.0 original path

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.5

0.0

0.5

1.0 reconstructed

0 10 20 30 40 50 60
0.50

0.25

0.00

0.25

0.50

0.75

1.00 sig-5(original path)

0 10 20 30 40 50 60
0.50

0.25

0.00

0.25

0.50

0.75

1.00 sig-5(reconstructed)

A path followed by its Signature and its reconstruction

0.0 0.2 0.4 0.6 0.8 1.0
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

original path

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0 reconstructed

0 10 20 30 40 50 60

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0 sig-5(original path)

0 10 20 30 40 50 60

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0 sig-5(reconstructed)

A path followed by its Signature and its reconstruction

0.0 0.2 0.4 0.6 0.8 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

original path

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0 reconstructed

0 10 20 30 40 50 60

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0 sig-5(original path)

0 10 20 30 40 50 60

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0 sig-5(reconstructed)

A path followed by its Signature and its reconstruction

Figure 6.4: Signature reconstruction for three sinusoidal curves with increasing
frequencies.

97

Figure 6.5: Choosing the signature at the deeper level 6 allows to reconstruct
the periodicity far better than before. This can be a consequence of the Chen’s
formula transforming paths concatenations in algebraic tensor products.

6.6 Shape analysis: impulses

In this section we analyze the typical Gaussian impulse. Let’s ignore for a
moment the time component and focus on the second coordinate only. Note
that each impulse is composed by three phases. A flat zero phase, the spike,
and then the flat phase again. Therefore we always have a concatenation of
these three steps. Their difference is only in how much they last, but since
the signature is invariant under time reparametrization, these three phases will
always have the same signature and so their composition!

In this example we can particularly appreciate the introduction of the first co-
ordinate t, capable of ”keeping track” of possible reparametrizations and there-
fore ensuring injectivity.

In conclusion, it is of no surprise that all three curves have similar signatures,
as described in the following table.

Curves Signature distance Compared to τ Similar?
1-2 0.027 0.045 τ yes
1-3 0.047 0.079 τ yes
2-3 0.027 0.045 τ yes

It is certainly interesting to see how the signatures are yes extremely close,
but still manage to convey information about where the ”peak” is located by
looking the reconstruction plots.

98

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 original path

0.0 0.2 0.4 0.6 0.8 1.0
0.3

0.2

0.1

0.0

0.1

0.2 reconstructed

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0 sig-5(original path)

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0 sig-5(reconstructed)

A path followed by its Signature and its reconstruction

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 original path

0.0 0.2 0.4 0.6 0.8 1.0

0.1

0.0

0.1

0.2

0.3 reconstructed

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0 sig-5(original path)

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0 sig-5(reconstructed)

A path followed by its Signature and its reconstruction

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0 original path

0.0 0.2 0.4 0.6 0.8 1.0

0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6 reconstructed

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0 sig-5(original path)

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0 sig-5(reconstructed)

A path followed by its Signature and its reconstruction

Figure 6.6: Despite being the signatures always very close to each other, each
time it is possible to approximately understand ”where” the impulse peak is
originally located.

99

It is also interesting to observe how the coefficients after position 20 seem
to be essentially irrelevant. Impulses are not periodic at all, and this fact is
potentially compatible with the previous observation that the need of a deeper
truncation might be connected to the presence of massive periodicity.

With this example we conclude our shape analysis. The next section will
be devoted to the generation of artificial time series with a simple algorithm
merging together the past remarks on stochastic processes and the technique
for the signature inversion explained in this chapter.

6.7 Generation of artificial data

The generation of artificial synthetic data is nowadays a common challenge in
multiple fields. We propose a highly experimental technique based on the use
of the signature transform. We assume that a collection of equidistributed time
series {Xi} is available. The goal it to generate a new set of data {Yj} such
that it is ”reasonably to believe” it originated from the same source as the Xi.

There is on purpose some ambiguity in this description, since the precise
requirements on Yj usually vary depending on the field of application. For in-
stance one can provide a specific list of statistical tests to be passed, as done in
the paper [WKKK19] (”stylized facts” at page 3) where some examples in quan-
titative finance are studied. On that regard, we also recommend the reading
[NSW+20]. The two papers together provide nice examples of using the signa-
ture transform for the problem of data generation combined with deep neural
networks.

In this section we follow another approach, but in retrospective there are
some similarities that we point out later.

Recall that for two suitable stochastic processes X and Y the expected sig-
nature is able to characterize their distributions (see our previous chapters for
a more precise statement). Our algorithm directly follows from that property:

1. compute the expected signature of the samples {Xi}, call it SX ;

2. generate a set of tensors, {Tj} such that their average coincides with SX ;

3. for each Tj , construct a path Zj by using the inversion algorithm described
at the beginning of this chapter;

4. the set {Zj} constitutes the resulting artificial data.

Theoretically speaking, the random paths {Zj} will have by construction
the same expected signature of {Xi}, following therefore the same random dis-
tribution thanks to the characterization theorem.

On the other hand, there are multiple limitations when running this idea
into practice.

First of all, we of course have only a finite number of samples and therefore
the average estimations are subjected to an approximation error.

100

Then, the signature computation must be truncated at some level. In general
it is possible for two difference processes to share the same expected signature up
to a certain finite level, differing only later. This fact constitutes an obstacle, but
on the other hand truncating the signature to a ”reasonable” level is enough to
preserve statistical similarities, which is at the end the final goal in this context.

The next inconvenience is about how to generate the random tensors Tj .
In our experiment, we perturb componentwise the tensor SX with a centered
Gaussian of a fixed standard variation: the resulting tensors are likely not to
be signatures of any path (the signature is not surjective), but nevertheless
when the inversion is performed the produced paths will have a signature not
so different from the starting tensors values. Ultimately the signature average
is preserved up to some error that is well monitored.

Finally, the experience with inversion in the previous sections told us how
paths constructed in this way are likely to be ”smoother” and less oscillating,
which is also a factor to consider.

It’s now time to describe in details our experiment.
As in many previous chapters, we choose to work with log-returns of geo-

metric Brownian motions, in a dataset composed by 100 time series of lengths
30, with µ = 1. and σ = 0.4.

The signatures are truncated at level 6, and once their average SX is com-
puted, is then perturbed 50 times componentwise with a centered Gaussian with
standard deviation 0.02.

For each perturbation a path is constructed and stored, for a total of 50
artificial time series. The average signature of them is computed again and
compared with the reference SX . The closer they are, the better, since we can
expect a good preservation of statistical similarities.

Finally, in order to estimate the errors on the paths themselves, the follow-
ing test is performed. For (log-returns of) geometric Brownian motions, the

expected path follows the simple evolution t 7→ (µ− σ2

2)t. Therefore, both the
averages of {Xj} and the artificial {Zj} are compared to that reference. The
simulated have an mean relative error of 6%, while the generated of 12%.

In order to provide also a visual feedback, six paths (three original, three
generated) are also plotted so to support an intuitive understanding.

The results of the experiment have some interesting consequences. If it is
true that the errors and the shapes are possibly too far from something realistic,
on the other hand the proposed algorithm is simple and has a lot of room for
improvements. For instance it is known that the signature coefficients are not
independent to each other (as we also remarked before), and more refined ways
to perturb the tensor SX can be consequently developed.

In retrospective, the paper mentioned before can (essentially) be interpreted
as a way to use deep neural networks to match the expected signatures similarly
as we did here. In conclusion, the results are overall very encouraging and we
genuinely believe there is a potential in this direction of research.

101

0 20 40 60 80 100 120

0.0

0.2

0.4

0.6

0.8

1.0

Comparing expected signature of data: original VS generated
og signature
from artificial data

Figure 6.7: The difference between two expected signatures. The first computed
using the original dataset, the second using the artificial data. The closer they
are, the better. Their mean relative error is around 30%. Confidence intervals
(small enough) are omitted.

0.0 0.2 0.4 0.6 0.8 1.0

1.00

1.25

1.50

1.75

2.00

2.25

2.50

True GBM

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

2.5

3.0

Artificially generated via Signature Expectation

Figure 6.8: Three examples of original paths, and three artificial. When com-
pared to the theoretical expected path, the original differ by 6% while the gen-
erated by 12%.

102

Chapter 7

Conclusion

We conclude this work by adding a list of resources that the reader can find
helpful to extend the knowledge of the signature transform in connection to
other areas of mathematics (different from the already mentioned rough path
theory):

� we used the signature in the continuous case, always using piecewise linear
interpolation. The paper [CPSF22] extends the study to jump processes,
aiming at more realistic financial applications;

� in the paper [AFS18] the authors focus on paths described by polynomials.
By connecting their zeroes with the signature transform, the notion of
signature varietes is introduced building a potential bridge with algebraic
geometry;

� the problem of reconstructing a curve given a signature is the main topic
in [Gen15], where the focus is on solid theoretical developments;

� we used more classic machine learning approaches (multidimensional scal-
ing, k-means clustering,...), but a lot can be done also in the setting of
neural networks. Recurrent networks are one of the modern ways to
model time series. They can be seen ad a Euler discretization of continu-
ous neural ODEs, on which the signature transform can help in numerical
stability. See for instance the papers [MSK+20] and [BFT22];

� the paper [KO19] focuses on building kernels using the signature trans-
form. In particular it establishes a methodical way such that, starting
with some data endowed with a ”static” kernel, such a kernel can be then
extended on sequences of these data by using the signature transform.
The continuous case, as well as the discrete one are carefully analyzed.
According to this viewpoint, the difference of the expected signatures be-
tween two processes (that we extensively used) connects very well with the
notion of maximum mean discrepancy. The signature kernel can also be
connected to partial differential equations as explained in [SCF+20].

103

Bibliography

[AFS18] Carlos Améndola, Peter Friz, and Bernd Sturmfels. Varieties of
signature tensors. Forum of Mathematics, Sigma 7 (2019) e10,
2018.

[Ber23] Dimitri P. Bertsekas. A Course in Reinforcement Learning. Athena
Scientific, 2023.

[BFT22] Christian Bayer, Peter K. Friz, and Nikolas Tapia. Stability of
deep neural networks via discrete rough paths. SIAM Journal on
Mathematics of Data Science 5(1), 2023, pp 50-76, 2022.

[CK16] Ilya Chevyrev and Andrey Kormilitzin. A primer on the signature
method in machine learning. ArXiv e-prints, 2016.

[CL13] Ilya Chevyrev and Terry Lyons. Characteristic functions of mea-
sures on geometric rough paths. Annals of Probability, Volume 44,
Number 6 (2016), 4049-4082, 2013.

[CPSF22] Christa Cuchiero, Francesca Primavera, and Sara Svaluto-Ferro.
Universal approximation theorems for continuous functions of
càdlàg paths and lévy-type signature models. ArXiv e-prints, 2022.

[ES20] Thomas Viehmann Eli Stevens, Luca Antiga. Deep Learning with
PyTorch. Manning Publications Co., 2020.

[Fer20] Adeline Fermanian. Functional linear regression with truncated
signatures. ArXiv e-prints, 2020.

[FV10] Peter K. Friz and Nicolas B. Victoir. Multidimensional Stochastic
Processes as Rough Paths. Cambridge University Press, feb 2010.

[Gen15] Xi Geng. Reconstruction for the signature of a rough path. ArXiv
e-prints, 2015.

[Hac19] Wolfgang Hackbusch. Tensor Spaces and Numerical Tensor Calcu-
lus. Springer International Publishing, 2019.

104

[KL20] Patrick Kidger and Terry Lyons. Signatory: differentiable compu-
tations of the signature and logsignature transforms, on both cpu
and gpu. ArXiv e-prints, published at ICLR 2021, 2020.

[KO19] Franz J. Király and Harald Oberhauser. Kernels for sequentially
ordered data. Journal of Machine Learning Research 20 (2019)
1-45, 2019.

[KPS94] Peter E. Kloeden, Eckhard Platen, and Henri Schurz. Numerical
Solution of SDE Through Computer Experiments. Springer Berlin
Heidelberg, 1994.

[Kre98] Rainer Kress. Numerical Analysis. Springer, 1998.

[LLN13] Daniel Levin, Terry Lyons, and Hao Ni. Learning from the past,
predicting the statistics for the future, learning an evolving system.
ArXiv e-prints, 2013.

[LM22] Terry Lyons and Andrew D. McLeod. Signature methods in ma-
chine learning. ArXiv e-prints, 2022.

[Lyo07] Lévy Lyons, Caruana. Differential Equations Driven by Rough
Paths. Springer, 2007.

[MSK+20] James Morrill, Cristopher Salvi, Patrick Kidger, James Foster, and
Terry Lyons. Neural rough differential equations for long time se-
ries. Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021., 2020.

[NSW+20] Hao Ni, Lukasz Szpruch, Magnus Wiese, Shujian Liao, and Baoren
Xiao. Conditional sig-wasserstein gans for time series generation.
ArXiv e-prints, 2020.

[RSS18] Andrew G. Barto Richard S. Sutton. Reinforcement Learning: An
Introduction. MIT Press, 2018.

[SCF+20] Cristopher Salvi, Thomas Cass, James Foster, Terry Lyons, and
Weixin Yang. The signature kernel is the solution of a goursat pde.
SIAM Journal on Mathematics of Data Science, 2020.

[Shr04] Steven Shreve. Stochastic Calculus for Finance II: Continuous-
Time Models. Springer Finance, 2004.

[Var01] Varadhan. Probability Theory. Courant lecture notes, 2001.

[WKKK19] Magnus Wiese, Robert Knobloch, Ralf Korn, and Peter
Kretschmer. Quant gans: Deep generation of financial time series.
Quantitative Finance, 2020, 2019.

105

